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Preface

This is a companion volume to our introductory work Spinors and space-
time, Volume 1: two-spinor calculus and relativistic fields. There we
attempted to demonstrate something of the power, utility and elegance of
2-spinor techniques in the study of space-time structure and physical fields,
and to advocate the viewpoint that spinors may lie closer to the heart of
(even macroscopic) physical laws than the vectors and tensors of the
standard formalism. Here we carry these ideas further and discuss some
important new areas of application. We introduce the theory of twistors
and show how it sheds light on a number of important physical questions,
one of the most noteworthy being the structure of energy-momentum/
angular momentum of gravitating systems. The illumination that twistor
theory brings to the discussion of such physical problems should lend
further support to the viewpoint of an underlying spinorial structure in
basic physical laws.

Those who have some familiarity with the standard 2-spinor formalism
should be able to read this volume as an independent work. All necessary
background material has been collected together in an introductory section
which summarizes the relevant contents of Volume 1. There are many
references to this earlier volume in the present work for the results and
notations that are needed, but these are all explicitly provided in the
summary, the numbering of results being the same as that of Volume 1
so that they can be located in either place without ambiguity. Detailed
derivations are not repeated, however, and the reader who wishes to pursue
these results per se would be well advised to refer back to the earlier volume.

The main topics introduced and discussed in this volume are twistor
theory and related matters such as massless fields and the geometry of
light rays, energy-momentum and angular momentum (from an unusual
but, we hope, illuminating point of view), and the conformal structure of
infinity. In addition we provide, in Chapter 8, a detailed classification of
space-time curvature by 2-spinor means. Though we are mainly concerned
with the classification of the Weyl (or empty-space Riemann) tensor, we
also give a comprehensive treatment of the Ricci tensor, showing how this

vn
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viii Preface

arises as a particular case of the classification of symmetric spinors
generally. Chapter 8 can be read independently of the other chapters in
this volume, though there is some interrelation between its results and
those of the other chapters.

Some remarks about the role of twistors in this volume are in order.
Twistor theory can be viewed in two ways. On the one hand it may be
seen simply as providing new mathematical techniques for the solution
of problems within standard physical theory. On the other, it may be
viewed as suggesting an alternative framework for the basis of all physics,
characterized by the relegation of the concept of event (space-time point)
from a primary to a secondary role. In this volume, twistors are treated
very much in the former rather than in the latter way. This is not a work
on twistor physics as such, though it can serve as a fairly comprehensive
introduction to the subject for those who are interested in following up
some of its more detailed, sophisticated, or speculative ideas.

We are concerned here mainly with the way that the mathematics of
twistor theory interrelates with that of 2-component spinors. Spinor-field
descriptions of twistors are presented in more detail than have been given
hitherto. Many applications of twistor methods are given, such as: a proof
that the vanishing of the Weyl tensor implies that the space-time is locally
Minkowskian; the Kerr theorem for generating shear-free congruences in
Minkowski space (including a generalization that applies in curved space-
times); massless free-field contour integrals with basic sheaf cohomology
ideas; the Ward construction for general self-dual Yang-Mills fields
(though, to our regret, the original gravitational analogue of this cons-
truction is beyond the scope of this work - for we have felt it necessary
to limit our discussion essentially to results with direct application to real,
i.e. Lorentzian, space-times); conformal Killing vectors; Killing spinors;
cosmological models; and the Grgin phenomenon for massless fields. An
elaborate 'twistorial' discussion of energy-momentum and angular
momentum in linearized gravitation is given, and this is generalized in
our presentation of some recent developments which use corresponding
twistor-type techniques in full general relativity and which provide a
suggestive 'quasi-local' definition of mass. This leads us to a discussion
of energy-momentum and angular momentum at null infinity and their
behaviour under the Bondi-Metzner-Sachs (BMS) group - the group
describing the asymptotic symmetries of an asymptotically flat space-time.
We also give details of the full Bondi-Sachs mass-loss formula and present
a version of Witten's argument for demonstrating mass positivity in general
relativity as it applies at null infinity. None of this material on energy-
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Preface ix

momentum/angular momentum has appeared before in book form and
it illustrates a significant new area in which spinor (and twistor) arguments
can find powerful physical application. Much of .he detailed spinor dis-
cussion of conformal infinity is presented here for the first time.

In an appendix we show how 2-spinors, Dirac 4-spinors, twistors and
spin-weighted functions fit in with the general scheme of ^-dimensional
spinors.

As with Volume 1, there are many to whom we owe thanks, for assistance
of a varied nature, either direct or indirect. Most particularly we are grateful
to Michael Atiyah, Toby Bailey, Nick Buchdahl, Judith Daniels, Mike
Eastwood, Robert Geroch, Denny Hill, Lane Hughston, Ben Jeffryes, Ron
Kelly, Roy Kerr, Ted Newman, Zoltan Perjes, Ivor Robinson, Niall Ross,
Ray Sachs, Engelbert Schiicking, William Shaw, Iz Singer, Paul Sommers,
George Sparling, Paul Tod, Helmuth Urbantke, Ronnie Wells and Nick
Woodhouse. Again, our special thanks goes to Dennis Sciama for his
encouragement and faith in this project for well over twenty years, and
also to Tsou Sheung Tsun who has again provided invaluable help with
the references.

Roger Penrose
1985 Wolfgang Rindler
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Summary of Volume 1

We provide here a connected account summarizing all the material of
Volume 1 (Two-spinor calculus and relativisticfields) needed for the present
volume. The equation numbering (and occasional section numbering) is
precisely that of Volume 1, though sometimes the equations appear a little
out of strict numerical order.

The light cone in Minkowski space

We use standard {restricted, i.e. right-handed and isochronous) Minkowski
coordinates

x° = T, x'=X, x2=Y, x3 = Z

for (afline) Minkowski space M [or Minkowski vector space V]. Points P, Q
with coordinates P* = (P°, P \ P2, P3), Q* = (6°, Q\ Q2, Q% in M, have
invariant (squared) separation

(D(P, Q) = (QO _ P0f _ (01 _ pl)2 _ (g2 _ p2)2 _ (g3 _ p3) 2

(1.1.22)

The light cone of P [or correspondingly the null cone in V when P is the
origin] is the set of QeM [or QeV] for which O(P, Q) = 0. The light rays
through P are the straight lines (generators) of the cone. The light rays
through (say) the origin O can be parametrized by £eCu{oo}, where

x±ir= Z ±z
^ T-Z X-iY K '

and, in terms of standard spherical polar coordinates on the sphere S+,
whose equation is

T=l, X2+Y2 + Z2 = l
we have

0
C = e10cot-. (1.2.10)

S+ is sometimes referred to as the anti-celestial sphere. The light rays

1
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2 Summary of Volume 1

through 0 put it in one-to-one correspondence with the sphere S~ (given
by T= - 1, X2 + Y2 + Z2 = 1): the celestial sphere of the observer at 0
with time-axis X = Y= Z = 0. The two are related by an antipodal map.

Under a (restricted) Lorentz transformation £ transforms as

where the coefficients a, /?, y, 5 constitute the spin-matrix

This provides a (general) conformal motion of S+, where we think of the
points of S+ as simply labelling the generators of the future light cone of
P. The matrix acts on (;>), the components K° = f, K1 = rj of a spin-vector K9

where

The null vector ('flagpole') corresponding to this spin-vector has
coordinates

=

^(tf,& ^iKm), (1.2.15)
U / 2 /2

(cf. also (3.1.31), (3.2.2)). Unitary spin-matrices describe rotations, while an
active boost in the Z-direction of velocity v is described by

(1.2.37)
W \ ^ w V Vl/

with

The Lorentz invariant cross-ratio of four null directions (or points of S+)
with complex parameters Ci, C2» C3, C4 is

r K r y y \ V̂  1 ^2/v^»3 *»4/ /1 ^ ^\
A — 1>l>S>2>b3>S4/ ~ /y _

i.e.

where £, = ^ / ^ . If the null directions are permuted, x gets replaced by one
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Summary of Volume 1 3

of

'•'"'• ? rb- ¥ • A- (U12)

The condition for the four null directions to lie in a hyperplane, i.e. for
the corresponding points of S+ to be concyclic, is that % be real. The
harmonic case x — ~ 1 (o r 2 or ^) occurs when the four points can be
transformed to the vertices of a square; and the equianharmonic case
X = — e±2m/3, to the vertices of a regular tetrahedron.

§1.5 Spinorial objects and spin structure

A non-zero spin-vector K may be represented, up to a sign, as a null flag
(i.e. a future-null vector with an oriented null 2-plane through it, cf. (3.2.2),
(3.2.9); compare also Payne 1952) or as a pair of infinitesimally separated
future-null directions. However, the sign of K cannot be given a local
geometrical interpretation since a continuous rotation through In (about
any axis) sends K into its negative, whereas it must restore any local geo-
metrical structure (in the ordinary sense) to its original state. Thus we widen
the concept of local geometry' to include spinorial objects, like if, which
are restored to their original states when rotated continuously through
An but not through 2n. For spinorial objects to exist on a manifold Jt, a
restriction on its topology is needed, and then Jt is said to have spin
structure. For spin-vectors to be defined consistently on a space-time
manifold Jt, we need to consider continuous motions of a null flag in which
the point P at which it is situated is allowed to move continuously as well as
rotations of the flag at P being allowed. Such a motion is called a flag path.
For consistency Jt must, in addition to having spin structure, be space- and
time-orientable - in which case Jt is said to have spinor structure. A (non-
zero) spin-vector at point PeJt is an element of the (universal) double cover
of the space of null flags at P; the (non-zero) spin-vector bundle of Jt is a
(not necessarily universal) double cover of the null-flag bundle of Jt. If Jt is
not simply-connected it may possess inequivalent possible spin-vector
bundles, i.e. different spinor structures. One two-fold ambiguity arises from
each independent loop in Jt no odd multiple of which is continuously
deformable to a point.

§2.2 The abstract-index formalism for tensor algebra

Tensor (or spinor) indices in standard lightface italic type are simply abstract
markers and do not take numerical values or denote components in some
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4 Summary of Volume 1

basis frame. For example, the symbol Va denotes the actual vector V paired
with the marker a (an element of some pre-assigned labelling set S£)\ and Vb

9

Vao, etc., though representing the same geometrical vector V, are distinct
elements of the abstract-index algebra because the vector is, in each case,
paired with a different element, b, a09 etc. of <£?. Similarly, the spin-vector K
may be represented by various distinct elements KA, KB3, etc., of the algebra,
or by their complex conjugates KA\ KB'3, etc. This notation allows
commutativity (e.g. UaVb = VbUa, but ^ VaUb) in the expression for tensor
product. Indices in bold upright type* are numerical and label components
with respect to some chosen basis (e.g., world-tensor component indices a,
b, . . . ranging over 0, 1, 2, 3 and spinor component indices A, B, . . . or A',
B', . . . ranging over 0, 1 or 0', 1', respectively).

Denoting a basis (in the n-dimensional case) by <5£ = 5\9.. .6*, with dual
basis <5" = dl

a,..., S", we can express the components of a tensor A\;;\ as

^:l = ^::Xs:'''S]5i'''di (2.3.13)
where, inversely, the tensor itself can expressed in terms of its components
by

Different abstract index letters (which may be a mixture of upper and
lower ones, if need be) may be 'clumped together' in the form of a single
composite (abstract) index denoted, in general situations, by a capital script
letter. Composite indices are useful for general statements about tensor
(spinor) systems. The symbol 8 ^ (or ®JQ0, for example, when the
constituents of s/ are written explicitly) denotes the system (®-module) of
tensors (spinors) whose abstract-index structure is that denoted by s/ in the
upper position (the constituent indices being in either position). The scalars
constitute a commutative ring S with identity (normally C°° complex
scalar fields on the space-time manifold Jt\ For real fields we use X in
place of S. The dual of S1* is S ^ and, more generally, we have (for a totally
reflexive system)

(2.2.38) PROPOSITION

The set of all ^-multilinear maps from 6 ^ x 6 ^ x • • • x & to &* may be
identified with &%#_$, where the maps are achieved by means of contracted
product.

* In handwritten calculations it is convenient to distinguish such indices by underlining
them with a wavy line.
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Summary of Volume 1 5

Accordingly, any element T*# yG<Z%<g 9 may be regarded as providing a
map

in addition to all the various other corresponding maps obtained by
grouping the indices in different ways. Distinct script index letters generally
indicate distinct dumpings of constituent tensor (or spinor) indices. If
similar dumpings are required then suffixes are used on the composite
indices, e.g. s/l9 s&2>

For spinors or tensors at a point P of a manifold M we may write,
explicitly, S^[P], and correspondingly ^\^l\ for the restrictions of the
elements of S* to a subset <% of M.

Tensor-spinor abstract index correspondence

World-tensor indices are regarded as composite indices, each simply
standing for a clumped pair of corresponding spinor indices, one primed
and one unprimed. We adopt the standard convention

ao = AoA'O9 ..., a1=A1A
f
u ... (3.1.2)

Primed spinor indices are the complex conjugates of their corresponding
unprimed ones (in the sense (pAB' = $AB etc.). Spinor indices are raised and
lowered with the anti-symmetrical 6-spinors:

$*A = eAB\l/«B = - 1 / / «BeBA (2.5.14)

(and similarly for primed indices, with sAB': = eAB' = eAB, zA.B.\ = lA.w =
eAB\ this being consistent with the normal world-tensor index raising and
lowering (using gab and gab\ where

9* = *A*A-W. Qah = ^ A B \ gab = eABsAB'. (3.1.9)

(Note that ga
b = gb

a, eA
B = - eB

A and eA.B' = — eB'A> are 'Kronecker delta'
symbols.) While we must be careful to preserve the ordering of the
unprimed indices on a spinor symbol, and also of the primed ones, the
relative ordering between primed and unprimed indices is immaterial; for
example ij/a

b
Q is each of the following except the last:

VAB'BQ = VABQB' = VBQAW = Vlfr * VAQBB" (2-5.33)
The s-spinors satisfy the identities

£AB£CD + £BC£AD + £CA£BD = 0, (2.5.21)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.002
https://www.cambridge.org/core


6 Summary of Volume 1

their raised versions such as

= 0, (2.5.20)
CD

9 (2.5.22)

and also the complex conjugates of these relations. We deduce

4>®AB ~ <$>®BA = <I>®CCZAB> (2.5.23)

so for (j)9AB skew in A9 B,

4>®AB = h<$>®clAB' (2.5.24)

Bases and components

The standard symbols for a spinor basis for ®A, or dyad, are oA
9 i

A, where

o^':= o^'( = oA) and i"4 ':= TA'( = i"4). These "need not be normalized to unity,

and we define

X = £ABoAiB = oAiA. (2.5.46)

When ^ = 1, the dyad is a spin-frame and we have

eAB = 0AlB_lA0B^ eAB = oAiB-iAoB, 8A
B = oAiB - iAo*. (2.5.54)

The condition for a general dyad, on the other hand, is simply x ¥" 0, since

(2.5.56) PROPOSITION

The condition ctApA = 0 at a point is necessary and sufficient for OLA, fiA to be

scalar multiples of each other at that point.

Associated with any spin-frame is a null tetrad la, na, ma
9 m

a defined by

la = oAoA\ na = iAiA\

ma = oAiA\ ma = iAoA\

and satisfying

lala = nana = mama = mama = 0, (3.1.15)

lana = l, mama=-l (3.1.16)

lama = lama = nama = nama = 0 , (3.1.17)

la = Ta, na = na, (3.1.18)

and also a standard restricted Minkowski tetrad

ta = -|p(/f l + na) = -^=(oAoA' + z V ) ,
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Summary of Volume 1

xa = —7=:(ma + ma) = —={0*1* + iAoA'\

= -^—{ma - ma) = -^=(oAiA' - iAoA\
'2 J2

= _L(/« _ yf) = -±-(pAoA> - iAiA\

where reciprocally

(3.1.20)

(3.1.21)

See Fig. 1-17 for the geometrical relation between oA
9 i

A and f, xa, ya, za.
The components of a vector Ka in the Minkowski tetrad are related to the

Fig. 1-17. The standard relation between a spin-frame o, i and a (restricted)
Minkowski tetrad f, JC, y, z.
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8 Summary of Volume 1

spin-frame components of KAA by

K1+iK2\_{K00' K01'\
°3)~{10' iV)' ( }^ K°-K3)~{K10' KiV)'

To express the corresponding relations between Minkowski tetrad compo-
nents and spin-frame components for a general tensor it is often convenient
to use the translation symbols:

0 A* 1 (0 1\

(3.1.49)

Null vectors and null flags

A complex null vector •£, in the normal sense -fia = 0» has the spinor form

f = KA£A' (3.2.6)

where we can take £A' = kA> [or — icA"\ whenever xa is real and future-null
[past-null] (or zero). Two complex null vectors xa and \j/a, with /fl # 0 given
by (3.2.6), are orthogonal in the sense

Xar = 0 (3.2.22)

if and only if tj/a — KAY\A> or xA^A> for some rjA' or xA.

In addition to defining the real future-null vector

K° = KAKA\ (3.2.2)

called its flagpole, any non-zero spin-vector KA determines the real simple
null bivector

P"b = KAKBSAB' + 8ABKAKB' (3.2.9)

which defines an oriented null 2-plane element (through the flagpole) called
the flag plane (or an 'axe' by Payne 1952). The flagpole and flag plane
together define the null flag which represents KA up to sign. Multiplying KA

by reie (r, 9 real) increases the flagpole's extent by r2 and rotates the flag
plane by 29.

§3.3 Symmetry operations

We adopt the standard convention that round brackets (parentheses)
around indices denote that the symmetric part is being taken and square
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Summary of Volume 1 9

brackets, the antisymmetric part. Vertical bars are used at either side of a set
of indices to be omitted from an (anti-) symmetrization. If a pair of brackets
appears nested within another, then the inside operation is to be performed
first and the resulting indices (if not blocked off by vertical bars) then
partake again of the larger (anti-) symmetry operation. (Though such a
notation is, strictly speaking, redundant it can be very useful in the
formulation of a proof, e.g. see (4.3.17).) While the bracket notation
normally applies just to individual tensors or spinors, it may also be used to
denote subspaces of 6 ^ for which (anti-) symmetry relations are imposed.
Thus, for example:

v 0 1

Various simple results concerning symmetries are useful. For example
(with Greek letters denoting n-dimensional abstract tensor indices):

(3.2.22) PROPOSITION

4>*+..*X'X'- -^s = 0for all X*e<Z* iff c/>^5) = 0.

Hence
the function 4>J(X) = Q^jX". ..Xs serves to define the
tensor c/>̂ (a S) uniquely. (3.3.23)

Combinations of symmetries and anti-symmetries can be applied to
produce a tensor with a Young tableau symmetry and which is, accordingly,
(pointwise) irreducible under the group of general linear transformations
(about that point). Some relevant properties are discussed in the extended
'footnote' on p. 143 of Volume 1. In particular, a tensor 0a...A with tableau
symmetry - of the version in which groups of non-increasing lengths of
symmetric (rather than anti-symmetric) indices are exhibited - may be
represented by a polynomial P{Xa,..., Z°% homogeneous of non-
increasing degrees in X*,..., Za separately. (Here (3.3.23) is being applied to
each symmetric group of indices of <\> .) The tableau property (i.e. 'hidden
saturation by anti-symmetries') may then be expressed as:

X"dP/d Ya = 0,.. . , X'dP/dZ* = 0,. . . , YadP/dZa = 0

(earlier variable contracted with derivative with respect to later variable)
in which case P can be expressed as a function just of the skew products
like X{CLYpZy\ X[*YP\ X" (consecutive variables starting with Xa).
Equivalently, the tableau property may be expressed as any further
symmetrization of<\)Oi...x which includes one entire symmetric group of indices
together with one index from a later group, vanishes. For such a </>a...A, if

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.002
https://www.cambridge.org/core


10 Summary of Volume 1

the number of groups of indices exceeds n (i.e. if the number of variable
vectors Xa,...,Za in P(Xa,...,Za) exceeds n\ where n is the dimension of
space, then </>a...A = 0. This is because of the presence of a 'hidden anti-
symmetry' of length greater than n in (j)a x.

For spinor indices n — 2, so anti-symmetrizations of length greater than
two always yield zero. Moreover, in accordance with (2.5.24), one of length
two can always be 'split off' as an e-spinor. Accordingly, only totally
symmetric spinors need be considered. With both primed and unprimed
indices being allowed to be present, the irreducible spinors (pointwise
irreducible under the restricted Lorentz group, or, more correctly under
the spin group SL(2, C)), turn out to be those which, if all indices are in the
lower position, are totally symmetric in all unprimed indices and also in all
primed indices. The number of independent components of such a spinor is
given by:

(3.3.62) PROPOSITION

V <PA...CP...R' is symmetric of valence [£°], then it has ( /?+l) (g+l)
independent (complex) components.

Here the valence symbol [r
p J] is being used, for a spinor with r upper

unprimed, s upper primed, p lower unprimed and q lower primed indices. In
the cases when r ^ O or s^O, irreducibility is expressed as: not only
symmetry in all four groups of indices but also as the vanishing of all
contractions between upper and lower indices (implying total symmetry
when all indices are lowered). The component count in (3.3.62) would then
become (p + r + 1) (q + s + 1).

Tensor-spinor translation of expressions; duals

For a spinor <J>A...FA...F' of valence [° ?], irreducibility

(Pab.-.f = 4>AB...FA'B'...F'

= <t>{AB...F){A'B'...F) (3.3.58)

can be expressed tensorially as

</>*>.../= </W../> (3.3.59)

0 V . . / = O (3.3.60)

and the number of independent components is (r + I)2.
World-vector space being four-dimensional, there is an alternating tensor

eabcd with eabcd = e{abcd], where we take ^0123 = 1 in a standard Minkowski
tetrad (cf (3.1.20)). In spinor terms
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Summary of Volume 1 11

eabcd : = ieACeBD£A'D'eB'C ~ ^SADSBCSA'C'eB'D' • (3.3.31)

For a symmetric tensor Tab, the trace-free part

Sab=Tab-iTc
cgab (3.4.9)

can be expressed as

^ABA'B' = *(AB)(A'B') = ^(AB)A'B' = ^AB(A'B')' (3.4.5)

If symmetry is not assumed for Tab, its symmetric trace-free part is expressed

by the second expression (3.4.5). For symmetric Tab, the trace-reversed

tensor Tab has simple spinorial expressions

Tab -hTc
cgab = tABA.B, = TBAA.B. = TABB.A.. (3.4.13)

Any (complex) anti-symmetric Fab can be expressed (uniquely) as

Fab = FAA'BB' = 4>AB?A'B' + ^AB^A'B', (3.4.17)

where 0^^ and \\iAB. are symmetric. For rea/ F a b we have

^ = 4>A&A'B' + £AB$AB>- (3.4.20)

Defining the ^wa/ of Fflb as

*Fab:= keahcd¥
cd = ±eab

cdFcd (3.4.21)

we find

*Fab = *FABA'B' = ~ i<t>ABZA'B' + '^AB^A'B' (3.4.22)

where ij/A>B. = $A>B. if Fab is real, and

*FABAB' = IFABBA' = ~ ipBAAB- (3.4.23)

We can dualize also when further indices are present: if Gabj^ = G[flfc]j/,

then

*Gaby.= $eab
cdGM (3.4.25)

with spinor expressions similar to (3.4.22) and (3.4.23). These show that

Gabtf = ~ Gabjj-

We note that

*G[abcW = 0o*Gab
a# = 0. (3.4.26)

Duals for other numbers of skew indices can also be defined:

eabc
dJM (3.4.29)

yrKbM (3.4.30)
where Kabc!9 = K[abcW. Then

(3.4.33)

(3.4.34)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.002
https://www.cambridge.org/core


12 Summary of Volume 1

and
"Ja* = J^ nKlM, = KM, (3.4.31)

In the case of two indices, if Fab is skew and complex, we say that it is
respectively (i) anti-self-dual, or (ii) self-dual, if

(i)*Fab=-iFab, or (ii) *Fab = iFab. (3.4.35)

Generally, for Fab given by (3.4.17), we define its anti-self-dual part

~Fab:= \{Fab + i * F J = < ^ ^ . (3.4.38)

and self-dual part
+ Fab:= h{Fab - i * F J = c ^ , , . (3.4.39)

so that *±Fab=±\±Fab and

^ = " ^ + + ^ - (3A40)

The conditions (3.4.35) for anti-self-duality and self-duality can be restated
a s (0 ^AB' = 0, (ii) (I>AB = 0, respectively, i.e.

W Fab = <I>ABZA'B', 0 0 ^ = ^AB^AB- (3.4.41)

Combining results for the spinor expressions for symmetric and anti-
symmetric parts we obtain the following tensor expression for the
interchange of two spinor indices

HBAA>W = j(Hab + Hba - Hc
cgab + ieabcdH

cd) (3.4.53)

HABB'A' = l(Hab + Hfcfl - i f / ^ - i e^ /T- ) (3.4.54)

where Hab = HABAB, is general (and may have other indices as well). Note
that the skew part of Hab is

FI = Fl + ^ ] = 2SAB^C (A'B') + 2SA'B'^

(3.4.55)

with a similar expression for H(ab). The results of this subsection clearly also
hold if additional indices are present.

Some properties of tensors and spinors at a point

We now state a number of simple properties which hold for tensors or
spinors at any one point (so that S is now a division ring) and which do not
necessarily hold for tensor or spinor fields.

(3.5.15) PROPOSITION

^ 1 . . ^ ^ + 1 . . . < + / = ° fo»P«« either ^ ^ / = 0or * ( j , 1_ J , / = °-
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Summary of Volume 1 13

(3.5.18) PROPOSITION

If<t>AB...L = <t>(AB...D*Q> then

for some OLA, fiA,..., ^AeSA. Furthermore, this decomposition is unique up to
proportionality or reordering of the factors.

This is the canonical decomposition of <j>A L, and we call aA, fiA... (and their
non-zero multiples) the principal spinors of 4>A L. The flagpoles of these
spinors are its principal null vectors, and the associated null directions are its
principal null directions (PNDs). If £A # 0, then

4>AB...LZA?-- - £ L = 0. (3.5.22)

if and only if £>A is a principal spinor of(j)AL. We say that </>A%t% L is null if all
its PNDs coincide. If OLA is an exactly k-fold principal spinor, then

<PAB...DE...L<*E- • « L = ™AccB.. .otD (3.5.24)

with K / 0 , the number of as on the right being k. Moreover,

(3.5.26) PROPOSITION

A necessary and sufficient condition that £A^0bea k-fold principal spinor of
the non-vanishing symmetric spinor (J>AB...L *5 tnat

should vanish ifn — k+l£s are transvected with <t>A,,,L but not if only n

are transvected with (t>A...L-

(3.5.27) PROPOSITION

then there exists a ij/* c such that

A...CDE...G

As a particular case, we have:

Ifh * 0> then i//^BXB = 0 implies \jj^B = i^Bfor some x*. (3.5.17)

Note that if (pAB = ociAPB) then

=-faAPA)2, (3-5.29)
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14 Summary of Volume 1

so the vanishing of cpAB(pAB is a criterion for the nullity of cpAB. Note also that

An anti-symmetric tensor (in n dimensions) which is a skew product of
vectors is called simple. One criterion for simplicity is:

(3.5.30) PROPOSITION

If Fap p is skew in all its indices, then

F[*p...pF<r]x...a> = 0oFafitmmP = a[abp- • -rp]

for some aa, bfi,...9rp.

Another way of stating this criterion is

*F6~-p'F*T...m = 0. (3.5.32)

Here the asterisk denotes rc-dimensional dual. Consequently,

(3.5.34) PROPOSITION

Fa...y is simple if and only if its dual *Fd"<T is simple.

(3.5.35) PROPOSITION

In four dimensions the bivector Fab is simple if and only if any of the following
conditions holds:

(i) F[abFcd] = 0, (ii) Fab*Fab = 0, (iii) det (FJ = 0.

Active Lorentz and spin transformations

A Lorentz transformation

Vb-+La
bVa

which sends world-vectors to world-vectors (at a point) is given by one of
the following spinor expressions

LAA
BB = ±9B

A,¥A* (3.6.14)

W*'=± <£/£/' (3-6.15)
where we can take

de t (0*)= l , de t (4>/)=l . (3.6.16)
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Summary of Volume 1 15

The upper [lower] signs in (3.6.14) and (3.6.15) refer to the orthochronous
[non-orthochronous] transformations, improper for (3.6.14) and proper for
(3.6.15). In the improper case the determinant condition (3.6.16) can be
rewritten

ma = 2, (3.6.22)

and in the proper case
<t*AB<t>AB = 2. (3.6.30)

A restricted (i.e. proper isochronous) Lorentz transformation other than
the identity leaves invariant precisely two (possibly coincident) null
directions. These null directions are in fact the PNDs of (j){ABy When the
PNDs coincide (i.e. when (p{AB) is null) we call the Lorentz transformation a
null rotation. When the PNDs are distinct we can use them as the flagpole
directions of a spin-frame, with respect to which </>A

B is then diagonal. In the
case of a null rotation, we can choose the flagpole of iA in the repeated PND
(the flagpole vector being now invariant) and we have

( i 6 - 4 7 )

Covariant derivative

We use the symbol V, indexed as appropriate, (e.g. Va, Va, etc.) to denote
covariant derivative on a (say ^-dimensional) manifold Jt, with respect to
some connection (not necessarily the standard Christoffel one). When
acting on scalars Va is the ordinary gradient operator and it relates the
abstract-index version Ka of a vector field to its differential operator version
Fby

V= VaWa (4.1.40)

(on scalars). Generally, Va operators do not commute, and we define

4* := VaV, - V,Va = 2V[aVn. (4.2.14)

The torsion Tafi
y is then defined by

Aa,/= W (4.2.22)

and the curvature RaPy
d by

(V.V, - V^V, - V V y ) F * = R^y*V (4.2.31)

(for an arbitrary scalar / and vector Vy).
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16 Summary of Volume 1

If Tafi
y = 0 (i.e. Va is torsion-free), this is simply AafiV* = Rafiy

dV\ Then we
can write the abstract index version Wa of the Lie bracket

W=[U,V]:=UoV-VoU (4.3.26)

as
U°VaV

fi-V*VaU
fi. (4.3.2)

More generally, the Lie derivative of a tensor field with respect to V is

+ HK;JJkV*» + • • • + H1;;-/VOVVKVO. (4.3.3)
Lie brackets and Lie derivatives are independent of the choice of (torsion-
free) Va. Thus they can be evaluated in components by replacing Va by
d/dx*.

We adopt a convention for differential forms that the particular index
letters il912,... (occurring in an antisymmetrical set) may be omitted from a
kernel symbol, that symbol being now presented in bold type, so

A:=AWmmmlp (4.3.10)

denotes a p-form, where Alll2 lp = A[lll2 lp]. Additional index letters may
be present also, where 115...,ip are considered as occurring 'first':

B2 = Bili2...iP2'

This is in the general ^-dimensional case; for space-time we use ir or lrl'r in
place of ir. The exterior product of A with C is

and the exterior derivative of ^ (provided Va is torsion-free) is

< ^ : = V t l A . . , , + l ] (4.3.14)

(where other indices may be present as well). Provided there are no other
indices, d2 = 0:

Equation (4.3.14) holds equally well if Va is replaced (locally) by any other
torsion-free derivative, say by da whose torsion and curvature both vanish.
So a simple proof of (4.3.15) (viii) is

d(dA) = d{d{Ammm]] = d{dAmmm] = d { [ d ^ A ^ = 0 . (4.3.17)

We sometimes take advantage of the notational convention that d</>̂ '
stands for (d</>)̂  and not d((/> )̂, with the corresponding rule for other
differential operator symbols (e.g. Vfl, 8, etc.).
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Summary of Volume 1 17

If x* are local coordinates on M then (locally)

A = Aai.mMpdx"1 A • • • A dxar (4.3.20)

where components are taken in the associated coordinate basis defined by

*: = VX- (4.2.55)

(Note that dxa = Vtlx
a.) The integral of a p-form A over an oriented p-

dimensional surface & is

dx"1 A • • • A dxa*

= pl f Ax pdx1 (4.3.24)

whenever 9 is defined (locally) by xp+1 =•- = xn = 0. The fundamental
theorem of exterior calculus states

I d,4 = (4.3.25)

where 2L is a compact (p 4- l)-surface with boundary 5J.
Sometimes the notation

V:=*"V. (4.3.31)

for directional covariant derivative is useful. Then the expression (4.2.31) for
the curvature becomes

( V V - V V - V )Z* = Raay*X'Y0Zy
9 (4.3.33)

X Y Y X [X,Y]

the third term on the left now being needed even in the absence of torsion.
For a space-time M we use a, b,... in place of a, /?,... where we can

rewrite a as AA\ b as BB', etc. in accordance with our spinor rules. Thus
^AA' = Vfl, VBBr = Vft, etc., and corresponding operators VAB>, V^', etc. can be
defined, these being extended to act on spinorial quantities (uniquely, where
we demand VaeBC = 0). Thus we can express, for example, the Dirac-Weyl
equation for a (massless) neutrino as

VAA4A = 0. (4.4.61)

Spin-coefficients

Choosing a dyad oA, iA i.e. a basis eA
A, and dual eA\ so that
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18 Summary of Volume 1

(cf (2.5.46)), where we need not normalize to % = 1, we define the spin-
coefficients to be the sixteen quantities

B = <MBVAA,£c/ = - ec
A VA A,£/ (4.5.2)

for which a standard notation is

7AA BC =
AA\

00'

10'

or

ir

0
0

£

a

P

y

l
0

— K

~P

— a

— X

0
1

— T'

-&

~P'

-K'

1
1

Y

oc'

Then, for VAABO
 w e have

K

P
G

X

s

/?
y

y'
V
a!
e'

X

G'

p'
K'

X * oADoA

oAb'oA

oA8oA

oAD'oA

iADoA

xAboA

iAD'oA

-oADiA

-oA8'iA

-oAD'iA

-iADiA

-iA5'iA

-iA8iA

-iAD'iA

(4.5.21)

(4.5.22)
where

'.= V n . = 4=n'Va = D'.

If, as is most usual, we normalize to the case x = 1 of a spin-frame, then

)"AA'BC = TAAXB' (4.5.5)
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Summary of Volume 1 19

and if we introduce the frequently employed symbols n, X, \i, v, we have

\BC

00'
10'
01'
11'

00

K

p
(7

T

10

£ =

a =

or 01

. - /
= -P'

y

n
I
V>
V

11

= — T'

= -a'
= ~P'
= -K'

(4.5.29)

The primed letters are preferred here, these and (4.5.23) being used
consistently with the general priming operation which effects the
interchange

A ' A ' - i0A^_ilA'lA^_-wA' (4.5.17)

Spinor form of the curvature

The Riemann curvature tensor has the spinor expression

where

and
V{AB)(C'D')

(4.6.1)

(4.6.3)

XCDAB> ®ABC'D' = ®ABC'D' • (4-6.4)

Having two pairs of skew indices, Rabcd may be dualized on the second pair
(RJbcd)* the first (*Rabcd), or both (*/?2i,cd). The effect on the spinor expression
(4.6.1) of applying these operations is given by

(4.6.11)

(where indices and e-spinors have been suppressed on the right).
We define

so that
if B —

(4.6.18)

(4.6.19)
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20 Summary of Volume 1

and find
A = A (4.6.17)

as an expression of the cyclic identity Ra[bcd] = 0. We remark here that the
double dual *R%bCd satisfies this also:

Defining3"

Rab — RaCbc> R = Ra
a>

we further find
R = 24A (4.6.22)

and
Rab = 6Agab-2^ab. (4.6.21)

Einstein's field equations (with cosmological constant X and gravi-
tational constant G)**

become, in terms of these quantities,

0>a& = 47rG(T f l b - iT^) , A = ^ G T J + K (4.6.32)

The symmetric part of X ^ ^

^/v4BCD:= X(y4BCD) = Xx(flCD) (4.6.35)

is referred to as the gravitational spinor or the Weyl (conformal) spinor. We
have

*ABCD = ^ABCD + M^AC^BD + ^/>%c)> (4.6.34)

and the full Riemann tensor becomes

Rabcd = K^ABCDSA'B'£C'D' + ^yl

+ ®ABC'D'£A'B'eCD +

+ 2M^AC^BDeA'C'£B D' ~ eAD£BC£A'D'£B'C')' (4.6.38)

The terms involving ^ABCD alone yield the Weyl (conformal) tensor

Cabcd'— y^ABCDSA'B'SC'D' + ^ A'B'C'D'£ABSCD (4.6.41)

whose tensor expression is given by

Cab
cd = Rab

cd - 2 V V 1 + i%* V - (4-8-2)

* The sign conventions we have adopted, when applied to a positive-definite space, give a
Ricci tensor and scalar curvature with a sign opposite to that which is usual in the pure
mathematical literature.

** Two small notational changes from Volume 1 are the use of G rather than y, for the
gravitational constant, and the lower case V rather than ' ^ as the subscript for the
conformally invariant 5 and p (cf. (5.6.33) below).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.002
https://www.cambridge.org/core


Summary of Volume 1 21

Its anti-self-dual and self-dual parts are, respectively,

" Cabcd:= ^ABCD^A'B^cD' (4.6.42)

and
+ CaM:=VA.B-c-D.eABpCD (4.6.43)

and the same results are obtained if we dualize instead on the right. By
analogy with a corresponding operation on the Maxwell field, we define
duality rotations

Cabcd^
e)Cabci = Cabci cos 6 + *Cabcd sin 9

= e-ie-Cabcd + eie+Cabci (4.8.15)

which correspond to

(4-8.16)

Spinor Ricci identities

The decomposition (3.4.20), applied to the derivative commutator (4.2.14),
gives

Aflb = 2V[aVb] = eA.B. DAB + &ABDA'*> (4-9.1)
where

DAB = VjrMVj;, DA-B- = V ^ V j , . (4.9.2)

Operating on a spin-vector KC, (4.9.1) yields

Aflfc/c
c = {eA,BXABE

c + eABQ>A,B,E
c}KE, (4.9.7)

which splits into

DABKC = XABEW, nABKc = <!>A,B.EW. (4.9.8)

Similarly, on KC it yields

OABKC — ~XABc KE, OA'B'KC= ~®A'B'C KE' (4.9.11)

To deal with primed indices, we take the complex conjugates of (4.9.8) and
(4.9.11). For a spinor with several indices, these relations combine together,
to give, e.g.

n QC E' _ y CnQ E' y Qf)C E>

ABa D F' — ^ABQ ° D F' ~ ^ABD a Q F'

+ ® A B Q
E 0 c

D
Q ' r -<S>ABFQ'8C

D
E'Q> (4.9.13)

pi MC' E _ v C'±Q' E y Q'±C E
LJA'B'V D' F — ^A'B'Q' <P D' F ^A'B'D' <P Q' F

+ *>ABQE4>CDQF ~ <S>ABFQ4>C'n
EO. (4.9.14)

Relations involving ^^CD anc* A directly are sometimes useful, e.g.
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22 Summary of Volume 1

whence

D^o-^A,, (4.9.16)

(4.9.17)

Spinor Bianchi identity

The Bianchi identity

V[aRbc]de = 0 (4.10.1)
translates to

KXABCD = Vi®CDA'B', (4-10.3)
i.e. to

Vi^ABCD = V?B®CD)A'B' (4.10.7)

VCA
 ®CDAB' + 3VDfrA = 0. (4.10.8)

When Einstein's vacuum equations (with cosmological term)

ABC'D' ~~ U> A ~ 6A> ^f.lU.lU.j

hold, (4.10.7) reduces to the form of a 'massless free-field equation':

VAAx¥ABCD = 0. (4.10.9)

With matter present, Einstein's field equations (4.6.32) lead to a 'source
term' on the right:

(4.10.12)

Spinor curvature components

In conjunction with the spin-coefficients (4.5.16), we introduce curvature
components

v i / . ^ v - ^ w u/ - v - ^ w (4.11.6)

(4.11.7)

^oi = 0),O O O ' l '

<j)7n:=<l) ft ^)9 -=O $ ^ : = O 1 i r r . (4.11.8)
L\) 1 1 U U ZI 1 1 U 1 Z z 1 1 1 1 V /

the dyad being not necessarily normalized. (Note: ^>oio'o' =

Q>ABC'D>oAiBoc o°', etc.). In terms of the corresponding null tetrad we have

\i/ - y - i y - i f lamblcmd W — v ~ 1 v ~ 1 r lamblcnd

X A A flPCu ' j A A QDCu

(4.11.9)
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and

3>oo = - lKbl
alb *oi = - lKb

*io = - iKbl
a™b * i i = - i*a*Aa + 3n * 1 2 = -

$20 = - R ^ m * * 2 1 = - hKbm
anb 0>22 = - ^Rahn

anb.

(4.11.10)

Compacted spin-coefficient formalism

A (normally scalar) quantity rj which scales as

'Ffirfitrj (4.12.9)
under

oA\-+k>A, iAt->iiiA (4.12.2)

is said to be a weighted quantity of type {r',r;t\t}. Note that x has type
{U;0,0}:

X^kiix. (4.12.3)

So if we wish to preserve the normalization / = 1, only the two numbers

p = r'-r9 q = tf-t (4.12.10)

are defined and as we say, instead, that rj has type {p, q} or, equivalently,
spin-weight ^{p — q) and boost-weight j(p + q). We sometimes refer to such
a scalar rj simply as an {r\r;t\t}-scalar or a {p,q}-scalar.

For a scalar (or tensor, or spinor) of type {r\ r; t\ t] we define

pri = (D- r's - ri - t'l - ty')rj,

6'n = (5f - r'a - rfl - t'p- toi'%
p'rj = (£' - r'y - re' - t'y - ts')rj, (4.12.15)

and find that the operators p9 6, 6', p' are weighted (in the sense of sending
weighted quantities to weighted quantities) and have the following types

J>:{l,0;l,0}, 6:{l,0;0,l}, 6':{0,l;l,0}, ]/:{0,l;0,l}.(4.12.17)

The spin-coefficients appearing on the right in (4.12.15) are precisely those
which are not weighted. The others all have types, namely

K:{2, - 1; 1,0}, <x:{2, - l;0,1}, p:{l,0; 1,0}, T:{1,0;0, 1}

K ' : { - 1 , 2 ; 0 , 1 } , &:{- 1,2; 1,0}, p':{0,l;0,l}, T':{0, 1; 1,0}.

(4.12.13)

The curvature components are weighted scalars of types

¥ r : { 3 - r , r - l ; l , l } , II:{1,1;1,1}, (D r t :{2- r , r ;2 - t,t} (4.12.25)
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and for a general symmetric spinor of valence \_r.°+r r + r ] , the various
components

r' r t' t

have respective types {r',r9t'9t}. The components of the derivatives of
€A...M'> are> m this formalism

(oA. ../*'.. .MA...K.. = Kr.r + r>Ktr+ M + rr'£r_ M

(4.12.27)

The following relations are also useful:

poA = - /aA, pi^ = - x'oA, \>oA> = — KIA\ piA> = - x'oA>

QoA = - at*, 6iA = - p'oA, 6oA' = - piA\ &iA' = - d'oA>

&oA = - piA, 6'iA = - G'OA, b'oA' = - diA\ d'iA'= - p'oAl

\>'oA = — TIA, p'iA = — K'OA, p'oA = — xiA\ p'iA — — K!OA '.

(4.12.28)
Furthermore

^ = 0, 6 / = 0, 6'Z = 0, KX = O. (4.12.23)

The prime notation is being used consistently here to denote the
operation (4.5.17). Then for Y\ of type {r',r,t',t} we have

(,/')' = (-l) r ' + r ' - r - '>7 (4.12.24)
and

Moreover the curvature components (4.11.6), (4.11.8) are replaced accord-
ing to

Orsh-><D,U:0<->2,1<->1. (4.11.13)

Compacted spin-coefficient equations

The use of the operators (4.12.15) casts the differential relations satisfied by
the (weighted) spin-coefficients (and curvature quantitities) into the follow-
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ing relatively simple form

pp - d'/c = p2 + aa - KX - Z'K + O00 (a)

\>x - P'K = (T - f)p + (f - 1 > + ^ + <D01 -(c)

5p - 6'<x = (p - p)t + (p' - p')K - ^ + O01 (rf)

6T - ^(7 = - p'a - d'p + T2 + Kic' + <D02 (e)

p'p - 6;T = pp' + a& - 1 ? - KK' - V 2 - 2 n ( / ) (4.12.32)

together with their primed (and complex conjugated) versions. The
unweighted spin-coefficients do not appear explicitly, but their differential
relations are subsumed into the following commutator equations, as applied
to an {r\r\f',f}-scalar:

W ' _ j / p a B ( f - T 0 6 + (T-r )6 / -p ( i ac / -TT' + V 2 + * 1 1 - n )

- q(icic' - f f + ¥ 2 + O n - n ) (4.12.33)

j?6 - 5J? = pd 4-ad'- f > - K\>' - p(p'K - TV + *¥x)

-q(d'K-p? + <D01) (4.12.34)

66' - 6'6 = (p' - p')p + (p - p)J>' + p(pp' - a^ + ¥ 2 - «>! j - II)

- q(pp' - ad' + * 2 - <!>! x - n), (4.12.35)

together with their primed versions (for which p*-^ — p and gi-+ — g),
their complex conjugate versions (for which p*->q and q>-+p) and their
primed complex conjugated versions (for which p+-+ — q and
(We assume p and g are real.) The Bianchi identity becomes

f * 0 0 - 2p<DOi - 2<T<DI0 + 2K<Dn + K<D02, (4.12.36)

6'Vl - d'<D01 + t>'<D00 + 2J>II

- 2T'*?! + 3pV2 - 2K*¥ 3

p'<r>00 - 2fO01 - 2T<D10 + 2p<bl! + <T4>02. (4.12.37)

6"P2 - JXD21 + 6<D2O - 25TI

- 2p'<t>10 + 2T'<DU + f <D20 - 2pO21 + K O 2 2 ) (4.12.38)

- 2fd>21 + ff<I>22 (4.12.39)
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n + p'<t>00 - 6<D10 - 6'4>O1

= (p' + p'yt>00 + 2(p + ppi! - (T' + 2f)O01

- (2T + f )O10 - K<D12 - K<D21 + (T«D20 + <T4>02 (4.12.40)

J?'<D01 - dOn - 6'<D02 + 36n
= (p' + 2^')O01 + (2p + p)4>12 - (T' + f)O02

- 2(T + f )4>u - K 'O 0 0 - K<D22 + (TO21 + <T'<D10. (4.12.41)

The zero rest-mass (or massless) free-field equation

VAA'4>AB...L = 0, (4.12.42)

with 4>A...L = 4>(A...L) takes the form

j?<£P - 6'<)!)P_ j = (r - lKtf> B _ 2 - rT'</>,._ 1+(n-r+ \)p(j>r

-{n-r)K<t>r+l, ( r= l , . . . , n ) , (4.12.44)

together with the primed versions, where the components have types

<Pr = <t>o^oi::A=i~''<t>'l,-An-r,rAO}, (r = 0 , . . . , « ) . (4.12.43)
n — r r

The twistor equation V^ coB) = 0 (with co0 of type {0,1; 0,0} and co1 of type
{1,0; 0,0}) becomes

KO)° == pO)\ G(O° = &(O\ d'(O° = &(O\ p'(O° = K'CO1,

pco° + pa>° = d'co1 + T'CO1, 6CO° + TCO° = p'ca1 + p'cy1. (4.12.46)

Geometry of spacelike 2-surfaces

We set up a spin-frame (% = 1) at each point of an oriented spacelike
2-surface ¥ in a space-time ^ , such that the flagpoles of oA and ^ are
orthogonal to ^ at each point, with the spatial projection of the oA flagpole
pointing in the positive direction away from Sf. We use the compacted
formalism, so the choice of flag planes for oA and iA is immaterial. Hence, no
role is played by what could otherwise be topological restrictions on the
smooth choice of these flag planes. We smoothly extend the spin-frames
into a neighbourhood of Sf in M and find:

(4.14.2) PROPOSITION

If the null vectors la and na are orthogonal to a spacelike 2-surface 9*, then p
and p' are both real at £f.

The projection operator into & (at 9) is

Sa
b = - mam

b - mam
b (4.14.6)
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and Sab then acts as the negative definite metric tensor intrinsic to Sf. The
complex curvature of Sf

K = <To'-V2-pp' + <l>11+A (4.14.20)

involves an imaginary part which is an extrinsic quantity but

(4.14.21) PROPOSITION

K + K is the Gaussian curvature of 9.

We note that K is the sum of two parts

(j<j'-x¥2 and * n + A - p p ' , (4.14.41)

the first of which turns out to have simple conformal properties, and the
second of which is real. From the Gauss-Bonnet theorem we deduce that if
9 is a closed surface of genus g (with g = 0 for a topological sphere), then

-g) (4.14.44)

and the conformally invariant quantity

{oof - x¥2)&
f is real (4.14.45)

where £f is the surface-area 2-form on 9, given by

<f = \m/\m (4.14.65)

where m = mil9 m = mir

We note that if

P=PabdxaAdxb (4.14.52)

then its restriction to 9 is
Ij/?._/? _ _ Q _ Q ma^f.b (A\A^X\
2 r '— r^Ol'10' ~~ r lO'Ol' ~~~ r ab \ 1 i tJJl

whence

f f (4.14.66)

for a region Fcz^.
We can (locally) introduce a (type {0,0}) holomorphic coordinate £ into £f,

characterized by the property

d'£ = 0

(i.e. d'£ = 0), and we can define the {1, — l}-scalar P on Sf by

5 = P — (on type {0,0} scalars). (4.14.27)
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Then we find

m^-P-'d^ m=-F-1d£ (4.14.29)

and, for any {s, — s}-scalar rj,

QYl = ppsl_(psf]y (4.14.34)

If £f is a closed surface,

6'<x 5^= 0, (t) d&Sr = 0 (4.14.70)

where a has type {1, - 1} and a type {— 1,1}. Hence

(4.14.71)

where the types of #, rj add up to {1, — 1} and those of / , fj to { — 1,1}.

On a null hypersurface

We consider a compact 3-region £ of a null hypersurface JV, where X is
smoothly bounded by two spacelike 2-surfaces:

as = ^ ' - ^ . (4.14.73)

We choose the orientations so that the flagpole of iA points in the null
direction in Jf (i.e. normal to Jf, since Jf is null). We take u to be a
smoothly increasing parameter on each generator of Jf, scaled in relation
to na according to

naWau=U ( # 0 ) (4.14.88)

so U is a { - 1, l}-scalar. For a (null) 'volume' element on JV we take

JT:= \m/\mAl=UlSf A dw. (4.14.89)

The fundamental theorem of exterior calculus (4.3.25), as applied to X, then
takes the form

1 ', (4.14.92)

where n0 has type {0,0} and fit type { - 2,0}.
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§4.15 Functions on a metric sphere

In the study of (spin-weighted) spherical harmonics it is convenient to take
tf to be a metric sphere of radius R in M, arising as the intersection of the
future light cone J? of a point L, and the past light cone Jf of a point N. A
variable point Q of Sf has position vector vla relative to L and — una relative
to N. Then v is a { — 1, — l}-scalar and M is a {1, l}-scalar, the spin-frame
(oA, iA) varying with Q in a way consistent with our previous discussion. We
are interested in {/?,g}-scalars defined on Sf9 particularly in relation to
properties which are invariant under proper rotations of Sf (restricted
Poincare motions of Ml leaving both L and N fixed), and also properties
invariant under conformal motions oiSf. Thef latter are induced by restricted
Poincare motions of M leaving L fixed, where Sf is now identified as the
space of generators of Sf\ or alternatively those leaving N fixed, where Sf is
now identified as the space of generators of Jf. We call s = ̂ (p — q) the spin-
weight as before but now the boost-weight b = %(p + q) is re-interpreted
either as b = w (in the case when L is held fixed) or as b — — w (in the case
when N is held fixed), w being the conformal weight.

We find

6w = 0, 6i; = 0, 6 ^ = 0, 6't; = 0, (4.15.28)

(65' - d / 5) /= - sR ~ 2/, (4.15.29)

where / has spin-weight 5, and

dad'bf=d'b6af (4.15.36)

whenever b — a = 2s. Moreover, if g is defined by*

g = (vd')p+if (4.15.30)

where / is of type {p, <?}, with p ^ 0, then the relation between / and g is
invariant under restricted Lorentz transformations about L; as is the
relation between / and h given by

h = (v6)q+1f (4.15.32)

if q ^ 0. The conformally invariant operation in (4.15.32) is, in effect, 5W"S+ *
acting on a scalar of spin-weight 5 and conformal weight v O -s, while
for (4.15.30) it is (d')w+s+1 where w^s.

We define a spin-weighted spherical harmonic** to be a {p, <?}-function

* The factor v arising here has significance only in providing the relevant quantities with
a consistent boost-weight. In practical calculations we may, if desired, set v'= 1.

** See Newman and Penrose (1966); essentially the same objects, somewhat confusingly
called 'monopole harmonics', have been described by Wu and Yang (1976), cf. Dray
(1985), and date back to earlier work: Fierz (1944), Dirac (1931) and Tamm (1931); see
also the reference to Gegenbauer functions in Chandrasekhar (1983).
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on Sf which is an eigenfunction h of d'd:
2h (4.15.54)

where s is the spin-weight of h, and; is an integer or half-integer (the 'total
spin'), satisfying

\s\*Zj.

Spin-weighted spherical harmonics can be characterized in another way
as the components with respect to oA, iA of a constant spinor

/A^H^H;^(A...DHE'...H') (4.15.42)

for which

J A...DE...H' i E "• * H fcC3)U...H)

Ta being a timelike vector in the direction LN. Here the notation S^ is
being used for the subsystem (vector space over C) of S ^ of constant spinor
fields, and the bracket notation of (3.3.14) is also being adopted.

The following table is useful:

0
1

1

I
2
i

6'

6

4
5

6

3

5

2

4

6

1

3

5

2

4

6

3

5

6
4 ~"

5
6 6

* = ... "! - 2 ~1 -1 "i 0 i 1 I 2 | -
(4.15.60)

The numbers in the triangular array (extending indefinitely downwards)
are the complex dimensions of the various spaces of these harmonics; 6
carries us one s-unit to the right and yields zero if and only if this moves
us off the array; the action of 6' is similar but in the other direction. In
particular we have

(4.15.59) PROPOSITION

/ / / defined on Sft has negative [positive'] spin-weight then 6f= 0
[or a r / = 0 ] implies f=0.

We note that if 5 =j = 0 (the apex of the triangle), then the harmonic is
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a constant. Hence if h has s = 0, each of the equations dh = 0, d'h = 0,
5'5/j = 0, dd'/z = 0 implies that h is constant on Sf.

The table (4.15.60) is also helpful in the context of conformal transfor-
mations of Sf. If we fix attention on the point (sj), then we find that,
for conformal weight w =j9 the spaces represented by the set of points of
the s-column above and including that point will together form a
(j + 5 + l)(j' — s + l)-dimensional space which is transformed to itself under
conformal motions of Sf. (This is the space of components of the
spinors (4.15.42), with p=j + s, q =j — s.) If, on the other hand, we take
the conformal weight to be w = — j — 2 (the dual situation), then we find
that the property of a quantity of spin-weight 5 that it contain no
contribution from this space is conformally invariant.

If we choose a standard stereographic coordinate ( on 9>, in accordance
with (1.2.10), we find that it is awft'-holomorphic and so we can take

{ = £ (4.15.115)

Then we find, making the specialization P > 0, that

(4.15.116)

and, for rj of type {5, — 5}:

=
(4.15.117)

We remark that for; = % the spin-weighted spherical harmonics (in the £-
system) are linear combinations of

dand (where s = -

(multiples of -±y±,-± and -^Y^respectively) or of

C
and (when s = £).

(multiples of ± 1 ^ , - * and ^ Y ^ ) . If 7 = 1 and 5 = 0 they are linear
combinations of

and
cr+r

(multiples of o y_i , - i , 0^-1,0 a n d
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Derivatives of charged fields

In the presence of charged fields, the symbol Vfl denotes the appropriate
(covariant) derivative operator which involves the electromagnetic field
as well as the space-time curvature. Thus for a scalar field i//9 in Jt, of charge
e we have

iAabi// = eFabil/ (5.1.30)

where Aab is as in (4.2.14) and where Fab is the Maxwell field tensor. More
generally, if if/^e^ (where S*^ denotes the module of spinor fields of
charge e and index type *s/), then

(5.1.31) PROPOSITION

Aab
ll/S/ differs from the result of a commutator acting on an uncharged i//^

simply by the additional term — \eFab\j/^'.

In particular,

A ^ c = - J U V - - Watte. (5.1.34)

In accordance with (3.4.20), Fab has a spinor expression

Fab = <PAB£A>B' + SjU&A'W* (5.1.39)

which defines the electromagnetic spinor cpAB = q>iAB). When [2AB (C^- (4.9.2))
is applied to a field \j/^ of charge e, the result differs from that applied to an
uncharged i//^ simply by the additional term — ie(pABi//A

9 and correspond-
ingly for nA'B'> e-g-

D C 0 (5.1.44)

. (5.1.45)

A potential Oa, for which

^ » = Va<Dd-Vt«Da (5.1.37)

relates to cpAB according to

If the Lorenz gauge condition

Vfl0>fl = 0 (5.1.47)

holds, then (5.1.46) simplifies to

VAB-VA'AW- (5X49)

With a source present

(5.1.38)
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The current Ja is real (and uncharged) and subject to

. (5.1.54)

In spinor terms, (5.1.38) becomes

VAB(pA
B = 2nJAA>. (5.1.52)

When Ja = 0 this becomes another example (along with (4.4.61) and (4.10.9))
of the massless free-field equation (4.12.42), namely

VAA'9AB = 0. (5.1.57)

The relation between the components cpAB and those of the Maxwell field
is, explicitly,

<Poo = Kf 3i + f oi - i^32 - ^02) = XPi - iC2)

(Poi=?i-Fo3-iFi2)=-lC3 (5.1.59)

<Pu=&F3i-FOi+iF32-iFO2)= -\{CX + iC2),

where the complex 3-vector C is related to the electric 3-vector E and the
magnetic 3-vector B by

C=E-\B. (5.1.60)

The well-known scalar invariants

P = B2-E2, Q = 2E- B (5.1.67)

arise spinorially as

K--=<f>Ag<PAB = t-F*-F* = &*-Fb = P + iQ. (5-1.68)
Sometimes we allow complex Maxwell fields, and then the <pA.B. in (5.1.39)
must be replaced by an independent quantity (pAW. Accordingly

£ : = <pA,B,<pAB> = \Fab
+Fab = P-xQ (5.1.69)

is independent of K, and we have, inversely

P = (K + £)/2, Q = (K - K)/2l (5.1.70)

A real field is purely electric [or purely magnetic] (i.e. Lorentz trans-
formable to one for which B = 0 [or E = 0]) if K < 0 [or K > 0]. It is simple
whenever K is real.

The electromagnetic energy tensor has the simple spinor form

Tab = ^<pAB<pAB' (5.2.4)

and if it acts as the only source of the gravitational field Einstein's equations
(4.6.32) become

, A = iA (5.2.6)
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and the Bianchi identity (4.10.7) becomes

(5.2.7)

Yang-Mills fields

We use capital Greek letters for bundle indices. In particular, a Yang-Mills
charged (YM-charged) field k*is so labelled. The symbol Va now extends,
when applied to such fields, to become a bundle connection, subject to

(5.4.17)

(5.4.18)

feX lor (31 (5.4.19)

where I 0 , in the case of a real vector bundle, or S 0 , in the case of a complex
vector bundle, denotes the module of cross-sections of the bundle (paired
with the abstract index <Z>). The bundle curvature Kabn

0(in the torsion-free
case; compare (4.2.31)) is defined by

Kata**a= (VflVfe - VfcVJA*. (5.4.23)

In the case of Yang-Mills (YM) fields we frequently assume a unitary
(Hermitian) structure for the bundle (i.e. complex conjugation interchanges
upper and lower capital Greek indices). In place of Kabn

0we use the (in that
case Hermitian) Fabn

0= iKaba
0 which satisfies, e.g.

&atPv=iP0Fabr
0. (5.5.30)

Its bundle components are related to a YM potential <&aS* (a matrix of
covectors) by

(allowing space-time indices to move across the YM component indices).
Gauge transformations effect

<J>,.re^<tW° = <•>.*%*«* + i r » * W (5-5.25)
and

Fabe^Fab^ = FjSrSqf, (5.5.29)

but preserve the abstract curvature quantity Fabe
tF (the YM field). The

matrices (rY*) and (q^*) are inverses of one another (and also Hermitian
conjugates in the unitary case).

In spinor terms we have a decomposition

S^ (5.5.36)
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where
<PABeF= <P{AB)e

F= IFABCCJ (5.5.37)

XA'B'S —X(A'B')e — 2rC A'B'

(these being complex conjugates of one another in the unitary case). We
have spinor 'Ricci identities'

DAB* «P= ^ S<PAB A DAW* «P= ^ SXAB> A

and the expressions in terms of potentials

XABS = VMA'K** ~ ifcA'V^e*. (5.5.41)

The YM ('source-free') field equations

V f l F f l ^ = 0 (5.5.35)

together with the identity

V^^O (5.5.34)

take the spinor form

VBA-<PABer=O = VZxA-*er- (5-5.44)

The self-dual and anti-self-dual parts of a YM field are, respectively

+?<***= * ABXABJ (5.5.49)

-Fate*=<PABe**A'B-. (5.5.50)

The YM field is said to be self-dual [anti-self-dual] if its anti-self-dual [self-
dual] part vanishes—and then (5.5.35) follows from (5.5.34).

Conformal rescalings

We accompany a rescaling

9at^8ab = n2gat (5-6.1)

of the space-time metric, by the 'geometrically natural'

eAB^&AB = Q&AB (5.6.2)

(together with its complex conjugate), where Q is a nowhere vanishing
(normally positive) real scalar field. ('Hatted' quantities have indices raised
and lowered with 'hatted' #s and es.) Defining

(5.6.14)
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we find that covariant derivative transforms as follows

?:;;; + - . (5.6.15)
Various different scalings may be applied to a dyad when accompanying

(5.6.1), (5.6.2), so we write

Setting
co = logQ (5.6.23)

and

we find that the spin-coefficients transform as

(5.6.25)
p
d

i

i

A

$

1

f
9

r
&
P
m

In particular,

/c, a, K:', a' are all conformal densities (5.6.28)

(of respective weights 3w0 - w^ 2w0, 3Wi - w0, 2wx), and also

T - f amJ r/ie imaginary parts of p, pr, e, e', y, y'

are all conformal densities (5.6.29)

(of respective weights w0 + wl9 2w0, 2wl9 2w0,2wl9 2w0,2wt)9 where we say
that rj has conformal weight w if rj changes to

rj = nwrj (5.6.32)

under (5.6.1), (5.6.2), (5.6.22). Suppose that rj is also of type {r',r;f',f} (i.e.
undergoes (4.12.9) under (4.12.2)). Then we define the following operators

by their effect on such rj:

\>c = \> + [w - r'(w0 + 1) - rwt - t'(w0 + 1) - t w j p

K = V + [w - rSvo - r(wi + 1) - ^w0 - t(w, + l)]p'
6r = 6 + [w - r'(w0 + 1) - rwx - r'w0 - t ^ + 1)]T

a; = 6' + [w - r'w0 - r(wi + 1) - r'(w0 + 1) - twxy. (5.6.33)
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These enjoy a conformal invariance:

d'j = $'r\ = nw+wo+W16^. (5.6.34)

Using these operators we can simplify the appearance of the compacted
equations (4.12.44) for the massless free-field equations to

P A - 8 > r - 1 = ( r - l K 0 r _ 2 - ( n - r ) i c 0 r + l f

5 > r - P'A-1 = (r- \W4>r-i -in-r)a<t>r+u (5.6.37)

of the compacted equations (4.12.46) for the twistor equation to

&'£(O° = G'(D\ <S(Ol = (TO)0,

pc(O
l = KCO°,

(5.6.38)

and also of the equation (4.14.92), for the null hypersurface version of the
fundamental theorem of exterior calculus, to

i (5-6.40)

Massless free fields

We have already given the field equation (4.12.42) for a massless free field

<t>AB...L — ^(AB.-.D °f sPin 2n (n indices). The complex conjugate form

VAA 0A'B'...Lf = 0» 8A'B'...L' = 6{A'B'...L') (5.7.3)

also describes a massless free field of spin jn, but there is the distinction that
if we are considering positive frequency wave functions, then (5.7.3) describes
right-handed massless particles (helicity + jnh) whereas (4.12.42) describes
left-handed ones (helicity - %nh). We must remark, also, that in general
these equations are satisfactory only in (conformally) flat space-time since
the calculation

fABC.L

YABC...L

>ABC...M (5-8.1)

yields the Fierz-Pauli-Buchdahl-Plebanski constraint

(« - 2)</w,c...K V * = - iecpABd>ABC...L. (5.8.2)
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38 Summary of Volume 1

The case n = 4 in M is of considerable significance since it corresponds to
the weak-field limit of general relativity. We take the space-time metric to
be a smoothly varying function gab(u) of a parameter M, where gab — gab(0) is
the Minkowski metric, with

QaiM = gab + uhab + O{u2).

We find
Kabcd:= Km(u-1RabJu)) = 2VIaV|[c*flW (5.7.4)

for the weak-field curvature, the weak-field limit of Einstein's equations
being

Ktie
h-^gaeKu

M=-%nGEme (5.7.6)

(where Eab is the weak-field energy-momentum tensor). Kabcd has the
symmetries of the Riemann tensor, and in the absence of sources enjoys a
spinor description like (4.6.41):

Kabcd = ^ABCD^A'B^C'D' + ^A'B'C'D'^AB^CD' (5.7.8)

In the absence of sources, <j)ABCD satisfies the massless free-field equation
(4.12.42) (cf. (4.10.9)) by virtue of the linearized Bianchi identity

V[aKbc]de = 0. (5.7.9)

In terms of the linearized metric hab we have

^ B . (5.7.12)

Behaviour under conformal rescalings

We can preserve the massless free-field equation (4.12.42) under conformal
rescaling, for each n (compare McLennan 1956), by taking

$AB...L = W4>AB...L (5-7.17)

since then (5.6.15) implies

^AA'hB...L = n-^AA'<t>AB...L. (5.7.20)

Another conformally invariant equation is the vanishing divergence
relation

VaTab = 0 (5.9.1)

on a trace-free symmetric tensor Tab = TiAB)iA.B.)9 since if

Tab = Q-2Tab, (5.9.2)

then by (5.6.15) we obtain
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Summary of Volume 1 39

We have seen that the electromagnetic energy-momentum tensor (5.2.4) is
of this type. So also is that for the Dirac -Weyl equation (4.4.61) (with vA for

(5-8.3)

(k some real constant). The verification of (5.9.1) for (5.8.3) in a curved
space-time is facilitated by use of the following identity, needed later:

V* W » = VrJA
AtA~FA-BVUA + ^eA.B4B-<t>ABABZA. (5.8.4)

The charge-current conservation law (5.1.54) is also conformally in-
variant, with

J. = Q-2J.. (5.9.3)

This follows directly from the fact that (5.1.54) simply asserts that the
exterior derivative of V vanishes, where (cf. (3.4.29))

V = V i l W j = e,lWs.J', (5.9.5)
since

d r / = V J W 3 l 4 l = - i(VaJ
a)eili2hi4. (5.9.6)

Note that
eabcd = ^ e a b c d (5.9.7)

so that (5.9.3) is compatible with f 7= V. The natural scaling for F= Filh as
a 2-form, namely / = F, is also compatible with the Maxwell equations with
source (5.1.38),

d/-=0, d * F = y V , (5.9.13)

so (5.1.52) is also conformally invariant with this, the standard massles field
scaling (5.7.17):

4>AB = n-X<PAB, i.e., <PAB = Q " V * . (5.9.8)

Various other field equations

The wave equation

U4>'=^AA'VAA4 = 0 (5.10.6)

can be restated as the spinor property

V£V£0 = O, (5.10.7)

i.e. as the fact that VAA>VBB'(t> is a symmetric spinor (in the sense of
Proposition (3.3.62)). In M, any massless free field (including (j> subject to
(5.10.6)) has the property that any number of uncontracted derivatives will
always yield symmetric spinors. Let such a differentiated spinor be 9A;;;i
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40 Summary of Volume 1

(with appropriate index positioning). Then

' = o. (5.10.9)

Conversely (see (3.3.14)):

(5.10.10) PROPOSITION

//(5.10.9) holds, then ̂ / / / | eS^'/z/f)* is an rth derivative of some masslessfree
field.

The Dirac equation for the electron (spin J) may be written in the 2-spinor
form

VAA>XA' = - 1 4 * (5.10.15)

where h\i yjl is the mass. (The difference in choice of index positioning
between \j/A and xA has no significance.) The Schrodinger-Klein-Gordon
equation (spin 0) is

( • + 2/z2)0 = O. (5.10.20)

The (Dirac) equation for higher spin (in IU, free of electromagnetic field) is
the coupled pair

v"V&:.rD = « & r , v ^ z & r = - /!*&::£ (5.10.35)
the spin being one half the total number of indices of each spinor, these
spinors being assumed symmetric (with the mass as before). This symmetry
implies that the 'subsidiary conditions'

V£«:./' = 0, VWL"r = 0 (5.10.36)

hold. Moreover, each of ^;;;, x\ satisfies (5.10.20).

Null hypersurface data

A system of spinor fields, subject to field equations and derivative
commutator equations, is said to form an exact set if all the symmetrized
derivatives can be specified arbitrarily at any one point and if all
unsymmetrized derivatives can be expressed in terms of the symmetrized
ones. The standard 'consistent' systems (e.g. the Einstein-Maxwell-Dirac
system) can all be put into the form of exact sets. Let JV be a null
hypersurface, £A being defined over JV with flagpole pointing along the
generators of Jf. H^A...EP...S' *S a fi^d belonging to the given system, then
its null-datum at a point XeJf is

* = {A...ZEr...?Sl<l'A...Ee:..s-lx- (5.11.11)
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Summary of Volume 1 41

The exact-set condition asserts that, for a light cone (in an analytic space-
time J(\ the null-data, on Jf, for all the various fields of the system, form a
complete irredundant (constraint-free) initial data set.

The simplest type of exact set is a single massless free field (f)A _ L in M. Let
Jf be a general (but suitable) null hypersurface in Ml. Then the generalized
Kirchhoff-d'Adhemar formula

1 & (5126)

can be used to express the field at a point Pe M in terms of the null-datum </>
at the points Q on the intersection, Sf> of the light cone # of P with Jf. As Q
varies, the flagpoles of rjA point along the generators of Jf, and r is defined
by ^

(QPy = rrjAfjA'. (5.12.2)

The operator pe, is given by (5.6.33) (1), where the spin-frame is

oA = £A, iA=-rjA (5.12.7)

(so that £At]A = 1), and we have, explicitly here,

p c = p - (n + \)p = D - ns - (n + l)p. (5.12.8)

Sf is the 2-form element of surface area of £f at Q, as before.
To prove (5.12.6) we fix V and vary Sf, showing first that the RHS is

independent of the cross-section Sf of ^ that is chosen, and then taking the
limit as £f shrinks down to P. The independence of cross-section depends
upon (4.14.92) (complex conjugated, and with # in place of Jf) and on the
vanishing of A, as defined in

A:= (pf - 2p'W - (8' - % i = 0. (5.12.17)
Here

/ i o ^ o / V - 1 ^ (5.12.16)
and

fiv = conr~\6(l) - (n + 1)T(/> + nG<t>x) (5.12.18)

with 0i = 0io...o a nd ^ = OJATJA, where cô 4 is constant in Ml. If desired, we
can replace coHr~x by a { — n— 1, — l}-scalar F, subject (when p' = 0) to

pT = 0 = 6T; i.e.,J>T = 0, 6T = 0. (5.12.32)

This concludes our summary of the relevant portions of Volume 1. That
volume was concerned mainly with the setting up of the basic 2-spinor
formalism and geometry, and with providing spinor descriptions of the
most familiar physical fields. In what follows we shall enter more thoroughly
into certain important questions of space-time geometry where spinor
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42 Summary of Volume 1

techniques have proved particularly valuable. We shall treat asymptotics
and energy-momentum in general relativity, the detailed classification of
space-time curvature and the geometry of null rays. As a major part of our
development we shall also need to provide a basic introduction to the
powerful techniques of twistor theory. That is where we begin our
discussion.
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Twistors

6.1 The twistor equation and its solution space

At various places in Volume 1 we stressed the fact that the two-component
spinor calculus is a very specific calculus for studying the structure of
space-time manifolds. Indeed, the four-dimensionality and (H )
signature of space-time, together with the desirable global properties of
orientability, time-orientability, and existence of spin structure, may all, in a
sense, be regarded as derived from two-component spinors, rather than just
given. However, at this stage there is still only a limited sense in which these
properties can be so regarded, because the manifold of space-time points
itself has to be given beforehand, even though the nature of this manifold is
somewhat restricted by its having to admit the appropriate kind of spinor
structure. If we were to attempt to take totally seriously the philosophy that
all the space-time concepts are to be derived from more primitive spinorial
ones, then we would have to find some way in which the space-time points
themselves can be regarded as derived objects.

Spinor algebra by itself is not rich enough to achieve this, but a certain
extension of spinor algebra, namely twistor algebra, can indeed be taken as
more primitive than space-time itself. Moreover, it is possible to use
twistors to build up other physical concepts directly, without the need to
pass through the intermediary of space-time points. The programme of
twistor theory, in fact, is to reformulate the whole of basic physics in twistor
terms. The concepts of space-time points and curvature, of energy-
momentum, angular momentum, quantization, the structure of elementary
particles with their various internal quantum numbers, wave functions,
space-time fields (incorporating their possibly nonlinear interactions), can
all be formulated - with varying degrees of speculativeness, completeness,
and success - in a more or less direct way from primitive twistor concepts.

Twistor theory has, however, become rather mathematically elaborate.
To cover in any thorough and comprehensible way all the above-
mentioned aspects of the theory would in itself require a book considerably
larger than the present volume. (Some of these topics are to be covered in a
forthcoming book by Ward and Wells, 1986.) In any case, to appreciate
twistors fully and to be able to calculate with them, one must first study

43
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44 6. Twistors

spinor theory, somewhat along the lines that we have followed in Volume 1.
Thus we do not attempt to be in any way complete in our description of
twistor theory. The account given here will serve as an extended (perhaps
somewhat lop-sided) introduction to the subject. We shall develop in detail
mainly that part of twistor theory which relates to spinorial descriptions of
twistors, and indicate some of their profound connections with energy-
momentum/angular momentum and with massless fields. We do not enter
into much discussion of how twistors may be regarded as more primitive
than space-time points, nor do we discuss quantization at any length, or
particle theory, or give much detail of the treatment of nonlinear fields. In
this chapter, apart from giving a discussion of local twistors in general
curved space-time (local twistors in fact lying somewhat outside the main
development of twistor theory), we shall restrict our account of twistors
almost entirely to Minkowski space-time IU, though many interrelations
with curved space-time properties will be given. In §7.4 we indicate how
certain twistor ideas can be applied in general space-time M (particularly
in relation to a hypersurface ^f cz J(\ and in §9.5 we show how twistors can
be used in cosmological models, while in §9.9 we introduce the concept of 2-
surface twistors and show how our flat-space discussion of §§6.3-6.5 can be
adapted to a curved-space context and suggest a quasi-local (and asympto-
tic) definition of mass-momentum-angular momentum surrounded by a 2-
surface (the asymptotic mass-momentum agreeing with the standard
definition of Bondi-Sachs). However we have had to omit a good deal of the
detailed theory of general curved-space twistor theory. The twistorial
description of space-time curvature is one of the more elaborate and
sophisticated (and, indeed, remarkable - though incomplete) parts of
twistor theory and, regrettably, it must remain outside the scope of the
present work. (See Penrose 1976a, 1979a, Hansen, Newman, Penrose and
Tod 1978, Tod 1980, Tod and Ward 1979, Ward 1978, Penrose and Ward
1980, Porter 1982, Hitchin 1979, Atiyah, Hitchin and Singer 1978, Wells
1982 for details.) There is much that is striking and illuminating even in the
application of twistor theory to the weak-field limit of general relativity, cf.
§§6.4, 6.5. This will be of crucial significance also for the curved-space
discussion of §9.9. (See also Huggett and Tod 1985).

The twistor equation

Our point of departure is the equation (cf. (4.12.46), (5.6.38)*)

V"CB« = 0, (6.1.1)

* Equations, propositions, etc. of Volume 1 (i.e. in Chapters 1-5) which are referred to in
Volume 2 are all to be found in the preceding summary (except for a few parenthetic
references distinguished by the explicit mention of'Volume V when cited).
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6.1 The twistor equation and its solution space 45

called the twistor equation (Penrose 1967a; cf. also Garding 1945)*. We
begin by investigating its formal properties, leaving its physical and
geometrical significance to later sections. First, we easily prove it is
conformally invariant. Choosing

<&B = coB, (6.1.2)

we get, from (5.6.15), (5.6.14)

whence
ty£(X)B) = n-lVfaB\ (6.1.4)

Thus, conformal invariance is established.
There is a severe consistency condition for (6.1.1) in curved space-time,

analogous to (5.8.2). For we have (cf. (4.9.2), (4.9.11), (4.6.35), (5.1.44))

VA'iCV*,coB) = - a{CAo)B) = - VCA
D

B<oD - \eq>(CAo)B\ (6.1.5)

allowing for the presence of an electromagnetic field, and the possibility
that coB has charge e. Thus (6.1.1) implies

VABCD<»D = - ie<P(ABO*c)> (6-1.6)

which is the analogue of (5.8.2). If coD ^ 0 and e = 0, we see, by reference
to Proposition (3.5.26), that coD is a four-fold principal spinor of *¥ABCD-

Thus, non-zero uncharged solutions of the twistor equation can exist only
at points where ^ABCD *S either zero or 'null' (i.e. possessing a four-fold
principal spinor). If e # 0, the situation is no better. In view of these
difficulties our discussion of (6.1.1) in this chapter will be restricted to
conformally flat space-times (characterized by XVABCD = ^

 s e e §§6.8,9),
and most of our calculations will actually be done in Minkowski space M.
Their extension to conformally flat space then follows from conformal
invariance. (For extensions to arbitrary curved space: local twistors,
hypersurface twistors and 2-surface twistors, see §6.9, §7.4 and §9.9,
respectively.) Even in flat space, (6.1.6) has no solutions other than zero if
e ^ 0 and <pAB is somewhere non-vanishing. So we assume, from now on, that
unless the contrary is stated all fields are uncharged.

In Minkowski space, equation (6.1.1) indeed possesses non-trivial
solutions. We shall now find these explicitly. We choose an arbitrary origin
0 in M and label points by their position vectors xa relative to 0. We regard
xa as a vector field on M. At O it is zero, and everywhere it satisfies

vS=g.b, (6.1.7)

* A version of this equation, written in terms of y-matrices, was found by Wess and
Zumino (1974) in connection with supersymmetry theory. See Appendix to this volume:
(B.94), (B.95).
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46 6. Twistors

since in standard Minkowski coordintes, xa, the components of xa at a
point, are the coordinates of that point. Now consider

V^V> C , (6.1.8)

of being a solution of (6.1.1). The expression is therefore skew in BC. But
since M is flat, we can commute the derivatives and then the expression is
seen to be skew in AC. It is therefore totally skew in ABC and so must
vanish. This tells us that Vf,coc is constant. Since it is skew, it must therefore
be a constant multiple of eBC, say — inB>eBC for some constant spinor nB>.
(The factor — i is inserted for later convenience.) So we have

VBA.(oc=-ieB
cnA,. (6.1.9)

Integrating this equation gives coc = xBA'( - ieB
cnA,) + constant, as can be

seen by writing it in coordinate form, and so we find

= Q)A — IXAA 7CA>)

(6.1.10)
nA. = nA,

where d>A and %A. are to be understood as follows: since coA is a spinor field,
the RHS of (6.1.10) (1) must be regarded as a spinor field also. This can be
done by regarding &>A and hA. as constant spinor fields whose values coincide
with those of coA and nA>, respectively, at the origin. A similar convention
should be understood whenever we write a point symbol over a spinor
kernel. (The symbol<o' above nA. is, of course, redundant here, but it makes
what follows more consistent.)

Twistor space

As in the case of all (complex) linear differential equations, the solutions of
the twistor equation constitute a vector space over the complex numbers,
with scalar multiplication and addition of solutions defined in the obvious
way. In the case of a general linear equation this vector space is often
infinite-dimensional. It is clear from (6.1.10), however, that the solutions coA

of the twistor equation are fully determined by the four complex
components at 0 of coA and nA. in a spin-frame at O. These solutions coA

therefore constitute a four-dimensional vector space Ta over the complex
numbers called twistor space (and they thus have eight real degrees of
freedom). The elements of twistor space are called [o]-twistors, and we shall
usually denote them by sans-serif capital kernel symbols with small Greek
(four-dimensional) abstract indices, e.g., Za. If we denote the particular
solution coA of (6.1.1) by Za we express this as follows:

Za = [coAl (6.1.11)
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6.1 The twist or equation and its solution space 47

Multiplication by a complex number and addition of twistors are defined in
the obvious way:

A[©^] = [AG)A] (AeC), M + K*] = [coA + ^ ] . (6.1.12)

From these [o]-twistors we can build up twistors of arbitrary valence [J]
according to the standard rules of constructing tensor systems such as given
in Chapter 2.

Thus we have abstract-index copies T^, "P, . . . , of Ta, and other spaces Ta,
If,... It turns out, however, that higher-valence twistors cannot in general
be represented by single fields of spinors. In order to make the algebra of
higher-valence twistors more systematic and manageable in terms of their
spinor-field descriptions, it is much more convenient to use the pair of
spinor fields coA, nA. to represent Za rather than to use coA alone. When
concerned with such descriptions we shall, as an alternative to (6.1.11),
write*

Z< = (a>A
9nA.), (6.1.13)

where coA and nA. are related by (6.1.9) (or, equivalently, by (6.1.10)). But,
unlike (6.1.11), the description (6.1.13) is not conformally invariant.
(However, see §6.9.)

Since knowing coA is fully equivalent to knowing the constant spinors <hA

and hA, (cf. (6.1.9), (6.1.10)), we can also represent the field a>A and hence Za

by the values coA(O) and nA{0) of the spinor fields coA and nA. at.O. We then
write

Z « £ ( a / ( O ) , 7^,(0)), (6.1.14)

the symbol <-+ reminding us that the correspondence (6.1.14) is not
Poincare-invariant, but depends on the choice of a particular space-time
origin 0. Occasionally we shall use the notation

ZA = o\ ZA. = nA.9 (6.1.15)

where coA, nA, could be either spinor fields (description (6.1.13)) or point-
spinors at 0 (description (6.1.14)). They are, in either case, called the 'spinor
parts' of Za Cat 0'). By (6.1.14) and (6.1.10) we have

X(coA, nA) = (XcoA
9 An A K > * A ) + ( ^ 1A) = K + <̂ > *A- + lA

(6.1.16)

* Any temptation to identify the twistor (6.1.13) with a Dirac spinor (cf. (5.10.15) and the
Appendix) should be resisted. Though there is a certain formal resemblance at one
point, the vital twistor dependence (6.1.10) on position has no place in the Dirac
formalism.
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48 6. Twistors

One might choose to regard Ta (non-Poincare-invariantly) as the direct
sum S^[0] ® S^-CO] of the spaces of spinors of type coA and nA> at O. (We
recall that S^[P] is the complex vector space of spinors of index type st at
the point P.) The index a of Za would then be viewed as a kind of direct sum of
the abstract index A and the abstract index A' in reverse position. (Note that
this is quite different from the 'clumping' of §2.2.) In practice we can often
treat A and A' as the two 'values' taken by a. When viewed in this way, a is
somewhat intermediate between being fully abstract and being numerical.
Note that the 'components' (6.1.15) corresponding to these 'values' A and A'
of a get transformed when we change the origin (cf. (6.1.10)), so we prefer
not to adopt this view formally.

If we choose an arbitrary spin-frame (oA, iA) at 0, we may construct a
twistor basis as follows:

S*Z(O, - iA) 8%~(0,oA). (6.1.17)

The linear independence of these twistors is manifest. Now, since

(coA(O\ nA{0)) = (co°(0)oA + co\0)i\ nv(O)oA, - nQ{O)iA\ (6.1.18)

it is evident from (6.1.12), (6.1.16), and (6.1.17) that

Z« = Z«<5°, (6.1.19)
with

Za = K(O) , co\0\ n0{0\ nv(O)\ a = 0,1,2,3. (6.1.20)

From this and (6.1.15) we have the following explicit equations:

(6.1.21)

So Z° and Z1 can be consistently interpreted either as the 0,1 components of
Za or as the components of the spinor part ZA at 0. We shall make the
convention that components of spinor parts of any twistor (unless
otherwise stated) are always to be evaluated at the origin.

Dual twistors

Since [o]-twistor space is effectively the direct sum of the spaces of spinors
of type coA and nA, at 0, the dual, [?]-twistor space, must effectively be the
direct sum of spaces of spinors of type lA, \xA> at O. Typically, we may write

(6.1.22)
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6.1 The twistor equation and its solution space 49

and the scalar product must then be defined as

WaZ« = UO)coA(O) + iiA'(O)nAO). (6.1.23)

Analogously to (6.1.13) we wish to represent [?]-twistors by two spinor
fields XA and \iA>, so that the dependence on the origin 0 is removed. We
write

\Na = (XA9fi
A\ (6.1.24)

(6.1.22) giving the values at 0. We require (6.1.23) to hold not just at 0, but
at every point of M:

kAcoA + ii? nA. = W.Z" = UO)coA(O) + iiA\O)nA{O)

= lA&A + [iAnA,9 (6.1.25)

where, as before, \A and jiA> are constant spinors whose values at 0 are XA(O)
and \iA (0), respectively. Substituting (6.1.10) into this equation yields

IJ&A ~ ixAA'n*) + VA'kA- = h&A + it*'**.

And since this relation must hold for arbitrary constant d>A, nA>, the
'coefficients' of these spinors must be equal; this gives the following form for
the fields kA, nA'\

H* = fiA> + ixAA '1A. (6.1.26)

We can verify at once from (6.1.26) that the field \iA' satisfies (and is, in
fact, the general solution of) the conjugate twistor equation

V^V'> = 0, (6.1.27)

and that, analogously to (6.1.9), XA can be obtained from \iA' by

V^-feV^- (6.1.28)

Thus, the XA in (6.1.24) is redundant and Wa is fully determined by fiA>. In
fact, we can, alternatively to (6.1.24), identify Wa with \iA> (cf. (6.1.11)) and
write

\Na = lnA'l (6.1.29)

this being conformally invariant, like (6.1.11), though less convenient than
(6.1.24) for building up twistors of higher valences.

It is worth noting the form which the inner product W^" takes directly in
terms of the spinor fields coA and \iA. We need only substitute from (6.1.9)
and (6.1.28) into (6.1.25) to find

i y > M : = W,Za = W V ^ c o * - coAVABffi
B). (6.1.30)

Each solution fiA' of (6.1.27) can be obtained by simply complex-
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50 6. Twistors

conjugating a solution of (6.1.1): coA
 \-*JAA> = COA'. This is evident from a

simple inspection of the two differential equations, or, alternatively, from an
inspection of their respective general solutions (6.1.10), (6.1.26). This
suggests that we identify the [?]-twistors Wa with the complex conjugates
of the [o]-twistors Za, and vice versa. Consequently we define

W^ = Wa:= (jHA, IA). (6.1.31)

Note that the choice of the arbitrary factor in (6.1.9) as — i enables us to pass
via complex conjugation from (6.1.9) to (6.1.28), and from (6.1.10) to (6.1.26).
The complex conjugation of an arbitrary twistor will be discussed presently.

Analogously to (6.1.15), we sometimes write

\NA = AA, \NA' = fiA\ (6.1.32)

(either as spinor fields or as point-spinors at O) for the spinor parts of Wa.
We shall want to define a dual basis 5" to (6.1.17). It must satisfy

W = <*p, (6.1.33)

and this is easily verified for

o o

5^(0, oA) 5l^(O,iA). (6.1.34)

We then find that

Wa = Wa< ,̂ (6.1.35)
with

Wa = (X0(O), ^(0), / ' (O), fiv(O))9 a = 0,1,2,3. (6.1.36)

Explicitly, from this and (6.1.32), we have

(6.1.37)

(Compare the remarks after (6.1.21).)

Higher-valence twistors

Now consider the outer product XaZp of two twistors such as

X' = {tA
9riA Z* = (co\nA (6.1.38)

represented at O by

£ (A(O\ nA{O)). (6.1.39)
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6.1 The twistor equation and its solution space 51

Reference to (6.1.20) shows that its components XaZp will consist of all the
components at 0 of the following four spinors:

W , £AnB.9 nA.o\ riA.nv. (6.1.40)

The spinor fields (6.1.40) are the spinor parts of XaZ^ and they have a
position dependence determined by (6.1.10) (as applied to (6.1.38)). The
general [o]-twistor Sa/*, being a sum of products of type X*ZP, will be fully
characterized by four independent spinors at 0, namely the values at O of
the four fields

S " , S V SA.B, S ^ , (6.1.41)

These are said to constitute the spinor parts of SaP. They are of a very special
interrelated type, being sums of expressions as in (6.1.40), whose constitu-
ents (6.1.38) have the position dependence (6.1.10).

In using the notation (6.1.41) it is vital to keep the order of the spinor
indices unchanged, e.g., never to write S^V = SB

A (contrary to our usual
conventions, cf. (2.5.33), since this order is our only notational indication of
which spinor part is meant. But the notation may become confusing when
indices are raised and lowered with es. For this reason, if the spinor parts of
some twistor are to be used extensively it is often convenient to introduce
separate symbols for the various spinor parts. But for the general discussion
of twistors the present notation is very economical. We often write

In the same way we find the typical patterns* of [}]- and [°]-twistors:

It is clear that the general [J]-twistor will have 2p+q spinor parts, which,
however, cannot be exhibited as conveniently as the above. For example, a
[f]-twistor Ta/?

y has eight independent spinor parts of the following form:
-TAB T B -TA -rABC -TA C y BC -r y C
1 O l A' O • B'C> ' •> ' B' -> l A' > lA'B'C> ' A'B' •

(6.1.44)

The particular spinor part which has all its indices at the upper level (in the

The use of staggered indices on twistors, such as for E^ and Jafi
y here, serves no 'purely

twistorial' purpose, there being no 'metric' to raise or lower twistor indices, but it is
helpful for keeping track of the various spinor parts. Accordingly we shall tend to adopt
such staggering only when we are concerned with the taking of spinor parts.
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52 6. Twistors

case above, JABC) is called the primary spinor part of the twistor. That part
with all lower indices is called the projection part.

The definition (6.1.23) of W^" leads to definitions for contractions of
arbitrary twistors. In practice this amounts to contracting the 'relevant'
spinor parts over A and A' for each contracted twistor index a. For example,

It is now easy to see how we can take components of general twistors
relative to the basis (6.1.17), analogously to (6.1.21) and (6.1.37). In the
general case, exemplified by

T*y = T"\d*a5% (6.1.46)

we find (spinor field components being taken at 0, in accordance with our
remark after (6.1.21))

TOOo = Too
o, T ° \ = T ° \ , e t c . ,

T ^ T c A , T20
3 = V r , T31

2 = V ° ' , e t c . , (6.1.47)

where the left member of each equation is the twistor component, and the
right member is a spinor-part component. Since twistor indices are not
primed and spinor indices are never 2 or 3, there is no ambiguity of meaning
in the second line of (6.1.47). In the first line, where there might be
ambiguity, there is in fact none. Indeed, we have the following rule:

O(up/do wn) <-• O(up/do wn), 1 (up/down) <-• 1 (up/down)

2(up/down)<->0'(down/up), 3(up/down)<-> 1'(down/up) (6.1.48)

We next examine the position dependence of the spinor parts (6.1.41)
of the [o]-twistor Sa/*. The mutual and position dependences of the
(field-)spinor parts of 1-valent twistors determine the form of the
(field-)spinor parts of all twistors. For Sa/J, these can be found from the
requirement that, for two arbitrary [?]-twistors Ua, Wa, the (scalar) field
represented by

S^U.W^ (6.1.49)

is constant and is therefore equal to its value at the origin. Proceeding

exactly as in (6.1.25), we easily find the desired relations. In order to exhibit

these conveniently we prefer to introduce a more specific notation for the

field-spinor parts of Sa/?, namely

B
 P B'\ (6.1.50)

(although SAB
9 SA

B>, etc. would be perfectly legitimate). Then the relations
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6.1 The twistor equation and its solution space 53

between these are found to be as follows:

KA'B' = KA'B'->

aAB = bAB _ ixAA'iB

(6.1.51)

The content of (6.1.51) can also be expressed in terms of the following
differential equations (cf. (6.1.9), (6.1.28)):

(6.1.52)

' — ~ 1£C KA'C'9

One way to establish these is to differentiate (6.1.51) at the origin, and then
to recall that the origin is arbitrary, so that (6.1.52) holds generally. In this
special case the twistor S0^ is still fully determined by a single field, namely
by its primary spinor part aAB. For (6.1.52)(1) yields

V c c ^ c * = - 2 i T ? , - i p £ ,

Vcc,a
BC = - k£ - 2ip£, (6.1.53)

whence we get T%> and pc>. And these, via (6.1.52)(2) or (3), yield KAW.
Relations analogous to (6.1.51) and (6.1.52) evidently hold for twistors of

any valence, and can be obtained in an analogous way. Let us consider one
more special case, namely the [}]-twistor Ea

p of (6.1.43) for whose field-
spinor parts we now again introduce a more specific notation:

eA
B tA

/ \ (6.1.54)
XHAB <*A' /

For these fields we find

IAB = *1A'BI
r B'_f B',-BB'°
\>A' —^A' +lX tJAB*

0AB = &AB-ixAA'?lA>B, (6.1.55)
£AB' = ^AB> _ ixAA'(AB' + ^ B ^ + ^A^BB^^

which (analogously to (6.1.51), (6.1.52)) are equivalent to

VCCZAB' = 'KCB'QAC-'KCAU'B\

Vcc'OA
B=-i£cAric'B, (6.1.56)

^cc'CA'B' = iec
B'rjA,C9

VCCVAB = 0.
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54 6. Twistors

We note that equations (6.1.55) remain valid if we subject 6A
C and Cc>B

the changes

+ tec, (6A.ST)
CcB' ^ CcB' + tec,

B' {X = constant),

and so we see that in this case the primary spinor part £AB of Ea
p does not

uniquely determine E°y The transformation (6.1.57) in fact changes the
trace

E'. = 0 \ . + C / ' (6.1.58)
of the twistor:

E'ah+Ea
a + 41 (6.1.59)

Only if the trace is independently known (e.g., known to be zero), is Ea
p in

fact determined by £AB.
Equations analogous to (6.1.51), (6.1.55) hold for all twistors. For some,

such as for Sa/*, all the information of the twistor is contained in the primary
part. But the example of Ea

p shows that this need not be the case. A class of
twistors for which the primary part does carry all the information is that of
the trace-free symmetric twistors:

T*-d
P.., = T("-X..^ (6 1-6 0)

T ^ - V . . t = 0. (6.1.61)

The equation satisfied by the primary part JA - DRf— T' = XA--DR'...T' JS

VpH;::D^ = 0. (6.1.62)

At the other extreme, the alternating twistors saPyd, eaPy3
9 satisfying

P _ P Pa0y<5 _ Japyd] p _ p 0123 _ i (fs\f\'W

each have only six non-zero spinor parts, out of a total of sixteen, namely
the parts with two unprimed and two primed indices. These are

£AB'CD = £A'B'£CD> £A'BC'D = ~£AC'ZB» etc., (6.1.64)

for eafiyd, and

eA'BCD = £AB£CD, eA>BcD = - e A ' C ' * D , etc., (6.1.65)

for eaPyd. In these cases the primary part vanishes. (It also vanishes in the case
of a skew twistor Xa/?y = Xla/?yl.) In fact, only the trace-free symmetric
twistors can be represented in this way by a single spinor field (namely by
their primary spinor part) subject to a single first-order differential
equation. In certain other cases (e.g., that of a skew [o]-twistor) this primary
spinor part does determine the twistor completely, but is not characterized
by a first-order differential equation. In most other cases the primary spinor
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6.1 The twistor equation and its solution space 55

part is insufficient to define the twistor. A symmetric twistor (6.1.60) which is
not trace-free also has a primary part which satisfies (6.1.62), but the various
trace parts, e.g., expressions of the form 5}JJUj;;;§, are not determined by the
primary part (i.e., such expressions can be added to Ta"d

px without
changing the primary part).

We shall be particularly interested in symmetric, skew-symmetric, and
Hermitian 2-valent twistors. The twistor SaP of (6.1.50) is symmetric if
Sa/J = S^a, i.e., if

aAB = aB\ P
A=TA, KA,B. = KWA,. (6.1.66)

It can be seen from (6.1.52) that the mere symmetry of oAB at all points forces
the second and third of equations (6.1.66), and is therefore sufficient for the
symmetry of SaP. For a skew-symmetric twistor (SaP = - S^) we have a
minus sign on the right of all equations (6.1.66), and again the mere skew-
symmetry of aAB at all points forces the rest.

We say that the twistor E0^ of (6.1.54) is Hermitian if

E , "=EV (6.1.67)
i.e., if

zAB' TAB' „ si QA T A (& 1 £Q\
S = C , tiAB' = riAB'> & B-±B ' (6.1.68)

Analogously to the remark we made about symmetric spinors, it can now
be seen from (6.1.55) that the Hermiticity of £AB' at all points forces the
second of equations (6.1.68), but permits the members of (6.1.68)(3) to differ
by an imaginary multiple of sB

A. Consequently, however, it suffices to
ensure the Hermiticity of Ea

p if E0^ is known to be trace-free.
An important observation is the following: the primary spinor part oAB of

any twistor Sa/? automatically satisfies the differential equation

V<VB) = 0, (6.1.69)

as is clear from (6.1.52)(1). Also the primary spinor part £AB' of any twistor
Eap automatically satisfies the differential equation

V j I ^ , = O (6.1.70)

(which is actually the conformal Killing equation, see §6.5 below), as follows
from (6.1.56)(1). Just as with (6.1.1), which is satisfied by the primary spinor
part of Za, these two differential equations are conformally invariant, with

dAB
 = (j

AB, £**' = £**' (6.1.71)

(as is implicit, in the case of conformally flat space, in their twistor origins).
This can be established independently of space-time flatness as for (6.1.1).
Furthermore, by an argument analogous to that leading to (6.1.10), it can be
shown that the general solutions in M of equations (6.1.69) and (6.1.70) are,
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56 6. Twistors

with GAB symmetric, given by (6.1.51) (4), (6.1.55) (4), respectively. Note that
(6.1.69) and (6.1.70) are both special cases of (6.1.62), which is again
conformally invariant (cf (5.6.15)), with

£A...CR'...T = kA...CR'...T (6.1.72)

Equations (6.1.69), (6.1.70) and (6.1.62) will be further discussed below (see
§6.7; also (6.4.1)). Arguments from §6.7 show that all symmetric solutions of
(6.1.62) are primary parts of trace-free symmetric twistors.

We now return to the question of defining complex conjugation of the
general twistor. The rule is, in fact, determined by the definitions
(6.1.31) for 1-valent twistors, together with the requirement that complex
conjugation commute with product and sum, e.g.,

Consider, for example, the twistor

p . _ Z a W _

We must have

Since the general [}]-twistor is a sum of twistors of the type of P*fi9 and since
the most general [£]-twistor can be dealt with analogously, we recognize
the following general rule: To conjugate a twistor, we conjugate all its spinor
parts, and then place each conjugated part into the correct position, namely
that appropriate for a twistor with all original twistor indices at reverse level.

Conformal invariance of helicity and scalar product

We define the helicity of a twistor Za by

5;= ±Z"Za = \{oAnA + nA,(bA') (6.1.74)

(likewise, for Wa it is s = |VVaWa), and this is evidently real, although it can
be positive or negative. We say Za (or Wa) is null if its helicity vanishes, right
handed if s > 0, and left handed if 5 < 0. Twistor space I *( = T = Ta) is thus
composed of three pieces T° = 1̂1, T + and T~, consisting of null, right-
handed and left-handed twistors, respectively. Similarly, dual twistor space
T#( = T* = Ta) is composed of To, T+ and T_. For the projective versions
of these spaces, i.e. the systems of one-dimensional linear subspaces
contained in them (together with the origin), the prefix P is adjoined (see
Fig. 6-1 and §9.3).
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6.1 The twistor equation and its solution space 57

Fig. 6-1. Projective twistor space PT# is the space of one-dimensional linear
subspaces of twistor space T#. It consists of three regions PT+, PT~ and

°

From (6.1.9) and (6.1.3) we see that, under conformal rescaling, the second
of the following equations holds; the first is simply (6.1.2) again:

A' (6.1.75)

Thus nA> is not a conformally weighted spinor field. (Note the formal
similarity of the above equation with (6.1.10).) Equation (6.1.75) describes
the effects of changes of the conformal scaling in the given manifold ML The
twistor Za itself is regarded as unaffected by this change. But its represent-
ation by spinor parts changes, unless we adopt an appropriate view of the
spinor nA>. In fact, nA. can be regarded not as a conformally weighted spinor
field, but as something that behaves in the more complicated way (6.1.75)
under conformal rescaling of the metric. (Viewed in this way, nA. cannot be
considered independently of coA.) With this interpretation, it is still
legitimate to write Za = (d)A

9 itA). This viewpoint is the one we shall adopt
when we consider local twistors in §6.9.

The analogue of (6.1.75) for the spinor parts of a [?]-twistor Wa is

fiA' = HA\ (6.1.76)

(cf. (6.1.26)). We can now immediately verify the conformal invariance of the
twistor inner product (6.1.23) and hence of the helicity given by (6.1.74):
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58 6. Twistors

ACO + fi KA' = (^A ~ l *A A 'A* y° + /* \nA' + l*AAlCO)
= kAcoA + iiA'nA. = WaZa. (6.1.77)

Thus the twistor inner product is purely a property of twistor space and is
independent of any particular point in space-time or choice of conformal
scale.

6.2 Some geometrical aspects of twistor algebra

The geometrical meaning of twistors is clearest in the case of null [£]-
twistors:

Z"Za = 0: (6.2.1)

Suppose we have a particular null twistor Za = (oA, nA) with nA. # 0. Let us
first determine the locus Z of points in M at which coA = 0: the geometry of
the field coA is best described in terms of this locus. On Z the position vector
must satisfy (cf. (6.1.10))

ixAAhA, = &A. (6.2.2)

We shall wish to assume that coA and nA are not proportional at O. If by
chance they are, we use the freedom we had in solving (6.1.9) for (6.1.10), and
choose a different point as origin, where coA and HA are not proportional.
(This is always possible, since, by (6.1.10), nAcoA = nA(bA — \xAA'nAnA,\
so if nA(bA = 0 we need merely go to a point at which xAA nAnA, # 0 to
achieve nAcoA ^ 0.) Assume this done. Then a particular solution of (6.2.2) is
given by

xa = (i&B'nB)~ 1(bAcjA'. (6.2.3)

This vector is real, since the parenthesis is real, by (6.2.1) and (6.1.74). The
remaining solutions of (6.2.2) must be such that their differences from (6.2.3)
annihilate nA>. So since xa is real, these differences must be real multiples of
nAnA>. Consequently the general solution of (6.2.2) has the form

xa = (iG)B'nB,y 'o^or4' + hnAnA\ heU. (6.2.4)

This describes a null straight line Z, hereafter called a ray, in the direction of
the flagpole of nA; it passes through a point Q, given by h = 0 in (6.2.4) whose
displacement from O is along the flagpole of <bA so Q lies on the light cone of
O (see Fig. 6-2).

Note that the ray Z is independent of the scaling of Za: if we replace Za by
kZa (k # 0) then Z is unchanged. Conversely we easily see that the ray Z
determines Z* up to proportionality, since (6.2.2) is homogeneous in d>A, nA>.
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6.2 Some geometrical aspects oftwistor algebra 59

Fig. 6-2. The ray Z, determined by a null twistor Za, points in the direction of the
flagpole of nA and passes through a point Q whose displacement from the origin 0 is
in the direction of the flagpole of (bA. At a general point P, the flagpole of coA lies in a
ray meeting Z.

If nA> = 0 there is no finite locus Z (cf. (6.2.2)). Instead (provided cbA does
not also vanish, in which case coA = 0 and so Za = 0) one can then interpret
the locus Z as a generator of the 'light cone at infinity'. This will be discussed
in Chapter 9.

Flagpole field ofcoA: Robinson congruence

Having found the locus Z, it is easy to describe the general geometric
pattern of the flagpoles of the field coA. Recalling the freedom we have in the
choice of origin 0, we see that a construction similar to the above can be
carried out at any point P at which coA is not proportional to nA. Where it is
proportional, the flagpole of coA is in a direction parallel to Z. For a general
point P however, the flagpole direction of coA will lie along the (unique) ray
joining P to the point at which Z cuts its light cone. Thus the field of flagpole
directions of coA consists simply of all the null directions in all the light cones
whose vertices lie on Z, together with those in the limiting light cone where
the vertex goes to infinity on Z - the (unique) null hyperplane containing Z.
This hyperplane is the locus of points at which the flagpole direction of coA is
parallel to Z (coA proportional to nA).

If Za = (coA, nA.) is not null, it is still possible to regard it as representing a
locus in 'complexified' space-time. This viewpoint will be pursued in §9.3.
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60 6. Twistors

However, a realization of Za in real terms can also be given. It turns out that
the flagpole directions of coA still lie in a congruence of real rays. The rays
twist about one another (without shear) in a right-handed or left-handed
sense according as ZaZa is positive or negative. (The shear-free - and
geodetic, i.e., straight-line - property of the congruence is a consequence of
the equation coAcoBVAAoB = 0 which follows from (6.1.9); see §7.1.) Con-
gruences arising from twistors in this way are called Robinson congruences
(c/Penrose 1967a). Knowledge of the Robinson congruence associated with
a twistor fixes the twistor up to a scalar multiplier.

There is another way in which the Robinson congruence associated with
a twistor Z arises. Consider the particular ray X through 0 in the flagpole
direction of coA(O). This can be represented by a twistor

or by any non-zero multiple of this. Evidently Xa2a = 0, which condition
characterizes, at 0, the flagpole direction of coA. But the origin is arbitrary,
so at any point the flagpole direction of coA is the direction of a ray X
through that point described by a twistor Xa subject to

XaZa = 0 = XaXa, (6.2.5)

Xa being, of course, necessarily null. Thus the flagpoles of the co-field all
point along the rays given by (6.2.5) (for fixed Za), whence (6.2.5) describes
the Robinson congruence.

To get a picture of a Robinson congruence we choose a particular Za =
(coA, nA) with ZaZa = 2s, given in the standard coordinate system and spin-
frame, cf. (3.1.31) (and Chapter 1), by

Za = (0,s,0,l) (sen). (6.2.6)

The equation of the co-field is given (cf. (6.1.10)) by

(°\ (6.2.7)

so
co°\(ol = x + iy:t -z + isjl. (6.2.8)

We can find a differential equation for the rays of the congruence, the
tangent direction defined by dv.dx.dy.dz being that of the flagpole of coA, i.e.

dt + dz.dx + idy = dx — idy.dt — dz

= aj°':cb1' (6.2.9)

= x — iy:t — z — is v / /2 .

The general solution of these equations can be written down directly. But it
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is in any case known from (6.2.5): let us put

so that (6.2.5) is satisfied when

Re(A$ = s. (6.2.10)

Then (6.2.2), with Xa for Za, is the equation of the ray X of the congruence
(solution of (6.2.9)) determined by k, fieC (subject to (6.2.10)). Explicitly,

k \ i /r + z x + ijA/V
- s , r2\x-iy t - z A i ' • ( 6 * 2 J 1 )

But for visualization purposes we are more interested in a three-
dimensional description. Consider the intersection of the congruence with a
spacelike hyperplane t = x ( = constant). Each ray meets this in one point
(T, X, y, z), and we can describe the direction of the ray in terms of its
orthogonal projection into t = x at this intersection point. The projected
directions are then tangent to a series of curves in t — x which give a picture
in Euclidean 3-space of the structure of the Robinson congruence. The
differential equation of these curves is obtained by replacing t by x in (6.2.9),
and At by d/ = (dx2 + dy2 + dz2)* This yields

(x - iy)(dl - dz) = (r - z - is y2)(dx - idy),

whose solutions are given by

x2 + y2 + (z - x)2 - lh{x sin 4> + y cos 0)tan 9 = 2s2

z — T = (x cos cj) — y sin 0)tan 0, (6.2.12)

where 6 and <f> are constants defining the different curves. These curves are
evidently circles, being intersections of spheres with planes. They twist
around one another (hence the term twistor!) in such a way that every pair
of circles is linked (see Fig. 6-3). The twisting has a positive screw sense if
5 > 0, i.e., if Z* is right-handed. They lie on the set of coaxial tori obtained by
eliminating <\> between the two equations. These tori are the rotations about
the z-axis of a system of coaxial circles in the (x, z)-plane.

From the point of view of the compactified space-time that we shall
discuss in §9.2 we should regard the hyperplane t = x as being compactified
(conformally) by a point at infinity. It then becomes topologically a three-
dimensional sphere S3 (of which the hyperplane t = x may be regarded as
the stereographic projection). The vector field on S3 is everywhere non-
singular and nowhere vanishing. The circles constitute what is known as a
Hopffibring of 53. With a suitable scaling they become Clifford parallels on
S3 (Clifford 1882, cf Hopf 1935; also Veblen and Young 1918).
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Fig. 6-3. For a general twistor Za, the flagpole directions of a)A point, at any one
time, in directions whose spatial projections are tangent to a family of circles, and
one straight line, constituting stereographically projected Clifford parallels on S3.
As time progresses, the whole configuration moves with the speed of light in the
negative direction of the straight line (i.e. in the projected direction of nAnA>).

Note that all the circles in the hyperplane thread through the particular
(smallest) circle of radius* \s\ ̂ 2 and centre z = T, x = y = 0 given when
6 = 0. If 5 is small, this circle describes, as x increases, a path approximating
that of a ray. If 5 is zero, the path is exactly the ray z = £, x = y = 0. For small
5, we may think of the lines of the Robinson congruence as defining an
'approximate' ray, but the lines twist around one another and never quite
meet. The twisting has a positive or negative screw sense according as Za is
right- or left-handed. In the limit s -> 0, the circles (6.2.12) all touch the z-axis
at z = T. The tangents to these circles are orthogonal to the spheres touching
the (x, y)-plane at z = T, these spheres being the intersections of t = x with
the null cones with vertices on z = t, x = y = 0, which is now the ray Z. The
lines of the congruence are then just the generators of these null cones,

* It should be remarked that whereas the helicity 5 is an invariant of the description of the
twistor, the radius of this smallest circle is not. This radius is given, generally, by
\s\(tAA'nAnA')~] where ta is the unit time-axis (i.e., as we shall see in §6.3, by the spin
divided by the energy).
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6.2 Some geometrical aspects of twistor algebra 63

which is the case we considered earlier (Z null). Such a congruence, i.e., the
system of rays meeting a given ray, is called a special Robinson congruence.
(This includes any system of parallel rays, that being the limiting case when
Z recedes to infinity - see §9.2.)

Incidence of twistors

From what we have just proved in the case of a special Robinson
congruence, it is clear that two null twistors Xa, Za represent rays X, Z that
intersect (possibly at infinity, which is the case when X and Z lie in a
common null hyperplane) if and only if

X*Za = 0 i.e., XaZ
a = 0. (6.2.13)

For, requiring intersection is equivalent to requiring that X belong to the
congruence defined by Za, and vice versa. We also call (6.2.13) the twistor
'orthogonality condition', or, more usually, incidence between Za and Xa.

As an alternative argument for the intersection/orthogonality condition
(6.2.13), we observe that the position vector xa = ra of any common point R
of the rays X, Z must be given by (cf (6.2.2)):

irAA'nA, = cbA
9

A. = iA, (6.2.14)

where X* = (£A,nA,\ Za = (coA, nA). These equations can be solved by
translating them into component form, using an arbitrary dyad. The
condition for a unique (complex) solution is that the 2 x 2 matrix (nA,, rjA) be
non-singular, i.e., that nA. be not proportional to nA>. (In case of
proportionality, X and Z are parallel and so, if they meet at all, they do so at
infinity, in the sense of lying in a common null hyperplane.) As may be easily
verified by direct substitution, the solution of (6.2.14) is then given by

ra= ^(co V " W ) > (6-2.15)
nB.n

at the point 0. But since the origin is arbitrary, we may omit the <o' in
(6.2.14) and consequently in (6.2.15), and regard ra as the position vector of
R relative to the field point at which a>A and £A are taken. Now, it is the
reality of ra that is equivalent to (6.2.13); more precisely, it is equivalent to
the three conditions XaXa = 0, ZaZa = 0, ZaXa = 0, of which the first two are
assumed. For these conditions state the reality of rAA'rjArjA,, rAA'nAnA,, and
the relation rAA'nArjA' = rAAnA'fjA, respectively, from which it follows that

v a n i shing components relative to the spinor basis (nA,fjA).
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64 6. Twistors

Complex geometry

Note that (6.2.15) defines a complex vector, and therefore a point in the
complexification* CM of Minkowski space M, whether Xa or Za are null or
not, and whether they are orthogonal or not, provided only that their
projection parts (see remark after (6.1.44)) are not proportional to one
another. In fact it is often fruitful to study twistors in relation to complex
loci in M (i.e., loci in CM). The equation (6.2.2), which in M defines a ray
when Za is null (and nA> # 0), can also be interpreted as the equation of a
locus in CM. In fact, this locus is not just the complexification, in the
ordinary sense, of a ray** but is a two-complex-dimensional (and therefore
four-real-dimensional) locus (whether Za is null or not), called an a-plane
(see §9.3 below). In a similar way, a dual twistor Wa defines a /?-plane (the
complex conjugate of an a-plane) as the locus of solutions in CM of

— ilAxAA = \iA>.

An a-plane [j8-plane] is the locus, in CM, along which the primary part of
some Za [some Wa] vanishes. The point defined by (6.2.15) is then the unique
intersection of the a-planes defined by Xa and Za. We say that Za\pr WJ is
incident with a point ReM if its a-plane [jS-plane] contains R; moreover, Za

and Wa are incident with one another iff their a- and jS-planes meet.
The general twistor whose a-plane passes through the intersection point

of the a-planes Xa, Za is

Ya = j3Xa + yZa (6.2.16)

where /?,yeC and /?,y are not both zero. For (6.2.16) implies that the
common (complex) zeros of the primary parts of Xa and Za are also zeros of
the primary part of Ya, and to establish the converse we need only
interchange the role of Ya with that of X* or Za.

Note that, if X* and Za are null and intersecting, Ya is also null. In that case
(6.2.16) represents the light cone with vertex R. We may regard the family of
a-planes /?Xa + yZ* as representing the point R. In fact, any two-dimensional
subspace of twistor space Ta may be thought of as representing a point, of a

Here CM is the eight-real-dimensional space obtained by allowing the coordinates ty x,
y, z of M to become complex numbers. The metric is still dt2 - dx2 - dy2 - dz2, i.e., it is
the holomorphic (complex-analytic) rather than the Hermitian extension of the metric
of M. Note that CM is the same as the complexification of four-dimensional Euclidean
space, which itself is isometric with a subspace of CM, namely that given by t = real, x,
y, z = pure imaginary.
That would be given by allowing h in (6.2.4) to become complex, so the complex xa

describes a two-real-dimensional locus, and provides the solution of the simultaneous
equations cbA = ixanA. and SA' = - ixanA (see (6.2.2) and (9.3.22)).
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6.2 Some geometrical aspects of twistor algebra 65

kind, in Minkowski space. But in general it will be a complex point (i.e., a
point of CM) since the r° of (6.2.15) will not be real unless Xa and Za are null
and orthogonal. Only if every member of the linear set is null will the set
represent a point of M, and then it will be a finite point only if the expression
(6.2.15) is finite, i.e., when there are two twistors with non-proportional
projection parts in the set. (For a more complete discussion of this
geometry, see §9.3 below.)

One of the basic ideas of the twistor formalism is that it leads to an
alternative description of physics in which the space-time points, or
'events', are no longer fundamental. The twistor space Ta is itself regarded
as more primitive than the space-time. Events are regarded as derived from
the twistor space structure. We have seen above, in fact, how events may be
interpreted in terms of certain linear sets in Ta. These ideas can be carried a
great deal further, even to curved space-time. But we shall not pursue them
here.

Simple skew twistors to represent points

Now consider the [o]-twistor

Rap = z*xp _ XaZp (6.2.17)

where Xa, Za are the twistors occurring in (6.2.16). If we know the set (6.2.16)
then we know Ra/? up to proportionality, and conversely. Hence we may
represent the point R of intersection of the set (6.2.16) by Ra/? up to
proportionality. The spinor parts of Ra/? are found to be as follows (cf.
(6.1.40), (6.1.42)):

\nA'£B -*lA'U>B nA'rlB'-rlA''KB') D \ — irA'B &AB'

(6.2.18)

Remember that rc is the position vector ofR with respect to a general field
point.

It is useful to consider the dual RaP of Ra/?. We write it without an asterisk,
since there is no danger of confusion: there is no twistor metric with which
to raise and lower indices. We have

P K ^ % (6.2.19)
where eafiyd9 e

aPyS are the alternating twistors introduced in (6.1.63). We have,
from (6.2.18) and (6.1.64),

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.003
https://www.cambridge.org/core


66 6. Twistors

If we form the twistor complex conjugate of (6.2.18) according to the rule
enunciated after (6.1.73), we find that, apart from an overall factor, Ra/5 is
just Ra/? with r° in place of r° (taking r° to be a complex world vector). Thus
the condition for r° to be real is simply

Ra/JocRa/,. (6.2.21)

Note that for Ra/? to represent a point at all, it must be skew and simple
(meaning that the form (6.2.17) holds for some Xa, Za). This we can express as

R<*/* = _ R/fc R « / > R ^ = o. (6.2.22)

The second of these conditions, the condition for simplicity, can be ex-
pressed alternatively in any one of the following forms (cf (3.5.30), (3.5.35)):

R^R^ = 0, Ra[^R^ = 0, R[a/?Ry<5] = 0, det(Rap) = O. (6.2.23)

Finally, in addition to (6.2.21) and (6.2.22), if Ra/? is to represent a finite point
of M we require

R a / V * 0 , (6.2.24)

where lâ  is one of the infinity twistors la/?, l
a/? - duals of each other and also

twistor complex conjugates of each other - defined by

For it is clear that Ra/*la/? in fact equals 2nD,nD'\ if this vanishes, nD, and nD,
are proportional, and Z and X are parallel. That la/? is indeed a twistor (and
so \aP also) can be seen by observing that it is of the form (6.2.18) with
nAr = r1A> = 0 and coA£A = 1. Alternatively we may observe that \aP satisfies
(6.1.52).

The twistor equation is conformally invariant, and so twistor space is
defined using only the conformal structure of M. Duals and complex
conjugates are also conformally invariant and so all the basic operations of
twistor algebra possess this property. (We have checked this explicitly for
the twistor inner product WaZ

a.) Moreover, the geometric concepts used in
our discussion are all conformally invariant: ray (i.e., null geodesic), null
cone, point, intersection, etc. The metric scaling of M was nowhere used. In
fact, twistors are the 'reduced spinors' for a certain pseudo-orthogonal
group in six dimensions: 0(2,4) (the preserved quadratic form having two
plus signs and four minus signs). This group is locally isomorphic with the
fifteen-parameter (so-called) conformal group of Minkowski space (cf. Dirac
1936fc, Penrose 1974), i.e., with the group of point mappings of M
(compactified by the addition of suitable elements at infinity) onto itself
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6.2 Some geometrical aspects of twistor algebra 67

which preserves the conformal structure of Ml (see §9.2). These mappings
induce linear transformations on twistor space which preserve the form
ZaZa and also the alternating twistors. Since the signature of ZaZa turns out
to be ( + 4- ), this means that the resulting twistor group may be
identified with 5(7(2,2) (the group of pseudo-unitary (+H ) uni-
modular 4 x 4 matrices cf Cartan 1914). If we introduce la/? and la/? as basic
elements into the twistor algebra (rather in the way that gab and gab are
introduced into tensor algebra) and consider the reduced group which
leaves la/? and \afi invariant also, then we get a group locally isomorphic with
the Poincare group on Ml (inhomogeneous Lorentz group). Thus la/? and \ap

have the effect of enriching the twistor algebra so as to bring the metric
structure of Minkowski space within its scope, rather than merely its
conformal structure. Indeed, the basic concept of Minkowski distance
between two points Q and R of Ml (cf (1.1.22)) can be expressed in terms of
the twistors Qa/J and Ra/? which represent these points respectively, by the
formula

Ar\<x6n

£-=-(q°-r°)(qa-ral (6.2.26)
Qy < 5l * R P I
^ 'y<5 po

qa and ra being the position vectors of Q and R (with respect to the general
field point). In view of this formula, and for other reasons, it is often
convenient to normalize the twistor representing a point R of Ml according
to

R"'l«, = 2, (6.2.27)

which amounts to leaving out the factor %Dr\D in (6.2.18), or, more
accurately, to setting

nD.r\D' = 1. (6.2.28)

Then we have, dually,

RJaP = 2 (6.2.29)

and (6.2.26) becomes

ra). (6.2.30)

By (6.2.20) and (6.2.28), the proportionality constant in (6.2.21) is now fixed
to be unity, so the condition for ra to be real becomes

R«*=fV (6.2.31)

The basic properties of twistor algebra and its relation to Minkowski
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68 6. Twistors

geometry have now been given. Much more can be said,* and some further
discussion is given in §9.3. The interplay between the geometry of twistor
space and that of Ml leads to many fruitful ideas. The interested reader is
referred to the literature (Penrose 1967a, Penrose and MacCallum 1972,
Ward and Wells 1986, Huggett and Tod 1985).

6.3 Twistors and angular momentum

We now turn to the physical interpretation of a twistor. In a sense the
physical interpretation is a little more complete and a little more natural
than the geometrical one given so far. It allows the twistor Za to be
interpreted up to phase, rather than merely the proportionality class
{/lZa|0 # AeC}. But more importantly, the non-null twistors (ZaZa # 0) arise
physically in a very natural way.

Let Za be represented as usual:

Z* = (coA
9nA (6.3.1)

and assume nA.^0. Define

Pa'= *AKA'> Mab:= \o±AnBhA'B> - \cb(A'nB\AB. (6.3.2)

Then pa is a future-null vector field and Mab a real skew tensor field. Let pa

and Mab be constant fields taking the same values as pa and Mab,
respectively, at the origin O. The position dependence of the tensors (6.3.2) is
given by (cf. (6.1.10)):

Pa = Pa, Mab = Mab-xapb + xbpa. (6.3.3)

These are precisely the transformation formulae satisfied by the 4-
momentum and the 6-angular momentum in special relativity (cf Synge
1955), giving these quantities relative to the general point P in terms of the
same quantities relative to the origin 0. For later reference, we note from
(6.3.3) that the dual *Mab = \eahcdM

cd satisfies

V(/M, ) c = 0, i.e. Va*Mbc = Vffl*M5c]. (6.3.4)

In fact, (6.3.4) conversely implies the position dependence (6.3.3)(2).

* For example, if Xa and Ya are null twistors, then |X*?J/|X*Yyl,y| has an interpretation
in Euclidean 3-space terms, being equal to

where r is the distance, at a given time, between the two 'photons' whose world-lines are
X and Y. Here \ji is the angle between their 3-velocities, and 0 and <£ are the angles that
these 3-velocities make with the line from one particle to the other. In the frame for
which their velocities are equal and opposite, this expression reduces to 2"* times their
distance of closest approach. The implied Poincare invariance of the general expression
is by no means obvious!
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6.3 Twistors and angular momentum 69

Consider, then, a physical system with momentum and angular momen-
tum as in (6.3.2). Since the 4-momentum is future-null, we may think of the
system as (equivalent to) a massless particle (i.e. of zero rest-mass). Its
intrinsic spin may be expressed in terms of the Pauli-Lubanski spin
vector:

Sa = ieMpf>M«9 (6.3.5)

which, in consequence of (6.3.3), is position independent:

«. = *..
For massless particles occurring in nature, the Pauli-Lubanski vector must
be a multiple of the 4-momentum:

Sa = spa. (6.3.6)

The real number s is called the helicity of the particle and \s\, or \s\h~ \ the
spin. For quantum systems 5 is an integer multiple of \h. If we substitute
(6.3.2) into (6.3.5), we find (cf (3.4.22)):

= i(a)BnB + (bB'nB)nAnAl. (6.3.7)

Thus (6.3.6) is indeed satisfied and we have, in agreement with (6.1.74),

The requirements for pa and Mab to be the 4-momentum and 6-angular
momentum of a massless particle are precisely that pa should be future-null,
and that Mab should, with pfl, satisfy (6.3.3) and (6.3.6). As we have seen,
these requirements are automatically satisfied by the definitions (6.3.2),
given the twistor Za (nA, ^ 0). Conversely, given these physical require-
ments, we can, in effect, reverse the above argument and construct the
twistor Za from the pair (pa, M

ab). The resulting Za is then determined up to
phase: pa and Mab are evidently unchanged by the replacement

2 W Z a , (0real) (6.3.8)

{cf. (6.3.2)). Thus:

(6.3.9) PROPOSITION

The momentum and angular momentum of any massless particle is precisely
described, according to (6.3.2), by a twistor Za (for which nA> # 0) up to the
phase indeterminacy (6.3.8).

Accordingly, the general twistor Za describes a classical massless particle of
helicity |Za2a.
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70 6. Twistors

When the helicity is zero, this description is closely related to the
geometrical description given earlier. The ray Z is the locus of points of
which coA = 0, and by (6.3.2) this is the locus of points where Mab = 0. Thus
we may think of Z as the world-line of the particle. The information
contained in Za which is not contained in the ray Z is the strength ('extent')
of the 4-momentum (flagpole of nA>) and the phase (flag plane of nA>). We
may think of the flag plane of nA' as defining a kind of'polarization plane'
for the particle - but it is not clear how significant such an interpretation is.
One would expect also that the phase should have a relation to the phase of
the quantum-mechanical state vectors. This is actually the case, and is
connected with the descriptions of §6.4, but we shall not pursue these
matters here.

When the helicity is non-zero, there are no real points where coA = 0
(cf. (6.1.74)), i.e., where Mab = 0. This is to be expected since the particle
possesses an intrinsic spin which contributes to its angular momentum.
One might expect, however, that there would be some ray singled out which
could be regarded as the particle's world-line. But this turns out not to
be the case. The best one can do is to determine a null hyperplane IT, given
by paM

ab = 0. (For a massive particle, this equation does represent a unique
timelike line, which is identified with the world-line of the particle (Synge
1955).) Every null generator of II turns out to be on an equal footing with
every other null generator. In fact, there is a Poincare transformation
sending Za to itself and sending any given point P of IT into any other
given point Q of II. For paM

ab = 0 is equivalent to lm(coAnA) = 0, by (6.3.2).
So by (6.1.74) we have coAnA = s on II, whence OJA{P)HA(P) = coA(Q)nA(Q).
Therefore the required Poincare transformation is achieved by first
translating P to Q and then applying the Lorentz transformation (in fact, a
null rotation) that takes the dyad wA{P\ nA(P) at Q to CDA(Q\ nA(Q) at Q.
Since Za is determined by its spinor parts at any one of its points, this
Poincare transformation sends Z* to itself. So, in this sense, a classical
massless particle with non-zero intrinsic spin is not localized.

It is of some interest that the Robinson congruence defined by Za also has
direct relevance to the angular momentum structure of a spinning massless
particle. The angular momentum about any point of Ml is determined by coA

and nA, the PND of Mab {cf (3.5.18) et seq. and (3.4.20), (6.3.2)) being in fact
the flagpole directions of these spinors. The flagpole direction of nA is
constant and is the direction of the 4-momentum, whereas the flagpole
direction of coA is precisely the direction of the Robinson congruence at the
point in question.
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6.3 Twistors and angular momentum 71

Angular momentum for general systems

We now briefly discuss the twistor description of momentum and angular
momentum of massive particles or systems. Assume pa to be real and Mab to
be real and skew, with position dependence given by (6.3.3) so (6.3.4) is
satisfied. (For physical systems pa will be future-timelike, but this does not
affect the discussion.) Then, for some ^A'B'E(ZiA>Bt) we have (cf. (3.4.20)):

Mab = fiAB£A'B' + j^A'B^AB (63.10)

We now define (Penrose and MacCallum 1972) the angular momentum
twistor (or moment twistor or kinematic twistor*)

}
(Without confusion, we could, if desired, define Aa/*:= Aa/*, as with V*
and eAB.) That it is a twistor can be verified easily by using (6.3.3) and
(6.3.10) in checking the position dependence (6.1.51). It possesses two
special properties. The first is its symmetry (cf. (6.1.66)). The second is that

lyfiW=\*'A7lh (6.3.12)

which may be verified directly. It can easily be shown that, as a consequence
of symmetry and (6.3.12), Aa/? is expressible in the form

A., = 2Ey, ) y (6.3.13)

where Ey
a is some Hermitian [}]-twistor (cf (6.1.68)) subject to a 'gauge

freedom'

E^E^+L'^+L^r (6.3.14)

La/? being an arbitrary element of J{afi]. The decomposition (6.3.13) is, in
fact, achieved by choosing the spinor parts dA

B = EA
B and nBA> — EAB of

E% (cf. (6.1.54)) to satisfy

riAB'iO) = pAB(O\ WAB\O) = fiAB(O),

6[AB\ ^AB> being arbitrary at 0 (corresponding to (6.3.14)), but of course
related to these parts via twistor differential equations. The relation (6.3.13)
between Aa^ and E0^ can, in effect, be expressed in the spinor form

Vg«! = % ^ c , (6-3.15)

where £AB> = EAB' is the primary part of E% (cf (6.1.54)). For, by (6.1.56)(1),

Corresponding twistors (of higher valence) for describing the higher multipole
structure of a system have been given by Curtis (1978b).
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the LHS is isCA>0(AC\ which, by (6.3.13), equals the RHS. The equation
r\AW = pAW is actually a consequence of \Q(AB) = jxAB holding everywhere: for
if we know 9{AB) everywhere, we know £>AB, (cf. (6.1.55)(3), (4)), and fiAB

similarly determines pAW.
Notice that from (6.3.15) and (6.3.10) we have

Mab = V[i4#IM£B)[B] + v u ' l u ^ B ] | B / )

= V[fl<f]. (6.3.16)

Recalling that (6.1.70) is necessarily satisfied by the primary part of E*fi9 and
referring forward to §6.5 for the significance of this equation, called the
conformal Killing equation, with solutions £fl called conformal Killing
vectors, we can now state the following:

(6.3.17) PROPOSITION

The dependence on position of the angular momentum of a system is precisely
such that Mab should be the curl of a conformal Killing vector.

In the case of a massless system we may choose, by (6.3.24) (to be given
presently),

Za = (oAcoA'. (6.3.18)

We can verify directly (from (6.1.9)) that (6.3.16) holds for the angular
momentum tensor (6.3.2). We have seen that the flagpole directions of coA

are tangents to the lines of a Robinson congruence. We see from (6.3.18) that
these directions are the directions of a future-null conformal Killing vector
field. We shall prove the converse in a moment, so that we have:

(6.3.19) PROPOSITION

Any future-null conformal Killing vector field in Minkowski space is the
flagpole field of the primary part coA of a twistor Za; and conversely.

Propositions (6.3.17) and (6.3.19) now yield:

(6.3.20) PROPOSITION

Mab is the angular momentum of a massless particle (subject to (6.3.6)) if and
only if Mab is the curl of a future-null conformal Killing vector field.

The proof of the first half of (6.3.19) is not quite trivial. If Vy^f!} = 0
and £fl = pApA\ then
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B>) = Q (fi 3 2 1 )

We shall have established our result if we can find a real x s u c h that
a>A = Qx*pA satisfies the twistor equation (6.1.1): V(A.a>B) = 0. So consider the
equation V^{pB)ei;f} = 0, i.e.,

^ V ^ = iV!4V
)- (6.3.22)

Now (6.3.21) implies

so by reference to Proposition (3.5.15) we conclude

Then Proposition (3.5.27) shows that VA>(ApB) indeed has the form

iVA'( V > = piBVA)A' (6.3.23)

needed for the satisfaction of (6.3.22), where Va is uniquely determined, by
(3.5.15). It remains to show that Va is a real gradient. Equations (6.3.23) and
(6.3.21) imply

{ByA){A'pB') _ (ByA)(A' xB')̂

whence, by (3.5.15), VAA = VAA\ i.e., Va is real. If we differentiate (6.3.23),
contract and symmetrize the resulting equation (commuting derivatives -
we are in M), we get

The first term on the right vanishes, by symmetry; and so by (3.5.15) we can
conclude

But since Va is real, this is equivalent (cf. (5.1.46)) to V[flFc] = 0, whence
there exists a x such that Va = Vax and our result is established.

Decomposition ofAap in terms of 1-index twistors

Returning to the discussion of Aa/?, if that is the angular momentum twistor
of a massless particle, we may take (cf. (6.3.2))

E-,-2*,-("!• ^ A (6.3.24)
\nA,nB nA,o)»)

Thus, for a massless particle, Aa/? takes the form

A^ZJ^Z*. (6.3.25)
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74 6. Twistors

When pa is future-timelike, E^ can be taken to be a sum of expressions of
this form (and sums and differences of such expressions when pa is general).
In fact, it is not hard to show that any angular momentum twistor with
future-timelike momentum can be expressed in the form

A^ = 2X(.lWrX> + 2Z(al,),Z>, (6.3.26)

with considerable freedom in the choice of Xa and Za. This freedom is given
by

bZa + Xc\a% + ti\*%

dZ" - Xd\a% - XB\afi2fi9 (6.3.27)

where (" J) is a unitary matrix and AeC. According to the twistor particle
programme*, a single massive particle is described in terms of two or more
twistors, its angular momentum twistor being given in the case of two
twistors by (6.3.26), and generally by

Aa/! = 2X(al/,)yX> + - + 2Z(J/,)rZ> (6.3.28)

and, in particular, the rest-mass m of the system is given by a sum of
^n(n— 1) terms:

The freedom (6.3.27) generalizes, for n twistors, to

where U is an (n x n) unitary matrix and A an (n x n) complex skew-
symmetric matrix. (Note that when n = 1 this gives the freedom (6.3.8)
discussed before.) The transformations (6.3.29) constitute the n-twistor
internal symmetry group,** or simply the n-twistor group. Its multiplication
law is

(U, A) x (U, A) = (UtJ, A 4- UAUT).

Finally it may be remarked that the future-timelike [future-causal1]
condition on pa can be expressed twistorially as the positive-definiteness

See Penrose (1975/?), Hughston (1979, 1980), Perjes (1975, 1977, 1982), Perjes and
Sparling (1979), Sparling (1981); also Hughston and Ward (1979) and references cited
therein.
See, for example, Penrose and Sparling (1979) and references cited in the previous
footnote.
Recall (Volume 1) that the word 'causal' stands for 'timelike or null' and 'future-causal'
asserts that the vector is future-pointing.
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6.4 Symmetric twistors and massless fields 75

[semi-definiteness] (in Za) of the expression

Z'A.yl*Z,. (6.3.31)

It follows that the positive-definiteness of (6.3.31), together with symmetry
and the relation (6.3.12), is a necessary and sufficient condition on the
twistor Aa/? that it be expressible in the form (6.3.28) with more than one
independent term.

6.4 Symmetric twistors and massless fields

We now return to a discussion of the differential equation (6.1.62) for the
primary part of a trace-free symmetric twistor, and study some of its
remarkable relations to the massless field equation (4.12.42). First consider
the case of an r-unprimed-index symmetric spinor XAB"D which is the
primary part of a symmetric [J]-twistor, and therefore subject to (6.1.62):

V(M^...D) = 0 ( 6 4 1 )

(Equations (6.1.1) and (6.1.69) are examples of this.) Now if <\>.A_.L is
symmetric with n indices (n>r) and satisfies (4.12.42), and XA D is any
symmetric solution of (6.4.1), then one sees that

VEE'(<I>A...DE...LX'A-D) = 0. (6.4.2)

(Refer to (6.4.31) for the case n = r.) The parenthesis represents a new
massless free field of spin ^{n — r), so we have achieved a spin lowering by \r
units. This construction of new massless fields works formally in curved as
well as flat space-time, but as it stands it is generally uninteresting in non-
conformally flat curved space-time because consistency conditions like
(6.1.6) arise for (6.4.1) which tend to prevent non-zero solutions. (However,
see §9.9.)

Conserved integrals for linear gravity

The particular case with n = 4 and r = 2 is of interest in linearized
Einstein theory. (The important generalization to the full theory will be
given in (9.9.16).) We have seen in (5.7.4), (5.7.8) that a symmetric spinor
4>ABCD subject to (4.12.42) in Ml describes a free gravitational field in the
weak-field limit. Thus, for each symmetric solution oAB of (6.1.69), the
spinor

XAB = 4>ABCD*CD (6A3)

satisfies Maxwell's free-space equations (5.1.57), even though it may have
nothing to do with electromagnetism. Now suppose the sources oi(f)ABCD lie
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76 6. Twistors

in a limited region spatially surrounded by vacuum. The 'Maxwell' field XAB
must also have its sources in that region, since it satisfies the free-field
equations when (J)ABCD does. In Maxwell theory there is a well-known
procedure for evaluating the charge of the source, both electric and
magnetic, allowing the latter as a theoretical possibility. We wish to apply
this procedure to XAB a nd thereby obtain information about the sources of
<t>ABCD' This information will turn out to provide us with a definition of the
4-momentum and 6-angular momentum of these sources.

The procedure depends on the fundamental theorem of exterior calculus
(4.3.25) and consists in expressing the total charge in terms of an integral
over a closed 2-surface ^ surrounding the source region. Suppose Ja is a
charge-current vector describing the source for a Maxwell field Fab. Then
the total charge in a (say spacelike) 3-volume TT is

[ V
where the differential form notation of (4.3.20), (5.9.5) is being used. (Note
that for y in T= constant, with standard Minkowski coordinates in Ml,
this would be q = \ r J° dX A d7A dZ.) The Maxwell equation d*F =
(cf. (5.9.13)), together with (4.3.25), now gives

= £ f -Te^dx* A dx« A dxr = - £ [

where r is taken to span £f (i.e. to be compact with boundary d'V = 9*). We
can rewrite this as

q = 4 ^ I m J ( P A B £ A B ' d x ° A dxb

where Fab = <pABeA.B. + £AB(pAB>, *Fab = - i(pAB&AB. + if
(3.4.20), (3.4.22) and where dxfl stands for gh

a, dxa A dxb for
9[haQi2]> etc- Similarly, were there to be a 'magnetic charge' [i this would
be given by

/i = -=-Rc<

whence

H + iq = —-(b ^ B £ . , - . dxfl A dxfc. (6.4.4)
471

The integral (6.4.4), as a consequence of Maxwell's free-space equations,
is insensitive to deformation of Sf through a source-free region. (In
particular it is constant in time if 'charges' do not cross the region - an
expression of'charge' conservation). For if £f moves to Sf\ sweeping out the
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6.4 Symmetric twistors and massless fields 11

3-volume f\ we have d'V — 9" — 9* and the result follows from the above
since V = 0 on V~.

We now apply this to xAB, where in place of Fab we have the real bivector
Pab corresponding to XAB (cf. (3.4.38)):

Pat = XABCAB' + *ABIA-V* XAB^AB' =~Pab = i(^«6 + i*P J . (6.4.5)
For each arbitrary symmetric solution of (6.1.69), in conjunction with the
given field (I>ABCD>

 w e obtain one complex 'charge integral', i.e., two real
conserved quantities. We have seen that the symmetric solutions of (6.1.69)
are given by (6.1.51)(4), subject to (6.1.66). Consequently they possess ten
complex degrees of freedom: three for <rAB

9 four for p ^ , and three for kAW. In
this way we get ten independent complex charge integrals, i.e. twenty
independent real charge integrals, for the field 4>ABCD-

However, for a (J)ABCD arising physically, we would expect only ten real
conserved quantities, namely the 4-momentum and 6-angular momentum
of the source. Indeed, it actually turns out that ten linearly independent real
integrals of the above kind vanish identically provided <PABCD arises from a
real hab according to (5.7.12). Moreover, as we shall see in §6.5, this
conclusion also directly follows if a tensor Kabcd with Riemann tensor
symmetries, subject to the Bianchi identity equation V[aKbc]de = 0, exists
throughout V where Kabcd reduces to the form (5.7.8), with the given (t>ABcD>
at Sf. The source is given by the Eac of (5.7.6). The ten surviving independent
integrals arise from the three complex components oiKAB> and the four real
components of (pa + pa). The integrals which vanish come from cAB and
\{pa-pa). Compare Sachs and Bergmann (1958).

It may seem surprising that these vanishing integrals arise from just those
spinor parts of Sa/? which survive when SaP is specialized to iAa/?, i.e., to the
form i x (an angular momentum twistor), so they are the parts with a direct
interpretation as 4-momentum and 6-angular momentum; whereas the 4-
momentum and 6-angular momentum integrals actually come from the
'rest' of S*p. This apparent paradox will be explained later (pp. 88, 93).

We shall later need the tensor version of (6.1.69) when oAB is symmetric:

where the skew tensor Qab is given by

Qab:= iaABeAB' - iaAB'eAB. (6.4.7)

Proof of the equivalence of (6.4.6) with (6.1.69) can be obtained directly by
substituting (6.4.7) into (6.4.6). Moreover, the general solution of (6.4.6) is

gab = Qab + 4 V[axb] _ 2e°*>cdy^ _ Lj^ab^ + 2Kc[bX°]Xc, (6.4.8)
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78 6. Twistors

where the constant tensors Ua, Va, Kab are defined by

Ua + iV = p\ Kab = iKA.B.eAB- \KABZA,W. (6.4.9)

The solution (6.4.8) is obtained by translating the corresponding spinor
solution, using (3.4.53) etc.

In the same way that contracting aAB with (j)ABCD yields a spin-1 zero rest-
mass field, so also contracting Qab with the tensor version Kahcd oi<j)ABCD {cf.
(5.7.8)) yields a skew two-index tensor satisfying the Maxwell free-field
equations. This is easily seen since, by (5.7.8) and (6.4.7),

KabcdQ
cd = 2(iXABsA,B. - ixA.B-eAB) = - 2 *Pab (6.4.10)

where XAB *S given by (6.4.3). And since XAB satisfies the free-field Maxwell
equations in spinor form, our assertion follows.

The general case; potentials

We next consider how the general equation (6.1.62),

V!W», = 0 (6.4.11)

relates to the massless field equation (4.12.42). Equation (6.4.11) applies to a
symmetric spinor xA'~DP'~-s' of valence [g %] which is the primary part of a
trace-free symmetric [*]-twistor. Let 4>A...L (with n>p indices) be a
symmetric solution of (4.12.42), and define a new field

^F.l = ct>A...DEF..JA'DP'-S' (6A12)

Then, by (6.4.11) and (4.12.42), this field satisfies

(In fact, equation (6.4.13) is conformally invariant, as we shall see in (6.7.31).)
Suppose now that some symmetric field \\iT

A::Z of valence [£_r o] (with
n — r>p) satisfies (6.4.13) - of which the massless field equation is a special
case with r = 0 - and we use \ft\\\ rather than (/> in the definition of x'\\

J[?;..ST...r = i , , . . .«r . . S W : : .r ! i ) ( 6 A 1 4 )

then x\ again satisfies (6.4.13).
A particular case of interest is given when n — r = 1. For it follows from

results of twistor theory (cf. Eastwood, Penrose and Wells 1981, Penrose
and Ward 1980), and can also be shown directly (using an argument due to
G.A.J. Sparling), that if \jjB

A'u is symmetric and of valence [? " J 1 ] , and
subject to the equation

5'-L'> = 0, (6.4.15)
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6.4 Symmetric twistors and massless fields 79

then (in flat space-time) the field

cj)AB"L = V£- "Vi4A)B-L> (6.4.16)

satisfies the massless field equation (4.12.42). Consequently, such a ij/y\
subject to (6.4.15), acts as a kind of potential for </> (compare (5.7.12)).
Furthermore,the general massless </> can locally be expressed in this way.
The gauge freedom turns out to be

^C' . . .L' H ^C' . . .L' + V(B>gC'...L>)9 (6.4.17)

for arbitrary (symmetric) ff'—L> of valence [£ J~2] , unless n = 1, when there
is no gauge freedom, or n = 0, when no potential exists. In fact, (6.4.16) is
conformally invariant in the weak sense that the relation goes over into itself
for any conformal rescaling that sends the metric into another which is
again flat, ij/A'L' being taken to have conformal weight — 1.

Spin raising

Any symmetric [°]-twistor has a symmetric primary part kp "s which
satisfies

P'...S') = 0 (6.4.18)

(this being a special case of (6.4.11)-also the conjugate of (6.4.1)), and
which can therefore be used, as in (6.4.14), to convert a potential for an n-
unprimed-index massless field into a potential for an (n + g)-unprimed-
index massless field:

Differentiating t/r (n— 1) times to get the first field, and differentiating
X;*' (n + q — 1) times to get the second field, we find an alternative ('dual')
way to that of (6.4.2) to construct a new massless field from another of
different spin. The general expression is complicated, but in the special case
when q=l, this process leads from the /i-index massless field (/> to the
(n + l)-index massless field

1A...LM = ^M'VMM 4A...L + Kn + 1)/>(M<^...D, (6A20)

where kA> is the primary part of the [i]-twistor (pA,kA\ so PA
£BC =

— iVABdc (Penrose 1965). Compare this with (6.4.2) in the case r = 1, where
the [o]-twistor {XA,pA) effects the lowering of spin'

)U...* = ^ . . . * L * L - (6A21)

The spin-lowering and -raising formulae (6.4.2), (6.4.3), (6.4.12), (6.4.20),
(6.4.21), (also (6.4.31) below) and certain instances of (6.4.12), (6.4.14)
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80 6. Twistors

illustrate ways that a trace-free symmetric twistor may be used to shift the
spin of a massless field. We could, of course, also have written down the
complex conjugates of these expressions. There is an essential unity in all
these results which will be illuminated in §6.10 (cf (6.10.37), (6.10.38)). In
terms of the concept of helicity of a (positive frequency) massless field (cf
after (5.7.3)) the spin shift occurs in a uniform way: for a trace-free
symmetric twistor of valence [J], the helicity increase is precisely j(p - q)h.

Other types of potential; relations to •

It may be remarked that there is another form of (completely symmetric)
potential \\i;;; for a massless 0 of arbitrary spin (in flat space-time)
that is somewhat easier to handle, the relation between field and potential
being

^...£F...L = V^ . . .V £ £ ^ : ; : i f ' , (6.4.22)

and \j/\ now being subject to a somewhat stronger equation than (6.4.13)
(namely, lacking the symmetrization):

V £ £ > & : : . L = 0. (6.4.23)

This equation does not have the conformal invariance properties of (6.4.13).
On the other hand, for a given 0 , we can find such potentials (locally) with
any number of primed and unprimed indices totalling n (not just one
unprimed). In fact, if \jj\\\ has at least one unprimed index (the contrary case
will be dealt with below), then (6.4.23) implies that

PDE:CL = ^DD41::LC'D' (6.4.24)

is symmetric in DE, and therefore totally symmetric; *and also that /?;;;
satisfies the corresponding equation (6.4.23). (In proving this, we must
commute derivatives, which restricts us to flat space-time.) Continuing, we
thus arrive at (6.4.22), the symmetry of (/> and its satisfaction of the massless
field equation being the final result. We may remark that nowhere did we
use the symmetry of ^ ; ; in the primed indices, and this symmetry need not
be assumed; but since all skew parts drop out of (6.4.22), symmetry can be
imposed without loss of generality. We also note that (6.4.23) implies

V^G
B' / .- t

D ' = 0, (6.4.25)

which generalizes the Lorenz gauge condition (5.1.47) on the potential of
electromagnetic theory. Furthermore, (6.4.23) implies that

yjM'v/N' I A'...D'
V M V N YE...L

is symmetric in N, £, and also in M, E (since derivatives commute in flat
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6.4 Symmetric twistors and massless fields 81

space) and therefore in M, N9 so \jj;;; satisfies the wai;e equation

.LD' = 0, (6.4.26)

where

is the D'Alembertian operator of (5.10.6) (cf. also (6.8.26) below).
We can even find a 'Hertz'-type potential xA "L with no unprimed

indices, assumed symmetric without loss of generality, and subject only to

n ^ ' . . . L ' = 0 (6.4.27)

As in (5.10.7), (6.4.27) implies Vft 'Vj^ ' ' L' = 0, whence

The quantity in parentheses can now take the place of ^ ; ; in (6.4.24), and
the previous argument can be repeated, leading finally to

4>A...L = VAA---VLUXA'-U- (6A28)

Each of the expressions (6.4.22) for the various \jj\ satisfying the required
conditions (including (6.4.28)) represents (locally) the general massless field.
Each has a gauge freedom, which can be shown to involve only massless
fields of lower spin than cf)_, and the various derivatives of such fields
(Penrose 1965). In fact this gauge freedom can be used to reduce the xA "L

of (6.4.27), (6.4.28) still further, to the form y?A> ~L\ locally, where PA> L' is
a constant spinor, independent of the field (f>A...L and where D# = 0.
This shows that the free field <^...L has the same amount of'freedom' for
each spin, locally, as a complex scalar massless (D'Alembert) field & a fact of
which we are already aware from the discussion of §5.11.

It is of some interest to note that the primary part of any symmetric [£]-
twistor satisfies the wave equation in flat space-time:

(Garding 1945). To prove this we first note that, in

(which follows from (2.5.24), the LHS being skew in NM because the V
operators commute; see also (6.8.33)). Applying (6.4.30) to the derivative^
of the LHS of (6.4.29), contracted over M', we obtain

whence by (3.5.15) we deduce UXAB-L = 0 as required.

As a corollary of (6.4.29), we can easily derive an extension of (6.4.2) to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.003
https://www.cambridge.org/core


82 6. Twistors

case when XA-D and cj)A D have the same number of (symmetric) indices:

V ( M ^ . . . D ) = 0 ? VAA'<t>AB...D = 0 implies n(<t>A...D*A-D) = 0.

(6.4.31)

We have been working in Minkowski space M9 but by the conformal
invariance of the two equations in the hypothesis of (6.4.31) (XA-D and
&A...D having respective conformal weights 0 and — 1) it follows from
(6.8.30) below that the conclusion in (6.4.31) still holds in conformally flat
space-time provided that the operator • is replaced by • + $R

6.5 Conformal Killing vectors, conserved quantities and exact sequences

In the last section we saw one way of obtaining the ten Toincare' conserved
quantities (energy-momentum, angular momentum) for the sources of a
linearized gravitational field. In this section we shall examine another way
of obtaining these quantities, and relate them to five more conserved
quantities that exist when appropriate conformal invariance properties
hold. The relations between the ten Poincare and the fifteen conformal
quantities are intriguing and somewhat intricate. To gain a more complete
understanding of these relations - but also for later use in a different con-
text - we shall briefly introduce the important concept of exact sequences.

Our overall objective is to relate two integrals for the Poincare quantities.
First, the 2-surface integral of §6.4 combines two ingredients, each linearly:
the massless spin 2 field, <PABCD surrounding some source, and the primary
part GAB of a symmetric twistor Sa/?. The integral of <\>ABCD effectively gives
the angular momentum twistor Aa/? of the surrounded sources. Second, a
3-surface integral combines another two ingredients linearly: the source
Eab for (f)ABcD (analogous to the source Tab for *FABCI)) and a Killing vector
E,AB> - the primary part of a Hermitian twistor Fa

fi (called Ea
fi, to begin

with). The integral of Eab is effectively another Hermitian twistor E^, a
'potential' according to (6.3.14) for the angular momentum twistor AaP of
Eab. Similarly Sap is a 'potential' (6.3.15) for F*fi. Our final equation (6.5.53)
succinctly sums up the relation between these twistors.

Conformal Killing vectors

First, let us return to a discussion of (6.1.70), V{c^') = 0. By reference
to (3.4.5) and (3.4.9) we can interpret this tensorially as the vanishing of the
trace-free symmetric part of Vc£fl:

V( f l&,-k*Vc£c = 0. (6.5.1)
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This is the conformal Killing equation. It is equivalent to

( (6.5.2)

since the proportionality factor can be recovered from the latter equation
by taking the trace. Another way of writing (6.5.2) is (cf. (4.3.3)):

^Gab^Gab- (6.5.3)

If £a is taken to be a real vector field, this equation states that when the
metric is 'dragged' along the vector field, it is altered only by a factor.
Thus £a expresses a local conformal (active) symmetry of the space-time.
Such £a is sometimes called a generator of infinitesimal conformal motions
of the space-time, each point being displaced by e£a where s is infinitesimal:

In a general curved space-time there will be no local conformal
symmetries and consequently no (non-zero) solutions of (6.1.70). At the
other extreme is flat (or conformally flat) space-time in which there is the
maximum possible number (fifteen) of linearly independent solutions. In
fact, we have the solutions explicitly in (6.1.5 5) (4). Since £a is to be real,
the conditions (6.1.68) will hold, i.e., the associated twistor Ea

p given by
(6.1.54) and (6.1.56) will be Hermitian. Counting the degrees of freedom, we
see that there are four in £AB\ eight in (A

B> = UB'A>, and four in rjA.B, making
sixteen in all. However, the field £AB> does not quite determine all these
coefficients. As we saw in §6.1, it is invariant precisely under

&A
B^bAB + teBA 0*eR) (6.5.4)

(the reality of h being needed to preserve the Hermiticity of Ea
p), which

affects only the trace of E*B. Thus the trace-free part of E*fi9

E«,-iEVV (6.5.5)
is uniquely determined by the conformal Killing vector £fl. We now have
fifteen degrees of freedom (the number of independent real components
of (6.5.5)).

The solution (6.1.55)(4) (for Hermitian £AB>) may be re-expressed
tensorially as follows:

£, = Ta + Labx
b + Rxa + Sb(x

cxcga
b - 2xax% (6.5.6)

where

Ta = t R=-lm(6A
A), Lab=-xfrABhA'B' + \frA>B\AB, Sa=-±rja.

(6.5.7)

We may interpret these four terms as giving, respectively, the infinitesimal
generators of the translations (four parameters), the Lorentz rotations (six
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parameters), the dilations (one parameter), and the special conformal
transformations (four parameters sometimes misleadingly called 'uniform
acceleration transformations'). If R and Sa both vanish, then £? is a Killing
vector

V ( f l^ = 0, i.e.,£<u = 0, (6.5.8)

and is a generator of the infinitesimal Poincare group (ten parameters). In a
curved space-time solutions of (6.5.8) will exist if the space-time permits
local continuous metric-preserving motions into itself (not just conformal
ones), as do stationary space-times, for example.

Conservation laws

There is an important relation between (conformal) Killing vectors and
conservation laws in general relativity. Suppose we have a symmetric
energy tensor Tab9 satisfying the usual divergence relation,

Tab=Tba, VaTab = 0. (6.5.9)

If there is a Killing vector field £? in the space-time, then the expression

Ca=Tabe (6.5.10)
satisfies

VaCa = ZbVaTab + TabV
a£b = 0, (6.5.11)

by (6.5.9) and (6.5.8), since Tiab)V
a£b = TabV

(a£b\ Thus Ca satisfies a vector
divergence law like the VaJ

a = 0 for the charge-current vector Ja

(cf. (5.1.54)).
Now the divergence theorem, which tells us that the 3-volume integral

of such a Ja or Ca describes a conserved quantity, applies in curved space-
time as well as in flat. For we have seen in (5.9.6) that VaJ

a =^0 has the
differential-form expression d f / = 0 , where *J=eili2i3aJ

a as in (5.9.5), our
integral being JVover the 3-volume. The divergence theorem is a particular
case of the fundamental theorem of exterior calculus (4.3.25): the integral
of f / over the 3-volume boundary of any compact 4-volume necessarily
vanishes - this boundary representing an initial and final location of our
original 3-volume. Thus the same applies to ^C=eilhhaC

a. But a tensor
Tab subject to (6.5.9) does not, by itself, generally provide any conserved
quantity. The extra index on Tab, i.e. on eili2haT

ab, prevents application
of the divergence theorem in a general space-time. But when a Killing
vector £a is present, the above procedure is valid.

In M there are ten independent Killing vectors. Each of these may be used
in (6.5.10) to provide a conserved quantity. The generators of the four
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6.5 Conformal Killing vectors, conserved quantities, exact sequences 85

independent translations give four independent such quantities, namely the
energy and the three momenta. The generators of the six Lorentz rotations
define the six components of relativistic angular momentum about the
origin of rotation, three of these being the ordinary non-relativistic angular
momentum and three describing the mass centre in its uniform motion.

Now suppose that £a is merely a conformal Killing vector. Then, by
(6.5.2), the calculation (6.5.11) is still valid, provided Tab is trace-free:

Ta
a = 0. (6.5.12)

We recall the trace-freeness is needed for the divergence equation VaTab = 0
to be conformally invariant (cf. (5.9.2) et seq). Trace-freeness is also a
property of the Maxwell, Dirac-Weyl neutrino, and 'new improved' mass-
less scalar field energy tensors {cf. (5.2.4), (5.8.3), (6.8.36) below). There are
general arguments based on Noether's theorem in the Lagrangian formal-
ism which imply that conformally invariant fields such as these should lead
to trace-free energy tensors (see e.g. Wald 1984, p. 448). Such fields will
therefore give rise to one conserved quantity for each conformal Killing
vector in the space-time.* In Minkowski space we have fifteen independent
conformal Killing vectors and therefore fifteen independent conserved
quantities. This gives five new conservation laws (beyond those for energy,
momentum, and angular momentum) corresponding to the generators of
the infinitesimal dilations (one) and special conformal transformations
(four) {cf (6.5.6), (6.5.7)).

Twistor description

The interrelations between the standard ten conserved quantities of
Poincare invariant theories and the fifteen conserved quantities of the
conformally invariant theories in Minkowski space are very elegantly
brought out in the twistor formalism. We have seen {cf (6.5.5)) that each of
the fifteen linearly independent solutions of the conformal Killing equation
(6.5.1) is the primary part of a Hermitian [}]-twistor E0 ,̂ whose trace-free
part it uniquely determines. The twistors Ea

p which arise in this way from
Killing vectors constitute a ten-real-dimensional subspace of T£. On the
other hand, we also saw in (6.3.11) that the ten energy-momentum and
angular-momentum components of a system can be collected together in
the form of a symmetric twistor Aa/3GT(a/?), which has the special form

The Bel-Robinson tensor Tabcd is also trace-free symmetric and subject to vanishing
divergence in vacuum. The equation Va(Tabcd€

b£c€d) = 0 holds for any conformal Killing
vector £a and therefore also gives rise to a conserved quantity (cf. Bel 1959).
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(6.3.13) involving a Hermitian twistor E°y (Furthermore, the trace part
i&yd^ of Ea

p does not contribute to Aa/?.) The operation (6.3.13) thus
extracts precisely the information of the ten energy-momentum and
angular-momentum quantities out of a set of fifteen conformal quantities
stored in E^.

It would be natural to suppose, therefore, that there is a connection
between these two procedures for reducing fifteen conformal quantities to
ten Poincare quantities. In fact there is. But the connection is not quite
direct, and involves passing from a space to its dual space. Indeed, the
passage from a general trace-free E^ to one which represents a Killing
vector, rather than merely a conformal Killing vector, is a passage from a
space to a linear subspace. On the other hand, the map (6.3.13) taking Ea

p to
AaP is a projection taking the space of twistors E0^ to a factor space.
Subspaces and factor spaces are dual concepts.

To see why duals must be involved, consider the physical meaning of a
quantity like Aa/? and of a Killing vector. A particular twistor Aa/3 represents
the entire 4-momentum/angular-momentum structure of a particular
physical system, say a billiard ball, while a particular Killing vector refers to
a single component of this structure, say the energy, as applied to an
arbitrary physical system. If we apply the one to the other - say, if we ask for
the energy of the billiard ball - then we obtain a real number. This real
number arises as a suitable scalar product, over the reals, between the
twistor representing the Killing vector and that representing the 4-
momentum/angular momentum of the physical system, since it is IR-linear
in both. In the same way, we may consider a particular conformal physical
system (such as a given free electromagnetic field) whose conformal
conserved quantity structure is described by some trace-free Hermitian E°y
Then, given some conformal Killing vector £fl, which is now taken to be the
primary part of a trace-free Hermitian twistor F0^, we should be able to
extract the conserved quantity corresponding to the particular vector £fl, for
this conformal system, as the result of some R-bilinear 'scalar product'
between F0^ and E°y Conformal invariance demands that this be a twistor-
scalar (not involving la/? or la/?), and so it must be proportional to

P ,EV (6.5.13)

This is clearly real because of the Hermiticity of F0^ and Ea
0. Also it is

unaffected if a trace (hdap) is added to F0^ or to E^, but not to both.
In the particular case when the vectors £a are restricted to be Killing

vectors, the twistors Ftt
p will specialize to a particular form, so that only

certain of the components of Ea
p will be determined by scalar products of
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the type (6.5.13). These components will be precisely those conserved
quantities possessed by a general Poincare system (as opposed to a
conformal system), namely the energy-momentum and angular momen-
tum, i.e., the ten independent real components of Aap, as defined by (6.3.13):

Aafi = 2E\Jfi)r (6.5.14)

The components of Ea
p that are annihilated in the passage to AaP are the

ones that are not well defined by a general Poincare system - only
conserved quantities can be well defined in this sense, that is, without
reference to the value of some time coordinate, say. A Poincare system
defines an Aa/? but not an E%.

Comparison of (6.5.14) with (6.5.13) suggests that for a Killing vector £a,
F*p may have to specialize to the form Fa

/3 = 2Sayly/?, where SpyeVpy\ or
more correctly to

pa _ eayi , q jya tc c i c\
' p — ° ly0 i °0y' > JO.J.IJ)

since Fa
p must be Hermitian. The trace-free condition Fa

a = 0 follows from
the symmetry of Sa/? since \aP is skew. Substituting (6.5.15) into (6.5.13), and
using (6.5.14), we find

F^E^ = Re {Sa/*Aa/J. (6.5.16)

Thus our scalar product can now be expressed, bilinearly over the reals,
directly in terms of Sa/? and Aap.

To see that Fa
p indeed has the form (6.5.15) when £a is a Killing vector, we

note that the extra condition on F*p implied by (6.5.8) is

Vfl£' = 0. (6.5.17)

From (6.1.56) we then get, using the notation (6.1.54),

We assume that the trace of Fa
p is zero, so that it is determined by its

primary part £fl:

Then 0A
A = Z,A.A> = 0, and so, from (6.1.56)(2) and (6.1.68)

These equations state that

F[a
/3 |^ = 0. (6.5.19)

By examining the meaning of (6.5.15), (6.5.19) in terms of spinor parts at
some origin 0, it is easy to show that, as a consequence of (6.5.19), Fa

p is
indeed necessarily of the form (6.5.15), with Sa/*eT(a/?), as we asserted.
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Thus, Sa/? can be used, in place of Fa^, as a twistorial representation of a
Killing vector. In some ways Sa/? is more convenient. The difference is that
whereas F*fi is subject to a restriction (see (6.5.19)), Safi is defined up to a
'gauge freedom'. In fact, one can readily verify that Sa/* is defined up to

S«/>h-»Sa/? + i2G(*/)y, (6.5.20)

G^ being arbitrary Hermitian:

G", = G/ . (6.5.21)

Relations to linear gravity source integrals

We are now in a position to illuminate the results we obtained in §6.4, in
connection with the conserved quantities of a weak gravitational field
4>ABCD' The symmetric spinor field aAB of (6.4.3), arising from the Safi of
(6.1.50) and therefore satisfying (6.1.69), was used with (J)ABCD

 t o construct
ten complex integrals (i.e. twenty real integrals) of which only ten real values
were independent. The ten vanishing real integrals in fact arise from the
'gauge term'

2G ( a / ) y (6.5.22)

in (6.5.20). Notice that this term has exactly the same form as Aa/*, as given
by (6.3.13). This is the cause of the apparent paradox we encountered on
p. 77. In effect, it is just that 'part' of SaP which has the form of iAa/* that
does not contribute to the energy-momentum or angular momentum of the
source; it is when we pass to the dual space that we find a twistor with the
structure of Aap which does represent the energy-momentum and angular
momentum of the system. We shall return to this curious matter shortly.

Let us see how the Killing vector £a is, in fact, related to Sa/*. From (6.5.15)
and the forms (6.1.50) and (6.1.54) for Sa/J and P*p, respectively, we obtain

£AB' = _ pAB> _ pAB' (6.523)

Hence, by (6.1.52), with (6.1.66),

Vcc,a
AB=-2iec

iAp»l (6.5.24)

Combining the last two equations, we get

{** = i ( - i V £ aAB + NAdAB). (6.5.25)

Thus aAB, subject to (6.1.69), acts as a kind of potential for £a. With (6.1.69)
assumed, the Killing equation for £fl is actually a consequence of (6.5.25).
Furthermore, pa is itself a special type of complex Killing vector, and so its
imaginary part is also a Killing vector. This second Killing vector is
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6.5 Conformal Killing vectors, conserved quantities, exact sequences 89

associated with £? but is not uniquely defined by it. Its existence and non-
uniqueness is related to the 'gauge freedom' (6.5.20).

Exact sequences

To help understand questions of (linear) gauge freedom, it is useful to give a
discussion in terms of exact sequences (cf. Strooker 1978). These are
sequences of maps between vector spaces (or, more generally, between
modules, Abelian groups, etc., - but here we need only consider vector
spaces):

• ••->P-»e->fl->S-> •••, (6.5.26)

which may extend infinitely in both directions or perhaps terminate at one
or both ends with 0 (the zero vector space). The maps are all to be linear
(with respect to the commutative ring concerned - here either U or C) and
to satisfy the following two properties:

(i) the composition of any two successive maps yields only the zero
element,
(ii) any element mapping to zero in one of the maps must have a pre-
image in the previous map.

We can combine (i) and (ii) in the form: the kernel of any map (i.e., the pre-
image of zero - the set of elements mapping to zero) is exactly the image of
the preceding map. Sometimes it is helpful in visualizing these sequences to
have the diagrammatic description given in Fig. 6-4.

(i) and (ii) hold

(i) holds but not (ii) (ii) holds but not (i)

Fig. 6-4. Schematic description of an exact sequence (both (i) and (ii) holding) and of
the two partial conditions separately. (If (i) holds, but not (ii), the sequence is called a
complex.)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.003
https://www.cambridge.org/core


90 6. Twistors

, rr\
Fig. 6-5. Simple cases of exact sequences: A = 0, B = C, F ̂  £//).

Note that if

0-+A-+0, 0->£->C->0, 0 - > D - > £ - > J F - » 0

are exact sequences, then A = 0, B^C, and F is the factor space of
E by Z), i.e., F ̂  £/Z) (see Fig. 6-5). Note also that if we have just two
maps D -• £ -• F such that the kernel of the second is the image of the
first, then we can always define arbitrarily many other spaces and maps
to make a complete exact sequence of which D->E-+F forms a part. By
linearity, if 0 is the beginning of an exact sequence, its image is necessarily
the zero element; if it is the end, its pre-image is the entire space.

A familiar and important example of an exact sequence is the (Poincare-)
de Rham sequence

O-R^A^A^A2-^--, (6.5.27)

where Ar stands for the vector space (over IR) of C00 real r-forms, all
defined on some w-dimensional C00 manifold °U with Euclidean topology.
Note that the sequence terminates with An+* = 0. The map k simply takes
a real number / and maps it to the 0-form which has the constant value
/ on °U. The maps d are exterior differentiation (4.3.14). Since the constants
are precisely those 0-forms that are annihilated by d, we have exactness
up to A1. Furthermore, d2 = 0 (recall (4.3.15)(viii)), so condition (i) for
exactness is satisfied all along the sequence. And because we have assumed
Euclidean topology* for ^ , if, at any stage, dw = 0, there exists a v such
that w = dv - by (the converse of) Poincare's lemma; so condition (ii) is
satisfied also. Note that dw = 0 for weAp+1 is the integrability condition
for solving the equation w = dv with ve\p. If, conversely, we regard dw = 0
as a 'field equation' for w, then v provides a 'potential' for w. The 'gauge
freedom' in v, v*-+v + w, is obtained by adding to v a quantity u satisfying
dw = 0. Such u must have the form u = dt with feA^"1, and there is a
'gauge freedom of the second kind' t\-+t + dr, reAp~2, and so on. In this
simple example we see how successive gauge freedoms take us back down

* Without Euclidean topology the exactness could fail at some stage. For such spaces this
sequence is used at the local level only ('sheaf exact sequence'). Its globalization leads to
cohomology (cf. §6.10, after (6.10.55)).
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the exact sequence one step at a time; the reverse direction is associated
with integrability conditions.

A simple but important exact sequence involving only/imfe-dimensional
vector spaces is

O-^iyis^O, (6.5.28)

where S^4 and S ^ denote the spaces of constant spinor fields of the types
indicated by the indices (cf. Penrose and MacCallum 1972). The map 1
takes any constant spinor field KA into the twistor (KA, 0). Map 2 takes any
twistor (coA, nA) into the constant spinor field nA.:

KA^(KA,0), {coA,nA)£+nA,. (6.5.29)

The exactness of (6.5.28) is obvious. So is its Poincare invariance: each of the
maps (6.5.29) is canonically defined in a Poincare invariant (but not
conformally invariant) way, so it is unaffected by any change of origin.

An important property of exact sequences is that their duals are also
exact,* but with the maps running in the opposite direction. Thus, for the
dual vector spaces P*, g*,.. . of (6.5.26) we have

...«_P*«_g* <_#*<_£*<_... (6.5.30)

as another exact sequence.** The dual of (6.5.28) is

O^S^T.^S'VO (6.5.31)

1* ,2*

with (XA, iiA')\->AA,nA'\-+(0, /LIA'); and it is interesting to note that this is also
the complex conjugate of (6.5.28) (read in the opposite direction).

The moment sequences

Let us now examine the exact sequence that arises from (6.5.15), (6.5.19), and
(6.5.20). Consider the following partial sequence:

H« -^ T(a/?) -^ H£ -^ J[ap\ (6.5.32)

where H£ is the vector space (over R) of Hermitian [}]-twistors, and T(a^
and T[a/J] are the spaces of symmetric and antisymmetric [o]-twistors,
regarded for this purpose as vector spaces over R. The map r is defined so

* In the general case, this property requires the Axiom of Choice.
** The reverse map from Q* to P*, say, associated with each element qeQ* the element

peP* such that px = qy for all xeP, y being the image of x in the original map P-*Q.
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that its kernel is (6.5.19),

r: H£ -> T1^1:: F%h-2FIa/]y, (6.5.33)

where F*fi is here a general (not necessarily trace-free) element of Hj}. To
solve (6.5.19) we use (6.5.15), which provides the map q,

g:T(fl*>-* HJ :: Sa^Say\yP + S,7I*\ (6.5.34)

And the gauge freedom in Sa/* is given by (6.5.20), which provides the map /?,

p:HJ-*T(^:: G^»->2iG(a/)y. (6.5.35)

With these maps, (6.5.32) is a possible portion of an exact sequence, since the
image of q is the kernel of r, and the image of p is the kernel of q.

We can extend the sequence (6.5.32) in both directions, and obtain an
infinite exact sequence which turns out to be periodic,

• • • - T[a/?] A H J A T(a/?) i H J -̂  T [ ^ ] i HJ - > • - . , (6.5.36)

the one remaining map 5 being defined by

5:T
[afl-+HJ:: K ^ i l C ^ - i R ^ P * (6.5.37)

(where Ka/? is skew). The exactness of this completed sequence is straightfor-
ward to verify (e.g., by examining the spinor parts at 0).

The dual of the sequence (6.5.36) is

q
''' - TIa/n <- H> <- ¥,.,, <- H£ <- T M «- H> «-•• • (6.5.38)

where the map p [or q, f, s respectively], which is the dual of q [or p, s, r], is
related to the map p [or q, r, 5] as follows: first multiply by - i, then apply
p [or q, r, s], then take the complex conjugate. The resulting sequence (6.5.38)
is exact, and indeed, as well as being the dual of (6.5.36), it is simply (when
read from right to left) a trivial modification of (6.5.36) itself (with
incorporation of factor — i and complex conjugation). It may be remarked
that the scalar products between the spaces occurring in (6.5.36) and their
duals are defined as the real part of the contracted product of corresponding
elements from the two spaces. (Of course, when the two spaces are HJj and
Hj, the contracted product is real anyway.) It is this definition of scalar
products that governs the definitions of the maps p, q, f, s.

Note that the relation between Ea
p and the angular momentum twistor

Aafi that was given in (6.5.14) is precisely that defined by the map p9 taking
E^eHj to A(a/?)eT(a/0 and the freedom (6.3.14) is just that defined by 5.
Again, the agreement (6.5.16) between the (real) scalar product of Sa/? with
Aa/? and of F0^ with Ea

p is a consequence of the fact (as applied to the two
middle terms of the sequences as we have written them) that (6.5.36) and
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(6.5.38) are dual sequences over R. Recall the apparent paradox of pp. 77,
88, in which the expression (6.5.14) and the identical expression (6.5.22)
seemed to be playing opposite roles, the first as the map giving the Poincare
conserved quantities from the conformal ones, and the second as a mere
gauge freedom: this is now seen in a broader context. The relation (6.5.14) is
the map p in the sequence (6.5.38), while the gauge terms are the image of p
in the sequence (6.5.36), i.e., the kernel of q9 where q is the dual of the map p.
The sequence (6.5.38) is the one referring to particular physical objects (e.g.,
the billiard ball of the discussion on p. 86, whose angular momentum
twistor Aa/? would be a particular element of T(flt/?)). The sequence (6.5.36) is
the one referring to (conformal) Killing vectors, etc., in their roles as
selecting particular conserved quantities (such as the Killing vector
representing the energy component of a system).

So far we have treated the sequences (6.5.36), (6.5.38) in an algebraic way
(that is, merely as examples of twistor algebra). But, as we saw in (6.5.25), we
can also treat these twistor linear maps at the level of differential equations
on spinor fields in M. Moving back down the sequences then corresponds
to finding potentials in the more-or-less ordinary sense (as oAB is a potential
for £a in (6.5.25)). In Fig. 6-6 the entire transformation scheme for the
sequence (6.5.36) is exhibited. The equations are written in terms of the
primary parts aAB

9 KEAB of twistors S^eJi<xp\ KapEJlap\ respectively (these
being the cases where the primary part alone determines the twistor), and in
terms of the pairs (ya,fi) and (<*U), describing G % E H J and F%eHJ,
respectively, where yAA\ t,AA' are the respective primary parts and \i = Ga

a,
X = Fa

a are the (independent) traces which are needed to define these
twistors completely.

Most of the relations in Fig. 6-6 are given in tensor form. The translation
to tensor form of the remaining relations - those occurring in the central
portion of the figure - can be achieved by setting

Qab = {(TABeA'B' _ xdA'B'sAB^ (6.539)

as in (6.4.7). The tensor form of the relation V{^aBC) = 0 was given in (6.4.6).
The tensor form of the map q is

Za = &bQ
ba (6.5.40)

(together with X = 0), and that of p,

Qab=-eabcdVcyd, (6.5.41)

the image of p (i.e., the kernel of q) being the set of Qab subject to (6.4.6) and

VbQ
ab = 0. (6.5.42)
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As we have seen, the dual sequence (read from right to left) is a trivial
modification of the original one. In particular, the map p which produced
the angular-momentum twistor Aa/? from the conformal quantity E^, takes
essentially the form (6.5.41), in which, however, the quantity corresponding
to Qab is replaced by its dual, because of the factor — i in the definition of p
(after (6.5.38)). The primary part of Aap is (cf. (6.3.11)) l\[xAB\ so replacing
dAB> by this in the definition (6.5.39) of Qab, we get twice the angular-
momentum tensor (6.3.10): 2Mab. The conformal Killing vector £AB\ now
taken to be the primary part of E0 ,̂ is related to the dual of 2Mab by (6.5.41).
We see, therefore, that Mab arises as the curl of the conformal Killing vector
£fl, a fact already noted in (6.3.16). The relation corresponding to (the dual
of) (6.5.42) simply states that the curl of Mab vanishes.

The sequence (6.5.36) and its dual (6.5.38), which we refer to as the
periodic moment sequences (or, strictly, to (6.5.38) as the periodic moment
sequence and (6.5.36) as its dual), can be usefully split into overlapping
successions of shorter exact sequences, each of nine terms. The nine-term
sequence, which we call simply the moment sequence, is exhibited in (the
dual of) Fig. 6-7. Here the space HJJ of Hermitian twistors is split into a
direct sum

where filj consists of trace-free Hermitian twistors, and U represents the
trace. The space T[a/J] is represented as

where U[afi] is the six-dimensional real vector space of twistor-real skew
twistors, i.e. of Ra/? subject to Ra" = Ra/? where Ra* = $?fi7%39 cf (6.2.19),
(6.2.31), so that its primary part KSAB has real K.

The moment sequence has been shown by Hughston and Hurd (1983) to
arise in a natural way as an example of a type of exact sequence known as a
Koszul sequence (cf Grothendieck and Dieudonne 1961):

o - > v - » v *-• v [ < P i 02] - + y [ < P i 0i 03] -• • • • -• y [ < P i •••0^ - + o
• t • * •

i i i i i <6-5-43)

Here V * is an n-dimensional vector space over a division ring V, and the
maps are defined in terms of one fixed element / *of V 0. The upper maps are

A^AI0, B0^B{<P'I°2\ c*1*2!-^*1*2/*31, etc.

and the lower ones

Z^^—^Z^I , Y<Px <p2*—• Y0l 02I
 2, X0l 02 03

h~+X0l <p2 03I
 3, etc.
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6.5 Conformal Killing vectors, conserved quantities, exact sequences 97

Exactness is easy to verify, as is the fact that the sequences are indeed dual to
one another, corresponding dual spaces being indicated by the vertical
broken-lined double arrow. To obtain the moment sequence we take V = U
and V0= M[aP\ where 0 is the abstract index representing the clumped
skew pair [a/?]. The particular element I0 is now \ap and, up to simple
factors, the sequences in (6.5.43) turn out to reduce to that given in Fig. 6-7.
The details of this are left to the reader.

Hughston and Hurd point out that this procedure can also be applied in
the cosmological context of §9.5, where alternative selections of 'infinity
twistor' may be made which need not be simple (or real). This leads to some
modification of our twistor expressions.

Linear gravity integrals

We have given two methods of constructing integrals for the energy-
momentum and angular momentum of a physical system in M, and we wish
to examine the relation between these methods. In the first, as described in
§6.4, we considered the situation of a weak gravitational vacuum field
spatially surrounding a region of source. Selecting a symmetric solution aAB

of (6.1.69), we constructed from it and the (weak) gravitational spinor (t>ABcD
an integral over a closed 2-surface Sf lying entirely in the vacuum
surrounding the source (see (6.4.3), (6.4.4) et seq). The value C of this
integral is unaltered when 9* is continuously moved, provided it does not
cross any region of source. Moreover, C does not depend upon any
particular choice of 3-volume spanning 9. In these senses C represents a
conserved quantity.

In the second method (described in (6.5.9), (6.5.10) et seq.) we selected a
Killing vector £fl and constructed from it and the energy tensor Tab an
integral over a compact 3-surface (volume) 'V with boundary dif. The
region of integration 'V is now allowed to intercept the source region. The
value C of the integral now represents the total flux of Ca = Ta

b£
b across *V.

The quantity C is now conserved in the sense that it remains unchanged
whenever V is continuously deformed without altering d'V. This is
equivalent to saying that the integral of C-flux over any closed 3-surface
(bounding a compact 4-volume) must vanish (see Fig. 6-8). If S'V is entirely
in the vacuum region, say d'V = Sf, then it can be moved too, without
affecting the result, provided Sf remains in the vacuum throughout the
motion; this is because the region swept out by Sf = di^ contributes zero to
the integral.

By analogy with electromagnetism, we would expect to be able to pass
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98 6. Twistors

Fig. 6-8. Charge conservation: the total integrated flux across the compact 3-
surface TT, with boundary « ,̂ is equal to that across y . The union of y and Y"\ the
two being taken with opposite orientations, constitutes the boundary of a compact
4-volume.

from the first to the second method of generating conserved quantities by
means of the fundamental theorem of exterior calculus (cf. 4.3.25). Indeed, it
is by finding such a relationship that we may make the appropriate
identifications between the results of the two methods. However, we here
have the additional feature that the two methods involve different kinds of
spinor, namely aAB and fa, for the specification of the particular conserved
quantity C with which we are concerned. But (6.5.25) supplies the
connecting link.

The argument is most easily carried out in tensor form and the relevant
formulae have been obtained by translation from the spinor formalism. We
shall use the skew tensor Qab which was defined in terms of oAB by (6.4.7),
and the required formulae are (6.4.6) and the tensor form (6.5.40) of (6.5.25):
<f = jVfc<2*fl. In the fundamental formula of exterior calculus (4.3.25)

- J .
we substitute for the 2-form © the expression

& = Kfli2abQ
a\ (6.5.45)

where Kabcd is the weak-field curvature tensor defined in (5.7.4) and K*bcd is
its right dual (cf (4.6.11)). Then

© = d© (6.5.44)
er J r

(6.5.46)

by the linearized Bianchi identity (5.7.9), the dualization affecting only the
last two indices a,b of K.... Dualizing the form indices in (6.5.46) we get

ab (6.5.47)
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6.5 Conformal Killing vectors, conserved quantities, exact sequences 99

(cf. (3.4.30) and (3.4.25)). But by (6.4.6), (6.5.40) and (4.6.11), we have

2 *K*cabV
cQ°» = - *K*cabg">VeQ

b*

= - 3(Kdeb
e - W V ) £ * = 24nGEdb?9 (6.5.48)

where Eab is the weak-field energy-momentum tensor (related to Kabcd as
Tab is to Rabcd cf. (5.7.6), G being the gravitational constant). Now *K*bcd

satisfies the cyclic identity (cf. (4.6.9)), whence

and so, by (6.5.48),

l*K*cabVQab

When we substitute in (6.5.47), we now have

?. (6.5.49)

On the other hand, translating (6.5.45) into spinors, using (5.7.8) and
(4.6.11), we get, in the vacuum region

© = ( - '^I^AB^l'^A'B' + ^l\l'2A'B^UI1^AB)Qab

= 2(4)ABPQ(TABeP,Q, + $A,B,P,Q,GAB'ePQ)dxp A dxq. (6.5.50)

Hence the LHS of (6.5.44) is proportional to the expression (6.4.4) (with the
XAB of (6.4.3) in place of cpAB) plus its complex conjugate - in other words, we
obtain the integral for our first method of obtaining conserved quantities.
The RHS of (6.5.44), when we substitute the dual of (6.5.49) and use (3.4.29)
and (3.4.31)(1), is seen to be proportional to the flux integral for the relevant
quantity (6.5.10) for our second method. Thus, choosing our overall
multiplying factor so that when £a is the standard time-translation d/dt we
get the total energy intercepted by TT, (6.5.44) is obtained in the form

KtbcdQ
cddxa A dxb = - i f eabc

dEdfZ'dxa A dxb A dxc.

(6.5.51)

This is the desired relation between the two methods in the general case,
where di^ need not lie in a vacuum region. Note that the spinor translation
of the LHS of (6.5.51) directly involves the source parts of the linearized
curvature (corresponding to <PABC'D' and A) unlike the analogous situation
for the electromagnetic field. When these vanish at diT = ¥ {Sf in the
vacuum region), the LHS may, by (6.5.50), be written as

V ! PabdxaAdxb (6.5.52)

with Pab given by (6.4.5).
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100 6. Twistors

The ten vanishing integrals

Note that the RHS of (6.5.51) vanishes identically for all source distri-
butions if <f = 0, i.e. if VbQ

ab = 0. By (6.5.23), this occurs when the pa of
(6.1.50) (and therefore also the za - cf (6.1.66)) is purely imaginary every-
where. By (6.1.50) and (6.1.51) we deduce that Safi has the form i x (an
angular momentum twistor) (cf. (6.3.11))-ignoring any future-causal
restriction on the 4-momentum - and therefore arises from the 'gauge term'
in (6.5.20), as expected. This verifies a claim made on p. 77 that these
particular ten integrals (6.5.52) always vanish for a (J)ABCD subject to the
massless free-field equation (4.12.42) in a neighbourhood % olSf, provided
that (/)ABCD extends to a Kabcd with Riemann tensor symmetries and subject
to the 'Bianchi identity' equation (5.7.9), where Kabcd is defined throughout a
spanning 3-volume 'V of £f. Another way of stating this condition on (f)ABCD

at Sf is the existence of a metric perturbation hab ( = hba) defined in % such
that (J)ABCD arises from it according to (5.7.12). For any such hab can be
extended smoothly (in an arbitrary way) throughout y \ and the required
Kabcd can be defined from it according to (5.7.4).

It is interesting to observe that whereas the massless free-field
equation (4.12.42) is conformally invariant (cf. (5.7.17)), this further con-
dition on (j)ABCD cannot be so. For if a conformal rescaling is applied to M
(in the region °U\ which sends the metric again to a flat one, this will
correspond to a transformation in Ta for which \afi is not generally left
invariant. (See §§9.3-9.5 for details.) The condition that SaP take the form
(6.5.22), from which these vanishing integrals arise, explicitly involves \ap

and is manifestly not invariant. In fact solutions of the massless equation
can be found (for suitable °U) for which all twenty of the integrals (6.5.52)
take independently arbitrary values.

Relations to duality in the moment sequences

Note that if we keep Kabcd, Eab and the 3-surface 'V (with its boundary d^T)
fixed, but allow Qab and £fl to vary, then the two sides of (6.5.51) provide us
with linear maps (over the reals) to IR from their respective twistor spaces,
namely from T(a/?) for Qab and from the image KJ, in H J, of q in (6.5.34) for <Jfl.
If £a is not restricted to be a Killing vector but is allowed to be any conformal
Killing vector, then the RHS of (6.5.51) provides a map from the whole of H£
to R. In this latter case the map depends on the choice of 'f (spanning a
fixed boundary 2-surface dY\ in general - though in the particular case
when Ea

a = 0 the map would actually be 3-surface independent in this sense.
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6.6 Lie derivatives ofspinors 101

These maps are achieved by particular elements of the dual spaces (over
R), namely by AafieJiafi) and E^eH^, respectively, and (6.5.51) now takes
the form

E'.P, (6.5.53)

(identical to (6.5.16)), where aAB is the primary part of Safi and £a the
primary part of F"fi (with Fa

a = 0). The LHS defines the angular momentum
twistor AaP of the total matter intercepted by 1f (i.e. surrounded by <9f) as
an integral over d'V. Allowing £a to be a general conformal Killing vector in
the RHS of (6.5.51) we obtain Efi

a in terms of an integral over y*. In the
general case (when Ea

a # 0) we get an Efi
a which depends upon the choice of

Y (for fixed d'V). The various possible twistors Ep
a arising in this way differ

from one another by a 'gauge' transformation (6.3.14). The relationship
between Aa/? and Efi

a provided by (6.5.53) (where now F^elKj}, so £? is a
Killing vector - related to aAB by (6.5.25), whence F*p and Sap are related by
(6.5.15)), is just the standard one (6.3.13). Likewise, the scalar products in
(6.5.53) are the ones occurring in the relationships between the moment
sequences and their duals (cf. (6.5.38) et seq).

It is instructive to write out the various integral expressions for all the
components of Aa/? that putting (6.5.51) equal to (6.5.53) yields, but we do
not spell this out here. The overall factor in (6.5.51) is chosen so as to give
exact numerical agreement with (6.5.53). This is easily checked by putting £?
equal to the standard time-translation, as above.

6.6 Lie derivatives of spinors

The existence of a conformal Killing vector £a in a space-time M expresses
the fact that J( possesses continuous motions over itself (ignoring global
considerations) in which the null cone structure (i.e. the conformal
structure) of M remains unaltered. In ordinary tensor analysis there is the
concept of'dragging' a vector or tensor with respect to an arbitrary vector
field £a: This means exactly that the Lie derivative of the vector or tensor
with respect to £? vanishes. One may extend this concept to spinors, but
here one needs the condition that £fl be a conformal Killing vector field. For,
otherwise, a null vector - and therefore a null flag - would be 'dragged off
the null cone'. It is precisely the condition that £a is a conformal Killing
vector field which ensures that null cones are dragged into null cones, so
that the dragging of a spinor may be expected to be meaningful. We now
examine this formally. (We take £fl to be real.)

To find the effect of £ = £ on a spin-vector KA, consider first its effect on
4
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102 6. Twistors

the (complex) bivector KAKBSAB'. We have, by (4.3.3)

£{KAKBEAB) = ZCVC(KAKBSAB) - KDKBeDB'S7dZ
a - KAKDeAD'VdZ

b. (6.6.1)

Iff is to behave formally as a derivative operator (Leibniz rule!), (6.6.1) must
yield

2eABKiA£KB) + KAKB£SAB' = 2SA'B'?K{AVCKB\

+ KDKBVB
D'ZAA' - KDKAVA'£BB'. (6.6.2)

Skew-symmetrizing over AB, and changing dummies, we find

Since this must hold for all KA, we must have (cf. (3.3.23))

VftZ% = 0, (6.6.3)
i.e., £a must be a conformal Killing vector field, as expected.

Next, transvecting (6.6.2) with eA,B, we find

K(A£KB) = £CK(AVCKB) _ IKDK(AVDB£B)B' _ !XKAKB, (6.6.4)

where X is defined, £eAB being skew in AB, by

£sAB = AsAB. (6.6.5)

By Proposition (3.5.15), (6.6.4) yields
£KA = ^VCKA _ KDhjA^ (6 6 6 )

where

hD
A = HVDB'ZAB' + XsD

A}- (6.6.7)

Applying the usual rules for generalizing the domain of a derivative to the
whole spinor system (and cf. (4.3.3)) we obtain the following formula for the
Lie derivative of any spinor:

Applied to the special case when x\\\ = £>lB w e get» u s m g (6.6.5),

£ ^ B = /ie^B = - hc
AeCB - hc

BeAC,

i.e., by (6.6.7),

/ + X=_iVc<f. (6.6.9)

This result can also be obtained directly from the tensor expression for £gab,
using

£gab = £(eABsAB) = sAB£eAB' + eAB'£sAB = (X + X)gab.

Note that (6.6.9) only fixes the real part of L In fact, one cannot, by such
formal considerations as those given above, determine the imaginary part
of I uniquely from the conformal Killing vector <f\ However there is the
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6.6 Lie derivatives ofspinors 103

geometrically natural choice that this imaginary part be zero. The reasons
are basically the same as those given in §5.6 leading up to (5.6.2). There the
factor Q was chosen to be real in order that the geometric interpretation of a
spin-vector should not be affected by a conformal rescaling*. The same
argument can be used here. The choice of a real X in (6.6.5) ensures that sAB is
'stretched' by a real factor (corresponding to a real Q) as we drag it along £?.
It may be that for some purposes it could turn out to be convenient to drop
this 'geometrically natural' restriction, but for the time being we shall adopt
it; so by (6.6.9),

A=-iVc<f. (6.6.10)

Substituting this into (6.6.7) we get

, (6.6.11)

as various alternative ways of expressing the required relation giving hD
A in

terms of £fl.
As a check, we can compare the effect of £ on a vector Va according to

(6.6.8) with the standard expression (4.3.2). For the two methods to give the
same answer we require

W ' + V * V = Vfc<r. (6.6.12)

Substituting (6.6.11)(3) (say) into this, we get a relation which is not
immediately obviously an identity, but its validity may be checked quickly
by raising the indices BB' and examining the parts \_AB~\ [A'B'\ (AB)[A'B'\
\_AB~]{A'B') and (AB)(A'Bf) separately, the last giving zero on the right
because of (6.6.3).

Relation to twistor theory

The formulae (6.6.11) are perhaps surprising in their complexity. It is
therefore noteworthy that they considerably simplify if, for the case of
conformal Killing vectors in Minkowski space, we adopt some of the
twistor expressions we obtained earlier. With £AB ( = EAB) as the primary
spinor part of a Hermitian twistor Ea

p we had (with 6A
B = EA

B, CA
B' = EA

B)

Vcc>ZAA' = iecA'0Ac - iec
ACcA\ (6.6.13)

where the Hermiticity of Ea
p (reality of £fl) gave

ZcA' = $A'c- (6.6.14)

* A possible interpretation of a complex Q is considered by Penrose (1983a) (cf. also
Volume 1, footnotes on pp. 353,.356, 360).
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104 6. Twistor's

Imposing the trace-free condition Ea
a = 0 we also get

0AA' + ZAA' = 0. (6.6.15)

Substituting this into (6.6.13) once contracted we get

V w f " ' = 2i0*D - ieD
A(B

B' = i(2^D + sD
A6B

B). (6.6.16)
Hence

Thus (6.6.11)(3) gives

V = i#V (6.6.17)

So, apart from the factor i, the spinor Lie derivative quantity hA
B is

directly one of the spinor parts of the trace-free Hermitian twistor Ea
fi whose

primary part is £AB; its complex conjugate 7iA<B' is another.
In this connection it is perhaps worth remarking that if we drop the

condition (6.6.15) that E^ be trace-free, the effect is simply to allow the trace
of 9A

B to have a real part. (It is (6.6.15), with (6.6.14), which states that 9A
A is

purely imaginary.) To pass from the case we considered before, when
Ea

a = 0, to this more general situation, we substitute

6A
B^6A

B + ksB
A (6.6.18)

with k real (and, in fact, constant). If we retain (6.6.17), we obtain

hB
A*+hB

A + ikeB
A

9 (6.6.19)

which means that the X of (6.6.5) has acquired an imaginary part:

ly+X + 2i/c. (6.6.20)

This is the situation yielding a 'geometrically unnatural' Lie derivative of a
spinor - which we had previously excluded in obtaining (6.6.11).

If £a is a proper Killing vector, then, (cf. (6.5.1), (6.5.17)) Vc£
c = 0, whence,

from (6.6.7), hA
A = 0, so that hAB is symmetric:

hAB = hBA. (6.6.21)

The tensor Vb£a is then skew, so that (6.6.12) becomes a particular example
of the representation (3.4.20) of a skew tensor in terms of a symmetric
spinor.

6.7 Particle constants; conformally invariant operators

We saw in §6.5 how, given a conformal Killing vector £fl in a space-time Jt,
any continuous physical system with trace-free symmetric energy tensor Tab

subject to VaTab = 0 gives rise to a conserved quantity. A similar property
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6.7 Particle constants; conformally invariant operators 105

holds for a system of test particles in J(. We assume that the test particles
describe geodesies in Jt between collisions and that 4-momentum is
conserved in collisions. The geodesic condition is

pf lVy = 0, (6.7.1)

where pa is a particle's 4-momentum; it is taken to be tangent to the
particle's world-line and parallelly propagated along it. We have

P^MtP") = ^PaVap
6 + p y v . & = 0, (6.7.2)

where either we assume that £fl is a Killing vector, in which case the
symmetry in papb may be transferred to Va£b to make the last term zero; or
we assume that {fl is a conformal Killing vector and pa is null, so that the
last term, being a multiple of papbgab9 again vanishes. In each of these two
cases we have the quantity

Q = iaPa (6.7.3)

conserved along each particle's world-line. Also, owing to the linearity of
(6.7.3) in pa

9 if the sum of vectors pa is conserved in collisions, so also will the
corresponding sum of quantities Q be conserved. Thus we have a
conservation law for the system: the total flux of Q across the boundary diV
of a compact 4-volume iV must vanish. This shows the similarity (and
essential identity) with the continuous case.

Polynomial constants; Killing spinors

The quantity (6.7.3) admits a generalization to nonlinear expressions of the
following kind:

Q = U..<,P°Pb---pi, (6.7.4)

where, without loss of generality, <̂a d is taken to be symmetric:

£ab...d = €(ab...d)' (6.7.5)

To generalize the first condition under which (6.7.2) holds, we assume

V(e£a>...d) = 0. (6.7.6)

A tensor £a...d subject to (6.7.5) and (6.7.6) is often called a Killing tensor and
we shall follow this usage here (although there also exists a different concept
for which the same name is sometimes used; see (6.7.19) and (6.7.20) below).
It has no simple geometric interpretation like that of a Killing vector.
However, if pa has the same significance as before, we have, by (6.7.1) and
(6.7.6),

V ^a...* = 0. (6.7.7)
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106 6. Twistors

Thus Q is constant along each particle's world-line between collisions. But,
because of the nonlinearity of Q in pa, the total Q is not conserved in
collisions.

To generalize the second condition under which (6.7.2) holds, we assume

V(eU...d) = g(ea1b...d), (6-7.8)

for some rjb d. Then for null pa the calculation (6.7.7) is still valid.
Equation (6.7.8) states that the trace-free symmetric part of Ve^fl d

vanishes; hence, by the argument at the end of §3.3 (cf. (3.3.58)—(3.3.60)), we
can write (6.7.8) in spinor form as

V\ttAA:D)Di = 0- (6-7.9)

Without loss of generality we can suppose ^\'%> to be symmetric inA...D
and A'.. .£>'; this leaves (6.7.4) unaffected for null pa (when pa is of the form
nAnA'). Notice that (6.7.9), although now not restricted to flat space, is an
example of (6.1.62) (see also (6.4.11)), which in flat space characterizes
£A;'.'.DD'

 a s ^ e primary part of a trace-free symmetric twistor. The case of just
one primed and one unprimed index (not necessarily in flat space) is the
conformal Killing equation (6.1.70). In (6.7.9) the numbers of primed and
unprimed indices are equal, but we can generalize further, to the case when
they are unequal. Let £A-DK'-N' be symmetric and satisfy

V&&\\-$> = 0 (6.7.10)

where gA---DK'--N' has r unprimed indices and s primed ones. Then this
generalizes not only (6.1.70) but also (6.1.69) and its extension to (6.4.1).
Such a £A'lJV is sometimes called a Killing spinor, a terminology we shall
adopt here. When pa is future-null and thus of the form nAnA\ and

Q = ZA-DK'-NnA.--WK>---nN', (6.7.11)

then, by (6.7.10),

Py^yQ = PyVy(Z
A--N'nA. • •%') = nYnA. ..nDnrnK.. ..nN,VYY'ZA-N' = 0,

(6.7.12)

provided we assume, in addition to pa being parallelly propagated, that the
flag plane of nA> is also parallelly propagated:

pyVyn
A' = 0. (6.7.13)

When r = s and £A -DK '•••"' is Hermitian, we are back at (6.7.7) with a real Q
conserved along the geodetic world-lines. When r^s, we have an
essentially complex g; the information contained in Q concerns the flag
plane direction of nA.. Under
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6.7 Particle constants; conformally invariant operators 107

we have

Thus Q is a spin-weighted quantity when referred to nA. as a basis spinor (cf.
(4.12.9), et seq).

Sometimes a £;;;, subject to (6.7.10), is known explicitly in a space-
time. If r = 5, this gives us a Tirst integral' of the equation for null geodesies
and so is useful if we wish to integrate the null geodesies explicitly. In the
same way, a quantity satisfying (6.7.6) gives us a 'first integral' of the
geodesic equation, not necessarily assumed to be null. The metric gab is
one quantity, satisfying (6.7.6) trivially, that is always available. So if we
have three more such 'first integrals' we have enough information, in a
four-dimensional space, to determine the geodesies explicitly up to
quadratures. (Three such integrals exist, for example, for the Kerr solution,
as we shall see shortly.) If we have a £;;; satisfying (6.7.10) with r^s,
then we have additional information which enables us to determine the
propagation of polarization planes along null geodesies. Thus, if we know
£;;; at two points on a null geodesic 7, we can read off at once (without
integration) the result of parallelly propagating the flag planes of nA.9 from
the one point to the other along 7: arg (Q) must be the same at the two
points for a parallelly propagated nA>. Note that we also get a real 'first
integral' from Q when r^s, namely \Q\9 via the quantity Q = QQ
associated with the solution of (6.7.10) £>A;:'DWK\!.N' =
( - 0r+s£(x•.:.*'f^.V.D') (See Walker and Penrose 1970.)

Killing spinorsfor type {22} vacuums

In Chapter 8 we shall discuss the classification of the gravitational (Weyl)
spinor ¥A B CD °f a curved space-time in terms of the concidence pattern
of its four PNDs (cf. (3.5.18) et seq.). The particular case of a vacuum space-
time Ji (with or without cosmological constant) in which the PNDs
coincide in pairs

VABCD = WWBPCPD) (*APA = 1) (6.7.14)

(referred to as type {22} or D) has special interest for us here, since the object
defined by

KAB = ^OL(APB) (6-7.15)

turns out always to be a Killing spinor:

V ( >BC) = 0. (6.7.16)

(See Walker and Penrose 1970. The proof amounts, in effect, to rearranging
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the Bianchi identity equation for (6.7.14), cf (4.10.9), so that it becomes
(6.7.16); cf. also Hughston, Penrose, Sommers and Walker* 1972.) Thus by
the foregoing discussion we have an explicit (complex) conserved quantity
along any null geodesic in any such space-time. This fact is of particular
value in the case of the Kerr solution, which is {22} and vacuum and which
represents the gravitational field of a general (rotating) stationary black
hole (cf. Hawking and Ellis 1973, Chandrasekhar 1983, Wald 1984). In
particular, rotation effects on the polarization planes of photons can be
read off directly in this solution by use of KAB {cf Connors and Stark 1977).
Other examples of {22} vacuums are Schwarzschild's solution (a special
case of Kerr's, but here the {22} nature can be inferred without calculation,
see p. 229), the NUT-space and the C-Metric (cf. Kramer, Stephani, Mac-
Callum and Herlt 1980).

Moreover, we have (Hughston and Sommers 1973):

(6.7.17) PROPOSITION

For any vacuum space-time (cosmological constant allowed) possessing a
Killing spinor xABe&AB\ the vector

ka = Vi'x
AB

is a (complex) Killing vector.

Proof: We need to show that Viakb) = 0 (cf. (6.5.8)). In spinor terms, this
relation can be split into two equations, namely the vanishing of the part of
^AA'^BB1 skew in AB and in A'B1 and of the part symmetric in AB and in A'B'.
Consider the first, which is equivalent to VAAkAA> = 0. We have

V uAA' __ y v/A'vAB _ t—i yAB
AAK — \ AAy B X — I—\ABX

(by (4.9.2) and the symmetry of xAB) and this clearly vanishes (cf (4.9.7) et
seq) - even without calculation (and irrespective of the vacuum condition)
since there are no scalars that can be constructed bilinearly from xAC and
curvature spinors. For the symmetric-symmetric part, consider

This is symmetric in AB since the curvature terms arising from the
commutator of derivatives here involves only Q> , which is zero. The part
symmetric in BCD vanishes by the Killing spinor equation VA(BXCD) = 0>

* In this reference it is also shown that if instead of the vacuum equations the Einstein-
Maxwell equations hold with q>AB = 2</>aM/?B), where aA, fiA are SFR (cf. §7.3) and
(6.7.14) holds, then </> ~ *aM/?B) is a Killing spinor.
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and so also does the part symmetric in ACD (because of symmetry in AB).
Thus Young tableau symmetry holds in AB, CD, corresponding to the
partition (2,2) {cf. the discussion in the extended 'footnote' in §3.3, some
paragraphs before (3.3.62)). This involves anti-symmetrization in two
pairs of unprimed indices, so all four unprimed indices can be 'split off' in
terms of e-spinors. It follows that

which (with [BC] replaced by a contraction) is the final condition required.
(If preferred, this last equation can be obtained by a direct but more
complicated calculational argument.)

Properties of the Kerr solution

In the case of the Kerr solution (and therefore also the Schwarzschild
solution - but in no other case), the Killing vector ka constructed as in
(6.7.17), with KAB in place of xAB, is real (and actually generates the standard
time-translation symmetry* of these solutions). This reality implies that the
bivector (Floyd 1973, cf. Penrose 1973).

Kab = '^AB^A'B' - UABKA'B' (6-7.18)
satisfies

V{aKb)c = 0 i.e. VaKbc = V[aKbc] (6.7.19)

as is not hard to verify directly. (The parts of the LHS of (6.7.19)(1)
symmetric in ABC or in A'B'C vanish by (6.7.16). The remaining part,
skew in AB and A'B\ vanishes by the reality of ka.) Note that (6.7.19) is
formally identical with the condition (6.3.4) for a bivector in Ml to have
the position-dependence of the dual of an angular-momentum tensor. This
might lead us to expect that *Kab describes, in some sense, the angular-
momentum structure of the Kerr solution. In fact things are not quite so
direct as this. In the weak-field limit of the Kerr solution the 'angular
momentum' described by *Kab has the opposite sign for spin-to-momentum
ratio from that of the actual angular momentum (cf. Floyd 1973). The twistor
whose primary part is KAB is actually proportional to the inverse of the
angular-momentum twistor AaP. This will, to some extent, be illuminated in
§7.4, p. 205.

In the general Kerr solution Habkb (cf. (6.7.20)) turns out to be a second independent
Killing vector (though this vanishes in the Schwarzschild case) and, with k°, spans the
entire 2-space of Killing vectors (including that describing the axi-symmetry). (See
Hughston and Sommers 1973.)
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A skew Kabi subject to (6.7.19), has been sometimes also referred to as a
Killing tensor,- since (6.7.19) is another generalization of the Killing
equation, distinct from (6.7.6). More usually, a Xflfce®[a&] subject to (6.7.19)
is now called a Killing- Yano tensor, a terminology we shall follow here. The
concept applies also to a K^^ (in n dimensions) with any number of skew
indices, and we have a 'conserved' object p*Kap d defined along any
geodesic with parallelly propagated tangent vector pa. (Killing-Yano
tensors in space-time have been studied by, for example, Dietz and Rudiger
(1980,1981), and Killing spinors, by Walker and Penrose (1970), Hughston,
Penrose, Sommers and Walker (1972), Jeffryes (1984a); cf. also Sommers
(1973), Hughston and Sommers (1973).)

As has been pointed out by Floyd 1973 (cf. Penrose 1973) the product

Hab = KacK\ (6.7.20)
satisfies

Hab = Hba, V{aHbc) = 0 (6.7.21)

and thus constitutes a Killing tensor of our original kind (6.7.6). The
conserved quantity Q = Habp

apb = - (paKac)(p
bKb

c) is referred to as
Carter's constant for the Kerr solution. There are also two independent
Killing vectors in this solution and so, with gab9 we have the required
number, four, of constants enabling the geodesies to be obtained explicitly
up to quadratures (Carter 1968a, b, cf. also Chandrasekhar 1983).

The physical meaning of Carter's constant is not altogether clear, but
in some sense Q describes a multiple of the 'total angular momentum' of
a test particle in orbit around the black-hole source. (This is 'total' in the
sense of squared length of angular-momentum 3-vector.) Indeed, in the
special case of the Schwarzschild solution this interpretation is certainly
valid, there being an identity

(mG)>Hab = xaxb + yayb + zazb (6.7.22)

relating Hab to the three Killing vectors xfl, / , za which generate rotations
about the standard axes. The conserved quantities pax

a, pay
a, paz

a are the
corresponding angular momenta of a test particle about these axes. The
(constant) quantity m is the mass of the source (and G, the gravitational
constant). We note in passing that in the Schwarzschild solution, with
standard r-coordinate,

*= -=£ . (6.7.23)

The Kerr solution is also very remarkable in that the various standard field
equations all separate in a Kerr background (Carter 1968a, Chandrasekhar
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1983). These properties are related to the existence of the Killing-Yano
tensor Kab (Carter and McLenaghan 1979).

Conformally invariant first derivatives

As we have seen in (6.1.60)-(6.1.62), equation (6.7.10) is intimately connec-
ted with twistors. Any symmetric solution of (6.7.10) in M is precisely the
primary spinor part of some uniquely defined trace-free symmetric twistor

X OL...6 .
K . . . V

X;::;t = Xg;;;t{, X £ : : ; = 0. (6.7.24)
Another way of putting this is to say that for each null Za the quantity

X«;;;tZ\..ZvZa...Z, (6.7.25)

is equal to (6.7.11) at every point P of the corresponding null line Z (since
coA = 0 on Z and the only spinor part of XJ;;;* contracted with no coA is
£K\. JV') I* follows that the general symmetric solution of (6.7.10) is given by
the appropriate generalization of (6.1.10), (6.1.26), (6.1.51), (6.1.55). One
example will suffice to illustrate this. Consider the case of a trace-free
symmetric [i]-twistor Xa/?

r Its primary spinor part XABC' is given by

XABC = A c AB

+ 2xcc'xA uKB)c-ixA{AxB)B'xcc%,B,c (6.7.26)

for some constant spinors %ABC\...,%A>BC>
 B v differentiating this ex-

pression and symmetrizing we at once verify that it is in fact a solution of
(6.7.10).

Since trace-free symmetric twistors are defined by symmetric solutions of
(6.7.10), we expect that this equation is conformally invariant (cf (6.1.72)).
Indeed, provided

the symmetrized derivative occurring in (6.7.10) is itself a conformal spinor.
This may be checked by directly applying (5.6.15). The result is

y(Q'\(PgA...D)\K'...N') _ Q-2y(Q'\P£A...D\K'...N')^ (6.7.28)

and it holds just as well in general curved space as in flat or conformally flat
space.

The conformal invariance of this particular type of symmetrized
derivative for some conformal weight for {- is not surprising. The fact that
the result of the symmetrization is an irreducible spinor at each point (cf
§3.3), as is £••* itself, implies that only one kind of term in Tfl can appear. The
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112 6. Twistors

choice of conformal weight zero in (6.7.27) is made to ensure that the term
in Tfl cancels out.

For the same reason, the other possibilities of constructing symmetric
spinors by forming a contracted or symmetrized derivative can also be
made to have conformal weight. Taking the most natural arrangements of
upper and lower indices in each case, we obtain, for symmetric £;;;,

provided

whereas

Wfti-.-.V = a-3vm'&$, (6.7.31)
provided

QA...D — " QA...D (O./.JZJ

(which is not the same as (6.7.30), unless r = 5); and, on the other hand,

*AK'?AB...DK-L:..N- = n-*VAK'ZAB...DK>L...N', (6.7.33)
provided

L...DK-...N=n-2U..DK...N- (6-7.34)

All these properties hold in general curved space-time as well as in flat or
conformally flat space-time. Several special cases have been noted earlier.
For example, (6.7.31) with (6.7.32) establishes the conformal invariance of
the massless equations (4.12.42), which correspond to K'...N' being
vacuous. Again, the conformal invariance of (6.4.13), (6.4.15) is now
established. Also the conformal invariance of the divergence equation of a
convector of weight — 2 or of a symmetric trace-free tensor of valence [°]
and weight — 2 were noted in §5.9, and this is seen to be implicit in (6.7.33).

Twistor solutions of the various equations

In Minkowski space M it turns out that not only (6.7.10) can be solved using
twistors, but so also can the equations obtained by setting to zero (6.7.29),
(6.7.31), and (6.7.33). We shall not enter into a fully detailed discussion of all
these equations here since this would take us too far afield. Nevertheless it
will be worth while merely to state formulae which give general classes of
(analytic) solutions to these equations, a,nd to explain why they give
solutions. For completeness, we also include the solution to (6.7.10) in a
slightly different form. Those particular cases of (6.7.29) and (6.7.31) whose
vanishing corresponds to the massless field equations will be discussed in

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.003
https://www.cambridge.org/core


6.7 Particle constants; conformally invariant operators 113

greater detail in §6.10, where the solutions in these cases will also be given in
a different and more general form.

Let us take twistors Z* = (coA
9 nA) and \Na = (XA,fiA) as in (6.1.13) and

(6.1.24). We shall be concerned with holomorphic functions in Za and Wa,
i.e. with holomorphic functions of the components of Za, Wa in some twistor
basis (6.1.17), (6.1.34). We allow these functions to have singularities in some
suitably arranged regions. Let

/(W..Z-)

be holomorphic, and homogeneous, of the following respective degrees in
Wa and Za:

(p,q) for case (6.7.28)
(p,-2-q) for case (6.7.29)
(-2-p,q) for case (6.7.31) ( 6 J ' 3 5 )

( - 2 - p9 - 2 - q) for case (6.7.33)

where £;;; has p unprimed and q primed indices, and where we further
require that / be a polynomial in the relevant variables when the
homogeneity degree is non-negative. We consider only the subset of Ta x Ta

in which the incidence relation

WaZ
a = 0 (6.7.36)

holds (cf. (6.2.13), (9.3.17)), and we use only the restriction o f / to this
region. Referring Wa and Za to the origin OGM, then provided XA / 0 and
nA, T* 0 (now both taken as point spinors at 0, cf (6.1.14) et seq.\ we can find
ra at 0 (not necessarily real) such that

Wa~(XA9-ir
AA'XA) (6.7.37)

o

(This is easily seen by taking components.) However, r° is not unique but
has the freedom r^^r0 + kXAnA\ keC. The points R of complexified
Minkowski space CM with these position vectors r° therefore constitute a
complex null straight line. (The geometric significance of this fact is
discussed in §9.3 below.) Note that, by the discussion of §§6.1, 6.2 these
points R are just those incident with both Wa and Za in CM.

The.function / can now be re-expressed in terms of r7, XA, and nA> and we
write (in the region defined by (6.7.36))

/(Wa, Z") = F(r>, AA, nA) (6.7.38)

for some suitable range of the variables rj, XA, nA., and where F is now
homogeneous, according to (6.7.35), in the respective spinors XA, nA>.
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Next, consider the expressions:

.. .kDnK... .nN. = / ( W a , Z«) (6.7.39)

::Ur>)lA. ..kD = ±rLK... .nN.fQNa, Z*)nQ,dn<>' (6.7.40)

., Z*)kPdkp (6.7.41)

^ . . . M ' . . . N ' H = ^ i )2 j>kA...kDnK,...nN,f(\Na,Z*)kPdkp
 A % d ^ ' .

(6.7.42)

The right-hand sides are evaluated by substituting F for / according to
(6.7.38). The occurrence, in each case, of a £;;; on the left-hand side
depending only on rj and not on kA or nA. follows either from the assumed
polynomial nature of/ or from the fact that the dependence on the spinor
variables has been integrated out.

In (6.7.40) we perform an integral over a closed one-dimensional contour
in the rc^-spin-space, for each fixed value of rj and kA, the contour suitably
surrounding singularities of F and moving continuously as rj and kA are
varied. In (6.7.41) the integral is over a closed one-dimensional contour
in A^-spin-space for each fixed r* and nA.9 which again moves continuously.
In (6.7.42) the integral is over a two-dimensional contour in the product
of the spin-spaces for nA. and kAi for each fixed r7, and it moves continuously
with rj. In each case the homogeneity degrees (6.7.35) have been chosen
to ensure that these integrals are in fact 'contour integrals' in the sense
that the value of the integral is unchanged as the contour is continuously
deformed within the relevant spin-space, provided it does not encounter
singularities of F during the deformation. This is because the exterior
derivative (cf. (4.3.14) and (4.3.25)) of the integrand, with r7 held constant,
vanishes in each case when the homogeneities are as given (see the para-
graph following (6.10.4)).

If we assume that each £;;; is chosen to be symmetric, then each will
be uniquely defined as a function of rj throughout any region of rj in which
suitable contours for the integrals exist; and in the case given by (6.7.39),
for all rj. We are to interpret r7 as the position vector at 0 of some point
R in CM). Also, we have seen that the relations (6.7.37) express the incidence
of each of the twistors Wa and Za with the point R. Now we may regard / as
depending on eight independent complex variables when expressed as F,
i.e., in terms of rfl, kA9 nA>. But since the restriction (6.7.36) on Wa and Za is
then implicit, the values of/ with which we are concerned depend only on a
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seven-complex-dimensional manifold of arguments. Thus / is subject to a
restriction when expressed in terms of r\ XA and nA. This restriction is

APnQ,VPQ'F = 0, (6.7.43)

where the operator Vfl is the derivative with respect to rfl, treating XA,nA> as
constant. For

,VPQ'(-\rAA'XA)) = (0, - i l p e Q

whence /LPV
PQ'Wa = 0, and

£ A ' n A \ VPQ'nA) = {inQePA, 0),

whence nQ>WPQ Za = 0. We can write (6.7.43) alternatively as

kPVPK'FoznK' (6.7.44)
or

nQVAQ'FcclA. (6.7.45)

Applying the operator in (6.7.43) to (6.7.39), that in (6.7.44) to (6.7.40), that in
(6.7.45) to (6.7.41), and VAK' to (6.7.42), we see that in each case the
expression is annihilated. Since this holds for all XA, nA> in these expressions,
the vanishing of the derivatives (6.7.28), (6.7.29), (6.7.31), (6.7.33) is
automatically ensured by the respective constructions (6.7.39)-(6.7.42).

Note that in (6.7.39) we can write

because of the presumed polynomial nature of F. Since (6.7.36) holds, it is
only the trace-free and symmetric part of F*\\md

v which is involved in defining
the field £A-DK'-N\ it follows that such fields f - correspond to trace-free
symmetric twistors, and so we are back at the description that we had
earlier for solutions of (6.7.10). It is easy to see that we can also write

in (6.7.40), and

/(Wa,Z
a)=:FK...v(W/?)Z

x...Zv

in (6.7.41).
As we observed earlier, the vanishing of (6.7.31) with g = 0 [of (6.7.29)

with p = 0] is the massless free-field equation for spin \p [spin \q~\. Thus
(6.7.31) {or (6.7.29)] affords a method of expressing the solutions of these
equations in M in a concise way in terms of twistor holomorphic functions
(cf. also §6.10 below).
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Repeated operations; resolutions of equations

Note that the only circumstance in which more than one of the operations
(6.7.28), (6.7.29), (6.7.31), (6.7.33) can be applied to the same spinor (with
indices suitably raised or lowered) is that (6.7.29) and (6.7.31) can both be
applied if £;;; has an equal number of unprimed and primed indices (p = q).
Observe also that, although the result of any of those four operations is a
spinor with the correct symmetries so that we would envisage applying such
an operation again, the resulting weights normally forbid this if we require
conformal invariance for the result. Indeed, the only possibilities for a
conformally invariant second application of such an operation are:

(6.7.28) followed by (6.7.29) with p = 0
(6.7.28) followed by (6.7.31) with q = 0
(6.7.29) followed by (6.7.31) with p = q > 0
(6.7.31) followed by (6.7.29) with p = q > 0
(6.7.29) followed by (6.7.33) with p = 0, q > 1
(6.7.31) followed by (6.7.33) with q = 0, p > 1

(6.7.46)

In these particular cases we therefore appear to get conformally invariant
second-derivative operations - whether the space-time is conformally flat
or general. Some other possibilities for conformally invariant second
derivatives will be considered shortly.

However, cases (6.7.46)(1), (2), (5), and (6) are readily seen to give zero
when the V operators commute (i.e. in flat space without electromagnetic
interaction). From the point of view of finding conformally invariant
second-derivative operations, this may seem disappointing. But as we saw
in §6.5, compositions of derivative operations may have another sig-
nificance, namely one in terms of exact sequences. In fact, it can be shown
(provided we restrict ourselves to a suitably 'convex' region of M - or of
CM, in which case all fields are taken to be holomorphic) that in each of
these cases we not only have two maps whose composition is zero, but the
kernel of one is precisely the image of the preceding one. Hence each pair
satisfies the prerequisites for two successive maps of an exact sequence.
Moreover, these partial exact sequences can be usefully extended. We shall
display the entire sequences explicitly here in the cases (6.7.46)(1) and (6).
The cases (2) and (5) are simply the complex conjugates of (1) and (6),
respectively.

Consider the case (6) first. The operation (6.7.31) with q = 0 is the map on
symmetric </>A.mmE whose kernel gives us the massless free fields:

<t>AB...E^AA'<l>AB...E- (6-7.47)
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6.7 Particle constants; conformally invariant operators 117

This is to be followed by (6.7.33) (on symmetric Of E):

0ic...E^VBA'0lc...E. (6.7.48)

This pair constitutes the third and fourth maps of the sequence

^ £ ) V - ^ C . . . £ ) ^ ^ ( C . . . E ) ^ 0 (6.7.49)

whose notation we shall now explain. If tfl is some open set in fVO (or in CM),
then 'b£'.y$s'...u' mav> f°r the time being, be thought of as the set
®D:"FS\ \ \ ' * ' [* ] of spinor fields on °ll, regarded as a vector space over C; a
X);;; with symmetrization brackets on its indices may be thought of as that
subject to ®;;;[^] having the indicated symmetries. (A more precise
characterization of each D, which is actually a 'sheaf, will be indicated
presently.) The space %AB^E may (preliminarily) be thought of as the vector
space over C of solutions of the massless field equations in °U, and thus as
the kernel of (6.7.47). The map / in (6.7.49) is simply 'injection', i.e., it takes
any massless field into itself. With that, the first three map-junctions in the
sequence (6.7.49) are exact. Exactness at the final stage demands that every
symmetric \1*C...E

 c a n ^e represented in the form VA'OBC.E f° r some
symmetric 6'.... The proof of this is straightforward in terms of components
relative to an arbitrary basis (along the lines of (6.7.50), (6.7.51) below.)

The set tfl would have to be thought of as sufficiently small (or of suitable
shape) that no global obstructions to the solutions of our differential
equations arise. Recall that in (6.5.27) we restricted the region ^l to having
Euclidean topology. For other differential equations it might be necessary
to impose restrictions also on the shape of °U. Such a viewpoint would be
adequate for a tentative interpretation of the meaning of (6.7.49). To be
more accurate, that sequence should really be interpreted as an exact
sequence of sheaves. It is beyond the scope of the present book to discuss
sheaves, or even to give a precise definition of a sheaf. The essential point,
however, is that the exactness of the sequence (6.7.49) (and of the other sheaf
exact sequences that we shall consider later) is to be interpreted entirely
locally. Rather than single out one particular open set °U and consider
spinor fields on this °U, we ask only that each point in M (or CM) should
possess some open neighbourhood in which our equations are soluble.
Thus, in particular, for exactness of the pair of maps (6.7.47) and (6.7.48), we
ask that, at each point PeM, if V* Ofc E = 0 in some neighbourhood W of
P, then there exists some neighbourhood °Waty of P in which we can find a
<t>AB...E with VAA <t>AB...E = 0BC...E- (This is a localization of condition (ii) for
exactness (cf. after (6.5.26). We have already seen that condition (i) holds -
and no localization requirement is needed for that.) The proof that this is
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indeed the case is straightforward with the help of a basis. We set

Al — 0 0 .
. Y00' _ ,.

l» x — U,

and we have to show that we can solve

d d

and (6.7.50)

locally, whenever

^ _ ^ i _ ^ | ± i + | i = 0 (6.7.51)

(/ = 0,...,p— 1). By use of (6.7.51) we can actually integrate the system
(6.7.50) step by step, thus establishing our assertion. Accordingly, also, the
equations (6.7.51) are seen as the integrability conditions for the system
(6.7.50), giving us the usual situation in going 'up' an exact sequence.

The sequence (6.7.49) is what is called a resolution of the sheaf 3u...£, or a
resolution of the massless field equations. This means here that each of the
sheaves T)'.'.'. is free in the sense that no differential equations are imposed on
it. (Again, a more technical statement is beyond our present scope;
resolutions are important in the theory of differential equations and in
cohomology theory.)

The importance of the other case, (6.7.46)(1), is that it forms part of a
resolution of the complex conjugate of (6.4.1), i.e. for the equation for the
primary spinor part of a symmetric twistor of the type Ta r The subset
(sheaf) of T)A>—c> consisting of solutions of (6.4.18) (Killing spinors) is
denoted by WA'--C'. The operation (6.7.28) with /? = 0 is the map on
symmetric XA>-c# whose kernel is the space of all such primary parts:

kA'-c'\-+VfkA'--c'\ (6.7.52)

This constitutes the third map in the following sequence, whose exactness
up to that map is therefore established:

?AA ?DD

0
, V ? ' VEE *IAB...E)

-* . . - •*«• ' (6.7.53)
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6.7 Particle constants; conformally invariant operators 119

(The symmetrizations to be performed after the various derivative
operators are applied are implicit in the displayed symmetries of the image
spaces.) Note that the final stage of the sequence (6.7.53) is the same as that
of (6.7.49). The space ^{A...E)®^{A'"'E) (written vertically in (6.7.53)) is
simply the space of pairs {<t>A...E> nA "E) (each component being symmetric);
and the maps on either side of it are

and

(<I>AB...E> nA B "E )^VAA<t>AB ...E - VBB- -VEE'1AB "E - (6.7.55)

One readily verifies that condition (i) for exactness is satisfied at each stage.
But the proof that condition (ii) also holds (at the required local level) is
much more involved than in the previous case, and we shall not go into it.
(The sequence (6.7.53) was introduced by Eastwood 1985a and Buchdahl
1982.)

It is of interest that, if we assign conformal weights to the spinors in each
(non-zero) sheaf in the sequence as follows

0 , - 1 , ( - 1 , - 3 ) , - 3 , - 4 , (6.7.56)

then we obtain conformal invariance for each map in the sequence, but only

for the class of conformal rescalings which send a flat gab (locally) into a flat

gab. As we shall see in (6.8.27), this class is characterized by

alb— IAB'IBA'* [p.l.Jl)

and this relation is needed in the verification of our assertion. For general
rescalings, the derivatives of order higher than the first that occur in (6.7.54)
and (6.7.55) would have to be modified by terms involving the Ricci
curvature and derivatives of the Ricci curvature (cf. paragraph after
(6.8.29)).

The exactness of the sequence (6.7.53) codes a considerable amount of
information in a compact form. We note, as just one implication, the fact
that was stated in (6.4.15), (6.4.16), (6.4.17), namely that all massless fields
<t>A...L c a n be locally obtained from (6.4.16), subject to (6.4.15), with the
complete gauge freedom for ^ being given by (6.4.17). To see this, note
that the part of the kernel of the map (6.7.55) having rj- •• = 0 is (0 ,0) where
$ is a massless field; so this is precisely that part of the image of (6.7.54) for
which yMEfgA'...D')_Q (which is (6.4.15)); and the gauge freedom is the
kernel of that map, i.e. the kernel of (6.7.52), giving precisely the gauge
freedom in (6.4.17).
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6.8 Curvature and conformal rescaling

As we have seen in the last section, the operations (6.7.46)(1), (2), (5), and (6)
are not useful as second-derivative operations, since they give zero when the
V operators commute. We nevertheless found them to be important. Also in
curved space-time (or in the presence of electromagnetic interaction) these
operations are not really second-derivative operations. They simply yield
contracted products of £;;; with curvature (or with the electromagnetic field)
quantities. Their importance to us here is that their conformal invariance
yields the conformal behaviour of the curvature. Note that the operation
(6.7.46)(6) is precisely that considered in (5.8.1) for obtaining the consistency
relation for massless fields, whence the result

VBA*AA'ZABC...L = - i ^ n ^ c . . . L - ( ^ - 2 ) ^ M ( c . . . ^ L ) ^ M (6.8.1)

( r> 1) is obtained. Similarly, (6.7.46)(1) is just the operation used for the
consistency relation for the twistor equation (6.1.1) or its generalization
(6.4.1). Taking for simplicity the case r = 1 (the cases r > 1 are essentially
similar) we get from (6.1.5)

yA'iCyA^B) = _ xyABC^D + ie(p(AB^C) ^ g 2 )

The operations (6.7.46)(5) and (2) arise simply as complex conjugates of the
above.

Conformal invariance of ^ABCD

Now the significance of the conformal invariance of the relations (6.7.46) for
our present purposes lies in the fact that the conformal behaviour of ^ABCD

may be read off directly from them. The argument is most straightforward
in the case of (6.8.2). We take e = 0 (since the conformal behaviour
<PAB = Q 1(PAB has already been demonstrated - cf (5.9.8)). Now, by
(6.7.28) and (6.7.29), we have

whence

vABC
DtD = n-3vABC

DZD.
But £D is arbitrary, and so

VABCD^ABCD- (6-8.4)

This conformal invariance shows that ^ABCD *S a measure of that part of
the curvature which remains invariant under conformal rescaling. Since
^ABCD = 0 in flat space-time, it vanishes also in conformally flat space-
time. In fact, as we shall see later (in §6.9), the condition
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6.8 Curvature and conformal rescaling 121

is also sufficient for conformal flatness (i.e. for each point of space-time
to have a neighbourhood in which there exists a conformal factor Q which
makes the metric Cl2gab flat in that neighbourhood). It is for the above
reasons that ^ABCD *S called the (Weyl) conformal spinor. Because of the
relation (4.6.41) of ^ABCD to the Weyl tensor Cabcd, we have

Cabcd = Q2Cabcd, Ca
bcd = Ca

bcd9 e t c . (6.8.5)

Let us compare (6.8.4) with the equation (cf (5.7.17))

<f>ABCD = Q ~ * <t>ABCD (6.8.6)

which gives conformal invariance for a spin-2 massless field. The difference
in the conformal behaviour of (6.8.4) and (6.8.6) is noteworthy. This is in
contra-distinction to the case of electromagnetism, where the same
conformal weight, namely — 1, results from the requirement that cpAB be
obtainable from commutators of derivatives of charged fields, as results
from the requirement that the massless free-field equation on q>AB be
preserved (cf. paragraph above (5.9.8)). The difference in the behaviours
(6.8.4) and (6.8.6) is related to the fact that the equations of general relativity
are not conformally invariant. One manifestation of this fact is that the
RHS of the spinor Bianchi identity (4.10.7) is not a conformal density. For
suppose we have a vacuum solution of Einstein's equations, with Weyl
spinor ^ABCD therefore satisfying

VAA'VABCD = 0 (6.8.7)

Putting <t>ABcD = ^ABCD
 a n d transforming according to (6.8.6) we must have

VAA'$ABCD = 0- Therefore, by (6.8.4)

VAA(Q-iVABCD) = 0, (6.8.8)
i.e. (cf. (5.6.14)),

*AA'VABCD = VAA'VABCD* (6-8.9)

and so the conformally rescaled Ricci spinor must satisfy

V f B < W * = n r < B C D (6.8.10)
by (4.10.7), and, since it does not generally vanish whereas <&ABCD' does, the
Ricci spinor cannot have a conformal weight. A conformal rescaling
applied to a solution (a space-time) of Einstein's equations will, therefore,
generally destroy the satisfaction of the vacuum equations.

Conformal behaviour of^>ABCfDr an^ A

Let us find how Q>ABCD'
 an(* A in fact transform under conformal rescaling.

For this purpose it is convenient to use an identity derived from an
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expression we had earlier, namely (5.8.4):

Adding f of this equation to 3 of this equation with A' and B' reversed, we
get

where

Now consider the effect of a conformal rescaling on (6.8.11), where we take

ABAS' = &ABAB'

The two terms on the left of (6.8.11) involve derivatives of expressions like
VB'(AZB) which, as we have seen, are conformal densities:

^B'iA^B) = ^B'(A^By (6.8.13)

We now take the difference between (6.8.11) and its conformally rescaled
version. Because of (6.8.13) the LHS of this difference can involve only terms
which contain first derivatives of £A. Such terms must necessarily cancel
from the entire calculation. For, only undifferentiated and once-
differentiated terms in £A can occur after the difference is taken; but since £A

and VBB4A a r e independent at each given point (£A being arbitrary), these
two types of term must separately give identical relations. Thus we need
only consider the RHS of (6.8.11) in our calculation, and we can ignore the
once-differentiated terms in £A which result from the conformal rescaling.

We have

so taking the rescaled (6.8.11) minus the original (6.8.11)-and ignoring
once-differentiated terms in £,A - we get

0 = (VBBVAAKA - T f W T ^ ) - £APABA,B. + ^PABA-B-.

But £,A is arbitrary, and so we obtain

Pat = Pab ~ V*rfl + TAB' TBA' (6.8.14)

for the conformal rescaling behaviour of Pab. Since

Rah=-2Pab-gabPc\ (6.8.15)

(6.8.14) also gives the rescaling behaviour of Rab. However, it turns out that
the particular combination of trace and trace-free parts of Rab which occur
in Pab often arise in formulae which have to do with conformal rescalings.

In this connection we point out that the expression (4.8.2) giving Cah
cd in

terms of the Riemann tensor, the Ricci tensor and the scalar curvature,
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becomes

Cab
cd = Rab

cd + 4P[at
cgb]

d\ (6.8.16)

while for the Bianchi identity (4.10.1) we get

VaCabcd=-2VlcPd]b, (6.8.17)

with spinor equivalent (cf. (4.10.3)

K*ABCD = V»BY>A)CA,B.. (6-8.18)

The symmetry

Pafc = Pfcfl) i.c.PABAB. = PBAB.A. (6.8.19)

is manifest. The symmetry of (6.8.14) in this respect arises from the fact that
Ta is a gradient (cf. (5.6.14)) whence

VaY> = V6Ya. (6.8.20)

Alternative versions of (6.8.14) which are sometimes useful are

P^P^ + ^ + Y^T^. (6.8.21)

(obtained from (6.8.14) by interchanging the roles of gab and gab which
entails Q - + Q 1 and therefore Yai->-Ya)> and

Pab = pab - n-^avbn + 2Q~2vanvbQ - ±gabn-2vcnvn
= Pab + QVflV,Q-x - igabQ-2VcQVQ (6.8.22)

(obtained by substituting (5.6.14)(1) into (6.8.14), and using (3.4.13)).
By taking the trace and trace-free parts of (6.8.14), (6.8.22), and using (cf.

(6.8.12))

*ABA'B' = ?(ABHA>B'P A = - i P / , (6.8.23)
we get

= - n - 1 ^ M ^ J ) . ) B n , (6.8.24)
and

(6.8.25)

where (cf. (5.10.6))
• = VaVa. (6.8.26)

Conformal rescalings preserving flatness

One immediate consequence of (6.8.14) may be pointed out here, namely
that the condition
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VaTb=rABrBA., (6.8.27)
for the Ricci tensor to remain unchanged under conformal rescaling, is, in
the case of flat space M, the condition for the rescaling to yield another flat
metric. The general solution of (6.8.27) is not hard to find. It is

(and limiting cases) giving

y _ - 2(xb - Qb)

since the right-hand side of (6.8.27) is TaTh-^TcTgab, by (3.4.13)

Conformally invariant wave equation and •

Now that we have the transformation of all parts of the curvature under
conformal rescaling, we are in a position to investigate the conformal
invariance of equations involving second and higher derivatives. The
reason that the curvature transformation formulae are needed for this is
that curvature 'correction terms' are often required in order that such
equations can become conformally invariant. The simplest example of this
occurs with the wave equation, which in flat space-time is
• 0 = 0. As it stands, this equation is not conformally invariant
(unless we rescale our flat space-time so that gab is again flat, or rescale
from one space with vanishing Ricci scalar to another). For conformal
invariance we require the modification of this simple equation to

( • + £/*)</> = 0, i.e. ( • + 4A)</> = 0, (6.8.30)

where, as with the massless equations of positive spin,* we choose

$ = Q~1(t). (6.8.31)

The invariance of (6.8.30) follows easily from (6.8.25). Indeed, if (f> scales
according to (6.8.31) but is otherwise arbitrary, then we have

(D + 4A)(£ = Q ~ 3( • + 4A)</>. (6.8.32)

Note that (6.8.25) can itself be regarded as a special case of (6.8.32), where

* A recent result due to Eastwood and Singer (1985) exhibits a modification of the
square D 2 of the D'Alembertian which is conformally invariant when acting on
scalars (f> of conformal weight zero (i.e. $ = </>), namely

(Note that - 2Rab + lRgab = 4PABBA.) A new theory by Eastwood and Rice
provides many further examples, such as (Vj^Vf, + ^?B) <t> for <f> of conformal
weight one.
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(D+4A)l=Q-3((H+4A)</>

Equation (6.8.30) is, in fact, the natural extension to zero spin of the
positive-spin massless equation (4.12.42). Since 0 has no indices, the exact
analogue of (4.12.42) cannot be constructed. However, there are second
order relations satisfied by (J>AB...L

 m consequence of (4.12.42) and these can
be extended to zero spin. In flat space-time we have the relation

VAA*i = &ABn, (6.8.33)

since the commutability of derivatives implies skewness in AB (cf. (2.5.24)).
The analogous relation in curved space-time (or in the presence of
electromagnetic interaction) is

VAA*B=i*ABn + nAB, (6-8.34)

with C\AB a s *n (4.9.2). Applying this to(4.12.42). we get for a
massless field of charge e,

o = vAA>wMA'(t>MB...L=ki /V

= ± D 4>AB...L + XAM"M4>

where we have used (4.9.13) and (5.1.44). By reference to (4.6.19) and (4.6.34)
this yields

( • + 2(n + 2)A)^ . . . L = 2(n - 1 ) V V C . . . D M ,

+ 2iecpA
M<t>MB^L. (6.8.35)

This equation has a well-defined 'limit as n->0' only if ^ B C D anc* e(?AB
both vanish. But, even for positive (and sufficiently large) spin we have
the consistency conditions (5.8.2) unless these quantities both vanish. So,
in any case, (4.12.42) is of interest for general spin only in conformally
flat space in the absence of electromagnetic interaction. And then, indeed,
its specialization to n = 0, via (6.8.35), is (6.8.30). The 'correction term' 4A
in the limit could of course have been anticipated from the fact that it is
needed for conformal invariance.

It may be pointed out that there is a conserved energy tensor for solutions
of (6.8.30):

+ 4A(t>2gab-<t>2Rab}, (6.8.36)

(k = constant) which is not only symmetric, with vanishing divergence, but
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also trace-free (see: Newman and Penrose 1968, Callan, Coleman and
Jackiw 1970). It has been referred to as 'the new improved energy tensor'.
The more familiar expression

&</> - gabVc<t>Vc<t>) (6.8.37)

is divergence-free when the (not conformally invariant) equation
• (j) = 0 holds, but it is not trace-free. However, Tab has the definite-
ness property Tabl

anb > 0 (for future-null vectors la, na) not shared by Tab.
In flat space, the difference Tab - Tab is the 'divergence' Vc{ /̂c00a[bVc]c/>},
which contributes nothing to the total energy-momentum. For massless
fields of spins \ and 1, the (trace-free) energy tensors were given in (5.8.3)
and (5.2.4). For massless fields of higher spin, no (local) energy tensor exists.

We note, in passing, two special cases of (6.8.35). For a Maxwell field
in curved charge-free space-time we have

• q>AB = 2VABCDcpCD - 8AcpAB (6.8.38)

which may be compared with

= RabcdF
cd (6.8.39)

(cf. Eddington 1924, §74. Eddington's factor 2 is in error).
In the case of gravitation we have

• VABCD = WiABEFy¥CD)EF - 2XVABCD (6.8.40)

in empty space with cosmological term X (cf. (4.10.9) and (4.10.10)). When
there exists a right-hand side in the Bianchi identities (cf (4.10.12)) we get,
instead,

= W(AB
EFVCD)EF - (2k + 4nGTq«)VABCD

? M 9 (6.8.41)

where we have used (4.6.32)(2). Regarding the last two terms on the right
as 'source terms', the first term on the right is a 'correction term' to the
gravitational wave equation. Its vanishing happens to be necessary and
sufficient for ^ABCD

 t 0 be null (i.e. for all its principal null directions to
coincide). This will be proved in §8.6. It is worth noting that there
are exact null vacuum wavelike solutions that are very closely analogous
to the corresponding linear fields but the analogy is less close for the non-
null solutions (cf Robinson and Trautman 1962, Kramer, Stephani,
MacCallum and Herlt 1980, Sommers 1976, 1977).
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Bach's conformally invariant tensor

Another interesting conformally invariant quantity is the Bach tensor (Bach
1921, cf. Schouten 1954, Kozameh, Newman and Tod 1985).

Bab = 2(V$,V£ + ^BWABCD (6.8.42)

(here given in Dighton's 1972, 1974 form). It satisfies

Bab = Bba, Bab = Bab9 VaBab = 0, (6.8.43)

and, under conformal rescaling,

Bab = Bab. (6.8.44)

Tensor expressions for Bab are provided by

(6.8.45)

6.9 Local twistors

Our discussion of twistors so far has been concerned mainly with flat space-
time. This is partly due to the fact that the consistency relation (6.1.6)
precludes the use of the twist or equation (6.1.1) unless ^ B C D = 0, and partly
to the fact that even in conformally flat space-time (i.e., when we do have
^ABCD = 0) it is often more convenient to go over to flat space-time and
describe twistors in terms of the position vector xa of a point in Ml relative
to an origin O. The formalism of local twistors which we describe in this
section enables us to have twistors of a kind in an arbitrary curved space-
time M. In particular, when Jt is conformally flat, this new formalism
enables us to deal with the original twistors (which in this section we shall
call 'global' twistors) in a way which does not require us to transform first to
a flat metric in order to do calculations. As an application of the local
twistor formalism we shall show that the vanishing ofx¥ABCD is sufficient, as
well as necessary, for a space-time to be patch wise conformal to M.

Complex space-time

Most of this section, as indeed most of this book, is concerned with ordinary
real space-times. However, much of modern twistor theory is discussed
against a background of complex space-times, and we shall therefore make
a few remarks on that subject now. As we have noted before (see p. 64;
footnotes), a complexified space-time is one which originates from an
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'ordinary' real analytic space-time (which therefore has real analytic
coordinates xa and a real analytic metric of Lorentzian signature H ),
by allowing the coordinates to become complex and by extending the
metric coefficients holomorphically into the complex domain. The original
real space-time, however, retains a role as a privileged subspace. A complex
space-time, on the other hand, is indistinguishable from a general four-
complex-dimensional complex-Riemannian manifold, and in it no four-
real-dimensional subspace has been singled out (and conventionally
declared to be 'real') to give it a reality structure. (Indeed, no candidate
for such a subspace will exist in general, cf. Woodhouse 1977.) In com-
plexified space-times there exists the operation of complex conjugation,
which is the map taking any point with (complexified) coordinates xa into
the point with coordinates xa (and similarly for tensors). This map is
invariant under real analytic transformations of the coordinates of the
original real space. (But it is, of course, not invariant under the general
holomorphic coordinate transformations in a complex space, and that is
why the operation is undefined there.) Only the original real points (and
real tensors at real points) are left invariant under this map (such invariance
being the criterion for 'reality'). It should be noted that there exists no
criterion for the reality of tensors - or the complex conjugateness of pairs
of tensors - at complex points even in a complexified space, since the
conjugate tensor is situated at the complex conjugate point. (Only in flat
complexified spaces can we use - rather artificially - distant parallelism to
bring the tensors to the same point.)

By retracing the arguments used in building up the spinor formalism,
we easily see that there is the following rule for translating the spinor
formulae of this book from a real to a complex space-time:* the algebraic
and differential operations (except complex conjugation) formally go over
unchanged; but whenever a real quantity appears it is replaced by a
complex one, and whenever a complex quantity k appears together with
its conjugate X, it and its conjugate are replaced by two independent
complex quantities / and X, say. For example, in (1.2.19) we had the
complex coordinate ( = (X + iY)/(T— Z) defined on the null cone.
Similarly we had C = (X-iY)/(T-Z). But when T, X, 7, Z become
complex, these two expressions simply yield independent quantities £ and
(. Non-holomorphic (but real-analytic) expressions in C, such as (Cr+ I)2,
become, when complexified, holomorphic expressions in the Wo complex
variables (, f - i n this case (Cr+ I)2. The operation of complex conju-

* For further discussion, see Flaherty (1976, 1980); also Lind and Newman (1974).
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gation disappears, but, of course, when a doubly conjugated quantity I
appears, then that is identified with the original quantity L

The spaces <ZA and &A> become unrelated to one another, the pair of
spinors £A

9 f4 - which previously determined one another - being
replaced by a pair of independent spinors £A, ZA'. The general (future-)
null vector £A1[A' becomes, upon complexification, the general complex
null vector ^f4 (cf (3.2.6)). Quantities Y that are originally real, yield
no new quantities Y, since Y= Y goes over into Y= Y. Thus, for example,
the covariant derivative operator Vfl, being originally real, yields no new
operator Va. Instead, Va becomes a complex holomorphic operator. The
complex curvature quantities ^ABCD> ®ABCD'> A, become accompanied by
quantities ^ABCD', $CDAB> ^ but because of the original reality
conditions (4.6.4) and (4.6.17), the latter give us nothing new, i.e.,

&ABC-D' = *ABC'D; A = A. (6.9.1)

On the other hand, ¥A>B'CD' *S a n e w curvature quantity independent of

^ A B C D -

In fact, it is possible to have complex space-times in which, say,
^AB'C'D' = 0> without ^ABCD necessarily vanishing. These are called right
conformallyflat (or conformally anti-self-dual) spaces, whereas if only ^ B C D
necessarily vanishes, the space is called left conformallyflat (or conformally
self-dual). If, in addition, <&ABC>D> = 0, and A = 0, then we call these spaces,
respectively, right-flat (or anti-self-dual) and left-flat (or self-dual).
Remarkably, such spaces arise naturally (Newman's ^-space, cf
Newman 1976, Ko, Ludvigsen, Newman and Tod 1981, Hansen, Newman,
Penrose and Tod 1978) in the study of asymptotically flat real space-times.
(We very briefly discuss these in Chapter 9, see p. 389 et seq.) Note that
for a general complex space-time, the PNDs of X¥ABCD

 a n d °f ^ABCD'

are quite independent of each other, and the coincidence scheme for the
PNDs of ¥ABCD can be quite different from that of the PNDs of ¥A.B.C.D..
So at each point we have two independent classification schemes like that
given in Chapter 8 below for a single

In a real (pseudo-)Riemannian 4-space with signature (+ + + +) , (+ H ), or
( ), we have a quite different type of complex conjugation operation on
spinors, which takes each of the modules &A, <$A' to itself, while leaving them indepen-
dent of each other. (In the - essentially equivalent - definite cases ( + + + + ) and
( ), there exist no real non-zero elements of <3A, i.e., elements sent to them-
selves under complex conjugation, whereas in the case ( + H ) there do exist such
real elements. Thus the classifications of ^ABCD anc* ^ABCD' a r e independent of each
other, but each is restricted by reality conditions. In particular, non-trivial right-flat
and left-flat solutions of Einstein's equations exist with all these signatures, some of
which are referred to as gravitational instantons (cf. Hawking 1977, Gibbons and
Hawking 1979, Hitchin 1979, 1982, Atiyah, Hitchin and Singer 1978).
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130 6. Twistors

Consistency of the twistor equation

In our discussion of local twistors we shall phrase our arguments as though
we were solely concerned with real Lorentzian space-times, but at each
stage the generalization to complex space-times can be effected in a
straightforward way, according to the rules given in the preceding para-
graph. However, certain provisos must be borne in mind. For example,
the condition ^ABCD — 0' f° r conformal flatness must be interpreted, in
the context of a complex space-time, as t}¥ABCD = 0 an^ ^ AWCD' = 0'- I*1

this connection a specific point should be made. We have seen in (6.1.6)
that a consistency condition for the twistor equation (6.1.1) to have several
(more than one) linearly independent solutions is ^ABCD

 = 0- O n e might
be tempted to conclude that the disappearance of this consistency condition
in a left conformally flat space-time would lead to a full family of solutions
existing. Indeed, for the massless field equations (4.12.42), the Buchdahl-
Plebanski conditions (5.8.2) are satisfied if ^ABCD = 0 but ¥A>B'CD' ^ 0>an^
in this case it is true that, for fields with arbitrarily many unprimed indices,
as wide a family of solutions exists locally in left conformally flat as in
flat (complex) space-times. (A corresponding result holds, of course, for
fields with primed indices in right conformally flat spaces.) But the twistor
equation is a much more stringent restriction than the massless field
equation (as evidenced just by the fact that even in flat space-time only
a/imte-dimensional solution space exists). Observe that, by (4.9.8)(2), the
part skew in BC of

W ^ V ^ (6.9.2)

vanishes whenever ^>ABCD=0; thus if the twistor equation (6.1.1) holds,
(6.9.2) is zero, being skew in CD. So if the twistor equation holds in a left-flat
complex space-time, we have, by (4.9.14),

0 = V^.V^V^o)* = $VB,C,D.VCD V . (6.9.3)

It then follows, as in (6.1.6), that there can be only a restricted family of
solutions of the twistor equation unless ^ AB>cD' a^s o vanishes. In fact, in
any left-flat complex space-time there are always (locally) two linearly
independent solutions of

Vaco* = 0. (6.9.4)

For, by (4.9.7), the commutators of derivatives vanish when acting on an
unprimed spinor: (VaVft — VbVa)coc = 0. Thus coB can be chosen arbitrarily
at one point and carried parallelly, in a consistent way, to all points in a
neighbourhood. But in general these are the only solutions of (6.9.3) and
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6.9 Local twistors 131

therefore are the only solutions of the twistor equation in a general left-flat
space. (There exists one other linearly independent solution if ¥A'B'C'D> is
null and constant.) Here we end our explicit digression on complex space-
times and return to the discussion of local twistors.

Definition of a local twistor

The essential difference between local and global twistors is that, whereas
a global twistor is defined over the whole space-time Jl (i.e. as a solution
of the twistor equation) and does not require specific points of Jl to be
called upon for its definition, a local twistor is defined essentially at points
of Jl. There is a four-complex-dimensional local twistor space at each point
of Jl, and the various local twistor spaces are independent of each other,
apart from requirements of continuity and differentiability. Accordingly,
the space of local twistors is a (four-complex-dimensional) vector bundle over
Jl and not simply a four-complex-dimensional vector space. (One can also
consider local twistor fields, as cross-sections of this bundle in the ordinary
way.) Thus a local twistor cannot serve one purpose that strongly
motivated the development of global twistors, namely to provide an
alternative formalism in physics in which the concept of a space-time point
is no longer regarded as primitive. (For such purposes yet a different
concept of a twistor may be used in curved space-time, such as that of an
asymptotic twistor - which we shall describe only briefly at the end of §9.8 -
a concept which itself makes use of that of a local twistor. See also the
discussion of 2-surface twistors given in §9.9.) On the other hand, the local
twistor formalism provides us with a convenient calculus for the discussion
of the conformal geometry of an arbitrary space-time manifold Jl. (The
necessary concepts were basically introduced by Cartan 1923,1932; cf also
Veblen and Taub 1934, Penrose and MacCallum 1972.)

Let PeJl with metric gab. A local twistor Za at P is a quantity which can
be represented by a pair of spinors (coA, nA) at P (and we stress that these
spinors are now point-spinors, not spinor fields). We require that under a
conformal rescaling gab*-*gab = Q2Qab the pair (coA

9 nA) is replaced by a new
pair {(X)A,nA) according to the previous formula (6.1.75). We write

Z* = (wA,TtA,\ (6.9.5)

and require

A A A (6.9.6)
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132 6. Twistors

Thus, while coA is a conformally weighted quantity (with weight 0), nA. is
not, but undergoes a more complicated kind of conformal behaviour. If we
take the point of view that, given Za, (coA and) nA> are not simply fixed point-
spinors but quantities that have a functional dependence on the metric g, then
it is legitimate to drop the V or '#' above the equality signs in (6.9.5) and
simply write

Z* = {co\nA) (6.9.7)

as usual. The space of all local twistors is the vector bundle of all such Za at
all the various points P. The fibre over P is a four-complex-dimensional
vector space: the space of local twistors at P.

Local twistor transport

Next we construct a means of comparing local twistors at different points
(i.e. a bundle connection cfi (5.4.17)—(5.4.19)). For this we are guided by two
requirements. First we want a certain agreement with global twistors. This
guides us in the construction of the parallel transport for local twistors -
called local twistor transport. Given any smooth curve T in J(, joining
points P and Q in M, and a local twistor Za at P, we define a corresponding
local twistor at Q. Only in conformally flat space-time will this corre-
spondence be path-independent. But in that case we shall require agree-
ment with the global twistor concept, i.e., a local twistor which is in this
sense 'parallel' everywhere must be a global twistor. Secondly, we want
invariance under conformal rescalings. It may be noted that the simple
expedient of parallelly transporting the point-spinor parts of Z* would not
fulfil these requirements.

Let us first examine the original concept of global twistor, as introduced
in §6.1, in the present context of local twistors. A global twistor Za in
conformally flat space-time is identified with a spinor field coA satisfying the
twistor equation

ViAa)B) = 0. (6.9.8)

Let us define nA. by

*A- = WAA*»A, (6.9.9)

which, together with (6.9.8), is equivalent to (6.1.9). From (6.8.11) we find at
once that

(with Pab as in (6.8.12)). Thus a global twistor is represented by a (a)A,nA>)
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field subject to

VAA*B' + &ABA'ir<» =0-

(Note that in the particular case of flat space-time these equations reduce to
(6.1.9).)

We shall use (6.9.10) to motivate our concept of parallel transport of local
twistors in an arbitrary space-time Ji. We say that the local twistor
Za = (coA, nA) is constant throughout Ji (and that it is a global twistor) if
(6.9.10) is satisfied. In a general space-time there will be no non-trivial local
twistors satisfying (6.9.10) at all points of Ji. On the other hand,
transvecting (6.9.10) with a vector f we obtain the weaker relations

= 0 ,

n7fl7rB, + ir*Pa,coB = 0,

which state that Za is constant in the direction f. If we have a curve x in Ji
with tangent vector ffl, then Za is said to be constant along x - or carried
along T by local twistor transport - if (6.9.11) holds at every point of x. It is
clear that the propagation equations (6.9.11) serve to define Za uniquely at
every point oft, given the value of (coA, nA) at any one point of T; and at that
point coA and nA> may be chosen freely. (This is assuming that we have the
'normal' situation in which x is not self-intersecting and ta is nowhere zero.)

Having the concept of a local twistor which is constant along a curve, it is
a small step to define the rate of change V Za of Za along x by

V Z* = (tbVbcoA + itAB'nB.9 tbVbnA, + itBB'PABA^wA). (6.9.12)

Then it can be verified directly from (6.8.14) that the transformation
behaviour (6.9.5), (6.9.6) holds for V Za if it holds for Za. Thus V Za is a local
twistor* at each point of x. Indeed, this is an expression of the fact that the
operator V is conformally invariant in this sense. As a consequence, the
concept of local twistor transport is conformally invariant, since the above
definitions (6.9.11) and (6.9.12) work in any space-time. A constant local
twistor defined throughout Ji (i.e., a global twistor) must satisfy VZa = 0
at every point of Ji and for every vector t.

So far we have been concerned only with [o]-local twistors. The
generalization to [£]-local twistors follows the normal pattern. We may
consider local twistors at just one point of Ji or we may consider fields of
local twistors on Jt. In the first case, the [o]-local twistors give a four-

* Local twistors, with this connection, can under certain circumstances be thought of as
defining a kind of Yang-Mills theory, cf. Merkulov (1984) (Bach tensor current).
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134 6. Twistors

dimensional vector space over C and in the second, a (totally reflexive four-
dimensional) module over the complex scalar fields S. We define 2Za and
Xa 4- Za in the obvious way in each case. The abstract labelling system and
general scheme for constructing quantities of arbitrary valence given in
Chapter 2 applies here also; the notation and splitting of quantities into
their spinor parts follows the same scheme as that for global twistors
(cf. §6.1). As with global twistors, we have an operation of complex
conjugation which takes a [J]-twistor into a [-J]-twistor. Let us show this
explicitly in the case p = 1, q = 0 and examine the implications with respect
to local twistor transport. With Za as in (6.9.5) we have Za = {nA,cbA) as in
(6.1.31), so that when we replace gab by gab

 = ^29ab^ w e 8 e t t^e n e w

representation Za = (nA — iYAA>coA\aJA'). Thus, for [?]-local twistors,

with respect to gab implies

with respect to the new metric gab, where

XA = *A-irAA.»A'9 fiA' = fiA'. (6.9.13)

Hence, for example, the spinor parts of a [ J]-local twistor Q / transform as

QAB &A

Q B i T nAB n i T nA> + i T n B _ u T T nA

A ~lYAAlKJ- UAB' — l l AA'U B' + l l BB'UA ^ l AA' l BB'U

QAB QA' f _j_ J Y QA'B

and correspondingly for local twistors with other index structures.
From the complex conjugate of (6.9.12) we have

V \A/ —(tb\7 ) \tBB'T> nA' tb\7 nA' \tBA'2 \ (f\Q \A\
VVa — (f \bAA — \t lABA'B'f* ->l ^bf1 ~ ll *-B)' Kp.y.Y**)

As with [o]-twistors, V is (of necessity) conformally invariant in the sense
that if Wa has the correct rescaling behaviour (6.9.13) for a local twistor, so
has V Wa. Furthermore, the scalar product WaZ

a:= A.AcoA + HA'nA' is
invariant under conformal rescalings (as it must be by virtue of the
agreement of (6.9.6) and (6.9.13) with the corresponding global twistor
expressions (6.1.75) and (6.1.76)), and has the property

V (WaZ
a) = WaV Za + ZaV Wa, (6.9.15)

as is easily verified from (6.9.12) and (6.9.14). The term on the left is defined
simply as the ordinary directional derivative (V = ta¥a) of a scalar (cf.
(4.3.31)). One implication of (6.9.15) is that thehelicity ^ZaZa of a local
twistor is unchanged under parallel transport. In particular, a null twistor
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6.9 Local twistors 135

remains null. This property is analogous to the corresponding property
of Riemannian geometry, to the effect that norms and scalar products of
vectors are preserved under parallel transport. In twistor theory it is
complex conjugation which plays an analogous role to the Riemannian
metric: local twistor transport commutes with twistor complex
conjugation.

The extension of the definition of V to local twistors of arbitrary valence
is governed by the normal requirements of additivity and the Leibniz law.
A particular example should suffice to illustrate the general pattern:

'QA* QA,

AB a*B' ,

= f(^cCLA
B + KCBQAC - &aAAB VAAB' + iPfccQ/ " iP,

\VcQ
XjB + iec

BQA
 c -iec>

A'QC
B VcOiA'B> + i?bcQ.BA' - i e

Local twistor curvature

We have mentioned earlier that we do not expect the concept of local
twistor parallel transport to be 'integrable' (i.e., path-independent) in a
general curved space-time. This non-integrability can be made quanti-
tative by examining the effect of going around a small loop spanned by
vectors f, u (see Fig. 6-9). If t and u are two vector fields, the Lie bracket
[r, u] expresses the 'gap' encountered when we attempt to construct a small
quadrilateral out of neighbouring vectors of the vector fields. Unless this
'gap' closes* ([f,w] = 0) we get, in effect, an infinitesimal pentagon. The
operator VV — VV — V expresses the increment in a quantity carried
around this infinitesimal pentagon by parallel transport (cf. Dodson and

Fig. 6-9. The Lie bracket [f, it], between vector fields t and u measures the 'gap' in
small quadrilaterals constructed from t and u.

If u and t in the diagram are O(e), then the 'gap' is O(e2), generally, since [f, u] is bilinear
in r, u. 'Closing' means that the gap is O(e3).
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136 6. Twistors

Poston 1977) and serves to define the relevant curvature quantity. We
already considered the corresponding expression for ordinary parallel
transport in (4.3.33). Now, we define the local twistor curvature K/(r,w) by

i(V V - VV - V )Z' = Z"K/(t,u) (6.9.17)
t u u t [t,m]

and find,* after some calculation,

'Q*PQAB

0 ^ ^ V y
(6.9.18)

The factor i in (6.9.17) is chosen to ensure the Hermiticity of K/ (like the F.
of (5.5.30)).

It may be remarked that the dependence of K/ on the two vector fields
is, of course, bilinear; so a curvature quantity Kpqa

fi independent of t and
u may be defined by the equation

Kj(t,u)=:t'u<Kj'. (6.9.19)

Similarly, the dependence of V on t is linear; so a covariant derivative
operator Vp acting on local twistors may be defined, where

* % = V (6.9.20)

for any t (thus indeed providing us with a bundle connection as in (5.4.17)-
(5.4.19)). Then (6.9.17) may be expressed in the form

(NpVq - NqVp0 = KM/Z« (6.9.21)

(which is an instance of (5.4.23)).
This is, perhaps, more in keeping with the development of §§4.2, 5.4,

5.5, and we may construct higher derivatives of curvature quantities:

Vp...VrK$,/. (6.9.22)

However these are not conformally invariant objects because Va acting
on a quantity with tensor indices is not generally conformally invariant.
One may construct higher-order eonformally invariant derivatives by
adapting Dighton's (1974) procedure (cf. Penrose and MacCallum 1972)
whereby tensor and spinor indices are eliminated by translating them into
local twistor form, each (lower) primed [unprimed] index appearing as
an upper [lower] twistor index. This is achieved via the (second) map

Note that both 4* and ¥ appear in this expression. Thus in a complex space-time,
both Hf and ¥ occur in the local twistor curvature, as would be expected from
(6.1.6), (6.9.3).
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(e.g. nA> i->(0,71^)) of each of the conformally invariant exact sequences

where 4[P]' refers to the local space at PeM (cf. p. 5; contrast p. 91). Thus
VAB> is translated to a conformally invariant operator V / - though a
complication arises from the existence of a (constant) torsion. Conformally
invariant spinors can be extracted (via the third map) by taking primary
parts, or secondary parts when this is zero, or tertiary parts when all these
are zero, etc. For this procedure to be useful, the twistor indices must be
subjected to various symmetry operations; and in this way Dighton (1972,
1974) has been able to obtain the Bach tensor (6.8.42) and other conformally
invariant objects (cf. also du Plessis 1970 for an alternative procedure).

Vanishing Weyl curvature implies conformal flatness

Observe that the local twistor curvature (6.9.18) involves the Weyl curvature
and its (contracted) derivative. If M is conformally flat then these quantities
must vanish. For X¥ABCD = ®

 m ^ a t space-time; and being conformally
invariant (cf. (6.8.4)), ^ABCD must also vanish in any conformally flat space-
time. Thus (as was evident, in any case, from the conformal invariance of
local twistor transport), the local twistor curvature must also vanish in
any conformally flat space-time. We wish now to establish a converse
result, namely:

(6.9.23) THEOREM

V ^ABCD = 0 throughout the space-time M, then each point of Ji has a
neighbourhood °U in which a conformal factor can be found* that rescales the
metric in % to that of a portion ofMinkowski space. Such a space-time Jt will
be said to be 'patchwise conformaV to Minkowski space.

Proof: Suppose *¥ABCD = 0 throughout M. Then the local twistor curva-
ture vanishes at each point of M. Let O be a point of M and choose a
neighbourhood ir of 0 in M which is simply-connected and has spinor
structure (cf. §1.5). Then if P is any other point in TT, any two curves in TT
from O to P can be continuously deformed one into the other. Let Za be a

It is not necessarily true that a conformal factor can be found for the whole of M, which
rescales the metric to a flat metric everywhere.
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138 6. Twistors

Fig. 6-10. The vanishing of local twistor curvature implies that the result of local
twistor transport of Za along T, from 0 to P, is unaffected when x is varied
continuously.

local twistor at 0. For any smooth curve T, in y , from 0 to P, we can define
a corresponding local twistor at P simply by carrying Za along x from 0 to P
by local twistor transport. Now let this curve be continuously deformed
within Y, keeping the end-points 0 and P fixed. Because of the vanishing of
the local twistor curvature and the interpretation of this curvature in terms
of local twistor transport around infinitesimal loops, it follows that the
result of transporting Za from 0 to P along T will be unaffected as T is thus
varied continuously (see Fig. 6-10). (It is possible to make this argument
considerably more rigorous, but the main point should now be clear.)
Because of the simple connectedness of ir

9 the parallel transport of Za from
0 to P is completely path-independent within y. We can vary P also,
within Y, and obtain a field of local twistors Za in Y which satisfies (6.9.11)
at each point and for each vector ta. Thus, (6.9.10) is satisfied and we have a
global twistor Za.

The same applies whatever local twistor is chosen at O. Thus the local
twistor space at 0 is in one-to-one correspondence with the space of global
twistors in "T. Any (coA, nA) pair at the point 0 defines a global twistor in Y
and vice versa. If the cw^-part of a global twistor Za vanishes at a point P of
y, then we say that Za is incident with P. Since the local twistor description
of Za is then null at P and since nullity is preserved under local twistor
transport, it follows that Za must be null at O also. If Xa is another global
twistor incident with P, then clearly XaZa = 0 at P. Again, since twistor
orthogonality is preserved under local twistor transport (cf. (6.9.15)), we
must also have XaZa = 0 at 0. The system of all global twistors incident with
P must therefore be represented, at 0, by a (two-complex-dimensional)
system of local twistors at 0 which are all null, and orthogonal to one
another.

We may regard the tangent space at 0 as a Minkowski space M and the
(coA, nA) spinor pairs at O as defining ordinary Minkowski-space twistors
for RjO. The above two-complex-dimensional system of local twistors at 0,
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6.10 Massless fields and twistor cohomology 139

representing a point P of TT, is then precisely of the kind which is
characterized as the system of all twistors in fMI incident with some point
PEM, although exceptionally P could lie at infinity in flS/fl. Let us avoid this
latter possibility by choosing a neighbourhood °U c V of 0, sufficiently
small for each point P of °U to have an image Pmih which is indeed a finite
point of ML Furthermore we choose % so small that no two points of ̂ U have
the same image in M. We then have a map from fy to some portion of iCfl
which is one-to-one and evidently continuous. Furthermore it is a
conformal map. To see this, consider a global twistor Za incident with P and
having the spinor parts (09nA>) at P. Choose x to be the null geodesic
through P in the direction of the flagpole of %A. at P (take f = THTT4'). Then it
is evident from (6.9.11) that the same form (0, nA) will be retained all along T.
Thus Za will be incident with every point of T. This establishes the fact that in
our map from °U to M, null geodesies in tfl correspond to null straight lines
(points of fixed null twistors) in M. Thus null cones in °H are certainly
mapped to null cones in M, establishing that the map is indeed conformal.
This establishes theorem (6.9.23), since the point O was chosen arbitrarily in

6.10 Massless fields and twistor cohomology

In §6.7 we briefly described a contour integral method for solving (among
other equations) the massless field equations of each spin in M. In this
section we give a somewhat deeper discussion of that construction of mass-
less fields, which has importance as one of the cornerstones of most of
the subsequent developments of twistor theory. Our discussion will lead
us to a sampling of twistor sheaf cohomology theory, though it is beyond
the scope of the present book to enter into this in very much detail.

Contour integrals for massless fields

Let us return, first, to the formula (6.7.41) in the particular case q = 0, when
there are no upper (i.e., primed) indices. It then represents the solution of
the massless field equations* in M or CM. The ' / ' in the formula has then

The particular form of this formula, for general spin, as given in (6.10.1), was first written
down in Penrose and MacCallum (1972), this formula being based on earlier ones given
by Penrose (1968a), (1969). However, in the case of spin-0 a virtually equivalent
expression had been found much earlier by Bateman (1904), (1944), as developed from
an expression due to Whittaker (1903) for solving the three-dimensional Laplace
equation. The case of spin-1 (Maxwell theory) was also treated by Bateman (1944).
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only a 'constant' dependence on the twistor Za, i.e., it is a function of Wa

only; and it is homogeneous of degree — p — 2, where p is the number of
indices of the field <f)A D to be constructed (and also the number of
kAi..., kD under the integral sign):

^ D(R) = hx j*A' -iDfQNJW. (6.10.1)

The function / must be holomorphic in some suitable region of Ta (which
will be made more precise later). The integral is taken, for each space-time
point R, over a suitable one-dimensional closed contour in the space of [?]-
twistors Wa incident with R. This space may be identified with <5A[K]9 the
vector space of spin-(co)vectors at R or, equivalently, with the spin-space S^
of constant spinor fields kA arising from Wa = (kA,fiA). The first point of
view is the appropriate one for curved conformally flat space-times, but the
second is more convenient for explicit calculations in M or CM. In the
conformally flat case, we can use a constant local twistor description of Wa,
and at any point R incident with it, Wa then takes the form (kA,0\ where
now kAe<5A\\R']. In the case of Ml or CM], on the other hand, it is simplest to
use the description

\Na~(kA,-irAA'kA) (6.10.2)

where ra denotes the position vector of R relative to the point OeM, and
where both ra and kA are taken as point spinors at O. More invariantly,
we may replace (6.10.2) by

with the understanding that kA is a constant spinor (e§A) and r° is (as in
(6.2.15), (6.2.18)) the position vector of R relative to the general field point.
So, in particular, at R, Wa takes the form (^,0).

Quite similarly, in the case of a massless field with q primed indices
(p = 0 in (6.7.40)), we have the formula

.. .nD,f(Za)nE>dnE\ (6.10.3)

where / now is homogeneous of degree —q — 2 and holomorphic in some
suitable region of Ja (to be made more precise shortly); and where the
integral is taken over a one-dimensional closed contour in the space of
[o]-twistors Za incident with R. This space can be thought of as ® A [^ ]
i.e. of point-spinors at R - especially in curved conformally flat space -
with Za = (a)A,nA,)( = (0,nA.) locally at R). Alternatively, in the case of
M or CM, it can be taken as the spin-space S ^ of constant spinor fields nA,,
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with Za = (irAA'nA>,nA>) and ra the position vector of R relative to the general
field point. As in (6.10.2) it will be convenient to fix the description of the
twistor at 0 and to represent Z* by

Za^(irAA'nA,,nA\ (6.10.4)

r* and nA. being point spinors at O.
Holding r° constant and using the fact that / is holomorphic with homo-

geneity degree as given, we can easily check that the exterior derivative
of the integrand in (6.10.1) and (6.10.3) vanishes, so that the result of the
integration is unaffected by continuous deformations of the contour
through (non-singular) regions of the domain of the integrand. In each case
the components of the integrand have the form h(u, v)(udv - vdu) with h
holomorphic and homogeneous of degree — 2, whence, by Euler's theorem,

dh dh _
du dv

and so

d((udv — vdu)h) = ( M — + v — + h + h )du A dt> = 0.
\ du dv )

Also, the massless field equations follow at once from

•i df (6.10.5)

<A (6.10.6)
do

where Va stands for d/dra and where the point spinors \iA> and a>A at O are
defined, according to (6.10.2) and (6.10.4), by

H* = - irAA'AA9 o)A = \rAA'nA.. (6.10.7)

(The concept of partial derivative with respect to a spinor with abstract
indices in such a context should be self-explanatory; one can always take
components in some basis and then convert back to abstract indices.)

The non-projective form

Sometimes it is convenient to use a form of integral that does not require
/ to be homogeneous (though still holomorphic), but which instead
projects out a part of / that has the correct homogeneity:

•k (6.10.8)
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or

<t>A:..D.(R)^^2J>7tA,...nD,f(Z")d2n, (6.10.9)

where

d2n = dn0, A drcr = idrc^ A dnA\ (6.10.10)

and where the integrals are now taken over two-dimensional contours in
the appropriate spin-space. Irrespective of homogeneity, the exterior
derivatives of the integrands (with r* held constant) clearly vanish, so if
the contour is deformed continuously throughout the domain of / , the
result of the integration is unaffected. If / has the wrong homogeneity,
the integrals must vanish, since replacing Wa by feWa or Za by /cZa

(k constant) would multiply the whole integrand (including the differential)
by some non-trivial power of fc, whereas the result cannot depend on k.
For / of the correct homogeneity (and integrals over the appropriate
contours), (6.10.8) agrees with (6.10.1), and (6.10.9) agrees with (6.10.3). For
if h(u, v) has homogeneity degree — 2, then

h(u, v)du A dv = h(l,v/u)— A d(v/u),
u

and integrating out u by Cauchy's theorem, we get

2nih(l, v/u)d(v/u) = 2nih(u, v)(udv — vdu).

This assumes that the contour avoids u = 0, but even if it does not, the
result is the same, since we can interchange u and v in the above argument,
(and u = v = 0 is necessarily singular for h).

Twistor quantization

At this point it is illuminating to refer to a certain result of twistor quanti-
zation theory, since this clarifies the roles of the twistor functions / and
sheds light on the reason for their homogeneity degrees. We recall the
standard procedure of quantum theory ('first quantization') according to
which the position xa and the momentum pa of a particle become operators
satisfying the commutation law

pax
b-xbpa = ihga

b. (6.10.11)

In the x-space description a particle wave function is a complex function
\jj(xa), dependent on xa but not on pa, the operator pa being represented
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as differentiation,

dil/
JL (6.10.12)

and xa simply as multiplication,

. (6.10.13)

In the p-space description the wave function is a complex function
$(Pa) of Pa but not of x°, and the operators pa and xa reverse their roles:

pa.$>->Pa$ (6.10.14)
and

xa:{j}^-ih^-. (6.10.15)
dpa

Whichever description is used, we get back to the mathematics of
commuting variables, provided we use either xa or pfl, but not both, as
our variable, the other being replaced by a differential operator.

In the analogous quantization procedure for twistor descriptions
('twistor first quantization'), the twistors Za and Za (or, equivalently, Wa and
WJ become operators satisfying the commutation law

Z%-ZpZ
a = hda

p. (6.10.16)

In the Ta-description of a particle we have a wave function / which is a
complex function of Za but is independent of Za, where 'independence of Za'
is to be interpreted as

^ = 0, (6.10.17)

which means that the function / is to be holomorphic in Za. The operator Za

is represented as differentiation,

and Za simply as multiplication,

Z*:fi-+Z*f. (6.10.19)

In the Ta-description, Za and Za change roles. The twistor wave function / is
now holomorphic in Za (i.e., anti-holomorphic in Za); or relabelling Za as Wa

and Za as VVa, / is a holomorphic function of Wa with the operators Wa and
Wa, respectively, represented as

W a : /WW a / (6.10.20)
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and

(6.10.21)

Again, we are back with the mathematics of commuting variables provided
we do not use both Za and Za or both Wa and Wa, i.e., provided we work with
holomorphic twistor functions and operations, the conjugated variable
being always replaced by a differential operator.

The explicit relation between the twistor variables and the more familiar
space-time variables is achieved via the momentum and angular-
momentum relations given in §6.3. For a single-twistor system the
expressions are as given in (6.3.2) and the rest-mass is necessarily zero. The
twistor wave functions are, in essence, the functions / appearing in the
integrals (6.10.8) and (6.10.9) (or (6.10.1) and (6.10.3)), the integrals
themselves giving the translation to the normal x-space wave functions,
these being spinor fields in space-time, in accordance with the usual
descriptions.

Helicity

The quantum operator representing the helicity s, as defined by (6.3.5),
(6.3.6), accordingly turns out to be, when the non-commutation of variables
is taken into account,

s = i(ZaZa + ZaZ
a). (6.10.22)

Notice that when Za and Za commute, we are back with (6.1.74). Bearing in
mind that the commutation law (6.10.16) gives us ZaZa — ZaZ

a = 4ft, we see
that 5 is represented in the Ta-description by

\
(6.10.23)

dZ*
and in the Ta-description by

Thus, if we want a twistor wave function which is in an eigenstate of helicity,
we require that /(Za) be in an eigenstate of (6.10.23), or that / ( W J be in an
eigenstate of (6.10.24). Since the operations appearing in these relations are
trivial modifications of the Euler homogeneity operation, this means that,
in either case, / must be homogeneous. Taking the homogeneity degree of
/(Z«) to be -q-2, or that of / ( W J to be - p - 2 , we find that the
eigenvalue of helicity is, respectively,

\hq and -\hp. (6.10.25)
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It is gratifying to notice that when we pass to the space-time wave
function (/> , the values (6.10.25) are precisely those already assigned in §5.7
(cf after (5.7.3)) to a massless positive-frequency field with p unprimed
indices and with q primed indices respectively, the positive-frequency
requirement being necessary in order that the wave function describe a
physical (positive energy) particle.

Reversed helicity integrals

As things stand, an unsatisfactory aspect of the twistor function
description of a wave function is that we have to switch from a Ta-
description to a Ta-description when changing from positive to negative
helicity. Clearly it would be better to have a uniform description in terms of
just one space or the other. Indeed, the quantization rules (6.10.18) and
(6.10.21) tell us how this is to be achieved. For a IP-description of a positive-
helicity wave function (p unprimed indices), we would be tempted to take
the complex conjugate of (6.10.3) or (6.10.9) and to replace /(Za) by a
holomorphic function of Za of homogeneity degree p — 2, for consistency
with (6.10.23). But the product of spinors

nA....nD (6.10.26)

that appears in the complex conjugated integrand, and which seems to be
necessary in order to produce the unprimed indices of <l>AmmmD9 would spoil
the holomorphicity of the integrand. In addition, the use of the primary part
coA of Za at O in place of nA would be wrong for a variety of reasons: mainly,
because the resulting </> would not satisfy the massless field equations; but
even the spirit would have been wrong, since the integrand would lack
Poincare invariance owing to the position dependence of coA.

The clue to resolving this difficulty (following a suggestion made by L.P.
Hughston in 1973; cf. Hughston 1979, Penrose 1975b) lies in the quantization
rule (6.10.18), the projection spinor part of which suggests the replacement

Applying this substitution to (6.10.26) (and ignoring signs and factors of ft),
we arrive at the formula

» • • * '

(2m)2 Jdco
(6-10.28)
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146 6. Twistors

It is a simple matter to verify that the massless field equations (4.12.42)
are satisfied by the (frA...D so defined, just using the relation (6.10.6)
again. Indeed, it is interesting to note that the relation (6.10.6) (and similarly
(6.10.5)) already has an aspect of the quantization rules implicit in it. For
the operator Va occurring on the left is essentially d/dxa, which by (6.10.12)
is the quantum replacement of — ih~Lpa. On the RHS of (6.10.6) we have
the operator inA.d/dcoA which, by (6.10.27), is the quantum replacement
of —\h~lnA>nA, in remarkable agreement with (6.3.2).

There is clearly a corresponding expression to (6.10.28) for positive-
helicity massless wave functions in the Ta-description, namely

(2^JwW% (61029)

fiA> being the primary part of Wa (at O).
Note that d/dcoA and d/dfiA' are both origin-independent, whereas d/dnA*

and d/dkA are not. This can be seen from the fact that the first two operators
are projection parts of the respective twistor operators d/dZa and d/d\Na. It
can also be seen directly by changing the variables coA, nA> representing Za at

O to the pair a>A, nA> representing Za at some fixed point Q (Za+->{d)A, nA)\
whose position vector relative to O is qa, so

a>A = coA-iqAA'nA.9 nA> = nA,. (6.10.30)

One readily verifies that (if qa is held constant)

which is the same position dependence as that given in (6.1.26) for the spinor
parts of Wa, verifying that the parts of d/dZa do indeed have the correct
dependence on position required for a [?]-twistor. Similarly, if XA9 \xA>

represent Wa at Q (\Na<r+(XA9fi
A'))9 we have

XA = *A> fiA' = HA> + iqAA'*A, (6.10.32)
so

l.'^' >> (6,0.33,
dIA

this being the correct position dependence for a [o]-twistor.
Suppose now that we place both types of quantity nA. and d/dcoA inside
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the integral and define

<PA..,K,..AR) = ~

The equation satisfied by this symmetric spinor 0 is

vg'0F.::/' = v$'#r.:;j/p, (6.10.35)
or, equivalently,

VAA'<PAB...FK:..P=0, VKK'<t>A...FKu...p=0- (6-10.36)

Equation (6.10.36) is just (5.10.9), so we can apply Proposition (5.10.10) and
obtain the result that (j)A.,.FK'...p' is (locally) simply the uncontracted rth
derivative of a massless free field. Here r = min (u, v), where (/> has valence
[2 £]> and the massless field has \u — v\ indices, primed or unprimed
according as u < v or u > v (and is a scalar wave field if u = v). Indeed, it is
manifest that an expression like (6.10.34) arises by repeated application of
uncontracted operations V... to (6.10.9) or (6.10.28)(2). What we have just
established shows that (6.10.34) gives the general analytic solution of
(6.10.35) (for symmetric (f) ), assuming that this is true for the special cases
(6.10.9), (6.10.28)(2).

Helicity raising and lowering

These contour integral expressions also serve to illuminate some of the
results of §6.4. In particular, it was remarked (after (6.4.21)) that a
trace-free symmetric [J]-twistor TJ;;;J

' p . . . t — ' (p . . . t )> laur...x— U> ( O . i U . J / J

having primary part xA-DR'-T'e<3{A-D)(R'T'\ which determines it com-

pletely and satisfies

(M'AR'...T) ~ u>

can (in various ways) be used to increase the helicity of a positive-frequency
massless field by a (possibly negative) amount ^{p — q)h. In terms of a
twistor function / , using the Ta-description, these amount to instances of

..T^L...-^f (6.10.38)

(and the Ta-description is similar). Note that the homogeneity in Za is
increased by q — p, which is consistent with (6.10.23). Note also that the
trace-free condition (6.10.37)(2) ensures that the factor ordering in (6.10.38)
is unimportant.
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148 6. Twistors

There are also expressions, analogous to (6.10.34) for obtaining the
potentials of §6.4 directly. This will not be entered into here (cf Eastwood,
Penrose and Wells 1981).

Massive twistor wave functions

The foregoing discussion indicates that twistors provide an elegant
formalism for the description of massless fields - or of wave functions for
massless particles. It is natural to ask whether massif-particle wave
functions can also be described in terms of twistors. In fact they can. A clue
is provided by the expressions (6.3.26), (6.3.28), which show how the general
massive angular-momentum twistor can be built up from a family of 1-
valent twistors. This suggests analogues of the following form for (6.10.8),
(6.10.9), (6.10.28)(2) and (6.10.29)(2):

A d27u, (6.10.39)
(2m)2n

involving, say, n twistors Wa , . . . ,Za . There are many possible different
combinations of terms in the integrand, and, in contrast to (6.10.34), the
derivatives in (6.10.39) can yield many new fields which are not just
derivatives of simpler ones.

The considerable freedom in the choices of these expressions reflects
the freedom in the rc-twistor internal symmetry group (6.3.29) in its
quantized form. Polynomial expressions constructed from the generators of
this group provide reasonably plausible models for quantum numbers for
particles (Penrose 19756, Perjes 1975,1977,1982, Perjes and Sparling 1979,
Hughston 1979, 1980). However, there appears to be no very simple way,
analogous to (6.10.1) etc. of automatically satisfying the Schrodinger-
Klein-Gordon equation (5.10.20) or the Dirac equations (5.10.15), (5.10.35),
(5.10.36). We shall not pursue these matters further here, but refer the
interested reader to the above literature (cf also Penrose 1975a, Hodges
1982, 1985a, fe, Hodges and Huggett 1980).

Geometry of contour integrals

Instead, we return to examine the massless case in more detail. Our
discussion so far has been purely formal. We now want to consider the
explicit structure of twistor functions and their singularity sets. For
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integrals* of the type (6.10.3) and (6.10.28)(l), the geometric discussion will
be considerably clarified if we pass to the projective twistor space PTa (or
PT#) in our descriptions, i.e., the space of proportionality classes of non-
zero [o]-twistors identified according to the equivalence relation

Za = /cZa ( O ^ K E C ) . (6.10.40)

As coordinates for PTa we take the three independent complex ratios

z o : Z i : Z 2 . Z 3 (6.10.41)

The geometry of this space and its relation to CM will be discussed at much
greater length in §9.3 below, and the reader is referred to that discussion for
further details. For our immediate purposes it will suffice to observe that
any point R in CfVO is represented by a complex projective line R in PT#.
This follows from the discussion of §6.2 (cf (6.2.16)). The points of the line R
correspond to the family of twistors incident with the point R in CM. Now
recall that the integrals (6.10.3) and (6.10.28)(l) were taken over a one-real-
dimensional contour in the space of these twistors. This is, in effect, a one-
dimensional contour in the complex projective 1-space of ratios

no,:nv, (6.10.42)

which may be identified with the projective line R. Recall next that the space
of ratios (6.10.42) is topologically a sphere 52, the Riemann sphere of ratios
(6.10.42) (cf. §1.2). As we have seen in Chapter 1, for a real point ReM this
sphere is precisely the celestial sphere of an observer at R since it represents
the space of null rays through R. But also a complex point KeCfM) will be
represented in PT # by a locus R whose topological - and indeed complex-
analytic - structure is again that of a Riemann sphere (see Fig. 6-11). To
evaluate our integrals, we have to find a contour F in this Riemann sphere
which links the singularities of / and so cannot be shrunk to a point
continuously over the sphere without crossing a singularity (for otherwise
the result of the integration is necessarily zero). It is therefore of particular
importance to study the nature of the singularity sets of the twistor wave
functions.

A simple example (to which Fig. 6-11 refers) will illuminate the situation.

* There are also other types of contour integrals occurring in twistor theory. Especially
noteworthy are those which involve all the twistor variables and not just n& and nv.
For example, integrals of the form j / d 4 Z can be used to express the electric charge,
when / has homogeneity — 4 in Za; and of the form ^ZaZpf6.AZ to express Aa/i when /
has homogeneity - 6 . (Here d4Z = dZ°AdZ' A dZ2 A dZ3.) The theory of these
expressions involves relative sheaf cohomology (Bailey 1985). Their generalizations to
several twistor variables leads to twistor diagram theory (Penrose and MacCallum
1972, Penrose 1975a, Sparling 1975, Hughston and Hurd 1981, Eastwood and
Ginsberg 1981, Ginsberg 1983, Qadir 1978, Hodges and Huggett 1980, Hodges 1982,
1985, a, b)
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B n R

Fig. 6-11. The function to be integrated has poles along the planes A and B in PTa.
The point R in CM is represented by R in PTa whose topology is S2. The poles on S2

are points to be separated by the contour F.

Consider the case of spin 0, and let us try to generate a solution of the wave
equation in Ml from a twistor function of homogeneity degree — 2. Let us
take

1
( 6 1 0 4 3 )

Then the singularities of / lie on two hyperplanes in the space Ta, namely
those given by

AaZ* = 0 (6.10.44)
and

BaZ
a = 0. (6.10.45)

These equations define two planes in PTa which we call A and B. We
assume that these planes are distinct (i.e., that Aa and Ba are not
proportional), and that the line R does not meet their intersection. Then the
two points in which R meets A and B are distinct, being the points on the
sphere R at which / becomes singular. Thus we choose F to be a topological
circle S1 such that just one of A n R and B n R lies on either side of F.

Let us now explicitly calculate the contour integral (6.10.3) for the present
wave function / We have:

2n\<j>(R) = (pf(Z*)nE,dnE'

nE,dnE'

(Acir
ccnc, + fKc'nc){BDirDD'nD, + BD'nD)'
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Now

dfo/0

. . 1 2;ri
= 2m- f e ( - a/c)) cb — ae'

by Cauchy's theorem, using an appropriate orientation of the contour, and
therefore

<KR) =
= 2{AcB

c(r"-q°)(ra-qa)}-\ (6.10.46)
where

and where Ac, A
c , Bc, Bc are the actual spinor parts, the other versions

being obtained from these (unambiguously here) by raising and lowering
indices. (We may compare (6.10.47) with (6.2.15); they are basically the
same.)

The point Q having position vector qa is in fact that whose representation
in PT # is the line Q of intersection of A with B. The contour integral is not
well-defined (and 0(K) becomes infinite) only when the line R meets Q,
which is the condition (cf §9.3) for R and Q to be null-separated points in
CM, i.e., for R to lie on g's light cone.

Positive-frequency fields

By arranging that qa be a complex vector with timelike imaginary part, we
can ensure that (6.10.46) does not become singular for any real vector r°. If
the imaginary part of qa is/wtare-timelike, then by a result to be given later
(Proposition (9.3.24)) Q lies entirely in that portion of PT#, denoted by
(PT~, which arises from the space T" of twistors Za restricted by ZaZa < 0.
(We similarly define spaces PT + , T + , PT_, T_, (PT+, T + , where, for
example, WaeT_ iff WaVVa < 0, etc. All pairs T+, T + ; P T + , PT + ; etc., are
complex conjugates.) The field <f> is then well-defined, in particular, at all
points R whose position vector r° has an imaginary part that is past-
timelike. (For then ra - qa = ua - iffl, with ua, f real and f future-timelike,
while (ra — qa)(ra — qa) can vanish only if fua = 0; but that implies that ua is
spacelike, so Re {(ra - qa)(ra -qa)}= uaua -1% < 0).

This region of CM, whose points have position vectors with past-timelike

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.003
https://www.cambridge.org/core


152 6. Twistors

imaginary parts, is called the forward tube in CM. Positive-frequency fields
can be characterized as fields which have non-singular holomorphic
extensions into that tube. (In §5.7 a different characterization of positive-
frequency fields was implied, in terms of their Fourier decomposition; but
the two are essentially equivalent (cf. Bailey, Ehrenpreis and Wells 1982).)
Thus, with Q c PT" , our field <j> turns out to be of positive frequency
according to this criterion. The forward tube is represented in PT* by lines
in the subspace PT + (which we defined above), as follows once more by use
of Proposition (9.3.24). From this point of view it is clear that </> is non-
singular whenever R c PT + (with Q c= PT "), because then R does not meet
Q and our integral is well-defined.

It is important for the twistor description that we should be able to state
what positive frequency means in terms of twistor wave functions. We
observe, from the example of (6.10.43)»-*(6.10.46) that while (j>(R) is holo-
morphic in the forward tube, and PT + is the region of PT* corresponding
to the forward tube, the wave function / is not holomorphic in the whole of
T + . (In fact, it follows from certain results of complex function theory
(Griffiths and Harris 1978, Field 1982) that the only homogeneous
functions which are holomorphic on the whole of T + are polynomials in Za

and therefore necessarily of non-negative homogeneity; and they are useless
in our integrals since they give zero.) What appears to be required, from the
example considered, is that there should be two separated regions of
singularity o f / which are intersected by all lines of PT + , so that, as in
Fig. 6-11, the Riemann sphere representing R meets these singularities also
in two separated regions, between which the required contour can be
drawn. Similar remarks apply if we are interested in fields defined on
general open regions °U of CM. The points of °U are represented by a family
of lines in PT* which fill some open region °U in PT# . We would not ask for
the corresponding twistor function to be holomorphic throughout ty£\ this
would be too strong a restriction and lead to no useful integrals.

Many examples of suitable twistor functions exist with suitable singular-
ity regions for generating positive-frequency fields. For instance, there are
certain direct generalizations of (6.10.43):

z y (610 48)

which, provided Aa, Ba, Ca, Da are linearly independent and A n B c PT" ,
generate positive-frequency fields referred to as elementary states. Their
helicity is

\h(a + b-c-d\ (6.10.49)
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Fig. 6-12. The singularity region for a twistor function generating a positive-
frequency field. The singularities in PT + are contained in two disconnected closed
sets.

where each of 0, b, c, d is taken to be a non-negative integer. The resulting
fields are similar to (6.10.46) but more complicated.

We could also add together several twistor functions of the form (6.10.48)
with different choices of Aa and Ba, provided we can separate all the A
singularities into one set and all the B singularities into another, to give the
required two separated singularity regions in PT + . More generally, we
could 'add' together (i.e. integrate over some parameter space) a whole
continuous infinity of expressions of the form (6.10.48), provided that the
(closed) regions sf, 39, filled by A and B, respectively, do not intersect one
another in PT + . In this case, the singularities that arise on the Riemann
sphere need not simply be poles, but may well be extended (closed) sets on
the sphere with non-vacuous interiors (see Fig. 6-12).

Motivation for cohomology

The above process could give us a wide class of twistor functions generating
positive-frequency fields, but there is clearly something unsatisfactory
about such a description since the actual location of the singularities of any
particular twistor function does not uniquely reflect the location of the
singularities of the resulting field in CM. This is particularly manifest in the
case of the spin-0 example given above (in (6.10.43)), since if we replace Aa

and Ba by any other pair

pAa + aBa, iAa + /cBa, (6.10.50)

with p, (T, T, jceC, pK — ax = 1, then the field </> as given in (6.10.46) remains
unaltered. The singularity sets in this case consist of two arbitrary distinct
planes through Q. In fact, if we do not restrict ourselves to the specific form
(6.10.43) for our twistor function, then this same field </> (in the forward tube)
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may be generated by a twistor function whose singularity set in P T + does
not even consist of planes. Moreover, if we take the difference between any
two twistor functions which generate the same field and whose singularity
sets suitably avoid each other, then we arrive at a twistor function which is
non-zero but which generates a zero field. Thus it would seem that the
elegance of our twistor description for massless fields is to some extent offset
by this unpleasant arbitrariness. However, when looked at from a
somewhat different (and mathematically deeper) point of view, these
apparently unpleasant features are seen, instead, as a necessary part of a very
elegant mathematical formalism, called 'sheaf cohomology theory'. From
this point of view, a twistor wave function should not be thought of as a
function in the ordinary sense, but as a kind of'second-order' function in a
sense to be explained shortly. These second-order functions are, technically,
elements of 'first sheaf cohomology groups' - and we shall refer to them
here as 1-functions - while functions in the ordinary sense are elements of
'zeroth sheaf cohomology groups', and in that connotation we shall refer to
them as O-functions.

To elaborate these matters, let us consider once more the situation
depicted in Fig. 6-12 (or in Fig. 6-11). We are concerned here with the
region P T + since it is this which corresponds to the forward tube in CM,
the region in which ordinary space-time single-particle (positive-
frequency) wave functions are holomorphically defined. We recall that the
singularities of/ were required to lie within two disconnected closed sets in
PT + , which we shall now refer to generally as s/ and ̂ . It is more
appropriate, however, to fix attention not on the singularity regions, but on
the region in which / is holomorphic. This can be conveniently described as

(Jllc\'V, (6.10.51)
where

t = P T + - j ^ , 1r = PT+-&. (6.10.52)
Note that

(6.10.53)

so that the sets % and if together provide an open covering of P T + .
If we were to consider merely functions defined on the fixed set ^ n ^

as our twistor wave functions (where in the passage to the corresponding
space-time fields we could envisage adopting a contour-integral descrip-
tion using, for each R, a definite contour, independent of the function), then
we come up against various difficulties. For example, certain types of
function of this kind always yield zero when the integration is performed,
namely those which are holomorphically extendible to the entire region %
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or to the entire region i^ (since in these cases the contour would collapse to
a point on one side of the Riemann sphere or on the other), or any constant
linear combinations of such functions. A simple example, where the regions
«c/ and ffl are the planes indicated in Fig. 6-11, is this:

1 1

Each term has only one singularity on the Riemann sphere, so integrating
them separately lets the contour collapse on the side opposite to the
singularity in each case, and we get zero. Another example is the difference
between (6.10.43) and the twistor function which is obtained from (6.10.43)
by replacing Aa and Ba by the expressions (6.10.50). For when pK-ax = 1,
we have the identity

1 1 a x
AB~(pA + CJB)(TA + KB) = A(pA + oB) + B(TA + KB)' (6-10-55)

which is to be applied with A = AaZ
a, B = BaZ

a. We define the region s& as
the union of the two planes AaZ

a = 0 and (pAa + <xBa)Z
a = 0 and ®

correspondingly. (We must take p ^O^K SO that %Kj'ir in fact covers
PT+.) The first term on the RHS of (6.10.55) is holomorphic on *U and the
second term is holomorphic on if, and so again the integration yields zero.
Thus functions on ^ll n ^ cannot uniquely* correspond to wave functions.

The concept of a 1-function

This suggests that we ought to consider not simply functions on &U n 'V, but
functions on ^U n *V modulo the restriction to ^U n 1^ of functions defined
holomorphically on ^ , or holomorphically on 1r. In other words, two
functions on ^ll n "V* will be deemed to be equivalent if they differ by sums of
functions which are either extendible holomorphically to % or to V. (The
point is, that the integral of the difference vanishes manifestly, by collapse of
the contour.) As an example, the function defined in (6.10.54) is equivalent
to zero. Indeed, the system of these equivalence classes of functions
constitutes the first holomorphic sheaf cohomology group with respect to
the covering {m, ir) of PT + . We shall refer to these classes as 1-functions

In fact there are other difficulties with considering functions on such a, fixed set. For no
matter how this set is chosen there will always be wave functions not obtainable from
that particular set. Moreover the class of wave functions that is obtainable will not be
conformally (or Poincare) invariant. All these difficulties are removed by the sheaf
cohomology viewpoint.
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}. By contrast, 'ordinary' functions willwith respect to the covering {^
be referred to as O-functions.

However, we are now quickly forced to extend the definition of 1-
functions to more complicated coverings of P T + , and ultimately to remove
their dependence on any specific covering altogether. For even the simple
task of adding together a number of 1-functions defined on different pairs of
coverings {ty£,i^} of PT + entails consideration of 1-functions defined on
the common refinement (cf. later: (6.10.62)) of these different coverings. Let
us therefore consider general open coverings of PT + by open sets, though
we shall restrict these coverings to be locally finite, which means that every
point is contained in a finite number of sets of the covering. (However, a
non-compact set like PT + admits coverings that are locally finite yet
contain an infinite number of sets.) In Fig. 6-13 a covering of PT + is shown
which consists of many (possibly infinitely many) open sets ^lx. For such a
covering we need a whole family {f^} of holomorphic functions, defined on
the intersections of pairs of these open sets:

/ij defined on %n%5. (6.10.56)

Now R, being compact, intersects this locally finite system in only a finite
number of the sets ^U, so only a finite number of functions fV} have non-
vacuous restrictions to R. We must now generalize our integral formulae to
apply to such a situation. The intuitive picture of how this might be done is
supplied by Fig. 6-13: we perform a branched contour integral, where the
contour is now a network of segments. Each segment lies in an overlap of
two of the sets of the covering, and the corresponding function (6.10.56) is
integrated over it. Each segment is terminated at both ends (unless it is itself
a closed loop) by vertices lying in a triple overlap of sets ^ll, and each vertex
is to belong to precisely three segments, one segment associated with each
pair from the three sets <%£. By the properties of contour integrals, the result
of such an integration will be unaffected if any segment is varied

Fig. 6-13. A covering of PT+ by a large (possibly infinite) locally finite system of
open sets. The integration is achieved over a branched contour.
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continuously within its given intersection domain, provided the end-points
are not moved (and if all intersections have Euclidean topology, the word
'continuously' can be removed).

There are two further requirements on the family of functions fV] if such a
branched integral is to be unambiguously defined. In the first place, since
the integration along a given segment can be performed in either direction,
the sign of the contribution would seem to depend on the direction of
integration. This difficulty can be avoided by reversing the sign of the
function to be integrated whenever we reverse the direction of the contour.
This is best done by accompanying each function fV} by its negative, which
we denote by fyi:

/IJ=-/JI. (6-10.57)

The rule which tells us which of the functions (6.10.57) is to be associated
with which direction of integration is indicated in Fig. 6-14 for a simple type
of covering.

Our second requirement on the f^ stems from not wanting our integrals
to depend on the exact location of the end points within the triple
intersection regions. As should be clear from Fig. 6-15, such dependence
can be eliminated by requiring the functions within any triple region
^ n t j O ^ to satisfy

/ i j - / i k + / j k = O. (6.10.58)

Any family of functions fi} defined on intersections (JUxn
cfUi of pairs of

open sets of an open covering {^}, and satisfying conditions (6.10.57) and
(6.10.58), is called a \-cocycle with respect to this covering. We have
motivated this concept in terms of contour integrals, but in fact it is much

Fig. 6-14. To integrate /i j f keep # , to the left and °U} to the right. For/jj = -f& the
contour direction is reversed, so the result is the same.
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Fig. 6-15. The point in ^l^n^U^^U^ at which three contour segments are joined
may be moved continuously without affecting the result. This is because of the
cocycle condition (6.10.58).

broader than this and applies in many mathematical situations where
integration is not being envisaged. We shall also need the concept of 1-
coboundary and a method of factoring out 1-cocycles by 1-coboundaries.
(This will generalize our earlier definition of 1-functions associated with
coverings consisting of just two sets.) A 1-coboundary is a 1-cocycle which
can be represented as

/ij = *i-/tj (6.10.59)

for some family of functions (in our context holomorphic) with

h{ defined on Qi{, (6.10.60)

where (6.10.59) refers to the restriction of hx and h} to the overlap region
^ i H ^ j . Clearly every 1-coboundary satisfies the 1-cocycle conditions
(6.10.57) and (6.10.58).

We now define a 1-function (or 1-cohomology group element) with respect
to the covering {%{} to be an equivalence class of 1-cocycles, where two 1-
cocycles are deemed to be equivalent whenever their difference is a 1-
coboundary (all with respect to the covering {^j}). Again we can motivate
factoring the 1-cocycles out in this way by referring to our branched
contour integrals. An examination of Fig. 6-16 should make it intuitively
clear (assuming all the <V£{ have Euclidean topology) that the integration of
any (holomorphic) 1-coboundary gives zero.

As we mentioned earlier, part of the motivation for considering more
complicated coverings of P T + (than just ^ , 'V) was to be able to construct
sums of 1-functions defined with respect to different coverings. We are now
in a position to deal with this question. For convenience, let us introduce
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Fig. 6-16. When the coboundary condition holds, the integral reduces to one
performed over a family of closed contours which can be shrunk to nothing. The
result of the integral is therefore zero.

the notation

^i...kll...n ( = ^...k|(I...n)) (6.10.61)

for the restriction of a function Fx k defined on ^ j r v n ^ k to
® i n - ' T i * k n * , n " ' n ^ n . Now let f^ and g\- be two cocycles defined on
coverings {^J and {Y '•}, respectively, of PT + . Define the covering {Wf} as
the common refinement of {^J and [t"•}:

(6.10.62)

where T is a composite index standing for the pair of independent indices i,
T. (We shall similarly use J for j , J, etc.) Also define

/ij=/ijly, tfu = 0ylij. (6.10.63)

The cocycle conditions (6.10.57) and (6.10.58) are easily seen to remain
true for these restrictions (composite indices taking the place of simple
indices), and a coboundary remains a coboundary when referred to the
refinement. But it may happen that new coboundaries appear in the
refinement which widen the equivalence classes, so that a non-zero
1-function with respect to some covering may become zero when referred
to a refinement. By referring 1-functions to refinements, we now have a
way of adding them: fu + gu can represent the sum of fV} and g\*y But since
some 1 -functions may be sent to zero when a refinement is taken, we need
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really to take the direct limit with respect to finer and finer coverings and,
in this way, define a 1 -function on a space (here PT + ) which does not
refer to any particular covering of the space. (In simple terms this means,
in effect, that any 1-function can be represented by a 1-cocycle for some
covering, but that we may need to refer to some refinement of that covering
to know whether two 1-cocycles so defined - with respect to this or any
other covering - represent the same 1-function.) With this definition* it
turns out - and we have basically shown by the above discussion - that
a twistor wave function for a massless particle in an eigenstate of helicity
is a holomorphic homogeneous 1-function on the space J + .

General r-functions

A complete discussion of what this entails would take us too far afield.
But the mathematical framework that it leads into is a powerful one: there
are many deep and multifaceted mathematical results that can be called
into play for the study of this kind of (sheaf) cohomology. A calculus of
r-functions (or rth cohomology group elements) exists (cf Griffiths and
Harris 1978, Chern 1979) according to which they may be added together,
integrated, and multiplied in various ways. Twistor theory indicates that
this calculus should have importance in understanding the nature of
quantum particles. Accordingly, we shall provide at least a brief general
definition of an r-function.

These functions can be discussed in the context of a general complex
manifold X or indeed in any Hausdorff paracompact topological space.
But for our purposes the former is relevant, since we are interested in holo-
morphic functions.** Let {^J be a locally finite covering of Q and define,
for any given non-negative integer r, a (tech) r-cochain with respect to
{^J to be a collection of (holomorphic) functions {/io...ir} such that we
have

/io...i, defined on «fion • • •n# i r , (6.10.64)

* There are also alternative procedures to defining 1 -functions, such as that of Dolbeault
cohomology {cf. Morrow and Kodaira 1971, Wells 1980). For a development of twistor
theory along these lines, see Woodhouse (1985).

** More generally, one can discuss cohomology with respect to any sheaf, not just, as here,
the sheaf of holomorphic functions. It is worth while just to indicate what the term 'sheaf
really entails. Basically, one has some concept of'function' (which, however, need not be
a point function in any ordinary sense, but which is nevertheless locally defined)
assigned to any open set in the space 21. For this, there must be a concept of restriction,.
to any smaller open set. For any covering {^J of ^, the following two properties must
hold: /kti I jj = 0 implies fki = gk \ x, for some gk; and fk | { = gk \ {, for all i implies fk = gk.
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and
/i...k=/[i...k], (6.10.65)

ths r-cochain being an r-cocycle if, in addition,

/[i...kli] = 0. (6.10.66)

Here the vertical bar denotes restriction, as in (6.10.61), and the square
brackets skew-symmetrization as usual. Note that (6.10.58) is a special case
of (6.10.66) since the former should, strictly, be written /ij |k— /iklj +
/jkli = 0; and clearly (6.10.57) is a special case of (6.10.65). An r-coboundary
with respect to j ^ } is an r-cocycle expressible as

for some holomorphic (r—l)-cochain {hLmmi}. Our earlier equation
(6.10.59) is an example of this (with a factor 2 omitted). An argument
identical to that used in (4.3.17) to establish d2 = 0 (d = exterior derivative)
shows that every r-coboundary is indeed an r-cocycle. For if the-
coboundary operator d is defined* as taking an (r — l)-cochain h to an r-
cochain / according to (6.10.67), then

62 = 0 i.e.*Ii...j|kI] = 0, (6.10.68)

since the order in which a restriction is taken is clearly immaterial
(cf 6.10.61)).

We can now define an r-function with respect to the covering {%{} to
be an r-cocycle modulo r-coboundaries, and then take the direct limit,
exactly as we did in the case of a 1-function, to define a (holomorphic)
r-function on the space <£. With this definition, a 0-function turns out
indeed to be a holomorphic function in the ordinary sense.

Of course it is a nuisance to have to take a direct limit, and there are
theorems that can be invoked (Griffiths and Harris 1978, Godement 1964,
Hirzebruch 1962) which imply that in the (present) case of holomorphic sheaf
cohomology we need not actually take this limit, provided our sets °UX are, in
an appropriate sense, 'holomorphically convex' (or, more strictly, 'Stein
manifolds', cf. Gunning and Rossi 1965).

The viewpoint that the twistor wave functions of single massless particles
should be holomorphic 1-functions on T + (or T+) leads to the associated
view that a quantum state consisting of n massless particles should be
described twistorially by an ^-function defined on a suitable region in the
product of n twistor spaces, i.e., by an n-function of n twistor variables. This

Our definition differs by a simple factor from the conventional one. The notational
devices employed here are based on a suggestion due to L. P. Hughston.
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162 6. Twistors

arises from the fact that when an r-function and an s-function are multiplied
together in the appropriate way ('cup product'), the result is an (r + s)-
function (Griffiths and Harris 1978). Multiplying together the various
1-functions describing the separate particles (and forming linear combi-
nations), we arrive at the above ^-function description. It is yet unclear
how the twistor functions for massive particles are to be regarded. They also
appear to be r-functions, of some sort, of several twistor variables, and it is
tempting to suppose that a single massive particle should be described
twistorially by a 1-function. This would give a clear way of distinguishing
such descriptions cohomologically from the descriptions of systems of
massless particles and would suggest that perhaps, generally, an n-particle
twistor wave function should be an n-function.

Nonlinear 1-functions

But there is another reason for regarding a 1-function as playing a basic role
analogous to that of a single particle. This is related to the way that
interactions enter the theory. Recall that a 1-function is defined in terms of a
family of ordinary functions themselves defined on the overlaps between
open sets, with a certain compatibility condition (the cocycle relation
(6.10.58)) holding on triple overlaps. This is somewhat reminiscent of the
way that a manifold can be constructed by patching together coordinate
neighbourhoods: on each overlap between a pair of such neighbourhoods
one must define a transition function which gives the translation from one
system of coordinates to the next, and one also has a compatibility relation
between the three transition functions that appear at the triple overlaps of
neighbourhoods. Furthermore, if we are interested in this manifold only
intrinsically, there is the freedom which allows us to relabel the coordinates
on each entire coordinate patch separately. This is analogous to the
coboundary freedom (6.10.59), the h{ of (6.10.60) corresponding to the
relabelling functions. The main difference is that the relations (6.10.58) and
(6.10.59) are linear, whereas the relations connecting transition functions
are generally nonlinear.

This analogy is not just a superficial one. Consider, for a moment, instead
of building a manifold from scratch, merely making an infinitesimal
deformation of an existing (complex) manifold 1. We can take £ to be pieced
together from a system of open sets {^J which we then imagine being
separated from one another and put back together in a slightly different
way. If the shift is infinitesimal, then the displacement is described by a
vector field on each overlap - and the compatibility relation becomes
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Fig. 6-17. Deforming a complex manifold.

precisely (6.10.58) (for the vector fields) on the triple overlaps (see Fig. 6-17).
Furthermore, the condition for such a deformation to be trivial (i.e., for the
deformed manifold to be equivalent to the original) - in the sense which is
appropriate here - is precisely (6.10.59) (for the vector fields). So we see that
linear deformations are described by holomorphic 1-functions - or rather,
by 1-function vector fields.

Thus, in suitable situations, it may be possible to regard 1-functions as
corresponding to linearized deformations, perhaps arising as approxi-
mations to a more correct theory involving finite nonlinear deformations. A
view has been emerging in twistor theory that interactions should always be
expressed in terms of such deformations, the free-particle 1-functions
arising as, essentially, the linearized limit. Since individual particles rather
than systems of particles are the objects which interact directly, it is
tempting to suppose that a 1-function description of single particles would
be related to this.

In fact, such a view receives some tantalizing support from two instances.
The T#-space twistor 1-functions of homogeneity + 2 describe — 2ft
helicity particles (gravitons), the contour integral giving space-time wave
functions <$>AECD satisfying the equations of linearized Einstein theory in the
anti-self-dual case. It turns out that such 1-functions can also be used to
generate linearized deformations of portions of T#, and that these
exponentiate to finite deformations which, when re-interpreted in space-
time terms, yield (though somewhat implicitly) the general nonlinear (local)
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solution of Einstein's field equations with anti-self-dual Weyl curvature
(thus being right-flat complex space-times, cf. p. 129 and also Penrose
1976a). Corresponding solutions with self-dual* Weyl curvature (left-flat)
can be constructed analogously by deforming portions of T # .

The Ward construction

The other clear-cut instance of a phenomenon of this kind is Ward's (1977)
construction for the general anti-self-dual (or self-dual) solution of the
Yang-Mills field equations. Recall that an anti-self-dual Yang-Mills field is
provided by a bundle connection Vfl, the anti-self-dual part of whose
curvature vanishes. The Yang-Mills field equations are then a consequence
of the Yang-Mills Bianchi identity {cf. (5.5.35)-(5.5.50) et seq). In the
notation of (5.5.37), (5.5.49), the curvature condition can be written
lAB'eXF= 0, i.c, by (5.5.40)(2) (with nA-B- = V ^ ' V ^ , as usual),

Onr/^0, (6.10.69)

for any Yang-Mills-charged field \iT. We take the vector space V "'to which
\x ^belongs at each point, to be a finite-dimensional complex vector space,
and the Yang-Mills vector bundle J* to be holomorphic over some suitable
region of CM. The condition (6.10.69) can be re-expressed (in Lie bracket
notation, cf. (4.3.26)) as

[nA'VAfO9n
B'VBfl^=0 (6.10.70)

(using a constant spin-frame), for each choice of nA>e§A.. Now in CM, an a-
plane is a null complex 2-surface whose tangent plane at each point is
spanned by oAnA> and iAnA' for some fixed nA. {cf p. 64 and §9.3). Equation
(6.10.70) therefore states that the Yang-Mills connection is integrable on
any a-plane. Hence there exists on each a-plane a global parallelism for
Yang-Mills-charged fields - assuming the field to be defined on a non-
empty, connected and simply-connected portion of the a-plane. Since each
a-plane Z corresponds to a unique point Z of PT # {cf p. 64, §9.3 and

* In accordance with the general twistor programme, one would hope also to find a
nonlinear version of the 1-functions of homogeneity — 6 in ¥ • (rather than merely + 2
in T#). This still-elusive putative construction is referred to as the 'googly graviton', in
accordance with an appropriate cricketing analogy {cf Penrose 1979a, 1980a, Law
1985). One would hope also eventually to find a combined construction in which
general solutions (i.e. not constrained to be either self-dual or anti-self-dual) could be
generated. An alternative approach is that based on the concept of 'ambitwistors',
where standard flat (projective) ambitwistor space consists of pairs of (protective)
twistors Za, Wa subject to ZaWa = 0 {cf Penrose 1975a, LeBrun 1983, 1985 for the
gravitational case and Isenberg, Yasskin and Green 1978, Witten 1978, Eastwood
19856 for Yang-Mills fields; cf also Manin 1982, Gindikin 1982).
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Table (9.3.22)), the various Yang-Mills-charged fields ^ which are
constant on Z constitute a vector space which we may think of as a fibre over
the point ZePT*. This fibre is isomorphic with the original vector space V*,
the fibre of the bundle $. The a-planes (or portions of them) on which this
global parallelism is defined provide us with a subset <& of PT # , and
corresponding to each point of <& we have a copy of the original Yang-
Mills vector space y*. Thus we have a ^ - b u n d l e # over %/ a PT # . In
fact, this bundle is a holomorphic vector bundle, as follows easily from our
construction.

What is less obvious, however, is that the Yang-Mills connection Vfl (and
with it the Yang-Mills curvature Fab0**) is uniquely defined merely from the
holomorphic nature of the bundle ^ over <&. No connection need be defined
on #, but the information of the original bundle J*, with its Yang-Mills
connection Va, is already contained in the structure of (€. To see, roughly,
how this comes about, we first indicate how from # we can reconstruct 31
(over some appropriate region of CM, which may be somewhat different
from the original base space of 88) Each point tfeCM corresponds to a
projective line R in PT#, and provided R c ^ , there is over R a portion #R

of the holomorphic bundle #. The nature of ^R is such that it only admits
constant holomorphic cross-sections. (This follows from general results of
holomorphic vector bundle theory (Chern 1979, Gunning 1967) if a certain
'stability' condition - true in the generic case, and also always true when #
is constructed from a given 01 as above - is taken to hold for ^R.) These
constant cross-sections define the vector space providing the required fibre
of the bundle ^ over fleCM. To see that the connection on J* is already
implicit in this construction, consider the family of lines R c ^ c PT #

through a fixed point Z e ^ (see Fig. 6-18). Because the fibre over Z is
common to all the portions #R of ^ above the various lines R, we can
relate their constant cross-sections to one another via the fibre over Z. Thus
we have a natural isomorphism between all the fibres over the a-plane, i.e.,
we have a global parallelism for the \i * over the a-plane. This defines Vfl

restricted to the a-plane, and by allowing the a-plane to vary, we get Va over
the entire space (though, of course, not necessarily globally integrable). This
establishes our assertion that the Yang-Mills connection Vfl is fully
determined by the holomorphic nature of the bundle W.

Since no connection is needed for the bundle #, it is possible to piece #
together simply by using free holomorphic functions in suitable domains
(that is, if the Yang-Mills group is GL(n,C) - otherwise we need to solve
whatever algebraic, but not differential, equations are needed for defining
generic elements of the Yang-Mills group). This piecing together is done (as
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fibre over Z

3 only constant
cross-sections,

by holomorphic
structure

fibre over R

constant cross-section
over a-plane

(uses VB)

Y-M connection
integrable

on a-plane

Fig. 6-18. The Ward construction for (anti-) self-dual Yang-Mills fields.

in §5.4) by defining transition functions for the various patches of the bundle
lying over the sets °UX of some (locally finite) open covering of Of. If the group
is Abelian (as it is in the case of electromagnetism), then this patching can be
achieved in an essentially linear way and therefore by a suitable 1-function.
But with a non-Abelian gauge group we have an example of the nonlinear
generalization of 1-functions involved in piecing together a manifold that
we referred to earlier.

Explicit procedure

Let us end by being a little more explicit about the Ward construction. Let
the Yang-Mills gauge group be ^, which we take to be a complex matrix
group (^ c GL(n, C)). To build #, choose some suitable covering {^J of ^
and choose, for each overlap ^ n ^ j , an n x n matrix F{j of twistor
functions, all homogeneous of degree zero, such that

F^Z^cz^ , (6.10.71)

Fij = F j i "
1 , (6.10.72)

and, on each triple overlap,

FjjFjk = Fik (no sum). (6.10.73)

(Equation (6.10.73) should, strictly speaking, be written (Fij|k)(Fjk|i) = Fik | j ,
and similarly for some subsequent formulae. Also, in the notation of §5.4,
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6.10 Massless fields and twistor cohomology 167

we should write Fjj as F i j e
T , but for simplicity we use a different (matrix)

script for the kernel and omit the Yang-Mills indices - which are all
numerical here, since we are concerned with an explicit construction.)
(Equations (6.10.72) and (6.10.73) are the nonlinear versions of (6.10.57) and
(6.10.58).)

Now write

Gjk(r*, nA) = F^'n^n*). (6.10.74)

It follows from general theory (which requires the 'stability' condition
referred to earlier) that we can always 'split' Gjk as follows:

Gjk(r*,nA) = H/i* 7^)[Hk(r* ,nA^ ' \ (6.10.75)

where HjG^ is homogeneous of degree 0 in nA. and, given R, is defined on
^ j O R . (This is the nonlinear analogue of a condition like (6.10.59), stating
that a cocycle is a coboundary.) In practice, to achieve the actual splitting
(6.10.75) may be very difficult: in this sense, the Ward construction is not
really 'explicit'. The splitting is not unique and we always have the 'gauge
freedom'

Hj(r* nA) H+ Hj(^ nA)\(r»\ (6.10.76)

where A e ^ is holomorphic in ra.
By (6.10.74) (cf. (6.10.6)), nA'V'AA. annihilates Gjk. So applying this

operation to (6.10.75), we get, on each overlap,

H j - ^ ' V ^ H j = n^nAVAAUk (no sum of j,k). (6.10.77)

On each overlap the quantities (6.10.77) agree, so we can piece them all
together to obtain a (S^-valued) matrix 0 ^ which is holomorphic and
homogeneous of degree unity in nA> for each ra. This piecing together of the
°U{nR provides a quantity which is defined globally in nA, (since ra is to be
the position vector of a point R whose entire image R in PT lies in the
required region ^ ) . It follows that

®A{r\nA) = mA'<!>AA(ra) (6.10.78)

for some space-time field ®a(r
b). Operating on (6.10.77) with TT^'V^, we

obtain

V?B<*>AU + MtB'<t>A)A=0. (6.10.79)

We can now put back the Yang-Mills indices, so 0,, becomes ®AB
V and <Da

becomes <&aB'r satisfying

- XABJ = K^AW + i<0»,.'MO* = 0. (

which is the required anti-self-dual condition, by (5.5.41)(2). Under (6.10.76)
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168 6. Twistors

we have
^A-iA-^A, (6.10.81)

i.e., the usual gauge freedom for Yang-Mills fields, (5.5.25). Clearly, self-
dual (as opposed to anti-self-dual) fields can be constructed by an entirely
analogous method, using PT # instead of PT*. (General Yang-Mills
fields - neither self-dual nor anti-self-dual - have been treated by a twistor-
type method by Isenberg, Yasskin, and Green 1978 and by Witten 1978.
Their procedure is not, however, so explicit or useful as the Ward
construction.)

Note that in the Ward construction the local 'field' information in the
space time description is coded in the global structure of the twistor
description, whereas there is no local (differential) information in the
twistor description. Thus whatever specific Yang-Mills field is coded into
the bundle #, the portion over a small enough, but finite, region of PT # is
always the same, assuming the group ^ remains unchanged. This way in
which local space-time field equations tend to 'evaporate' into global
holomorphic structure is a characteristic (and somewhat remarkable)
feature of twistor descriptions.

This is even more striking with the twistor construction for (anti-)self-
dual solutions of Einstein's equations (the 'non-linear graviton') which
we briefly outline next (Penrose 1976a; cf Ward 1980b for non-zero
cosmological constant). Let M be a complex space-time (p. 127) with
anti-self-dual Weyl curvature (9A.B.CD. = 0), ensuring local existence of a
complex 3-parameter family of a-surfaces - complex 2-surfaces with
tangent vectors XAnA> for fixed nA' and kA. The a-surfaces give the points
of curved projective twistor space P&~; and when scaled by covariantly
constant nA{nB'VBB,nA. = 0), the points of ST. Einstein's Rab = 0 and self-
duality yield integrability for parallelism of primed spinors ([Vfl, V h~\nA> = 0),
providing a projection Yli^-tS^ — {0} (S^ being the space of
constant nA>s). U is locally determined by the simple (p. 14) 2-form
T{ = ^sA'B'nAf A nB"). There is also a volume 4-form €( = ^ie<xPyddZa A

dZ" A dZy A dZ*) and an Euler vector field Y(=iZad/dZa'\ the integral
curves of which give the projection 9~ -> P9~. There are relations £Yr = 2r,
£y£ = 4e defining respective homogeneity degrees 2, 4 for r, e. To recons-
truct Jl from 5 \ we identify Ji\ points as cross-sections of the fibration
defined by II, two points in M being null separated iff their cross-sections
meet. The forms r, s serve to fix the metric of Jt. (Even without r, e, Y
or n the construction, applied to P&~, yields the general half conformally
flat M) Infinitesimally, 9~ is constructed from regions %{a J according
to Z[t

ij] = £/a^5/ij/3Z^, where e is infinitesimal, Z?G^J and fn defines a
1-function of homogeneity 2.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.003
https://www.cambridge.org/core


7

Null congruences

7.1 Null congruences and spin-coefficients

Congruences of null curves in space-time - referred to here as null
congruences - and especially of rays (geodetic* null curves), play an
important part in electromagnetic and gravitational radiation theory and
in the construction of exact solutions of Einstein's equations. We recall that
a congruence is a family of curves, surfaces, etc., with the property that
precisely one member of the family passes through each point of a given
domain of the space under consideration. (The tangent-space elements to a
congruence constitute what is known as a. foliation cf. Hermann 1968.) In
fact, all calculations in this chapter are local in space-time, so it will not
matter if certain congruences globally violate this one-point one-member
condition. The null congruences one encounters are frequently many-
sheeted globally, in the sense that as one moves continuously from a point
of the space-time and returns to that point, one may find that the
associated line of the congruence has shifted; but such behaviour will not
affect our local considerations. Moreover, there are likely to be specific
points (such as branch loci of the congruence, or 'source' world-lines from
each of whose points many rays diverge) which have to be regarded as
singularities of the congruence and must lie outside the domain of interest.
We shall here study some of the geometric properties of null congruences,
many of which have significant relations to physical properties. Consider-
able use will be made of the spin-coefficient formalism, in its original (and
also compacted) form.

A line congruence ^ may be specified by giving a vector field la on a
space-time Jt (or on an open subset of Ji\ the integral curves \i of la

defining #. In other words, the vectors la are tangents to the curves \i. Once
a suitable parameter u is chosen for each curve of #, the scaling of the
vectors la may be defined by the relation

laVau=\. (7.1.1)

* The word 'geodetic' is used here consistently as the adjectival form of the noun
'geodesic'.

169
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170 7. Null congruences

Then the derivative with respect to u of a smooth scalar function / defined
along the curves \ie^ is

^ = / f l V f l / = / ( / ) . (7.1.2)
du

In terms of a coordinate system (xa) on Jl, for which the curves \i are given
by

x* = x*(u,y\y\y\ (7.1.3)

where the y"(i = 1,2,3) distinguish the various curves and u distinguishes the
points on a given curve, we have

,_£ f-f.'-f-nj. (7.1.4,
du du ox du

We shall here investigate only null congruences, i.e. those in which

lal
a = 0. (7.1.5)

We assume u to be chosen so that la points into the future and never
vanishes. With the vector la we associate a spin-vector oA in the standard
way,

la = oAoA\

where the choice of the flag plane of oA is for the moment left arbitrary.

Null geodesic; interpreting K and e

The condition for the congruence to be geodetic (i.e., for each of its members
to be a geodesic) is that the directions of la are propagated parallelly:

laVJboclb. (7.1.6)

The parameter u is then called affine if, in fact,

/ a V / = 0. (7.1.7)

Such a parametrization is always possible if (7.1.6) holds. In the first case we
have, with D = laVa (cf. (4.5.23))

DoAozoA, (7.1.8)

while in the second case, and only then, oA can be chosen so that

DoA = 0. (7.1.9)

Geometrically this is achieved by arranging the flag planes (in addition to
the flagpoles) to be parallel along # (cf. discussion in §§3.2, 4.4 on the
geometric interpretation of spin-vectors and of parallel transport of spin-
vectors).
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7.1 Null congruences and spin-coefficients 171

Note that the geodetic condition (7.1.8) is equivalent to

oADoA = 0, (7.1.10)

i.e. (c/ (4.5.21))

JC = O. (7.1.11)

Thus we may regard K as a measure of the curvature of each curve [i of #.
But owing to the spin- and boost-weight behaviour

OA^XOA^K^PIK, (7.1.12)

the actual value of K (except K = 0) does not have a geometrical meaning for
the unsealed curve \i itself. On the other hand, for the scaled curve §JL (i.e. \i
together with a smooth choice of tangent vectors, one at each point; or,
equivalently, \i together with a choice of parameter u up to M»—>w + k with k
constant) the modulus | K\ of K does acquire an invariant meaning; for under
(7.1.12) we have, for an arbitrary smooth positive function r on \x where we
can take r = XI,

la^rla (or u^r~lu) implies \K\^T2\K\. (7.1.13)

Scaling \i with la or with u prevents rescaling oA except in a way such that
r = 1. The need for choice of scaling for \i (rather than being given a
canonical one) arises, of course, from the null character of \i: there is no
natural parameter analogous to proper length or time with respect to which
la can be normalized. To assign a meaning to arg K we not only need the
scaling for \i but also a choice of flag plane at each point of \i. We shall
return to the question of the geometrical meaning of K and other spin-
coefficients shortly.

Suppose for the moment that <JP is geodetic. The condition (7.1.8) for this
is equivalent, as we have seen, to (7.1.11):

oAoBoA'VAA.oB = 0, (7.1.14)

and hence to each of the following:

oAoA'VAA.oB = eoB9 (7.1.15)

(7.1.16)

(7.1.17)

for some e, p, a. In fact, these proportionality coefficients are precisely the
corresponding spin-coefficients in (4.5.21), (though in the case of a this is
true only if x — oAiA is real). This follows by transvection with iB, iA, iA\
respectively. To simplify matters, we shall henceforth assume throughout
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172 7. Null congruences

this discussion, that oA and iA constitute a spin-frame, i.e., that

Z = l
so that the specializations (4.5.29) hold.

Notice that £, p and cr are now defined without reference to iA, by virtue of
the fact that K = 0. They refer, therefore to the geometry of the o^-field
alone.

Comparing (7.1.15) with (7.1.9), we see that the necessary and sufficient
condition for the geodetic congruence # to have both affine parametriz-
ation and parallelly propagated flag planes is

e = 0. (7.1.18)

The condition for affine parametrization alone is

£ + a = 0 (7.1.19)

(cf. (7.1.7), (4.5.21)). The condition for parallelly propagated flag planes
alone is

£ - £ = 0; (7.1.20)

for this states that by some rescaling of oA
9

oAy-+koA, (7.1.21)

with k real, we can achieve e = o, while affecting only the extent of the
flagpole.

For future reference we collect these results and one other in the
following table:

<& geodetic<>K = 0

<& geodetic, u affine OK = 0, £ + £ = 0

# geodetic, flag planes paralleloK = 0, s — e = 0

^ = 0 o T ' = 0,fi = 0. (7.1.22)

The last is obtained by taking dyad components of its LHS and referring to
(4.5.21). Also, by the first and (5.6.28): rays are conformally invariant.

We remark that in the general case of a geodetic null congruence,
equation (7.1.14), together with the discussion of §3.2, tells us that 2Re(fi)
measures the rate of proportional increase of the flagpoles of oA along the
congruence while 2 Im (£) measures the rate of rotation of its flag planes in a
right-handed sense along the congruence.

The geometrical interpretation of K for a not necessarily geodetic # can
now be obtained as follows. Owing to the nullity of la, the derivative Dla is
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7.1 Null congruences and spin-coefficients 173

orthogonal to la. Thus we have

Dla = (e + e)la - Kma - icma, (7.1.23)

since by (4.5.22),

maDla = K9 maDla = K, naDla = e + e. (7.1.24)

From (7.1.24), incidentally, we find the formula

DlaDla= -2KK. (7.1.25)

It can easily be seen that a suitable scaling (oA\-*XoA, iA\-+k~liA) of \i will
reduce e to zero. (Alternatively this can be achieved geometrically by
choosing iA parallel along \i.) So the first term on the right in (7.1.23) has
no geometric significance for c€. The turning of the curve is therefore
measured by - Km" - icnf. In fact, we shall find it useful to describe the
geometry of # with reference to the plane IT spanned by the real and
imaginary parts of ma. We can regard this as the Argand plane of a complex
variable 2*( = X — i Y where X and Y are coordinates in the Minkowski
tetrad associated with oA, iA (cf. (3.1.20)). The general vector in II is given by

if = Xxa + Yya = £ma + lm\ (7.1.26)

The vector va for which £ = — K measures the rate of turning of /fl, with
e = 0 (cf. (7.1.23)). Thus the magnitude 2*|f| = 2*|ic| of if is a measure of
the amount of curvature, while arg K is a measure of the direction of
curvature relative to, say xfl, that is, to the flag plane of oA (cf Fig. 1-17).

Interpreting p, a and T; abreastness of rays

Unlike e, the p and a have spin- and boost-weights, such that

p\->XXp, Gt-+A?I~1o

under (7.1.21) i.e. (cf (4.12.13) with / = 1) p and a have respective types
{1,1} and {3, — 1}. Thus they cannot be made to vanish by a rescaling.
For a geodetic # they are independent of the choice of r4, as we have seen. In
fact, we can prove from the definitions that, if Dla = 0, then

9 = i ( " Vfl/
fl ± i y/2VlalhfPV*\ (7.1.27)

™ = UViJb)V
ialb) ~ W)2) (7.1.28)

(cf, for example, Robinson 1961). Thus we expect (and shall find) that the
vanishing of p or of a corresponds to a geometric property of a geodetic #.
For a non-geodetic #, however, any one of p, a, s can be made to vanish
without rescaling, simply by a choice of iA. For we then have

0
A

0
B

0
A'yAAf0B^o, hence, for example, oBoAVAAoB is not proportional
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174 7. Null congruences

to oA, so we need merely choose i ^ o c o V V ^ ^ to ensure p =
iAoBoA S/AA-oB = 0. Similarly we can achieve a = 0 or e = 0.

Let us now examine how the lines of # relate to their neighbours. For
this we introduce the concept of a connecting vector cf, which is a vector field
defined along a particular ray \i of #; at Pe \i9 q

a is the displacement from P
to a point P' on a neighbouring ray |i' of #, where P and P' have the same
parameter value u. Mathematically this is expressed as the vanishing of the
Lie derivative of qa with respect to /fl, since cf is 'dragged' along by the vector
field la (cf. (4.3.3)):

£qa = 0, that is Dqa = qbVbl
a (7.1.29)

on \i. (This does not require cf to be defined anywhere except on \i. It also
does not require la to be null, although we shall continue to do so.) We can
give a simple proof of this formula by using the representation (7.1.3), (7.1.4)
of % in which

dx*
q* = --r5yl (<5y = constant). (7.1.30)

dyl

We have, trivially,

d_(dx*\_ d (dx*

Multiplied by the (constant) dy[ and contracted over i, this is equivalent to

which, in turn, is equivalent to (7.1.29)(2), since by the invariance of (4.3.2)
under change of (torsion-free) V, a Lie bracket is unchanged when passing
from coordinate derivative to covariant derivative.

We are primarily concerned with properties of the congruence # which
are 'not too' dependent on the scaling; in fact, we are interested in quantities
which simply scale by a factor as la*-^rla or oA*-+koA. The tensor Vhl

a which
governs the propagation of cf according to (7.1.29), involves quantities that
do scale in this way and others that do not. We shall see that we can pick out
just those quantities (or their complex conjugates) that do so scale, and
therefore belong to the compacted spin-coefficient formalism, by forming
the vector

Sb = oAVboA, (7.1.31)

which scales according to

Sb^*2Sb. (7.1.32)
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7A Null congruences and spin-coefficients 175

We can also obtain Sb from Vbl
a by

oAVbla = oAVb{oAoA) = SboA>, (7.1.33)

and, in a form only apparently dependent on iA, by

Sb = oAiA'Vbla = maVbla. (7.1.34)

The components oAoA'Vbla, oAiA'Vbla, iAoA'Vbla ofVbla all scale (the first, in
fact, vanishes) whereas iAiAVbla does not. Those which scale are expressible
in terms of Sb and Sb. The quantity Sbv

b therefore expresses the scaling part
of Vbla as we move in the direction vb. Since the dyad components of Sb are
just the spin-coefficients K, p, a, T:

K = S 0 0 ' , P = S10>, <r = S0V9 r = 5 i r , (7.1.35)

we conclude that /c, T, 2~\O + p), 2~*(<J — p) measure, roughly speaking,
how the direction of la changes as we move along la, na

9 x
a, and y°,

respectively. However, Sa is a more 'invariant' indicator of this information
than is the collection of spin-coefficients, since Sa does not depend on the
arbitrary choice of an iA.

The role of Sa in the propagation equation (7.1.29) is obtained by
transvecting that equation with oA:

oADqa = oA,Sbq
b. (7.1.36)

A more precise interpretation of K, p, a and x is now implicit in (7.1.36).
To make this explicit, it is convenient to choose iA parallel along \i, i.e.
DiA = 0, which is equivalent to s = r' = 0 (cf. (7.1.22)). Under this assump-
tion, the components of (7.1.36) give

D/z = /cC + /cr (7.1.37)

DC=-p£-<i£-Th, (7.1.38)

where h and £ are defined by the following form of qa.

qa = gla + Cm" + lma + hna. (7.1.39)

The propagation of g is of less geometric interest, being essentially the non-
scaling part of (7.1.29). It is obtained by transvecting that equation with iA;
for the sake of completeness we state the result:

(cf. (4.5.21), (4.5.29)). We note also the transformation of g, £ h under a
general change of iA, namely iA\-*l~liA 4- cooA and oA*-*koA:

1X~1g — X~ 1coC — X ~ x a>r+ cocbh, £ \-> Xl~ x£ — (bkh, h H* XXh.

(7.1.40)
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176 7. Null congruences

Equations (7.1.37) and (7.1.38) can be expressed in the following occasion-
ally useful matrix form:

D
h
C

c
= -

0
T

f

— K

P
G

— K

G

P

h

cr
(7.1.41)

We shall see that (7.1.38) leads to a precise interpretation of p and G
whenever h = 0. However, by (7.1.37), if K ^ 0 (and C # 0) we cannot expect
h to remain zero along \i. In any case, we have seen that p and G are
independent of iA only if K = 0, so only in this case can we expect a clear-cut
interpretation of p and G. But this is the case of greatest interest.

Let us consider, then, a geodetic null congruence #, and assume that the
dyad is parallelly transported* along each member curve (cf. (7.1.22) (4), (5)):

K = £ = T' = 0. (7.1.42)

Now equation (7.1.37) becomes

Dh = 0, (7.1.43)

which is equivalent to

D(qJa) = 0. (7.1.44)

Neighbouring pairs of rays satisfying

qJa = 0, (7.1.45)

i.e. h = 0, will be called abreast. That this property is independent of the
parametrization (as well as being obviously independent of iA) can be seen
by making the substitution

qa^qa + il/la, (7.1.46)

which leaves (7.1.45) invariant.
The reason for the term 'abreast' in the above connection is this: if we

realize the congruence physically by a cloud of photons, then two abreast
rays correspond to the world-lines of two neighbouring photons which in
some (and therefore any) observer's local 3-space lie in a 2-plane element
perpendicular to their paths (i.e. which move 'abreast').

Moreover, any two local observers will judge the photons to be at the
same distance from each other if and only if the rays are abreast. For if we
regard only the direction of la as given, and the other three tetrad vectors na,
mfl, rha as free up to the required normalization, then these can be chosen to

A slight generalization is achieved if we assume only that the flagpole directions of oA

and iA are parallelly transported, i.e. merely K = x' = 0. The 4D' equations of this section
remain valid if D is replaced by p throughout (cf. (4.12.15)).
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7.1 Null congruences and spin-coefficients 177

define a Minkowski tetrad for an observer with arbitrary velocity. His local
2-space is spanned by ma, mfl, la-na = 2 V (cf. (3.1.20) and Fig. 1-17). The
tracks of the rays in this 3-space are in the za direction, and the orthogonal
2-plane is spanned by ma and ma. A reparametrization (7.1.46) will achieve
g = 0 and so, by (7.1.39), the connecting vector lies in this 2-plane and its
(invariant) magnitude (2££)* represents the distance between the photons.
Changing the observer amounts to changing iA, and we see from (7.1.40)
that Cr is invariant if and only if h = 0. This establishes our assertion.

It may be noted that the invariant aspect of 'abreast' photons discussed
here is closely related to the 'invisibility of the Lorentz contraction':
photographs taken by parallel light at a given event, by differently moving
observers, are all identical, (see Terrell 1959, Rindler 1982 and Volume 1,
p. 26).

Recall that x measures the change of la in the direction of na. However it is
not such a pleasant quantity to work with as p and a for a ray congruence.
To a large extent this is because of its dependence on iA. Only when p and a
both vanish does T acquire a meaning independent of iA. This is illustrated
by its transformation behaviour (taking K = 0) under iA\-+iA + cooA:

T»—>T + C0G + (Op.

As we see from (7.1.38), if p = a = 0 and we consider non-abreast rays, T
(multiplied by the constant 'degree of non-abreastness' h) specifies the
propagation of f.

We are mainly interested in the relation of a ray \i to those of its
neighbours which are abreast with it. We shall study the changing pattern
of the intersection of a 'bundle' of rays - all abreast with \i - with the spatial
2-plane n of ma and ma which is orthogonal to \i and carried parallelly
along \i. Since the transverse distances from \i are the same to all observers,
the divergence and shear of this pattern have direct physical meaning; so
also has its twist.

Since h = 0 is the condition for abreastness (7.1.38) reduces to

D£=-pt-(j£. (7.1.47)

This equation describes the motion of the intersection point in II of a
neighbouring curve u/ relative to \i (which itself corresponds to ( = 0) (see
Fig. 7-1). To interpret p and a in detail it is convenient to consider the total
effect as composed of parts due to Re (p), Im (p), and a separately. We write

p = fc + if, (7 = 5e2i', (7.1.48)

where /c, t, s, 0 are real and s ^ 0. Setting t = s = 0 in (7.1.47), we obtain
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n

n

Fig. 7-1. Two abreast neighbouring rays. Their separation, as time progresses, is
measured by f (an Argand plane coordinate when viewed from behind).

showing that k = Re (p) measures the rate of contraction of the simulta-
neous bundle of rays, i.e. the convergence of (€. Setting k = s = 0 we obtain

showing that t = Im (p) measures the twist (or rotation). Similarly, setting
p = 0 gives

which shows that D( is a real multiple of ( when arg £ = 9,6 + n, or 6 ± \n\
in the first two cases we get contraction towards the origin, in the other
two cases dilation. Thus \a\ is a measure of the degree of shearing while
j arg a defines the angle that the maximum inward shear makes with the
flag-plane direction of oA (see Fig. 7-2)

By considering propagation along # of the area

iiM-Cad) (7.1.49)

plane

Fig. 7-2. The geometrical interpretation of p and a h; terms of behaviour in the £-
plane. In the pictures, the photons are moving away from the viewer.
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7.1 Null congruences and spin-coefficients 179

of a small triangle formed by the points 0, £i, (2 *n n , we find by
use of (7.1.47) that, for any small area 5A,

D(SA) = - 2kb A = - (p + p)bA. (7.1.50)

This makes clear the role of k as a measure of convergence and also shows
that the local effects of t and a are area-preserving.

It is occasionally useful to define a 'luminosity parameter' (Bondi, van
der Burg and Metzner 1962, Sachs 1962a) L along a ray congruence by
requiring L2 ccSA. As we see at once from (7.1.50), this implies

DL=-kL, i.e. Z)logL= -k. (7.1.51)

Comparison with (7.1.47) shows that, in the absence of shear, and only then,

Loc| CI, (7.1.52)

so in this case L varies as the length of the connecting vectors between
abreast rays.

We also note an alternative formula for p which holds if e = 0:

P=-oA'VAA.oA (7.1.53)

since by (2.5.54), (4.5.21),

OA'VAA'OA = oA\oAiB - iAoB)VBA,oA = e - p.

Similarly we find, when s + e = 0, that

V/=-p-p=-2/c. (7.1.54)

Hypersurface orthogonality; null hypersurfaces

The vanishing of twist turns out to have another geometrical significance,
being the condition for # to be hypersurface-orthogonal, i.e. proportional to
a gradient field:

/*°cVfl/ for some feX. (7.1.55)

(Recall that X denotes the ring of real scalar fields on M) To see this,
consider first the condition for # to be actually a gradient:

la = VJ for some fe% (7.1.56)
namely

K = 0

la is (locally) a gradient<=>V[alb] = 0<
(7.1.57)

£ = — 8

where the last set of equations is obtained - the nullity of la being under-
stood - by taking components of V[alb] with respect to the null tetrad and
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180 7. Null congruences

using (4.5.22). If la is merely proportional to a gradient field the last two of
equations (7.1.57) need not hold (since they are not invariant under
rescaling* of la). In fact, we have (Newman and Penrose 1962; and cf.
(4.14.2))

f/c = O
la is (locally) hypersurface-orthogonalol[aWblc] = 0o<

(7.1.58)

The last two equations can be obtained by taking components of l[aVhlc]

directly, but it is simpler to observe (cf. (3.4.26) and (3.4.23))

WA'VAB-OA' = <>A oB.oAVBA.oA, (7.1.59)

and to take dyad components of the final relation. We can state (7.1.58) as

(7.1.60) PROPOSITION

A null congruence is hyper surface-orthogonal iff it is geodetic and twist-free.

For an alternative characterization, we have

(7.1.61) PROPOSITION

A null congruence is hyper surface-orthogonal iff it is null-hyper surface
forming (i.e., iff there exists a one-parameter family of null hypersurfaces
(hypersurfaces whose normals are null) to which la is tangent at each point).

For, if a null congruence la is hypersurface-orthogonal, then, by definition,
the hypersurfaces Jf to which it is orthogonal must be null, and la is also
tangent to them. Moreover, since the normal direction to a particular Jf is
unique at each point, and since la is the only null direction orthogonal to la,
la is the unique future-pointing null tangent direction at each point of J/°.
These directions in Jf have a two-parameter family of integral curves called
generators', they 'form' Jf. So, conversely, the generators of a one-

* Thus the statement (7.1.57) does not find natural expression in terms of the compacted
spin-coefficient formalism whereas, on the other hand, (7.1.58) does. (Recall the roles of
the equations p = p and K = 0 encountered in §§4.14 and 5.12 of Volume 1, cf especially
(4.14.75), (4.14.76), (5.12.11), (5.12.13).) We note also that apart from the final spin-
coefficient formulation, (7.1.57) and (7.1.58) hold perfectly well when la is not restricted
to be null.
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7.1 Null congruences and spin-coefficients 181

Fig. 7-3. A one-parameter family of null hypersurfaces. These are hypersurfaces
whose normals la are null vectors and which are therefore also tangent vectors.
Neighbouring rays within one hypersurface are abreast (paq

a = 0), and the rotation
vanishes.

parameter family of null hypersurfaces oV constitute a three-parameter
family of null lines which are hypersurface-orthogonal. Thus the equival-
ence is established (see Fig. 7-3). Note that the generators of the hypersur-
faces JV, being null and hypersurface-orthogonal, must be geodetic (by
(7.1.58)). Since any vector qa connecting points of neighbouring generators
of a given Jf lies in Jf, it must be orthogonal to the la, and so any two
neighbouring generators of Jf are abreast. For this reason, the quantities p
and a refer as well to the geometry of J^ (with p = p, by (7.1.58)) as to the
entire ray congruence. We can therefore speak of the convergence and shear
of a single null hypersurface.

Abreastness in twistor terms

We end this section by pointing out the relevance to twistor theory of the
concept of null rays being abreast. Let Ua and Ua + d\Ja be null twistors
describing a ray \i and a neighbouring ray \i' belonging to a null
congruence in Minkowski space M. Choose Pe \i and a connecting vector
qa at P which labels a neighbouring point P' on \i\ as before; then we have
(cf (6.1.22))

11^(04,0) (7.1.62)
and

(7.1.63)
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so that

SUal>(qbVboA,-iqAA'oA\ (7.1.64)

whence
Q*SUa=-iqala. (7.1.65)

Thus the condition for \i and \if to be abreast is that Ua and d\Ja be
orthogonal twistors.

Note that each side of (7.1.65) is pure imaginary:

Oa(5Ua + Ua<50a = 0, (7.1.66)

which follows also from the fact that Ua + <5Ua is a null twistor (ignoring
terms of second order in SUJ. We also note, in passing, that

l"'U.5U,= - 4 r X (7.1.67)

with Sb as in (7.1.31) (cf (6.2.25)). Further results relating null congruences
and twistor theory will be given in §7.4.

7.2 Null congruences and space-time curvature

We now turn to the discussion of the effect of space-time curvature on the
geometry of a null congruence (€. For this we examine the second
propagation derivative of the connecting vector qa, obtained by operating
with D on (7.1.29). This yields

D2qd = D{qbVbl
d}

= W / d = {VV 4- V }ld + Rabc
dlaqhlc

Rabc
dlaqhl\ (7.2.1)

by (4.3.31), (4.3.33). We shall consider only the case when # is geodetic, i.e.
Dld = 0, giving the geodesic-deviation (or Jacobi) equation (for rays)

D2qd = RahJ
aqblc. (7.2.2)

A field of vectors qa, defined along a geodesic (not necessarily null) with
tangent vector /fl, and satisfying (7.2.2) is referred to as a Jacobi field (cf.
Hawking and Ellis 1973; Hicks 1965). Referring to (7.1.39) and taking
components with respect to a parallelly propagated* dyad oA, iA (with

* Again {cf. footnote on p. 176) some slight generalization may be achieved if we demand
merely that the flagpole directions of the dyad be propagated, and use p in place of D
throughout. There is, however, a certain complication: for p can be applied only to
weighted quantities, whereas the afline parameter u, as used here, is not such a quantity.
This problem can be circumvented by 'decoupling' u from /", so that the equation
Du = 1 is replaced by pu = U, where U is a { — 1, — l}-scalar. The afline nature of the
parameter u can be stated as p U = 0, i.e. p2u = 0. This is the type of approach that we
shall adopt in §§9.8-9.10 (and adopted previously in §4.14, Volume 1).
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7.2 Null congruences and space-time curvature 183

ja = QA0A') w e g e t

D2h = 0 (7.2.3)

D2{ = - <P00C - ^ o r - OFi + *o i )*

+ 2*11)fc, (7.2.5)

where we have used (4.11.9) and (4.11.10).

Abreast rays; the Sachs equations

For abreast rays we set h = 0 in (7.1.38) and obtain from (7.1.41) the useful
(2 x 2) matrix form

Dz = - Pz (7.2.6)
where

- © • ' - ( : ;)•
Ignoring (7.2.5), since the value of # is of no consequence if we are concerned
only with the intersection of the rays with II (cf. before (7.1.47)), we obtain,
for the significant content of (7.2.2), equation (7.2.4) in the form

D2z = - Qz, (7.2.8)
where

(* l \ (7.2.9)

Differentiating (7.2.6) once more, and using (7.2.8), we get

D2z = - Qz = - (DP)z - PDz = ( - DP + P2)z. (7.2.10)

Since this holds for arbitrary ( and arbitrary complex linear combinations
of vectors z we must have

DP = P2 + Q, (7.2.11)

which, when written out in full, becomes the set of Sachs equations (Sachs
1961, 1962a, c):

Dp = p2 + a6 + 0>00

Da = {p + p)G + x¥0. (7.2.12)

(These equations can also be obtained directly from (4.12.32)(a), (b\ with
(4.12.15), when the conditions K = e = T' = 0 for a parallel dyad (cf. (7.1.22))
are incorporated. We have / = - e since % = 1, cf. (4.5.29).)

The Sachs equations tell us, in effect, that it is O00 which controls the
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propagation of convergence, and ^ Q which controls the propagation of
shear. Two simple consequences of (7.2.12) are the following: first,

0>oo = 0 (i.e. Rabl
alb = 0\p = 0on\i^>(T = 0on\i, (7.2.13)

which states that if O00 = 0 (e.g. in flat or Einstein space) a null congruence
cannot shear without somewhere contracting (or expanding) or twisting (in
fact <&00 ^ 0 also implies this); and second,

la shear-free (a = 0)=>/fl principal null direction of^^cj) (7.2.14)

since a = 0 implies *F0 = 0 which, by reference to (4.11.6) and (3.5.22), is
equivalent to the RHS of (7.2.14).

The twist propagation, on the other hand, does not depend on the
curvature,* since the difference between the first of equations (7.2.12) and its
complex conjugate reads (cf. (7.1.48))

Dt = 2kt, (7.2.15)

<D00 being real.
If L is a luminosity parameter satisfying (7.1.51), we see that

D(L2t) = 0, (7.2.16)

and so L2t gives a measure of twist which is constant along the rays. Hence
we note:

t = 0 at some point on \x => £ = 0 on \i (7.2.17)

It is worth mentioning here that, in addition to the geometric quantities h
and L2t which are constant along rays (cf (7.1.43)), there is also a 'symplectic
invariant' Z of two rays near \i, whose connecting vectors qa and qa

independently satisfy (7.2.2), namely

2X = qaDqa-qaDqa, (7.2.18)

the constancy of which along \i (Lagrange identity) is a consequence of the
interchange symmetry of Rabcd (cf Hicks 1965). Considering abreast rays
only, we have what is effectively a restatement of (7.2.16):

21 = - (Dz*)l + z*Dz = z*(P* - P)z

= (p- p)(fc - ft) = constant (7.2.19)

(cf (7.1.49)), where * denotes Hermitian transpose.
This fact has a number of significant consequences, some of which have

* It is worth remarking, however, that if torsion is present (and the concept of 'ray' is
defined in terms of the torsion connection; cf. §4.2 and the discussion of the E.C.S.K.
theory, §4.7, Volume 1) then <I>00 need not be real and (7.2.15), (7.2.16) need not hold in
general. Thus torsion can induce a rotation effect along rays (and cf. Penrose 1983a for
a possible physical significance of this fact).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.004
https://www.cambridge.org/core


12 Null congruences and space-time curvature 185

importance for twistor theory as will be indicated at the end of §7.4. A
somewhat different formulation of the constancy of 2 along \i is provided in
Penrose (1966), where a matrix V12 is examined, which relates two bundles
of abreast neighbouring rays to n, this matrix being constant along \i. One
consequence is the (non-obvious) fact that the luminosity distance' between
two points on a (scaled) ray \i is symmetrical between the two points (see
Volume 1, p. 399; and Bondi, van der Burg and Metzner 1962, Kristian and
Sachs 1966).

The matrix formulation (7.2.11) of the Sachs equations leads to a simple
derivation of the behaviour of p and o for ray congruences in flat space-
time; the same would also hold in a curved space-time in which Q = 0 for
the particular rays under consideration. We wish to solve

DP = P2. (7.2.20)

This equation is equivalent to

P-^PJP'^I (7.2.21)

where I is the (2 x 2) unit matrix; but

hence, by (7.2.21),

DP~1= - I ,
i.e.

where A = constant and u is afline along \i with Du = 1. Thus

P = ( A - M I ) " 1 . (7.2.22)
Writing

\°o Po,

where p0 and a0 are the values of p and a at u = 0, we get, explicitly,

Po ~ "(PoPo — ^o^o)
P = 1 2 I =—»

1 - u{p0 + p0) + u (poPo - tfo^o)
a = 1 ? x - , a ° 2/ ^r. (7.2.23)

1 - M(p0 + Po) + " (PoPo - ^O^o)

Non-abreast rays

The matrices we have used above can be generalized, as in (7.1.41), to
include the case of non-abreast rays near \i. (%> is still geodetic, with

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.004
https://www.cambridge.org/core


186 7. Null congruences

DoA = DiA = 0.) For this, we redefine the matrices as follows

""0 0
P[ h] TO 0 0"|

C , P = T p a I
d b * pJQ =

0 0 0

(D
oo

(7.2.24)

and, by (7.1.41), (7.2.4) and (7.2.5), we again obtain (7.2.6) and (7.2.8), as
before. The same calculation (7.2.10) leads us back to the matrix form
(7.2.11) of the Sachs equations, giving us, in addition to the original Sachs
formulae (7.2.12), also the x equation

Dx = xp + fa + ^ + 0>01. (7.2.25)

This is, in fact, (4.12.32)(c) with (4.12.15) and the specialization

K = £ ( = - / ) = x1 = 0 (cf. (7.1.22), (4.5.29)).
The flat-space solution (7.2.22) of the equation (7.2.20) will not now work,

because the P of (7.2.24) is a singular matrix. However, an alternative
procedure, valid in M (or in any curved space-time Ji for which x¥0,

x¥l9

O00, <X>0, all vanish along the ray n under consideration), is as follows.
Consider any three independent solutions of the equation (7.2.6), but where
the matrices appearing are the three-rov/ed ones of (7.2.24), and consider the
(3 x 3) matrix whose columns are these solutions:

p i hi |
Z = C, C2 C3 . (7.2.26)

U jWe have, by (7.2.8),

so Z is linear in u:
D2Z = 0 (7.2.27)

Z = Zt« + Z2 (7.2.28)

where Zj and Z2 are constant (3 x 3) matrices. Hence, applying (7.2.6) we
get

Z, = - P ( Z 1 u + Z2) (7.2.29)
so

P = - Z 1 ( Z 1 « + Z 2 )- 1 . (7.2.30)

We could obtain our formula (7.2.22) for the previous case by putting Zl = I,
Z2 = — A. Note that there are also many other ways of obtaining that
same formula since (7.2.30) is invariant under Zji—>Z1T, Z2i—>Z2T, with
any non-singular (3 x 3) matrix T. In our present case, Zt must have zeros
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7.2 Null congruences and space-time curvature 187

for its first row - for consistency between (7.2.24)(2) and (7.2.29) - but it
is not restricted in any other way. We choose Z2 = — I instead, and take

"0 0 01
To Po °o > (7.2.31)

Jo °o PoJ
giving the general solution of (7.2.20), with (7.2.24)(2), in the form

P = Z 1 ( I - M Z 1 ) " 1 . (7.2.32)

Description in terms of Minkowski 3-space

We now return to (7.2.11) in a general curved space-time Jt where, for
simplicity, we consider abreast rays only. The matrices are again (2 x 2),
with Q arbitrary (2 x 2) Hermitian. Let us further simplify to the case of
non-twisting (i.e. null-hypersurface forming) rays so that p = p, whence P
is also Hermitian. Following a suggestion of N.F. Ross, we consider the
three-dimensional 'Minkowski' metric

dS2 = dp2-d<xd<T (7.2.33)

on the space & whose points are labelled by such matrices P, where we are
really interested only in the conformal, i.e. null-cone, structure of 9 that is
provided by (7.2.33). Two points of 0> are null separated (i.e. joined by a
light ray' in & - a null geodesic with respect to the metric (7.2.33))
if and only if the matrices Px and P2 satisfy

(Pi " Pi)2 ~ ( ' i " *2)(*i " °i) = 0 (7.2.34)
i.e.

d e t ( P 1 - P 2 ) = 0 (7.2.35)
i.e.

P l Z = P2z (7.2.36)

for some non-zero (2x1) complex matrix z. This means that the two
bundles of abreast rays neighbouring \i, described by Px and P 2 respec-
tively, have a ray (other than \i itself) in common. Thus the conformal
metric (equivalent to the light-ray structure) defined by (7.2.33) has an
invariant geometrical meaning independent of the particular choice of
point P on \i at which the values of p and a are being determined. As P is
moved along \i the quantities p and a defined at P will change, but we
are to regard the space & as being fixed, the different elements of 9
representing the different possible bundles of rays in the neighbourhood of
|i, non-twisting and abreast with \i. The various choices of P provide
various choices of 'coordinates' p and a for the space ^ \ For each such
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choice we get a metric (7.2.33). These will differ as P is moved but, by the
preceding discussion, the metrics must be conformally related to one
another.

Indeed, this conformal property may be verified directly by considering
the Sachs equations (7.2.12) applied to dS2:

D(dS2) = D(dp2 - dadd)

= 2dpDdp - doDdd - ddDdo

= 2dpd(p2 + od + *Oo) ~ dad(2pd + <P0) - ddd(2pa + *F0)

= 4p(dp2 - dadd) = ApdS2. (7.2.37)

Here 'd' refers to changes in the choice of ray lying abreast with \i and not to
changes in position of the point P (the latter variation being the role of D).
Thus we set d^o = 0 = dO00 in the calculation (7.2.37) to obtain our result.
(It may be remarked that the calculation also works if the condition p — p,
for absence of twist, is dropped and the metric (7.2.33) is replaced by dS2 =
dpdp-dadd, the result now being D(dS2) = 2(p + p)dS2. Thus, for
abreast rays with twist allowed, we have a four-dimensional space in place
of & with a conformal metric of signature ( + H ) in place of the
'Minkowskian' ( H ) one for <?)

An advantage of our present point of view (pointed out by Ross) is that
we can allow those positions of P for which p and (perhaps) a become
infinite (caustic points), such as the rays neighbouring \i at the vertex of a
light cone containing \i. For this, we must consider the conformal
compactification &* of ^ , following the procedure that we shall describe in
§9.2 (cf. footnote on p. 299) for obtaining M# from M. Indeed, the conformal
rescalings that apply to ^ , as P moves along î really refer to ^ # rather than
to 2P. This is regarding the transformations on SP* as passive i.e. changing
from one p, ^-coordinate system to another on ^ # , neither of which would
quite cover the whole of ^ # .

The point P itself will now have an interpretation within £P as the point of
& which represents the rays, neighbouring \i, generating the light cone ofP
in Jt. As P moves along \i, its image in & moves smoothly along a curve
which is timelike with respect to the metric dS2.

Many interesting results can be derived in this connection, but the matter
will not be pursued further here. It is, however, worth pointing out that 0>*
can also be obtained in another way as the space of Lagrangian 2-planes in
the four-dimensional symplectic vector space representing the possible
neighbouring rays to \i which lie abreast with \i. The symplectic form on
this space is precisely that given by (7.2.18). (See Woodhouse 1980, for
details concerning these concepts - and particularly p. 307 of that work, for
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7.3 Shear-free ray congruences 189

a remark which implies the compactified Minkowski 3-space structure of
£P* when it is viewed in this way.)

7.3 Shear-free ray congruences

A null congruence or null vector field (or its related spin-vector field) which
is both geodetic and shear-free will here be called SFR (both adjective and
noun!). The conditions for this are

la = oAoA'SFR OK = <J = 0O oAoBVAA,oB = 0. (7.3.1)

SFRs play an important role in relativity theory. They occur in relation to
solutions of the massless field equations and they have a special significance
for the theory of twistors. We shall be concerned here with their relation to
massless fields. In §7.4 we shall illustrate the role of SFRs in twistor theory,
showing, among other things, how twistors can be used to generate the
general SFRs in Minkowski space (Kerr's theorem). But we may note at
once that every spinor field coB that satisfies the twistor equation (6.1.1)
automatically satisfies the SFR condition (7.3.1); in other words, Robinson
congruences are SFR (cf. p. 60).

Relations to PNDs; totally null complex 2-surfaces

We now note two preliminary results about SFRs. As a restatement of
(7.2.14) we have

la SFR => la principal null vector of%¥ABCD9 (7.3.2)

i.e. ^0 = 0, which is, of course, evident from (7.2.12). If, in addition,
$00 = 0 (i.e. Rabl

alb = 0), as, for example, in flat space or in an Einstein
space, the calculation leading to (7.2.23) applies. The result, with a = 0 and
p = k + if, can be written

ko-u(kl + t2
o) t0

1 - 2kou + u\kl + t*Y 1 - 2kou + u2(k2
0 + tl)' l J j

In particular, we observe that, if la is SFR,

p = 0 at some point on \i => p = 0 on \i. (7.3.4)

Recall that a massless field of spin \n is described by a symmetric spinor
0/IB...L °f valence [° §]> SO l ^ a t ^ canonical decomposition (3.5.18)
applies:

<I>AB...L = *(APB'-1'L)' (7-3-5)

If two or more of the principal null directions (PNDs) of </> (i.e. flag-
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pole directions of aA,...,AL) coincide, then <j> is called algebraically
special ('along' the repeated PNDs). If all n PNDs coincide (and n > 1)
the field is called null ('along' the coincident PNDs). Recall, from (3.5.29),
that in the case of an electromagnetic field, nullity is equivalent to the
vanishing of its complex scalar invariant:

<PAB<PAB = 0 (7.3.6)

(i.e. of its two real scalar invariants). The corresponding condition in the
case of spin-2 will be given in (8.6.3). PNDs of ^ABCD

 a r e called gravitational
principal null directions, or 'GPNDs'.

From (3.5.26) we find the following conditions:

<j)AB L is algebraically special along £A ( ̂  0)

o<t>AB...LtB..ZL = 0 (7.3.7)

4>AB...L(* > 1) is null along ^Ao(f>AB^A = 0. (7.3.8)

Algebraically special and null fields are closely related to SFRs as the
following two propositions show. We assume that <j)A._L satisfies the
massless free-field equation (4.14.42).

(7.3.9) PROPOSITION

IfVAA'(j)AB L = 0 and (j)AB...L is algebraically special along la then (in regions
where (j)A...L does not vanish) la is SFR.

Proof: Consider an open region where la = £A£A> is a /c-fold PND of </> .
(We shall ignore the boundaries between such regions; the SFR condition
must apply there also, by continuity.) By (3.5.26) we have

<t>A...FGH...LZGZH..ZL = 0, (7.3.10)

where there are (n — k + 1) occurrences of £, whereas (cf. (3.5.24))

4>A...FGH...LZH-ZL = VZA-ZFZG (7-3.11)

with v # 0, there now being (n — k) occurrences of £ on the left and k on the
right. Differentiating (7.3.10) and contracting over F (which is possible since
k ^ 2) we get

by (7.3.11). Since v / 0, n Js k, and i,A # 0, we get

ZFZGVFF'ZG = O, (7.3.12)
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which, on comparison with (7.3.1), yields the required result (cf also
Mariot 1954, Lichnerowicz 1958, Jordan, Ehlers and Sachs 1961).

We shall see that the converse to (7.3.9) is true for the case n = 2
(Robinson's theorem, cf Robinson 1961: la SFR => such cf)AB exists); but when
n > 2 it is true only under a certain servere restriction on the curvature. The
latter is a result of the Buchdahl-Plebanski relations (5.8.2) and is expressed
by the following:

(7.3.13) PROPOSITION

If a massless free field 4>A...L of spin \n > 1 is null along la, then the Weyl
spinor is algebraically special along la (in regions where <\>A_,L

Proof By (5.8.2), with e = 0 and with

<I>AB...L=ZXZA€B~'£L>

we get

whence, by Proposition (3.5.15),

The result follows from (7.3.7), with la = £A£A'.
We can now state the joint converse of (7.3.9) and (7.3.13):

(7.3.14) THEOREM (Robinson 1961, Sommers 1976)

If la is SFR and analytic then there is a non-zero solution of Maxwell's
equations VAA cpAB = 0 which is null along la; furthermore, if the Weyl spinor is
algebraically special along la then for each spin \n > 1 there is a non-zero
symmetric solution ofVAA (f)A L = 0 which is null along la. In each case there
is a freedom in the solution which can be described by a single holomorphic*
function of two complex variables.

Before proceeding to the proof (which follows lines suggested by P.
Sommers, after (7.3.22)) it is helpful to establish some lemmas concerning

For real functions of real variables 'analytic' means Taylor-expandable. For complex
functions the term 'analytic' will be used here to indicate that the real and imaginary
parts are Taylor-expandable in the real and imaginary parts of the arguments. The term
'holomorphic' is reserved for the usual 'complex analytic'. Whenever we speak of any
object being analytic on the manifold Ji, we. shall presume that M together with its
metric gah are also analytic.
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SFRs. They are useful in other contexts and have relevance to the problem
of finding exact solutions of Einstein's equations and to the theory of
twistors. Our first lemma is in effect due to Robinson (1961) (whereby if
<I>A...L satisfies (7.3.14), so does f((oua)2)<l>A...i):

(7.3.15) LEMMA

Let £A be an analytic SFR. Then there exist functionally independent complex
scalars cou a>2 such that

^AA'COl=0=^AVAAfCO2

and then every solution co of^AVAA>a> = 0isa holomorphic function ofol9(o2.

(Note that, as a useful implication of this result, three convenient
coordinates for Jt 'tailored' to the SFR can be chosen from among the real
and imaginary parts of co1, co2. These are all constant along the rays of the
SFR, and so a fourth coordinate would have to be chosen in another way.
Note that the gradient of each of a>1 and co2 has the form €AnA>, so at each
point some linear combination of the gradients equals £A£A>. At the end of
the present section we shall show how a specially natural choice of co1 can
be made when Jt is vacuum.)

Proof Let us first complexify Jt by allowing the coordinates in any
analytic coordinate neighbourhood to take on complex values. Since all
relevant quantities are analytic, this will yield (for small enough coodinate
imaginary parts) a complex manifold CJt with holomorphic metric and
holomorphic SFR £A. (Quantities which are already complex are 'complexi-
fied' simply by regarding their complex conjugates as independent quan-
tities, cf the discussion before (6.9.1).)

Next we introduce an analytic spinor basis oA', iA> on Jt and allow it to be
complexified also, so that it becomes holomorphic on CJt. Now consider
the holomorphic vector fields

Ua = £AoA', Va = £AiA'. (7.3.16)

We wish to show that there exists a two-complex-parameter system of
complex 2-surfaces 2 to which the vector fields U, VSLTQ tangent. For then,
taking col and a>2 to parametrize the system, and to be constant on each
Z, we have U(OJ) = 0 = V(<o-), i = 1,2, whence (7.3.15) follows. The necessary
and sufficient condition that U and V be indeed 2-surface forming is that
which the following lemma asserts to be true of U, V (Kobayashi and
Nomizu 1963):
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(7.3.17) LEMMA

[U,V] = XU + \iV for some holomorphic scalar fields X, \i on CJt.

Proof We have [I/, r\BB' = { % « ¥ ' ) - £AVAV(tBoB\ so {B[t/, r f* ' = 0
by the SFR condition. This tells us that [{/, V]BB' is of the form £ V , for
some holomorphic vB', and so must be a holomorphic linear combination of
U and V, establishing (7.3.17).

Incidentally, we have now established:

(7.3.18) PROPOSITION

The necessary and sufficient condition that an analytic <^A be SFR is that
all vectors of the form ^AXA> (with £A analytically extended to C<J{) are tangent
to a two-complex-parameter system of complex 2-surfaces in CJf.

This property would seem to be the essence of the SFR condition on £A.
Two more lemmas will be needed in this connection:

(7.3.19) LEMMA

The integrability condition for solution of the simultaneous differential
equations U(x) = a, V(x) = b (cf (4.1.40)), a and b being fields on M, is
U(b) - V{a) = Xa + fib, where X, \i are as in (7.3.17)).

Proof This is a standard result (Kobayashi and Nomizu 1963). The
argument is essentially as follows: integrate U(x) = aon some initial curve
in Z; then propagate away from this curve in the direction of V, solving
V{x) = b. When U(b) - V(a) = Xa + \xb, we have

V(U(x) -a)=U( V(x)) - XU(x) - fi V{x) - V(a)

= U(b)-XU(x)-fib-V(a)

= -X(U(x)-a\

whence U{x) = a on Z. (The argument is only local and may not apply to the
whole of I.)

(7.3.20) LEMMA (Sommers 1976)

The integrability condition for the equation £AVAAx = <xA> to be soluble in
(complex) x (for t? analytic SFR) is ^A^BVA

AOLA> = (XA^AVA
A^B. The
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general solution, given a particular solution x0, is then x = x0 +f((D1,a)2)>
where f is holomorphic and cou co2 are as in (7.3.15).

Proof: The equation to be solved, in component form relative to the basis
oA, iA, is the same as that of (7.3.19), with a = ao>9 b = av. Thus, by
(7.3.19), the integrability condition in (7.3.19) is

ZAVAO'*V ~ ZAVAV*O = Mr + Wv (7.3.21)

where X and \i are given by

{ % o « V ) - ZAVA1tf
BoB) = W + rfBiB'. (7.3.22)

Transvecting (7.3.22) with OLW and equating to (7.3.21), we find

which, after some simplification, gives the required integrability condition.
For the general solution, we refer to (7.3.15).

We are now in a position to give a proof of (7.3.14). Let la = £A£A> be
the given SFR congruence. We require a non-zero solution of the massless
e q u a t i o n w i t h <t>A...L = x%A-~£L> i e >

L> (7.3.23)

where rjA' is defined as a proportionality factor in the equation

^AAB^^A', (7-3.24)

which follows from (7.3.1). Thus the equation to be solved is

ZAVAA> log X = ~ VAAA - i n - l)nA, (7.3.25)

We now substitute the RHS of this equation for OLA. in the integrability
conditions of Lemma (7.3.20), to check that they are indeed satisfied. This
substitution yields, after some suffix manipulation and use of (7.3.24),

SAVAAVDSD + (n ~ W} = "A>V£ZD. (7.3.26)

For the various terms of this condition we can find the following
expressions (P. Sommers):

(7.3.27)

DZA?ZD- (7-3.28)

To establish (7.3.27) we have, from (7.3.24) and finally from (4.9.15),
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To establish (7.3.28), we begin by taking a derivative of (7.3.1):

KZV (7-3.29)

The first term of the last line, by use of (2.5.23) and (4.9.15), can be written

(7.3.30)

Let us introduce, analogously to (7.3.24), the quantity £A. by the first of the
following equations:

= \UU + nA-vDA*)- (7-3.31)
Hence

£A' = 1A'-VDA'ZD. (7-3.32)

Then the last term in (7.3.29) becomes

WBA^UI* + ZA') = ~ UA** = ~ ZMAXD?. C7-3.33)
By (7.3.29), we can set the sum of the right sides of (7.3.30) and (7.3.33)
equal to zero: this establishes (7.3.28). Now if we use (7.3.27) and (7.3.28),
the integrability condition (7.3.26) immediately reduces to

(n-2yVABCDtAScZD = ̂  (7-3.34)

which establishes the main part of Proposition (7.3.14). The final part,
namely the freedom in the solution, follows from Lemma (7.3.20): log/
(cf. (7.3.25)) can have added to it any holomorphic function of col and co2i

i.e. \jj itself can be multiplied by such a function.

The (generalized) Goldberg-Sachs theorem

We next turn to another important result on SFRs, namely the Goldberg-
Sachs (1962) theorem. We present it in a generalized form (due to Kundt
and Thompson 1962, and Robinson and Schild 1963; our proof is adapted
from one given by Sommers):

(7.3.35) PROPOSITION

Of the following three conditions:

(i) iA is a p-fold GPND (2 ̂  p < 4)
(ii) ^ is SFR

(iii) ZA...£cVDD'VABCD = 0 ((5-p) occurrences of ^
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for /? = 2, 3 or 4, (i) & (ii)=>(iii) and (i) & (iii)=>(ii)
for /? = 2, (ii) & (iii)=>(i)':= (i) with p = 2or3or4.

Note: the original Goldberg-Sachs theorem stated that a nowhere flat
vacuum metric has a multiple GPND la if and only if la is SFR. Evidently
this is a particular case of (7.3.35), since (iii) with p = 2 is a consequence
of the vacuum Bianchi identity VDDx¥ABCD = 0.

For specificity, assume p — 2. Rewriting (i) as £A£B£Cx¥ABCD — 0,
taking a derivative and finally using the form ^A^B^CPD) (with neither <xA

nor /?^ proportional to £A) for ^BCz)» w e n a v e

where ¥ is a non-zero scalar. By reference to (7.3.1), it is therefore evident
that (i) & (ii)=>(iii) and (i) & (iii)=>(ii). The proof is entirely similar for
the cases p = 3 and p = 4.

To show that (ii) & (iii) (p = 2)=>(i)', we first note that, by (7.3.2), ^ is
a GPND, which implies iAiB^CxVABcD = X£D> f°r some x. Our objective
is to show x = 0. Taking a derivative gives

zAzBzCr7DD'\ij , -)\T/ zAzBv/DD'zC _ c \/DD' , Y}jDD'jc (H ^ '5fC\
S S S V * ylBCD +-^ ' /IBCDS C V S — C D V X + XV CD- \/>J'JV)

Assuming (iii) (p = 2), the first term on the left vanishes. To transform the
second, we assume ^ABCD = ^U^B^CIDY That term then is

which, by reference to (7.3.24) and (7.3.31), is

For the last term in (7.3.36), we refer to (7.3.32). Thus (7.3.36) now reads,
provided x # 0,

<^V^(logx) = 2riA. + 4CA. = 6rjA, - 4VDA4D. (7.3.37)

To check if a solution logx of this equation exists we substitute its RHS
for OLA. into the integrability condition of Lemma (7.3.20). This yields

- WBVAA'W - 4VOT = ^A.riA§ = 4ZsnA.Vi'eD (7.3.38)
and the identities (7.3.27) and (7.3.28) now immediately convert (7.3.38)

into *F'ABCD€A€B€D = 0- This implies x = 0, contrary to our assumption, and

so establishes the desired result.
It is perhaps instructive to give an alternative and direct proof of the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.004
https://www.cambridge.org/core


7.3 Shear-free ray congruences 197

Goldberg-Sachs theorem which uses the compacted spin-coefficient
formalism of §4.12. (The proof is essentially that of Newman and Penrose
1962.) For simplicity we deal with the original theorem only, though the
generalized theorem can be treated similarly. Thus we prove that, under
the assumption of the vacuum Bianchi identity, (i)'<s>(ii). First
assume (i) with p = 2, i.e., (cf. (4.11.6)) *F0 =

 y¥1 = 0, *¥2 ^ 0. Recalling that
in vacuum O^ = 0 and A = 0, the Bianchi identity equation (4.12.36) then
shows K = 0 while* (4.12.39)', shows (7 = 0, i.e., (ii). Similarly, if p = 3, i.e.
*F0 = ^ = ¥ 2 = 0, *F3 # 0, (4.12.37) and (4.12.38)' respectively, yield K = 0,
(7 = 0. And when p = 4, i.e. ¥ 0 = XV1 =*F2 = *F3 = 0, ¥ 4 T * 0 , the same
service is performed by (4.12.38) and (4.12.37)', respectively.

Now, conversely, assume (ii), i.e. K = a = 0. By (7.3.2) we know that *F0

will then vanish. We must therefore prove x¥1 = 0. Let us first dispense
with the case where p = 0 in an open region: then (4.12.32rf) immediately
yields the desired x¥1 = 0. If throughout an open region p ^ 0 (boundaries
between such regions are dealt with by continuity) we can apply a trans-
formation iA\-*iA + cooA. This leaves K, a, unchanged but effects
T »-• T + cop and can thus be used to achieve T = 0. Suppose now that
x¥15*0. Equation (4.12.36) then yields

(7.3.39)

while (4.12.39)' yields

5^=0 (7.3.40)

Taking mixed derivations and subtracting the resulting equations, we get

(t>6 - 6 ^ = 0 - 6 ( 4 ^ ) = 40FJ2 (7.3.41)

after using (7.3.40), (4.12.32d). But also (4.12.34) gives an expression for this
mixed derivative, namely

G>6 - bpyr, = (pa - rp - 2 ^ ) ^ = ( - 4fP - 2 ^ ) ^

by (7.3.39) and (7.3.40), where we use the fact that x¥1 has type {2,0}
(cf. (4.12.25)). Equating these two expressions we get x¥l = — ff'p or
x¥1 =0 . On the other hand, according to (4.12.32c), y¥l=f'p ( = - f ^ ) .
Hence VF1 = 0, which completes our proof.

We may note that the original Goldberg-Sachs theorem applies not
only to a vacuum metric but also to any metric conformal to a vacuum
metric. For, under a conformal rescaling, K = a = 0 is preserved, and so
is nullity; hence SFRs correspond. Since, moreoever, the Weyl spinor is

* Here, as elsewhere, a primed equation number, such as (4.12.39)', denotes the result of an
application of the priming operation (4.5.17) to the equation in question.
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unchanged, so are its PNDs, and thus the assertion is established.
Under conformal rescaling, (i) and (ii) of the Goldberg-Sachs theorem

are invariant. The conformal behaviour of (iii) can be found from the
relation

$AA'VABCD = U-WVABCD + n-2TAAVABCD, (7.3.42)
which follows from (5.6.15). It shows that (iii) is conformally invariant if

and only if (i) holds.
An interesting corollary of the generalized Goldberg-Sachs theorem is

the following result due to Robinson and Schild (1963):

(7.3.43) PROPOSITION

The gravitational field due to any Maxwell field with shear-free rays is
algebraically special

One says a Maxwell field has shear-free rays if at least one of the PNDs
°f <PAB {cf. (5.1.39)) constitutes an SFR. Note that Proposition (7.3.9) tells
us that all electromagnetic null fields have shear-free rays; but non-null
fields can also possess this property - e.g. the Reissner-Nordstrom
('charged Schwarzschild') field. Note also that Proposition (7.3.13) cannot
be regarded as covering the present proposition in the null case, since
(7.3.13) refers to test fields, i.e. to fields which are not sources of the Einstein
field equations. For proof of the present proposition we simply observe
that condition (iii) in (7.3.35) with p = 2 is satisfied as a consequence of
the Einstein-Maxwell Bianchi identity (5.2.7), the assumption cpAB = £(y4aB),
and the condition (7.3.1) on £A.

Kerr coordinates

We end this section by giving a result due to R.P. Kerr (cf Kerr 1963,
Kerr and Schild 1965) which is particularly useful for the study of
algebraically special exact solutions of Einstein's vacuum equations.

(7.3.44) LEMMA (Kerr)

Let £A be an analytic SFR and suppose ^ABCD^B^C = 0, ®ABCD^B = 0.

Then there exist complex scalars x> u> such that £,AVb?;A = x^b^-

Proof: Complexify Jt to CJK. We must show that

A (7.3.45)
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is (in the complex sense) proportional to a gradient on CJf, the condition
for which (cf. 7.1.59)) *(V[aSb])S

b = 0, i.e., by (3.4.23) (cf (7.1.60)),

SAB'V[aSb] = 0 (7.3.46)
Now

)(V^C), (7.3.47)

by (4.9.7) and the given condition on ^>ABCD'. The SFR condition on £A

yields

SAB' = £A[B- ( 7 3 4 8 )

(c/ (7.3.31)), which, when transvected with (7.3.47), gives

SAB'VlaSb] = (^V^^C)(CB'VBB^C), (7.3.49)

the X term going out because of (4.6.35) and the given condition on ^ABCD-

The RHS (cf. (7.3.24)) is

tlAcZB'VBB-tc = riA-t;BXB.ZB = O

and thus (7.3.46) is established, and with it the theorem.
It may be recalled that Sb is the quantity defined in (7.1.31) which

measures how the direction of the flagpole of £A varies. Its scaling behaviour
under £A\->A£A is Sbh+A2Sb, so this freedom can be used to reduce % to
unity: ^AVb£,A = Vba>. Note that if the Einstein vacuum equations or the
Einstein-Maxwell equations hold (with or without cosmological term), and
if in the latter case £A is a PND of the electromagnetic spinor cpAB, then
the second of the curvature conditions of the Kerr lemma is satisfied
(cf. (5.2.6)), as is (iii) in the generalized Goldberg-Sachs theorem (7.3.35),
in consequence of the vacuum or the Einstein-Maxwell Bianchi identity
(5.2.7) so that each of the remaining two conditions of the Kerr lemma
implies the other. The real and imaginary parts of co give coordinates which
are related in a natural way to the structure of such space-times and have
proved useful in the generation of exact solutions.* Similarly £A and CB

can be used to define a natural spin-frame, in the case when the rays are
diverging (p * 0) so th?t ?'ZAVBB-ZA = ZB'ZB>ZB * 0.

7.4 SFRs, twistors and ray geometry

There is an intimate relation between SFRs in Minkowski space and homo-
geneous holomorphic functions of twistors. We shall illustrate this fact

* For example, see Kerr and Schild 1965,1967, Robinson and Schild 1963, Plebahski and
Schild 1976, Kramer, Stephani, MacCallum and Herlt 1980.
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by establishing various results, the first of which was found by Kerr before
the emergence of twistor theory. We give this result in Kerr's original form
and then in the twistor version. Then, for the rest of the section we show
how twistor ideas can be used generally in curved space-time. As a final
result we obtain a form of Kerr's theorem that applies (relative to a hyper-
surface) in arbitrary space-times.

Original Kerr theorem

Consider Minkowski space M and introduce spinor coordinates

u = xoo\ C = *01', r=* 1 0 ' , v = xlx\ (7.4.1)

where the position vector xa of a point is referred to a constant spin-
frame oA, iA. The metric therefore has the form

ds2 = 2dwdt;-2dCdr, (7.4.2)

xAAf being related to a standard Minkowski system x* by (3.1.31). The
notation £, rather than £*, is adopted here since we shall presently allow the
coordinates to become complexified. Let £A be SFR:

ZAZ*VAA'tB = 09 (7.4.3)

and choose the scaling of £A so that

^ o = - ^ = l, £ i = £ ° = .̂ (7.4.4)

The complex number X thus defines the null direction of the SFR at each
point, i.e. the flagpole direction of £A. In terms of the spinor coordinates
at the general point, this direction is given by the relations*

dw + Adf = 0 = dC + Xdv, (7.4.5)

which state ^AdxAA/ = 0.
We now regard (7.4.3) as an equation on A, where X is a function of w, £ f,

v. Substituting (7.4.4) into (7.4.3) we get, since the spin-frame is constant,

*8u = Tr xTz = Tv (7A6)

In these (and other) equations the symbol *d' may be interpreted either in 'old fashioned'
terms, in which case dxa (like Sxa) is thought of as a vector (or infinitesimal
displacement) at the point whose position vector is xfl, or in more 'modern' terms as a
(vector-valued) differential form. In the former case, an equation /4fldxa = 0 is
interpreted as the fact that the vector dxa lies in the hyperplane element determined by
Aa; in the latter, it is the vectors annihilated by the 1-form Ag&x" ( = Ah) which have this
required property.

Thus, our equation £AdxAA' -0 asserts that the relevant vectors point in the
direction of the flagpole of (A.
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as the equations to be solved. We can put

du d£
so that

d£9 dv'
then

dX = — du + • • • = Pidu + Ad£) + Q(d£ + Adt;),

from which it follows that dA = O whenever dw + Ad^=O = dC + Adt;.
Hence A is constant whenever u + Af and (, + Xv are both constant. In real
variable theory it could then be deduced that a functional relation

iA(A,w + Ar,C + At?) = O (7.4.7)

must exist, where ^(a, /?, y) is an arbitrary function of a, /?, 7 (c/ also Cox
and Flaherty 1976). However, in the present context this procedure is not
strictly applicable since in real Minkowski space only u and v are real
variables while £ and Z are complex conjugates, and A is complex also.
We can get around this difficulty provided we assume that A is analytic
in u, v and the real and imaginary parts of £ For then we can complexify
M to CM in a procedure corresponding to that of §7.3, allowing u and v to
be complex and £ f to be independent complex variables. If A is extended to
being a holomorphic function of u, £ £ t;, the formal method of solution
remains valid provided ^(a,/?,y) is now taken to be holomorphic.
Furthermore, the converse result that (7.4.7) represents the general solution
of (7.4.6) is also true with these restrictions on A. Without such restrictions
the result would not be quite true. (There are in fact non-analytic SFRs in
M, e.g. the non-twisting system of null rays meeting a non-analytic curve,
and these cannot be generated in this way except in a certain sense as a
limiting case of the construction. Twisting SFRs can also be non-analytic,
though in this case there is a sense in which (7.4.8) can still be applied; cf the
remarks at the end of this section.) Thus we have:

(7.4.8) THEOREM (Kerr)

The general analytic SFR in M is obtainable locally by choosing an arbitrary
holomorphic function i^(a,/?,y) of three complex variables a,j?,y and setting
i//(X, u + Af, C + Xv) = 0. Solving this equation for X in terms ofu, £ £ v gives
the direction of the SFR at each point (u, £ £ v) of M via (7.4.5) (w, v
real, £ complex).
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Twistor form of the Kerr theorem

We shall now express this result in twistor terms. We define a (dual) twistor
Waby*

\Na^A,-i^AxAA) (7.4.9)

(cf (6.1.22)), so that using (7.4.1) and (7.4.4) we obtain the components of Wa

(with respect to the origin xa = 0 and the given spin-frame) in the form

Wa = ( U , - i (n + Xt), -i(C + kv)). (7.4.10)

Note that, by (6.1.26), the expression (7.4.9) ensures that the point P with
position vector xa lies on the /?-plane CW cz CM, the locus, in CM along
which the primary part of Wa vanishes (cf §6.2, p. 64 and §9.3 below). This
complex 2-plane defines Wa uniquely up to proportionality. When xa is
real, Wa defines a real null line W through P in the direction of the flagpole

of* , .
We observe that the arguments of i// in (7.4.7) are, in effect, the

components Wa. Equation (7.4.7) can indeed be re-expressed as

^(W1,iW2,iW3) = 0. (7.4.11)

We can remove the normalization Wo = 1 on Wa (which is implied by
(7.4.4): £0 = 1) by replacing ^ by a homogeneous holomorphic function of
Wa:

where the value of the integer k is at our disposal and defines the
homogeneity degree of x- The Kerr condition (7.4.11) now becomes

Z(WJ = O (7.4.13)

and we have seen that this states that £A is analytic and SFR. But the
flagpole direction of £A is the direction of the null ray W through P. Note
also that, since an SFR is geodetic, the flagpole of £A remains tangent to W
at other points of W. The null twistors which satisfy z(Wa) = 0 define a
congruence of rays W which coincides with our original SFR. The twistor
form of Kerr's theorem is therefore

LiJ
the congruence. With £A. instead, we would have defined a twistor Wa having £A. for its
projection part, and the analysis would have been the 'conjugate' of the one to be given
here.
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(7.4.14) THEOREM

The general analytic SFR in M is a system of rays W in M defined locally by
the null twistors Wa satisfying #(Wa) = 0, where % is an unrestricted
holomorphic and homogeneous function of\Na.

There are also more geometrical (coordinate independent) ways of
deriving (7.4.14). One of these is to appeal to (7.3.18). Each jS-plane CW
consists of points whose position vectors have the form xAA> + £ACA'> where
xAA and t,A are fixed and are as in (7.4.9), whereas £A> varies. The tangent
vectors have the form^C4' f°r fixed €A, so CW is a complex 2-surface of the
type considered in (7.3.18). The condition for an analytic SFR, as stated in
(7.3.18), is that there should be a complex 2-parameter holomorphic family
of such 2-surfaces, to which the vectors £A£A' are tangent, for each £A'. Since
each CW can be specified by giving the twistor Wa up to proportionality, we
can specify a holomorphic 2-parameter family of /?-planes CW by giving a
holomorphic 3-parameter family of (dual) twistors Wa which is invariant
under Wai—• AWa {k / 0). Such a 3-parameter family is clearly defined by the
vanishing of a homogeneous holomorphic function /(WJ.

Linear and quadratic twistor functions; angular momentum

There are two classes of functions %(Wa) which yield SFRs of special interest.
In the first place, if % is linear in Wa then (7.4.14) defines, in the general case, a
type of congruence that we have encountered before in twistor theory,
namely a Robinson congruence. This was defined, for a given (non-null)
twistor Z", by the SFR spinor field coA associated with Za, where
Za<->(a/, nA) (cf §6.2), and it was shown in (6.2.5) to consist of the null lines
W associated with the twistors Wa satisfying WaWa = 0 = ZaWa. Thus,
theorem (7.4.14) gives us the Robinson congruence of Za when x is chosen to
be

Z(Wa) = ZaWa. (7.4.15)

So Robinson congruences arise from the choice of x in theorem (7.4.14) - or,
equivalently, of \\i in (7.4.8) - as arbitrary linear functions.

As a second class of interest, consider a general (conjugate) angular
momentum twistor AaP, defined as in (6.3.11), and set

X(\Na) = A^Wa\Np. (7.4.16)

With respect to the point P we have Wa given by

W a ^ ( ^ , 0 ) , (7.4.17)
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so by (6.3.11) we have

, = 0, (7.4.18)

at the point P, whenever the condition ^(Wa) = 0 is satisfied. Here,
fiAB ( = jiBA) is related to the angular momentum Mab about P by (6.3.10),

and so (7.4.18) tells us that the SFR generated by (7.4.16) consists of rays
which are everywhere PNDs of the angular momentum tensor. In the
particular case when there is no intrinsic spin (but the mass is non-zero)
the congruence is the system of null rays which intersect the centre-of-mass
timelike (straight) world-line 7. The congruence is then hypersurface-
orthogonal (and null-hypersurface forming), the hypersurfaces being the
light cones of the points of 7. When intrinsic spin is present, the congruence
is more general and twists in a sense associated with the spin. Every such
congruence in fact arises as the linearized limit of the GPND congruence
of Kerr's solution of the Einstein vacuum equations representing a rotating
black hole or naked singularity. In the case when the rest-mass is zero,
the congruence splits into two parts, since by (6.3.2) we have pAB = icoiAnB);
thus one part is the Robinson congruence defined by oA, and the other
is the system of parallel rays defined by nB, in the direction of the 4-
momentum.

In the general (timelike) momentum case there are locally two con-
gruences (i.e two rays through each point), which are, however, globally
connected in the sense that we can pass continuously from one local system
of rays to the other. In the case when x(Wa) is a polynomial of degree n
rather than 2 as in (7.4.16), we get n such globally connected congruences.

Relations to twistor functions for massless fields

Let us now turn to applications to massless fields. We have seen in (7.3.9)
and (7.3.14) that there is a close relation between SFRs and algebraically
special massless fields. This relation shows up again in the two main
applications of holomorphic functions of a twistor Wa that we have
encountered, namely (7.4.14) and the use of (6.10.1) to generate solutions of
the massless field equations. To see this relation in the latter case, suppose
that the function / in the expression

4>AB...L = < p ^ V • A / W * " ttRXRR')Xpd*.p (7.4.20)

has a /c-fold pole at some given xfl, about which the integral is to be per-
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formed. If this pole occurs where XP is proportional to £P, we have

kP = 0 (7.4.21)

(there being k occurrences of £, on the left), since the pole is cancelled by
the factor (AD£D)*. Thus, by Proposition (3.5.26), the field </>A_L has at
least an (n - k + l)-fold PND along the flagpole of £D at xa. So if this fc-fold
pole persists as xa is varied, the function / must be of the form

/(Wa) = 0(Wa){X(WJ}-\ (7.4.22)

where 6 is homogeneous and holomorphic and is regular at the poles we are
concerned with, these being given by

') = 0 (7.4.23)

as xr varies. The relevant zeros of % are assumed to be simple zeros, x being
also homogeneous and holomorphic. Comparing this result with (7.4.9)
and (7.4.13), we see that £R is SFR as expected.

A special case of particular interest is given when / has the form

For each xRR we have two triple poles, and separating these with our
contour we obtain a linear gravitational field which has two pairs of double
PNDs at each point (type {22}). The linear limits of the Schwarzschild
and Kerr solutions have this form (and the Coulomb electromagnetic field
is analogous with the exponent — 3 replaced by — 2). If one applies the
procedures of §§6.4, 6.10 for obtaining the angular momentum twistor AaP

one finds that it is proportional to the matrix inverse of Bap divided by the
square root of its determinant. This change from B°^ to AaP explains the
apparent anomaly concerning the sign of the spin associated with the
Killing spinor for the Kerr solution mentioned on p. 109.

It may be remarked that if k = n we still get £R which is SFR whereas
the PND is simple. This is not to say that simple PNDs of massless fields
are always SFR, which is certainly not the case. However, the fields arising
from (7.4.20) are of a very special type when / has the form (7.4.22). When
k = n this fact expresses itself not through the algebraic specialness of the
field but through its having SFR rays (PNDs). To generate a general field
§A...L

 w e would require a function / with singularities more complicated
than poles.

It is of interest to compare (7.4.22) with Robinson's theorem on null
fields (cf. (7.3.14)). The field (7.4.20) is null whenever k = 1 in (7.4.22) (when
the contour surrounds a simple pole). The values of 0(Wa) which contribute
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to the integral (7.4.20) consequently are those giving the residues at the
poles of X- Thus we are concerned with 9 only on % = 0. Now the locus
X = 0 is three-complex-dimensional in Ta and is swept out by lines through
the origin, this family of lines being therefore two-complex-dimensional.
Since 9 is homogeneous, this means in effect that the relevant values of
9 are defined by two complex parameters. So (7.4.20) enables us to generate
null massless fields for each spin \n ^ 1 in M based on an analytic SFR. The
SFR arises from the set of zeros of x (Kerr's theorem) and the freedom in the
resulting null field (Robinson's theorem) arises from the arbitrariness of 9 at
the zeros of/. All analytic massless null fields in M are locally obtainable in
this way.*

The generalization of this result to algebraically special fields of lower
degeneracy (not all PNDs coincident) is also of some interest. Since we
now have k> 1 in (7.4.22), it is not just the values of 9 on x = 0 which
concern us, but the values of the first k — 1 derivatives of 9 in directions
away from x = 0 at points of / = 0. This means, in effect, that we are con-
cerned now with k holomorphic functions of two complex variables. Thus,
for spin \n (with n ^ k) the integral (7.4.20) can be used to generate massless
fields for which a given analytic SFR is an (n - k + l)-fold PND (at least),
the freedom in the fields generated being that of k holomorphic functions
of two complex variables.

It is of some interest to show how the twistor integral (7.4.20) can be
re-expressed using the notation (7.4.1)-(7.4.4). Taking components of
(7.4.20) with respect to the constant spin-frame, and writing

</>, = </>o...oi...i, (7A24)

where there are n — r zeros and r ones on the right, we get

(/), = &> krF(k, u + kt C + kv) dk (r = 0,... , n\ (7.4.25)

where
F(a, ft 7) = / (WJ, with W, = ( U - i f t - iy). (7.4.26)

The function F is arbitrary holomorphic on some domain which excludes
certain specified regions of singularity around which the integration is

By way of a historical remark it may be pointed out that the transcription into twistor
language of this combination of the theorems of Robinson and Kerr was highly
instrumental in motivating the discovery, in the context of twistor theory, of the
original contour integral expressions of §6.10 (cf. Penrose 1968a, 1986). In effect, these
theorems state that a null field is described by a holomorphic function on a
holomorphic surface in (projective) twistor space. The key realization was that this
surface should be treated as a pole and the holomorphic function as its residue.
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performed. One verifies immediately that the equations

# 84> d(/)r+1 _d(j)r

C dvdu dl dC dv

are satisfied, these being the component form of the massless-field equation
(4.12.42) for n > 0. Furthermore we have

dudv

which is the wave equation for the metric (7.4.2), showing that spin 0 is also
incorporated by (7.4.25) (with n = 0 = r).

V>Jf and Jf; invariant contact structure

Let us now turn to the case of a general space-time Ji. We shall see that
twistor ideas have a role to play in this case also.

In §7.1 we showed that the property of a neighbouring ray to \i being
abreast with p., though definable at any one point of n, is actually a
property of the rays as a whole: if the property holds at any one point of \i,
then it also holds at all the others. In §7.2 we showed that the same is true for
the property of being twist-free, for bundles of rays neighbouring \i and
abreast with \i. Thus these two properties describe invariant information,
or 'structure' for the space that we shall denote by PJ^, each point of which
represents* a single ray in Jt.

The notation is analogous to that of §§6.10, 9.3, where (cf. p. 313 below)
Pf̂ J stands for the space of projective null twistors for M .An element of Pf̂ J
is a null twistor up to proportionality so (apart from the fact that Pf̂ J also
includes certain 'rays at infinity', cf. §9.3) we may regard PN as the space of
rays in M. But each element of the non-projective space f̂J of actual null
twistors requires the further specification of a spinor nA> at each point of the
ray, with flagpole tangent to the ray and the entire spinor parallelly
propagated along it. Setting oA = nA, we are then provided with the kind of
(affine) scaling for \i, and reference flag plane, that we have found to be
useful earlier in this chapter. Strictly, nA, refers to the space N# (or Na) of
null [o]-twistors. The unprimed spinor oA correspondingly refers to f̂ J# (or
WJ, the space of null [?]-twistors, the two being related through complex

In certain circumstances, the space P^T, so defined, may exhibit non-Hausdorff
properties (cf. Penrose 1972ft; also p. 183, Volume 1). However, P^V will in fact be a
Hausdorff manifold if Ji is globally hyperbolic {cf. Hawking and Ellis 1973, Penrose
1972ft) or if our considerations are applied suitably locally.
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conjugation. (The projective versions PN* and PN9 of these spaces are
essentially identical with each other.) As with the points of N#, we now
define a point of the space Jf\ to be a ray in M together with a spinor oA

whose flagpole is tangent to the ray and which is parallelly propagated along
it. The space Jf* is defined similarly, but with a primed spinor nA, in place
of oA. We shall be working almost exclusively with Jf % and PjVm here, and
to avoid notational awkwardness we denote these spaces simply by Jf and
PJV* respectively, except when it becomes important that the distinctions
from Jf* and V>Jf* be maintained.

One advantage that the space JV has over PJV is that the actual measure
of non-abreastness

h = qala (7.4.27)

(cf (7.1.39), (7.1.43)) itself has an interpretation, not just its vanishing. By
(7.1.65), (7.1.66), (7.4.27) we have

* = iQ*SUa = - iUa<50a (7.4.28)

for Uaef^a, and a similar interpretation can be given for ^T, where a local
twistor description is used (cf. §6.9) at some point on the ray in question, as
we shall indicate shortly. Likewise, the actual measure of twist - either L2t
(with L a luminosity parameter and t the twist, cf (7.1.51), (7.1.48), (7.2.16))
or, slightly more generally, the symplectic invariant £ of (7.2.18) - also has a
direct interpretation in Jf.

To establish the form of the latter, consider first a ray \i in M, together
with two rays v, v neighbouring to \i. Represent \i9 v, v by Ua, Ua + <5Ua,
Ua + £llaef^a, respectively, where taking the origin at Pe \i we have (with
qa = dxa, qa = 5xa

9 cf (7

~(qbVboA, -iqAA'oA)

boA, - iqAA'oA) + O(q2) (7.4.29)

Then, ignoring third-order terms,

£0«(5Ua - SQ"5\Ja~(iqaoA,, qbVhoAHqbVboA> - Wo A)

bqaoJhoA. - iqaqboA,VboA + iqbqaoAVhoA,

bla

- iqaDqa = 2iZ (7.4.30)
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(using the conditions £qa = 0, £qa = 0, see (7.1.29)). The penultimate line of
(7.4.30) can be rewritten as

2iq[aqb%Jb] (7.4.31)

which, by the results of §7.1, is an 'imaginary mutiple of squared luminosity
parameter times twist' in the case when v, v are abreast with \i. For non-
abreast rays, the further information contained in (7.4.31) is concerned only
with how the scalings provided by la change as we pass from ray to ray. In
particular, (7.4.31) vanishes for all qa, qa if and only if la is a gradient field
(p = p5 T = a + /?; cf. (7.1.57)) - as opposed to being merely proportional to
one (p = p; cf. (7.1.58)), which is what is asserted by the vanishing of (7.4.31)
just for abreast rays (qala = 0 = qala). (Note: K = 0 = e automatically here.)

Now suppose that the rays lie in a curved space-time M. Consider a local
twistor description at P, and represent v, v by the local twistors which
would be reduced to the form (oA,0) when carried from P to the points
displaced from P by qa and qa, respectively. Neglecting second-order terms
in qa, qa, we find that the respective expressions Ua + d\Ja and Ua + £lla, as
given by (7.4.29), do indeed have the required property, as is seen
immediately from (6.9.14). Hence the expression

I = ii(£Ua(5Ua - 8\JJ5Q*) (7.4.32)

is valid in Jt, in the sense of local twistors at P. Moreover, this holds also at
any other point of \i9 in view of the constancy (cf. after (7.2.18)) of I along \i,
even though the local twistor description of each of v, v will generally not be
constant (in the local twistor sense) along \i. Similar remarks apply to
(7.4.28).

The structure that h and £ provide for Jf is most satisfactorily described
in terms of differential forms {cf §4.3). Thus we have a 1-form

A = iUMU a =- iU a dU a (7.4.33)

and a 2-form
L = idOaAdUa (7.4.34)

canonically defined on Jf, where in each case the RHS can be interpreted in
terms of a local twistor description, as in (7.4.28) and (7.4.32), respectively.
The relation between the forms /r, S and the expressions h, £ is that the latter
are simply the former applied to qa (and qa). This is easily checked (at any
one point P of u | Strictly q° and qa should be regarded as Jacobi fields along
the entire ray \i (cf after (7.2.2)) since it is such a Jacobi field which specifies
a tangent vector at a point of Jf (i.e. the displacement from one entire ray to
a neighbouring one).

We note also the important relation:

L = dA. (7.4.35)
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It is more or less evident from (7.4.33), (7.4.34) that (7.4.35) should hold,* but
some care is needed in formally applying the operation 'd' to (7.4.33)
because Ua and 0* should not be treated as independent variables, there
being the constraint

UaU
a = 0 (7.4.36)

on Jf. However there is no difficulty in relaxing this constraint (locally) and
regarding Jf as part of a larger (eight-real-dimensional) manifold F for
which (7.4.36) need not hold. The equation (7.4.36) then serves to define Jf
locally within ST. The extensions of h and £ to 3T are in no way canonical,
but this uncertainty does not affect the relation (7.4.35). The uncertainty can
be expressed as the addition of a term which is UaU

a multiplied by a smooth
form. This does not show up on Jf after exterior differentiation because

d(Ua0
a) = Uad0a + UMUa (7.4.37)

and this vanishes along Jf by (7.4.33).
We have been somewhat cavalier, in the above, in treating the abstract-

indexed local twistor quantities Ua, Ua as though they were coordinate
functions on Jf and <T. In fact our procedures are not hard to justify. One
way of doing this is to envisage that the region °U <^Jt under consideration
(assumed to be suitably small) is extended smoothly to a different** space-
time manifold JC ( 3 ty), where JC is taken to be flat in some open set Y
containing a portion of the extension of \i (the ray under consideration) into
JC (see Fig. 7-4). We do not require any field equations to hold for Jt\ so
such extensions can be achieved in many ways. We choose one such way
and set up a standard twistor coordinate frame b\ in if (cf. (6.1.17), (6.1.34)).
The rays in the immediate neighbourhood of \i all extend into if and so can
be assigned standard (null) twistor components with respect to <5£. The
forms h and L, being constant along p., may be evaluated in this system and
we obtain simply the coordinate versions of (7.4.33), (7.4.34) and therefore

There is also a direct geometrical significance in (7.4.35). The generators of a null
hypersurface in M constitute a system of rays abreast with their neighbours. Hence
they are described in JT by a region J along which h vanishes (that is, h annihilates any
tangent vector to 3). By (7.4.35), £ must also vanish along X which tells us that the
twist-free property of generators of a null hypersurface is a consequence of their
abreastness, together with the integrability properties of the tangent elements to £
which ensure that the rays actually sweep out a hypersurface in M. (It should perhaps
be remarked that many of the ideas that we have been describing here can, in one form
or another, be traced back to Lie; cf. Lie and Scheffers 1896).
In our terminology, the phrase 'space-time manifold', and the corresponding notation
'JC or kMn is taken to include the metric as well as the space of points. Thus, it is
sufficient simply to change the metric QIJ(, outside °U, in order to obtain the required
'different' space-time manifold JC.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.004
https://www.cambridge.org/core


7.4 SFRs, twistors and ray geometry 211

coordinate patch
defined by rays
entering 'V

Fig. 7-4. Local coordinates for the space PJV may be assigned by attaching the
curved region ^ of M to a flat space -V (with an intermediate connecting region).

(7.4.35). Note that this procedure provides a coordinate patch for the
manifold Jf in which the forms h, £ are represented as these standard
expressions. There is clearly much freedom in this procedure (which we
have adapted from Penrose 1972c). The procedure incidentally shows that
the forms h,H on Jf contain no local information about the curvature of Jf,
since they are equivalent to those for the flat region Y.

The structure that the forms h and £ assign to JV is of the type known as a
contact structure (Arnol'd 1978). We shall refer to it as the invariant contact
structure* of Jf (cf Penrose 1968a). The form £ assigns a symplectic
structure (cf Arnol'd 1978, Woodhouse 1980) to the (non-canonically
defined) space 3~, being non-degenerate and closed:

d£ = 0. (7.4.38)

Moreover, we can regard £ as assigning a symplectic structure to the six-
real-dimensional space Jf obtained from Jf by factoring out by the phase
circles

A (0eR). (7.4.39)

(Symplectic structures exist only on even-dimensional manifolds.) The
symplectic manifold J^ is thus the space of affinely scaled rays in Ji, The 1-
form h is also well defined on Jf and is related to £ by (7.4.35) (see Penrose
1972c, Crampin and Pirani 1971 for details).

* The vector field defined by the Eulerhomogeneity operator Uad/5Ua + OaS/dQa is also
part of the invariant contact structure of Jr, but it does not represent additional
information being, in effect, A A L A S A L 'divided by' I A I A I A S.
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Complex structure and CR-structure

The invariant contact structure of Jf falls a considerable way short of the
complex structure that would be needed for a curved-space analogue of the
Kerr theorem (7.4.14), however. A complex structure on some eight-real-
dimensional y •=> Jf is needed in order to specify which functions on (an
open subset of) Jf are to be regarded as (restrictions of) holomorphic
functions (i.e. we need, in effect, some concept of 'holomorphic coordinate'
like the a, 0, y of (7.4.8) or the Wa of (7.4.11)). We see from (7.4.14) that there
is a very close relation between the concept of 'shear-freeness' of rays in Jt
(i.e. G = 0) and holomorphicity in Jf ( c 2T\ Indeed, this fact alone points to
a difficulty if we wish our notion of complex structure to apply generally for
an arbitrary space-time Jt, and also to apply to rays as a whole, without
reference to a selection of some arbitrary point on each ray. The Sachs
equation (7.2.12)(2) tells us that unless 4 ^ = 0 along a ray n, then the 'shear-
free' condition a — 0 will not propagate along the ray. Only if Jt is
conformally flat will such propagation occur generally for all rays.

As a way of circumventing this difficulty we shall ask only for a complex
structure which depends on a choice of hypersurface Jtf in Jt. Then our
concept of 'shear-freeness' need refer only to the intersections of the rays
with #£. Our construction is clearest when Jf7 is chosen to be spacelike, and
we shall phrase most of our discussion to suit this case. But a timelike or null
Jf can also be used (with some caution). The null case has special
significance when Jf is taken to infinity, to become one of the hypersurfaces
J± of §9.6, for an asymptotically flat Jt. Our construction then yields the
space of asymptotic twistors for Jt that we shall discuss briefly towards the
end of §9.8.

Before entering into the details of our construction, we should be clearer
about the type of 'complex structure' that we are really concerned with.
Recall that for the Kerr theorem (7.4.14) we were interested in the restriction
to Na of functions holomorphic in (some region of) Ta or, in effect (since our
functions were also homogeneous), with restrictions to IP 1̂1 a of functions
holomorphic in PTa . It is the odd-real-dimensional spaces Na and PNa,
rather than the even-real-dimensional complex spaces Ta and PTa , that
have immediate interpretations in terms of rays in M, and it is these odd-
real-dimensional spaces that find ready generalizations, to become our Jf
and PJf for Jt. Thus we are more concerned with the restriction, to an
(odd-real-dimensional) hypersurface, of the complex structure of its
ambient (necessarily even-real-dimensional) complex manifold, than we are
with that complex structure itself. The restriction to a real hypersurface of a
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complex structure is referred to as a (realizable) CR-structure* (cf. Folland
and Kohn 1972, Nirenberg 1973, Penrose 19836). We shall need to
understand the geometrical properties of such a structure in some detail.

Let us first consider what, in real terms, characterizes a 2n-real-
dimensional manifold iV as an w-dimensional complex manifold. The
essential geometric property of iV which is required is that we should be
able to recognize the complex tangent vectors to iV. In real terms, such a
complex tangent vector z will consist of two real tangent vectors, its 'real
part' x and its 'imaginary part' j , and we can write

z = x + \y. (7.4.40)

When z undergoes the replacement

z*-+ewz (6 en) (7.4.41)

the real vectors x and y must undergo

jf->x sin 0 + y cos 9 (7.4.42)

and, in particular, when

(7.4.43)
we have

— y

(7.4.44)

The replacement (7.4.44) is usually denoted by the letter J:

J(x)=-y9 J(y) = x (7.4.45)

and referred to as the complex structure of iV. The operator J acts in the
(real) 2n-dimensional tangent spaces of iV and is real-linear satisfying

J2 = - 1, (7.4.46)

as is evident from (7.4.45). The complex tangent vectors to iV are then
precisely the quantities of the form

t - U(t) (7.4.47)

where t is a real tangent vector to iV (and so, given J, the complex tangent
vectors to iV are in one-to-one correspondence with the real ones).

The property (7.4.46) is not actually sufficient to characterize # * a s a
complex manifold, however, and defines iV merely as an almost complex

* The more general situation of restriction to a real submanifold of dimension smaller
than that of a hypersurface (i.e. dimension smaller than In — 1, where the ambient
manifold is H-complex-dimensional) is also considered by some authors under the
heading of 'CR-manifold'. We do not follow this terminology here, however.
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manifold. For a complex manifold we need, in addition, an integrability
condition* on J. One way of stating this extra condition is:

The Lie bracket of any two smoothfields of complex tangent vectors
is again afield of complex tangent vectors. (7.4.48)

Here the term 'smooth field' means smooth only in the sense of real
functions, with no concept of holomorphicity implied. For a general almost
complex manifold, these Lie brackets would bring in the complex conjugate
tangent vectors, which have the form

z = x-iy = x + U(x) (7.4.49)

in contrast with (7.4.47).
The theorem of Newlander and Nirenberg (1957) states that in any

complex manifold if, so defined, there always exist local complex
coordinates d , . . . , („ such that the complex tangent vectors at any point
arise as the complex linear combinations of

W--W (7A50)

at that point. Such coordinates are referred to as holomorphic coordinates
for if, and they enable the concept of a holomorphic function to be defined,
for regions in if, as holomorphic (i.e. complex-analytic) functions of such
coordinates. The holomorphic functions on if are then just those complex
functions /satisfying z(f) = 0 for every complex conjugate tangent vector z
(cf also Proposition (4.14.25) Volume 1).

This is clearly a concept that would be needed for an appropriate curved-
space version of the holomorphic functions arising in the Kerr theorem.
But, for the interpretation in terms of ray geometry, we need also to
understand the geometry involved in the restriction of complex structure to
some real hypersurface 3C in if.

Now the tangent space T[Q], to any such 3C, at any point Q of ST, is
(2n— l)-dimensional. It contains a (2n — 2)-real-dimensional subspace
H[Q], referred to as the holomorphic tangent space, which is invariant under
the action of J and so has a structure as an (n — l)-complex-dimensional
vector space. i/[Q] is spanned by (the real and imaginary parts of) n — 1
complex vectors Zi,-.-9zn-i- To span the whole of T[Q] we need one
further real vector u at Q (but the action of J in if does not take u to a vector
tangent to X).

In fact, when written out explicitly in terms of J, this condition becomes the vanishing
of the (Nijenhuis) expression given in (4.3.39) on p. 207, Volume 1 {cf. Schouten 1954).
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7.4 SFRs, twistors and ray geometry 215

Thus, 3C by itself has an intrinsic structure defined by an operator J,
subject to (7.4.46) as before, but which now acts (real-linearly) only on each
H[Q]. The integrability condition is the same as before, namely (7.4.48), but
now the concept of complex tangent vector refers only to H[Q], Such an
integrable' structure J defines 3C intrinsically as a CR-manifold.

If $E and J are real-analytic then it follows that an embedding manifold
iT (=5 #T) can be constructed, locally, if being a complex rc-manifold whose
complex structure reduces to the given J on 9C. Holomorphic functions on
iV then restrict to what are known as CR-functions on 3C (annihilated by z9

for each complex conjugate tangent vector £)*. However, without this
analyticity restriction it is a delicate question as to whether such an
embedding manifold W (or CR-functions) will exist for a CR-manifold ST.
When such iV exists we say that the CR-manifold % is realizable (or
embeddable). Non-realizable CR-manifolds do occur in certain circum-
stances (cf. Nirenberg 1974, Jacobowitz and Treves 1982, Penrose 19836)
and, indeed, can arise in the very cases that we are concerned with here
(LeBrun 1984), when analyticity is not assumed.

Hypersurface twistors

Let us now consider the space PJf and exhibit the CR-structure that it
naturally acquires in relation to a spacelike hypersurface 3^ in J(. (We
assume that J f is suitable, in relation to the region of PJf that we are con-
cerned with, namely that it should intersect each ray of that region exactly
once.) The tangent space T[pt] to P^V at a point [i e PJV consists of the rays
'neighbouring' \i, in J(. The holomorphic tangent space H[ ji], at \L, (as a
real four-dimensional vector space) turns out to consist of the neighbouring
rays to \x which are abreast with \i. Indeed, this much structure is already
determined by the invariant contact structure of jVy and needs no reference
to the hypersurface Jf.

The role of Jf is to define the action of J on H[ \i] and thus to provide
H[ [x] with the structure of a complex two-dimensional vector space. Let P
be the intersection of \i with jff and define II to be the 2-plane element at P
which is tangent to Jf and orthogonal to \i. Choose a neighbouring ray v,
abreast with \i, and take the connecting vector qa within II. The ray v will be
determined once we know not only qa but also Dqa. Now laDqa = D(laq

a) = 0,
by (7.1.44), so Dqa is necessarily orthogonal to la. By a change in the scaling

We note here that not only in the Kerr theorem (7.4.8), (7.4.14) is one effectively
concerned with CR-functions, but this is true also of Lemma (7.3.15), etc.
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T[P] (all neighbouring rays)

~H[P] (abreast rays)

v ' v

"7 77
Fig. 7-5. For any choice of (spacelike) hypersurface Jff in Jt, a CR-structure can be
assigned to PJf%. This CR-structure varies as 3tf is moved unless M is conformally
flat.

of v we can add an arbitrary multiple of la to Dqa so as to bring it into the
plane EL Thus, the different possible choices of neighbouring abreast rays \
to |i, i.e. the different points of if [ u~|, are labelled by the different choices of
pairs of vectors qa, Dqa lying in II. The action of J (Fig. 7-5) now turns out to
be simply a rotation through a right angle (in a left-handed sense* about the
spatial projection of la) of both vectors qa, Dqa within II (see Penrose 1983b).

It is evident from Fig. 7-2 that a bundle of abreast neighbouring rays to \i
will be shear-free at P if and only if it is invariant under the action of J, so
defined. The first two diagrams of Fig. 7-2, representing the presence of
convergence or twist, are invariant under a right-angle rotation whereas the
third, representing the presence of shear, is not. It would in fact now follow
that if such a definition of J assigns to PJV a realizable CR-structure, then a
Kerr-type theorem would arise, describing the ray congruences which are
shear-free at their intersections with Jf.

It actually turns out that this definition of J does satisfy the integrability
conditions of a CR-structure (realizable if ^f is embedded real-analytically

This is for the space P^
right-handed.

m that we are considering here. For P^V*, the sense would be

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.004
https://www.cambridge.org/core


7.4 SFRs, twistors and ray geometry 217

in an analytic space-time Ji). Direct arguments have been given by LeBrun
(1984) and R.L. Bryant*. We outline a different argument here which, for
the analytic case, gives the required complex manifold ^"(Jf) explicitly, in
which Jf is embedded as a real hypersurface and from which it inherits its
required CR-structure.

The manifold ZT( Jf) will be called the hypersurface twistor space for Jf,
and its definition, assuming appropriate analyticity for #F in Jt is as
follows. (Further details may be found in Penrose 1975a, 1983ft.) First
complexify Jf and Jt, in the neighbourhood of ^f (i.e. choose local analytic
coordinates and then allow them to acquire small imaginary parts, cf. §6.9,
p. 127), to produce the slightly 'thickened' complex manifolds CJf, CM.
Next, consider complex curves in CJf, referred to as (i-curves, which have
(complex null) tangent vectors

oAoBNAB, (7.4.51)

Na being normal to Jf, where oc is parallelly propagated along the curve:

oAoBNABVAA.oc = 0. (7.4.52)

Equation (7.4.52) provides an ordinary differential equation defining the /?-
curves.

The significance of (7.4.51) is that it is automatically orthogonal to Na,
and therefore tangent to C^f, and also is of the form oACA'. In flat or
conformally flat (complex) space-time, the ^-planes (cf. just after (7.4.10)
and §9.3) are the totally null complex 2-surfaces with tangent vectors of this
form where, at each point, holding oA fixed and varying CA' we get the entire
tangent space. It we assign a specific oA at each point of the /?-plane, where
oA is parallelly propagated over the surface, then it defines a [?]-twistor.
Equations (7.4.51) and (7.4.52) are just the restrictions of these properties to
Jf, so that for M conformally flat the solutions of (7.4.51) are the
intersections of J f with jS-planes and do, indeed, define the [?]-twistors for
M. In the general case, because everything in the definition is holomorphic,
the solutions of (7.4.52) constitute a complex 4-manifold, and this is the
required space F(tf). The /7-curves themselves are the points of the
complex 3-manifold P3T(j^). The overall scaling for the parallelly propa-
gated oA defines the extra complex dimension in ^~(Jf). The elements of

[or P^(Jf)^ are our sought for [projective~\ hypersurface twistors.

An interesting approach due to Sparling (1985) makes use of the concept of Fefferman
metric (Fefferman 1976), which is defined on a certain circle bundle over the CR-
manifold and from which the CR-structure can be derived. Sparling's Fefferman metric
is dUadLJ* (expressed locally) and it is defined on the factor space oiJf{3tf) by the real
scalings for the twistors. See also Ko, Newman and Penrose 1977, Lugo 1982.
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More correctly we should refer to this space as ^~#(Jf) to distinguish it
from ^*(Jf) , which is defined similarly but now the tangent vectors to the
complex curves in CJtf, called a-curves, have the form

nA'nB.NAB> (7.4.53)

and it is the primed spinor nc. which is parallelly propagated along the
curves:

nA'nB,NAB'VAA,na = 0. (7.4.54)

Complex conjugation interchanges a-curves with j?-curves and takes J f to
itself.

A /?-curve which contains a real point (point of Jff) must meet its complex
conjugate (x-curve at that point - since the point is invariant under complex
conjugation. (If C^f is 'thin' enough, Jf being spacelike, these will actually
be the only points at which a /?-curve can meet its conjugate a-curve.) The
elements of ̂ # p f ) lor P ^ # p f ) ] which represent such jS-curves (the j8-
curves meeting Jf) are called null [projective] hypersurface twistors; as are,
correspondingly, the elements of 9-\tf) [or P3rm(Jf)] for which the a-
curve meets 3tf. The spaces of these null twistors are denoted by J^m(Jf) [or
PJr9W\ and jr*{tf) {or V>Jf\tf)\ respectively.

To tie this in with our earlier discussion, we note that at the intersection P
of a /?-curve with its conjugate a-curve (the case of a null hypersurface
twistor), we can choose

L = oAnA, = oAoA.

(since under complex conjugation oA becomes nA> and oA>:= 6A). We then
define \i to be the (o^-scaled) ray whose direction is that of la at P (see Fig. 7-
6). Thus JV.W) {or P ^ # p f ) ] can be identified (locally) with Jf [or P^T]
and provides the CR-structure that we required. We note, however, that
this CR-structure is dependent upon the choice of Jf, and (except in the case
of conformally flat M) will generally vary as 3tf is moved within Ji.
Compatibility with the invariant contact structure of JT (in the sense that
the holomorphic tangent spaces remain the spaces of abreast rays, though
their complex structure changes) is maintained as J f moves.

An important fact of these constructions is their conformal invariance:

(7.4.55) PROPOSITION

The spaces Jf{tf) and P ^ ( j f ) , and also the forms h and E of the invariant
contact structure are unaffected by a conformal rescaling gab^^2gab of the
metric of M, where we choose oA\-+oA.
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7.4 SFRs, twistors and ray geometry 219

Fig. 7-6. The connection between hypersurface twistors, dual hypersurface twistors
and null geodesies. There is no simple relation between the /^-curves in different
hypersurfaces in general. This corresponds to the fact that the CR-structure of
Fig. 7-5 generally depends upon J4?.

Proof: The conformal invariance
fact that

and PJ^(Jt) follow from the

oA<yAA.oc - TCA,oA) = Q-'OAVAA,OC (7.4.56)

under the given rescaling, by (5.6.2), (5.6.14), (5.6.15), so that their defining
equation (7.4.52) is invariant. The invariance of h and £ under conformal
rescalings follow from their invariance under propagation along the ray p.,
once it is observed (e.g. from (7.4.56)) that parallel propagation of oA along
\i is preserved under the rescaling. For if the rescaling is applied near one
point of \i it obviously cannot affect the values of the forms at some distant
point of \i. The invariance of h under conformal rescalings is also evident
from (7.4.27) since qa^qaJa

h^L>an(* the invariance of L then follows from
(7.4.35).

The hypersurface form of the Kerr theorem can be stated as follows:

Assuming appropriate analyticity of all quantities involved, a ray
congruence is shear-free at its intersection with a hypersurface Jif iff
it is defined by the vanishing of a [homogeneous] holomorphic
function in P ^ # p f ) [or ^ # p f ) ] . (7.4.57)

Thus the ray congruences shear-free at ^f are given by the intersections of a
complex (holomorphic) hypersurface in P>^#pf) with PjVm{3tf) (see
Fig. 7-7). The essential geometric content of this fact, in terms of the
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complex (Kerr)
surface

Fig. 7-7. The hypersurface version of the Kerr theorem for curved space-time. A
ray congruence with vanishing shear at Jtf corresponds (in the analytic case) to the
intersection with PA\(Jf) of a complex analytic surface in P^

geometry of the CR-structure on PJV%(J^) (cf. Fig. 7-5) is that such an
intersection (a CR-hypersurface) must have tangent spaces which, where
they intersect each if [P], are invariant under J, this fact corresponding to
the congruence being shear-free at J4f. The detailed verification of these
matters is straightforward and follows the lines of reasoning that we have
been following earlier.

The role of analyticity

A remark concerning the analyticity requirements at J f is appropriate here.
We needed such analyticity in order to define the 'complex thickenings' CJf
and CJt that were needed for ^~(Jf). However, our original geometrical
definition of J for J^(J^) did not require such procedures, so the CR-
structure for J^(Jif) (perhaps non-realizable) could be directly defined,
provided that the required integrability conditions could be established.
Moreover, the fact that these integrability conditions must actually be
satisfied can be established without further calculation once one has
verified that in the analytic case our geometrical definition of J agrees with
the one provided by the hypersurface twistor construction. (Indeed, this is
easy enough to check by examining the local twistor descriptions at P.) The
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7.4 SFRs, twistors and ray geometry 221

integrability conditions are just a system of differential relations which are
automatically satisfied in the analytic case. Since these relations are
precisely the same in the non-analytic case as in the analytic case, their
satisfaction in the former case follows from that in the latter.

This establishes the fact that J^(jf) is a CR-manifold whether or not the
analyticity conditions hold at Jf. However, as remarked earlier, these
'integrability conditions' for a CR-manifold are not sufficient to ensure that
it can be realized as a real hypersurface in a complex manifold, and without
analyticity the spaces ^~(Jf) and P^(J^) will generally not exist. In such
cases, J^(Jf) will be lacking in CR-functions and, as a consequence, it may
turn out (cf Lewy 1957) that there are no ray congruences whatever that are
shear-free at J?\

Even when the analyticity conditions do hold at J f - or else in the case of
(conformally) flat space-time, when J^ is irrelevant - considerations of
analyticity play a role for the congruence itself. In our statements of the
Kerr theorem we always needed to assume that the congruence was
analytic, it having been pointed out {cf the remark just before Theorem
(7.4.8)) that non-analytic SFRs do in fact exist in M. The example
mentioned (the system of rays meeting a non-analytic curve) is twist-free,
and it is of some interest to note that when twist is present, a 4one-sided'
Kerr function always (locally) exists in the sense depicted in Fig. 7-8. The
sense of the twist determines the side of PN (or P^V) into which the Kerr
surface locally extends, namely IPT+ (or PT + ) in the case of a right-handed
twist, or PT_ (or (PT~) in the case of a left-handed one. (The same would

describes twisting
non-analytic SFR

complex (Kerr)
surface with boundary

surface cannot be
extended holomorphically
to this side

Fig. 7-8. Non-analytic rotating SFRs in Ml correspond to 3-surfaces in PN which
are (locally) the boundaries of complex manifolds in PT on one side of PN only (the
side depending upon the sign of the rotation) and which cannot be extended as
complex manifolds in PT on the other side of PN.
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apply for P$~± or V>2T±, suitably defined.) These results follow from certain
extension properties which hold for CR-functions in circumstances when
the holomorphic 'convexity' properties are appropriate (Lewy 1956, cf.
Hormander 1966). These convexity properties turn out to be determined by
the twist of the congruence.

This has relevance also to Robinson's theorem (cf. (7.3.14)). In (7.3.15) one
is, in effect, looking for CR-functions on a three-real-dimensional CR-
submanifold of, say, PN (as restrictions of holomorphic functions on the
Kerr surface). But without the assumption of analyticity, Robinson's
procedure leads to a differential equation of the Hans Lewy type (Lewy
1957), which in general has no solutions (cf Tafel 1985). A full discussion of
all these matters would carry us too far from our purposes here.
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Classification of curvature tensors

8.1 The null structure of the Weyl spinor

One of the most immediate and striking examples of the utility of
spinor techniques in general relativity theory is the spinor classification
of the Weyl tensor (Cartan 1922a, p. 194, Penrose 1960,1962). This greatly
simplifies the (originally more familiar) Petrov classification of the Weyl
curvature tensor (Petrov 1954, 1966; cf. Pirani 1957, also Ludwig 1969,
Kramer, Stephani, MacCallum and Herlt 1980 and references contained
therein). As we have seen in (4.6.41) the Weyl tensor (or empty-space
curvature tensor) is represented by a totally symmetric spinor ^ABCD- I n

Proposition (3.5.18) we showed how any (non-zero) totally symmetric
spinor of valence [° $] c a n be expressed, uniquely apart from factors and
reorderings, as a symmetrized product of n spin-vectors. Their flagpole
directions are the n principal null directions (PNDs) of the symmetric
spinor. These define the spinor uniquely, apart from an overall complex
scale factor. The pattern of coincidences among the PNDs provides a
classification scheme for the spinor. In this chapter we shall investigate in
some detail how this classification scheme applies to *¥ABCD

 anc* how it
relates to the geometry and algebra of the gravitational field. In the final
two sections we show how the scheme can be generalized so that it applies
also to symmetric spinors generally and, in particular, to the Ricci spinor
(or trace-free Ricci tensor).

The GPNDs and their multiplicities

We shall be concerned with descriptions at a single point P of space-
time only. The canonical decomposition for ^ B C D a t P *s

VABCD = *iJBVc8D). (8.1.1)

The GPNDs (gravitational principal null directions), being the
flagpole directions of OLA, pA, yA and dA, can be located according to (3.5.22)

223
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224 8. Classification of curvature tensors

by finding the zeros of the polynomial

^ A B C D ^ 8 ^ 0 = ̂ o + 44V + 6¥2z2 + 4¥3z3 + V
= (a0 + zai)(j80 + z^)(y0 + zyx)(&0 + z5x\ (8.1.2)

an arbitrary spin-frame having been chosen (so #:= oAiA = 1) and £A taken
as (1, z). The multiplicities in the factorization (8.1.2) give the corresponding
multiplicities in the GPNDs. Thus knowledge of the five quantities
¥0,...,*F4 (cf (4.11.6)) will lead directly to the location and coincidence
scheme of the GPNDs. Recall that *F0,...,*F4 can be obtained directly
from the Riemann tensor and null tetrad by means of (4.11.9). This affords
a method of obtaining the GPNDs directly from the tensor expressions
for the curvature.

Alternatively we can use the tensor expressions in Table (8.1.4), which
gives equivalent spinor and tensor conditions for the null vector

va= ±^AlA> (8.1.3)

to be a simple, double, etc., GPND of a non-zero ^ ABCD-

At

At

At

least

least

least

simple

double

triple

Quadruple

11/ tAz
*ABCD^ S

U/ fAz
tABCD^ S

VABC,?-

BZcZD = o

BzC

B _

= 0

= 0

0

V[fCa]bc[dve]v
bvc = 0

Cabc[dve]v
bvc = 0

Cabc[dVe)VC = 0

Cabcdv
c = 0

(8.1.4)

The equivalence between the first and second columns is a consequence
of Proposition (3.5.26) (and was already used in Chapter 7). To establish
the equivalence between the second and third columns we work out,
successively, the following identities, using (4.6.41), (3.4.55), and (2.5.23):

Cubed*? = VABCDFSA'B'ZD' + CC.

Cabc[dve]v
cvb = -

V[fCa]bc[dVe]V
CVb = - ^yscx^^^SoES^o^Ar + CC. (8.1.5)

where cc. in each case stands for the complex conjugate of the signed
preceding term. From these identities it is at once apparent that the
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8.1 The null structure of the Weyl spinor 225

conditions in column 2 of Table (8.1.4) imply the corresponding conditions
in column 3. For the converse we observe that the vanishing of any of
the expressions on the left in (8.1.5) implies the vanishing of both
corresponding terms on the right, as is seen on successively transvecting
with eA'B' and eAB in the first two cases, and with eDE> and eDE in the last
two cases.

We incidentally extract from this discussion the fact that each of the
tensor conditions in Table (8.1.4) is equivalent to the same condition with
~Cabcd = \(Cabcd + i*Cabcd) (cf (4.6.42)) taking the place of Cabcd, and thus,
separating real and imaginary parts, is equivalent to the same condition
with *Cabcd in place of Cabcd.

The possible coincidence schemes for the GPNDs at any one point are
given by the five different partitions of the number 4. These, together with
the remaining possibility that ^ABCD vanishes, define the different types
of ^ABCD* specified as follows:

{} 0 (8.1.6)

where it is assumed that &A>>PA,yA and dA are all non-proportional
and non-vanishing. The following notation is also used in the literature,
and frequently referred to as the Tetrov types':

1 = {1111}, II = {211}, D = {22}, III = {31}, N = {4} O = { - } ,

(8.1.7)

where O denotes the zero Weyl spinor, D stands for 'double' (or,
originally, 'degenerate'), and N for 'null', by analogy with the electro-
magnetic null field which is characterized by the coincidence of all (two)
PNDs. The symbols I, . . . , O are occasionally used as generic letters to
denote Weyl spinors of the corresponding type, e.g. Dabcd. All types but
{1111} are algebraically special (cf. after (7.3.5)). Petrov originally classified
I, D, and O as his type 1; II and N as his type 2; and III as his type 3.

Occasionally one needs to add together several spinors (or tensors) each
of which has Weyl spinor (or tensor) symmetry and whose canonical
decomposition is known, or partially known. Then the following proposi-
tion may be useful:
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226 8. Classification of curvature tensors

(8.1.8) PROPOSITION ('Addition Theorem')
/ / two or more Weyl-type summands have one or more PNDs in common,
then the multiplicity of any such PND in the sum is not less than its smallest
multiplicity in the summands.

For example,

= ociAocBpcaD)

(applying the canonical decomposition to the expression in curly
brackets), showing that the sum is {211} or more special. The general case
is similar.

Specialization scheme

It is instructive to indicate by means of a diagram how the different
types can arise as specializations of one another:

{mi} ^
211 ^

{22} t ; { 4 | ^
{ 4 |

{-} ^

The arrows point in the direction of further specialization (greater
degeneracy), it being evident from (8.1.6) that each such specialization can
indeed be achieved algebraically (i.e. at one point, satisfaction of field
equations not being involved here). Specializations can also be achieved
which are compositions of the primitive specializations depicted in (8.1.9).
For example, we can achieve {1111} -• {4} via the routes {1111} —> {211} —̂
{22}->{4} or{llll}->{211}->{31}-^{4}. Moreover such specializations
can also always be achieved directly. For example, <x(A((xB + e/?B)(ac + syc) x
(ocD) + edD)) under e-+0 directly achieves {1111} —> {4} without passing
through any intermediate stages; s(x{A(xBpcyD) under e-+0 directly achieves
{211} -> {-}, etc. It should be emphasized that each specialization in (8.1.9)
gives a limiting case rather than a particular case of its antecedent. By
definition, the types are mutually exclusive.

8.2 Representation of the Weyl spinor on S+

In order to visualize the GPNDs it is sometimes helpful to represent
them as points on a sphere S+, the Riemann sphere of the complex number
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8.2 Representation of the Weyl spinor on S+ 227

z. We recall from §1.2 how this sphere - a cross-section of the future null
cone of P - conveniently represents the different future-null directions
at a space-time point P. Each GPND at P corresponds to a single point
on 5 + , and so the entire Weyl spinor is specified-up to a complex
multiplier - by the unordered set of four points A,B,C,D on S+ which
represent the four GPNDs at P. To achieve specializations of type (other
than to {-}) one simply moves some of A,B9 C9D into coincidence with
one another on S + .

It is instructive to consider the effect of a Lorentz transformation on
the GPNDs. The reader is reminded of the discussion in §1.2: any
active Lorentz transformation effects a conformal mapping of S + to itself.
Such transformations (and mappings) are generated by the rotations of
S+ and the pure boosts, the latter corresponding to a pair of antipodal
points Q~,Q+ on S+ remaining fixed while all other points are
transported along meridians with Q~9 Q

+ as poles - away from Q~ and
towards g + . (See Fig. 1-7, volume 1, for a graphic illustration of this.)

These transformations can also be regarded as passive Lorentz trans-
formations, i.e. as leaving the space-time unchanged but describing its
changed appearance relative to an observer who changes his velocity and
orientation. This is perhaps the simpler view here since it is a little tricky
to define an active Lorentz transformation at a point of curved space-time.
Let us in particular examine the effect of high-velocity passive Lorentz
transformations on the representations of the GPNDs on S+, and of
limiting transformations as this velocity tends to unity. Evidently no finite
Lorentz transformation can affect the type of the Weyl spinor (i.e. the
coincidence scheme for A, B, C, D) but in the limit the type can change. For
example, in the limit of a boost all points on 5 + except Q~ are carried
into coincidence with Q+, while Q~ stays put. Hence, in general the Weyl
spinor is carried into one of type {4} (cf. Penrose 1960, 1976b; and also
Pirani 1959). In the particular cases when one, two, three or four of A9 B9

C,D coincide with Q~, the limiting type will be {31}, {22},{31} or {4},
respectively.

So far we have discussed the principal null directions only. But the
behaviour of the actual components of the Weyl spinor (and thereby of
the Weyl tensor) under such boosts is also of interest. Again the spinor
formalism greatly simplifies the discussion. Only if the limiting type is {22}
will the Weyl spinor components remain finite (i.e. neither zero nor infinite)
in the limit. In the general case, or when only one of A,B, C,D is at g" ,
the Weyl spinor components become infinite, while in the cases when three
or four of A,B,C,D are at g~they become zero. This is easily seen by
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choosing a spin-frame oA
9 i

A, where the flagpole of oA corresponds to Q "
and that of iA to Q + . Then the passive Lorentz transformations under con-
sideration are defined by (cf. (1.2.37))

oAi-*s~1oA, iA^siA, (8.2.1)

the limit being approached as e -> 0. Thus we have

a0 = aAoAy-+e- x a 0 , oc1 = ocAiA^socu

Whence OLA goes to infinity as e"1, unless ao = 0 (i.e. unless the point
A is at Q~) in which case it goes to zero as e. Similarly for fiA,yA, and
5A, and so the above assertions follow at once. Evidently, in order to give
rise to a finite limit in these situations, the Weyl spinor components would
have to be continuously scaled down or up (as the case may be) during
the passage to the limit. In physical terms, a limiting boost characterized
by Q~ and Q+ on S+ corresponds to the world-view of an observer whose
world-line approaches the null direction characterized by Q~. Thus, if his
velocity is in a general direction (relative to the GPNDs) he will 'observe'
all the future-pointing GPNDs to come into coincidence behind* him, and
most of the components of the Weyl spinor (and tensor) in his frame will
tend to infinity. If his velocity approaches the (future) direction of a simple
GPND, then that remains fixed and simple in the limit, the type becoming
{31} and some of the Weyl spinor components becoming infinite. He must
approach a double GPND if his limiting measurements of the Weyl spinor
are to remain finite, in which case the limiting type is {22}. If he approaches
a triple or quadruple GPND, his limiting measurements of the Weyl spinor
become zero (he is 'following the wave') and the type stays the same.

The GPNDs in highly symmetrical space-times

The effect of ordinary finite Lorentz transformations on the Weyl
spinor and on the GPNDs will be important in much of what follows. In
particular, each type has its own characteristic symmetry under the Lorentz
group. Even some very simple symmetry considerations can give useful
information about the type. For example, in the well-known Friedmann-
Robertson-Walker cosmological models (cf §9.5), there exists at each
point a timelike vector (corresponding to a galaxy 'at rest in the universe')
relative to which the space-time is spherically symmetric. The Weyl tensor
must share this symmetry. But no pattern of 1, 2, 3 or 4 points on S+

* This corresponds to the fact that the past null directions - the directions the observer
physically sees - come into coincidence in front of him.
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can be spherically symmetric, whence the type must be {-} at each point,
i.e. ^ABCD

 = 0- From Theorem (6.9.23) we thus have at once:

(8.2.2) PROPOSITION

Every Friedmann-Robertson-Walker model is conformally flat.

As a second example, consider the Schwarzschild metric. At each point
the space-time is axially symmetric about the spatial direction of the
source, and also time-symmetric. Since the pattern of GPNDs must share
this symmetry, each one of them must point towards or away from the
source, and thus the type must be {4}, {31}, or {22}. (The metric being
vacuum and the curvature nowhere zero, {-} is excluded.) Now under time-
reflection an outward future-null direction becomes an inward future-null
direction and vice versa (counting ± va as the same null direction).

Time-symmetry thus excludes {4} and {31}. (We shall see shortly - after
Fig. 8-3 - that axial symmetry suffices for this.) Hence the type is {22} (cf
also p. 108). Corresponding considerations apply, for example, to the plane-
wave space-times. In this case the type is {4}.

The fingerprint of the Weyl tensor

Before examining the various types in detail, there is one further
general consideration which has, among other things, a bearing on the
symmetries of ^ABCD- I n addition to the location of the GPNDs there is
also the 'phase' and the 'magnitude' of ^ABCD needed for a complete
description. We shall first examine how this phase can be interpreted in
relation to 5 + . Consider the quantity

V = VABeDeAZBZceD. (8.2.3)

Provided the flagpole of £A is not in a GPND (and £A / 0), then we
can arrange that

¥ > 0 (8.2.4)

by a suitable choice of flag plane of £A
9 keeping the flagpole fixed.

There will be four different such choices of £ achieving the same effect,
namely

± ZA, ± i ^ . (8.2.5)

The first two of these have identical flag planes, as do the second
two, but the direction of the flag plane of the first pair is opposite to that

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.005
https:/www.cambridge.org/core
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of the second pair. In terms of S+ , therefore, we have two special tangent
directions (arising from those flag planes giving *F > 0) at each point of
S+ which do not correspond to a GPND, these two tangent directions
being opposite to one another. The unoriented tangent direction (or line-
element) is therefore unambiguously defined at those points. We thus have
a field of such directions on S+ which characterizes not only the GPNDs
(as we shall see) but also the phase of ^ABCD^ because

then ^ ^ e - * ^ + 2 k " > ^ (8.2.6)

(k integral) in order to preserve (8.2.4). The tangent directions there-
fore rotate through an angle - j0 under the phase change (8.2.6).

We call this pattern of directions on S+ the fingerprint of the Weyl tensor.
The fingerprint determines ^ABCD U P to a positive factor. Hence it deter-
mines the Weyl tensor Cabcd up to a positive factor (— Cabcd corresponding
to the orthogonal fingerprint pattern).

The fingerprint tangent directions in fact have a straightforward physical
interpretation. We saw from the Sachs equation (7.2.12) that the change
in the shear of the rays of a null-geodetic congruence is effectively governed
by the value of ^ Q , while the change in convergence is governed by <J>00-
We can now consider a null-geodetic (/-congruence ^ containing a
particular ray which passes through a point P in the flagpole direction
of £A, and take oA = £A at P. The curvature quantities O00 and ^ Q have
the effect of a lens on these rays (cf Penrose 1966), O00 effecting a positive
focusing and *P0 a purely astigmatic focusing. We refer to Fig. 7-2 (after
7.1.49)) describing the interpretations of Re(p) and o in order to see this.
However, whereas Re(p) and a refer to the relative 'velocities', <X>00 and
^o refer, in effect, to the relative 'accelerations' of neighbouring rays. Only
if a ray bundle passes P without shear and convergence (p = a = 0 at P)
will O00 and ^ 0 giye the increments in p and a directly. The direction
of maximum focusing is given by the minor axis of the ellipse in Fig. 7-2,
this making an angle ^ a r g ^ with the oA flag plane. However, we have
arranged the oA flag plane to be that of £A, where *F0 is the *F > 0 of
(8.2.3) and (8.2.4), so the maximum focusing plane here coincides with the
flag plane and thus with the fingerprint direction on S+ . Hence we have:

(8.2.7) PROPOSITION

The fingerprint gives the directions of astigmatism or maximum positive
focusing directions (the maximum defocusing directions being orthogonal to
these) in the lens effect of space-time curvature at P (see Fig. 8-1).

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.005
https:/www.cambridge.org/core


8.2 Representation of the Weyl spinor on S+ 231

fingerprint
direction

Fig. 8-1. The fingerprint direction on S+ corresponds to the direction of maximum
(inward) focusing by Weyl curvature.

The fact that there are four GPNDs at each point is closely related to
a well-known topological property of vector fields on a sphere (S+). This
is usually stated (cf. Maunder 1980; also Chern 1979, Thorpe 1979) in the
form that there is a net total of two points (correctly counted) at which
a vector field* o n S + has to vanish (some of these points possibly count-
ing negatively). In the fingerprint we have a field of line elements which,
being non-oriented, allow patterns like that indicated in Fig. 8-2a,
surrounding the points (GPNDs) at which the line elements are not defined
(cf Penrose 19796), in addition to those indicated in Fig. S-2b. Arrows
could not be consistently assigned to the directions in Fig. S-2a. Since two
of the non-orientable patterns could always be fused into one orientable
pattern, this has the effect that there is now a net total of four vanishing
points. In fact, each GPND counts positively, so the existence of four
GPNDs conforms to the topological result. In the case of a multiple GPND
the count has to be that of the multiplicity. The pattern of line elements
is, indeed, different for each multiplicity, and is illustrated in Fig. 8-3. We
observe that rotational symmetry about a GPND occurs only in the case
n = 2. Hence rotational symmetry suffices in the Schwarzschild case to

In fact, had the foregoing discussion been concerned with the electromagnetic PNDs
we should have had a vector field on S+, the orientation of the line element arising from
the direction of the electric vector. Then we have two PNDs in agreement with the
topological result. A corresponding topological theorem exists for each (integral or
half-integral) spin.
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J^>7^>$

£=f<i

m

N W V

(a) (b)

Fig. 8-2. Some types of singularity that can occur in a fingerprint' pattern:
(a) consistent orientation not possible (applies to spin two); (b) consistent
orientation possible (applies to spins one or two). The bottom figure in each case
counts negatively and does not feature in the present discussion.

Fig. 8-3. The types of fingerprint singularity that can occur for the Weyl curvature,
corresponding to PNDs with «-fold multiplicity.
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8.3 EigenspinorsoftheWeylspinor 233

exclude the types {31} and {4}, as we asserted at the time. The fact that
the case n = 2 allows several essentially different patterns is connected with
the fact that rotational symmetry loses us 'one parameter's worth' of
information in the orientation of the pattern, this being regained in the
variety of pattern.

It is worth remarking that the symmetry properties of the fingerprint
configurations near a GPND point P are related to the spin-weight of
the various *Pj. Taking oA = iA we have x¥0 = '" = x¥n_1=0 for an
H-fold GPND. The form of the fingerprint pattern near P is governed by
the leading non-zero term in the expansion of (8.2.3) for which ^A is replaced
by oA + eiA, which is ¥„. Thus there is local complete rotational symmetry
in the case n = 2 (spin-weight zero); there is no rotational symmetry in
the cases n = 1, 3 (spin-weight ± 1), the local pattern being characterized
by a unique tangent direction to S+; and there is simply central symmetry
in the case n = 4 (spin-weight — 2).

8.3 Eigenspinors of the Weyl spinor

Consider the complex three-dimensional space SiAB) of symmetric
spinors* (j)AB of valence [° °] at a given point P of M. When it
is written in the form HPl

AB
CD, the Weyl spinor may be regarded as effecting

a linear transformation on SMB):

<l>AB^ABCD<t>CD- (8-3.1)

The space &AB has a complex metric canonically defined so that the
scalar product between two elements (I>AB^XABE(^AB ls

4>ABXAB = { - SA{A°£BO)B}4>ABXAOBO, (8.3.2)

the expression in { } playing the role of a 'metric tensor'. Under active
spin transformations they undergo proper complex orthogonal trans-
formations** for which the above metric is clearly invariant. Given any
spin-frame oA,iA, we can construct a corresponding orthonormal basis

This space would be denoted by 6M B )[P] in accordance with our general notational
scheme, but we drop the 4[P]' consistently in this chapter since all considerations refer
just to a single point in Jt'.
This is the group 50(3, C), which is isomorphic with the restricted Lorentz group and
1-2 homomorphic with the spin group SL(2,C). This 1-2 homomorphism is a
consequence of the 1 -2 correspondence between standard bases in <BiAB) and S^ that we
establish by means of (8.3.3).
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for thus:

1 i 2 1 3

SAB = ~ —ir(oAoB - iAiB\ 3AB = —7={oAoB + iAiB\ SAB = i y/2o{AiB).
v l v 2

(8.3.3)
Of several different possibilities, we choose the above for later notational
compatibility with the standard spin-frame relation to Minkowski space.
We also note that because of the orthonormality of the basis we need make
no distinction between upper and lower positions for the indices a, P,...

1 2 3

Conversely, given any orthonormal triad 3AB, SAB,SABeSiAB), we
have a corresponding spin-frame oA,iA9 which is unique up to sign.

2 1 2 1
For, orthonormality implies SAB — \SAB is null (i.e. (dAB — idAB) x
2 1

(SAB — \5AB) = 0), which therefore defines a spinor iA uniquely up to sign,
by

This is orthogonal to SAB (but not proportional to it), so the canonical
3

decomposition (8.3.3) (3) of SAB yields a unique spinor oA, given the choice
2 1 3

of sign for iA. Since SAB + iSAB is also null and orthogonal to 6AB it must
1 2 3

be proportional to oAoB. The normalization of SAB,dAB, and SAB is all
that remains to be satisfied, and this is clearly achieved by the spin-frame
condition oAiA = 1.

With respect to the basis (8.3.3) we can define 'Cartesian' components for

any (pABe&(AB):
1 — i 2 1 3 r

We remark that if (j)AB defines an electromagnetic field according
to (5.1.39), then these components are simply those of the complex 3-vector
- 2"± i (£ - \B) in the standard frame given by (3.1.20) (cf (5.1.59), (5.1.60)).

Similarly we have the following matrix *F of components of *¥AB
CD with

respect to this basis:

-TV, (8.3.5)
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where y¥0,...,
x¥4 are the standard Weyl spinor components considered

earlier (cf. (4.11.6)). Notice that the matrix *F is trace-free. This follows,
of course, from the symmetry of vFy4BCD which implies

In fact, this is the only restriction on the complex matrix *F apart from
symmetry, since this leaves us with five independent matrix elements
linearly related to ¥ 0 , . . . , *F4.

An eigenspinor of the Weyl spinor is a non-zero element ^ B e S U B )

for which

VABCD<I>CD = W A B (8-3.7)

for some complex X called the corresponding eigenvalue. Expressing
(8.3.7) in components according to the basis (8.3.3), we see that X is also
an eigenvalue in the ordinary sense of the matrix *F. If Xl,X2iX3 are
the three eigenvalues of *F we thus have

xl + x2 + x3 = vAB
AB = o

Xl + X2
2 + Xl = VAB

CDVCD
AB=:I (8.3.8)

1 3 , 13 . J 3 _ \ u CDXJJ EFuj AB _ . r
A\ ' A2 "+" A3 ~ * AB *CD * EF ~-J->

and we note that X1,X2,X3 are the roots of

6/13 - 3//1 - 23 = 0.

Using the expression

4- ^4OAOBOCOD^ (8-3.9)

(whose validity follows at once by taking components of both sides),
we can readily obtain the first of the following expressions for the invariant
scalars I,J (the second will follow from (8.3.11) below):

J = 6 (8.3.10)

Furthermore, from (8.3.8) we get (by cubing the first line and subtracting
three times the product of the first two)

J = 3>M2/l3, (8.3.11)

which shows that the determinant of *F is | J and this leads to
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the second of (8.3.10); and also (by cubing the second line)

I3 - 6J2 = Kkx - X2)\X2 - X3)
2(X3 - X,)\ (8.3.12)

which establishes that

two or more Is equaloP = 6J2. (8.3.13)

The relation between the eigenvalues and cross-ratios

To investigate the geometrical significance of kl9X29k391 and J, we recall
from (1.3.9) that any ordered set of four null directions - in which no three
coincide - has a uniquely defined cross-ratio (an element of C u {oo }) which
is invariant under restricted Lorentz transformations. Translating (1.3.10)
into spinor notation, we have, for the cross-ratio of the GPNDs

the notation on the left agreeing with that of (1.3.9) (in which the points
A9B9 C,D of §8.2 would be regarded as elements of Cu{oo}) if S+ is taken
to be the Riemann sphere for Cu{oo} according to the prescriptions of
§1.2. We have

{A,B9C,D} = {B,A,D,C} = {C,D,A,B} = {D9C9B9A}. (8-3.15)

Let us now assume that B9C,D are distinct; then we can send them
into any other specified ordered set of distinct null directions by a unique
restricted Lorentz transformation. The cross-ratio then uniquely defines
the image of A under the transformation in relation to the images of B, C, D.

Set

X = {A,B9C,D}. (8.3.16)

Then, by the above remarks, we can choose our spin-frame oA,iA

and the scaling of a etc. so that

PA = OA9 yA = oA + iA, dA = iA (8.3.17)

(giving j80 = 0, fix = 1, yo= - 1, yx = 1, <50 = - 1, <5i = 0), whence,
for some r\ ^ 0 (a factor 6 being inserted for convenience),

by (8.3.14) and (8.3.16) (giving a o = - 6 ^ , a1=6>/). The form (8.1.2)
then becomes

(8.3.19)
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so that, in this particular frame,

(8.3.20)

Thus, by (8.3.10),

/ = 6rj2(X
2 ~ X + 1) = 6>/2(x + a>)(x + o>2), (8.3.21)

(where co = e2*i/3) and

^=-6>/3(x+l)(z-2)(x-i). (8.3.22)

We observe at once from these expressions for / and J that:

GPND equianharmonic (x= -co, - co2)o J ^0 = I (8.3.23)

and

GPND harmonic fa=-l,2,±)oJ = 0 * / (8.3.24)

Observe that in (8.3.8) we have three equations for the three As
in terms of/ and J (the last two being replaceable by (8.3.11) and (8.3.12)),
while in (8.3.21) and (8.3.22) we have / and J expressed in terms of x and
rj. We can thus solve for the As in terms of x and rj. By inspection, we
find, in arbitrary order

^ = 1 * 1 - 2 * ) , A2 = rj(l+xl A3 = rj(x-2). (8.3.25)

We recall (cf. (1.3.12)) that a re-ordering of X,5,C,D, entails a
replacement of x by one of the values

1-X, X'\ (1-Z)"1, I " * " 1 , Zfo-l)"1- (83.26)
One easily confirms from (8.3.25) that such a replacement, when
accompanied by the corresponding replacement of rj by

-rj, rjx, rj(x-l\ -rjx, rj(l -X) (8.3.27)

respectively, merely permutes the .̂s (the corresponding permutations
of the As being Al,A29A3\-^Al9A3iA2; A3,j.2,4i; A2,k3,Xx\ A3iXl9X2;
A2,AUA3, respectively.

Special cases

The solutions (8.3.25) were obtained on the assumption of distinct
B,C,D (cf. (8.3.17)). Various special and limiting cases are of interest. If
X = 0 or 1, A coincides with B or C, respectively (cf. (8.3.18)); and if x = °o»
rj = 0 (keeping xi finite), A coincides with D. In each of these three cases,
two of the As in (8.3.25) are equal, while the third is distinct. If after such
a coincidence of A with one of J5, C, D the remaining two directions are
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also brought into coincidence, distinct from A, x remains unchanged (as
is clear from (8.3.14)) and equations (8.3.25) remain valid. If, however,
three of A,B,C,D are brought into coincidence, it is clear from (8.3.14)
that, depending on the approach to coincidence, / can take any limiting
value; we shall write this as x = 0/0. (For example, if we put ccA = ayA + b5A,
PA = C1A + dSA9 we find # = 1 — bc/ad; now letting b = fid-^O for arbitrary
fi achieves coincidence of A, B, C, with / -• 1 — fic/a.) For consistency, it
is evident that all As in (8.3.25) must now vanish in the limit. We have
thus established:

Two or more GPNDs coincident <=> x = 0, 1, oo, or 0/0

o two or more As coincident o I3 = 6J2 (8.3.28)

(cf (8.3.13)), and, in particular,

Three or more GPNDs coincident o x — 0/0

<>X1=A2 = X3 = 0 = I = J. (8.3.29)

If we know ^ F Q , . . . , ^ , the eigenspinors may be obtained by
simply finding the eigenvectors (ax, a2, a3) of the matrix (8.3.5), whereupon
the corresponding eigenspinor is given by

1 2 3

<t>AB = a^AB + ^AB + a3$AB

= -—={(a2 - iajo^s + 2ia3oiAiB) + (a2 + iajija}. (8.3.30)
V 2

(This is easily seen by multiplying the first line by ^QD^)
We note that the eigenspinors corresponding to distinct eigenvalues are

orthogonal. This is a well-known result of matrix theory whose proof, in
the present context, is provided by

^1(/>(1MB(/)(2)AJJ = ^(DCD^AB 0(2) = 0(1)CD0(2) 2̂>

where ^ I M B , ^ ( 2 M B are eigenspinors corresponding to respective
eigenvalues kx, X2\ if kx # k2 then 0(I)CD(/)(2)C2> = 0.

Thus, in the situation where all eigenvalues kuk2^ are distinct (i.e.
in the case {1111}) we have a mutually orthogonal triad of eigenspinors
in (5{AB) (this is not a foregone conclusion since our matrix is not
real symmetric), which can be chosen to be orthonormal. Labelling these
1 2 3

SAB,dAB,SAB, we obtain a spin-frame oA,iA (cf after (8.3.3)) according
to which the matrix H* of (8.3.5) is diagonal, say diag (kl9X29X3). Thus
we have, in this frame,

¥ 0 = 4V ¥ , = ^ 3 = 0 (8.3.31)
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8.3 Eigenspinors of the Weyl spinor 239

(from the off-diagonal zeros) and

(8.3.32)

giving

¥o = *W, * i = 0 , xif2=H2-X% ^ 3 = 0, V4 = i « - (8-3.33)

Then, from (8.3.9),

(8.3.34)

and this gives a canonical form for any type {1111} Weyl spinor.
We may compare this with the alternative canonical form given by (8.3.20)
and (8.3.9), for which the oA and iA flagpoles are GPNDs (cf. (8.3.17)). Here
the oA and iA flagpoles are the PNDs of one of the eigenspinors (namely
3

SAB in (8.3.3)). There is obviously a degree of arbitrariness in the choice
of a canonical form, but the present choice (8.3.34) allows us to discuss
the geometric symmetry properties of type {1111} (see §8.5 below)
rather more transparently than would other choices.

Note that if x = X which gives harmonic GPNDs, we have *¥ABCD

expressed as a sum of two type {4} symmetric spinors. Conversely we can
see directly that the sum (or difference) of (non-proportional) type {4}
spinors must be harmonic, since

the cross-ratio of the four factors on the right being harmonic (cf.
(8.3.14)).

The canonical form (8.3.34) does not necessarily require that Xl9X2 and
A3 be all distinct, but merely that a set of three linearly independent
eigenspinors (which can then be chosen orthonormal) exist for y¥AB

CD. In
the cases {211} and {22} we may take x = 0 and substitute into (8.3.34)
to see whether such a canonical form is possible. The result is

VABCD = 6rio{AoBiciD)9 (8.3.36)

which is {22}, showing that the eigenspinors of a {211} Weyl spinor
cannot span ®MB), while those of a {22} Weyl spinor can. Indeed clearly
any {22} Weyl spinor has a canonical form (8.3.36), with r\ = x¥2. Equally
clearly, {-} can take the form (8.3.34) with rj = 0, and the eigenspinors
span <5{AB)- However in the cases {31} and {4} the eigenspinors cannot
span ®(^B) but all have the form ot(A£B) with ocA the multiple principal
spinor of ^^CD (and £A proportional to ocA in case {31}, cf. Table (8.3.41)
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240 8. Classification of curvature tensors

below). For we have aAaBx¥ABCD = 0 and so ¥ABCD<I>CD = WAB

implies l(xAaB(j)AB = 0; thus <xA is a principal spinor of <f>AB as asserted,

or X = 0. But in the latter case it is still true that OLACLB(^>AB = 0, as follows

from xifABCD(t>cD = ^ quite obviously in case {4} and only slightly less

obviously in case {31} (transvect once with the other principal spinor of

Canonical forms for the cases {4} and {31} are obtained trivially by
taking, respectively,

^ABCD = oAoBocoD (8.3.37)
and

VABCD = ~ ^o{AoBociD). (8.3.38)

In either case the freedom ( o ^ z ^ H ^ o ^ y l " V ) is available to absorb any
overall factor. (Note that for {22}, on the other hand, this would not allow
the factor 6rj in (8.3.36) to be eliminated.) In the case {211} we have just
three distinct GPNDs so we can choose the spin-frame such that the
GPNDs lie in any three preassigned directions relative to the frame, say
those of the flagpoles of oA, oA ± iiA, giving

^ABCD = 6i(0A
0B°C0D + °(A°BlClD)\ (8.3.39)

the overall factors being chosen to agree with (8.3.25) with # = 0
(the eigenvalues Xx=X2 = r\, 1-^= —2r\ being those of the matrix (8.3.5)
with ^ 0 = ^ 1 = ^ F 3 = 0, ¥2 = 77, ¥4 = 677). Many other alternative
canonical forms are clearly possible

Summary of canonical forms; Petrov types and Jordan forms

The canonical forms (8.3.34), (8.3.36), (8.3.37), (8.3.38), (8.3.39) for the
various types can be summarized by the following table:

Table (8.3.40)

{1111}

{211}

{31}

{22}

{4}

hx
0

0

0

0

0

0

0

0

0

0

0

n
0

n
0

0

x) o
0

1

0

0

0

* 4

hx
6ri

0

0

1

0

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.005
https:/www.cambridge.org/core


8.3 Eigenspinors of the Weyl spinor 241

The eigenspinors and corresponding eigenvectors are readily found in each
case by referring to the matrix (8.3.5) and translating the appropriate eigen-
vectors into spinor form by means of (8.3.30). The results are collected in
Table (8.3.41) below, where each eigenvalue is placed immediately below
its corresponding eigenspinor. In the cases where more than one eigen-
spinor corresponds to the same eigenvalue, alternative linear combinations
of the eigenspinors could have been used.

Table (8.3.41)

{1111}

{211}

{31}

{22}

°A°B ~ lAlB
tfl-2*)

oAoB

°AOB

0,0,0

oAoB

n

oAoB

0,0

oAoB

0

OA°B + lAlB

O(AlB)

- 2 i y

rj

0{A*B)

0

*A*B

0

°(AlB)

nix -2)

°(AIB)

-2rj

O(Ah)
0

Note that in the cases {1111}, {22} and {-} the eigenspinors span a
three-complex-dimensional space; in the cases {211} and {4} they span a
two-complex-dimensional space; and in case {31} they span a one-complex-
dimensional space. In the original terminology of Petrov (although he used
tensor rather than spinor language), the three cases {1111}, {22} and {-}
were all referred to as 'type V essentially for this reason, the two cases {211}
and {4} as 'type IF, and the case {31} as 'type III'. The scheme (8.1.9) is
drawn in such a way that these different Petrov types are arranged in
columns.

These Jordan normal forms, into which the matrix Hf of (8.3.5) may
be transformed by a similarity transformation, are readily obtained from
(8.3.41). The results are shown in (8.3.42), which also includes the
specialization scheme (8.1.9).
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+ X)

(8.3.42)

8.4 The eigenvectors of the Weyl tensor and its Petrov classification

An eigenvalue equation similar to (8.3.7), but for the Weyl tensor Cabcd can
be set up:

Cab
cdXcd = fiXab, (8.4.1)

where Xab^0 belongs to <Z[ab], the six-complex-dimensional space
comprising the antisymmetric elements of &ab (our interest being essen-
tially confined to one point in space-time, as it was all along in this chapter).
The quantity Xab is called an eigenbivector of Cab

cd corresponding to the
eigenvalue \i. Writing Cabcd and Xab out in terms of their irreducible parts
(4.6.41), (3.4.17),

Cabcd ~ y^ABCD£A'B'£C'D' + eABeCD^A'BC'D' (8.4.2)

Xab = <f>AB£A-B' + £ABtAB', (8-4-3)

equation (8.4.1) becomes

VABCD4>CD = ^4>AB and VA,B,CDlic,D. = ±J%A-B- (8-4-4)

Comparing with (8.3.7), we see that the eigenvalues n of Cab
ci are

H = 21U 2X2, 2A3, 2Xlt 2X2, 2X3, (8.4.5)

where Xlt X2, X3 are the eigenvalues of *P^B
CD. The corresponding

eigenbivectors are of the form

(8-4-6)
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8.4 Eigenbivectors of the Weyl tensor and its Petrov classification 243

in the first three cases, and

in the remaining three, (f)AB being the appropriate eigenspinor of xif
AB

CD.
Note that the eigenbivectors (8.4.6) and (8.4.7) are all complex and anti-

self-dual or self-dual, respectively (cf (3.4.41), (3.4.35)). We obtain real
eigenbivectors only if they arise as linear combinations of these complex
ones, an eigenbivector (8.4.6) being added to its complex conjugate (8.4.7).
But this yields an eigenbivector only if the corresponding eigenvalues are
equal, and thus real (e.g. Xl=I1). For each real X there will then be a
whole two-dimensional array of real eigenbivectors of Cab

cd (or four- or
six-dimensional, if X corresponds to two or three linearly independent
eigenspinors of xif

AB
CD, respectively). A particular situation of some interest

which gives rise to a real k may be pointed out, namely when the two
other AS are complex conjugates of one another, say k± = X2> since
^i + ^2 + ^3 = 0 then implies that A3 is real. In this case the six eigenvalues
of Cah

cd coincide in pairs (at least) to give extra possibilities for eigen-
bivectors (e.g., complex linear combinations of (8.4.6) for kx with (8.4.7)
for / 2 ) . One easily finds from (8.3.25) - by setting X1Il = X2I2

 e tc- ~ that
this situation can only arise if | 1 — #1 = 1 (case kl=I2\ 1x1 = 1 (c a s e

kx = I3) or Re (/) = \ (case A3 = X2)-

Components of Cabcd in a bivector basis

We shall relate the canonical forms that we obtained for *¥ABCD
 m the

different cases to corresponding canonical forms for Cabcd. But to do this,
we first need to obtain a general translation scheme between bivector
components in a standard Minkowski frame and those arising from the

<x a a

spinor basis SAB for <5(AB) (cf (8.3.3)). Defining six real bivectors Vab,*Vah

(a = 1 , 2 , 3) by

Vat + i*Vat=8AB*A-B' (»A8)

(the star indicating dualization, cf (3.4.21), (3.4.38)), we obtain-by the
orthonormality of the <5s - a basis for the set X[ab] of real bivectors, which is
pseudo-orthonormal in the sense

^ > * = <W *Pab*fa=-5at, Vab*P°b = 0. (8.4.9)
The relation between the components of a bivector Xab in this basis

and the components (8.3.4) of the corresponding <\>AB, £A.B. (cf (8.4.3))
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a a

with respect to the basesSAB andSAB> for SiAB) and &{A>B>)9 respectively,
is given by

X:=XabV
ab=4> + l (8.4.10)

*X:=Xah*Vab=-i4> + il (SAM)

and

a a

Translating the 4> and £ into spinor dyad form according to (8.3.4) and
its complex conjugate, and comparing the resulting equations (8.4.10),
(8.4.11) with the Minkowski components Xzh of Xab in the standard frame
(3.1.20) (cf. (3.1.49)), we obtain, after some calculation,

X X X ^ X X X (8.4.12)

^10— r- A> A 2 0 ~ " " ^ A> A 3 0 - — — A. \6AAD)

v \ / 2 ^ 2

Now the components of Caftcd in the basis Vab, * Kaft are

2^4:= VabCabcdV«>=-* VabCabcd*Vcd (8.4.14)
and

2B:= VabCabcd* Vcd = * VabCabcd Vcd (8.4.15)

because *C*bcd= - Cahcd and C*^ = *Cabcd (cf (4.6.11) etc.). We shall
presently see that they satisfy the trace-free and symmetric properties

dp 0a aa afl Ba aa

/! = >!, >l=0; £ = £, J5=0 (8.4.16)

(c/ (8.4.21) below, in conjunction with (8.3.6)). By (8.4.12) and (8.4.13) we
obtain the standard Minkowski components in the form

11 12
0101 = ^2323 — ̂ ? ^0102 ^2331 == ̂ '

0103 = ^2312 = ^' ~ ̂ 0202 = ^3131 = ̂ >

~~ ̂ 0203 = C 3 1 12 = A, ~ C0303 = C12i2
= A,

C0l23 = B, ^ C 0 1 3 i=C 2 3 0 2 = B, (8.4.17)
= ^ 2 3 0 3 = ^ ' ^0231 = /?>

— ^3103—-^ ' 0 ) 3 1 2 — ^ '

Denoting the matrices of components A and B simply by A and B
respectively, we can express (8.4.17) in the form
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c.^ =

v cd

ab\

01
02
03

23
31
12

01 02 03

- A

B

23 31 12

B

A

(8.4.18)

(8.4.19)

The components of C%* and Cabcd are obtained similarly:

A B] rabcd = r - A B
- B Aj' | _ - B A .

These matrices can be related very simply to the matrix *F of (8.3.5), whose

components we now denote by *r. For,

= {A+\iB.

i.e., »P = \{X + iB). Thus

, B=-i*

(8.4.20)

(8.4.21)

Petrov's canonical forms

The canonical forms for the various Weyl spinor types that we have
obtained in the previous section can now be directly translated to give
corresponding canonical forms for the matrix (8.4.18) of components
Clbcd. Referring to Table (8.3.40) and to (8.3.5), we obtain, for the first
three rows of this matrix in the various cases (also writing Ren =:rj1,
Im t]=:rj2 in cases {211} and {22}):

{1111}:

{211}:

2Re[i j (2 Z - l ) ]

6t]2 - 8//j

2Re[f/(2-

4//,

- 2 I m [ i K 2 Z -

X)l- • " 2 I

- 4 ^ 2

6nl

1)]

8r,2
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{22}:

{31}:

- 2 » h

2

1

- 1

4 , ,

2

2iy2

2

1

1

- 4 , ,

2

{4}:

(8.4.22)

These forms, except in the case {211}, are essentially identical with those
obtained by Petrov (1954) using direct tensor methods. In the case {211},
Petrov's form differs slightly from ours and corresponds to replacing the
row (0 0 n 0 6n) in (8.3.40) by (0 0 rj 0 1). The change of spin-frame achieving
this is easily found.

8.5 Geometry and symmetry of the Weyl curvature

In the present section we study the geometry of the eigenbivector structure
of Cabcd (eigenspinor structure of *F^BCD) m relation to the GPNDs and
use this to discuss the discrete symmetries of the Weyl curvature in case
{1111}. We also obtain the symmetries in the other cases, using more direct
methods. For comparison, we give, in addition, a corresponding discussion
for the classification of Maxwell field tensors.

Special planes and directions for type {1111}

As we have seen, the basic eigenbivectors (8.4.6) and (8.4.7) of the Weyl
tensor occur in anti-self-dual self-dual pairs. Each such pair at a point P
defines a pair of totally orthogonal* planes through the origin in the
tangent space at P. These planes are determined by the two real simple
bivectors which are linear combinations of the eigenbivector pair in
question. One of these planes is timelike and may alternatively (and more

* The term 'totally orthogonal' means, here, that they are orthogonal complements, i.e.
that every direction in one plane is orthogonal to every direction in the other (e.g. the
(x,y)- and (z, t)-planes in Minkowski space). 'Orthogonal' means merely that some
direction in one plane is orthogonal to every direction in the other.
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8.5 Geometry and symmetry of the Weyl curvature 247

simply) be described as that spanned by the two PNDs of the corresponding
eigenspinor of xyAB

CD' The second plane is spacelike and is just the ortho-
gonal complement of the first. To see all this, let 4>AB = ^(APB) be the
eigenspinor and </)ABsA>B< the corresponding self-dual eigenbivector. The
real bivector

Fab = l^AB^A'B' + 7£AB<I>A'B'> (8.5.1)

(where y is some complex coefficient) is simple (cf. around (3.5.30)) if and
only if y2(j)AB(})AB is real, as follows directly from (8.5.1) and (3.4.22)
and the criterion (3.5.35)(ii). It is easy to see that when this condition is
satisfied, y = aiA>PA' or y = \dLA>fiA' (up to real non-zero multiples, which
can here be ignored). In either case Fab then becomes expressible in the form

Fab = Paqb-°aPb (8.5.2)

where, for y = dtA>fiA\

Pa = *AocA., qa = PJA' (8.5.3)(fl)

and, for y = \aA.fiA>,

pa = ^2Re (PAdA qa = V^lm
 (PA*A (8.5.3)(6)

The (simple) bivector (8.5.2) is considered to represent the plane of pa, qa.
In case (8.5.3)(a), it represents the timelike plane spanned by the PND of
<f)AB\ in case (8.5.3)(i») it represents the spacelike plane spanned by two
vectors orthogonal to both the PND of (j)AB (as one easily verifies).
Note also that the two simple bivectors above are ( + ) duals of each other,
as follows from the fact that the corresponding coefficients y in (8.5.1) differ
by a purely imaginary factor {cf (3.4.22)).

Applying these results now to a discussion of Weyl spinors (or tensors)
of type {1111} we see that the three eigenspinors of ^ B

C Z ) give us three
pairs of totally orthogonal planes. In fact, every one of these six 'eigen-
planes' is orthogonal to each of the others - as follows from the ortho-
gonality of eigenspinors corresponding to different eigenvalues, and the
consequent orthogonality of the corresponding simple bivectors, say Fab =
Palb - QaPb a n d Gab = rah - V*» ^ the sense FabG

ab = 0. For it implies the
existence of a non-zero pair of real coefficients a, b, such that apa + bqa

is orthogonal to both ra and sa (that is apar
a + bqar

a = 0, apas
a + bqas

a = 0),
for which the condition is par

aqbs
b - pas

aqbr
b = 0, i.e. FabG

ab = 0.
We now show that the six eigenplanes intersect in four real lines having

the characteristics of a Minkowski tetrad. The four directions so defined
are called the Riemann principal directions of Cabcd. As might be expected,
they stand in a special relation to the principal null directions of Cabcd.
To prove our assertion, we first show that each eigenplane U intersects
any other eigenplane F, except its own orthogonal complement U, in a
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line. For U contains a vector p orthogonal to V, the complement of V.
But V contains all vectors orthogonal to V, hence also p. Since both U
and V pass through the origin, they intersect along p. Consider next two
totally orthogonal pairs U, If and V, V of eigenplanes. They intersect in
four lines UnV9 UnF, dnV, UnV. Any two of these lines are
orthogonal, containing an eigenplane and its complement respectively.
The remaining two eigenplanes W, W intersect each of the four others,
and so must intersect them along the lines Un V, U c\V and Un V,
U nV respectively (as one can easily see by adopting these directions as
a basis and looking at the vectors spanning W or W). Hence, as we
asserted, there are just four intersection lines of the six eigenplanes, and
they are mutually orthogonal. Being in Minkowski space, three must
therefore be spacelike and one timelike. The latter is evidently the intersec-
tion line of the three timelike eigenplanes.

An alternative way of looking at the same situation is to represent the
eigenplanes as lines in the projective 3-space of directions through the
origin. The configuration of planes U, V, U, V is represented by a skew
quadrilateral, since opposite edges, representing complementary planes,
can have no point in common (the planes having no line in common). W
and W are represented by two new lines, each of which intersects all the
old four. Evidently W and W must correspond to the diagonals of the
quadrilateral, and no new intersection points (lines) are created. In all,
the six eigenplanes correspond to the edges of a tetrahedron (see Fig. 8-4),
opposite edges being orthogonally complementary and the vertices giving
the directions of the axes.

It is now straightforward to verify that the Riemann principal directions
as defined above coincide with the Minkowski tetrad relative to which
the Petrov form (8.4.22)(1) of Cabcd was (implicitly) calculated.

v
Fig. 8-4. In the projective 3-space, PV, of directions through the origin, the
eigenplanes of Cabcd are represented by the edges of a tetrahedron, the vertices of
which correspond to the Riemann principal directions. (This tetrahedron is not to
be confused with that of Fig. 8-5. The vertices here correspond to the three axes £F,
GH and KL of that figure, together with the time-direction giving the rest-frame.)
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8.5 Geometry and symmetry of the Weyl curvature 249

From that form there follows certain discrete symmetries of Cabcd in the
case {1111}, namely those (orientation preserving) reflections which reverse
just two of the spatial axes. For the form (8.4.22) (1) gives components with
the property

Cabcd = 0 whenever a = c and b # d, (8.5.4)

from which it follows that if precisely two axes are reversed and the
others left unchanged all components Cabcd are unaltered.

The disphenoid for type {1111}

In fact it is possible to derive these symmetries directly without prior
reference to the Petrov canonical form. Consider the sphere 5 + and the
four points A,B,C,D on 5 + representing the GPND (cf §8.2). There is
a unique restricted Lorentz transformation S£x which sends A,B,C into
B,A,D, and since the cross-ratios {A,B, C,D) and {B,A,D, C} are equal
{cf. (8.3.15)) it follows that D is also sent into C by &x. The square of
<£\ is clearly the identity since is sends each of A,B,C, (and D) into
itself. Therefore <£ x cannot be a null rotation (cf. (3.6.47)) and so leaves
precisely two points E, F invariant. Indeed, choosing a Lorentz frame in
which E and F are antipodal on S+, ^x is represented simply as a
rotation through an angle n about the axis EF. Similarly there is a corres-
ponding restricted Lorentz transformation if2 which sends A,B,C,D
into C,D,A,B with invariant points G and H. Now if2 is invariant
under S£x (i.e. <£\l Z£ 2<£ x= <£ 2, which holds because the left-hand
transformation effects ABCD\-+BADd-+DCBA\-*CDAB). Thus G
rotates into H under £fx and so the line GH is perpendicular to the
axis EF. We can now apply a boost along the axis EF, moving the line
GH so that it intersects the axis EF at its mid-point (the centre of S+).
Now both pairs E, F and G, H are antipodal (and together they form the
vertices of a square). Similarly there is a transformation if3, which
has invariant points K,L and effects ABCD*->DCBA. The line KL inter-
sects each of EF and GH at right angles, so we have a triad of mutually
perpendicular lines through the centre of S+ (the six points E,F,G,H,
K, L forming the vertices of a regular octahedron).

The rotations through n about the axes EF, GH, KL each send the
unordered set (A, B, C, D) into itself. In fact, given A, we can locate B, C
and D simply by applying each rotation in turn. Thus, B is obtained by
reflecting A through EF; also C, by reflecting A through GH; and D by
reflecting A through KL. The final configuration of four points ABCD
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E

Fig. 8-5. The disphenoid, whose vertices correspond to the PND as represented on
5+ in a special frame (type {1111}).

constitutes the set of vertices of a special kind of tetrahedron known as
a disphenoid, characterized by the fact that it has opposite edges equal in
pairs, which property follows here from the existence of rotations sending
each edge into its opposite. Consequently the joins of mid-points of
opposite edges give three mutually orthogonal axes of two-fold symmetry -
here the lines EF, GH and KL (see Fig. 8-5).

When the cross-ratio x is real, the disphenoid ABCD is flattened into
a rectangle. When x = — 1,2, or \ (harmonic case) it becomes a square.
When x = e27ti/3,e~27ti/3 (equianharmonic case) it becomes a regular
tetrahedron. (See after (1.3.12).)

The rotations JS?l9 if2, if3, each send the disphenoid ABCD into itself.
They each must therefore send the Weyl spinor into some multiple of itself.
But since each transformation squares to the identity, this multiple must be
± 1, and, by symmetry, the same multiple for each of i f x, i f 2 and J?3. But
&\^i = «Sf 3> s o e a c n multiple must in fact be unity. It follows that ¥f

ABCD

(and hence Cabcd) must itself be invariant under these three rotations.
The significance of the three pairs of points (£, F), (G, H) and (K, L) in

relation to the earlier discussion in this chapter is that they are the
representations on 5 + of the PNDs of the three eigenspinors of X¥AB

CD- This
may be seen from the invariance of ^AB00 under the three rotations
if1 , i f 2 ,J^7

3 . For the eigenspinors must also be invariant under each
rotation (the eigenvalues being distinct). The only pairs of points which are
so invariant are, in fact, (E, F\ (G, H) and (K, L).

The spin transformations giving these rotations may be explicitly
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exhibited, namely

Z A ^ y/2<t>A
BSB (8-5.5)

where cf>AB is a normalized eigenspinor, <j>AB(t>AB = 1 (the factor N//2 being
inserted to obtain the correct normalization (3.6.30) for a spin transform-
ation. From the discussion of §3.6 it follows that the PNDs of <\>AB are
indeed fixed directions of the transformation (8.5.5) and that the square of
(8.5.5) gives the negative identity spin transformation ((̂ /2(f)A

B){ yj2(f)B
c) =

— sA
c) - which corresponds to the identity Lorentz transformation, as

required. Choosing a spin-frame oA, iA for which the canonical form (8.3.34)
holds

- x)o{AoBiciD) +

we see that these transformations are indeed given when (j)AB

takes the values (8.3.3) in turn, so that

or

or

in the three cases, respectively.
The geometrical picture we have now set up gives us an independent

way of establishing the Petrov canonical form for type {1111}. With the
(unique) choice of time-axis as given above (in terms of the six eigenplanes),
the four points A, B, C, D take on the symmetrical disphenoid configuration
we have described. The resulting discrete rotational symmetries (which
arise from the timelike planes spanned by the PNDs of the eigenspinors,
i.e. the rotation axes EF, GH, KL) imply that the characteristic property
(8.5.4) must hold for the components of Cabcd in the frame defined by the
rotation axes.

Symmetries in special {1111} cases

When, in special cases, the disphenoid possesses symmetries beyond
these, it does not necessarily follow that Cabcd is invariant under them.
For example, in the equianharmonic case, the regular tetrahedron ABCD
can be rotated into itself through 2n/3 about an axis of three-fold
symmetry - keeping one vertex, say A, fixed and permuting the remaining
three. That such a rotation cannot leave Cabcd invariant becomes evident
when we examine its fingerprint (cf. §8.2). Since A corresponds to a
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simple GPND, we have a configuration resembling the first diagram of
Fig. 8-3 at A. This does not exhibit the three-fold symmetry which would
be required for the rotation to send Cabcd to itself. In fact, such rotations
effect duality rotations of Cabcd through angles 2n/3, 4n/3 (cf (4.8.15),
(4.8.16)). Similarly, in the harmonic case, the square ABCD admits a
rotation through n/2 about an axis through its centre and perpendicular
to its plane. But this axis intersects S+ in two points at which the fingerprint
pattern cannot exhibit four-fold symmetry. Thus, again, this rotation effects
a duality rotation of Cabcd9 this time through an angle TT, which sends Cabcd

to its negative (since a single repetition of this rotation gives an allowable
symmetry of Cahcd of the kind considered above).

The disphenoid possesses reflectional symmetries in the following two
cases: (i) when it is flattened to a rectangle (x real) and (ii) when four of
its edges are equal: 1x1 = 1, |1 ~x\ = U or Re(#) = | (cf between (8.4.7)
and (8.4.8)). In these cases, the reflectional symmetries may or may not
apply to Cabcd, depending upon the particular value oirj which accompanies
the cross-ratio value x> s o that the fingerprint pattern possesses the
appropriate symmeties. We have reflectional symmetries in case (i) if rj is
real and in case (ii) when rj is such that one of the eigenvalues of ^VABCD

is the complex conjugate of another.* The necessity of these conditions
follows from the fact that under a spatial reflection ^AB00 becomes
^A'B>c>D'i s o ^ e unordered set (^2,>l2, A3) of eigenvalues of the former is
sent into the unordered set (X^X^^) of eigenvalues of the latter. The
sufficiency follows also: if the ^-eigenvalues are sent into the X-eigenvalues
in some order by the reflective transformation, then no duality rotation of
^ABCD

 c a n be involved, since if *¥ABCD P^ks up a phase factor, so also would
each L

Type {2\\}

Let us now consider the symmetries of Cabcd in the algebraically
special cases. Consider {211} first. Any restricted Lorentz symmetry must
send the three GPNDs to themselves, and since the repeated GPND is
singled out, the only possibility is the discrete symmetry which interchanges
the other two GPNDs. This again is a rotational symmetry of period 2
(rotation through n) in a suitable Lorentz frame and it actually sends Cabcd

to itself rather than to its negative. This is easily seen, in many ways, e.g.

In each case there is an extra reflectional symmetry when % is harmonic.
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from the fact that
lA*~* — l l A (8.5.6)

(or its negative) leaves the canonical form (8.3.39)

^ABCD = 6*l(oAoBocoD + o(AoBiciD)) (8.5.7)

invariant while interchanging the flagpole directions of the principal
spinors oA + \iA, oA — \iA. Alternatively, we need merely examine the
fingerprint pattern of Fig. 8-3 for the repeated PND (n = 2) to see that a
rotational symmetry which leaves the repeated point fixed cannot trans-
form the pattern to the orthogonal pattern (which would have to be the
case if Cabcd were sent to its negative - the only alternative possibility for
a symmetry of period 2).

There are two orthochronous improper Lorentz transformations to
consider, each of period 2. One of these leaves all three GPNDs invariant
while the other interchanges the pair of simple ones. They can be
represented spinorially by linear maps from <ZA to SA. generated by

iA^-iiA' (8.5.8)

and

, iA\-+iA. (8.5.9)

(and their negatives), respectively. The Weyl tensor is sent to itself
[to its negative] if and only if ¥J

ABCD *S s e n t t 0 ^ABCD' Ct0 ~~ ^ABCD!

and this occurs in both cases if and only if the eigenvalues are real [pure
imaginary] (i.e. Y\ is real [pure imaginary] in (8.5.7)).

Type {31}

Consider next the case {31}. The canonical form (8.3.38)

^ ABCD = ~ Af°(A°B°ClD)

is invariant only under restricted Lorentz transformations for which
oA and iA are sent to multiples of themselves. Preserving the dyad
normalization oAiA = 1, we leave ourselves only with (oA,iA)\-+ ±(oA,iA),
which both correspond to the identity Lorentz transformation. The only
non-trivial orthochronous Lorentz transformation preserving Cahcd is, in
fact, the reflection defined by (8.5.9). Examination of the fingerprint patterns
for n = 1,3 in Fig. 8-3 will also make it clear that no proper rotation can
leave a {31} Weyl tensor invariant. Rotations leaving both PND invariant
give duality rotations of Cabcd.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.005
https:/www.cambridge.org/core


254 8. Classification of curvature tensors

Type {22}

We now examine the case {22}. The canonical form (8.3.36):

^ABCD = 6rioiAoBiciD) (8.5.10)

is clearly invariant under the spin transformations

OA^AOA* IA^I'^A* (8.5.11)
and

oA^hA> IA^-^~1OA (8.5.12)

(with 0 T̂  AeC), and under no others. The transformations (8.5.11)
form a connected group of two real dimensions, namely the multiplicative
group of non-zero complex numbers. (In terms of Lorentz transformations,
this is the multiplicative group of k2.) The transformations (8.5.12) form
a two-real-parameter system disconnected from these. There are also
improper orthochronous Lorentz transformations to consider, namely
those given by (8.5.9) and its composition with (8.5.11) and (8.5.12). These
are symmetries of Cabcd if and only if n is real (and then the fingerprint at
the double GPND points has the form of the first or third n = 2 drawings
in Fig. 8-3, so that reflectional symmetry is possible).

Much of the discussion given for the case {1111} above will, of course
also apply to the case {22}. But the disphenoid degenerates to a pair of
repeated antipodal points on S + so that continuous rotations (and boosts)
now become possible.

Type {4}

Next we consider the case {4}. The restricted Lorentz transformations
defined by

oA^oA9 iA^iA + koA (8.5.13)
or by

oA*->ioA, iA\-^> — \iA — \koA (8.5.14)

(and their negatives) clearly preserve the canonical form (8.3.37)
X¥ABCD = OAOBOCOD (8.5.15)

and there are no others. The transformations (8.5.13) are null rotations
(cf (3.6.47)) and form a connected group of two real dimensions, namely
the additive group of complex numbers. The (non-null) transformations
(8.5.14) form a two-real-parameter system disconnected from these. The
improper orthochronous Lorentz transformations (8.5.8) and (8.5.9) and
their compositions with (8.5.13) are clearly all symmetries of Cahcd (since
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they send ^ABCD i n t 0
 ^ABCDX giving two additional two-real-parameter

families. These four different possibilities can be understood in terms of
their different behaviours in the neighbourhood of the multiple GPND.
We refer to the fingerprint pattern of Fig. 8-3 for n = 4. The pattern has
a discrete symmetry group of order 4, two of the symmetries being
reflections.

Finally there is the case {-}. Its symmetry group is just the six-real-
parameter Lorentz group (with or without reflections).

Dimensions of symmetry groups generally

The dimension of the symmetry group is related, in each case, to
the number of independent scalars which can be formed and to the number
of dimensions of the space of Weyl tensors of that particular type, as follows:

dimension of space of Weyl tensors 4- dimension of symmetry group
= number of independent scalars + 6.

(8.5.16)

To determine the (real) dimension of the space of Weyl tensors of
a given type, we consider the freedom in choosing ^ABCD

 w ^h given
multiplicity in its GPNDs. Let r be the number of distinct GPNDs. There
is a 2r-dimensional freedom in choosing these directions. Finally there is
a two-dimensional freedom in choosing the complex overall scale factor
for ^ABCD- To calculate the number of independent scalars we merely
observe what relations (if any) necessarily hold between the two complex
scalars / and J by virtue of the particular choice of type. The remaining
freedom in / and J gives the required answer. Alternatively, the number
of independent eigenvalues may be counted, or, equivalently, the freedom
allowed for rj and /. The significance of the '6' in (8.5.16) is that it is the
dimension of the Lorentz group.

In Table (8.5.17) various pieces of information concerning the different
Weyl curvature types are collected together. Relation (8.5.16), in particular,
is illustrated. Note that the horizontal, vertical, and both sloping directions
of (8.1.9) all have significance.

Classification of the Maxwell tensor

It is instructive to consider the corresponding facts and to exhibit
a corresponding table for the electromagnetic case. Suppose the PNDs of
the electromagnetic spinor ('EPNDs') are proportional to (*A9PA, so that
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Table (8.5.17)

4 distinct GPNDs
10 dimensions —
ofCabcd

3 distinct GPNDs
8 dimensions
o(Cabcd

2 distinct GPNDs

6 dimensions —

of Cabcd

1 distinct GPND
4 dimensions
ofCabcd

0 dimension
ofCabed

- - { 2 2 } ^ 31}

3 independent 2 independent 1 independent
eigenspinors eigenspinors eigenspinor
Petrov type 1 Petrov type 2 Petrov type 3
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Then
<PAB*B = ±*JB*B9 (8.5.18)

which shows that OLA is an eigenvector of cpA
B with eigenvalue

k = ±*JA. (8.5.19)
Similarly fiA is an eigenvector, with eigenvalue — X. (That the sum
of the eigenvalues is zero is, of course, to be expected since cpA

A = 0.) In
the limiting case of a null field (a^ oc f$A) these eigenvectors coincide, and
so do the eigenvalues: X = 0. The necessary and sufficient condition for
nullity (cf (5.1.68) and just after (3.5.29)) is the vanishing of the invariant

K = P + i g = (PAB<PAB = ~ I*2- (8.5.20)

The (real) electromagnetic tensor Fab is given in terms of the electro-
magnetic spinor by (5.1.39):

Fab = (PAB^AB' + <PAB>£AB' (8.5.21)

Its eigenvectors Xa and corresponding eigenvalues / are determined
by the equation

Fa
bXb = fXa, (8.5.22)

i.e.,

<PAB*BA' + <PAB'XAB' =/XAA: (8.5.23)

Now one easily checks by direct substitution that these eigenvectors
and corresponding eigenvalues are

*JA,:X-X; pA5LA,;-{X-I). (8.5.24)

If aA and flA are distinct, let oA,iA be a spin-frame proportional to
them. Then the vectors in (8.5.24) are seen to be proportional to the null
tetrad (3.1.21) associated with oA,iA:

Xa = la,na,ma,ma9 (8.5.25)

which well characterizes the mutual configuration of the four eigen-
vectors of Fab in the generic case.

A special case of (8.5.24) arises when X is either real or purely imaginary,
which, by (8.5.20), is the same as saying K = real. But that is the condition
for Fab to be simple (cf. after (5.1.70)), i.e., of the form

Fab = p[aqbv (8.5.26)

Suppose first that X > 0 , i.e., X is purely imaginary. (As we have
seen after (5.1.70), the field is then 'purely magnetic'.) In that case the
eigenvalues in the first row of (8.5.24) are both zero. Nevertheless the
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corresponding eigenvectors do not become coincident: rather, they 'spread'.
Any vector in the plane of la and na is now an eigenvector with eigenvalue
zero. In fact, in this case we have

Fab=-Um[amb], (8.5.27)

which, by (3.1.15)—(3.1.18), implies the following equations (which
agree with (8.5.24) and so validate (8.5.27)):

f « / = 0, Fabn
b = O, Fabm

b = 2Xma, Fabm
b = -2Ma. (8.5.28)

Similarly, if K < 0, i.e., X is real (and the field is 'purely electric'), we
have

Fab = 4Xllanb], (8.5.29)
and

FJb = Wa, Fabn
b=-2Xna, Fabm

b = 0, Fabm
b = 0. (8.5.30)

Note that in the purely magnetic case there is an entire timelike
plane of eigenvectors totally orthogonal to the spacelike plane which
contains the remaining two distinct eigenvectors and which is also the
plane (8.5.27) of Fab; whereas in the purely electric case it is just the other
way around.

Only when the field is null (ocA oc0A, X = 0, K = 0) does the form (8.5.25)
not apply. It is then seen from (8.5.24) that all the eigenvalues are zero,
and all the eigenvectors of Fab coincide.

We can now draw up a table (Table (8.5.31)) for the electromagnetic
field analogous to Table (8.5.17) for the gravitational field. The continuous
symmetry groups arising here are exactly the same as in the gravitational
case, but there are now no discrete symmetries (except for {-}, trivially).
In fact, Table (8.5.31) is virtually the same as the lower left-hand corner
of Table (8.5.17). This is not really surprising, since we can subsume the
classification of q>AB - up to sign - under that of XPABCD if we formally put

8.6 Curvature covariants

The quantities / and J of (8.3.8) constitute what is known, in the
classical theory of invariants (Grace and Young 1903), as a 'complete set
of invariants' of the quartic form P = ^ABCD^Z8^^- ^n effect, this means
that every scalar expression formed from a general ^ABCD by means of
the four tensor-type operations of sum, outer product, contraction and

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.005
https:/www.cambridge.org/core


8.6 Curvature covariants 259

Table (8.5.31)

2 distinct EPNDs
6 dimensions
of Fab

1 distinct EPND
4 dimensions

Odim.
ofFab

2 independent
eigenspinors

1 independent
eigenspinor

of<pA
B
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index permutation* is expressible identically as a polynomial in / and J.
The classical theory of invariants is also concerned with 'covariants', these
being 'forms' in £A, i.e. expressions like &AB...L€A€B'"€L9 where QAB L is
taken symmetric, and is constructed by means of the same four tensor-type
operations from ^ABCD- The definition of 'covariant' would need to be
generalized to include more variables in addition to '£"*' in the higher-
dimensional case. One variable (i.e. total symmetry) suffices here because
the two-dimensionality of spin-space implies that totally symmetric spinors
together with the es are sufficient for the expression of all spinors. A
'complete' set of covariants of P is a set in terms of which any other
covariant of P is expressible identically as a polynomial.

In fact, the following list provides such a complete set of covariants (cf
Grace and Young 1903):

r u/ ujABCD T vi/ CD\u EFxif AB
1 — *ABCD* » J — * A B * CD *EF
p — KU pAzBpCpD f\ _ u / EFxif pApBpCzD
r — ^ABCDZ C C C > \l — x AB ^CDEF^ C C C

\u K\jj LMxu zAzBzC zDzEzF /o^; i\
~^ABC ^DE ^FKLMZ C C C C C (5.6.1)

The coefficients of P, Q and R are, of course, the respective expressions

* ABCDi ^(AB X^CD)EF'> ^(ABC ^DE ^F)KLM' (8.6.2)

Let us denote by { }cl the Weyl curvature types as special as, or
more special than { }, following the arrows in (8.1.9).** Thus, for example,
the case {211 }cl includes all types except {1111}, while {31}cl consists
of {31}, {4}, and {-}. It is of some interest that necessary and sufficient
conditions for each { }cl can be given in terms of the invariants and
covariants (8.6.1):

{211}c lo/3 = 6J2

0 (P = 0). (8.6.3)

The truth of the first two entries follows from the conditions (8.3.28)
and (8.3.29) for at least two and at least three coincident GPNDs respec-
tively. The condition *¥ABCD — 0 is of course trivially the condition for {-}.

Note that this is rather restrictive in various ways. Quotients between proportional
indexed expressions can sometimes be used to give more general types of invariant
(although not in the case of VABCD)- A1SO non-algebraic expressions and complex
conjugates are not being considered here.
*cl' stands for topological closure in the space of Weyl spinors.
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Consider next, *¥(ABEF^*CD)EF — 0- This is equivalent to

0 = Q = nEFr,EF where rjAB = ^ABEF^F (8.6.4)

and so, by (3.5.29), to

IAB = IAIB- (8-6.5)

In particular, this holds when £A is a principal spinor of *¥ABCD>
 in

which case rjAB£A£B = 0, so by (8.6.5) r\A^A = 0 and we deduce r\AB^B = 0.
From this, (8.6.4) (2) gives fABEFZAZE£F = °> w h i c h i s t h e condition for £A

to be a repeated principal spinor (cf. Proposition (3.5.26)). Hence every
principal spinor is multiple, and this singles out {22}, {4}, {-}. However,
*¥UBEFX¥CD)EF cannot vanish in case {22} (and in fact equals - ri*¥ABCD,
as one readily verifies from the canonical form (8.3.36)), whereas it
obviously does vanish in the cases {4} and {-}. Thus (8.6.3) (4) is established.

Lastly, consider the implications of R = 0, when £A is a principal spinor
of *¥ABCD9 so that

VABCDeBScZD = rfA (8.6.6)

for some fi:

0 = R = rtKx¥DE
LMVFKLMZD?t;F = m

L M n L M , (8.6.7)
with t]AB as before. If \i # 0, the same argument as before establishes
£A as a repeated principal spinor; if \x = 0, then (8.6.6) establishes this same
fact. Thus, as before, the type must be {22}, {4} or {-}. Now in this case,
setting *¥ABCD = <*(A<*BPCPD)

 w e h a v e

VlABC^DE^nKLM = ^WCPDPEPF^PK? (8-6.8)

for some v (since no other type of term survives). But interchanging
(xA and pA leaves ^^CD unaltered while it reverses the sign of the RHS
(8.6.8). Hence v = 0 and we have established the last remaining condition
in (8.6.3).

The expression (8.6.2)(3) is of interest for another reason: Provided
WABCD is not {22}cl,

^(ABC ^DE X^F)KLM = C(t)(AB^CDll/EF) (8.6.9)

for some C^0, where (f)AB, 6AB and i//AB are the eigenspinors of
^ABCD (with appropriate multiplicities in the cases {211} and {31} - cf.
(8.3.41)). To see this, suppose

<l>AB = P(A°m' (8-6-10)
Then the eigenspinor condition gives

MA°B) (8.6.11)
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for some 1 Consequently
BPC°D = 0, (8.6.12)

whence

VABCDPAPBPc = y°D (8-6.13)

for some y. By (8.6.13), (8.6.11) and (8.6.12) we have

E = O, (8.6.14)

showing that every principal spinor of an eigenspinor of ^AB00 is also a
principal spinor of the LHS of (8.6.9). This establishes (8.6.9) in the case
{1111}. The two remaining cases {211} and {31} then follow by going to the
limits {1111}-+{211}-•{31}, since we are assured that the LHS of (8.6.9)
will not go to zero, by our hypothesis (cf. (8.6.3)).

It may also be remarked that the vanishing of (8.6.2) (3) in the case
{22} is a consequence of (8.6.9). For in this case the eigenspinors are
indeterminate up to a continuous symmetry group and no particular
choice could be represented in the RHS of (8.6.9). It is also possible to
infer the relation (8.6.9) in the general case without calculation (provided
the expression is assumed not to vanish identically) because the six PNDs
of the three eigenspinors must define an unordered set of six points on
the sphere S+ (possibly with some coincidences) which is defined by the
unordered set (A,B, C,D) and hence invariant under all three rotations
£eu&2 and J^3 {cf. §8.5). This can only be (E,F,G,H,K,L).

Invariants for the full curvature

We end this section with a few brief remarks concerning invariants
of the full curvature, and, in more detail, invariants of the combined
gravitational and electromagnetic field. These latter lead to invariants of
the full curvature under the special assumption of the Einstein-Maxwell
equations. Our discussion will indicate some of the difficulties involved in
finding complete sets of invariants in general.

If we do not assume that the vacuum field equations hold, we must, in
general, consider all the curvature quantities

VABCD, *ABC>D; A (8.6.15)

together. A discussion of the general classification problem for Q>ABC>D>
will be given in the next two sections (and this will be complicated enough).
But in itself it would not be sufficient for a classification of the whole
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Riemann curvature, since the interrelation between the structures ofQ>ABCD>
and of ^ABCD must also be considered.

The number of invariants of Rabcd may be ascertained from (8.5.16). The
space of tensors Rabcd is 20-dimensional (since there are 20 independent
components) and there is no continuous symmetry group (clearly, since
there is none for a general Weyl tensor). Hence there are 20 — 6 = 14
invariants of some kind - although this gives no indication as to how these
invariants might be constructed. In fact, it is not hard to string together
curvature tensors or curvature spinors in many different ways, and to
obtain 14 invariants which are in fact independent (cf. Witten 1959).
However the problem of obtaining a 'complete set' is much more difficult
(and, as far as we are aware, as yet unsolved). For it must be expected
that a redundant set would be required, the members of this set being
connected by a number of relations known as syzygies. We shall make
no attempt here to consider the general problem, but merely point out
that even in the case of the much simpler problem of simultaneous
classification of gravitational and electromagnetic fields, some of these
difficulties are already present.

Einstein-Maxwell case

We thus consider the combined system of spinors

VABCD, <PAB, (8.6.16)

each being symmetric. We expect just three complex invariants in
addition to / and J, since ^ABCD flxes a Minkowski frame (up to discrete
symmetries) in terms of which the three complex components of <pAB are
now invariants. Indeed, we have

K = q>AB<pAB9 L = (pABVAB
CD(pCD9 M = <pABVAB

CDVCD
EFcpEF (8.6.17)

as a possible set of invariants, these being in fact independent, as is
not hard to show using matrix arguments. (One expands cpAB in terms of
eigenspinors of Xi/

AB
CD, the coefficients being arbitrary; then K, L and M

are independent linear functions of the squares of these coefficients.) One
may, indeed, verify that expressions such as

VA*VAB
CDVcDBFVBFGa<PGi, (8-6.18)

are expressible as polynomials in terms of /, J, K, L and M. However,
these five scalars do not form a complete set in the sense of classical
invariant theory. For the quantity

N = cpABVAB
CDVCD

EF<pE
GVFG

p*q>PQ (8.6.19)
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is clearly not so expressible in this way since it is of odd order in
<PAB whereas each of / , . . . , M is of even order. But N is dependent on
/ , . . . , M by virtue of the syzygy

N2 = \JKLM - - %I2KL2 - \UK2L

+ \IL2M. (8.6.20)

(cf Penrose 1960, Grace and Young 1903). In fact the whole system
/, J, K, L, M, N does form a complete set of invariants for *F^BCD and cpAB.

We have seen (in the penultimate paragraph of §8.5) that K = 0 is the
condition for the two electromagnetic PNDs (EPNDs) to coincide. The
condition for an EPND to coincide with a GPND is the vanishing of the
resultant of the corresponding quartic and quadratic forms:

<Po
<Po

<p0 2cpl q>2

(Po 2<Pi

= 0. (8.6.21)

In terms of invariants this is {cf Penrose 1960)

2K2I - 4KM + L2 = 0. (8.6.22)

For both EPNDs to lie along a GPND we therefore have the condition

K = 0 = L. (8.6.23)

When the Einstein-Maxwell equations hold (say, with X = 0) then, by
(5.2.6), we have

and it follows that the 4 real quantities KK, LL, MM, NN and the three
complex quantities KL, LM, MN are expressible as invariants of

^ABA'B'i ^ABCD* ^A'B'C'D' (8.6.24)

There are obvious identities connecting these quantities (e.g. (KK)(LL) =
{KL)(KL)\ making some of them redundant. There can be, in fact, only
nine independent real invariants of the spinors (8.6.24), since there were ten
from the real and imaginary parts of the independent invariants of cpAB atid
^ABCD* but now we lose one real invariant because of the duality rotation
freedom (PAB*~*GW(PAB (0 r e a 0-
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8.7 A classification scheme for general spinors

In the previous sections we have considered the structure of the
Weyl tensor (spinor) in some detail. In this and the following section we
turn our attention to the remaining portion of the space-time curvature,
namely the Ricci tensor (without, however, considering its relation to the
Weyl tensor structure). At first sight it might seem that the classification
of the Ricci tensor should be less of a problem than that of the Weyl
tensor. For Rab has only two tensor indices as opposed to the four of
Cabcd. It is therefore open to being treated directly as a matrix and classified
in terms of the coincidence scheme of its eigenvalues and eigenvectors in
a relatively straightforward way. However, particularly because of the
indefinite signature of the space-time metric, this does not yield as simple
or transparent a scheme as one might wish for (cf Churchill 1932).

We present an alternative method, based on spinor techniques. However,
because the spinor form of Rab possesses both primed and unprimed
indices, the spinor treatment yields a classification which is not nearly so
simple as was that of the Weyl spinor (tensor). But it does not seem that
this is really a drawback of the spinor technique as applied to symmetric
two-index tensors. Rather, the spinor formalism reveals an essential
complication present in such tensors, which is perhaps surprisingly absent
in the case of the more complicated looking four-index Weyl tensor.

The method we describe in this section (in outline) is applicable to
tensors or spinors with any number of indices. In the following section
we apply it to the particular case of the (trace-free) Ricci spinor $>ABC'D>,
though not in full detail (see Penrose 1972a for a more complete discussion).
The relation of this method to the eigenvectors and eigenvalues of <ba

b

will be indicated. Also, we show how our method relates to an alternative
approach due to Plebafiski (1964 cf also Ludwig and Scanlan 1971 for
a comparison with the matrix and spinor arguments). There the spinor

nABCD^WA&X (8-7.1)

is classified according to the scheme that we have already given for
the Weyl spinor, which allows one to give a characterization of
itself.

The complex function Q and locus co

The general idea of our method follows naturally from that of the
canonical decomposition (3.5.18) of a symmetric spinor 4>AB...L- A
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corresponding procedure, for a general symmetric (that is, symmetric in
each of A...L and F...V separately: i.e. pointwise irreducible) spinor
QA...LP...V> would be to consider the expression

Q(& |):= nAmmmLP:..vtA. • - £ L r . • - r . (8.7.2)
If QA v, were not symmetric we should first have to express it in
terms of its symmetric parts and classify each part separately. (However,
this would not by itself give a full classification of a non-symmetric QAm.mV>,
since the interrelationships between the different parts would also have
to be considered.) One thing we shall be concerned with particularly, is
the set of spinors £ for which

nK,£) = o. (8.7.3)
This will tell us something about the structure of Q up to propor-
tionality. Defining a null vector

x?:=ZAZA\ (8.7.4)

we see that (8.7.3) defines a locus Uco (a complex locus co will be
defined presently) on the sphere S+ whose points represent the null vectors
xa up to proportionality. However, this real locus may not tell us much
about the spinor Q . (Consider, for example, the case when ClAA. is a
timelike covector. Then Uco is vacuous.) Instead we are led to consider
complex vectors (cf (3.2.6))

za:=£ArjA\ (8.7.5)

counted as equivalent if differing by a non-zero complex factor,
which we may regard as the points Z of the complexification CS+ of
S + :

C S + = I x T , (8.7.6)

where 2 is the sphere of spinors £A (up to a complex factor of proportion-
ality) and I ' the sphere of spinors rjA' (up to proportionality). We thus
examine the locus co of complex points of S+ (i.e. points of CS+) given by the
vanishing of

"(& 1):= ^A...LP...V^A- • •£ V - • Y' . (8.7.7)

Since £A and Y\A> are now independent, it follows from two applications
of (3.3.23) that co does in fact define Q completely up to proportionality.

Reducibility of co

The question of reducibility of this locus co is of some interest. Suppose

Q P'...S'T'...V _ \{P'...S'r-T'...V) (o 7 o\
A...CD...L = A(A...C [ D...L) (5.7.8)
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then we have

) = (AA...CP...S •£*• • X V . • .i7s') x (rD...LT,..K,<^.. . f V ' . • -nv>)

(8.7.9)
so that

<o = >luy (8.7.10)

where X is the locus on C5 + defined by A and y is defined similarly
by F . A corresponding result obviously applies if co is reducible into
more than just two factors.

The crucial feature of symmetric spinors possessing just one type of
index, upon which the canonical decomposition (3.5.18) was based, is that
all such spinors are completely reducible, in the above sense, to linear
factors. Thus if the present method is applied to the Weyl spinor ^ B C D »

the locus co on C5 + is a set of four complex lines (in fact generators
of the quadric surface C5 + , as we shall presently see) which intersect
the real section S+ of CS+ in the real points A, B, C, D representing
the GPNDs on S + .

When both types of index are present, this decomposition is in general
not possible (e.g. QAA decomposes only if null: QAAQAA = 0), and the
classification scheme is correspondingly more complicated. The structure
of each irreducible factor must then be considered on its own merits.

Complex (p, q)-curves on CS+

The complex manifold CS+ = I x E' is a quadric surface, being defined
in complex projective 3-space CP3 by the quadratic equation gabz

azb = 0.
It is generated by two systems of complex lines: those given by fixed rjA'
and varying £A - called ^-generators, being the different copies of £ in
Z x I ' - and those given by fixed £A and varying rjA\ called 2'-generators.
Now each algebraic curve co on C5 + can be classified, in the first
instance, by a pair (p, q) of non-negative integers, as follows: p is the number
of points (with multiplicities correctly counted) in which co is met by a
Z-generator, and q the number of points in which co is met by a D'-
generator. In the case of co arising from an Q as described above, p and
q are simply the numbers of unprimed and primed indices, respectively.
This is easily seen because, for a Z-generator, we hold nA' fixed in (8.7.7)
and ask how many solutions (correctly counted and up to proportionality)
there are for £A in Q(<̂ , rj) = 0. This number is just the number of unprimed
indices of Q . Note that these solutions are given by

£A = aA{ri\...^A = XA{ri\ (8.7.11)
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where <xA(n\...,XA(r\) are the p principal spinors of

^A...LP..W-^V- (8.7.12)

The corresponding result holds for the intersection of co with a £'-
generator giving, now, q points.

We observe that if a (p,g)-curve on CS+ is reducible to the union of
an (r, s)-curve and a (r, w)-curve then we must have r+ t = p, s + u = q. It
is important always to keep track of multiplicities in such unions. For
example, ifp = 2r,q = 2s, it might be that co consists of a double (r,s)-curve
(i.e. one (r, s)-curve 'squared'). Or co may have a number of components
with different multiplicities. The canonical decomposition (3.5.18) expresses
the fact that every (p,0)-curve is reducible to a set of p E'-generators, while
every (0, q) curve consists of q Z-generators (with possible multiplicities).

Procedure for classification ofQ.A...LP...V

The first stage in the classification of Q is the reducibility structure of
co. Thus (assuming pq ̂  0), in the general case co is irreducible, while in
certain special cases co will split into various numbers of distinct
components. In more special cases still, some of these components may
be multiple. Consider, for example, the case p = 2,q=l. Then we have a
crude classification of QABC> into five types, the different bracket terms on
the left defining the different types of irreducible factors:

(2,\):GlABC. irreducible

(1,0)(l, 1): QABC> = AMrB ) C , * 0, TBa irreducible

(1,0)(l, 0)(0,1): QABr = AiA&B)rc* 0

R:*W=0. (8.7.13)

Note that the type (2,0) (0,1) does not appear because of the canonical
decomposition (l,0)(l,0) of (2,0). We also remark that if p = q= 1 the
corresponding classification of QAA> gives three types, (1,1), (l,0)(0,1) and
(—), these being the cases when the complex vector Qa is non-null, null
and zero, respectively.

When p = q,v/e may be concerned with the Hermiticity structure of Q, .
For example, it might be specified that Qa z = £IA...LA'...L' *S a rea^ tensor.
In this case only symmetrical reductions can occur (e.g. (2,1)(1,2)(3,3)
but not (3,1)(1,2)(2,3) or (2,1)2(1,2)(1,2), in the case p = q = 6). This, of
course, has relevance to the classification of (j>ABC'D-
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(a) node (b) cusp (c) tacnode

%

(d) triple point

Fig. 8-6. Some types of singularity that can occur for a (complex) curve.

Multiple-point structure

The next point to consider is whether or not to subdivide the class of
irreducible (r, s)-curves into subclasses; and if so, what should be the criteria
for characterizing the different subclasses? One clear possibility is to use
the multiple-point structure of the curve co (cf. Walker 1950). This has the
advantage that it is closely related to the question of reducibility. For the
intersection point between two different components A, y of co is always
a multiple point of the combined curve co. When X and y intersect with
distinct tangents, that intersection point would be called a node, but nodes
can occur more generally in a single irreducible curve co - where the curve
just crosses itself, the different branches of co having distinct tangents at
the crossing points (see Fig. 8-6a). In more special cases X and y may touch
at an intersection point and, accordingly, an irreducible curve co may have
two branches which touch. Such a contact point is called a tacnode (see
Fig. 8-6c). A degenerate form of node - called a cusp - can also occur where
the tangents to the two branches coincide, but where, in contrast to the
case of a tacnode, there is only one branch to the curve at the point, not
two (see Fig. 8-6fc). Nodes, tacnodes and cusps are all examples of double
points of a curve co, which means that a general curve through that point
meets co twice there. Triple points and points of higher multiplicity can
also occur (see Fig. 8-6d). In fact, the case of a triple point may be regarded
as a degenerate case of a tacnode, which in turn may be regarded as a
degenerate case of a cusp; and a cusp, as we have just remarked, is a
degenerate case of a node (see Fig. 8-7).

The precise definitions of these concepts for curves presented in ordinary
(complex) Cartesian coordinates x,y- from which the above degeneration
properties can readily be inferred - are as follows. Consider co defined by
the equation
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non-singular, but
near to being a node

a node which is
near being a cusp

a cusp which is
near being a tacnode

X.
a tacnode
which is near
being a triple point

Fig. 8-7. How the singularities of Fig. 8-6 can arise as specializations

where Q is analytic (holomorphic) in x, y at the origin O. Then we have,
in some neighbourhood of 0,

Q(x, y) = Ao + (£ox + Bxy) + (Cox2 + 2Cxxy + C2>;2)

+ (Dox3 + 3D!X2y + 3Z)2x>;2 + D3y
3) + • • • (8.7.14)

The point 0 lies on co if Q(0,0) = 0, i.e., if

in which case the equation of the tangent at O is

unless Bo and J5X both vanish. Its slope is then defined by the ratio of the
coefficients

dQ dQ
BO:BU i.e.,—:— at 0.

ox oy

In particular, co touches the x-axis at O if

da
dx

= 0 at O,

and it touches the y-axis at 0 if

^ = 0 atO.
dy

(8.7.15)

(8.7.16)

(8.7.17)

The point 0 is at least double (i.e., a node) if, in addition to Ao = 0,

Bo = B,=0, i.e.,— = — = 0 atO,
dx dy

in which case the equation of the pair of tangents to the two branches at O is
2 2 = 0, (8.7.18)
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which is determined by the ratios

_ _ _ . d2n d2n
at 0.

dx dxdy d

The condition for co to have a cusp (or more special point) at 0 is that these
two tangents coincide, which happens if

A tacnode (or more special point) arises as a degenerate case of a cusp in
which the repeated tangent at 0 intersects co with a multiplicity of at least
four instead of the multiplicity three for a generic cusp. Thus if, in
accordance with (8.7.19), we put

C0 = a2, C1=ab9 C2 = b2, (8.7.20)

so that (8.7.18) becomes (ax + by)2 = 0, we shall have, since b(d/dx) —
a(d/dy) now represents differentiation in the direction of the (repeated)
tangent,

d d\3

b-r--a—\ Q = 0 atO (8.7.21)

dx dy)

as the condition (with (8.7.20)) for a tacnode (or more special point), i.e.,

Dob
3 - 7>Dxb

2a + 3D2ba2 - D3a
3 = 0. (8.7.22)

The condition for 0 to be at least a triple point is
A2n ^20 ^2Q

T- = 0 at O.ox dxdy

Multiple points of co

Of course the curve co of present interest to us is given not by an inhomo-
geneous equation like the vanishing of (8.7.14), but rather by the vanishing
of the doubly homogeneous function (8.7.7). So the point X of C5 +

represented by £ArjA' lies on co if

Q(<^V) = 0, (8.7.23)

in which case the tangent direction at that point is defined by the ratio

*••£•
The meaning of these abstract-index expressions is the obvious one
in view of the definition (8.7.7):
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and the definition of a ratio ^ : O ^ between abstract-index quantities is
simply the equivalence class of pairs (T^, O^) under the relation (*F ,̂ <X>̂) ~
(^,^)W#0).

Now we have, also by Euler's theorem on homogeneous functions,

^ I p 3 * 1 . I J i l ' ^ 7 S « a (8-7-25)
When Q = 0, these relations imply, by (2.5.56),

for some 0, £. The ratio

0:C (8.7.26)

is thus the entire residual information from (8.7.24), and therefore
defines the slope of co at the point X. Note that the operator

annihilates Q at X if and only if

and so it corresponds to differentiation in the direction given by the ratio
a:b.

As a first application of the above discussion, consider the condition
for the ^-generator defined by rjA' to touch co (i.e., to have two coincident
intersections with co) at X. Corresponding to (8.7.16), this condition is

0 = 0, i.e., TT7 = 0 atX,

which is also the condition for the canonical decomposition of (8.7.12) to
have £A as a repeated principal spinor. Similarly, the ^'-generator defined
by £A touches co at A" if, corresponding to (8.7.17),

C = 0, ; . e . ,—- = 0 atX. (8.7.29)

The condition for A" to be a double (or more special) point of co is that both
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these conditions hold simultaneously:

da _ o dQ - o x

Note that because of (8.7.25) the condition Q = 0 for X to lie on co is implicit
in either of the conditions in (8.7.30).

As in (8.7.25) we have, from Euler's theorem,

For a double point, therefore,

a t x

but, by the symmetry of the derivative, we must have 0Aoc£A, so that we get
the first of the following relations, while the others are obtained similarly:

d2n d2a d2a
S^B-PZAZB, gtAfyA'-eSAiA; drjA ^ ~ ™IA>1B' at X,

(8.7.31)

for some p, a, x. The ratios p\a\x define the pair of slopes of the branches
of co at X. A direction defined by a:b = 0:£ (as in (8.7.26)) corresponds to
one of these slopes if

pb2 - loab + xa2 = 0, (8.7.32)

for this is the condition AAAABB.Q = 0, with AAA. given by (8.7.27). These
slopes coincide if (8.7.32) has repeated roots, i.e.,

px = a2, (8.7.33)

which is therefore the condition for A" to be a cusp or more special point (cf
(8.7.19)).

By (8.7.32), the direction given by a: b is that of the above repeated slope if
(as in (8.7.20))

p = a2, o = ab, x = b2. (8.7.34)

So, as in (8.7.21), a cusp at X specializes to a tacnode (or more special point)
if

AAA>ABBAcaQ = 0 atX, (8.7.35)

which yields a relation analogous to (8.7.22). (Note that in (8.7.35) a and b
are taken as fixed numbers which satisfy (8.7.34), so they do not get
differentiated.)
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The condition for (at least) a triple point is, in addition to (8.7.30), and
with the definitions (8.7.31),

p = a = T = 0 . (8.7.36)

We may note that all the above considerations of multiple points also
apply to curves on CS+ which are merely holomorphic and not necessarily
algebraic.

The locus UcoonS +

Although we rejected (cf. after (8.7.4)) Uco as the main route to classi-
fication of Q , that locus on S+ may still be of interest. Its points are
given by (8.7.3). In the general case, when Q is not Hermitian (e.g., when-
ever p T* q), Uco will consist normally of discrete points on S+, since (8.7.3)
will be a complex equation whose real and imaginary parts give two
relations to be satisfied for the points of S+. When Q, is Hermitian, on
the other hand, the locus Uco will normally be a curve o n 5 + , although
exceptionally Uco may consist of, or contain, isolated (double) points.
The classification scheme for Q may involve examining the number of
disconnected pieces (possibly zero) into which the locus Uco falls. Note
that Uco has a quite direct significance, when p = q, since it then describes
the set of real null solutions of

fV.^.-.x^O. (8.7.37)

Thus, for example, if p = q = 1 and Qa is a real vector, the general case
(1,1) is naturally subdivided into two subclasses, namely that for which
Uco is vacuous, obtaining when the vector Qa is timelike (so Qax

a = 0
has no non-zero null solutions), and that for which Uco is a circle, obtaining
when Qfl is spacelike (so the null solutions of Qax

a = 0 lie on the intersection
with the null cone of the timelike hyperplane orthogonal to Qa). Since the
timelike and spacelike vectors form systems disconnected from one
another, where to pass continuously from one to the other it is necessary
to pass through an algebraically distinct type (namely (l,0)(0,1) - the null
vectors), it seems reasonable to classify the timelike and spacelike vectors
as two distinct types. Note that in order for the circle Uco (Qa spacelike)
to move continuously until it disappears (Qfl timelike) it must pass through
the situation in which it becomes a 'point circle' (Qa null). This is an isolated
double point, which is actually a node on co, with complex conjugate
tangents. In fact this node is the intersection of the two generators of CS+

which make up co (co is (l,0)(0,1) when Q,a is null) and is the point of S +

which represents the null direction of Qa.
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The sign ofQ black and white colouring ofS+

Finally, it may be felt that a classification which takes no account of the
sign of Q is still too crude. For example, the future-pointing and past-
pointing vectors Qa have just been classified together. It is possible to take
into account this sign, for Hermitian Q , by examining the sign of the
expression in (8.7.37) for the various future-pointing null vectors xa rather
than just its zeros. This amounts to imagining that the two regions of
S+ into which it is divided by the curve Uco are coloured differently, say
black when the expression in (8.7.37) is negative and white when it is
positive. We observe that whenever the expression in (8.7.37) is positive
semi-definite (i.e., non-negative for all future-pointing causal vectors xa%
then the whole of S+ is coloured white except possibly for some points
of Uco itself, which must be double. We can now distinguish the case when
Qa is a future-pointing timelike vector from the case when it is past-
pointing. For in the first case S+ is white, while in the second case it is
black. When Qfl is spacelike, S+ is black on one side of Uco and white on the
other.

8.8 Classification of the Ricci spinor

We shall now apply the methods developed in the last section to the case
of the (traceless) Ricci spinor Q.ABCD> = Q>ABCD"

 W e shall not consider the
trace of Rab. To consider A simultaneously with 0>ABAB> would add still
further complication to the classification. As it is, were we to follow through
the above scheme completely in all detail, we should end up with a classi-
fication of <&ABAB> into 41 different types (see Penrose \912b). This may
seem excessive, but, in fact, if certain rather natural criteria are adhered
to for a classification scheme for 0>ABA>B> (specifying how specialization
generates new types) then it seems that we cannot reasonably make do
with fewer. The existing alternative classification schemes all seem to
behave anomalously in certain of these respects. The criteria require, in
essence, a scheme which is Lorentz invariant, with the property that the
elements belonging to each specific type form a connected manifold, and
with the further property that elements which are the common specializa-
tions of two different types, neither of which consists solely of speciali-
zations of the other, shall not be considered to belong to either of these
two types. These criteria, together with some broad requirements that
certain Q>ABA>B> should 'obviously' belong to separate types, seem to imply
at least as fine a classification as that suggested here. Of course, it is always
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276 8. Classification of curvature tensors

possible, whenever variable scalar invariants are present within one type,
to continue to subdivide that type indefinitely. For example, in the case
of the {1111} Weyl tensors, we could, if desired, have regarded the harmonic
(J = 0) and equianharmonic (/ = 0) cases as types distinct from the general
type. Or, less reasonably, we could have regarded those whose cross-ratio
is rational, or real, or algebraic, or which satisfies any of an infinity of
other possible conditions, as belonging to distinct types. Clearly the alter-
natives are endless and the criteria for judging which classification schemes
are most reasonable must inevitably be somewhat subjective. For this
reason we do not wish to be dogmatic or definitive about a classification
scheme for 0>ABAB' but merely indicate how our method can be applied
and how it relates to certain alternative methods which have been put
forward by others.

Reducibility of<&ABAB.

First, let us examine the possible ways that <&ABAB' might be reducible.
Since it is Hermitian, we have just the following seven possibilities:

(2,2) ®ABAB' irreducible

(i, i)(i, i) <bif = \\A
A y*;> or d>i'B

B' = ± rfc|TS;>
(U)2 <^7=±Atf'Af;>
(1, l)(l,0)(0,1) <bABA.B. = p{AABHc'PD) (8.8.1)

) <bABA.B. = ± p{AoB)p^dW)

<!>ABA'B'=±PAPBPA'PB'

where KAA. and Y ^ are Hermitian and where all of A , Y.., F , p , <r,are
non-proportional and non-zero. To distinguish the two possibilities in the
case (1,1)(1,1) we shall henceforth denote only the first by that symbol,
the second being written |(1,1)|2 in order to indicate that it is of the form
(1,1)(1,1), where the second curve is the complex conjugate of the first.
For notational consistency, we shall also correspondingly re-designate the
final three non-zero types:

(U)( l ,0)(0 ,1)^(1, l)|(l,0)|2

(l ,0)2(0,l)2M(l,0)2 |2 . (8-8.2)

The specialization diagram for these eight types is given in Table (8.8.3).
The number on the left indicates the real dimension (or number of degrees
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Table (8.8.3)

Real dimension
9 (2,2).

7 (1,1)(1,1) 1(1,1)|2

6

5

4

3

0

of freedom) for each system of curves in the diagram; it is easily computed
from the number of real and imaginary parts of the independent spinor
components of each factor.

Eigenvalues and eigenvectors of<t>a
b; double points of co

So far this classification is not refined enough to encompass other schemes,
which have been suggested, such as one based on the coincidence of eigen-
values and on the dimension of the space spanned by the eigenvectors of
<ba

b (e.g. Churchill 1932, Ludwig and Scanlan 1971; cf Kramer, Stephani,
MacCallum and Herlt 1980 for further references). The condition that <S>a

b

have equal eigenvalues actually reduces the dimension of the space of Q)b

by just one (rather than two, which would have been the case with a positive
definite metric - as we shall explain shortly). Thus, we need to find a sub-
case of the general type (2,2) which is restricted by just one degree of
freedom, so the curve co must remain irreducible. Such a sub-case is
obtained by making co acquire a node.

To see that there is this relation between the presence of a node in co
and a repeated eigenvalue for <Da

fc, we consider first the general situation
which occurs when a matrix A is specialized so that two of its eigenvalues
kx and k2 are brought into coincidence. If A is not assumed symmetric,
then generically, the directions of the corresponding eigenvectors xx and
x2 will also come into coincidence. Only when A is made more special
still can a pair of independent eigenvectors be found corresponding to the
repeated eigenvalue (see (8.3.42) for an illustration of this fact). If A is
symmetric, then when ki^k2 it follows directly that xx and x2 are
orthogonal. Thus the 'generic' situation above, when \ l and x2 are brought

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.005
https:/www.cambridge.org/core


278 8. Classification of curvature tensors

into coincidence, occurs when each of xl 5 x2 approaches a vector ortho-
gonal to itself, i.e. a null vector. Thus, any vector corresponding to a
repeated eigenvalue must, if unique (up to proportionality), be a null vector.
When A is real-symmetric (or Hermitian) this cannot happen, so in such
situations the bringing together of two eigenvalues implies a reduction in
the degrees of freedom for A by a greater amount, to allow the occurrence
of the more special situation in which there arises a whole plane of eigen-
vectors corresponding to the repeated eigenvalue. When A is complex-
symmetric (as was the case for *F) the 'generic' situation can occur; coin-
cidence of eigenvalues thus implies the loss of just one degree of freedom,
and the corresponding eigenvector is null. In the present situation, 0>a

b

is symmetric with respect to the indefinite metric gab, so null vectors are
again possible and the 'generic' situation can occur. (It is easily checked
by example that this can happen for <X>a

b.)
From the above discussion we see that the first (i.e. most general)

degenerate case must occur when <t)a
b possesses a null eigenvector

Qa
bzb = lza9 zaz

a = 0, 0^z f le6 f l . (8.8.4)

(It follows from general matrix theory that, conversely, an eigenvector can

be null only when k is a repeated eigenvalue. A proof may be given in

terms of a limiting argument, considering the non-degenerate case first.)

Expressing za as in (8.7.5), we have ^>AABB^BrlB' = ^Ar\A^ which can be

written as

ABC'D'C S *\ = 0 , <VABC'D< V n = U - (0.5.5)

Comparison with (8.7.28), (8.7.29), (8.7.30) tells us that the point Z of C5 +

represented by £ArjA must be multiple for co, i.e. in the most general case
it must be a node. In fact, most generally, there will be only one such node,
so the point Z must be real (i.e. ZeS+) and we can take rjA' = f4' in (8.8.5).

Two distinct possibilities for real nodes can occur, namely those for
which the two branches of a; at Z have real tangents and those for which
the two branches have complex conjugate tangents. In the latter case, Z
is an isolated double point of co. An example of an isolated double point
is the point circle considered earlier in connection with the discussion of
a real null vector Qfl. Defining, as in (8.7.31), a complex number a and a
real number f$ by

so that comparison with (8.7.31) gives
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8.8 Classification of the Ricci spinor 279

one sees from (8.7.32) that the condition for the node to have real branches
(i.e., solutions of (8.7.32) with \a\ = \b\) is

aa>4£ 2 , (8.8.7)

while the condition for it to be isolated is

(xd<4p2. (8.8.8)

Recall from (8.7.33) that the node degenerates to a cusp (or tacnode or more
special point) if

oca = 4£2. (8.8.9)

To examine the meaning of these conditions in terms of the eigenvalue
structure of <ba

b
y suppose that xa = £A%A. is an eigenvector of <t>a

b corres-
ponding to the double eigenvalue X for which the only eigenvectors are
multiples of xa, and that the remaining two eigenvectors lie in a real space-
like plane II, orthogonal to xa. The plane II coincides with a pencil of
vectors

ya = ^-(£AffA' + dAlA>) -^(£AffA' - eA%A'\ (8.8.10)

where u, v are real, and where

ZA6A = 1 (8.8.11)

fixes 6A uniquely in terms of the scaling of £A. (The two vectors in paren-
theses in (8.8.10) are orthogonal spacelike unit vectors, orthogonal also
to xa.) If ya and ya are two vectors of the pencil (8.8.10), corresponding
to (u, v) and (u, v) respectively, then from (8.8.6) we get

The (2 x 2) matrix in (8.8.12) defines, in terms of u and v, a linear trans-
formation in II which is that induced by <&a

b. For if ya = <J>a
byb9 its (u,v)

representation must, by comparison with the scalar product yaya =
— uu — vv be represented by the final matrix x column-vector product in
(8.8.12). The eigenvalues of this matrix, which are easily seen to be — /? ± | a |,
must equal those two eigenvalues /L2, X3 of 0>a

b which correspond to
eigenvectors in II. Furthermore, from (8.8.6) it follows that /? is the
(repeated) eigenvalue ( = X0 = X1) which corresponds to the repeated
eigenvector xa, so we have

X0 = p, Xx=p9 A2 = M - A A 3 = - | a | - j 3 . (8.8.13)
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The cusp

From this we see that the condition (8.8.9) for a cusp (or more special
point) states that a triple coincidence of eigenvalues (/l0 = kx = X2 or
Xo = lx = X3) takes place. However, in the most general case, namely that
of a cusp, it turns out that the eigenvectors corresponding to this triple
eigenvalue ( = /?) are just the multiples of xa and no others. The only
remaining eigenvectors are those corresponding to the simple eigenvalue
( = — 3/?). So in this case the spacelike plane n of our previous discussion
does not exist. (It has become null, containing xa) Instead, we have a null
eigenvector xa and merely a spacelike eigenvector ya orthogonal to it.
The general form for 0>ab when co possesses a cusp corresponding to the
null vector xa is

(flww, (8.8.14)

where yay
a = — 1, and where wa ( ^ 0) is also spacelike and is orthogonal to

both xa and / (0 / 0).

The tacnode

To obtain the condition for the cusp to specialize further, we can employ
(8.7.35) (with (8.7.27)), choosing

a:fc = a:2)S = 2£:a, (8.8.15)

cf. (8.8.9). In fact, it is only the totally symmetric part of (8.7.35) which
yields anything new. After some calculation, and use of Proposition (3.5.15)
we get

2/K^BC'M'fT.., = <(A?<S>B)CA.B., (8.8.16)

as the required condition for (at least) a tacnode. As we see at once by trans-
vecting (8.8.16) with £A, it implies the condition (8.8.9). In fact, all we need
to know about a and /? in (8.8.16) is that they are not both zero, since
their ratio is determined by transvection with f4'. Now, with a tacnode,
oo must degenerate to a pair of circles; it therefore follows from (8.8.1) (type
(1,1)(1,1) or |(1,1)|2) that QABA.B. has the form

*£f' = A}i'T5>or±r{iT5>, (8.8.17)
where Aa and Yfl are real (and, in fact, spacelike, by (8.8.22) below). Contact
between these circles is expressed (for real circles) as

*AC-F' = VZA, TAC-F'=±VZA (8-8-18)

or (for complex conjugate circles) as

r v r = <,, rAC.^'=±viA (8.8.19)

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.005
https:/www.cambridge.org/core


8.8 Classification of the Ricci spinor 281

(using a suitable scaling between the two factors in (8.8.17)), where

a = v2, 2/3 = ± vv (8.8.20)

Suppose P > 0, so that the upper signs apply. (In the contrary case we
make the same argument for — <!>ab.) The eigenvectors of O / corresponding
to the triple eigenvalue p consist of all the vectors orthogonal to both Aa

and Ya [or Ta and F j (a two-dimensional space), while those corresponding
to the simple eigenvalue — 3/? are the multiples of Aa + Ta [or Ta + F J .

Instead of (8.8.17), we may prefer a tensor form resembling (8.8.14),
namely

®ab = faab + Wyayb + 4j?*flxb, (8.8.21)
where

ya = y(K + ra) ory(rfl + Ffl),
with

16py2 = l

and £A scaled so that

xa = ^A' = y(K-ra) oriy(Ta-ra).

(That xa is proportional to these expressions follows from (8.8.18), (8.8.19).)
The upper sign in (8.8.21) now refers to the first of these expressions for
xa and ya9 while the lower sign refers to the second. The required properties

yay
a=-l ya*

a = o

follow from the relations

AflA
a =TflT

fl = A J f l = - 40 (8.8.22)
or

rar
a = rar

a=-4fr (8.8.23)
which are consequences of (8.8.18), (8.8.19), (8.8.20). Using these relations,
(8.8.21) can be readily derived from (8.8.17).

Since for the present case of a tacnode we again have a spacelike 2-plane
of eigenvectors, in addition to xfl, the discussion of (8.8.10)—(8.8.12) applies,
which it does not in the case of a cusp. Thus the specialization (8.8.9) in
(8.8.12), yielding a triple eigenvalue, gives us the more special case of a
tacnode rather than that of a cusp.

Types of node

Returning now to the general case of a node, we remark that the
condition (8.8.8) for the node to be isolated corresponds, in terms of the
eigenvalues (8.8.12), to the condition that the repeated eigenvalue should
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lie outside the interval bounded by the two simple eigenvalues, i.e.,

Ao = Al>max(A2,A3) or Ao = kx < min(A2,^3);

the condition (8.8.7) for the node to have two real branches corresponds
to the condition that the repeated eigenvalue should lie between the two
simple eigenvalues, i.e.,

X2 < k0 = Xx < X3 or k3 < k0 = Xx < A2.

Note that a different, additional, coincidence between eigenvalues occurs
when oc = O, namely X2 = A3. Referring back to (8.8.6), we see that this means

from which it follows that Q>ABCD' ^ a s ^ e form

for some Hermitian ABC> so a> is (1, l)|(l,0)|2, or more special.
We observe that again our specialization has jumped some cases, this

time the node-pairs (1,1)(1,1) and |(1,1)|2. The reason here is that these
cases are characterized by the occurrence of additional eigenvectors, rather
than by further coincidences of eigenvectors. In these cases (8.8.17) holds,
as with the tacnode, but not (8.8.18) or (8.8.19). There is a 2-space of eigen-
vectors orthogonal to Afl and Tfl [or Va and F j , this being the space
spanned by the two nodes, and there are two separate eigenvectors which
are linear combinations of Afl and Ta [or Ta and Ffl]. Many distinct
possibilities arise with regard to the eigenvectors being spacelike or
timelike, real or complex.

The different 'categories' within one type

It is not our intention here to examine all the individual special cases in
detail. But we remark that even the general situation of (2,2), where at has
no multiple points, needs to be subdivided further if we are to adhere to our
criterion that each type is to form a connected manifold. Thus we subdivide
types into connected 'categories' having the same dimensionality. (Special-
ization of types, on the other hand, always leads to types of lower
dimensions).

In the general case, when the eigenvalues are all distinct, if the eigenvalues
are all real there will be one, say k0, which corresponds to a timelike
eigenvector and three others, Xl9 A2, A3, which correspond to spacelike
eigenvectors. (This is because the eigenvectors, which are real in the cases
now under consideration, are all mutually orthogonal.) The special cases
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8.8 Classification of the Ricci spinor 283

that we have been considering above will arise as limiting situations of
these general cases when Xo comes into coincidence with one of the other
eigenvalues. (For, with real eigenvectors, it is only when a timelike and a
spacelike eigenvector come into coincidence that a null eigenvector can
arise as a limit.)

Now there are four essentially different possible arrangements of distinct
real eigenvalues, namely that k0 may be the largest, second largest, third
largest, or smallest among the eigenvalues. Each of these four arrangements
gives a different category; for in order to pass continuously from one to
another it is necessary to pass through a degenerate situation correspond-
ing to one of the more special types, say when co acquires a node as
discussed above - although it turns out, in fact, that it can only do so in
this way if, at some stage, co aquires two nodes at the same time,* which
implies that co is (1,1)(1,1) or |(1,1)|2, or more special.

These four cases of (2,2) can be described in terms of co on S+ as follows.
When Xo is the largest eigenvalue, the following positive-definiteness
property** holds:

Q>abx
axb > 0 for all non-zero real null vectors xa

(cf (8.8.33), (8.8.34) below). This is the situation when Uco is vacuous
and the whole of S+ is coloured white (cf end of §8.7).

When k0 is the second largest eigenvalue, it can be shown that Uco
consists of two separate loops, the interiors of which are coloured black
while the annular region between them is white. When Xo is the second
smallest, Uco consists again of two loops, but the colours are reversed.
When k0 is the smallest, Uco is vacuous and the whole of S+ is black.

There is yet another possibility for the curve Uco in the general case:
it can consist of just a single loop. Then one side must be black and the
other white. In this situation there does not exist a real orthonormal
eigentetrad for Q>ab. Two of the eigenvalues are real and correspond to
two spacelike eigenvectors; but the remaining two eigenvalues are

Roughly speaking, when two eigenvalues 'collide' along the real axis, then, in the
general case, they 'bounce' off into complex conjugate eigenvalues. The case of Xx

'passing through' A2, say, along the real axis corresponds to the double 'accident' of a
pair of nodes.
With the strict inequality ' >' replaced by ' ̂ ', this is the weak energy condition in the
terminology of Penrose (19726: p. 63) (or the null convergence condition in the
terminology of Hawking and Ellis 1973, who use 'weak energy condition' for the
stronger condition which obtains when xa is allowed also to be timelike and the full
energy tensor replaces Oflt>; cf. also Volume 1, p. 327).
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284 8. Classification of curvature tensors

conjugate complex* and correspond to a pair of eigenvectors which are
complex conjugates of one another. This is the only remaining possibility
for the non-singular (2,2) case, giving five disconnected categories in all.

The singular cases of (2,2) are also subdivided, giving eight more
categories. Two of these occur when Ua> possesses a cusp, with alterna-
tive arrangements of black and white in relation to the cusp. For the
remaining six, Rco has a node, two categories arising when the node
has real branches and four others when it is isolated - distinguished by
the colouring and by the presence or absence of a loop of Ua> in addition
to the isolated double point. All these different cases can be distinguished
by their eigenvalue and eigenvector properties but we shall not enter into
this discussion here.

Many of the cases when w is reducible will also separate into subclasses
and different categories. For example, in case (1,1)(1,1), Uco consists
of two separate circles either of which may have real or imaginary radius -
according as, in the expression

W = A£T£>, i.e., <t>ab = A(flTft) - i a .AT<
the respective real vectors Afl, Ya are spacelike or timelike. These
circles intersect in a pair of distinct real or conjugate complex points
(according as Aa, Ya span a timelike or spacelike plane), or, as we have
seen, in a more special circumstance (dimensionality reduced) the circles
may touch (when Afl, Ya span a null plane, co having a tacnode at the
contact point). The generic case (1,1)(1,1) thus subdivides into a number
of different categories, six in all (taking into account the colour) these all
being cases when co possesses two distinct nodes (the intersection points
of the two circles). In the tacnode case, the circles have real radii and there
are two colourings.

The generic case |(1,1)|2 also divides into (four) categories (characterized
by whether the two nodes are real and isolated, or conjugate complex,
and also with respect to colour). The special case of |(1,1)|2 is again
distinguished by the presence of a tacnode (two categories).

Finally, the case (1,1)|(1,0)|2 should be especially remarked upon. Again,
the generic case subdivides into (four) categories. But there is also a special
case arising when the intersection point of the pair of lines |(l,0)|2 (which
is generically an isolated double point) lies on the circle (1,1) (in which
case it becomes a triple point with one real and two conjugate complex

* The adjectival phrase 'conjugate complex' is a useful one referring to a pair of objects
(numbers, curves, points, etc.) which are interchanged under the operation of complex
conjugation.
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8.8 Classification of the Ricci spinor 285

branches). From looking at the real point set Ua> alone, one would not
even recognise the existence of a triple point here.

Complete classification and specialization scheme

The complete scheme of types and their specializations is given in
Penrose (1972a). It is somewhat complicated in its totality, but simple
enough to reconstruct, if one bears in mind such features as the fact that
the multiplicities of multiple points cannot decrease under specialization
and that the only bits of Uco which can appear discontinuously under
specialization are multiple portions (with even multiplicity).

Ignoring the splitting of classes into different categories of the same
generality (which would show up in the different eigenvalue orderings and
reality structure), the various possibilities for the curve co, together with
the corresponding Segre characteristic* for Q>a

b are listed in Table (8.8.25),
and their scheme of specialization is given in Table (8.8.26). (The original
notation of (8.8.1) has been reverted to since the Hermiticity structure of
the factors is now being incorporated into the subdivisions into categories.)

Plebanski spinor type

The only feature of Table (8.8.24) that has not yet been discussed

here at all is the Plebanski (1964) spinor type. In (8.7.1) we defined the

symmetric spinor TlABCD such that

ABCD^ Q S S — ^P'Q'ABS Q ^CD S S • {O.O.Z**)

Plebahski's method is to apply the standard Weyl spinor classification
to TiABCD and to use this as a classification scheme for Q>ABCD> We first
discuss the relation between the representations of II and O in terms
of corresponding curves n and co on C5 + . Now equation (8.8.24) tells

* The Segre characteristic [ ] specifies the Jordan normal form of a matrix (cf. (8.3.42);
Turnbull and Aitken 1948). Each set of equal eigenvalues down the diagonal of the
matrix gives rise to a separate entry in [ ] . However, such a set may have units just
above the diagonal in certain square blocks; the size of these blocks is indicated in the
entries. For example, [(3 2 1)(4 4)] indicates a block of three As down the diagonal (with
2 units above the diagonal), followed by a block of two As (with one unit above the
diagonal), followed by a single A; then a block of four fis (with three units) and another of
four /is (with three more units). Parentheses round single numbers are omitted. The
dimension of the space spanned by all the eigenvectors is the total number of numerals
appearing in [ ] (here five). For each eigenvalue, the dimension of the corresponding
eigenvector space is the number of numerals within that particular bracket (here 3, 2).
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Table (8.8.26)

Number of

degrees
of freedom

Number

4

of dimensions of span

3

of eigenvectors

2

0

us that if £A is a principal spinor of UABCD, then, (cf. just after (3.5.29)),

®ABCD'ZAZ>B = ric'riD', (8.8.27)

for some rjc>. Thus

< ^ B C ' D ' ^ V = 0, (8.8.28)

which, by (8.7.29), is the condition for the I'-generator defined by
£A to touch co at £AriA'. Since this applies to each principal spinor of TlABCD

we obtain the result that n consists of the set of four ^'-generators which
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288 8. Classification of curvature tensors

touch co. The coincidence scheme for these generators is then readily
obtained by examining the singularity structure of co. As in our earlier
discussion, we must bear in mind that 'touching' is to be interpreted in
terms of coincidences of intersection points, so the Z'-generator through
each multiple point of co qualifies as touching co. In fact, as one can tell
from examining the way in which multiple points arise in limiting cases,
every Z'-generator through a multiple point of co must count as at least
double for n. The exact multiplicity can be obtained in each case by
examining the limit in detail. The results are listed in Table (8.8.25)

It is worth remarking that the Plebanski spinor type classification fails
in certain cases to distinguish the different types of O fully. This is most
obviously so for the last three cases in Table (8.8.25) since in each of these
II vanishes.

The cross-ratio of the four PNDs of II. is of some interest since, in the
general case of a non-singular (2,2) curve co, this cross-ratio defines what
is known as the modulus of the elliptic curve co. ('Elliptic' here refers to
the fact that co can be parametrized analytically by means of elliptic
functions but not by rational functions. This modulus is an example of
what is known as a birational invariant of co, i.e. it is unchanged by any
analytic '1-1 almost everywhere' transformation of co.) (See, e.g. Walker
1950 for a more complete discussion of these matters.)

To find the value of this cross-ratio in terms of the eigenvalues of <t>a
b

in the general case, we can, if the eigenvalues are all real (and distinct),
first express <bab in terms of these eigenvalues and the standard Minkowski
tetrad (3.1.20) (here denoted by (5°,..., Pa) of eigenvectors:

*<* = V X " W b - X2b
2

ab
2

b - XJlb\ (8.8.29)
(i.e., the matrix Oa

b = diag(A0,>l1,A2,/l3)). The other generic situation
requires complex vectors and complex eigenvalues, but we can introduce
two complex combinations of b°a and b\ and write

-^blbl-X2b
2
abl (8.8.30)

where kx,k2
 a r e r e al an(* A3 = X0, and where the standard relation

(3.1.20) between a spinor dyad and Minkowski tetrad is being employed.
Using (3.1.20) also in the case (8.8.29), we can compute HABCD directly to
obtain, from (8.8.29), its expression in standard canonical form (8.3.34),
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8.8 Classification of the Ricci spinor 289

where

In the case (8.8.30), we obtain an expression for TlABCD which differs
only inessentially from the standard canonical form (and which reverts to
it under oA*-+eni/8oA,iAy->e~ni/8iA, and again we arrive at precisely (8.8.31)
for the values of rj and x f°r ^ABCD-

Note the striking fact that the cross-ratio of the PNDs for TlABCD is
also the cross-ratio of the four eigenvalues of Ofl*. This cross-ratio must
therefore be real in the case when <ba

b has a real tetrad of eigenvectors.
In the other case we have, by virtue of the reality properties of the /Is,
that / satisfies 1x1 = 1, | 1 - * | = 1, or Re(x) = i We recall, from the
discussion of §8.6, that these four possibilities are just the cases in
which the PNps (of HABCD) have reflective symmetries. Finally, using
0̂ + ^1+^2 + 3̂ = 0, w e observe that the three eigenvalues of UAB

CD

are just the three expressions:

^0^2 + ^1^3 + "> ^0^1 + ^2^3 + ŝ -̂0̂ 3 + ^2^1 + >̂
where

S = £Wg +A?+ *! + *!) (8.8.32)

Physical energy tensors

It should now be clear that the Ricci tensor is really a much more
complicated object for general classification than the Weyl tensor. How-
ever, for space-times of physical interest one may reasonably argue that
the great majority of the types are to be ruled out. The weak energy
condition* (in its usual non-strict form) asserts, of the energy-momentum
tensor Tab, that for each null vector xa,

Tabx
axb^0. (8.8.33)

Thus if Einstein's equations (4.6.32) are adopted, we then have

<babx
axb>0. (8.8.34)

This is just the condition that none of S+ be 'coloured black' i.e.
that every point of S+ be either 'white' or a point of Uco. And since
the colour changes from one side of Mw to the other wherever Uw
is a simple curve, this implies that Uco consists entirely of double (or

* See second footnote on p. 283
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290 8. Classification of curvature tensors

quadruple) points. The only categories that can satisfy this criterion are
the 'white' versions of the following:

(2,2) non-singular (and Uco empty)
(2,2) node (isolated; and Uco otherwise empty)
(1,1)(1,1) two nodes (complex and Uco empty)
|(1,1)|2 two nodes (both isolated)
|(1,1)|2 two nodes (both complex)
|(1,1)|2 tacnode (isolated)
(1,1)1(1,0)|2 three nodes (one isolated; Uco otherwise empty)
|(l,0)(l,0)|2 four nodes (two isolated, two complex)
(1,1)2 double curve (real)
(1,1)2 double curve (complex)
|(1,0)212 double curve and quadruple point (isolated)
(~)(Uco = S+) (8.8.35)

The remaining categories may, if desired, be ruled out as 'non-physical'.
On the other hand, one is often interested in symmetric 2-index tensors
in any case, whether or not they are the Ricci tensors of 'physically
reasonable' space-times. For example, one might be interested in the
various types that can occur as terms in an asymptotic expansion of the
Ricci tensor (compare §9.7). The individual terms need not satisfy an
energy condition.

Of course, generically, in a physical space-time, the type will be (2,2)
non-singular, as above, almost everywhere. But when the Einstein-
Maxwell equations hold, the generic type is |(l,0)(l,0)|2 (as immediately
follows from <&ABAB> = 2GcpABcpA,w, cf. eq. (5.2.6)) or, in the case of a null
field, |(1,0)212. For an isotropic medium, it follows from the spherical
symmetry (three equal eigenvalues cf. also (8.8.1)) that the type is always
(1,1)2 with complex double curve.
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9

Conformal infinity

9.1 Infinity for Minkowski space

One of the most useful areas of application of 2-spinor methods has turned
out to be the study of asymptotic questions in relativity, important examples
of which are the definition of the total energy-momentum contained in
an asymptotically flat space-time and of gravitational radiation. For this,
the spinor methods are particularly powerful when combined with a
technique (Penrose 1963, 19646, 1965) which employs conformal metric
rescalings in order to 'make infinity finite'. According to this technique
we rescale the metric of the space-time M, replacing the original physical
metric ds by a new 'unphysicaP metric d$, which is conformally related
to it,

ds = Qds, (9.1.1)

Q being a suitably smooth, everywhere positive function defined on
Jt. The metric tensor gab and its inverse gab are accordingly rescaled by

gab^gab = a2gab, gab^gab = Q-2gab. (9.1.2)

Provided that the asymptotic structure of M is suitable, and that
Q is chosen appropriately, it is possible to adjoin to M a certain
boundary surface, denoted by «/ (and pronounced 'sen' - a contraction of
'script F), in such a way that the 'unphysicaP metric gab extends non-
degenerately and with some degree of smoothness to these new points.
The function Q can also be extended appropriately smoothly but becomes
zero on J'. This implies that the physical metric would have to be infinite on
J, so it cannot be so extended. Thus, from the point of view of the physical
metric, the new points (namely those on«/) are infinitely distant from their
neighbours. Physically, they represent 'points at infinity'.

The adjoining of,/ to such a space-time Jt provides us with a smooth
manifold-with-boundary,* denoted by -J{, with

* We do not go into the details of the precise definition of a manifold-with-boundary here
but refer the reader to Lang (1972). Essentially, it is a space whose points have
neighbourhoods which are either Euclidean spaces or Euclidean half-spaces (e.g.

1 1 }
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292 9. Conformal infinity

J = dJt, Jt = int Ji

(d = boundary, int = interior). The advantage is that the powerful
local techniques of differential geometry and spinor algebra can now be
employed on J( with implications for the asymptotics of Jt. Thus
we need not resort to complicated limiting arguments when studying the
all-important detailed rates of fall-off of physical or geometrical quantities
in, for example, radiation questions in asymptotically flat space-times.
Indeed, the very definition of asymptotic flatness in general relativity can
now be given in a convenient and 'coordinate-free' way. Conformal
methods are particularly appropriate in relativity because many of the
important concepts are conformally invariant. Among these are the
massless free-field equations, the Weyl conformal tensor, null geodesies,
null hypersurfaces, relativistic causality, and, most particularly for the case
of Minkowski space, twistor theory. The technique here outlined is similar
to that used in complex analysis, where the 'point at infinity' is adjoined
to the Argand plane to obtain the Riemann sphere (cf. §1.2), and in
projective geometry.

Explicit coordinate description; J±,\± and i°

Let us begin by examining the construction of conformal infinity
for Minkowski space Ml. The physical metric, in spherical polar
coordinates, is

d5
2 = dt2 - dr2 - r2(d02 + sin2 6d<j)2). (9.1.3)

For convenience, we introduce a retarded time parameter u = t — r
and an advanced time parameter v = t + r to obtain

ds2 = du dv - i(v - u)2(d62 + sin2 6 d</>2). (9.1.4)

There is much freedom in the choice of a conformal factor Q. However,
for the types of space-times that we shall consider here ('asymptotically
simple' space-times), it turns out from general considerations (cf. just after
(9.7.22)) that our choice of Q must be such that along any ray it approaches
zero (both in the past and in the future) like the reciprocal of an affine
parameter X on the ray (i.e. Q.X -> constant as X -> oo and Q/l -+ constant
as /-> — oo, along the ray). Each u = constant hypersurface is a future
light cone, generated by the rays (null straight lines) for which 6 and <f>
are also constant. The coordinate v serves as an affine parameter into the
future on each of these radial rays. Similarly, the coordinate u serves as
an affine parameter into the past on these rays. Thus we shall require
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9.1 Infinity for Minkowski space 293

Qv -• constant as v -> oo on w, 0, </> = constant, and Qw -> constant as
w -> — oo on v9 0, (f) — constant. If we wish also to keep Q smooth over the
finite parts of space-time, then the choice

suggests itself (the factor 2 being for later convenience), and then

2 2 . 4dwdf (v — u)2
 2

d s = " d s ={i+u>)(i+v>)-(i+u>)(i+v>){dd + s u

Many other choices of Q are equally possible, but this one is especially
convenient, as we shall see shortly.

In order that our 'points at infinity' may be assigned finite coordinates,
we can replace u and v by p and q, where

u = tan /?, v = tan q.
Then

d52 = 4dpdq - sin2(q - p)(dO2 + sin2 0d</>2). (9.1.5)

The range of the variables p,q is as indicated in Fig. 9-1, in which
each point represents a 2-sphere of radius sin(q — p). The vertical line

Fig. 9-1. The region of (p, qr)-space which corresponds to Ml. The line q — p = 0 is an
axis of spherical symmetry (and so also is q — p = n).
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294 9. Conformal infinity

q — p = 0 represents the spatial origin (r = 0) and is just a coordinate
singularity. The space-time is, of course, non-singular on this line (as
everywhere else). The sloping lines p = - \ n (-{n<q<jn) and
q = jn ( — jn<p<jn) represent (null) infinity (denoted by J~ and J+,
respectively) for Minkowski space (since they correspond to u = — oo and
to v = oo). However, the metric (9.1.5) is evidently perfectly regular on
these regions. Indeed, the space-time and its metric ds can clearly be
extended beyond these regions in a non-singular fashion. The vertical line
q — p = n is again a coordinate singularity - of precisely the same type as
that at q — p = 0. The entire vertical strip O^q — p^n may be used to
define a space-time & whose global structure is that of the product of a
spacelike 3-sphere with an infinite timelike line (an 'Einstein static
universe'). To see this, we choose new coordinates

T = /? + 4, p = q-p

and obtain

ds2 = dr2 - {dp2 + sin2 p(d62 + sin2 6d<p2)}. (9.1.6)

The part in curly brackets represents the metric of a unit 3-sphere.
The portion of $ which is conformal to the original Minkowski space

may be described as that lying between the light cones of two points i ~
and i + . The point i" is given by p = q= — jn9 and the point i+ by
P = q = 2n- This portion 'wraps around' $ to meet at the 'back' in the
single point i° (given by q= —p = jn). Note that sin2(q — p) = 0 at i°,
indicating that i° should, in fact, be regarded as a single point, rather
than a 2-sphere. The situation is illustrated in Fig. 9-2, under suppression
of two dimensions. Minkowski 2-space is conformal to the interior of a
square (represented as tilted at 45°). This square wraps around the cylinder
which is the two-dimensional version of the Einstein static universe. In
higher dimensions the situation is similar. Near the point i", the relevant
region lies in the interior of the future light cone of i". This light cone (i.e.
the point-set swept out by the rays directed into the future from i") is
focused around the back of the Einstein universe to a single point i°
(which is spatially the antipode of i"). Near i° the relevant ('Minkowski')
region lies in the spacelike directions from i°. The future light cone of i°
is focused back again to a single point i+, whose spatial location
corresponds to that of i~. Near i + , the relevant region lies in the interior
of the past light cone of i + .

The ray segments which connect i" to i° sweep out the portion of the
boundary of the Minkowski space region that has been denoted by «/".
Similarly the ray segments from i° to i+ sweep out J*'. The points i~,i°, i +
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9.1 Infinity for Minkowski space 295

Fig. 9-2. The region on the Einstein cylinder $ which corresponds to M.

themselves are considered not to belong t o / " or to J+. Physically, we
interpret i" as representing past temporal infinity, . / " a s past null infinity,
i° as spatial infinity, J+ as future null infinity, and i+ as future temporal
infinity. The reason for this terminology becomes clear when we examine
the behaviour of straight lines in Minkowski space (straight, that is, with
respect to the Minkowski metric ds). A timelike straight line acquires a
past end-point i" and a future end-point i + . A null straight line acquires
a past end-point o n / " and a future end-point on J+. A spacelike straight
line becomes a closed curve through i°. (The detailed verification of these
facts is straightforward.) Since rays remain rays after conformal rescalings,
the null straight lines become rays according to the d§ metric; but the
timelike or spacelike straight lines are not, in general, geodesies with
respect to ds.

TIPs and TIFs

When we consider curved lines in Minkowski space, the question of which
end-points they acquire is more complicated. For example, the helix given
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296 9. Conformal infinity

by t = (f), r = l , 9 — \n, though a m/// curve, has a past end-point at
i" and a future end-point at i+ (and at both end-points the completed
curve is not smooth). On the other hand, the timelike curve r — (1 4- r2)*,
9 = jn, 0 = 0 smoothly acquires a past end-point on J~ and a
future end-point on </+. Also, it is easy to find spacelike curves that acquire
end-points on either or both of J± or at i*. If we restrict our attention
to causal curves (that is, curves which are everywhere either timelike or
null) - and these, in any case, are the only curves along which particles
or information can be propagated - then there is a very simple criterion,
expressible entirely in terms of the Minkowski space M itself, for
deciding whether or not two such curves acquire the same past end-point
or future end-point and whether these points lie on J± or i1.

To this purpose, consider any set Z of points in M, and let / + [Z]
denote the subset of M consisting of those points which can be reached
from some point of Z by a future-directed timelike curve; in other words,
/ + [Z] is the (open) future of Z. (For its being an open set in M, see
Penrose 19726, Hawking and Ellis 1973.) Similarly, let /~[Z] denote the
(open) past of Z. Now if a is any causal curve with a (finite) past end-point
P in M, the future of P coincides with the set / + [a], a property which
holds for no other point in M (as one may easily convince oneself - full
proofs can be found in Geroch, Kronheimer and Penrose 1972). Thus,
any other causal curve f$ also has P as its past end-point if and only if
/ + [/?] = / + [a]. The advantage of this criterion is that it applies also if a
and P are past-endless (i.e. extend indefinitely into the past and do not
attain finite past end-points in M): such curves a and /? acquire identical

no-) = i+w

Fig. 9-3. Two causal curves a, /? have the same past end-point on J if and only if
they share the same future.
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9.2 Compactified Minkowski space 297

past end-points, either at i" or on </", if and only if / + [a] = /"*"[/?] (see
Fig. 9-3). (They clearly cannot have past end-points at i°, i+ , or on / + . )
From this we see that a past-endless causal curve a acquires a past end-
point at i" or on / " according as / + [a] is or is not the whole space M
(since, for example, the future of the time-axis t = 0 is the whole of Ml).
In exactly the same way, a future-endless causal curve a reaches i+ or a
point of J+ according as /~[a] is or is not the whole of Ml; furthermore,
a future-endless curve ft reaches the same point at infinity as a if and only
if / " [ a ] = /-[ /?] .

These criteria are especially useful since they also apply in curved space.
Sets of the form / + [a], where a is a past-endless causal curve are called
TIFs (terminal indecomposable future-sets); those of the form / " [ a ] with
a a future-endless causal curve are called TIPs (terminal indecomposable
past-sets). They can be used to provide definitions of past/future boundaries
in very general space-times (see Seifert 1971, Geroch, Kronheimer and
Penrose 1972). The boundaries of TIFs and TIPs are also of interest. They
are generated by rays which are, respectively, future-endless or past-endless
(cf. Penrose 19726, Hawking and Ellis 1973). In the case of Minkowski
space Ml, these boundaries (when non-vacuous) are the null hyperplanes in
M, i.e. sets with equations of the form xaAa = B9 where Aa9 B are constant,
and Aa is null. This fact will have significance for the next section.

The required conformal manifold-with-boundary Ml now consists
of the original Minkowski space Ml, with its conformal metric, together
with the two boundary 3-surfaces J+ and J~. But the points i+ , i°, and
i~ have to be excluded from Ml because the boundary would not be
smooth at these points. We observe that the topology of each of J+ and
J~ is S2 x R, where S2 is coordinatized by the spherical polar angles
0,0 and U by retarded time u, in the case of </+, and by advanced
time t>, in the case of J~.

9.2 Compactified Minkowski space

When we come to consider asymptotically flat space-times shortly we
shall see that much of the above discussion still applies. However, one
property which is very specific to the Minkowski space model is the fact
that every null geodesic which originates at some point A~ o n / " will
pass through the same point A+ o n / + (see Fig. 9-4). This property may
seem surprising at first, but it becomes clear when we recall that the future
light cone of a point o f / " is simply a null hyperplane in the Minkowski
space. (It is the limit of a light cone when the vertex recedes into the past

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


298 9. Conformal infinity

Fig. 9-4. The rays in M from a point A eJ all share the same future end-point
A + e / + . (This is a special property of M not possessed by general space-times.)

along a null straight line.) Similarly the past light cone of any point on
J* is also a null hyperplane. So a null hyperplane will acquire a past
'vertex' o n / " (say A~) and a corresponding future 'vertex' (say A*) on
. / + . We can also see this in terms of the Einstein-universe model $. The
future light cone of A ~ is focused at a point A + which is spatially antipodal
to A~.

Having this natural association between points of J~ and «/+, for
Minkowski space, it is in some respects natural to make an identification
between J~ and e/+, the point A~ being identified with A+ and f~ and J+

then being written as J. If we do this, then for the sake of continuity we
should also identify i" with i°, and i° with i+. The three points i±, i°
thus become one, which we label /. We see from Fig. 9-5 that the Minkowski
regions fit neatly together at the point /, so that / becomes simply a
normal interior point of the identified manifold. The compact conformal
manifold that we construct by means of these identifications is referred
to as compactified Minkowski space M# (see Bocher 1914, Coxeter 1936,
Kuiper 1949, Penrose 1964a). For reasons that we shall see in more detail
later, such identifications cannot be satisfactorily carried out in curved
asymptotically flat spaces. (Not only is there apparently no canonical way of
performing such identifications in general, but, when the total mass is non-
zero any identification would lead to failure of the required regularity
conditions along the identification hypersurface.) For many purposes, the
identification of / " with </+ may, even in Minkowski space, seem
unphysical (and, of course, it need not be made). However, for various
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9.2 Compactified Minkowski space 299

Fig. 9-5. In the identification of,/ with J+ which produces M#, the points i , i°
and i+ all get identified. The resulting non-singular point / has a neighbourhood
made from three separate pieces of Ml.

mathematical purposes the identification is very useful,* and so it will be
worth our while in this section to develop the geometry of compactified
Minkowski space in a little detail, particularly in view of its relevance to
twistor theory, and because it is the space on which the fifteen-parameter
conformal group acts.

With J~ and J>+ identified as explained above, each null geodesic in fVD#

has the topology of a circle S1, being a null straight line in Ml joined into a
loop with a single point at infinity. The topology of the whole space fMl#

turns out to be

M's^xS1. (9.2.1)

This is not immediately obvious but it can be seen if we select an arbitrary
Robinson congruence in Ml# (cf. §6.2, p. 59 et seq. and Fig. 6-3), and
consider the family of spacelike hypersurfaces given by T = constant in
(9.1.6). The identification of«/" with */+ entails that each hypersurface

The analogous construction in three space-time dimensions (metric' signature
(H ) also has importance in relativity theory. As was mentioned at the end
of §7.2, the space &* of possible bundles of rays which neighbour a given ray y,,
and which can lie on some null hypersurface through \i, is such a compactified
Minkowski 3-space. The construction of &* from & (coordinatized, at some point P of
\x, by real p and complex a) is exactly analogous to that of M)# from M (the only essential
difference being that the resulting topology is not S2 x S1 -analogously to (9.2.1)-
but a non-orientable 3-space similar to a Klein bottle). The analogue of J now
represents bundles of rays for which p and o both diverge at P (the general case of a
caustic point at P) whereas for the analogue of / , p diverges but a remains finite (as at
the vertex of a light cone).
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300 9. Conformal infinity

T = T0, with 0 < T0 < n, joins on to another one T = T0 — n to give a space-
like S3 section. Each of these 53s is on an equal footing with every other,
with respect to the conformal metric, since the motion T»-»T + constant
(mod n) is a 'vertical' translation of the Einstein cylinder to itself (see
Fig. 9-2), with the appropriate identifications made, preserving the con-
formal metric. The lines of the Robinson congruence are topologically S1

and each intersects each S3 precisely once - and they do not intersect each
other. They establish a 1-1 mapping between the different S3s, thus
providing the topological product structure (9.2.1).

The conformal transformations of Ml# given by T -> T + constant (mod n),
that were just considered, clearly do not preserve the original Minkowski
metric gofM. (Indeed, they do not, strictly speaking, apply to M at all, since
some points of M are mapped to «/ and vice versa.) The spacelike
hyperplane t = 0 of the original Minkowski coordinates, which is also given
by T = 0, is mapped to one of the hypersurfaces T = T0 (mod n\ which, on
referral back to the coordinates (f, r, 6,0), is seen to be a pair of branches of
the spacelike 3-hyperboloid

B(t2 - r2) + It - B = 0, (9.2.2)
with

B:= t a n T 0 = t a n {p + q) = ^ - ± ^ = { _ J f2' (9.2.3)

By combining such conformal transformations with the motions of the
Poincare group, we can, in fact, generate the entire identity-connected
component CT

+(1,3) of the fifteen-parameter group C(l,3) of conformal
motions of fVO#, under which the five-parameter family of hypersurfaces that
are space-time translations of (9.2.2), together with the spacelike hyper-
planes in M, are transformed into one another.

Description in terms ofP5

There is another way of constructing the space fVfl# and its conformal group
of motions. Consider the six-dimensional pseudo-Euclidean space E6 with
coordinates T9 V, W, X, 7, Z and metric

ds2 = AT2 + dV2 - dW2 - dX2 - dY2 - dZ2. (9.2.4)

The null cone Jf of the origin has equation

T2 + V2 - W2 - X2 - Y2 - Z2 = 0. (9.2.5)

As we see by substituting

V- W= 1 (9.2.6)
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generator of Jf
Ml

ongin
ofE6

Fig. 9-6. The ( + H )-cone X in IE6. Minkowski space Ml is represented as
a parabolic section of Jf, and the compactified space M* as the space of generators
of Jf.

into (9.2.4), the intersection of X with the null 5-plane (9.2.6) has an induced

metric of the Minkowskian form

ds2 = dT2 -dX2-dY2- dZ2. (9.2.7)

For this intersection the coordinates 7, X, Y, Z suffice and are unrestricted
in range; the intersection is therefore intrinsically identical with Minkowski
space M and we shall so label it. As a subspace of E6, however, M has the
form of a 'paraboloid' (see Fig. 9-6),* the remaining coordinates being
defined in terms of 7, X, Y, Z by

V=W+1= |(1 - T2 + X2 + Y2 + Z2). (9.2.8)

Every generator of Jf (set of points for which T: V: W:X: Y:Z is constant
and for which (9.2.5) is satisfied), unless it lies in the null hyperplane V= W,
meets M in a unique point. The generators of Jf which lie in V= W
corresponds to points at infinity for M. Now lines through the origin in E6

correspond to points in a projective 5-space P5, for which the five
independent ratios T:V:W:X: Y:Z serve as coordinates. The generators of
Jf define the points of a quadric (i.e., a manifold given by the vanishing of a
quadratic form) in P5, whose equation is (9.2.5), and which will be identified

This is a higher-dimensional version of the situation depicted in Fig. 1-5, Volume 1,
p. 13, where the Euclidean 2-plane is exhibited as a 'paraboloidaF section of the
ordinary Lorentz null cone.
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Fig. 9-7. In P5, M# is represented as a quadric hypersurface. The tangent
hyperplane at / meets this quadric in J.

with Ml#. (See Fig. 9-7.) The points of this quadric not lying on V= W
correspond precisely to the points of M, but now, in addition, there are
those points of M* which lie on V= W, and which provide the required
compactification of Ml. (Being an algebraic subset of a projective space, Ml#

must necessarily be compact.)
We shall not go into many of the details of the geometry involved here,

but content ourselves with pointing out a few facts.* In the first place, Ml*
has a well-defined conformal geometry everywhere. One way of seeing this
is to observe that any two (local) hypersurface cross-sections of Jf, which
meet the same generators of Jf, are mapped conformally to one another by
the generators of Jf\ This can be established following an argument similar
to one given in Chapter 1 (cf. Fig. 1-11, Volume 1, p. 38), or by showing that
the metric of Jf can locally be put into the form

ds2 = q2aai(x
y)dx°dx> + Odg2,

the generators being given by xa = constant, and the cross-sections by
specifying q as a function of xa. From this form of the metric, two such cross-
sections are then obviously mapped conformally to one another. To put the
metric in the required form we can select any variable, say W9 as the '#'

See also Coxeter(1936), Dirac(19366), Kuiper(1949), Hughston and Hurd(1983), Hurd
(1985), Penrose (1967a, 1974).
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coordinate and re-express (9.2.4) as

ds2 = W2{d(T/W)2 + d(V/W)2 - d(X/W)2 - d(Y/W)2 - d(Z/W)2},

using (9.2.5). Then we eliminate one of the variables T/W,...,Z/W by
expressing it in terms of the others, again using (9.2.5).

The space of generators of X thus acquires a conformal structure (as was
the case with the light cone of the origin in ordinary Minkowski space, cf
Chapter 1 and §4.15), i.e., M# as a subspace of (P5 has a canonically defined
conformal structure of signature (H ). The light cones of this
conformal structure turn out to be the intersections of M# with projective 4-
planes that touch M#. These 4-planes meet fVO# in quadric cones which are
generated by straight lines on Ml#. The projective straight lines on fVO#

(straight with respect to the projective space structure of P5) describe the
light rays on fVO#. The particular 4-plane whose equation is V— W also
touches M# - at the point whose equation is T= X = Y= Z = (V— W) = 0.
This point is the point / (the identified points i", i°, i + in our previous
construction of compactified Minkowski space), and the remainder of the
intersection of the 4-plane with M# is J (the identified surfaces J*', J~ of
the previous construction).

0(2,4) and the conformal group

Now the pseudo-orthogonal group 0(2,4) of linear transformations in E6

that preserve (9.2.5), preserves JT and therefore induces a transformation of
IP5 that sends M# to itself. Since it preserves linearity in E6, it sends
projective straight lines in Ml# to other such lines, i.e. light rays, and hence it
preserves the conformal structure of Ml#. It is, in fact, the most general group
with this property (cf. Penrose 1967a), and so it induces the conformal
group C(l, 3) on M# (see Coxeter 1936, Dirac 1936fc, Kuiper 1949, Penrose
1974). Furthermore, it has fifteen parameters, since the infinitesimal
(pseudo-) orthogonal matrices are skew (with respect to the metric (9.2.4))
and therefore have fifteen linearly independent real components. However,
0(2,4) is not identical with C(l, 3), because the negative identity element of
0(2,4) reverses the orientation of each line through the origin of E6 while
leaving P5 point wise invariant. This and the identity element of 0(2,4) are
the only two transformations in 0(2,4) which yield the identity element of
C(l,3), so the group homomorphism

O(2,4)-*C(1,3) (9.2.9)

is a 2-1 local isomorphism. It is also onto (i.e. surjective). In fact, since the
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304 9. Conformal infinity

negative identity in 0(2,4) belongs to the identity-connected component
Or

+(2,4) (because (T+iV9 W+iX, y + i Z ^ e ^ T + i K ) , e\W+\X\
ei0( Y+ iZ)) belongs to 0(2,4) for each 0 ^ 6 ^ TT and continuously connects
the identity to the negative identity), we see that

OT
+(2,4)-CT

+(l,3) (9.2.10)

is also 2-1 and onto. (The T refers to preservation of time sense and' + ' to
preservation of overall orientation.) The 2-1 nature of this map is rather
analogous to that which relates spin transformations to restricted Lorentz
transformations, but there is one essential difference: OT

+(2,4) is not the
universal covering space of CT

+(1,3). It represents only a finite 'unwrapping'
of CT

+(1,3), whereas, in fact, to pass to the universal covering space of
CT

+(1,3) an infinite 'unwrapping' is required. We shall see in §9.4 that it is
useful to pass also to a four-fold covering group of CT

+(1,3), namely the
pseudo-unitary twistor group 5(7(2,2), which is also a two-fold covering
group of OT

+(2,4) (but, of course, not the universal covering group).
The Poincare group is a subgroup of C(l,3) and is characterized by

leaving the hyperplane V= W+ 1 invariant as well as Jf\ For this entails
that the space MI is transformed to itself in a metric-preserving way, as
required. The subgroup of 0(2,4) that arises in this way is in fact isomorphic
(rather than 2-1 homomorphic) with the Poincare group, because the
negative identity of 0(2,4) does not preserve V= W+ 1. (The inverse image
of the Poincare group under the map (9.2.9) is, in fact, the subgroup of
0(2,4) preserving the pair of hyperplanes V= W± 1.) If we add the dilations
to the Poincare group elements, then the hyperplane V= W+ 1 is not
invariant but the family of hyperplanes V= W+ constant is transformed
into itself, only V= W being invariant under the whole group. In terms of
P5, this corresponds to the 4-plane that touches Ml# at / (see Fig. 9-7) being
invariant, i.e., to J being transformed into itself. But for a general element of
0(2,4), this 4-plane is transformed to another 4-plane touching Ml#, i.e., the
light cone J is transformed to the complete light cone of some other point
on M)#. This illustrates the fact that, from the point of view of the conformal
structure of Ml* (as opposed to its metric structure), J is on an equal footing
with any other light cone in M)#. Similarly, the point / (the vertex of J) is on
an equal footing with any other point of M#.

We next examine the significance of the non-null (i.e. non-tangent) 4-
planes in P5. The Minkowski coordinate hyperplane t = 0 is, for example,
represented in P 5 as the intersection of Ml# with the 4-plane T— 0. As we
saw in the paragraph containing (9.2.2), a general element of C(l, 3) carries
the hyperplane t = 0 into a two-sheeted (within Ml) spacelike 3-hyper-
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9.3 Minkowski space and twistor geometry 305

boloid* in M. The group 0(2,4) carries T= 0 into other 4-planes in P5 which
are 'spacelike' with respect to (9.2.5). These form a five-parameter system
and intersect M# in 3-surfaces corresponding to the spacelike 3-hyperbol-
oids (or spacelike 3-planes) in ML Similarly, there are 4-planes in IP5 (such as
X = 0) which are 'timelike' with respect to (9.2.5). They also form a 5-
parameter system and they intersect M# in 3-surfaces corresponding to
timelike one-sheeted (within M) 3-hyperboloids, or, in special cases,
timelike 3-planes in M.

9.3 Complexified compactified Minkowski space and twistor geometry

In order to relate the above discussion to twistors, we consider the des-
cription given in (6.2.18) of a space-time point, with position vector rfl,
in terms of a simple skew twistor Ra/*. By (6.2.18) (cf. also (6.1.46), (6.1.47)),
we have (with Rap = - Rfi*)

R01:R02:R03:R12:R13:R23=_lrf lr«._ir01': ir00'._irll'. ir10':1

(9.3.1)

Now, referring to (9.2.8) and Fig. 9-6, we see that, choosing standard
Minkowski coordinates

t = r°, x = r\ y = r2, z = r3, (9.3.2)

we can represent the Minkowski point (t, x, y9 z) by the line through the
origin (XT,XV,XW, XX, X Y, XZ) in E6 with Xe R, where, for suitable X, we have

XT=t, XX = x, X Y=y, XZ = z,

XV= i(l - t2 + x2 + y2 + z2) = XW+ 1. (9.3.3)
Thus

x = (v-wy\
giving

t=T(V-W)-\ x = X(V-W)~\ y=Y(V-Wy\ z = Z(V-W)-1

(9.3.4)

whence from (9.2.5)

- r a r f l = - r 2 + x2 + >;2H-z2 = ( F + ^ ) ( K - ^ ) - 1 , (9.3.5)
and also

T: V: W:X: Y:Z = t:%l - rjf):% - 1 - rjr*):x:y.z. (9.3.6)

Let us now compare (9.3.6) with (9.3.1). Using the standard vector-2-

This is really a '3-sphere' - or perhaps one should say 'pseudosphere' - with respect to
the Lorentzian metric (or pseudometric) of M.
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306 9. Conformal infinity

spinor correspondence (3.1.31) and the notation (9.3.2). we find

= - L (Z-T), R13=-^(Y+iX), R23 = V-W, (9.3.7)

where the scale factor has been chosen to provide the standard twistor
normalization (6.2.27), namely R23 = 1 when V— W= 1. Inversely,

T= - ^ ( R 1 2 - R03), V= R01 + |R2 3, W= R01 -

(9.3.8)

Note that, because R01 = R23, R 0 2 = - R 1 3 , etc., and R01 = R23,

R02 = R20, etc., the condition (6.2.31) that ra be real asserts that

R 0 3 = _ R 0 3 > R 1 2 = _ R 1 2 ? R23 = R23?

(9.3.9)

which is indeed satisfied by (9.3.7). It is unavoidable that the linear relations
between the real coordinates (T, V, W, X, 7, Z) and the twistor components
RaP should involve complex coefficients and that, consequently, the 'reality'
condition on Ra/* be other than simply a statement of the reality of its
components. This is because the equation of Jf, in terms of Ra/*, is the
statement (cf. (6.2.23)) that Ra/? be simple:

Ra/*Ra/, = 0 (9.3.10)

whereas the quadratic form

iRa*Ra/? = R01R23 - R02R13 + R03R12 (9-3.il)

would have signature ( + + + ) instead of the required ( + +
) of (9.2.5), if the components Ra/* were to be all real. Twistors, after all,

are essentially complex objects. To get a proper understanding of twistor
geometry, it is therefore necessary to consider complex geometry and, in
particular, the complexifications of the real spaces that we have been
considering so far.

Let us denote by CE6, CJf, CM, CP>5, CM#, and C / , the complexific-
ations of the respective spaces E6, Jf, M, P5, M#, and J. Thus, the
coordinates T, V, W, X, Y, Z for CE6 are now complex variables taking
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9.3 Minkowski space and twistor geometry 307

values over the entire range C6. The original space E6 is a real six-
dimensional subspace of CE6 (which itself is twelve-dimensional as a real
manifold) defined by the vanishing of the imaginary parts of all the
coordinates. The space CE6 possesses a complex-analytic metric, given
formally by the same expression (9.2.4) as previously defined for E6. The
complexified null cone C J T is then defined by the complex equation (9.2.5),
and complexified Minkowski space CM by the intersection of Cjf with the
complex 5-plane V— W= 1. The complex projective space CP5 is the space
of complex lines through the origin of CE6, and the five independent
complex ratios T:V:W:X:Y:Z serve as coordinates for it. Complexified
compactified Minkowski space CM# is the space of complex generators of
CJf, i.e., the locus of the complex equation (9.2.5) in CP5. Finally, <£/ is
defined as the intersection of CM# with the complex plane V= W (but,
strictly speaking, without the point /).

The Klein correspondence

We wish to explore the geometrical relation between CM# and projective
twistor space* PT, this being the space whose points are equivalence classes
of proportional (non-zero) twistors Z*. The space PT has the structure of a
complex projective 3-space CP3 and can be coordinatized by the three
independent complex ratios 7?\7}\7}\7}. Now, as we have seen (in the
paragraph containing (6.2.15)), complex linear 2-spaces in twistor space T
(at least those for which not all the twistors have proportional projection
parts) represent points in complexified Minkowski space CM. We have also
seen (in the paragraph containing (6.2.17)) that these 2-spaces can be
represented as equivalence classes of proportional (non-zero) simple skew
twistors Ra/*. In terms of PT, these 2-spaces are represented as complex
protective (straight) lines (each a CP1) in PT. So these lines in PT represent
points of CM. However, to obtain a finite point of CM, we require that its
representative line in PT does not meet the particular line I which is given
by Ra/? = la/?. For the line I represents the system of twistors Za with
vanishing projection part: so a line in PT meeting I represents a linear 2-
space in T containing a twistor with vanishing projection part, whence the
projection parts of all twistors in the 2-space are necessarily proportional.
Yet such a line, being represented by a simple skew twistor Ra/?, must
correspond to a point of CM#. It therefore corresponds to a point of C / , the

We work exclusively with T* and PT* here, rather than with the dual spaces, but the
raised dot (or a,/?,...; cf. §§6.1, 6.10) will be omitted for notational convenience.
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308 9. Conformal infinity

line I itself corresponding to the vertex / of«/. So we see that the points of
CM# represent the lines of PT. Such a correspondence, in which the lines of a
projective 3-space are represented as the points of a quadric in projective 5-
space, is known as the Klein representation*. It is basic to the whole of
twistor geometry.

Let us now examine the converse correspondence. We wish to see how a
point Z of PT is to be represented in CM#. Consider the lines in PT through
Z. They constitute a 2-complex-parameter family (called a star of lines)
which corresponds to a complex 2-surface Z in CM#, and that 2-surface can
be used to represent Z. To elucidate the nature of this 2-surface, we refer
back to (6.2.2), which was the basis of the equation (6.2.15) whereby the
position vector ra of a point R in CM is defined from a linear 2-space of
twistors. Equation (6.2.2) expresses incidence** between points of CM and
twistors. Thus, we say that R is incident with the twistor Za = (a>A, nA) if

(oA = irAA'nA., (9.3.12)

rAA> being the position vector of R with respect to any point at which the
spinor fields coA, nA. are to be evaluated. (For definiteness we shall consider
all relevant equations to be evaluated at a fixed origin O) If we hold rAA>

fixed in (9.3.12) and allow Za = (coA, nA.) to vary, we get the linear 2-space in
T that we considered above and which represents the point R in twistor
terms. On the other hand, if we hold Za fixed and vary r", we obtain the
required locus Z that represents Z in terms of CM. Now provided that
nA. 7* 0, i.e., provided that Z^ I, there will be at least one complex solution of
(9.3.12) for ra (as one can easily see by taking components). Call this solution
ra. Then the remaining solutions satisfy (ra — ra)nA. = 0 and so, by (3.5.17),
they are given by

ra = r
a + kAnA\ (9.3.13)

where ?A varies throughout S^[O]. The complex vectors kAnA\ at 0, for

Felix Klein (1870, 1926; c/, for example, also Veblen and Young 1910) based his
correspondence on the line coordinates of Julius Pliicker (1865, 1868/9), these having
been also obtained independently by Arthur Cayley (1860,1869) (and which fell into the
scheme put forward even earlier by Hermann Grassmann). Even more relevant to
twistor theory was the observation by Sophus Lie in 1869 (cf. Lie and Scheffers 1896)
that oriented spheres in (complex) Euclidean 3-space could be represented by lines in
CP3, with (consistently oriented) contact between spheres represented by meeting lines
in CP3. These spheres can be regarded as the intersections of light cones, of points in
(complex) Minkowski space, with a constant time hypersurface. (We are grateful to
Helmuth Urbantke for pointing out this work of Lie to us; cf. also Gindikin 1983,
Penrose 1986.)
The term 'incidence', generally, means that the dimension of the locus of intersection of
the two spaces in question is larger than in the generic case.
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93 Minkowski space and twistor geometry 309

Fig. 9-8. An a-plane in CM) is totally null. It has the property that the difference
between the position vectors of any two of its points is a complex null vector XAnA',
where nA' is fixed but lA varies. A /?-plane is similar but the roles of XA and nA> are
reversed.

fixed nA' and varying XA, constitute a two-complex-dimensional vector
space, all of whose members are null and orthogonal to one another. Hence
the space Z is a 2-plane in CM (see Fig. 9-8), all of whose tangent vectors are
null and mutually orthogonal. The distance between any two points on Z is
consequently zero, i.e., the induced metric on Z vanishes identically.

There are, in fact, two families of planes on CM with this property, the
other being obtained when the roles of kA and nA' are interchanged, i.e.,
when (9.3.13) holds but kA is held fixed while nA' varies (compare (3.2.22)
etc.). The planes of the first kind are called a-planes, while those of the
second kind are called /J-planes. (This terminology is consistent with that of
§§6.2, 7.4.) What we have just shown is that a point Z of PT (with nA. ^ 0) is
represented by an a-plane in CM. The restriction nA, ^ 0 can be removed if
we consider, instead, a-planes in CM#. This follows easily from the general
homogeneity of the space CM#, and from the fact that the a-plane concept is
conformally invariant - as we shall now show.

To this end, we observe that an a-plane is characterized by being a
complex 2-surface, all of whose tangent vectors at any one point have the
form kAnA> for some nA' (which is equivalent to saying that the tangent
bivectors are self-dual and null, being of the form sABnA'nB\ cf. (3.4.39)), and
whose tangent spaces go into themselves under parallel propagation in
tangent directions (i.e., the surfaces are flat). This last condition can be
written as

(9.3.14)
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310 9. Conformal infinity

for some vB and for each XA, \iB\ i.e.,

7lB'lAnA'VAAWB') = 0
for each XA, fiB, i.e.,

nB'nA'VAA,nB, = 0, (9.3.15)

which, by (7.4.56), is a conformally invariant equation if we take nB> to
have conformal weight unity. (The resemblance between (9.3.15) and the
SFR equation (7.3.1) is not accidental: cf. Proposition (7.3.18).) As it turns
out, (9.3.15) is actually a consequence of the fact that the tangent vectors
to the surface all have the form kA%A> (with a definite nA> at each point,
because of the Lie bracket condition for the tangent planes to be surface-
forming (cf. (7.3.17)):

XAnA'Va(fi
BnB) - nAnA'Va(X

BnB) = pBnB>

for some pB\ transvection with nB, yields

nwnA'X[AiiB]Van
B' = 0,

from which (9.3.15) again follows*, with its consequence (9.3.14).
As for the /?-planes, they arise in an exactly analogous way, with a 'dual'

or [?]-twistor \N0L = (XA,fiA) replacing the [o]-twistor Zajust considered,
the roles of primed and unprimed spinor indices being now interchanged.
The incidence relation (9.3.12) is replaced by

/jLA'=-ir"lA9 (9.3.16)

whose solutions take the form (9.3.13), as before, but with kA remaining
fixed and nA> varying. This gives us a /?-plane as the description in CM or
CfVfl# of a projective dual twistor. But we can also represent a projective dual
twistor as a complex projective 2-plane W (i.e. a CP2) in PT; for Wa ( ^ 0) is
represented up to proportionality by the system W of points ZePT for
which

WaZ
a = 0. (9.3.17)

Equation (9.3.17) expresses incidence between a plane W and a point Z in
PT, or between a dual twistor Wa and a twistor Za. The incidence relation

* If instead of working in the specific space CM#, which is conformally flat, we apply the
same argument in a general curved complex-Riemannian 4-manifold, we obtain, upon
further differentiation, the consistency requirement that ^ ABCDnA nB 'nc'nD> = 0 at
each point of the surface (cf. the conjugate of (4.9.16)). The condition that (locally, at
least) there should be as large a family of a-surfaces in the manifold as there is for CM#

(i.e. 3-parameter) is that ^ABCD- = 0, i.e., that the conformal curvature be anti-self-
dual, i.e., that the space be right-conformally/Jaf (Penrose 1976a, Penrose and Ward
1980, Newman 1976, Hansen, Newman, Penrose and Tod 1978, Ko, Ludvigsen,
Newman and Tod 1981, Plebariski 1975).
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9.3 Minkowski space and twistor geometry 311

(9.3.12) in purely twistor terms is

RwZy] = 0 o r ? equivalent^, R^Z" = 0. (9.3.18)

This expresses the fact that, in PT, the point Z lies on the line R (represented
by Ra/?). If Ra/?Z

a # 0, this dual twistor represents the plane joining Z to R in
PT. Correspondingly, the incidence relation (9.3.16) can be written

R^\Np = 0 or, equivalents, R[a/lWy] = 0, (9.3.19)

and expresses the fact that, in PT, the line R lies on the plane W. Similarly, if
R^Wyj # 0 , this twistor represents the point of intersection of R with W.

In terms of CM#, the point Z, line R, and plane W are respectively
represented, as we have seen, by an a-plane Z, a point R, and a /J-plane W.
Incidence between Z and R in PT translates to incidence between Z and R
in CM#: the point R lies on the a-plane Z. Incidence between R and W in PT
translates to incidence between R and W in CM#: the point R lies on the /?-
plane W. Incidence between Z and W in PT translates to incidence between
Z and W in CfVO#: the a-plane Z meets the j?-plane W. This last relation can
be seen either by referring back to (9.3.12), (9.3.16), and (9.3.17), and using
suitable arguments to cover the cases when JR is on J or /, or simply by
observing that Z lying on W is necessary and sufficient for the existence of a
line R which at the same time lies on W and passes through Z, i.e., for the
existence of a point Re CM* which at the same time lies on the /?-plane W
and on the a-plane Z. Note that when this occurs there is not only one line R
lying in W and passing through Z but a whole 1-parameter family of such
lines - referred to as a plane pencil of lines. Thus, in CMJ#, there will be a
curve of intersection of the /?-plane W with the a-plane Z-evidently a
complex null geodesic in the conformal metric of CfMI#, since it is a null
striaght line in CM# (because, for example, its parametric equation has the
linear form r° = ra + uAAnA\ ueC). Conversely, every complex null geodesic

in CfVO# arises in this way, and so we have:

(9.3.20) PROPOSITION

Through every null geodesic in CM# there passes a unique a-plane and a
unique (l-plane; when an (x-plane and a (i-plane intersect, they always intersect
in a null geodesic.

Any two distinct a-planes, on the other hand, always have a unique point of
Cfy# in common - since distinct points on PT are joined by a unique line;
similarly, any two distinct /7-planes have a unique point of CfVB# in
common - since distinct planes in PT have a unique line in common.
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PT

CM*

Fig. 9-9. The basic geometrical correspondence - the Klein correspondence -
relating incidence properties of points, planes and lines in PT (a complex projective
3-space) with those of the corresponding a-planes, /?-planes and points in CM)# (a
complex- projective 4-quadric).

('Incidence' between two a-planes or between two /?-planes would neces-
sarily mean 'coincidence'.) Two lines in PT will not generally meet (i.e., they
are 'skew'), but when they do meet, they lie in a plane. Meeting lines in PT
thus correspond to null-separated points in CM#. So we have:

(9.3.21) PROPOSITION

Points P, QeCM# are null-separated

<=>P, Q lie on a common a-plane
oP, Q lie on a common (i-plane
othe corresponding lines in PT meet.

Table (9.3.22)

a-plane v
j on <

point ^
j on <

/?-plane +

null geodesic
(= a-plane n/?-plane)

null-separated points

PT

/ point
•> o n (

* line
> on f

V plane

plane pencil
(<-• point on plane)

meeting lines
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9.3 Minkowski space and twistor geometry 313

The relation between the geometries of CfMl# and PT is summarized in
Fig. 9.9 and Table (9.3.22).

Dual twistor correspondence

The above discussion has been carried out entirely in terms of PT # ( = PT
here) rather than the dual projective space PT # . Had the latter space been
used instead, the roles of a-planes and /?-planes would have been
interchanged. The modification to Table (9.3.22) that would be needed, if
we keep the left-hand column unchanged but replace the right-hand one by
a column referring to PT # rather than PT# , is simply that the (upper) words
'point' and 'plane' must be interchanged and the curved arrows on the right
must point upwards rather than downwards.

The geometrical relationship between PT # and PT # is a duality
correspondence, where points correspond to planes, lines to lines and
planes to points. The correspondence preserves the concept of incidence,
but it reverses the direction of inclusion relations between spaces.

Reality structure

So far, in this correspondence, we have made no mention of the reality
structure of CM)# or of the notion of complex conjugation, to which we now
turn. The complex conjugation operation ^ in CM# interchanges a-planes
with /?-planes; in PT ( = PT*) it is a duality operation within PT itself
which interchanges points and planes, and which sends lines to other lines.
The real points of CM# (i.e., the points of y # ) are those that are invariant
under #. They correspond to a family of lines in PT which are each left
invariant by #. According to the discussion of §6.2 (cf. (6.2.16)), these lines
arise from linear 2-spaces consisting entirely of null twistors. Thus, the real
points of CfV0# correspond to lines of PT that lie entirely in the subspace PN
of null projective twistors. Twistor space T consists of {0} and the three
portions T + , T", and fol, whose elements are those non-zero twistors Za for
which ZaZa is, respectively, positive, negative, or zero; so PT also consists of
the three corresponding portions* PT + , PT~, and PN. The special line I,
representing the point / of CfMl#, lies, of course, in Pl\l, since / is a 'real' point.

Any point ZePT (corresponding to a twistor Z a #0) has a complex
conjugate plane 'ZePT (corresponding to the dual twistor ZJ and,

The topologies of these pieces are: PT+ s PT" ^ S 2 x (R4, PN^S2xS3,
T + ^ T " ^ 5 3 x i 5 , N^S3 xS3 xU.
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conversely, any plane W c PT has a unique complex conjugate point
W E P T . The condition for a point Z of PT to lie on its complex conjugate
plane Z is ZaZa = 0, i.e., ZePN. Thus, the points of PN are those
representinga-planes in CfV0# which meet their complex conjugate jS-planes.
These are the a-planes that contain real points. For if a point PeM # lies on
an a-plane Z, we see by applying conjugation that it also lies on the jS-plane
Z. Conversely, if Z meets Z, it must do so in a null geodesic which is
necessarily 'real' (in the sense of being invariant under #) and which
therefore contains some real points. But such a 'real' null geodesic must also
contain complex points (namely those with complex afline parameter
values) and it has, altogether, the topology of S2 (the Riemann sphere), its
real points constituting a circle on this sphere. Recall from §6.2 that our
original geometrical interpretation of a null twistor, up to proportionality,
was as a null straight line in M. We now see how that interpretation fits into
the present geometrical description.

A non-null twistor Za corresponds to a point Z of P T + or PT~. For its
real interpretation in fMl# we can consider the intersection of the complex
plane 2 with Pf̂ J, which is a three-real-dimensional set of points, each of
which represents a null geodesic in M#. This three-real-parameter family of
null geodesies in fM)# is the Robinson congruence representing the twistor Za

(up to proportionality), and this ties in with the discussion given in §6.2 of
the geometrical interpretation of a non-null twistor and also with the
discussion of §7.4; cf. Fig. 7-7, etc.). Note that the points of PT + correspond
to Robinson congruences which twist in a right-handed sense, while points
of P T " correspond to Robinson congruences twisting in a left-handed
sense (cf. §6.2); furthermore, twistors in T + and T~ describe, respectively,
the angular-momentum structure of massless particles with right-handed
or left-handed helicity (cf. §6.3).

The different kinds of complex point in CM#

Thus far, we have examined the role of this reality structure only in relation
to points in PT. In CM# itself we can distinguish six different (conformally
invariant) regions. A point Re CM* can be represented by a complex
position vector

r° = ua + iva (9.3.23)

with respect to a real origin 0, where ua and va are real world-vectors. The
spacelike/timelike and future/past properties of va are clearly invariant
under real translations of the origin O. Less evident, though still true, is
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(i)

(ii)

315

PT+

* —
PT"

(v)
— ^

(iv)

(ii)
— —

0)

.(iii)

L\
the vector va = Im (ra) the line R in PT

Fig. 9-10. The causal characterization of the imaginary part va of the position
vector of a point R of CM has a (real) conformally invariant significance. This shows
up in PT in terms of the way that the corresponding line R intersects the various
regions PT1, PN.

invariance under conformal rescaling, the effect on (9.3.23) being more
complicated. This invariance is actually a consequence of the following
proposition (see Fig. 9-10), which applies also when ReCJ (since then we
need only rescale so that the new <£/ does not contain R).

(9.3.24) PROPOSITION

A point ReCM* whose position vector in any standard Minkowski reference
system has an imaginary part which is (i) future-timelike, (ii) future-null, (iii)
spacelike, (iv) past-null, (v) past-timelike, (vi) zero, corresponds, respectively,
to a line R c PT which (i) lies entirely in PT~, (ii) lies in P T " except for
touching PN at one point, (iii) meets all three of PT± and PN, (iv) lies in PT +

except for touching PN at one point, (v) lies entirely in P T + , (vi) lies entirely
in PIU

Proof: Let Za = (a/ , nA) be incident with K, so that Z lies on the line
R c PT; then we have

coA = iranA> = iuanA> — vanA>.

Transvecting with nA and taking the real part, we get

and the result follows easily by consideration of the various cases
individually.
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316 9. Conformal infinity

The association in (9.3.24) between J± and past/future that has been
forced on us by our other conventions may seem notationally 'unnatural' at
first sight. But it should be pointed out that the region CIU+, referred to as the
forward tube (cf. third paragraph after (6.10.47)), within which quantum
fields propagating in the normal future direction are to be holomorphic, is
the region (va past-timelike) of CM# corresponding to lines in PT + .
Similarly, the backward tube CM~ corresponds to P T " and to past-
propagating fields.

In connection with (9.3.24) we remark that, with Ra/* corresponding to
ReCM as above* and with (9.3.23),

Ra 'Ra^0 according as vava^0, (9.3.25)

and that

Ra^W/?RayW
y is positive [negative] semidefinite in \Np

according as va is past [future-~\causai (9.3.26)

For the proof of (9.3.26), from which (9.3.25) follows, note that Ra'W,
represents the intersection of the line R with the plane W. Then use (9.3.24).

9.4 Twistor four-valuedness and the Grgin index

We have seen that the complex conformal geometry of CM# can, by the
above correspondence, be elegantly described in terms of the complex
projective geometry of PT. For the real conformal geometry of fMl# we
require, in addition to the complex projective geometry of PT, the
Hermitian ( + H ) duality correspondence ^ that interchanges points
and planes in PT; equivalently, we need to know the location of the five-
real-dimensional hypersurface Pf̂ J in PT. The symmetries of PT that
preserve this structure induce conformal motions of M# to itself, and so
correspond to elements of 0(2,4). These symmetries are obtained from linear
transformations of T. If they preserve not only N (i.e., the locus ZaZa = 0)
but also the actual value of the ( + H ) Hermitian form ZaZa, and
are further normalized to have unit determinant, these transformations
constitute the group SU (2,2) - the twos coming from the + + and
parts of the preserved Hermitian form. The normalization does not
determine the linear transformation uniquely from its action on PT but
allows a four-fold ambiguity, since scalar multiples of the identity by each of
the four factors 1, i, — 1, — i also give elements of 5(7(2,2) yielding the
identity on M#. As we shall see shortly, each of these elements is connected

We remark also that if ReCMl# and Ra/?R^ # 0 then KeCIU.
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9.4 Twistor four-valuedness and the Grgin index 317

to the identity, so the ambiguity is essential. We thus have a 4-1 local
isomorphism from 51/(2,2) onto CT

+(1,3). In fact, since our twistor
construction gives the space on which OT

+(2,4) acts in terms of skew [Q]-
twistors Ra/?, the (appropriately anti-symmetrized) tensor product of two
elements of 5 (7(2,2) can be interpreted as an element of 0(2,4) (and, in fact,
of 0T

+(2,4)). This gives a 2-1 local isomorphism from SU{2,2) to OT
+(2,4)

which, when combined with (9.2.10), shows that the 4-1 map from 5(7(2,2)
to C\ (1,3) can be composed of the two 2-1 local isomorphisms (each onto):

Four-fold ambiguity in the space-time description ofZa

This 4-1 relation between the twistor group 5(7(2,2) and the space-time
group CT

+(1,3) has a number of curious consequences. One of these is that
any description of a twistor Za in space-time terms, which is conformally
invariant (in the sense of being invariant under CT

+(1,3)) must be quadruply
ambiguous. That is to say, the descriptions of Za, iZa, — Za, — iZa in terms of
space-time geometry must be indistinguishable from one another. At first
sight this seems paradoxical, since in Chapter 6 we defined a twistor in a
conformally invariant way, as a solution a>A of the twistor equation (6.1.1).
Whereas it is clear from the discussion given in §1.5 that an essential two-
fold (sign) ambiguity exists in the geometrical interpretation of coA, the
nature of the ambiguity between oA and icoA is more subtle, and in fact
involves «/. A continuous spatial rotation of Ml through 2n sends the
particular solution coA of the twistor equation into another solution, namely
— coA, so it sends Za into — Za. Since proper rotations are particular
elements of CT

+(1,3), the closed loop in CT
+(1,3) which represents this active

27r-rotation of M corresponds to an open path in 5(7(2,2) starting at the
identity 3% and ending at the negative identity — d^. Hence it carries Za into
— Za. The family of flag planes representing the coA field is, of course, sent
into itself by this rotation, so the sign ambiguity in the geometrical
interpretation of Za is something that we are already familiar with from the
discussion of §1.5.

To discover the origin of the/owr-fold ambiguity, we must examine the
compactified space M#. An explicit path in 5(7(2,2) which connects 5% to iS'p
can be obtained by setting

W) = ee(d*p - Q^Q*) + e-3WQ,Q", (9.4.1)

where 6 is real and Qa is fixed, subject only to
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318 9. Conformal infinity

One readily verifies that the transformations

indeed belong to 5(7(2,2). (Preservation of ZaZ
a is almost immediate;

detT£(0) = 1 follows from the eigenvalues being ei0, ew, eie, Q~3W.) In fact,
these transformations constitute a one-parameter group:

The required path from 5% to i<$£ is given by 6 varying from 0 to \%.
It is not hard to check that the transformations (9.4.1) in fact induce a

conformal motion of M# along the rays of the Robinson congruence

(These are the integral curves of the null conformal Killing vector
determined by the primary part of Qa, cf (6.3.19).) Such motions were
discussed in §9.2 (after (9.2.1)) in order to clarify the topological structure of
M#. When we pass continuously from 6 = 0 to 6 = \n, fMl# slides over itself
along these lines, which are all topologically 5*and, each point of M returns
to its original position, having traversed one of these 5*s, and having
intersected J once in the process. Thus to know how fields in M are affected
by elements of 5(7(2,2), and in particular by the transformation (9.4.1), we
need to know how these fields extend across J.

We shall see shortly that if, as before, we take coA as an ordinary spinor
field of conformal weight zero (to ensure the conformal invariance of
(6.1.1)), then although coA has a well-defined finite limit as «/ is approached
from either side, these two limits differ by a factor i. In order that the
description of coA in the vicinity of a point of./ shall resemble its description
elsewhere in M, one therefore seems to be forced to continue coA across J in
two distinct ways simultaneously, which differ by a factor i. So we find that
the coA field must be coupled with ± \CDA in addition to — coA in the
geometric description of Za. This provides a resolution of the apparent
paradox concerning the four-fold ambiguity in the representation of Za.
However, we shall also need to obtain a deeper understanding of what is
really involved here.

The two spin structures on fVD#

In order to discuss coA globally on M#, or even to say what we mean by a
spinor field a>A on M#, we must first specify a spin structure for M#. This is
not trivial, since M# is not simply-connected (see §1.5). The topology of M#

being 53 x 51 (cf. (9.2.1)), there is essentially just one 'unshrinkable' loop in
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9.4 Twistor four-valuedness and the Grgin index 319

fM3#, all others being continuously deformable to it or a multiple of it. We can
take this loop to be a null geodesic or ray 7 ( ^ S1) in M#. (That no non-zero
multiple of 7 can be continuously deformed to a point should be clear from
the discussion in the early part of §9.2.) According to §1.5, therefore, there
will be precisely two spin structures for M#, and we can distinguish between
these by specifying how to carry a null flag continuously around 7 so as to
yield the original spin-vector rather than its negative.

It might be thought that there is an 'obvious' choice that can be made
here, namely to deem the spin-vector unchanged if its flag is taken by
parallel transport around 7. But this is to ignore the subtleties involved as J
is crossed. The original Christoffel connection Vfl, defined by the metric of
M, cannot be used to define parallelism across J. One could use the
Christoffel connection Va for some other metric to get across«/. Of course,
this would involve some arbitrariness, but it is not this arbitrariness which is
the heart of the problem. Let us consider a null flag with its flagpole along 7:
this suffices, for if we have one non-zero spin-vector defined along 7 we can
complete that to a spin-frame along 7, and all such choices for completing
the spin-frame are continuously deformable into one another. Now we saw
in (7.1.20) that the condition for parallel propagation of the flag plane of oA

along the direction (7) of its flagpole is that the spin-coefficient e be reil
(with x= !)• But by (5.6.29), this property is preserved under conform il
rescaling, so the propagation of flag planes along the flagpole direction is
indeed independent of the choice of Christoffel connection Va, i.e., indepenc-
ent of the choice of scaling for the metric gab. (Clearly this argument is a
local one and does not require a global definition of the spinor oA.)

Thus we do have a natural conformally invariant way of carrying such
null flags around 7. The subtlety referred to above arises because when we
carry a flag once around 7 in this way, the flag plane direction is reversed
when we return to the starting point. This can be seen as follows.

Consider a scond ray 7' which is displaced infinitesimally from 7 in such
a way that the connecting vectors are orthogonal to the direction of 7, i.e.
the rays 7 and 7' are abreast (cf. §7.1). One possibility which meets this
condition is that 7 and 7' are neighbouring rays of a null hyperplane. It is
clear that if in this case the flag plane of our null flag points from 7 to 7' (i.e.,
is the half-plane of directions of all connecting vectors) then this flag plane is
transported parallelly to itself along 7. Now suppose that, instead of being
parallel to 7, 7' is a generator of a light cone with vertex at any given point P
of 7. Conformally this is equivalent to the parallel case, where P is on J (cf.
§§9.1, 9.2). Since parallel propagation of flag plane directions along 7 is
conformally invariant, it is just as well determined by 7' in the second case
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320 9. Conformal infinity

as in the first. Now at the vertex P of the cone the connecting vector between
7 and 7' changes sign as we pass along 7 (see Fig. 9-11). Since a null cone has
only one vertex, this phenomenon is not repeated anywhere else on 7. It is
therefore clear that parallel transport all around a loop 7 in M# of a null
flag, say that of yA with flagpole along 7, from a point just to the future of P
to one just to the past of P, reverses the flag direction. It is up to us whether
this reversal should be regarded as equivalent to a negative or positive
rotation through n. And it is precisely this choice that gives rise to the
aforementioned two possible spin structures for fVfl#. We define the right-
handed spin structure for M# to be the one which decrees that the following
closed motion of the flag of yA (i.e. 'flag path' of §1.5) shall also restore yA

itself to its original value rather than to its negative: carry the flag plane of
yA by parallel transport from a point P on 7 once around 7 in the future
direction to a point just to the past of P and then apply a right-handed
rotation through n about the flagpole direction in order to connect with the
original location. The other spin structure is called the left-handed spin
structure for M#. Note that the results of these two possible motions of the
null flag differ by a 27r-rotation, so they do indeed define different spin
structures. And while the meaning of a 'right-handed' rotation - with
respect to the future-pointing direction along yA - should be intuitively

Fig. 9-11. Diagram illustrating the reversal of flag plane direction under parallel
propagation as a ray y is traversed, crossing J just once.
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9.4 Twistor four-valuedness and the Grgin index 321

clear, it can be made precise by reference to the rotation of the tangent
vector to the Riemann sphere S+ which represents the direction of the flag
plane. 'Right-handed' means anti-clockwise as viewed from outside the
sphere. Equivalently we may think in terms of a right-handed rotation
about the spatial projection of the future null direction along 7.

These two spin structures are on an equal footing, if we have no
preference for one handedness over the other. In fact,

a space-reflection ofM* interchanges the
two spin structures. (9.4.2)

It may be recalled that space-reflections interchange the unprimed and
primed spin-spaces. We can see the relation of this to the above choices
of spin structure in the fact that for an unprimed spinor yA, a right-handed
7r-rotation about the flagpole effects yA\-+\yA and a left-handed n-\
rotation effects yA\-^ — \yA (and in general right- and left-handed a-
rotations effect yA\-+Q±i<1/2yA, respectively). On the other hand, for a primed
spinor nA\ the corresponding effects are, respectively, nA'»—• + xnA\
rjA'\->e + i<z/2rjA'. Thus, if we adopt the right-handed spin structure for Ml# (as
normally we shall), we find that parallel transport of yA in a future direction
once around 7 to its starting point results in — i times the original value of
yA (since a ^-rotation restores it). The same procedure applied to rjA' results
in + i times the original value. If, instead, we adopt the left-handed spin
structure we find that the roles of — i and + i are reversed. (Compare
Woodhouse 1980 for a somewhat different approach.)

It is of interest to note, however, that

a time-reflection of fMl# leaves the two
spin structures invariant, (9.4.3)

even though it also interchanges primed and unprimed spinors. This can
be seen as follows. If we reverse the time direction, this has two effects
with regard to the motion that defines continuity for a spin-vector, say
for the right-handed spin structure. In the first place, since all motions
are now described with the time reversed, a positive rc-rotation is thereby
reversed into a negative one. But also the spatial direction about which
we are measuring the rotation is reversed, since the future direction along
7 is now spatially opposite to what it was. This causes a second reversal
of the handedness, and consequently the right-handed spin structure is
actually sent into itself by time-reversal, and the same is true of the left-
handed one.

By combining the effects of separate space- and time-reflections, we
obtain the result that
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322 9. Conformal infinity

a space-time reflection of M§ interchanges
the two spin structures. (9.4.4)

(We remark that space-time reflections do not, however, interchange
primed and unprimed spinor indices.)

The behaviour ofcoA at J

Now let us return to the discussion of the spinor field coA satisfying the
twistor equation (6.1.1). We can choose 7 to be one of the rays of the
(possibly special) Robinson congruence that coA determines. Using the
standard descriptions in MI relative to an origin 0 on 7, we have, as in
(6.1.10),

coA = d>A- ixAA'nA,, (9.4.5)

where
xAA' = uyAyA> (ueU) (9.4.6)

along 7. Since 7 belongs to the Robinson congruence, we can choose
(assuming cbA # 0)

yA = cbA,

which is obviously parallelly propagated along 7. Then (9.4.5) gives

coA = (l-u(b + is))yA, (9.4.7)
where

s = Re (d)A7iA\ b = Im (d)AnA)

are real constants. Note that, by (6.1.74), 5 is the helicity

of the twistor Za = (a)A, nA). In the Argand plane, the proportionality factor
(\—u(b + is)) of (9.4.7) executes a straight line as u varies from — 00 to H- 00,
its argument increasing or decreasing according as the helicity of Za is
negative or positive, respectively (see Fig. 9-12a). In order to relate this to
the geometry of the flag plane of a>A it is better to consider the square of this
factor, which executes a parabola with the origin as focus (see Fig. 9-126).
The argument of this point gives a direct realization of the amount of
rotation of the flag plane of a>A (cf. §3.2). We see that the limits of the flag
plane direction are the same for u -> — 00 and u -> + 00, but the sign of the
spinor a>A in (9.4.7) gets reversed in the passage from one limit to the other.
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Fig. 9-12. Argand-plane diagrams showing how the flag plane direction of coA

rotates, for a twistor of non-zero helicity, as a ray of the Robinson congruence is
followed in the future direction. (The right-hand diagram gives the more direct
realization, the flag plane being given by the direction of the moving point at the
origin of the Argand plane.) The ray is oriented towards the viewer.

Note (e.g., from Fig. 9-12ft) that the direction of rotation of the flag plane
is opposite to the helicity of the twistor. We may contrast this with the
rotation sense of neighbouring rays relative to -y in the Robinson
congruence which, as we saw in §6.2, is in the same sense as the helicity.
Moreover, the rate of rotation of the flag plane is (minus) twice that of the
neighbouring rays. These facts can also be inferred from the spin-coefficient
equations

Im (p) = 5, 2 Im (e) = - 2s, (9.4.8)

which are immediate consequences of (9.4.5) if we choose a spin-frame along
7 with

oA = or4, iA = nA(coAnA)~l,

and recall from the discussion of §7.1 that Im(p) and 2Im(e) measure,
respectively, the rate of rotation of neighbouring rays of a congruence and
the rate of rotation of the flag plane of oA. (Note that despite the appearance
of (9.4.8), these rotation rates are not constant, since they are scaled in
relation to coA rather than yA. In fact, as is clear from (9.4.7), the 'absolute'
rates are given by (9.4.8) scaled down by 11 — u(b + is) \ ~ 2.) We may note the
curious fact that for any one abreast neighbouring ray of the congruence,
the flag plane of coA will point in the direction of the connecting vector at
precisely three places on 7, a consequence of the rotation rates being as
given above. (In an obvious notation, the equations 26= — (/>, 0 — 0 = 2nn
are solved by 6 = 0, 2TT/3, 4n/3.) This is related to (9.4.1) which, if applied to
the twistor Qa itself, gives
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so that the sliding of the Robinson congruence over itself puts the flag
planes of the coA field associated with Qa into their original positions
whenever 0 = 0, 2n/3, 4n/3 (of course, the four-valuedness needs also to be
taken into account).

As we have seen above, the coA field changes sign from u = — oo to
u = + oo compared to yA, i.e., compared to parallel transport along 7. We
have also seen that in M# the parallelly transported field reverses direction
on passing through </, and that with the right-handed spin structure we
would need to multiply the yA just to the past of,/ by i in order to match it
with the yA just to the future of J. To keep yA non-zero at J we rescale it:
yA = Q~1yA, which corresponds to fA = yA. For this is the scaling that
preserves parallel propagation (cf (7.1.18), and (5.6.25) which shows that
e = 0 is preserved when w0 = — 1). In the case of coA there is an extra sign
difference, so with the right-handed spin structure we would have to
multiply the value of a)A just to the past of J by — i in order to get
continuity with the value just to the future of«/.

Had we chosen a [J]-twistor Wa = (kA, \iA) rather than a [o]-twistor Za,
we would correspondingly have obtained a field \xA> whose flag plane just to
the past of J would have to be rotated in the same sense as that of coA in
order to give continuity with the value just to the future of«/ (still with the
right-handed spin structure). But now this means that we must multiply \iA

just to the past of J by -h i in order to get continuity across J. Of course,
with the left-handed spin structure, the roles of these factors + i and — i
would be reversed.

The twistor spin-bundles over M#

The above rather elaborate geometric structure which is inherent in the
geometry of the twistor equation, is also, as we shall shortly see (in the Grgin
theorem (9.4.15)), present in the global solutions of the massless free-field
equations - which at first sight seem unrelated to twistors. In all these cases
the spinor fields involved are, by virtue of these geometric subtleties, strictly
speaking not spinor fields in the ordinary sense but cross-sections of certain
'twisted' vector bundles (cf §5.4), to whose discussion we now proceed.

The 'twist' that needs to be introduced is somewhat analogous to that of
the Mobius band (which is illustrated in Fig. 5-3 on page 338 of Volume 1),
and this is precisely the 'multiplication by + i' at J that we have just
described. Thus if we are interested in the conformal invariance of the fields
coA and fiA>, in the sense of invariance under SU(2,2), we shall have to regard
them as twisted fields in this sense.

In fact there is a direct 'twistor' way of defining the particular vector
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9.4 Twistor four-valuedness and the Grgin index 325

bundles that will be relevant (Eastwood, Penrose and Wells 1981). We shall
refer to these as twistor spin-bundles over Ml# - and also over CM#, since
they extend in a natural way to the whole of CM#. We begin by discussing
the twistor bundle Sf A. of twisted \% ?]-spinors over CM#. Recall (from
§§6.2,9.3) that the points of CfV0# correspond uniquely to two-dimensional
complex linear subspaces of twistor space Ta. Let X be such a linear
subspace, corresponding to the point XECM§. The various twistors
incident with X are, on the one hand (in Ta), precisely the points of X, while
on the other hand (in CfV0#), each such twistor is uniquely defined by a
choice of spinor nA, at the point X. In other words, the pair (X, Za), where Za

is incident with X, has the interpretation in terms of Ta as the pair

(X,Za) with ZaeX <z Ta,
and in terms of CfV0# as

{X, nA) with nA. at XeCM*.

The nA. spin-space at X becomes interpreted as the vector space X itself.
The point of view, then, is to start with Ta, which has a given complex-

vector-space structure. Then we define CfV0# as the space of two-
dimensional vector subspaces X <= Ta. From this the bundle &*A. comes out
automatically as the space of pairs (X,Za) with ZaeX, where varying Za and
keeping X fixed gives us the fibres. Finally we interpret these fibres as the nA>
spin-spaces S/1[Ar] at the various points of CfM)#.

However, these are not quite spin-spaces in the ordinary sense, but
twisted spin-spaces in the sense discussed above. In fact, they are the duals of
the spin-spaces £fA> to which the earlier-discussed (twisted) \iA -spinors
(parts of twistors Wa) belong. To see this, consider any [?]-twistor Wa. In
terms of Ta, we regard Wa as providing a linear map: Ta -> C, while in terms
of CM#, Wa gives us a (twisted) \iA> field. For each XeCM* we get a
particular fiA\ namely nA[X~\e&A\_X~\, and this corresponds, in Ta, to the
restriction of the linear map \Ny of Ta to the subspace X. This restriction is a
particular linear map: X -• C, i.e., an element of the dual space of the vector
space X, which shows that X is canonically identifiable with &A[X], the
dual of the (conjugate) spin-space SA [X~\ at X. As X varies over MJ#, these
spaces <ZA'\_X'] must be continuously related to one another with the
appropriate twist, dual to that of \iA\ which characterizes yA.. This
establishes our assertion. (Note that the fibres of the mutually dual bundles
&A. and ZfA> are pointwise duals of each other. The \iA' fields are cross-
sections of SfA'.)

Let us now consider the twistor bundle 9*A of twisted [? o]" s P m o r s o v e r

CfV0#. The simplest approach is just to regard ¥A as the complex conjugate
of the bundle £f A. defined above. This is equivalent to taking the points of
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as represented by two-dimensional linear subspaces in the dual
twistor space Ta, since twistor complex conjugation interchanges Ta and
Ta. (In fact, regarding Ta as the dual rather than the complex conjugate of
Ta is logically the more satisfactory here, since it leads to an entirely
holomorphic construction. In certain contexts (e.g. Eastwood, Penrose and
Wells 1981) it is important to keep all operations holomorphic, as far as
possible, when one is concerned with the complex space CM#, rather than
M#.) Thus, representing the point ZeCM # by the two-dimensional sub-
space X* cz Ta, we define the bundle Sf A over CM# to be the space of pairs
(X*, WJ where WaeX*, so the fibre over X is simply the space X*. Each such
pair is equivalent to a pair (X, XA) and this serves to define what is meant by
the 'twisted' spinor kA. The dual bundle SfA is then obtained by taking for
its fibres the duals of the fibres of 9*A in the usual way. Analogously to \iA>

and yA', the solutions coA of the twistor equation (correctly 'twisted') are
cross-sections of SfA, namely those induced by the linear maps of the form
Z a : T a - C .

Alternatively we can define 9*A directly in terms of Ta (which is more
logical if Ta is considered primary). Then we represent xeCM# by the
original two-dimensional subspace XeTa. For each such X, consider the
two-dimensional space of those linear maps Wa:T

a->C which give zero at
every point of X. These we define to constitute the fibres of £f A, and this is
easily seen to be equivalent to the definition given in the preceding
paragraph. We can then define SfA as the dual of £f A.

Having the bundles Sf A, SfA., 9A, SfA' on CM#, it is now a trivial matter
to restrict them to Ml#. Then we can define the spaces S^, (SA>, S'4, 6^ as
smooth cross-sections of these respective bundles (of whatever degree of
smoothness we may choose - say C00 for compatibility with our earlier
work). If we are concerned with CM# we need holomorphic cross-sections,
but then we must work locally since the general cross-sections are defined
only over some open set of CM1#.

We can now follow the methods of §2.2 (and also §5.4, Volume 1) to
define the elements of the general (twisted) [£ ?]-spinor space SG!!!&'>

 anc^
we note that, in terms of ordinary spinor fields on MI, the jump across «/
with respect to the right-handed spin structure is given by the requirement
that the field just to the past of./ must be multiplied by a factor

:r-p-t (9.4.9)

to achieve continuity with the field just to the future of,/. In particular, the
jump for elements of SA must be opposite from that for elements of its
dual (BA. (This is clear since, for example, a scalar product like KACL>A must, at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


9.4 Twistor four-valuedness and the Grgin index 327

any point of M# (or CM#), be an ordinary untwisted scalar, i.e., an element of
C.)

Although the above definition of the module ®;;; does not provide us
with spinor fields in the ordinary sense (unless r — p — t + qisa. multiple of
4), we may regard the 'twisted spin structure' from which it is derived as
being more natural than either the right-handed or the left-handed spin
structure on M#. (We can, of course, express the 'jump' specified in (9.4.9)
equally well in terms of the left-handed spin structure, by simply replacing i
by — i in (9.4.9), or, equivalently, by changing the sign of the exponent.)

Conformal densities on y # ; the Grgin index

Note that (9.4.9) agrees with the behaviour of the parallelly propagated yA

considered earlier in this section, provided we take the conformally
invariant lower-index form. If we consider yA instead (or, for that matter,
coA), which is a conformal density rather than a conformal invariant, we
must incorporate an additional factor ( - l)w, for general conformal weight
w, into the formula - where here w must be an integer. However, the
interpretation of this needs some care. If we define a non-singular metric gab

in some neighbourhood of a point of J, conformal to gab in the standard
way with

Sab^&gat, (9A10)

using, say, the Q factor of §9.1, we find that Q is negative on one or the other
side of J. Thus the normal requirement of §5.6 that the conformal factor is
to be everywhere positive has now to be relaxed. Quantities of odd
conformal weight will change sign, in addition to being rescaled, in regions
where we choose the negative sign for the square root of the Q2 of (9.4.10). If
we follow the procedure of the beginning of §9.2 for constructing M#, where
the boundary hypersurfaces J+ and J~ are first added to fVO and then
identified, we do not see negative factors Q arising. But if we extend Q
smoothly across J* into the future, or across J~ into the past, we enter
regions of negative Q. This is something of a nuisance, particularly since the
interpretation of a spin-vector KA in terms of a null flag is achieved through
the bivector

KAKB£AB' + EABKAKB>

(cf. (3.2.9)), the £-spinors all having odd conformal weight. In regions where
Q < 0, therefore, we would seem to require the reverse association between
KA and its flag plane from that given in §3.2 (and Chapter 1, Volume 1) (i.e.,
with the tangent vector to S+ representing this flag plane pointing in the
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opposite direction). This would not enable us to avoid the problem of right-
versus left-handed spin structure ambiguity as encountered above (spin
structures being, in any case, entirely topological and essentially non-metric
concepts; Milnor 1963), because with negative Q we would have to 'go
around' M# twice before returning to original values. For this reason, we
adopt the 'gluing' procedure of the beginning of §9.2 (which takes Q ^ 0
throughout fMI#) in making the following definition:

(9.4.11) DEFINITION

A [f q
t~\-spinor field in M which is a conformal density of (integer) weight w

has Grgin behaviour at infinity if when rescaled (with Q, > 0), it extends
smoothly across J when the field just to the past of J is multiplied by the
factor ( — iy~r~4+t~2xv

9 using the right-handed spin structure.

The integer (mod 4) p - r - q +1 — 2w is called the Grgin index of the field
(as suggested by N.M.J. Woodhouse). We note that the primary part of a
[o]-twistor has Grgin index + 1 and that of a [?]-twistor, - 1. Hence, by
taking tensor products, we arrive at:

(9.4.12) PROPOSITION

The Grgin index of the primary part of a [fi-twistor is p — q (mod 4).

Note also that, quite generally,

if \j/;;; and x" have Grgin indices a and b,
then il/y/j'.'.'. nas Grgin index a + b (mod 4). (9.4.13)

If desired, the above problems of interpretation in the case of non-zero
conformal weight can be avoided if we replace the field (/>£[[[%' by

te::FN>*PQ-*Tv or 4>£^;.erQ...eTU (9.4.14)

in order to produce a field of zero conformal weight. The Grgin index
remains unchanged since that of the e-spinors is zero.*

* Note that the use of primed epsilons in place of some or all of the unprimed ones in
(9.4.14) would make no difference. This is because (in this book) we jiave consistently
assumed Q = ft in our rescalings eAB = QeAB, sAB- = €teAB>; gab = Q&gabi whereas the
more general choice of independent Q and & could have been made. In the present
context this corresponds to the fact that we are concerned with invariance under
SU(2,2) (or its complexification 5L(4,C)) rather than the more general (7(2,2) (or
GL(4, C)). The preservation of the twistor eafiyd is what distinguishes these slightly more
restricted transformations. We recall from (6.1.64) that the spinor parts of eafiyd are
terms like eA'B'eCD which would scale with a factor ft" 1Cl. So the preservation of eafiyd

entails ft = Q.
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The Grgin theorem

The reason for the above terminology is the following remarkable result:

(9.4.15) THEOREM (Grgin 1966)

Any non-singular solution of the massless free-field equation (4.12.42) on the
Einstein cylinder $ exhibits the behaviour (9.4.11) when $ is identified in the
standard way to become M*.

We shall presently give a proof. But first note that for a massless field of
spin \n with unprimed indices we have r = n, w = — 1, and p = q = t — 0,
so the Grgin index is — n + 2, whereas for such a field with primed indices
the Grgin index is n + 2. Recall (cfi §5.7) that for fields of positive
frequency the helicity is given by s = — \nh in the first case and by 5 = \nh
in the second. So the Grgin index is 2sh~l + 2. In order to avoid the factor
(— i)+w + 2 now occurring in (9.4.11) we would need to take a two-fold cover
of M# for massless fields of even spin (e.g., for the conformally invariant
massless scalar D'Alembert field), and a four-fold cover for half-odd integer
spin. But for odd integer spin (e.g., for the Maxwell field) the space M*
suffices.

To prove the Grgin theorem, we shall use an earlier lemma to reduce the
case of general spin to that of zero spin. Suppose, in a conformally flat
space-time M, that kAm~D\% the primary part of a symmetric [J]-twistor, so
that (6.4.1) is satisfied, and suppose the symmetric n-index spinor (t>A...D
satisfies the massless field equation (4.12.42). Then, by (6.4.31) et. seq.

satisfies the conformally invariant wave equation (cfi 6.8.30))

Now suppose (f)A.,.D is as above. For any point QeS the choices oikA'"D

satisfying (6.4.1) span the space &Am"D)[Q]9 since a (symmetric) twistor has
arbitrary (symmetric) primary spinor part at any one point. Let P be the
point to which the future light cone of Q first re-converges, i.e., the first point
to the future of Q which gets identified with Q when we make the
identification to obtain M#.

We know that XA"D has the correct Grgin behaviour, by (9.4.12). Because
of the multiplicative property (9.4.13) and the space-spanning property of
A at each point, it is therefore sufficient to show that the Grgin property
holds for the scalar <\>. (The theorem for a primed massless field <\>A\..D'
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• + OO

Fig. 9-13. An explanation of the Grgin phenomenon for massless scalar fields on
the Einstein cylinder $, in terms of the Kirchhoff-D'Adhemar integral formula
(5.12.6). The rays through Q first converge again at P. The sign reversal between the
field values at P and at Q can be attributed to the opposite sign for the convergence p
as a null hypersurface Jf, between P and Q, convergences on one or the other point.

then also follow from the corresponding complex conjugate argument.) The
Grgin property for a scalar <\> asserts that <\>(P) = — (j)(Q) for each choice of
Q. One way to see that this must hold is to note that every solution of the
wave equation in Ml is composed of'elementary' solutions having the form

in standard coordinates, taken relative to various different origins. The
coefficient of the ^-function has opposite signs on the future and past light
cone and clearly the Grgin property is satisfied, and the theorem
established. Alternatively, we may appeal to the Kirchhoff-D'Adhemar
formula (5.12.6) which expresses <f>(P) as an integral over any cross-section
of the past light cone of P by some null hypersurface JV. AS part of the proof
of this formula we examined the limiting situation when the cross-section
approaches P from the past (the value of the integral being independent of
the cross-section). When we compare this limit with the corresponding
expression obtained when the cross-section moves back along the past light
cone of P to approach Q from the future (cf. Fig. 9-13), we find, since
\)(j) = (D - p)(f> (taking s = 0) is dominated by the - p<t> term near P or Q,
that the two limiting expressions differ only in the sign of the convergence p
of the intersecting null hypersurface Jf, and that in the first case it is the
field value (j){P) which enters, and in the second case it is <t>(Q). This again
shows (j)(Q) = — 4>{P\ as required.

Non-Grgin fields

It should be remarked that the Grgin behaviour is a property of fields
satisfying the field equations globally and it does not apply when the field
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has singularities. One familiar example of a norc-Grgin field is the Coulomb
field. Here the Grgin index is zero, so Grgin behaviour would entail that the
field extends continuously across J in M#. But it is easy to see directly that
the field in fact changes sign at J. For with a positive charge, the electric
vector always points radially outwards, and so is associated with the
outward pointing EPND (cf. §8.5, p. 255). But a t / + this is the EPND
which points across J while a t« /" it is the one that points tangentially to J
(see Fig. 9-14). Thus the sign of the field must be opposite when J+ is
matched t o / ~ . Another way of seeing this is to consider, instead, the
universal covering space & of M# and to extend the field analytically
(without sign change at J) to the whole of S. Since the space-time $ is
spatially closed, its total charge must be zero (by e.g. (6.4.4) with £f = 0 ) .
Therefore the image of the original charge line, which lies spatially at the
antipodal S3 point, must have the opposite (i.e., negative) charge to the
original one. The continuation of the original Coulomb field across </,
therefore, must be a Coulomb field of the opposite charge, which makes the
completed field have anti-Grgin behaviour.

In the linearized Schwarzschild solution we again get anti-Grgin
behaviour for the field <J)ABCD- Here the Grgin index is 2, so ordinary spin-2
wave fields change sign at J, whereas the linearized Schwarzschild field
does not. However, we shall see in (9.6.40) that there is an extra Q-factor in
passing from (J)ABCD

 t 0 the Weyl curvature *¥ABCD> S O m the/w// theory we
find the opposite behaviour, namely that there is a sign change in the mass as

— charge + charge

V.

Fig. 9-14. The anti-Grgin behaviour of the Coulomb field. (The Grgin index is zero
since this is a Maxwell field.)
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the Schwarzschild solution is continued analytically across J (cf §9.6,
paragraph after that containing (9.6.7)).

Finally we may remark that there are indeed many non-singular
solutions of the massless free-field equation over the whole of S, for each
integral or half-integral spin. For example, any appropriate initial data
could be used on a spacelike S3 cross-section of S, and the field will evolve
non-singularly to the whole of S. The Grgin theorem tells us that the
solutions have a curious kind of periodicity on $. (This is a feature of the
particular field equations being used here. For example, in 'massless Xcf)4

theory', with field equation ( • -f £#)</> = Ac/)3, no such periodicity would
occur.) Explicit non-singular solutions on fV0# are easy to construct using
twistor methods, e.g., the elementary states arising from the twistor function
(6.10.48). The Grgin index 2sh~l + 2 for massless fields is, as might be
expected, determined by the homogeneity — (2sh ~ * + 2) that appears in the
twistor functions for massless fields of helicity 5. But the matter will not be
pursued further here.

9.5 Cosmological models and their twistors

Before examining the asymptotic structure of generally curved space-times,
it will be of interest to consider that of the standard Friedmann-Robertson-
Walker (FRW) cosmological models (cf. Rindler 1977). There is, by now,
reasonably impressive observational evidence that the structure of the
actual universe is very well approximated by such a model. The FRW
models are all conformally flat (cf. Proposition (8.2.2)) and can therefore
be represented as conformal subsets of the Einstein cylinder $ (which is
itself a FRW model). We shall relate this to the geometry and algebra
that has been set up in §§9.1-9.3, thereby opening the way for the
twistor formalism to be directly applied to the study of these models.

The metric of the general FRW model can be written in the standard
form

where U is 'cosmic time' and k = ± 1 or 0, so that the metric in { } is that
of the unit 3-sphere, unit Lobachevski (hyperbolic) 3-space, or Euclidean
3-space, respectively. In terms of the following new coordinates

^ = 1 ^ 7 7 7 . p = 2 t a n - 1 ^ f (fc=l) (9.5.2)(a)
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or

* = Î 777T> A*= 2 t a n h " ' k (* = - ») (9.5.2)(6)

or

* = | - S 7 7 ^ r = ^ (fc = °X (9.5.2)(c)

we obtain, respectively, the following alternative forms of these metrics:

d5
2 = [S(T)] 2 {dr2 - dp2 - sin2 pdco2} (9.53)(a)

or
ds2 = [S(a)Y {da2 - d/z2 - smh2fida>2} (9.5.3)(6)

or
ds2 = [S(t)]2 {dr2 - dr2 - r2dco2}, (9.5.3)(c)

where

and
R(U) = 5(T), S(G), S(t\ respectively.

The { } in (9.5.3)(a) is the metric of the Einstein cylinder $ as described in
§9.1. We have already seen, in that section, how to relate S conformally to
the metric of Minkowski space MI, which is the { } in (c). With the obvious
modifications we can also find corresponding formulae relating the metric
of the anti-Einstein universe s/, which is the { } in (ft), to Minkowski space
and hence find an explicit conformal map from s/ to $. Collecting these
results together, we obtain

(COST + cosp)~2{di2 — dp2 —sin2 pdco2}

= (cosh a + cosh //)" 2{d<r2 - dju2 - sinh2 fidco2} = dr2 - dr2 - r2dco2,

(9.5.4)
where

sin T sinh o
t =

r =

tan T =

cost + cosp cosh a + cosh //

sinp sinh//

cos T + cos p cosh o + cosh \x

It sinh o

r2 - t2 + 1 cosh /i

2r sinh /i
t2 — r2 + \ cosh a (9.5.5 continued overleaf)
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(continued)
tanh a =

It

t2-r2

tanh/i = - y - ^ -

sini

cosp

sinp
COST'

(9.5.5)

The T, p coordinates are the same as those used for the Einstein cylinder in
§9.1 and relate to the Minkowski coordinates t, r by the equations of §9.1.

We saw in Figs. 9-1 and 9-2 the range of the variables p, q (and therefore T,
p) that correspond to the entire Minkowski space Ml. In this range the
conformal factor

cos T + cos p

from Ml to $ is positive, the boundary being defined where this factor
vanishes (p ± T = n). In the same way that Ml is conformal only to a portion
of $, the anti-Einstein space si is also conformal only to a portion of $. In
this portion the conformal factor

(cosh a + cosh fj)~l

from si to Ml is positive and vanishes on the boundary, defined by o and \x
becoming infinite:

r + t = l , i.e., p ± T = y7L

Fig. 9-15. The complete conformal spaces for various k-values: the Einstein
cylinder $ (k = + 1), Minkowski space M (k = 0), the anti-Einstein space si (k =
— 1). The various conformal regions of $ are indicated in terms of the p, z
coordinates for S. The lines of constant time and of 'fundamental observer' world-
lines are sketched in each case.
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The nested regions si a M a £ of this conformal mapping are illustrated in
Fig. 9-15.

Cosmological horizons

For any particular cosmological model with a given function R(U), only
a certain range of the cosmic time variable U may be allowed. Then the
model is conformal to some region of $ bounded by hypersurfaces
T = constant, t = constant, or a = constant, as the case may be. Except
when these constants are 'infinity' (in which case we have a boundary as
already illustrated in Fig. 9-15), the bounding hypersurfaces are always
spacehke and correspond to the existence of particle horizons or event
horizons according as these boundaries are in the past or in the future.
(Rindler 1956, Penrose 19646, 19686; cf. Hawking and Ellis 1973). The
particle* [event] horizons are the boundaries of the TIFs [or TIPs] of
maximally extended (idealized) galaxy world-line (q, 6,(j) = constant:
the 'fundamental observers'). The bounding hypersurfaces of the
model can either represent infinity for the original cosmological space-
time M (corresponding to R(U)= oo, with $dU/R(U) convergent, and a
zero conformal factor in the passage from Jt to S) or an infinite com-
pression singularity (corresponding to R(U) = 0, with $dU/R(U) con-
vergent, and an infinite conformal factor in the passage from JK to g). A
past singular boundary is referred to as the big bang and a future singular
boundary as the big crunch. In all cases, whether the boundary represents
a singularity or infinity, we may use the method described at the end of
§9.1 (TIPs and TIFs) to provide an intrinsic definition of these boundary
points in terms of constructions entirely within the original space-time M.
The relation between these spacelike boundaries and the physical prop-
erties of the horizons becomes especially transparent when viewed in this
way (Penrose 19686).

In Fig. 9-16 the regions corresponding to the three standard dust-filled
Friedmann models with vanishing cosmological constant X are illustrated.
The 'height' of the cylinder in the case k = + 1 is such that an observer
following the p,9,(/) = constant flow lines is just about to 'see' his creation
event when he reaches the big crunch, the information having circled the
universe exactly once. At the halfway point of maximum expansion he

In Hawking and Ellis (1973), the term 'creation horizon' is preferred for such a TIF
boundary.
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crunch

bang

Fig. 9-16. The regions of Fig. 9-15 which correspond to the various dust-filled
Friedmann models (X = 0).

sees his antipodal point for the first time, so from that stage on all galaxies*
are in view. (Proofs of these statements as well as of those to be given in
the next paragraph follow readily from the standard equations as given,
for example, in Rindler 1977, Wald 1984).

We consider a few other examples. The Tolman radiation-filled universes
with / = 0 (Tolman 1934: p. 413) are similar to the Friedmann cases, but
for k = + 1 the cylinder is only half as tall, so the observer only just sees
the antipodal galaxy at the big crunch. The de Sitter universe (about which
we shall have more to say presently) is conformally similar to the k = + 1
Tolman universe, but the boundaries represent infinity rather than
singularities. The Eddington-LemaTtre model corresponds to a semi-
infinite Einstein cylinder with future spacelike boundary representing
infinity. The LemaTtre model corresponds to a finite Einstein cylinder which
can be made arbitrarily long, the past boundary being a singularity, the
future boundary representing infinity. For models with k > 0, infinity is
always a spacelike boundary (see (9.6.18) below). 'Normal' FRW models
with X < 0 (which exclude, for example, the static anti-Einstein space stf
and the empty maximally extended anti-de Sitter space) do not have
(temporal) infinities: they are always bounded by a spacelike bang and
crunch. The (empty) Milne model is conformal to the whole of s/. (See
Bondi 1960a, Hawking and Ellis 1973, Rindler 1977 and Wald 1984 for
further details.) Anti-de Sitter space infinity is timelike: p = \n.

Of course, as is the usual convention when discussing cosmology at this level, the term
'galaxy' refers to an idealized world-line originating at the big bang, and makes no
reference to the time at which actual galaxies might first form.
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Description in terms ofP5

Let us now relate these correspondences to the discussion given in §9.3
where fV0# was regarded as a quadric hypersurface in P5. Directly
translating (9.5.5) to the coordinates of that section, we find

t an r=T /F ,

tanh o = - T/W,

t=T/(V-W). (9.5.6)

Thus in each case the surfaces of constant cosmic time U are described by
the intersections of a pencil of hyperplanes with the quadric fV0#, namely:

T:F=sinT:cosT (/c = 1)

T: - w= sinh a: cosh o (k = - 1)

T\V-W=tA (k = 0). (9.5.7)

In the first case the (3-projective-dimensional) axis of the pencil (T= V— 0)
does not intersect the quadric M# (whose equation, we recall, is T2 + V2 —
W2 - X2 - Y2 - Z2 = 0), in the second case the axis (T= W= 0) intersects
M# in an S2, and in the third case the axis (T= 0, V= W) touches M# at one
point (see Fig. 9-17.)

The de Sitter and anti-de Sitter models; la/3 and \aP

Worthy of some special attention among FRW models are de Sitter and
anti-de Sitter space together with Mijikowski space. For in these spaces
(and only in these) there are extended symmetry groups so that the cosmic
time slices U = constant are not geometrically singled out. Indeed, it turns
out (Schrodinger 1956, Rindler 1977) that descriptions of de Sitter space
as FRW models can be given, for which fe = 1, — 1, or 0 - though only
in the case k = 1 does the description hold globally. For Minkowski space
we can have FRW models with k = 0 or k = — 1 (only the case k = 0 being

k=\

Fig. 9-17. The various constant-time slicings for k = 1, k = — 1, k = 0, respectively,
in terms of the projective quadric PJT in P5.
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global). Anti-de Sitter space permits but one type of FRW model, and
that not globally: k = — 1.

One way to describe the complete de Sitter model is simply to use the
T, V, W, X, Y, Z coordinates of §9.2, but instead of taking them as projective
coordinates for P, to restrict them—in E6 with metric (9.2.4)—to some
hyperplane

T=Q, (9.5.8)

where Q is a real constant. The equation (9.2.5) for M# then yields de Sitter
space Jt as the 'pseudosphere'

V2 - W2 - X2 - Y2 - Z2 = - Q2,

of'radius' Q. In P5, just the points given by T= 0 are now excluded from the
model, so by removing the hyperplane T= 0 from M# one gets a space
conformal to Jt. This is very similar to the case of M c M#, the only
difference being that, for Ml, the removed hyperplane V— W= 0 in P5

touches Ml#, the point of contact being /.
The case of anti-de Sitter space is also similar, but here we restrict the

coordinates in E6 to a hyperplane.

W= Q, (9.5.9)

so we get a pseudosphere of a different signature (still taking the metric
(9.2.4) for E6):

T2+V2-X2-Y2-Z2 = Q2.

In P5, Ji is now given by the removal of the hyperplane W= 0 from M§.
(Strictly, anti-de Sitter space is the universal covering space of this Jt, cf.
Penrose 19686, Hawking and Ellis 1973.)

A hyperplane Jf in P5 can be represented twistorially by a skew twistor
Hap (which is 'real' in the normal twistor sense that its twistor complex
conjugate Ha/* and its dual Ha/* are equal). Of course we may also think of
Ha/? as representing a point H in P5, but this point is simply the pole of Jf
with respect to the quadric M*. The point H and the hyperplane Jf
represent equivalent information. (We recall that this is what 'raising the
indices' of Ha/? with the metric j£a/?y<5 amounts to, geometrically.)

In the above discussion, we encountered three such hyperplanes, namely
T= 0, W= 0, and V— W= 0, whose respective removal from M# provided
us with models for de Sitter, anti-de Sitter, and Minkowski space. Reference
to (9.3.7) gives us a translation into standard twistor coordinates:

T = - U R 1 2 - R03), W= R01 - | R 2 3 , V- W= R23. (9.5.10)
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Thus we can define the region to be removed from Mu (writing \aP for H^) as

Ia/?R^ = O, (9.5.11)
where

QV2

1
- 1

_ i

- 1

(9.5.12)

in the de Sitter, anti-de Sitter, and Minkowski cases, respectively. The last
expression for lap is, of course, the standard one, (6.2.25), giving the
Minkowski infinity twistor. But now we have corresponding infinity
twistors for de Sitter and anti-de Sitter space-times. Moreover, the
particular scalings given in (9.5.12) enable us to go further and define the
actual metric of the respective space-times by imposing, in E6, the equation

I^Ra/? = 2 (9.5.13)

(cf. (9.5.8), (9.5.9), (9.2.6), respectively, and (9.5.12); note that this is the
standard normalization (6.2.27) in the Minkowski case).

We can interpret (9.5.13) as defining a subset (a hyperplane section) of the
cone X (of Fig. 9-6), JT having equation (9.2.5), i.e.,

2(T2 + V2-W2-X2-Y2- Z2) = RaPRap = K

in the space E6. The metric of E6 is (9.2.4), i.e.,

(9.5.14)

ds2 = 2dR01dR23 + 2dRO2dR31 + 2dO3dR12

= d 7 2 + dF 2 - &W2 - dX2 - dY2 - dZ2, (9.5.15)

and we have the standard reality condition Ra/? = je^R7*. As we saw in
§9.2, all sections of Jf are locally conformally identical (conformally flat),
the selection of a particular metric from the entire conformal class being
determined simply by specifying the section. In the cases of de Sitter, anti-de
Sitter and Minkowski space, this section has the special feature of being
given by a linear equation, namely (9.5.13), where (to preserve reality) \afi

must be twistor-real,

T«' = i e a ' y % = :!«', (9.5.16)
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and, without loss of generality, can be taken to be skew,

•a /?— ' POL' yy.J.ll)

The de Sitter, anti-de Sitter and Minkowski cases are distinguished by

( , _ _ 2 2_

respectively, or equivalently by

ay 2Q2 "' 2Q2 "'

Having relations (9.5.16)—(9.5.18), we can dispense with explicit represent-
ations such as (9.5.12). In each case, the relevant symmetry group ([anti-] de
Sitter group, Poincare group) arises as the subgroup of 0(2,4) leaving \aP

invariant (cf. penultimate paragraph of §9.2). The specially simple form of
the metric in these cases also enables us to write down directly the actual
geodetic distance ( = time-interval) between points represented by Ra/*, Pa/*
as

(9.5.20)

in the de Sitter and anti-de Sitter cases respectively. (This can be verified
by reverting to a T, K,..., Z description.) These formulae may be compared
with the corresponding Minkowski formula (6.2.30), which can be re-
obtained from (9.5.20) by taking the limit Q-+ oo. There is also a version
of (9.5.20) that corresponds to (6.2.26), which does not require the normali-
zation (9.5.13) and so refers directly to descriptions in UP5. This can be
written down simply by replacing the expressions in parentheses in (9.5.20)
by

P R°^l \yd\
r«*rc v 1 I (9521)
P \p°\ FT*/' [ }

The functions I and I for conformally flat space-times

Let us now turn to a general conformally flat space-time Ji (compare also
Hurd 1985). As before, we can define the scaling for the metric of M by
specifying a section (but now not a hyperplane section) through the cone Jf
in E6. Let us write the equation of this section as

T(RaP) = 2, (9.5.22)

where the function 7is homogeneous of degree 1 (so that in the above three
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cases, 7(Ra/?) = la/3R
a/?)> or, in terms of the dual twistor Ra/?,

/(M = 2, (9.5.23)

where / is also homogeneous of degree 1 and is defined by

/(Ra,) = 7(R«>) (9.5.24)

(so in the above three cases, /(R^) = la/?Ra/?). The reality of our section can
be stated as T= 7, i.e.,

I(XaP) = T(X^). (9.5.25)

In fact, we are not really concerned with the functions / and /except at
the places where Ra/? is simple. For this reason we shall prefer to consider
them as functions of pairs ofunivalent twistors Ua, Va or Xa, Ya, where

J(U.,V.):=/(U.V,-U,V(1X

r(X«,Y"):=/(X«Y'--X'Y11). (9.5.26)

Since / and /depend on their arguments Ua, Va or X", Y" only through their
skew products, and are homogeneous of degree 1 in each argument, we have

X*— - 0 - Y« — X*— - / - Y« — (9 5 27)
* 3Y- ~ " dX<9 dX«~J- dY* ( 'XZ ]

(see the extended 'footnote' on Young tableaux described in §3.3), or,
equivalently,

J(W. + /iVa, pUa + dVJ = (ka - ;ip)/(Ua, VJ,

7(/X« + /iYa, pXa + <rYa) = (Ac - w)I{X\ Ya). (9.5.28)

Writing / and 7as functions of two twistor variables in this way enables us
to give them another, and perhaps more significant, interpretation. The
above relations, particularly (9.5.28), tell us that / and /define skew bilinear
forms on the linear spans of Ua, Va and X*, Ya, respectively. These linear
spans determine the point R of Jt defined by

nafi = 2U[a\/fi] or R«' = 2XIaY«

and the bilinear forms provide the spinors sABand eAB', respectively, at R.

For, using a local twistor description of U a , . . . ,Y a , we have, at R,

I(U^a) = eABUAyB

I(X*,Y*) = eAB'XAVB,. (9.5.29)

(These expressions can be obtained first in the Minkowski case from
(6.2.25), and can then be rescaled to give the results for Jt.)
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The expressions (9.5.29) are useful in that they enable us to apply various
twistor formulae directly to any conformally flat space J(. In particular, the
massless free-field contour integrals of §6.10 can be applied in M, the metric
scaling for Jt entering only through the differential forms

XAdXA = zABlAdXB, dXA A dlA = EABdkA A dlB

nA.dnA> = sAB'nA,dnB,, d%A. A dnA' = zAB'dnA. A dnB, (9.5.30)

at each space-time point R {cf (6.10.1), (6.10.3), (6.10.10)). Thus, the
functions / and /provide the required definitions of eAB and sAB' at each
point R via the expressions (9.5.29).

FRWmodels; their bang and crunch twistors

Let us now return to the FRW models and determine / and T explicitly
for them. One method of doing this is to transform the metric ds2 of M to
the Minkowski form, where we now write ds2 = Q2ds2 for the Minkowski
metric (9.5.4) and note that, in accordance with sAB = Sl~1eAB, tAB =
n~1eA'B\ we require

f = Q - 1 J , / = Q" 1 / (9.5.31)

with the Minkowski expressions

f(R-0 = 2R23 = 2(V- W) = 2RO1 = T(Rafi) (9.5.32)

(cf. (9.5.10), (9.5.12)). Reference to (9.5.3) and (9.5.4) provides

(fe=-l) (9.5.33)

[S(t) (k = 0),

while from (9.5.5), (9.5.6) we obtain

2 W2
 2 V2

v2 w2

Since in the relevant range of variables, for k = 1, cos T and V have the same
sign while cos p and W have opposite signs, whereas for k = — 1, V> 0 and
W< 0, we finally obtain, using (9.5.6),

(2(V2 + T2)*/S(tan-\T/V)) (k= 1)
I(Rafi) = T(RaP) =< 2(W2 - T2)V5(tanh"\ - T/W) (k = - 1)

I 2(V- W)/S(T/(V- W)) (k = 0).
(9.5.35)

Note that / ^ O a t / 1 , and / = oo at the singularities.
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In these expressions, 7, V and M âre simply combinations of particular
components of Ra(i (cf. (9.3.8)):

7 = - ^ ( R 1 2 - R03) = - ^ ( R 0 3 - Ri2) V= R01 + i R 2 3 = R
l2) r — n r p =n 2 3 -r 2 n 0 1

W= R01 - ^ R 2 3 = R23 - i R O i V- W= R23 = R01. (9.5.36)

These components need have no absolute significance in themselves. They
represent scalar products of Ra/* (or Ra/?) with particular skew twistors Ha/?

(or Ha//) corresponding to particular members of the pencil of hyperplanes
in P5 (defined in (9.5.7)) whose intersections with M# provide the cosmic time
slices U = constant of Ji. The geometry, in relation to M#, of the two
relevant hyperplanes (i.e., 7 = 0 and V=0 when k= 1, 7 = 0 and W=0
when k= - 1, and 7 = 0 and V- W=0 when k = 0) together with the
explicit expressions (9.5.35) provides us with the required information
about the metric on Ji.

There is some arbitrariness, however, in the particular selections being
made here of these hyperplanes from the pencil, which stems from the
arbitrary constant involved in the original integrals (9.5.2). If the model
contains a 'big bang' then we may choose to take the zero of the
coordinates T, O\ or t to represent the big bang, i.e., by (9.5.6),

7 = 0 .

We can thus define a bang twistor Ba/? such that

Ba/?R
a/* = 0 at the big bang,

as well as

By the above coordinate conventions,

— i
1 , (9.5.38)

i
so that

7 = - ^ B a / ? R ^ . (9.5.39)

Similarly, if the model contains a big crunch, we can define a crunch twistor
CaP for which C0t/?R

a/' = 0 at the big crunch and which satisfies relations
corresponding to (9.5.37). In the closed Friedmann dust-filled model with
/ = 0 we find, in fact, that Cap = BaP (from the property mentioned earlier
that light cones originating on the big bang refocus on the big crunch).
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This also holds for the closed Tolman radiation-filled model, but in the
Friedmann case there is the further degeneracy that the twistor represent-
ing the cosmic time of maximum expansion is also (— )Ba0.

If we wish to describe the structure of Jt by the selection of specific
twistors (such as \^ in the case of M or the (anti-)de Sitter model), there
is clearly some freedom of choice. There is some virtue in choosing, say,
Bap and a corresponding twistor representing some other member of the
pencil, e.g. that describing infinity in the cases where M possesses a J +.
It makes little difference which two twistors are actually selected, since
all other possible choices will be linear combinations of these. For uni-
formity and mathematical elegance it is convenient (except in the case k = 0)
to choose the two members of the pencil which touch CM#, so the corres-
ponding twistors are simple. In the case k = 1 this entails selecting a pair of
complex conjugate simple skew twistors \aP and Ta/?; in the case k = — 1, a
pair of distinct (twistor-)real simple skew twistors \aP and Ja/?; and in the
case k = 0, one real simple skew twistor \aP and (say) a real non-simple skew
twistor Ba/?. We can normalize as follows:

la,T"> = 2 (k=\)

1 ^ = 2 ( * = - l )
la,B"' = 0, Ba/?B"> = 4 (k = 0) (9.5.40)

(The reason for this normalization, in the cases k = ± 1, is that layT^y and
lay\

p\ or \ayJ
Py and Jay\

p\ are then orthogonal idempotent projection
operators which serve to decompose twistor space into two canonically
determined spin-spaces. When k = — 1, these are spin-spaces of the kind
studied in these volumes but when k = 1 their relation to complex con-
jugation is different.) In the cases k = + 1, we can also define

B«,= la ,+Ta, (*=1), Ba/?=la/? + Ja/? (k=-\)

as the bang twistor (if there is a big bang), and this provides a Ba/? with
precisely the same structure as that given in (9.5.40) for k = 0 (though its
relation to \ap is different).

In the normal (positive-density) expanding models we take \aP to
represent J+ when k = 0, — 1 and X = 0:

\aPR*p = 0 a t(7 =-foo .

However, when / > 0, J + is spacelike and does not have such a clear relation
to \ap. (In particular, this choice does not agree with that made earlier in
the case of de Sitter space!) When k = 1 and X = 0, \aP and JaP represent
'virtual' (complex) infinities that can be reached only by complexifying the
metric. In the expanding models with k = — 1 and X = 0, Ja/? also represents
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9.5 Cosmological models and their twistors 345

a 'virtual' infinity, but this time it is the . / of a hypothetical collapsing
phase preceding the big bang. (Compare Fig. 9-15 with Fig. 9-16: la/?

represents p + x = \n while Ja/? represents p — x = \n. We note also that
the point la/* is the vertex p = 0, x = \n and the point Ja/* is p = 0, x = — \n)

Explicit realizations of these twistors in terms of our coordinates, with

= 0), (9.5.41)

are provided by

•fl* t =

-i/J2 - i / 2

i/2

i/2 — I

i/2

- i / 2

i/2

•i/2
(k=-\)

(9.5.42)i/2 +1
and, for k = 0, by the expression for Bap given in (9.5.38) and the standard
Minkowskian expression for lap given in (9.5.12)(3). There is, however, no
special merit in these explicit representations, since different coordinates for
twistor space can be chosen which considerably simplify the form of (9.5.42).
(Our standard coordinatization of twistor space was chosen to mesh with
the Minkowskian spinor descriptions of Chapter 6, and have no special
relevance here.) The essential properties required are all contained in
(9.5.40), together with the stated simplicity and reality conditions; the one
remaining 'invariant' choice we have made was to take the complex point
represented by la/* in the forward tube (cf. just before (9.3.25)) so that the
corresponding line in PT lies in P T + rather than in PT" .

Explicit expressions for I

The explicit form of the function
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is now obtained by substituting (9.5.41) into (9.5.35). We can then
reconstruct the original 'universe radius' function R(U) from the functional
form of / (cf. (9.5.1)—(9.5.3)). In the cases k = ± 1 some simplification can
be achieved by introducing

^ ^ ^ (k=\)

7 = -1= I^R* b2 = - W - T= -1= Ja/,R" (k = -

(9.5.43)

so that a and fc are conjugate complex if k = 1 and real if /c = — 1. We
note that, by (9.5.7),

a
2:b2 = V+ \T: V- iT= eiT:e-iT (k = 1)

a
2:b2 = -W+T.-W- T= ea\e~a (k = - 1)

so

Substituting into (9.5.35), we get

/ =
 2ah f ^ - 1 (fc5SBl) (9544)

S(filog(a/6))le=l ( / c = - l ) , V ' ' ^
so, with (9.5.2), (9.5.3), we can complete the calculation of R(U), simply
noting that

R = 2abl~\ dU = 2eb2r1d(a/b%

where the constant of integration can be fixed by setting U = 0 at the big
bang, taken to be at a = b.

The case of the Friedmann dust-filled models with X — 0 is particularly
simple:

This yields the familiar parametric forms

U = \C{T - sinT), R=\C{\ -COST) (A; = 1)

U = |C(sinh a-a),R= |C(cosh a - 1) (ik = - 1),

where C is a constant (of dimensions of a density) which, in the case k = 1,
defines the maximum value of R, given when a= —b.
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The Tolman radiation-filled universes with X = 0 are just as simple:

4 a2b2

J-ic(?=F)' (9'5-46)

yielding

£/ = C ( 1 - C O S T ) , R = CsinT (k=l)

l/ = C(cosh(j-l) , # = Csinh<7 ( / c = - l ) .

Note that here (in the case k=l) maximum expansion occurs when
a = ib = ei7r/4, which is at a different ratio T: V from that giving the big
bang and big crunch, whereas in the corresponding dust-filled Friedmann
case maximum expansion, big bang and big crunch all occur at the same
ratio (namely T= 0) owing to the square roots involved in passing to a
and b in (9.5.43), so these regions all coincide on M# as remarked earlier.

The perfect fluid models (k = ± 1, X = 0) for a polytrope of index y (cf.
Weinberg 1970) are only a little more complicated in the appearance of the
form of /, which turns out to be proportional to

(We are grateful to K.P. Tod for this expression.)

9.6 Asymptotically simple space-times

Let us now turn to a study of general curved space-times having sufficiently
'nice' asymptotic properties to allow a smooth conformal boundary to be
adjoined by a procedure similar to that followed in §9.1 for Minkowski
space-time. It turns out, in fact, that stipulating the existence of such
a conformal boundary, in the case of asymptotically flat space M,
represents a reasonable boundary condition - in the sense that it seems
to be weak enough to allow for the presence of mass, momentum, angular
momentum, and both incoming and outgoing freely varying radiation of
the gravitational field, as well as of other massless fields; yet it is strong
enough to allow precise mathematical results to be obtained from it, con-
cerning the fall-off of radiation and the energy-momentum it carries.

Infinity for Schwarzschild's space-time

To begin our discussion, we examine conformal infinity of the Schwarzs-
child solution. The familiar form of the metric is

ds2 = (1 - 2m/r)dt2 - (1 - 2m/r)~ xdr2 - r2(d62 + sin2 0d<£2). (9.6.1)
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Rather than attempt to obtain,/+ and J~ simultaneously, as was done for
Minkowski space, it is simpler to introduce a retarded time coordinate

u = t-r-2m\og(r- 2m) (9.6.2)

and an advanced time coordinate

v = t + r + 2m log (r - 2m) (9.6.3)

separately. In the first case the metric form becomes

ds2 = (1 - 2m/r)du2 + 2dwdr - r2(d92 + sin2 0d^2) (9.6.4)

and in the second,

ds2 = (1 - 2m/r)dv2 - 2dvdr - r2(d62 + sin2 0d<£2). (9.6.5)

In each case we can choose Q = r ~1 = w, say. Then the 'unphysical' metric is

ds2 = Q2ds2 = (w2 - 2mw3)dw2 - 2dudw - d02 - sin2 0 d</>2 (9.6.6)

in the first case and

ds2 = (w2 - 2mw3)di;2 + 2dwlw - d02 - sin26 d</>2 (9.6.7)

in the second. The metrics (9.6.6) and (9.6.7) are manifestly regular (and
analytic) on their respective hypersurfaces w = 0. (Clearly the determinants
are non-zero at w = 0.) The physical space-time is given when w > 0 in
(9.6.6) and we can extend the manifold to include the boundary hyper-
surface , / + , given when w = 0. Similarly, in (9.6.7), the physical space-time
corresponds to w > 0 and can be extended to include./", given when w = 0.
In fact, we could if we wanted extend the space-time across w = 0 to
negative values of w, but this will not be done here. Only the boundary
, / = , / ~ u « / + will be adjoined to the space-time.

We may note here a difficulty that is encountered if we try to identify J~
with J +. If we do extend the region of definition of (9.6.6) to include
negative values of w, and then make the replacement w»-> — w, we see that
the metric has the form (9.6.7) (with u in place of v) but with a mass - m in
place of m. Thus, the extension across J involves a reversal of the sign of the
mass. In fact, the derivative at J of the (conformal) curvature contains the
information of the mass. (We shall find an explicit formula later, cf. (9.9.56).)
It follows, therefore, that if we attempt to identify «/+ with «/~, and want
the same sign of the (non-zero) mass to occur on the two sides, then there
must be a discontinuity in the derivative of the curvature across J (so that
the metric ds must fail to be C3 at J).

Accepting, then, that it is not reasonable to identify«/+ with / " , w e are
led to a picture closely resembling that obtained in §9.1 for Ml. The only
essential difference occurs with the points i", i°,
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w — constant

space-time ^ \ ////-s5«xR

Fig. 9-18. Null infinity for the Schwarzschild space-time. Note that w = 0 corre-
sponds both to J+ and to J~. The points i- , i° are singular (divergent Weyl
curvature) and have been deleted. This picture serves as a model for asymptotically
flat spaces generally.

whenever mass is present, the point i°, and normally also i*, must, if
adjoined to the manifold, be singular for the conformal geometry. (We shall
not go into the argument here.) It is therefore reasonable not to attempt to
include these points, in the general case, as part of the conformal infinity
(and, as we saw earlier, even in Minkowski space the boundary surface at i°,
i* is not smooth). The picture, then, is as indicated in Fig. 9-18. We have
two disjoint boundary hypersurfaces J~ and J+ each of which is a
'cylinder' with topology S2 x U. It is clear from (9.6.6) and (9.6.7) that each
of J± is a null hypersurface (the induced metric at w = 0 being degenerate).
These null hypersurfaces are generated by rays (given by 0, (j) — constant,
w = 0) whose tangents are normals to the hypersurfaces. These rays may be
taken to be the 4Rs' of the topological product S2 x U.

Asymptotically simple space-times

We have obtained this structure explicitly in the case of the Schwarzschild
metric. But it is clear that many other suitably asymptotically flat space-
times will also give rise to such a structure. Let us start from a more general
metric of the form

ds2 = r~2Adr2 + 25idxidr + r ^ d x ' d x ' , (i, j = 1,2,3), (9.6.8)

the coordinates being r, x1, x2, x3. Each of A, Bi9 C- is a suitably smooth
function of x° = r " \ x1, x2, x3, also at x° = 0. Then setting Q = r ~l we have

d52 = Q2ds2 = Adx°dx° - 2£idxidx° + C^x'dxK (9.6.9)
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Provided that

d e t l " " ' I /O , (9.6.10)

the metric (9.6.9) will be perfectly regular at x° = 0. Thus, a 'conformal
infinity' will then exist for the space-time whose metric is given by (9.6.8).

Many metrics used in the study of gravitational radiation do in fact have
the form (9.6.8). In particular, this applies to the original metrics of Bondi
and his coworkers (Bondi 19606, Bondi, van der Burg and Metzner 1962),
Sachs (1962a), Robinson and Trautman (1962), Newman and Unti (1962).
These metrics describe situations where there is an isolated source (with
asymptotic flatness) and outgoing gravitational radiation. Incoming gravit-
ational radiation (of a suitably curtailed duration) may also be present. So
may non-gravitational (e.g. electromagnetic or neutrino) massless radi-
ation. In such situations, therefore, we expect a future-null conformal
infinity J + to exist. For the time-reversed situations we would expect J ~ to
exist. There should also be a wide class of'physically reasonable' situations
in which both J* and J~ exist. It has, however, been argued occasionally
(e.g. Bardeen and Press 1973) that the assumption of the existence oi J~
may impose unnecessarily severe restrictions on the behaviour of the
outgoing radiation in the infinite past. Indeed, examples may be construc-
ted involving infinite wave trains in which either or both of J± fail to exist.
But whether such examples are regarded as 'physically reasonable' is often a
matter of taste.* Asymptotic flatness is, in itself, a mathematical idealization,
and so mathematical convenience and elegance constitute, in themselves,
important criteria for selecting the appropriate idealization.

Asymptotically flat space-times of the type here considered constitute
the most important subclass of those space-times which are termed
'(weakly) asymptotically simple' (Penrose 1963, 1965). De Sitter space and
certain space-times that are asymptotically de Sitter also come under this
heading. The definition of an asymptotically simple space-time is as
follows:

There is, however, a class of physical situations that really ought to qualify as
'reasonable' regardless of one's tastes, but for which there exist unresolved questions as
to the existence or regularity of J~. A typical example of this class consists of two
gravitating bodies which come in from infinity (i") on approximately hyperbolic orbits,
and then escape again to infinity (i+) their encounter being accompanied by retarded
gravitational radiation (Walker and Will 1979)
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(9.6.11) DEFINITION

A space-time Jt, with metric gab, is called /c-asymptotically simple if a Ck + l

smooth manifold-with-boundary Jt exists, with metric gab, scalar field Q and
boundary J = dJt such that:
(a) Jt = \ntJt
(b) gah = Q2gahinJt
(c) Q and gab are Ck smooth throughout Jt
(d) Q > 0 in Jt\ and Q. = 0, VaQ # 0 on J
(e) every null geodesic in Jt acquires a past and future end-point on «/.

Often the precise degree of differentiability* at J will not concern us (k = 3
will do for most purposes). Condition (e) is included to ensure that the entire
null infinity is described by J. (Without (e\ any smooth space-time at all
would satisfy the definition, simply with M = Jt, Q = 1 and J = 0.)
However, for some purposes (e) is rather too severe - for example, in the
study of black holes; even outside the Schwarzschild horizon r = 2m there
are the circular (really, helical) null orbits at r = 3m which, like the similar
(but non-geodetic) null curve considered towards the end of §9.1, do not
reach J. To cover such situations, a weakened version of (e) would be
needed. For example, a weakly asymptotically simple space-time Jt
(Penrose 19686) is one which possesses the conformal infinity of an
asymptotically simple space-time but which may possess other 'infinities'
as well; more precisely, for such an Jt there exists some asymptotically
simple Jt' such that, for a neighbourhood 2! of J' in Jt\ the portion
J ' n Jt' is isometric with a subset of Jt. As it stands, however, this condition
may still not be considered quite satisfactory (cf. Geroch and Horowitz
1978), in effect because no assumption of'physical reasonableness' has been
placed on the auxiliary space Jt'. Asymptotic simplicity is, in any case, a
fruitful condition mainly when used in conjunction with Einstein's field
equations (with 'reasonable' sources); and a reasonable mild strengthening
of 'weak asymptotic simplicity' can be achieved when appropriate (but
much weaker) restrictions of 'physical reasonableness' are placed not only
on Jt, but also on M' (for example, the rather minimal weak energy or null
convergence condition on Jt', which requires that Rabl

alb ^ 0 for any null
vector la). One alternative approach that has been advocated (Geroch 1977,
Geroch and Horowitz 1978) is to impose some extra conditions directly on

* Recall that kCk' means 'admitting continuous kth derivatives', where we also allow
k = oo (derivatives of arbitrarily high order) and k = co (real-analytic).
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the structure of,/ - for example, the (strong) asymptotic Einstein condition
(cf. (9.6.21) and after (9.6.37)) or the condition that the generators of a null J
be infinitely long (cf. (9.8.1))-but it is not a priori clear what those
restrictions should be. No such conditions will be imposed here. It is
remarkable how much detailed and useful asymptotic structure results
merely when the apparently very unrestrictive assumption of (weak)
asymptotic simplicity for M is supplemented by requiring Einstein's
(vacuum) equations to hold in some neighbourhood of J in Jf.*

For generality, let us allow the possibility of a cosmological term in the
equations. Also, for the time being, we shall allow some massless matter
fields in the neighbourhood of«/. (In the case of a massless scalar field we
take the conformally invariant version (6.8.30) with energy tensor (6.8.36).)
Then Ta

a = 0, and so, with Einstein's equations (4.6.32), we obtain

R = 4k, i.e., A = 6A (9.6.12)

near J (where 'near J' means in jfr\J(9 for some neighbourhood JT of J
in JR). Now, (6.8.22) gives

Pab = Pab + CT^Jfl - \Q-2gJcQ$cQ (9.6.13)

near J (where, with regard to the last term, we recall that, according to the
conventions of §5.6, 'hatted' quantities have their indices raised by gab and
lowered by gah). The quantity Pab = ji^Qab ~ 2Kb w a s introduced in
(6.8.12). From (9.6.12),

P/=-|2 (9.6.14)

near */, whence, transvecting (9.6.13) with gab = Q.2gab
9 we get

- f x = Q2Pa
a + n$San - 2$an$an (9.6.15)

near J. On J, Q = 0 and, by (9.6.1 l)(c) with k ̂  2, the 'hatted' derivatives of
Q and 'hatted' curvatures are all finite (continuous). So, putting

tfa:=-VflQ (9.6.16)

(the minus sign for later convenience), we obtain

NaN
a = & onJ. (9.6.17)

By (9.6.1 \)(d\ Na^0 on J> and, being orthogonal to each locus
Q, = constant, Na constitutes a normal to J at each of its points. Thus,
assuming k ̂  2, equation (9.6.17) yields the following:

When Einstein's vacuum field equations are assumed, condition (d) (3) in the definition
(9.6.11) of asymptotic simplicity, namely the non-vanishing of the derivative of O on J,
is redundant. For it then follows from (9.6.21) below, or even more easily from (9.6.17)
when the cosmological constant is non-zero.
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(9.6.18) PROPOSITION

If the trace of the energy tensor vanishes near J, thenJ is spacelike, timelike,
or null according as k is positive, negative, or zero.

This result also holds under somewhat weaker assumptions (Penrose 1965).
When J is spacelike or null, it consists naturally of two pieces </+ and

«/". A point oiJ lies o n / + [prJ~~\ if the interior of its past [future] light
cone lies in M. So the points of J + [or J ~] can be characterized in terms of
structures within Jt, namely as TIPs [or TIFs] as was done for Minkowski
space in §9.1. In the timelike case (X < 0), each point of,/ arises both as a TIP
and as a TIF. Until recently,* the timelike case had seemed to have the least
interest physically. Anti-de Sitter space (cf §9.5) is an example, but it has
never been seriously considered as a model for cosmology. The standard
A<0 cosmologies are all expanding-collapsing models with singular
beginnings and ends, in which no ray reaches infinity. Normal de Sitter
space has a spacelike J± and, as mentioned in §9.5, particle horizons and
event horizons both consequently occur in this model. We have seen that
horizons can also correspond to singular rather than regular boundary
points, examples being the particle horizons in all the standard big bang
models. Several such space-times can come under the heading of (9.6.11),
but with conditions (c) and (d) suitably modified: the standard big bang is a
spacelike boundary hypersurface \Z~' with Q = co (cf §9.5).

The existence of two disconnected parts «/+ and J~ to J, when J is
spacelike or null, allows us to refine our differentiability requirements for
[weak] asymptotic simplicity. We say that Ji is [weakly] (^-asymptotically
simple if the conditions for [weak] /c-asymptotic simplicity apply a t« / + and
those for [weak] /-asymptotic simplicity apply at «/". (In gravitational
radiation problems one sometimes anticipates a difference in the differen-
tiability properties at J* and «/".) If we are concerned with the differen-
tiability only at J* we can refer to [weak] future-k-asymptotic simplicity
(and correspondingly for J~).

The case when J is null is the most interesting, since it is relevant to the
discussion of asymptotically flat space-times. Indeed, we have the following
theorem (Penrose 1965, Geroch 1971):

See Ashtekar and Magnon 1984, and references contained therein, for a discussion of
this case.
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(9.6.19) THEOREM

In any asymptotically simple space-time for which J is everywhere null, the
topology of each of J± is given by

and the rays generating J± can be taken to be the R factors.

Thus each of J± contains S2 null generators, and the topology is essentially
identical with that for Minkowski space. We remark that two points of J +

[of </"] lie on the same generator if and only if one of the corresponding
TIPs [TIFs] contains the other. The occurrence of this situation is what
distinguishes an asymptotically simple space-time in which J is null from
one in which J is spacelike.

Vacuum equations: asymptotic Einstein condition

In order to proceed further and obtain more detailed results concerning the
structure of J, we shall impose the condition that the Einstein vacuum
equations hold near J. In fact, if certain other more general sets of
equations such as the Einstein-Maxwell equations hold near J, then the
consequences are almost the same, but the derivations can be considerably
more involved (Penrose 1965). For this reason we restrict ourselves to the
Einstein vacuum equations, when deriving properties of,/. When matter
fields are present, we shall simply assume that these properties still hold
for,/.

From (6.8.24) - which is the trace-free part of (9.6.13) - we have

(&afc = ci>flfc + n - 1 v ^ A , B - a (9.6.20)
Einstein's vacuum equations, allowing for the possibility of a cosmological
constant, take the form Oflb = 0. Hence, multiplying (9.6.20) by Q and noting
that <bab must be continuous at J (assuming k ^ 2), we obtain the following
important equation, which (whether or not the vacuum equations hold) we
refer to as the asymptotic Einstein condition:

^•(A)B'n*o, i.e., vf lv^^i^vcvcQ. (9.6.21)
Here we have begun to use the notation

AyxBy (9.6.22)

to denote the 'weak equality' that the tensor or spinor fields Ay, B on Jt
are equal when restricted to J, i.e., that Ay — B = 0 o n / . It must be
borne in mind, when taking derivatives of a weak equation, that only the
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tangential derivatives can be relied upon to yield a new weak equation.
Thus,

N{$h]A';-KN{$b]B- (9.6.23)

is a valid deduction from (9.6.22), whereas VaAy » Vfl£;;; would not be. We
can henceforth drop the phrase 'near./' whenever an ordinary equality sign
is used ('strong equality'), it being assumed that all our calculations are
performed in a suitable neighbourhood JT of J in M. Clearly, it is always
valid to take the covariant derivative of a strong equality between (C1

smooth) quantities to derive a new strong equality. Note the obvious weak
equality

Q * 0 . (9.6.24)

Also we can now rewrite (9.6.17) as

NaN
a^\L (9.6.25)

The asymptotic Einstein condition (9.6.21) can be written in the form

V ^ N B ) B , * 0 , i.e., VaNh*\gJcN\ (9.6.26)

which tells us that the vectors Na are shear-free (and also rotation-free, but
this follows anyway from (9.6.16)). In the case of a null J9 we can put

Nb« AiBiB\ (9.6.27)

where A is a non-zero scalar which is positive o n / + and negative o n / " ,
and then get, by transvecting the first of (9.6.26) with iAf,

a'« 0, (9.6.28)

using the standard spin-coefficient notation of §4.5 (with 'hats'). (We can
also get K! « 0, p' % p\ but these merely restate the fact that J± is a null
hypersurface, cf. (7.1.58) et seq. Equation (9.6.28) is the shear-free condition
for a null hypersurface. By the discussion of §7.1 (cf Fig. 7-2) it tells us that

(9.6.29) PROPOSITION

If Rab = ® near <?* tnen any two cross-sections of' J>± are mapped to one
another conformally by the generators of J±.

By (9.6.19), these cross-sections are all topologically S2, so the two S2 factor
spaces, whose points represent the various generators of </+ and «/", are
naturally conformal spheres. We can invoke a classical theorem of Riemann
to rescale their two metrics to that of a unit Euclidean 2-sphere, and assume,
if we wish, that our original choice of Q has been made to that effect.
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Choosing spherical polar coordinates 6, (j) for the Euclidean 2-sphere, or the
equivalent complex stereographic coordinate (cf (1.2.10))

C = ei0coti0, (9.6.30)

the induced metric on J+ then becomes

d/2 = - ds2 = d62 + sin2 0d</>2 + Odu2

+ ° d " 2

where u is a retarded time coordinate, the corresponding form with an
advanced time coordinate v in place of u holding o n / " . Since the cross-
sectional metric (9.6.31) is now constant along the generators, we now have
p' = 0 in addition to &' = 0 (see Fig. 7-2).

Vanishing of Weyl curvature of J

An important further property of J is the following (for which we need

(9.6.32) THEOREM

= Agab near J, then Cabcd« 0.

Proof: Recall, first, the vacuum Bianchi identity in spinor form:
VAA'VABCD = 0(cf. (4.10.9)). By (6.8.4) and (6.8.8) we have ^AA\O.~l^ABCD)
= 0 in .//, i.e. {cf (7.3.42)),

Ofi^ABCD = VABCD^'G (9-6.33)

which, by continuity, holds also on «/. Hence

*W^'*0. (9.6.34)

If X i=- 0, the 'matrix' NAA> is non-singular (cf (9.6.25)) and can be inverted (in
fact, NAA

 '6A~1NAE = F.E
A\ whence VABCD^0 and the result follows.

The case I = 0 is more difficult, and partly depends upon a global result
requiring the topology (9.6.19). For (9.6.34), with (9.6.27), merely yields

*ABCDIA*0, (9.6.35)

i.e.,

^ABCD^^'AWD (9-6.36)

for some T. So we differentiate (9.6.33) once more to obtain, using (9.6.24),
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Lowering A\ symmetrizing over A'E\ and using the complex conjugate of
(9.6.26)(1), we obtain, after applying the ^-identity (cf (2.5.20)),

so by (9.6.27) and Proposition (3.5.15)

rtAE*EBCD*0. (9.6.37)

On any spherical cross-section of J (taking 6A to have its flagpole
orthogonal to it) we thus have an equation of the form 6fX¥ = 0, where x¥,
being defined by (9.6.36), has spin-weight 2. Thus, by Proposition (4.15.59),
*P = 0 on the sphere, whence the expression (9.6.36) vanishes on J, and the
proof is complete.

We refer to the condition that ^ABCD « 0, together with (9.6.26), as the
strong asymptotic Einstein condition - irrespective of whether or not the
vacuum equations hold near ,/.

The vanishing of the Weyl curvature on J has a significant consequence,
which follows from the following general result:

(9.6.38) LEMMA

Let M be (weakly) k-asymptotically simple and let X* be a neighbourhood of
J in jft. Suppose T ^ e S ^ t X ] (with r^k) satisfies T* % 0. Then there exists
a U'eS'lJT] such that QU* = T*.

Here we make the definition that 6 * denotes the module of spinor fields of
index type s/ which are C-smooth - and we recall that '[XJ means fields
restricted to the set X. This lemma tells us that it is legitimate to define
UJ* = Cl~1TJ' whenever a smooth T* is given for which T* « 0. The proof
of the lemma is immediate from the well-known result of analysis that if
/(x°, x1 , . . . , xn) is a C function (r > 0), defined in some open subset % of
IT + 1, which vanishes at x° = 0, then ( x 0 ) " 1 / ^ 0 , . . . ^ " ) defines a C " 1

function in ̂ , where r = 1,2,..., oo, or co (with oo — 1 = oo, at — 1 = coi). To
apply this result to a spinor field T*9 we merely need to choose coordinates
in X for which x° = Q, and a Cr basis, and then apply it to the components
individually. This can be done provided r ̂  k (see (9.6.11)).

Now recall that in §6.8 we contrasted the conformal behaviour of the
Weyl spinor *¥ABCD

 w*tri t r iat of a massless spin-2 field (J)ABCD (cf (6.8.4),
(6.8.6)). Since the vacuum Bianchi identities are simply the massless spin-2
field equations, it is legitimate to define a specific massless spin-2 field

(9.6.39)
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But when the metric is rescaled we would like to set

$ABCD = n-^ABCD = O " ^ ABCD = &~ ^ABCD* (9-6.40)

since the massless field equations on I//ABCD
 a r e then preserved. From

(9.6.32) and (9.6.38) we derive the important corollary:

(9.6.41) THEOREM

$ABCD extends to afield continuous (Ck~3) at«/.

Note that, by (9.6.40), $ABCD
 a t ^ c a n t>e obtained from the derivative of the

Weyl curvature at J\

-VAA>VBCDE*NAA,$BCDE. (9.6.42)

We can think of I//ABCD
 a s the gravitational spin-2 field. The various

components of \J/ABCD
 a t ^ have a key significance for gravitational

radiation theory. They can be interpreted relative to the physical metric gab

of Jt in terms of the Sachs peeling property (Sachs 1961, 1962a, Penrose
1963, 1965, Newman and Penrose 1962). It is of interest to discuss this
property somewhat more generally than just for the gravitational field, and
this we shall proceed to do next.

9.7 Peeling properties

Suppose we have any field 0A...HK...Q' which is taken to be a conformal

density of weight — w,

§_ = Q-Wd_9 (9.7.1)

and for which 6 ...is continuous Ch (0 ̂  h ^ k - 1 ̂  2) at some PeJ. We
shall assume (weak) /c-asymptotic simplicity* and the asymptotic Einstein
condition (9.6.21). Let ̂  be a complete ray in Ji, having PeJ as one end-
point (and not touching J at P - an unlikely eventuality which could, in
any case, occur only in the unphysical situation of J being timelike and
'concave'). Choose the spin-frame (oA, iA) to be parallelly propagated along
7 with its flagpole

la = oAoA> (9.7.2)

tangent to 7 (as in Chapter 7). Let r be an associated affine parameter on 7:

Dr = /flVflr=l. (9.7.3)

* We actually only need (weak) future- [or past-] ^-asymptotic simplicity, if P lies in J +

\prJ'\
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Then if 9 is any component of 6A Q>, having a total of q zeros (0 or 0')
among its indices, we shall find that

w + q + h

6= £ Or-' + oir-"-"-11), (9.7.4)
i = w + q l

where each 0 is constant along •y .* We note especially that the leading term

in this expansion is a multiple of l/rw+q.
We shall establish this result presently, but first it is worth while to point

out its special interpretation in the case of massless fields of general spin.
Suppose that <t>A...L has n symmetric indices, weight w = — 1 (which — cf
(5.7Al) et seq. - makes the massless field equations conformally invariant),
and that $A...L is continuous C° at P. Then the various components,
0o:=0oo...o> 0i:=^io...o>---»0n:=0ii...i behave as follows:

0» = ^ o r - 1 + o ( r - 1 ) , (9.7.5)

where the 0? are constant on 7. If we assume that <fiA..,L is Cn at P, then, by
(9.7.4), we can obtain

^ . . . L = Z ^ . . . L ' - I " + <*r-"), (9.7.6)

where each ^A...L *S parallelly propagated along 7 and where

&4. . . D0...0 = <t>A...DE>E2...ElO
E'OE>. . .OEi = 0 . (9.7.7)

I

Referring back to Proposition (3.5.26), we find that the 'order r p part
$A...L °f ^ e field 0^ L has at least (and, in general, exactly) n — i+l
i

principal null directions pointing along the direction of 7, i.e., along la (cf.
Sachs 1961, 1962a, Newman and Penrose 1962, Penrose 1963, 1965). In
particular, the r'1 part (or 'radiation field') is null. Thus we have the
rough and intuitive picture (cf. Fig. 9-19) that as we move inwards along the
null ray 7, and as the field becomes more and more influenced by the higher
order terms, the PNDs 'peel off' one by one away from the radial direction.
This is actually a slightly misleading picture, the exact form of the 'peeling'
property being given by (9.7.5)-(9.7.7). The various leading terms 0? in
(9.7.5) in fact provide the various components of $A L at P. But the precise
nature of this relation can be best described after we have given the proof of
(9.7.4).

* The order symbol o{r ~") stands for a quantity that, when multiplied by r", tends to zero
for large \r\, i.e. at P. Similarly, 0{r~") stands for a quantity that when multiplied by rn

remains bounded for large \r\.
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r~2 term

r~x term

r~3 term

r r* term

r~5 term

Fig. 9-19. The Sachs peeling property, illustrating the multiplicity of the radial
PND of the Weyl curvature for the various terms in the expansion in negative
powers of r along an outgoing ray

Parallelly propagated spin-frames

That proof depends on comparing parallel propagation of spin-frames
along -v with respect to the two metrics gab9 gab. We note first that if we take

6A = oA, dA = n-'oA, i.e. Ta = la, Ta = Q-2la (9.7.8)

(cf (9.7.2)), then the propagation equation DoA = 0 is preserved: D6A =
Q-2lb(VboA-rAB,op) = n~2DoA, by (5.6.15). Thus, completing 6A to a
spin-frame (6AJA\ we can arrange

D6A = 0, DiA = 0, (9.7.9)

where, to preserve the normalization with (9.7.8), we set

tA = iA-voA (9.7.10)

for some v. We have, by (5.6.15),

0 = DiA = D(iA + voA) = l\Vbt
A - eB

AYCB,f) + D(voA)

= 0- oAoB'fQ-lVCB,Q + oADv + 0,

whence
Dv = Q~2rj, (9.7.11)

where
t] = f6B'VCB&. (9.7.12)

Comparison between affine parameters

Next we compare affine parameters on •y. Take r to be an affine parameter
on 7, with origin at P and associated with Ta (cf (9.7.3)):
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/>«0, Df=L (9.7.13)

(The symbol % now means equality at P; we ignore what happens at the
other end of 7.) We have Q%0 and dQ/dr^O, by (9.6.1 \){d) and the
assumed non-contact between 7 and ./ , hence

f—.
for some non-zero /I (constant along 7). Note that

_ fa jQ _ / a y Q _ r ) 0 ^ _ A (Q H 1 ^

so this A coincides with the end-value of the A in (9.6.27), in the null case.
From the Ck smoothness of Q it follows that

Q = - At - A2r
2 - A3r

3 ----- Akr
k + o(r*), (9.7.16)

A,A2,... being constant. But from the asymptotic Einstein condition
(9.6.21) we get, since fa is null and 3la = 0,

= D2Q, (9.7.17)

so in the expansion (9.7.16),

A2 = 0. (9.7.18)
Now

dr

whence

r =

- . « „ . Q2, (9.7.19)
dr

= {

= - ^ - V " 1 + Co + CV> + •• • + Cfc_2r*"2 + o(r*"2), (9.7.20)

by (9.7.16) and (9.7.18), all B and C coefficients being constant on 7, and Co

being the constant of integration. Inverting (9.7.20) for large r yields

r = - A~2r-' + D2r~2 + D3r~3 + - - + Dkr~k + o(r-% (9.7.21)

which, when substituted into (9.7.16), shows that Q is of the form

Q = A - h ~ l + E 2 r ~ 2 + E 3 r ~ 3 + ••• + E k r ~ k + o ( r % ( 9 . 7 . 2 2 )

the D and E coefficients again being all constant on 7.
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We observe that (9.7.22) justifies the statement made in §9.1 to the effect
that the conformal factor behaves like the reciprocal of an affine parameter
along any null geodesic. Here we have rQ->A~\ but (9.7.22) gives a
considerably more detailed behaviour. (We can, of course, choose a scaling
for r so that A = 1 if desired.) It is a remarkable fact that the asymptotic
Einstein condition (9.6.21), which follows from Einstein's vacuum field
equations, is just what is needed to ensure (9.7.18), the necessary condition
for the elimination of logarithmic terms in (9.7.20), (9.7.21), and (9.7.22).
Equally remarkably, the same equation (9.6.21) will eliminate the second
possible source of logarithmic terms, this time in the comparison between
the two spin-frames, to which we now proceed.

Comparison between the spin-frames

From (9.7.10) and (9.7.8) we have

iA = tA + vQ6A. (9.7.23)

We wish to choose v so that vQ -• 0 at P, since then the two spin-frames
will agree at P in the sense that 6A « oA9 iA % iA. This entails that rj in
(9.7.11) must vanish at P, otherwise integration of that equation would
yield a v which behaves like a non-zero multiple of Q~1 at P. By (9.7.12), this
means that ftBB, must be a linear combination of tBtB. = fib and dB6B. = Tb,
i.e.,

ftb*AAb + &A-1tb, (9.7.24)

the coefficient A being taken to agree with (9.7.15) (and (9.6.27)), the other
coefficient being fixed by (9.6.25). When J is null, this means that we choose
na to point along the future-null direction in J. When J is non-null (and not
touching 7, in the timelike case), we choose the future-null vector na to lie in
the timelike 2-plane spanned by P and Na

9 and of course distinct from P (see
Fig. 9-20).

With this choice, rj« 0, and it seems at first sight that integration of
(9.7.11) would yield a behaviour for v at P like logQ. Though this would
give vQ-*0 as required for (9.7.23), it would spoil the power series form
of the higher terms in our expansions (9.7.4) of components. But it turns
out that n actually vanishes to second order at P, so the logarithm is
eliminated. For consider the difference between the two sides of (9.7.24).
By (9.6.38), there is a Ck~2 covector Qb, defined along 7, such that

QQb = fib- Anb - \XA ' % (9.7.25)

If we operate on this with Vc and transvect the result with 6C6B 6C\ we get,
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M -

spacelike J

Fig. 9-20. When J+ is null, the direction of ha at a point of J+ does not depend on
the choice of 7, but this is not true when J* is spacelike (or timelike) - the span
of the null vectors fia and Ta being such that it contains the normal #a to J+. This has
the implication that the radiation field concept (r~l term) is less invariant when J +

is spacelike (or timelike) than it is when J+ is null.

using once more the asymptotic Einstein condition (9.6.21)(1) and (9.7.15),

-AQBB.6B'a0, (9.7.26)

whence, by (9.6.38),

_ Q B,fidB = Qfi (9.7.27)

for some Ck~3 scalar \i on 7. Substituting (9.7.27) and (9.7.25) into (9.7.12),
we then obtain, as asserted above,

n = Q V (9.7.28)
Thus, by (9.7.11),

(9.7.29)

which is regular (Ck ~2) at P. From (9.7.23) and (9.7.22) we therefore have an
expansion of the form

iA = fA + {r- iVl + • • • + r~k + !vfc_! + 0(r~*+ ^ J ^ , (9.7.30)

the v1,...,vfc_1 being constant along 7, while from (9.7.8) we have

oA = CldA (9.7.31)

Proof of the peeling property

We are now in a position to prove (9.7.4). Since the quantity ffA...HK...Q' *s

assumed to be Ch at P, it is of the form

§ = 0 + tQ + ... + r^ . . . + o(P). (9.7.32)

Consider a typical component

» = »o. . .oi . . . io' . . .o' i ' . . . i ' (9.7.33)
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respect to (oA, iA), having a total number q of zero indices (0
and 0'), and the corresponding component

ff=^.M...m..m:..v (9-7.34)

°f @A...Q'
 with respect to (oAJA). The expansion (9.7.32) applies to each

component, so

6 = S + fff + • • • + f*6 + o(/*), (9.7.35)
0 1 h

with each ^constant along 7. Now with 0A Q, of conformal weight — w (cf

(9.7.1)) we have

0 = nwffo...oi...io'...o'i'...r (9.7.36)

the components being obtained by transvection with oA, iA and their
complex conjugates. Substituting (9.7.30), (9.7.31), (9.7.22), and (9.7.35)
successively into (9.7.36), we obtain (9.7.4) as required. This completes our
somewhat lengthy argument.

Radiation fields

Note that the coefficient 6 of the leading term in (9.7.4) can be explicitly
w + q

identified at this stage:

9 =A~w~q 6 *A-w-qff6...v- (9.7.37)
w+q w+q

We may conveniently choose A = 1 (rescaling r*-+Ar, if necessary),
whereupon the leading terms can be directly identified with the various
components of the conformally rescaled field on J. In the case of gravity,
these components are iAOooo> *Aooo 1»• • •»*Ai 111 anc* (w^h 4 = 1) they can be
identified with the respective leading terms ¥g, ¥ ? , . . . , ¥2 in the Weyl
spinor expansions (cf. (9.7.5))

1) (9.7.38)

(cf. the equations at the end of §9.8, below). In particular, therefore, ¥4,
which may be thought of as describing the gravitational radiation field, can
be identified with that component of \J)ABCD on J which is totally contracted
with the spinor iA. The situation is similar for electromagnetic radiation in
the Einstein-Maxwell theory. Here again the asymptotic Einstein con-
dition (9.6.21) is essentially a consequence of the field equations and
asymptotic simplicity, and the rescaled field <pAB is finite on J (Penrose
1965). The peeling property thus holds also for the electromagnetic field, the
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radiation field being identified with the component of <pAB that is totally
contracted with iA.

It should be pointed out, however, that when J is non-null, the radiation
field concept is not very well defined. A glance at Fig. 9-20 will convince the
reader that the direction of na, and therefore of the spinor tA, is strongly
dependent, in that case, upon the particular null geodesic 7 that is chosen
through the point P. Thus, on varying -y through P, the different
components *¥? get mingled with each other. Indeed, if we replace 7 by a
null geodesic through P whose tangent vector at P is na, we find that the
order of the terms *Fg, ¥ ? , . . . , ¥2 i s completely reversed! (The same
holds for fields of other spins.) When J is null, on the other hand, the
situation is much more satisfactory. It is true that the components *P? still
get somewhat mingled with one another as 7 is varied, but only in a
comparatively mild way. Specifically, the 'radiation field' term *F° remains
unaltered, ¥3 is modified only by the addition of a multiple of ¥4, ^2 by the
addition of multiples of ¥3 and ¥4, etc. This is because the spin-frame
(dA, iA) at P is replaced by (6A + coiA, iA) for some co. A corresponding
property holds for the electromagnetic field.

When./ is null, there is a useful and invariant description of radiation fields
for each spin. The outgoing radiation may be thought of as described by
$11... 1 on . / + and the incoming radiation by $n..A on «/" (taking the
flagpole of iA tangential to J in both cases). Recall that these components,
though used on a finite null hypersurface rather than on J±, provided the
null datum (5.11.11) for the fields in question. This indicates that the
radiation field (either incoming or outgoing, but not both) should provide
appropriate initial (or final) data for the field. However, in some sense it is
the p' (or naVa) derivative of the null datum on J that could be expected
more directly to influence the field in the interior space-time, since that is
the quantity which enters into the generalized Kirchhoff-D'Adhemar
integral formula (5.12.6) for flat-space massless fields. Of course, when
conformal curvature or nonlinearities are present, this is not nearly so clear.
Nevertheless, for a scalar field - in accordance with the Sommerfeld
radiation condition (cf. Sommerfeld 1958), which in effect states that
p'<p = 0onJ~ for any retarded scalar field - this derivative indeed seems
the more appropriate measure of the strength of the radiation field. The
situation for higher spin is less clear-cut, because of the differing relations
between the (joUiiil term and energy flow (cf. (9.10.13) et seq.9 below).

We note that the peeling property arises in the present analysis because,
in effect, an 'infinite boost' takes place in the limit, as P is approached along
-y, in the comparison between a parallelly propagated frame (with respect to
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the physical metric) and a frame for which the conformally rescaled field is
finite at J. This serves to 'spread out' the different components of the field
(at«/) so that they fall off with different powers of r. The actual finiteness of
the rescaled field at J may be regarded as a 'probable' feature of
conformally invariant fields since, in effect, such a field can propagate
across J without 'noticing' its presence.

Finally it may be remarked that the work of Friedrich (1981a, b) has
shown that (weak) future-asymptotic simplicity, in the case of vacuum
space-times (with X = 0) allows a full freedom for outgoing gravitational
radiation. The status of combined regularity for J+ and J~ still remains
unclear, however.

9.8 The BMS group and the structure o f . / + .

Minkowski space-time M, and the cosmological models studied in §9.5,
have interesting and useful groups of isometries. But for a general space-
time M, the isometry group is simply the identity and so provides no
significant information. Yet symmetry groups have important roles to play
in physics; in particular, the Poincare group, describing the isometries of M,
plays a role in the standard definitions of energy-momentum and angular
momentum. For this reason alone it would seem to be important to look for
a generalization of the concept of isometry group that can apply in a useful
way to suitable irregularly curved space-times.

The group (or pseudo-group) referred to as the 'general coordinate
group' (or, equivalently, the 'diffeomorphism group') has, for historical
reasons, frequently been invoked as a possible substitute for the Poincare
group for a general space-time Jt. However, it is not really useful in this
context, being much too 'large' and preserving only the differentiable
structure of Jt rather than any of its more physically important properties.
More significant is the concept of asymptotic symmetry group. This applies
to any space-time Jt which suitably approaches, at infinity, either M or a
suitable Friedmann-Robertson-Walker cosmological model. The idea is
that by adjoining to Jt an appropriate conformal boundary (either / + o r
f or the entire «/) we may obtain such asymptotic symmetries as
conformal motions of the boundary, the boundary having a much better
chance of having a meaningful symmetry group than Jt itself. (Clearly any
isometry of Jt will show up as a conformal motion of the boundary, but
conformal motions of the boundary need not extend into Jt in any
meaningful way.)
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Bondi parameters

We consider, here, only the case of a suitably asymptotically flat J(. We
take Jl to befuture-3-asymptotically simple (cf §9.6), with J+ null, with the
strong asymptotic Einstein condition ((9.6.21) together with *¥ABcD*fy
holding on it, and satisfying one further condition (Geroch and Horowitz
1978): the generators of J+ are to be infinitely long. (This additional
condition was already alluded to earlier in this chapter, cf. after (9.6.11).)
Explicitly, we have

(9.8.1) DEFINITION

A generator -y ofJ + is called infinitely long if a Bondi parameter on 7 attains
the full range (— 00, 00) on 7,

where

(9.8.2) DEFINITION

A future-increasing real parameter uona generator 7 ofJ* is called a. Bondi
parameter if taking na tangential to the generators of J*\ we have

(p'-2p')p'u = 0,

in the compacted spin-coefficient notation of §§4.5, 4.12.
The type of u is {0,0}, so p'u has type { - 1, - 1}, whence, by (4.12.15), the

equation in (9.8.2) stands for

(Df -e'-S- 2p')Du = 0. (9.8.3)

If we also take u to have conformal weight 0, then, making use of the
notation (5.6.33), we can rewrite the equation in (9.8.2) as

}//w = 0 (9.8.4)

Equation (9.8.4) is manifestly conformally invariant (cf (5.6.34)), so it
follows that the concept of a Bondi parameter is independent of the
conformal factor Q (and, of course, of the choice of scaling for na). If we
choose Q so that p' = 0 (cf after (9.6.31)), and also scale na to be parallelly
propagated along 7, then we obtain (9.8.3) in the form

D2w = 0, (9.8.5)

from which it is obvious that the different Bondi parameters on 7 are related

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


368 9. Conformal infinity

to one another by

u' = Gu + H, (9.8.6)

where G, if are real constants with G > 0.
Note that in the discussion of (9.8.2) we have dropped the 'hats' on

quantities defined at J +. This, indeed, will be our practice in the sequel,
since most of the calculations will be concerned with quantities defined at
J+. Thus, in particular (and in contrast to the two preceding sections), 'gab'
will here denote an 'unphysical' metric, regular at J + which is conformal to
the physical one. When we have occasion to refer to 'physical' space-time
quantities, a tilde will be used for those. Accordingly, our conformal
rescaling is now

gab = n29ab. (9.8.7)

Our discussion in this section and the next is phrased, throughout, in
terms of J+. It will be taken as obvious that our conclusions will also apply
to J~ provided that the appropriate asymptotic conditions apply, instead,
to J ". In physical problems one is, as a rule, more interested in the results at
J* than at J~. There are two reasons for this. In the first place, physical
considerations lead one to be more concerned with retarded radiation,
which shows up in the structure of J+, than with advanced radiation,
which would show up in the structure of </" if it were present. In the second
place, it seems to be much less clear, in 'physically reasonable' situations,
that the required asymptotic conditions should actually hold at f~, than
that they should hold at J+ (cf., for example, Walker and Will 1979, Porrill
and Stewart 1981, Friedrich 1981a, b).

The Newman-Unti group

We have seen in §9.6 (cf. (9.6.31)) that with a suitable choice of Q, (minus) the
metric of J+ can be put into the form

d/2 = d02 + sin2 0d<£2 + Odw2

= 4dCdr(l + CO"2 + 0-dw2 (9.8.8)

(with C = ei0cot \Q as in (1.2.10)). It is clear (cf (1.2.17)) that this (degenerate)
metric for J* is conformally preserved under the active point
transformations

where a, ft, c, d are complex constants, with ad — bc=\, and where F is
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9.8 The BMS group and the structure of J + 369

(appropriately) smooth on the whole of J+ ^ U x S2 (so that £ = oo is
adequately dealt with); also F must be monotonic increasing in u for each £,
mapping the entire range for u for each ^-generator to itself, and with non-
vanishing w-derivative (so that the inverse transformation is also smooth).
The transformations (9.8.9)(1) are the non-reflective conformal motions of
the 52-space of generators of J+ (the conformal structure being defined
equivalently by any one of its cross-sections), while (9.8.9)(2), when (9.8.9)(1)
is the identity (a = d = 1, b = c = 0), give the general non-reflective smooth
motions of the generators to themselves. The group of transformations
(9.8.9) is referred to as the Newman-Unti (NU) group -a lso as the
restricted NU group (cf. Newman and Unti 1962), but we prefer to avoid
consideration of the reflective transformations here, and take the term 'NU
group' simply to refer to the identity-connected non-reflective transform-
ations (9.8.9). We may thus regard the NU group as the group of non-
reflective motions of </+ preserving its intrinsic (degenerate) conformal
metric.

The J+ of M undergoes transformations of the form (9.8.9) whenever M
is mapped to itself by a restricted Poincare motion. This is so because the
conformal structure of J+ is determined by the conformal structure of Ml,
and that is certainly preserved by Poincare motions. Thus we may regard
the restricted Poincare group as a subgroup of the NU group. But the latter
is clearly very much 'larger' than the former, being a function-space group
(and therefore infinite-dimensional) rather than merely ten-dimensional.

The Bondi-Metzner-Sachs group

We can cut down the NU group in a natural way to a considerably smaller
subgroup, by observing from (9.8.1), (9.8.2) that the Bondi parameters, as
well as the intrinsic conformal metric (9.8.8), are determined by the
conformal structure of Ji. By (9.8.6), the preservation of Bondi parameters
requires that the F of (9.8.9)(2) specializes to the form

where we now demand that u be a Bondi parameter on each generator of
c/+ and use the assumption that these generators are infinitely long. This
cuts down the freedom of F from a function of three real variables to two
functions of two real variables.

It is possible to improve upon this by, in effect, eliminating the freedom in
the function G in (9.8.10). For this we need to impose a further structure on
c/+ referred to as the strong conformal geometry oiJ+ (Penrose 1963,1974).
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(In fact, this terminology is slightly misleading because the structure in
question involves certain aspects of the metric of Jl and not just its
conformal geometry; but there is also a useful suggestiveness in the
terminology, which will emerge shortly.) The group of motions of J>+ to
itself preserving this strong conformal geometry is referred to as the Bondi-
Metzner-Sachs (BMS) group (or the restricted BMS group - but again we
prefer to rule out all reflective transformations as part of our definition cf
Sachs 19626). As we shall see presently, preservation of strong conformal
geometry leads to G being restricted to the form

O t t . a = ._, . 1 + C L . Jl2, (9-8.11)

with a9 b, c, d as in (9.8.9)(1).
There are several different ways of describing this additional structure for

f*'. Perhaps the most direct is to note that the particular null tangent (i.e.
normal) vector Na to </+, which is defined in terms of a given conformal
factor Q (satisfying the conditions of (9.6.11)) by

Na=-Van near J?+ (9.8.12)

{cf (9.6.16)), will transform under a further conformal rescaling

9at^®29at (9.8.13)
according to

Na^@Na, i.e., Na^e~1NaonJ + . (9.8.14)

Here 0 is taken to be smooth on M, and nowhere vanishing on J+\ it
represents the freedom of choice in Q. Since gab is related to the physical
metric gab by #fl& = O2#aft, the rescaling (9.8.13) accompanies any
replacement

QH-+0Q (9.8.15)

and the behaviour (9.8.14) follows at once from (9.8.12) (since the term
involving a derivative of 0 vanishes at «/+). The line-element d/ of </+

(positive semi-definite and degenerate, cf (9.8.8)) rescales according to

d/n-0d/, (9.8.16)

whence the product

Nadl (9.8.17)

remains invariant:

Nadl^Nadl (9.8.18)

It is the invariant structure provided by (9.8.17) that cui be taken to define
the strong conformal geometry of«/ + .
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The significance of (9.8.18) is that although no natural choice of
parameter scale is defined on the generators of J+ and no natural metric is
defined on its cross-sections, the ratio of the two is determined by the strong
conformal geometry. Associated with any allowable choice of Q we have,
via the Na defined by (9.8.12), a definite scaling for parameters u on the
generators of </+, which is fixed by

NaVau = L (9.8.19)

With this choice of scale, we have

du^Sdu (9.8.20)

under (9.8.15) (to compensate for (9.8.14)). Thus, by comparison with
(9.8.16), we see that the ratio

dw.dl (9.8.21)

is independent of the choice of Q.
We can use this invariance to define a concept of null angle between two

tangent directions at a point P of </+, when their span contains the null
tangent direction at P (neither of these given two directions being itself null).
The angle in the ordinary sense, as defined by the (conformal) metric (9.8.8),
is zero in these cases, so without some further structure assigned to */+, no
meaning can be given to the notion of a null angle at one point of </+ being
greater or smaller than another null angle at some other point of J>+. But
having the strong conformal geometry and with it the invariant ratio
(9.8.21), we can numerically define the null angle v (e U) between two tangent
directions at a point of J*+ by

v = | , (9.8.22)

where the (infinitesimal) increments Su, SI are as indicated in Fig. 9-21.
Conversely, the induced conformal metric (9.8.8) of J+ supplemented by
the concept of null angle, provides the strong conformal geometry of«/+.

In fact, v has a clear-cut meaning in terms of the geometry of M, which we
shall describe shortly. Our more immediate purpose is to relate the concept
of Bondi parameter to the concepts we have just been discussing. First,
recall the definition (9.6.27) of the quantity ^ o n / + :

Anb:*Nb= -VbQ (9.8.23)

(cf. (9.6.22)). We are, of course, at liberty to scale the null-tetrad vector nb so
that A = 1. However, here we shall not do this since we wish to take
advantage of the compacted spin-coefficient formalism, and the making of
such a choice (or making it too early) would cause difficulties (ambiguities)
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0du . _ —

Fig. 9-21. A null angle v on , /+ , given by v = du/Sl, is defined between a pair of
directions o n / + whose span contains the null normal direction to J + . Under
change of conformal factor for </+, null angles are invariant.

in the definitions of the derivative operators. Since nb has type { — 1, — 1} it
follows that A is a real {1, l}-scalar on J*. (We have nb = iBiB, and we
choose oB arbitrarily to complete the spin-frame.)

Next, recall the asymptotic Einstein condition (9.6.26)

V*VVOc'*0. (9.8.24)

For the dyad components of (9.8.24) that refer only to derivatives tangential
to J*', we can substitute Aicic for Ncc (cf. (9.6.23)). These components
are then obtained by transvecting (9.8.24) successively with iBf and with iB>.
The first gives us a result,

tr' a 0 « K', (9.8.25)

which we have obtained previously (cf. (9.6.28)), while the second gives
(using, say, (4.12.27) or (4.12.28))

(P' + P')AK0K6A. (9.8.26)

Note that, as a consequence, p' is real:

p ' «p ' , (9.8.27)

but this we also know already, since J + is a null hypersurface. Taking Na to
have conformal weight 1, in accordance with (9.8.14), we can write (9.8.26) in
the conformally invariant form

p'cAx0x6cA (9.8.28)

(cf (5.6.33); the choices of w0 and wx are immaterial).
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We also note, in passing, that if we specialize our choice of Q so that
the derivative away from </+ of the equation Aicic- = Ncc also holds (i.e., so
that each Q = constant hypersurface 'near' J+ is also null), then we obtain,
from the remaining components of (9.8.24),

p/«T/«0«M. (9.8.29)

It is always possible to arrange this, but it would be of no particular
advantage to us here. We do not generally adopt the full condition (9.8.29),
though we shall see shortly that p'« 0 will be helpful for us.

Observe that the condition (9.8.19), which associates a particular choice
of scaling for the parameter u on a generator of J* with a particular
conformal scale o n / + , can be written

p'u*A~l (9.8.30)

(or equivalently D'u % A'1 since u has type {0,0}).
Once we have made a parameter specialization as in (9.8.30), we must be

careful when using p'c and 6r, etc., which cannot be applied to such a u that
has no well-defined conformal weight. However, the standard compacted
formalism is still unambiguous. We note that (pf — p')A " l « 0, by (9.8.26),
so applying p' — p' to (9.8.30) we obtain (pf — p')p'u % 0. Comparison of
this with the Definition (9.8.2) yields:

(9.8.31) PROPOSITION

The scaling (9.8.19) (i.e. (9.8.30)) is compatible with u being a Bondi parameter
on each generator of J + iff p' = 0on</+, i.e. iff the generators map the cross-
sections of J* to one another isometrically.

(The fact that o' % p'« 0 is the condition for these cross-sections to be
mapped isometrically has been noted earlier, cf after (9.6.31), and §7.1,
Fig. 7-2.)

A smooth real function u on , / + , which is a Bondi parameter on each
generator, is called a Bondi [retarded) time coordinate on J* if it satisfies
not only the condition (9.8.30) (i.e. (9.8.19)), so that the generators of,/ +

map its cross-sections to one another isometrically, but so that the metric of
these cross-sections is actually that of a unit 2-sphere. (The choice of u
clearly fixes the metric on </+ by the in variance of the null angle ratio du.dl
of (9.8.21). The canonical selection of the value 'unity' for this null angle*
gives a canonical proportionality between w-scalings on the generators and
the cross-section metric.) As is implicit in the discussion of §1.2 (cf. also

* As we shall investigate presently, null angles actually have the dimension of'length' or
ktime\ so this canonical selection involves a choice of units.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


374 9. Conformal infinity

§4.15), there is a three-real-parameter freedom in the choice of such
conformal scalings, corresponding to different selections of 'asymptotic
time-axis' (see Fig. 1-11, Volume 1, p. 38, for a helpful illustration of this).
The relation between the corresponding possible C-coordinates is given by
(9.8.9)(1), yielding the restricted Lorentz transformations on the (anti-)
celestial sphere. The conformal factor between two such scalings is given by
the ratio of the T-coordinate of the null vector constructed from AA = ((, 1)
to that constructed from its transform (a( + ft, c( + d) under the spin-matrix
of the transformation (9.8.9)(1). This is

U U a C + b\2 + H + d\2) (9.8.32)

We conclude that, to preserve the structure (9.8.21) as is required of a BMS
transformation, the function G in (9.8.10) must indeed have the form (9.8.11)
as we had previously asserted. With this restriction on the function F of
(9.8.10), the general transformations of the BMS group are then given by
(9.8.9).

We note the specializations that put the metric of J + in the form (9.8.8):

p'xO, * n +A«i (9.8.33)

The second relation follows from Proposition (4.14.21), from ^ 2 « 0 by the
strong asymptotic Einstein condition, and (9.8.25), the Gaussian curvature
of a unit sphere being unity. It should be remarked, however, that (9.8.33) is
simply a convenience: the BMS group, as defined here, is independent of
such specialization.

Relation between strong conformal geometry and \ap\pa

We shall explore the significance of this group presently. But before doing
so, it will be helpful to examine the strong conformal geometry of J+ from
various other points of view. We first note that by squaring (9.8.18) to
NaNbdl2 we may obtain this geometric structure in tensorial form. Here d/2

represents the (positive definite) intrinsic metric tensor y ^0 for J+ - where
capital Greek letters are now being used for the abstract indices intrinsic to
J +. In (9.8.18) we used a 4-space-index on the vector Na, which is more-or-
less allowable for a contravariant index. But for covariant indices it is more
important to maintain the notational distinction between 3-space and 4-
space indices since the cotangent spaces of J+ are factor spaces of those of
M, whereas the tangent spaces are swfrspaces. (The difficulty arises because
J>* is null, so orthogonal projectors, such as the Sa

b of (4.14.6) cannot be
naturally defined.) Writing Na, also, with such intrinsic abstract indices, we
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9.8 The BMS group and the structure of J* 375

have, for the tensor intrinsic to J+ that represents the square of (9.8.17), the
expression

NrN*yr*. (9.8.34)

In terms of 4-space quantities, we may interpret (9.8.34) as the abstract
tensor

- NcNdgef modulo multiples of Nf9 Ne, i.e., Xc
e
dNf, Yc/Ne. (9.8.35)

The fact that Na is orthogonal to all directions tangent to / + finds
expression in the equation

JV*VM=O (9.8.36)

(which, in terms of (9.8.35), states the manifest result that Nagab vanishes
modulo multiples of Nb). Clearly we also have

)Vtf=)W (9.8.37)

The intrinsic tensor (9.8.34) - subject to (9.8.36), (9.8.37) - represents the
strong conformal geometry of J +.

Taking the (degenerate) conformal metric of J* as given, we may express
the strong-conformal-geometry structure in certain other ways. For
example, if £f is the 2-form providing the measure of surface-area (as
induced by gab) for 2-surfaces o n / + , then

NrNA&> (9.8.38)

also provides the required structure, or equivalently

NrNA(j^ (9.8.39)

where aT<p= - oOH, with Sf = <7wdx'F A dx* on y + ; and N>F(T^0= 0. In
fact, we also have

ffn/fl v= br[A7 <*>] -P (9.8.40)

(as is readily seen from a diagonal coordinate description). The sign of £f
determines the orientation of ^ + , this sign being ambiguous in (9.8.40). We
take the orientation and time-orientation of J* to be part of its given
intrinsic structure.

Yet another way in which the strong conformal geometry of ^ + arises is
in relation to twistor theory. (This will have some significance in §9.9.) We
recall that in the twistor description of Ml#, the particular light cone which
defines </+ is picked out by specifying, up to proportionality, the infinity
twistor \aP, or its dual \afi (cf (6.2.25)). The choice of the actual scaling for \aP

(or, rather, for \ap\pa) determines the strong conformal geometry of J+. We
shall see that this, in fact, works equally well for M, where we use a local
twistor description of \*p (cf §6.9).
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376 9. Conformal infinity

If we suppose that M is empty near./+, then Pab = 0 (cf. (6.8.12)), so the
'spinor part' description (£^B,0;0,0) of la/?, with respect to the physical
metric gab, is constant under local twistor transport (6.9.12). Because of the
conformal invariance of local twistor transport, it follows that the
description of \aP with respect to gab is also constant. By (6.9.6), this
description is

"06" 1"LJ
(9.8.41)

Here we have not assumed Kafc = 0, but merely (compare Proposition
(9.6.18)) that the physical scalar curvature is zero near «/ + :

A = 0, (9.8.42)

which will be the case if, near / + , we have massless fields only. In the
derivation of (9.8.41) we have used (6.8.21), (6.8.23), sRS = Q~1eRS (cf.
(9.8.7)), and Ya = - Q " 1 ^ ; also the relation

VCNC * - 4Ap\ (9.8.43)

which follows from (9.8.24) (this latter showing that the index per-
mutations of VBB>NCC. differ at most by signs) and the relation

oBiB'icoc'VbNc = Ap\ (9.8.44)

which can be established by substituting (9.8.23), since the derivative
in it is tangential.

It may be verified that the local twistor (9.8.41) is actually constant on
J+ even in this more general case (9.8.42). The calculation is a straight-
forward application of the definitions given in §6.8, and is somewhat
facilitated by making the specialization (9.8.29), since that entails

MBB-NCKO. (9.8.45)

Note that the significant spinor part of \pa at </+ is, by (9.8.41),

\AiRis (9.8.46)

(since p' can be scaled to zero). This is closely related to the strong
conformal structure (9.8.34). For we can write (9.8.35) in spinor form as

— A2iciciDiD£EFeEr modulo expressions Xc
e
diFiF,YCfiEiE>.

(9.8.47)

The freedom in A" and Y can be killed off precisely by transvecting with iF

or iF' and with iE or iE>. Clearly, if we transvect with two primed iotas, or with
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9.8 The BMS group and the structure of J+ 317

two unprimed iotas, the result is zero; so to obtain a non-trivial quantity we
must take one of each. This leads to

A2icf'iDiD'iEir

(and its complex conjugate), from which we must remove (say) fiD in order
to compensate for the extra iFiE> that was introduced through the
transvection. The result, which we write

(iAiF,iD)( - \AiEic\ (9.8.48)

is of the form of an outer product of (9.8.46) with its complex conjugate.
Thus the intrinsic tensor (9.8.34), o n / + , in effect factorizes into two pieces
(different from (9.8.17)), namely the (significant) spinor part of \po and that of
its complex conjugate \pa. In this sense, the strong conformal metric of «/+

effectively 'splits' into a product la/?lp<T, reminiscent of the 'splitting' (3.1.9) of
the space-time metric into £AB8A>B'.

The interpretation of null angles

As we mentioned earlier, the strong conformal geometry of«/+ really arises
as a metric property of Jl rather than as a conformal one. In order to see
this most clearly, it is helpful to have a direct interpretation of it in terms of
the geometry of Jl. So let P be a point of«/+ and consider two non-null
tangent directions a and P to «/+ at P. The significance of the two types of
angle that can arise between a and /?, in terms of space-time geometry, is
best seen if we first consider, instead of a and /?, their orthogonal
complements (in terms of the space-time conformal structure at P). These
are two hyperplane elements a*, /?*, respectively, at P. Since a and /? are
spacelike, a* and /?* must be timelike and so will have non-trivial
intersections with the past null cone at P. These intersections are collections
of null directions at P each of which extends to a ray in M - a generator of
the past light cone # of P in M. Thus we shall have an interpretation of a*,
/?*, and therefore of a, /?, in terms of the ordinary space-time geometry of
light rays (see Fig. 9-22).

Now recall from the discussion of §9.1 that a null hypersurface such as #
has a spatial interpretation as an asymptotically plane wave-front. This
property of asymptotic planarity entails that the geometry of a 2-space of
(local) cross-section of ^ settles down to become that of a Euclidean plane,
as the section proceeds into the future along #. When Jt is Minkowski
space M, then ^ is necessarily a null hyperplane, having sections that are all
intrinsically exact Euclidean 2-planes, and which are mapped isometrically
to one another by the generators of (€. In the general case, we have a well-
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378 9. Conformal infinity

— M —

parabolic' section of <€

Fig. 9-22. A tangent direction a t o / + at P can be represented by its orthogonal
complement a*. This intersects a 'parabolic' section (with Euclidean 2-space
structure Ep), of the past cone # of P, in a 'straight line' in EP - and this line can also
be used to represent a.

defined limiting exact Euclidean plane EP, describing the geometry of the
generators of #, whose points correspond to the various (past) null
directions at P, other than that of the one generator 7 of J+ through P.

We may, in fact, think of EP as the section, in the tangent space £#LP] at
P, of the past null cone at P by a null hyperplane parallel to 7. This
'parabolic' section has an intrinsic Euclidean 2-metric (cf. Fig. 9-22;
compare Fig. 9-6 and, more appropriately, Fig. 1-5, Volume 1, p. 13), and
we can arrange that it is scaled correctly by requiring that in terms of its
induced metric gab ('unphysical'), and the associated Na9 the equation in
£ # [ P ] of this section (with origin at P) is

xaNa+l=0 = gabx
axb. (9.8.49)

The induced metric is then invariant under (9.8.13), (9.8.14).
We pass now to the orthogonal complements at P. For this, it is best to

associate a point of EP not just with a null direction at P, but with the 2-
plane element spanned by this null direction and the null direction of 7.
Indeed, each 2-plane element through the 7-direction (but not tangential to
</+) contains just this one null direction, in addition to the null direction of
7, at P. The orthogonal complement of such a 2-plane element is another 2-
plane element, but now tangent t o / + and not containing the 7-direction.
Thus

the points o/EP correspond to non-null tangent 2-plane elements to J+ at P.
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9.8 The BMS group and the structure ofJ + 379

Fig. 9-23. In the representation of (spacelike) tangent directions to </+ by lines in
EP, ordinary angles at J + are directly equal to the corresponding angles between
lines in EP. However null angles at J+ are represented as distances between parallel
lines in EP.

Dually, within J*, a tangent direction a t o / + at P corresponds, in EP, to
the dual (within EP) of a point, namely a Euclidean straight line (see Fig. 9-
23). (Note that a tangent direction t o / + at P is the intersection of two
tangent 2-planes to J + \ a straight line in EP is the join of two points in EP.)
Thus we have:

non-null tangent directions to
to straight lines in EP.

* at P correspond
(9.8.50)

Indeed, this is precisely the correspondence we obtained earlier whereby
the directions a and /? were respectively represented by the intersections of
a* and /?* with the past null cone of P. We now see, by (9.8.50), what these
intersections correspond to: a and /? are represented by straight lines, A and
/?, respectively, in EP. This enables us to visualize the two types of angle
between a and /? in familiar terms. In the general case there will be a non-
zero angle 6 between d and ft. Straightforward geometry shows that 6 is also
the non-null angle between a and p. But 6 can also be zero, in which case 6t
and $ become parallel. Then a new measure of separation between & and /?
arises, namely the Euclidean distance v between them! Straightforward
calculation shows that this v is precisely the null angle (9.8.22) between a
and p.
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380 9. Conformal infinity

Structure of the BMS group

The above considerations have elaborated the geometrical significance of
the strong conformal geometry of J+, and thus of the BMS group of
motions of / + which preserve this geometry. Unlike the Poincare
transformations, however, the BMS transformations do not in any obvious
sense preserve* the physics. (This difficulty presents itself most manifestly
when the space-time is flat.) The problem, of course, is that the BMS group
is still much too 'big', being a function-space group (infinite-dimensional)
and so not even a Lie group. It is natural to ask whether this functional
freedom could not be eliminated altogether by some further geometric
restriction, the hope being that by such means a subgroup isomorphic to the
restricted Poincare group might finally be obtained.

The source of the 'size' of the BMS group is the function H of (9.8.10) (cf.
(9.8.11)). In the case of M9 restricted Poincare motions induce transform-
ations of J+, which can be written as (9.8.9), with (9.8.10) and (9.8.11) valid,
but with H specialized to the form

where HAB is constant and Hermitian. To obtain this, u must be taken to be
a special type of Bondi time coordinate, for which u = 0 is the intersection of
some light cone in M with </ + . We take the vertex of this light cone as origin
0, and choose that unit future-timelike vector Ta at 0 which has the
property that its associated scaling of the (anti-)celestial sphere as a unit
sphere agrees with that which is determined by the Bondi time coordinate u
(cf. after (9.8.31)). Then we find that u is simply the standard retarded time
parameter of an inertial observer with origin O and time-axis Ta (see Fig. 9-
24). That is to say, a given value u of the Bondi time on J + is attained where
the future light cone of the point with position vector uTa in M meets J+.
Adopting standard Minkowski coordinates in IVO, one readily verifies that
the particular BMS transformations (9.8.9) (with (9.8.10)) for which H takes
the form (9.8.51) are given by the active (restricted) Poincare motions (in
terms of position vectors relative to 0, which is taken as fixed):

where SA
B and HBB are the spinors whose standard components (cf

For the representation theory of the BMS group, see Sachs (1962/>), Cantoni (1967),
McCarthy (1976) and references contained therein.
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9.8 The BMS group and the structure of J* 381

Fig. 9-24. A standard type of Bondi time coordinate for Ml is obtained by taking a
timelike straight line in Ml and choosing u to be proper time along it, with u constant
along the future light cones emanating from its points.

(3.3.31)) are the HBB of (9.8.51) and the

CA . _ (9.8.53)
Kc dj

of (9.8.9)(1), respectively. In fact, (9.8.51) can be expressed more 'invariantly'
as

H{1AJA') = ̂ 9 (9.8.54)

where
Lfl = W , AAx(C,l) (9.8.55)

define the null direction at 0 (or at any other point of M) in which the
generator of J+ labelled by £ lies.

Note that when (9.8.9)(1) is the identity (i.e. when (9.8.53) is the unit
matrix), the transformations (9.8.52) are simply translations of M. For
this reason, whenever (9.8.9)(1) is the identity (so G = 1 in (9.8.11)) and H is
of the form (9.8.51), the corresponding BMS transformations - even in the
case of a curved Ji - are referred to as translations, and are said to
constitute the 4-parameter translation subgroup 2T of the BMS group 0b.
The more general transformations for which (9.8.9)(1) is the identity (and so
G — 1) but for which if is a general smooth function on the sphere, are called
supertranslations, and they constitute an infinite-parameter subgroup % of
3b. Thus we have

F a % c @. (9.8.56)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


382 9. Conformal infinity

It is important to observe that the notion of translation (and of
supertranslation) is actually independent of the choice of and of Bondi time
coordinate u. That the form of (9.8.51) is preserved whenever £ undergoes
(9.8.9)(1) and u is accordingly rescaled as uG (with G as in (9.8.11)), is implicit
in the fact that the transformations (9.8.52) form a group. (It can also be
easily verified directly.) Moreover, any 'supertranslated' Bondi time
coordinate u + h(£, 0 will be affected by a translation in just the same way as
the original u. From these facts it follows that the concept of translation is
BMS-invariant, as required. (Supertranslations will be dealt with
presently.)

Another way of phrasing the above remarks is as follows. Let & denote
the group of Lorentz rotations (i.e. transformations given by (9.8.9) and
(9.8.11), with H = 0 in (9.8.10)), then

r-i*rr = ^ far all re^. (9.8.57)
Moreover,

s~l3Ts = ̂  for all se^. (9.8.58)

(Indeed, in the second case, F is preserved element-wise, since all
supertranslations commute.) Now, by the form of (9.8.9), it is clear that
every element of $ has the form sr with SG°U and re0t, i.e. that

& = # # . (9.8.59)

Combining this with (9.8.57) and (9.8.58), we find that

bl3Tb = ̂  for all bG^ (9.8.60)

i.e. ZT is a normal subgroup of &. In the same way, °ll is also a normal
subgroup of ®:

b~l^b = ̂  for all be®. (9.8.61)

So the concept of supertranslation is also BMS-invariant. Moreover, there
is the following result of Sachs (1962i?) which we quote without proof:

(9.8.62) THEOREM

The translation subgroup of the BMS-group is its unique A-parameter normal
subgroup.

The invariance of the translation concept is essentially an instance of a
phenomenon that was noted in §4.15. A general supertranslation is
determined by an arbitrary (smooth) function H on the 2-sphere, and from
the form of (9.8.51) - and with reference to formulae given at the end of
§4.15 - we see that:
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9.8 The BMS group and the structure of J+ 383

(9.8.63) PROPOSITION

The translations are precisely the supertranslations for which H is composed
only ofj = 0 and j = 1 spherical harmonics.

(Here the spin-weight is zero.) From table (4.15.60) we observe that this
condition on H can be written as

62H = 0. (9.8.64)

We think of the (£ £) 2-sphere as the space of generators of J* (i.e. as the
factor space of J>+ by its generators). Under the action of 0t (or, indeed, of
0$) the functions H behave as conformally weighted scalars of weight w = 1.
This is because the 'scaling' dw of the u-parameter has conformal weight
w = 1, by (9.8.20)), though the w-parameters themselves are not conformally
weighted objects. We recall from the discussion of §4.15 that for such scalars
the; = 0,7 = 1 parts transform among themselves under conformal motions
of the sphere, while the higher)-value parts do not (i.e. they can pick upj = 0
or 7 = 1 parts under such motions). Thus while the concept of translation is
Lorentz invariant, we have

(9.8.64) PROPOSITION

The property of a super translation that it be translation-free is not Lorentz
invariant.

In this proposition we could substitute 'BMS-invariant' for 'Lorentz
invariant' if desired. The Lorentz transformations referred to are simply the
conformal motions (9.8.9) of the (£, 0-sphere. This (restricted) Lorentz
group £f therefore has a natural interpretation as a factor group of 0&\

(9.8.65)

On the other hand, the Lorentz group does not arise canonically as a
subgroup of 31. The subgroup 0t of 0& is isomorphic with if, but it is far from
being canonically singled out. For suppose that s is any element of ^ , then
the group

0t' = s-l0ts (9.8.66)

will be another subgroup of J ,̂ also isomorphic with the restricted Lorentz
group, and - so far as the group structure of ̂  is concerned - completely
on an equal footing with 0t. The distinguishing feature of 01 is that it consists
of elements which leave a particular cross-section of J+ invariant. One
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384 9. Conformal infinity

refers to (smooth) cross-sections of J+ as cuts. The cut T left invariant by
0t is simply that defined by u = 0 in the given coordinates. The super-
translation s'1 will carry T into some other cut F = 5" iT9 and we see from
(9.8.66) that 0t' is the subgroup of ̂  leaving F invariant. Only when s is the
identity element 1 will &' and @ be the same, and as s ranges over the whole
of tft, the invariant cut will range over all possible cuts.

Of course, it is not to be expected that the (restricted) Lorentz group
should arise naturally as a subgroup. It does not even do so in relation to
the ordinary (restricted) Poincare group of Ml, where also it arises naturally
only as a factor group. (As a subgroup it depends on the choice of an
arbitrary origin in M.) However, in relation to $ the situation is much
'worse' in that not even the restricted Poincare group & itself arises
naturally as a subgroup of 08 in general (or as a factor group, for that
matter).

To appreciate this, let us consider first the case when ̂  refers to the J + of
ML We can regard 9 as the subgroup of ̂  generated by the translations 2T
and Lorentz rotations 0t\ indeed (compare (9.8.59)):

While 0t is not canonically singled out within ^, the family of Lorentz
rotation groups about the various different origins in Ml is so singled out.
Any such Lorentz subgroup of 9 arises as the subgroup of $ leaving
invariant a certain type of cut, referred to as a good cut, which is the
intersection with J* of the light cone of some point in M. These good cuts,
which form a 4-parameter system, are obtained from one another by
translations; but a supertranslation which is not a translation always takes
a good cut into a bad cut (i.e. a cut which is not a good cut). The concept of a
good cut is thus not BMS-invariant. Indeed, if the s of (9.8.66) is not a
translation, then the &' it defines will be taken outside 9. Similarly, for such
a supertranslation, the 10-parameter subgroup of Ĵ ,

^ = s"1^s, (9.8.68)

will be distinct from ̂ , though isomorphic with it. In fact, for a general s, the
subgroups 9 and 9> have only the translations 9~ in common.

Shear structure of\f +

This tells us that, so far as the group structure of $ alone is concerned, there
is no way to single out the restricted Poincare group uniquely as a
subgroup. (And, as we have seen, the problem is not to distinguish
translations from supertranslations, but to say what we mean by a
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9.8 The BMS group and the structure of J+ 385

'supertranslation-free' Lorentz rotation.) In the case of Ml we have some
additional structure at . / + , namely the notion of which cuts are to be
labelled as 'good cuts', in relation to which a unique subgroup & may
indeed be singled out. Thus it would seem that for us to obtain an
appropriate unique analogue of 9 in the case of a curved M, a correspond-
ing notion of 'good cut' would be required.

There are, however, some serious difficulties with this. For several
reasons it is not appropriate simply to take the intersections with J+ of
actual light cones in Jf as good cuts. (For example, because of the
appearance of caustics and crossing regions on the cone, such 'cuts' need
not even be cross-sections of « / + - a n d even those that are do not
generally transform among themselves according to a subgroup of 38.) A
more reasonable plan is to use a definition which is 'local' on J+ (and hence
entirely asymptotic in M). In M, the (future) light cones are singled out by
the property that they diverge and have vanishing shear, a — 0 (see §7.1).
Thus in Ml we need only examine the shear at the cut itself to ensure that the
cut is good. Taking the o-flagpoles to be orthogonal to the cut (as in the
standard treatment of spacelike 2-surfaces given in §4.14), we may compute
o at the cut, and if we find a = 0 over the whole cut we say that the cut is a
good cut.

This procedure works not only for Ml, but also for certain other space-
times M, notably those which are stationary. But there are fundamental
difficulties when gravitational radiation is present. To see how these come
about, we first develop some further formulae. To begin with, suppose that
we have some smooth coordinate « o n / + which suitably increases up the
generators, but which need not be a Bondi time parameter. Choose the o-
flagpoles orthogonal to the cuts u = constant, as above. Then we have (with
u of type {0,0})

Sw*0. (9.8.69)

Applying the commutator (4.12.34)' to u we get

(J/5 - 5j?')w % p'bu - zp'u,

by (9.8.25), and with (9.8.69) this reduces to

(d-r)p'uxO. (9.8.70)

Henceforth we shall adopt the specialization (9.8.33). Then the condition
(9.8.30) for u to be a Bondi time coordinate (associated with the chosen
scaling for J+) becomes \>'u &A'1, and with (9.8.28) this further reduces
(9.8.70) to

T « 0 . (9.8.71)
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(The argument is partly reversible: if (9.8.71) holds, (9.8.33) being assumed,
then u is a function of this associated Bondi time parameter, so the latter and
the former are constant on the same cuts.) We refer to the choice of o-
flagpoles related in this way to a Bondi time parameter associated with the
chosen scaling for J+ as a Bondi system. Thus we have:

(9.8.72) PROPOSITION

The condition for a Bondi system is x « 0.

Equation (4.12.32)(e) gives

J / < T * 6 T - T 2 - N (9.8.73)

where
N*0>20 (9.8.74)

is the Bondi-Sachs complex news function, whose important relation to
gravitational energy-flux will be discussed in §9.9. In a Bondi system (9.8.73)
becomes

J/(j«-N. (9.8.75)

Recall that, as part of the strong asymptotic Einstein condition assumed
for Jt, we have

VABCD*0, (9.8.76)
i.e.

¥ 0 « ^ « ¥ 2 « ¥ 3 « ¥ 4 « 0. (9.8.77)

Hence, from (4.12.32)(a)' and (4.12.32)(</)',

* 2 2 « 0 « * 2 1 . (9.8.78)

Next we need the Bianchi identities at J+. Recalling that the spin-2 field

tpQRS-n-^PQRs (9.8.79)

is C1-smooth at J* (with our initial assumptions on M, cf. Theorem
(9.6.41)), we have

AIMIM4PQRS « " VMMWPQRS (9.8.80)

(cf (9.6.42)). With (9.8.77), this gives

Ail/^-pVi (/ = 0,. ..,4) (9.8.81)

(while, of course, S ¥ ; « 6 ' ^ « p/xPf« 0). Thus, by (4.12.39),

Ail/4 % J/N. (9.8.82)

Also, taking the combination (4.12.38) + (4.12.41)' + (4.12.38)', and noting
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9.8 The BMS group and the structure of J+ 387

that, by (9.8.33), d'A + 6'On %0, we obtain

Aij/3 * 6N. (9.8.83)

We shall also be interested in a generalization of (9.8.83), obtained when
we merely assume p' « 0 but not the other half of (9.8.33). Thus J + is given a
metric scaling so that all its cuts are mapped isometrically to one another by
its generators, but they are not necessarily metric spheres. Then we have

Ai//3 % d<D20 - d'K, (9.8.84)
with

X^On+A. (9.8.85)

By (4.14.20), this real K is one-half the Gaussian curvature of the cuts. But
for our immediate purposes we assume K = | , so (9.8.84) reduces to (9.8.83).

Next, subtracting (4.12.37) from its complex conjugate, we have

Axjj2 - A$2 * 60>10 - 6'<D01 + ffN - <rN, (9.8.86)

while, from (4.12.32)(d),

<D01*5p-6'<7. (9.8.87)

In deriving (9.8.87) we used

p = p, (9.8.88)

which (cf. (4.14.2), (7.1.58)) expresses the fact that the 2-plane elements on
«/+ orthogonal to the o-flagpoles are surface-forming (namely, tangent to
u = constant). Also, by (4.12.35) and the reality of K, d'dp is real, so
substituting (9.8.87) into (9.8.86) we get

A\jf2 - <rN + d'2a « A$2 - (jN + 62<T, (9.8.89)

a reality property which will have significance for us in §9.9.

In passing, we note that the form of the Bianchi identity given in (6.8.17),

V'Cefgh=-2V[gPh]f

with Pab = Q>ab - AeABeA.B.9 provides us with the equation

$vrG.H. % 2VtoPfc]/, (9.8.90)

from which various other expressions for the ^f may be directly obtained.
(From it one can also rederive (9.8.82), (9.8.84), and (9.8.86), though not
quite trivially; in this connection we observe that (9.8.78) and (9.8.85) can be
combined into the relation nbPABBA, = Kna.)

Of most immediate interest to us here are relations (9.8.82) and (9.8.75),
which together imply that, in a Bondi system,

pt2o* -A$4. (9.8.91)
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388 9. Conformal infinity

We recall from the discussion of §9.7 that ij/4, o n / + , measures the outgoing
gravitational radiation field (i.e. the V"1-part' of the physical Weyl
curvature field). Thus, one implication of (9.8.91) is that whenever outgoing
gravitational radiation is present, we cannot preserve the 'good cut' condition
(7 = 0 throughout the Bondi system. The essence of a Bondi system is that the
cuts u = constant are all time translations, with respect to a fixed 'time
direction' (namely that provided by the given unit-sphere scaling of the cuts)
of a given cut (say of u = 0). What we have just seen, in effect, is that the
translation of a good cut is generally a bad cut. (The term 'translation' is
used here in the sense that the second cut is a BMS-translation of the first
while, however, the space-time itself- including J+ - is not moved.)

Thus in a system with outgoing gravitational radiation the 'good-cut
structure' of </+ is different from what it is for M, and we cannot use the
method we described earlier for singling out a particular restricted Poincare
subgroup 9 of $. A more appropriate 'good-cut structure' of«/+ is a shear
structure which assigns to any cut of J + a {3, — 1} scalar function o defined
on it. This shear structure is one degree more 'extrinsic' than the strong
conformal geometry of J* (though what one calls 'intrinsic' or 'extrinsic',
particularly for a null hypersurface, is to some extent a matter of
convention - Penrose 1972d). For it refers to the shear, at > + , of null
hypersurfaces in Jt. We see from this discussion that the shear structure of
the J+ of M differs from that of a general M. In fact, the shear structure of
«/+ is equivalent (modulo at most two constants of integration on each
generator of J+) to the information of the outgoing gravitational radiation
field. The subgroup 9 of ^ , in the case of M, is the group preserving the
shear structure of./+ in addition to its strong conformal geometry. In the
case of a general M, where \jtA has no symmetries o n / +

5 the shear structure
of J+ also has no symmetries. So we are back where we were at the
beginning of this discussion: the group of symmetries preserving the shear
structure consists of the identity alone, for a general M.

The shear structure of </+ of course determines the good cuts, namely
those for which a = 0. However, in the general case, there need not be any
good cuts at all! The essential reason for this is that a is a complex quantity
on the sphere whereas the freedom in choosing a cut is one real function
defined on the sphere, namely the u-value where it intersects each generator.
In the case of Ml, the difference between the value a = a1 on one cut and the
value a = a2 on a second cut, obtained from the first by the supertranslation

) in (9.8.9)(2), is readily found to be (Sachs 1962ft):

G1K<J1+!>2H (9.8.92)
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9.8 The BMS group and the structure of J+ 389

In M, all cuts are supertranslations of some good cut (a — 0), so the reality of
H in (9.8.92) tells us that all cuts satisfy the condition called purely electric
(Newman and Penrose 1966):

d'2<jx62G, (9.8.93)

and this reduces the effective freedom in the complex a to a real function on
the sphere. But in the case of a general M, (9.8.92) is augmented by a term
involving a u-integral of fo. (or of N) and condition (9.8.93) is then generally
not satisfied.

2^-space and asymptotic twistor space

Various attempts at circumventing these several difficulties have been
suggested, but none of them has led to a uniquely singled-out Poincare
subgroup of Ĵ . The most noteworthy of these attempts is that due to
Newman (Newman 1976; cf. also Aronson, Lind, Messmer and Newman
1971, Hansen, Newman, Penrose and Tod 1978, Ko, Ludvigsen, Newman
and Tod 1981), which has led to the remarkable concept of Jf-space* The
key idea here is to allow </+ to become complexified, to C / + , by allowing u
to take complex values (and accordingly allowing £ £" to be replaced by
independent complex parameters £ f - cf. the discussion early in §6.9), and
then to define a good cut by the equation a = 0, as before. The complexific-
ation of u removes the difficulty just referred to above, but it introduces the
complication that the 'conjugate shear' a does not generally vanish.
Assuming that the shear structure of J+ is adequately analytic (i.e. that it
has a complexification which is sufficiently extensive), the points of the f̂-
space Can be defined to be the good cuts in this sense. Recall that for M, the
real good cuts of J+ arise from actual light cones and therefore precisely
correspond to the points of M; in the same way, the complex good cuts of
C / + correspond to the points of CM. But for a general (adequately
analytic) M, the Jf-space - with a remarkable definition of metric sug-
gested by Newman - turns out to be a general holomorphic-Riemannian
self-dual solution of the Einstein vacuum equations; and this holds whether
or not the vacuum equations hold for Jt (cf. also p. 168).

There is a close relation between this construction and twistor theory.
Recall the discussion of §7.3 (cf. (7.3.1) and Proposition (7.3.18)), in which we
showed that the condition a = 0 = K is an indication of the presence of
totally null complex 2-surfaces ('dual twistor surfaces'). Here the geometry

* 3tf stands for 'Heaven' - 'where the good cones ( = Cohens) go'. The use of the tilde
in this paragraph does not refer to the 'physical' metric gab.
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390 9. Conformal infinity

is restricted to C / + , so the '/c = 0' condition disappears and the dual
twistor surfaces appear only as complex one-dimensional curves on C / + .
These curves turn out to be complex null geodesies on C</+ (using the
conformal metric of CJf\ and are referred to as twistor lines (for d = 0) or
dual twistor lines (for <r = 0). The space of [dual] twistor lines on CJ +

provides a definition of the [dual] projective asymptotic twistor space for M.
In fact the [dual] twistor lines are precisely the a-curves \pr /^-curves]
introduced in §7.4 for the construction of the projective hypersurface twistor
space P$~*(.f+) [or V>2T %(J*)\ Thus (projective) asymptotic twistors are
particular examples of (projective) hypersurface twistors, the hypersurface
being, in this instance, J +. (In the general case, the a-curves and jS-curves
are not complex null geodesies however; that is a special property of CJ+.)

Newman's good cuts of C / + turn out to be ruled by a one-complex-
parameter family of dual twistor lines, providing a holomorphic curve in the
dual asymptotic twistor space. In this way the Jf-space construction arises
as a close analogue of the construction of CM in terms of lines, in the
standard [dual] projective twistor space picture (cf §§6.10, 9.3), to which
indeed it reduces when M = M. This procedure provides an example of
(and is, in fact, the origin of) the so-called 'non-linear graviton' construc-
tion of all self-dual solutions of the Einstein vacuum equations (Penrose
1976a, Penrose and Ward 1980, Tod 1980, Atiyah, Hitchin and Singer 1978;
cf also Ward 1978, Tod and Ward 1979, Hitchin 1979), which in turn was
the precursor of Ward's self-dual Yang-Mills construction, described in
§6.10. But a detailed discussion of these matters would take us well beyond
the scope of these volumes (cf p. 168).

Relevance of BMS to momentum and angular momentum

Even Jf-space, being in general without any symmetries, does not directly
lead to a definition of a Poincare 'symmetry group' for J(. Various other
suggestions which have been made amount, in effect, to the following:
Assume that the radiation ^ 4 falls off adequately fast, either into the future
or into the past, along the generators of,/4". Define limiting (say real) 'good
cuts' of J>+ in the appropriate asymptotic sense, as w-»oo(i+) or u-+
— oo (i°). Then 'good cuts', generally, are defined by BMS translation from
these limiting ones. This indeed provides an appropriate (restricted)
Poincare subgroup 0> of ^ , though the ambiguity between the 'i + -
definition' and the 'i°-definition' is worrysome. In general these two
subgroups are not the same. (See Newman and Penrose 1966).

The seriousness of this ambiguity can be made graphic by the following

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


9.8 The BMS group and the structure of J^ 391

Fig. 9-25. An isolated gravitating system emits two bursts of radiation. It is
(essentially) quiescent before, between and after the bursts. For each of the three
quiescent periods a Poincare subgroup of the BMS group is naturally defined in the
asymptotic region, but these three Poincare subgroups will generally have only their
translation subgroup &~ in common.

consideration. Suppose we have an isolated physical system which is initially
close enough to stationarity that the shear structure of its J+ (for u < ul9

say) agrees with that for MI sufficiently closely so that, for the degree of
approximation required, a unique restricted Poincare subgroup &x can be
singled out as the subgroup of ^ preserving this shear structure.* Suppose
that the system then radiates (retarded) gravitational radiation for a period,
say for ux < u < u2, after which there follows another period of quiescence,
u2 < u < w3, so that the shear structure of J+ is once again adequately like
that of Ml and a second Poincare subgroup ^ 2 3 *s adequately singled out
(see Fig. 9-25). Suppose the system then radiates once more (w3 < u < w4)
before settling down for good. A third such Poincare subgroup ^ 4 (for
u4 < u) thus emerges, to a corresponding degree of approximation. In
general, the subgroups &^&2^ ^ 4 will all be distinct, and will have only
the translation group ZT in common, being related to one another by
conjugation by non-trivial supertranslations as in (9.8.68).

The group 3~ is the one of relevance in providing the physical concepts of
mass-energy and linear momentum, since in the case of Ml it is the Killing

* For a proof that in the stationary case the shear structure of the J + of M is the same as
for M, see Sachs (19626), Newman and Penrose (1968).
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392 9. Conformal infinity

vectors generating translations that yield these concepts (cf the discussion
in §6.5). Thus the ambiguities in the definition of & will not have serious
consequences for energy-momentum. In the next section we shall see how
the Bondi-Sachs definition indeed assigns a very appropriate total energy-
momentum to the system measured at any cut of J+. However, even here
the BMS group must be contended with, since, as the above discussion has
shown, we must be prepared to compare these quantities on cuts which are
not necessarily translations of one another.

But the problems are much more serious with regard to angular
momentum, since here generators of 'rotation' elements of & would be
required. The concept of a 'supertranslation-free rotation' gets 'shifted' as
we pass from 9X to ^ 2 3 to ^ 4 . Thus it would seem that the very concept of
angular momentum gets correspondingly 'shifted' by the presence of
gravitational radiation. We shall return to this problem in the next section.

Asymptotic expansions for Einstein-Maxwell theory

In our analysis of the structure of J* we have tried to avoid making
unnecessary specializations, either in our choice of spin-frame and coordi-
nates, or in that of the conformal factor. Thus we have kept our
considerations general and have not prejudiced the way in which it may be
helpful to make further specializations in particular calculations. For
example, while in most discussions of problems involving outgoing
gravitational radiation, null coordinates have been used (e.g. the u =
constant loci are extended inwards from , / + to become null hypersur-
faces in M\ this is by no means essential; and for certain purposes
asymptotically null (say spacelike) u — constant hypersurfaces may be found
preferable. All the arguments of this section would apply equally well.

Also, with regard to the conformal factor Q, we have merely specialized
sufficiently to put the intrinsic metric of J+ into a particular form, but have
left the choice of Q otherwise free. In more detailed calculations it is often
helpful to specialize further, and (as has been mentioned briefly around
(9.8.29)) a convenient choice is to make the hypersurfaces Q, = constant null.
For local calculations at J+ it is sometimes helpful even to 'flatten'«/+ out
completely by stereographically projecting one of its generators 'back to
infinity' (cf. Penrose \961b). Each 'cross-section' of J+ then acquires a
Euclidean metric, and we can also arrange that

V^^O, (9.8.94)

the j-flag-planes being chosen to be parallel throughout«/+. A specializ-
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9.8 The BMS group and the structure of J + 393

ation such as (9.8.94) would not have been helpful to us earlier, however,
since it precludes the strict applicability of the compacted spin-coefficient
formalism. Moreover, the discussion of global problems becomes more
difficult with the topology change inherent in the deletion of a generator of

To end this section we exhibit, without proof, the expressions for the
leading terms in the asymptotic expansions of the physical metric, spin-
coefficients, Maxwell field, and Weyl curvature, that result when the
asymptotic structure for J + obtained here is re-interpreted in terms of M.
For definiteness, we assume that the Einstein-Maxwell equations hold in
J(, and this will allow the propagation inwards from </+ to be achieved in a
well-defined manner. We select a Bondi time coordinate x1 = u o n / + , and,
in accordance with the remarks following Proposition (9.8.31), standard
stereographic coordinates x3 = £, x4 = O o label the generators so that the
metric of the spheres of cross-section of J+ takes the form (9.8.8). We
propagate u inwards (uniquely, near </+) by requiring that u = constant are
null hypersurfaces. These are the null hypersurfaces generated by the rays in
Jt meeting the u = constant cuts of«/+ orthogonally. Next we propagate £
and Cinwards by requiring them to be constant along these rays. We take
x2 = r to be an affine parameter on each ray, the scaling for r being chosen
so that (specializing to A = 1) the physical metric component g12 is unity,
and the zero of r being chosen so that the r"2-term in the expansion of p
vanishes.

In notation we are here reverting to the usage of earlier sections, where
the physical metric is denoted by gab, not gab, and, correspondingly, 'tildes'
will not now be used for physical spin-coefficients, curvature quantities, etc.

We also make a specific choice of spin-frame, and thus at last remove the
in variance required for strict applicability of the compacted spin-coefficient
formalism. Nevertheless we still adopt the 6 notation as a shorthand and
assume, in effect, the form (4.15.117) (the spin-weights of the relevant
quantities being unambiguous). The choice of scaling for oA is made so that

D = ^ (9.8.95)

along the generators (as in §9.7), and also so that the flag planes point along
the £-lines of the spheres at J+ (i.e. Im £ = constant, Re £ increasing, at«/+)
and are parallelly propagated along the rays generating u = constant. (This
is in agreement with the arrangement depicted in Fig. 4-6, Volume 1, p. 310.)
The spin-frame is taken to be parallelly propagated along the rays. There
remains a 'null rotation' freedom in the choice of iA, for each ray.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


394 9. Conformal infinity

With these choices we have agreement with the work of Newman and
coworkers (Newman and Unti 1962, Kozarzewski 1965, Newman and
Penrose 1966, Newman and Tod 1980), except for minor variations in the
choice of w, r coordinates, and the fact that 6 replaces their — 2~*d. The
equations below are adapted from the paper by Exton, Newman and
Penrose (1969). Note that a dot denotes d/du.

A translation to the (0, </>)-system as depicted in Fig. 4-7, Volume 1 is also
easy to achieve.

la = 92\ ma = cog2
a + ftr,'. na = gx* + Ug2

a + X'gf (i = 3,4)

g22 = 2(U-a)(b)

initial data on u = 0

•-5 + O(r"6)
- 4 + O(r"5)
- 3 + O(r"4)

•O(r-*)

a = o°r-2 + (d°<j°(j0 - ^¥°0)r ~ 4 + 0{r ~5)

a = a V 1 + <T°a°r-2 + a W r " 3 + 0{r~*)

t = - iT?r"3 + i(i<r°¥° + 6'Tg - W^y* + O(r"5)
A = - & = <?°r - J + <r°r " 2 + (a°Sa° + %d°V% - C ^ $ ) r " 3 + O(r " 4)
/x = - p' = -\r~l - (a°S° + ¥°)r"2

y = - ^ 0
2 r ~

v = - T^r"1 + (iS'VS - 2G^^)r"2 + O(r"3)
t / = - i —i(*Fg + vPg)r-1

1)r-2 + O(r~3)
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9.9 Energy-momentum and angular momentum 395

V

a, = 6'<r°r "» - (<T°6(T0 + |»P?)r " 2 + 0(r " 3)

where

(Note that the last three of these equations correspond to our earlier
equations (9.8.89), (9.8.83), (9.8.82), respectively, with (9.8.75).)

* ° - 6¥? - 3<rOx¥°2 - 6 G ^ $ = 0

*J O ? g ? g 0 ? ? 2 = 0
5 = 0
§ = 0

9.9 Energy-momentum and angular momentum

In §§6.4 and 6.5 we gave a discussion of energy-momentum and angular
momentum in the weak-field linearized limit of general relativity. Our
procedure was to use a [o]-twistor to lower the spin of the field from two to
one, so that the ten conservation laws in the gravitational case (namely
those of energy-momentum and angular momentum) could be reduced to
the form of the one in the electromagnetic case (namely of electric charge).
Here we give a generalization of that procedure which applies to full general
relativity (Penrose 1982; for earlier related procedures, cf. Synge 1960,
Komar 1962, Streubel 1978). As we shall see, there are very severe difficulties
standing in the way of obtaining as complete a set of conservation laws in
the full theory as one has in its linearized limit. These are reflected, in our
approach, in the peculiarities and limitations confronting the appropriate
twistor concept in a curved space-time M. The key to our procedure will,
indeed, consist in providing a new kind of twistor, referred to as a 2-surface
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twistor, which achieves a form of spin-lowering even in a general curved
J{. When applied a t / + our method yields the successful Bondi-Sachs
definition of total 4-momentum.* It also provides a new concept of angular
momentum which seems superior to those previously put forward. In
addition, the procedure suggests a possible definition of an energy-
momentum/angular-momentum complex which refers to the total matter
and gravitational field surrounded by a finite closed 2-surface.

Linear theory

Recall that in our discussion in §§6.4,6.5 we gave two integral descriptions,
in IU, of the sources in linearized gravitational theory. In the first of these, a
2-form

® = KrihabQ
ab (9.9.1)

(cf. (6.5.45)) is integrated over a closed 2-surface Sf9 to obtain a measure of
the sources surrounded by £f, while in the second, a 3-form

(9.9.2)

(cf. (6.5.49)) is integrated over a region of 3-volume if to measure the total
flux of source across Y. By the fundamental theorem of exterior calculus,
the two methods agree, provided V is compact with boundary d'V = Sf (cf
(6.5.51)). Here Kabcd and Eab are the linearized curvature and energy-
momentum tensors, respectively. Also, as in (6.4.7),

gab = lGABeA>B' _ idA'BeAB (9.9.3)

is a real skew tensor constructed from the primary part oAB( = oBA) of a
symmetric twistor Sa/?, so we have

V%oBC) = 0 (9.9.4)

by (6.1.69). Equivalently, by (6.4.6), we have
VQb)c _ yioQOb + g°lbydQc)d = Q? (9.9.5)

Qab being related to the Killing vector £a by

eAB) (9.9.6)

(cf (6.5.25), (6.5.40)). We recall also (cf (6.5.15) and Figs. 6-6, 6-7) that,

Bondi 1960/), Bondi, van der Burg and Metzner 1962, Sachs 1962a, b, Penrose 1963,
19646, 19676, Newman and Penrose 1968, Bonnor and Rotenberg 1966.
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9.9 Energy-momentum and angular momentum 397

taking £AA> as the primary part of a (twistor-) Hermitian trace-free twistor
P*p9 the relation (9.9.6) assumes the form

F-, = S-'ly, + S,yl>-. (9.9.7)

Moreover, the Killing equation

V(fl^ = 0 (9.9.8)

is an automatic consequence of (9.9.4) (i.e. (9.9.5)) and (9.9.6), all ten linearly
independent Killing vectors for M arising in this way. Since T(a*° is ten-
complex-dimensional, there are ten complex linearly independent solutions
of (9.9.4), and hence twenty real linearly independent solutions of (9.9.5).
Ten of these yield the zero Killing vector in (9.9.6), the corresponding
tensors Qab being those expressible in the form

Qab = eabcdVdyc, i.e. aAB = VtfyB)B' (9.9.9)

(cf (6.5.41), Figs. 6-6, 6-7), with yc a conformal Killing vector. The twistor
expression for (9.9.9) is

S*P = 2iG(a/>', (9.9.10)

where yAB' is the primary part of the (twistor-) Hermitian trace-free twistor

Difficulties in curved space-time

Our proposal is to carry out an analogous procedure in a general curved
space-time J(, and then to specialize to the case when Jt is suitably
asymptotically Minkowskian. We cannot merely take over equations
(9.9.4) (or (9.9.5)), (9.9.6) and (9.9.8) directly into a curved-space setting. As
we have remarked earlier (in §6.5), (9.9.8) has non-zero solutions only when
J( possesses (continuous) symmetries. Moreover, (9.9.4) is subject to severe
algebraic consistency requirements with the Weyl curvature, similar to that
encountered in (6.1.6) for the valence-[o] twistor equation. In a general M,
(9.9.4) admits only the zero solution.

There is a good physical reason why the integral of an expression like
(9.9.2), which vanishes whenever the local energy-momentum of the sources
is zero, cannot yield a satisfactory expression for the total 4-momentum
of a gravitating system. We know that the gravitational field itself must
contribute to the total energy (sometimes negatively, as does the Newtonian
potential energy of two mutually gravitating bodies, and sometimes
positively, as with gravitational waves), yet there is no direct gravitational
contribution to the energy-momentum tensor. That particular contri-
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bution may be viewed as residing in the nonlinearity of Einstein's field
equations. Gravitational energy is, in an essential sense, a non-local
quantity. It vanishes locally, but shows up in the total energy measure. One
manifestation of this is the fact that the local covariant 'conservation law'
VaT

ab = 0 does not integrate to give a total conserved four-momentum. It is
as well that it should not, for otherwise we would have an energy-
momentum concept to which the gravitational field could not contribute,
contrary to physical experience.

As a replacement for (9.9.2) we shall therefore need an expression which
contains, in addition to a term like the RHS of (9.9.2), another part which
depends on non-local ingredients. In §9.10 we shall present a remarkable
(positive-definite) expression due to Witten (1981) which appears to achieve
what is needed for space-time regions that approach flatness suitably at
infinity. A striking feature of this expression is that it depends essentially on
spinor (spin ^) ingredients. In this section, however, we shall be concerned
with a satisfactory replacement for (9.9.1). It is remarkable that here, too, we
shall find that it is necessary to use 'spin j ingredients in the general case.

2-surface twistors

We desire an analogue of (9.9.4) at a given closed 2-surface y . As we have
just remarked, (9.9.4) itself does not generally have non-trivial solutions in
M. But again, this is physically desirable, because any such solution would
yield d 0 = 0 in vacuum regions, and we would have a conservation law
without gravity, in the sense that continuous deformations of £f through
such regions would not change the integral, regardless of the presence of a
gravitational field. However we require oAB only to provide us with a
definition of energy, etc. at ^ , not with such a strong concept of
conservation law. Thus we can try to consider only those components of
(9.9.4) in which the derivative acts tangentially. Suppose that £f is spacelike,
and let us adopt the compacted spin-coefficient formalism, with spin-frame
oA, iA adapted to £f in the standard way of §4.14. However, we find that only
two terms, those obtained by transvecting (9.9.4) with

oAoBodA> and iAiBico
A\ (9.9.11)

involve only tangential derivatives, whereas oAB has three independent
complex components. We therefore have an underdetermined system, with
an infinite-dimensional space of solutions rather than the desired ten-
dimensional one.

What is needed is something more subtle. Instead of defining the
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9.9 Energy-momentum and angular momentum 399

elements of the desired T(a/?)' space directly, we think of that space as
arising indirectly as the symmetric tensor product, with itself, of a valence-
[o] 'twistor space' associated with Sf. Thus, instead of looking for the
tangential parts of (9.9.4), we look for the tangential parts of the original
twistor equation (6.1.1):

^AwB) = 0. (9.9.12)

Transvecting with iAiBoA and oAoBiA\ we now have two tangential
equations for two complex components, co°, co1, of respective types { — 1,0},
{1,0} (these equations having been earlier obtained as two of (4.12.46)); in
the compacted spin-coefficient formalism they read

6'co° = a'co\ 6co1=(Tco0. (9.9.13)

(Note: co° = ojl= coAiA; co1 = — coo = — coAoA.)
Any solution* {a;0,^1} of (9.9.13) (or the corresponding abstract-indexed

coA) over the whole of the closed surface ¥ is called a 2-surface twistor on «Ŝ ,
of valence [£], and the space of such solutions is denoted by Ta(Sf). It is in
fact the case that, for an Sf having the topology of a 2-sphere, (9.9.13) will
always have at least four complex linearly independent solutions. Moreover,
in the generic case and in cases sufficiently close to the canonical situation
when, as in §4.15, £f arises as the compact intersection of two light cones in
M, (9.9.13) has exactly four independent solutions. Thus, in these 'normal'
circumstances at least, Ta(£f) will be a four-complex-dimensional vector
space. The index 'a' is then a four-dimensional abstract index and the
standard rules and notations of §2.2 will apply.

The argument verifying the above statements is outside the scope of this
book, but it may be outlined as follows: One can compute the Atiyah-
Singer index (cf. Shanahan 1978, Gilkey 1974) for (9.9.13) by considering
first the canonical situation, referred to above, of the intersection of two
light cones in M. Here the equations decouple to 6'co0 = 0, dco1 = 0, with
co°, co1 having respective spin-weights - 1 , £, so a glance at (4.15.60) tells us
that each equation has two independent solutions, giving four in all. The
adjoint equation has the form of the pair 6i° = 0, S'A1 = 0, where X°, A1 have
respective spin-weights — f, f, and a glance at (4.15.60) (or Proposition
(4.15.59)) now tells us that there is only the trivial solution. The index, being
the difference between the dimensionalities of these solution spaces, is
therefore 4 — 0 = 4, this being an invariant under deformations of the

* We shall denote by { } quantities varying over Sf. This is mainly to distinguish locally
defined twistor expressions from the ones referring to elements of T;;;(50 as a whole,
such as in (9.9.25) later. When there is no confusion, this convention need not be
adhered to.
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differential equations. At worst, (9.9.13) can acquire additional solutions in
particular circumstances, the adjoint equation simultaneously gaining the
same dimensionality of solutions. This can happen only in exceptional
cases (but such examples have been constructed by B.P. Jeffryes).

Instead of using (9.9.4) we now define the elements of V*fi)(Sf) as
symmetric tensor products of solutions of (9.9.13), i.e.

a** = coiAcoB) + • • • + co {AcoB\ (9.9.14)
1 2 2 r - l 2r

where {a>°, a*1}, for i = 1,..., 2r, are solutions of (9.9.13). In fact the general

element of T(afi)(£?) is already obtained when the sum (9.9.14) contains just

two terms (i.e. r = 2).
We remark that, in M, the space J\¥) can be identified with the standard

twistor space T*. (This is assuming that ¥ is such that the 'normal' situation
obtains, where Ta(<$0 is four-dimensional.) For any solution of (9.9.12) is
necessarily a solution of (9.9.13). Moreover, by (5.6.38), we can rewrite (9.9.13)
in terms of the conformally invariant operators 6c9 d'c (cf (5.6.34)), so
equations (9.9.13) are conformally invariant (taking coA to have conformal
weight 0 and taking arbitrary weights for oA, iA). Thus we may identify
Ta(y) with the standard Ta also in conformally flat M. In these cases,
y<«0)(y) Can similarly be identified with T(a/?), and likewise for all the spaces
TJ;;;J(y) constructed from T%9 )̂ according to the usual prescriptions (cf.
§2.2). However, when £f and Jt are generic, the spaces of 2-surface twistors
(of arbitrary valence) that we obtain provide us with some completely new
objects of study.

Contorted 2-surfaces

The quantities a and a' which appear in (9.9.13) (or, rather, their real and
imaginary parts) together with p and p' (which are already real, by (4.14.2)
or by the arguments of §7.1) constitute an object normally referred to as the
extrinsic curvature of £f. In (4.14.20) we considered a quantity K arising
from the commutator of 6 with 6' whose imaginary part is another type of
extrinsic curvature, but involves derivatives within Sf of one order higher,
namely two, like the intrinsic Gaussian curvature K + K (4.14.21). If we
consider a second surface &, isometric with Sfy which is embedded in a
space-time J(, and for which all these extrinsic curvature quantities are
identical with those for 5^, then the equations (9.9.13) are just the same for
the two surfaces, and the solutions for one can be carried over directly to the
solutions for the other. In the particular cases for which J( can be chosen to
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9.9 Energy-momentum and angular momentum 401

be conformally flat, this procedure is very useful because M then admits a
full complex four-dimensional family of solutions of (9.9.12) near 5 ,̂ these
being obtainable directly from the solutions (6.1.10) in M by conformal
rescaling. The restriction of these solutions to & can then be carried over to
^ , so Ta(5f) is readily constructed. (This type of procedure was introduced
and put to impressive use by Tod 1983a.) When such an embedding in
conformally flat space-time exists, we say that Sf is uncontorted. Recall that
lm(K\ a and a' are conformal densities (5.6.28) and so are essentially
unaffected in the passage from M to Ml. However that is not so for Re (K\ p
and p'. The condition that Sf be uncontorted is clearly conformally
invariant.

In the more general case when such a conformally flat J( does not exist
we call Sf contorted. Even in this case a similar construction is possible, but
here the (conformally flat) embedding space is complex. The quantities o
and o' carry over (perhaps rescaled) but their complex conjugates 6 and ff
are replaced by new unrelated complex quantities. The restrictiveness of the
condition on Sf that it be uncontorted is measured by three real equations
per point of £f (one of which is Im (*P2) = 0).

The quasi-local angular-momentum twistor

A possible definition of the 2-form 0 on Sf> applicable to full general
relativity* (Penrose 1982), is obtained by substituting (9.9.14) into (9.9.3),
and then using the resulting Qab together with the full curvature in (9.9.1):

e:=K?l f a*e* = *i,i2**fi*- (9.9.15)

There is indeed some impressive evidence (Tod 1983a) that in the case of
uncontorted surfaces Sf this definition leads to a measure of mass-energy in
general relativity which is in excellent (and somewhat remarkable) agree-
ment with physical requirements. However there is now good reason to
believe (as is strongly supported by work of Tod, R.M. Kelly and N.M.J.
Woodhouse) that to cope with the general case of a contorted ¥ one should
not simply integrate (9.9.15) over $f (in accordance with the standard
procedure (4.3.24)), but an additional factor is needed.** Write

* See Tod (19836) for an analogous expression in Yang-Mills theory.
** Added in proof: Indeed, yet a further modification could also be considered. We can

propose using a Tod form' (9.9.29) as on p.405, with the suggested replacements for no>,
7rr, but with the additional term (...)dv5'v omitted.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


402 9. Conformal infinity

where (by (9.9.15), (9.9.3), (3.4.22))

V2 ^ / 2eV a , (9.9.16)

(c/ (4.6.38)). Rather than integrating 0 over «Ŝ  we integrate the 2-form

&:=riA + rj&

where rj is a complex scalar quantity on ^ whose suggested definition will
be given shortly. When Sf is uncontorted we shall have rj = 1, and this will
hold also for contorted cuts of./+. We obtain (with Sf denoting the surface-
area element 2-form as in (4.14.65))

' = 2Re

= 8Re | i

( 9 9 1 7 )

by (4.14.53), (4.14.66), with aAB given by (9.9.14).*
Recall now the duality between Sa/? and the angular momentum twistor

AaP as discussed in §6.5. We have, equating (6.5.53) with (6.5.51) and
adapting this to our present situation:

whence (from linearity)

(f { (F , - a>01)a)0a>0 + (^ 2 - O,x - AX©0©1 + co'co0)
1 2 47TCJ J 1 2 1 2 1 2

+ 0*/3-(*)2i)^1}>7^- (9.9.19)
1 2

Here Za and Za are arbitrary elements of Ta(^), corresponding to
1 2

solutions {co0,©1}, {co0,©1} of (9.9.13). Equation (9.9.19) serves to define

0 / as the 'angular-momentum twistor' describing the total
gravitational source surrounded by Sf.

Note that, as defined by (9.9.19), Aap has ten complex components (since
is ten-complex-dimensional). For its given physical interpretation

With a cosmological constant X present in Einstein's equations it seems reasonable to
replace the middle term in the above integral by 2o-01(4/

2 — <Dn — A \X
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9.9 Energy-momentum and angular momentum 403

to be completely satisfactory, however, we would anticipate that some
Hermiticity property analogous to (6.3.12), namely

A.7l*=A,yl" , (9.9.20)

should reduce these ten complex components down to ten real ones.
However, an appropriate formulation of (9.9.20) is, as yet, lacking. In order
even to state what (9.9.20) would mean, two ingredients seem necessary.
First, it appears that one would require an (involutory) operation of twistor
complex conjugation for Ta(^), carrying it to its dual space:

T * ( < ^ T a ( < n (9.9.21)

so that the resulting twistor 'norm' ZaZa has signature (+ + ). And
secondly, one apparently would need a (simple? twistor-real?) element

\*PEjW\y) (9.9.22)

with which to complete the relation (9.9.20).
One approach to these problems is to define a local twistor field {ooA, nA,}

on $f (see §6.9), for each ZaeTa(<¥), by setting

n0, = \6'col - ipco0, 7cr = idco0 - \p'co\ (9.9.23)

these, together with (9.9.13), being the tangential parts, in M, of the equation
(6.1.9). We easily check that the transformation formulae (6.9.6) for local
twistors under conformal rescaling are satisfied. However, {coA, nA>} will not
normally be constant under local twistor transport (6.9.10), except when Jt
is conformally flat. We now construct the conformally invariant scalar field
on!f\

= i(d)1 6(0° — cD°6cd1 + co° d'co1 — co16'd)°)

= 2 Im (a)°6d) v-6j1 dco0) (9.9.24)

since p and p' are real. Whenever the quantity (9.9.24) is constant over Sf this
gives us a conformally invariant number which appropriately defines a
Hermitian (+ + ) twistor norm Z ^ for J*(£f\ However, in general,
the expression {ZaZa} is not constant over y , the condition for such
constancy, for all ZaeTa(<$f?), being, in fact that £f is uncontorted (see e.g.,
Jeffryes 1984/?). In the contorted case one can try to get over this by
averaging:

laZa}^, (9.9.25)
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or perhaps alternatively:

Z«2a:= i - 1 (K + £){ZaZa}^, (9.9.26)

where K + K is the Gaussian curvature of y7 (see (4.14.20), (4.14.21),
(4.14.44)); or possibly some expression involving rj should be used. This
yields two (or more) suggestions for a product to achieve the mapping
(9.9.21). But in neither case does one obtain conformal invariance.

The problems with (9.9.22) are, at first sight, similar. For example, we
could define the scalar field over £f,

{^Z'ZO} = no.nv-nvn0. (9.9.27)
1 2 1 2 1 2

but again this is generally not constant (even when 5^ is uncontorted). If we
average this over Sf we are not now constrained by any considerations of
conformal invariance. But the resulting la^eT[a/J](«5^) generally turns out not
to be simple (in the sense of (3.5.30), (3.5.35)). A non-simple \afi could still be
used in (9.9.20); indeed, there are strong indications that generally it is
necessary to use such a 'de Sitter' type \ap. It is not yet known whether
(9.9.20) holds with this \ap perhaps suitably modified by some term(s) in rj.

It seems that a resolution of these difficulties must await further
developments. As we shall see shortly the situation is much pleasanter at
J +. Moreover, as has been shown by Shaw (1983a), in the limiting situation
as $f approaches spacelike infinity i°, a good definition of \aP and of the
norm exists, and (9.9.20) is satisfied provided that appropriate fall-off
conditions are assumed for the curvature. Full agreement is then obtained
with the Arnowitt, Deser and Misner (1961) definition of mass and the
Ashtekar-Hansen (1978) definition of angular momentum. Before turning
to «/+, various remarks concerning a general 5^ are worth making. We note
first that in M there is a formula,

m 2 = - i A a / , A ^ (9.9.28)

for the squared rest-mass m, readily obtainable from (6.3.11), which requires
only a twistor complex-conjugation operation and not a definition of \ap.
Thus we can use (9.9.25) or (9.9.26) to provide two tentative (alternative)
definitions for a 'quasi-local rest-mass' in general relativity (i.e. for the rest-
mass surrounded by a finite closed 2-surface). (Tod (1983a) has also
suggested a modification of (9.9.28) in which the determinant of AaP is used
rather than its norm.)

We take note, also, of an observation due to Tod (1983a), which holds
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9.9 Energy-momentum and angular momentum 405

when n= 1, namely that (9.9.19) can be re-expressed in a remarkably
simple-looking way:

J 1 2
JV W (9-9.29)

1 2 47rG J

(The proof uses (9.9.13), (9.9.23), (4.12.32)(d), (4.12.35), and the parts-
integration formula (4.14.71); it is straightforward if one starts from (9.9.29).)
There is a tantalizing similarity between (9.9.29) and (9.9.27), suggesting
that a relation such as (9.9.20) might be obtainable if the appropriate
definitions could be found. The expression (9.9.29) will have importance
for us at the end of this section. When n # 1, (9.9.29) becomes modified,
with each no> replaced by vn0. + ic^S'v, each nv replaced by V7ir +
ia>°dv and an additional term {cola)° 4- (o°a>1)dvd'v appearing, where v2 = n.

In order to motivate the introduction oin into (9.9.19), and the definition
of it that we shall give in a moment, it will be helpful to point out some
results that have been obtained by Tod (1983a) in various uncontorted
cases. We shall be concerned with the quasi-local rest-mass m as given by
(9.9.28), which is unambiguously defined since in all uncontorted cases the
norm (9.2.24) is constant over Sf.

For the Schwarzschild space-time, the remarkable result is obtained that
for £f lying in any hypersurface J? of spherical symmetry (defined, in the
usual Schwarzschild coordinates, by t and r satisfying some fixed functional
relation) m turns out to be precisely the Schwarzschild mass if £f links the
source (just once) and m = 0 \iSf does not link the source. (Note that £f itself
need not share the spherical symmetry of Jf and is just drawn arbitrarily
within it. Such an Sf is necessarily uncontorted.)

Somewhat similar results are obtained in any vacuum space-time
containing a conformally flat hypersurface 3tf of time-symmetry - where Jf
is allowed to contain 'sources' which can be either matter regions or
'wormholes' (cf. Misner, Thorne and Wheeler 1973). Again, provided
ff a jf, the mass m depends only on the linking properties of ,9* with the
sources and not on its detailed location within Jf. Denoting by w, the value
of m obtained when ff links only the 7th source (just once) and by mjk the
value obtained when Sf links just theyth and fcth sources together (once
each) we find the physically satisfying formula

mjk < mj + mk.

This indicates that a gravitational potential energy contribution is already
contained in the definitions (9.9.19), (9.9.28) (gravitational radiation contri-
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butions being necessarily zero* at J>f). Indeed, in the limit of weak fields,
the difference mj + mk — mjk turns out to have precisely the form of a
Newtonian r" ^potential energy term.**

[These results were obtained with the help of Tod's concept of 3-surface
twistor which applies whenever there is a hypersurface Jf, with normal ta,
with the property that (i) the magnetic part

Hac = *Cabcdt
btd

of the Weyl tensor vanishes on J4?, and (ii) the magnetic part

*(tevecabcd)t
btd

of the normal derivative of the Weyl tensor also vanishes on Jf.
(This second condition can be restated in vacuum as the vanishing of the
curl, on Jtf, of the electric part oiCabcd, which is defined like Hab but without
the dualization.) Such a hypersurface Jtf is 'uncontorted' in the sense that it
can be embedded in conformally flat space-time with the same intrinsic
metric and extrinsic curvature at 3tf, and every 2-surface 9* within Jf is
likewise uncontorted. Then Jf has the property that 3-surface twistors can
be defined on it,f these being the solutions of those parts of (9.9.12) which
refer to derivatives acting entirely within Jf, namely

tA'(AV^CDC) = 0.

(In fact these are also hypersurface twistors for Jf; cf around (7.4.52), the
equation (7.4.52) being in a certain sense dual to the above, with occoc

constant along /^-curves. Here Na = tfl.)]
The quasi-local mass expressions can also be used when 9 lies in matter

regions. In particular, for the spherically symmetric ('electrovac') Reissner-
Nordstrom space-time, the quantity m does not now depend solely on the
linking of 9 with the mass source, but varies in a way consistent with there
being a direct contribution to the mass in agreement with the energy density

Our definition does take gravitational radiation contributions into account when they
are present, however {cf below, in connection with the Bondi-Sachs mass).
It is somewhat remarkable how this comes about in Tod's analysis. The angular-
momentum twistor Aa)? for the various sources turns out to be completely additive, the
non-additiveness of the resulting scalars m arising from the nonlinearity of (9.9.28).
Such inequalities would arise for rest-mass when 4-momenta are added, but here the
inequality runs in the reverse direction. This comes about because the effective twistors
Ia/J get relatively 'distorted' for the different sources, and contributions arise from the
parts of Aa/J which would otherwise be always zero (cf. (6.3.11)).
Tod also defines a modified concept of local twistor transport which is integrable
within jtf, for which the quantity P appearing in (6.9.10) is augmented by a term
involving the electric part of Cabcd. The 3-surface twistors are constant under this
transport.
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of the electromagnetic field.* The FRW models (cf. §9.5), being conformally
flat are comparatively straightforward to handle. In particular, Tod showed
that if Sf is a 2-sphere of rotational symmetry, then the value of m is equal to
the measure of mass that would be surrounded by a sphere of equal area to
Sf in Euclidean space, immersed in a fluid of density equal to that of the
model. Thus, in particular, for a spatially closed model the value of m
increases as the sphere moves outwards, reaching a maximum value for an
'equatorial' sphere, and then reduces back to zero again as the sphere
shrinks to a point 'around the back'. This shows that the total mass of the
entire model is zero, in agreement with expectations on other grounds (cf
Misner, Thorne and Wheeler 1973). The negative potential energy contri-
butions exactly cancel those due to the matter. Indeed, it is a quite general
feature of our construction that the total mass of any closed universe model
must vanish. This is a limiting case of the more general property that the
mass on one side of any finite Sf must be equal to that on the other - as
follows obviously from the symmetry of (9.9.19).

Definition of rj

It seems clear that the above (and other) highly satisfactory results for an
uncontorted Sf ought to carry over to those cases when 9 is contorted. In
particular, one would expect that, in the Schwarzschild space-time, if Sf
does not link the source then one ought to obtain m = 0 whether or not Sf is
contorted. However, K.P. Tod and R.M. Kelly have found, as part of an
involved calculation, that if the factor rj is omitted from the definition
(9.9.19), then the physically unreasonable result m2 < 0 would be obtained
for certain small spheres not linking the Schwarzschild source.

These spheres are obtained by choosing a point P in M and taking cross-
sections of the light cone of P which are defined at fixed affine distance u
from P, normalized against a timelike vector Ta at P. Contorted sections
arise when Ta does not lie in a (r, r)-plane of the ordinary Schwarzschild
coordinates. Without the ^-factor, a negative m2 then arises at order w5, but
this is removed when an ^/-factor, defined according to the following
prescription is included. This prescription had been suggested by a certain
twistor contour integral argument we proposed, which shows that if the

It may be remarked that this is more satisfactory than the result obtained using the
Komar (1959) integral expression (cf. also Pirani 1962), according to which the
contribution from the electromagnetic field is in error by a factor 2, by comparison with
the gravitational contribution (which may be verified by passing to the weak-field
limit).
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Killing spinor (6.7.15) belongs to Tiafi)(£f)9 this rj yields m = 0 whenever Sf
does not link the source in the Schwarzschild space-t ime.

To define rj, form the (conformally invariant) determinant of any four
linearly independent solutions,.

2
coA

3
CO'
4

of (9.9.13) on <f\

Y=

or
i

CO1

1

a«°
1

CO

2

CO1

2 3
CO
4

a<w°
4

6'c 6'c

(9.9.30)
1 2 3 4

(see also Tod 1984, Jeffryes 19846). When £f is uncontorted this is constant
over £f (as follows by reverting to a local twistor description in the
conformally flat embedding space Jl), but in general Y will vary - though it
normally does not vanish (assuming £f is four-dimensional). Then:

choose rj as some constant multiple of Y over Sf.'

There is, unfortunately, still some ambiguity in the precise choice of n. This
could be eliminated (at the cost of breaking conformal invariance in the
definition of rj) by demanding, for example, that the average value of rj over
Sf be unity, or, perhaps more probably, that the average of its logarithm
should be zero; but the status of such choices is unclear.

One significance of the quantity n is that it describes, locally on 5 ,̂ the
non-zero components of an alternating twistor

The ambiguity in the choice of rj for which n=Yx constant is equivalent to
the freedom in such choice of Eafiyd. The quantity r\Sf> which appears in
(9.9.19), provides a surface-element 2-form for the complex conformally
Minkowskian embedding space into which Sf can be put without changing
a or a'. This 2-form is naturally defined up to the above ambiguity. The
details of these matters cannot be discussed here, however, and we turn, for
the rest of this section, to the case when Sf is at null infinity - a situation for
which rj = 1, as we shall see shortly.

\fi at J +

The conformal invariance of the definition of Ta(y) is particularly useful
when we come to apply our construction at a cut of J* (cf §9.8). We shall
assume future-3-asymptotic simplicity and, in addition, that only massless

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


9.9 Energy-momentum and angular momentum 409

fields are present near J+. Accordingly we take the physical energy tensor
fab to be traceless near S + and (cf (5.9.2), (6.7.34)) to scale as

Tab = Q-2fab (9.9.31)
under

9ab = n2gab, (9.9.32)

where we now denote the physical quantities with a tilde, as in §9.8. We
suppose that the matter fields fall off at such a rate that Tab is finite (and at
least C°) at S+

9 which is consistent with the peeling properties of §9.7
holding at J+. (If the fields </> are suitably regular at </+, then so is Tab, by
the assumed invariance (9.9.31) of the expressions for Tab under (9.9.32), cf.
(5.2.4), (5.8.3), (6.8.36).) Under these assumptions the strong asymptotic
Einstein condition of §9.6 will hold.

Now consider the expression (9.9.19) (or (9.9.17)) written in terms of the
physical quantities

¥ABCD = $ABCD, $ABCD=4nGTABaD,9 A = 0, (9.9.33)

but where, in each case, we substitute the RHS of (9.9.33). Adopting the
scaling (9.9.31), together with

*ABCD = n-1$ABCD (9-9.34)

(cf. (9.6.40)), and the spin-frame rescaling of §§9.6, 9.7,

oA = oA9 oA = n~1dA, iA = QiA, iA = TA,

which allows the frame to remain finite at J+, we find

Tooo>i'=(l ^000'l'» M)10'l' = ^ ^OlO'l'J

Hence (9.9.19) becomes, in terms of the 'unphysical' quantities,

A^Z'Z' = - ^— bU^co0 + il/2((o°(o1 + co'co0 )
1 2 47TG J I l 2 \ 1 2 1 2 / 12

-h O(Q) (9.9.35)
the contributions from Tab being all included in the 'O(O)' and where we
have anticipated rj = 1 at <f+

9 cf below. If we take Sf to be a cut of J+, 'O(fi)'
disappears, and we are left with a definition of AaP entirely in terms of i//l9

^2> ^3 a n d the solutions of
6/o)° = 0, 601 =(T(o° (9.9.36)

on the cut (since a' = 0 at J+). We choose Q so that the intrinsic metric of !?
is a sphere.
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410 9. Conformal infinity

The simplification of (9.9.36) over (9.9.13) is a considerable advantage to
us. In the first place, it is clear that (9.9.36) always has exactly four
independent solutions, so Ja(^) is necessarily four-complex-dimensional.
To see this, we refer to (4.15.60), recalling that co° has spin-weight — \, and
find that d'co0 = 0 has just two independent solutions (linear combinations
of _^y^ _^and -±Y±fi,cf. §4.15. Substituting each of these into Sco1 =aco°,
and recalling that co1 and a have respective spin-weights \ and 2, we again
find, from (4.15.60), that for each co° there are just two independent
solutions for co1, making four in all, as required.

In the second place, we find that the ^/-factor discussed earlier can be
chosen to be unity. To construct the relevant determinant (9.9.30) we need
four linearly independent solutions of (9.9.36), two of which can have co° = 0
(i.e. dco1 = 0), so (9.9.30) takes the form

Y=

0

CO1

I

0

co
2

S'co1

2

CO

3

CO1

3

6co°
3

S'co1

3

cov

4

CO1

4

6co°
4

co1

1

6'OJ1

I

CO1

6'co1

2

X

CO0

3

6co°
3

4

dco0

4

By the preceding discussion we can choose co1, co1, co°, co° to be, say, ±Y±y _^,
1 2 3 4

^ Y ^ , -±Y±,-£, - i ^ i . i respectively, which are explicit expressions (cf.
§4.15) not involving a, and so also are d'co1,..., 6co°. Thus the value of the

1 4

determinant is the same quantity, constant over Sf, as would be the case for
Minkowski space. Thus we take rj=l.

In the third place, a unique la/jeT[a^(y), with all the standard properties,
arises (which is actually independent of the choice of cut in a well-defined
sense). Recall the local twistor expression (9.8.41) for \pa on J+. Taking the
complex conjugate and transvecting with ZpZff, we obtain the local twistor

expression on ^\

1 2
= A(ico°nv - i V ~1 2 2 1 2 1

>co°-co0dco0).
1 1 2

(9.9.37)

Now we see from (4.15.60) that any scalar with spin-weight — £ satisfying
d'co0 = 0 must also satisfy

(9.9.38)62co° = 0.
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9.9 Energy-momentum and angular momentum 411

(This would not be true if y were not scaled to be a sphere.) Applying 6 to
the final expression in (9.9.37), we find that it is annihilated. But (9.9.37) has
spin-weight 0, so by the discussion of §4.15 it must be constant over Sf. This
constant value serves to define \oaZ

pZaeC as a skew bilinear function of Zp

P < T 1 2 1

and Za, and this yields our required
UeT[ p f f ] ( ,n (9.9.39)

In the fourth place, a definition of twistor complex conjugation (9.9.21)
can be given which effectively satisfies all the necessary standard properties
(involutory, (+ H ) signature, defined without depending on an
arbitrary choice of conformal factor Q), and with respect to which la/? is
twistor-real. The sought-for Hermiticity property (9.9.20) then turns out to
hold. However, the definition is not quite direct and suffers from a certain
awkwardness in its present form, as we shall shortly see. In the meantime,
various relevant ideas need to be introduced.

Asymptotic spin-space

Note, to begin with, that any Z*eTa(Sf) for which co° = 0 on Sf must satisfy

la/>Za = 0 (9.9.40)

since the co1 component does not appear in (9.9.37). Thus there is a two-
dimensional subspace of ~F(y) annihilated by \aP in the sense of (9.9.40).
This is the space of {O,^1}, where co1 satisfies

6a)1 =0. (9.9.41)

We refer to this space as asymptotic spin-space and denote it by \afiTp(Sf)
when thinking of it as a subspace of Ja(^\ or by §A(Sf) when thinking of
{O,^1} as the two components of a spinor field <oA on Sf which are the
analogues of the restrictions to £f of co^-fields that are constant in M. These
particular spinor fields on Sf, satisfying (9.9.41), can be extended in a natural
way to the whole of J+ by demanding that

J?>1:=(^/ + p / )^1=O. (9.9.42)

So the concept of asymptotic spin-space refers t o / + as a whole and can,
accordingly, be denoted by §A(J+). (In fact, for wA oc i\ (9.9.41) and (9.9.42)
are the parts of the twistor equation (9.9.12) that are tangential to J +

(Bramson 1975a).) It is convenient to scale J+ so that p' = 0 (as we did in
§9.8, cf. (9.8.33)). Then (9.9.42) becomes

= 0 , (9.9.43)
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412 9. Conformal infinity

and we can directly identify all the SA(^) with one another for different cuts
9*. Having specialized to p' = 0, we may as well also choose the cuts of J*
all to have unit-sphere metrics. Thus/rom now on we are adopting (9.8.33).

Properties of the norm at J*

Our procedure for defining ZaZa is to construct the expression (9.9.24) as
before, and to investigate its constancy over Sf by applying 66'. In fact it will
be helpful to use the slightly more general-looking (though essentially
equivalent) 'polarized' form of (9.9.24):

{Z'ZJ = i(d>r6a>° - (o°dajv + co^d'co1 - w'd'cd0). (9.9.44)
0 0 0 0 0

We find, after a short calculation, that

66'{ZaZa} = co°d>0'(i6f2a - i62<r)

= 2aj°dj0' Im (Ail/2 - aN), (9.9.45)
o

by (9.8.89). Note that this vanishes if the cut is purely electric (cf (9.8.93)), as
are all cuts of J + for M (or for stationary M). These are the uncontorted cuts
of. /+ .

When (9.9.45) does vanish we see (cf (4.15.60)) that {ZaZa} must indeed

be constant over £f, and so a good definition of ZaZa, and therefore of
o

(9.9.21), is at hand. For, since {ZaZa} has conformal weight zero on Sf9 its

constancy is invariant under conformal rescalings (9.8.13). However when
(9.9.45) does not vanish (and this will be the general situation of a contorted
Sf\ it will not be a conformally invariant operation to average {ZaZa} over
y , i.e. to extract its j = 0 part, since, as we have seen in the discussion of
§4.15, this would only be invariant for a quantity of conformal weight — 2;
for all other weights the parts with higher j - values mix in with the) = 0 part
under conformal transformations.

We shall see shortly that there is a (perhaps not entirely satisfactory) way
of circumventing this problem. As a preliminary, we note that if either
a;0 = 0 or co° = 0, then the RHS of (9.9.45) does indeed vanish. Thus

o
we have an unambiguous meaning for the Hermitian scalar product ZaZa

o
whenever either Za or Za belongs to \afiTfi(£f). This implies that a certain
map: T%^)->la%(y>), which we shall denote by

Zah->ZyP
a, (9.9.46)
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9.9 Energy-momentum and angular momentum 413

is well-defined. It is characterized by the following property: For each
ZaeJ<x(y\ if we construct from the left-hand member Za of (9.9.46) the well-
o
defined quantity

(obtained from the constant expression (9.9.37)), we get the same result as
when we construct from the right-hand member 2y\

va of (9.9.46) the well-
defined scalar product

(by substituting 2y\
ya in the - now constant - expression (9.9.44)). Equating

these expressions we obtain (9.9.46), and one easily verifies that this is in fact
achieved by

{ C B 0 , © 1 } ^ ^ , - L4ri)0'}. (9.9.47)

Hermiticity ofAap at J+; Bondi-Sachs ^-momentum

The reason for our interest in (9.9.46) is that it suffices for the formulation of
the desired Hermiticity property (9.9.20). (The full definition of a norm on
J(y) will be given shortly.) What is required for (9.9.20) is, in fact, that

Z"A«^Zyl^)eR for all ZaeT*(y) (9.9.48)

Let us check that, with the definition (9.9.47), this is indeed the case.
Substituting Za = Za and Z' = Zyl

y' into (9.9.35), and taking these as the

LHS and RHS of (9.9.47), respectively, we obtain, for the expression in
(9.9.48):

Now, by (9.8.83),

(9.9.49)

J

r
= - <paN(o°(b0 Sf (9.9.50)

(using parts integration (4.14.71) and (9.9.36)(1) and (9.9.36)(2)). Substitut-
ing back into (9.9.49) then gives us
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414 9. Conformal infinity

-oN}(D°cb0'^. (9.9.51)

The imaginary part of (9.9.51) can be re-expressed by means of (9.8.89) as

which is seen to vanish by a double parts integration and use of (9.9.36) and
(9.9.38). Thus (9.9.48) is indeed satisfied, and so the desired reduction from
twenty to ten independent real components in AaP is achieved as in (9.9.20).

We refer to the flat-space descriptions of §§6.3, 6.4 and 6.5 for the
meanings of these components. The vanishing of the projection spinor part
in (6.3.11)(1) corresponds to the fact that had we taken both of Za and Za in

1 2

(9.9.35) from \*fi7fi(Sf) we would have obtained zero (by an argument
similar to (9.9.50)). The expression (9.9.51) itself is seen to refer to an off-
diagonal part of AaP in (6.3.11), i.e. to the total 4-momentum surrounded by
Sf. Indeed, noting that, with standard flat-space twistor descriptions, the
substitution of

Sa/> = 2 ,1^ /0 (9.9.52)

into (9.9.7) yields

and recalling that the primary part of F*fi is the Killing vector £AB\ we find
that

ZAB' = nAnB\ (9.9.53)

if Za is represented in the standard flat-space way as (coA
9 nA). Then the LHS

of (9.9.51) is, in this description,

PaZa = PBcKBKC\ (9.9.54)

where pa is the total 4-momentum described by Aap. Thus (9.9.51) describes
a null component of the 4-momentum surrounded by 9*.

These descriptions make perfectly clear sense for J(, in terms of its
asymptotic spin-space SA(^) and the other spaces S^rc

r(y) constructed
from that in the standard way. Rather than just taking a null component, as
in (9.9.54), it is more usual to take spacelike or timelike ones. This means
taking elements of the linear span of the expressions a)°oo0' on Sf, i.e.
elements of §%S )̂. Incorporating the factor A with the term co°d>0' to
remove the spin-frame dependence, we obtain the linear span of Aco°co0> as
a space of spin-weight 0 conformal-weight 1 scalars W on £f. By (9.9.36),
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9.9 Energy-momentum and angular momentum 415

(9.9.38), these satisfy

S2W=0, 6 '2W=0, (9.9.55)

and W is normally taken to be real. From (4.15.60) we see that any such W is
composed only of j = 0 and 7 = 1 spherical harmonics. Thus, in the
expression

V 2 - oNA~l}WSf, (9.9.56)
4nG

the various such choices of W will provide the four components of energy-
momentum. The choice W= 1 provides the energy, with time-axis corre-
sponding to our selection of unit-sphere metric on £f, and the; = 1 choices
(which in standard spherical polars would be sin 0 cos (j>, sin 9 sin </>, and
cos 0, respectively) provide the 3-momentum. There is no loss, at this stage,
in taking A = 1 since boost-weights are playing no essential role here. The
resulting expression (9.9.56) is the total Bondi-Sachs 4-momentum sur-
rounded by 5^, which was originally arrived at by quite other means (Bondi
19606, Bondi, van der Burg and Metzner 1962, Sachs 1962a).

Alternative expressions for Bondi-Sachs mass

There are various ways of re-expressing (9.9.56), one of which will be
considered in the next section. But it is of some interest to point out another
one of these here. Suppose we choose Q so that the hypersurfaces
Q = constant are null. Then by (9.8.29) we have T' % 0. From (4.12.32)(e)' we
obtain

^«-*20«-N, (9.9.57)

by (9.8.74). Recall also that, by (9.8.81),

pi//2^-AHf
2. (9.9.58)

These expressions tell us that we can interpret (9.9.56), with W= 1, in the
following way. Consider our cut of*/ + to be a limiting member £f = £f§ of a
family of closed spacelike 2-surfaces ^ obtained as the intersections with a
fixed null hypersurface JV, of the null hypersurfaces Q = constant. (Here Jf
is the null hypersurface meeting J+ in Sf) Then we find that the derivative
at Q = 0 with respect to - Q, of

AnG ^ y~z ~~ '~ " ' (9.9.59)
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416 9. Conformal infinity

precisely measures the Bondi-Sachs energy (W= 1). (This follows because
d/d(-Q) = A-1D = A~1p here, and <T'*0.) The integral in (9.9.59) was
briefly considered in (4.14.41) and (4.14.45), where it was noted that it is both
conformally invariant and real. We see now a significance of this reality in
that it implies the reality of (9.9.56) and is thus intimately related to (9.9.48)
and (9.9.20). We note also that (9.9.59) can be re-expressed, using (4.14.20)
and (4.14.44), as

and that, because of the conformal in variance of (9.9.59), the integral (9.9.60)
can be written either in terms of the physical or unphysical curvature
quantities. If we use the physical quantities, then, with the normal fall-off
assumptions about the matter fields, the curvature terms disappear and we
are left with

Hence the rate at which this approaches zero at infinity also defines the
Bondi-Sachs mass (cf. Hawking 1968).

A norm on J\9>) at J +

We shall return to the Bondi-Sachs 4-momentum pa{£f) in the next
section. Indeed, there we shall present an argument showing that if an
appropriate inequality is satisfied by the physical energy tensor (the
'dominant energy condition') on a compact spacelike hypersurface spanned
by Sf, then pa(f) is future-timelike (or is zero if the space-time is flat all
along £f\ For the moment we assume this result and use it to circumvent
the problem we had in defining an appropriate twistor norm for T%$0-

To this end, we assume that the space-time is not flat at Sf (otherwise
there is in any case no problem), and that consequently (with the above
assumption) a uniquely defined asymptotic time direction is singled out at
y , namely that of pa(<$0- We choose a conformal scale at Sf so that the
sphere metric of $f is the one associated with that particular direction, i.e. so
that the choices) = 1 for W all yield zero in (9.9.56). Then we define ZaZa by

o
simply averaging (i.e. selecting the j = 1 part in) (9.9.44). Though this is
undoubtedly inelegant, it is perhaps not unreasonable, in view of the fact
that the obstruction to the constancy of (9.9.44) involves the same quantity
Ail/2 - <TN, in (9.9.45), as is now being used to fix the scale to overcome this
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9.9 Energy-momentum and angular momentum 417

very obstruction. However, in one case the imaginary part enters and in the
other, the real part. A proper understanding of these matters is still lacking.

The exact sequence structure ofJa(^) at J+

One reason that a full definition of twistor norm (i.e. of the complex
conjugation operation (9.9.21) is needed is that otherwise we cannot
properly interpret the remaining 'angular momentum' components of Aaj8.
What we have previously established, in effect, by obtaining the structure
(9.9.39) and (9.9.46), is an analogue for Ja(^) of the short exact sequence of
(6.5.28):

0 - SA(Sf) -> Ta(^) -> §A,(y) -» 0, (9.9.62)

the second map being merely the inclusion \aPJp(Sf) c Ta(£f) and the third,
the resulting factor space map (cf. (6.5.29)). We shall see that the structure
(9.9.39), (9.9.46) will in fact tell us that S ^ ^ ) , defined in this way, may be
actually identified with the complex conjugate of the dual of §A(£f)9 in a
natural way, as the notation implies. (The significance of (9.9.62) for angular
momentum will emerge presently.)

To see that (9.9.39) and (9.9.46) do indeed have the above implication, we
refer first to (9.9.46), as given by (9.9.47). Recalling that SA(^) is defined by
co° = 0, we see that (9.9.47) associates the factor space T*(Sf)/§A(Sf) (i.e. the
space of co° satisfying (9.9.36)(1)) with the complex conjugate §A'(Sf) of
§A(Sf). But it is a little more natural to pass to the conjugate of the dual
space §A(S?).

This can be done legitimately because (9.9.39) and (9.9.46) actually also
provide a concept of

which, as we know, establishes an isomorphism between §A(Sf) and its dual.
To obtain (9.9.63), we first not

them, according to (9.9.46), as

To obtain (9.9.63), we first note that if Za, Zaela'Tj(50» we can represent

Z* = XJya 0 = 1,2). (9.9.64)
j j

Then, observing that according to standard flat-space spinor-part descrip-
tions, as in M, we would have

where

% f,ffJ (9.9.65)

= (or\0), Xa = (/l\ -&A.) 0 = 1,2), (9.9.66)
i J j j
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we use the RHS of (9.9.65) as providing a definition for (9.9.63). Reverting to
descriptions on Sf> and using (9.9.37), (9.9.47), we find for the value of the
quantity (9.9.65), as applied to

Z° = { 0 V } , X^i-A-Hco1'^} 0 = 1,2), (9.9.67)
J j j J j

the expression
A-^d'co1 -co'd'co1), (9.9.68)

1 2 2 1

which, like (9.9.37), is easily seen to be constant on £f. This expression
(9.9.68) (= 9.9.65)) serves to define ' e^ ' as a skew bilinear map

eRS: §*(#>) x Ss(y) -• C, (9.9.69)

and so (9.9.63) is achieved, as desired.

The Minkowski space M(£f) of origins

To understand the meaning of the structure imposed on J\£f) by (9.9.62)
and (9.9.63), let us construct the space CM(Sf) whose points are the two-
dimensional linear subspaces of Ta(^) other than those which intersect
\aPT^) non-trivially. That is to say, CM(Sf) is the 'complexified Minkowski
space' associated with J\Sf). The points of CM(6f) may be identified with
simple elements Ra/?eT[a/%$0 normalized against la/?:

Rafi = Xay/* _ y*XP Ra/*,^ = ^ (9.9.70)

as in (6.2.17), (6.2.29). Then the concept of'squared interval' between two
such points (cf. (1.1.22) may be defined, as in (6.2.30), by the expression

-^RyS€xPyd. (9.9.71)

1 2

Here the element

* ^ e T I a , y a ] ( n (9.9.72)
being skew, is fixed up to a scale factor which itself is determined by the
equation

X ' Y ^ n ^ J " ^ = |XaY'la/?|
2, (9.9.73)

whose validity, in the standard Ta, is easily checked. The expression (9.9.71)
provides CM](<S0 with aflat complex metric identical with that for CM.

Moreover, CM(S^) has a certain amount of'reality structure' arising from
the fact that its (constant) spin-space §A(£f) is a standard 'Lorentzian' one,
with a complex conjugation operation mapping it to §A'(Sf). The sig-
nificance of the sequence (9.9.62) is that it shows how the two types of spin-
space, unprimed and primed, arise in relation to the twistor-space structure.
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9.9 Energy-momentum and angular momentum 419

The complex-conjugacy relation that these spin-spaces enjoy here, entails
the reality structure for CM(Sf) that we mentioned. Another way of stating
this reality concept is that a concept of real elements of the vector space
§%S0 exists. Thus, even though CM(^) is a complex space, the notion of a
real direction in it is meaningful.

But what we need the full twistor complex conjugation for, is to define, via
the relation

a notion of real point in CMI(^), i.e. to be able to pick out a canonical
subspace

M{&) c CM(^), (9.9.74)

with the structure of real Minkowski space. In relation to the angular-
momentum concept, the significance of M(£f) is that it supplies the space of
'origins' about which the angular momentum is to be defined. For, unlike
4-momentum, which belongs simply to Sfl(^), angular momentum
cannot be defined merely in relation to the asymptotic spin-spaces.
Moreover, the space CM(c^), by itself is not sufficient for this, i.e. for the
physical interpretation of

KfieJ^sn. (9.9.75)
The reason is that a 'complex origin' can always be found, about which the
self-dual angular momentum as described by \iA'w (where T\\iAB' is the
primary spinor part of Aa/?, cf (6.3.11), (6.3.10)) vanishes.

To see this, we note how \iA'B' varies as a function of a field point
XeCM(6f) with (complex) position vector xa relative to an origin

(cf the complex analogue of (6.1.51) for a twistor with two symmetric
subscripts); here the 4-momentum pa is constant (i.e. pae§a(Sf)) and, as in
§6.1, pLAW

 ( G S M B ) ( ^ ) ) is constant, agreeing with \iAB> at the point X = 0.
Now if we substitute

xa = 2fjA'B'pAtm -2 + fya (9.9.77)

for the xa of (9.9.76), with m2 = pcp
c, we find that the resulting \iA'B> vanishes.

This tells us that the complex-mass-centre world-line, defined by the position
vectors (9.9.77), as k varies, has vanishing self-dual angular momentum about
each of its points. (Note that pa is assumed to be non-null in (9.9.77); as
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stated earlier, we take pa in fact to be future-timelike.) Thus, the spinor-part
description of Aap can be reduced to one where the angular-momentum part
vanishes, by passing to a complex origin-point in CM(50 (cf. Newman
1975). Without the concept of 'real' points in £M(Sf) we would have no
means of recognizing the magnitude of the spin of a system, this being a
measure of the minimum total angular momentum of the system (in special
relativity, say) as the real origin is varied.

We can examine this question in relation to the Pauli-Lubanski spin-
vector Sa of (6.3.5), in M. With

Mab = ^A'B' + ^A'B'zAB (9.9.78)

as in (6.3.10), and

Sa = ieabcdp
bMcd (9.9.79)

as in (6.3.5), we find, from (3.3.31), that

(9.9.80)

We recall that Sa is constant, so taking the origin OeM, we may substitute
piA.w for \iA.w in (9.9.80). Then comparison with (9.9.77) shows that the
complex-mass-centre world-line is displaced into CM, from Ml, by an
amount given by

I m ( x f l ) = - m - 2 S a (9.9.81)

(taking >IGR). Thus the spin of the system is, in effect, a measure of how far
into the complex the complex mass centre has been displaced, and in order
to know how far this is, we need to know where the 'real' part of the space is
located.

It might be felt that these issues could be avoided simply by defining
fr*P ( = Aa/?) alongside Aa/? and then constructing (9.9.80) from the pair of
them. The difficulty here is that without the operation (9.9.21) of complex
conjugation on Ta(£f) we would have no means of identifying the space

), to which Aap refers, with its complex conjugate CM(«5 )̂, to which
AaP correspondingly refers, and so expressions like (9.9.80) could not be
meaningfully constructed. (Indeed, without (9.9.21) it is not even legitimate
to regard Aafi as an element of T*fi(Sf).)

Angular momentum at </ +

Let us next consider the form of the angular-momentum parts of the
expression (9.9.35). We take Za = Za( = Z% for simplicity, and obtain:
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9.9 Energy-momentum and angular momentum 421

4nG
+ 2(^2 - ( T N ^ - 1 ) ^ 0 ^ 1 } ^ , (9.9.82)

where we have employed (9.8.83), (9.9.36)(1), and integration by parts. The
coefficient (co0)2 of \j/1 is a spin-weighted spherical harmonic with 5 = — 2,
; = 1; its linear span gives all such harmonics. In this particular respect, our
expression (9.9.82) is identical with others that have been previously put
forward. However, the coefficient o)°col of the second term is something
new, having a more complicated angular structure which depends on the
detailed form of the solutions of (9.9.36)(2). (For earlier work, see
Tamburino and Winicour 1966, Bramson 1975ft, 1978, Lind, Messmer and
Newman 1972, Prior 1977, Streubel 1978, Winicour 1968,1980, Geroch and
Winicour 1981.)

It is of some interest, for gaining insight into this, to consider a
representation for the solutions of (9.9.36) which involves a 'potential' for a.
Since o has spin-weight 2, it follows from the discussion of §4.15 (cf.
(4.15.60)) that the equation

62X = a (9.9.83)

always has a solution on Sf and, moreover, that (9.9.83) is conformally
invariant on the sphere (cf (4.15.32)), where X is taken as a conformal
density of weight 1. The choice of X (spin-weight 0) satisfying (9.9.83) is non-
unique up to the addition of a part involving only j = 0 or j = 1 spherical
harmonics (four-dimensional freedom). Also, X can be chosen to be real if
and only if cr is purely electric (cf (9.8.92), (9.8.93)) (Newman and Penrose
1966) i.e. Sf uncontorted.

Now suppose co satisfies (9.9.36)(i), S'co0 = 0. We have seen that (9.9.38),
62co° = 0, is a consequence. Thus we can solve (9.9.36)(2), 6a;1 = <JCO°, by
setting*

CD1 = co°6X - Xdco0 + & (9.9.84)

where
6£ = 0, (9.9.85)

£ having spin-weight j . So (9.9.85) has two solutions, (cf (4.15.60)) providing
the necessary freedom in a>\ for each choice of co°. When (9.9.84) is

* Suggested by K.P. Tod.
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422 9. Conformal infinity

substituted into (9.9.82), this freedom in £ leads precisely to the kind
of freedom that we would anticipate, whereby multiples of the 4-
momentum are added into the angular momentum whenever the origin of
angular momentum is moved (cf. (6.3.3), (9.9.51)). The angular dependence
of the coefficient o / W in (9.9.82), in this sense, is a dependence on angular
integrals of a. This is an essential respect in which our expression (9.9.82)
(Penrose 1982) differs from those that have been given previously (see also
Dray and Streubel 1984).

The reason for this discrepancy is that a different point of view had been
adopted in earlier work with regard to the 'origin' about which the angular
momentum is considered to be taken. The cut Sf itself was previously
thought of as providing the 'origin', just as for the J>+ of Ml any good cut
indeed corresponds to a well-defined point in M, namely the vertex of the
light cone intersecting J+ in the cut. However, for a bad cut, such an
interpretation in Ml is unsatisfactory. If one applies any of these earlier
definitions to a bad cut of J+ in the weak-field (linearized) limit of general
relativity, one obtains incorrect results, whereas the present approach is
specially designed so that the correct results are obtained in the weak-field
limit. In our approach, the space of allowable (real) origins is the
Minkowski space M(£f) - which may be regarded, intuitively, as the 'best
estimate' of where the flat space of origins should be when viewed simply
from the neighbourhood of the particular cut of <f + .

The Killing vector £a which is associated with any particular choice of Qab

according to (9.9.6), will actually correspond to a Killing vector in M(Sf).
The cut <f will itself correspond to a cut &{&) of the C/+(«SO of CM(if)
having the same a as that of if. Only when a is purely electric (cf (9.8.93)), so
if is uncontorted, will if (if) be a cut of J+(if). In that case, £a will define a
particular BMS generator for J*(if) and therefore - since J*(if) and </ +

may be identified with one another at if (if) = if - a particular BMS
generator for «/ + . When a is not purely electric, we get a complex BMS
generator. But only when if is a good cut, with £? corresponding to a
Lorentz rotation in M(if) preserving the cut if(if\ can this BMS generator
be represented as a vector field tangential to if. (In this respect our
approach differs essentially from those that have been given earlier.)

There is still an inherent difficulty, however, when one considers the time-
evolution of the angular momentum of a system. When outgoing gravit-
ational radiation is present, the space M(if\ though remaining a standard
Minkowski space as the cut if is moved, will 'shift', in a sense. Thus it is not
yet clear whether the angular momentum concept that arises for each
separate cut of J>+ can be regarded as the 'same' or not. The difficulty is
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9.10 Bondi-Sachs mass loss and positivity 423

related to that discussed in §9.8 (cf Fig. 9-25), where we saw that the natural
choice of (restricted) Poincare subgroup of the BMS group 'shifts' between
bursts of gravitational radiation. But now we are in a better position in that
the way in which this 'shift' takes place may be precisely followed as the cut
Sf is moved along J*. (Strictly speaking, however, our Poincare subgroup
gets 'shifted into the complex', when a is not purely electric - which can
happen only while the space-time is non-stationary, cf. Sachs 1962fr,
Newman and Penrose 1968.)

It should be emphasized that this 'shifting' is entirely due to the presence
of the radiation and is in no way affected by changes in the choice of cut
during the periods of quiescence. The whole point of our approach, indeed,
is that we have been able to compensate for 'bad' choices of cut (completely,
in the case when the radiation field is weak) and thus largely to 'decouple'
the concept of angular-momentum origin from the cut.

The problems that arise in attempting to identify the various spaces
M(Sf) with one another are not yet properly understood. (It is a question of
adequately identifying the twistor spaces T(Sf) with one another - or of
propagating T(Sf) with time.) The freedom that one initially has in this
identification is, to some extent, complementary to the freedom one has in
selecting a Poincare subgroup of the BMS group. In the exact sequence
(9.9.62), if we regard the spin-spaces §A(6f) and §A>(£f) as fixed - and we
have seen that this is legitimate (cf. our discussion around (9.9.42), (9.9.43)) -
then the freedom lies in the way in which we fill in the middle term of the
sequence. This corresponds to the freedom of making a complex translation
in CM, or of a real translation when we specify that the complex-
conjugation structure of T(6f) is also given. The precise propagation of the
angular momentum concept would require the elimination of this freedom
(cf. Shaw 19840, b).

9.10 Bondi-Sachs mass loss and positivity

The propagation of Bondi-Sachs 4-momentum fortunately does not suffer
from the uncertainties, referred to in the preceding two sections, that arise
with the propagation of the angular momentum concept. The 4-momentum
surrounded by any cut Sf of J + belongs to the asymptotic (co-)vector space
Sfl(«9̂ ) and, as we have seen (cf around (9.9.42), (9.9.43)), these spaces can all
be canonically identified with one another as the space Sfl(</+). A detailed
propagation of 1\Sf) is not required. In this section we give a proof of one
important (and physically desirable) positivity property enjoyed by the
Bondi-Sachs 4-momentum, and we outline a proof of a second. The first is
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424 9. Conformal infinity

the mass-loss formula* which shows, in effect, that the mass-energy carried
by gravitational radiation is positive, its flux at J+ being measured by the
squared norm |N|2 of the Bondi-Sachs complex news function N. The
second property is the positivity of the Bondi-Sachs mass itself, given that
the appropriate 'dominant energy condition' holds within Jt. Our
argument for the latter largely follows one given by Ludvigsen and Vickers
(1982) (and also Horowitz and Perry 1982, Reula and Tod 1984) which is a
development of a remarkable line of argument put forward by Witten
(1981). The positivity of mass as measured at spatial infinity had previously
been first proved by Schoen and Yau (\919a,b) and Witten's original
argument had been concerned with finding an alternative proof for that
case.

Bondi-Sachs mass-loss

We assume that J( is future 4-asymptotically simple and that, as in §9.9
(just after (9.9.32)), the energy tensor when scaled as (9.9.31) remains regular
at </ + . As in §9.8 and the latter portions of §9.9, the physical quantities will
be distinguished by a tilde. Now the physical Bianchi identity (4.10.12):

^P'^PQRS = toGVffiwQ., (9.10.1)

becomes, on substituting (9.9.33)(1) and conformally rescaling by (9.9.32),

VPP4PQRS = 4nGQV?QTRS)P,Q, + 12nGTP.Q.(RSV%fl, (9.10.2)

by (9.9.31), (9.9.34), (6.8.4), (6.7.31), (5.6.15) and (5.6.14). Hence (cf (9.8.23))

Vp'tpQRs ~ ~ nnGAhQTRS)P,v. (9.10.3)

Expressing the 1111', 0111', 0011', and 0001' components of (9.10.3) in the
compacted spin-coefficient formalism, we obtain, respectively (cf. (4.12.27))

j > t y 3 - ( 6 - T M 4 « 0 (9.10.4)

V^i - (S - 2 i#3 - ffih « 4nGATllvv (9.10.5)

K^i - (3 - 3 i # 2 - 2(71^ % SnGAT{01)VV (9.10.6)

}/<Ao - (6 - 4T)<AI - 3 ^ 2 « 12nGATOOVV9 (9.10.7)

where we have scaled J* so that p' = 0, as in §§9.8 and 9.9. (In fact, p' can
easily be reinstated by replacing pf by the conformally invariant pr of
(5.6.33) in the above, the i-terms being subsumed correspondingly into 6 .
Recall also that in a Bondi system we have x = 0, cf. (9.8.72).)

* Bondi 1960/), Bondi, van der Burg and Metzner 1962, Sachs 1962a, b Penrose 1963,
1964/?, 1967/?, Newman and Unti 1962, Newman and Penrose 1968.
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9.10 Bondi-Sachs mass loss and positivity 425

We shall be directly concerned only with (9.10.5) here, but all these
relations have some interest in their own right. For example, (9.10.4) is a
consistency condition for the two formulae (9.8.82), (9.8.83) which relate i//4

and ^ 3 , respectively, to the Bondi-Sachs news function N:

^ 3 « 6 N (9.10.8)

((9.8.33) being assumed, and the commutator (4.12.34)' employed). Again,
(9.10.6) would play a role in the time-evolution of angular momentum
similar to that which will be played here by (9.10.5) in the time-evolution of
4-momentum. Finally, there is a connection between (9.10.7) and the
Einstein (1918) formula for the energy loss due to changes in mass
quadrupole moment of the system, the quantity \j/0 being a measure of this
quadrupole moment (Janis and Newman 1965). But we shall not pursue
these matters here.

Our first purpose is to establish the Bondi-Sachs mass-loss formula, for
which we adopt the form (9.9.56),

M= - ^ W - a N ^ r 1 } ^ , (9.10.9)

where, for simplicity, the weighting factor W has been put equal to unity.
Thus M, in (9.10.9), describes that component of the Bondi-Sachs 4-
momentum, surrounded by the cut y , which refers to the time-direction
defined by our particular choice of unit-sphere metric on 9. We shall refer
to M simply as the mass at 9*. We use the form (4.14.92) of the fundamental
theorem of exterior calculus, applied to a region Z of */+ bounded by two
cuts y7, Sf\ where Sf' lies entirely to the future of Sf along J +. The situation
is indicated in Fig. 9-26 (which may be compared with Fig. 4-3 on p. 282 of
Volume 1). The mass M at Sf can be interpreted as the total mass-energy
(including the non-local gravitational contributions) intercepted by a
compact spacelike 3-surface in M whose boundary lies entirely at Sf. Thus,
any outgoing radiation which intercepts this 3-surface will have its energy
contribution included. The same holds for the mass M' at 9". Now (4.14.92)
(with (4.14.89)) states

1 - (6 - TfrjAST Adu = (b fio6f-(b fio<f, (9.10.10)
J J

)U0, nx being weighted scalars of respective types {0,0} and { - 2,0}. Here we
have put p' = 0 and U = A'1, where U is given in (4.14.88). Comparing
(4.14.88) with (9.8.30), we see that the differential in (9.10.10) must be
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outgoing
radiation

Fig. 9-26. To investigate mass-momentum loss by a radiating system we take the
difference between the total Bondi-Sachs values for two arbitrary cuts y , Sf' of J +

(where we take SP to lie entirely to the future of

AST A d«, by (4.14.89). We take

fxo = aNA-1~il/2 and \xx

and compute, on E,

p'n0 - A(d - T)/i! = o- '̂N + N(J/<7 - 6T + T2)

(9.10.11)

/t - N N - ^1^4 + AT\I*3 - 4nGA2Tllvv - T 6 N

= - NN - 4nGA2Tabn
anb, (9.10.12)

using (9.8.26), (9.8.73), (9.10.5), (9.10.8), and (9.8.28). Thus (9.10.10) tells us
that

M -M'=\ {A2 Tabn
anb + A du ^ 0. (9.10.13)

The first term of the integrand measures the energy flux across J+ of the
matter fields, and is non-negative for reasonable matter. (For example, in
the case of an electromagnetic field we have T11VV = (2ny1\(p2\

2 ^ 0 , by
(5.2.4).) Correspondingly, (47cG)"1NN measures the flux across J* of the
gravitational energy, which establishes the important positive-definite
property of the energy of gravitational radiation. (The original proofs
applied only to cuts £f and &" related by a translation of the BMS group.
Our more general argument follows that of Penrose 1967b.)
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9.10 Bondi-Sachs mass loss and positivity 427

Since our argument applies equally well for any choice of time-axis (i.e.
any unit-sphere metric on Sf\ we have also established that the difference
between the 4-momentum at ^ and that at &" is necessarily a future-causal
vector (cf. also Bonnor and Rotenberg 1966). If N is anywhere non-zero, this
difference is future-timelike.

Non-locality of gravitational wave energy

It is important to note that even though we appear to have a definite local
measure of the gravitational energy flux at </+, this is in fact not so. For the
definition of N is not fixed locally at points of J+, but is fixed instead only
by equations like (9.10.8)(l), which tells us that N is a time-integral of the
gravitational radiation field, or (9.10.8)(2), which tells us that N is an
angular integral of ^3, or (9.8.74), which gives N as a Ricci tensor
component - dependent on a choice of Q and characterized by the global
condition that the metric of $f be that of a unit sphere - or (9.8.73), or
(9.8.75), which again require the global condition of a sphere metric for 9*.
Indeed, it can be shown that despite the conformal invariance

N h - © - 2 N (9.10.14)

enjoyed by N under conformal rescalings (9.8.13) which preserve the
spherical metric of Sf (derived, say, from (9.10.8)(2)), there is no way to
compute N at a point R of J+ merely from the geometry of J( in a small
neighbourhood of R. One can even arrange for M to be exactly flat in such a
neighbourhood and yet have N # 0 at R. This illustrates the essentially non-
local character of gravitational energy.

NP-constants

As a brief digression, we remark that the calculation we performed in §5.12
to establish the validity of the generalized Kirchhoff-D'Adhemar integral
(5.12.6), can also be performed when the light cone %? becomes J+ and a
result similar to (9.10.13) is obtained, in which, however, instead of a
positive quantity on the RHS we get zero (Penrose 19676, Newman and
Penrose 1965, 1968). (This happens because of the vanishing of (5.12.17) in
vacuum.) In place of the mass integral (9.10.9), we have, in this case, five
linearly independent complex quantities referred to as NP-constants:

pjltosr, (9.10.15)

where Y is a type-{ - 5 , - 1 } spin-weighted spherical harmonic with; = 2.
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In terms of the expansions of physical quantities given at the end of §9.8,
J?^o becomes ¥£, the coefficient of r~6 in the expansion of ^ Q . For their
definition and proof of constancy we require just one more degree of
differentiability at J+ than for 4-momentum, namely future 5-asymptotic
simplicity. The proof follows exactly that given in Volume 1 for establishing
(5.12.6). All the quantities which need to vanish do so because of properties
established in §9.8 and §9.10 (vacuum assumed).

The constants (9.10.15) have some very remarkable and non-intuitive
properties, which have led various authors to express disbelief in their
reality (Bardeen and Press 1973, Misner, Thorne and Wheeler 1973).
(However, the calculations at J+ are unambiguous, being not dependent
on power series coordinate expansions, and requiring only a fairly
reasonable degree of smoothness at J*) In the first place, unlike 4-
momentum, the quantities (9.10.15) are exactly conserved in vacuum. In the
second place, there are corresponding quantities for massless fields of any

X
other spin (e.g. three independent quantities CD Ypc(pot? in the electromag-

J
netic case, where now Y has type { — 3, — 1} withy = 1). In the third place,
modifications to (9.10.15) exist which are still exactly conserved even when
certain sources are present at / + (namely electromagnetic or neutrino
sources to the gravitational field, Exton, Newman and Penrose 1969). In the
fourth place, in stationary space-times the quantities (9.10.15) do not
normally vanish, and they then describe certain curious origin-independent
combinations of multipole moments of the general nature of

Q = mass x (complex quadrupole moment) —
(dipole moment + i x angular momentum)2 (9.10.16)

in the gravitational case, or a corresponding expression bilinear in
gravitational and electromagnetic moments in the electromagnetic case.

This last property is perhaps the most striking, since it tells us that the
integrals (9.10.15) have non-trivial content. In contrast, in the case of
linearized gravity, the integrals (9.10.15) still exist and are exactly conser-
ved, but no analogue of (9.10.16) occurs. Indeed, the quantities (9.10.15)
always vanish for retarded fields in the linear theory, but this does not
happen in the full theory. One implication of (9.10.16) for stationary
gravitational fields, in conjunction with the exact conservation of (9.10.15),
is that an exactly stationary system cannot radiate gravitationally and then
return to exact stationarity if the multipole combination (9.10.16) is
different after the radiation is emitted from what it was before.

It should be stressed, however, that while this may seem puzzling, it is not,
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9.10 Bondi-Sachs mass loss and positivity 429

in fact, unreasonable physically. The expected behaviour is roughly the
following: We may start with an exactly stationary gravitating system in
which the multipole-moment combination (9.10.16) has some prescribed
value. The system then emits a burst of gravitational radiation, freely
changing the multipole combination (9.10.16) to some other value. Owing
to nonlinearity in Einstein's theory, this radiation then back-scatters to
some extent, and from then on there is a significant contribution to (9.10.15)
in which this back-scattered field enters linearly, and for this reason it can
swamp the effect of the new moment combination (9.10.16). Though the
back-scattered field might seem to be trivially small by comparison with the
nearly stationary new multipole field, its continuing presence can remain
sufficient to spoil the stationarity required for the applicability of (9.10.16).

Of course, this does not explain, in any physically comprehensible terms,
why (9.10.15) should be conserved or what the physical status of (9.10.16) is.
These are matters which remain decidedly mysterious and await further
insights.

Witteris procedure for mass positivity

We finally turn to a question whose physical status is beyond dispute: the
positivity of total mass in general relativity. The first complete argument for
this was given in 1979 by Schoen and Yau (1979a, b). Their proof, however,
referred to the mass defined at spatial infinity (the 'i0' of §9.1), and not
directly to the Bondi-Sachs mass (however, cf. Schoen and Yau 1982). The
positivity of mass at null infinity is in fact an essentially stronger result than
that concerning spatial infinity. If we assume the result (Ashtekar and
Magnon-Ashtekar 1979) that the mass at spatial infinity is the past limit of
the Bondi-Sachs mass taken as the cut £f recedes into the past along J*
(i.e. approaches 'i0') - though this is by no means obvious for the standard
(ADM) mass expression of Arnowitt, Deser and Misner (1961) - then from
the mass-loss formula (9.10.13) we would obtain positivity at spatial infinity
as a consequence of positivity at null infinity. Moreover, the positivity at
null infinity has a somewhat greater physical content since it tells us that a
system cannot radiate more energy than its original mass, its resulting
negative energy being not possible to estimate by a separate spa£/a/-infinity
measure, because the system perhaps continues to radiate for ever. (Of
course, the most satisfactory positivity theorem would be one at the
quasi-local level, but this is at present lacking.)

The key new ingredient, originally introduced by Witten (1981) to
support an alternative positivity proof at spatial infinity, is to provide a
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430 9. Conformal infinity

means of extending inwards from infinity, along a spacelike hypersurface
Jif, a vector £? which at infinity would approach the constant 'Killing
vector' serving to define the relevant four-momentum component. This is
done by taking £a to be null, and thus of the form

? = XAXA\ (9.10.17)

over Jf, where XA suitably approaches constancy at infinity. The spinor XA

is subject to an elliptic differential equation o n J f - which we shall here
refer to as the SW-equation - that serves to fix its value over J f once the
above asymptotic behaviour has been specified. A remarkable identity
(found by Witten 1981 and also, for a different purpose, by Sen 1981) shows
that a quantity constructed from XA (which actually becomes the
asymptotic 4-momentum null-component £apa at infinity) is equal to a non-
negative integral over J f provided (i) that the local energy tensor satisfies
the dominant energy condition (9.10.42) below, and (ii) that XA satisfies the
SW-equation throughout J"f.

Witten's original work was slightly corrected and made rigorous by a
number of authors (Nester 1981, Parker and Taubes 1982), and subsequent
modifications of the original argument were found so that it can also be
applied at null infinity to obtain positivity for the Bondi-Sachs mass.* It
seems unlikely that this argument has yet found its definitive form, but we
shall indicate three approaches that appear to have been successful, namely
those of Ludvigsen and Vickers (1982), Horowitz and Perry (1982), and
Reula and Tod (1984), concentrating mainly on the first of these.

The common ingredient of these various approaches is the Sen-Witten
identity, together with the general way in which it is used, as initiated by
Witten. We consider a 2-form

S = - \lB,VaXBdxa A dxb, (9.10.18)

where XA is chosen to be, in an appropriate sense, asymptotically constant.
There are two properties of relevance that are claimed for this form. First,
its integral over a closed 2-surface ¥ has the limiting value

Z^PaX
AXA> (9.10.19)

y

as Sf recedes suitably to infinity, approaching a cut of«/+ or else spacelike
infinity, and where pa is the relevant asymptotic measure of four-

See also Walker (1982) for a survey of some of these results.
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momentum. Second, if tf is a compact spacelike (or locally achronal*) 3-
surface with boundary dJf = y7, and if XA satisfies a suitable elliptic
equation on Jf and the dominant energy condition holds throughout tf,
then

(9.10.20)

with equality holding only if XA is constant over Jf.
The usual choice for the equation to be satisfied by kA on 3tf is the SW-

equation:

DAA,lA = 0 (9.10.21)

(though there is actually some flexibility in the choice of equation (9.10.21),
cf. Horowitz and Perry 1982), where

Da = ha
bVb, (9.10.22)

with hb the orthogonal projector tangential to Jf; thus

Kb = ga
b-tat\ (9.10.23)

ta being the unit normal to Jf7. Clearly

\ab] = 0, ha
bhb

c = ha
c, taha

b = O. (9.10.24)

The following spinor expression for ha
b is sometimes useful

Ub _!_ Bp B' _ fB'tBna — 2bA bA' lA lA'->

as is a consequent re-formulation for the SW-equation (9.10.21):

*MVBM'^ = 0. (9.10.25)

(When working with spinors on spacelike 3-surfaces it can be convenient to
normalize f by tat

a = 2 instead of as a unit normal. Then the operators tA

and t\. serve to convert primed into unprimed indices and vice versa, so that
only one kind of index need be employed - compare the general discussion
of spinors in the Appendix to this volume. It may be remarked that DAA>, or
rather tfA'VB)A>, though not quite the Dirac operator intrinsic to the 3-
surface, is closely related to it, cf. Sen 1981).

Relation to the Bondi-Sachs 4-momentum

Note that the reality of the integral (9.10.19) is manifest, because the
imaginary part of (9.10.18) is the curl: ̂ d(A.AXA, dxa). Indeed, it has been more

* The term 'achronal' is used here to allow the possibility that JC may be null in places.
This is needed for the Ludvigsen-Vickers argument.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


432 9. Conformal infinity

usual to use the real part of E (Nester 1981) in the integrals (9.10.19),
(9.10.20), instead of the versions suggested here. Our reason for preferring
the latter, apart from their greater simplicity, is that they appear to relate
more directly to the expressions of §9.9, notably to (9.9.29).

To see this, and to derive the necessary connection with Bondi-Sachs 4-
momentum, recall that in the discussion of §9.9 we obtained a null
component of the 4-momentum pa

9 measured at a cut Sf of </+, by choosing
ZaeTa(y) and then substituting Zp and Zy\

ya for Zfi and Za, respectively, in
1 2

(9.9.19). Our plan here is to consider the %' of (9.10.18) as being, in effect,
the projection part *nB.9 of Z ;̂ and the lXB (or, rather 7B') of (9.10.18) as
being, in effect, (minus) the primary part of Zy\

yP. To help with this picture
we write nB> in place of 1B. and d)B ( = — itB) in place of XB in (9.10.18). When
S is integrated over a spacelike 2-surface 5^ (considered as a finite surface,
for the moment) we find, in this notation, using (4.14.52), (4.14.53), (4.14.66),
that

a = i nB,Va(bBdxa Adxb
B> v aujB

= (!) {no(d(b0 - p'cb1)

= - i

by (4.12.28), where we have adopted the notation (9.9.23) (with tildes). Note
that (apart from the factor (4nG)~x) this is formally identical with the Tod
form (9.9.29) of the quasi-local '4-momentum' integral (9.9.48). When Sf is
moved out to become a cut of </+ this correspondence becomes exact,
provided that kA approaches constancy at infinity, appropriately. This
requires that the conformally rescaled d>A (taking the standard twistor
scaling SA = (bA of (6.1.2)) must actually satisfy the 2-surface twistor
equations (9.9.36) on £f aJ+, in the special case (9.9.41) corresponding to
the elements of la/%(<90, namely

6a)1 = 0 , a>° = 0. (9.10.26)

Here, 'hatted' quantities refer to the unphysical metric, finite o n / + , s o w e
are again adopting (5.6.1), (5.6.2):

<U = ^ 2 < u , sAB = QeAB,

rather than (9.9.32).
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9.10 Bondi-Sachs mass loss and positivity 433

This establishes, in effect, that the LHS of (9.10.19) indeed approaches the
RHS as Sf becomes a cut of«/+ , where pa is the Bondi-Sachs 4-momentum
as described earlier in this section and in §9.9. For a completely rigorous
discussion, some more attention would have to be paid to the limiting
behaviour of XA9 but we do not enter into the details of this here. (For a
corresponding argument applied at spacelike infinity i°, where agreement
with the ADM mass is obtained, see Shaw 1983a, b.)

Ludvigsen-Vickers determination of' kA

Such discussion of the limiting behaviour of kA also has a role to play in the
positivity part of the argument (9.10.20). Different authors have adopted
different approaches. For example, Ludvigsen and Vickers require that Jf
is not actually spacelike all the way to «/+ , but instead consists of two
pieces: an inner part, which is indeed spacelike, but bounded by a finite
spacelike topological 2-sphere «^, the annular portion from & to the cut Sf
of «/+ being taken to be null (see Fig. 9-27). This necessitates a slight
adaptation of the SW-equation so that it applies when Jtf becomes null. For
this one can use (9.10.25), with ta replaced by the null vector la = oAoA\ and
obtain

<VVB)O'^ = 0, (9.10.27)

which takes the form

pk0 = 0, (p - 2p)kx = (25' - T'MO (9.10.28)

in the compacted spin-coefficient formalism, where the flagpole direction of
iA is chosen smoothly, to become tangent t o / + at Sf. (We may take it

Fig. 9-27. In the Ludvigsen-Vickers proof of positivity of the Bondi-Sachs mass,
the SW-equation is first used (in degenerate form) to propagate k0 in from J + along
the null portion of 3tf\ then At is determined from the elliptic form of the equation on
the spacelike region $£ and is finally propagated back to J+.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


434 9. Conformal infinity

parallelly propagated along the rays as in §9.7, if desired, in which case
T' = 0.)

We use (9.10.28)(l) to propagate Xo inwards from infinity, where k0 =
— cb1 is subject to the required condition (9.10.26) at Sf. When $P is reached,
Xo will take some smooth value, where we assume that 9* has been chosen
sufficiently 'near' to J+ that no singularities (caustics or crossing regions)
occur on the null portion of ^f. The values of Xo on & are then taken as the
boundary values for the elliptic SW-equation on the portion & (assumed to
be smooth) of J f bounded by 9*. (This boundary value problem is well
posed, cf. Atiyah, Patodi and Singer 1975.) A 2^-field satisfying the SW-
equation on Jfr is obtained (unique if Jfr has Euclidean topology), agreeing
with Xo at 9, and this supplies the remaining component Xx at &. This
component is then propagated back to Sf along the null portion of J f using
(9.10.28)(2). It is not hard to verify, from the asymptotic form of the relevant
quantities, that (9.10.26)(2) is then necessarily satisfied whatever values Xl

has at 9.
In the Horowitz-Perry and Reula-Tod approaches, as in an earlier

discussion by Tod and Horowitz (1982), 3tf is taken to be spacelike
everywhere, spanning the cut Sf of J + . But only Reula and Tod adopt
(9.10.21) throughout. Horowitz and Perry use a modified version in which f
is not taken normal to Jf, whereas Horowitz and Tod adopt the Weyl
neutrino equation V AA>kA = 0 in place of (9.10.21) for part of their argument.
For all these approaches there is a considerable complication, not
encountered with the Ludvigsen-Vickers argument, in that one needs some
version of the boundary value problem for the SW-equation in which subtle
fall-off conditions at infinity need to be considered. We do not enter into
these matters here.

Positivity o/dS

We next establish (9.10.20). We have

dH = a + )J (9.10.29)
where

a = - iXc,VaVbXcdxa A dxb A dxc (9.10.30)
and

fi= - i(VflXc)(Vfc/lc)dxfl A dxb A dxc. (9.10.31)

Consider (9.10.30) first. Because dxa A dxb A dxc is skew, we can replace
VflVb by (one-half) the commutator Aab {cf. (4.2.14)), whereupon the
derivative operators disappear, in favour of curvature terms. Since it is a
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9.10 Bondi-Sachs mass loss and positivity 435

little easier to work with duals, we write

Xa = ieabcd dxb A dxc A dxd (9.10.32)

(cf (3.4.30)), and obtain

«= -l-eahcdIcAabXcXd. (9.10.33)

By (3.4.22) and (4.9.1) this becomes

aXb, (9.10.34)

where we have used (4.9.11)(2), (4.9.17), (4.6.32), and (9.10.17).
Now consider (9.10.31), which we write as

P = iWaC.WbCdxa Adxb Adxc (9.10.35)
with

WaB = VaXB. (9.10.36)

Again we consider duals; so, by (3.3.31),

P=ie°»«>WbC.WdCXa

= (eACsBDeA'D'eBC' -eADeBCeAC'f?'D')WbC.WiCXa

= {Wb
B'WBA'A- Wb

A'WABB)Xa

= (DBW + UB.WB'° - Wb
AWbA)Xa, (9.10.37)

where we have used the e-identity (2.5.20) and where we have written

UB=WAB
A. (9.10.38)

We are now in a position to consider the positivity of (9.10.20):

(9.10.39)

Here we can put

?#e for Xa (9.10.40)

where (assuming Jf is spacelike) f is the unit normal to 3tf and #£ is its 3-
volume element (where a suitable modification of this is needed for the
portion of Jf which is null in the Ludvigsen-Vickers case but this is easily
achieved). Then

a=4nG \TabZ
atb3tf, (9.10.41)

J
which is always non-negative if the dominant energy condition (cf Wald
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436 9. Conformal infinity

1984, Hawking and Ellis 1973 and (5.2.9), Volume 1):

Tabu
avb^0 for all future-causal u\va (9.10.42)

holds. Moreover, the expression eabcdta when transvected by tb or td (or, of
course, tc) gives zero, so

eabcdta = hp
bhq

deapc%, (9.10.43)

by (9.10.23). It then follows from (9.10.40) that, on ^f, we can make the
replacement Va^-*Z)fl and hence also the following:

\Y i >hcw = D X U 'i >D >XA (91044)

in the algebraic identity (9.10.37). The last term in (9.10.44) vanishes
whenever the SW-equation holds, and thus, if we assume (9.10.21), we get

r
P=-\ ha\DaXc){DbIc)f3tf. (9.10.45)

Now the intrinsic metric tensor lhab' for J f is negative-definite (for
spacelike), so we can express it as

hab = - xaxb - yayb - zazb,

with xfl, ya, za real; and tc, being timelike, can be expressed as

Consequently we find

hab(DJc)(DbXc)t
c^0, (9.10.46)

the left-hand side being a sum of negative terms, which are the squared
moduli of the various components of

DaXc. (9.10.47)

Evidently, the equality in (9.10.46) holds only when (9.10.47) vanishes, i.e.
only when Xc is covariantly constant over the whole of Jf.

This establishes the essential positivity of (9.10.39) and hence the required
non-negativity property (9.10.20). Allowing XA to take different allowed
values at infinity, the required non-negativity property - that the Bondi-
Sachs 4-momentum pa be future-causal - is thereby established. (By the
constancy of XA whenever equality holds in (9.10.46), it is not hard to
establish also the 'converse' result that pa = 0, or indeed that pa is null, only if
the curvature vanishes throughout Jf, cfi Witten 1981.)

Note that we obtain positivity for the total energy though, as we
remarked earlier, gravitational potential energy is negative. Thus we see
that it can never be more negative than the positive mass-energy that gives
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9.10 Bondi-Sachs mass loss and positivity 437

rise to it. In the Witten argument, there is a positive total gravitational
energy arising from the integral of figiven by (9.10.45). But this is manifestly
non-local since it depends on the choice of solution of (9.10.21) that arises
with the given boundary conditions. It is remarkable that the precise
expression for this seems to require an essential description in terms of
spinors.

Sparling's 3-form

The 2-spinor expression

n = 4 ( H + S) (9.10.48)

(which can replace S in (9.10.19) and (9.10.20)) was studied by Nester
(1981) (Witten having originally used a Dirac 4-spinor formulation). Its
exterior derivative is the same as that of E itself (as we have seen), and is
given by (9.10.29). By (9.10.34), we see that a vanishes in vacuum - and,
indeed, a is a 3-form which, for varying kA, is essentially equivalent to the
energy tensor Tab. Thus, in vacuum we have

d n = d3 = £ (9.10.49)
and hence

dfi=0. (9.10.50)

Indeed, Sparling (1983,1984) has shown that the condition dfi = 0 (to hold
for all XA) is also sufficient for the vacuum equations to hold, so (9.10.50)
provides a neat formulation of the Einstein vacuum equations. For this
reason, fi is frequently referred to as the Sparling 3-form.

It should be noted that the forms ft, S, a and fi really refer to the (dual)
spin-vector bundle & over J(. (See Fig. 1-15 of Volume 1, p. 48 for a graphic
illustration of this bundle.) Thus, the vanishing of the Sparling form
expresses the content of Einstein's field equations in terms of the spin-vector
bundle. In fact Sparling also allows the presence of torsion in the connection
Vfl defining fi in (9.10.31). Then dfi= 0 expresses the vanishing of torsion
together with the vacuum equations.

On 0$ it is appropriate to use the notation

S = - \lwdXB A dx\ fi=- idXc A dXc A dxc (9.10.51)

where, in accordance with the conventions of §4.3 we have, for any cross-
section of & over a portion of M (i.e. spinor field kA)

dXB = VhkB = VaXBdxa (9.10.52)

and (though xa itself does not exist)
dxa:=ga

ir (9.10.53)
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438 9. Conformal infinity

The latter is a reasonable notation (cf. also (4.2.55)) since, in local
coordinates xa, the coordinate dual basis is

^a = ^ = d x a , (9.10.54)

so (9.10.53) is simply the abstract-index version of (9.10.54). We do not have
d2 = 0 when applied to XA9 because of the abstract* index A. By (4.9.11),
(4.6.34) and (4.2.31) we obtain instead (where, for generality we have
included a torsion Tab

c as in (4.2.22))

i \ 2 ( A 2 ) l \ l 2 h 2 l \ l 2 B

and
d2xa=-±Tili2

a (9.10.55)

(by (9.10.54), (4.2.22) and d2xa = 0). From these relations we can readily
obtain Sparling's result. (Note that d2xa = 0 iff the torsion vanishes.)

There are relations between the forms considered here and the forms h
and L of the invariant contact structure of twistor theory considered in §7.4,
these being forms defined on the space Jf of'null twistors' in Jt. In fact we
can easily check that

L = iS-iS (9.10.56)

where all forms now refer to $ (which is a bundle over Jf as well as over M,
so that the forms can be pulled back to @). Thus, by (9.10.56) and (9.10.48),
£1 and — jL are the real and imaginary parts, respectively, of S. However S
and the Sparling form fi do not directly apply to the twistor space Jf and
further work will be required to extract the full significance of these
relations.

It is interesting, yet somewhat tantalizing to find so many such
interconnections, relating energy-momentum, angular momentum,
Einstein's field equations and twistor theory. The full role of twistor theory
in this context remains problematical as of now. However the essentially
spinorial nature of the Witten argument, and now also of the 2-surface
twistor procedures of §9.9, provide convincing evidence of a hitherto
unsuspected and deep role for spinor ideas in connection with energy and
momentum. On the face of it this seems remarkable, since those physical

Some people prefer to use a symbol other than 'd' when its use would entail d2 # 0.
However, the usage adopted here is entirely logical in the context of the abstract-index
formalism. See Volume 1, Chapters 2 and 4 for details.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486.006
https://www.cambridge.org/core


9.10 Bondi-Sachs mass loss and positivity 439

quantities have always previously been described in terms of 'vectorial' or
Censorial' (i.e. integral spin) entities, particularly those referring to trans-
lational motions of space-time. In general relativity such translational
symmetries may be absent, and it appears that spinors are needed in order
to reveal the deeper attributes of these fundamentally important physical
quantities.
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Appendix

Spinors in n dimensions

The spinors that we have been concerned with in these volumes are part of a
general pattern. A spinor* concept exists for the group of proper rotations
in any dimension n, and with any signature.

Whereas for the particular case n — 4 (and especially for the signature
H of space-time) spinors have an exceptional power and utility,
they also have considerable importance for other n-values. However, since
the spin-space dimension turns out to increase exponentially with n, one
naturally finds that it is with comparatively small n-values that the utility
of an entirely spinorial formalism is at its greatest. Moreoever, with even
n-values the spinors can be broken down naturally into smaller objects -
the reduced spinors, which are the most important ingredients of the
theory. For n = 4, the reduced spinors are our familiar unprimed and
primed spin-vectors, constituting two-dimensional spaces each. For n = 6,
taking the relevant orthogonal group to be the 50(2,4) of §9.2, the reduced
spinors are the (univalent) twistors and dual twistors - four-dimensional
each. For n = 2, at a point of a spacelike 2-surface in space-time, they
are the one-dimensional spin-weighted scalars, of spin-weight j or — \
(like the o1 or co° of §9.9). For general even n, the dimension of reduced
spinors is 2*""1, the combined space of (unreduced) spinors being of
dimension N = 2*n. For a general odd n there is no invariant reduction to
simpler parts,** and the dimension of the spin-space is N — 2*"~*. In each
case, these spinors are two-valued spinorial objects (in the sense of §1.5,
Volume 1) and thus change sign under rotation through 2n. The spin-group
Spin(n) [or Spin(p,g)] is a two-fold cover of the corresponding proper1

rotation group SO(n) [or SO(p,q) or O\(p,q)'].

* Unless otherwise stated, the term 'spinor', as used in this appendix, refers to a univalent
object - a sort of 'spin-vector'.

* * This is partly a question of the definition adopted. One could alternatively say that in
the case of odd n, spin-space is of dimension 2itl + * and reduces to two spaces each of
dimension 2*"" *. But unlike the case of even n, only one of these spaces need be
considered in the translation of vector-tensor expressions into spinor form.

t The corresponding notion for 0{n) [or 0{p, q)] is referred to as Pin (n) [or Pin (p, <?)]; cf.
Porteous (1981).
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Spinors in n dimensions 441

In this appendix we present an outlined account of the basic algebraic
and geometric ideas needed for the spinor theory of n dimensions. (For
further details we refer the reader to the classic accounts of Cartan 1966 and
of Brauer and Weyl 1935; cf. also Veblen 1933a, ft, 1934, Chevalley 1954,
Porteous 1981, Adams 1981, Lawson and Michelsohn 1986.)

The Clifford equation; y-matrices

The usual starting point is the Clifford (-Dirac) equation

YaYb + YbYa=-20abI, (B.I)

where y 1,..., yn are (complex) N x N matrices (and where N will turn out to
be as given above), #ab are the components of some (real or complex) n-
dimensional non-degenerate symmetric tensor, and I is the N x N unit
matrix. Somewhat more invariantly we can introduce /i-dimensional
abstract indices a, b, c,... and write

Y*Y* + Y*Y* = - 2flfal,I, i.e. y(ayfc) = - gab^ (B.2)

The object ya may now be thought of as a matrix with abstract-indexed
entries, each entry belonging to an n-dimensional vector space Vfl (or
perhaps module, in case we are concerned with spinor fields on an n-
manifold) with non-degenerate symmetric metric tensor gabs\l{ab). At this
stage we shall assume that Va is a complex* vector space (or module), so the
question of signature for gab does not properly arise. Later on we shall
briefly consider reality conditions and examine how the choice of signature
can affect the structure of the spin-space.

For a properly invariant viewpoint, we should not think of ya explicitly as
a matrix [or ya explicitly as matrices] but as an element [elements] of some
abstract algebra, providing linear transformations of some abstract space:
spin-space. Thus, if desired, we can introduce (say lower case Greek)
abstract indices and write

la/ loryj' = ylp'9...9ymp"] (B.3)

where the abstract indices /?, a refer to spin-space, which is a complex vector
space § p (or module Sp, in the case of spinor fields on an n-manifold). We
assume irreducibility for the algebra generated by ya, and then it turns out
that S p has dimension N = 2*n (n even) or N = 2*n~* (n odd). (Matrices of

The discussion is not substantially affected, however, if Va is taken to be a vector space
over any field closed under the taking of square roots and (with some reorganization) of
any characteristic other than two.
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this size N x N are the smallest that can satisfy (B.I)). The equation (B.2)
can now be written

yaa = - 2gabs
z
p. (B.4)

If we choose some specific basis 5p
l9..., <5& = <5£ for §p , then, referring to

this basis, we find an explicit realization of the matrix ya as

ya = (ya;i ya; = ya;K
d°o (B-5)

(5°a being the dual basis of 3p
p), and with a similar expression for the ya.

However, the notation ya or ya is not taken to be specific as to whether or
not a basis for S p has been selected, and can equally well apply when p and a
are abstract, or perhaps partially reduced to a direct sum of abstract indices
('block' abstract-indexed matrices).

Independently of <5£, we may choose a basis gra
1,... ,gra

n = g*, for Vfl, with
dual basis gA

a
9 which enables us to translate between the quantities

Yi--,Y,. (B.6)

of (B.I) and the more abstract yfl of (B.2):

Ya = Ya0a
fl; Ya = Y«0a' (B.7)

It is usual to choose this basis so that #ab is diagonal with entries + 1.
(Indeed, since Vfl is complex we can choose all non-zero entries to be -hi,
but since we shall be interested in the real case later, it will be more helpful to
allow for both signs at this stage.) Then (B.I) tells us that the different
matrices (B.6) all anti-commute with one another and have squares equal to
+ 1. The (complex) Clifford algebra £ (Clifford 1882) is the algebra over C
generated by (i.e. complex polynomials in) the quantities (B.6) and subject
to (B.I).

The element

1 = YiY2---Yn (B.8)

of G is of considerable interest. Note that if n is even this also anti-commutes
with each of y x,..., yn while if n is odd it commutes with each of them. More
invariantly we can write (B.8) as

i| = -^"--y f l l . . .Y f l i i (B.9)

or

where we choose an alternating tensor
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Spinors in n dimensions 443

with e12•••"= 1, so that

i _ £ a , . . f l n e , , . . ^ i b ^ ^ = ( _ i r (B.11)

where w is the number of negative elements of (the diagonal) #ab. Note that

where s = n — 2u is the 'signature' of #ab.
Consider the case: n odd, so ij commutes with all elements of C We

assume irreducibility* for our algebra, so Schur's lemma implies that T|
must, in this case, be represented by a multiple of I:

r\ = ± I or ± ii (i.e. np
a =±d°or ± i<5J) if n is odd (B.I3)

(cf. (B.12)). The real [imaginary] case occurs when s = 1 (mod 4) [or s = 3
(mod4)] (either sign in (B.I3) being allowable).

But for n even, the anti-commutativity of r\ with each ya implies that these
can be represented as

where p = R®R\ a = S@S', the T appearing when s = 2 (mod4). The
quantities yaR

s and yflK
 s satisfy

y(a\RiS'yb)S'T=-9ab^l and ?(fl|R1
s7b)S

T' = - gab^R' (B.15)

by virtue of (B.4). The spin-space § p splits into the direct sum

Sp = S*0S*' (B.16)

where each reduced spin-space §*, §*' has dimension ^N = 2*n~1.
The notation has been adopted, in (B.I4), that any kernel symbol with

abstract indices p, cr,... may have these indices replaced correspondingly by
R or R\ S or 5', etc., and that the part of the quantity in question which is
projected into the relevant reduced spin-space is thereby denoted. More
explicitly, we have projection operators

n = | ( I - i ^ ) , fi = i(I + i*sri) (neven), (B.17)
so that

i y = diag($!,0), f [ / = diag(0,<5|',) (B.18)

(conventionally fixing the ambiguous sign in (B.14)), which achieve these
projections to the reduced spin-spaces. We have

See, for example Volume 1, p. 141.
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Clifford algebra and forms

The entire Clifford algebra consists of (finite) sums of the form

Al + Baya + Cabyayb + Dabcyayhyc + • • • (B.20)

However, because of (B.2), it turns out that we need consider only anti-
symmetrized products

For example,

lalb = 7 [alb] ~ 9ab^

YaYfeYc = Y[aYftYc] ~ Qabic + GacJb ~ Qbcia, (B.22)

with corresponding (but more complicated) expressions holding for higher-
order products. Thus, the coefficients in (B.20) may be assumed to be anti-
symmetric:

Qab = C[ab]^ jyabc = plabc] ^ (g 23)

and the whole series (B.20) terminates at the (n + l)th term. The number of
formally independent elements of the Clifford algebra is the total number of
independent components A, 2?a, Cab,... (subject to (B.23)), i.e.

1 + n + \n{n - 1) + • • • + n + 1 = 2". (B.24)

Each element of the (formal) algebra may be viewed as a collection
consisting of a 0-form, a l-form, a 2-form, etc., often written formally as a
(finite) sum

,4 + B + C + D + --- (B.25)
where

B = B f l =B^ f l i l , C = CM2, D = D l l l2 l3>... (B.26)

(lowering indices, generally, with gab and adopting the notation of (4.3.10)).
Clifford multiplication on expressions (B.25) (i.e. as induced by products of
expressions (B.20) acts distributively (and associatively), where the Clifford
product of a p-form with a g-form is a linear combination of terms each
of which is obtained by first making a number of contractions on the outer
product of the forms and then anti-symmetrizing the indices that remain.
(The term with zero contractions is simply the exterior product (4.3.13) of
the two forms.)

When n is odd, however, our assumption of irreducibility entails that not
all formally distinct elements of the Clifford algebra are linearly indepen-
dent, the x\ of (B.8) being proportional to the identity I, as in (B.I3). Indeed,
we find that

l|Ya...c=±*Ya...c (B.27)
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where (compare Volume 1, p. 264)

*ya.., = ̂ a.J-fyt,...f (B.28)

d,.. . , / being r in number (indices on the quantity (B. 10) being lowered with
gab). Adopting (B.I3), we find that each form (B.26) has to be equated to its
dual (times + 1 or + i). With such an identification, the Clifford algebra
becomes a complete matrix algebra of N x N matrices (over C), where, as
stated earlier, N = (\2nf = 2*"-* (by (B.24)). The ambiguous sign in (B.I3)
gives us two inequivalent such representations, and the (unidentified)/orma/
Clifford algebra becomes faithfully represented as the direct sum of these
two complete matrix algebras when n is odd.

When n is even, there are no identifications, and the full Clifford algebra is
faithfully represented as the complete algebra of N x N matrices (over C),
where N — (2")* = 2*n (as stated earlier). However, it is useful to make the
passage to reduced spinors, the quantities of the form 6R

S [or 6R,S'] arising
as elements of G which are annihilated both on the left and on the right by fl
[or FI] (cf (B.I8)), so that these are given by terms with an even number of
ys; and those of the form 0R

S> [or 6R>S~] arising as elements of (£ which are
annihilated on the left [right] by ft and on the right [left] by II, so these are
given by terms with an odd number of ys.

The 2-vaIent e-spinors

We next proceed to obtain analogues, in the general n-dimensional case, of
the sAB and eA.B. of standard Lorentzian 2-spinor theory. Define two
elements of VJ£ by

( ± ) £ K T Sicsr , K a z , K ab z . K abc t , . . .

pa upwa — j • lap t o ^i ' °bp I a — ̂ i iabcp I a '

(B.29)

these being finite sums since the non-zero quantities (B.21) appearing here
are finite in number (indices raised with gab, inverse to gah). We note that
when gah = dah (positive-definite case u = 0) we can write (B.29) as

± Z (Wk)®(YiYjYk) + - " (B.30)

(whereas there would be appropriate sign changes in (B.30) if u > 0). In that
part of the following discussion in which (B.30) is used, it will be adequate to
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assume that indeed gzb = (5ab holds. For we are not concerned with reality
conditions at the moment, so a complex basis 51 for which this form holds
will be allowable.

Observe that when n is odd, the terms in (B.30) (and therefore in (B.29))
simply repeat themselves in the reverse order after the middle point is
reached, these terms either doubling the previous ones or cancelling them
all out (cf. (B.I3), (B.27)). In fact we have

(+)E = 0 (n = 1 (mod 4)), <">E = 0 (n = 3 (mod 4)); (B.31)

and ( ± ) E # 0 otherwise. When n is even, neither ( + )E nor ( - ) E will vanish.
Note the following important property, which follows from (B.30):

(±)E(ya ® I) = + (±)E(I <g> ya) (B.32a)
i.e.

Now consider ((±)E)2. By using (B.32), applied to the expansion (B.29) of the
second (±)E, we obtain

where

But one finds, substituting numerical values for a,b,...9 that the successive

terms in the above expansion of P* are simply multiples by

1,n,̂ n(n - \\^n{n - \){n - 2),... (B.34)

of (5*, respectively. Summing these, we obtain

PKx = 2n5K
x, (B.35)

whence
<*>£#*>£;£ = 2*±>E£, (B.36)

i.e.
2~"(±)E is idempotent. (B.37)

It follows that the matrix rank of the quantity in (B.37) is equal to its trace:

T=2~n{±)E%. (B.38)

However the quantities

ya..,P
p (B.39)
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which appear in (B.38) (cf. (B.29)) can be non-zero only when the number of
indices a,..., c is either 0 or n. For otherwise (B.39) would define a non-zero
skew tensor (or form) which is invariant under the appropriate orthogonal
group - and this happens only for a scalar or n-form. Moreover, symmetry
considerations show that when n is even (B.39) must vanish also in the case
of n indices. (Permute the ys cyclicly.) When n is odd, the contraction of the
last term in (B.33) must equal that of the first whenever {±)EK

pa is itself non-
zero. Noting that Sp

p = N, we thus obtain for (B.38)

- - N 2 (neven)

in the cases when (±)E # 0 (cf (B.31)).
The rank of (B.29) thus being unity (or zero), we can factorize it:

N~1(±)EK
p

x
a = {±)spa

(±)eKX (n even) (B.41a)
and (with (B.31))

Note that there is a choice of scalar multiplier involved in this splitting,
which may be taken from one factor to the other. From (B.29), and using the
stated properties of (B.39), we obtain

\NSl (n even)
or 0 (n odd)

so that

zPoZpx = K = z<s/p (n odd), (B.43a)

(+ kpa
{ + hpz = (+ hap

{ + hzp = (" ) e p a
( " hpx = (" kj ~ hxp = b\ (n even). (B.436)

Now consider the diagonal contraction {±)Ep
x
K

p applied to (B.29). We obtain
an expression like (B.33), but where, instead, the signs of the successive
terms are

and we have, by (B.34)

The sum of the terms in the bracket for even n is either 2*" or — 2*", and for
odd n it is either 2*n+* or 0. Thus the contraction of (B.41a, b) over K, O yields
either bp or — Sp. The arrangement of signs has a periodicity (mod 8) and we
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find

(mod 8))

= 0,2 (mod 8))
= 4,6 (mod 8))

and

Comparing (B.44) with (B.43) we obtain the symmetry properties given in
table (B.45). In the cases of odd n, the non-zero {±)ep<Ti

 {±)epa stand for sp(n epa.
Thus, ep<T and sp<T are skew if n = 3, 5 (mod 8) and symmetric if n = 1, 7
(mod 8).

symmetric
zero
skew
skew
skew
zero
symmetric
symmetric

symmetric
symmetric
symmetric
zero
skew

'skew
skew
zero

0
1
2
3
4
5
6
7

(B.45)

When n is even, we can reduce these quantities further, using the Up
a and

ftp* of (B.I7). First, observe that
( ± ) £ > A T = I.^Efr (n even). (B.46)

It follows from this and (B.41a) that {±)eKXrjx
x is a multiple of msKZ and

f / ^ p A is a multiple of (±)ep<T. It is convenient to choose the arbitrary factor
in this definition (B.41a) of the es so that

{±)epXria
x = - r*s(T)£pff (B.47)

and then define (cf. (B.I7))

JL/( + )e - L ( - ) O )
2V bp<r • fcp<r/

- <" V ) . (B.48)
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Recall that II and ft are the projection operators to the reduced spin-spaces
(cf. (B.I 6), (B.I 8), (B.I 9)). Writing p = R®R\a = S®S\ etc. as before, we
can write each of ep<T,..., ep<T in terms of its four reduced parts:

tR'S ^R'S'y

For each (even) value of n, precisely one of the four entries in each matrix
(B.49) is non-vanishing, depending upon the value of n (mod 4):

epa _ | - - | _ / SRS

whereas

0 0 / ' "" \ 0 0;

RS or "o ws o
e

0 0 / pff ^0 0

We have, when \n is even,

8*Tesr = £ ™ £ r s = <5f, eR'res,T. = eTR'srs. = S§: (B.51a)

and when \n is odd,

£ £S-T —g £TS, — Oy, e eST. — e e r s —(? s .

Moreover, from (B.45) we find

D. _,_, . fsymmetric (n sO (mod8))
£ > £ R S ' £ 'eR 's 'are{skew ( R S 4 (mod8))

and

We note that when n = 0 (mod 4) the spaces of primed and unprimed
reduced spinors each possess an a-object which can be used to raise and
lower reduced spinor indices* (as is the case for standard Lorentzian 2-
spinors). Thus, a canonical isomorphism exists, in these cases, between each
of the spaces S^4, S^4' and their respective duals S ^ S^.. On the other hand,
when n = 2 (mod 4), the £-object establishes an isomorphism between S^4

and the dual S ^ of S x (and therefore also between SA and §x) and can

* For definiteness, we make the convention that when s and e are skew, both primed and
unprimed indices are raised and lowered according to (2.5.14), (2.5.15).
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therefore be used to eliminate the primed indices (say) from all expressions
(as has been our implicit procedure in the case of twistor theory). Note also
that for odd n, the £-object establishes an isomorphism between Sp and its
dual S p and therefore can be used for raising and lowering indices in these
cases also.

Translation of tensors to spinors

Implicit in the foregoing discussion is a procedure for translating tensorial
objects (elements of the various VJ|;;\{) into spinorial form, using the
quantities yap

a, or their various raised, lowered or reduced versions (cf
(B.14)):

la\ fpo ya
RS\ 7aRS, etc. (B.53)

The use of these quantities could, if one desired it, eliminate all tensor
indices in favour of spinor ones (and cf. (B.55) below, with r = 1). For tensors
possessing (sets of) anti-symmetrical indices the procedure is somewhat
more economical since the quantities

pa a...c RS' RS e t c / o CA\
fa...c > / pa->ia...c > Ya...c » c l v " l D < J ^

(cf (B.21)) can be used directly to translate a whole block of such indices
into merely a pair of spinor indices. Moreover, it follows from our
discussion that the quantities (B.54) have special properties. Taking a , . . . , c
to be r in number, we find that for odd n

pa . (symmetric in p, a if n - 2r = 1,7 (mod 8)
y'"'e [skew in p , a i f * - 2 r = 3,5 (mod8), K ]

while for even n we have

RS R,s, {symmetric in RS,R'S\ if n —2r = 0 (mod 8)
7-...C an ya_e are j ^ ^ ^ RS ^ . f^ _ 2 r ^ 4 ( m o d g )

(B.55&)
and

4- 2r = 6 (mod 8)

[n + 2r = 2(mod8) (

where the reduced parts of ya...c
pa with different primed/unprimed index

structures from these all vanish. The same statements (B.55) also apply when
all the indices are in reverse upper/lower position.

Property (B.55a) follows by repeated application of (B.32) applied to
(B.21) together with (B.41b), where the index-raising convention

\\i J* — CPV^A» 0rj*p = eAp^^A (B.56)
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is used (cf. (B.43a) and compare (2.5.14), (2.5.15)). Properties (B.55b,c)
follow from

£ 7aA — ~" £ 7aA » £ Yak ~ ~ 8 Yak

{cf (B.32), (B.41ft), (B.48), applied repeatedly to (B.21)). The index-raising
convention for the unprimed and primed capital indices follows the same
ordering as in (B.56) (even though when n = 2 (mod 4) primed indices are
converted to unprimed ones and unprimed to primed).

Translation of spinors to tensors; pure spinors

We remark that this translation procedure for converting tensorial
quantities into spinor terms is also, in a sense, reversible: it allows a
translation of any spinor t? (n odd) or reduced spinor £R

9 or £R> (n even) into
tensor terms (up to sign). For the various quantities

ZpFf'~cp. (n odd) (B.57fl)
or f * f V - c a S (neven) (B.576)
or £>R'£,s'ya-c

R>s' ("even) (B.57c)

for differing numbers of indices a,...,c, will, in each case, together serve to
define the spinor uniquely up to sign. Note that the relevant tensors (B.57)
are those for which pa, RS or R'S' are symmetric, i.e. by (B.55), for which the
number r of indices a,..., c satisfies

n - 2 r = 0,1,7 (mod 8). (B.58)

Of particular interest is the case when

r = Ln±L ( n o dd) (B.59a)

or r = \n (n even). (B.59fe)

If the expressions (B.57) all vanish for each value of r apart from the one (or,
two) given by (B.59), then % is called a pure spinor. (We use the term 'pure
spinor' to imply 'reduced', when n is even.) We note that, by (B.58), the
spinor % is necessarily pure if n < 7.

A special significance of the pure spinors lies in the fact that the (non-
zero) skew tensors (B.57) are then necessarily simple, which, by proposition
(3.5.30), is the condition

or a similar version for £R\ when n ( = 2r) is even, and a similar (pair of)
expressions when n ( = 2r ± 1) is odd. We omit the proof of (B.60) here but
note that it has the interesting geometric consequence that any pure spinor
can be represented, up to proportionality, by a ^n-plane through the origin
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in the vector space Vfl (n even), or by a pair consisting of a (\n — i)-plane and
a iin + i)-plane through the origin in Vfl (n odd). In fact in the odd case the
two are orthogonal complements of one another (because of (B.27), (B.I3))
and so only the (^n — ^)-plane need be considered. For similar reasons, in
the even case the ^/t-plane is the orthogonal complement of itself, i.e. it is
(and-) self-dual. Indeed, this (anti-) self-dual property does not depend on
the simplicity (B.60), but holds merely by virtue of the fact that it is only the
quantity ya"c

RS with entirely unprimed spinor indices which is involved
and not the primed quantity ya'"c

R>S'. More generally, any element of
V[fl-C](r = in) has the form

where <xRSe§iRS\ F e S m . It is self-dual or anti-self-dual if and only if
one of the two terms in (B.61) is zero.

This (anti-) self-duality property, together with (B.60) entails, when n is
even, that

gJLFFr-'KsXFtY-'TK) = o, (B.62)
a.. x and d.../ each being \n in number; and the primed version of (B.62)
also holds. When n is odd, we correspondingly have

gad{^aya-c
PM^Kyd-f

XK) = o, (B.63)

when a.. x and d.../ are each \n — \ in number, and also when one of these
sets of indices is \n — \ in number and the other, \n + \ in number - this last
condition being equivalent to the 'simplicity' condition (cf (B.60), with
Greek in place of capital Latin indices) because the two bracketed terms of
(B.63) are then duals of one another. (The proofs of these facts are similar to
that of (B.60) and are omitted here.)

Geometry of pure spinors

These properties have a very direct geometrical interpretation. This is best
described in terms of the (n — l)-dimensional (complex) projective space PV
associated with Va (i.e. the space of one-dimensional linear subspaces of
Va). The (non-zero) null vectors vaeVa (i.e. gabv

avb = 0), defining the null
cone in Vfl, provide the points of a non-singular quadric (n — 2)-surface 1 in
P V. The properties described above tell us that any pure spinor determines
a projective ^{n — 3)-plane on Q if n is odd and a projective %n — 2)-plane on 2,
if n is even. According to the theory of (complex projective) quadric surfaces
(cf for example, Hodge and Pedoe (1952), Porteous (1981), the maximum
dimension of a linear projective space lying on a non-singular (n — 1)-
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quadric is indeed {{n — 3) if n is odd, and such j(n - 3)-planes form a
s(n2 - l)-dimensional family; and when n is even, this maximum dimension
is indeed | ( n - 2 ) , these |(n-2)-planes forming two disjoint £n(n-2)-
dimensional families.* These two families, in the even case, correspond to
the unprimed and primed pure spinors, respectively, and a \(n — 2)-plane of
the first family is frequently called an a-plane and one of the second family a
/J-plane. (This is consistent with the terminology of §9.3, when n = 6 and
J = CM1#.) Let us refer to the j(n - 3)-planes on 1 as y-planes. These
planes are determined by the projective pure spinors (i.e. non-zero pure
spinors up to proportionality) in each case, so we have:

For even n, the projective pure spinors, unprimed and primed, are in
natural 1-1 correspondence with the cn-planes and fi-planes on X
respectively. (B.64a)

For odd n, the projective pure spinors are in natural 1-1 corre-
spondence with the y-planes on £. (B.64b)

The purity condition; structure of spin-space

We see from this that the dimension dn of the space of pure spinors is
%n{n — 2) + 1 in the even case and ^n1 — 1) + 1 in the odd case, which values
may be compared with the dimensions \N — 2^n~x and JV = 2*n~*,
respectively, of (reduced) spinors not necessarily satisfying the purity
condition/The first few values of these dimensions are listed in table (B.65):

n

dn

N,\N

1,2

1

1

3,4

2

2

5,6

4

4

7,8

7

8

9,10

11

16

11,12

16

32

13,14 ...

22

64

(B.65)

In the even case, with n = 2r, the equation of J can always be put into the form x1y1

+ • • • + xryr = 0. Then the generic (r — l)-plane of one family can be expressed: yx = Ŝ x*
where Sy is skew r x r, giving |n(n — 2) independent components. If an even number of
the x1 are interchanged with their corresponding yt then this form can be re-obtained, in
general. But if an odd number are interchanged, an (r - l)-plane of the opposite family is
obtained. In the case of odd n, with n = 2r + 1, the equation of J can be put in the form
xlyt = z2. The generic (r - l)-plane can then be expressed z = Ttx\ y{ = S^x1 + T^,
giving Kn2 - 1) independent parameters.
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From this we see that whereas purity represents just a single condition
where this first appears at n = 7, 8, the number of conditions increases
rapidly with n thereafter. For n = 1 the purity condition is

£„£'£" = 0 (B.66)

and, for n = 8 we have

eRSt
Rts = O or 8 V s W = 0. (B.67)

Using the notation

(where a,..., c are r in number) for the (r + l)st term in (B.29), we find that
for n = 9, 11, 13, the purity condition is the pair:

_ 1 _ 7
 ( B < 6 9 )

whereas for n = 15 we also need

<°>G£<J'<r = 0. (B.70)
Generally, for odd n, the needed conditions are those like (B.69), (B.70) for
which {r)GKpa is symmetric in pa (i.e. n — 2r = ±1) (mod 8)) and for which

For even n we use
(r)G^,{r)G%T

s\r even) and (r)G£s
r,(r)G£r

s,(r odd) (B.71)

the purity conditions being a set of relations of the form
( r ) G g W = 0 or (r)G£s

r'£*cf = 0 (B.72a)

in the unprimed case, and
(r)G£j:C*'Cs' = O or (r)G£r

s,C*'Cs' = O (B.726)

in the primed case. The needed r-values are those for which

n - 2r = 0 (mod 8), 0 ^ 2r < n. (B.73)

It is clear from all this that for large n, the structure of the various spin-
spaces can get very complicated. For this kind of reason, and not simply
because of the exponentially large spin-space dimension, it would be hard
to view spinor algebra as providing a practical alternative to tensor
algebra, as it clearly is when n = 4 (or other small values). Nevertheless,
spinors are important in all dimensions (e.g. for the Atiyah-Singer index
theorem, c/ Shanahan (1978)) and can yield very significant insights. In
principle (rather than practice), one can carry out all tensor procedures
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entirely spinorially. But the structure possessed by the (reduced) spin-
spaces is, for large n, much more complicated than that of the original
vector space. In essence, this structure is defined by the object

GK
pl:=gabyap

Kyba
x = (1)GK

pl ( n o d d ) (B.74)

or by the corresponding pair of objects

G£T,GK' ("even) (B.75)

since (because of relations like (B.22)) all quantities (B.68) (or their reduced
parts) can be expressed in terms of products like

The a-quantities are also needed, since their individual scalings are not
determined by the Gs, although the es are already fixed up to proportion-
ality by them. There are also various identical relations satisfied by the Gs
implicit in

w G £ = 0 (r>n)
and

This structure for Sp, or for §* and S*, is clearly far more complicated
(when r > 8, say) than the original structure for Vfl that gab (and choice of
£*»•••'») define.

Inductive construction of spin-space

One good way of building up the spin-spaces for larger n is inductively,
assuming that the structure for n — 1 is already understood. This is a
standard procedure for building up explicit representations for the y-
matrices. If n — 1 is even, then (with r\ for n — 1 dimensions)

Y l , . . . , Y B - l , t l

all anti-commute, as we have seen, so we directly obtain a representation for
n-dimensions from that of (n — l)-dimensions by taking yn to be a multiple
of r\ (cf. (B.8) with n - 1 for n, (B.12)). If n - 1 is odd, then the reduced ys for n
dimensions can be represented as faithful copies of the ys for (n - 1)
dimensions, and the complete algebra for n dimensions is obtained from
the block matrix description (B.14). (Note that each ymp°9 for n— 1, gets
represented as yaR

s and as yiR,s, for n. Products are now only allowed which
alternate between these two types, the sums of such products having to be
all of the same type.)

We thus have a direct way of passing from spinors for n — 1 dimensions to
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those for n dimensions. In the even-to-odd case, the new Sp is represented as
the old §* © §K and in the odd-to-even case the new S* and S*' are each
represented as copies of the old Sp. However, from the abstract point of
view, there is an arbitrariness in this procedure since it depends on the
choice of the basis element ga

n for Va (see (B.7); n is not an abstract index!).
Writing

ua = ga
neVa (B.76)

we see that the only restriction on ua is that it be a unit vector:

uau
a=±l (B.77)

since the remaining basis element gJ^-^Qa"1 c a n be reconstructed if
desired, once ua has been chosen. (A modified procedure can also be
adopted if ua is chosen to be null - and, in effect, this is what is adopted in
the standard description of a twistor as a pair of 2-spinors, cf. §6.1. But we
do not pursue the general discussion of this here.)

The quantity ua is a covector for Va and thus defines an (n — 1)-
dimensional subspace (hyperplane) Uflc=Vfl with normal ua. We thus
obtain the spinors for Va by building them up from those for Ua. To pass
back down to the spinors for Ufl from those for Vfl, we introduce the
quantity*

w/ = 2 - V y a / (nodd) (B.78a)

or, when n is even

uR
s' = 2-±uayaR

s\ u / = 2"Vyfl^
s (n even) (B.78fc)

When n is odd we can use (for the two signs in (B.77))

i(^±2iW/), K ± 2 O (B-79)
for the projection operators n / , fl/ of (B.I8) that are needed for the
breakdown of the spinors for Va to the two sets of reduced spinors for Ufl.
(Note that upux* = — ^Sp

auau
a.) When n is even, the quantities (B.78fc) serve

to translate between primed and unprimed indices. Thus the spinors for Ufl

constitute the thereby identified reduced spin-spaces for Va.
It is instructive to examine the geometry in PV that is involved in this

procedure (Fig. B-l). The hyperplane Va gives us a projective (n - 2)-plane
PU in PV which intersects 1 in some (n — 3)-quadric 1'. Since we assume
here that uau

G^0, PU does not touch 5, so 2! is consequently a non-
singular quadric. Consider first the case when n is even (Fig. B-l(a)). We

* The factor 2~% which looks awkward here, is introduced only to obtain agreement
with the standard 2-spinor translation conventions.
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2* + 2 ^

PV

\
yV

1
]

(a)
even n = 2k + 2

(b)
odd* = 2*+3

Fig. B-l. The pure spinors for n dimensions can be built up inductively from those
for n — 1 dimensions by examining how the a, /? and y spaces for an {n - 2)-quadric J
are related to those for a general hyperplane section - an (n - 3)-quadric 2!.

write n = 2/c + 2, so J is a 2fc-quadric and 2! a (2k - l)-quadric. The y-planes
oil' are (k - l)-dimensional and form a %k(k + l)-dimensional system. The
a- and jS-planes of 2 are in (1-1) relation to their y-plane intersections with
2!. Consider next the case n odd (Fig. B-l(b)). We now write n = 2/c + 3, so J
is a (2fe + l)-quadric and 2! a 2/c-quadric. The y-planes of the larger quadric
are fe-dimensional, forming a |(fe2 + 3/c + 2)-dimensional system. The
general member of this system meets 2! in a (k - l)-plane, through which
passes a unique a-plane of 2! and a unique jS-plane of 2'. (In particular cases
the y-plane of 1 actually lies in 2! and becomes either an a-plane or a /?-plane
of 2!) The a-planes and jS-planes of 2! form £/c(/c + l)-dimensional systems.

The relationship between this geometry and the foregoing spinor
discussion is that this concerns the pure spinors for Vfl as they relate to the
pure spinors for Ufl. The general (reduced) spinors constitute the linear span
of the pure spinors. We note that when n is even, any pure spinor £p for Ua

directly determines a pair of pure spinors £R and £*' for Vfl, the y-plane for
2! directly providing an a-plane and a jS-plane for ± However, the a-plane
and the /J-plane are specially related to one another, not just in that their
intersection lies entirely on J', but also because their intersection has the
maximal dimension* k - 1. Two pure spinors £A and (*' for Vfl correspond
to an a-plane and a jS-plane on 2 which intersect maximally if and only if

* For a non-singular 2fc-quadric, the dimension of intersection of an a-plane with a /?-
plane can take the values k - 1, k - 3, k - 5,..., - 1 (k even) or 0 (k odd) while the
dimension of intersection of two a-planes or two /?-planes can be ky k - 2, k - 4 , . . . , 0 (k
even) or - 1 (k odd). For a non-singular (2k + l)-quadric, two y-planes can intersect
with dimension fc, fc — 1,...,0, - 1. (Dimension - 1 means vacuous.) In each case, the
generic situation gives the smallest dimension of intersection.
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there exists vaeVa, with

vava = ± 1 (B.80)
and

+ C*' = vayaR
R^\ ZR = vayaR,R£R' (B.81)

Note that ua plays the role of va in the situation just described.
When n is odd we need to ensure that the a-plane defined by the pure

spinor £R for (Ufl maximally intersects the j8-plane defined by the pure spinor
£*'. This is in order that when they are combined together the result is a pure
spinor for Vfl. The condition on £R and £*' is implicit in (B.80), (B.81), but the
matter will not be pursued further here.

We can also reduce the spin-space for Vfl by considering a subspace Va of
some arbitrary dimension r, and its (n — r)-dimensional orthogonal comple-
ment Wa (where UJfl is non-null so that its induced metric, and consequently
also that of Wfl, is non-degenerate). Thus we have a direct sum

Vfl = Ufl©Wfl (B.82)

(though, strictly, we should perhaps introduce different labelling a\ a", say,
where a = d © a"). The spinors for Va then turn out to be, in an appropriate
sense, the direct product (tensor product) of those for QJfl and for Wfl. For this
to work systematically it is more satisfactory to consider that in the case of
odd dimension the spin-space consists of two 'copies of the spin-spaces for
odd dimension that we have been considering here (cf. second footnote on
p. 440), where we now allow each of the two signs in (B.I3) to occur, one for
each 'copy'*. Then if both r and n — r are odd, so that n is even, the 2*"-
dimensional total spin-space for Va arises as a direct sum of its two 2*"~ *-
dimensional reduced spin-spaces each of which is regarded as a direct
product of one of the 2*r~^-dimensional 'copies' of the spin-space for Ufl

and one of the two 'copies' of the 2^(n"r)~i-dimensional spin-space for Wfl.
If one of r and n — r is even and the other is odd, the products work out
naturally whether or not 'copies' are used. If both r and n — r are even the
question of such 'copies' does not arise. However, we note that each reduced
spin-space for Va arises as direct sum of the products of reduced spaces for
L)fl and Wfl in the general form:

unprimed space = (unprimed ® unprimed) © (primed ® primed)

primed space = (unprimed ® primed) © (primed ® unprimed).
(B.83)

Strictly speaking these two spin-spaces are not quite the same as each other, and
become interchanged under improper transformations.
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Reality; complex conjugation

The foregoing discussion has been carried out assuming that Vfl is a
complex space, but for the most part this has played no critical role (i.e.
except for the discussion of linear subspaces on J), since we have allowed for
an arbitrary choice of'signature' for gah. Many applications of spinor ideas
do in fact require Va to be real. For our present purposes we shall still think
of Va as a complex space but allow it to possess a 'reality structure' defined
by an involutory complex-conjugation operator <€. The required real space
is then the (real) subspace of Va whose elements are invariant under #. The
'signature' s of #ab now acquires an invariant significance in relation to #,
where we now demand that the basis g^ consist of real elements of Vfl.

When n is even, it turns out that ^ can be extended to apply to spinors so
that:

each of SA,SA' is invariant under %> if^s is even; (B.84a)

S-4 and SA' are interchanged by % if\s is odd. (B.846)

This is clearly consistent with the result for ordinary Lorentzian 2-spinors,
and also for twistors, when we bear in mind that our twistor conventions
have been to eliminate all primed indices in favour of unprimed ones in the
reverse position, which is legitimate (cf. (B.52b) et seq) since here n = 6. It is
also consistent with the fact that spin-weight \ functions on a spacelike 2-
surface in space-time become spin-weight — \ functions under ^ (s = — 2),
whereas for a timelike 2-surface the boost-weight \ and boost-weight — \
functions are each invariant under %> (s = 0).

In more detail, the value (mod 8) of the signature s has relevance to the
question of the existence of a non-trivial subspace, in Sp, of real spinors (or
'Majorana' spinors, in the context of physics). We find that for some
signatures the extension of ^ to spinors cannot be involutory, but merely
satisfies* # 4 = 1. There are some matters of convention that further
complicate things. Moreover, in the case of odd n, we see from (B.I3) et seq.
that if s = 3 (mod 4), the choice of factor relating i\ to the identity is reversed
under #. This has the implication that § p itself is not, strictly speaking,
invariant under #, but is interchanged with its other 'copy' in these cases.
We shall ignore these last two complications, however, and we can make the
following general comments (for which we gratefully acknowledge the
assistance of F. Reese Harvey).

When s = 3,4, 5 (mod 8) we have <̂ 2 = — 1 when acting on Sp. These are

* This evades the problem mentioned on p. 107 of Volume 1 in relation to the action of ^
as it applies to spinors for SO{3) (and 50(4). Here ^2^A = — £A, so one cannot sensibly
define a 'real part' of £A as \{^A + ^^A) since this is not real.
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the cases when S p acquires a quaternionic structure and there are no real
spinors ( ^ 0). (The spinors for SO(3) and SO(4) are examples.) When 5 = 2,
6 (mod 8) (cf B.84b), each of §*, S* is naturally a complex space, with no
real spinors ( # 0), but the combined space S p can be said to have real
('Majorana') spinors (using suitable conventions - though the usual ones
require s = 6 (mod 8)). When s = 0,1, 7 (mod 8) we have a. full system of real
spinors (i.e. real spinors whose complex span is the full relevant spin-space.
When, in particular, s = 0, + 1, this last property is related to the maximum
dimensionality of real projective subspaces on J , which is

Xn-\s\)-l. (B.85)

Note that i> has no real points in the positive-definite case, but that there are
real a-planes and /?-planes when 5 = 0 and real y-planes when s = + 1.

Some cases of physical interest; triality

We have discussed Lorentzian 2-spinors, twistors and functions of spin-
weight ± \ on a spacelike 2-surface, as examples of our general procedure in
the cases n = 4,6 and 2, respectively. Little has been said directly ofDirac 4-
spinors, which are the unreduced spinors for n = 4, 5 = — 2 (or for n = 4,
s = 2). These do, of course, fall under our general scheme and, indeed, have
tended to be much more directly used in the literature than the reduced
Lorentzian 2-spinors that have formed the central topic of these volumes.
Our neglect of Dirac 4-spinor notation is to some extent a matter of
practicality, the reduced spinors having, in this case, an exceedingly simple
form that is much the easier and more powerful to work with. The
elimination of all tensor indices is easily achieved in the 2-spinor formalism,
and the y-matrices, together with their various somewhat complicated
identities (trace formulae, etc.) simply evaporate. They are given explicitly
(cf Volume 1, p. 221) by

where r\ is usually written y5; and moreover we have

v <r_>)(
SA'B>£RiA

£B)S 0
labp - 1 \ Q S

\ U bABtR'(A'bB)

As a general rule, calculations tend to be considerably easier in the 2-spinor
formalism than with the use of y-matrices, especially when there is a
proliferation of expressions involving I ± i y 5 . (For a striking example of
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such simplifications in the case of quantum chromodynamics, see Farrar
and Neri (1983).)

Spinors have found value in relativity theory also when n — 3, since these
apply directly to a spacelike hypersurface (s = — 3) or to a timelike
hypersurface (s = - 1). Taking the normal to this hypersurface to be ua =
uAA> (normalized so that uau

a = ± 2), we can apply our earlier discussion
(cf. (B.80), (B.81)) and use uA

A> and uA.A to convert all primed indices to
unprimed form. This provides a useful calculus, and one that has been
exploited by various authors (cf. Sommers (1980), Shaw (1983b)). (The
procedure is relevant also to our discussion of the Witten argument for
mass-positivity; see §9.10.)

A particularly interesting situation which seems to have some relevance
in physics is given when n = 8 and where either s = 8 or s = 0), since it then
turns out that the three spaces Vfl, S'4 and S"4' are, remarkably, all on an
equal footing. The quantities eAB and eAB. are both symmetric (cf. (B.52a))
and are on an equal footing with gab. Thus, we may regard S^4' and Vfl as
the 'unprimed' and 'primed' reduced spin-spaces for S'4, with metric £AB; or
Vfl and S'4 as the 'unprimed' and 'primed' spin-spaces for S^4. This curious
additional symmetry is referred to as the triality principle for SO(8, C), SO(8)
or SO(4,4). Note that, by (B.67), the pure spinors of S"4, S^ correspond,
under this symmetry, to the null vectors of Vfl. In terms of «£, this means that
the family of a-planes on J , the family of /?-planes on J and the family of
points on £ are all on an equal footing with one another. The incidence
property that a point lie on an a-plane corresponds, under this symmetry, to
the incidence property that an a-plane meet a /?-plane maximally, i.e. in a 2-
space. In the case of 50(8), these a-planes, jS-planes and points are all
imaginary but the symmetry between them still exists and shows up as a
symmetry between the non-null (non-pure) elements. (See Adams 1981,
Chevalley 1954, for more details.)

The quantity

W (B.88)

now plays a symmetrical role between the three types of index. It satisfies an
identity

= 9abe
A'B' (B.89)

and also others obtained by permuting the index types. There is a relation
to the algebra of octonians (Cayley numbers). This is obtained by choosing
a pair of fixed unit elements of two of the three spaces, say

kae Vfl, mA'eSA\ kaka = 1 = mA\mA
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defining a third by

and then using

JaAA'^ 7aAA>lA> laAA™?

and the metric quantities gab
9 e

AB, eAB\ to translate between all the different
types of index. Applying this translation to (B.88) we obtain an object yabc

for which yab
c provides the required Cayley multiplication on Vfl. The

identity (B.89) then provides all the algebraic properties that are needed (i.e.
y(ab)dldce = ) W i % / which gives the 'alternative' law (AA)B = A(AB)).

It is perhaps noteworthy, in relation to all this, that there is some
relevance of SO(8, C) and S0(4,4) to twistor theory. We consider pairs each
consisting of a [£] and a [?] twistor:

(Z",W,). (B.90)

The metric on the space of these objects is to be defined by

and the complex conjugation,

#:(Za,Wa)h+(Wa,Za). (B.92)

The signature of ZaZa + WaW
a i s ( + + + + ), (i.e. s = 0, n = 8)

and the above discussion applies. (Note that 'nullity' here is the ambitwistor
relation ZaWa = 0, cf. footnote on p. 164.)

Spinor fields; twistors for n dimensions

Recall that at the outset we allowed for the possibility that Vfl might be a
(suitable) module, rather than a vector space, and might describe say vector
fields on some (pseudo-) Riemannian n-manifold. The corresponding Sp (or
S* and S*') would then describe spinor fields. The quantity yap

a (or yaR
s>

and yaR
s) then serves to translate tangent vector fields to spinor form. Thus,

we have analogues of the Dirac equation or Dirac-Weyl equation

y^V'il/O^h-'mr or y/VV* = 0, (B.93)

for each n. There are also analogues of local twistors and local twistor
transport (cf. Cartan 1923, and §6.9; and, more explicitly, unpublished work
by G.AJ. Sparling).

The question of what one should regard as the twistor theory proper, for
n dimensions, has various interpretations. One method of procedure is to
think of the hyper-Minkowski space, with dimension p 4- q and metric
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signature p — q as being compactified, as in §9.2, and the group SO(p + 1,
q + 1) as acting on this compactification as its conformal group. Thus we
have a situation, with dimension p + q + 2 and signature p — g, to which we
can apply the foregoing theory. The twistors for this hyper-Minkowski
space may be taken to be the spinors for SO(p + 1, g -f 1).

Alternatively (but essentially equivalently) one may adopt an n-
dimensional version of the twistor equation (6.1.1):

W V ^ c o * = -gatfR
s'VjoR (n even) (B.94a)

or

W V = \ datf/Vcto" (n odd) (B.946)

(i.e. V(fltuyfe) = n~1gabVciayc in the second case) whose general solutions, in
hyper-Minkowski space, take the form

coR = QR + xayaS,
RIIs' (n even) (B.95a)

or
CDP = Qp + xaya/n

a (n odd) (B.95&)

where Cl and IT are constant. The equation (B.94b) was introduced by Wess
and Zumino (1974) in the context of supersymmetry theory. Here n = 4, but
(B.94b) is equivalent to two copies of (B.94a), one unprimed and one primed,
these being taken as complex conjugates of one another by the imposition
of a 'Majorana' (i.e. reality) condition on cop, namely coR' = coR.

These ideas are sometimes useful for solving differential equations in an
analogous way to that provided by the contour integral expressions of
§6.10. An elegant example of this procedure has been suggested by L.P.
Hughston. Let /(Za, Wa) be a function of two twistors Za, Wa which is
holomorphic in a suitable region and has overall homogeneity degree — 4
(not necessarily homogeneous in Za and Wa separately). The Xa/? is to be
skew and is taken to label the points in a six-dimensional space whose
metric is given by

e*WdXaPdXyd. (B.96)

Then the result of the contour integral

Kfi) = <P/(Za, Xa/?Z%^Z«dZ" A dZ? A dZ* (B.97)

satisfies the (complex) Laplace or wave equation

d2cj)
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This is related to the aforementioned twistor relationship to 50(8, C).
(Other examples of analogous expressions have recently been provided
by R.S. Ward and by M.F. Atiyah; see also Murray 1984 for what appears
to be a very general such procedure. Other generalizations of twistor
theory have also been suggested; see, for example, Bryant 1985; Eastwood
1985ft.)
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oflW268
of Ricci spinor (tensor) 265, 275-, 286-

categories 282-
positivity 283

of vectors 274, 275
of Weyl tensor, spinor 223-: see Weyl

tensor, spinor
Clifford, W.K. 61, 442
Clifford algebra 442-
Clifford (-Dirac) equation 441
Clifford multiplication 444
Clifford parallels 61-
clumped (composite) index 4
coboundary 158—, 161

operator 161
cochain 160, 161
cocycle 157-, 161
cohomology 118, 139

Cech 160-
Dolbeault (160)
group element 158, 160
motivation for 153—
r-function 155- 160-

cup product of 162
relative (149)

Coleman, S. 126
commutator

of compacted operators 25
of covariant derivatives 15

spinor form 21
Lie bracket 16
of local twistor derivatives 136
quantum commutator 142

twistor 143
compacted spin-coefficient (GHP)

formalism 23-, 169- 197, 367-
basic equations 25
Bianchi identity in 25, 26
commutator equations in 25
derivatives of symmetric spinors in 25
massless field equations, twistor

equation in 26
need for weighted scalar A 311, 372
the {K,p,o,x) 4-vector Sa 174, 175, 182

compactified Minkowski space 297-
complexified 305-

complex ( = kind of sequence) (89)
complex conjugation 128, 214, (284)

of alpha-, beta-curve 218
of complex tangent vector 214
in complexified space 128
of local twistor 134, 135
of N-dimensional spinors 459, 460
of position vector 66
on S+ 280-
on twistor space 313-

qussi-local 403
of twistor 50, 56

Complex curvature of 2-surface 27
complex curve

on CS+ 266-
real part of 274
reducibility of 266-, 276-

double curve 268
singularities of 269-
see also alpha-, beta-curve

complex geometry 64, 127-, 266-, 305-
complex manifold 127-, 212-

deformation of 162-
complex null geodesic 311, 312
complex null vector 8, 266, 308-
complex orthogonal group 233—
complex point of space-time 66, 128, 307

different kinds of 314-
complex projective line 149-, 307-
complex space-time 127—

curvature spinors for 129, 130
complex stereographic coordinate 1, 2, 31,

356, 368- 393-
complex structure 212—

see also CR-structure
complex tangent vector 213, 214
complex vector space 46-, 441
complex world vector 66
complex world-line 419
complexification

of Euclidean space (64)
ofJ + 389,390
of Minkowski space 64, 139-, 149-

compactified 305-
ofray(64), 113,311,312
of real-analytic expression 128, 129
ofS + 266
of space-time 127—

components
of curvature spinors 22
of derivatives of spinors 24
of y-matrices 441, 442
of tensor 4
of twistor 48, 50, 52

composite (clumped) indices 4
conformal compactification 188
conformal geometry: see conformal

invariance
of J: see infinity, conformal
of Minkowski 3-space of abreast rays

187-
conformal group 66, 67, 303-, 316—
conformal infinity 291-, 347-: see infinity
conformal invariance

of a-plane 309, 310
of charge-current vector 39
of hypersurface twistors 218, 219
of invariant contact structure 218, 219
of local twistor theory 132—
of massiess free fields 38, 39, 359
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of ray 66, 772,295
of SFR 197
of spinor derivatives 78, 111-
of trace-free energy tensor 38
of twistor equation 45
of twistor scalar product 57, 58
of 2-surface twistor space 400
of Weyl tensor (spinor) 120, 121

conformal Killing equation 82: see Killing
equation

conformal mapping
of cosmological model 332—
between cross-sections 302, 355

conformal motions
of J 366, 368-
of M#316-
of metric sphere 29, 31, 383
o f S + , S " 2

conformal rescaling 35-
complex (328)
of curvature 120—
for infinity 291- 347- 360-
preserving flatness 119, 123, 124

conformal weight (of conformal density)
29, 36, 37, 132, 327-, 358

conformal (Weyl) tensor, spinor 20-; see
Weyl tensor

conformally flat space-time 45, 82, 111,
121, 737,400,401

condition for 137-
right (left) conformally flat 729, (310)

conformally invariant derivatives 111-, 124
see also local twistor transport

conformally invariant eth, thorn, 36, 37, 41
conformally invariant tensors, spinors 120,

121, 127, 136, 137
congruence 169

null 170-
shear-free 189; see SFR

see also ray congruence, Robinson
congruence

connecting vector 174—
propagation of 175-

connection 15: see derivative
Connors, P.A. 108
conservation laws

for charge 76, 77
relation to (conformal) Killing vectors

84-
for linear gravity 77, 97-

consistency conditions
for massiess field (Fierz-Pauli-

Buchdahl-Plebanski) 37, 120, 191
for twistor equation 45, 120, 130
see also integrability conditions

constant spinor field 30, 46, 130, 140
contact structure 211

invariant contact structure 207-, 438
conformal in variance of 218, 219

contorted 2-surface 400, 401, 412
contour integrals of twistor functions 114,

139-
branched 156-
geometry of 148—
higher-dimensional 463

contracted (inner) product 4
convergence of ray congruence 177—
coordinate basis 17
coordinates

advanced and retarded 292- 348, 356
asymptotically null 392
Bondi retarded time 373, 38O-, 393-

Bondi system 386-
complex stereographic 1, 2, 31, 356
local 162, 210, 2U, 214
null 392-

'copies' of spin-space in odd dimension
(440), 458, 459

cosmological constant 20, 22, 108, 352-
in quasi-local expression (402)
and structure of J 353

cosmological models 332—
description in terms of P5 337-

Coulomb field 205, 331
covariant derivative 15: see derivative
covariants of curvature 258, 260-
covering 154-

cohomology element with respect to 158
common refinement 159
locally finite 156

covering space 304, 338
Cox, D. 201
Coxeter, H.S.M. 298, (302), 303
CK-function 215
CK-manifold 215
CK-structure 212, 214, 215
Crampin, MJ. 211
cross-ratio 2

of eigenvalues of Ricci tensor 289
of GPNDs 236-
of PNDs of Plebanski spinor 289

cross-sections
of bundle 165,326
conformal equivalence of 302, 355
of J (cut) 355, 356, 373, 384, 385

determine Lorentz subgroups 383, 384
good and bad 384-

of Jf 302
crunch twistor 342
Curtis, G.E. (71)
curvature

covariants 258, 260-
Gaussian 27, 374
invariants 262-
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local twistor 136
spinors 19-

for complex space-time 129
components of 22

tensor 15
Riemann (spinor form) 19

of 2-surface 27
Yang-Mills 34, 35

curve
casual 296
real locus on S+ 274, 275
see also complex curve

cusp 269-, 279, 280, 286
cut 384: see cross-section

D'Alembert equation 39
see also wave equation

de Rham (-Poincare) sequence 90
derivative

with respect to abstract-indexed quantity
141

co variant 15
change of under conformal rescaling

36
directional 17, 133-
local twistor 133-

Deser, S. 404, 429
de Sitter space 336-, 350

asymptotically 350
geodetic distance in 340
infinity for 336, 353
infinity twistor for 337—

Dietz,W. 110
Dieudonne 95
diffeomorphism group 366
differential form (p-form) 16, (200)

basis 1-forms 17, 437, 438
integral of 17
on JT 209-
for surface area 27
for twistor integral 142, 342, (149)

Dighton, K. 127
Dirac, P.A.M. (29), 66, (302), 303
Dirac (-Clifford) matrices 441-
Dirac (electron) equation 40

n-dimensional 462
Dirac (-Fierz) higher spin equation 40
Dirac 4-spinor (47), 437, 460
Dirac operator for 3-space 431
Dirac-Weyl (neutrino) equation / 7, 434

energy tensor for 39
n-dimensional 462

disphenoid 249-
divergence of ray congruence 177-: see

convergence
division ring (field) 12, 95
Dodson, CT.J. 135

Dolbeault cohomology (160)
dominant energy condition 424, 436, 437
double curve 268, 286, 289, 290
double point 269-, 277- 286, 290

isolated 278, 281, 282
Dray, T. (29), 422
dual

of angular momentum twistor 87
duality between angular momentum

twistor and Killing vector 101
dual twistor correspondence 313
of exact sequence 91
of form 39, 98
of module 4
of Riemann tensor 19, 20
of skew y-matrix product 444, 445
of skew twistor 65
of tensori/, 12, 14,39

dual twistor 48-, 310, 311, 313
components ot 50
spinor parts of 50

duality rotation 21
dyad 6, 17

Eastwood, M.G. 78, 119, (124), 148, (149),
(164), 325, 326,464

ECSK (Einstein-Cartan-Sciama-Kibble)
theory (184)

Eddington, A.S. 126
Eddington-Lemaitre universe 336
edth 23-: see eth
Ehlers, J. 191
Ehrenpreis, L. 152
eightfold periodicity for N-dimensional

spinors 447-
Einstein, A. 425
Einstein condition, asymptotic 354, 357:

see asymptotic Einstein condition
Einstein cylinder (static universe) 294, 295,

329- 332-
anti-Einstein universe 333-

Einstein energy-loss formula 425
Einstein field equations 20, 22, 164, 169,

192, 352, 354-, 437
Einstein-Maxwell (electrovac) theory 33,

34, 198, 290, 354, 406, 407
asymptotic expansion 364, 393—
peeling property 364
scalar invariants 263, 264

electromagnetic (Maxwell) field tensor,
spinor 32-, 255

asymptotic behaviour 393
charge integrals for 76, 77
classification of 255, 257-
conformal weights 39
energy tensor for 33
equations for 33, 39
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Grgin index of 329
null 14, 190, 191, 257, 258
peeling property 358-, 364
PNDs of (EPNDs) 198, 255, 257, 259,

264, 331
purely electric, magnetic 33, 257, 258
scalars of 257

electrovac equations 33: see Einstein-
Maxwell theory

elementary state 150, 152
elliptic curve 288
Ellis, G.F.R. 108, 182, (207), (283), 296, 297,

335, 336, 338, 436
energy positivity conditions 283, 289, 351,

424, 426, 436, 437
energy-momentum: see momentum 4-

vector
energy (-momentum) tensor

for Dirac-Weyl field 39
for electromagnetic field 33, 85, 290, 426
in linear gravity 38, 99-
for massless scalar 126

'new improved' 125
physical 289, 290
trace-free 85, 352, 353, 409

epsilon spinors 5
for asymptotic spin-space, 417, 418
identity in 5
index shifting with 5

in N dimensions 449-
N dimensional 445, 447-

epsilon twistor 54: see alternating twistor
equianharmonic 3, 237, 276
eth (5) 23-

commutators for 25
conformally invariant 36, 37

Euler homogeneity operator 141, (211), 272
as twistor helicity operator 144

exact set (of interacting fields) 40
exact sequences 89-, 116—

duals of 91
Koszul, 95
for massless free field 116—
moment sequence 95-
periodic moment sequence 9 1 -
(Poincare-) de Rham 90
resolution of 118
sheaf exact sequence (90), 117
for symmetric twistor equation 118, 119
twistor-space Poincare structure 91
for 2-surface twistor 417-, 423

exterior calculus, fundamental theorem of
17,28

exterior derivative 16
exterior product 16
extrinsic curvature

of 2-surface 400

of 3-surface 406
Exton, A.R. 428

Farrar, G. 461
Fefferman, C. (217)
Fefferman metric (217)
Field, M. 152
field (division ring) 12, 95
Fierz, M. (29)
Fierz-Pauli condition 37, 120
fingerprint of Weyl tensor 229-
flag path 3, 320
flag plane 8, 170-

and phase of twistor 70
and Weyl tensor fingerprint 229-

flag-plane field of coA 322-
flagpole 2, 8
flagpole field of coA 59- 72
Flaherty, E.J. Jr (128), 201
Floyd, R. 109
fluid, perfect 290, 347
foliation 169
Folland, G.B. 213
form 16, 444

symmetric 'form' 260
see also differential form

forward tube 152, 154, 316, 345
four-valuedness of twistors 316—
Friedmann universe 335, 336, 343-
Friedrich, H. 366, 368
FRW (Friedmann-Robertson-Walker)

models 228, 229, 332-
asymptotic symmetry group for 366
conformally flat 229
horizons for 335, 336
infinity for 334—
quasi-local mass in 407

fundamental observer (galaxy) (334), 335,
336

fundamental theorem of exterior calculus 17,
28, 76, 98

future-asymptotically simple 353, 367, 428
future causal (74) 427
future-endless 297
future end-point 296
future null vector 8
future set 296
future tube 152: see forward tube

galaxy (fundamental observer) 335, 336
gamma-plane 453, 457, 460
Garding, L. 45, 81
gauge freedom of potential

for angular momentum twistor 71, 101
for exterior derivative 90
for Killing vector (twistor) 88
for massless field 79, 119
for Ward function 167
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for Yang-Mills 34, 168
Gauss-Bonnet theorem 27
Gaussian curvature 27, 374, 387, 400, 401,

404
Gegenbauer function (29)
general coordinate group 366
generator

o f C / + 422
of Jt 301-
of null hypersurface 180, 181
of quadric 267

genus 27
geodesic (169), 170

null: see ray
geodesic deviation (Jacobi) equation 182
geodetic 60, (169)

see also geodesic, SFR
geodetic distance in (anti-) de sitter space

340
Geroch, R.P. 296, 297, 351, 353, 367, 421
Geroch-Held-Penrose (GHP) formalism

23-: see compacted
Gibbons, G.W. (129)
Gilkey, P.B. 399
Gindikin (164) (308)
Ginsberg, M.L. (149)
Godemont, R. 161
Goldberg, J.N. 195
Goldberg-Sachs theorem 195—
good cut 384-
googly graviton (164)
GPNDs (gravitational principal null

directions) 190, 223-
addition theorem 226
and CS+ 267
effect on of Lorentz transformation 227,

228
and EPNDs 264
harmonic and equianharmonic 237
multiplicities of 223-, 237-

and fingerprints (232), 233
tensor form 224

representation on S+ 226-
specialization scheme (Penrose diagram)

226
Grace, J.H. 258, 260, 264
gradient 15
Grassmann, H (308)
gravitational constant 20
gravitational energy

non locality of 398, 427
potential 397, 405, 406
of radiation 426
see also Bondi-Sachs mass, quasi-local

expression
gravitational field

algebraically special 191, 224-

conformal scaling as spin-2 field 357,
358, 386

Grgin index of 331
null 45, 225, 254, 255
peeling property for 364-
PNDs of 223-: see GPNDs
radiation fields 364-, 388
see also linear gravity, massless fields

gravitational spinor 20-: see Weyl spinor
gravitational wave, radiation 390, 391, 424,

426, 427, 429
back-scattered 429
energy of 397, (406), 426
plane 126

graviton 163, 164
googly (164)
non-linear 164, 168, 390

Green, P. (164) 168
Grgin, E. 329
Grgin behaviour 328—
Grgin index 316, 327-
Grgin theorem 329-
Griffiths, P. 152, 160, 161, 162
Grothendieck, A. 95
Gunning, R.C. 161, 165

Hansen, R.O. 44, 129, (310), 404
harmonic

cross-ratio 3, 237, 239, 276
spherical, spin-weighted 29-

Harris, J. 152, 160, 161, 162
Harvey, F.R. 459
HausdorfT (non-Hausdorff) (207)
Hawking, S.W. 108, (129), 182, (207), (283),

296, 297, 335, 336, 338, 416, 436
helicity

of massless field 37, 152
raising and lowering 80, 147

of massless particle 69, 314
quantized 144, 145
of twistor 56, 69, 134,322-

Herlt, E. 108, 126, (199), 223, 277
Hermann, R. 169
Hertz-type potential 81
Hicks, N.J. 182, 184
Hirzebruch, F. 161
Hitchin, N.J. 44, (129), 390
Hodge, W.V.D. 452
Hodge*-operation (dual) 11, 12, 14, 39, 65,

445
Hodges, A.P. 148, (149)
holomorphic coordinates 128, 214

for 2-surface 27
holomorphic cross-section of bundle 165-,

326
holomorphic curve 390
holomorphic function 128, (191), 201, 212
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on complex manifold 214
of twistor 113- 139- 144-, 199, 202-
see also Kerr theorem

holomorphic tangent space 214
holomorphic twistor theory 326
homogeneity

degree 113, 140, 141, 144
of twistor function 113-, 140-,

and Grgin index 332
homomorphism of groups 66, (233), 303,

304, 317
Hopf, H. 61
Hopf fibring 61
horizons

of black hole 351
cosmological 335, 353

Hormander, L. 222
Horowitz, G.T. 351, 367, 424, 430, 431, 434
Horowitz-Perry mass-positivity proof 434
Jf-space (Newman's 'Heaven') 129, 389
Huggett, S.A. 44, 68, 148, (149)
Hughston, L.P. (74), 95, 97, 108, (109), 110,

145, 148, (149), (161), (302), 463
Hurd, T.R. 95, 97, (149), (302), 340
hyperbolic (Lobachevski) 3-space 332
hyper-Minkowski space 462, 463
hypersurface twistors 212, 215-, 390

incidence 63, 64, 138, 308, 310-, 461
index raising and lowering 5

for N-dimensional spinors 449-
indices, abstract and numerical 4, 5
infinitely long generators of J* 367
infinity (conformal) 291-, 347-

asymptotics of Q 362
Bondi parameter for 367, 373
Bondi time coordinate for 373, 38O-,

393-
for cosmological models 332-
further rescaling of 370, 371

to flatness 392, 393
generators, infinitely long 367
gravitational field at 358
J, J±, i°, i* 292- 348-
for Minkowski space 292-
null angle 371—

interpretation of 377-
nullity of 353, 367
rays don't touch it 358
reasonableness of 347, 350, 366
scalar curvature at 374, 376
for Schwarzschild space 348, 349
shear structure 384-, 388-
strong conformal geometry 369-

and infinity twistors 374-
surface area form on 375
vanishing of Weyl tensor at 356

weak equality at J 354-
see also cross-sections

infinity twistor 66, 67, 97
for (anti-) de Sitter space 337—
local twistor description at J 376
relation to strong conformal geometry

374-
infinity twistor functions for cosmology

340-
inner product of twistors 49
instantons (129)
integrability conditions 90-, 117—

see also consistency conditions
invariant contact structure 207-, 438
invisibility of Lorentz contraction 177
irreducibility

of Clifford algebra 443
of tensors and spinors 9, 10

Isenberg, J. (164), 168
isomorphism (local) of groups 66, (233),

303, 304, 317
isotropic medium (perfect fluid) 290

Jackiw, R. 126
Jacobi field 182, 209
Jacobi (geodesic deviation) equation 182
Jacobowitz, H. 215
Janis, A.I. 425
Jeffryes, B.P. 110, 400, 403, 408
Jordan, P. 191
Jordan normal form 241, (285)

specialization scheme 242

Kelly, R.M. 401, 407
Kerr, R.P. 198, (199)
Kerr coordinates 198
Kerr space-time 107-

angular momentum of 109, 205
Killing spinor for 107-
linear limit of 109, 204, 205

Kerr's lemma 198
Kerr's theorem 189, 200-, 206, 212, (215)

hypersurface form of 216, 219
Killing equation, vector 84, 93- 104, 396,

397
complex Killing vector 88, 108
conformal 55, 72, 82-, 101- 397

null 72, 318
defines particle constants 104-
in M(&) 422
relation to conservation laws 84-, 97-

Killing spinor 106-, 118, 205
determines propagation of polarization

107
for type (22) vacuum 107-

Killing tensor 105-
Killing-Yano tensor 110, 111
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kinematic twistor 71: see angular
momentum twistor

Kirchhoff-d'Adhemar (generalized)
formula 41, 330, 365

at J? 427
Klein, F. (308)
Klein-Gordon equation 40
Klein correspondence (representation) 307-
Ko, M. 129, (217), (310), 389
Kobayashi, S. 192, 193
Kodaira (160)
Kohn, J.J. 213
Komar, A. 395, (407)
Kozameh, C.N. 127
Kozarzewski, B. 394
Kramer, D. 108, 126, (199), 223, 277
Kristian, J. 185
Kronecker delta 5
Kronheimer, E.H. 296, 297
Kuiper, N.H. 298, (302), 303
Kundt, W. 195

labelling set 4
Lagrange identity 184
Lagrangian 2-plane 188
Lang, S. (291)
Laplace equation (139)

6-dimensional 463
see also wave equation

Law, P. (164)
Lawson, H.B. Jr 441
LeBrun, CR. (164), 215, 217
left-(right-)flat 129, 164, 390

conformally 129, (310)
Lemaitre universe 336
Lewy, H. 221, 222
Lichnerowicz, A. 191
Lie, S. (210), (308)
Lie bracket 16, 135, 174
Lie derivative 16, 174

of spinors 101—
relation to twistor theory 103

light cone 1
caustics, crossing regions on 385
of M* as 4-plane section 303
of point of J 296, 297, 377, 378
twistor description of 64, 65

Lind, R.W. (128), 389, 421
linear gravity (linearized general relativity)

38, 163
and angular momentum 422
conserved integrals for 75-, 97-, 396, 397

ten vanishing integrals 77, 88, 100
energy tensor in 38, 99-

Lobachevski (hyperbolic) 3-space 332
local twistors 127, 131-, 209

curvature for 136

local twistor transport 132—
Tod's 3-surface version (406)

logarithmic terms, elimination of 362
Lorentz group (233)

as factor group of BMS group 383
inhomogeneous: see Poincare group
irreducibility under 10

Lorentz transformation 2, 84-
and BMS group 382-
effect on GPNDs 227, 228
null rotation 15
principal null directions of 15
and spin-transformation 14

Lorenz gauge 32, 80
Ludvigsen, M. 129, (310), 389, 424, 430,

433
Ludvigsen-Vickers mass-positivity proof

424, (431), 433-
Ludwig, G. 223, 265, 277
luminosity parameter 179, 184

MacCallum, M.A.H. 68, 71, 91, 108, 126,
131, (139), (149), (199), 223, 277

Magnon (-Ashtekar), A. (353), 429
Majorana spinor (N-dimensional) 459, 460,

463
manifold-with-boundary 291, 297
Manin, Yu. I. (164)
Mariot, L. 191
mass 110

ADM mass 404, 429, 430
Bondi-Sachs mass 415, 423-
positivity arguments 423-

for gravitational wave energy 424-
Ludvigsen-Vickers 433-
Schoen-Yau 424
Witten 429-

see also rest-mass, momentum
massive particle 70-, 74, 104-

wave function for 40
twistor contour integral for 148

massless A$4 theory 332
massless free field 22, 26, 37-, 75- 112-

119, 130,207
algebraically special 190, 191
in compacted formalism 26

conformally invariant 37
conformal invariance of 38, 112

and Weyl spinor 357, 358
contour integral formulae 113-, 139-,

204-
derivative 147
reversed helicity 145, 146

derivative of 39, 40
Dirac-Weyl case 17
exact sequence for 116—
Grgin behaviour of 329-
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anti- 330-
M ax well case 33
null 13, 190, (206)
resolution of 116—
and SFRs 189-
spin-lowering 75-
spin-raising 79, 80
and structure of J 352- 358
see also wave equation, linear gravity

gravitational field
massless particle 68-

wave function for 26, 37, 39, 124
twistor contour integral for 139—
see also massless free field

Maunder, C.R.F. 231
Maxwell theory 32- (139)

see also electromagnetic field
McCarthy, PJ. (380)
McLenaghan, R.G. I l l
McLennan, J.A. Jr 38
Merkulov, S.A. (133)
Messmer, J. 389, 421
metric sphere, functions on 29
Metzner, A.W.K. 179, 185, 350, (396), 415,

(424)
Michelsohn, M.L. 441
Milne universe 336
Milnor, J. 328
Minkowski coordinates 1, 46
Minkowski space 1, 45-

compactified 297-, 316—
and complexified 305-
as quadric in IP5 300-

complex 64, 139- 149-
for 2-surface twistors 408, 418

distance (interval) in 1, 67
higher-dimensional 462, 463
infinity for 291-
infinity twistors for 66-, 339—
Minkowski 3-space for abreast rays 187,

(299)
compactified 188, 189

point of, in twistor terms 63, 65-
complex 66, 149—
reality of 66, 67

as portion of Einstein cylinder 293-,
333-

for 2-surface twistors 419, 420
Minkowski tetrad 6, 7
Minkowski vector space 1
Misner, C.W. 404, 405, 407, 428, 429
modulus of elliptic curve 288
moment sequences 91-
momentum 4-vector 68-, 85-

in asymptotically flat space 391, 392,
413-

in general relativity 395—

for linear gravity 75-, 395—
quantized 142, 143
role in twistor quantization 144-
see also mass, rest-mass

monopole harmonics (29): see spin-
weighted spherical harmonics

Morrow, J. (160)
multilinear map 4
multiple point of curve 269-
multiplicity

of curve on CS+ 268
of point 269-
see also PND, GPND

Murray, M.K. 464

N-dimensional spinors 440-
twistors 463

Neri, F. 461
Nester, J.M. 430, 432, 437
neutrino (Dirac-Weyl) equation 17

energy tensor for 39
Newlander, A. 214
Newlander-Nirenberg theorem 214
Newman, E.T. (29), 44, 126, 127, (128), 129,

180, 197, (217), (310), 350, 358, 359,
369, 389, 390, (391), 394, (396), 420,
421, 423, (424), 425, 427, 428

Newman's ^-space 129, 389
Newman-Penrose (NP)

constants 427-
formalism 17-, 22-

Newman-Unti (NU) group 368, 369
Newman-Unti metrics 350
news function 386, 425-
Newtonian potential energy 397, 405, 406
Nijenhuis tensor (expression) (214)
Nirenberg, L. 213, 214, 215
node 269-, 277- 286, 290

isolated 278, 281, 282
Nomizu, K. 192, 193
non-linear graviton 164, 168, 390
norm on 2-surface twistor space 403, 404
NP (Newman-Penrose)

constants 427-
formalism 17-, 22-

null angle 371—
interpretation of 377-

null cone 1
i n R 6 ( = Jf)301

null conformal Killing vector 72, 318
null congruence 169—
null convergence condition (283), 289, 351,

426
null datum 40, 41

and energy flow 365, 426, 427
at J 365

null flag 3, 8, 101
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null-flag bundle 3
null geodesic 169-: see ray
null hyperplane 63

associated with massless particle 70
null hypersurface 28, 179-

convergence and shear of 181
fundamental theorem of exterior calculus

on 37
generators of 180
at infinity 292- 349, 354
initial data on 40
in Ludvigsen-Vickers argument (431),

433-
null massless fields 73, 190, 191, (206)

electromagnetic 14, 190, 191, 257, 258
gravitational 45, 225, 254, 255
radiation fields are 359

null rotation 15, 254
null straight line 58

complex 113
null symmetric spinor 13, 14

see also null massless fields
null twistor 56, 313
null 2-plane 3

totally null 64, 309: see alpha-, beta-
plane

null vector (complex) 8, 266, 308- 452
numerical indices 4

octonians (Cayley numbers) 461, 462
orientable, space- and time- 3
orthochronous 15
orthogonal group: see rotation group

parabolic section of null cone (301), 378
Parker, T. 430
particle

constants for 104-
massive 70-, 74
massless 68-
world-line of 70

past-: see future-
Patodi, V.K. 434
Pauli-Lubanski spin vector 69, 420
Payne, W.T. 3, 8
Pedoe, D. 452
peeling property 358-

proof of 363, 364
pencil

of hyperplanes 337, 343
plane (of lines) 311, 312

Penrose, R. (29), 44,45, 60,66,68, 71, (74), 78,
79, 81, 91, (103), 107, 108, 110, 126,
129, 131, (139), 145, 148, (149), 164,
180, (184), 185, 197, (206), (207), 211,
213, 215, 216, 217, 223, 227, 230, 231,
264,265,275, (283), 285,296,297,298,

(302), 303, (308), (310), 325, 326, 335,
338, 350, 351, 353, 354, 358, 359, 364,
369, 388, 389, 390, (391), 392, 394, 395,
(396), 421, 422, 423, (424), 426, 427,
428

Penrose diagram
conformal diagram 293-, 334-
for GPND specialization 226, 256

perfect fluid 290, 347
Perjes, Z. (74), 148
Perry, M.J. 424, 430, 431, 434
Petrov, A.Z. 223, 246
Petrov canonical forms 245, 246
Petrov classification 223, 225, 242-
Petrov types 225

and Jordan forms 240-
phase rotation of a twistor 69
Pin groups (440)
Pirani, F.A.E. 211, 223, 227, (407)
plane (2-plane)

in PT 312
totally null 64, 309

see also alpha-, beta-plane
plane pencil 311, 312
Plebahski, J. (199), 265, 285, (310)

see also consistency conditions
Plebahski spinor type 265, 285-
Plucker, J. (308)
PND (principal null direction) 13

of angular momentum 70
for complex space-time 129
a n d C § + 267
/c-fold 13, 190

and pole-multiplicity of twistor
functions 204-

of Lorentz transformation 15
of Weyl spinor 107, 184, 190, 223-

see also GPNDs
Poincare group 67, 84-, 304, 366

as subgroup of BMS group 380-
and gravitational radiation 390-

as subgroup of complex BMS group 423
as subgroup of NU group 369

Poincare lemma (converse) 16, 90, 438
polytrope 347
Porrill, J. 368
Porteous, I.R. (440), 441, 452
Porter, J. 44
position vector 45, 127

complex 66, 151
complex conjugate of 66

positive frequency 37, 152, 316
of twistor wave function 145, 151—

Poston, T. 136
Potential

for angular momentum twistor 71
Hertz-type 81

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486
https://www.cambridge.org/core


492 Subject and author index

for Killing vector 88
for linear gravity 38
for massless fields 78-
for Maxwell theory 32
for Yang-Mills theory 35
see also gauge freedom

Press, W.H. 350, 428
primary spinor part of twistor 52

differential equation for 44, 49, 55, 81,
396

in tensor form 77
does it determine the twistor? 53-
Grgin index of 328
of symmetric trace-free twistor 54-, 75-,

82-94,96, 101- 118, 119, 147
conformal invariance of 56, 111

priming operation 19, 24, (197)
principal null directions 13: see PND
principal null vectors 13
principal spinors 13
Prior, C.R. 421
projection operator 26, 443
projection part of twistor 52

2-surface 403, 413, 414, 432
projective line 149-, 307-
projective space 248, 267- 300-, 337-, 452,

453
projective twistor space 56, (57), 149-, 307-
proper 15
pseudo-orthogonal group 440

see also rotation group
pure spinors (N-dimensional) 451—
purely electric 33, 257, 258

shear of cut 389,412,421

Qadir, A. (149)
quadric 267, 301- 452, 453, 456-
quadruple point 286, 290
quadrupole moment 425, 428
quantization 142—
quantum chromodynamics 461
quasi-local energy-momentum/angular

momentum expression 401-
and ADM mass 404
correction factor for (401), 402, 407, 408

at J 410
at J 408-
quasi-local angular momentum twistor

402, (406)
determinant of 404
Hermiticity of 403

in Schwarzschild space 405, 407, 408
in time-symmetric space 405
Tod form (401), 405, 432
see also 2-surface twistor

radiation field 359, 364-, 388
ill-defined at spacelike J 365

Rarita-Schwinger equation: see Dirac-
Fierz equation

ray (null geodesic) 58-, 169—
affine parametrization of 170, 172

complexification of (64), 113, 311, 312
conformal invariance of 66, / 72, 295
space of 207-

ray congruence 169-
convergence (divergence) of 177-

propagation of area 179
hypersurface orthogonal 179—
shear of 177-
twist of 177-
twist-free 179-, 207
see also SFR

reality structure
of CM* 313-
of N-dimensional spinors 459, 460

reduced (N-dimensional) spinor 66, 443
reducibility (curve) 266- 276, 277, 286
Reissner-Nordstrom space-time 198

quasi-local mass in 406, 407
resolution 118-
rest mass

for many-twistor system 74
quantized 144
quasi-local 404-, (406)
see also mass, massless fields

restricted
Minkowski coordinates 1
Minkowski tetrad 6, 7

restriction
in covering 159—
of complex structure 212

retarded time coordinate 292- 348, 356
Bondi 373, 380-, 393-

Reula, O. 424, 430, 434
Reula-Tod mass-positivity proof 434
Ricci identities 15

spinor form of 21, 22
Yang-Mills 35

Ricci spinor (trace-free Ricci tensor) 20
classification 223, 265, 275-, 282-
eigenvalues, eigenvectors of 277-
conformally rescaled 121—
specialization scheme for 287

Ricci tensor 20, 121- 265, 275- 352
Riemann curvature tensor 19, 20
Riemann principal directions 247-
Riemann sphere 1, 149, 153, 292
Riemann theorem (on conformal S2) 355
right- see left-
Rindler, W. 177, 332, 335, 336, 337
Robertson-Walker models 332-: see FRW

models
Robinson, I. 126, 173, 191, 192, 195, 198,

(199), 350
Robinson congruence 59-, 70, 72, 189, 203,
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204, 299, 300, 314, 318, 322-
handedness of 60, 61,314
rotation rate of 323, 324
shear-free property of 60
special 63

Robinson's theorem 191, 205, 206, 222
Robinson-Trautman metrics 350
Ross, N.F. 187, 188
Rossi, H. 161
rotation group

complex (233)
in n-dimensions 440-
in six dimensions (pseudo-) 66, 303-

rotation of ray congruence 177-, see twist
rotations 2

of metric sphere 29-
see also null rotations

Rotenberg, M.A. (396), 427
round sphere: see metric sphere
Rudiger, R. 110

S+ (anti-celestial sphere) 1- 380
black and white regions on 275
complexified 266-
and general symmetric spinor 265-
real curve on 266, 274
and Weyl spinor 226-, 249-

fingerprint of 229-
Sachs, R.K. 77, 179, 183, 185, 191, 195,

350, 358, 359, (380), 382, 388, (391),
(396), 415, 423, (424)

Sachs equations 183-
and fingerprints 230, (231)

Sachs peeling property 358-: see peeling
property

scalar product of twistors 49
Scanlan, G. 265, 277
Scheffers, G. (210), (308)
Schild, A. 195, 198, (199)
Schoen, R. 424, 429
Schouten, J.A. 127, (214)
Schrodinger, E. 337
Schrodinger-Klein-Gordon equation 40
Schwarzschild space-time 108- 205, 229,

231, 331, 332,347-
GPNDof229, 231
horizon of 351
infinity for 347-
Killing spinor for 107-
linear limit of 205, 331
quasi-local mass in 405, 407, 408

scri (J) 291-: see infinity
second fundamental form: see extrinsic

curvature
Segre characteristic 285-
Seifert, H.-J. 297
self-dual 12, 242- 419, 452

Weyl curvature 21, 129, 164, 390

Yang-Mills curvature 35, 164-
Sen, A. 430, 431
Sen-Witten (SW-) equation 430-
SFR (shear-free ray congruence) 189-

behaviour of p in Einstein space 189
non-analytic 201, 221
see also ray congruence

Shanahan, P. 399, 454
Shaw, W.T. 404, 423, 433, 461
sheaf 117, (160)
shear of ray congruence 171—, 178
shear structure of 384-

and gravitational radiation 388-
shear-freeness 60, 189, 212, 216-

at hypersurface 219—
at J 385
of , /355
see also SFR

signature 43, (64), 67, 128, (129), 303, 306,
403,411,440,443,459,462

simple skew tensors 14, 247, 451, 452
Maxwell field 33, 257

Singer, I.M. 44, (129), 390, 434
Singer, M.A. (124)
singularity

of fingerprint (232)
at i*,!0 349
of space-time (naked) 204
of twistor function 114, 148-, 204-

skew symmetry: see anti-symmetric
Sommerfeld, A. 365
Sommerfeld radiation condition 365
Sommers, P.D. 108, (109), 110, 126, 191,

193, 194, 195, 461
spacelike 2-surface 26
space-time

complex 127—
infinity for 291, 292
manifold 210
point of, in twistor terms 63, 65-, 305-

complex 66, 128, 307
reality of 66, 67, 313

Sparling, G.A.J. (74), 78, 148, (149), (217),
437, 462

Sparling's 3-form 437-
spherical harmonics (spin-weighted) 29-,

383, 410, 427, 428
table of dimensions 30

spin 69, 70, 204
and fingerprints (231), (232)
see also helicity

spin-coefficient formalism 17-, 169—
see also compacted spin-coefficient

formalism
spin-coefficients 17-

change under basis change 23, 171, 173,
177

change under conformal rescaling 36
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interpreting e 172
interpreting K 170—
interpreting p, o 173-, 178
interpreting T 175, 177
p, o and T in flat space 185—
type 23, 171, 173, 174

spin-frame 6, 18
behaviour at J 362, 363

spin group 2, 10, (233)
N-dimensional 440

spin-matrix 2
spin raising and lowering 75-, 79, 80, 147
spin-space 3

AT-dimensional 441-
reduced 443-
structure of 454, 455

spin structure, spinor structure 3
of Mis-

behaviour under reflections 321, 322
handedness of 319-
twisted 324-

spin transformation 2, 14, 15
spin-vector 2, 3, 8, 101, 170-
spin-vector bundle 3, 437
spin vector (Pauli-Lubanski) 69, 420
spin-weight 23, 29, 440

and fingerprints 233
spin-weighted spherical harmonics 29-,

383, 410, 427, 428
table of dimensions 30

spinor basis 6
spinor fields 4-

N-dimensional 462
spinor-tensor correspondence 5
spinorial object 3, 317, 440
spinors

index staggering for 5, 51
irreducible (totally symmetric) 10
N-dimensional 440-

pure 451—
reduced 66, 440, 443

tensor translation of 10-
splitting off skew indices 6
staggering of indices 5, 51
Stark, R.F. 108
stationary space-time 385, (391), 428
Stein manifold 161
Stephani, H. 108, 126, (199), 223, 277
stereographic coordinate (complex) 1,2,31,

356, 368-
Stewart, J.M. 368
Streubel, M. 395, 421, 422
strong conformal geometry 369-: see

infinity
Strooker, J.R. 89
supersymmetry (45), 463
supertranslations 381—

surface: see null hypersurface, spacelike
hypersurface, spacelike 2-surface

surface-area 2-form 27, 28
on J 375

SW-(Sen-Witten) equation 430-
symmetric spinor 10,13, 39, 40, 233-

classification of 265-
Hermiticity 275
null 13
positivity 283, 289, 290
reducibility of 266-

symmetric tensor 10, 11
trace-free 10, 11
trace reversed 11

symmetric twistor 55, 75-, 111-, 147
symmetry group

of particular Maxwell tensors 258, 259
of particular Weyl tensors 249-
(see also individual groups)

symmetry operations 8-
symplectic structure 211
Synge, J.L. 68, 395
syzygy 263, 264

tableau symmetry 9, 10
tacnode 269- 280, 281, 284, 286, 290
Tafel, J. 222
Tamburino, L.A. 421
Tamm, Ig. (29)
Taub, A.H. 131
Taubes, C.H. 430
tensor

anti-symmetric 11, 12, 14
symmetric 10, 11

tensor algebra 3-
tensor-spinor correspondence 5

translation symbols 8
n-dimensional 450-

tensor translation of spinor algebra 10-
Terrell, J. 177
tetrad, Minkowski 6, 7
tetrad, null 6, 7
Thompson, A. 195
thorn (p) 23-

commutators for 25
conformally invariant 36, 37, 41

Thorne, K.S. 405, 407, 428
Thorpe, J.A. 231
three-surface twistor 406
TIPs and TIFs 297, 335, 353, 354
Tod, K.P. 44, 68, 127, 129, (310), 347, 389,

390, 394, 401, 404, 405, 406, 407, 408,
(421), 424, 430, 432, 434

Tod form of quasi-local expression (401), 405,
432

Tolman, R.C. 336
Tolman universe 336, 344, 347
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topology
of compactified Minkowski space 299,

300
o f y + J~ 349,354
of null geodesic 314
of PT*, PN, J±, N (313)
for 2-surface-twistor surface 399

torsion 75, (184), 437, 438
trace-free

energy tensor 85, 352, 353, 409
twistor54,55,78,83,87,95,96, 111-, 147-

397
transition function 162-
translation between tensors and spinors 5,

10-
in n dimensions 450-

translation symbols 8
translations 381—

supertranslations 381—
transvection 13
Trautman, A. 126, 350
Treves, F. 215
triple point 269- 284-
Turnbull, H.W. (285)
twist of bundle 324-
twist of ray congruence 61, 177-

constant measure of 184, 209
twist-free congruence 179, 207, (210)

twistor diagram theory (149)
twistor equation 26, 43, 44-

in compacted formalism 26
conformally invariant 37
2-surface twistor equation 399

conformal invariance of 45
conjugate of 49
consistency conditions for 45, 120, 130
exact sequence for 118, 119
higher-valent version of 54, 55, 77

see also primary spinor part
in n dimensions 463
resolution of 118, 119
in tensor form 77, 396

twistor four-valuedness 316—
twistor function 113-, 139-, 202-

homogeneity of 113-, 140-
and Grgin index 332

see also holomorphic function, twistor
wave function

twistor geometry 58-, 305-
twistor group 67, 316-
twistor quantization 142—

of helicity 144
twistor-real skew twistors 67, 95, 339
twistor space 46-

ambitwistor space (164)
see also projective twistor space

twistor theory viii, 43, 44, 65, 189

higher-dimensional 462, 463
holomorphic 326
and Kerr's theorem 200, 202-
twistor particle programme 74

twistor wave function 143—
massive 148, 162
massless 139-, 160
n particles 161, 162
non-linear 162—

twistors 43-
addition of 47
a-plane description of 64
alternating twistors 54, 65, 408
angular momentum (moment, kinematic)

twistor 71, 73, 85- 401-
asymptotic 212, 389, 390
bang and crunch 342-
basis for 48

dual basis 50
complex conjugation of 50-, 56, 313-
components of 48
dual twistors 48

j5-plane description of 64
components of 50
spinor parts of 50

flagpole field 59-, 72
four-valuedness of 316—
global 131-
Hermitian 55, 71, 83, 136, 397
higher-valent twistors 50-

complex conjugation of 56
components of 52
dependence on position 53
differential equations for 53-
local twistors 134, 135
spinor parts of 51-

holomorphic functions of 113-, 140-,
144-, 199, 202-

hypersurface 212, 215-, 390
conformal invariance of 218, 219

incidence (orthogonality) of 63, 310-
independence of origin 48, 49
index staggering for 51
infinity 66: see infinity twistor
inner (scalar) product of 49

conformal invariance of 57, 58
left-, right-handed 56
local 131—: see local twistors
multiplication by scalar 47
N-dimensional 462, 463
n-twistor internal symmetry group 74,

148
null 56, 313
outer product of 50, 51
reason for name 61
skew. 54, 55

dual of 65

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486
https://www.cambridge.org/core


496 Subject and author index

simple 65, 66, 341
to represent points 65-, 305-
twistor-real 67, 95

spinor parts of 47, 51-
dependence on position 46, 49, 53
differential equations for 44, 46, 49, 53
see also primary spinor part

symmetric 54, 55, 75- 111- 147
trace-free 54, 55, 78, 83, 87, 95, 96, 111-

147, 397
2-surface 399: see two-surface twistors
valence of 51

two-surface twistor 395, 396, 398-
alternating twistor 408
associated complex Minkowski space

408, 418
associated real Minkowski space 419,

420
exact sequence for 417
infinity twistor for 404

at J 410, 411
projection part of 403, 414, 432
for &> at J 408-
twistor norm for 403, 404

at J 416, 417
see also quasi-local expression, 3-surface

twistor
type 23

uncontorted
2-surface 400, 401, 406, 408, 412, 421
3-surface 406

universal covering space 304, 338
universe radius function 346
unphysical metric 291, 368
Unti, T.W.J. 350, 369, 394, (424)
Urbantke, H. (308)

vacuum space-times 107, 108, 195- 223-
347, 348, 352, 354- 366, 389, 427-
437

see also Einstein field equations
valence 10
van der Burg, M.G.J. 179, 185, 350, (396),

415, (424)
Veblen, O. 61, 131, (308), 441
vector bundle: see bundle
Vickers, J.A.G. 424, 430, 433

Wald, R.M. 85, 108, 336, 435
Walker, M. 107, 108, 110, (350), 368, (430)
Walker, R.J. 269, 288
Ward, R.S. 43, 44, 68, (74), 78, 164, (310),

390, 464
Ward, construction 164-

explicit procedure 166—
wave equation 39, 81, 82

conformally invariant 82, 124, 125
Grgin behaviour of 329, 330

for Maxwell field in curved space 126
twistor solution of 139-, 150, 151

higher-dimensional 463
for Weyl spinor 126
see also massless free field

wave-front, asymptotically plane 377, 378
wave function 142-

twistor wave function 143-
weak asymptotic simplicitly 351, 353
weak energy condition (283), 289, 351, 426
weak equality 354-

see also infinity
weak-field limit of general relativity 38: see

linear gravity
weighted quantity 23-

type of 23
Weinberg, S. 347
Weizenbock relations 125
Wells, R.O. Jr 43, 44, 68, 78, 148, 152,

(160), 325, 326
Wess, J. (45), 463
Wess-Zumino (twistor) equation 463
Weyl, H. 441
Weyl (conformal) tensor, spinor 20-, 137

asymptotic behaviour 393—
canonical forms 239-
conformal in variance of 120, 121

not massless field scaling 357, 358, 386
curvature covariants 258, 260-
degeneracy (PND coincidence): see

GPNDs, multiplicities of dimensions
of symmetry groups of 255, 256

eigenbivectors of 242-
eigenspinors of 233-
eigenvalues of 235—
fingerprint of 229
geometry of 246-
magnetic and electric parts of 406
PNDs of 223: see GPNDs
peeling property 359, 360, 364-
representation on S+ 226-
Riemann principal directions of 247-
scalars of 235
symmetries in special cases 251—
types of 225-

conditions for 260-
vanishing at J 356
vanishing implies conformal flatness

137-
Weyl (Dirac-Weyl) neutrino equation 17,

434
energy tensor for 39
n-dimensioi:al 462

Wheeler, J.A. 405, 407, 428
Whittaker, E.T. (139)
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Will, CM. (350), 368
Winicour, J. 421
Witten, E. (164), 168, 398, 424, 429, 430,

436, 437
Witten, L. 263
Witten mass-positivity argument 398, 424,

429-, 438, 461
Woodhouse, N.M.J. 128, (160), 188, 211,

328, 401
world-line 70, 204
world-tensor 5

as spinor 5
Wu, T.T. (29)

Yamabi equation 332

Yang, C.N. (29)
Yang-Mills (YM) theory 34, 35, (133)

(anti-) self-dual 35, 164-
general fields 168
Quasi-local charge integral (401)
YM-charged field 34, 164, 165

Yasskin, P. (164), 168
Yau, S.-T. 424, 429
Young, A. 258, 260, 264
Young, J.W. 61, (308)
Young tableau 9, 10, 81, 82

zero rest-mass free-field equations 26: see
massless free field

Zumino, B. (45) 463
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Index of symbols

Symbols are listed in order ofappearence in text; page numbers in italics denote main references;
page numbers in parentheses refer to footnotes; A dash indicates continuation for more than two
pages.

M (Minkowski space) 1
V (Minkowski vector space) 1
®(P, Q) (squared interval) 1
C (complex stereographic coordinate) 1, 31
S+ (anti-celestial sphere) 1
S~ (celestial sphere) 2
X = K i ^ C a ' W (cross-ratio) 2
K (spin-vector) 2, 3
J( (manifold, space-time) 3 -
Se (labelling set) 4
a, A, a, F (lightface sloping indices: abstract)

4-
a, A, a, r (bold upright indices: numerical) 4
K* K (basis vectors) 4
£/,&,... (clumped indices) 4
s/l,s/2>--- (similarly clumped indices) 5

[ ] TO
a = AA', b--BB', etc. 5

gab (metric tensor) 5
oA, iA (spinor basis) 6
X = oAiA 6
/a, m\ na (null tetrad) '6
g0

AB' etc. (translation symbols) 8

Up J] (spinor valence symbol) 10
SL(2,C) (spin group) 10
eabcd (alternating tensor) 10, 11
tab (trace-reversed Tab) 11

V ^ ^ X * (duals) 11

V (covariant derivative) 15-
Aafi (derivative commutator) 15
Tap

y (torsion tensor) 15
RafiY

6 (curvature tensor) 15, 19
[I/, K] (Lie bracket) 16
£ (Lie derivative) 16
VA = Ani2...ip = K,...apd*ai A • • • A dxa" (p-

form) 16, 17

A A C (exterior product) 16
dA (exterior derivative) 16
d(p\J/ = (d0)^, 6<t>4f = (6<t>)il/, etc. 16
V (directional derivative) 17

J^/* (integral of p-form) 17
d (boundary) 17
yAA,c

B (spin-coefficients) 18
p, a, K, T, . . . , er (spin coefficients) 18
D,S,D',d' 18
(...)'19
XABCD> ®ABC'D'> A (curvature spinors) 19

^flbcd* ^afcc* ^aftcd i y

Rflb, R 20
X (cosmological constant) 20
G (gravitational constant: notation change

from volume 1!) 20
^ B c D = XMBCD)(Weyl spinor) 20
Cabcd (Weyl tensor) 20

Cabcd> Cabcd> Cabcd 21
CUih DA/B/ (spinor commutator) 21
*¥ o,. • •, ¥4 (Weyl spinor components) 22
n = *zA22
<&00,...,O22 (Ricci spinor components) 22

}
{P*<l} (type): P = r' - r, q = f - t 23
I? (thorn), 6(eth), J?',6' 23-
</>r (components of massless field) 26
y (spacelike 2-surface) 26, 398
Zf = \ih A m (surface-area 2-form) 27
K (complex curvature) 27
{ (holomorphic coordinate for y) 27
P 27, 31
e/T(null volume 3-form) 28
s = y(p — q) (spin-weight) 29
b = i(P + 4) (boost-weight) 29
w (conformal weight) 29
S^ H, (constant spinors) 30
sYjm (basis for harmonics) 31
Fab, Vab, *«, Ja, Tab (Maxwell theory) 32-
Kaba* FabCl

0, (pABeV> XABS* (bundle
curvature) 34, 35
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Tfl = ValogQ35
pe, 6ci J/, 6f

c (conformally invariant: notation
change from volume 1!) 36

Kabcd (linearized curvature) 38
Eab (source for linear gravity) 38
• = v°Va (D'Alembertian) 39
0 (space-time origin) 1, 45
x° (position vector) 45
xa (Minkowski coordinates) 1, 46
<bA, nA, (constant spinors) 46
[J]» [?1 •.•,[?] (twistor valence) 46, 48, 57
Ta, Jp,..., Ta, TJ*.... (twistor spaces) 46, 47
Z«, [o>A], (coA, nA) (twistor) 46, 47

«-• (origin-dependent correspondence) 47

ZA, ZA, (spinor parts) 47
coA{0\ co°(O\... (values at origin) 48
tafiyi (alternating twistor) 54
oAB,..., £AB\... (primary parts) 55
P% = P / 56
s = |ZaZa (helicity) 56
T*,T° = N,T + ,T",T # etc. 56, (57)
p ( = projective) 56, 57
Z (ray for null twistor) 58
C ( = complexified) 64
Ra/, (dual of Rafi) 65
\afh \aP (infinity twistors) 66
0(2,4)66
SU(2,2) (twistor group) 67, 316
Pfl, M

ab (momentum, angular momentum)
68

5a (Pauli-Lubanski) 69
\xAB> (angular momentum spinor) 71
Aafi= 2Ey

(a\p)y (angular momentum twistor)
71

Qab (spin-lowering tensor) 77
F^ = Say\yp + Sfiy\

ya (Killing vector twistor)
87

H% = AJ 0 US'fi (Hermitian twistors) 95
R[ap] (twistor-real) 95
Q (particle constant) 105
5,4 E> ^A D (spinor sheaves) 117
^ABAB=i2^9ab-lKb 122
h (Planck's constant/2?r) 142
R (projective line in PT*) 149
^i k 11. n (restriction) 159
S (coboundary operator) 161
GL(n,C) (general linear group) 165
n e # (ray of null congruence) 169
Sb = oAVboA 174
h, (, g (components of connecting vector)

175
\Ja,Ua-\-SUct (neighbouring null twistors)

181

P(p,cr matrix) 183
z(C,T vector) 183
Z (symplectic invariant) 184
^, 0* (Minkowski 3-space) 187, 188
IM, f̂ a, N#, f̂ J# (space of rays in M) 207
JT, JTm

9 JT% (space of rays in Jf) 208
h = i0adUa, 2 = id0a A dUB 209
Jt? (hypersurface) 215
I, II, D, III, N, O (Petrov types) 225
{1111}, {211}, etc. (GPND coincidences)

225
7,J(Weylscalars)235
HABCD (Plebanski spinor) 265
co (function on CS+),Q 266
R (real locus) 266
(p, g)-curve 267
Z-, Z-'generator (on CS+) 267
j^Cscri'), J±, i±, i° 291-
M (manifold-with-boundary) 291
& (Einstein cylinder) 294
I+ [ I ] , / - [S ] (future-, past-set) 296
M* (compactified IM) 298
C(l,3), CT

+(1,3) (conformal groups) 300
P5300
Jf (null cone in E6) 301
^ (complex conjugation) 313, 459
R(U) universe radius 332
st (anti-Einstein) 333
T(Ra/J), • • •, /(Ua, VJ (infinity functions) 341
Ba/?, Ca/?, Jafi (bang, crunch etc.) 343, 344
# a (normal to J) 352
« (weak equality) 354
A (scaling at J) 355, 371
•y (ray) 358
^Fg,..., ¥£ (Weyl components at J) 364
@ (BMS group) 381
<# (super translations) 381
P (translations) 381
^ (Lorentz rotations) 382
<£ (Lorentz group) 383
^ (Poincare group) 384
T'iy) (2-surface twistor space) 399
{ } (varying over Sf) (399)
r\ (correction factor) 402
S- 4 ^ ) ! . . . , §A,(y) (asymptotic twistor

spin-spaces) 417
M(y), C M(^) (associated Minkowski

spaces) 418
XK (Witten spinor) 430
S (Witten 2-form) 430
P (Sparling 3-form) 434
81 (spin-vector bundle) 437
dx- = 0£lM37
N = 2in or 2in * (spin-space dimension)

440
SO{n\ SO(p,q), Spin(n), Spin(p,^) 440
O(n\ O(p,q), Pin(n), Pin(p,q) (440)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511524486
https://www.cambridge.org/core


Index of symbols 501

Y.> Y<n yap
a, la/ (y-matrices) 441, 443 §K, §*' (reduced spin-spaces) 443

Vfl (n-dimensional vector space) 441 n, ft n / , f t / (projections to reduced
I (JV x N unit matrix) 441 spaces) 443
§ p (spin-space for n dimensions) 441 yab...d = 1[a1b• • • Jdv lab...dp 444, 445
G (Clifford algebra) 442 ( ± ) ££ , (±)E 445
n = Yi Y2 • • • Y« 442 £paf

 P°.,(±)e^, epa 447, 448
s = n — 2u (signature of n-dimensional gt]) ERS g 449

4 4 3 i c P V (quadric in projective space) 452
p = /?©/*' (spinor abstract indices (r)^t = iy K^...C r 4 5 4

reduced) 443 ^ f y (hyperplane) 456
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