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A COURSE ON TOPOLOGICAL GROUPS
By K. Chandrasekharan
AUTHOR’S NOTE

This course has for its aim a proof of the Peter-Weyl theorem (1927),
that every complex-valued continuous function on a compact topological
group is a uniform limit of finite linear combinations of representation
functions coming from irreducible representations. The method of proof
adopted here is the one expounded by Warren Ambrose in his MIT
lectures (1952). It incorporates the ideas originally introduced in this
context by John von Neumann, and André Weil, and makes use of the
L,-algebra of the group relative to Haar measure. The topological, an-
alytical, and algebraic groundwork needed for the proof is provided as
part of the course. Acknowledgements are due to the following:

F. Peter and H. Weyl, Math. Annalen, 97(1927), 737-755; No. 73 of
Weyl’s Gesammelte Abhandlungen, Bd. III

A. Haar, Annals of Math. 34 (1933), 147-169

J. von Neumann, Compositio Math. 1(1934), 106-114; No.22 of his
Collected Works, Vol. II

J. von Neumann, Trans. American Math. Soc. 36(1934), 445-492;
No. 23 of his Collected Works, Vol. 11

L.S. Pontrjagin, Comptes Rendus, Paris, 198 (1934), 238-240
L.S. Pontrjagin, Annals of Math. 35 (1934), 361-388
L.S. Pontrjagin, Topological groups, Princeton (1939)

M.H. Stone, Linear transformations in Hilbert space and their
applications in analysis, AMS Collog. Publ. XV (1932)

F.D. Murnaghan, The theory of group representations, Baltimore
(1938)

A. Weil, L’integration dans les Groupes topologiques et ses
Applications, Paris (1940)



viii Author’s Note

H. Cartan, Comptes Rendus, 211 (1940), 769-762; No. 69 of his
Collected Works, Vol. 1II

C. Chevalley, Lie Groups I, Princeton (1946)

W. Ambrose, Lectures on topological groups (unpublished)
Ann Arbor (1946)

W. Ambrose, Trans. American Math. Soc. 65 (1949), 27-48

W. Ambrose, Lectures on topological groups (mimeographed
lectures) MIT (Boston), pp. 216, 11 Chrs. (1952)

D. Montgomery and L. Zippin, Topological transformation groups,
New York (1955)

It is Ambrose’s approach that is the prime influence in this presentation,
which was offered as an optional course at the ETH, Ziirich, more than
once, during the years 1965-88.

Ziirich, January 1993



I. Topological Preliminaries

L1 Topological spaces

A topology T in a set X is a class of subsets of X (called open sets)
satisfying the following axioms:

(1) the union of any number of open sets is open;
(2) the intersection of any two (or finite number of) open sets is open;
(3) X and the empty set () are open.

A topological space is a set X with a topology T in X. T is called the
trivial topology if T = {X, 0}, the discrete topology if T = {A| A C X}.

Let X be a topological space, and A C X. We define an induced
topology in A as follows: the class of open sets in A is the class of sets
of the form U N A, where U runs through all open sets in X.

In a topological space X, a closed set is any set whose complement
is an open set.

The closure E of any set E is the intersection of all closed sets con-
taining E£. By axioms (1) and (3) above, the closure is a closed set.

A neighbourhood of z € X is any open set containing z. Let X;, X,
be two topological spaces, and f a mapping

X, L x,.

[A mapping is an assignment to each z € X of an element f(z) € X;.].
Then f is continuous if and only if for every open set O3 in X3, the set
f~1(03) is an open set in X;. [Here f~1(0;) = {z | z € X1, f(z) € O,}.

Let z € X;. We say that f is continuous at z, if to every neigh-
bourhood U of f(x) there exists a neighbourhood V of z, such that
J(V) C U. We say that f is continuous, if f is continuous at every point
of X;. This definition is equivalent to the preceding one.

The mapping f is said to be open, if for every open set O; in X), the
set f(O;) is an open set in X,.
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Let f: X — Y and g : Y — Z be two continuous mappings. Then
the composite mapping go f : X — Z is continuous.

Examples

(i) If X is a discrete topological space, Y is a topological space, then
every mapping f : X — Y is continuous.

(i1) If X is any topological space, and Y a set with the trivial topology,
f : X — Y is continuous.

(iii) Ix : X — X is the identity mapping.

The topological product of two topological spaces X;, X is the topo-
logical space X = X; x X3, whose set is the cartesian product of X, and
X2, namely {(z1,z2) | 21 € Xi1,z2 € X,}, with the open sets being all
unions of sets of the form O; x O3, where O is an open set in X;, and
O, an open set in X3. [Sets of the form O; x O, form a basis of open
sets in X; x X3.]

Note that if p; : X; x X3 — X, and p; : X; x Xy — X, are the
projections defined by py(z1, z2) = =1, and pa(zy, z3) = z2, respectively,
then p; and p; are continuous mappings. (z; € X1, z2 € X3).

Covering. A family {V,}qer of subsets of a set X is a covering of X,
if Uges Vo = X. That is to say, each point of X belongs to at least one
Va. If further, X is a topological space, and each V, is an open subset
of X, we say that {V,} is an open covering of X.

A covering {Vy}aer is a finite covering if I is a finite set.

Compact sets. A topological space X is compacl, if every open cov-
ering of X contains a finite covering. [That is to say, X = J,¢; Ua) Ua
open, implies that there exist a3, @3, ...,an € I such that |, <;<, Ua; =
X]. A subset A C X is compact, if A is compact in the induced t.opology.

Remarks
(i) R is not compact. (R = real numbers)

(i1) Let X be a topological space, A C X. If A consists of finitely many
elements of X, then A is compact.

(iii) Let a,b € R, a < b. Then the set {z € R | a < z < b} is compact.
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An equivalent definition of compactness is the following: if {F,} is
a family of closed sets such that every finite subfamily has a non-empty
intersection, then (), Fo # 0. [If {F,} is a family of closed sets with
the finite intersection property, then the intersection of the whole class
is non-empty].

A closed subset of a compact set is compact. A continuous image of
a compact set is compact. [If X; is compact, X, Hausdorff (see later),
and f: X; — X3 is continuous, then f(X;) is closed in X3].

A product of compact spaces is compact (Tychonoff).

A space X is locally compact, if for every z € X, there is a neigh-
bourhood O; of z, such that the closure of O, is compact.

Every compact space is locally compact, but not vice versa.

Homeomorphisms Let X and Y be topological spaces, and f a map-
ping, f : X — Y. We say that f is a homeomorphism if f is one-to-one
(ie. f(z) = f(y) = z = y), onto (i.e. (f(X) =7Y), and both f and
f~! are continuous.

Two topological spaces X,Y are said to be homeomorphic, if there
exists a homeomorphism f from X to Y.

Examples
(i) X=Y =R, f(z) =23, —zforz e X.

(i) (3 X=R,Y={z€eR|-1<z<1}. X and Y are homeomor-
phic under the mapping: f(z) = S
1+ |z
(b) R™ and the open unit-ball B = {z € R" | ||z|| < 1}.
(iii) f X =P,and Y = {s € R| -1 < z < 1}, then X and Y are not
homeomorphic. Note that Y is compact, while R is not.

(iv) If a mapping is one-to-one, onto, and continuous, it does not follow
that it is a homeomorphism. Let X = a set with more than one
element, T = the discrete topology in X, and 7' = the trivial
topology in X. Then the identity mapping Ix : (X,T) — (X, T")
is continuous, but not a homeomorphism.
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Separation axioms

Two sets M; and M, can be separated by open sets, if there exist
open sets O; and O3, such that M; C O;, M2 C O3, and O, N 02 = 0.

M; and M, can be separated by a real function, if there exists a
continuous real function f on X such that 0 < f(z) <1 for z € X, and
f(z) =0 for z € My, and f(z) =1 for z € M,.

T:: for any two disjoint points, there exists a neighbourhood of either
point not containing the other. [This implies that the complement
of each point is an open set, or that each point is a closed set.)

N.B. In this course we assume that all topological spaces (are Ti-spaces)
satisfy the aziom T .

T,: Any two distinct points can be separated by open sets. (or, any two
distinct points have disjoint neighbourhoods) A topological space
is Hausdorff it it satisfies T5.

Examples

(i) A set X with the discrete topology.

(ii) If X is a set with more than one element, then X with the trivial
topology is not Hausdorff.

(iii) If X is Hausdorff, and A C X, then A is Hausdorff with the induced
topology.

(iv) Let X; be compact, X2 Hausdorff, and f : X; — X, be continu-
ous. Then f(X)) is closed in X3.

(v) Let X be Hausdorff, A C X, with A compact. Then A is closed.
Ts: A closed set F and a point z € F' can be separated by open sets.

A topological space is regular if it satisfies T} and T3. A completely
regular topological space is one in which a closed set F and a point z ¢ F
can be separated by a real function.

T4: Two disjoint closed sets can be separated by open sets. A topolog-
ical space is normal if it satisfies T} and Tj.

Urysohn’s lemma (Lefschetz, Algebraic Topology, p. 27) In a normal
space, every two disjoint closed sets can be separated by a real function.
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L2 Topological groups

A topological group is a set G which is both a group and a T}-space, with
the topology and group structure related by the assumption that the
functions (z,y) — z -y and z — z~! are continuous. Here z,y € G,
and z~! is the group inverse of z.

Equivalently, the function (z,y) — zy~! (from G x G to G) is
continuous.

Examples

(i) The additive group of real numbers is the underlying group of a
topological group whose underlying topological space is the usual
space of real numbers. More generally, the Euclidean n-space under
addition with the usual topology.

(ii) Any group with the discrete topology (every set is its own closure).

(iii) The n-dimensional torus (product of n circles). Here a circle is the
topological group {z € C | |z| = 1} under multiplication.

(iv) GL(n,C): the general linear group, i.e. the group of all non-
singular n X n matrices with complex coefficients. For the topology
use that “induced” by considering the n x n matrices as a subset

of C’.

(v) Any product of topological groups.

Trivial properties Let e be the identity in a topological group G. If
E,F C G, then EFdzf{zy |z€ E,y€ F}.
{

(1) If z = 2y, O a neighbourhood of z, there exist neighbourhoods P
of z and Q of y such that PQ C O.

Let ¢ denote the mapping (z,y) — zy, and O = ¢~1(0).
Since ¢ is continuous, and O open, it follows that Ois open. Now
O contains (z,y), hence it contains a set of the form O; x O,,
where O, is a neighbourhood of z, and O a neighbourhood of y,
and ¢(01 x O2) = 0, - O3 C O. Take P = 0y and Q = O,.
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1)

2

3)

(4)

(3)

(6)

‘The mapping ¢ — z~

If @ € G, then for every neighbourhood V of a~! there exists a
neighbourhood U of a, such that U~! C V. This follows again
from the fact that a — a~?! is continuous. [If g is a continuous
mapping of a topological space R into R, then for every point
a € R and every neighbourhood U’ of @’ = g(a) € R’ there exists
a neighbourhood U of a such that ¢g(U) C U’]

For each z € G, the mappings y — yz and y — zy are homeo-
morphisms (or topological mappings)

The mapping f : y — zy is one-to-one (zy = z'y implies
that £ = z'). The inverse mapping f~! : y — z7 !y is of the
same form. Hence it suffices to prove that f is continuous. Let O
be any neighbourhood of zy. By (1) there exists a neighbourhood
O; of z, and a neighbourhood O, of y, such that 0,0, C O.
Hence zO; C O, that is to say f(O2) C O. This shows that f is
continuous (cf. (1)).

! is a homeomorphism. For £ — z~! is

one-to-one, and is its own inverse. It is continuous by definition.

If O is open in G, then O~!, 2O, EO, Oz, OF are also open, where
z€G,ECQG.

By (2) O and Oz are open, so is O~! by (3). Now EO =
U: ek 20, hence open; similarly also OF.

If V is any neighbourhood of e, it contains a neighbourhood W of
e, such that W-W-1C V.

Since ee~! = e, there exist neighbourhoods V; of ¢, and V,

of e~! = ¢, such that V1V, C V by (1).
Let Va=V¥V1 N V{l. Then V3 is open, and e € V3, so that V3
is a neighbourhood of e.

Next V;;Va"l C V. Forz € V3 implies z € V}, z € V{’,
and y~! € V57! implies that y € Vs, which in turn implies that
y~! € V5. Hence zy~! € V;;Va'1 implies that zy~! € V1V, C V.
Choose W = V3.

A neighbourhood V of e is defined to be symmetric if and only if
V=V-1L
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Every neighbourhood W of e contains a symmetric neigh-
bourhood (for example, W N W~1). By (4) W~! is open. Hence
W NW=-1is a symmetric neighbourhood of e.

(7) Every neighbourhood of z € G is of the form zV as well as of the
form Wz, where V, W are neighbourhoods of the identity.

Let U be any neighbourhood of z. Then V = 2z~!U 3¢, and
71U is open, by (4). Hence V is a neighbourhood of e. Similarly
W = Uz~! is a neighbourhood of e. Hence U = zV = Wz.

(8) The continuity of (z,y) — zy~! is equivalent to the continuity of

(z,y) — zy together with the continuity of z — z~1.

(i) If (z,y) — zy and z —> z~! are continuous, then (z,y~!) —

zy~! and (z,y) = (z,y~!) are continuous, hence the com-
posite (z,y) — zy~! is continuous.

(i) Conversely, if (z,y) = zy~! is continuous, then (e,y) —

ey~! = y~! is continuous. Further y — (e,y) is contin-
uous (obviously). Hence y — y~! is continuous. There-
fore (z,y) = (z,y™!) is continuous. But, by hypothesis,
(z,y) = zy~! is continuous. Hence (z,y) — zy is contin-
uous.

Separation properties
Lemma 1 The topological space of a topological group G is Hausdorff.

Proof Let z,y € G, z # y. Then y~lz # e. By the Ti-property,
we can find a neighbourhood V' of e not containing y='z. By (5) there
exists a neighbourhood V) of e, such that VIVI'1 C V. Then zV},yW)
are neighbourhoods of ¢ and of y respectively. And zV; NyV; = 0. For
if zV1 NyVy # 0 then there exist v/, v” € V), such that zv' = yv”, so
that y~lz = v"v'~! € ViV~! C V, contradicting the choice of V. Hence
VinyV; = 0.

Lemma 2 If E C G, then £ = NEV = NV E, where V extends.over all
neighbourhoods of e.

(i) EonEV.
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If £ € EV for all V, we shall see that every neighbourhood
of z intersects E, hence z € E.

Let z € NEV, and let O be any neighbourhood of z. Then
by (7) above, O = zV, where V is a neighbourhood of e. By
hypothesis, z € EV~!, which implies that z = ay~!, where a € E,
y € V, or zy = a. Hence zV intersects E (i.e. has a non-empty
intersection with E'). Therefore O intersects E, hence z € E.

(i) EcCnEV.
If z € E, then every neighbourhood of z intersects E. By
(7), zV~! is a neighbourhood of z (where V is a neighbourhood

of e). Hence zV~! intersects E. This implies that z € EV (for
3y € V,such that zy=! € E, or z € Ey C EV). Hence z € NEV.

Remark A topological group is homogeneous. Given any two elements
P, ¢ € G, there exists a topological mapping f of G onto itself, which
takes p into q.

Take a = p~!q, and take f(z) = za. This implies that f(p) = q.

It is sufficient for many purposes therefore to verify loca: properties
for a single element only. For example, to show that G is locallv compact,
it is sufficient to show that its identity e has a neighbourhood U whose
closure is compact — so also with regularity.

Lemma 3 The topological space of a topological group G is regular
(Kolmogorov).

Proof We can separate e, and any closed set F Fe. Let O = F°. Then
O is a neighbourhood of e. Now there exists a neighbourhood V of e,
such that V2 C O (because of (5) and (6)). V and V" are disjoint open
sets. We shall see that F C V".

Since V is a neighbourhood of e, that will prove the lemma. Now

14

NVW, where W is a neighbourhood of e (by Lemma 2),
V2, (since V is a W, a neighbourhood of ¢),

O, (by choice of V and 0),

F¢, (by definition of O).

n N
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Hence V.C F¢,or V' D F.

Theorem 1 A topological space which is the underlying space of a
topological group G is completely regular.

Proof It is sufficient to show that if F' is a closed set not containing
e, then F and e can be separated by a continuous real function (cf. the
remark above).

Let V = F¢. Then V is a neighbourhood of e. Choose a sequence
Vi, Va, ..., of neighbourhoods of e, such that V2 C V, V2, C Vi, k > 1.
[This is possible, see the proof of Lemma 3, in which (5) and (6) were
used].

Let a be a finite dyadic real number, with

a=0. ajay---a;000, a;=0,1.
Define
Ou = V™ - V32 .. V™ (group product), where V? = .
We will show that
a < B implies that O, C Op.

If a < 3, their first j digits agree for some j > 0, so that
a=0-ajaz---a; 0 ajypp---ax000;
B=0-51B2---B; 1 Bita---Bm000,

and ay = B for ¢ < ;.

Now define
ag
a=0-a;--0;011--- 1 000---
f=0-a;--a;1000---.
Then
a<ad <p <B.
Clearly Oo C 0o C Op C Og, (since V0 =¢).

We shall see that

Ou C Op:, (which will imply that O, C Op).
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Let
o=Vv".. .vj":‘.

Then
Oo' =OVjy2--- Vi, and Op = OVj4,.

Hence, by Lemma 2,
Ou COaVi = OVjyz--- Vi1V
C OVjya- Vi—2VZ, (since VZ C Vi_1)
C OV%,COVi41=0p (by definition).

Hence
Ou C Op:, and therefore Oa C Og.

Now define
_ [ 1, ifz ¢ any Oa,
flz) = { inf{a |z € 0.}, if z € some O,.
Then we have 0 < f(z) <1, for all z € G. Further
flz) = 0, for z = e (since V? =e),
Tl 1, forzeF, (V= F¢ see above).

We shall see that f is continuous. The sets {z | f(z) > k} and {z |
f(z) < k}, k € R, are open. For

{z|f(&)>k} = (ﬂ@) = {z| f(z) <k}

a>k

(n 6,,,) , (a closed set).

a>k

Il

Note that a < # = O, C Opg, hence
{z1f@)<k}C{zlz€ ) 0a);
a>k
for if z is such that f(z) <k, and B > k such that z ¢ Op, then = ¢ O,

for all @ < B (since O, C Op), hence f(z) > B > k, a contradiction.
The opposite inclusion is trivial. Thus

{zlf(z)gk}z{xlze ﬂo,,}.

a>k
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But Voo O = Na>k Oa, since on the one hand, Oq C O, and on
the other, < 8 => O, C Op, so that z € Nas O« implies that
z € Nasi Oa, (a is dyadic rational), hence {z | f(z) > k} is open.
Similarly {z | f(z) < k} is also open. For if the set contains the point
z, it contains a whole neighbourhood of it; for if  is such that f(z) < k,
then there exists o < k, such that z € O,, which is a neighbourhood of
z all of which is contained in {z | f(z) < k}. [y € O = f(y) < a < k].

Lemma 4 If Cy,C; are compact subsets of G, then C,C; is compact.

Consider the mapping G x G — G which takes (z,y) into zy. This
is continuous. The product C; x C; is compact (Tychonoff). The proof
follows from the fact that the continuous image of a compact set is
compact.

Remark If Fy, F, are closed, it does not follow that F; - F5 is closed.
ImR'let i ={n€Z|n2>1},and F; = {0}U{L|neF} Then
Fy - F; = Q30 C R!. [@>0 = rational numbers > 0].

Theorem 2 A locally compact group is normal.

If the group is compact, the proof is easy, since compactness together
with regularity (or Hausdorff) implies normality.

Otherwise take a symmetric neighbourhood U of e with compact
closure, and consider G’ = |J;>, U™. Then G’ is an open and closed
subgroup of G, and it is sufficient to prove normality for G’. To do that,
use the fact that G’ is o-compact, i.e. G' = oo, Kn, where K, is
compact. (Kn = -, 7.

[A locally compact (T}) group is para-compact, hence normal] Ref.
e.g. Hewitt & Ross: Abstract Harmonic Analysis, I, p. 76, Th. (8.13).

1.3 Subgroups, Quotient groups

Let G be a topological group, and H a subset of G. Then H is, by
definition, a subgroup of the topological group G if and only if H is a
subgroup of the abstract group G, and H is a closed set in the topological
space G.

Let G be a topological group, and H a subset of it which is a subgroup
of G considered as an abstract group. Then H is also a topological group
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with the induced topology. In particular, a subgroup of an abstract group
which is a topological group is itself a topological group.

A subgroup N of the topological group G is defined to be a normal
subgroup if N is a normal subgroup of the abstract group G.

Let G be a topological group, and let H be a subgroup of the abstract
group G. Then H is a subgroup of the topological group G. If H is a
normal subgroup of the abstract group G, then H is also normal, i.e. a
normal subgroup of the topological group G.

Let us recall that if G is any group, and H a subgroup of G, a left
coset of H is a subset of G of the form zH,z € G. The left coset set
is the set of all left cosets of H, denoted by G/H. We have a natural
map or projection ¥ : G — G/H (z — z H) defined by n(z) = the left
coset of H which contains z.

If G is a topological group, we shall topologize G/H, assuming that
H is closed. A set O C G/H is open, if and only if #~}(0) is open in G.
This means that we require = to be a continuous map.

Lemma 5 G/H is a Tj-space, and 7 is open.

Proof Since H is closed, zH is also closed (homeomorphism), so that
(zH)¢ isopen in G. Write Z = zH, (coset containing ). Now n~!(G/H -
z) = (zH)®, which is open. Therefore G/H is T\ (the complement of
each point is an open set). We know that = is continuous; we have to
show that it is also open. Let O be open, O C G. Then 70O is in the coset
space; it is open if and only if #~!(xO) is open. But 7~!(x0) = OH,
which is open since OH = |J, .y Oz, where Oz is open. Thus, O open
= 70 is open.

Lemma 6 G/H is a Ty-space.

Proof Let z; and y; be two distinct points of G/H = Q, and z,y € G
such that x(z) = z;, 7(y) = y1. Choose a neighbourhood v of e, such
that VzNyH = 0. This is possible, because z ¢ yH = yH (H is closed,
so yH is closed. Vz is a neighbourhood of z, use the definition of yH). It
follows that Ve HNyH = 0. For if VeHNyH # @, then vzh, = yh,, say,
where v € V, hy,hs € H. Hence vz = yh;,;hi'l = yha, which contradicts
VznyH :=0.

Let Vi be a neighbourhood of e such that VI'IVI C V. Then
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Vi'VizH N gH = 0, hence VizH N ViyH = 0. Therefore
n(Viz) N7 (V1y) = 0.
Now z; € m(V1z), since e € V;; and y; € n(V1y); and m(Vyz), n(V1y) are

open (by Lemma 1, Viz and V;y are open, and by Lemma 5 7 is open).
Hence z1,y; are separated by disjoint open sets.

Remark If G is any (topological) group, H a closed subgroup, we have
topologized the coset set G/H in such a way that it is a 75-space. We
may call G/H the quotient space, and the given topology the quotient
space topology. On the other hand, if G is any group, and H a normal
subgroup (ie. Yz € H,Va€ G,aza"! € Hora H a~! C H),
then the coset set G/H is, in fact, a group, known as the quotient group.
The next lemma shows that the quotient group, with the quotient space
topology, is a topological group, if, to start with, G is a topological group.

Lemma 7 If G is a topological group, and H a normal subgroup, then
the quotient group G/ H with the quotient space topology is a topological
group.

Proof We have only to show that the mapping ¢, : G/H x G/H —
G/H given by ¥1(z1,31) = zlyl'l, where z,,y; € G/H, is continuous.

Let ¥ : G x G — G be given by (z,y) 2, z2y~!, z,y € G. We then
have
GxG ™XF G/HxG/H

|# |»
¢ I G/H.
Trivially we have 7y = ¢;(7 x 7). Since 7 and ¢ are continuous, 7y is
continuous. Hence 9, (7 x 7) is continuous.
Let O; be an open set in G/H. Then

[¥1(7 x )]~ (01)

is open in G x G. But 7 x 7 is open. Hence
(7 x m)(w x #)"1¢71(01) is open in G/H x G/H;

that is to say, ¢1'1(01) is open, hence v, is continuous.

Lemma 8 Let G be a topological group, and H a subgroup.
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(a) If G is compact, then H and G/H are both compact.

(b) If G is locally compact, then both H and G/ H are locally compact.

Proof

(a) H is a closed subset of a compact set, hence compact. G/H is the
continuous image of a compact set, hence compact.

(b) H is locally compact since it is a closed subset of a locally compact
space. [Let S be a locally compact space, T C S, T = T. Then
T is locally compact. For,pe T =>p€ S => 3 U, C S so that
p € Up and Up is compact. Now Tﬂﬁp is a compact neighbourhood
of p).

To prove that G/ H is locally compact, let ¢ € G/H, and U, a neigh-
bourhood of ¢ (i.e. an open set containing q). Let

U= W_I(Ul)r

and let z € U, so that m(z) = ¢q. Since G is locally compact, and U is
open, there exists a neighbourhood O of z, such that O C U, with O
compact. [Let G be any topological group. To every neighbourhood U
of e, there exists a neighbourhood V' of e, such that V .C U. For let V
be a symmetric neighbourhood of e, such that V2 C U. (See (5) and
(6) above.) Now z € V => (zV) NV # 0. Hence zv; = vz, where
v1,v2 € V. Therefore z = vpv;! € V- V-1 Cc V2 C U. Hence V C U]
Then we have
7(0) C n(U) = Uy.

Now O; = 7(0O) a neighbourhood of ¢ (O is a neighbourhood of z). And
7(0) is compact (since O is compact). Since G/H is a Ty-space, 7(0)
is closed.

We have 0, C =(0), (see above: O = 7(0))
which implies that

0:C W = n(0), (compact)

hence O; is compact (closed subset of a compact set). Thus O is a
neighbourhood of ¢ with compact closure. It follows that G/ H is locally
compact.
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1.4 Examples

Let C" denote the n-dimensional complex cartesian space. It is a vector
space of dimension n over the field C of complex numbers.
Let &; = (0,0,0,... 1,0,0,0). Then €;,€q,...,€, form a base of C"
[

over C.

An endomorphism a of C" is defined when the elements ae; =
2;;1 a;;€; are given. To a corresponds the matrix (a;;) of degree n,
and conversely.

We use the same letter o for the matriz as well as for the endomor-
phism.

We define a multiplication « o 8 of two endos. a,f with matrices
(aij), (bij) respectively, by defining the corresponding matrix (c;;) as
the product of the matrices, namely

n
(41) C,'j = Za,‘kbkj.
k=1

Now let M,(C) denote the set of all matrices of degree n with coef-
ficients in C. If (a;;) € M, (C), put biy(j_1)n = aij. [As j goes from 1
ton, j —1 goes from 0 to n — 1, and (j — 1)n from 0 to n% — n in steps
of n; while i goes from 1 to n; so that i + (j — 1)n goes from 1 to n?].

To (a;;) we associate the point with the coordinates by, bs, ..., b,2 in
C™’. In this way we get a one-to-one correspondence between M,(C)
and C*’. Since C*’ is a topological space, we can define a topology in
M, (C) by requiring the correspondence to be a homeomorphism.

Let T be any topological space, and let ¢ map T into M,(C); ¢ :
T — M,(C). If t € T, ¢(t) is a matrix with coefficients a;;(t), say.
Clearly ¢ is continuous if and only if each function a;;(t) is continuous.
[T % Ma(©) £ € 2 €, 35(1) = a5(1):

bis

[In general, the following situation holds: If T R [Teca Xa T X,
then “f continuous <= =, o f continuous for every a € A”. On the one
hand, it is trivial that “f continuous == m, o f continuous”. On the
other, if 7,0 f is continuous, and U open, with U C X, then (w0 f)~1U
is open, i.e. f~}(x71(U)) is open. But 7;'(U) is open, since sets of the
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form n;1(U), U open, form a sub-basis' of open sets of [],¢ 4 Xa. So f
is continuous].

It follows from this remark, and (4.1), that the product o7 of two
matrices ¢ and 7 is a continuous function of the pair (¢, ) considered
as a point of the space M,(C) x M,(C).

Notation We denote by 'a the transpose of the matrix a = (ai;);
‘a = (aj;), ai; = aji. We denote by @ the complez conjugate of a;
o = (ai;).

Clearly a — ‘a, and a — @ are homeomorphisms, of order 2, of
M, (C) onto itself.

If a, B are any two matrices, then *(af) =! 8 -*a, and af = @- B.

An n x n matrix o is regular (or non-singular), if it has an inverse,
i.e. if there exists a matrix 0~ !, such that co~! = 6=l = ¢, where ¢ is
the unit matriz of degree n.

A necessary and sufficient condition for o to be regular is that its
determinant det o # 0.

If an endomorphism ¢ of C* maps C* onto itself, (and not onto some
subspace of lower dimension) the corresponding matrix o is regular, and
o has a reciprocal endomorphism 1.

If o is a regular matrix, we have
‘o™ =(o)", @' =(c")).
If o and 7 are regular matrices, o7 is also regular, and we have

(tn')'l =717t
Hence the regular matrices of degree n form a group with respect to mul-
tiplication, which is called the general linear group GL(n,C).

Since the determinant of a matrix is obviously a continuous function
of the matrix, GL(n,C) is an open subset of M,(C). [GL(n,C) = {o |
det o # 0}; det is a continuous function.] The elements of GL(n, C) may
be considered as points of a topological space which is a subspace of the
topological space M,(C).

If o = (aij) is a regular matrix, the coefficients b;; of o~! are given
by b;; = A;j(det o)1, where the A;; are polynomials in the coefficients

![subbasis: finite intersections thereof form a basis)
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f 0. Hence the mapping

or— o !

of GL(n,C) onto itself is continuous. Since the mapping coincides with
its reciprocal mapping, it is a homeomorphism of GL(n,C) with itself.

The mappings ¢ — 7, and ¢ = ‘o are also homeomorphisms of
GL(n,C) with itself. The first is an automorphism of the group, not the
second (preserves sums and inverts the order of the products).

If 0 € GL(n,C), define o* = (*o)~!.

Then we have: (o7)* = o*7*, (0*)”! = (07!)*. Hence 0 — 0" is a
homeomorphism, and an automorphism of order 2 of GL(n,C).

The subgroups O(n), O(n,C), U(n) of GL(n,C)

Let 0 € GL(n,C). We say that o is orthogonal if 0 =@ = o*. The
set of all orthogonal matrices of degree n we denote by O(n). If only
o = o*, o is called complez orthogonal, and the set of all such o we
denote by O(n,C). If @ = o*, o is called unitary, and we denote by
U(n) the set of all such o.

Since 6 — @ and o — o* are continuous, the sets O(n), O(n,C),
U(n) are closed subsets of GL(n,C). [Note that {z | f(z) = c} is closed
if f is real and continuous. ¢;;(¢) = @;; —aj; is continuous for all 7, j, and
{o | ¢ij(c) = 0} is closed.] Because these mappings are automorphisms,
O(n),0(n,C), U(n) are subgroups of GL(n,C).

[Note, in parenthesis, that if X is any topological space, and Y a
Hausdorff space, and f,g are continuous mappings of X into Y, then
the set E = {z | £ € X, f(z) = g(z)} is closed. One can see that

F—Irlze X, f(z) # g(z)} is open in X. Let zo € F. Since
F={z]|z€eX, f(z) # g(z)} 15 open 1n"n. Lo wy-tmada IT. I,

f(zo0) # g(x0), and Y is Hausdorff, there exist neighbourhoods U;, U,
of f(xo), g(zo) respectively, so that Uy N U, = @. Since f and g are
continuous, there exist neighbourhoods Vi,V of zo in X, such that
f(V1) C Uy, g(V2) C Usz. Let V = V;-N-V,. Then V is a neighbourhood
of 2o, and f(z) # g(z) for z € V, hence V C F. It follows that F is
open.]

Clearly O(n) = O(n,C) -N-U(n) (1)
o is real, if its coefficients are real, i.e. if 0 = @ The set of all real
matrices of degree n we denote by M,(R), and we define GL(n,R) =
M,(R)NGL(n,C). Hence O(n) = GL(n,R)N O(n,C).
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Since the determinant of the product of two matrices is the product
of their determinants, the matrices of determinant 1 form a subgroup of
GL(n,C). The group of all matrices with determinant 1 in GL(n,C) is
called the special linear group SL(n,C).

We set

SL(n,R) = SL(n,C)NnGL(n,R)
SU(n) = SL(n,C)NU(n) (ii)
SO(n) = SL(n,C)NO(n). (iit)
Clearly SL(n,C), SL(n,R), SU(n), SO(n) are subgroups, and closed
subsets of GL(n,C). They may be considered as subspaces of GL(n,C).

Theorem 3 U(n), O(n), SU(n), SO(n) are compact.

Proof We have only to show that U(n) is compact, since O(n), SU(n),
SO(n) are closed subsets of U(n). We shall see that U(n) is homeomor-
phic to a bounded, closed subset of c.

A matrix o is unitary if and only if ‘6T = ¢, where ¢ is the unit
matrix. (7 = o* = (‘o)~}).

If & = (a;j), then

((0)T =€ < Zaji @k = bik.
i

(o is regular, i.e. oo~ ! = ¢).

The left-hand sides of the last equations are continuous functions of
o, U(n) is not only a closed subset of GL(n,C) but also of M,(C). [For
{o| > a;iGjx =0,i# k}-0-{o | ajr-aj; = 1} is an intersection of
closed sets].

Further

Zajiﬁji=l=>|a.-j|5 1, for 1<i,j<n.
J

Therefore the coefficients of the matrix o € U(n) are bounded. Since f :
M, (C) — C™ is a homeomorphism, f(U(n)) is closed, and bounded,
and a subset of (C"2, hence compact.



II. The Haar measure on a locally
compact group

II.1 Regular measures on locally compact spaces

We have used the term ‘measure’ for any non-negative, additive, set
function which vanishes on the empty set [cf. Course on Integration].

Given a topological space R which is locally compact, and Hausdorff,
let S denote the o-ring generated by the compact sets in R. We call S
the Borel ring in R.

Remarks.

(i) E € S = there exist compact sets C,, n = 1,2,..., such that
E C U;x.o=l C"‘

(ii) If U is open, Cy,, compact forn=1,2,...,and U C Uf:;l Cy, then
Ues.
For if we set K = |J;=; Cn, then K € S, since C, € S, and
S is a o-ring; and U C K. Since C,, — U is a closed subset of
a compact set, it is compact, hence D = |Jo, Cn — U € S, i.e.
D=K-Ue€S ThusU=K—-(K-U)€eS.

(iii) The whole set R is a Borel set (i.e. an element of the Borel ring),
if and only if there exists a sequence (C,) of compact sets, such

that R = {J;—, Cn.
(iv) Every one-point set in R is compact.

(v) If R is the real line, S = the o-ring generated by all open sets U
in R.

A measure m is regularon the o-ring S, if (a) m is countably additive
on §; (b) m is finite on compact sets; and (c) for E € S, there exist open
sets U € S which contain E such that

m(E) = m(U).

inf
JDE,U open, UeS
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Content A content k on R is a real-valued (# 00), non-negative, mono-
tone function on the class of all compact sets in R, such that

k(CU D) < k(C)+ k(D), for C,D compact;
k(C U D) = k(C) + k(D), for C,D compact, CND = 0.
[0 < k(C) < 00; C C D= k(C) < k(D), k(CU D) = k(C) + k(D)
for CN D = §. Note that @ is compact, so that k() + k(0) = k(0) with
k(0) < oo, hence k(8) = 0.]
Given a content on a locally compact Hausdorff space, we can con-

struct a regular measure on the Borel ring in the space, as shown in the
following

Theorem 1 Let k be a content on R, which is a locally compact Haus-
dorff space. For any open set U in R, define

mo(U) = sup k(C).
CCU,C compact
For any subset S C R, define

m(S) = UDS’n(ljf open mo(U).

Then m is an outer measure on R. Every open set in R is m-measurable.
The restriction of m to the Borel ring in R is a regular measure. Further
m agrees with mqo on all open sets.

For the proof we require a number of lemmas connecting the measure-
theoretic structure of R with the topological.

Lemma 1 For every open set W, we have m(W) = mo(W).

Proof By definition, we have m(W) < mo(W), (since W c W). If U is
open, and U O W, then mo(U) > mo(W), since mg is monotone. Hence
we have also

mo(W) < L}ggv mo(U)z-j m(W).

U open

Lemma 2 m is monotone, i.e., S C T = m(S) < m(T).

Proof If W is open, and W D T, then W D S, and by definition,
m(T) = jnf mo(V) (i)

U open
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m(S) = jnf mo(U) (ii)
U open
and T D S.

If mo(U) appears in (i), then it occurs also in (ii). But the infimum
(with respect to U) decreases when the class of sets U is enlarged. Hence
m(S) < m(T).

Lemma 3 Let U and V' be open sets in R, and E a compact subset of
U -U-V. Then there exist compact sets C C U and D C V, such that
E=CuUD.

Proof Let EC U -U-V, E compact. Let £ € E. Define a neighbour-
hood N(z) of z, as follows. If z € U, U open, then N(z) is an open
neighbourhood of z, with the property N (:r) is compact and N (z:) cU.
If z ¢ U, then z € V, V open, in which case choose N(z) as an open
neighbourhood of z, with m compact, —N-fz—) cV.

[This choice of N(z) is possible: (a) A locally compact Hausdorff
space is regular. (b). R regular <= (p € R, U, an open neighbourhood
of p = there exists a neighbourhood V,, of p, such that V, C U,). To
see this, let U, be an open neighbourhood of p in R (regular). Then
p is closed, and R — U, = Uy = F, say, is closed. Since R is regular,
there exist open neighbourhoods V;, p € V};,, and Vg, F C VF such that
V,NVp = 0. Hence Ve NV, = 0. This implies that V, -N- F = @,
since F C Vr, hence V, C Up(= F¢). On the other hand, let p € R,
and F be any closed set in R, with p € F. There exists a neighbourhood
Uy, of p, such that U, N F = 0. (Note that F° is open, p € F°, hence
3 U, C F¢). Choose V, such that V, C U, (by hypothesis). Then V,
(a neighbourhood of p) and R -V, = V; (a neighbourhood of F) are
disjoint. Hence R is regular (i.e. Ty + T3). Finally (c). take p = «z,
U, = N(z), where N(z)is compact. If N(z) ¢ U, take some smaller
neighbourhood (than N(z)) N'(z) C U, such that N'(z) C U. It exists
by regularity. Since N’(z) C N N(z), where N(z) is compact, it follows
that N'(z) itself is compact.]

Obviously we have E C |J,¢g N(z). Since E is compact, there is
a finite open covering J_, N(z:). Set Ci = Uiy, cv N(zi), D1 =
Uig:,gu N(z;). Then C; and D, are compact, EC CyUD,, C; C U,
DyCV.SetC=ENC,,D=FEND,. Then E=CUD.




22 A course on Topological Groups

Lemma 4 If U, U,,...,U, are open sets in R, then
n n
m (U U,‘) < Zm(U,)
i=1 i=1

Proof First of all, consider the case n = 2. We assume that
m(Uy -U-Uz) < co. Let ¢ > 0, and E a compact set such that
EcU, -U-Us,, and

k(E) > m(U1 U Uz) — €.
[Note that k is a content on R]. By Lemma 1, m and m, agree on open

sets, so that m(Uy -U-Us) = mo(Uy -U-Us). By Lemma 3, £ = C,UCs>,
where Cy, C; are compact, with C; C Uy, Cs C U;. Now

m(Uy) + m(Uz2) > k(C))+ k(C?), since m(U;) = mo(Uy),
m(Ug) = mo(UQ),

> k(C1-U-Cy) and Cy C Uy, C2 C Us
= KE)
S m(Uy-U-Us) —c.

Hence
m(Ul) + m(Uz) > m(U1 U U2).

If m(Uy U Uz) = oo (which is possible), then for any given real «
there exists a compact subset E of U; U U, (depending on «), such that
k(E) > a, and, as before,

m(Ul) +m(U2) > k(Cl) + k(C2) > k(C,-U- Cg) = k(E) > a,

hence m(Uy) + m(Uz) = oo.
If n > 2, we use induction, and

() ol fy ) o)

Lemma 5 If (U,), n = 1,2,..., is an infinite sequence of open sets

then we have
i=1

i=1

b
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Proof Let m(|J2, Ui) < oo, and let € > 0, and let E be a compact
subset of |Ji2, Us, such that

k(E) > m (U U,-) - (i)
i=1
Because E is compact, there exists a finite indexing set I such that
E C U Ui. Hence k(E) < m({;¢; Us), since m = mo on open sets.
By Lemma 4, it follows that k(E) < ¥ ;c;m(Ui) < Y02, m(Us).
[Note that k(@) = 0, so m(#) = 0, and by monotonicity m(U;) > 0].
Therefore from (i) we get

im(Ui) >m (G U;) —€.
i=1 i=1

If m(U;2, Ui) = oo, then for any real a there exists a compact set
E c U2, Ui for which k(E) > a. As before we can conclude that
S=m(U;) > e, ie. Y m(U;) = oo, since « is arbitrary.

Lemma 6 For any infinite sequence (S,), n = 1,2,... of subsets of R,

we have
m (U s.-) < Zm(S.-).

Proof Let m(S;) < oo for every i; otherwise the result is trivially true.
Let € > 0, and U; an open set with U; D S; and

m(U;) < m(S;) + % (m = mp on open sets).
Since |J; Si C |J; Ui, we have

(Us) 2 (o) sz < o)

i=1

(Lemma 2) (Lemma 5) < Z m(S;) +¢

Lemma 7 m is an outer measure on R.

Proof By Lemma 2, m is monotone. By Lemma 6, m is o-sub-additive.
The empty set is compact, so that k(@) < oo, and k(0) + k(@) = k(0), so
that k(@) = 0, which implies that m(@) = 0, (@ is open!).
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Lemma 8 If U and V are open sets in R, and UNV = 0, then

m(U -U-V)=m(U)+m(V).

Proof This is trivial if m(U) = oo or m(V) = oco. Let us therefore
assume that m(U) < oo, m(V) < 0.

Let ¢ > 0. Let C be compact, C C U, D compact, D C V, such
that k(C) > m(U) — ¢, k(D) > m(V)—¢. Then CN D = 0. Hence
k(C U D) = k(C) + k(D). Further

m(U) +m(V) < (k(C)+¢)+ (k(D) +¢) = k(C U D) + 2

< mUUV)+2.

Hence m(U) + m(V) < m(U -U- V). But by Lemma 5, m(U -U-V) <
m(UY + m(V).

Lemma 9 For any open sets U and V in R, we have
m(U)=mU -Nn-V)+m(U - V).
Proof This is trivial if m(U -N - V) or m(U — V) is o0. Now U =

U.n-(V.u-ve)=(@U-n-V).u-(UNVe).
Hence

m(U) <m(UNV)+m(U -n-Ve) ()

(Lemma 4). On the other hand, let € > 0, C compact, CC U -Nn-V,
and

ECy>mU -n-V)—e. (i1)
Let W be an open set with the property
cCcwcwclU-n-v.

Such a set exists because if a space is locally compact and HausdorfT,
then it is regular. Now

U-V=U-(UnV)CcU-W.
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Hence
m(UNV)+m(U -V)

IN

mUNV)+m(U -W)
(m is monotone)
E(C)+e+m(U - W), by (ii)

m(W) + e+ m(U - W)
(since C C W, and
m = mg on open sets)
m(W -U-(U-W)) +e,
by Lemma 8
< mU)+e. (iii)

[Note that WNW =0, W CU-N-V CU,U—-W C U). The lemma
follows from (i) and (iii).

IA

IA

i

Lemma 10 Every open set in R is m-measurable.

Proof If S is any subset of R, and V an open set, we have to show that
m(S) > m(SNV)+m(S-V),
for every S C R.

[We recall that S=S-Nn-(V-U-V¢) =(SNV)-U-(SNV*), so that
m(S) <m(SNV)+m(SNVe).

We assume that m(S) < oo; the result is otherwise trivial. Let
€ > 0. There exists, by definition, an open set V' O S, such that
m(S)+e>m(V'). NowSNVCV'NV,and S-V Cc V' — V. Hence

mSNV)+4m(S-V) < m(V' NV)+mlV' -V)
[m is monotone by Lemma 2]

= m(V'), by Lemma9

< m(S) +¢€ (see above).
Lemma 11 Let S = the o-ring generated by the compact sets in a
locally compact Hausdorff space R (i.e. the Borel ring in R). Then (1)

every element of S is contained in an open set in S; and (2) every open
subset of an open set in S belongs to S.

Proof (1) Every element of S is contained in a countable union of
compact sets. [For all such elements of S form a o-ring $* say. S*
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contains the compact sets, while § is the smallest such ring. Hence
S* DS

We will show that every compact set C is contained in an open set
Ue€S. Let z € C. Since R is locally compact, there exists a neighbour-
hood N(z) of z, such that N(z) is compact. Obviously C C Uzec N(=),
and because of the compactness, there exist z;, i = 1,2,...,n, such
that C C Ui, N(z:), and if U = |J;_; N(z), then U is open, and
U = U, N(z:) = Ui, N(z:), hence U is compact. Thus every com-
pact C is contained in an open set U with U compact.

[If we define F, X = X -N-X¢, then (i) F, X = F,X¢; (ii) /X C X,
F.X¢ C X; (iii) F.X is closed. F, stands for Frontier (Fréchet), called
“boundary” by some]

Clearly U = U — F,U, where F.U is compact, since it is a closed
subset of U which is compact, so that F,U € S, and U € S, hence
Ues.

(2) Let U € S, U open, V C U, V open; we have then to show that
Ves.

Clearly U is contained in a countable union of compact sets Cy, [see
Remark (i), p. 19, or beginning of the proof of (1) above]. Now

V:U~ﬁ-V=GVﬂC; [VCUCGC;,and

i=1 i=1

SoV:VﬂGC;

i=1
= U(V NG;)l
VNG =Ci—(Ci—V). =
Since C; is compact, C; € S; and C; — V is a closed subset of a compact
set, hence coorglpact, soC; -V €S. Hence VNC; € S. Since S is a
o-ring, V = U(Vﬂ Ci)€S.
i=1

Remark Let R be a locally compact, Hausdorff space, and S the o-ring
generated by the compact sets in R, while S is the o-ring generated by
the open sets in S. Then S = Sp. For obviously S C S, and on the
other hand,
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C compact = there exists an open set U € S, with compact closure,
so that C C U C U (cf. proof of Lemma 11).

Now C=CNU =U - (U - C), where U € Sp, U — C € Sy (since C is

closed, R Hausdorff, and Lemma 11(2)). Hence C' compact => C € Sy,

so that § C So.

Proof of Theorem 1 By Lemma 7, m is an outer measure. The
m-measurable sets form a o-algebra M on which m is o-additive. By
Lemma 10, every open set is m-measurable. By Lemma 11, S = &p.
[M is a o-ring. M D open (Borel) sets by Lemma 10. Hence M D Sy =
S]. Hence every set in S (i.e. every Borel set) is m-measurable, and m
is o-additive on S.

If C is compact, we have seen that C C U C U, where U is open,
and U is compact. Hence

m(C) < m(U) =me(U) = sup k(D) < k(U) < oo,
DCU, D compact

since U is compact. It follows that m is finite on compact sets.

By Lemma 1, m and mg agree on open sets. Let S € §. By
Lemma 11(i), there exists an open set U € S, with U D S. By defi-
nition,

S) = inf U) < i .
(*) m( ) U:)S,“lll openmo( ) - UDS, Ulgg‘en, Ues m(U)

Let Vi, Va,..., be a sequence of open sets, containing S, such that
m(V;) — m(S), as i — oo. (Such a sequence exists, since m(S) =

inf( )).
Let U € S, U open, and U D S. Then we have

m(V;) > m(V;NU) > m(S), since m is monotone,

and V; D S,U D S. By Lemma ll, V,NV € §, since V; NU is an open
subset of U € S. Hence

Ues, u‘é‘pfe,., U>s m(U) < ll}fm(v" nu)

(1)
From (*) and (}) we see that

m(S) = inf
UDS, U open, UES

IN

limm(V; NU) = m(S).

m(U).
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Therefore m is a regular measure. m is non-trivial if k is non-trivial.

Remark Note that m is not necessarily an extension of k. A content k
is called regular, if for every compact C,

k(C) = inf{k(D) | C C D° C D}

where D is compact, D° = Int D. In this case, k(C) = m(C) for all
compact C.

I1.2 The Haar measure on a locally compact group

Let G be a locally compact group. Let S be the Borel ring in G. Let m be
a regular measure on S, which is not identically zero. Fora € G, S € S,
let m(aS) = m(S). Then m is called a (left-invariant) Haar measure on
G.

Theorem 2 On every locally compact group there exists a non-trivial
Haar measure.

Proof The idea is to construct a content on the group, and then to
apply Theorem 1 to obtain a regular measure which has all the properties
required of a Haar measure. Let K be a fixed, non-empty, open set in G
such that K is compact. (Such a K exists, since G is a locally compact
group.) Let C be an arbitrary compact set in G. Let N be an open
neighbourhood of e, the identity element of G. Then the family {aN},
a € G, is a covering of G, hence also a covering of C. Since C is compact,
there exists a finite covering of C. Let n = n(C, N(e)) = n(C, N) be
the smallest non-negative integer n, such that |J;_, a,N(e), a, € G, is
a covering of C.
Define

kn(C) = (G, N)

n(K,N)
We shall see that
kn(C) — k(C), as N(e) — .
Let C = the class of all compact sets in G. The function kn(C) has the

following properties:

(1) kn(C) < kn(D), if C, D are compact, C C D.

(“the relative size of C and K”)
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(2) kn(CU D) < kn(C) + kn(D), C, D compact.

(3) If C N D = @, there exists a neighbourhood Ny of e, such that for
e € N C Ny, (N is a neighbourhood of €)

kn(CU D) = kn(C) + kn(D).

(4) kn(aC) = kn(C), a € G (aC is compact, since C — aC is a
homeomorphism).

(5) There exist functionals f and g on C, which are strictly positive,
such that

kn(C) < f(C) < oo,

kn(C) > g(C)>0, ifIntC#0
(where f, g are independent of N).

Properties (1) and (2) are trivial to prove; also (4), for if U" —1a,N(e)
is a covering of C, then UJ =, 6-a, N(e) is a covering of aC, and n(C,N) =
n(aC,N),Va €G.

The proof of (3) runs as follows. The set C x D is compact (Ty-
chonoff). The mapping (z,y) — y~ 'z is continuous. Hence D~!C is
compact, and closed (since D~'C is a compact subset of a Hausdorff
space). Since CN D =@, we havee € D-!C (e € D~!C = e = aC,
a € D71, ¢ € C, which implies a™! =¢; a € D! = a~! € D; hence
¢ € D, a contradiction). Since G is a regular topological space, there
exists a neighbourhood N; = Nj(e) of e which is disjoint with D~1C.

For z,y € G, the mapping (z, y) — z~!y is continuous; in particular
atz =y =¢e ((e,e) — e~ le = ¢). Hence there exists a neighbourhood
Ny of e, such that for (z,y) € No x Np, we have z=1y € N;. It follows
that if e € N C Ny (N open), and z,y € N, then z~'y ¢ D-!C.

This implies that no (left) “translation” of N (i.e. aN, a € G)
exists which intersects both C and D. For otherwise, let p € aN N C,
and ¢ € aNND. Then p =ay, y € N, and ¢ = az, z € N, and
¢7'pe D'C (g€ D =>q ' € D!, and p € C). On the other
hand, ¢~!p = (az)~!(ay) = z~ 'y, so that z~ly € D~1C, which is a
contradiction.

Let n = n(C U D,N). Then we have a1 N,...,a,N, such that
Uy=1a/N, a, € G, is a covering of C U D. (n is the smallest such
integer).
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Let A= the set of all those i’s (among i = 1,...,n) such
that a; N NC # 0;
and B = the set of all those #’s for which a;N N D # 0.

We have noted that AN B = §; every i (i = 1,...,n) belongs to A or B.
Otherwise there would exist an i such that ¢;;, NNC = a;, NN D = 0,
which implies that a;, N N (C U D) = @, i.e. then the translation a;, N
could be dropped from the covering |J,_, a,N. This contradicts the
assumption that n is the smallest such integer.
Hence CUD C Ua,-N‘U~ Ua,-N,

i€eA i€B
so that

(CubD)y-n-Cc U a;N-U- U a;N.
i€A i€B
Since A and B are disjoint, it follows that C C Uie 46N, fora;,NNC =0
if ¢ € B. Similarly D C U a;N. Hence
i€B
n(C,N) < the number of i’s in 4,
n(D,N) < the number of ©’s in B,
therefore
n(C,N)+n(D,N) < nd..—.fn(CUD,N).

Dividing by n(K, N), we get
kn(C) + kN(D) < kN(C U D).

Property (2), on the other hand, implies the opposite inequality. Thus
(3) is proved.

The proof of property (5) runs as follows. Let E be any non-empty
open set with E compact. Then we have

(*) n(C,N) < n(C,E)-n(E,N).

[Here n(C, E) is to be interpreted as follows: If z € E, then E = z Ny,
where Ny = Ng(e) is a neighbourhood of the identity. See ‘trivial prop-
erty’ (7) on p. 7. And n(C, E) = n(C,zNy) = n(C, Ng).] We have

cclaE, i=1,...,n(C,E), a€Q,
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and
Ec|JbN, j=1,2,...,n(E,N),b; €G,
J

so that C C |J; ; aib; N (since E C E), there being n(C, E) - n(E, N)
summands in the last sum, from which (%) follows.
Put F = K in (). Then we get

n(C,N) < n(C,K)-n(K,N).

[Note that K is a fixed, non-empty, open set in G, with K compact, with
which we began the proof of the theorem]. On dividing by n(K, N) # 0,
we get

kn(C) < n(C,K).

Let f(C) = n(C, K), which is independent of N; f(C) is finite, and
W) kn(C) < f(C) >0

which proves the first part of property (5). To prove the second part, put
C =K in (). Then we get

n(K,N) < n(K,E) -n(E,N).
Dividing by n(K, E) - n(K, N), we get

(1)

< kn(E).

n(K,E)

If C is compact, with Int C # 0, then C D Int C [Note that Int X = X¢',
the largest open set contained in X. Since R is Hausdorfl, C is closed,
hence C D Int C i.e. C D Int C)]. Set E = Int C, a non-empty open set.
Then we have

kn(C) > kn(Int C), by property (1), p. 28

1
n(K,Int C)’
(Note that Int C is compact, since it is a closed subset of the compact set
C). Let g(C) = 1/n(K,Int C). Then g(C) > 0, and kn(C) > g(C) > 0,
which is the second part of property (5).
We shall construct a content k with the help of kx. Let C = {C|C
compact} p. 28, to each C € C make correspond the interval [0, n(C, K)].
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The product F of such intervals, = [[;¢.[0,n(C, K)] with the prod-
uct topology, is a compact Hausdorff space. The points are real-valued
functions ¢ defined on C, such that for each C € C we have

0 < ¢(C) < n(C, K).

By Tychonoft’s theorem, F is compact. [¢(C) is the “Cth co-ordinate”
of a point in F).

Let N = the class of all neighbourhoods of e. For N € N let H(N) =
the class of all elements in F of the form kyy, N D M € N,= {kun |
NDOMEN, ky € F}. Then H(N) C F. Since kn € H(N), (see (v/)
above), H(N) # 0 for every N € N. H(N) is an increasing function of
N. If N1, Na,...., Ny, are elements of N' (neighbourhoods of €), then
Ni=, Ni is also a neighbourhood of ¢, hence (., N; € N, and (Y}, N; C
N;,j=1,2,...,n. Hence

H (ﬂ Ni) CH(N;), i=1,2,...,n,

i=1
therefore
n n
H (ﬂ N.-) c (W),
i=1 i=1
so that "
(H(N:) #0.
i=1
Hence the class {H(N) | N € N} has the finite intersection property;
therefore- also the family {H(N) | N € N}.

[Note that H(N) C F, F is closed, hence H(N) C F, and H(N) D
H(N).)

Since F is compact, (Hausdorff) there exists at least one common
element k for all W, N € N. That is to say, there exists a k, such
that

ke () H(N).
NeN
We shall show that k is a content.

By the definition of product topology (T; = top space, there is a basis
in [TT; of the form [] B;, where B; is an open set in T; for finitely many
i’s and B; = T; for the rest), given ¢ > 0, and finitely many compact
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sets C1,Ca,...,Cn, in G, there exiss N; € N, Ny C N, N € N fixed,
such that

|kN,(C,‘_) -k(C)l<:, i=1,2,...,n.

(since every neighbourhood of k intesects H(N)). Now choose C; = C,
C; =aC,a €G. Then

[k(C) — k(aC)| < [k(C)— ky,(C)| + |kn,(C) — kn, (aC)|

+lkn, (aQ) — k(aC)|
< 2¢ (themiddle term is 0)
becase of property (3) on p. 29.
It follows that
k(C) =k(aC).

The proof that

0< kC)<n(C,l)< o0, YCEC

is similar.
If C and D are compact, withC C D, then k(C) < k(D). [For
[E(C)] = |k(C) = kn(C) + kn(() — kn(D) + kn(D) — k(D) + k(D)|

< |K(C) = kn(C)| + [kND) — k(D)| + k(D)
< 2+ k(D),since kn(CG - kn(D) <0.]
If C and D are compact, with C = @, then k(CUD) = k(C)+k(D).

[Choose N = Nj in property (3), p29, so that kx(C U D) = kn(C) +
kn(D)]. We get

|k(CU D) - k(C) - k(D)| < :(CUD)-kn(CUD)+
tn(C) — k(C)| + [kn (D) — k(D)
< &

If C and D are arbitrary compct sets (not necessarily disjoint) we
use kn(C U D) < kn(C) + kn(D)and obtain 0 < k(C U D) < 3¢ +
k(C)+ k(D), hence k(CU D) < k() + k(D). From property (5) we can
deduce that k(C) > g(C) > 0if It C # 0, so that k is not identically
zero.

Then & is a content on G. By ppealing to Theorem 1, we obtain a
regular measure m on the Borel rir in G. Since k is left-invariant, m is
also left-invariant, so that m is a har measure.
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Remarks

1. Let T be a homeomorphism of G with itself. Let k'(C) = k(TC),
for C € C. By assumption k is a content. It then follows that k’
is a content. Let m and m’ be the corresponding measures which
they generate. Then m/(E) = m(TE) for all Borel sets E € S.

To see this we note first of all that

{K(C)|CecC, CcU, U open}

{k(TC)|C e, CCU open}

{k(D)| D=T(C), C€C, CCU open}
{k(D) | T-'D cC, T~'D C U open}

{k(D)| DCTU, TU open, D € C}
(T-'DeC= De€C).

But for U open mo(U) = sup k(C).
c

CU, C compact

]

(%)

Hence
sup{k(D) | D C T(U), D € C} = mo(TU), TU open.
On the other hand,
sup{k’(C) |C C U, U open, C € C}=my(U).
Because of (*), we obtain
mo(TU) = mgy(U).

The measures m and m’ are regular measures on the Borel ring
S. For E € 8, there exist open sets U € S, which contain

E, such that m(E) = inf mg(U). Similarly m/(E) =
UDE, U open
. ' _ ; _
U)E,ug open mO(U) - TUDTEl,ng'U open mO(TU) - m(TE)

It follows that if k left-invariant, so also is m.

2. The existence of a right-invariant Haar measure is similarly p.roved.

If G is a given locally compact group, let G’ be the dual
group, with the same elements as G and the same topology but
the group operation o in G’ being defined as: z oy = yz. Then
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there exists a left-invariant measure in G’ which is right-invariant

on G.

3. The Haar measure so obtained is not unique, for if m is one such,
then for any constant ¢ > 0, ¢cm is likewise such.

I1.3 The Riesz-Markoff theorem

Let R be a locally compact Hausdorff space, and Cy = Co(R) the space of
continuous functions vanishing outside a compact set (i.e. each function
has a compact support, which may depend on the function).

Let P be a positive, linear functional on Cy (i.e. P is a real-valued
function of functions in Co : P(af + Bg) = aP(f) + BP(yg), for f, g € Co,
a, P real; P(f) > 0for f >0, f € Cp). Then we have the following:

Theorem 3 There erists a regular measure m on R, such that for
f € Co, we have

P(f) = /R f(z) dm(z).

The integral refers to the measure space (R, S, m), where now S is the
Borel ring in R, with R € S.
F. Riesz proved that if R is an interval [a, b] on the real line, then

b
P(f) = / f() dA(D),  —oo<a<b< 4oo,

for some essentially monotone function A(t). The general case is due to
Markoff. As in the case of proving the existence of a Haar measure, this
theorem can again be proved by an application of Theorem 1.

Remarks

(i) The integral in question exists. f is continuous, and if f > 0, and
f has a compact support C, let a > 0. Then the set E, = {z |
f(z) > a} is closed, and contained in C, hence compact. If a < 0,
this set is R, which is measurable. Hence f is m-measurable (Borel
measurable). If x is the characteristic function of C, then f < ay,
where a = sup f. Since x is obviously integrable, so is f.

(i) () Xne. =[Ixs.;
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(b) Xug, (z) = min(1,3°xs, (2));
(c) The E,’s are disjoint if and only if 3" x,_(z) < 1;
(d) If the E,’s are disjoint, then x g, =3 Xg,:

() xge(z) = 1= xg(2);
(f) ECF = xg(z) < xr(2).

We need the following topological result.

Lemma 12 Let R be a locally compact Hausdorff space, C C R, C
compact, U open, U D C. Then there exists an element f € Co(R), such

that
1, z€C,
f(z)_{O’ ZEUC,

and 0< f(z) < 1l,forz € R.

Proof Every point z € C has a neighbourhood N(z), such that N(z)
is compact and N(z) C U. Obviously C C U:ec N(z). Since C is com-
pact, there exist n points z3,...,z, € C such that C C |-, N(z:) = V,
say. Then C C V, V compact, and V C U.

Since V is compact and Hausdorff (in the induced topology), V is
normal.

By Urysohn’s Lemma, there exists a continuous function ¢ on V,
such that ¢ = 1 on C (closed), ¢ = 0 on V¢ (closed), and 0 < ¢ < 1
otherwise.

Define (®) v
_J ¢#(z), zeV,
f(z)_{O, z€eR-V.

Then we have

fz) = 1, VzeC,
0, VzeUs (UDV=UccCcV CcVe)
and 0< f(z) <1, Vz€eR.

Proof of Theorem 3 Define for C' compact and f € Co(R), A(C) =
{f1f€Co f20; f2xc} and k(C) = sauf . P(f). The proof is

then divided into five parts;
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(i) kis a contenton R;

(ii) there exists a regular measure m, such that m(C) = k(C), for all

C e,
(i) f€Co, f20=>P(f) > [ fdm;

(iv) for every compact C, and every ¢ > 0, there exists go € A(C),
go < 1, such that

P(go) < /90 dm + ¢;
(v) f€Co= P(f)=[f dm.

Part (i) Because of the Lemma (just above), A(C) # 0, thus there
exists f € A(C), and ¥(C) < P(f) < co.

Let € > 0, and C,D compact sets. Let f € A(C) be such that
P(f) < k(C) + ¢, (f exists by definition of k) and g € A(D) be such
that P(g) < k(d) + €.

Let h € A(C U D) be such that h < f +g. [If ' € A(C U D), take
h = min(h’, f+g). Then h has the required property. The min(,-) € Co,
and xcyp = min(1, xc + X))

Since the functional P is positive, P(h) < P(f) + P(g). Since h €
A(CUD), k(CuD) < P(h). Hence ¥(CUD) < P(f)+ P(g) < (k(C)+
€) + (k(D) + €) = k(C) + k(D) + 2e.

Hence k s sub-additive on compact sets. Secondly, (as we shall see) k
is additive on disjoint compact sels, i.e. if C and D are disjoint compact
sets, then k(C U D) = k(C) + k(D). We have only to prove that k(C U
D) > k(C)+k(D), ifCND =9.

Let h € A(C U D) be such that P(h) < k(C U D) + ¢. There exist
disjoint, open sets U,V, with U,V compact, such that U D C, V >
D. [The space is Hausdorff, C, D compact and disjoint. Hence C, D
have disjoint neighbourhoods U, V. Either U itself is compact, or (as in
Lemma 3) there exists a neighbourhood U’ of C with U’ compact and
U'cul]

Let f = min(f’, k), where f' € A(C). f’ is some element of A(C),
so that f' > x., f' >0, f' € Co. For example, f' =1 0on C, 0 on US;
f! € Co since U is compact (see the Lemma just above). Then f € A(C),
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[f,9€Co=> M(fg)€Coand f < hx,. [t €U = x,(z) = 1,50
that f(z) < h(z). And 2 ¢ U = f'(z) = 0, so that min{f’(z), h(z)} =
0, hence f(z) = 0for z € U°]

Similarly, there exists g € A(D), such that g < hyx, . Now
f+9 < hxy +hxy,
< h, (sinceUNV=0,x,+x, <1).

— )

Hence P(f + g) < P(h) < k(C U D) + ¢ (see above). However
P(f) 2 K(C), P(g) > K(D), since f € A(C), g € A(D). Hence

E(C) + k(D) < P(f) + P(¢) = P(f +9) Sk(CUD) +e.

Thirdly, k is monotone. If C and D are compact, and C C D,
< . = i = inf P(f),
then xo < xp,- Now k(C) fel}il(fC)P(f)’ k(D) ]elzlil(D) (f), and

f € A(D) = f € A(C). Hence k(C) < k(D).
Fourthly, k(C) > 0 for every compact C, since P(f) > 0 for f €
A(C). We have already noted at the beginning that k(C) < oo.

Thus k is a content on R.

Part (ii) By an appeal to Theorem 1 we obtain from k a regular measure
m. We shall see that m(C) = k(C) for any compact C.
Let U be open, U O C. Then, as in Theorem 1, m(U) = mo(U) =

sup k(C). Hence m(U) > k(C). But for any set S, we have
CCU, C compact

m(S) = Ujsyubf open mo(U), which implies that m(C) > k(C).

It remains for us therefore only to prove that

m(C) < k(C).
Let {fn}, n=1,2,..., fo € A(C), be such that
(*) P(fa) — k(C). [We have k(C) = inf P(f)]

J€A(C)

Set Cp, = {z | fa(z)>1- %}, n=2,3,..; then C, is compact [C,

is closed, since f, is continuous]. f, has compact support, say S,. Then
Cn CS,.
Set

U,,:{z|fn(x)>l—%}, n=23,....
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Then C, D Up D C, [since € C => x.(z) =1 = fr(x) = 1, since
a2 X, [fn € A(C)) = z € U,] and
1\ !
(1 - ;) fn € A(Cy).

-1 -1
1 .
[Note that (1— %) fn € A(C,) < (1— ;) fa 2 X, , since

-1

-1
1
fa € A(C). (l—l> fn2>0,forn=2,3,...and (1—;) fn € Co.
n
1
Further z € C, = x, (z) =1, and fa(z) > 1 - = hence z € C,, =

-1
(l - l) fn > Xc,]- Hence, by definition of k, we have
n

3 ((1 - %)_1 fn) > KCa), ie. (1 - %)_1 P(fa) > k(Cn),

which implies that
(**) lim inf k(Cy,) < k(C). (because of (x))

We next observe that k(Cn) > m(U,). For Cpn D Uy,, and m(U,) =

mo(Uy,) = sup k(D), and every such D is contained in Cp,
DCUy,n, D compact

since U, C Cy. Because k is monotone, it follows that k(D) < k(C,),
which leads to: m(U,) < k(C,). Using this in (*x), we get

li'{n inf m(Uy,) < k(C).

But U, D C, hence m(U,) > m(C) (since an outer measure is mono-
tone), and

lim inf m(U, ) > m(C),
thus giving m(C) < k(C), which completes part (ii) of the proof.

Part (iii) We shall prove that

f€Co, f20 = P(f)z/fdm.

Since the integral, as well as P, are linear, it is sufficient to prove the
last inequality for 0 < f(z) <1,V z.
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We shall, first of all, effect a decomposition of f as follows: f(z) =

1 ¢ o N .
- Zf,-(x), where n is a given positive integer. For i = 1,2,...,n, set

i=1

SN i—1
0, if f(z)< —;
i~ 1
flz) =+ i - ;
fi(z) = i1y — e i=1 i,
M)~ (-1 = -t it <) < o
. n
L %<f(z).

Then we have

fi = min{max{nf - (i - 1),0},1} = max{min{nf — (i — 1), 1},0}.

Hence

fieC, £i20, i=1,2,...,n.

By hypothesis, 0 < f(z) < 1. If z is such that i-1 < f(z) < -];,
1< j <n,then " "
. .. . it j-
1, if1<i<j-1, [ie ~<?=2
ifi<i<j-1 (len_ - Sf(:c)),
f,'(:l:)= - J
0, fj+1<i<n, (le. —>= .
ifji+1<i<n (1e - _n>f(x))
Hence
1 134 1 1 &
;‘z_;fi(x) = ;Zfi(z)+;fj(z)+;;.z: fi(z)
= i=1 i=j+1

Jj-1

= ;1,'21+%(nf(x)—(j—'1))+0 (cf. defn. f;)
i=1
ji—1

= - + %(nf(z) —(F-1) = f(z), for every=z.
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Fori1=0,1,2,...,n set

U,={z|f(z)>-:;}.

Since f is continuous, with compact support, U; is open, and contained
in a compact set. (U; is measurable). Further we have

XUiSfi) i=1,-..,n,
forz € Ui = f(z) > ‘:‘l' => fi(z) = 1. This implies that

m(U;) < P(fi).

For, if C is compact, and C C U;, then x. < Xv, < fi, hence f; € A(C),
and m(C) = k(C) < P(f;), on using Part (ii) and the definition of k¥(C),
so that

m(U;) = mo(Us) = Sup. k(C) = Sup. m(C) < P(f).

Since Uy DU DUz D--- D U, =0, we have

P(f) = ZP(f:)> LS )= Z:(

I“l

1) m(wa)

-5 £ (m(U) = m(Uss)),

i=1

since m(Up) = m(0) =

_Z 1i—lm(U. =Ui41) - %m(Ul)

i=1
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[since z € U; = f(z) > %,

z @ Uiy = f(z) < 1:1, hence

i+1
n

IGU;—U5+1=%<f(£)S

— / f(z) dm(z) < T LmU; - Uig)]
U,=U,p1 n

fdm - %m(Ul)

5

=f fdm-— lm(Ul)
Uy n

=Uipr

>| fdm-— lm(U())
Uo n

1
=/Rf dm — ~m(Us),

since ¢ € U§ = f(z) =0.

[m(Uo) > m(U)
IE(Uo—Ul)-——'}O(f(J})S%
m(Uo - U]) = m(Uo) - m(Ul)

/ f dm < L{m(Us) — m(U)]
Uog-U, n

—%m(Ul) > / £ dm - %m(Uo).]

Uo=-Uy

Since n is arbitrary, and m(Us) < oo (since Up is contained in a
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compact set), we get
P2 [ fdm, fecos2o.
R
Part (iv) Let fo € A(C), and P(f5) < k(C) +¢. Set go = min{fo, 1}.
Then go € A(C), and
P(g0) < P(fo) S K(C)+e=m(C) +¢ < / do dm +e¢,
R

since [go € A(C) => go > x]- Hence for every compact set C, and for
every € > 0, there exists a function go € A(C), go < 1, such that
P(go) < frg0 dm +¢.

Part (v) If f € Co, then P(f) = [, f dm. In order to prove this, let C
be a compact set, such that {z | f(z) #0} C C,and € > 0.
After Part (iv), there exists fo € A(C), fo < 1, such that

*) P(fo) < /R fo dm +e.

Since x. < fo, and fo < 1, we have ffp = f. Let @ > 0, such that
[f(z)| < @, V z. Then ffo+afo = (f +a)fo € Co, and f + afo > 0.
After part (iii) we obtain

P(f)+aP(fo) = P(f+afo)
> [+ dm

- /f dm+a/fo dm (since ffo = ).

/f dm+a(/fo dm-'P(fo)),

> /f dm — ae, (because of (*))

Hence

P(f)

v

which gives P(f) > [ f dm. Replacing f by —f, we get —P(f) >
— [ f dm, or P(f) < [ f dm, the reverse inequality, thus completing the
proof of Theorem 3.

Remark The measure m in the theorem is actually unique. To prove
that, it is useful to show that the measure of any Borel set can be ap-
proximated from below by compact sets.
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Theorem 4 Let m be a regular measure on a locally compact Hausdorff
space R. Let E be a Borel set in R (i.e. an element of the Borel ring).

Then we have

m(E) = sup m(C).
CCE, C compact

Proof If C C E, then m(C) < m(E). By definition of the Borel ring,
there exists a sequence (C!), C! compact, with E C |J;2, C}. Set Cy, =
Ui<n C!- Then Cy, is compact, and (Cy,) is monotonically increasing.
Further E C |J, Cn, hence E = |J,(E N Cy). Since m is o-additive,

m(ENC,) — m(E), as n — co.
Let € > 0. Then there exists n = n(¢), such that
m(ENCp) >m(E) —¢, if m(E) < oo,

() and
m(ENC,) > %, if m(E) = oo.
The set C, — E is Borel, since C,, and E are. There exists (because of

the regularity of the measure) an open set U = U(e), which is also a
Borel set, such that U D C, — E, and

(*) m(U) < m(C,, — E) +e¢.
(see Lemma 11, p. 25) [Note that m(E) = UoE, U J,’,'e’:., U Borel m(U)).

If we define K = C,, — U, then K is compact (as it is a closed subset
of a compact set). Since U D C,, — E, we have

Ca-UCCh-(Cn—E)=CaNE,
hence K C C, N E. Further
(CaNE)—K=(CaNE)-(Chn-U)CU-(Cn - E).
Hence
m(C,NE)-m(K) < mU)-m(C,—E), [m(K)< 0]
< . (see (x) above).
If m(E) < oo, there exists a compact set K C E, such that
m(E) - m(K) = (m(E)-m(CpNE))+ (m(Cn N E) - m(K))

< 2 (see (1) above).



The Haar measure on a locally compact group 45

If m(E) = oo, there exists a compact set K C E, such that m(K) >
2 —¢, lsince m(K) = m(Ca 1\ E) = (m(Ca 1 E) = m(K)), and (D], which
completes the proof of the theorem.

Theorem 5 The measure m in Theorem 3 is unique.

Proof Let m and m' be two regular measures, such that

[ 1(2) dm(a) = [ 1(a) am'(a), ¥ 1€ o
R R

Then we have to show that m = m’ on the ring of Borel sets, S. For
that, it suffices to show that m(C) = m’(C) for all compact sets C € C.
If C is compact, and € > 0, there exist open, Borel sets U, U’, such that
UDC,UDC,mU~-C)<e,m'(U' -C)<e. SetV=UNU'. Then
Visopen, VO C,m(V -C) <¢e, m'(V - C) < e. We may assume
that V is compact (R is locally compact, Hausdorff). Then there exists
a conlinuous function f, such that

f(z) = 1, z€C
" 10, z¢V, (Lemma,p.36)
0<f(z)<1, Va.
Hence f € Co, and x. < f < X, which implies that

m(C) < [ 1 dm < m(v),
and similarly i
m(©)< [ f dm' < mi(V).
By hypothesis, [ f dm = [, f :m’ = A, say. Since we have
m(V)-m(C) <e, m'(V)-m(C)<e¢,

it follows that A—m(C) < m(V)-m(C) < ¢, and similarly A-m'(C) <
€. Thus m(C)—m'(C) = m(C)-A+A-m’(C), and |m(C)-m’'(C)| < 2¢.
Hence m = m’ on C, therefore also on S.

If R is a locally compact Hausdorff space, R the Borel ring of R,
with R € R (so that R is, in fact, a o-algebra) and r is a regular
measure on R, we call M = (R,R,r) a regular measure space. One
can consider integrable functions on M, and Lp-spaces. The property of
regular measures obtained in Theorem 4 enables us to prove the following
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Theorem 6 Let L,(M), 1 < p < oo, stand for the class of M-
measurable functions f such that |f|P is integrable. Let Co be the set
of all (real-valued) continuous functions, with compact support, on R.
Then Cp is “dense” in Ly(M).

Proof

®

(i)

Any function f € Ly,(M) can be approximated, arbitrarily closely,
by a simple function (which is of the form Y|, aiXg,, where
r(E;) < 00, a; real). Since f = f+—f~, where f*, f~ > 0, we may
assume, without loss of generality, that f > 0. Since fP is inte-
grable by assumption, there exists a monotone increasing sequence
(gn) of non-negative, simple functions, such that g,(z) — fP(z),

as n — oo, for almost all z. Thus g1/? — f pointwise. Now

lo¥'> = g = [ 1a3fe - sP,
M
while |ga/? — f|P < 2|f|P. Hence ||ga/® — f|| — 0 as n — oo.

Any simple function can be “approximated”, arbitrarily closely, by
a function in Cp. It is obviously sufficient to consider any charac-
teristic function of a ‘chunk’, i.e. x,, where E € R, r(E) < oo.
Since r is a regular measure,
r(E) = sup r(C). (Theorem 4)
CCE, C compact

Given € > 0, there exists an open set U D E, and a compact set
C C E (depending on ¢), such that r(U —C) < ¢ and U is compact.
[If T itself is not compact, there exists an open V, V. C U,V D C;
with V compact. cf. Lemma 12, p. 36].

By Lemma 12, there exists a continuous function f on R,
such that f(z)=1,Vz€C, f(z) =0,z ¢ U,and 0 < f(z) < 1,
for all . Obviously f € Cy, and

/lf—x,..-l”=/v le-xal" <r(U-C) (since |f—xg|<1)
- <E,

so that ||f - xg|l, < €'/7.
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II.4 Baire functions

A Baire function on any locally compact, Hausdorff space R, is an ele-
ment of the smallest class B of real-valued functions on R, which contains
Co(R), and is closed for pointwise convergence of sequences of elements.

Note that B exists, since the set of all functions on R has ‘he two
stated properties, and the intersection of any two such classes is again
such a class.

Lemma 13 Let {f,}, n = 1,2,..., be a sequence of functions in B,
such that |f,(z)| < ¢(z), a real-valued function (so that sup({fn}) is
real-valued). Then we have sup({f,}) € B.

Proof Since sup({fs}) = lim sup(fy,..., fa), (pointwise limit), it is
sufficient to show that g € B, h € B = sup(g, k) € B.

Given g € B, let A(g) = the class of all functions h, such that
sup(g, h) € B. Then

(i) A(g) is closed for pointwise convergence of sequences;
(i) A(g) D Co, if g € Co. (since sup(f, f') € Co, if £, f' € Co).
[Note that
g € B, sup(g,h,) €B, Y n, h, — h imply that sup(g,h) € B.

(1) g(=) < h(z) = sup(g(z), hn(z)) = hu(z) for n > ny. But
ha(z) — h(z) = sup(g(z), h(z)), hence sup(g(z), hn(z)) —
sup(g(z), h(zx)), as n — oo. Since sup(g(z), hn(z)) € B, and B is
closed for pointwise convergence of sequences, sup(g(z), h(z)) € B.

(i) g(z) > h(z) = sup(g(z), hn(z)) = g(z) for n > ny, and g(z) =
sup(g(z), h(z)).

(ii)) () = h() => sup(g(2),hn(z)) = sup(h(z), hn(z)) —
sup(h(z), h(z)) = h.]

It follows that

A(g) D B, if g€Cy. (since B is the smallest such class)
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Hence g € Co, h € B = sup(g, h) € B, that is to say, A(h) D Co. It
follows, as before, that A(h) D B when h € B. Thus

g,h € B=>sup(g,h) € B.

Theorem 7 Let M be a regular measure space (as defined on p. 45),
and let B be the class of all Baire functions on M. Then (a) every Baire
function is measurable ( = Borel measurable); and (b) if f is any (Borel)
measurable function on M, there ezists a Baire function which equals f
almost everywhere.

Proof (a) The class of all measurable Baire functions has the two prop-
erties: (i) it contains Co; (ii) it is closed for pointwise convergence of se-
quences ( f, measurable, f, — g imply that g is measurable). However,
B is the smallest such class. Hence every Baire function is measurable.

(b) We may assume that f > 0. There exists a monotone increasing
sequence {f,} of quasi-simple functions, such that f,(z) — f(z), as
n — o0, almost everywhere. (We recall that a quasi-simple function is a
finite linear combination, with real coefficients, of characteristic functions
of sets from R, the Borel ring on R).

If the result holds for any quasi-simple function f, then it holds in
general. For in that case there exists a sequence {g,} of Baire functions,
with g, = f, almost everywhere, and since f, is 1, sup(g,) is a Baire
function which equals f uimost everywhere. It is enough therefore to
prove (b) in the case of f = a quasi-simple function (3_;_, aixg,, Ei €
R).

Now S € R implies that S C |J;~; Cn, Cs compact, and we may
assume that C; C Ci41,i=1,2,.... Then we have

o0
Xsnc, — Xs,» a8 n — 00. (pointwise) (S = U Snc,,) .
n=1
It suffices therefore to prove (b) in the case f = x, where E is measur-
able, and E C a compact set, hence r(E) < oo.
Since r is a regular measure, there exists a sequence {Cj,} of compact
sets, with C, C E, such that r(E — C,) — 0. We may assume that
Cn C Cpyy. It follows that x; = X, o almost everywhere, and

n=1 "
XUm o = ﬂlingo Xc, - 1t suffices therefore to prove (b) in the case f =
n=1 " -
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Xc, where C is compact.
If C is a given compact set, there exist open Borel sets U,, such
that U, D C, and r(U, — C) — 0, as n — oo (since r(E) =

inf r(U), where E is a Borel set).
UDE, U open U Borel

Let
1, z€C;
fn(z) = { 0, z¢Up;

and 0 < fu(z) <1,z € R, fn € Co (by Lemma 12, p. 36).

We may assume that U, is |. Set f = inf({f,}). By Lemma 13 (and
symmetry) f is a Baire function which equals 1 on C and 0 outside U,
n=1,2,.... Hence f equals 0 outside (); U;. Since r(Up — C) — 0, we
have r((); Ui — C) = 0. Hence f = x. almost everywhere, where f is a
Baire function.

We shall consider Baire functions on the product of two regular mea-
sure spaces, which is not necessarily regular although it can be extended
to a regular measure space. One has, however, to be cautious about
applying, without qualification, Fubini’s theorem to the extension.

We recall (from the course on Integration Theory) the basic facts
concerning product measures, and measure spaces.

By a measure space we mean a triple (R, R, r), where R is any set, R
a o-algebra of subsets of R, and r a countably additive set function on
R. Let Ry denote the set of all elements of R on which r is finite; they
are called chunks. The measure space is called o-finite if R is a countable
union of chunks. If (S, S, s) is another measure space, we denote by Sy
the chunks in S. By a rectangle we mean the cartesian product A x B,
where A € R, B € 8. It is known that both Ry and Sy are rings.
The class of all finite disjoint unions of rectangles is a ring, which is,
in fact, the ring Py generated by the rectangles. For any E € Py, say
E =Ulﬁisﬂ P;, where P; = A; x B;, A; € Ro, B; € Sy, we define

mo(E) = Y r(A) - s(Bi).
1<i<n
If m’ is any measure on Py, such that m’(A x B) = r(A) - s(B) for every
rectangle 4 x B, then (it can be shown that) m'(E) = mo(E), for all
E € Py. The basic result on product spaces is as follows:

If (R,R,r) and (S, S, s) are two o-finite measure spaces, then there

exists a o-finite measure space, called the product measure space, or
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simply the product space, (P, P,m), such that P = R x S, P = the o-
ring generated by Po, and m a countably additive measure on P, which
agrees with mg on Pg.

The connection between integrals on the product space and on the
individual spaces is established in Fubini’s theorem, one form of which
is as follows:

Let f > 0 be P-measurable on the product space (R x S,P,r x s)
of two o-finite measure spaces (R,R,r) and (S,S,s). Then for every
fixed y € S, f(z,y) is measurable as a function of z, and if we set
9(y) = [ f(z,y) dr(z), then g is measurable, and

/S o) dsv) = [ [ 1.0t x s)z,0).

RxS

Thus if the integral on the product space on the right-hand side is finite,
then the ‘repeated integral’ on the left-hand side is also finite, and both
are equal. Further the two repeated integrals, namely |, s 9(y) ds(y), and
JrUs f(z,y) ds(y)) dr(z), are equal.

Against this general background, we now state the following result on
Baire functions on the product of two locally compact Hausdorff spaces.

Theorem 8 A Baire function on the product of two locally compact
Hausdorff spaces, say R, R, is measurable relative to the product of any
two regular measure spaces M, M’ whose underlying topological spaces
are the given spaces R and R'.

For the proof we need, and will assume, the following lemma, which
is a special case of the Stone- Weierstrass approrimation theorem.

Lemma 14 If R and R’ are locally compact, Hausdorff spaces, and f €
Co(Rx R'), then there exists a sequence {f,} of finite linear combinations
of products of elements from Co(R) with elements from Co(R') which
converges pointwise to f, and the convergence is locally uniform (i.e.
uniform on compact sets).

Proof of Theorem 8 Let h € Cy(R). Then h is measurable in the
product space M x M’, as a function on R x R’. For we have

{(z,2') | h(z) > o} = {z | h(z) > o} x R';

Since every element of Co( R) is measurable relative to M, it follows that
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{z | h(z) > a} is a measurable set in R. R’ is measurable relative
to M’. Hence the product {z | h(z) > a} x R’ is measurable in the
product space M x M’. Hence every f, in Lemma 14 is measurable
relative to M x M’; therefore f is measurable relative to M x M’,
where f € Co(R x R'). It follows that every Baire function is likewise
measurable.

Corollary Let m,n be two regular measures on a locally compact group
G. Let f,g be Baire functions on G. Then f(y~'z)g(y) is measurable,
and vanishes outside a countable union of ‘rectangles’ in the product

space: (G,m) x (G,n).

Proof. [If fo € Co(G), go € Co(G) with supports A and B respectively,
then fo(z) - go(y) is a Baire function (with A x B compact).]

f(z) - g(y) is a Baire function on G x G (with the product topology).
A homeomorphism (z,y) «— (y~'z,y), of G x G with itself, carries
Baire functions into Baire functions. Hence f(y~'z)g(y) is again a Baire
function on G x G, (z,y € G), hence measurable.

Every Baire function on R = G x G vanishes outside a countable
union of compact sets. For the class of all such Baire functions is closed
for sequential convergence and contains Co, and therefore contains 3, the
class of all Baire functions (since it is the smallest such).

Hence f(y~!z)g(y) vanishes outside a countable union of compact
sets in G x G.

Now let C C G x G, C compact. Then C C Ji,(O; x O!), where
0;, O; are open chunks in G. (Sets of the form O; x O} form a basis for
the open sets in G x G). Such products are rectangles. Hence

o0 o0
U C; C U E;, where C; is compact, E; is a rectangle.
i=) i=1

Thus f(y~'z)g(y) vanishes outside a countable union of rectangles in

G xG.

IL.5 Essential uniqueness of the Haar measure

To prove that any two Haar measures on a locally compact group are
proportional we need some preparation.
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If M =(R,R,r), N =(S5,S,s) are two measure spaces, we call a
mapping ¢ of R into S a measurable transformation of M into N, if for
any F € S, we have ¢~1(F) € R, and r(¢~1(F)) = s(F).

Lemma 15 Let T be a measurable transformation of M into N, and
let f be integrable (or non-negative, measurable) on . Then

/J\rfdsszfonr.

Proof It is obviously enough to consider f > 0. If f(z) = +oo for
z € A, where s(A) > 0, then the result is trivial. We may therefore
assume that f is finite almost everywhere. Since T-! (a null set in N)
= a null set in M, we may assume that f is finite everywhere. The
result is true for = x, where E is a measurable set (by assumption),
and by linearity it holds for any gquasi-simple function f. If f, T f, fa
quasi-simple, then we have

/fn=/ anT, ﬂ=1,2,...,
N M

and by the monotone convergence theorem,

=L

Lemma 16 Let W = |J;, C, where the C,, are compact sets, and W
is an open set, with W compact. Then x,, is a Baire function.

Proof We may assume that C, C Cry1. Let fu(z) = 1, ¢ € Cy;
fa(z) =0,z ¢ W; and 0 < fo(z) < 1, (cf. Lemma 12) f, continuous.
Since W is compact, f, € Co. And we have lim, fa(z) = xw (), for
all z. Hence x,, is a Baire function.

Theorem 9 If G is a locally compact group, and m,n are (possibly)
two Haar measures on G, then m(E) = an(E) for all Borel sets E in
G, where a is a positive real consiant.

Proof Let f,g € Co(G), 0 € f <1,0< g <1 Let C = {z |
flz) =1}. U = {z | 9(z) > %} Then C is compact (as a closed

subset of a compact set). x. is a Baire function, since it is the pointwise
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limit of the sequence f, f2,...,f",.... Further U is open, since g is
continuous, and U is compact (since it is contained in the support of
9), and U = ;2 Di, where D; = {z|g(z) >3+ 1},i=1,2,..., D;
compact. By Lemma 16, x,, s a Baire function.

Now m(C) = /ch (z) dm(z), and

"

n(V) /G X0 (¥) dn(y)

= / Xu(z7'y) dn(y) (left-invariance)
G

m

/G Xeo(¥) dn(y) (z7'y €U <=y € 2U)

n(zU) = n(U)).

Hence
m(©) 1) = ([ xe(@) dm(@)) - ( [ xote™9) dnts)
By the Corollary to Theorem 8, and Fubini’s theorem, we have

m(©) ()= [ [xo(@xo (=) dpla,v).

GxG

However
Xc(z)XU(z-ly) < Xew(¥) Xu(x_ly)r

[The left-hand side is 1, if z € C and z~'y € U or y € zU C CU so that
Xcu(¥) = 1]

and X, i a Baire function [CU = |J;~., CDn, where CU is open, and
CD,, - as the group-product of compact sets — is compact. Further CU
is compact. C is compact, U compact => C x U compact => C - U
compact => C - U compact (since C = C) => C - U closed. But
C-U cC-U,sothat CU C C-U which is compact. So CU is compact.
By Lemma 16, x,, is a Baire function]

By the Corollary to Theorem 8, x..(¥)x, (2~ 'y) is measurable on
G x G, and from the double integral above we obtain
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m(C)n(U) < / / Xou(¥)xu (z™'y) dp(z,y)
GxG
= / / Xou(¥)Xy-1 (¥™'z) dp(z,y) (Theorem 8)
= [ [ xeo)lxus 1 2) dm(@)) dna)
= [xews) | [ xos(2) dm(a)] an(s) (Lemmna 15 +
= n(CU)m(U™Y). Fubini +
Hence m(C)n(U) < n(CU)m(U™1). left-invariance)

By symmetry we have, for any compact set D = {z | h(z) = 1},
where h € Co(G), 0 < h < 1, with U~! in place of U, and n instead of
m, [U~?! is related to g(z~!) in Cp just as U is to g(z)]

n(D)ym(U™1) < m(DU " )n(U).

W=UL, D8 U-1=T 1, X, -1 18 Baire]. It follows that
m(C) - n(U) - n(D) - m(U~!) < n(CU)YmM(U~)ym(DU ~HYn(U).
Now let V be a non-empty, open set. Then m(V) # 0. [Otherwise
m(C) = 0 for all compact C]. Choose g € Co(G), such that U # 0,
[recall: U = {z | g(z) > %}] hence n(U) # 0, m(U~!) # 0. Then we
obtain from the above inequality,
(%) m(C) -n(D) < n(CU)m(DU™Y).
Since C, D are compact, and m, n are regular measures, given ¢ > 0,
there exist open, Borel sets V,W, such that C C V, D C W, and
) (V) < n(C)+e,
m(W) < m(D)+e.

Let Uy, U, be open sets containing e (the identity element), such that
CU, CV, DU, C W, with Uy, T, compact.

[There exist such U; and U;. (i) Let C be compact, C C S, and
S open. Then z € C => 3 N, N; open, z € N, such that N, is

compact. (ii) £ € C = 3 O, an open neighbourhood of e, such that
zO,; C S. There exists then an open neighbourhood T; of e, such that
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T2 C O, (cf. trivial properties (5) and (6), p. 6).(iii) Ty is now an
open neighbourhood of z € C. Hence C C |J, zT;. But C is compact,
so there exist zi,...,z, such that C C U, z:T;,. Set T = n;.’__,l T:;.
Then T is open, T contains e. And

CTC U T, Tp, = U T2 C U 20;, C S

i=1 i=1 i=1

(since z;0;; C S for every i). Now take S =V, and T = U;. Similarly
treat D, W, Vo).

Let Us C Uy N Uz, Us symmelric, e € Us; and let Uy be open, such
that e € Uy, and U4 C Us. [Note that Uy is compact, since U4 C Us C
Us c Uy nU, c Uy NTU, which is compact].

Let

1, £€U4,

g €Co(G), g(z)= { 0 zgUs 0<g(z)< 1,

and define U (as above) by means of this function g,i.e. U = {a: | 9(z) > %}

Then obviously U is open, non-empty (U4 C U => e € U), and U is
compact (since U C support of g) and CUCV, DU~ C W.

[Note that U is a set on which g > %, while U3 is a set on which

0<g<1 Wehave Uy CUs C Uy, and U C Us, so that CU C CUs C
CU, C V;and U~ C U = Us, so that DU~! C DUs C DU, C W).
The inequality (*) above then gives

m(C)n(D) < n(V)m(W),
which implies, by (1),
m(C)n(D) < (n(C) + £)(m(D) +¢),
or
m(C)n(D) < n(C) - m(D).
With D in place of C, we get
m(D)n(C) < n(D) - m(C),

hence

m(C)n(D) = n(C)m(D)



56 A course on Topological Groups

Since the measures m and n are regular, and non-zero, there exists,
by Theorem 4, a compact set Cy, with m(C;) # 0. Now define

f€Cy; f=1o0n C, m(C)#0; 0<f<1.

Let C = {z | f(z) = 1}. Then m(C) # 0, and n(D) = am(D), where a
is a constant for all D, where D = {z | h(z) = 1}, 0 < h < 1, h being
an arbitrary element of Cy, a > 0.

If E is an arbitrary compact set, there exist sequences {Y;}, {Zi}
of open, Borel sets, such that Y; D E, m(Y; — E) — 0 and Z; D E,
n(Z; — E) — 0, as i — oo.

Set W; = Y;-N-Z;. Then (W;) is a sequence of open, Borel sets, such
that W; D E, and m(W; — E) — 0, n(W; — E) — 0, as i — 0.

Now define ngCo,OSf.-Sl,f,-z{ (1)22 f’V",-",
and let D; = {z | fi(z) = 1}. Then, as above, we have m(D;) =
o - m(D;). Since W; D D; D E, we have m(W;) > m(D;) > m(E), and
n(W;) > n(Di) > n(E). [Di D E,since fi=1on E;z€ W; = 0<
f(z) < ;2 € D; = fiz) = 1].

It follows that m(D;) — m(E), n(D;) — m(E), as i — oo, hence
n(E) = am(E), for any compact E. This holds for all Borel sets E, by
Theorem 4.

Ezamples of Haar integrals
1. G = (R",+4), u(f) = [ga f(z) dz (n-dimensional Lebesgue inte-
gral).

2.G=8'"=R/Z, f: S' — R, equivalent to f* : R — R, of
period 1, u(f*) = fol f*(z) dz.

2x
3. St = {e", 0<6<2n} 51— f(e') do.
mJo

4. G = finite discrete group of order n, L}(G) = all functions f :

G — R, and % Z f(z).
T€G

An automorphism of a topological group G is a homeomorphism of G
with itself such that A(ab) = A(a) - A(b), where a,b € G, and - denotes
the group operation.
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Corollary 1 Let A be the class of all automorphisms of the locally
compact group G. Then there exists a real-valued, non-zero, function o
on A, such that
m(A(E)) = o(A) - m(E)

where E is a Borel set, and m a Haar measure on G. Further o has
the property: o(AA’) = o(A) - o(A’) for A,A"' € A. [If A and A’ are
automorphisms of G, the product AA’ of A and A’ is the automorphism
defined by the requirement: (AA’)(z) = A(z)A'(z), ¢ € G. It can be
verified that AA’ is an automorphism).

Proof m(A(E)), as a function of E, is again a Haar measure. Theorem 9
implies that there exists a constant o(A), depending only on A, such that

m(A(E)) = o(A) - o( E).
Since all Haar measures on G are proportional, o(A) is a constant for
all measures m.
Now
m((AA’)E) = o(AA")m(E).
On the other hand,
m((AA)E) = m(A(A'(E))) = o(A) - m(4'(E)) = a(A) - ¢(A') - m(E).
Since m(E) # 0, oo for at least one E, we obtain 0(AA’) = d(A4) -a(4’).

Corollary 2 Let m be a left-invariant Haar measure on G. There
exists a real-valued, continuous function p on G, such that m(Ez) =
p(z) - m(E), where E is a Borel set and ¢ € G; p has the property
p(zy) = p(z) - p(v), z,y € G.

Proof If E is Borel, z € G, then Ez is Borel, also E-!. [If K = {E
Borel | Ez Borel}, then K is a o-ring, and K contains all compact sets).

Consider the inner automorphism ¢, : a — z~laz, a,z € G; and
apply Corollary 1. Then we have m(z~!Ez) = p(z)m(E), where E is
Borel, and p(z) = o(¢.). Since ¢y - ¢. = ¢y, it follows that p(zy) =
p(z) - p(y) for z,y € G. Further 0 < p(z) < oo. Because of the left-
invariance, m(Ez) = p(z)m(E).

To show that p is continuous, let f € Co(G). Then

(+) [ 1@ dme(@) = pt2) | 1) drn(a)
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where m,(E) = m(Ez), hence m(E) = m;(Ez~!). By Lemma 15
la I azY, [ f ds = [\, foT dr; s(F) = o(T"\(F)), F € S,
T-1(F) € R, T-\(b) = bz).

/ f(a) dma(a) = / f(az~1) dm(a).

If C is a compact set, such that f vanishes outside C, then

/f(a) dm(a) = /Cf(a) dm(a). (some number)
We shall see that
[ faw) am),

as a funclion of y, is continuous at y = e.

Let N be a compact, symmetric neighbourhood of e, then we have,
forye N,

A

{ [ ta) dm(a) - | (@) dm(a)

< / | (ay) - f(a)| dm(a)
- / |f(ay) - £(a)| dm(a).
CN

[CCCN;agCN =0a¢C = f(a)=0. And ay ¢ C = f(ay) =
0].
It can be shown (see Lemma 17, Remarks, which come below) that

|f(ay) — f(a)] — 0, uniformly as y — e.

Hence [ |f(ay)— f(a)| dm(a) — 0, as y — e.(CN is compact, so that
m(CN) < 00). Hence [ f(az™!) dm(a) is a continuous function of z at
r =ée€.

Let f € Co, such that [ f(a) dm(a) # 0. Such an f exists since
m is not identically zero. It then follows from (x) above that p(z) is
continuous at ¢ = e. Since p(z) = p(zz;')p(zo), p is continuous at
z = xg, for any zg € G.

Unimodular groups A locally compact group G is called unimodular
if p = 1 in Corollary 2, i.e., “m is left-invariant” implies that “m is
right-invariant”.
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Corollary 3 Every compact or abelian group is unimodular. If m is a
Haar measure on a unimodular group G, then

m(E~!) = m(E), for any Borel set E.

Proof If G is compact, m(Gz) = p(z)m(G), where m is a Haar measure,
and Gz = G. Hence p(z) = 1 (since m(G) < o).

Every abelian group is obviously unimodular. If G is unimodular,
then define n(E) = m(E~!), where E is a Borel set. n is a Haar measure,
[Note that n(Ez) = m((Ez)~!)) = m(z"'E~T) = m(E~!) = n(E),
because m is left-invariant. And n(zE) = m((zE)™!) = m(E~'z7!) =
m(E~1) by right-invariance] as can be verified.

Since all Haar measures on G are proportional, we have

m(E")=a -m(E), a>0;

that is, m(E) = m((E~!)"!) = am(E~!) = o?m(E), so that o? = 1, or
a =1 (since a > 0).

I11.6 The L!-algebra of a locally compact group

Our aim is to show that the integrable functions on a locally compact
group, relative to a Haar measure, form an associative algebra relative
to the usual addition and scalar multiplication and the operation of
‘convolution’ as multiplication.

Lemma 17 Let f € Co(G). Then, given € > 0, there exists a neigh-
bourhood U of e, such that

If(z) - f(y)l <e, for z7lyeU.

Proof Set y = s, so that =1y = 5. We seek a neighbourhood U of e,
such that s € U = |f(z) — f(zs)| <e,Vz €G.

Define V= {s € G ||f(z) - f(zs)| <e, Yz €G}. Thenee V. We
shall see that V contains an open set U containing e.

On G x G define h as follows: h(z,s) = |f(z) — f(zs)|, z,s €
G. Then h is continuous at (z,e) with h(z,e) = 0, ¥V z € G, and
V ={s€G|h(z,s) <e Vz e G}. By hypothesis there exists a
compact set C, such that f=00on G - C.
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Let V be a symmetric neighbourhood of e such that V is compact
and symmetric (for example, V.= NN N~!, N being a compact neigh-
bourhood of €). Define

D=CV={zy|lzeC,yeV}.

Then D is compact (C x V is compact, and (z,y) — zy is continuous).
Obviously C C D (since e € V).

Given y € D, there exists a neighbourhood Ny of (y,e) such that
h(z,s) < ¢, for (z,s) € Ny (since h is continuous at (y, e), with h(y,e) =
0). We may assume that Ny is of the form Ay x Uy, where A, is a
neighbourhood of y, and Uy the corresponding neighbourhood of e.

Since D is compact, there exist yy,...,yn such that D C |J-, Ay,.
Now define U = ()=, Uy, -N -V, the Uy, “corresponds” to Ay,. Then U
is open and contains e.

NowzeG=>z€Dorz¢gD.

(i) zeD=z€ Ay, forani, 1 <i<n Ands€ U = s € Uy,
(the same 7).
Hence z € D, s € U => (z,5) € Ny, (since Ny, = Ay, x Uy,).
=> h(z,s) < ¢ .

i) zgD=2¢C (sinceCCD)= f(z)=0,andz ¢ D, s €
U= 2s¢C => f(z,5) =0 (sincesc U =>se€V = s"'¢
V,and zs € C => z € Cs™! C CV C D). Hence h(z,s) = 0,
VzeG,seU.

Remarks By Lemma 17, if f € Cy(G), there exists a neighbourhood
U of e such that [f(y) — f(z)| < € for z='y € U. That is to say,
|f(zt) = f(z)] <e,forteUandVzeG.

By considering £ — f(z~!), we obtain similarly |f(z) — f(y)| < €,
for zy~! € U, hence |f(t™!z) - f(z)| < e, fort €U =U(e),Vz € G.

Theorem 10 Let G be a locally compact group, and m a Haar measure
on G. Let f € LP(G), 1 < p < oo (relative to that measure). Let
fs(z) = f(a~'z), for z,a € G. Then the mapping a — f, from G to
L?(G) is continuous, that is to say

“fa"'fdonp_-'ox as a — ap. (G)GOEG)
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Proof Let ¢ > 0, and let g € Co(G) be such that ||f — g]|, < ¢, after
Theorem 6. Because of the left-invariance of the measure m, we have

(%) |fa = gallp = If = gllp, for a€G.

Let C be a compact set such that g(z) = 0 for z ¢ C. Since fo — f =
(fa - ga) + (ga - 9) + (g - f), we have

1fa = fllp < lfa = gallp + llga = gllp + llg = Fllp-
Since g4(z) —g(z) =0 for z ¢ aC -U - C, and
|9a(z) — g(2)| < ¢, forz €aC-U-C, a — e, (by Lemma 17)

1/p
||ga—gnp<(/ e dm(z)) ,
aCuC

which implies that
lIfa=£llp < 26+ 2e(m(C)/? = e(2+2(m(C))'/?).  [m(C) = m(aC)]
Hence f, — f in LP-norm as a — e. However,
(fao(2) = F(5'a™'2) = fas(2), hence fo= (fagzt)ao-
As a — ag, aag' — ¢, hence “faa;l — fllp — 0. It follows that

||f(“;1)ao = faollp = 0, ie. ||fa— faollp — 0  (cf. () above).

we have

The convolution Let G be a locally compact group, and m denote
a Haar measure on G. The convolution of two functions f and g on
G, denoted f * g, is said to exist at a point z € G if f(y)g(y~'z) is
y-integrable, and

£x9@) = [ S a) d,

where “dy” stands for the measure m (in Theorem 1). The convolution
f * g exists if it exists almost everywhere on G.

Remark If f and g are measurable, and vanish outside Borel sets, then
f(¥)9(y~'z) is measurable (as a function of y) for fixed z. For there exist
Baire functions f’(y), (¢'(y) which are almost everywhere equal to f(y)
and g(y) respectively, so that f(y)g(y~'z) = f'(y)g’'(y'z) for almost
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every y. Now g¢’(y~'z), as a function of y, is Baire, so that f/(y)g¢'(y~z)
is Baire, hence measurable.

Theorem 11 If f € L'(G), g € LP(G), 1 < p < oo, then f g exists,
fxg € LP(G), and ||f * gllp < |Ifll1 - llgllp- (G is a locally compact
group).

Proof This is trivial in case p = oo, for ||f|lec = i}r\nlf sup |f(z)|, where
z@gN

N denotes any null set. We may therefore assume that p < co.

Let f be m-integrable on G, m being a Haar measure. Then f van-
ishes outside a countable union of “chunks”, i.e. sets E, with m(E,) <
co. [Here measurable <= Borel]. For every such E, there exists a
compact set E,, such that m(E, — E) < ¢, for any given ¢ > 0. [Theo-
rem 4] Hence f vanishes outside the union of a Borel set and a null set,
[f(2) = 0, 2 @ U En; En = En— E4UE}: UEn = U E}-U-U(En - EL)]
Hence [Theorem 7(b)] f is equal to a Baire function almost everywhere.
The same is true of g.

Set

h@) = [1fwotv2)| dmy).

By Fubini’s theorem [|f(y)g(y~'z)| > 0, and measurable on the product
space], h is m-measurable, and

W@ = [10@" 2o 2) - 116)77] dmiy)
By Hoélder’s inequality,

we) < ([ 176 - 0) do) " ( o) "

(h(z)P < / @) - la@™ 2)P dy- |IfIE"".

By Fubini’s theorem again,
Jey e = e [ ([uon-oop dz) 4
= AR [ 151 lol dy (by lef-invariance)

1
AR - gl

+-=1.

-
| -

and
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Hence h(z) is finite almost everywhere. It follows that f *g exists. Since
|f * g(z)| < h(z), we have

Wf*glle < Ilhllp
(AT - |lglizy Ve

A1l - Hgllp-
[Note that if f > 0,9 > 0, then h = fxg > 0, and ||f+g[l: = ||fll:-]lg]l1]

IA

Theorem 12 Let G be a unimodular group, and let f € LP(G), g €
L1(G),1<p< oo, %+-;‘ = 1. Then f * g exists and is continuous, with

1f* gl < IA1lp - lglle-

Proof Consider g(y~!z) as a function of y. It belongs to LI(G), with the
norm ||g||4, since [ |g(y~'z)|? dy = [|g(y=)|? dy~* [by Lemma 15; dy~*
denotes the measure m/(E) = m(E~!), where m is a right Haar measure.
By Corollary 3 to Theorem 9, m(E~!) = m(E).], and [ |g(yz)|? dy =
J l9(¥)|? dy, because of the right-invariance. Since the product of an
element in LP(G) with an element in LY(G) is integrable, the convolution
ﬁ*TI ezists e]verywhere- ((f+0)(@) < ([ W) dy)/?(f lg(y~ )| dy)*/e =
fllp - llgllq)-

To prove the continuity, we note that

(f *9)(2) = (f * 9)(') = / f@)laz) - 9(v=2')} dy,

hence

I(f * 9)(=) — (f * 9)(=")|

< ([iwr dy)llp ([ 1062 - st 20 o) v

Writing h(z) = g(z~!), and as before hq(z) = h(a~!z), we have
/Iy(y"x)—y(y“x’)l” dy = /Ih(x"‘y) —h& !z -z ly)|? dy

= ”hz-lx’ - h”z:
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where h € L9(G), fince [ |h(z)|7 dz = [|g(z=})|* dz = [ |g(y)|? dy~* =
J l9(¥)I? dy by hypothesis], so that, by Theorem 10, ||h,~1,/ —h||; — 0
as 2’ — z. It follows that

(F*9)(@) — (f*g)(z), as &' — 2.

Theorem 13 If G is a locally compact group, with a Haar measure m,
the m-integrable functions on G form an (associative) algebra relative to
ordinary addition and scalar multiplication and relative to convolution
as multiplication.

Remarks

(i) The associativity is a consequence of Fubini’s theorem for Baire
functions.

If £, g are integrable Baire functions on G, then f(y)g(y~'z)
is an integrable Baire function on GxG. Take p = 1 in Theorem 11.
Then ||f * g{ls < Ifllllg}ly < co. Hence f * g is integrable with
respect to z. That is to say, [ f(y)g(y~'z) dy is not only measur-
able, but integrable with respect to z almost everywhere. Hence
the iterated integral exists, therefore (strong form!) the double
integral exists and is equal.

(ii) The L'-algebra of G is also called the ‘group algebra’ of G. In the
general case of locally compact groups, the LP-spaces, for p > 1, do
not form algebras; in the case of compact groups they do.



III. Hilbert spaces and the spectral
theorem

III.1 Banach spaces

A Banach space over the complex numbers C, or the real numbers R, is
a linear space (over C or R), with a norm ‘|| ||, such that the space is
complete with respect to the “metric” d(z,y) = ||z — y|| defined by the
norm. [A norm is a function ‘|| ||”, which is non-negative, and real-valued,
with the properties: (i) ||az|| = [a-|lz|l, a € C; (i) ||z +yl| < |l=]|+]]yl];
(iii) Jlz]l = 0 <=z = 0]

Example 1< p< oo, LP(M), f € LP(M), ||f|| = ([ |fIP dr)'/?, where
M is a measure space: M = (R,R,r), R a set, R a o-algebra of subsets
of R, r a countably additive measure on R.

A set A is said to be partially ordered, if and only if a relation “<”
is defined in A, such that for a, 8,7 € A we have (i) a < ¢, (ii) a < 8,
B<y=>a<v,and (i) a<PB, f<a=a=0.

A partially ordered set A is called a directed set if and only if for
a, B € A there exists ¥ € A, such that o < v, 8 < 7.

By a sequence is meant a family of elements {x,} where the indices
a belong to a directed set. (i.e. not necessarily integers)

If zo € X, where X is a topological space, z, is said to converge to
z (z € X) if and only if, for every neighbourhood O of z, there exists
an index ag, such that z, € O, for all @ > ap. (The Moore-Smith
convergence) [We do not assume any countability axioms in the space
considered: so the notion of convergence needs to be generalized so as
to allow subscripts other than integers].

Given a family of elements {;} in an additively written abelian group
- so, in particular, the z;’s may be from a Banach space - we define the
infinite sum ), z; as follows: consider the set A of all finite subsets of
the indices ¢, made into a directed set by the relation of set-inclusion.

For every a € A, a = {i1,...,i}, define the “partial sum” S, =
Z;___l z;;. Define Y, z; = z, if and only if the sequence (S,) converges
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to z in the sense just defined.

Note that if z;’s are real numbers, with N as the index set, infinite
sums converge in this sense, if and only if they are absolutely convergent
in the ordinary sense, since no linear order is imposed on the indices.

If X is a metric space, {z,} is said to be a Cauchy sequence if and only
if given € > 0, there exists an aq, such that d(z,,z5) <¢, V a,8 > aq,
where d denotes the metric in X. The space X is said to be complete if
every Cauchy sequence is “convergent”.

Proposition If X is a complete metric space in the ordinary sense,
then every Cauchy sequence in the generalized sense is convergent in the
generalized sense.

Proof Let (z,) be a Cauchy sequence in the generalized sense. Given
1

a positive integer n, choose an index a, such that d(z4,zq,) < —,

V a > an, and such that ap > a, for m > n. This is possible since A
(the set of all finite subsets of indices i) is a directed set. Then (z,,)
is a Cauchy sequence in the ordinary sense. Since X is complete by
assumption, it converges to z € X. Because of the choice of ay, it
follows that z, converges to X in the generalized sense.

IIT.2 Hilbert spaces

A Hilbert space H is a Banach space over C, in which the norm is given
by an inner product.

An inner product is a complex-valued function ‘(, )’ defined on H x H,
such that for z,y,2 € H, and a,b € C, we have

(i) (az + by, z) = a(z,2) + b(y, 2),
(it) (z,9) = (v, 2),
(iii) (z,z) >0 and (z,z) =0 <>z =0,

(iv) (z,2)"/2 = |lz|l.

Example L3(R) with (f,g) = [ f(2)9(z) dz, f = g & f(z) = g(z)
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almost everywhere.

£y x=(zn), y=(yn), with Z |In|2 < 00, Z Iynl2 < 00,
(.’B, y) = Ezﬂ-y-n xﬂyyﬂ e C

Remarks Let A € C.

(i) (=.09) = Oy,2) =X (y,2) = Xz,y), 2, y€ H,A€C.

(i) (z,y+2)=(y+2,2)=(y,2) + (2,2) = (2,9) + (2, 2),
Vz,yz€H.

(iii) (z,0) =(z,0-z) =0-(z,2) =0, Vz € H. In particular, (0,0) = 0.

Lemma (Schwarz). |(z,y)| < |lzl| - |lvll-

Proof If (z,y) = 0, this is evident; otherwise, for a € C, we have
0 < (z~ayz—ay) = (z,2) - a(y,2) — a(z,y) + a@(y,y). Choose

_ (=9 o
a= Wy [The

(= 9Wz)  (2)(z,y) | (=.y)(y2)
(v,9) (%, 9) (v,9)

= (2,2)(1,9) 2 (2, 9)(y,7) = |(z,9)1*].

>0

(:L’,.’L')—

Remarks (i) If (, ) is an inner product with the properties (i), (ii),
(iii) as above, and the function ‘|| || is defined by (iv) as above, then
‘Il |’ is automatically a norm. This follows from Lemma 1.

(i) The function (z,y) is ‘conjugate-linear’ in y, i.e.

(z,az+by) =a(z,2) +b(z,y), a,b€C, z,y,z€H.

Lemma 2 If z,y € H, we have
llz + yl1? + [lo — yl1* = 2l|=|1* + 2|yl

(for llz+al? +llz -l = (e +yz+y) +(z - y,2~y) = (z,2) +
@9+ @ 2) + @) +(z,2) - (z,9) - (v, 2) + (v, ») = 2||=* + 2[|]]?)

Definition Let F be a non-empty subset of H.

1. Fis linear <= (z,y€ F = az+by€ F, V¥ a,b € C).
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2. Fis conver <= (z,y€ F < az+bye F,Va,beR, a>0,
b>0,a+b=1).

Lemma 3 If F is a closed, convex subset of H, it has a point at minimal
distance from the origin, i.e. there exists z € F, such that ||z|| < |{yl|
forally € F.

Proof Let d = xxg}; llyll, and let (yn) be a sequence in F, such that
y

|lyn]] — d. Then (y,) is a Cauchy sequence (in F'). For

2

2
- 1 1 Y Y
it L | O = | PR Ly | gy
2 2 2 2

A

€F (convex)

_ 1 2 2 “ym Yn
= 5 (1l + gl — 2|2 + 2

5 (Lemma 2)

)
< 5UsnlP + llymll? ~ 24%)

—+ 0, as m,n — oo.

Hence (y,) has a limit £ € H (completeness); but then z € F, since F
is closed, and ||z|| = d.

Definition Let E C H. E is a subspace of H (a Hilbert space) if (a) E
is linear, (i.e. E#0,z,y€ E= az+ Py € E, a,Bf € C), and (b) E is
closed in the topology induced by the norm.

Definition Let z,y € H, and Ho C H. Define z L y <= (z,y) = 0,
z L Ho <= (z,y) =0 for every y € Ho, H} = {y|y L Ho}. Hi is the
orthogonal complement of Hy.

Note that (i) z L y = ||z + ylI> = ||=]|* + ||y]|?

(ii) Hg is linear, if Hy is linear. For let 1,2, € HE; o, 8 € C. Then
V y € Hy, we have (az1 + Bz2,y) = a(z,y) + P(z2,y) = 0. Hence

=0 =0

azy + fz2 € Hy.

(iii) Hg is closed, if Ho is linear. Let z € HZ. Then there exists a
sequence (z,) C Hg, such that (z,) converges to z.

Now for all y € Hy we have (z,y) = nlixrgo(zn, ) [(*) since the inner

product is a continuous function of each of the variables] = 0, since
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z, € HY and y € Hy. Hence z € H{.
[((*)). If 2o — z, yo —> y, then (zn,yn) — (z,v), a8 n — oo,
for

|(3m ¥n) — (2, y)| = [(Zn)¥n) = (2,9n) + (2, yn) — (=, )l
[(2a — 2,4n) + (2,90 — ¥)|

S |(2n-3ayn)|+ l(z)yn _y)l
< llen =zl llyll + lI=ll - llya — vl
— 0]

Hence Hy is a subspace.

Lemma 4 If Hy is a proper subspace of H, then Hi contains an element
which is non-zero.

Proof Choose y € H, y &€ Ho. Then y + Hy is a closed, convex subset
of H. [Forifa>0,6>0,witha+b=1,and p€ y+ Hy, ¢ € y + Hy,
then ap + bq € y + Hy, since p = y + hy, ¢ = y + ha, with hy, hy € Hy,
hence ab+bg = (a+ by + (h1+h2) € y+ Ho.]. By Lemma 3 there
1 € Hp

exists a point z € (y + Hy) at minimal distance d from the origin. Now
z#0,sinceydg Hy. [t €y+Hp,2=0= -y € Hp=>y € Hy). If
c € C, z¢ € Hy, then z + czo € y+ Ho. Hence

0<|lz+czo|l?=||z|? = (z+ czo,z+ czp)—(z,2)

= c(z0,2) + (=, z0) + |cl?||zo] .

If (z, o) # O for some zp, set ¢c; = (z—cz) Consider all those ¢;’s which
y L0
are real. For such c; we have

0 < al(z,z0)|* + e1l(z, zo) |2 + cZ - ||zo]|? - (2, z0)[?
= 2ca1|(z,zo)|* + ¢t - ||zol? - I(=, x0)|%

.. 1 2 2 2
But this is false for ¢; such that — < —uz;i. [For ac —cf”z;” ,
c1

hence 2¢; + ¢?||zo||? < 0.] It follows that (z,z0) = 0, i.e. z € Hf.

Theorem 1 Let Hy be a subspace of H. Then H = Ho ® Hy, i.e.
z € H=>z=20+721, 20 € Ho, z; € Hy, and this expression is
unique.
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: _ — Zo, Yo € H09
Proof (a) the uniqueness. If ¢ = 2o + 21 = yo + ¥1, { £, € H()L,

then zo—yo=y1 —z1 € HoNHF =0

(b) the existence. Note that Ho + Hi is a subspace. For, if z" €
Ho+ Hy, and 2" — z,ie. 2" = 23 + 2} — z, then ||z" — z™||?> =
ll2§ — 2§ + 27 — 2P| = ||2f — 2R + ll27 — 2| — 0, since z L.
y=> (Il +yll? = [zl + lll?) and =" — =. Hence (23), (27) are
Cauchy sequences and have limits zo and z,, where zo € Ho, z, € Hf,
since Hy is closed by assumption, and Hg is closed. Then trivially
(z") — zo+ 21 = z € Ho+ H§. Hence Ho + Hy is a subspace.
If Hy + H # H, then (by Lemma 4) there exists y # 0, such that
y L (Ho + Hg), in particular y L Ho which implies that y € Hg, a
contradiction.

Remark If Hy is a subspace of H, then (Hg)* = Hy. For, z € Hy =
(z,y) =0,Vy € Hf => z € (H§)*, hence Hy C (H¢)*. On the
other hand, if z € (Hg)*, then z € H,so that ¢ = y+ z, y € Hy,
z € Hy (Theorem 1). Hence (z,2) = (y,z)+(z,z). But (z,z) = 0, since
z € (Hy)* and z € Hg. Further (y,z) = 0, since y € Ho, z € HE.
Hence ||z]|2 = 0;0r 2 =0, i.e. £ =y € H,.

Definition Let E be a subset of H. E is said to be linearly independent,
if and only if no finite linear combination of elements of E is 0 except
the linear combination with all the coefficients equal to 0.

E is a generating set if and only if every element of H is a finite linear
combination of elements of E.

E is a base if and only if it is a linearly independent generating set.

It can be proved that every Hilbert space H has a base (in fact,
every vector space) and all the bases have the same power. (“number”
of elements). We do not here distinguish between different infinities.

The dimension of H = the power of a base.

Definition Let (z,) C H. Then (z4) is said to be a complete or-
thonormal set, if (i) ||zal| = 1; (i) (za, zg) = 0 if  # B; (iii) (z4) is not
contained in a larger set satisfying (i) and (ii). Such sets always exist
in H.
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cost sint cos2t sin 2t ) eins

T\/_\/_\/—\/'"\/ﬂ’

Examples L,[0,27]; t —
n € Z.

Lemma 5 The dimension of H = the power of a complete orthonormal
set.

Proof If dimH = n < oo, and (x;) a complete orthonormal set, then
(x:) contains at most n elements, since it is linearly independent. If it
contained less than n elements, it could be expanded to a base for H,
and the additional elements, when normalized, could be added to (i),
contrary to completeness.

If dim H = oo, and (z;) is a complete orthonormal set, then (z;) is
infinite. For, supposing (z;) is finite, the closed linear subspace Hy which
it generates is a proper subset of H, so that (by Lemma 4) there exists
an element = & Ho, such that o L Ho, and this element (normalized)
could be added to (z;) contrary to completeness.

Lemma 6 dimH < oo <= H is locally compact. For if
dim H = n < oo, then H has the topology of R?". If dim H = oo, there
exists an infinite orthonormal set (z4,). An e-sphere around 0 contains

£ . .. . . £ € €
(53:“) , which have no limit point since “53:0, - -2—:::,3” =3 V2.

Definition A bounded linear functional on H is a linear function f :
H — C with the property that there exists a real number M, such that

If(@)l < Mliz]l, Vze€H.
Remarks
(i) Note that f is continuous, for by linearity,
1f(2) = F()] = f(z - y)| < M|z - yl|.
(ii) Let B be a Banach space. The dual space of B is the space of
bounded linear functionals on B.

(iii) Note that linearity together with continuity imply boundedness.

(iv) Let a € H. Then f : z — (z,a) is a bounded linear functional.
For f(az1+p8z;) = (az1+P22,0) = a(z1,a)+B(2z2,a) = af(z1)+
Bf(z2), and |£()] = |(z,0)| < llall - [lzll, ¥ z € H (Schwarz).
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If(=)
ll=ll

f(z) =0,V¥ z=> ||f}]| = 0, and conversely.

(v) Definition If H # 0, ||f|| = sup

Lemma 7 If f is a bounded linear functional on H, then there exits a
unique element z* € H, such that f(z) = (z,z*),Vz € H.

Proof Uniqueness. If (z,z*) = (z,y*) for all z € H, then we take
z = z*—y*,sothat (z*—y*,z*) = (z*—y*,y*), hence (z*—y*,z*-y*) =
llz* = y*]|> =0, and z* = y*.
Existence. If f = 0, take z* = 0. If f # 0, then H, d-—-!{y | f(y) = 0}
{J
is a proper (closed, linear) subspace of H. By Lemma 4 there exists an
z; € Hy (with z1 # 0), with [|z,|| = 1. Take z* = f(z,) - z;.
(a) If £ = cz™, then
f(@) = cf(z*) = cf(f(z1),21) = cf(z1) - f(z1)
(cf(z1) - f(z1) - (z1,21) = (ef(z1)z1, f(21)Z1)

(cz*,z*) = (z,z"*) (since z = cz*)

i

(b) If z € Ho, then f(z) = 0, and (z,z*) = 0, since z; € Hf. Hence
f(z) = (z,2*) = 0.

(¢) Every element z of H is of the form cz* + zo with zo € Hy. For
f(=)

f(
z — cz* € Hoy, by the definition of Hg; and z = cz* + (z — cz*),

where z — cz* € Ho. Because of (a) and (b) the lemma is proved.

if we take ¢ = , then f(z — cz*) = 0, by linearity. Hence

IT11.3 Bounded operators

Definition An operator (or bounded operator) is a linear transformation
T : H — H, which satisfies the following condition of boundedness:
there exists a real number M, such that

ITz|]|<M-||z|]|, Vz€H.
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T
Define, for H # 0, ||T|| = sup | 2t Tr =0 Vze H, then
Hztizo =l
|IT|| = 0. An operator is continuous. For, if 2z, — z, then ||Tz, —

Tz|| = ||T(zn — z)|| < M||zn — z|| — 0. Conversely, linearity together
with continuity implies boundedness.

Lemma 8 If T is an operator on H, H # 0, and M a non-negative real
number, then the following four conditions are equivalent.

(a) lITz|]| < M]|z||,Vz € H.

®) |(Tz,9)I < M-liz||-llyll, Vz,y€H

(c) |ITz]l < M,V z € H, with ||z]| = 1.

(d) |(Tz,y)| < M,V z,y € H, such that ||z|| = ||y]| = 1.

Proof (a) <= (c), (b) <= (d), and (a) <= (b).
Obviously we have: (a) = (c) and (b) = (d)
112 #0,(0) =» (&) or [72l] = =l |7 (%) ” < Mlle]l.
If =0, “(c) = (a)” is obvious.
Similarly, if £ # 0, y # 0, (d) => (b), since

e y
Tz, y)| = llzl|- lly (T(——-—,—)) < =l - vl - M.
I(T=z,y) = ll=ll - llyll TETRTE li=Il - sl
If z=0,0r y=0, “(d = (b)” is obvious. Hence we have (a) <=
(c) and (b) <= (d).
By Schwarz’s inequality, we have
I(Tz, )l < ITz|| - llwll < Milell- Il
(a)
hence (a) = (b). On the other hand, take y = T'z in (b). Then
IITz|l” < M -|lzl| - ||Tz]}.
If Tz = 0, this is trivial. Otherwise, divide by ||T'z||. Hence (b) = (a)

Remarks on Lemma 7 Note that ||f|| = ||z*]]. We may restrict
ourselves to the case f # 0, so that z* # 0 (since (z,0) = 0). Then we
have
@)l _ (=2 =1l - ll=*1i
If = Sup T = %L < sup ———— = [|z*]],
W= el =28 e <28 - e
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so that ||f|| < ||z*||; on the other hand, if H # 0,
|f (=)l I(z,2%)|  (=*,2%)
fll =sup =——+ =su > "
V=20 el =28 Tl 2 Tl
so that ||f]| > [|=*]|.

= ||z*||, (one term with z = z’

Definition Let T be an operator on H. The operator T* is said to be
the adjoint operator of T, if for all z,y € H, we have

(Tz,y) = (2, T"y).

Lemma 9 To each operator T on H, there exists a unique adjoint
operator T*, and ||T*| < ||T||-

Proof (1) For a fixed y € H, f : z — (Tz,y), £ € H, is a bounded
linear functional.
For, let z,,z2 € H; a,f € C. Then f(az; + fz2) = (T(az; +

Bz2),y) = (aTz1+pTz2,y) = a(Tz1,y)+8(Tz2,y) = af(z1)+Bf(z2).
And for every ¢ € H, we have

If @)= 1Tz, )| <ITl|-llyll < TN llyll - ll=ll,
(Schwarz)

where ||T|| - ||y}l is 2 number independent of z.

(2) By Lemma 7 there exists a unique element y* € H, such that
f(z) d—:}(Tz, y) = (z,y"), for all z € H. This implies that there exists a
unique mapping T* : y — T*y = y*, of H into H, such that (Tz,y) =
(z,T*y), for all z,y € H.

(3) T* is linear. Let y;,y» € H; a,0 € C. Then we have for all
zreH,

(z,T*(ay1 + By2)) @(Tx, oy + By2) a(Tz,y) +B(Tz,y2)

a(z,T"y) + Bz, T*y2)
= (z,aT"y1 + BT y2).

Hence T*(ay1 + By2) = aT"y1 + BT y2.

[Note that (z,0) = (z,0-z) = 0-(z,z) = 0, and (0,0) = 0, and (z,y+2) =

(y+2z,2)=(v2)+(z2)=(z,9) + (z,2)]
(4) T* is bounded. Let z,y € H. Then (Tz,y) = (z,T"y). Set
z = T*y. Then we have (TT*y,y) = (T*y,T"y) = ||T*y||?, while

]
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(TT*y,y) < ITT*YIl - Il < TN - IT*yll - llyll. I T*y # 0, then
this implies that ||T*y|| < ||T|| - ||y]]; which holds trivially if T*y = 0.
Hence T* is a bounded operator, i.e. an operator and ||T*|| < ||T||.

Remarks

1. T** =T, since

(z,(T")y) = (T"2,9) = (3, T*z) = (Ty,z) = (2, Ty), for z,y € H.

2.||IT|| < IT*|l, for, by Lemma 9, ||T*|| < ||T|, hence ||(T*)*|| <
T*||, or ||T|| < ||T*|| by the above remark. Thus we have ||T*|| =
|-

3. (i+T) =Ty +T3; (AT)* = AT*, A € C; (T Th)* = T3 Ty, where
the ‘product’ 71T is defined as follows: T\ T3 : z — T1(T>z), the
‘range’ of T, being contained in the ‘domain’ of T}, and the domain
of T1T; is the same as the domain of T5.

Lemma 10 Let H; and H; be Hilbert spaces, and f(z,y) a bounded,
semilinear functional on Hy X Hj (i.e. linear in the variable “z”, and
conjugate linear in the variable “y” with |f(z,y)| < M - ||z|| - ||yl| for

a real number M). Then there exists a unique linear transformation
T : Hy — H,, such that

f(z,y) = (Tz,y).

Proof For every z € H;, we see that f(z,-) is a bounded, linear func-
tional on Hy. By Lemma 7, therefore, there exists a unique element
2y € H, such that f(z1y) = (y,zr)) Vye€ Hy, or f(-’c,y) = (zz,9).
Then T : 2 — 2, is the sought transformation.

Lemma 11 Let T be an operator on H. Then

(Tz,2)=0, Vz<=T=0.

Proof Let a,b € C; z,y € H. We have the identity
ab(T=,y) + @H(Ty, 2) = (T(az + by), az + by) — |a](T2, ) - bX(Ty, y).
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(If (Tz,z) = 0, ¥ z, then (T(az + by),az +by) = 0]. Set a = b = 1.
Then we have:
(Tz,y) + (Ty,z) = 0;

set a = i, b = 1. Then we have i(Tz,y) — i(Ty,z) = 0. Hence
2i{(Tz,y) = 0.

The converse is trivial.
Lemma 12 Let T be an operator on H. Then we have:

T=T"<= (Tz,z) real,forallz € H.
Proof If T = T*, then (T'z,z) = (z,T*z) = (z,Tz) = (Tz, z). On the
other hand, if (Tz, z) is real, then

(Tz,z) = (Tz,z) = (2,T*z) = (T"z, z),

hence
((T-T")z,2)=0, V=, ie T=T".

Definition An operator T on H is called:

1. real, or self-adjoint, or Hermitian, or symmeiric, if and only if
T=T* (ie. (Tz,y)=(z,Ty),V z,y € H).

2. positive, if and only if (Tz,z) >0,Vz € H.

3. unitary, if and only if T maps H onto H, and ||Tz|| = }|z||. [In
the finite dimensional case, the “isometry” of T implies that it is
onto.]

4. a projector, if and only if T is real and idempotent, ie. T? =T =
T*. [The zero operator O : z +— 0, and the identity operator
I : £ — z are counted as projectors].

Remarks Let Hy be a subspace of H (i.e. a closed, linear subset). If
z € H, then, by Theorem 1, we have z = zo + z,, zo € Ho, 1 € Hy,
and the decomposition is unique.

If we define Px = zy, P is called the projection of H on Hy. It is
actually a projector as defined in (4) above.
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For y € Hy => P(y) = y (since y = y + 0), so that PP(z) =
P(zo) = zo = P(z), and P is idempotent. Further, P is symmetric.
For (Pi:l,zg) = (21, Pz3), VY z1,22 € H, which can be seen as follows:
Z1 =y + 2, say, and z2 = Y2 + 23, where y;,y2 € Ho, and 21,22 € H(;L.

Hence
(y1,92) + (31, 22)
=0
(1,92)

(v1,92) + (Zl,yz)

= (n +21,y2) = (1'1,P1‘2)

Conversely let P be a projectoron H. Then W, = {P(z) |z € H} is
linear, since P is linear. Hence VV_,, is a subspace, say Ho. Then P is the
projection of H on Hy. For we have z = Px+z— Pz,V z € H; and we
have only to show that Pz € Ho, z— Pz € Hg. Now (i) Pz € W, C Ho,
V z; and (ii) if y € H, then (z — Pz, Py) = (P(z — Pz),y) = (Pz —
PPz,y) [since P is real and linear] = (Pz — Pz,y) = (0,y) = 0 [since
P is idempotent]. Hence (z — Pz) L W,, (Py € W,), and therefore
(z — Pz) L Wy(= Ho). [Note that if y° € Ho, then 3 (y,), yn € W, 3
yn — y¥°. Now (z — Pz,y) = 0,V y € W,. Because of the continuity of
(', ), it follows that ‘(z — Pz,y,) =0,V n’ => ‘(z — Pz,3°) = 0’].

(lesz2) = (yl:y2 + 22)

Lemma 13
(1) (W) = T;17.

(2) Let P be the projection of H on the subspace Hy. Then we have:
“TP = PT” < “THo C Ho and THg- C H”.

(3) Let P and Hg be as in (2). Then we have

TP = PTP <= THy C H,.

(4) Let T be unitary, THy C Ho, T"'Ho C Hg (or T real). Then
TH§ C Hy.

Proof (1) We have (T1Tyz,y) = (T22,T7y) = (2, T53T7y), and T* is
unique for any T'.
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(3) If TP = PTP, and zo € Hy, then we have Tzo = TPy =
PTPzy = P(Tzq), hence Tzo € Hy, which implies that THo C Ho.
Conversely, if THy C Ho, then T Pz € Hy,V z € H. Hence P(TPz) =

€Ho
TPz,Yz € H,or PTP=TP.

(2) Let TP = PT. Then we have TP?2 = PTP,or TP = PTP, and
by (3) we get: THo C Hp.

Further PTP = P?T = PT, so that TP = PTP = PT, and by
taking the adjoints: (TP)* = (PTP)* = (PT)*, that is to say P*T* =
(TPy"P* = P*T*P* = PT*P, (P real), = T*P*. Hence P*T* =
PT*P =T*P*,or PT* = PT*P = T* P (P* = P), which by (3) implies
that T* Hy C Hg. (they are, in fact, equivalent)

Now THy C Ho <= T*H§ C Hi. Since T** =T and Hg* = H,,
to see this it suffices to prove that

()] THo C Ho=>T"H§ C Hy .
Let THo C Hy, andz € Ho, y € Hy . Then we have (z,T*y) = (T'z,y) =
0,V z € Hy (since Tz € Hy by hypothesis). Hence T*y € Hg, and this
holds for all y € H¢, so that T*Hg C Hg. We have already seen that
T*Hy C Hp. Hence (1)
T*HoC Hy<=T*H} CHy (T*=T)
(4) °T wnitary => |[Tz|| = |zl <= (T, Ty) = (=,4)"
(ITz|] = ||z|| = (Tz,Tz) = (z,z). Hence

z+y zt+y r—Yy T-Y
(T2’T2)'(T2’T2)

_f(z+y z+y _(z-y z—y
22 2 ' 2 )
Hence Re(Tz,Ty) = Re(z,y). Similarly (y — iy), Im(Tz,Ty) =
Im(z,y).]
However, (T'z,Ty) = (z,T*Ty) = (z,y), so that (z,T*Ty — y) = 0,
V z,y € H. It follows that T*Ty = y, or T*T = 1. Similarly TT* = 1.
Hence T*T =TT* =1, ie. T* =T"'. Thus
“THy C Hy, T_lHo CHyY <= “THoC Hy, T*Hy C HY’
&> “THyC Ho, TH} C H}”

(See above (3)).
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If T is real, then T* =T, and the result follows from (t) above.
Theorem 2 If T is a real operator on H, H # 0, then
IITIl = sup |(Tz,z)|.
ll=ll=1

Proof Let M = sup |(Tz,z)|. Then M < ||T||, for
ll=ll=1

(72, 2)] < 1Tl lzll < ITI|-f2IF, hence  sup |(Tz,2)] < IITIL
Tl=

We have therefore only to show that ||T|| < M. By Lemma 8, it suffices
to show that |(Tz,y)] < M,V z,y € H such that ||z|]| = ||y|]| = 1. If
(Tz,y) = 0, this is trivial. If (T'z,y) # 0, set

_ (T=z,y)
(Tz,y)

Then we have

: (yr Tx) = l(Txr y)ls

(Tz,y) = (9, T7) = (y, (=, y)] .T,> _ 1(T=,y)l

(Tz,y) T (Tz,v)
and, since T = T*,

(Ty,z) = (y,T2) = (Tz,y) = |(Tz,y)|.
Further, if z + y # 0,

3 z+y Z+y
(T(z+9),z+9) = ||z + 9l (T (||z+yll) ! Ilz+yll)

or, |(T(z+y), z+y)| < M-||z+y||?, (by the definition of M). Similarly
(T(z=y),z - y)l < M|l ~ylI”.

Now
T(z+y),z+y) =T2,2)+(T2,y) + (Ty,2) + (Ty,y), and
(T(z - y),2 = 9) = (Tz,2) = (Tz,9) — (Ty, 2) + (Ty, y),
hence
(T(G+y),2+y) - (T(z-y),z-y) = 2Tz,y)+2(Ty,2)
= 4|(Tz,y)| (see above).
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Thus
4|(Tz,y)| < M|z + ylI* + 1z = 9l1*) = 2M (l|z]* + [I9|*) (Lemma 2)

or
z 2 2
@zt < o (LR W) ar, tor = ol = 1.
Thus ||T]| < M.

Definition Let T be an operator on H. An eigenvalue of T is a complex
number A, such that there exists a non-zero ¢ € H with Tz = Az. z is
then called an eigenvector of eigenvalue A\. The set of all eigenvectors
of eigenvalue ) is a (closed, linear) subspace of H, called the eigenspace
corresponding to A, say H,.

[Hy is linear: z,,z2 € Hy; o, € C => az; + Bzy € H,, for
T(azy + Bz2) = aTzy + T2 = adzy + fAzz = Maz, + Bz3), hence
azy + fz; € H.

Hy is closed: Hy = Hy. Let z € Hy. Then 3 (zn) C Hj, with
zn, — z. Hence |[Tz, — Tz|| = ||T(zn — 2)|| £ M||zn — z|| — 0. But
Tz, = Azy,, hence Tz = Az, ie. z € H,).

Remarks If T is a real operator, then (a) all eigenvalues of T are real,
and (b) eigenvectors corresponding to distinct eigenvalues are “perpen-
dicular”. For X(z,z) = (z,Az) = (z,Tz) = (Tz,z) = (A, z) = Az, z),
implying (a). (b) means that if Tz = Az, Ty = Ay, A # p, then
(z,y) = 0. This follows from: A(z,y) = (Az,y) = (Tz,y) = (,Ty) =
(z,py) = pu(z,y) (u is real by (a)) and X # y, so that (z,y) = 0.

Definition Let (H,) be a family of (closed, linear) subspaces of H.
Then H is the direct sum of the H,’s, written H = @, Ha, if and only
if each ¢ € H is uniquely expressible as z = }_ z,, with z, € H,. If
H = Hy® H,, H, and H are said to be complementary, in Hilbert space
sense.

Definition An operator T on H is completely continuous (or compact)
if it carries the unit sphere (or, equivalently, any bounded subset of H)
into a relatively compact set (i.e. a set whose closure is compact).

[The image of any bounded sequence contains. a convergent subse-
quence].
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Remarks

(1) All operators on E™ are compact. [A bounded set is carried into a
bounded set, and in E™ all bounded sets are relatively compact).
E=C.

(2) If A is an unbounded, linear operator, then there exists a sequence
(zn) with ||za|| = 1, and [|Az,|] > n, n = 1,2,3,.... The set
(z1,2,...) is bounded, and the image (Az;, Az,,...) is not rela-
tively compact, so that A is not compact.

(3) Not all bounded linear operators are compact. If H is an infi-
nile dimensional Hilbert space, then the identity operator is not
compact. [There exist sets which are bounded but not relatively
compact, e.g. the unit sphere. There exist infinite sequences of
orthonormal functions which contain no convergent subsequences

ins
f — n=12.]

Nz

(4) If H is finite dimensional, then every bounded operator is compact,
since every bounded set is relatively compact.

(5) T\ is compact, and T, bounded, then T, T, and T, T} are compact.
(6) If T is compact, T* is compact.

(7) If z(t) € Lafa,b], —00 < a < b < +o0; k(s,t) € L2{(s,t) | a <
s,t < b};

b
T:z(t) — /a k(s,t)z(s) ds;

then T is (bounded, linear) compact

III.4 The spectral theorem

Theorem 3 (Spectral Theorem) If T is a real, completely continuous
operator on H and (),) is the set of all eigenvalues of T, then

1. for each ¢ > 0, there exist only finitely many A, with |A,] > ¢, so
the set (\,) is countable, and -\, converges to 0;

2. for each A, # 0, the corresponding eigenspace is finite dimensional;
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3. if Hy, = Hy is the eigenspace which corresponds to A, then H =

> Ha;

4. If R is the closure of the image of T, then R = }_ H,, over the n
such that A, # 0;

5. an operator S on H commutes with T if and only if it leaves each
eigenspace of T invariant: S(H,) C H, for all n.

Proof

1. If X and v are eigenvalues, with A # u, and ||, |u| > € > 0, and

r and y are the corresponding eigenvectors (normalized, so that
llzll = llyll = 1), then

[|Tz — Tyl|? = ||Az — pyl|® = A2 + |u]® > 2¢2,

since T is real, and hence (by remarks (a) and (b) on p. 80) (z,y) =
(y,z) = 0. If there were infinitely many such eigenvalues, the
corresponding eigenvectors would map into an infinite set of points
in the image of the unit sphere having no limit point, contradicting
the assumption that T be compact.

2. Let Ap # 0, and let Hy, be the corresponding eigenspace. The set
{Ha{z | ||z|] = 1}} is bounded. If z € H,,, then Tz = M.z, and
[lz]l = 1 implies that ||Anz|| = |Aa| - ||z]| = |An]. Hence the above
set maps into H, N {z | ||z|| = [A\s|} which is relatively compact
only if Hy, is finite dimensional (cf. Remarks (3) and (4) on p. 81).

3. Let T be real and compact, and T # 0. Then the proof is in four
steps.

3(a). T has an eigenvalue X # 0.

3(b). Tx = Y, At Piz, V = € H, where ()\;) are eigenvalues of T,
and (Pg) the Projections on the corresponding eigenspaces
(Hi). e ||Tz =Y 7_; AePrz|| — 0, for n — oo.

3(c). 0 is an eigenvalue if and only if there exists  # 0, such that
L He, M #0,k=1,2,....
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3(d). It follows from 3(c) that the eigenspace Hp corresponding
to the eigenvalue 0 is given by Ho = {z | ¢ L Hy, k =
1,2,3,...}, and is the orthogonal complement of the subspace
spanned as Hilbert space by Hy, Ho,..., written as Hy =

Z,\,‘#o Hy.
Proof of (3) Introduce in Hi, k = 1,2,..., an orthonormal
basis:
H, H,
6111612) ey 810116211622a MRS | 62712’

Rewrite this in a new notation as follows

€1,€2,...,€n,,€n,41,€n1425--€ny4ngy .-

Since the spaces Hg, k = 1,2, ... are mutually orthogonal (see
Remark (b), on p. 80, after Theorem 2),

(el,ez,. )

is an orthonormal set. It is complete if and only if 0 is not
an eigenvalue of T'. Hence, if 0 is not an eigenvalue of T, we
have the Fourier expansion

o0
z = Z(z,en)en, zt€H
n=1

which is unique. Here (z,e,)e, € H.,, say. This means
H=3%,%, He.

If 0 is an eigenvalue, then H = Ho + Hi, where Hi =
V.20 He is a Hilbert space by 3(d). The restriction of T to
this space has all its eigenvalues different from zero. Hence,
as above, \/, o Hr = Y 7, Hi. That is to say, H = Ho +
V.0 Hx, hence

oo
=)z, Vz€H, 1 € Hy,
k=0

as claimed in (3).
Now we have to prove 3(a), (b), (c) and (d).
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Proof of 3(a) (Smithies) T # 0 = ||T|| # 0. Since T is
real, by Theorem 2,

sup |(Tz,2)| = ||T}|.
ll=li=1

It follows that either for M = ||T|| or for M = —||T}|, or both,
there exists a sequence {z,} of unit vectors (i.e. z, € H,
||zn]] = 1) with the property

lim (Tzp,z,) = M.
n—o0
Since T is completely continuous, there exists a convergent

subsequence, which we can also denote by (z,), such that
Tz, — y. Since M # 0, it follows that y # 0.

We shall see that

Ty = My.
Now
ITzn — Mz,||? = (Tzp— Mz, Tz, — Mz,,)
= (Tzp,Tzp— Mzp)— (Mzy, Tz, — Mz,)
= (Tzn,Tzp) - (T2n,Mz,) — (M2, Tz,)
+(Mz,,Mz,)
= ||Tzal|2 = M(Tzn,zn) — M(zp,Tz,)
+M2”.’l:,.”2
< 2M?-2M(Tz,,z,) (Lemma 12)
= 2M(M - (Tzp,z,)) — 0, as n — oo.
Hence

ITy—My|| < ||Ty—TTzn||+||ITTzn =T Mz, ||+||T Mz~ Myl|.
Now
[|ITy—TTz,|| — 0, as n — oo, since 7T is continuous, and

Tz, — y, and ||TTz,~TMz,|| < ||T||-||Tzn—Mz,|| — 0,
since ||[Tz, — Mz,|| — 0 as just seen, and ||T|| # 0, and

I TMz, — My|| = M||Tzn, — y|| — 0 as n — oco.
It follows that Ty = My, i.e. M is an eigenvalue of T, M # 0.
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Proof of 3(b) Define the operators:
n
B,,;}T-§/\kPk, for n=1,2,...,

with real coefficients. B, is real; (finite linear
combination of real operators with real coeffi-
(%) cients) B, is compact; and B, has the eigenvalues
An+1;Ant2, - .., and none others which are differ-

ent from zero.
For, let A # 0, A an eigenvalue of B,,. Then there exists a

vector z # 0, such that B,z.= Az, z € H. (). Now we have
z=yitypt-+umtz

where y; € Hy, y2 € Hy, ..., yn € Hp, and z L Hy (k =
1,2,...,n). And

(r-30n) (5o

n n n
= Tz+ ZTyk - Z/\ksz - E A Pryr =Tz,
k=1 k=1 k=1

B,z

since TY; = Agyi, AePez = 0, Poyr = yi. Hence, for k =
1,2,...,n, we have

Mye,ye) = Myi+y2+-+yn+2,%)
(since (y&,z) = 0, and (y&,y;) = O, for k # 5)

= A=z, m) = Az, u)

= (Bpz,yr) (by assumption)

= (Tz,yx) (see above)

= (2,Tyr) (since T=T*)

= (z,2y) = Me(z,3:) =0, since A is real.

However, A # 0. It follows therefore that y, = 0, for k =
1,2,...,n, hence z = z (z # 0, since z # 0), where z L Hy,
k=12,....n(Pez=0,k=1,2,...,n).

Thus we have

Tz = Bnx = Bz =Xz, (see () above)
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where 2 # 0, and z L Hg, k =1,2,...,n. It follows that X is
an eigenvalue of T, and A # Ag, k=1,2,...,n, since z L H;
fork=1,2,...,n.

On the other hand one sees that A1, Ant2,... are eigen-
values of By,. [Aq41 is an eigenvalue of T, hence there exist
Tpy1 # 0, such that Tz,41 = Apy1Zny1, and Przpyy = 0,
for k = 1,2,...,n. Therefore Bpznyr = Ant12Zn41). Thus
the statement marked (*) above is proved.

Now (Theorem 2 + Schwarz’s inequality),
[1Ball < max(|An1l, |Ant2l,...) — 0, as n — oo.

(If T has only finitely many eigenvalues, then ||B,|| = 0 for
sufficiently large n]. Thus

T—zn:AkPk

k=1

—+ 0 as n — o0,

which proves 3(b).

Proof of 3(c) and (d) Wehave Tz =0<¢= Y, \cPi(z) =
0 [by 3(b)]. But S AePez = 0 => P; T, AePiz = 0 =
21 M PjPiz = 0, and PjPrz = 0 for j # k, and P} = P
(Remark (b), p. 80, after Theorem 2). Thus Y~ A\ P; Prz =
0 <= A;jPj(z) = 0, and this holds for all j. But A; # 0,
hence P;(z) =0,V j. Thus

Y MPPz=0 < Piz=0fork=1.2,...
k
< z 1 H, for k=1,2,...
which settles 3(c), from which 3(d) follows.
4. If z =Ty, y € H, then, by 3(b), we have z = Ty = 3", A Pi(y),

obviously with Ay # 0. Now Py(y) is an element in H} (finite di-
mensional) with the basis vectors (ex;). Hence Pry = > (ysexj)ex;
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(finite sum). Thus

z=Ty= Z A Pry = Z/\k(y, €kj)er;
k k",

= E(y, Akekj)exj, since A is real
k,j

= Z(y, Terj)er;
k.j

= Z(Ty, exj)exj, since T is real
k.j

= Z(z,ekj)ekj, since z = Ty by
k.j assumption

= Z(z,en)en ((z,en)en € Hy,, say).
n

Hence R = Z/\#o Hy.

. Let T be real and compact. Then, by the proof of 3(b), T =
S A Pi. If 24 € Hy, then Tzy = Zj AjPjzr = Mgz, and

(i) STz, = A Sz
On the other hand,
(ii) TS(zx) =Y Aj Pi(szx),
J
and
(iii) Pr(Szi) = Sz < Sz € Hy; Vk.

[For, Py(Szx) = Szi => Szi € Hy, otherwise Sz € H;, i # k,
so that Pp(Sz,) = 0, since H; 1 H; for i # j. Conversely, Sz; €
Hy = Pi(Szi) = Szi, by definition of Py].

[Note: Tz =0 <= Y APiz =0 (see Proof of 3(c) and (d))

— Pk$=0<=>l‘_|_Hk, k= 1,2,...].
Hence

SHy CHy,Vk>1 = TS=ST on He, VE>1

oo
= TS=ST on H=) H;.
k=1
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While
ST=TS on H,, Vk>1= Pk(S.tk)=S.’L'k, Ve>1,
by (i) and (ii)
<= Sz € H,, VEk2> 1,
where z; € Hy.
This proves 5.

Definition An operator T on H is said to be
(1) positive if and only if (Tz,z) >0,V z € H,
(ii) strictly positive if and only if (T'z,z) >0,V z #0.

Corollaries

1. A completely continuous, real operator T is positive (strictly pos-
itive) if and only if its eigenvalues are > 0 (or > 0).

For, if z € H,, the eigenspace corresponding to A, then
(Tz,z) = (Az,z) = XMz,z), and (z,z) > 0 and, by Theorem 3,
this can be extended to H.

2. A completely continuous, real operator T which is positive (strictly
positive) has a positive (strictly positive) square root v/T which is
unique and commutes with it.

For if we define /T on the eigenspace H, corresponding to
the eigenvalue A, by: vVTz = /A, z, and extend linearly, then
(VT)*z =Tz on Y H, = H.

3. If H is finite dimensional, and T is strictly positive, then T has an
inverse.

For if Ay, Ag,..., A, are the eigenvalues of T, and H,,..., H,

L 1
the corresponding eigenspaces, we can define T~z = —z on H,,
n

and extend linearly.

4. The spectral theorem for completely continuous real operators on
a finite dimensional H amounts to the standard theorem that if A
is a Hermitian matrix, then there exists a unitary matrix U, such
that UAU ! is diagonal.



IV. Compact groups and their
representations

IV.1 Equivalence of every finite-dimensional representation
to a unitary representation

Our aim is to prove the following results on finite-dimensional representa-
tions of compact groups. We wish to show (1) that every representation
is equivalent to a unitary representation (2) that every representation is
completely reducible, (3) the orthogonality relations, and (4) the Peter-
Weyl theorem.

G will denote a topological group. If it is compact, it will be explic-
itly so stated, in which case we normalize the Haar measure by taking
Jgldz=1

GL(n,C) will denote (as in Ch. 1, p. 5) the general linear group,
with the topology given by considering its elements as coordinates in
R2"’. TL(V,n,C) = TL(n,C) will denote the group of non-singular
linear transformations on an n-dimensional vector space V (over C),
and U(H,n,C) = U(n,C) the group of unitary transformalions on a
Hilbert space H which contains a complete orthonormal set of power n
(n is invariant, as can be proved). Here n is any cardinal number.

The topology of TL(n,C). Let V be the vector space on which the
transformations operate, and V* its dual. Define for each v € V and
f € V* a complex-valued function g on T'L(n, C) as follows:

9(T) = f(Tv), T € TL(n,C).

The topology of TL(n,C) is that generated by all such g’s, i.e. for each
open set O in the complex plane, and each such g, we get a set E, where

E=A{T|¢(T) e O)},

and we define the open sets of TL(n,C) to be all unions of finite inter-
sections of such E’s. This is the “coarsest” topology for which all the
¢’s are continuous.
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To know that representations by linear transformations and by ma-
trices are essentially the same, one has to know that TL(n,C) and
GL(n,C) are topologically isomorphic, i.e. there is an algebraic isomor-
phism of T'L(n, C) onto GL(n,C), which is also a homeomorphism. [Let
v1,v2,..., Vs any basis for V. If T is any linear transformation, associate
with it a matrix F(T) = (;;(T)) defined by Tv; = Y ;t;;(T)vi. Then
F is an isomorphism onto. To see that it is a homeomorphism, ccnsider
the functions ¢;;(T"). They are of the type used above in defining the
topology of TL(n,C). Forif fi, fa,..., fa is a dual basis to vy, vs, ..., vp,
then

fi(Tvj) = f;i (E tk,-(T)vk) =Y tkj(T)6hi = tij(T).
k k

Every g of the form g(T) = f(Tv), f € V*, is a linear combination of
the n? t;;’s since the f;’s form a dual basis. It follows that the topology
of TL(n,C) is generated by the ;;’s, which is the topology of GL(n,C).]
A matrix M, and a linear transformation T, are said to correspond
if M = (t;;(T)) for some basis in V.
It can be proved that TL(n,C) is a topological group, which is topo-
logically isomorphic to GL(n, C).

The topology of U(n, C) is the topology generated by all functions of the
form

f(U)=(Uz,y), forz,ye H,U € U(n,C).

If n is finite, then U(n,C) is a subgroup of T'L(n, C), where U(n, C) and
TL(n,C) are transformations of the same space, and the topology of
U(n,C) is that induced from T'L(n, C), using the fact that every linear
functional on H is given by an inner product. (cf. p. 72).

Definition A finite dimensional representation of G by linear transfor-
mations (or matrices) is a continuous homomorphism of G into T'L(n, C)
(or GL(n,C)). The vector space on which T L(n, C) operates is the rep-
resentation space; and n the degree, of the representation.

Examples

1. G = real numbers, ¢(r) = (’1. (1))



Compact groups and their representations 91

1 000

1
2. G = real numbers, ¢(r) = : 0 (1) g
2 ror 1

1 0
3. G = GL(nyC)1 ¢(.‘L‘) = (]ogldetzl 1)

A 0
4. G = group of matrices of the form z = ( ), o(z) =

* 7

A0
(0 u)'

Definition Let ¢ and 9 be two finite dimensional representations of
G by linear transformations. Then ¢ and ¥ are said to be equivalent,
written ¢ = 1, if and only if there exists a linear isomorphism T of the
representation space V of ¢ onto the representation space W of 1, such

that
#(z) =T '9(z)T, forall z€G.

Two finite dimensional representations ¢ and ¥ of G by matrices are
equivalent if and only if they have the same degree and there exists a
non-singular matrix T of that degree such that

#(z) =T~ y(z)T, forall z€G.

Lemma 1 Let H be a finite dimensional Hilbert space. (A finite
dimensional vector space over C can be made into a Hilbert space).
Let ¢ be a representation of G by linear transformations on H. If
k(z) = (¢(z)v, ¢(z)w), for any v,w € H, z € G, then k is a contin-
uous function on G.

Proof Note that T — T™ is a continuous automorphism of T'L(n, C),
since it is open ({T* | (Tv,w) € O} = {T* | (T*w,v) € O}, O open),
and is its own inverse (T** = T).

Further every step in

T— (T,T)—(T",T)—T* - T +— (T* - Tv,w)
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is continuous, and (T*Tv,w) = (Tv,Tw). Hence T —— (Tv,Tw) is
continuous. k is the composite of the continuous maps = — ¢(z), and
T — (Tv, Tw).

Theorem 1 Every finite dimensional representation of a compact group
G by linear transformations is equivalent to a unitary representation.
(i.e. a representation by unitary transformations).

Proof Let ¢ be the given representation, and V' the representation
space of ¢ (considered as a Hilbert space by choosing any inner prod-
uct). We shall find an equivalent unitary representation 1 with the same
representation space.

Define a semi-bilinear functional on V by:

flv,w) = L(¢(z)v, é(z)w) dz,

where v,w € V, ¢ € G, dr = the Haar measure on G, ¢(z) a linear
transformation.

By Lemma 1, (é(z)v, #(z)w) is a continuous function on G, which
is compact. By Lemma 10 of Chapter III on semibilinear functionals,
there exists a linear transformation T} of V — V| such that

(Tv,w) = f(v,w) = /G(¢(;c)v, é(z)w) dz,
and T is strictly positive, since
(Tivv) = [ Il dz >0, if w0,

since ¢(z) has an inverse (non-singular).

Now dimV = n < oo. Hence T} has a strictly positive square root
T, and T has an inverse (Corollary 3 to Theorem 3, Chapter III, p. 88).

Define ¥(z) = T'¢(z)T~!. Then ¥ is a representation, and ¥ = ¢.

To show that ¥(y) is unitary V y € G, note, first of all, that T is real
[T strictly positive => (T'z,z) > 0, ¥ z # 0, which implies that T is
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real, cf. Lemma 12, Chapter III, p. 76]. Hence
(Tv,Tw) = (T?v,w) [(Tz,y) = (z,T"y) = (=, Ty)]
z=Tv, y=w

= (Tlv, w)
) J6@w ) dz

and

(¥(¥)v, Y(v)w)

(Te¢(y)T~'v, Té(y)T 'w), by definition of ;

/ ($(2)6()T v, $(2)d()T ) dz, by ()

= / ((z9)T~1v, $(ay)T"w) dz

[0, w) e

(G compact = dz is right-invariant)
(TT~'v,TT'w), by (+);

(v, w).

()

Remarks Every compact group of linear transformations on a finite
dimensional vector space leaves a positive-definite semi-bilinear form in-
variant. The inner product [ , ] defined by [z,y] = (Tz,Ty) is such a
form and the invariance is given by (1).

IV.2 Complete reducibility

Definition A set T of linear transformations of a finite dimensional
vector space V is said to be (i) irreducible if and only if there exists
no proper linear subspace of V which is invariant under all T € T;
(ii) completely reducible if and only if for each linear subspace V; of V
invariant under 7, there exists a complementary invariant subspace V5.

A representation of G is irreducible, or completely reducible, if and
only if its image is. These properties are invariant under equivalence of
representations.
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The corresponding formulation for matrices runs: a set of matrices
M is said to be

(i) irreducible if and only if it is not possible to put them simultane-
ously (i.e. by taking each T into PTP~! with P fixed) into the

form ;
* 0

* *

(i) completely reducible if and only if it is possible to put them simul-
taneously into the form

*

+] o
0'.{7

where each block is irreducible.

Theorem 2 Every finite dimensional representation of a compact group
G by linear transformations is completely reducible.

Proof By Theorem 1 it is sufficient to prove this for unitary represen-
tations. If a unitary transformation on a finite dimensional vector space
leaves a linear subspace invariant, then it also leaves the orthogonal
complement invariant. [Note that if the dimension is finite, isometry
implies onto, so that THy C Ho => THo = Hy => TH3 = H§. See
Lemma 13, Ch. III, p. 77.]

Definition If V; is an invariant subspace of V for the representation
¢ of G, and ¢; the restriction of ¢ to V}, we call ¢, the representation
induced by ¢ on V;. A representation ¢ is said to be the direct sum of the
representations ¢, ¢2,...,@, on subspaces V4,...,V, of the representa-
tion space V, if and only if (i) ¢; is the representation induced by ¢ on V;
(so that, in particular, V; is invariant under ¢), and (i) V = Vi ®---®V,
(a direct sum).

Corollary to Theorem 2 Every finite dimensional representation of
a compact G by linear transformations is a direct sum of irreducible
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representations.

Proof If ¢ is not irreducible, let V, be an invariant subspace, and V;
its invariant complementary subspace. Then ¢ is the direct sum of the
representations it induces on V) and V5. If these are not irreducible, they
can be decomposed again. Since V is finite dimensional, this process
must end.

IV.3 Orthogonality relations

Definition If ¢ is a finite dimensional representation of G by linear
transformations on V', we define a family of functions on G, called the
representalion functions coming from ¢. They are functions F of the
form

F(z) = f(¢(z)v), where z€G, veV, feV* (the dual of V).
Note that

1. Representation functions are continuous, for F is the composite of
z +— ¢(z) and T — f(Tv). (where f is, by definition, continu-
ous)

2. If ¢ is a finite dimensional representation of G by linear transfor-
mations, and ¢’ the corresponding representation by matrices (see
pp. 89-90), then the family of representation functions coming from
¢ is the family of linear combinations of matrix coefficients of ¢'.

3. If ¢ and 9 are equivalent representations of G by linear transfor-
mations, they have the same family of representation functions.

[f(#(z)v) = F(T'¢(z)Tv) = f'(¥(z)w), where w = Tv, and f'(w) =
(T 'w)] feV, feW* veV,weWw.

Lemma 2 (Schur’s lemma) Let V and V' be finite dimensional vector
spaces, J and J' irreducible sets of linear transformations on V and V',
and S a linear transformation of V into V’, such that

SJ=J'S.

Then either S = 0, or V and V' have the same dimension, and S is an
isomorphism onto.
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Proof Let k be the kernelof S and I the tmage of S. Then I is invariant
under J'. For,if 2’ € I, T' € J', then there exist z € V,and T € J, such
that 2’ = Sz, and ST = T'S, hence T'z' = T'Sz = STz = S(Tz) € I.
(since Tz € V). That istosay, 2’ € ] = T'z' € I.

Secondly K is invariant under J. For,if £ € K, and T € J, there
exists T € J', such that ST = T'S, hence S(Tz) = T'(Sz) =T'(0) =0
(since Sz = 0 by definition of K). That is to say, z € K = S(Tz) =0
forTeJ =Tz €eK.

But J and J’ are irreducible, hence [ = {0} or V', and K = {0} or
V. IS #0, then I # {0}, so that K # V (for otherwise K = V, which
implies that I = {0}), hence K = {0} and I = V.

Corollary to Lemma 2 If J is an irreducible family of linear trans-
formations on a finite dimensional vector space V over an algebraically
closed field F, and S a linear transformation on V such that SJ = JS,
then S = AJ for some A € F. [Here I is the identity transformation).

Proof It is known that there exists a A € F such that S— AI has a non-
zero kernel. [If M is a matrix associated with S, then A is an eigenvalue
of M.] And J(S — AI) = (S — AI)J. Hence Lemma 2 gives: S — A =0
(since the kernel is V,ie. (S—A)v =0,Vv e V).

Theorem 3 (First half of the orthogonality relations) If ¢ and v are
finite dimensional, inequivalent, irreducible, unitary representations of a
compact group G, then all representation functions of ¢ are orthogonal
to all representation functions of 1.

Proof The representation spaces V and W are Hilbert spaces. Then for
any representation functions Fy of ¢ and F; of 9, there exist v,v' € V
and w,w’' € W for which

Fi(z) = (4(z)v,0"), Fa(z) = (Y(z)w,w’).
[F(a:)dsz(dS(x)v), z€G, veV, f eV Fisabounded linear

functional. By Lemma 7 of Chapter I, F(z) = (¢(z)v,v’) fora v’ € V].
We shall show that the semi-bilinear function f on V x W defined,
for fixed v/, w’, by

f(v,w) = /'(‘,s(x)v, @) w, ) dz,
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vanishes. By Lemma 10, Chapter III, there exists a (unique) linear
transformation T of V into W, such that

f(v,w) = (Tv, w).

However, for y € G, we have

f(v,w) = f(()v, ¥(y)w)

(Te(y)v, P(y)w)-
[For

Je@ewr, @ ww ) e =[Gy, @) da

/(d)(t)v,v')(d)(t)w, w') dt,
because of the right-invariance of dt).

Hence we obtain:
(Té(y)v, P(y)w) = (Tv, w).
With ¥(y~!)w in place of w, we get
(To(y)v, w) = (T, %(y~")w) = (Y(y)Tv, w),
since 1 is unitary (over C). It follows that
Té(y) =¢(y)T, Vy€eG;
however ¢ and ¢ are not equivalent; hence by Schur’s lemma T = 0,

which implies that (Tv,w) =0 = f(v, w).

Theorem 4 (Second half of the orthogonality relations) If ¢ is an
irreducible, unitary representation, of degree n < 0o, of a compact group
G, and Fy, F, are representation functions of ¢ defined by

Fi(z) = (¢(z)v,v"), Fa(z) = ($(x)w, v'),

then we have
/Fl(I)Fz(I) dz = %(v,w)(v',w’).

Remark The corresponding relations for matrix coefficients can be
obtained as follows: choose a complete orthonormal set vy, vs,..., ¢,
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in V, and define a;j(z) = (é(x)vi,v;). Then by Lemma 1, a;;j(z) is
continuous. Choose v = v;, v/ = vj, w = vpr, w’ = v;. Then

/aij(z)m dz = %(vi»”k)m = 5:'1:51'1%-
Proof of Theorem 4 Define f as in Theorem 3, with ¢ in place of ¥,
*) fo,0) = [ (80,0 @0, W) de.
As before we get f(v, w) = (T'v, w) and
(@”a w) = (&E v,w), hence Té(y) = ¢(y)T.

By the Corollary to Schur’s Lemma 2, T' = AI for some constant A,
hence

(1) f(v, w) = Av, w).
Now let vy, ..., v, be an orthonormal basis in V. Then we have v;(z) =4¢ ¢
also as an orthonormal basis [¢(z) is unitary => (¢(z)vi, #(z)vj) =
(vi - v;), and ||¢(z)vi]| = ||vi]]]. Now choose v = w = v; and sum from
i =1 to i = n. Then we get, from (%) and (1),
n

(*x) ni ::/ Z(v;(z),v')(w’, vi(z)) dz.

G

=1

Now w' = T, (w', u(@)), u(z), and o = 7o, (v, 0;(2)),vj(2), 0
that

(w'v') = (Z(w', vi(@))vi(2), 3 (v, vi(=))vs (2)) :
i=1 j=1

However v;(z) 1 vj(z) for i # j. Hence

v, v') = Eﬂ v, vi(z)) - v,-z||2- v, vi(z)),
and (*x*) gives

nA = / (w',v")dz = (v',w'), because of the normalization: / dz = 1;
G G

or
A= (‘U’, w')/n,
which together with (t) proves the theorem.
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Characters Let.¢ be a finite dimensional representation of G by linear
transformations. Let vy, vs,. .., v, be a basis for the representation space
V. Let (t;j(z)) be the matrix associated with ¢(z) by this basis. We
define the character of ¢ to be the function F on G given by

F(z) = tr(tij(z)) = Y _ tii(z), (tr = trace).
i=1

This definition is independent of the particular basis chosen.

Remarks

(1) Let ¢,9 be inequivalent, irreducible unitary representations of a
compact group G. Then they have different characters.

If Fy, Fy are the characters of ¢,, and (a;;), (b;;) the asso-
ciated matrices, with respect to an orthonormal basis, then

/G Fy(z)Fy(z) dz = /G %:a.-,-(z)a,-,.(z) dz (by defn.)

/ ZG,-;(x)a.-;(.t) dz (orthogonality Th.4)
Gy
1

=n-—=1,
n

and

Fy(z)Fy(z) dz =0= / > aii(2)bjj(=) dz,
(Th. 3) 7 ij

so that Fy # Fy.

[For Theorems 3 and 4 one needs the assumption that the repre-
sentation is unitary. But Theorem 1 gives an equivalent represen-
tation. If ¢, = ¢2, then they have the same character]

(2) ¢ is irreducible <= [ Fy(z) - Fy(z) dz = 1.

The implication from left to right follows from (1). On the other
hand if ¢ is not irreducible, then ¢ = E?:x ¢i, where n > 1, and
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é; is irreducible. Hence Fy = Y, F;, and
/ Fy(z)Fg(z) dz = Y f Fy,(2)Fg(z) dz
G 7 /6
n+ Y [ Fo ()o@ do

i#j
> n> 1

IV.4 The Peter-Weyl theorem

Our aim is to prove the Peter-Weyl theorem in the following form. If
G is compact, then every complez-valued continuous function on G is
a uniform limit of finite linear combinations of representation functions
from irreducible representations. For the proof we use the Lj-algebra of
G.

By Theorem 12 of Chapter II we know that if G is compact, and

f, g9 € L2(G), then the convolution of f with g, written f*g, and defined
by

fr9@) = [ f)at'2) dy,
exists everywhere, and is continuous, with

If *g()] < 1112 - llgll2-

Since we have normalized the Haar measure “dy” by taking |, cdy=1,
we also have

I1f * gll2 < 1I£1l2 - llgll2-
We know that Ly(G) is a Hilbert space; because G is compact, L2(G)
is an associative algebra with the convolution as multiplication. But it
does not contain G and does not have an identity (as compared with

the group algebra of a finite group). But it does have “approximate”
identities.

Definition Let € > 0, f € L2(G). An element § € Ly(G) is an approz-
tmate identity for f with respect to ¢, if and only if

f*xé6—fll<e, and ||6+f—fll <e. (Here ||-]|=]|-]l2).

Theorem 5 If G is compact, ¢ > 0, and fi, f2,..., fo € L2(G), then
there exists a right approximate identity of all the f; with respect to €.
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That is to say, there exists § € Co(G), such that
Wfi*é6—fill<e, i=12,...,n
Further, if f; € Co(G), 6 can be so chosen that

||f,-*6-—f£”oo=sx;]:||ﬁt6—f.-||p<e, i=1,...,n.
P2

Proof Suppose, to begin with, that f; € Co(G). Let v; be an “-
uniformity neighbourhood” of e. [By Lemma 17, Remark 1, of Chap-
ter II, p. 60, there exists a neighbourhood V; of e, such that |f;(zt) —
fi(z)] < efor t € V; and ¥ z € G] Choose 6§ € Co(G), such that

G) 6> 0; (i) /Gs dz=1; (iii) S(8)C (n]v

i=1

where S(6) is the support of §, and V; is symmetric foralli =1,2,... n.
[6 does not depend on i]. We then have

/

/|/ filzy™)6(y) dy—/f.-(z)&(y) dylp dz

P
dzr

(%) lfix 6 - £ill}

/ Fi(zy™)8(y) dy — fi(z)

[ dy=1
= / /(fi(zy-l) - fi(2))6(y) dylp dz
< /F/ 1fi(zy™) = fi(2)] - 6(v) dy]’ dz

< / L€/6(y) dy]p dz = €P.

Next, we suppose that f € Ly(G). Let (f,) be a sequence in Co(G) such
that f, — f (in L3) [Theorem 6, Chapter II, p. 46], and (§,) a sequence
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in Co(G), such that ||f, * 6, — fal] < %, |16n]] = 1 (see (*) above). Then
1f*én—fllz < NI(f=fa)*bnllz+ llfa %6 = fallz + |Ifa — fll2
1
< |lf_fn||2'”6n||1+;+€n

[Theorem 11, Chapter II, p. 62

I

1
”f"fn”2+;+€n f€L, gel, =

— 0, as n—o0 I1f = gll2 < [I£1l2 - llglla]-
This can also be done for finitely many f’s.

Lemma 3 Let G be compact, and f,g € L2(G). Then fxg is continuous,
and |f*g(z)| < ||fll2-llgll2 (by Th. 12, Ch. II, p. 63). Hence, if f, — f
in L, and g, — g in Ly, then f, * g =3 f * g. (=3 indicates uniform
convergence pointwise).

For

If*9(z) = faxgn(@)] < I(f = fa)*xg(x)|+ |fn * (9 — gn)(2)|
1f = fall - Ugll + 11 fall - llg — gall,
by the first part.

IA

Definition Let G be compact. For each f € Ly(G), we define the
operator Ly (of “left multiplication by f”) by:

Li(g)=f=*g, g€ LyG).
[£; exists by Th. 12, Ch. II, p. 63].

Theorem 6 L; is bounded, and completely continuous (or, compact)
for each f € L2(G) (where G is compact).

Proof That £; is bounded follows from the fact that
HEs (I < Ifll2 - llgll2 (Th. 12, Chapter 11, p. 63) and m(G) = 1.

For the proof that £; is completely continuous, we need the following
two properties:

(A) If f is fixed, and (ga) is any bounded set in L2(G), then the set
(f*9q) is equicontinuous. [If C(G) denotes the set of all continuous
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functions on a compact group G, and E is a subset of C(G), then
E is said to be equicontinuous if and only if for every ¢ > 0 there
exists a neighbourhood V of e, such that |f(z) — f(y)| < ¢, for
zy 'eV,andV f€ E]

(B) Every infinite, uniformly bounded, equicontinuous family E of
complex-valued functions on a compact Hausdorff space contains
a uniformly convergent sequence.

If (A) and (B) hold, it follows that the image, under Ly, of any
bounded sequence (go) in L2(G) always contains a convergent subse-

quence, [the image is (f * g, )], hence L; is completely continuous (cf.
Ch. 111, p. 80).

Proof of Proposition (A) To begin with, let f,g € Co(G). Then

(1) 1f +9(z) = £+ 9(@)] < / fzz"Y) = F(yz~Y)] - la(2)] dz
1/2
< ( [t = swapds [ |g<z)|2dz)

1/2
< ( [ 15 - s dz) il
(G compact)
= lfe = £ll-llgll, where fu(z) = f(z2).

Remark [In Chapter III we defined f * g(z) = [ f(y)9(y~'z) dy. But
[ f(zy™N)9(y) dy = [ f(2)g(z7"2) d(z7'z) = [ f(2)g(z"'z) dz7! =
[ f(2)g(z~'z) dz, since G is uni-modular].

Now let f,g € L2(G). Then there exist sequences (f,),(9n) C Co(G)
such that f, — f in Lo, and g, — ¢ in Lo, and

[fn * gn(2) = fn * gn(¥)] < 1I(fa)z = (fa)yll - llgnll, by () above.
Since (fy): — fr as n — oo, we have
If *g(z) = f*9()| < |Ifz = fyll - llgll-

[By Lemma 3, f, g, =3 f*g]. f £ — vy, then zy~! — ¢, and we
know from Theorem 10 of Chapter II that ||fz — f,|| — 0. Hence

If * 9a(2) — £+ ga(W)| < fe = fyll - llgall < Mllfz = fyll <,
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for zy~! € V(e), and V a.

Proof of Proposition (B) [Ref. Chevalley’s Lie Groups I, pp. 204-205;
Pontrjagin, Th. 19] A different proof from theirs is as follows.

Let M be a uniform bound for all f € E. Let P be the product
space of a set of closed balls S; of radius M indexed by the points of
G. Every function f € E defines a point in P, namely the point whose
zth coordinate is f(z), and since P is compact, by Tychonoff’s theorem,
there is a limit point fo in P of f’s in E. f; is a complex-valued function
on G with |fo(z)] < M. We shall see that fo is continuous, and is the
uniform limit of a sequence in E.

The topology of P for which Tychonoff’s theorem holds is given
as follows: if f is a point in P, ie. f(z) € Sz, 21,%2,...,Z, are
indices, and Ny, N,..., N, are neighbourhoods of f(z;),..., f(zn) in
Sey1Szyy ..., Sz, respectively, then the set of points g € P such that
g(z;) € Nj,i=1,...,n, is a neighbourhood of f in P. In this proof we
take N; to be a sphere of radius ¢; > 0.

To prove that f, is uniformly continuous, for any ¢ > 0, we take a
neighbourhood V of e, such that

@) 1f(z) - f(w)| < §, for z,y with zy~' €V,

and for all f € E (by the assumption of equicontinuity). We shall
show that this is an e-uniformity neighbourhood of e for fp.

Let z and y be such that zy~™! € V, and let N be the neigh-
bourhood of fo in P defined by (the set of g’s such that)

(i1) lg(z) = fo(z)] < %, (z instead of z;, and

(i) l9w) = folw)l < 3, y instead of z2)
and let f be a function in N N E (such an f exists since fo is a
limit point). Then we have, by (i), (ii) and (iii),

(iv) 1fo(z) = fo(¥)| £ |fo(z) = f(2)| + If(z) = ()] +1f(¥) = flwo)l <
e, for zy~teV.

Hence fp is uniformly continuous.
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To show that fy is the uniform limit of a sequence in E, let V be
a neighbourhood of e, such that if zy~! € V, then

(i) /(=) - fW < 5, forall fEE
and
(iv) \fol=) - folw)l < 5.

From the set of all V; for z € G, choose a finite subset

Vzi,...,Vz, which covers (the compact) G, and a neighbourhood
NO of f, in P such that

(v)  lg(z:i) — fo(zi)| < %, for i=1,2,...,n and for all g € N°.

There exists an f € N° N E (since f, is a limit point), i.e. f is
such a “g”; and

|fo(z) = £(2)| < |fo(x) = folz:)l + |fo(z:) — f(zi)| + 1 £ (i) - f(=)].
Given z € G, there exists a Vz; such that z € Vz; < zz{'l ev.
Hence by (iv), with y = z;, we have |fo(z) — fo(z:)| < g By (v)
with g = f we have |f(z:) — fo(z:) < § By (i) with y = i, we
have |f(z;) — f(z)] < g Hence

lfo(z) - f(z)l <&, z€Vaz:.

Given a sequence (€,), €n > 0, £, — 0 as n — 00, there exists
a sequence f(")(z) (in E) such that

fo(2) = f™(2)| < en — 0 as n — oo,

Uniformity of convergence follows since there are only finitely many
Vz;’s which cover G.

Adjoint function If G is compact, f € Cy(G), the adjoint function of
f is the function in Co(G) defined by

f(z)= f(z-1), z€G.
(Since G is compact, we have A= 11211
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If f € Ly(G), and f, € Co(G) such that f, — f in Lo-norm, then
define
fF = lim f;.

in L,

This definition is independent of the sequence (f,). For

@) Wfr = foll = lfa = fm]l, and since f, — f in Ly norm, it follows
that (f;) is a Cauchy sequence in Ly, hence f* exists; and

() Il = lim |If51] = lim{|£a]] = 1I]], and

(i) [Ifs = gnll = l1fa = gnll — 0, if gn — f in L3, gn € Co(G), hence

N =gnll N = fall+1fa—gnll — 0, sothat f*= lLm g;.
(in L,)

Definition f € Lo(G) is called self-adjoint it f = f*.

Lemma 4 We have
L+ = (Ls)";(assuming that G is compact)

hence, if f = f*, then L; is a real operator.
Proof Since G is compact, we have
Li(9)y) =(f*g)(v) = /Gf'(yt“)g(t) dt.
By the definition of C}, we have
() (Lr9,h) = (g.L3h), (f,9,h € L2(G))

where
roh = [7@) ([ et ) do
= [ow ( [ st i@ dx) dy
= (9,H), say,
(i) where (5] = [ (o)) da
or H) = [Farhe) de
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But f*(t) = f(t-1), hence
H@) = [ 1) ds
L3(h)(y), because of (i) and (ii).
But, by definition, £;+(h)(y) = [ f*(yz~1)h(z) dz. It follows that
Ly (k) = C5(h).

i

Remark If T is any operator on a Hilbert space H, we can write

T+T"

1
T=T+il= — +i(-2-;(T—T‘)>,

where T and T3 are self-adjoint.
Similarly we can write a function f € Ly(G) as

P8 (L
Lvi(gu-m)

f=h+ifa=
where f1 and f; are self-adjoint.

Definition The right regular representation is the representation R,
with the representation space Ly(G), and R(z)f = f*, x € G, that is to
say

(R(z)f)(y) = f*(v) = f(yz).

The representation functions F : F(z) = (f,g), f,g € L2(G), z €
G, of R are continuous, since z — f° is continuous, and f — (f,g)is
continuous. [Theorem 10, Chapter II; p. 69, Chapter III, see (x)]

[The topology of U(n,C) is generated by the functions of the form
f(U)=(Uz,y), .y € H (a Hilbert space), U € U(n,C), dimH = n see
p. 90.]

If E is an open set in U(n,C), we may take it to be of the form

E={T|(Tf,9) € O}, where O is an open set in C, and f,g € Ly(G).

Then we have
R™YE) = F~Y0).
Hence the continuity of F implies the continuity of R.
[Note that T'f = f=, (Tf,9)=(f*,g) = F(z); and R(z) is a unitary
operator, since ||R(2) f(y)l| = |[f(yz}] = [I£(y)ll and R(z)~! = R(z~1)).
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We shall now consider finite dimensional representations obtained
by restricting R to finite dimensional invariant subspaces. We shall see
that the eigenspaces of the operator Ly, for self-adjoint f € La(G),
are invariant under R, and linear combinations of the corresponding
representation functions approximate f, leading to the proof of the Peter-
Weyl theorem.

Lemma 5 If G is compact, and R is the right regular representation of
G, then R(z) commutes with L; for all z € G, f € L,(G).

Proof Let f,g € Co(G). Then
L1R(x)g(z) = f*R(z)g(2) = / f(zy)o(y) d,
while
R(z)Cs(9)(z) = Lyo(zz)
(f *9)(2z)

= / f(zzy™)9(y) dy (v — yz)

/ f(zy™Yg(yz) dy.

Hence L;R(z) = R(z)Ly on Co(G), which implies that
® LyR(z)g(z) = R(z)Lyg(z) for all ¢ € Ly(G), provided that
J € Co(G). (because R as well as L; are continuous).

Finally, if f € L2(G), there exists (f,) C Co(G), such that f, — f
in Ly-norm, hence £;, (9) — Ly4(g) for g € L2, and

LiR(z)g = lim Ly, R(z)g

= nliglo R(z)L;.(9), [since fn € Co(G)

R(z)Ly(9) and ® above]
since R is continuous.

Theorem 7 (Peter-Weyl, 1927) If G is a compact, topological group,
R its right regular representation, f any self-adjoint element of L,(G),
(As) the non-zero eigenvalues of £y, and H; the corresponding eigenspaces,
then
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(1) Each H; is a finite dimensional invariant subspace of R = (R(z)
for all z € G), and is also invariant under right-multiplication * by
any g € L2(G) [i.e. H; is a right ideal in the Lj-algebra).

(2) If R’ is the representation of G induced on H; by R, then each
eigenfunction of eigenvalue ); is a representation function of R'.

(3) f is an La-limit of finite linear combinations of representations
functions from the R'.

(4) If f € Co(G) then f is a uniform limit of finite linear combinations
of representation functions from the R*.

Proof

(1) By Theorem 3 of Chapter III, p. 81, parts 2 and 5, H; is finite

dimensional, and H; is invariant for all R(z). [Note that T = L;
in Theorem 3, Ch. III, since L; is real and compact and £; R(z) =
R(z)L; by Lemma 5 just proved.].
Next, let h € H;. Then hxg € H;, for all ¢ € Ly(G). For
Lsh = Ah = (f xh) = \ih => (f * h) * g = X;(h * g). However,
(f*xh)+g=f+(h*xg)=Ls(h*g). Hence Ly(h *g) = Xi(h * g).
Thus h* g € H;.

(2) The representation functions of R’ are all the functions of the form
é(z) = (R(z)h, k), for h,k e H;.

In order to show that each h € H; is of this form, choose a complete
orthonormal set (ky,...,k,) in H;. Then we have

R(z)h = E(R(z)h, k;)k;. (finite Fourier expansion)

In particular,

R(z)h(e) = ) (R(z)h,k:)ki(e)
(Ree)h, S Ele)k:)
But R(z)h(e) = h(ez) = h(z), hence

hz) = (R(z)h, YKok

so that h(z) is a representation function of R'.
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(3) By part 3 of Theorem 3, Chapter III, every element in the image

(4)

of Ly, i.e. every f+g for g € Lo(G), is an Ly-limit of finite linear
combinations of eigenfunctions of Ly, hence (by (2) just proved)
of representation functions of the R'’s.

Let é, € Co(G) be a right approximate identity of f with respect

N . - . . . .
to —, and ) ;_, c}h? afinite linear combination of eigen-functions,
n =

(N depends on n) such that

”f*&,, —Ec?h?

1
< —.
n

Then

£ = ernr

frbn = cPh}

< = frball+ |

< ——0 as n— o
n

Let f € Co(G), and (f,) a sequence of representation functions
such that f, — f in Ly (by (3) just proved), and (6,) C Co(G) a

sequence such that
1
S *én = flloo < o (Theorem 5)

Then f, * 6, is a representation function, for f, = Z:fv:l cth?,
c! € C, h} € H;. By (1) above, h? € H; = h? *§,, € H;. Hence
fn * 6, 1s a finite linear combination of representation functions of
the R.

Secondly f, * 6, == f (uniform convergence pointwise). For
fanxbn—f = (fa—f)*6n+(f x6s) — f. By Theorem 5 we

have ||f * 6n — flloo < % Given (fy) such that ||f, — f|| — 0,

€ €
choose a subsequence f,,, such that ||f — fa,]]| < =
n

116nll
say. (|| ||2). Then fn, * 6, =3 f, for
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| [ ister 8. dy = [ 2600 dy‘

‘ [trmav™) = i) dy

([ ostav™) - s dy)m (8w dy)m

A Corollary to Theorem 7 is the following:

IN

Theorem 8 A compact Lie group G has at least one faithful represen-
tation.

For the proof we assume known the following (Chevalley, p. 193).

Proposition If G is a compact Lie group, there exists a representation
¢ such that the kernel of ¢ is contained in the kernel of every represen-
tation.

Proof of Th. 8 Let f € Co(G), with f(z) # f(e), ¢ # e. [Such an
f exists by Urysohn’s lemma)]. By Theorem 7, f can be uniformly ap-
proximated by (linear combinations of) representation functions. Hence
there exists a representation function F, such that F(z) # F(e).

By the Proposition, if ¢(z) = ¢(e) = I, the identity transformation,
then y(z) = v(e) for every representation 3, which contradicts F(z) #
F(e). Hence ¢(z) # ¢(e) if z # ¢, and ¢ is faithful.

IV.5 Harald Bohr’s Almost Periodic Functions

Let f be a complex-valued, continuous function on R;. Given ¢ > 0,

the real number 7 = 7(¢) = 14(¢) is called a translation number of f
corresponding to ¢, if we have

lf(z+7) - fl@)l <e

for all z € R;. The function f is said to be almost periodic (in the sense
of Bohr) if given € > 0 there exists a length L, such that each interval
(= open interval) of length L contains at least one translation number
7(€).

It is a basic theorem of Bohr that if f is almost periodic, then
f(z) can be uniformly approximated by exponential sums of the form
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Y. 7=1¢je*5®, where c; is complex, A is real, and —o0o < z < co. It can
be shown that Bohr’s theorem is a consequence of the Peter-Weyl theo-
rem. For that purpose it is convenient to use an alternative definition of
an almost periodic function, due to S. Bochner, which results from his
theorem that a function f is almost periodic if and only if the set (of
ils translates) H = {f(t + a)}, —00 < t < 00, a real, is relatively com-
pact; that is to say, every sequence in H contains a uniformly convergent
subsequence.

For let G be the set of uniform limits of functions in H (i.e. limits of
uniformly convergent sequences from H). Then G = H, which is to say
that H is dense in G. Now G is compact (as a topological space, with
the topology of uniform convergence), and G has a countable base. We
can make G a group relative to an operation of addition & defined as
follows:

ft+ad) @ ft+a") = f(t+a' +a") (€ H).

This definition can be extended uniquely to all of G by continuity. Thus
G is compact, and abelian, and has a countable base.

If A is an orthogonal set of continuous functions on a compact group
with a countable base, then A is countable.

Let A’ be the set of characters of all inequivalent irreducible repre-
sentations of G. Since A’ is an orthonormal set of functions on G, it
follows that A’ is countable. [Equivalent representations have the same
character].

Hence G has countably many representations: ¢;,¢2,...,én,.. ..

Since G is abelian, all irreducible representations are of degree 1.
(The corresponding matrices are commutative, therefore of the form AI,
where ) is complex, and I is the unit matrix. But the matrices are
irreducible, hence the degree is 1, and each matrix is a complex number).
If ¢ is a representation, and ¢ € G, then ¢(z) = x(z) (character). If
we consider equivalence-classes of representations, we may assume that
they are unitary, hence |x(z)| = 1.

It follows that ¢, is a continuous homomorphism of G into the mul-
tiplicative group of complex numbers z with |z} = 1.

[reH=z=ft+ a)fdz(a) € H. Now z(a) is a continuous

function of a, and z(a’)+z(a”) = z(a’+a") by the definition given above.
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Hence ¢n(2(a +a")) = $n(2(@)) + $a(2(a")), and da(z(a)) = o,
An reall].

For z(a) € H, define f'(z) = f'(z(a)) = f(a), and extend the defini-
tion, by continuity, to G. Then f’ is continuous on G (with the strong
topology). [z — zo implies that lim f:£ |[f(t+z)— f(t +z0)| = 0]

1

T—To

By the theorem of Peter-Weyl, we can uniformly approximate f’ by
linear forms of representation functions.

On H we therefore have an approximation of f(a) by linear forms of
én(z(a)) = €22, n =1,2,3,.... [In the old notation: (R(z)h,k), h €
H' k € H', with R(z) = a(z), where |a(z)| = 1, leads to (R(z)h, k) =
a(z)(h, k) = ce**»*].

IV.6 Statement of Hilbert’s Fifth Problem

Let E,, denote the n-dimensional Euclidean space with n real coordi-
nates.

After L.E.J. Brouwer, one knows that an open set in E,, cannot be
homeomorphic to an open set in E, for m # n. (n is a topological
invariant, the dimension).

Let T be a topological space. Then T is locally Euclidean if and
only if p € T implies that there exists a neighbourhood U, of p which
is homeomorphic to an open set in E,; the neighbourhood is called a
coordinate neighbourhood. For example, open subsets of E,, are locally
Euclidean.

A locally Euclidean, Hausdorff space, which is connected, is called a
manifold. [If M C T, then M is connected if and only if (M = AU B,
A and B relatively open, A # 0, B # 0, imply that AN B # 0). This is
equivalent to saying that (A C M, A is relatively open, A is relatively
closed, imply that A = M or A = 0).

Let T be a manifold. It is called a real analytic manifold (or has
a real analytic structure) if there exists a covering of T by coordinate
neighbourhoods such that for any two overlapping neighbourhoods the
coordinate transformation, in both directions, is given by n real enalytic
functions (i.e. power series)

[p € T; 3 é(p) € En, ¢(p) = (f1(p), f2(P), - -, fn(p)). Let A(p) = the
class of all real-valued functions defined on the neighbourhoods of p, with
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the property that they are real analytic functions of fy, fo,..., fn in a
neighbourhood of p. Each function in %(P) is defined in a neighbourhood
of p.]

One defines analogously a complez analytic manifold, and a complez
analytic structure. Every complex analytic manifold is automatically
real analytic but not conversely.

The union of connected sets is again connected provided that every
two of them have points in common. To any z € T (a topological space)
there exists a mazimal, connected subset M of T which contains z. The
maximal connected subsets of T' are called components. [The closure of
a component is connected, therefore the component is closed].

Let G be a topological group, and e the identity element. Let Gg be
the component of e. Then Gy is a closed, invariant, subgroup. [gGo =
Gog, g € G. Ref. Montgomery and Zippin].

A topological group G is called a (real or complex) Lie group if the
component of the identity is open, and has an (real or complex) analytic
structure, such that the coordinates of z = zy are (real or complex)
analytic functions of the coordinates of z and y, and the coordinates of
z~! are (real or complex) analytic functions of the coordinates of z.

If G is a compact Lie group, there exists a representation ¢ of G, such
that the kernel of ¢ is contained in the kernel of every representation.
(Chevalley, Vol. I).

Every locally Euclidean group is isomorphic (group isomorphism and
homeomorphism of the space) to a Lie group (Hilbert’s Fifth Problem,
1900). [Proved by D. Montgomery, L. Zippin and A. Gleason, 1952-53.).
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