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Preface

To a very high degree of accuracy, the space-time we inhabit can be taken
to be a smooth four-dimensional manifold, endowed with the smooth
Lorentzian metric of Einstein's special or general relativity. The formalism
most commonly used for the mathematical treatment of manifolds and
their metrics is, of course, the tensor calculus (or such essentially equivalent
alternatives as Cartan's calculus of moving frames). But in the specific
case of four dimensions and Lorentzian metric there happens to exist - by
accident or providence - another formalism which is in many ways more
appropriate, and that is the formalism of 2-spinors. Yet 2-spinor calculus
is still comparatively unfamiliar even now-some seventy years after
Cartan first introduced the general spinor concept, and over fifty years
since Dirac, in his equation for the electron, revealed a fundamentally
important role for spinors in relativistic physics and van der Waerden
provided the basic 2-spinor algebra and notation.

The present work was written in the hope of giving greater currency to
these ideas. We develop the 2-spinor calculus in considerable detail,
assuming no prior knowledge of the subject, and show how it may be
viewed either as a useful supplement or as a practical alternative to the
more familiar world-tensor calculus. We shall concentrate, here, entirely
on 2-spinors, rather than the 4-spinors that have become the more familiar
tools of theoretical physicists. The reason for this is that only with 2-
spinors does one obtain a practical alternative to the standard vector-
tensor calculus, 2-spinors being the more primitive elements out of which
4-spinors (as well as world-tensors) can be readily built.

Spinor calculus may be regarded as applying at a deeper level of struc-
ture of space-time than that described by the standard world-tensor
calculus. By comparison, world-tensors are less refined, fail to make trans-
parent some of the subtler properties of space-time brought particularly
to light by quantum mechanics and, not least, make certain types of
mathematical calculations inordinately heavy. (Their strength lies in a
general applicability to manifolds of arbitrary dimension, rather than in
supplying a specific space-time calculus.)

vii
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viii Preface

In fact any world-tensor calculation can, by an obvious prescription,
be translated entirely into a 2-spinor form. The reverse is also, in a sense,
true - and we shall give a comprehensive treatment of such translations
later in this book - though the tensor translations of simple spinor mani-
pulations can turn out to be extremely complicated. This effective
equivalence may have led some 'sceptics' to believe that spinors are
'unnecessary'. We hope that this book will help to convince the reader that
there are many classes of spinorial results about space-time which would
have lain undiscovered if only tensor methods had been available, and
others whose antecedents and interrelations would be totally obscured by
tensor descriptions.

When appropriately viewed, the 2-spinor calculus is also simpler than
that of world-tensors. The essential reason is that the basic spin-space is
two-complex-dimensional rather than four-real-dimensional. Not only
are two dimensions easier to handle than four, but complex algebra and
complex geometry have many simple, elegant and uniform properties not
possessed by their real counterparts.

Additionally, spinors seem to have profound links with the complex
numbers that appear in quantum mechanics.* Though in this work we
shall not be concerned with quantum mechanics as such, many of the
techniques we describe are in fact extremely valuable in a quantum
context. While our discussion will be given entirely classically, the formal-
ism can, without essential difficulty, be adapted to quantum (or quantum-
field-theoretic) problems.

As far as we are aware, this book is the first to present a comprehensive
development of space-time geometry using the 2-spinor formalism. There
are also several other new features in our presentation. One of these is
the systematic and consistent use of the abstract index approach to tensor
and spinor calculus. We hope that the purist differential geometer who
casually leafs through the book will not automatically be put off by the
appearance of numerous indices. Except for the occasional bold-face
upright ones, our indices differ from the more usual ones in being abstract
markers without reference to any basis or coordinate system. Our use of
abstract indices leads to a number of simplifications over conventional
treatments. The use of some sort of index notation seems, indeed, to be
virtually essential in order that the necessary detailed manipulations can

* The view that space-time geometry, as well as quantum theory, may be governed by
an underlying complex rather than real structure is further developed in the theory
of twistors, which is just one of the several topics discussed in the companion volume
to the present work: Spinors and space-time, Vol. 2: Spinor and twistor methods in
space-time geometry, (Cambridge University Press 1985).
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Preface ix

be presented in a transparent form. (In an appendix we outline an alter-
native and equivalent diagrammatic notation which is very valuable for
use in private calculations.)

This book appears also to be breaking some new ground in its presen-
tation of several other topics. We provide explicit geometric realizations
not only of 2-spinors themselves but also of their various algebraic opera-
tions and some of the related topology. We give a host of useful lemmas for
both spinor and general tensor algebra. We provide the first compre-
hensive treatment of (not necessarily normalized) spin-coefficients which
includes the compacted spin- and boost-weighted operators d and p and
their conformally invariant modifications 6% and \>^. We present a general
treatment of conformal invariance; and also an abstract-index-operator
approach to the electromagnetic and Yang-Mills fields (in which the
somewhat ungainly appearance of the latter is, we hope, compensated by
the comprehensiveness of our scheme). Our spinorial treatment of (spin-
weighted) spherical harmonics we believe to be new. Our presentation of
exact sets of fields as the systems which propagate uniquely away from
arbitrarily chosen null-data on a light cone has not previously appeared
in book form; nor has the related explicit integral spinor formula (the
generalized Kirchhoff-d'Adhemar expression) for representing massless
free fields in terms of such data. The development we give for the inter-
acting Maxwell-Dirac theory in terms of sums of integrals described
by zig-zag and forked null paths appears here for the first time.

As for the genesis of this work, it goes back to the spring of 1962 when
one of us (R.P.) gave a series of seminars on the then-emerging subject of
2-spinors in relativity, and the other (W.R.) took notes and became more
and more convinced that these notes might usefully become a book. A
duplicated draft of the early chapters was distributed to colleagues that
summer. Our efforts on successive drafts have waxed and waned over the
succeeding years as the subject grew and grew. Finally during the last three
years we made a concerted effort and re-wrote and almost doubled the
entire work, and hope to have brought it fully up to date. In its style we
have tried to preserve the somewhat informal and unhurried manner of the
original seminars, clearly stating our motivations, not shunning heuristic
justifications of some of the mathematical results that are needed, and
occasionally going off on tangents or indulging in asides. There exist many
more rapid and condensed ways of arriving at the required formalisms,
but we preferred a more leisurely pace, partly to facilitate the progress of
students working on their own, and partly to underline the down-to-earth
utility of the subject.
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x Preface

Fortunately our rather lengthy manuscript allowed a natural division
into two volumes, which can now be read independently. The essential
content of Vol. 1 is summarized in an introductory section to Vol. 2.
References in Vol. 1 to Chapters 6-9 refer to Vol. 2.

We owe our thanks to a great many people. Those whom we mention
are the ones whose specific contributions have come most readily to mind,
and it is inevitable that in the period of over twenty years in which we have
been engaged in writing this work, some names will have escaped our
memories. For a variety of different kinds of assistance we thank Nikos
Batakis, Klaus Bichteler, Raoul Bott, Nick Buchdahl, Subrahmanyan
Chandrasekhar, Jurgen Ehlers, Leon Ehrenpreis, Robert Geroch, Stephen
Hawking, Alan Held, Nigel Hitchin, Jim Isenberg, Ben Jeffryes, Saunders
Mac Lane, Ted Newman, Don Page, Felix Pirani, Ivor Robinson, Ray
Sachs, Engelbert Schiicking, William Shaw, Takeshi Shirafuji, Peter
Szekeres, Paul Tod, Nick Woodhouse, and particularly, Dennis Sciama for
his continued and unfailing encouragement. Our thanks go also to Markus
Fierz for a remark leading to the footnote on p. 321. Especially warm
thanks go to Judith Daniels for her encouragement and detailed criticisms
of the manuscript when the writing was going through a difficult period. We
are also greatly indebted to Tsou Sheung Tsun for her caring assistance
with the references and related matters. Finally, to those people whose
contributions we can no longer quite recall we offer both our thanks and
our apologies.

Roger Penrose
1984 Wolfgang Rindler
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1
The geometry of world-vectors and

spin-vectors

1.1 Minkowski vector space

In this chapter we are concerned with geometry relating to the space of
world-vectors. This space is called Minkowski vector space. It consists of
the set oPposition vectors' in the space-time of special relativity, originat-
ing from an arbitrarily chosen origin-event. In the curved space-time of
general relativity, Minkowski vector spaces occur as the tangent spaces
of space-time points (events). Other examples are the space spanned by
four-velocities and by four-momenta.

A Minkowski vector space is a four-dimensional vector space V over
the field R of real numbers, V being endowed with an orientation, a
(bilinear) inner product of signature (H ), and a time-orientation.
(The precise meanings of these terms will be given shortly.) Thus, as for any
vector space, we have operations of addition, and multiplication by scalars,
satisfying

U+ V= V+ U, U+{V+ W) = (U+V)+ W,

a(U+V) = aU+aV, (a + b)U = aU + bU,

a(bU) = (ab)U9 1U=U9 0U=0V = :0 (1.1.1)

for all U, V, We V, a, be U. 0 is the neutral element of addition. As is usual,
we write — U for (— 1)U, and we adopt the usual conventions about
brackets and minus signs, e.g., U+ V- W=(U+ V) + (-W)9 etc.

The four-dimensionality of V is equivalent to the existence of a basis
consisting of four linearly independent vectors f, JC,J, zeV. That is to
say, any Ue V is uniquely expressible in the form

U= U°t + Ulx + U2y + U3z (1.1.2)

with the coordinates [7°, I/1, [72, L/3eR; and only 0 has all coordinates
zero. Any other basis for V must also have four elements, and any set of
four linearly independent elements of V constitutes a basis. We often
refer to a basis for V as a tetrad, and often denote a tetrad (f, JC, J , Z) by
#i, where

t=go,x=g1,y = g2,z=g3. (1.1.3)

1
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2 1. Geometry of world-and spin-vectors

Then (1.1.2) becomes

U= U°g0 + U'g, + U2g2 + U3g3 = U%. (1.1.4)

Here we are using the Einstein summation convention, as we shall hence-
forth: it implies a summation whenever a numerical index occurs twice in a
term, once up, once down. Bold-face upright lower-case latin indices
a, i, a0, ax, a, etc., will always be understood to range over the four values
0,1,2,3. Later we shall also use bold-face upright capital latin letters
A, I, Ao, A1, A, etc., for numerical indices which will range only over the
two values 0,1. Again the summation convention will apply.

Consider two bases for V, say (go,gl9g2,g3) and (gfi9gi,g'2>g%)-
Note that we use the 'marked index' notation, in which indices rather than
kernel letters of different bases, etc., carry the distinguishing marks (hats,
etc.). And indices like a, a, a, etc., are as unrelated numerically as a, b, c. The
reader may feel at first that this notation is unaesthetic but it pays to get
used to it; its advantages will becomes apparent later. Now, each vector
g{ of the first basis will be a linear combination of the vectors g-{ of the
second:

9i2g2 + 9? 8%

The 16 numbers g) form a (4 x 4) real non-singular matrix. Thus det(g.J)
is non-zero. If it is positive, we say that the tetrads gi and g{ have the same
orientation; if negative, the tetrads are said to have opposite orientation.
Note that the relation of 'having the same orientation' is an equivalence
relation. For if g~{ = gjgv then (#rj) and (gj) are inverse matrices, so their
determinants have the same sign; if gi = g{*gj and g{ = g-^g:, then the matrix
(#.j) is the product of (#.j) with (gj) and so has positive determinant if both
the others have. Thus the tetrads fall into two disjoint equivalence classes.
Let us call the tetrads of one class proper tetrads and those of the other
class improper tetrads. It is this selection that gives V its orientation.

The inner product operation on V assigns to any pair U, V of V a real
number, denoted, by U- V, such that

U-V=V-U, (aUy V = a(U- V), (U+ V)-W"= UW+ V W, (1.1.6)

i.e., the operation is symmetric and bilinear. We also require the inner
product to have signature (H ). This means that there exists a
tetrad (t, x, y, z) such that

t t = \ , x-x=yy = z-z= - 1 (1.1.7)

tX = t.y=tZ = X.y = X.Z=y.Z = Q (J l g )

If we denote this tetrad by gi according to the scheme (1.1.3), then we can
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1.1 Minkowski vector space 3

rewrite (1.1.7) and (1.1.8) succinctly as

gi'g^n^ (119)

where the matrix (n^) is given by

(1.1.10)

(The raised-index version rjl* will be required later for notational consisten-
cy.) We shall call a tetrad satisfying (1.1.9) a Minkowski tetrad. For a
given vector space over the real numbers, it is well known (Sylvester's
'inertia of signature' theorem) that for all orthogonal tetrads (or 'ennuples'
in the rc-dimensional case), i.e., those satisfying (1.1.8), the number of
positive self-products (1.1.7) is invariant.

Given any Minkowski tetrad gv we can, in accordance with (1.1.4),
represent any vector Us V by its corresponding Minkowski coordinates
Ul; then the inner product takes the form

= U°V° - UlVl - U2V2 - U3V3. (1.1.11)

Note that U g. = U^.-. Thus,

U°=U-go,U
l= -U'gl,U

2= -U-g2,U
3= -U-g3. (1.1.12)

A particular case of inner product is the Lorentz norm

\\U\\ = U-U= UWri.. = (U0)2 - (U1)2 - (U2)2 - (U3)2. (1.1.13)

We may remark that the inner product can be defined in terms of the
Lorentz norm by

U-V = ±{\\U+V\\-\\U\\-\\V\\}. (1.1.14)

The vector Us V is called
timelike if \\U\\ > 0 > |

spacelikeif \\U\\<0> (1.1.15)

null if \\U\\=o]

In terms of its Minkowski coordinates, U is causal (i.e., timelike or null) if

(U0)2 ^ (I/1)2 + (U2)2 + (I/3)2, (1.1.16)

with equality holding if Uis null. If each of £/and Pis causal, then applying
in succession (1.1.16) and the Schwarz inequality, we obtain
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4 1. Geometry of world- and spin-vectors

| U°V°| > {(U1)2 + (U2)2 + ( I /WUK 1 ) 2 + (K2)2 + (V3)2}*
>UlVl + U2V2 + U3V\ (1.1.17)

Hence unless t/ and F are both null and proportional to one another, or
unless one of them is zero (the only cases in which both inequalities reduce
to equalities), then by (1.1.11), the sign of U- V is the same as the sign of
U°V°. Thus, in particular, no two non-zero causal vectors can be
orthogonal unless they are null and proportional.

As a consequence the causal vectors fall into two disjoint classes, such
that the inner product of any two non-proportional members of the same
classes is positive while the inner product of non-proportional members of
different classes is negative. These two classes are distinguished according
to the sign of l/°, the class for which U° is positive being the class to which
the timelike tetrad vector t =g0 belongs. The time-orientation of V con-
sists in calling future-pointing the elements of one of these classes, and
past-pointing the elements of the other. We often call a future-pointing
timelike [null, causal] vector simply a future-timelike [-null, -causal]
vector. If t is a future-timelike vector, then the Minkowski tetrad (f, x, y, z)
is called orthochronous. When referred to an orthochronous Minkowski
tetrad, the future-causal vectors are simply those for which U° > 0. The
zero vector, though null, is neither future-null nor past-null. The negative
of any future-causal vector is past-causal.

The space-orientation of V consists in assigning 'right-handedness' or
left-handedness' to the three spacelike vectors of each Minkowski tetrad.
This can be done in terms of the orientation and time-orientation of V.
Thus the triad (x,y,z) is called right-handed if the Minkowski tetrad
(r, x, y, z) is both proper and orthochronous, or neither. Otherwise the
triad (x,y,z) is left-handed. A Minkowski tetrad which is both proper
and orthochronous is called restricted. Any two of the orientation, time-
orientation, and space-orientation of V determine the third, and if any
two are reversed, the third must remain unchanged. When making these
choices in the space-time we inhabit, it may be preferable to begin by
choosing a triad (x,y,z) and calling it right- or left-handed according
to that well-known criterion which physicists use and which is based on
the structure of the hand with which most people write.* Similarly statistic-
al physics determines a unique future sense.

* In view of the observed non-invariance of weak interactions under space-reflection
(P) and of K°-decay under combined space-reflection and particle-antiparticle
interchange (CP) it is now possible to specify the space-orientation of physical space-
time independently of such cultural or physiological considerations: cf. Lee and
Yang (1956), Wu, Ambler, Hayward Hoppes and Hudson (1957), Lee, Oehme and
Yang (1957), Christenson, Cronin, Fitch and Turlay (1964), Wu and Yang (1964);
also Gardner (1967) for a popular account.
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1.1 Minkowski vector space 5

Minkowski space-time

As we mentioned earlier, Minkowski vector space V can be regarded as
the space of position vectors, relative to an arbitrarily chosen origin, of the
points (events) which constitute Minkowski space-time M. That space-
time is the stage for special relativity theory. None of its points is preferred,
and specifically it has no preferred origin: it is invariant under translations,
i.e., it is an affine space. The relation between M and V can be characterized
by the map

vec:M x M -• V (1.1.18)

for which

vec(P, Q) + vec(6, R) = vec(P, R), (1.1.19)

whence vec(P, P) = 0 and vec(P, Q) = — vec(Q, P). We can regard
vec(P, Q) as the position vector PQe V of Q relative to P, where P, QeM.
Evidently V induces by this map a norm, here called the squared interval
O, on any pair of points P,QeM:

O(P,0:=| |vec(P,0 | | (1.1.20)

The standard coordinatization of M, M <-+ U4, where U* is the space of
quadruples of real numbers, consists of a choice of origin OeM and a
choice of Minkowski tetrad g{ = OQ{ for g0, Ql9 Q2, Q3eM. Then the
coordinates P°, P1, P2, P3 of any point PeM are the coordinates of the
vector OP relative to gv i.e. OP = Plgr From (1.1.19) we find, by putting
O for g, the following coordinates of PR relative to#.:

(PR? = R{ - P\ (1.1.21)

clearly independently of the choice of origin. Substituting this and (1.1.20)
into (1.1.13) yields

# ( ^ Q) = (Q° ~ P0)2 ~ (Q1 ~ P1)2 ~ (Q2 - P2)2 - (Q3 - P3)2. (1.1.22)
A linear self-transformation of V which preserves the Lorentz norm -

and therefore, by (1.1.14), also the inner product-is called an (active)
Lorentz transformation. If such a transformation preserves both the
orientation and time-orientation of V, it is called a restricted Lorentz
transformation. Clearly the [restricted] Lorentz transformations form a
group, and this group is called the [restricted] Lorentz group. Similarly
a self-transformation of M which preserves the squared interval (no
linearity assumption being here needed) is called an (active) Poincare
transformation. Any such transformation induces a Lorentz transforma-
tion on V, and can accordingly also be classified as restricted or not. Again,
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6 1. Geometry of world- and spin-vectors

the restricted Poincare transformations clearly form a group.*
Any physical experiment going on in the Minkowski space-time of our

experience may be subjected to a Poincare transformation - i.e., rotated
in space, translated in space and time, and given a uniform motion-
without altering its intrinsic outcome. This is the basis of special relativity
theory, and it can be stated without reference to coordinates or to the
other laws of physics.

Coordinate change
If not further qualified, Lorentz and Poincare transformations in this
book will be understood to be active. But it is sometimes useful to consider
'passive' Lorentz [and Poincare] transformations. These are transforma-
tions of the coordinate space IR4, i.e. re-coordinatizations of V [or M].
Any Minkowski tetrad g{ in V [or tetrad g{ and origin O in M] defines a
quadruple of coordinates Ul for each U of V [or U = OP of M], with U =
U1gi. A change in this reference tetrad, g^g\ in V [or of tetrad and origin
in y ] induces a change in the coordinates for V[M]. The resulting
correspondence

G'.U^U1 (1.1.23)

[or Ui^Ul + Kl with Kl const.]

is called a passive Lorentz [Poincare] transformation. It is called restricted
if it can be generated by two restricted Minkowski tetrads #. and g{. For
the sake of conciseness, we shall now concentrate on Lorentz transforma-
tions, obvious generalizations being applicable to Poincare transforma-
tions.

It the two reference tetrads are related by

g^gfa, (1.1-24)
then

and thus the passive transformation (1.1.23) is given explicitly by

Ul=U% (1.1.25)

which is evidently linear. It is fully characterized by the matrix g}.
It is often convenient, though slightly misleading, to describe even an

* Note that we use the term 'Lorentz group' here only for the six-parameter homogeneous
group on Minkowski vector space, while referring to the corresponding ten-parameter
inhomogeneous group on Minkowski space-time as the Poincare group.
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1.1 Minkowski vector space

- M -

Fig. 1-1. An active Poincare transformation sends the world vector U at 0 to a world
vector V at 6. If it also sends the tetrad g. at 0 to gj at O, then the coordinates Ul

9

of £/ in #., are the same as those, V\ of V in #r, (i.e. Ul = V1). Hence the (reversed)
passive transformation induced by {#r at 0} h-> {#. at 0} takes the original coordinates
Ul{= V1) of C/ to the original coordinates V1 of V.

active Lorentz transformation by means of coordinates. (It is slightly
misleading because an active Lorentz transformation exists independently
of all coordinates, whereas a passive Lorentz transformation does not.)
Thus, for a given active Lorentz transformation L: £/i-» V, we can refer
both U and its image V to one (arbitrary) Minkowski tetrad gv whose
pre-image under L, let us say, is g.x as in (1.1.24). Since by the assumed
linearity of L the expression of V in terms of g\ must be identical with the
expression of (/in terms of#., we then have, from (1.1.25), (see also Fig. 1-1)

U{=V*gl (1.1.26)

where, in violation of the general rule, we here for once understand sum-
mation over the unlike index pair j and j . We therefore have the following
explicit form of the transformation,

F ] = UlL{\ (1.1.27)

where

(Ll
i) = (^J

i)-1. (1.1.28)

Thus the active Lorentz transformation L that carries #. into#: is formally
equivalent, in its effect on the coordinates of a vector, to the passive
Lorentz transformation G"1 induced by the passage from g- to g-t as
reference tetrad.

If L is a restricted Lorentz transformation, it clearly carries a restricted
Minkowski tetrad into a restricted Minkowski tetrad, and thus the corres-
ponding passive transformation G is restricted also. If, conversely, G is
restricted, suppose it is generated by the restricted tetrads g{ and gk; then
the corresponding L preserves norms, products, and orientation since,
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8 1. Geometry of world- and spin-vectors

in fact, it preserves coordinates, and thus L is restricted. Now in order for
L to preserve inner products we require-from (1.1.11) and (1.1.27), drop-
ping hats -

%WL> = nu. d.i.29)
Regarding this as a matrix equation, we see that det(L.j)= ± 1 . The
condition for L to be restricted is then seen to be

det(L. j )=l , L o ° > 0 . (1.1.30)

Because of (1.1.28), the same conditions apply to the matrix of a passive
restricted Lorentz transformation. They can, of course, also be derived
directly from the definitions:

V ^ = l , 06°>O. (1.1.31)

1.2 Null directions and spin transformations

In §1.1 the conventional representation of a world-vector U in terms of
Minkowski coordinates was considered. Now we examine another way of
representing world-vectors by coordinates. In particular, we shall obtain
a coordinatization of the null cone (i.e., the set of null vectors) in terms of
complex numbers. This will lead us to the concept of a spin-vector.

To avoid unnecessary indices, we write T, X, Y, Z for the coordinates
(7°, U1, U2, U3 of U with respect to a restricted Minkowski tetrad
(t9x,y,z):

U=Tt + Xx+Yy + Zz. (1.2.1)

For null vectors the coordinates satisfy

T2-X2-Y2-Z2= 0. (1.2.2)

Often we wish to consider just the null directions, say at the origin 0
of (Minkowski) space-time. Note that + U will be considered to have
unequal (namely, opposite) directions. The abstract space whose elements
are the future [past] null directions we call £f*\Sf~\ These two spaces
can be represented in any given coordinate system (T, X, Y, Z) by the
intersections S+ [S~] of the future [past] null cone (1.2.2) with the
hyperplanes T= 1 [T = - 1 ] . In the Euclidean (X, Y, Z)-space T = 1
[ T = - l ] , S + [ S ~ ] i s a sphere with equation*

x2 + y2 + z2 = l. (1.2.3)

(See Fig. 1-2) Of course, the direction of any vector (1.2.1) through 0

* We here reserve lower case letters x, y, z for coordinates on S+ and S~
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1.2 Null directions and spin transformations

lit

abstract sphere
of past null
directions

Fig. 1-2. The abstract sphere Sf naturally represents the observer's celestial sphere
while S~, or its projection to S, gives a more concrete (though somewhat less in-
variant) realization.

(whether null or not), unless it lies in the hyperplane T = 0, can be repre-
sented by a point of T = 1 or T = — 1. The direction of U from the origin
is represented, on the appropriate hyperplane, by the point (X/|T|, Y/\ T\,
Z/\T\). The interior of S~ represents the set of past timelike directions and
the interior of S+ the set of future timelike directions. The exteriors of
these spheres represent spacelike directions.

Let us consider the significance of S~ and S+ in physical terms. We
imagine an observer situated at the event O in space-time. Now, light rays
through his eye correspond to null straight lines through 0, whose past
directions constitute the field of vision of the observer. This is ff~ and is
represented by the sphere S~. In fact, S~ is an accurate geometrical repre-
sentation of what the observer actually 'sees' provided he is stationary
relative to the frame (t9x,y,z), i.e., his world velocity is t. For he can
imagine himself permanently situated at the centre of a unit sphere S (his
sphere of vision) onto which he maps all he sees at any instant. The lines
from his eye to these image points on S are the projections of the world
lines of the incoming rays to his instantaneous space T — 0. Hence
these images are congruent with those on S~ (cf. Fig. 1-2), and we can
refer to £f ~ or S ~ as the celestial sphere of O. The mapping of the past null
directions at 0 to the points of S~ we shall call the sky mapping. Since any
past-pointing null vector L is uniquely (and invariantly) associated with
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10 1. Geometry of world- and spin-vectors

a future-pointing null vector, namely — L we also have a representation
of the observer's field of vision by the sphere S + . This we may call the
anti-sky mapping. The correspondence between S+ and S~ is simply
(x, y9 z)<-+( — x, —y9 — z), i.e. the antipodal map if we superpose the two
spheres. This involves a reversal of the orientation of the sphere: e.g., a
tangent vector on S~ rotating clockwise as viewed from the center,
rotates anti-clockwise on S + .

The sphere S+ (or S~) can, in a natural way, be regarded as the Riemann
sphere of an Argand (-Wessel-Gauss) plane, that sphere being the well-
known representation of the complex numbers including infinity. Familiar
properties of the Argand plane and its Riemann sphere reflect many of the
geometrical properties of Minkowski vector space V. In particular, a
restricted Lorentz transformation of V will be seen to be uniquely deter-
mined by its effect on the Riemann sphere (and thus on the null directions).
Furthermore, we shall see in §1.4 that spin-vectors may be given a fairly
direct geometrical interpretation on the Riemann sphere.

We can replace the coordinates x, y9 z on S+ by a single complex num-
ber, obtained by means of the 'stereographic' correspondence between a
sphere and a plane (See Fig. 1-3.) Draw the plane £ with equation z = 0
in the Euclidean 3-space T= 1, and map the points of S+ to this plane by
projecting from the north* pole N(l, 0,0,1). Let P(l,x, y, z) and P'
(1, X\ Y\ O) denote corresponding points o n S + and Z. Let the points A
and B denote the feet of the perpendiculars drawn from P to CP' and CN,
respectively. Labelling the points of Z by the single complex parameter

£ = X' + iY\ (1.2.4)
we have

x + \y = h^ (1.2.5)
where

CA NP NB
h = = = = 1 — z.

CP' NP' NC

Hence the expression for £ in terms of the coordinates (1, x, y, z) of the point
P becomes

C = ^ . d.2.6)

We choose the north pole rather than the south pole to be consistent with most of
the directly relevant spinor literature, and also because it leads to a right-handed
rotation of a spin-vector's flag plane under positive phase change (cf. §§1.4, 3.2).
It may be noted, however, that this assigns S+ the opposite orientation, when viewed
from the outside, to that of Z, when viewed from above. This has the effect that, in
relation to the conventions of §§4.14, 4.15, £ turns out to be an ann-holomorphic
coordinate on S+ (and a holomorphic coordinate on S ) (cf. Figs. 4-2, 4-6).
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1.2 Null directions and spin transformations

N

11

: = 0

Fig. 1-3. Stereographic projection of S+ to the Argand plane.

To obtain the inverse relations, we first eliminate x and y from (1.2.6) by
means of (1.2.3):

_ x 2 + y 2 1 + z

" ( 1 - z ) 2 \-z

Solving (1.2.7) for z and substituting in (1.2.6), we obtain

y —

(1.2.7)

(1.2.8)

Equations (1.2.6) and (1.2.8) are the algebraic expressions for a standard
stereographic correspondence between the Argand plane of £ and the
unit sphere in (x, y, z)-space centered on (0,0,0). The correspondence is
one-to-one provided we regard ( = oo as one 'point' added to the Argand
plane, and associate this point with the north pole of the sphere. In this way
the sphere S+ gives a standard realization of the Argand plane of £ with
£ = oo adjoined: it is the Riemann sphere of £.

As an alternative coordinatization of S+ we can use standard spherical
polar coordinates, related to x, y, z by the equations

x = sin 6 cos (/>, y = sin # sin 0, z = cos 6. (1.2.9)

To find the relation between £ and (0, (j)\ we substitute (1.2.9) into (1.2.6)
and find

(1.2.10)

This relation can also be obtained directly, by reference to Fig. 1-4 and
use of simple trigonometry.

Formulae (1.2.6), (1.2.7), (1.2.8), (1.2.10) apply to the anti-sky mapping

future null cone -> S+ -> Z.

We shall also be interested in the corresponding formulae for the sky
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12 1. Geometry of world- and spin-vectors

Fig. 1-4. The geometry of the equation f = Ql<f) cot 6/2 which relates the spherical
polar angles 0, (j> to the complex stereographic coordinate £. (The angle CP'N is
equal to that subtented at the south pole by PN, since each is complementary to the
angle PNC.)

mapping, in which each null direction at 0 is represented by a typical
past event — (l,x, y, z) rather than by a future event + (l,x, y, z). If we
require ( in both cases to represent the same null line, then on S+ and S~ it
must correspond to antipodal points ± (x, y, z). The relevant formulae are
therefore obtained from (1.2.6), (1.2.7), (1.2.8), (1.2.10) by the antipodal
transformation (x, y, z)i-> — (x, y, z) or, equivalently, (9, <f>)\->(n — 0,n + </>).
Equation (1.2.10), in particular, becomes

C= - e ! * t a n - . (1.2.11)

(Note that the effect of the antipodal map is C'—̂  — l/£.)
The above correspondence between the set of future [past] null direc-

tions at 0 and the complex C-plane could have been obtained more
directly than via a stereographic projection. To achieve this direct corres-
pondence (see Fig. 1-5), we slice the (T, X, 7, Z)-space with the null
hyperplane n whose equation is

T-Z=l (1.2.12)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.002
https://www.cambridge.org/core


1.2 Null directions and spin transformations 13

Fig. 1-5. As the plane through ON varies it provides the stereographic projection
Pi—>P' and also the correspondences Pi—>Q and Q\->F. (The "parabolic" inter-
section of II with the cone has the same intrinsic Euclidean metric as the plane Z -
the Argand plane of C)

rather than with the spacelike hyperplane 7 = 1 . Consider a null straight
line through 0 which meets S+ at the point P = (1, x9 y9 z). This null
straight line clearly also contains the point

I - z ' l - z ' l - z ' l - z ,

lying on IT. Now the V a n d ' / coordinates of Q are precisely

x . „. y
X' =-

l - z
and

1 - z

with

as in (1.2.4), (1.2.6), and so ( is obtained by simple orthogonal projection
from IT to Z. In the exceptional case C = °° (z = 1), the null line through 0
is parallel to IT and so meets it in no finite point.

We refer to Fig. 1-5 to elucidate the geometric relation between our two
different constructions. Let N = (1,0,0,1) be the north pole of S + , as
before. Let OPQ be the null straight line under consideration, with
PeS+ and QeU. Let P' be the orthogonal projection of Q to the plane
1 ( 7 = 1, Z = 0). Then the direction of QP' is 1:0:0:1, the same as that
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14 1. Geometry of world-and spin-vectors

of ON. Consequently P\ Q, 0, N are coplanar. And P lies on their plane
since it lies on OQ. But P\ P, N also lie on the hyperplane T = 1. They are
therefore collinear*, and it follows that P' is the stereographic projection
of P (from S+ to 2 with N as pole). The required equivalence is thus
established geometrically.

Lorentz transformations and spin transformations

In order to avoid having to use an infinite coordinate (£ = oo) for the point
(1,0,0,1) at the north pole of S+ it is convenient sometimes to label the
points of S+ not by a single complex number, £, but rather by a pair
(£, n) of complex numbers (not both zero), where

C = £Aj. (1.2.13)

These are to be projective (homogeneous) complex coordinates, so that the
pairs (£, n) and (A& An) represent the same point on S+, where X is any
non-zero complex number. With these coordinates, the additional point
at infinity, ( = GO, is given a finite label, e.g., (1,0). Thus, we now regard
S+ as a realization of a complex projective line. Written in terms of these
complex homogeneous coordinates, equations (1.2.8) become

£rj + nl tn — nl £l — rjn
x = — ~, y = — -^-9 z = — -z. (1.2.14)

£ J + nn i(££ + rjrj) £% -f rjn

Note that x, y, and z are homogeneous of degree zero in £, rj, and so are
invariant under a rescaling of £, 77.

Recall that the role of the point F(l, x, y, z) on S+ was simply that of
representing a future null direction at 0. We could, if desired, choose any
other point on the line OP to represent the same null direction. In parti-
cular, we could choose the point R on OP whose coordinates (T, X, 7, Z)
are obtained from those of P by multiplying by the factor (£% + r\Y\)jJl.
This will eliminate the denominators in (1.2.14). (The factor 1/^/2 is
included for later convenience.) Then K := OR has coordinates

1 1
T = ——(£j + ww), X =

Y = —=($rj - nl\ Z = - L ( # - nrj). (1-2.15)
2 / 2

Unlike the point P, however, R is not independent of the real scaling of

* In four dimensions, the intersection of a plane (two linear equations) with a hyperplane
(one linear equation) is a straight line.
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1.2 Null directions and spin transformations 15

(£, n), i.e. (£, rj)^>(r£, rrj), reU, although it is independent of the phase
'rescaling' (£, n) -> (ei0£, e1^), 0eR. Thus, the position of K is not just a
function of ( alone, although the direction OQ depends only on £.

Now it is not difficult to see from (1.2.15) that any complex linear
transformation of £ and rj will result in a real linear transformation of
(T,X, 7, Z) (given explicitly in (1.2.26) below). Since the null vectors
span the whole space V, a linear transformation of the null vectors induces
a linear transformation of V, which is given formally by the same equation
(namely (1.2.26)) on the general coordinates (T, X, Y, Z). Under such a
transformation the property (1.2.2) will be preserved. Thus we get a
Lorentz transformation together, possibly, with a dilation. In any case,
the effect on the null directions at 0 will be the same as that of a Lorentz
transformation, since dilations produce no effect on directions.

Consider, then, a complex linear (non-singular) transformation of £
and rj:

Here, a, /?, y, and S are arbitrary complex numbers subject only to the
condition otd — fly =f=0 (non-singularity). Expressed in terms of (> the
transformation (1.2.16) becomes*

C l

We may, without loss of generality as regards the transformation of £,
normalize (1.2.16) by imposing the 'unimodular' condition

QLd-Py=l. (1.2.18)

The transformations (1.2.16) (or (1.2.17)), subject to (1.2.18), are called
spin transformations in the context where £ is related to the Minkowski null
vectors through equations (1.2.13) and (1.2.15). We note that these equa-
tions imply

„ X + iY T + Z

In the same context, we define the spin-matrix A by

( U 1 9 )

A : = H)9 d e t A = l . (1.2.20)
\y v

A bilinear transformation of this kind is in fact the most general global holomorphic
(i.e., complex-analytic, i.e., conformal and orientation preserving) transformation
of the Riemann sphere to itself.
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16 1. Geometry of world- and spin-vectors

The last condition is simply the normalization condition (1.2.18). In terms
of A, (1.2.16) takes the form

) (1.2.21)

We see from (1.2.21) that the composition of two successive spin trans-
formations is again a spin transformation: the spin-matrix of the compo-
sition is given by the product of the spin-matrices of the factors. Also,
any spin-matrix has an inverse,

(1.2.22)
-y j

which is also a spin-matrix. Thus, the spin transformations form a group
- referred to as SL(2, C).

Note that the two spin-matrices A and — A give rise to the same trans-
formation of C even though they define different spin transformations.
Conversely, suppose A and B are spin-matrices each of which defines the
same transformation of £. Then B~* A is a spin-matrix which defines the
identity transformation on £. We see from (1.2.17) that this implies
fl = y = O, oc = S. The normalization (1.2.18) implies a = S = ±1 . Thus
B - 1 A = ±1 (identity matrix), whence A = ±B. A spin transformation
is therefore defined uniquely up to sign by its effect on the Riemann sphere
of£

Let us examine the effect of the spin transformation (1.2.21) on the
coordinates (T,X, Y,Z). We observe that (1.2.15) can be inverted and
re-expressed as:

T + Z X + iY\ (tf Zij\ f£\(Z fj)

/2\X-iY T-Zj \n? rjfj

From this, we see that the spin transformation (1.2.21) effects:

T + Z X + iY\ (T + Z X + \Y\ (T + Z X + \Y\
i—M - - - ~ = A A *

X-iY T-ZJ V * - i ^ T-ZJ \ * - i ^ T-ZJ
(1.2.24)

where A* denotes the conjugate transpose of A. As we remarked earlier,
this is a linear transformation of (T, X, 7, Z), it is real (since Hermiticity is
preserved in (1.2.24)), and it preserves the condition T2 - X2 - Y2 - Z2 =
0. Also, if

U=Tt + Xx+Yy + Zz (1.2.25)

is any world-vector (i.e. not necessarily null), then the spin-matrix A still
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1.2 Null directions and spin transformations 17

defines a transformation of U according to (1.2.24). We note that this
transformation is not only linear and real, but that in addition it leaves the
form T2 — X2 — Y2 — Z2 actually invariant. For this form is just the
determinant of the left-hand matrix in (1.2.24), and the determinant of
the right-hand side is simply this form multiplied by det A det A*, which
is 1 (cf. (1.2.20)). Thus (1.2.24) defines a Lorentz transformation. Regarded
as a transformation on (T, X, Y, Z), its explicit form ism

/ aa + PP + yy + S5 aj3 + pa + y5 + Sy i(a/7 - POL + y5 - Sy) aa - pfi + yy - 65\
I ay + yot + 05 + 6/3 <x5 + £a + py + yff i{x5 - dti + yfi - py) ay + ya - fi5 - bfi \

~ I i(ya - ay + df - p5) i((5a - a£ + y^ - fry) (x5 + Sot - py - yfi i(ya - ay + pS - dp) I
\ P P 5 ft + pa - y5 - Sy i(a/J - POL + Sy - y5) aa - PJ5 - yy + 65/

(1.2.26)

In fact, this must be a restricted Lorentz transformation. For: (i) a
Lorentz transformation continuous with the identity must be restricted,
since no continuous Lorentz motion can transfer the positive time axis
from inside the future null cone to inside the past null cone, or achieve a
space reflection; (ii) the transformation (1.2.24) is evidently continuous
with the identity if A is; (iii) and A, like every spin-matrix, is continuous
with the identity. For consider the matrix B := AI + (1 — A)A. Since it is
singular for at most two values of A, we can find a path in the complex
A-plane from 0 to 1 which avoids these values. Then (det B)~^ B defines
a continuous succession of spin transformations from A to I or — I. (The
latter occurs if the path is such that (det B)~> changes from 1 to — 1, as is
inevitable, for example, if A = — I. But — I is continuous with I, for
example by the spin transformation diag (e10, e~10), 0 < 6 ^ n, and thus
(iii) is established.

We shall presently give a constructive proof showing that, conversely,
any restricted Lorentz transformation is expressible in the form (1.2.24),
with A a spin-matrix. Then we shall have established the following basic
result:

(1.2.27) PROPOSITION

Every spin transformation corresponds (via (1.2.24) to a unique restricted
Lorentz transformation; conversely every restricted Lorentz transformation
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18 1. Geometry of world-and spin-vectors

so corresponds to precisely two spin transformations, one being the negative
of the other.

Actually the required converse part of this result is a simple consequence
of a general property of Lie groups. For the subgroup of the Lorentz group
which arises in the form (1.2.24) must have the full dimensionality six.
This is because spin-matrices form a six-real-dimensional (i.e. three-
complex-dimensional) system and because only a discrete number (namely
two) of spin-matrices define a single Lorentz transformation. This full-
dimensional subgroup must contain the entire connected component
of the identity in the Lorentz group.

It is instructive, however, to give an alternative demonstration of the
converse part of (1.2.27) by simply constructing those spin-matrices
explicitly which correspond to certain basic Lorentz transformations
sufficient for generating the whole group. These basic transformations are
space rotations, and 'boosts' (i.e. pure velocity transformations) such as
in the well-known equations

f=(\-v
2yHT+vZi x = x, Y=Y, z = (\-v2yHz + vn (1.2.28)

in which v is the velocity parameter. Any restricted (active) Lorentz
transformation can be compounded of a proper space rotation, followed
by a boost in the z-direction, followed, finally, by a second space rotation.
For the transformation is characterized by its effect on a Minkowski
tetrad. Choose the first rotation so as to bring z into the space-time plane
containing both the initial and final t directions. The boost (1.2.28) now
sends t into its final direction, and the second rotation appropriately
orients x, y, and z. Thus we have only to show that space rotations and
z-boosts can be obtained from spin transformations. We shall consider
rotations first and, in fact, establish the following result:

(1.2.29) PROPOSITION:

Every unitary spin transformation corresponds to a unique proper rotation
of S+ ; conversely every proper rotation of S+ corresponds to precisely two
unitary spin transformations, one being the negative of the other. (A unitary
spin transformation is one given by a spin-matrix which is unitary:
A~1=A*.)

First, let us fix our ideas a little more as to the geometrical significance
of the transformations. The Lorentz transformations are here regarded
as active. The spheres S+ and S~ are regarded as part of the coordinate
frame, and do not partake of the transformation: as each future [past]
null direction gets shifted, its representation on S + [5~] shifts. For
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1.2 Null directions and spin transformations 19

example, a rotation of (JC, y, Z) which leaves t unchanged corresponds to a
rotation of the images on S+ [S~\ which we may loosely call a rotation
'of S+ [5~]. The plane Z also is part of the coordinate structure, and
remains fixed while the images £ of the null lines shift on it. Again, loosely,
we may speak of motions 'of Z. (Of course, 5 + , S~, £ are no more invariant
than the various coordinate hyperplanes: vectors that terminate on them
generally will not do so after a Lorentz transformation has been applied.)
It is of importance to remember that, while we here have a representation
only of the null directions of V, their transformations uniquely determine
the transformation of all vectors of V.

Now it is clear from (1.2.24) that T is invariant under a unitary spin
transformation, since the trace (= 27) is always invariant under unitary
transformations. (Equivalently we may see this from the invariance of the
expression E£ + rjfj, which is the Hermitian norm of (£, rj).) Restricted
Lorentz transformations for which T is invariant are simply proper
rotations of S+ (since they leave X2 + Y2 + Z2 invariant) as required.
To demonstrate the converse explicitly, we begin by noting that any
proper rotation (x,y, z)*->(x\y\ z') of S+ may be compounded of succes-
sive rotations about the Y- and Z-axes. For the triad (x\ y\ z') is determined
by the polar coordinates 0, <\> of z' relative to (JC, y, z) and by the angle \jj
subtended by the plane of x\ z' with that of z, z'. (These three angles are
essentially the well-known Euler angles of mechanics: see Goldstein
1980, Arnold 1978). Thus a rotation through ijj about z9 followed by a
rotation through 0 about the original j , followed, finally, by a rotation
through (j) about the original z, will achieve the required transformation.
We shall show how these elementary rotations may be represented by
unitary spin transformations. It will then follow that any proper rotation
of S+ can be so represented, since a product of unitary matrices is unitary.

A rotation of S+ about the z-axis, through an angle \\i, evidently arises
from a rotation of the Argand plane about the origin, through an angle \jj.
This is given by

C = e^C, (1.2.30)
i.e. by the spin transformations

Next, we assert that a rotation of S+ through an angle 6 about the y-axis
is represented by the following unitary spin transformations:

/ A / s 8/2 -sin 0/2
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20 1. Geometry of world- and spin-vectors

Since (1.2.32) is unitary, it certainly represents some rotation. Furthermore,
since £fj — rj% is invariant, as well as £% + rjfj, it follows from (1.2.14) that
the ^-coordinates of points on S+ are invariant under (1.2.32). Hence the
rotation is about the y-axis. Finally, the transformation (1.2.32) sends the
point (1, 0, 0, 1) into (1, sin 0, 0, cos 0), so the angle of rotation is indeed 0.
(By a similar argument one verifies that the unitary spin transformations

'cos i/2 i sin /,
(1.2.33)

correspond to a rotation through an angle x about the x-axis.) Proposition
(1.2.29) is now established. For reference we exhibit the resultant spin-
matrix corresponding to the (general) rotation through the Euler angles

:os-eii<t> + *)/2 - s i n - e i ( * - * ) / 2

e e
\ M n 2 e 2 / ( 1 > 2 3 4 )

Its elements are in fact the Cayley-Klein rotation parameters of mechanics.
(Goldstein 1980).

We now complete the proof of Proposition (1.2.27) by showing that
every z-boost (1.2.28) can be obtained from a spin transformation. To do
this, we rewrite (1.2.28) in the form

- z ) , z = i , y = y, (1.2.35)

where

(Here w is the relativistic Doppler factor and log w = tanh" l v is the 'rapi-
dity' corresponding to v.) By reference to (1.2.24) we see at once that (1.2.35)
is achieved by the spin transformation

w 2 / \ J
or, in terms of the Argand plane of C, by the simple expansion

T=wC. (1.2.38)

Thus (1.2.27) is established.
We finally remark that any pure boost (two hyperplanes orthogonal to

t kept invariant, e.g. X = 0, 7 = 0 above) corresponds to a positive-
[ or negative-] definite Hermitian spin-matrix, and vice versa. For the z-
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1.2 Null directions and spin transformations 21

boost (1.2.37) is of this form, and to obtain a boost in any other direction we
need merely rotate that direction into the z-direction, apply a z-boost, and
rotate back. This corresponds to the spin-matrix A-1BA, where A is the
required rotation and B the z-boost; by elementary matrix theory, A*BA
is still positive- [negative-] definite Hermitian. Conversely, any positive-
[negative-] definite Hermitian matrix fi may be diagonalized by a unitary
matrix A: ABA"1 =diag(a, d\ which must be of the form ±diag(ws
w~*) = ±B, since Hermiticity, definiteness, and unit determinant are
preserved. Consequently B is of the form ± A~*BA and our result is
established.

It is easy to see from the preceding work that any restricted Lorentz
transformation L is uniquely the composition of one boost followed by
one proper space rotation, and also the other way around. For we need
merely determine the spatial direction w orthogonal to t in the plane
containing the original and final f, apply a 'w-boosf to send t into its
final position, and then apply a space rotation to re-orient x, y, z suitably.*
Evidently, if we perform these transformations in reverse, we have a
decomposition of L~l. Again in the light of what has been shown before,
the reader will recognize in this result an example of the mathematical
theorem according to which any non-singular complex matrix is uniquely
expressible as the product of a unitary matrix with a positive definite
Hermitian matrix, and also the other way around.

Relation to quaternions

We conclude this section with some remarks on quaternions. Several of our
spin-matrix results in connection with rotations will thereby be illuminat-
ed. In fact, the representation of proper rotations by unitary spin-matrices
is effectively the same as their more familiar representation in terms of
quaternions. Set

' 0 \ /0 i \ . /0 - 1 \ (\ 0N

I = 0 1 i 0 1 0 , k:= 0 - i
(1.2.39)

Then these matrices have the following multiplication table

I i j k

I I
i

j
k

i

- I

j

i
k

_ J

— i

k

- j
i

- I

(1.2.40)

It follows that the topology of the restricted Lorentz group is the topological product
of the rotation group with f$3.
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22 1. Geometry of world-and spin-vectors

which defines I, i,j and k as the elementary quaternions. The general
quaternion will then be represented by the matrix

+ \d -c + \b
. , (1.2.41)

ib a-idj
where a, b, c, deU. The sum or product of two quaternions is obtained
simply as the matrix sum or product. Again, A* is defined via the corres-
ponding matrix operation, and we note that

(1.2.42)

The matrix A in (1.2.41) will be a unitary spin-matrix if it is unimodular
and unitary. But from (1.2.41),

det A = a2 + b2 + c2 + d2, (1.2.43)

AA* = l(a2 + b2 + c2 + d2\ (1.2.44)

so that both conditions are satisfied if the quaternion has unit 'norm':

AT(A) := a2 + b2 + c2 + d2 = 1. (1.2.45)

Thus, unit quaternions can be represented by unitary spin-matrices.
Particular examples of unit quaternions are the elementary quaternions
I,i,j,k. We see from (1.2.31), (1.2.32), (1.2.33), and (1.2.39) that i,j, and k
define, respectively, rotations through n about the X, 7, and Z axes.

If we write

A = la + \b + }c + kd = a + v (1.2.46)

and regard

• = (6,c,d)

as a vector having components (b, c, d) relative to some basis, and if,
similarly, A' = la! + • • • = a + v', it is easy to verify that

A + A' = a + a + v + v'.

AA' = ad - v V + a'v + av' + v x v', (1.2.47)

where vectorial sums and products are formed in the usual way from
components. It is therefore clear that a valid equation of quaternions,
involving sums and products, remains valid when a rotational transforma-
tion is applied to the 'vector' components (b, c, d), (b\ c\ d'\ etc.; for the
'vectorial' part of the equation will be form-invariant under such trans-
formations.

We saw that some quaternions can be represented by spin-matrices.
In that sense, they may be regarded as transformations. But quaternions
play a dual role, in that they can also function as 'transformands', e.g.,
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1.2 Null directions and spin transformations 23

as three-vectors being transformed. As we saw in (1.2.24), it is sometimes
useful to combine the components (T, X, Y, Z) of a four-vector into a
certain Hermitian matrix. In the particular case when T = 0, and after
multiplying that matrix by i, it can be identified with a 'vectoriaF quater-
nion Q (cf. (1.2.41))*:

( iX - Y\hiX+ir+kz (U48)
+v -,z

Equation (1.2.24) then reads

Q = AQA*. (1.2.49)
Now, from the spin-matrix interpretation of this equation we know that
any unit quaternion A will, via this equation, effect a certain proper space
rotation on the vector Q. The most general unit quaternion can clearly be
written in the form

A = I cos 1- (i/ + \m + kn) sin —

= cos —+ vsin—, (1.2.50)

where v = (/, m, n) and I2 + m2 + n2 — 1. We assert that this A effects a
rotation through \// about v. For proof we need merely note that (1.2.49)
is a quaternion equation and as such unaffected by a change of (quater-
nion-) vector basis: rotate that basis so that v becomes (0, 1, 0). Then our
result is immediate by comparison with (1.2.32), A having reduced to the
spin-matrix which effects a rotation through \j/ about the y-axis, and v
having reduced to that axis. A corollary of this result is the important fact
that any proper space rotation (unit quaternion) is a rotation about some
axis v, through some angle \jj.

Writing (1.2.50) in matrix notation,

cos h in sin — ( - m + i/) sin — \

A = , (1.2.51)

(m + i/) sin — cos m sin —/

we obtain the most general unitary spin-matrix in a form which allows us

* No such 'trick' works to relate the full four-vector (7, X, Y, Z) with real quaternions.
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24 1. Geometry of world-and spin-vectors

to read off its transformational effect by inspection. Note, incidentally,
that A changes sign under \jj\-^^/ + In.

Although unitary spin-matrices and unit quaternions are effectively the
same thing, there is no such close relationship between spin-matrices in
general and quaternions. The underlying reason for this is that quaternions
are associated with quadratic forms of positive definite signature (cf.
(1.2.45)) whereas spin-matrices and Lorentz transformations are con-
concerned with the Lorentzian signature ( + , — , — , — ) . Of course, one
can avoid this difficulty by introducing 'quaternions' with suitably
complex coefficients. Such objects do not share with the real quaternions
their fundamental property of constituting a division algebra. Neverthe-
less, the mere use of quaternion notation (especially (1.2.47)) can bring
considerable advantages to certain manipulations of general spin-
matrices (see, e.g., Ehlers, Rindler and Robinson 1966).

1.3 Some properties of Lorentz transformations

As a consequence of the correspondence between the restricted Lorentz
group and the group of spin transformations, it is possible to give simple
derivations of many of the standard properties of rotations and Lorentz
transformations This we shall now do.

It is easily seen that when the spin transformation (1.2.16) is unitary
then (1.2.17) becomes

The fixed points (i.e. I = Q are then given by

yC2 + (a-a)C + y = 0.

Clearly if £ is one root of this quadratic equation, then — l/£ is the other.
Consequently the fixed points have the form f, — l/£, which correspond
to antipodes on the sphere S+ (cf. after (1.2.11)). This constitutes yet
another proof of the fact that every rotation of the sphere is equivalent to
a rotation about a single axis.

A circle on the sphere 5 + is defined as the intersection of S+ with some
plane in the Euclidean 3-space T= 1, given by a real linear equation
IX + mY+ nZ = p (p2 < I2 + m2 + n2). Substituting (1.2.8) into this, we
get (provided p ± n) an equation of the form (£ - KZ - K£ + KK = r2

(r > 0, K complex), i.e. | C - K | = r. This is the equation of a circle in the
Argand plane, with centre K and radius r. When p = n (i.e., when the origi-
nal circle passes through the north pole on S + \ we get the equation of
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1.3 Properties of Lorentz transformations 25

a straight line on the Argand plane. So we have established the well-known
fact that under stereographic projection circles on the sphere project to
circles or straight lines on the plane-and vice versa, since the above
argument is reversible.

Now, in the previous section we showed that every spin transformation
can be compounded of transformations which induce either rotations of
S+ or simple expansions of the Argand plane. The first type clearly
preserves circles on S+ while the second clearly preserves circles or straight
lines on the Argand plane. It therefore follows from the above discussion
that every spin transformation induces a transformation on S+ which
sends circles into circles. (This is actually a familiar property of bilinear
transformations (1.2.17) of the Riemann sphere and is not hard to establish
directly.)

Any circle-preserving transformation must necessarily be conformal
(i.e. angle-preserving). This is basically because infinitesimal circles must
transform to infinitesimal circles rather than ellipses. Alternatively, we
may verify the conformal nature of stereographic projection directly
by observing that the squared interval da2 on the sphere is related to that,
d( d£, on the Argand plane by

d<x2 = dx2 + dy2 + dz2 = ^ - ^ , (1.3.2)

as follows from (1.2.8). And the conformal nature of the bilinear trans-
formation can be deduced from the mere fact that it is holomorphic
(i.e., complex-analytic)*; for then £ = /(£) implies d% = f'(C,)dC. In con-
sequence of all this it is seen that a Lorentz transformation effects an
isotropic expansion and rotation of the neighbourhood of each point of
S\

The above conformal and circle-preserving properties have as a corol-

* Conversely, every local proper (i.e. orientation preserving) conformal transformation
of the Riemann sphere arises from a holomorphic mapping of £. (For conformality
means df = a d£ for some complex a, i.e. (dx + idy) = a{dx + idy), from which follow
the Cauchy-Riemann equations dx/dx = Re(a) = dy/dy, - dx/dy = lm(a) = dy/dx,
hence holomorphicity.) Since the only global holomorphic mappings of the Riemann
sphere to itself are bilinear transformations, it follows that the only proper global
conformal maps of Sf + (to be understood via S+) to itself are those induced by spin
transformations. The group of proper conformal self-transformations of Sf+ is thus
the restricted Lorentz group. The structure of Sf+ which is significant, therefore,
is precisely its conformal structure and orientation.

In fact any 2-surface T with the topology of a sphere S2 and with a (positive definite)
conformal structure is conformally identical with a metric sphere (say S + ). Thus,
the proper conformal self-transformations of T also form a group isomorphic with
the restricted Lorentz group. This result will have importance for us in Chapter 9
(cf. (9.6.31)).
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26 1. Geometry of world- and spin-vectors

lary the familiar but surprising special-relativity effects sometimes known
as 'the invisibility of the Lorentz contraction'. Let us envisage an observer
at 0. As remarked earlier, his field of vision or celestial sphere may be
conveniently represented by S~. Each light ray entering his eye is re-
presented by a null straight line through O and hence by a single point
of his celestial sphere S~ (sky mapping). Now S~ is related to S+ simply
by the antipodal map. Thus, any restricted Lorentz transformation of
V induces a conformal circle-preserving map of the celestial sphere onto
itself. It follows from the conformal property that an object subtending
a small angle at a given observer will present a similar shape visually
to any other observer momentarily coincident with the first, no matter
what his velocity relative to the first observer may be (Terrell 1959).
Only the apparent angular size and direction will, in general, be different
for two such observers. Moreover, from the circle-preserving property
it follows that if one inertial observer perceives an object of any size to
have a circular outline, then all inertial observers momentarily coincident
with the first will perceive circular outlines (or, in special cases, 'straight'
outlines, if we consider a great circle on the celestial sphere as appearing
'straight'). Hence, in particular, uniformly moving spheres, in spite of
the Lorentz contraction, present circular outlines to all observers (Penrose
1959).

A bilinear transformation of the Riemann sphere is fully determined
if we specify any three distinct points as images of any other three distinct
points of the sphere. This well-known fact is a simple consequence of
(1.2.17). (The three complex ratios (x:^:y:S define the transformation and
these are fixed by three complex equations.) It follows that every restricted
Lorentz transformation is fully determined if we specify the (distinct)
maps of three distinct null directions. (Thus, by a unique adjustment of
his velocity and orientation an observer can make any three given stars
take up three specified positions on his celestial sphere.)

Again, each bilinear transformation (1.2.17)-not merely the special
case (1.3.1)-(apart from the identity transformation) possesses just two
(possibly coincident) fixed points on the Riemann sphere, as is readily
seen if we set T = C in (1.2.17) and solve the resulting quadratic equation.
Consequently every (non-trivial) Lorentz transformation leaves invariant
just two (possibly coincident) null directions.*

* In fact, according to a theorem of topology, every continuous orientation-preserving
map of the sphere onto itself must possess at least one fixed point and, 'properly'
counted, precisely two fixed points, since the Euler characteristic of the sphere is 2.
Compare the discussion of'fingerprints' in §8.7.
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1.3 Properties of Lorentz transformations 27

The kinds of Lorentz transformation, in terms of S +

Let us examine the structure of Lorentz transformations in the light of this
fact. Consider first the case when the two fixed null directions are distinct.
We can obtain a canonical form for such a Lorentz transformation by
choosing our reference Minkowski tetrad so that t and z lie in the 2-plane
spanned by these null directions. The latter must then have components
(1, 0, 0, ± 1) whence the fixed points lie at the north and south poles of
S+ (C = oo,0). The most general bilinear transformation (1.2.17) which
leaves both poles invariant is of the form

%=w&+t (1-3.3)

where w and \jj are real numbers. This is the composition (in either order)
of a rotation through an angle \jj about the z-axis, with a boost with rapidity
<\> = log w along the z-axis (cf Figs. 1-6, 1-7, 1-8). In terms of Minkowski

Fig. 1-6. The effect of a rotation on S + . Fig. 1-7. The effect of a boost on

Fig. 1-8. The effect of a four-screw on S +.
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28 1. Geometry of world-and spin-vectors

coordinates (1.2.15) we have
X = X c o s ^ - Fsin^, Y= Xsinil/ + ycosiA,

Z = Zcosh</> + Tsinh</>, f =Zsinh</> + Tcosh</>. (1.3.4)

This is what Synge (Synge 1955, p. 86) calls a 'four-screw'.
We have already seen that a pure boost in the z-direction corresponds

to an expansion I = w( of the Argand plane. In terms of the sky mapping
(S~), and with spherical polar coordinates for the celestial sphere (cf.
(1.2.11)), this leads to the aberration formula for incoming light rays in
the useful form:

8 e
tan - = w tan -,

with (1.3.5)

Here V — — ^ is the velocity in the direction 9 = 0 of the observer who
measures angle #, relative to the one who measures 6. (Since our trans-
formations are active, we must think of the rest of the universe as acquiring
a velocity — V = v in the z-direction.) We see that an observer who travels
at high speed toward a star P perceives all other stars to crowd more and
more around P an his speed increases.

Next we examine the Lorentz transformations for which the two fixed
null directions coincide. These are called null rotations. Without loss of
generality we may choose the fixed null direction to correspond to the
north pole of S + . Thus ( = oo is to be the only fixed point of the bilinear
transformation (1.2.17), and so

r=C + )8 (1.3.6)
where fi is some complex number. This is simply a translation in the
Argand plane. (A bilinear transformation of the Argand plane, for which
C = oo is a fixed point, must be of the form ( = a£ + fi, but if a ^ 1 it has
also a finite fixed point.) The spin transformations giving (1.3.6) are

D-G X)
Without loss of generality we can take, say, /? = \a with a real. Then in
terms of Minkowski coordinates we get

X = X, Y=Y+a(T-Z),

Z = Z + aY + ±a2(T-Z),T=T+aY + ±a2(T-Z).

Note that the null vector z +1 is itself invariant, not merely its direction.
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1.3 Properties of Lorentz transformations 29

Fig. 1-9. The effect of a null rotation on S + .

To visualize the effect of this null rotation of the Riemann sphere,
refer to Fig. 1-9. The rigid translation of the Argand plane projects to a
transformation on the Riemann sphere for which the points are displaced
along circles through the north pole tangent to the y-direction there.
The displacements become less and less as the north pole is approached,
leaving this as the only fixed point.

As mentioned above, the most general bilinear transformation for which
C = oo is a fixed point is of the form £ = a( + /?. This can be broken up into
a translation, a rotation, and a dilation of the Argand plane (in any order).
Thus the most general restricted Lorentz transformation which leaves
invariant a given null direction A'(in the plane of z and f, say) is the product
of a null rotation about K, a space rotation about z, and a z-boost. The
first two of these transformations leave the entire vector K invariant, the
last only its direction.

We may remark that the Lorentz transformations leaving two given
null directions invariant and the null rotations leaving one given null
direction invariant each form a two-dimensional Abelian subgroup of the
Lorentz group. In the first case we have the additive group on the complex
number <t> + i^ (modulo 2n\) and in the second case, the additive group
on p. The groups are not isomorphic since they have a different topology
(S1 x U and R2, respectively). This is because <j> + ii//+ 2nin ( « = . . . ,
— 1,0,1,2,...) all give the same transformation, whereas for different
/f s the null rotations are all distinct.

Cross-ratios of null directions

For future use (in Vol. 2 Chapter 8), we conclude this section with some
rather specialized results concerning cross-ratios. It is well known (and can
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30 1. Geometry of world-and spin-vectors

easily be verified) that the cross-ratio
(Cx - C3)(C3 - CJ (1-3.9)

/ , \ S i 5 S 2 > *»3> ^ 4 / /*• _ ^ w ^ _ ^ \

of four points d s C2» C3 5 C4 in the Argand plane is invariant under bilinear
transformations. In homogeneous coordinates,

Now it is easily seen that

{a,j8,y,5} = {/J,a,5,y} = {y,5,a,/J} = {5,y,i8,a}. (1.3.11)

Consequently there can be at most six different values of the cross-ratio
of four points taken in all possible orders, and these are seen to be

i _ A 1 x~ 1 x n-\M\
X> * X-> 9 1 1 •> , • {i.j.iz)

1 1 - x x x - 1
When just two £'s coincide, x degenerates into 1, 0 or 00. With triple or
quadruple coincidences, % becomes indeterminate.

The cross-ratio of four real null directions is defined to be the cross-ratio
(1.3.9) of the four corresponding points in the Argand plane. It is easily seen,
e.g. by an interchange of the ^s and ns in (1.3.10), that

{I/a, 1/jB, 1/y, 1/5} = {a,/?,?,$} = { - a, - ft - 7, - S}9 (1.3.13)
and that consequently the sky mapping and the anti-sky mapping yield
cross-ratios which are complex conjugates of each other, since the maps
on 5 + and S~ of given null directions are as — l/£ and C respectively.

A knowledge of any three of the complex numbers d» C2» C3, C4 (without
coincidences), and an arbitrarily assigned value of the cross-ratio (1.3.9),
determines the fourth number uniquely (counting 00 as a number).
In consequence, any four distinct null directions (points of S+) can be
transformed by a suitable restricted Lorentz transformation (bilinear
transformation) into any other four null directions (points) having the
same cross-ratio; for any three of the null directions can be so mapped into
any other three noncoincident null directions and then the fourth is deter-
mined uniquely by the invariant cross-ratio.

The reality of the cross-ratio (1.3.9) is the condition for the four relevant
points to be concyclic (or collinear) in the Argand plane. This is equivalent
to saying that the four corresponding points on the Riemann sphere are
concyclic and hence coplanar. Consequently the condition that four null
lines lie in a real hyperplane

is that their cross-ratio be real. A particular instance of this is a harmonic
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13 Properties of Lorentz transformations 31

set for which the cross ratio is — 1, 2, or 1/2. One harmonic set in the
Argand plane is given by the vertices of the square l,i, — 1, — i; these
same points on the equator of the Riemann sphere therefore correspond to
a set of harmonic null directions. By the remark of the preceding para-
graph, any four harmonic null directions can be transformed into these
by a suitable restricted Lorentz transformation.

Also of interest is an equianharmonic set which possesses even greater
intrinsic symmetry. The cross-ratio in this case is — at or — co2, where
a, = e2i*/3 B V a suitable restricted Lorentz transformation four such
points on the Riemann sphere can be made the vertices of a regular
tetrahedron. This follows from the fact that for all X the set of points
0, A, Xco, Xco1 is equianharmonic in the plane, and for a suitable real X
it evidently projects into the vertices of a regular tetrahedron.

A geometric interpretation of the cross-ratio can be elucidated as
follows.* Consider any four distinct real null vectors A,B,C,D, and
write [AB] for the plane of A and B. Let Q be that unique timelike plane
which contains one vector from each of [AB] and [CD], and one normal
vector to each of [AB], [CD]. For purposes of computation, assume that
Q is the plane of z and f, and that A oc (1, p, q, r), B oc (1, p\ q\ r'). The only
normals to A and B contained in Q are (r, 0,0,1) and (r',0,0,1), res-
pectively; hence r = r. If [AB] is to contain a vector of Q, (p\ q') oc (p, q).
Since A and B are null and distinct, this implies A oc (1, p, q, r), B oc (1, — p,
— q,r); and similarly for C, D. Hence on the Riemann sphere each of
these pairs is represented by a pair of points on the same latitude but
opposite meridians. There can be only one restricted Lorentz transforma-
tion which transforms A\->C,Bv-*D, and preserves Q (and thus its null
directions, corresponding to the north and south poles). Evidently it is
a rotation (1.2.30) about the z-axis, followed by a boost (1.2.38) along the
z-axis:

£«€*+*£ = e"C, (1.3.14)

where e^ = w and p = (f> + ii/>. If a, fi are the points in the complex plane
corresponding to A, B, then jS = — a; and if y, S correspond to C, D, then
S = - y and y = epa. Consequently

X = {a, y, P, 5} = | i ^ J = tanh2 P-. (1.3.15)

* We are indebted to Ivor Robinson for discussion on this point.
The unique existence of Q is not entirely obvious. But note that the unique Lorentz

transformation sending A, B, C into B, A, D also sends D to C (since the cross-ratios
of A, B, C, D and By A, D, C are equal by (1.3.11)) and hence has period 2. This is a
reflection whose invariant planes are Q and its spacelike orthogonal complement.
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32 1. Geometry of world- and spin-vectors

We may call

p = $ + \xjj = 2 tanrT * V * (1.3.16)

the complex angle between the real planes [AB] and [CZ>], and we see
that it is uniquely determined by the cross-ratio {a, y, f$, 5} apart from sign,
and modulo in depending on whether Ah^C,B\->D or the other way
around. Its geometric meaning is that [AB], [CD] 'differ' by a Lorentz
transformation compounded of a rotation through an angle \j/ about the
plane Q, and a boost through a rapidity 0 in the plane Q, Q being the
unique 'normal' to [AB], [CD], as defined above.

1.4 Null flags and spin-vectors

The purpose of this section is to lead up to the geometrical concept of
a spin-vector (the simplest type of spinor). On this will rest the geometrical
content of spinor algebra, which will be treated formally in succeeding
chapters. The geometry of the elementary algebraic operations between
spin-vectors will be discussed in §1.5.

Our aim is to find some geometrical structure in Minkowski vector
space V- th i s will be our geometrical picture of a spin-vector K-of
which the pair (£, rj) of complex numbers introduced in §1.2 can be regard-
ed as a coordinate representation. We have already seen how to associate
with (£, rj) a future-pointing null vector K provided a Minkowski coordi-
nate system is given. The pair (£, rj) serve as coordinates for K; but for
A'these coordinates are redundant to the extent that the phase transforma-
tion £[—>ei0£, r\\-*eldY\ leaves A'unchanged (cf. (1.2.15)). We now propose
to associate a richer geometrical structure with (£, r\), one that reduces the
redundancy to a single (essential) sign ambiguity. This structure will,
in fact, be a 'null flag', i.e., the previous null vector K representing £ and r\
up to phase, together with a 'flag plane', or half null plane, attached to K,
which represents the phase.* However, when the phase angle changes
by 9 the flag rotates by 26, which leads to the above-mentioned sign ambi-
guity. This sign ambiguity cannot be removed by any local or canonical
geometric interpretation in V; it will be discussed later in this section.

An essential requirement on any geometrical picture of (£, rj) is that
it be independent of the coordinates used. If (£, fj) is obtained from (£, rj)
by a spin transformation corresponding - via (1.2.24) - to a passive Lorentz
transformation of the Minkowski coordinates, then the abstract spin-

* We do not discuss the possible different ways in which the relationship between a
spinor and its geometric realization may be affected by a space (or time) reflection.
See Staruszkiewicz (1976).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.002
https://www.cambridge.org/core


1.4 Null flags and spin-vectors 33

vector K represented by (£, rj) must remain unchanged, as must its geometri-
cal representation. Thus if (£, n) determines the geometrical representation
of K in the first Minkowski coordinate system, (J, fj) must determine pre-
cisely the same structure in the second system. Note that we are here
concerned with invariance under passive transformations. In the last
two sections we examined the 2-1 local isomorphism between the spin
group SL(2, C) and the restricted Lorentz group, taking the groups as
active; but the same isomorphism holds for the passive transformations,
by the remarks at the end of §1.1, and so the detailed results apply also
to passive transformations, mutatis mutandis.

Description on 5^ +

We start by showing how a geometrical picture of (£, rj) can be obtained in
y + , the space of future null directions, and then we represent this in V.
As before, we label the points of 9+ by the complex numbers ( = £/rj
(with C = °o for rj = 0). We shall show that not merely the ratio £: rj but
also £ and r\ individually (up to a common sign) can be represented, in
a natural way, by picking, in addition to the null direction P (labelled
by £), a real tangent vector L of 9 + at P (cf. Fig. 1-10). To span the space
of derivatives of real functions on y + (which is an image of the Argand
plane), we need the real and imaginary parts of d/d£. Now a real vector
L o n ^ + (except at the coordinate singularity £ = oo -for that point we
need to replace C by another coordinate, e.g., I/O can be represented by
a linear differential operator*

X£ (1.4.1),

Fig. 1-10. The representation of a spin-vector in terms of a pair of infinitesimally
separated points on 5^+ or, equfvalently, by a null flag.

* A differential operator is a standard representation of a vector, which has become
increasingly popular in differential geometry, it automatically incorporates all
transformation properties. This representation will play an important role in
Chapter 4.
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34 1. Geometry of world-and spin-vectors

the coefficients being chosen so as to make L real. We shall require X
to be some definite expression in £ and rj so that after applying the (passive)
spin transformation

£=oc£ + /fy, fi = yi + Sri9 C = ° ^ , (1A2)
yC + S

we get
~ d JZ d d - d
^ + l ^ = A - + % , (1.4.3)

d£ dC <9C dl

where X is the same expression in J, JJ that X is in £, r\. From (1.4.2) we get

d_ = S<x(y{ + d)-y(at + P)\d
SC I iyC + 3)2 ^ (1.4.4)

since ocd - jSy = 1 (by (1.2.18)). Substituting in (1.4.3), we find

Xfj2 = Xrj2, (1.4.5)

and so we must choose X to be some numerical multiple of rj~2. For later

convenience we make the choice X = — (1/^/2)^~2, which gives

Conversely, if we know L at P (as an operator), we know the pair (£, rj)
completely up to an overall sign. This is seen from the expression (1.4.6):
knowing L and comparing coefficients, we can find rj2; and knowing P,
we know £. Thus we can find £2, £*/ and r\2, and hence ± (£, >/).

We can couch the above argument for finding L in somewhat different
terms. We consider P, as before, to be the point of <9̂ + labelled (. Let P
be another point of Sf+ which approaches P along a smooth curve on
5^ + . The limiting direction of PP' is defined in terms of the location of P
relative to P, when P is very near to P. Let us write the complex number
labelling P' in the form

1 e
C' C (1A7)

when P is near to P, e being a small positive quantity whose square is to
be neglected. By a simple calculation parallel to (1.4.4) one verifies that
under the spin transformation (1.4.2),

4 ^ d-4.8)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.002
https://www.cambridge.org/core
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is required for the invariance of the construction. Taking s > 0 as arbitra-
rily 'given', P and P' define £ and rj~2. Hence (as before), P and P' define
± (£, fy) (where C = °° may be treated as a limiting case). The ordered pair
of'neighbouring points' P, P' on <f+ defines essentially the same situation
as the point P together with the tangent vector L at P (cf. Fig. 1-10).
For, the vector L is

L = l im-PP\ (1.4.9)

We can see this by observing that, for any /(£, £),

lim j-(/p-"/

by (1.4.6).*

Description in V

The tangent vector L in the abstract space 5^ + corresponds to a tangent
vector L in the coordinate-dependent representation S+ of Sf + . The
operator expression for the (coordinate-dependent) vector L is formally
the same as that (1.4.6) for the (coordinate-independent) vector L:

L" ( 1 A 1 0 )
/2>

where La are the components** of L relative to the coordinates xa of V.

* Another invariant way of representing the pair (£, rj) on E9?+ is to use the differential
form

rj2d£ = rjd£ — ^drj

at P, since under spin transformations (cf. (1.4.4))

The real part of this differential form (times - y/l) gives a description essentially
equivalent to the one in terms of L just given, but since the geometrical interpretation
of forms is not quite so immediate as that of tangent vectors (cf Chapter 4), we shall
not pursue this further here.

We may remark that various possible ways of representing a spin-vector which are
equivalent under restricted Lorentz transformations are not necessarily equivalent
when the group is widened to include reflections or conformal re-scalings (cf §§3.6
and 5.6). In each case a choice may have to be made as to the behaviour of the spin
vector under these additional transformations (e.g., conformal weight, signs, or
possible factors of i).

** Henceforth we conform to the usual practice and refer to the coordinates of a vector
as 'components'.
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36 1. Geometry of world-and spin-vectors

The difference arises because in (1.4.10) we interpret the operators d/dC,
and d/dl as acting on functions defined on V instead of on Sf + , and two
extra constraints are being imposed on the coordinates to define the sub-
space S+ of V (say T = 1 = X2 + Y2 + Z2).

For later reference we calculate the components La explicitly, using
(1.2.8):

Yo _ i I _ £ + £ Y 2 _ A _ Y 3 _ I L Z _ _ r i 4 i n
CC + i KCC+i) CC+i

whence

) 2 }

and since, by (1.4.10),

d 1 / fix* 7 & \ 3
a -= - -U- 2 - + f2--, (1.4.13)
d* J2\ ^ dljd*

we find

From this we can calculate the norm of the (evidently spacelike) vector

Me/(1.1.13)):

so that L is a unit vector if and only if K (the null vector corresponding
to ^rj via (1.2.15)) defines a point P actually on S+ (i.e. K° = T= 1).
In fact, the 'length' ( - \\L\\)^ of L varies inversely as the extent* of
K, i.e. inversely as the ratio of ^ to OP (cf. (1.2.14), (1.2.15)). We shall
write

K=(- \\L\\y1* k, (1.4.16)

where k defines a point on S+ . Note also that whereas we might have
envisaged difficulty with the definition (1.4.10) for L at r\ = 0, £ = oo, we

* The term 'extent' will frequently be used for null vectors, since their 'length' is always
zero. The extent of a null vector cannot be characterized in an invariant way by a
number, nor can null vectors of different directions be compared with respect to
extent. The ratio of the extents of null vectors of the same direction is meaningful,
being just the ratio of the vectors.
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1.4 Null flags and spin-vectors 37

see from (1.4.14) that no such problem in fact arises since L is still well-
defined at rj = 0.

If (£, n) and (J, //) are related by a (passive) spin transformation and we
calculate La relative to the two corresponding Minkowski coordinate
systems (using (1.4.14)) we shall in general find that they are not related
by a Lorentz transformation. (This is clear, for example, from the fact
that L, being tangent to S+ , is necessarily orthogonal to the coordinate
r-axis, a relation that is not generally preserved by a Lorentz transforma-
tion.) Nevertheless the plane ft of K and L is invariant, i.e., coordinate-
independent, and thus a geometric structure in V. This becomes clear
when we remember that L corresponds to a tangent vector in <? + and so
to two infinitesimally close null directions, one of which is K. The plane
of these null directions is evidently ft.

Now ft is given by the set of vectors

aK+bL,(a,ben), (1.4.17)

and therefore has the required invariance. To give significance to the
sense of L we shall stipulate

fo>0, (1.4.18)

which makes (1.4.17) into a /ia//-plane, say n , bounded by K. This is the
flag we have been looking for. Together with K it determines (£, n) up to
sign. For, knowing A'we know £ and rj up to common phase, and knowing
the direction of L we can get the phase of n (and thus of <J) from (1.4.6).
Note that L is spacelike and orthogonal to K (being tangent to S+ it has
zero time component, and its spatial part is evidently orthogonal to that
of K). Hence IT is one-half of a null 2-plane (see next paragraph), i.e. it
is tangent to the null cone. It must touch the null cone along the line
through K. All directions in n , other than K, are spacelike and orthogonal
to K. We shall refer to FI and A'as a null flag or simply as a flag. The vector
K will be called the flagpole, its direction the flagpole direction, and the
half-plane IT the flag plane.

We digress briefly to recall some general properties of null planes. Any
real plane

aU+bV (1.4.19)

spanned by two 4-vectors U and V contains at most two real null direc-
tions, given by

a2 || U\ + b2 || V\\ + 2abU- V = 0. (1.4.20)

When these null directions coincide, the plane is called null. In that case
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38 1. Geometry of world- and spin-vectors

Fig. 1-11. Cross-sections of the null cone are mapped conformally to one another
by the generators of the cone. This provides Sf + with a conformal structure. Sphere
metrics arise as cross-sections by spacelike hyperplanes. The various unit sphere
metrics on £f+ compatible with its conformal structure correspond to the different
choices of unit timelike vector (i.e., normal to the hyperplane).

suppose Uis the unique null direction in it; (1.4.20) then shows that there
is no other null direction in the plane only if UV = 0, i.e. every other
vector V in the plane must be orthogonal to U. And since no two distinct
causal directions can be orthogonal (cf. after (1.1.17)), every such vector
V must be spacelike. The angle 6 between two null planes with common
null vector, say U, can be defined as that between any two non-null
vectors, one in each plane; for suppose V, W are two such vectors, then
(aU + bV)-(cU + dW) = bdV- W, whence cos 6= ± V-W/(\\ V\\\\ W\\Y\

independently of a, b, c, d. An interesting corollary is that any cross-section
T of the null cone in V, even one achieved by cutting the null cone with
a curved hypersurface, is conformally identical to every other, and there-
fore to S + , where corresponding points lie on the same generator of the
null cone (cf. Fig. 1-11). This result can be seen in many ways but, in
particular, by considering the infinitesimal triangle obtained by cutting
three given neighbouring generators of the null cone by any hyperplane
element. Since neighbouring generators lie on a null plane, our preceding
result shows that all these infinitesimal triangles will be similar. The
corollary is therefore established. We have already seen an example of
it in the use of the hyperplane (1.2.12).

We now examine a little more closely the geometric role of the 'magni-
tude' of the vector L. We cannot attach significance to the norm ||L||,
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1.4 Null flags and spin-vectors 39

since this would attach unwanted significance to the metric of S +. (We
saw above that || L || = — 1 was the condition for K= OP with P on S +.)
We have to envisage L, at P, as 'joined' to the origin 0. Thus, if we replace
P by some other point R on OP, to the future of 0, with must rescale
L by the factor OR/OP (Fig. 1-10). So L at P is 'equivalent' to {0R/0P)L
at K. We can choose R so that {0R/0P)L is a unit vector*. Then OR - #,
since this gives # = (— || L || )~* OP, which is the same as (1.4.16). Thus, the
magnitude of L simply locates K (in the direction OP). In terms of P and
P', we can picture this, intuitively, in the following way. We consider
neighbouring null lines OP, OP'. Then we locate R on OP by proceeding
along the line OP until the distance to the neighbouring line attains the
value £. Note that the 'closer' together are OP and OP', the greater will
be the extent of OR.

The labelling of flags by pairs (£, n) does not specifically depend on the
choice of a Minkowski coordinate system for V. (In fact, certain other types
of coordinate systems would have led to rather simpler formulae than the
ones we have used.) The assignment of a pair (£, n) to a null flag can be made
much more directly once we have the concept of a spin-frame available.
The coordinate system for V will then be seen as an irrelevance. Essentially
a spin-frame is defined when the flags corresponding to the pairs (1,0)
and (0,1) are known, but there is a slight difficulty concerning the sign
ambiguity. This is removed when the concept of a spin-vector is introduced,
which we shall do in a moment. The details of the necessary geometric
operations will then be given in §1.6.

Spin-vectors

To understand the passage from the concept of flag to that of spin-vector,
we must appreciate the essential nature of the sign ambiguity in the re-
presentation of a null flag by a pair (£, n). Let us, for this purpose, examine
the effect on a null flag of transformations of the form

(&I/)I-(A&A>/), (1A21)

where A is some non-zero complex number. These are the transformations
which leave the flagpole direction invariant but may alter the extent of
the flagpole or the direction of the flag plane. Set

A = rei0, (1.4.22)

where r, OeR and r > 0. Then in the particular case 6=0 (i.e., X real),

* Strictly speaking, we must allow that L may also have multiples of K added into it.
But this makes no difference to the norm since A" is null and orthogonal to L.
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40 1. Geometry of world-and spin-vectors

(1.4.21) gives no change in the flag plane, while the extent of the flagpole
is increased by a factor r2; on the other hand, if r = 1 (i.e. I of unit modulus),
(1.4.21) gives no change in the flagpole but the flag plane rotates through
an angle 29 in the positive sense. This may be seen perhaps most easily
if we use the representation in terms of the infinitesimally separated points
P, P' on S + . Then P is given by £ and P' by £ - 2'hrj-2. Under (1.4.21)
we have rj^ An, hence rj~2 -*r~2Q~2i6n~2. Since the extent of the flagpole
varies inversely as the infinitesimal separation PP\ we have the first part
of the above assertion. The second part is seen to follow when we recall
that S+ is obtained from the Argand plane of £ by a conformal stereo-
graphic projection.

Now let us apply a continuous rotation (£, n) -• (eia£, eidn) where 0
varies from 0 to n. We end up with

(Z,ri)»(-Z,-t,), (1.4.23)

but the flag is returned to its original position, the flag plane having been
rotated through 2n (i.e., once completely about the flagpole). If we continue
the rotation, so that 6 further varies from n to In, then the original pair
(£, n) is obtained once more. Thus, a rotation of the flag plane through
4TT is required in order to restore (£, n) to its original state. Such considera-
tions imply that a complete local geometrical representation, in V, of
(£, rj\ which takes into account its overall sign, is not possible. Every local
structure in the Minkowski space V that we might adjoin to the null flag
would also be rotated through 2n and hence returned to its original state,
while (£,n) undergoes (1.4.23). To see this most clearly, we observe first
that for any particular pair (£,rj) we can achieve (£, n)\-• (e1^, ewn) by a
spin transformation which corresponds to a rotation for which the flagpole
direction is an invariant null direction. (For simplicity we could choose
(£ >7) = (0,1)i—• (0, Qie) and use (1.2.31).) As 0 varies continuously from
0 to 7i, the spin transformation varies continuously (provided the rotation
axis is kept fixed) and takes the final value — I. The corresponding Lorentz
transformations also vary continuously, but end up at the identity Lorentz
transformation. Thus, any geometrical structure in V would be rotated
into its original state by this succession of Lorentz transformations, even
though (£, n) is 'rotated' into (— £, — n).

Once it is accepted that a complete local geometrical representation in
V is not possible, it becomes clearer what attitude should be adopted.
Essentially we must widen the concept of geometry in V, so that quantities
can be admitted as 'geometrical' which are not returned to their original
state when rotated through an angle 2n about some axis; when rotated
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7.5 Spinorial objects and spin structure 41

through 4TT, however, they must be returned to their original state. Such
quantities will be referred to as spinorial objects. A spin-vector differs
from a null flag only in that it is a spinorial object, and to each null flag
there correspond exactly two spin-vectors. The next section is devoted
to an elaboration of these ideas.

1.5 Spinorial objects and spin structure

To define a spinorial object in more precise terms, we must first consider
some properties of ordinary rotations. The manifold of proper rotations
in Euclidean 3-space is denoted by SO(3). SO(3) can also be used to re-
present the different orientations* of an object in space. If one such orienta-
tion is designated as the 'original' orientation - and represented by the
identity element of 50(3) - each other element represents the orientation
which is obtained by acting on the original orientation with the rotation
in question.

Any rotation is defined by an axis k and a right-handed turning through
an angle 6. It can therefore be represented by a vector of length 6 in the
direction of k. Since we need only consider the range 0 < 6 ̂  n9 every
point of S0(3) thus corresponds to a point of the closed ball B of radius
n. This correspondence is not unique, however, since a rotation about
k through an angle n is the same as a rotation about — k through an
angle n. Thus opposite points of the boundary S of B must be identified,
giving us a space B which represents rotations uniquely, and also continu-
ously (i.e., points close in B represent rotations that differ little from each
other).

We are interested in the topology, and especially in the connectivity
properties of B. A space is said to be simply-connected if every closed loop
in it can be deformed continuously to a point. (This property obviously
holds for an entire Euclidean space, for an ordinary spherical surface, or
for a Euclidean 3-space with a point removed. It does not hold for the
surface of a torus, for a circle, for a Euclidean 3-space with a closed
curve removed, or for a Euclidean 2-space with a point removed.) A
simply-connected space is alternatively characterized by the property
that if cx and c2 are two open curves connecting two points in the space,
then cx can be continuously deformed into c2.

The space B is in fact not simply-connected. The closed loops in B
fall into two disjoint classes, I and II, according as they have an odd or even

* Not to be confused with our previous use of the word 'orientation' which means
'handedness'.
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42 1. Geometry of world-and spin-vectors

Fig. 1-12. S0(3) is a closed 3-ball with opposite points of its boundary identified.
Continuous deformation of a curve in S0(3) can eliminate pairs of its intersections
with this boundary.

number, respectively, of 'intersections' with the boundary S. An inter-
section occurs when a curve approaches S and, by the identification of
points, reappears diametrically opposite. Class I contains, for example,
all diameters of B. Class II contains all internal loops, and in particular
the 'trivial' loops consisting of a single point. No loop of class I can be
continuously deformed into a loop of class II, since intersection points
with S can appear or disappear in pairs only. On the other hand, all
class I loops can be deformed into each other*, and the same holds for
class II loops. This is because intersections with S can be eliminated in
pairs (see Fig. 1-12, which shows how to deal with one strand at a time),
and internal loops can clearly be deformed into each other, as can loops
which intersect the boundary once.

Now consider a continuous rotation of an object in Euclidean 3-space
which takes that object back to its original orientation. This corresponds
to a closed loop in SO(3) (hence also in B\ which may be of class I or of
class II. In the case of a simple rotation through 2n we evidently get a
class I loop, whereas for a rotation through An we get a class II loop. It
is clear from the above discussion that the rotation through In (where
the whole motion must be considered, not just the initial and final orienta-
tions) cannot be continuously deformed into no motion at all, whereas
the rotation through An can. That this is the case is by no means obvious
without some such discussion as that given above in terms of B.

There are numerous ways of illustrating this result. One way of perform-
ing a continuous deformation of a An rotation into no rotation is the
following (due to H. Weyl). Consider a pair of right circular cones in space,
of equal semi-angle a, one cone being fixed while the other is free to roll on
the fixed one, the vertices remaining in contact. Start with a very small and
roll the moving cone once around the fixed cone: the moving cone executes

* One of the rules for such deformations is that different portions of a loop may be
moved through one another. Hence the question of'knots1 does not arise.
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Fig. 1-13. Dirac's scissors problem: rotate the scissors through 720° and then un-
tangle the string without moving the chair or rotating the scissors. With a belt it is
easier.

essentially a rotation through 4n. Now increase a gradually from 0 to
n/2. For each fixed a we have a closed motion as the moving cone rolls
once about the fixed cone. But when a nears n/2 the cones become almost
flat and the motion becomes a mere wobble. So at a = n/2 we get a 'trivial'
loop in 50(3), and the rotation through 4TT has been continuously deform-
ed into no motion at all.

In Dirac's well-known scissors problem a piece of string is passed through
a finger hole of the scissors, then around a back strut of a chair, then
through the other finger hole and around the other back strut, and then
tied (see Fig. 1-13). The scissors are rotated through 4TC about their axis
of symmetry, and the problem is to disentangle the string without rotating
the scissors or moving the chair. The fact that this problem can be solved
for 4n but not* for 2n is a consequence of the above properties of SO(3).
The solution is made trivially easy if the four strands of string (whose main

That it cannot be solved for 2n requires, strictly speaking, a more involved topological
argument (see Newman 1942).
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44 1. Geometry of world-and spin-vectors

purpose is to confuse the issue) are regarded as glued (in an arbitrary
manner) to an open belt issuing from the chair: a twist of An of the belt
is undone by looping the belt once over its free end. This solution also
yields another way of continuously deforming a An rotation into no rota-
tion. If we regard the scissors as free to slide along the belt, then each
position of the belt during the untwisting manoeuvre gives a closed path
in the configuration space of the scissors. The first takes it through a
rotation of An, the last through no rotation at all.

The connectivity of B can also be discussed in terms of 'open' curves,
joining a point P to a point Q. Again (for fixed P and Q) these curves fall
into two classes, I and II, according as the number of their intersections
with S is odd or even, respectively. And again each member of one class
can be continuously deformed into any other member of the same class,
but into no member of the other class. The arguments are just as above.
But now there is a slight difference in that no intrinsic topological distinc-
tion can be made between the two classes. (In the case of closed loops the
distinction between classes I and II is topologically intrinsic: all loops
of class II - and only those - can be shrunk to a point.) For from the point
of view of the topology of B, the particular location of the surface S has
no significance; for example, we may think of the ball B as extending
beyond S, and then move S radially outward in one direction and radially
inward in the opposite direction. If a curve from P to Q intersects the
initial location of S once, it need not intersect the final location of S at
all. We note that two curves from P to Q belong to the same class if and
only if the first followed by the second in reverse direction constitute
a closed loop of class II.

In terms of the original Euclidean 3-space, the points P and Q corres-
pond to two orientations 9 and J of an object, and a path from P to Q
in B corresponds to a continuous motion beginning with 9 and ending
with J. We now see that there are two essentially different classes of
continuous motions from 9 to J. The motions of each class can be continu-
ously deformed into one another, but not into any motion of the other
class. Nevertheless there need be nothing intrinsically to distinguish
between one class and the other.

The particular feature of the topology of 50(3) that we have been
discussing concerns its fundamental group (or first homotopy group)
nl(S0(3)) (roughly: the group of topologically equivalent loops, in this
sense). Here, this group has just two elements, so we have n^SOfi)) = Z2

(the group of integers mod 2).
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Universal covering spaces

An important concept is that of a universal covering space f for a connected
(but not necessarily simply-connected) topological space T. Choose a
base point 0 in T and consider paths in T from 0 to some other point X.
There may be several different classes of paths from O to X, with the
property that each path of one class can be continuously deformed into
every other path of the same class but into no path of another class.
To construct f we, in effect, allow X to acquire as many different 'identi-
ties' as there are such distinct classes. More precisely, the points of f are
these different classes associated with X, where X itself varies over the
whole of T, 0 remaining fixed. The continuity properties of f are defined
in the obvious way from those of T. It is readily seen that T is simply-
connected and that - as a topological space - it is essentially independent
of the choice of O. If T is simply-connected then f is identical with T.

For example, take T to be a circle, whose points may be assigned co-
ordinates 6 in the usual way, modulo 2n. The inequivalent paths from
0 (the base point) to 6 are distinguished by the different number of times
that they 'wrap around' the circle. Evidently the space T is parametrized
by 0 without the equivalence modulo 2n, i.e., f is topologically the real
line. Similarly, if T is an infinite cylinder, parametrized by z and by 6
modulo 2;r, T is the entire plane parametrized by z and an unrestricted 6.
Thus, to pass from T to f, we maximally 'unwrap' the space T- and this,
indeed, is how we may view the situation in the general case.

Consider, in particular, the space SO(3). There are now just two classes
for each point of the space, so the universal covering space 50(3) is just
a twofold unwrapping of 50(3). A concrete realization of 50(3) has, in
fact, already been obtained in §1.2, namely the space SU{2) of 2 x 2
unimodular unitary matrices.* The correspondence referred to in Pro-
position (1.2.29) establishes precisely the required 1-2 relation between
the spaces 50(3) and 5(7(2). In just the same way, Proposition (1.2.27)
establishes the relation between the restricted Lorentz group OT

+(1, 3)
and its (twofold) universal covering space 5L(2, C) of spin-matrices.
The fact that the topology of OT

+(1, 3) is essentially no more complicated
than that of 50(3) follows from a property of restricted Lorentz trans-
formations established in §1.3: every such transformation is uniquely

* From our discussion of quaternions in §1.2 we see that the topology of SU{2) is the
same as that of the space of unit quaternions. This is a 3-sphere S3 (topologically a
closed 3-ball whose boundary is identified as one point) - which, indeed, is simply-
connected.
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rotation through 2ir

twofold
unwrapping

Old, 3) SL (2,C)
Fig. 1-14. The 1-2 relation between the restricted Lorentz group and 5L(2, C).

the product of a rotation with a boost. The topology of the boost is 'trivial'
(i.e., that of Euclidean space [R3, in which the rapidities are mapped as
lengths in the relevant directions), so the topological properties of 0^(1, 3)
are essentially the same (except for dimension) as those of 50(3).* The
1-2 relation between 0T

+(l,3) and 5L(2, C) is indicated in Fig. 1-14.
Consider now a geometrical structure (e.g., a rigid body, a flag, etc.)

in Euclidean 3-space £3, space-time, or Minkowski vector space V. Let
^ denote the space of orientations Q of that structure. We have shown
how to construct a 'spinorized' version Qx of <2, provided the space ^
is such that it possesses a twofold universal covering space <?, and provided
the two different images Q1? Q2e^ of an element Qe%> are interchanged
after a continuous rotation through 2n is applied to Q. For example, if
the Qs are the orientations of a rigid (asymmetrical) body in £3, ^ has
the topology of S0(3) and we have seen that S0(3) has the required pro-
perties. In the general case, the elements of ^ may be pictured as represent-
ing ordinary geometrical structures in space (-time), but with this
additional feature, that a rotation through 2n about any axis (or any
other motion continuously equivalent to this) will send the structure into
something distinct, and a further rotation through 2n is needed to send
the structure back to its original state. The elements of ^ will then be
spinorial objects** They are the required 'spinorized' version of the
original Qs.

Technically, OT
+(1, 3) is of the same homotopy type as S0(3).

Although from the point of view of conventional geometry, or of everyday experience,
the concept of a spinorial object may seem strange, such objects do appear to have
a physical reality. The states of electrons, protons or neutrons are examples of spinorial
objects. According to Aharonov and Susskind (1967), genuine spinorial objects on a
macroscopic scale are also possible in principle. Their (somewhat idealized) theoretical
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7.5 Spinorial objects and spin structure 47

Definition of a spin-vector

We are now in a position to give the geometrical definition of a spin-
vector. For that, we take the gs to be null flags in V, and V the space of
null flags. We must verify that this # does indeed have the topological
properties required of it. Since it is four-dimensional, it cannot be topo-
logically identical with 50(3) (three-dimensional) or OT

+(1, 3) (six-dimen-
sional). Nevertheless, as was the case with OT

+(1, 3), the essential part
of its topology is the same as that of 50(3) (We have <€ ^ 50(3) x R,
and consequently 7c1(

<if) = Z2). To see this, we can think in terms of the
representation on 5 + . Each element Q of # is represented by a point P
of 5 + and a non-zero tangent vector L to 5 + at P. We can associate a
Cartesian frame continuously (but not invariantly) with Q by choosing
the z-axis from the origin to P, the x-axis parallel to L, and the y-axis
so as to complete the frame. Such a frame uniquely corresponds to points
of 50(3). The only remaining parameter defining Q is \\L || which is a
positive real number and topologically trivial, so it is seen that # has the
properties required of it.

The elements of the space $ are therefore the spinorized null flags,
which we identify with the (non-zero) spin-vectors of V. Each null flag
Q defines two associated spin-vectors, which we label K and — K. A con-
tinuous rotation through In will carry K into — K and since on repeating
the process — K is carried back to K, we have

- ( - * ) = *,
as suggested by the notation. In addition, there is a unique zero spin-vector,
written 0, which does not correspond to a flag. It is associated with the
zero world-vector, which is its 'flagpole', but no 'flag plane' is defined.

The pair (£, n) may genuinely be thought of as components for K.
Spin transformations applied to (£, n) will correspond to active motions
which carry K about the space V. A continuous rotation of K through In
corresponds to a succession of spin transformations acting on (£, rj) which
end up with (— £, — n). Thus (— £, —rj) will in fact be the components of
— K, as the notation implies.

apparatus involves splitting wave functions of a large number of electrons between
two containers A, B which fit together in a unique relative orientation. When together,
a current flows from A to B, but after they are separated, and B rotated relative to
A through 2n, the current then flows from B to A when they are re-united. After
a further relative rotation through 2n the original direction of the current from A
to B is restored. A corresponding effect on the scale of single neutrons in a split beam
has actually been observed experimentally. (Bernstein 1967, Klein and Opat 1975,
Rauch et al. 1975, Werner et ai, 1975.)
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48 1. Geometry of world-and spin-vectors

Spinor structure

Before proceeding to a detailed discussion of the basic operations on spin-
vectors, we briefly consider how the above arguments are affected by
the global topology of a general curved space-time manifold J4. The topo-
logy we have been concerned with until now arose from local considera-
tions in space-time. (For example, we discussed the topology of the space
of null flags at one space-time point.) But certain space-time manifolds
themselves have a non-trivial (i.e. non-Euclidean) topology, which must
be considered together with local topological properties. Indeed, the
question arises of what restrictions to put on a manifold for it to allow
objects like spin-vectors to be defined globally.

We shall not, at this stage, enter into the precise definition of a space-
time manifold, beyond saying that locally its structure is that of Minkowski
space-i.e. it has a Lorentzian metric-and that it is an ordinary (i.e.,
Hausdorff, paracompact, connected) C00 4-manifold (see Chapter 4 for a
definition of these concepts).

To fix ideas, let us consider a space J*, each point of which represents
a null flag at a point of Ji. This space is called the null-flag bundle of Jt.

Fig. 1-15. The null-flag bundle & of M, and its twofold covering space, the spin-
vector bundle 3F'.
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7.5 Spinorial objects and spin structure 49

(See Fig. 1-15 and cf. §5.4.) It is an 8-dimensional space, since Jt itself
is 4-dimensional, and the space $Fp of null flags at any one point P of
Jt (previously denoted by ^) is also 4-dimensional. The null flags at
P are thought of as structures in the tangent space (cf. Chapter 4) at P -
which is a Minkowski vector space. Now, already for the existence of
J*, there are two global restrictions on Jt. In the first place, null flags
are associated with only one of the two null half-cones in the tangent
space at P, namely that labelled /utwre-pointing. Thus it is necessary to
be able to make a consistent continuous choice, over the whole of Jt,
of null half-cones. In other words,

Jt must be time-orientable. (1.5.1)

In the second place, the algebra for spin-vectors requires a choice of space-
time orientation at each point, since multiplication by ew must rotate the
null flags in a particular sense. That this requires a space-time orientation,
rather than a space orientation, can be seen from the fact that the positive
rotation of the null flags assigns a positive orientation to S+, and, corres-
pondingly, a negative orientation to S~ (cf. §§1.2,1.4, 3.2) We must there-
fore be able to make a consistent continuous choice, over the whole of
Jt, of a space-time orientation. Thus,

Jt must be space-time-orientable. (1.5.2)

But if we want to pass from the concept of null flag to that of spin-vector,
these two global requirements on Jt are not sufficient. Jt must also permit
a spin structure* to be defined on it, which means, roughly speaking, a
prescription for keeping track of the sign of a spin-vector not only if we
move it around at a fixed point of Jt, but also if we move it around from
point to point within Jt. If Ji is topologically trivial, this spin structure
exists and is unique. But if topologically non-trivial, Jt may or may not
permit a consistent spin structure, and if it does, the possible spin structures
may or may not be unique. It turns out, generally, that (assuming (1.5.1)
and (1.5.2) hold) the conditions on Jt for existence and uniqueness of
spin structure depend only on the topology of Jt and not on the nature of
its (Lorentzian) metric. We shall see shortly (cf (1.5.4); also (1.5.6)) the
precise topological condition on Jt that is required.

In accordance with our earlier discussion, we require J* to possess

It should be emphasized that the question of the existence of spin structure on a
manifold M is not the same question as that of the existence of certain (e.g. non-
vanishing) spinor fields on Jt. The latter is analogous to the question of whether there
is a non-vanishing vector field on a 2-sphere. But without spin structure, the very
concept of a global spinor field does not exist.
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50 1. Geometry of world-and spin-vectors

an appropriate twofold covering space J^', which will in fact be the space
of spin-vectors on Ji. (Unlike the universal covering space, a general
covering space need merely be connected and map to the original space
so that the local topology is preserved and the inverse map of a point
is a discrete set of points.) 3F' must be 'appropriate1 in the sense of reducing
to # p , the universal covering space of J^p, above each point P of Ji.
We might expect that the universal covering space # of J^ will normally
achieve this (i.e., 3F' — # ) , but since the complete 'unwrapping' of 3F
also involves unwrapping Ji, this may not be what is required. Moreover
the situation is more complicated than this. We shall find that in fact there
are two somewhat different obstructions to the existence of #"' which can
occur. The first of these can arise whether or not M is simply-connected,
while the second occurs only for non-simply-connected Ji.

To investigate this, let us examine closed loops in J*\ and their pro-
jections to Ji. A projection from J* to Ji maps each flag at P to the point
P; thus the whole of each 3Fp maps to the single point P. (See Fig. 1-15.)
Any path in 3F projects to a path in J ; a closed loop in $F evidently
projects to a closed loop in Ji. Each path in 3F corresponds to a motion
which carries a null flag around in Ji, and which finally returns it, in
the case of a closed path, to the starting configuration. The projection
simply describes the motion of the base point in Ji.

A loop in 3F that lies entirely in J*p, for some fixed P, projects to a
'trivial' loop (the point P) in Ji. As we have seen earlier, there are precisely
two classes (I and II) of closed loops in 3P p. The first kind of obstruction
that can arise when the topology of Ji is suitably non-trivial is that these
two classes can become united into one, which means that class I (i.e.,
nonshrinkable) loops in any one ^ P , after being deformed within J% can
return to J*p as class II (i.e., shrinkable) loops. In that case spin-vectors
could not exist on Ji. For suppose they exist, and consider a class 1
loop X in a given ^ P which consists simply of a 27i-rotation of the flag
plane of some given null flag, and which therefore sends the corresponding
spin-vector K into — K. Every closed loop in 3F into which X can be trans-
formed continuously, carries a nonzero spin-vector continuously into
its negative. But if X can be continuously moved to become a single point
on J% we find that the spin-vector must equal its negative. Hence Ji
does not admit a spin-vector concept.

Now assume that this first kind of obstruction is absent. Then a second
kind of difficulty can sometimes arise when Ji contains an unshrinkable
loop y, i.e., when M is not simply-connected. If a null flag is carried around
y to its starting position P, a corresponding spin-vector K would have to
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1.5 Spinorial objects and spin structure 51

be returned either to its starting value or to — K. Accordingly we must
choose between these two alternatives. If y is such that no multiple my
(i.e., y traversed m times) is shrinkable to a point, then both choices are
equally valid, but lead to different spin structures for Ji (assuming that
spin structure is not ruled out for other loops). The choice between the
two alternatives is then part of the definition of what shall be meant by
spin-vector. Once the choice is made for y, it determines the choice for
all loops in J^ which can be projected to y or to loops deformable to y
through Ji.

Next suppose that y is such that some odd multiple my of it is shrinkable
to a point within M. Then for any loop X in 3F that projects to y, mX is
deformable within $F to a loop in one # p - following the deformation of
my within JI to a point P. If that final loop in J*p is of class I, then, by
continuity, a spin-vector K taken around mX must go to — K; if of class
II, such a K must go to K. Since m is odd, this fixes X as taking K into — K
or K respectively, without ambiguity.

Finally, it may happen that while no odd multiple of y is shrinkable,
some (smallest possible) even multiple 2ny can be shrunk to a point. Then
one of two things can happen. The corresponding loops 2nX in J*, following
the deformation of 2ny to a point P in Ji, may all end up as loops of class
II in ^ p , or else some (and then in fact all) end up as of class I. In the former
case, by continuity, a spin-vector K taken around 2ny must go into itself.
Hence either choice of icf—> ± K for one traversal of X is valid, and we end
up with different possible spin structures for Ji as before (unless spin
structure is ruled out for other loops). But suppose a loop 2nX ends up
as a class I loop in J^p, requiring K H — K around 2nX. Neither choice
K K + K around X is now consistent, and this is the second obstruction
to M having spin structure. Unlike the first, in can only occur if Ji is not
simply-connected, and, also unlike the first, it obviously disappears when
we pass to the universal covering space of Ji.

Examples of space-times can be constructed (cf. Penrose 1968, p. 155,
Geroch 1968, 1970, Hitchin 1974) in which one or the other or both of
the above-mentioned difficulties occur, but which nevertheless satisfy
(1.5.1) and (1.5.2) and which in no obvious other way seem to be physically
unacceptable. The phenomenon is actually an instance of a more general
one arising in manifolds of arbitrary dimension. There is a topological
invariant, known as the second Stieffel- Whitney class, vv2, whose vanish-
ing, in the case of an orientable* manifold Ji, is necessary and sufficient

* The concept of orientability, for an n-manifold, is the same as has been referred to
here (and in §1.1) as space-time orientability.
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52 1. Geometry of world-and spin-vectors

for the property

Ji has spin structure, (1.5.3)

i.e., for the existence of general (but still two-valued) spinorial objects
in Ji (Milnor 1963, Lichnerowicz 1968; cf. Milnor and Stasheff 1974).
The condition w2 = 0 can be roughly stated as follows:

(1.5.4) CONDITION:

On any closed 2-surface 9* in the manifold Ji (of dimension n ^ 3) there
exists a set of n — 1 continuous fields of tangent vectors to Ji, linearly
independent at every point of 9. If Ji is orientable (which, in fact, is the
condition wx = 0), we can replace 'n — V by V.

We shall show that when (1.5.4) is satisfied, for a space-time manifold
M satisfying (1.5.1) and (1.5.2) (so now n = 4), neither of the above-
mentioned obstructions to spin structure can occur.

As a preliminary, we consider the rotation group SO(4) (that is, the
identity-connected component of the group of rotations in four Euclidean
dimensions) and show that, like 50(3), closed paths within it fall into two
classes I and II, non-shrinkable and shrinkable respectively, such that
double a class I path is a class II path (i.e., 7^(50(4)) = Z2). (In fact the
same holds for S0(n), for all n ^ 3, but we shall not need this more general
result here.) We recall the quaternions of §1.2 and remark that any given
element of 50(4) may be obtained as an action on unit quaternions q:

qt-+q = aqb (1.5.5)

where a and b are fixed unit quaternions. (This follows because qq* = qq*
the 4-dimensional Euclidean norm, and the full dimensionality, 6, of 50(4)
is obtainable in the above way.) We have the one ambiguity

(a,b) = (-a, -b),

but apart from this, the pair (a, b) is uniquely determined by the 50(4)
element it represents.

Next, suppose that (1.5.4) and the orientability conditions (1.5.1), (1.5.2)
hold for the 4-dimensional space-time manifold Ji. Let us imagine that the
tangent space* Tp at each point P of a closed 2-surface 9, in Ji, is mapped
linearly to (R4 in such a way that the four linearly independent vectors
at P provided by (1.5.4) are mapped, respectively, to the four coordinate
basis vectors in (R4 (i.e., we use the four vector fields of (1.5.4) as coordinate

* See §4.1 for a precise definition of this concept.
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flag

- R 4 -

Fig. 1-16. The map to U4, of future null cone and null flag, provides, in continuous
fashion, a unique frame ABCD, right-handed and orthonormal with respect to the
Euclidean metric of (R4.

axes at each point of Sf\ The future null cone at P will be mapped to a
half-cone K+ in (R4. (See Fig. 1-16.) Just one of the principal semi-axes
of K + (with respect to the standard Euclidean geometry of IR4) will be the
image, A, in IR4, of a future-timelike vector in TP (namely the axis within
K+).As the point P moves about Sf9 the vector A e IR4 moves continuously
with P. Now consider a null flag at P. Its image in IR4 will be a 'flag' whose
flagpole points along a generator of K+ and whose flag plane is tangent
to K + . Let B be the projection orthogonal to A (with respect to the
Euclidean metric of IR4) of this flagpole. The projection orthogonal to A
of the flag plane contains just one direction, C, perpendicular to B (as well
as to A). Take D to complete a right-handed frame with A9B9 C, and
finally normalize all of A, B, C, D to be unit vectors (in the metric of IR4).
We thus have a continuous way of assigning a right-handed orthonormal
frame ABCD to any null flag at any point of y , i.e. to any point of & which
lies above $f. We note that in this correspondence if the null flag executes
a class I [or II] path, keeping the point P fixed, then the corresponding
frame ABCD executes a class I [or II] continuous rotation in S0(4).
(Consider a 27c-rotation of the flag plane and then argue by continuity.)

Let us now examine our two types of possible obstruction to the exist-
ence of spinors in a space- and time-oriented space-time manifold M.
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54 1. Geometry of world-and spin-vectors

In the case of the merging of classes I and II, when a loop A in J^p corres-
ponding to a 27i>rotation is deformed through J^ to a point, its projection
to M traces out a closed surface Sf to which (1.5.4) can be applied. If the
stated frames exist on y , we can continuously describe the orientation
of our flag in terms of the frame A BCD in U4 as above. Each position of
the loop in 3F then corresponds to a continuous motion of A BCD in (R4,
the first to a 27r-rotation and the last - continuous with the first - to no
rotation, which is impossible. Thus, if (1.5.4) holds for Ji, the loop X in
3F can not be shrunk to a point in $*, and so that type of failure cannot
occur.

A similar argument disposes of the second possible reason for failure -
incompatibility of flag transport after 2n circuits around a loop y, i.e. two
circuits around rj = ny. By hypothesis, the loop 2ny = 2n is to be shrinkable
to a point P in Ji. In the course of such shrinking, it traces out a closed
surface in Ji, 'welded together' along the one loop rj. To this surface
we can apply (1.5.4), and use the representation in terms of A BCD in U4

as before to map the flags taken around 2rj at various stages of its
deformation to a point. Now the obstruction in question arises if a loop
2£ in #", where £ projects to n, is deformable to a loop of class I in 3F ¥.
But a flag taken around 2( in J^ is represented by a double motion of
A BCD and thus a class II loop in 50(4). If the final loop in ^P were of
class I, the original class II path in 50(4) would be continuously deforma-
ble to a class I path in 50(4), which is impossible, and so this obstruction
cannot arise either.

We shall use the more specific term spinor structure (rather than the
general term spin structure) to mean that all three of the properties (1.5.1),
(1.5.2), and (1.5.3) hold. Thus, if Ji has spinor structure, a spinor system
(based on null flags and spin-vectors) of the type that concerns us in this
book will exist for Ji. In other words, the space &\ defined above, will
exist. If Ji is simply-connected, 3F' will in fact be # . (In each # P , a path
between the two points which represent a single point in # P corresponds
to a 27r-rotation, as we saw earlier; this ensures the same property also
for # . )

But even when Ji possesses spinor structure, that structure will general-
ly not be unique if Ji is not simply-connected. In that case 3F' =/= # . (For
&' must 'unwrap' each class I loop in each <^>, and no more; yet # would
unwrap also those loops that correspond to unshrinkable loops in Ji)
In fact, there are then 2k different spinor structures, where k is the number
of 'independent' loops in Ji of which no odd multiple can be shrunk to
a point.
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Spinor structure for non-compact space-times

We end this section by mentioning without proof a very simple criterion
for Ji to have spinor structure in the case when Ji is non-compact (i.e.,
loosely speaking, 'open'). In fact non-compactness follows from the very
'reasonable' physical requirement that Ji should possess no closed time-
like curves (Bass and Witten 1957; cf also Penrose 1968, Hawking and
Ellis 1973 p. 189).

(1.5.6) THEOREM (Geroch 1968)

If Ji is a non-compact space-time, then a necessary and sufficient condition
that it should have spinor structure is the existence of four continuous vector
fields on Ji which constitute a Minkowski tetrad in the tangent space at each
point of

The sufficiency of the condition in (1.5.6) is, indeed, evident. For the
continuity of the Minkowski tetrads implies time- and space-orientability
for M as required by (1.5.1) and (1.5.2)-and without loss of generality
we can assume Minkowski tetrads are all restricted. Choosing a fixed
abstract ('restricted') Minkowski coordinate space (playing the role of [R4

above, but the discussion is now simplier) we may refer each null flag in Ji
to it by using the flag's representation in the local Minkowski tetrad
provided by (1.5.6). This enables us to keep track of the parity of the number
of 27c-rotations executed by any null flag on Ji and spin structure is
assured, as in (1.5.4).

We remark that for a non-simply-connected space-time the selection of
a spinor structure is fixed once a Minkowski tetrad field is chosen in ac-
cordance with (1.5.6), this choice being normally topologically non-
unique. But even when Ji is simply-connected, topological non-unique-
ness in the Minkowski-tetrad field may occur. An instructive example is
the Einstein static universe (to be discussed in more detail in §§9.2, 9.5),
for which Ji has the topology S3 x U (with IR corresponding to the
time-direction). A 3-frame at any point of S3 may, for example, be carried
into a continuous field of 3-frames all over S3 either by right-translation
(given by the motions of S3 to itself defined by the quaternionic trans-
formations (1.5.5) of the special form q^>q = qb) or by left-translation
(given by those of the special form q\-+q = aq). These are topologically
inequivalent even though they give rise to the same (unique) spin structure.

We have remarked that the non-compactness assumption required for
Ji in Theorem (1.5.6) is very desirable on physical grounds. There are also
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rather strong reasons for believing that physical space-time should actually
possess the global requirements of spinor structure. Time-orientability may
be regarded as strongly suggested by the time-asymmetry of statistical
physics which apparently assigns, on a reasonably local level, a time-
orientation everywhere throughout physical space-time. Space-
orientability would likewise follow from the (seemingly universal)
reflection-asymmetry of weak interactions (P-noninvariance) and of X°-
decay (CP-noninvariance) which apparently provide a natural space-
orientation throughout space-time (see footnote on p. 4). Finally, the
existence of spinor fields in physics seems to imply that physical space-time
should possess spin structure (see footnote on pp. 46, 47). Hence the
existence of globally defined restricted Minkowski tetrad fields would
appear to be physically assured by Theorem (1.5.6).

1.6 The geometry of spinor operations

As we have seen, every null flag in Minkowski vector space V defines a
pair of spinorial objects, namely the (non-zero) spin-vectors K and — K.
With the help of a Minkowski coordinate system we assigned two complex
components (£, r\) to K. Let us now write

Similarly, if a> is some other spin-vector we can denote its components by
(co°, co1), etc. Now, we shall be interested in operations between spin-
vectors which have geometrical (and therefore coordinate independent)
meanings. But we saw in §1.4 that any passive Lorentz transformation (i.e.,
change of Minkowski coordinate system) corresponds to a spin-
transformation applied to the components (C, n). Thus operations between
spin-vectors, when written as relations between components, must be
invariant under (passive) spin-transformations.

Let S ' denote spin-space, i.e., the space of spin-vectors, and C the field
of complex numbers. There are three basic operations on S ' to be consi-
dered. These are
(1.6.1) scalar multiplication: C x S'-> S',

i.e., given XeC and K6o',we have an element
(1.6.2) addition: S ' x S ' - ^ S 1 ,

i.e. given K, OJeS' we have an element K
(1.6.3) inner product: Q' x S'—• C

i.e. given K, weS 'we have an element {K, eo}eC.
Representing each spin-vector by its components relative to some
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1.6 Geometry of spinor operations 57

given reference system, we can define these three operations, respectively,
by

X(K°,KX) = {XK°,XKX\ (1.6.4)

(K°, K1) + (<x>°, co1) = (K° + co°, /c1 + co1), (1.6.5)

{(K°, /C1), (CO°, co1)} - K°CO1 - K'CO0. (1.6.6)

The first two of these are obviously invariant under the spin transforma-
tion

y)~\y
because of its linearity. The invariance of the third is easily verified:

(1.6.7)

y S K a>

a 0
y S

,o

I

Kl CO1

= /c°co' - K ' C O 0 ,

since ad — /?y = 1.
The following relations are immediate consequence of the definitions

(1.6.4), (1.6.5) (1.6.6).
X(fiK) = (Afi)K, (1.6.8)

\K = K, (1.6.9)

0K = 0, (1.6.10)

( - 1 ) * = - i c , (1.6.11)

(1.6.12)

(1.6.13)

(1.6.14)

(1.6.15)

(1.6.16)

(1.6.17)

(1.6.18)

(1.6.19)

(K + co) + T = ic + (tt> + T),

X(K + a)) = (AK) + (/lft>),

{*,«>}= - { O M C } ,

A{K, <O} = {AK, O>},

{K + «>, T} = {ic, T} + {e>, T}.

Furthermore,

{*, G>}T + {co, T}K + {r, K}O> = 0,

as follows by Laplace expansion of

T°

I 1

TA

K

K

K

0

1

A

CO0

<1)X

= 0 (A = 0, 1)
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58 1. Geometry of world- and spin-vectors

with respect to the last row. Note the particular case of (1.6.16):

{K,K}=0. (1.6.20)

Regarding (1.6.8)—(1.6.15) as (not independent) axioms, we recognize
that (B'is a vector space over C. By (1.6.16)—(1.6.18) the inner product is a
skew-symmetrical bilinear form on £'. Relation (1.6.19), together with

{K,CO}^0 for some K,OJE 8 , (1.6.21)

implies that the vector space is two-dimensional. For, if K and w satisfy
(1.6.21), neither can be a multiple of the other (by (1.6.20) and (1.6.17)), so
the dimension is at least two; then (1.6.19) shows how to express an
arbitrary spin-vector T as a linear combination of the two spin-vectors
K and o).

With the aid of the inner product, we can readily obtain the general
representation of a spin-vector in terms of components. We choose any
pair of spin-vectors o and i (omicron and iota) normalized so that their
inner product is unity:

{o,i} = 1= -{t,o}. (1.6.22)

We call the pair o, i a spin-frame. The components of a spin-vector K in
this spin-frame are*

K° = {*,!}, KX = -{K,O). (1.6.23)

Thus, from (1.6.19), (1.6.22) and (1.6.16) we get

The components of o are (1,0) and those of i are (0, 1). Now, if we start
from (1.6.24) and (1.6.22), then we can directly re-obtain the expressions
(1.6.4), (1.6.5) and (1.6.6) for scalar multiplication, addition and inner
product. A passive spin transformation (1.6.7) is achieved when the
spin-frame o,i is replaced by another spin-frame 6,i. The particular
spin-frame which gave the representation of spin-vectors by components
{£,ri) according to §§1.2 and 1.4, is related (cf. Fig. 1-17) to the given
Minkowski tetrad (t,x,y,z) as follows (cf. (1.2.15), (1.4.14)): the flagpole
of o is (t + z)ljl with flag plane extending from this line in the direction
of x\ the flagpole of i is (t — z)/y/2 with flag plane extending from this line
in the direction of — x; the relative signs of the spin-vectors are defined by
the fact that o is rotated into # by a continuous rotation about y in the
positive sense through an angle n (and hence the same rotation sends
i into —o).

* Expression (1.6.23) looks a little more natural in terms of the 'lowered indices' that
we shall introduce later. For, we shall have K0 = - K\ K, = K°.
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1.6 Geometry of spinor operations 59

Fig. 1-17. The standard relation between a spin-frame o, i and a (restricted) Minkows-
ki tetrad t, or, y, z.

The geometry of inner product

We conclude this chapter by giving geometrical interpretations of each of
the three basic operations on spin-vectors. (Readers less interested in this
geometry may pass directly on to Chapter 2.) The first operation, namely
scalar multiplication, has already been dealt with in §1.4. Let us recapitu-
late the conclusion here. The spin-vector XK is obtained from K by keeping
the flagpole direction fixed, multiplying the extent of the flagpole by the
factor AX and rotating the flag plane in the positive sense through an
angle2arg>l

Next let us consider the inner product (since this turns out to be rather
simpler than addition). To begin with, the modulus of {K, a)} is just 2"^
times the spacelike interval between the extremeties of the flagpoles. For
if K is the flagpole of K and W that of o>, we have, using coordinates as in
§1-2,
\\K- W\\

K3) - ° - K3) - (W° - W3)}
1 -\K2)-(WX -jW2)}

K1!? - coW) - 2(KV - O/V)(KV - o/a?)

= -2(K°CO1 -K1O)0)(K°(O' -K1W°)= -2\{K,(O}\2. (1.6.25)

It remains to interpret arg{»c, to}. This is most easily done in terms of
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60 1. Geometry of world- and spin-vectors

Fig. 1-18. Stereographic projection, from S+ to the Argand plane, of the point pairs
representing two spin-vectors.

the sphere S + . Let the point P of S+ and the tangent vector L to S+ at P
represent ±K as in §1.4. Similarly, let Q and M represent ±co. Choose
P' = p'(8)9 Q = Q'(S) OnS+ with

= lim-P?f
9 M=\im-QQ'

E-+08
(1.6.26)

as in (1.4.9). Let PQ9P'O, Q o , Q'0,L0,MQ be the respective projections of
P9F9 Q9Q

f
9 L,Min the Argand plane (cf. Fig. 1-18). Representing vectors

in the Argand plane by complex numbers, we have:

€0°
(1.6.27)

(1.6.28)

A\2

Hence

(1.6.29)

^ x) (1.6.30)

and therefore 2 arg {K, eo} is minus the sum of the angles that LQ and MQ

make with P0Q0. Since stereographic projection is conformal, these
angles are the same as the corresponding angles measured on the sphere
5 + (although the sign of each angle is reversed since the projection
reverses the orientation of the surface). Now the straight line P0Q0

(oriented in the direction P0Q0) is the projection of the oriented circle
c = NPQ (N being the nor th pole of 5 + ) . Thus, 2 arg {ic, o} (mod 2n) is
the sum of the two angles (measured in the positive sense) which L and M
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1.6 Geometry of spinor operations 61

TV

Fig. 1-19. Any circle on S+ through P and Q makes the same sum-of-angles with
L and M

make with c, respectively. This defines argJK, o} geometrically up to the
possible addition of n. Hence we have + {K, m) defined geometrically.
From the invariance of {K, co} it is clear that N must actually be irrelevant
to this construction. Indeed, it follows at once, by elementary geometry
(cf. Fig. 1-19), that the sum of these angles is the same whichever oriented
circle c we choose on 5 + , through the two points P, Q.

To obtain the correct sign for {K, CO}, we must think of L and M as
spinorial objects rather than simply as tangent vectors to S +. Now, imagine
L moved continuously along c, following the orientation from P to Q
and always keeping the same angle with c. When L arrives at Q we expand
(or contract) L until its length is the same as that of M, then we rotate L
and M equally in opposite directions (tangentially to S + ) until they coin-
cide. The angle (measured in the positive sense) that the now coincident
L and M make with c is the required value of arg {K, a)}. The point of this
construction is that whereas there are two possible directions at Q along
which the vectors (and so the corresponding flags) finally coincide, only
one of these is a coincidence between the spinorial objects represented by
L and M (so that the corresponding spin-vectors coincide). It is this
coincidence that we must choose. Hence we have defined {K, O>}, including
its sign, geometrically.

It follows from the continuity of this construction that the resulting
value of argjic, a)} (mod 2n) is independent of the choice of c through P
and Q. The same angle also results if instead of moving L forwards from
P to 2, we move M back (against the orientation of c) from Q to P and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.002
https://www.cambridge.org/core


62 1. Geometry of world- and spin-vectors

then rotate L and M at P. But if we move L from Q to P along c in the
direction of the orientation of c then we get the opposite sign for the value
of the inner product. (This is because taking M all the way around c once,
from P back to P, would result in a sign change for the spinorial object,
this being one complete rotation of the object.) Since this is an interchange
of the roles of P and Q and L and M, we have shown {K, ft)} = — {ft), K],
as required also. Finally, the fact that we have chosen the correct sign for
{K, G)} in the above construction follows if we examine the special case
{0,1} = 1.

It is perhaps a little unsatisfactory that the geometrical definition of
{K, ft)} should have been carried out in such a hybrid fashion, the modulus
having been defined in terms of four-geometry and the argument in terms
of S + . It is of interest, therefore, that the modulus can also be simply
interpreted in terms of S+ as follows:

pn
(1.6.31)

where | L | denote the Euclidean length ( = ( — || L || )*) of L. To see this, we
observe, first, that this is simply (1.6.25) in the case when both flagpole
tips lie on 5 + , so \L\ = 1 = \M\. For the general case, we simply scale
up the flagpoles (recalling (1.6.17)) from the special case above, by the
respective factors \L\~* and |Af|~* (cf. (1.4.16)). Note that the modulus
of (1.6.30) is the limiting case of (1.6.31), when S+ becomes a plane.

As an alternative, let us interpret arg {K,(JO} in terms of 4-geometry.
Let a denote the spacelike 2-plane through 0 which is the orthogonal

+ 2 arg{* , o>}(mod 2TT)

Fig. 1-20. An interpretation of arg {K, 0} in terms of 4-geometry.
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1.6 Geometry of spinor operations 63

complement of the timelike 2-plane spanned by the two flagpoles. Let
U and V be the unit vectors along the intersections of a with the respective
flag planes of K and co (Fig. 1-20). Then the angle between U and V,
measured in the appropriate sense, turns out to be n + 2 argJK, a)}
(mod 2n). TO obtain the sense in which this angle is to be measured and
also to obtain the sign of {K, ft)}, consider a spatial rotation (the direction
of the fixed time-axis t being chosen along the sum of the flagpoles) about
the line p, in or, which bisects the angle between U and V. If this rotation is
built up continuously to n, then, depending on the sense in which the
rotation takes place, K is rotated into ft) or into — ft). (For, U goes to Pand
the flagpoles go one into the other.) Choose the sense so that K goes to ft).
That this rotation be in the positive sense about p defines an orientation
for p. The angle that U makes with the positive direction of p (measured
in the sense induced by a positive rotation of the flag plane of K about
its flagpole) is then precisely arg{K, ft)} — (7r/2)(mod 2n).

In order to see the validity of the above prescription, we consider a
Minkowski frame with time axis t and associated Riemann sphere S +.
The points P and Q represented the flagpoles are now antipodes on the
sphere; the vectors {/and Fare just positive multiplies of L and M trans-
ferred to the centre. The result follows by simple geometry.

The geometry of addition

A geometrical interpretation for the sum of two spin-vectors is actually
implicit in that of the inner product. For, the relation

K + O) = T (1.6.32)

is evidently equivalent to the relation

{K, p} + {a>9 p} = {x, p} (1.6.33)

holding for all p e S ' . Similarly we could treat any linear combination in
place of the simple sum in (1.6.32). Since S" is two-dimensional, (1.6.33)
needs to hold only for two non-proportional choices of p. We can take
these to be o and K themselves (assuming K and w are not proportional -
otherwise (1.6.32) reduces essentially to scalar multiplication). Thus (1.6.32)
is equivalent to

{T, a>} = {K, O} = - { T , K } . (1.6.34)

Taking the modulus of (1.6.34) we see, from the interpretation of inner
product, that the spatial intervals between the tips of the flagpoles of ft),
K and a) + K must all be equal. That is to say, the tips of the flagpoles are
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64 1. Geometry of world- and spin-vectors

the vertices of an equilateral triangle in space-time. As for the flag planes,
taking the argument of (1.6.34), we get

2 arg {T, O}=2 arg {K, CJ} = 2 arg {T, K] = /I, (1.6.35)

say. Consider the representation in terms of 5 + . Let P, Q, R be points on
S+ corresponding to the respective flagpole directions of K, OJ, T and let
L, M, TV be the tangent vectors to S+ at P, <2, R, respectively, which comp-
lete the representation of the flags defined by K, G>, T. By our earlier
construction of 2 arg {K, W} on S + , the angles that TV and M make with
the oriented circle c through P, Q and R, must sum to L The same is true
by (1.6.35) for L and M, and for TV and L. Hence, the angles which each of
L, M and iY make with c must all be equal, being, in fact, either \X or
\X + n (mod 2rc), according to the choice of orientation of c. Thus, in
space-time terms, the flag planes of K, co and K + w must be equally
inclined to the circumcircle of the equilateral triangle formed by the
flagpole tips (and hence to the triangle itself).

The fact that this configuration of flags is completely symmetrical in
ic, a) and K + CO should not be surprising. For, the flags themselves do not
define the signs of the spin-vectors, so the flag configuration for K + <o = x
is the same as for the symmetrical expression K + o + T = 0. Furthermore,
both these relations are indistinguishable from K — CJ = + T if we look
at the flags only. Thus, if the flags of K and of OJ are given, the above

all angles
marked ^
areiX

Fig. 1-21. Construction for the sum of two spin-vectors in terms of S+. (Refer to
(1.6.36) and (1.6.37).)
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1.6 Geometry of spinor operations 65

characterization for the flag of K + co will not fix it uniquely, since it
cannot distinguish it from the flag of K — o. However, these two flags are
the only possibilities allowed by the construction, as we shall see in a
moment.

Let us return to the representation on S+ (Fig. 1-21). We assume P, Q, L
and M are given, and try to construct R and N. We first construct the
circle c as the unique directed circle o n S + , through P and Q, such that
L and M each make an angle \X with c (cf. (1.6.35)). To locate R on c,
we make use of (1.6.31) and apply it to (1.6.34):

1 = {*,*} PR I QR PR\M\"~
(1.6.36)

t\z Q R \L\2

By a well-known theorem, the locus of points in Euclidean 3-space, for
which the ratio of the distances to two fixed points is constant, is a sphere.
Thus, (1.6.36) implies that R lies on a certain sphere defined by P, Q, L and
M. This sphere meets* c in two points R, R'. Since P and Q are separated
by the sphere, it follows that R and JR' separate P and Q on c (harmonically,
in fact). Now one of R, R' will correspond to K + a) (say R) and the other
will correspond to K — w (say R). In order to be able to pick out which of
the intersection points is R and which is R\ we need to envisage L, M and
N as spinorial objects rather than just as tangent vectors to S+. Let us
move L continuously from P to Q along an arc of c, keeping the angle
which it makes with c a constant (= jX). When L has been brought to Q
it is expanded by the factor | M\/\ L |, so that L and M coincide as vectors.
If they then also coincide as spinorial objects, R lies between the original
L and M on the arc of c under consideration and R' lies on the remaining
portion of c. If they do not then coincide as spinorial objects, it is R' that
lies between the original L and M on c, and R lies on the remaining portion
of c.

Having located R on S+, we can define | N\ by

\N\* = (1.6.37)

while the direction of TV is fixed such that TV makes an angle \k with c.
Finally, as a spinorial object, A4s defined so that: if it is moved continuous-
ly along c, keeping its angle with c a constant, until it first encounters P
or Q; and if it is then expanded until it coincides, as a vector, with either

The intersection of the sphere with S+ is, of course, a circle. Indeed, (1.6.36) shows
that.
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66 1. Geometry of world-and spin-vectors

Fig. 1-22. Two spin-vectors and their sum, represented in the Argand plane with
respect to a special frame which brings out the symmetry (1.6.38).

L or M (as the case may be); then this coincidence must also be a coin-
cidence of the spinorial objects. (See Fig. 1-21).

There are two special Minkowski frames which are convenient for
visualizing the above situation. Since we can choose any three points of
S+ to occupy any three (distinct) pre-assigned positions (cf. §1.3) by a
suitable choice of frame, let us choose P, Q and R to be equally spaced
around the equator of S +. Then P, Q and R are the vertices of an equi-
lateral triangle. The vectors L, M and N are now of equal length (and are
inclined equally to the circle PQR). It is clear from the symmetry that a
rotation through 2n/3 about an axis perpendicular to PQR will send the
configuration into itself. It will also have the effect:

ICI—• — a>, a)\—>K + a), K + G>f—>ic (1.6.38)

(or the inverse of this), by virtue of the above description of the signs of
the spinorial objects (Fig. 1-22). The transformation (1.6.38) is readily
seen to be obtainable as the result of a (unique) spin transformation.
In fact, we may use this to establish the correctness of the above prescrip-
tion for the signs.

Alternatively, we may choose our f-axis so that the four points P, R',
Q, R are equally spaced around the equator of S +, forming the vertices of
a square. That is, we pre-assign P, Q and R; then by symmetry R' takes up
the position diametrically opposite to R, since PR = QR9 whence | L | = | A/|,
so that PR' = QR'. Now a rotation through n/A about an axis perpendi-
cular to PQR achieves (see Fig. 1-23)

1 1 1 1
; — (o)\—* — a), a)\-^-y=(o) + K),—-(a) + i

which is again obtainable by a unique spin transformation. The factor
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Fig. 1-23. Representation in the Argand plane with respect to a frame bringing out
the symmetry (1.6.39).

arises because now |7V| = ^|L| . (That is, the r-value of the flagpole
for K + co is just twice that for K)

Now that we have obtained geometrical descriptions of all the three
basic spinor operations, the way is opened for a completely synthetic
geometrical definition of the basic algebra of spin-vectors. All that would
remain to be done is a geometrical verification of the basic properties
(1.6.8)—(1.6.19). We do not propose to spell this out here, and merely leave
it as an exercise for the interested reader. Some of the properties are
trivially verified, but others are rather tedious if tackled directly. It is
perhaps worth mentioning that (1.6.19) is almost immediate from the
above constructions for inner product and for addition. This property is
of help in verifying some of the others.
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2

Abstract indices and spinor algebra

2.1 Motivation for abstract index approach

In Chapter 1 we introduced the concept of a spin-vector. We saw that a
spin-vector is to be pictured essentially as a null flag in Minkowski vector
space, but with the additional property that under rotation through 2n
about any axis it is returned, not to its original state, but to another
spin-vector associated with the same null flag, called the negative of the
original spin-vector. Spin-vectors form a two-dimensional complex vector
space, called spin-space, on which a skew-symmetric inner product is also
defined. All operations have explicit geometrical, Lorentz invariant
interpretations, in space-time terms.

Later in this chapter (in §2.5) we shall develop the algebra of spinors.
The essential idea is that spinors may be constructed, starting from the
basic concept of spin-space, analogously to the way that tensors are built
up starting from the concept of a vector space. It will emerge, moreover
(in §3.1), that the world-tensor algebra of space-time is contained in the
spinor algebra. Thus spin-space is, in a sense, even more basic than world-
vector space. It is, therefore, conceptually very valuable that spin-space has
a clear-cut geometrical space-time interpretation. For this removes much
of the abstractness which has tended to cloud the spinor concept. It shows,
furthermore, that while we shall describe spinors and spinor operations
in this (and subsequent) chapters in a largely algebraic way, nevertheless
each such object and operation will have an essential geometrical content
in space-time terms.

However, our algebraic development will by no means rest on these
geometrical interpretations. Our treatment can be made to be logically
independent of the geometrical background suggested in Chapter 1. We
shall describe the structures we are interested in by using algebraic
formulations. This would actually enable us to turn the logical sequence
around the other way. We could define the space-time geometry in terms
of the algebraic structure that we shall erect - which should seem fairly
simple and natural once the main idea is grasped. Thus, ultimately we may
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2.1 Motivation 69

tend to regard the algebraic rules defining the spinor system as more
primitive than the (somewhat complicated) explicit geometrical construc-
tions of Chapter 1. Even the concept of a spinorial object will be effectively
incorporated by our algebraic approach. Thus it will not be necessary to
base a rigorous development of spinor algebra on the geometry and
topology described in Chapter 1. In general, we shall find that the value of
the geometrical constructs will be primarily conceptual, whereas the
algebraic method will be indispensable for detailed manipulations.

The spinor algebra that we shall build up will involve generalizations in
two different directions from the concept of spin-space that we developed
in §1.5. In the first place, it will be convenient to consider not just spin-
vectors at a single point in space-time,* but spin-vector fields. This
generalization is analogous to that which takes us from the concept of a
vector at one point to the concept of a vector field. World vectors at a
single point in a space-time are subject to the operations of addition,
scalar multiplication and inner product. Such vectors form a Minkowski
vector space, called the tangent space at the point, over the division ring**
of scalars at that point. Vector fields are subject to just the same operations.
For example, to add two vector fields, we simply add the two vectors at
each point to obtain the resultant vector field. In scalar multiplication
a vector field is multiplied by a scalar field, the value of the scalar field at
each point multiplying the vector at that point. The familiar laws (1.1.1)
for a vector space still hold for vector and scalar fields. The only new
feature which arises here is that the scalar fields do not form a division
ring, but only a commutative ring with unit. (For example, if h and k are
two infinitely differentiate scalar fields, it may be that h is non-zero only
in a region throughout which k vanishes. Then hk = 0 but neither h nor k
need be zero, so divisors of zero exist. In any case, it is clear that h~l

cannot exist if h vanishes at any point.) Because of this feature, vector
fields are not said to form a vector space, but a system called, instead, a
module, over the ring of scalar fields (MacLane and Birkhoff 1967, Herstein
1964).

In the same way, we generalize the concept of spin-space, which is a
two-dimensional vector space over the divison ring of complex numbers,
to the concept of the module of spin-vector fields. The scalars must here be

* The precise meaning of the term 'space-time' will not concern at here, but cf. §§1.5,
3.2,4.1.

** It is unfortunate that two quite distinct meanings for the word 'field' come into conflict
here. For this reason we are using the term 'division ring' for the algebraic notion of
'field'. Our division rings will all be commutative.
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70 2. Abstract indices and spinor algebra

suitably smooth complex scalar fields. A spin-vector field defines a null
flag at each point of the space-time. A null flag at a point is a structure in
the tangent space at that point, this tangent space being the Minkowski
vector space of world vectors at the point. In addition, there must be
suitable smoothness in the way that the null flags vary from point to point,
and there will also be the topological requirements arising from the global
compatibility of the concept of spinorial object. All this will be implicit
in the axioms for the precise system that we shall set up. In essence, then,
our first generalization involves passage from a vector space over a
division ring to a module over a ring.

The second generalization involves passage from 'univalent' objects
(spin-vectors) to 'polyvalent' objects (spinors). This will be analogous to
the way in which the concept of a tensor is built up from that of an ordinary
vector. The construction is essentially the same whether we start with
(spin-) vectors at one point or with (spin-) vector fields. In general, there-
fore, we shall not be too explicit about which type of system we are working
with. We shall be able to develop this second generalization to a consider-
able extent before worrying about the details of the first generalization.

Classical tensor algebra

Let us motivate our discussion by recalling the basic operations of classical
tensor algebra. The latter deals with arrays

Al:;h (2.1.1)

where each of the indices a,...,7, p,...,t takes values from 1, 2,...,n (the
dimension of the space under consideration being n). To fix ideas we may
imagine these to be arrays of real (or complex) numbers. Alternatively,
they could be, say, arrays of functions of n variables. However, as we shall
elaborate shortly, we should not really think of the array (2.1.1) actually
as a tensor, but merely as a set of tensor components. Furthermore, tensors
in general need not be globally describable in this way.

The permitted operations are as follows. Given two such arrays A^'l
and B*;;l, where the two sets of upper indices are equal in number and
the two sets of lower indices are also equal in number, then we can add
corresponding elements to obtain the sum:

A\::l+Bl-;;l=C\';;l. (2.1.2)

Given any two such arrays (with no restriction now on numbers of indices)
^ . ; > w e can multiply each element of one array with each separate. . . x 5
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element of the other to obtain the (outer) product array:

Given any array F*;;;\j£ with at least one upper index and at least one lower
index, we can form the contraction:

f;:::?x = G;;;;J. (2.1.4)

Here the summation convention is being employed for the repeated index
X so each element of the resulting array is a sum of n terms of the original
array. Finally, given an array A*;l, with p upper and q lower indices,
we can form p \q! (generally) different arrays from it, by simply relabelling
the upper indices and the lower indices in their various possible orders.
For example, given the array A*J? we can form arrays such as

H$*=A**\ K*? = All*. (2.1.5)

The elements of these arrays are, of course, precisely the same as the ele-
ments of the original array, but they are arranged in different orders.

We may ask what is the special significance of these four particular
operations. The answer is that they commute with the transformation
law for tensor components. Thus, if we consider a replacement of each
array by a new one according to the scheme:

Al::l*-*^::*ti • ••$ T« ... T * (2.1.6)
(summation convention!), where the matrices t\ and 7jJ are made up of
elements of the same type as those appearing in (2.1.1) (e.g., real numbers),
and are inverses of one another,

tlT*=d*(=Tlt*l (2.1.7)

then we can verify that each of the equations (2.1.2)—(2.1.5) is preserved
unchanged.

In the particular case when there is just a single upper index, we may
regard the replacement (2.1.6),

F t t h - F p ^ , (2.1.8)

as reassigning components to a vector V under a change of basis*. In
the same way, we may regard the replacement (2.1.6) as reassigning com-
ponents to a tensor under the change of basis which effects (2.1.8). But
what exactly is this abstract object we have called a 'tensor'? There are
in fact several different ways of defining a tensor. These will emerge in
our subsequent discussion. But in the present context, the most immediate

* The notation in (2.1.8) is slightly at variance with our general conventions for a
'passive' transformation (cf. (1.1.25)), but this should not cause confusion.
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72 2. Abstract indices and spinor algebra

definition of a tensor A, once we have the concept of a vector V, is simply
that A is a rule which assigns to every choice of basis for our space of vectors
an array of components (2.1.1), this rule being such that whenever one
basis is replaced by another, the resulting array is replaced according
to the scheme (2.1.6); here Tgis defined by (2.1.7) and t\ is such that (2.1.8)
gives the change of vector components under this basis change*. The
consistency of the definition follows from the group properties of the
11 matrices. Thus, if t\ J J and 7£ are the transformation matrices corres-
ponding, respectively, to a replacement of a first basis by a second; to
a replacement of the second basis by a third; and finally, to a replacement
of the first basis by the third, then we have tj 7$ = r j . If T j , f j and f £ are
the corresponding inverse matrices, then T\ t \ = f J. This ensures that
if a basis change is made in two stages, the resulting array of components
will be the same as if the basis change is made directly. The significance,
now, of the fact that the transformation law for tensor components com-
mutes with the operations of addition, multiplication, contraction and
index permutation as applied to arrays, is that it implies that these opera-
tions may be applied to the tensors themselves, not merely to the com-
ponents.

A tensor A is said to have valence [£] if there are p upper indices and
q lower indices in (2.1.1). The upper indices are called contravariant and
the lower indices are called covariant (The total number p + q of indices
is sometimes called the rank of A. We prefer the term total valence.)
Each tensor of valence [*] is naturally associated with a unique vector,
namely the one whose components are identical (in any basis) with those
of the tensor. If it were not for the logical circularity that would result
because of our particular tensor definition, we could actually identify
tensors of valence [*] as vectors. (One trouble that arises with this tensor
definition is that a basis is already a set of vectors!) Let us call a tensor of
valence [^] a contravariant vector. A tensor of valence [°] is also a kind
vector. Let us call it a covariant vector or covector** For any valence

This stated definition is adequate only if the space of vectors possesses a (finite) basis.
This will actually be the case in the situations of interest to us here, although not
obviously so in the case of globally defined fields. However, the present definition is
provisional in any case, serving mainly to motivate the subsequent discussion.
The intuitive geometrical picture of a (contravariant) vector field on a manifold is a
field of 'arrows' on the manifold (which we may think of as pointing from each point
to some neighboring point, defining a 'flow' on the manifold). A covector field, on the
other hand, defines a field of oriented hyperplane elements, each of which is assigned
a kind of 'strength'. In the case of the gradient of a scalar, the hyperplane elements
are tangent to the level hypersurfaces of the scalar, the 'strength' measuring its rate
of increase.
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[j], there is a special tensor 0 whose components are zero in any basis.
Also there is a special tensor S of valence [}] whose components, in any
basis, constitute the 'Kronecker delta'

A tensor of valence [°] is called a scalar.

Coordinate-free tensor algebra

The definition of a tensor that we gave above is reasonably satisfactory
from the logical point of view (although there are some contexts in which
such a definition cannot be used). However, conceptually it lays rather
too much emphasis on bases and components. It leaves us with the im-
pression that the tensor concept is closely bound up with the concept of a
vector basis (or of a coordinate system). It tends also to suggest that
detailed calculations in terms of tensors will normally require bases to be
introduced, so that the calculations can be performed in terms of the tensor
components. But these impressions are false. The modern algebraic defini-
tion of a tensor (in its various guises) avoids any reference to bases or
coordinate systems. (In fact, the tensor concept has relevance also in
situations in which bases or coordinate systems need not exist in the
ordinary sense.) The emphasis in this book will be very much on such an
algebraic, coordinate-free, development. For, particularly in the case of
spinor analysis, we feel that there has been a tendency to read too much
significance into the apparent need for coordinate bases.

As regards detailed tensorial calculations, on the other hand, the modern
algebraic approach to tensors, in the form in which it has been normally
given, has certain distinct disadvantages. The reason lies essentially in
the notation. When calculations are carried out using tensor components,
the classical tensor index notation, together with the Einstein summation
convention, is the foundation of a very powerful and versatile technique,
a technique whose utility rests in large measure on the possibility of treat-
ing the individual indices separately. But in the usual abstract algebraic
approach there are no indices, and consequently much of this versatility
is lost. In fact, it is often the case with this more abstract approach that,
when a detailed computation becomes necessary, one reverts briefly to
the description in terms of components, and re-interprets the equations
as relating abstract tensors only at the end of the computation.

To be more explicit about the difficulties confronting the abstract
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74 2. Abstract indices and spinor algebra

approach, let us consider how we might operate algebraically with tensors
A, B, C,... directly, while attempting to dispense with any form of index
notation. The first of our operations, namely addition, presents no
difficulty. If A and B are two tensors of equal valence [ j] , then we can form
the sum:

A+B = Q (2.1.10)

also of valence [£], the components being related by (2.1.2). For each [£],
we have an Abelian group structure defined by addition, namely (all tensors
in the next four lines having the same valence [£]):

A+B = B + A\ (2.1.11)

{A+B) + C = A+(B + C); (2.1.12)

there exists 0 such that 0 + A = A; (2.1.13)

for each A there exists - A such that A+(-A) = 0. (2.1.14)

Similarly, outer multiplication presents no real problem. If A has valence
[p] and D has valence ['] then we form the product

AD = E (2.1.15)

of valence [£+j], the components being related according to (2.1.3). Outer
multiplication assigns a (non-commutative) semigroup structure to the
entire system of tensors:

(AB)C = A(BQ (2.1.16)

(We have AB^BA in general, since, although the sets of components of
AB&CL& oiBA are the same, they are arranged in different orders.) Multipli-
cation is distributive over addition:

(2.1.17)

(B+QA=BA +CA, (2.1.18)

where B and C have the same valence.
The contraction operation whose component form is defined by (2.1.4)

again presents no real problem. If F has valence [£+}], then, denoting the
contraction operation by #, we have (cf. (2.1.4))

<£F = G, (2.1.19)

which is a tensor of valence [£]. Contraction is related to addition and
multiplication by the two rules

(2.1.20)

(2.1.21)
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where A and B have the same valence and where the valence of F is positive
in both upper and lower positions.

On the other hand, the apparently innocuous but essential fourth opera-
tion of index permutation presents in this approach a very serious problem.
We need the operation in order to express symmetries of tensors; we need
a special case of it in order to express the relation between AB and BA;
having defined but the one contraction operation #, we also need it, in
conjunction with ^, in order to form the general contractions (in which
indices other than just the final ones are contracted over). It is possible
to devise special index-free notations to cope with certain simple tensorial
relations of this kind, but for generality, transparency, and flexibility,
such notations compare very unfavourably with the original tensor index
notation when expressions of any complexity occur. (The only alternative
to the tensor index notation which retains all these virtues seems to be
some form of diagrammatic notation: cf. Penrose 1971, Cvitanovic 1976;
cf. also t'Hooft and Veltman 1973. Some suggestions along these lines are
outlined in the Appendix. Unfortunately, such notations present severe
difficulties for the printer and would appear to be appropriate mainly for
private calculations.)

Once we have resigned ourselves to this fact, it becomes clearer how
we must proceed. The tensor index notation should be retained. However,
this does not imply abandonment of our ideal of a completely basis-
independent approach. The advantages enjoyed by the abstract algebraic
and by the tensor component methods are not mutually exclusive. In
the approach that we shall adopt in the next section, the full flexibility
of the index notation will be retained, together with complete frame-
independence from the outset. The key to this formalism will lie in the
recognition that an index letter need not represent one of a set of integers
(e.g. 1,2,..., n) over which it is to range. One may, rather, regard a tensor
index simply as a label whose sole purpose is to keep track of the type of
tensor under discussion and of the particular operations to which the
tensor is being subjected. The calculations may be performed using indexed
quantities exactly as in classical tensor algebra. But now the meanings
of the symbols will be quite different. Each indexed symbol will describe
an entire tensor, no coordinate system or basis frame being implicitly
or explicitly involved. Exactly how this is achieved will be described in
the next section.
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76 2. Abstract indices and spinor algebra

2.2 The abstract-index formalism for tensor algebra

A symbol Fa, say, will be taken to mean, not an rc-tuple of components
(V1, V2,..., V") but a single element of some abstract vector space or
module. It may, indeed, sometimes be convenient to choose a basis frame
and represent the vector V" in this basis. But then a different type of index
letter has to be employed: Bold face upright index letters serve for this
purpose. Thus, Ktt will stand for the set of components (V1,..., Vn).
Bold face upright indices will thus be used in the conventional way, but
in general we avoid their use as much as possible. The presence of a bold
face index in an expression will signify two things. In the first place, it
indicates that a (possibly arbitrary) basis frame is implicitly involved in
the expression, in addition to all the tensors or scalars which appear
explicitly. Secondly, such indices will be subject to the summation con-
vention (cf. (1.1.4)). As applied to light face italic indices, the summation
convention in the usual sense would be meaningless. However, contraction
(as well as the other tensor operations) will be defined on abstract tensors.
We shall define basis-free operations in such a way that it will be possible
to mirror exactly the familiar rules for the manipulation of tensor compo-
nents.

There is, however, one awkward feature that makes its appearance at the
outset, and to which one must become accustomed. In the classical tensor
notation, expressions such as FaFp or V*U^ — V*U* are frequently con-
sidered. If we are to mirror this notation with abstract indices, i.e. VaVp

and VaUfi - VfiU*, then we need an object Vfi, in addition to Fa, both of
which stand for the same vector V. Clearly, Ka and Vp must be different
objects. For if Fa = Vp and Ua = Up were valid equations, then we should
be led to V*UP - VPU* = V*UP - V*UP = 0. Furthermore, Va = Vp

would mirror the invalid classical expression Ftt = Fp. Thus any vector
V must have associated with it an infinite collection of distinct copies
Fa, Vfi, Vy,..., F a o , . . . , Va\ ... (since arbitrarily long expressions must
be allowable). The entire module 6 ' to which V belongs must therefore
possess infinitely many completely separate copies of itself. These we shall
denote by ®a, &, 6 y , . . . , S a o , . . . , S a i , . . . . The modules will be canonical-
ly isomorphic to one another and to S ' , w i t h F e S ' corresponding to
K a eS a and to Vpe&, etc. Thus, aV + bU= W iff* aV" 4- bU* = Wa iff
aVp + bUp = Wp, etc., where a, b are elements of ®, the ring of scalars.

It will, no doubt, seem rather unnatural to need infinitely many se-
parate mathematical objects to represent what is really a single entity.

* We use the term 'iff in its usual mathematical sense of 'if and dnly if, or *o\
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2.2 Abstract-index formalism 11

Nevertheless, one must get used to it. But there is a slightly different way
of viewing the situation which may seem a little less unnatural. The set
of abstract labels

JSP = {a ,Ay, . . . ,a>,a o , i8 o , . . . , a 1 , . . .} (2.2.1)

has an organizational significance only. Its one necessary property is to
be infinite. The vectors (or vector fields) with which we are concerned
constitute the module S \ The elements of the various sets ®a, S^, .. . ,
Sao, ... are simply the elements of 6 ' x if, with &3, for example, being
©'x {£3}. That is to say, V^ is simply a pair (V,£3) with Pe6*and £3eJ2?.
Each abstract index such as <J3 is therefore just a kind of organizational
marker used to 'store' the vector Fin the 'compartment £3\

Axiomatic development

Let us now be rather formal about the rules our system has to satisfy.
By setting up axioms we shall be able to avoid tying ourselves down to
any one particular interpretation. The generality provided will be ample
for application to the particular systems that we shall need, and its should
also suffice in other contexts.

In the first place, the axioms for the set © of scalars state that it is a
commutative ring with unit. That is to say, there exist operations of
addition and multiplication on S, satisfying the following

(2.2.2) AXIOMS:

(i) a + b = b + a
(ii) a + (b + c) = {a + b) + c

(iii) ab = ba
(iv) a(bc) = {ab)c
(v) a(b + c) = ab + ac

for all a, fe, ce © and
(vi) there is a zero element OeS such that 0 + a = afar all a e S

(vii) there is a unit element 1 e S such that la = afar all ae S
(viii) for each a e® there exists an element - a e £ , the additive inverse

of a, such that a + (— a) = 0.

In general, we shall not have multiplicative inverses. (For example, as
we have remarked earlier, scalar fields on a manifold can have divisors
of zero.) If a scalar does have a multiplicative inverse, then this is unique.
The additive inverse is always unique, as are the zero and unit elements.
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78 2. Abstract indices and spinor algebra

We now require an infinite labelling set if. We shall denote the elements
of if as in (2.2.1). Select an element a from <£\ Then the system 8 a is
to be an S-module; that is to say, an operation of addition is defined on ®a

and an operation of scalar multiplication is defined from S x S a to
Sa, satisfying the following axioms

(2.2.3) AXIOMS

(i) C/a 4- Fa = Fa 4- Ua

(ii) U* 4- (Fa + W") = (U* + Fa) 4- W*
(iii) a{Ua+ V*) = aU* + aVa

(iv) (a + b)U" = a£/a + fo(7a

(v) (a/?)(7a = a(fcl/a)
(vi) 1(7*= t/a

(vii) 0(7a = 0Fa

for all a,freS and all £/", Fa, ^ a e S a . The unique zero vector 0Fa is
written 0a or, more frequently, simply 0. Each F a e S a has an additive
inverse ( - l ) F a , since V" + ( - l)Fa = (1 + ( - l))Fa = 0Fa = 0. As is
conventional, we write - Fa for ( - l)Fa and Ua - Ka for C/a + ( - \)V\
(In fact, axiom (i) is a consequence of (ii)-(vii). To prove this, expand
(1 + 1) ( l / a + Fa), once using (iii) and once using (iv), equate the two
expressions and cancel the extra Ua and Fa, using the existence of additive
inverses. In a similar way, in (2.2.2) (i) is also a consequence of the remaining
axioms (2.2.2).)

Now select another label /?eif. Define & to be canonically isomorphic
to 8a , so Up 4- F^ and aF^ correspond respectively to U* 4- Fa and to
aFa, where Upe& corresponds to (7aeSa, and VPG& to F a e S a . Thus
the same rules (2.2.3) hold for & as for S a (except that fi replaces a through-
out). For 7, (5, . . . , £ 3 , ...6 if, we similarly define S7, S*, .. . , ®*3, . . . .
In any valid equation in which the label a appears (but not p) we may
replace a by /? throughout and a new valid equation results. The same
holds for any other pair of elements of if. The elements of each of the
sets 6a , &,..., &\ ... will be called tensors of valence [*]. The elements
of 8 are tensors of valence [°].

To define tensors of valence [^], we take the duals (strictly, ®-duals)
of the modules 6a , &,.... The dual 8 a of ®a is defined as the collection
of all S-linear mappings of ®a into S. That is to say, each element Qae 6 a

is a map Qa: ®a -* 6 such that

a = flGa(n, (2.2.5)
for all U", F a e 6 a and all a e S . Thus, two elements 0_, ^ G S . . are equal
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by definition if, for each element V* of ®a, Qa(F
a) and Ka(F

a) are the same
element of S. We shall normally omit the parentheses and write <2a(F

a)
simply as QVa. We shall also sometimes write this VaQOi- This operation
is called scalar product.

We define addition of pairs of elements of S a , and multiplication of
elements of S a by elements of S, as follows:

(ea + Ka)Fa = e a F a + KaFa (2.2.6)

(aga)F
a = a ( e a n . (2.2.7)

Thus, for example, (2.2.6) means that Qa + Ra is defined as that element of
8 a whose effect on each F a e S a is as given by the right-hand side of (2.2.6).
Under these operations, ®a is an S-module, i.e. the seven axioms (2.2.3)
are satisfied by elements of ®a (as is not hard to verify). The zero element
of 6 a , written 0a or simply 0, is defined by 0aFa = 0 for all V«e &.

In an exactly similar way, we define ®^ as the dual of &, ®y as the
dual of ®7, etc. Owing to the canonical isomorphism between &, &,..., it
follows that S a , S^, . . . are also canonically isomorphic to one another.
Thus the element 8 a e S a corresponds to elements Q ^ e S ^ g e
6 y , . . . , Q a o e 6 a o , . . . , where, for any V\

QV* = QfiV
fi = QyV

y =- = 6 a o K- = .... (2.2.8)

(Note that as yet we cannot write expressions such as QaV
p because the

elements of 8 a do not operate on those of &.) As before, in any valid
equation in which just one index label appears, we may replace this label
throughout by any other and a new valid equation results.

A natural question to ask at this stage is whether the relation between
6 a and S a is symmetrical. That is to say, is 6 a effectively the dual of
<3a? It is clear from (2.2.6) and (2.2.7) that any element Vae& does define
an ®-linear map from ®a to S, given by V^QJ := QV*. However,
it is not clear that all ®-linear maps from ®a to S can arise in this way.
Nor is it clear that knowledge of the map will fix Va uniquely (or, equiva-
lently, that W"eS« and W*Qa = 0 for all g a e S a implies W« = 0). In fact,
if ®a is a general module over a general commutative ring 6 with unit,
then neither of these desiderata need be true*. However, the modules

For example, choose & to be the C00 functions on a manifold, but choose for 6 a the
C° (contravariant) vector fields. Then the dual, S a , of 6 a contains only the zero
element, for there are no other covector fields which when operating on an arbitrary
C° vector field always yield a C00 scalar field. Thus QaV

a = QaU*( = 0) for all U*,
K ' G S 8 , £ a e S a , even when U* =/= Va. On the other hand, if 6 is the ring of constants
on the manifold and 6 a the C00 contravariant vector fields, then S a contains various
distributional forms (of compact support), and its dual turns out to be much larger
than 3 a .
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80 2. Abstract indices and spinor algebra

that we are concerned with here all have the property that S a is in fact
naturally isomorphic to (and therefore identifiable with) the dual of 6 a .
Such a module is called reflexive. Later, when we allow ourselves to
suppose the existence of a finite basis for Sa , the reflexive nature of the
module ®a will be a consequence. However, for the moment we shall
simply assume that & is reflexive. In fact, we shall shortly have to assume
a stronger restriction on ® a - tha t it be totally reflexive (a concept we
shall define presently). This again will be a consequence of the existence
of a finite basis. It is possible that the type of notation we are introducing
here is really useful only in the case of totally reflexive modules.

Tensors

We next define tensors of general valence [JJ]. In fact, we shall give two
different definitions giving rise to two different concepts of a tensor. It
is the condition that these two different tensor concepts coincide that
fixes S a as being totally reflexive. In §2.3 we shall show the equivalence
of these definitions to that given in (2.1.6) when a finite basis is assumed to
exist.

The first coordinate-free definition of a tensor is the multilinear map
definition (type I tensor). This is perhaps the most natural extension of
what has gone before. Choose any two disjoint finite subsets of the labelling
set if, say {a, j3, . . . , 5} and {A,..., v}, of respective cardinality p and q.
Then we define a tensor Af-f (of valence [£]) as an 8-multilinear map:

Aff:^ xZpx ... x S3 x & x ... x S v - + S . (2.2.9)

This means that to each selection Qae<2a, Rpe&r . . . , Tde
(Sd9 Uke

S A , . . . , VFveSv, the type I tensor Af-'f assigns a scalar

A£:;*(Q*>R
P> - > T ^ u^ - > ^ v ) e S < <2-2-10)

this function being separately S-linear in each variable, i.e.,

(2.2.11)

for all a e 6 and

with corresponding properties holding for each other of the variables
Rr . . . , W\ We oLall write (2.2.10) simply as

Af:fQoiRr..TsU>...W*e<Z. (2.2.13)

The set of all such tensors Af-f we denote by S ^ ; / . Note that this defini-
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tion coincides, in the case of ®A with the one already given, and trivially
coincides, in the case of ®, with the definition of a scalar. In the case of
®a, the definition gives us back, in effect, the original module ®a, by virtue
of the assumed reflexiveness.

We now give the second coordinate-free definition of a tensor {type II
tensor). Again select any two disjoint finite subsets of if, say {a, /?,... ,6}
and {A,... ,v}, not both empty. Consider all formal expressions which are
finite (commutative associative) sums of formal (commutative associative)
products of elements, one from each of ®a, &,..., &, ®A, . . . , ®v.
We can write such an expression

m i i i i i

Bff = X G"HP • • • jbLx * • • Nv • (2.2.14)
i = i

However, not all such formal expressions are to be regarded as distinct
even if formally distinct. The criterion for equivalence of two such expres-
sions is that it be possible to convert one into the other by means of
relations of the form

.EZ (2.2.15)
and

(qXt) YnCp ...Ex = X\q Y ")CP... E\ (2.2.16)

where the commutative and associative nature of sums and products
may, of course, also be made use of. The formal expressions (2.2.14), under
this equivalence relation, are the type II tensors.*

Any type II tensor defines a type I tensor by giving a multilinear map
as follows:

m i i i i i
Bt:,dQ*R

r--
 rsu"" WV= I (G*Qa)(H

fiRfi)...(J*Td)(L;LUx)...(NvW
v)9

1=1 (2.2.17)

the right-hand side of which clearly belongs to ® (the sums and products
being now the ordinary operations (2.2.2) defined on ® and the bracketed
factors being the scalar products (2.2.8)). This clearly defines an ®-
multilinear map. It is also clear from (2.2.4)-(2.2.7) that any two such ex-
pressions, which are equivalent by virtue of (2.2.15) or (2.2.16) or the
commutative and associative nature of the sums and products, will give
rise to the same multilinear map. Thus it is clear that to any type II tensor
there corresponds a unique type I tensor.

* This definition may seem formal and non-intuitive. However, apart from certain
differences arising from our use of an abstract labelling system (which allows our
tensor products to be formally commutative), this is essentially the modern 'tensor
product' definition of a tensor, which can be applied to a completely general module.
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82 2. Abstract indices and spinor algebra

It is not clear, on the other hand, whether all type I tensors are obtainable
in this way, nor is it clear whether any two type II tensors which are distinct
(inequivalent under (2.2.15) and (2.2.16)) will necessarily give rise to
distinct type I tensors. Indeed, neither of these desiderata holds true for
a general (reflexive) module ® *. However, we shall henceforth assume that
®a is totally reflexive. This means that every type I tensor does arise in
this way from a type II tensor and, secondly, that it arises in this way from
exactly one type II tensor. To put this another way, our assumption that
®a is totally reflexive means that the two types of tensor are equivalent. We
shall see later that a sufficient (but by no means necessary) condition for
total reflexiveness is the existence of a finite basis for ®a.

It may be remarked that reflexiveness is a part of total reflexiveness.
The elements of '®a', if regarded as type I tensors, would actually belong
not directly to the original module ®a, but to the dual of ®a. On the other
hand, the elements of the original module ®a are directly type II tensors.
Thus, for these two types of tensors to agree, 6 a must be reflexive.

The criterion of equivalence between formal expressions (2.2.14) that
was adopted for type II tensors is a little awkward to handle directly,
especially if we wish to prove that two type II expressions are not equiva-
lent. The assumed total reflexiveness of ®a now gives us an alternative and
simple criterion for the equivalence between expressions (2.2.14). This
is that two such expressions are equivalent if and only if for each Qae
6 a , R/ie

(Sfi,...,TdE(5d, £/Ae®A,... ,Wve(5v, the two corresponding
right-hand sides of (2.2.17) are equal.

Tensor operations

We now come to the tensor operations of addition, outer multiplication,
index substitution and contraction. Addition is a map: S*-d

v x ®«--^->.
®""*y, for each pair of disjoint subsets (a, . . . , S) and (/ , . . . , v) of if, where
the sum A°^"5

x + B%"d
x can be defined in an obvious way using either of

our definitions of a tensor. If we use the type I definition, the sum is just
that multilinear map: ®a x ••• x ®v -> ®, whose value is the sum of those
defined by A"' and by B . If we use the type II definition, we simply
express each of A and B in the form (2.2.14) and formally add the two
formal sums. It is clear that these definitions are equivalent to one another,
that the sum is the same as the one already defined in the cases S, ®a, ®a,
and that

A1\\ + FC\ = B%::. + A1::. <2-2-18)
A*'~ + ( £ " " + C"rm) = {A*r- + B*;~) + Ca . (2.2.19)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.003
https://www.cambridge.org/core


2.2 Abstract-index formalism 83

Outer multiplication is a map: ®"-^ x ® £ ^ - » S" •^"'^ for each
quadruple of disjoint subsets (a,.. . , 5\ (/ , . . . , v), (p, . . . , T), (0 , . . . , \jj) of
££. The product A\"\DP^"X^ can again be defined in an obvious way using
either definition of a tensor. If we use the type I definition, we can define
the product to be that multilinear map: ®a x ••• x ®^-» ® whose value
is the product of those defined by A'" and by D . (The reason for requiring
the index sets to be disjoint in the case of outer multiplication and identical
in the case of addition is, in this context, that otherwise we do not get a
multilinear map.) If we use the type II definition of a tensor, then to define
the product we simply multiply out the corresponding formal sums (2.2.14)
formally, using the distributive law. It is clear from (2.2.17) that these
definitions are equivalent to one another. Also, the relations

and

U - ; + B^)D^; = ^:;;DJ::; + B^DJ;;; (2.2.22)

follow readily using either definition.*
It may be remarked that the notation used in the formal sum of formal

products (2.2.14) is consistent with the above. That is to say, we may regard
(2.2.14) as a sum of outer products. This again follows at once using either
definition.

A particular case of outer multiplication occurs when one of the factors
is a scalar. Then we obtain an operation of scalar multiplication on each
set ®"""*y. This, together with the operation of addition, gives each SJ;;;*
the structure of an ^-module (cf (2.2.3)); for, the required properties
additional to (2.2.18)-(2.2.22), namely

UJ;;; = A\- (2.2.23)
and

O/4S;;;=OBS;;;, (2.2.24)

are obvious. We denote OA^"d
v by 0" ,̂ or, more usually, simply by 0.

Note that

The fact that outer multiplication is commutative in the sense (2.2.20) is a particularly
pleasant feature of the abstract index approach to tensor algebra. In the standard
algebraic cindex-free' formalism, tensor products are non-commutative: A(x)D^
D(x)A; the relation between the two expressions A(x)D and D(x)A being rather
difficult to express. In our notation, the non-commutation of tensor products reads:
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84 2. Abstract indices and spinor algebra

In the cases of ®, <2>a, and S a , scalar multiplication agrees with that
already given.

Index substitution is a map: ®S;;;t-*®J"'.^> defined on each ®;;; and
induced simply by some permutation of the labelling set i f (so TC, . . . , T and
a,.. . , <5 must be equal in number, and (j>,... ,\jj and A,..., v must also be
equal in number but {a, .. . , d, A,..., v} and {n, ..., T, </>,..., ^} n e e d not
be disjoint). By itself this operation is quite trivial. Any equation will
simply have an equally valid analogue obtained by relabelling the indices.
Clearly any index substitution commutes with addition and with outer
multiplication.

In the particular case when the a,... ,d are permuted among themselves,
and similarly A, ...,v are permuted among themselves, we get a map
® "'.•". v ""* ®5'.'.".t which is referred to as an index permutation* Applying it
in conjunction with the operation of addition, we can define symmetry
operations. For example, given Aafie(Safi we can define another element
Bap = Afiae<5ap. Then the symmetric and anti-symmetric parts of A^ are,
respectively, ^(AaP + Afia) and j{Aafi - APa). Thus, when combined with
addition, for example, index substitution ceases to be trivial.

{^-Contraction is a map: ®*"^ -• ®$;;;s
v, defined for each pair of disjoint

subsets {a,..., <5}, {A,..., v} of if, the two elements ^, n of i f belonging to
neither subset. We must use the type II definition** of a tensor. Let

Z % l x . . N v P l l e < 3 ' ^ . (2.2.26)
i = 1

Then we define the (^)-contraction of A - by

4$:$= Z (PzHt)b\..G*Lx...NveSl;;*. (2.2.27)
; = 1

If we absorb the scalar P^ into one of the other vectors in the product,
then we have an expression of the required form (2.2.14). It clearly does not
matter which vector, because of (2.2.16). It remains to be verified that any

We do not need to permute the indices on the symbol ®J;;;$ since this set is invariant
under index permutation. It is the pair of unordered sets {a,..., d}, {A, ...,v} which
fixes 6J;;;J. On the other hand, for each tensor symbol AJ"-J, the ordering of the
indices is significant. Thus ®J-J" = &f~v

s, but A*-** i= A*/ fin general.
The reason we cannot use the multilinear map definition directly in order to define
contraction is that it would give us a contraction concept also in systems (not totally
reflexive) in which such a concept does not exist. For example, if ®a were an infinite-
dimensional vector space over a division ring S, then a 'Kronecker delta' <5f would
exist as a bilinear map (2.2.41). However, no contraction S* could exist since we would
need 3% = oo, the dimension of the space.
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2.2 Abstract-index formalism 85

two expressions (2.2.26) which are equivalent under (2.2.15) and (2.2.16)
will give rise to equivalent* expressions (2.2.27). In fact it is readily seen
that this is the case by referring back to (2.2.15) and (2.2.16) and using the
linearity of the scalar product where required.

There is no significance in the fact that the contracted indices of A\;; have
been written as its final upper and lower indices. The contraction operation
applies equally well whichever upper and lower index are selected. (We
could for example, define Bf«;;;y = A^;;l^\ then Bf*-y = A"A;;y

vf.) Also, by
(2.2.8), the 'dummy' index £ in (2.2.27) could equally well have been any
other element of if (for example rj or £) which does not appear among
a,... ,(5,/,... ,v. Thus

It is, furthermore, clear from the definition that the order in which two
successive contractions are performed is immaterial. Thus we can un-
ambiguously write Aa

k-
y^ for the (^)-contraction of A^"y^ or for the

(p-contraction of A^-'J^. It is also immediate from the definition that
(^-contraction commutes with addition:(^

and, in the appropriate sense, with multiplication:

AA...vc/)...^ ~ ak...v C(/>...^ imPUeS AX...K ~ ^A....vC^...^' \^-W)

of which scalar multiplication is a special case:

K t = bC*:.Z implies A ^ = bC^. (2.2.31)

Also (^)-contraction commutes with any index substitution not involving
<f or t]. Finally, it is clear that any index substitution applied to two indices
which are subsequently contracted will not affect the result of the
contraction.

Observe that these tensor operations allow us to build up tensor expres-
sions, with indices, which are exactly analogous to the expressions of
classical tensor algebra, but now the indexed symbols stand for actual
tensors instead of for sets of components of a tensor, no basis frame or
other coordinate system being involved. We can tell to which set S;;; a
tensor belongs by simply examining its indices. As in the classical tensor
notation, repeated indices are paired off, one upper and one lower. The

* Strictly speaking we should also have explicitly checked this for the other tensor
operations, whenever the type II definition of tensor was employed. However, there
we always had the type I definition to fall back on. In each case the verification that
equivalence under (2.2.15) and (2.2.16) is preserved is quite trivial and does not require
total reflexiveness.
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86 2. Abstract indices and spinor algebra

indices which remain unpaired then serve to define the type of the tensor,
i.e. the set S;;; to which it belongs. For this reason we shall frequently omit
indicating the particular ®;;; to which a given tensor belongs, the indices
themselves adequately serving this purpose.

It should, however, be pointed out that there are certain expressions
which it is legitimate to write using the present notation, but which do not
correspond to normally employed classical tensor expressions. The
simplest of these would be an expression of the form t/a(QaK

a); this is the
product of U* with the scalar QaF

a. The use of parentheses is of course
necessary since

U\Q«V*) + {U*Q*)V\ (2.2.32)

but the notation is consistent (as it would also be on the classical interpreta-
tion) as long as the parentheses are retained. However, to avoid possible
confusion we shall normally rewrite such expressions in a form more in
keeping with the classical usage. Thus (2.2.32) can be rewritten

U'QpV^UPQpV", (2.2.33)

which is more economical in any case. An expression such as (2aFa)2,
on the other hand, is more economical then QaK

aQ/?K
/? and is perfectly

legitimate.
An outer multiplication followed by a contraction (or contractions)

across the two elements involved is sometimes thought of as a single
operation called contracted (or inner) product or, sometimes, transvection.
(This last term is normally used when a verb is required: 'transvect through
by ...'.) Thus we have a product (outer or inner) defined between any two
tensors, provided only that the two sets of upper indices have no letter in
common and the two sets of lower indices have no letter in common. For
example, if A^e&y^ and B ^ e S ^ , the product is a contracted product,
A7

fi*3B^y, an element of S ^ . Contracted product is clearly commutative
and distributive over addition. One has to be careful about the associative
law, however, when considering contracted products of three or more
tensors. If no index letter appears more than twice (once as an upper and
once as a lower index), then no trouble arises and the product is associative.
Otherwise an ambiguity arises, of the type encountered in (2.2.32). For
example,

(A%SB%)O* ± A%S{B%a*) (2.2.34)

in general. We can (and normally would) avoid the use of parentheses by
replacing the two ys inside the parentheses (on both sides of the equation)
by some other letter, say £, as in (2.2.33).
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2.2 Abstract-index formalism 87

It should be remarked that the notation employed in (2.2.13), for the
multilinear map defined by a tensor, is consistent with this notation for
contracted products. This is readily seen if we refer to (2.2.17): the outer
product of B with Qn,..., W* may be performed first, if desired, and the
contraction afterwards. Thus, the multilinear map defined by a tensor is a
special case of a repeated contracted product.

Some useful properties of a totally reflexive ®'

The condition that 6 a is totally reflexive has a number of important and
pleasant consequences. In the first place we have:

(2.2.35) PROPOSITION:

The dual of the ^-module ®5'//.v may be identified with Sj;;;J, the required
scalar product being contracted product.

Proof: It is clear that any element G«"^eS^•"* defines an ®-linear map
J to S. (For, (£ (£/« + 'v\-) = Q*~'U^ + Q*~ 'V\~ and
) = «(Qt:Vx::)> by (2.2.22), (2.2.29), (2.2.30), (2.2.21), (2.2.20).)

What has to be shown is that every ®-linear map from ®£;;J to ® is
obtainable in this way by means of an element of S '̂.'.'y which is unique.
For this we invoke (2.2.14) for the elements of ® *;;;£, i-c, we express these
elements as sums of outer products of vectors. Any ®-linear map from
®*;;;£ to ® is thus defined in terms of its effect on those elements of ®";;;J
which happen to be outer products of vectors. This effect must, indeed,
be an ©-multilinear map from ®a x • • • x ®y x 3 A x • • • x ®v to ®. Such a
multilinear map is achieved by a unique tensor Ga.".'yG®a"."y> so the result
is established.

It is often useful, when stating general propositions about tensors, to be
able to 'clump together' a set of indices and write them as a single composite
index. We shall use script letters to denote a general such clumping. We
allow both upper and lower indices to be clumped together as a single
composite index, if desired. For example, we might wish to clump together
the upper index p and the two lower indices 6 and n as a single upper
composite index si. We write this si = p6*rj*, where an asterisk indicates
that the index so marked is to be in the opposite position from si. Then
we can denote an element Qp

Qr}, say, of ®^, by Qf = Qp
0ri. (The staggering

of indices now becomes necessary for notational consistency; see W\\\
below.) An element Up

dt1 of S^7 can then be written U^ = Up
Or}. More

generally, W^\^ is the element W^f" of ®^ve". Contractions may also
be performed between composite indices. Thus, W^^Q?* stands for
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88 2. Abstract indices and spinor algebra

WaXlx\er]QPen'If ® i s a n o t h e r composite index defined by @ = a*/l/xv, then
we can write this Wm J£*. We shall normally avoid the use of composite
indices in which a repetition of a constituent index is not explicit. For
example, a symbol Rej* would denote an element Rep

drt of ®{J, but the
contraction is hidden in the notation. Thus, if a number of composite or
ordinary indices appear in one expression, then it will be assumed (in the
absence of any explicit statement or convention to the contrary) that the
only repetitions of indices which occur are those which appear explicitly.

In Proposition (2.2.35) we can set s/ = a... yA*... v*. Then the statement
asserts that the dual of ®^ may be identified with ®^ , for any composite
index si. The following three propositions all generalize this result.

(2.2.36) PROPOSITION

The set of all S-bilinear maps from ®^ x ®^ to ® may be identified with
® ^ , the maps being achieved by means of contracted product.

Proof: The proof is similar to that of (2.2.35). Clearly any element
P ^ e ® ^ ^ effects such an ®-bilinear map, the result being P^mX^Ym

for each A ^ e ® ^ and y * e ® * (Note that P^(X* + X^)Y® =
PMk*Y* + P«mX"Y* and P^aX^Y* = aPMXstYm\ and similarly
for Ym) To show that every such ®-bilinear map arises this way from a
unique P ^ , we can express Xs* and Ym as sums of outer products of
vectors. The bilinear map is uniquely defined by its effect on such outer
products of vectors, this effect being an ®-multilinear map of the vectors.
Thus P^m is uniquely determined as a type I tensor.

(2.2.37) PROPOSITION

The set of all ^-linear maps from ®^ to ®^ may be identified with ®J ,
where the maps are achieved by means of contracted product.

Proof: Clearly any 0*^ effects an S-linear map from ®^ to S**", the
image of Xs* being Q*\^XM'. Conversely suppose we have an ®-linear
map from ®^ to S^ . Denote the image of Xs* under this map by U*.
Then, for Z ^ e ® ^ , the map which sends the pair (X^, Z#) to U^Z^-
is ®-bilinear from ®^ x ®^ to ®. Thus, by (2.2.36) (with @ = jf*) we
have a unique element Q ^ e S j with QJtr^X^Zyr= U^Z^ for all
Zx-e&tf, so Q*r

JjX
J* and U* represent the same element of the dual of

&#-. Thus Q*r
Jl/X

J* =11* as required, this map characterizing Qf ^
uniquely.

The following proposition incorporates (2.2.35), (2.2.36) and (2.2.37) as
special cases:
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2.2 Abstract-index formalism 89

(2.2.38) PROPOSITION

The set of all ^-multilinear maps from ®^ x S ^ x ••• x & to S ^ may be
identified with &%&„ ,@, where the maps are achieved by means of contracted
product.

Proof: This is just a repeated application of (2.2.37). If we fix Bm, ...,D®,
we are concerned with S-linear maps from ®^ to S^ , which, by (2.2.37),
are effectively the elements of S j . Allowing B®,... ,D^ now to vary, we
see that an ^-multilinear map from S ^ x ®^ x • • • S^ to S ^ is equivalent
to an ©-multilinear map from S^ x ••• x & to S ^ . Repeating this
argument with si replaced successively by ^ , . . . ,2 we obtain the result.

There is one aspect of (2.2.38) which it is worth spelling out. Since no two
distinct elements of ®J#...# can give the same map, we have:

...Z* ^B^^^W*...Z* for all We&g,...,Z*e&*9

^ ^ = B^^. (2.2.39)

More particularly still:

ifA**...9WJ'...Z9 = 0 for all ^ G S ^ , . . . , Z § G S ^ , then A*J,mmmS, = 0.

(2.2.40)

A tensor of especial utility is the Kronecker delta £f (cf (2.1.9)). This may
be defined abstractly in numerous different ways. For example, the map
from ®a x S^ to S which assigns the scalar product Ar°tZa to the pair
(Xa, Zp) is clearly ®-bilinear and is therefore achieved by some tensor,
which we denote by <5£. Thus, <5f is formally defined by

S'aX*Zfi = X*Za. (2.2.41)

Alternatively, we can define 8% to be that element of & which effects a map
from (S^ to S by assigning the scalar Yy

y to each Y^e®£, i.e.,

KYl=Y]. (2.2.42)

(This must be the same <3f since (2.2.41) is a special case of (2.2.42).) Yet
again, the map from ®^ to S a which gives the canonical isomorphism
between these sets is trivially ®-linear and is therefore achieved by a
tensor-again 8%:

%Zp = Za. (2.2 A3)

(That this is the same 5f is obvious since (2.2.43) yields (2.2.41) again.) Or,
we could use the dual version of (2.2.43). The tensor 8% effects the map from
®a to & which gives the canonical isomorphism:

SIX* = X'. (2.2.44)
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90 2. Abstract indices and spinor algebra

Of course, the same tensor <5f effects many other 6-linear maps in
consequence of these; for example, the maps ® ^ - > 6 ^ ; Sac /-> S ^ ;
®if -* ®f expressed by:

^ t / J ^ = (7^ , <5fFa^ = Vfij*, Sp
aW/ = W*. (2.2.45)

(These follow at once from (2.2.42)-(2.2.44) since we can transvect by an
arbitrary Q^ and then cancel it again as in (2.2.39).)

Embedding of one tensor system in another

There is an aspect of the use of composite indices which will have some
considerable significance for us later. We have seen that composite indices
can be manipulated in just the same way as the original index labels a, /?,....
(The necessity for staggering composite indices which involve reverse
position labels a*, /?*,... can easily be circumvented by use of suitable
conventions, e.g. we could consider all upper indices as occurring first and
all lower ones afterwards.) In fact, given any tensor algebra of the type
considered, we can construct a new tensor algebra ('embedded' in the given
one) whose labelling set 5£^ consists of suitably clumped subsets of if.
For example, we could set si = a/fy*, si0 = ao/?oyo*, si l = ocipiyl*,
and use S£^ = (si, si0, six,...) as our new labelling set. We then consider
the tensor system* built up from S and 6 ^ in a way exactly analogous to
the way in which our original system was built up from S and Sa. For
example, by (2.2.35), the dual of ®^ is ®^. It is not hard to see that the
type I and type II definitions of a tensor each lead to higher valence tensors
which are the elements of the sets ®^.1;;;^I"P (cf. (2.2.38) in particular). The
system is thus totally reflexive, and is indeed embedded in the original one.
The tensor operations of the new system are just those of the original
system which can be consistently written using the allowed composite
indices only. (These remarks do not, of course, depend on the particular
choice si = a/fy* made above.)

If we were to consider different types of dumpings simultaneously (for
example si = a/?*, J* = yde, ,stf0 = a0/?*,, ^ 0 = yo^oeo' •••) then we should
be led to consider tensor systems of a slightly more general type in which
more than one labelling set appears. (In the example considered, we have
Se^ = (si, si09sil,...) and Z£m = (», 8O,8X,...).) The rules for a tensor
system with more than one labelling set are essentially the same as for a
system with just one labelling set. The only difference arises from the fact

* In more conventional terminology (cf. Herstein 1964 Mac Lane and Birkhoff 1967).
these are the tensors on the S-module S ' ^ S ' ^ S ' * in abstract-index form.
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2.3 Bases 91

that index substitutions are only allowed between members of the same
labelling set. The two labelling sets are to have no members in common,
so contractions between indices of two different types cannot be performed.

A tensor system with more than one labelling set would naturally arise
if we were to consider, initially, several different S-modules simultaneous-
ly (the ring of scalars ® being the same in each case). We could denote
the initial modules by Sa, ®a/, Sa", . . . and define labelling sets
J£? = (a,j8,...,ao,...), &' = (a', fi,... ,QL'O, ...), etc. The definitions of the
general sets S;;; would be as before. Since we suppose no canonical iso-
morphism between & and Sa/, nor between 8 a and ®a", etc., then, as
remarked above, we have no operation of index substitution between
indices possessing different numbers of primes. Apart from this new
feature, the development of the tensor algebra proceeds exactly as before.
The importance of such systems to us here lies in the fact that the spinor
algebra that we introduce in §2.5-and which we consider for the
remainder of this book - is, in fact, a system of this kind. The spinor system
is built up from two modules <ZA and <ZA' which are not related to each
other 'algebraically', but rather by a ('non-algebraic') relation of complex
conjunction.

2.3 Bases

In this section we consider the consequences of introducing a basis into
6*. Throughout §2 we refrained from using bases in any way. This we did
partly to emphasize the fact that our development of tensor algebra is
completely coordinate-free (despite the use of indices). But in addition it
gives us considerably more generality (at least, in a direct fashion) than
would have been obtainable had we had to assume the existence of a
finite basis. For there are many totally reflexive modules for which bases
do not exist.

A finite basis for S a is a set of elements 5\, d"2,.. •, <S*e ®a such that any
V^e 8 a has a unique expansion

j / a = Vl5\ + V2b\ + ••• + Vnd*. (2.3.1)

The scalars Vl
9... ,F"e® are called the components of Fa in this basis. If

8 a possesses a finite basis, then any other basis for ®a must have the same
number n of elements. This is a consequence of the fact that the existence
of an n-element basis for S a implies that ®ai...an contains a non-zero anti-
symmetrical element, whereas ®ai...an + k(fc > 0) contains only the zero anti-
symmetrical element. (We use only the type I definition of ®..., so total
reflexiveness need not be assumed.) This serves to define n independently
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92 2. Abstract indices and spinor algebra

of the basis.* To prove this property, suppose Aai ...0Ln + k is anti-symmetrical.
(This means that A changes sign whenever an index permutation is
applied which interchanges just two of the as (see §3.3).) Then

A...aLi...*J..X*iX*> = 0 (2.3.2)

for any Za, since interchange of the dummy labels at, a, changes the sign.
Consider the multilinear map given by

^ai...an + k^a i - - . ^ a " + \ (fc>0). (2.3.3)

Expanding each of Ra\ ..., Wan+k in terms of the basis (2.3.1), and multiply-
ing out, we see that each term contains at least one repeated basis element,
and so vanishes by (2.3.2). Thus A... = 0. On the other hand, we can define
a non-zero anti-symmetrical element eai anG ®ai<>.an (an alternating tensor)
by the property

; ; , (2-3.4)

u\..wn

where C71,..., t7w are the components of Uai in the basis 8\\...,8ll etc.
This clearly gives an anti-symmetrical multilinear map as required. Also
fiai...an^ 0> since if Ua= 8\,... ,Wa= 8*, the result of the map is the unit
scalar. The integer n we call the dimension of the S-module Sa.

If S a is the set of tangent vectors at a single point in a manifold, then ®a

is a finite-dimensional vector space (the tangent space at that point) and a
basis exists. However, when S a refers to smooth vector fields on an
H-dimensional manifold, a basis will often not exist. For, a basis now means
a set of n vector fields which are linearly independent at each point of the
manifold. In the simple example of an ordinary spherical 2-surface (S2)
it is clearly impossible to arrange this. By the well-known fixed-point
theorem, each of the two vector fields on the surface would have to vanish
at some point, so the two vectors would become linearly dependent there.
An 7i-manifold which does possess n vector fields which are linearly
independent at each point, is called parallelizable. Thus the module of
tangent vector fields has a basis if and only if the manifold is parallelizable.
As was indicated at the end of §1.5, the 3-sphere (S3) is (perhaps rather
surprisingly) parallelizable,** but the 4-sphere (S4) is not. (In fact, every

* In fact, if we allow n = oo for the case when anti-symmetrical elements of arbitrarily
large valence [°] exist, then this property defines n for any module, independently
of the existence of a basis. We may regard n as the dimension of Sa in the general case.

** We recall that the points of S3 may be represented by unit quaternions q, and that
the various right rotations, given by qy^qb for the various fixed choices of unit
quaternion A, will carry a frame at some given point q0 of S3 uniquely and continuous-
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2.3 Bases 93

orientable 3-manifold turns out to be parallelizable, but many orientable
4-manifolds are not.) By (1.5.6), all space-times which globally possess the
type of spinor structure that we require here and which are also non-
compact (a reasonable requirement, physically, since compact space-times
contain closed timelike curves) are parallelizable (Geroch 1968). Thus, if
S a denotes the module of vector fields on a space-time, we may regard
it as physically reasonable to assume that S a possesses a basis (here n = 4).*
Moreover, applying to the module of spin-vector fields on a space-time
the same reasoning (cf. (1.5.6)), one finds also that a spinor basis
globally exists (here n = 2). Thus, the global existence of a basis, in the
situations of interest to us here, may be assumed as a reasonable physical
requirement.

Even if we are interested in manifolds which are not parallelizable, the
discussion of bases will be relevant, since it can always be applied locally
(e.g., in a coordinate patch). Of course one would have to be careful about
drawing conclusions of a global nature from such arguments. In §2.4 we
shall show that whether or not the manifold is parallelizable (but provided
it is paracompact - which is a normal assumption, redundant in the case
of space-times: cf. Kelley 1955, Geroch 1968) the module of C00 vector
fields over the C00 scalar fields is still totally reflexive.

Components in a basis

Let us suppose, then, that a basis 8\,... ,<5JJ exists for ®a. We can use bold
face letters to stand for 1, 2,...,« in the conventional way, and adopt
the summation convention for such indices. Thus, the basis elements may
be collectively denoted by (5£(<5£e®a) and the relation (2.3.1) for the ex-
pression of a vector V01 in terms of its components Ka (e®) in this basis
can be written

j/a=J/<\5a. (2.3.5)

ly into frames at all the various other points of S3. (If qQy-•#•, this is uniquely achieved
by the right rotation for which b = q$ 1r.) The same argument applies to S7, where
Cayley numbers are used in place of the quaternions. A proof that Sn is parallelizable
only if n = 1, 3, 7 is given by Eckmann (1968), p. 522. It should be noted that the
existence of a global basis for vector fields is a much weaker requirement than the
existence of a global coordinate system (cf. 4.1.33). This is evident from the parallel-
izability of S3 (and S1).
We cannot, on the other hand, reasonably assume the existence of a global holonomic
basis, that is, one arising naturally from a coordinate system in such a way that the
basis vectors {d/dx*} point along the coordinate lines. However, we may set against this
disadvantage the fact that our basis may be chosen to be orthonormal everywhere,
with one vector timelike and future-pointing throughout (cf. also p. 199).
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94 2. Abstract indices and spinor algebra

(No special relation is implied between the index symbols a and a here.
We could equally well have written (2.3.5) as V* = V^.)

We now associate with the basis <5£ for ®a its dual S^ dl,... , ^ e S a . By
definition, (5* is that map from S a to S which assigns to a vector V* its
ath component Ka in the basis <5",... ,<5J|:

5« j/« = F a (2.3.6)

Owing to the uniqueness and linearity of the expansion (2.3.1), the equation
(2.3.6) does indeed define a linear map (for each OL = 1, 2,...,/?) from ®a

to S and so gives us a well-defined element of S a . By letting V" be each of
<5",... ,<5" in turn, we obtain

«aWS, (2-3.7)
where <5J is the (n x n)-matrix of elements of ® consisting of the unit scalar
if OL = P and the zero scalar otherwise (Kronecker delta symbol).

We next show that the n elements S% of ®a form a basis for ®a. We must
establish that any element Qa of ®a has a unique expansion as a linear
combination of the 8*. Given ga , define

3 . = ( 2 ^ (2-3.8)
Then, for each Fa,

(2.3.9)

Since Qa and Qa give the same scalar when acting on an arbitrary element
of ®a, we have Qa = Qa. Thus (2.3.8) establishes that Qa can be expanded as
a linear combination of the <5£,

G« = e><& (2.3.10)
where

Qp = Qfitf. (2.3.11)
To show that this expansion is unique, suppose that Qa can be expressed
in a form (2.3.10) where Qp is not necessarily given by (2.3.11). Taking the
scalar product of (2.3.10) with d\ and using (2.3.7) we get QJ*a = Q^d\&l =
Gp^S = Gtt? which is (2.3.11) again, establishing the required uniqueness.

Note that the components of Qa in the dual basis are obtained by taking
scalar products with the elements of the original basis. This is analogous to
the fact that the components of Va in the original basis were obtained by
taking scalar products with the elements of the dual basis. Note, further,
that

Q*V" = Q«V*K= Q*V*> (23.12)
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2.3 Bases 95

by (2.3.5) and (2.3.11), so that the scalar product has the familiar form when
written in terms of components.

So far in this section we have not used total reflexivity, i.e., the equiva-
lence of type I and type II tensors. We now introduce components for
general tensors and, as a corollary, show that total reflexivity holds when-
ever there is a basis.

If A*\\\l is a general type I tensor, we can apply this multilinear map to
the basis elements to define its components:

Al;;l =AZ-i8i...5'y6*...8;, (2.3.13)

generalizing (2.3.6) and (2.3.11). Calling such an array A^wl a type III tensor
with respect to the basis SI (provisionally - a more complete definition
is given in §2.4), we see that, given a basis (5*, the formula (2.3.13) defines
a map (I -> III) which assigns a unique type III tensor to each type I tensor.
Moreover, from any such array 4";;;J we can form a type II tensor as the
sum of outer products

Al::l = Al-;;Z5;...dy5\.'.8>v9 (2.3.14)

generalizing (2.3.5) and (2.3.10). Thus we have a map (III —• II) which
assigns a unique type II tensor to each type III tensor. Finally, we already
have a standard scheme (2.2.17)-irrespective of total reflexivity or the
existence of bases - which assigns a unique type I tensor to each type II
tensor. Let this be the map (II -> I). To establish the equivalence of all
three types of tensor (and thus total reflexivity), we shall verify that all
three of the cyclic compositions of these maps,

I -+ III -> II -> I, III -+ II -> I -+ III, II -• I -• III -• [[

give the identity. To verify the first of these, we start with the type I
tensor A*k\\'X and apply (2.3.13), (2.3.14) and (2.2.17) successively, the final
multilinear map in (2.2.17) being on Qa, . . . 5 y , Ux,... Wv; thus we obtain

= Aa;;;Qx...W\ (2.3.15)

by (2.3.11), (2.3.6), and then (2.3.10), (2.3.5). To verify that the second cyclic
composition gives the identity, we start with the array A*;;^ and apply
(2.3.14), then (2.2.17) followed b> '2.3.13). In fact, to follow (2.2.17) by
(2.3.13), we simply substitute the basis elements d^'-d* for the elements
Qa,.. . ,WV on which the multilinear r<ap acts, to obtain

-5:0, (2.3.16)
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96 2. Abstract indices and spinor algebra

which is the original array Aa°'x;o, by (2.3.7). Finally, to verify that the third
cyclic composition gives the identity, we start with a type II tensor and
apply (2.2.17) followed by (2.3.13) (as above) and then (2.3.14):

= L* -N
vo> (2.3.17)

i = 1

by (2.3.10), (2.3.5), then (2.3.7), then (2.3.10), (2.3.5) again. Thus total re-
flexivity is established, when a basis exists: the general tensor of valence
[£] (of either type I or II) is in 1-1 correspondence with its array of np + q

components (type III) by the mutually inverse relations (2.3.13), (2.3.14).
Note that the np+q tensors

d:...5]dl..8l (2.3.18)

forms a basis for ®";;;J, since any element of ©*;;;£ has a unique expression,
via (2.3.14), as a linear combination of the tensors (2.3.18). Consequently,
the ©-module ®"""J has dimension np+q. The particular basis (2.3.18) for
®"""J is said to be induced by the basis <5* for 6a .

If we define the tensor 3% e &a by

6£ = S(S*9 (2.3.19)

then (2.3.10), (2.3.11), (2.3.5), (2.3.6) give

Q* = QpK> ya = yfiSfi- (2.3.20)

By referring back to (2.2.43) and (2.2.44) we see that either of these relations
establishes the Sfi

a defined by (2.3.19) as being actually the same as that
defined in (2.2.41)-(2.2.44) in a basis-independent manner. Reverting, then,
to this original basis-free definition of 8fi

a, we can assert that equations
(2.3.19) and (2.3.7) are together necessary and sufficient for 8* to be a basis
for ®a (with dual basis SI). For, equation (2.3.19) (together with (2.3.20))
shows that Fa is a linear combination of the 5£, while (2.3.7) establishes
these components as uniquely given by (2.3.6). (The formal similarity
between (2.3.7) and (2.3.19) should not mislead us: (2.3.7) condenses n2

scalar equations whereas (2.3.19) is a single tensor equation. Although the
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various quantities 5^5^,5^,5^ behave formally very similarly, they are
conceptually very different from each other.) It is worth remarking that a
way of obtaining (2.3.14) is to use the relation

Aizi=K^idi-Kd?-3:° <2-3-21>
(which is a repeated application of (2.3.20)), and to substitute (2.3.19) for
each occurrence of a 5.

Let us relate the type III tensors we have been considering here to those
discussed in §2.1. The notion of a tensor used in §2.1 depended on behaviour
under change of basis. Suppose, then, that we have two bases for Sa,
namely 5",...,<5J| and <5 •[,... (5?. The dual basis to 5? is <5£ and satisfies
Sid$ = <5J, where <Sg is again an ordinary Kronecker delta symbol. In our
notation, when components are taken with respect to 51 and <5*, the
component indices must bear a circumflex but the kernel symbol remains
unchanged. Thus, V* = Ka<5*,etc. This applies also if we take the compo-
nents of the basis elements of one basis with respect to the other. In this way
we get two (n x n)-matrices of scalars, defined by

51 = 5151, 5t=5?5\. (2.3.22)

The quantities 51 and 5j correspond, respectively to the fg and T£ which
appear in (2.1.6)—(2.1.8). (The use of Kronecker symbols here should not
confuse us: such symbols stand for an actual Kronecker delta only when
the two bold face indices are both of the same kind.) The matrices 51 and.
<5* are in fact inverses of one another (515\ = <3J, 5^5$ = 51), as is readily
seen. For any vector Va, the components K* with respect to Si are related
to those, F a , with respect to 5£, by

K* = V*S\ = V^Sffi = V*5*, (2.3.23)

which may be compared with (2.1.8). In the same way the components with
respect to S% of a general tensor A%"y

v may be related to those with respect
t o ^ b y

(To obtain this, we simply 'plug' the basis elements 5?,5\ into (2.3.14).)
This is just the tensor component transformation law (2.1.6). Thus, when-
ever a basis exists, the definition of a tensor given in §2.1 does agree with
those used here. (Note that although the interpretation is again different,
(2.3.24) formally resembles (2.3.13), (2.3.14) and (2.3.21). In each case, the
delta symbol just substitutes one index for another.)

When expressed in terms of components, the four operations of addition,
outer multiplication, index substitution and contraction have exactly the
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98 2. Abstract indices and spinor algebra

same appearance as when expressed directly in terms of the abstract
tensors, except that all the indices are bold face. Thus, in the basis <5£, the
components of A\"I + fl";;;J are A\~\ + BJ-J; the components of A£;;J
D£-J, are y4J-j£)J-J; the components of ^47

 v
a
 A are AJ~* x; and the

components of A\"^ are /1J ' ^ . All these facts are immediate conse-
quences of the definitions and agree with the operations of §2.1. Thus, the
entire algebra of abstract tensors is identical with the algebra of arrays of
tensor components; the only difference, at this stage, lies in the conceptual
interpretation of the quantities involved. It might be felt that a difference
of conceptual interpretation alone would hardly justify the use of two
alternative alphabets for the indices. However, we shall see in Chapter 4
that when differentiation is involved the parallelism breaks down and the
two types of indices behave quite differently. What are purely conceptual
differences in the case of tensor algebra lead naturally to essential formal
differences within tensor or spinor calculus.

2.4 The total reflexivity of S' on a manifold

When a finite basis exists for 6*, its total reflexivity has been established
in §2.3. But, as we have seen, bases need not exist for vector fields on a
manifold (e.g. on S2). Since the total reflexivity of S' is an important
general property, we shall devote the present section to giving an argument
for it that applies to any (Hausdorff, paracompact) manifold Ji on which
(i) the differentiability conditions on the scalars S-assumed to be fields
of complex numbers - are sufficiently non-restrictive (say C°, C1 , . . . ,or
C00, but not C00) to allow 'partitions of unity' (see (2.4.4) below); and on
which (ii) ®' has bases locally. (The reader who is happy to assume on
physical grounds that a basis exists, may prefer to pass on to §2.5.)

The arguments in this chapter so far have been algebraic, in the sense
of being concerned only with the algebra of the tensors generated from the
module ©'. No properties of the 'point set' M on which ® may be defined,
not even the very existence of such a point set, have been assumed. In
Chapter 4, where differential operations are discussed, we must examine
Jt more closely. But here we are concerned only with the two above-
mentioned 'manifold' properties of Ji, which will allow us to establish the
total reflexivity of ©' in the spirit of this chapter, namely algebraically.

To give an algebraic definition of 'tensors defined locally' on Jt, we
need the notion of tensors restricted to some (open) subset of Jt, a 'neigh-
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2.4 Total reflexivity of S* 99

bourhood' of the point of interest.* Consider any element / e S , and the
open set 3F c M of points of ̂  for w h i c h / ^ 0. Define an/-equivalence
relation between tensors thus:

T\;;l = W\::l (2.4.1)
iff

for the equality of tensor fields when 'restricted to $F\ Note that without
loss of generality we can assume / real non-negative, since (2.4.2) holds
if and only if (2.4.2) multiplied by/also holds.

Now let the symbol ®"'"J(/) denote the set of/-equivalence classes
(2.4.1). One easily verifies that, with the natural definition of sums and
products, ®(/) is a commutative ring with identity (i.e., the product of
the/-equivalence class of a e S with that of be® is that of ab\ if a = c
and b = d, we have fab = fcb = cfb = cfd = fed, whence ab = cd; etc.)
Furthermore, ®a(/) is a module over ®(/), as is again easily verified.**

The only new property of the ®-module ®' that we shall require (and
for which we stipulated the properties (i) and (ii) in the first paragraph)
is this:

(2.4.3) PROPERTY:

There exists a finite set of non-negative elements M , u , . . . , « e S such that

u + u+-~ + u=l, (2.4.4)

and such that there exists a basis for each module ®a(w), (i = 0 ,1 , . . . , m).

Let us first see why this would hold for any (Hausdorff, paracompact)
manifold Jt on which the scalars ® and the (vector or spinor) fields ®" are,
say, C00. For each i, the region where ii =/= 0 is an open set °UX <= Jt, and by
(2.4.4) we see that these sets cover Jt\

WouW1vj...KjWm = Jf. (2.4.5)

Conversely, if any finite covering of Jt by open sets (JU^,^.,JUm exists,
such that each %K can be defined by the non-vanishing of a non-negative

* The procedure being adopted here is discussed more fully in §4.1. Logically, this
section should be presented after §4.1, but since total reflexivity is so important
to the algebraic theory of tensors, there is good motivational reason for presenting
our derivation at this stage.

** It should be pointed out, however, that (if 0 + & ± Jt) the module S ( / ) will not
be the same as the module of complex-valued C00 scalar fields on #", considered as a
submanifold of M, but will be a submodule of it. This is because the latter module
includes also scalar fields that do not extend smoothly into M. A similar remark
applies to &l;;y

v(f).
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100 2. Abstract indices and spinor algebra

real ye®, then (2.4.4) follows. For defining

y = £ + £ + . . . + " , (2.4.6)

we have V > 0 everywhere on . # ; so F ~ * exists, and we can satisfy (2.4.4)
by setting

u = V~lv. (2.4.7)

Such a system of us on Ji is called a partition of unity.
To find a suitable cover (2.4.5) for J(, consider the following construc-

tion. Choose a triangulation of M which is sufficiently fine so that the star
of each vertex (i.e. the union of all n-simplexes through that vertex) has
the property that a basis exists for fields restricted to its interior. Now
choose a smoothly bounded open neighbourhood of each vertex (e.g. a
coordinate ball), small enough so that all these neighbourhoods are
disjoint and each lies within the star of the vertex in question. If ® contains
the C00 fields, the existence of'bump functions' (cf. (4.1.5)) implies that each
chosen neighbourhood can be defined by the non-vanishing of a non-
negative function / Obviously we can add these functions, getting, say,
v9 and then define the union °U0 of all these neighbourhoods by v^O,
with v ^ 0. A basis will exist for ®a restricted to each neighbourhood in
turn. Taking all these bases together, we get a basis for Sa(v).

The portions of the edges of the triangulation not lying in °ll0 form a
disconnected system of closed segments which can be covered by an open
set °ll x, where again ^ is a union of disconnected open sets (with smooth
boundaries), each covering an edge segment and lying within the star of
that edge (i.e. the union of n-simplexes through the edge). Again we can
arrange that °UX is defined as v =/= 0 for some function v >0 , and a basis
will exist for ®a(i?).

The portions of the faces (2-simplexes) not contained in %OKJ(^1 will
be disconnected and, as before, we can cover them by a system of disjoint
open sets whose union const i tu tes^ . As before, we can arrange that (JU1

2 2 2

is defined as v =£ 0, with v ^ 0, and a basis will exist for Sa(v). The portions
of the 3-simplexes not in ^ u ^ u ^ 2 will again be disconnected, and
the process continues until the n-simplexes are covered. By the preceding
argument, (2.4.3) is therefore established (with m = n, the dimension of M\
since clearly &(v) = 6a(w), by (2.4.7).

By use of (2.4.3) we can now prove the total reflexivity of S a essentially
along the lines of §2.3, where the existence of a basis for ®a was assumed.
For this purpose we shall first give a more complete definition of type III
tensors (cf. (2.3.13)) which is in essence the 'classical' definition. Consider
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2.4 Total reflexivity of S* 101

each ®a(ii) and denote its basis and dual basis by the equivalence classes of

81 and (5*, (2.4.8)

respectively. (In terms of M, these would be the basis and dual basis inside
tfl{, but arbitrary outside °H{.) We have

a l u 6 l . (2.4.9)
(There is no summation over i.) For each valence [£], consider the arrays

Al';*e<59 (2.4.10)

(where a,.. . ,7 are p in number and X, ...,v are g in number) whose in-
equivalence classes define arbitrary sets of np + q elements of S(ii). Also
consider the corresponding type II tensors

(cf. (2.3.14)), elements of ®"*"*(w). For each j in place of i we can consider
arrays like (2.4.10) and tensors like (2.4.11). In order that the two arrays
(2.4.10) be compatible, we require that the classical tensor transformation
law (2.3.24) hold in the 'overlap region':

uiiAl-l = uiiAl°-'l°5* ...& &°...J5;°, (2.4.12)

where

%=8*Ji (i,j = 0,l , . . . ,m). (2.4.13)

(Owing to the presence of n + 1 simultaneous coordinate systems, the
normal notational convention for component indices in different systems
is temporarily suspended here.) The compatibility condition (2.4.12)
ensures that the corresponding tensors (2.4.11) agree on the overlap
region:

uliA\ ;;:l = uiiAl-y
v (2.4.14)

(cf. (2.4.11), (2.4.9)). A type III tensor consists of one array (2.4.10) of np+q

elements from each of S(w),..., ®(S), where the arrays are related to one
another according to (2.4.12).

To show the equivalence of the three types of tensor (given the bases),
we again find three maps (IIi—>I), (11— ÎII), (HI1-*!!), as in §2.3, the first
assigning a unique type I tensor to each type II tensor, etc., and then we
show that each of the three cyclic compositions of these maps gives the
identity. The maps that serve our present purpose are closely related to
those of §2.3. Map (IIH->I) is actually the same, namely that given by
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102 2. Abstract indices and spinor algebra

(2.2.17). To define the map (I i—• III) we need only specify - for each
the components of a multilinear map Aa^"l in the standard way (cf.
(2.3.13))

the w-equivalence class being independent (by the multilinearity) of the
particular representative (2.4.8) of the basis and dual basis for ®a(ti). (This
can be seen by multiplying (2.4.15) through by u and shifting u to each
basis element in turn.) Clearly the compatibility condition (2.4.12) holds
(by (2.4.9)), and so we have a unique type III tensor. Next we define

i

(III H->II). As in (2.4.11), let each array A\~;l define a corresponding map
A\;;;v

y, and set

Since each (2.4.11) is a linear sum of outer products, so is (2.4.16), and a
type II tensor is thereby defined. All three required maps have now been
specified.

The fact that Ii—J-IIII—>IIi—>I gives the identity on the set of type I tensors
is obtained essentially as in (2.3.15), except that now a sum £r=o"(*")
appears in the initial expression. For each i we expand <2ao,..., W/v° in

i i |

terms of their components Qa, . . . , Wy in the respective bases for ®ao(w),...,
8V0(ii), noting that

UQ«=UQJ: yields udlQ^uQ^ (2.4.17)

and

bW« = uWadl yields uS^Wa = uWa. (2.4.18)

Using (2.4.4) at the last step, we get the same final expression as in (2.3.15),
which was to be shown. Similarly, the chain of maps II i—• 11—• III i—• II
leads to the identity on type II tensors by an argument which is essentially
that of (2.3.17) except for the incorporation of a sum J^o^C--)- W e u s e

(2.4.17), (2.4.18), (2.4.9), and finally (2.4.4), to obtain our result.
The equivalence between type I and type II tensors-and hence the

total reflexivity of S ' - i s now established. Nevertheless it is of interest
to show that the chain III i—̂111—̂  11—> III also gives the identity on III,
for that shows that the 'classical' type III definition of tensors is equivalent
to the other two. In fact, the 'classical' tensor transformation law (2.4.12)
has not even been essentially used as yet. Without it, the map III t-» II still
gives us a type II tensor, but one which is a weighted sum of the now
different type III tensors on each 'overlap region'. The chain
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2.5 Spinor algebra 103

III i—• II i—• 11—• III would lead us back to this weighted sum instead of
giving the identity on type III. But if (2.4.12) is assumed, this chain also
gives the identity, because, for each i,

by (2.4.12), (2.4.13), and (2.4.4). The complete equivalence of the three
types of tensors is thus established.

2.5 Spinor algebra

To construct spinor algebra we shall employ the theory of the preceding
sections, applying it to the case of a basic module ®' consisting of C00

spin-vector fields on a space-time manifold. We shall also be interested
in the case when ®' consists of the spin-vectors at one point in the space-
time, so that 6 ' becomes the spin-space at that point. In this second case,
the ring of scalars ® is the division ring of complex numbers. In the first
case it is the ring of C00 complex scalar fields.

We recall that there are three basic algebraic operations that can be
performed on spin-vectors. These are scalar multiplication (1.6.1), (1.6.4),
addition (1.6.2), (1.6.5) and an anti-symmetrical inner product (1.6.3), (1.6.6).
These operations can be performed between spin-vectors at any one point
(so that the spin-vectors refer to the same Minkowski vector space, namely
the tangent space at that point), and then the properties (1.6.8)—(1.6.19)
hold. (These properties assert, in particular that spin-space is a complex
two-dimensional vector space.) We may extend these operations so that
they apply to spin-vector fields on the space-time, simply by applying
them to the spin-vectors at each point separately. The properties (1.6.8)—
(1.6.19) will then remain true for spin-vector fields. Now, properties
(1.6.8)—(1.6.15) assert that S 'is a module over the complex scalars ®. Thus,
introducing a labelling system

we can apply the theory of §2.2 and obtain canonically isomorphic copies
of ®' denoted by ®A, ®B,..., &Ao,.... Each spin-vector (field) KE&' will
have images KAe<5>A, KBe&,.... As before, we can define the duals of
these 6-modules: ®A, ®f l , . . . , ®^o, . . . ; and consequently, general sets
like ®AB,..., ®£, . . . , S>£ •*,... in terms of multilinear maps (or, equivalent-
ly, as equivalence classes of formal sums of outer products.) The module
S^4 is totally reflexive, by the arguments of §2.4. The elements of the
general sets ®£'"* are called spinors. These are not the most general
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104 2. Abstract indices and spinor algebra

spinors however. We shall define general spinors shortly. But before doing
so, it will be worthwhile for us to examine properties of these particular
spinors first.

The s-spinors

Properties (1.6.16)—(1.6.18) establish the inner product as an (anti-
symmetrical) S-bilinear map from S ' x ®* to S, so there must be a unique
element eABe SAB such that

{K,O>}=£ABKA(OB=-{o>yK} (2.5.2)

for all ic, o e S ' , where sAB is anti-symmetrical:

The quantity sAB is an essential part of the spinor algebra. It plays a role
somewhat analogous to that played by the metric tensor in Cartesian (or
Riemannian) tensor theory, but there are important differences arising
from its anti-symmetry.

To begin with, we note that sAB establishes a canonical mapping (actually
an isomorphism) between the modules &A

9 SB, . . . and the dual modules
o^ , toB,....

KB~KB = KASAB. (2.5.4)

(To put this another way, the element of the dual of S * which corresponds
to ic is {ic, }.) The same kernel symbol will be used for an element of (ZA

and for its corresponding element in SA. Thus (by analogy with classical
Riemannian tensor analysis) we may regard eAB as lowering the index' of
KA in (2.5.4). The fact that (2.5.4) is an isomorphism, and not merely some
module homomorphism which is not one-to-one, follows from the compo-
nent form (1.6.6) of the inner product:

{K,CD} = K°(O1 -K1™0 (2.5.5)

(using a coordinate system for spin-vectors at each point, as in Chapter 1);
so we have, by (2.5.2) and (2.5.4),

{K, O)} = KBCOB = KB(JOB = K0CO° + KjO)1, (2.5.6)

where the components* KO,K1 of KB are related to those of KB by

KO=-K\ K, = K\ (2.5.7)

the one-to-one nature of which is evident. Thus, the inverse map from

* We recall that our spinor component indices range over 0,1 (or 0', 1' as later required)
rather than 1, 2. This is visually consistent with our use of o, i for a basis.
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2.5 Spinor algebra 105

®B to S^4 which assigns KA to KB must exist (and be S-linear), and there
must be an element eABe &AB (cf. (2.2.37)) which effects it:

KA = SABKB. (2.5.8)

The fact that (2.5.4) and (2.5.8) are inverses of each other may be expressed
in the equations

o £CB _ *C AB _ ZB (25 9)
bABb —°A-> b bAC~°c y^.J.y)

(where we map S^->®B-»(3C and SB-» &A-+ S c , respectively), the
symbols bc

A and 3B expressing the canonical isomorphisms between &A

and S c , and between ®B and S c , respectively (cf. (2.2.43), (2.2.44)).
However we shall not, henceforth, use the symbol 5B

A, preferring instead
to write this &/(ox - eB

A):

^ = « U B = - e V (2-5.10)

In fact, we regard the first term in (2.5.9) as eCB acting on eAB to 'raise'
its second index, and similarly for the third term, in accordance with the
raising and lowering conventions (2.5.4) and (2.5.8). We may regard sA

B

either as sAB with its second index raised (first equation (2.5.9)) or as
eAB with its first index lowered (second equation (2.5.9)). Combining these
two interpretations of eA

B, we see that eAB is sAB with both indices raised,
as the notation suggests. The anti-symmetry

SAB= _SBA (2.5.11)

is one consequence of this. The relation sA
B = — sB

A is also an expression of
the anti-symmetry of eAB and eAB. It emphasizes, in addition, the necessity
to stagger spinor indices. Each lower index must have a position to which
it can be unambiguously raised, and each upper index a position to which
it can be unambiguously lowered.

Collecting together our various relations, we have

F FCB — — P FBC — F FBC — — F FCB _ p C _ _ C H S \7\
bABb ~ bABb ~~ bBAb — bBAb ~ bA ~ bA> \*~J-U>)

and

$*AzB
A = V\, 11***8/ = VE- (2-5.13)

Because of the anti-symmetry of the es, we must exercise care, when raising
and lowering indices, to see that the correct index of e is contracted. Thus

^A = SAB^B = _ ^^BA (2.5.14)

and

rB = rAsAB=-sBArA. (2.5.15)
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106 2. Abstract indices and spinor algebra

We can relate (2.5.14), (2.5.15) to (2.5.13) by means of the spinor 'see-saw':

r\..A~.A..=-r\A~\..A.... (2.5.16)

The minus sign is again a consequence of the anti-symmetry of e. One
way of remembering the arrangement of signs involved in (2.5.14) and
(2.5.15) is simply to remember the signs in (2.5.10) and use the 'see-saw'.

As in (2.5.6), the inner product can be written:

{ic, o)} = KACOA = - KACOA . (2.5.17)

The final relation (1.6.19) is now

KACOATB + COATAKB + TAKA(DB = 0. (2.5.18)

Another way of expressing this is

(£AB£CD + £BC£AD + £CA£BD)KAO}BTC = °> (2.5.19)

for all K, a>, T; hence (cf. (2.2.40))

o o D , D , D = Q (2 5 201

Equivalently, lowering D, we have the important identity

p p -4- p p -4- P P = ( ) T 9 S 9 1 1
CABCCD ~ ^flC^D ~ ^CA^BD v ' ^ ^

Alternatively, we can raise the C in (2.5.20) to obtain
o c D _ c D _ CD (2 S 221

This implies that

(transvecting (2.5.22) with (j)9CD). Thus if </>̂ AB is skew in A, B {(j>2AB =
— ^>^D.) then

(This relation evidently applies also when A, B are non-adjacent indices;
for example, if ijj^A@m is skew in A, B, we can define <I>^^^AB '•= ̂ ^AmB^
and apply (2.5.24).) Note, as a particular case of (2.5.24), that all anti-
symmetrical elements of ®AB are proportional to eAB. Note that we can
raise the indices A, B in (2.5.23) and (2.5.24) to obtain alternative versions
of these results. Note also that (^)-contraction of (2.5.20) yields

e / = 2 = -eA
A. (2.5.25)

(Because of (2.5.10), this is an expression of the two-dimensionality of spin-
space.)

Complex conjugation

The spinor algebra that we have set up so far is self-contained but it is
inadequate for physics. We wish to have the algebra of world-vectors and
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2.5 Spinor algebra 107

world-tensors incorporated in our spinor algebra. This is not possible as
things stand. The essential reason for this can be seen in the expression
(1.2.15) for world-vector components in terms of spin-vector components:
the complex conjugates of the spin-vector components are necessarily
involved. Thus, to incorporate world-vectors, our spinor algebra must
include an operation of complex conjugation. We must be able to apply
this operation to any element of SA. However, the result cannot be just
another element of SA. For if it were, we should have a property of reality
for elements of QA. Some elements of &A would be real and others purely
imaginary (e.g., a spin-vector plus or minus its complex conjugate).
The different elements of S'4 would then cease to be on an equal footing
and the Lorentz covariance of the algebraic operations would thereby
be lost. (We saw in §1.4 that any two spin-vectors at a point could be
transformed one into the other by a Lorentz transformation.) Thus,
the complex conjugate of an element KAE ® A must be an entity of a new
type. Let us denote the operation of complex conjugation by a bar and
write

^ = KA'e&A' (2.5.26)

for the complex conjugate* of KA. The label A' may be regarded as the
complex conjugate of the label A. We have, therefore, in addition to the
labelling set i f of (2.5.1), another labelling set if' consisting of the conjugat-
es of the labels belonging to Sf9

&' = (A',B',C9...,Z',A'0,B'0,...9A
f
l9...). (2.5.27)

The set &A' is regarded as the complex conjugate of the set <3A. The
operations of addition and scalar multiplication in 8 A are defined by the
requirement

IKA + ficoA = TA OXKA'+ fid)A> = xA\ (2.5.28)

where /I, fie ® and I, fi are the complex conjugates of A, fi in the usual sense.
It is easy to verify (cf. (2.2.3)) that <5A> is then also an 6-module (since
the algebra of complex scalars is sent into itself by the operation of complex
conjugation); and S^4 is anti-isomorphic with &A, the anti-isomorphism
being expressed by (2.5.28). As in (2.5.26), the inverse map from QA' to
&A is also denoted by a bar over the entire symbol; thus we have

F 7 = r 4 , XKA + ficoA = 1KA> + ficoA'. (2.5.29)

* In the original notation of Infeld and van der Waerden (1933), this would be written KA.
The use of a prime rather than a dot has been made for typographical reasons. The
use of a bar over the kernel symbol is for notational consistency with what follows.
Although it is true that the symbols can tend to get a bit cluttered, the gain in notation-
al consistency and clarity more than compensates for this.
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108 2. Abstract indices and spinor algebra

We now use both S-modules S A and <5A' to generate our spinor system
in the manner indicated at the end of §2.2. Thus, in addition to S-modules
SB, S c , . . . , S x , . . . , S^ 3 , . . . each canonically isomorphic to S^4, we
shall have S-modules S B , S c , . . . , S x , . . . , S ^ 3,... each canonically
isomorphic to <SA' and canonically anti-isomorphic to (ZA. For each Xe<£
the complex conjugate of VXE&X is Vx'eSx>, that is to say complex
conjugation appropriately commutes with index substitution. Each set
S*' will have a dual S-module S x , . The canonical anti-isomorphism
between S* and S x induces a canonical anti-isomorphism between
S x and <5X, in which TX corresponds to xx = xx,, defined by

TX,KX' = T^K*, (2.5.30)

the bar on the right denoting ordinary complex conjugation of scalars.
We then have

Accx + fifix = ldx, 4- fiftx,, xx = xx (2.5.31)

(by (2.1.28) and (2.1.29)) as the expression of this anti-isomorphism.
T h e general spinor %L NU, W

A'DP'R\ o f v a l e n c e [p
r « ] , is d e f i n e d

as an S-multilinear map from S A x ••• x S D x Sp , x ••• x S^, x S L x •••
x S N x Su' x • • • x &v' to S, or, equivalently, in terms of equivalence
classes of formal sums of formal products. The arguments of §2.4 can be
adapted, with only minor notational complications, to establish that total
reflexivity holds not just starting from the module S x , but also starting
from both modules <5A, &A> together. The subsets {A,...,D}, {L,. . . , A7}
of JS? and {P\ ... ,R'}9 {£/',.. . , W'} of S£' (of respective cardinalities
p, r, q, s) are all disjoint. (The sets S£ and S£' are, of course, disjoint from
each other in any case.) There is no objection to the same letter appearing
in both primed and unprimed versions. For example, ^ABA

B is an allow-
able spinor (and no contraction is involved). The set of spinors#L v,

 A-p--
is denoted by S£ £/ .

As in §2.2, four operations are defined, namely addition, outer multiplica-
tion, index substitution and contraction. But now we have a new operation,
namely complex conjugation, which is induced by the anti-isomorphism
between &A and &A'. To define the complex conjugate of a spinor
XL v,

 A-pr"-9 using the multilinear map definition, we take the complex
conjugate of the result of the map, and replace each of S^, . . . JZV\... by
its complex conjugate S . , , . . . , &\ . . . . This clearly defines an element

A

L ' u A " P " e & ' "' a

A"P"e&' L'" ' a s a multilinear map

P , (2-5.32)

the long bar on the right denoting ordinary complex conjugation of scalars.
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2.5 Spinor algebra 109

Let us summarize the various spinor operations and their basic pro-
perties. Addition assigns an abelian group structure to each spinor set
6 ^ (with s4 = A ...D'... G* ... Jr* . . . , say). Outer multiplication is a
map from S ^ x ®^ to S ^ for each pair of spinor sets S ^ , <Sm, where
efi/ and 0$ involve no common index label (regarding A, A',B,B\ ... as
all distinct but A and A*9 or B' and £'*, etc. as dual labels). It is commuta-
tive, associative and distributive over addition. A particular case of it,
arising when one of the spinor sets is S, is scalar multiplication. This,
together with addition, assigns an ©-module structure to each spinor
set ®^. Index substitution is induced whenever separate permutations
are applied to the two labelling sets 5£ and if'. Thus we can substitute
one set of unprimed labels for another set of unprimed labels, and we can
substitute one set of primed labels for another set of primed labels, but
we cannot substitute prinied labels for unprimed ones or unprimed labels
for primed ones. The validity of any equation is unaffected if an index
substitution is performed throughout the equation. The operation of
(^-contraction maps each set <5Ys/ to ®^ (3/ being any composite index
label not involving X or Y). The (^-contraction of, say, i//^Y

X is written
^JJX*

 o r ^stY* o r ^ z Z ' w n e r e Z is any unprimed label not involved in
3/. The (y)-contraction of \j/^Y

x+ (j)^Y
x is \\i ̂ x

x + <p^x
x and that of

X^S/Y* *s Xm^dx* (i*e-> contraction commutes with addition and, in the
appropriate way, with outer multiplication). The (^-contraction of 0^UY

ux

is the same as the (^)-contraction of 0^vx
ux and is written 0^ux

ux (con-
tractions commute with other contractions). The (^-contraction of ^^oY

x

is the same as the result of the index substitution 3/ -• >stf0 applied to
i/^x*; the (y)-contraction of *P^Y

X is the same as the (^-contraction of
^^v

u (i.e., contraction appropriately commutes with index substitution).
There is also an operation of (£')-contraction satisfying corresponding
laws. Furthermore the (^-contraction of £^Y,X

XX is the same as the
(y)-contraction of £,^X>Y

XX, both being written ^x>x
xx or ^X>Y

XY, etc.
Finally, complex conjugation is a map from each ®^ to the corresponding
set S^, , where if s/ = A ... D'... G* ... J'* . . . , then 3/' = A'... D ... G'* ...
J* . . . . The complex conjugate rj~ of rj^ is written rj^,, and for scalars
this is the standard complex conjugacy relation. When applied twice, the
original spinor is recovered: rf^ = rj^ (involutory property). We have

^ + ^ =$*' + L ' W ^ = Vst'JLm'' also> *Ui i s t h e r e s u l t o f t h e i n d e x

substitution 30' -• 3/'o applied to rj^,; finally, 4r^x
x = $^>x'X' 0-e-> complex

conjugation commutes with addition, outer multiplication and, ap-
propriately, with index substitution and contraction).

Since index substitutions which interchange primed and unprimed
indices are not permitted, there is no meaning to be attached to the relative
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110 2. Abstract indices and spinor algebra

order between primed and unprimed indices on a spinor symbol. It is
sometimes useful to exploit this fact and allow primed and unprimed
indices to be moved across each other, without changing the meaning
of the symbol. This applies whether the indices are in upper or lower
positions. We can allow indices directly above one another, therefore,
provided one is primed and the other unprimed. For example,

VA
 BB

Q = VW = rB
QA'B. = ¥ssQ + *AA\V• (2-5.33)

The element e ^ e £ ^ B has its complex conjugate £A>B>€&A>B>> It is
conventional to omit the bar and write this simply eA,B,. (We need not
regard this as violating our notational conventions. The symbol lA,B,
still correctly stands for T^. We simply introduce a new symbol eA,B, - as
we are always entitled to do, provided no ambiguity results-which also
stands for *T̂ j.) The isomorphism between &A and 8 B , which eAB achieves,
now induces, via the operation of complex conjugation, an isomorphism
between SA' and SB,, achieved by sA,B,.ln_effect, this means that eA,B,9
together with its inverse eA B (= sA B — eAB) can be used for lowering
and raising primed indices. The formulae are identical with those of
(2.5.8)—(2.5.16), except that the relevant indices are primed. Thus, in
particular,

£BA' = ~ 8AB' > £*'A> = - s A B > (2.5.34)

\ (2.5.36)

^B ^ A \ (2-5.37)

and (the 4see-saw' property)

r\..Ar\.A\m=-r\.A'"...*...• (2-5.38)

Furthermore, the complex conjugates of (2.5.18)—(2.5.25) all hold, giving
corresponding versions with primed indices.

The rule for deciding whether or not a symbol x'" wi*h indices is an
allowable spinor symbol is the same as when only one initial module is
involved, that is, the upper indices must be distinct (where, as we stressed
before, A, Ar, B, B',... are all distinct labels) and the lower indices must
be distinct. The symbol x'" t n e n represents an element of that spinor set
8 whose arrays of upper and lower indices are those of x'"•> but with
any duplicated (contracted) upper and lower indices omitted.

Spinor Bases

In (1.6.22) the concept of a spin-frame was introduced. This is a pair of
spin-vectors 0,1 normalized so that {0,1} = 1. By (2.5.17), we can now write
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oAiA = 1, (2.5.39)

or equivalently
iAoA = - 1. (2.5.40)

By the anti-symmetry of inner product we also have

oAoA = 0 = iAiA. (2.5.41)

Let K^eS^4. We saw in (1.6.24) that as a consequence of the identity
(1.6.19) (i.e. of (2.5.18)) the normalization (2.5.39) implies

KA = K°OA + K1IA, (2.5.42)

where

K°= - IAKA, K1 =OAKA. (2.5.43)

In fact, any /c°, K;1G(5 for which (2.5.42) holds, must be given by (2.5.43),
as follows from (2.5.39)-(2.5.41) upon transvection of (2.5.42) by oA and iA.

The existence and uniqueness of (2.5.42) thus establishes oA, iA as consti-
tuting a basis for &A. The normalization condition (2.5.39) is, in itself,
sufficient for this, as we have just seen. If we employ the results on parallel-
izability mentioned in §2.3 above (and cf. (1.5.6)) (assuming non-
compactness for the space-time) then we may take it that a spin-
frame field exists globally, so that oAiA = 1 can indeed be satisfied
for some oA, ^eS" 4 . Of course if we are concerned with spinors at
just one point, or with spinors in some sufficiently small open subset of
the space-time, then it is clear that we may assume that a spin-frame
exists.* It is only when we consider the topological structure of the
space-time as a whole that the global existence of a spin-frame can come
into question.

It is often convenient (as in §2.3) to use a collective symbol eA
A for a

basis for S^4. (The use of V rather than \5' is in accordance with (2.5.10).)
Then we can set

eQ
A

 = 0A9 e^A = tA (2.5.44)

The components of sAB with respect to this basis are

' o zN

-i o,
where

x = e oAiB = o,iA. (2.5.46)
^ AD A V '

Thus a condition equivalent to the normalization (2.5.39) for a spin-frame

* However, as we shall see in §§4.14, 4.15, spin-frames with prescribed geometrical
properties may exist locally, but fail to exist globally.
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112 2. Abstract indices and spinor algebra

is that the components 8AB of eAB should constitute the normal Levi-Civita
symbol. It is clear that any basis can be readily converted to a spin-frame
if we leave s0

A unchanged, but replace sx
A by x l&l

A- The more general
spinor basis for which x n e e d not be unity is referred to here as a dyad.

The dual basis sA
A must satisfy

/1 n\
(2.5.47)

(so eA
B is actually a Kronecker delta 5B). The components eAB of sAB have

to satisfy eAB eCB = sc
A (cf. (2.5.12)); so, for a general dyad,

(2.5.48)

Comparing (2.5.47) with (2.5.39)-(2.5.41) we see that i/the basis is a spin-
frame, then

In the general case,

<U°=-Z-\. *Al=X~loA- (2-5.50)

This agrees with (2.5.43) for the components K:A = KASA
A of KA in a spin-

frame. The components

K0 = KAO\ * , = * / (2.5.51)

of KA in the spin-frame are then related to those of KA by (2.5.7), i.e.

KO=-K\ KI = K°. (2.5.52)

Note that for a spin-frame

Sn A = = O A = r £ *r\ * £ i A —~ I A —- & A 1 *
OA A AO' \A A A\ ' /"^ C Z*l\

z 0 A = iA = — e
A0

? s 1 ' 4 = — o^4 = — e"41.

Also, the formulae eAB = eAEeA
AeE

B, sAB = sABsA
AsB

B
9 sA

B = sA
xsA

B can

be expressed in the form

8
AB = 0

AiB - iAoB, sAB = oAiB - iAoB, sA
B = oAiB - iAoB (2.5.54)

in a spin-frame oA, iA; and in any basis:

The only condition on oA, iAe<3A that they constitute a basis for S A

(not necessarily as spin-frame) is that they be linearly independent at each
point, i.e., that at no point is one a multiple of the other. Another way of
putting this is that the x = oAiA of (2.5.46) should vanish nowhere (i.e., x~ *
exists). For, if oA, iA do constitute a basis, then the components of eAB
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2.5 Spinor algebra 113

cannot all vanish at any point (since the spinor eAB vanishes nowhere),
so (2.5.45) gives # =/= 0 at every point. Conversely, it is clear from (2.5.41)
that x = oAiA must vanish at any point at which one of oA, iA is a multiple
of the other. We may state a closely related result as follows:

(2.5.56) PROPOSITION

The condition aAPA — 0 at a point is necessary and sufficient for ocA, fiA to be
scalar multiples of each other at that point.*

This tells us that at any point at which <xA ^ 0 ^ (3A, the scalar OLAPA

vanishes iff the flagpole directions of ocA and PA coincide.
Given a basis sA

A for ®A, it is most natural to choose as a basis for &A>

the complex conjugates of the elements sA
A - and, indeed, this is what we

shall always do. Let us suppose that eA
A is a spin-frame and that oA and

iA are given by (2.5.44). Then we can write

oA';= dA> =~oA = eo
A\ iA' := TA'=7 = ev

A' (2.5.57)

where, as in the case of eA,B, earlier, we have chosen to introduce new
symbols oA and iA so as to avoid the proliferation of bars. (Occasionally
it is expedient to omit indices when writing certain expressions. Then such
bars must be reinstated.) The dual basis sA

A' is related to eA
A> by

o A' B' _ B' ,<j c co\

and we have

« /=- 'x ' . *A-V = OA.. (2.5.59)

Note that (since a spin-frame is assumed),

/ 0 1 \ A,R, R, / I 0 \
eAB' = ( ) = e , eA

 = ( ) (2.5.60)

and

oA,iA> = 1 = - iA.oA\ (2.5.61)

Given any spinor XG' DK"> w e obtain its components by transvecting
with the basis elements (which need not be normalized):

XG K = IG>:DK::ZAK'' *DD • - Z G G ' ' •%*• • • • (2.5'62)

* This is an example of a result which is awkward to state using merely properties of
the module &A of spin-vector fields and not mentioning points. For if OLA vanishes
in one region and fiA vanishes in a separate one, but <xApA = 0 everywhere, then
neither OLA nor pA is a multiple of the other by an element of S. The spinor koiA + \i$A

vanishes, on the other hand, for some A, /ie S, with k ± 0 £ fi; but this is not sufficient
to imply OLAPA = 0, since there may be a region throughout which k and \i both
vanish.
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114 2. Abstract indices and spinor algebra

We recover the spinor from its components by using the formula
A... D... _ A...D.. A D' G K H < ^ \

As with tensors in general, addition, outer multiplication, index substitu-
tion and contraction of spinors all commute with the operation of taking
components. The operation of complex conjugation also commutes with
that of taking components, i.e.,

^^:: = *£::£:: (2-5.64)
(recall that the basis for S A is chosen to be the complex conjugate of the
basis for S^), where the bar on the left side means that the complex
conjugation is applied to each scalar of the array, while the bar on the
right side means that the complex conjugation operation is applied to the
spinor itself before the components are evaluated. Inspection of (2.5.64)
shows that in spinor component equations involving a conjugation bar
over an entire symbol (and only in these) it is necessary to make the
convention that A = A', B = B', etc., numerically. It is therefore important
to avoid the use of both A and A', or of both B and B', etc., under a conjuga-
tion bar. Because of (2.5.64), however, it is generally possible to avoid
symbols with conjugation bars over the indices.*

The components of any spinor which possesses only lower indices may
be obtained by 'plugging in' oA, r4, oA\ iA' for each numerical index 0,
1,0', T, respectively, so this can be remembered easily. For example,

+ow = +AMc*B-oAMycF. (2.5.65)

For a spinor possessing some upper indices, we can remember

f..-°...-= f.. -i...-
f..-\..-=-f.. -o...- (2-5-66)

f . .° ' - . . . -= f . . r " ..."
* . : ' - . . : • • = - * . . . < > • - . . : • •

in the case of a spin frame, and then use (2.5.65).
Finally, let us examine how spinor components transform under

change of basis (cf. (2.3.22)-(2.3.24).) Let eA
A and e-x

A be two bases for
SA. Let eA

A and sA
A be the respective dual bases and let eA^', sA

A> and

For example, we have uAB = uA B = uBA and uAA = uA A = uAA'. But to write uAA' =

u A A is misleading, since, for example, u01' =/= uov: so we write uA B = wBA, from which,

for example, we correctly obtain u01 = w10'.
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2.5 Spinor algebra 115

SA/L ' SA* ^ e t^le respective complex conjugates of these. Define matrices

eA
A = e A V , £AA = ^ e / (2-5.67)

and

«A'A' = « A - ^ > ' . «AA' = V V - (2-5.68)

Then the matrices sA
A and aA

A are inverses of one another while eA,A and
aA,A' are the respective complex conjugate matrices of these two. Now
transvect (2.5.63) with the appropriate basis eA

A, dual basis sA
A or complex

conjugate of these. We thus obtain
A . . . D . . . _ A. . . D \ A D G' K n c f.Q\

Equation (2.5.69) gives the transformation law for spinor components
under transformation from one general basis to another. We are normally
only interested in the case when the bases are both spin-frames. Then the
matrices ^AB and eAg are the same, being the Levi-Civita symbol in each
case (i.e. (2.5.45) with x = 1), and we have

l = S6i = W o V = det(£A
A), (2.5.70)

showing that the complex matrix eA
A is unimodular. It is thus a spin-matrix

and, therefore, so also are 8A
A, aA,A and eA,A. Then (2.5.69) gives what is

the familiar form of transformation law for spinor components.
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3

Spinors and world-tensors

3.1 World-tensors as spinors

In this section we show how world-tensors and, in particular, world-
vectors may be regarded as special cases of spinors. The algebra of world-
tensors thus emerges as being embedded in the spinor algebra of §2.5.
This embedding of one kind of tensor algebra in another is a particular
example of the procedure described at the end of §2.2. Accordingly, the
index labels of the embedded system are composite indices, consisting of
certain groups of labels of the original system clumped together. In the
particular case of this procedure that will concern us here, the world-
tensor labels will be clumped pairs of spinor labels, one of which is un-
primed and the other primed. The essential reason for this can be seen in
the formulae (1.2.15) and (1.2.23) which express world-vector compo-
nents in terms of spin-vector components. The world-vector components
are bilinear in the spin-vector components and in the complex conjugate
spin-vector components.

Let us define a world-tensor labelling set

X = { a , b 9 c , ...9z9aQ9bQ9...9al9...} (3.1.1)

from the spinor labelling sets if, if' (see (2.5.1), (2.5.27)), where

a = AA\b = BB\c = CC\ ... ,z = ZZ',ao = Ao/4 ' o , . . . ^ = AlA\9...

(3.1.2)

Then, for example, we can label the spinor of (2.5.33) variously as:

+AA'BB-Q = rBB.Q=rb
Q=v\Q=r.QBl. (3.i.3)

We do not here adopt the convention (which was normal in the general
case of composite indices) that composite indices should not implicitly
involve single indices occurring elsewhere in an expression. This is because
here the clumping scheme (3.1.2) has been made quite definite, so no
ambiguity can arise. For example, each of the following equivalent
contracted expressions is equally allowable:

PAA? = *AA'aQ = KQ = 4>AA'AA-Q, (3-1.4)

116
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3.1 World-tensors as spinors 117

and again,

rt'/=rb
B=vAB = - r\ = - rBBB'. (3.1.5)

Certain spinors can be labelled entirely with elements taken from j f :

* p...r A PP...RR' A P...RP...R" J.i.u;

These belong to the spinor sets 6 , 6fl, S6,...," S f l , . . . , Sx«°,..., where

6 a = s ^ s * = QBB'^ . . . , Sfl = S ^ , . . . , S*° = S§°fQ & , .*\ Spinor
sets of this kind play a special role because they are sent to themselves by
the operation of complex conjugation. We shall refer to an element xa'd

of such a set as a complex world-tensor. Thus the complex conjugate of
such a spinor,

ya...d _ AA...DB' -AA...DD
*• p...r *• PP...RR' / PP...RR

= yAA' DD' a...d
* PP...RR *- p...r> (3.1.7)

is another spinor of the same type. Certain complex world-tensors will
actually be invariant under complex conjugation and these will be called
real world-tensors or, simply, world-tensors. (This terminology will be
justified shortly.) A real world-tensor thus satisfies

a...d = ya...d / j A gv
^ p...r A. p.. .r v /

We denote the subsets of ®, S a , . . . , S x , . . . , &a'"*, .-, which consist
of real world-tensors, by 2, J f l , . . . , I x , ...X, Xa

p][]r
d,"•".'•, respectively.* (The

set I is the ring of real scalar fields on the space-time - or the division
ring of real numbers, in case we are concerned with spinors at a single
point.) The system (2, 2 a , 2 b , . . . , %a

p-,...) is the tensor system generated,
in the manner of §2.2, from the 2-module %a. Each %-" is then a I-module
and the whole system is closed under the tensor operations of addition,
outer multiplication, index substitution and contraction. The elements of
Xa (or %b, etc.) are called (real) world-vectors.

If we define the particular real world-tensors

9ab = *jufiA>B» (3-L9fl)

ga
b = eA

BeA
B' (3.1.96)

gab==8AB8A'B' (3A.9C)

then, from the properties (2.5.3), (2.5.9), (2.5.11), (2.5.25), (2.5.34), we have

9ab = gba,g
ab = gha,gabg

bc = 9a\9abg
ab = 4. o.i.io)

* In conventional terminology (c/ footnote on p. 90) the complex world-tensors here
arise as the tensors on the 8-module S' ®sS'and the real world tensors as those on the
^-module of its Hermitian elements. We are allowed to say 'real' here, rather than
'Hermitian', because abstract-index tensor product is commutative.
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118 3. Spinors and world-tensors

From (2.5.13) and (2.5.35) we have
J€ _ <€ b <€a _ J€b a /o 1 1 n

X a~ X b9a >X —X 9b » ^ . l . l l j

and so gb plays the role of a Kronecker delta symbol. (We prefer gb to
Sb here for notational consistency with gab, and because it avoids a possible
confusion when basis frames are introduced.) Furthermore, from (2.5.14),
(2.5.15), (2.5.36), (2.5.37) we have

x — x b9 >x a~~x yab> \J.L.I£)

so that gab and gab play roles formally identical to those of the metric
tensor and its inverse in lowering and raising world-tensor indices. In
fact, we shall presently identify the above gab and gab with the metric
tensor and its inverse.

In the usual approach to the description of space-time Jt (as in
Chapter 1), the world-vectors and world-tensors are given first. The metric
is introduced as a specific world-tensor defining the 'geometry' of Jt,
and only thereafter is the spinor concept defined. Moreover, certain global
topological requirements need to hold for M (cf. §1.5) in order that this
spinor concept be globally consistent. The spinors can then be interpreted
(as in Chapter I) in terms of somewhat complicated space-time geometry,
except that there remains an overall sign ambiguity for the interpretation.
But we may ask ourselves whether Nature is really so complicated, since
spinor fields are a part of Nature as described by contemporary physical
theory.

The complication seems to be largely due to the tensorial approach.
If, as we shall tend to do in this book, one regards the spin-vectors as
more basic than the world-vectors-as, perhaps, something more primitive
than the space-time structure itself, from which that particular structure
can be deduced - then these complications largely evaporate. Thus, if we
start from spinors, we have no sign ambiguity (since the signs are part of
the given structure, not something that has to be derived). The resulting
space-time is automatically time- and space-oriented and has spin-
structure (which properties may be regarded as highly desirable in view
of various experimental facts; cf. remarks at the end of §1.5). Even the
dimension and signature of space-time are 'consequences' of our parti-
cular spinor formalism. The spinor algebra has in itself a certain simplicity.
The complications always seem to arise when we try to interpret the spinor
operations in space-time terms. We shall see good examples of this in
§3.4.
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3.1 World-tensors as spinors 119

Spin-frames and their related tetrads

At this stage we shall not be much concerned with the differential or
global properties of the system (spinor derivatives are left to Chapter 4).
Our present concern is the local algebraic structure implied by the
existence of the spinor system. To see explicitly how the 'world-vectors'
arising here are consistent ('isomorphic') with the usual ones arising in
relativity theory, we introduce a spin-frame oA, iA with the standard
normalization

oAiA = l. (3.1.13)

Next we define a null tetrad* of world-vectors P, na, ma, ma by

p = o
AoA\ na = i V

ma = oAiA\ ma = iAoA'. (3.1.14)

These are all null vectors with respect to our gab metric:

pla = n
ana = mama = rharha = 0. (3.1.15)

(For example, mama = (oAiA'){oAiA,) = oAoAiA'iA, = 0, (cf (2.5.41).) Further-
more,

Pna=l9 mama=-\ (3.1.16)

(for example, mama = (oAiA)(iAoA) = (o\)(iA'oA.) = ( - 1) x (1) = - 1),
while the other scalar products vanish:

Pma = Pma = n
ama = nama = 0. (3.1.17)

Evidently P and na are real,

p = '\\rf = n\ (3.1.18)

and nf and ma are complex conjugates.
The null tetrad P,if,nf9m

a constitutes a basis, over S, for Sa , the
dual basis being na, la, —ma, -ma. This follows from (3.1.15)—(3.1.17), the
relation

9a = ̂  + L^ ~ ™ X - ma™b (3-1.19)

(which is a direct consequence of (2.5.55)), and (3.1.9) (cf. (2.3.19) et seq).
This basis for Sfl is the one induced by the basis oA, iA for &A (cf. (2.3.18)).

To obtain a basis (over %) for Za from oA and iA, we need real world
vectors. Thus ma and ma have to be split into real and imaginary parts. It is

This is a standard (and very useful) concept in Minkowski geometry. See, for example,
Sachs (1961), Newman and Penrose (1962), Trautman (1965), p. 57, Kramer, Stephani,
MacCallum and Herlt (1980).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.004
https://www.cambridge.org/core


120 3. Spinors and world-tensors

convenient also to form linear combinations of la and na, and write

ta = — ( / a + na) = —{oAoA> + iAiA)

fl / 2

xa = —=(ma + ma) = -—=.{pAxA' + i V ) (3.1.20)

a - nf) = -^(oAiA> - iAoA)
2 ^ 2

z« = (/« - „«) = -L(o
AoA' -

The inverse relations are

1

n
a — ita — 7

a) —

V2 }~

nf = —=(xa - \ya) = oAiA

ma = ~^(xa + i / ) = iAoA'
12

From (3.1.15)—(3.1.17) and (3.1.19) we have the orthogonality relations

*X = taya = *X = **ya = y \ = za*a = o (3.1.22)

and the normalizations

t«ta = hxaxa = yaya = zX=-1' (3.1-23)

Furthermore, (3.1.19) gives us

9ab = tJ>-xax
b-yy-zaz

b. (3.1.24)

These relations imply that ta, xa, ya, za do, indeed, constitute a basis, over
X, for %a, with dual basis ta, -xa, -ya, -za. In fact, (3.1.22) and (3.1.23)
are identical with the conditions (1.1.7) and (1.1.8) for a Minkowski tetrad*

Note that the Minkowski tetrad (or, equivalently, the null tetrad) defines the spin
frame oA, iA locally up to an overall sign. For la and na define the two flagpoles;
knowledge of nf reduces the freedom to (oA, iA)\->eie (oA, iA) (6 real); the normalization
oAiA = 1 then fixes 0 to be a multiple of n.
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3.1 World-tensors as spinors 121

Let us set

go
a = ta, gia = *a, Qi=ya> o3

a = ^ (3-1-25)

and dually,

9a° = ta, g.l = -xa, ga
2=-ya, ga

3=-za. (3.1.26)

Then the components of gab,g
ab and ga

b in the basis ga
a and dual basis

g» are*, by (3.1.22), (3.1.23),

(3.1.27)
1 I

At each point we therefore have a standard representation of Xa as a
Minkowski vector space referred to a Minkowski tetrad.

Note that we can define the concepts of time- and space-orientation
for Xa by the specification that the Minkowski tetrad (3.1.20) be deemed
to be restricted (cf. §1.1). (We shall adopt a slightly different and more
'invariant' approach in §3.2.) We saw at the end of §2.5 that changing the
spin-frame oA

9 i
A to another one, at a point, is the result of a spin trans-

formation and is continuous with the identity. This shows that the result-
ing tetrads (3.1.20) are all continuous with one another - indeed, related
at each point by the corresponding restricted Lorentz transformation - so
the resulting orientations for Za are intrinsic and not dependent upon the
choice of oA, iA.

Let Kae%a. Then in terms of the above basis we have

Ka = K*ga
a = K°ta + Klxa + K2ya + K3za, (3.1.28)

where

K° = Kata, K1 = -Kaxa, K2 = -Kaya, K3 = -Kaza. (3.1.29)

Now Ka = KAA'e<ZAA', so we can also refer Ka to the spinor basis s0
A =

Ka = KAA'sA
A8A

A'

= K00'oAoA' + K0VoAiA' + K10'iAoA' + Kll'iAiA> (3.1.30)

= K00'? + Kll'na + Kovma + Kl0'ma.

* Note that the signature of the metric comes out automatically as (+,—,—,—). If it
had been desired to obtain the signature ( - , -I-, + , + ) for the space-time metric, then
the definition gab — — BABBA.B. would have to have been used. This would have lead
to difficulties with the spinor index raising and lowering conventions.
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122 3. Spinors and world-tensors

So, comparing this with (3.1.28) and using (3.1.20), we get, upon equating
coefficients of la,..., ma:

K3 K1+iK2\ fK00' Kov\

iK2 K°-K3)-W°' K"')' ( 3 O 1 )

The Lorentz group action on %a can be invoked to transform any given
future-null vector into any other. Thus, if Ka happens to be future-null,
then like la (or n") above (cf (3.1.14)) it is the product of some spinor, say
KA, with its complex conjugate, so Ka has the form

Ka = KAKA>. (3.1.32)

From this, if we set

£ = K°, rj = K\ (3.1.33)

we find

X 0 0 ' = & Kov = £y, K10' = rilKll' = w , (3.1.34)

so equation (3.1.31) becomes

+ z x + iY\n\a v (3135)

_ -\Y T-Z) \n)

where we have put
7 1/0 V IS 1 V IS 2 V 1/ 3 /"5 1 'JA\

— iV , A — A. , I — /Y , Z / — A. . ^J>.1.^0J

Equation (3.1.35) is precisely the same as (1.2.23), which formed the corner-
stone of the discussion in Chapter 1. This shows that if we start with M
and its metric gab, and if M satisfies the global conditions that allow us to
construct spinors as we did in Chapter 1, then the gab resulting from the
algebra of those spinors via Equations (3.1.9) is the same as the original
metric gab.

Infeld-van der Waerden symbols

Note that we have allowed ourselves to use a basis for S a which is not the
one induced by our basis for &A (cf. (2.3.18)). It is often convenient to
exploit this freedom. One such occasion arises when we employ an explicit
real coordinate system (x1*) for M. Then the coordinate basis d/dx°,...,
d/dx3 is often a convenient one to adopt for the module of tangent vector
fields to ,# , i.e. for the module Za. In general, such a basis will have no
close relation to any basis for (BA. So it is useful to allow simultaneous
consideration of bases for Xa (or Sa) and for S^4, which are completely
unrelated to one another.
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3.1 World-tensors as spinors 123

Let sA
A, eA

A be a basis and dual basis for (BA and let gA
a, g* be an un-

related basis and dual basis for %a. Then any world-tensor %a f-
f can

be expressed in terms of components with respect to gA
a or, reading it as

XAA, CC'DD'"'FF\ in terms of components with respect to eA
A. The relation-

ship between the two sets of components is expressed by means of the
Infeld-van der Waerden symbols, defined by

Note that a contraction is taking place between a and AA\ whereas there
is no contraction between a and AA'. Thus, each equation (3.1.37) re-
presents 16 scalar equations. (It should be stressed that, according to our
conventions, contractions are implied only between (i) identical indices of
all kinds (e.g. Ba

a, £a
a , D,/\ EA

A, EA
A) and (ii) an abstract composite index

and one of its implicit constituents (e.g., FaG
A, FaG

AHA).) We may view
the Infeld-van der Waerden symbols as being simply the 'Kronecker
delta' tensor ga

b with each index referred to a different kind of basis.
From (3.1.37) we obtain the formulae

d...f _ y DD...FF AA ... CC d f n i 30^

and

DD...FF' _ d fa a a ca D D a F F (3 1 39)
AAA'...CC' ^a...c "AA' *"" "CC' "d " * * "f ' v * * /

which are really just special cases of (2.3.24).
Since we have chosen g^e%a, this basis is real and we have

~gj^ = gA
a8A

A'BA
B = g*A\ (3.1.40)

which is to say that each of the matrices g0
AE',... ,#3

AB is Hermitian. (Note
that, in accordance with the convention enunciated after equation (2.5.64),
we avoid the use of AA' together under the conjugation bar in equation
(3.1.40) and assume A = A', B = B', numerically.) Similarly, each of
£/AB,°,... ,gAE

3 is Hermitian. This implies that if xa c
d'"f is any real world

tensor, then the spinor (dyad) components* must form an array which is
Hermitian in the sense

D S . . . F U _ S D . . . U F ( 3 1 4 H
AAP...CR' " A P A RC P-1.H1J

The equation for 'reality' of a spinor, % - =x...'"> is in general mean-
ingless, since its two members belong to non-comparable spinor modules

In the literature a distinction is often made between spinor components and dyad
components (Newman & Penrose 1962). Because of the use of abstract labels for actual
spinors, no such distinction is necessary here.
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124 3. Spinors and world-tensors

(e.g.,6^4 and <ZA). However, for spinors of valence-type [f f] this equation
becomes meaningful, and indeed important. Recall that, by definition,

AB... _ - AB... .
&CD... &CD... '

so if

then we have

XCD..AB' = XCB..AB- • (3-1-43)

There is a certain conflict between two terminologies which suggest
themselves for a spinor satisfying the evidently equivalent conditions
(3.1.41) (with real #a

a), (3.1.42), and (3.1.43). While (3.1.41) and (3.1.42)
suggest that xCD

 AB" ^ e c a ^ e ( i 'Hermitian', (3.1.43) and the already
adopted terminology for world tensors suggest 'real'. Here we adopt what
seems to be the logical compromise and say that xc>D

 AB- is indeed
Hermitian, while the term 'real' is reserved for the corresponding elements
%cc AA'"' °f ^ e self-conjugate sets S e c " = 2>""'"> which satisfy (3.1.7), i.e.,

Thus 'real' really means 'equal to its complex conjugate'.
The basic equation satisfied by the Infeld-van der Waerden symbols

is the component version of the fundamental relation (3.1.9a), that is,

or, equivalently,

The equivalence of (3.1.45) with (3.1.46) is established via the relations
a AA' b _ b a BB _ B B n i A

An alternative equation which is often used in place of (3.1.45), owing to
its connection with the anticommutator 'Clifford algebra' equation for
Dirac y-matrices,* is

9a\dbB
A' + g>\.g.S = - £B

A0ai,- (3-1-48)
This follows from (3.1.45), for if we add (3.1.45) to the same equation with
a and b interchanged, we get an expression anti-symmetrical in A, B, trans-

* We may express (3.1.48) as the (2x2) matrix equation GaGJ + G b GJ= - gahl2

fO G
where the asterisk denotes Hermitian conjugation. If we set ya = 2 (

we obtain a solution of the (4 x 4)Dirac matrix equation yayb + ybya = — 2#a bI4 . See
footnote on p. 221 and the Appendix to Vol. 2 for more detail.
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3.2 Null flags and complex null vectors 125

vected with £AB. Multiplying through by eCD and using (2.5.22), we can
move the unprimed s to the other side of the equation. This gives (3.1.48).
Conversely, starting from (3.1.48), if we transvect through by ^ B

A , we
re-obtain (3.1.45).

If we use the standard Minkowski tetrad ta, xfl, / , za related to the
spin-frame oA, iA by (3.1.20), then denoting #a

fl by (3.1.25) and ga* by (3.1.26)
we get

AB,_ 1 / 1 o

as is readily seen by comparing (3.1.31) with Kaga
AB' = KAB. The matrices

(3.1.49) are, apart from the factor 2~~2, the familiar Pauli spin-matrices and
the unit matrix.

It is sometimes convenient to use a basis #a
a for Sfl not all of whose

elements are real. This situation could arise in the case of a coordinate
basis if complex coordinates for M are used. Another example arises with
a null tetrad go

a = /a, gx
a - n\ g2

a = m\ g3
a = mfl; here we find

0 1\ 1 AR, /O 0 \
\ = g 2^ g A E = l \ = g f (3.1.50)

Since the vectors #a
a are now not all real, the fact that the matrices

g0
AB',... ,g3

AB are not all Hermitian is to be expected. In the general case,
with a complex basis #a

a for Sa, all the equations (3.1.37)—(3.1.48) hold as
before, except the Hermiticity condition (3.1.40).

3.2 Null flags and complex null vectors

Thus far, whenever we have desired to interpret a spinor (or spinor opera-
tion) in space-time terms, we have had to rely on the detailed geometrical
discussion of Chapter 1. On the other hand, we may prefer just to accept
the abstract existence of spinors, which form an algebra as described in
§2.5, and among which the real spinors (in the sense of §3.1) are identified
as world-tensors. It is of some interest that the geometric null-flag interpre-
tation of a spin-vector in terms of such world-tensors can then be obtained
very rapidly using the spinor algebra. The main procedure is a particular
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126 3. Spinors and world-tensors

example of the general method, to be given in §3.4, of interpreting spinors
in terms of world-tensors.

For simplicity let us assume, in what follows, that the sets S - refer
to spinors at a single point PeJt only, so S ^ C and <2A is a two-
dimensional vector space. Let

KAeSA. (3.2.1)

Then the most obvious world-tensor we can construct from KA alone is the
world-vector

Ka = KAKA>. (3.2.2)

The reality of Ka is obvious; so also is the fact that Ka is null, since

KaK =KAKA'KAKA, = \KAKA\2=0.
a A A I A I

In fact, every real null world-vector has either the form (3.2.2) or else*
the form

Ka = - KAKA\ (3.2.4)

This follows from the fact that a complex world-vector xa is null, in the
sense**

* X = 0, (3.2.5)

if and only if it has the form

Xa = KA£A'. (3.2.6)

For, accepting (3.2.6), we have KA£A' = £AKA> if xa is real. Transvecting
with 1A gives (%AKA)£A' = 0, so, by (2.5.56), %A must be a multiple of KA

(unless KA = 0). Thus we have xa = qKAKA where q must be real. If q > 0,
we absorb q i into KA and get (3.2.2). If q < 0 we absorb ( - qf and corres-
pondingly get (3.2.4). (If q = 0 we get both.)

Conversely, we observe that (3.2.5) has the spinor form

^B^B'XAAXBB' = 0, (3.2.7)

the left-hand side of which is just twice the determinant of #AA (in com-
ponents: 2x00 x11 ~ 2 / 0 1 X10')• The vanishing of this determinant asserts
that the rank of xAA is less than 2, that is, xAA is an outer product (3.2.6)
of two spin-vectors. (In any one spin-frame, this is clearly true for the
components. Therefore it is true independently of the spin-frame.)

* A complication that arises if we try to apply the discussion to spinor fields is that,
for a given null vector field Ka, in some regions of space-time (3.2.2) might hold and in
others (3.2.4), so that neither could be assumed to hold globally. (For this Ka would
have to vanish in some regions.)

** There is another possible sense, cf. (3.2.25) below.
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3.2 Null flags and complex null vectors 127

Next, we observe that the existence of the spinor system gives us an
absolute distinction between the two null half-cones at the point P of
interest. For, we can define the future-pointing and past-pointing null
vectors to be those for which, respectively, (3.2.2) and (3.2.4) hold (KA ± 0).
It is clear from this that the scalar product of two future-pointing null
vectors or of two past-pointing null vectors must be positive (or zero, if
they are proportional) and that the scalar product of two null vectors of
different kinds must be negative (or zero, if proportional), as required
(cf §1.1). (This choice is consistent with the ta of (3.1.20) being future-
pointing.) Thus when we pass to spinor fields on Ji, the global requirement
(1.5.1) (that M be time-orientable) must hold.

Equation (3.2.2) tells us that any non-zero spin-vector defines a unique
future-pointing null vector, which we call its flagpole. However, many
distinct spin-vectors have the same flagpole since the Ka defined by (3.2.2)
allows the freedom

To obtain a more complete tensorial realization of KA than that afforded
by (3.2.2), we can form the 'square' KAKB of KA. Then, to get as many primed
indices as unprimed ones, we multiply by eAB': this gives us a complex
world-tensor. To obtain a real world-tensor we can add the complex
conjugate:

pab = KAKBeA'B' + eAB^A'-B' ^ . 9 )

Then we have

pab = pab = _pba (3.2.10)

Furthermore, Pab is 'simple', i.e., of the form

Pab = KaLb - LaKb, (3.2.11)

where If is any vector* of the form

If = KATA' + TAKA> (3.2.12)
for which

KATA=1. (3.2.13)

To establish (3.2.11), we observe that since KA, TA constitute a spin-frame,
we have, from (2.5.54),

EAB = KATB _ TAKB (3.2.14)

Then (3.2.11) follows upon substitution of (3.2.14) into (3.2.9).

* This La is not quite the same as the L of § 1.4, but it is serves a similar purpose. We can
relate the discussion here to that of §1.4 by putting 2±(OR/OP)L for U.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.004
https://www.cambridge.org/core


128 3. Spinors and world-tensors

null
2-plane

Fig. 3-1. The null flag representing KA, and its relation to Ka and If.

The vector If is real, spacelike of length ^/2, and orthogonal to Ka:

La = Lfl, LaLa = - 2 , KflLa = 0. (3.2.15)

It is defined by Pab up to the addition of a real multiple of Ka: under

TA^>TA + <XKA (3.2.16)

(the transformations of TA which leave (3.2.13) invariant) we have

If - If + (a + a)Kfl. (3.2.17)

The positive multiples of these vectors If lie on a (two-dimensional)
half-plane through the origin in the Minkowski vector space 2°, which
(since If is orthogonal to the null vector Ka) is tangent to the null cone in
%a, along the line consisting of multiples of Ka (see Fig. 3-1). This half-
plane is the flag plane of KA. (Agreement of this construction with that of
§1.4 is easy to verify.)

The phase transformation (3.2.8) can be seen to correspond to a rotation
through 20 of the flag plane about the flagpole. For, setting

Ma = [KA-A' _ {TA-A (3.2.18)

we see that

L* cos 20 + Masin20 = (e iV)(e i af i l) + (e- iV)(e-wjc i4 '). (3.2.19)

Thus, under (3.2.8) (which must be accompanied by rA^e~ iexA to preserve
(3.2.13)), the vector If is rotated, in the (La, Ma)-plane, through an angle
26, to become the vector of (3.2.19). Note also that under KA^kKA (with
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3.2 Null flags and complex null vectors 129

xA\-+k~ {TA, k>0) the flagpole gets multiplied by k2 but the flag plane is
unchanged.

It is of some interest to observe that this gives a direct way of obtaining
the conformal structure of the space ^+ of future null directions at the
origin in Ha. Any spin-vector KA defines a point K of y7 + (the direction of
the flagpole) and also a tangent direction L to £f+ at K (the direction of
the flag plane). If we have two tangent directions L and L' at the same point
K of 6f+, these will be given, respectively, by KA and by e'V4 for some 6.
We now obtain the angle between L and L' as 26. Having an invariant
concept of angle on y + we therefore have an invariantly defined conformal
structure for y+. (Of course the constructions of Chapter 1 also achieve
this, but here the conformal structure arises directly from the interpreta-
tion of spin-vectors.)

In fact, this conformal structure also gives an invariantly defined
orientation for <f + , and consequently for Ji. For we can define the notion
of right-handedness on y + by simply specifying that 'right-handed' is
the sense in which the flag plane of Q10KA rotates as 0 increases (cf remarks
before (1.5.2)). (This is consistent with the xa, / , za of (3.1.20) being right-
handed.) Again we observe that passage to a spinor field implies a global
restriction on M, namely that, in addition to being time-orientable, it
must be space-orientable. As a topological manifold, therefore, Ji must
be (space-time) orientable (cf (1.5.2)).

We observe that each of (3.2.2) and (3.2.9) is invariant under

KAV->-KA. (3.2.20)

If this is achieved continuously via e1 V 4 as 0 varies from 0 to n, the flag
plane executes one complete revolution through 2n and returns to its
original state, so KA is indeed a spinorial object (cf §1.5). Thus the passage
to spinor fields requires also that Ji have spin-structure (cf (1.5.3)).
Our algebraic approach, therefore, when we apply it to spinor fields (as
we shall in Chapter 4), requires Ji to have spinor structure (cf end of §1.5).

Properties of complex null vectors

Let us now return to the representation (3.2.6) of a general non-zero
complex null vector in terms of a pair of spin-vectors. We observe, first,
that given xa, the decomposition -f = KA£A is unique up to

£A'^k~x^A\ (3.2.21)

For, if KAd;A' = nAvA\ then transvection by \iA gives \IAKA = 0, so by (2.5.56)
KA and [iA must be proportional. Similarly, t^' and vA must be propor-
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130 3. Spinors and world-tensors

tional. Note that this implies that a complex null vector -f defines an
ordered pair of real null directions (not necessarily distinct), i.e., two points
of 5 + , namely those given by the flagpoles of KA and £A', respectively. The
complex conjugate x° of xa defines the same pair of null directions (points
of S+) but in the reverse order (xa = J;AKA). The two null directions coincide
if and only if x° is a complex multiple of a real vector. Conversely, this
ordered pair of real null directions defines, quite generally, the complex
vector xa up to a proportionality.

A number of properties of complex null vectors can be read off easily
from (3.2.6). For example, if two complex null vectors xa, *Aa are orthogonal,

X>fl = 0, (3.2.22)

this means that xa a n d *A° have simultaneously the form xa =
 KA£A\

xjja = K
ArjA> or simultaneously the form xa — KA£A\ *Afl = TA^A'. It follows

that if xa, *Aa
5 V are three complex null vectors which are orthogonal to

one another, then they must be linearly dependent. For, they must
simultaneously all have either the forms

f = K
A£A\ if/" = K

ArjA\ (j)a = K
ACA' (3.2.23)

or the complex conjugates of these forms. Assume, without loss of genera-
lity, that it is (3.2.23) which holds. Owing to the two-dimensionality of
spin-space, there must be a linear relation X^A> + firjA> + v£A' = 0 with
not all of A, fi, v zero. Thus, by (3.2.23), Xf + ^ a + v0a = 0.

Suppose, on the other hand, that the complex null vectors \\ia and (j)a

are each orthogonal to the complex null vector xa but not to one another.
Then these vectors must have the forms

f = K
A£A\ ^ = K

ArjA\ (f)a = wA£A> (3.2.24)

or the complex conjugates of these forms. It follows that there is a unique
complex null vector 8a which is orthogonal to each of ij/a and (pa, and for
which 6ax

a = (j>a^
a- For, assuming without loss of generality that it is

(3.2.24) which holds, we can set 0a = — ojArjA\ the uniqueness of which is
easily established.

The linear set of complex null vectors of the form xa = KA£A\ where KA

is held fixed and £A> is allowed to vary, gives a way of representing the
spin-vector KA (up to proportionality) in complex terms. In some contexts
(for example, in parts of twistor theory, cf. §§6.2, 7.3, 7.4,9.3) it is important
to give descriptions in terms of complex quantities not involving the notion
of reality or of complex conjugation. In such contexts, the association
of a spin-vector with a linear set of complex null vectors becomes much
more significant than its association with a single (real) null vector,
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3.2 Null flags and complex null vectors 131

namely its flagpole, since the latter description requires the notion of
complex conjugation. On the other hand, the complex null bivector
KAKBSA B could be of significance in these contexts. We do not propose
to pursue this matter further here, except for one point: its relation to the
structure of the complexified 2-sphere.

We have seen above that each complex null direction can be represented
by an ordered pair of points on the sphere S+ — topologically a 2-sphere
S2. If we wish to attach no significance to the notion of reality, then (since
the coincidence of the two points signifies reality of the null direction)
we should really consider each of the two points to lie on a separate sphere
S2. Thus, the space of complex null directions at a point has the structure of
a topological product S2 x S2. The points of the first S2 are the spin-
vectors KA up to proportionality and the points of the second S2 are the
conjugate spin-vectors £A> up to proportionality, giving the required null
directions as those defined by %a = KA£A>. Since the real null directions at
a point constitute a conformal sphere y + , we may regard the complex
null directions as constituting a complexified sphere. From the above, we
see that this complexified sphere has a structure S2 x S2. When a point
of one of the S2s is held fixed and the other is allowed to vary, we get,
up to proportionality, one of the above linear sets (associated with KA

or with £A') on the complexified sphere called a generator. Thus, the com-
plexified sphere is ruled by two systems of such generators.* This sort
of description in fact forms the basis of the general geometrical n-dimen-
sional discussion of spinors. But we shall not go into this here.

Hermitian-null vectors

Let us end this section by briefly examining the other type of complex
'null' vector, namely a complex vector ya satisfying

yaya = 0. (3.2.25)

Choose any real 9 and write

ya = ee(Ua + iVa), (3.2.26)

where Ua and Va are real. Substituting (3.2.26) into (3.2.25) we get

UaU
a+ VaV

a = 0. (3.2.27)

Thus, either both Ua and Va are null, or one is spacelike and the other time-

* This fact ceases to be surprising when we recall that when complexified, no distinction
exists between a sphere and a hyperboloid. A hyperboloid of one sheet is well-known
to be generated by two systems of straight lines.
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132 3. Spinors and world-tensors

like. Suppose Ua is timelike for 9 = 0. Then Ua for 9 = n/2 (being the same
as Va for 9 = 0) must be spacelike. Since Ua varies continuously with 9,
it follows that Ua must be null for some 9 between 0 and n/2. Thus Va

is also null for this same value of 9. By choosing the appropriate one of
9,9 + n/2, 9 + n9 or 9 + 3TT/2, we can arrange that both Ua and Va are
ra/// and future-pointing in the representation (3.2.26). This representation
of ya is then unique except when Ua or Va vanishes or when both are null
and proportional. In this latter case, we can regain uniqueness (assuming
ya ± 0) by replacing (3.2.26) by

ya = &eUa, (3.2.28)

where Ua is null, real and future-pointing. The spinor representation of
a / , which is null in the sense (3.2.25) (with ya =/= 0) is then

ya = e\aAdA> + ipAPA\ ocJA + 0 (3.2.29)

or

ya = QW(XA6CA> (3.2.30)

in the above two cases, respectively.

3.3 Symmetry operations

Two operations of great value in tensor and spinor algebra are symmetriza-
tion and anti-symmetrization. But it turns out that owing to the two-
dimensionality of spin-space, the latter operation almost disappears for
spinor algebra. It will be useful, however, first to discuss these two opera-
tions briefly for more general tensor systems. The only condition on the
module 6* that we shall need, at first, in addition to the assumed total
reflexivity-which latter is not used before (3.3.22)-is that © contains a
subring isomorphic with the rationals. After (3.3.23) we specialize to the
case where a (normally two-dimensional) basis exists.

We adopt the conventional notation that round and square brackets
surrounding a collection of indices denote, respectively, symmetrization
and anti-symmetrization (sometimes called skew-symmetrization) over
the indices enclosed. Thus we have

_ 1
%<?(*($)£>= Yv^&zpy + %??(ioi2» (3.3.1)

(3.3.2)
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etc., and
1

^[a/3]-2 ~~ ̂ (X&apS ~ %0>ptx2» (3.3.3)

V 0>[<xPy}2 = ^r^^zPy3 ~ V&Pzyg ~*~ V Ppya.2. ~~ r &xyp2 + V &y*p2 ~ *r .̂ y/3a5>'

(3.3.4)
etc., and similarly for upper indices.

Occasionally, when it is required to omit certain indices in a symmetriza-
tion or anti-symmetrization, a vertical bar will be used at both ends of the
group of indices to be omitted from the (anti-)symmetry operation. (Indices
in reverse position do not require vertical bars, however.) For example:

Q[cc\py\Xn] _ l/gaPy^n _ gWyctn _|_ QXpyn* _ QctPy^X _|_ QnPyciX _ gnPyka\ n> 3 5)

We may even write
Q(<x\P[yX]\n) __ LmoiPykn _^_ QtipyAct _ Qctpkyti _ ^/x/Uyax (3.3.7)

etc.
A number of properties of these two symmetry operations follow im-

mediately from the definitions. Among these are the following:
If symmetrization is applied to a number of indices, and if subsequently

another symmetrization is applied to the same (and possibly additional)
indices, then the first symmetrization can be ignored. For example if
W = > W then ^ ( A M V ) = n ^ . This could be written rja{{^)v) = naUllv).
The same result applies to anti-symmetrizations. Thus

and

If symmetrization is applied to a number of indices, and if subsequently
an anti-symmetrization is applied to two or more of those indices (and
possibly additional indices) then the resulting expression vanishes. For
example, if £^v = r\^)v then £a[A/iv] = 0. The same remark applies with
the roles of symmetrization and anti-symmetrization reversed. Thus,
assuming that 7 , . . . , e are more than two in number,

^[a...(y...£)...t]]2 ~ ^» X&(a...[y...e]...ri)£:="' (3.3.10)

It is not true in general that symmetry operations commute with each
other. However, two such operations obviously do commute if they act
on totally different indices. For example, we can form unambiguous
expressions like <AM)y[A/iV]- But expressions like ^a(/,y[A)MV] are not per-
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134 3. Spinors and world-tensors

missible, since it would not be clear whether the symmetry or anti-sym-
metry operation is to be performed first. The same holds for upper indices,
of course. As in (3.3.5), the symmetry operators apply to upper and lower
indices independently, for example:

aw=i^vv - ̂ y+ow - c/)- (3-3-1»
We shall also have occasion to apply (anti-) symmetry operators to

composite indices. For example,

£jrf[#i#2]#3 = j ' ^ ^ 1 ^ 2 ^ 3 ~ ^.s4®2®\®-)' (3.3.12)

This notation will only be allowed, however, when the indices within the
bracket are of the same valence. Identity of valence is indicated, symboli-
cally, by using the same kernel letter for the indices. If, for example,
st = a and & = £y*, then (3.3.12) reads:

v J_v 71 72 y 3 _ l v 72 yi 73 f l l 1 'W
A ^ / [ ^ i ^ 2 ] ^ 3 l ^ P i p2 Pi 2**ap2 0i p3 ' \J.J.iJ)

A tensor (or spinor) is said to be [anti-] symmetric in a collection of
(possibly composite) indices if it is unchanged when the operation of
[anti-] symmetrization is applied to the relevant indices. Thus, if

then we say that x A v and *A A v a r e ' respectively, symmetric and
anti-symmetric in X ... v. Note that, from the above remarks, the result
of any [anti-] symmetrization is automatically [anti-] symmetric. For
example, 0a[/*(A

yl
MV) is symmetric in / , fi, v and anti-symmetric in /?, y. A

tensor is symmetric in a group of indices if and only if it is unaltered when
any pair of indices in the group is interchanged. Similarly, it is anti-sym-
metric in a group of indices if and only if its sign is reversed whenever
any pair of indices in the group is interchanged.

A convenient notation for the subspace of an S , consisting of those
elements with some specific symmetry, is to employ the same arrangement
of round and square brackets to the symbol ® itself as would yield the
desired symmetry when applied to elements of ® . In particular, the
spaces of symmetric and antisymmetric elements of ®a are denoted,
respectively, by ®(a y) and <Z[a y] and, for example, we have

If a tensor is [anti-] symmetric in two overlapping groups of indices,
then it is [anti-] symmetric in the combination of the two groups together.
Thus

J X'... a.. .7. . .£.. . ^ . . . ( a . . . y ) . . .E . . . ^ . . . a . . . (7 . . .£ ) . . .

..«...y...,..=X...i«...y..,>../> (3-3.15)
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and

*f ^ ...a...y...... = f..[a...y]..,... = f ..«...[y...e]... (3-3.16)

This follows from the fact that any permutation can be represented as a
product of transpositions only of adjacent indices. Furthermore, if a tensor
is symmetric in a group of indices which overlaps another group of indices
in which it is anti-symmetric, then the tensor vanishes. To see this, it is
sufficient to consider a tensor ^A|XV which is symmetric in 2, \x and skew
in /x, v. We have

The tensor is thus equal its negative and so must vanish.
If an [anti-] symmetric group of indices on a tensor is contracted with

another group of indices, then the second group of indices may be [anti-]
symmetrized without changing the result of the contraction:

y p . . . t _ y (p...T) (p...T) H3 18)

and
y p...t = y [p...t] = y [p...t] /3 3 | m

These results are easily proved by expanding one of the [anti-] symmetries
in the middle term according to (3.3.1)—(3.3.4) and then relabelling the
dummy indices. By invoking the [anti-] symmetry of the remaining indices
we can make every term of the sum the same. For a group of N indices,
there are N! terms, which is compensated for by the N! in the denominator
of (3.3.1)—(3.3.4). One implication of the above result is that if a pair of
symmetric indices is contracted with a pair of anti-symmetric indices, then
the result must be zero. Thus

Note that for any I a e 6 a , the tensor X^X^ ...Xs is symmetric in

a, / ? , . . . , S. Hence

^^X'XK ...X* = 4>^...t)X'X" . . . X > . (3.3.21)

This shows that the 'if part of the following result holds:

(3.3.22) PROPOSITION

^...sX'X" ... Xs = Ofor all X'e<5* ifft^, = 0.

To demonstrate the 'only if part, set
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136 3. Spinors and world-tensors

Then, assuming a, / ? , . . . , (5 are N in number, we get

6 X*X$ X3 — d> y*yP Y3 4- N/rh y^yP Y3

yzyV yd

If the left-hand side is to vanish for all A™, then each coefficient of Xr

must vanish on the right. (This requires no more than we have assumed
for the ring ®, namely that it contains a subring isomorphic to the ra-
tionals. For, if we choose I = 0 ,1 , . . . , N in turn, we find that N + 1
linearly independent combinations of the coefficients on the right vanish.
Taking rational linear combinations, we see that each coefficient must
individually vanish.) In particular, ^^{^,.,d)Z

aYp ...Y3 must vanish.
Since it vanishes for all Za, (t>st(Oip...s)Yp... Y3 = 0. Since this must vanish
for all 7a, we can repeat the argument and finally obtain </> (̂â .̂ ) = 0,
as required. It is clear that (3.3.22) also holds with a, /?,. . . , 5 replaced by
composite indices all of the same valence.

Also, it follows from (3.3.22) that

the function (j>^{X) = </> â bX
a... X3 serves to define the

tensor 4>^(aL...b) uniquely (3.3.23)

since the difference between any two such functions vanishes identically
iff the difference between their corresponding symmetrized tensors
vanishes.

Results specific to spinors and world-tensors

All results so far apply no matter what the dimension of ®a. But because
spin-space is only two-dimensional, there are special simplifications which
occur in the case of the spinor system that we have introduced. These
simplifications arise from the following fact: any spinor which is anti-
symmetric in three or more of its indices (either primed or unprimed)
must vanish. This means that for any 0^pQR or <j>^P>Q>RI we have

(Clearly there is no loss of generality in considering only three indices,
because of (3.3.9).) To see that (3.3.24) must hold, we can consider com-
ponents in any spin-frame, noting that of three numerical spinor indices
two at least must be equal. Alternatively, the result is seen to be a parti-
cular case of one given earlier, cf after (2.3.1).

Note that the particular case of (3.3.24)

W c i D = ° (3.3.25)
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3.3 Symmetry operations 137

leads us back to the identity (2.5.21) considered earlier. In fact (3.3.24) is
a consequence of (2.5.21) and its complex conjugate. To see this we may
apply the equivalent relation (2.5.24) to 0^[pQR] in two ways, first employ-
ing the anti-symmetry in QR, and secondly the anti-symmetry in PQ.
In this way we obtain

T (3 3 26)

Upon transvection with ePQ, the relation 0^[PST]s
ST = 0 follows, whence,

by (3.3.26), 0^[PQR] = 0 as required.
For rc-dimensional tensors, an n-element basis <5£ for S a being assumed,

there is an identity corresponding to (3.3.24), namely

There is also a relation corresponding to (2.5.24). For this, define tensors
8a a and £ai>an whose components in the given basis are

eai a^ = e*i-*n = 1 or - 1 or 0, (3.3.28)

according as cxt,...,an is an even, an odd, or not a permutation of 1,..., n.
(This agrees with (2.3.4).) The quantities (3.3.28) are called Levi-Civita
symbols. We have

n\S[*l ... (5£] = eai-"n£fil..,pn, (3.3.29)

by comparison of components on the two sides. Hence, if $ ^ is skew
in a , , . . . , a we have

\nl ' ai---a"

This shows that (as in (2.5.24)) any set of n anti-symmetric indices can be
'split off as an a-tensor.

This applies in the particular case of ® a (i.e. when ,o/ is vacuous),
showing that all totally anti-symmetric elements of S a a are propor-
tional to one another. (The same applies to ®ai---a>\) In the general case
there is no reason to single out any one of these, the selection of £a

being arbitrarily dependent on the particular choice of basis 6^ for Sa.
However, for spinors, the existence of an inner product serves to single out
a particular eAB (the corresponding bases for which (3.3.28) holds being
the spin-frames). Also, the existence of both a world-tensor metric gab and
an orientation serve to select particular anti-symmetric elements eabcde
%ahcd and eabcd e%abcd, called alternating tensors, for special consideration.
However, in keeping with our general mode of procedure, which is to
construct the world-tensor concepts using the spinor formalism, we shall
prefer, in the first instance, to give a definition of eabcd in terms of eAB,
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138 3. Spinors and world-tensors

namely

(3.3.31)

This eabcd is a real tensor since complex conjugation interchanges the two
terms on the right and replaces i by — i. It is skew in a, b since

ebacd ~ l8BC8AD8B'D'8A'C ~ l8BD8AC8B'C'8A'D' = ~~ eabed (3.3.32)

and it is similarly skew in c, d. Finally consider an interchange of b and c.
We have, using the a-identity (2.5.21) and its complex conjugate,

eabcd + eacbd = l(8AC8BD ~ 8AB8CD^8A'D'8B'C ~ l 8 AD8 BC^8 A'C'8 B'D' ~ 8A'B'eC'D')

= ^8AD8BC)8A'D'8B'C ~ i8AD8Bc(8A'D'8B'C') = 0 ' (3 '3 '33)

Being thus skew in each of the overlapping pairs ab, be and cd, it follows
that eabcd is totally skew in a, b,c,d:

eabcd = %bcdY (3-334)

The world-tensor eabcd is obtained from eabcd in the normal way, i.e., raising
its indices with gab. Since this corresponds to raising the spinor indices, we
have

eabcd = ieAC8BDsA'D'sB'C _ ^AD^C^'CpB'D' (3.3.35)

Using (2.5.12) and (2.5.25) we obtain, from (3.3.31), (3.3.35)

eabCde
abcd=-24- <3-3-36)

Let us now introduce a restricted Minkowski tetrad go
a = ta,gx

a = xa,
g2

a = / , g3
a = z

a. This will be related (locally at least) to a spin-frame
80

A = oA,sl
A = iA according to (3.1.20). We obtain

e 0 1 2 3 *abcdl X y Z

= - ^8AC8BD8A'D'8B'C " 8AD8BC8A'C'8B'D^oA°A' + W )

(oBiB' + iBoB')(ocic> - foc'){oDoD' - iDiD)

= — i ( — 1 — 1 — 1 — 1 ) = 1 - (3.3.37)

Raising the indices (using (3.1.27)) we get

eol23=: - 1 . (3.3.38)

Thus

eabCd = 24g[a°gb
1gc

2gd* = - 24 t[axbyczd] (3.3.39)

and

eabcd = _ 24 g^ag*g2
cg^ - - 24 t[axbyczd\ (3.3.40)

Once we have (3.3.36), the computation (3.3.37) is necessary only for
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3.3 Symmetry operations 139

determining the sign of e0 1 2 3 , since the relation (3.3.36) may be expressed
as

_ 94 — P P napnbqncrnds

Z H ~~ eabcdepqrsd 9 9 9
= (eo l 2 3)224det(£ a b)= -24(e 0 1 2 3 ) 2 . (3.3.41)

The positive sign of e0l23 depends essentially on the fact that fa, xa, ya, za

is a proper tetrad. Had we chosen an improper tetrad we would have had
e0123 < 0. For a proper Minkowski tetrad, it is eabcd and — eabcd which are
the Levi-Civita symbols, while for an improper tetrad it is — eabcd and
e*hcd.

From (3.3.29) we get

^/M r s =-2 4AW ]- (3.3.42)
Successively contracting one upper with a lower index (or verifying directly
by means of components) we obtain

w^ — sAV
W^ — ^ V (3-3.43)

and (3.3.36). The tensor
p cd _ • C D D' C _ : D C C D' /
eab - l8A £B SA' CB' lbA £B £A' £B' (

will play an important role in the next section. Note the relation

^ab
c\/q=-49a

[pgb
q\ (33.45)

which follows either from (3.3.43), or directly from (3.3.44). Note also, for
an arbitrary tensor Hcd,

eab
cd"c< = eAABB

CCDD'Hcc,DD, = \{HAB,BA, - HBA,AB,). (3.3.46)

Reduction to symmetric spinors

To close this section we shall demonstrate the important fact that, in a
certain sense, any spinor can be expressed in terms of a collection of spinors
each of which is totally symmetric in all unprimed indices and totally
symmetric in all primed indices.

Let us start by illustrating the procedure in the case of a general spinor
(j)AB of valence [°2 £]. We have

where

= # c
c , (3.3.48)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.004
https://www.cambridge.org/core


140 3. Spinors and world-tensors

by (2.5.23). The spinor 6AB is clearly symmetric and so is A (trivially, since
it has no indices). The information contained in (pAB is shared between
these two symmetric spinors. (In terms of components, there are four
independent quantities </>AB. This information splits into the three in-
dependent quantities 0oo = 4>OO96O1 = 01O = ̂ 0 1 4- </>10), # n = 4>l, and
the one scalar I = ^ > 0 1 - </>10).)

We turn now to the general case. Let us use the symbol ~ between two
spinors if their difference is a sum of terms each of which is an outer product
of 6-spinors with spinors of lower valence than the original ones. Clearly ~
is an equivalence relation. We wish, first, to show that

,̂...r .̂..f, <3-3-49)
holds for each </> 1AB F. We have

1
V^AB.-.F) ~ ^WgAiBC.F) ~*~ VgBiAC.F) + $ 2C(ABD...F) + " " + 0$F{AB...E)»

(3.3.50)

where A, B,...,F are r in number, so that there are r terms on the right.
Consider the difference between the first and any other one of these terms,
e.g.,

(t)£A(BCD...F)~ (t>2C(ABD...F)~ ~&AC(^^ (BXD...F)' (j.J.Mj

by (2.5.23). Substituting from similar equations for all terms after the first
on the right in (3.3.50), we find,

Repeating the argument we get

4 W . . F ) ~ < / W . . F ) ~ <I>SAB(C...F) ~ ' ~ ~ (I)2AB...D(EF) ~~ ̂ 2AB...F ( 3 - 3 ' 5 3 )

which establishes (3.3.49).
Clearly the result corresponding to (3.3.49) when A,B,...,F are replaced

by primed indices is also true. Thus, applying the argument once for the
unprimed indices and again for the primed ones, we see that any spinor
XA FP, s, differs from its symmetric part x(A F>(P SI by & sum of outer
products of es with spinors of lower valence. A similar remark applies to
these spinors of lower valence, and so on. Thus we have the

(3.3.54) PROPOSITION

Any spinor xA FP s- is the sum of the symmetric spinor %{A F)(P, S1 and
of outer products of es with symmetric spinors of lower valence.

(We call a spinor symmetric if, written with lower or upper indices only,
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3.3 Symmetry operations 141

it is symmetric in all its unprimed indices, and also symmetric in all its
primed indices.)

Let us illustrate this with two examples. We have

y — y — kF yD — ±F vD — ±F Y D

X-ABC ~ ^(ABC) 3bAB^ (DC) 2>^AC^ (DB) l^BC^A D

and

U(AB){A'B) 2t'ABU C(A'B') 2fc'AB'L(AB) C ^ A-^AB^A'B'1' C C"

(3.3.56)

If we have a spinor with upper as well as lower indices, clearly we can
simply lower all its indices and then proceed as above. We note in this
connection the form that a symmetric spinor takes when some of its
indices are raised:

(3.3.57) PROPOSITION

The spinor \\iA Dp su, W,F, H, is symmetric ifftyv
A'"™'PF'>"s

H' is symmetric in

each of its four index sets,

IU...WP...S = j(U'...W')(P...S)
V A . . . D F...H' V(A...D) ( F . . . H ) '

and every contraction over a pair of indices vanishes, for which it is sufficient
that

J.U...WX...S _ A JtX'..W'P...S _ A

The reason for this is to be found in (2.5.23): the vanishing of a contraction,
when the upper index is lowered, asserts the vanishing of a skew part, i.e.,
symmetry in the two relevant indices.

Irreducibility

Symmetric spinors (at a point) are important in that they are irreducible
under the spin group SL(2, C). Although we shall not concern ourselves
in any great detail with questions of the irreducibility of tensors, spinors,
etc., a few general remarks will not be out of place here. Suppose we wish
to represent a group ^ by linear transformations of a vector space 33,
which is then called the representation space. If 93 can be expressed as a
direct sum

where 93 x ^ 0, 93 7 j= 0, in such a way that the transformations representing
^ send the elements of 93 x into themselves (no matter where the elements
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142 3. Spinors and world-tensors

of 33 2 go), then the representation is said to be reducible', otherwise it is
irreducible. (The elements of the representation space 33 are also said to
be [irjreducible under ^ if the representation of ^ on 33 has this property.)
If 33 can be expressed as a finite (or infinite) sum

and the transformations act irreducibly on each 33. separately, then the
representation is said to be completely reducible.

Here we are concerned with the group of restricted Lorentz transforma-
tions OT+(1, 3) and its twofold covering, the spin group SL(2, C). For these
groups it can be shown (cf. Naimark 1964) that any finite-dimensional
representation (i.e., one on a finite-dimensional vector space 33) is com-
pletely reducible and that every irreducible representation can be realized
as (i.e., is linearly isomorphic to) the transformations acting on a symme-
tric spinor (at a point*), induced by a spin transformation ^A^"tA

B^B-
Symmetric spinors are therefore irreducible under these groups. If
cj)A CD, F, is a symmetric spinor, the transformations are of the form

f....CD'...F- » f / ° • • • fCC° h °b • • • ' / " K...C0Db...Fb<

where .stf = A...F\ stf0 = AO...F'O. Now consider the matrices of the

components of T^°9 in effect

t (Ao t
 C°) 7 (Do 7 Fo»

[ ( A — *C) f ( D ' • • • * F ' ) '

but with a suitable elimination of multiplicities: e.g., t(A
{AotB)

Bo)(f)AoBo can
be reduced to

T-00 ^T-Ol
1 00 Z i 00
T-00 ^ ^ 0 1
1 01 A 01
yOO ^ T - 0 1
1 1 1 A I 1 1

and, in general, identical rows and columns in the (/>- and 7-matrices can
be omitted and the remaining columns in the 7-matrix multiplied by the
number of occurrences of the 4> terms on which they act (1!, 2!, 3!, 2 !3!,
etc.). Then the 7-matrices give the irreducible matrix representations of
these groups. Thus, any finite-dimensional representation of OT

+(1, 3) or
SL(2, C) has a representation space which is a direct sum of spaces of
symmetric spinors (at a point). The expressions of spinors in terms of

* By contrast, for the representations of the Poincare group, symmetry conditions on
spinors at a point are insufficient. The representation space of the Poincare group
consists of fields satisfying various field equations, e.g., Maxwell's equations.

T M 1
1 00

01

T l l
1 11
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3.3 Symmetry operations 143

symmetric spinors that we obtained earlier in this section (cf. (3.3.55))
are, in fact, examples of splitting a space up into its irreducible parts
(since each of the parts transforms into itself under spin transformations).
However, this is not the only, nor the most general, way to form a direct
sum. One can also string together, formally, spinors with different index
structures, e.g., as is done in the case of Dirac spinors or twistors (cf.
Appendix vol. 2 and §6.1) where the pair \j/A, xA, is considered as a single
4-component object *Fa, and we can write x¥a = \J/A®XA'-

Another way of expressing the irreducibility of symmetric spinors at a
point is to say that they are, in a certain sense, saturated with symmetries:
if any further symmetry relations are imposed, then either we lose no
information, or we get zero. This is perhaps a little clearer in the case of
tensors. Evidently any totally symmetric or totally anti-symmetric tensor
is irreducible, and 'saturated' in this sense. But so also is a tensor with
Riemann-tensor symmetries (cf (4.3.53)-(4.3.56)):

p n n n A
i\ , , i \ r . n r .T A . . , i \ r. , , U

CIDCd L^PJ L''"J CUCIP Cl[OCuJ

For example, the further symmetrization

d(ab)c ' abed

'loses no information' since

But R[abc]d = Ra(bcd) = 0 etc. This instances Young tableau symmetry.
[In the theory of Young tableaux (Young 1900, see also Weyl 1931)*

irreducible tensors are constructed (and classified) by first imposing
symmetries on certain groups of indices and then 'saturating' the resulting
tensor with anti-symmetries. All further (anti-) symmetry operations either
lose no information or yield zero. As an example of Young-tableau
symmetry, let us write, for the partition (4, 3, 1) of 8,

pea
d

and define

S = S = F -
apySe^d eyt]l^ (TJffQ

PSOL (fie a)
3 <f~

The meaning of the last symbol is that we symmetrize over the indices
eyrjC,, fidoi first, and then anti-symmetrize over efiS, y6, rjoc. (We write the
* For typographical reasons this footnote on Young tableaux is being put in the text. It

ends after five paragraphs, on p. 146, when spinors are taken up again.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.004
https://www.cambridge.org/core


144 3. Spinors and world-tensors

symmetrized index groups in order of their lengths.) Sa Q is now 'complete-
ly saturated' with symmetries, and irreducible. For example, the Riemann
tensor has precisely the following Young-tableau symmetry (though this
is not trivially obvious):

-R = R
4-^apyd IX(a"y)-

However, tableaux do not supply a unique realization of all irreducible
symmetries. For example, the tensor /> = Q» + coQ^a + co2Q „
(where co = e2i7r/3) has the 'symmetry' Pyafi = u>PaPy, and is irreducible;
so also is the tensor M[afi][yd] — M[y3][ocpr but neither tensor has tableau
symmetry; nevertheless P(aP) has tableau symmetry aj8, y and from it
p*py itself can be recovered (|Pa^, = P((zfi)y + coP(py)a + a>2P{ya)fi), so we say
it is 'equivalent' to a tableau. In the same sense the second tensor is
equivalent to a tableau with symmetry a/?, 7, d, in an obvious notation. Any
irreducible tensor is equivalent, in this sense to a tensor with Young
tableau symmetry.

We can give elegantly (Frame et al 1954, Littlewood 1950) the number
of independent components of any object with Young-tableau symmetry
(or equivalent). Make two tables of squares, in the shape of the symmetriz-
ed index groups - for example, for Sx 0, thus:

n
n —

n —

1

2

n

n
+ 1 n H

n -\
Yl

hi

n jh3 6

4

1

4
2

3
1

1

In the first table write n down the main diagonal (the number of dimensions
of the vector space ®a), n — 1, n — 2, etc., in successive diagonals below,
and n + 1, n + 2, etc., in successive diagonals above the main diagonal.
In the second table write in each square the number of squares to the
right, plus the number of squares below, plus one. Form the product of all
the numbers in the first table, and of all the numbers in the second, and
divide the former by the latter: this gives the required number of compo-
nents. In the case of RaPyd it gives, almost instantaneously, ^«2(n2 — 1).

It may be noted that Young tableaux can be equally well formed by
first anti-symmetrizing the columns of indices, and then symmetrizing the
rows. With these two alternative conventions, identical looking tableaux
are not equal, but they are 'equivalent'. Thus for applying the above-
mentioned met^^d of determining the number of independent compo-
nents, the convention is immaterial.

These two alternative types of irreducible tensor find convenient
interpretations as the 'coefficients' of two different kinds of 'form'.
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3.3 Symmetry operations 145

Consider, first, a tensor with Young-tableau symmetry of the latter kind,
so that it is symmetric rather than skew in its relevant groups of indices.
For example, such a tensor Tap del, 0 would be obtained by re-applying
the 'horizontal' symmetries in the definition of Sa 9 above:

T = S
(POa)
d

(Following this by another application of the vertical antisymmetries
would yield a non-zero multiple of 5 again.) Because of (3.3.23), the
information contained in T is the same as that contained in the polyno-
mial function (or 'form')

Now using (3.3.21), we can rewrite this as

the second form following from the antisymmetry of S , with

papy _ x^Y^Z^ Qa^ = X^Y^ Ra = X*

The function S of'simple' skew tensors {cf. (3.5.30) below) of this (hierarchi-
cal) type gives us the alternative polynomial form referred to above.

The fact that the function T can be re-expressed in terms of these skew
products can be stated as the functional relation

T{X\ Y\ Z") = T{X\ Y* + XX\ Z* 4- [iX* + v Ya)

(for all /, JU, v), or as the differential equations

where the partial derivative expressions have (if necessary) an obvious
abstract-index meaning. Applying (3.3.22), we see that these differential
equations are equivalent to the condition that if any of the horizontal
symmetries in the right-hand expression

T = T
aPyde^e ey^

pea
s

is extended to include one more index lower down in the tableau, then the
resulting tensor vanishes (e.g., Ta^ydE^)d = 0). This condition is (necessary
and) sufficient for a tensor Ta e- symmetric in its relevant groups of
indices (i.e., the horizontal symmetries being given)-to have Young-
tableau symmetry. (Thus it expresses the existence of the 'hidden' vertical
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146 3. Spinors and world-tensors

anti-symmetries.) A corresponding statement also holds for S , with
'symmetry' and 'anti-symmetry' suitably interchanged.]

One of the virtues of 2-spinor theory is that, by the earlier discussion of
this section, only symmetries need be considered and not anti-symmetries,
and so the theory of Young tableaux is not needed.

When one speaks simply of irreducibility of a tensor without reference
to a specific group, then the group in question is understood to be the
group of all linear transformations, GL(n, C). But if the relevant group is
some subgroup of GL(n, C), further reductions of the tensor may be
possible. For the Lorentz group, the metric tensor gab and its inverse gab

are invariant objects, and 'generalized symmetries' are possible in which
these objects are employed in order to 'reduce' a tensor into smaller parts
that cannot be obtained by imposing ordinary symmetries. An important
example is afforded by the reduction of the Riemann tensor into its three
parts (the Weyl tensor Cabcd, the Ricci scalar R, and the trace-free Ricci
tensor Rab — \gabR-cf. §§4.6, 4.8), irreducible under the Lorentz group;
these parts arise from requiring, in addition to symmetries in the ordinary
sense, certain 'trace' conditions, such as gacCabcd = 0. If the Lorentz group
is specialized still further to the restricted Lorentz group, then further
invariant objects arise, namely eabcd and eabcd. These generalized symme-
tries can get extremely complicated. The translation to spinor form
therefore effects a considerable simplification.

The reduction of the Riemann tensor in spinor terms is treated in §4.6.
Here we briefly consider a much simpler problem, namely the direct tensor
translation of a symmetric spinor with an equal number of unprimed and
primed indices:

(t)ab...f= VAB...FAB...F'

= ^AB...FHA'B:..Fr <3 3-5 8)

Evidently cj)ab f is symmetric in its tensor indices, and trace-free:

*->..., = *«*.../>> (3-3-59)
<t>\c f = 0. (3.3.60)

Conversely, (3.3.59) implies

SAB<t>AA,BB.c f = eAB4>BBAA\: f (3.3.61)

' AB'BA'c.f

and so the left member of (3.3.61) is skew in AB'. But, by (3.3.60), its further
transvection with sA B must vanish; hence it is zero, showing that
<\>AB FA,B, F> is symmetric in AB. Similarly it is symmetric in BC, etc.,
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3.4 Tensor representation of spinor operations 147

and also in A'B' etc.; hence it is totally symmetric. This shows that the
conditions (3.3.59), (3.3.60) on the tensor are completely equivalent to the
symmetry (and thus irreducibility) of the spinor. Note also that this
argument makes it easy to count the number of independent complex
components of a complex tensor <\>a / ? subject to (3.3.59) and (3.3.60).*
It is (r + I)2 when <\>a f has r tensor indices, since (j)A FA, F, clearly has
that many independent components. (A...F may contain no zero, one
zero, etc., up to r zeros; and so it can take r + 1 'values'; similarly for
A'... F'.) This result is not so easily obtained without the spinor translation.
Moreover, we have by the same argument

(3.3.62) PROPOSITION:

V(PA...CP...R' is symmetric of valence [°°], then it has (p + 1) (q + 1) indepen-
dent (complex) components.

3.4 Tensor representation of spinor operations

It follows from the way we have constructed the world-tensor algebra that
every operation carried out with tensors may be reinterpreted as a spinor
operation. The only difference in these interpretations is the purely formal
one of replacing each tensor index by a pair of spinor indices. Thus,
manipulations of tensors are merely special cases of manipulations of
spinors, in which only certain types of spinors and only certain spinor
operations are considered, namely those in which the indices may be
consistently clumped together in pairs throughout the whole procedure,
one primed and one unprimed index being involved in each clumping.
From this viewpoint, the spinor algebra is considerably richer than the
ordinary tensor algebra owing to the presence of numerous spinor opera-
tions which do not appear to have a direct tensor analogue, such as, for
example, contraction over a single pair of spinor indices or the interchange
of a single pair of spinor indices. In this section we shall show that these
apparently new operations, introduced with the spinor formalism, do in
fact have tensor analogues. Every algebraic spinor operation and every
algebraic spinor equation may be written as an operation on, or equation
of tensors, though sometimes with sign ambiguities. Thus we may view
the advantage of the spinor formalism as not so much that new operations
are available, but rather that certain operations are suggested by the

* This number is clearly the same as the number of independent real components of a
real tensor subject to the same linear restrictions.
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148 3. Spinors and world-tensors

spinor formalism which, because of their extremely complicated appear-
ance when written in terms of tensors, are not readily suggested by the
tensor formalism. It is perhaps significant that some of these tensorially
apparently 'unnatural' operations are in fact often useful in physical
applications. A further significant point is that the translation of a linear
spinor equation is often a non-linear tensor equation.

Trace reversals

Before entering into the general discussion, it will be useful to study some
special cases first. Consider an arbitrary symmetric (possibly complex)
world-tensor of valence [°] :

Tab=Tba. (3.4.1)

In spinor form, (3.4.1) becomes

TAA;B.= TBB.AA., (3.4.2)

which we can rewrite as

1 ABA'B' IS1 ABA'B'^ * ABBA> ^ l^1 BAB'A' lABB'A>' \J'^-J)

The first parenthesis is symmetric in A\ B' and, because of (3.4.2), also
symmetric in A, B, while the second is skew in A, B, and, by (3.4.2), also
in A\B'. By a double application of (2.5.23) to the second parenthesis we
therefore get

Tab ~ 1AA'BB' = SABA'B' + 8AB£A'B' T (3.4.4)

where

^ ABA'B' *(AB)(A'B) * (AB)A'B' * AB(A'B')

and

(The decomposition (3.4.4) is a particular case of that considered at the
end of §3.3, cf. (3.3.56).) We may rewrite (3.4.4) as

Tab = Sab + 9abr. (3.4.7)

The tensor Tab is real if and only if both T and Sab are real. The tensor Sab

is clearly symmetric, and trace-free:

Sc
c = 0 (3.4.8)

(by symmetry in A, B or in A\ B). We call Sab the trace-free part of Tab.
From (3.4.7) and (3.4.6) we have, in fact,

Sa>=Tab-±Tc<gab. (3.4.9)
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We can go one step further and apply the operation of trace reversal

Tab--=Tab-±Tc%b. (3.4.10)

Tab:

We then have

T;= - 7 7 (3.4.H)

and, in spinor form,

afc = * ABA'B' = SABA'B' ~ SAB£A'B'T (3.4.12)

By comparison with (3.4.4) we see that

ab~ 2 c Qab = *ABA'B' ~ * BAA'B ~ *ABB\'A ' (3.4.13)

so the trace reversal operation applied to Tab is effected in the spinor
formalism simply by interchanging the constituent spinor indices A and
B, or alternatively by interchanging A' and B'.

Dualization

Let us now consider an arbitrary anti-symmetric (possibly complex)
world-tensor of valence [ ° ] - sometimes called a bivector :

Fab=-F»a- (3.4.14)
In spinor form,

FAA-BB-=-FBB-AA-> < 1 4 1 5 )

which allows us to write

FABA-B- = &ABA-B- ~ FABBA) + frABV« ~ FBABA) (3.4.16)

By (2.5.23) we then get

Fab =

where*

We note that <j)AB and \//A,B, are both symmetric on account of (3.4.15).
Notice that if (pAB and ij/A>B, are chosen arbitrarily (but symmetric) then
the resulting Fab according to (3.4.17) will necessarily be skew in a, b. From
(3.4.17) we find

Fat = FAB'AB = $A.B*AB + £A.B$AB, ( 3 A 1 9 )

* In the literature, a quantity SAB
cd( = S(AB)

[cd]) is often employed, for which <pAB =
SAB

cdFcd and \jjA,B, = SA,B
cdFcd. With our conventions, this quantity can be written

SAB
cd = je(A

c£B)
Dsc'D\ as is readily seen.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.004
https://www.cambridge.org/core


150 3. Spinors and world-tensors

and thus the operation Fab\-^>Fab corresponds to interchanging \j/A,B, with
§A,B,. Hence if Fab is real, we have i//A,B, — 4>AB, and

Fab = <l>AB£AB+HB$AB- (3-4-20)

Conversely this form ensures the reality of Fab. Thus we see that there
exists a one-to-one correspondence, via (3.4.18) (1) and (3.4.20), between
real bivectors Fab and symmetric spinors (j)AB. An important example of
this is the field tensor of the Maxwell field (cf. §5.1). (In terms of compo-
nents: the information of the six real quantities F 0 1 , F 0 2 , F 0 3 , F 1 2 , F 1 3 ,
F 2 3 is given by the three complex quantities (/>00, 0O 1, </>n. See (5.1.59)
and (5.1.62) for the explicit formulae.)

The dual *Fab of a (not necessarily real) bivector Fab is defined by

* F -=-e Fcd = -e cdF (3 4 21)
rab' 2^abcdF 2 ab r cd' \J.^.^i)

Thus, applying (3.3.44) to (3.4.17), we get

*Fab = *FABA,B. = - i<PABsA,B, + isAB<PA,B, (3.4.22)

and

* ABA'B' ~~ ̂  ABBA' ~~ ~ ^ BAA'B' \JA.ZD)

We observe that dualization is effected in the spinor formalism simply by
an interchange of a pair of spinor indices followed by multiplication by + i.
From these formulae (and also from (3.3.45)) it is evident that the dual of
the dual is minus the original:

**Fttb=-Fab. (3.4.24)

It is, of course, possible to 'dualize' on any two skew indices even if they
form only a part of all the indices of a tensor. For example, tfGabs^ = G[ab]J^9

We may define *GaM by

*Gfl«:=i^G^. (3.4.25)

A useful lemma in this connection is the following (note that srf has become

To prove this, we note first that (cf. (3.3.43))

^[abc]® = 9[a Ob 9c ]^pqr® ~ ~ 6eabcdC ^ p

and also
*fiab _ I p a b c d r i _ lpabcd

U f® — 2e Ucdf@ — 2e f

It is also possible to define operations of dualizing on one or three indices.
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Suppose J^ is arbitrary and Kabcm is skew in abc; then we define

'Jab^ = eJJM (3.4.29)
%Kam = iea^Kbcm. (3.4.30)

It is now easy to prove, by the above methods, that
%'J^-JaJ,-

nKabcm = Kabcm (3.4.31)

and (with ,srf becoming d^, and J* becoming d@)

t / = ^P 1 f K — ±-P ^K f H 4 ^
J[abcd]V A.^abcdJf <6 > ^[abcd]® 4tabcd ^f &' \D.^.D^)

Using (3.3.31) we obtain the following respective spinor forms for (3.4.29)
and (3.4.30)

abed ~ lSACSB'C"'BA'%/ ~ l GBC8A'C"'AB'sf (3.4.33)

and

Returning to Fah, if

<i)*^=-ifaft'O
r(ii)*Faf> = iFa6, (3.4.35)

we say in case (i) that Fab is anti-self-dual, and in case (ii) that Fab is self-dual
By (3.4.23), these conditions are equivalent to

~ ~ ** BAA'B ~ ** AB

(3.4.36)
W ABA'B' ~~ ** BAA'B' ~~ ~ ** ABB'A' v11/ ** ABA'B' ~ ~ ** BAA'B ~ ** ABB'A''

respectively. We may write these succinctly as

ABA'B' = FiABHA'B'rW*ABA B = F
{ABMA'BT

A non-zero self-dual or anti-self-dual bivector is necessarily complex.
Clearly the complex conjugate of a self-dual bivector is anti-self-dual and
vice versa. If Fab is an arbitrary complex bivector, then

is ann'-self-dual, and

+ Fab-=^ab-i*FJ = ^AB^A-B- <3-4 3 9)

is self-dual.* Consequently every bivector Fab is (uniquely) the sum of an
anti-self-dual and a self-dual bivector:

Fab=-Fab+
+Fab- (3-4.40)

moreover, if Fab is real, these parts are complex conjugates of each other.

* The reason for choosing the terminology thus and not the other way around is that
a right-handed photon is described by a (positive frequency) complex Maxwell field
+ Fah which is self-dual, and a left-handed one by an anti-self-dual field ~ Fab.
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152 3. Spinors and world-tensors

Alternative necessary and sufficient conditions for Fab to be (i) anti-
self-dual, (ii) self-dual are (i) \JJA,B, = 0, (ii) <\>AB = 0, respectively; that is to
say,

W Fab = ^AB^A'B'^ (h>) Fab = &AB*A'B" (3A41)

A duality rotation Faby-^(6)Fab is defined by the equation
mFab-= Fab cos 6 + *Fab sin 6 = " J ^ e " " + +Fabe

ie (3.4.42)

By (3.4.38) and (3.4.39) we get
Wfa6 = e - i V ^ B . + e i % B . / W . (3.4.43)

Thus, in the general case, the operation Fab\-^
{d)Fab corresponds to (j>AB^>

e - ^ B a n d ^ ^ e ^ ^ i - e . t o ~FAB^ ~FABe~id and +FAB^+FAB&°.
If Fab is real, Fab i-> (0)Fflb corresponds simply to </>AB -> e 10</>AB (i.e. to

~Fa bi-^ ~Fa be~i e) . We observe that *F a b is a particular case of {B)Fah, with

0 - 7T/2.

There are many properties of (anti-) self-dual bivectors which can be
easily read off in the spinor formalism, not all of which can be so readily
obtained using tensors. If ~Fab is any anti-self-dual bivector and +Gab is
any self-dual bivector, then, for example,

~Fab
 + Gab = 0 (3.4.44)

and

-Fa
b + Gbc=

+Ga
b~Fbc. (3.4.45)

Equation (3.4.44) is easy to verify either by tensor or by spinor methods,
but (3.4.45) is much easier using spinors. Each side of the equation is
obviously simply

4>ACyA.c (3.4.46)

where ~Fab = 4>AB£AB, and +Gab = sAByA,B,. It is also obvious that the
quantity (3.4.46) completely determines the following quantity, and is in
turn determined by it:

~Fab
 + Gci = ct>AByc,D.eA,B^CD. (3.4.47)

To pass from (3.4.46) to (3.4.47) we need only multiply by — £BD&BD,
(= — gbd) and then interchange B with C and A' with D'. Thus from the
contracted product (3.4.45) we can pass to the outer product (3.4.47) and
thence to the two tensors ~Fab,

 +Gab separately, up to proportionality.
In purely tensor terms, however, these spinor index permutations are by
no means obvious operations. A general method for performing these
spinor operations tensorially will be given shortly. For this particular
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3.4 Tensor representation of spinor operations 153

problem, one can tensorially employ Robinson's 'unscrambled defined

by

(3.4.48)

It is straightforward to show, using spinor methods, that

~Fab
 + Gcd = Dabc/« -F; + Grq (3.4.49)

An example related to (3.4.45) is the equivalence of the various expressions
for the electromagnetic energy - momentum tensor (see (5.2.3)) which
again is much easier to establish using spinors than tensors.

General translation procedure

We have seen above that for a symmetric tensor Tab, interchange of the
spinor indices A, B effects a trace reversal. On the other hand, for a skew
tensor Fab, interchange of A, B effects the (seemingly unrelated) operation
of i times dualization. For a general tensor Hab of valence [°] these two
operations must be combined. For, since

HAABB=H(ab) + Hlab], (3.4.50)

we have
HBA'AB' = H{ab) + i*H[ab] (3.4.51)

and
HABBA-Hm-i*Hlab]. (3.4.52)

Writing these operations out explicitly, we get

HBAAB = ¥Hab + Hba - H;gab + i e^H") (3.4.53)

and

^ABB-A- = %H
ab + "ba ' n;gab ~ i eabcdH

cd). (3.4.54)

The complexity of these tensor expressions is remarkable, considering that
they represent the very simplest of spinor operations, namely the inter-
change of two index labels.

For future reference we mention also the formulae

'B'] ~ ~2£AB"C (A'B') ~*~ ̂ 8A'B^(AB)C (3.4.55)

"(ab) = ^(AB)(A'B) ~*~ "[AB][A'B'] ~ ^(AB)(A'B) ~*~ ^ABEA'B'**CC (3.4.56)

We can re-express (3.4.53) and (3.4.54) in terms of a certain tensor operator
as follows. Set

TJ cd_ D C C D>
Uab ~~ ^A bB ^A' ^B'

= %9a%" + 9X ~ 9ab9
c" + i ej"). (3.4.57)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.004
https://www.cambridge.org/core


154 3. Spinors and world-tensors

Then

HBAAB' = Uab
cdHcd and HABB.A. = £ / ^ H <r (3.4.58)

Note that

Uab
cd=Ucd

ab (3.4.59)

and

"*?=(> *"="„?• (3.4.60)

Thus, for example, we can write

HBAA-B- = VjtH^ HABB,A, = Ub:"Hcd, (3.4.61)

etc. Using this operation repeatedly we can express any spinor index
permutation (applied to some world-tensor) in completely tensorial
terms. This is because any permutation can be expressed as a product of
transpositions. For example, consider the tensor Qahcd = QAABBCCDD- T°
find a tensor expression for QCABDDBCA we may proceed by breaking
down the index permutation as follows:

UABCDA'B'C D *~* UBACDA'B'C'D' f~^ ^CABDA'B'C'D^^^CABDD'B C A

(3.4.62)

Thus

CABDD'B'C'A' ~^alblcldl
Ua2b2

 U be U ad

It is clear that there will often be many ways of achieving a particular
spinor index permutation as a product of transpositions, so there will be
many equivalent expressions like (3.4.63). In the tensor formalism the
equivalence of these expressions may be very far from obvious. To take
a simple example, since interchanging a pair of unprimed spinor indices
always commutes with interchanging a pair of primed indices, we must
have

VJ'UJ'-O^'UJ' 0.4.64)
This is because upon transvection with an arbitrary tensor Rdef, each side
of the equation yields RBA>AC>CB" It is no simple matter to verify (3.4.64)
directly.

If an index permutation involving only unprimed spinor indices is
broken down into transpositions in different ways, then again we get a
relation satisfied by Uab

cd. For example, the permutation ABC -• CAB
may be obtained via ABC -• BAC -• CAB or ABC -• ACB -• CAB or
ABC -• CBA -> CAB. This gives us

UaS'u** = uj*ux;' = ub;*uj'. (3.4.65)
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3.4 Tensor representation of spinor operations 155

It is readily seen that, with (3.4.60), either one of these equalities is actually
equivalent to (3.4.64). In fact, if we include the relation

Uab
cdUc;' = g;g/, (3.4.66)

which expresses the fact that ABh^BA\-^AB results in the identity index
permutation, then all identities in Uab

cd which are obtainable in this way*
are reducible to those that we have already found. We shall not demons-
trate this fact in detail here. It is merely a question of showing that every
breakdown of a spinor index permutation into a product of transpositions
can be converted into any other by means solely of transformations of the
type which we have considered above.

We now turn to the question of the representation of a general spinor
Xtf in world-tensor terms. Let us first suppose that, for convenience, all
indices have been lowered. (This clearly involves no loss or gain in the
information contained in x^) If X^ — 1A EB> F> has the same number of
primed as unprimed indices, then at most an index substitution is required
to obtain a complex world-tensor equivalent to x^ • If desired, this complex
world-tensor may be described in terms of two real world tensors, namely
its real and imaginary parts. Of course, there will always be many different
index substitutions which can be used to yield a complex world-tensor,
e.g.,

XABCDEF'^XABCABC' o r XABCBCA) o r XEBDB'ED'I (3.4.67)

but, by the above discussion, all such world-tensors are equivalent to
one another via purely tensorial operations. Thus it is immaterial, from
the point of view of the general discussion, which tensor equivalent is
selected. In practice, the choice need be governed only by considerations
of convenience.

Next, let us suppose that x^ = XA...EB...F'
 n a s a n e v e n tota^ n u m b e r °f

indices, although the numbers of primed and unprimed indices may be
different. We call such a spinor an even spinor. In this case we take the
outer product of x^ with a sufficient number of a-spinors to make the total
number of primed and unprimed indices equal. (This clearly involves no
loss or gain of information.) The situation is then reduced to the one con-
sidered above, and a complex world-tensor (or pair of real world tensors)
results which can be used to describe the spinor x^ • Again, several different
complex world-tensors may arise in this way, but all are tensorially
equivalent to one another, so any one may be selected. This applies even
if more than the necessary number of e-spinors have been used. For the

* There are other identities satisfied by Uab
cd, however. For example, Uab

cd + Ua
dc

b =
ga

cgb
d expresses the a-identity (2.5.22).
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156 3. Spinors and world-tensors

extra e-spinors may, by spinor index substitution, be collected into pairs
£PQ£PQ>. Such a pair is just gpq in tensorial terms, which, appearing in
an outer product, neither adds nor subtracts information.

Finally, suppose that x^ = XA EB' F' *S a n °dd spinor, i.e., it has an odd
total number of indices. There can now be no complete tensor analogue
since x^ is a spinorial object. (We recall that any outer product of an odd
number of spin-vectors or conjugate spin-vectors at a point must change
sign under a continuous active rotation through 2TC at the point, since each
factor does; the spinor x^ is a sum of such outer products and so shares
this behaviour.) Thus we can only hope to represent x^i tensorially up
to an overall sign. Accepting this, however, we can apply the above dis-
cussion to the even spinor x^ X^ -> which defines x^ UP to sign. We may
note that the procedure of §3.2 for representing a spin-vector is essentially
an application of this method. Starting from the spin-vector KA, we
'square' it to obtain the even spinor KAKB. Multiplication by sA,B, gives
us the complex world-tensor KAKBSA,B,, in accordance with the above
prescription. For purposes of geometrical realization we take (twice)
the real part to obtain Pab = KAKBEA>B, + £ABKA>KB., which is just (3.2.9)
with indices lowered. It is not necessary to consider also the imaginary
part of KAKB£A,B, since this is simply (one-half) the dual *Pab of Pah. The
geometrical interpretation of — *Pab adds nothing to that of Pab since it
represents a null flag with the same flagpole as that of KA but with flag
plane rotated (positively) through n/2 (i.e. giving the flag plane of em/*KA).
The complex bivector KAKBe,A,B> itself is just the anti-self-dual* part

We next consider how the various spinor operations can be interpreted
in purely tensorial terms. We have already considered spinor index
permutations above, and general spinor index substitutions effectively
add nothing to these. The operation of complex conjugation presents
no problem: the tensor equivalent of the complex conjugate of a spinor
is the complex conjugate of the tensor equivalent of the spinor. Also,
multiplication of an even [odd] spinor by a scalar corresponds to multipli-
cation of the tensor equivalent by the same scalar [square of the scalar].

The operation of outer multiplication of spinors translates, in effect,
to outer multiplication of the corresponding tensors. That this is not quite
so simple as it sounds can perhaps best be clarified by examples. Suppose,

* Each otPab,*Pab and ~Pflbisnw//inasense which will be described in §3.5 (cf. (3.5.28)),
so the complex bivector ~Pab is an anti-self-dual null bivector - a property which
serves to characterize it as having the form KAKBBA,B, . There is thus a close association
between such bivectors and spin-vectors.
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first, that we have two even spinors \j/AB and <i>AB.c,D. • We represent them
by complex world-tensors Pab = il*ABeA.B,9 Qabc = <\>AA .B.C£BC. Now by

our earlier prescription, Jhe outer product \j/AB<I>CD'E>F> might be represent-
e d by Rabc = ll/AB(t)cA'B'C'- Clearly Rabc is not the outer product of Pab

with Qabc. However, by means of a spinor index permutation applied to
the tensor PabQcde (i.e., by transvecting with a succession of U s) we
can reduce it to the form *IJAB<I>CA>B'C>£DE£D>E> which is just Rabcgde- In this
sense, Rabc and PabQcde are tensorially equivalent.

As a second example, consider the outer product of the even spinor
\jjAB with an odd spinor, say £A. We have Pab as above and let Xab =
^A^BeAB" A tensor representing the outer product ij/AB£C would be
(^'AB^CM'DE^F^SA'B'8C'D'SEF" This is quadratic in \j/AB and quadratic in
£A, whereas the outer product PabXcd is linear in \\iAB and quadratic in
£A. Thus these two quantities cannot be regarded as 'tensorially equivalent'
in the above sense. On the other hand we can choose the tensor PabPcdXef

to represent the spinor outer product.
As a third example, let £A and Xab be as above and choose a second

odd spinor, say r\AA.B.9 with Yabcd = riAA,B.riBC.D.eCD. The outer product of
tensors XabYcdef is quadratic both in £A and ricc,D,, so it is not 'tensorially
equivalent, in the above sense to the tensor representing the spinor outer
product £>AnCCD. since this is an even spinor and should not be squared in
the construction of its tensor equivalent. However, if £A and rjcc,D, are
each known only up to sign and nothing is known about their relative
signs, then the even spinor £AncaD, will itself be known only up to sign.
In this case we could only hope to obtain a tensor equivalent of £>/\cc>D,
up to sign. So a tensor equivalent of its square (£Av\BA.B.)(£cy\DCD)- which
is tensorially equivalent to Xab Ycdef - is the best that can be done.

A slightly different situation arises if we have a number of odd spinors
whose relative signs are known. Then it is not sufficient that tensor equiva-
lents of each of their squares be known. In addition, one must have tensor
equivalents of outer products of different odd spinors. To some extent the
problem considered in the preceding paragraph then becomes vacuous. It
should however, be pointed out in this context that if ^ r\m, rj^^ n^2 and
v\m g are all known then so is ̂  C« (since r\mx rj^ ^ C* is known.)

Next we come to the operation of spinor addition. If both spinors to
be added are even spinors, then it is clear from linearity (assuming their
tensor equivalents are both formed in the same way) that the tensor
equivalent of their sum is the sum of their tensor equivalents. On the other
hand, things are not nearly so simple in the case of odd spinors. Suppose
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^ and r\^ are odd spinors, and consider how we might express the relation

^ + ̂  = C* (3A68)

in terms of the squares of ^ , rj^ and (^. If ^ , rj^ and C^ are known only
up to sign, the four relations

^±^±C^ = 0 (3.4.69)

(where the signs are independent) cannot be distinguished from one
another. Now consider the outer product of these four relations,
symmetrized over their composite indices:

x(^4)-^4)-W = 0 (3A7O)
By (3.5.15) this can vanish only if one of the factors vanishes at each point.
(There is a slight problem since different factors might vanish at different
points, but we shall ignore this problem here.) Expanding (3.4.70), we get

^J^l<=^2^^3(=^4 *1 J& l^ J& 2^ ^ 3^ <tf 4 ^ 1 ^ 2 < 5 ^ 3 ^ . ^ 4 ~ ^(si 1 ' jrf 2 ^ •** 3 ̂  •** 4)

which is clearly expressible in terms of outer squares of <^, rj^ and C^.
The tensor equivalent of (3.4.68), in the case of odd spinors, may thus be
thought of as (3.4.71) translated into a tensor form, the tensor translations
of ^ <^2, rj^ rj^2 and £^ C^ being substituted into the expression.

If, on the other hand, the relative signs of ̂  and rj^ are known, tensor
translations of ^ £^2, rj^^ rj^2 and ^ f/̂ 2 being assumed known, then
the situation is much simpler since (3.4.68) can just be squared and translat-
ed directly.

Finally we come to the operation of contraction. By (2.5.23), a spinor
contraction is simply an anti-symmetrization with ^sXY split off. Thus,
having interpreted spinor index permutation and addition (subtraction) in
tensorial terms, spinor contraction is effectively also incorporated into the
tensor formalism. However, it is just a little easier to express spinor
contraction directly using the tensor Uab

cd defined in (3.4.57). Since

<WV^ = <^A- (3-4-72)

We have now shown that, apart from the slight difficulties arising
because of the sign ambiguity for odd spinors, every spinor and spinor
operation has a tensor analogue. However, in the process we have also
demonstrated the extreme complication that can sometimes arise in so
translating even the simplest of spinor operations. In practice, when
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3.5 Tensors and spinors at a point 159

searching for a tensor equivalent for some spinor relation, it sometimes
turns out that owing to this complication, it is easier to obtain the required
tensor relation by inspection rather than by the general theory. But no
hard and fast rule can be laid down about this. The tensor translations
frequently just are very complicated. Extra difficulties arise when deri-
vatives of spinors are to be translated. This case will be discussed at the
end of §4.4

3.5 Simple propositions about tensors and spinors at a point

In this section we consider a number of miscellaneous results which are
valid for spinors (or tensors) at a single point. That is to say, these results
can fail for spinor fields (although, in practice, it might be only rather
exceptional spinor fields for which they would fail). Our restriction to a
single point is expressed in the assumption that we make for the purposes
of this section: ® is the division ring of complex numbers. (The results up
to and including (3.5.17) will actually apply if S is any commutative
division ring without characteristic and, when suitably formulated, except
for (3.5.15), if S has any characteristic other than two.)

(3.5.1) PROPOSITION

<!><* = ° then either ̂  = ° or $® = °-
Proof. Since ® is now a division ring, (t^ty J) (*?̂ </>̂ ) = 0 implies ^^^ = 0
or r\m$m = 0. This holds for all <^e S**, n®e S*, so the result follows.

(3.5.2) PROPOSITION

lf ^ A® = 1^® + ̂  then *Â  = KX,̂  <l>a = K~l0a for some non-zero

Proof: Since (p^ ± 0, we can choose £f* so that k: = (/>#/;* =£0. We
have $si4>3£* = llLjgfc*. so ^ = K ^ where K = r l 6 ^ . Clearly
K±0 since ^ ± 0. Now 0 = ^^m - xJm = Xj^K ~ e*)> b u t ^ ± 0,

(3.5.3) PROPOSITION

°'^ = y* $® f°r some *«^<v y« -> P® •

Proof: Since Q^ £ 0, we can choose £* and rf so that k: = ^rffy^ ± 0.
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160 3. Spinors and world-tensors

We have ^Mk = (x^)(^6^\ so setting a v = k~ li^rf and fim =
<f 0 ^ , we get $M = ajS*. Similarly 0 ^ = / ^ for some / w Thus
*.*<A<» = <**vsf*«P* and so, by (3.5.2), x*s = K O ^ and 0 ^ = *" V<A
for some KG 8. Put p^ = /cv^ and y^ = K~ ^ a n d the result follows.

It is worth pointing out various special cases of (3.5.3). For example,
if 0 = # , x** = ^ a n d <£** = ^ , then (3.5.3) gives us

More particularly,

^ 1 * 1 ^ 2 « 2 = ^ l « 2 ^ 2 * i : ? f c 0 / m ^ s tJ*a = <*J*P*f°r some Xst'P®

(3.5.5)

Again, if the composite index 3) is vacuous, we get:

t**<!>« = Z ^ ^ ^ 0 imp/ies iA^ = z^C^, 0m = C^0^/or some C -̂
(3.5.6)

For, since p^ is now a scalar (and non-zero), we can set (^ = p~lft& in
(3.5.3). As an even more special case we can allow $ to be vacuous also.
This gives (3.5.2) again. If we specialize to s/ = 38, i/^ = X* a n d </>̂  = ^ in
(3.5.2) we obtain a special case of (3.5.4):

^ i ^ 2 ] = ° imPlies ^^ = K(\>.s*for some Ke £ ' o r $* = °- (3-5-7)

(3.5.8) PROPOSITION

The following three conditions on k^J1 are equivalent:

(i) ^**3^s has the form pj>mfor each ^ e S ^

(iii) A^^5 /zas dr/ier the form u^J1 or the form 6^ f}^.

Proof: Note that (ii) can be written out as

-^/'^/^O. (3.5.9)

Now assume that (i) holds. Then we have

*«l**lZ<i1*J*2*2*
2Zs2 = P^aS^w (3-5-10)

which is symmetric in ^ x , ^ 7 . Thus

This holds for all ^ e S 5 , so by (3.3.23) we obtain relation (ii). Conversely
suppose (ii) holds. Then (3.5.11) holds for any ^ e S r This is a relation
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3.5 Tensors and spinors at a point 161

of the form given in (3.5.3) where i//^ = ^ / < ^ = </>^ = l^m =
QjtJ^' = £#, & = ^ ) , whence (i) follows. Thus (i) and (ii) are equivalent.
It is obvious that (iii) implies (i). Now suppose (i) holds with ^ ^ / ^ =
p^m, ^^J^Q — °\i^m- Since (ii) also holds, we may transvect (3.5.9) with
QSxri&2 to obtain

(Psf^ ~ P ^ ^ X U / ^ ~ C*2/W = 0. (3-5.12)

By (3.5.1), one or the other of these factors must vanish. If it is the first
factor, then the part of

skew in jrf{, s/2 must vanish; if it is the second factor, then the part skew
in 0ft X, 0&1 must vanish. Given £5, the rj3s for which each of these holds
must form a linear space. Since the union of these linear spaces is the whole
of ®5, one or other of them must be the whole of S 5 ; so (3.5.13) is skew
in s/l, srf', for all ^ e S 5 or else it is skew in 3&l, &7 for all rj2eS3. The
same holds for ^ . Thus, either

is symmetric in jrfl9 $02 or else it is symmetric in iM x, M2. The required
form (iii) then follows from (3.5.4).

(3.5.15) PROPOSITION

^, . .^</V + , . .^ + / = ° imPlies either *(.«,..^/ = 0or ^ , . ^ / ^ 0 -
Proof: The result follows from (3.3.22) and (3.5.1) as applied to the ex-

pression f^ . . . J / r * ^ 1 . . . ^ ^ r + 1 . . . J , r + / ^ - + 1 . . . c ^ + * .
The results of this section obtained so far hold for systems of any

dimension. There are, however, some special results which depend
essentially on the two-dimensionality of spin-space. For example, because
by (2.5.23) a spinor contraction is equivalent to an anti-symmetrization,
we have by (3.5.4):

Vt^B* °VB ± °> t h e n ^J6^ = 0 implies \//^B = ot^pB, 9,gB = y^pB

for some PB. (3.5.16)

More particularly (since if ̂  is vacuous we can set / ^ = y~ xac/ in (3.5.16)),
we have:

I/^B ^ °> t h e n ^stB^3 = ° implies ip^B = X^Bfor some 7^ (3.5.17)

More particularly still, we obtain (2.5.56) when j / , also, is vacuous.
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162 3. Spinors and world-tensors

Principal null directions

In addition to depending on the two-dimensionality of spin-space, the
following result uses the fact that the division ring 8 of complex numbers
is algebraically closed.

(3.5.18) PROPOSITION

If(l)AB...L=<t>(AB...L)i=0>then

for some (xA, fiA,... AA
e&A- Furthermore, this decomposition is unique up

to proportionality or reordering of the factors.

Proof: Choose a spin-frame oA, iA such that 0 j= (j){ x x= 4>AB LiAiB...iL.
(This is clearly possible, by (3.3.22).) Let £Ae ®A have components £° = 1,
i1 = z. Then, if <pAB L has n indices,

= (a0 + z a ^ + z^)...{X0 + zAJ, (3.5.19)

by the 'fundamental theorem of algebra', the n factors being unique up to
proportionality or reorderings. Regarding aA, j8A,... ,/iA as the components
of spinors OLA, fiA,... ,kA, we get (a0 + zax) = aA^A = a A ^, etc., so

<I>AB...LZAZB '^L = KZA)(PB£B) • • • ttLtL)- (3-5-2°)
Thus

{<I>AB...L ~ « ( A • • • V ^ * • • • «L = 0, (3.5.21)

for any £A which is normalized so that £° = 1. But owing to the homo-
geneity of (3.5.21) in £A

9 it is clear that this normalization is irrelevant,
so (3.5.21) holds for all £A. The result then follows from (3.3.22).

The expression of a totally symmetric spinor <j)A L =fc 0 as a symmetrized
product of one-index spinors ccA,..., AL is called its canonical decomposi-
tion. Any spinor OLA, ..., XL arising in this way is called a principal spinor.
Any non-zero multiple of a principal spinor is again a principal spinor.
The flagpole directions corresponding to the various principal spinors
are called principal null directions (PND), and the corresponding null
vectors are called principal null vectors. Each PND is thus described by
a proportionality class of principal spinors. The symmetric n-index
spinor (f>A L ( ^ 0) uniquely defines the unordered set of n PNDs where,
however, multiplicities may occur among these directions. We say that
a principal spinor or PND is k-fold if it arises from a term of multiplicity
k in the factorization (3.5.19), and thus occurs k times (up to proportiona-
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3.5 Tensors and spinors at a point 163

lity) in the canonical decomposition. The sum of multiplicities of the
PND is always equal to n.

Any non-zero symmetric spinor (f>A L is itself determined up to a com-
plex factor by its PNDs. Such a spinor 4> will exist for any preassigned
set of principal null directions with preassigned multiplicities. Note that
symmetric n-index spinors have n + 1 complex (i.e., In + 2 real) degrees
of freedom, since there are n + 1 independent components 4>00 0 ,
(j>l0 0 , . . . ,(/>11 x. This is consistent with the fact that each PND can
be specified by one complex number (e.g., £7£°)> giving n complex para-
meters for all the null directions, and there is one final complex parameter
which determines the overall multiplier for <j>A L.

We observe from (3.5.20) that if iA ± 0, then

if and only if £A is a principal spinor (cfi (2.5.56)). We can say more in the
case of a multiple PND. Suppose OLA is a /c-fold principal spinor:

&AB...DE...L = ^(A^B ' ' - ^D^E ' ' ' ^L)> (3.5.23)

so that (xA occurs k times on the right, none of the spinors r\A,..., lA being
proportional to OLA. Then expanding the symmetrization in (3.5.23) and
transvecting with the product ccE... aL of n — k as, we get

(I)AB...DE...L(XE"-(XL = K(XA0CB...(XD, (3.5.24)

where

K = A ^ % £ a £ ) . . . ( V L ) ± 0. (3.5.25)

If, on the other hand, we transvect (3.5.23) with n - k + 1 as it is clear that
the expression vanishes. Thus:

(3.5.26) PROPOSITION

A necessary and sufficient condition that £A^0 be a k-fold principal spinor

of the non-vanishing symmetric spinor 4>AB L is that

should vanish ifn — k+l£s are transvected with (j)A L but not if only n — k

£s are transvected with 4>A L.

As a corollary we have:

(3.5.27) PROPOSITION
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164 3. Spinors and world-tensors

then there exists a ij/* c such that

The proof is immediate from (3.5.26) if we choose a basis and replace
Jf with numerical indices.

We shall say of a symmetric spinor that it is null if all its PNDs coincide.
The following is a criterion for nullity.

(3.5.28) PROPOSITION

The symmetric spinor (f)AB L is null if and only if

The necessity of this condition is immediate. To establish its sufficiency,
choose a spinor rjBo Lo such that

Then the condition yields

which, by (3.5.27), implies that there exists a scalar ij/ such that

as required.
Note that in the case of a two-index symmetric spinor cpAB = OL{APB)

we have, by direct calculation,

(pAB(p
AB = - \{OLAPA)2, (3.5.29)

so that evidently an alternative criterion for nullity is the vanishing of

<PAB<PAB-
In some situations it is useful to talk about PNDs or principal spinors

of (f>A L even when <j>A L = 0. The convention will be that then every
non-zero £A must be regarded as a principal spinor of (j)A L and every null
direction as a PND. (So, strictly speaking, a zero spinor is, in this sense,
not null.)

It may be remarked that no simple analogue of (3.5.18)-which allows
us to classify spinors (/> according to the multiplicities of their PNDs -
exists for symmetric spinors with both primed and unprimed indices.
A classification scheme for such spinors will be given in §8.7.
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3.5 Tensors and spinors at a point 165

Simplicity of skew tensors

We end this section with a result on anti-symmetric tensors in an arbi-
trary ^-dimensional vector space Sa, which bears a similarity to some of
the above results on symmetric objects.

(3.5.30) PROPOSITION

IfFap p is skew in all its p indices, then

F F = 0 •**-*•» F = n h Y
1 [ap...pA <J]T...(O ^ J ap...p u[txUp"-'p]

for some a a 9 b f i 9 . . . 9 r p .

(An F which is such a skew product of vectors is called simple.) The
necessity of the above condition for simplicity is immediate: expand the
second F in terms of aa,bx9..., and then each term in the sum must
vanish because a[a... rpaa] = 0, etc. To establish the sufficiency of the
condition, note first that it can be re-written as

FZP...PFOT...» = PF<r[f}...pF*)r...co- (3.5.31)

For we need only expand the anti-symmetrization in the condition and
separate the terms according to which F possesses the index o. Transvect-
ing (3.5.31) with uaux annihilates the left-hand side and shows that the
(p — l)-index tensor

satisfies the same condition as F itself. Now we shall assume that the
condition in (3.5.30) implies simplicity for (p — l)-index tensors (which
is evidently the case when p — 1 = 1) and deduce that it then also implies
simplicity for p-index tensors. Thus, by hypothesis, whenever ua =/= 0,

for some bp9... 9r . Now choose ua and GT ~w such that

and transvect (3.5.31) with uaGx'"to. This yields

as required, where

So the proposition is established by induction.
One easily sees that the condition in (3.5.30) is equivalent to

*Fd-paFnT = 0 , (3.5.32)
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166 3. Spinors and world-tensors

where *F (which has n — p indices if F has p) is defined analogously to
(3.4.30), (3.4.21) by

*Fd...o=}_E6...a*...yF^ (3.5.33)
p\

(An 'alternating tensor' e~ in n dimensions has n indices, is non-zero, and
skew cf (2.3.4).) Since (3.5.32) is symmetrical in *F and F (apart from the
manifestly immaterial positions of the indices), we have the following

(3.5.34) PROPOSITION

Fa y is simple if and only if its dual *Fd--a is simple.
The above results (3.5.30)-(3.5.34) hold in n dimensions and for skew

tensors with any number of indices ( ^ n). But we shall have occasion to
be especially interested in bivectors Fab in four dimensions, and then there
are several additional criteria for simplicity. In fact, we have

(3.5.35) PROPOSITION

In four dimensions the bivector Fab is simple if and only if any of the following
conditions holds:

(i) F[abFcd] = 0, (ii) Fab*Fab = 0, (iii) d e t ( F J = 0.

Proof: One easily sees that
F[abFc}d = F[abFd\ = aYlabcd [3.536]

for some scalar q and an alternating tensor n . The first of these identities,
in conjunction with (3.5.30), establishes (i). Condition (ii) results on trans-
vecting the second identity in (3.5.36) with sabcd, provided rjabcd£

abcd ± 0.
But that can be verified directly by going to a particular frame. The last
condition, (iii), results from the well-known theorem stating that the deter-
minant of a skew matrix is a perfect square, and, in fact, in our specific
case,

d e t ( F J = j^(Fab*Fab)2. (3.5.37)

So (iii) is equivalent to (ii), and the proposition is established.
We may point out that Proposition (3.5.30) would be false if taken to

refer to tensor fields rather than to tensors at a point. A remarkably simple
counter-example supporting this assertion is provided by the bivector
whose components in ordinary Euclidean space, referred to Cartesian
coordinates x, y, z, are given by

0 z -y

- z 0 x

y -x 0
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3.6 Lorentz transformations 167

This is the dual of the position vector ra = (x, y, z) and thus pointwise
simple, by (3.5.34), since ra is trivially simple. But by (3.5.32) raFah = 0.
So Fab = U[aVb] would imply raUa = raVa = 0, i.e., Ua and Va would be
normal to ra. Then on each sphere of constant radius Ua and Va would both
constitute nowhere-vanishing tangent vector fields. But for topological
reasons we know that such fields do not exist ('fixed point' theorem).
This shows that the result would be false even in an arbitrarily small
neighbourhood of the origin.

It should be borne in mind that all other numbered results of this section
would also fail, in some analogous way, for fields rather than for tensors
or spinors at one point.

3.6 Lorentz transformations

As an application of some of the results of the preceding section, we shall
here investigate the structure of Lorentz transformations. This constitutes
a somewhat different approach from that of §§1.2 and 1.3. There will be
some overlap in the results, but this should be helpful in establishing a
link between the two points of view.

We give, among other things, a direct proof of the key result (1.2.27)
of §1.2 that to every restricted Lorentz transformation Lb \Va\-+Wb

there correspond exactly two spin transformations + T B: €A i—• ± rjB

and vice versa. But our discussion goes further than this, in that we treat
improper Lorentz transformations as well as proper ones. (As in §3.5,
we are concerned with spinors and tensors at a single point only. Thus,
S and X are the division rings of complex and real numbers, respectively.)

Our notation allows us to express the above active transformations in
the form

Lbya = Wb^ TB£A = ^B (3 6 ^

Note that we require LbeXb
a and TA

Be S*. The required relation between
these transformations is that they give the same result when applied to
each VaeXa, the effect of the spin transformation being

TA
BTA

B'VAA =WBB. (3.6.2)

Thus if the elements Lb and TA
BTA

B are to give the same map from Xa

to Xb we require

Lb = TBtA
B>. (3.6.3)

What we must show, therefore, is that if Lb is a restricted Lorentz trans-
formation then Lb always 'splits' according to (3.6.3), where TA

B is a
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168 3. Spinors and world-tensors

spin transformation defined uniquely up to sign; and conversely that
if TA

B is a spin transformation then the Lb defined by (3.6.3) is always
a restricted Lorentz transformation. The component version of (3.6.3),
relative to the standard choice of frames, is (1.2.26),

The condition for Lb to be a Lorentz transformation is that it be real and
leave the metric invariant:

La
b = Lj>, (3.6.4)

It is restricted if and only if it belongs to the same continuous family
as does the identity gb.

[A linear transformation between vector spaces Sa, & may always be
expressed in the form Pf X" = Yp, so the map Pf: 6* -• & is given by
contracted product (c/ (2.2.37)). This map induces a linear transformation

P *: 8 a -• S^ where ppPy
p = Sl = Pp

aP
y
p and, hence, a linear transforma-

tion P ^ P J P J ... P 1 ; : ® ; ; ; ; ^ ® ^ ; ; . if ^ ; ; ; ^ * J ; ; ; ; we have Pa
A...

P*~P% ... pVp./.r = «i::.; ; equivalently P*a... P;A;-JX

Thus, /I;;; is invariant under Pf iff P^ ... PM£;;;yt = P* ... f J ; ; ; ;
The condition that TA

B be a spin-transformation is that it should have
unit determinant. This can be stated in the form

*AB=TA
CTB\D. (3.6.6)

For, the right-hand side is skew in A, B and is therefore, by (2.5.23),
proportional to eAB, the factor of proportionality being

lTA
cTBXDeAB = det(TA

c). (3.6.7)

Alternatively, we may simply examine (3.6.6) in component form (cf.
(2.5.70)). Condition (3.6.6) states that the £-spinor is invariant under
spin transformations.

Now, suppose we are given a spin transformation TA
B, and La

b is
defined according to (3.6.3). Clearly Lb is then real and

9ab = Wx- i r = TA TBDfA CTB.D'eCBPCD. = WLb"gcd, (3.6.8)
so Lb is a Lorentz transformation. Moreover, Lb is restricted because
TA

B is continuous with the identity spin transformation* eA
B; whence

Lb is continuous with SA
BEA

B = gb, the identity Lorentz transformation.
Alternatively, the fact that Lb as given by (3.6.3) is restricted will be a
consequence of the discussion to follow.

* See remark (iii) after equation (1.2.26).
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Suppose, conversely, that Lb is a Lorentz transformation. Since it
preserves the metric, it must send null vectors into null vectors; indeed,
it sends complex null vectors into complex null vectors. (For, by (3.6.5),
QabfX

b = (La
cxa)(Lb

dxb)gcd whether f is real or complex.) By (3.2.6) any
complex null vector xa has the form KA£A'. Thus

LAA
BB'KAZA> = T V ' . (3.6.9)

With any choice of KA and £A> such an equation holds, so we can apply
(3.5.8) to obtain LAA

BB KA in one or other of the forms

LAABB'KA = eA^B' o r C V - (3-61°)
This must hold for all KA. Indeed, the same one of relations (3.6.10) must
hold for all KA. Otherwise, by continuity, for some non-zero value of
KA both forms would hold simultaneously, so by (3.5.6) we should have
LAA

BB'KA = pA£B\l/B', whence LAA
BB'(KApA') = 0, violating the non-

singularity of the transformation Lb: that Lorentz transformations cannot
be singular follows from (3.6.5) alone (cf. (3.6.19) below). Applying (3.5.8)
again to (3.6.10) we see that LAA

BB must necessarily have one of the follow-
ing four forms

(i) coAA
Br\ (ii) 0*.%, (iii) 4>//vB ' , (iv) CBvAA,»\ (3.6.11)

However, we must reject (i) because LAA
BB'(\I/Bil/B,) = 0, and (iv) because

LAA
BB(CBIB) = 0: in each case Lb would be singular.
Tiiis leaves us with (ii) and (iii). The reality (3.6.4) of La

b gives, res-
pectively,

W = <M. /l/V^Y/- 0.6.12)
Thus, by (3.5.2),

X» =<,0»' = «-U-'; ̂ / = ^ / ^ V = r ' ^ ^ (3.6.13)
whence a and /? must be real. Absorbing the factor | a |1/2 into the definition
of 6A, and | j811/2 into the definition of <\>A

B we get, according as a is positive
or negative in case (ii), or as ft is positive or negative in case (iii), four
different possibilities:

LAA
BB = ±0*JA

B\ (3.6.14)

LAA
 BB' = ± */*A - < 3 6 1 5 )

Substituting into (3.6.5). we find that det(0%.)( = $6%.0%.eA'c'eBD) and
det(<(>A

B)( = ^<t>A
B<t>c

DsAC£BD) both have unit modulus. If we normalize these
determinants to unity:

= l, det(<A/)=l (3.6.16)
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170 3. Spinors and world-tensors

(absorbing the phase factor into 6A, or 4>A
B\ we obtain 9B

A, uniquely up to
sign in each case (3.6.14), and (j)A

B uniquely up to sign in each case (3.6.15).
By transvecting each of (3.6.14), (3.6.15) with a future-pointing null

vector KAKA we see that the result is future-pointing if and only if the
positive sign is chosen in each of (3.6.14), (3.6.15) (see (3.2.2), (3.2.4)).
Thus, the orthochronous Lorentz transformations are those of the form
(3.6.14) and (3.6.15) in which the positive sign holds. Those for which the
negative sign holds involve a reversal of time-sense. To see which of (3.6.14),
(3.6.15) are proper, we may examine the effect of Lb on the alternating
tensor eabcd. (A Minkowski tetrad is proper or improper according as
eabcdt

axbyczd is + 1 or - 1, cf. (3.3.37); thus eabcd defines the orientation of
the Minkowski vector space.) We have

<W- = ± i . ' V W V s = ± det(V)ea6cd, (3.6.17)
the positive sign holding if and only if Lp

q is proper. Substituting (3.6.14)
and (3.6.15) into (3.6.17) and using (3.3.31) and the equivalent form

of (3.6.16), we obtain directly the fact that it is (3.6.15) (with either sign)
which is proper and (3.6.14) (with either sign) which is improper. Thus the
restricted Lorentz transformations are those of the form (3.6.15) with
positive sign. Setting TB = <\>B, the required form (3.6.3) is obtained.

Alternatively we may see this from the fact that the transformations
(3.6.14) cannot be continuous with the identity Lorentz transformation
£A

BsA
B. For, any continuous path of LAA,BB's beginning with (3.6.14) and

ending at EA
B£A

B', would at some point have to have simultaneously the
forms (3.6.14) and (3.6.15). By (3.5.3), LAA

BB would then be an outer
product of four one-index spinors and hence singular. The restricted
La

bs, being those continuous with the identity, and the negatives of the
restricted La

bs, form the class of proper La
bs. These must therefore be the

La
bs of the class (3.6.15).
We can examine some of the structure of Lorentz transformations in

the light of the spinor representations that we have found. We remark,
first, that by raising the index b and lowering d in (3.6.5) we obtain La

cLb
c =

gb which tells us that the inverse L b of Lb is given by

~Lb = Lb
a. (3.6.19)

Applying the same procedure to (3.6.18) we get

eAec = ~ eA*'> ^ACK = ~ £/> (3-62°)
which tells us that the inverses of the maps 9B

A,: &A' -* S B and 4>A
B : ®A -•
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3.6 Lorentz transformations 171

are given by

Improper transformations

Let us examine the improper Lorentz transformations first. These are given
by (3.6.14), so each one is characterized by a quantity dB

A subject to (3.6.16);
that is to say, by a complex world-vector 6a = 0AA> of length Jl\

6a0a = 2 (3.6.22)

(since (3.6.16) gives ^0BA'6BA, = 1). The relation between 6a and the Lorentz
transformation Lb is given in spinor terms by (3.6.14):

Lab=±eBJAB,. (3.6.23)

Since the right-hand side is + 6a8b with A and B interchanged we can use
the theory of §3.4 to obtain a purely tensor form of this relation:

Lab=±eAVab
ci, (3.6.24)

where Uab
cd is defined in (3.4.57). Writing (3.6.24) out in full we therefore

get

± Kb = 0<A> - k , M + \^W (3.6.25)

as the general expression for an improper Lorentz transformation, 9a

being subject only to (3.6.22). The positive sign in (3.6.25) corresponds
to La

b orthochronous.
Of particular interest are those improper Lorentz transformations which

are involutory (i.e., equal to their own inverses) since these correspond to
space-time reflections in lines or hyperplanes. By (3.6.19), the condition

for ~La
b = La

b is

Lab = Lba, (3.6.26)

so (3.6.23) tells us that La
b is involutory if and only if 9a is proportional

to 6a. Because of the normalization (3.6.22), this implies one of the follow-
ing:

(i) 0a is real and timelike
(ii) \0a is real and spacelike.

Then (3.6.25) becomes

±Lab = 2VaVb-gabV%, (3.6.28)

where the real unit vector Va is 2~^ 9a in case (i) and i2~i 9a in case (ii).
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172 3. Spinors and world-tensors

Again, the orthochronjus transformations take the positive sign in
(3.6.28). When Va is timelike, La

b is a 'space-reflection in a point' if ortho-
chronous, i.e., more correctly, a reflection in a timelike line. If not ortho-
chronous, it is a reflection in the orthogonal spacelike hyperplane. When
Va is spacelike, La

b is a 'space-reflection in a plane' if orthochronous, i.e.,
more correctly, a reflection in a timelike hyperplane. If not orthochronous,
it is a reflection in the orthogonal spacelike line. It may be pointed out that
the two choices + Va both give the same Lab. This is because the sign in
the spinor transformation nB> = 0A£A is not defined simply by the effect
of La

b on vectors. However, in the timelike case, there is an invariant dis-
tinction between Va and — Va, since one is future-pointing and other
past-pointing.

Proper transformations

We now come to the propi* Lorentz transformations. These are given
by (3.6.15):

Kb=±<t>AB$AB> (3-6.29)

where 4>A
B is a spin-transformation, i.e., by (3.6.18), subject to

4>AB4>AB = 2 . (3.6.30)

Expressing (j>AB in terms of its symmetric and skew parts we get

where

*AB = +BA' (36-32)

Substituting (3.6.31) into (3.6.30) we get

\x2 - v2 = 1, (3.6.33)

where

V2'=-^AB^AB- (3'6'34)

Thus, apart from an ambiguity of sign in the definition of \i (absent only if
v = ± i), the spin transformation §A

B is uniquely defined by an arbitrary
symmetric spinor \jjAB.

If we substitute (3.6.31) into (3.6.29), we obtain a decomposition of
Lab as follows:

±Lab = pgab + Fab+Tab, (3.6.35)

where /?, Fab and Tob are real, with Tab trace-free symmetric and Fab skew,
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3.6 Lorentz transformations 173

given by

p = tiji, Fab = fiij/ABeA,B, + n$A.B.sAB, Tab = tyAB$A.B. • (3.6.36)

The tensor Fab bears the same relation to (2n)~ lpTab as does an electro-
magnetic field tensor to its energy tensor (cf (5.2.4)). This fact is actually
sufficient to ensure the form of (3.6.36), which in turn implies that Lab,
as given by (3.6.35), is proportional to a proper Lorentz transformation.
If, in addition, det(La

b)=l (equivalent to the normalization (3.6.33)),
then La

b is a proper Lorentz transformation, orthochronous if the positive
sign is taken in (3.6.35) and p > 0.

According to (3.5.18) we can express \j/AB as a symmetrized product of
one-index spinors, say

+AB = «APB + PA*B> (3-6-37)

so by (3.6.34) we can take

v = ocJA. (3.6.38)

We have v.AfiB — v-BPA = ve
ABi s o provided v ^ O we get, from (3.6.31),

If v = 0, ocA and PA are proportional and we can take fiA = \COLA, whence

Notice that in each case (3.6.39), (3.6.40), OLA is an eigenspinor of (j>A
B in

the sense that <I>A
BOLB is a multiple of aA :

<t>A
BOLB = Qi + v)aiA9 (3.6.41)

the corresponding eigenvalue being \x + v ( = 1 in case (3.6.40)). In case
(3.6.39) fiA is also an eigenspinor of (j)A

B, with eigenvalue \i — v. In case
(3.6.40), ocA is (up to proportionality) the only eigenspinor of ( / ^ - i n
other words, the two eigendirections of §A become coincident. The
P N D s of ij/AB are thus seen to be the same as the eigendirections of <\>A

B.

As an alternative argument, not assuming the canonical decomposition
of \j/AB, one can see quite rapidly that, given aA, the spinor (f)AB can be
expressed in one or other of the forms (3.6.39), (3.6.40). For, <pA

BotB = £otA

implies {<pA
B - £eA

B)(xB = 0; so, by (3.5.17), </>A
B - &B = yA(xB for some

yA. If yA is proportional to aA we are led to case (3.6.40). Otherwise, we
expand eA

B in terms of <xA and yA and obtain the form (3.6.39), with yA

proportional to PA.
The significance of the eigenspinors of a spin-transformation lies in the

fact that their flagpole directions are the invariant null directions of the
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174 3. Spinors and world-tensors

corresponding Lorentz transformation. We have, from (3.6.29) and (3.6.41)

La
bUb = \ti + v\2Ua, (3.6,42)

where the null vector Ua is given by

Ua:=aAdA,. (3.6.43)

When the two invariant null directions are distinct, we can choose a spin-
frame whose flagpole directions are the invariant null directions, e.g.,

IA:=OLA, oA:= -V1PA. (3.6.44)

Then the matrix of the spin-transformation (3.6.39) takes the following
form (where, by (3.6.33), \i - v = (ji + v)~1):

: + v 0
0 , . , - , , • ( 3 6 - 4 5 )

Comparison with (1.2.31) and (1.2.37) shows that this is a 'rotation about
the z-axis through \j/' if fi + v = e!^/2 with \jj real; it is a 'boost in the z-
direction with velocity v* if fi + v =(1 — v)~*(l + v)* with v real; and
it is a 'four-screw about the z-axis' in the general case (cf. (1.3.4)).

When the two invariant null directions coincide we get a null rotation.
We can then choose our spin-frame so that

iA'-=*A, (3.6.46)

with oA arbitrary. Then the matrix of the spin-transformation (3.6.40)
takes the form

1

(If desired, we could scale iA = ocA so that — C = 1.) Comparison with (1.3.7)
confirms that this is a 'null rotation about the z-axis'. Note that the
eigenvalue of 0A

B is unity. Thus any null rotation preserves both the
flagpole and the flag plane of any spinor whose flagpole direction is that
of the invariant null direction.

The involutory proper Lorentz transformations also have some special
interest since these represent reflections in space-time 2-planes. The in-
volutory condition Lab = Lba (cf (3.6.26)) when applied to (3.6.35) tells
us that Fab = 0, whence either \j/AB = 0 or \i = 0. The case xjjAB = 0 is
uninteresting since (j)A

B then reduces to + sA
B. Thus the general involutory

proper Lorentz transformation has the form

± La
b = Ta

b = ^A
B$A

B\ (3.6.48)

where, as remarked earlier (and as we shall see in detail later, cf §5.2),
the trace-free symmetric tensor Tab has the form of an electromagnetic
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3.6 Lorentz transformations 175

energy tensor. The choice of the plus sign in (3.6.48) ensures that Lb is
orthochronous, in which case it is a 'space reflection in a line', i.e., more
correctly, a reflection in a space-time timelike 2-plane. If not orthochron-
ous, Lb is a reflection in a spacelike 2-plane. The timelike 2-plane concern-
ed is the plane spanned by the two invariant null directions (i.e., by the
flagpoles of (xA and fiA) and the other is the orthogonal complement of
this.

Since \i = 0, (3.6.33) gives v2 = - 1. Thus, by (3.6.34), det(i//^) =
1 = det (\pA

B). Note that, as in (3.6.20), this implies

It is sometimes convenient to use a symmetric spinor such as ij/AB to
represent a 2-plane element. If this 2-plane element is not null (i.e., v ̂  0
in (3.6.34), so that the flagpole directions of aA and (}A are distinct) then
it is often useful to use the normalization (3.6.49), or else

^AC^BC= - £ / • (3-6.50)

In a similar way, we may use a Hermitian spinor 6AB,( = SAB.) to denote a
line element or the orthogonal complement hyperplane element, and to
normalize according to

eAC,6BC'=±eA
B. (3.6.51)

The local geometry at a point can be conveniently discussed using quanti-
ties such as ij/A

B, 6A
B since their 'matrix products' represent geometrically

simple operations, namely successions of reflections about lines, planes,
etc. The above normalizations imply that the 'matrix square' of each basic
quantity is plus or minus the identity eA

B or eA
B .

Infinitesimal transformations

We shall close this section with a brief discussion of infinitesimal spin-
transformations and their associated Lorentz transformations. The fact
that infinitesimal Lorentz transformations are essentially skew two-index
tensors is well-known. We may derive this fact as follows. Let Lb(k) be a
one-parameter family of Lorentz transformations depending smoothly on
the parameter A, such that X — 0 gives the identity transformation:

L » = ga
b. (3.6.52)

The infinitesimal Lorentz transformation Sa
b corresponding to this family

is

Sj>:= \^-La
b(X)] . (3.6.53)
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176 3. Spinors and world-tensors

Applying (3.6.52) and (3.6.53) to the ^-derivative of the relation (3.6.5)

gab = La
c(k)Lb

dU)gcd, (3.6.54)

we obtain

That is to say,

Sab=-Sba. (3.6.56)

To reconstruct a finite Lorentz transformation out of an infinitesimal
one, we use 'exponentiation'. Define, quite generally,

exp(P/) := 5/ + Pj + ̂ PJP/ + - • (3.6.57)
Then if '

Pa
vQy

fi = Qa
yPy

p, (3.6.58)

it follows that

exp (iY)exp (Q/) = exp(P/ + Q/\ (3.6.59)

formally.* Now, given any skew Sab, we can define

La
b:=exp(Sa

bl (3.6.60)

which gives

= 9a%b = gab- (3.6.61)

Thus, La
6 is a Lorentz transformation.

In a similar way, we can define infinitesimal spin transformations <JA
B,

in terms of a smooth one-parameter family of spin transformations <j>A
B(X)

for which

4>/(0) = £ / , (3.6.62)
by

Differentiating the relation

It can, in fact, be shown without difficulty that (3.6.57) always converges, and that
(3.6.59) is always valid, whenever (3.6.59) holds (cf. Hochschild 1965).
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3.6 Lorentz transformations 177

(cf. (3.6.6)), we obtain

= oAB-aBA, (3.6.65)

so GAB is symmetric. If, conversely, for any symmetric oAB we set

<£/:=exp(<7/), (3.6.66)
we get

= exp(<r/)exp( - oE
c)sEB

= exp(<r/)exp( - OC
E)EEB

= ZA%B = ZAB- (3.6.67)

(The second line uses £CD°B
PGP

QGQ
D = ^/°"P

Q( - ^QC)
 = a / ( ~ °"PQ^ ~ °Qc) =

( - aBp)( - ap
Q)( - o*c) = ( - <7£

p)( - (7P
Q)( - aQ

c)sEB.) Thus, 0 / is a spin
transformation.

To obtain the relation between infinitesimal spin transformations and
infinitesimal Lorentz transformations consider the A-derivative of

LJD = <l>AJM$A.BUy (3.6.68)
We get

Sab = °AB£A'B' + 8AB°A'B'' (3.6.69)

(Cf. (3.4.20).) Conversely, suppose Sab and oAB are related by (3.6.69), or,
equivalently,

S.b = °.V + */**"• (3-6.70)

Since the two terms on the right 'commute', we get, on taking exponentials
and using (3.6.59),

V = W (3-6-71)
as required, where La

b is given by (3.6.60) and 4>A
B by (3.6.66).

Let us exhibit <f>A
B explicitly in terms of aAB. Put

Then

oABoc
B = p2zAC, (3.6.73)

so

(p-1a/)(p-iaB
c)=-eA

c (3.6.74)

(assuming, for the moment, that p =£ 0). The expression p~ 1aA
B behaves

formally like T, so we get

p~ 1(T4
Bsin û. (3.6.75)
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178 3. Spinors and world-tensors

Setting

k\=ixp~\ (3.6.76)

we obtain

exp{AaA
B) = 8 / c o s pk + oA

Bp~ 1 sin pk.

= : </>/W, (3.6.77)

say. If we replace p~ l sin pA by its limit as p -• 0, namely by x, then we can
use (3.6.77) also in the case p = 0:

exp(/<r/) - e / + a/k = (t>A
B(k). (3.6.78)

And we have

0 / = 0 / (1 ) = e / cos p + (TA
Bp~l sin p. (3.6.79)

(Note that both cos p and p " 1 sin p are even functions and so do not
depend on the sign of p in (3.6.72).) The corresponding Lorentz transforma-
tion La

b can then be constructed as in (3.6.35), where into (3.6.36) we
substitute \JJAB = oABp~1 sin p and \i = cos p. The case p = 0 (i.e., (3.6.78))
corresponds to null rotations (cf. (3.6.40), (3.6.47)).
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4

Differentiation and curvature

4.1 Manifolds

In Chapters 2 and 3 we have not been much concerned with the details
of the module S' of spin-vector fields. Although in §3.1 it was necessary
to tie in the spin-vector module with the concept of a world-vector, the
essential property of world-vectors - that they belong to tangent spaces
of the space-time manifold Jt - was never used.

In fact, the discussion so far would also apply to situations which are in
essence very different from the one contemplated here. We may illustrate
this difference by an example taken from elementary particle theory,
namely 'isotopic spin-space'. This is a space which, as its name suggests,
bears some (superficial) resemblance to spin-space. The states of actual
spin of a nucleon may be expressed as complex-linear combinations of
two states, say 'spin-up' and 'spin-down'. In a similar way, the states of
isotopic spin of a nucleon are complex-linear combinations of two states,
namely 'proton' and 'neutron'. But although formally similar, there is
a crucial difference between these two situations. This lies in the fact
that the directions in spin-space have to do with actual directions in space
(-time) i.e., with the relations between a point and its neighbours, whereas
the directions in isotopic spin-space have no such association.

It is also possible to produce mathematical examples where the elements
of the basic module do have an association with the relation between points
and their neighbours, but it is the wrong association. Consider a manifold
of four real dimensions which is a two-complex-dimensional 'surface'.
The tangent space at each point has two complex dimensions and can be
given a structure identical to that of spin-space. However this situation is
very different from the one that we shall be concerned with here. The
association between spin-space and directions in the manifold has to
be achieved via the intermediary stage of the world-vector space. As
we shall see presently, this has the formal implication that the operation
of differentiation has two, rather than one, spinor indices.

But how are we to express this relation between space-time points and
their neighbours? To do this, we must make the concept of a tangent

179
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180 4. Differentiation and curvature

vector, or field of tangent vectors, precise. The method we follow is to
define vectors as directional derivatives {cf. (1.4.1)) on the manifold, these
derivatives acting on scalar fields. Thus, the vector 'points' in the direction
of the manifold in which the derivative is measuring the rate of change of
a scalar. These directional derivatives are characterized completely by
their formal properties as maps of the system of scalar fields - which system
actually contains all the information necessary to define the manifold
structure of Jt and the system of tangent vectors to Jt.

Since scalar fields play such a basic role in this method of development -
and since even coordinate systems may be thought of simply as sets of
scalar fields - it will be appropriate to state the axioms defining a manifold
entirely in terms of properties of the system of scalar fields. For the sake
of generality, we shall give the discussion of this section in a form applic-
able to any n-dimensional (Hausdorff, paracompact, connected) manifold.
This will not involve us in any extra complication. Only in §4.4 shall we
specialize to the case when Jt is a space-time. The discussion of the
present section will be primarily carried out in terms of real C00 scalar
fields. We use the letter X (as before) to denote the system of such fields.
The system S of complex C00 scalar fields can then be defined in terms

We consider Jt as an abstract set of points whose structure is defined
by a non-empty set X, each element feX (called a scalar) being a map

f'.Jt^U. (4.1.1)

The particular choice of the set X which is made will serve to characterize
the structure of Jt completely as a differentiable manifold, once we have
given sufficient axioms for X. The differentiable structure for Jt that
results will then be such that each element of X is, in fact, a C00 scalar field.
The axiom system we use is derived from that of Chevalley (1946); cf. also
Nomizu (1956). It is completely equivalent to the more usual definition
of a manifold given, for example, in Lang (1972), Kobayashi and Nomizu
(1963), Hawking and Ellis (1973) and Hicks (1965).

For the first axiom we take:

(4.1.2) AXIOM

and if F: ^ r - > ^ is any C00 real-valued function of r
real variables, then F ( / , , / 2 , . . . ,/r)(considered as a function on Jt, i.e.,

i fr)(P) = Hfi(P), • • •, U?)\ PeJt)is also an element of X.

We note, in particular, that since any constant is a C00 function, any
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4.1 Manifolds 181

map (4.1.1) which assigns the same real number k to each point of M,
i.e., a constant map, will be an element of X. Without danger of ambiguity,
we denote this element of I also by the letter k. The subset of X consisting
of all constant maps will be denoted by ft. Clearly ft is a ring isomorphic
to IR. Since the operations of addition and multiplication are both C00

maps: [R2-»IR, we have, by axiom (4.1.2), operations of addition and
multiplication acting on the set % defined by

if + g)(P):=f(P) + g(P) (4.1.3)

(fg)(P)'=f(P)g(P)

for all PeJi. This gives X the structure of a commutative ring* with unit
(cf (2.1.22)), with 0, left c X. It is evident that X is also a vector space
over ft. Taken together, these properties define X as a commutative algebra
over ft.

To state the next two axioms we need a concept of a neighbourhood
of a point PeJt. We define a ̂ -neighbourhood of P to be the set of points
of M at w h i c h / ^ 0, for some fe X with/(P) ± 0. (Recall that this was
our procedure in §2.4.) Clearly the intersection of two ^-neighbourhoods
is again a ^-neighbourhood since if °U is defined by / ^ 0 and V by
g±09 then ^ n TT is defined by fg ± 0.

The topology we assign to Ji is the one generated by the 2-neigh-
bourhoods. That is to say, a subset of Ji will be called open iff it is a
union of ^-neighbourhoods.** We can show that, with respect to this
topology,

each element ofX is a continuous function on Ji, (4.1.4)

i.e., that the inverse image of an open interval of U under each element of
X is an open set in Ji. For proof of (4.1.4), let the open interval be a < x < b
(where a < b) and define the C°° 'bump function'

0 if x^a or b ^x

e x p W w M) l f a < x < b -
\(x-a)(x-b)J

The inverse image of the interval a<x <b under any map feX is the
open set defined by 0^Bab(f)eX, and this establishes our assertion.

The next axiom asserts the 'local' character of the restriction on a real-

it turns out that, given only the ring structure of <X and not the set JI, then J( can in
fact be completely and uniquely reconstructed.
In actual fact, once we have imposed all the axioms and restrictions, it will follow that
any open set is a ^-neighbourhood. However, we shall not require this fact here.
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182 4. Differentiation and curvature

valued function on M in order that it should belong to Z. (We expect
'C°°'to be one such local restriction.)

(4.1.6) AXIOM

Ifg:Jt->U, and if for each PeJi there exists a Z-neighbourhood % of
P and an element feZ which agrees with g in °H, then geZ.

Note that we can restate this axiom as follows: If g : Jt -• U and if for
each PeM there exist hJeZ with h(P) ± 0, where hf=hg, then geZ.

Finally, we need an axiom which asserts the 'locally rc-dimensional
Euclidean' character of Ji. Here, n is a given fixed integer.

(4.1.7) AXIOM

For each PtJt there exists a Z-neighbourhood % of P and n elements
x1, . . . ,xneZ such that (i) given any two points of QU, at least one of the
xa has a different value at the two points, and (ii) each element feZ may be
expressed, in $11, as a Cr function o / x \ . . . , x".

The scalars x1, x 2 , . . . , xn which occur in (4.1.7) are called local coordinat-
es about P. The set % is called a local coordinate neighbourhood and the
pair (°U, xl) a local coordinate system. (This terminology, according to
which coordinates are referred to as particular examples of scalar fields,
is somewhat at variance with the classical usage. However, it is perfectly
logical within the framework of the modern development, in which vectors,
tensors, scalars, etc. are not defined in the classical way in terms of co-
ordinate changes.) Property (i) in (4.1.7) ensures that the values of the
coordinates xa do in fact serve to label the points in % - in a continuous
way, by (4.1.4)-with distinct points being assigned distinct coordinate
labels. Property (ii) of (4.1.7) (together with (4.1.2) with r = n) ensures that
xtt is a non-singular coordinate system* for % since the elements of Z,
when restricted to °U, are precisely those which are given as C°° functions
of the coordinates xtt. If a second coordinate system xa were introduced
which covered another ^-neighbourhood % in accordance with (4.1.7),
then in the overlap region ^U n # each system of coordinates would have

It should be pointed out, however, that not all local coordinates are suitable for use in
axiom (4.1.7). Consider, for example, the plane in the usual coordinates r, 9. Here, we
have a coordinate patch on the plane for r > 0, 0 < 6 < 2%. However, the coordinate 9
cannot be extended to a C00 (or even C°) function over all of M, whence 6i% and these
particular local coordinates are not among those described in Axiom (4.1.7). Nor,
indeed, is even the (r, 6) patch r > 0 < 9 < n. For the function r = (x2 + y2)112 is not
extendible as a C20 scalar at the origin, so r$Z.
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to be describable as C°° functions of the other. This provides the link
between the present approach to manifold structure and the more usual
one in terms of overlapping coordinate charts.

In fact it is not difficult to prove the equivalence of these definitions.
The axioms given here are sufficient to establish that the local coordinate
systems (<%, xtt) of (4.1.7) comprise a covering of Ji by coordinate patches
which, as a consequence of Axioms (4.1.2), (4.1.6) and (4.1.7), satisfy all
the conditions normally required. Conversely, given a Hausdorff manifold
Ji according to the more standard definition, we can define the set %
to consist of just those real-valued functions on M which, in each coordi-
nate patch, may be expressed as a C00 function of the coordinates. Then
X satisfies the three axioms (4.1.2), (4.1.6), (4.1.7), so M is a manifold
by the present definition.

Our definition of a topology for Ji, together with (4.1.6) is sufficient
to imply that

Ji is a Hausdorff topological space.

This means that for any pair of distinct points P,ReJ£,& pair of disjoint
^-neighbourhoods can be found, each containing one of the points.
To establish this we need only find some function he% which takes
distinct values p and r at P and R, respectively. For, choosing q = j\p — r |,
we can define ^-neighbourhoods of P, R by Bp_qp+q{h\ Br_qr+q(h)e%
respectively, to obtain the required disjoint I-neighbourhoods. To see
that h exists we refer to (4.1.7). Either R belongs to % or it does not. If
R belongs to %, then we can use for h a coordinate xa which differs at
R from its value at P. If R does not belong to %, then we can use for h
a function which defines % by being non-zero on °U and zero outside %.

It is normal to assume, for a manifold, that its topology has a countable
basis (an assumption equivalent here to paracompactness - Kelley 1955,
Engelking 1968). We can state this in the form of

(4.1.8) AXIOM

There is a countable collection of X-neighbourhoods such that every I -
neighbourhood can be expressed as a union of members of the collection.

In fact, once a metric (or a connection) has been introduced into the
manifold, this assumption becomes redundant (Engelking 1968). However,
for present purposes it will be well to make it. This has the implication that
the manifold M is of the 'ordinary' kind, to which the discussion of §2.4
(leading to the total reflexivity of the system S ) can be applied. Another
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184 4. Differentiation and curvature

way of stating (4.1.8) is: Ji can be covered by a countable collection of
coordinate neighbourhoods.

Another usual assumption in the case of a space-time manifold is

(4.1.9) AXIOM

Ji is connected

This means that Ji is not the union of two non-empty disjoint open sets.
In terms of X we may express this condition as follows: if fig eX and if
fg = 0, then/P) = 0 = g(P) for some PeJi. It will be convenient to make
this assumption here also. Having made these restrictions on the topology
of Ji, we shall henceforth simply use the term neighbourhood for what
we previously called a ^-neighbourhood.

Vector fields

We are now in a position to introduce the concept of a (contravariant)
vector field V (or field of tangent vectors) on Ji. We define V as a map

V'.X^X (4.1.10)

with the following three properties
(i) V(k) = 0 if keR

(ii)V(f + g)=t\f)+Vti) if figeX (4.1.11)

(iii) V(fg)=fVig) + gl\f) if figeX.
Such a map is called a derivation on X, where X is regarded as an algebra
over ft. The set of all such derivations will be denoted by X. Contact with
our previous definition of X will be made presently.

Now suppose we have a map W: X -• X with the property that in any
local coordinate system (^,xa), the effect of W may be expressed in the
form*

A f

(4.1.12)

where

Wi,W2,...,W"e%. (4.1.13)

The meaning of the symbol d/dx* here should be clear. Even though / is, strictly
speaking, a function of a point P of the manifold Jf, rather than being explicitly a
function of variables x \ x2, . . . ,x", the point P can itself be regarded as a function of
x1, . . . , x", by virtue of the coordinatization of %. By axiom (4.1.7) (ii), / may be then
regarded as a C00 function of x1, . . . , x".
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4.1 Manifolds 185

Then JF clearly satisfies all three relations (4.1.11) and so is a derivation.
We can write (4.1.12) as

where the operators are understood to act on scalar fields. In another local
coordinate system (<W, ya), we shall have

W=W*^L. (4.1.15)

If % and # overlap, then in the intersection region 'll n •# we must have

wJ-^jyJL. (4.1.16)

Thus,

W^ = W* W* = W"* (41 17̂
5 x a ' dy*' K }

Regarding VFttand !4/aas the components of Win the xa and yacoordinate
systems, respectively, we arrive at the standard classical definition of a
contravariant vector. Thus, any classical contravariant vector corresponds
uniquely to a map W:X-+X which, when referred to any local coordinate
system, can be expressed linearly in terms of the partial derivative opera-
tors with respect to the coordinates. Furthermore, any such map is an
example of a derivation on X. The following result (4.1.18) establishes the
converse. We shall then have complete equivalence between the concepts
of a derivation on X, of a linear differential operator on X (or directional
derivative), and of a classical contravariant vector.

(4.1.18) PROPOSITION

/ / VeX\ then in any local coordinate system {Ql, xa), V has the form V —
V'd/dx* for some V\...,VneX.

Proof: We observe first that if we can establish that at each point of
* , V has the form V*d/dx\ then it necessarily follows that VaeX. For
we shall have, in °ll,

V* = V*&\ = Fp |^p- = V(x*)eX, (4.1.19)

since the coordinates xa are themselves C°° scalars (xae3;). Now choose a
particular point Z e f , with coordinates Xl

9..., Xn. Let Q) be the coordi-
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186 4. Differentiation and curvature

nate rc-disc (x1 — X1)2 + ••• + (xn — Xn)2 < p2 where p is chosen small
enough that <2) <^°U. Choose any point PeQ), with coordinates x 1 , . . . , x".
Then the points with coordinates X a + rxa — tX*(0^. t ^ 1) are also in
Q). Let/be any member of 2 . We have

d
— f(Xl + tx1 - tX\ . . . , Xn + txn - tXn)dt

J,Xl +txl -tX\...)dt9

(4.1.20)

where

/a(x1, . . . ,x") = — / ( x 1 , . . . ^ " ) . (4.1.21)

Thus, we have an expression of the form '

/ (x 1 , . . . ,x") = /(Arl , . . , ,A'") + (xa-Araitofll(x1,...,x"), (4.1.22)

where, at X,

\ ^ \ . (4.1.23)

Applying V to (4.1.22), where X is kept fixed but where the coordinates
xa define the variable point P at which V is to be evaluated, we obtain

V(f) = 0 + V(x«)g« + (x* - X*)V(g^\ (4.1.24)

using (4.1.11). Now specialize to the point P = X. We find

at the point AT, using (4.1.23) and defining K01 = V(X*). This same formula
holds for e a c h / e £ and for each X e f , thus establishing the result.

One immediate consequence of (4.1.18) is the following property of a
derivation V:

Ifh:nn-+UisC™ and fu..., fre% then V(h(fl9...9 f,)) = %—VifJ.
i vj.x

(4.1.26)

The properties (4.1.11) are all special cases of (4.1.26). Thus, (4.1.26) is
equivalent to (4.1.11). Furthermore, setting/. = xx we immediately regain
(4.1.18).

The concept of a derivation on X provides an elegant algebraic
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characterization of a tangent vector field on Jt. We shall also need the
concept of a tangent vector at a single point PeJi. To obtain such a
concept, we can set up an equivalence relation between derivations, in
which I/is equivalent to V'\i and only if U(f) and V(f), when evaluated at P,
give the same real number, for e a c h / e X This equivalence class, denoted
by V[_P~\ - or, often, simply by V at P - is called the tangent vector at P
belonging to the vector field V. We have:

U[F] = F[P] iff{U(f)}(P) = {V(f)}(P) for all feZ. (4.1.27)

In terms of local coordinates about P, we have U[P] = V[P] iff (7tt

df/dx* = V*df/dx* at P for every feZ, i.e., U*(P)= V\P). Thus the values
of the n components of V at P, namely Ka(P), may be regarded as the
components of V in the coordinates x*. Since these are just n real numbers,
the tangent vectors at P form a vector space, over U, of dimension rc,
called the tangent space to ^ at P. This space will be denoted by 3T[P].
Sometimes the notation Z' may be used for this vector space, rather than
for the set of tangent vector fields. This will be either when it has been
explicitly stated that we are working at one point only - or else when it is
immaterial whether vectors at one point or vector fields are being consider-
ed. Under the same circumstances, Z may be used to stand for 2 [ P ] = (R.

An alternative definition of a tangent vector at a point Q which is
sometimes-used, is as a map W[P]: I - » R satisfying (4.1.11), with the
additional property that if/, geZ are such that they are identical through-
out some neighbourhood of Q, then ff[<2](/) = W[Q](0)- The equivalence
of this definition to the one given above can be obtained by repeating the
argument for (4.1.18), but where X is now fixed at the point Q.

We may also define the concept of a vector field on a (suitably non-
pathological) subset y of M. As with the case of a single point, we can set
up an equivalence relation between derivations, U being equivalent to
V if and only if U(f) = V(f) at each point of $f, for a n y / e l . We denote
this equivalence class by U[_Sf\ (= V[^]) and refer to it as the part of the
vector field U which lies on Sf. We denote by %' \_Sf\ the set of vector fields
lying on ^ , and by I[«5^] the scalar fields restricted to 9> (i.e., 'lying on' £f\

Given any two derivations U, VeZ' we can define their sum by

(U+ V)(f)\= U(f) + V(f) for all/eX (4.1.28)

Clearly U+VeX\ Also, we can define the multiplication of a derivation
UeX by a scalar heZ according to

(hU)(f):=hU(f)forallfeZ. (4.1.29)

Again it is clear that hlleZ'. It is easy to see that, in terms of some co-
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188 4. Differentiation and curvature

ordinate system, the <xth component of t / + V is U* + Ka and that of
hU is hU*. Furthermore, it is evident that, under the operations (4.1.28)
and (4.1.29), X forms a module over X. Similar remarks apply to X[F]9

X\_P~\ and to X[Sf]9 %\_Sf\. The arguments of §2.4 establish that X is
totally reflexive.

Real and complex tensors

We are now in a position to apply the theory of §2.2. We introduce a
labelling set Sf = {a, /? , . . . , a0 , . . .} and produce canonically isomorphic
copies X*9X

P,... of X\ Then we introduce duals Xa,Xp,... and, finally,
the sets Xa

x\~
y
x. A similar construction applies if we start with 3T[P]

leading to ij;.;J[P], or with 3T[^] leading to 21///v[^].
We can also construct complex tensors as members of sets S";;;J (or

®J*"J[P] or ®£;;J[^]) where each element C";;;Je®£;;;' is an expression of
the form

cl::.l = Al:l + iBlzl (4.1.30)
with A" "I, Bl"'l^Xl"'I, the new quantity i, which is introduced, being a
constant scalar subject to

i 2 = - l . (4.1.31)

The elements of ® are maps h \M -> C where h=f + ig (f.geX) gives
/i(P) = / (p ) + igf(p). The ring structure of ® is defined by ( / + \g) +
(p + i^) = ( /+/>) + i(gf + q), ( / + ig)(p + i^) = (fp - gq) + i(/(? + gp)(p, qe
X). The elements of ®' are maps Z: ® -> 6 with Z=U+\V(U, VeT)
giving Z ( / + igf) = Z( / ) + iZto) = U(f) - V(g) + \U{g) + i P(/). These sa-
tisfy the derivation properties (4.1.11) as applied to complex scalars
/ + \g. The set ®' is a module over ®. It is not hard to see that the general
®*""J, defined from these as in §2.2, gives simply the elements (4.1.30).
Throughout this section we shall tend to work with the sets X'" rather
than ® - . It should be clear, however, that the discussion will apply
equally well to complex tensors as to real ones.

The extra structure that we now have which was not present in the
general discussion of §2.2 is the interpretation of elements of X' (or of
8') as derivations on the algebra of scalars. We may regard this as giving
the link between the elements of the basic module and 'the relationship
between a point and its neighbours' that was mentioned at the beginning
of this section. This extra structure leads us to certain concepts of differenti-
ation, such as the 'gradient of a scalar', 'Lie derivative', 'exterior derivative'
and some others. The first of these we discuss in a moment, but for the
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others we shall wait until §4.2, after the concept of a connection has been
introduced. This will enable us to obtain a more comprehensive viewpoint.

Gradient of a scalar

Given a scalar feX9 we define its gradient d/, sometimes called its differ-
ential, to be an element d/ of the dual %'* of X' defined by

df(V):=V(J) (4.1.32)

The fact that this is a linear map from X' to X is a consequence of (4.1.28)
and (4.1.29): we have df(gV)=(gV)(f) = gV(f) = gdf(V\ and df(U+V)

The connection between this modern concept of differential and the
classical notion of an 'infinitesimally small element' is not particularly
intuitive, but it is related to the transformation properties of 'dx01' under
change of coordinate system. Choose a local coordinate system (^ , xtt).
Then {cf (4.1.12), (4.1.18)) the quantities

d d

dl dn

constitute a basis for 3T[^]. The dual basis elements are the differentials

d x \ . . . , d x " (4.1.34)

of the coordinates x 1 , . . . , x", since

&(*) = 5i' (4135)

by (4.1.32). Under change to new coordinates y* we have

d dy* d
(4.1.36)

so, to preserve (4.1.35), we require

dy° = - ~ - d x a , (4.1.37)

which is a formally valid expression for classical differentials.
To justify the terminology 'gradient' for d/, let us find its components

in the xa system. Since d/is an element of I" *[<#], these components may
be found by taking scalar products with the basis for X'[°ll~]; the required
components are

' * ^ A , (4.1.38)
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190 4. Differentiation and curvature

by (4.1.32). Thus, the concept of'differential' as described here does coin-
cide with the classical notion of'gradient'. The expression for d/in terms
of its components now becomes

d/ = ^ d x « , (4.1.39)

which is another version of the formally valid classical expression (4.1.37).
Since we wish to make use of the abstract index notation here, the

'differential' notation for covariant vectors is not entirely suitable. Let us
employ the symbol Va to denote the gradient operation on scalars. Then
Va/ is the element of %a which is the canonical image of d/in X*. Since
Va is to be the canonical image of V in 2a, we can re-express (4.1.32) as
V*VJ = V(f). That is to say,

V= F*Va, (4.1.40)

the operators acting on scalars. The notation (4.1.40) agrees with one
often used for a directional derivative.

We saw in (4.1.38) that the components of d/ in the xa coordinate
system are df/dx*. So these are the components V a / 6i Va/, and we may
write

V . « ^ , (4.1.41)

provided the operators act on scalars.
From (4.1.11) we finally get

Va/c = 0, i.e., dfc = 0 (4.1.42)

if fceft and

i.e., d(f + g) = df+dg, (4.1.43)

i.e., d(fg) = fdg + gdf (4.1.44)

if/ ,066.

4.2 Covariant derivative

We have seen in (4.1.32) that the concept of a gradient of a scalar can be
given a unique invariant meaning dependent only on the differentiable
structure of the manifold M (and, in fact, only on the algebraic structure
of %). On the other hand there is no such unique invariant concept as the
gradient of a vector VaeXa or, indeed, of a tensor of any valence other
than [Q]. But it is possible to impose an additional structure on M, which
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4.2 ovariant derivative 191

is a 'gradient' operation on vectors, and which uniquely extends from
vectors to all tensor fields on M. That structure is called a connection
and the operation that defines it is called covariant derivative. As mentioned
in §4.1, there are certain operations involving differentiation (Lie deri-
vative, exterior derivative, etc.) which do not require this additional
structure of a connection on Ji. Nevertheless it will be useful to discuss
these operations, too, in terms of covariant derivative, rather than give an
independent treatment of each.

A covariant derivative operator Va can be defined as a map

Va:2^2f (4.2.1)

subject to the two* conditions:

Va( U
fi + Vfi) = Va U

fi + Va V
fi (4.2.2)

for all I/', V'eX', and

Wa(fU
fi) =JVaU

fi + U0VJ (4.2.3)

for all Up€Xfi
9 / e 2 , where Va/ is the ordinary gradient of/ defined in

§4.1 (see 4.1.32), (4.1.40)). The elements Va(7
ye2£, V^U'eX^ etc, are

defined from Val^ by index substitution. The possibility of making such
index substitutions is always available to us on any formula.

We can extend the definition of Va uniquely to apply to covariant
vectors, giving a map

where VaAfi effects the 2-linear map from 2^ to 2 a (cf. (2.2.37)) defined
by

The fact that this is indeed 2-linear follows from (4.1.43) and (4.2.2) and
from (4.1.44) and (4.2.3). Note that this definition of VaAfi is forced upon us
if we require the derivative of Ap Vp to satisfy the Leibniz law.

We have

V a (^ + ^ ) = V a ^ + V a ^ (4.2.6)

and

V a ( / ^ ) = / V a ^ + ^ V J , (4.2.7)

by (4.2.5), (4.1.43), (4.1.44).

In standard modern treatments {cf. Hawking and Ellis 1973) covariant derivative is
defined by three, rather than two requirements. The use of abstract indices enables us
to achieve a somewhat greater economy here.
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192 4. Differentiation and curvature

Next consider a general tensor T\~\. If we require the Leibniz law to
hold for the derivative of T*-yAm... C Uk... Wv we are led to the relation

A. . .v

(4.2.8)

This defines V TJ'"J as a map (which is easily checked to be 2-multi-
linear) from I a x - x l " to 2 p (c/. (2.2.38)). Thus any operator Va

satisfying (4.2.1), (4.2.2), (4.2.3) extends uniquely to

V * " : : . ^ ^ : : : ; (4-2.9)
by the one requirement that V acting on a contracted product of the type
Tl'.'.'.lAa -" CyJjX "WX s h o u l ( i satisfy a Leibniz law. (We can also check
that in the case of Vp :X

a -> 3£, we get back to the original definition.)
By applying the definition (4.2.8) to the two sides of each of the follow-

ing two equations, we readily verify that:

vP(rrf + s j = vprJ/ + vpsrf (4.2.10)
and

*P^Rm) = TJ?pRa + RmVpT^. (4.2.11)

It is also clear that

Vp commutes with any index substitution not involving p. (4.2.12)

To see that V^ commutes also with contraction (not involving p) we can
first build up T as a sum of outer products of vectors (see (2.2.14)) and
then apply linearity (4.2.10) and the Leibniz law (4.2.11) to each of
VpT"°;;;; and Vp(T; a

a;;;). Since, by (4.2.11) and (4.2.5), we get a Leibniz
expansion both for Vp(X*Dx) and for V^X'DJ, it follows that the £)-
contraction of the former is equal to the latter. The (^-contraction of
VpT;;ffT•;;; is therefore equal to Vp(T a

a;••) as required:

::-;;;) = VpT::-:: :. (4.2.13)

The properties (4.1.40), (4.2.10), (4.2.11) and (4.2.13) are often used to
axiomatize the covariant derivative.

Torsion and curvature

So far, the rules that we have obtained for Vp are all formally identical
with the corresponding rules for the 'coordinate gradient operator'
d/dxp. However, one essential new feature arises here, namely the fact
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that the V operators need not commute with one another. To investigate
this, set

We first observe that

by (4.2.10), and that

by (4.2.11) since the 'cross-terms' {VaAs)(VfiCJ and (VaCf){VfiA9) each
cancel out.

Now consider Aafif for any scalar/. If XaP is any element of XaP we have,
by (4.1.42), (4.2.15), (4.2.16)

X"Aafik = 09 (4.2.17)

) = X«Aafif + X«Aa09 (4.2.18)

^ fX**Aapg + ff^A^/, (4.2.19)

for each keS^^geX. Thus, by (4.1.11), XaPAap is a derivation, whence, by
(4.1.40),

X^A^ = yyVy (4.2.20)

for some unique YyeXy, where the operators act on scalars. The map from
Zafi to Zy which assigns Yy to Xa^ in (4.2.20) is obviously I-linear. (If
(4.2.20) holds and ZapAap = WyS7y, then {Xafi + Zafi)Aafi = (Yy -f Pr7)Vy,
{pXafi)Aafi = (p7y)Vy.) Thus, by (2.2.37), this map is achieved by a tensor
T y e 3 ^ , called the torsion tensor:

yy = xafiTgLf
y. (4.2.21)

Substituting into (4.2.20) we get X*fiAafi = XapTap
yWy (on scalars). This

holds for all X^eX!*, so

for all feX. Notice that by the anti-symmetry of Aap (cf. (4.2.14)), the
torsion tensor also has this anti-symmetry:

T y = —T y (4 2 23)

If Ta
y = 0, the operator Vp is called torsion-free.

Next consider the action of Aafi on a vector. When torsion is present, it
is actually rather simpler to work in terms of the operator (Cyrillic 'D')

since

% / = 0 (4.2.25)
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194 4. Differentiation and curvature

for all / e 2, so the relation (4.2.16)

(c/. (4.2.11)) reduces to

when Cs is the scalar/. By (4.2.15) and (4.2.10) we also have

By specializing (4.2.27) and (4.2.28) to elements of 37 (i.e., 2 = y*), we
see that the map Hafi :Z

y -> Z\fi defined by

Vyv-+\fiV
6 (4.2.29)

is I-linear. It is therefore achieved by a tensor K ^ / e l ^ , called the
curvature tensor*:

Writing this out in full, we have

(V.V, - V,V, - T^JV = R^V. (4.2.31)

By (4.2.25) we have ^xfi(AiV
i) = 0. From this and (4.2.26) we get

vyjXafiA
y
 = ~ Asaoc0Vd- T h i s i n t u r n ' w i t h (4-2.30) substituted into it, gives

To obtain the effect of Ji^ on a general tensor HJ*"*, we may expand
HJ""J as a sum of outer product of vectors (cf. (2.2.14)) and use the 'Leibniz
rule' (4.2.26), for £^ , on each term to obtain the (generalized) Ricci identity.

Observe that, owing to the anti-symmetry of \p(cf (4.2.23), (4.2.24)),
we have

*«,/=-«„/• (4.2.34)

We obtain a further (Bianchi) 'symmetry' condition on R, d if we apply
(4.2.32) to the case Ay = Vy/. For simplicity, let us compute this explicitly
only in the torsion-free case. We have, in that case,

anti-symmetrizing in a, /?, y and using (3.3.9) we get

2^[a/?y] V«5i V [ [ a V i 8 ] V y ] / ~~ V[a

Unfortunately there is no general agreement on the sign and index arrangement of
this tensor, and almost all possible variations can be found in the literature.
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4.2 Covariant derivative 195

since we assumed vanishing torsion. But at any one point the Vdf are
arbitrary, so at every point we have

J W = 0- (4-2.37)
Taking account of (4.2.34), this reads

If the torsion is not assumed to vanish, the computation proceeds along
the same lines but is more elaborate. The result is:

Next, expand ^[aV^Vy]F^ (as in (4.2.36)) in two different ways, using
once the anti-symmetry in a, /?, once the anti-symmetry in /?, y. In the
first case we apply (4.2.33) to VyV

3 and in the second case we use the deriva-
ytive of (4.2.31). As above, we shall only do this explicitly in the torsion-

free case. We have, in that case,

and

2 V W * = W*'*") = W V + >"VW- <4-2-41)
Substracting these two expansions and using (4.2.37) we get Bianchfs
identity:

If the torsion does not vanish the computation is similar but more com-
plicated. (See Appendix, Fig. A-9.) The result is:

V W + *„%»' = 0. (4.2.43)

An alternative method of deriving (4.2.39) and (4.2.43) will be given shortly.
(cf. (4.2.52) et seq)

Change of derivative operator

Suppose, now, that we have a second covariant derivative operator
Va: 2^ -• I f which also satisfies (4.2.2) and (4.2.3). Consider the difference
between this and Va. The map

( V a - V a ) : ^ ^ I f (4.2.44)

satisfies (Va - Va) (U* + V) = (Va - Va)C/̂  + (Va - Va)V
p by (4.2.2); also

(Va - Va) (JVfi) =/(Va - Va)U
p by (4.2.3) and by the fact that the operators

must agree on scalars:

= VJ (4.2.45)
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196 4. Differentiation and curvature

(see (4.1.40)). The map (4.2.44) is therefore I-linear and so by (2.2.37) we
have

&*-VJU' = QafW (4.2.46)
for some 6 a / e 2 £ y . Conversely, given an arbitrary Qay

fi and a covariant
derivative operator Va, any Va defined by (4.2.46) will also be a co variant
derivative operator.

Since (tfa - VJC^l/*) = 0, by (4.2.45), we have, by (4.2.5).

Now any tensor H*k
 y
x is a sum of outer products of vectors, so it follows

from the Leibniz rule and linearity that

-Q /°/J" y 0 V0H"-y . (4.2.48)
*^pA A 0 . . . v *^pv A . . . v 0

Let Tafi
y and Rafiy

d be the torsion and curvature tensors, respectively,
defined by Vp. We have

= 2?I.V-2eWI]'V <4-2-49)
= {v-2eM,r}V

whence

V = T«/ - C / + G,.y, J-e' V - T . / = ~ 2Qwr (4-2.50)
The calculation for 1*^/ proceeds along similar lines by consideration of
2V[a¥fi]V

a, but is somewhat more complicated. The result is

V = « „ , ' - v e w ' + ^ V + ^ w ' G f l / - <4-2-51)
A particular case of special interest is given by Q^y = jTa

y\ for Qa^
y is

now anti-symmetric and it follows from (4.2.50) that Vp is torsion-free.
Thus we have a canonical prescription* for constructing a torsion-free
V from any co variant derivative operator Vp. In this case we havep from any co variant derivative operator Vp.

n < 5 _ D <* j _ v T <* _ I T *T P — -T PT d

Aa^y - A a / * y + V [ a i ^ ] y 2 i p[a i ]̂y 2 i â  ' py "

This formula may be used to obtain an alternative derivation of (4.2.39)
and (4.2.43). We just substitute Rafiy

d (and Vp) into the simpler formulae
(4.2.37) and (4.2.42) which hold for the torsion-free case. The results are
(4.2.39) and (4.2.43), respectively.

Until now we have said nothing about the existence of a covariant
derivative operator on a given manifold Ji. It is in fact a theorem

* In the presence of a metric, however, there is a different 'canonical' prescription which
may be preferred, namely passing to the unique torsion-free operator satisfying (4.3.46)
(cf. also §4.7)
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4.2 Covariant derivative 197

{cf Kobayashi and Nomizu 1963) that a connection exists globally on any
manifold which, as here, has a countable basis for its topology. Once one
connection has been found, many others may be derived from it by use of
arbitrary elements 6 a / e 3 ^ in the manner described above. We shall not
require any deep existence theorems here, however, since the existence of a
physical metric will shortly be assumed, and a metric (of any signature)
has associated with it a uniquely defined torsion-free connection (cf
(4.3.47) below).

Coordinate derivative

It is sometimes convenient to introduce 'arbitrary' connections - which
need have no special relation to any preassigned structure on Jt - for the
purposes of facilitating calculations. As we shall see in a moment, many
such connections exist locally. A useful example is a connection arising
from the concept of 'coordinate derivative' in some coordinate system.
There are two ways of arriving at the concept of coordinate derivative
within the present framework. The more straightforward of these is simply
to express all tensor quantities in terms of their components with respect
to a coordinate system, and then to consider the collection of partial
derivatives of these components with respect to the coordinates x". The
result is a set of scalar fields, or, equivalently, a set of functions of the xtt.
This is what one normally requires when explicit calculations are involved.
The alternative point of view is to take this collection of scalar fields and
to reconstruct tensor quantities from them, the scalar fields being regarded
as the components of the tensors in the given coordinate system. Thus,
according to this second point of view, the coordinate derivative provides
a means of passing from tensors to tensors; in short, it provides us with a
connection on the manifold Jt. This connection is coordinate-dependent,
however, in the sense that a different coordinate system would provide us
with a different connection. (We work locally until the end of §4.2.)

Let us examine this in more detail. Consider a local coordinate system
(fy, xtt). When we take components of a tensor with respect to this coordi-
nate system, we employ the coordinate basis for %' (sometimes called a
'natural' basis) given in (4.1.33):

«i=A,.»A=TV (4'Z53)

dx dx
The dual basis (4.1.34) is

S1 =dx\...,d" = dx". (4.2.54)
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198 4. Differentiation and curvature

The canonical images in X" and in 2a,of SaeT and d*eZ'*respectively,are
<5£ and 5*. Thus, using the notation Va for d (cf (4.1.40)) we can re-express
(4.2.54) as

<5«=Vax\ (4.2.55)

Then we may regard d* as being defined from c>* by the equation 3^$$ = <5p.
The components of a tensor if"'"*' in this coordinate system are then

Hl;;l = H'cl&l... 5\8i... 5£, (4.2.56)

by (2.3.13). The partial derivatives with respect to xp are

-\H\-;;1. (4.2.57)

The set of scalars (4.2.57) gives the first notion of coordinate derivative
discussed above. To obtain the second notion we reconstruct a tensor,
whose components are (4.2.57), by means of the standard procedure
(2.3.14). This defines a tensor, which we write

I5:...d]5\...dl (4.2.58)

The operator d defines a map from Z^"7 to Z^"7 which clearly satisfies
all the properties required of a covariant derivative operator. But it is an
operator of no intrinsic interest in general, since the definition of dp is tied
to the particular* coordinate system xa.

On the other hand, dp may sometimes be introduced as a convenience,
since it has especially simple properties. These arise from the fact that
partial derivatives d/dx*commute: d2/dx* <9xp = 32/<3xp dxa. Thus we have

dj) = dJda, (4.2.59)

so the torsion and curvature defined by da both vanish. (In fact, it can be
shown {cf Dodson and Poston 1977) that any covariant derivative operator
for which the curvature and torsion both vanish must locally be of the
above form for some coordinates x*.)

The significance of da lies in its particularly simple expression in terms
of components in the xa-system. Let us now examine the somewhat less
simple expression of a given covariant derivative operator Va in terms of
components. For increased generality, we shall consider a basis <5£ for X",
and dual basis 8%eZa, which need not be naturally obtainable from a
coordinate system by means of (4.2.53)-(4.2.55). A basis which is so

It may be observed, however, that any other coordinates >4 which are related to
xa by constant linear expressions (i.e., so that dy^/dx^are constants) give rise to the
same operator dp
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4.2 Covariant derivative 199

obtainable from some coordinate system is sometimes called holonomic,
and in the contrary case, non-holonomic* Thus we shall include non-
holonomic bases into our discussion. Many more manifolds admit globally
defined non-holonomic bases than admit globally defined holonomic ones.
(An example is S3, see footnotes on pp. 92, 93.)

We shall need the components of the covariant derivatives of the basis
elements. Define the connection symbols** by

rj:=SWS(, (4.2.60)

where Va stands for ^ V a . Since SJ are just constants 0 and 1, we have
0 = Vtt&} = VJS}S§) = S}V, Si + af V.S\. Thus we also have

Now, consider the components (VaK
/>)<5,J1<5̂  of the covariant derivative

Va V of the vector V. We have

V* + V 5\ Va 8$ (4.2.62)

by (4.2.60). Similarly, for the components (VaAp)8Z8$ of V^Ap we have

6} A,) = ^ ^ V. X, + /I, d( Va r^( (4.2.63)

by (4.2.61). For the components of the covariant derivative of a general
tensor H""-J we have

= 5* (5VV f̂ " iiv»f/v-'o|

= Vp Hl;;l + H;O::-J T p a ; + • • • + //J::;jo fp^

- Hl;.\ r p ^ - • • • - Hl;;;^ Tpv^ . (4.2.64)

In the particular case when d£ is a coordinate basis (with Vax
a = (5*), the

operator Vp may be written as d/dxp, in accordance with (4.1.41), since it
acts on scalars. In this case the part of T^ which is skew in a, (5 defines the
torsion components since

= V (4.2.65)

The (local) condition for a basis 6a to be holonomic is [6a 6, ] = 0, [ ] being the Lie
bracket operation of (4.3.2), (4.3.26) below. It may be remarked that a derivative
operator dp can also be defined for a non-holonomic basis using (4.2.58), (4.2.56);
this dp has torsion but no curvature.
We are using a non-standard ordering of the indices on V^ ,this being more compati-
ble with our other conventions (notably the use of V rather than a semicolon).
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200 4. Differentiation and curvature

Thus rap7 is symmetric in a, p if the torsion vanishes. On the other hand,
if 5* is not assumed to be a coordinate basis - that is to say, in the general
non-holonomic case-there is no fixed relation between r ^ j * and the
torsion. Indeed, in the general case, there is no way of determining the
torsion tensor from knowledge of the scalar fields T^ alone. One needs
additional information such as the expression of these quantities in terms
of some coordinate scalars xa.

Let us assume, for the moment, that Vp is torsion-free but that the
Y^ are quite general (non-holonomic). We may compute the curvature
tensor components from the following formula

JU' = W,V.-V.V,)tf (4-2.66)
(cf. (4.2.31)). We have

= v[p i v + rHj rfl/ - r M T J. (4.2.67)
If torsion is present, it is clear from (4.2.31) that the modification of this
formula which is required is the inclusion of an additional term

-±W (4-2.68)
on the right. If, on the other hand, torsion is absent and also the basis is
specialized to a coordinate basis (4.2.53), then we get the familiar classical
formula

fir P fir p

There is another way of obtaining these formulae in the case of a
holonomic (coordinate) basis. This is to employ (4.2.51) and take Vp = 5 ,
as defined in (4.2.58). Comparison of (4.2.62) with the component version
of (4.2.46) yields

<V=~rV- (4.2.70)

We have R ^ * = 0 , so taking components of (4.2.51) and substituting
(4.2.70) we obtain the required formula for R^^ (whether or not the
torsion vanishes). Similarly the expression (4.2.65) for T^1 in terms of the
skew part of T^1 in a coordinate basis may be obtained by taking compo-
nents of (4.2.50), where T^ = 0.

It is sometimes notationally convenient to express formulae involving
coordinate derivatives in their abstract-index versions, involving d (i.e.,
to employ the second way of viewing the coordinate derivative that was
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4.3 Connection-independent derivative 201

mentioned above). The reason is that when taking components of a
covariant derivative one must display the basis (5s explicitly, whereas these
basis 8s may be eliminated in the abstract-index versions of the same
formulae. Thus, for example, the fundamental equation (4.2.62) in a
coordinate basis,

(Va V
p)d^d} = — - + V1 r t t / , (4.2.71)

may be re-expressed in terms of abstract indices as

, . a / , (4.2.72)

where the tensor Tay
fi is defined by

ra/:= r.,» 8\5\8i = S^tf. (4.2.73)
Of course, like d , the tensor Fa

 p is dependent on the particular choice
of coordinate system xa. Nevertheless it is a tensor (in the same sense that
x3 is a scalar). In fact, with Vp = dp, we have T^ = - Qay

fi (cf. (4.2.70)),
and (4.2.72) becomes simply a case of (4.2.46).

It is perhaps worth stressing that, whereas in our approach coordinates
like x2 and tensor components like A33l are scalars (in the sense of being
elements of I ) , in the classical approach they are not: classically, scalars
are invariants under coordinate transformations. For example, in the
classical notation the components of VaAfi are normally written Afia,
but we cannot treat an individual component A3 of Ap as a scalar (/> and
substitute (j) for A^ in A^ to obtain (/>.a = dcp/dx* for A3.a. Covariant
derivative is not an operation on individual components but on the tensor
as a whole. To that extent the notation A^ a is illogical and can lead to
computational errors if one is careless. (On the other hand, the notation
A^ a for coordinate derivative is perfectly logical: \<x' acts on individual
components.) The point of view and notation adopted in this book avoids
these ambiguities. If we write V 2^ 3 we do in fact mean dAJdx1 (in a
coordinate basis). The component with a = 2, j$ = 3 in the classical ex-
pression /4p a would here have to be written S^V2Afi, which differs from
V2A3 by the expression — A^2S

P = — A^Y2^. The abstract index /?
cannot, of course, be given a numerical value.

4.3 Connection-independent derivatives

One of the advantages of having a connection on a manifold is that it
makes differentiation a completely systematic procedure. Those opera-
tions which can be specified independently of any particular connection,
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202 4. Differentiation and curvature

on the other hand, constitute a sort of special 'menagerie'. Nevertheless,
some of these operations are particularly important ones. We shall first
give a list of several known connection-independent operations and discuss
the more important of these in a little detail afterwards.

Each of the following expressions (4.3.1)-(4.3.6) (and also (4.3.45)
below) is independent of the choice of torsion-free covariant derivative
operator Vp:

VL.,,; (4.3.1)

U«^aV
f - VS/Jjt; (4.3.2)

£„«..., . = V»VpHl-;l - HZ-.FJ'' Hl:?VyoV

+ W^JyV** + - + Hl-^V"*; (4.3.3)

p H p

-*' = A ( a i - * p ) and B"1 •"« = Bietl-atl); (4.3.4)

if A*'-'** = ylt«i...ap] a ^ ja,.. .^ = B[a,...a,]. (435)

\ypA[al...*p>
nfi1...fiq] *Vpi)[/3i.../V a i - M

-4- nAy V /?p — nBy V /lp

ifAy =AJa a l anrf B^ B=E>B Bv (4.3.6)
^ ai...ap [ai...ap] p\...pq [pi-Pq\ '

The verification of the in variance of each of these expressions under change
of the torsion-free operator Vp is a simple and straightforward application
of the above discussion. Taking the difference between each expression
and the corresponding one involving Vp we get, using (4.2.48), a sum of
terms involving Q^y which vanishes in each case, by virtue of the symmetry

<V = V* (4-3.7)
this symmetry expressing the fact that the torsion tensors of Va and Va

are identical (both being zero), see (4.2.50).
The expressions (4.3.1)-(4.3.6) have the virtue that they have particularly

simple representations in terms of components. We may use the d opera-
tor arising from any coordinate system in place of V . Then when we take
components with respect to these coordinates, the operators simply
translate into d/dx9.

Exterior calculus

Let us examine (4.3.1) in detail. We have

U . , i - V1*..,, = QJAw...n + - + QJA«...» = ° <4-3-8)
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4.3 Connection-independent derivatives 203

since each term vanishes by (4.3.7). The connection-independent operation
(4.3.1) is the basis of a self-contained calculus, namely Cartan's exterior
calculus of differential forms. This is concerned with anti-symmetrical
covariant tensors. The operations are simple enough for indices not to
be necessary or (in most instances) even helpful.

We can obtain agreement between Cartan's notation and ours if we
employ a device for suppressing indices such as the following. Select
a particular infinite subclass of index labels, say

as the indices which may be suppressed. Here we shall allow ourselves
only to suppress lower indices and they must occur in their natural order
starting with iY and continuing successively. If we are to remain strictly
within the exterior calculus, then we should operate entirely with tensors
whose only index labels are an anti-symmetrical set of lower indices
i1,12,...., ip- Such a tensor will be called a p-form and we write*

The O-forms are simply scalars and the 1-forms are just covectors. By
(3.3.30) every n-form is a scalar multiple of en_/n; by (3.3.27) every p-form
with p > n is zero.

One sometimes considers tensor-valued p-forms and then a notation
such as

is useful, where H is anti-symmetrical in ix, i2,..., ip. Strictly speaking,
however, this takes us outside the exterior calculus.

Differential forms are subject to three operations, namely addition,
exterior product and exterior derivative. We allow a p-form and a g-form
to be added only ifp = q. (in some versions of the exterior calculus, formal
sums are also permitted when p ± q. See also Appendix, Vol. 2.) The sum
of two p-forms A and B is another p-form defined by

A +B:=Ali_lp + Bli_lp. (4.3.12)

The exterior product of a p-form A with a g-form Cis a (p + g)-form A A C
defined by

A A C : = A [ n ipClp + i ip+tV (4.3.13)

The exterior derivative of a p-form A is a (p + l)-form &A defined, for
torsion-free Vp, by

d/i:=V[Mi4 l2 ]5 (4.3.14)

* The possibly more familiar 'dx' notation is introduced in (4.3.19), (4.3.22) below.
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204 4. Differentiation and curvature

this being independent of the choice of V , as we have seen. Observe that
if p = 0, this notation agrees with that of the gradient of a scalar defined in
(4.1.32). When the operators act on scalars we may in fact write d = Vti.
The following relations hold between differential forms. (Whenever a
sum is written it is assumed that the forms involved have the same valence.)

(i) A+B = B + A

(ii) (A

(iii) A

(iv) A A B = (— l)pqB A A if A is a p-form and B is a q-form

(v) (A A B) A C = A A (B A Q

(vi) d(^ + B) = dd + di?

(vii) d(^ A «) = (<L4) A B + ( - l)p/4 A dJ? if A is a p-form

(viii) d(d/l) = 0 (4.3.15)

The verification of each of these expressions is a simple consequence of
the definitions (4.2.12)-(4.2.14). For example, to verify (v), we have

(A AB)AC = A{[ B f } = A{ B C j

= AL B{ C ]} - A A (B A Q. (4.3.16)

To verify (viii) we choose a particular V , say 3 , whose curvature and
torsion both vanish. (This may only be possible locally, but that is suf-
ficient.) We have

d[md{A ]} = d{d A } = d ^ d ^ A } = 0 (4.3.17)

since d[adfi] = 0. This result is sometimes known as the Poincare lemma,
and sometimes as the converse of the Poincare lemma (the deeper result
being that locally dX = 0 implies X=dA for some A, cf. (6.5.27)). Exterior
derivative generalizes the notion of 'curl'. The well-known formulae
of vector analysis div curl V = 0 and curl grad <j> = 0 may be viewed as
particular cases of Poincare's lemma.

In a coordinate basis we can write

A = A =A 6*l...5*p

l\...lp di...dp li Ip

= A 5?i...S** (4.3.18)

the components A^ a forming an anti-symmetrical array. Since we can
write

^« = V l i x
a = dxa, (4.3.19)

the expression (4.3.18) can be written in differential form notation as

A = ylai apdxai A ... A dxa<\ (4.3.20)
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4.3 Connection-independent derivatives 205

(Logically there should perhaps be a ' A ' between the A and the first
dx, but scalar multiplication, although a special case of exterior product,
is normally written without the' A '.)

We should remark that, in the literature, a slightly different convention
is frequently employed, in that the quantities

«.!...«,: = pk4.1...«F (4.3.21)

rather than our A^ a are used to denote the components of a p-form.
This is simpler only if the summation convention is not employed, the
expression (4.3.20) being then written

A = Y a dxai A ... A dxa*. (4.3.22)
L~t a i . . . a p

 v '

The definition we use here, together with the square bracket notation for
anti-symmetrization, serves to avoid some of the awkward factors that
appear when the notation (4.3.22) is adopted. Here, exterior product
and exterior derivative have the respective component forms

d_
dx'

One of the most important applications of differential forms occurs in
the fundamental theorem of exterior calculus* If 9 is an oriented p-dimen-
sional surface in an oriented Ji, we define the integral of the p-form A
oyer 9 to be

\ A = A%x .ttpdxai A ••• A dxttp = ^...pdx1 A ••• A dxp

and — [a XA* 2...ttp+l] (4.3.23)

(4.3.24)

whenever 9 is such that it can be defined by xp + 1 = • • • = x" = 0 in some
coordinate system. Otherwise we split 9 into pieces where such coordinat-
es exist for each piece, and add the integrals for the separate pieces. The
result is independent of the particular choice of coordinates. The funda-
mental theorem of exterior calculus states that

lA = i A, (4.3.25)

where £ is a compact (p + l)-surface with boundary dl.

* Various versions of this result go under the names of Ostrogradski, Gauss, Green,
Kelvin, Stokes, Cartan and probably others. Our adopted terminology was suggested
to us by N.M.J. Woodhouse.
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206 4. Differentiation and curvature

Lie brackets and Lie derivatives

We now come to (4.3.2), the second connection-independent operation in
our list. This is the Lie bracket and is the common special case of all the
remaining operations (4.3.3)-(4.3.6) in the list. We can arrive at this opera-
tion in a more basic way as follows. Let U and V be derivations on the
algebra X. The the map W:X->X defined by the commutator

W= [U9 V] :=U°V- V- U9 (4.3.26)

i.e., by

mf)=U(V(f))-V(U(m (4.3.27)

is also a derivation. (Relations (i) and (ii) of (4.1.11) are obviously satisfied.
The verification of (4.1.11) (iii) is a straightforward calculation.) Let Vp

be any covariant derivative operator. We shall find W" in terms of Ua

and Va. We have

a a a/)Vpf. (4.3.28)
Thus

Wfi = (7aVaF^ - VaVaU
p + U*VyTay

fi, (4.3.29)

which reduces to (4.3.2) when Va is torsion-free (and, incidentally, shows
how (4.3.2) must be modified when it is not).

The Lie bracket satisfies a number of familiar relations common to all
commutators, namely

[U9V]=-[V,U], [U9V + X] = [U9V] + [U9Xl
\U9 [V,X]] + \V9 [X9 U]] + \_X9 [U9 V\\ = 0, (4.3.30)

the last being referred to as the Jacobi identity. The Lie bracket plays a
frequent role in modern differential geometry. This often arises from the
fact that the commutator of directional covariant derivatives

V:=Z a V a (4.3.31)

(not necessarily acting on scalars) involves a Lie bracket. Essentially
repeating the calculation (4.3.28), we have, in fact, {cf. (4.2.24))

and so, by (4.2.31),

V V - W = : V +-XaYfiJi R, (4.3.32)
XY YX [X,Y] ap

(VV - VV - V )Zd = RR
 3XaYpZy. (4.3.33)

XY Y X [X,Y] Py
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4.3 Connection-independent derivatives 207

The third connection-independent operation in our list is (4.3.3), the
Lie derivative of the tensor H*k \ with respect to the vector V. This opera-
tion may be generated as follows. We define

£X:=[V9X] (4.3.34)

as the Lie derivative of a contravariant vector X with respect to V. The
Lie derivative of a scalar/shall simply be its directional derivative defined
byT:

. (4.3.35)

The Lie derivative of a covariant vector is then defined from (4.3.34),
(4.3.35) by the requirement that the Leibniz rule apply to the Lie deriva-
tive of A^X":

£(A Xa) = A £X« + Xa£A (4.3.36)
v
 a v v

This implies
ZA^VV^ + AW, (4.3.37)

where we assume Vp to be torsion-free. For a general tensor //"'"*, if we
demand that the Leibniz rule shall apply to the Lie derivative of Ha

x
 y

v

Xk ... ZvAa... Cy9 or alternatively, if we expand H\"\ as a sum of outer
products of vectors and demand linearity and that the Leibniz rule shall
apply to each term, then we are uniquely led to the expression (4.3.3)
as the definition of the Lie derivative £H" y of the tensor H"—y, where

y ^--V A...V

S/p is torsion-free. It is easily verified that the commutator of two Lie
derivatives satisfies

££-££= £ . (4.3.38)
UV VU [U,V]

The geometrical meaning of the Lie derivative of H^ y
v is that it re-

presents the infinitesimal 'dragging' of the tensor H along the integral
curves of V in M. To represent a finite 'dragging' of H along these
curves to parameter value w, we form the expression exp(w£)//"-*. For

details, see Hawking and Ellis (1973), Choquet-Bruhat, DeWitt-Morette
and Dillard-Bleick (1977)

The final three connection-independent operations (4.3.4)-(4.3.6)
do not have the same importance that the first three have. We shall
say no more about them here except to point out a certain particular case
of (4.3.6):

This expression has significance in the theory of complex manifolds.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


208 4. Differentiation and curvature

Riemannian geometry

Let us now consider the implications of introducing a metric into M.
A metric is a symmetric tensor of valence [°], denoted by g^, which is
non-singular in the sense that another tensor gaP exists such that

9**9 fi7 = 8y. (4-3.40)

We have

9" = g'ta, 9 ^ 9^ (4-3.41)

Let V* be an arbitrary contravariant vector and let Wp be a torsion-free
operator. Then the Lie derivative of g^ with respect to Va is

^aVa 9Py + 0«yV,F" + gPaVyV
a. (4.3.42)

Furthermore, twice the exterior derivative of K"^ is

+ 9.,VyV' - V^^gay - gJfV (4.3.43)'

Adding these two connection-independent expressions together,

2 0 . , V " + ^ V ^ v + VA/> - W > (4.3.44)
and transvecting with $gp°, we get

VV° + V{±g"(Vjfi7 + Vy0a/, - V^ay)} (4.3.45)

which must therefore also be connection-independent. Now suppose
Vp, in addition to being torsion-free, satisfies

V«* = a (43-46)

Then the connection-independence of (4.3.45) tells us that S/p is unique,
since (4.3.45) is equal to the same expression with dp replacing Vp:

VyV = d/° + V'lyidj,,, + 8ygap - d^gj}, (4.3.47)

where dp is any torsion-free operator - in particular where dp is the 'co-
ordinate derivative' operator associated with some local coordinates xa

When written in terms of components, (4.3.47) is the familiar classical
expression for covariant derivative in terms of Christoffel symbols.

Conversely, we can show that a torsion-free Vp exists satisfying (4.3.46).
We define VyF

CT (locally) by (4.3.47). Then we have an expression of the
form (4.2.46) whde dy = Vy and

Qy,
a = - V' t fU, , + 3 A , - ^a>)- (4-3.48)

Thus, by (4.2.48), (4.3.40), (4.3.41),
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4.3 Connection-independent derivatives 209

+ Spg(ap) - d{figa)p)

= 0.

This torsion-free operator V , uniquely defined by gra/p we shall call the
Christoffel covariant derivative operator. (The existence was proved
locally, but local existence, together with uniqueness, implies global
existence.)

The metric may be used for raising and lowering indices in the standard
manner (cf. §3.1) (i.e., gafi establishes a canonical isomorphism between
2 a and Zp). Since gap is 'covariantly constant', Vpgaj3 = 0, the operation of
raising or lowering an index will commute with Wp. That is,

V U = KP*, iff VpHy = Kpy. (4.3.50)

Finally, let us examine the curvature defined by the Christoffel Vp. We
can lower the final index of Rafiy

d to obtain the Riemann (-Christoffel)
tensor

(Owing to the arrangement of indices that we have chosen, we have
arrived at a Riemann tensor of a sign which differs from that used in much
of the literature, although both signs are commonly adopted. The sign
chosen here agrees with the one which has usually been employed in
connection with spinor decompositions.)

Applying a commutator of derivatives to gyd we obtain, by (4.3.46),
(4.2.33) and the vanishing of torsion,

showing that R^yd is skew in y, 3. By (4.2.34), Rafiy3 is also skew in a, /?, so

Also, by (4.2.38),

^ + ^ + ^ = a <43-54)
These properties imply

~ Ryzfid ~ Radfiy ~ Rd(1*y (4.3.55)
__ n

^dypa """ ^y
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210 4. Differentiation and curvature

so RaPyd also possesses the 'interchange symmetry'

* „ , * = * , * , „ • < 4 - 3 5 6 )
(Note that the full relation (4.3.53) is not used in the derivation of (4.3.56),
the symmetry R^yd = RfiaSy being all that is required.) By virtue of the
symmetries (4.3.53) and (4.3.54) (and hence (4.3.56)) the total number of
independent components i ^ a at each point turns out to be JJ n2(n2 — 1).
(See p. 144 above.)

The tensor

is called the Ricci tensor. By (4.3.56) (and the symmetry of the metric),

K,* = V (4-3-58)

The Ricci tensor has \n(n + 1) independent components R^^ at each point.
The scalar curvature is given by

R:=R« = R ^ . (4.3.59)

Rewriting the Bianchi identity (4.2.42),

VA^ + V W * + V A ^ = 0' <4-3-60)
and transvecting with gapgy<T, we obtain the important relation

V(Rafi-^Rgaf) = 0. (4.3.61)

In four^dimensional space-time this forms the mathematical basis for
Einstein's field equations.

4.4 Differentiation of spinors

We shall now specialize the discussion given in §§4.1, 2, 3 to the case of
a four-dimensional space-time* Jt and shall extend the concept of
covariant derivative so that it applies to spinors. We shall find that in

* It is* common 'modern' practice to denote a space-time not by a single symbol, such
as J( here, but by a pair, such as {M, g) or (M, #aft), where J( is the manifold and g (or
#ab) its metric. While this may have some rationale in areas of pure mathematics
for which the specific choice of metric is of importance secondary to that of the mani-
fold itself, this is less true for physical space-time, where one hardly ever wishes to
consider metrics (or at least conformal metrics) other than the physical one. It should
be pointed out that our use of notation such as 'PeM\ while actually an abuse of
notation - since if M — {M^,g\ then 'PeJf' strictly means T = JtQ or P = # ' - i t
is no more so than the common notation ' P e ^ 0 ' , where JtQ is the manifold. For
a manifold is not a point-set either, being itself a collection of sets, mappings, etc.
denoting the topology and/or differentiable structure, so 'PeJi^ would mean,
strictly, not that P is a point of the manifold, but is one of these entire structures
instead!
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4.4 Differentiation of spinors 211

fact the Christoffel derivative of §4.3 extends in a canonical way to spinor
fields. This should, perhaps, come as no surprise since spinors can be
defined in a clear geometrical way in terms of tensorial objects (up to a
sign-but that ambiguity should cause no difficulty for differential
properties).

Our point of view, however, is ultimately to regard the spinors as more
primitive than world-tensors. In §3.1 we laid down the way in which
world-tensors are to be regarded as special cases of spinors. To complete
that association, we must also make the identification of world-vectors
with tangent vectors to the space-time manifold Ji. Thus world-vector
fields must, in effect, be identified with derivations on the algebra % of C00

real scalar fields on M. There is danger of a logical circularity here, since
the world-vector fields are to be constructed in two different ways. We
shall avoid any actual logical inconsistency by taking the space % of
world vector fields U, V,... to be the space of derivations on the algebra
2, while each space 2 a , Xb,... containing elements Ua, Va,..., or Ub,
Vb,..., is to be identified as %AA\ %BB\ ..., respectively, in accordance with
§3.1.

We recall from §3.1 that there are two logically distinct ways of
approaching (and regarding) the spinor algebra on Ji, the constructive
and the axiomatic. The constructive approach is that which we followed in
Chapter I. The four-dimensional space-time manifold Ji is taken as given,
with its (H ) signature, C00 metric, and with the three global proper-
ties of time-orientability (1.5.1), orientability (1.5.2), and existence of spin-
structure (1.5.3). Then spin-vectors can be defined in terms of geometry
(up to an unimportant overall sign for the whole of &A if Ji is simply-
connected, while if Ji is not simply-connected, the definition of spin-
vectors may contain global ambiguities which require a number of
discrete choices to be made, cf §1.5). In this approach we need a concept
of 'C00' for a spin-vector field, in order to characterize the elements of the
basic module SA. This is a local characterization and it can be given in
various equivalent ways. For example, in a simply-connected neighbour-
hood of each given point of Ji we can set up a C°° system of restricted
orthonormal tetrads of tangent vectors and describe a spin-vector KA

with respect to these in terms of standard components K°9 /c
1 as in Chapter

1; then the requirement is that K°, K1 be C°° throughout each such neigh-
bourhood, i.e., that they be local complex scalar fields. Equivalently, in
each such neighbourhood we can use the spin frame oA, iA defined by the
tetrad field (with signs fixed by continuity) and decree these to be C00, so
that KA = K°OA + K1IA is C00 in that neighbourhood whenever K° and
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212 4. Differentiation and curvature

K1 are C°°. The C°° concept is obviously independent of the particular
choice of orthonormal tetrad, so it serves to characterize the geometrical
entities that constitute ®A. Having thus defined S^4, which is now clearly
a module over the ring of C00 complex scalar fields ®, and totally reflexive
by §2.4, we build up S £ - £ as in §2.5. The elements of Xa, defined to be
the real elements of &AA', are clearly in 1-1 canonical correspondence
with the tangent vectors X\ because locally we have set up a canonical
association of the tangent vector tetrad with the spin-frame.

Alternatively we can choose the axiomatic approach. Here we simply
postulate the algebraic requirements for the spinor system. The space-
time structure, e.g., metric, signature, topolological requirements, are then
thought of as derived properties. One may regard the constructive ap-
proach as justifying the axioms chosen for the spinor system, since they
are satisfied for any space-time in which the constructive approach works.
On the other hand, the existence of the spinor algebra might be regarded
as providing a 'deeper' reason for the particular space-time structure that
arises. It is this axiomatic approach that we shall be essentially following
here. Thus, we postulate the existence of a spinor algebra of the type set
up in §2.5, and then demand that its systems X and Xa = XAA' be iso-
morphic, respectively with the scalar fields X, and their derivations X\
on a manifold Ji defined according to the axioms of §4.1.

The required isomorphism between X' and Xa = XAA> states that every
derivation UeX' corresponds to a unique element UAA' = UaeXa and
vice versa. (Having asserted this canonical isomorphism, we can, without
risk of confusion, refer to Ua, Fa , . . . also as world-vector fields on Ji)
We use the symbol Va (or, equivalently, V AA) to denote this isomorphism,
i.e., Va effects Ua H-> U, this being written

UaVa=U. (4.4.1)

These are operators acting on real scalars, so UaVa is a map (derivation)
from X to X. We can extend the range of this operator to the complex
scalars S = X © iX, giving a map from (2 to S, by

U"Va(f+ iflf):= U(f) + W(g) = : U(f+ ig);f, gel:. (4.4.2)

Furthermore, we can define

(Ua + iVa)Vah:= U(h) + i V{h); he&. (4.4.3)

For any given heS we therefore have a map from ®a to ©, defined by
Wa\-+ WaS7ah (with Wae&) which is evidently 6-linear; hence, for AeS,
we have an element

V/zeS . (4.4.4)
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4.4 Differentiation of spinors 213

It is clear from (4.4.2) and (4.4.3) that WaV h = WaWaK hence

VJi = S7ah. (4.4.5)

In particular, if heZ then S/aheXa. From the derivation properties we
must also have

Vfl/c = 0, Va(g + h) = Vag + Vfi/z, Va(gh) = gV h + Wfl#, (4.4.6)

where /ceft © ift and #, /ie ®.
We next wish to extend the definition of Va so that it applies to any

spinor. We shall follow closely the development given in §4.2. A spinor
covariant derivative operator will be defined by a map

y • QB _> 3 f i (4-4.7)

satisfying

V (£B + rjB) = V iB -h V f/B, (4.4.8)

y ( f^B) = f V £B + ĉ BV / , (4.4.9)

for each f , f / B e S B , / e S ; the definition of Vfl/ being as given above.
We can, of course, write VAA, for Vfl and apply index substitutions to define,
e.g., Vx x>3€

Qo = '̂X3£
Qo> e t c- This possibility will always be assumed.

(However, we must be careful to bear in mind that Va£
A is not an index

substitution of Va£
B but its (^)-contraction, namely ^AA&A\ see remarks

after (3.1.37)).
We extend Va to give a map from ®B to &ABA,, defined by the require-

ment that the derivative of a contracted product aBCB should satisfy a
Leibniz law:

The left-hand side of this equation defines VaaB as a map (easily seen to
be S-linear, by (4.4.6), (4.4.8), (4.4.9) from S* to S^,)- We readily verify,
from (4.4.6), that

and

Wa(faB) = fVaotB + ocB V f l / (4.4.12)

hold for each ocB, / ? B e6 B , / e®. We define the action of Va on 6 B and on
(5B, - giving maps from 6B ' to ® ^ , and from ®B, to ^AA.B., respectively -
by means of complex conjugation:

V CB = V C 5 V c o = V d ) (4 413)

Then it is clear from (4.4.5) and the complex conjugate of (4.4.10) that a
Leibniz law applies also to contracted products o)B4B'. Clearly, moreover,
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214 4. Differentiation and curvature

the linearity and Leibniz properties corresponding to (4.4.8), (4.4.9),
(4.4.11), (4.4.12) must also hold for VaC

B> and VflcoB,, by virtue of (4.4.13).
We are now in a position to define Vfl as applied to a general spinor

XB F,p"s'. As in (4.2.8), we simply demand that a Leibniz law shall
apply to contracted products of the form %B F

p -s fiB ... (j)Fnp ... as,;
then

,. F'
P'"S')PB

defines Vfl/B F,p"'5 as effecting an S-multilinear map from
S B x • • • x ®F' x S p x • • • x ®s, to (5AA,. Thus for each spinor set
®£ ~S

F,, Va defines a map

As in (4.2.10)-(4.2.13), we have the properties

V a ( ^ + Z*) = V > 3 + V ^ , (4.4.16)

Also,

Va commutes with any index substitution not involving A or A'. (4.4.18)

Furthermore, Va commutes with contraction (not involving A or A'):

In addition, because of the definitions (4.4.13), it follows that Va commutes
with the operation of complex conjugation:

Vfli/^ = VflO/Q. (4.4.20)

(Formally, this means that Va is a real operator: Va = Vfl.)
In the particular case of real world-vectors Ub = UBB'eXb, the

operator Vfl defines a tensor covariant derivative Ub*-^VaU
b, satisfying

Vfl( U
b + Kb) = Va U

b + Va F
b, Va(/C/b) = / V a 17* + C/bVa/ in accordance

with (4.2.2), (4.2.3). The extension of this Va to real world-tensors clearly
agrees with that given above since the rules (4.2.10)-(4.2.13) (which define
it uniquely) are all satisfied by virtue of (4.4.16)-(4.4.20).

Uniqueness

Let us investigate the question of the uniqueness of a spinor covariant
derivative operator subject to these rules. Let Va and Vfl be two such opera-
tors and consider the map

(?-VJ:®B->©* (4.4.21)
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4.4 Differentiation of' spinor s 215

Then (as in (4.2.44)) this map is S-linear because of (4.4.8), (4.4.9) and the
fact that when acting on scalars the operators Va and Vfl must agree:

Thus there is an element ®AA>B
C£(&C

ABA> such that

^ tc = V Ic + 0 ctB (4 4 23)
y AA>{* yAA'^ ^^AA'B ^ ' [*.*.£J)

Since (Vfl - Vfl)(aB<f) = 0 by (4.4.22), we have, by (4.4.23),

Taking complex conjugates of (4.4.23), (4.4.24) we get

*AAF = *AA? + ®AABC'ZB- (4A25)

Hence, for a general spinor
X

XAA
y P . . S _ V y P...S _ fS X P...S
A-B...F' ~ V AAA-B...F' ^AA'B X.X...F'

Now consider the special case when x '" is a world-vector t/b. We get

= QjUe
9 (4.4.28)

where the quantity
Q b = 0 t

 Bg B> -f © , B's B (4.4.29)

agrees with that defined in (4.2.46). By (4.2.50), the difference between
the torsion tensors Tab, Tab, defined by ^fl and Vfl, respectively (where
(VaVb ~ V b V « ) / = T«bCVc/' a n d similarly for Vfl), is given by

fj _ Tj = Q^C _ QJ (4.4.30)

with Qab
c as in (4.4.29).

Consider, next, the derivative of eAB. We have

(V _ v )s = - 0 Ds - 0 D6
v a a7 oC 4̂X f> DC -4^1 C i>Li

= -®^.«: + ®^«. (4.4.31)

If we demand of our operators Vfl, ^ a that the spinor eAB b^ covariantly
constant,

VaeBC = 0 (4.4.32)

VaeBC = 0, (4.4.33)

then ®AA.BC must be symmetric in B, C:

0 , = 0 (4.4.34)
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216 4. Differentiation and curvature

Since we have

Qabc = ®AABCHC + ®AA'B'CSBC (4-4-35)
by (4.4.29), the anti-symmetry

follows from (4.4.34). (This anti-symmetry is more directly a consequence
of 0 = (V, - V> b c = - Qjgdc - Qjgbd = - Qab^- Qacb, which follows
from (4.4.32), (4.4.33) because gbc = &BCzBC,) If Vfl is torsion-free and if
sAB is covariantly constant with respect to both Vfl and ̂ fl, then the torsion

abc ^abc *~'bac

~*~ ®AA'B'C'8BC ~~ ®B'BACSA'C ~ ™)BB' A C'£AC ' ( )

This has significance for the Einstein-Cartan-Sciama-Kibble theory
as discussed in §4.7.

We are now in a position to show that uniqueness of Vfl follows from the
two requirements that eAB be covariantly constant (4.4.32), and that the
torsion Tab should vanish:

V,Va/ for all fee. (4.4.38)

For, the latter implies (assuming the same for Va) that Qabc is symmetric
in a, b (cf (4.4.30)) whereas the former implies that it is skew in b9 c (cf
(4.4.36)). Thus, by (3.3.17), Qabc = 0. Taking the part of (4.4.35) which is
symmetric in B, C and using (4.4.34), we obtain the uniqueness condition
®AABC ~ 0>asrequired.

It is of some interest, in view of our concern in the next chapter with
charged fields and with conformal transformations, to examine the
nature of the non-uniqueness of Vfl when merely the vanishing-torsion
condition (4.4.38) is assumed, and not the covariant constancy of eAB.
If Vfl and Va are both torsion-free (or, indeed, if their torsions are
equal), we have, by (4.4.29) and the symmetry Qabc = Qbac implied by
(4.4.30),

£B'C&A ABC + £BC®AAB'C = £A'C'&B'BAC + £AC&BB'AC>' ( 4 A 3 9 )

Symmetrizing over A, B, C and transvecting with sBC' we obtain

®A,(ABC) = 0. (4.4.40)

Applying (3.3.49), we obtain the result that ®AABC has the form

@A ABC = kAA£BC + ^A'B£AC + VA'C8AB' ( 4 A 4 1)

By use of the identity (2.5.20) we can re-express the final term as vA.AeCB +
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VAB8AC>
 s o w e n a v e a r e l a t ion of the form

®A'ABC = AA'A£BC + T

Now if we symmetrize (4.4.39) over A, C and over A\ C we get, upon
substitution of (4.4.42),

— F A F — F A p = 0 ( 4 4 4 3 )

which, by use of (3.5.15), or else by transvection with eBC'eBC, yields

A ^ + ̂ . = 0. (4.4.44)

So the vector Aa is pure imaginary, say Afl = ill a , where IIa is real. Simi-
larly, symmetrizing (4.4.39) over A, C and over B\ C we get, when (4.4.42)
is substituted,

~~ SB(C * A)(B'£C')A' = ~~ £B(C *• A)(B'£C')A'' (4.4.4;))

and by an argument similar to the above we find

^•-^.=0, (4.4.46)

i.e., the vector T a is real Collecting these relations together we have

0 c - i l l £ C + Y s c' n I e l (4447)
^AA'B ~lllAA'tB ^ l A'BbA ' 1 1 a' 1 a t ^a > ^ • ' + - t + ' )

This is the complete solution to the problem, for substituting (4.4.47)
back into (4.4.39) we find that that relation is identically satisfied. We shall
see in (5.6.14) that a quantity T a arises in connection with the change in
covariant derivative under conformal rescalings. The quantity Ila had,
in the early literature, been associated with an electromagnetic vector
potential (see Infeld and van der Waerden 1933). Our approach in §5.1
will be somewhat different, however.

Construction from the Christoffel derivative

Let us assume, henceforth, that Vfl is torsion-free, (4.4.38), and that sAB

is covariantly constant under Va, (4.4.32). Then Va is unique. Further-
more the operation of raising or lowering an index will commute with
Vfl.Thatis,

V a* M = ̂ f l M iff W = iA«/ (4-4.48)

Of course, we have to show that an operator Va exists with these pro-
perties. The existence of such a Va may be inferred in various ways,
(e.g. by means of the somewhat complicated explicit formulae of §4.5).
One way is to use the results of §§4.2,4.3 (cf (4.3.45)) to establish the
existence of a (Christoffel) operator Va whose action on real world-tensors
is defined, which satisfies (4.2.10)-(4.2.13), whose torsion vanishes and
for which the metric 9ah = £AtpA.B. is covariantly constant: S/agbc = 0.
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218 4. Differentiation and curvature

Then we have to extend the domain of definition to include spinors.
To do this, we must first extend Va so that it applies to complex world

vectors. This is easily achieved if we define

Va(Hs + iGa) = VaH^ + WaGCJ ;Hs,GseXs. (4.4.49)

The composite index Q) must (at this stage) involve equal numbers of
primed and unprimed indices both in lower and in upper position, but
need not be restricted further than this. (For example, VaHDB

BC> may be
defined from VaHd

c by index substitution.)
Now, consider the following expression:

*BSJ£Bfi") ' / W £ V ) - ^Va(aB,/F). (4.4.50)

This is well-defined since Va acts only on complex world-vectors or
scalars. Furthermore, it is readily verified that (4.4.50) is <3-linear both in
OLB' and in pB>. (These verifications just use (4.2.2), (4.2.3).) Thus, for
each £B, (4.4.50) defines an 6-bilinear map from 8B ' x S c ' to Sf,
achieved by means of contracted product with an element Oa

B
B,cleSB

BfCt

(where 0a
B

B,c, depends on £B), (4.4.50) being given by 0a
B

B,c,(x
B fic'. Notice

that (4.4.50) is anti-symmetrical under interchange of ocB with f}B'. This
means that 0B

B,c, is skew in B'C\ so it has the form 0B
B.c. = §a^Bc

where <j>a
B is a function of {*. Write Va£

B := fyf; then (4.4.50) is equal to

2(Va£
B)oiBr'. (4.4.51)

We want to verify that the map V f l :S
B->Sf defined by c^ i -^V^

satisfies Vj£* + rjB) = VJ? + Vjf and Va(f£*) = fWJB + ^ V J . These
properties follow at once by substitution of £B + rjB and /^B, for £B, in
(4.4.50). Thus Va defines a spinor covariant derivative operator.

We next check that VaeBC = 0. We have

(VaeBCKV = V,(%c£V) - ^ " V - zBcnCV£B- (4.4.52)
We can multiply this by 2eB,c,a

B f$c and use

(4.4.53)
(which is just (4.4.51) equated to (4.4.50)), and the corresponding equation
for 2eB,c,(x

B pcVa£
B. We must also use the relations

t,cpc'V^BocB) + SBocB'Vir,clF) = Wa(r,cfic W )

= ^ V ^ f ) + ^fVXa11) (4.4.54)
and

vMBr,c£BypcsB,c,) - £BC£B.c.va(£ v * B / n
= £V«B 'i3C 'Va(£BC8B,c,) (4.4.55)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


4.4 Differentiation of spinors 219

In this way, (4.4.52) yields

for all £B, rjc, whence VaeBC = 0 as required. It follows, as in (4.3.50), that
the spinor covariant derivative Va commutes with the operation of raising
and lowering spinor indices. Hence, the expression (4.4.50) with Va replaced
by Va throughout, must also be equal to (4.4.51). Taking the difference
between these two versions of (4.4.50) we obtain

«B'Wa ~ Va)(Z
Bn ~ /MVa - Vfl)(£V) = 0.

That is, since each of Vfl, Vfl is a tensor co variant derivative operator when
acting on &,

Q B B ' z C o C - R Q B B ' t C r f

where Qac
b is as in (4.2.46). Hence QaCcBB' *s symmetric in C\ B. Since

Qacb is real (each of Va, Va maps real world-tensors to real world-tensors), it
follows that QaCC,BB, is also symmetric in C, B. Hence Qacb is symmetric in
c,b. But gbc( — £BC£BC) is covariantly constant with respect to each of
Vfl, Va (since VasB,c, = VfleBC = 0). Thus, by (4.4.36), Qacb is also skew in c, fe,
so Qacfc = 0. This establishes the identity of Va and Vfl when the operators
act on tensors (and, incidentally, shows that the torsion of Vfl must vanish).
We can therefore write Va := Vfl when the operators act on any spinor,
and the desired (unique) spinor derivative operator, satisfying the condi-
tions laid down after (4.4.48), is thereby obtained.

Tensor translation of spinor differential equations

We complete this section by returning to the discussion given at the end of
§3.4 concerning the translation of algebraic spinor operations into tensor
form. We are now in a position to extend that discussion to the translation
of derivatives of spinors, and so of spinor differential equations. (The
converse problem - translating tensor derivatives and differential equa-
tions into spinor form - is of course straightforward.) We shall show that,
in principle, every spinor differential equation has an equivalent tensor
form (which, however, may be quite complicated), apart from certain
intrinsic sign ambiguities. Also, since the tensor equations often involve
squares of the corresponding spinors, it may happen in non-simply-
connected regions of space-time that global solutions exist to the tensor
equation while no consistent sign can be assigned to the solution of the
spinor equation. So the tensor and spinor equations may be equivalent
locally but not globally.
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2 2 0 4. Differentiation and curvature

Spinor differential equations arise most naturally in quantum theory,
where it is presumed-from the theory of group representations and
from the requirements of Lorentz invariance and linear superposition of
states - that the basic equations for (free) particles are linear spinor laws.
On translation, these usually become non-linear tensor laws. Thus the
attempt to regard the tensor laws, and the tensors occurring in them,
as fundamental, would negate the whole standard linear character and
formalism of quantum theory. With this disclaimer, the possibility of
translating spinor into tensor differential equations is nevertheless a
significant theoretical result.

Before discussing the general translation question, we shall deal with
two specific and important examples-the Dirac-Weyl neutrino*
equation and the Dirac electron equation. For this purpose it will be
useful to establish two preliminary lemmas for an arbitrary spinor (j)A.
The first is the identity

V / 0 > B ) + W c V p 0 c = 20 ^V p0B, (4.4.57)

which is established at once by expanding the first term on the left side,
and replacing the second** by — 2Vp(j)[A(j)B]. The second lemma is this:
if Fab is the anti-self-dual null bivector corresponding to (/>A,

and Mp is an auxiliary vector defined by

MP = <I>AVP<I>A< (4.4.59)

then

FabVpFc
b = FacMp. (4.4.60)

The proof again devolves upon the Leibniz expansion of the derivative:

LHS = cl>A<t>BsA,B,S7p(ct>ccl)B)ec
B

Now the Dirac-Weyl equation (Dirac 1928, Weyl 1929, Dirac 1982) is

VAA,(j)A = 0. (4.4.61)

To translate it to tensor form, we first introduce another auxiliary vector,

We use the term 'neutrino' consistently here for a massless (uncharged) spin-y particle,
which is thus taken to satisfy the Dirac-Weyl equation. This is not intended to
prejudice the issue of whether or not physical neutrinos actually possess mass.
Here, and at certain other places in these volumes, we make use of a convention that
a differential operator (e.g. denoted V, d, d,...) acts only on the symbol (or bracketed
expression) which immediately follows it - unless this also is a differential operator.
Thus WAB would mean (VA)B and not V{AB); VVAB would mean (V(V4))£ etc.
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4.4 Differentiation ofspinors 221

whose vanishing will correspond to the Dirac-Weyl equation, except
possibly in regions where <j>A = 0 (but those we can bridge by continuity
provided <j)A is assumed smooth). Next, in (4.4.57) we raise J5, replace p by
b (thus contracting over B\ and multiply by zA,B'; the resulting equation
is purely tensorial:

VbFa
b + Ma = 2Ra. (4.4.63)

The Dirac-Weyl equation, being equivalent to Ra = 0, is therefore equi-
valent to the tensor equation

VdFc
d + Mc = 0. (4.4.64)

But this still contains the auxiliary vector Ma. It is precisely for its elimi-
nation that we established our second lemma. Thus, multiplying (4.4.64)
by Fab and referring to (4.4.60), we finally obtain

JWc' + JWV^O- (4.4.65)(a)

And, of course, the form of (4.4.58) implies the following additional
conditions on Fab (namely, that it be skew, anti-self-dual, and null):

Fab=-Fba, Fab = i*Fab, FabF°b = 0. (4.4.65)(fe)

The set of equations (4.4.65) (a) and (b) is the tensor equivalent of the
Dirac-Weyl equation. Its structure is evidently much more complicated
than that of the original spinor equation; in particular, it is non-linear.

Dirac's equation can be written in the form of two coupled 2-component
spinor equations* (Dirac 1928, van der Waerden 1929, Infeld and van

It is, of course, more usual to write the Dirac equation in terms of /our-component
spinors. The detailed relation between Dirac 4-spinors and the 2-spinors that we use
exclusively in this volume will be given as part of the general discussion of spinors
in n dimensions that we give in the Appendix to Vol. 2. The reader who has familiarity
with 4-spinors may, however, make direct contact with our notation by taking note
that it is the pair of 2-spinors {<j>A, \j/A) that constitutes a single Dirac 4-spinor ¥ . The
two members of this pair are obtained by operating on *F by \{\ + ry 5) and j(l - ry 5),
respectively, where *v5 = 70*717 2"? 3 > m a standard orthonormal frame, the Dirac
matrices7o>---»73>'V5 being given by

with a = A@A\p = B@B'. One directly verifies that the Clifford-Dirac equation

lPlq + lqlP = ~ 2gpql i.e., 7pa%y + yjypfit = - 2gpqd
y
a

is satisfied (compare footnote on p. 124). An advantage of the 2-spinor description is
that the y-matrices disappear completely - and complicated y-matrix identities simply
evaporate!
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222 4. Differentiation and curvature

der Waerden 1933):

V ^ = / M (4.4.66)

where \i is a real constant (jx = 2~*mh~x). Replacing A by £ in the first of
equations (4.4.66), and multiplying by 4>A, we see that that equation is
equivalent to

(except possibly in regions where 4>A = 0). The left member of (4.4.67) we
now recognize as the Ra of (4.4.62). So if we define another vector

Ca = <l>AXA', (4A68)

and refer to (4.4.63), we see that (4.4.67)-and with it (4.4.66)(l)-is
equivalent to

V ? + Affl=-2AiCfl. (4.4.69)

In a completely analogous way, (4.4.66) (2) can be shown to be equivalent to

where Gab and Na are related to xA as are Fab and Ma to c/)A. By use of
(4.4.60) and its ^-analogue we can finally eliminate the auxiliary vectors
Ma, Na from these equations to obtain the (complicated, coupled, non-
linear) tensor differential equations equivalent to Dirac's equation:

Cc (4-4.71)

These, of course, must still be augmented by two sets of algebraic restric-
tions: (4.4.65) (b) and its analogue for Gab. The bivectors Fab and Gab are
algebraically independent of each other, but Ca is a 'secondary' vector
determined by Fab and Gab up to sign. In fact,

^AIABU' = <t>A<t>CeACXc'XB'8cB

i.e.,

CaCb = FaCGeh. (4A72)

Our argument is adapted from Whittaker (1937) whose final result,
however, is the somewhat unnatural combination of (4.4.69) and the
complex conjugate of (4.4.70) into a single equation, their sum.

We next briefly consider the general case. Derivatives of even spinors
(even number of indices) present no new difficulties (cf. end of §3.4).
Contracted derivatives of one-index spinors can be dealt with along the
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4.5 Differentiation of spinor components 223

lines of our treatment of the Dirac-Weyl equation. The possibility of
translating spinor differential equations involving derivatives of odd
spinors generally, rests on the following identity:

(4.4.73)

To translate a first-order differential spinor equation, we therefore multi-
ply the equation by all the appropriate odd spinors a sufficient number of
times. Then (4.4.73) implies that we can express the differentiated odd
spinors in terms of their differentiated tensor equivalents. The translation
into tensor form can then be completed by the technique described at the
end of §3.4.

Second-order differential equations can be dealt with by generalizing
(4.4.73). For example,

and so on for higher orders.
(4.4.74)

4.5 Differentiation of spinor components

In §4.4 we obtained the operation of spinor covariant derivative in an
abstract frame-independent fashion. In this section we investigate the
effect of that operation on the spinor components. The resulting explicit
expressions can, if desired, be used to provide an alternative proof of
existence of V acting on spinors, with the desired properties (4.4.7)-
(4.4.20). Henceforth (except in §4.7) Va is always torsion-free.

Let eA
A = (oA, iA) be a spinor dyad (not necessarily normalized), with

dual &A
A, and let eA

A' and its dual eA
A> be the complex conjugate spinor

basis and dual basis. Let KAeSA have components KA = KASA
A and write

fcA fcA' V AA' ~ V A A "

Then the components of V'AA,KB are

= V , -<- KCV B (A S 1 ^

where

?AATB := fi/VAA V = - £ /V A A , e / , (4.5.2)
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224 4. Differentiation and curvature

since sA
Bec

A = ec
B, the Kronecker delta, so that Vasc

B = 0. Note that

'AA'C V — rA'AC ^ ~ £ . 4 ' VAA'£C - £C VAA'8^' l

eA
AIf we specialize eA
A to a spin-frame, i.e., normalize o 4 ^ = 1, so that

0
J (4.5.4)

then we have the symmetry

since

_ £ r? o A g ^ gA __ y _

(Remember that spinor indices may be raised or lowered without regard
to preceding V-operations.) In this case the quantities yAA/BC constitute
12 independent complex numbers at each point. They have been called
spin-coefficients and find many applications in practical calculations.
(cf. Newman and Penrose 1962, Newman and Unti 1962, Papapetrou
1974, Campbell and Wainwright 1977, Carmeli 1977, Chandrasekhar
1979, Kramer, Stephani, MacCallum and Herlt 1980).

When the normalization (4.5.4) is not maintained, the symmetry (4.5.5)
fails and we have 16 independent complex numbers yAAB

c at each point.
There are situations in which it is useful to admit this additional flexibility,
and since the resulting formulae are hardly more complicated in this case,
we shall, for the most part, present our equations in this more general form.
The y's are still called 'spin-coefficients'. Setting

X = oAiA, (4.5.6)

we have, as in (2.5.45),
/ n ,,\

(4.5.7)

in place of (4.5.4), the dual basis to (oA, iA) being eA° = — %~liA,£A
l =

X~ loA, as in (2.5.50). Repeating the calculation (4.5.5) with (4.5.7) in place

of (4.5.4) we get

y t _y = V ,£B C = eBCx~ lVAA>X> (4.5.8)
i.e.,

Equivalently,

rAA.B
B = 2z- 'V A A ,z . (4.5.10)
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4.5 Differentiation of spinor components 225

It is important to note that whereas with spin-frame indices (i.e., when
X = 1) the operation of raising and lowering commutes with differentia-
tion, this is not so for spinor components in the general case (x 41 constant),
for we have, for example,

(4.5.11)

Now, starting with a covariant spin-vector nB we find the components of
VAA,fiB to be

SAAeA'A>£BBVAA'^B = VAA'^B ~ ^C^AA'fi0 (4.5.12)

by a computation analogous to that of (4.5.1). For primed spin-vectors
<t>A'£A. we find the corresponding relations

(4.5.13)£ AE A'F B

eA eA, eB, fAA'C

by taking conjugates in (4.5.1) and (4.5.12). And for a general spinor

''' w e

A K'

sA ...eK, ...

o...K'../AA'H

B

o

Ho

This can be verified directly by taking components of the expansion of

AA v^ Ho-.-Ko... Bo H '

Expressions for individual spin-coefficients

In explicit calculations it is often convenient to assign single letters to
each of the 16 quantities yAAB

c. A standard notation (slightly modified)
is given in the following table:

V C

'AA'B

AAN.

00'

10'

01'

l r

0
0

e

a

P

y

l
0

— K

~P

— G

— T

0
1

— T'

-a'

-P'

1
1

Y

P'

cd

e'

(4.5.16)
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226 4. Differentiation and curvature

(The choice of signs for /c, . . . , T, though perhaps unfortunate, conforms
to what has by now become standard notation.) The significance of the
use of the 'primed' symbols is that under the replacement

oA\-^iiA, iA\-^ioA, oA y-+ —iiA\ iAy-+ — \oA (4.5.17)

(which preserves the relation oAiA = x) the primed and unprimed quanti-
ties get interchanged. With a prime denoting the above operation, two
primes in succession leave the spin-coefficients unchanged but change the
dyad into its negative. Evidently the prime operation commutes with
complex conjugation, so that, for example, 1' can stand for both Q)' and
(/lO- The prime also commutes with addition and multiplication. For
future use we note (cf. (4.5.19) below)

(/«)' = n\ (ma)f = rha, {ma)f = m\ (na)' = la. (4.5.18)

Explicitly, in terms of the basis spinors oA, r4, we get from (4.5.16) and
(4.5.2) the first expressions, (4.5.21), for the spin coefficients in the display
below; the second expressions, (4.5.22), in terms of the (unnormalized)
null tetrad

la = o
AoA\ ma = oAiA\ ma = iAoA\ na = iAiA\ (4.5.19)

as in (3.1.14) but with

rna = xi=-*fma, (4-5.20)

can be checked directly by substituting for la etc., in terms of oA and iA,
and using (4.5.24) and (4.5.25). Note that in the spin-coefficient formalism
the role of the 'vector' covariant derivative operator is played by the four
'scalar' operators VAA, (the so-called intrinsic derivatives in the tetrad
directions), for which special symbols are used as defined in (4.5.23) below.
(The symbol A has frequently been used for D)

K

9
a

T

£

a

P
y

y
V
a'

s'

T'

a'

p'
K

oADoA

oAS'oA

oAboA

oAD'oA

iADoA

,A5'oA

iAboA

,AD'oA

~oADiA

-oA3'iA

-oAK
-oAD\

-iADiA

-,A5'iA

-tAbiA

-iAD'iA

(4.5.21)

maDla

ma5'la \{na5'la + maS'ma 'na + mad'ma

maDna

mab'na

maD'la i(naD'la + maD'ma maD'na

(4.5.22)
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where *

D' := Vj,, = iAiA'VAA. = n"S/a = D'. (4.5.23)

The relations which verify (4.5.22) are the following, obtained by applying
the Leibniz rule to V M / 0 = VBB>(oAoA'), etc.:

n"VBB.la + m"VBBm

and

l°VBB,na + m°VBB,ma + xVBB,X = 2xoAVBB,iA (4.5.24)

>AVBBOA-OAVBB,IA. (4.5.25)

Note that, since the tetrad la, ma, nf, na determines only the modulus of x (cf.
(4.5.20)), the tetrad by itself does not completely define a, /?, y and e, unless
X is taken to be real, say.

Some useful formulae, effectively equivalent to (4.5.21) and their complex
conjugates, are the following:

OQA = £0A

S'oA = ocoA

SoA = fioA

D'oA = yoA

— KlA

-PiA

-mA

-xiA

DiA = y'

S'iA = p

SiA = a'

D'iA = e'

iA

'iA

iA

iA

-T'0A

- o'oA

-p'oA

— K'OA (4.5.26)

and

DoA = soA — iciA DiA = y'iA> — x'oA>

SoA = 6LOA — piA SiA = P'iA — 6'oA

dfoA' = $oA> - oiA> b'iA> = d'iA' - p'oA'

D'oA = yoA> - xiA> D'iA = E'iA' - K ' O A \ (4.5.27)

We recall that for the quantities used here (spin-coefficients and directional
derivatives) the bar and prime commute. From (3.1.14), (4.5.26) and

Consistently with our earlier notation (4.1.14), we could write /, m, m, n for D, 3, 6', D',
respectively, when they act on scalars. However, we shall reserve this notation for the
corresponding 1-forms used in §4.13 below.
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228 4. Differentiation and curvature

(4.5.27) we now obtain

Dla = (e + e)la - icnf - Km\ Drrf = (e + f)ma - f7fl - Kna

Sla = (fi + ot)la - pnf - om\ dnf = (j8 + Jt')nf - 6'la - ona

S'la = ( a + /?)/* - dnf - pnf, b'nf = (a + a')mfl - p 'F - pna

D'la = (y + y)/a - fmfl - xm\ D'nf = (y -h ^')mfl - ?c7a - rna

dnf =

e)ma - T T

a)mfl - p

- icn\ Dna = (yf + f

- pnfl, 5na = (a' ^

- fma.

= (6' + y)nf - K'I" - frf, D'rf = (sf + e')na - K'ma - k'nf (4.5.28)

Note that some of these formulae may be derived from others by employ-
ing (4.5.18). A short-hand notation for (4.5.26)-(4.5.28) will be given in
§4.12 (equations (4.12.28) et seq).

In most practical applications of spin-coefficients the spinor basis is
normalized (x = 1), and then the expressions (4.5.22) simplify slightly,
and a = - /?', e = — y', P = — a', y = - s' by the symmetry (4.5.5). It has been
customary, also, to employ the symbols n, X, \i, v for - T ' , - <r', — p', - K\
respectively. So we have, in this case,

\BC

AA\I

00'
10'

or
i i '

00

K

P
<J

T

10 or 01

£= - /

p
y

n

n = — T'

X= -a'
t*= -P'
v = — K' (4.5.29)

It is possible to obtain a geometrical picture of the meaning of most of
the (normalized) spin-coefficients in suitable circumstances, in terms of the
congruence of curves to which the flagpoles of oA and iA are tangent. But
this will be left to Chapter 7 (cf. §7.1).

Relations to Infeld-van der Waerden and Christoffel symbols

We may wish to express quantities in terms of derivatives Va referred to
an arbitrary tensor basis ga

a. (If, in particular, that basis is the coordinate
basis, we have Va = d/dx* when acting on scalars.) Then we simply trans-
late VAA, into Va using the Infeld-van der Waerden symbols g^ {cf
(3.1.37)):

Va = 0a
AA'VAA, (4.5.30)
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4.5 Differentiation of spinor components 229

if we define quantities yaB
c by

then we obtain, from (4.5.1),

0 . V V = Va;c
B + K

c
7aC

B (4.5.32)

for the components of Vafc
B, where a refers to the tensor basis and B to

the dyad. Similarly, from (4.5.12), we get

rfVA = VA-WaB
c (4.5.33)

for the corresponding components of Vfl/iB.
In the case of a general spinor, i.e., for the components of V a ^ " E

Ky re-
lative to the tensor basis and the dyad, we have, from (4.5.15),

y /B...E'... , /B0...E'. B , , / B...E&...^ E ,
VaV/H...K'... + V H . . . K ' . . . 'aB0 + + V H . . . K ' . . 7 « E & + ' • •

_ ^B. . .E \ . Ho _ . . . _ j/,B...E'... ^ K b _ . . . ( 4 5 3 4 )
V /H0...K'..7aH VH...K6... 'aK' l « t . J O t ;

When a quantity possesses both spinor and tensor indices, e.g., 6B, we
may wish to obtain the components of its covariant derivative Vfl0B

c,
where a and c are to be referred to the tensor basis and B to the dyad,
in this case we have (with (4.2.60))

O c V W = Va0B
c - eDXB

D + 0BTJ, (4.5.35)
as follows from taking components of the expansion of Va(0D

esB
D#e

c).
Observe that we could alternatively obtain (4.5.35) by treating 0B

c

as 6B
CC and using (4.5.34), finally translating back to tensor components

by using Infeld-van der Waerden symbols (3.1.37). Instead of one term in
F we would then find two terms in y and y, and the derivative would be
Va#B

cc which differs from Va0B
c by a term involving derivatives of

gc
cc'. Hence there must be a relation between y, F, and the derivatives of

gc
cc'. This can also be seen as follows: we have

V W + £/VceA/)
— a aV a AA' -I- a ap BF BV/

 AA'(r AV F A + F AV F A) (4 5 36)

Consequently, after changing some dummies on the right, we get

'. (4.5.37)

and contraction over A', B' and use of (4.5.10) yields the required rela-
tion:

v B = i r B A ' _ f B - - l n - _ l b y BA (A 5 ~L*\
Uk 2l cAA fcA A v

c / 2#AA' V
Cyb l^.J .JO;
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230 4. Differentiation and curvature

In the (usual) case of a normalized spin-frame, the term in x will, of
course, vanish. For the rest of this section, we assume this to be the case.
If we also assume that a coordinate basis is chosen as our tensor basis, we
have, by (4.2.70) and (4.3.48),

d a c (4.5.39)

i.e., the F's are the usual Christoffel symbols, and
D > (4.5.40)

(since we may raise and lower dyad indices under the operator Va whenever
^ = l? cf. (4.5.11).) Thus we can now express the spin-coefficients in terms
of the Infeld-van der Waerden symbols and their coordinate derivatives.
Explicitly, substituting (4.5.40) into (4.5.39) yields

D'). (4.5.41)

Converting a, b into AA', BB', contracting over A', B', and substituting
this into (4.5.38) with B lowered, gives (when % = 1)

d D D . - vd<,cAA. - ga
AA.gcDD.Vdg™')

(4.5.42)

whence finally (for normalized spin-frame and coordinate tensor basis),

?CC AB = i0BA'd(VAA'0dCC + VCC'0dAA' ~ ^ C

9*'- (4-5.43)

(A similar formula may be obtained involving derivatives of the Infeld-
van der Waerden symbols with their tensor index up.) This shows how a
knowledge of the #a

BB, as functions of the coordinates x*, may be used to
calculate the spin-coefficients explicitly as functions of the xa. An alter-
native method to this end (as well as other techniques useful in certain
practical computations) will be given in §4.13, where differential forms are
discussed.

Observe that if the 16 quantities gJ*B are given arbitrarily as functions
of the coordinates (equivalent to the choice of 16 real quantities owing
to Hermiticity), then this serves to specify the metric components (via
a*b= #a

AA ab*B £AB£A'B')
 a s w e ^ a s t n e normalized null tetrad (with

components /a = 0a
00', ma = #a

01', na = # a
i r ) - i . e . , in effect, the spin-

frame. The covariant derivative of spinors (or tensors) can now be comput-
ed explicitly in terms of components (spin-frame, or tetrad, or some of
each). The uniqueness of yAA,BC as given by equation (4.5.43) is an illustra-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


4.6 The curvature spinors 231

tion of the fact, demonstrated in the last section, that the covariant deriva-
tive operator V acting on any spinor is uniquely defined by the require-
ments that sAB be covariantly constant and the torsion vanish. Note that
these properties also determined the (Christoffel) form (4.5.39) of the
Fs and the symmetry (4.5.5) of the yAABC (cf Bergmann 1957).

4.6 The curvature spinors

We saw in §4.2 how the concept of covariant differentiation of tensors
leads to the definition of the curvature tensor Rahc

d- Thus we expect to
obtain a spinor analogue ofRabc

d which arises from the concept of covariant
differentiation within the spinor formalism. While it is possible to develop
the theory of spinor curvature entirely within the spinor formalism, this
route turns out to be complicated. We shall follow the easier procedure of
taking Rabc

d and its algebraic and differential properties over from tensor
theory, and deriving the properties of the spinor curvature from it.

We begin by breaking down the spinor

^AA'BB'CC'DD' ^abcd

into simpler parts, namely spinors which are totally symmetric in all
primed and in all unprimed indices. This will be an illustration of the facts
outlined in §3.3 (equations (3.3.47) et seq). However, we shall adopt a
more direct procedure than the one used there, which has the additional
advantage of yielding a useful intermediate stage of the reduction.

The fact that Rabcd is skew in ab enables us to employ the decomposition
(3.4.17) to obtain

R =1R x' F +XR x
 F

^abcd 21XAX'B cd^A'B' ' 2 XA' Bed AB'

The anti-symmetry in cd then gives

^abed ~ ^ABCDeA'B'8C'D' + ^ABC'D'^A B'£CD

~*~ ®A'B'CD8AB£C'D' "*" ^A'B'C'D'8AB£CD'> (4.6.1)

where

X =LR x> r 0> = ±R x' Y

ABCD 41XAX'B CY'D ' ^ABC'D' 4-^AX'B YC D'

The spinors (4.6.2) are called curvature spinors. Their complex conjugates
occur in (4.6.1) because of the reality of Rabcd-cf. (3.4.20). We have the
following obvious symmetries (cf. (3.4.18)) from the anti-symmetries of
n
^abed '

(4.6.3)
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232 4. Differentiation and curvature

The interchange symmetry Rahcd = Rcdab is evidently equivalent to

^ABCD ~ ^CDAB' ®ABC'D' = ®ABC'D' " (4.0.4)

The second of these equations implies that Q>AA.BB. corresponds to a real
tensor Oflb while (4.6.3) (2) implies that 0>ab is symmetric and trace-free:

G^'BB'= *«> = * * = *<*> *«" = <>. (4.6.5)

Note also that the symmetries (4.6.3) (4.6.4) on XABCD imply

= 0. (4.6.6)

To translate the cyclic identity satisfied by Rabcd into spinor form it is
useful first to discuss its various 'duals'. By dualizing on one or both of the
skew index pairs of Rabcd we can form the following three tensors, whose
spinor forms we also exhibit (cf. (3.4.23)):

/ ? * = ±p p*R =\R
1X abed 2*cd ^abpq lIXAA'BB'CD'DC'

*R =z±e pqR =\R
^abed 2^ab ^pqcd llKAB'BA'CC'DD'

*R* =±P pqp rsR — — R
1X abed A-^ab *cd ^pqrs ^AB'BA'CD'DC" (4.6.7)

Clearly all three duals share the anti-symmetries of Rabcd (Rabcd = R[ab][cd]Y
In addition, we can easily verify that *R*bcd possesses the interchange
symmetry

^ abed ~ ^ cdab

and satisfies the cyclic identity (4.6.8)

while

*RaM = R*c*ab- (4-6.10)

For future reference, we collect (4.6.1) and the corresponding formulae
resulting from (4.6.7) into the following scheme, where X, (I), O, X represent
(temporarily) the terms on the right side of (4.6.1):

RaM = X + <i> + ̂  + X

R*abcd=-iX + i<*>-i$ + iX ( 4 6 U )

We define duality rotations of the Riemann tensor analogously to
(3.4.42):

m R K ^ 6 + * R e
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4.6 The curvature spinors 233

Analogously to (3.4.43) we get, from (4.6.11),

R{6)atcd = e~ WX + ei0O + e-*a> 4- e"X
{6)Rabcd = Q-ieX 4- e " " * 4- eie0> + eiaX. (4.6.13)

We are now ready to translate the last symmetry of the Riemann tensor,
R[abc]d = 0 or, equivalently, Ra[bcd] = 0, into spinors. The necessary calcula-
tion can be simplified if we observe, from (3.4.26), that the equation
Ra[tcd] = ° i s equivalent to

R*ah
bc = 0 (4.6.14)

and that R[abc]d = 0 is equivalent to

*Rab
be = 0 (4.6.15)

Incidentally, one can now see that *Rabcd satisfies the cyclic identity
*R[abc]d = 0 only under special circumstances: the necessary and sufficient
condition is **Rab

bc = 0, i.e., -Rab
bc = 0, i.e., the vanishing of the Ricci

tensor. The same remark applies to R*abcd- On the other hand, *R*abcd

always satisfies the cyclic identity since *R**ab
bc = - *Rab

bc = 0.
To obtain the spinor form of the cyclic identity, we apply (4.6.14) to

(4.6.11); if use is made of the already established symmetries of 0>ABC.D.,
this shows that (4.6.14) is equivalent to

*ABBC*A-C- = *A-B-''c-*AC- ^.6.16)

Raising C and C and contracting with A and A' we obtain

A = A, (4.6.17)

where (for later convenience inserting a factor 1/6)

A : = i X V f i (4-6.18)

Now (cf. (2.5.24))
^ B C

B = 3A£,C, (4.6.19)

since the symmetry (4.6.4) implies that XABC
B is skew in AC. Hence

condition (4.6.17) can be seen to imply (4.6.16) and is therefore equivalent
to the cyclic identity of the Riemann tensor, once the other symmetries
of XABCD and Q>ABCD. are established. (Note that, in terms of components,
the cyclic identity is just one algebraic condition, namely #O 1 2 3 4- # 1 2 0 3 +
R2oi2, = 0; it is therefore not surprising that it reduces to only one real
condition in spinor form.) We have now found the spinor equivalents of
all the symmetries of Rabcd: (4.6.3), (4.6.4) and (4.6.17).

We next compute the Ricci tensor Rac = Rabc
b in spinor form. From

(4.6.1) we get

eA,B,-2<i>ABA.B,. (4.6.20)
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234 4. Differentiation and curvature

which may also be written in the form

^ = 6Aff8fc-2*flfc. (4.6.21)

Hence, for the scalar curvature R = Ra
a we find, using (4.6.5),

R = 24A, (4.6.22)

and for the trace-free Ricci tensor

Kb - \R9ab = - 2<i>ABA,B, = - 2 0 V (4.6.23)

For obvious reasons ®ABC>D> is sometimes called the Ricci spinor. The
Einstein tensor Gab (the trace-reversed Ricci tensor - see (3.4.10)) is given
by

Gab = Kb = R
ab ~ \R9ab = RABBA (4-6.24)

= - 6AeABBA-B- ~ 2<bABA-B-

OX

Gab=-6Agab-2<i>ay (4.6.25)
We note that

• K V = <V. (4-6.26)

which follows from (4.6.11) since the passage from Rabcd to *R*abcd is
equivalent to Xi—• — X, which in turn implies A H > - A , and so, by (4.6.20)
and (4.6.24), Rab^Gab.

Einstein's equations

We take space-time to be governed by Einstein's field equations, which, for
empty space, take the form

Rab = 0. (4.6.27)

By splitting (4.6.20) into its symmetric and skew parts in AB equation
(4.6.27) is seen to be equivalent to

** = *«*•*• = o. A = °- <4-6-28)
If a cosmological term is included in the field equations, so that

Rab = laab

in empty space, k being called the cosmological constant, then we have
equivalently, in spinor form,

^ = * ^ - , ' = 0. A = £A. (4-6.29)

In the general case, when sources are present, the field equations with
cosmological term are

Gab + kgab=-SnyTab, (4.6.30)
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4.6 The curvature spinors 235

where the speed of light is (as always!) unity, y is Newton's constant
of gravitation, and Tab is the energy-momentum tensor of the sources.
This translates into

ab ab ab (4.6.31)

i.e.,

®ab = ̂ y(Tab-iTXb), A = 1
3nyT^iA. (4.6.32)

The vanishing of A, as in (4.6.28), implies (cf. (4.6.19)) that XABCD is
symmetric in B and D; since it is also symmetric in AB and CD, it must
then be symmetric in all its indices. It is a remarkable fact that with the
apparently arbitrary dimension four and signature H of our
space-time, where Einstein's field equations Rab = 0 for vacuum are
satisfied the curvature can be fully characterized by such a simple and
physically natural object as a totally symmetric four-index spinor. We
shall see in Chapter 8 how this leads to a very simple algebraic classification
scheme for curvature. (If the signature had been + H , for example,
the classification would have been far more complicated, since two real
symmetric four-index spinors would be required to describe the curvature;
the reality itself would be a complication, since algebra over the complex
field is much simpler.)

From (4.6.11) we observe, incidentally, that whenever ^>ABCly = 0 (as
when Rab = 0), then

* * * ^ . = - * ^ • * - * - = **.*< (4-6-33)

and so, because of (4.6.10), *Rabcd and R*abcd possess the interchange
symmetry of Rahcd. They possess the full symmetries of Rabcd (i.e., the
cyclic symmetry as well) if, in addition, A = 0; for then Rab = 0.

In the general case (A j= 0) we can isolate the totally symmetric part of
XABCD as follows (bearing in mind the symmetries (4.6.3), (4.6.4) and the
relation (2.5.24)):

— ^(ABCD) ^ 3bBC^AE D "•" 3 bBD A AEC

Thus, using (4.6.19),

XABCD = ^ABCD + A^AC^BD + W * c ) > (4-6-34)

where

^ABCD:= \ABCD) = ^A(BCD)' (4.6.35)

The spinor *¥ABCD plays a very important role in the theory. We call it the
gravitational spinor since it represents the local degrees of freedom of the
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236 4. Differentiation and curvature

free gravitational field: it is the part of Rahcd that survives in the absence of
matter (if A = 0). For reasons to be discussed in §4.8 it is also called the
Weyl conformal spinor.

The three spinors *¥ABCD, 0>ABCD., A together determine Rabcd. With
^AB'C'D' ^ey constitute the set of totally symmetric spinors into which
Rabcd may be decomposed according to the scheme of (3.3.47) et. seq.

Substitution of (4.6.34) into (4.6.1) immediately shows that Rabcd equals
an expression similar to (4.6.1) with ¥ABCD taking the place of XABCD,
plus a multiple of A, namely

M^AC
eBD + eADeBc)eAB'ec'D' + *ts complex conjugate. (4.6.36)

Expanding the multiplier of the parenthesis by use of the e-identity

£A'B'£CD' + £A'D'£B'C " £A'C£B'D' = 0 ( t f (2-5.21))

makes this into
A(eACeBD + eADeBC)(eA,CfeB,D, - eA,D,eB,c,) + its complex conjugate

i.e.,

'D'£

Thus we have

+ 2A(eACsBDeA,c,eB,D, - e^e^^.8^.). (4.6.38)

By a somewhat different manipulation we can convert the term (4.6.36)
into the alternative forms

2^£AC£BD£A'B'£CD' + £AB£CD£A'D'£B'C') (4.6.39)

or

2A(eA,c,eB,D,eABsCD + eA,B,ec,D,sAD£BC), (4.6.40)

which, however, unlike (4.6.37), do not obviously exhibit the symmetries

Let us now introduce the following tensors (cf. (3.4.38), (3.4.39)), of
which the first, fourth and fifth are real, and all of which evidently share all
the symmetries of Rabcd'.

^abcd'= * ABCD£A'B'£CD' + * A B'CD'£AB£CD (4.6.41)

BeCD' (4.6.42)

abcd ' = ®ABCD'£A'B'£CD ~*~ ® AB'CD£AB£C D' (4.0.44)

abed ''= £AC£BD£A'C£B'D' " £AD£BC£A'D'£B'C = 2Qa\$d\b ' (4-6.45)
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4.7 Einstein-Cartan-Sciama-Kibble theory 237

Then the reduction (4.6.38) of Rabcd into irreducible parts (see §3.3) is
equivalent to

Kbcd = Cabcd + EM + 2Agabcd (4.6.46)

over the real field, or

Rabcd = " Cabcd + + Cabcd + £«** + 2A0afccd (4.6.47)

over the complex field.
In the language of representation theory, " C . . . , +C. . . , £ . . . , and #. . .

belong to representation spaces for the D(2,0), D(0,2), D(l,l), D(0,0)
irreducible representations of the Lorentz group (strictly, SL(2,C));
these numbers are half the numbers of symmetric spinor indices (cf. §3.3).

4.7 Spinor formulation of the Einstein-Cartan-
Sciama-Kibble theory

We shall briefly digress at this point to examine a modification of
Einstein's theory due, independently, to Einstein-Cartan and, more
explicitly to Sciama and Kibble (Cartan 1923, 1924, 1925, Kibble 1961,
Sciama 1962, Trautman 1972,1973; for a general review see Hehl, von der
Heyde, Kerlick and Nester 1976), in which the torsion tensor, rather than
assumed to be zero, is equated with a certain tensor expression arising
from the spin density of matter. We do not enter into the question of the
physical reasonableness of this theory, or, indeed, of whether the theory
has physical implications different from Einstein's; we merely look at its
spinor formulation.

In the ECSK theory-in contrast to the unified field theories-space -
time has a real symmetric metric gab of the usual type, so that our 2-spinor
formalism can be employed. The difference from general relativity lies in
the nature of the operator Va that is used. The condition of covariant
constancy of the metric,

Vaflffc = O, (4.7.1)

is retained, but there is, in general, a non-zero torsion tensor Tab
c for which

(cf- (4.2.22))

^-^>=^f (4-7.2)

The torsion of space-time is now related to the spin density Sabc of its
matter content by the equation

a b a b + 9[a
cSb]d

d\ (4.7.3)

with Sabc satisfying
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238 4. Differentiation and curvature

and y, as before, denoting Newton's constant of gravitation. From (4.7.3)
we derive

j b (4.7.5)

so we can reverse (4.7.3):

Tab
c + 2g[a

bTb]d
d=-SnySab

c. (4.7.6)

This equation supplements the Einstein field equation

Kb-l9abR=-*nyEab (4.7.7)

(where, to avoid confusion with Tab
c we now use Eab for the energy-

momentum tensor), in which, however, Rab is now a (generally) non-
symmetric Ricci tensor* (and R = Ra

a\ defined as

while the curvature tensor Rab
d is defined by Vfl according to (4.2.32). The

symmetry relation

still holds, by (4.7.1) and the arguments given in §4.2, but now

R d = — V T d — T eT d (4 7 10)
^[abc] y [a1 be] J [ab i c]e ' ^ ' '' lK)>

and so the interchange symmetry Rabcd = Rcdab also fails - which explains
the lack of symmetry in Rab. Note that this implies that the energy-
momentum tensor Eab is also non-symmetric, cf. (4.7.7). From (4.7.10) we
can deduce the spin 'conservation law':

VcSab
c-Tdc

dSab
c = Eba-Eab. (4.7.11)

To represent the spin density spinorially, we take advantage of (4.7.4)
and introduce the spinor

a CC_lo A'CC
°AB '— l^AA'B

so that

In terms of this spinor, the torsion has the somewhat unremarkable
expression

CABA'8B'C + °BCAB'ZA'C

Owing to the conventions adopted in this book, the ordering of indices in Rab is the
reverse of those in the main references cited above.
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4.7 Einstein-Car tan-Sciama- Kibble theory 239

However, equivalent information is contained in the tensor Qab which
can be used, according to (4.2.46), to translate back from Va to the standard
Christoffel derivative operator Vfl:

S/aU
b = Va(7b + Qac

bU\ (4.7.15)

where Va still satisfies (4.7.1) but has vanishing torsion. As in (4.4.37), we
have

Tab
c-2Q[ab;- (4.7.16)

by (4.2.50) or (4.4.30). Furthermore, as in (4.4.36), equation (4.7.1) and its
tilde version give

Q h = ~Q h- (4.7.17)

The last two equations determine Qabc uniquely as

eo6[ = 7a M-iTf c c a . (4.7.18)

Unfortunately the translation of (4.7.11) into Va terms, using Qabc, still
does not give simply a divergence of Sab by itself.

In the spinor formalism the role of Qabc is played by the quantity

®AABC (c/ (4.4.23)), whose symmetry ®AABC = ®AACB f°U°ws fr°m

the covariant constancy of eAB, sAB - as we have seen in (4.4.32)-(4.4.34) -
and which is given by

Gate = ®AA'BCZB'C + ®AA'WC*BC> (4-7.19)

as we have seen in (4.4.35). Substituting (4.7.14) and (4.7.19) into (4.7.18),
we obtain, after some manipulation, the strikingly simple relation

This may also be obtained more directly from (4.4.37). Having (4.7.20),
we can relate the standard Riemann-Christoffel tensor R . ., the standard

abed'

(symmetric) Ricci tensor Rab, etc., to the present Rabcd9 Rab, etc., by means
of (4.2.51). Note also that (4.7.20) can be inverted to

1 t

Suy

Spinors may also be used to good effect in the study of the more general
type of curvature tensor Rabcd that arises here. The skew part R[ab] of the
Ricci tensor may be represented as in (3.4.20) by a spinor I<AB = ^{AB),
the remaining information in Rahcd being expressible in terms of a suitably
defined 'Weyl spinor' ^ABCD = *F(i4BCD)and two complex quantities Q>ABA,B, =
Q>(AR\(AR >and A. When Tah

c = 0,the spinor E.o vanishes and the others reduce
to the standard quantities of §4.6. We do not pursue the matter further here,
but cf. Penrose(1983).
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240 4. Differentiation and curvature

4.8 The Weyl tensor and the Bel-Robinson tensor

The tensor Cabcd of (4.6.41) is called the Weyl conformal tensor (and so
^ABCD *s °ften called the Weyl conformal spinor). It comprises the con-
formally invariant part of the curvature tensor. (We shall see in (6.8.5) that
Cabf is invariant under conformal rescalings; in (6.9.23) we shall show
that its vanishing is actually necessary and sufficient for space-time to be
patchwise conformally flat.) In space-time restricted by the Einstein field
equations (without cosmological term) Rabcd reduces to Cabcd in vacuum.
Notice that the 'Ricci tensor' formed from Cabcd vanishes:

Cadb" = 0. (4.8.1)

From this and the fact that Cabcd shares the symmetries of Rabcd, and

differs from Rahcd by terms involving the Ricci tensor and the scalar

curvature (cf. (4.6.41), (4.6.38)), one derives the expression

(The form of the terms on the right side is determined by the symmetries,
while the coefficients - 2 , \ follow from Cadb

d = 0.*)
Note that, because of (4.6.33),

^abcd ^ abed IH.O.J;

Let +Cabcd and ~Cahcd be the self-dual and anti-self-dual parts of Cabcd,
respectively (cf. (3.4.35), (4.6.42), (4.6.43)). By (4.8.3) we need not distinguish
between left and right self-duals or anti-self-duals.) Then

Caba-+CaM+'Cabc; (4.8.4)

and

Cabcd = 1 Cabcd-> ^abcd~ — 1 ^abed' (4.8.5)

One of the great simplifications that the spinor formalism achieves in
relativity theory is that it describes the very important but somewhat
complicated quantity Cabcd by such a simple object as a totally symmetric
spinor (namely ¥ABCD)- As we mentioned above, this leads, for example, to
a very transparent curvature classification scheme. In Chapter 8 we shall
analyse the structure of Cabcd in considerable detail. For the moment we
shall note only a few of its algebraic properties and relate it to a tensor
known as the Bel-Robinson tensor. These examples may illustrate the
strength of the spinor method.

* In the H-dimensional case these coefficients are - 4 / ( H - 2) and 2/(n - \)(n - 2). The
corresponding Weyl tensor is also invariant under conformal rescalings. Provided
n ̂  4 its vanishing is necessary and sufficient for conformal flatness.
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4.8 The Weyl and the Bel-Robinson tensor 241

Consider any two tensors Mabcd, Nabcd having all the symmetries of
Cabcd, i.e., being of the form (4.6.41) with ^ABCD totally symmetric. Then
we have two relations that are analogous to (3.4.44) and (3.4.45):

~ A V + A U , = 0 (4.8.6)

and

~M-frNcpdq^
+Na\"-Mcpdq. (4.8.7)

The proof of (4.8.6) is immediate and identical to that of (3.4.44), while
the proof of (4.8.7) is similar to that of (3.4.45): for if we set

^abcd = ^ABCD8A'B'8C'D' "abed = V A'B'C'D'eABSCD>

each side of the equation is simply

(As in the earlier case, a direct tensor proof of (4.8.7) is not trivial.) And
again, either of the contracted products in (4.8.7) determines the outer
product of these tensors and so determines each tensor separately up to a
factor. (These results are due to I. Robinson.)

By specializing (4.8.7) to the Weyl tensor we obtain the so-called
Bel-Robinson tensor Tabcd:

1abcd'~ ^a b ^cpdq~ ^a b ^ cpdq X ABCD ABCD' V+-°-7)

An alternative expression for Tabcd in terms of real tensors is the following:

r =±(CpqC +*rpq*C \ (4 8 10)
1 abed ArV^a b ^cpdq^ ^a b ^cpdq^ ^t.O.lUJ

This can easily be verified by using Cahcd =
 +Cabcd + ~Cabcd, *Cabcd =

^ ^abed ~ ^abcd>'

The symmetry properties of Tabcd are by no means apparent from the
tensor formula, but they follow directly from the spinor expression in
(4.8.9). Thus we see at once that Tabcd is totally symmetric and trace-free:

Tabcd-riabcd), (4.8.11)

T°abc = 0. (4.8.12)

Indeed, these two relations conversely imply that

T = T
1 A A ' B B ' C C ' D D ' 1 (ABC D) ( A ' B ' C D )

(see after (3.3.61)). The fact that TAA,BB>CC,DD, lactorizes' according to
(4.8.9) is equivalent to the relation

TABCD A'B'C'C'TEFGHEF'G'H' — TABCDE'F'G'H'TEFGHA'B'C'D' (4.8.13)

(see (3.5.5)). Thus, applying the methods of §3.4, we can obtain a quadratic

tensor identity satisfied by Tabcd. The full tensor expression of this identity
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is complicated. However, a reduced expression which contains only
part of the information of (4.8.13) is the following:

To prove this, we first observe that the left side must be proportional to
g/ since, using (2.5.24),

VI/ XjyABC J_o> \JJABCD

*ABCE* F ~ 2* ABCD* fc£F'

the left side of this equation being obviously skew in EF (see-saw A, B, C).
The multiplier then follows from contraction over E, F.

Another property of Tabcd is its invariance under duality rotations
of Cahcd (see (4.6.12)):

Cabcd^
{e)Cahcd = Cabcdcos 9 + *Cabcd sin 0

= e-W-Cabcd + eie+Cabcd. (4.8.15)

This is equivalent to the replacement

vp |__>e-i0ij/ ? (4.8.16)

under which Tabcd is evidently invariant.
The spinor formalism also allows one immediately to recognize the

uniqueness of Tabcd on the basis of suitable criteria. For example, it is (up to
proportionality) the only four-index tensor quadratic in Cabcd which is
invariant under duality rotations of Cabcd. Again, up to proportionality,
it is the only trace-free totally symmetric tensor (of valence greater than
zero) which is quadratic in Cabcd. One merely needs to examine the possible
spinor terms that could arise in order to see that (4.8.9) is the only possi-
bility.

The Bel-Robinson tensor has certain positive-definiteness properties
which, too, are direct consequences of the spinor form (4.8.9). These will
be discussed later (see (5.2.14), (5.2.15)).

4.9 Spinor form of commutators

Since the Riemann curvature tensor Rabcd appears when a commutator
of derivatives Va is applied to vectors and tensors, we may expect that
the spinors which represent Rabcd appear when such commutators are
applied to spinors. This is indeed the case. Consider the decomposition
(3.4.20) applied to the commutator Aab defined in (4.2.14):

A = 2 V V = £ , , D +£ • ' ', (4-9.1)

where

• — y V *' PI = V V x id 9 2)
AB V X'(A B) ' •—]A'B' X(A' B) ' \^y'^)
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4.9 Spinor form of commutators 243

Note that \I]A,B, is the complex conjugate of [JAB in the sense that, for any
s p i n o r ^ , _

OA>B'X« = OABI*«) = OABU
(cf. (4.4.20)). From (4.2.15) and (4.2.16) we have

OAB(X^^) = <t>®UABI<, + X<gUAB4>9, (4-9.5)

and similarly for [3A>B>- To find the effect of \HAB and \Z\A,B> on a spinor,
say KA, we begin by forming the self-dual null bivector

kab = KAKB8AB'. (4.9.6)

Then from the (torsion-free) Ricci identity (cf. (4.2.33)) we obtain

A hcd _ n cued , n duce
abK — Kabe K -t- Kabe KT .

(The non-reality of kab does not affect this.) Now we substitute (4.9.6) into
this relation and use (4.2.16) (which applies to spinors as well as to tensors),
and find

i.e.,

2eCDVCA hKD) = - R hF
DCCKEKD + R hF

CDDKcKE.
ab abE abE

Replacing the Riemann tensor by its spinor form (4.6.1) and cancelling
2sc D from each side gives

(C A D) __ f y (C , ^ (C\ ̂ D) E
K \bK ~ \bA'B'KABE + bAB^A'B'E iK K '

Applying (3.5.15) (with r = s = 1) to the difference between the left and
right sides of this equation, and taking KC =fc 0, we obtain

AafrK
c = KB*ABE

C + *AB*A.WE
C}KE, (4-9.7)

which, on symmetrizing and skew-symmetrizing over AB yields the equa-
tions

nABxc = XABE
cKE, nA,wKc = <S>A,B,E

cKE. (4.9.8)

The corresponding formulae for primed spin-vectors are obtained from
(4.9.7) and (4.9.8) by taking complex conjugates and using (4.9.3) (and
replacing if by TC for generality):

A TC = ( v c ' + o (J) c'\rE>

^ab1 \bAB^A'B'E' ^bA'B^ABE' iX '
r-i rc -<b c'rE' n TC' - X c'rE'
I—UBT ~^ABE T ' ^A'B'T ~ ^A'B'E' T '

Lowering the index C (or C), we also get
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To derive the action of QAB and nA>B> on many-index spinors, e.g.,
0C

D
E' F,, we expand 0c

D
E

 F, as a sum of outer products of spin-vectors and
use the properties (4.9.4), (4.9.5). Thus, typically,

which, when we substitute from the above formulae for \HABKC etc, gives

• fic E> = Y cf)Q E> — Y Qf)c E'
AB D F' ^ABQ V D F' ^ABD U Q F'

+ (£> E'QC Q' _ ( J > Q'QC E' (4 9 13)
^^ABQ' U D F' ^ABF' U D Q" 1^.^.1 J)

This shows the pattern in the general case. Taking complex conjugates,
using (4.9.3) (and replacing 3°D,EF by </>c

D
E

F), we obtain the correspond-
ing formula

We may substitute (4.6.34) into the above equations, obtaining, for
example, from (4.9.11),

aABKc = - VABC
DKD - A(SACKB + SBCKA), (4.9.15)

from which the terms in *¥ABC
D and A can be singled out:

- X ¥ A B C » K D 9 (4.9.16)

\3ABKB= -3AKA. (4.9.17)

Further relations may be found from these by taking complex conju-
gates.

• M - * - V , = - * 4 - i r c ' l > V OA.B.rB' = - 3 A V . (4.9.18)
We can obtain expressions for the curvature spinors analogous to

(4.2.66), by substituting ec
c for KC in (4.9.11):

XABCD = £DcnABec
c, ^A^cD = eDcaA.B^c

c, (4.9.19)

the first of which can be decomposed into two parts (cf. (4.6.34),
(4.6.35)):

^ I K I , = ««:•< W 1 ' A = X
6
£AcDABeB

c. (4.9.20)

The spinor formulae of this section are considerably more involved
than the corresponding tensor formulae from which they are derived.
Nevertheless one not infrequently encounters the particular combination
of Va operators which occurs in \3AB and X2A.B.. In these circumstances
the above formulae can be particularly useful. Some applications will be
given in §5.11; cf. also (5.8.1) and numerous applications in Vol. 2.
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4.10 Spinor form of the Bianchi identity 245

4.10 Spinor form of the Bianchi identity

Recall that there was a consistency relation to be satisfied between the
curvature and the covariant derivative operator, namely the Bianchi
identity (4.2.42). Let us determine the spinor form of this. By reference
to (3.4.26) it is seen that the Binachi identity

VW = ° (4-101)
is equivalent to

V°*Rabcd = 0. (4.10.2)

When we substitute from (4.6.11) into this, it becomes
Lt>C'D' B' ^ABCD lbCD V B'^ABC'D' ^ itrC'D' V B ^CDA'B' ^ ltCD V B ^ABCD' ~~ W

and by separating this last equation into parts which are, respectively,
skew and symmetric in C'D\ we find it to be equivalent to

VAB*CDAB (4-10.3)

and its complex conjugate. Relation (4.10.3) is thus the spinor form of the
Bianchi identity.

It may be asked whether (4.10.3) can be derived directly as a consistency
relation for the commutators of §4.9, analogously to our derivation of
(4.2.42). In fact, it can. First observe the identity:

A(B C) p A'B'C _ A BCpA'(B' C)

- eABeD
czD,iA'sB)C' + fi/WV' = °- (410-4)

This may be proved by using the e-identity (2.5.20) which implies:

eAiBsD
C) = sABeD

c + \ eD
AsBC. (4.10.5)

Forming the contracted product of (4.10.4) with

V V V KE

yAA'yBB'yCC'K

and using (4.9.2) and (4.9.8), we get

from which (4.10.3) again follows, KC being arbitrary.
We can re-express (4.10.3) in terms of *¥ABCD and A by use of (4.6.34):

It is sometimes useful to split this relation into two irreducible parts,
symmetric and skew in BC respectively. Note that it is symmetric in CD
already. We get

y ^ y ( BABCD
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246 4. Differentiation and curvature

and, contracting the skew part,

VCA<S>CDAB> + 3VD B,A = 0. (4.10.8)

This last relation is the spinor form of the important result that the
Einstein tensor is divergence-free: VaGab = 0, as can be seen from (4.6.24).

When the Einstein vacuum field equations hold (with or without the
A-term - cf. (4.6.29)), we have Q>ABC,D, = 0, A = ^X and so the first Bianchi
equation (4.10.7) becomes

VAAx¥ABCD = 0. (4.10.9)

This 'field equation', together with Einstein's field equations in the proper
sense,

« W C = ° > A = £A, (4.10.10)
governs the propagation of curvature in vacuum. In particular, (4.10.9),
which includes information from (4.10.10), is in a certain sense analogous
to an actual field equation. It has significance as being formally identical
with the wave equation for a massless (zero rest-mass) spin 2 particle
(in our case, the 'graviton') and as such it will be discussed at greater length
in §5.7. One simple consequence of it may be noted here, however. It is
that the Bel-Robinson tensor (4.8.9) is divergence-free:

VaTabcd = 0. (4.10.11)

In the non-vacuum case, when any energy-momentum tensor Tab acts
as a source for the gravitational field according to the Einstein field equa-
tion (4.6.31), then (4.10.7) becomes

VAxF =4nyS7A'T (4 1012)
yB'*ABCD ^JL'y (B * CD)A'B> \*+.LV.l4)

showing that the derivative of Tab may be regarded as a source for the
gravitational spinor field *FABCD •

4.11 Curvature spinors and spin-coefficients

In this section we return to the component description introduced in
§4.5 and show how the components of the curvature spinors may be
related to the spin-coefficients 7BCAA > a n d to the intrinsic derivatives
VAV. We first calculate the commutator of intrinsic derivatives. For this
we use some of our earlier results on Lie brackets. Recall (cf. (4.3.26),
(4.3.29), with the torsion equal to zero), that, for a scalar / ,

[U, V]f = {UpVpV
q - VpVpU

q}S7qf (4.11.1)

Now consider the expression

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


4.11 Curvature spinors and spin-coefficients 247

Replacing Up and Vq in (4.11.1) by £A
P£B,P' and ec

QeD,Q', respectively, we
obtain

[ A B C D ] Mc% a A , . (4.11.2)
Expanding the factor { } by use of the Leibniz rule, referring to (4.5.2),
and incorporating V , we derive

[VAB', VB D , ] / = (y A B C % D , - yCDA
QVQB, + 7ABD

 Q % " 7CD B Q V A Q ) /

(4.11.3)

Now, by reference to (4.3.32) and (4.2.24) (in the absence of torsion) it is
seen that our previous equation (4.9.7), when transvected with XaYb,
is equivalent to

( V V - V V - V )KF = XaYb{eA,B,XABF
F+ £ABQ>A,B,/}KE. (4.11.4)

XY YX [X,Y] ' I AB ABE AB A B E i /

In this equation, choose

X a _ Ac A' yb c B B' ^.F — _ F
~ £A B' ' J ~~ bC bD' •> K ~ bE '

and then transvect with eF
F. The first term on the left becomes

£ F V V 8 F = £ F V (V Q £ F)fcF VAB vCD' f cE fcF VAB'WCD'E fcQ '

~ ^AB'^CD'E "̂  ^CD'E ^AB'Q '

and the second term is the same but with AB' and CD' interchanged.
Since V KF is essentially defined as the operator in (4.11.3) acting on

[X,Y]

KF instead of / , we can use the same calculation as that which give us
(4.11.3) for the third term on the left of (4.11.4); but now the operators act
on £E

F, and so each intrinsic derivative (with the new factor eF
F) gives a

y E
F, and we get

y Qy F _ y Q^ F , y Q' F _ rj Q' F
/ABC MJD'E 'CD'A /QBE ^ ^AB'D' 'CQE 'CD'B 'AQ'E

for this term. On the right of (4.11.4) we substitute (4.6.34) and go over to
dyad components. Collecting all these terms together and rearranging
them, we finally obtain

V v F _ y F _ Q F Q F , Q̂ , F
VAB /CD E VCD /ABE ~ /ABE /CD'Q /CD E fAB Q ^ /AB C /QD E

_ v Qv F , ^ Q' F _ ^ Q F
/CD'A /QBE ^ /AB'D' /CQ'E /CD'B' /AQ'E

+ SB,D,£ Y A C E Q + eB'D'VeAE£C "*" 8A £ C E ) ^

(4.11.5)

This expression can also be obtained directly from (4.9.7), by going over
to components throughout, and applying (4.5.1) etc. where required.
The calculation is essentially similar to the one given above, though
slightly longer.
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248 4. Differentiation and curvature

The relations (4.11.3) and (4.11.5) are the fundamental equations of
the spin-coefficient formalism. They have a complicated appearance, but
look somewhat simpler when specific components are picked out. We
shall use the standard notation of (4.5.16) and (4.5.23) for the spin-coeffi-
cients and intrinsic derivative operators, and, in addition, special symbols
for the dyad components of the Weyl and Ricci spinors, *FABCD

 anc*
®ABCD"> according to the following scheme:

* 0 * ^ * 0000' 1 ' X A^QOOl' 2' % * 0011'

* 0 2 : = * 0 0 1 ' l '

(4.11.7)

*10 : =*010 '0 ' * l i : = * 0 1 0 ' l '

These quantities can also be expressed in terms of the null tetrad, by
references to (4.6.41), (4.6.20), (4.5.20), and (4.11.7):

n = X' lX' lCabJmbVm\ V, = r *x~ lCabc/m
blcnd

^2 = X' lrlCabcdl
ambmcn\ 4>3 = X~ lX~ lCabc/n

bmcnd

^ 4 = X' lrlCabcdm
anbmcnd, (4.11.9)

$20 = " R ^ * * $21 = - K , ^ ^ $22 = " i*^»d.(4.11.10)

In terms of these quantities, the commutator relations (4.11.3) now be-
come, explicitly,

D'D - DD' = (y + y)D - ( / + y)D' - (T - t')5' + (r' - f)5

^D - D3 = (P + a 4- f)D + /cZ)' - er<5' - (e + f 4- p)S

3D' - D'8 = K'D + (T -h ̂  + a')Z>' - <f'̂ ' - (? + y + p')^

^ - ^ ' = (pf - p')D - (p - p)D' - (a' + 3)5' + (a + a')<5. (4.11.11)
And similarly, the equations (4.11.5) become

Dp - 5'K = p2
 + (T<7-KT- K{X' + 2a + /? - )8') 4- p(e + e) 4- 0>00 (a)

D'p' - (5/c' = p'2 + cr'a' - K'T' - /C'(T + 2a' + /P - /?) 4- p^e' 4- e') + O22 (a')

D<r-dK = <j(p + p + y' -y' + 2s) - K(T 4- f 4- a - a' 4- 20) 4- T o (ft)

£>V - 5'K:' = o\p' 4- p' + y - y 4- 2e') - /C'(T' + f 4- a' - a 4- 20') -h ¥ 4 (ft')

/)T - D'K = p(r - f) 4- (x(f - T') -h i(f + s)

-ic(yH-2y-8/) + l P 1 + * 0 1 (c)

D'T' - DK' = p'(r' - f) 4- <7'(f' - T) 4- r'(y 4- e')
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dp - d'o = x(p -p) + K(p' - p') + p(a + P)
-oiS + la-P)-^^®^ (d)

d'p' - da' = x'(p' - p') + K'(p -p) + pW + F)
- a'{d + 2a' -p)- ¥ 3 + 0 ^ id')

dx -D'(J= - p'a - d'p + T2 + KK' + x(f + fi1)
- a{2y - s' + S) + <D02 (e)

S'x' -Do' = - pa' - dp' + T'2 + K'K + x'(p' + /?)
- a'(2y' -e + s) + d>20 (er)

D'p - S'x = pp' + aa' - xx - KK' + p(y + y)- r(a + a') — 4 /
2 — 211 ( / )

Dp' - dx' = p'p + aa' - x'x' - KK' + p'(y' + f) - x'(a' + a) - ^F., - 211
if)

D'p -3y = xp' - K'O - k"e + aa' + P(p' + ? + y)-y(p~' + a' + T) - 0>12

(9)

DP' - S'y' = x'p - Ka' - KS' + a!a + P'{p + e + y')

-y'OS + a + O-d'.o {g')

S'e — Da = x'p — Ka' + icy — Pa — a(p + e + y')
+ £(j? + a + T')-<D1 0 (h)

5s' - D'a' = xp' - K'O + ic'y' - p'd' - a'(p' + e' + y)+ E'(P + a' + T) - <D, 2
ih1)

Dp-5e = K(P' - y) - a(x' - a) + P(p + f) - s(x' + d) + x¥l (i)
D'P' - <5'e' = K'(P - y') - a'(x - a') + p'(p' + y)- e'(x + a') + T 3 (i')
S'y - D'a. = K'(p + e) - o'(x + P)- a(p' + y) + y(x + a)

+ yP' - e'a + T 3 0')
by' - Da' = K(P' + e') - a(x' + P') - a'(p + f) + y'(x" + a)

+ y'P-m' + y¥l (/)
Dy - D'S = KK' - xx' -p(x' - f) - a(x' -x)-e(y + y)

+ y(y' + yr) + yi'2 + (i>ii-n (*)
D'y' - De' = KK' - xx' - p'(x - x1) - a'(f - x1) - e'(y' + y1)

W2 + <S>ll-n (k)
S'P — da = pp' — 00' — aa + Pa' + a(/? — a') + y(p — p)

+ e(p ' -p ' ) + 4 ' 2 - < D 1 1 - n (/)

dp' — d'a' = pp' — 00' — a'a' + )3'a + a'(P' — a) + y'(p' — p')
+ 6'(p-p) + T 2 - < t 1 1 - n (/')

(4.11.12)

Note that equations (4.11.12) go in pairs, such that in each pair one is
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250 4. Differentiation and curvature

related to the other by the 'priming' operation described after (4.5.16).
It is necessary, however, to take into account also the following index
correspondences, which result at once from the definitions (4.11.6) and
(4.11.8):

r s , u : 0 ^ 2 , l«-»i. (4.11.13)

Equations (4.11.12) simplify somewhat when the dyad is normalized so
that / = 1, with the consequent identifications a = — /?', e = — / , (cf.
(4.5.29)); in that case, in particular, the pairs (h),(hf) and (/), (/) become
identical with the pairs (g% (g) and (i% (i) respectively, and (k) and (/)
become identical with their primed versions. So the set reduces from
twelve prime-related pairs to eight such pairs plus two self-prime related
equations.

The equations (4.11.11) and (4.11.12) are most useful when several
of the spin-coefficients vanish (e.g., owing to possible symmetries of a
specific problem.) For then they often simplify considerably. However,
in §4.12 a somewhat different approach is given which leads to simplifi-
cations without specializations having to be made. Expressions for the
Bianchi identities and Maxwell equations in spin-coefficient form have
also found much useful application in the literature. These we shall defer
until the end of §4.12 so that the simplifications which result from the
compacted formalism of that section can be taken into account.

4.12 Compacted spin-coefficient formalism

In §§4.5 and 4.11 we introduced the formalism of spin-coefficients. The
advantages of the use of spin-coefficients are partly those which arise also
with any tetrad or component formalism, namely that one operates entirely
with scalar quantities, scalars being easily manipulated and able to take
on numerical values or the form of explicit functions where necessary.
But, in addition, there is the special advantage when spin-coefficients are
used that they are all complex. Thus each spin-coefficient carries the
information of two real numbers and a considerable economy of notation
is thereby achieved. One needs only 12 such quantities rather than the
24 equivalent real quantities which would be needed if a conventional
orthonormal tetrad were used, or the 40 independent coefficients of the
Christoffel symbols which play a corresponding role when a conventional
coordinate approach is used. Of course, explicit formalisms such as these
are at their most advantageous when the basis frames which are introduced
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can be tied to the geometry or physics in a natural way. If a timelike vector
field occurs naturally in a problem (e.g., as tangents to fluid flow lines)
then it is often advantageous to choose this as a tetrad vector and employ a
tetrad formalism. In the same way, if one or more null vectors occur
naturally (as is often the case in radiation problems) then that null vector
may, with advantage, be used as a tetrad vector. In such situations one
may also go further and use that null vector as the flagpole of one of the
dyad spinors of a spin-coefficient formalism.

It will be seen, however, that in all these situations there may be much
freedom left in the choice of basis frame. It is not often that the problem
defines a complete basis in a suitably natural way. Usually some freedom
remains in the choice of basis. This has the effect that many of the quanti-
ties involved in the calculation do not have direct geometrical or physical
meaning. Instead they are of the nature of 'gauge quantities' whose values
transform in certain ways as the basis frame is varied in accordance with
the freedom that remains. As a general rule, the presence of too many
such 'gauge quantities' may detract considerably from the value of a
formalism - especially if the gauge transformation behaviour is compli-
cated. It is one of the virtues of a co variant approach that such complicated
gauge behaviour is avoided completely, and so the geometrical or physical
content of a formula is likely to be much more immediately apparent. In
explicit problems, a fully covariant approach may not always be con-
venient. But likewise, it may not be convenient to fix the basis system
completely, and sometimes a partially covariant formalism can be adopted.

In the case of spin-coefficients, there are two types of 'gauge freedom'
which are likely to be encountered. In the first place one may be concerned
with a problem in which one null direction only is singled out in a natural
way. This is the situation, in particular, when the geometry in relation to
a null hypersurface* (or wave front) is being studied. The dyad spinor
oA may be chosen to be in this null direction, but the direction of the re-
maining dyad spinor iA may be completely free. It is possible to develop
a partially covariant formalism for such a situation (Penrose 1972a) but
it seems that a high price must be paid in complication if the formalism is
to be made generally applicable. We shall not give a complete discussion
of this situation here, although certain quantities with the required co-
variance will be described later (cf. §7.1 and (5.12.12)) The second type
of gauge freedom frequently encountered with spin-coefficient problems
occurs when two null directions are singled out but there is no further

* A hypersurface whose normal vector is null, cf. §7.1; also §5.12.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core
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information which naturally fixes the flag planes or extents of the flag
poles of the corresponding dyad spinors. This situation arises, for example,
when the geometry of a spacelike 2-surface is being studied {cf. §4.14).
There are two null directions orthogonal to the surface at each point of
the surface and it is convenient to choose the flagpoles of oA and iA point-
ing in these directions. There are, of course, many other situations where
two null directions are naturally singled out at each point. The compacted
spin-coefficient method that we shall describe is ideally suited to the study
of such situations (Geroch, Held and Penrose 1973; cf. also Stewart and
Walker 1974, Stewart 1979, Held and Voorhees 1974, Fordy 1977, Held
1974, 1975). But in addition, the formalism is sufficiently close to the
original spin-coefficient approach that it may, if desired, be used in place
of the original formalism, the various formulae encountered being regard-
ed as shorthand expressions for ordinary spin-coefficient formulae.
Indeed, the compacted expressions are, for the most part, considerably
simpler than their full spin-coefficient counterparts, but sufficiently close
to them that a translation back is a simple matter. For this reason we do
not always give the spin-coefficient expressions in full but rely on the
compacted expression to convey the information required.

Weighted scalars

We suppose that two future-pointing null directions are assigned at each
point of the space-time M. Let oA and iA be a pair of spinor fields on M,
whose flagpole directions are the given null directions at each point.
As in (4.5.6), we set

oAiA = X- (4.12.1)

Now the most general change of dyad which leaves these two null direc-
tions invariant is

oA^XoA, iA^fiiA, (4.12.2)

where k and fi are arbitrary (nowhere vanishing) complex scalar fields.
Under (4.12.2) we have

l^Xn. (4.12.3)

If the usual normalization condition / = 1 is adopted, then to preserve
this we require the restriction

fjL = X-\ (4.12.4)

For greater flexibility in applications we shall not generally adopt (4.12.4),
but rather allow X and fi to be independent quantities. The specialization

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


4.12 Compacted spin-coefficient formalism 253

to (4.12.4) and / = 1 is easily made if required. In terms of the null tetrad

F = oAdA\ ma = oAlA\ ma = iAdA>, na = iAiA\ (4.12.5)

the transformation (4.12.2) effects

la\-+Xlla, nf^Xfinf, ma -> \ilma, na^\x[in\ (4.12.6)

and note that lana = il = — mama.
Adopting, for the moment, % = 1 and (4.12.4), we can put

# and 6 being real, and re-express (4.12.6) as the boost

la^Rla, na^R~lna (4.12.7)

combined with the spatial rotation

nf\->eiema. (4.12.8)

Thus we have a two-dimensional 'gauge' freedom at each point, namely
the 2-parameter subgroup of the Lorentz group at each point which
preserves the two null directions defined by la and na. This 'gauge group'
at each point is seen to be-from (4.12.2) and (4.12.4)-just the multipli-
cative group of complex numbers X. In the more general case, where
(4.12.4) is not adopted, the gauge group is seen to be the product of two
such multiplicative groups.

Our formalism will deal with scalars (and also sometimes tensors or
spinors) rj associated with the (not necessarily normalized) dyad oA, iA,
that undergo transformations

Y\^Xr'lx'\irilr\ (4.12.9)

whenever the dyad oA,iA is transformed according to (4.12.2). Such a
quantity will be called a (weighted) quantity of type {r\r;t',t}. In the
special case (4.12.4) only the two numbers

p = r'-r, q = t'-t (4.12.10)

are defined, and we may say that rj has type {p,q}9 or equivalently, a
spin-weight \{p — q) and a boost-weight \{p + q). The terms spin-weight and
boost-weight may also be used in the general case when (4.12.4) is dropped.
We shall sometimes refer to n as a {r\ r; t\ t}-scalar or a {p, q}-scalar.

More precisely* we should think of a weighted scalar rj as a function

* Those versed in the language of vector bundles {cf. §5.4) will recognize a {r1, r; t', t}-
scalar as being a (smooth) cross-section of a certain complex line bundle over M.
This bundle can be expressed as 3$~r' (g) $~x

r (g) &~'' ®$~\ where @0 and 3tx are the
bundles of spin-vectors whose flagpoles point along la and na, respectively, and ^ 0

and £ , are their complex conjugates. (For example, if t, has type { -1 ,0 ; 0,0}, then
£oA is a cross-section of &Qi being an ordinary 'weightless' spin-vector field.)
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which assigns a complex scalar field rj(oA, iA) to each pair of spinor fields
oA, r4, for which the null directions defined by oA and by iA are given. To
be a weighted quantity, the function rj must be of a very special type,
namely one which satisfies (4.12.9) when the dyad is changed according
to (4.12.2), i.e.,

Y\{XOA, fiiA) = r'It'nrfitri(oA, iA).

Note that we may regard oA, oA\ iA and iA themselves as spinors of type
{1,0; 0,0}, {0,0; 1,0}, {0,1; 0,0}, and {0,0; 0,1}, respectively, and
\\m\ma,na as vectors of type {1,0; 1,0}, {1,0;0,1}, {0,1; 1,0}, and
{0,1; 0,1}, respectively.

The spin-coefficients may now be divided into two classes according
to whether or not they are weighted quantities. In fact, the spin-coefficients
in the first and last columns of (4.5.21), namely K, p, c, T, K\ p\ a', z' are
such quantities whereas those in the middle two columns, namely e, a, /?, y,
£', a', /?', / , are not. Let us illustrate this with two examples:

o^{koAviAr l^oA){tiiA){XoB)VAA{XoB) = A V > , (4.12.11)

but

P*->(h>AluA)- l(loA)(iIiA')(tiiB)VAA,(XoB) = XfxP + flSl (4.12.12)

The types of the weighted spin-coefficients are as follows:

K : { 2 , - 1 ; 1 , 0 } , G :{2, - 1 ; 0 , 1 } , p :{ l , 0 ; l , 0} , T : { 1 , 0 ; 0 , 1 }

f c ' : { - l , 2 ; 0 , l } , o':{-1,2; 1,0}, p' :{0, l ;0 ,1}, r ' :{0,1; 1,0},

(4.12.13)

and we note that

X is a {1, l;0,0}-scalar (4.12.14)

With any spinor field or tensor field on the space-time there is asso-
ciated a set of scalars ('components') of various types {r\r;t',t} which
define the spinor or tensor. These are obtained by transvecting the spinor
with various combinations of oA, iA, oA\ iA, or the tensor with various
combinations of /a, ma, mfl, na. Any tensor field may be interpreted as a
spinor field, if desired, but we get precisely the same set of scalars which-
ever way we do it because of the definition (4.12.5) of the null tetrad in
terms of the dyad.

Evidently the product of a {r', r; t\ t}-scalar with a {v\ v; u\ w}-scalar
is a{r' + y',r + u;r' + u\ t + w}-scalar. On the other hand, sums are allow-
ed only when the summands have the same type; the type of the sum is the
same as the type of each summand.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


4.12 Compacted spin-coefficient formalism 255

Weighted derivative operators d and p

We next wish to introduce derivative operators into the formalism.
Unfortunately the operators (4.5.23) of the spin-coefficient formalism are
not suitable for this purpose, for, when applied to a scalar of non-zero
type, they do not in general produce a weighted scalar. We therefore
modify the derivative operators (4.5.23) by the inclusion of terms involving
spin-coefficients. Moreover, it is precisely those spin-coefficients which
are not weighted (e, a, /?, y; e\ a', /?', / ) that get included with the derivative
operators (which also are not weighted) to form weighted objects, and in
this way they get withdrawn from free circulation in our present formalism.
For a scalar (or tensor, or spinor) n of type {r\ r; t', t) we define*

pn = (D- r's - ry' - t's - ty')n,

dn = (S - r'B - m' - t'ti - tE')n,1 K H _ H (4.12.15)
d'rj = (<$' - r'oi - rfi' - t'fi - tS)r\,

p'n = (£>' - r'y - re' - t'y - ts')n.

These combinations have been so chosen that, under (4.12.2), the terms
involving derivatives of X and fi cancel exactly :

Note from these formulae that the operators have the following types:

J>: {1,0; 1,0}, 8 :{ l ,0 ;0 , l} , 6': {0,1; 1,0}, J>':{0, l ;0,1}. (4.12.17)

(To say that a differential operator has type {v\ v;u, u) is to say that
when it acts on a scalar-or spinor, or tensor-of type {r\ r\t\ t} it
produces a quantity of type {r' + v\ r + v; t' + u\ t + u}.) In the special
case x = 1 we have e = — y' and a = — /?', so with p = r' — r and q = t' — t,
as in (4.12.10), we can then write

\>YI = (D + py' + qy'% p'n = (D' - py - qy)n,

dn = (d-plJ + qp)ri, d'n = (S' + p? - qftn. (4.12.18)

From the definitions (4.12.15) one can easily verify that the operators
p, 6, 6', p' are additive, and, when applied to products, satisfy the Leibniz
rule.

* The symbol p is pronounced 'thorn' and d is pronounced 'eth'; p and 5 are the phonetic
symbols for the unvoiced and voiced 'th', respectively.
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An alternative way to define these operators is in terms of the zero-
weight vector operator (acting on a quantity of type {r\ r\ t', t])

®AA = VAA' + 7C \ro»VAA,iB - r>MAA.oB + tc?V AA.iB. - t'iB'VAA,oB)
(4.12.19)

by

p = Q00.9 K = © M , , 8 = ©<„•. <y = ®io" (4.12.20)

Note that

®a = k\-%P' + nap - mb' - md). (4.12.21)

It can be verified at once from (4.12.19) that

® ^ ' * = 0, (4.12.22)

whence

^ = 0, d* = 0, d'* = 0, KX = O. (4.12.23)

The basic weighted objects with which we shall work are the eight
spin-coefficients /c, a, p, T; K\ a\ p\ T', the quantity / , and the four differen-
tial operators p, 6, p\ 6'. In addition, there are the operations of complex
conjugation and of priming (cf. (4.5.17)) which both convert weighted
quantities into weighted quantities. The prime operation is involutory
up to sign: if rj has type {r\ r\ t\ t}9 then

fa7 = (- l ) r ' + ' ' - r - V (4.12.24)

(For all scalar quantities explicitly defined in this section, r' + t' — r — t
is in fact even, so this sign will play no role for scalars here.) Use of the
prime not only halves the number of Greek letters needed for the spin-
coefficients, but also effectively halves the number of equations, as we
already had occasion to note in (4.11.12).

We can combine the above elements with the tetrad components of
various tensor fields (e.g., the electromagnetic field tensor or the Riemann
tensor), and with the dyad components of various spinor fields to obtain
a self-contained calculus. The types of the several spinor components of
the Riemann tensor are {cf (4.11.6), (4.11.7), (4.11.8)).

¥ r : { 3 - r , r - l ; l , l } , II: {1,1; 1,1}, * r I : {2 - r,r; 2 - t, t}. (4.12.25)

Moreover, the various components

£ =i oA iD oG> iK'
«r.r ^...D...G'...K'...^L^^U^ (4.12.26)

r' r t' t

of a symmetric spinor £A M, of valence {r,° r r ,+J have respective types
{r', r\t\ t}. The corresponding components of the derivatives of £>A M,
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are then

(oA ... iK ... )S£A K, =6£rt + rfa^r+ x t + rp'^r_x t

+ t'p^t + 1 + td'£rtt_1 (4.12.27)

(oA tK ... )D'(J =1^'^ H-rrT^ +rKr£,

These relations may be rapidly derived from the useful formulae

poA =

doA =

d'oA =

p'oA =

-KlA,

-aiA,

— piA,

— Tl ,

a ^ =
- P'o^,

-oV,
- K'O-4,

^ • =

d'ox' =

b'o'4' =

— Kl ,

- P'A',

- dlA\

~ ™A',

d^' =

d'iA' =

ViA =

- foA

- a'oA

— p'oA

-icoA'

(4.12.28)

which themselves may be directly obtained from (4.5.26), (4.5.27), and
(4.12.15). Note that the use of \>, 6, d', p' instead of D, S, 5\ D\ respectively,
has the effect of eliminating from the right-hand sides of equations (4.5.26)
and (4.5.27) precisely those terms (namely all the first terms) that are not
weighted. Similarly, it is easily verified by use of (4.12.28) that the p, d, d', p'-
form of equations (4.5.28) differs from the D, 3, S\ D'-form precisely by the
disappearance of all unweighted (bracketed) terms on the right-hand
sides.

Complex conjugation changes a quantity or operation of type
{r\ r; t\ t} into one of type* {f, t; F, r}. Consistently with this remark, and
in order to have the desirable relations

pq = P*l, toj = 5rj, (4.12.29)

we define (cf (4.12.15), (4.12.18))

p = k p' = p\ 5 = d\ 5'= 6. (4.12.30)

The prime operation changes a quantity or operation of type
{r\ r; t\ t} into one of type {r, r';t91'}. Note that

pri\ (drj)' = 5frj\ (8'iy)'= diy'. (4.12.31)

For normal applications, r', r, t\ t will be integers, so that r' — r', etc. However, the
formalism still works (taking / = 1 and p — r — r, q — t' — t) if p and q are any pair
of complex numbers for which p — q is an integer. See, for example, Naimark (1964).
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Compacted equations

Let us now rewrite the spin-coefficient equations (4.11.12) in terms of the
operators (4.11.15). The effect is to eliminate those spin-coefficients,
namely e, a, /?, y, s\ a', /?', / , which are not weighted quantities, since terms
containing them just collect together to form the new derivative operators.
From (4.11.12) (a), (ft), (c), (d), (e\ (/) we get, respectively,

pp - 6'K = p2 + ad - KX - X'K + O 0 0 (a)

Jxr - die = (p + p)G - (T + X')K + *FO (ft)

PX - p'K = (T - f )P + (T - T > + ^ + ®0 1 (C)

6p - 6'G = (p- p)x + (p' - p > - ^F1 + <D01 (d)

6T - p'o = -p'a - o'p + x2 + KK' H- <D02 (e)

p'p - b'x = pp' + GO' -xx- KK' - x¥2 - 2 n ( / ) (4.12.32)

Applying the prime operation to each of these six equations, we obtain
six more equations, equivalent to equations (4.11.12) (a'\ (ft'), (c'\ (d'\ (e'\
(/'). The remaining equations in (4.11.12) concern derivatives of spin-
coefficients which are not weighted quantities. They cannot, therefore, be
written explicitly in our present formalism as equations like (4.12.32).
Instead, they play their role as part of the commutator equations for the
differential operators p, p\ 6, and &. These commutators, when applied
to an {r\ r; t\ r}-scalar rj (with p = r' — r, q = t' — t) are

W - V\> = (* - *;)a + (* - f'K '̂ - P(KK' - xx' + y 2 + (D1 x - n)
-^(fc/c'-ff/ + f 2 + O 1 1 - n ) (4.12.33)

pd - dp = pd + ad' - x'p - Kp' - p(pfK - x'o + ^ J

-q(a'K-px' + ®01) (4.12.34)

56' - d'd = (p' - p')p + (p - p))?' + p(pp' - era' + ^2 - Oj j - II)

- tfpp' - off 4- * 2 - <D11 - n), (4.12.35)

together with the remaining commutator equations obtained by applying
the prime operation, complex conjugation, and both, to (4.12.34). Note
that the type of rj enters explicitly on the right-hand side. We must be
careful, when applying primes and bars to these equations, to remember
that rj', rj, and fj' have types which are not quite those of rj. Under the
prime operation, {V, r; t\ t} becomes {r, r'; t, t'}, so p becomes — p and
q becomes — q; under conjugation, {r\ r; t', t} becomes {t\ t; r', r} -
assuming r' etc. to be real - so p becomes q and q becomes p ; under com-
bined bar and prime operations, {r\r;t\t} becomes {t9f;r9/}, so p
becomes — q and q becomes —p.
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4.12 Compacted spin-coefficient formalism 259

The commutator equations are the one instance where the compacted
formalism yields more complicated formulae than the original spin-
coefficient formalism. This seems to be the price paid for the very consider-
able formal simplification obtained for the other equations. But we must
bear in mind that these commutators are actually combining information
which comes from two different places in the spin-coefficient formalism.
There is, moreover, a gain as regards geometric content of the com-
mutators with the present formalism. The extra terms which arise when p
or q is non-zero may sometimes be interpreted as curvature quantities
connected with submanifolds in the space-time. We shall see this explicitly,
for equation (4.12.35), in (4.14.20) below.

The full Bianchi identity (4.10.6) is somewhat complicated when written
out in the original spin-coefficient formalism. It is considerably simpler in
the compacted formalism and we give it only in this version. The
translation to original spin-coefficients is then straightforward. We can
obtain the full set of required equations rapidly by taking components of
(4.10.6) and using (4.12.27). This yields the equations

i ' * 0 0 - 2 p * 0 1 - 2<TO1 0 + 2 f c * n + K * 0 2 , (4.12.36)

p'0>00 - 2 rO 0 1 - 2T0>1 0 + 2pO>11 + <7<D02, (4.12.37)

d'*F2 - I>O21 + <3O20 - 23TI

cj'4>1 - 3T ' V F 2 + 2px¥3 - K*¥4

2p'0>10 + 2 T ' * U + f'0>20 - 2pO>21 + *0>22, (4.12.38)

4- 2 ( 7 ' * n + p'<D20 - 2f*21 + m22 (4.12.39)

{p 4 pfyb00 4- 2(p 4- p ) * ! ! - (T' 4 2f)O01

- (2T + t ' )O 1 0 -K<b12- tc<S>21 + <rO20 4 d%2 (4.12.40)

4 >'®Oi - ^ i i 02

(p' + 2p')(D01 4 (2p 4 p)9>l2 - (T' + x)O02

- 2(T 4- f JOn - K ' O 0 0 - fcO22 4 <T«2 1 4- (f'O10 (4.12.41)
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together with their primed versions. The last two equations, (4.12.40) and
(4.12.41), are in fact the equivalent of the contracted Bianchi equations
(4.10.8). (More generally, equations similar to (4.12.40) and (4.12.41)
express the 'conservation' equation on an arbitrary symmetric two-
index tensor.)

In space-times governed by Einstein's vacuum field equations, n and
all <f>s in equations (4.12.32)—(4.12.35) vanish; conversely, these equations
with vanishing IT and Os characterize vacuum solutions of Einstein's field
equations and can be used as a method of finding such solutions. The
Bianchi identities (4.12.36)-(4.12.39) simplify considerably in this case,
and nothing at all remains of (4.12.40) and (4.12.41). Equations (4.12.36)-
(4.12.39) are now (with n = 0 and Ors = 0) a particular case (4.10.9) of the
zero rest-mass field equation (cf. (5.7.2) below):

V^B...L = 0, (4.12.42)

with (j)A L = <\>{A Ly For, putting

(t*r = (P0^0 ^=i-n<l>'n_r:{n-r,r;0,0l (r = 0,...,n), (4.12.43)
n-r r

we obtain, by (4.12.27),

\><t>r ~ &<t>r- 1 = (r - W<t>n- 2 " ^ r - 1 + (" " Y + l)P^r
-(n-r)K(j>r+^ ( r= 1 n), (4.12.44)

together with their primed versions. (The factor x lX *n the definition
(4.11.6) of the x¥r makes no difference here, because of (4.12.23).) As we
shall see in §5.1, Maxwell's free-space equations are also a special case of
(4.12.42) and can therefore be written in the form (4.12.44) with n = 2.
Of some interest also is the compacted spin-coefficient form of the (con-
formally invariant) wave equation ( • + R/6)cp = 0 (cf. §6.8), which is
obtained from

• := VflV
a = 20>> - d'd - p> - p\>' + id + xd') on {0, 0; 0, 0}-scalars

(4.12.45)

and of the twistor equation (cf §6.1) V(^,coB) = 0 (with co° = -<oAiA,
co1 = a>AoA):

KQ)° = pa>l,(ja)0 = ckoSd'co0 = a'a)l,p'cD° = K'CD1 ,

\HO° + poj° = d'a,1 + T'CO1, dco° + TCO° = \>'(Dl + p'co1. (4.12.46)

Finally, we remark on the existence of an additional symmetry possessed
by the spin-coefficient formalism which was noticed first by Sachs (1962)
Consider the asterisk (*) operation

A\-*iA\ iA'^> - oA\ (4.12.47)
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4.12 Compacted spin-coefficient formalism 261

so that

(</)* = 0\(r
4)* = i\(oA)* = iA\{iA')* = - oA> (4.12.48)

and

(/«)* = m*9 (m«)* = - \\ (mfl)* = n\ (na)* = - ma (4.12.49)

This operation preserves x and %:

X* = Z, (X)* = l (4.12.50)

and, consequently, the tetrad 'orthogonality' relations (4.5.20). Clearly
the asterisk operation does not commute with complex conjugation. How-
ever, we do have (for real p and q)

(rj*)* = ( - 1)% (rjT = ( - 1 ) W , Jf* = ( - i)p + q(fjV, (4.12.51)

where *7 is a scalar of type {/?, g}. For an rj of type {r\ r; r', f}, ^* is of type

{r'9r;t,t'}.

From (4.5.21), (4.12.20), (4.11.6), (4.11.7), and (4.11.8), respectively,
we obtain

K * = CT, a * = — /C, /P* = T, T * = — p , /C'* = — 0"',

cr'* = K;', p ' * = — T', T '* = p' ,

K* = — (7', (T* = — K\ p * = f , f* = p ' , /C'* = <7,

a'* = K, p'* = - f, fr* = - p, (4.12.52)

\ i / * a / a / * \ i / i i / * \ i /

a/*_vi/ \I/*_\I/
* 3 ~~ X 3 ' X 4 ~ X 4 '

9 o * = ^p45 q p ^ ^ _ T 3 , T 2* = 4>
2, (4.12.54)

/ * \ i > \ i > * xif
3 ~ X l ' X 4 ~ X 0 '

Under the Sachs asterisk operation, the equations in our list (4.12.32)
are permuted among themselves; so are those of the lists (4.12.36)-
(4.12.39) and (4.12.40)-(4.12.41); and so also are the commutator equations
(4.12.33)—(4.12.35). The Sachs operation, together with the prime opera-
tion, can be used to simplify the generation of equations; alternatively,
it can provide a useful check on the correctness of equations obtained by
other means.
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262 4. Differentiation and curvature

4.13 Cartan's method

At the end of §4.5 we gave a method for computing the Christoffel symbols,
spin-coefficients, etc., from the Infeld-van der Waerden symbols #a

AA,
and in §4.11 and §4.12 we showed how the spin-coefficients could be used
to calculate the curvature. But the formula (4.5.43) for calculating the
spin-coefficients in terms of the #a

AA, though explicit, is somewhat
inelegant and often complicated to use in practice. An alternative method
that is sometimes useful (Newman and Penrose 1962) is to employ the
commutator equations (4.11.3) or (4.11.11) for the intrinsic derivatives,
as applied to the various metric-tensor components. That method relates
the spin-coefficients to the metric-tensor component derivatives and it
works well when the coordinates are aligned in some helpful way relative
to a suitably positioned system of null tetrads. We shall here describe
yet another method, which relates spinor techniques to Cartan's powerful
calculus of differential forms and moving frames. There are often computa-
tional advantages in using such methods, in addition to their conceptual
elegance.

We recall that in §4.3 we showed how the differential form calculus
could be subsumed within the abstract index approach to tensors, pro-
vided that a suitable notational device for suppressing indices was adopted.
Thus the abstract labels il,i2,i3,... (in this specific order and with
^ = ij'^i2 = l^V2, etc.) may be canonically assigned to differential
forms, but suppressed whenever the standard Cartan notation for forms
is used. Thus a (complex) p-form </> on M is a completely anti-symmetric
tensor

• = *(l...,,eSPl...w (4-13.1)

(Clearly 0 = 0 if p ^ 5.) We also use this notation for tensor- or, more
generally, spinor-valued p-forms (cf (4.3.11)). In fact, from now on, when
we speak about a p-form we shall mean a spinor-valued p-form unless
otherwise stated. The suppressed skew indices il9...9i are always
considered as attached first to the kernel symbol, all other tensor or
spinor indices being written to the right of ix,..., i whenever these are
not suppressed. Thus,

is a typical p-form. We shall often lump all indices other than the is into
a collective index #/ or $ etc.; the first equation in (4.13.2) could be written
as <$>** = <f>h . **. The standard 'wedge' (exterior product) notation is
used also for spinor-valued forms, with the following significance:

^ A •* = <£,. .'0. . * (4.13.3)
^ M l l . . . I p lp+ \...lp + q] ' V 7
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4.13 Cartari's method 263

and we clearly have, if <j>** is a p-form and 0® is a g-form,

$>* A 0* = ( - l)Mfl* A <^. (4.13.4)

Exterior covariant differentiation ('d-differentiation') is defined as follows:

d ^ = V[ii(/>J2.,p + / ' ^4-13-5)

and it yields a (p + l)-form when applied to a p-form. Note that 'd' (like
the wedge) has a special relation to the index labels il,..., i which does
not apply to the other labels. Note also that, in contrast to its action on
ordinary (scalar-valued) p-forms (4.3.14), this operation in general is
not independent of the connection, as is obvious, for example, in the case
p = 0. If ̂  is a p-form, we have, as in (4.3.15) (vii),

d(<^ A O = (d<^) A fl* + ( - VfV* A dfl*. (4.13.6)

Recalling (4.3.19), (4.3.20), we note that if local coordinates x°, . . . , x 3

are introduced, the various (dual) basis forms can be written
dx* = g. a, dxa

 A dxb = gr *g. ,b,

dx* A dxb A dxc = gv*g^gh',

dx° A dx1 A dx2 A dx3 = gu?gh
x9iM> <4-13-7)

so that

^ = 0 h i ^ d x 1 1 A .. A dxip, (4.13.8)

where the components on the is are taken in the coordinate basis.
Repeated d-differentiation does not generally yield zero (as in the case

of scalar-valued forms); we have, for example, for a vector-valued p-form

r,
d2Va = V V V a = -R aV b

= ilb
a A Vb = Vb A Slb

a, (4.13.9)

by (4.2.33) and (4.2.37), where we have adopted the conventional notation*
for the curvature 2-form

nh:=±R. . b. (4.13.10)
a 2 i\i2d v '

From (4.13.10) and the constancy of the es we derive (as in §4.9), for a
spin-vector valued p-form f4,

d^=V,V,2^.Jpt/=rAiV, (4.13.11)

where the 2-form £lB
A is defined by

ft/:=iftBC/c'. (4.13.12)

* However, we adopt unconventional 'staggering', for compatibility with the rest of
our notation.
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264 4. Differentiation and curvature

Clearly we have

<V = * W + <VV (4.13.13)
and

O / = 0, i.e., 11^ = 0 ^ . (4.13.14)

The equations (4.13.9) and (4.13.11) can be generalized in the standard
way to forms of higher spinor valence, e.g.,

d V B c = nE
Bc A aE

A -n
A'Ec A a/-nA

 Be A a;. (4.13.15)
We recall the dualizing operations (3.4.21), (3.4.29), (3.4.30), and define

the following duals for p-forms:

j^(O-form): of = e ^ ^

^(1-form): V * = e ^ ^

* 0^ =^(3-form):

Note that twice repeated dualization of a p-form leads back to the original
form times a factor ( - l ) p + 1 (cf. (3.4.24), (3.4.31), (4.6.11)). Now, by
(4.6.2) and (4.6.34),

&AB + **^AB ~ eiiIi^lll2AB

= tiViWitiviB + MsIlAehB + ehBel2A)} (4.13.17)
and

(4-13.18)

Hence the various spinor curvatures are simply related to the &>AB-
Suppose, next, that some tensor basis gh

a is set up, which is not neces-
sarily the coordinate basis used in (4.13.7). The dual basis ga

b constitutes
a system of 1-forms; to avoid possible confusion we conform to the
standard notation

gh p not neces-
te basis used in (4.13.7). The dual basis ga

b

y s; to avoid possible confusion we conf
standard notation

0*:=gt; (4-13.19)

for these 1-forms. Their d-derivatives are

d " a = \tfii* = - r i e \ V = " rbca*b A 0\ (4.13.20)
with Tbc

a given by (4.2.60). The 0s anti-commute, by (4.13.6), and so
the equation

d$* + r[bc]a0b A °C = ° (4.13.21)

serves to define the quantities r[bc]
a. The following notation for the con-

nection 1-forms,

V-r^r,.^, (4.13.22)
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4.13 Cartan's method 265

is standard (again, apart from the staggering -cf. footnote on p. 263),
and so we may re-express (4.13.20) as

d0a = 0b A wb
a. (4.13.23)

From ^aghc = 0 we derive

Va0bc = r a b X + r a X e = 2F.(bc). (4.13.24)

Hence if we assume some fixed normalization for the tensor basis (4.13.19),
i.e., #ab = constant, so that

d£ab = 0, (4.13.25)

then we obtain

r a b c = - r a c b . (4.13.26)

(This is Cartan's 'moving frame' condition, or, equivalently, the condition
for the Fs to be Ricci rotation coefficients. Compare also (4.4.36) and
(4.5.5).) In this case we can use (4.13.21) to solve for the Fabc since, by
virtue of (4.13.26),

*abc = Mab]c ~ * [ b c ] a ~ Mac]b (4.13.27)

In practical computations it is often simpler not to plug the solutions
of (4.13.21) into (4.13.27), but rather to guess or otherwise obtain a set
of Fabc which simultaneously satisfy (4.13.21) and (4.13.26). We shall
see the spin-coefficient counterpart of this in a moment. To compute
curvature, notice first that

= < , (4.13.28)

and that, by (4.13.9) (with p = 0) and (4.13.6),

<V - 0.*<V = d V - da>a« = d(«>a V )
= gh

a&a>*-io* A&gh
a. (4.13.29)

Thus the curvature 2-form components can be calculated from

Oa
c = deoa

c - a>a
b A o>b

c (4.13.30)

(which can be related directly to (4.2.67), the non-standard sign in (4.13.30)
arising because of our non-standard staggering.)

Relation to spin-coefficients

Next we shall consider the relation of the Cartan calculus to spin-
coefficients. The tensor basis ga* will now be regarded as that arising from
a dyad &A

A, which we assume for simplicity to be normalized (% = 1). Thus,
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266 4. Differentiation and curvature

in the above, from (4.13.19) onwards, we can replace each tetrad index
a, b, etc., by a corresponding pair of dyad indices A A', BB', etc. Accordingly
we have basis 1-forms

(4.13.31)

which we shall label

0oo' = n, 0 o l = - m , 0 l o = - m , 011 = I (4.13.32)

(for consistency with the standard null tetrad notation). The systematic
use of dyad indices throughout now frees the symbols a, b , . . . for use as
coordinate indices if desired. Then (4.13.31) can be re-expressed in the
form (with coordinate tensor basis)

0AA =0 a
A A dx a (4.13.33)

which shows that the components of 0AA are just the Infeld-van der
Waerden symbols (cf. (3.1.37)).

Now the metric ds2 = gabdxad.xb, in 'old-fashioned' coordinate differ-
entials, can be re-expressed, using (3.1.45), in terms of the Infeld-van
der Waerden symbols:

d s 2 = £ A R £ A ,R,<7 AA'<7fc
BB d x a d x b

A D A D ^ Si <J b

which, by reference to (4.13.32), can be written as

ds2 = 2ln-2mm, (4.13.35)

where In stands for l(ilnh) etc., and ds2 for giih.
To calculate the spin-coefficients 7AA B

c, we can look for a (necessarily
unique) solution of (4.13.20) in dyad index form,

d0AA' + FB B C C
 AA 0BB A 0CC' - 0. (4.13.36)

For, from (4.5.37), specialized to the case when the tensor basis arises from
the dyad and when consequently gh

BB = constant, we have

r AA' _ .. A p A' _|_ ~ A' A (AM, ^1\
DD t t ' DO C C ' OD K. K, 7 v '

and from (4.5.5) we have

y = y , (4.13.38)

which implies that Fa b c has the required anti-symmetry (4.13.26). We can
re-express (4.13.36), (4.13.37) in the form*

— [ B 0 b ]
c c ' - - (7A A B C £B C + VAA-B C ' £ B C ) ^ a

A A #b]B B' (4.13.39)

* We remind the reader that a numerical index pair AA' is not to be equated with a.
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4.14 Applications to 2-surfaces 267

which, with (4.13.38), is the equation whose solution (for the y's) is to be
'guessed', or systematically found by use of (4.13.27) or (4.5.43).

Alternatively, if we write

so that

^BB CC = <Z* C + «B'C'fiBC. (4.13.41)

and

o>B
B = 0, (4.13.42)

we can re-express (4.13.36) in the form

d0AA' = - (a)B
A A 0BA + d>B

 A A 0AB'). (4.13.43)

Taking components in this equation, we obtain

d / = - {/ A m(£' + a' 4- f) + / A nt((xf + T + /?')

+ / A « t - y ' - f ) + W A #n(p — p) — m A nk — fh A tiK,}

dm = {/ A /w( - e' - y - pO - / A /W<T' + / A n(f - T)

+ m A in (— a' — a) + /w A n (p + / + s) H- w A /icr}

d/i = — {/ A m/c' + / A m/c' + / A n{y -f f) + /w A /w(p' — p')
+ m A n{- oi - %' - P) + m A n ( - a - f - p)} (4.13.44)

as the equations to be solved (necessarily uniquely) for the required spin-
coefficients. Note that, since we have assumed the normalization % — 1,
the spin-coefficients in fact satisfy /?' = — a, y' = — e, c/ (4.5.29). Note also
that the first and last of equations (4.13.44) are transforms of each other
under the prime operation (cf. (4.5.18)), and that the middle equation
transforms into itself under the combined bar and prime operation.

To summarize our last method: if we are given a metric gabdxadxb, we
first express it in the form (4.13.35)-which, of course, can always be done
in a variety of ways, some more, some less convenient; then we express
d/, d/n, d/i as linear combinations of / A m, / A m, etc., and, by comparing
coefficients with (4.13.44), we find the spin-coefficients. Once the spin-
coefficients are known, the curvature spinors can be calculated from
(4.13.30), (4.13.17), and (4.13.18), if desired, although at this stage it is
probably more economical to use (4.11.12) or (4.12.32).

4.14 Applications to 2-surfaces

The compacted spin-coefficient formalism introduced in §4.12 is parti-
cularly useful in the study of spacelike 2-surfaces. One reason for this is that
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spatial
projection of na

(negative normal
to 550

spatial projection
of/*

(positive normal
to 550

a spacelike 3-volume containing 55^

Fig. 4-1. The geometrical relation between the spin-frame and the oriented surface
element 5Sf.

any spacelike 2-surface element by at a point uniquely defines two null
directions at that point, namely those orthogonal to by, whereas by
does not single out any particular null vectors along these null directions.
Also, the assignment of an orientation to this element (assuming the usual
space and time orientations of M as given) is equivalent to providing an
ordering of these two null directions. We take the flagpole directions of
oA and of r4, in that order, to correspond to the oriented element by,
such that, in the standard correspondence of Chapter 3 ((3.1.20), (3.1.21)),
by corresponds to the local (Xa, ya)-plane* with the usual orientation.
Thus the spatial projection of la (with respect to the time-axis direction
la + na) provides a positive 3-space normal direction to by (namely that
of Za, i.e., of la — na\ while the spatial projection of na provides a negative
3-space normal direction (namely that of — Za, i.e., of na — la). (See Fig.
4-1). A normalization of (oA, iA) to a spin-frame plays no role in this. The
'gauge' transformation oA\-^>XoA, IA\-+IIIA clearly leaves the oriented
element by invariant (though it affects the choice of spatial projection).
But application of the prime operation (cf. after (4.5.17)) reverses the orienta-
tion of by.

In fact, one may also apply the compacted spin-coefficient formalism
equally to the study of timelike 2-surfaces. Any timelike 2-surface element
by* defines two null directions in an even more obvious way, namely
those two null directions in which it cuts the null cone. Here by* is the
plane spanned by la and na, while in the previous case by was the ortho-

For later convenience we here write Xa, Ya,Za,Ta for the xa,ya,za,ta of (3.1.20).
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4.14 Applications to 2-surfaces 269

gonal complement of this plane, i.e., the (real) plane spanned by nf and
rif. We shall not give a detailed discussion of the timelike case, since most
useful applications seem to involve only spacelike 2-surfaces. However, it
is straightforward to obtain the relevant local formulae for the timelike
case from the corresponding spacelike ones, since the Sachs *-operation
(cf (4.12.47)-(4.12.55)) can be applied, interchanging (la,na) with
± (ma, — ma). Only certain global results for spacelike 2-surfaces (e.g., such
as we shall see arising in the study of spherical harmonics) have no
analogue for timelike 2-surfaces. As a simple example, a timelike 2-surface
cannot have S2-topology. (The existence of a uniquely defined null-
direction pair at each point implies that the topology of any compact
timelike 2-surface must be that of a torus or, if non-oriented, that of a
Klein bottle.)

One of the special advantages of the compacted form of the spin-
coefficient formalism over the original one is, indeed, that it applies
globally to an arbitrary spacelike 2-surface y , whatever its topology. If
we were to use the original formalism of §4.11, then we should have to
select a particular tangent direction at each point of £f9 corresponding to
Re(mfl) = 2"± Xa (which, with bSf, would then also fix Im(ma) - - 2"* Ya).
If £f had S2-topology, for example, this could not be done continuously
over the whole of y and there would arise some 'singular' places at which
the description breaks down. (This, of course, is a difficulty inherent in any
moving-frame or coordinate description and is not specific to the spin-
coefficient method.)

In the compacted formalism, no actual choice of ma-vectors need be
made and so this difficulty does not arise. The point is, perhaps, a slightly
delicate one. For it might be argued that although the compacted forma-
lism is invariant with respect to phase change in the ma-vectors, neverthe-
less some choice has to be made, and since each choice has to break down
somewhere on Sf the problem has not been avoided. But this objection is
inappropriate. One may envisage covering Sf with open sets in each of
which a smooth choice of ma-vectors is made. Since the formalism is
invariant under the transformations which take place in the overlap
regions, it will not even 'notice' that such transformations have taken
place. This idea can be made mathematically more precise in the language
of fibre bundles (cf §5.4 below), but we need not elaborate on it here. Of
course, when it comes to making explicit coordinate representations of the
mfl-vectors, such choices must actually be made, subject to the topological
structure of if. But such explicit descriptions are not really part of the
'pure' compacted formalism since they break the stated invariance require-
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270 4. Differentiation and curvature

ments.* We shall see in the next section (in relation to spherical harmonics)
how the explicit descriptions may only hold locally, while the general
formalism applies globally.

Of particular significance, in the context of spacelike 2-surfaces, is the
commutator (4.12.35):

56' - 8'd - (p' - p')p + (p - p)V + p{ppf - co> + ¥ 2 - <bx, - II)

- q{pp' -GG' + ^2-Q>ll- n ) (4.14.1)

acting on a (scalar) quantity of type {r\ r; t\ t}9 where p = r' — r, q = t' — t
{cf. after (4.12.9)). To apply this formula we need to envisage that the dyad
(oA, iA) is extended to the space-time in some neighbourhood of 6f and
is not just defined on 5?-or rather, in view of the above remarks, that the
family of 2-surface elements 55? is extended to a field of such surface
elements in a neighbourhood of 5?. But notice that only the operators 6 and
d' occur on the left side of (4.14.1), these being the derivatives that act
entirely within £f. By virtue of this, (4.14.1) applies to quantities defined
only at the points of Sf and its effect will actually be independent of the
way in which (oA, iA\ or the (5^-field, is extended outside Sf. But the
operators p and p' appearing on the right side of (4.14.1) do not act within
£f and their effects do depend on the extensions outside £f. Indeed, since
p and p' act in independent directions (whose span meets 59* only in zero),
it follows that their coefficients p' — p' and p — p must independently
vanish. Thus we have:

(4.14.2) PROPOSITION

If the null vectors la and na are orthogonal to a spacelike 2-surface 5?9 then
p and p' are both real at £f.

(In Chapter 7 (cf (7.1.48), (7.1.58), (7.1.60)) we shall see the geometrical
significance of this result and effectively reobtain it in a more geometrical
way.) Applying the Sachs ""-operation to the above argument we also
incidentally obtain:

(4.14.3) PROPOSITION

/ / the null vectors la and na are tangent to a timelike 2-surface 5?*, then

In fibre-bundle terminology, the selection of an explicit choice of ma-vectors corres-
ponds to finding a (local) cross-section of a bundle, whereas the global applicability
of the formalism as a whole corresponds only to choosing the bundle itself, together
with its bundle connection.
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Intrinsic quantities on Sf

In order to explain the significance of the other terms on the right side of
(4.14.1), we show first that when acting on quantities of zero boost weight,
so that

P=-q, (4-14.4)

the operators 6 and 6' provide, in effect, the two components of covariant
derivative within Sf. For simplicity we shall assume in this work, until
explicitly stated otherwise, that (oA, iA) is a spin-frame, i.e., that

X = l . (4.14.5)
Then the tensor

Sa
b= -mmh-mam\ (4.14.6)

which satisfies

W = S/ = S/ = SV (4.14.7)

Sa
bmb = ma,Sa

bmb = ma, (4.14.8)

and
S A = S> f c = 0, (4.14.9)

acts as a projection operator into the space tangent to Sf at each point of
^ , while Sab acts as the negative definite metric tensor intrinsic to Sf. If
Va is any vector at a point of y , then

VaSa
b (4.14.10)

is its projection into Sf, being equal to Va if and only if Va is tangent to Sf.
If Va is tangent to y , its covariant derivative in £f is given by the projec-
tion of VbV

a into Sf, i.e., by

S aSboWh Vao=:AhV
a (4.14.11)

ao b bo b v '

(in fact, this may be verified directly by referring to the defining properties
for covariant derivative: (4.2.2) and (4.2.3), vanishing torsion and (4.3.46),
as applied to tangent vectors to Sf\

The components of (4.14.11) with respect to ma and ma are

ma6 V\ mad V\ mjS V\ mp' V\ (4.14.12)

taking Va to have type {p9q} = {0,0}, and noting from (4.12.15) that then
S — d and 5f = 5'. In each case we can commute the mb or mb with the 6
or 5' in (4.14.12), because from (4.12.28) we obtain

dma =-ma- d'la, dma =-pna- p'la (4.14.13)

and their complex conjugates, while

naV
a = 0 = lVa, (4.14.14)
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272 4. Differentiation and curvature

since Va is tangential to y . The components (4.14.12) of Ab Va are therefore,
respectively,

6n,6rj,6'n,6'rj, (4.14.15)

where the type ± {1, — 1} quantities n and rj are defined by

n=Vama, ij^Vatna. (4.14.16)

(For real V\ rj = rj.)
In a similar way we can express the components of the AM derivative of any

tensorial quantity in Sf of type {0, 0},
rp d...f

a...c '

which must be tangential to Sf:

T d-f = Sao...ScoS*...Sf
fT d o- / o , (4.14.17)

a...c a c do / o ao...co v '
a S ^0,d^0,...,6^,5\, (4.14.18)

where rjo,...,rjk are the various components of Ta c
d-~f with respect to

rrf and rff. Note that the type of each of rj0,... ,rjk has the form {p, — p] for
various values of p ranging from minus to plus the total valence of T .
This establishes the statement containing (4.14.4). (Cf. also Goldberg et al.
1967.)

Taking r\ as in (4.14.16), so that p = — q = 1, and applying (4.14.1) to it,
we obtain

(ddf - d'd)r] = - (K + K% (4.14.19)

where

K = <T<T'-X¥2- pp' + <&! J + A. (4.14.20)

(Since n o w / = 1, 11 = A.) In fact, (4.14.19) tells us that:

(4.14.21) PROPOSITION

K + K is the Gaussian curvature of £f.

This follows from

(66' - 6'6)n = 6(mam
cAcV

a) - 6'(mam
cAVa)

= mam
bmc(AbAc - Ac.Ab) V\ (4.14.22)

the commutator on the right yielding the 2-space curvature, by (4.2.30):

(AbAc - A A ) ^ a = k(SbdSc
a - ScdSb«)V\ (4.14.23)

where k is the Gaussian curvature of Zf. Substituting (4.14.23) into (4.14.22)
we obtain k = K + K, as required for (4.14.21). (It is easily checked in the
case of a unit sphere that indeed K + K = 1, cf (4.15.14) below.)
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We see that the operators 6 and 5', as applied to quantities of zero
boost-weight (i.e., of type {p, — p}) on 9, provide a neat way of handling
the intrinsic geometry of 9. Indices can be avoided altogether, the tensorial
character of the quantities involved being encoded in the various spin-
weights

s:=±(p-q) = p (4.14.24)

that arise. In fact, this calculus is effectively the analogue for 2-surfaces
of the 2-component spinor calculus for space-times that we have been
developing. As described in the Appendix to Vol. 2, the 'reduced spinors'
for a 2tt-dimensional space are 2n~ ^component objects. Here n = 1, and
so we have one-component objects. An 'unprimed' 1-component spinor
for 9 is thus a spin-weighted scalar of type {̂ , — j} (i.e., s = j), while a
'primed' one-component spinor for 9 is a scalar of type { — y,^} (i.e.,
s = — j). Higher valence tensors (i.e., higher spin-weights) arise when
products of these basic 'spinors' are taken. (In Chapter 6 and in §§9.3, 9.4,
in connection with twistor theory, we shall see that the case of four-
component 'reduced spinors' for a six-dimensional space (n = 3) also has
importance to us.)

Holomorphic coordinates

The operators d and 3' also have significance in relation to complex
analysis. Suppose that ^ is a local holomorphic coordinate for 9*\ that is, £
is a complex coordinate defined in some open set 9" in 9 such that at any
point Qe9' a rotation of the 1-form d£, at Q, through a right angle in the
positive sense in the tangent space at <2, yields — id^. Another way of

Fig. 4-2. A holomorphic coordinate £ on 9\
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274 4. Differentiation and curvature

putting this (see Fig. 4-2) is that the lines Re£ = constant meet the lines
lm£ = constant orthogonally such that at any point the spacing between
each of these two families of lines is the same and the Im^-increasing
direction is a positive rotation of the Re^-increasing direction. The most
familiar holomorphic coordinate is £ = x + \y for the Argand plane, and it
is also a familiar result from conformal mapping theory that any holo-
morphic function of this £ is itself a holomorphic coordinate for the plane.
The complex conjugate of the C-coordinate of (1.2.6) is a holomorphic
coordinate, in this sense, for the Riemann sphere S + if we orient the sphere
so that its normal points outwards, while £ is holomorphic if the normal
points inwards (cf Figure 1-3). The reverse holds for the 'celestial sphere'
S~ of §1.2.

The definition of a holomorphic coordinate for Sf asserts, in effect, that
d£ is a complex multiple of the differential form m. (restricted to £f) at
each point of 9" since, by (3.1.21). 2*ma = Xa + \Ya and a rotation through
a right angle in the positive sense then yields Ya + i( — Xa) = — \2*ma.
Now, the index form of df (in the surface 9) is Afl£, and to assert that this
is a multiple of ma amounts to the condition maAa^ = 0, so we have,*
taking £ to be a complex coordinate of type {0, 0}, and using the term
anti-holomorphic coordinate for the complex conjugate of a holomorphic
coordinate:

(4.14.25) PROPOSITION

£ is a holomorphic [anti-holomorphic] coordinate for 9 iff 6'^ = 0 [p£ = 0].

Note that reversing the orientation of 9 interchanges holomorphic and
anti-holomorphic coordinates. Note also, as an immediate corollary of
(4.14.25), that

(4.14.26) PROPOSITION

Any holomorphic function of a holomorphic [anti-holomorphic] coordinate
on 9 is again a holomorphic [anti-holomorphic] coordinate on 9.

Yet another way of stating that { is a holomorphic coordinate is to
assert that, with coordinates £, f for y , the operator 6, when acting on
type {0,0} scalars, is a multiple of d/d£:

^
^

6 = P^- (on type {0,0} scalars), (4.14.27)

The operators d and 6', when applied to {0, 0}-scalars, are examples of the d and d
operators that occur in complex manifold theory (cf. Wells 1973).
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where P is of type {1, — 1}. The operator (4.14.27) is, of course, simply
5 = V01,. Writing m and m for the 1-forms m. and mit, respectively, we
have (linear maps of vectors)

^ ^ = O, (4.14.28)

whence, on y ,

m = - P " l d& /w = - P~* d£ (4.14.29)

Recall that Sab is the induced metric tensor on £f. We can use the standard
'differential' notation ds2 for this metric; then using juxtaposition of
differentials to denote symmetric tensor products of forms, (4.14.6) can be
rewritten

ds2 = - 2mm = S = - 2SSd£d<J, (4.14.30)

by (4.14.29), where we have introduced the scalar S defined by (cf. (4.14.27))

S - 1 = P = 6£. (4.14.31)

Note that S is of type {— 1,1}. Also P and S are both 'holomorphic' in
the sense that

d'p = 0, d'S = O. (4.14.32)

These equations are consequences of (4.14.31), which implies

d'P = d'df = dd'£ = 0,

since the commutator (4.14.1) vanishes. Hence also

d'S = d'P~l = -P~2d'P = 0.

However, we shall see from (4.15.116) below that particular representations
of P and S need not look' holomorphic in the ordinary sense.

We may use P (or S) to convert any {s, - s}-scalar rj to a {0,0}-scalar,
and then use (4.14.32) and the conjugate of (4.14.27) to obtain an expression
for 6'rj:

_ d
dfrj = PPs~^(p-srj). (4.14.33)

Applying this to rj and taking complex conjugates yields

drj = Pp-s—(Psrj). (4.14.34)

The expressions (4.14.33) and (4.14.34) are useful in explicit representations,
as we shall see shortly.*

* See also Newman and Penrose (1966), where the definitions differ with respect
to various conventions, cf. below after (4.15.107).
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276 4. Differentiation and curvature

We note in passing that (4.14.31) (2) and (4.14.34), when substituted into
(4.14.19), provide us, after a short calculation, with an expression for the
Gaussian curvature of 9*\

= ppJL\Og(PP). (4.14.35)

Observe that this formula involves only the modulus of P. But this is not
surprising since P, being spin-weighted (but not boost-weighted) can have
its argument (but not its modulus) altered by a rescaling oAv-*XoA, iA\-+
X~liA. In explicit representations, however, it is usually convenient to
fix the choice of ma to be that which makes P positive. Writing 2^ma =
Xa -\Y\ we achieve this if

Xa points along Im(^) = constant, Re(£) increasing }
> (4.14.36)

Ya points along Re(£) = constant, Im(£) increasing.)

This leads to slight simplifications of (4.14.33)-(4.14.35), but it takes us
outside the 'strict' compacted spin-coefficient formalism, since nf is now
fixed by the choice of £.

Extrinsic quantities

So far, we have only interpreted the real part of K in (4.14.20). The imagi-
nary part of K will show up in (4.14.1) only when p ± — q, i.e., when the
quantity on which (4.14.1) acts has a non-zero boost-weight. Such quanti-
ties are not, in the ordinary sense, entirely intrinsic to Sf. To investigate
this case we can repeat the foregoing discussion, applying (4.14.1) to
quantities

"i = vX> "i = v \ (4-14-37)
instead of (4.14.16). In order that rj1 and n2 should not both vanish, Va

must have components perpendicular to <f\ and we may as well take
Va in the plane spanned by la and na, so that it is determined by nl (type
{1,1}) and rj2 (type {— 1, — 1}). In place of (4.14.11) we can consider

where

Sa=9a
b-Sa

b = lan
b + nf (4.14.39)

is the projection operator orthogonal to Sa
b, i.e., perpendicular to £f.

Now VaSa
b = Vb and the (non-vanishing) null tetrad components of

(4.14.38) turn out to be

dnl,drj2,d
/n1,d

fn2 (4.14.40)
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in place of (4.14.15). The resulting formula analogous to (4.14.22) differs
from (4.14.22) only in that ma is replaced by la or na and that the A operators
now refer to the operation in (4.14.38), according to which vectors per-
pendicular to £f are transported about y , while previously it had been
vectors tangent to £f that were so transported. In place of the — (K + K)
appearing on the right side of (4.14.19) we now have — (K — K) in the case
of r\ j and + (K — K) in the case ofrj2.

Thus the imaginary part of K is an extrinsic curvature quantity concerned
with the transport, about £f, of vectors perpendicular to Sf. Recall that
the Gaussian curvature can be thought of as a measure of the resultant
rotation of the tangent space as it is carried by parallel transport around
a small loop in Sf. Analogously, we now have a resultant boost of the
normal space as it is carried around the same small loop. While the real
part of 2K is a measure of the former, the imaginary part is a measure of
the latter. We refer to K as the complex curvature of Sf.

We note in passing that K can be expressed as a sum of two parts,

GO' -XV2 and d>l x + A - pp\ (4.14.41)

the first of which turns out to have simple conformal scaling properties
(cf. (5.6.28) and (6.8.4), Vol. 2) and the second of which is real. One con-
sequence of this curious fact is that the extrinsic part (i.e., the imaginary
part) of the complex curvature is essentially conformally invariant (see
§5.6 for definitions). But we shall not pursue this matter further here.

In connection with the above results on curvature, we recall the Gauss-
Bonnet theorem which states that if 9* is a closed surface of genus* g9

the integral with respect to surface area of the Gaussian curvature of
y is 4rc(l — g). So in the present case we have

(K + K)<f = 4<1 - g), (4.14.42)

9 being the element of surface area (a 2-form on 9). In fact, because of
our interpretation for K — X, it also follows that

{K-K)S? = 0. (4.14.43)

The reason is that the space of boosts /flh^r/a, na*-*r~ lna, r > 0, is a topo-
logically trivial 1-parameter group. The integral \§{K — K)£f over a

* Recall that the genus of a closed (oriented) 2-surface is, roughly speaking, its number
of 'handles'. Thus, for a sphere S2 we have g = 0, while for a torus 0 = 1 , and for the
surface of a standard pretzel g — 3.
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278 4. Differentiation and curvature

bounded portion of £f provides a measure of the total boost achieved
as the boundary of this portion is traversed. When the boundary shrinks
to zero this total boost must also shrink to zero-in contrast to what
happens in the case of a rotation, when one may end up with a non-trivial
total rotation through some multiple of 2%. Combining (4.14.42) with
(4.14.43) we obtain

r
-g). (4.14.44)

In view of the remarks made about the quantities (4.14.41), we can also
derive the result that

r
'is real (4.14.45)

in addition to being (as follows in detail from the discussion of §5.6)
a conformally invariant number associated with any closed spacelike 2-
surface embedded in a space-time. The significance of this result in
relation to the Bondi-Sachs mass will be discussed in §9.9.

Relations to exterior calculus

We next show how the exterior calculus (cf. §4.3) on Sf neatly fits in
with the present 2-surface formalism. Let

a = aadxfl = a.i (4.14.46)

be a 1-form in Jt, where we are concerned only with its restriction to
Sf. This means we are concerned only with the two components

a01, = ocam
a and a10, = ajha (4.14.47)

of respective types {1 , -1} and {— 1, 1}. If a is real, then all the relevant
information is contained in the one type-{l, — 1} scalar quantity

a:=a0 1 , (4.14.48)

(not to be confused with the spin-coefficient a in (4.5.16)!), since a10,
is then its complex conjugate. The condition that <x (real or complex) be
the exterior derivative

a = dv (4.14.49)

of a (type-{0,0}) scalar quantity v can be written as

a01, = 6v, a10, = 6'v, (4.14.50)

or, if v and a are real, simply as

a=6v. (4.14.51)
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Now suppose P is a 2-form

P = Pabdx°Adxb = fliii2 (4.14.52)

(Pab = — fiba). Our concern is only with its restriction to y , and thus with
the single (type-{0,0}) component

iijS := /S01.10. ^10.01. = jS^m-m*-. (4.14.53)

Note that jS is real whenever P is real. Indeed, by (3.1.20), we have

p = 2pabX
aYb. (4.14.54)

The condition that P be the exterior derivative

P = d<x (4.14.55)
of some 1-form <z is

^=v«- <4 1 4- 5 6>
To get the restriction of this to 5^ we take components with respect to
m° and nf\

iP = 2povio, = doilo,-d'aov, (4.14.57)

by (4.14.13), the terms involving p and p' cancelling because of (4.14.2).
For real <x this takes the form

j8 = 2Im(6'a). (4.14.58)

Note that if a = dv (with v of type {0,0}), we can substitute (4.14.50)
into (4.14.57) which yields p = da = 0, as expected (cf. (4.3.15) (viii)), the
6 and df operators commuting by (4.14.1).

The fundamental theorem of exterior calculus (4.3.25) can be applied
at two levels on Sf. First:

d a = d> a, (4.14.59)

where F is a compact domain on y , with boundary 5F; and second:

PR

dv = v(R) - v(Q\ (4.14.60)
JQ

the integral on the left being taken over any curve y (in the domain of
definition of v) connecting the points Q and R. For the latter case we can
introduce a holomorphic coordinate £ in the neighbourhood of y and
rewrite the integral as

f
•Jo

rR rRfev dv -\
dv= — d£ + ^ d £

JQ J0\dZ d£ J

-I
Q

R

S5vd£ + S6'vd£), (4.14.61)
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where we have used (4.14.27) and (4.14.31). In particular, if v is holo-
morphic (d'v = 0), (4.14.60) becomes

Sdvd£ = v(R) - v(Q). (4.14.62)
i

From (4.14.61) we see, on taking Q = R, that
>
. (Sdvd£ + Sd'vdl) = 0 (4.14.63)
y

for a closed contour 7, whence, in particular,

Sdv d£ = 0 if v is holomorphic. (4.14.64)
Jy

The 2-dimensional integral on the left side of (4.14.59) can be re-express-
ed in terms of the surface area element Sf. We begin by noting that

Sf:=(-Xadxa)A(-Ybdxb)

= -~=("i + m) A -~(m - m)
V 2 v 2

= \m A m, (4.14.65)

where nt = mi= madxa, as before. So if jS is as in (4.14.52), (4.14.53), we
have

-i
pabdxa A dxb

Pahm
amhm A m

— 1 jS/w A m

r

(4.14.66)

where we used the fact that, by (4.14.6),

restricted to 9*: dxa = Sb
adxb = - mam - mam. (4.14.67)

Alternatively, (4.14.66) can be directly obtained by use of (4.14.54). Sub-
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stituting (4.14.57) in (4.14.59), we get

'ar

o l l o (4.14.68)
ar

where £ is a holomorphic coordinate in some neighbourhood of dT. Since
the components a o r and a10, are independent, we have

J r
(4.14.69)

for any type-{l, — 1} scalar a o n y .
As a particular case of (4.14.69) (and its complex conjugate), we note that

is a closed surface,

r r
0 (4.14.70)

(a being of type {1, — 1} and a of type { — 1,1}), from which we derive the
following useful formulae for integration by parts:

y J s?

where the types of #, r\ add up to {1, — 1} and those of / , Y\ add up to

On a null hypersurface

Spacelike 2-surfaces can also play a role in relation to the fundamental
theorem of exterior calculus in the next higher dimension, namely

dp=<k /*, (4.14.72)

where ft is a 2-form and Z a compact 3-surface with a spacelike boundary
dZ. In some of the most interesting applications of (4.14.72), Z is a portion
of a null hypersurface, that is, of a 3-surface JV whose normals na are null
vectors. We shall investigate such hypersurfaces in more detail in Vol. 2
(§§7.1,7.2; cf also §5.11, §5.12 below). Here we merely note that the
tangent vectors to jV, being the vectors orthogonal to na, must include

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


282 4. Differentiation and curvature

Fig. 4-3. Suitable arrangement of spin-frames on a null hypersurface yT, for appli-
cations of (4.14.72).

na itself, and, furthermore, that any 2-surface element in Jf, being ortho-
gonal to the null vector na, must necessarily be spacelike unless it contains
the direction na itself, in which case it is null. The situation we envisage
is like that depicted in Fig. 4-3, where <9E consists of two closed spacelike
2-surfaces Sf and Sf':

VL = ST -£f. (4.14.73)

We select the spin-frame (pA, iA) - or, rather, the equivalence class (oA, iA) ~
(XoA, X ~ x iA) - so that the flagpole of iA points along the normal to Jf
(and so is tangent to Jf\ as has been implicitly assumed in the choice of
the letter 'n for this normal; also so that mfl, nf span the tangent spaces of
Sf and £f' at <3Z, the choice of the raa, raa-planes in the interior of Z being
arbitrary except that they must form a smooth family (tangent to Jf)
fitting smoothly on to the given choices at the boundary surfaces Sf and &".
The most direct way of achieving this is to require these planes to be
tangent to a family of spacelike 2-surfaces on Jf which vary smoothly
from Sf to Sf\ but a more general choice is also allowed here in which the
interior plane elements b£f need not be locally 'integrable' to 2-surfaces
(i.e., need not constitute a foliation).

Of course we could equally well have chosen oA instead of iA to have
its flagpole normal (i.e., tangent) to Jf. Our selection is made only for
consistency with later notation (cf. §5.12 and §9.10). By applying the prime
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operation to the various formulae was shall develop ((4.14.74)-(4.14.94))
we can obtain the corresponding formulae pertaining to this alternative
choice - though we must bear in mind that this will also entail some sign
changes because Sf and £f" have their natural orientations reversed (cf
(4.14.73)).

The relevant commutators are now those involving 6,6' and p\ these
being the operations acting tangentially to Jf. Thus we have (4.14.1)
together with (cf. (4.12.34))

p'6 — dp' = p'd + 6'6' — xp' — K'p + P(OK' — p'x + Q>12)

+ q^pkf-xd'^^2) (4.14.74)

and its complex conjugate. Note that we cannot now infer that p = p
(since this is the condition that the 3^ elements be integrable to 2-surfaces)
though we do still have

p' = p' (4.14.75)

by the vanishing of the coefficient of p in (4.14.1). The same reasoning
applied to (4.14.74) yields

K' = 0, (4.14.76)

which (as we shall see in §7.1) is the condition for the integral curves of
na to be geodesies. These integral curves are referred to as the generators

The relevant components of P in (4.14.72) are now

P0l.u.,Pl0.u., and ^ = j 8 o r i o . , (4.14.77)

while any 3-form

y = yabdxaAdxbAdxc = yiii2h (4.14.78)

{yabc = y[abc]\ when restricted to Jf, involves only the component

-v=v (4 14 79)

The equation

y = dp (4.14.80)

restricted to Jf turns out to be, after a short calculation,

We also note that the equation

0 = da (4.14.82)
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restricted to Jf generalizes (4.14.57), the component a n , of the 1-form
a being now also involved:

2 £ io ' i r = <r'aoi' ~(K ~
2/?01,n. = (?a10, - (K - //)a01, + (S - i ) a i r (4.14.83)

(and it may be directly checked that substituting (4.14.83) into (4.14.81)
yields zero, in accordance with d2 = 0).

A version of the fundamental theorem of exterior calculus appropriate
to Fig. 4-3 is obtained by substituting (4.14.81), (4.14.83) into (4.14.72).
But a more useful and simple-looking expression can also be obtained
by first splitting P into its anti-self-dual and self-dual parts (cf. (3.4.17)):

and then setting

fiA:=2ipABiB, {iA.:=-2$A,B,iB\ (4.14.85)

Restricting attention to JLLA and fiA, does not lose relevant information
because the freedom in ftAB and fiA,B, (given \iA and fiA,) consists merely
in the addition of multiples of iAiB and of iAdB,, respectively, which corres-
ponds to the addition to p of components which vanish in JV. In fact,
we have

0oi'io' = 2^o + £o ' )> 0 io ' i i '= - 2 ^ ' 0 o r i i ' = ^ i " (4.14.86)

so (4.14.81) gives (with (4.14.79))

y = (K - 2p')(/i0 + /20') " (6 ~ T)/^i " (^ ~ f)/^r • (4-14.87)

In order to apply (4.14.72) we need to interpret 3-surface integrals on
ff in terms of the quantities we have been considering. For this, we need
also to choose a parameter u (smoothly) on each generator of Jf, which
we take to be scaled in relation to rf according to

n
aVau=U (^0). (4.14.88)

In specific representations of the null tetrad (and relaxing the strict
compacted formalism) we could choose ( 7 = 1 , but here we simply take
U to be a { — 1, — 1} scalar. From (4.14.88) we see that dw (= V. u) differs
from Ul by terms in m and m only, so we obtain for the (null) 'volume'
element of Jf a type- {1, 1} 3-form :

j r = \ m A m A / = U~1^ A d u . (4.14.89)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


4.15 Spin-weighted spherical harmonics 285

Consequently, by (4.14.79),

f i f
y= yU~ly Adu= y A". (4.14.90)

If we now substitute (4.14.80), (4.14.66) in (4.14.90), (4.14.72), and (4.14.73),
we obtain

•>i

(4.14.91)

where y is as in (4.14.87) (and is {- 1, - 1}), with the /is as in (4.14.86).
We can separate this expression into one for \xA and another for fiA,,
which are complex conjugates of one another if P is real. Writing the
//-equation out, we finally obtain, in terms of the {0,0}-scalar fxo and the
{ — 2,0}-scalar jix,

^ (4.14.92)
y

and the corresponding complex conjugate equation for fiA,. Note that if,
in particular,

( K - 2 p X = ( d - T )^ i» (4.14.93)

then we have the 'conservation law'

(4.14.94)
] y

These relations will have considerable importance for us later {cf. §§5.12,
9.9).

4.15 Spin-weighted spherical harmonics

As a significant application of the foregoing theory of spacelike 2-surfaces,
we examine the case when the surface ^ is an ordinary 2-sphere in
Minkowski space M; and we show how the theory of (spin-weighted)
spherical harmonics may be developed using these results. We take
(oA, iA) to be normalized to a spin-frame throughout (cf. (4.14.5)). Let
the point OeM be the centre of the sphere 5^ and let Ta be the future-
timelike unit vector (taken constant throughout Ml) which is orthogonal
to the spacelike 3-plane containing y . Let Q be a typical point on ^
and xa its position vector OQ. Now <? will be the intersection of a future
light cone if, with vertex L, and a past light cone Jf, with vertex N. (See
Fig. 4-4.) Since b$f at Q is orthogonal to the generators of $£ and of Jf,
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286 4. Differentiation and curvature

N

Fig. 4-4. An ordinary spacelike sphere Sf in Minkowski space arises as the inter-
section of two light cones if and Jf. (Geometry for (4.15.2).)

our spin-frame (oA, iA) is determined by

(L&T = vl°, (QN)a = una, (4.15.1)

where v is of type { — 1, — 1} and u of type {1, 1}. Taking the sphere to have
radius R9 we deduce, from

OQ = ON + NQ = ~OL + Lg,

the relations

xa = RTa-una= -RTa + vla

= RTAA - uiAiA> = - RTAA + voAoA\ (4.15.2)

since the timelike distances LO and ON must both be equal to the radius
R. From (4.15.2) we have

unavla = (RTa - xa)(RTa + xa) = R2 + R2,

whence
uv = 2R2.

Since xaTa = 0, transvecting equation (4.15.2) with Ta gives

R R
u = -

while transvecting it with oAiA, gives

TAA'oAiA, = 0.'A'A

(4.15.3)

(4.15.4)

(4.15.5)
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Consequently

^ T i A , , (4.15.6)

and similarly

A T'oA,. (4.15.7)
R A

Using oA as 'coordinates' for ^

Consider, now, a {0,0} quantity fs (where =2 is a 'clumped' index) on
£f. We can adopt a new viewpoint and regard fs as a function* of the
complex conjugate spinors oA,oA' (as redundant 'coordinates' on Sf)
and use the chain rule to obtain, from (4.15.2), (4.15.4), (4.15.7), (2.5.54)
as applied to fs :

doA doAdxb doA

= V(IAO
B + £/)S/BQI = voAV10,. (4.15.8)

(Partial derivatives with respect to abstract-indexed quantities have the
obvious meaning here (cf. p. 145): one can always consider components in a
constant spin-frame (oA, iA) - such as we shall introduce at the end of this
section - and then convert back to abstract indices.)

If, instead, f2 is a {p, q] quantity, with p and q both non-positive integers,
then

is a {0,0} quantity and we can apply (4.15.8) to it. Writing the V10, in
(4.15.8) as 5' and using (4.12.28), we thus obtain

D oGoH' o*'8^- poiD oFeG)oH'
(JO

oD ... oGoH' . . . o * ^ - poiD ... oFeA
G)o

= voD... oGoH> ... oK'oA!S'fa + vppoiD ... oFiG)oH> ... oK'oAf
AfM

Substituting sA
G = oAiG - iAoG (cf. °.5.54)) into this equation, we find

* This is consistent with a standard convention that /(£) represents a holomorphic
function of the complex variable f, whereas/^, f) represents a general function of {,
i.e., a function of Re(£) and Im(^).
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288 4. Differentiation and curvature

that it implies

p=-v~l
9 (7 = 0, (4.15.9)

and then reduces to

as applied to f3. For consistency with the Leibniz rule for 5' we now easily
establish that (4.15.10) applies to any {p9q} quantity on <? for arbitrary
integral p, g-and, indeed, fractional p, q. (Integral or half-integral p, q
will normally be assumed unless otherwise stated.) The complex con-
jugate of (4.15.10) is

± voAA-qiA.. (4.15.11)voAAqiA..

Any {/?, q] quantity on Sf can be expressed either as a function of oA, oA

or as a function of iA, iA\ the relation between the two being obtained from
(4.15.6), (4.15.7) with (4.15.4). So, repeating the above argument with
iA, iA in place of oA, oA\ we can obtain

p' = u-\ (j' = 0. (4.15.12)

and

^pr = uiAd-poA, -fa?r = uiA,6-qoA. (4.15.13)

We may check these relations against (4.14.20), (4.14.21), noting that
the 4-space curvature terms y¥2, Q>1 1, A all vanish, and obtain

K= -ppf = u~iv~1 =\R~2 (4.15.14)

(by (4.15.3)), so that the Gaussian curvature K + K of y is R2, as indeed
it should be for an ordinary sphere of radius JR.

Each of the relations (4.15.10), (4.15.11), (4.15.13) can be split into its two
components, yielding

(4.15.15)

J_lAV

1 r

1 A

V

1

, d

do*

°A

{ d

doA

d

Ik)1'

g

1

u

i
c

u

oA

1

R

A,

d

* l A

d

diA'

d

~d?

d
(4.15.16)
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4.15 Spin-weighted spherical harmonics 289

and

do di

o A ^ = q=-iA'^- (4.15.17)
doA dr

In particular, note that the operators in (4.15.17) are Euler homogeneity
operators. It follows that:

If f % has type {p, q}, then when expressed in terms

of oA, oA it is homogeneous of respective degrees

p, q, and when expressed in terms ofiA, iA it is

homogeneous of respective degrees —p, —q. (4.15.18)

Conformal motions of ¥

There is a significant way of re-interpreting type-{p, q) functions on y ,
when expressed in this way. Since the spinor oA may be regarded as a
(signed) null flag at L,/^ may be regarded as, in effect, a function of this
null flag. The flagpole (namely la) determines a point on the cone ^£. When
thinking of f ^ as a function of oA, oA we need think only in terms of the
cone 5£ and ignore Jf completely. The sphere 9* itself now becomes an
abstract sphere which is the space of generators of 5£. Recall that in §1.2
we viewed the Riemann sphere in this way. Such a viewpoint is useful
when we are interested in conformal transformations of Sf. For these
now arise when an active Lorentz transformation is applied to fVO, the
point L being held fixed. If this is a rotation (with respect to the time-
axis Ta) then the vertex N of .JV is also fixed; but in general N will move.
The cone J^ (but not Jf) is mapped to itself, so when 9 is viewed as the
space of generators of 5£, it also is mapped to itself. The Lorentz trans-
formations about L thus provide conformal maps of 9 to itself.

According to this viewpoint, the significance of the number

w = ±(p + q) (4.15.19)

is that it provides a conformal weight for / (where for simplicity we now
assume that / is a weighted scalar). Recall that in §1.4 (Fig. 1-11, p. 38) we
were able to assign different metrics to the abstract conformal sphere, each
compatible with its given conformal structure, simply by taking different
cross-sections & of the cone if. (Now see Fig. 4-5.) When & lies in a space-
like hyperplane, the metric assigned is that of a metric sphere, but other-
wise a more general metric. Consider a particular generator of ̂ £ and sup-
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290 4. Differentiation and curvature

</(m i-description)

(in o-description)

Fig. 4-5. A conformal rescaling of the metric of £f is achieved by moving 9" along
the generators of if (or alternatively Jf) to &.

pose & meets it at a point whose position vector from L is Qa. Suppose & is
then moved so that the position vector becomes /cQa(/c > 0). The induced
metric tensor of the cross-section will correspondingly scale up by the
factor /c2, on that generator, i.e. the linear scale goes up by k. The spinor
oA scales up by k\ so if f(oA,oA) has homogeneity degrees p,q, then
/scales up by k*(p+q). This justifies the terminology for (4.15.19) (com-
pare §5.6). Note that the conformal weight w and the spin-weight
s = ^(p — q)(cf after (4.12.10)) together determine the type {p, q] (and
vice versa):

p = w + s, q = w — s; s = j,(p — q), w = ^(p -f q). (4.15.20)

Alternatively, if we view/ as a function of iA, iA , then 9 is interpreted,
instead, as the space of generators of Jf and the conformal motions of
Sf arise as a result of applying Lorentz transformations about N (which
leave Jf invariant). The argument is just as before, and we now find that
the conformal weight of/ is

w'= -%P + q). (4.15.21)
Consequently we have

p — — W + s, q = — wf — s . (4.15.22)

To understand this discrepancy with (4.15.19), (4.15.20), we note that the
metrics on the abstract conformal sphere are now given by cross sections &
of Jf and that the correspondence between generators of i f and generators
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4.15 Spin-weighted spherical harmonics 291

of Jf that is given when Q moves about ^ involves an antipodal map. (See
Fig. 4-5; generators of i f may be compared with generators of /T by the
translation of M taking L to N.) Thus when a Lorentz transformation
is applied to M (say about 0, for symmetry's sake) it induces a different
action on £f regarded as the space of generators of JV, from that on <f
regarded as the space of generators of if, because of the intercession of
this antipodal map. (Though i f and Jf are each moved by this action,
the abstract spaces of their generator directions are each mapped to them-
selves.)

It should be noted that conformal weight is in general quite a separate
concept from the p and q weights here discussed, as will be more fully
explained in §5.6. However, in the present work s and w can be used for an
alternative type-description and instead of type-{p, q] quantities we may
speak of type-[s, w] quantities - where we use the o-description only, so

{P, <?} = K(P - q\ i(/> + <?)] = [s, w] = {w + s, w - s}. (4.15.23)
Let us return to the expressions (4.15.15) and (4.15.16) for 6 and 5'.

We note that in the lower line of each are expressions involving only
oA,oA [only iA, iA\ If we use these expressions we can stay within the
oA, oA [or iA, iA^\ description and regard the operators as applying within
the space of generators of i f [or Jf\ However, owing to the explicit
appearance of the vector Tfl, the operators 5 and d' are not generally
conformally invariant on Sf.

But it turns out that for each spin-weight s there is a particular conformal
weight w for which a given power of 6 or of d' is effectively conformally
invariant (Newman and Penrose 1966, Eastwood and Tod 1982). We
use the oA, oA description and suppose that / has type {p, q] with p ^ 0.
Then

d d

JZ^Z7 (415'24)

has type {0, q}, so application of the Euler homogeneity operator oAd/doA

yields zero {cf (4.15.17)):

dd d

Since the expression {...} is symmetric in AB ... D, it follows from (3.5.27)
that

e d e
(4.15.25)doAdoB'"doDJ - A B "J-

p + i
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292 4. Differentiation and curvature

for some scalar g, and evidently g is of type {— p — 2, q). Transvecting this
last equation repeatedly with R~1TaoA, (and noting that this commutes
with d/doE\ we obtain, using also (4.15.16) and (4.15.7),

d'p+if = v-
p-1g. (4.15.26)

In the original literature (Newman and Penrose 1966), this formula (or
4.15.30) appears without the V, which is, however, necessary here for
the strict applicability of the compacted formalism. (If we scale oA so
that t; = l, then §P = Sf)

At this point it is worth while to list various elementary relations that
hold between the quantities we have defined. They are direct consequences
of (4.12.28), (4.15.9), (4.15.4), (4.15.6), and (4.15.7):

6oA = 0, doA' = v~ hA\ diA= -u~ V , diA' = 0, , (4.15.27)
d'0

A = v~ liA, b'oA' = 0, b'iA = 0, 6'r4' = - u ~ V J

du = 0, 5v = 0,6'u = 0,6'v = 0 (4.15.28)

and, from (4.14.1),

(66' - 6f6)f = -sR~2/, (4.15.29)

where/is any {p, ̂ f}-scalar and s = \{p — q).
By (4.15.28) (4) we can rewrite (4.15.26) as

0 = ( y 6y + 1 / . (4.15.30)

Note that (4.15.25) makes no mention of iA, iA\ or Ta. The relation between
/ (type {p, q]) and g (type { - p - q - 2, q] expressed by (4.15.30) is there-
fore Lorentz invariant. As a particular case of (4.15.26) we have that
ftp+ y = o is a Lorentz invariant equation, as is, similarly, dq+1f=0 (cf.
(4.15.32) below).

Since (restricted) Lorentz transformations (centred at L) can be
identified with the (orientation preserving) conformal motions of y ,
this Lorentz invariance may be reinterpreted as a conformal invariance
of the operation in (4.15.30). It is not, however, quite the general local
conformal invariance that we shall discuss at length in §5.6. For that,
arbitrary rescaling of the metric would be allowed, corresponding, here,
to the passage from 9 to an arbitrary cross-section 9* of «Sf, whose induced
metric need not be intrinsically that of a sphere. The formula (4.15.30)
would not in general hold (except if p = 0) for the 6'-operator intrinsic to
$f (i.e. defined with respect to an na-vector locally orthogonal to 9).
For the particular cases for which 9 is intrinsically metrically a sphere,
however, namely those cases where Sf is the intersection of 5£ with a
spacelike hyperplane {cf Fig. 1-11), then (4.15.30) does hold in this sense.
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4.15 Spin-weighted spherical harmonics 293

For we need only apply a Lorentz transformation which sends the normal
to that hyperplane into the redirection and the argument for invariance
is as given above.

Assuming, now, that q > 0 (with p unrestricted), we can apply the
complex conjugate of the above argument to obtain the existence of a
{p, — q — 2}-scalar h satisfying

and

h = (v6)q+lf. (4.15.32)

If both p^O and q ^ 0 , then we can apply (4.15.30) to /z, which yields

j = (vdfy+lh (4.15.33)

for some { — p — 2, — q — 2}-scalar j . Similarly, we can apply (4.15.32) to
g and find, for the samej,

j = (vdy+l
gi (4.15.34)

as follows at once, if we revert to the forms (4.15.25) and (4.15.31), by the
commutativity oid/doA and d/doA'. This means that

dq+ ld,p+ lj>= ftp* ldq+ ly- (4.15.35)

(It is somewhat more involved to obtain this directly from (4.15.29).)
Indeed, since we can change the type of/ from {p + k, q + k] to {/?, q] by
multiplying it by a power of v, it is only the value of the difference p — q in
(4.15.35) which is relevant. So we can derive the apparently more general
form (Newman and Penrose 1966)

dad'bf = d'bdaf, (4.15.36)

for any a, b such that b — a = 2s, s being the spin-weight of/.
We can also parallel the argument leading to (4.15.26) etc. using the

iA, iA description. If F is of type {p, q] with p ^ 0 we find

(4.15.37)
-p+i

and

G = (ud)~p+1F, (4.15.38)

with G of type { — p — 2, q). Similarly, if q < 0 we find

d d
^•••^F = l4,..,F.H (4.15.39)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


294 4. Differentiation and curvature

and

H = (udfyq+lF, (4.15.40)

with H of type {p, —q — 2}. That these are exactly the same results as
before is readily seen if we re-express p and q in terms of the spin- and
conformal weights s and w of (4.15.20). We see that (4.15.32) involves
Qw-s+i a c t j n g o n a quantity of spin-weight s and conformal weight
w> - s , while from (4.15.22) we find that (4.15.38) involves dw'~s+1

acting on a quantity of spin-weight s and conformal weight W ^ — s.
The replacement of v in (4.15.32) by u in (4.15.38) is connected to the facts
that the conformal scalings act differently under Lorentz transformations,
as previously noted, and that w is replaced by W. The correspondence
between (4.15.30) and (4.15.40) is precisely similar.

Of particular note are the homogeneous polynomials

f =

the oA, oA description being now reverted to, where / is constant and,
without loss of generality, symmetric. We shall sometimes use the notation
S^ , in M, for the subsystem (vector space over C = S = ft; cf. after (4.1.2))
of elements of 6 ^ which are constant throughout M. Adopting, also, the
bracket notation of (3.3.14), we can now write the condition on / as

Clearly/ has type {p9 ̂ r}, i.e., [s, w] = [j(p — q\ j(p + q)~\. Under restricted
Lorentz transformations about L (i.e., proper under conformal motions
of Sf\ these polynomials transform into one another according to a
(p + \)(q + l)-dimensional complex representation. Such representations,
of course, are the symmetric ('irreducible') spinors of §3.5, now playing a
new role.*

Rotations of Sf

Let us now restrict the transformations in question to rotations about
Ta (leaving L, JV, and Ta invariant). T a k e / to be given by (4.15.41); we
find that the (p + l)(q + l)-dimensional space splits up into a direct sum

* In fact the general representation theory of the Lorentz group can be expressed in
terms of weighted scalar functions / of type {p, q} = [s, w], where 2s = p — q is an
integer but w is arbitrary complex. The finite-dimensional irreducible representations
occur w h e n / i s a polynomial as in (4.15.41). Unitary representations (necessarily
infinite-dimensional) occur when w + 1 is purely imaginary, or when s = 0 and — 2 ^
w ^ 0. (cf. Naimark 1964, Carmeli 1977). (See also footnote on p. 301)
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4.15 Spin-weighted spherical harmonics 295

of spaces each of which is invariant, and whose dimensions are

\p-q\ + h\p-q\ + \\p-q\+5,...,p+q-Up + q+\. (4.15.43)

This can be seen as follows. First we write oA> in terms of iA according to
the complex conjugate of (4.15.6),

oA' = —TA'iA
9 (4.15.44)

R A

and substitute it into (4.15.41). Since Ta (and therefore also u, cf. (4.15.4))
is invariant under rotations, this is an invariant procedure. Keeping the
dependence on u explicit, so as to preserve strict invariance under spin-
frame rescaling, we arrive at an expression of the form

f = uqtA...DE...HoA...oDiE...iH, (4.15.45)

with

^D£^e S
M.. .D)(E.. .fl) (4.15.46)

p q

Since tA H is not totally symmetric, it can be reduced, following the
procedure of §3.3, into a number of pieces each of which is totally sym-
metric but with varying numbers of indices:

t t A t AB tA i c AH\
L(A...DE...H)> LA(B...D F...H)'LAB(C...D G...//)' V * t . i ~ > . t / ;

and so on, until one or the other of the two original groups of indices is
exhausted. These are symmetric unprimed spinors with, respectively,
P + q>P + q — 2,p + q — 4, . . . ,\p — q\ indices, so that they have, respec-
tively, p + q + 1, p + ^ — l,p + g — 3,... ,\p — q\ + 1 independent compo-
nents. Denoting the various totally symmetric spinors in (4.15.47) by

0 1 2
tA...DE...H> tB...DF...H> *C...DG...H' e ^ C '

respectively, we find that the original tA D
E-H (writing the second set

of indices raised, for notational convenience) can be expressed as a linear

combination of

? E...H (El
t F...H) (E F t G...H) . (4 15 48)

Substituting that into (4.15.45) we obta in / as the corresponding linear
combination of terms

= u"tc D0 Hoc ... oDiG ... i",etc, (4.15.49)
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the £-terms disappearing, since eAEoAiE = 1. In fact, it turns out that

o pg j. p(p-i)q(q-i) i ,
J J (p + q)J 2(p + q-l)(p + q-2)J

(\P ~ q\ + 1) min(ptq)

(l+max(pg)) *

q _ 2r + l ) \p \q \f
= L

rt0 (p-r)l(q-r)\rHp + q-r+1)1

min(p,q) .

-r+\\

i

The / s of (4.15.49) can be translated back to the original form (4.15.41)
(i.e., in terms of oA,oA'\ if desired, by use of (4.15.7). They provide the
irreducible pieces of/ under rotations that were referred to earlier. And
they span invariant subspaces of spin-weighted functions on £f of respec-
tive dimensions p + q + l ,p + q - l,p + q - 3 , . . . , \p - q\ + 1, as was
asserted in (4.15.43).

In order to determine whether any given function of this form, say
h = uqhA DE H o A ... oDiE ... iH, (4.15.51)

actually belongs to one of these subspaces, we need a property that
characterizes the possibility of writing (4.15.51) with hA H totally
symmetric:

Let the number of indices of hA H be 2/, where j is integral or half-integral,
so the indices A...D of (4.15.51) are j + s in number and the indices
E...H are j — s in number. Note that j is integral if and only if s is, and
that

Now consider the action of 6 on (4.15.51). From (4.15.27), (4.15.28) we
obtain

dh= -<J-s)uq-lhA DEF HpA o y _ . . . iH. (4.15.53)
j + s+ I j - s - 1

If we apply 6' to this equation, and use (4.15.27), (4.15.28), and (4.15.3),
we find

d'dh= -(j + s + l)(j-sfiR-2h. (4.15.54)
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Thus h is an eigenfunction of the operator d'd with eigenvalue
2. (4.15.55)

From (4.15.29) it follows that h is also an eigenfunction of 63':

dd'fc= -(j-s+l)(j + s)iR-2h9 (4.15.56)

now with eigenvalue

-(j-s + l)(j + s)iR~2 = [Xs - 1) - X / + 1)H«" 2 . (4.15.57)
These eigenvalues characterize both s and 7 since we get 5 directly

from the commutator (4.15.29), whereupon j(j+ 1) is fixed by (4.15.55),
and this determines j since j ^ 0. For each spin-weight s we refer to the
eigenfunctions (4.15.49) of d'd as spin-weighted spherical harmonics*
Our discussion here has been confined to polynomial expressions (4.15.41).
But it can be shown (though this is beyond the scope of the present work)
that any (continuous) spin-weighted function on Sf can be expressed as
an (infinite) sum of such polynomials, so that the spin-weighted spherical
harmonics as defined here constitute, in fact, a complete system. (For
the case s = 0, see Courant and Hilbert 1965; completeness for the cases
5 ̂  0 can be readily deduced from that for s = 0.)

Linear equations in d

From (4.15.53) we see that if h is any spin-weighted spherical harmonic
with; = s, then 6h = 0. In fact, the converse is also true:

(4.15.58) PROPOSITION

Iff is any smooth {p,q}-function on £f, then 6f = 0 [or d'f = 0] throughout
9* iff f is a spin-weighted spherical harmonic with j = s [or j = — s]

Proof: If we assume completeness of the polynomial harmonics (4.15.49),
the proof is immediate from (4.15.53). But we can also show directly
that any solution of 6f= 0 must be polynomial in this sense by appealing
to results in complex analysis. Consider the function/0 = M"4/which has
^ = 0 By (4.15.17), oA'df0/doA> = 0. Assume d/ = 0. Then by (4.15.15)
we also have iA'df0/doA' = 0 and so dfJdoA' = 0. Consequently f0 is
holomorphic in oA. It is also homogeneous of degree 2s( = p) and global

* In the literature (Newman and Penrose 1966, Goldberg et al. 1967) this term is usually
reserved for the functions that arise after a further reduction with respect to a parti-
cular basis in V has been made, cf. (4.15.93).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.005
https://www.cambridge.org/core


298 4. Differentiation and curvature

on ,9?. But the only global homogeneous holomorphic functions on
C2 are polynomials (cf. Gunning 1966). From this it follows that / 0 is a
polynomial and therefore/has the required form

f=<fA...c°A-°G-
The argument for the case d'f = 0 follows from the above by complex
conjugation.

As a corollary to (4.15.58) (since there are no spin-weighted spherical
harmonics for negative j) we deduce

(4.15.59) PROPOSITION

///, defined on £f, has negative [positive] spin-weight then df= 0 [or d'f = 0]
implies/ = 0.

In the study of spin-weighted spherical harmonics it is useful to contem-
plate the following array:

7 = 0 1
2 2

1 _̂
~̂ 4 4 4 4

5 5 5 5 5
6 6 6 6 6

i — . . . 2 ^ 2 1 2 2 2 2 '"

(4.15.60)

The numbers in this triangular array (which extends indefinitely
downwards) represent the complex dimensions of the various spaces
of spin-weighted spherical harmonics, as discussed in (4.15.43) et seq.
Each of these spaces is characterized by its values of 5 and j , as shown.
The dimension zero is assigned wherever a blank space appears in the
array. The operator d carries us a step of one s-unit to the right and 6'
one s-unit to the left. (From our earlier discussion, the j-value is not
affected by d or 6'.) Whenever such a step carries us off the array, the
result of the operator d or 6' is zero. Note that the dimension remains
constant whenever it does not drop to, or increase from, zero.

Within the array itself, the operators 6 and d' are invertible, since by
(4.15.54) and (4.15.56), each of 6, 6' acts as a multiple of the inverse of the
other. But at the right-hand sloping edge the effect of d is to annihilate one
of the spaces, and similarly for 5' at the left-hand sloping edge.

Just to the left of the left-hand edge, the 6 operator moves us from a zero
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4.15 Spin-weighted spherical harmonics 299

to a finite dimension. These are the circumstances where the equations
df = g (4.15.61)

are not soluble. For example, if g has spin-weight s = — j , and possesses a
7 = ^ part, then there is no / satisfying (4.15.61). For think of g as occupying
points in the s = — \ column, with a non-zero contribution at 2. The
function / would have to lie in the s = — f column and could only occupy
points 4, 6 , . . . . The operation d cannot manufacture a non-zero j = \ part
so as to produce the '2\ But if g is such that its j = j part vanishes, then
(4.15.61) is soluble. In fact it is uniquely soluble because, as is clear from
(4.15.60), 6 does not annihilate any non-zero s = — § quantity.

The situation for (4.15.61) is just the reverse when, say, s = | . In this
case a glance at (4.15.60) shows that (4.15.61) is always soluble. For g
then lies in the s = § column, with dimension numbers 4, 6 , . . . , and all
these numbers are also available in the s = ^ column. But now there is a
2-dimensional space annihilated by 6, so that the solutions of (4.15.61) are
non-unique, the non-uniqueness being precisely in the 2-dimensional
j = \ space.

We remark - though we shall not make use of it - that d possesses a
unique generalized inverse d\ satisfying

dd^d = 6, d W = df

and

(cf. Moore 1920, Penrose 1955, Nashed 1976, Exton, Newman and
Penrose 1969). The action of 6f is that of the (unique) inverse of 5 on those
spin-weighted spherical harmonic spaces for which an inverse exists
(i.e., for all spaces in (4.15.60) except those represented by the left-hand
sloping column); and it is zero otherwise (i.e., on that sloping column).
Similarly we can define d'\ and we find

(in the usual sense t h a t d 1 / ^ &*]). By use of 6f, the general solution of
(4.15.61) can be written as

where h is arbitrary (but of the appropriate spin-weight), the condition for
solubility being (1 - ddf)g = 0.

Conformal behaviour of harmonics

The array (4.15.60) is useful also in the study of the conformal properties
of type-{p, q] quantities on Sf. First, suppose that the conformal weight
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300 4. Differentiation and curvature

w = i(p + q) satisfies

w>\s\9 (4.15.62)

i.e., that w has one of the values

| s | , | s | + l , | s | + 2 , . . . , (4.15.63)

where we are adopting the oA, oA description, with Lorentz transforma-
tions taken about L. Then the homogeneities p, q are both non-negative
and we have finite-dimensional spaces of polynomials (4.15.41) invariant
under conformal motions of Sf. These spaces reduce, as we have seen,
into subspaces (the spin-weighted spherical harmonic subspaces) which
are invariant under rotations, but which under non-trivial conformal
motions get mixed with one another. In the array (4.15.60), let us fix our
attention on the point (s,j), where; = w, and consider the set of points of
the s-column above and including that point. Under conformal motions
of ^ , the spaces represented by these points get mixed with one another,
but do not spread to the points below. We note, incidentally, that the
unique powers of d and of 5' which have conformal invariance properties
(namely dw~s+1 and 5'w + s + 1 -cf. (4.15.30), (4.15.33)) annihilate precisely
the spaces represented by the points under consideration. A space re-
presented by any other point of this 5-column makes contributions along
the entire column under a general conformal motion of ff. The special
property of those particular weights w that occur as the allowables-values
for a given s is that they provide the finite-dimentional representations of
the restricted Lorentz group for spin-weight s, namely the descriptions in
terms of 9" of symmetric spinors of valence [° °] with 2s = p — q.

There is no other Lorentz-invariant subspace of the entire space of
[s, w]-functions on 9 for these choices of w. There is, however, a dual
situation for which w takes one of the values

- 5 - 2 , - 5 - 3 , - | s | - 4 , . . . , (4.15.64)

corresponding to (4.15.63) term for term (i.e., with w replaced by - w - 2).
Here we find that the points just considered in (4.15.60) are precisely
the ones representing spin-weighted spherical harmonic spaces that do
not get contributions added to them when a general conformal motion of £f
is applied. Thus, in particular, it is conformally invariant to say that all
the parts of / vanish which belong to the spaces represented by these
points (with w as in (4.15.64)). These / s are those having the form

f=(vd)s~w-1g for some [w + l,s - \~]-quantity g, (4.15.65)
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or, equivalently, those having the form

f = (v6r)~s~w~1g for some [ - w - 1, - s - ^-quantity g, (4.15.66)

as is evident from the table (4.15.60). As we noted in (4.15.30) et seq.,
the operations in (4.15.65) and (4.15.66) are conformally invariant. This
establishes our assertion that /s of this form will transform among them-
selves under conformal motions of £f*

The duality that is involved here arises from the fact that there is a
conformally invariant Hermitian scalar product between [5, w]-scalars
/ and [s, — w — 2]-scalars h on £f (or, equivalently, between [s, w] and
[ — 5, — w — 2]-scalars, if we prefer not to incorporate the complex
conjugation in the definition and, instead, define a holomorphic rather
than, as here, a Hermitian scalar product), namely

(4.15.67)

where Sf is the surface-area 2-form for & (cf. Fig. 4-5). Taking Sf = i/w A m
to be the surface-area 2-form for 9* (as in (4.14.65)) we have

& = v-
2y (4.15.68)

(using the ^-description; in the /-description we would adopt &" = u'1^
in (4.15.67)).

Note that on 9> we have
Sf = \m A m = imadxa A mbdxb

= uAoA,d(voAoA) A oBiB,d(voBoB)

= w2oA,doA A oBdoB

whence

& = wA,doA A oBdoB (4.15.69)

(showing explicitly that & does not depend on iA or v). Since 9> scales as
a [0, 2]-quantity, the integrand in (4.15.67), and therefore the integral
itself, is conformally invariant. Note that the conformal weights (4.15.63)
and (4.15.64) are dual in the sense that when paired they yield a conformally
invariant scalar product.

Suppose now that/(with w from the list (4.15.64)) has the form (4.15.65).

In fact, [s, w]-scalars of this form provide an infinite-dimensional irreducible re-
presentation of the restricted Lorentz group {cf. footnote on p. 294). If w is not related
to s in either of these ways (indeed, w may be complex), then the entire space of [s, w]-
scalars provides an irreducible infinite-dimensional representation of the restricted
Lorentz group (cf. Naimark 1964, Gel'fand, Graev and Vilenkin 1966, pp. 141, 156).
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302 4. Differentiation and curvature

Then

with

where we have repeatedly used the formula (4.14.71)(2) for integration
by parts. Now k = 0 if and only if/z belongs to the subspace of [s, — w — 2]-
scalars annihilated by (vd')s~w~\ this being one of the finite-dimensional
spaces which are spanned by the spin-weighted spherical harmonic
spaces discussed earlier, and which transform among themselves under
conformal motions of Sf. Thus any such h is orthogonal to / . But since
g can be chosen arbitrarily in this argument, we see that the above/s
are precisely the [s, w]-scalars orthogonal to all such [5, — w — 2]-
scalars h. The conformal invariance of the /-space is therefore implied
by that of the /z-space (with k = 0) and vice versa.

Orthogonality of harmonics

The scalar product (4.15.67) also has importance when we are concerned
only with rotationally and not conformally invariant properties of Sf.
Then the 'conformal' weights of h a n d / a r e irrelevant and we can revert
to our original viewpoint according to which quantities are defined at
points of Sf (rather than <?) with respect to local spin-frames oA, iA. The
total fcoosr-weight of the integrand must be zero and the spin-weights of
/ a n d g must be equal. Tak ing / to have type {p, q} and h to have type
{ — q, — p) we define

^ ( 4 1 5 ' 7 0 )

The expressions (4.15.70) and (4.15.67) are consistent with one another,
being both special cases of

where h and / are such that the product hf has type {c, c} (cf (4.15.3)).
It is easily seen that the scalar product (4.15.71) (when the weights are
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such that it is meaningful) has the following standard properties:

</*,/> = </,*> (4.15.72)

< / , / > > 0 unless / = 0 (4.15.73)

X> (4.15.74)

(4.15.75)

/c,/> = </*, />+ </c,/> (4.15.76)

(4-15.77)

(4.15.78)

Moreover, we have the following

(4.15.79) PROPOSITION

/ / / and /z are spin-weighted spherical harmonics of equal spin-weight
s corresponding to different j-values, then </*, />= 0.

Proo/: This is essentially a standard property of eigenfunctions of opera-
tors. If we write 7,/for the respective j-values of fh, we have, applying
(4.15.54) and (4.15.55) twice, (4.15.77) and (4.15.78),

9 J?2

whence <fc,/ > = 0 if j j=j.
We next evaluate </*,/> explicitly when h and/are , respectively, type-

{— q, — p] and type-{p, q] spin-weighted spherical harmonics with the
same j-values. We can write

/= WqfA...BE...K<t^lL^t I4 1 5 '8 0)
j+s j - s

h= W~phA DE KoA...oDiE...iK, (4.15.81)
j+s j - s

with/^ K, hA Ke S{A K), where for the sake of symmetry we have introduc-
ed the {1, l}-quantity

•"-./f-A-^Y'. W,5.82,
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304 4. Differentiation and curvature

(Note that W = 1 would correspond to the standard scaling for which
Ta = 2~^(la + na).) Taking the conjugate of (4.15.81), and using (4.15.44)
and the conjugate of (4.15.7), we get

h = W~qHA DE K i \ ^ (£^o? , (4.15.83)

where

HA...K = ( -

With these expressions we now obtain

4nR J •" " o o o o

(4.15.85)

Since H a n d / are both constant, they can be brought outside the
integral, which can then be evaluated using the following

(4.15.86) LEMMA

We can check this component by component using the formulae (4.15.96)
and (4.15.123) to be given below, and simple explicit integration. How-
ever, the lemma can also be obtained directly, effectively without calcula-
tion, by observing that the LHS is invariant under rotations of the sphere
Sf, whence the RHS must be so also; it must therefore be constructible
from TAA, alone by spinor operations (and numerical constants). The
elimination of the primed indices on TAA, leads, via

(Ta being a unit timelike vector), to the elimination of Ta altogether, leaving
us with a term proportional to the RHS of (4.15.86) as the only possibility.
Finally the numerical coefficient is obtained by taking traces of both sides,
observing that

(4.15.88)

and that the idempotence

(Ao p K0)p (A K) p (A K)
\ A-i AQ /to A i Ki

e n t a i l s t h a t t h e t r a c e s A
( A . . . £ *> is e q u a l t o t h e r a n k of eA

 (A ...£„ K\
A K ~ AQ KQ '

i.e., to the dimension of S{A-"K\ which is r + 1. (This is using the familiar
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4.15 Spin-weighted spherical harmonics 305

property of an idempotent matrix that its rank is equal to its trace.)
Substituting (4.15.86) into (4.15.85) yields

x 9J ' 2 / + 1 A"u J

If we expand the symmetrization and note that the symmetries of HA K

and of fA K entail that H G -G- = 0 = / G
 G , we finally obtain the

desired explicit formula for the product:

<hjy = {~ly S ^ ^ ~ S ) 1 H A - % ^ K

— RA. K,Ta...TkfA K. (4.15.90)
(27+1)! A-K JA-K K }

Orthonormal basis for spin-weighted functions

The orthogonality property (4.15.79) can be carried further, and a complete
orthonormal basis for spin-weighted scalar functions on <f can be obtain-
ed. These are the functions sY. m defined in the literature (Newman and
Penrose 1966, Goldberg et al. 1967). We shall here refer to them as the
basic spin-weighted spherical harmonics. They depend, however, on
an (arbitrary) choice of basis for SA. Let us take this constant basis to
be a spin-frame e^A, = (oA, iA\ for which

Ta = —]={pA6A' + iAiA'\ (4.15.91)

so that

T66'=-~=, 7 6 i ' = 0, Ti 6 '=0, Tu'=—=9 (4.15.92)

and define
z ^ m ) A FG K = o{A...dFiG...iK). (4.15.93)

j-m j+m

Then for each fixed j and varying m (with — j ^ m ^7 , and j ±m both
being integers) the quantities (4.15.93) clearly span S u Ky Moreover,
they are orthogonal (but not orthonormal) in the sense that

WM)A,,,.K, T°... TkZ(j,m)A K = < L n ° ™ ^ 2 t m ) ! - < 4 1 5 9 4 '

The components of (4.15.93) in the original (non-constant) spin-frame
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eA
A may be computed by directly expanding the symmetrization, which

yields the {5, — s}-quantity

j + s j - s j + s j-s

= w_sy(j+my.(j - m)\(j + s)\(j - sy.oirrm-ryJ+s-rdr+'"-s

t (2j)\rUj-m-ry.(j + S-r)\(r + m-s)\
(4.15.95)

where the summation extends over integer values of r in the range
max(0,s — m)^r^min(j — m,j + s), and where

(4.15.96)

The matrix in (4.15.96) must be both unimodular and, if W = 1, also unitary
because it represents a (passive) spin-transformation which, when
W = 1, is a pure spatial rotation of one spin-frame into another (cf. (1.2.29)).
The expressions (4.15.95) are, apart from a normalization factor, the basic
spin-weighted spherical harmonics sYjm. To obtain the normalization
factor, observe that, by (4.15.90) and (4.15.94),

•s)\(j-s)\ — : .
— Z(j,m)A, K,Ta... T Z(j9m)A K

(4.15.97)

Thus we obtain the {s, — s}-quantity

Y =( — lV + m Z / ( 7 + )•( 7J- (4 15 98)

(where the factor ( - l)J + m(47r)~1/2 is inserted to give agreement with the
standard literature;* cf. Schiff 1955) which obeys the orthonormality
conditions (for each 5):

Although the sYj m are the standard basic spin-weighted spherical
harmonics, for practical purposes the Z. m are often easier to use.

From the symmetry of the expressions (4.15.95) and (4.15.97) there

Although Goldberg et al. (1967) differ by a sign for odd m.
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follows the curious reciprocity relation :*

Jtm~(- l)m+s_mY^sunder Wp~y, (4.15.100)

in addition to the relations of more obvious significance:

j_mands
j , m s (X

(4.15.101)

and

(4.15.102)

these being the result of the prime operation applied to the spin-frames
(oA, iA) and (oA, iA\ respectively. Moreover, since

oi=WS9 Wfi=-y, (4.15.103)

which is a consequence of the unitarity (rescaled to incorporate W) and
unimodularity of (4.15.96), we have from (4.15.95) that

sZ-,m = ( - Dra + S - A _m and sYhm = ( - ir+'-sYh _m. (4.15.104)

We note, also, the effects of 6 and 6' on these quantities, which are
readily obtained from (4.15.95) by application of (4.15.27), (4.15.28) (where
6 and & annihilate the constant oA, iA):

1 Z . m , (4.15.105)

whence

d'sY. m = I I s_{Yjm.
s hm \ 2K / h (4.15.106)

There are some discrepancies of convention between the definition of 6
as given here and as given originally by Newman and Penrose (1966).

Spin-weighted spherical harmonics also play a role in the representation theory of
0(4), since they can be interpreted as scalar spherical harmonics on S3. (Goldberg
et al. 1967). In that context the symmetry between s and - m has a clearer geometrical
meaning.
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308 4. Differentiation and curvature

To come closest to agreement with the original definition we can take

£ = -=> (4.15.107)

the apparently more natural choice of 9 as a unit sphere leading to a
discrepancy by a factor of>/2. There is also a sign difference which
apparently comes about because the metric of £f is here negative-definite
(being that induced by the ambient space-time) whereas that of Newman
and Penrose (1966) was taken to be positive-definite. Finally, the natural
relation between spin-frame and orientation of 9 that we have adopted
here {cf beginning of §4.14), together with the fact that our (-coordinate
(cf. (1.2.10), (1.2.13)) is anfi-holomorphic and therefore naturally assigns
a negative orientation to y , leads to an apparent interchange of 6 and 6'
with respect to (. In effect, the spin-weights arising here are
actually (geometrically) the negatives of the spin-weights of Newman and
Penrose (1966). As it turns out, this is quite fortunate because (cf. §§9.7-9.9)
the spin-weight concept then agrees with the physical concept of helicity
of outgoing radiation, rather than with its negative.

Explicit coordinate descriptions

We end this section by giving coordinate descriptions for 6 and s Y. m. Two
specifications are involved. One is the choice of coordinates for y , and
the other is an explicit selection of a spin-frame (oA

9 i
A) at each point of £f

so that the scaling freedom of the strict compacted spin-coefficient form-
alism is finally eliminated. It is convenient to couple these two choices
to one another, and also to take the coordinates on 9 to be related in
some canonical way to the fixed spin-frame (6AJA). If we assume that
(oA, iA) is related to the usual Minkowski coordinates (t, x, y, z) for Ml in
the standard way (cf. Chapters 1 and 3), the origin (0,0,0,0) being the
centre O of Sf, then

:„, 1 [t + z x + iy\
(xAB) = —( . yY (4.15.108)

y/2\x-iy t-z )
We have N at (R, 0,0,0) and L at ( - R, 0,0,0), so Sf has equation

x2 + j / 2 + z2 = jR2, r = 0. (4.15.109)

We consider two different coordinate systems for 9, the spherical polar
(0, 0) system, for which

x = R sin 9cos 0, y = R sin 9 sin 0, z = Rcos9, (4.15.110)
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4.15 Spin-weighted spherical harmonics 309

and in terms of which the metric of Sf is given by

d s 2 = -R2(d62 + sm26d(t)2\ (4.15.111)

and the complex (£, £) system, for which (cf (1.2.8))

R(C + C) - iR(C - 0

CC + l CC + 1

with (cf (1.2.10))

; = e ^ c o t - , (4.15.113)

in terms of which the metric takes the form

ds2 = = - ^ (4.15.114)
(CC + 1 ) 2

Let us consider the complex system first. As we remarked above (and
see also §1.2), £ is an anti-holomorphic coordinate for Sf (with its standard
orientation), and so we can take

£ = L (4.15.115)

with £ as in §4.14. Then (4.14.31) gives P = 5£. The ma-vectors are deter-
mined as in (4.14.36) by requiring P > 0. Comparing the metric form
(4.14.30) with (4.15.114), we obtain

C (4.15.116)

which we can substitute into (4.14.33) to obtain the explicit representations
for the actions of 6,5' on an rj of type {s, — s}:

#V2

1
, (C£+l)1 + s-((C£+ir^). (4.15.117)

R^/2 ^
The determination of the mfl-vectors is illustrated in Fig. 4-6 which shows
the flag plane of oA (i.e., the direction of Re(mfl)) pointing along Im(() =
constant, Re(£) increasing. Reference to Fig. 4-6 and the detailed geo-
metrical constructions of Chapter 1 (for flag planes, as in §1.4, spinor
scalar products, etc.) lead us to

(4.15.118)
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flag direction of oA

JK — u u v v w v i i WJ

. Im fr = const. (^
i *

stereographic projection of y
from its north pole to the Argand
(

Fig. 4-6. The arrangement of spin-frames and m-vectors for the complex stereo-
graphic coordinates (£, £)•

(up to an arbitrary choice of overall sign), where we have fixed the real

scaling of oA\ iA (i.e., the extents of /a, na) by taking

W=\, i.e., u = v = R^/2. (4.15.119)

Substituting into (4.15.95) and (4.15.98), we can now obtain Z.m and

Yj.^explicitly.

Finally, we consider the spherical polar system, for which we can take

= log tan - + i< (4.15.120)

(i.e., £= — logC). Comparison of (4.14.30) with (4.15.111), where again

flag direction
of o4 = direction
of Re ma

x steroegraphic projection of <f from
its north pole to the Argand (x, y)-plane

Fig. 4-7. The arrangement of spin-frames and m-vectors for the spherical polar
coordinates (9,0).
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4.15 Spin-weighted spherical harmonics

we adopt (4.14.36) so that P > 0, gives, after a short calculation,

311

(4.15.121)
RsinO'

And this, when substituted into (4.14.33), yields, for an rj of type {5, — 5},

1 / d i d '

1 . -~f± + J^ d_

drj =

sin *V\ —
sin

(4.15.122)

The determination of the ma-vectors is now illustrated by Fig. 4-7, which
shows the flag plane of oA (i.e., the direction of Re(ma)) pointing down-
wards along the meridians </> = constant. For a, . . . , S we now obtain, up
to sign,

-e^cos- ei</)/2 sin -
(4.15.123)

Again we can fix the extents of /a, na by taking W = 1 as in (4.15.119).
Substituting into (4.15.95) and (4.15.98), we can then obtain Z.m and

s Y.m explicitly in the (6, <j>) system. When s = 0 this yields the standard
(Legendre) spherical harmonics as a special case.
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5

Fields in space-time

5.1 The electromagnetic field and its derivative operator
There are many analogies between the gravitational and electromagnetic
fields. One of these is brought out particularly strikingly in the spinor
formalism, where each of these fields is represented by a symmetric
spinor: cpAB in the electromagnetic case (cf. (3.4.20)) and *¥ABCD in the
gravitational case (cf. (4.6.41)). As we shall see shortly, the 'source-free
field equations' (where, in the gravitation case, we mean (4.10.9) and not
Einstein's vacuum equations (4.10.10)) are also basically identical in the
two cases. The analogy goes even further, in that each field quantity can
be obtained from a commutator of derivatives. In the gravitational case
these are just the covariant derivatives (cf. (4.2.30) with (4.2.24), (4.9.15),
(4.9.16)). In order to obtain the electromagnetic field in such a way, one
must modify the concept of covariant derivative. In flat-space quantum
theory this is normally done by adding a multiple of the electromagnetic
potential four-vector Oa to the usual flat-space derivative, which we
denote temporarily by da, the multiple being ( — i) times the charge e of
the field on which the derivative acts. Thus the action of the new covariant
derivative

V f l : = d f l - i e * a (5.1.1)

depends on that charge, and so it becomes necessary to specify the charge
of each field of the system.

In quantum theory a charged particle is described by a wave function
which is such a charged field. (For example, the Dirac field of an electron
is a pair of charged spin-vectors each having the same charge; cf (4.4.66)
and Corson 1953). The coupling of these charged fields to any Maxwell
field present is accomplished by replacing the operator da in their field
equations by the operator (5.1.1).

It is now easily seen how the Maxwell field Fab, which is the curl of
the potential Oa, arises from the commutator V[aVfo] acting on a field
6^ of charge e:

rt{aVb]e« = e6«dla%] = \e6«Fab (5.1.2)

Since we wish to allow electromagnetic and gravitational fields to
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5.7 The electromagnetic field 313

co-exist, we must make provisions for our operators to act in curved
space-time. This is easily achieved by letting the da of (5.1.1) become the
usual ('elementary') covariant derivative operator (whereupon extra
curvature terms appear on the right-hand side of (5.1.2), cf. (5.1.34)
below).

The expression (5.1.1) involves the potential explicitly, however,
and that we shall mainly want to avoid, since the value of the potential
at any point has no physical significance. This is analogous to the fact
that the connection symbols F a b

c have no direct physical significance
in gravitational theory. Similarly, as in the case of the elementary covariant
derivative which can be introduced by modifying the coordinate derivative
d/dx* with F-terms, and then largely discarding d/dxa as non-intrinsic;
so also in the case of charged fields, the covariant derivative da upon
charged fields can serve as a taking off point but in the development of
the theory it is largely ignored as 'gauge'-dependent, and thus physically
meaningless. In both cases the physically significant thing that these
quantities determine is an operator, which we denote universally by Va.
Our aim, as in the development of the elementary covariant derivative,
is to construct a calculus in which all the objects have physical or geo-
metrical meaning. In this chapter, then, we shall study the properties of
the general operator Va from a formal algebraic point of view just as we
did in §4.2 for the purely gravitational case. In this way the use of the
electromagnetic potentials and of da can be avoided. (But, like the Fs
and d/dx*, they can be brought in, when desired, as a convenience.)
The properties of Va as defined by certain axioms will determine the
properties of the tensor Fab in equation (5.1.2) (modified for curved
space), just as the properties of the elementary covariant derivative
determine the properties of the curvature tensor (cf. (4.2.31)). These
properties of Fab will allow it to be identified with the Maxwell field
tensor.

Charged fields

In order to accomplish the programme outlined above we must make a
generalization of the modules S ^ (of C00-smooth spinor fields) defined
in Chapter 2, to which the discussion has so far been restricted. It is
necessary for each charge value to have a separate version of each spinor
module S**, the derivative Va acting differently on each version. We thus
introduce the charged modules

S,^,^,...,®^:-,... (5.1.3)
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314 5. Fields in space-time

(for each charge e) of charged C°°-smooth spinor fields. The original
system of §2.5 will correspond to the absence of charge, e = 0. The charge
e of a field could in principle be taken to be any real (or possibly complex)
number, but for various reasons we shall restrict e to be an integer-
multiple of some fixed non-zero real number £, the elementary charge.
Thus e takes the values 0, + e, + 2e, + 3e, ... .

An important point in our argument will be that the elements of
e

S, for example, when e =/= 0, do not take on numerical values at the points
P of Ji. Rather, each 8 [P] is an abstract one-dimensional additive
complex vector space, with zero element, of course, but no canonically
determined unit element. Also there is no canonically determined cor-

respondence between t h e S [ P ] at two different points. (However, a

C^-smooth correspondence between neighbouring ^ \P\ is provided
by any element of 6^.) Nevertheless, just as a 4-vector can be described by
four numerical scalars when an arbitrary basis is specified, so the elements

of S \?\ for example, can be described by single numerical scalars when an
arbitrary 'gauge' is specified (as we shall explain later).

Certain other properties of uncharged fields have no meaningful
equivalent for charged fields. For example, the condition that a charged
scalar or tensor field be real (at a point) would require the difference
between it and its complex conjugate to vanish. But the conjugate has
minus the charge of the original field and cannot be subtracted from it
according to the rules of the algebra that we shall give in a moment.
Somewhat similarly, a charged spin-vector KA with non-zero charge
cannot be represented in the usual way by a null flag. For again the relevant
expression (3.2.9) would require two quantities of opposite charge to be
added.

e

As for the algebraic properties of the 8 , we require that the operations
of addition, outer multiplication, contraction, index substitution and
complex conjugation apply to the elements of the systems (5.1.3) as
before, subject to the general algebraic rules laid down in §2.5, but with
the following additional stipulations:
(5.1.4) Two charged spinors may be added if and only if their charges are

equal; the sum has the same charge as the constituents.
(5.1.5) Outer products of charged spinors may be formed whatever their

charges are; the charge of the product is the sum of the charges of
the constituents.

(5.1.6) Contractions may be performed on charged spinors and do not affect
the value of the charge.
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5.1 The electromagnetic field 315

(5.1.7) Index substitutions may be applied to charged spinors and do not
affect the value of the charge.

(5.1.8) Complex conjugation may be applied to a charged spinor; it reverses
the sign of the charge*

The reasons for these additional axioms become clear when we examine
the effect of (5.1.1) (with da as the elementary covariant derivative) on sums,
products, etc., and require that the generalized Va should satisfy the
usual additivity and Leibniz properties (4.4.16), (4.4.17). Additionally
we require of Va to preserve the charge of the spinor on which it acts,
i.e., to provide maps

Va:S^6f (5.1.9)

for each charge e and for each composite index j / , and to commute with
index substitution, contraction, and complex conjugation, as in (4.4.18)-
(4.4.20). In fact, such a Va is uniquely and consistently defined from its
action on uncharged fields (which, by the axioms, must be the elementary
covariant derivative) as soon as the action

V a : S - S a (5.1.10)
E ne

has been specified. For if aeS , i//^e^> (with a nowhere zero, n integral)
then, by the Leibniz and additivity properties, we have**

Vai/r^ = anVa(a~ V * ) 4- n^ OL~ l Vfla, (5.1.11)

where a " " ^ has charge zero and so, by hypothesis, its derivative is
known, as well as that of a. The axioms to be satisfied by (5.1.10) are
simply

a fl a (5.1.12)

We stress that since eAB, sAB, sA
B are defined as belonging to uncharged

modules, Vfl acting on them is simply the elementary covariant derivative
and so gives zero.***

* If complex charges are considered, the complex conjugated field has minus the
complex conjugated charge.

** If ae S and is nowhere zero, a ~ l stands for the unique element of © such that the outer
product aa" 1 , which belongs to <3> by (5.1.5), is 1, and a " is defined as (a~ 1)". It may
be remarked that the existence of a globally non-vanishing charged scalar is equivalent
to the non-existence of 'holes' in the space-time of non-zero effective magnetic charge
(Wu and Yang 1976). This is normally a 'physically reasonable' requirement; in any
case the discussion of this section can be carried out 'patchwise' using a collection of
different as whose non-zero regions together cover Jl.

*** One could envisage a modified system in which eAB possessed a charge 2/c and sAB a
charge — 2/c. But this would not make the system more general. For by a redefinition of
charge, namely by adding k times [number of: (upper unprimed) - (upper primed)
+ (lower primed) — (lower unprimed) indices], we can reduce the charge on sAB to zero,
while still satisfying all the rules.
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316 5. Fields in space-time

Electromagnetic potential

Let us now see how we can recover a potential 3>a and operator da from
a knowledge of Va. Analogously to choosing a coordinate basis, we here
choose an arbitrary nowhere vanishing a e £ . Then we can define a
potential

Oa:=i(ea)-1Vfla, (5.1.13)

which is evidently uncharged, since Va preserves charge. We define a
corresponding differential operator da by its action on a spinor i//^ of
charge e = ne.

daxjj^ : = oLnWa(oi~n^l (5.1.14)

so that, by (5.1.11),

Va^ = (da-ie®a)^ (5.1.15)

(cf. (5.1.1)). We can see from the last equation (by putting e = 0) that
da operates on i//^ as does Va on an uncharged spinor \)/^, namely as the
elementary covariant derivative. The operator da plays a part analogous
to that of the coordinate derivative in the standard theory. It satisfies
the usual additivity and Leibniz properties. In flat space-time, even in
the presence of electromagnetic field, we have

dadb = 8bda. (5.1.16)

This follows at once from the remark after (5.1.15); or from (5.1.14) and
the fact that the Vfl in that expression acts on uncharged fields, so that
the Vs commute. (Cf. (4.2.59).) In curved space-time, d[adh] involves curva-
ture but no electromagnetic part.

If a is specialized so that

a a = l , a e S , (5.1.17)

then we refer to a as a gauge. (If (5.1.17) does not initially hold, then it
can be achieved by the replacement ai—•a(aa)"^: aa is always a positive
uncharged scalar field provided a is nowhere vanishing, so (aa) ^ is
defined.) For any gauge a we have

0 = Va(aa) = aVfla + aVaa, i.e., a~ 1V aa= -a" 1V f la,

whence Oa is real:

$ , = * . . (5.1.18)

Also, for any gauge a, the operator da is real, in the sense

^p = a.p, (5.1.19)
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5.1 The electromagnetic field 317

as follows from the definition (5.1.14), the property (5.1.8), the relation
a = a~ *, and the reality of Va:

drf* = a" Vfl(oT" <p) - a""Vfl(a"ip) = dfl<p.
The gauge a serves to map any charged field (of charge e = ne) into

an uncharged one according to*

i / r ^ o T " ^ , (5.1.20)

so that, for example, numerical components with respect to some basis
frame may then be taken. (Recall that charged scalars do not have canoni-
cal numerical values.) Thus to specify components for charged fields, both
the basis and the gauge are required. It is easily verified that the action of
da goes over into the action of Vfl under the map (5.1.20).

If the gauge a is replaced by a new one a', then the corresponding
uncharged field that i/r̂  is mapped to, in (5.1.20), undergoes a gauge
transformation:

oT"i/^h->a'-"i/r^ - Qind{(x~nil/^l (5.1.21)

where the real uncharged scalar 6 is defined (possibly only locally) by

ei0 = a/a', (5.1.22)

and correspondingly we have

= Oa + -V f l0, (5.1.23)

and

dail/^^(da - ieV f l0)^. (5.1.24)

Observe that (5.1.23) has the usual form of a gauge transformation in
electromagnetic theory.

It may be remarked that in both the electromagnetic and gravitational
cases we have 'gauge transformations of the second kind'. These are the
transformations of the gauge which do not change the associated operator
da. In the electromagnetic case they are clearly given by ai—>a' = e~l6ot
where 0 is real and constant (although dropping the reality requirement
would affect only the normalization (5.1.17) of a and none of the succeeding
equations). In the gravitational case they are given by the linear inhomo-
geneous transformations xai-»,4b

axb + 2?a, where Ah* and J5a are real

* Such an isomorphism a : S * H-> 6 ^ is referred to as a trivialization.
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318 5. Fields in space-time

and constant with det (Ah*) ± 0. For some purposes one might require
Ab

a to be a (restricted) Lorentz matrix. Then a choice of 'gauge' xa (i.e., of
coordinates) would correspond to a mapping of the space-time M to
Minkowski space, whose symmetries would be respected by the gauge
freedom. This, in effect, is the procedure involved in the 'Lorentz covariant'
formulations of general relativity.

The Maxwell field tensor

Next we examine the commutator

^ab yayb ybya Z V [a V b]' \J.l.AJ)

Assume that there is no torsion, i.e., for an uncharged scalar ye 6 ,

Aaby = 0 (ye 6). (5.1.26)
£ C

Suppose O ^ a e S , ^e®, where e = ns, and where a vanishes nowhere.
Then there is a ye S such that

y(xn = \j/. (5.1.27)

From the axioms, as in (4.2.15), (4.2.16), it follows that Aab satisfies
additivity and the Leibniz law, and so Aafea" = ntxn~ 1 Aaba, for any integer
n. Thus, by (5.1.26) and (5.1.27),

ny(X"~lAab(X = Aab{l/>

i.e.,

#a-1A f l fc« = A f l^. (5.1.28)

If we set

then we have
iAabt = eFab^- I5 '1 '30)

The equation (5.1.30) shows that, unlike (5.1.13), (5.1.29) is independent
of the particular a that is chosen. We call Fab the Maxwell or electro-
magnetic field tensor* (associated with VJ.

If ij/^e^ is an arbitrary charged spinor, we have

In a non-simply-connected space-time region it is possible to have Fab = 0 every-
where, yet Va to be non-trivial in the sense that no charged scalar a exists with Vaa = 0;
equivalently, every choice of potential may necessarily be non-zero somewhere
(cf. Aharonov and Bohm 1959).
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5.7 The electromagnetic field 319

(5.1.31) PROPOSITION

Aab\j/^ differs from the result of a commutator acting on an uncharged i//^
simply by the additional term — ieFab\jj

J*'.

This fact can also be expressed by the equation

\ t ^ = ™laW - '^FabV, (5.1.32)
in which the first term on the right is actually covariant though da by
itself is gauge-dependent. For proof, note that if ^ G S ^ , then by the
Leibniz rule,

A>T"tfr*) = - not'"- V-*Aflba + a~nAab **,

whence

AJ^ = orAJz-y) - ieFJ,*. (5.1.33)

Since oi~n\j/^ is uncharged, Aab(a~n^) is just the elementary covariant
derivative commutator. Reference to (4.2.33) or (4.9.1) and (4.9.13) now
bears out our assertion. For example (cf. (4.2.32)),

K^c=-Kbc^i-^FJC. (5.1.34)
Next we examine some properties of Fab. In the first place, from (5.1.29),

it is evidently skew.

andA since Va preserves charge, Fab is uncharged. Furthermore, since
f e 6 whenever \jje&(e real), we have, by (5.1.30),

the complex conjugate of which (using Va = Va), together with (5.1.30),
yields

^ ab ~ ^ ab>

i.e., Fah is real Finally, by a process analogous to that (cf. (4.2.40)) leading
to the Bianchi identity, we have, for I / /GS,

But also (cf. (5.1.34))

v[avftv ^ = v[[avft]v ^ = - i ^ W V
Subtracting these two expressions and using (4.2.37), we get, after division
by|ie^,
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320 5. Fields in space-time

For an alternative derivation of this equation, let us for the moment
consider a particular gauge a and examine the relation between Oa and
Fab. Forming the curl of Oa,

V[A, = - a/**2) ( V ) ( V ) + (*/«*) vt* V = K*
(c/. (5.1.13), (5.1.29)), we see that

^ = VA-V.' (5-1-37)

Equation (5.1.36) now follows at once from (5.1.37), being an example of
the relation d2 = 0 of the exterior calculus (cf. (4.3.15) (viii)).

Equation (5.1.37) is, of course, the same as the usual relation between
field tensor and potential vector in Maxwell's theory. It implies that if
Fab = 0 then (locally at least) Oa can be expressed as a gradient: Oa = Va#,
where % is real and uncharged. (This is not so in the general case, even
though, at first sight, it may seem that (5.1.13) would give 0>a in this form;
but there is no allowed scalar 'log OL for charged a, whose Va could yield
a - 1Vaa.) If two distinct potentials <Da and <b'a satisfy (5.1.37), then
V[a(Q>'h] - Ofc]) = 0 and so 0>'a - <Da is (locally at least) a gradient: <b'a - ®a =
e~lVa9 with 6 real and uncharged. Thus, by (5.1.23) and (5.1.22), there
exists (locally) a gauge a' yielding any given potential satisfying (5.1.37).

Equation (5.1.36) is the first 'half of Maxwell's equations. If we define
the charge-current vector Ja (in Gaussian units) by

VflF
flb = 47rA (5.1.38)

this gives the other half. (These two equations are the basis of classical
Maxwell electromagnetic theory.) Note that Ja has charge zero. (This is
not as paradoxical as it may perhaps seem, since Ja is a 'current' and
involves charged fields and their complex conjugates bilinearly, cf.
equation (5.10.16) below.)

The electromagnetic spinor

Since Fab is real and skew, it has a decomposition of the form (cf (3.4.20))

Fab = <PABSA>B'+EAB<PA>B" f5'1'39)

where <pAB is the electromagnetic spinor and

<l>AB=<PiAB) = L2FABC-C' (5.1.40)

As previously described in §3.4, the tensors ~ Fab = (pABeA,B, and +Fab =
8AB(PAB'

 are> respectively, the anti-self-dual and self-dual parts of the
Maxwell field. Analogously to the way in which the curvature spinors
occur in the expansion of the operators OAB, C1A>B> {cf- (4.9.13)), the
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5.1 The electromagnetic field 321

electromagnetic spinor occurs additionally when charged fields are
involved (even scalar charged fields). For example, if i//e6 (cf. (4.9.1),

C W = l£AB'A^ = - fyeA'B'FJ' = - mA1fr> (5-1-41)
and, similarly,

OA.B^= -ieq>A,B,ip (5.1.42)

When ^ e S ^ , then — \eq> AB\\i** [or — ie(pA,B>il/^ gets added to the appro-
priate uncharged expansion of \Z\AB\j/^ [or \3AB^^' For, by transvecting
(5.1.33) with \sA'B\ we immediately obtain

V (0i-nV) - ieq>AB^9 (5.1.43)

and this bears out our assertion. (To get the corresponding result for
D ^ g , ^ , we simply transvect (5.1.33) with \eAB) For example, we have

The spinor form of (5.1.37) is

as is readily seen from (5.1.39). Alternatively this can be obtained directly
from (5.1.13) using (5.1.41).

A gauge condition often imposed on Ofl (normally in flat space-time)
is the Lorenz* gauge condition:

VaOa = 0. (5.1.47)

This is equivalent, via (5.1.13), to the following condition on the gauge a:

aVaVaa = (Vfla)(Vfla). (5.1.48)

With this condition, (5.1.46) simplifies to

<PAB = VAAK> f5-1-49)
since the part skew in AB on the right now vanishes.

The charge-current vector (5.1.38) in spinor form is given by

VA>B(pA
B + VAB'<PA

B' = 4njAA • (5.1.50)

However, (5.1.36) is equivalent to Va*Fab = 0 (cf. (3.4.26)), and so, since
*Fab = - i(pABsAB 4- ieAB(pAB> (cf (3.4.22)), to

VA'Bq>A
B = VAB'vA'B.. (5.1.51)

The complete Maxwell equations (5.1.50) and (5.1.51) can now be com-

* This is L. Lorenz (1867) - not H.A. Lorentz! (See Whittaker 1910).
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bined into the single equation

B \ (5.1.52)

together with the fact that Ja is real:

jAA'^JAA (5.1.53)

The divergence equation

VaJ
fl = 0 (5.1.54)

is a consequence of (5.1.52) or (5.1.38), the curvature terms cancelling
out. For example, from (5.1.52) we get (cf (4.9.2), (4.9.13), (4.6.19))

(Alternatively, this result can be simply derived by use of differential
forms. For if F: = Fili2, J:= J lV then (5.1.38) and (5.1.54) take the respective
forms d*F = jn*J and d f / = 0 , the latter being a consequence of the
former because d2 = 0. See (5.9.5)-(5.9.13) and (4.3.17) for details.) Com-
bining (5.1.46) with (5.1.52) gives

/ ^ ^ = : 2 n J . (5.1.55)

If the Lorenz gauge condition is adopted in the form (5.1.49), then we
can express (5.1.55) as follows:

2nJAA = VAS7CB$>A

= vA
BvC)B^A' + v[A

Bvc']BK
= nA>c'Q>A + L E A c'V WBB <3>A

LJ M/C, -t- 2t> v BB,\ wc,

(cf. (4.9.14) and (4.6.19)) and thus (cf (4.6.21))

4nJa = VbV
foOa + R'W. (5.1.56)

(It so happens that this particular relation could be somewhat more easily
derived in a tensorial way.)

Note that when Ja = 0, (5.1.52) can be written

S/AA\pAB = $ (5.1.57)

which is therefore the spinor version of the complete source-free Maxwell
equations V[aFbc] = 0, VaF

ab = 0. The similarity between (5.1.57) and the
spinor form (4.10.3) of the Bianchi identities (when specialized to vacuum)
is striking. In fact, (5.1.57) is the spin-1 version of the massless free field
equations (5.7.2) which will be considered in §5.7.
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5.7 The electromagnetic field 323

Relation to electric and magnetic ^-vectors

We shall end this section with some elementary formulae for Maxwell's
theory in spinor form. When we refer the field tensor Fab to a standard
Minkowski tetrad ta, xa, ya, za, its components are related by definition to
the components of the electric and magnetic 3-vector fields E and B as
follows:

0
0 - .

0 -B
B, 0

(5.1.58)

In terms of the standard spin-frame associated with the Minkowski tetrad
under consideration, and using the tensor-spinor translation scheme
(3.1.38), (3.1.39), (3.1.49), we then find, form (5.1.40),

Foi - ^ 3 2 - i

31 - F 0 ,

where
C=E-iB

Conversely, if we write (cf. (4.12.43))

(5.1.59)

(5.1.60)

we find, from (5.1.39),

(5.1.61)

0

<pQ - cp2 - ip0 - ip2)
0

{<p0 -<P2+<PO- <P2) (i<P0 + \(p2-\

{ — (p0 + cp2 — (p0 + cp2) 0 (2i<pl — 2i(j

J2<jp1+2<pj) (<p0 + q>2 + <pQ + ip2) ( -

(5.1.62)

Complex fields Fafo satisfying Maxwell's source-free equations play a role
as wave functions of single photons. For this and other reasons it is of
interest briefly to include this more general case in our discussion. Instead
of (5.1.39) and (5.1.40) we then have

Fab = (pABeA'B' + ZABVA'B" (5.1.63)
and

(pAB = ^FABC
c\ <PAB,=^FC

CAB" (5.1.64)

where <pAB, cpA,B, are now independent spinor fields. Formula (5.1.62) with
the definitions (5.1.61) still holds, but now cp replaces <p throughout; (5.1.59)
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324 5. Fields in space-time

holds without change; and a corresponding formula for q> is obtained by
replacing i by - i in (5.1.59) and in (5.1.60).

The dual (cf. (3.4.21)) *Fab of (5.1.58) is easily seen to be

ab

B l 0 ~ E 3 J

D 17 C\*F.K= „' „ ^ S (5.1.65)

- £ 2 £ t 0

Now there are two important scalar invariants associated with any electro-
magnetic field Fab, namely

P = lFabF
ab=-?Fab*F*, Q = $Fab*F*, (5.1.66)

which are perhaps better known in the forms

P = B2_E2 Q = 2EB, (5.1.67)

obtainable at once from the definitions (5.1.66) and (5.1.58), (5.1.65). In
spinor form we have, by use of (3.4.38) and (2.5.9),

K '= VABVAB = l2~Fah~Fab = ^at'^ = P + ^ (5.1.68)

In the case of a real field Fab, P and Q are manifestly real, and so they
constitute the real and imaginary parts of the one spinor invariant, K. If,
on the other hand, Fab is complex, we define, in analogy with (5.1.68),

K := <pA.B.<pA'B' = ±Fab
 + Fab = P-iQ (5.1.69)

(note K = K if the field is real), so that

P = (K + K)/2, Q = (K-K)/2i. (5.1.70)

If p = Q = o the field is null, i.e., the PNDs of cpAB (and also those of
q>A.B) are coincident. This follows at once from (3.5.29).

If Q = 0 and P J= 0, we say - in the case of a real field - that the field is
either purely electric or purely magnetic according as P < 0 or P > 0,
respectively. The reason for this terminology is that in these cases one
can find a Lorentz transformation (in fact, infinitely many) which 'trans-
forms away' the magnetic or the electric field, as the case may be. It is
merely necessary, for example, to apply a boost with velocity E~2(E x B)
in the first case, and one with velocity B~2(E x B) in the second case. We
shall see later (in §8.5) that in these cases, when one of the fields E or B
has been transformed away, the two PNDs of cpAB point in opposite
directions on the Riemann sphere.

We may also note that Q — 0 is the necessary and sufficient condition
for the tensor Fab to be simple (cf. (3.5.30) and (3.5.35)).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.006
https://www.cambridge.org/core


5.2 Einstein-Maxwell equations 325

Further remarks on the structure of the electromagnetic field will be
found at the end of §8.5.

5.2 Einstein-Maxwell equations in spinor form

We next consider the spinor form of the combined Einstein-Maxwell
'electrovac' equations, i.e., the field equations of general relativity with
the energy tensor of the electromagnetic field as the only source term.
First we must find the spinor equivalent of the energy tensor of the electro-
magnetic field. This is a real symmetric tensor Tab which is quadratic in
the electromagnetic field tensor Fab and satisfies

V a 7 \ = 0 (5.2.1)
ab v '

when the source-free Maxwell equations hold. There is one obvious
expression in the spinor formalism which has this property, namely

where k is a real and, in fact, necessarily positive constant (because of the
positive-definiteness requirements that we shall examine shortly). The
tensor defined in (5.2.2) is real, symmetric, quadratic in cpAB and therefore
in Fab, and it satisfies (5.2.1) by virtue of (5.1.57). Recall that the Bel-
Robinson tensor (4.8.9) satisfies a similar equation (viz (4.10.11)) for a
similar reason (viz (4.10.9)).

The standard tensor expressions for the Maxwell energy tensor are
1

4TTV
1 ab Airr Uyab

r cdr Facrb t

1
g 7 r V ac b T ac b). V • • )

Substitution of (5.1.39) into either of these expressions does indeed yield
(5.2.2) with k = (2n)~l :

Note that the second expression in (5.2.3) is very similar to the tensor
expression (4.8.10) of the Bel-Robinson tensor in terms of the Weyl
tensor. Again, Tab is invariant under duality rotations of the electro-
magnetic field (3.4.42), for these correspond to (pABi~^e~W(PAB' This in-
variance is rather less immediate from the tensor expressions (5.2.3). Also
Tab is trace-free:

(5.2.5)
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326 5. Fields in space-time

as follows at once from (5.2.4). Both duality rotation in variance and
tracefreeness are also properties of the Bel-Robinson tensor, cf. (4.8.16)
and (4.8.12). Of course, the electromagnetic energy tensor Tab was dis-
covered long before the Bel-Robinson tensor Tabcd. By tensor methods
Tabcd was hard to find, as an analogue of Tab. Only in terms of spinors is the
one as simple as the other.

Substituting (5.2.4) into Einstein's equations in the form (4.6.32), and
bearing in mind that now Ta

a = 0, we get

®ABA'B' = ^VABVAB' > A = & (5-26)

which, together with the Maxwell source-free equation (5.1.57), provide
the spinor form of the Einstein-Maxwell equations (and usually we take
I = 0). On the other hand, substituting (5.2.4) into (4.10.12) gives

Now the second term on the right vanishes because of (5.1.57); and, by an
easy argument (cf (5.7.16) below), one shows the symmetrization in the
first term on the right to be superfluous. So the Bianchi identity
becomes

K^ABCD = 2y vA.B.Vi'q>CD. (5-2.7)

In passing, we remark that the following modification of the Bel-
Robinson tensor for the Einstein-Maxwell equations, though not totally
symmetric, has zero divergence:

~~ ™ A'B'C'D'

7 _ 7 T —0V7p
1abcd ~ l{abc)d-> L acd ~ U> V 1abcd

Positivity properties of Maxwell's energy tensor

The tensor Tab possesses an important positive-definiteness property.
Observe that for any pair of spinors fiA, vA with corresponding null vectors

we have

TabM°Nb = ~\(PABfiAA2^0, (5.2.8)

i.e., this inequality applies to any two future-null vectors. Since any future-
causal vector is a sum of future-null vectors, we derive by such expansion
and use of (5.2.8) the following:
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(5.2.9) PROPOSITION

For every pair of future-causal vectors Ua, Va,

TabU
aVa>0.

This can be expressed slightly differently, in the form :

(5.2.10) PROPOSITION

For each future-causal vector Va,

VaTa
bTbcV

c > 0, VaTabV
b > 0.

For (5.2.9) says that the vector VaTa
b has non-negative scalar product with

all future-causal vectors; it is therefore itself causal (cf. (5.2.10) (1)),
and, indeed, future-causal when Va is {cf. (5.2.10) (2)). Condition (5.2.9)
or (5.2.10) is sometimes referred to as the dominant energy condition.
If Va is the 4-velocity vector of an observer, then Ta

bV
b is his Poynting

'4-vector', having component form: (energy, Poynting 3-vector). Thus
(5.2.9) states that the velocity of energy flow, as described by the Poynting
vector, does not exceed the velocity of light.

Note that the following weakened form of the above energy condition:

TabV
aVb>0 (5.2.11)

(sometimes: weak energy condition) states that the energy density measured
by an observer (Too) must be a non-negative-definite function of his 4-
velocity Va (which he measures as g^. It is of some interest to examine
the locus

TabV
aVb = 0. (5.2.12)

First take Va to be the null vector JVa = vAvA' ± 0. Then (5.2.8) tells us that
TabN

aNb vanishes if and only if

<pABvAvB = 0,

and this occurs (cf (3.5.22)) when the flagpole of vA points in one of the
two (possibly coincident) principal null directions of the field (pAB (taking
cpAB =f= 0). In fact these are the only causal vectors Va for which (5.2.12)
holds. For if Va is timelike, say future-timelike, we can select any future-
null direction Ma which is not a principal null direction of cpAB, and
express Va as a sum of a multiple of Ma and another null vector. Sub-
stituting into (5.2.12) and expanding, we get a sum of non-negative terms
(by (5.2.9)), at least one of which (namely TabM

aMb) is strictly positive.
Thus we conclude:
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328 5. Fields in space-time

(5.2.13) PROPOSITION

TabV
aVb = 0, VaVa > 0, Va £ 0 iffVa is a principal null vector of<pAB

Similar results hold for the Bel-Robinson tensor. We have, in fact,

(5.2.14) PROPOSITION

TabcdS
aUbVcWd^0for all future-causal vectors Sa, U\ V\ Wa,

and also

(5.2.15) PROPOSITION

TabcdV
aVbVcVd = 0, VaVa>0, Vaj=Q iff Va is a principal null vector of

*ABCD•

The reasoning is just the same as for the electromagnetic case above.
The principal null directions of ̂ B C D will later be seen to play a key role in
the classification scheme for Weyl tensors (see Chapter 8).

In §4.8 (cf (4.8.13)) we remarked that the Bel-Robinson tensor satisfies
a quadratic identity (in addition to being symmetric and trace-free) al-
though the complete tensor expression for this was not found explicitly.
In the electromagnetic case we have

ABA'B' CDC'D' ~ ABCD' * CDA'B' (j.Z.iO)

as an immediate consequence of (5.2.4). The tensor form of this equation
is well known in Maxwell's theory. We can obtain it from (5.2.16) by
repeated use of (2.5.23):

TaTb^i(TcdT«>)gab. (5.2.17)

5.3 The Rainich conditions

As we have seen in the preceding section, the Maxwell energy tensor
Tab is real, symmetric, and possesses the following

(5.3.1) PROPERTIES

(i) Ta
a = 0

(iii) Tab U
a Vb ^ Ofor every pair of future-causal vectors (7°, Va.

They are all automatic consequences of the spinor form Tab = kcpAB(pA,B,
(cf. (5.2.2)) with (PAB=(p{AB) and k real and positive. Now, conversely,
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5.3 The Rainich conditions 329

for each real symmetric tensor Tab satisfying (5.3.1) at any one point, there
exists such a spinor form at that point, and there exist real skew solutions
Fab of equation (5.2.3); moreover, all of these solutions are obtained
from each other by duality rotations (cf. (3.4.42)). This result was first
established by Rainich (1925) and equations (5.3.1) are therefore called the
Rainich conditions. Later the result was rediscovered by Misner and
Wheeler (1957) and made the basis of their 'geometrodynamics'. Of
course, in order to qualify as an electromagnetic field tensor, Fab must
satisfy Maxwell's equations, and thus certain further (differential) restric-
tions must be imposed on Tab in order for it to be the energy tensor of a
Maxwell field. These conditions (for non-null fields) were also first worked
out by Rainich and rediscovered by Misner and Wheeler. There seems
little doubt that this theory is most simply discussed by means of the
spinor calculus, as was effectively done by Witten (1962); our development
below follows somewhat different lines from his.

Suppose a real symmetric tensor Tab is given which satisfies the condi-
tions (5.3.1). Referring back to (3.4.4)-(3.4.6) we see that, because of

T = T (5 3 2
ABA'B 1(AB)(A'B')' \~>.J.±

Equation (5.3.1) (ii) in spinor form is

* AA E

This, by use of (2.5.23), yields

whence

T TBB

1 AA BB'l C

T lB'TD] OCF F F FBD'AA'[B 1 D]CC ^ CAC A C'CBDC '

j(A\[B'TD']\C) _Q ( c ^ 3 |
1 (A\[B l D]\o ~ u - yj.s.j)

Using the symmetry (5.3.2) to interchange A, B positions and C, D positions,
and relabelling the indices: A*-+B, C»—>A we have

T(A'\[B'TD']\C') = Q (5 3 4)
1 [A\(B A D)\C] U* VJ .J . t ;

Adding this equation to (5.3.3) and expanding the lower symmetry opera-
tions, we find

7[i'|[f l'r^1|c') = 0, (5.3.5)
where we have written s/ = AB and (€ — CD. Once again using the sym-
metry (5.3.2), and relabelling indices, we find from (5.3.5) that

T$iB'T!tfc'] = 0. (5.3.6)
Adding this to (5.3.5) we find, by complete analogy with the process that
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lead to (5.3.5) itself,

£ ; = 0, (5.3.7)
where srf' = ArB',<g' = CD'. This is equivalent to

T^T^, = T^,T^,. (5.3.8)

Now we choose an arbitrary non-zero spinor X4 and multiply (5.3.8) by
X^X*', thus obtaining (in regions where T^.X*X*' ± 0)

T^. = (T^.X«X«riTJ,*.X«'TJ,.vX«, (5.3.9)

which, because of the reality of Tab, is of the required form

1\BAB=k(PUBVAB' (5-3.10)

at each point,* with k a real scalar (cf. (3.5.5).) The last of the Rainich
conditions, (5.3.1)(iii), implies that any such /c, as defined by (5.3.10) and
(5.3.9), is in fact positive. We can therefore normalize cpAB so that k = l/2it,
as in (5.2.4). The Fab as defined in (5.1.39) automatically satisfies (5.2.3),
and the existence of a solution of (5.2.3) at each point is therefore esta-
blished. Evidently this solution is not unique, since <PAB*-+e l6<PAB

(9 real) leaves (5.2.4) unchanged and corresponds to a duality rotation
Fab^

{d)Fab (cf. (3.4.42), (3.4.43)). On the other hand, this is clearly all the
freedom allowed by (5.3.10) at each point (cf (3.5.2). So the algebraic part
of the Rainich theory is established.

Before proceeding to the differential part of the theory we shall discuss
what Misner and Wheeler call the complexion of the field. As we have seen,
all field tensors Fab in a class with common energy tensor Tab differ from
each other by a duality rotation at each point. In each such class there
are, except where K = 0 (null field), exactly two fields, differing only in
sign, which are 'purely electric', i.e., which have invariants P < 0, Q = 0
(cf after (5.1.70)). For let Fab be any field in the class, with corresponding
spinor (pAB and invariant K= : — e~2l0Ko where KQ is real and positive.
Then Pab = + {~Q)Fab have spinors ei6<pAB, and each has invariant e2l6K =
— Ko and is consequently purely electric, as reference to (5.1.68) shows.
Evidently Fab = ± {6)Pab. The angle 9 defined up to the addition of an
integer multiple of 7c, is said to be the complexion of Fab; these are the
angles through which ± Pab have to be duality-rotated in order to coincide
with Fab. The complexion becomes indeterminate only where the field is
null. Now, a 'generic' field Fab becomes null on some 2-surface (since
K — 0 corresponds to two real equations in a four-dimensional space).

* There is no guarantee, at this stage, that (pABcan be chosen to be everywhere
continuous.
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Thus a 'generic' Tab, subject to (5.3.1), will also satisfy TcdT
cd = 0 on a

2-surface, on which the complexion therefore becomes indeterminate.
It may then happen that the region of space-time from which this surface
has been removed is not simply-connected: a 2-surface has just the right
dimension to be linked by a curve in four dimensions. By choosing a
suitable closed path around this 2-surface it might be possible to take
Pab continuously into —Pab, so that a constant global choice of sign for
the field Pab might be impossible. This difficulty arises even before we
consider the particular Rainich field equations. So we now assume, in
order to proceed further, that we are concerned only with a region of
space-time in which the sign of Pab can be chosen continuously. Moreover,
we assume that Pab can be chosen to be smooth - which again does not
quite follow from the assumption that Tab is smooth, if there are regions
where Tab vanishes.

Differential Rainich condition

Now suppose that, in accordance with these assumptions, we are given
an energy tensor Tab satisfying the Rainich conditions (5.3.1). Then at
each point of our region of interest we have a smooth purely electric
tensor Pah having Tab for its energy tensor. We then ask the question:
is it possible to find a tensor Fab = °Pab, for some variable real 6, which
satisfies Maxwell's equations, and which therefore represents a Maxwell
field having energy tensor Tabl If xAB is the symmetric spinor correspond-
ing to Pab, with X = UABXAB < 0 > t h e n Q~WXAB

 w i l 1 correspond to Fah.
Applying Maxwell's equations (5.1.57) to this spinor, we get

B = 0.

Cancelling the exponential factor, multiplying by xBC-> anc* using (2.5.23),
we next get

XBC^AAyAB-^CAe = 0, (5.3.11)

which yields, after some relabelling of indices,

SAA, being a spinor defined by this equation. Since 6 is real, SAA, is a real
vector. Our problem now reduces to finding the tensor equivalent of
SAA, and solving (5.3.12) for 0.

We shall proceed synthetically. Differentiating (5.2.4) with xAB in place
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of (pAB, contracting once and writing k = 1/2TT, we get one term on the
right-hand side essentially like SAA, :

Pursuing this synthesis, we multiply (5.3.13) by (5.2.4) with x for cp and the
index A replaced by D, and find

= ~>ik2y2S 4- /c2yV / (5 3 14)

where we have used the reality of #. We can eliminate the last term in
(5.3.14) by taking complex conjugates, relabelling some indices, and
subtracting the resulting equation from (5.3.14); in this way we get

A\k2y2S = T V TAA'BB' - T V TAABB'
^ 1 / v A °£>C' DA'BB'y AC AC'BB yDA'

_ ' PP'QQ' rp y ryAABB f S ^ i M
^AA'DC A BB'PP'y QQ A ' {J.J.IJ)

where for the last line we refer to (3.3.46): the effect of the dualizer is
precisely to form a difference of two terms which differ from each other
by an interchange of the index pairs AC and DA' as in the line above.
Using the value

4/cY = TabT
ab

obtained from (5.1.68) and (5.2.2), we can now translate (5.3.15) into
tensor form (making obvious changes in the indices):

(5.3.16)

A differential condition on Tab is now obtained by the substitution of
(5.3.16) into the integrability condition for equation (5.3.12) :

, o — V o , — U, [J.J.I I)

which holds since 9 is a scalar. If the condition is satisfied, 9 is determined
by (5.3.12) and (5.3.16) to within an additive constant.

A discussion of the implications of Maxwell's equations in regions
containing loci on which the field is null (or zero), or which are not
simply-connected, is beyond our present scope. Note, however, that the
algebraic part of the theory applies equally to non-null and null fields.

5.4 Vector Bundles

A viewpoint we have tended to emphasize in this book is one which
regards the kind of algebra satisfied by various types of field as basic
(abstract index algebra and formal rules for V) and the geometric inter-
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y=f(x)

Fig. 5-1. The graph of a function.

pretation of these objects and operations as secondary. It is often useful,
on the other hand, to picture things also in a geometrical way and, in fact,
for the basic spinors themselves we took such a geometrical viewpoint in
Chapter 1. There we considered, but did not concentrate much on, the
concept of vector-bundles (cf. § 1.5), which is a useful one when passing from
a local to a global description. Since a rather complete local geometrical
picture of the basic spin-vectors can be given, the bundle description can, to
some extent, be there avoided. But in the case of the charged fields of
electromagnetic theory - and even more in the case of the 'multi-charged'
fields of Yang-Mills theory to be discussed presently - the geometric
content of the theory is hard to grasp except in the context of vector
bundles. Accordingly we give a brief introduction of this concept here.

Let us begin with a very simple idea, that of the graph of a function.
Consider a real-valued function of a single real variable/: IRi—•K. Usually
the graph of/is plotted, as in Fig. 5-1, by drawing a horizontal x-axis and a
vertical y-axis, and marking the locus y = f(x). Suppose, however, that
we are concerned with 'functions' of a different kind, whose 'values' are
not simply numbers, and are not necessarily comparable for different
values of the argument x. A familiar example of such a function is provided
by a tangent-vector-valued function on a manifold, i.e., by a vector field.
Thus, in place of the x-axis in Fig. 5-1, which was a copy of R, we envisage
some manifold Jt, called the base space (which, for definiteness, we could
picture to be, for example, a sphere S2). In place of the y-axis we need
something to represent the tangent space at a typical point of M. But
since the tangent spaces at any two different points of M are not generally
in canonical correspondence with one another, they must be thought of
not as identical but only as isomorphic spaces, called fibres, one for each
point of M. The fibre corresponding to a point PeJi is called the fibre
above P. Instead of the simple product space H x H carrying the graph
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fibre above P

cross-section
represents
vector field

T(Jt)

Fig. 5-2. The tangent bundle of Jt, and one of its cross-sections representing a
vector field on M.

of the function / : [Ri-> U, we now have a more complicated space, called,
in this example, the tangent bundle T(Ji) of the manifold M. A vector
field on M can be represented as a kind of graph known as a (smooth)
cross-section of the bundle T(Ji). (See Fig. 5-2.)

The tangent bundle is only one very important example of a vector
bundle, in which the fibres happen to be the tangent spaces at the various
points of Ji (and, of course, the bundle concept refers also to base spaces
other than the space-times we consider). Tensor or spinor bundles are
other examples; here the cross-sections are the elements of X*, or of
S^, for some fixed s/, i.e., all the tensor and spinor fields we have been
discussing so far: their properties could, in fact, have been developed in
bundle terms. Other types of vector bundles over Ji can be constructed
by choosing, for fibres, copies of any real or complex finite-dimensional
vector spaces (which may be quite independent of the tangent space to
Ji or its associated spin-spaces - for example, the isotopic spin space
discussed at the beginning of Chapter 4, or the "colour spaces" that are
frequently considered in contemporary particle physics). The spaces at
different points are to be all isomorphic to one another, and with an im-
portant stipulation: loosely speaking, these vector spaces must 'join
smoothly' together (so that it makes sense to speak of 'smooth' cross-
sections). Thus, although we don't need to know which elements in different
fibres correspond, we must know which elements in neighbouring fibres
'differ by little'. In fact, each point of Jt must belong to an open neighbour-
hood °U a Ji such that the portion of the bundle above % is smoothly
equivalent to a product space, although the entire bundle may not be
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equivalent to a product space. For an example of such a non-trivial bundle,
see Fig. 5-3 below.

Definition of a vector bundle

The aim of our procedure will be to provide an abstract tensor algebra
suitable for working within a bundle. This will entail the introduction of
bundle indices (denoted by capital Greek letters) to supplement the
ordinary space-time (and spinor) indices. For this, we shall need to
construct a system %° [or S^] whose elements describe (C00) cross-sections
of the bundle. Our definition will be given initially in terms of coordinate
descriptions which hold locally on Ji and for this, bold upright capital
Greek letters will be used according to our conventions of Chapter 2.
The procedure will then lead directly to the global and coordinate-free
abstract-index system. (A closely related approach has recently been
proposed by Ashtekar, Horowitz and Magnon-Ashtekar 1982.)

We need a more formal definition of a vector bundle (cf. Bott and
Mather 1968). Given a (Hausdorff, paracompact, C00) manifold Ji, a
real [complex] /c-vector bundle over Ji is a manifold ^ , together with a
C00 map

U.M^Ji (5.4.1)

(to be thought of as the projection which collapses each fibre to the point
of Ji 'below' it), such that

n ~ 1(P) is a real [or complex] vector space of

dimension kjor each PeJi.

Furthermore, defining a cross-section k of II ~ l(°li\ for any open °U ci Ji,
to be a C00 map

k\*U-+Tl-\qi\ (5.4.3)

such that I\°k is the identity on $U, we require that there is a covering of
Ji by a family of open sets {<%.}, JC = []<%., such that

i

for each !%i there is a basis 5^ = d{, ... , Sk of

cross-sections ofl\~l(°li.)

in terms of which the general cross-section k of Yl~l(°li.) is uniquely
expressible as (with no sum over i)

J U ><$<,, (5.4.5)

where A* = A1,... /XkeH{tfi.) [ or S ( ^ ) ] . Addition of two cross-sections
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336 5. Fields in space-time

and multiplication of cross-sections by scalar fields are defined in the
obvious way with respect to the linear structure on the fibres. The condi-
tion (5.4.4) says that, in the appropriate sense, M is locally a product space
(locally in Ji, that is).

Any (global) cross-section k of & will have the property that its restric-
tion to any open °U c Ji is a cross-section of I I " 1((%). However, if 0 ^
^U ̂  Ji, there may be cross-sections of I I " l(°U) that are not restrictions
of cross-sections of ^ , namely those which, because of bad differentiability
properties at the boundary of I I " 1 ^ ) , are not extendable beyond this
boundary. We require the module of extendable cross-sections above CfU.
Assume that $11 is given b y / ^ 0 for s o m e / e S . Then, as in §4.1, the
required extendable cross-sections can be represented as equivalence
classes of cross-sections of $ such that k ~ p whenever fk = / J I . If %
is an open set in Ji and W is a 'slightly smaller' open set for which # '
(the closure of W in Ji) c °U, then the restriction to W of any cross-
section above °H is also the restriction to W of some global cross-section
(since such a global cross-section can fall smoothly to zero between $U'

i

and tfl and then remain zero outside fy). In particular, the basis 5^ above
i

%{in (5.4.4), restricts to a basis S^ over a 'slightly smaller' %[, where each
S\,..., S'k extends to a global cross-section. Any covering {^.} of M can,
in this way, be made 'slighly smaller' to give a covering {<%[} of M with

By the argument given in §2.4, we can show that a finite covering

{^J of Ji exists and a partition of unity ue%, with u ^ 0 and £.M = 1,

where w ^ 0 defines %v and where the basis 8^ may now be assumed to

be extendable to global cross-sections. Thus if k is any (global) cross-

section of ^ , we have elements i^eX [or £ ] (components of k in the
i

basis S^) for which

uk =uk SQ.

Hence, summing,

A = £ i J W o . (5.4.6)
i

The argument of §2.4 shows that the cross-sections of $ form a totally
reflexive module over % lor 6 ] . We now use capital Greek letters &9*F,...,
as abstract labels for these cross-sections, and denote the module and its
isomorphic copies by X0,3T,... [or S 0 , S y , . . . ] . Then the relation (5.4.5)
can be re-expressed as

X* = JL*S%e%* [ o r S 0 ] (5.4.7)
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in cases where there is a global basis 3% for the cross-sections. Otherwise,
by (5.4.6),

X» = %"*•**%• (5.4.8)
i

The module X0 [or ®0] of cross-sections of 31 serves to characterize
J as a bundle over M completely up to isomorphism: for, by definition,
two bundles over M are considered isomorphic if and only if their modules
of cross-sections are isomorphic, as modules over 2 [or S ] .

We note that k® (with an abstract index) simply denotes an entire cross-
section and does not need to be expressed in terms of patches. This
illustrates again one of the advantages of the abstract-index notation:
calculations with abstract indices automatically have global significance.

Explicit construction of bundles

To construct a vector bundle $ over M, explicitly, consider the covering
of M by open sets % Y, °U1,..., over each of which the bundle is a simple
product %{ x Uk [or %x x C*], the various basis cross-sections (5.4.4) being

<%. x( l ,0 , ...,0), %. x(0,1,0, ...,0), . . . , # . x(0, ...,0,1).

Since every point of M lies in at least one of the tfl{, every point of 0&
lies in at least one °U.x x Uk [or °Ux x C*]. But some points of M may
lie in two or more of the ^ and then explicit transformations are needed
to specify the patching. Thus, if ?e%x n%., the pairs (P,y)e<%{ x Uk

\pr°U-x x Cfc],(P,J0e^j x Rf c[or^ x Cfc] will represent the same point of &
if and only if

y=L(P)y (no sum) (5.4.9)

where, for each i j and for each P9

L(P)eGUk9U) [orGL(/c,C)], (5.4.10)
ij

the matrix L(P) varying C00-smoothly with P, and GL denoting the group
of non-singular k x k matrices. For consistency, this entails that

L(P)=(L(P)) - \ (5.4.11)

and that throughout each °UX ntff] n ^ k we have

L (P) L (P) = L (P) (no sum). (5.4.12)

A family of matrices (5.4.10) satisfying (5.4.11) and (5.4.12) serves to define
the bundle.
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338 5. Fields in space-time

In practice, it may be convenient to combine the piecing together of the
fibres with the piecing together of the manifold itself. Then the various
ty/{ are given as coordinate patches for Ji, the coordinates for xetfl{ being

x* = x\ ...,xneU\ (5.4.13)

and coordinate transformations are specified on each ^ . n ^ . The Ls
are C00 functions of these coordinates, and (5.4.9), (5.4.11), (5.4.12) are
replaced, respectively, by

y =

t(xa)t{x*) =

(5.4.14)

(5.4.15)

L) (no sum). (5.4.16)

The possible non-triviality of the vector bundle concept (as opposed
to the simple concept of a global product space) arises because the fibres
possess symmetries (i.e., non-trivial automorphisms). This is clear for the
tangent spaces to points of 52, for example, since these spaces can be rotat-
ed into themselves. But even when the fibres are one-dimensional (and
real) such symmetries can arise. For example, take each fibre to be a one-
dimensional real vector space Y\ with no additional structure. Then
the only canonical element of Y' is the zero element; all other elements of
Y' are on an equal footing. The automorphisms of Y' are given by select-
ing any non-zero element reU and mapping Y' into itself according to
JI—>rj, where yeY\ As a simple example of how this can lead to a non-
trivial vector bundle, we shall consider the Mobius band (see Fig. 5-3).
Here the base space Ji is the circle Sl and the fibres Y' are one-dimen-
sional real vector spaces. We can take two coordinate patches %., ^U1 for

- i

y = sin'
(A

o r T

y = cosl

coordinate patches
<*

a smooth cross-section

Fig. 5-3. The Mobius band as a one-dimensional vector bundle over S1.
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Sl with coordinate xe( — 1,1) for °U, and coordinate xe( — 1,1) for ^ 9 ;
1 1 2 i z

i n t h e o v e r l a p ^ n<2T2( = # ' u r ) w e h a v e x = x - l if - 1 < x < 0 ,
2 1 2 1 2

0 < x < 1 (region 3C) and JC = x + 1 if 0 < x < 1, — 1 < x < 0 (region W).
As fibre coordinate we take yeU and specify

12 [ - 1 i n ^
~\ 1 i n r

12

Since °JC and W are disjoint, L is clearly C°°. Observe that the Mobius
vector bundle is topologically distinct from the product space Sl x R:
the orientation of the fibre reverses its direction as we pass once around
the circle S *. It is necessary to invoke an automorphism of V that involves
multiplication by a negative number, and thus it is essential that the fibres
not be canonical copies of R, which does not permit such an automorphism.
Another way to illustrate the difference of the Mobius vector bundle from
the cylinder S1 x R as a bundle over S1 is to consider that for topological
reasons every cross-section of the Mobius bundle must vanish somewhere
(i.e., must intersect the zero cross-section), whereas this is clearly not the
case for the cylinder bundle.

We could envisage another way of deforming the bundle S1 x R. To
construct the Mobius bundle we invoked the symmetry y^> — y of the
vector space i^\ Let us see how we could invoke a symmetry such as
y\-+2y. Suppose we construct a bundle over S1 and coordinatize it exactly
as in the Mobius case, but now we put

12 f l

Then, as we pass once around S1, there is a resultant stretching of V
by a factor 2 (or shrinking, if we go the other way). However, if we apply
the criteria for equivalence of bundles that we have adopted, we find that
our 'stretch band' does not differ from S1 x R. For we can find a family
of non-zero C°° cross-sections,

(that gradually take up the factor 2 as S1 is traversed), and this family
can be mapped to the constant cross-sections y = a of the cylinder bundle
S1 x R.

Sometimes, however, it is natural and significant to impose a further
structure on a vector bundle ^ , according to which the above stretch
band would, in fact, differ from the cylinder S1 x R. This is a structure
that supplies a means of characterizing certain cross-sections as locally
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340 5. Fields in space-time

constant (or 'horizontal'). For the case of the cylinder Sl x (R, many
locally constant cross-sections exist globally. But in the case of the stretch
band, if the cross-section maintains its local constancy, we find an incom-
patibility by a factor of 2 when we go once around Sl; only the zero cross-
section is locally constant everywhere.

Bundle connections

To formalize the concept of local constancy of a cross-section, we must
define a 'connection' on the bundle ^ . Now, a gradient operator Va

acting on scalar functions on Ji always exists (by the definition of a mani-
fold). In the same way that this operator can be extended to apply to tan-
gent vectors (and tensors and spinors) yielding a 'manifold connection',
so also can it be extended to apply to other types of bundle cross-sections
(and their tensors), yielding a 'bundle connection'. If both these extensions
have been defined, the operator can also act on objects with mixed tensor-,
spinor-, and cross-section abstract indices. Now consider a curve y on
M with tangent-vector field X. If a connection Va exists on Ji, a tangent-
vector field Zis constant (parallelly propagated) along y if it is annihilated
by the operator V = XaVa. And, in the same way, a bundle cross-section
k is locally constant if it is annihilated by V. Normally Vfl, operating on
the cross-sections of ^ , will be non-commutative (unless the base space
M is one-dimensional) and thus it will have curvature. Then the non-
integrability that is illustrated by the stretch band on a global level can
also occur at the infinitesimal level when a small loop in the base space is
traversed. In detail, given the gradient operator Vfl, a bundle connection
extends its domain to cross-sections by the requirements

(5.4.17)

(5.4.18)

[_or 6 ] . (5.4.19)

And this can be extended, in the usual way, to cross-section tensors, i.e.,
objects with several capital Greek indices. As before, V is defined as
XaVa. Then we can define nab by x

V V - V V - V =XaYbnh (5.4.20)
XY YX [X,Y]

(cf. (4.3.32)), since the LHS is bilinear in Xa and Ya. This gives the bundle
curvature KabQ*eXfab]Q[or <5fab]Q] via
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5.4 Vector bundles 341

(cf. (4.2.30)). If the torsion vanishes (as in the cases of most interest to us),
we also have

^ = Aafc:=VaVfc-VfcVa, (5.4.22)

so that

Kab^
Q = (VflV, - VbV)k°. (5.4.23)

Further properties of the bundle curvature, including its spinor description
will be given at the end of §5.5. Note that KabQ

0 reduces to Riemann's
Rabc

d if 3 is the tangent bundle and we use the Christoffel connection on it.
There is much more that can be said concerning the use of the abstract

index formalism in the context of vector bundles. We end this section by
making just a few relevant remarks. We note first that, as in the discussion
in §4.2, the change from one bundle connection Vfl to another one Vfl is
described by an element Qa0

QeZ% [or 6^0] where

and a formula similar to (4.2.51) for the change in bundle curvature holds.
The dependence of general expressions on the choice of bundle connection
may be investigated by use of (5.4.24) and its generalization analogous to
(4.2.48).

The bundle connection is also of relevance when we consider fields on
3 itself (which it is sometimes important to do) even in the case of scalar
fields on 3. For suppose F is such a scalar field. Then F is a function not
only of PeJt but of the 'fibre coordinate' y*eX\P~\ \pr S*[P]] . The
exterior derivative (gradient) dF of F then involves two parts, namely

| ^ and VaF. (5.4.25)

The first involves holding P fixed and varying y0, this being an
unambiguous derivative within each vector-space fibre, while the second
involves 'holding y0 fixed'. The latter concept has an invariant meaning
only when a bundle connection is defined. If not, then there is no invariant
splitting of dF into two parts like (5.4.25) (although the first by itself is
always invariant). Similar, but more complicated, remarks apply to
higher derivatives. Note that if F is analytic about the zero section of ^ ,
then we can express it as

where
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342 5. Fields in space-time

[or ®, S^, . . . ] , so F can be represented in terms of the infinite collection
of bundle tensors (/, f0, f O Q , . . . ) . Then we find that the two terms (5.4.25)
are represented by (fe,fS0,...) and (Vfl/, Vfl/0,...) respectively.

5.5 Yang-Mills Fields

Having discussed the basic properties of vector bundles, we are now in a
position to make a certain generalization of the theory of the electro-
magnetic field as developed in §5.1. The electromagnetic field is the
simplest type of a gauge field, namely the one corresponding to the group
U(l\ since the gauge transformations (5.1.21) are achieved by multipli-
cation by complex scalar fields of unit modulus, i.e., by fields of elements
of the Lie group 1/(1). It is possible to construct analogous theories for
other Lie groups: the resulting analogues of the Maxwell field are referred
to as Yang-Mills fields (Yang and Mills 1954). They are thought to have
relevance to elementary particle interactions.

We shall show in this section how the abstract-index formalism adapts
naturally to the treatment of Yang-Mills fields. While our expressions
will sometimes have a more cumbersome appearance than is usual in
conventional approaches, our purposes is not to replace these, but merely
to show how Yang-Mills fields fall into the general abstract-index scheme.
This has a conceptual value, and also a computational one in certain
contexts (cf. also Ashtekar, Horowitz and Magnon-Ashtekar 1983).

Mathematically, the theory of Yang-Mills fields is intimately bound up
with the concept of a vector bundle and of a connection in such a bundle.
The charged scalar fields (elements of S) of electromagnetic theory can be
regarded as cross-sections of a vector bundle whose fibres are complex
one-dimensional vector spaces (a complex line bundle), and then the
connection Va of (5.1.9) is the corresponding bundle connection. The
generalization to Yang-Mills fields consists in allowing the fibres to
become general abstract vector spaces V (again with no special relation
to the tangent spaces of M or their associated spin-spaces); the cross-
sections of the resulting bundle 3i are the Yang-Mills-charged space-
time-scalar (i.e. space-time-index-free) fields; and the elements of a
specified continuous symmetry group of "V" provide the gauge trans-
formations.

We use capital Greek abstract-index labels for the elements of the
vector spaces 'V ^ i^°^ V^^ ... and also for the modules S 0 ^
&1 ^ .. . of cross-sections of J*. If V is ^-dimensional, then an element
X° of S 0 can be described locally in terms of n scalar component fields
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5.5 Yang-Mills fields 343

z 1 , . . . , yl"eS, but not in any canonical way. Thus, to assign components
A* (locally) to a YM (Yang-Mills)-charged field we require some arbitrari-
ly but smoothly chosen YM basis for Y" at each point of M, giving,
though perhaps only locally, a basis of YM-charged fields, 3% = (<5f,..., 3%
so that X*> = X*3%. The modules S^,®^,. . . ,®!;; ;", . . . are defined from
®0 in the standard way, and spinor (and tensor) indices can also be includ-
ed to form modules S ^ = S 0 - ^ " '£'> where now the script letters s/,@9...
may include all these types of indices.

Structure of Y"\ Yang-Mills connection

The vector space Y" may be either real, in which case the component
fields X* of /I0 would normally be chosen real, or else complex. In the real
case, the appropriate notation Z0 rather than ® 0 should be used for the
module of YM-charged fields A0, because it is a I-module (having real
scalar fields as coefficients) and not an ©-module (which has complex
scalar fields as coefficients). However, even in the real case the correspond-
ing complexification ®0 = X0 © iZ0 can be defined, which is an S-module,
and the components J.° of / l 0e®0 are elements of ®. For convenience,
one might also sometimes introduce a complex basis 3%e<S0 even if
V is real, in which case the components A* would be complex even for
k0eZ0. This is similar to the situation that arises when a null tetrad
la,ma,ma,nae(Za is used for describing elements of Za, the space of real
tangent vectors.

The tensor algebra (..., 3/^,...) or (..., ®•*,...) satisfies the rules of §5.4
and Chapter 2. Thus sums, products, contractions, and index permutations
may be formed in the usual manner, and, in the case of S* ,̂ an operation
of complex conjugation may be introduced which sends S 0 into an anti-
isomorphic system ®0' with a new index label <P'. For the case of a real
space ir' complex conjugation applies to the complexification (..., ® •*,...)
of the real tensor system, but here we have $' — <P9 the real tensors being
those invariant under complex conjugation. (This is analogous to the Latin
indices of space-time tensors being unchanged under complex conjugation,
whereas spinor indices get primed - or unprimed.)

The space rT' in general has some additional structure imposed on
it, characterized by a certain Lie group ^ which acts as the linear trans-
formation group on ir' preserving that structure. Thus, for example,
ir' might be a three-dimensional real vector space and ^ the orthogonal
group 0(3) acting on Y" in the standard way. In this case there will be an
element go^eZo^ which is positive definite (g^^V0Vv > 0 if V0 ^=0) and
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symmetric {g{mf] = 0) and which is invariant under ^ . Conversely, ^ is
characterized by its leaving g0iF invariant and being the largest linear
group on V with this property. Similarly ^ = 50(3) would be character-
ized by the invariance of the pair of elements g0iFe<X0iF,e0WQeX0if/Q,
where g0Xff is as before and 0 =/= e0yQ = e[0%FQ]. As another example, the
scale transformations can be incorporated into ^ together with all the
elements of 0(3) if we specify that it is merely the product g0^gAQeZ0^
that is invariant, with gAQ the inverse of gw (i.e., g0Tg¥Q = S%). One may
also impose Hermitian-type structures o n f in the case when Y" is an
complex vector space. Thus, for example, the group ^ = U(n) arises if a
positive definite Hermitian bilinear form h00,V

0U0(>0 if U0' = V0 ±0,

*W = V * ) o n ^ x ^ (where ir0> is the complex conjugate of Y0) is
specified as invariant or, equivalently, an invariant isomorphism
U0'*-+h00,U

0' is specified between if0' and the dual "T0 of
if0. If the latter view is adopted, it may be convenient to identify 'V0'
with ir

0 and hence dispense with the primed indices altogether (as we
shall do in Vol. 2, in a somewhat different context, with twistors, cf.
Chapter 6, especially §6.9).

In the particular case of electromagnetism, ^ = (7(1) and if' is one-
dimensional complex-Hermitian. Here the abstract index notation is not
worthwhile to adopt. Every <&%';Q

A is one-dimensional, its elements being
all symmetric so that index permutation yields nothing new. Contraction
loses no information, so ®S;;;"f *s canonically equivalent to &%;% etc.
(since any element of the former can be contracted over A and Y without
loss of information), and so any such module is canonically equivalent to
one of the systems 6 (charge zero) S^1- •<Pn (charge rce), or ( 3 ^ Wn (charge
-ne). Finally, because of the Hermitian structure on i^\&"' may be
identified with S^,, so that complex conjugation merely reverses the
sign of the charge and yields nothing new. The various ®£;;;jj' are thus
all canonically equivalent to one another for each given charge value
ne (with n = number of upper unprimed minus lower unprimed minus
upper primed plus lower primed indices), and inequivalent for different
charge values. The general S*^, possessing spinor indices as well, is now
obtained by taking products with the above 'charged scalars' yielding a
charged tensor algebra of the type considered in §5.1.

Thus far, for a general if" and ^, we have merely set up the appropriate
abstract tensor algebra for YM-charged fields. The Yang-Mills field itself
can be expressed in terms of (or 'as') a bundle connection on ^ , defined
as in (5.4.17)—(5.4.19). That connection can then be extended to the general
YM-charged module ®^ following the same procedure as that given in
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§§4.2, 4.4,5.1, with, in the case of complex 'V ',

. (5.5.1)

In addition to satisfying (5.4.17)—(5.4.19), however, we require Va to
preserve - under the parallel transport of bundle vectors )? that it defines -
the structure of the fibres V that is characterized by the group ^ . One
way of doing this, when ^ is specified as the largest group that leaves
invariant a set of 'canonical' elements of the modules &%-••%', (e.g., the
g0tf, and e0if/Q, or / i ^ , , considered earlier), is simply to demand that these
elements be annihilated by Vfl. Alternatively, we may state this additional
condition on Va directly in terms of the group ^ , and this may seem more
natural than referring to (elements of) higher valence modules 6^;; ;£,'. For
this purpose we use the concept of a gauge and of a gauge transformation
on 3T lor ® ^ .

Suppose 9 is given as an explicit group of matrices q acting on Rn [or
C ] , where n is the real [complex] dimension of ir\ The structure of
Y" can be expressed as a family of linear maps from "V to W [or C"],
each pair of which is related precisely by an element q of ̂ . Each such
linear map may be thought of as an allowable coordinate system for
i^\ and is defined by a particular choice of standard basis for ir'. Using
the abstract index notation, we denote such a standard basis by

a,/= (<,..., Oe^, (5.5.2)

and the transformation from this basis to another, a ^ , is given by

a ^ = q^aij, matrix (q**)e&. (5.5.3)

(We use oix^ rather than the S^ used earlier, to emphasize that a standard
basis is chosen now, and to bring out the fact that this procedure general-
izes the introduction of the charged scalar a for the electromagnetic field.)
The collection of standard bases (5.5.2), related to one another by (5.5.3),
provides another way of characterizing the structure imposed on V by (#.

We now consider fields of these standard bases, i.e., sets of n linearly
independent cross-sections of &. The statements (5.5.2) and (5.5.3) still
hold at each point, but now

a ¥
y e 3 7 [or ®*], q^eZ [or 6 ] (5.5.4)

for each ¥,4* = 1,2,...,n. Such a set of fields a ^ is called a gauge for
3T [or 6^] and the matrix of fields q^ provides a gauge transformation.
A gauge always exists locally but for topological reasons may fail to exist
globally. A global gauge provides what in mathematical language is called
a trivialization of the bundle (M.
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Now Va will preserve the structure of V if under parallel transport
an allowable basis is carried into an allowable basis. So let us consider
some aspects of parallel transport that we shall need here and later. Let y
be a smooth curve in Jt and have tangent vector f corresponding to a
smooth parameter u on y (which is to say that f is scaled so that taVau =1).
A (tensor, spinor YM-charged) field Xs* is said to be parallelly transported
along y if it is annihilated by the operator raVa. We denote by exp(itfflVa)
the operation which, when applied to a field Xs* defined along y, yields a
new field

fl)A
v (5.5.5)

also defined along y, such that Is* at the point P (say with parameter w0)
is obtained from tf* at the point Q (with parameter u0 + v) by parallelly
transporting it back along y from Q to P. This operation is well defined
at all points of y for which points still exist on the curve when the para-
meter is increased by v. It also applies to fields on Ji if y belongs to a
smooth congruence of curves with smoothly varying parametrization.
As we shall see later, when Ji, y, f, and k5* are analytic, and \v\ is suffi-
ciently small, (5.5.5) can be written as the notation suggests (cf. (5.11.6)):

2

p = V + vtaVaA^ + —}t
aVJtbVbA*) + . • •, (5.5.6)

where ' = ' is to be interpreted in terms of parallel transport along y. But
in the present context only the first two terms are needed, in effect, and
analyticity need not be assumed.

In light of the above discussion, Va preserves the structure of V if, by
reference to (5.5.3) and (5.5.5),

for some matrix ( ^ e ) in ^ which tends smoothly to the identity matrix
as v-+0. Dividing (5.5.6) by v and going to the limit r ->0 (and therefore
using only the first-order terms in v), we obtain

where

P4,
e = r ^ - q T

e w l (5.5.9)
Lai1 Jt = o-

The matrix (p^e) belongs not to the group ^ but to its Lie algebra srf,
from which the elements of $ (close enough to the identity) can be recon-
structed by exponentiation Defining a / e S , p (*F= ! , . . . , « ) as the
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dual of a ^ ,

a/V^J, aW = a5, (5.5.10)
we obtain the required condition on Va in the form

matrix(fVe Vflav*)ej^ (5.5.11)

for each ta and oc^f.

Yang-Mills potential and metric

The Yang-Mills potentials can now be introduced (in close analogy with
(5.1.13)) as

®flY
e = iay

eVflaY
y. (5.5.12)

The factor i is incorporated here as a convenience when dealing (as one
frequently does) with a group ^ of unitary (or pseudo-unitary) matrices.
For then OflY

e turns out to be Hermitian in the sense

*>*<,* = *«?• (5-5.13)

Here we are adopting the convention that when complex conjugation is
applied to a lower numerical index *F, it is moved to the upper position,
and vice versa, e.g.,

aT
y = a w ' , a y

v = ay,T, ^ = g%, (5.5.14)

so that the unitary condition on q^ becomes

Multiplying (5.5.3) by its complex conjugate and contracting over 4",
we obtain the result that the quantity

F-a/aw'=FT (5.5.16)

is independent of the choice of standard basis. Essentially the same
argument applies to (5.5.7) shows that h^w goes to itself under finite
parallel transport. Hence

Vy=0, (5.5.17)

which, when applied to the defining relation (5.5.16), yields

a / V / f + a**" Vfla/ = 0. (5.5.18)

Transvecting with a^,Ya^e and using (5.5.12), we obtain the relation
(5.5.13) as required.

We can, in fact, use ti*"*" the Yang-Mills Hermitian metric - and its
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348 5. Fields in space-time

inverse hyW, = OL^OL^.^ to eliminate all occurrences of primed YM
indices, in the case of a group ^ of unitary matrices. For example, if we
substitute

W»-AM = W ^ X . (5-5.19)
we obtain an essentially equivalent YM-charged field. In adopting this
convention, we must remember that unitary YM index positions may
be reversed rather than primed under complex conjugation (compare also
the notation of twistor theory in Vol. 2).

The gauge quantities a ^ and OL^ (together with their complex con-
jugates, if needed) provide a means of assigning components to any
YM-charged field; e.g., the components of X^ are

V^VVW*- (5-5.20)
The same procedure can also be applied to any YM-charged spinor field,
giving its set of component spinor fields, in exact analogy to the procedure
(5.1.11) in the electromagnetic case. When a spinor (or tensor) basis is
defined as well (quite independently of the as), the components of these
spinor fields can then also be taken, so that finally everything can be
expressed in terms of scalars.

If component fields are taken with respect to two different gauges,
then these will be related by a YM gauge transformation; for example,

as follows from (5.5.3) and the two corresponding versions of (5.5.20),
where the matrix of rs (e^) is the inverse of the matrix of qs.

Given the gauge ohpP, we can define a differential operator da which
commutes with itself in flat space-time (or in curved space-time when
acting on YM-charged scalars) by analogy with (5.1.14). For example,

W = *S*SVJJ" (5-5.22)
(in the unitary case), where .srf contains no YM indices. An expression
analogous to (5.1.15) can also be written down, but this involves the
perhaps unnatural combination of a (gauge-dependent) potential with
(gauge-independent) abstract YM indices. So we prefer to write the
corresponding fully gauge-dependent expression, possessing numerical
YM indices only. We have, for example (with si free of YM indices),

VA^ = ViV^*V^ (5.5.23)
and expanding the right side, and transvecting the whole equation with
a^a^T in order to take component fields, we find from (5.5.12)
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5.5 Yang-Mills fields 349

Note that under the gauge transformation (5.5.21), the potential (5.5.12)
undergoes the transformation

*.*ei-*fl** = *.*%<V + 'V W > (5-5.25)
which, together with (5.5.21), preserves the form of (5.5.24).

Yang-Mills field tensor

Let us now assume the torsion vanishes (or else we can use &ab for Aab)
and consider the commutator Aab. We have

= -ipBF**r, (5-5.26)

where

V : = 2«eWb]B'r ' j *A W ) (5-5-27)
is the Yang-Mills field tensor (we have adopted the obviously allowable
convention that YM indices and space-time indices can be moved across
one another). Its component fields are given by

i f * = v <D T - i a > T O A (5528)
2Fabe y[a*b]Q ^A [a^b]S ' \J.J.£O)

If we transvect this equation with an arbitrary uavb, each term on the
right becomes a matrix belonging to the Lie algebra .stf. This follows
from (5.5.11), (5.5.12), and the fact that the quadratic term is just a com-
mutator of s£ elements. Thus, the same holds true for the Yang-Mills
field tensor components on the left.

It follows from the form of (5.5.26) that Fab@
lF is independent of the

gauge OL^W. Its component fields, therefore, are subject to the standard
gauge transformations

f ^ / r > = jp *r va~
s (5529)

Note that, in contrast to the electromagnetic case, the Yang-Mills field
tensor is YM-charged. Equation (5.5.26) yields also

and, for example,

^aby^ ~ *abc 7*F + i r abY 1A i r abA 7«P • ^J.J.Ji;

We have

Fa^^-F^, (5.5.32)
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350 5. Fields in space-time

and, when ^ consists of unitary matrices,

(5.5.33)
** ab&F' ' = FabO "«p«f

Furthermore, the relation

V t A c ] / = 0 (5.5.34)

follows from (5.5.26) (similarly to (5.1.36)).
As in the Maxwell case, therefore, the first 'half of the field equations

is an automatic consequence of the formalism. The second 'half of the
Yang-Mills ('source-free') equations is

VaFabJ = 0, (5.5.35)

and, as in the Maxwell case, this has to be imposed. We can also consider a
RHS to (5.5.35), constituting a Yang-Mills current.

Spinor treatment

The spinor expressions for the Yang-Mills field follow directly. We
have

Fab&* = WABJZAB> + ZABXABJ, (5.5.36)

where

,n Y — ,n "P_ lr C V

VABG — <P(AB)0 — 2r ABC 0

XA'B'S ~ X(A'B')0 = ~2* C A>B>0 , (5.5.37)

In the unitary case (5.5.33) we have
FabW ~ ^ABew^A'B' + SAB<PA'B"f"0> (5.5.38)

where

(PABSV" = VABO'KV' • (5.5.39)

Generally, with \JAB, DA'B' a s i n (4.9.13), we have

Y0, (5.5.40)

where, in the usual way, the effect of each of these operators on a multi-
indexed object is the sum of the effects on each index separately.

The spinor form of (5.5.28) is the pair of equations

which are complex conjugates of each other in the unitary case (cf.
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(5.1.46)). The spinor form of (5.5.35) is {cf. (5.1.51))

K<PABeF = Vlx*B'eF, (5.5.42)

which is a consequence of (5.5.41). The independent Yang-Mills field
equation (5.5.35) is (cf. (5.1.50))

V>^ / + V^,B,7 = 0, (5.5.43)

and (5.5.42) and (5.5.43) are together equivalent to

VBA>(PABJF = 0 = VB
AXA>BJ1', (5.5.44)

these equations being complex conjugates of one another in the unitary
case (5.5.33).

In the unitary case we can define a Yang-Mills energy tensor in analogy
to the electromagnetic energy tensor (5.2.4),

Tah = ^q>ABer9A'B-%, (5-5.45)

which possesses the usual properties required of a source term in Einstein's
field equations,

Tab=Tab, r[a6] = 0, (5.5.46)

and, as follows from (5.5.44) and XABGW = <PAB*"&

VaTab = 0 (5.5.47)

It also satisfies the trace-free condition characteristic of a massless
field:

Ta
a = 0. (5.5.48)

A class of Yang-Mills fields of some special interest, particularly in
view of certain interrelations with twistor theory (see Vol. 2, end of
§6.10), is that of self-dual and anti-self-dual fields. The self-dual part of
the Yang-Mills field is

+ F*0* = *ABXA'B'** (5-5.49)

and the anti-self-dual part is

~FM,r^<pAM
reA.r. (5.5.50)

(These fields are self-dual or anti-self-dual in the usual sense, i.e.,
on the space-time indices only.) A self-dual Yang-Mills field is one for
which <pABe

v = 0, while for an anti-self-dual one, XABJ = 0. Note that
the Yang-Mills field equation (5.5.43), or equivalently (5.5.35), is an
automatic consequence of (5.5.42), or equivalently of (5.5.34), in the case
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352 5. Fields in space-time

of a self-dual or anti-self-dual field. This fact has significance for Ward's
construction of such fields, as will be described in §6.10.

5.6 Conformal rescalings

In the geometric description of spin-vectors in Chapter 1 much use was
made of the null cone structure of the space-time manifold M. The role
of the metric itself-which gives rise to that structure - was not quite so
fundamental. In fact, it is possible to have spinors when only a conformal
structure is assumed for Jl, i.e., when significance is ascribed only to the
equivalence class of metrics which can be obtained from a given metric
gab by a conformal rescaling

9ab ^9ab = &9ab- (5-6.D

Here Q is any scalar field (Qe£) which is everywhere positive (Q > 0).
Note that no transformation of points is involved. The information con-
tained in the conformal structure is precisely the null cone structure.
(Evidently two conformally equivalent metrics share their null directions;
conversely, two metrics of Minkowskian signature which share their
real null directions must be conformal. See, for example, Rindler 1982,
equations (6.4)-(6.8).) From a basic physical point of view the null cone
structure may be regarded as more primitive than the metric scaling. For
example, for the discussion of the basic concept ofcausality between points,
it is fully sufficient. In the present section we examine the conformal
structure in detail.

In Chapter 1 we gave the geometrical interpretation of a spin-vector
KA at a point PeJi (up to sign) as a null flag. Its construction involves
the geometry of the null cone (in the tangent space to Ji) at P. A conformal
metric is, in fact, necessary in order for spinors to be defined. But the
entire construction is independent of the actual scaling afforded by the
particular metric gab. This scaling enters, instead, into the canonical
relation between &A and its dual ®A, i.e., into the (skew) inner product
structure on &A given by eAB. We recall that in §1.6 (cf. (1.6.25) et seq.)
the inner product {K,T} = KATBSAB between two spin-vectors was defined
purely geometrically, in terms of the geometry of the null cone. The
argument of this inner product was defined purely in terms of conformal
geometry (angles, stereographic projections, etc.), whereas the modulus
of the inner product required the concept of length. Thus, arg{*:, r} should
be invariant under conformal rescalings (5.6.1), whereas \{K, T}\ could be
expected to change. Thus, if we wish to retain our geometric interpreta-
tions, sAB could be altered under a conformal rescaling, but only to the
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extent of being multiplied by a real number.* In order to preserve (3.1.9):
Q AB ~ £ABGAB' w e therefore choose to accompany (5.6.1) by

= as
AB (5.6.2)

The only alternative to this choice, viz eAB = — QeAB is not continuous
with the identity scaling and is therefore rejected.

In the usual component (i.e. spin-frame) descriptions one has eAB =
0,1, — 1, 0, and this cannot be scaled as in (5.6.2), whereas (5.6.2) is natural
in the abstract index approach. It has the added advantage of making many
conformal transformation formulae simpler than they would otherwise be.
Thus abstract indices lead one naturally in a direction which is not the
one suggested by the component approach, and some definite advantages
are thereby gained. The choice (5.6.2) still leaves us freedom when it
comes to introducing spinor components. We consider three particular
possibilities. Suppose we have a dyad oA, iA normalized with respect to
sAB, i.e., OAIBEAB = 1 (cf. (2.5.39)), i.e., we have a spin-frame. Then the com-
ponents of sAB in this dyad are the standard eAB = 0, 1, — 1,0. If we apply a
conformal rescaling, and take 6A = oA, iA = iA, these vectors will cease to
be normalized with respect to the new sAB. In fact we shall have oAiBeAB = Q
so that sAB = 0, Q, — Q, 0. (It will always be understood that hatted quanti-
ties have their components taken with respect to the hatted basis.) In
this case the dyad 6A, iA is no longer a spin-frame. We have oA = — eABoB =
— QeABoB = QoA, and similarly iA = QiA, so for this basis £AB = 0, Q, — Q,
0. A second possibility is to define a new dyad 6A = Q ~ V \ t A = Q.~^iA.
This is normalized and e01 = 1, so £AB = eAB; it also gives oA = QLzoA,
iA = QuA, whence e01 = 1 also, and eAB = eAB. However, it is often more
convenient to make a third and asymmetrical choice: 6A = Q~loA,
\A = iA. This implies oA = oA and iA = QiA. Again we get a normalized
dyad, so that £AB = eAB and eAB = eAB. This choice often turns out to be
useful when there is a preferred field oA (or iA), as, for example, in the
discussion of conformal infinity given in Vol. 2, particularly §9.7 (and
Penrose 1968).

The 4Kronecker delta' quantities ga
b, sA

B, sA
B must remain unchanged:

fib_ b £B_ B p B' _ B' (Sf)^)
Ma — Ma ' bA ~ b A ' bA' ~ bA' ' {J.V.J)

since they effect index substitutions between the various sets S"\ or,

However, with a slight shift in our interpretations we can be led to consider a modifica-
tion of (5.6.2) in which Q is complex and the Q2 of (5.6.1) is replaced by QCl. This
naturally gives rise to a torsion in M, as discussed in Penrose (1983); cf. also footnote
on p. 356.
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alternatively, since they satisfy such relations as ga
bgb

c = ga
c (cf. (3.1.11),

(2.5.13)). It follows that we must also have

eA.B. = OeA.B,9 £AB = Q~l£AB, EA'B' = Q-leA'B' (5.6.4)

because of the complex conjugate and inverse relations these quantities
have with eAB. Similarly we need

gab = Q~2gab. (5.6.5)

One consequence of the above set of formulae is that the important
operations of raising or lowering a tensor or spinor index do not commute
with conformal rescaling. It must therefore be made clear, when an index
is raised or lowered, which g or s is being employed. Our convention will
be that any hatted kernel symbol must have its indices shifted with g or e,
while unhatted kernel symbols have their indices shifted with g or e.

Conformal densities

As we have observed above, a spin-vector KA has a definite geometric
interpretation (flag and flagpole) which is quite independent of any
rescaling. A spin-covector coA also has a define geometric interpretation,
which, however, is less direct. (See, e.g., the second footnote on p. 72 for
the geometric interpretation of the flagpole Wa = o)AcoA, of coA.) Given
only a conformal structure, coA cannot be interpreted via its associated
spin-vector coA, since that is determined only up to a factor. The basic
intrinsic way to regard coA is simply as the mapping KA\-^OJAKA for spin-
vectors KA.

Suppose we have a spin-vector KA which we regard as geometrically
determined, and therefore unaffected by rescaling:

KA = KA. (5.6.6)

Then for its associated spin-covector we have

£A = ?>BA£B = nSBAKB = nKA. (5.6.7)

Hence KA is a conformal density of weight 1, i.e., a quantity that gets
multiplied by Q1 under a rescaling (5.6.1).

Conversely, suppose we have an intrinsically fixed spin-covector coA,
so that

d)A = a)A. (5.6.8)

Then

coA = sABd)B = Q " leABcoB = Q~ 1coA, (5.6.9)

and this is a conformal density of weight — 1.
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More generally, it is convenient to work with conformal densities of
arbitrary weight. We say that 6^ is a conformal density of weight k if it is
to change under a rescaling (5.6.1) to

0^ = Qk0^. (5.6.10)

We may think of a conformal density as a function not only of a point on
the manifold Ji but of the particular gab chosen.* Normally k is an integer,
or possibly a half-integer. Observe that gab, sAB, sA,B, eAB, eA'B\ gab have
respective conformal weights 2,1,1, — 1, — 1, —2. Consequently, whenever
a spinor index is raised on # its conformal weight is reduced by unity,
and whenever a spinor index is lowered its weight is increased by unity
(cf. sAB and eAB). Similarly, when a tensor index is raised, the weight is
reduced by 2, and when a tensor index is lowered, the weight is increased
by 2.

The associated change in Va

We shall be concerned to a considerable extent in this section with
questions of conformal invariance. A system of fields and field equations,
etc., will be said to be conformally invariant if it is possible to attach
conformal weights to all field quantities occurring in the system, in such a
way that the field equations remain true after conformal rescaling.** For
this, we must first examine the conformal behaviour of the covariant
derivative operator Vfl. Since gab and eAB are altered under conformal
rescaling, their covariant constancy before rescaling imposes a different
condition on Va after rescaling. Thus we need two different operators
V andV where

a a
Va£

Bc = °. VfleBC = 0. (5.6.11)

We assume that the torsion vanishes in each case. By the results of §4.4, we
find (cf. (4.4.22), (4.4.23))

V a / = V J , Va£
C = Vfl£

c + 0 a /< f , (5.6.12)

* Thus we may, if we choose to, think of a conformal density as a field defined not on M
itself but on the 5-dimensional manifold which is a bundle over M, the fibres being
the one-dimensional spaces of possible choices of conformal scale at each point.
A conformal density is a field defined on this bundle which varies up each fibre ac-
cording to (5.6.10).

** A flat-space theory which is Poincare invariant and also conformally invariant in this
sense, will be invariant under the 15-parameter conformal group. This is because the
Poincare motions of Minkowski space become conformal motions according to any
other conformally rescaled flat metric. Conformal motions obtainable in this way
are sufficient to generate the full conformal group. This will be discussed fully in Vol. 2
(cf. §9.2). But the type of conformal invariance described above is really more general
than this, since it applies to curved space-times also.
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where (cf. (4.4.47))

0 a / = in f le/ + YA.BeA
c, Ila9 raeXa. (5.6.13)

Now, from (5.6.11) and (4.4.27), we have

whence

But since Q is real Ilfl = 0 and so

Tfl = Q-1VaQ = ValogQ. (5.6.14)

With these values of n a , T a substituted first into (5.6.13) and then into
(4.4.27), we have,* for a generic spinor xB

 p
Frs " ,

y P...S... y P...S... _ Y VP.S... _ _ y V P . . . S . . . _
v AA'^B...F... V AA'^B...F... X BA&A...F'... '" L A F & B . . . A ' . . .

+ £ P Y vx-s' - 4 - ••• 4 - F
 ST y

p x ' •• + . . . ( 5 6 1 5 )
^ bA l XA'^B...F... ^ ^ bA' l AX'X<B...F'... ^ ' l J l D - 1 J i

We observe the important fact that if the spinor XB'"F''"' *S charged, the
entire above argument goes through unchanged, and the formulae hold
without modification. Moreover, if xP

B
 s

Fr has additional Yang-Mills
indices this does not affect the validity of (5.6.15), no extra terms arising
from the presence of these indices.

It may be remarked that if it is desired merely to verify the above for-
mulae rather than derive them, then the theory used to obtain (5.6.12) in
(4.4.47) may be partially circumvented. One merely needs to verify that
®AA.B

D = YBA,zA
D with (5.6.14) leads to (5.6.11) and that the torsion of

Va is zero with this definition.
We note in passing that (5.6.15) holds also in Weyl geometry (Weyl 1923)

but with Ya merely restricted to be real, not necessarily a gradient. In
Weyl geometry there is a well-defined conformal structure (hence spinors),
but no preferred metric. There is a covariant derivative operator Vfl, but
it need annihilate no metric. The operator Va defines parallel transport
in the usual way, and so it allows comparisons of length to be made

If we admit the possibility of a complex Q, as mentioned in the footnote on p. 353,
we find that rather than allowing Ila ^ 0 it is more natural to introduce a torsion
i(Td — ¥d)eab

cd, where Ta is given by (5.6.14) - or to add this to a pre-existing torsion -
and modify (5.6.15) by using T in place of T in each term where T possesses an index
A (rather than A'). (See Penrose 1983.)
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at different points. But this comparison is path-dependent, i.e., non-
integrable. On introducing an arbitrary metric gab consistent with the
conformal structure, one finds that the associated Christoffel derivative
operator Va is related to the Weyl derivative Va by (5.6.15). Such a Ta is
'arbitrary', in the sense that for given gab, any choice of Y a e£ a yields a
corresponding unique Weyl connection Va.

As a particular case of (5.6.15) we can derive the conformal behaviour of
the covariant derivative of tensors. Consider first the case of a covector

V V =V V = V V — T V — T V
Va b yAA'VBB' V A A' V BB' A BA' V AB' l AB'V BA'

where we simply applied (3.4.13) to the last two terms in the first row.
To discuss the general case, we define the tensor

G,*c = 2V 6 ) ' - 0 f l J* . (5.6.17)
Then (5.6.16) can be stated

from which we get (cf. (4.2.46), (4.2.47))

^ " = Val/
6 + e a / t / c , (5.6.19)

and, generally (cf. (4.2.48)),

V X / . 7 . 1 = V a H } ; ; i + Qabo
bH»;;;:h

d+ ••• + <U'H>f-;;*+ • • •

- Qa/°Hh
fo

d.h QafnyX. (5.6.20)

Again, these formulae hold for charged fields as well as for uncharged
fields. We observe that the tensorial form (5.6.20) of the Va transformation
is rather more complicated than the spinorial form (5.6.15), in that each
Q-term really stands for three terms, via (5.6.17). This contributes to the
fact that proofs of conformal invariance tend to be easier in spinor than
in tensor formalism.

Our simple derivation of the change in curvature under conformal
rescaling finds a natural place in §6.8, Vol. 2, so we delay our detailed
derivations until then and give, here, only the basic formulae

®ABA'B' ~ ®ABA'B' ~ ^A(A'^B)B + ^A(A'^B')B

X ABCD T ABCD

(cf. (6.8.24), (6.8.25), (6.8.4)). Note, from the last relation, that *¥ABCD is
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conformally invariant. Moreover, we shall see in §6.9 that
ABCD

= 0
is necessary and sufficient for M to be (patchwise) conformally flat.

Behaviour of spin-coefficients under rescaling

We next give some formulae that relate conformal transformations to
spin-coefficients. First we give the transformations of the spin-coefficients
(4.5.21) under the general rescaling of the dyad:

6A = QW0+loA, *A = nwi + liA, (5.6.21)

which implies

oA = QwooA, iA = Q * V , x = Qwo + Wl + Ix- (5.6.22)

It will be convenient to write

co = log Q (5.6.23)

so that, by (5.6.14),

T00,, 5co = r0V9 d'a> = ri0,, D'CD = TIV. (5.6.24)

Then we find directly, by applying (5.6.15) to the definitions (4.5.21),
and writing QW0"Wl = Z,

£ y T

p a ft 6'
o ft a' p'
x y e' K' (5.6.25)

/el2

{p - Dtojl
<rZ

T - Sco

[e + (w0 4- l)Do
- a + w0S'co

P + (w0 + l)Sw
(y + w0D'u>)Z-

j]Z (y' + WjDa;)!^

a' 4- Wj(5a)

[S'+(H-, + 1)D

x' — c

(P' ~
'co]I,-1 K'JL-

1

2

The following four particular cases of (5.6.21) are of special interest:
(i) oA = oA,iA = iA;oA = Q-1oA,iA = Q-1iA ;x = &~lX,

(ii) oA = &oA,iA = QiA ;6A = oA,iA = iA;x = &L

(iii) 6A = tioA,iA = aUA ; o A = Q-ioA, iA = Q~UA;x = L

(iv) 6A = oA,iA = &iA ; o A = Q " ' o A , iA = iA;x = X, (5.6.26)

and it will be worth while to exhibit (5.6.25) as it applies to each of these
cases in turn:
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(ii):

K

p — Dw

a

x — Sw

K

p — Dw

a

x — Sw

K

p — Dw

a

x — Sw

Q 3 K

Q~2(p-
Q~2(j

Q l ( x -

8

a — S'w

P
y-l yw

8 + 1

a
3w

P + Sw

y

8 + -
a —

v--

Dw)

Sw)

y' — Dw

/?'
a' — Sw

8'

y
fj" + <5'w

a'
e' + D'w

-Dw
\S'w
\Sw
Dw

y -foe

X

o'

p
K

— S'w

- D'w

X

a'

P
K

0

0' + \S'w
a' - ^ a .
e' + T D '

fi~ '(a — S'w)

n~lp
y — D'w

UJ

Q

Q

a
8

— S'OJ

- D'OJ

x — S'OJ

o'

p — D'w

K

~l{/}' +S'a>)

+ D'cu

(5.6.27)

Q~ \x' — S'w)
o'

p' — D'w

QK'

(iv):

The simplicity of cases (i) and (ii) is somewhat deceptive, since the nor-
malization x = 1 cannot be preserved (i.e., the rescalings cannot be applied
to spin-frames). In cases (iii) and (iv) we can set x — X = 1 a n d then the
two middle columns of spin-coefficients become negatives of each other
(cf (4.5.29)). Note that the 'obvious' choice (iii) preserving this normaliza-
tion leads to somewhat more complicated formulae than the asymmetric
choice (iv). The latter is the more interesting choice, being useful, for
example, in the asymptotic analysis of the gravitational and other massless
fields (cf §9.7). We may also remark that the reverse-scaled case (iv)':
IA = iA9 S

A = oA, can easily be read off from (5.6.27) (iv) by simply priming
all unprimed quantities and removing the prime from all primed ones
(taking / = / , Q! = Q, co' = co).

Note from (5.6.25) that whichever scaling is taken,

K, a, K\ & are all conformal densities,

(of respective weights 3w0 — wl9 2w0, 3wx — w0, 2wx) (5.6.28)
and also

T — f and the imaginary parts of p, p\ s, ̂ ', y, /

are all conformal densities (of respective weights

wo + w1,2wo,2w1,2wo,2w1,2wo,2w1), (5.6.29)
while for certain scalings, some selections of e, a, /?, y, e', a', /?', y' can be
made to be such.
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360 5. Fields in space-time

Conformally invariant 'etW and 'thorn1

We end this section by showing how the compacted spin-coefficient
formalism of §4.12 can be further developed so that its operations become
conformally invariant. Recall that under a ('gauge') change of dyad
(4.12.2):

oA*-*AoA9 o
A\-*XoA\ IA^\HA-> iA^>\iiA, (5.6.30)

a scalar quantity rj of type {r',r;t\t} changes as follows (by definition,
cf. (4.12.9)):

Yiv-+kr'It'iirj?ri. (5.6.31)

Now suppose that rj also has a conformal weight w so that, under a con-
formal dyad rescaling (5.6.21), rj changes as follows:

rj = Qwrj. (5.6.32)

(Note that this commutes with (5.6.31).) Then we shall define new compact-
ed p and 6 operators, to act on such doubly weighted scalars, by

P« = P + [w " r ' K + !) ~ rwi ~ *'(wo + 1)- twi]p

3* = 3 + [w - ^(WQ + 1) - rwx - t'w0 - r(wx + 1)]T

6; = a' + [w - r'w0 - Kw! + 1) - t'{w0 4- 1) - t w j r ' (5.6.33)

It may be directly verified that the result of these operations is as follows:

Qw + W0 + w%rj, (5.6.34)

so that p<g,p'<g,&<£,&% are conformally weighted operators of respective
weights 2w0, 2w1, vv0 + wx, vv0 + wt (in the sense defined, mutatis mutandis,
after (4.12.17)). But they are also 'gauge' weighted operators of the same
types (4.12.17) as p, p\ 6, S', respectively.

Note that as defined, p^ and p'<# are not real, in general, nor are d<#
and H^ complex conjugates of one another*, in contradistinction to (4.12.30).
Had we wished, we could have worked with the real operators j(p^ + p^\
i(^V + P'«) an(* w ^ h ^ e complex conjugate pair ^(6^ + 5y, y(S^ + d'v).
This would have been slightly more complicated, but essentially equiva-

* A case can be made, however, for defining operators p^ = p^, d^ = d'^ which act
on quantities which have generalized conformal weights described by two numbers,
where a complex Q is adopted and these numbers provide the powers to which each
of Q and Cl is raised under rescaling (see footnotes on pp. 353, 356).
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5.6 Conformal rescalings 361

lent, since the differences p^-p?, &# — &<#, etc., are simply expressible
in terms of the conformally weighted quantities p — p and T — f' {cf
(5.6.29)), which are 'allowable' elements of the present calculus. It is the
non-conformally-weighted quantities such as p + p and T + f', and indeed
p and T individually, that must be 'withdrawn from circulation' (cf just
before(4.12.15)).

As we saw in (5.6.22), x has conformal weight vv0 + Wj + 1, so that, by
(5.6.33) and (4.12.23),

When the normalization x is unchanged (e.g. when oA, iA is a spin-frame
before and after rescaling), we have w0 + wx + 1 = 0. Then, with p = r' — r
andg = t' — t, as in (4.12.10), the expressions (5.6.33) simplify to

P<*• = P + [w + (P + flVjp, K = K + [w - (p + ^)wo]p',

\ = 6 + [w + Pwi ~ ^wo]T' 6 i = b> + tw ~ Pwo + ^WJT'-
(5.6.36)

Using these operators we can simplify the appearance of various con-
formally invariant equations written in (compacted) spin-coefficient form.
We note, for future reference, that the massless free-field equations, which
have been given in compacted spin-coefficient form in (4.12.44)-and
which we discuss in more detail in the following section - can be written
(with r = 1,... ,n)

M r - M r - 1 = ^ ~ ! W r - 2 " (W " ^ r + 1 • (5'6'37)

and that the twistor equation (cf. (4.12.46)) becomes

= (TCO0,

= KCO°,

° = 6^o;1. (5.6.38)

For these equations we take <\>A L and coA to have conformal weights
— 1 and 0, respectively. The resulting values of w possessed by the various
components (/>r, co

A depend upon the choice of w° and w1 in (5.6.21), but
this makes no difference in the definitions (5.6.33) since the coefficients
in the correction terms exactly compensate for changes in w° and w1.

We note, furthermore, that the exterior derivative equation y = dp of
(4.14.80), taking the 3-form y and the 2-form fi both to have conformal
weight zero, as stated in (4.14.81), can be written in the form

^orio'ii'^Mio'ii'-^orii' + ^Ai'io" (5.6.39)
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362 5. Fields in space-time

and that (4.14.92) becomes

» o ~ 6*tJLi}jr= f N9 ~ <P N9- (5.6.40)

Further uses of these operators will be found in §§5.12,9.8,9.9.

5.7 Massless fields

We now examine an important class of spinor equations which turn
out to be conformally invariant: the massless free-field equations for
arbitrary spin \n, where n is a positive integer. Let §AB L have n indices
and be symmetric:

The massless free-field equation for spin \n is then taken to be

The complex conjugate form of this equation (n indices)

S/AA0 =0 6 =6 (5 7 3)
V UA'B'...L' U > UA'B'...L' U(A'B'...L) {*>./.Jf

also describes a massless free field of spin \n. When these fields are to
represent wave functions in M, it is usual to impose a positive-frequency
requirement to the effect that in their Fourier decomposition, only terms
in Q~iPaX° occur for which pa is future-pointing, xa being the position
vector (cf also §6.10). Then the solutions of (5.7.2) represent left-handed
massless particles (helicity —jnh) and the solutions of (5.7.3), right-handed
massless particles (helicity +\nh). (See Dirac 1936a, Fierz & Pauli 1939,
Fierz 1940, Penrose 1965, Penrose & MacCallum 1972.)

Recall that the Bianchi identity has this form in empty space, with
^ABCD taking the place of 0 (cf (4.10.9)). It is thus a 'curved-space spin-2
field equation', and its close relation to Einstein's field equations has
already been noted (see remark after (4.10.10)). Similarly, the source-free
Maxwell equations (5.1.57) have this form with cpAB taking the place of
(j) (spin 1). The Dirac-Weyl equation for the neutrino (cf (4.4.61)) also
falls into this category with </> =vA (spin ^), namely

S/AA'vA = 0.

Spin 2: gravitational perturbations

The equation (5.7.2) in the case of spin 2 also has interest in Ml (cf Fierz &
Pauli 1939), as the spinor version of the 'gauge invariant' form of the weak
field limit of Einstein's vacuum equations (i.e. linearized Einstein theory,
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5.7 Mass less fields 363

sometimes called the 'fast approximation'). We envisage a smooth 1-
parameter family of space-times, satisfying Einstein's vacuum equations,
such that the member with parameter u = 0 is ML For each fixed value
of u we have a spinor field *¥ ABCD

 o n t n e manifold, satisfying VAA>X¥ABCD = 0.
Since this field tends smoothly to zero as w->0, we would expect that
u~lx¥ABCD has a well-defined limit (J>ABCD

 a s w-*0, i.e., in the Minkowski
space u = 0, and that it there satisfies the /to-space version of (5.7.2).
Indeed, this procedure can be carried through, although it is more usual
to describe linearized Einstein theory terms of a real symmetric tensor
('potential') field habeX(ab , in M, which represents the first-order deviation
from flatness of the metric (gju) = gab + uhab + O(u2\ where gab = gJO)
is, by supposition, the flat-space metric). The computation of the curvature
(to first order in u) yields the following result:

Koa •= l«n(«" lKb») = 2V[BVltc*fl|t], (5.7.4)

where Vfl is the flat-space derivative operator and so possesses the com-
mutative property.

Obviously Kabcd has the Riemann tensor symmetries

Kabcd = K[cd][ab]' K[abc]d = 0> (5.7.5)

and the Einstein equations (4.6.30) become

(5.7.6)

where Eab is the linearized theory's version of the energy-momentum

(5.7.7)

tensor Tab. In the absence of sources Kabcd satisfies

so it coincides with the first-order Weyl tensor \\m(u~lCabcd(u)\ and can
be expressed in the form (cf. (4.6.41))

Kabcd = <>>ABCD*A>B*C'D' + ^A'B'C D'8AB£CD> (5'7'8)

where 4>ABCD = ̂ m(u~ 1X^ABCD(U))
 anc^ ^s totally symmetric. Evidently

Kabcd satisfies the Bianchi identity

V ( A * = 0 (5-7-9)

which, in the case (5.7.7), is equivalent (cf. (4.10.9)) to

Vf«ci> = 0. (5-7.10)

Thus if <t>ABCD is regarded as a massless field, its field equation (5.7.10)
corresponds to the Bianchi identity of Kabcd, while its symmetry is ex-
pressed by the symmetries (5.7.5), (5.7.7)-which involve the Einstein
field equations. Physically, <\>ABCD is more significant than hab. For hab
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364 5. Fields in space-time

is subject to 'gauge transformations' which leave the physical situation
unchanged. These are induced by the 'infinitesimal coordinate transfor-
mations' and have the form

K»^K»-^^b) for some ^ (5.7.11)

However, Kabcd is invariant, and so, consequently, is (j>ABCD- We may
think of (5.7.10) as the gauge invariant equation for the weak vacuum
gravitational field. The tensor version of this, together with the symmetry
of(t>ABCD, is all of (5.7.5), (5.7.7) and (5.7.9).

In fact (5.7.9), or in the absence of sources (5.7.10), is sufficient for the
Kabcd °f (5-7.8) to be derivable locally from some symmetric hab as in
(5.7.4). Moreover, for the empty regions outside sources, the sufficiency
of (5.7.10) holds globally if and only if a certain set of 10 integrals vanishes.
(See Sachs and Bergmann 1958, Trautman 1962 and §6.4.)

Whether sources are present or not, we always have

6 =kK £AB'eCD'

which becomes, via (5.7.4),

giving the relation between hab and (j>ABCD • When sources are present, with
weak-field energy-momentum tensor Eab, the generalization of (5.7.10)
is {cf. (4.10.12))

VAA'(h =A7TVVB'F A> (5 7 13)
V VABCD H / t ' y (B£jCD)Bl ' \~>.i.iJ>)

The field equation satisfied by hab can be written

i — v vCD'h — v vGD'h
nAB'BA' yAB'y HCA'BD' y BA'y nCB'AD'

Kb = Kb ~ k A ' = hAB'BA' = KA'AB'

where • = VaV
fl and

Kb

(cf. (3.4.13); and it reduces to

u
when the 'de Donder gauge condition'

holds. With this gauge condition we can, in the absence of sources, drop
the symmetry brackets around the indices in (5.7.12) (because symmetry
in AD and in BC follow from V[BhC]A,DB, = 0, while symmetry in AB follows,
in vacuum, from Ohab = 0) and, in the presence of sources, we can write

T AtSLU I A D ca 3 ' A\D L)1J p
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5.7 Massless fields 365

As we shall see in a moment the conformal invariance of this weak field
gravitational theory in the absence of sources (namely (5.7.10)) is quite
transparent in terms of 4>ABCD • But it is by no means easy to see in terms

ab

An important generalization of the flat-space formula (5.7.4) is obtained
if we consider perturbations away from some given non-flat space-time
M, where we suppose, for simplicity, that both Jt and the perturbation
satisfy Einstein's vacuum equations. Then we have a fixed non-zero
^ABCD f° r t^ie background and some variable 4>ABCD representing the
perturbation. However, (t>ABCD is not now 'gauge invariant', in the sense
that if the hab from which it is obtained undergoes (5.7.11), then (t>ABCD

changes, in general. Roughly speaking, the reason for this is that there is
an uncertainty about which point of Ji corresponds to which point of
the perturbed space. Since (j>ABCD represents a difference between the
perturbed curvature and *¥ABCD, this uncertainty will affect the resulting
value of <i>ABCD whenever *¥ABCD =/= 0. Furthermore, the massless free
field equation (5.7.10) does not in general hold. To describe the perturba-
tion we need to involve the potential quantity hab explicitly. The (vacuum)
field equations are now

VaV"V - VBV6V - VaVcV + W / = 0 (5.7.14)

with hab subject to the gauge freedom (5.7.11), and in place of (5.7.12)
and (5.7.10), respectively, we have

(5 7 15)( ) ^ 4Tp T ABCD

and

VAA'rh —^hRSAB'V W — *V X7B'hRSA' — ±*V \/RB'h SA>

V VABCD 2n yBB'*RSCD X RS(BCy D)H B' 2TRS(BCy nD) B"
Under (5.7.11), (j>ABCD transforms as

rh \-+/h — fEE'V NP — 9 ^ V FEE>

VABCD VABCD <=> *E'(A*BCD)E ^*E{ABCyD)E'^

(These relations are adapted from Curtis 1975.)

Conformal invariance

To establish the conformal invariance of (5.7.2), it is convenient first to
re-express that equation in a form that will also later be found useful.
The equation is equivalent to (cf (2.5.24))

y M'M^AB.-.L ~ yM'(M(t)A)B...L

and, consequently (cf (3.3.15)), to
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366 5. Fields in space-time

Now choose (j)AB L to be a conformal density of weight — 1:

Then, by (5.6.15),

/T) I (T\ I ff\ • . . I A\ I > / X I

M M'AB...L M M' AB...L M A~ MB...L M L>T AD...M? y >

where we have used the particular case r = — 1 of the useful relation

Q- 'VQ r = rY , (5.7.19)

which follows at once from (5.6.14). Now the RHS of (5.7.18) beyond the
first term is automatically symmetric in MAB ... L. Consequently the
LHS is symmetric in MAB ... L if and only if (5.7.16) holds. But this
means that equation (5.7.16) is conformally invariant. For future reference
we note another form of this statement which now also follows at once
(on transvecting (5.7.18) with eAM):

VAA'(bAJi . =Q.~2>VAA'(bAR r. (5.7.20)
' AD...Li ' AD...Li '

5.8 Consistency conditions

There is an algebraic consistency condition for equation (5.7.2) in curved
space (Buchdahl 1958, 1962, Plebanski 1965) if n > 2 , and another for
charged fields </> in the presence of electromagnetism if n > 1 (Fierz and
Pauli 1939). To obtain these relations we apply the operator V*, to (5.7.2),
assuming that 4>ABmmmL has charge e\ then, by use of (5.1.44),

= UAB4>ABC...L
= - ie(pAB(j)ABc...L — XABM

A (pMBC.L - XABM
B <\>AMC...L

The first two terms involving X vanish since xA(BM)
A = 0 (cf. (4.6.6)).

Since also, by (4.6.35), XUBM)
C = 4^B M

C, the above calculation yields,
for n 5* 2,

(» - ^ ^ C = - *<PM4>ABC..JL- (5-8-2)

This constitutes an algebraic condition which relates the field to the
conformal curvature ^ABCD if w > 2 and to the electromagnetic field
(pABife =/= Oandrc > 1.

These algebraic conditions render the field equation (5.7.2) unsatis-
factory for those situations where the conditions are non-vacuous.
Let us enumerate some possibilities. First, if space-time is Minkowskian,
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5.8 Consistency conditions 367

and the electromagnetic field or the charge of (j)A L vanishes, then the
field equation (5.7.2) is satisfactory, in the sense that there is as much
freedom in its solutions as there is freedom in finding complex solutions
of the wave equation (or real solutions of Maxwell's source-free equations).
This follows from the work of §§5.10, 5.11. Secondly, suppose that the
space-time is curved but (locally) conformally Minkowskian, i.e., that
a conformal rescaling can be found (locally) which reduces the metric
to that of M. Then again (still assuming ecpAB = 0), equation (5.7.2) is
satisfactory since, because of its conformal invariance, the solution
procedure can be reduced to finding the solution in M. (In fact, ^ABCD

vanishes in conformally Minkowskian space, so that (5.8.2) becomes
vacuous if its RHS vanishes.) Thirdly, suppose that the space-time
is not conformally flat, but still ecpAB = 0. The Weyl conformal spinor
now turns out to be non-zero (cf. (6.9.23)) and so the consistency condition
(5.8.2) must be contended with. In the cases n = 1, 2 (neutrino and Maxwell
fields) there is again no restriction and the fields turn out to have the same
freedom (apart from possible global problems) as they have in fVO. However,
for n > 2 the condition (5.8.2) is very restrictive. For example, Bell and
Szekeres (1972) show, among other things, that in a vacuum space-time
which is 'algebraically general' (i.e. with distinct gravitational PND, cf.
after (3.5.21), and §§7.3, 8.1) there can be at most two linearly independent
solutions of (5.7.2) for n = 4, and in general the only solutions are multiples

This is the situation when we are looking for solutions of (5.7.2) on a
given space-time M. Of course, the situation is quite different for Einstein's
(full) vacuum equations. If we take cf) in (5.7.2) to be the Weyl spinor

, then the restriction (5.8.2) becomes

ABM _ r\
D) —V,

and this is vacuous, being automatically satisfied by any totally symmetric
^ABCD'I f° r if see-saws are applied to the three contractions, the expression
on the left is seen to equal minus itself.

The consistency relations (5.8.2) in the presence of charge e and electro-
magnetic field cpAB are less interesting, simply because charged massless
fields do not occur in nature. Difficulty would be encountered with the
electromagnetic interaction when the spin of the field is greater than \
(n > 1). However, the same situation (existence of algebraic restrictions)
also arises with massive charged fields (Fierz and Pauli 1939). Moreover
similar difficulties occur, in the presence of gravitation (curvature), when
the spin is greater than \(n > 2) (Buchdahl 1958).
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368 5. Fields in space-time

Energy-momentum tensors

In the massless case, there appears to be a relation between the above-
mentioned difficulties and problems with the construction of a meaningful
(symmetric, divergence-free) energy-momentum tensor such as Tab

in the gravitational case, or of a charge-current vector such as Ja in the
electromagnetic case (these being needed for the RHS of the relevant
field equation). We have already seen in (5.2.4) how to construct Tab

when the source is a spin-1 zero rest-mass field. For the Dirac-Weyl
case of spin | one has

Tab = k(iviAVB)A,vB, - i vVB,MvB) , (5.8.3)

while for the massive (Dirac) spin \ field (4.4.66), the energy-momentum
tensor is

k being a real constant. (It should be borne in mind that these fields are not
classical fields. This is true of all half-odd-integer-spin fields, since the
exclusion principle applies to such fields cf. Bjorken and Drell 1964. Thus
the expression (5.8.3) should really be applied in the context of quantum
field theory. The lack of positive definiteness for TabV

aVb, with Va timelike,
is related to this.)

These tensors are obviously symmetric and, in the case of (5.8.3), trace-
free, Ta

a = 0, because (5.7.16) implies its symmetry in AB and AB'. The
vanishing divergence condition VaTfl6 = 0 also holds, although the verifica-
tion of this fact in curved space-time is not quite immediate. It depends
on the cancellation of the curvature terms arising from the commutation
of derivatives. The result for (5.8.3) may be established from the following
identity, which will also be needed in Vol. 2:

yA'yB'(A^B) yB'ByA'^A 2yA'ByB'^A

(This follows from (4.9.7), by using the identity (2.5.23) in the form SA
AB =

SA
BA — SB

A
A.) When £A = vA the two differentiated terms on the right

vanish and the symmetrization around AB on the left may be omitted.
When Va is applied to (5.8.3) a term involving (5.8.4) appears, which cancels
with the conjugate term. The result then follows easily.

The case of spin 0 deserves certain special considerations which are
best delayed until Vol. 2, §6.8. Here we simply state two alternatives for

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.006
https://www.cambridge.org/core


5.8 Consistency conditions 369

the energy-momentum tensor, namely

for the equation •</> = 0 (cj) real) and

for the real conformally invariant equation ( • + \R)(j> =0 (cf. (6.8.30)-
(6.8.37)). (See Newman and Penrose 1968.)

However, for spins 3/2, 2 , . . . , there is no expression for Tab which has
the required properties of symmetry and vanishing divergence, and which
depends quadratically on the local field quantity (pA L. This is not hard
to see by examining the various possible terms quadratic or bilinear in
(j)A L and $A, L, and their derivatives. In effect, (\>A L has an excess of
indices which, as it turns out, cannot be removed by contraction. Taking
derivatives of <\>A L does not help this difficulty. What one would need
to do, essentially, is to integrate (j)A L in order to construct Tab. Indeed,
expressions for Tab constructed from potentials for (j)A L do exist. But
these are not satisfactory for general relativity because the local values
of Tab - not merely the integrated total energy - are needed in an essential
way in Einstein's field equations. These local values would be 'gauge-
dependent' quantities if potentials are used, and thus not physically
meaningful. In the case of gravity itself, no local energy-momentum tensor
occurs. But it is not needed, since gravity does not contribute to the right-
hand side of Einstein's equations. Gravitational energy emerges, instead,
as a non-local quantity (cf. §§9.9,9.10).

Although of limited physical interest, in the case of zero rest-mass
fields, it is worth noting that for such fields it becomes impossible to define
a locally meaningful charge-current vector (on the pattern of (5.10.16),
(5.10.21)) at just the same spin value at which difficulties with the consistency
relations (5.8.2) are encountered. If the neutrino field were charged, its
charge-current vector would be proportional to vAvA,. But for higher spin,
local ('gauge invariant') expressions are not possible.

Consistent higher spin systems

Under certain circumstances, consistent massless field equations can
be given for higher-spin fields in interaction with gravitational or electro-
magnetic fields. However, these higher-spin fields can no longer be des-
cribed simply by a gauge invariant spinor subject to some field equations
like (5.7.2). For example, we have seen how to construct spin 2 fields on a
background space-time M which satisfies Einstein's vacuum equations,
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370 5. Fields in space-time

by considering perturbations of the space-time metric which still satisfy
the vacuum equations. Thus, in place of the gauge invariant field quantity
(t*ABCD, we describe the field by habei:{aby subject to (5.7.14) as field
equation, where two such quantities hah are considered to be equivalent
if and only if they are related by a transformation of the form (5.7.11);
then we define <t>ABCD by (5.7.15). But if we consider this to be the description
of a spin-2 massless field on a given vacuum space-time background,
we still have the difficulty that a gauge invariant local energy-momentum
tensor does not appear to exist.

The situation is perhaps a little more satisfactory for the case of a
spin-3/2 massless field. One of the byproducts of supersymmetry theory
(cf. Freedman, van Nieuwenhuizen and Ferrara 1976, Deser and Zumino
1976) is a coupled system of equations for a spin-3/2 massless field and
the gravitational field. The spin-3/2 field can be given by a potential

(which, however, is normally described, in effect, by the 'Majorana
4-spinor-tensor' (xAb>XAb%

 t n e s v m m et ry condition on xABC being more
complicatedly expressed than here) subject to

In Ml this would imply that the 'field'

<t>ABc = VAXBCC

satisfies the massless field equation (5.7.2), but in curved space-time there
are correction terms involving XABC

 anc* ^ e c u r v a t u r e - The energy-
momentum tensor is, modulo a divergence, proportional to

VABCXAB' ~~XAB VABC

plus quartic terms in ^ . . . due to a torsion (cf. §4.2), proportional to
c -c c -c

X AA'X BB~X BB'X A'A-

(Full supergravity has gauge transformations involving the gravita-
tional and spin-3/2 fields: the metric is altered by a term proportional to
XABIA'ZB') + Z(AXB)A'B>

 a n d t h e spin-3/2 field by VAC4B, where the 'spin-f
gauge field satisfies VA£A = 0. The spin-3/2 field also possesses certain
anti-commutativity properties, and these are needed for the consistency
of the above equations. The form of the equation on XABC

 t n a t w e

have given arises when the gauge transformations are restricted so that
the symmetry in AB is maintained. See also Aichelburg and Urbantke
1981.)

Other particular systems of consistent equations seem also to be
possible (cf. Dowker and Dowker 1966, Buchdahl 1962, 1982).
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5.9 Conformal invariance 371

5.9 Conformal invariance of various field quantities

We recall that the energy tensors of the Maxwell and Dirac-Weyl fields
are trace-free. That, as might be expected, is a property closely related to
conformal invariance. Consider, generally, a trace-free symmetric tensor

T = T = T
1 ab L ABA'B' (AB)(A'B)

whose divergence vanishes:

VaTab = 0. (5.9.1)

Because of the quadratic nature of Tab in the field quantities, we might
expect Tab to be a conformal density of weight — 2:

With this hypothesis, (5.9.1) is indeed a conformally invariant equation.
For, by (5.6.15),

— \7aT — lXaT — T ATA

~~ V * ab *" l l ab V A l BAB
^ A' '-r A ^fA y A' _ YA T A>

B A AB' A' AB B' B'l ABA'

= 0 - 2TaTab + TaTab - 0 + TaTab - 0 = 0.

A similar (but slightly shorter) calculation shows that the vanishing
divergence condition on a charge-current vector, VaJa = 0, is also con-
formally invariant if

This may be inferred alternatively from other considerations. For example,
in a coordinate basis there is the classical expression (cf. Schrodinger
1950)

VaJ
a = ( - gp — { ( - g) Va}, (5.9.4)

where g = det(^fab). Keeping the coordinates fixed when applying a rescal-
ing (5.6.1), we have g = Q8g, so that { ... } has conformal weight zero if
Ja has conformal weight —4 (which agrees with (5.9.3)). The whole
expression is therefore a conformal density (of weight — 4), showing that
its vanishing is a conformally invariant property.

There is also a coordinate-independent way of proving the same thing.
Observe that Ja has a dual 3-form

using the notation of (3.4.29) and (4.3.10), specialized to 4 dimensions
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372 5. Fields in space-time

as in §4.13 (Latin indices!). Thus,

d V =V J W3. , ]=- i (V 8 )eM,w« ' <5-9-6)
using (4.3.14) and (3.4.32). This shows that the exterior derivative of
Vis, in effect, simply the divergence of Ja. Since, by (3.3.31),

Kbcd = nXbcd (5.9.7)
we have, by reference to (5.9.3) and (5.9.5), t 7 = V . Hence, d fJ = dV,
since exterior derivative does not depend on the choice of covariant
derivative. Thus

as before.
The expressions VaTab and W a are part of a more general system of

conformally invariant expressions that will be considered in Vol. 2 (see
(6.7.33)).

Next we establish the conformal invariance of Maxwell's equations.
This can be done in many ways. The source-free equations are (cf. (5.1.52))
VAA cpAB = 0, and we have already seen (cf. (5.7.17)) that these are con-
formally invariant if

^ B = ""V>tii ' i . e . , ^ B = 0 - V B , (5.9.8)

whence, via (5.1.39),

Fab = Fab, Fab = n~4Fab. (5.9.9)

When a source term is included, the equations are (cf. (5.1.52))

VAA'(pAB = 2nJA' (5.9.10)

By (5.7.20) and (5.9.3) we see that each side is a conformal density of weight
— 3, and invariance is established.

We may also infer the conformal invariance of Maxwell's equations
by using the formalism of §5.1. The definition of Fab via (5.1.13) and (5.1.37)
is unaffected by conformal rescaling, and this is consistent with (5.9.9).
Thus the first half of Maxwell's equations, (5.1.36), is evidently unaffected
by conformal rescaling. In the proof of the second half of Maxwell's
equations, (5.1.38), the formalism has nothing to add and we are thrown
back essentially on our previous argument. We note that the choice of
conformal weight for Fab which naturally arises in the formalism of
charged fields is the same as that required for conformal invariance of
the Maxwell equations. But this is not a foregone conclusion, since the
invariance of Maxwell's equations does not necessarily imply that the
link of Fab to the charged fields must be invariant. In the case of (linearized)
gravitation the corresponding uniformity does not hold.
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5.10 Exact sets of fields 373

We can also use differential forms to re-express Maxwell's equations,
and so to re-establish their conformal in variance. If we set

<D:=<D. ,F:=F. . ,*F:=*F. . , (5.9.11)
» i ' 1112 ' U 1 2 ' v '

then, by (4.3.14) and (5.1.37),

d<D = Vr. O. . = \¥. . = ±F,
[11 i 2 ] 2 1112 2 '

whence

F=2d<&. (5.9.12)

By successive use of (4.3.14), (3.4.27), (5.1.38), (5.9.5), we find

4TT 4TI

d *F = V[(i *Fhh] = \elMJhF* = -jeili2haJ° = y V

The Maxwell equation (5.1.38) is thus seen to be equivalent to the second
of the following formulae:

d f=0 , d*F = —f/, (5.9.13)

while the first is directly equivalent to the Maxwell equation (5.1.36).
As we have seen, (5.1.13) suggests <D = <i>, whence, from (5.9.12), F = F
and consequently *F = */r; then, taking f / = V (which corresponds to
(5.9.3)), the above equations (5.9.13) (and also (5.9.12)) are all equations
between terms of zero weight, and are thus conformally invariant. (Note
that, despite the appearance of (5.9.13), Maxwell's equations are not
completely metric-independent, since the relation between F and *F re-
quires a conformal metric.)

It is interesting to observe that the Lorenz gauge condition,

Va% = 0

(cf (5.1.47), having the same form as (5.1.54) (which is a consequence
of Maxwell's equations), is conformally invariant if Q>a (like Ja) is assigned
a weight — 2. But this is not the weight which makes (5.1.37) conformally
invariant. Hence we must regard Maxwell's theory with the Lorenz gauge
as not being a conformally invariant theory.

5.10 Exact sets of fields

In this section we shall show how to set up a general framework for
the discussion of sets of interacting fields in flat or curved background
space-times, or in general relativity itself. The gravitational field is then
described by the spinor ^ B C D which, for the purposes of the general
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374 5. Fields in space-time

discussion, can be treated on a similar footing to the other fields under
consideration. The key concept will be that of an exact set of interacting
fields (Penrose 1963, 1966b). Once one has an exact set, one is ensured that
the fields will propagate correctly through space-time; in the case of
general relativity, they propagate correctly and simultaneously generate
the structure of the space-time. The appropriate form of initial value
problem, as discussed in various aspects in §§5.11, 5.12, is based on
characteristic (i.e., null) initial hypersurfaces. For an exact set, the initial
data will be complete and irredundant (without constraints) so that the
counting of degrees of freedom becomes a simple matter. The simplifi-
cations and unifications that are obtained are a direct result of the con-
sistent use of two-component spinors. A corresponding tensor treatment
would, on the other hand, be exceedingly complicated.

Let us consider a system of fields

YAB...G 'VAB...H 9-">%AB...E > (J.1U.1J

where each spinor is symmetric in all its unprimed indices and symmetric
in all its primed indices. Either, or both, sets of indices may be vacuous.
(The reason for writing all the primed indices here in contravariant form
and the unprimed ones in covariant form is simply notational convenience
for what follows.) We have seen in §3.3. that any spinor can be represented
in terms of es and spinors which, like (5.10.1), are symmetric. Any finite
set of interacting locally Lorentz covariant (finite component) fields can
therefore be represented as a set (5.10.1).

Suppose the fields (5.10.1) are subject to a set of covariant differential
equations involving the operator Vfl. Then (5.10.1) will be called an
exact set of fields if, at each point P, the following two conditions are
satisfied:

(a) all the symmetrized derivatives

. . . , v ( J . . . v L y A H ) , • - . , v ( J . . . y M i A E) , . . . yj.iv.A)

(including the 'zero times' differentiated fields (5.10.1)) are independent
(i.e. they can take independently arbitrary* values at P) and

(b) all the unsymmetrized derivatives

Vw> S7z'il/P'-U' Wv> V z ' y p —T (5 10 3)
. . . , v K . . . \ N y A H , . . , v j . . . v ^ i A E , . . . \j.i\j.j)

We are ignoring such questions as limits on the growth rates of the quantities in the
list (5.10.2) (or (5.10.3)). In effect, 'arbitrary' is to mean that members of any finite
subset of (5.10.2) can be chosen arbitrarily. Our considerations are here essentially
algebraic, and a more complete discussion would require the appropriate notion of
Sobelov space.
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5.10 Exact sets of fields 375

are determined, at P, by the values of the symmetrized derivatives (5.10.2)
at P, by virtue of the differential relations satisfied by the fields.

In effect, when we refer to the spinors (5.10.2) as being independent,
we mean that there are no algebraic (spinorial) relations connecting them
and their complex conjugates. Likewise, the spinors (5.10.3) are to be
determined from the spinors (5.10.2) and their complex conjugates by
algebraic (spinorial) relations.

An exact set (5.10.1) will be called invariant if the expressions for (5.10.3)
in terms of (5.10.2) are the same whichever point P is chosen and are
locally Lorentz covariant (i.e. (5.10.3) are expressed as definite spinorial
combinations of as and the spinors (5.10.2) involving no extraneous
quantities other than scalar constants).

Free masskss fields

As a simple example of an invariant exact set, consider a massless free
field of spin \n > 0 in M. Such a field is represented by a single symmetric
spinor (j)AB L, and (cf. (5.7.2)) is governed by the field equation

VAA'<i>AB...L = Q' (5-10.4)

We saw in (5.7.16) that this equation is equivalent to the symmetry condi-
tion V™'(j)A_L = V™M(t>A...L)- Next consider VjJ'V '̂<\>A L. The operators
VjJ , Vj^ here comute, so that we have symmetry in NA...L as well as
in MA...L. Thus VjJ'VjJ'^ L = V^V£J (j)A L). Symmetry in N'M' then
also follows from the commuting of the operators. Repeating the argument
with higher derivatives, we get, generally,

Y7M yN \/Q'Ay = y ( M y ^ ' wQlJ) r5 10 51
V M yN "' yQ VA...L V ( M VA' •*• yQ VA...L)- yj.iv.J)

Thus, condition (b) for exactness is (trivially) satisfied, as is the condition
for invariance. Since (5.10.4) is linear and derivatives commute, all
algebraic relations satisfied by the derivatives (5.10.5) at P must be linear.
Such relations would necessarily emerge as linear operations on the
indices of (5.10.5) because of the invariance of (5.10.4). But (5.10.5) expresses
complete symmetry, so no further relations can in fact emerge. Thus
condition (a) for exactness is also satisfied, so that (f)AB L forms, by
itself, an invariant exact set.

This example covers the Maxwell field (n = 2), the Dirac-Weyl neutrino
field (n = 1) and the linearized Einstein gravitational field (n = 4) in M
(cf. §5.7). The case n = 0 is also essentially the same, but in place of (5.10.4)
we must have the second-order wave (D'Alembert) equation in M

V ^ ' v </> = 0. (5.10.6)
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376 5. Fields in space-time

We can restate this equation as

V £ V ^ = 0, (5.10.7)

the symmetry in A'B' being a consequence (because the derivatives
commute) of that imposed on AB. Thus V^'Vjj'0 is symmetric in AB
and A'B': Vj' V j 4> = V(

( '̂ V ^ (/>. Then, by the same argument as above,

VA
AK'K* = V{i:K'-K')

)<t> (5.10.8)
and 0 forms an invariant exact set.

A further (rather trivial) generalization of the massless field equation
is the following. Let 0A~f be symmetric and subject to the simultaneous
conditions in M

Then arguments similar to the above show that

\ F - v H v A E v { F - - y H v A E) ,

and 6"- forms an invariant exact set. This gives us nothing essentially
new, however, because we have Vj 0A^'E

s> = ^P
AST

F^['E
S which expresses

a vanishing curl, implying (at least locally) that 0 has the form
nP'Q'...S' _ yP yQ'.S'
UAB...E v A AB...E '

By the symmetry of 8 • , %-~ also satisfies (5.10.9). Repeating the argument,
until one or the other set of indices is exhausted, we see that

(5.10.10) PROPOSITION

/ / (5.10.9) holds, then 0^;;;|'e®^';;;|j} is an rth derivative of some
massless free field.

Electromagnetic sources

Consider now a Maxwell field with sources. In place of (5.10.4) (with
n = 2) we have (cf (5.9.10))

VAA'cpAB = 2nJA
B\ (5.10.11)

where JAA, = JAA, represents the given charge-current vector subject
to the divergence condition

S7AA JAA, = 0. (5.10.12)

Instead of (5.10.5) we now get

4n
VC<PAB = ^C<PAB)-J£C<AJCBV (5-10.13)
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yC yD <YAB— V(C yD YAB) 3 bCDb y(AJB)E'

5n (5.10.14)
+ ~Z~^(C XeD)(A^B) } ~~Z^(A \SB)(C^D) j?

and so on for higher derivatives: the unsymmetrized rth derivative of
cpAB differs from the symmetrized rth derivative by an expression linear
in the (r — l)th derivative of JA. This, and the consequent fact that cpAB

forms an exact set, follows by the same argument as in the source-free
case, except for the essential modification entailed when we replace
(5.10.4) by (5.10.11); i.e., when a pair of indices is interchanged, a term
involving JA

A may be introduced.

However, it is clear that cpAB by itself does not form an invariant exact
set here, since the extraneous quantity JA appears in (5.10.13), (5.10.14).
On the other hand, we may admit JA as a variable field; but then cpAB

and JA together do not, as things stand, form an exact set. For (5.10.12)
restricts only the part of VA JB which is skew both in A'B' and AB. The
part which is symmetric in AB and skew in A'B\ for example, will remain
undetermined. Further conditions would have to be imposed on JA to
give an exact set. This could be done in many ways, but of most interest
are the cases when JA is given by the charge-current vector of a physical
field (or fields), say a Dirac field or a Schrddinger-Klein-Gordon field.

Consider, first, the Dirac case. In the two-component spinor form
(4.4.66), the Dirac field is represented as a pair of spinors \j/A, xA subject
to

^AA'i>A = MA\ VAA>XA'=-^A, (5.10.15)

where fi = m/h y/2, m being the mass and h Planck's constant divided
by In. In the absence of electromagnetism we can assume that the Vs
commute. It is then not hard to verify that i//A and xA together form an
exact set. Moreover, if we introduce electromagnetism via (5.1.1), each
°f 0'A> XA having the same charge e9 and define the Dirac charge current
vector by

JA=^()I>J>A' +lAlA\ (5.10.16)

where q is a simple positive numerical multiple of e, whose exact value
depends on one's conventions for normalizing the Dirac wave function
(e.g. one natural choice would yield q = 2ne\ then

VAA'<PAB = <1(>I'B$A +XBXA')> (5.10.17)

and \j/A, %A and cpAB together form an invariant exact set. This may be
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378 5. Fields in space-time

demonstrated in essentially the same way as for the first case, except that
the interchanging of derivatives may give rise to extra terms involving
q>AB, <pAB' (cf. (5.1.43)). For example,

^ > f > | 1 / ; (5.10.18)

+ 1
2H

2sBCeBCtA + ZneA(CVB;*x
C). (5.10.19)

The case of a Schrodinger-Klein-Gordon field 9 is similar, but now
in place of (5.10.15), (5.10.17) we have (cf. (5.10.6))

( • + 2 / i 2 ) 0 = O, (5.10.20)

the charge current vector being proportional to iOVa8 — i#Va#, so

VAA'(pAB = q(i6VA'8 - i8VA'6). (5.10.21)

Again, 6, cpAB form an invariant exact set.
There is an alternative method of dealing with charged fields which

involves introducing the electromagnetic potential 0>A explicitly and
treating it as a new field. In this approach, Vj stands for the operator
denoted by dA in (5.1.1) and in (5.1.14), i.e., it acts on charged fields as
though they were uncharged, and commutes with itself. The electro-
magnetic interaction is expressed through S/A' — ie<&A. Thus <&A occurs
explicitly in (5.10.15) and in (5.10.20) as a new field, with V^ replaced by
VA — ie<&A . In order to get an exact set we must impose a restriction on
<D ,̂ such as the Lorenz condition: V^,O^ = 0. Then (by (5.1.49)) we have

VAB
 = VAA®B-

 W e a l s o h a v e
 ®AA

 =
 ®AA' ^ ( 5 1 1 8 ) ) ' whence cpAB' =

— yAA o^ . Using these equations, it is not hard to show that \jjA, %A\
cpAB, <t>A , and 6, cpAB, 0>A each form an invariant exact set.

This alternative approach is perhaps conceptually a little simpler
than the one using (5.10.15) and the consequent non-commutativity of
the Vs, and it is useful in some contexts. However, it is more in keeping
with the philosophy being adopted here not to introduce gauge dependent
quantities, such as ®a, explicitly into the formalism. In the case of electro-
magnetism the gauge independent approach in fact involves somewhat
simpler formulae (e.g., (5.10.19)) than does the approach explicitly involv-
ing Oa. Moreover the theories which operate in curved space-time
can apparently be treated according to the present formalism only by
virtue of the existence of a gauge-independent (i.e., coordinate-
independent) method.

Consider, first, the case of a set of fields in a given Riemannian back-
ground space-time. The curvature quantities ^ABCD^ABC D

 anc* ^
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(see §4.6) and their derivatives are then given at each event 0. These
quantities enter into the commutation relations for the Vs (cf. (4.9.7),
(4.6.34)). Certain flat space-time exact sets can be transcribed for curved
space-time by simply adding the appropriate terms (cf (4.9.13), (4.9.14))
to deal with interchanges of indices of Vs, this resulting in an exact set.
For example, in the case of a Maxwell field, in place of (5.10.5) we have

V7CV7D' _ y(C'yD') , C'D'/lvi/ X
V C V D VAB ~ V ( C V D VAB) ^ b ^ 2 ^ DAB "cX

(5.10.22)

etc. and cpAB gives an exact set. It is clearly not an invariant exact set,
however. Only in the case of de Sitter (or Minkowski) space (A = given
const., *¥ABCD = 0, <^AB = 0) does an invariant exact set in fact arise. The
Maxwell-Dirac equations can also be transcribed in the same way for
curved space-time and an exact set is obtained. On the other hand, the
zero rest-mass equation (5.7.2) for n ̂  3 does not, as it stands, lead to an
exact set for (j>AB L for a given space-time which is not conformally flat,
because of the consistency relation (5.8.2), which shows that the 4>AB L

are not independent unless XVABCD = 0.

Gravitation

For general relativity proper, the situation is somewhat different. Here,
curvature quantities are to be considered as field variables. The degrees
of freedom of the gravitational field are to be described by the conformal
spinor *¥ABCD. The quantities <&** and A are defined directly in terms
of the remaining fields - and possibly a cosmological constant / - through
their energy-momentum tensor Tab (cf (4.6.30)):

**ITAA-V* = ^ABAB + (3A - i ^ B £ A , B , . (5.10.23)

In particular, the Einstein-Maxwell equations (with cosmological constant
X) are given by (cf. (5.2.6)):

KB
B' = 2y<pAB<i>A'B'> A = i^> (5-10-24)

and the Bianchi identity becomes {cf. (5.2.7)):

VAA' VABCD = - 2y<PA'*' VBBVCD- (5.10.25)

We shall see shortly that, together with Maxwell's source-free equations
(5.1.57) and the commutator equations ((4.9.13), (4.9.14)), the relations
(5.10.24) and (5.10.25) lead to the invariant-exact-set conditions holding
for X¥ABCD, q>AB. There are also many other sources for the gravitational
field which, with *¥ABCD, constitute an invariant exact set.
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380 5. Fields in space-time

Let us first examine the Einstein empty-space equations (with or without
cosmological term). We shall show that they imply that *¥ABCD alone
constitutes an invariant exact set. The relevant equations are the vacuum
Bianchi identity (cf. (4.10.9)):

and the Ricci identities generated by

Kt KC = eA.B. VABE
C K* - \kzA.v KiAeB)

c (5.10.27)

(cf. (4.9.7) with (4.6.29) and (4.6.34)), and its conjugate,

These we can write in form

£ , ,{V* Vs + V* Vs }TP = 0 (5.10.29)

X

3

(5.10.30)

Now consider the spinors

¥ v V P (5 10 31)

The various derivatives of (5.10.26) must all hold identically also.
Hence the algebraic relations on the spinors (5.10.31) arising from (5.10.26)
are

HA /yP' y/T yS' \p \ = Q /C 1Q 39)
fc \ \ E • • • v G vH ~rABCD) \J yjivjjz)

This expresses a condition on (namely, the vanishing of) the part of
V£'... V*' ^ B ^ which is skew in //, X and says nothing about the part
symmetric in H, A. Moreover the relations (5.10.29) connect

b R ' S ' [ < y E *•• V G V H •*• V K * A B C D > ^ b R ' S > y < y E m'm v H y G '" y K x A B C D >

with lower derivatives of *¥ABCD, while (5.10.30) connect
G i f / y P ' y i ^ ' y S ' Y/V XV \ , G H / y P ' y S ' y H ' y K m \

fc V V £ - V G V H . . . V A : ^ ^ B C Z ) j -l-fc KyE'"yGyH"yK ^ ABCD>ABCD>

with lower derivatives of XVABCD • These express conditions only on parts
of V£ ... V^ *¥ABCD which are skew in a pair of primed indices or in a
pair of unprimed indices. Thus the algebraic relations arising from
(5.10.26), (5.10.29) and (5.10.30) connecting the spinors (5.10.31) and their
complex conjugates are all concerned with parts of V£'... V£>XVABCD

which are skew in at least one pair of indices. They imply no conditions
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5.10 Exact sets of fields 381

on the parts totally symmetric in all primed indices and in all unprimed
indices. (It might, perhaps, be thought that other relations could be
obtained by expanding skew parts of V£ ... V£ *¥ ABCD in two different
ways. However, these all lead back to (5.10.32) which is the only consistency
condition implied.) Hence the spinors

11/ U/ P' — Y/PUJ 11/ P'Q' — Y7(P'Y7Q')XU
X ABCD' XABCDE ~ V (£XABCD)> X ABCDEF ~~ V (E yF ^ ABCD)> - •

(5.10.33)

and their complex conjugates are all algebraically independent and can
therefore be specified arbitrarily (ignoring convergence questions; cf.
footnote on p. 374) at any one point P.

It remains to be shown, conversely, that all the spinors (5.10.31) can
be obtained algebraically from the spinors (5.10.33) and their complex
conjugates. An induction argument will be used. We wish to express
V£ ...V£>X¥ABCD in terms of XVABCDE K

P "v a n d lower order derivatives
of *¥ABCD since it may be supposed as the inductive hypothesis that all
these lower derivatives have already been expressed algebraically in
terms of symmetrized derivatives X¥AB G

p " R and their complex conjugat-
es. Now, if we add together all the spinors obtained from V£ ... V£ *FABCD

by permuting P,..., V in all possible ways and A, B, C9 D, E9 ... , K in
all possible ways, we get a multiple of X¥AB K

P v > Thus, if it can be
shown that each of the spinors obtained by such permutations differs
from V£ ... V£ >XVABCD by expressions involving only lower derivatives
cf ¥ABCD the result will be proved. The spinor V£ •• V£'*Fl

ABCD will then
be seen to differ from Xi/

AB K
P v by a spinor built up from lower deri-

vatives of *¥ABCD.
Any two spinors obtained by such a permutation of indices from

Y7P' Y7V m
v E ... v K i ABCD

will be called equivalent (denoted by ~ ) if they differ from each other
by expressions built up from lower order derivatives of *¥ABCD • This is
clearly an equivalence relation. It is required to show that all such spinors
are, in fact, equivalent to one another. Now since

S7X> VZ — \7Z X7X = ipX'Z'o }\JM' v/N' , yM' yiV' )
y w y Y yY yw — 2 fc fcM.v \ y w v y " 1 ~ v y yw i

4- 1 e sST IS7X' Vz ' -h Vz ' V^'x

(see (4.9.1)), we have, applying (5.10.29) and (5.10.30),

y* yZ u/ \7Z'\7X W
... v w v Y . . . x ABCD ... v Y v w ... T

Hence any permutation of the V f̂ symbols gives rise to an equivalent
spinor. (Any permutation can be expressed as a product of transpositions
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382 5. Fields in space-time

of adjacent elements.) That is, any permutation of P\ ..., V can be
applied to V£ ... V£ ¥ABCD provided that the same permutation is applied
to £ , . . . , K and an equivalent spinor is obtained. It remains to show that
£ , . . . , K, A, B, C, D can be permuted independently and an equivalent
spinor is still obtained. The symmetry of ^ABCD implies that A, B, C, D
can be permuted without change. Furthermore, from (5.10.32), K and A
can be interchanged in V£ ... V£ ^ABCD- Also,

yZ \/V \u r?V yZ u/
. . . v Y . . . v K x ABCD . . . v K . . . v Y x

K Vz x* ~ Vz VK x1

K "• y A X yfiCD * * * V A ''' V K X YBCD'

so that A can be interchanged with any other unprimed index and an
equivalent spinor is obtained. It follows that any pair of unprimed indices
can be interchanged since

. . . \ w . . . \ Y • * ABCD '•• y W '" y A '•• X YBCD

^ vx vz ^ ~ s/x' vz w
. . . v y . . . v A . . . T WBCD . . . y Y ••' v W '" x ABCD'

Hence all the spinors are equivalent and the result is proved.

Einstein-Maxwell case

The case when an electromagnetic field is present in the space can be
treated by an extension of the method for empty space described above.
The spinors

\Xf P...R' y (P ' \7R')UJ
1 ABCDE...G v ( £ *•• V G T ABCD)

are defined as before and spinors (pAB, q>AB(}
?\ (pABCD

PQ\ ... are introduced,
defined similarly by

VABC.E ~y(C ' " y E VAB)'

By the same kind of argument as before, it follows that cpAB, cpABc "»••• '

^ABCD' ^ A B C D E ? > ' ' " a n <^ t ^ r complex conjugates are all algebraically

independent. Instead of (5.10.26) we have

from (5.1.57) and (5.2.7) (in suitable units). The first of these states the
symmetry of

vc ... v£ yAB

in £, A, while the second expresses the part of
yP Y7R \v

skew in G, ̂ 1 in terms of derivatives of q>AB of at most the same order.
They imply no condition on the symmetrized derivatives of cpAB or
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5.10 Exact sets of fields 383

- N o r d o t h e equivalents of (5.10.29) and (5.10.30), which differ from
them only in that the second relation (5.10.29) is replaced by

F ( S7R' Vs' + S7R> Vs' \ TP' — 4v (n (np/ rQ'

(see (5.2.6)) and the first relation (5.10.30) by

*GH{ V£ V£ + V* 'V* '}^ = 4ycpRS'cpABKB.

The argument to show that the unsymmetrized derivatives can be express-
ed algebraically in terms of the symmetrized derivatives and their complex
conjugates is exactly analogous to that for the pure gravitational case.
The derivative V£'...V* cpAB differs from <pABC / R by expressions
constructed from lower order derivatives of cpAB and X^ABCD, while
V£ ... V* '*¥ABCD differs from xfABCDE G

P R by expressions constructed
from derivatives of cpAB of the same order or lower, and from lower order
derivatives of ^ABCjy Thus, we can construct VP

cq>AB, ^E^ABCD^

^c ^D VAB' ^E ^T ^ABCD ' • •' in ^ a t
 OYAQV, from the symmetrized

derivatives. This completes our proof.

Further examples

Other examples of exact sets are the Yang-Mills 'free' fields subject to
(5.5.40) and (5.5.44) (for various different groups), and Yang-Mills fields
with suitable sources. These fall essentially under the heading of exact
sets as defined at the beginning of this section provided that the Yang-
Mills indices are treated as abstract and do not partake of any of the
symmetrizations in (5.10.2). If a Yang-Mills basis and Yang-Mills
potentials are introduced, then further 'gauge conditions' are needed in
order that an exact set may be obtained. The situation is analogous to that
of the electromagnetic field, where an extra gauge condition such as the
Lorenz gauge is needed in order that the potentials should propagate, if a
non-invariant approach is adopted.

Finally, some sets of fields which, by themselves, do not constitute
exact sets, can be completed to exact sets by including certain contracted
derivatives of the fields as additional fields. A rather trivial example is the
Fock-Feynman-Gell-Mann equation for a spin-^ particle in Ml (Fock
1937, Feynman and Gell-Mann 1958). The field is described by a single
two-component spinor \jjA, and governed, in the presence of an electro-
magnetic field, by the field equation

( • + 2fi2)il/A = - 2iecpABil/B. (5.10.34)

By itself (if cpAB = 0), or with cpAB, \\iA does not form an exact set. But, if we
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384 5. Fields in space-time

include xA' = I1 ~lVAA i//A(^ = mjhJT) as an additional field, we are
back with the Dirac equation (5.10.15) since by (5.1.43)

/,2,/y _ _ . .y yA' _ y S/A'JjB _ i—| J.B , 1 y v?CA I B

so i//A, xA (and cpAB) provide an exact set.
Somewhat similar is the case of a Dirac (-Fierz) free particle (Dirac

1936a, Fierz 1938) of spin \n ^ 1, in M - which is essentially equivalent to
the Rarita-Schwinger (1941) equation and generalizes that of Duffin-
Kemmer, etc. (see Corson 1953). Suppose electromagnetism and other
interactions to be absent. The field is described by a pair of symmetric
spinors $%;;;£ , XB..'.'D of respective valences [4+ x g], [£ p %x] subject to field
equations

yAP ^Q'...T = uyP'Q-T' y PQ...T' = _ ^Q.T' /j JQ 3 ^
V VAB...D rlB...D ' V AP'^B...D WAB...D' KJ-LV-JJ)

Here, as before, hfiy/2 is the mass, the spin of the field being
\n = ^(p + q + 1). Note that the symmetry of each of \jj-;, /;;;, together
with (5.10.35) implies that the 'subsidiary conditions'

V ^ B ' : : : D = °. vf.zs:?i"7" = o (5.10.36)
both hold. Also we have, as above,

( • + 2»2)xl>Q
A;;£ = 0, ( n + 2/i2)xj:;;i>

r = °> (5-10-37)
(So m = hfi^/2 is indeed the mass). In fact, as with the Fock-Feynman-

Gell-Mann equation above, we may consider just \j/'[', say, and use

(5.10.35) (1) to define r;;. This will, provided (5.10.36) (1) holds, give *;;;

the correct symmetries, (5.10.35) (2) now being a consequence of (5.10.37)

(1).
The two fields ^"'TD, XP

B'TD do not form an exact set (nor does i/r •
alone). However, we can easily complete the system to an exact set by
introducing n — 1 new spinors, each being symmetric with n indices but
with differing numbers of primed and unprimed indices: in their natural
order these n + 1 spinors form a linear sequence of spinors each of which
is obtainable from its immediate neighbours by a differentiation contract-
ed on one index. Together, these spinors form an invariant exact set.
For example, if n = 2 we have the invariant exact set \jjAB, xi , £AB with

vAA'tAB=Mt\vAA'xB
A=^A'B:

^AAA>B> = ~ MA> *AA>ti = ~ MAE- (5 1 0-3 8)

However, if electromagnetism (with n ^ 2) or gravity (with n ^ 3) are to
be incorporated, the situation becomes more complicated because of the
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5.11 Initial data on a light cone 385

Fierz-Pauli (1939) and Buchdahl (1958) consistency relations which we
encountered in the zero-rest-mass case {cf. (5.8.2)). As it stands, (5.10.35)
is inconsistent with (5.1.43) (when n >2) and with (4.9.13) (when n >3).
The modifications that have been considered by various authors to
remove these inconsistencies are beyond the scope of this book, and the
interested reader is referred to the literature cited here and in §5.8.

5.11 Initial data on a light cone

In the preceding section the most important of the explicitly known
physical fields, gravitation included, were exhibited in the form of exact
sets. Interactions between fields found expression either through 'field
equations' such as (5.10.15), (5.10.17), (5.10.25), or through 'commutator
equations' for the Vs (cf (5.1.44), (5.1.45)). (Note that in this formalism,
the Bianchi identity counts as a 'field equation'!) The entire formalism
is best expressed in terms offield quantities rather than gauge dependent
potentials. Thus, the electromagnetic potential Oa need never appear
explicitly, nor is there any place for the explicit appearance of gravitational
potentials (i.e. expressions for #ab in terms of a coordinate basis). In the
present section this "geometrical attitude" is exploited further. Assuming
analyticity of all the quantities involved, if all the derivatives (5.10.3) are
known at one event O, then, by means of power series (i.e., 'Taylor's
theorem') we can 'step' from event to event, thus calculating the fields
(5.10.1) and their derivatives (5.10.3) at every other event in the space-time.
This gives a method of exploring the space-time in a way which is, in
principle, completely coordinate-free. However, it is not generally a very
practical method, although it is possible that developments in formal
technique might lead to a more manageable procedure.

On the other hand, the method does lead to one important deduction
concerning the nature of the exact-set condition, and it is this which
we shall present here. Roughly speaking, it turns out that in the same way
that the derivatives (5.10.3) enable us to 'walk' about the space-time, it is
the symmetrized derivatives (5.10.2) which enable us to 'walk' up the light
cone of the event O with that component of each field which is associated
with the null direction in the cone (Penrose 1963). In consequence,
condition (a) for exactness will tell us that, for each field, this component
can be specified as an essentially arbitrary function of the light cone of 0,
while condition (b) tells us that knowledge of this function defines the
fields everywhere* throughout space-time. We thus have a form of initial

* Strictly speaking, this need apply only in some open neighbourhood of O, as it is
possible for ambiguities and consistency problems to arise globally.
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386 5. Fields in space-time

value problem for which the data can be specified in an arbitrary (i.e.
'constraint-free') way on a light cone. The argument is presented here
only in the simplest situation, where it is assumed that everything is
analytic. The results should have a much wider domain of applicability
than this, but proofs become much more difficult when analyticity is
dropped. There are important questions concerning domains of
dependence, coherence relations, stability, etc., which cannot be treated by
arguments of the kind presented here. A full discussion would take us
much too far afield from our immediate purposes, but the comparatively
simple (analytic) argument presented here should be adequate to illustrate
the importance of the exact-set concept.

The 'Taylor series' on Ji

We assume, then, that the space-time M is an analytic manifold with
analytic metric gab. The operator Vfl must also be analytic (i.e., yield an
analytic field whenever applied to an analytic field). Of course, if Va

is just the ordinary Christoffel derivative, this fact follows automatically
from the analyticity of gab. Here we envisage that an electromagnetic
field may also be present and incorporated into the definition of Va as
applied to charged fields. In effect, the analyticity requirement on Vfl states
that the electromagnetic (as well as gravitational) field must be analytic.
We do not envisage any interaction other than gravitational or electro-
magnetic incorporated into the definition of the Va operator (although the
inclusion of Yang-Mills fields would not greatly complicate the
discussion). For simplicity we shall also exclude the possibility of torsion.
The presence of torsion would indirectly affect the definitions of the
geodesies in Ji and we prefer not to consider this complication here.

Let y be a smooth curve in M and let f be a tangent vector defined at
each poinTof y. Suppose for some 0",

t«Va0;; = O (5.11.1)

at each point of y. Then we say that 0 is constant along y (with respect to
Va) and write

[0:::]P = [0::;]Q (5.11.2)

for 0 evaluated at any two points P, Q along y. Unless the commutators
of the Vs vanish, the notion of equality defined by (5.11.2) generally
depends on the choice of curve y which connects the points in
question. (If y is a closed curve originating and terminating at the same
point P( = QX then (5.11.2) would not generally imply that the original

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.006
https://www.cambridge.org/core


5.11 Initial data on a light cone 387

and final fields at P are equal in the ordinary sense. For an infinitesimal
loop, the discrepancy comes directly from the V commutator term.)

If ta itself can be chosen constant along 7, i.e.,

fV/ = 0, (5.11.3)

then 7 is a geodesic in M. Let v be a real parameter on such a geodesic 7,
scaled so that

taVav=l (5.11.4)

(Then v will be an affine parameter on 7; f and v are 'uncharged'.) Fix a
point OeJt and let y be some geodesic through O, with parameter value
v = 0 at 0. To represent a point l o n J relative to O, define a vector
xa at O by

xa = vta, (5.11.5)

where y is the parameter value at X. (It follows at once from (5.11.3) and
(5.11.4) that (5.11.5) is independent of the scaling of ta. If ta^kt\ then k
must be constant along y to preserve (5.11.3), whence v\->k~lv.) Thus we
may say that xa gives the position vector* of X relative to 0. As 7 varies
among all geodesies through 0, the components xa of xa with respect to
some fixed basis at O give, in fact, a system of normal coordinates with
origin O. That is to say, the direction of xa is that of the geodesic 7 from 0
to X and the length (or 'extent' if xa is null) of xa is the same as that of 7
from 0 to X. (This follows directly from (5.11.3), (5.11.4), (5.11.5).)

Let i//^ be analytic at 0; then for X not too far from 0 on the geodesic 7
we have

tn=[**L - ^[v>a+^W>-]0+...
= [exp(x a V a )^] 0 (5.11.6)

To see this (compare Synge 1960), we note that if v' is the parameter
assigned to a variable point X' between 0 and X on y, the quantity

defined at X' is constant along 7 by (5.11.1), (5.11.3), (5.11.4) (1; being

* This applies unambiguously provided that X is sufficiently 'close' to 0. Otherwise,
because geodesies can refocus and cross over, there may be more than one 'position
vector' at 0 for a point X (or, sometimes, none at all).
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388 5. Fields in space-time

constant and v' satisfying taWav' = 1). The convergence and appropriate
uniformity of (5.11.7), for X near enough to 0, is implicit in the analyticity
of the quantities involved but we shall not discuss such matters in detail
here. When v' = 0 and v' = v, we get, respectively, the right- and left-hand
sides of (5.11.6).

The 'Taylor series' on Jf

Relation (5.11.6) tells us how knowledge of all the unsymmetrized
derivatives (5.10.3) of a set of fields at 0 can be employed in the determina-
tion of the fields at all other points (not too far from O in the first instance,
but 'distant' points can be reached using several steps). Now suppose that

and let us examine the role of the symmetrized derivatives (5.10.2). Consider
the points X which lie on the light cone Jf of O. Then y will be a null
geodesic and f a null vector, which is thus of the form

f = ZAlA' (5.11.9)

(choosing ta as future-pointing). For a specific null geodesic y we select £A

to be constant (and uncharged) along y. Now multiply (5.11.6) by
£AgB... £E%pf%Qt • •• £s, (where, because of the constancy of £A along y,
we can unambiguously write the £s outside the brackets):

fA zEp t r1//P'...S'-i 1 zA zEp "F fj.P'.Sl

-—iA tEtFl I I [\/T'\J/p-s
/

A
-sl

...E JO

v2

A...E Jo

Because of the symmetry of ̂  ... ^Hl?. .-ivAt is really the symmetrized
derivatives [V^'.- .V^V^-I^Jo that are relevant here (cf. (3.3.23)). Know-
ledge of all these symmetrized derivatives at O will determine the quantity

along any null geodesic through O and, therefore, at each point of yK
The complex number \j/ will be called the null-datum for the field xj/^

at the point X of Jf. If we make a definite choice of t,A for each null
direction at 0, (say by choosing ^° = 1 at 0 - which excludes only the
generator £0 = 0), we may regard ^ as a scalar function defined on the light
cone of 0, this function being determined by the symmetrized derivatives
of ij/^ at 0 though, more correctly, ^ is a weighted function, as in §4.12,
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5.11 Initial data on a light cone 389

as we shall see shortly. Conversely, the values of ij/ on yTdetermine these
symmetrized derivatives. For the light cone Jf may be parametrized by
the real number v (v = 0 giving the vertex) and by the complex ratio
£ = ^l^0 at O, i.e., by the complex number £ = £ \ if we choose £° = 1.
The coefficient of ( - vf in (5.11.10) is

C, . . . ^ C, . . . C, C , p , . . . < 9 S , Q T , . . . < 9 K , | _ V F ••• y H V A . . . E J O ' V J - 1 1 - 1 ^ ;

which, for each value of £, will therefore be determined by \jj. But the
behaviour of (5.11.12) under £A\-^A£A is also known, namely it gets
multiplied by Xp+rlq+r. Hence (5.11.12) will be determined by i// as a
function of <JA, \p,. But ^ and <fp, are algebraically independent. Therefore
(5.11.12), being a polynomial in £°, £ \ £0,, £ r , will determine its co-
efficients [V<J' ... VH'VA'.E^O uniquely.

The significance of the concept of an exact set should now be apparent.
Condition (b) for exactness for a set of fields i /^ , . . . , y? ensures that the
values of their null-data xjj,..., #, on the light cone Jf, determine the fields
throughout the space-time M. Condition (a) for exactness ensures that the
various null data can be chosen freely on Jf, that is, there are no con-
straints. For any exact set, therefore, the null-data are a complete irredun-
dant set of initial data on any light cone.

Counting degrees of freedom

We are now in a position to count the number of degrees of freedom for
the fields. For this we invoke what appears to be a general principle in
the initial value problem, namely that on a characteristic (i.e., a null)
initial hypersurface just one-half as many real numbers per point of the
hypersurface are required as would be required in the case of a spacelike
hypersurface (cf d'Adhemar 1905, Riesz 1949, Hadamard 1952, DufT
1956). In the present case we are concerned with initial data on Jf which
(not too far from O, at least, and excluding O itself) will be a smooth null
hypersurface. Thus, we expect the number of real numbers per point that
we require for data on Jf shall be just one-half the number required for an
ordinary spacelike hypersurface. We shall have just one complex number
(i.e., two real numbers) per point of Jf, for each of the fields (5.10.1) belong-
ing to the exact set. This will hold unless the field is specified as being
Hermitian (in which case it must have an equal number of primed and
unprimed indices). For a Hermitian field the null-datum must be real.
Thus, the number of 'degrees of freedom' for the fields, being defined as
one-half the number of real variables required for an initial spacelike
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5. Fields in space-time

hypersurface, is twice the number of non-Hermitian fields occurring in
(5.10.1) plus the number of Hermitian fields.

Let us just briefly check with some known results. For the case of
Maxwell's free-space equations, in a given background space-time, we
have just one field q>AB, so the number of degrees of freedom is two. (In
the usual 'spacelike' formalism, this is one-half the number obtained from:
six degrees of freedom for E and B minus two for the constraints div E = 0,
div B = 0.) In the case of a Dirac field we have two spinors \//A, xA in
(5.10.1). Thus we have/owr degrees of freedom. (In the usual formalism
one thinks of these as given by the four complex components of a
single Dirac 4-spinor, that is eight real numbers per point of a spacelike
hypersurface.) For a real scalar (Schrodinger-Klein-Gordon or D'Alem-
bert) field we have one 'Hermitian' field, and thus just one degree of
freedom. (In the usual formalism, the initial data are the field together
with its time derivative: two numbers per point.) For the Dirac-Fierz
higher spin fields (5.10.35), we require a total of n + 1 non-Hermitian
spinors (cf. (5.10.38)) in order to get an exact set, so there are n + 1 degrees
of freedom. (In the usual formalism this comes about in a different way
(cf Corson 1953, p. 121). Finally, in the case of general relativity, we see
at once that there are just two degrees of freedom for the gravitational
field, since this is defined by the single non-Hermitian spinor *¥ABCD.
(In the usual formalism the result is the same, but is not nearly so directly
obtained, there being many redundant variables and constraints to be
taken into account (cf. Bruhat 1962, Arnowitt, Deser and Misnerl962).

Regularity at O

We do not enter into any of the difficult questions concerned, say, with
removing the condition of analyticity, or of replacing the light cone Jf
by a more general characteristic (i.e. null) hypersurface. We should expect,
for example, the null-data on the future half (J^+) of Jf to define the fields
inside J^+ (at least, not too far from O). But such questions cannot be
directly answered using only the sorts of methods we have been considering
here. In §5.12 we shall provide some specific formulae which go some
way towards answering such technical questions for certain fields. The
only general question of detail we examine here concerns the nature of
the null-data at the vertex O of JV. Since O is a singular point of Jf, it
is not immediately clear what kind of smoothness conditions the null-data
should satisfy there.

In this connection, the dependence of \j/ on £A at a general point of Jf
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5.11 Initial data on a light cone 391

should be kept in mind. For under

£A\->^A (5.11.13)

we have

\\fv^Xplq\\f, (5.11.14)

i.e. in the terminology of §4.12, ^ is a {p, q}~scalar9 where we choose a
spin-frame at each point of Jf with

oA = £A. (5.11.15)

(At any point X of Jf, £A is, of course, defined up to proportionality as it
corresponds to the tangent to the generator of ^ t h r o u g h X) Recall that
the integer or half-odd-integer

s = P-^ (5.11.16)

is the spin-weight ofxjj.
Now, let us consider a {p, g}-scalar \\i defined on Jf, but without

reference to the whole space-time Jt. We may take for the definition of
analyticity for \jj, simply that a series of the form

[*]*= £ ^ . . . ^ . . . . ^ V . . . / " ^ , , ^ (5.11.17)
n = 0

should exist giving \jj on Jf, convergent in some neighbourhood of O-
for xa a null vector defined at O : xa = v^A\A> - the ^ — being constants
defined at 0. The £A,..., £E are p in number and the £p , , . . . , £s, are q in
number, making \jj a {p, ̂ f}-scalar as required. Clearly the \\i defined by
(5.11.11), (5.11.10) will, in this sense, be analytic. (Since ^ is a scalar, the
relevance of the y in (5.11.17) is only to charged fields. But we can ignore
it in any case if we choose the electromagnetic potential to be analytic -
again in the sense of (5.11.17).)

Let us consider the nature of the regularity of i// at the vertex O, implied
by (5.11.17). For this, we identify the tangent space at O with the M of
§4.15 and think of the origin O as the point L. Setting oA = £A, as in
(5.11.15), so xa = voAoA>, ta = la, we see that the nth term in the sum (5.11.17)
is precisely of the form (4.15.41). So from the discussion concerning
(4.15.43)-(4.15.57) we see that (with respect to an arbitrarily chosen time-
axis Ta at O) this nth term (coefficient of v") is a linear combination of
spin-weighted spherical harmonics for spin-weight 5 and

7 = | s | , | s | + l , | s | + 2 , . . . ,n + ^(p + g). (5.11.18)

Let us examine the significance of this in the case p = q = 0. Then the
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392 5. Fields in space-time

function \j/ has a power series expansion for which the coefficient of vn

involves ordinary spherical harmonics only of orders 0 ,1 , . . . ,n. This
may be compared with the behaviour of an analytic function of x, y, z in
an ordinary Euclidean 3-space, re-expressed in terms of, say, ordinary
spherical polar coordinates r, 0, (/>. In this case, the coefficient of rn would
involve spherical harmonics only of orders n, n — 2, n — 4, . . . , 1 (n odd)
or ft, n — 2 , . . . , 0 (n even). Thus there is, roughly speaking, 'twice as much
information' in the analytic {0,0}-scalar function \jj on Jf as there would
be for an ordinary analytic scalar function on Euclidean 3-space. This may
be regarded as one 'explanation' of the halving of the number of initial
data functions on the null hypersurface Jf as compared with what
would be needed for a spacelike hypersurface, since each function on Jf
'counts for twice as much'. This is, however, very far from a complete
explanation.

It is worth while to point out a curious property of the zeros of the null
datum \j/, on Jf, in the case 5 =/= 0. In the generic case there will be m lines
of such zeros entering the vertex 0, where

\p-q\^m^p + q. (5.11.19)

This follows partly from topological considerations and partly from the
discussion to be given in §8.8.

Geometry of Jf

In the case of gravitation, the null-datum ¥ has a special significance.
We shall only indicate this here. A more complete discussion would
depend on the geometry that will be introduced in Chapter 7. Choose a
complex null vector ma, orthogonal to /fl, whose real part (spacelike and of
length 2"^) spans, with /a, the null-flag plane of £A = oA at each point of
Jf. With the usual null-tetrad notation (3.1.14), we have la = f. The
tetrad vector \a thus points in the null direction in Jf (and is normal to Jf)
and the real and imaginary parts of ma are tangent to JV in spacelike
directions, these three vectors spanning the tangent spaces to Jf. The
remaining tetrad vector rf points out of Jf. Then we can write (cf. (4.11.6),
(4.11.9)):

y o = l°mHcmdCabcd. (5.11.20)

The discussion of §7.2 tells us that *F measures the 'purely astigmatic' part
of the geodetic deviation {cf. Pirani & Schild 1961, Sachs 1961, Penrose
1966a) of the null geodesies in Jf. If a matter tensor Tab is present, we can
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put

= 4nyTJal\ (5.11.21)

by (5.10.23) and (4.6.25). Then $ similarly measures the 'anastigmatic'
part of this geodetic deviation. For the matter fields we have been con-
sidering here, it turns out that <i> is determined directly by the null-data of
these matter fields (possibly involving a derivative in the la direction).
In particular, for the Einstein-Maxwell equations, we have <& = lycpcp,
by (5.10.24), where (p is the Maxwell null-datum. Thus, we see that, in
general relativity, the geometry of Jf is itself directly determined by the
null-data of all the various fields involved.

In the special case of the Einstein vacuum equations we can go further.
The intrinsic geometry of Jf is then essentially equivalent to the null-
datum *F. (There is, however, a certain subtlety involved here in that the
intrinsic metric of Jf has vanishing determinant, but this is not serious;
cf. Penrose 1972a.) Thus, we can say that for a vacuum space-time Ji
(which is analytic) the geometry of Ji is (locally) determined by the intrinsic
geometry of the light cone of any one event in Ji.

The characteristic initial value problem for general relativity has also
been studied for the case of a pair of intersecting null hypersurfaces Jf x,
Jf 2 (Sachs 1962ft, cf. also Darmois 1927). In line with our present ap-
proach, where the gravitational data on Jf is given by the null-datum
*F (rather than the shear a, cf. §§7.1, 7.2, or the inner metric) we would
need to specify *F on each of Jf x and Jf 2. But also certain data on Jf ^ n
Jf 2 would be needed, which can take the form of p, p', cr, o' (where the
flagpoles of oA, iA point along the generators of Jf x, ,/T2, respectively)
and, in addition to just the inner metric of Jf xr\ Jf 2, the complex
curvature quantity K that was introduced in (4.14.20). The matter will not
be pursued further here.

5.12 Explicit field integrals

There are certain integral expressions that may be used for determining
fields explicitly in terms of null-data, the (null) initial data hypersurface
Jf being not necessarily a null cone. The prototype of these expressions
is the Kirchhoff-d'Adhemar integral formula for massless scalar (i.e.,
d'Alembert) fields in Minkowski space-time M. This formula has a
natural generalization to massless fields of arbitrary spin. In the present
section we derive this general formula, first for M, and then show how it
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394 5. Fields in space-time

applies to conformally flat space-time. Finally we indicate how repeated
application of the formula leads to a corresponding expression for certain
exact sets of interacting fields in M, notably the (classical) Maxwell-Dirac
system.

The generalized Kirchhoff-d"Adhemar formula

Let P be a point of M and suppose that the light cone # of P is such that
its intersection with Jf provides a smooth cross-section y of ^ (see
Fig. 5-4) - either in the past or future of P. Let Q be a typical point of
y , and consider spinors £A and rjA at Q having flagpoles pointing along
generators of JV and #, respectively, so they are orthogonal to Sf at Q.
Let Sf be the (2-form) element of surface area of & at Q (cf. (4.14.65)).
Also let these spinors be normalized:

rjJA=L (5.12.1)

If we write

•rnAfjA, (5.12.2)

then the real number r is a measure of the extent of QP, and it is positive
or negative according as Q lies on the past or future cone of P.

Now suppose (j>A L is a massless free field of spin \n > 0:

</>A l = ( t ) ( A / P VAA'<I>AB 7 = 0 ' (5.12.3)

Jf
\

Fig. 5-4. The generalized Kirchhoff-d'Adhemar formula (5.12.6) expresses the
massless field at P as an integral over the intersection y , of # with ^T, in terms of the
null-datum on JV.
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or of spin zero:

(D+iW = 0 (5.12.4)

(the factor jrR = 4A being of relevance when we consider curved space-
time), in some neighborhood JTof the join of £f to P (i.e. of the region swept
out by the null segments QP). The null-datum for (j)A L on Jf, at Q, is

We shall show that this, together with its derivative in the null direction in
yKat y , determines the field at P by the explicit formula (Penrose 1963)

, (5.12.6)

where p^ is the conformally invariant modified form (5.6.33) of the
compacted spin-coefficient operator p of (4.12.15), and the spin frame
(oA, iA) is defined by

oA = £A, iA=-rjA. (5.12.7)

We take oA, iA to have conformal weights - 1 , 0 , respectively (which is the
case (5.6.26) (iv)- although alternative scalings would do just as well).
Since 0 is a {n,0} -scalar of conformal weight -n-l(cf. (5.7.17)), we have

pv = p-(n + l)p = D-ne-(n + l)p (5.12.8)

when acting on </>, where

D = ZAZA\. (5.12.9)

The condition for the generators of J^to be geodesies can be stated as

DZA = stA (5.12.10)

(see (5.11.3); and also (7.1.8)). We shall see in §7.1 that null hypersurfaces
are always generated by null geodesies. Here we simply adopt this fact as
part of our assumptions about the nature of the hypersurface yK Thus,

K:=£AD£A = 0 (5.12.11)

whence (compare (7.1.16), (7.1.17))

ZAFVbtA = pZB, W ^ = < - (5.12.12)
Though (j happens not to be directly involved in (5.12.6), it enters into the
generalizations (5.12.50), (5.12.54) below. We shall also see later, from
(7.1.58)(7.1.61), that null hypersurfaces also satisfy

p = i>, (5.12.13)

though this fact has already been established, in effect, in (4.14.2).
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P

jr

Fig. 5-5. The fundamental theorem of exterior calculus can be invoked to show that
the integral over 9> is equal to that over £P.

Proof of the formula

With these preliminaries we are ready to prove (5.12.6). Our proof proceeds
in two stages. First we show that for any two smooth cross-sections Sf
and &' of <g (see Fig. 5-5), for which (5.12.3) or (5.12.4) holds in some
neighbourhood jf, in M, of the portion <% of # bounded by £f and £f\ the
integral (5.12.6) over Sf is equal to that over 9)l. (We remark that any
smooth cross-section 9' of <£ arises as the intersection of # with a null
hypersurface Jf. For yK'is simply swept out by the null geodesies ('rays'),
other than generators of #, meeting 9" orthogonally (cf §§4.14, 7.1).)
The second stage consists in showing that (5.12.6) holds in the limit when
Sf' shrinks down to an infinitesimal sphere at P. That then establishes
(5.12.6) generally (cf Newman and Penrose, 1968).

To prove the first part, we use the version (4.14.92)-(4.14.94) of the
fundamental theorem of exterior calculus described at the end of §4.14,
which uses spin- (and boost-) weighted scalars. For this we must first
put (5.12.6) into a weighted scalar form, and so we choose coA e SA arbitrari-
ly (cf (4.15.42)) and define the {- 1,0}-scalar.

co = coArjA = -coAiA = co°, (5.12.14)

in terms of which (5.12.6) can be written as

coAcoB (5.12.15)

To apply (4.14.93), (4.14.94), which we actually use in complex conjugate
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5.12 Explicit field integrals 397

form, we also need a {0, — 2}-scalar /x r, which together with the {0,0}-
scalar

/ i o - ^ - 1 ^ (5.12.16)

satisfies (4.14.93) (in conjugate form):

A:=V- 2p')/V -16 ' - i > r = 0 (5.12.17)

Here fi0, and jiv provide the two components of a {0, — l}-spinor \iA,.
It turns out that (5.12.17) can be satisfied by taking

Hv = ofr~ \b$ - (n + l)i(/> + nocj)^ (5.12.18)

where </)l — </>100 0 , in accordance with the standard notation of (4.12.43)
(which also allows <j> = (f)0 = </>Oo...o a n d §2 — 0uo...o)- To see this, we
express the field equation (5.12.3) as the family of equations (4.12.44) and
their primed versions, (4.12.44)'. Here (taking n > l ) we need only the
first two of equations (4.12.44) and only the last one of equations (4.12.44)',
these being, respectively,

B := p(f)l - d'0o + T '# 0 - npcj), = 0,

C := H>2 - 3'0! + 2 T > 1 - (n - l)p02 = 0,

E := 6 0 1 - K^o + P'4>o + ("- W i ~ m<t>i = ° ' (5-12.19)

where we have used K = 0 from (5.12.11) and also

(7' = ic' = 0, (5.12.20)

which holds because ^ is a light cone in M (cf (4.14.76), (4.15.12)). Ana-
logously to (5.12.13) we have

p' = pf (5.12.21)

and, indeed, from (4.15.12) we get

p' = - . (5.12.22)
r

(Comparison of (4.15.2) with (5.12.2) shows that u = r.) From (5.12.22),
(4.12.32)(a') and (4A232)(dr) (with K' = G' = 0>22 = 0>21 = ¥ 3 = 0) it follows
at once that p'r'1 = p'r"1 , i.e.,

J?V= - p'r (5.12.23)

and

d'r = 0, (5.12.24)

r being a { - 1, - l}-scalar. Also (4.12.28) gives p'iA = -K'OA = 0 and
d'iA = - o'oA = 0, whence, by (5.12.14),

JJ'G) = 0 = a'o). (5.12.25)
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398 5. Fields in space-time

We can now verify (5.12.17) by considering the combination
cjo~nrA ~(5-m- ¥)B - (n - \)GC + {p-np- p)E, (5.12.26)

and showing that it vanishes identically in the given circumstances.
This is established by a somewhat lengthy but straightforward calculation,
which uses the compacted spin-coefficient equations (4.12.32) (a'\ [b\ (c),
(d\ (/'), together with the commutator equations (4.12.35) and (4.12.33) as
applied to <£0 (type {n, 0}), and (4.12.34) as applied to (j>1 (type {n - 2,0}),
and takes into account the equations (5.12.20), (5.12.21), (5.12.23), (5.12.24),
(5.12.25), and

vFo = ¥ i = v F 2 = : 0 . (5.12.27)

From the vanishing of (5.12.26), and from B = C = E = 0i we deduce
A = 0, as required. (The cases n = 0, 1 are similar - and simpler.) Thus,
the integral in (5.12.15) is independent of the particular cross-section
£f of #, as required.

Now consider a cross-section $f b which is obtained as the intersection
of <€ with a spacelike hyperplane that passes almost, but not quite, through
the point P (either to the past or future of P). Let y 8 have radius | S \
(and take d > 0 or < 0 according as £f b lies just to the past or just to the
future of P). Then (cf. §4.15; in particular (4.15.3), (4.15.9), (4.15.12))
we find

pr-
1=ppf= - i (T 2 , (5.12.28)

so | p | and | p' | each diverge as O( | S |" *) when S -+ 0. Since the field <\>AB L

is smooth at P, and since the area of Sf'd is O(<52), the contributions from
the terms D(f> and — nscj) to p^cf) {cf. (5.12.8)) both disappear in the limit,
and we are left with the term - {n + l)p0. So the integral (5.12.6) becomes

coA...coL—Vn'' ~ V . . . ^ o - £ L o < K , Sf.. (5.12.29)
2 T J Id2 lA A-Ln *

In the limit, cf)Ao LQ can come outside the integral, taking for its value that at
P. We then apply Lemma (4.15.86) with R=S (and with (5.12.7)),
to obtain the required agreement with (5.12.15). The factor coA...(oL

may be removed from both sides, coA being arbitrary (cf. (3.3.23)). Thus
formula (5.12.6) is established.

Conformally flat Jt

The foregoing discussion applies almost without change when M is
replaced by a conformally flat space-time Jl. We may suppose that by
a suitable choice of conformal factor Q the metric in the neighbourhood
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5.12 Explicit field integrals 399

of # can be rescaled to that in a corresponding neighbourhood of a light
cone in M. We must, however, be careful about the interpretation of the
parameter r. The critical equations are (5.12.23) and (5.12.24). The inter-
pretation of (5.12.23) is that r is a so-called luminosity parameter on #
(Bondi, van der Burg and Metzner 1962, Sachs 1962a). We cannot in general
maintain (5.12.22), but that equation was, in fact, not required for showing
that (5.12.26) vanishes (except as a convenience in deriving (5.12.23) in
M). The conformal rescaling behaviour of r is given by*

r = Q(P)Q"V, (5.12.30)

where Q(P) is the conformal factor at P (and where Q = Q(Q\ according
to the standard notation of §5.6). The reason that the conformal scale at
P enters into the scaling behaviour of r is that the relation (5.12.23) does
not, by itself, determine the actual value of r, but fixes r only up to an overall
scale factor for each separate generator of #. The scale factor is determined
by the requirement that, for Q near P, the position vector of Q relative to
P is — nAiA'. This scales as a distance, and since iAiA has been chosen
invariant under conformal rescaling, r must also scale as a distance at
P, i.e., as Q(P). The second factor Q" 1 gives compatibility with (5.12.23)
and (5.6.27)(iv), where we have adopted (5.6.26)(iv) (cf. after (5.12.7)).
The scaling for co is

c5 = Qco, (5.12.31)

and this is compatible with the preservation of (5.12.25). In fact, we can
replace of in (5.12.15) by a more general {— n, 0}-scalar F (of conformal
weight n), subject to

j>;r = 0 = 6 i r ; i.e.,J>T = 0, 6 T = 0. (5.12.32)

This would be the result of taking linear combinations of expressions
(5.12.15) with different coAs. By the discussion of §4.15, in the case when
£f is a metric sphere, such Fs will be spin-weighted spherical harmonics
with 7 = —s = \n (see Proposition (4.15.58)). In the general case, such
Fs provide a suitable generalization of spin-weighted spherical harmonics
for £f. In all cases, for the limitingly small spheres 5 ^ , these Fs will
approach the standard spin-weighted spherical harmonics for ¥b.

This provides one approach to assigning a meaning to the integrals
(5.12.6), nameAy through (5.12.15), or (5.12.15) generalized by the replace-
ment of of by F subject to (5.12.32). The difficulty in using (5.12.6) directly

* The apparent discrepancy between (5.12.30) and the more symmetrical-looking form
r = Q(P)Qr given in Newman and Penrose (1968) is due to the difference in scaling
conventions for iA.
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is that it involves integrating a spinor quantity over <f when no natural
parallelism over Sf has been provided. An alternative procedure for cir-
cumventing this problem is to refer the entire integration to the point
P. This is unambiguous because of the invariance properties of the inte-
grand in (5.12.6), both under the spin- and boost-weight rescaling

nA^-'-nA, ZA~ttA, (5.12.33)
and under conformal rescaling, with

since, in the latter case, (5.12.30) holds, £f\-+Q2y and }
by (5.6.34). (If desired, we can scale rjA to be parallelly propagated along
the generators of ^ and refer quantities at Q to P by parallel propagation.)
The integration can then be carried out in the tangent space at P, and (by
(5.12.30)) the result is a conformal density of weight — 1.

We remark that although $ 2 2 = O21 = 0 was used in the derivation
of (5.12.23) and (5.12.24) from (5.12.22), the validity of (5.12.6) does not
depend on the vanishing of these or any other Ricci spinor components.
We merely need assume that (5.12.23), (5.12.24) hold, which does not re-
quire (5.12.22). On the other hand, the vanishing of the Weyl spinor
components (5.12.27) is necessary for the argument. Moreover, as a con-
sequence of (5.12.23) and (5.12.24), the remaining Weyl spinor components
*F3 and *F4 must also vanish, so in fact we need

Q (5.12.35)

on <6. Curiously, however, the condition (5.12.13) was not needed for
establishing (5.12.17) in the region of # between <f and Sf' (though it is
implicitly involved at ¥ and 9?l).

The conformal invariance of *¥ABCD has been referred to in §5.6 (and
will be established in §6.8). It is of some interest to note that not only is the
conformally invariant operator p^ (of (5.6.33)) used in (5.12.6) (and
(5.12.16)), but the related conformally invariant operator 6^ is effectively
used in (5.12.18), which can be written

Hlf = o?r-x(\<$) + m r ^ ) . (5.12.36)

This shows that \iv is a conformal density of weight - 1 (since cw, r, <f>, o
and cj)l are conformal densities of respective weights 1, — 1, — n — 1, — 2,
and — n) in addition to fi0, being a conformal density of weight — 2.
Thus we can wii^ (5.12.17) in the conformally invariant form

/i:=Mo'-8^r=0, (5.12.37)

which shows A to be a conformal density of weight - 2 (cf. also the remark
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at the end of Section 5.6). The conformal invariance of fi0, and / i r can also
be seen if we write

HM,= -a>"r-lnM^MM; (5-12.38)

where (with A,..., L being n in number)

au = ? ...^M(^MU.4>A...L - (n + D</>,... IVU£M)> (5-12.39)

since the particular combination (5.12.39) of conformal densities (pA L

and £A of respective weights — 1 and 0 is easily seen, from (5.6.15), to be
a conformal density of weight — n — 2 (in addition to scaling as <XUH->
ln + 20Lu under ZA^tfA)*

Relevance to a spacelike data hypersurface

It will have been noticed that in the preceding discussion the hypersurface
JV has played a rather small role. In fact, it has served just one essential
purpose: namely, to define the particular cross-section <? of #. Once this
cross-section is chosen, the flagpole direction of the spinor £A is fixed as
the unique null normal direction to Sf not lying in <€. This direction serves
not only to single out the particular component of the field 4>A L, on y ,
which is used (in the case of non-zero spin) as the null datum 0, but it also
specifies the direction in which the derivative p is to act, and the conver-
gence of these null directions provides the spin-coefficient p. Thus, the
formula (5.12.6) can also be applied when suitable data are given on a
spacelike (or even a timelike) hypersurface Jf. Indeed, the original Kirch-
hoff (1882) expression for the scalar (D'Alembert) field 0 was given for
a spacelike Jtf on which the field together with its normal derivative are
specified. The integral expression requires both this normal derivative
and a tangential derivative of <f> within the surface, these two combining
to give, in effect, D</> in the direction of the ^-flagpole. In terms of the
normal to Jf, this flagpole direction is such that, when taken together
with that of Y\A, it spans a 2-plane containing the normal.

This applies also in D'Adhemar's (1905) expression using a null hyper-
surface ^ but now the ̂ -flagpole points in the direction of the normal -
which is also tangential to Jf^ so no additional 'normal derivative' is
needed. Moreover, when the point P is moved, keeping Q fixed and QP
null (see Fig. 5-6), the ^-flagpole direction changes in the case of Jf7, but

The 1-form audxu has some significance as the space-time translation of a certain
twistor 1-form arising in relation to an inversion formula for the twistor integrals
(6.10.1), due to Bramson, Penrose and Sparling {cf. Penrose 1975, p. 314).
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(a)

(b)

Fig. 5-6. For a spacelike initial hypersurface the relevant data component in (5.12.6)
varies as P moves, whereas this is not so for a null initial hypersurface.

not in the case of Jf. Thus the D'Adhemar form of the integral (essentially
(5.12.6) with n = 0) has a considerably greater economy than that of
Kirchhoff. For higher spin (Penrose 1963) the economy is even more
pronounced, since in the case of Jf we need only one (complex) component
of the field, and avoid all constraints (spin > \).

Background fields

The generalized Kirchoff-d'Adhemar formula (5.12.6) can also be used
in circumstances slightly different from the ones that we have been con-
sidering. For example, we may suppose that M is flat or conformally flat
and that, as suffices in the first part of the proof given above, the field
equation (5.12.3) or (5.12.4) holds only in some neighbourhood X of the
portion ^ of ^ which connects two cross-sections £f and £f' of # (as in
Fig. 5-5). We may, for example, envisage a situation in which a world-tube
of sources for (j)A L threads through the region # (cf. Fig. 5-7). The integral
(5.12.6) can still be evaluated meaningfully, yielding, say, a spinor \\i A L at
the point P. In general \j/A L will not be equal to <\>A L at P. Indeed, if P lay
on the world-line of a point source, 4>A L would not even be defined. But
ij/A L will be independent of the section Sf of ^ to the extent that Sf can
be moved continuously over any region of # which does not intersect the
sources (or other places where (j)A L is not defined). We regard \\iA L as
the background field at P with the contribution from the sources surround-
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5.12 Explicit field integrals 403

Fig. 5-7. For surface surrounding a world-tube of sources, the generalized Kirchhoff-
d'Adhemar formula yields a background field at P.

ed by £f subtracted out. Depending on whether Sf lies on the past or
future light cone of P we say that \JJA L is, respectively, the retarded or
advanced background field at P.

This gives a very useful procedure, for example in classical electro-
dynamics when applying the Lorentz force law to a point charge. Some
concept of background field is required for this, since the full field diverges
to infinity at the charge itself. In the normal Dirac (1939) procedure one
employs a background field which amounts to taking one-half the
advanced plus one-half the retarded background fields at the point
charge. However, in the standard literature this is computed by a 'renorma-
lization' procedure whereby an infinite field quantity is subtracted from
the full (divergent) field at the point in question. The method we have
just described achieves the same result (Unruh 1976) but in a much more
direct way, no infinite quantities appearing at any stage of the calculation.

There is another somewhat more bizarre application of these ideas in
which the point P itself does not exist (or may become, in a sense, singular
for the space-time). When Jt is asymptotically flat (but not normally
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404 5. Fields in space-time

conformally flat), the generalized Kirchhoff-d'Adhemar formula may
actually be applied when # is entirely at infinity. One then obtains the
the so-called Newman-Penrose constants for a massless field of spin
\n. These will be discussed briefly in §9.10.

Fields generated by arbitrary null-data

In order to justify the term 'background field' we shall verify that the
field constructed according to (5.12.6), with arbitrary null-datum <f> on a
null initial hypersurface N indeed satisfies the relevant field equations
(5.12.3) or (5.12.4), as the point P varies. This will establish that the advanc-
ed and retarded background fields (where they are defined) are both
automatically massless free fields.

In fact, our discussion of the validity of (5.12.6) is not really complete
without such a demonstration. What we have established is a consistency
relation that must hold for any massless free field. But we have not yet
demonstrated that, for an arbitrary null-datum, (5.12.6) always yields
such a field. There is a difficulty in this if we require the field we construct
to be smoothly defined at the initial null hypersurface Jf itself. For the
generalized Kirchhoff-d'Adhemar formula degenerates at such points,
where the 2-surface £f collapses to one generator segment of Jf, terminat-
ed by P at one end and by a singularity of Jf at the other (see Fig. 5-8).
Unless we are careful about the consistency conditions which hold at
certain of these singular points of yK (and, moreover, for n ^ 2 we shall
generally require extra field components at singular 'crossover' points*

singularity

Fig. 5-8. When P approaches Jf, ¥ degenerates to a segment of a generator of Jf.

* The generalization of (5.12.6) that is required to handle such crossover points (e.g.,
when ./^degenerates into two intersecting null hypersurfaces) is discussed in Penrose
(1963)
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of Jf\ we may obtain a field (j)A L which is not smooth along Jf. Recall,
from the discussion at the end of §5.11, that in the particular case when
Jf is a light cone the null-datum has to have a certain characteristic
behaviour at the vertex in order that the field be analytic. If the null-datum
does not have this general type of behaviour, then the field computed
according to (5.12.6) will have singularities along Jf, though not elsewhere
in the region inside Jf.

The question of the regularity of the field at Jf is beyond the scope of
the present book. Here we merely show that the field suitably away from
(i.e., 'inside') Jf indeed satisfies (5.12.3) or (5.12.4). We carry out the argu-
ment explicitly for fVO. The result for conformally flat M may then be
derived by conformal rescaling. Let 0 be an arbitrary fixed origin in
M and let xa be the position vector of P relative to O. For convenience,
choose £A to be constant along each generator v of Jf, and associate with
it an affine (i.e., linear) parameter v. (See Fig. 5-9.) Thus if H is the point
on v at which v = 0 and Q a typical point on v with parameter v9 then

(H$f = v{AZA>. (5.12.40)

Taking ha to be the position vector of H we have (cf. Fig. 5.9)

x? = ha + v^AlA> + rrjAfjA\ (5.12.41)

(where rjA may be considered to be constant along QP). If we keep the
generator v fixed and vary P, then v, r, and rjA are functions of xa (£A

being constant). So differentiation of (5.12.41) with respect to xb yields

A-A, dv . ., dr AdnA
 A,^rjA

F A A _ zAzA , ffAfiA' , rnA 4- YY\A —— (S 1 2 42̂ 1

zBzB' - H d b + nn d b + rr, ^ f c + n , db. (5.12.42)

Fig. 5-9. The geometry for the relation (5.12.41).
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406 5. Fields in space-time

We transvect this with r\Af\A, to obtain

dv
—b = rjBfjB,, (5.12.43)

and with £A£A, to obtain

- T = ^ B " (5.12.44)

since ^Ar\A = — 1 implies

Further, if we transvect (5.12.42) with f]AA> and use (5.12.45), we find

Note, from (5.12.43), that any quantity xjj defined along v satisfies

ty (5.12.47)

(cf. (5.12.9), (5.12.10); we now have e = 0 since £A has been chosen constant
along v). Hence, using (4.11.12) (a), we obtain

d . . d

= rjBrjB,{D2(l) - (n + l)pD(/> - (w + l)(p2 4- (7^)0} (5.12.48)

Also (as most easily follows if we use the interpretation of p as 'convergence'
given in §7.1), we have

^ = nj\vV<r = - 2pr,BrjB,y. (5.12.49)

Thus, applying d/dxm to the expression (5.12.6) (and bearing in mind that
for a quantity defined at P this operator becomes simply Vm), we get, using
(5.12.44) and (5.12.46)-(5.12.49),

= Jnj \

^ ^ Z"^ " (« + ! W > } ] ^ (5-12.50)
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(in M). The right-hand side of this equation is manifestly symmetric in
A,..., L, M, showing that (5.12.3) is indeed satisfied when n > 0. For the
case n = 0, (5.12.50) must be differentiated one more time, and then we
find that (5.12.4) is satisfied.

This completes the argument showing that (5.12.6) always yields a
massless free field in M, the null-datum being chosen arbitrarily on Jf,
provided that P lies in a region for which # meets JV transversely in a
smooth closed surface (necessarily topologically S2, in fact). This applies,
specifically, to the advanced and retarded background fields just discussed.
Note that because of the appearance of a derivative term in (5.12.6) and
(5.12.8), there may be a loss of one degree of differentiability in passing
from the null-datum to the field. But if <j) and Jf are C00 then so will the
resulting field be (in the interior region referred to). Even when the datum
(or Jf) is insufficiently smooth to produce a smooth field, the equation
(5.12.3) or (5.12.4) will still be satisfied in the appropriate distributional
sense (cf Friedlander 1975).

The above argument was actually given in a little more detail than
absolutely necessary, since the precise form of (5.12.48) was not needed
in order to obtain the required symmetry of (5.12.50). However, the
expression (5.12.50) is of interest in its own right, as it gives a direct integral
expression for the derivative of a massless free field. In fact, the field

^..LM = K<t>A...L (5-12.51)

forms by itself an exact set, the field equations being

V 6M> =0 S7MN'QM' =o (512 52)
y NM'UA...LM W ' V UA...LM W \J.l±.J4)

{cf. (5.10.10)), and we may regard (5.12.50) as providing the analogue of
(5.12.6) for the field 9A M. However, we note that the null-datum is now

0 = D0, (5.12.53)

whereas </> appears undifferentiated in (5.12.50). Thus to obtain 6™ M

entirely from its null-datum we need to integrate 6 along generators of
Jffirst, before we can apply (5.12.50). This means, in effect, that the field

®A M d°es not satisfy Uuygens principle, at least not in so strong a sense
as does cj)A L. The manifestation of Huygens' principle exhibited by
(5.12.6) is that (j)A L is determined entirely by the null-datum (and its
derivative) at points on the light cone of the field point, whereas 6A' M
depends, to some extent, upon its null-datum at points lying within this
cone.

For completeness, we also give the generalization of (5.12.50) for the
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408 5. Fields in space-time

/cth derivative of (5.12.6) in M :

l r k

to(n+j)\(k-j)lj\rk-j+1 '(L^

• •'nR'l^lU>){^i+ V -(n

Distributional fields

An alternative procedure for establishing that (5.12.6) always yields a
massless free field can also be given, providing somewhat different in-
sights. We may regard the function \>^(j) on Jf as built up linearly from
Dirac ^-function contributions. Each such ^-function in p^(p9 having
support at a single point R of Jf, yields, by (5.12.6), a distributional field
with support on the light cone of R. (Clearly (5.12.6) yields a field which is
non-zero only when RP is null.) If we verify that this distributional field
satisfies the massless free-field equation, then, by linearity, we have an
argument showing that (5.12.6) in general satisfies this equation. These
distributional solutions of (5.12.3), or (5.12.4), can also be employed as
part of a technique which supplies analogues of (5.12.6) for various coupled
systems of interacting fields. To end the present section we outline these
various ideas, though we make no attempt whatever at completeness or
rigour. (See Friedlander 1975 for distributions on a manifold.)

We first need a few properties of some distributional fields. Define
the 'step-function' scalar Ao by

is future-timelike

is past-timelike (5.12.55)

is spacelike.

We can also define Ao = \ {or -1] on the future [past] light cone of O
(with Ao = 0 at O), if desired, but this plays no role here. Observe that
Ao is invariant under orthochronous Lorentz transformations. It follows
that the gradient of Ao must point in the direction of xfl, i.e., that

(with S7a = d/dxa), for some distribution Al. In fact the support of A1

is entirely the light cone of the origin, A1 being a ^-function on this cone
whose strength varies inversely as the extent of xa. From the standard d-
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function relation ud(u) = 0 we then derive

0 = xflxflA1=xflVflAo» (5.12.57)

a fact that also follows from the observation that the 'step' 0 to 1, or — 1
to 0, is constant along any generator of the light cone, showing that the
operator xaVa indeed annihilates Ao along this cone.

From the Lorentz in variance argument we similarly derive

VA=*A> (5-12.58)
for some A2 whose support is also the light cone, but which involves a
derivative ^-function along the cone. Continuing, we obtain successive
distributions A3, A4, . . . defined by

VflA. = xaA.+ 1 0 = 0,1,2,. . .)- (5.12.59)

It is sometimes useful also to define the Ck~i scalar

A_, = ^ ( K * a ) * A o (*=1 ,2 , . . . ) , (5.12.60)

and then (5.12.59) is satisfied for all integral;.
We can now establish the following:

(5.12.61) PROPOSITION

x / A . + 1 = - 2 j A . 0 '= - , " 2 , -1 ,0,1,2, . . . ) .

Proof: For j < 0 the proof is immediate from (5.12.60). For ; ' ^ 0 we
operate on the relation in (5.12.61) with Vft, substitute (5.12.59), and then
divide out by xb. The result is the same relation as before, but with j
replaced by; + 1. Since the case; = 0 has been obtained earlier in (5.12.57),
(5.12.61) follows by induction.

As a particular consequence of (5.12.61) we can derive

•A=0, (5.12.62)

for

• A x = VflVaA1 = Va(xaA2) = 4A2 + xaxaA3 = (4 - 4)A2 = 0.

The following result generalizes (5.12.61) in the cases; = 1, 2:

(5.12.63) PROPOSITION

Let a ^ , P ^ , y ^ be continuous', then
(i) a^Ax + p^A2 = 0 ifffij = 0 and V ^ = xba^ along xaxa = 0;
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410 5. Fields in space-time

(ii) a^A, + / ^A 2 + y^A3 = 0 iffy^ = 0, V ^ = \xb$^ and

VftV y^ = x ( f tVc)^ + igj,, - xbxea^ along x"xa = 0.

Proof: We can drop the clumped indexij/, which is merely a 'passenger'.
From <xA1 + (IA2 = 0 we obtain, on multiplication by xax

a and use of
(5.12.61), -2j8A1=O, so j8 = 0 on the cone. Differentiating jSA1=O
we get A1 S7b/} + xfcjSA2 = 0, so (S7bP - xba)A1 = 0, whence VftjS = xbu on
the cone. Similarly, from ccAl + )SA2 + yA3 = 0 we obtain, on multiplica-
tion by xax

a and use of (5.12.61), $AX + 2yA2 = 0, so, by (5.12.63) (i),
7 = 0 and V j = ^xbP on the cone. Differentiating (Vj - yx ĵSJAj = 0 we
get

+ (xyb7 - K* C /?)A 2 = o.
Differentiating jSAj + 2yA2 = 0 and using OLA1 + fiA2 + yA3 = 0 we get

(*yby - -i
whence

and the required final relation follows. It is not hard to reverse these
arguments to obtain the converse relations.

We have seen in (5.12.62) that Ax satisfies the (d'Alembert) wave equa-
tion. We can also produce a corresponding solution of the massless free-
field equations for each spin yn, namely

riA...riLAl9 (5.12.64)
n

where, for some straight null line v through the origin, rjA has flagpole
direction along light cones with vertices Q on v (see Fig. 5-10); rjA is
normalized against £A by r\A£A = 1 (as in (5.12.1)), where £A is a constant
spinor with flagpole along v; rjA is undefined on v and on the null hyper-
plane & through v. The position vector xa of a general point P has the
form OQ + Q?, i.e.,

x a = v£AZA> + rrjAfjA'. (5.12.65)

This is (5.12.41) with ha = 0, and all the relations (5.12.43)-(5.12.47) hold
just as before. Also we have v = 0 on the light cone of O, so

i?A1=0. (5.12.66)

Moreover,

xx? = 2rv, (5.12.67)
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5.12 Explicit field integrals 411

Fig. 5-10. The geometry for (5.12.64) and (5.12.65).

which, when substituted into (5.12.61), gives us

vAj+l = -U. (j = . . . , - 1,0,1,2,...),

whence, by (5.12.59) and (5.12.65), for all integral j9

(5.12.68)

(5.12.69)

Note that we are here ignoring the region r = 0, i.e., the line v - or, more
correctly, the entire null hyperplane &.* Differentiating (5.12.64), and
using (5.12.46) and (5.12.69), we now find

(5.12.70)

Some subtleties arise if we wish the equations also to hold on &. In the first place (in
connection with the Grgin phenomenon of §9.4) it turns out that rjA must be defined
to jump by a factor of i as & is crossed. Secondly, even so, there will be a source along
the line v itself, unless this is cancelled, e.g., by a further suitable collection of fields
like (5.12.64), but based on other points of v. These questions become a little clearer
in the context of §§9.2 and 9.4, but take us beyond the scope of the present volumes.
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412 5. Fields in space-time

so the massless free-field equations hold outside 0*. A similar argument
shows that

r>-V. . i /LA, , (5.12.71)

for each integral), also satisfies the massless free-field equations outside &.
We recall that the 'strength' of the ^-function Ax falls off as r~1. Thus

we may think of the generalized Kirchhoff-d'Adhemar integral formula
(5.12.6) as demonstrating that the field <\>A L is linearly composed of
contributions each of which has support only on the light cone of some
point R of Jf. Each such contribution has the form of (5.12.64), but with
origin displaced to the point R, with generator v through R, and multiplied
by the null-datum expression p^(j) at R. As R varies over Jf and these
various contributions are added together, the entire field (j>A L is produced.
Thus, our demonstration that (5.12.64) is a massless free field provides
an alternative demonstration of the fact that (5.12.6) always yields such
a field. (In fact, this argument bears considerable similarities to our original
proof.)

The Dirac field

This point of view is useful for an analogous treatment of certain exact
sets of interacting fields. We shall find that, for these fields, we can express
each field linearly in terms of contributions like (5.12.64), but not neces-
sarily centered on points of Jf. Roughly speaking, the various individual
contributions can scatter off one another to produce new such con-
tributions originating in the region interior to Jf. We may think of the
total interacting field as composed of pieces in which fields propagate
for a while along null straight lines as massless free fields, but scatter
repeatedly at points in this interior region. The novel feature that arises
in our approach is the propagation entirely along null lines between
scatterings. This is achieved by breaking down the system of fields into
pieces for which the integral (5.12.6) can be used, which is then applied to
situations where Jf is replaced by pieces of light cones that are the sup-
ports of various contributions like (5.12.64) from which the field has
scattered.

To understand how these ideas arise, let us begin with a very simple
example. We consider the free Dirac equation in the form (cf. (5.10.15))

where /* = 2~l/2h~1m, and treat it as describing a pair of interacting fields
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\j/A and xA" First, we replace the system (5.12.72) by the infinite collection
o o i i 2 2

of fields ij/A, xA., \//A. ,xA>^A,XA>,--, subject t o

^ A ' ^ A = ° ' ^AXA' = ° 5 (5.12.73)

and

i i - 1 A,i i - l

VJ
A°.II'A = /JL X A" ^AXA'= V^ A 0 = 1 , 2 , . . . ) . (5.12.74)

This infinite collection constitutes an exact set, and (assuming conver-
gence) a solution to the original Dirac system (5.12.72) is recovered
whenever we put

In fact, if we have a suitable initial null hypersurface Jf - say the future
light cone of a point O, for convenience - then we can take for the respective
null-data of our collection of fields the special situation

0 = i = x = i = X = i = . » ; J = ^ X = X, (5.12.76)
where \\i and x are given null-data for the Dirac pair \j/A,XA>, a n c i then
(5.12.75) gives the required solution of (5.12.72) for these given null-
data.

Let us apply our proposed technique to solving (5.12.73), (5.12.74)
o o

for such data. Since \j/A and %A, are massless free fields, we can use the
o o

methods adopted earlier: \JJA and xA> a t some point P, to the future of 0,
can be obtained from their null-data ^, x directly by use of (5.12.6) (and
its complex conjugate). The values of the null-data quantities p^ij/9 p^x

o o
at a particular point Rx of JV enter through contributions to ^A,XA
with support on the future light cone of Rl. Each of these individual

i i

contributions may be used to generate contributions to ij/A, xA>»and so on.
Consider the case where p^xjj is a d-function on yTat the point Rl, with

X = 0. We get, by our previous discussion,

5^ = ^ ( 1 ) , °xA.=0, (5.12.77)

where here and from now on we adopt the notation A (k) for Â . with the
origin displaced to the point Rk. The next step is to solve the equation
(5.12.74) for %A,, namely
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414 5. Fields in space-time

Since the null-datum for xA> is zero, we require a solution of (5.12.78)
which vanishes on Jf (except at Rt or to the future of Rt on the generator
through RJ. By (5.12.44) and (5.12.69), such a solution is

XA,= -fir-^AA0(l). (5.12.79)

In fact, it is not hard to see that the solution of (5.12.74) for all the remain-
ing fields is given by

2j 2j+i (-iy^xuzj^1

^ = 0 , X A = n r-^AA_.(l) 0 = 0 , 1 , 2 , . . . )
J' (5.12.80)

(cf. (5.12.44), (5.12.46), (5.12.69)). Substituting (5.12.80) into (5.12.75)
and using (5.12.60), with (5.12.41), we obtain an explicit expression for
the Dirac field resulting from a ^-function in p^xjj at the point R1 in terms
of Bessel functions. Similarly we can obtain the explicit Bessel-function
form of the Dirac field resulting from a ^-function in p^x at the point
R1. These two expressions may be convoluted with p^ij/ and p^x, o v e r

Jf, to yield the entire Dirac field with the given null-data.

However, that is not really the purpose of the present discussion.

The idea here is to use the future light cone of Rl as an initial data hyper-

surface for XA1 (an(* then to repeat the process for I//A,XA' •••)• The null-

datum for xA> o n this light cone is

XA,rjA> =fir~\ (5.12.81)

by (5.12.79). (Since we are concerned with the field xA, to the future of
this cone, we can take A0(l) = 1.) The 'p^ operator that is relevant here
is

T- + -, (5.12.82)
or r

since, as in (4.15.9), we have — r" 1 for the corresponding 'p\ Applying
(5.12.82) to (5.12.81), we get

fir'2 (5.12.83)

for the resulting 'p^x'- Thus, by use of (5.12.6), we can express/,, , at^ , ,
some point P to the future of K1, as an integral of (5.12.83) over the inter-
section of the past light cone of P with the future light cone of Rx. Let
R2 be a typical point on this intersection. Then ^7^2 anc* ^2 p a s w e l 1 a s
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P

415

Fig. 5-11. The geometry for (5.12.84) and (5.12.86). (First 'mass scattering' for the
Dirac field.)

0R{ are future-null vectors (see Fig. 5-11.), so we can write

(ORJ^q^', (R^2Y = rriAfjA\ (R^P) = s CAlA>.

(5.12.84)

For later convenience we here drop the normalization (5.12.1) and write

riAtA = z 1 9 £AriA = z 2 . (5.12.85)

On fitting these various facts together, and denoting the 2-surface element
at R. by Sf., we now have

(5.12.86)

where the z-factors have been appropriately inserted so that the integrand
is invariant under rescalings of £A, rjA and CA, and where the integration
is taken over the 5-dimensional space JT12 of all null zig-zags, of the kind
we have been considering, that join 0 and P (0, P fixed, and OP future-
timelike).

It is convenient to rewrite (5.12.86) in terms of the differential forms

(5.12.87)

or

qrz1z1
and #2

i

ds
s

2 rsz2z2

(5.12.88)

the 3-forms <€1 and Jr
i being, respectively, invariant volume forms on
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the past light cone of P and the future light cone of 0 (Synge 1957, p. 7
cf. also Synge 1955), and X. being an appropriate invariant 2-form on
the space of pairs of null directions (or of single 2-plane elements) at R..
Note that

q£A%A' + rrjAfjA' + s£AZA' = constant, (5.12.89)

so if we hold £A and CA fixed (allowing Kx to move along a fixed ray through
0, and R2 to move along a fixed ray through P\ we obtain, on differentiat-
ing (5.12.89) and transvecting through by rjAfjA,,

zlz1dq= -z2z2ds (5.12.90)

from which it follows that

j f t A # 2 = Jf^ A J T 2 = : J T 1 2 . (5.12.91)

(It is sufficient to keep £A and £A fixed in the derivation of (5.12.91) because
the allowed motions of Rx and R2 are those generated by fixed £A, CA,
together with others whose differentials have vanishing wedge products
with Jfl and Jf 2.) We can now rewrite (5.12.86) as

4

where

iKl):=qP«il>=-—(q2il/) (at/JJ. (5.12.93)

The whole process can now be repeated: we represent^, linearly in
terms of (5-function contributions involving Ax(2), with P now to the
future of R2, and we use the future cone of R2 as an initial data hyper-

2

surface for \JJA . The result is

2 fi |

JT123
 Z i r i 2 Z 2 r 2 3 Z 3

where the 8-form

A«2A«3=/>
1Ajr2A«3=/'1A/l

2A

(5.12.95)

is a natural volume element for the space of null zig-zags

Ro := 0, Rl, #:?, K3, K4 := P,

JT. in general being the 2-form (corresponding to Jfl and Jf2 defined
earlier) which gives an invariant volume element on the space of pairs
of null directions at P., and jVi+ x and V._ x being the respective invariant
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5.12 Explicit field integrals 417

Fig. 5-12. The geometry for (5.12.96) and (5.12.94). (Second 'mass scattering' for the
Dirac field.)

volume element 3-forms for the future and past light cones of P.. Also
we write

(5.12.96)

(see Fig. 5-12), and

Zi = Z A S A , (5-12.97)

The general pattern should be clear. Substituting into (5.12.75), we
get, for the final field \j/A, the sum of two infinite series, the first involving
the null-datum \j/ and being over the spaces of null zig-zags with an even
number of segments, and the second involving the null-datum % and
being over the spaces of null zig-zags with an odd number of segments.
The result for xA, is similar, but the other way about. All this is clearly
not intended as a practical procedure, but the result is perhaps suggestive
(particularly with respect to the twistor formalism that will be introduced
in Vol. 2, Chapter 6, since there descriptions in terms of null lines will
have a particular role to play). (Compare Feynman and Hibbs 1965.)

Maxwell-Dirac equations

We end this discussion by briefly indicating a corresponding treatment
of the Maxwell-Dirac system. The equations to be satisfied (using the
Lorenz gauge) are (with cpAB = cpBA, and constant real q, e, where we can
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418 5. Fields in space-time

normalize so that q = 2ne;cf. after (5.10.16)):

K VAB = ZMWA *~'A> + XA- XA) ( = V *' ^ ) (5.12.98)

(5.12.100)

As before, we rewrite this finite exact set as an infinite one which can
be solved by successive applications of (5.12.6). In this, we do not separate
<ba from (pAB, and consider a 'complexified' version of (5.12.99), in which
cpA,B, is replaced by an independent quantity <pAB,, and which is to hold
for each order. (The reason for this complexification is that, at higher order,
the reality of the right-hand side of (5.12.98) is lost, cf. (5.12.112) below.)

0 0 0 i l l

Thus we shall have triples (<PAB>Q>a,<PA>B>\ (^AB^O^AB^ •••' r e l a t e d
at each stage by the complexified version of (5.12.99). The various potentials
o I
<Da, O a , . . . are fixed in terms of the fields by the requirement that all their

o I
null-data O, <I>,... vanish.

o • ° -
To begin with, we have the 'zeroth order' fields <PAB ( w i t h WA'W = QA>B> )>

o o
\I/A, XA' satisfying the massless free-field equations

KVAB = <>> K$A = Q, ^ L = 0, (5.12.101)

together with a real potential Oa (= $a) satisfying

VAA-k' = VAB- (5.12.102)

(Although the 'zeroth order' potential is real, we shall see that this cannot
be maintained in our procedure for the 'higher order' potentials.) The
solutions of (5.12.101) from null-data are given by (5.12.6), as before,
and to proceed to a second stage it is again useful to think of the fields
given by (5.12.6) as linearly composed of ^-function contributions centred

on the points of the future light cone Jf of O. In the case of cpAB we have
the contribution

^ (5.12.103)

(with riA£A = zl9 and cp(l) = q~2d(q3 cp)/dq at R19 in analogy with (5.12.93)),
centered at the point RxeJf. And we obtain the solution

zr 1 z- r 1 r - 1 (z - 1 fy B ^^( l ) + z 1 - 1 ^ ^ ^ ( l ) ) A 0 ( l ) (5.12.104)
o

of (5.12.102), for the corresponding contribution to the potential OBB,
(with vanishing null-datum on Jf\

In contrast to what happens in the case of the free Dirac field discussed
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5.12 Explicit field integrals 419

earlier, the 'higher order' fields in the Maxwell-Dirac case do not emerge
in any yery natural linear order, and would more appropriately be labelled
by 'trees' rather than by integers. But since we aim only to give an indica-
tion here, and not a fully detailed treatment, we shall not so label them.
The numbers appearing above the field symbols will therefore have no
significance and refer only to the order in which we choose to consider
these fields.

At the next stage, in place of (5.12.100), we have the equations

^A } 0 ., 1 0
(5.12.105)

and
2 0 0

(5.12.106)

We have already seen how to deal with (5.12.105). To solve the first of
o o

equations (5.12.106), we express cpAB and \p A in terms of ^-function con-
tributions like (5.12.103) and like

z2"
1C^A1(2)(A(2), (5.12.107)

respectively, where for the notation see Fig. 5-13, and where z2 = CA0A.
(We do not require R2 to lie on Jf\ so the solutions will still apply when
2

\jjA is replaced by a higher order field.) Appropriately transvecting
(5.12.104) with (5.12.107), we obtain the required right-hand side of

2

(5.12.106)(l). A solution of that equation can then be found with \\iA in
the form

(5.12.108)

(b)

Fig. 5-13. The geometry for (5.12.107) and (5.12.108). (Scattering of the Dirac field
by the Maxwell field: (a) phase shift, (b) scattering.)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.006
https://www.cambridge.org/core


420 5. Fields in space-time

The first term of (5.12.108) gives, in effect, a 'phase shift' in the field pro-
pagating from R2 as it crosses into the region of potential generated from
Rx, and corresponds to Fig. 5-13a; the second term gives the true scatter-
ing, and corresponds to Fig. 5-13b. We obtain the null-datum for the
VA of this scattering term on an initial hypersurface that consists of the
portions of the light cones of Rl and R2 which lie to the future of the
intersection of these cones. The null-datum on this portion of R^s cone
vanishes, so the null-datum on this portion of R2s cone yields the field
at P via (5.12.6). The configurations to be integrated over are those shown
in Fig. 5-13fo. The calculations are simple enough, but will be omitted
here.

We must also examine the equations arising from (5.12.98). These have
the form

KABJA. = ^$AtB. and K^AB L L
(5.12.109)

2 3

Let us consider the first of these, and let us regard \j/A and \JJA as composed
of ^-function contributions based on points R2 and JR3, respectively,
not necessarily on Jf. Then we obtain a source term in (5.12.109)(l) of
the form

(z2-1i/ilA1(2))(f3-1^A1(3)), (5.12.110)
2 3

multiplied by the appropriate null-datum quantities ^(2), y/ (3). Taking

i A 3 ^ (5.12.111)

with 6A, £A, £A, rjA as in Fig. 5-14, we find, for a source term (5.12.110),
4

a solution cpAB of the form

2ne

r34Z4Z2Z3

(5.12.112)

Fig. 5-14. The geometry for (5.12.110) and (5.12.112). (Production of Maxwell field
from Dirac current.)
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5.12 Explicit field integrals 421

4

This form shows that the field cpAB at P arises from contributions associated
with the configurations indicated in Fig. 5-14.

4 4

Since (5.12.110) is not real, (pA,B,{ =/= <PAB') *S £iven> correspondingly,
by

(5.12.113)

In place of (5.12.99) we have

with right-hand sides given by (5.12.112) and (5.12.113), respectively, from
4

which we find, for Oa,

2%e
(5.12.115)

Our notation here is similar to that used before, and we have

= r45 cC = (VA (^6)
(5.12.116)

(i^R5r = r 3 5 ^ P ' , («I«6r = r2 6 i /V' (5.12.117)
(see Fig. 5-15), the six points R2,... 9R6, and P (at which the potential is
being evaluated, lying in one 2-plane.

In verifying that (5.12.115), (5.12.112), and (5.12.113) together satisfy
(5.12.114) (and also that (5.12.112), (5.12.110) and (5.12.113) together
satisfy (5.12.109)(l)), it is useful to note that, as P varies and R2 and R3

(and £A, 6A) remain constant, the vector R^R^ - R^R4 is constant, while
k + Rjp and R2~R6 + R^P differ from the position vector (of P)

Fig. 5-15. The geometry for (5.12.115)—(5.12.117). (Production of Maxwell potential
from Dirac current.)
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422 5. Fields in space-time

by a constant. Substituting (5.12.116) and (5.12.117), and differentiating,
we obtain the various required relations. In particular, we find that

r24
r34Z4f4 a i l d K:=r3^3^A^A-r24Z2^A ^ (5.12.118)

remain constant. The potential (5.12.115), in the field-free region consisting
of the common future of the cones of R2 and R3, turns out to be the gradient
of the complex scalar

27T£ 2ne,
= constant log (5.12.119)

Finally, we need to see how the potential (5.12.115) effects the scattering
of the two parts of the Dirac field. The procedure is the same as that used

7

for the potential (5.12.104). Fori/^ we substitute into (5.12.106)(l) an
expression like (5.12.108), but with R2 replaced by R7 (and R1 by, say,
R3\ the two terms now involving the triple products A1(7)AO(2)AO(3)
and AO(7)AO(2)AO(3), respectively. The right-hand side is given by
(5.12.115) (with R2 and R3 as given) transvected with an expression like
(5.12.107) (with R2 replaced by R7\ and represents the previous-order
\\iA field emanating from R7. As before, the first term gives merely a
'phase shift' and is represented in terms of a diagram like Fig. 5-16(a)
(or like Fig. 5-16(a) with R2 and R3 interchanged). The scattering is given by
the second term and is represented by Fig. 5-16(b) (or Fig. 5-16(b) with R2

and R3 interchanged).
To evaluate the complete Maxwell-Dirac field, we sum an infinite

number of terms, each of which is an integral over a finite-dimensional

(a) (b)

Fig. 5-16. Geometry for scattering of Dirac field by Dirac current, with intermediary
Maxwell potential: (a) phase shift, {b) scattering.
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5.12 Explicit field integrals 423

compact space representing forked null zig-zags starting at null-data
points on yTand terminating at P, which are obtained by appropriately
combining the configurations that we have been considering. Each
integral is necessarily finite, but the terms increase in complexity as the
series extends. We do not discuss the full details of these expressions, nor
do we touch upon the question of convergence of the series. These are
matters that would repay further investigation.

One of the topics introduced in Vol. 2 is the machinery of twistor theory.
We shall see, in particular, that twistors provide a direct and elegant
representation of null straight lines in Ml, and the transcription of the
formulae of this section into twistor terms would seem to present an
interesting and perhaps significant exercise. It would be interesting also
to develop our procedure (with or without twistors) into a full description
of quantum electrodynamics (cf. Bjorken and Drell 1964).

The diagrams arising here are in many ways analogous to Feynman
diagrams. But there is the unusual feature that here we are concerned
only with null space-time separations, even for massive fields. The view
that null separations are more fundamental than spacelike or timelike
ones goes hand-in-hand with a philosophy that we have tended to promote
in this book, either directly or indirectly, that 2-spinors are to be regarded
as more fundamental than vectors or tensors in the description of space-
time structure.
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Appendix

Diagrammatic notation

One problem confronting anyone who works extensively with tensors,
spinors or similar structures is that of notation. Formulae tend to become
encumbered with numerous small indices. Furthermore, each actual
letter used in an expression has no importance in itself, only the corres-
pondence between letters in different places having significance. Of course
this feature of notation is also present for many other types of expression
in mathematics, for example in the integral

L(x)= y Mogydy

' / is a dummy letter and also, with regard to the equation as a whole,
the letter V has no particular significance. However, in complicated
tensor expressions, a large number of such 'meaningless' letters may have
to be used. This is particularly true of many of the rough calculations which
quite properly never find their way into print. The indices tend to be small
and consequently may be only barely distinguishable from one another.
The all-important associations between the different positions of a letter
in an expression may be hard to discern without a careful search.

One kind of way around this notational problem has been often suggest-
ed. This involves inventing special index-free notations for particular
operations (e.g., certain contracted or anti-symmetrized products) and
then attempting to express every other operation of interest in terms of
these. The well-known three-dimensional vector algebra involving scalar
and vector products is one example. The Grassmann (or Cartan) calculus
of skew forms is another (cf. §§4.3, 4.13). The scope of such notations for
tensors (or spinors) generally, however, appears to be somewhat limited
and the transparency of the basic rules of tensor (spinor) algebra may well
be lost. Another notation (Penrose 1971, Cvitanovic 1976, Cvitanovic and
Kennedy 1982) which uses explicit diagrams, is described here. This
avoids the use of indices as such, but retains this transparency of the
basic rules of operation. The notation has been found very useful in
practice as it greatly simplifies the appearance of complicated tensor or

424
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D, yo • Y

6- *<> y >> — • * 3

Fig. A-l. Diagrammatic representation of a tensor equation.

spinor equations, the various interrelations expressed being discernable
at a glance. Unfortunately the notation seems to be of value mainly for
private calculations because it cannot be printed in the normal way.

We first describe the general scheme for representing tensor formulae
according to this notation. Some specific suggestions for spinors are made
afterwards, though many variations can be made to suit specific needs.
The basic idea lies in the representation of a contraction not by a pair of
identical letters in different parts of an expression, but by a line connecting
the relevant points in the tensor symbols. Each term now becomes a
diagram.

In order to keep the appearance of these diagrams as simple as possible,
products of tensors or spinors may be represented not merely by the
horizontal juxtaposition of symbols but also by vertical or oblique
juxtapositions. (The commutative and associative laws of multiplication
ensures the consistency of this.) Uncontracted indices are represented by
lines with free ends; upper (contravariant) indices may be represented by
lines terminating at the top of the diagram ('arms') and lower (covariant)
indices by lines terminating at the bottom ('legs'). Index permutation is
represented by crossing over of lines. Addition (or subtraction) is generally
represented in the normal way with a 4 4-' (or 4 —') sign between diagrams.
To see which index-line end-points correspond to one another in a sum,
we imagine the diagrams for the different terms to be superimposed upon
one another. An example is given in Fig. A-l.

A characteristic feature of the notation is the way in which Kronecker
deltas and expressions built up from Kronecker deltas are to be represent-
ed. A single line (generally more or less vertical) which is unattached to any
other tensor or spinor symbol represents a Kronecker delta. The laws
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5%

Fig. A-2. Permutation operators as products of Kronecker deltas.

are implicit in this notation, since to express the left-hand side in each
case one need only extend an already existent line. Permutation operators
now find a natural representation in terms of crossed lines ('Aitken's
diagrams', Aitken 1958). To find the product of two permutations it is
only necessary to place one diagram above the other, join the correspond-
ing adjacent end-points and straighten out the lines. See Fig. A-2. This
represents a product such as

where p and q are permutations of 1,2, ... ,r with qp their product. A
permutation is even or odd according as the number of crossing points
(assumed to be simple intersections) is even or odd.

Symmetrization and anti-symmetrization operators are now sums
and differences of such expressions. It is convenient to have special symbols
to denote these operators, so that they can be used in products without
our having to write out the sum explicitly. A set of r vertical lines with a
horizontal wavy line through them then denotes the sum of all the per-
mutation symbols with the same end-points (Fig. A-3). This is r! x the

e.g., • I I * X
tt - I l - X

III-M-XI-X-
M-XI-X-

Fig. A-3. Symmetrizers and anti-symmetrizers.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.007
https://www.cambridge.org/core


Diagrammatic notation All

= o

\ ywv\k 1 ...
J

= q\ • . . .

n+ 1

Fig. A-4. Some properties of the symmetrizer and anti-symmetrizer tensors.

symmetrization operator. Similarly, if the wavy line is replaced by a hori-
zontal straight line, the symbol now represents r! x the anti-symmetriza-
tion operator. This is the sum of all the positive permutations minus the
sum of the negatiye permutations and the tensor obtained is the 'general-
ized Kronecker delta'

To represent the symmetric part of a set of r indices, therefore, we draw
a wavy line across the relevant index-lines and divide the expression by r!
Correspondingly, for the anti-symmetric part of a tensor we draw a
straight line. (If preferred, the factor (r!)~1 could be incorporated into the
definitions of these symbols. The form chosen here has some computa-
tional advantages for the detailed expansion of diagrams into their
constituent parts.) Some simple identities are given in Fig. A-4 which are
of considerable help when diagrams are manipulated. The dimension of
the space is n. Sometimes it is convenient to express symmetries or anti-
symmetries in groups of indices (see p. 134). In this case the horizontal
wavy line or straight line is drawn only between the groups without the
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JIM-1SKHIW. f HI

Fig. A-5. Clumped symmetrizers and anti-symmetrizers; some simple properties.

• •-11

p(n-p)
) (

)
(n-p)\

Fig. A-6. Alternating tensor and properties.

line continuing across the lines within a group (see Fig. A-5). A con-
venient notation for the alternating tensors, which brings out their relation-
ship with the generalized Kronecker deltas, is a horizontal line at which
the n vertical index lines originate (Fig. A-6). In the covariant case the
vertical lines point downwards and in the contra variant case, upwards.

When a (symmetric, non-degenerate) metric tensor gap is present it is
convenient to represent this by a single 'hoop' as in Fig. A-7. This is the
Kronecker delta line 'bent over', and the tensor gaP may correspondingly

- a
Fig. A-7. The metric tensor.
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Covariant derivative:

Leibniz law:

Torsion:

Ricci identity:

V TPy~e
a A X...V

( / \ = torsion).

Symmetries:

Lie derivative:

£
A

= 0).

Bianchi symmetry:

= 0.

Bianchi identity:

Fig. A-8. The loop' notation for (covariant) derivative; curvature, torsion.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048.007
https://www.cambridge.org/core


430 Appendix

be represented by the same symbol inverted. The relation ga/ig
yP = $1 then

is expressed symply as the 'straightening out' of the Kronecker delta line.
The presence of gap effectively converts the tensor system into a 'Cartesian'
one, in which the distinction between covariant and contravariant indi-
ces need not be maintained. It is then not necessary to distinguish between
'arms' and 'legs' in the diagrams. The index-lines can emerge in any
direction and, indeed, it is not necessary to have the internal lines drawn
generally in a vertical direction either. When no metric is present, on the
other hand, it is helpful to have the lines drawn generally vertically so as to
maintain the covariant/contravariant distinction. An alternative proce-
dure is to mark the lines with arrows, but this is somewhat more time-
consuming to draw.

A convenient notation for (covariant) derivative is to encircle all tensors
to be differentiated by means of a loop - to which is attached a line
directed downwards away from the loop indicating the derivative index.
This is illustrated in Fig. A-8, diagrammatic notations for the torsion and
curvature tensors being also suggested. In Fig. A-9, by way of illustration
of the compactness of this notation a direct proof of the Bianchi identities,
when torsion is present, is given. In Fig. A-10 various properties of the

equal
expressions

] differ by
I derivative

* commutator

Subtract and use Bianchi symmetry and Ricci identity to obtain

for all , soA-
Fig. A-9. Proof, by diagrams, of the Bianchi identity with torsion.
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Diagrammatic notation 431

Fig. A-10. The Riemann tensor and its basic properties.

Riemann tensor are illustrated which hold in standard (pseudo-) Rieman-
nian geometry (including the tableau property mentioned on p. 144).

For spinors various notations are possible which clearly distinguish
the unprimed from the primed indices, such as having the corresponding
index-lines at two different angles to the vertical (Fig. A-l 1), or else using
two colours. In practice this is often unnecessary and it is frequently
adequate to use the same type of index-line for both types of index, where
generally unprimed indices would be grouped at the left of each term and
primed indices at the right. World-tensor indices can always be represented
as pairs of spinor index-lines. A convenient notation for complex conjuga-
tion is simply reflection in the vertical. This entails that the ordering on
the page of the index lines representing AB ... D must be opposite to
that of ABr... Df in the representation of a spinor (\>AB DA,B, D>, (since,
for example, this spinor might be a real world-tensor (pab d whose descrip-
tion, according to the above convention with regard to complex conjuga-
tion, would have to be left-right reflection-symmetric). For consistency we

. p. P....

A. \ V . .
Fig. A-ll. Spin-vectors; duals, complex conjugates.
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AB

v,
A ,
B A

D A

\) •

t \ .
A' B'

"A - A

CBA D'E'

ABC E'D'

BA A'B'

minus sign \
if odd number I

\of crossings /

X X - l l - H . »- -1

A A + A , W = W + V .
Fig. A-12. The £-spinors and their basic properties. Note the ordering of index
labels. As in the last block of diagrams, the sloping of lines need not be strictly adhered
to if no confusion thereby arises. (The e-identity may be used to convert expressions
to a basis in which all lines are uncrossed).

etc.

Fig. A-13. Spinor covariant derivative.
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-3A Hf

&..

+ ^ t + 1T& + ir^ + 2A

A/\ \\\\ /7 // M\ / M \ \ tv
Fig. A-14. The spinor curvature quantities.

7?\\ K

adopt the convention that the ordering of the end-points of the 'unprimed
arms' and of the 'primed legs' is the same as that of the index letters in the
ordinary spinor expression that is being represented, whereas for the
'primed arms' and 'unprimed legs' it is the opposite order, (cf. Fig. A-12.)
The notation described in Fig. A-6 for alternating symbols generally can
be used for the e-spinors, but a more convenient notation is given in Fig.
A-12 which has the advantage of compactness, and the somewhat awk-
ward spinor sign rules for raising and lowering indices can be made more
memorable.

Spinor Ricci identities:

ih.

Bianchi identity:

i.e.,

Fig. A-15. Spinor Ricci and Bianchi identities.
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Z
a • i or | X«' > i or ^ , etc.,

— O z n X
« I or | , A o J or I , etc.

lofl ^ | I , /_r^5\ I I
I | » « P V ' II*

* - - u . * - - n . Ln = o = ru .
LAJ=LJU + L_LU, rvn - n n + rm.

, =+£ iTs —». n = i 11 u

I.«=^,S,T6 —» U = + I I n .

I I ^WK * ' '—' ^̂  "

^ ^-7 Rotate diagrams

7 r y 4 .>A^ | 7p4'-«~* I — ' 1 . FT"7" through 90°
Z ' z z L ^ to restore
^ ^ ^ ' conventions

^J^ "~ "*J » of previous
spinor notation

n-rr-n. U-LL=U-
Fig. A-16. A diagrammatic notation for twistor theory.

In Fig. A-13 the notation for spinor covariant derivatives is indicated
and in Fig. A-14 suggestions for the spinors representing the curvature are
given. The Ricci and Bianchi identities are depicted in Fig. A-15.

In special circumstances it may prove convenient to depart from the
above rules-which are intended only a guide. For example, with the
twistor theory that we introduce in Vol. 2, complex conjugation inter-
changes upper and lower indices, so complex conjugation is then con-
veniently represented by reflection in a horizontal plane. When spinor
and twistor indices are both present then it is accordingly sometimes
convenient for the spinor index lines to be drawn horizontally rather than
vertically. Some suggestions are given in Fig. A-16.
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outer (tensor) 71, 74, 83
scalar multiplication 1, 56, 83

projection operator 271
proper [improper] tetrad 2
proton 179

quantum mechanics viii, (47), 220
quaternions 21- (45), 52, 55, (92), (93)

conjugate of 22
norm of 22

Rainich, G.Y. 329
Rainich conditions 328-,

differential 331, 332
rank 72
rapidity 20, 27, 32
Rarita, W. 384
Rarita-Schwinger equation 384
Rauch, H. (47)
reducibility 141—
reduction to symmetric spinors 139-

of curvature 236
reflexive 80

see also total reflexivity
restricted Lorentz group 5

representations of 141-
restricted Lorentz transformation 5, 17,

167-
restricted Minkowski tetrad 4
restricted Poincare group 6

representations of (141)
Ricci identity 194

diagram for 429
spinor form of 243, 244

with charged fields 320- 366
diagram for 433

Ricci rotation coefficients 265
Ricci spinor 231-, 234

diagram for 433
dyad components of 248

weight types of 256
Ricci tensor 146, 210, 239

non-symmetric 238
trace-free 146

Riemann sphere 10- 11, 24- 274, 289
Riemann (-Christoffel) tensor 146, 209,

231, 239, 341
and curvature 2-form 263
diagram for 431

Riemannian connection: see covariant
derivative, Christoffel

Riesz, M. 389
right-handed massless particles 362
Rindler, W. 24, 352
Robinson, G. de B. (144)
Robinson I. 24, (31), 153, 241
Robinson-Bel tensor 240-

see also Bel-Robinson tensor
Rohrlich, F. 272, (297), 305, (306), (307)
rotations of 2-sphere 18-, 294-

irreducible functions under 296-
completeness of 297

Sachs, R.K. 199, 260, 364, 392, 393, 399
Sachs (asterisk-) operation 260, 261, 269,

270
scalar curvature 210, 233
scalar fields 180
scalar multiplication 1, 56, 83
scalar product 1

between module and its dual 79
numerical expression for 94, 95
see also product

scalars 73
complex 188
ring of 76, 77

scattering 419-
Schiff, L.I. 306
Schild, A. 392
Schrodinger, E. 371
Schrodinger-Klein-Gordon field

(equation) 378
degrees of freedom for 390

Schwinger, J. 384
Sciama, D.W. 237
see-saw 106, 110
self-dual 151, 351
signature

Lorentzian 2,24,(121), 235
positive-definite 24

simple skew tensors (145), 765—
simply-connected 41

non-simply-connected region of space-
time 219, 318, 331

skew symmetry: see anti-symmetry
sky mapping 9, 30
spacelike hypersurface, initial data on 389,

401, 402
spacelike 2-surface 252, 267-

orientation of 268
surface element 2-form for 280, 301, 394

spacelike world-vector 3
space-orientation of V 4
space-time manifold 48-, 103, 210-

Minkowskian 5
space-orientation of 129
space time orientation of 49, 129
spin structure on 49-, 129
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time-orientation of 49, 129
Sparling, G.A.J. (401)
speed of light 235
spherical harmonics: see spin-weighted

spherical harmonics
spin

of a massive particle 384
of a massless particle 362

spin-coefficient Bianchi identity (compacted
form) 259

spin-coefficient commutator equations 247,
248

in compacted form 258
spin-coefficient equations 247-

in compacted form 258
spin-coefficients 223-, 246-, 254-

conformal rescalings of 358, 359
relation to Cartan's moving frames 265-

spin density 237-
spin-frame 58, 110-, 119- 224, 228, 353

conformal rescaling of 358
and Minkowski tetrad 58, (59), 120

spin group 16
representations of 141-, 237

spin matrix 75-, 115
spin-space 56
spin structure 49-, 129

ambiguity of 51 -
obstructions to 50-

spin transformation 15-, 58, 167-
infinitesimal 176-
positive-defmite Hermitian 20
unitary 18-

spin-vector bundle (48), 50-
spin-vectors 32, 39- 47, 126- 352

components of 56-, 58, 112
diagrams for 431
fields of 69, 70, 103-
operations on: see spinor operations

spin-weight 253, 273, 290- 391
spin-weighted spherical harmonics 297-,

391, 392, 399
basis (JjJ for 305
conformal behaviour of 300-
coordinate descriptions of 308-
orthogonality of 302
reciprocity relations for 307
scalar product of 305
table of dimensions of 298

spinor basis 110-, 223-
conformal rescaling of 358
global existence of 93, 111
normalized: see spin-frame

spinor operations
algebraic 56-
complex conjugation 107-
on fields 103-

on general spinor 108—
geometry of 59-

inner product 59-, 137, 352
scalar multiplication 39, 40, 59, 128,

129
sum 63

spinor structure 48-, 54, 129
in non-compact space-times 55

spinorial object 41- , 46,
in nature (46)

1-spinors 273
2-spinors vii, 70, 103- 108-, 423

components of 113-
curvature spinors 231-
diagrams for 431-
e-spinors 104-

covariant constancy of 215
covariant non-constancy of 216, 217
diagrams for 432
identity in 106, 136

4-spinors (Dirac spinors) vii, 143, (221),
370, 377

splitting off skew indices 106, 137
squared interval 5
Staruszkiewicz, A. (32)
Stasheff, J.D. 52
Stephani, H. 119,224
stereographic coordinate (complex) 11, (12),

33- 274, 309, 310
stereographic projection 10-, 25, 60
Stewart, J.M. 252
Stieffel-Whitney classes 51, 52
Stokes' theorem (205)
stretch band 339, 340
Sudarshan, E.C.G. 272, (297), 305, (306),

(307)
summation convention 2, 71-, 76
supersymmetry (supergravity) 370
surface: see null hypersurface, spacelike

hypersurface, spacelike 2-surface
surface area 2-form 280, 301
Susskind, L. (46)
symmetric spinors 139—

canonical decomposition of 162
constant 294
derivatives of, in compacted formalism

257
null 164
number of components of 147
reduction of arbitrary spinor to 139
reduction of curvature to 236

symmetric tensors 134-
trace-free 146, 147, 240
trace-free part of 148
trace-reversed 149

symmetrization 132
diagram for 426-
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symmetry operations 84, 132-
diagrams for 426-

Synge, J.L. 28, 387, 416
Szekeres, P. 367

tangent space 179
at a point 187

tangent vectors 179
bundle of 333
field of 184
at a point 187

Taylor (Gregory) series (covariant) 386-
tensor translation of spinor algebra 147—

of contraction 158
of even spinor 155
of odd spinor 156
of outer product 156, 157
of spinor-index permutation 153—
of sum 157, 158

tensor translation of spinor differential
equations 219—

of Dirac-Weyl equation 220, 221
of Dirac equation 222

tensors vii, 70-
abstract algebraic view of 73 -
[anti-] symmetric: see [anti-] symmetric

tensors
classical algebra of 70-
classical transformations of 71, 97, 101
components of 70-
definitions of

as formal-sum (type II) 81-, 95-
as multilinear-map (type I) 80-, 95-
as rule (type III) 72, 95- 100-

invariant under a linear transformation
168

operations on
contraction 71, 74, 84, 85
diagrams for 425-
index [substitution] permutation 71,

75,84
outer product 71, 74, 83
sum 70, 74, 82

real and complex 188
restricted to open set 98-

Terrell, J. 26
tetrad 1-

improper, proper 2
Minkowski 3 - 58, 120

null 119, 125
orientation of 2

t' Hooft, G. 75
thorn (p) 255-

conformally invariant (p^) 360
Thrall, R.M. (144)
three-sphere

left [right] translations of 55, (92), (93)

parallelizability (92), (93)
time-orientable space-time 49
time-orientation of V 4
timelike 2-surface 268-

see also spacelike 2-surface
timelike world-vector 3
Tod, K.P. 291
torsion-free 193, 200, 202-, 216- 223-

355- 386
torsion tensor 193, 200, 215, 216, 237,

(353), (356), 370
diagram for 429, 430

total reflexivity 80-, 82
from existence of basis 95-
on a manifold 98- 183, 188

trace-reversal 149
transformation laws of components

for spinors 115
for tensors 71, 97, 101

transvection 86
Trautman, A. 119, 237, 364
trivialization(317), 345
Turlay, R. (4)
twistor equation 260

in spin-coefficient form 260
conformal 361

twistors (viii), 130, 143, 273, 348, (401), 423
diagrams for 434

types of weighted quantity 253-, 289-

unimodular matrix 15, 115
universal covering space 45-
Unruh, W.G. 403
unscrambler (Robinson's) 153, 241
Unti, T.WJ. 224
Urbantke, H.K. 370

valence 72, 78
van der Burg, M.GJ. 399
van der Waerden, B.L. vii, (107), 221
vector bundle 48- (253), 269, 332-

base space of 333
complex line bundle (253)

unitary 344
connection on 340

change of 341
cross-section of (270), 334, 335

local basis for 335
curvature of 340, 341
explicit construction of 337-
fibre of 333

Hermitian structure on 344
Lie group structure on 343, 344

fields on 341, 342
null-flag [spin-vector] bundle 48-
tangent bundle 333—

vector field 69, 184-,
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components of 185
vector space 1

spin-space as 58
vectors, contravariant and covariant 72
Veltman, M. 75
Vilenkin, N. Ya. (301)
von der Heyde, P. 237
Voorhees, B.H. 252

Wainwright, J. 224
Walker, M. 252
Ward, R.S. 352
wave equation 260, 374

conformally invariant 260, 395
degrees of freedom for 390
energy tensor for 369
initial data for 390, 401
in spin-coefficient form 260

weak energy condition 327
weak-field limit of Einstein equations 362-

375
weak interactions, non-invariance under

space-reflections (4), 56
wedge (exterior) product 203-, 262-
weighted quantity 253-

type of 253-
Wells, R.O. Junior 274
Werner, S.A. (47)
Weyl, H. 42, (143), 220, 356
Weyl geometry 356, 357
Weyl neutrino equation 220-

see Dirac-Weyl equation
Weyl (conformal) spinor 236, 239, 240-

366, 367, 373
dyad components of 248

weight types of 256
Weyl (conformal) tensor 146, 236, 240-

[anti-] self-dual parts of 236, 237, 240-
Wheeler, J.A. 329, 330
Whittaker, E.T. 222, (321)
Wilfing, A. (47)
Witten, L. 55, 329
Woodhouse, N.M.J. 205
world-tensor, as spinor 116-

complex and real 117, 124
world-tensor calculus vii
world-vector ] - , 116-

causal, spacelike, timelike 3
complex, and improper Lorentz

transformations 171
complex null 126, 129
future-and past-pointing 4, 127
Hermitian-null 131, 132
null 3, 126

Wu, C.S. (4)
Wu, T.T. (4), (315)

Yang, C.N. (4), (315), 342
Yang-Mills (YM) theory 333, 342-

bundle connection in 344-
current for 350
energy tensor in 351
exact sets with 383, 386
field equations in 350

spinor form of 351
field tensor in 349

[anti-] self-dual 351
spinor form of 350, 351

gauge in 345
gauge transformations in 345, 348
Hermitian metric in 347
potentials for 347

change under gauge transformations
349

YM-charged fields 333, 342-, 356
Young, A. (143)
Young tableau 143, (143-)

number of independent components
(144)

tensor diagram for 431

Zeilinger, A. (47)
zero rest-mass field equations 362

see also massless field equations
zero spin-vector 47
zero tensor 73
Zumino, B. 370
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Index of symbols

Symbols are listed in order ofappearence in text; page numbers in italics denote main references;
page numbers in parentheses refer to footnotes; a dash indicates continuation for more than two
pages.

R 1, 180-
V 1-

a, A, a, F (bold upright indices: numerical)
2- 76, 335-

I I 1 / 1 1 3
M 5- 285- 393-

R4 5, 52-
«^+, Sf~, S+, S~ 8-, 24- 26, 33- 60-
f (complex stereographic coordinate) 10-,

33- 274, 309, 310
K 14, 32
5L(2, C) 16-, 45- 141- 237
A* (conjugate transpose) 16
w (Doppler factor) 20, 27
<j> = log w (rapidity) 27
PP'34
50(3) 41- 344
TTJ (first homotopy group) 44

T., 50(3) (universal covering space) 45-

517(2), 0Uh 3) 45-
K (spin-vector) 47
0 (zero spin-vector, tensor) 47, 73
Jt 48- 98- 180- 210-
C°°48

50(4) 52
53 55, 92
S- 56, 76-
C 56, 294
{K, <O) 56- 104, 352
o, i 58
[JL [ « ] 72, 108

<5, S\ 73
a, A, a, F (lightface sloping indices:

abstract) 76-, 335-
Se (labelling set) 77, 103

®"::: 80
Ĵ 89, 90, 425

a* (reversed-position index) 90
,srf, &,... (composite indices) 90
e j 90
&' 91, 107

si SI 93, 94
Ap\, Alz. 95
^«, SI 97
©?:::(/) 99
{^} 99, 335
<5J;;. 103, 212-
^AB^AB^AB 104, 105,432
^ = ^ ' 107
©£:::?::: io g

oA,oA,\A, iA\n

X = oAiA 111,224,252,254
eAB, e / , . . . 111-223,432
Jf (world-tensor labelling set) 116
a = AX' etc. 116
SJJ,^117
3: 117, 780

l\m\ma, nfl119, 226, 253

gfa
AA, ^AA * (Infeld-van der Waerden
symbols) 723, 266

*...(...).. ..|...|. 132-
3.,..,..., @.,..,... 134

o a/abcd i 37 / 3 o
abcdi " x-Jl, I JO

0 (direct sum) 141, 142, 180, 212, 343
d d d d

, — , — , (abstract indices!) (145),
8Y* 8oA dxa dy* n h

287, 341
GUn, C) 146
tab (trace-reversed tensor) 149, 364
*Fab> *Gab* 150, 264
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fJabc^ 15U 264, 371
XKa!9 151, 264
~Fab,

 +Fab 151, 320
{e)Fab 152
Uab

cd 153-
exp(...) 176, 177, 207, 346, 387
tf 181
£a>ft(x) 187, 183
(*', x) 182-
P(/) 184
T 184
d/dxa (on a manifold) (184), 189
M"p"i w/r cp~\ <TTpi T r cyn T T < ^ T IO*7

%\'\{?\ S$ y
v[<9*] 188

d 189, 203- 263-
dxa 189
Va 190- 192, 312- 340, 429
AaP 193- 242
Ta/ 193- 237,429
zaP 193-, 340
* „ / 194, 209, 231, 429
Q a / 196, 215, 341
da 198, 348
r a / 199
[(/, K] (199), 206, 246, 247
V2/43 201

£ 202, 207

A:=AIU2mwmlp2Q3

p-form 203-
^ A C 203- 262-
J ^ 205
U° V (composition) 206
V206
0 a B

c 215- 355
Ta 217, 356-
^AAC8' 7AABC (spin-coefficients) 223-

p,a,K,x,..., s' (spin-coefficients) 225-, 248,
249, 254- 270, 358, 359

(...)' 226-
D, S, D', S' 227

Rabcd ~ RAA'BB'CC'DD' 2 3 1

XABCD, ®ABCD' 231-, 357, 433

*(...), (...)*, <*>(...), (...)<•> 232
A 233- 357
y (Newton's constant) 235
VABCD 235-, 312, 357, 433

Cabcd,
 +Cabcd,...236,231

BAB, BA-B- 242-, 320- 350

<C<C...248

n248
{r',.r;t',t} (type) 253
{p, q] (type): p = r' - r, q = t' - t 253
[s, w] (type): s = |(p — q), w = |(p -I- g) 253,

273, 289- 291-
p, 6, p', 6' 255- 270- 308-
D 260, 364, 409
(...)* (Sachs operation) 260, 261
Qa

b, QA
B 263

0° 264, 265
wa

b 264, 265
/, Hi, m, n 266, 267
ds2 266, 275
b£f, $f 268-
Aa 271-
K (complex curvature of 2-surface) 272,

277
Se (area 2-form) 280, 301, 394
JT (null hypersurface) 281- 388-
d (boundary) 282
^(null volume 3-form) 284
^(invariant volume 3-form of light cone)

415
Ml / « , J) (287)
§...294-396
<h,f> 301-
y £ 305—

^7312-,m320
0), 312-, 316
Fab (Maxwell field) 312, 318-
e e
©:::. ©:::[fl 313-
e (elementary charge) 314-, 344
K (complex Maxwell scalar) 324, 330
£• , 3*336, 343
Y" (fibre) 338-
^ ^ 3 4 0 , 3 4 1
0',... (conjugated bundle index) 343
av

ip345
q^ 345
qv@, p T

e 346

®ave 347
â&» <?... (conformally rescaled) 352—

Q 352-
vv0, w l f w (conformal weights) 358, 360

xa (position vector) 362, 387, 405
^ 363
Ai = 2-**-1m 377, 384,412
Ay (distributional field) 408-

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511564048
https://www.cambridge.org/core

	Cover Front
	Front Matter
	Contents
	Preface
	1 The geometry of world-vectors and spin-vectors
	1.1 Minkowski vector space
	1.2 Null directions and spin transformations
	1.3 Some properties of Lorentz transformations
	1.4 Null flags and spin-vectors
	1.5 Spinorial objects and spin structure
	1.6 The geometry of spinor operations

	2 Abstract indices and spinor algebra
	2.1 Motivation for abstract index approach
	2.2 The abstract-index formalism for tensor algebra
	2.3 Bases
	2.4 The total reflexivity of S' on a manifold
	2.5 Spinor algebra

	3 Spinors and world-tensors
	3.1 World-tensors as spinors
	3.2 Null flags and complex null vectors
	3.3 Symmetry operations
	3.4 Tensor representation of spinor operations
	3.5 Simple propositions about tensors and spinors at a point
	3.6 Lorentz transformations

	4 Differentiation and curvature
	4.1 Manifolds
	4.2 Covariant derivative
	4.3 Connection-independent derivatives
	4.4 Differentiation of spinors
	4.5 Differentiation of spinor components
	4.6 The curvature spinors
	4.7 Spinor formulation of the Einstein-Cartan-Sciama-Kibble theory
	4.8 The Weyl tensor and the Bel-Robinson tensor
	4.9 Spinor form of commutators
	4.10 Spinor form of the Bianchi identity
	4.11 Curvature spinors and spin-coefficients
	4.12 Compacted spin-coefficient formalism
	4.13 Cartan's method
	4.14 Applications to 2-surfaces
	4.15 Spin-weighted spherical harmonics

	5 Fields in space-time
	5.1 The electromagnetic field and its derivative operator
	5.2 Einstein-Maxwell equations in spinor form
	5.3 The Rainich conditions
	5.4 Vector Bundles
	5.5 Yang-Mills Fields
	5.6 Conformal rescalings
	5.7 Massless fields
	5.8 Consistency conditions
	5.9 Conformal invariance of various field quantities
	5.10 Exact sets of fields
	5.11 Initial data on a light cone
	5.12 Explicit field integrals

	Appendix Diagrammatic notation
	References
	Subject and author index
	Index of symbols



