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Preface 

A student of theoretical physics who wishes to follow recent trends in 
current research is liable to be confronted with a bewildering amalgam 
of ideas from physics and mathematics. In particular, much of the 
terminology permeating developments in the theories of matter and 
gravitation is borrowed from classical differential geometry. In many of 
these theories spinors play a prominent role. A further notable develop-
ment is the introduction of spaces with 'exotic' topologies and geo-
metries in formulating the basic laws of Nature. Consequently the 
student finds it necessary to possess a broad knowledge of mathematical 
techniques that encompasses such generalities as well as the computa-
tional skills necessary to use this information. 

In this book we have attempted to provide a concise but self-
contained introduction to the basic properties of differential geometry 
and spinors accommodating some of the needs mentioned above. We 
feel that physicists learn most rapidly by seeing new concepts spelled out 
in some detail. We have attempted a blend of mathematics and 
theoretical physics which we hope will assist in the assimilation of new 
ideas and give readers a feeling that they are closer to the 'nuts and 
bolts' of the subject material. In writing any introduction to a subject as 
broad as this we have had to face the problem of what prerequisites we 
expect our readers to possess. Fundamental to any appreciation of 
tensor methods is a firm familiarity with linear algebra. Thus our book 
begins with algebraic notions. We have tried to encapsulate the neces-
sary concepts used in Chapters 1 and 2 into Appendix A. This should 
provide a reservoir of compact information for those who may find some 
foreign vocabulary in these early chapters. Our emphasis here is on real 
vector spaces and their complexifications. We feel that this approach 
makes closest contact with what most physicists actually use when 
working with the complexified Clifford algebra of spacetime. We intro-
duce a spinor as an element carrying an irreducible representation of 
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some Clifford algebra. This emphasis on the Clifford algebras rather 
than the spin groups is slightly different from that commonly adopted by 
most working physicists. However, the spin groups are most easily 
defined as sitting in the Clifford algebra, and thus we may induce 
representations of these groups from those of the algebras. No doubt 
some readers will be surprised at the classical tone that dominates our 
description of spinors. We offer little apology. As a mathematical entity 
the notion of a spinor requires no quantum theoretical overtones. 
Although we would have liked to develop further the basic role played 
by spinors in quantum field theory we feel that their role in physical 
models need not intrude into their basic relation to geometry. More-
over, a proper appreciation of this relation is essential in relativistic 
quantum field theory. 

The introduction to differential manifolds (Chapter 4) is fairly 
elementary and presupposes only a basic knowledge of the calculus of 
many variables. We have interrupted its development with a chapter on 
physical applications before formally introducing the idea of a linear 
connection. This chapter illustrates the importance of Lorentzian 
geometry in relativistic physics, and is motivated by a discussion of 
electromagnetism. Chapter 7 is devoted to the field theory of gravitation 
and its sources in which many of the mathematical tools introduced 
earlier are put to use. The two main themes of Clifford algebras and 
differentiable manifolds are drawn together in the final chapters on 
Clifford forms and spinor fields. Here readers will find physical applica-
tions involving spinors on manifolds and are introduced to some recent 
developments that relate geometrical properties of a space to the 
existence of spinor fields with particular properties. Earnest readers are 
invited to test their expertise by working out some of the illustrative 
examples that have been inserted at strategic points in the text. 

In the course of writing this book we have benefited from dialogues 
with many colleagues. In particular, we wish to thank Graeme Segal, R 
Al-Saad, J Brooke, C T J Dodson, E Kahler, K McCrimmond, and D 
Towers for helpful comments on various aspects of our enterprise. We 
are also grateful for correspondence with A Crumeyrolle, K McKenzie 
and D Plyman on aspects of Clifford algebras. The production of our 
manuscript was greatly assisted with the aid of TEXnical facilities 
generously provided by A B Clegg and P M Lee. We also thank G 
Hughes for all the time and effort he spent teaching us to drive the 
Vax-editor and its peripherals. Finally, we are happy to acknowledge 
the support provided by the University of Lancaster Research Fund. 

I M Benn 
R W Tucker 
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Tensor Algebra 

This first chapter will provide a foundation for the two initially separate 
directions the book will take; algebra and geometry. In Appendix A we 
have gathered together a number of ideas relating to the study of vector 
spaces and algebras. These notions will be used freely within the first 
two chapters. The reader who is initially confronted with foreign 
vocabulary or new concepts should consult this Appendix for definitions 
where a concise development of rudimentary ideas is also to be found. 

The first section of this chapter introduces the tensor algebra of an 
arbitrary vector space. In Chapter 2 this will be the starting point for 
our construction of the Clifford algebra, which will be defined as a 
quotient of the tensor algebra. In Chapter 4 and subsequent chapters 
when beginning geometry we will be interested in the tangent space 
(and the cotangent space) of a manifold. We will then be able to apply 
the material of this chapter immediately to that vector space. In fact it 
will be the cotangent space that is taken for the arbitrary vector space 
V. Anticipating this we have (identifying the second dual space of V 
with itself) written elements of V as acting on V*, rather than the other 
way around. 

Particularly important on manifolds are the totally antisymmetric 
tensor fields; the differential forms. In §1.2 we introduce the exterior 
forms on an arbitrary vector space. These will also play a prominent 
role in our treatment of the Clifford algebra. To facilitate a comparison 
with the Clifford algebra we re-introduce the exterior algebra in §1.3 as 
a quotient of the tensor algebra. 

Only in §1.4 does a metric enter. (Our meaning of a metric is given in 
Appendix A.) This allows us to introduce the Hodge map which is a key 
ingredient of the calculus of differential forms on (pseudo-) Riemannian 
manifolds. 

We have delayed introducing the mixed tensor algebra until §1.5. 
Here contact is made with the classical definition of a tensor in terms of 
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transformation properties of components. Index conventions will be 
established that allow the traditional 'raising and lowering' of indices. 

1.1 The Tensor Algebra 

If V is any vector space over some field F then the set of F-valued 
linear maps on V forms a vector space; the dual space, V. lf, as we 
now assume, V is finite dimensional then there is a natural way to 
regard elements of V as linear maps on V*. That is, if x E V and X E V* 
such that X acts on x to produce the scalar X(x) then we can 
equivalently think of this as defining an action of x on X, x(X) = X(x). 
In the following it will be convenient to adopt this seemingly perverse 
view of regarding V as the space of linear mappings on V*. Just as the 
F-valued linear maps on V* form a vector space so do the multilinear 
maps on ordered sets of elements from V*. The F-valued multilinear 
maps on V* x V* x ...x V* (r times) are called tensors of degree r. 
The notion of multilinearity is an obvious extension of the notion of a 
linear map; for any fixed choice of r — 1 elements of V* the map is 
linear in the remaining variable. Multilinearity ensures that a tensor of 
degree r is completely specified by its action on all ordered sets of basis 
vectors for V*, thus if V (and hence V*) is n-dimensional then the 
tensors of degreet r form an nr-dimensional vector space, T r(V). 

We may associate a set of r elements from V with a tensor of degree 
r. For X i  E V, i = 1, .. r and X i  E V * , i = 1, 	r we define 

(X 1 Y_.\9X 2 0 	 X2, . X r ) = X I (X1)X 2(X2) . . . X r (X r ). 

In particular, if fe') is a basis for V then the set of all n r elements 
{e''Oe 1,0 . . . Oe'r}, where the indices take all values from 1 to n, 
forms a basis for T r(V). The vector space T r(V) is called the tensor 
product of V r times 

T r (V) = VOV 	OV OrV. 

More generally, the tensor product defines a mapping between tensors 
of different degrees 

: T r (V) x T s  (V) 	T r  „(V) 	 (1.1.1) 

a, b 	a0b 

where 

t Formerly called rank. 
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(a0b)(X 1 , X2, . . 	, X r  + 1, . 	Xr  + 

	

= a(X i 	X r)b(X, +1 , 	X,,). 

We may take the (external) direct sum of the vector spaces  Tr (V) for 
all r to form an infinite-dimensional vector space. The direct sum of 
such a vector space with a one-dimensional space spanned by an identity 
element forms an associative (but not commutative) algebra under the 
tensor product, the tensor algebra T(V). The subspace spanned by the 
identity is written as To (V), and since this is just another copy of the 
field F with an identical rule for multiplication on tensors we shall not 
distinguish between these two spaces. The tensor algebra is generated by 
V and the identity element; any element can be written as a sum of 
tensor products of elements from V and the identity. Those tensors that 
are simply a product of vectors from V are called decomposable. By 
construction we have the direct sum vector space decomposition 

T(V) = E oTp(V). 
p=o   

The tensor product is such that the tensor algebra is a Z-graded algebra; 
elements in T(V) that are sums of products of p elements from V being 
homogeneous of degree p. The zero element (which is homogeneous for 
every degree) is the only term that is homogeneous for negative degree. 
The grading naturally gives rise to an involutary automorphism ij  

defined on homogeneous elements byt 

= (_odega a.  

This is certainly an automorphism since if a and b are homogeneous 

n(a0b) = (_odegaobaob 

	

= 	odega + degben‘b V.9 (since the algebra is graded) 

= (_odega( i)degb a 0b 

and so 

ri(a0b) 	 (1.1.3) 

To say that ri is involutary means that 71 2  = 1, which indeed follows 
from (1.1.2). The homomorphism  Z—'  Z2 induces a coarser Z 2 - 

gradation in T(V). The Z 2-homogeneous subspaces consist of the sum 
of all Z-homogeneous subspaces of even (odd) degree. Thus the 
Z 2-homogeneous subspaces are eigenspaces for the automorphism ij  

with eigenvalues plus (minus) one. Elements of these spaces will be 
called even or odd, respectively. 

t The notation ce is also employed. 

(1.1.2) 
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The tensor algebra is isomorphic to its opposite algebrat and admits 
an involutary anti-automorphism, or simply an involution, defined on 
homogeneous elements by 

	

(x iox 2 	ox py = 	ox 2ox
1 
	

(1.1.4) 

It is straightforward to see that this really is an anti-automorphism, 
namely (a0b)',' = b®at  such that 2  = 1. 

If X is in V* then the interior derivative with respect to X is denoted 
i x . It is defined to be a linear transformation that is an anti-derivation 
with respect to the automorphism n, that is 

i x (a0b) = i x a0b + tia0ix b. 	 (1.1.5) 

If x E V then i xx = X(x), whilst for A in the subspace spanned by the 
identity i xA 0, and so the interior derivative is a homogeneous linear 
mapping on T(V) (with respect to the Z-gradation) of degree —1. These 
properties completely characterise the interior derivative. Since i x  is an 
anti-derivative with respect to the involution n, with i xn = —ni x , it 
follows that i xi y  + i y i x  is a derivation on T(V). For x E V or the 
subspace spanned by the identity (i xi y i yix)X = 0, and since T(V) is 
generated by this space 

	

(i xi y 	i yix)C1 = 0 	for all a c T(V). 	(1.1.6) 

In particular i xi x  = O. 

1.2 The Exterior Algebra of Antisymmetric Tensors 

A tensor is a multilinear mapping on an ordered set of vectors, the 
ordering being in general important. Many important tensors have 
symmetries, however, the result of the evaluation on a set of vectors 
being invariant under the interchange of certain pairs of vectors. To 
formalise this we introduce the interchange permutation 7rjk  , which 
rearranges the set of numbers {1, 2, . . p) such that vik (i)= i if i j 
or k, /k W = k and ulk (k) = j. Then a degree-p tensor T is symmetric 
(antisymmetric) in the j,k entries if 

T(X, (1) ,X, ), (2) , . . 	X„ (p) ) = +(—)T(X I ,X 2 , . . 	X p ).: 

A tensor that is symmetric (antisymmetric) under all such inter-
changes is called totally symmetric (totally antisymmetric). The totally 
antisymmetric tensors are particularly important. The subspace of totally 

1 See Appendix A. 
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antisymmetric tensors in  T(V) is denoted by  A(V), the elements of 
this space being called exterior p-forms, or simply p-forms. The  total 

 antisymmetry ensures that a p-form is determined by its evaluation on 
all distinct combinations of p vectors from a basis for V*. So if V is 
n-dimensional and 

( 	 ) 

denotes the number of distinct combinations of p objects chosen from n 
then 

dim Ap  = 
 ( ç). 

 

In particular, the only p-forms for p>n are zero, and dim A„ = 1. In 
analogy with the case of the tensor algebra it will be convenient to 
identify the field F with a space A o (V). 

Given an arbitrary element a c T(V), we define a new tensor 
sag a c T p (V) by 

sag a(X I ,X 2 , . . ., X p ) 

= —
1

Ee(a)a(X am ,X,, (2) , . . X„,p) ) 	V X, E V* (1.2.1) 
Pi a 

where the sum is over all permutations a, e(a) being +1 if this 
permutation is even (i.e. an even number of pair interchanges rear- 
ranges the elements 1, 2, . . p into the order a(1), a(2), . . a(p)) or 
—1 if the permutation is odd (an odd number of such interchanges). 
From the definition of saga we see that it is totally antisymmetric and 
that sag(sa 3-  = saga. Hence sin-  is a projection operator, 
sag:Tp (V)--A p (V). Although CD: T,(V) x T,(V)—> T s+,(V), the map 
0 will not map A s (V) x A,(V) into A s+,(V). Thus we devise a new 
composition map in terms of 0 and sin-  that does have this property. 
It is called the exterior productt and is denoted by a A placed between 
the elements of  A(V) and  A r (V) 

A :As(V) X Ar(V) -* As+,(V) 

a, b - > a A b = sag(a0b). (1.2.2) 

t The reader is cautioned that there are other conventions for the definition of 
the exterior product. Other conventions involve a numerical factor which 
depends on the degrees of a and  b.  The reader should convince himself that 
such numerical factors cannot be arbitrarily inserted with impunity! (Why not?) 
The convention we have adopted is convenient for regarding the exterior algebra 
as a quotient of the tensor algebra modulo the kernel of si23" , as we shall do in 
the next section. 
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It follows from this definition that 

(a A b)(XI, X2, . . . Xs , Xs+ i, . . 	Xs+t ) 

	 E (s+t)! 	E(a)(a0b)(X 0( , ) , . . . ., 

1 
	 E(s+t)! 	

E(s, t)a(Xii , . . . 	X j,)b(X ki , . . . 

where the sum is over all partitions of (1, 2, . . 	s+t) into G I , j 2 , . 
js ) and (k 1 , k 2 , . . 	lc), and E(s, t) is the sign of the permutation 

	

(1, 2, .. 	s+t)i--> (j i , j 2 , 	js , k i , k 2 , 	k t ). 

The exterior product has a well defined symmetry under the interchange 
of factors such as a and b above. To see this we introduce a 
permutation v, 

(1, 2, .. 	s, s+1, . . 	s+t)  r, (t+1, 	t+s, 1, 2, . 	t). 

We write any permutation a as a = rv, giving E(a) = E(v)E(r). Inserting 
this in the above gives 

(a A b)(Xi, X2, . 	X„ X, + 1, . . Xs+f ) 

	 E (s+t)! 	e(a)a(X G(1) , . . . 7  X „(s) )b(X 0", ) , . . 	X, (5+0) 

E(v)  
E 

	

 (s+t)! 	E(T)a(,G(,+i), . . . 7  X r(r+s))6(X, (1) , . . . 7  

= E(v)(b A a)(X 1 , .. . 7  X,„). 

A trivial combinatorial calculation gives E(v) = (-1)", and so we have 
for any s-form a and t-form b 

	

a A b = (- 1)stb A a. 	 (1.2.3) 

The exterior algebra A(V) is formed by the direct vector space sum of 
all the spaces of p-forms 

A(V) = E A( V)  
p=0 

with multiplication given by the exterior product. The exterior product 
is defined on non-homogeneous elements by extending .94Y3 -  to be 
distributive over addition, ensuring that the exterior product is. Unlike 
the tensor algebra this algebra is finite dimensional: we have 

dim A( V) — E n  — 2.  
p=0 P 
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The exterior algebra is, in fact, associative. This will be seen to follow 
from the observation that if .54Y5 - ni = 0 then saY(a0m) = 
a1Y.5(m(Da)= 0, V a e T(V), as will now be established. 

Let Ck be the group of all permutations of k objects. Then the 
subgroup of C5+ , that only permutes the first s objects is obviously 
isomorphic to C„, and we shall identify it as such. Let H be a set that 
contains one and only one element from each left coset of Cs+, relative 
to C,. So for each  o c  C5+,  u = In-,  tE C, and h  E H,  with 
e(a) = E(T)E(h), and then 

.36115(m0a)(X i , 	X s,) 

1  

(s+t)! 
E e(h) E E(r)(m0a)(X 0(l) ,  
heH 	rEC, 

For some fixed h let Xh(,) =  Y, then X0(0= Xhr(I)= Y  r(i), and thus 

E E(r)(m0a)(X am , 	. Xa(s+0) 
T E 

= E E(T-)(m(Da)(Y T(l ), 	 Yr(s+t)) 
T E 

= E E(T)m(Yro), • • •, Yroa(Y„-+i, • •  
E Cs  

= sin-m(Yi, • • •, Y0a(Y5+1, • • •,Y,Fi). 

So indeed slYY(m0a)= 0 if sti2Fim = O. Similarly, it follows that 
saYff(a0m) = O. 

Since, as we have remarked, .9119-  is a projection operator, if we set 
(1 — siYFI)(a0b)= m 	then 	a(Db = s4.V1(a0b)+ m, 	with 

= O. From the definition of the exterior product we have 

(a A b) A C = ,9a7/ (.9CYFf (a0b) Oc) 

= 	(a0b0c — m0c) 

since 0 is associative 

= .942,5 (a0b0c) 

from the above result, which may be used once more to give 

(a A b) A C = .942Y (aOstYg (b0c)) 

= a A (b A C). 

The exterior algebra inherits a Z-gradation from the tensor algebra. 
The zero element is the only homogeneous element of degree greater 
than n in the exterior algebra. Since .91Y,5 is a homogeneous mapping 
of degree zero on the tensor algebra it follows that n is also an 
automorphism of the exterior algebra, that is 
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l(a A b) = ?la A rib . 	 (1.2.5) 

Similarly exterior forms are called even or odd according to their 
Z 2-gradation in the tensor algebra. The involution commutes with 
.942.7 and so it is also an involution of A(V). Taking the definition of 
,99.15-  and rearranging the permutations gives the following simple 
expression for acting on a p-form to, 

	

= (-1)[PI21 (o. 	 (1.2.6) 

where [ ] denotes the integer part. 
The interior derivative i x  has already been defined on tensors, and so 

it is defined the same way on exterior forms. In fact this is where it will 
mainly be utilised. We need to show that the result of i x  on an exterior 
form is another exterior form, of one lower degree, and that the 
anti-derivation property (1.1.5) goes over to the exterior algebra with 0 
replaced by A . It will be sufficient to consider decomposable tensors. If 

T = x 1 C) x 2 C) .. . OxP 

then 

T = xi(X 1 )x 2 0 . . . C)xP — x 2 (X i )xl C) x 3  . . . C)xP 

+ x3 (X i )xl C) x 2 0 x 4  . . .  Ox"  

+ . . . + (-1)P-1 xP (X 1 ).x 1 CD . . . 	xP -1  

that is 

x,T)(X 2, • . X p ) = E E(v)T(X„ (1) , . . x) 	(1.2.7) 

where y is any of the p permutations such that 

(1, 2, . . 	r,  . . . , p) —> (2, 3, . . 	r-1, 1, r,  . . . , p). 

Substituting s42.7 T into (1.2.7) gives 

x 1 •9425-  T)(X 2, . • • X,,)  = ps42er T(X 1 , . . .,  X,,). 	(1.2.8) 

From the definition we have 

Xp ) 

	2, E(r)(x 2 0 	OxP)(x,(2) , 	.,  X)  

x 2  (X 1 )  
(p-1)! 	

E(r)(x 1 0x 3 	. . . OxP)(X ,(2), • • • X v(p)) 

(-1)P- I xP (X ,) 
+ . . . + 	  2, s(r)(x 1 0 . . •  

. . . , X r(,, ) ) 	where Te Cp-1 
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1  E e(cr)(x1® . . . oxo(x0„) , . . X, (p) ) 
(p-1)! 

for a E Cp 

(AYFTT)(X i , . . X p ) 
(p-1)! 

and thus 

(s12,9- ix,T)(X2, . X I) ) = (ps4,Yff TXXI, • 

P! 

. 	X p ). 	(1.2.9) 

So (2.8) and (2.9) give i x s42.7 = .94Z5ix . Thus i x :Ap  --> A p _ i , and 
i x (a A b)= ix4Z5-(a0b) = .94aFf(ixa0b + gaOix b) and hence 

i x (a A b) = ix a A b + qa A  ib. 	 (1.2.10) 

If a) e  Ap (V) then slYFIN = w and sin- i xco = i x co, so (1.2.9) re-
duces to 

(i x ,w)(X 2 , . . X p ) = pw(X i , 	X p ). 	(1.2.11) 

Just as the space formed by V together with the identity generates T(V) 
under the product 0, it generates A(V) with the product A . Thus any 
element of A(V) can be written as a sum of decomposable forms, these 
being the ones consisting of products of elements from V. If {e' }  is any 
basis for the n-dimensional V then the ( pn) p-forms e A '2  A • • - A e i° for 
i 1  < i 2  <. . .<ip  (p 	1) form a basis for Ap (V). It is often convenient 
to label such p-forms by an ordered multi-index, 

	

/ = (i i , i 2 , 	ip ) with 	< i 2  < 	. <ip  

with each index i, varying from 1 to n. So if w is an arbitrary p-form 

	

w = E 	 A e i2  A • • • A e i° 
ii<i2<• • •<ip 

=  

where co l = w ,, 	E F are the components of w in this basis. Care 
must be exercised when using the summation convention (see Appendix 
A) with ordered multi-indices. Since this convention operates with 
unconstrained summations one may equivalently write 

1 
w = 2 i 	A e i2  A • • • A e iP 

	

p ! 	1••• p 

it being understood that the components are totally antisymmetric in the 
indices. 

If {fi} is a new basis for V related to {ei) by fi = Mijej, 
{Mid E Gl(n, F)t, then we can induce a corresponding change in the 

t The group of n x n invertible matrices with elements from F, see Appen-
dix A. 
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components of a p-form. Since the space of n-forms is one-dimensional 
the n-forms formed by the products of the two bases must be related by 
a multiple of F. In fact it follows from the antisymmetry that 

f I nf2 A- •A.r = detMel A e2 A • • • A e n 	(1.2.12) 

where detM is the determinant of the matrix {M' 1 } that relates the 
bases. Any n-form 52 can be used to classify frames {X,} for V*. These 
frames fall into two classes according to the sign of Q(X 1 , X2, . X n ). 
Frames in different classes are said to be of opposite orientation. The 
Gl(n, F) related frames {e"}  and (t) are of the same orientation if and 
only if det M is positive. This is consistent since the determinant of a 
product of two matrices is positive if the determinant of each factor is 
positive. 

1.3 The Exterior Algebra as a Quotient of the Tensor Algebra 

We have introduced the exterior algebra as the set of totally anti-
symmetric tensors with the product A constructed out of 0 and  
This algebra is isomorphic to a quotient of the tensor algebra; indeed 
the definition in terms of the quotient offers certain advantages. In the 
next chapter we will define the Clifford algebra as a quotient of the 
tensor algebra, and it is useful to see the exterior algebra introduced in 
a parallel way. We will use bold-face type to denote the quotient 
algebra and its product, the use of the same symbols anticipating its 
isomorphism with the exterior algebra of antisymmetric tensors already 
defined. 

Let I be the ideal in T(V) consisting of sums of terms of the form 
aOx0x0b where x E V and a, b are arbitrary elements of T(V). Then 
we define the exterior algebra A(V) by 

A(V) = T(V)II. 	 (1.3.1) 

Elements in A(V) are equivalence classes of elements in T(V), where 
the equivalence relation is defined by a — b if a = b + c for some c E I. 
The equivalence class that contains a is denoted [a]. The vector space 
structure of A(V) is defined by 

[a] + Â[b] = [a +  Ab] 	a,  b e  T(V), E F 	(1.3.2) 

and the multiplication which is denoted by A is given by 

[a] A [b] = [a0b]. 	 (1.3.3) 
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The ideal I is a Z-gradedt subspace of T(V) and so A(V) inherits a 
natural Z-gradation given by deg [a] = deg a. The automorphism n  and 
the involution preserve the ideal I and they thus extend in an obvious 
way to A( V) by 

n[a] = [im] 
[a]  = [al. 
	 (1.3.4) 

Similarly interior multiplication preserves I and so we may define 

ix [a] = [ixa]. 	 (1.3.5) 

If x, y E V then 

2xC)y = (x0y — y0x) + (x + y)0(x + y) — x0x — y0y 

hence 

x0y = x A  y + 1{(x + y)O(x + y) — x0x — y0y). (1.3.6) 

The A denotes the antisymmetrised tensor product as defined in (1.2.2). 
The term in brackets is in I and so x0y—x Ay. That is, 

[x] A [Y] = [x®Y] = [ X A Y]. 
More generally, it follows that the ideal I is just the kernel of 

and so [a] = [staff a]. We have already seen, in proving that A  is 
associative, that this kernel is an ideal. To see that it is in fact I we will 
prove that 

X 0 0) — X A 0) 	for x E V, 0) E A( V). 	(1.3.7) 

The recursive application of this result gives 

x 1 0x 2 0. . . Ox" — siY9-  (x 1 0x 2 0. . .Ox") = X 1  A X 2  A . . . AX.  

We will prove (1.3.7) by induction on the degree of co. It is certainly 
true when co is a 1-form; we assume it is true for co of degree less than 
p.  It is sufficient to consider the case of co decomposable. The definition 
of A involves the permutation of the arguments in the evaluation, but 
this is obviously equivalent to permuting the factors in the product. 
Thus from the definition of Awe have 

1 
Y °  AY' ... 

 AY 
 	y 

(p+1)! 	
eav c(0)0y ,(1)0 . . . 

'', \ 

where a permutes the set (0, 1, 2, . . ., p). We will characterise each 
permutation according to the first number in the reordered set. With 
one interchange we swap the elements 0 and r, and with r — 1 further 

t Grading is discussed in Appendix A. 
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interchanges bring the 0 to the second position. So if v, is the 
permutation such that 

v r  
(0, 1, 	r, . . 	p) 	(r, 0, 1, 	. . 	p) 

where F denotes that r is missing from this sequence, then 
E(v r ) = (-1)'. We can now write any permutation a as a = T r V r  for 
some r, where Tr  permutes the set with r removed, then 

Y ° AY 1 • •  AY 

1  

+1)! 	
E.( T„,) y ooy ,„(1)0 	03,0p) 

(p 

1  
0 r E(T r)yr0) 0 . (p+i)!   

oy i-,(P) 

1  

(p+1) \
Y°0(Y 1  A • • • A Y E ) 

(_i)ry r0(y 0 A 	A  - 7- 
Y A • • A Y P ))• 

r=1 

Substituting x for y° gives 

(_ 	1  
+1) 

x Oy 12 x  A  y12 p 

(p 
• 'P 	(-1)ry0(x A  y l  •• r  

r=1 
)) 

where y'2  . p y l A  y2 A 	A yP, and again the hat means that a 
term is missing. 

Now y r0(x  A y l ... 7- 	y rOx 0y 1 . 	• P since (1.3.7) is 
assumed true for (p - 1) -forms 

- —x0yrOy i 	 since x0y + yOx — 0 

- — x®(Y r  Y I  • 7- 	P ) 	from (1.3.7) again, 

- (_ orxoy  12 p 

where the sign comes from moving yr through r-1 terms. 
So x A y 1  A . . . A Y 	x0y 12  • P. Thus if (1.3.7) holds for co of 

degree less than p it is also true when co is a p-form. This completes the 
proof. 

Thus every equivalence class of A( V) is represented by an element of 
A(V), and the product of the classes under A  is the class of the product 
of the representatives under A'  Thus A(V) is indeed isomorphic to 
A(V). In practice it is more convenient to work with representatives, 
the antisymmetric tensors, rather than with their equivalence classes. 
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1.4 The Hodge Map 

When the vector space V has a (non-degenerate) metric g then the 
Hodge dual, or * map, may be defined on exterior forms. Since 

(n) = 	n 
n — p 

we have dim Ap (V) = dim A n _p (V), and thus these two vector spaces 
are isomorphic. We may use the metric g to set up a standard 
isomorphism between these spaces: the Hodge map, denoted by *. 
(Although one can define a Hodge map for a non-symmetric non-
degenerate metric, we shall take g to be symmetric as well as non-
degenerate.) 

If V has a metric then one can use a g-orthonormal frame {e} to 
construct a standard n-form 

= e  A e 2 A  . .. A  en. 	 (1.4.1) 

Since the determinant of the matrix relating orthonormal frames is plus 
or minus one, depending on the relative orientations, we see from 
(1.2.12) that there are two possibilities for co, differing by a sign. The 
members of a g-orthonormal frame for V are sometimes called n-beins 
in the physics literature, generalising the familiar triad of orthonormal 
vectors in Euclidean three space. Some authors, however, associate this 
term with the r 2  elements {M i l E Gl(n, F) that relate an orthonormal 
frame to an arbitrary one {t}, 

e' = N'i fj. 

If the components of g in the frame {ei} are 	where 	= 0 if i j 
and for each value of i, rill = ±1, and the components in the frame {f} 
are en, then 

17 11 = Nt k 	s kl(f) .  

Hence det (0) --= det(e-n)(det N) 2 . 
The components of the metric on the dual space form the inverse 

matrices, gee' = 6k, and  ggiD = bk,. (For further details see Appen-
dix A.) So if t = det(r hi ) = ±1 then, since det(m -1 ) = (det m)' for all 
matrices m, 

det(e) = t(det  N) 2 .  

But co = (det N)f' A f2  A . . . A t"  so if we write the sign of det N as 

det N 

11N  = Idet NI 
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then 

	

= ph,,{tdet(gP)} /I 2.» A  f2 A 
	A t' 	(1.4.2) 

If the frames fel and {f } are related by a Gl(n, F) transformation 

that preserves the orientation, then u N  = 1. 
A metric on V naturally gives rise to a metric on A(V). We start by 

defining a metric gp  on the space of p-forms, A(V), for any p > 1. 

Since gp  is defined to be bilinear it is sufficient to specify its action on 

decomposable p-forms. If A = cr 1  A a' 2  A • • A (VP and B = f31  A132  A 

pi' then 

gp (A, B) = det{g(cri, 00}. 	 (1.4.3) 

It is convenient to define g o  to simply multiply the two 0-forms. 

Having defined a metric on the homogeneous subspaces we define a 

metric G on A(V) by requiring it to be diagonal in the homogeneous 

subspaces. That is, if (1), 111  c A(V) with, for example, O p  denoting the 

projection of 10 into the subspace of degree p, then 

Go), qo = E gp (cD p , gip). 	 (1.4.4) 
p=0 

As we have remarked the spaces of p-forms and (n — p)-forms are of 
the same dimension, and we are now in a position to establish a 
standard isomorphism between them. The Hodge map, *, is a linear 
map from the space of p-forms to the space of (n — p)-forms: 

	

*: A( V) 	A n  _p( 

	

a 	*a 

where *a is given implicitly by 

b A *a = gp (b, a)co 
	

V b c Ap (V). 	(1.4.5) 

The standard n-form w is defined as in (1.4.1). The definition may be 

completed by defining the map on a 0-form, *1 = w. This is called the 

volume n-form. Linearity extends the definition to inhomogeneous 
elements of the exterior algebra. Thus the definition of the Hodge map 

depends not only on the metric but on a choice of orientation. The 

non-degeneracy of g (and hence of gp ) ensures that such a definition 

does indeed determine the * map. It immediately follows from the 

symmetry of g (and hence of gp ) that 

	

a A *b = b A *a 
	

V a, b E A p (V). 	(1.4.6) 

A useful calculus can be set up relating the * map to the interior 
product. We may use the metric g to establish an isomorphism (denoted 
by a tilde) between V and V*. If x E V then the metric dual, is in  V*;  
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given by 

y(i) = g(x, y) 	V y E V. 

It then follows from the definition of * that 

xE V, OE A(V). 

15 

(1.4.7) 

This formula can be applied recursively to a decomposable p-form to 
produce 

* (x I A X 2  A • • •  AX)  = 1 7P 1 7P • • • iT i  *1- 	 (1.4.8) 

It is convenient to display the action of * on exterior products of basis 
vectors. Suppose that {e'} and {X,} are dual bases, with er(X) =  

We will often use the shorthand 

x, ' i1. 

The metric dual, 	of ea is  gabxb X° and we write i =  j".  
Equation (1.4.8) takes the following simple form for the product of p 

basis vectors 

*(e l  A e 2  A • • • A eP ) = iP iP-1  • • d i *l. 

From this it can be seen that the dual of a product of p orthonormal 
1-forms is the product of their complement in the basis. Duals of the 
orthonormal basis forms can be expressed in terms of the Levi—Civita 
antisymmetric &symbol. This is defined such that 

0 if  
= 	+1 (-1) if (j 1 , i 2 , . . 	i„) is an even (odd) permutation 

of the standard sequence (1, 2, 3, . . n). (1.4.9) 

With the summation convention the volume n-form can be written in 
the orthonormal frame { e'} as 

1 
*1 	— E 	 " 	• • • A 	 (1.4.10) 

n 	1112  

If the components of the metric in this orthonormal frame are rig we 
have 

*(e 11  A 	A • • • A e''') = 	
1 

 (n—p)! jr _ I  e 1 P- ■ 	. . . 

where 

' 
	 =_ 	. . . n iPiP 	 pipni 	in . 

It is sometimes necessary to rearrange expressions such as 

ea A * (e b,  A e b2  A • • • A e bP)• 
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This may be accomplished by using (1.4.8), for example 

e a A * ( e b ec) , e a A  ic *e b = ic( e a A  *e b) 	g ca *e b 

	

_gabic * i 	gca *e b 
	

(since ea A  *e b = g ab * i) 

	

= _gab *ec 	gca *e b .  

and similarly 

	

e a A * ( e b A  e c A  e d) = gab * (e c A  ed) 	gac * ( e b A e d) 	g ad * ( e b A  e c) .  

1.5 The Mixed Tensor Algebra 

Just as the tensor product rV is the space of multilinear mappings on 
V* x V* x . . . x V* (r times), the tensor product of V* with itself, 
0 rV*, is the space of multilinear mappings on Vx Vx...x V (r 
times). More generally we have the vector space of multilinear mappings 
on 

V* x V* x . . . x V* 	X 	Vx Vx...x V, 

r times 	 s times 

the space 0170sV*. This space is called the space of mixed tensors of 
covariant degree r and contravariant degree s,  T rs (V) . (The assignment 
of the terms covariant and contravariant is a matter of convention. The 
way we have indexed our bases accords with the classical component 
conventions.) Tensors in T rs (V) will be referred to as being of type 
(r, s). It will be seen that we have defined tensors to be multilinear 
maps on sets of vectors ordered such that those from V* occur first; that 
is, our space of tensors is formed by tensor products of V with itself 
followed by products with V*. One might envisage a more general 
definition that formed the tensor product of the spaces V and V* in no 
definite order. However, such tensor product spaces are naturally 
isomorphic to the canonically ordered product. For example, the 
ordered pairs V x V* are certainly distinct from V* x V, the bilinear 
mappings on these spaces being V*0 V and VO V* respectively. How-
ever, we may define a map op by 

cp:V*OV 	VC) V * 

T 	ço T 

where 

(cpT)(X, co) = T(o), X) 	V X E V*, co E V. 
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It is easy to see that cp defines an isomorphism between V*0 V and 
VO V*. Further it is natural (or canonical), depending on no choice of 
bases for these spaces. Similarly, any tensor product containing V r 
times and V* s times is naturally isomorphic to the canonically ordered 

rVOs V*. We shall not distinguish between these naturally isomorphic 
spaces, and shall always form tensor products with the factors from V 
collected at the left. Thus we adopt the convention that tensors will be 
evaluated on a set ordered with elements from V* occurring first. 

If (e) is a basis for V, with {X,} a dual basis for V*, such that 
ei(X j )= 6'1 , then a basis for T rs (V) is provided by the n (r+s)  elements 

{eliOei20 	Oel'OX h OX ;2 0 . . . OX I). 

If T is any element of T rs (V) then 

T = 	e' , Oe 1 20 . . . OelrOX1i 0 	OX 1., 

where the summation convention is employed. If {e'i} is a different 
basis for V, with dual basis {X'}, then if e' = Mijej and X' ;  = N i iX;  
it follows from e'i(X' ;)= 6' that 

M I kNi k  = (5 ' j. 

So if the transformation coefficients are arranged into matrices M and 
N,  the transpose of N is the inverse of M. If the components of T in 
the basis labelled with a prime are 

then 

T7 1 	= T(X, X: 2 , 	 e'h) 

= Mh 	Mh N 	N Pr T q' qi • • • 	q, 	ti 	• • • 	1, 	Pi 

This is the classical expression for the change in the components of a 
tensor induced by a change of basis. The contravariant components, 
placed as superscripts, transform contragradiently to the covariant 
components, placed as subscripts. 

We may classify the symmetry of a mixed tensor according to the 
behaviour under permutations of the vectors from V, and those from 
V*: of course it makes no sense to talk of a symmetry that mixes these 
spaces. 

Since dual bases transform contragradiently we can define a contrac-
tion map that reduces both the contravariant and the covariant degrees 
by one: 

: T(V) --> T;:1 (V) 

T 1—> Cl,T 
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/th entry 

C ik T ( „ . . . , ; , . . . ,) = 7' („ . . 	X, , . . . , ; , , . . . , e', , . . 	) 

kth entry 
	

(1.5.1) 

where { e'} is dual to (X,}. 
Since the dual frames transform contragradiently the linearity of T 

ensures that the definition of Ck is basis independent. If, in some basis, 
T has the components 

T 
	

is 

then the components of Ci T are 

Tit 	• j_lflhll. 
• • ik-Im  kt  

where the 'dummy' index m is summed over. For the special case of 
T E T(V) the contraction CI maps T to the field F. In this case the 
contraction map is sometimes called the trace of T, Tr T. 

When V has a metric there is a canonical isomorphism -, between V 
and  V*.  Similarly we can use a metric on V to define a mapping 
between tensors of different contravariant and covariant degrees. For 
example, given a tensor  TE  T(V) we can define an  SE  T(V) as 
follows: 

S(X,, . . . 	el, . 	e s ,  es+i) 

= T(X,, . . ., X — k-1, 	Xk, . . 	X,_ 1 ; e', . . 	ei+1 , . . 	e +1). 

In a similar way we could associate with T a tensor in T(V) or 
more generally a tensor in  T(V) with p+q=r+s. We give an 
example. Given  T E  T(V) we define S c T(V) by 

S(W, Y, co) = T(W , , i 7 ) 	VW, Y e  V* ,  we V. (1.5.2) 

If  { e'}  and {x,} are dual bases for V and V* respectively such that 

T = l'e1 C)eiC)X k 	S = Se'OefOX k  

then writing W, Y and co in this basis gives 

WI PO) kS =1P171  CO kgq kgm Tfq . 

Since this must hold for all W, Y and co 

gqkg pi Tfq . 	 (1.5.3) 

Such expressions can be simplified by adopting a convention for 
raising and lowering indices with the components of the metric, similar 
to the case for vectors. However, such a procedure would be ambiguous 
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with the tensor components arranged in the way we have them: it not 
being clear, for example, where the upper index should be lowered to. 
To enable a raising and lowering convention to be employed, from now 
on we will order the upper indices relative to the lower ones. We can 
always specify a tensor with the indices in a canonical order; the lower 
indices occurring first. Components can then be raised and lowered with 
the components of the metric, maintaining the ordering. Thus one 
obtains an array of components not in canonical order, some super-
scripts occurring before subscripts. If we return to the example we were 
considering, only this time stagger the components in the canonical 
order, 

T = TelOefOX k 	S =  S e '®  ei®X k  

then the relationship (1.5.2) between S and T relates the components by 

S u k = gqkgpi T,,I P 

This can now be compactly written as 

= 	"1. 	 (1.5.4) 

There are a couple of points relating to this index convention that are 
worth emphasising. The first is that a raising and lowering convention 
need not be adopted at all: in which case there is no need to order the 
upper indices relative to the lower ones. No inconsistencies would arise, 
only relationships between tensors such as (1.5.2) would have the untidy 
component form of (1.5.3). The second point concerns the ordering of 
the basis. We have decided to work always with tensors formed with 
products from V to the left. Nevertheless relationships such as (1.5.4) 
involve components that are not indexed in the canonical order. As we 
earlier remarked one could work with the larger class of tensors in 
which the factors from V and V* occur in no definite order. In this case 
one might adopt the convention that the basis is attached in the order in 
which the components occur; an element from V going with a subscript 
for example. Such a tensor would, however, as we have pointed out, be 
naturally isomorphic to a tensor with the same components but with a 
canonically ordered basis. Thus the adopted ordering of the basis is in 
no real sense a restriction, and in particular we have the freedom to 
employ the raising and lowering conventions that introduce the non-
canonically ordered components. 

Sometimes we may speak, for example, of a degree two tensor being 
symmetric and trace free. Such imprecise statements should be under-
stood to mean that T is a symmetric tensor in  T(V), and that S E  T;(17) 
is traceless, where 

S(X, w) = T(X, 	VX€V*, we V. 

Equivalently, T(Xl, X,) = 0, where X' = gYX,. 
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Clifford Algebras and Spinors 

In this chapter we present an account of Clifford algebras and spinors. 
Taken with Appendix A it is fairly self-contained. Whereas in some 
places we have explicitly referred to Appendix A we have often tacitly 
assumed knowledge of something that is to be found there. Thus a 
reader confronted with concepts or terminology that are unfamiliar 
should consult Appendix A where (we hope) further details may be 
found. 

The Clifford algebra is constructed so as to facilitate a study of 
orthogonal transformations. It leads to a systematic way of introducing 
the spin groups (the covering groups of the orthogonal groups and 
various subgroups) for arbitrary dimensions and signature. The irreduc-
ible representations of the Clifford algebra give rise to irreducible 
representations of the spin groups: spinors. If the real vector space V 
with bilinear form g is an orthogonal space then we wish to imbed V 
and a copy of the real numbers as vector subspaces in the real 
associative algebra C(V, g) in such a way that x 2  = g(x, x), VX E V. 
The square of x denotes its product with itself in this algebra, and the 
right-hand side is a real number which lies in the vector subspace of the 
algebra spanned by the identity. If S is any invertible element of the 
algebra and x' = SxS - I then obviously x' 2  = g(x, x). So if x' is in V 
we have an orthogonal transformation. Those elements S such that x' is 
in V form a group, the Clifford group. Obviously elements of the 
Clifford group which differ by a multiple of the centre will produce the 
same orthogonal transformation, so that the mapping from the Clifford 
group to the orthogonal group is many-to-one. By suitably normalising 
elements of the Clifford group we obtain a subgroup such that the 
mapping into the orthogonal group is two-to-one, and we have a double 
covering of the orthogonal group. Being able to write an orthogonal 
transformation in terms of simultaneous multiplication from both sides 
by an element of the Clifford group we are led to consider those 



22 	 CLIFFORD ALGEBRAS AND SPINORS 

transformations obtained by multiplying from one side only; the spin 
transformations. 

The Clifford algebra can be constructed as a quotient of the tensor 
algebra. This is in close parallel with §1.3, where we considered the 
exterior algebra as a quotient of the tensor algebra. Rather than 
regarding elements of the Clifford algebra as equivalence classes in the 
tensor algebra it is more convenient to work with representatives of 
these classes. We show how we can choose these representatives to be 
the exterior forms, the Clifford product being given in terms of the 
exterior and interior products. In §2.2 we determine the structure of the 
real Clifford algebras. These algebras are Z 2-gradedt, and we give the 
structure of the even subalgebra in §2.3. In §2.4 we introduce the 
Clifford group and show the relation of it and its subgroups to the 
orthogonal group and its subgroups. After examining the irreducible 
representations of the Clifford algebra and group, spinors, we move on 
to spin-invariant products. At this point some readers will probably feel 
the furthest removed from what they feel they want to know, and from 
relevance to physics. However, such readers should be assured that this 
section will enable them to determine all the spin-invariant products in 
whichever dimension is currently in fashion, and, for example, whether 
the charge conjugation matrix (defined in either of two ways) is 
symmetric or antisymmetric. The reader with a trusting disposition may 
be content to learn how to interpret the tables that summarise the 
results. In §2.7 we consider the complexified Clifford algebras. Anyone 
familiar with the y-matrices, which are usually assumed to be complex, 
may wonder why we have postponed the complex case for so long. 
However, although the y-matrices are usually assumed to be complex, 
conjugate—linear operations, such as the Dirac adjoint, are considered as 
well as complex—linear ones. Thus an underlying real structure is singled 
out and so one way or another we need the results of the real case. The 
account we have given is logically complete at the end of §2.7. It makes 
no reference, however, to such things as Dirac spinors and charge 
conjugation with which most physicists are familiar. Whilst not being 
intended as a dictionary, §2.8 makes contact with the y-matrices and 
physics vocabulary. We also mention the 'two-component spinor formal-
ism' for Lorentzian spinors. 

Having outlined what we shall do, it is in order to state what is 
omitted. There are two main restrictions we have imposed: we only 
consider algebras over the real or complex field and we assume the 
bilinear form is non-degenerate. The important topic of pure spinors has 
been given a chapter of its own. 

t Grading is discussed in Appendix A. 
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2.1 The Clifford Algebra 

We assume now that the vector space V has an F-valued non-
degenerate symmetric bilinear form, or metric, g. Let J be the ideal of 
T(V) consisting of sums of terms of the form a0{x0x — g(x, x)}0b, 
a, b E T(V), x c V. Then the Clifford algebra associated with V is C(V, 
g) defined by 

C(V, g) = T(V)IJ. 	 (2.1.1) 

The product will be denoted v  , satisfying [a]  y  [b] = [a® b]. The 
ideal J is not a Z-graded subspace and so C(V, g) does not inherit a 
Z-gradation. However, x0x — g(x, x) is homogeneous with respect to 
the induced Z 2-gradation of T(V) making J a Z 2-graded subspace. Thus 
C(V, g) inherits a Z 2-gradation. The ideal J is preserved by n , and i x  
and so all of these naturally induce operations (denoted by the same 
symbol) in C(V, g). If x, y E V then 

x0y = x A y + g(x, y) + {(x + y)0(x + y) — g(x + y, x + y) 

— x0x + g(x, x) — yOy + g(y, y)). 

The term in brackets is in J and so 

x0y  X A y + g(x, y). 	 (2.1.2) 

More generally for co a p-form and x E V we have 

x0co  X A  co + i î co. 	 (2.1.3) 

Here 5( E V*  is the metric dual of x, defined by  Y(y) = g(x,y), 
V y E V. For co a 1-form (2.1.3) reduces to (2.1.2). We may prove its 
general validity by induction. This will be closely analogous to the proof 
of (1.3.7). Suppose that (2.1.3) is true for co of degree less than or equal 
to p — 1, then it will be true for all p-forms if it holds for co the product 
of p orthogonal 1-forms. As we showed in the proof of (1.3.7) it follows 
from the definition of the exterior product that if x, y', i = 1, . p 
are in V then 

xnY i n • • • AY' 

where y 	-1' 	p = y 1 A  3,2 A  . . A  yr- 1 A  y r+1 A  . . A  p y Since 
(2.1.3) is assumed true for co of degree p —1 or less 

r=1 

= 1/(p+1) (x0y 1 -- P y r oor  Ay , ... 	 0) (2.1.4) 

yr0(x A Y 1 
	

P) Yr  ®(X°Y 1 	 P)- 

Use of (2.1.2) gives 
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Y r O(XAY 1-• î-••  ) 

	

2g(yr, x)yl • • 	X0YrOY1 	 •
P 	Y r  Oiiy i 	P 

Since the yi are assumed orthogonal we may use (2.1.3) for co a (p-1) 
or (p-2)-form to show that 

yrO(x A y 1 ' • • 	- - P)  

2g(yr, x)y 1  • 	• P 	XO(Y r  Y i  * ** 	P ) —  Y r  Ai7Y 1— • 

We may pull the interior derivative to the front of the last term and use 
y r Ay i... . p 	i)r-1 yl 	P to produce 

yr0 (x A Y 1  • 
	p) 

	

g(yr,  , x)yl 	P 	(- 1) r  X0y 1 	P 	(- 1) ri1y i 	P  

SO 

	

(-1)"Yro(x A yi • • • 
	P) 

r=1 

E ( _ o rgu r,
x )y 1 p px 0y 1 

° 	 P  
r=1 

pxOyl P - (1+p)i 5y 1  P . 

Returning to (2.1.4) shows that if (2.1.3) is true for co a q-form with 
q p — 1 then it is true for co a p-form. Thus (2.1.2) shows that indeed 
(2.1.3) holds for all p-forms. Repeated use of (2.1.3) shows that an 
arbitrary tensor product is equivalent to a sum of exterior forms, for 
example 

x 1 0x 2 0x 3  x 1 0{x 2  A X 3  + g(x 2 , x 3 )} 

	

x i A x 2 A x 3 ± 	x 2)x 3 	x 3)x 2 	ex 2 , x 3)x l .  

In principle we could write down an explicit formula for the relation 
between the class of a homogeneous tensor and classes of exterior 
forms. However, it is generally sufficient to know that (2.1.3) deter-
mines such a relation and for practical purposes we shall be content with 
(2.1.3) and the following other special case. If co is an arbitrary p-form 
and x a 1-form then 

u.P0x 	x A  nco — iW. 	 (2.1.5) 

For co a 1-form this is certainly true since it reduces to (2.1.1). Again we 
prove its general validity by induction. Suppose that (2.1.5) holds for co 
of degree less than or equal to p, then 

(Y  A  (0)0x --- (yOco — i 9 w)Ox 	by (2.1.3) 

y0(x A WO 	i 1 77(0) - X A nii(0 	 by (2.1.5). 
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A second application of (2.1.3) gives 

CY A WYDX — Y A (X A no) — i i nco) + i yxwo — x A i i nw — YON) 
+ x A iM0 — i i imo 

where we have used ni x  = —i x n. Dropping the terms that cancel and a 
little rearranging gives 

(YAW)®x --. X A n(Y A (0) — iin(Y A (1)) 

and so if (2.1.5) holds for all co of degree less than or equal to p it also 
holds for all (p+1)-forms. This completes the inductive proof of the 
general validity of (2.1.5). 

We have shown that the classes of a basis for the space of all exterior 
forms provide a basis for C(V, g). There is thus a natural way of 
introducing a product, y , on the space of exterior forms that turns this 
vector space into an algebra, C(V, g) say, where C(V, g) = C(V, g). If 
a and co are exterior forms then the exterior form a v  co is defined by 

[œ] y [co] = [ 61' v a]. 
	 (2.1.6) 

Since [a] v  [a] = [aOco] the equivalence in (2.1.3) gives for x a 1-form 

	

X  v  co =-- x A  co + i„t-co. 	 (2.1.7) 

Similarly (2.1.5) gives 

	

wvx=xn nw — ii 71w- 	 (2.1.8) 

As we noted earlier, the associativity of the product together with 
(2.1.7) completely determines y  on arbitrary forms. Thus the vector 
space of exterior forms together with the antisymmetrised tensor 
product A is an exterior algebra, whereas the product y  turns the same 
vector space into a Clifford algebra. The products are related as in 
(2.1.7). 

By quotienting the tensor algebra in a particular way we have been 
led to an algebra C(V, g) which satisfies the familiar relations 

xvy + yvx = 2g(x, y) V x, y E V. 	(2.1.9) 

It is because of this relation that the Clifford algebra is adapted to the 
study of orthogonal transformations of V. We would like to know if 
there are any other associative algebras, apart from the one we have 
constructed, whose product satisfies the relation (2.1.9). Suppose that 
C'(V, g) is an associative algebra with product A and that cp is a linear 
mapping of V into a subspace of C'(V, g), V', which generates the 
algebra, and that 

(p(x)4)(y) + cp(y)Acp(x) = 2g(x, y) 	Vx, y E V. (2.1.10) 
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The right-hand side is understood to contain the identity in C'(V, g). 
The mapping (4) can be extended to a homomorphism (I) from T(V) to 
C'(V, g): 

0:T(V)---> C' (V , g) 

43(x 0Y) = T(x)A 019(Y). 	 (2.1.11) 

Since V' generates C'(V, g), (ID[T(V)] = C'(V, g). It follows from 
(2.1.10) and (2.1.11) that (13{x0x — g(x, x)} = 0, and so OM = 0 
where J is the ideal used to construct C(V, g). Thus if v is the mapping 
of T(V) onto C(V, g) defined by rra = [a] then (13 = von., where ip is 
some homomorphism from C(V, g) to C'(V, g). So the dimension of 
C'(V, g) certainly cannot be greater than that of C(V, g), and if the 
dimensions are the same then the algebras are isomorphic. Since the 
kernel of tp is an ideal of C(V, g) if the dimension of C'(V, g) is less 
than that of C(V, g) it must be a (non-trivial) quotient of that algebra. 
So the only possibility of a C'(V, g) which is not isomorphic to C(V, g) 
arises if C(V, g) is not simple. Conversely, it readily follows that if 
C(V, g) is not simple then any quotient satisfies the conditions assumed 
for C'(V, g). Sometimes any algebra like C'(V, g) is called a Clifford 
algebra, the algebra C(V, g) being termed the universal Clifford 
algebra. 

From now on, unless indicated otherwise, by Clifford algebra we shall 
mean the algebra of the vector space of exterior forms with the product 
given in (2.1.7), and shall reserve the notation C(V, g) for this algebra. 
We shall also henceforth omit the symbol y,  it being understood that 
juxtapositioning of exterior forms denotes this product. Although the 
Clifford algebra is not a Z-graded algebra the vector space of exterior 
forms is a Z-graded vector space and it will be convenient to use the 
decomposition into Z-homogeneous subspaces: 

n 

QV , g) = E Wp (C( V, g)) 	 (2.1.12) 
p=0  

where n is the dimension of V and the projection operators Yp project 
out the homogeneous subspaces of p-forms. If A and B are 
homogeneous of degree p and q respectively then their Clifford product 
will not in general be homogeneous; rather 

AB = 9'1, ÷1(AB) + W p+q_ 2 (4B) + . . . + 9' ip _ qi (AB). (2.1.13) 

This follows directly from (2.1.7) and (2.1.8). If q) and ip are arbitrary 
elements of the algebra then 

9'0090 = E 990(99p1P,) 

	
(2.1.14) 

P 
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where cpp  gp cp and (2.1.13) has been used. If gp  denotes the metric 
on p-forms induced from g, as introduced in the previous chapter, then 
we may introduce a metric on inhomogeneous forms, G, by defining 

G (q), ip) = E gp(opp, ipp) 	 (2.1.15) 

that is, G is diagonal in the homogeneous subspaces. This metric on 
forms can be related to Clifford multiplication 

G(T,V) = go(V/P). 	 (2.1.16) 

From (2.1.14) the right-hand side is seen to be diagonal in the 
homogeneous components of 92 and tp and so to verify (2.1.16) all we 
need to check is that gp (cpp , tPp)  = o(q)Pp). Since both sides are 
linear in cpp  and ipp  it suffices to consider the case of cpp  and ipp  
products of orthonormal 1-forms. If (pp  = ala2  . . . aP and 
ipp  = b' b 2  . 	bP then from (2.1.7) 

go(9106) =  i 	• • • ied; (b 1 b 2  • • • bP )- 

If the fal and WI are subsets of an orthonormal basis then the 
right-hand side is zero unless these sets are the same up to a relabelling. 
Since 

(a 1 a 2 	ap) = ea l a i)g ( a z , a 2) 	8,(ap , ap) 

= gp ( a 1 a 2 	ap ,  a 1 a 2 	ap) 

we have verified (2.1.16). 
One trivial result that is important for calculations is 

Yo(VP) = 9'o( 1P99) 	 (2.1.17) 

as 

wo(opiP) = E wo((PoPp) = E(-1)EP' 21 gp(cpp, 16) 

where [p/21 denotes the integer part of p 12, and the result follows from 
the symmetry of gp . 

It will sometimes be useful to expand an arbitrary element of the 
Clifford algebra in a G-orthonormal basis. If {ea} is a g-orthonormal 
basis then {eA) is a G-orthonormal basis where the multi-index A takes 
on all naturally ordered sequences of distinct indices. We use the 
notation 

e l2 	p „ e l A e 2 A 	A  ep = e l e 2 	ep .  

If g ( e a ,  eb) = —ab q and q ab  denotes the inverse matrix then we set 
= n abeb, giving e A  an obvious meaning. Then W 0(e4 e 8 ) =6 A B where 
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6,1  B  denotes the Krônecker function that takes the value zero, unless 
the sequences A and B are the same in which case its value is one. If a 
is any element of the Clifford algebra then we can expand in this basis 

a = 	9'0(aeAe A  • 	 (2.1.18) 
A 

The Hodge dual of a form may also be related to Clifford multi-
plication. The definition of the Hodge dual, (1.4.5), of ipp , *Ipp , is given 
by Tp A *1Pp  = gp (Cpp , 4 p )*1 for all p-forms (Pp. Setting z  *1 (2.1.16)  
enables this to be rewritten as C19,9 A * Vp = 92 0(CPEpIP)Z = Y0(CPp4)Z. It 
immediately follows from (2.1.7) that 9'((Pp*IPp) = (Pp A *IP„ and from 
(2.1.13) that Yo(ePpli/Dz = Sn((Pp/14). Thus  99 (99p"Pp) = 
giving 

4, 111 = 	 (2.1.19) 

Exercise 2.1 
If {ea}, {X b } are any dual bases, ea(X b )= sg, and a, /3 are any 
exterior forms, derive the relations 

. 

	

œvfl= 2, 	( 11 1 x 19 „, • 	• i)i%p a) A (i --?1 	• • i -;i9,13) 

	

p =0 	p• 
(-1)[1'12] 

	

cvAP= 2, 	n1 	(i X° , • • i X up le a) V (i's;L1 • • i --  

	

p = 0 	1- • 

2.2 The Structure of the Real Clifford Algebras 

In this section we take the field F to be the real numbers E. We shall 
determine the structure of C(V, g) for all real symmetric non-
degenerate g. If g has a signature with p plus and q minus signs, then 
the structure of the Clifford algebra can only depend on p and q. We 
shall anticipate this by setting C(V, g) = C p , 1 (E). 

One thing we know about the Clifford algebras is their dimension. 
Since we have identified the underlying vector space with the space of 
exterior forms the dimension of C p.  q (E) is 2n where p + q = n. Given 
a basis for V we can repeatedly use (2.1.7) to construct a multiplication 
table for the Clifford algebras, and in this sense we know its structure 
completely. What we would like to do is to relate the Clifford algebra to 
other 'standard' algebras. In particular we have already seen that if 
C p , q (E) is not simple then we can construct a smaller algebra that 
satisfies the relation (2.1.9). Some low-dimensional examples will clarify 
how (2.1.7) is used in practice. It will also transpire that we can relate 
any Clifford algebra to a number of low-dimensional Clifford algebras. 



THE STRUCTURE OF THE REAL CLIFFORD ALGEBRAS 	29 

We will denote an orthonormal basis for V by { e', PI for i = 1, . . 
p, j = 1, ..., q where g(e', e') = —g(P, P) =1. It will be convenient 
to set z =e 1 A  e 2  A • • •eP A.f l  A • • • AP' 

The two-dimensional algebra Co ,  1(E) has as basis {1, f) where 
f 2  = — 1. It is thus isomorphic to the algebra of complex numbers, 

C 0  OR) = CORY 	 (2.2.1) 

A basis for C 1 , 0 (R) is {1, e), and this algebra might not be so 
immediately recognisable. If P 1  = 1(1 + e) and P2 =1-(1 — e) then 
(P 1 , P2 ) is obviously a new basis. The multiplication table is given in 
table 2.1. Thus P I  and P2 each span mutually orthogonal one-
dimensional subalgebras, each of which is isomorphic to the field R, so 
that 

C 1 , 0 (R) =E$R. 	 (2.2.2) 

Table 2.1 

	

PI 	P2 

P I 	 Pi 
	 0 

P2 
	 0 
	

P2 

Rather than simply determine the structure of  C 1 ,  1 (1R) we shall take 
this opportunity to demonstrate some general features of associative 
algebras. A basis is {1, e, f, z) where z = e A f = ef since e and f are 
orthogonal. The multiplication table is readily completed (see table 2.2). 
(For example, ez = eef = f since e is of unit norm.) 

Table 2.2 

1 

1 
1 

-z 	-1 

-f 	—e 	1 

It is straightforward to see that the identity spans the centre. An 
immediate consequence of this is that C 1 , 1 (R) is not reducible. More 
generally, all C p ,I (R) have an identity. If the algebra were reducible 
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then the identity would be the sum of the identities in the component 
algebras. The identities of the component algebras must all lie in the 
centre, so if an algebra with a unit element is reducible then the identity 
can be written as a sum of pairwise orthogonal central idempotents. 
Conversely if the centre of an algebra contains a set of mutually 
orthogonal idempotents then the algebra is reducible. Thus either 
C 1 , 1 (1R) has a radical or it is simple. The multiplication table enables the 
two-dimensional Clifford algebras we have already encountered to be 
recognised as subalgebras. Both {1, el and {1, z) span subalgebras 
isomorphic to IRCTI, whereas the algebra spanned by {1, f) is isomor-
phic to C(IR). We can use the pair of orthogonal idempotents in one of 
the IFICIIFI subalgebras to write C ' AIR) as a sum of two left ideals. For 
example, if P 1  = (1 + z), P2 = ( 1. - Z) then C 1 , 1 (IR) = C 11 (E)P 1  ± 
C 1 , 1 (1R)P 2 . Since fP i = ePi  and zP i  = P 1  a basis for the left ideal 
C 11 (I11)P 1  is {/3 1 , eP 1  }. Similarly a basis for C 1 , 1 (IR)P 2  is {P 2 , eP2 }. It 
Is instructive to look at the multiplication table for the algebra in this 
basis (see table 2.3). 

Table 2.3 

PI 	eP, 	P2 	eP2  

P1 	13 1 	0 	0 	eP2  
eP, 	eP, 	0 	0 	P2 

P2 	0 	eP, 	P2 	0 
eP2 	0 	P1 	eP2 	0 

The left ideals C 11 (1R)P 1  and C i j (IR)P 2  are both minimal; they 
contain no smaller left ideals. So P 1  and P2 are primitivet idempotents, 
for if P 1  = P + Q where P and Q are orthogonal idempotents then 

C 1,1 (R)P 1 = C 1,1(IR)P + C 1,1(I11 )Q. The sum must be a direct vector 
space sum. For suppose that bP = cQ for some b and c. Then since P 
is idempotent bP = bPP, but bPP = cQP = 0 since Q and P are 
orthogonal. Thus b = c = 0. So if P 1  were not primitive C ij (IR)P i  
would be a sum of two smaller left ideals. Could C "(R) contain any 
two-sided ideals? Suppose I is a two-sided ideal and that a E I. We can 
write a = a l  + a 2  where a i  € C i j (IR) P 1 , a 2  € C i J OR)P 2 . Now 
C 1 J (R)a 1  is a left ideal which is contained in the left ideal C 11 (11)P 1 

 since a 1  is. But this left ideal is minimal and so C 11 (F)a 1  = C i,i P I - 
Thus if  a 1  * 0 there is a b such that bel l  = P1  and so ba = P1 + ba2  

t The notion of 'primitive idempotents' is discussed in (A11)—(A19) of App-
endix A. 
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and baPi  = Pl , which shows that P 1  must be in I since a is. Similarly, 
there exists a c such that caPi = ePi , which must be in I. But from the 
multiplication table we see that right multiplying P 1  and eP i  by eP 2  
generates the remainder of the basis for the whole algebra. 

The situation is the same if we assume that a 2  O. Thus the only 
ideals are the zero ideal and the algebra itself which is thus simple. 
Wedderburn's structure theorem, together with Frobenius's theorem on 
real division algebras, shows that the only simple four-dimensional 
associative algebras over the reals are the total matrix algebra At 2 (111) 
and the quaternions, H(E). The quaternion algebra is a division algebra 
whose only idempotent is the identity and so we must have 

C (R) AAR). 	 (2.2.3) 

Of course we could have obtained this result directly, for if fe u ), i, 
j =1, 2 is an ordinary matrix basis for .42 (I1:1) then a set of generators is 
{e, fl where e  =- 12 + - a 21 ,  f= e 2  - e 21 . These generators anticom-
mute and satisfy e 2  = —f 2  = 1. 

A basis for C 02 01:1) is {1,  f1 ,  f2 , z) and the multiplication table is 
given in table 2.4. This may be recognised as the multiplication table of 
the standard basis for the quaternion algebra by relabelling f1  = 
f 2  = j, z = k: 

CO 3 2(1E1) -= H(1E1). 	 (2.2.4) 

Table 2.4 

1 
	fl 	f2 

fi 	f2 
-1 	z 	_f 2 

-z 	-1 	f , 
f 2 	_fl 	-1 

C O33 (R) is generated by an orthonormal basis for V, {A f 2 , f3 } • 
 Since z = fif 2f 3  it will commute with these generators, and hence must 

lie in the centre. Furthermore, z 2  = 1 and so P 1  = 
1(1 + z), P2 = 1(1 - Z) are a pair of orthogonal idempotents in the 
centre. Thus C O33 (IFI) is reducible, C O33(E) = C 0.3 (E)P I CC O33 (E)P 2 . A 
basis for C O33 (E) is {1, fi ,  f2 ,  f3 ,  fif2 ,  f2f3 ,  f3fi, z) and since 
zp i  = P I,  flf2p i  = _f3p 1,  f2f3p i  = flp i,  f3flp i  = -f2 P,  a basis 
for  C O3 (1R)P 1  is {P 1 , flP 1 , f 2 P 1 , f 3 /3 1 ). The resulting multiplication 
table is given in table 2.5. The identity in this algebra is P 1 . Again we 
have the quaternion algebra with a standard basis {P 1 , PP' , f 2 P1, 
—f 3 P i ). The mapping 77 is an automorphism of C O33 (E), but maps one 
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component algebra into the other since rz = —z. It thus establishes an 
isomorphism between these component algebras and so 

C O33 (IFI) =- H(IR)01-/(lF1). 	 (2.2.5) 

Table 2.5 

pi 	PPI 
	

f3 Pi 

	

PI 	 Pi 	 pp i 	f3 Pi 

	

f l Pi 
	

PPi 	 —f 3 Pi 
	pp, 

	

f2p i 	 f 3 Pi 

	

f3 Pi 
	

PPi 	_f2p i 	
— Pi 

It is unlikely that we will recognise the sixteen-dimensional algebra 
C O34 (IF1) by writing out the multiplication table. An orthonormal basis for 
V {f',  f 2 , f 3 , f 4 } generates the algebra. These generators mutually 
anticommute and square to minus one. If we can find a new set of 
generators that splits into two mutually commuting subsets then these 
subsets will generate mutually commuting subalgebras. If the product of 
the dimensions of these subalgebras is the dimension of C O34 (I1i) then we 
can express that algebra as the tensor product of these subalgebras. 
Such a set is provided by {f, z, f 2f 3 , f3f4 }. The first two elements 
certainly commute with the last two but we need to verify that they do 
indeed generate the algebra. We do this by checking that we can 
recover the original generators by forming sums of products of this new 
set. In fact, fi zf2f3 = fa ,  f1 zf3f4 = r2 f and so fizf 3f 4f 2f 3  = —f 3  and, 
indeed, we have a new set of generators. The generators {P, zl 
mutually anticommute satisfying z 2  = (fl  ) 2  = 1. They therefore gener-
ate an algebra isomorphic to C j (11:1), that is .4 2 (11:1). The anticommuting 
pair {f 2f 3 ;f 3f4 } both square to minus one, and so they generate the 
quaternion algebra. (In the standard basis we may choose {i, j) as 
generators.) Both At 2 (IR) and H(1F1) are four dimensional and so we 
have 

CO 34(E) 	H(R) ®AtAIR). 	 (2.2.6) 

Of course, in a similar way, we could have quickly identified the 
structure of the algebras previously considered. 

It has been anticipated that a knowledge of some low-dimensional 
Clifford algebras will enable the structure of an arbitrary Clifford 
algebra to be determined. In fact, given that we know the structure of 
C 1 , 1 (E), C 1 , 0 (I1:1) and C 04 (1R) for q = 1, 2, 3, 4 the following determine 
the structure of all the real Clifford algebras: 

C p+i , q (Fi) = C q+Lp (11) 	 (2.2.7) 
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c p , i ,q+I (E) 	c 	c 1, 1(E) (2.2.8) 

C p , 0_ 4 (1R) -= C p , q (111)0C 0.4 (R). (2.2.9) 

Before demonstrating the truth of the above assertion we have to prove 
these relations. This will be done by choosing suitable generators. A set 
of generators for C p+i , q (Fi) is provided by an orthonormal basis for V, 
{el, PI for i =1, . . p+1, j = 1, . . q. Alternatively, we could 
generate the algebra with {eP+ 1 , eP+lei, eP+1fil, i =1, . 	p, j =1, 

q. This follows since we can easily recover the original generators 
from products of this set. The new generators are mutually anticommut- 
ing and for i =1, . . p, (eP+ ie )2 = ep+i e iep+t e i =1 
_(ep+1)2(ei)2 = _1; similarly (eP+1P)2  = 1. So we have a set of mutual-
ly anticommuting generators, q + 1 of which square to plus one and p 
of which square to minus one and so (2.2.7) indeed holds. 

C p .",q+I (IFI) is generated by {eP+ 1 ,  et,  fq+ 1 , PI for i =1, . . 	p, 
j =1, . . 	q. A new set of generators are {eP+1 , fq-f-1, 

eP+ifq +ifi) with i =1, . . 	p, j =1, . . 	q. (Although the notation 
assumes p 1 and q 1 the argument obviously goes through with 
p -= 0 or q = O.) We have only to verify that the original generators are 
recovered by products of the new set to be sure that they are indeed 
generators. The first pair of mutually anticommuting generators com-
mute with the second mutually anticommuting pair. For i =1, p 

(ep+ifq +le i)2 	epi-ifq +le i ep+ifq +te i = (ep+1)2r-ie ifq +ie i 

= _(ep+1)2(fq+1)2(e i)2 = (e t)2 = 1 .  

Similarly (eP -1-Ifqi-lf))2 = _ 1. Thus the second pair of the set generate 
q (IFI), whereas the first pair obviously generate C 1 , 1 01=1). The product 

of the dimensions of these mutually commuting subalgebras is indeed 
the dimension of C p ." q+1 (111) and we have proved (2.2.8). 

The proof of (2.2.9) proceeds in the same spirit. An orthonormal 
basis for V provides a set of mutually anticommuting generators for 
C p , q+4 (1F1). We partition the generators into two subsets, and form new 
generators out of the first subset and the elements of the second subset 
multiplied by the product of all the elements in the first set. If the first 
set is of even dimension, we will then have two mutually commuting 
subsets of generators. That is, we replace the generators 

{ e t , 
 f i

fq+1 ,  fq+2 ,  fq+3 ,  fq+4} 	i =1, . . 	p; j =1, 	q 

with the set 
ifi,fq+19fq+2,fq+3,fq+4} 	i =1, . . 	p; j = 1, . . 	q 

where î = fq -"fq+2P+3P+4 . Then 27'1 +1  = -f4+12, for example, and the 
last four generators commute with the first p + q. Since 	= 
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1f) =  fil  for i = 1, . . p, j = 1, . . q and 1 2  = 1 we have C„ ,(11) 
and C O34 (1F1) as mutually commuting subalgebras. The dimensions Of the 
algebras are such that we have proved (2.2.9). Of course we could 
equally well have shown that C p+4 , q (1F1) C p , (11)0C 4 ,  0(E). 

The low-dimensional examples and periodicity relations we have given 
have been judiciously chosen to enable the structure of an arbitrary 
Clifford algebra to be determined. We show first how the structure of 
C p , q (11) can be determined assuming q > p. Repeated use of (2.2.8) 
gives 

C p , 	=- C o , q _p (11)0C i (Fi)0 . . .  

p terms 

If we set q —p = 4A + m with m. < 4 then use of (2.2.9) shows that 

C p , AR) = C o, (1E1) 	C o , 4(1E)0 .. . Co ,  4(11)0C 1 , 1 01:00 . . .  

A terms 	 p terms 

Since we know the structure of all the  C0  m (Ili) for m. < 4, we have 
expressed C  as a tensor product of factors of known structure. 
Now we do the same thing assuming that p < q; by (2.2.8) 

C p , (AIR) 	Cp-q ,  0(I11)0C1 ,  I(E)0 	• OC 1(11). 

q terms 

Now we use (2.2.7) for the first time: 

C p , q (11=1) 	C i ,  p _ q _ 1 (11:1)01 i , i (E) . . . C i , 1(11). 

q terms 

If p — q -= 1 or 2 then there is nothing left to do, and in the former 
case we will need our knowledge of the structure of C l , 0 (IF1). If not then 
one more application of (2.2.8) gives 

C p , q (lF1) -= C o , p _ q _ 2 (1F1)0C i (IR)0 . . . OC i (IR). 

q+1 terms 

If we set p — q — 2 = 4œ + )3, with 0 < 4 then (2.2.9) produces 

C p , q (F3) 	C o, (lF1)0C O3 4 (11)0 . . . 0C 0, 4 (1)0C 1 , i (IF1)10  

a terms 	 q+1 terms 

Again we have expressed the algebra in terms of products of algebras 
whose structures are known. So what are the possibilities for C p , q (IR)? 
Since C 1 , (R) .4t 2(R) and At„,(E)att n (IFI) .ht,„n (R), repeated tensor 
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products of C 1 , 1 (R) are isomorphic to a total matrix algebra. We have 
seen that C o , 4(R) H(1F1)0.M 2 (1R), and since 1/(1R)OH(R) At(B) 

the tensor product of C 0  ,4 (R) an even number of times is isomorphic to 
a total matrix algebra, whereas an odd number of products produces the 
product of the quaternions and a total matrix algebra. So any Clifford 
algebra is either isomorphic to a total matrix algebra or isomorphic to 
the tensor product of C 0 , 0(R), 13 < 4, with either a total matrix algebra, 
or the tensor product of the quaternions and a total matrix algebra. In 
the former case equations (2.2.1), (2.2.4) and (2.2.5) show that 

C p , I (Fi) = .9411)®-M.,(E) 	 (2.2.10) 

where si C, H or HSH, and r 2 dim.s4 = 2P+q. Since C(IR)OH(R) --- 
C(111)0.#2(1B), and as we have already noted 1/(l11)0H(111) .M. 4 (IR) the 
second case would lead to (2.2.10) with al = C, R or R + Ill. So any 
real Clifford algebra can be expressed as in (2.2.10) with .94 = R, C, H, 
ROE or HIGH. Since we know the dimension of the real Clifford 
algebras their structure is characterised by the algebra .s4. The possibili-
ties for al show that the real Clifford algebras are either simple or 
semi-simple, in the latter case being the direct sum of two isomorphic 
simple components. Obviously the values of p and q determine .99 , in 
fact from (2.2.8) it can be seen that .94 is determined by p — q. Two 
applications of (2.2.9) give 

C p , q+8 (11l) 	C p , q+4 (1F)®C O3 4 (E) = C p , q (R)0CO 3 4 (R)000. 4 (R) 

C p , q (11)0H(R)01t 2(1F1)0H(F1)0.4 2 (1F1) (by (2.2.6)) 

thus C p , 0. 8 (R) 
p — q mod 8. The low-dimensional algebras given in equations (2.2.1) to 
(2.2.6) provide examples of p — q mod 8 being 7, 1, 0, 6,5  and 4. So all 
that is missing is p — q mod8 equal to 2 and 3. From (2.2.7) we have 
C2, 0(R) = C1  I(E) = 42(R) and C3, 0(R) CI, 2(R), and so by ( 2 .2.8), 
C3, 0(R)  C1  l(F)OCO, i(E) hi2(R)0C(11). We now have the struc-
ture of all the Clifford algebras, namely C p , q (R) .siakt where .9sl is 
given in table 2.6. Some of this table is easy to understand and 
remember. If p + q is even, then C 	is central simple, whereas for 
P + q odd the centre is spanned by the identity and z. If z 2  = —1 then 
the centre must be C, and this will be the case if p — q mod 8 is 3 or 7. 
If z 2  -= 1 then the centre is isomorphic to IFi3OR and the algebra is 
reducible. It can be checked that z 2  = 1 for p — q mod 8 equal to 1 or 
5. The involution will induce an involution on the components of one 
of the reducible algebras if and only if z;.̀  = z. The only reducible 
Clifford algebras occur when V has odd dimension and in that case 
Z'1  = —z and so either 	or ij  induce an involution on the simple 
components. 

At16(E)0Cp, q (E). So in fact  si  is determined by 
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Table 2.6 

p — q mod8 

0 , 2 
3 , 7 
4 , 6 	 H 

1 	 Fi 	Fi 
5 	 H C.) H 

Of paramount physical importance is the algebra C3 ,  01). From 
table 2.6 we see that C3 ,  i(R) = .44, 4 (1R) and so the algebra admits an 
ordinary matrix basis {e,j }  with i, j =1, ..., 4. It is instructive to 
construct such a basis. This construction provides a concrete example of 
Wedderburn's structure theorem for simple algebras. The identity is of 
rank four and first we seek a set of four pairwise orthogonal primitive 
idempotents. We seek an a and b which commute and square to one, 
for then taking all sign choices the set {1(1 ± a)1(1 ± b)) consists of 
pairwise orthogonal idempotents. For example, if (ea), a = 0, 1, 2, 3 is 
an orthonormal coframe with (e ° ) 2  = —1 we choose a = 
set 

,  b  = e °2  and 

P I  = 1(1 + e ')(1 + 6,02) 

P2 = 1(1 ± e')(1 — 0 2 ) 
(2.2.11) 

P3 = — e')(1 + e °2 ) 

P4 = 14(1 — e 1 )(1 — e° 2 ) 

where e °2  = e 0  A e 2 .  These four primitives are all similar, for example 

e 3  P i (e 3 ) -1  = P3 

e° P 	= P4 	 (2.2.12) 

e° 3 P 1 (e° 3 ) -1  = P2. 

Thus, e° 3 P i  C P2C 3 _ 1 (R)P i , e 3 P i  C P 3 C 3 , 1 (1R)P i 	and e°P i  C 
P 4 C 3 , 1 (1R)P 1  and we set 

• = 
• = e° 3 1', 

e 3 , = e 3 P i  

e41 = e ° Pi• 

(2.2.13) 



THE STRUCTURE OF THE REAL CLIFFORD ALGEBRAS 	37 

If the  {e 11 }  for j = 1, . ., 4 are given by 

= 

e  12  =  (e °3 ) 1 P 2  

e  13  =  (e 3 ) 1 P3 

e14 = (0) -1 P4 

(2.2.14) 

then e 11  c P 1 C 3 , 1 (}1)/);  and e ve il  = Pp If now e i;  = e 11  then the 
e do indeed form an ordinary matrix basis. The resulting e are 
tabulated in table 2.7. 

Table 2.7 

e„ 

P1 	e° 3 P2 	e 3 P3  
e°3P1 	P2 	 e°P3 	—e 3 P4  
e3 P1 	—e°P 2 	P3 	 e° 3P4  
e°P1 	—e 3P2 	e° 3 P3 	 P4 

Any element of C 3 .  i(IR) can be expanded in this basis. In particular, 
the orthonormal 1-forms can be written as 

= E ya e 	 (2.2.15) 

where the arrays of components form a real representation (or Majo-
rana representation) of the familiar Dirac 7-matrices. In principle we 
can determine these components from the formula 

= 	ebeae ik 

but it is here easier to proceed by inspection. From (2.2.11) 

= 13 1  + P2 — P3 — P4 

so if the components 4 are arranged as a matrix: 

(70 = 

1 
0 
0 

, 

0 
1 
0 
0 

0 
0 

—1 
0 

0 ) 
0 
0 

—1 

and again from (2.2.11) 
e02 p l  p3 — p2 — p4 
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SO 

e 2  = — e ° P i  — e ° P3  + e°P2  + e 0 P4  

e — e 23 — e32 e 14 

similarly 

e° = e  2 p _ e 2p 3  e 2p2  e 2p4  

= e 2 e 02p 1  _ e 2 e 02p 3 	e 2 e 02p 2  _ e 2 e o2p4  

= e° P i  + e° P3 + e°P2  + e ° P4  

= e41 

Thus we have 

(72,) 

(7?) 

= 
, 

= 

e 23  — e 32  — e 

	

o 	o 	o 	—1 

	

0 	0 	—1 	0 

	

0 	—1 	0 	0 

	

—1 	0 	0 	0 

	

o 	o 	o 	—1 
0010 

	

 
0 	—1 	0 	0 

	

, 1 	0 	0 	0 

Writing e 3  = e3  (P + P2 + P3 + P4 ) gives 

,3 
—  e31  — e 42  +  e 13 	e 24  

and hence 

(70 = 0 

0 

0 

—1 

0010 

1000 
0 

0 

—1 

0 

Since the algebra C3 ,  1(F1) is central simple, the transposition can be 
related to the involution by an inner automorphism, namely 

aT = C'a .=C 	Va E C 3.1 (E) 	(2.2.16) 

where C can be chosen such that C 4  = ±C. The choice of a C in 
(2.2.16) is determined up to a multiple of the centre, and so we have no 
choice in the symmetry of C under For the basis given in table 2.7 we 
may take C = e 2  e 3  , and have  C  = —C. Since e l , e 2  and e 3  commute 
with C their components will form symmetric matrices (as we have 
already seen). The components of C are related to the charge conjuga-
tion matrix: exactly how will be seen in §2.8. 

In the above example of C3 ,  I(R) the Clifford algebra was isomorphic 
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to a total matrix algebra, generated by a real set of Dirac y-matrices. As 
a less familiar example we now consider C 4.0 (11) = Hati 2 (F1). 
(Although many physicists will be used to working with y-matrices that 
satisfy the anticommutation relations with a positive-definite metric such 
matrices are always complex, generating the complexified Clifford 
algebra. This complexified algebra will be discussed in §2.7.) As usual z 
denotes the volume 4-form with here z 2  = 1. Thus a pair of orthogonal 
primitive idempotents is given by 13 1 = ;(1+ z), P2 = — z). Since 
P 2  = elP i el we may choose a basis for /RAH) as follows: 

e q  
13 1  elP2 

 elPi  P2 

{p 1, e 23p i, e 34p 1,  e24p1} is a basis for P I C 4 , 0 (IR)P 1 . This is a 
canonical basis for the quaternion algebra. Replacing P 1  with P2 gives a 
basis for P 2 C 4 , 0(IR)P,. Thus, a quaternion subalgebra of C4. 0 (1R) that 
commutes with all the e, is spanned by {1, e23, e 34 , e 24) .  

2.3 The Even Subalgebra 

The Z 2-gradation of the Clifford algebra ensures that elements of even 
degree form a subalgebra, C p+.q(IF1). That is, a E C 4 (1R) if and only if 
TN= a. Since V generates the Clifford algebra the 2-forms must 
generate the even subalgebra. However, a basis for 2-forms provides a 
set of generators with redundant elements, that is, a subset will generate 
the even subalgebra. If {e`, El for i =1, ..., p+1, j = 1, . q are 
an orthonormal basis with (e 1 ) 2  = —(P) 2  = 1 then a set of generators, 
with no redundant members, for C7,, i.q (E) is {eP+ 1 e 1 , eP+1P} for i =1, 

p, j =1, ..., q. Since, for example, el9 +leteP+lei =- — e'el we see 
that products of this set produce a basis for 2-forms and so the set 
generates C p++ , 4 (11). It is not hard to see that there are no redundant 
generators. These generators are mutually anticommuting with 
(ep+let)2 = _ 1 and (eP+1P)2  =1 thus 

C q. p (1E1). 	 (2.3.1) 

So if C p. q (IFI) .910,4,. and  C 4(E) A0A,.. the  algebra -A is 
obtained by relabelling table 2.6. Since dim Cp.q (IFI) = dim C p.1 (1R) it 
follows that r' 2dim A = 2 n-1  (see table 2.8). Whereas more than one 
value of p — q mod8 can give rise to the same .94 or A no combination 
of sti and A is repeated in table 2.8. 

An important example of the even subalgebra is provided by C 1 (11:1). 
From table 2.8 we see that this algebra is isomorphic to the algebra of 
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Table 2.8 

p — q mod 8 	 .54 	 .013 

0 E FICAR 
1 IRSIR IR 
2 fi C 
3 C H 
4 H HOH 
5 HOH H 
6 H c 
7 C E 

complex matrices of order two. The centre of the algebra, which is 
isomorphic to C, is spanned by {1, z} where, as usual, z = e l e 2 e 3 e 0 .  

The involution leaves z invariant and so induces an involution on 
C 1 (E) which is similar to transposition. That is, if 4,13 ),  œ, fi = 1, 2 is 
an ordinary matrix basis and the involution over C, t, is defined by 

= cpc, then there is a c E Cl 1 (1R) such that 

a t = 	 Va e CMIR) 	 (2.3.2) 

with c = ±c. The element c is determined up to a multiple of the 
centre and so we can have only one of these signs. In fact it must be the 
minus sign since elements are invariant under if and only if they are in 
the centre, so c must be a 2-form. Thus, although similar, t and 
cannot be equivalent since c = —c. Equation (2.3.2) may be naturally 
extended to define t on the whole of C 3 , 1(E). 

If j is any odd regular element of C 31 (IF1) then the involution I, 
 defined by 

al = jaj-1 	Va EC i (IF1) 
	

(2.3.3) 

will induce an involution in CMFI). Since z/ -= —z this involution must 
be similar to Hermitian conjugation in CMFI). That is, if is the 
involution over IR in C 1 (IF1) defined by co' = t 13, then there is a 
b E CiAll) such that 

al = b 1 at b 	V a EC1(11) 	 (2.3.4) 

where ht = ±b. Since b is only determined up to an element of the 
centre, which is C, we can have either sign. This equation is naturally 
extended to define on C 3 , 1 (11). Equations (2.3.2) to (2.3.4) show that 
transposition and Hermitian conjugation in CMIR) differ by an inner 
automorphism of C 3 , 1 (111). This automorphism is not an inner auto-
morphism of C 1 (11:1). We have 

= vazt) -1 	 (2.3.5) 
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where y = bjc. The inner automorphism of C3, i(IR), a —> vav -1 , in-
duces the involutary outer automorphism # on C 1 (11), where # 
complex conjugates the matrix components in the basis {t o). It in fact 
follows that we can find a unit-norm 1-form x such that 

a# = xax 	V a  E C 1 (IR) and xc = ex 	(2.3.6) 

for an appropriate choice of c in (2.3.2). For we know that a# = 
for some odd y, and since # 2  = 1, V 2  lies in the centre of C 1 (F1). 
Suppose that y = y + wz for the 1-forms y and w. Then 
u 2 = y 2 ± w2 (yw  wy)z  =y2  ± 2 W ± 2(y A W)Z. The first two 
terms are 0-forms, whilst the last is a 2-form, and so for w 0 we must 
have y = Aw, A E Fi. Thus y = (A — z)w, and since A — z is in the centre 
of the even subalgebra a #  = waw -1  for all even a. Now y 2  0 and so 
W 2 * 0, so we have a #  = xax -1  where x = wl(l w21 ) 1/2, giving x 2  = ±1. 
Since Eo# = co , x must commute with the matrix basis, giving 

= 0. Thus the to must lie in the even subalgebra of the orthogon-
al complement to x, whereas CI.1 (1F1) .4 2 (1F1), C 3t0(IFI) = H and so we 
must have x 2  = 1. We can choose the c of (2.3.2) to lie in the 
subalgebra C 1 (1R) and then xc = cx. We give an explicit example. 

A basis for C 1 (IF1) is {1, e", e 02 , e", e 12 , en , e 31 , z), where we 
use the previously introduced notation. In exactly the same way as we 
constructed a matrix basis for C 3 , I (IF1), we can construct the matrix basis 
given in table 2.9 for C 1 (FI) where P; = 1(1 + e °2 ) and 

— e °2 ). This matrix basis spans the even subalgebra associated with 
the vector space spanned by {e°, e 2 , e 3 ). We may choose the c of 
equation (2.3.2) to be e 23 . The 1-form e 1  commutes with the matrix 
basis and squares to one, and we may choose it to be the x of equation 
(2.3.6). This element can be used together with the primitives in the 
even subalgebra to form primitives in the full algebra. For example, if 
P 1  = (1 + x)Pt, P2 = 1(1 + x).13 , P3 = 1(1 - x)Pi1  and P4 = 
1(1 X)P2-1-  then we have a set of pairwise orthogonal primitives of 
Cj, 1 (F1). These are the primitives used to construct the matrix basis 
given in table 2.7. Notice that the involution that corresponded to 
transposition in that matrix basis induces Hermitian conjugation in the 
basis for the even subalgebra given here. 

Table 2.9 

e03 .13 ,' 
e°3Pi' 
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2.4 The Clifford Group 

Those regular (that is, invertible) elements, s, such that 

SXS -1  E V 
	

VXE V 	 (2.4.1) 

form the Clifford group, F. It is straightforward to see that they do 
indeed form a group. The vector representation of F, x, maps F into the 
group of automorphisms of the Clifford algebra: 

F 	Aut Cp ,  q (11:1) 

s 	x(s) 	where x(s)x = sxs -1 . (2.4.2) 
Since 

2g(x(s)x, x(s)y) = sxs - 'sys -1  + sys - 'sxs -1  = 2g(x, y) 

x clearly maps the Clifford group into the orthogonal group. If n is the 
dimension of V then the range of x depends on n. If n is even then 

	

Ar) = 0(p, q) 
	

(2.4.3a) 
whereas for n odd 

	

X(F) = SO(p, q). 	 (2.4.3b) 

Let a be any orthogonal transformation on V. Then since V generates 
the Clifford algebra, a extends uniquely to an automorphism of the 
algebra, that is, we define cl(x ix 2  . . . x p) = crx i ax 2  . . . axe . If n is 
even then the Clifford algebra is central simple and all automorphisms 
are inner, so in this case x(F) = 0(p, q). If n is odd then the centre is 
spanned by {1, z), the identity and the volume n-form. Clearly, any 
orthogonal automorphism that does not leave the volume n-form 
invariant cannot be inner. However, any automorphism that does leave 
the centre invariant is inner. For if Cp , q (E1) is simple all automorphisms 
over the centre are inner. If Cp , q (IFI) is not simple then it is the sum of 
two central simple components 

Cp.  q (Fi) = Cp , q (11)P i CiCp , q (F0P 2  

where {P 1 , P 2 ) are orthogonal idempotents that span the centre. If a is 
an orthogonal automorphism that leaves the centre invariant then it 
induces an automorphism on the simple components, and this must be 
an inner automorphism of the component algebras. That is, for any a, 
a(aP,)= S,(aP,),S71  where SS  ïl  = P„ the identity in C p , q (E)P„ i = 1, 
2. If S = S 1 + S2 then S -1  = + S 2-1 , for SS - ' = S i S -, + S 2 S-7 1  
since S 1 S 2-1  = S 2 S -, = 0 and P 1  + P2 = 1. Now 

ua = cr(aP,) + a(aP2 ) = S 1 aP1 S 1-1  + S2 aP2 S 2-1 

 = (S1  + S2 )(aP1  + aP2 )(S 1  + S2 ) -1  = SaS-1. 
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We have shown that for n odd any orthogonal automorphism that leaves 
the volume n-form invariant is inner, that is, x(F) = SO(p, q). 

Obviously the Clifford algebra does not transform irreducibly under 
the vector representation of F, the Z-homogeneous subspaces being 
preserved. In fact these spaces of p-forms carry irreducible representa-
tions. 

It will be convenient to be able to express any element of the Clifford 
group in a standard form. To do this we firstly show how any element of 
the orthogonal group can be written in a standard form, as the product 
of reflections. Let y be a non-null (non-isotropic) vector with g(y, y) = 
a, a O. Then the reflection of x in the plane orthogonal to y is given 
by 

	

S yx = x — 2a - lg(x, y)y 
	Vx€ V. 	(2.4.4) 

If we write 

g(x, y) 
x — 	y + r 

a 

where r is orthogonal to y then 

g(x, y)  
S x = r 	Y 

	

Y 	a 

so S y  indeed corresponds to the usual notion of a reflection. It is readily 
verified that reflections are orthogonal transformations, for 

g(S yx, S yx) = g(x, x) + 4a -2g(x, y) 2g(y, y) — 4a - lg(x, y)g(x, y) 

= g(x, x). 

The following theorem has already been anticipated. 

Any orthogonal transformation of a finite-dimensional vector 
space with non-degenerate bilinear form is expressible as the 
product of a finite number of reflections. (2.4.5) 

The truth of this statement will be proved by induction on the 
dimension of the vector space V. Note firstly that any two vectors of the 
same non-zero length can be related by at most two reflections. For if 
g(x, x) = g(y, y) 0 and x — y is not null then 

2g(x, x — y) 

	

S x _ yx = x 	 (x y) 
g(x — y, x — y) 

2[g(x, x) — g(x, y)] 

	

= x 	 (x y) 
[g(x, x) + g(y, y) — 2g(x, y)] 

= x — (x — y) 	if g(x, x) = g(y, y) 

= Y. 
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If x — y is null then x + y cannot be since x and y are not. Then 

2g(x, x + y) 
Sx±yx = x 	 (x + y) = —y 

g(x + y, x + y) 

and so S y S x+y x = —S yy = y. Suppose now that (2.4.5) is true for 
n-dimensional orthogonal spaces and that V is of dimension n + 1. If y 
is any non-null vector then its conjugate space (the space of all vectors 
orthogonal to y) is an n-dimensional orthogonal space (since g is 
non-degenerate). Furthermore, since y is non-null the restriction of the 
non-degenerate g to its conjugate is also non-degenerate. If a is any 
orthogonal transformation of V then, since it has the same length as y, 
ay can be transformed into y by the product of at most two reflections. 
That is, there exists a u which is a product of reflections such that 
uay = y. Since ua leaves y invariant it must transform the conjugate 
space into itself, that is it is an orthogonal transformation on this 
n-dimensional orthogonal space. By hypothesis then ua = y, where y is 
a product of reflections and so a = u- ly which is also a product of 
reflections. For n = 1 relation (2.4.5) is obviously true and so we have 
proved its general validity. 

As a step towards writing an arbitrary element of the Clifford group 
in a standard form we observe the following. 

If x E V and g(x, x) 0 then x E F and x(x) = nSx . 	 (2.4.6) 

It is sufficient to show that x(x)y = —S1y  for y E V since V generates 
the algebra. We have 

x(x)y = xyx -1  = {2g(x, y) — yx}x -1  = —y + 2g(x, y)x -1  

and since x 2  = g(x, x)* 0 then 

2g(x, y) 
x -1  =  	and xyx -1  = y + 	x — 

g(x, x) 	 g(x, x) 

Together (2.4.5) and (2.4.6) give a canonical form for any element of 
the Clifford group. 

If s E F then s = Ax' . . . xh where A is in the centre and the 
x' are non-isotropic vectors in V. 	 (2.4.7) 

Suppose firstly that n is odd, and so if s E F, x(s) E SO(p, q). Since 
det S, = —1 (as is readily seen in a basis consisting of x and vectors 
from its orthogonal complement) it follows that x(x) can be written as 
an even number of reflections. If then x(s) =  S1  . . . S x h with h even, 
then x(s) = x(x 1  . . .  X" ).  The kernel of the vector representation is 
obviously the centre and so (2.4.7) follows. If n is even then n = x(z) 
where z is the volume n-form and S x  = x(zx). Since zx is a product of 



THE CLIFFORD GROUP 	 45 

n — 1 non-isotropic vectors it follows that for any s E r, X(s)  = 
xh), where h need not now be even, and so (2.4.7) again follows. 

If n is even then the Clifford algebra is central simple and so in this 
case elements of the Clifford group are even or odd. If  F is  the 
subgroup of F consisting of all elements that are either even or odd, 
then for n odd Fi is a non-trivial subgroup. When n is odd the vector 
representation maps the Clifford group onto the special orthogonal 
group and not the whole orthogonal group. The twisted vector repre-
sentation is introduced to map F± onto 0(p, q) for n odd as well as 
even: 

: F 	Aut Cp ,  q(R) 

s 	cp(s) where cp(s)x = snxs -1 	for x E V. 	(2.4.8) 

Notice that (2.4.8) gives the action of  p(s) on elements of V by Clifford 
multiplication, and since V generates the algebra the action on the 
whole algebra is defined: 

cp(F i ) = 0(p, q). 	 (2.4.9) 

If x is a regular element of V then X E 1- ± and for y E V cp(x)y = 
—(x)y = S ty. Thus (2.4.9) follows from (2.4.5). 

If n is even then F± = F and if sq = s then cp(s)= x(s). If sq = —s 
then q)(s)x = —sxs -1  = szxz 1 s 1  = x(sz)x. The kernel of cp is the 
multiplicative group of non-zero real numbers, IR*. For if sqxs -1  = x 
VX E V and s is written in terms of even and odd parts as s = s +  s_ 
we have s + x = xs +  and xs_ + s_x = 0 VX E V. The condition on the 
odd part of s is i is_ = 0 for all x and so s _ = 0. Thus s is in the even 
part of the centre which is JR*. (Sometimes the Clifford group is defined 
differently. It is defined to be the group G consisting of all regular s 
such that sqxs - I E V,Vx E V. It follows that G = 

The even elements in the Clifford group form a subgroup F+. In this 
case the 'twisted' representation and the vector representation coincide 
and we have 

X(r +) = SO(13, q). 	 (2.4.10) 

It follows from (2.4.7) that if n is even and s E F+ then s = Axl . . . x" 
where A c  R and h is even. From (2.4.6) then x(s) = ( -1 ) h Sx ,  • • • Sxh 
which, since h is even, is an even number of reflections. Hence in this 
case x(F+) = SO(p, q). If n is odd then x(F+)C SO(p, q). It again 
follows from (2.4.7) that if s E F then x(s) = x(x' . x h ) for some x 1 . If 
h were odd then x(x . . . xh ) = x(zx . . . xh ) where z is the volume 
n-form which, for n odd, lies in the centre. If h is odd then zx' . X h  

is even and in F+ so x(r) -= x(F) = SO(p, q). 
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If s E F+ and n is even then s is a product of an even number 
of non-singular 1-forms whereas if n is odd, s can be written 
as a product of non-singular (n — 1)-forms. (2.4.11) 

The case of n even is taken care of by (2.4.7). For n odd we can write 
s = 	. . xh with A in the centre. Since s is even if h is even then 

c Fi and s = ±A(xlz) . . . (xhz). By redefining x' the factor of ±A can 
be absorbed. If h were odd then A would be proportional to the volume 
form, say s = pzxl . . . xh with p E R. Once more, s = -±p(zxl) . . . 
(zxh) and we have proved (2.4.11). 

The kernel of the 'twisted' representation (and the vector representa-
tion for n even) is By suitably 'normalising' elements of F± we 
obtain a subgroup whose image under these representations is the same 
as that of F±, whereas the kernel is smaller. The norm homomorphism 
A is a group homomorphism: 

A : r -± 	Fi* 

s 	4s) = 
	

(2.4.12) 

If s is invertible then so is s 4  with (.0) - ' = (s- Y . If s E F then 
(sxs -1 )'> = sxs 1  Vx c V so (s -1 ).xs = sxs -1  or .s.s.x = xs••=s. Since V 
generates the algebra ss  lies in the centre. If s is even or odd then  ss  
is even, and so A does map r -± into Fi*. It is straightforward to see that 
A(s i s 2) = i )A(s 2). 

We denote the subgroup of F± which consists of those elements whose 
norm is plus or minus one by „F±; the subgroup of unit norm elements 
„F±. We define „F+ and + F+ similarly. The group +r-  is sometimes 
called PIN(p, q), ,F+ called SPIN (p, q) and „F+ called SPIN+(p, q). 
If s Eft then S/(14S)1) 1/2  E 4 and cp{s1(1)1.(s)()'9 = q2(s) and so 
indeed the image of „F± under cp is 0(p, q) and the kernel consists of 
the multiplicative group formed by plus and minus one, which is 
isomorphic to Z2. Similarly x( + F+) = SO(p, q) with kernel Z2. 

We can introduce a slightly different norm, p: 

s 	p(s) = 	s 	 (2.4.13) 

Obviously p(s) = ±A(s) depending on whether s is even or odd and so 
the only new subgroup is the group of those s with p(s) = 1, + 

The various subgroups of F± that have been introduced can be 
arranged as follows: 

: ---> + F± 
+ r+ 	i  ± r± 	+r -± 	+ r+. 	(2.4.14) 

,F+ 

In this last diagram (2.4.14) the appropriate mathematical symbol 
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here for 4-- is 	 and for ---> is 	 Here 	 denotes 
that „F+ is a normal subgroup of +F±. This is certainly the case, for if 
a e ,F+ and  S E  +1- ± then (sus')' = sas- ' since sq = ±s and 
2(sas -1 ) = 1 since /1.(s) = ±1. If we look at all (four) quotients modulo 
,F+ this gives all (seven) quotients obtainable from this diagram. For 
example, 

± F±/,F+ 
r±/ r+  , 	 , 	 ' 

Firstly consider ,F±/,F+. If there are no odd elements of unit norm 
then obviously ,F± ,F+, so assume that a is odd with 4a) = 1. If  s_ 
is any odd element in ,F± then s_ = (s _cr- l)a, where s_a-1  is even 
with norm plus one so that s_ u. Similarly if s + is any even element 
s, — 1 and so + r±i + r+ is the multiplicative group of plus and minus 
one, isomorphic to Z2. The argument above applies in exactly the same 
way to +F±/„F+ and ,F+/,F+. 

In the general case ,F± will contain even elements with norms plus 
and minus one, + y+  and _y+, and odd elements with both norms, + y 
and _y- . It readily follows that ,F±/,1- + has four elements [„y+], 
[4+], [ + y- ] and [_ y- 1. Each element is labelled by an ordered pair of 
indices which take the values plus or minus one. The multiplication rule 
is defined by multiplying the values of these indices pairwise, and so 
+Fiv,s+ Z2 X Z2. In various special cases this quotient group can 
have less than four elements as will be made clear in the following. 

The kernel of cp from 1—± to 0(p, q) is the group of plus and minus 
one, Z2, which is contained in all the subgroups in (2.6.14), and so the 
kernel of 4p restricted to these subgroups is the same. Thus, for example 

(p(F) 	F ±/Z2 	r± 

cp( + F±) 	+ r -±/z 2 	„F ±  

We have already determined the images of ,_F± and ,F+ under (p, and 
now turn to the unit-norm subgroups. 

If x is a non-singular element of V then op(x) = S x  and A(x) = g(x, 
x). So the image of unit-norm elements of F± under go contains an even 
number of reflections in planes orthogonal to negative length, `timelike', 
vectors. Such orthogonal transformations are said to be `orthochronous'; 
the subgroup of orthochronous transformations being denoted 
0  I  (p, q). For x E V, p(x) = —g(x, x) and so the unit 0-norm elements 
have images in the orthogonal group containing an even number of 
reflections in planes orthogonal to positive length, spacelike, vectors. 
Such orthogonal transformations will be called 'parity preserving' and 
the subgroup denoted 0+(p, q). If elements of SO(p, q) are orthochro-
nous then they must also be parity preserving and so the notation 
SO+(p, q) is unambiguous. The following summarises the images of the 
various subgroups under cp: 
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+F± 	0(p, q) 

+ Ft 	0 1 (p, q) 

+ r ± 	0+(p, q) 
	

(2.4.15) 

H-F+ 	SO(p, q) 

+ F+ 	SO+(p, q). 

If the dimension of V is even then the image of the Clifford group 
under x is the same as under cp. If q is even then the volume form is of 
unit norm,  A(z) = ,u(z) = 1. As has already been noted if s is an even 
element of F then x(s) = cp(s), whereas if s is odd x(s) = cp(sz). Since, 
for q even, X(sz) = X(s) and p(sz) = p(s) the images of the subgroups 
under x are the same as under cp. If, however, q is odd then 
X(sz) = --)1(s) and p(sz) = —j(s) and thus for s odd il(sz) = p(s) and 
,u(sz) = /1.(s). So in this case x(j -±- ) = o±(p, q) and x(+F±) =  0 1  (p, q). 

The groups 0 1 (p, q) and 0+(p, q) have been identified with 
subgroups whose elements contain an even number of reflections in 
timelike and spacelike planes respectively. (A timelike (spacelike) plane 
is the conjugate of a timelike (spacelike) vector.) The nomenclature 
reflects -the fact that these groups preserve the timelike and spacelike 
orientations of V in a way that will now be defined. Let V be written as 
a direct sum of a p-dimensional positive-definite orthogonal space and a 
q-dimensional negative-definite conjugate space, V = POQ. If 
O c 0(p, q) then we define a linear mapping on P: 

m(a): P --> P 

x 	m(a)x = 

where P, a denote the projections onto the subspaces P and Q. This 
mapping must be one-to-one, for if m(a)x = 0 then ax E Q and since a 
is an orthogonal transformation x must be zero. Thus det m(a) O. If 
det m(a) > 0 then a will be said to preserve the spatial orientation of V. 
Of course for this definition to make sense it is necessary to verify that 
this criterion does not depend on the particular orthogonal decomposi-
tion of V chosen. If  x 1 ,  X2 E P then 

g(x i , m(a)x 2 ) = g(x l ,(axi)) = g(x i , ax 2 ) = 	ax 2 ) 

= 	x 2 ) = g(3'(a- ix i ), x 2 ) = g(m(a-1 )x 1 , x 2 ). 

So if m(a)t denotes the adjoint map, with respect to the induced 



S yx = x y — x 
g(Y, Y) 

m (S,)x = x 

2g(x, u) 

g(Y, Y) 
y 

2g(x, u)  

g(Y • Y) u. 

for x E P 
2g(x, y)  
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positive-definite orthogonal metric on P, we have m(a)( = m(a-1 ). 
Since reflections are involutary the linear transformation associated with 
a reflection is symmetric. It is thus diagonalisable with determinant the 
product of the eigenvalues. If y is non-singular then y = u + v where u, 

are in P and Q respectively and 

There are p — 1 linearly independent vectors in P orthogonal to u 
and these are obviously eigenvectors of m(S y ) with eigenvalues one. A 
basis of eigenvectors is completed by u, with 

m(S y )u = (1 	
2g(u, u )) 4 	(g(v, v) — g(u, u)) u  

g(Y, Y) 	 g(Y Y) 

det m(S) — 
g(v, v) — g(u, u)  

y  
g(Y, Y) 

The numerator is negative-definite and so reflections in timelike planes 
preserve spatial orientation. Any orthogonal transformation is a product 
of reflections and it will preserve a spatial orientation if it contains an 
even number of reflections in spacelike planes. This criterion obviously 
does not depend on any particular orthogonal decomposition of V. In 
exactly the same way any orthogonal transformation induces a linear 
transformation on the negative-definite space Q. If the determinant is 
positive then the orthogonal transformation is called time-orientation 
preserving, or orthochronous. Such transformations contain an even 
number of reflections in timelike planes. 

The orthogonal group has (in general) four disconnected pieces 
containing 1, P, T and PT respectively. Here P(T) denote transforma-
tions which change the spacelike (timelike) orientation whilst perserving 
the timelike (spacelike) orientation. The component containing the 
identity is a subgroup as is the sum of that component with any other 
component. 

thus 

(2.4.16) 

Dl  ( : : • ISO . (p,q) Ot(p,q) 

(p,q) 
r PT I 
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The Clifford group is in fact a Lie group, and its Lie algebra can be 
identified with a subspace of the Clifford algebra, the Lie bracket being 
the Clifford commutator. The regular representation maps the Clifford 
algebra into a total matrix algebra, thus the group of all regular 
elements, C p*, q (F1), and hence the Clifford group and its subgroups are 
all subgroups of some general linear group. The general linear group is 
certainly a Lie group and the charts of this group induce charts on 
C

'  
p* q (Fi) and I' which give them a manifold structure. The exponential 

map is defined on the Clifford algebra in the obvious way 

a" 
exp a = 2, — 	a E C p , q (B). 	(2.4.17) 

n=o n! 

Since the Clifford algebra is isomorphic to a subalgebra of a total 
matrix algebra where the exponential map can be defined, the limit 
implicit in this definition does indeed exist. Since exp (—a) = (exp a) -1  
the exponential maps the Clifford algebra into the group of all invertible 
elements, C p*, q (1E1). Thus the vector space of the Clifford algebra with 
the product of Clifford commutation can be identified with the Lie 
algebra of C p*, q (F1). With this identification the vector representation of 
C p*,q 01:1), x, is seen to map the group into the automorphism group of 
the Lie algebra; this corresponds to the adjoint representation of 
C p*,q (111), Ad. Similarly if we define 

ad : C p , q (IFI) --> End C p , q (E) 

a 1—> ad a 	 (2.4.18) 

where (ad a)b = [a, b] with the bracket denoting a Clifford commu-
tator, [a, 13 ] = ab —ba, then ad is the adjoint representation of the Lie 
algebra of C p* 4 (11=1). 

The Clifford group is a Lie subgroup of the group of all invertible 
elements and its Lie algebra must be a vector subspace of the Clifford 
algebra. Suppose that m is in the Lie algebra of I", then 

exp (Am)x exp (—Am) C V 	V x E V, VA E Fi. 	(2.4.19) 

The standard group theory result, Ad exp (Am) = exp (ad Am), shows 
that this can hold for all A if and only if the Clifford commutator of m 
with x is in V. This can be seen directly by defining, for fixed m and x, 
the Clifford-algebra-valued function 

f(A) = exp(Am)xexp (—Am). 

We then have 

df(A)/dA = exp (Am)[m, x] exp (—Am) 

and more generally 

d"f(A)IdA" = exp (Am) (ad m)"x exp (—Am). 
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By expanding f(A) in a Taylor series about A -= 0 it can easily be seen 
that f(A) E V VA if and only if 

	

[Fri, 	E V. 

If m is written in terms of even and odd parts, m -= m, + m_, then, 
from (2.3.7), for m to be in the Lie algebra of F we must have 

x A M_  =0  

	

I iM +  E V 	VX e V. 

If the dimension of V is even then the odd part of m must be zero, 
whilst if the dimension is odd m_ can be an n-form, which is then in the 
centre. The even part of m has to be a sum of 0-forms and 2-forms. 

The exponential of an even element will be even whilst the one-
parameter subgroup generated by the volume form for n odd will 
consist of elements that are in general neither even nor odd. Thus the 
Lie algebra of 1" -± consists of the ;n(n — 1) 2-forms and the identity. 
Since  (expAm)t = exp Am we must have m = —m if m is in the Lie 
algebra of + F±, similarly rOn -= —m if m is in the Lie algebra of +F±. 
Thus the Lie algebra of these groups is the commutator algebra of the 
2-forms. 

The exponential map sends the Lie algebra into that component of 
the group which is connected to the identity. This connected component 
is a subgroup, so products of exponentials are also connected to the 
identity. Conversely, every element of that component of the group 
which is connected to the identity can be written as a finite product of 
exponentials. Since 2-forms are even under n and odd under the 
exponential maps the Lie algebra of + 1- ± into ,F+, and so this must 
contain the component of „F± connected to the identity. We will now 
demonstrate that, except for one exceptional case, + F+ is a connected 
group. 

If s E ,F+ then s = crxix 2  . . x 2", with a E IR* and the x' non-
singular elements of V. By suitably scaling a,  we can obviously arrange 
that x` 2  = E i  = ±1. Then the norm of s is given by /1,(s) = X(a)E 1  . . . 
E2h  , and so if s E „r+ we must have an even number of negative-norm 
vectors and a,  = ±1. The negative-norm elements can be collected at 
the left-hand side, for if E i  = 1 and E' +1  = —1 then we write 
x ixi+i (x ixi+ix i)xi ix,i+i where (x') 2  = xixi+Ixixixi+Ixi = —1. 
The overall factor of plus or minus one can be absorbed by redefining 
x 1  and thus if s c +r+ s  = a1cr2 ah  where each a can be written 

= xy 	x, y E V with x 2  = y 2  = ±1. 	(2.4.21) 

Thus every element of ,r+ will be connected to the identity if and only 
if all such products of vectors are. If y = ±x then a = ±x2  and so for 
,r+ to be connected —1 must be connected to +1. For an indefinite 

(2.4.20) 
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metric in two dimensions the Lie algebra of ,F+ is spanned by the 
volume 2-form z, where z 2  = 1. In this case exp(az)exp(fiz) = 
exp[(a + 13)z] V a,i6 e Fi, so if —1 were connected to +1 we would in 
fact be able to write it as an exponential. However, 
exp(Oz) = cosh 0 + z sinh 0, and so exp (0z) —1 for any O. Thus in 
this case ,F+ is not connected. Ruling out this exceptional case we 
always have a pair of orthogonal vectors a, b with a 2  = b2  = ±1. So 
(ab) 2  = — 1 and since exp(rab)= —1 the identity is connected to minus 
one by a one-parameter subgroup. We still need to show that a general 
a is connected to the identity. We consider three cases. 

Suppose firstly that x and y are linearly independent, spanning an 
orthogonal plane with positive- or negative-definite metric. Then we 
have an orthonormal basis {x, u) where x 2  =  u 2  = E, E = ±1. Since 
y 2  = x 2  we can write y -= cos Ox + sin Ou, and xy = 
E(cos 0 + sin Osxu) = Eexp(E0xu). We have already shown that —1 is 
connected to +1 and so xy is also connected to +1. 

If x and y span a non-degenerate orthogonal plane with orthonormal 
basis {x, ul with x 2  -= —u 2  = E then (xu) 2  =  1. Now we must have 

y ----- cosh Ox + sinh 0 u 

and 

xy = E(cosh 0 + sinh 0 Exu) = Eexp (E0xu). 

Again the fact that —1 is connected to the identity ensures that all such 
products xy are. 

If x and y span an isotropic plane then we let (x, u) denote a basis in 
which u is an isotropic vector orthogonal to x. Then y = ±(x + Ou) and 
xy = ±s(1 + 0Exu). Since xu is nilpotent we have xy = -±eexp(0Exu) 
and, since —1 is connected to +1, we have demonstrated that xy is 
connected to the identity. 

We have shown that + F÷ is a connected Lie group unless V is 
two-dimensional with indefinite metric. Thus save for this exceptional 
case + F+ is a connected double covering of that component of the 
orthogonal group which is connected to the identity, and it follows from 
the topology of the orthogonal group that ,F+ is simply connected. 

In suitably low dimensions it is particularly easy to identify the spin 
groups, due to the following: 

If dim V 5 then if s" =  ±s and  s  =  ±s- ' then s E +F±. 	(2.4.22) 

All we need to check is that if x e V then sxs - I C V for such an s. If 
we set x' = sxs - i then x"I= — x' and 	= x' if x E V and s is even or 
odd under both  i and 	In five or fewer dimensions the only elements 
that are both odd under ti and even under are linear combinations of 
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1-forms and 5-forms. So if n < 5 the result follows immediately. If 

n 5 then the 5-form is in the centre of the algebra, so if x' = a + b 
where a is a 1-form and b a 5-form then x' 2  = a 2  + b 2  + 2ab. Now a 2  
and b 2  are both 0-forms whereas ab is a 4-form. But since x 2  is a 
0-form and x' = sxs - I then x' 2  is a 0-form and thus ab = 0, that is 
either a = 0 or b = 0. However, a cannot be zero since an inner 
automorphism cannot take an element that is not in the centre into the 
centre, and so b = 0 and (2.4.22) follows. 

Needless to say (2.4.22) does not go through in six dimensions. For 
example, if {e} i = 1, . . ., 6 is an orthonormal basis for a positive-
definite orthogonal space and s = (1/V1)(e 12 e3456,, ) where e'2 = e l e 2 

etc, then sg = s and  s 	s -1 . However, se ls-1 = _e23456 and so Da. 
The results of this section will now be illustrated by considering the 

algebra C  In this case r -± = F. An orthonormal basis for V is 
{e") a = 0, 1, 2, 3 where —(e°) 2  = (e9 2  = 1. Let P = e°, T = 6' 123  then 

Te°7-1  = —e° Pe°P-1  = e° 	 (2.4.23) 

= e' 	Pe'P-1  = —e' i = 1, 2, 3. 

The norms of these elements are easily seen to be /1.(P) = —1, p(P) = 1, 
yl(T)= 1 and te(T) = —1. So P e  + I-  whereas T E ,r. Suppose now 
that 5' E + F such that s7 = s 1 , yl.(s ,) = —1. Then s = I PTXPT) -1  
and (s I PT)q = s ' PT, A(s i PT) = 1 thus s l = ai (PT) where a l  E + F+. 
Similarly if s 2  E +F such that s',1 = —s 2 , A(s 2 ) = 1, then s 2  = a2  T; and if 
S3 E r such that 53 = —S 3 , 453) = 1, then s 3  = a3 P, (32 ,0 3  E r+. 

We know that the six 2-forms generate + F+, the Lie bracket being a 
Clifford commutator. If we take a product of two spacelike 1-forms, for 
example el2 , then (e 12 ) 2  = —1 and exp(Oe 12\ ) -= cos 0 + sin 0  e ' 2 . Such 
elements thus generate rotations, and the Clifford commutators are seen 
to give the familiar Lie algebra of the rotation group, [e 12 , e 23 ] = 2e 13  
etc. Elements such as e 01  generate 'boosts', with (e° 1 ) 2  = 1 giving 
exp  (oeoi) = cosh 0 + sinh Oe° 1 . The commutator of two boosts gives a 
rotation, for example [e°', e °2 ]  = 2e 12 . The remaining structure con-
stants are determined by looking at the commutator of a boost with a 
rotation, for example [ew, = 2e°2 . The group + F+ can be recog-
nised as a matrix group by using (2.4.22). This result shows that + 1- + is 
the group of unit-norm regular elements of C 1 (11=1). In §2.3 it was shown 
that the even subalgebra was isomorphic to the algebra of all complex 
two by two matrices, and so + F+ must be the subgroup of G1(2, C) 
consisting of unit-norm elements. Since we have already explicitly 
constructed a matrix basis for CME) it can be directly verified that the 
norm corresponds to the determinant. If {c m3 ) is the basis given in 
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table 2.9 then E E = 22, 	-( 12> '621 ;'‘ = F 2 1 and  y22  = E H . So if 
2 

S = E S 11 y a, 
rt,13= I 

then 

ss- = 	s 12s21)(Eti 	E22) = det (s)1. 

Thus in this four-dimensional Lorentzian case, + F+ 	S1(2, C), the 
group of complex matrices of order two with unit determinant. The 
group of matrices with determinants of plus or minus one is obviously 
isomorphic to ,r+, ,F+ ,S1(2, C). The PIN group, ,F, is obviously 
a subgroup of G1(4, IR). However, since we have identified +F+ as a 
matrix group it is convenient to identify +r as a product of this matrix 
group with a discrete subgroup. We have already seen how any element 
of „r can be written as a product of an element of + 1- + with either 1, 
P, T or PT. Since P 2  = T 2  = —1 these elements do not form a 
subgroup and so it is convenient to introduce a unit-norm 1-form, x say, 
so that {1, x} form a subgroup, Q, isomorphic to Z2. If s is any 
element of + I" then it can be uniquely written as s = at, GE ,r+ and 
t E Q. The multiplication of two elements s 1  and s, is given by 

s 1 s 2  = c 1 t 1 a2t2  = 0 1 t 1 a 2 t 1 -1 1

1

t 2  = ai{X(ti)a7}tit2• 

Now x(t i ) acts on +r+ as an outer automorphism and x(Q) = Q. We 
can equivalently write elements of „F as an ordered pair of an element 
of ,F+ and an element of Q with the multiplication defined by 
(ai, t2) = (a1X(t1)a2, t1t2)- In this form ,F is recognised as a 
semidirect product of ,F+ and a Z2 group of automorphisms, 
,F =- ,r+oz 2 . We have shown that + F+ ,SI(2, C) and the gener-
ator of the automorphism group, x, sends a to xax. As was discussed in 
§2.1 we can always choose such an x, which complex conjugates the 
matrix components and thus ,F ,S1(2, C)C)Z,, where the auto-
morphism group is generated by complex conjugation. 

2.5 Spinors 

From the irreducible representations of the Clifford algebra and its even 
subalgebra we obtain irreducible representations of the Clifford group: 
the spinor representations. It should be noted that minor variations exist 
in the literature as to the precise nomenclature for these representa-
tions. 

The regular representation maps the Clifford algebra into its endo-
morphism algebra; that is, into the algebra of linear transformations on 
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the vector space structure of the Clifford algebra. This representation 
will not be irreducible; certain vector subspaces will be preserved under 
multiplication from the left, namely the left ideals. It is a truism to say 
that the minimal left ideals transform irreducibly under the regular 
representation. If the Clifford algebra is simple then the regular repre-
sentation induces a faithful representation on any minimal left ideal. 
The mapping into the endomorphism algebra of any _minimal left ideal 
induced by the regular representation is called the spinor representation 
of the simple Clifford algebra and the minimal left ideal is called the 
space of spinors. The choice of a different minimal left ideal gives 
another equivalent representation. When the Clifford algebra is not 
simple it is the sum of two simple component algebras, and any minimal 
left ideal must lie in one of these simple components. The regular 
representation of a non-simple Clifford algebra induces a faithful repre-
sentation on the left ideal which is the sum of two minimal left ideals, 
one lying in each simple component. The mapping into such an 
endomorphism algebra induced by the regular representation will be 
called the spinor representation of the non-simple Clifford algebra, and 
such an ideal will be termed the spinor space. The minimal left ideals 
will be termed semi -spinor spaces and the mapping that the regular 
representation induces on a minimal left ideal will be called the 
semi -spinor representation of the Clifford algebra. The kernel of such a 
representation is obviously the simple component algebra that does not 
contain the semi-spinor space. Thus the spinor representation of a 
non-simple Clifford algebra is reducible, being the sum of two inequi-
valent semi-spinor representations. The spinor representation of the 
Clifford algebra induces a representation of any subset by restricting to 
left multiplication on the ideal by elements of that set. In particular it 
induces a representation of the Clifford group. 

Irreducible representations of the Clifford algebra induce 
irreducible representations of the Clifford group. 	 (2.5.1) 

That is, the spinor representation of a simple Clifford algebra, or the 
semi-spinor representation of a non-simple one, induces an irreducible 
representation of the Clifford group. This will also be called the spinor 
or semi-spinor representation. The proof of the statement follows 
immediately from the observation that non-singular vectors generate the 
Clifford group and the Clifford algebra. In fact the Clifford group could 
be replaced with the subgroup ,r ,  and the statement would obviously 
still be true. 

If an irreducible representation of the Clifford algebra induces a 
reducible representation of the even subalgebra then that induced 
representation is the sum of two irreducible ones. For suppose that I is a 
minimal left ideal of the Clifford algebra that splits into invariant 
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subspaces under left multiplication by the even subalgebra. Let W be 
such an invariant subspace of smallest dimension. Then if x is any odd 
regular element let xW = X, giving dim X = dim W. If S = W + X, 
where the sum is not necessarily direct, then S is preserved under 
multiplication by the Clifford algebra. For 

C p.p (IFI) = C .p (11=1) + C -;. ,(1F1)x 

SO 

C p.p (IF1)W = C ptg (F)W + xC7,, q (F)W C W + xW 

and 

C p , q (IR)xW = C p4 (11i)W. 

Since S C I and I is a minimal left ideal we must have S = I. If 
wnx= Y then C p+. q (B)YC Y since W and hence X are preserved 
under left multiplication by C  But W is an invariant subspace of 
minimal dimension and so either Y = 0, and I is the sum of two 
invariant subspaces, or Y= W= X=I and I transforms irreducibly. 

Having shown that irreducible representations of the Clifford algebra 
induce a representation of the even subalgebra that is either irreducible 
or the sum of two irreducible representations, we would like to know in 
which cases each possibility occurs. Suppose firstly that the even 
subalgebra is reducible; this can only occur in even dimensions in which 
case the Clifford algebra is simple. Then the spinor representation of the 
Clifford_algebra induces a faithful representation of the even subalgebra, 
that is, the kernel is zero. This must therefore be a reducible representa-
tion of the reducible subalgebra, being the sum of the two inequivalent 
irreducible representations whose kernels are the different simple ideals. 
The irreducible representations of a non-simple even subalgebra will 
again be called semi-spinor representations of that algebra. 

Suppose now that the Clifford algebra is reducible; this can only occur 
in odd dimensions in which case the even subalgebra is simple. In this 
case the semi-spinor representations induce irreducible representations 
of the even subalgebra. For let I be a minimal left ideal (the semi-spinor 
space) and z denote the volume form. Then if, for example, the kernel 
of the semi-spinor representation is the simple ideal C p4 (11)(1 + z) the 
semi-spinor space is an eigenspace of the volume form, 
zq9 = 	V cp€ I. Since z is odd and regular we have C p. q (11:1) = 
C p+4 01i) + C p+.q (1E1)z and C p. 	= C p+.q(IFI)I. So I can have no in- 
variant subspaces under multiplication by C p+.q (Fi) since it is a minimal 
left ideal of Cp,  q  OR). 

The irreducible representations of the Clifford algebra can induce a 
reducible representation on the even subalgebra even when that algebra 
is simple. The general criterion is given by the following. 



SPINORS 
	

57 

Irreducible representations of the Clifford algebra induce 
reducible representations of the even subalgebra if and only if 
primitives in the subalgebra are primitive in the full algebra. (2.5.2) 

What we need to show is that the minimal left ideals of the full algebra 
have twice the dimension of the minimal left ideals of the even 
subalgebra if and only if primitives in the subalgebra are primitive in the 
full algebra. Let P+ be a primitive idempotent of C;. ,(11:1). Then 
C p , q (11)P+ is a left ideal and C p , q (IFI)P+ = C p+, q (F)P+ + xC p+.q (R)P+ 
for any odd regular x. Since P+ is primitive in C p+,q (IFI) then C p+,q(B)P+ 
is a minimal left ideal of the even subalgebra and so the dimension of 
C p q (Fi)P+ is twice that of the minimal left ideals of C

.
; q (11). So the 

minimal left ideals of the full algebra are twice the dimension of those 
of the subalgebra if and only if C p , q (111)P+ is a minimal left ideal, that 
is, if and only if P+ is primitive in C m(IFI). If a minimal left ideal of the 
full algebra is projected out by a primitive of the subalgebra then the 
C p+. ,(IF1)-irreducible subspaces are obviously the even and odd subspaces. 

Just as the irreducible representations of the Clifford algebra gave 
representations of the Clifford group the irreducible representations of 
the even subalgebra induce representations of the even Clifford group 
and in particular: 

Irreducible representations of the even subalgebra induce 
irreducible representations of ,F+. 	 (2.5.3) 

Again this follows from the fact that ,F+ generates C p+,q (11). First we 
note that the Clifford algebra is generated by non-singular vectors of the 
same norm. For if {el, fl with i = 1, . . p, j =1, . . q is an 
orthonormal basis, and if p * 0, then a new basis of unit-norm vectors 
is {e 1 , V2et + PI. Thus C ptg (IFI) is generated by products of unit-norm 
vectors, and such products are in ,F+. 

The relationship between the irreducible representations of the Clif-
ford algebra and its even subalgebra is summarised in table 2.10. The 
structure of C p , q (Fi) is determined by p — q mod 8 where p + q = n. 
The eight different cases have been grouped in pairs. For the first pair 
the semi-spinor representation of the full algebra induces an irreducible 
representation of the subalgebra; whereas for the second pair the 
Clifford spinor representation induces an irreducible even Clifford 
spinor representation. For the third pair of algebras the spinor repre-
sentation splits into a pair of equivalent spinor representations of the 
subalgebra, whereas in the final case the spinor representation is the 
sum of two inequivalent semi-spinor representations of the subalgebra. 

In table 2.10 we give the dimensions of the irreducible representations 
of the Clifford algebra and its even subalgebra. We have used C — S/S 
to denote that the irreducible representation of the Clifford algebra is a 



Table 2.10 Dimensions of the irreducible representations of the Clifford algebra C and its even subalgebra  C.  S 
denotes a spinor representation and S/S a semi-spinor representation. 

(p —q) mod8 

Dimension 5 1 3 2 6 , 7 4 0 

2(2["/2 ]) C — S /S C — S C — S C — S 
C+ — S C+ — S 

2['/2 1 C — S/S C — S C+ — S C+ — S/S C — S 
C+ — S C+ — S 

1(21"/2)) C+ — S/S 
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semi-spinor representation, C+ — S to denote the induced spinor repre-
sentation of the even subalgebra, and similarly for the other two cases. 
The integer part of n 12 is denoted by [n/2]. This table is an immediate 
consequence of table 2.8. 

Since we are concerned with algebras over the real field the spinor 
spaces are IR-linear vector spaces, the dimensions of which are given in 
table 2.10. As well as obviously being left C p , q (IR) modules the spinor 
spaces are also right A-modules where si is the algebra given in 
table 2.8. Whereas, in general, right multiplication will not preserve a 
left ideal it will be preserved under right multiplication by elements of 
sti. When the Clifford algebra is simple al is a division algebra, whereas 
when the Clifford algebra is not simple si = aioa where g is a division 
algebra. In this case the semi-spinor spaces are right g-modules. It is an 
immediate consequence of associativity that left multiplication induces a 
21-linear  transformation on the minimal left ideals. Similarly the irre-
ducible representations of the even subalgebra may be regarded as 
a-linear transformations where a is one of the real division algebras Fi, 
C or H. The dimensions of the spinor and the semi-spinor spaces 
regarded as g -linear spaces can be found from tables 2.8 and 2.10 since 
d(dim 2 ) = dim e  where a is a d-dimensional Fl-algebra. 

For those Clifford algebras whose centre is C the spinor space may be 
regarded as a C-linear space by using the complex structure of right (or 
left) multiplication by the volume form z. For example, we may define 
multiplication by the imaginary unit by itp = tpz, where ip lies in a 
minimal left ideal. Alternatively, we could define itp —viz. Although 
we have already noted that all irreducible representations of a simple 
algebra are equivalent, when representing a simple JR-algebra  on a 
C-linear space the question of equivalence needs treating carefully. If p 
and p' are representations of any simple JR-algebra  .94, where 
54(JR) = C(IFI)GA/1.„,(E), on JR-linear spaces V and V' then there is an 
JR -linear transformation S from V' to V such that p'(a) = p(a)S for 
all a of at If, however, V and V' are regarded as complex vector spaces 
by defining iv = p(z)v Vv E V (where z generates the centre) then there 
is a C-linear transformation S such that p'(a) = p(a)S  V a  if and 
only if iv' = p'(z)v'. Thus by defining p(z)v = iv and p'(z)v' = —iv' we 
get two complex-inequivalent representations of a simple JR-algebra.  
This is easily understood in terms of the complexified algebra. Regarded 
as a complex vector space V carries an irreducible representation of the 
complexified algebra sic &IOC. The representation p extends by 
C-linearity to sic, p(ia)v = ip(a)v. Since COC  CC,  .94 c is reduci-
ble and its irreducible representations have as kernel one of the simple 
ideals, and the irreducible representations are equivalent if and only if 
the kernels are the same. If p(z)v = iv then p(1 + iz) = 0 and the 
kernel of p is projected by the central idempotent ;-(1 + iz). If, 
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however, p'(z)v' = —iv' then 1(1 — iz) is in the kernel, thus p' and p 
are inequivalent representations of sic. 

When the spinor space is a right H-modulet then it can be regarded 
as a complex vector space by choosing as complex structure any complex 
subalgebra of the quaternions. If q E H such that q 2  = —1 then we may 
define multiplication by complex numbers on spinors by iv = zpq 
Again, regarded as complex vector spaces, these minimal left ideals 
carry irreducible representations of the complexified algebra by extend-
ing the spinor representation by C-linearity. Since HOC CaR 2  the 
complexified algebra is simple and hence all irreducible representations 
are equivalent. Thus in this case all irreducible representations of the 
simple E-algebra on complex vector spaces are complex-equivalent. We 
shall return to a discussion of the complexified Clifford algebras later. 

The first example we give is of C O32 (1F1) H(E). Here the spinor 
space is the algebra itself. If {P, f 2 } is an orthonormal basis then {1, 
fi ,  f 2 ,  f1 , 2 = Z} is a standard basis for the quaternions. We may choose 
as complex structure right multiplication by z and define ia = az for 
a E C O32 (11). Then {1, f 1 }  is a basis for the corresponding complex vector 
space. If p denotes the spinor representation then with respect to this 
basis and choice of complex structure we have the matrices of the 
transformations, p(a), as follows: 

p(1) = ( 1 0 ) p(f
l) = 	01 ) 0 1 

0 Pp(f2) 
= ( —i 0 	p(z) = 01  

Had we instead chosen ia = —az then we would have the complex 
conjugate matrices. These give a complex-equivalent representation; we 
have p(a)* = p(fl a (fi)-1) .  

Regarded as a complex vector space, H carries an irreducible repre-
sentation of the complexified algebra HOC. If P, = iz) then P-
are primitive idempotents in HOC and  (H®C)P±  are minimal left 
ideals such that u±z = Tiu± for all u± E (HOC)P ± . Since 
P_= (f1 ) -1 P,f 1  then right multiplication by P is a C-linear trans-
formation between the two left ideals which obviously commutes with 
left multiplication and hence establishes the equivalence of these com-
plex representations. 

The even subalgebra is isomorphic to C(E) and the spinor representa-
tion of C O32 (I1:1) induces a reducible representation of C 2 (1F1), the even 
and odd quaternions transforming irreducibly. These irreducible repre- 

t The notion of an `H-module' is to be found at the end of Appendix A where 
the quaternion algebra. H, is also introduced. 
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sentations of the simple algebra are equivalent: right multiplication by 
any odd quaternion interchanges the even and odd subspaces and 
commutes with left multiplication. However, right multiplication by z 
induces a complex structure on the even and odd subspaces that enables 
them to be regarded as complex one-dimensional vector spaces. These 
are complex-inequivalent, right multiplying by any odd element not 
being C-linear. 

We next consider C 3 , 1 (1R) itt. 4 (1F1). Here the four-dimensional spinor 
representation induces an irreducible representation of the even sub-
algebra C ME) C(1R)0.4 2 (R). We may choose as spinor space the 
minimal left ideal whose basis is the first column in table 2.7. By 
defining up  = zip for all spinors tp the spinor space may be regarded as 
a complex vector space with left multiplication by the even subalgebra a 
C-linear transformation. A basis for this complex vector space is (P 1 , 
e°P 1 ). With this basis and choice of complex structure the matrices of 
these transformations for a basis for the even subalgebra are as follows: 

po)  = 1 0 ) 

p(e 12) 
= ( 01 - 01  ) 

p(e 23 ) = 
	

—oi ) 

P(e 31 ) = 
	oi ) 

The matrix representations of the generators of the rotation group will 
be recognised as the Pauli matrices (up to conventional factors of i). 
Defining hp = -np gives the complex conjugate representation which is 
complex-inequivalent. 

In this section we have naturally represented the Clifford algebra, and 
hence the Clifford group, on its left ideals. We can also represent the 
algebra on its right ideals. Associating each element of the algebra with 
the linear transformation obtained by multiplying with that element 
from the right gives a mapping into the endomorphism algebra, namely 

R: C p ,q (FI) 	End C p , q (11:1) 

a 1---> R(a), R(a)b = ba. 

Since {R(a)R(b)lc R(a){R(b)c} = cba = R(ba)c this correspond-
ence is not an algebraic isomorphism. Given an involution of the 
Clifford algebra we can use this correspondence to define a representa-
tion "0": 

p(z) = ip(1) 

p( e o3) = ip(e 12) 

p(e ol) = ip(e 23) 

p(e°2 ) = ip(e31 ). 
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P- : C p. 4 (1R) —> End C p. p (IFI) 

a 	7-3(a) = R(a$). 	(2.5.4) 

Indeed 	we 	have 	a 	representation 	since 	p- (a) 	= 
R(0)R(0) = R(blas) = R(1abP)= Mat)). Obviously the minimal 
right ideals transform irreducibly under this representation. Just as the 
minimal left ideals may be regarded as right a-modules these minimal 
right ideals can be regarded as left 2h-modules. 

A minimal right ideal is naturally identified with the space of 
a-valued g-linear mappings on a minimal left ideal. For if tp c C p , q (11:1)P 
and (13 E PC p.q (Iii) with P primitive then we may write 

	

43 : 	OOP) = 0/P 

with (D ( w) E PC p.q (IR)P -= 9). Obviously (13(tpq) = (13(tp)q for q E g. 

Similarly the Clifford algebra itself (or a simple component thereof) may 
be identified with the space of g-valued linear transformations on the 
Cartesian product of a minimal left ideal and a minimal right ideal. For 
if (13  E PC p.p (11:1) and 1p E C p.q (IFI)P then for any a E C p.q (IFI) we may 
write 

a(43, tp) = 430, 

giving 

a(q4:1), tp) = qa(cto, tp), a(13, zpq) = a(0, tp)q for q E 9. 

If the minimal left ideal carries the spinor representation p and the 
minimal right ideal carries the representation 75 then we may induce a 
representation r on the Clifford algebra (or a simple component) by 
defining 

r(s)(0) = [p(s)ta P- (s)40] = stp43s./. 

If we choose j = then s/ = s' for s E ,r+ and the representation r 
and the vector representation x coincide on +P. In this case the 
representations p and induce contragradient representations of + r -±, 
and since we have seen how the minimal right ideal can be identified 
with the dual space of the left ideal we can construct a a-valued 
P P-invariant product. This will be discussed in the following section. 

2.6 Spin-Invariant Inner Products 

Having identified the elements of certain minimal left ideals as spinors 
we now examine spin-invariant products of two such elements. Since 
Clifford multiplication from the left induces a linear transformation on 
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the spinor space we may use a product on the spinor space to define an 
involution on the Clifford algebra by sending every element to that 
which induces the adjoint linear transformation. Such an involution will 
be termed the adjoint involution. We shall construct a product of 
spinors q) and tp which is the same as that of sep  and stp when s E 
The adjoint involution of such a product will be either 	or 
Conversely, any product on the minimal left ideal with or 07 as 
adjoint involution will be invariant under (at least) ,r+. We shall first 
consider an arbitrary simple 11-algebra and show how any involution is 
the adjoint of some product on the minimal left ideals. These products 
fall into a finite number of distinct classes, and any two involutions are 
equivalent (as defined in Appendix A) if and only if the associated 
products are in the same class. The case of the direct sum of two 
isomorphic simple algebras is treated similarly. Returning to the Clifford 
algebras we shall determine into which class the products associated with 

and  ij  fall. Similarly, we can classify the products on the minimal left 
ideals of the even subalgebra. As a corollary in up to five dimensions we 
can use (2.4.22) to express ,r+ as the invariance group of some 
product. 

Let ,s4 be simple over Fi and $ be some involution. 

If P is any primitive idempotent then P$ = JPJ-1  for some 
element J with .0 = 	E= +1. 	 (2.6.1) 

For if j leaves elements of the centre invariant and ?i" denotes 
transposition in a matrix basis in which P is diagonal then we are 
assured (by (A23) of Appendix A) of a J with J./ = ±J such that 
a 3  = .1-1 0.1V a E al; in particular, 135.  = P = J-1 P$ P. In the same way 
if the centre is C with $ inducing complex conjugation the argument can 
be repeated with Hermitian conjugation replacing transposition. If then 

E .94P then .1 -1 1754  c Psi and we define 

( , ) : 	x 	p,9qp 

	

92, ip 	(cp, iP) = J-1 01P. 

If a is any element of al then 

	

(9), 91P) = (91 9) , 9)) 	 (2.6.3) 

and j is the adjoint involution of this product. The minimal left ideal 
4P is a right 2l-module. If q E a then 

	

(ep, v q ) = ( 92 , oq 	 (2.6.4) 

and the product is a-linear in the second entry. If we define 
= J'q$J for q E g then j is readily seen to be an involution of a 

such that 

(2.6.2) 
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(cpq ,  ip) = 	(q) ,  11)) 
	

(2.6.5) 

The involution j will reverse the order of terms in a product; in fact 

(4), 	= J -1 (40 , 10 $ -,  = J - V -1 921 /Prf = J -11/*P-V 1$J 
= Ej— I ip5. 

and thus 

cp) = 	IVY. 	 (2.6.6) 

Such a product will be called a '-symmetric  or al-skew as E is plus or 
minus one. We may use this product to define a mapping from the 
minimal left ideal to its dual space. If L(s4P, a) is the space of  21-linear 
maps from s61P to a then we define 

4-9 	where rp(V) = (cp, V). (2.6.7) 

We shall refer to (17 as the adjoint of cp with respect to ( , ). We 
remarked in the previous section that L(s4P, 2) is naturally identified 
with a minimal right ideal; elements acting on the minimal left ideal by 
the algebraic product. With this identification we have 

= 	 (2.6.8) 

Having chosen some arbitrary minimal left ideal on which to define a 
product we can obtain a product on any other minimal left ideal. If P 
and P' are primitives then the simplicity of si ensures an element S such 
that P' = SPS-1 . Given the product of (2.6.2) we define 

, } :s4P' x 	--* 	-=- 

a', 01—* {a, , 	= S(aS, I3S)S -1 . 	(2.6.9) 

We can write this as {a, fi) = J'- 'a40 where J' 1  = SJ-1 S 1  and which 
satisfies P'5  = J' PT -1 . An involution on a' equivalent to the involu-
tion j on a is defined by pi' = S(S - lpS) 1 S -1  for p  E'. It then follows 
that {0, a) = Eta, 13) 1 ' and {ap, 13) = 01. 

The product we have constructed in (2.6.2) involves not only the 
involution but also the element J as defined in (2.6.1). Obviously such 
an element cannot be unique. Suppose that P5  = J'PJ-1  with 
J'  $ = eV'. Then f -1 .1P = Pr-1 ,1 and so .1 1-1 JP = P.11-1J = A say, 
where A e a. Since 

Ai  = J -1 ,1 1 ,1 = 	 = EE'r - lJP 

then 

= EE1 A. 	 (2.6.10) 
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If (cp, 	= J' - `cpl'ip then (cp, ip)' = J-1JJ-1 (Plp and since (q9, tp) E a 
we have 

(49 , IP)' = 499 , 1P). 	 (2.6.11) 

When a E, then j must be the identity and so we must have E = 
and the products are related by a real multiple. The complex numbers 
have two distinct involutions, the identity and complex conjugation. 
When j is the former then the products are related by an arbitrary 
complex multiple. When j is complex conjugation then j is the adjoint 
of a (pseudo-) Hermitian-symmetric product, determined up to a real 
multiple, or equivalently the Hermitian-skew product which differs from 
it by a multiple of the imaginary unit. The quaternions have two 
inequivalent involutions, conjugation and reversion. Quaternion con-
jugation, denoted by a bar, is the only involution in its equivalence 
class. In contrast there are distinct involutions equivalent to some 
'standard' representative called reversion and denoted A. Suppose that 
(tp, cp) = E(cp, tp)A. Then if (cp, = A (q), ip) with A = A A  then 

(V, Tr = EA(9), 	0-149), P)} ^ A -1  = EA{(9 9 , 

Since A = A A  then (as demonstrated in Appendix A) we can set A = ptsA 
for some p. Thus Aq AA-1  =poci 

	

I and we see that if 	is the 
adjoint of an HA-symmetric (or skew) product then it is also the adjoint 
of an HI-symmetric (or skew-) product for any j equivalent to reversion. 
If is the adjoint of a quaternion-conjugate-symmetric product then it 
will also be the adjoint of the reversion-skew product obtained by 
multiplying this product by any vector quaternion. The conjugate-skew 
and reversion-symmetric products are likewise related. 

The above considerations show how any involution is the adjoint of 
some al-symmetric or ai-skew product. Certain of these products can 
be further labelled by a signature. First we note that these products are 
non-degenerate; for if (.1 -1 0)4, = ovip€.91P then J-10 = 0 since the 
regular representation of a simple induces a faithful representation on 
any minimal left ideal. Consider now a non-degenerate al-symmetric 
product on a right 91-module. Then if the mapping from a into the 
j-symmetric quantities of a, q —> qlq, is surjective then there is an 
orthogonal basis of unit-norm elements. If this mapping is not surjective 
but any j-symmetric quantity can be written as ±qlq, then there is an 
orthogonal basis of elements normalised to plus or minus one. This is 
just an obvious generalisation of the result guaranteeing an orthonormal 
basis for a real symmetric product and can be proved by induction on 
the dimension of the module. The two different cases are seen to arise 
when normalising a non-zero-norm quantity. Suppose that (ip, ip) = A, 
then if the product is 2J-symmetric A = . If we can write A = qlq for 
some q E g then vq - ' will have unit norm. The mapping q —> qiq is not 
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a surjection from a to the j-symmetric quantities when g is R, C or H 
with j the identity, complex and quaternion conjugation respectively. 
Thus the R-, C*- and H - -symmetric products are further characterised 
by their signatures (the number of positive- and negative-norm elements 
in an orthogonal basis). The smallest of these two numbers will be 
called the index (or Witt index). The complex numbers have the 
important property that any complex number can be written as a square. 
Similarly any reversion-symmetric quaternion can be written as a square 
of a reversion-symmetric quantity (as demonstrated in Appendix A). 
Thus any C-symmetric or HA-symmetric product has an orthogonal basis 
of unit-norm elements. An R-skew or C-skew product can be non-
degenerate only if the vector space is of even dimension, 2n say. In this 
case there is a canonical basis {p i , q,} for i = 1, . . n with 

(Pr, qi ) = 45 y• 

Example 2.1 
Take .94 = C4,0(E) with j 	At the end of §2.2 we constructed a basis 
for this algebra. Let P be what was there called P 1 , that is P = 
;(1 + z). The division algebra PAP = 2 is isomorphic to the quatern-
ion algebra, with standard basis (P, e23P, e 34 3 , 6,24p} Since 1:) -  = P, in 
this case the involution induces an involution on a. This is quaternion 
conjugation since, for example, (e 23 P) = —e 23  P. An H - -symmetric 
product on AP is given by 

(99 , 1P) = OP. 
An H-linearly independent basis for AP is {P, ell)}. We have 

(P, P) = P 

(P, elP) = PelP = 0 

( e ip , e ip) = pe t e ip =  P.  

So this basis is in fact orthonormal, the product being of index zero. 

Thus far we have shown how any involution can be put into one and 
only one class determined by the a '-symmetric  or g 1 -skew product 
(further labelled by an index where appropriate) for which it is the 
adjoint involution. We may choose the representatives given in 
table 2.11 for the classes of product. Where we have chosen, for 
example, a C*-symmetric product we could have chosen a C*-skew one. 
For the same reason we only further classify products by the index 
rather than the signature. These classes of product define an equivalence 
relation on the associated involutions. We have already termed involu- 
tions 	and Vf equivalent if there is an automorphism J) such that 

= ((a ) 1 ) ( 1)  for all a E 	In fact it follows that with this notion of 
equivalence: 
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Two involutions are equivalent if and only if they are the 
adjoints of equivalent products. 	 (2.6.12) 

Table 2.11 

(1) E -symmetric, of index v 
(2) E -skew (only in even dimensions) 
(3) C -symmetric 
(4) C -skew (only in even dimensions) 
(5) C*  -symmetric,  of index v 
(6) H- -symmetric, of index v 
(7) HA-symmetric 

Here products are equivalent if they are both of the same one of 
seven main types and, where appropriate, of the same index. If $ and X 
are adjoints of equivalent products then we can introduce two al-
symmetric or skew products, ( ,) j  and ( , ) K  of (where appropriate) the 
same signature, with $ and X their respective adjoints. Both products 
admit a canonical basis of the same type, and any change of basis may 
be effected by left multiplication by a regular element. Since both 
products are j-linear in the first variable, and linear in the second there 
must be a regular a such that (q', 7p) j  = (acp, mp)K  for all cp and tp in 
the minimal left ideal, that is 

J-L cplip = ICAacp) x alp = K'cplcax alp 

= IC- '(ax cr)(o-la) - 'cpx (ax a)tp. 

If we introduce an involution Fl defined by 

= (aN a) - V(a x a) 	V a e 59 

then P9-  = TPT-1  with T = (0a)-1 1‘. We have J'cplip = T'cp5 tp, 
that is 

(CPI 0.1 = 09, 	T 	V ço, )ES/1P. 

	

But (q), wip) i  = (alq9, 1p) ., and (cp, 	= (6' 34, 	= (aer q9, tp), 
giving ((al — a'7).79, qi) j  = O. Since this is true for all tp E siP and the 
product 	is 	non-degenerate 	(al — a g)q) = 0 V cp€ 59P 	and 

=- cd-  V a  e sg. 	Recalling the definition of g we have 
= a-i (craa- ')x a, that is, $ and X are equivalent. To prove the 

converse we suppose that $ = 92XJ -1  for some automorphism 9'. Then 
if 

( 	x saiP 	Psip 

is a product with X as adjoint -involution we define 

( , 	x 59.13-1 
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by {a', /3) =  (o, 	, then 
{ cy,  no} = 	m/3')' 	(noway ,  13y)y - ' = ([m &rox9,- i cr]y ,  p9y -1  

= 

Similarly if 

(13, a) = E(a, 16) k  then {/3, al = (f3Y, aY)Y - ' 

= 	fin" -1  = Eta, firkY-1  = Efcr, PP 
where j = Da-1  is equivalent to k. Thus we have a product on stil3  
with I as an adjoint-involution of the same type as the product on AP, 
which has 1C as adjoint-involution. As already noted a product on any 
given minimal left ideal enables an equivalent product to be defined on 
any other minimal left ideal. Thus if j = 9W9' - ' then 	and Jf are 
adjoint-involutions of equivalent products on any minimal left ideal. 

Although for complex matrices not all automorphisms are inner a 
corollary to the above is that if involutions are related by = 9W99-1  
for any automorphism 9' then in fact there is an inner automorphism 
such that j = EXE -1 . 

The result of (2.6.10), together with table 2.11, gives the number of 
inequivalent involutions for a simple 11-algebra. This is displayed in 
table 2.12. 

Table 2.12 The number of inequivalent involutions. 

COAL 	 HOER,. 

r even 1r + 2 + 3  r+2  
r odd 1(r + 1) ,;(r + 3) 1(r ± 3) 

Since not all Clifford algebras are simple we now consider involutions 
of semi-simple algebras that have two simple components. Let 

= 03CA where 03 and cC are simple with 03 = AP, = AQ for 
central idempotents P, Q with PQ = QP = 0 and P + Q = 1. If JC is 
an involution of A then 1;°( , Wf are central idempotents with 
P'Q = Q1. 13(  = 0 and 1:°c +  Q  = 1. So A = AP7f 0.9iQ /c  and, since 
the expression of a semi-simple algebra as a sum of simple ones is 
unique up to ordering ((A17) of Appendix A) then either AP' = 91 and 
AQ' =%, or AW 6  = 91 and .5IP7' = (C. In the former case N induces 
an involution on the simple algebras 03 and ce and may thus be classified 
in the manner already treated. In the second case every element of 03 is 
sent to (C, and this can only arise when % is isomorphic to the opposite 
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algebra of 	T JP". There is in fact only one such involution, up to 
equivalence. 

If si is the sum of two simple algebras, with X and 
involutions that do not preserve these simple components, 
then X and are equivalent. 	 (2.6.13) 

If X and are as described then is an automorphism of s4 that 
induces automorphisms on the simple components gi and T. We 
introduce an automorphism 9' of si by defining 

V b ER 

9' C = C 	VC E 

Then 5' is an automorphism of such that for b E@ b" = b X , which 
is in T, and so b'' 	b"-` = 135  c. Similarly for c E T c 91  = cs' and 
so c"'- ' = 	= 	= c and we have established the equiva- 
lence of and  X. 

When si = 20.Ato2lakt where At is a total matrix algebra and the 
division algebra satisfies a = aoP then any involution in the class not 
preserving the simple components will be called a  9h-swap. (The real 
division algebras Fi, C and H are isomorphic to their opposite algebras.) 
Any such involution is the adjoint of a non-degenerate product on the 
left ideal formed from the direct sum of two minimal left ideals from the 
two different simple components. For let P be some primitive idem-
potent (necessarily in one simple component). If is some 9l-swap 
involution then Q = P + 131  is a i-symmetric idempotent. We may 
define 

a', f; 1---> (a, 	= a' 40. 

Such a product is non-degenerate for if alp= 0 V )3 then choosing fi to 
lie in one simple component shows that the component of a in the other 
must vanish, and hence a,  = O. It immediately follows from (2.6.14) that 

mfi) = (m ,a, 0) V M E ,94 

(aq, )3) = q•l(a, )3) V q E ac, a. 

We can equally well introduce a product with different symmetry. If s is 
any regular element lying in a, ss - i = 1 2 , then let S = s — sl . This 
J-skew element of acia$ has an inverse given by 

S -1  =  s 	 SS - ' = ss- ' + (s- ls) 1  =  1  + 1 g8 = 1. 

(2.6.14) 



70 	 CLIFFORD ALGEBRAS AND SPINORS 

We may now define 

x .54Q 	9:609) 

a', /3 	{a', /3} = S -1 a1 ,6. 

This product satisfies 
{a, mj3) = {ma, /3} 

{0, 	= —S -1 {a, #} 1 S 

{oeq, 13) = S -1 q 1 S{cr, /3). 

We are now ready to return to Clifford algebras. Having established 
how a given involution is the adjoint of a non-degenerate product on the 
minimal left ideals the problem of finding products invariant under ,F+ 
reduces to finding involutions such that s/ = s Vs  E + F'. Of 
course and are such involutions (which may or may not be 
equivalent), but before classifying the associated products we confirm 
that these are the only such involutions (up to equivalence). It is 
convenient to consider the cases of even and odd dimensions separately. 

Suppose firstly that p + q = n is even, so that C p , q (IF1) is central 
simple. Then if I is any involution there exists some J such that 
al = Jak1-1  with 0 = +J. If  se  + 1-+  then .54  = Jskf+ 1  = Js+ 1 J+ 1 ; thus 
s/ =- s -1  if and only if Js -1  =  5J VS E We know (from the 
proof of (2.5.3)) that ,F+ generates the even subalgebra, and so 
sl = Vs E „F+ if and only if J commutes with all elements of the 
even subalgebra. If J has this property then so will its even and odd 
parts separately. But the volume n-form Z is even and it anticommutes 
with all odd elements and so the odd part of J must vanish, hence J 
must be in the centre of the even subalgebra. This centre is spanned by 
{1, zl. 

If  Z  = —Z then, since 0 = ±J, either J GE giving j = or J = Az 
for A E IFI and for any a, al = zaz -1  = 

If  z  = z and z 2  = —1 then the centre of C+p , q (Fi) is C(Fi). If J EC 
then, since C is algebraically closed, J = cr2  =  crue some (ye C and 
al = aaaa 1 u 1  = a(a- laa)a-1  showing that j is equivalent to 

If  z 1  = z and z 2  = 1 then C 4(E) is reducible and the centre is 
spanned by the orthogonal idempotents {P + , P_ }  where P+= 
(1± z). If J is regular then J =  AP + + 11P_ with A, non-zero reals. 

If A and /2 are both of the same sign then there is no loss of generality in 
assuming them positive since multiplying J by an element of the centre 
does not alter j. In this case we set 

J = a2 P+  + v2 P_=(aP, + vP_)(aP+ + vP_).= 

and j is equivalent to 	Similarly if A and  jt are of opposite sign then, 
with no loss of generality, we assume J=a2 P + — v 2 P_. If 
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k= aP,.+ vP_ then 

kze = (oP + vP_)(P+  — P _)(aP + vP 
= a2p+ v2p = J .  

Thus 

al = kzeaq10) - zi -1 k - i = kz(k -1 ak)z -1 k -1  = 

and / is equivalent to 
For the case in which 	= z we have seen that the requirement that 

• = s VS E + F+ only requires / to be equivalent to either or  ij.  If, 
however, p *0 then + F±- contains an odd element and requiring 
• = s-1  Vs  E + 1- ± uniquely determines / to be 	For if J = X + tzz 
then the requirement that J commute with an odd element forces /.4. to 
vanish. Similarly, if q * 0 then  ij  is the unique involution such that 
s/ = s -1  Vs E 

We turn now to the case in which n is odd, with {1, z) spanning the 
centre of C m (11:1), and C p+4 (IFI) central simple. Since zq = — z one of the 
involutions and 	will leave the centre invariant, the other will not. It 
follows that if / is any involution then either al = 	-1  with J  = ±J, 
or al = JaJ-1  with .P71  = +J. 

Consider the former case. Then requiring sl = 	Vs  c + F+ shows, 
exactly as before, that J must commute with elements of the even 
subalgebra. Then if J_ is the odd part of J we can write J_=(.1_z-1 )z 
and, since the odd element z commutes with everything, J_  will 
commute with the even subalgebra if and only if J _z -1  does. Since the 
even subalgebra is central simple  J_  must be proportional to z. It then 
follows that J is in the centre of C p.q (IFI) and / = 

In exactly the same way it follows that if s/ = Js/=71J-1  and 
s/ = 	Vs  E + F+ then / = 

We may summarise as follows: 

if + 1—± 	+ F+ then s$ = 	Vs  E + F± iff = 

if +1- ± 	+ F+ then sl = s - I Vs E +F-± iff = 

If sl = s-1  Vs  E + F+ then / is equivalent to or 71;  if n  * 4  
mod 4 then either / = or / = rj. 	 (2.6.15) 

The involutions 	and  ij  induce the same involution on the even 
subalgebra. This is the only such involution that inverts elements of 
J +. For if / is any involution of a central simple C p+.q (11) then 
• = Jak1-1  for some even J. Thus s$ = s- I Vs  E + F+ only if / is in 
the centre, giving / = 	If C(1F1) is not central simple then 
al = Jak1-1  with J even if 	leaves elements of the centre invariant, 
or odd if ,n induces a non-trivial automorphism on the centre. In the 
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former case we have seen that only if 	= is sl = s - I V s  E ,F+. 

There can be no involution with this property in the second category, 
for there is no odd element that commutes with the even subalgebra 
since this contains z which anticommutes with all odd elements. 

We wish now to classify the involutions and and the involution 
they induce on the even subalgebra. This will be done for an arbitrary 
Clifford algebra using the same isomorphisms that enabled its structure 
to be determined. We use those isomorphisms for which and  ij  on the 
factors of a tensor product induce or on the product algebra. In 
this way knowing the class of and  ij  on the factors enables the class 
of the involution on the product to be determined, and and on 
arbitrary algebras can be classified by explicitly classifying these involu-
tions for a few low-dimensional algebras. First we consider involutions 
of tensor products. 

Let .94 -= OA, where gi is a simple algebra over IR and .kt,, is the 
algebra of order n real matrices. Let I be an involution on sti that 
induces involutions g on At,, and X on 93. We shall write this as 

= X05- . If  211  = akt n, and X is2l-symmetric  or skew then j is 
certainly either lc-symmetric or skew, the symmetry being determined 
by that of X and 5- , in a way to be determined. If Q is primitive in 91 
and R is primitive in A n  then P = QR is primitive in ..91. If 
Co' = KQK -1  and R = TRT -1  then PI = JPJ-1  with J = KT. Since 
.// = K'fr , J is symmetric if K and T are both symmetric or both 
skew, and skew if K and T are of different symmetry. Thus if either X 
is ak-symmetric  with g  fl-skew,  or X is a4-skew with g 2-skew, then 

is a '-symmetric; otherwise it is a k-skew. We now investigate the 
signature in the case in which is ak-symmetric.  If ( , ) j  is the product 
on siP associated with I then for b„ bj  E g3 and 111,,  m E 

birnp) j  = 

= 

since gi and .44.„ are mutually commuting subalgebras of . So 

(b,m,,b imp) j = (m a., m o) T (b„ bj ) K  

where the products on the right-hand side are those on the subalgebras 
associated with the involutions indicated. Thus if, for example, ( , ) T• is 
symmetric admitting an orthonormal basis with r vectors normalised to 
plus one and s to minus one (of signature r, s) and ( , )K has a basis 
with r' normalised to plus one and s' to minus one then 
( , ) j  has a basis of rr' + ss' positive-norm and rs' + sr' negative-norm 
vectors. Similarly it follows that if ( , ) 7- is R-skew and ( , )K is 2-skew  
then ( , ), admits an orthonormal basis with as many positive- as 
negative-norm basis vectors. We summarise the situation below. If j is 
an involution on .91, where ,s4 = glairt„ with j = X05-  then: 

Ini cr $6, 1 b1mp= T-1 K -1 m;Tb i xb 1m g  
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(i) if either X is 2k-skew with  er  IA-symmetric, or X is 
9} k  -symmetric with 3-  Fi-skew, then 5 is 2k-skew; 
(ii) if  K is ak -skew  and 9-  is E-skew then 5,  is 2k-symmetric, 
of maximal index (if any); 
(iii) if X is 	"-symmetric, with signature r, s, and .9-  is 
Ti-symmetric, of signature r', s' then 	is 2k-symmetric of 
signature rr' + ss', rs' + sr'. (2.6.16) 

Having shown how to classify the involution on the tensor product of 
a simple E-algebra with a matrix algebra in terms of involutions on the 
factors, to classify the involutions on the product of two simple algebras 
it only remains to consider involutions on products of the division 
algebras. When one of these division algebras is E itself there is nothing 
to do. For the product of two copies of the complex numbers we have 

C(lR) 0 C(R)C(B) 0(IF1) 

identity 0 identity = identity e identity 

identity 0 conjugation = C-swap 

conjugation 0 conjugation =- conjugation e conjugation. (2.6.17) 

We use the obvious notation for an involution on a reducible algebra 
that induces involutions on the simple component algebras. The above 
can be verified by choosing a specific basis. If {1, il, {1, j) are standard 
bases for the factors and P, = (1 ± ij) then {P + , iP,} and {P_, iP_} 
are bases for the simple components. Similarly 

C(IFI) 0 H(IFI) =- C(IF1)0A1. 2 (IFI) 

identity 	quaternion  conjugation -= C-skew 

identity 0 reversion = C-symmetric 

complex conjugation 0 quaternion conjugation 

C*-symmetric, zero index 

complex conjugation 0 reversion = C*-symmetric, index one. 	(2.6.18) 

If {1, z) and {1,  j , j, k) are standard bases for the factors then {e 0 } is 
an ordinary matrix basis where e n  = 1(1 + zi), e 22  = 1(1 — zi), 

e21 = jell  = e 22j and  e 12  = —je 22  = —e nj. Finally, 

H(B)  0  H(B) A4 4(E) 

conjugation 0 conjugation =E-symmetric, zero index 

reversion 0 reversion = IFI-symmetric, index two 

conjugation 0 reversion = E-skew. 	 (2.6.19) 

Again this can be verified by constructing a basis. It is sufficient to note 
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that a primitive is given by P = 1(1+ il)(1+ jJ) where {1,  i ,  j, k} and 
{1, I, J, K) are standard bases for the factors. A basis for the minimal 
left ideal in .41. 4 (F1) is {P, iP, jP, kP) and the index of the symmetric 
products can be explicitly evaluated. 

We are now in a position to classify all involutions on simple 
lR-algebras, or sums of two such algebras, that are obtained from 
involutions on the factors of a tensor product. If ,94 = 930T and 

= X09-  then table 2.12 gives the class of the involution in terms of 
the classes of X and  T. These classes are encoded into the types of 
table 2.11, with the 0 symbol denoting an involution on a direct sum of 
algebras inducing involutions on the components, and the types (8), (9) 
and (10) (see table 2.13) being a-swaps for a = Fi, H and C. The class 
of X determines the row of the table whilst .9-  determines the column, 
the class of y being given in the intersection. (The symmetry of the 
table reflects the fact that si02/1 g30,34.) For example, (2.6.16) is 
encoded into the first two rows and the first two columns, whilst the 
diagonal block formed by the intersection of the third and fourth rows 
and columns is given by (2.6.16) and (2.6.17). There are various blanks 
in table 2.13, corresponding to those cases when the tensor product 
of the factors would be a reducible algebra with more than two 
components. 

To use the above to classify the involutions 	and 07  on arbitrary 
Clifford algebras we need to build up the Clifford algebras from tensor 
products of smaller ones such that the standard involutions on the 
factors induce and ij  on the product. In §2.2 the structure of an 
arbitrary Clifford algebra was determined using the relations (2.2.7), 
(2.2.8) and (2.2.9) together with a knowledge of certain low-dimensional 
algebras. Examining the isomorphisms that established these relations 
shows that the involutions and 01 of the left-hand side of (2.2.7) do 
not induce either of the standard involutions on the factors. However, 
equations (2.2.8) and (2.2.9) give a relation between the standard 
involutions on the factors and the standard involutions on the product. 
As was noted in §2.2 there is another relation similar to (2.2.9), and in 
this case the standard involutions on the factors are related to those on 
the product. The relations are given below. 

C p+1 , q+I (IR) = C p , q (Ii)  ®C 1 , 1 (E) 

= 	 (2.6.20) 

07= ® 

Cp , q+4 (11:1) 	Cp , q (E) 	Co. 4(E) 

= 0/ 07 

(2.6.21) 



Table 2.13 The classification of involutions on tensor products induced from involutions of the factors. (See table 2.11 for the 
classification scheme.) 

Involutions on tensor products 

1 	2 3 4 5 6 7 8 9 10 

1 1 	2 3 4 5 6 7 8 9 10 
2 2 	1 4 3 5 7 6 8 9 10 
3 3 	4 3 0 3 4 0 4 10 4 3 10 10 
4 4 	3 4 0 4 3 0 3 10 3 4 10 10 
5 5 	5 10 10 5 0 5 5 5 10 10 

6 6 	7 4 3 5 1 2 9 8 10 

7 7 	6 3 4 5 2 1 9 8 10 

8 8 	8 10 10 10 9 9 
9 9 	9 10 10 10 8 8 
10 10 	10 10 10 

(8).-1R-swap, (9) H-swap, (10) C-swap. 
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C p+4 , q (1R) = C p , q (E)®C 4 , AR) 

(2.6.22) 

---- 	C) 01 •  

Here we have used the same symbol to denote involutions on different 
algebras. For example, in (2.6.21) the on the left-hand side is the 
standard involution on Cp , q+4 (IR) whereas the same symbol on the 
right-hand side denotes firstly the standard involution on C p , q (11), and 
then that on C O34 (IF1). 

Those low-dimensional algebras whose involutions must be classified 
by inspection are given in table 2.14. The products on the left ideals 
associated with the involutions are readily contructed for these algebras. 
Some of these products are further labelled by an index; we have only 
indicated the index where it is zero. This is justified by the following 
theorem. 

When the involution on Cp , q (E) is associated with a spinor 
product labelled by an index then if q *0 that index is 
maximal, whilst for q = 0 the index is zero. Similarly, any 
index associated with  tj  is maximal unless p = 0 in which 
case the index is zero. (2.6.23) 

Table 2.14 Involution classes of some low-dimensional Clifford algebras. 

C 10(Ft) 	 1 0 1 	 8 
C2.4 111 ) 	 1(zero index) 	 2 
C 3.0 (Fi) 	 5(zero index) 	 4 
C 4.0 (FI) 	 6(zero index) 	 6 
CO31(R) 	 3 	 5 
C 0.2 (11) 	 7 	 6 
C 0.3 (R) 	 9 	 6 0 6 
C0.4(IR) 	 6 	 6(zero index) 
C 1.1 (11) 	 1 	 2 

Suppose that ( , ) is a product on some left ideal with 	as adjoint 
involution, and that {E,} is an orthonormal basis with r positive-norm 
and s negative-norm elements. If q 0 then there is a vector x with 
x 2  = —1. Then {xE,} is a new orthonormal basis for the left ideal and 
(xe„ xE,)= (xkxE„ £,)= (X 2 E i , £,)= — (6,, et ). Thus this basis has r 
negative- and s positive-norm elements and so if the signature is well 



SPIN-INVARIANT PRODUCTS 	 77 

defined we must have r = s. So if q 0 the index is maximal. That it is 
in fact zero for q = 0 can be verified by repeated use of (2.6.22), 
together with table 2.14. The involution is treated in exactly the same 
way. 

We can now give the class of and  ij  for all C p , q (E). First we note 
that this class only depends on p mod 8 and q mod 8: two applications of 
(2.6.21) and (2.6.22) enable this to be inferred from table 2.13. We have 
given the classes in table 2.15. To complete this table we use (2.6.21) 
and (2.6.22) with table 2.14 to complete the first row and the first 
column. Then the classes of and  ij  are simultaneously entered in the 
diagonals by using (2.6.20) with the multiplication of table 2.13. The 
third entry for a given p and q in table 2.15 gives the class of the 
involution that and induce on the even subalgebra. (The case of 
p = q = 0 is a degenerate case for which the class is 1.) Reference to 
the derivation of (2.3.1) gives 

C p  (IR) 

= 

Thus the class of the involution on the subalgebra is obtained from a 
relabelling of the classification of 01. 

When p + q 5 we can use the classification of the involution on 
the even subalgebra to obtain ,F+ as the group of automorphisms of 
the associated product. This follows from (2.4.22). The automorphism 
group of an 1R-skew product on an n-dimensional vector space is 
denoted Sp(n, R), similarly Sp(n, C) is the automorphism group of a 
C-skew product. For a C*-symmetric product with signature r, s the 
automorphism group is U(r, s), whilst we use Sp(r, s, H) to denote the 
automorphism group of an H- -symmetric product with this signature. 
When s = 0 then we simply write U(r) and Sp(r, H). The products 
associated with the 9)-swap have the general linear groups as auto-
morphism groups. For, taking the product of (2.6.14), a general 
element of the automorphism group is S = s + s-11  with s any regular 
element of gam,. We have arranged these spin groups in table 2.16. 
From this table we have, for example, for C 3 J  (IR) ,F+ Sp(2, 
whereas at the end of §2.4 we demonstrated that ± r+ SL(2, C). 
These groups are isomorphic; in fact we have 

Sp(1, H) SU(2) 

Sp(2, 1R) = SL(2, R) 	 (2.6.25) 

Sp(2, C) 	SL(2, C). 

It can be seen that in two dimensions ,r ,  is isomorphic to the 
orthogonal group. 

(2.6.24) 



Table 2.15 Classes of involutions of the real Clifford algebras. For each p and q the classes of 	and the involution they induce 
on the even subalgebra are given. 

Classes of involution on the real Clifford algebras C„,,(11) 

9 0 1 2 3 4 5 6 7 

0 1 3 7 9 6 4 2 8 
1 5 6 6 0,  6 6 5 1 1 C) 1 

1 40 1 1 5 6 6 0 6 6 5 1 

1 1 0 1 1 5 6 6 0 6 6 5 1 
8 2 4 6 9 7 3 1 
1 8 2 4 6 9 7 3 

2 1 8 2 4 6 9 7 3 
2 2 0 2 2 5 7 7 10 7 7 5 
5 2 2 CD 2 2 5 7 7 0 7 7 

3 5 2 2 0 2 2 5 7 7 0 7 7 
4 2 8 1 3 7 9 6 
6 4 2 8 1 3 7 9 

4 6 4 2 8 1 3 7 9 
6 5 1 1 0 1 1 5 6 6 0 6 

6 0 6 6 5 1 1 CD 1 1 5 6 

5 6 8 6 6 5 1 1 0 1 1 5 6 
9 7 3 1 8 2 4 6 
6 9 7 3 1 8 2 4 



Table 2.15 (cont.) 

Classes of involution on the real Clifford algebras C.  q (11) 

0 1 2 3 4 5 6 7 

6 6 9 7 3 1 8 2 4 
7 7 0 7 7 5 2 2 a 2 2 5 
5 7 7 0 7 7 5 2 2 8 2 2 

7 5 7 7 0 7 7 5 2 2 0 2 2 
3 7 9 6 4 2 8 1 
1 3 7 9 6 4 2 8 

(1) 1R-symmetric, of index v 	(3) C-symmetric 	 (5) C*-symmetric, of index v 	(7) HA-symmetric 	(9) H-swap 
(2) IR-skew (only in even dimensions) (4) C-skew (only in even dimensions) (6) H - -symmetric, of index v 	(8) IR-swap 	(10) C-swap 

Table 2.16 

0 	 1 	 2 	 3 	 4 

0 	 1 	 1 	 U(1) 	Sp(1 ,H) 	Sp(1,H) X Sp(1,H) 	Sp(2,H) 
1 	 1 	 Fi* 	 Sp(2,111) 	Sp(2,C) 	Sp(1,1,H) 
2 	 U(1) 	Sp(2,R) 	Sp(2,IF1) x Sp(2,Fi) 	Sp(4,11) 
3 	 Sp(1,H) 	Sp(2,C) 	Sp(4,IR) 
4 	 Sp(1,H) x Sp(1,H) 	Sp(1,1,H) 
5 	 Sp(2,H) 

Sp(1,H) 	SU(2), Sp(2,11) 	SI(2,11), Sp(2, C) 	SI(2,C) 
,r+ for all C, ,(IR) with p +  q 	5. 
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2.7 The Complexified Clifford Algebras 

So far we have only considered real orthogonal spaces and their 
associated real Clifford algebras. Much of the discussion could, how-
ever, be repeated with the real field replaced by an arbitrary field; in 
particular the complex field. If W is a complex vector space with h a 
complex valued, symmetric, non-degenerate C-bilinear form then the 
Clifford algebra can be constructed as in §2.1. Since h is not charac-
terised by any signature the structure of the Clifford algebra can only 
depend on n, and it will be denoted C n (C). The structure of the algebra 
can be determined as in §2.2, only here the situation is even simpler. 
We have 

C „, 2 (C) 	C ,,(C) 0 C 2 (C) 
	

(2.7.1) 

C i ( C) 	C 	C 
	

(2.7.2) 

C 2(C) = At 2(C). 	 (2.7.3) 

These are the analogues of (2.2.8), (2.2.2) and (2.2.3) and they may be 
proved in a similar way. They give the structure of all C n (C). 

If n is even then 

	

C n (C) 	Al2- ,2(C) 	 (2.7.4a) 

whereas if n is odd 

	

C n (C) = 	 (2.7.46) 

The structure of the even subalgebra follows from the analogue of 
(2.3.1), namely 

If n is even then 

whereas if n is odd 

,((c ) 	c 	(C). 

C (C ) 	.42 2 - , (C ) att 2,2-.(c ). 

C ( C) --=  

(2.7.5) 

(2.7.6a) 

(2.7.66) 

Rather than proceed with the study of the Clifford groups and their 
relation to the complex orthogonal groups we shall show how the 
complex Clifford algebras may be related to real orthogonal spaces. 

If V is a real n-dimensional orthogonal space with bilinear form g 
then ye, the complexification of V, is an n- dimensional complex vector 
space. The real bilinear form g may be extended by C-linearity to a 
C-bilinear form on VC,  gC.  If g is non-degenerate then so is g c. If ye 
is regarded as a 2n-dimensional real vector space then V is canonically 
identified with an n-dimensional subspace. The complex algebra 
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C(1/c , gc ) may be regarded as a 2n+ 1 -dimensional real algebra. Thus 
regarded C(V, g) is a subalgebra which certainly commutes with the 
subalgebra generated by the identity over the complex field. So we have 
the following isomorphism of real algebras 

C(Vc, ge) C(V, g) 0 CORY 	 (2.7.7) 

For C(V, g)OC(IR) we shall write C c(V, g). We may define the 
conjugate-linear operation of complex conjugation, *, on Vc: if z E V C  
then z = x + iy for x, y E V and z* = x — iy. Complex conjugation 
extends to an automorphism of C(V'c, gc) regarded as a real algebra 
(although not of course as a complex algebra). If the real subalgebra 
consists of all elements equal to their complex conjugates then the real 
subalgebra of C(V'c, gc) is of course C(V, g). It is worth stressing that 
for an arbitrary complex vector space there is no naturally defined 
operation of complex conjugation. It is here well defined because the 
complex vector space is obtained from the complexification of some 
underlying real vector space. We have already shown that the complex 
Clifford algebras are isomorphic to complex matrix algebras or sums of 
two such algebras. The operation of complex conjugation, *, as defined 
above will not, however, necessarily simply complex conjugate the 
components of these matrices. The situation is clarified below. 

Suppose that ,94(IR) C(F1)0JR,.(1F1) has some involutory auto-
morphism, *, that induces a non-trivial automorphism on the centre. Let 
91 be the real subalgebra, that is a E if and only if a =  a*.  Since any 
a E Si can be written as a sum of real and imaginary parts it follows that 

CCA. So we have C091 CO.Att,.. For this to be true 91 must 
certainly be simple, and since the only simple real algebras are iso-
morphic to aaitt with a = IF1, C or H we must have either At., or 

HOhtr12. BY writing si = Calt r  for some particular matrix sub-
algebra At, we can define another involutory automorphism * that 
leaves elements of .A4., invariant and conjugates elements of the centre. 
If {e is an ordinary matrix basis for A,. then {CI ) is another ordinary 
matrix basis, for At r ' say. It follows from the uniqueness of the 
Wedderburn decomposition ((A24) of Appendix A) that e*ii  = me 4 m -1  
for some m E .54. So if 

a = E a q e q  
,=, 

then 

a* = E a*,jme 	= m  E  jei,m _, 

i.„.l 	 i.,=, 

that is 

a* = ma# 
	

(2.7.8) 
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Since * and * are involutory (2.7.8) gives m*m = p where p is in the 
centre. Now * and * induce the same automorphism on the centre, 
giving (m*m)* = (m*m)* = m -1 (m*m)m. That is, mm* = m*m and p 
is in fact real. The defining property of m, (2.7.8), only determines it up 
to a multiple of the centre and so by a suitable scaling we can arrange 
either m*m = 1, or m*m = —1. (Equivalently m*m = 1 or 
m*m -= —1.) We summarise as follows: = 010C with * an auto-
morphism that conjugates C and leaves 03 invariant, and s4 = At r OC 
with * an automorphism that conjugates C and leaves At, invariant. The 
two automorphisms are related by a* = ma*m -1 . There are two possi-
bilities for 01, either 03 At, or 01 Hattri2;  and two possibilities for 
m, either mm* = 1 or mm* —1. These possibilities are in fact related. 

If 	C003 = CC/At, with * and * automorphisms that 
conjugate the centre and leave 03 and At, respectively in-
variant, then a* = ma* m -1  where we can choose either 
mm* = 1 <=> = At „ or mm* = —1 <=> 9.3  = Hattr12- (2.7.9) 

We now consider the proof. Since there are two and only two 
mutually exclusive possibilities for 	and similarly for m, if we can 
prove 	that 	mm* = 1 <=> = At, 	then 	we 	must 	have 
mm* = —1 <4. 03 = HOAt r12 . Suppose firstly that 03 = At„ Then if {b 
and {e 0 } are ordinary matrix bases for 03 and AA,, respectively then 
e u  -= sb u s -1  for some s  Est If we write 

a = E a ue 

then 

a* = E 4i(sb iis -1 )* = E a 	
II  

1,1 

= E a * - le uss* 	= s* s -1 	s -1)- 1 . 
i.; 

That is, we may choose m = s*s -1  giving m* = m -1 . Now the 
converse: we introduce a C-conjugate-linear transformation on si by 
defining ac = a* m -=  ma*.  Thus c preserves the columns of At,. If 
m* = m -1  then c is involutory and for any a E .91 we write a = 
(a + ac) + (a — ac). In particular, the minimal left ideals of s4 that 

are the columns of At, with entries in C can be decomposed into 
eigenspaces of c. Since the real dimension of a minimal left ideal of si is 
2r these eigenspaces are r-dimensional. Let  p be an element of one of 
these eigenspaces. Then if a E A atp is certainly in the minimal left 
ideal of si and since (aip)c = a*Vc = atpc it is in fact in the eigenspace. 
Hence these eigenspaces carry representations of @. That is, if 
m* =  m irreducible representations of si induce reducible repre-
sentations of 91. But either 01 -= At,, in which case its irreducible 
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representations are r-dimensional, or  94 HOAtr/2  with 2r-dimensional  
irreducible representations. Thus m* = m -1  implies gi = A,. The argu-
ment of the proof is summarised below. 

m = s*s -1  mm  = 1 

irreducible representations of .94 
induce reducible representations of 
@. 

Hence mm* = 1 <=> = At, 

and so mm* = —1<=> 91 = HOAtr/2. 

The complexification of the real Clifford algebra associated with an 
even-dimensional orthogonal space is isomorphic to the algebra of 
complex matrices. Complex conjugation (that leaves the real Clifford 
algebra invariant) is equivalent to the automorphism that conjugates the 
components of these matrices when the real algebra is a total matrix 
algebra: in this case complex conjugation will simply conjugate the 
components in an appropriate basis. The algebra associated with the 
complexification of an odd-dimensional real orthogonal space is a direct 
sum of two matrix algebras. Complex conjugation is equivalent to the 
automorphism that conjugates the components of these matrices if and 
only if the real algebra is a sum of two total matrix algebras. When the 
real algebra is the sum of two simple algebras whose Wedderburn 
decomposition involves the quaternions then complex conjugation in-
duces an automorphism on the simple components of the complexified 
algebra that is inequivalent to conjugating the matrix components. 
When the real algebra is isomorphic to the algebra of complex matrices 
then complex conjugation of the complexified algebra interchanges the 
simple components. 

The irreducible representations of the complex algebras will again be 
called spinor representations, or semi-spinor representations when the 
algebra is reducible, the spinor (or semi-spinor) spaces being identified 
with minimal left ideals. These minimal left ideals are obviously of 
complex dimension 2 1 n/2] where [n/2] denotes the integer part of n/2. 
When n is even there is only one such representation, up to equiva-
lence, whereas if n is odd there are two inequivalent semi-spinor 
representations. 

Irreducible representations of  C(VC ,  g 	induce representations of 
C( V, g) which may or may not be reducible. The question of the 
reducibility of these representations has to some extent been anticipated 
in §2.5. It was shown there that when the division algebra occurring in 
the Wedderburn decomposition of the real Clifford algebra (or a simple 
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component of that algebra) was C or H the complex structure of right 

multiplication by the generator of a complex subalgebra enabled the 
spinor (or semi-spinor) space to be regarded as a complex vector space. 
In this case irreducible representations of the real algebra can be 
extended by C-linearity to representations of the complexified algebra. 
Thus conversely, in these cases irreducible representations of the corn-
plexified algebra induce irreducible representations of the real algebra. 
When the real Clifford algebra is isomorphic to the algebra of real 
matrices, or the sum of two such algebras, then its irreducible repre-
sentations are of real dimension 2 1 n 121 ; that is, half that of the real 
dimension of the irreducible representations of the complexified algebra. 
Thus, in these cases, irreducible representations of the complexified 
algebra induce reducible representations of the real algebra. The way in 
which this reduction can be performed was given in the proof of (2.7.9). 
The induced representations of the real even subalgebra may be treated 
in exactly the same way. The irreducible representations of the even 
subalgebra of the complexified algebra are of real dimension 2(2 [(n —1)12 ] ), 
whilst the dimensions of those of the real even subalgebra are given in 
table 2.10. 

We turn now to classifying involutions of the complexified algebras. 
The C-linear involutions and ij  induce the standard involutions on the 
real subalgebra, and these have already been classified. Thus we may 
classify these involutions on the complexified algebra from a knowledge 
of the involutions that they induce on the factors of a tensor product. 
The involution induced on the factor C is of class 3, and so if we 
multiply the entries in table 2.15 by 3, using the multiplication of 
table 2.13, then we obtain the class of `" and ij on the complexified 
algebra, and that of the involution they induce on its even subalgebra. 
(The classes are given in table 2.11.) Now these involutions are of 
course involutions of the Clifford algebra associated with the complex 
vector space Vc, and so they can only depend on the dimension of V 
and not the signature of g. The classes depend on n mod 8, and are 
given in table 2.17. The involutions and oi  commute with complex 
conjugation, and so they may be composed with it to form involutions 

and Ei  which again induce the standard involutions on the real 
subalgebra. These involutions are certainly not involutions of C(1/c, g c) 
regarded as a complex algebra, but are real algebra involutions. The 
classes can be obtained by multiplying the entries in table 2.15 by five 
using the multiplication of table 2.13. Of course on the simple algebras 
these involutions can only be of class 5, whilst in the reducible case they 
either induce involutions of class 5 on the component algebras or 
interchange those components. The classes depend on p mod 2 and q 
mod 2, and are given in table 2.18. It follows from (2.6.23) that is the 
adjoint of a zero index Hermitian-symmetric product if and only if 
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q --= 0; otherwise any index is maximal. Similarly 	is the adjoint of a 
zero index product if and only if p = 0, otherwise maximal. 

Table 2.17 Classification of involutions of the complexified Clifford algebras. 

p + q = n on C;,(11) 0 C 

1 3 0 3 10 3 
2 3 4 10 
3 10 4 0 4 4 
4 4 4 4 CI 4 
5 4 e 4 10 4 
6 4 3 10 
7 10 3 0 3 3 
8 3 3 3 0 3 

Table 2.18 The classes of 
and 	on C,(F1) 	C. 

and ij 	on Cp ,,(E) 	C 

0 1 

0 

1 5 

55  

5 
5  

0 
10 
5 

5 

10 
5®5 

 5 

5 
5 
10 

2.8 The Confusion of Tongues 

The theory of spinors was developed independently by physicists and 
mathematicians, and this historical apartheid has continued. Of particu-
lar physical interest is the case of a four-dimensional real vector space 
with a Lorentzian metric, and it was in this case that much of the 
terminology and notation used by physicists originated. More recently 
there has been much interest in physical theories set in a variety of 
different dimensions and the nomenclature and terminology has been 
extrapolated to these situations. Thus there is now a language, with 
many dialects, for discussing spinors in physics which makes little 
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contact with the expositions of the theory to be found in the mathe-
matics literature. Physicist readers may at this point vehemently declare 
that it also makes little contact with the exposition given here. We will 
now try to redress this situation. 

The Dirac matrices, or y-matrices, are usually defined to be complex 
square matrices of minimal order that satisfy 

y a y b 	y b ya = 211 ab 
	

(2.8.1) 

where q is diagonal with p entries of plus one and q of minus one. If 
p + q = n then the order of these marices is 2 1n/21  with the bracket 
denoting the integer part. These matrices are also usually assumed to 
have certain Hermiticity properties, and we shall examine this shortly. 
Here we note that the presence of such operations that are not C-linear 
is sufficient to infer that the y-matrix algebra is not to be regarded as a 
complex algebra. In fact from (2.7.4) we recognise that these matrices 
generate an algebra isomorphic to that of the complexified Clifford 
algebra or, in odd dimensions, a simple component of that algebra. 

For the case of n even we have  C , q  .42.12(C). If {ea} is a basis for 
the real vector space that generates C p , q (1E1) then 

nI2 

e a  = E ye 
t, j=1 

where { e u }  is some ordinary matrix basis for the complexified algebra. 
The arrays of complex components, y, with the usual rules of matrix 
multiplication, will obviously satisfy (2.8.1). All matrix bases of the 
complexified algebra are related by an inner automorphism, the change 
of matrix basis giving a new set of matrix components for the {ea}; an 
equivalent representation of the y-matrices. 

The way in which a matrix basis can be constructed and the matrix 
components of any element found is contained in the proof of the 
Wedderburn structure theorem, (A23) of Appendix A. An explicit 
example was given at the end of §2.2. We now further restrict ourselves 
to the complexification of C p , 1 (IF1), for p odd, and show how a 
'standard' representation of the y-matrices can be given. (Although we 
shall have no need of such representations this will hopefully strengthen 
the link with the standard physics literature.) For p odd 

= At 2u—Di2(C) 0 .4 2(p-012(C) 

and thus C 1  is isomorphic to a total matrix algebra with C 0 (C) a 
subalgebra isomorphic to the direct sum of two algebras of matrices of 
half the order. In a suitable matrix basis, therefore, C pc., is the 
subalgebra of elements whose matrix components are block-diagonal; 
the two simple component algebras having matrix components in only 
the upper or lower blocks, that is 
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7 , = ( 	0) 
i 

	

 0 	l I 

	

= 1, . . 	p 
\ o E 

with o' and E' matrices of order  
From table 2.18 and the remark at the end of §2.7 it follows that the 

involution on C.c.()  is the adjoint involution of a zero-index C*- 
symmetric product; that is, it is equivalent to Hermitian conjugation. 
Thus we can arrange a basis in which on  C 1  induces Hermitian 
conjugation on the diagonal blocks (but not, of course, on the off-
diagonal blocks), and in such a basis a' and E' are Hermitian. If 

= 	. . . el)  with A = 1 or i such that 2  = 1, and P + = 	± 
then P, and  P_  are the identities in the simple components of C pc.0 . 
Since = P, —  P_  then if 2 = Ay i  . . . yP then 

= 0 —I ). 

But e °  anticommutes with 	and so y° can only have off-diagonal 
components. Since also (e °) 2  = —1 we must have 

7o = _T_Oi  To  ) 

for some non-singular matrix T. Since e° anticommutes with all e` we 
must in fact have E' = — . If we now change basis so that the 
components transform ya —> S yaS -1  with 

S= — 
1 ( I —iT ) 	

S -1  = 	1  ( 	I 	
I ) 

V2  I 	iT 	 V2 iT -1  —iT -1  J 

then we arrive at the following 'standard' representation of the y-
matrices: 

yo = 	) 
0 —I 

( 	u' 
= a' 0 ). 

(2.8.2) 

Here ai, and hence y', are Hermitian whilst y°  is manifestly anti-
Hermitian. The case of CF., may be treated similarly. Since is 
equivalent to Hermitian conjugation in C;;. „ we are lead to a 'standard' 
representation as above, but with the ai  anti-Hermitian and the i 
removed from y°. (In this case e° denoting the one positive-norm 
vector.) 

To illustrate further the relation between the y-matrices and the more 
abstract approach to Clifford algebras that we have pursued, we 
examine  C 1  in more detail. First we shall choose a matrix basis for a 
simple component of C' c, in which coincides with Hermitian conjuga-
tion giving the Hermitian {a'}.  We then have from (2.8.2) a standard 
representation of the y-matrices and shall reverse the argument to 
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construct the matrix basis in which these are the components of the 
feal. The reducible algebra C 0  is projected into simple components by 
the mutually commuting pair of central idempotents P, = 

ie 123% .  j Since e 123 P, = -T-iP+, giving e 12 P, = -Tie 3 P + , if we want 
cricr 2  = ity 3  then the {01 must be the components of the {e' }  in C oP_. 

To start the construction of the matrix basis we seek a pair of mutually 
orthogonal idempotents that are invariant under the involution r: these 
will form the diagonals of a basis in which induces Hermitian 
conjugation. We choose 

en = (1 + e 3 )P _ 

e22  = 21 ( 1  — e 3 )P -• 

and since e 22  = e 2e  lie2 we may complete the basis with 

e12 — e11e 2  = F 2e22 

en =  e2 e 11  = e22e 2  

(2.8.3) 

(2.8.4) 

where 

If 

p — p 
-21 	— -12. 

2 

e`P_ -= E  at  ,oto 
cr,t3=1 

then 
2 

==E 
2=1 

For example, 

a l  = F11e l F21 	F21F 1 F22 

= — iF11e 23 F71 	iF21F 23 F22 

since e 123 P_ = iP_ 

= iF11e 2 F21 	iF21F 2F22 

where the e 2  has been absorbed into E21 and c22 . From the definition 

of F21 

a 1 12  = i(Fii 	E22) = iP- 

where, we recall, P_ is the identity in this simple algebra. In this way 
we construct the following: 

0., =( O.  i 	 a 2 	( 	 3 	( 1 	). 
(2.8.5) = 

\ —1 	) 	 k 1 	I 	o —1 

We may use these matrices in (2.8.2) to obtain a standard representa- 
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tion of the y-matrices. At this point we reverse the reasoning and 
construct the matrix basis corresponding to these components. From the 
diagonal y° we construct a pair of (non-primitive) idempotents, 

 

0 

     

+ iy() ) = 
0 

1 
1 

1 
0 

      

Putting (2.8.5) into (2.8.2) enables another pair of idempotent matrices 
to be constructed 

 

0 

  

1 
i7 1 72) = 

( 

  

1(1 + ir l y2) 1 
o 

1 

0 
1 

     

Primitives are obtained from the four products of these two pairs of 
idempotents, for example 

1(1 	i y0)1(1 	i y 1 72) = 

If then 
4 

e° = E ya 4e 4  

we have 

= 	_ ie ow _ ie 12) 

e22 = 4 1  — ie°)1(1 + ie 12 ) 

e 33  = 1(1 + ie°)1(1 — ie 12 ) 

e 44  = 1(1 + ie°)1(1 + le ' 2 ). 

(2.8.6) 

In exactly the same way we take products of the y-matrices to produce a 
matrix of zeroes except for a 1 in the i, j entry, for all i and j. As may 
readily be checked this leads to the conclusion that the remainder of the 
matrix basis must be as shown in table 2.19. 

In odd dimensions there are two inequivalent representations of the 
y-matrices: these being the matrix components of the {ea} projected 
into either of the simple component algebras. We now show how a 
standard representation can be constructed for  C, where now p is 
even. In this case 

= ht2pn(C) 	At y.(C) 

   

1 
0 

0 
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whereas go  = .4 2,i2(C). The involution 	is equivalent to Hermitian 
conjugation on C pc,o , whereas it swaps the components of C pc,,. We 
choose a matrix basis fe il l for C pc,0  in which coincides with Hermitian 
conjugation. If  P±  are the central idempotents that project C, into 
simple components, and e = e,/ /3 ± , then the e u ± form matrix bases 
for these component algebras. The involution t is defined on C pc,, by the 
requirement that it conjugate the complex factor and satisfy the follow-
ing properties on the generators of the real subalgebra:  et  = e', i =1, 

p, e°' = —e°. Thus t coincides with 	on C 0 c  and so is indeed p, 

Hermitian conjugation in the basis {e,1 } . If z = 	... ePe°  then for 
p= 2 mod 4,  P±  = 1(1 ± iz), whereas for p = 0 mod 4, P „ = 
1(1 ± iz). Now certainly z t  = —zr, and as we have remarked swaps 
the simple components of C pc,,, that is 13 _,* = P_T, thus P ,* =  P.  It 
follows that, as the notation suggests, t induces Hermitian conjugation 
in the simple component algebras in the bases that we have constructed, 
{e u ± ). In such bases el', are represented by Hermitian matrices, 
whereas e ° P_, is represented by an antiHermitian matrix. In fact for 
p = 0 mod 4 e ° P.„ = Tie' . ePP,_, whereas for p = 2 mod 4, 
e ° 13 , = Tel ... 

Table 2.19 A matrix basis for 

e u, 

e 11 	— e 23e22 
	e3e33 

e23eli 	 e22 	 —e 3e 44  
e 3e 	 e 33  
ieie 	— e 3e22 

	e 23e 23 	e 4.4  

The representation-independent operator trace, Tr, projects a matrix 
algebra onto the subspace spanned by the identity. There is therefore a 
relation between the projection of the Clifford algebra onto the space of 
0-forms, Wo , and the trace of the y-matrices. In even dimensions any 
element can be expanded in a matrix basis 

a = Eage v . 

Since the au  are (complex) 0-forms 
rI2 

) 0 (a) = Eay0 (e q ). 

and since products can be reversed under S o , (2.1.17), 

9'0(e 1) = Y o (e u e ge n ) = W o (e u e ll e„) = g'0(ezi)6,. 
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The diagonals in the matrix basis are a set of pairwise orthogonal 
primitive idempotents, and these are all similar. So 

= 9' 0 (se 1 s - ') 

for some s, thus 

97 0 (e0 = 97 0(e ii ). 

By writing the identity as a sum of primitives 

1 = e + e 22  + . . . + e„ 

we have  S0(e 11 ) = 1/(2'2 ). Thus 

with r = 2 1/2  

 

&0(a) = 
1 

that is, 

2n 2 

1 
9 0(a)= 212/2  Tr a. 	 (2.8.7) 

In odd dimensions we let P, denote the central idempotents. If, for 
example, {e } is a matrix basis for the simple algebra whose identity is 
P, then 

P+ = ell + 	+ ea + 	r = 2 ( n -1)/2 . 

Since Y o (P + ) = we have 97 0(e 4- ) = 1/[2(2 ( " -1)12 )] giving Y o(aP,)= 
(11[2(20-012))) Tr(aP + ). Thus 

1  

	

& 0(a) = 2(2( 12 -1)/2) 
[Tr(aP.4.) + Tr(aP_)]. 	(2.8.8) 

In calculating cross sections in quantum theory one uses various trace 
theorems for the y-matrices. The following illustrative properties of S o  
are equivalent to some of the most important. If {a l , ..., an } is a set 
of 1-forms then a'0 (a 1 a 2  . . . an ) = 0 for n odd, and J0(a 1 a 2 ... an ) 
= 52 0(a12  . . . a2 a 1 ). These follow from the more general relations 
?Op = = Sp The 0-form component of a product of n 
1-forms, with n even, can be related to that of products of n-2 terms, 
from (2.1.7) 

& 0(a 1 a 2  .. an ) = 9' 0 {a1 A (a2 • • • an) + iwt (a2 • • • an)) 

= j'o {ii i a 2 a 3  . . a, — a 2 i-a-,a 3 a4  . 	a, + 	+ 

a 2 	an _ l idi an } 

= g(a,, a 2 )99 0 (a 3 a 4  . . . an ) — g(a i , a 3)f 0(a 2 a 4 	. . 

an ) + . . . + g(ai, a12)99 0(a2a3 • a 12 -1). 
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In physics, elements of the vector space carrying an irreducible 
representation of the complexified Clifford algebra are termed Dirac 
spinors. Thus whilst in even dimensions this accords with what we have 
simply called a spinor of the complexified Clifford algebra, in odd 
dimensions a Dirac spinor is what we have called a semi-spinor. In n 
dimensions Dirac spinors are obviously elements of a 2W21 -dimensional 
complex vector space which we will identify with some minimal left 
ideal. If n is even the different minimal left ideals all carry equivalent 
representations, whilst for n odd the two inequivalent representations 
are carried by minimal left ideals lying in different simple component 
algebras. Any minimal left ideal can be taken as the first column in 
some matrix basis. If  p E C n (C)P with P primitive then we may form a 
matrix basis, le u }, with e n  = P, giving tp = 1 1pe 11 .  If = if/S -1  for 
some invertible S then tp' lies in the first column of the matrix basis 
{e} where e  = Se S - '. If we write tp' = E,tp:e,, then if S -1  = 
Im S,,-,le' pq  we have 11.); = E I S,-, l ip] . Thus although a change of minimal 
left ideal is effected by Clifford multiplication from the right, the 
components in matrix bases for which the spinors form the first columns 
are related by matrix multiplication from the left. 

The Dirac adjoint spinor, 1-p, is a 'row' spinor which enables spin-
invariant products to be defined. Thus 1-p is the adjoint of tp with respect 
to some spin-invariant product, it being an element of the dual space 
carrying a contragradient representation. From table 2.18 we see that 
unless p is odd and q is even the involution Or is the adjoint involution 
of a pseudo-Hermitian product. When p is odd with q even then is 
the adjoint involution of such a product. We consider the former case 
first. For some choice of matrix basis let t be the involution of 
Hermitian conjugation. (In odd dimensions t induces Hermitian con-
jugation in the simple component algebras.) Then t is related to Or as 
follows, 

d;rri* =AaTAI 	Va EC pC.q 	 (2.8.9) 

with A I*  = A (equivalently A = A). If cp and tp are Dirac spinors, 
lying in the first column in the matrix basis in which t is Hermitian 
conjugation, then we may define a spin-invariant product 

(49 , 	= A -I  cer 	 (2.8.10) 

This product, which having Or as its adjoint involution is invariant 
under +1—=, is a special case of (2.6.2). As such it takes values in the 
algebra of complex numbers whose identity is the primitive e n . We can 
trivially obtain a product with values in the underlying complex field. 
For if (cp, 1p) En . = (q), p)e 11  then 

= Tr(99 , 1P)Eq .. 	 (2.8.11) 
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The adjoint of zp with respect to the product in (2.8.10) is the Dirac 
adjoint, that is 

= A - lie* = A -1 . 	 (2.8.12) 

The defining relation for A, (2.8.9), involves Hermitian conjugation 
which is defined in some matrix basis, le 0 1. If {e} is another matrix 
basis with e'i;  = Se 11 S -1  then e'ii t  = S -11-e 1iSt . Thus if S t  = S' then 
eV = e fi  and the involution also induces Hermitian conjugation in this 
basis. So in fact the involution and hence the relation (2.8.9), involves 
a class of bases the elements of which are related by unitary transforma-
tions. Suppose that we consider that class of matrix basis for C pc , in 
which e °' = — e°, e it  = e', i =1, ..., p. Equation (2.8.9) is equivalent  
to eat  = —A -l eaA, and so in such a basis we may choose A -1  = ie ° . 
This gives the familiar relation 

	

= 	 (2.8.13) 

(The factor of i is absent in the case of C .q .) It is this relation (in 
component form) that is usually taken as the definition of the Dirac 
adjoint. It is the choice of A -1  = ie °  that arbitrarily restricts the 
representations of the y-matrices to be related by unitary transforma-
tions. There is no need for this restriction. The notable exception to this 
restrictive definition of the Dirac adjoint is the book by Jauch and 
Rohrlich [4]. 

In the above we excluded the case in which p is odd and q is even. In 
this case it is rather than that is the adjoint involution of a 
pseudo-Hermitian product. Unless p is even and q is odd in analogy 
with (2.8.9) we may define 

	

crr = Ba'13-1 	V a eCc
•9 	

(2.8.14) 
P 

with B* = B' = B. Instead of (2.8.12) we define 

= 	11)*. 	 (2.8.15) 

Here the Dirac adjoint is defined with respect to a + F±-invariant 
product. 

A Dirac spinor and its adjoint are used to form the so-called bilinear 
covariants. If cp and  p  are Dirac spinors then, as explained at the end of 
§2. 5 , the spinor representation gives rise to a representation r. We 
define 

r(s)(pp) = scp(s/p). 

When, for example, the Dirac adjoint is defined as in (2.8.12) then 
r(s)(94)= s(qytp)svi". Thus for s E F ± the representation r coincides 
with the vector representation, that is 

r(s)(99/) = s(97)s-1. 
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When q is odd the image of +1- ± under the vector representation is the 
timelike-orientation-preserving subgroup of the orthogonal group; whilst 
for q even it is the spacelike-orientation-preserving subgroup. As 
pointed out in §2.4, the p-forms transform irreducibly under the vector 
representation of the Clifford group. Using (2.1.18) we expand op as a 
sum of p-forms, 

= E wo(pPeA )eA 
A 

= E wo(tPeA(P)eA 
	

(by (2.1.17)). 
A 

This gives the p-form components in terms of the product (2.8.10), or 
(2.8.11), 

TIV = E (TP, eA4p)wo(e ii)e A • 
A 

For the particular case of  C 1  we have 

4W 0 (zpip) = Tr(ii) 

499 1 (0p) = Tr(vea ip)ea 

 49'2 (0p) = .1'r(Ipeab V)eba 

(2.8.16) 

(2.8.17) 

492 3 (0p) = Tr(peazIp)e az 

49) 4(0p) = —Tr(pztp)z. 

The components of these homogeneous forms are the familiar scalar, 
vector, tensor, pseudo-vector and pseudo-scalar. As was noted above, 
the spinor representation on lp induces the representation r on these 
bilinears. In particular, the spinor representation of +1-'± induces the 
vector representation on the bilinears, the image of +1—± under the 
vector representation being the group of orthochronous orthogonal 
transformations. It is the behaviour under the parity transformation 
that, for example, distinguishes between the scalar and the pseudoscalar. 
The vector representation of the elements of the Clifford group which 
change time orientation cannot be induced on these bilinears from the 
spinor representation. The Wigner time-reversal operator on spinors is 
not a representation of the Clifford group, neither does it induce on 
these bilinears the transformations one would expect from the nomen-
clature of 'vector'. It is, however, a symmetry of the Maxwell—Dirac 
equations, as will be discussed in §10.3. In the physics literature the 
action of the spinor representation of that element of the Clifford group 
whose vector representation gives time reversal is called the Racah time 
reversal on spinors. It is not a symmetry of the Maxwell—Dirac equa-
tions, which accounts for its infrequent mention these days. 
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The Dirac adjoint is associated with the pseudo-Hermitian product for 
which or is the adjoint involution. We also have the spin-
invariant products for which the C-linear involutions ij and are the 
adjoints. From table 2.19 we see that unless n =1 mod 8 or 5 mod 8 the 
involution  ii induces an involution on the simple components of the 
reducible Clifford algebras. If 5 denotes transposition in some matrix 
basis then, excepting the dimensions mentioned, we have 

	

a 4n = CagC -1 	V a  E C pC.q 	(2.8.18) 

with C  = C7 = ±C. The symmetry of C determines the symmetry of 
the complex bilinear product defined by 

(9), 1P),7 = C -101P. 	 (2.8.19) 

Here op and tp are Dirac spinors lying in the first column of the matrix 
basis in which 5 is the transposition. The symmetry of this product, for 
which ij is the adjoint involution, is given in table 2.1. The defining 
property of C, (2.8.18), is equivalent to 

=— C - leaC 

the matrix components of which are usually taken as the definition of 
the charge conjugation matrix. If if) is the adjoint of ip with respect to 
the product in (2.8.19) then 

= C- Lten = ipErC -1 . 	 (2.8.20) 

This adjoint spinor is often called the Majorana conjugate. 
Except for n = 3 mod 8 or 7 mod 8 the involution 	induces an 

involution on the simple components of the reducible Clifford algebras. 
We may define 

	

= Dag  D -1 	Va E C c 	 (2.8.21) 

with 1Y. =- Erg = ±D. This gives 

eg = 

The symmetry of the product defined by 

(9), TP). = D - VIP 	 (2.8.22) 

is given in table 2.18. We shall also use ip to denote the adjoint with 
respect to this product, specifying the relevant product whenever con-
fusion is likely. 

In §2.7 we were careful to distinguish the automorphism *, referred to 
as complex conjugation, from the automorphism *. Complex conjuga-
tion leaves invariant the real subalgebra generated by the real orthogon-
al space with signature p, q, whilst * is defined to complex conjugate 
the matrix components in some matrix basis. Thus the definition of * 
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depends on the choice of some matrix basis. In (2.7.9) we showed that, 
excepting the case in which the real subalgebra is isomorphic to the 
algebra of complex matrices, these two automorphisms are related by 
a* = metm -1  V a.  When the real subalgebra is a real matrix algebra, or 
a sum of two such algebras, we may choose mm* -= 1. When the real 
subalgebra is the tensor product of a matrix algebra with the quater-
nions, or a sum of two such algebras, we may choose mm* = —1. The 
real subalgebra is isomorphic to the algebra of complex matrices when 
p — q =3 or 7 mod 8. In this case complex conjugation of the complex-
died algebra swaps the simple components. Save for this exceptional 
case we use this relation between the two automorphisms to define the 
charge conjugate spinor  pc  

pc  _ p * m. (2.8.23) 

This can be rewritten in terms of the Dirac adjoint and the charge 
conjugation matrix. Unless n = 1 or 5 mod 8, or p is odd with q even, 
we may use (2.8.9) and (2.8.18) to produce 

(a?1 `).=7/ = (A - YnCat 5 C -1 A 

Since complex conjugation commutes with the involution 01 and 
tT =  Tt  = # we have 

	

a* = mem -1 
	

with 	m = A -1 *C 	(2.8.24) 

where we have used A 11 * = A. We know that we can scale m such that 
mm* = ±1, which can be accomplished by choosing C suitably. With m 
given by (2.8.24) equation (2.8.23) becomes 

	

= Civ. 	 (2.8.25) 

In exactly the same way, except for the case of n = 3 or 7 mod 8 or p 
even with q odd, (2.8.23) can be written as 

	

lpC = D ,FpFl 	 (2.8.26) 

where now 'Fp is given by (2.8.15). The only cases in which we can use 
neither (2.8.25) nor (2.8.26) are for p + q = 3 or 7 mod 8 with q even, 
or p + q = 1 or 5 mod 8 with q odd. These cases can only occur for 
p — q = 3 or 7 mod 8, which is the case we excluded from the definition 
of the charge conjugate spinor. 

When the Dirac spinors carry a reducible representation of the real 
subalgebra, elements of the irreducible subspaces are called Majorana 
spinors. As was pointed out in §2.7 this ocurs when the real subalgebra 
is a real matrix algebra, or a sum of two such algebras, and this occurs 
when p —q = 0, 1, 2 mod 8, as is seen from table 2.8. In these 
dimensions reference to §2.7 shows how the space of Dirac spinors can 
be decomposed into eigenspaces of the charge conjugation operator. 
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Thus a Majorana spinor is an eigenspinor of the charge conjugation 
operation 

= ±/P c - 	 (2.8.27) 

This can be written in terms of the Dirac and Majorana conjugates by 
using (2.8.25) or (2.8.26). 

In an even number of dimensions the irreducible representations of 
the complex Clifford algebra induce a reducible representation of the 
even subalgebra; the spinor representation splitting into two inequi-
valent semi-spinor representations of the even subalgebra. The central 
idempotents that project the even subalgebra into simple components 
are  P±  = (1 ± where either = z or = iz ensuring 2  =  1,  z 
denoting the volume n-form. If  p is a Dirac spinor then it may be 
decomposed into subspaces that transform irreducibly under the even 
subalgebra, 

11) = + 	- 	where tp+ = 13 ± tp. 	(2.8.28) 

The semi-spinors 1p+ are called Weyl spinors, or chiral spinors. The 
Weyl spinors can carry a reducible representation of the real even 
subalgebra. From table 2.10 this is seen to occur when p — q = 0 mod 8. 
In this case the real even subalgebra is the direct sum of two real matrix 
algebras, having the real central idempotents  P±  = (1 ± z). The 'Ma-
jorana condition' (2.8.27), can be consistently imposed together with the 
'Weyl condition', (2.8.28), to decompose a Dirac spinor into subspaces 
transforming irreducibly under the real even subalgebra. The resulting 
spinors are called Majorana—Weyl spinors. 

In an odd number of dimensions irreducible representation of the 
complexified Clifford algebra induce irreducible representations of the 
even subalgebra. These can induce a reducible representation of 
the real, even subalgebra. Obviously this is the case for p — q = 1 
mod 8 where, as we have noted, Dirac spinors carry a reducible 
representation of the whole real subalgebra. From table 2.10 we see that 
for p — q = 7 mod 8 Dirac spinors carry irreducible representations of 
the real subalgebra and the even subalgebra. However they carry a 
reducible representation of the real even subalgebra. For p — q = 7 
mod 8 

C p , q (B) 	C 0.420, -.0(R) 
and 

C7,,,(Fi) 	.41, 2(—w,(Fi) 

where p + q = n. We may thus choose a matrix basis for the Clifford 
algebra in which the automorphism n simply complex conjugates the 
components. The complexified algebra qc,„ is reducible, with inter-
changing the simple components. Complex conjugation, *, also swaps 
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the component algebras. The automorphism Tr will certainly preserve 
the simple components, and in a suitable basis we see from (2.6.17) that 
it coincides with #, the operation that complex conjugates the matrix 
components. A Dirac spinor ip can be decomposed into spinors trans-
forming irreducibly under the real even subalgebra 

= 1P + + - 	with Ip = letp ± Ip'r). 	(2.8.29) 

(Such spinors have attracted no special terminology in the physics 
literature.) 

Of importance in many calculations, especially those involving super-
symmetric theories, is the Fierz rearrangement formula. This allows 
products of bilinears to be rewritten in terms of different bilinears. 
Many similar results can be given, we illustrate the basic result below. 
Let /3,  i ,  92 be Dirac spinors lying in some minimal left ideal 
projected by the primitive P. If M and N are arbitrary elements of the 
Clifford algebra then 

5eMpipNcp = &S 0 (M131pNe A )e 4 cp 	(by 2.1.18) 

= cleA 00 (A/ 16i-pNe A ). 

The terms in the brackets can be reordered using (2.1.13), and since 
92  = 92P 

c1M)31pNcp = Cre A çoS 0 (VNe A 4113)P. 

Now the term in brackets is in  PC", which is isomorphic to the 
algebra of complex numbers with P as identity. That is, PXP = AP for A 
a complex 0-form, giving 

so(pxp) = Aso( P) 

and 

S o(PXP)P = So(P)PXP 

SO 

CrM01pNcp = CreA Ne A WPS 0 (P). 

In terms of the product in (2.8.11) we have 

Mfi)(ip, NOP = 	eAcp)(tp, Ne A 4113)S 0(P)P 

whose 0-form component is the basic Fierz formula 

(a, Mfi)(ip,  Nip)  = (a, eAcp)(1p, Ne A 4113)S o (P). (2.8.30) 

(The factor of S o(P) arises from our normalisation of the  e'.)  
The approach to spinors that we have pursued is essentially algebraic. 

From the Clifford algebra we can define the spin groups, and from the 
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representations of the algebra we induce representations of these 
groups. One can, however, start from a knowledge of the covering 
group of the connected component of the orthogonal group and intro-
duce its irreducible representations as spinors. Representations of the 
component of the orthogonal group connected to the identity can then 
be found from the tensor product of these spinor representations. For 
the case of four dimensions, and Lorentzian signature, such an approach 
has developed its own rather specialised notation and conventions. That 
is the Infeld—van der Waerden formalism, or 'two-component spinor 
formalism'. Given that the double covering of SO+(3, 1) is SL(2, C) 
one introduces 'two-component spinors' as carrying irreducible repre-
sentations of SL(2, C). The complex conjugate representations of this 
group are inequivalent, and a special notation is used to distinguish 
them. If u is a vector carrying an SL(2, C) representation such that the 
components of u transform with a matrix m then, say, the components 
of u are labelled by a Greek superscript. If the vector y transforms with 
the complex conjugate matrix then the components of u are labelled by 
a Greek superscript with a dot above it. (It is perhaps significant that 
such a notation was introduced before the advent of frequent photo-
copying!) The vector spaces carrying these representations both admit 
SL(2, C)-invariant symplectic products, and the adjoint of u, say, with 
respect to such a product has its components with respect to a dual basis 
written as subscripts. A similar situation holds for v. Thus indices are 
'lowered' with the symplectic matrix, which can be taken to have plus 
one in the top right-hand entry. Because of the antisymmetry of this 
matrix a convention must be adopted as to which side the matrix is 
multiplied from to lower an index. The tensor product of these two 
representations, with themselves and each other, gives a representation 
of SO+ (3, 1). Thus SO+(3, 1) irreducible representations are identified 
with certain expressions written with two Greek indices, either with or 
without dots, up and down, or a mixture. Of course, starting with 
SL(2, C) irreducible representations only produces SO+(3, 1) repre-
sentations, not 0(3, 1) representations. One can extend the representa-
tions of SL(2, C) to include other transformations so that the tensor 
representation extends to a representation of 0(3, 1). However, such 
extensions are not unique and there is certainly no universal convention 
for complex phase factors. Without being exhaustive we shall show the 
relation between the 'two-component formalism' and the algebraic 
approach. 

We shall consider the Clifford algebra associated with a four-
dimensional Lorentzian space. Starting with the real even subalgebra we 
shall construct a basis for the complexified Clifford algebra. We saw in 
§2.3 that C 1 (1F1) CO, 11 2  and that if {E,i3} is a matrix basis there exists 
a 2-form c relating transposition, t, to the involution 

ct = ca`c-I 
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and a 1-form x that squares to one and commutes with the co and c. 
Thus c must have real components and, since it is certainly anti-
symmetric, we can choose it such that its components form the standard 
symplectic matrix, that is 

	

c = E C 43E0 	 (2.8.31) 
p 

where the matrix of components c al3  is 

c al3 

 

101 
 —1 	)‘ 

0 1 
0 

The even subalgebra of the complexified algebra is the direct sum of 
two algebras of complex order-two matrices. 

Cr 	.M. 2 (C) 	.M. 2 (C). 

If  P±  = 1(1 ± iz), with z the volume 4-form, then {e0P + } and 
{E oP_} are bases for the simple component algebras. The complexified 
Clifford algebra is isomorphic to the algebra of order-four complex 
matrices, and so we can choose a matrix basis in which the even 
subalgebra is block diagonal. In such a basis any odd element must have 
off-diagonal components. If, as usual, we identify the space of Dirac 
spinors with the minimal left ideal formed by the first column then the 
upper two components and the lower two components will transform 
irreducibly under the even subalgebra. These are the even and odd parts 
of the spinor, forming the two inequivalent Weyl spinors. In this 
language one refers to a Dirac spinor as a bispinor, as it carrys a 
reducible representation of SL(2, C). We can use the element x to form 
the off-diagonal elements in a matrix basis for C„ { e 11 } . We can 
schematically display the basis we have constructed as follows: 

toP, xt13  ai3 _ 
e  :( xt apP, 	Ea.0P _)• 

(2.8.33) 

It can be checked that this is indeed an ordinary matrix basis. In this 
basis the diagonal blocks are related by complex conjugation, as are the 
off-diagonal blocks. If  T denotes transposition in this basis then 

(E0P+)5  = 

But from the defining property of c, (2.3.2), 

eP, = 

= 	 (since c is even) 

= 

Similarly (xeoP±)5  = xfp,P 

(2.8.32) 
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and 
xes,PT. = xclEtcP 

c'x4013 -,,c 

= c-i P+EOE,XC 

= C-1 (XE0P 1-)C 

(since x commutes with c) 

(since x13 ±  = 

and so 
= 	 Va  E  C 1 . 	 (2.8.34) 

If ip is a Dirac spinor we can write ip in terms of its even and odd 
parts as ip = u +  y. If we introduce the notation 

EcrlP + 	ba, 

xEai P = 

then u = uab  y  = vat, ua, va E C. This accords with the conven-
tional labelling since u and  y carry complex conjugate representations of 
the real even subalgebra, and hence + F+ which is isomorphic to 
SL(2, C). The first row in the matrix basis is naturally identified with 
the dual space of the first column. If we define 

EierP+ = 

xt ra P_ = Ba 

then 13"13p = A -4E11P +, B'bfi  = 0, Bab a  = 	 Bab a  = 0. We 
may define the Majorana conjugate of ip as 

= v5 c -1  

(this is a special case of 8.21), then 

= 145  C -1  ± v 	= li aB a  C -1  + V &B & C -1  

We now introduce 

B a  = Bac -1 

 Ba  = B 

(2.8.37) 

(2.8.38) 

giving, by (2.8.31), B a, = c;,!Bv and B a  = c -a7,1 1:3''. We can write the 
Majorana conjugate as 

uaB, + vaB a  = u a Ba + v aBa 

where, for example, u a, = ut'cial. That is, indices are lowered with the 
components of the symplectic matrix. If (4) is another Dirac spinor 
written in even and odd parts as cp = w + y then 

ipq) -= 	+ y,ya)E1113+. 

(2.8.35) 

(2.8.36) 
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Thus this product on the Dirac spinors induces the SL(2, C)-invariant 
symplectic products on the Weyl spinors. So far we have relabelled the 
first row and the first column of our matrix basis to facilitate a 
correspondence with the two-component formalism. Any element of the 
matrix basis can be written as a product of the first column by the first 
row, e u  =e 1 e 11 ,  and so we can apply this relabelling to the whole basis 

roP,c-1  = 13B,6  

EoP_c -1  = b a,13,6 

 xE0P, c = b al3p 

XeoP = b p. 

The products on the right-hand side with no dots or two dots are 
even, whilst the terms with mixed indices are odd. Under complex 
conjugation a dotted index is replaced with an undotted one, and vice 
versa. These terms also have simple properties under the involution 
for example 

(b,Bp) .= = —c -1 P +e,,j 

= —c -l eo cP + c -1  

= 

= —b,6 13„. 

Similarly we obtain for the full set 

(b a.13 /3) = —13 013, 

(13B 0) = 
(2.8.40) 

(1:03 /3) = —1) 0 13 a. 

(b Œ BW = 

If then n is any real odd form 

n = n0b,B fi  + naMb B 

= —na0b 0B — n 6131) 0B„. 

So if n is a 1-form, even under nO = — n*. That is, the components 
can be arranged as an anti-Hermitian matrix (with different conventions 
the matrix of components is Hermitian). In particular the basis 1-forms, 
e°, can be expanded in the matrix basis as 

e° = G0011 6,13 +  

(2.8.39) 
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The anti-Hermitian matrices, aa°13 , give the correspondence between a 
'vector' and a 'rank-two spinor' (or a 'valence two spinor'). Similarly a 
real 3-form has components that form a Hermitian matrix. If m is real 

and even then 

m = meo3b,,B 13  + mc'O'b a.13 0 . 

Requiring that m be odd under is equivalent to it being a 2-form. 
From (2.8.40) it follows that this gives m"13  = mfia. Obviously the 
components of a 0-form or 4-form must form an anti-symmetric matrix, 
but we still need to disentangle the two. We have 

W o (1),13 /3) = J 0 (13 1 13,) 

= 	0 (13 13c - lb o,.) 

= o(Eigc -i taiP+) 

= W0(c/32E11P+)• 

For the primitive E li  P + we have W o (e li P + ) = 1, giving 

W 0(b a13 #) = 

also 

b.E3 ,6) = — Jo(Eloc -l E,IP+z)z 

and since  Pz = — i13 , it follows that 9P 4 (bBp) =icjz.  If the inverse 
matrix is introduced such that cc -1 ,A  = (5/3  then, if ma'fl is anti-
symmetric, net3  = /1013  for some complex A. It then immediately follows 
that Y o (m) = 2 Re A whilst Y 4 (m) = —2 Im Az. 

In this section we have established contact with the most usual 
notations and nomenclature used for spinors in physics. There is, 
however, yet one more impediment to multilingual fluency. For many 
applications in physics one works with `anticommuting' spinors. That is, 
whenever the order of two spinor fields is reversed a minus sign is 
introduced. One rationale is that the components of the spinors take 
values in the odd part of some exterior algebra. Certain other fields are 
assigned values in the even part of this algebra; bilinears in the spinors 
being even, for example. In practice the rationale seems unimportant as 
the rules are easy to understand. The consequences are, for example, 
that certain expressions which are antisymmetric in 'commuting' spinors 
become symmetric in `anticommuting' spinors. Thus although many of 
the results presented in this chapter are changed (for example the 
properties of the spin-invariant inner products) they are easily adapted 
to accommodate `anticommuting' spinors. 



	

-= A/1. 16 (C) 	 16 (Dirac spinors) 
C(IR) .M.8(C) C.) .48(C) 8 (Weyl spinors) 
C(lR)  4132(C) 32 (Dirac spinors) 
C(111) =14-16(C) 0A/116(C) 16 (Weyl spinors) 

sym 	Hermitian sym (index 0) Hermitian sym (index 8) 
Hermitian sym (index 0) 

skew 	Hermitian sym (index 16) Hermitian sym (index 16) 
swap 

sym 
sym 
sym 
swap 

Exercise 2.2 Abstract from tables 2.8, 2.15, 2.17 and 2.18 the information in the following tables. In part (a): C2 
gives real dimension of irreducible algebra representation; C3 gives real-valued spin-invariant product associated with 

C4 gives real-valued spin-invariant product associated with 07 . In part (b): C2 gives complex dimension of 
irreducible algebra representation; C3 gives complex-valued spin-invariant product associated with C4 gives 
complex-valued spin-invariant product associated with ,17; C5 gives complex-valued spin-invariant product associated 
with 	C6 gives complex-valued spin-invariant product associated with •-ti*. 

(a) 

Clifford algebra C2 C3 C4 

C 4.4 (1H) 	At16(R) 16 (Majorana spinors) sym(index 8) sym(index 8) 

C:4(1H) 	h18(E) 0 A18(11i) 8 Majorana—Weyl spinors) sym(index 4) 

C8,0(E) 	ht16(E) 16 (Majorana spinors) sym(index 0) sym(index 8) 

C;0(R) = Ais(IR) 0 ht(1H) 8 Majorana—Weyl spinors) sym(index 0) 
C08 (JR) 	hti6(E) 16 (Majorana spinors) sym(index 8) sym(index 0) 

Cô.8(lF1) 	A/1-8(Fi) 	A1.9(E) 8 Majorana—Weyl spinors) sym(index 0) 

C9.1 ( R) 	A32(E) 32 (Majorana spinors) sym(index 16) skew 

C)- 1(1F1) = .416(E) 0 A1.16(IF1) 16 (Majorana—Weyl spinors) swap 
C1.1(1F0 	AA) 2 (Majorana spinors) sym(index 1) skew 
C 	B 	11R 1 (Majorana—Weyl spinors) swap 

(b)  

Clifford algebra 
	

C2 
	

C3 	C4 	C5 	 C6 
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3 

Pure Spinors and Triality 

This chapter contains some further properties of Clifford algebras and 
spinors. They may be regarded as more advanced material and the 
presentation will be adapted accordingly. Some readers may prefer to 
defer a study of these topics until later: they are not essential pre-
requisites for understanding the bulk of the material that follows, 
although we shall briefly make reference to certain properties of pure 
spinors in the last chapter. 

3.1 Pure Spinors 

In certain cases spinors may have a rather direct geometrical interpreta-
tion. As was observed by Cartan [5] certain spinors of C( V, g) may be 
correlated with maximal totally isotropic subspaces of V: these spinors 
being called pure. (An isotropic subspace of V is one on which g 
induces the zero bilinear form.) The account of pure spinors that we 
shall give follows that given in Chevalley [6]. We shall only consider the 
case in which V is even-dimensional. It turns out that in four (and six) 
dimensions all complex Weyl spinors are pure. For the physically 
interesting Lorentzian case this gives a correlation between Weyl spinors 
(or Majorana spinors) and null planes. In the positive-definite case 
maximal isotropic subspaces, and hence pure spinors, can be put into 
correspondence with complex structures. In more than six dimensions 
not all spinors are pure. The possibility of constraining spinors to be 
pure in physical theories formulated in higher dimensions has been 
investigated ([7], [8]). 

Let V be an F-linear space with dim FV = 2r, and g an F-valued 
F-bilinear form with maximal index. (Here F will be either R or C.) We 
can express V in terms of maximal (r-dimensional) totally isotropic 
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subspaces M and N as V = M 0 N. A Witt basis for V is formed from 
the isotropic bases {xl} for M and  {y'}  for N such that 

xiyj + yjxi = 64 . 	 (3.1.1) 

Since g is of maximal index the Clifford algebra is a total matrix algebra 

C(V, g) = A1.2 , (F) 
	

(3.1.2) 

whilst the structure of the even subalgebra is given by 

	

C+(V, g) = At2, - , (F) 	At2,-.(F). 	 (3.1.3 

Let 	be the 2r-form with i 2  = 1 so that the idempotents P, = 
(1± 	reduce C+(V, g) to simple ideals. In terms of a Witt basis for 

V we may choose 

	

= [x', yt][x2 , y 2 1  . . . [xr, yr] 	 (3.1.4) 

the brackets denoting Clifford commutators. 
Let z m  be the r-form product of some basis for M. Since M is totally 

isotropic its Clifford algebra is just its exterior algebra A(M) and so the 
r-form product of a different basis will differ from z m  by the deter-
minant of the general linear transformation relating the bases. Given the 
Witt decomposition V= MC) N we can express any element of C(V, g) 
in terms of products of the x' and the y'. Using the relations (3.1.1) the 
elements of M can be positioned at the right-hand side of any terms so 
that we see that C(V, g)z m  = C(N, g)z m  = A(N)z m . Thus the left ideal 
C(V, g)z m  has the dimension of the exterior algebra of N, 2', and is 
hence a minimal left ideal. We may take this minimal left ideal as the 
space of spinors. If  p E C(V, g)Zm then ip = Bz m  for B E A(N). Thus 

= Bniz m . We have 

-z- zm  = [x i , y  ii[x 2 , y 2] 	[x r, y r]x l x 2 	x r 

	

= [xl, y1]x1[x27 y 2]x 2 	[xr ,  y r]xr 

and from (3.1.1) 

[x', y']x1 = x'y'x' =- (1 — y'x')x' = x' 

SO ‘iZA4 = Zm. Thus 'z'tp = finz m  and the even and odd (under n) 

subspaces of C(V, g)z m  form the semi-spinor spaces of the even 
subalgebra. Just as a maximal totally isotropic subspace can be used to 
define a minimal left ideal it can also be used to define a minimal right 
ideal. Since the Clifford algebra is a total matrix algebra the intersection 
of a minimal left ideal with a minimal right ideal is a 1-dimensional 
F-linear space. (For if P and P' are primitive idempotents with 
P' = SPS-1  then P'C(V, g)P = SPC(V, g)P and PC(V, g)P = AP for 
A E F.) So if we use a maximal totally isotropic subspace M to define 
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our space of spinors any other maximal totally isotropic subspace T can 
be used to define a minimal right ideal and hence a one-dimensional 
subspace of the spinor space. 

If M, T are maximal totally isotropic subspaces then any 
element of z g)z m  is a representative spinor for T (with 
respect to M). A spinor that represents some T is called 
pure. (3.1.5) 

An immediate consequence of this definition is the following: 

If T = x(s).M for s c F then a representative for T is u = szm . 	(3.1.6) 

The space of representative spinors for M is spanned by z m , so if u is a 
representative for M then xu = 0 V x E M. If now u is any element of 
C( V, g)z m  then u = Bz m  for some B E A(N). For any y' E N we can 
write B = yiB i  + B2 with B 1  and B2 in the exterior algebra of the 
subspace of N spanned by the remaining y. So xiu = B i u and x`u = 0 
only if B lies in the exterior algebra of the (r — 1)-dimensional subspace 
of N spanned by the remaining y. Thus u is a representative for M if 
and only if xu = 0 V x c M. Because of (3.1.6) this can be couched more 
generally. 

A spinor u is a representative for T if and only if xu = 0 V x E T. (3.1.7) 

Given the totally isotropic M there is no unique N such that 
V=MON. If T is a maximal totally isotropic subspace with 
dim( T n M)= h then we can always choose a Witt basis such that {x'} 
is a basis for M and {x', . . x h y h+1 ,  y is a basis for T. Starting 
with a basis {x', . . } for T n M the Witt basis can be completed 
by a Gram—Schmidt type of construction. If we adapt the Witt basis in 
this way to the isotropic subspaces M and T then a representative for T 
is u = yh + 1  . . . yr.  It will often be useful to have this canonical form 
for a pure spinor. 

In even dimensions all elements of the Clifford group are either even 
or odd. Thus, by (3.1.6), all pure spinors are either even or odd. This 
property of the representative spinors can be used to classify the 
maximal totally isotropic subspaces as either even or odd. 

If 7. 1 , T2  are maximal totally isotropic subspaces then T, and 
T2 	are 	both 	even 	or odd 	if and only if 
dim( T, n T2 ) = r mod 2. 	 (3.1.8) 

There is some S E F such that x(s).1, = M. If u 1 , u 2  are representatives 
for T, and T, then z m = su2  and if u = sui  then u is a representative 
for T = x(s).T 1 . Since s is either even or odd then u and z m  behave the 
same under 71 if and only if u, and  u 2  do. Moreover, 
T n M = x(s).(T i  n T2 ) so it is sufficient to prove that representatives 
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for T and M are both even or odd if dim(T n M)= r mod 2. If we 
adapt a Witt basis to T and M then a representative u for T has the 
canonical form u = yh+1 yrZm where dim( T n M)= h. So u and 
z m  are both even or odd if r — h = 0 mod 2, that is h = r mod 2. 

In general not all spinors will be pure; whereas we can always choose 
a basis of pure spinors, linear combinations of pure spinors will not in 
general be pure. The following gives the conditions for the sum of two 
pure spinors to be pure. 

If u l , u 2  represent T 1  and T2 then a necessary and sufficient 
condition for u 1  + u 2  to be pure is that dim(T i  n T2) = r or 
r — 2. If this is the case then non-trivial linear combinations 
of u 1  and u 2  represent all T such that T n T2= T1 n T2. (3.1.9) 

As in the proof of (3.1.8) it is sufficient to consider representatives for 
T and M. We adapt a Witt basis to these subspaces. A non-trivial linear 
combination of representatives for these subspaces will be pure if u is, 
where 

	

u = Az,vi  + yh+ 1  . . . yrz m 	E F. 	(3.1.10) 

Now x'u = 0 if and only if i =1, . . ., h and 	 = 0 if and only 
if Â, = 0 V j = h + 1, . . . r, so if u is pure, representing T' say, then 

nm= T n M. If this is the case then we can choose a Witt basis 
{x', y") i =1, . . r with {x1, x h y h+1 ,  . . .3 )1 '} a basis for T'. 
In this basis representatives for T' will take the canonical form, so if u 
is pure 

A z m 	y h+1 	y rzm  = itty h+Ir . 	yrrzm 	(3.1.11) 

for some y E F. By repeatedly using (3.1.1) the Clifford products in y h + 1  
yrz m  • • • y rZ m can be written in terms of exterior products, yh+1  

having homogeneous (h, h+2, . . 2r—h)-form components. Similarly 
yh-f-i, 	yriz m  will have homogeneous components of the same 
degrees. Equating h-form components in (3.1.11) gives 

= 1. 	 (3.1.12) 

If h + 2 r then this can be used to equate (h+2)-forms in (3.1.11): 
x 1 	x h(y h+I A x h+1 	 y r A  xr) 

	

x h(y h+1 ,  A x h+1 	 . 
Y 
.ri xr) 

	

= 	1 	 . 	(3.1.13) 

The {y" }  can be written as linear combinations of the basis {x', y`). 
Since {x', y") is also a Witt basis we have 

= y' + E 	+ Ni 	i = h + 1, . . , r 	(3.1.14) 
j=h+1 
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where m9 = -m9 and 111 ` is a linear combination of {x . . . 	} . 
Inserting (3.1.14) in (3.1.13) gives m9 =  O Vi, j = h + 1, . . 	r and 
hence {x', . . 	y hn ' , . . •y"} is just a new basis for T; that is, 
T' = T. So the only non-trivial case is h + 2 = r. In this case (3.1.11) is 
seen to be satisfied by 

= y r-i 	Ax r 	Nr-1 	y r ,  = y r 	)r-1 	Nr 

Here 2 is seen to parametrise all T' with rnm=Tnm. Although 
in general, as we have stated, not all spinors are pure, in sufficiently low 
dimensions the above result can be used to show that all semi-spinors 
are pure. 

If r 	3 then all semi-spinors are pure. 	(3.1.15) 

In general we can always choose a set of pure spinors as a basis for 
the spinor space. Any semi-spinor will be a linear combination of pure 
spinors that are all even or odd. From (3.1.8) we know that if u l , u 2  are 
two such pure spinors representing T 1  and T2 then dim( T 1  n T2 ) = 
r mod 2, whereas from (3.1.9) linear combinations of u 1  and u 2  will be 
pure if dim(T i  n T,) = r or r — 2. Thus if r 3 linear combinations of 
any two even or odd pure spinors are pure and hence all semi-spinors 
are pure. 

Through (3.1.7) a pure spinor is related to the maximal isotropic 
subspace that it represents. However, given a semi-spinor this does not 
give a very practical way of determining whether or not it is pure. Given 
a spin-invariant inner product then the tensor product of a spinor with 
its adjoint can be identified with an element of the Clifford algebra. 
Necessary and sufficient conditions for a spinor to be pure can be given 
in terms of these tensors on the space of spinors (or `spinor bilinears'). 
These conditions give a practical way of determining whether any given 
spinor is pure or not, and, in the case in which it is, recovering the 
associated maximal totally isotropic subspace. 

Let ( , ) be an F-valued, symmetric or skew, product on spinors with 
`4 as adjoint involution. Let  u be the spinor adjoint to u with respect to 
this product. 

If  u 1 ,  u 2  represent T1  and T2 then T1  n T2 0 if and only 
if (u 1 , u 2) = 0. 	 (3.1.16) 

Suppose firstly that there is some x in T1  n T2. Then there is some y 
such that xy + yx = 1 and 

(u 1 , u 2) = (u 1 , (xy + yx)u 2 ) = (u1 , xyu 2 ) 

since x E T2. Since the spinor product has as adjoint involution then 
(u 1 , xyu 2) = (xu i , yu,) and this is zero if x E T1. So Ti  n T2 0 
implies that (u l , u 2) = 0. To prove the converse we let M and N be any 
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two maximal isotropic subspaces such that V = M 8 N. Then a spinor 
basis, each element of which is pure, is given by {yiz m } with I a 
multi-index. Now we have already shown that (z m , yiz m ) = 0 unless 
y 1  = ZN, and since the spinor product is non-degenerate we must have 
(z m, z Nz m ) * O. But z Nz m  is a spinor representing N which was any 
maximal totally isotropic subspace not intersecting with M. So if u 1  and 
u 2  represent T, and T2 then (u 1 , u 2 ) can only be zero if T, n T2 0. 

If iv = +(—)v then for u any spinor 97 2,._p (uti) = 
for all p. 	 (3.1.17) 

Since i 2  = 1 

W2r-p( 14173 ) = 992r-p(U6).i  Z  = p( 14173 j) =  

as the adjoint spinor is defined with respect to a product with as the 
adjoint involution. Since 	is a 2r-form 	= (-1)r i and W 2r_ p (u/3) = 
(-1)r97 p (u(2"()))'i and the result follows. If  y  = Bz m  for B c A(N) then 

= Bliz m  and (-1)r zv = 1.)'1 . So if  v  = ±v then 	2r_ p() 
= + (—)9 p (u0'i 

If  u 1 ,  u 2  represent T 1  and T2 with dim(T i  n T2 ) = h then 
52 p (u 2 ii 1 ) = 0 if p  <h  or p > 2r — h, whilst 92 h (u 2 i( i ) = 
z Ti n T2. (3.1.18) 

If s c F then  1p (su 2 s71 1 ) = 2,.(s)sY p (u 2 ii i )s -1  so without loss of general- 
ity we can assume that u 1  represents M with u 2  representing some T 
with dim(TnM) = h. In an adapted Witt basis we need to consider y hn  

yrz mim . In the proof of (3.1.16) we showed that (z m , yiz m ) = 0 
unless yl = z N . Now z m z Nz m  = ±zm  so we can always normalise the 
spinor product such that (z m , z Nz m )z m  = z m z Nz m . The definition of 
u 2 it 1  is that u 2 a 1 v -= u 2 (u 1 , y), so z A4 2- my'z m  = (z m , ylz m )z m . This is 
zero unless y' = zN  and for the normalisation just mentioned 
(z m, z Nz m )z m  = z mz Nz m . But z myiz m  = 0 unless yl = z N  and so 
(z m i m )yiz m  = z myiz m  for all multi-indices I and so z m 2 m  = zm . 
Hence y h+1  . . . yrz m 2 m  = yh+1  . yrz m . The form of lowest degree in 
y h+1 y rzm  is proportional to xl . x h , which is just the product of 
a basis for T n M. Since all pure spinors are semi-spinors it follows 
from (3.1.17) that there is no non-vanishing p-form for p > 2r — h. 

A semi-spinor u is pure if and only if ? (uû)  = 0 	V p * r. (3.1.19) 

From (3.1.18) we see that if u is pure then certainly W p (uil) = 0 
V p r, so what we need to do is to show that this condition on a 
semi-spinor is sufficient for it to be pure. Any spinor u can be written as 
U  = Bz m  where B E A(N). There is some s E r such that 
su ---- (1+ b)zm  where b E A(N) and 9'46) = O. If u is a semi-spinor 
then so is su and hence b must be an even element of A(N). Suppose 
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that 2 (b) * 0, then exp(—Y 2 (b)) E F n A(N). Now the Clifford algebra 
of N is just its exterior algebra and so 

2 [exp(—Y 2 (b))b] = 1 0[exp(—J 2 (b))]if 2 (b) + 2 [exp(—W 2 (b))192 0 (b) 

= 2(b) 

since J o (b) = O. Thus exp(—Y,(b))su = (1 + b')z m  where b' E A±(N) 
with Y 0 (6') = = 0. Suppose that the non-vanishing homogeneous 
component of b' of lowest degree is an h-form. In an appropriate basis 
we assume that 

exp(—J 2 (b))su = (1 + Ay 1 y 2  . . yh  + . .. )z m  

where the extra terms are of degree h or higher. Multiplying by yy r-1 

. y'+' will annihilate these other terms so if 

x h+1 	xry, 	exp(-922(b))su 
then 

v  = (1  + Ay  1 3,2 	y h) zm. 	 (3.1.20) 

Now we come to the point of this construction. If u is any spinor and 
S E  F then  f(sus) =)1(s)s92 (uil)s -1  andJ2 (uû) = 0 Vp * r 
<=>Jp (sus74) = 0 V p r. If a is any element of V then audit = aufia. 
By (2.1.7) and (2.1.8) autia = g(a, a)(urt)11  — 2a A i,(uit)n and 
J'p (audii) = (-1)Pg(a, a)J p (urt) — 2( —1)Pa A id& p (11/7). So if p (urt) = 
0 Vp * r then p (audit) = 0 Vp *rVaE V. Thus if the semi-spinor u 
that we started with satisfies 5' p (urt) = 0 V p r then the y we have 
constructed in (3.1.20) also satisfies these conditions. We will now show 
that this can only hold if A. = 0; that is exp(-9 2 2 (b))su = z m  and hence 
u is pure. Now y is the sum of two pure spinors and, as we have already 
noted, a pure spinor will satisfy the conditions of the theorem. So if u 
satisfies these conditions then 

ap {z m (yl 	yhz m ) + y 1 ... yhz m i m } = 0 	Vp * r. 

As we noted in the proof of (3.1.18) z m z—m  = z m  and so 

zm (y 1 	y h zm ) y l 	y hzm 2 m  = z  o h . y l y l 	y h z m.  

We now rearrange these terms, remembering that h is even: 

z my h 	y l 	y l 	y h z m  = {(x ly 1) 	(x hy h) 	(_1)h/2( y 1 x 1) 

(y hx h )) x h-r1 	x r 

Now xiyz = 4 + xi  A)"  whereas yixi = 4 — xi A y'. So if h/2 is even 
there will be a non-vanishing 0-form in { }, whereas if hI2 is odd there 
will be a non-vanishing 2-form. Thus in the first case the total expres-
sion has a non-vanishing (r — h)-form, whilst in the second the 
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(r — h + 2)-form component is non-zero. Since h > 2 then in both cases 
there is a non-vanishing p-form with p < r, so 

-= 0 Vp r 	p (vD) =0Vp±rÂ= O. 

As we have already noted this shows that u is pure. 
Eight dimensions are interesting as the lowest number of dimensions 

in which not all semi-spinors are pure. If dim FV = 8 with F = 11=1 or C 
and g is of maximal index, then from tables 2.15 and 2.17 we see that 
( , ) induces a symmetric product on the semi-spinors. Hence 
(u, e A u) = (e A u, u) = (u, e A u) and p (titi.) = 0 if  [hp] is odd. If u is a 
semi-spinor then uti = 'z'u(1/4) = 'ha-4 uIV  in eight dimensions, 
and so  uU = (uti)q. So if u is any semi-spinor then uû  = Ep=0,4,8p(")• 
The 0-forms and 8-forms are related by (3.1.17) so in eight dimensions a 
semi-spinor u is pure if and only if W o (uii) = 0, that is, (u, u) = 0. 

In this section we have taken the space of spinors to be a particular 
minimal left ideal of the Clifford algebra. This is convenient, enabling a 
basis of spinors to be constructed so as to facilitate the various algebraic 
proofs. However, it is not essential. Indeed all we really need is that the 
spinor space carry an irreducible representation of the Clifford algebra. 
Then (3.1.7) can be taken as the definition of a pure spinor, the stated 
results for pure spinors then following from this. Of course in general it 
would make no sense to talk about the behaviour of a spinor under the 
involution  ii,  but all references to 'even' and 'odd' spinors can be 
interpreted as referring to their behaviour under multiplication by 
(-1) r  . 

For a real (pseudo-) orthogonal space whose metric has maximal 
index the pure spinors of the real Clifford algebra have a direct 
geometrical interpretation. For the remaining real Clifford algebras we 
cannot apply the above theory of pure spinors directly. However, if V is 
any real even-dimensional orthogonal space we may correlate the pure 
spinors of C c(V, g) with maximal totally isotropic subspaces of Vc. In 
certain cases these maximal totally isotropic subspaces of ye can be 
interpreted in terms of structures on the real vector space V. 

Of particular physical interest is the case in which V is a four-
dimensional Lorentzian vector space (g has signature (p, q)=(3, 1)). 
Then if M is a maximal totally isotropic subspace of ye we have 
dim c M = 2. Suppose that u and  o are respectively even and odd 
semi-spinors of C c( V, g) representing T 1  and T2. Then because of 
(3.1.15) they are both pure. From (3.1.8) we see that dim c(Ti  CI T2 ) 
must be odd (for r is here even, namely two). Hence dim c(T i  n T2) = 
1. If z is the volume 4-form of V then st.  = iz. So if superscript c 
denotes the conjugate-linear charge conjugation operation (here involu-
tory) and u is even then tic is odd. The intersection of the maximal 
totally isotropic subspaces of  VC  represented by u and r.tc is one 
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dimensional, containing n say. Thus nu = nu` = O. But nu = 0 implies 
that n*uc = 0, and similarly nu` = 0 implies that nu  = O. So n* lies in 
the one-dimensional intersection of the subspaces represented by u and 
u e and n* = An for some A E C. Since complex conjugation is involu-
tory, A must satisfy AA* = 1, that is A E U(1). There is some /I E U(1) 
such that A = ii 2 , and if x =  ,in  it follows that x* = x. Thus x is a real 
null vector such that 

x(u + ue) = 0. 	 (3.1.21) 

This real null vector is determined up to multiplication by a real 
number. 

Suppose that u represents T which has a basis (x, w). Now 
x(wu e) = — wxue = 0 since xue = 0: and certainly w(wue) = 0 since 
w 2  = O. Thus wue and u both represent T. Since the space of repre-
sentative spinors for T is one dimensional there is some A E C such that 
wue = Au. We cannot have A = 0 since w does not lie in the subspace 
represented by ue. So if co =- w then 

coue = u. 	 (3.1.22) 

The charge conjugate of this is  wu  = V. So amo*u = coue = u, and 
since co E T we have (cow* + co*co)u = u, and thus 

cow* + co*co = 1. 	 (3.1.23) 

From the (complex) null 1-form co we can construct a unit 1-form a: 

a =- w + w*. 	 (3.1.24) 

We have because of (3.1.22) 

a(u + uc) = u + u c. 	 (3.1.25) 

The real unit 1-form a is determined up to the addition of an arbitrary 
multiple of the null 1-form x. So equivalently we have extracted from 
the complex semi-spinor u a real null 1-form x and a real decomposable 
2-form F 

F x A a 	 (3.1.26) 

both determined up to a real multiple. If tp u + ue then p is a 
Majorana spinor and because of (3.1.21) and (3.1.25) we can equivalent-
ly think of the real forms x and F as being determined by V. 

The theorems (3.1.18) and (3.1.19) enable the real forms x and F to 
be expressed in terms of u, ue and their adjoint spinors. There is a 
freedom to scale the spinor product ( , ) whose adjoint is by a complex 
number. In the Lorentzian case we can always choose a spinor basis 
such that charge conjugation simply conjugates the spinor components. 
Thus we can require that the spinor product satisfies 
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(u 1 , u 2)* = 	u 2 c) 	 (3.1.27) 

this leaving only a real scaling freedom. Taking a spinor product which 
satisfied (3.1.27) we turn to (3.1.18). The intersection of the subspaces 
represented by u and uc is spanned by the real 1-form x. So (3.1.18) 
tells us that W i (iutic) is a complex multiple of  x.  The factor of i is 
inserted to ensure that this 1-form is in fact real. For 

= o (iuVe a)e° = (U °, ieau)e° 
and 

57 1 (iurcc)* = —(u, ie aue)ea 

= —(ie au, tc)e° 

= (U °, ie au)e° 

= 	i(iva c ).  

(by (3.1.27)) 

(since is the adjoint) 

(since the product is skew) 

and thus 

wi(iu tic) = 
	

(3.1.28) 

where x is, of course, only determined up to a real multiple. Let fx, col 
be a basis for T, represented by u, where co is the complex 1-form 
satisfying (3.1.22). Then co is determined up to the addition of a 
multiple of x. From (3.1.18) we know that iurc is a complex multiple of 
xot, say iuit = 2exp(i0)xco for an appropriately scaled x. So if G = 
(iutt — iuciic) then G = exp(i0)xot + exp(—i0)xof and G(co + co*) = 

cos 0 x + 2i sin Ox A (0 A . This G will be nothing other than the F of 
(3.1.26) if in fact O  = O. We have 

2G(co + co*) = iu[(co + co*)u] — iu°[(co + co*)u-̀ ) = iuti° — jUCÜ  

since cou = 0 and cou` = u. But if a', )3, cp, tp are any spinors then 

(oe, (951—P)/6) = ((qt-P)c r 	= (iP,  a')(9) , 	= 	0(q, /6) 

= 	(IP -9-9)/3)- 

and so (cp) = —tpc7). Thus 2G(o) + co*) = iuti° + (iurc°) and since 
izu = u then 

(utc- c)vl = —zuficz = —zu(zuc) = —izu(izu)' = 

and so utic = V' i (ufic) + W 3 (ufic). Since 3-forms change sign under we 
have G(o) + co*) = 99 1 (iuric) = x by (3.1.28). That is, the F of (3.1.26) 
can be written as 

F = Re(iurc). 	 (3.1.29) 

From (3.1.21) and (3.1.25) we see that x and F can equivalently be 
thought of as being associated with the Majorana spinor  p  = u + u° 
We can also express x and F in terms of tp and its adjoint. Since 
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u = izu we have 

	

p(z) = 	+ iu`ric) + i(ufic + (uric)9 

	

where, since (cpv-- ) .  = 	, the first term is odd under 	whilst the 
second is even. Comparison with (3.1.28) and (3.1.29) shows that 

'4W i(lXzIP)) = 
	 (3.1.30) 

= F. 	 (3.1.31) 

If u' is related to u by 

u' = exp(i0)u 	 (3.1.32) 

then, from (3.1.28), we see that u' determines the same null direction as 
u. If u' determines the 2-form F' then 

F' = Re(cos20iuti — sin 20 ua). 
and since u = izu 

F' = Re(cos26iuit — sin2Oziva) 

= cos 20 F  — sin 20 zF 

= exp(-20z)F. 

Since zF = — * F we see that the 2-form determined by u' is related to 
that determined by u by a duality rotation. 

We have established the relationship between a complex Lorentzian 
semi-spinor and the null direction x and 2-form F by using the 
previously established results on pure spinors. This correspondence 
between Weyl spinors and 'null flags' has been emphasised by Penrose 
and Rindler [9]. 

We now consider the case of V a real even dimensional orthogonal 
space with the metric g positive-definite. A complex structure on V is a 
1-1 tensor (or linear transformation) J satisfying J2  = —1. This complex 
structure is compatible with g if 

g(a, b) = g(Ja, Jb) 	V a, b c V 	(3.1.33) 

that is, J is an isometry of V. We will show that any such J is in 
one-to-one correspondence with a maximal totally isotropic subspace of 
Vc. Hence the one-dimensional space of pure spinors of the complex-
ified Clifford algebra is in one-to-one correspondence with a complex 
structure on Vt. 

Suppose firstly that we have such a J. Then by complex linearity J 
defines a tensor on ye. Define M C ye by 

tWe thank G Segal for pointing this out to us. 
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x e M 	iff Jx = ix 	 (3.1.34) 

and y c M* iff y *  E M. Then Vc = M 0 M*. If J satisfies (3.1.33) then 

g(x I , x 2) = g(Jx 1 , Jx 2), and for x X 2  E M we have g(x 1 , x 2 ) = O. 
Hence M is a maximal totally isotropic subspace of ye. Conversely now 

suppose that we have a maximal totally isotropic subspace M. We can 
define J on elements of M by (3.1.34). Requiring Jx* = (Jx)* defines J 
unambiguously on the whole of Vc and, by restriction, on V. Such a J 
certainly satisfies J 2  = —1. For any a E VC  we can write a = a+ + a-
with a+ c M and a -  E M*. Then g(a, b) = g(a+ , b- ) + g(a-  , b+) and 
it follows that if Ja+ = ia+ and Ja-  = —ia - then J satisfies (3.1.33). 

This correspondence between pure spinors and complex structures will 
be used in Chapter 10. 

3.2 Triality 

Let V be an F-linear space with an F-bilinear symmetric metric g. If S 
is the space of spinors of C(V, g) then we may define a spin-invariant 

product on S. In certain cases (for F = IR  or C) there is an F-bilinear 
symmetric product on S, h say. We can then ask 'when is 

C(V, g) =. C(S, h)?'. These algebras will be isomorphic when dim FV = 
dim FS and the index of g is the same as that of h. If S = S+ S - , 
with S+ and S -  semi-spinor spaces carrying inequivalent irreducible 
representations of C +(V, g), with h inducing a product on the semi-
spinor spaces, then we can also ask the question 'when is 
C(V, g) --- C(S+ , h) = C(S -  , h)?'. Again this will be when dim FV = 
dim FS± with the index of g the same as that of the metric induced by h 
on S.  We now examine the possibility of this latter situation occurring. 
If dim FV = n then n must be even if C +(V, g) is to be reducible with S 
splitting into semi-spinor spaces. Then dim FS = 2 n/2  and for  dim  FS to 
be equal to dim FV we need 2 n/2  = 2n, which requires n = 8. If F = C 
then we see from table 2.17 that the situation we are looking for does 
occur in eight dimensions, with h being the spin-invariant spinor metric 

associated with the involution For F =  F the situation depends on the 
signature of g. For given p and q the third entry in table 2.15 classifies 

the spin-invariant product associated with h say, on the irreducible 

representation spaces of the even subalgebra. If this entry is 1 CI 1 then 
the even subalgebra has two semi-spinor representations, with an 
JR-bilinear symmetric product on each. Such entries occur for 

(p, q) = (8, 0), (0, 8) or (4, 4). From (2.6.23) we see that in all these 
cases the index of h is the same as that of g. Actually a little care is 
needed in reaching this conclusion for the case of C4.4(E)• We know 
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that h on S has maximal index, but we could have h inducing a 
positive-definite product on S+ and a negative-definite one on  S.  
However, if x E V with x 2  = 1, then for y E S -  there is a u E S+ such 
that y = xu. Then h(v, y) = h(xu, xu) = h(u, x 2 u), since the adjoint 
involution of h is and the indices of the metrics induced by h on S+ 
and S -  are the same. In the following V will either be a complex 
eight-dimensional vector space or a real eight-dimensional vector space 
with g having signature (8, 0), (0, 8) or (4, 4). 

By taking the direct sum of the vector spaces V and S we form a 
24-dimensional vector space E: 

E = V ® S+ (i) S - . 	 (3.2.1) 

If elements 0, of E are decomposed into these subspaces as 
4),=  x • 	+ y, then a bilinear form B is defined on E by 

B(0 1 , 0 2) = g(x 1 , x 2 ) + h(ul , u 2) + h(v i , y 2 ) . 	(3.2.2) 

(We shall frequently decompose an element 0 as above, the symbols x, 
u and y being reserved for the components of 0 in the subspaces V, 5+ 
and S - .) 

We can introduce a totally symmetric (3, 0) tensor T on E in terms of 
the inner product h. We define 

T(0 1 , 4) 2 , (1) 3 ) 	h(u i , x 2 u 3 ) + h(u l , x 3 y2) + h(u 2 , x 1 v 3 ) 

+ h(u 2 , x 3 y 1 ) + h(u 3 , x i v,) + h(u 3 , x 2 y 1 ). 	(3.2.3) 

Each term on the right-hand side is linear in each 0„ thus T is indeed 
multilinear. By construction T is totally symmetric. We can use the 
bilinear B and trilinear T to define a bilinear map 0: 

0:ExE-->E 	such that T(0 1 , 0 2 , 0 3 ) = B(0 1  o02 , 0 3) .(3.2.4) 

The non-degeneracy of B ensures that . is indeed well defined. Its 
bilinearity follows from the trilinearity of T. Since T is totally symmetric 
0, . 4) 2  = . If 0 1  and 0 2  are both in the same subspace, either 
V, S+ or S - , then T(0 1 , 0 2 , 43 3) = 0 from (3.2.3) and hence 

. 0 2  = 0. For x E V, u  E S+ and V E S -  we have 

B(x  o  u, v) = T(x, u, v) = h(u, xv) = h(xu, v) = B(xu, v) 

and so 

similarly 
x  o  u = xu 	 (3.2.5) 

x  o y = xu. 	 (3.2.6) 
If i  is the adjoint of u with respect to h then 

B(u  o v, x) = T(u, v, x) = h(xu, v) = iiv 

= o(fixv) = 0 (xvit) = 0 (xW i (v -a)) = B(x,W 



TRIALITY 

SO 

u  o  y = 

The product o  is not associative, for example we have 

x  o  (x  o  u) = x  o  xu = x 2 u = g(x, x)u 
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(3.2.7) 

(3.2.8) 

whereas x x = O. The norm of the spinor x  o  u is related to the norms 
of x and u by 

h(x 1 . u, x 2 . u) --= g(x 1 , x 2)h(u, u). 	 (3.2.9) 

This follows from (3.2.5), (3.2.6) and the fact that the adjoint of h is 
The 24-dimensional vector space E forms a non-associative algebra .54 
under the  o  product. 

The spinor representation of the Clifford group, p on S± , and the 
vector representation x on V naturally induce a reducible representation 
Y on E by 

Y(s).(x + u + y) 	x(s).x + p(s).0 + p(s).v. 	(3.2.10) 

Whereas g in invariant under x(s) Vs E F, h is only invariant under p(s) 
for s E + F and so 

B(c1:0 1 , <13 2 ,) = B(Y(s).(13 1 , Y(s).(13 2 ) 	Vs E  F. 	(3.2.11) 

It readily follows that in addition 

	

T(0 1 , 02, 03) = T(Y(S).01, Y(S).02, Y(S).03) 	Ys E j. (3.2.12) 

From these last two relations we can infer from (3.2.4) that 

	

Y(s).(0 1  0 43 2 ) = (Y(s).(121 1 )  o  (Y(s).(13 2 ) 	Vs E + F (3.2.13) 

that is, Y(s) is in the automorphism group of the non-associative algebra 
,91. Conversely it follows that if a is any automorphism of .94. that 
transforms V and S into themselves then a = Y(s) for some s E + F. 
(The starting point of the argument is that for VE S then a.lp = sip for 
some regular element s of the Clifford algebra.) 

The orthogonal space V under consideration has been carefully 
selected to ensure that V, S+ and S -  are all isometric. The existence of 
an isometry that cyclicly permutes these three orthogonal spaces can be 
taken as being Cartan's 'principle of triality'. Such an isometric map will 
be constructed out of a mapping that interchanges two of these three 
Spaces. Let u 0  E S I-  be some unit-norm semi-spinor, h(u 0 , u 0) = 1. Then 
a linear transformation r(u 0) from V to S -  is defined by 

TO 0) . X = X 0 u 0 . 	 (3.2.14) 

It immediately follows from (3.2.9) that r(u 0 ) is in fact an orthogonal 
transformation from V to S.  The linear transformation r(u 0) is 
uniquely extended to an automorphism of period two on V '0 S - : that 
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is, if v  e S -  such that v = r(u 0 ).x for some unique x then we define 
r(u o).v = x. Finally we define r(u 0 ) on S+ by 

	

r(u 0).0 = 2h(u, uo)u o  — u. 	 (3.2.15) 

That is,  r(u 0) acts on S+ by sending u to minus its reflection in the 
plane orthogonal to u 0 . Thus r(u 0 ) is an orthogonal transformation of 
S+ , and hence of E. In addition, r(u 0 ) leaves T invariant. Note first 
that since the image under  r(u 0 ) of any of the three subspaces, V, S+ or 
S - , lies in only one subspace we need only consider T acting on 
elements lying in distinct subspaces. If  u  = r(u 0).a for some a then 

r(u0).vr(u 0).x = axu o  = 2g(a, x)uo  — xau o  

= 2h(t(u0).a, r(u0).x)u 0  — xv 

since r(u o ) is an isometry from V to S -  and so 

r(u 0).vr(u 0).x = 2h(v, xu o)u o  — xv = 2h(xv, u 0 )u 0  — xv = (r(u 0).x)v. 

Since 

T(r(u 0 ).43 1 , r(u 0).10 2 , r(u 0 ).(13 3 ) = T(r(u 0).0 1 , r(u 0).v 2 , r(u 0).x 3 ) + . . . 

it follows from (3.2.3) that 

T(r(u 0).11 1 , r(u 0 ).43 2 , r(u 0).0 3) = T(4:13 1 , 0 2 , (D3). 	(3.2.16) 

Whereas r(u 0) is an orthogonal transformation of E that inter-
changes V and S - , Y(s) is an orthogonal transformation of E that 
interchanges S± and S - . If x o  c V is a unit vector, g(x o , x o) = 1, then 
X0 E + 1-' and Y(x 0 ) is of period two, Y(x 0 ) 2  = 1. Out of these two 
involutory transformations of E we construct an orthogonal transforma-
tion of period three. The triality map F.(x 0 , tt o ) is defined by 

al(x 0 , /4 0 ) 	Y(x o)r(u o). 	 (3.2.17) 

To see that 2-7 (x 0 , u 0 ) is of period three we want to show that 

r(u 0 )Y(x 0 ) -r(u 0 ) = Y(x o)r(u o)Y(x 0 ). 	(3.2.18) 

For example, if x c V then 

T(14 0)Y (X 0)T(Ii 0) . X = 	I 0)Y (X 0) .(Xl 0) = 	4 0) .(x0XU 0) 

= 2h(X 0X14 0, 14 0)14 0 - X °nip 

= 2h(x  o  u o , x o . u o )u o  — x oxu o  

	

= 2g(x, x o)u o  — x oxu o 	(by (3.2.9)) 

= XX0/40. 

On the other hand 
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Y(x 0)r(u 0 )Y(x 0).x = Y(x 0 )/(14 0 ). (x oxx 0 ) = Y(x 0 ). (x oxx o u 0) = xx o u 0 . 

The validity of (3.2.18) can be similarly demonstrated on elements from 
the other two subspaces. Given (3.2.18) we have 

E(x 0 , /03  = (Y(x o)r(u o)Y(x 0))(r(u o)Y(x 0)r(u 0)) = (Y(x o)r(u 0)Y(x 0)) 2  

and since both  Y(x 0) and r(u 0 ) are of period two 

2.".(x 0 , u 0 ) 3  = 1. 	 (3.2.19) 

Because Y(x 0 ) and  r(u 0 ) both have these properties separately we have 

B(43 1 , 43 2 ) = B(E(x o , u 0 ).(13 1 , E(x 0 , u o).43 2 ) 	(3.2.20) 
and 

T(43 1 ,4313 2 , 03) = T(E(X0, U0).43 1, 72(.1CO 3  L10).43 2, E* ()CO 3  /10). (13 3). (3.2.21) 

The three subspaces of E are permuted under E(x 0 , u o ) as follows: 

E(x o , u o ). V C S' 	u o).S+ C S' 	E(x 0 , u 0).S -  C V. (3.2.22) 

We have focused on a V such that C(V, g) = C(S+ , h) = 	, h). 
The map E(x o , u o ) isometrically permutes these three spaces. Any 
isometry between two orthogonal spaces uniquely extends to an iso-
morphism between their Clifford algebras. Let N be the isomorphism 
obtained from E(x 0 , u 0 ): 

N:C(V, g) 	C(S+ , h) 1---> C(S-  , h) 	C(V, g). (3.2.23) 

Because S+ 0 .5--  is the spinor space of C(V, g) the map N enables any 
two of the three spaces V, S± and S -  to be taken as the spinor space of 
the Clifford algebra of the third! For example, S -  0 V can be taken as 
the spinor space of C(S+, h). Let o denote the Clifford product of 
C(S+, h). Then for x E V and tpE S 

N(xip) = N(x) o N(ip). 

That is, if u E S+ and ty E S' S -  0 V then 

u 	= N((N -1 u)(N -1 1p)). 	 (3.2.24) 

Under this multiplication by u the spaces S -  and V are interchanged; 
these being the semi-spinor spaces of C ±(S± , h). 

Exercise 3.1 
Show that if V is a complex vector space then C(V, g) = C(S, h) if 
dim e  V = 2, 4. In the real case what signatures can g have? (Remember 
that the spinor inner product could be associated with either or ri.) 
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4 

Manifolds 

Like many concepts in mathematics that of a manifold is based on 
intuitive ideas which require some sophistication to make precise. 
Perhaps the simplest example of a manifold is Euclidean three-space. Of 
necessity at this stage we must refrain from defining Euclidean space, 
but shall nevertheless assume that the reader has some intuitive ideas 
about this model description of our perceived three-dimensional world. 
(The term Euclidean space is not synonymous with Euclidean vector 
space. A Euclidean vector space is a real vector space with a positive-
definite symmetric metric.) At an early age we all learnt how a 
Cartesian coordinate system can be introduced to put points in Eucli-
dean space into correspondence with an ordered triple of real numbers, 
an element of 11:1 3 . However, it is important that we distinguish Eucli-
dean three space from 1R 3 . Euclidean space has no preferred coordinate 
system. Indeed we need not of course even be restricted to Cartesian 
coordinates. Despite our emphasis on the distinction between Euclidean 
three-space and 11V it is nonetheless in 111 3  that the familiar calculus of 
differentiation and integration is introduced. Through the introduction 
of a coordinate system one may then apply this calculus to Euclidean 
space. It is the correspondence of Euclidean space to 1R", through the 
introduction of a coordinate system, that generalises to provide the 
definition of a manifold. This is defined, in a sense that will be made 
precise, to be locally like Fin. Because we can define differentiation and 
integration on E" we can extend these notions to a manifold. 

Unlike Euclidean space, for an arbitrary manifold we cannot choose 
some origin to put all points on the manifold into a unique correspond-
ence with points in Fin. For example, we could take the two-dimensional 
outer surface of a hollow rubber ball. Whilst any cap of the ball could 
be put into one-to-one correspondence with points in a plane (by cutting 
the section out and flattening it), we cannot do this with the whole 
surface. (If we simply squashed the ball then two points on the surface 
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would be mapped to the same point on the plane.) The fact that the 
surface is locally like IF1 2  is sufficient to establish a differential calculus 
on the surface. This does not require a knowledge of embedding in 
three-space. 

The intuitive examples of the Euclidean plane and the two-sphere 
convey ideas of more structure than that of an arbitrary manifold. 
Although locally any manifold resembles, in some sense, En this does 
not imply the existence of any metric or distance function on the 
manifold. Rather the resemblance relates to topology, this being an 
abstraction of the concept of 'nearness' from that given by distance. 

We start by defining a topological space. By making precise the idea 
of being 'locally like En' we arrive at the definition of a topological 
manifold. After reviewing differentiation on IFIn we show how a system 
of coordinates on a topological manifold enables differentiation to be 
defined, giving a differentiable manifold. From its introduction in En 
the concept of a tangent vector will undergo a metamorphosis, the 
imago emerging in a form appropriate to the environment of an 
arbitrary differentiable manifold. This leads naturally to vector fields, 
and hence tensor fields. After introducing the computationally powerful 
exterior and Lie derivatives we define integration on manifolds. Similar 
to the case of differentiation, the definition reduces integration on 
manifolds to integration on En. Only at the end of the chapter do we 
consider metric tensor fields. We are then equipped to apply our heavy 
artillery to the example of Euclidean three-space. This is done in 
Appendix B. Actually there is still an important facet of Euclidean 
space that will not be discussed until the following chapter, that of 
parallelism. 

4.1 Topological Manifolds 

The usual definition of continuity of a function f :  U —> W where U and 
W are subsets of IR relies on the notion of 'nearness' of different 
elements of E. Such 'nearness' is measured by a proximity function 
d : IR x E —> E with the properties: d(x, y) = d(y, x), d(x, y) = 0 if 
and only if x = y, d(x, z) d(x, y) + d(y, z). (Note x, y E R.) A 
natural proximity function for the real line that has these properties is 
the absolute value or modulus map, (x, y) —> — yJ and f is said to be 
continuous at x E 1E1 if one can find a positive c5E E for any positive E 
belonging to E such that if d(x, y) < 6 then d(f(x), f(y)) < E. Thus one 
probes the neighbourhood of the image of f induced by a neighbour-
hood about x in the domain of f. The first generalisation of this idea to 
arbitrary sets consists of defining a new set called the neighbourhood 
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nbh(x, 6) C S if x E S. This is the set of elements y E S such that 
d(x, y) < 6, that is a set of all points that are within a 'distance' 6 from 
x as measured by some proximity function d. One often refers to d as a 
distance or metric function, although since we do not assume here that 
the set has any vector space structure it is logically distinct from the 
metric g defined earlier on vector spaces. Indeed what we have called a 
metric on a vector space would not in general define a distance function 
for a metric space. Here there is no requirement that d should be linear 
in either of its arguments. With this caveat in mind one refers to the 
pair (S, d) as a metric space. The defining properties of the proximity 
function d of course remind one of the properties of distances between 
points in Euclidean space (for example, the triangle inequality) and 
indeed it is worth noting that if IR" is given a vector space structure one 
can choose d(x, y) = [g(x — y, x — A ] 112 provided g is the positive-
definite Euclidean metric. If one does use the Euclidean metric to 
define d then the set nbh(x, 6) in Euclidean IR" looks like an open ball 
(open because of the inequality d(x, y) < 6, V y enbh(x, 6). The 
triangle inequality property of d ensures that all points y E nbh(x, 6) 
have some neighbourhoods that are contained in nbh(x, 6). In general 
the proximity function on JR" need not coincide with the metric on 1R'2  
regarded as a vector space. 

A boundary element x of a set S' contained in the set S with distance 
function d is an element such that nbh(x, 6), for some positive 6E TR, 
contains both elements in S' and elements not in S'. The set of all 
boundary points of S' is called the boundary of S'. In particular if 
S' = nbh(x, 60) C S then S' does not contain its boundary and is called 
an open set in (S, d). If any boundary points are not in the set then it is 
an open set. If all boundary points are in the set it is closed. 

In general it is possible to find different distance functions that 
determine the same class of continuous functions. A valuable genera-
lisation then is to concentrate on the open sets themselves as the 
primitive notions and reformulate 'nearness' directly in terms of them 
rather than in terms of any particular proximity function. The immediate 
usefulness of open sets is a reformulation of the definition of a 
continuous function f:  U —* W. f is continuous at p E U if and only if, 
for any neighbourhood W' containing f(p) there is a neighbourhood U' 
containing p whose image f(U')CW'. Such a notion of continuity relies 
on the open set structure of the spaces related by f and not on a 
particular choice of proximity function used in specifying these open 
sets. Consequently one attempts to bypass any mention of a proximity 
function and establish a more general definition of open sets on any 
space. The declaration of which subsets of a space are to be considered 
as open is called a definition of its topology provided such a family of 
subsets satisfy the following axioms. 
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(i) The whole space and the empty set belong to the family. 
(ii) The intersection of any finite number from the family belong to 

the family. 
(iii) The union of any number of sets from the family belong to the 

family. 

With these definitions we now refer to any open set containing a point p 
in a topological space as a neighbourhood Nbh(p) and the definition of 
continuity of a function between topological spaces is now independent 
of any choice of proximity function; it has been replaced by the choice 
of open sets. The definition of boundary points of a set and the 
boundary generalises simply to arbitrary topologies by replacing 
nbh(p, 6) by Nbh(p). A space with a topology defined on it is called a 
topological space. If a map between topological spaces is continuous 
with a continuous inverse then it is called a homeomorphism. 

One further property defines the topology as being Hausdorff: 

(iv) Disjoint neighbourhoods can be defined about distinct elements 
of the space. 

That is, one may find open sets whose intersection is the empty set. 
If a space has a proximity function d then we may if we wish define 

Nbh(p) = nbh(p, o) and the space is said to have a metric topology 
(which is always Hausdorff). One of the commonest metric topologies is 
associated with E n  and d(x, y) = Ix — y x, y E  E'. With the above 
d(x, y) on lR the open sets may be visualised as all possible open 
hypercubes in En. 

It is useful to have such examples of a natural metric topology in IFIn 
since they can be used to induce topologies on subsets of IR n  . The 
induced topology on a subset 3 of a topological space S is the collection 
of all sets formed by the intersection of 3 with all open sets of S. These 
are then declared to be open in 3 (they need not be open in S) and g is 
called a topological subspace of S. Subsets of Euclidean IFI 3  provide 
some of the simplest visualisable models of topological spaces. Thus the 
sphere S 2  is the subset of F1 3  defined by 1x1 = 1, x E 11 3  with a topology 
induced from the metric topology of IR 3 . It is topologically equivalent 
(homeomorphic) to the ellipsoid (a2x2 b2y2 c2z2 = 1, a, b, c EIR) 

with the topology induced from that of 11:1 3 ; that is one can establish a 
homeomorphism between them. Neither is homeomorphic to the 2- 
torus, S 1  x 5 1 •  However all these examples (and indeed any two-
surface) have points with neighbourhoods homeomorphic to the open 
disc {x1 1x1 < 1, x E IF1 2 ). Such spaces are said to be locally homeomor-
phic. The fact that they need not be homeomorphic is sometimes 
phrased by saying that they have different global topologies. 

If one exploits the vector space structure of 11 3  one can project any 
sufficiently small region of a two-surface onto a suitable two-plane in 1113 
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to obtain a neighbourhood in IR2  and a bijective map with a continuous 
inverse. This suggests the definition of an n-dimensional topological 
manifold. An n-dimensional topological manifold is a Hausdorf topolo-
gical space, with a countable basis for its topology, that is locally 
homeomorphic to an open set of IFIn. A collection of open sets is a basis 
for a topology if every neighbourhood can be expressed as the union of 
members in the basis. 

The elements of a topological manifold are often referred to as points. 
It is clear from the examples above that one cannot in general find a 
homeomorphism from the whole topological space to an open set of 
The above definition of a topological manifold is sufficiently general that 
not all topological two-manifolds are subsets of 11 3 . 

4.2 Derivatives of Functions 11 	Fi n 

Our discussion of continuity culminated in the definition of a topological 
manifold as being locally homeomorphic to Fin. This local correspond-
ence with can be used to establish a criterion for differentiability of 
maps on manifolds. We first briefly review the differentiation of 
vector-valued functions on Elm. 

If f is a function from Flm to E n  then the derivative of f at p E Rim in 
the direction of V E IRm is given by 

Dvf(p) iim  (AP ± 1110 — AP)) 	(4.2.1) 
h—■ 0 k 	h 

where h E IR. (Other commonly used notations for D vf(p) are df(p)V, 
dfp (V) and f' p  V.) Whereas the discussion of the continuity of f only 
involved the topology of lim and E n , the right-hand side of this 
equation manifestly uses the vector space structure of these spaces. If all 
the directional derivatives of f exist at p then f is said to be differen-
tiable at p. In this case Df(p) is a linear transformation from IR'n to 
Df(p) : V  F D vf(p), determining the linear part of an approximation 
to f in the vicinity of p. The function f sends the point p to f(p): if the 
point p starts to move in the direction of V then f(p) will correspon-
dingly start to move in the direction D vf(p) (refer to figure 4.1). 

Intuitively we think of the derivative of f as sending an 'arrow' in 
with its tail at p and tip at p + V, to an 'arrow' in R", with f(p) as tail 
and f(p) + D vf(p) as tip. We may formalise this by defining the 
tangent space to 	at p, Tp tim, to be the set of pairs (p, V) for all 
V E IFI'n. These pairs (tangent vectors) form a vector space, isomorphic 
to En', with the rule 
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4p, V) + p(p, U) = (p,  AV  + pU) 	A,  p E IR. 	(4.2.2) 

We may now define the derivative of f at p, or tangent map, f*p : 

f: 	 Tf(p)Fin 

(P, V) 1— * (AP), D vf(P))- 
	 (4.2.3) 

Since Df(p) is a linear transformation on Tr it follows that f" is a 
linear map on Tp 1F1m. The tangent space of at p is just a subspace of 
the direct sum of  lBtm  with itself, and so there is a natural way of adding 
tangent vectors lying in different tangent spaces. This feature will not 
carry over to the following section where we generalise to the concept of 
a tangent space to a manifold. Since in general the manifold itself will 
have no vector space structure, there will be no natural way of adding 
vectors from tangent spaces associated with different points on the 
manifold. 

Figure 4.1 The tangent map of f:IFim —> R^. 

If { e,} and { e'i } are the natural bases for  Rtm  and  lRz  then the 
component functions of f, fi : 	i = 1, . . n, are given by 

	

AP) = Eff(p)e;. 	 (4.2.4) 
1=1 

The directional derivatives of these component functions along the basis 
vectors for Fim are called the partial derivatives, and a special notation 
is customary: 

Deft(p) = (afilaxl)(p). 	 (4.2.5) 

For any V E 
m n 

D vf(p) = E D (p)e, = E E viD,f , (p)e; 
,=, 	 =1 

by the linearity of Df(p). Thus the matrix of the linear transformation 
Df(p) is formed by the partial derivatives. The n x m matrix 
Raf/3x0(p)], with i labelling the rows, is called the Jacobian and we 
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have 
m n 

D vf(p) = E E [(V lax0(p)11 71  e:. 	 (4.2.6) 
J =1 	1 

The partial derivatives may be regarded as real functions of the point 
p and hence higher partial derivatives may be formed. A map between 
subsets of Em and En for which all partial derivatives up to order k 
exist and are continuous is said to be a Ck  map. A homeomorphism that 
is a Ck map with a Ck inverse is called a Ck diffeomorphism. We shall 
be primarily concerned with C maps, which will be called smooth. 

Example 4.1 
Let f : R2 	R3 ,p 	(x  1 , x 2) H4  fip = ((x 1)2 , x l x 2 + 1 , x 2 )  Taking 
V = (y 1 , v 2 ) in (4.2.1) gives 

D vf(p) = (2v1x1,  x 1 y2 x2v1, v 2 ) = 
2x 1  x 2  O ) 
0 x 1  1 

where the entries in the matrix are recognised as the partial derivatives 
of the function f. 

4.3 Differentiable Manifolds 

With the notion of smooth maps between Rm and 	established we 
proceed now to define a differentiable manifold. A topological manifold 
is locally homeomorphic to IR". By setting up a system of charts that 
map neighbourhoods of the manifold onto neighbourhoods of En  we can 
use the differential structure on En to define the differential structure 
on topological manifolds. 

In order to motivate the definition of a differentiable manifold let us 
first discuss the problem of coordinating a patch of a topological 
manifold by returning to the example of S2  as a subset of W. Suppose 
this subset is constructed from thin perspex and the boundary of a 
region is marked out by painting a closed curve on the perspex surface. 
Furthermore paint a fishnet of curves within and on this boundary so 
that distinct curves in the net intersect only once and each intersects the 
boundary image once also. Imagine a light is shone through this net of 
curves and examine the image shadow on any two-plane placed conve-
niently to collect the shadow. If each intersection in the net of painted 
curves casts a unique shadow on the two-plane then the neighbourhood 
chosen on the sphere yields a proper coordinate patch with respect to 
the projection scheme. Each intersection can be uniquely labelled by 
labelling all the curvilinear line shadows uniquely. If a lens of suitable 
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material is placed between the image and perspex patch one can even 
arrange that the shadow lines appear orthogonal with respect to the 
induced Euclidean metric on the two-plane. Such a projection system 
establishes a homeomorphism from the open set U of S 2  containing the 
net onto the open set of  1H 2  formed by the shadow. To each point p c U 
we assign two real coordinates  p(p) = (cpl(p), cp2 (p)) E F1 2 . The set of 
images labelled cpi(p) = constant (j = 1, 2) are sometimes called coor-
dinate lines (or planes in general). There are many ways of establishing 
such an optical arrangement and equally many ways of painting lines on 
5 2 yielding alternative coordinate systems. Thus there is no unique way 
of assigning coordinate labels to points in U. We choose a projection 
system such that cp is a homeomorphism for then and only then will a 
sequence of points in the topological manifold with a limiting point (in 
the manifold topology) map into a sequence of coordinates with a 
corresponding limit. 

To completely coordinate a topological manifold we shall in general 
need several overlapping patches, as the example of a sphere shows. We 
are then prompted to examine the relations between the different 
coordinates assigned to points in the region of overlap. 

Returning to the general case of an n-dimensional topological man-
ifold M we recall that by definition each point of M has a neighbour-
hood U, homeomorphic to an open set of E n . If we label one such 
homeomorphism cp a  : (la —) cp a (Ua ) then the pair (U (p a ) is called a 
coordinate chart for V a  (with the chart domain  Va ). The image T a (p) 
for pEU, assigns to the point p the n real coordinates (cp la (p), cp 2a(p), 
. 

 
• 	cpna(p)). For each chart labelled by a the real-valued function 

:  Va 	IR, (j = 1, . . 	n) is called the jth coordinate function and is 
projected from Pa  by the j-projection map 7Ti 

IR" 	IR, Ta(P) 	° Ta(P) —= Va(P) 	(4 . 3 . 1 ) 

for all p E Va . When we work in a prescribed chart we often drop the 
chart label 'a' on V, and a common notation for the set of n numbers 
{OP)} is {x 1 (P)}. 

One of the most important hurdles to overcome when first working 
with general coordinates is to resist the instinct to infer any metric or 
distance properties of the manifold from the use of the symbol x]. 
Whereas the coordinates {xl(p)} of p are elements of En, regarded as a 
Euclidean vector space, the metric on IR" need not define any metric or 
distance function on the manifold. For example, x and x 2  could be the 
'usual' polar coordinates 0, yo for a neighbourhood of the two-sphere. 
Although the Euclidean metric is used on (0(p), p(p))  to differentiate 
functions on the sphere this is not necessarily related to any metric on 
the sphere, certainly not to the standard metric. 

A collection of charts (U a , cp a ) a = 1, 2, .. . becomes an atlas for M 
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provided the union of all the Ua  is M itself. Two charts  (Un ,  cp a) and 
(U b , cpb) such that ua  n rib * Ø give rise to a homeomorphism between 
neighbourhoods of IFin. If  U ,, n Ub =•- Uab then we define (see 
figure 4.2) 

h ab  = (Pb ° 	92 .(Uab) 	Pb( 1 b). 
	 (4.3.2) 

Figure 4.2 The chart maps for Ua  n Ub C M. 

Then Tb(P) = kb° Ta(P) expresses the n coordinates  q(p) of p in 
the `1,' chart in terms of n continuous functions leab  of the coordinates 
cpia (p) of p in the 'a' chart, that is a coordinate transformation expresses 
the coordinates of p in one chart in terms of the coordinates of the 
same point in another overlapping chart. If as is often done we write 

cpta(p) and y' = cp'b (p) then x' = h (y 1 , y 2 , • ., yn) i = 1, .. n. 
Similarly h;b1  is a homeomorphism from cp b (Uab ) to (p a(Uab ) and gives 
the inverse mapping between the coordinates. The maps [had between 
all overlapping members of the atlas are called the chart transform-
ations. If all these maps are differentiable the atlas is said to be 
differentiable. It is this new property that turns a topological manifold 
into a differentiable one. Since h aa  is the identity map and 

° hab = h a, then 11 ,1  = hba  and so the inverse chart transformations 
are differentiable; hence they are diffeomorphisms on 1FIn. New charts 
(U, cp) can be added to the atlas [(U,„ cpa )] provided cp° cp a-I  and 
T.° 40 - ' are differentiable for all a, in which case (U, cp) is compatible 
with the atlas. If every member of one atlas is compatible with every 
member of another atlas then the two atlases are compatible. A 
differentiable structure on a topological manifold is specified by giving a 
differentiable atlas from the class of all compatible differentiable atlases 
for M. If a topological manifold can be provided with two differentiable 
atlases that are incompatible then the topological manifold is said to 
admit two different differentiable structures. An n-dimensional C' 
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manifold (or smooth manifold) is defined as an n-dimensional topologic-
al manifold together with a C differentiable structure. 

As an example of how the topological space  JR (the real line) can be 
assigned different C' structures consider the atlas with single chart 
(IR, cp) with cp:E R , x —> x. Consider another atlas for IR with chart 
(IR, )3) where )6 :1:11—>111, x —> x 3 . Then (po /3')(x) = x 113  which is not 
differentiable at x =  O. Hence OR, (p) and (IR, 13) are not compatible and 
each atlas defines a different C' structure on the same underlying 
topological manifold. In what follows we shall always assume that our 
manifolds have been given a particular differentiable structure. 

If the manifold admits a covering by charts such that each h ab  is 
orientation preserving (that is the determinant of the Jacobian of the 
map (kb ), is everywhere of the same sign for all a, b) then the 
manifold is said to admit an orientation. Every oriented differential 
manifold admits two orientations corresponding to the two signs of the 
Jacobian determinant. The ribbon with one twist (Möbius band) is an 
example of a two-dimensional differential manifold that is non-
orientable. If it is regarded as being a subset of Euclidean three-
dimensional space one notices that it is not possible to assign unambi-
guously a smooth field of everywhere normal unit vectors to such a 
surface. 

Having used the differentiability of functions on  1R to establish the 
notion of a smooth manifold we can now similarly define differentiable 
maps between smooth manifolds. A map f from a smooth manifold M 1  
to a smooth manifold M2 is said to be differentiable at pc M i  if, for 
some charts (U 1 , cp i ) for M, and (U 2 , cp 2 ) for M2, the map cp 2  of o cpi-1  

is differentiable at cp,(p). Since a change of chart is a differentiable 
operation the differentiability of f does not depend on the chart used to 
represent it. A homeomorphism between smooth manifolds is a diffeo-
morphism if both it and its inverse are differentiable. A map f such that 

P2 = .4/ 31) 	p2 E M2, p E MI 

may be represented in local coordinates by writing 

(P2(P2) = 99 2 ° 	i) = cP2 o f  0 TT' ° (pl(pi) = f21 ° (PI(P1) 

where 

f21 -  Ç2 of  ° §o l • 

If we write  x(p2) - cp;(p 2 )= 77- J(cp2 (p 2 )) i =1, 	n, for the coordin- 
ates of p z  in (U2, go2) and yl(p 	q(p 1 ) = T*Pi(P1))  j  = 1 , • • • , m ,  
for the coordinates of p in (U1, TO, then 

"(P2)  = 	 y 2 (pi), • • •, ym(p 	 (4.3.3) 

If we take M, to be R and write M I  = M then f is usually called 
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simply a function on M. If f is defined on an open set W of M 
f: W-+  Fi, then in a local chart (U, cp) it defines a function 

fq,: cp(U n 	E 	 (4.3.4) 

by the rule f cp =  fo  q) -1 , that is 

f(P) = (fT ° cP)(P) 

= MOP), 492 (P), • • ce(p)) 	Vp E W. 

We define cp* by the rule 

(40*.f(p) = f,. (P. 	 (4.3.5) 

Writing f =f,  o  q  = cp*fT , the map f 	said to be pulled back from 
cp(U n 	to u n  W.  

This notion generalises to any diffeomorphism lp between the mani-
folds M and N. For f :  N IR we define 

	

lef M 	 P 	( 1P*f)(P) = f0P(P)) 

and say that the real-valued function f on N has been pulled back to the 
real-valued function tef on M (see figure 4.3). It follows immediately 
that under a composition of diffeomorphisms: 

(cP ° 1P) *  = 1,0*  ° T* . 	 (4.3.7) 

Figure 4.3 The pull-back map. 

Suppose f is a smooth map from a manifold M to a manifold N. If 
dim(f* (Tp M)) = r then f is said to have rank r at p E M. The tangent 
map  f i ,,  is said to be injective at p if r = dim M (dim M dim N). If 
r = dim N then f„ is said to be surjective. The mapping f for which f" 
is injective for all p E M is called an immersion and M is an immersed 
submanifold of N. When the immersion f is injective it is referred to as 
an imbedding and M is an (imbedded) submanifold of N. Unless 
specified otherwise by submanifold we shall mean an imbedded subman-
ifold. In this case coordinate systems for N exist around f(p) endowing 

(4.3.6) 
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f(M) with a smooth manifold structure. 

	

As an example consider the map f: 	IR 2  where the image point 
traverses the figure 0 once without stopping. Then f is an injective 
immersion since both f and  f  are injective, and AS') is a one-
dimensional imbedded submanifold of R 2 . If the map uniformly 
traverses the image set more than once it becomes an immersion, with f 
no longer injective. Similarly if the image f(SI) is the figure 8 traversed 
uniformly once the map is an immersion, since although again f  is 
injective f is not. The map f:  [-1, 1] ---> E, x I--> x 3 , is neither an 
immersion nor an imbedding since although f is injective the map 
fails to be injective at x = O. 

4.4 Parametrised Curves 

Having defined real-valued functions on a manifold we now examine the 
generalisation of the directional derivative. We cannot simply apply the 
definition (4.2.1) since there is no vector space structure to enable 
points on a manifold to be added. By suitably defining curves on a 
manifold we can define differentiation of functions in the direction of a 
curve. Just as differentiation of maps between manifolds is defined by 
using the chart maps the derivative of a function along a curve will be 
defined by using a parametrisation of the curve; the derivative being 
defined for a real function of a real variable. 

A parametrised curve C on a manifold M is a map from an open 
interval I C E to M. If p is any point on the image of C and (U, cp) is a 
chart for the neighbourhood of p then C may be specified in this 
neighbourhood by n real-valued functions 

	

7'cp[C(t)] —= cp'  o  C(t) 	t e I. 	 (4.4.1) 

Thus denoting çoi o C by Ci we write in a local chart the representation 
of C 

	

xt(p) = e(t). 	 (4.4.2) 

Different parametrised curves can have the same image on M. If h 
maps the open interval J C  JR into I C R then C' : J M is said to be 
a reparametrisation of  C:  I —> M if C' = C  o h  (see figure 4.4). Where-
as reparametrised curves have the same image, if we think of the 
parameter as a time, a change of parameter affects the rate at which 
that image evolves. 
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Figure 4.4 Different parametrised curves with the same image. 

If f is a smooth function defined in the neighbourhood of p o  = C(t o ), 
with C smooth at t o , then the derivative of f along C at p o , V(f) is 
defined to be 

Vpc„(f)= —
d 

(f o C)(t o ). 	 (4.4.3) 
dt 

(The reason for adopting the notation V(f) will be clear later.) Since 
fo C is a map from Ito E, smooth at t o , the derivative in (4.4.3) needs 
no further explanation. If (U, cp) is a chart for a neighbourhood of 
Po = C(t o) then the chart map yo can be used to express  V(f) in terms 
of the directional derivative of f,t,= fo yo -1 . We may write fo C as the 
composition of maps from / to R n  and En to R: 

f o c =  (fo  (to') o (q) C)- 

The chain rule of differentiation then gives 

d 

 —dt (f  o C)(to) = (afepiax 1 )(92(Pon 
dC'

(to). dt 

If if is the vector in R" with components dC'(t o)/dt then (4.4.4) 
expresses the derivative of f along C as the directional derivative of f cr  

vcp ,,(f) = p l f,p( cP(p0)). (4.4.5) 

Since this relation holds for all functions f we have a correspondence 
between the curve C, with image containing p o , and the tangent vector 
to En, (cp(p 0), if). A curve C 1  with C I (A 0 ) = p a  will be called 
equivalent to C at p o  if V(f)= V pc„(f) for all functions f. Thus, for 
some choice of chart map, equivalent curves at p o  correspond to the 
same tangent vector in Tq,(po llin. By taking all curves passing through p o 

 we obtain a one-to-one correspondence between equivalence classes of 
curves and vectors in Tegpo llin (see figure 4.5). 

(4.4.4) 
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11R 

Figure 4.5 This diagram illustrates the relation between real func-
tions on M and curves. 

4.5 Tangent Vectors 

In view of the previous section we could define a tangent vector to the 
manifold M at the point  P o  to be an equivalence class of curves passing 
through P o.  Such a class of curves defines a direction at the point p o 

 and enables functions to be differentiated. Further, for any chart map 
we can put this class of curves into correspondence with a tangent vector 
in En, this having been previously defined. It is most convenient (and 
usual) to adopt an equivalent definition of tangent vectors, modelled on 
the abstraction of differentiating along a curve. A tangent vector at p 
will be defined to be a certain mapping from real-valued functions, 
defined in the neighbourhood of p 0 . Such a mapping is given by any 
curve passing through p , namely the mapping to the derivative of the 
function along the curve. For this reason we used the notation  V(f) to 
denote the derivative of f along C at p : with the definition that we 
shall give Vc  will be identified with a tangent vector, the tangent to the 
curve C at P o.  whose action on f is given by (4.4.3). Similarly the 
definition of the tangent vector to Ili", based on the intuitive idea of a 
directed line segment, is equivalent to the more abstract definition of 
being a derivation into IR on functions. Given the tangent vector 
(p, V) E Tp IR" we may take the directional derivative of the function f 
along V at p. In the following the reader should check that the 
properties we require of a tangent vector are satisfied by the derivative 
of a function along a curve. Later in this chapter we shall show, as is 
intuitively clear, that every tangent vector has a curve tangent to it. 
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The notion of a tangent vector at a point p on a manifold is a local 
one. Therefore it is convenient to classify together all maps in the 
neighbourhood of some point with similar properties. So we take the set 
of differentiable maps defined on some neighbourhood of p E M and say 
that two maps in this set are equivalent if their restrictions to a common 
neighbourhood agree. Maps satisfying this property belong to an equiva-
lence class which is denoted [f xfp ] and is called a (differentiable) germ of 
a map from M to N at p. The collection of all such equivalence classes 
is called the collection of germs of C' maps at p. Clearly elements in 
[fm, ] yield the same image for p. 

For example consider the germs of C maps C : IR N at t. These 
'path' germs yield the images of curves in N that all pass through C(t) 
with the same velocity. Such curves were called equivalent in the 
previous section, and we expect the general notion of a tangent vector 
to be related to a germ  [C e,]  rather than to be related to a particular 
curve in this class. 

If  f:  M --> N and g : N ---> P are any representatives of the germs 
[fmj and [g7,1, ] then the composition [gN ]o[fiv ] is the germ obtained 
by composing representatives : namely g  o  f. Similarly we define the 
pull-back of germs in terms of any representitives 

[f ]*[g] = [rg] = [g on 	 (4.5.1) 

It is convenient not to distinguish notationally between [f]* and f* since 
no confusion need arise in practise. 

We denote by 5-,(M) the set of real-valued smooth functions on the 
manifold M. The elements of .9-, (M) form a ring with (f + g)(p) 

f(p) + g(p) and (fg)(p)= f(p)g(p). By identifying the constant 
functions with the real numbers the ring 5;(M) may be regarded as a 
real vector space, and hence an algebra. A derivation into IR on 
[5-, (M) p ] is a linear map X : [ (M) p ]---> IFI that obeys the Leibnitz rule 

X(f1f2) = X(f1)f2(P) f1(P)X(f2)- 	(4.5.2) 

Since linear combinations of derivations are derivations they form a 
vector space over Fi at p. If we set f i = f2 =1, the identity map, then 
(4.5.2) implies X(1) = 0 and hence, by linearity, X annihilates any 
element of ri. The vector space of derivations of the above germs at 
p E M is defined as the tangent space TM  of the smooth manifold at p. 

We introduced earlier the pull-back map f* associated with the 
diffeomorphism  f:  M --> N, p q = f(p). The tangent map at p 
associated with f is denoted f" and is defined in terms of f* by 

	

f":TpM--> TqN 	X 1--> f"X = Xf*. 	(4.5.3) 

Thus (see figure 4.6) f"X is a derivation on elements g EP(N)Ap)] 
obtained by pulling back g with f* and then acting with X, that is 



138 	 MANIFOLDS 

(fX)(g) = X(r(g)) = X(g f). 	 (4.5.4) 

From this point on we shall also apply the definition of a tangent vector 
being a derivation into 1F3 on functions, to tangent vectors to Rm. We 
must therefore show the equivalence with the previous definition of a 
tangent vector being an ordered pair of elements from 11:3" 1 . Let X (p, 
V) E T1R m .  If h is a real-valued function on Rim then we define X to 
map h to R by taking the directional derivative, that is 

X(h) = D v h(p). 

With this rule the tangent vector X is a derivation on functions in the 
neighbourhood of p. It also ensures the consistency of the definition of 
the tangent map given in (4.5.3) with the earlier definition (4.2.3), as 
will be explicitly demonstrated in a moment. 

IR 

Figure 4.6 The tangent map f„:7',111— 

We now construct a local basis for  TM  in terms of a local chart germ 
at p,  [q]  : M 	11=3", that assigns the point p E M to the origin in R". 
As usual let xv, y = 1, . n denote the coordinate maps 
cpv : Um  —> R. Then ep* is a map from function germs in R" to function 
germs in M and cp. p  maps tangent vectors from TM  to T0IFI". Of all 
the derivations on real-valued functions on IFI" we denote by X. E Toli n  , 
the partial derivative: 

X,:r1•(IFin) 01--> 	 Raf/axv)(0)]. 	(4.5.5) 

Suppose a vX v  = 0 for some n real numbers a v, then since (X v (xP))(0) 
= (5, acting on xP gives aP = O. Thus the Xv  are linearly independent 
and the n tangent vectors ()GI form a local basis for the n-dimensional 
vector space T01F3". 

We may express any tangent vector X E  TM  in terms of 



TANGENT VECTORS 	 139 

Toli n . If f E Fi(M) then by writing f = op* f q, we have 

= X(9) *.f(p) = (9)*pX)fg). 	 (4.5.6) 

In a natural basis associated with the chart (U m , 0 

q)* pX = E av(3/30, 	 (4.5.7) 

where it is to be understood that the derivative acts at xv = 0, this gives 

	

X(f) =RE av(a/3xv))f q,1(x 1 (p), . . xn(p)). 	(4.5.8) 
v=1 

Often for computations, real-valued maps f on M are specified locally 
in terms of their local representatives f q, =  fo  cp - ' on Tin and the details 
of the chart op are suppressed. However it may be important when 
dealing with global properties of manifolds to remember the distinction 
between f and f cp  since for a general manifold it is not possible to find 
an atlas consisting of a single chart. Just as the charts are often 
suppressed when discussing real-valued maps, in a similar way the 
representative  ipofo  q2 -1  of a map between manifolds is often written 
with the charts ip and ço omitted. In the following we shall denote such a 
map by f.  We may specify any  X e  TM  by giving cpX, as in (4.5.7). 
It is common not to distinguish cp*pX from X, identifying (aIaxy) with a 
tangent vector to M. Having pointed out the distinction we shall 
nevertheless employ this abuse of notation in the following sections. 

Consider the expression for the tangent map f*p  where f is a 
representative of a germ at p from some n-dimensional manifold M to 
some m-dimensional manifold N. Suppose (x', . ., .0) are local chart 
functions that assign to pE M the origin of and (y', . . yn) are 
local chart functions that assign to f(p) E N the origin of IRm. Thus f 
may be specified in terms of the m real-valued functions (A . . fn ) 
and we represent it by the map 

1: U(Rn) 	Em, 

(x 	.7  x n) 	(yi 	fl(x 	xi% 	yrn 	fM(x  

We recall that {X„} = { (alax v)} is a basis for Toffin in this chart. If g is 
any element of [5;(1Rm) 0 ] then 

(ft*o(a/axv))g = (a/axv)(:rg) = (alaxv)(g  o h 

= E(ag/ay m)(0)(afP/axv)(0) 
1.4=1 

or more simply 

L, 0(3taxv) = E (3fm(0)/ax v)(3/ay 11. 	(4.5.9) 
ti=I 
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The action of Ito  on an arbitrary vector in ToTin now follows directly 
since 1,K0  is linear: 

1, 0(av(a/axv)) = a 	 o (a/ax v) = a v(afm/ax v)(0)(8/aym). (4.5.10) 

The Jacobian matrix gives a representation of the linear map between 
TM  and Tfip) N. 

Equation (4.5.10) expresses the chain rule of differentiation and 
establishes the equivalence of definitions (4.2.3) and (4.5.3) for the 
tangent map on Tp En. If A e T o llin is regarded as an ordered pair, 
A = (0, a) with a = Env= ,ave, in the natural basis for IR" then A is 
equivalent to the derivation av(a/axv)1 0 . The effect of 1„ 0  on this 
derivation is given in (4.5.10). The derivation on the right-hand side of 
(4.5.10) is equivalent to the ordered pair (f(0), av(afP13xv)(0)e ) where 
{e }  is the natural basis for Rm. From (4.2.6) we recognise this as (f(0), 
Dpf(0)), which is the form of li3 O21 given in (4.2.3). 

Figure 4.7 summarises the relationship between op and f and the maps 
that they induce. Let us next observe that if ip : u,(Fin) —> u 2 (Iii") 

= 	 xn) 	 (4.5.11) 

we may infer from the above that 

v, o (a/axv) = (31pP/axv)(0)(3/ax' 0 ). 	(4.5.12) 

The tangent vector X at p c Um , that was represented in the chart (Um , 
cp) by cp pX = av(313x 1 ), will have a different representation in the 
chart (Um , 1p 0  cp), since 

co, px = 	= v*0 (av(alaxv)) 

	

= av(avP13x v)(0)(a/ax'P) 	(from (4.5.12)) 

a'P(a/ax'P) 

where a'P = (3VPlaxv)(0)av. 

Figure 4.7 Relations between q9 and f and the maps they induce. 
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This representation of the same tangent vector X E  TM  at p in a 
different chart should be distinguished from the tangent vector 
fX  e  Tf(p)M. The latter is induced from a differentiable germ 
f:M—>M at p: the former from a change of coordinates in the 
neighbourhood of p E M. The relation between the natural (or chart-
induced) components {a'P} of X in the basis {(3/ax'P)} at p to the 
natural components {a ')  of X in the basis {(3/3xv)} of a different chart 
about p, may be recognised as a Gl(n, 1R) basis-induced transformation. 
(Recall coordinate transformations are invertible.) Historically this was 
one of the characterisations of a `contravariane vector. It prescribed 
how the components of a vector were to be related to a change of 
coordinates. 

In the previous section we motivated the definition of a tangent vector 
by considering differentiation along a curve. Having now defined 
tangent vectors we can return and define the tangent vector to a curve. 
If C : I  —> M is a smooth curve with C(to ) = p o  then the tangent vector 
to C at p o  is 

V pC 	C„(3/3t) 	 (4.5.13) 

so for f .9;(M) 

11 ,0(f) = (c* ,0 (alat))(f)— (313t)(f  o  C)(t o). 

Thus the tangent vector to C at Po  maps functions to their derivative 
along the curve at p o , as was anticipated by the choice of notation in 
(4.4.3) 

(C* ),(3/3t) = ((aC/30)(t0)(3/3X) 1  E  TM.  

As an illustration consider C :  (0,1) —› 1R 2  given by 

C l (t) = a sin bt 

C 2 (t) = a cos bt 	a,  b e E.  

If {(313x 1 ), (3/3x 2 )) is a natural basis for Tpu 1F1 2  then 

C*0 (3/3t) = (3Ci  lat)(to )(alax1 ). 

From the above we have 

(3/3t)C 1 (t 0 ) 	C 1 (t 0 ) = ab cos bt o  = bC2 (t0) 

(3C 2 13t)(t0) 	C 2 (t o) = --ab sin bt o  = — bC 1 (t0)• 

(4.5.14) 

4.6 Vector Fields 

So far tangent vectors have been associated with points on the manifold. 
By smoothly assigning a tangent vector to each point we define a vector 



142 	 MANIFOLDS 

field. Thus a vector field maps functions to functions. In fact this is a 
convenient starting point for the definition of a vector field, it being a 
consequence that a vector field assigns a tangent vector to each point. 

A vector field X on a manifold M is a derivation on the algebra of 
smooth functions 

X : 5 -, (M) 	(M) 

X(Xf + pg) = AX(f) + p,X(g) 	A, p E E; f, g E 5-e(M) 

X(fg) = X(f)g + f X(g). 	 (4.6.1) 

(In the previous section we used capital letters to denote tangent 
vectors; in the following capital letters will be used for vector fields. 
Tangent vectors will henceforth be labelled by the point with which they 
are associated.) Whereas tangent vectors are derivations into E, vector 
fields are derivations that map the algebra of smooth functions into 
itself. A vector field X is called smooth if, for every smooth f E 9;(M), 
X(f) is smooth. The set of smooth vector fields on M will be denoted 
T i (M). Given an X E TI(M) we may define a vector X p  E  TM,  for any 
p E M, by 

(Xf)(P) = Xpf. 
	 (4.6.2) 

It is clear from the derivation properties of X and X p  that this does 
indeed define a tangent vector. Since vector fields map functions to 
functions we may define a product in an obvious way. For X, 
YE  TI(M) 

XY: ?1,(M)—> 

f 	X(Y(f)). 	 (4.6.3) 

This composed mapping will not, however, be a vector field. It will not 
satisfy the Leibnitz property (4.6.1) required of a derivation. In fact 

(XY)(fg) = (XY)(f)g + f(XY)(g) + X(f)Y(g) + Y(f)X(g). 

From this it is clear that we can obtain a new vector field from the 
commutator of two vector fields 

[X, Y] = XY — YX. 	 (4.6.4) 

Being the commutator of an associative product this bracket operation 
on vector fields is antisymmetric and satisfies the Jacobi identity 

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0. 	(4.6.5) 

Smooth vector fields form a module (see Appendix A) over .9-, (M), and 
hence a vector space over E identified with the constant functions. The 
commutator then turns the vector fields into an (infinite-dimensional) 
Lie algebra. The commutator is also called the Lie bracket. 
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If f:  M N is a smooth map between manifolds then, for any 
p E M, the tangent map f*p sends TM  to Tf(p) /s/. If X and Y are 
smooth vector fields on M and N respectively, with X i,.  and Y), given by 
(4.6.2), such that 

Yfip) -= f*pXp 	Vp E M 
	

(4.6.6) 

then X and Y are said to be f-related. We will often simply write 
Y =-- f* X. This notation does not imply that any smooth map f :  M ---> N 
enables a smooth vector field on M to be mapped to one on N. If f is 
not one to one, with f(p) = f(q) say, then for an arbitrary X, 
f„ pX * f* 0X. If f is not onto then smooth vector fields on N that are 
f-related to X c Tl(M) can differ outside the image of f. An important 
example is that of a smooth curve C / —> M. Different smooth vector 
fields on M can be tangent to all the points on the image of C. For the 
special case in which f is a diffeomorphism for every X e Ti(M) there is 
a unique Y E TI(N) such that 

Y = f* X. 

As we noted in the previous section it is common not to distinguish 
X p  E  TM  from its coordinate representation cio *),X. Thus if (U, cp) is a 
chart for the neighbourhood of p, with coordinate functions {xl, one 
identifies {(3/axi)1 p } with a basis for  TM.  If X E T(M) then in the 
neighbourhood of p we can express X as X = X 1 (3/3x'), where 
X' e 5",(M) are not distinguished from their representations in this chart. 
The elements (a/axt) form a basis for 7-1 (U), the Y,-module of smooth 
vector fields on U. They form the natural local basis or local coordinate 
basis. Since the ring of smooth functions is not a division ring there is 
no reason why the .5,-module TI(M) should have a basis, and in general 
it will not have. This is because for a general manifold there are no 
vector fields that do not vanish somewhere. (The two-sphere, for 
example, is such a manifold.) 

4.7 The Tangent Bundle 

One way of formalising the way a vector field on an n-dimensional 
manifold M assigns a tangent vector to each point is to construct a new 
2n-dimensional manifold TM by collecting together all the tangent 
spaces TM  from all points of M: 

TM = U  TM. 	 (4.7.1) 

An element of TM is a tangent vector Xp , labelled by the point p and 
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its components in some basis for  TM.  Moreover the construction of 
TM must satisfy certain smoothness criteria with respect to these 
assignments. If a tangent vector X i, E  TM  is represented in a local chart 
(UM , cp m ), with coordinate maps (x j ), by cpX p  = yia/ax) then we 
define (x'(p), yl(p)) E 11 2" as the coordinates of a point in TM. That is, 
the chart (U m , ço m ) for M induces a chart  (U TM , ÇOTM)  for TM by 

(cPrm)(Xp) = (x i (P), Y l (P)) 

where cp m (p) = xt(p)e, and (.99 m )X p  = y l (p)(alaxi ) i (97. )(p) , {e i ) being 
the natural basis for E n . As we have remarked earlier a tangent vector 
to IR" is equivalent to an element of IF1 2": the derivative in the direction 
V at p being equivalent to (p, V). Thus  PTM  assigns to Xp  the element 
of IR 2" equivalent to (cp m ). pX p  E Tcp( p )IFI n  

Since M is a differentiable manifold it is possible to give a topology 
and differentiable manifold structure to TM. If (U TM , ÇOTM) is a local 
chart for TM, induced by (Um , cp m ), then the map specifying a change 
of coordinates in TM:  (çc TM ) ° (T -A4): 

Fi2n E2n  is  given in terms of 
the map specifying a change of coordinates on M 

( 41 ) 2  0 ( T V), : Rn ___, En 	x'(p) 	x"(p). 

The tangent map is 

((cPm)2 (TV))1*((pm),(p): T(cpoi(p)E n 	T(9N)2(p)E n  
y ka/ax k 	y k((a x ,i/axk))a/ax ,i 

(where we are using summation convention) so that 

((40 7-m)2° 	 Y 1 )(q) = (x"(P), Y k (P)(af Vax k )(P))• (4.7.2) 

These maps define (see figure 4.8) a diffeomorphism (cp 7-m) 12 of 

(Trit4)1«uTm)1 n (U 1-A4)2) 

onto 

(T.Tm)2((uTm)1 n (urm)2). 
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From its construction U Tm is diffeomorphic to Um  x IFin, but globally 
TM need not be a product manifold. A product manifold M x N is 
formed from ordered pairs of elements from the manifolds M and N. If 
{(U a , (p a )} and {(Vb , v b ) }  are atlases for M and N respectively then an 
atlas for M x N is defined by the collection of charts 

(PaX  14 Ua x V b 	Fichm M +dim N 	
9) 1--*  (9)  a(P), 6(0). 

Such a collection of maps satisfies the criteria for being an atlas. The 
local product structure of TM allows the definition of a natural 
projection map 

: TM 	M,  X,, 	p 	 (4.7.3) 

which identifies the point on M to which the tangent vector in TM is 
attached. It is convenient to picture UTm, with its local product structure 
exposed, as a space over Um  (see figure 4.9). All the tangent vectors at 
p are drawn as the space TM  associated by the projection H to a point 
p of M. The local coordinate representative of n is usually given the 
same name, n  E 2n E n xl  (The inverse image set  TM  is 
sometimes denoted II - I(p) and U Tm denoted H -1 (Um ) although this 
notation should not be confused with the notion of an inverse map!). 

•lp,X) 

t H 

IR 2" 

TM 

u, 

Figure 4.9 The local product structure of the tangent bundle. 

The existence of a projection map makes TM into a fibred space, the 
elements related to p by II being the fibre over p. The manifold TM 
together with n is called the tangent bundle of M. We have here an 
example of a fibre bundle. Although in all fibre bundles the fibre spaces 
are fused together by giving the bundle the structure of a product 
manifold locally, bundles with different global topologies can be con-
structed by relating fibres in overlapping neighbourhoods 
(U Tm ), n (uT,0 2  in different ways. This is like the difference between a 
cylindrical ribbon with a twist and one without a twist. In both cases the 
twist can be eliminated from any neighbourhood but is an essential 
characteristic distinguishing one ribbon from the other. 
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A smooth section of TM is a Cc° map 

a: M 	TM 
	

(4.7.4) 

such that H  o a = (id)m . Thus  a(p) E  TM  for all p E M . It may be 
represented in local charts  (U TM , rio ni ),(Um , qo ki ) by 

à(x) = (x`, y` 	a'(x)) 
	

(4.7.5) 

where the {a') are real functions on Ujir (see figure 4. 10). Thus a 
smoothly assigns a tangent vector to each point p E M. We may identify 
a smooth section a with a smooth vector field X by 

(X.f)(P) = a(P)f 	V f E 
	

(4.7.6) 

In this way every smooth vector field on M is equivalent to a smooth 
section of TM. If FTM is the space of smooth sections of TM we will 
henceforth use the above to identify Tl(M) with FTM. 

            

    

(p, X)  

     

y) 

f•-•  

       

LP TM 

 

          

          

            

            

           

a 

            

u, 	 IR" 

Figure 4.10 A local section and its representation. 

4.8 Differential 1-Forms 

The smooth vector fields on M form a module over the commutative 
ring of smooth functions, and hence inherit a vector space structure over 
Ili identified with the constant functions. We shall frequently need to 
distinguish maps that are linear with respect to the module structure 
from those that are only linear with respect to this vector space 
structure. Thus we refer to maps as being (M) -linear (or more simply 
Fi-linear) or  JR-linear. A 1-form field (or 1-form on M) is an element of 
the module dual to Tl(M); that is, an ,9;-valued 9;-linear map on vector 
fields. A 1-form is smooth if it maps smooth vectors to smooth 
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functions. A smooth 1-form on M will also be called a differential 
1-form. The space of smooth 1-forms on M is denoted T i (M). If 
X E T I (M) assigns Xp  E  TM  to the point p then for  we  Ti ( W) we 
define cop  by 

	

(0)(x))(p) = cop (xp)- 
	 (4.8.1) 

Clearly cop  is a linear map from TM  to E, that is, an element of the 
dual space TM.  Elements of T*p M are called co-vectors or 1-forms 
at p. Thus co smoothly assigns an element of  TM  to every point p of 
M. In analogy to the construction of TM we may collect together all the 
cotangent spaces and form a new space 

T*M = U T*p M 	 (4.8.2) 

Like TM the space T*M inherits a manifold structure from that of M, 
with a natural projection from T*M to M. With this structure T*M 
becomes the cotangent bundle. We may identify a smooth 1-form on M 
with a smooth section of T*M. So if FT*M is the space of smooth 
sections we have a natural equivalence between elements of FT*M and 
T 1  (M). 

For every f E 5-, (M) we may associate an element df E TI (M ) by the 
rule 

	

X(f) = (df)(X) 	V X E 	Tl(M). 	 (4.8.3) 

That is, df E FT*M assigns (df) p  E T*p M to the point p with 

	

X p (f)= (df) p (X p ). 	 (4.8.4) 

The element (dfl p  which maps TM  to E is related to f*p  which maps 
TM  to Tf(p)11:1 : in fact they are naturally isomorphic. If g is a 
real-valued function on E, A1-4g(A), then from (4.5.4) 

(f*pX p )(g) = Xp (g f). 

By the chain rule 

dg 
X p (g f) = X(f)  

Thus f*pXp  E Tf(p) F1 is equivalent to the ordered pair 

(f(P), Xpf) = (AP), (df)p(Xp)). 

The existence and linearity of f*p  ensures that (4.8.3) really does define 
a 1-form. Despite this natural isomorphism we shall distinguish the maps 
(df) p  and f* p . 

If x( is one of the coordinate functions and (3/3x0 is a vector from 
the natural local basis then (4.8.3) gives 

	

dx 1 (3/3.0 = (ax/ax') = 	(5 1,. 	 (4.8.5) 
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Thus {dx 1 } is a local basis for T i (M) naturally dual to the basis 
{(3/ax')}. In some coordinate neighbourhood, for any f EFfe(M), df can 
be expanded in a local basis df = df(a/a.V)dx 1 , giving the classical 
expression 

df = (3fl3xi)dx 1 	 (4.8.6) 

from (4.8.3). It is worth emphasising that in this expression the ch i  are 
not 'infinitesimal increments of the coordinates' but linear mappings on 
the tangent vectors. By evaluating this expression on a vector tangent to 
some curve we obtain the derivative of f along the curve: in this way df 
encodes the way in which the value of f changes as the point in M 
begins to move. The components of a 1-form with respect to the natural 
basis {dx`}, associated with the chart (Um , cp), are used to coordinate 
the bundle T*M. If a c T i (M) with a = a„ c1.0, a, c .Ti(M), then cr is 
associated with the smooth section p 

p:M ---> T*M 

represented in a local chart by 

OP) 	(x(P) ,  a'M(P)). 

If f :  M N is a smooth map then we have already defined the 
pull-back map f* that takes a smooth function g on N to a smooth 
function pg on M, f*g = g o f. Thus rg is evaluated at p by using f to 
send p from M to N where it is evaluated with g. In the same spirit we 
can define the pull-back of a 1-form co on N to a 1-form rco on M. If 
X P E TPM we define 

(f*(n) pX p  = cof(p) (f"X p ). 	 (4.8.7) 

We need to check that for a smooth assignment of X p  to TM  and a 
smooth co on N this rule assigns (f*co) p  smoothly to T*p M. This can be 
seen from the local coordinate expression for (4.8.7). Firstly we note 
that for g E 3-, (M) 

(f*(gco)) pXp  = (gw) f(p) (f*p X p ) 

= (g o f)(p)w f(p) (f. p X p ) = (f*g)(p)(f*(n),,X p  

thus 

f*(gw) = (f*g)(f*co). 	 (4.8.8) 

If {x'}  i  = 1, . . 	m and {y} j = 1, . . 	n are local coordinates for M 
and N such that the coordinate representation of f is given by 
yi = f (x'), then if X = X 1 (alax') 

f„ pX p  = X1(p)(afilax9(p)(3/3_01Rp) 



	

DIFFERENTIAL 1-FORMS 	 149 

and for dx] E 17( ) N 

dXi(f *pXp ) = 10(p)(3Plaxi)(p) = (afi lax')(p) dx 1 (X p ). 

It follows from (4.8.8) that if co =  w  dx/ 

rco = (col  f)(3P13.,V) dxf 
	

(4.8.9) 

and the smoothness of f and the component functions co i  ensure that 
rco is smooth. 

If  WE  T*p M then we can use any chart for the neighbourhood of p to 
represent co, using the natural local basis. Given two different charts we 
can compare the representations of co by using the pull-back of the map 
that relates the charts. Suppose (II 	cp) is a chart for the neighbour- 
hood of p with  q(U) = U l . Given a diffeomorphism 	: U 1 (Fin) --* 
U 2 (1P) we have a new chart (UM , p  o  cp). If tp is specified by 

p: U 1 (11") --> U2 (111") 

xP 	x'P = ip(x', . . 	x") 

then we have the inverse map 

U 1  (R) 

P 	X P  = 111-1P(X 1 1  , . . . , 	n ). 

In §4.5 we showed that if X E  TM  is represented in the (Um , (p) chart 
by 

= Xv(a/axv)1 q,(p)  

then the representative in (Um , 4'o  cp) is 

(tp cp)X = Xv(4 013xv)(cp(p))(alax'f 1 )! ()(p) . 

When representing a 1-form we have to remember that the pull-back 
map acts in the opposite direction to the map itself. Since chart maps 
are invertible co E  TM  is represented in (U cp) by cp T-(p1  Tw, with 

cpco =  w,  dxvi T(p)  

say. In the chart (Um , 4' 0 cp) the representation of co is 
Op. cp) (7;,10;)(p)  co, where 

° (p)(uLT*)(p)a)  = 114::)(p)Vo lpi (I)  = /P(plogt)(p)(ovdx v 
 = co vo ip - 

=  w  df m l (4,)(p) 

from (4.8.9). Thus whereas the components of the tangent vector X are 
transformed with the Jacobian matrix representing  ip ,  the components of 
the 1-form co transform with the inverse matrix since 
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(a tpo/ax a")(atir 	= 

That is, the components of a) transform contragradiently to those of X. 
The behaviour of the change in the components of ai induced by 
changing the coordinate basis is the historical characterisation of a 
covariant vector (see figure 4.11). 

w v=(!7) 
iR 

Figure 4.11 Different representations of a covariant vector field on Um . 

4.9 Tensor Fields 

In Chapter 1 we introduced the tensor algebra associated with an 
arbitrary vector space. We may now apply this to the particular case 
when that vector space is the cotangent space at any point of a 
manifold. Thus elements of Ps(rp M) are called tensor fields at p of 
covariant degree r and contravariant degree s. 

It is purely for convenience that we have selected the cotangent space 
rather than the tangent space, the notation of Chapter 1 having been 
chosen such that taking the arbitrary vector space V to be TM gives the 
conventional labelling for mixed tensors. It is for this reason that it was 
convenient in Chapter I to think of elements of V as acting on V* rather 
than the other way around. Clearly we have  T(TM) = T sr (T p M). 

Whereas the cotangent space at any point is a real vector space the set 
of 1-form fields forms an Fi-module. In the same way as we constructed 
the tensor product of vector spaces we may construct the tensor product 
of the .9;-module of 1-form fields with itself and the dual module of 
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smooth vector fields. Elements of the tensor product module, P( M), 
are called tensor fields of covariant degree r and contravariant degree s. 
We identify Tg(M) with F.4, (M). Thus an element of  T(M) smoothly 
assigns an element of  T(TM) to each point p in M. As for the case of 
vector and 1-form fields this way of regarding tensor fields is formalised 
in terms of a fibre bundle, the bundle of mixed tensors TM.  Thus 
TM  = U p  Ts,.(T*p M), with a coordinate system induced from that of M. 
The natural projection of the bundle maps each tensor field to the point 
in M at which it is attached. Smooth sections can be defined in an 
obvious way, allowing the identification of the set of smooth tensor 
fields  T(M) with the space of smooth sections FP,M 

If (U, T) is a chart for some neighbourhood of M, with chart maps 
fx"), then {(3/3.0} and {dz i } are bases for T l (U) and T i (U) respec-
tively. Thus locally any tensor field T c T(M) can be written as 

T = 	• hcixil 0 clx` ,  

0 . . . 0 dx',  O  (a/axii) 0 (a/axJ2) 0 . . . 
0 (a/axh). 	 (4.9.1) 

This is just a formula from §1.5 rewritten with &VI replacing e'. and 
(a/axh) replacing X1i . The summation convention is employed. The 
indices are staggered in anticipation of the introduction of a metric 
tensor field when we shall use the raising and lowering conventions 
introduced in Chapter 1. Whereas one can always use a local coordinate 
basis in which to expand tensor fields such a basis is not always the most 
convenient. In particular, when we have a metric tensor it is often useful 
to employ a suitably adapted basis. 

The submodule of  T(M) formed by all totally antisymmetric covar-
iant tensor fields forms the exterior algebra of differential forms, A(M), 
under the exterior product of (1.2.2). We shall identify  A0 (M) with 
g;(M). Thus a smooth differential form is associated with a smooth 
section of the exterior bundle AM -= U p  A(T*pM). Whereas an element 
of the exterior algebra of an arbitrary vector space is called an exterior 
form, the term differential form is reserved for an element of the 

; -module A(M). If  /3 e  fA r M, section of the bundle of exterior r-forms 
we may use a local coordinate basis to write 

= 	E 	,(dx Pi) A (del A . . A (c1x 14 ) 	(4.9.2) 

1 „ 
fi = To Pp,p, ..x (c1x 11 ')  A  (dx"2 ) A • . A (dX 4') 

equivalently 

where the summation convention is used. These formulae are trans-
cribed from §1.2 with the substitution of dx . for  el`. 
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Given a smooth map f between two manifolds the induced maps on 
the tangent and cotangent spaces can, to some extent, be extended to 
tensor fields. 1ff:M-->N then we extend the map f*p  to an II-linear 
map on contravariant tensors at p 

f*p :Ts(r;,M)—> Ts(T ) N) 

X i 	X 2 0 ... 	X s  

	

f* pX i  ®fX 2  0 ... f *pX, 	X e  TM. (4.9.3) 

As for the case of vector fields we cannot in general use this map to 
obtain a smooth tensor field on N from one on M. We have, of course, 
the obvious generalisation to f-related contravariant tensor fields. The 
smooth map f does, however, give rise to a map p which enables 
smooth 1-form fields on N to be pulled back to smooth 1-forms on M. 
This pull-back map may be extended to an 1R-linear map on smooth 
covariant tensors on N 

: Tr (N) --> Tr(M) 

co l 	(0 2 	. 	0 cor 

f* (0 2 	0 f* w r 	co' E T I (N). 	(4.9.4) 

For such a definition to make sense it is important that we have (4.8.8), 
that is 

	

f*(gco) = (rg)(rco) 	g E 	 E T i (N). 

For E Tr(N) and {X i } E  TM I = 1, . . r we have 

(N) p (Xi, X2, . 	X r) = 1fi p )(f* pX1, f* pX2, . .  

In general the smooth map f :  M —> N does not induce a map on 
smooth contravariant tensor fields on M; nor on mixed tensor fields, the 
maps ft,,  and f*p  acting in opposite directions. For the special case of a 
diffeomorphism, however, there is an induced map on smooth vector 
fields as was noted in §4.6, and the problem of the maps acting in 
different directions is readily overcome since diffeomorphisms are in-
vertible. If op : M —> N is a diffeomorphism then we define Cp by 

Cp:P*(M)--> Pr(N) 

_ cp -i* (0 1 	cp --1* (0 2 0 	0 r 

	

W 	cp*X i  0 . . .  O cp * X, 

W' E Ti(M),  X E Ti(M). 	 (4.9.5) 

Again we require (4.8.8) for consistency. Equivalently 
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(k( w ' 	(0 2  0 . 	wr 	X i 	- 0 Xs)( 17 1, Y2, - • •, 
yr, 	a s) 

co l  0 co 2  0 ... 	cor 0 X I  0 ... 
0 X,(40-1 *Y1, cr l *Y2, • - 	(12-1 * 11,- cra l,  • • 	92*  oe s ). 

Example 4.2 
For the smooth map 

R2 	R2 	
P 	(p(p) 

(4.9.6) 

(a,  b) 	OP), 922(P)) = (a cos t + b sin  t,  b cos t - a sin t) 

with t a constant, the inverse is given by 

ço -i :  R2 	
F--> T-1 (p) 

(a,  b) 	((ço -1 ) 1 (p), (cp -1 ) 2 (p)) = (a cos t - b sin t , b cos t + a sin t). 

For a vector field Y, CpY = cp * Y . Taking Y = x 2 (3/3x) + xy(3/3y), with 
x and y the standard coordinates on 111 2 , gives 

p Yp = x 2 (p){(4 1 /3x)(p)(3/3x)1 9,(p)  + (3922 /8x)(p)(3/3y)1 9,(p) ) 

+ x(p).Y(P){( 3 491 /aY)(P)( 3 /3x)Lp(p) + (aT 2 /3Y)( 3 )(3 /aY)1 9,0)} 

(40*N(p) 

(x 2  COS t 	xy sin t)(p)(alax)S TC, ) 	(xy cos t - x 2  sin t)(p)(3/3y)l q,o, )  

We may use cp -1  to express the coordinates of p in terms of those of 
p(p), giving 

(cp* Y) op)  = (x 2  cos t - xy sin t)(cp(p))(alax)1 9,(p)  

+ (xy cos t - y 2  sin t)(cp(p))( 3 /3y)1 go) . 

SO 

cp*Y = (x 2  COS t - xy sin t)(3/3x) + (xy cos t - y 2  sin t)(3/3y). 

We consider now a 1-form cr = x 2 dx + xy dy 

( p‘œ)40) = (T - I*c
)

To) = cri*œp 

= x 2 (p)t(a(T -1 )'/ax)(cp(p))dx1,0) 	(3 ( 0P -1 ) 1 /aY)(49(P))41(p)} 

(xY)(P){( 8 (49-1 ) 2/ax)(9)(P))dx((gp) 	(3 (7) -1 ) 2 /aY)( T(P))4199(p)} 

= {x 2 (p)cost + (xy)(p) sin tIdxi q,(p)  

+ {(xy)(p) cos t - x 2(p) sin t}dyl ip(p)  

= (x 2  COS t - xy sin t)(99(p))dx1, (p)  + (xy cos t - y 2  sin t)(cp(p))dyi go) 
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as in the previous example, so 

epa = (x2  cos t — xy sin t)dx + (xy cos t — y 2  sin t)dy. 

We have 

(§3a)( (sPY)( /3 ) 

= (x2  cos t — xy sin t) 2 (p) + (xy cos t — y 2  sin t) 2 (p) 

= {(x cos t — y sin t) 4  + (x cos t — y sin t) 2 (y cos t + x sin t) 2 1(p) 

= (x 4  + x 2Y 2 )(50-1 (P)) = (oe(r)(49-1 (P)) 

= (Œ(Y) ° T -1 )(P) 

SO 

( 3œ)(e07) = 

4.10 Exterior Derivatives 

In §4.8 we associated with every f cFfi(M) an element df E FT* M. Thus 
we have an operator mapping functions to 1-forms. We may extend this 
operator to an Fi-linear map on FAM: 

d : FARM —> FA R +1 M 	 (4.10.1) 

with the properties: 

	

df(X) = Xf 	X E rAm, f E 5,  M 	(4.10.2a) 

d(cr A /3) _ dœ A 0 + (-1)P cr A clfi 	cr E rAp A4 , f3 E FAM (4.10.26) 

dd --- d 2  = 0. 	 (4.10.2c) 

The operator d is called the exterior derivative. Its existence and 
uniqueness are most easily demonstrated using a local chart and the 
properties of the exterior algebra. In any coordinate neighbourhood of 
M an element of FAM can be expressed in a local natural basis. Since d 
is Fl-linear it is sufficient to consider its effect on an element of the form 

	

co = g dxl. A . . 	 g E 5, (M). 

From properties (4.10.26) and (4.10.2c) 

dco = dg A dX 1  A • • A dX`k 

with dg given by property (4.10.2a). So for the assumed form of u) we 
have the unique form for da). The defining properties of d enable do) to 
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be evaluated on a set of vector fields, for any CO E  ['AM. We consider 
first a 1-form, it being sufficient to assume 

w = g dx 	x, g E (M) 

thus 

dw(X,, X 2 ) = (dg A dX)(Xi, X2) 

= {dg(X1)dx(X2) — dg(X2)dx(X 1 )} 

from the definition of the exterior product. From property (4.10.2a) 

2 dw(X,, X 2) = X 1 (g) dx(X 2) — X 2(g) dx(X 1 ) 

= X i (g dx(X 2 )) — gX i (dx(X 2)) — X 2 (g dx(X 1 )) + gX 2 (dx(X 1 )) 

= X i (w(X 2)) — X 2 (o)(X 1 )) + g[X 2 , X i ](x). 

Using this property once again in the last term gives 

2 dw(X,, X2) = X 1 (w(X 2 ))— X2 (w(X1 )) — w([X,, X2 ]). 

It follows that for any a E rAiM 

(da)(X, Y) = (1/2){X(a(Y)) — Y(a(X)) —  œ([X, Y])}. (4.10.3) 

Similarly if a E FA2 M 

(da)(X, Y, Z) = (1/3){X(a(Y, Z)) + Y(a(Z, X)) + Z(a(X, Y)) 

— a([X, Y], Z) — a([Y , Z], X) — a([Z, X], Y)) 

V X, Y, Z E FTM. 	 (4.10.4) 

For the general case of a E FA,M 
r  

(da)(X o , X 1 , ..., X i) = 	
1 	 (xo , . . 	. . 	X i )) 

r+ 1 1=0  

1  , E 	xd, 	 kk , ..., X i) 
T + 

V Xo, X1, 	X r  E FTM 	 (4.10.5) 

where 	means omit this term from the argument list. 
An important property of d is that it commutes with the pull-back 

map f* : FAN —> ['AM induced from a diffeomorphism  f: M N. First 
observe that if g E Ff°(M),  X e  [' TM, then 

(f*dg)(X) = dg(f * X) = (fX)(g) 	(by 4.10.2a) 

= X(f* g) 

= d(rg)(X) 	(using property (4.10.2a) again) 
giving 

f*dg = d(f* 	 (4.10.6) 
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Now consider 

d{r(gdx" A dx" A • • A dx4 )} 

= dff*(gd.,ci.) A f*(dx'2)  A•  . . A f*(dx 4 )) 

= d{r(gdx`') A d(f* X 12 ) A • • A d(f* x ik)} 

= d(f*(gdx9) A d(f*x") A• • • A d(f*  

= d((f*g)(f*dxi.)) A f*(dx'2  A•  . . A drsk) 

from above 

as d 2  = 0 

	

= d(g) PdX`' P(dX I2  A • - A dx`k) 	as d(f* dx') = dd(rx') = 0 

= rdg A f* dX il  Ar(dX 12  A • • • A dx") 

= f*d(gclxi ,  A dx'2 A . . . A dX 10. 

It follows since d and f- are R-linear maps that 

	

f*d = d 	 (4.10.7) f* 

on arbitrary elements of rAm. 

4.11 One -Parameter Diffeomorphisms and Integral Curves 

In many situations in theoretical physics one is concerned with situations 
that can be described in terms of 'flows on a manifold'. This technical 
term is borrowed from what is perhaps the simplest case to visualise, the 
laminar flow of a fluid around a smooth surface. The motion of a fluid 
around a vortex is another familiar example of a flow. If each element 
of the medium experiencing such a flow is followed in time it traces out 
the image of a curve. Hence for a smooth flow one can establish a 
correspondence between local fluid flow and a local vector field. The 
notion of a flow in time is naturally associated with a bijective mapping, 
the flow taking a neighbourhood U(p) of a point p on a manifold M to 
a neighbourhood U(p') in some fixed interval of time. For some fixed 
interval t we describe such an evolution by 

q: 	U(P'). 	 (4.11.1) 

For a chosen U(p) we have a diffeomorphism for t e /p , where 
/p  C R is an open interval about 0. To describe what happens in an 
arbitrary time interval we define cp in terms of cp, by 

	

W C (I x M) ---> M, (t, 	p) 	T(t , p) = cp,(p) (4.11.2) 

where, for each t e I, (p i  is a local diffeomorphism from some 
U(p) c M to U(p') C M. Conversely, for every U(p) C M there is an 
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J1,,  C / such that (p, is a diffeomorphism from U(p) to U(p') for t E  I. 
Motivated by the example of fluid flows, in which the configuration of 
fluid elements at any time can be obtained from the successive compo-
sition of evolution maps, we demand that 

(PI2 ° CPti 	QP 1 1+ 1 2 
	V t i , t2  El  such that t 1  + t2 E 

and that 

To(P) = P 	Vp E M. 	 (4.11.3) 

In particular, TT' = cp_,. Families of diffeomorphisms of this type are 
called local one-parameter diffeomorphisms on M. A one-parameter 
family of local diffeomorphisms gives rise to a vector field on M. For 
every p E M the map cp defines a curve  q(p) starting at p 

	

€10): lp 	M 

	

t 	Ti(p). 

To say that the curve starts at p means that cp o(p) = p. Using the 
definition (4.5.13) we have a tangent vector defined at every point of 
the image of the curve. By taking the set of all such curves we define a 
tangent vector at each point of M. Since different curves have image 
points in common it is necessary to check that this rule gives an 
unambiguous assignment of tangent vectors. Suppose that y9,0 (p) = 
cp,(p') for some (t o , p) and (4, p'), then 

(MO — 97(t-1o+16(P') = (47/-6 ° (Pt6)(P') 

= Tr--/6(Tr6(0) = 

= (93 /-6 ° Tto)(P) = 49 (--(6+(0 (P) 

by (4.11.3) again. Thus if the curves T(p') and co(p) have image points 
in common then ço(p') is a reparametrisation of cp(p). The parametrisa-
tions merely differ by the addition of a constant and so  
=-- cp(p),(i _ o_ o , and the tangent vectors agree where the image points 
coincide. Hence the one-parameter family of local diffeomorphisms 
defines a tangent vector at each point of M; the smoothness of cp, 
ensures that the assignment of tangent vectors is smooth and we have a 
smooth vector field. For the example of a fluid flow this vector field is 
everywhere tangential to the flow lines. 

In the above we showed how a one-parameter family of local 
diffeomorphisms defined a set of curves, enabling a vector fi eld to be 
introduced that was everywhere tangential to these curves. We now 
show how the argument can be reversed. If X is a vector field on M 
then a curve C : / M, t p(t), is called an integral curve of X if X 
is C-related to (aiat). That is, if C is specified by C :  t 	xm = 

(4.11.4) 

by (4.11.3) 
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giving C* (3/8t) = A 4 (t)(3/axm)1 4 , ) , and in local coordinates X = Mal 
3.0), then C is an integral curve of X if 

AP(t) = PLO, t(t), 	An(t)) 	 (4.11.5) 

for ft. = 1, . . 	n. It follows from the theory of ordinary differential 
equations that solutions to (4.11.5) always exist, being uniquely deter-
mined by the initial conditions x 0(p) = AP(0). The smoothness of the fP 
ensures that such solutions are not only smooth functions of t, for t in 
some interval I C R, but are also smooth functions of the initial point 
xP(p), for p in some neighbourhood U C M. Thus if C : / —> M and 
C' : I' ---> M are integral curves of X starting at p we must have I' C I 
say, with C equal to C' on the restriction to I'. By taking the largest 
such interval we have a uniquely determined maximal integral curve of 
X starting at p. 

Example 4.3 
Suppose X = x(alay) — y(313x) E [- TIFF. Let  C :  1 — lB 2 , t 1-3 

 W(0, A 2 (t)) be an integral curve of X that starts at the point (a, 
h) E R 2 . Solving 	= _A2 ,  A2 = Al subject to this condition gives: 

= a cos t — b sin t, )1, 2 (t) = b cos t + a sin t. Here we may take 
I = IR, the maximal integral curve mapping the whole real line into the 
circle, the curve being periodic with period 2. 

A vector field whose maximal integral curves starting at p are defined 
on all of IR, for every p E M, is called complete. In general this will not 
be the case, the domain of the maximal integral curves depending on 
which point they start at. Introducing a suggestive notation we denote 
by  p(p) the maximal integral curve of X E  [' TM starting at p 

cp(p):  I,, --> M 
	

t 	cp,(p). 

If t o  E 	with 99,0(p) = q then setting 

h: 	 + t o  

gives a curve ii)(q) =- cp(p). h. The images of Ip(q) and  p(p) coincide, 
as do their tangent vectors since the reparametrisation merely involves 
the addition of a constant. Thus zp(q) is certainly an integral curve of X, 
starting at q. If /p  = (a, b) then J1  = (a —t o , b — t o ) and since 
a  < O < b we have —t o  E J q , giving tp_ 10 (q) = p. If tp(q) were not 
maximal, with .1,1  C Iv  then reversing the argument would contradict II, 
being the maximal domain of integral curves starting at p. So maximal 
integral curves with image points in common are all related by repara-
metrisations that translate the domain of definition along the real line. It 
then follows that if cp t  is defined by 

ePt :P 	Tr(P) 
	

V p with t E 
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then cp, is an invertible map satisfying (4.11.3). Above each point p E M 
we erect the fibre /p  and denote the space formed by all the fibres by 
W. If  Ii,,  C I Vp then W C (/ x M), and cp is defined by 

49 : 	 (t, 	Tr(P). 

Each 419, is an invertible map on some domain contained in M. 
Furthermore these maps are smooth, the solutions to the differential 
equations for an integral curve being smooth functions of the starting 
point. It follows that every smooth vector field X on M generates a 
one-parameter family of local diffeomorphisms: each point of M being 
mapped along an integral curve of X. In local coordinates the trans-
formation p q(p) is represented by 

cpP(t, xi(p), . . 	xn(p)) 	= 1, . . 	n 

where 

cp0(0, xl(p), . 	xn(p)) = x(p) 

and 

(Mt, + t2 , xl(p), . . 	xn(p)) = cpn(t 2 , q) 1 (t 1 , xl(p), 	xn(p)), 

	

992 (t1, x l (P), • • 	x n (P)), • 

	

cpn(t i , xl(p), . . 	xn(p))). (4.11.6) 

We may use the smoothness of the functions (PP  in the variable t to 
obtain a linear approximation of TP for small t 

cpn(t, xl(p), 	xn(p)) = cpn(0, xl(p), 	xn(p)) 

+ apn(0, xl(p), .. 	xn(p)) + . . . (4.11.7) 

where VA denotes the derivative with respect to t. Since qv(p) is an 
integral curve of X, starting at p, if in local coordinates X = fn(alaxn) 
we have 

q(0, xi(p), .. 	xn(p)) = xn(p) 

and 

cpn(0, xl(p), . . 	xn(p)) = fn(p). 	 (4.11.8) 

Thus for t sufficiently small (4.11.6) may be approximated by 

	

x(p)  H—* x(p) + t fn(p) + . 	 (4.11.9) 

Example 4.4 
If x coordinates IR then a smooth vector field on 1R is X = x 2 (3/3x). If 
cp(t, p) is the maximal integral curve starting at p we require 
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(0(t, 14= coqt,  13 ) 2  

13 )= P. 

The solution is cp(t, p)= 131(1 — tp). If p > 0 we must have 
t E ( -00 , p - 1 ), if p = 0, tE ( — cc, cc) whilst for p  < 0,  t E 00). The 
domain W = U p/p  is the region of IR 2  bounded by hyperbolae in the 
bottom-left and upper-right quadrants. This is shown in figure 4.12. We 
can verify that indeed T r,. cp,,= 

pA1 — t i p) 
(PIPPI,P) = 1 — t 2p/(1 — t ip) 	1 — (t 1  + t2 )p = I t

+12(p). 

We have shown in figure 4.12 the effect of one of the local diffeo-
morphisms ço t . 

Figure 4.12 This diagram illustrates the effect of a local diffeomorphism (pt. 
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If we modify the above example by restricting X to the manifold M 
consisting of the open interval (1, co), then the maximal integral curve 
starting at p has domain i'p  = (p  — 1, 13). So in this case cp, is 
defined somewhere if t E ( — 1, 1). The domain W' = 1..1 n4 Vp,e Ai is 
shown in figure 4.12. 

Cf(p) 

Figure 4.13 The geometrical interpretation of the commutator [X. Y] of 
the vector fields X and Y. 

Exercise 4.1 
Let X and Y be vector fields with  p(p) and tp(p) the respective integral 
curves starting at p, and q), and tp, the associated local diffeomorphisms 
(see figure 4.13). For t sufficiently small and positive a one-parameter 
family of local diffeomorphisms is given by C, = 	o cp 	o 
o  99v„ with C(p): t 1—> C 1 (p) a smooth curve starting at p. If Co(p) is 
the tangent vector to C(p) at the point p show that CAP) = [X, Y] p . 
Hint: 	For 	f E.61,(M)f  o cp, = f + tXf + t 212X 2f + 0(t 3), 	where 
X 2f = X(Xf). 

4.12 Lie Derivatives 

In §4.4 we motivated the concept of a tangent vector by introducing 
differentiation of functions along a curve. Having arrived at the defini- 
tion by which a vector field is a derivation on the algebra of smooth 
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functions we showed in that section how the action of any vector field 
on a function is the derivative of that function along a curve; namely the 
integral curve of the vector field. That is, if cp is an integral curve of X, 
starting at p 

d 
(Xf)(P) = —dt (f ° T(P))( 0) V f E 

= lim t -1  {f(q),(p) ) - f( p )}. 
	 (4.12.1) 

Since X is a smooth vector field then associated with the curve  p(p) 
starting at p, is the local diffeomorphism cp, on the neighbourhood of p. 
It is instructive to rewrite the above in terms of the pull-back cp*, 

(Xf)(P) =  urn t -1  {(Cf)(P) f(P)}. 	(4.12.2) 

This form of the derivative, X on f, suggest a generalisation to a 
derivative on an arbitrary tensor field T e  FTM. We may use the map 

associated with the vector field X, to map T c!„(p)  back to the point 
p where it can be compared with T.  If the limit as t tends to zero of 
the difference between the two tensors divided by the parameter t 
exists. it is called the Lie derivative at p of T with respect to X, denoted 
by (Z x T)(p) (see figure 4.14) 

(Yxn(P) = lim  r 1  {(CP-tnp 	Tp }  

Figure 4.14 This diagram illustrates the vectors used in the definition of 
the Lie derivative of a vector field Y with respect to the vector field X 
(tangent to some integral curve). 

Vp E Al. (4.12.3) 
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The definition of (0, is given in (4.9.5). In the particular case of 
fE -j'(A/) 

= (P=!* f = 92*ff 

and we have 

Yxf = Xf 	V f E -64-'( 111). 	 (4.12.4) 

It follows from (4.9.5) that Y x  is a derivation on the algebra of tensor 
fields 

	

Zx(SOT)=YxS0T+SOIxT 
	

(4.12.5) 

in particular if f E .9;(M) 

	

x(fT) = (Xf)T + f x T. 	 (4.12.6) 

From (4.9.6) we may deduce that Y x  commutes with contractions: 

„ X 1 , . . 	X s )) = (2x T)(c r 1 , . . 	a,, X 1 , . . 	X s ) 

+ E T(œ, ...,Zxa'k, • • . Œ, X1, • • 	Xs) 
k=1 

+ E T(ce i , 	ar, .x1, • • ., Yxxk, • • •, 
	 (4.12.7) 

k=1 

Applying the general definition of a Lie derivative to a vector field Y 
gives 

(GY)(p) = 	 - Yd. 

For any fE Ff'(M) 

(YxY)pf = l iton t -1 {R€P-t)*(Y qmp))1f Ypf) 

= lim t -1 	op)(9)*-J) 	Ypfl• 

Now from (4.12.2) 

= f + tXf + 0(t2 ) 

hence 

(4.12.8) 

(2xY)pf = limt -1  {Y g,r(p) [f — tXf + 0(t 2 )] — Y pf} 

= — Y p (Xf) + lim t -1  {Y, (p)f — Y pf} 

= — Yp(Xf) +  Jim  t -1  {( 17f)(T1(P)) 	(Yf)(P))• 

Since Yf E ?i(M) we see from (4.12.1) that the last term is Xp(Yf), 
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therefore 

(2xY)„f= x,(Yf) - Y„(xf) 

((3 x Y )f)(p)= (x (Y1) - Y(xf))(p) vp 

or 

2xY= [X, Y[ 	 (4.12.9) 

where [X, Y] XY — YZ is the commutator of the two vector fields. 
From this example we note that 2fx  Px  where f EY, (M). We say 
that x  is not .7, -linear in X. This reflects the fact that the Lie 
derivative along a curve depends on the parametrisation of the curve 
and not just on its image. When using a coordinate basis to evaluate x  
on tensor fields with contravariant components it is useful to note from 
(4.12.9) that 

2(3, a.e) (alax0 = [(a/ax:), (alax0] = O. 

The properties of x  that we have established are sufficient to deter-
mine it completely; it being the unique type-preserving derivation on 
tensor fields that satisfies (4.12.5), (4.12.6), (4.12.7) and (4.12.9). A 
consequence of these uniqueness properties is 

2 y1 — 2 [x. Y] • 	 (4.12.10) 

The commutator of two derviations that commute with contractions is 
a derivation that commutes with contractions. Certainly both sides of 
(4.12.10) agree when evaluated on a function, so we need only confirm 
that they agree when evaluated on an arbitrary vector field. This follows 
from the Jacobi identity (4.6.6). Whereas the established properties of 
the Lie derivative completely specify it, these being used in any practical 
calculation, the definition (4.12.3) conveys the geometrical significance: 

x T = 0 if and only if the tensor field T is invariant under the local 
diffeomorphisms generated by X. 

Example 4.5 
We shall evaluate Zx Y for X, YEFIE2  given by X = x(a13y) — 
y(alax), Y = x2 (alax) + xy(alay). First we shall apply the definition 
(4.12.8) directly. In the first example of §4.11 we found the integral 
curves of X starting at p = (a, b). This gives the diffeomorphism go, 

(a, b) 	op t (a , b) = (a cos t — b sin t , b cos t + a sin t). 

We have already computed  q_ Y, in example 4.2 (the map cp there 
being called cp_, here). So (4.12.8) becomes 
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Y x Y = lim t' [(x 2  cos t — xy sin t — x 2 )(3/8x) 

+ (xy cos t — y 2  sin t — xy)(3/4)1 

= lim t -1 (cos t — 1)[x 2 (3/3x) + xy(3/4)1 

— lim  t 	t[xy(alax) + y 2(3/3x)] /—o 

—xy(a/ax) — y 2(3/ay). 

We now evaluate Y x Y more practically, using the derived properties of 

2x Y = X(x 2 )(3/ax) + x 2Y x (3/3x) + X(xy)(a/3y) + xyY x (a/ay) 

= X(x 2)(3/ax) — x 2Y (/ax) X + X(xy)(a/ay) — xyY (alay)X 

= X(x 2)(alax) — x 2(a/ay) + X(xy)(3/3y) + xy(a/ax) 

since 2 ( ,a, ) (3/4) = 0 

= —xy(a/ax) — y 2 (3/4). 

Since the Lie derivative is a derivation on the tensor algebra it is also 
a derivation on the exterior algebra of differential forms. There are a 
number of useful properties of the Lie derivative acting on differential 
forms. First, since the exterior derivative on forms commutes with yo* 
for any smooth map cp, it follows that 

,Txd = dYx . 	 (4.12.11) 

This is a very useful property for calculations involving Lie derivations 
of covariant tensor fields expressed in a natural coordinate basis. In 
Chapter 1 we gave the definition of the interior operator on exterior 
forms with respect to a vector from the dual space. The interior 
operator i x  on a differential form co, with respect to a vector field X, is 
naturally defined to satisfy 

(ixcOp 

Thus the graded derivation i x  is ,GY-linear  in X. Since x  commutes with 
contractions it follows that 

[2 ,C , 	= 	YI• 
	 (4.12.12) 

When acting on differential forms the Lie derivative can be expressed in 
terms of the exterior and interior derivatives 

x  = d i x  + i x  d 	V X E FTM. 	(4.12.13) 

The equality of these expressions is most readily seen by noting that 
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both are derivations on the exterior algebra, commuting with d and 
agreeing on functions. For if f E Fi(M) 

(d i x  + ix  d)f = i x  df = df(X) = Xf = xf. 

If  û E FARM and FAM then 

(d i x  + ix  d)(a A13) = d[ixœ p + (-1)Pa' A ix r6]  

+ ix [dcr A p + ( -1 )Pa A clfi] 

= dixa A + (-1)P- li x a A Cilq ( - 1)" da A ix13 + A dixi6 

+ ixdœ A p + ( -1 )P+1 da A ixfi ( -1 ) P ixa A dfi 

+ cr A ixdfi 

= (di x  + i x  d)cr A fl + CV A (dix 	ix d)P- 

It is straightforward to see that (d i x  + i x  d) commutes with d since 
d 2  = O. The existence of a local coordinate basis for M ensures that the 
above properties are sufficient to establish (4.12.13). 

Example 4.6 
For Xe FTIF1 2  and a e  FT*1R 2  we shall evaluate Y x cv, first from the 
definition then, as will always be done in practice, from the established 
properties of 2x . We take X = x(3/4)— y(313x), œ = x 2  dx + xy.  dy. 
As was noted in the previous example we may use earlier examples to 
proceed from the definition 

Yxœ 

= hm t -1  [(x 2  cos t — xy sin t — x 2 )dx + (xy cost — y 2  sin t — xy)dy] 

= —xy dx — y 2  dy. 

alternatively, 

xœ = X(x 2)dx + x 22xdx + X(xy) dy + xyI x dy 

= X(x 2)dx + d(Xx) + X(xy)dy + xyd(Xy) 

= —2xy dx + x 2  d(—y) + (x 2  — y 2) dy + xy d(x) 

= —xy dx — y 2  dy. 

For the vector field Y of the previous example 

(2x oe)(Y) = —x 3y — xy 3  

cr(Ixr) = — x 3y — xy 3  

whereas 

cr( Y) = x 4  + x2y2. 
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These are indeed related by 

Ifx(œ(Y)) = (Z;(001 craxn- 

4.13 Integration On Manifolds 

The differential forms derive a certain prominence amongst the tensor 
fields on a manifold from the fact that they give rise to a theory of 
integration, generalising the Riemann integral in IFIr. We recall that such 
integrals may be defined as the limit attained by a Riemann sum of 
terms, each consisting of a measure associated with some (usually 
cubical) subdivision of a domain multiplied by the value taken by the 
function to be integrated at some point within each cell of the 
subdivision. We shall assume that the reader is familiar with the 
methods of evaluating multiple integrals in FI r  by means of iterated 
integrals. The classical notation for a Riemann integral suggests a 
natural definition for the integral of an r-form on IR r  over an oriented 
domain. With such a definition a mapping from IFir to an n-dimensional 
manifold M enables an r-form on M to be integrated: we use the map 
to pull it back to IRr where the integration is defined. Properly 
formulated the above idea gives the theory of integration of differential 
forms over oriented chains. 

Let [0, 1]r be the set of points p E IFIr that satisfy 0 	ak(p) 	1, 
k = 1, . . r in any natural chart  { i'}  for  IRT.  Thus [0, 1 ] r is the unit 
cube in IR r . Introduce Q r  for the natural 'volume' r-form da' A da 2  A 
. . . A dur which serves to orient [0, 11r. An oriented r-cube on an 
n-dimensional manifold M is the pair (Cr ,  Q T )  where Cr is a C map 
Cr: [0, l] r  M. (To say that CT is C' on the closed set means that 
there is a C' map Ce r  between open sets containing the domain and 
image of Cr such that Cr is obtained from T r  by restriction.) In a local 
chart (U, x)  we may represent the map Cr : p E [0,  hr 1-->qEM by its 
components, W, . . A') 

x(q) = Ar(al(p), . . 	u(p)) 	i = 1, . . 	n. 	(4.13.1) 

Every oriented r-cube gives rise to 2r oriented (r — 1)-cubes called its 
oriented (r — 1)-faces. Each face is defined by restricting the map Cr to 
points p for which al(p)= e, where E = 0, 1. Denoting the (r — 1)- 
faces by Cro-,)  [0,  11r-I 	M we have then 

C ro-.;)(a l (P) ,  • • •, 01-1 (P), cri+l(P), • • •, u(p)) 

	

= Cr(u l (P), • • •- 01-1 (P), e ,  a1+1 (P), • - 	ar(P)) 

j = 1, . . 	r; E = 0, 1 	 (4.13.2) 
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Each (r — 1)-face may be given a unique orientation S -2, induced 
from the orientation of Cr: 

Q( 	= (_ )E+1 i (alaco g-2 r 	j = 1, . . 	r; E = 0, 1 (4.13.3) 

from which it follows that the faces labelled by e = 0, 1 have opposite 
induced orientations. An oriented 1-cube has two oppositely oriented 
0-faces (its end points or vertices) each of which is assigned an 
orientation + or —. We may recursively define k-faces of Cr, for 
k --= r — 2, r — 3, . . 0; these being the k-cubes obtained by similarly 
restricting the (k + 1)-cubes. The 2 r  0-faces (or vertices) of Cr are the 
0-cubes obtained by restricting the map cr with all ai(p) equal to zero 
or one. For bi  E IF1 the finite sum E i bi Cri , that maps some set {Cri , 52;} 
of oriented r-cubes into M, is called an oriented r-chain (with real 
coefficients). 

The oriented r-cube (Cr ,  Q T )  has a boundary (r — 1)-chain denoted 
by a(Cr ,  Q T )  which is defined as 

a (CT,  Q r) = E E (C, 	) 
	

(4.13.4) 
i=1 e=0,1 

The boundary operator 3 extends naturally to all r-chains: 

3(E bi (Cri , S22)) = E 	Q;). 

It follows directly from the definition of Cr-2  that 33 = 0 since the 
(r — 2)-faces cancel pairwise. 

From an r-form a, defined on the image of  CT,  we can use the map 
Cr to 'pull back' a to [0, li r . The r-form (Cr)* cr has the representation 
hdcr il A  do '2 A • • A do " , h  E 9; (Er ) .  The orientation Q r of Cr is now 
used to define E r  = ±1 by 

Q r  -= Er da t ' A da l ' A • • A da l'. 

We define the integral of Cr*a over [0, 11 r  in terms of the Riemann 
integral of h 

Cr* Cr = E r 	h dal' . . do". 
fto,ir 	 [o,iir 

This may be evaluated as the iterated integral 

	

Er Jf i 	fi(f. 
h(al , a2 , .. 	a') dal)da2  . 

	

o 	J0 0 
. . dar . 

We may now define the integral of an r-form on M over an oriented 
r-cube 

= (Cr). 
	

(4.13.5) 
Jc 	itou'  

This definition is extended to include 0-forms by defining the integral 
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of a 0-form over a 0-cube to be the difference between the values of the 
0-form taken at the two end points. If  q.  : [0,  hr  [0,  hr  is a smooth 
reparametrisation that preserves orientations and C'r = Cr  o ço then 

fc" = LT ) a  

-=
o.iy (Cr 

oTr a=  f 	49*(Cr* a) [ 	 [my 

-=  I 	Cr*a -=  I Cr*a 
cp[0,1y 

since the last equality follows from a change of variable a 1—* 	= T(a) 
in the iterated integral. Hence 

and we say that the oriented r-cubes Cr and C' r are equivalent. The 
integral of a over the r-chain C =- X i b,C; is defined to be 

a= b 1 J  , 	• fcr 

The culmination of this treatment of r-form integration over oriented 
r-chains is the elegant generalisation of Stokes's theorem afforded by 
this formalism. For any smooth r — 1 form 13 defined in the range of the 
r-chain C(r 1) we have 

fcdP = 
	

(4.13.6) 

The definitions are such that this follows immediately from the result in 
Fir. First we observe that (4.13.6) will hold for an arbitrary chain if it is 
true for any r-cube; then we use definition (4.13.5) to relate the 
integrals to Riemann integrals. Since C*d = dC* the proof of (4.13.6) 
reduces to that of Stokes's theorem in Br. Since the Riemann integral 
can be written as a repeated integral the proof finally rests on the 
fundamental theorem of calculus; the integral of a real function is the 
anti-derivative. 

An immediate consequence of Stokes's theorem is the generalisation 
of the rule for 'integration by parts' to exterior products of forms on a 
manifold. If E FA r M,  /3e FA q M then 

d(a A 	- da A + (-1)r a A c1/3. 

Consequently for some (r + q + 1)-chain C 

fc  d(a A  (3) = fc  dœ A  + (-1)r fc  a A  cif3 = fac  a A 	(4.13.7) 

by Stokes's theorem. If a c = 0 or a,  A /3 = 0 on a C we have the simple 
result 
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t da' 	= (-1)r +1  fc  a A  df3. 	 (4.13.8) 

Example 4.7 
We consider the chain C: 

C: [0, 11 2  --->IF1 3  

(r, a) 	(sin 7TT cos 2a, sin 777 sin 2ra, cos ITT). 

If (r, 0, cp) are the standard polar coordinates for F1 3  then this map 
sends (r,o-) to the point on the unit sphere with polar coordinates (1, 7TT, 
2ua). The spherical polar coordinates 09, (p) do not cover the sphere, 
there are coordinate singularities at 9 = 0, it and ço = 0, 217.  (see 
figure 4.15). Thus the C chain C is a diffeomorphism from the interior 
of its domain onto its image, whilst the boundary of the cube is mapped 
onto the points at which the coordinates are singular. We will integrate 
the 2-form co -= r 3  sin0 de A dcp over C. Note first that co is smooth on 
the whole of E 3 . This can be seen by changing to Cartesian coordinates 
that cover all of IR 3 , giving co = x dy A dz + y dz A dx + z dx A dy. We 
have C*c10 = rdr, C*4 = 2uda giving C*co = 2u2  sin (ntdr A da and 

I (it 

	

CC0 * = 2u 2  i 	sin (ur)dr)da = 4u. 
.f[o,ij2 	

* o 
	o 

Figure 4.15 The two-sphere as a two-chain. 
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In the above example it is tempting to say that we have integrated 
'over the surface of the unit sphere', although we can so far attach no 
meaning to this statement, our integrals of forms being over chains. 
However, a class of chains (a member of which was considered in the 
example above) can be put into correspondence with subsets of an 
oriented manifold N, such that we can unambiguously refer to integra- 
tion over the subset. An oriented r-cube Cr is said to parametrise a 
region S of an oriented r-dimensional manifold N if Cr([0,1]") = S, Cr 
is a diffeomorphism on the interior of its domain and the orientation of 
the cube is compatible with that of the image. That is, if {(3/3°1} is an 
oriented basis for the cube then {C„p (a/aaa)} is positively oriented with 
respect to the orientation of N for all points p for which C a 
non-singular linear transformation. (These conditions are met in the 
above example with N the 2-sphere with orienting 2-form co.) We can 
certainly parametrise a region S with more than one r-cube, the crucial 
result being that if co is an r-form on N which is parametrised by both 
Cr and C' r  then f co) = f c rw. It is therefore meaningful to define 

=„) f is 	c wr  
where C' parametrises S. Although we shall not prove the above we 
observe that it is certainly reasonable. On the interior of their domains 
Cr and C' r  are invertible, and hence (Cr) -1 0 C' ' is an orientation-
preserving diffeomorphism between the interiors of the domains. We 
have already shown that integrals are invariant under changes of chain 
that are related by orientation-preserving diffeomorphisms, and so to 
prove the above result it is necessary to show (as one would expect) that 
the boundary does not contribute to the integral. (Such an argument 
shows that parametrising cubes can be a little more general than defined 
here.) 

An r-chain C --= EX", parametrises a region S if the image of C is S, 
each Cr, parametrises its image and the images of the interiors of the 
cubes are non-intersecting. Again one can show that the integrals of any 
smooth r-form over any two parametrising chains are equal. The proof 
that one can parametrise certain regions (for example, compact mani-
folds and compact manifolds with boundary) is not simple and we refer 
the interested reader to the literature. 

4.14 Metric Tensor Fields 

A metric tensor field g on manifold M is a section of a second -rank 
tensor bundle over M. Restricted to a point p E M it provides a metric 
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tensor on the space TM.  If g is a symmetric positive-definite non-
degenerate metric tensor field the manifold is said to be a Riemannian 
manifold. If g is a symmetric but indefinite non-degenerate metric 
tensor field the manifold is said to be a pseudo -Riemannian or (semi-
Riemannian) one. For the special case of signature (p, 1) a pseudo-
Riemannian manifold is called Lorentzian. 

Let us develop the description of a (pseudo-) Riemannian metric in a 
local chart (Um , (p m ). If {dx- P} is a local basis for 1 forms for T*pM we 
may write the tensor field g as 

g = g dxP 0 dxv 	 (4.14.1) 

where the n(n + 1)/2 real-valued functions g a, = g(313.0, ataxy) satisfy 
gpv = gyp (1, y = I, . . n). A g-orthonormal basis {X a } of  TM  is one 
that satisfies 

	

g(x a, xb) = nab = ±1 	a, b = 1, . . n. 	(4.14.2) 

An ordered basis of local vector fields defines a local frame on M and 
an ordered basis of 1-forms a local co-frame. The components n ab  of g 
in a g-orthonormal co-frame are real constants and we may write 

g = nabea 0  et' 

where {ea} E FT*M is a g-orthonormal co-frame satisfying 

ea(X b ) = 	Va, b =1, ...,n. 	(4.14.3) 

Fields of frames are sometimes called moving frames. As described in 
Appendix A the metric tensor enables TM  and T*pM to be related. If 
a E FT*M then a' c FTM is defined by 

	

g(tr, X) = a(X) 	V X EFTM. 	(4.14.4) 

The contravariant (pseudo-Riemannian) metric g* is a tensor field on M 
that when restricted to a point p E M provides a metric on the vector 
space T*pM, defined by 

g*(cr, 16) = g(ef, ,(3) 	V cy, E FT*M. 	(4.14.5) 

In a local chart we may write 

g* = gPvalaxv 0 Waxy = nabx, o x b  

where gvo = gV E 5-e(M) and 

g Pvgv = 6tP4  

?J ah n& = 

The Gl(n, E) elements e a° relating natural and g-orthonormal co-frame 
fields, 
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(4.14.6) ea = ea'clx 0  

are now functions on M. Some authors refer to the co-frame {ea) as an 
n-bein, others reserve the term n-beins for the n 2  functions e E 
It should be noticed that, unlike the natural co-basis, in general de' 	0, 
a =1, 	n. 

If the 1-form co is written locally as co = co m dxt` = co ae° then the 
metric dual is c7) = w3/3xP = coaX„, where 0 1  = rya), and 
a). =abW b .  Similarly, if locally X = 13.,va = a , then 

= aea where 4 = g m„v and a  -= ?l obe (see Appendix A). 
The index notation is doing double duty here, the Greek and Roman 
alphabets indicating that the components are with respect to a natural 
and orthonormal basis respectively. The symbols (0 = co(dxP) and 
co° = ca(ea) obviously represent different functions on M. Thus it is 
potentially hazardous when working with components to give  i and a a 
numerical value. Clearly a safer (but rarely used) procedure would be to 
write unambiguously 

= ca(alaxP)dxa = w(X)e' 

X = cl.,0(X)313xP = ea(X)X a . 

We discussed in Chapter 1 how to use a metric on co-vectors to 
construct a metric on p-forms. That procedure can now be generalised 
to construct a metric on differential forms. If M is an n-dimensional 
orientable manifold with a fixed atlas, specifying a positive orientation 
say, then one may smoothly assign an orientation to TM  for all p E M. 
Equivalently, if (Ua , yo a ) and (Ub , cp b ) are any overlapping charts in this 
atlas, with coordinate functions {.,rg} are {yi' }  respectively, then the 
real-valued function f on Ua  fl Ub , defined by dX 1  A dX 2  A . . clx" = 
fdy 1  A dy 2  A . . . A dyn, is everywhere positive since f is just the 
Jacobian of the transition map between charts. Thus we are assured of a 
non-vanishing n-form on any orientable differential manifold. If such a 
manifold admits a (pseudo-)Riemannian metric tensor field then a 
canonical choice of orienting n-form is z = e l  A e 2  A . . . A e n  where 
{ea} is a g-orthonormal moving co-frame. We may now extend the 
construction of the Hodge map given earlier to M with *1 = z. This 
enables the domain of the Hodge map to be generalised to sections of 
AM. 

If  p :  M 	N is a smooth diffeomorphism between (pseudo)- 
Riemannian manifolds M and N such that the metric tensor fields g m  on 
M and g N  on N are related by 

gm  _ 99*g N  

then cp is said to be a smooth isometry. As a special case if M = N 
then p is a smooth isometry of M. If {cp,) is a set of such maps on M 
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then they form the isometry group of M under composition. The set of 
vector fields {KJ that generate these isometries are known as Killing 
vectors. Because the commutator of Lie derivatives is the Lie derivative 
with respect to a commutator of vector fields, in the neighbourhood of 
any point in M the Killing vector fields form a Lie algebra under the 
commutator; [K„ K1 1 = c,,kK k  where {c,1 1'} are the structure constants 
in this basis. The isometry group defines a Killing symmetry of the 
(pseudo)-Riemannian structure on M; the metric tensor field satisfying 

Kg = 0 

for any vector field K in the algebra of Killing vectors. In general a 
(pseudo)-Riemannian manifold will admit no isometries, and hence 
possess no Killing vectors. Furthermore, there is a maximum number, 
n(n + 1), of Killing fields that can exist for any metric on M. 

Example 4.8: Euclidean Manifolds 
The topological space whose points consist of the n-tuples in E n  may be 
given a manifold structure by adopting an atlas consisting of the identity 
chart that assigns a unique element of IR n  to each point. On any open 
sets U, V on this manifold one may adopt 'local curvilinear coordin-
ates', T u  : U IR", cp v  : V IR" provided T u  o  ço -,» is smooth and  1: 1 
with a non-zero Jacobian on U n V. This manifold has a natural 
Riemannian structure. In a global chart {x', 11:1") the metric tensor field 
takes the form g = Et , i , „dx`Odxl. The manifold IR n  with this 
Riemannian structure is a model for an n-dimensional Euclidean man-
ifold. Any n-dimensional Riemannian manifold isometric to this one 
under a (smooth) diffeomorphism provides a model for the space of 
Euclid. Such manifolds admit In(n — 1) rotational isometries (the integ-
ral curves of the Killing vectors lying on an (n — 1)-sphere) together 
with n translational isometries (with the Killing vectors having open 
integral curves). The group of these isometries is known as the Poincaré 
group of n-dimensional Euclidean space. 

Some of the ideas in this chapter are illustrated in Appendix B where 
the familiar vector calculus of three-dimensional Euclidean space is 
reformulated. 

Bibliography 

Abramhams R, Marsden J and Ratiu T 1983 Tensor Analysis and Applications 
(New York: Addison-Wesley) 

Bishop R L and Goldberg S 11980  Tensor Analysis on Manifolds (New York: 
Pitman) 

Clarke C 1979 Elementary General Relativity (London: Edward Arnold) 



METRIC TENSOR FIELDS 	 175 

Dodson C T J and Poston T 1977 Tensor Geometry (London: Pitman) 
Hawking S and Ellis G 1973 The Large Scale Structure of Space— Time (Cam-

bridge: Cambridge Unversity Press) 
Kobayashi S and Nomizu K 1963 Principles of Differential Geometry (New 

York: Interscience) 
Poor W A 1981 Differential Geometric Structures (New York: McGraw-Hill) 
Thirring W E 1978 A Course in Mathematical Physics: 2. Classical Field Theory 

(Heidelberg: Springer) 



5 

Applications in Physics 

5.1 Galilean Spacetimes 

Since the time of Aristotle the evolution of the language for physics has 
to a large extent been governed by the choice of an appropriate event 
space. One may formulate the Galilean relativistic description of physics 
in terms of a four-dimensional fibre bundle in which each fibre is a 
Euclidean three-space and the projection is onto a one-dimensional 
oriented Euclidean time manifold. Events in this Galilean bundle are 
assigned a standard time point by this projection and the one-
dimensional Euclidean metric on the base may be used to measure time 
differences between such events. Such elapsed times are unambiguous 
up to an arbitrary scaling corresponding to a choice of time units. If the 
time difference is zero the events are considered to be simultaneous and 
it is then possible to use the standard Euclidean metric on the 
corresponding fibre to define their spatial separation. 

A family of curves, members of which intersect each fibre only once 
such that each point of every fibre lies on one and only one curve 
foliates the bundle. 

Any two non-simultaneous events that lie on the same curve can be 
regarded as having the same spatial position with respect to this family. 
Each such family defines a coordinate system. The Galilean bundle is 
provided with a preferred class of families of curves; the trajectories of 
freely falling particles moving with uniform Newtonian velocities. They 
define the class of inertial reference systems. This dynamical structure 
endows the bundle with a preferred parallelism. We shall return to its 
mathematical formulation when we encounter the Newtonian connec-
tion. (The bundle may be given alternative parallelisms, for example, 



GALILEAN SPACET1MES 	 177 

one might single out those reference frames in which particles have a 
uniform velocity when falling freely in some Newtonian gravitational 
field.) 

In addition to the maximal set of six Euclidean Killing vectors on each 
fibre and the time translation symmetry, the existence of the preferred 
class of inertial frames endows the Galilean bundle with another 
three-parameter symmetry group corresponding to the transformation 
between inertial frames that differ by a uniform Newtonian three-
velocity. The complete 10-parameter Galilean group is the relativistic 
group for Galilean physics (see figure 5.1). 

IR 3  

IR' 

t(p) 

t' ( p) 
• 	 

Figure 5.1 The Galilean bundle with a Euclidean three-space 
assigned an arbitrary time coordinate by projection. 

The existence of the above structure for Galilean relativistic spacetime 
is a basic tenet of Newtonian dynamics. Physical descriptions prior to 
the introduction of a lorentzian relativistic' structure for spacetime 
implicitily assume such a time-preferred fibre pattern for the spacetime 
manifold. 

Two clocks at rest in a Galilean inertial system may assign different 
time parameters and even run at different rates relative to each other. 
However, it is a fundamental postulate of Galilean relativistic physics 
that the behaviour of all good clocks is independent of their relative 
state of motion. (By a good clock one means a clock that is robust and 
whose behaviour in external fields of force can in principle be compen-
sated for.) It is further assumed that all good clocks may in principle be 
synchronised in an inertial system and used to calibrate the evolution 
rates of all physical processes. In Newtonian physics observers may also 
be equipped with measuring rods as well as clocks synchronisable with a 
hypothetical universal time. Rigid rods are used to construct rigid pieces 
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of apparatus such as standard metres, telescopes, oscilloscopes etc and 
the Newtonian description of phenomena relies fundamentally on such a 
framework. 

However if, as Einstein did, one builds a world picture based on a 
spacetime geometry with a Lorentzian-signatured metric structure such 
'commonsense' operations as length and time measurement cannot be 
taken as primitive concepts. Thus a more appropriate notion of a clock 
is required and one must relinquish measuring processes based on 
extended rigid structures since they are strictly undefined as primitive 
operations. With any new set of measurement definitions associated with 
classical observers in a refined spacetime picture we must expect to be 
able to recover in some approximation the valuable global Newtonian 
spacetime notions. Einsteinian relativity has sharpened the notion of a 
good clock and made redundant the concept of a preferred time 
projection. Physical clocks that approximate the ideal clocks of a 
non-Galilean description measure the elapsed time between events in IR 4 

 as a function of their relative motions, and it is only for clocks moving 
with uniform relative Newtonian velocities, small compared with the 
Newtonian velocity of light, that the notion of elapsed time between 
events can be divorced from the relative state of motion of the 
measuring clocks. Such a reformulation is often referred to as a 
relativistic description. In the following we are motivated towards one 
particular relativistic formulation: that inherent in a reformulation of 
Maxwell's equations on a four-dimensional manifold possessing a 
Lorentzian metric structure and a Poincaré isometry group. 

We shall follow the historical path that led Einstein to this elegant 
(and physically more accurate) world structure by examining one of the 
most successful of all physical theories: classical electrodynamics. 

5.2. Maxwell's Equations and Minkowski Spacetime 

Physical theories are usually formulated in terms of quantities with 
physical dimensions. The assignment of a physical dimension to a 
quantity often follows from its operational definition in terms of some 
measuring process, a coherent choice of units often facilitating the 
expression of a physical law. Our mathematical introduction of tensor 
fields is based upon an underlying manifold where chart coordinates and 
components of all tensors may be regarded as physically dimensionless 
numbers. However, in order to compare such a tensor field description 
with a physical theory written in terms of dimensioned quantities one 
must effect a transformation. If a physical theory is formulated in terms 
of tensors over the real field one may restore all physical dimensions 
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appropriately as follows. The dimensionless tensor field equations de-
scribing the theory are initially expressed in a local chart with dimen-
sionless spacetime event coordinate maps, say (t, x 1 , x', x 3 ). Chart 
transformations are then performed to some standard coordinates with 
assigned physical dimensions. If necessary, new tensors with physical 
dimensions can be defined by scaling dimensionless ones by some 
constant parameter with appropriate dimensions. The numerical values 
chosen for such dimensioned parameters establish the choice of units for 
the system. If one wants to work with coordinates having the standard 
dimensions of time and length, say (t, x 1 , x 2 , .x 3 ), one may introduce 
three standard dimensioned units such as c, a standard speed, h a 
standard unit of action and a reference mass  m 0 .  The restoration of 
physical units follows from the simple chart transformations 

t = 	oC 2  Ih)t 

X = (M. oCIOX k 	k = 1, 2, 3. 	 (5.2.1) 

A dimensionless tensor field will have components with dimensions 
when referred to a basis induced from a local chart with dimensioned 
coordinates. 

It is a fundamental property of matter that it can exert a long-range 
influence on other matter by both the effect of its mass (the gravitation-
al interaction) and its electrical charge (the electromagnetic interaction). 
The latter is a property that comes in two opposite varieties or polarities 
that are responsible for the 'attractive' and 'repulsive' forces of elec-
trostatic interaction. (No analogous 'repulsive' long-range Newtonian 
gravitational interaction between matter has been observed.) After the 
pioneering efforts of Faraday and Maxwell the electromagnetic interac-
tion between matter is described in terms of an intermediary physical 
field. This field was originally conceived to consist of a pair of vector 
fields (E, B) on Euclidean IR 3  parametrised by a universal time t. If we 
denote by the (time-dependent) function p —> IR the electrical charge 
density in C M -3  and by j the (time-dependent) vector field on IR 3  
describing the charge crossing normally a unit area (the current density 
in A m -2) then, in mxs dimensioned units, (mass in kilogrammes (kg), 
time in seconds, length in metres (m)) the electric E and magnetic B 
vector fields satisfy Maxwell's equations: 

div E = pie° 	curl E = —aBlat 

curl B = peuj + —
1 

—
aE 

div B = 0 	 (5.2.2) 
C 2  at 

We are assuming that the sources (p,j) exist in a free space or 'vacuum' 
environment. If E = E,(/ax')  e f TB' then by (3E/at) one means 
(a E ,/3t)(3/3x where, in the chart (Lc', x 2 , x 3 ) for IR 3 , the Euclidean 
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metric tensor field has the representation g = Z= idx'Odx'. The con-
stants E0 , po  and c = (EOM) -112 ensure thif the equations are dimen-
sionally coherent. They are assigned dimensions as follows 

Luoi = IVIL  Q2 [en] = 
[T2 Q 2 1  

ML 3  

The functions ( E „ B ,):111 3  —> 11=1, each depending on the time para-
meter t, will be called the MKS Cartesian components of the electric and 
magnetic field respectively. The Cartesian components of the electric 
field have dimensions [ML/T 2 Q], with MKS units of N C -1 , whilst those 
of the magnetic field have dimensions [M/TO] with MKS units of Teslas 
(or Wb m -2 ). 

The structure of this system of coupled partial differential equations 
permits one to construct a remarkable synthesis between the fields 
(E, B). This may be achieved by reformulating the system in terms of a 
pair of tensor equations on the event manifold 11:1 4  endowed with a 
particular metric structure. Instead of associating the Cartesian compo-
nents of  E, B with vector fields on 111 3 , they are used to construct a 
2-form E on 11 4 . Using a local chart (t, x 2 , X 3 ) we define 

	

F = B + dt A E 	 (5.2.3) 

where 

B = B ,dx 2  A dX 3  B ,dx 3  A dx 1  + B /CIX 1  A dX 2  

E = E 1 dx 1  + E,dx 2  + E 3 dx 3 . 

In a similar way we unify the components of the current and charge 
density to construct the 3-form j: 

	

= cp o ./ A dt + (pIcE 0 )dx 1 	A dx 2  A dx 3 	(5.2.4) 

where 

J = li dx 2  A dx 3  ± i2dX 3  A dx 1  + 1 3 dx 1  Ad.  

The {j,} are the components of the vector current j. The choice of 
dimensioned coefficients ensures that j and F have the same dimen-
sions, namely [h/Q]. Note that, for any form f, df and f have the same 
physical dimensions: the exterior derivative does not change the physical 
dimensions of the form on which it acts. 

The metric tensor field adopted on IR 4  is given in this chart by 

	

g = —c 2dtOdt + 	 (5.2.5) 
— 

Hence (cdt, dx') is an orthonormal co-frame with respect to this g. In 
terms of the Hodge map * associated with this Lorentzian-signatured 
metric Maxwell's equations may be expressed elegantly as the exterior 
equations 
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d* F = (5.2.6) 

dF = O. (5.2.7) 

One further and desirable simplification can be made: the set can be 
written entirely in terms of dimensionless tensors. First it is trivial to 
define dimensionless forms F and j by scaling each with any convenient 
parameters having the dimensions [h/Q]. We choose to write 

F = (eolh)F 

j = (eolh)1 

where e 0  is the elementary charge on the electron. In general, equations 
involving the Hodge map make reference to a specific metric. The 
equations (5.2.6) and (5.2.7), however, remain unchanged if we replace 
g by Ng where A is any positive-definite real-valued function on IR 4 . 
This foams since F is a 2-form in four dimensions. It is convenient for 
us to exploit this freedom here to rescale g by any constant with the 
dimensions of [1_ ] 2  and use a dimensionless metric tensor field g 
L -2g. We shall denote the Hodge map associated with g as simply * and 
rewrite the Maxwell equations: 

d*F = j 
	

(5.2.8) 

dF = O. 	 (5.2.9) 

One is of course free to use either dimensioned or dimensionless 
coordinates in extracting component equations from this set. We have 
spelt out in detail the straightforward manner in which one can make 
contact with the conventional MKS dimensioned field and source compo-
nents. Henceforth we shall work with dimensionless coordinates and 
tensors. It is worth stressing that although we have built up these 
equations from the traditional Cartesian-oriented approach the equa-
tions are now fully tensorial on the four-dimensional manifold with 
metric tensor g. We have extricated ourselves from a particular chart 
including a particular time map. This is a major achievement and may 
be regarded as the cornerstone development in Einstein's 'relativistic' 
world view. 

A metric such as g that has a signature with one minus sign is called 
Lorentzian. A four-dimensional manifold with Lorentzian metric will be 
called a spacetime. Tangent vectors in a Lorentzian spacetime may be 
classified into spacelike (positive-norm), timelike (negative-norm) or 
null (zero-norm) vectors. The tangent space is said to possess a light 
cone structure conferred on it by such a metric. Furthermore, timelike 
tangent vectors may be classified into future-pointing and past-pointing. 
If X p  is assigned a future-pointing role then —X,,  is defined to be past 
pointing at p. If this assignment can be made unambiguously over the 
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whole manifold then the spacetime is said to be time orientable. It 
would be rather difficult to interpret physical phenomena on a manifold 
that was not time orientable. 

The spacetime modelled on TO with metric as in (5.2.5) is called 
Minkowski spacetime. Thus Minkowski spacetime admits a chart with 
coordinates (t, x 1 , x 2 , x 3 ) in which the metric tensor field is given by 

3 
g = —dtOdt + 	dx'Odx'. 	 (5.2.10) 

= 
We observe that the vector field (aim has a negative norm whilst 
(3/3x has a positive norm for i = 1, 2, 3 

g((3/at), (a/a0) =  —1 

g(alaxt, 3/3x') = 1 	(no sum). 

Minkowski space M possesses a 10-parameter group of isometries. In 
a chart in which the metric is given by (5.2.10) these isometries are 
generated by the following Killing vector fields 

To  = (3/30, Tk 	 k = 1, 2, 3 

K3 = X 1 (alaX 2 ) — X 2 (313X 1 ) 

K2 = X 3 (alaX 1 ) — x 1 (3/3x 3 ) 	 (5.2.12) 

K 1  = x 2 (3/3x 3 ) — x 3 (3/ax 2 ) 

B k  = t(alaXk ) 	X k (313t) 	k = 1, 2, 3. 

The isometry group of Minkowski space is called the Poincaré group. 
The vectors T = 0, 1, 2, 3, generate translations; the integral curves 
being open lines. The K i = 1, 2, 3 generate rotations; the integral 
curves lying on the surface of a sphere. The Bk,  k = 1, 2, 3, generate 
boosts, the integral curves being open, forming hyperbolae. 

Exercise 5.1 
Verify that if X is any of the vector fields in (5.2.12) then 

xg = 0. 

The structure of Maxwell's equations motivated the introduction of 
Minkowski space. In fact the form of Maxwell's equations arrived at, 
(5.2.8) and (5.2.9), is immediately valid in any Lorentzian spacetime 
(one not necessarily having the large number of isometries present for 
Minkowski space). Such a generalisation is the essence of Einstein's 
incorporation of arbitrary gravitational interactions into the underlying 
geometry of spacetime. 

(5.2.11) 
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5.3 Observer Curves 

The classical physical interpretation of the components of a tensor field 
on spacetime is associated with the notion of an observer curve. To 
introduce the notion of local observer time into the spacetime manifold 
M we exploit the lightcone structure of the Lorentzian metric. A curve 
C whose image passes through p E M is said to be timelike at p if its 
tangent vector is timelike there. Next consider the physical interpreta-
tion of the parametrisation of C: [0, 1 ] —> M. If (t, xk) are local chart 
maps for M we represent C parametrically by the equations 
t(p) = C°(-1), xk(p) = Ck(r) and we restrict ourselves to monotonic 
functions of r that make C a future timelike curve: 

g(C.a r, 	< 0. 	 (5.3.1) 

The length of C is defined to be the real number 

s = fo Lg(C * 3„ c,3011/2d.r. 	 (5.3.2) 

Under a change of parametrisation r 	r'(r) mapping [0, 1 ] —> [0, 1] 
with (a ri/a r)  >0  V r then C3, )--> (a Tr')(Ca r,) and dr 	(a r/aildf , 
so we see that the integral is invariant under such a reparametrisation. 
A parameter T is said to provide a proper-time parametrisation for C if 

c*a r) = —1. 	 (5.3.3) 

An ideal observer is defined to be a proper-time parametrised 
future-pointing timelike curve on spacetime. The observer image is 
represented as a history or world line on the manifold. Elapsed time 
between events on the world line, as measured by such an observer 
curve, is determined by the difference between the affine parameter 
assigned to each event. It is a fundamental assumption that there exist 
standard clocks that operationally determine such an affine parametrisa-
tion along their histories. For such curves (5.3.2) implies that the time 
between events linked by an observer curve is equal to the length of 
world line linking them; it is measured by a standard clock accompany-
ing the ideal observer. This time measure is often called the proper time 
measured by C. It does appear that many natural processes (for 
example, decaying particles) can be used as standard clocks registering 
proper time. Once one is convinced of the existence of microscopic 
natural clocks for proper time, macroscopic clocks (assemblies of micro-
scopic clocks) can then be synchronised using light signals, or any other 
physical mechanism that supports a formulation in terms of a locally 
Lorentzian geometry. Once this definition of a good clock is adopted it 
becomes evident that there is no unique proper time interval between 
two events that can be joined by a family of timelike observer curves. 
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Each curve will in general measure a different time interval since each 
curve has a different arc length. 

A timelike vector field V is called a world velocity (or four-velocity) 
vector field if g(V , V) = —1. As an example consider the vector field 

V = k(a t  + 	&a xe) 	 (5.3.4) 
J = 

in a local chart (t, x 1 ) in which the Minkowski metric g takes the form 
(5.2.10). The field is labelled by real constants k, y 1 , v 2 , v 3 . V is a 
velocity vector if 

k = [1 — ( y 1 ) 2  _ ( y 2)2 _ ( v 3)21-112 	 (5.3.5) 

What observer curve C has a tangent vector that coincides with V at 
each p on its image? For this we require 

3 
C*a r l p  = (at/a r) a tlp 	E(axj/ar)axilp = v1„ 

i= 1 

that is ((3t/ar), (ax)/ar)) = k(1,  vi).  These equations fix the paramet-
risation of C up to an additive constant for r. For C labelled by the 
triplet y = (y 1 , y 2 , 3 ) E IR 3  a family of observer curves through the 
origin of the (t, xk) chart has the representation t(p) = kr, 
x 1 (p)= kviT or Op) = v1 t, j = 1, 2, 3. For arbitrary constant t.7 the 
vector field V is a Killing field. We define a stationary observer to be a 
proper-time parametrised integral curve of a timelike Killing vector. 
Thus the vector field V, with arbitrary constant ty, yields a three-
parameter family of stationary observers in Minkowski space. 

Any global Minkowski space chart in which the metric takes the form 
(5.2.10) is often referred to as an inertial chart. The chart maps define a 
global co-frame of exact 1-forms. The vector field V defines a congru-
ence of ideal observers, each ideal observer being an integral curve of 
V. One often sees the phrase 'an inertial frame' or 'an inertial system' 
in this context. Care will be exercised in not adopting this phrase too 
readily: we have not assigned a frame of vectors along any observer 
curve so cannot at this stage, strictly speaking, make reference to an 
observer's inertial frame. However, the frame {a t , 3,1 }  associated with 
the inertial chart is an example of an inertial frame along the integral 
curves of 3,. We shall return to the general definition of observer 
frames after we have introduced the concept of vector transport. 

The equation of the world line of a stationary observer in an inertial 
chart suggests that the triplet y be identified with the components of a 
Newtonian velocity three-vector. However, we would prefer to identify 
such a notion in the context of a general observer, not necessarily a 
stationary one. Since we now contemplate arbitrary observers we 
concentrate on  TM rather than the whole history of the arbitrary 
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observer world line. A point p E M together with a future-pointing 
timelike vector with norm —1 will be called an instantaneous observer 
at p. 

Let C be such an instantaneous observer associated with the general 
observer C and let A be any timelike future-pointing 1-chain (not 
necessarily another observer) with tangent vector A, at p. We wish to 
define the Newtonian velocity of A observed by C at p. Since 

E  TM  we have a unique orthogonal decomposition 

(5.3.6) 

where t E IR and g(P , C) = O. This latter condition implies 
f, --= — g(/t, t) since g(C, 	= —1, hence 

	

A  =  P — g(A, C)C. 	 (5.3.7) 

The Newtonian velocity of A observed by C at p is now defined with 
respect to this orthogonal decomposition as i; =  P/, or 

= 	t) 	 (5.3.8) 

showing that u depends on both A and C. The vector P is spacelike and 
is said to lie in an instantaneous three-space of C at p. This is defined as 
the orthogonal complement of C in  TM.  

We next consider the case of a null 1-chain F observed by C. The 
condition g(F, = 0 inserted into r = P — g(1;  , C)e gives, with the aid 
of g(P , P) -= g(1;  , P), 

= t(t - N) 	 (5.3.9) 

where —= —g(F, C) and N (g(1' , C)/g(F, P))P 	is called the energy 
that C observes for r at p whilst N is the spatial direction observed for 
r. Note that N is spacelike with g(N , N) = 1. It is a fundamental result 
that there exist propagating solutions to Maxwell's equations corres-
ponding to the phenomenon of electromagnetic waves. Such waves 
propagate in vacuo without dispersion and have null vector fields 
associated with them. Thus null curves may model the flow of electro-
magnetic radiation, or photons. 

The images of timelike future-pointing curves are models for either 
massive point particles or the streamlines of mass—energy flows. A point 
particle of mass m is modelled by a future-pointing curve p with 
g(p, = —m 2 . Then p=P+ZC implies 
therefore implies 

g (p ,  p) ce2 g( v, u ) = V m 2 .  

Hence `6 and P may be expressed in terms of iy as 

(5.3.10) 

ep ,  ± m 2 = z2 ;  p = ZA 

= 
[1 — g(v, v) ]"2  

(5.3.11) 
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mv 
P —  	 (5.3.12) [ 1  _ ev,  v ) ] 1/2 

Clearly if m 0, g(y, y) = 1 — (mre) 2  < 1: that is, massive particles 
are observed to have bounded Newtonian velocities. 

If, for example, t = aI p  and A = 	+ i()aj  in an inertial 
Minkowski chart then g(t, A) =  — i  and  A  = P + ( -Oa I gives 
P = 11 (1-)3. Hence in this chart u  = (T) (1))a p is the Newtonian 
velocity of A observed by C at p. 

If the projection onto the instantaneous three-space orthogonal to e 
at p is effected by the projection operator Il p :Tp M 	(e) pi  , 

= (1 — {  t()} 't®  op, then the Newtonian length of any space-
like vector V E  TM  observed by C is defined as (galp  V, H p  VW'. If 
W is a second spacelike vector in  TM then the Newtonian angle 
between V and W observed by C is given by 

g(Hp  V, FI p  W) 
cos 0 —  	(5.3.13) 

[g(H p  V, H p  V)g(H p  W, H p  W)] 1 /2.  

The presence of the projector li p  in these formulae, defined by the 
observer curve, means that the Newtonian length and angles specified in 
this way depend on the observer as well as on the vectors being 
observed. For the general future-pointing vector A=P+ZC we see 
that V has Newtonian length (g(v, v))"2 = [g (p ,  PA 1/2 k.. e If );.. is null, 
g(P,P) = and hence all null vectors are always observed to have unit 
length Newtonian velocities. We have already noted that g(v, v) < 1 if 
y is the Newtonian velocity of a particle with m O. If g(v, v) << 1 we 
may expand (4.3.11), (4.3.12) using the binomial expansion 

= m + 	v) + . . . 	 (5.3.14) 

P = mv + . . (5.3.15) 

These formulae reinforce our identification of the instantaneous energy 
and three-momentum for a point particle. We see that the Newtonian 
kinetic energy of such a particle differs from the relativistic energy by 
the constant m. This difference between Newtonian and Einsteinian 
relativistic kinematics has had a profound effect in the subsequent 
development of relativistic physics. 

The images of different observer curves may be related by a diffeo-
morphism of spacetime: in particular a diffeomorphism from the 
isometry group. We here consider a 'boost' diffeomorphism from the 
Poincaré group. We first compute part of an integral curve of the 'boost' 
vector field 

X = x l a, + ta x i 	 (5.3.16) 

passing through a point  P o  with coordinates 
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(((po),  -x l (Po), x 2 (P0), x 3 (P0)) 

in an inertial chart. We shall take p o  to lie outside the 'light cone of 
(0, 0, 0, 0)', defined as the set L of points p satisfying 

3 

( (p)) 2  - ( t(P)) 2  = 0. 

This ensures that at p o  X is timelike. For definiteness we shall assume 
t(p o)> 0, xl(p o) > 0 j = 1, 2, 3. The integral curve is given parametri-
cally as t(p) = A ° (r), xi(p) =A 1 (r) j = 1, 2, 3, where the functions 
A":[0, co) --> lB, t  = 0, 1, 2, 3 satisfy 

dA 1 /dr = A°, dA°/dr = A 1 

 dA2 /dr = 0, dA 3 /dr = 0. 

Thus the curve is given by the solution 

A 1  (r) = 	(0) cosh T 	A C/ (0) sinh 

A°(r) = A°(0) cosh r + A 1 (0) sinh r 

A2( T) = A2(0) 

A 3 (r) = A 3 (0). 

Eliminating r between Al(r) and A°(r) gives part of a hyperbola through 

Po  and p 
(Ai( T))2 _ (Ao( T))2 _ (A1(0))2 _ (A0(0))2 	(5.3.18) 

If we relabel the functions A P  with coordinate names (with p o  specified 
by 2 = 0), equations (5.3.17) may be rewritten as 

xl(p o) + vt(p o) 

t(p) = 	_ 	 (5.3.20) 

	

(1 	v 2)1/2 

where cosh T = 11(1 - V 2 ) 112  and sinh r = v/(1 — v 2 ) 1 /2  >0. These famil-
iar equations relate the point p o  to the point p labelled by the 

parameter v = tanh r along the boost orbit (5.3.18). 
For a fixed v we have a diffeomorphism, generated by X, that may be 

used to relate two observer fields. Define the map 

T v : M M, p p' 

	

t(p') = (t(p) + vx 1(p))1(1 	v2)112 

x i (p') = (Op) + vt(p))1(1 — v 2 ) 112  

	

.0(p') = .0(p) 	k = 2, 3 

(5.3.17) 

xl(p) = (1 _ 0112 

t(p 0) + vxl(p o ) 

(5.3.19) 
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then 

:3 ,1 1, 1--> (a t  + ya x ) 
	

— y 2 ) 1/2 . 

Thus the fixed parameter y can be identified as the Newtonian velocity 

of  (q)a i l as measured by a j p , for all p'. Note that for all r, 

V = tanh r < 1. It is of interest to note that since two successive 
diffeomorphisms of the above type parametrised by T1 and r2  respec-
tively produce a diffeomorphism parametrised by T1 ± T2: 

coo n ° Tr,  = (Pr, + 

we obtain as Newtonian velocity parameter y 12  corresponding to T1 	r2  

v 12 	tanh(r i  + r2) 

	

tanh r i  + tanh 	+ 

1 	tanh r i  tanh r 2 	1 + v v 2  

For all y 1 ,  y 2  < 1, u 12  = 	< 1, that is successive 'boost' transform- 
ations applied to observer curves can never give rise to observer curves 
with a Newtonian velocity in excess of 1 relative to all observers. 

5.4 Electromagnetism 

In §5.2 we used the structure of Maxwell's equations to motivate the 
introduction of a four-dimensional Lorentzian spacetime. We here 
examine some further properties of these equations. 

If a is a p-form on U, U C M, satisfying the equation da = 0 it is 
said to be closed on U. Then there exist some region W C U for which 

= d13, for 13 a (p — 1)-form on W. The p-form a is then said to be 
exact on W. It is an important result that the global topology of U 
determines whether or not all closed forms are exact on U. For our 
local discussion, however, we can assert that the Maxwell equation 
dF = 0 implies that in some neighbourhood of every point on M there 
exists a 1-form A such that F = dA. Clearly given such an A there 
exists an equivalence class satisfying the same condition. Two members 
of this class differ by an exact 1-form a where A E Fi(U). The freedom 
to choose a 1-form potential from such a class is known as local 
electromagnetic gauge invariance. Two potentials in this class are said to 
be co -homologous. In a local Minkowski chart (t, x k ) we may write 

3 

A = E A k dxk + cpdt 
k =1 

and hence relate the real-valued functions Ak, cp to some electro- 
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dynamic 'vector' and 'scalar' potentials. Introducing a local potential A 

means that (5.2.9) is satisfied identically and the other equation (5.2.8) 
becomes 

d*dA = j. 	 (5.4.1) 

The above equation may be written in terms of the Laplace—Beltrami 
operator. To define this we need to introduce the co-derivative. On a 

general n-dimensional (pseudo-) Riemannian manifold we define the 

co-derivative 

6: FAp M FA I M  _ 

by 
6 = * -1 cl*n. 	 (5.4.2) 

(Recall from (1.1.2) that if cp is a p-form ncp cp') = (+1)Pcp.) Since on 
p-forms 

** 	(-1)p(p  _ p)  det g  
det gl 

	

det g 	 (5.4.3) 

det gi 

it follows immediately that 6 has the property 66 = 0, in common with 
d. The signs in the definition of the co-derivative are chosen to ensure 
that it is the adjoint operator to the exterior derivative, with respect to a 
certain inner product on differential forms on a compact Riemannian 
manifold. If M is a compact Riemannian manifold OM = 0) then a 
symmetric product on p-forms is defined by 

' 	A *13 
	

a, /3 E  FAp M. 	(5.4.4) 

An 'integration by parts' gives, with Stokes's theorem and the compact-
ness of M, 

(T,  dip)  = (No, 10 	 FAp  _ 1 M. 

That is, 6 is the adjoint of d with respect to this product. The 
Laplace—Beltrami operator is defined by 

A = —(c16 + (5c1). 	 (5.4.5) 

Note that since d(6) increases (decreases) the degree of a form by one 
the Laplace—Beltrami operator preserves the degree of a form. With our 
conventions the Laplace—Beltrami operator has negative eigenvalues on 
a compact Riemannian manifold. In terms of the product of (5.4.4): 

	

(cP, AT) = — (9), d649) 	(cP, 

= —(6q', 6cp) — (dcp, cl(p). 
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The positivity of the Riemannian metric ensures that the right-hand side 
is negative-definite, thus so are any eigenvalues. 

The equation (5.4.1) can be written in terms of A as 

(A + dS)A = — *j. 	 (5.4.6) 

It is possible to select a representative potential from the class of 
co-homologous 1-forms such that SA = 0. Such a choice is called 
selecting a Lorentz gauge. In this gauge the potential satisfies a 
Helmholtz wave equation: AA = —*j. (Note that the potential is not 
uniquely fixed by the Lorentz gauge condition. If A is changed to 
A' = A + dA,  A c 9;(M), then SA ' = (SdA = 0 also if Â is chosen to be 
harmonic, that is satisfy Ail. = 0.) 

Let us examine some solutions to Maxwell's equations in a region of 
Minkowski spacetime free of sources. Suppose we seek a solution to 
(5.4.1) of the form A = f dt, f E (M) using a polar chart (t, r, B, yo) in 
which 

g = —dtOdt + drOdr + r 2d00d0 + r 2  sin 2 Odcp04. 

We shall look for a static 'spherically symmetric' solution satisfying the 
symmetry condition 2' K F = 0 where the timelike Killing vector is 

K o  = (3/3t) 

and the rotational Killing vectors take the form 

K 1  = sin Ta o  + cot 0 cos CO 

K2 = — COS cpa e  + cot Osin pa, 	 (5.4.7) 

K3 =  a. 
This can be achieved if the function f involves only the coordinate map 
r. A convenient orthonormal co-frame is {di . , dr, rd0, r sin 0 dcp). Then 
dA = afdr A dt = a rfe l A  eo, so if * 1 = e l A e 2 A e 3 A  eo then 
*dA = (a r)fe 3 A e 2 = (3 0fr 2 • s- in 0 dcp A de. Thus d*dA = a r (a Jr2)dr A 

sin 0 drp A de. This is zero if f =  kir  for some constant k. The solution 
A = kdtlr yields the electric 2•form F = dA = —(kIr 2)dr A dt. This is 
the Coulomb solution. The frame-dependent electric field 1-form 
E iF = (kIr 2 )dr gives the electric field vector -E.-  = (k/r2 )3 r , the 
integral curves of which give the familiar radial Coulomb pattern 
associated with a stationary charge in this frame. 

For a general F we define f c *F as the electric charge Q contained in 
the interior of the sphere which is the image of C. (If the charge is 
non-zero then this S 2  cannot be the boundary of a source-free region!) 
(Restoring dimensioned variables, 

is2* F  = ( Ed juoinQ 
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determines a charge Q in Coulombs.) A class of 2-chains will determine 
the same electric charge. We define an equivalence relation on 2-chains 
as follows: 

C 1 	C2 	iff C I  = C2 ± 3E, where E is any source-free region. 

Equivalent chains are said to be homologous. Since in source-free 
regions *F is closed, Stokes's theorem ensures that the charge Q only 
depends on the class of chain chosen. As an example, we take C to be 
the 2-chain in Minkowski spacetime whose image is the sphere 
t -= constant, r = constant. Then for the Coulomb solution 

IC *F = kJ.c 
sin Od0 A ckp 

,r12 
2ki sin @MI°  dcp = 471k. 

Since a Lie derivative with respect to a Killing vector K commutes 
with the Hodge map, 2 1c * -= *2 K , and all Lie derivatives commute with 
d, we may deduce that if F satisfies the Maxwell equations with source 
3-form j then  E KF satisfies them with the source  E KI.  The existence of 
an underlying isometry group of spacetime is often used implicitly in 
constructing new solutions of Maxwell's equations from simpler ones. If 
we recall the definition of the Lie derivative, and compare it with the 
elementary textbook calculation used to construct the electric dipole 
solution as a limit of two equal and opposite Coulomb solutions, we 
indeed expect the following potential to provide a source-free solution 

k „ 
A = (-11 ).T k 	(wax —u , ) t = — (Z (a/ax 1 ) r)dt — 	dt. 

The vector field Pax 1 ) represents a Minkowski space Killing vector in 
an inertial chart. Since the Lie derivative commutes with d, 

F = —.L (a/ax i ) (—ur A lit) 
r2  

is the field of a static electric dipole with moment 0. In general for 
positive integers p, q, r a  'p, q,  r'-type electric multipole solution fol-
lows from Poincaré covariance as 

q F = {YP {Y 	q 	r  { ----r A 
r2  

j, k = 1, 2, 3. 
There is one further symmetry of Maxwell's equations that deserves 

mentioning. A spacetime is said to admit local conformal isometries, 
generated by a vector field C, if the metric g is such that 

I cg  =  Ag 	 (5.4.8) 
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for some scale function A.  For any n-dimensional space (n even) it 
then follows that if F E FA,,,M then 

c (*F) = *(2cF). 	 (5.4.9) 

Hence in a spacetime (n = 4) with a metric g, if such a C exists and the 
Maxwell 2-form F solves Maxwell's equations with source j then cF 
will be a solution, in the same metric, with source 2 cj. In particular if 
j = 0 the source-free Maxwell equations exhibit a local conformal 
covariance in spaces admitting conformal isometries. Clearly, as a 
special case, all Killing vectors generate such symmetries, corresponding 
to the zero scale function. It turns out that in Minkowski space there are 
five further vector fields which are given in an inertial chart, with their 
scale functions, below 

D = .0(313x0 ) 	AD  2  

= g(D, D)(313.0 — 2xD 	AK ,,  = - 4X I., 	 (5.4.10) 

ft = 1, 2, 3, 0. 

These vector fields along with the 10 Killing vectors generating the 
Poincaré group, generate the 15-parameter local conformal group of 
Minkowski space. The source-free Maxwell equations are said to be 
conformally covariant in Minkowski space. Such a symmetry will gen-
eralise to any space with a metric admitting local conformal isometries 
and the vector C in (5.4.8) is referred to as a conformal Killing vector 
of the metric g. The local conformal symmetry may generalise to a 
global symmetry if the topology of the spacetime manifold can 
accommodate a complete conformal Killing vector field. 

In §5.2 our introduction to Minkowski spacetime was motivated by 
the elegant reformulation of Maxwell's equations into a four-
dimensional form. We now reverse the argument and show how these 
four-dimensional electromagnetic fields can be broken down into electric 
and magnetic fields in the instantaneous three-space of an arbitrary 
observer. Given any velocity vector field V, whose integral curves 
coincide with a set of observer curves, we use the Minkowski metric to 
define the associated dual 1-form V and write any F uniquely as 

F=ÉA V+B 	 (5.4.11) 

where B is a 2-form satisfying i v B = 0 and  È a 1-form satisfying 
iE = 0. (Note: a/at = —cit.) One refers to B E FA,M as the magnetic 
2-form associated with V and F, and  E efA I M as the associated 
electric 1-form. The electric field observed by this class of observers is 

E = i vF. 	 (5.4.12) 

The magnetic vector field observed by this class can be related to F as 
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follows. We use the velocity vector to define a metric k on the 
instantaneous three spaces 

	

g = - (DV + 	 (5.4.13) 

We may factor the volume four-form as 

	

* 1  =  V A  1. 	 (5.4.14) 

Any p-form w can be '3 + 1 decomposed' with respect to the velocity 
vector V: 

= a + VA/3 
	

(5.4.15) 

with i v a = 'Vie = O. If is the Hodge map associated with g then 

	

*(0  = -- ( T̀ce) A V - 	 (5.4.16) 

Applying this result to (5.4.11) gives 

*F = 	A -17 	È . 	 (5.4.17) 

But i 	= 0 so i v * F = - B.  We define the vector field B = 	as 
the magnetic field associated with V; hence in terms of F 

	

B = -i v * F. 	 (5.4.18) 

If {Ya } is a frame on the instantaneous three-space, orthonormal with 
respect to g, then the electric and magnetic field components in such a 
basis are given in terms of F as 

É(Ya ) = (i vF)(Y a) = 2F(V, Y a ) 

(iU3)(Y0 ) = -(i v *F)(Ya ) = -2*F(V, Ya ). 

As an example consider the Coulomb solution: 

F=  q  —dr A dt 
r2 

r 2  = x 2  + y 2  +  z 2 

with observer curves tangent to V = (3/3t) and W = y((a/3t) + 
y = (1 - v 2 ) -112 . With respect to V: 

E = –7,-(3/3r) 	B = O. 
1. 4  

On the other hand, since rdr = x i dx 1  + x2 dx 2  + x3 dx 3 , W observes 

E' - 	 Par) + 
vx   

(3/30) 
-:12Y( 

B' = 	q"  (x 2 (3I3x 3 ) – x 3 (3I3x 2 )) 
r3 

instead of E and B at p. 
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It is worth stressing that although observers in Minkowski space 
experiencing arbitrary motion do not have world lines that can be 
naturally associated with the Poincaré group (their world lines are not 
integral curves of Killing vectors) the local definition of electric and 
magnetic fields for such observers follows as before since only a local 
frame and its dual are of relevance. 

During the historical development of classical electromagnetism it 
became apparent that a number of related properties could be assimi-
lated into a single idea once the spacetime description of Maxwell's 
theory was recognised. These properties became particularly succinct in 
terms of a second-rank tensor known as the Maxwell stress tensor. 
Historically the components of this tensor, with respect to a basis with 
physical dimensions, were associated with the properties of mechanical 
systems. This was a consequence of the role played by such components 
in equations which coupled together the behaviour of fields and matter. 
We shall discuss such equations later. At this point we shall be content 
with introducing this tensor in the guise of a 3-form associated with 
every Maxwell field and arbitrary vector field, and proving that such a 
3-form associated with a conformal Killing vector is closed in source-free 
regions. 

Define for any vector field V and Maxwell solution F the 3-form 

rv  = ;fi yF A *F — i v *F A 	 (5.4.19) 

Applying the exterior derivative and using Maxwell's equations for F 
produces 

dry = 1{di vF A *F — i v F A  j — di v *F A  F}. 	(5.4.20) 

Recall the identity 2x  = dix  + id  V X: hence 

di yF = vF 
	

(5.4.21) 

as dF = 0. Similarly di y *F = 2v *F — i v]. Inserting this in (5.4.20) gives 

	

dr y  = '1{ 1  vF *F — 2v*F A F — iyF 	+ 	F}. (5.4.22) 

If C is a conformal Killing vector then eF A F = * CF A  F 
A *2 cF =Y cF A  *F. Hence specialising to the case of a conformal 

Killing vector 

CITC = HiCFAi 	fr iCi A F. 

Since i c(j A F) = ic.i A F — A i cF and, being a 5-form,  I A  F is zero we 
have 

drc  = i CF A 1. 	 (5.4.23) 

For each conformal Killing vector these equations describe a 'local 
conservation equation' in a source free region (j = 0). The identification 
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of a closed 3-form I with a local conservation law is appropriate in an 
arbitrary spacetime. For consider a region described by some 4-chain U 
whose boundary may be written 

	

3 U  = 	+ I2 	fl 	 (5.4.24) 

with the image of each / I  a spacelike hypersurface (each tangent vector 
to X, being spacelike). For I closed 

U 
= 	= 0 	 (5.4.25) 

 U 

by Stokes's theorem, thus 

	

= 	— In 	(5.4.26) 

In cases where U may be chosen so that f 	= 0 one recognises that 
the flux of 	through 	equals the flux of j through E 2 (see figure 
5.2). 

Figure 5.2 This diagram illustrates the equation 3U = 	+ E2 Fl. 

Suppose that we have a field system describing a simply connected 
source-free region U of Minkowski space. If r is the proper time of 
some inertial observer passing through this region then in an adapted 
chart fr, p',  p2 ,  p 3 1 we take E i  to lie in the hypersurface r(p) = cl , for 
some constant  c1 .  If the electromagnetic field vanishes at large spatial 
distances from the observer then we may take H to complete the 
boundary of U such that the electromagnetic field vanishes on H. Thus 
in this case the flux of j through the instantaneous three-space is time 
independent. If we write in terms of a 2-form current j and an 
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associated 3-form density /3, j = j A dT i) with i 0,3,4 = 0 and 
= 0, then clearly X*$ = [3 and 

=LP 
	

(5.4.27) 

It is tempting to reinterpret the conservation of j -flux associated with 
U in terms of a local flow of current j and an associated variation of 
density p. Certainly the 3-form equation dj = 0 implies a local contin-
uity equation. In the above chart we may write d when acting on j as 
d = d + dr A (a/a.0  where d is the exterior derivative associated with 
the instantaneous three-space. Hence (as dj3 = 0) 

dj 	(a/ar)P — O. 

If we express j and p in a basis adapted to 1: 

= 1dP2  A dP 3  + 'j2dP3  A dP 1  + 'i3dP 1  A dP 2  

p = pdpi A dp 2  A dp 3  

(5.4.28) is equivalent to 
3 

E(a:i i tap ) — (3p/ar) = 0. 	 (5.4.29) 
= 

The interpretation of this local continuity equation must, however, be 
treated with caution. If j is a closed 3-form on U then so is 

= + (IX where Jf is any smooth 2-form. If Jf is chosen such that 
f axX = 0 then j and j' both have the same flux through X, although 
will redistribute the local density. 

Returning to (5.4.23) we see that there are 15 closed 3-forms, one for 
each of the 15 conformal generators of the Minkowski space conformal 
group. It is instructive to examine the currents associated with some of 
these Killing vectors. If V is a timelike Killing vector field generating 
time translations along its open integral curve then, using (5.4.12) and 
(5.4.18) to define E and B with respect to such a field, we easily find: 

TV = 	A if A 'V + 4k- A 	± IT A '<4). 	(5.4.30) 

The physically dimensioned components of the vector obtained by 
taking the metric dual of the 2-form E A k with respect to k was 
identified by Poynting as the local field energy transmitted 'normally' 
across unit area per second (that is the local field energy current). 
Similarly the  '-dual  of the 3-form ;(i" A E  +  B A *‘ if) may, after 
restoring physical dimensions, be interpreted as a local field energy 
density. Since, for example E A E  = g(E, E)q, the signature of g 
ensures that this density is positive-definite. This interpretation has 
persisted although with the caveats above we would prefer to identify 
the oriented integral f ,Tv, in a source-free region of spacetime, as the 

(5.4.28) 
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field energy associated with the spacelike 3-chain E and f s2i vdT v  as a 
power flux across an oriented spacelike 2-chain .5 2 . 

Suppose we consider a spacelike Killing vector field X generating 
spacelike translations along open integral curves and decompose Tx 

according to 

TX = PX f7 	 (5.4.31) (bx 

with i vitx  = i v'fi x  = O. The Maxwell stress 2-form tix  may be used to 
identify mechanical Newtonian forces produced by a 'flow' of a Newto-
nian field momentum density 3-form <6x . In an analogous manner one 
may construct torque forms (angular momentum currents) using a 
Killing vector field that generates rotations along closed integral curves. 

As promised we now relate the stress 3-forms to an associated 
second-rank tensor. Given any local frame {X a } a = 0, 1, 2, 3 in 
spacetime, with natural dual co-frame {e b } , we may obtain 16 real 
functions Tab defined by *ÎX = Tbcec or Tab = (*Tx”)(Xb). These may 
be used to define a second-rank tensor 

T 	Tabea(De b 	 (5.4.32) 

which is referred to as the stress tensor. 

Exercise 5.2 
Show that if Tx, A e b  = TXh  A e a  then Tab = Tba : the stress tensor 
is symmetric. Show that if Tx, A ea = 0 then  Tb '  -= 0: the stress tensor is 
traceless. 

These properties are satisfied for the Maxwell stress tensor as follows 
directly from the definition. We shall meet these properties again at a 
later stage in the context of a Clifford representation for this tensor. 

Exercise 5.3 

If F =-Fabe°  A e b 
 
show that 

g 
 T 	

b  Fcd 	FacFc b . ab = 

Exercise 5.4 
Use the three angular momentum 3-forms T K, to evaluate the torque on 
an electric dipole in a uniform static electric field. (Hint: calculate the 
total electromagnetic 2-form and use this in (5.4.19) where the Killing 
currents are computed with the aid of the rotational Killing vectors.) 
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6 

Connections 

The differentiable structure on a manifold enabled us to define two 
important differential operators; the exterior and Lie derivatives. 
Whereas the former acted only on antisymmetric tensor fields (differen-
tial forms) the latter acted on any tensor field. However, whilst reducing 
to the directional derivative on functions the Lie derivative is not a 
suitable generalisation to a 'directional derivative on tensors'. This is 
because the Lie derivative of a tensor at p, along a curve C, does not 
just depend on the tangent to the curve at p but on the behaviour of 
tangent vectors in the vicinity of p. This feature of the Lie derivative is 
reflected in the fact that E T  is not 9-,-linear in the vector field X. 

Another differential operator, a tensor covariant derivative, will now 
be introduced. The introduction of this new structure is equivalent to 
choosing a parallelism for the manifold. The general notion of parallel-
ism is easy to grasp. It is only necessary to recognise that in general 
there is no preordained way to map a vector at one point on a mani-
fold to a new vector at another point. Defining a parallelism on a 
manifold requires specifying a rule that will provide a means of 
comparing vectors at different points by transporting one to the other 
along some prescribed path connecting the points. Whereas the parallel 
transport map will depend on the path chosen to connect the points we 
do not want it to depend on how the path is traversed. (Parallel 
transport depends on the route taken but not on how bumpy the ride!) 
Although this feature of path dependence of parallel transport does not 
accord with the intuitive Euclidean concept it is an essential feature, 
characterising the curvature of the manifold. Given a parallelism we can 
define a covariant derivative by comparing a vector with its parallel 
translate and taking a suitable limit. Conversely, by introducing a new 
rule for differentiating vectors, and establishing a linear connection, we 
can define a vector field to be parallel along a curve if its derivative with 
respect to the tangent vector is zero. 
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6.1 Linear Connections 

A linear connection on a manifold M is a map V: F TM x f TM --)FTM 
that satisfies the following, Vfg c5;(M), V X, Y, Z E FTM: 

fx gyZ =JVKZ gV yZ 	 (6.1.1) 

V x(fY + gZ) = X(f)Y + fV x Y + X(g)Z + gV xZ. (6.1.2) 

Thus V x  is a linear mapping on vector fields which is also s'i-linear  in X: 
it is called covariant differentiation with respect to X. 

From these properties it follows that we can specify V by giving the 
components of the vector V xa.X b  in any convenient basis {X a }: 

V x/Y b  = F ab eXc . 	 (6.1.3) 

The n 3  functions F ab `, where n = dim M, are known as the connection 
components, or connection coefficients in this basis. These coefficients 
can be used to define a set of 1-forms, the connection 1-forms, 

	

b = cba  ea 	 (6.1.4) 

where {ea} is the co-frame dual to {X a }. Thus we can write (6.1.3) 
equivalently as 

vx”xb = wcb(xa)xc. 
	 (6.1.5) 

If { Y a } is a new basis, related to {X I,} by a general linear transform-
ation Ya  = A a bX b , then 

Ti7 K,Yb = A a P  V x,,G4  b c  X c) 

AlAb c Fpc aXq  A aPX),(Ab c )X,. 

If the inverse transformation is given by A 	aAa b = (5,b, then the 
connection coefficients F ab ' in the basis {Ya } are given by 

rab ,  = A a PA b crpa qA -1 q ,  + Azx p (A b c)A -1 , , . 	(6.1.6) 

Equivalently the connection 1-forms in this basis are given by 

CO' b = Aba(Or  0 -1  ra  ± A -1  q adAba 	 (6.1.7) 

The 'inhomogeneous' term in this transformation represents a departure 
from the transformation of the components of a tensor, reflecting the 
fact that the map X, Y V x Y is not Fi-linear in Y. 

As anticipated the covariant derivative of a vector field with respect 
to X, evaluated at the point p, depends only on the value of X at p. 
For if V is any vector field and {X,} is a basis in the neighbourhood of 
p then (V,Z)l p  = Va(p)(VZ)1 1,. So if V vanishes at p then 
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(V v Z)! -= 0 V Z. Thus if X and Y are vector fields such that Xl p  = Yl p 
 then (V x Z)I p  = (V Z) p V Z. Hence for any X p  e TM  we have a 

covariant derivative in the direction of Xp , V xp :FTM TM.  
Let C be a curve with tangent vector C. Then if Y is a vector field 

we may covariantly differentiate Y in the direction of the tangent vector 
at any point C(t) on the curve. An assignment of a vector Yc( f) to every 
Tc(o M is a (smooth) vector field along C if the map t i--> Ygof is a 
smooth function of t Vfe 5-, (M). Thus if C is a smooth curve Ve.Y is a 
smooth vector field along C. As will be seen below VY only depends 
on the value of Y along C, and so in fact any vector field along C can 
be covariantly differentiated with respect to the tangent vector to 
produce another vector field along C. (Some authors denote VÈY by 
DY/dt where t parametrises C.) 

A vector field Y along a curve C is said to be parallel along C if it 
satisfies the equations 

	

Velf  = O. 	 (6.1.8) 

If we expand Y = ra j  in a local coordinate chart in which 
xi(p)= Ci(t) represents C, j =1, ..., n then e = c*(a/at) = ck(t)(a/ 
ax'). 	Hence 	V c(r(a/ax0) = (CY1 )(8/axi) + rV c(a/9x]). 	But 
CY/ = [C(a/at)]P = Ck(t)(ar/Irk) = d(P.C)/dt and 	Ve,(3/ax0 
= C k (t)V (ataxqa/ax i ) = k ( 	ki m(a/axm). Thus (6.1.8) gives the fol- 
lowing differential equations for the components P.0 of Y on C: 

d 
—
dt

(YmoC) + (P.C)Ck(t)(F ki moC) = 0. 	(6.1.9) 

For given functions Ck(t) and connection components F ki m(C(t)) these 
equations are known to have a unique solution Ym(C(t)) specified by 
the choice of initial components Ym(C(0)). (It is because these equa-
tions only depend on the components of Y along C that a vector field 
along C can be differentiated.) Because of the above uniqueness result a 
parallelism is established by the linear connection V. If Ygo)  is any 
vector in Tc(o) M and Y is the unique vector field along C such that 
V c Y = 0 then li c(()  is called the parallel translate of Yc(o) along C. 

Let Y be any smooth vector field along C with li c(0) * 0, and f the 
smooth function such that (foC)(t)= t. For t sufficiently small Z is a 
smooth vector field on C 

( — f)"(V 	O n Y 
Z Y + E 	 (6.1.10) 

n! n=1 

where  (V)2Y = Ve-(Ve,Y) etc. We have 

n( ---f) n-1 (Ve.)"Y ±  	f 07  O n  + I Y  
V•Z=V•Y— E (s ince  Cf = 1) 

n 	 n! =1 	 n=1 	n!  
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So Z is parallel along C with Zc(o) = Ygo) , thus Zgo  must be the 
parallel translate of Yc(0)  to C(t). Note that any vector field Y satisfying 
Ygo) = A can be taken in (6.1.10) to evaluate the parallel transport of 
A E Tc(o)M along C (see figure 6.1). 

T io rCl01 YC ■ 	I :71" 	Ynt 

C(t) 

C ( 0)  

Figure 6.1 The parallel translation of Y along the curve C. 

A vector field Y is said to be parallel, or covariantly constant, (with 
respect to V) if it satisfies the equation V xY = 0 V X. This implies that 
Y is parallel along all curves and thus the parallel transport map is 
independent of the path along which such a Y is transported. 

Exercise 6.1 
A connection on a two-dimensional manifold is specified in a local chart 
with coordinate maps (x 1 , x 2 ) by r u i = and F22 2  = — .X 2  with all 
other connection components zero in this chart. Prove that for a, b E IR  
the vector field 

Y = a exp [(x 1 ) 2 /2[(3/3x 1 ) + b exp[—(x 1 ) 2 /2](3/3x 2 ) 

is parallel along the curve 

C: [0, 11 	(xl(p) = sin t, x 2 (p) = cost). 

A linear connection enables us to define a 'straight line', generalising 
one of the intuitive properties of straight lines in Euclidean space. A 
curve C is an autoparallel (of V) if its tangent vector field is parallel 
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along C. Such curves are given as solutions to the equation 

Vce = O. 	 (6.1.11) 

(Autoparallels are more frequently called geodesics although we prefer 
to reserve this terminology for the autoparallels of a pseudo-Riemannian 
connection which will be discussed later. Students everywhere will be 
relieved to know that if by 'straight line' we mean autoparallel, then at 
least for the Riemannian connection 'straight lines' are (in a certain 
sense) the shortest curves connecting two points!) If an autoparallel C is 
given parametrically in a local chart by xi(p)= OW then the CI must 
satisfy the system of differential equations 

d 

dt
Cm  (r ki m °C)0(t)C1  = 

or 

+ (1" ki moC)e'kev = 0. 	 (6.1.12) 

It is important to note that the solution of (6.1.12) is a parametrised 
curve. Although a general reparametrisation of the solution will not 
change the image set on M of the reparametrised C, the corresponding 
map will not in general satisfy (6.1.12) and will not therefore be an 
autoparallel. If C is an autoparallel, with parameter t, then the 
reparametrised curve Coh is also an autoparallel if and only if 
h = at + b for a, b E E. For an arbitrary curve C we define the 
acceleration to be the vector field V c t on C. (Thus the acceleration 

Each autoparallel is fixed uniquely by specifying (Ci, Ci) for some 
initial t. That is, for every X i,, e TM  there is a unique maximal 
autoparallel starting at p in the direction of  X i,.  Let yx,  be this 
autoparallel. The exponential mapping at p, Expo , maps a subset of 
TM  into M:ExpoXo  = yx, (1). Clearly Exp o  is defined on those Xo  for 
which y y,  is defined on [0, 1]. Since for  A E IR yAxp (t) = yxp (t), if Expo 

 is defined on X p  then it is also defined on .À.Xo  for  A E [0, 1[. It in fact 
follows from the nature of the differential equations (6.1.12) that for 
every p E M there is a neighbourhood of the origin in  TM, N o , such 
that the exponential mapping is a diffeomorphism onto a neighbourhood 
of p,  N.  If such an .N. 0  is star shaped then it is called a normal 
neighbourhood. (To say that X 0  is star shaped means that if u E X ( then 
/1./) E X0 VA E [0, 1].) A normal neighbourhood of p is the image of a 
normal neighbourhood in  TM  under the exponential mapping. For 
every q in a normal neighbourhood of p, Np , there is one and only one 
Q E  TM  such that q = Exp o Q. Thus if {X i ) is any basis for  TM  with 
Q = the mapping ql-->{V} provides a coordinate system for 
No  (see figure 6.2). Such coordinates are called normal coordinates at p. 
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Figure 6.2 This diagram illustrates the exponential map and normal coordin-
ates. 

Exercise 6.2 
If f il k  are the connection coefficients with respect to a normal co-
ordinate basis at p show that 

ri, k (p) + rii k (P) = O. 

Hint: Show that ?'„(t) = y' where y = y'X i . 

6.2 Examples and Newtonian Force 

To gain some insight into covariant derivatives we turn to Fin. This 
manifold has an absolute parallelism: the parallel-transport map is path 
independent. If {x'} are standard coordinates and  X,, = E,c'aj p  then 
the parallel translate of Xp  at q is X q  = q . Thus in such a 
standard chart the connection is defined by V a,a i  = 0. Such a connection 
is referred to as the standard connection on En. 

It is of interest to compute the standard connection for F1 2  in a polar 
chart (r, 0) related to the standard one by 

rcos0 	0 < r < cc 

x 2 = r sin 
	

0 <  O 	27r. 
	 (6.2.1) 

This induces a coordinate frame transformation: 

= (xl/r)a, + (x 2 /r)a 2 	 (6.2.2) 
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and 

a o  = —x ,a, + xia 2 . 	 (6.2.3) 

Since a l  and 3 2  are parallel we have 

Va,(a.) = tar(x l ir)iai 	[ 3 ,(x 2/0] 3 2 = 0  

V ar (3 9) = —[3,.(x 2)]3 1  + [3,.(x 1 )]3 2  = (1/03 0 

 Va,(3 0) = 

V 2,(3,.) = (1/03 9 . 

Writing V 2,(3 0) as F re ra r  F ro °3 e , etc we may read off the components 
of the connection in the polar chart; F ar t' = F re e  = (1/r), f oo r = —r 
with all others zero. 

If a curve C is given in the natural chart as xl(p) = OW then 
V = .V(t)3 1 . Let us evaluate the acceleration of the curve 
C: [0, 1] --> 1H 2  given in the above polar chart by 

(r  o  C)(t) = p(t), (0  o  C)(t) = e(t) 

for smooth real functions p and 0 of t. The tangent vector to C may be 
written 

(6.2.4) 

C = c*a, = pa, + 0a 0  
hence 

v • C = pa r  + 03 0  + pva . + OV • S o . 

But 

'7  • a, = twa rar + Ova,a, = (0/p)ae 
and 

v a = pv a ,a 0  + Ov 2 a 6  

= (P/p)ao —  
Hence thethe natural 11:1 2  acceleration of C is 

VcC = (p — P02 ) 3 , + (PO + 21)6 )( 1 /Ma 0

-With respect to the standard Euclidean metric on IR 2  

g = a 1 oa 2  + a 2 oa 2  = a r oa, + (11r 2 )a eoa e  

(6.2.5) 

(6.2.6) 

and identifying the parameter t with Newtonian time, we recognise the 
orthonormal components of this acceleration in the polar frame as the 
radial and transverse components of Newtonian acceleration of a par-
ticle moving in two dimensions under the influence of some Newtonian 
force. 
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Exercise 6.3 
Use the standard connection in IR 3  to compute the orthonormal compo-
nents of the Newtonian acceleration of the curve C : [0, 1] —* IR 3  given 
by (r  o  C)(t) = R(t), (0  o  C)(t) = OW, (cp  o  C)(t) = 1, (t) where the 
maps (r, 0, q)) are standard polar coordinates in 11 3 . 

The above examples in R 2  and IR 3  suggest that the Newtonian 
postulates describing the motion of a single point particle in space be 
rephrased in terms of the 'natural' connection as follows. 

(1) A free particle is one that moves along the trajectory described by 
an autoparallel of the natural connection in Euclidean space, para-
metrised by universal time. 

(2) A point particle of inertial mass m moving in a non-autoparallel 
curve C, parametrised by Newtonian time, experiences a force 5,  on C 
given by 

	

v c(m C). 	 (6.2.7) 

In many problems in physics g arises as a restriction to C of a vector 
field on R 3  determined from some field theory. If g,  is prescribed, 
(6.2.7) may be used to determine a Newtonian trajectory. As an 
example, for motion of a particle under the gravitational force produced 
by a static spherically symmetric distribution of matter (with total 
gravitational mass M), we may use the Newtonian potential (13 = GMIr 
in a polar chart, where G is the Newtonian gravitational constant, to 
obtain 

= —mdif = (GMmIr 2 )3,.. 	 (6.2.8) 

For a particle with electric charge q the Newtonian Lorentz force is 
q{i" + iÈ/3}. In standard coordinates {x'} , E = Ei dx' and 

B = B IC1X 2  A dX 3  B2d-V 3  A dx 1  + B 3dx 1  A dx 2  are 1-and 2-forms re-
spectively on IR 3 , parametrised by Newtonian universal time. The metric 
duals are taken with respect to the Euclidean metric. Solutions of 
(6.2.7) for particle trajectories subject to these force laws give an 
excellent description of the behaviour of matter in gravitational and 
electromagnetic fields provided the motion never approaches Newtonian 
speeds comparable with 10 8  m 

6.3 Covariant Differentiation of Tensors 

We have introduced the covariant derivative V,.  as a map on vector 
fields. To extend the definition to its action on smooth 1-forms 



COVARIANT DIFFERENTIATION OF TENSORS 	 207 

pe FA1 M we define  V,6' by 

	

(VA(Y) = — P(Vx 17) + X(i6(Y)) 
	

X, Y EFTM. (6.3.1) 

If fE 9;(M) it follows from this that 

V x(f13) = f* V xl3  + (X.00. 	 (6.3.2) 

If {X a }, { eb} are dual bases it follows from eb(X a)=  ô that if cob, are 
defined by (6.1.5) then 

Vxoec  = —(0`b(X 2 )0. 	 (6.3.3) 

If for f E .5, (M) 

	

V xf ' X(f) 	 (6.3.4) 

we note that (6.3.1) is equivalent to adopting the rule 

Vx(/6( 11) = (V /3)(Y) + /3(V Y). 	 (6.3.5) 

The covariant derivative is said to commute with contractions. Having 
defined the covariant derivative of 1-forms and vector fields we can 
extend the definition to arbitrary tensors by adopting this property of 
commuting with contractions 

Vx  : FP,M ---> FTs,M 

V x T(X 1 , 	„ X„ e', 	e5 ) 

—T(V xX 1 , . . 	X r, el, . . 	es) — . . . 

— T(X l , . . „ X„ 	..... V xes) 

+ V x (T(X l , 	„ Xr, el, . „ es)). 	 (6.3.6) 

Such a covariant derivative satisfies the Leibnitz property 

V(TOW) = V x TOW + TOV x W 	 (6.3.7) 

for all tensor fields T and W. That is, Vx  becomes a type-preserving 
derivation on the algebra of tensor fields. If a mixed tensor has 
components Tal' 	bi, .,b, in any basis it is conventional to denote the 
components of V x,T in the same basis by Tal' 	6,, ,b„k • For any 
T e  FP,M the tensor field  VTe rr,A4 defined by 

(VT)(X, X1 , . 	X,, 	. . 

V X, X i  E FTM, e° E FT*M 	 (6.3.8) 

is called the covariant differential of T. Thus starting with a rule that 
defines a transport of vector fields along curves we have extended the 
covariant derivative to an operator on general tensor fields. 

es) = (V x T)(X i , . . ., X, el, . . „ e) 
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6.4 Curvature and Torsion Tensors of V 

Whereas the lack of-linearity  in the map X, Y--->V x Y prevents V 
itself from being identified with a tensor it may be used to construct two 
important tensors. First observe that for any function f E,5,(M): 

x(iY) = (Xf) Y + fVxY 

and 

x(fY) = [X, fY]= (Xf)Y + f[X, Y] 

V X, Y rTm. 
It follows that if we define 

T(X, Y) = V x Y — V yX — [X, Y] 	 (6.4.1) 

then T(X, fY)= fT(X, Y). Since T(X, Y) = —T(Y, X) by construction 
then T(X, Y) is .5,-linear in both arguments. Consequently associated 
with T is a type (2, 1) tensor field T known as the torsion tensor of V: 

T(X, Y, ,e) = 13(T(X, Y)). 

Associated with any local basis is a set of torsion 2-forms Ta 

Ta(X, Y) = ea(T(X, Y)). 

The torsion tensor can be written in terms of these 2-forms as 

T = 2PDXa . 

(6.4.2) 

(6.4.3) 

(6.4.4) 

If {ea} is any co-frame, in which the connection 1-forms are {Wa b } , then 
the torsion 2-forms are given by 

Ta = dea ± w a n A eb . 	
(6.4.5) 

This is called the first structure equation. It may be proved by contract-
ing on a pair of arbitrary vectors. Using (4.10.3) have 

2(dea 	(Dab  A eb )(X, Y) 

= X(ea(Y)) — Y(ea(X)) — el[X, Y]) + b (X)e(Y) — co° b (Y)e b (X) 

X(ea(Y)) — V xea(Y) — Y(ea(X)) + V yea(X) — ea([X, Y]) 

by (6.3.3). The right-hand side may be simplified by using (6.3.1), 
producing 

W a b A eb )(X (de ' 	 , Y) = ea(T(X, Y)) 

when (6.4.1) is used. Thus (6.4.5) follows from the definition (6.4.3). 
The second important tensor constructed from V involves two covar-

iant differentiations. Again we note from the fundamental properties of 
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V that for any tensor field U 

V x V iy U = JV xV y U + (Xf)V y U 

V jy V x U=JV y V x U 	V X, Y EFTM. 

If we define 

R(X, Y)U = V x V y U — V y V x U —  V 1 . y1 U 	(6.4.6) 

V U, X, Y, then again we have .?#-linearity and antisymmetry in X, Y. 
Furthermore, for any smooth function f on M 

R(X, Y)(fU) = fR(X, Y)U 	 (6.4.7) 

and 
R(X, Y)f = 0. 	 (6.4.8) 

Since V x  is a tensor derivation R(X, 	[V s ,  Vy] — V1x,  r is a 
type-preserving derivation on the algebra of tensor fields 

R(X, Y)(UOW) = R(X, Y)UOW UOR(X, Y)W (6.4.9) 

for all X Y, U and W. This derivation is called the curvature operator of 
V. The curvature operator may be used to define the (3, 1) curvature 
tensor R of V: 

R(X, Y, Z, /3) = fl(R(X, Y)Z). 	 (6.4.10) 

Since R(X, Y) = —R(Y, X) we may introduce a set of curvature 
2-forms R d ,. by 

R = 2Rd c Oec® X d . 	 (6.4.11) 

In terms of the connection forms wa b  with respect to any co-frame {ea }: 

Rab  = dWa  b 	c A W c b• 
	 (6.4.12) 

This is the second structure equation. For verification we contract on an 
arbitrary pair of vectors: 

2(dwab 	W a c A ( b)(X,  Y) 

	

= x(wa b (n) — Y (w a b(x)) — w a b( [x, Y]) + 	c(X)w c  b(Y) 

(ii (Y) b (X) 

= X(ea(V yX b )) — re°  (V xXb)) e a (V Ix, yiX b) — V xea(X, ) e c (V yXb) 

+ V yea (Xc.)ec(V xX b) 

	

X(ea(V yX b )) — Y(ea(V xX b )) — ea (V I x, 11) 	— xe a (V yXb) 

+ V yea(VxX b) 

= ea(R(X, Y)X b) 
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= R(X, Y, Xb, e°) 

= 2R° b (X, Y). 

By contracting the (3, 1) curvature tensor we obtain a (2, 0) tensor: 
the Ricci tensor. That is, 

Ric(X, Y) = R(X a, X, Y, ea) 	 (6.4.13) 

where the arbitrary bases {X a } and {ea} are dual. For a general 
connection `Ric' has no particular symmetry properties. 

It is sometimes more convenient to work with the set of Ricci 1-forms 
{Pa}, elements of which are defined by 

Pb 	 (6.4.14) 

hence 

Pa  = Ric(X b , X a )eb. 	 (6.4.15) 

Because of their g'-linearity the torsion and curvature operators can 
be evaluated on tangent vectors: they do not require vector fields. By 
suitably extending a pair of tangent vectors to vector fields we can 
construct figures out of segments of integral curves, giving a character-
isation of the torsion and curvature operators. 

Let Np  be a normal neighbourhood of p with Xp , Y E  TM.  Each 
qeNp  lies on one and only one (up to a linear reparametrisation) 
geodesic radiating from p. We define X q  E Tq M by X q  = TqpX p where 
rqp  is the parallel translation map along the autoparallel. This assign-
ment of a tangent vector to every q E Np  is smooth: we denote the 
resulting vector field by X. We similarly extend Yp  to a vector field Y. 
We have constructed X such that G' 2,,X =  O  V Zp  E  TM,  thus 
T(Y, X)i p  = [X, Yl p . From exercise 4.1 at the end of §4.11 we see that 
T(Y p , X p ) is the tangent at p to the curve formed from the integral 
curves of X and Y (see figure 6.3). 

In considering the curvature we extend Xp  and Yp  differently: this 
time to commuting vector fields X and Y. We could, for example, 
choose normal coordinates {x'} with 

= Xp 	and 

with 

3 	 3  
X= 	and 	Y= 	. 

ax' 	 3x 2  
If cp(p)  and ip(p) are the integral curves of X and Y respectively, 
starting at p, then we form the quadrilateral shown in figure 6.4. 

We denote the parallel translation map from TM  to TqM, along the 

3 
ax' 

3  
3x 2 
	Y p  
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T I Y), , X',)  

Figure 6.3 Geometrical interpretation of the torsion tensor. 

Tps  T „ T„Tgi, ip 

Figure 6.4 Geometrical interpretation of the curvature tensor. 

curve shown, by Tv. If Zi, is any vector in  TM  then we calculate the 
parallel translate around the figure by using (6.1.10), dropping terms of 
order greater than t2 : 

T9P ZP  = {Z — tVxZ ± t 2 i2Vx 2 Z} q  + 0(t 3 ) 

T r Z = {Z — t(V xZ + V yZ) + t2  rq qp p 	 /2(V x 2  Z ± V y 2  Z ± 2V yVxZ) .),. 

+ 0(t3). 



212 
	

CONNECTIONS 

Proceeding around the loop we compare tps t-„Trq -cqp Zp  with Zp : 

T s T„Tr. T p Z  — Z  
lim 	P 	" P 	P  — ([V y , V x ]Z)p  = R(Y r, Xp )Zp . 

t 2  

since pc, fl  = O. This expression shows that the curvature measures the 
path dependence of parallel translation. 

6.5 Bianchi Identities 

Because of the way in which the torsion and curvature tensors are 
constructed out of V certain combinations of their covariant derivatives 
can be written back in terms of these two tensors. The resulting 
identities are called Bianchi identities. 

The (1, 1) tensor field (V xR)(Y, Z) is defined by (V x R)(Y, z)(w, 
= (V xR)(Y, Z, W, 16). For any X, Y, Z cl- TM consider the vector 

= {(V xR)(Y, Z) + (V yR)(Z, X) + (V z R)(X, Y)}(V) 

Z)}(V). 
X.Y,Z 

Here Yx.  y z denotes the cyclic sum of X, Y, Z. Now (V xR)(Y, 
Z)= V x (R67, Z)) — R(V x Y, Z) — R(Y ,  VIZ),  so we may write 

= 	{Axyz Bxyz}(V) 
X Y,Z 

where 

Axyz(V) = Vx(R(Y, Z))(V) = V x(R(Y, Z)(V)) — R(Y, Z)( 17,117) 

B(V) = (R(V x Y, Z) + R(Y, V x Z))(V). 

We may express A xyz in terms of the curvature operator 

Axyz(V) = V x (R(Y, Z)(V)) — R(Y, Z)(V x V) 

= [Vx ,  [VY ,  Vz1 — V,J JV. 

For any operators P, Q, R we have the (Jacobi) identity 

P.Q.12
[P,[Q, R]] = 0 

hence 

A XYZ(V) = 	[VX, V 1y 71IV.  
X,Y.I 	 X,Y.Z 
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Writing out  By  in terms of V 

B XYZ(V) 

= (VV v YVZ VZVV y Y V[VvY, ± V V Y VxZ 	VV .,ZV Y  

X
B XYZ(V) 

 Y 

=,,X,,z(VvvzVx VxVv yz Viv yz, xj + VxVv7 i,  VvzrVx + Vivzy, x] )V 

([V[y, zi, Vx] 	Z], X] + 	T(Y, Z) ,  VX] 	V[T(Y, Z), xi) V.  

Using the Jacobi identity again gives 

B xyz (V) = —  f {[V,  V Ir. 	— R(T(X, Y), Z)1V. 
X.Y.Z 	 X.Y.2 

Thus 

= — 	{R(T(X, Y), Z)}1 7  
X.Y2 

and since this is valid for arbitrary V: 

x.Y.Z
{(VxR)(Y, Z) + R(T(X, Y), Z)} = 0 	(6.5.1) 

V X, Y, Z E FTM. This is known as Bianchi's second identity. 
In a similar way we obtain an identity by covariantly differentiating 

the defining relation for the torsion tensor. We leave it as an exercise to 
prove Bianchi's first identity: 

{R(X, Y)(Z) — T(T(X, Y), Z) — 	T)(Y, Z)} = 0. (6.5.2) 
X.Y,Z 

Because of the inherent antisymmetry of the exterior product these 
identities assume an elegant expression in terms of the torsion and 
curvature 2-forms. If we exteriorly differentiate the second structure 
equation and replace clwa c  by  Ra c  — — a  k A a)kc then the second Bianchi 
identity is expressed as 

dR a  b 	c  A  Rh 	c  A (O c t, = O. 
	 (6.5.3) 

Similarly by applying d to the first structure equation and expressing 
do)°, back in terms of Ra c  and deb back in terms of T' gives the first 
Bianchi identity as 

d Ta + (Da b  A Tb  =  R a b  A eb . 	 (6.5.4) 
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6.6 Metric-Compatible Connections 

The introduction of a connection on a manifold does not require any 
metric properties, and so far we have assumed none. However, when 
introducing a connection on a pseudo-Riemannian manifold we can 
impose relations between the connection and the pseudo-Riemannian 
structure. Parallel translation gives a map between the tangent spaces of 
any two points connected by some curve. On a pseudo-Riemannian 
manifold it is natural to require that this parallel-translation map be an 
isometry between the two tangent spaces. That is, parallel translation 
preserves the lengths of all vectors. A connection such that parallel 
translation has this property is called metric compatible. 

Suppose that Y is a vector field parallel along the curve C. If V is 
metric compatible then the length of Y will be constant along C, that is 
C(g(Y, Y)) = O. Since for f E 5;(M) C(f)= V cf, and V commutes with 
contractions 

C(g(Y, Y)) = V c (g(Y, Y)) 

= V cg(Y, Y) + 2g(V Y, Y). 

If Y is parallel along C then the second term is zero. Requiring that the 
length of all parallel vectors along C be constant gives V cg = O. For a 
metric-compatible connection this holds for all C, so V is metric 
compatible if and only if 

Vg = 0. 	 (6.6.1) 

If {Xi } is any local basis then covariantly differentiating the functions 
= g(Xi, X 1 ) gives 

X(g) = V xg(X i , Xi ) + g(cok i (X)X k , X 1 ) + g(Xi , wk(X)X) 

= V xg(X„ X 1 ) + wk,(X)g ki  + co' i (X)g ik . 

If {Xi } is orthonormal then the functions g ij  are constant. So in an 
orthonormal frame the connection forms of a metric-compatible connec-
tion satisfy the antisymmetry condition 

+  w.,  = 0 	 (6.6.2) 

where (op  =g,k cok,. 
Since the Hodge dual is defined by the metric it follows that covariant 

differentiation with respect to a metric-compatible connection commutes 
with this operation. First observe that the volume n-form is parallel 

V x*1 = 0 	V X. 	 (6.6.3) 

If { e°} is an orthonormal co-frame such that 	= e l Ae 2 A 	A  en 
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then 	V x*1 = 	a(X)ea A e 2  A • • A en + • • • + ( — We' A • • • A 

0J",(X)e a . Now  &a(X)ea A  e 2 A 	A  e n = 	i (x) e l A  e 2 A 	A  e n 

and so (6.6.3) follows from (6.6.2). It can now be seen from the 
definition (1.4.5) that if V is metric compatible 

Vx* = *Vx 	e X. 	 (6.6.4) 

A metric-compatible connection is completely characterised by its 
torsion tensor. That is, the connection coefficients can be determined in 
terms of the metric and torsion tensors. For a metric-compatible V we 
have V u (g(V, W)) = g(V uV, W) + g(V,  V W)  for any vector fields U, 
V and W. By cyclically permuting U, V and W we obtain three such 
expressions. Adding the first two and subtracting the third gives 

U(g(V, W)) + V(g(W, U)) — W(g(U, V)) 

= g(V uV, 	g( 1/ VW)  g(V vW, U) g(W,  VU)  

— g(V w U, V) — g(U,  VV).  

The definition of the torsion operator enables this to be rewritten as 

2g(V u V, W) = U(g(V, W)) + V(g(W, U)) — W(g(U, V)) 

—g(U, [V, W]) + g(V,[W, U]) + g(W, [U, V]) 

—g(U, T(V, W)) + g(V, T(W, U)) + g(W, T(U, V)). 
(6.6.5) 

If {Xa ) is an arbitrary basis then the structure functions Cab` of the 
basis are given by 

	

[X„, X id = Cab cX c . 	 (6.6.6) 

If three different basis vectors are inserted in (6.6.5) then we can solve 
for the connection coefficients: 

r abP = Ig cP{X,(gb,) 	X(g) 	X e (g ab ) — C bc dgad  

+ ccadgbd + cabdged 	Ax b , Jvc , 5—c a ) + T(X,, X a , b ) 

+ T(X a, Xb, X e )). 	 (6.6.7) 

Here g`P is the inverse matrix to gab , gpcg`q = 6qp . If {ea} is the dual 
basis then "-C a  = e a  = g abe b  . There are two classes of bases in which this 
expression for the connection coefficients simplifies: in a coordinate 
basis the structure functions are zero, whilst in an orthonormal basis the 
metric components are constant. For the case of an orthonormal basis 
the above expression for the connection coefficients enables the connec-
tion 1-forms to be given as 

2w ab  = edi x,,i x,(de d  — Td ) + i x,(de a  — T a ) — i xo (de b  — T b ). 	(6.6.8) 
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This formula is of great computational utility. 
From now on we will only consider metric-compatible connections. 

6.7 The Covariant Exterior Derivative 

It is often convenient to work with sets of differential forms indexed 
with respect to some basis. The torsion and curvature forms provide an 
example. The Bianchi identities for these forms, (6.5.3) and (6.5.4), 
involve an exterior derivative plus 'correction terms' involving the 
connection 1-forms. Such combinations of terms can be efficiently 
encoded into a 'covariant exterior derivative'. 

Given a mixed tensor that is totally antisymmetric in some subset of r 
vectors we can associate a set of r-forms with any basis {Xj } with dual 
{e)}. Suppose that S is such a tensor of type (r + q, p). We define a set 
of r-forms -JP I,  by 

S'i 	'Pj , 	. . 	Xr ) = S(X I , . . 	X„ 	. . 	X h , e' , , . . 	elP). 
(6.7.1) 

We define the covariant exterior derivative D of the S'I• • 1P) , j„  in 
terms of a connection V by 

(r + 1)DS'i • `r 	), (X 0 , 

= i( - ni v x
,
s(x 0  , 	, xr, xi , , 	, 

j=0 

- E 	- 	k S(T(X,, Xk), X0, • • 	 • • •, f(k, • • •, 

X iq , e 6 , 	eiP). 	 (6.7.2) 

The 'hat' above a symbol indicates that that term is omitted from the 
sequence. T is the torsion operator of V. It follows from the above 
rather cumbersome expression that 

, 

= 	• • • ja i ,. 	+ 
• • • h 	. . 

• • • iq 

-(0L ), A S" • 	 • • —0; ), A s" • • • iP  ji 	I, • 	
(6.7.3) 

This can be verified by using (4.10.5). For the special case in which 
p = q = 0 the covariant exterior derivative reduces to the ordinary 
exterior derivative. We can then infer from (6.7.2) that 

	

ea A V x‘,=d—  r A 	 (6.7.4) 
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(Alternatively this important relation can be verified on 0-and 1-forms; 
its general validity then following from the fact that both expressions are 
graded derivations.) 

Repeated application of (6.7.3) gives the following Bianchi identity 
for D, 

D 2 S 1 ' A St ,  " 
/I • 	 L i  

— A S ii  • 

R 	Sti • • I q 	 • ' • 

11 — • • • 

— RJ`i,  A Sti • • in 	L . 	 (6.7.5) 

It follows from (6.7.1) that under a change of basis the set of forms 
iP ii  _ 1,  transform according to the classical tensor transformation 

rules. The ,Gi-linearity in the arguments of the right-hand side of (6.7.2) 
ensures that the DSit... ; transform like the S'i if- under a 

h 	• It/ 	 'l ip  
change of basis. If S/ and 7" are sets of r-forms and s-forms respective-
ly, labelled by the multi-indices I and J then, as may be seen from 
(6.7.3), 

D(S I  A 7") = DS' A + ( — WS' A DV. 	(6.7.6) 

The interior derivative with respect to a set of basis vectors maps a set 
of p-forms indexed with q indices into a set of (p — 1)-forms indexed 
with (q + 1) indices. The anticommutator of this operator with D gives 
a useful relation. If 

L x. 	Di x.  + i x. D 	 (6.7.7) 

then L x.  maps a set of p-forms into a set of p-forms indexed by the 
extra index a. It acts as a derivation on exterior products 

L x.(S 1  A 7') = LES'  A 	+ 	A L x. 	(6.7.8) 

First we consider a set of 1-forms, A'' 	jg . For A any 1-form 
(6.7.4) gives 

i x.dA =  VA  — ebi x. V x&A + i x.Tbi xA. 

Using this in (6.7.3) gives 

= 	 _ e bi xavxbA i, lp 	 xa Tb i 011 

• • • + xn co ' „A lp

1, • 	
(0 1, i 	A i, 	7, 

x„ 

r,, 
I l  • 
	7, J, . 	+ 
	

in 	
• 

i • _g 

Now if A is any 1-form 

Vx,A = Vx i x Aec — 	C  p ( X b)e P  
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so 

= VX,iXA w c a(X0ix,A 

and 

e b i x,V x,A = di R A — co` a i xA 	(by (6.7.4) again) 

SO 

i x„DAii • - ip  
Ii' '' ),  

= Vx„A l i • • •
I I 
	dixA II  • • 'Pi, 	(D c aixrA hI 	''a il 

 

• • iPi, 	 • 	
t,i,...i„ 	• 	ly  

• • iy  • • • 

i 	 P 	j, 	± (01 ' 	 ir  

Recognising the right-hand side as containing Di xfil , 	enables 
this to be written as 

LA" " " 1  

= (V 	ixTb  A iX b )A il  • 
	 + coi(Xa )Ail • 

	ip 	
4 

. . — coi,h (X a)Ai. 	 1. • • 11q .  

We have obtained this expression for the 	• • `Pi , 	1-forms; but Lx„ 
V x,, and i x„Tb A  i x, are all derivations on exterior products of multi-
indexed p-forms so it is consequently valid on arbitrary p-forms: 

L x,Sli • 
	iP  

11 	I, 

= 	X„, 	XTb  A iXp)S i ' 
	ip  

/I • 
1,  + w i,(X,),S`. • • 	

- • • 

. . . — COJ' is (Xa )S i l 	
• 'I's • • • .iti • 

	 (6.7.9) 

If 	• 	= S(e., . 	e'P, Xji , . . 	Xj, ) then this can be written as'lq 

L x„Si ,  • • 	, i„  

= V 	 eiP, X1i , . . 	+ 	A  ixhS • iPi i 	(6.7.10) 

For the special case of cp, any ,9;-valued p-form, this reduces to 

ixAT ± Di Jc 99  = V x„ ± ix,Tb A i x, T. 	(6.7.11) 

The definition (6.7.2) can be applied to 0-forms where there is the 
simplification that the torsion terms do not enter. Since gab  = g(Xa, Xb ) 
we have Dgab(X)= xg(Xa, Xb ). Thus for a metric-compatible connec-
tion 

Dg ab  = 0. 	 (6.7.12) 
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It follows that if indices labelling a set of forms are raised or lowered 
with the components of the metric then this operation commutes with 
the covariant exterior derivative. If the volume n-form is expanded as 
,‘1 = (n!) -1  e eii A . . . A et^ then ri,. in = n!*1(X,,, . . Xj. So 
for a  metric-compatible connection 

= 0. 	 (6.7.13) 

As anticipated the Bianchi identities (6.5.3) and (6.5.4) can now be 
written as 

DRa b  = 0 
	

(6.7.14) 

DTa = Ra b A e b  • 
	 (6.7.15) 

In an orthonormal basis the connection 1-forms of a metric-
compatible connection are antisymmetric: they satisfy (6.6.2). It follows 
that the curvature 2-forms satisfy an analogous relation. Moreover, 
because of the tensorial nature of the transformation of the curvature 
2-forms under a change of basis this antisymmetry is maintained in an 
arbitrary basis. Using this antisymmetry the second Bianchi identity 
(6.7.15) can be contracted to obtain various other identities. We leave it 
as an exercise to prove the following contracted Bianchi identities: 

i xp i xg i x,DTa = 	 — i xp i x,R aa) (6.7.16) 
p,q,r,a 

i xp i x, i xa DTa= ixi Pp  — i x,Pq 	(6.7.17) 

Tae" + 	D Tr= 2 	 (6.7.18) 
p,q,r 	P 	q 	 p,q,r 

DTa= Pb A e b 	 (6.7.19) 

6.8 The Curvature Scalar and Einstein Tensor 

The existence of a metric tensor enables 'type-changing' of the (3, 1) 
curvature tensor to various other fourth-rank tensors. We will normally 
denote all such tensors by the same symbol, making it clear in the 
context in which it appears exactly which tensor is meant. Similarly the 
Ricci tensor can be related to a (1, 1) tensor which can then be 
contracted to a scalar. That is, the curvature scalar is given by 

= Ric(Xa , Xa) 	 (6.8.1) 

where as usual X° = gabxb. In terms of the Ricci 1-forms Pa , 

= 
	 (6.8.2) 
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In n-dimensions the Einstein (n — 1) -forms G, are defined by 

G c = R 	
ab 

ab A 	
e 

 

These may be related to the Ricci forms; we have 

Gc —  R ab  A iX,iXb* e a  = R ba A i.riX, * e a  

(6.8.3) 

= ixb(Rba Aix r *e a ) + Pa A ix,*e a  

= ixb(Rab A  1 X° 1 X, *1 ) — Pa A ix,*e a  

= ixqix4Rab A  1 X, *1 ) 	Pb  A iX, *1 } 	P a A ix,*e a . 

Now  R ab  A ix, *1 = 0, since it is an (n + 1)-form, so 

	

G, = — R*e c. + b A  1xbix, * 1 — Pa  A ixr * e a  = 	R*e c  — 2P° A *e c, 

and 

	

Pa  A *e 	ix,Paeb A *ea, 

= ixsPa {+ix,(eb A *ea) 	grw*ea} 

= ix*Pa f+gba*ec + gbe*eal 

= +ixPa *ea + ix,Pa *ea- 

The contracted Bianchi identity (6.7.17) gives the antisymmetric part 
of the Ricci tensor in terms of the torsion, so 

Pa A *e 	— gt*e, + irPc *e a  + iri x i x ,DTb*e a  

= — R*e c  + *Pc  + *ix i x,DTb 

thus 

	

G c  = 	e c  — 2*P c  — 2*i x i x,DT5  

or 

* - IG c  = 	— 2P, — 2i x i Xb DTb. 	(6.8.4) 

The set of Einstein forms are equivalent to a (2, 0) tensor. The 
Einstein tensor G is defined by 

G = * -I G c (Dec. 	 (6.8.5) 

The antisymmetric part of the Einstein tensor is determined by the 
torsion. Using (6.7.17) once again gives 

i x,* -1 G c  — i x ,* -1 G b  = —2i xh i x,i xa DTa. 	(6.8.6) 

The covariant exterior derivative of the Einstein forms can also be 
related to the torsion. Writing GC  =  Rab  A 

*eabc we have 
DGc = DR ab  A 

 *,,abc '  R a b  A D*eabc. The first term is zero by the first 
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Bianchi identity. In n-dimensions we can expand the Hodge dual as 

1 = 

	

(n —  3)! 
 e' A e'5  A 	A e in ix„ 

Now i x, ... 	 is proportional to *1 contracted on n vectors, 
thus its Covariant exterior derivative is zero, so 

	

D*el1i2/3 = 
(n —

1 

3)! 
( P-■ A e" A 	A e" e l ' A T" A • • • A e"  

1 
	 Ti A e" A 	A 	• • i 

(n — 4)! 
4  

= 	A *ei0 2`3 i4  

thus 

DGc =  R ab  A pi A  * e abc p 	 (6.8.7) 

Equivalently this relation can be written in terms of the (2, 0) Einstein 
tensor. The divergence of G,V.G, is a 1-form defined by 

(V.G)(Y) = V G(X° , Y) 	 (6.8.8) 

thus 

V.G = (i x.* -1 V x»p  — wc p (Xa)ix.* -1 Gc)eP 

= * -1 (ea A V ,K,G p  — 	p  A G c )eP 

We may now use (6.7.4) to give 

V.G = * -1 (DGp  — Ta A ixGdeP 

and (6.8.7) then gives 

V. G = — * -1 (Tq A iXgRab *eabdep. 

6.9 The Pseudo-Riemannian Connection 

(6.8.9) 

Since a metric-compatible connection is completely characterised by its 
torsion tensor it follows that there is a unique torsion-free metric-
compatible connection for any pseudo-Riemannian structure. This con-
nection is called the pseudo -Riemannian connection. It is also sometimes 
associated with the names of Levi—Civita and Christoffel. From (6.6.7) 
we see that in a coordinate basis the condition of zero torsion is 
expressed as a symmetry of the connection coefficients,  " ab1'  = r baP • 
For this reason a torsion-free connection is often called 'symmetric'. The 
connection coefficients of the pseudo-Riemannian connection expressed 

• • • A Ti") iX • - • iX,s iX,4 * e lli2i3  
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in a coordinate basis are often called the Christoffel symbols. For actual 
computations it is often most efficient to use an orthonormal basis. In 
such a basis there are, by (6.6.2), In(n — 1) independent 1-forms or 
1n 2 (n — 1) independent connection coefficients. For a coordinate basis 
the zero-torsion condition cuts down the number of connection coeffi-
cients to  4n 2(n + 1). Thus in an orthonormal basis there are n 2  fewer 
connection coefficients. 

Because of the Bianchi identities the curvature tensor of a torsion-free 
connection has extra symmetries. Equation (6.7.16) reduces to an 
expression of the `pairwise interchange' symmetry of the Riemann 
tensor. Equation (6.7.17) shows that for zero torsion the Ricci tensor is 
symmetric. For zero torsion the Einstein tensor is symmetric, by (6.8.6), 
and divergenceless by (6.8.9). 

We can use (6.7.4) to write the exterior derivative in terms of any 
torsion-free connection. Since any metric-compatible connection satisfies 
(6.6.4) we obtain a useful relation between the pseudo-Riemannian 
connection and the co-derivative (5 which was introduced in (5.4.2). If cp 
is a differential p-form then i x.V x„cp is certainly a (p — 1)-form. 
Introducing the Hodge map and its inverse: 

= ir** -1 Vx„(19  = ix.*Vx,* -1 cP 
	

by (6.6.4) 

= *(Vxa* -I T A e a ) 	(by (1.4.7)) 

= *(ea  A V Mr -1 0 
where  i  is defined in (1.1.2). We now use (6.7.4): 

x° x,(P = *cin* - 4. 

The inverse of the Hodge map is given in (5.4.3). By considering the 
cases of even and odd dimensions separately it can be seen that this can 
be rewritten as i x.V x. y) = —* -1 d*ricp, that is 

	

ixSq) = —6 (12 . 	 (6.9.1) 

From now on, unless we specify to the contrary, we shall restrict 
ourselves to the pseudo-Riemannian connection. For most of what 
follows it will be essential that the connection is metric compatible, 
whereas in most places torsion merely contributes extra terms. 

Exercise 6.4 
An Einstein space is one for which Ric = cg for some constant c. Show 
that if, in three or more dimensions, Ric = fg for f E 5-, (M) then: 

(i) f = 91.1n 

(ii) G e  = 
(n 

 n
— 2)

3t*ec 

(iii)  d1  = O. 
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Example 6.1 
Let g be the metric tensor of a four-dimensional spacetime: 
g = —e°®e° + V, = ,ekOek. In a local chart with coordinates (t(p), 
r(p), 0(p), cp(p)) a class of spherically symmetric metrics may be 
parametrised by functions H o , H 1 , H, of r(p) and a function .1 of t(p), 
by choosing a local orthonormal co-frame as 

e° = H odt 

= e AH i dr  

e 2  = eq-1 2 d0 

e 3  = ell, sin Odcp. 

As an example of using (6.6.8) verify that the connection 1-forms co al, 
of the pseudo-Riemannian connection are given in this basis by table 
6.1. Hence construct table 6.2 for Gr x eb where X, is a dual orthonormal 
frame: e b (X,)= kb . 

6.10 Sectional Curvature 

A two-dimensional subspace S of  TM  will be called a tangent plane to 
M at p. If {X, Y} is any basis for S and 

Q(X, Y) = g(X, X)g(Y, Y) — (g(X, Y)) 2 	(6.10.1) 

then Q(X, Y) = 0 if and only if g induces a degenerate metric on S. 
Such a tangent plane is called degenerate. If S is any non-degenerate 
tangent plane at p then the sectional curvature of M at p, along the 
plane section S, is K(S): 

g(R(X, Y)X, Y)  
K(S) = 	 (6.10.2) 

Q(X, Y) 

Thus the sectional curvature at p is a real function of the tangent planes 
at p. 

Exercise 6.5 
Verify that the definition of K(S) is independent of the basis chosen. 

For the case in which M is Riemannian the sectional curvature 
generalises the intuitive notions of curvature of two-dimensional sur-
faces. If Xo  is a normal neighbourhood of the origin in  TM  then 
Expp (X0  n S) is a two-dimensional Riemannian submanifold of M. Let 
WO be an open ball of radius r centred about the origin in xo  n S, 
with r sufficiently small that Exp p  is a diffeomorphism onto B(r), an 
open ball centred about p. Let si(r) be the area of WO and A(r) be 



Table 6.1 The torsion-free orthonormal connection forms cor,h  = 	—co h„ for the metric of example 6.1. 

0 1 2 3 
a 

0 0 —(H1H ( H 1 )e -Àe" — 011-1 0 )ei —(A11-1 0 )e 2  —0.1H0e 3  
0 —(1-1111 1 1-1 2 )e - Àe 2  —(H .V H ,H 2 )e - Àe 3  

2 0 — ( cot 01H 2 )e - Âe 3  

3 0 

= dX/dt,  H 	ciff„/dr. 

Table 6.2 Associated table of Levi—Cevita connection coefficients specified by V ,G eb in the dual bases satisfying el' (X,) = 

e° e' e 2  e' 

—(1-0H 0H I )e -2e' —(HUH01-1 1 )e —'e°  0 0 

vx I  —0.111 0)el —(,i1H 0 )e° 0 0 

VX 2 
—0.11-1 01e 2  (1-11H 1 H2 )e - Àe 2  —(.111 0)e° 0 

—(1-1 2'1H,H2 )e - xel 

vx, —0.11-10 1e 3  (IV H i f1 2 )e - À0 ( cot 01H2 )e - Âe' —(.111 0 )e° — (H41H 1 1-1 2 )e—"e' 
—( cot 01H 2)e-q-2 

FIL 	dIf„/dr 
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the area of B(r). Thus ,s4(r) is determined by the Euclidean geometry of 
TM  whilst A (r) is determined by the Riemannian geometry of 
Exp p (x, n S). The sectional curvature is determined by a comparison 
of these two areas: 

K(S) = urn12 	
— A(r) 	

(6.10.3) 
r2s4(r) 

The proof of these assertions can be found in, for example, Helgason 
(1978). 

Exercise 6.6 
Take M to be the two-sphere with the standard metric induced from IR 3 

 (see figure 6.5). Calculate the sectional curvature using (6.10.2). Verify 
that (6.10.3) gives the same result. (Note that B(r) is a spherical cap 
with geodesic radius r (figure 6.5).) 

Figure 6.5 

A manifold is said to have constant curvature if its sectional curvature is 
constant. 

Exercise 6.7 
Show that M has constant curvature c if and only if 

Rab 
 

= 
	

(6.10.4) 

6.11 The Conformal Tensor 

Two metric tensor fields g and g such that g = exp(2A)g for some 
function A are said to be conformally related. Whereas a conformal 
resealing of the metric will change the curvature it is possible to 
construct a tensor out of the Riemann tensor that is invariant under 
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such scalings. Let {ea} be a g-orthonormal co-frame, with dual {Xa }, 
and {?) a R-orthonormal co-frame, with dual {X—a  }, where 

= exp(A)ea 	= exp(-4Xa . 	(6.11.1) 

If t' is the pseudo-Riemannian connection of g with connection forms 
w—ab  with respect to {ea) then from (6.6.8) 

(co—ab) = (Dab + X b (y1)ea — X a (yl.)e b . 	(6.11.2) 

Similarly the curvature forms R ab of t‘ in the {ea} basis are 

(Rab) = Rab 

	

— X a(A)eb A  dA - X,(i1),(`Weah. 
	 (6.11.3) 

We have used D X a (A.) = V xa dA, which follows from (6.7.11). Contract-
ing with XI  gives the Ricci forms and curvature scalar of : 
exp(X)Fb  = Pb ± (2 n)V xb dÂ + (n — 2)Xb WdA 

+ (2 — n)X,(X)Xc(A)e b  — i xyxadÂe b 	 (6.11.4) 

exp(2X)2I = 	— 2(n — 1)i xiN xb dil + (1 — n)(n — 2)X c (ii.)X`(X). 
(6.11.5) 

The conformal 2 -forms Cab are defined (in more than two dimen-
sions) in terms of the curvature 2-forms and their contractions by 

Cab = Rab 
n —

1 

 2 
(P A e b 	Pb  A e a ) + 

(n — 2)
1
(n —1)

Rea A e b . 

(6.11.6) 

These 2-forms have the important property of being invariant under 
conformal scalings of the metric. That is, if C ab are the conformal 
2-forms of g with respect to {ea}  then 

	

Cab =  Cab. 	 (6.11.7) 

If the (3, 1) conformal tensor (or Weyl tensor) C is defined by 

	

C = 2Ca b Oe b ®X a 	 (6.11.8) 

then equivalently 

e' = C. 	 (6.11.9) 

From their definition the conformal 2-forms Cab are manifestly 
antisymmetric under interchange of a and  b.  They also satisfy (for zero 
torsion) analogous identities to those for the curvature 2-forms, namely 

	

Cab A e b  = ° 
	

(6.11.10) 

	

iX)X h Cpq = iXp iX q Cab • 
	 (6.11.11) 

VX,CIA A ea 	VX„Clil A eh ± Xh(X)ea A dA 
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In addition there is the identity 

irCab = O. 	 (6.11.12) 

A manifold is conformally flat if its metric is conformally related to a 
flat one. Certainly the conformal tensor must vanish for a conformally 
flat space. In fact in more than three dimensions a manifold is 
conformally flat if and only if its conformal tensor is zero (Eisenhart 
1949). 

6.12 Some Curvature Relations in Low Dimensions 

In two dimensions there is only one independent curvature form, which 
must be proportional to the volume form. We have 

Rab = I e ab. 
	 (6.12.1) 

Since there is only one tangent plane we write the sectional curvature 
simply as K. This is related to the curvature scalar by 

K = 2TL. 	 (6.12.2) 

The conformal 2-forms are not defined in two dimensions. However, all 
two-dimensional manifolds are conformally flat (Eisenhart 1949). It is 
often useful to exploit this by adopting coordinates in which the metric 
is parametrised by the scale function that relates it to a flat metric. 

We can use the metric to relate the (3, 1) curvature tensor to a (4, 0) 
tensor, R =2R ab Oeab. Both factors in the tensor product are 2-forms, 
and it is often convenient to have a notation for the tensor obtained by 
taking the Hodge dual of either factor. We write 

*R = 2*R ab Oeab 	 (6.12.3) 

and 

R* = 2Rab *0 eab 	 (6.12.4) 

In three dimensions the dual of a 2-form is a 1-form, so 

R* = 2R ab Oec A ix, *e ab  = 2R abi xr*e ab (D e c 

The first factor now involves the Einstein forms, which were given in 
(6.8.3). So if 

2G,C)ec 	 (6.12.5) 

we have R* = (6, or 

R = (6* -1 . 	 (6.12.6) 
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Now 

cfi* -1  = —G c i xj x,* — le`Oeab = (—R*e c  + 2*P c 	xh* —l e cO e ab 

by (6.8.4). To simplify the first term write 

i x) xh* -i e ce(  _ 	 =  ixiXixb 	iy(ix,ix,* -11  A e c ) 	3i 3O x,* -1 1 

= iX'{iXxi, *-11  A ec) 	iXh *-11gac} ± 3*  —l eba 

= j j (p 
A * l eb) 	 + 3 * 'eha  

= g bc i x,i x,* -1 1 + 2 * -1 eba = * -1 eha. 

In exactly the same way we obtain 

Pcix„ix,* oel e c  = ix,Pc* -l ea c 	ix,Pc* -l eh` 

Using the symmetry of the Ricci tensor, (6.7.17), gives 

pc i xa i xb* -i e c = ,-1( ea  A 
' h 	b A Pa + Reba). 

so we have 

(g* 	= 2(191e ba 	Pa  A eh —  Pb  A  ea)®e ab . 

Thus (6.12.6) shows that in three dimensions 

Rab = 1Re1,a + Pa A eh — Pb A ea. 
	 (6.12.7) 

The first immediate consequence is that the conformal 2-forms are 
identically zero in three dimensions. It also follows that in three 
dimensions any Einstein space is necessarily of constant curvature. 

Exercise 6.8 
(i) Use the conformal scalings of (6.11.2)—(6.11.5) to show that if in n 

dimensions Ya  = DP„ — [2(n — 1)] I dgi, A e a  then I-7-a  = exp(—)1) 
x [Y, + (n — 2)Xb 	bal • 

(ii) Show that Y, A e h  —  Y b  b A e a  = (2 — n)DC ah  and Y, A e a  = O. 

In three dimensions  Cab 0 and so in this case the tensor Y a 0ea is 
conformally invariant. Thus the vanishing of Y, ea is a necessary 
condition for conformal flatness: in fact it is also a sufficient condition 
(Eisenhart 1949). In three dimensions the (2, 0) tensor SEY *Y a (Dea 
is conformally covariant, symmetric and traceless, by (ii). 

(iii) Show that in three dimensions D Y„ = O. 

In four dimensions there are useful identities involving the 'left and 
right' duals of the curvature tensor. Setting 

R ± 	± * - `R*) 	 (6.12.8) 

we have 

R -  = (Pp  A e q  — Po  A 	— ;Re aq )OePq 	(6.12.9) 
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and 

R +  = C + giepq 0ePq 	 (6.12.10) 

where C = 2Cpq 0ePq. These relations can be verified in exactly the 
same way as their three-dimensional analogues. 

6.13 Killing's Equation 

In §4.14 we introduced Killing vectors, these being vector fields that 
generate local isometries on a pseudo-Riemannian manifold. Because 
the pseudo-Riemannian connection is determined by the metric structure 
there are several useful relations between Killing vectors and this 
connection. Indeed, Killing vectors are often characterised by being 
solutions of Killing's equation, which is a differential equation for a 
vector field involving the pseudo-Riemannian connection. 

It is convenient at this point to introduce the operator 

A x  Ix  —V x 	V X EFTM. 	(6.13.1) 

It immediately follows that A x  is a derivation on tensor fields that 
commutes with contractions, also satisfying A xf = 0 Vf e  Y, (M). In 
particular 

A x (g(Y, Z)) = 0 = (A xg)(Y, Z) + g(A x Y, Z) + g(Y,  AZ).  

For V metric compatible Ag = xg so the above becomes 

g(A x Y, Z) + g(Y,  AZ)  = —(2 xg)(Y, Z). 

Since for any vector field Y we have  AY = [X, Y] — V x Y, if V is 
torsion free then A x  Y = —V EX, hence 

g(V EX, Z) + g(V zX, Y) = (g)(Y, 	Z). 	(6.13.2) 

If )--e is the 1-form related by the metric to X then it is often convenient 
to rewrite the above in the equivalent form 

zV 	+ 1 yV z X = (Yxg)(Y ,  Z). 	 (6.13.3) 

If K is a Killing vector then (6.13.2) becomes Killing's equation: 

g(V EK, Z) + g(V z K, Y) = 0 	V Y, Z 	E F TM. (6.13.4) 

The relation (6.13.3) is often useful in applications. Subsequently we 
shall need a related result for the 2-form d X. If V and Y are arbitrary 
vector fields then by (6.7.4) 
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V vd = V ve a  A Vx„ + e a  A V vVX„ 

= — e a (VvXb)e b  A Vx, ± e a  A V VVX„ 

= e b  A Vr,x, + e a  A V vVx, 

= e a  A (V vVX„  

= ea A (R(17, X a ) 	Vix„Vv 	V[v, 	VV vX„) 

= e a  A (R(V, X a) + V x:7 v  — V vvy )V since V is torsion-free, 

= ea AR(1/, x a )f + dV v  — e° A Vy ky 	 (6.13.5) 

Now 

id  i  = ixe a Vx 	— e a  A iXVX„ 

	

= VX — e a  A (iXVX„ iX„VX) 	VX -17  

so that 

Vî 	ixdi ± -le a  A (iXVX„ 	iX„VX -17 ). 

Using (6.13.3) we have 

V x  = Oxdf + lz yg(x, x a )ea. 	(6.13.6) 

This gives 

e° A Vv 	;ea  A ipxyd 	. 2yg(V xy, X b )eab 

= 	A (V xa (i vd 	— 	i7 ) + ,Y yg(V x,y, X b )eab 

=  did  + li v (e° A VxA -1.7 ) — 1V vdi-/  

+ 1Z yg(V x,11, X b )eab  

=  did  — 4V dî + 	yg(V xy, X b )eab 	(6.13.7) 

since d 2  = 0. Using (6.13.6) once again 

dVr y  = 	 d(Zyg(V, X a )ea) 

= did-}7  + 	 X a )eb° + 	yg(V xy, X a )e b  a. (6.13.8) 

Returning now to (6.13.5) with (6.13.7) and (6.13.8) produces 

vd = 2ea A R(V, 	+ V xy g(V, X a )e ba 

This can be expressed in terms of the curvature 2-forms as 

	

Vdî7  = 2Y 4 l/bR ab  + V x,Z yg(V, X u )e ba 	(6.13.9) 

where Y° = ea(Y) etc. Operating on this with the interior product gives 
an expression with the Ricci forms: 

i x,V x,d -17  = —2Y°P„ + V x,,T yg(Xe, X a )e° — V x,Z yg(Xa, Xa)eb 
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or, by (6.9.1) 

bd = 211°P, — V x,2' yg(X`, X a )ea + V ayg(Xa, X a )eb . 	(6.13.10) 

Obviously such expressions are particularly useful for vectors that 
generate symmetries. 

Exercise 6.9 
A vector field K is called a conformal Killing vector if Kg = 2/1.g for 
some function A. Show that K satisfies 

(i) bk = nA 	 (6.13.11) 

(ii) 6dk = 2KaPa  ± 2(n — 	 (6.13.12) 

Exercise 6.10 
For some calculations one needs to be able to commute a Lie derivative 
past a covariant derivative. If 

D(Y) 	[my,  VJ — 	 (6.13.13) 

show that 

(i) D(Y) is a tensor derivation that commutes with contractions 

(II) DfX(Y) — fl )  x(Y) 

(iii)D x(ITS = fp x (Y)S 

for f E g°(M) 

for any tensor field S 

(iv) D x(Y)Z = D z (Y)X (since V is torsion-free) 

If  Dx,(Mb= Mab c (Y)Xe show that 

Mab P 07) = le(VT yg(X,., X b ) — Va yg(X b , X a ) 

+ Va yg(X,„ X e )). 	 (6.13.14) 

Hint: starting from D x (Y)(g(X b , X e ))= 0 follow the procedure for 
solving for the connection coefficients given in §6.6. 
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7 

Gravitation 

7.1 Lorentzian Connections 

As we noted in §6.2 the space IR" has a natural connection. This is 
defined such that a natural coordinate basis is parallel. We have already 
seen how Newtonian dynamics may be described with the natural 
connection on IF1 3 . In Chapter 5 Minkowski spacetime was modelled on 
IR 4 , the natural coordinate basis being declared orthonormal with 
respect to a Lorentzian metric. Such a field of global orthonormal 
frames is parallel with respect to the natural Fi 4  connection, and thus we 
may now recognise the class of inertial frames as consisting of all frames 
that are parallel with respect to this connection. More generally on any 
spacetime we may use the unique torsion-free metric-compatible connec-
tion (the Lorentzian connection) to evaluate the acceleration of curves. 
If a particle of mass ti is modelled on a unit timelike curve C then the 
acceleration VC may be attributed to a four-force Ffi: = V c (pC). 

For example, if C describes a particle of electric charge q moving in a 
background electromagnetic field described by the 2-form F then the 
force is given by the Lorentz  rule ,°-; = qi c F. Hence C may be 
determined by solving the equation 

Vc(1 ,1 ) = RicF. 	 (7.1.1) 

(Since the particle may radiate an electromagnetic field this equation 
should be coupled with the Maxwell field equations (the particle 
produces a source of electric current) to determine F properly.) It is 
instructive to compare a Minkowski four-dimensional description with 
our earlier Newtonian formulation. We may express F in terms of 
electric and magnetic fields observed by an inertial observer a„ 
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F =  E A dt + B. Similarly we express the trajectory four-velocity e in 
terms of the Newtonian velocity v k , k = 1, 2, 3, with respect to the 
same inertial observer, as  C  = y(a, + vka k ), where y  (1 — vkv k ) 1/2. 

IT is straightforward to calculate 

	

Vc(PC) = C'(tiy)a, + e(tryv k )a k 	(7.1.2) 

and 

	

iëF = —yE &a, — yEva j  + yvJi a, B. 	(7.1.3) 

We have written E  = Ei dx 1  and used i dt = y, cît = —3„ dx/ = a,. If 
we write i ak B = —E k imB i a n, (where  Ekim  is totally antisymmetric k, 1, 
m = 1, 2, 3 and £123 = 1) then in an inertial chart for Minkowski 
spacetime (7.1.1) becomes 

()..tyv„,) = —qy(E m  + vkEkin0) 

C(12y) = —qyE m v'n. 

Since C  = C.ar, e(o= dad,- = y relates the inertial time variable t to 
the proper time r at points on the curve. Similarly C.(xk) = dxk/dr 
= yv k  = (dtldr)v k , hence v k  = (dxk 1dt). Setting p k  = ttyv k , = ity 
gives the equations in the form 

d 

—dt (Pm)  = 
—q(Em + v k Eki„,B I ) 

d 
—
dt

`e = —qE,v`. 

We see that the Newtonian equations of motion are recovered for 
vkv k  << 1. For many practical calculations it is, however, often easier to 
use (7.1.1) directly without passing to an inertial chart. 

Example 7.1 
Use the transformation from the inertial Minkowski coordinates (t, x, y, 
z) to the coordinates n, y', z'). t = sinhij ,  x = cosh j, y' = y, 
z' = z to express the Minkowski metric tensor in the form 

	

g = —VdnOdn + 	+ dy'Ody' + dz'Odz' 

on a patch defined by 	n, y', z' < co. Verify that the only 
non-vanishing connection components in this chart are given by 
V a,a q  = (1/) 3 n  = V a, a and V a , an = 	Show that C = 
solves (7.1.1) for a constant electric field expressed in the inertial chart 
as F = EOCIX A dt if '6 = —qE olm. Hence derive the hyperbolic orbit 

=- (6 -1 , n = (fir, y' = 0, z' = 0) and show that this asymptotes to a 
light cone. Note (fi is the norm of the constant four-acceleration of the 
particle: 

	

g(V 	V 	= (g 2 . 
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7.2 Fermi—Walker Transport 

If C is any geodesic of an arbitrary spacetime (V c C = 0) then if g(X, 
C) = 0 at any point on the curve then X remains orthogonal to C at all 
points if V cX = O. But if the acceleration field A c  =  VC along C is 
not zero then this property is lost. However, on any given C we may 
usefully define a new connection V in terms of V and the metric tensor 
field g. Acting on any vector field X restricted to C 

c X  VEX  + g(C, X)A c  — g(A c, X)C. 	(7.2.1) 

This connection is called a Fermi—Walker or F-connection on C. Its 
construction manifestly depends on the parametrised curve C itself. An 
immediate consequence of the definition is that 

C(g(X, Y)) = g(X, cY) + g(t c X, Y) 	V X, Y on C(7.2.2) 

so V is compatible with the metric tensor g. If C is an observer curve 
(g(C, C) = —1) then g(A c , C) = 0 and hence V C  = 0: so a velocity 
vector is also F-parallel. For any vector field Y on C, C(g(Y, C)) 
= g(t c Y , 0, so if Y is F-parallel c  Y = 0) then the metric 
projection of Y on C (or the angle between Y and C) is preserved 
along C. In particular a g-orthonormal frame {X a } at one point of C, 
with a timelike basis vector X 0  = C, will remain orthonormal with 
X0  = C at all points along C if parallel transported with respect to the 
Fermi—Walker connection. Such an F-parallel frame is said to be 
non-rotating along C and gives one a way of determining whether any 
spacelike vector undergoes spatial rotation along C: spatial rotation 
being measured by the components with respect to the F-parallel basis 
on C. 

It is generally believed that in spacetime an F-parallel spacelike vector 
S satisfying the orthogonality condition g(S, C) = 0 along a timelike 
curve C models the behaviour of an ideal gyroscope (one that experi-
ences no non-gravitational torques) on C. Three such mutually ortho-
gonal gyroscopes (g(S„ Si ) = 6,1 ) together with C then define a 
non-rotating frame along C. It is interesting to note that this concept of 
frame rotation is determined by the metric properties of spacetime. The 
relation of these properties to gravitational fields is explored in the next 
few sections. 

7.3 The Einstein Field Equations 

The theory of Newtonian gravitation provides an excellent description 
for a large class of natural phenomena. The gravitational interaction 
between macroscopic distributions of matter is defined in terms of 
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a Newtonian force derivable most simply from a real scalar field on 
Newtonian spacetime. As originally formulated, no account is taken of 
the propagation velocity of this interaction. It is regarded as an 
instantaneous or static interaction. When Einstein introduced the special 
theory of relativity the notion of simultaneity became observer depen-
dent. The recognition that Maxwell's equations of electromagnetism 
could be formulated as a set of tensor equations on a four-dimensional 
spacetime encouraged Einstein to reformulate all the basic laws of 
classical physics in terms of spacetime tensor fields. 

According to Einstein the Lorentzian metric of spacetime should also 
be governed by partial differential equations so that the geometry itself 
has a dynamical status along with the fields of matter. The idea that the 
matter and geometry of a spacetime form a mutually sustaining dyna-
mical system found fruition in the general theory of relativity proposed 
by Einstein in 1916. Despite its title this theory proposes that there is an 
absolute spacetime arena in which the classical events of physics take 
place. This needs qualifying as follows. If g is any spacetime metric 
tensor field satisfying Einstein's equations on a manifold M then for 
cp : M —> cpM a diffeomorphism, cp*g will solve the diffeomorphic image 
of Einstein's equations on cpM. Any such manifold isometric to M under 
a diffeomorphism is regarded as describing the same physical phe-
nomena. The choice of field equations was partly inspired by the need 
to recover Newton's laws of gravity in the limit in which propagation 
effects could be neglected and partly by the aesthetic desire to maintain 
a tensorial description of spacetime events in which the coordinates of 
such events were to be relegated to the labelling conventions adopted by 
different observers. The field equations involve the curvature tensor of 
the Lorentzian connection and tensors constructed out of various matter 
fields describing the sources of the gravitational field. There are many 
ways to formulate these field equations. In the early literature one finds 
the tensor components of the field equations written out in some local 
chart from the manifold atlas. There is some virtue in writing out the 
local equations in full tensorial form since as we shall show this often 
facilitates their solution and simplifies their presentation. One should, 
however, note that each local solution of the coupled system of field 
equations may in general be extended to the whole manifold in different 
ways. If the global properties of the spacetime manifold are constrained 
then the class of solutions that can be defined globally will be similarly 
constrained. 

Whereas in principle all the physical consequences of such a theory 
should follow from the Einstein equations for gravity together with the 
field equations for the matter tensors, an often used approximation 
models macroscopic 'test' particles that interact solely with gravitation 
by geodesic world lines. 

Let us first write Einstein's equations in terms of exterior forms on 
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some neighbourhood of the spacetime manifold M. If {G,} are the 
Einstein 3-forms associated with the Lorentzian connection, given in 
(6.8.3), then Einstein's equations for g are 

KG, + r,(g, 	= 0 	c = 0, 1, 2, 3 	(7.3.1) 

where {r,(g, 0)) is a set of stress 3-forms determined in this co-frame 
by some choice of matter fields, denoted generically here by (13, and lc is 
some (positive) coupling constant. (The notation indicates that T, 
depends on g and (t o rather than being contracted on these fields.) We 
shall supplement these equations with a set of matter field equations 
denoted collectively by 

	

(13) = 0. 	 (7.3.2) 

We cannot choose the stress forms arbitrarily, since for zero torsion 
(6.8.6) and (6.8.7) reduce to 

DG„ = 0 	 (7.3.3) 

and 

Ga A eb = Gb A ea- 	 (7.3.4) 

The matter stress forms defined with respect to {ea} determine the 
stress energy tensor field 

	

= * -1 T,C)ea 	 (7.3.5) 

Any matter model for Einstein's equations must therefore give rise to a 
symmetric second-rank stress tensor  er = abea  (Deb that is divergence-
less: V.:I = 0. In many cases given a matter model there is a well 
defined procedure for generating such a stress tensor. Indeed the most 
economical way to summarise the whole coupled system is in terms 
of an action functional whose extremal equations generate the full set of 
field equations including the consistent stress forms. Although it is 
straightforward to set up a heuristic scheme for applying a variational 
calculus to obtain all the field equations it would take us too far afield 
to set up a decent formalism for this purpose. (The precise formulation 
of a variational scheme involving spinors requires particular care.) We 
shall be content in this chapter to give some examples of matter models 
in exterior form together with their associated stresses. Such matter 
models have featured prominently in many theoretical discussions of 
gravitational interactions with fields. 

Exercise 7.1 
Show, by contracting (4.8.4) and using (7.3.1), that in n dimensions 
Einstein's equations can be written as 

ix.* -1 Ta 
2KP, = * - Lr, e 

n — 2 
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The conditions that the stress tensor be symmetric and divergenceless 
are required for it to be equated to the Einstein tensor of a metric-
compatible torsion-tree connection. In addition further 'energy' condi-
tions are usually required to hold in order for the stress tensor to be 
physically reasonable. The weak energy condition is that 5- (V, V) 0 
for all timelike V. This condition is motivated by assuming that 
an observer whose curve is tangent to V would interpret  7(V, V) as an 
energy density. The dominant energy condition is similarly motivated. 
This can be phrased as requiring that j v  be a future-pointing 
non-spacelike vector for all future-pointing timelike V, where 
Iv  = —*T v  for r v  = raea(V). Alternatively one can impose conditions 
on the stress tensor by requiring that the corresponding (via Einstein's 
equations) Einstein tensor has certain properties, resulting in gravity 
being, in some sense, attractive. The condition on the stress tensor such 
that Ric(V, V) 0 for all timelike V is called the strong energy 
condition. Details of these energy conditions can be found in Hawking 
and Ellis. 

7.4 Conservation Laws 

In Newtonian dynamics the total energy and momentum of a system 
may be defined to be certain dynamical variables that remain fixed as 
the system evolves. Such constants of the motion have their origin in the 
existence of certain symmetries of the equations of motion. Similarly in 
the dynamics of continuous media the vanishing divergence of the 
Newtonian energy—momentum tensor affords a succinct description of 
the equations of motion, and the associated constants of motion may be 
obtained by integrating densities constructed from the components of 
such a tensor. On a curved manifold, however, caution is required in 
correlating conservation laws to the existence of a divergenceless stress 
tensor. In general it is necessary for the spacetime metric to admit some 
kind of symmetry in order to construct conserved quantities. 

Let 5-  be a symmetric (2, 0) tensor whose metric related (0, 2) tensor 
has components g ab in some orthonormal frame {Xa  }. For any vector 
field V we have Y vg(X a, X b ) + g(IvX a, X b ) + g(Xa , Y vX b )= 0 since 

v [g(Xa, X b )] = 0 for any orthonormal frame {X a  }. Hence since 
ab = ba  and V is torsion free: 

vg(X,„ X Off ab * 1 

= —2g(Y vX a, X b)Ff ab * i = _2g(v vx.  _ vxy,  x b)?fab  *1 

= — {g(V VXa, X b) g(X a ,vXb)}Ff ab *1 2g(V xy, X b ) jab  *1. 
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Now g(V vX,, X1,) + g(Xa, VX,,) = 0 since V{g(X„, X i,)} = 0 and so 

X b ),5 0b*1 = g(V xy, X b )Tah*1 

= V x {g(V, X b ),Gfab)*1 — g(V, V x,X0.5a b *1 — g(V, X 1,)V x„.3"b *l. 

Now for any (n — 1)-form J we may write 

di = ea A  VJ = ,K(e° Ai) — VX,ea  A 

So introducingintroducing la  = e"  Ai  we have di = V x.ja — x„ea)(Xb)j b . Thus 
we have 

2 vg(Xa, X b rTab *1 

= V,v (g(V, 	 — (V xt)(X b )g(V, X c )Tb`*1 

+(V xf a)(X0g( 17, X,) ,5 
 
bc 

— g(V, V x/ V 0,5 ab * ,  _ 1 	g(V, X b)V x ff ab * 1 

= cl{V b gab *ea } 	f ea zv ,1, k 	X b )1/,3"bc + g(V, V x/ V b)f ab ± v b y "y o-j ab) * 1 

=- ci{17 T al,* e a  } — {V ' xe b  (X a) bce c  ± V X'e b g ab + Xa  (-7  ab)eb }(V) *1 . 

We may write this in terms of the (n — 1)-form Jv  = V b  ' 6  I ab*eb as 

gab * i = d jv  _ (v.,7)(v)*i. 1Vvg)(Xa, Xb) 	 (7.4.1) 

From this relation we conclude that if the spacetime admits a 
conformal Killing vector field C, 2 cg = 24, then 

/10- a a*1 = dic  — (V.3-)(C)*1. 

Hence a closed (n — 1)-form may be constructed out of a divergenceless 
traceless stress tensor in a spacetime with conformal isometries. If the 
vector field K is Killing (Y IN = 0) then irrespective of the trace of 3-  

dJK  = O. 

If Po , (P,) are Killing vector fields on four-dimensional spacetime 
generating open timelike (spacelike) integral curves then the integrals of 
the corresponding 3-forms over a spacelike 3-chain define the energy 
(momentum) contributed by 3-  to E. Similarly if J, are three Killing 
vector fields that generate the closed integral curves corresponding to 
the orbits of the rotation group SO(3) then the corresponding integrals 
may be taken as defining the angular momentum in E. 

There is a useful analogy between solutions of Einstein's equations, 
coupled to matter, admitting symmetries and solutions to Maxwell's 
equations coupled to charged matter. The closed 3-forms constructed 
out of the stress tensor and the Killing vector are the analogues of the 
closed electromagnetic current 3-form. Maxwell's equations have the 
important property that one may define the total charge contained in a 
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compact region by the integral of the 2-form *F, which is closed in any 
source-free region, over any closed 2-chain. (Electric charge may be 
defined by a de-Rham period.) Einstein's equations give rise to analo-
gous 2-forms that are closed in source-free regions of spacetimes with 
symmetries. Einstein's equations imply that when the stress tensor 
vanishes the spacetime is Ricci flat. So if the spacetime admits a Killing 
vector K then, from (4.13.12) the 2-form *dk is closed. In such 
spacetimes we shall refer to *d k as a Komar form, the component 
expression having been introduced into general relativity by Komar [11]. 

7.5 Some Matter Fields 

The Einstein—Klein--Gordon system 

The massive real scalar field cp E rAoM is taken to satisfy 

d*dcp = 1.2 2 *cp + U'(cp)*1 
	

(7.5.1) 

where y is some real parameter and U is a polynomial in cp. The stress 
forms in the local frame {Xa } are given by 

T a  = (i a dcp A *dcp + dcp A in * dT) 	
(t

ii2T2 	U)*e a 	(7.5.2) 

where i a 	i x,. The stress associated with a constant U is sometimes 
attributed to a 'cosmological term'. 

As we have remarked, in order to be consistently equated to the 
Einstein tensor, the stress forms should satisfy DT, = O. Taking the 
expression in (7.5.2) gives 

Dr„ = (Di x,dcp A *dcp + i xn cicp A d*dcp — dcp A Di *dcp) 

(P 2 c19 	tr)(1 49  A *ea. 	 (7.5.3) 

Now we may use (6.7.11) (for zero torsion): 

Dr a  = 	A *dcp + i x,dcp A d*dcp — dcp A V *dcp + cicp A id*d(p) 

iX,CiegY 2 T 	tr)* 1 . 

Since 	V 	is 	metric-compatible 	cicp A V x, *dcp = 	dcp A *V x,c1cp = 
V x cicp A *dcp and so the terms involving V cancel. Since dcp A i kcl*dcp = 

x  Jcicp A d*dcp) + i x,dcp A d*dcp, and dcp A d*dcp is a 5-form in four 
dimensions 

DT, = Xa(T)(d*dT ,u 2 *cp — U'*1). 

Thus whenever the field equations (7.5.1) hold ar a  =- O. 
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Exercise 7.2 
Show that 3(X 0 , 1(0*1 = ro  A e° and that for (7.5.2) 

1 3  
To A e° = (—E(X„(T)) 2  ± 412 492  + 

that is, for a suitable potential U the weak energy condition is satisfied. 

The Einstein—Proca system 

The 'massive' real 1-form field Â is taken to satisfy 

	

d*dii = —m 2 *A 
	

(7.5.4) 

with u some real non-zero constant. The associated stress forms are 

T a = ",(i„dA A *di2).  — i„*dA A (Li) + ;1.4. 2(0 A *A +  A A i a *A). (7.5.5) 

It may be noted that an integrability condition follows by applying *d to 
(7.5.4): 

	

= o. 	 (7.5.6) 

The Einstein—Maxwell system 

For the electromagnetic field 2-form F we have the curved space 
Maxwell equations 

	

d*F = 0 
	

(7.5.7) 

	

dF = 0 
	

(7.5.8) 

with associated stresses 

	

Ta  = 	*F — 	i a *F A  F). 	 (7.5.9) 

The Einstein Yang—Mills system 

Let A = A i T` be a Lie-algebra-valued 1-form, A.  rA 1 M and {P} a 
basis for some Lie algebra, with Lie bracket [T', Ti]. The Yang—Mills 
field strength is the Lie-algebra-valued 2-form F = dA + [A, A] = F,T' 
where the bracket between a Lie-algebra-valued p-form H and a 
Lie-algebra-valued q-form B is 

[H, B] = H, A Bi [r, Ti]  = H A B — (-1)PqB A  H 

and dA = dA,P. It is useful to define an exterior covariant derivative 
on the Lie-algebra-valued p-forms H: 

DH = dH + [A, H]. 	 (7.5.10) 
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From the definition of F we have the Bianchi identity 

DF =  0. 	 (7.5.11) 

The field equation analagous to (7.5.7) is 

D*F = 0. 	 (7.5.12) 

The system is coupled to Einsteinian gravity with the stress forms 

Z !!.(i0F; A *Fi — ia*Fi A F1). 
	 (7.5.13) 

The Einstein—Maxwell-charged scalar system 

In this case an electrically charged complex scalar field (1) couples to 
both gravity and electromagnetism. The Maxwell equations now have 
electric current sources j[g, 

d*F = j 
	

(7.5.14) 

dF = 0 
	

(7.5.15) 

where the current 3-form is 

j = Im((1)*a(I)*) 
	

(7.5.16) 

and the U(1) exterior covariant derivative is defined by 

in terms of the 1-form A satisfying F = dA. Under the maps 
A 1--> A — dA, (1)1--> e'(1) for A any real function on M, 9)(1.1-->eac1). All 
electrically charged tensors and their U(1) covariant derivatives belong 
to some representation of the group U(1). The Maxwell stress forms are 
now supplemented by 

ra [g, A, 101 = Re(i aa 4) A *act.*  + aci)  A ia *aCD * ) 

— 1 ( 12 01 2 	U(1012))*ea• 	 (7.5.17) 

The U(1) covariant field equation for (1) is 

a*acto = 11 2 *(1) + U'(1)*1 	 (7.5.18) 

with U' = dUld1(13 1 2 - 

Exercise 7.3 
Show that the total stress tensor, the sum of those in (7.5.9) and 
(7.5.17), satisfies Dra  = 0 when the coupled Maxwell—Klein—Gordon 
equations, (7.5.14), (7.5.16) and (7.5.18), are satisifed. 
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Ideal-fluid stress 

In astrophysical problems one often models massive fluids on a timelike 
vector field. If V is a local vector field with g(V, V) = —1 each integral 
curve is considered to describe the world line of a massive fluid element. 
If the fluid has mass density specified by the 0-form p, the 3-form mass 
current is 

j = P.V 
	

(7.5.19) 

and the mass in a spacelike 3-surface E is 1 E]. If the number of particles 
in the fluid remains constant then dj = 0. We examine the symmetric 
tensor field 

= pl/®V. 	 (7.5.20) 

Since 

vx,s-GT = (x.p)Vcw + pv,x0 v + pv0v,07 
then 

(V xj. )(ea, ) = (X ap)VaV + p(V xy)(ea)V + pVaV xy. 

The symmetric tensor field 	has divergence 

V. = V(p)V + pV.V V + pV v V 

but (V x (pV))(ea) = V(p) + pV.V , hence 

V. ,GT = V .(pV)V + pV v V = —.5(pi7 )V + pV ,V 

= —(*dj)V + pV v V. 

Thus for .?-7 to be divergenceless the acceleration of V must be 
proportional to V. But if V is timelike with constant norm its accelera-
tion is orthogonal to itself. So the divergence of 5' is zero if and only if 
dj = 0 and V is a geodesic vector field,  VV  = 0. 

Electrically charged fluid stress 

Suppose that each integral curve of V models the world line of an 
electrically charged fluid element. Let the charge density Pe  of the fluid 
be (elra)p. Thus each world line may be taken to correspond to a point 
particle with electric charge e and mass m. The gravitational field 
equations are the Maxwell—Einstein equations where the Maxwell equa-
tions have as 3-form current source 

= *(pe 
	 (7.5.21) 

The symmetric stress tensor for the system of electromagnetic fields and 
fluid is 
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=3- (1,4) + P%" ® l" 

where ,l (m)  is the Maxwell stress tensor. If d*F = J e  then from (7.5.9) 
Dr(m) , = F A  i Ve . Since .7 enjoys similar properties to the Einstein 
tensor (6, an argument analagous to that leading to (4.8.9) shows that 
V.T = * -1 Draea . So for any X, G'..9- (m) (X) = * -1 (F A  i x./ e ). Repeatedly 
using (1.4.7) with ** = 

F A i xJ, = F A i x **Je  = F A * ( *Je A X) 
= Ne A )A *F =  *F A 'le A X. 

so that 

* (F A iAle) = * ( * FA * Je A X) = iX * ( * FA * Je) 

= iXi ** F = 

and 

V.5 (m) (X) = i x i:4F = 

Thus V 3 0,0 = iF= (eplm)iv F, by (7.5.21), so 

V.T = eP 	i vF + pV v V — (*dj)V. 	 (7.5.22) 

As we noted before, if Vis of constant norm then its acceleration is 
orthogonal to itself, and i vF(V)= i v i vF = O. Thus by equating to zero 
the components of V..61 parallel and orthogonal to V we see that ,V is 
divergenceless if and only if the particle number is conserved, 

dj = 0 

and 

v y = --
e

i vF. 	 (7.5.23) 

We recognise this as the Lorentz force law equation for charged world 
lines. 

7.6 The Reissner—Nordstriim Solution 

In principle one can take an assumed form of metric and matter fields, 
parametrised by a set of functions, and compute the Einstein and stress 
tensors to obtain equations for the unknown functions. The resulting 
equations will be non-linear coupled partial differential equations. If the 
assumed form of solution is not appropriately parametrised then these 



244 	 GRAVITATION 

differential equations will not admit a solution, whilst usually a very 
general form of trial solution merely results in intractable equations. 
Thus, in practice, such a 'brute force' approach is somewhat limited in 
obtaining physically interesting solutions to Einstein's equations: the 
generation of such solutions being a specialised pursuit. 

The imposition of symmetries on the fields is one obvious way of 
restricting the number of free parameters. We here consider a static 
spherically symmetric metric. A metric is stationary if it admits a 
timelike Killing vector. If, in addition, this Killing vector is orthogonal 
to a family of spacelike hypersurfaces then the metric is called static. 
We consider a metric tensor that can be written in a local polar 
spacetime chart (t, r, 0, cp) as 

g = —Ho(r) 2dtOdt + H1 (r) 2dr®dr + r2 d00d0 + r2  sin 2 0c1cp0dcp. 
(7.6.1) 

The chart is specified by {0  0<  7r, 0 cp < 2r, 0<  t < oc) and r is 
bounded to keep H o  and H 1  real. This metric is invariant under an 
SO(3) group of transformations generated by the rotational Killing 
vectors given in (5.4.7). It is also static since 20,30 g =-- 0 and (atat) is 
orthogonal to the hypersurfaces with t = constant. As we pointed out in 
Chapter 6 it is convenient to choose an orthonormal co-frame in which 
to compute the connection forms. Choosing the local co-frame: 

{e° = Hodt, el = H i dr,  e 2  = rd0, e 3  = r sin (94) 

one computes the non-vanishing connection forms 

H 0' 
	 u 

, 

H0H1 
e 

1  
rH 

1
3 

cot 0 
e3. W2 3  = 	= 

(The co-frames here are a special case of those used to compute the 
connection forms given in table 6.1.) The curvature forms now follow 
from the definition (6.4.12): 

23 

Woi = 	= 

W12  = W 21 = 

(0 13 = — (031 = 

e°1 
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1 (1 y 
R 11  – —t -------- I e– 

r1-1 1  11 1  

RO2 
H'0  

= r1-1110 e 02 

Taking * 1 	e 0123 

R ,2  = rif t  H I  

- 	03 R03= 	e . 
rHTH 0  

the Einstein forms are calculated: 

= 	A e 3  – 2R13 A e 1  – 2R31 A e 2  

2 	fi 2 1.  1 	± 

r 2  

1 
e 123 

irH i ‘11 1 1 r 2 1-1 2i 

1 	) 
Gi = 2(2 	11('I 	1  + 	(p3 e 

r2 	r2 H; 

G 2  = –2J(r)e"13  

G 3  = 2J(r)e° ' 2  

where 

\' 	1 	± 	1 	1 
J(r) = 

k H I  H I + rHiFlo 	rH  

The vaccuum equations Ga = 0 are now all satisfied by 

1 	 )
1/2 

H o  = 71-
1

= 1 + -- 
r 

for some constant m. This solution has the property that for large r the 
metric looks like the metric of Minkowski spacetime. 

To illustrate the effect of the electromagnetic field on the geometry of 
spacetime consider a spherically symmetric static Einstein–Maxwell 
system. In the above chart we choose a gauge in which A = f(r)dt, 
ensuring that Y ici F = 0 for F = dA and KJ  any Killing vector of the 
spherically symmetric static metric. The Maxwell 2-form is 
F = L(r)el  A e° where L(r)= f' l(H 0 11 1 ). Integrating the differential 
equations d*F = 0 gives Lr 2  = q for some constant q. From (7.5.9) the 
Maxwell stress forms follow simply 

n 2 	 ' 
0 	q - 	I 	 0,3 	1 	013 	 1  - 012 T = -e 1/3  , r = 1-  e - , = -e , T3  = 

2r4 	
--e 

2r 4 	2r 4 	 2r4 
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The presence of the stress modifies the equations above to 

	

ict 2 ( 1 )' 	1 

	

+ 	
1 
 + g -  = 0 

	

[ril l  W I / 	r2 	r2 I-11 	4r4  

K(  	
1 	1 

2 1
-  r 0 

	

+ 	
n2 

+ :L--  = 0 

	

rt1110 	r2 	r 2 1-1;) 	4r4  
a  2 

KI(r) - --- = 0. 
4r 4  

These equations are all satisfied by 

	

1  = ( 1  + 
	q22  H = 	 (7.6.2) 

	

H 1 	r 	4Kr 2  ! 
The electromagnetic 2-form field is F = (q1r2 )el A e°, so we may 
interpret this solution as the gravitational field of a spherically sym-
metric static electrically charged source. It is known as the Reissner-
Nordstrom solution. 

In the above solution we have two arbitrary constants and q. The 
latter we have identified with a source of electric charge. The former 
may be identified with a Newtonian gravitational mass. However, 
classical gravitation is observed to give rise always to an attractive 
interaction between macroscopic masses. This feature implies that !I 
should be chosen to be a negative constant. The examples below are 
intended to convince the reader of this identification. 

Exercise 7.4 
Consider the geodesic motion of an uncharged test particle in a 
spacetime metric described by the local orthonormal co-frame 

{e° = Fdx°, ek = F- idxk 	k = 1, 2, 3} 

with F a function of the three spatial coordinates. Show that the 
geodesic 

C: I —> M, T 	(x°(r), xk(r)) 

is determined by 

+ 2X°F- IC(F) = 0 

+ [(02 F3  + Xi X iFla iF - 2X'F- IC(F) = 0. 

For C timelike choose a proper-time parametrisation to replace these 
with 

g(C, C) = -1 

+ 4aiF2  +  2F- '(» 1 a  i  - XiX 1 8 1 )F = 0. 
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If now WI << 1 and F2  = 1 — h with h << 1 then these approximate to 

= 13 i h. 

By comparing with Newton's law of motion for a slowly moving 
particle in a Newtonian gravitational potential 43, make the weak field 
identification 

= —h/2. 

Exercise 7.5 
In the above metric (7.6.1), set q = 0 and make the coordinate 
transformation 

r = R — — + 
2 	16R 

to write it in the isotropic form 

(+ 

g = (

4R + /12

dtOdt  
4R — 

1 — 2—) 4 (dROdR + R 2d00d0 + R 2  sin 2 0dcpOdcp). 
4R 

In a region where p, << 4R this is of the type considered in exercise 7.4, 
(change from standard R 3  polar to R 3  Cartesian coordinates.) 

Recall that for a point source of Newtonian gravity due to a mass M, 
the potential (13 = — GMIr where G is the Newtonian gravitational 
coupling constant. Hence from h = GMIr identify the constant in the 
Schwarzschild solution; pt =  —2 GM. 

Exercise 7.6 
In the metric in exercise 7.4 above verify that for h << 1, 
G° = —2(3 k akh)el A e 2  A e 3 . For an ideal fluid of density p show that 
TO = pe  1 A e 2 A  e3 in the frame {Xa } in which its velocity V = X o . 
Hence use the Newtonian Poisson equation V 2 q) -= 477- Gp to relate our lc 
to the Newtonian coupling G by 

1 
K=  

  

167TG .  

Exercise 7.7 
Use the result of exercise 7.1 to rewrite Einstein's equations in the form 

— eJL = 80G* -11", 

In the absence of the electromagnetic field (q = 0) the Reissner-
Nordstrom metric reduces to the Schwarzschild metric. That is, we have 
a vacuum spacetime with metric 
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g  . ( 1 	2M 
 )dtOdt + (1 	2M 	) 1  drOdr + r 2 (dO®de 

r 	 r 

	

+ sin 2 0404) 	 (7.6.3) 

where the coordinate r is restricted to be greater than 2M. Some 
properties of this spacetime can be understood by looking at the 
behaviour of local light cones in this chart, where for fixed (r, t) we 
have a standard 2-sphere. The tangent vector p(3/3t) + q(3/3r) has 
norm squared (1 - 2M/r) -1 q 2  - (1 - 2MIr)p 2  and is therefore timelike 
if 

2M 
< 1 - 

r 

The local directions determined by all such tangent vectors lie in the 
local light cones attached to each point on the 2-sphere at (r, t). These 
light cones appear to close as the coordinate r approaches 2M. Thus any 
incoming timelike or null curve will asymptote to r = 2M in the 
(r, t) chart. On the other hand, if one calculates the scalar curvature 
near r =2M it appears well behaved, suggesting that the Schwarzchild 
coordinates may cover only part of some Lorentzian manifold. If we 
introduce the Eddington-Finkelstein coordinates (T, r', 0, cp) where 
T = t + r + 2M log (r - 2M) and r' = r then it is straightforward to 
compute d T in terms of dt and dr and write the above metric in these 
coordinates as 

g = - (1 - 11-1 )ciTOcIT + dT0dr' + dr'OdT + r' 2 (dO0d0 
r' 

	

+ sin 2 0 dq504). 	 (7.6.4) 

The region of spacetime covered by r E (2M, co) t e (-co, 00) is now 
covered by r' and T ranging over the same values. There now appears 
no reason to restrict r' to be less than 2M. Thus we may regard the 
original coordinates as describing only part of a Lorentzian manifold, 
the whole of which is covered by the new coordinates with T>  O. 
Looking now in the (r', T) plane at the forward light cones for 
r' < 2M, in which lie the future directed timelike curves, a dramatic 
result is evident. No future-directed timelike (or null) curve from 
r'  <2M ever reaches the region of spacetime with r' > 2M: all such 
curves are eventually focused to r' = O. Thus there exists a horizon at 
r' =-- 2M, no causal information of any kind being received by an 
observer outside the horizon from points within. Furthermore, all 
incoming timelike curves that enter the horizon eventually (in a finite 
proper time) strike the line r' = 0 where the curvature tensor becomes 
unbounded. Such events do not belong to a Lorentzian manifold and 

9 
P 
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prohibit any further extensions of the spacetime. 
For a spherically symmetric star of mass M and radius parameter 

r>  M the Schwarzschild metric describes the unique spacetime in the 
vacuum exterior to the star. The spacetime inside the star will depend 
on its matter stresses. A star unfortunate enough to evolve to a radius 
parameter less than 2M is predicted to find all its atoms on doomed 
world lines and undergoes catastrophic gravitational collapse. (For an 
object whose Newtonian mass is n times the mass of the sun this radius 
is about 3n km.) One of the most celebrated theorems in the theory of 
gravitation asserts that under a number of reasonable assumptions such 
a phenomenon is not restricted to the idealised spherically symmetric 
metric discussed here. The physics of the collapse of matter to a singular 
state is one of the great challenges of contemporary research. 

Further details of the Schwarzschild geometry can be found in, for 
example, Hawking and Ellis [12] and Misner, Thorne and Wheeler [13]. 
These books give a more complete account of the possible extensions to 
the exterior Schwarzschild solution. 

7.7 Gravitation with Torsion 

Einstein's theory of gravitation is written in terms of a metric-
compatible torsion-free connection. There have been many attempts to 
generalise these equations. One direction is to maintain their form but 
to relax the requirement that the connection has zero torsion. One must 
then supplement them with further equations that determine the torsion 
tensor. They may be regarded as geometrical descriptions of interactions 
that depend on tensor (and spinor) fields other than the metric. One 
may also contemplate gravitational theories in which the metric compati-
bility of the connection is relaxed although such approaches have 
attracted little attention so far. Needless to say the adoption of a 
particular connection for the geometrical description of physical phe-
nomena depends on the physics of the situation. Sometimes (as in the 
case of theories with supergravity) a connection with a torsion deter-
mined by a spinor field equation provides an elegant formulation of a 
theory. Rewriting the theory in terms of the Levi—Civita connection is 
always possible, but possibly at a cost of algebraic complexity. 

As a simple example of a model written in terms of a metric-
compatible connection with torsion, consider a self-interacting real scalar 
field a' coupled to gravity according to the field equations [14] 

;. a,2Ga = Ta[ cr ] 	Aa,4. e a 	 (7.7.1) 

cd*da 2  = 2Acr 3 *1 	 (7.7.2) 
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with 

da'  
Ta  = ea A — 

a 
(7.7.3) 

Ta  = 	adœ A *dœ + dcr A i"*da). 	(7.7.4) 

The non-vanishing real parameters A and c are coupling constants. (For 
A.  = 0 this model is equivalent to a theory of gravitation proposed by 
Brans and Dicke REF [15].) The equation (7.7.3) involving the torsion 
may be solved for the connection forms (6.6.8): 

i b da 
(I)  ab = Q ab 	(-)e a 	( iadleb 	(7.7.5) 

in terms of the torsion-free connection forms Q ab . It is an interesting 
exercise to rewrite the above system of equations in terms of the 
Einstein forms associated with the torsion-free connection. In such a 
reformulation the torsional effects due to the scalar field coupling to 
gravity may be interpreted as an additional contribution to the stress 
forms. In addition c becomes replaced by c — 6. 
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8 

Clifford Calculus on Manifolds 

The first three chapters of this book are purely algebraic. They deal 
with tensor, exterior and Clifford algebras of an arbitrary vector space. 
In the following chapters when dealing with manifolds, and applications 
in physics, we have assimilated the material of Chapter 1 by taking that 
vector space to be the cotangent space. We shall now similarly incorpo-
rate Chapter 2. 

In Chapter 2 we identified the Clifford algebra with the vector space 
of exterior forms with the product given in (2.1.7). Hence on a 
pseudo-Riemannian manifold M we have the structure of a Clifford 
algebra on each fibre of the exterior bundle. The exterior bundle 
equipped with this multiplication in the fibres will be called the Clifford 
bundle C(M). The situation is that we have a vector bundle with two 
different rules for turning it into an algebra bundle; so we shall freely 
interchange the terms Clifford bundle and exterior bundle (for a 
pseudo-Riemannian manifold) depending on which aspect we wish to 
emphasise. Similarly we may sometimes refer to 'Clifford forms' to 
emphasise that we are thinking of the differential forms as elements of a 
Clifford rather than exterior algebra. 

Just as one can develop an efficient exterior calculus of differential 
forms with the exterior derivative (and more generally the covariant 
exterior derivative) and Hodge dual, one can efficiently calculate using 
the covariant derivative V and Clifford multiplication (equation (2.1.19) 
relating the Hodge dual to Clifford multiplication). Unlike the exterior 
algebra the Clifford algebra is not Z-graded. So Clifford multiplication 
of differential forms will naturally involve us with inhomogeneous 
differential forms; that is, sums of differential forms of different 
degrees. Certain equations involving forms of differing degrees can be 
conveniently expressed in terms of Clifford products. 

The utility of being able to Clifford multiply differential forms really 
becomes apparent when we come to spinor fields (these carrying 
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representations of the Clifford—as opposed to exterior—algebra). An 
inspection of many calculations involving spinors in theoretical physics 
reveals that often the components of a vector (or co-vector) are 
saturated with a set of y-matrices that generate a Clifford algebra. 
(Indeed there is even a special notation for such objects!) It is 
conceptually, as well as notationally, simpler to work directly with the 
Clifford algebra of differential forms. 

In this chapter we shall frequently use the notation, and results, of 
Chapter 2. In particular we shall juxtapose differential forms to denote 
their Clifford product. 

8.1 Covariant Differentiation of Clifford Products 

If tt  is an arbitrary inhomogeneous differential form and A an arbitrary 
1-form on a pseudo-Riemannian manifold M then (2.1.7) gives 

— A A  + 	• 

If V is the pseudo-Riemannian connection then V x(i ii43) = 
ivAI + i AV x(I), since V x  commutes with contractions, and 
VA = VA since V is metric compatible. Hence 

V(A) = Vx/1(13 + AV x(1) 	 (8.1.1) 

and it follows that V. is a derivation on Clifford products. (This does 
not require zero torsion.) Adding and subtracting equations (2.1.7) and 
(2.1.8) gives us relations that permit A A 4) and i A) to be expressed in 
terms of Clifford products: 

	

A cI) + (VA = 2A A cr, 	 (8.1.2) 

— VIA = 	. 	 (8.1.3) 

For { ea }  a local orthonormal co-frame we denote ea A e b  by e ab  . Then 
(8.1.3) gives 

[ e bc ,  ea] = 2o( e b _ n abe e ) 
	

(8.1.4) 

where the left-hand side is a Clifford commutator and ?l ab  are the 
orthonormal components of the metric. So if we use the connection 
1-forms to introduce the 2-form 

a Xbc(X) 
be  c r__ 	xe a 

A ea 
	 (8.1.5) 

we can write (6.3.3) as 

V xea = [a x , ea] . 	 (8.1.6) 

If we introduce an orthonormal multibasis fei) for FAM then, since an 
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exterior product of mutually orthogonal 1-forms is the same as a 
Clifford product 

	

V xel =  [ax, 	. 	 (8.1.7) 

If we expand an arbitrary differential form as (I) =  4),e' then 

	

V xci)  = (X4)/)e 1  + [ax, 43 ] 
	

(8.1.8) 

If S is any invertible element of the Clifford algebra and E" 	SeaS -1  
then it follows from (8.1.6) that V x Ea = [E x , Ea ] with E x  = 
So- xS -1  + VxSS -1 . If s E ±F± then fea' = se's') is another orthonor-
mal frame. If aX denotes the expression in (8.1.5) computed with the 
connection forms in this new basis then 

	

a'x  = saxs + V xss 1 . 	 (8.1.9) 

Certainly the two sides of this expression can only differ by an element 
of the centre. Since ax  is a 2-form and s E ± f ±  then sax s -1  is a 2-form 
and we need only check that V xss - i is a 2-form. For s E ± f± we can 
write s = xix 2 . . . X h  where the x 1  are 1-forms such that (x 1 ) 2  = ±1, 
then 

V55 1  = (V xx 1 x 2  . . . xh  + xlV xx 2  . . xh + . . . 

± x 1 	x h-iv xx h)R x h)-1 	(x 2)-1(x 1)-1)] 

= xx i (x 1 ) -1 	x i [V xx 2 (x 2 ) -1 ]0c 1 ) -1  ± • • • 
x t 	xh-i[v xx h(x.h)-1(x i 

Since (x 1 ) 2  is a constant V x.x` anticommutes with x' and hence with 
(0 -1  = x 1 4.0 2 . So Vxxi(xi) 1 = ;(vxxi(xi)-1 (xi)-1Vxxi) = 

V xx' A (X i ) -1 . It follows that V xss - I is a 2-form. 
If {el} is an orthonormal multibasis for TAM then differentiating 

(8.1.7) expresses the curvature operator as R(X, Y)el = 	el for 

gtxy = V Ps r —  Va x 	[ax,  ay] 	a[x,Y] • 	(8.1.10) 

Since the curvature operator is SF-linear  then for any 4)  E TAM 

	

R(X, Y)4) = 	43] . 	 (8.1.11) 

It can be verified that gt xy is unchanged if  ax 	Sa 	+ V x .S.S -1  
for any invertible S. The forms xy are certainly related to the 
curvature 2-forms R ab; we now establish the exact relationship. 
Differentiating (8.1.5) and using (8.1.7) gives V x a y  = X(tobc( 
+  [ax,  a y ], and hence 

XY = .14 {X(Wbc( Y)) 	Y(Wbc(X)) 	Wbc([X, Y])) e be  ±  [ax, ay ] . 

y)) 6,bc 

Referring to (4.10.3) we can simplify the first three terms: gt xy  = 
',doo b,(X, Y)et'c + [ax , a y ]. To recognise the last term we will use the 
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following useful relation: 

[ eab ,  ea] = 2rede. _ 2qadecb 	2n bc ead _ 2n acebd 	(8.1.12) 

We can use this and the antisymmetry of the connection forms, to write 

Eux, ay] = ,i(wab(X)w b c(Y) 	w ab (Y)cob c (X))eaa 

= (W ba A  W a  eV() 
y)ebc 

So we have 

y) e,bc = _ I; 
9.LXY = 12 Rbc(X) 	 4 'X. •bcr- bc 	(8.1.13) 

This can be rewritten, using the `pairwise symmetric' Bianchi identity for 
zero torsion (6.7.16), as 

&AT = lea (X)e b (Y)Rab 	 (8.1.14) 

Exercise 8.1 
Use (2.1.7) and (2.1.8) to show that (for zero torsion): 

Ra b eb = Pa 

P ea  = 

Rabeba  = R. 

(8.1.15) 

(8.1.16) 

(8.1.17) 

8.2 The operator 0 

Many equations  in physics can be elegantly formulated in terms of the 
exterior derivative d and the co-derivative 6. In Chapter 6 we showed 
how these operators could be expressed in terms of the pseudo-
Riemannian connection. We now define an operator 0 on FAM by 

' e aVx. • 
	 (8.2.1) 

Thus from (6.7.4) and (6.9.1) we have 

= d — 	 (8.2.2) 

with 45 defined in (5.4.2). The operator 0 is sometimes called the Hodge 
de-Rham operator. Unlike d and  O separately, 0 is not a homogeneous 
operator on differential forms; whereas d increases the degree of a form 
by one, 6 decreases the degree by one. The square of 0 is homogeneous 
for since d and 6 are nilpotent 

0 2  = A 	 (8.2.3) 

where A is the Laplace—Beltrami operator of (5.4.5). 
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We can trivially rewrite the pair of Maxwell equations 
d * F = J, dF = 0 as 

ØF =j 
	

(8.2.4) 

where j = 	J .  As an example of manipulating Clifford expressions 
we now re-express the Maxwell stress tensor in terms of Clifford 
products and evaluate its divergence. The stress tensor is related to the 
stress forms by ‘61 = *ira  0 ea = * -1 ra (X b )e b  0 ea. For a four-
dimensional Lorentzian spacetime ** = and the stress tensor com-
ponents are ff ba  = ib* Ta . From (7.5.9) 

2r a  = i aF A  *F — i a *F A F F.  

First we use (8.1.2) to exchange the exterior products for Clifford 
products: 

4ra  = i aF *F + *FiaF — i a *FF — Fi a *F. 

Now we use (8.1.3) 

8ra  = (eaF — Fea)*F + *F(eaF — Fe a ) — (e a * F — *Fe a)F 

— F(e a *F —  *Fe)  - 

Finally we use (2.1.19) to write the Hodge dual in terms of the volume 
4-form z: 

Ta  = FeaFz . 

We have used F> = — F since F is a 2-form and z(1) = scicoz. Once again 
we use (8.1.3) to obtain the stress tensor components 

ba = (Fea Feb 	e b FeaF) . 	 (8.2.5) 

When covariantly differentiating the stress tensor the derivatives of the 
co-frames in the above components will cancel the derivatives of the 
tensor basis, hence 

(V•ff) a  = 4 ('Ç xfe aFec + Fea V x Fec + ecV xr FeaF + e`Fea V xf) . 

We want to use the Maxwell equations (8.2.4) to simplify this, but the 
terms VF  and e` do not all occur in the right order to write them as  Ø.  
The above expression is certainly a 0-form, so by applying the 
homogeneous projector (cf (2.1.12)) Y o  we do nothing. Under this 
projector, factors in the Clifford product can be cyclically permuted 
(2.1.17). (We cannot, of course, then remove the projector.) So we 
have 

.ff) a  = 1&) 0 (0Fe0F + V xfecFe a ) . 

Since F.> =  — F,  then V xfe` = — (0F):4 . We can insert this in the above 
and then use j' o c13  = f 0 t  to obtain (V•fl a  = o(g(Fe aF). We can now 
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use the Maxwell equations (8.2.4): 

Wo(Fje a )ea = 

using (2.1.18). Since j is a 1-form and F is a 2-form then 
Fj=jA F — i iF and so finally 

V•.9-  = —i iF 	 (8.2.6) 

(We earlier obtained this result in the discussion of the electrically 
charged fluid stress in Chapter 7.) We have somewhat laboured the 
above calculation in order to illustrate some of the techniques that are 
useful in practice and to show how one can always interchange any 
exterior expression for a Clifford one and vice versa. 

8.3 The Kahler Equation 

In 1928 Darwin [16] was experimenting with tensor equations in order to 
understand the properties of electrons. fle eventually made contact with 
Dirac's spinor wave equation (to be discussed later) but considered his 
method uneconomical. Apparently Landau and Ivanenko [17] had simi-
lar intentions around the same time. These were perhaps precursors of 
the equation introduced in 1961 by Kahler [18] for a complex in-
homogeneous differential form (I) on a pseudo-Riemannian manifold: 

0(13  = MID 	iA(1) . 	 (8.3.1) 

The term involving A describes the electromagnetic coupling to the 
Maxwell field F= dA. He was apparently motivated to develop a 
'calculus of infinitesimals' in which relations of the form dxP A d.e = 
and dxP y  dx v + dx v  y  dxP = 2gPv could co-exist on a pseudo-
Riemannian manifold. Kahler recovered Dirac's solution describing the 
wave mechanics of a relativistic electron of mass ti in a hydrogen atom 
when he analysed (8.3.1) in flat Minkowski spacetime. 

It was a desire to find a first-order equation, such that the compo-
nents satisfied the second-order Klein—Gordon equation, that motivated 
Dirac to formulate his celebrated equation in 1928 [19]. Because of 
(8.2.3), and since the Laplace—Beltrami operator is homogeneous, the 
p-form components 92p (4:11) of an arbitrary solution to (8.3.1), in 
the absence of an electromagnetic field, satisfy 

AWp (43) = ,u 2 Yp (cI)) . 	 (8.3.2) 

However, an arbitrary complex differential form on spacetime has 
sixteen complex components; whereas a spinor of the complexified 
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Clifford algebra has four complex components. Thus an arbitrary 
solution to (8.3.1) has more components than a solution to Dirac's 
equation. To understand the Kahler equation better, and its relationship 
to the Dirac equation, we examine the possibility of solutions lying in 
minimal left ideals—these carrying irreducible representations of the 
Clifford algebra. A set of four pairwise-orthogonal primitive idem-
potents may be used to project an arbitrary element of the Clifford 
algebra into minimal left ideals. In flat Minkowski space we can always 
choose inertial coordinates {xa} in which ea = dxa, a = 0, 1, 2, 3 consti-
tute an orthonormal basis. We can construct a set of globally defined 
primitive idempotents {P,} out of this parallel co-frame. The resulting 
idempotents will also be parallel, V xPi  =0 V,Ver TM. Thus if 

OP, then cp, is in a minimal left ideal. If (13 satisfies (8.3.1) then 
multiplying (8.3.1) on the right by P, gives 

OTI = 	iAT, 	i = 1, 2, 3, 4 	(8.3.2) 

since P, is parallel. Thus Kahler's equation decouples into four equiva-
lent equations for elements lying in minimal left ideals. (If Kahler's 
equation was written in exterior form then the coupled equations for the 
homogeneous p-forms would not be very transparent.) 

A general solution of the Kahler equation has more degrees of 
freedom than a solution to the Dirac equation. This raises the question 
of the significance of (8.3.1) for the description of those particles in 
Nature (such as the electron–positron field) that are conventionally 
described by the Dirac equation. If one uses a spacetime 3+1 decom-
position to perform a non-relativistic reduction then one obtains from 
(8.3.1) four copies of the Pauli–Schr&linger equation [20]. The wave 
mechanics of a particle described by such a system is indistinguishable 
from a non-relativistic description of an electron in an external electro-
magnetic field except in one respect: all single-particle (quantum) states 
have an extra fourfold degeneracy. For example, if a beam of such 
hypothetical particles was passed through an inhomogeneous static 
magnetic field (a Stern–Gerlach experiment) it would be split into two 
components. This is what happens with electrons on atoms in a real 
experiment. Furthermore, no electromagnetic field could be devised that 
would split the degeneracy of each beam. However, a (powerful) 
inhomogeneous gravitational field would in general break the degenera-
cy, producing four distinct beams in the field. Electrons described by the 
Dirac equation are not predicted to behave in this way. Although such 
an experiment has never been done with real electrons, our under-
standing of the periodic table of the elements is based on the Pauli 
principle for electrons with two internal states rather than four. Without 
a major reformulation of this principle it is difficult to reconcile our 
current understanding of the quantum mechanics of electrons with the 
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four copies of the Pauli-Schrbdinger equation obtained from (8.3.1). In 
an arbitrary curved spacetime (gravitational field) the Kahler equation 
will not decouple into four minimal left ideas (there will not be globally 
defined parallel primitives). Although the experimental significance of 
this is far from clear the fact that the degeneracy of the Minkowski 
space system can be broken would seem to lead to interpretational 
problems for the quantum theory. 

Exercise 8.2 
Define in the usual Minkowski spacetime polar chart (t, r, 0, cp) the 
local 1-forms 

ST = ri- kO(rkYnkl(0,cp)) = kY'T(0,q2) + rdY'kn 

k = 0, 1, 2 . . . 

in terms of standard spherical harmonics satisfying 02(ro, r T) = 0. Verify 
that 

0S rkn  - (1
r 

k)  dr 

and that for any inhomogeneous differential form R independent of dt: 

Ø(RS) = (OR + R 
1 - k

dr)ST . 

Verify that a solution of Kahler's equation with a Coulomb 1-form 
potential A = (e1r)dt in this spacetime may be written 

= E E E REkm (r, 0, cp)Te(t) 
e=± k m. -k 

where Re,, = {f(r) + gEk (r)dr)S'kn and Te(t) = exp (itoFt)(1 + jail) and 
for each E, k the 0-forms f and g satisfy the ordinary differential 
equations: 

f' + 
(1  -

r 
 k)

f  e
:

g + (co - p)g = 0 

g
, 

+ 	g + — 
(1 + k) 	e

r
2f - (co + p)f = O. 

Exercise 8.3 
The 1-form harmonics S'kn may also be used to analyse Maxwell's 
equations OF = 0. First observe that the 1-forms cek„, = Zek (Ar)ST obey 
f21 2 cr = -,1 2 cr and the 2-forms 13Ek„, = ZEk (Ar)drS'kn obey 0 20 = - A 2 13, 
where Z E  k label the independent Bessel solutions of the equation 

p"(r) + -
2
p'(r) + (A2 	(k2 

r
-
- 

k ip(r) = 

	

7 	 A *  0.  
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Writing F = Edt + B with E  = imE and A' = itoB write the harmonic 
component Maxwell equations as the complex pair: 

OE = —itoB 

OB = —itHE 

and seek solutions of the form E = pk (r)Snk' for some 0-forms 
Hence construct the multipole expansions: 

E' = E w i (A'km 1-17„)exp(iwct) 	= —
(H

OE' 
e,k,m 

1311  = »92(131.0m)exp(iwEt) 	EH = --ØB"  
e,k,m 

where 

111,, = Z(wr)1drS 	w 0 

= Z(wr)drS 	w  t 0 

= e'23  and AL„ /3„, are any complex constants. 

Exercise 8.4 
The stress tensor for the Einstein—Kahler coupled system (with A=0) is 

T = 192  0 (4:Vne a V 0:Pee b  + cVne b V x,c13e`e a )ea 0 e b  . 

Verify that 
V T  = 0. 

Hint. Since the co-frames with contracted indices will not contribute to 
the divergence concentrate on the terms 

4(7'. T) b  = 59 0 (V x,43 4-vieaV x,(Dece b  + cVyieaV x:7 xr ctiece b  

+ (V'leaVill)V xfce b  + ci;, 'Ie b e a V xy x,41)ecea 

+ (Vtie b V x,(13V xtea). 

Note W o (V x:13Ege b V x,41)ecea) = 0 since 59 0 ( 11-14-- ) = IV for any W. Using 
(8.3.1) and its iterate, At  = Wc13, the above terms cancel with the aid 
of the relations 

d<V= 

(5(13 :== 

d(I)q= —(dc13)" 

6(13n= —(60:13)q 

V x:bea= —(c1(13 + SOY . 

The last relation follows from (8.1.3). 

Pk  • 
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8.4 The Duffin—Kemmer—Petiau Equations 

After the success of the Dirac equation in describing the electron there 
were attempts made to find first-order equations suitable for describing 
integer spin particles. The Duffin—Kemmer—Petiau equations are an 
example [21]. 

The Kahler equation is not unique in being a first-order equation for 
an inhomogeneous differential form which iterates to the Laplace—
Beltrami equation. For example, consider 

d0, — (50_ = ft0 	 (8.4.1) 

where 0, 	(1 ± 00. This corresponds to the Duffin—Kemmer—Petiau 
equation. Writing this in terms of Clifford products, 

eaV x 0 + Ville" = 2,u0 

we see that the second term prevents the decoupling of the equation 
into minimal left ideals in Minkowski space. Since d and (5 map even 
(odd) forms to odd (even) ones (8.4.1) is equivalent to 

d0, -= p0 _ 

60_ = 	. 

As a consequence (50, = 0 and d0_ = 0 so any solution to (8.4.1) will 
also satisfy the Kahler equation for 0. 

In the massless case (8.4.1) exhibits the generalised gauge symmetry 

0, 1---> 0, + dx_ 

_ 	-> (13 _ 	5x, 

and describes what in the physics literature are often called antisym-
metric tensor gauge fields. 
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Spinor Fields 

In §2.5 spinors (or semi-spinors) were defined as carrying irreducible 
representations of the Clifford algebra. Any such irreducible representa-
tion is equivalent to that carried by a minimal left ideal of the Clifford 
algebra. We thus took any minimal left ideal as the space of spinors. 
The Clifford bundle of a pseudo-Riemannian manifold M has as fibre at 
p, the Clifford algebra of the cotangent space of M at p. Any minimal 
left ideal of this fibre algebra carries the spinor representation. If we 
could smoothly assign a minimal left ideal of the fibre algebra to each p 
in M then we would have a bundle over M with each fibre carrying an 
irreducible representation of the corresponding fibre of the Clifford 
bundle. Such a bundle of spinor spaces would be a sub-bundle of the 
Clifford bundle. For such a bundle to exist the topology of M would 
have to be severely restricted. Requiring the bundle of spinor spaces to 
be contained in the Clifford bundle is unduly restrictive. Therefore, 
rather than requiring that the spinor spaces be minimal left ideals of the 
Clifford algebra, we only require that they  carry a representation 
equivalent to that carried by any minimal left ideal. 

Locally any bundle of spinor spaces will be isomorphic to a sub-
bundle of the Clifford bundle, with fibres being minimal left ideals of 
the Clifford algebra. As we shall show, if any bundle of spinor spaces 
exists we can always form a bundle by patching together the minimal 
left ideals of the Clifford algebra in such a way that locally a spinor field 
may be represented by a differential form lying in a minimal left ideal of 
the Clifford algebra. 

9.1 Spinor Bundles 

We assume first that the pseudo-Riemannian manifold M is even 
dimensional so that the real Clifford algebra is central simple. Thus 
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C(T*pM,g) = ht (R) 	D(1R), where Jlit,.(1R) is the algebra of all order-r 
real matrices and the real central division algebra D must be either the 
real numbers 1R or the quaternions H. Any minimal left ideal of 
C(rpM,g) carries the spinor representation. Thus minimal left ideals 
are r-dimensional right D-modules, Clifford multiplication inducing a 
D-linear transformation. As we noted above we are not now going to 
require that our spinor spaces be identified with any minimal left ideal, 
only that they carry an equivalent representation. Thus our spinor 
spaces will be right D-linear spaces such that Clifford multiplication is 
D-linear. Let .1(M) be a bundle over M such that for each p E M the 
fibre above p is a right D-linear space carrying an irreducible repre-
sentation of C(T*pM,g). Any such bundle will be called a (real) spinor 
bundle, sections being called spinor fields. If any spinor bundle exists 
then M is called a spin manifold. A discussion of the topological 
restrictions on M in order for it to be a spin manifold are beyond the 
scope of this book. However, the reason that there is some restriction 
will become apparent later. Whereas M may have no spinor bundle, it 
may also have many. These can be split into equivalence classes. Two 
spinor bundles 3 (M) and  3'(M)  are equivalent if and only if there is a 
diffeomorphism relating them such that fibres of 4(M) above p are 
mapped into fibres of J'(M) above p with the diffeomorphism commut-
ing with Clifford multiplication. An equivalence class of spinor bundles 
constitutes a spinor structure for C(M). (This definition of spinor 
structure is equivalent to the more usual one to be found in, for 
example, Milnor [221.) 

Let us assume that M is a spin manifold with 4(M) a spinor bundle. 
Fibres of the Clifford bundle are isomorphic to the algebra of D-valued 
matrices. If { ea ( a" ) } is a local orthonormal co-frame defined on the open 
neighbourhood U, of M then an isomorphism between C(rpM,g) and 
D-valued matrices may be given at each p c U „. in terms of the 
generators {ea ( ° ) I p ) and the constant matrices {7a} satisfying 

7a 7b 	7 b 7a = 2g abi 	 (9.1.1) 

For a given choice of D-valued 7-matrices we may correlate a local 
orthonormal co-frame with a local basis of sections of J(M). On U, 
there is a local basis for spinor fields {6, (0 ) such that 

= b (;*)y. 	 (9.1.2) 

(Note that we juxtapose symbols to denote the Clifford action of 
sections of C(M) on sections of .4, (M).) (Thus the basis {1)} trans-
forms under Clifford multiplication just like the 'first column' of a 
matrix basis for the Clifford algebra.) Notice that (9.1.2) does not 
uniquely determine the spinor basis. If (1, Œ ) ') also satisfies (9.1.2) then 
PO is a non-zero function on U, such that 
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b' = Palb (,a ) . 	 (9.1.3) 

On U,fi 	U„U 11 13  there must be some local section of C(M), 
such 	that 	le)  = s(13a ) b" ) . 	But 	ea(0) br =  by  = s(13 OE ) b ( a ) ya = 

I 

S (Pale a(a) M a) . SO e a(13) S (13aV ) = S (Pcv)  e a(a)b c"  and 

ea(13)  = ,s( 1 a)ea(os (130-1 . 	 (9.1.4) 

Thus certainly sWa )  is in the Clifford group F. If the spinor bases are 
changed as in (9.1.3) then s (8a ) ' = f (43) S (Mf(a ' ) 	It turns out that we can, 
in fact, always choose the local bases in (9.1.2) such that the Clifford 
elements s (P")  relating them on overlaps are in +F. (It is a standard 
result that any F bundle is reducible to a  J bundle since F/ ÷ F 
see for example Kobayashi and Nomizu [23].) On triple overlaps 

U Ufi  U U y  Uoy  the Clifford elements relating spinor bases satis-
fy the coherence condition 

stet/3)03Y) = s 	 (9.1.5) 

If M is both space and time orientable then we may choose local 
orthonormal co-frames related on overlaps by an element of SO+(p,q). 
Then if J(M) is a spinor bundle we may choose local spinor frames, as 
above, related on overlaps by an element of _,F+. It is important to 
know that such local bases exist; we shall call them standard spinor 
frames. (Strictly speaking our definition of a spinor bundle is equivalent 
to the usual one only in the orientable case. Without orientability our 
definition is equivalent to what would usually be called a pinor struc-
ture.) 

If M is any pseudo-Riemannian manifold then we can choose local 
orthonormal frames, related on overlaps by an orthogonal transform-
ation, MS")  say. We can choose an s (16")  E such that x(030) 
On triple overlaps we must have s (0)03Y)  =  In general, we 
cannot choose the {s ("13) } so as to eliminate all the minus signs in these 
relations. We can do this if and only if M is a spin manifold. 

In the case in which D = H we have required the spin bundle to have 
a right H-linear structure. Thus spinor fields can be multiplied by 
quaternions. This condition could be relaxed. We know that each spinor 
space is a right H-linear space, so locally any spinor bundle must have 
this structure. But we could consider the more general case in which 
spinor fields can be multiplied by sections of a non-trivial quaternion 
bundle, this multiplication commuting with the Clifford action. The 
existence of a spinor bundle without the H-linear structure is equivalent 
to the weaker condition of having a generalised spinor structure [24]. 

So far we have only considered bundles of real spinors for the case in 
which M is even dimensional. If M is odd dimensional with signature 
such that the Clifford algebra is reducible then the central idempotents 
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± z), with z the volume n-form, decompose the Clifford algebra 
into simple ideals. So if M is orientable the Clifford bundle splits into 
two bundles of simple algebras. In this case we can define spinor 
bundles exactly as above and show that there are standard spinor frames 
related on overlaps by an element of „F+. When the Clifford algebra is 
isomorphic to the algebra of complex matrices then certainly any bundle 
carrying an irreducible representation of the Clifford bundle has local 
bases related on overlaps by elements of the Clifford group. But in this 
case we cannot argue that they can be chosen in ,F+ (assuming 
orientability); rather they will be elements of F+ multiplied by uni-
modular complex functions. The existence of such a bundle is equivalent 
to having a Spinc structure, this being a weaker condition than having a 
Spin structure. The case of the complexified Clifford bundle is like that 
just discussed. If we assume orientability then the existence of a bundle 
carrying an irreducible representation is equivalent to having a Spinc 
structure. 

In the following we shall assume that M is a spin manifold. Unless we 
specifically say otherwise we shall mean by spinor bundle a bundle 
carrying an irreducible representation of the Clifford bundle, or its 
complexification, such that we have standard spinor frames related on 
overlaps by an element of ,F+. For the case of odd dimensions, or the 
complexified case, this is a stronger requirement than that the bundle 
simply carry an irreducible representation of the Clifford bundle. 

9.2 Inner Products on Spinor Fields 

In Chapter 2 we took the space of spinors to be any minimal left ideal 
of the Clifford algebra, projected by some primitive idempotent P. In 
§2.6 we constructed spin-invariant products on the space of spinors with 
values in the division algebra PC(V,g)P --- D. We now want to define 
spin-invariant products on spinor fields with values in D. Although we 
shall use the same notation as in §2.6 now our spinors need not lie in 
any minimal left ideal of the Clifford algebra, and the product will take 
values in D which is the 'standard' algebra isomorphic to PC(V,g)P for 
any primitive P. 

If we had an inner product defined on sections of the spinor bundle 
then we could use this product to establish local canonical bases 
(orthonormal, symplectic etc.). On overlaps these canonical bases would 
be related by transformations in the invariance group of the product. 
Conversely we can use a set of local bases related on overlaps by an 
element of ,F+ to define a ,F+-invariant product on spinor fields. For 
the sake of definiteness we assume that the (real or complexified) 
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Clifford algebra is isomorphic to the algebra of all (real or complex) 
matrices, with the involution ij  similar to transposition. In this case for 
matrices as in (9.1.1) there is a matrix C, symmetric or skew, such that 

C 7aT C -1 = 7a . 	 (9.2.1) 

If { b} is a standard spinor frame, satisfying (9.1.2), then a bilinear 
product on local spinor fields is specified by defining 

b)(Œ)  = C17 1 . 	 (9.2.2) 

The product has been labelled with the subscript (a) since in principle 
we have a different product for each U„. We want to show that on Uo 

 the products ( , ) (0  and ( , ) (o)  coincide, for then we have a well defined 
product on spinor fields. First we show that these local products are spin 
invariant. For any such local product then (suppressing the  (or)-
labelling) 

(b„ eab ) = (b„ 	=  Cy  = (c-1 7a) = (7aTc-1) 

by (9.2.1), so 

(b y  eabl ) = — yaT,,C,T1 1  = 	= — ya,„(bk ,  b)  = — (eab„ 

Thus for any spinor fields and m E FC(M) (ço, m 	= (rOcp, 1p) (,)  
and hence these local products are spin invariant, having 	as adjoint 
involution. On U,43  the standard spinor frames are related by 
b,(P)  = s(13a ) br for s (ga ) c ,F + . So on U 

(bn b (,P) ) (c ) = (s(13" ) br, s (ga) br) („) = (s(13c0s (1 a) br, b è ) )(a) 

= (br,  , 13 (1") ) ( .) = (b'6)  , b () 15) ) (0). 

Thus for any local spinor fields (cp, 	= (cp, tp) 03) . Hence we have a 
well defined product on spinor fields and so omit the neighbourhood 
labelling. 

We demonstrated the existence of a spin-invariant product on spinor 
fields by constructing one using a special basis. That construction does 
not, in fact, specify a unique product. For given local orthonormal 
co-frames and 7-matrices the standard local spinor frames are not 
unique. If the local orthonormal co-frames are related by A (ag)  then the 
s (0)  c ,F+ such that  x(s) = A (43)  is determined up to a sign. So if 
{  b'}  is also a standard spinor frame with br' = Palb;a1  for a local 
function f ( a)  then on overlaps we must have PO = ±f(a) . So a non-zero 
function f is defined on M by /I u  = (sgnfolf (a ) , with br' = ±fbr. 
So if (ba") ', br)' = (br, br), then for any spinor fields f2(q), 1p)' = 
(T, tp). It is easily seen that the choices of orthonormal co-frames, 
7-matrices and matrix C cannot affect the spinor product by more than 
a conformal scaling. Thus this prescription determines a class of confor-
mally related spin-invariant products. 
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Although in the above we assumed for definiteness that 07 was similar 
to transposition in a total matrix algebra, the above construction 
obviously goes through similarly in general. We may analogously con-
struct spin-invariant products with adjoint involution or, for the 
complexified algebras, 	or 

If, for M even dimensional, 4(M) is a bundle of spinors carrying an 
irreducible representation of the complexified Clifford bundle then we 
may define charge conjugation on spinor fields. Once again, although 
we know that we can do this locally, we have to check that we can do it 
globally. We therefore give the definition locally using a standard spinor 
frame and make sure that it is consistent on overlaps. From (2.7.9) we 
know that there is a matrix m such that 

ya* = m - lyam, with m* = +m -1 . 	 (9.2.3) 

On 1. a, the operator c(a) is defined by 

ipc(a) = (b;cov i ) c( Œ )  = b;alinfilP • 
	 (9.2.4) 

If #(a) is the local operation on spinor fields that complex conjugates 
the components in the M')  basis then we use the same symbol to denote 
the automorphism of the complexified Clifford algebra defined by 

(aip)* ( a )  = a#((otp #0" )  . 	 (9.2.5) 

Thus if ab  a)  = b . a j, then a 4(a*cr)  = b;")  a I ,* . ( Care is needed with the 
notation. By tip * we mean the complex conjugate of the components of 
a, whereas a* ji  are the components of the Clifford element a *.  The 
difference between these is the difference between * and #(a).) If rn (a")  
is the local Clifford form such that m ("W")  = b iwnt i, then it follows 
from (9.2.3) that 

a#( )  -- m ( Œ )-1  a* m ( a") 
	

(9.2.6) 

SO 

(cutP) c(")  = (b(rr) a 	= 	kiaii * 	=  

= m ( a) a#(0 14a ) lpi* = rn( a)  a#01m(a")-1 tpc() = a* p). 

If we expand p  as tp = MI31 ip i  then 'Lilc ()  = brmii ipi*, but ip = 
s (Pa9 bY 4ip i  so 

pc(Œ) = s (OcY ) * b (J a')m fi zpi* = b /4')  m 1,1pz .  

since S (13a)*  -= S 66'11  for ,t (t3a )  E ,F+. Hence the operations c(a) and c(13) 
agree on Uo  and we have a well defined operation of charge conjuga-
tion, denoted c. If M is odd dimensional the complexified Clifford 
algebra is semi-simple. In this case either * or Tr is a conjugate-linear 
involuntary automorphism of the simple component algebras. In the 
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latter case we can define charge conjugation using ri* instead of *. 
In even dimensions we have spin-invariant products on the real spinor 

bundle with adjoint involutions and The automorphism ri is inner 
with a  = zaz -- ' for z the volume form. Using a subscript to label the 
product by its adjoint involution we have 

IV, 04.'1  = ( 1P, z€P). 	 (9.2.7) 

In the complexified case we have similarly 

= (tP c , 49) 	 (9.2.8) 

and 

=
(p

zeP) • 	 (9.2.9) 

For a semi-simple real Clifford algebra there is a product on the 
semi-spinors associated with either 	or „;71. When the real Clifford 
algebra is isomorphic to complex matrices then either 	or  îj is 
associated with a complex bilinear product, the other being associated 
with a conjugate-linear product; the products being related by 'charge 
conjugation' defined using  ij.  For the bundle of complex semi-spinors in 
odd dimensions then either or ij  is associated with a complex bilinear 
product; either or being associated with a conjugate-linear one. 
The products are related by 'charge conjugation' defined with either * 
or ri*. 

9.3 Covariant Differentiation of Spinor Fields 

In a similar way to that used to show the existence of a spin-invariant 
product we can define covariant differentiation of spinor fields using a 
standard spinor frame. We will first follow this most direct approach. 
We may then observe that the spinor covariant derivative has certain 
properties. In fact these properties completely determine this covariant 
derivative as we will then show. For most purposes it is sufficient to 
know that a unique covariant derivative having these properties exists. It 
is customary to use the symbol V to denote covariant differentiation of 
spinor fields as well as of tensor fields; the meaning depending on what 
it acts on. We prefer to use a separate symbol S to denote covariant 
differentiation of spinor fields. Although we shall only really be con-
cerned with the pseudo-Riemannian connection on M it should be 
apparent that the discussion here is equally applicable in the case of 
non-zero torsion. 

If  {e' ) } is a local orthonormal co-frame then, from (8.1.5) and 
(8.1.6), we have V xeao")  = [a(;) ,ea() ] where c4)  = co(b7)(x)ebc(cr) 
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can use this local orthonormal co-frame to define a standard spinor 
frame satisfying (8.1.2). We can introduce a covariant derivative SP of 
local spinor fields by defining 

SPW )  = aPMŒ) . 	 (9.3.1) 

If tp ( a )  is an arbitrary local spinor field then SP is defined by 

Sip()  = SP(Ma) lp`) = SPb;ovi + MoX(Ipi). 	(9.3.2) 

The components 	are D-valued functions and the above requires that 
we know how to differentiate these. Quaternionic or complex-valued 
functions are differentiated as ordered quadruples or pairs of real 
functions; that is, the algebra D has a parallel basis. Of course, we will 
want to show that if ip is a local spinor field defined on U 3  then 
Sp  =  Sp.  We will then have a well defined covariant derivative on 
arbitrary sections of the spinor bundle and can drop the label (a). First 
we show that a consequence of the definition (9.3.1) is that the local 
spinor covariant derivatives obey a 'Leibnitz' rule. If A is an arbitrary 
1-form on M with lp ( a' )  a local spinor field then 

SP(A ip(a ) ) = SP(A aeaWtp 1 ) = SP(A ab41IJ') 

= X(24 a)boypi + A a o-Pbytp' + A aby,Xetp`) 

= X(A a )ealp( a)  + aPAip(a)  + AWX(tp') 

= 	le)  + Aanp (" )  + Ab;a1 X(ipi) 

by (8.1.8), so 

SP(Atp (a ) ) = Vxkip(a) + ASPIp( a ) . 

Since this is true for all local Iii")  and the 1-forms generate the Clifford 
algebra we have 

SP(aip(") ) = V xa/p( a )  + aSnp( a ) 	(9.3.3) 

for any Clifford form a. If now tp is any spinor field then on U,fi  we 
have 

Sp  = SP(bp) = 0-np + 140)1C(Ip 1 ). 

But on U„.fi  we have Mo )  = s (lia ) ba.)  for s (Pa") c + r ÷, so 

Snp = SP(s(13 )Ma ) Ipi) 

= xs 1Pi 	s (l3" ) GPMaliPi 	s (&) M c')X(P 1 ) 
= xs (Pa)s csari 	s (fico avsoar 	bv3)x(p1) .  

Hence from (8.1.9) we see that Sip  = Sri') and we have a covariant 
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derivative S x  defined on arbitrary spinor fields such that S x ip(") = 
Sp(a). 

We have shown the existence of this spinor covariant derivative by 
specifying it in standard local spinor frames. These standard spinor 
frames were also used to introduce a spin-invariant product. Suppose 
that ( , ) is any such D-valued product with (b cr) , ti a)) = CT,' for some 
constant matrix C. Then if 'tp and cp are arbitrary spinor fields with 

= bnpi on U a, 

(SA), 49) 	Sx(P) 
= (aPIP 14X(P 1 ), 49) ± ( V, °PT ± t'X(991 ))- 

Since aP is a real 2-form ar = — aP for any .1 that is the adjoint 
involution of a spin-invariant product. Hence 

(Sp,  (P) 	OP, Sx(P) = (b a' )X(IP I ), (P) ± (P, b a' )X(491 )) 

= (X0P9) i CV(P k  (V) I CTA I X(e) 

where the product is DI-linear in the first variable. Since 
(X(V.P))i = X((ipz)i) and the matrix C -1  is constant 

(Sx/P, (P) ± ( 1P ,  Sx (P) = X(P ,  cP) • 	(9.3.4) 

Thus, in this sense, the spinor covariant derivative is compatible with 
any spin-invariant product for which the standard spinor frames are a 
'canonical' basis. In particular, for the complexified case, S x  is compati-
ble with both a complex bilinear and a Hermitian product, related as in 
(9.2.8). Thus the covariant derivative commutes with charge con-
jugation, 

S x .ip` = (S x v)c. 	 (9.3.5) 

This follows directly from (9.2.4) since the matrix m is constant. 
Having defined a covariant derivative in a particular basis we have 

observed the properties (9.3.3), (9.3.4) and (9.3.5). We will now show 
how any covariant derivative satisfying these axioms is unique. Obvi-
ously S x  should map spinor fields to spinor fields. We shall require 
Fi-linearity in X 

sfx  = fsx 
	 (9.3.6) 

the 'Leibnitz' rule 

S x ( a lp) = V )(alp + aS x 4' 	V a E TC(M), V E El(M) (9.3.7) 

and compatibility with some spin-invariant product 

(Sx 4' ,  (P) 	(P ,  S99) = X ( P, (P). 	 (9.3.8) 
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Given an S that satisfies these axioms, is it unique? Suppose that S'x  
also satisfied the axioms above. Then if L x  S'x  — S x  we have 

L x : f.9(M)  —p  fg(M) 	 (9.3.9) 

	

Lfx — flax 	 (9.3.10) 

L x (aip) = aLx v 	 (9.3.11) 

(T, LAO 	(LxcP, 	= O. 	 (9.3.12) 

Equation (9.3.11) says that L x  commutes with Clifford multiplication, 
SO L x tp = tppx  for some D-valued function  Px.  Putting this in (9.3.12) 
gives 

( (p , IPPx) + (SoPx, 	= O. 

If the product is DJ-linear in the first variable then, since  Px  E D. 

(T , 	x + PV (p , V) = 0 - 	 (9.3.13) 

The D-linearity in tp ensures that cp, 	(cp, tp) maps FJ(M) x f(M) 
onto D, so we can choose cp and tp such that (p , tp) = 1. This shows 
that pix  = — Px,  and if this is substituted into (9.3.13) then we see that 
Px  must be in the centre of D. If D is one of the central algebras R or 
H then we must have Px  = 0. Similarly if D = C with j the identity 
involution. However, for the remaining case of D C and j complex 
conjugation then  Px  can be any imaginary function. Since the mapping 
X --> Px  is required to be-linear (by (9.3.6)) then if S x  satisfies 
(9.3.6)—(9.3.8) then so does S'x , with 

Sp  =  Sp  + iA(X)tp 	 (9.3.14) 

for any real 1-form A. Thus if the spinors carry an irreducible 
representation of a (real or complexified) Clifford algebra that is 
isomorphic to complex matrices then requiring compatibility with a 
pseudo-Hermitian spinor product leaves the freedom to add an arbitrary 
U(1) term to the covariant derivative. We can remove this arbitrariness 
by also requiring (9.3.5) to hold. This is equivalent to requiring that the 
covariant derivative also be compatible with a complex bilinear product. 
Because the different spin-invariant products are related as in (9.2.7) 
and (9.2.8) then the spinor covariant derivative is simultaneously com-
patible with all. 

Exercise 9.1 
Show that if Sx  satisfies (9.3.5)—(9.3.8) then there are standard spinor 
frames such that Sxt,')  =- 

In §2.6 we used a D-valued spin-invariant product to map a spinor 
into the D-linear dual space. We will use the definition and notation of 
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(2.6.7) for spinor fields. When our spinor space was a minimal left ideal 
of the Clifford algebra then the D-linear dual space is naturally 
identified with a minimal right ideal, and for a spinor cp and dual spinor 
zp we have cop—  in the Clifford algebra. Although the notation of simply 
juxtaposing the spinors is a slight liberty when the spinor fields are not 
in the Clifford algebra we still have a mapping taking a spinor and a 
dual spinor to the Clifford algebra; cp, 1  1---> cp/p where 

(cP/V)P = 97(VP) 40,0 	V pEF,95 (M) . 	(9.3.15) 

If the adjoint spinor 	is defined with respect to a product with which 
Sx is compatible then we have the useful relation 

x(491—P) = S,119 /7) 	49Sx 1P. 	 (9.3.16) 

This follows by differentiating (9.3.15); using the Leibnitz property on 
the left-hand side and the metric compatibility on the right-hand side. 

The curvature operator of S is defined in the obvious way, 

	

S(X,Y) = [S x ,S y ] — S t x , y i . 	 (9.3.17) 

There is always a local basis in which S xb, = ax b i , and hence 
S(X,Y)b, = R xy b, where  Ji y is defined in (8.1.10). Since the curva-
ture operator is 9;-linear then for any spinor field 

S(X, Y)ip = gt x op. 	 (9.3.18) 

Using (8.1.13) and (for zero torsion) (8.1.14) we can write this in terms 
of the curvature 2-forms giving 

	

S(X, Y)v = — x i yR„b eabip 	 (9.3.19) 
Or 

S(X,Y)Ip = _1,-,ea(X)eb(Y)R ab 1P- 
	 (9.3.20) 

9.4 Lie Derivatives of Spinor Fields 

Because the Clifford product involves the metric then unless the vector 
field V is Killing the Lie derivative 2 v will not be a derivation on 
Clifford products. It follows immediately that there can be no 'Lie 
derivative' on spinor fields such that the obvious analogue of the 
'Leibnitz' rule (9.3.7) holds for arbitrary vectors. Although one could 
call any operator a lie derivative on spinor fields' the utility of such a 
definition depends on the consequent properties. So we can anticipate 
that any definition of a Lie derivative on spinor fields will really only be 
useful for Killing vectors. We shall notationally distinguish the Lie 
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derivative operator on spinor fields from that on tensor fields by using 
the symbol x . 

We shall first parallel the initial treatment of the spinor covariant 
derivative by using a standard spinor frame. We shall show that for a 
Killing vector the Lie derivative of an orthonormal co-frame can be 
written as a Clifford commutator. Thus defining the Lie derivative of 
the associated spinor frame to be mulplication by the element that 
enters into that commutator ensures the 'Leibnitz' property. In (6.13.1) 
we introduced the operator A y  -=- — V v , satisfying A v (fcp)= fA y cp 
for any function f and differential form cp. Since A y  is a derivation on 
the exterior algebra we have 

	

A v cp = A vea A ix,S) 	V cp FAM. 

We can use (8.1.2) and (8.1.3) to write the interior and exterior 
products in terms of Clifford products, producing 

	

A vg0  = [A ve a  A ea, cd 
	

x,A yea cp — ,(A vea cpq e „ + e a cpn A yea). 

The Clifford commutator is a Clifford derivation. The 2-form A yea A e a  
can be written in terms of the exterior derivative of V. Since A,,,  
commutes with contractions and A vf = 0 for fE (M), if {ea} and {X„} 
are dual bases and A yX a = m„bXb  for some matrix m a  b then 
A ve b  = —m a b ea. Then A ve" A ea  = —m b aeb  A e a = ma beb A e a , using 
the antisymmetry of the exterior product, so A y ea A e a  = A yX a  A ea. 
Now A vX a  = [V,XJ — V vX a , so if V is torsion free A vX a  =  —VV.  
thus 

	

A ve" A e a  = ea A VxY = eAVXV = d 	(by (4.7.4)). 

The remaining terms in the expression for A v  in general prevent it from 
being a Clifford derivation. If written in terms of the matrix m a b then 
only the symmetric part enters: 

JiixAve"çv — "i (A veaVe, + ea cpqA yea) 

	

= +Inlan cP + À(mba 	mab)(e b cP"ea  + ea cP"eb ) 

using the usual index-lowering convention. Since g(A yX,, X b ) = Mab 
and A v  commutes with contractions 

	

'nab 	mb„ = — A vg(Xa, Xn). 

The metric compatibility of V enables us to write A  vg  =  E vg and 

	

A v cp = 	V 	+ 	vg(X a, X")cp 

— 	X b )(ebcpqea + eacpqeb). 	(9.4.1) 

Thus, as expected, A.  and hence Y y , is a Clifford derivation if and 
only if V is a Killing vector. 
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If K is a Killing vector then the above simplifies to 

	

2'0) = VicT 	(Pi 	 (9.4.2) 

So if {ea} is an orthonormal co-frame we have, from (8.1.6) 

	

2' K ea =  [UK  + dk, ea] 	 (9.4.3) 

where 0 K  = liK w pg ePq. Under Lie transport along the flow of an 
isometry an orthonormal frame undergoes an orthogonal transformation. 
The Lie derivative gives the infinitesimal transformation, representing 
the Lie algebra of the orthogonal group on the frame. Analogous to the 
way in which we introduced the covariant derivative we can define the 
Lie derivative on the associated standard spinor frame to be given by 
left multiplication by the element that appears in this commutator: that 
is 

WO; = (U K  + 

	

If ji = 13,1p1  and l' iop = b,K(Ip') + 	K b 	then, recalling the defini- 
tion of the covariant derivative, we have 

gKP = S 	+ dkip. 	 (9.4.4) 

Such a definition can (and will) be taken for the Lie derivative on 
spinors with respect to an arbitrary vector, but only in the case of 
Killing vectors is there a clear geometrical interpretation with Y having 
useful properties. 

When K is a Killing vector then, like SK, 	K satisfies a 'Leibnitz' 
property: 

K(0) = K av + aZ KV• 	 (9.4.5) 

This follows from (9.4.2) and (9.3.7). If ip is the spinor adjoint to tp, 
with respect to any spin-invariant product, then for K Killing 

	

Zic(Ti) = K92ip + cl)g 
	

(9.4.6) 

If the Lie derivative is written using (9.4.2) then this follows from the 
analogous property of S x , (9.3.16). 

Equations (6.13.13) and (6.13.14) give the commutator of a Lie 
derivative with a covariant derivative. We now obtain the analogous 
expression for the spinor operators. This will be useful for examining 
the covariances of spinor equations in the next chapter. Straight from 
the definition we have 

[I K,S v] — S iKy]  = S(K,V) — 1V vdk. 

The curvature of S is given in (9.3.20), and V v dk can be expressed as 
in (6.13.9) to give 

[Y K,S v ] — S [Kyi  = —,IV x,Y icg(V,X„)eba. 	(9.4.7) 
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For the special case of K a conformal Killing vector with 

Kg = 	t € (M) 	 (9.4.8) 

the above simplifies to 

[W K,S v] — Spcm  — 	A V. 	(9.4.9) 

We can use the commutator of the Lie derivative with a covariant 
derivative to evaluate the commutator of two Lie derivatives, 

E x 	YPP 	1[x, 11 11) 

=  [x' 	 x(crf — 	xV W[X, 111 1P. 

From (9.4.1) 

(d p)  — d -17Zxtp = 	— 	xg(X,„ Xa)d -kip 

+ 	xg(X a , X b )(ebd -17  ea + ea d -  eb)lp 

and since 

ebdi-  ea + ea di7  eb = 2gabd -f — 2(ea A id 	e b  A i r d -17 ) 
then 

,Txg(Xa, X b )(e b  d ea + ead-fieb) 

= 1ff xg(Xa, r)di7  — 	xg(X a, X b )ea A  d . 

It follows from the definition of i7  that 

- x -f T xY + xg(Y, X a )ea 

Since the Lie and exterior derivatives on differential forms commute 

= d[X, Y] + d(Y xg(Y, X a )ea) 

=  d[Î1  + vx„Yxg(Y,x„)eba  + Y xg(v xh y,xa )eba 
thus 
W x (d -ftp) — di-4)N — d[X, Y]tp 

= Vx h Ixg(Y,Xa)e ba /P + 2xg(Vx,Y,Xa)e ba lp 

A id î. 

Returning now to the commutator of the Lie derivatives we use (9.4.7) 
to obtain 

[Wx, *yi gjx, yj 	1-Txg(Vx,Y, Xa)e ba  — 	xg(X a, X b )ea A i Xbd Y.  

The right-hand side may be simplified so as to exhibit explicitly the 
antisymmetry in X and Y: 

ea A  i xbd  î  = e a  A  Vo i  — ixb V x,V eac 
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SO 

2.Yxg(V 	X Q )e b° — .T xg(X„, X b )ea A id  

= — Yxg(Xa, Xh)ixb  V ,c, -fe ac  —2xg(X a, X b )i x,V 

Use of Killing's equation, (6.13.3), produces the final result 

[gx, vl — *fx,Y1 = —14'xg(Xa, Xb)2 yg(X b , Xe )eac. (9.4.10) 

If either X or Y is conformal Killing then the right-hand side vanishes. 

Exercise 9.2 
Show that if {K,} is an algebra of Killing vectors in flat space then 

[Idk„ Idk i] = 	KJ ]. 

Hint: write out the commutator of two spinorial Lie derivatives in terms 
of the curvature of S. 

9.5 Representing Spinor Fields with Differential Forms 

When M is even dimensional we can take as spinor bundle any bundle 
carrying an irreducible representation of the real Clifford bundle C(M). 
For the special case in which M is topologically En with a flat 
pseudo-Riemannian metric then we have a spinor sub-bundle of the 
Clifford bundle. Let {ea} be a global parallel orthonormal co-frame. 
Then for some choice of constant y-matrices there is a global matrix 
basis {e 11 }  for Clifford forms such that e° = )/e u . Elements of this 
matrix basis can be written as Clifford polynomials of the parallel 
co-frames with constant coefficients, and so are parallel. Then l(M) is a 
spinor sub-bundle of C(M) if the fibres of 4(M) are the minimal left 
ideals spanned by {e 11 } . Sections of J(M) (spinor fields) are in-
homogeneous differential forms. The pseudo-Riemannian connection V 
induces a connection on J(M). In fact this is easily seen to be the 
spinor covariant derivative, generally denoted S, for this particular 
spinor bundle. We can of course always choose non-parallel co-frames, 
say ea = séas-1  for  se  with V xe° =  [axe]  for  Ox  =V xss -1 . The 
corresponding standard spinor basis is {b, = se , i ) satisfying 
V xbr = ub 1 . 

If T denotes the involution of transposition in the matrix basis {e,,} 
and C is the Clifford element such that ci;'=g = CaTC - I then a spin-
invariant product on sections of J(M) is given by 

(99, 1P) = J0(C-1(P'/V). 	 (9.5.1) 

Notice that the 0-form projector J o  gives a product with values in the 
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real numbers rather than the isomorphic algebra with e n  as identity. 
For the special spinor bundle here this product accords with the general 
prescription of §9.2. 

Although for this particular spinor bundle the connections S and V 
coincide there is still a need to distinguish •W' K from 2 K . For K a Killing 
vector these are seen, using (9.4.2), to be related by 

K ip = Y K ip + lipak 	 (9.5.2) 

The Lie derivative K does not induce an operator on the sub-bundle 
g(M): it does not preserve the minimal left ideals. The addition of the 
second term ensures that W K /p E J11(M) for all E F3(M). 

In the above we showed how in flat space we had a spinor sub-bundle 
of the Clifford bundle. This is a very special situation. In general a 
manifold can admit a spinor structure without the Clifford bundle having 
a spinor sub-bundle. The following exercise illustrates this point. 

Exercise 9.3 
(i) Let I be any minimal left ideal of C 2.0 (1F1). Show that there is a 

unique vector a such that va =  i ,  Vip  E I. Hint: Take an orthonormal 
frame {e 1 ,e 2 } and construct a matrix basis using P, = ;(1± e'). Then 
if / 0  = C2 .0 (l1:1)P, then I = I0 S for some invertible S. Expand S in the 
previously constructed matrix basis and explicitly construct the a such 
that  P f  Sa = P,S. 

(ii) Argue that the real Clifford bundle of a two-dimensional sphere 
does not contain a spinor sub-bundle of minimal left ideals (since there 
is no non-vanishing vector field on a sphere). The sphere does, 
however, admit a spinor structure. 

We have emphasised that we cannot in general find a spinor sub-
bundle of the Clifford bundle, and thus cannot in general identify spinor 
fields with certain differential forms. However, we can if we wish always 
do this locally. For each open neighbourhood U, of M we can choose a 
local basis for the Clifford algebra {e,(;' ) Q,a ) }. The local matrix frame 
{eV} commutes with the basis {On for the division algebra. On U crfi 
there is a local Clifford form S ()  such that er = SuWeV(S(13 (0 ) -1  and 
Q0/3) = sokoQq")(s(0, ),- 1. If /() is the minimal left ideal spanned by the 
first column of e (; )  and D is the 'standard' division algebra with basis 
{q k } then / 0)  is a right D-module with the rule e; ) ,q k  —=e;VV,a ) . If we 
can choose the Su3a )  coherently, that is S (a13)  5.(13r)  = S (")  on Uor  then 
we can define an equivalence relation between Pa)  and / (0)  on U ap  to 
form a spinor bundle. Thus the 5 (0)  can be chosen coherently if and 
only if M is a spin manifold. If this is the case then for Ipp( `' )  E ipta)  and 

E 	, p,q E Uo we define the equivalence relation by 
03) 	iff p = q and cp,((' ) 	p(' ) ( S (13a ) ) -1  . 	(9.5.3) 
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The resulting equivalence classes of differential forms form a bundle. 
On  U. we may represent a section of this bundle by a differential form 
lying in the minimal left ideal Pa") , on Ufi  we may choose a representa-
tive form in / (g) , these being related on Uo  by the above relation. If a 
is an arbitrary Clifford form and q E D then for cp (I3) 	Ip ( co we have 
acp (13) q 	atp ( ") q so, indeed, this bundle is a spinor bundle, carrying an 
irreducible representation of the Clifford bundle with a D-linear struc-
ture. Although sections of this bundle are not differential forms, but 
rather equivalence classes of local differential forms, we may represent 
local sections with any differential form in the class. However, the 
connection V does not induce a connection on this bundle (in general). 
The pseudo-Riemannian connection will not preserve the minimal left 
ideals 1 0) , and we need to distinguish between it and the spinor 
connection S. 

Although it can be convenient to represent a spinor field locally by a 
differential form this can never be more than a matter of taste. Given 
that the spinor bundle carries an irreducible representation of the 
Clifford bundle we can define spin-invariant products, covariant differ-
entiation etc, and the properties of these do not depend on how we 
choose to represent spinor fields. 
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10 

Spinor Field Equations 

10.1 The Dirac Operator 

The Dirac operator gets its name from its appearance in Dirac's wave 
equation for the electron. It is now usual to extrapolate the nomen-
clature from this spacetime setting to mean by Dirac operator any 
operator of the form of that occurring in Dirac's wave equation. There 
is no clear concensus on how far this extrapolation is to go. We shall use 
the terminology as follows: if S x  denotes covariant differentiation with 
respect to X of sections of a bundle carrying an irreducible represent-
ation of the (real or complexified) Clifford bundle then the Dirac 
operator on sections is $ eaSx,. The co-frame {ea} is dual to the 
arbitrary tangent frame {X„}. Sometimes mathematicians use the 
terminology more liberally to mean by Dirac operator any operator of 
the above form where S-  is any covariant derivative on sections of a 
bundle carrying any representation of the Clifford bundle. We will 
mostly be concerned with the Dirac operator on sections of a spinor 
bundle with the covariant derivative S x  of §9.3. 

The Dirac equation for a complex spinor field tp is 

SIP = PIP 
	

(10.1.1) 

where y is a complex constant. The nature of the manifold may restrict 
the eigenvalue y to certain real or imaginary values. In other cases we 
may only be interested in real or imaginary eigenvalues for physical 
reasons. If ST )  is the standard spinor covariant derivative of §9.3.1 and 
A is a U(1) connection 1-form then a U(1)-covariant spinor derivative is 
given by 

SOp = ST ) tp + qiA(X)tp 	 (10.1.2) 

where q is the 'charge' coupling constant. The original equation of 
Dirac involved such a U(1)-charged covariant derivative 
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Exercise 10.1 
Show that S (q ) (X, Y)/p = So ) (X, Y)tp + iqi x i yFlp where F = dA. 

In even dimensions the spinor representation of the complexified 
Clifford algebra induces a reducible representation of the even sub-
algebra. If is proportional to the volume form with 2  = 1 then a 
complex spinor tp is reduced into 'Weyl' spinors lp -± carrying irreducible 
representations of the even subalgebra by 

tp± = 	± 	p. 	 (10.1.3) 

The projectors (1 ± Z) anticommute with members of the co-frame 
{ea} and are parallel. So if tp satisfies a massless (/.4 = 0) Dirac equation 
then so do the Weyl spinors ip -±. Such massless equations for the Weyl 
spinors are known in physics as Weyl equations. 

Spinors of the real Clifford algebras can also be subjected to the 
Dirac equation (10.1.1) (with  i  real). For signature (p, q) satisfying 
p — q = 0, 2 mod 8 the real Clifford algebra is a total real matrix 
algebra and the spinors are known in physics as Majorana spinors. In 
this case the Dirac equation may be known as a Majorana—Dirac 
equation. (Although the eigenvalue ,u in (10.1.1) can be taken to be any 
real constant such an equation can not be obtained from a variational 
principle. Without recourse to `anticommuting' parameters a variational 
principle will only give a Majorana—Dirac equation with zero eigen-
value.) 

As we remarked at the beginning of §9.5, for the special case of a flat 
parallelisable manifold the Clifford bundle contains a spinor sub-bundle 
of minimal left ideals. The pseudo-Riemannian connection V induces the 
spinor covariant derivative on this sub-bundle. Thus in this case the 
operator 0, restricted to sections of this spinor sub-bundle, is a Dirac 
operator on spinor fields. 

One of Dirac's requirements for his equation for the electron was that 
the components of the field should satisfy a Klein—Gordon equation. As 
we have just noted above the operator 0, which squares to the 
Laplace—Beltrami operator, induces a Dirac operator on spinor fields in 
flat space. So this Dirac operator squares to the Laplace-Beltrami 
operator, acting on differential forms in the spinor sub-bundle. More 
generally, the square of the Dirac operator is known as the spinor 
Laplacian. We have 

= eas x  j e bsxm 

= ftle b Sx„V 	.(e ae b  + ebea)S,G.SxhIP + -(e ae b 	e be a )Sx„Sx„IP 

= ftleaS 	+ S x„S 	+-12 eab[Sx , S x,,11,0 

xo lp  = 0eaS x:ti) + S x,S x. 11) + 	 leabSix„. 
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Now [X,, X I) ] = i xn i xh cle` X c , and so 

.1e"bS 1x  xhi tp = _decS x p.  
gives 

= i x.V x.ebSxh ip + S kS,Hp + leabS(Xa , 

Using (9.3.20) the curvature operator of S can be written in terms of 
the curvature 2-forms to give 

,leab S(X„„ X b )tp = Rpq e 4." 

From (8.1.17) we have, for zero torsion, R ede'd = 	the curvature 
scalar, and so 

	

$2v = (sx. + ix,,v xbea)sx,ip — 
	 (10.1.4) 

Exercise 10.2 
Analogously express the Laplace—Beltrami operator as 

020  = (V x. 	ix,Vxbe a )Vx (13  — ,14 .*:1) — , t4 R eci criec 1 . 

10.2 Covariances of the Dirac Equation and Conserved Currents 

Generally we expect equations formulated on pseudo-Riemannian mani-
folds to have a covariance corresponding to any isometries. For exam-
ple, in §5.4 we showed how the Lie derivative with respect to a Killing 
vector maps solutions to Maxwell's equations into new solutions. In the 
same way we may use the Lie derivative on spinors to obtain new 
solutions to the Dirac equation in spaces with isometries. 

For a vector field K we have 

w K$ = (vo. + l[dk, eaDsx, + eagok . 

If now K is a conformal Killing vector, with Kg  = 24, then for A any 
1-form 1 KA  = V KA + k, A] + AA. This follows from (9.4.1) and 
the observation that for  X,,  a p-form 

e aXp ea = (n — 2p)X p" 	 (10.2.1) 
SO 

KS = Kea S — A$ + ea KS x„ 

= Ke a  S — 	+ 	+ ea S [ K , 	— e a  (CIA. A e a ) 

by (4.4.9). Since K(ea (X b)) = 0 then Y iceaSx, + eaSIK, 	0, and 

ea(dA A e) = e a  A (a. A e a ) + ia(dA A e a ) = X a (.)ea — 	 =  (1 —  n)(0. 

so [W K , = 	— ;(1 — n)dA. Since $(4) = dAv + APtp this may be 
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written as 

IK + (n — 	= 	 (10.2.2) 

If K is a Killing vector (A = 0) then K commutes with the Dirac 
operator and if tp satisfies the Dirac equation (10.1.1) then so does 
Z IA). For the massless case (p. = 0) we also have a covariance for K a 
conformal Killing vector: if S'tp = 0 then $[W K  + 1(n — 1)41p = 0. 

Out of any two solutions to the Dirac equation we may construct a 
closed (n — 1)-form. For definiteness we take ( , ) to be a Hermitian-
symmetric product on complex spinors with as adjoint involution. 
Then Re( , ) is a real-valued symmetric product. If we express an 
(n — 1)-form j as j = jaeaz, with z the volume n-form, then 

dj = eh A Vxjl ae aZ) = eb A (VX,,jaeaZ jaVxbea(X,)ecZ). 

Now eb A  ( e az ) = e b A  i rz  = 	A  z ) g abz  = g abz,  SO 

= (Vi a 	ixbVx b e aja )Z. 	 (10.2.3) 
Taking 

j = Re(tp, e a cp)eaz 	 (10.2.4) 
gives 

= Re(S )op, ea(p)z + Re(tp, Scp)z = —Re($ip , yo)z + Re(tp, $cp)z 

where the covariant derivative S'  is compatible with the spinor product. 
(This covariant derivative could contain a U(1) coupling.) Thus if 
Stp = pip, for II real, and similarly for 97, then dj = 0. In this way we 
obtain a conserved current (a closed (n — 1)-form) from any pair of 
solutions to the field equations. (Had we taken a spinor product with 
as adjoint involution then the form j would be closed for spinors 
satisfying the Dirac equation for an imaginary eigenvalue.) If ip is the 
adjoint to p with respect to the Hermitian-symmetric product then 

e a cp)ea = ) 0(i p e a cp)e° = 0 (cpip e a )e° = ) 1 (cpip). So the (n — 1)- 
form in (10.2.4) can be written as 

= Re i (cpip)z = *ReW i (cpip). 	(10.2.5) 

In particular, taking yo = iv) in (10.2.4) gives the U(1) current 

j = 	ie cop)eaz 	 (10.2.6) 

This current would provide a source for the equation (such as Maxwell's 
equation) for any U(1) field entering into the spinor covariant deriva-
tive. 

We now only consider the Dirac equation without a U(1) coupling. 
The presence of isometries, generated by a Killing vector K, ensures 
that if ip is a solution to the field equations then so is op. We thus 
have the associated closed currents 
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K = Re(V, eaWKIP)eaZ. 	 (10.2.7) 

10.3 The Dirac Equation in Spacetime 

In Chapter 5 Maxwell's theory of Electromagnetism was formulated in a 
Lorentzian spacetime. Together with relativistic mechanics this theory 
provides a good description of phenomena involving the electromagnetic 
interactions of charged matter. However, new phenomena sometimes 
occur (for example, when the energies involved in the interactions 
exceed certain critical values) that cannot be understood in terms of this 
theory. For instance, a faint green beam of light continues to liberate 
electrons from the surface of certain metals even when its intensity is 
reduced. Or, a strong magnetic field can be used to create pairs of 
particles. Furthermore, the very stability of atomic matter is not readily 
comprehensible in terms of a classical theory that predicts radiation 
from accelerating charged particles. For these and other reasons quan-
tum mechanics was devised. Originally it provided an explanation of 
non-relativistic phenomena in domains in which classical mechanics was 
inadequate. The many-body version of this approach (in which the 
behaviour of a fixed but indefinite number of particles is accommo-
dated) gave rise to a new formalism known as field quantisation. These 
methods were successfully extended to Maxwell's theory, in which the 
role of the classical field was replaced by some operator in an infinite-
dimensional projective space of photon states. Historically it soon 
became clear that the classification of elementary particle types in 
Nature was intimately connected with the dynamical equations involving 
the respective field operators. Fields were clasified as bosons or fer-
mions according to the observed behaviour of the respective many-body 
states. This classification was correlated according to whether they 
carried a representation of the rotation group SO(3) or its covering 
group SU(2). 

It was Dirac's famous equation for the electron—positron field that 
gave the impetus to the development of relativistic field quantisation 
and remains a cornerstone in the development of quantum field theory. 
As a single-particle theory (that is, where particle and antiparticle 
creation can be ignored to a first approximation) this equation gave a 
more accurate account of certain atomic spectra and the behaviour of 
electron beams in weak electromagnetic fields. Ingenious methods have 
since been invented to include the quantised radiation field in the 
theory. Some of the refined predictions of quantum electrodynamics 
provide examples of the most successful predictions in theoretical 
physics. 
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Although it is beyond the scope of this book to enter into the realms 
of the quantum field theory of electrons and positrons it may be noted 
that such a formalism does require as an important ingredient a basis of 
solutions to the Dirac equation. These are put into correspondence with 
a basis of states used in the construction of the quantum theory. In 
Minkowski space a basis of such free-particle states may be labelled by 
the eigenvalues of a set of Lie derivatives with respect to a set of 
commuting Killing vectors. 

In recent years field theories on non-flat spaces have become in-
creasingly relevant. We mention three examples. In order to study the 
behaviour of electrons in a superconducting toroid one must look at 
spinor fields on a space with a non-trivial topology. Phenomena assoc-
iated with different types of boundary conditions on the electron field 
arise and may provide a geometrical interpretation of low-temperature 
electron states. Secondly, spinor fields on a dynamical string can be 
formulated in terms of a Dirac equation on a two-dimensional surface. 
Some believe that such a picture may underlie a viable model for all the 
basic forces in Nature. Finally we mention that in 1976 great excitement 
was generated by the construction of certain theories in which spin-
fields were coupled to gravity in a manner that gave rise to new 
symmetries. Such supersymmetries were expected to ameliorate certain 
difficulties that arose when attempts were made to extend to gravitation 
the methods used to make successful quantum electrodynamical predic-
tions. It is now thought that such effective-field theories are 
phenomenological remnants of a more general theory in which spinor 
fields in higher dimensions play a crucial role. 

In any phenomenological description of spinor fields and gravitation 
there is one aspect that deserves comment here. Although it is possible 
to construct a symmetric divergenceless stress tensor for a spinor field 
(this is given in the next section) it does not manifestly satisfy the 
positive-energy conditions mentioned in Chapter 7. This is analagous to 
the indefinite sign of the energy of a Dirac field in flat spacetime and is 
a reflection of the existence of antiparticle states in that case. This is 
one reason why a quantum interpretation is mandatory in order to give 
a cogent interpretation to Dirac's theory. In an arbitrary gravitational 
field, however, there is no natural way to define positive- and negative-
energy states and the simple interpretational scheme used to interpret 
the quantum field theory in a flat space evaporates. It may be of course 
that the energy conditions are excessively restrictive when applied to 
spinor fields coupled to gravity, or that in a more fundamental theory of 
gravitation involving many fields no relevance should be attached to the 
stress properties of a single field. Although the resolution of this 
dilemma must await a more coherent synthesis of quantum field theory 
and geometry it is unlikely that the formulation and properties of spinor 
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field equations on a manifold will cease to be important. 
The Dirac equation for a complex spinor (a Dirac spinor with unit 

charge) tp on spacetime is 

$tp + iittp = mtp 	 (10.3.1) 

where we have explicitly exhibited the U(1) interaction with the 
electromagnetic 1-form potential A. The real eigenvalue m will be 
interpreted as a mass. The spinor field provides an electromagnetic 
current 1-form j, 

	

I = JI(iÇOi) 
	

(10.3.2) 

where 	is the spinor adjoint of tp with respect to the pseudo-Hermitian 
product whose adjoint involution is ri*. The Maxwell 2-form F = dA 
satisfies 

SF = j 	 (10.3.3) 

with ô the co-derivative of (5.4.2). 
The electromagnetic current 1-form j is future-pointing and timelike 

for any spinor tp. The argument that this is so is algebraic. We first 
consider the charge density p = ietp). If we took the spinor adjoint 
as in (2.8.13) then the positivity of p would follow immediately. The fact 
that the spinor adjoint can be cast in this form follows ultimately from 
the positivity of the metric on the three-dimensional spacelike sub-
spaces. It is instructive to argue the positivity of p directly from 
properties of the various spinor products. Let {ea} be a local orthonor-
mal co-frame and ie 123  such that 2 2  = 1. Let u, be a spinor such 
that îu  = EU, with E = ±1. Then u, carries a semi-spinor representa-
tion of the subalgebra generated by { e', e 2 , e 3 }. Let ( ,)  be the 
pseudo-Hermitian product associated with 	then 

(ti e , 	= (Eîu e , 	= e(u,, 	= ee'(u,, 

If a four-dimensional spinor tp is decomposed as tp = u, + u_ then 

= (u,, 	+ (u 	u _) z* . 

We know from §2.7 that 	is the adjoint of a zero-index product on the 
semi-spinors of the three-dimensional subalgebra, whereas the product 
on four-dimensional spinors is of maximal index. Let us suppose that the 
product on four-dimensional spinors induces a positive-definite product 
on u, and a negative-definite product on u_. For three-dimensional 
semi-spinors we have 

(u,, 	= e(u,,iî ..-̀ q*e°u,.•) = 	 = ee'(u 	f.)• 

So the charge density p is diagonal in the three-dimensional semi-
spinors: 

	

p = (u ± ,ie"u „) + (u 	ie°u _). 
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Now 

(u 6 ,  ie°14 6 ) = e(u e , 	 = e(u e , zu e ). 

	

The volume 4-form z relates the products associated with 	and 	so 
that we have (14 6 , ieu E ) = E(u„ u,),r  and 

p = (u t , u t ). — (u u 	 (10.3.4) 

Thus p is positive-definite or zero since the first product is positive-
definite and the second negative-definite. 

To show that the charge density is positive-definite above we split the 
four-dimensional spinor into semi-spinors of the three-dimensional sub-
algebra. This argument implies that g(j, V) is less than or equal to zero 
for all future pointing timelike vectors V and consequently that j must 
be a forward-pointing timelike or null vector field. It is instructive to 
rederive this result using the often useful Fierz rearrangement techni-
que. To this end we will this time split the spinor into two semi-spinors 
of the even subalgebra. Let Ip± —= 1(1 ± iz)v, that is iztp± = ±V±, then 

(p e , atpe) = EE'(iztpe, aizvE") = EE'(pe, zazIpe) = — ee (. p, , (eve). 

So the components of j are diagonal in tp+ and 111 — : 

ja  = (V +,  ie a V + ) + (V +,  iea V + ) 	ja+ 
	 (10.3.5) 

The norm of j, is given by 

= 	e a 4'9(pE , ea 4 6) = 1,76e a /P e  i feaV e . 

Using (10.2.1) 
4 

eatpEea  = E(4 — 2p)(-1)P97 p (pEir). 
p =0 

Now 

op' 7pEy) = iztpe eiz = —inpfiztic = 	Tp- E 

and so only odd p enter into the sum. We have 

= 	i (Vizipt)iz = 
thus 

= —21,7EYIWi E )VE 2E/V EJI(i E )izV E  = 	i'ji0PETIV- 9 1P E  

= 	0 ( 1/ 6e )p e ea 	= —4 ( 4)
6  eaVE)(VE e a V) = 

So j,_ and j_ are both null and, since p 0, future pointing. Since the 
sum of two future-pointing null vectors lies in or on the forward light 
cone the current j is future pointing, timelike or null. 

Exercise 10.3 
Consider the 1-form of (10.3.2) on an arbitrary even-dimensional 
Lorentzian manifold (not necessarily four dimensional). Show that the 
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density p is always positive semidefinite but that the argument for j 
being timelike or null only holds in 2, 4, 6 and 10 dimensions. 

We now consider the covariances of the Maxwell-Dirac equations 
under the isometry group of Minkowski space—the Poincaré group. We 
noted in §10.2 the covariance of the free (A = 0) Dirac equation under 
Lie derivatives with respect to Killing vectors. To analyse the covar-
iances of the coupled Maxwell-Dirac system it is convenient to work 
with the finite diffeomorphisms rather than the Lie derivatives. This will 
also allow a discussion of the discrete orientation-changing transforma-
tions. 

Let {xa} be global inertial coordinates for Minkowski space, such that 
{de} is a global orthonormal co-frame. We can label the diffeo-
morphisms forming the Lorentz isometry group by a parallel element of 
the Clifford group. The diffeomorphism Tc(s) : M M is such that 

	

7r*(s)dx° = sdxas - '. 	 (10.3.6) 

If a is an arbitrary differential form then a = a Aix' with the multi-index 
/ labelling a parallel basis for the exterior (or Clifford) algebra. Then 

ir*(s)a = (a 	.7r(s))sdx's - ' 	 (10.3.7) 

the components of the pulled-back form being composed with the 
diffeomorphism whilst the change in the basis is effected by Clifford 
multiplication. This suggests how we can induce an action of the 
diffeomorphism on a spinor field. Let {b d be a standard parallel spinor 
frame associated with the co-frame {dxa). Then if tp = tp`la„ we can 
define 

	

=  (pl  ir(s))sb 	 (10.3.8) 

Since dxib, = Fb 1  for F ir  constants, it follows from (10.3.7) that 
(10.3.8) satisfies 

z(s).(azp) = (7r*(s)a)(7r(s)•Ip) 	Va  E ['C(M). 	(10.3.9) 

If X is an arbitrary vector field we also have 

z(s)-S x tp = 	(s)x(r(s)*V)- 	 (10.3.10) 

This follows from (10.3.8) since V xs = 0 and X(p 1 ). 7r(s) = 
o it(s)). Since 7r(s) is an isometry, the pullback of the 

Clifford product of two forms is the product of the pulled-back forms. If 
{e°} and {Xa } are dual bases then so are {.7r*(s)e°} and {z„-1 (s)X0 ), 
thus 

= $.:r(s). 	 (10.3.11) 

It immediately follows that if tp and A satisfy (10.3.1) then so do ,n(s)-tp 
and .7*(s)A for 7r(s) any Lorentz transformation. The pullback map 



THE DIRAC EQUATION IN SPACETIME 
	

287 

commutes with the exterior derivative and, in the case of an orientation-
preserving isometry, with the Hodge map and hence the co-derivative b. 
The pullback with an orientation-reversing isometry picks up a minus 
sign in moving past a Hodge dual, but since 45 involves two duals (or no 
choice of orientation) the pullback still commutes with it. So if F and j 
satisfy (10.3.3) then so do Jr*(s)F and n*(s)j.  But j is a functional of the 
spinor field tp—to symbolise this we will here write j(v) for the 1-form 
determined by (10.3.2). Is it the case that j(Jr(s)-V) = 
Equation (10.3.2) involves the spinor adjoint with respect to a product 
whose invariance group does not contain the whole Clifford group, but 
only F. (This is the subgroup defined with the norm /2, so s = s -1  for 
S E +r.) The image under the vector representation of +F is the 
orthochronous Lorentz group. So if  T€ ± F is such that x(T) is a 
reflection changing the time orientation, then n-(T)•ip and Jr* (T)A will 
not satisfy the coupled Maxwell–Dirac equations given that tp and A do. 

We know that Lorentz transformations of the cotangent space extend 
to inner automorphisms of the real Clifford algebra and hence, by 
complex linearity, to inner automorphisms of the complexified algebra. 
These inner automorphisms will commute with complex conjugation, 
and so composing them with complex conjugation gives an outer 
automorphism of the complexified algebra. A spin transformation on 
each of a pair of spinors induces an inner automorphism on the Clifford 
elements formed with a spinor adjoint with respect to a spin-invariant 
product. That is, scpsip = x(s).(cpip— ) if (and only if) s is in the invariance 
group of the spinor product used to define p. As we will see, if instead 
s is in the real subalgebra such that (scp, = (99, lp)* for a product on 
complex spinors then scpsip = x(s)•(q)v)*. 

For the four-dimensional Lorentzian case that we are considering the 
space of complex spinors is the complexification of the real spinor space. 
The skew-symmetric product on real spinors with adjoint involution  ij  
is extended by complex bilinearity to a product on complex spinors, 
( , ) 1 . In an appropriate basis, charge conjugation simply complex 
conjugates the spinor components and we have 

(So 	= (cP, 4))*,=.n. 

If we now define 

(go, 	— (icy' 
	

(10.3.13) 

then ( , ) certainly has Or as adjoint involution. The factor of i ensures 
that the product is Hermitian symmetric: 

(T, /P) = (icP c , 	= 	V c ) *:,=„ = (V c , iT) * q  = (iVc,  T) in = 
(V, 9)) * • 

Since charge conjugation is involutory and the complex bilinear product 
in (10.3.13) is skew symmetric we have 

(10.3.12) 
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(çpC, /P C ) = — (40 , Ii)) * 	 (10.3.14) 

If tp—  is the adjoint of y) with respect to ( , ) then for any three spinors 

(cf»TP- ) *P = ((40175 )P e ) c  = 	Pc )(Pr = 	PTV' = 	Pc ) * (P c  

= — (p C , P)(Pc  

by (10.3.14). So (cpii)* p = — (cpc p c)p and 

(T )* = _q7c;7; c. 	 (10.3.15) 

Consider now the element  T E  ± F with x(T) a time-orientation-changing 
reflection. Then Vq* = 7' 1  = —T -1 , so 

Tcpcnp` = 	 = T(cpi-p)*T -1  

by (10.3.15). We now define 

a(T).1pc 	 (10.3.16) 
and then have 

. (P-9 	= e(T)(cP 17;) * . 	 (10.3.17) 

The operation 3-  is known as Wigner time reversal on spinors. It 
obviously satisfies 

	

Fi.(atp) = J-c*(T)a*(9- .1p). 	 (10.3.18) 

We now examine the covariances of the Maxwell—Dirac system under 
this operation. If A and y) satisfy (10.3.1) then so do — a*(T)A and 
5- 1). It follows from (10.3.17) that j(g.tp) = —.7*(T)j(tp) and hence 
— 2r(T)A and .5.tp also satisfy (10.3.3). (Notice that whereas —77 - *( T)A 
and a(T)-ip satisfy (10.3.3) they do not satisfy (10.3.1).) 

Plane-wave solutions play an important part in the physical interpre-
tation of the free (A = 0) Dirac equation, and to these we now turn. If 
b is a parallel spinor then we look for a solution to (10.3.1), for A = 0, 
of the form tp = exp(if)b for f some real function. Then Pp = idfip and 
we require idftp = my). It follows that the 1-form df must be timelike, 
with 

(df) 2  = —m 2 . 	 (10.3.19) 

We can write the algebraic condition on b as 

,21 (1 + idf/m)b = b. 	 (10.3.20) 

If s is a unit spacelike 1-form orthogonal to df and z is the volume 
4-form then (zs) 2  = —sz 2 s = s 2  = 1 and zsdf = — zdfs = dfzs. So 
;(1 + zs) is an idempotent orthogonal to ;(1 + idf/m) so that (1 + 
idf/m)(1 + zs) is primitive. With E and a taking the values ±1 a 
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complete set of pairwise orthogonal primitive idempotents is given by 

	

{P „ =  4 (1 + Eidf/m);(1 — azs)). 	(10.3.21) 

We can choose a basis of spinors such that each is an eigenspinor of one 
of these primitive idempotents. An inertial observer would use inertial 
coordinates {t, x, y, z }  to interpret df(3/3t) as an energy and df(3/3x) 
as a component of momentum along the x-axis. 

If we assume that df and s are parallel then we can choose inertial 
coordinates ft, x, y, z) such that f = mt and s = dx. Then we can label 
plane-wave solutions by E and a, 

zp„ = exp(iEmt)b„ 	 (10.3.22) 

where b„ = Peak°. for 

	

P„ = (1 + iEdt)(1 + adydzdt) 	 (10.3.23) 

and we have chosen z = dxdydzdt. If we choose some parallel 13 ++  
then we can build up the rest of the spinor basis by taking Clifford 
products. For example, we have dxP E0 = P  -E- adx and dyP„ = P_„dy 

and hence dxdyP„ = Pe_adxdy. So we may choose the basis as 

{13 ++, b__ = dxb ++,  b_  = dyb ++, b,_ = dxdyb ++ }. (10.3.24) 

If ( , ) has 	as adjoint then we may use the algebraic properties of 
this basis to work out the non-vanishing products, we have 

(bra, b ea')  = (P eab ea  Pb  5'0) 	0 fog , P  EC,'°.1* P  0'b  ea' ) 

— (be,' P-coP  ca b ea')  = ( 5  -Eef 5 ,a4b Ea> b 0-')• 

Thus the only non-zero independent products are (b„, b,) and 
(13 +_,  b__).  If we choose the basis as in (10.3.24) then these are related 
for 

(b,_, b__) = (dxdyb„, dxb ++) = (b ++, dyb„) = (b„, b_ + ). 

So by suitably scaling b „ we have 

	

(1)„, b„) = (b,_, b__) = 1. 	(10.3.25) 

Thus the two-dimensional subspaces with fixed £ are isotropic, whilst 
those with fixed a are unitary subspaces of maximal index. 

The &label of tp„ specifies the eigenvalue of the spinor Lie derivative 
in the 3/3t direction, 

gaiatiPec = iEmp. 	 (10.3.26) 

Similarly a may be used to label the eigenvalue of the Lie derivative 
with respect to the vector ya/3z — za/ay that generates rotations about 
the x-axis, we have 
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*(y313z - z8/3y) 1Pea 	Id(Ya/az 	zalay)vea 
= dy dzp f  = lidydzdtidttp„ = iEclydZdt/P„ 

1 (y8/8z -za/ay)Vea = OEC"Peo• 	 (10.3.27) 

The eigenvalues of ±i  lead to the physical interpretation of an intrinsic 
spin of a half for the electron. More generally, the functional depen-
dence of the components will contribute an orbital angular momentum, 
the eigenvalue of the Lie derivative being interpreted as the total 
angular momentum. 

10.4 The Stress Tensor 

Although we have not done so the Dirac equation can be obtained from 
a variational principle. This ensures the existence of a symmetric stress 
tensor which is divergenceless when the field equations hold. We here 
simply present such a tensor and explicitly demonstrate (not so simply) 
that its divergence is zero for solutions to the Dirac equation. 

For definiteness we take ( , ) to be a Hermitian-symmetric spinor 
product with w as adjoint involution, then Re( , ) is real valued and 
symmetric. Let 

'OE! ab = Re(tp, e aS xh ip) + Re(tp, e b S Ayp). 	(10.4.1) 

If S is compatible with the spinor product then 

Xi ab) = Re(S x4p, e aSmp) + Reetp, V x.e aS xh Ip) 

+ Re(ip, e aS ,rS mp) + Re(S rzp, e bS mp) 

+ Re(tp, Ve b S x„tp) + Re(p, e b Sx SK tp).(10.4.2) 

Changing the order of the covariant derivatives 

e aSrS xh ip = eaS(Xa, Xb)/P + eQS  x„S x1P ± e a  S pc x h ilP 

= ea S(X a , X b )lp + S xottp — V x,e" S xn ip 

+ e` (V x2( b  — V  xh iY a )eaS x tp 

if V is torsion free. Now 

ec(Vx,Xu)ea 	—VXhec(Xa)e° = 

and e.c(V x  X b ) = —V xfc(X b ). From (9.3.20) ea S(X a , X b )tp = 1,e 1' R pop, 
and for zero torsion this can be written in terms of the Ricci forms, 
e"S(X a , X b )tp = P op, so 
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e aSrs xb v = eas(xa, x b )lp + S xb h — v ,Gec(xb)easx,11). 	(10.4.3) 

From (10.1.4) we have 

Sx.Sx„tP = 	— Vx„e c (Xa)Sx,IP + 	 (10.4.4) 

We can rewrite Vrea  as (Vx.ea)(Xc)e c  = e c (Vx„X a )ec = 
—Vx„e c (X a )ec, and similarly Vx.eb = V,reb(X e )e` = —e b (V x..X,)e =-- 
—V,re c (Xb)ec, collecting terms, 

X' (Tab) = Re(Sxp, e aS x h iP) + Re(S r1P, e x„IP) 

— x„e(Xa)Re(V, ecS 	— x„ec(r)Re()P, e bS x,IP) 

— V x„e c  P (b)Re(V, e a  S x, 1P) — V x„e c  (X b)Re(V e cS 

+ ;Re(T, Pop) + Re(1P, Sx„SIP) 

+ Re(,  eb$211)) 	1Re(',  ebR 1P). 
	 (10.4.5) 

If = abea 0 e b  then 

9-(X a , Xt.) = Xa(Zf a  b) + x„e`Vag + xfc (Xb) a 

 = Re(Sx P, e bS x„IP) + Re(S )01P, eUS MP) 

+ Re(V,  SP)  + Re(tP, eb$2 ) 

+ 1Re(tP,  Pp) + ,14 Re(tp, e b atp). 

Since the spinor product is symmetric with 	as adjoint then 
Re(p, Alp) = 	AT) for A any real 1-form and 

Vx„-GT(Xa , Xb) = — Re(PP, Sx„/P) + Re(V,  Sp)  + Re(ip, e b $2 7p). 

It follows that V..5 = 0 if $tp = mtp with m real. 
The above is seen to go through unaltered for real spinors with a 

spinor product whose adjoint involution is 	Had we taken a real- 
valued skew-symmetric spinor product on complex spinors with 	as 
adjoint  then ,5 would be divergenceless for $tp =  imp.  For real spinors 
and a skew-symmetric product with as adjoint the stress tensor would 
be divergenceless if  ,Sp  = 0. 

Exercise 10.4 
Show that the Maxwell—Dirac stress tensor is divergenceless when the 
coupled equations are satisfied. 

For the stress tensor of (10.4.1) the trace is given by 
a a = 2Reeip, $0. When the Dirac equation is satisfied we have 

„" = 2m(V, V). 	 (10.4.6) 
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Certainly for m zero the trace is zero. In general the spinor product will 
be pseudo-Hermitian and so for m * 0 the trace can still vanish. 

We have already noted in §7.4 that we can construct a closed 
(n — 1)-form from the stress tensor and a Killing vector, namely 

= abKbeaz where al, are the components of the stress tensor -3, 
given by (10.4.1), which is divergenceless when the field equations 
$tp = mip are imposed. In §10.2 we obtained by inspection a closed 
(n — 1)-form Jic for each Killing vector K. These two forms, .1K and 

IC, in fact differ by an exact form modulo the field equations, as we 
now demonstrate. We are going to have to recognise the exterior 
derivative of an (n — 2)-form when we see one, so first we note that if 
H = Habeabz then 

dH = 2 {X b (Hba) Vx,e(X b )Hba Vxbea(X`)Hbc}e az 	(dH) aeaz. 
(10.4.7) 

A fairly tedious calculation produces 

Re(tp, kS xn tp) = 	e a dktp) — (dH), + Re(tp, e aS K ip) 

— 	 e a k$v) + ;Re(tp, k e a Pp) 	(10.4.8) 

where Hba  = Re(,  e b  î<e, tp) — Re(tp, e ba k tp). As well as frequently 
using the defining anticommutation relation of the Clifford algebra the 
calculation uses the fact that since the spinor product has  ij  as adjoint 
then Re(ip, Alp) = 0 for A any real 1-form. Thus for example 
Re(tp, e a kebtp) = —Re(tp, e 5  K e a p), as is necessary for  Ha  b = — Hba . 
(Although it is tedious we recommend that the reader verify (10.4.8), as 
it does help develop the calculational proficiency that unfortunately is 
sometimes required.) It follows from (10.4.8) that 

Reetp, e aS 	+ Re(tp, k5 )0p) 

= 2Reetp, e (1 404') — (dH)„ + Re(tp, ( k A e a )h). 

If we use the field equations, $îp  = mtp, then 

Re(tp, (k A e„)$/P) = mRe(tp, (k A e a )Ip) = 0 

since a real 2-form changes sign under 	the adjoint involution of the 
spinor product. Thus .1K= 	K modulo an exact form, modulo the field 
equations. 

Exercise 10.5 
Repeat the analysis with a skew product whose adjoint is ,r;* with field 
equations 	= im 
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Example 10.1 Gravitational and Neutrino Waves 
Consider a spacetime in which the metric takes the form 

g = 2(du 0  do + do du — 2Hdu 0 du + dz 0 dz* + dz* ®dz) 

in coordinates (u,  o, x',  x 2 ) with z 	x 1  + ix 2  and H a real function of 
u, z and  z'.  It is here most convenient to adopt a null basis. We choose 
the null co-frame {na} a = 1, 2, 3, 4 where n 1  = du, n 2  =  do — Hdu, 
n 3  = dz, n 4  = dz* and the duals are X, = 3/3u + H3/3v, X, = a/aU, 
X3 = 3/3z, X, = 3/3z*. The non-vanishing components of the metric 
are g = g 2 , = g 34  = g 43  = 2, or  g'2 = g 21= g 34= g 43= 4.  Since the 
components of the metric are constant in this basis we can evaluate the 
connection forms by (6.6.8), the non-vanishing ones being 

co 31  = —co o  = 21-1,n 1 
	

W41 = — W14 = 2H z .n I . 

The only non-zero Ricci form is P, = 2H z ,n 1 . 

We now adapt a spinor frame to this null co-frame. Let  b 1  be a 
spinor such that  n ib 1  = n 3b = O. We then form the spinor frame 

b 2  = n 2b,,b 3  = n 4 b 1 ,  b 4  = n 2 n 4b,}. 

(We can represent the spinor b  I  by the differential form n 1 n 3 , this lying 
in a minimal left ideal of the complexified Clifford algebra. The other 
spinors {b,} are then seen to complete the basis for the minimal left 
ideal.) If {X„} is the frame dual to {n"} then, for  ax  defined in (8.1.5), 
we have  ax,  = ([1,1'13  + H „n4 )11 1  with all other ax,  zero. It follows 
that the spinors 13 1  and b 3  are parallel. Hence if h, and h, are arbitrary 
complex functions of u and ip = h 1 (u)b, + h 2 (u)b 3  then Pp = 0. To 
obtain Einstein's equations we now need to evaluate the spinor stress 
tensor. If ( , ) is the Hermitian-symmetric spinor product with 71* as 
adjoint then we can use the algebraic properties of the spinor frame to 
evaluate the products. For example, 

(13 1 , b 3 ) = (13,, n 4b 1 ) = (n4b 1 , 13 1 )* = —(b 1 , n 3 b ,)* = 0 

since n 3 b = O. Also 13-, = n 2 b, and so n i b-, = n I n 2 b = (1— n 2 n 1 )b, 
= b and hence (3,, 13 1 ) = (n 1 b 2 , n i b-) = —(b 2 , n 1 n 1 b 2 ) = O. In this 
way we can show that the non-vanishing products are specified by the 
imaginary components (b 1 , b 2 ) = (13 3 , 13 4 ). By suitably normalising b, 
we have 

(b b 2 ) = (b 3 , 13 4 ) =  i.  

The only non-zero component of the stress tensor of (10.4.1) is then 

= 	 + 
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Since for zero mass the spinor stress tensor is traceless we can write the 
Einstein equations as 2x-P, = * -1.re , and so the coupled system reduces 
to the equation 

= 	+ ih *, h'2)• 

10.5 Tensor Spinors 

Starting with the spinor representation of the spin group we can build 
up higher-dimensionsal irreducible representations by forming tensor 
products. That is, tensor products of the spinor space and its dual space 
carry representations of the spin group, this space of tensors being 
decomposable into irreducible representation spaces. The covariant 
derivative on spinor fields induces a covariant derivative on these spin 
tensors and one can consider various field equations. We have already 
noted that elements of the Clifford algebra can be identified with (1, 1) 
tensors on the space of spinors. Certain higher-dimensional half-integral 
irreducible representations of the spin group can be found by taking the 
tensor product of tensors on the vector space V with the spinor space of 
C(V, g). Such objects can be thought of as spinor-valued tensors. 

As an example we consider a spinor-valued 1-form IF on spacetime. 
Then we can write this in any co-frame {ea} as 

tif 
	Pa 0 ea 	 (10.5.1) 

where each ip a  is a spinor. We can think of IV as a mapping from vector 
to spinor fields: 

W(X) = P a e n (X) 	V X E FTM . 	 (10.5.2) 

Equivalently if {b,} is any standard spinor frame with v a  = tpb, then 
we can write III as 

	

= b,  O/p 1 	 (10.5.3) 

with the 1-forms ipi given by 1p' = tila ea . These spinors could carry 
irreducible representations of the complexified Clifford algebra, its even 
subalgebra or real subalgebra (Dirac, Weyl or Majorana spinors). Let us 
suppose that the  p. are Weyl spinors, satisfying inp a  = vi a . Then the 
tp, carry irreducible representations of the spin group S1(2, C). A 
1-form is a tensor on the space of spinors, Clifford multiplication 
interchanging the semi-spinor spaces (since a 1-form anticommutes with 
the volume 4-form). So we may regard a spinor-valued 1-form as a 
degree-three tensor on the spinor space. If u and y are any two Weyl 
spinors, lying in the same semi-spinor space as the ip a , then we define 
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IP(u, u) 	(u,zp a )e"v. 	 (10.5.4) 

The brackets on the left-hand side signify that 111  is evaluated on u and 
v, whereas the brackets on the right-hand side are the spinor product of 
u and tp„ where the product has as adjoint involution. (The skew-
symmetric complex bilinear product on Dirac spinors induces a non-
degenerate product on each of the two spaces of Weyl spinors. If 
u = izu then the spinor product (u, lp„) will only involve ;(1 + iz)ip„.) 
It turns out [9] that irreducible SI(2, C) representations are carried by 
spin tensors that are totally symmetric in the covariant and contravariant 
arguments separately. It is therefore interesting to examine the condi-
tion on IF such that (10.5.4) defines a mapping symmetric in u and v. In 
order to do this we will need the following: 

(u, v)w — (w, v)u = 4(u, w)v 	 (10.5.5) 

for u, u and w any three Weyl spinors. To see this let a be another 
Weyl spinor and consider the expression (u, v)(w, a). Using It to 
denote the adjoint spinor we can write this as irviZia. Now we can 
expand v in7 as in (2.1.18) to give 

(u, v)(w, a) = it- Y o(v e)e A  a =#o (14ev )îi e Aa.  

= (w, ev)(u, e A  a). 

Now for u and v Weyl spinors and a any Clifford form 

(v, au) = (izv, aizu) = (v, zaz -l u) = (u, aqu) 

so (v, au) = 0 for a odd. In addition 

(v, au)  = (a;.̀v, u) = —(u, azv) 

so for a" = —a (c1.̀  = a) then (y, au) is symmetric (skew) in u and v. So 

(u, v)(w, a) — (u, w)(v, a) = (w, 	e A  a) — (w 	v) 

and the first bracket on the right-hand side will only contain those e5, 
that are even under ri and under These are the 0-forms and the 
4-forms, thus 

(u, v)(w, a) — (u, w)(v, a) = 2(w, v)(u, a) — 2(w, zu)(u,  zŒ).  

Since v and a satisfy zv = —iv and za = —ia the terms on the 
right-hand side add up. We can use the skew symmetry of the product 
to rewrite the left-hand side, producing 

(w, u)(v, 	— (v, u)(w, a) = 4(w, v)(u, a). 

Since this is true for all a and the spinor product is non-degenerate 

(w, u)v — (v, u)w = 4(w, v)u. 
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This is just (10.5.5) with the spinors cyclically permuted. We can now 
use (10.5.5) and (10.5.4) to see that 

tis(u, y) — IF(ty, u) = 4(u, v)e"Tp„. 

Thus the spinor-valued 1-form is an irreducible spin tensor if it is 
'traceless': 

	

ealp a  ---- 0. 	 (10.5.6) 

Exercise 10.6 
Use the correspondence between 1-forms and (1, 1) spin tensors given at 
the end of §2.8 to label the components of a spinor-valued 1-form with 
one 'dotted' and two `undotted' indices. Show that the `tracelessness' 
condition is equivalent to symmetry in the two like indices. 

The spinor covariant derivative S.  and the covariant derivative V x  
can be extended by the Leibniz rule to a covariant derivative, also 
denoted S x , on spinor-valued 1-forms. In the obvious way 

	

SW = S x ip a  0 	+ 	tp, 0 V xea . 	(10.5.7) 

(If any confusion is likely between the covariant derivative on spinor-
valued 1-forms and that on spinors we can write the former as S3 2 .) A 
representation of the Clifford algebra on spinor-valued 1-forms can be 
defined by 

aqi -= (ay) b ) 	eh 	 (10.5.8) 

so that we have a Dirac-like equation 

	

= mtP. 	 (10.5.9) 

The pair of equations (10.5.6) and (10.5.9) are the Rarita—Schwinger 
equations for spin 3/2 [25]. 

Exercise 10.7 
Show that (10.5.6) and (10.5.9) imply the 'Lorenz' condition 
(Sx, 1F)(Xa) = 0. 

In Minkowski space we can pick a parallel co-frame such that (10.5.9) 
reduces to four Dirac equations. We can then find plane-wave solutions 
as in §10.3. If {b„} is the spinor basis of (10.3.24) then we have Dirac 
solutions as in (10.3.22) with the sign of the frequency correlated with 
the E labelling the basis spinors. By tensoring on four independent 
1-forms to the two basis spinors with (say) E = + 1 we can form eight 
linearly independent spinor-valued 1-forms. We can choose four of these 
satisfying the tracelessness condition (10.5.6). The eight spinor-valued 
1-forms can be chosen as eigenstates of the Lie derivatives with respect 
to vectors generating time translations and rotations about the x-axis. 
The 1-form basis can be chosen to have eigenvalues of fi, —i, 0, 0) 
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under the Lie derivative with respect to the rotation, whereas the spinor 
basis has eigenvalues 	—4i}. The four traceless spinor-valued 1-forms 
are then seen to have eigenvalues 	 For the basis of 
(10.3.24) 

dxb„ = 	idtb„ = Eb„, dyb„ = ab_„, dzb„ = iEb_ 7 (10.5.10) 

so a basis for positive-frequency solutions to (10.5.6) and (10.5.9) is 

{b „ 0 (dz — idy), b,_ O (dz — idy) — 2ib„ 0 dx, 

13 + , 0 (dz + idy) — 2ib,_ 0 dx, b,_ 0 (dz + idy)). (10.5.11) 

These are eigenstates of  v Ia z _ z3/3y ' arranged in decreasing order of 
eigenvalues. 

A spinor-valued 1-form features in the theory of supergravity [8]. This 
theory involves a connection with torsion. As we remarked in §9.3 the 
definition of the spinor covariant derivative S,.  in terms of the metric-
compatible connection V does not rely on V being torsion-free. So in 
this case we could still adopt (10.5.7) as the definition of a covariant 
derivative on spinor-valued 1-forms. The field equation for the spinor-
valued 1-form in supergravity, however, is most readily expressed in 
terms of another connection. If {Ta} are the torsion 2-forms of the 
connection V then a covariant derivative on differential forms is defined 
by 

' Vx + lixTa  A i)G.  

From (6.7.4) we see that t is just such that 

e" AVX= d. 	 (10.5.13) 

If  S.  is the spinor covariant derivative associated with V then a 
covariant derivative S' x  on spinor-valued p-forms is defined by 

gx1.11  ' Sx/P/  O e l  + 	0 t x el 	(10.5.14) 

where el is a p-form basis. For W a spinor-valued p-form we may adopt 
the convention that for a any q-form 

a A 	0 a A  el. 	 (10.5.15) 

The spinor covariant exterior derivative D maps spinor -valued p -forms to 
spinor-valued (p + 1)-forms: 

DW 	ea A 3 x.T. 	 (10.5.16) 

If {b,} is a standard spinor frame associated with some orthonormal 
co-frame then we may expand W as W = b, 0 where the tiP are a set 
of p-forms. Then we can equivalently write the spinor covariant exterior 
derivative as 
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DIP = 13 1  0 	+ ePb1 0 wpq  A V- 	(10.5.17) 

The Hodge dual of a spinor-valued p-form is defined in the obvious 
way, in analogy to (10.5.15). If N is a Clifford-valued q-form, 
N = nA C) e A  for nA arbitrary Clifford forms and eA  a basis for q-forms 
then we choose to define 

NIP = nA VI 	eA A el . 	 (10.5.18) 

Having adopted these conventions we consider the equation 

e*DT = 0 	 (10.5.19) 

for a spinor-valued 1-form IF where e e° 0 e a . This equation is one 
of the field equations occurring in the theory of supergravity. Although 
it is usually known as the Rarita—Schwinger equation this equation is not 
obtained by simply putting m to zero in equations (10.5.6) and (10.5.9). 
The relationship between these equations is contained in the following 
exercise. 

Exercise 10.8 
(i) Show that if IF is a spinor-valued 1-form then 

*(e*DIP) = S x (e c tp`) 0 ea — 

Hint: you will need 	A  *eab) = g bc e a 	g ace b .  

(ii) Show that if ço is a spinor field then 

e*D 2 cp = ebS(X b , X a )cp 0 *e°. 

Hence show that if the Ricci and torsion forms are zero (10.5.19) has 
the 'gauge' symmetry 11"1-->  W  + Dep. 

Exercise 10.9 
Consider the following equation for a spinor tp on spacetime: 

S x tp — k-  Stp =  O 	vxE r Tm 

Note that this is equivalent to equating to zero a 'traceless' spinor-
valued 1-form made from the covariant derivatives of tp. Since X and $ 
both anticommute with the volume 4-form this equation decouples into 
two equations for Weyl spinors. 

(i) If K is a conformal Killing vector with  J g = 2Ag  show that if tp 
satisfies the above equation then so does g op - 14. This can be 
shown in the same way as for the analogous (but different!) result for 
the massless Dirac equation. 

(ii) By differentiating the equation obtain the integrability condition 

RI,. 1P — 	enSx„)SIP = 0- 
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Clifford multiply to obtain the contracted conditions 

Pa  + e arl') Sp  = 0 
and 

atp + 3, 2 /p = O. 

Hence obtain the integrability condition 

CbP = O. 

(Note that P„ Aeb — Pb  -bA a =  eaPb 	ebPa  for zero torsion.) 
(iii) If  p  = u + df v, for some function f and parallel Weyl spinors u 

and y, show that tp solves the above equation if V xdf =  X. Hence show 
that this equation has a `twistor' [9] solution with f = 2111ab-ex h , where 
{xa} are inertial coordinates for Minkowski space. 

Exercise 10.10 
When is a spinor a twistor? 

10.6 The Lichnerowicz Theorem 

We anticipated in §10.1 that the eigenvalues of the Dirac operator will 
depend on the properties of the manifold. Whereas the spacetime Dirac 
equation involves a real 'mass' eigenvalue we will see below that the 
Dirac operator on a compact Riemannian manifold has only imaginary 
eigenvalues. The Lichnerowicz theorem [26], as we will now demons-
trate, shows that if the curvature scalar is positive semidefinite then 
there are no zero eigenvalues. 

Let M be a compact Riemannian manifold. From §2.6 we know that 
`4* is the adjoint of a zero index Hermitian-symmetric product on Dirac 
spinors, ( , ). By integrating over M we introduce another Hermitian 
product 

im (V. (P)z 

where z is the volume n-form of M. The Dirac operator is anti-self-
adjoint with respect to this product. To see this we need to recognise an 
exact form when we see one. To this end we write an (n — 1)-form J as 
J = jaenz and, for V torsion free, dJ = (V rja  + i xbV xh e"j„)z by 
(10.2.3). Since t  , ) has as adjoint involution with e".̀ '` =  ea,  

(q), PP) = e"(1), S x„IP) 

{vx(e"cP, 111) — x„e a  (X n)(e b 	1P) — ($49 , IP)}z. 
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Now V xfa(X b  ) = —ea(V x/V b ) = —i x„V x.e b , and so we may recognise 
an exact form in the integrand. By Stokes's theorem the integral of an 
exact form over a compact manifold is zero, thus 

(cP ,  $V) = 	1,0 ). 	 (10.6.1) 

Since it is anti-self-adjoint with respect to a Hermitian product the Dirac 
operator on a compact Riemannian manifold has imaginary eigenvalues. 
As a special case of the above we have 

OV ,  STP) = 
Since ( , 	is a (zero-index) Hermitian product the left-hand side is 
positive-semidefinite. Thus $2 1p = 0 .(=>$1p = 0. Using (10.1.4) to expand 
the spinor Laplacian gives 

($/P ,  PP) = 	ixhVx„e a )Sx„V, IP) 	1P)• 
Since 

((Sx„ + irSx,e a )Sx” 1P, /P) = Im {Vr(Sx„V , V) 	(Sr 1P, Sx„ 1P) 

+ i x,V xh eu(S x v, v)Iz 

= —(S xdP, Sx„V) 
we have 

= (Sip, S ) + 	, 2kp). 	(10.6.2) 

If 	0 then all three terms are positive-semidefinite. If 2/I. > 
then there are no zero eigenvalues of the Dirac operator: if 	= 0 then 

= 0 <=> SAN! = 0 V X. 
When  Ji  is constant, such as for the standard metric on a sphere, 

then we obtain a lower bound for the eigenvalues of the Dirac operator. 
If $v =  imp,  with m real, then 

(m 2  — 1R) "ti) , 	=  (Sp,  Sx„V) 
and so 

m 2 > 4Igt.  

The above arguments can be repeated with real spinors. From table 
2.15 we see that the  involution `j of the real Clifford algebra is the 
adjoint involution of a zero-index product; the product being either 
R-symmetric, C*-symmetric or  fl-symmetric.  

10.7 Killing Spinors 

Because of the importance of a knowledge of the geodesics on a 
manifold an interesting problem in general relativity is the determination 
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of first integrals associated with the geodesic equations. Such integrals 
may be identified with constants of the motion along geodesic curves. 
Killing symmetries play an important role in the search for such 
integrals. It was in this context that the notion of a Killing spinor 
naturally emerged [27]. Since then the same notion has been redisco-
vered in the context of finding classical solutions to matter field 
equations in background geometries [28]. In particular, Killing spinors 
arise in the study of the residual supersymmetries exhibited by certain 
solutions to supergravity models. As we shall see the existence of such 
spinor fields imposes interesting constraints on the geometry of a 
manifold. 

A spinor field on some n-dimensional spin manifold M which, for 
some complex constant A, satisfies 

Sp Aktp 	 (10.7.1) 

for all vector fields X, is said to be a Killing spinor. The name arises 
from the fact that such spinor fields can be used to construct conformal 
Killing vectors. An immediate consequence of (10.7.1) is that a Killing 
spinor is an eigenspinor of the Dirac operator, Sip = nAip. We have 
already noted in the section above that on a compact Riemannian 
manifold, A must be pure imaginary. Excluding the case in which the 
signature of the metric on M is (p, q) with p even and q odd then there 
is an Hermitian symmetric product on complex spinor (or semi-spinor) 
fields with as adjoint involution. Let ip be the adjoint spinor with 
respect to this product. Then a real 1-form k is given by 

k = j't(1071)- 

We can expand this in a basis { e}  as 

K  = J'oezir ea)ea  = ca.) e 011)e" = 	e u ip)ea 
SO 

k* = (p, e u v)* = (e 	,) ea  = 	e a v)e" 

and k is indeed real. By differentiating (10.7.2) 

V xk = i(SxVii; + IPS 	= 1(A -  k - 11, 175 + VÂXV)) 

((m,e),371p) + (A:tzp, e a tp))ea 

= ((p, Xe, 4 5-4) + (p, A* ;is  ee a tp))ea 

= 2 Re(A)(V ,  IP) 71( + 2i 1 m(A)( 1P ,  (ea A 
SO 

	X)tp)ea 

(Vx k)( 17) + 	y k)(X) = 4Re(X)(4', ip)g(X, Y). 

Using Killing's equation, (6.13.3), we have 

Kg = 4Re(A)(tp,v)g. 

(10.7.2) 

(10.7.3) 
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If we took a Hermitian-symmetric product ( , ) with 07* as adjoint 
(the signature does not have p odd and q even) then if lp is the adjoint 
with respect to this product then 

k = 	 ( 10.7.4) 

is a real 1 -form. This satisfies 

Kg = — 41m(A)( 4', p)g. 	 (10.7.5) 

Exercise 10.11 
Show that if ip is a Killing spinor and K some Killing vector field then 

op is also a Killing spinor with the same eigenvalue  A. 

The existence of Killing spinors on a Riemannian (as opposed to a 
pseudo-Riemannian) manifold necessitates interesting integrability con-
ditions. We first note that the set of first-order differential equations for 
the components of tp given by (10.7.1) implies that if the spinor vanishes 
at some point p E M then it must vanish at all points that are arcwise 
connected to p [29, 30]. By differentiating (10.7.1) we may obtain an 
integrability condition involving the curvature. A straightforward cal-
culation, using the zero torsion of V, gives 

S(X, Y)tp = —,1 2 [;5e, ijp 	VX, YE rTm. 
This can be written in terms of the curvature 2-forms, using (10.3.20), as 

4.a(X)eb( Y)Rabli) = — x 2 ea(x)e b (Y)fea , eblv 
or 

R aop = —4X 2 eab 
	 (10.7.6) 

Clifford multiplying by ea produces the Ricci forms on the left-hand 
side: 

Pop = — 4A 2 (n — 1)e op. 

Now if A is a real 1-form such that A 4  = 0 then certainly A 2 lp = 0. 
But A' = g(A, A) and so for a positive-definite metric we must have 
A = 0 for ti) non-zero. Thus the above integrability condition is that 

Pb = — 4A 2 (n — 1)e b 	 (10.7.7) 

and the manifold must be an Einstein space with curvature scalar given 
by 

= — 4n(n —  1)A 2 . 	 ( 10.7.8) 

So A must be either real or pure imaginary. We can use (10.7.7) and 
(10.7.8) to rewrite (10.7.6) in terms of the conformal 2-forms. Sub-
stituting (10.7.7) and (10.7.8) into the definition (6.11.6) gives Cab = 
R ab 4A 2 e ab  and hence (10.7.6) becomes 
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Cab = 0 - 	 (10.7.9) 

To go further we must make another assumption about M. A 
Riemannian manifold is locally symmetric if its curvature tensor is 
parallel. If M is locally symmetric then the conformal tensor is parallel 
and the conformal 2-forms satisfy 

	

VxCan = Ccbw c „(X) C„cw`b(X) 
	

VXET TM. (10.7.10) 

Differentiating (10.7.9) and using (10.7.1) and (10.7.10) gives 

{C pb coP„(Xe ) + Cap coP b (X e )Iii) + ylC„b e e lp = 0. 

The first two terms vanish by (10.7.9), and so for A * 0 we have 
Cabe, = 0. From (10.7.9) we have e,Cab tp = 0 and so subtracting these 
gives i c C„b li) = 0 and hence 

Cab = 0. 	 (10.7.11) 

Together (10.7.7), (10.7.8) and (10.7.11) show that R „b = —4/1 2 e ah , that 
is, M has a constant sectional curvature of —4/1 2 . Hence the only locally 
symmetric Riemannian manifolds such that (10.7.1) has a solution for 
A* 0 are the standard sphere, in which case Â is imaginary, or a 
hyperbolic space with A real, or a quotient of these spaces by a discrete 
group. 

10.8 Parallel Spinors 

A spinor field ip is parallel if 

Skip = 0 	V X E FTM. 	 (10.8.1) 

Thus a parallel spinor is a special case (A = 0) of a Killing spinor. Not 
surprisingly M must be tightly constrained if it is to admit a parallel 
spinor. A discussion of parallel spinors necessitates a brief mention of 
Kahler manifolds. A tensor field J  e  F TIM is an almost complex 
structure on M if 

.1 2 X J(J(X)) = —X 	V X EFTM. 	(10.8.2) 

A Riemannian manifold (M, g) with an almost complex structure J 
that is an isometry, 

g(JX, JY) = g(X, Y) 	V X, Y EFTM 	(10.8.3) 

and is parallel 

V xJ = 0 	VXEFTM 	 (10.8.4) 
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is called a Kahler manifold. A theorem due to Hitchin [31] states that a 
compact even-dimensional Riemannian spin manifold admitting a para-
llel spinor is a Kahler manifold. For the special case of four dimensions 
a direct proof requiring orientability, but not compactness, can be found 
in [29]. It is possible to prove rather easily a result about parallel pure 
spinors on even-dimensional Riemannian manifolds. 

An even-dimensional Riemannian spin manifold admitting 
a parallel (complex) pure spinor is a Ricci-flat Kahler man-
ifold. (10.8.5) 

The Ricci flatness is just a special case of (10.7.7). Pure spinors were 
introduced in Chapter 3. Recall from there that pure spinors are Weyl 
spinors (they carry a semi-spinor representation of the complexified 
even subalgebra). At each point p of M a non-vanishing pure spinor ip  

determines a maximal isotropic subspace jp+  of the complexified cotan-
gent space by 

xtp p  = 0 	for X E rp Mc 	iff X E j;. 	(10.8.6) 

We have rp le = 	0 4,-, where x* c $; if and only if x  e .  So a 
non-vanishing pure spinor field assigns a maximal isotropic subspace to 
the complexified cotangent space of every point. Let 4+ and j -  be the 
spaces of complex differential 1-forms such that x  e j +  if and only if 

E /p+ . Given the subspaces 1 +  and j - , determined by the pure 
spinor, we can define an almost complex structure J by 

Jx = ix 	V x E j +  

(10.8.7) 
Jy = —iy 	Vy Ej — . 

(Note that we here think of J as an endomorphism of the cotangent 
(rather than the tangent) space.) Since it has eigenvalues ±i then J is 
certainly an almost complex structure, and since complex conjugation 
interchanges 4+ and j -  it is a real tensor field. Since J preserves the 
isotropic subspaces j+ and j -, then to check that J is an isometry we 
need only consider the metric evaluated on an element of j+ and of 
j - . Let x E j +  and y E j —  then g(Jx, Jy) = g(ix, —iy) = g(x, y) and so 
J satisfies (10.8.3). Since tit is parallel then the subspace j+ (and hence 
j - ) is preserved under covariant differentiation. For if xtp = 0 and tp is 
parallel then V xxtp = 0 and hence V xx E j+ V x E 1±, V X e TM. 
Since covariant differentiation commutes with complex conjugation then 
it also preserves j - . Now if x E j+ we have Jx = ix and hence 
(V xJ)x +J(Vxx)=iV xx. Since V xx E j+ we have V xix = 0 and 
V xJx* = 0, hence V xJ = 0. Thus we have established (10.8.5). 

We can use the metric to construct a 2-form out of an almost complex 
structure satisfying (10.8.3). If J = Ja h ea 	Xb then the usual index- 
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lowering rule gives Jab  = g(JX „, X b ). If J satisfies (10.8.3) then 

g(JX„, X b )= —g(JX„, J'Xb ) = —g(X„, JX b ) = —g(JX b ,  X 0 ) 

and  J,,,, 	The 2-form 

	

Q 	ijabe ab 	 (10.8.8) 

is called the Kahler 2-form. If x is any 1-form then 

Jx = —i,Q = J I (Qx). 	 (10.8.9) 

We showed above that an even-dimensional Riemannian manifold 
admitting a parallel pure spinor is a Kahler manifold. In this case the 
Kahler 2-form can be constructed out of the spinor. If denotes the 
adjoint spinor with respect to the Hermitian spinor product whose 
adjoint involution is then a real 2-form F is given by 

	

F = 	 (10.8.10) 

For any 1-form x 

i(Fx) = Yi{itPix 	Jo(ili»/-P- )x} = 	xe,,)e a  — Yo(i/Pi)x 

and 

	

a o (itp/Tue a ) = g(x, 	 eax)) 

	

xea) = g(x, 	 Yo(i/Pir)eax) 

= g(x, ea )Y o (ivi—p) — 1J„(ixtpiea). 

If now lp is a pure spinor and x c 	, as determined by (10.8.6), then 
the last term in the above vanishes. Thus for x E .Y +  

	

I (Fx) = Y o(itp ir))x = 	tp)x. 

Since Op, tp) > 0 for zp 0 the Kahler 2-form Q related to the almost 
complex structure J of (10.8.7) is given by 

Q — 922(ivi)  (10.8.11) 
(V , 1P) 

By only considering parallel pure spinors we have been able to use a 
basically algebraic argument to see directly that M must be a Kahler 
manifold. If M is even dimensional and orientable, with dim M 6 then 
if M admits a parallel spinor then it admits a parallel pure spinor. If M 
is orientable with ip parallel then the Weyl spinors ;(1 ± si)ip are also 
parallel where i is proportional to the volume form on M such that 

= 1. But for dim M 6 all Weyl spinors are pure and hence M is a 
Kahler manifold. Notice that we need to assume orientability but not 
compactness. 

In the above we have studied some of the conditions that are 
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necessary for the existence of parallel pure spinor fields. The existence 
of compact Ricci flat manifolds was first demonstrated by Yau [32] 
following a famous conjecture by Calabi. When the very stringent 
necessary conditions for a parallel spinor are met one can sometimes 
appeal to the powerful Atiyah—Singer index theorem [33] to show that a 
parallel spinor does in fact exist. This theorem relates the differing 
numbers of 'left- and right-handed' Weyl solutions of the massless Dirac 
equation on a compact Riemannian manifold to a topological invariant. 
By the Lichnerowicz theorem we know that for a Ricci-flat compact 
Riemannian manifold the only such solutions are parallel spinors. Thus 
if the topological invariant is such that the difference between the 
number of left- and right-handed solutions is non-zero then there must 
exist parallel spinors. 

Exercise 10.12 
Show that the almost complex structure on a Kahler manifold can be 
used to define a sub-bundle of minimal left ideals of the complexified 
Clifford bundle. Hence a Kahler manifold is a Spin' manifold. Show 
that the Riemannian connection induces a connection on this sub-
bundle, and hence the Kahler equation can be restricted to a minimal 
left ideal. 

The importance of spinor fields in classical differential geometry has 
rarely been doubted. That they play an important role in many theories 
in physics is an act of faith shared by many physicists. In recent times a 
great deal of theoretical physics and differential geometry has become 
closely intertwined. The properties of Killing spinors are an example 
where both disciplines have gained mutual benefit from this interaction. 
In this book we have attempted to bring the amalgam of ideas that 
constitute Clifford algebras, differential geometry and the theory of 
spinors into a form that we hope will stimulate some readers to pursue 
such a synthesis further. 



Appendix A 

Algebra 

In this appendix we have collected those algebraic results that we have 
referred to in the book. Thus the account here is very much tailored to 
our specific needs rather than giving a balanced view of the subject. The 
first few pages mostly define terminology that we have used. Although 
this is fairly standard the various morphisms' are used by different 
authors in slightly different ways, and there are some alternative terms 
that we have not listed. The section on algebras is much more dense, 
leading up to a proof of the structure theorem for simple algebras. 
Although the average reader will probably not want to plough through 
this exposition he will need to know the final result, and how it may be 
used to construct, for example, explicit representations of 7-matrices. 
The approach we have adopted is the historical one; more modern 
treatments prove the structure theorems for a wider class of rings than 
algebras over fields. We found useful the classic books of Albert (1961) 
[1] and Dickson (1960) [2], and the more modern book by Kochendorf-
fer (1972) [3]. There are, of course, an abundance of books in which 
this material can be found, to suit all tastes. 

A group, G, consists of a set with a binary operation, or law of 
composition, that satisfies four axioms. Usually multiplicative notation is 
used to denote this group operation, the juxtapositioning of elements 
denoting their composition. In view of this notation we shall often refer 
to the law of composition as a product. The axioms are as follows. 

(i) For every a, b e G there is a unique c E G such that ab = c. 
(ii) The product is associative, (ab)c = a(bc). 
(iii) There exists an identity (or unit element), denoted 1, such that 

al = la = a 	V a E G. 
(iv) Every element a has an inverse a', aa -1  = aa = 1. 

When a group consists of a finite number of elements then this 
number is called the order of the group. In general the group product is 
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not commutative, ab *  ha.  The set of elements that commute with all 
other elements is called the centre. A group for which the product of 
any two elements is commutative is called Abelian. Often additive 
notation is used to denote the law of composition in an Abelian group, 
in which case the identity is written as 0. A subset H, of a group G, 
which forms a group under the product of G is called a subgroup. Thus 
H is a subgroup if and only if uveliVu,yEH,u -I EHVuEH and 

E H. For example, the centre is a subgroup. We may form a subgroup 
H from any subset S of a group G by taking the set of all products that 
can be formed from elements of S and their inverses; this group is said 
to be generated by S. A subgroup enables a group to be decomposed 
into equivalence classes. If we have an equivalence relation on a set 
such that a is equivalent to h then we write a b. Equivalence 
relations satisfy a — a, a — b for b — a, and if a — b and b c then 
a — c. The set of all elements equivalent to an element a constitute the 
equivalence class of a, [a]. Any element of [a], such as a, is called a 
representative of the class. The equivalence classes of distinct elements 
are either identical or non-intersecting. If H is a subgroup of G then an 
equivalence relation on G is defined by a — b if b = ah for some h E H. 
The equivalence class of a is called the left coset of G, relative to H, 
generated by a. In an obvious way we define right cosets. For a special 
type of subgroup the cosets inherit a group structure. A subgroup H is 
called normal (or invariant) if ghg --1  c H VgE G, V h E H. The nota-
tion H G denotes that H is a normal subgroup of G. It follows that 
the left and right cosets relative to a normal subgroup are equal. These 
cosets form a group under the product defined by [a][b] = [ab]. Since 
[a]  =  [ah] for h E H this definition only makes sense if H is normal. 
This group of cosets is called the quotient of G modulo 1-1, denoted 
GIH. We give an example. The set of integers (positive and negative) 
forms an Abelian group under addition, denoted Z. Any integer n 
generates a subgroup H. Thus H consists of the set {0, ±- n, -±2n, ±3n, 
. . .}. Any subgroup of an Abelian group is normal and so we can form 
the quotient, Z„ = ZIH. If m is any integer then m= qn +r, where 
0 r < n, and so every element of Z is equivalent to a positive integer 
less than n. The class of the sum of two such integers is represented by 
their sum modulo a multiple of n. For example, Z, has two elements, 
[0] and [1], and [1] + [1] = [2] = [0]. (The notation Z„ will be used to 
denote any group isomorphic to these quotients. For example, the set 
{I, —1} forms a group under multiplication, isomorphic to Z2.) Roughly 
speaking a homomorphism is a mapping between groups that preserves 
the structure. Let q) be a mapping from G to G', then cp is a 
homomorphism if cp(ab)= cp(a)T(b). The product on the left-hand side 
is that of G whilst the product on the right-hand side is that of G'. If 
every element of G' is the image of some element of G under cp, then cp 
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is called surjective (or onto). If no two elements of G get mapped into 
the same element then yo is called injective (or one-to-one). A mapping 
that is both injective and surjective is called bijective. Groups that are 
related by a bijective homomorphism are called isomorphic, and we 
write G' -= G. In general a homorphism ço is not injective, and the set 
of elements in G mapped onto the identity of G' is called the kernel of 
ço (ker cp). The kernel of ço is a normal subgroup of G, and we have 

cp(G) 	G/ker cp. 	 (Al) 

(This is known as the first isomorphism theorem.) 
This may be proved by introducing a map (LI, 

(13 : G/ker cp 	q(G) 

[a] 	cl)([a]) = cp(a). 

The proof consists of showing that not only does such a definition make 
sense, but (I) is a bijection. The following is usually known as the second 
isomorphism theorem. If N G and A G such that N A G 
then 

GIN  
GIA. 	 (A2) 

A/N 

The conditions on the subgroups are just such as are required for this to 
make sense. The equivalence class of a in G given by N is written [a]N ; 
[cil A  being similarly defined. The proof of (A2) is established by 
introducing a map ço, 

cp:GIN-- GIA 

[allyq ([42]N) = [(I]A • 

Not only is such a map well defined but it is a surjective homomorphism 
with kernel AIN. Then (A2) follows from (Al). 

If H and K are two groups then there is a natural way in which 
the Cartesian product of these sets can be given a group structure. The 
Cartesian product set consists of ordered pairs of an element of H and 
an element of K. If (h l , lc ] ) and (h2, k 2 ) are two such pairs then we 
may define their product by (h 1 , k i )(h,, k 2 )= (h 1 h 2 , k i k,). If G 
denotes the group formed by such pairs then G is the direct product of 
H and K, written G = H x K. An isomorphism from a group to itself 
is called an automorphism. If cp and  p  are automorphisms of G then 
their product may be defined by (cfv)(a) = cp(zp(a)). Under this product 
the set of all automorphisms of G forms a group, Aut G. If t is any 
element of G then we have a T in the automorphism group given by 
1-(a) = tat- '. Such an automorphism is called an inner automorphism. 
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Any automorphism that is not inner is called an outer automorphism. 
The ordered pairs consisting of an element of a group and an element of 
a group of automorphisms can be given a group structure other than 
that of direct product. If Q is a subgroup of Aut G then for co l , w 2  E Q, 
a 1 , a 2  E G we define (a 1 , co i )(a 2 , to 2 ) = (a i w i (a,), w i to,). With such a 
product we have (a, (o)' = (co-1 (a -1 ), 0i'). The ordered pairs under 
this product form the semidirect product of G and Q, K say, written 
K = GC)Q. 

A ring has two binary operations, addition, denoted +, and multi-
plication, denoted by juxtaposing elements. Under addition a ring forms 
an Abelian group, the additive identity being called the zero element. 
Multiplication is associative (unless specifically stated otherwise) and 
distributive over addition, 

(a + b)c = ac + bc 	c(a + b) = ca + cb. 

A commutative ring is one in which multiplication is commutative. The 
set of elements that commute with all other elements under multiplica-
tion is called the centre. A ring need have no identity (or unit element), 
denoted 1, by which is meant a unit element under multiplication. For a 
ring with unit element an element a is called regular (or invertible) if it 
has a multiplicative inverse a', that is act' = = 1. A ring in 
which every non-zero element is regular is called a division ring. We 
have already noted that the integers, Z, form an Abelian group under 
addition; with multiplication they form a ring. Similarly with multiplica-
tion being defined modulo n the group Z,, forms a ring. 

A field is a commutative division ring. (Sometimes a non-
commutative division ring is called a skew field.) Familiar examples of 
fields are the rational numbers Q, the real numbers lR and the complex 
numbers C. For p a prime number then an example of a field with a 
finite number of elements is Z p . A field F is said to be of characteristic 
p if there is a prime number p such that 

a+a+a...+a=0 	V a E F. 

p terms. 

In this case F contains Zp  as a subfield. If there is no such p then F is 
said to be of characteristic zero, and in this case it contains the rational 
numbers as a subfield. We shall really only be concerned with the zero 
characteristic fields IFI and C. The complex numbers have the property 
of being algebraically closed, which results in the property that we shall 
observe of enabling any complex number to be written as a square. The 
real numbers do not have this property, no negative number being a 
square of a real number. 

A vector space over a field F, V, is a set (of vectors) with an 
operation of addition and a rule of scalar multiplication, which assigns a 
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vector to the product of a vector with an element of the field. (In this 
context elements of the field are called scalars.) Under addition the 
vectors form an Abelian group, with multiplication by scalars satisfying 
the following: 

(i) (An)x = A(ux) 
(ii) (A + su)x = Ax + tx 

A.(x + y) = 	+ Ay 	V A, E F, x, y E V. 
(iii) ix  =  x, where 1 is the unit element of F. 

If {x,) is a set of vectors such that x = E,A 1x, for A' E F then x is said to 
be a linear combination of the x i . A set of vectors is called linearly 
dependent if any one vector can be written as a linear combination of 
the others. Conversely the set {x,} is linearly independent if /,Arx, = 0 
implies that all A' are zero. A set of vectors {x,} is said to span V (or 
generate V) if any element of V can be written as a linear combination 
of the x i . A linearly independent spanning set is called a basis, or linear 
frame. Every vector space admits a basis, and when the vector space is 
spanned by a finite set any basis contains the same number of vectors, 
called the dimension of the vector space V, denoted dim V. Any vector 
can be written as a linear combination of the basis vectors, the uniquely 
determined scalar coefficients being termed the components of the 
vector with respect to that basis. If {e, }  and {L} are distinct bases then 
the elements of one basis can be written as linear combinations of the 
other basis vectors, 

e-  E 

f, = E B i ge. 

Substituting either expression into the other gives 

E B/A i k = 

E Aj k Bk J  = ôjJ  

k =1 

where the Krônecker 6, 1  takes the value zero unless i = j when its value 
is one. Thus the coefficients relating the change of basis can be 
displayed as a non-singular n x n matrix, with entries in F. Such 
non-singular matrices form a group under matrix multiplication, the 
general linear group over F, Gl(n, F). In the above expressions we have 
chosen to position certain indices as superscripts, others as subscripts. It 
is often convenient to adopt the Einstein summation convention in which 
summation is implied over any repeated index, occurring once as a 
superscript and once as a subscript. Thus in the above expressions we 
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would simply omit the summation sign when using the summation 
convention. We shall frequently use this convention without further 
comment. When it is not clear from the context whether a sum is 
implied or not we shall explicitly state, for example, no sum. 

A subset U of a vector space V such that all linear combinations of 
vectors from U lie in U is called a vector subspace. The zero element 
and V itself are obviously vector subspaces, any other subspace being 
termed non-trivial. If S is any subset from V then all linear combina-
tions of vectors from S form a vector subspace which is said to be 
generated, or spanned, by S. The dimension of the subspace generated 
by S is called the rank of the set. If U and W are subspaces of V then 
so is the intersection of these sets, u n W. This intersection is not 
empty since all subspaces contain the zero element: thus should we 
speak of non-intersecting subspaces we really mean subspaces that only 
intersect in the zero element. The sum of U and W, U + W, consists of 
vectors of the form x = u + w,  u EU WE W. In general, such a 
decomposition of x into elements of U and W is not unique. It is, 
however, when u n w = O. In this case the sum is said to be direct, 
written U 10 W. (Later we shall reserve this notation for the direct sum 
of algebras, all vector space sums being direct unless stated otherwise.) 
For any subspace U there is a subspace W such that V = U W; W 
being called the complement of U in V. Obviously 
dim V = dim U + dim W. Any subspace U is a normal subgroup under 
addition. The quotient group V/U can be given a linear structure by 
defining Â[x] = [Aa], where the bracket denotes the equivalence class of 
x, with x — y if x = y + u for some u E U. With this structure V/U is 
called the linear quotient space of V modulo U. (In view of the additive 
notation the obsolescent term difference space might seem more 
appropriate.) 

A linear map between two vector spaces over the same field is a 
group homomorphism that commutes with scalar multiplication. That is, 
cp is a linear map from V to W if 

cP(Ax YY) = 40(x) ± PT(y ) 	V x, y E V, 	E F. 

It follows that every linear map sends the zero element of V to that in 
W. A linear map may be completely determined by specifying its effect 
on some basis for V. The terms injective, surjective and bijective 
naturally apply to linear maps. A bijective linear map is called a vector 
space isomorphism. The kernel of a linear map is the kernel of the 
group homomorphism, and is readily seen to be a linear subspace. In an 
obvious way we can define addition of linear maps and multiplication by 
scalars such that the linear maps from V to W form a vector space, 
1(V, W). Since any such linear map may be specified by a 
dim V x dim W matrix we have dim 2(V, W) = dim Vdim W. A linear 
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map from V to V will be called a linear transformation, or endomorph-
ism, and we will also write End V for 2(V, V). Such linear transforma-
tions can be multiplied by composing maps, (cpip)x = cp(tp(x)). With 
such a product End V has the structure of an algebra, about which more 
will be said later. Under mulitplication the non-singular linear trans-
formations form a group, the automorphism group of V, Aut V. Of 
special importance is the vector space of linear mappings from the 
vector space V to the field F, known as the dual space, V*. When V is 
finite dimensional then dim V* = dim V. For each basis {e,} of V we 
may establish a natural dual basis {e*'} of V* such that eNe 1 ) = SI) 

 Vi, j. (Note the conventional positioning of indices.) If arbitrary 
elements b and B in V and V* respectively are expanded in dual bases 
as 

b =  be, 	B = 
	

(summation convention) 

then B(b) = B,b'. In particular, e*'(x) = x' expresses the components 
of x in terms of the corresponding natural dual basis action on x. 
Elements of V* are sometimes called co-vectors to distinguish them 
from elements of V, although for V finite dimensional this terminology 
is reciprocal since there exists a natural way to regard V as the dual to 
V* 

A vector space V is graded by an Abelian group G if V is expressible 
as a direct sum of subspaces that are labelled by elements of G. More 
precisely, V is a G -graded vector space if { V,I is a set of non-
intersecting subspaces such that V = E,V, and k injectively assigns an 
element k(i) of G to each V,. G is called the group of degrees. 
Elements of V, are called homogeneous of degree k(i), denoted 

deg x = k(i) 	V x E V,. 

Since the zero vector lies in every subspace it is homogeneous of every 
degree. Paticularly when G = Z we will label the subspaces with 
elements of G. When the only element that is homogeneous of negative 
degree is the zero element we have a positive gradation. If we omit 
mention of the group G we shall mean by graded vector space a 
Z-graded space with positive gradation. A G-graded subspace of a 
G-graded space V admits a direct sum decomposition in terms of 
subspaces contained in the homogeneous subspaces of V. If V and W 
are G-graded spaces with homogeneous subspaces { V,} and  {W1 ) then 
a linear map cp is called homogeneous of degree k if there is an element 
k E G such that  p( V,) C W, + k Vi E G. It follows that the kernel of a 
homogeneous map is a graded subspace of V, whilst the image is a 
graded subspace of W. If U is a G-graded subspace of a G-graded V 
then the linear quotient V/U inherits a natural G-gradation, the 
equivalence classes being assigned the degree of a homogeneous repre-
sentative. 
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A bilinear mapping on V is a mapping on pairs of vectors which is 
linear in each argument separately. By bilinear form we mean a bilinear 
mapping on V with values in the field F. We shall also refer to such a 
mapping as a metric. Although this use of the word is not standard we 
adopt it due to its prevalent use in this sense for the applications we are 
interested in. (Such a metric will not in general satisfy the criteria for a 
distance function used to define a metric space!) A metric g is 
symmetric if g(x, y) -= g(y, x) V x, y c V and non-degenerate if g(x, y) 
= 0 V y implies that x = O. We shall be primarily concerned with the 
case of F = 11 with g symmetric and non-degenerate, and we now 
restrict ourselves to this situation. In this case g is said to be positive-
definite if g(x, x)> 0 for all non-zero x. It is often convenient to choose 
a g-orthonormal basis, fe,), in which g(e„ ei ) = n u  where n u  = ±1 if 
i = j or zero otherwise. The pattern of signs is known as the signature 
of g, and may be denoted (p, q) where there are p plus signs and q 
minus signs. The automorphism group or invariance group of a space 
with a metric is the subgroup of the group of non-singular linear 
transformations consisting of elements m such that g(m(x), m(y)) = 
g(x, y) V x, y E V. For a real-valued symmetric non-degenerate g of 
signature (p, q) the invariance group is called the orthogonal group, 
0(p, q). Such a space will also more simply be called an orthogonal 
space. In particular, then, orthonormal bases are related by orthogonal 
transformations. The metric g can be used to associate with every 
element x E V an element 2 E V* by the rule that 

	

2(y) = g(x, y) 	V y E V. 

We shall refer to such an  2 as the metric dual or adjoint of x (with 
respect to g). If the components of g in the basis {e,}  are given by 

= g(e„ ei ) and 2 is expressed in the dual basis as 2 = "X",e*' then 
iy 1  = g,,xy. Since this must hold for all y it implies that X i  = g,ixi 

Frequently a lowering convention is adopted for indices in which 
gux`, such that if x = x'e, then 2 = x,e*`. The metric g:V x V --›11i 

naturally induces a metric g*: V* x V* --›11:1 by the rule 

	

g*(X, y) = g(x, y) 	V x, y E V. 

If the components of g* in the basis fe* 1 1 are the numbers 
j  g*u = g*(e*', e*/) then g * jk _ c5k Thus the components of g* form 

the inverse of the matrix of components of g. The map - from V to V* 
is invertible and we denote its inverse by Thus if B E V* with 
B = B e *(  then 13_ = Bte, where the index has been raised with the 
components of the metric, B' g*u B .,. For typographical reasons we 
shall use the same symbol to denote the 'lowering map' - and its inverse 
the 'raising map' _.., there being little scope for confusion so long as we 
state in which space the elements lie. 
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As well as real vector spaces we shall be interested in vector spaces 
over the complex field. In various ways the same Abelian group can be 
endowed with both an Fl-linear structure and a C-linear structure. When 
speaking of the dimension of such a vector space it is important to 
distinguish between the two linear structures, and when there is possibil-
ity for confusion we use dim E  and dim c  to denote the dimensions 
associated with the different linear structures. Similarly we speak of 
JR -linear and C-linear transformations when there is possibility 
of confusion. If V is a real vector space then an endomorphism J such 
that J2  = —I, where I is the identity map, is called a complex structure 
on V. Such a J can only exist if V is of even dimension. A complex 
structure can be used to define multiplication of elements in V by 
complex numbers. For A + ip E C, A, yE IR, we define 

	

(A + ip)x = Ax + pfx 	V x E V. 

Such a C-linear structure turns V into a complex vector space V, the 
complex vector space associated with V (and J). We clearly have 
dim c  = dim E  V. 

There is another way in which a complex vector space can be 
fabricated out of a real vector space V. The ordered pairs of elements 
of V, V x V are given a real vector space structure by defining 

(xi,  Yi)  + (x2, Y2) = (x1 ± x2 ,  Yi  ± Y2) 

	

A(x, y) = ()Ix, ily) 	A cE.  

With this structure the ordered pairs form the external direct sum of V 
with itself, VCW. This direct sum space has a natural complex struc-
ture, J:(x, y)—> (—y, x). The complex vector space associated with this 
complex structure is called the complexification of V, Vc. Thus 
Vc  (VV),  and dim c  Vc = dim E  V. An element of Vc is an ordered 
pair of elements from V. But since (x, y) = (x, 0) + i(y, 0) we shall 
write x + iy instead of (x, y). If then A +  it  E C this gives, as one would 
expect, 

(A + ip)(x + iy) =  Ax  —yy + i(Ay + !ix). 

If now we start with a complex vector space E then we automatically 
have an associated real vector space, ER, since IR is a subfield of C. This 
real vector space comes equipped with a natural complex structure, 
multiplication by i in E. With this complex structure E = (ER)c. 

A group homomorphism cp between complex vector spaces is called 
conjugate linear if cp(Âx) = yl.*cp(x) for  A e C and A* denoting the 
complex conjugate. In particular, if cp is an JR-linear map on a real V 
that has complex structure J such that, TJ = —Jcp then cp is a conjugate 
linear map on V. 
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As we have remarked, the non-singular linear transformations on a 
vector space V form a group under multiplication, Aut V. If G is an 
arbitrary group then a representation of G is a homomorphism of G into 
Aut V, for some V. The vector space V is said to carry the representa-
tion. The dimension of V is called the dimension of the representation. 
If this homomorphism is one-to-one then the representation is called 
faithful. If the image of G under the representation leaves no non-trivial 
subspaces of V invariant then the representation is called irreducible. If 
V may be decomposed into subspaces that are preserved under a 
representation of G then that representation is reducible, as it induces 
homomorphisms of G into the automorphism groups of these subspaces. 
If V and W carry representations cp and p respectively then these are 
termed equivalent if there is an isomorphism S, mapping V to W. such 
that the following diagram commutes for all gE G,xE V: 

(1)(g) 
X 	cp(g)x 

S 	 S 	i.e. Scp(g)S -1  = p(g). 

P(g ) 

Sx 	p(g)Sx 

An algebra over the field F, al(F), consists of a vector space over F 
together with an algebra product, called multiplication, which satisfies 

aQ.b + uc) = /lab + mac 	Va,  h, c E 	V/1., fiE F 

and similarly for multiplication on the right. We shall call the dimension 
of the vector space the dimension of the algebra. The algebra is 
associative if its product satisifes a(bc) = (ab)c. Thus equivalently an 
associative algebra .91(F) is a ring si that is a vector space for which 
a(ab) = a(crb)= (cea)b  V a.  h E1. V a E F. We may therefore apply 
the terminology defined for rings to algebras. A division algebra being, 
for example, a division ring that is an algebra. An algebra with a unit 
element that spans the centre is called central. When the vector space is 
graded by an Abelian group G and the algebra product satisfies 

deg (ab) = deg a + deg b 

then we have a G -graded algebra. Unless we further specify we shall 
mean by algebra si a finite-dimensional associative algebra over F.  some 
arbitrary field; although in this book we shall only be concerned with 
the real or complex field. 

If the underlying vector space of an algebra si is the direct sum of two 
subspaces A, T then we will write I  = + T. These subspaces need 
not be subalgebras, by which we mean a vector subspace that is closed 
under the algebra product. The centre is an example of a subalgebra. 
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For subspaces 33, 'T we define the product 31T to be the vector space 
spanned by all products of the bases for 33 and T. If (6 is some subspace 
such that si = (fi'6 ... (6 then '6 is said to generate si. A basis for (b will 
be termed a set of generators for si. In general the dimension of 93T 
will be less that the product of those of 31 and T. In fact we have 

If 	{c,} 	i =1, . . 	s 	is 	a 	basis 	for 	T 	then 
dim 31% = dim Oldim iff >d 1c 1  = 0 for d i  E gi implies all 
d i  are zero. 	 (A3) 

For if {b i } j = 1, . . 	r is a basis for 33 then 31T is spanned by the 
set of all products bic,. So dim 33T = rs if and only if these are all 
linearly independent, that is, if 

Ex u b,c, =_ 
1-1 	 

for /1.,)  E F implies all A o  = O. 
For d, = E;,,X u b j  this is just the statement of the result. As a special 

case we have, for some non-zero a E si, asi = si if and only if there is 
no non-zero b such that ab = O. The above result enables us to make 
the following simple observation, to which we will later refer. 

If there is an element b such that ab = 1 then b is the unique 
inverse of a. 	 (A4) 

It is obvious that if a had an inverse then it would be unique. Given 
ab = 1 we have absi = szi. But ab  si C asi so we must have asi = 
that is, from (A3), there is no non-zero d such that ad = O. Suppose 
there were a c such that bac c, that is bac — c = d where d O. This 
implies that abac — ac = ad. If, however, ab = 1 then the left-hand side 
is zero, whereas the right-hand side cannot be, so ab = 1 gives 
bac = c d c, that is, ba = 1. 

The structure of an arbitrary algebra may be understood in terms of 
certain building blocks of smaller algebras together with the rules for 
assembling them. One such way in which an algebra can be expressed in 
terms of others is as a direct sum. An algebra 91 is the direct sum of 
algebras 2/3 and T, si =  213,  if we have a vector space direct sum and 
-33T =  11 31 = O. This is obviously extended to sums of several algebras. 
An algebra that can be written as a direct sum of subalgebras is called 
reducible and the subalgebras are termed components. Reducible alge-
bras contain invariant subalgebras, or ideals. A two-sided ideal, or 
simply an ideal, is a subspace I such that ALA C I. Obviously ideals are 
subalgebras. Thus the components of a reducible algebra are ideals. 

Suppose si =  21  + (C, then we define an equivalence relation in si by 
a — b if a = b + c where c E T. We denote the equivalance class of a 
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by [a]. The elements of si form an Abelian group under the operation 
of addition; this group may be quotiented by defining 

[a] + [b] = [a + b]. 

The equivalence classes are made into a vector space by defining 

X[a] = [Aa] 	for  A in F. 

The obvious way to try and make the equivalence classes into an algebra 
is by defining 

[a][b] = [ab]. 

If, however, c, d ET then 

[a][b] = [a + c][b + d] 

and so for consistency we would need 

[ab] = [ab + ad + cb + cd] 

that is, (ad + cb + cd) c T. This will be true for all a, b E ,9/ and c, 
d c if, and only if, is an ideal. When this is the case then what we 
have described is the quotient algebra of al modulo T, denoted sia. If 
si is a G-graded algebra with an ideal I which is a G-graded subspace 
then I wiil in fact be a G-graded algebra. As a vector space si/I inherits 
a natural G-gradation such that, if a is homogeneous, deg [a] = deg a. 
This makes ai/I a G-graded algebra since 

deg {[a][b]l = deg [ab] 

= deg ab 

= deg a + deg b 

= deg [a] + deg [b]. 

An algebra homomorphism is a linear transformation from an algebra 
al to an algebra -31 such that the multiplicative structure is preserved. 
That is, if cp is a linear transformation from si onto 91 then cp is an 
algebra homomorphism if  q(ab) = q)(a)cp(b). When the linear trans-
formation is a vector space isomorphism then we have an algebra 
isomorphism, two isomorphic algebras also being called equivalent, 
denoted si 33. An isomorphism from an algebra to itself is called an 
automorphism. If an algebra has a unit element then for any invertible s 
the mapping al-->sas-1  defines an automorphism, called an inner auto-
morphism. An automorphism is readily seen to map the centre onto 
itself. If the automorphism is inner then individual elements of the 
centre are left invariant. The kernel of a homomorphism is the kernel of 
the linear transformation. If a is in the kernel of a homomorphism cp, 
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q2(a) = 0, then cp(bac)= cp(b)cp(a)cp(c)= 0 for all b, c and so the kernel 
is an ideal. In the same way as the analogous result for groups is 
proved, we may show that 

p(si) = si/ker cp. 	 (A5) 

A different correspondence between algebras may be defined as 
follows. If u is a vector space isomorphism between si and sr 

such that (ab)" = bua" then si and si' are termed opposite algebras and 
we shall use sl.°P to denote the opposite to si. In general 54 .si.  For 
the case when the opposite algebra is isomorphic to si then si' may be 
replaced with si in the definition above and we then speak of the 
mapping as an anti-automorphism. An anti-automorphism of particular 
interest is that which squares to the identity. We shall call this 
involutory anti-automorphism simply an involution. 

If 93 and % are algebras of dimension m and n then we have already 
described how to form a new algebra of dimension m + n, namely the 
direct sum. We now describe how an algebra of dimension mn may be 
formed, the tensor product. If si, 91, are algebras over F with 
dimensions mn, m and n respectively such that 33 has a basis {b,} i =1, 
. . m with multiplication table 

b ib, = E B k 

has a basis {cp } p = 1, . . 	n with multiplication 

cp c q  = Ecp,,c, 

then si is the tensor product of &A and %, si = 310%, if it admits a basis 
{a,p } i = 1, . . m; p = 1, . . 	n with multiplication given by 

a,pan  = E B ijkC pqra kr  
k.r 

This criterion for si to be the tensor product of 93 and 	involves 
particular bases for &A and T, thus there is now an onus to show that it 
is in fact independent of the bases chosen. If we have bases as defined 
above then we can define a bilinear map 

0:91 x 

6,, cp 1-->b,Ocp  = a,p . 

If now {b;), {el) ) are any bases for 31, 	then the bilinearity ensures 
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that the set of {bC)c l,' } are linearly independent, and hence a basis for 
,94. Further, if 

and 

then we have 

bb  ; = EB'im b'k  

CC  = Ecp' gr c',. 

(bii oc)(b;oc) = Eff im cpqrwk oer . 

So indeed the definition of the tensor product is independent of the 
bases for @ and (€. It should be stressed that the definition we have 
given for the tensor product algebra defines it only up to equivalence. 
This will be convenient later when we shall make use of the observation 
that if 01 and (t- are mutually commuting subalgebras of .91 with 
dim .94 = dim @dim then s4 = (330%. In the particular case that .94 has 
a unit element it will also be the unit element of @ and 'C. 

A familiar example of an n'-dimensional algebra is provided by the 
set of all n x n matrices (matrices of order n) with elements in F. The 
abstract algebra isomorphic to this will be termed a total matrix algebra, 
denoted /1/1„(F). Where no confusion is likely we will simply refer to 
such an algebra as a matrix algebra, and shall not exhibit the underlying 
field, writing A„. A basis for matrices of order n is obviously provided 
by all the elements with a unit in the ith row and jth column and zeroes 
elsewhere. We formalise this by defining an ordinary matrix basis to be 

fe,1 1 	 j, j = 1, . . 	n 

e if e ki  = 0 	 k 

e ije jk  = e ik . 

The identity is the sum of the diagonal elements, that is I = e ll + 
+2Ie nn . Matrix algebras have the following simple but important 
property. 

At n,(F)O.A4,,(F) = At,„,(F). 	 (A6) 

The proof will consist of spotting how to label the basis. If {e} and 
{f po } are ordinary bases for A n, and A„ then if we set 

e,,Of = E 

where I = (i — 1)n + p, J = (j — 1)n + q a basis for A n,0.4/1„ is IE LI ) 
I, J = 1, . . mn. I f K = (k — 1)n + r, L = (1 — 1)n + s then 
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E HE 	= 4CA pq)(e klOf „) 

= ôj k e 	f ps 

= jk 6  qr E IL 

= (5 0 - 1)n +  q. (k  -1)n + rE IL 

= 45JKE IL • 

One reason for the importance of matrix algebras is that any 
associative algebra can be imbedded in a total matrix algebra. If V is a 
vector space then the set of all linear transformations from V to V 
forms an algebra, the endomorphism algebra, End V. If M E End V and 
a E V then we will usually write the transform of a by M as Ma, with no 
brackets. The product of linear transformations M and N will be 
defined by (MN)a = M(Na). Occasionally it will be convenient to write 
the effect of a linear transformation as M:a —> am  . In this case we will 
use the convention that Ll AIN  --= (CI M ) V  . Normally this latter notation will 
be reserved for involutions. Addition of linear transformations is defined 
in the obvious way, and it is clear that End V is a total matrix algebra. 
A representation of an algebra 54 is a homomorphism into End V, for 
some V. Representations of algebras are termed faithful, irreducible or 
equivalent using the obvious analogue to the case of group representa-
tions. If ai is an algebra then it is certainly a vector space and thus the 
algebra End si is associated with it. We may put elements of si into 
correspondence with certain elements of End si as follows. For a E 

L(a) c End si is defined by 

L(a)d = ad 	V d E .94. 

It follows that L is a linear map from si into End 51 such that 
L(a)L(b) = L(ab). Thus L is a homomorphism, called the regular 
representation. If si has a unit element then the regular representation is 
faithful. For if L(a) = L(b) then L(a — b)d = 0 for all d, and taking 
d = 1 gives a = b. So, in this case, the set {L(a)} for all a E S61 forms an 
algebra, L(..si), equivalent to si. In an obvious fashion we define the 
mapping R such that R(a)d = da. Then R(a)R(b) = R(ba) and so for 
an algebra with unit element R(si) .94 °P. Thus L(ai) and R(..4.) are 
subalgebras of End al which are also mutually commuting, for 

L(a)R(b)d = L(a)(db) = adb 

= R(b)L(a)d 

since 	is associative. What is more, if at has a unit element and 
S e End si commutes with all elements of L(si) then S must be in R(sii). 
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For 

(SL(a))1 = Sa 

and 

(L(a)S)1 = a(S1) 

so if S commutes with L(a) 

Sa = a(S1) 

that is 

	

Sa = R(S1)a 	V a.  

If, then, s61 is an n-dimensional algebra with identity then  Ends4  is an 
n 2 -dimensional algebra with  L(si) and R(A) as n-dimensional commut-
ing subalgebras. If the dimension of L(.59.)R(A) were n 2  then End ..94 
would be the tensor product of L(.4) and R(si). Although in general 
this will not be the case it is in the following situation. 

If a is a central division algebra then L(a)oR(a) = End. 	(A7) 

If a is n-dimensional we need to show that dim {L(a)R(a)) = n 2 . The 
proof will require the following 

Lemma 

L(a)R(a) = L(a)u, + L(a)u 2  + 	+ L(2)u s  

where /4 1 , . . 	u s  are in R(a) and the sums are direct vector space 
sums. 

Since the identities of L(2) and R(g) coincide we have 
R(2) c L(2l)R(). We pick a non-zero element of R(a), u, say, and 
form L(g)u 1 . Then either  L(2)u 1  = R(2) or we can pick a u 2  in R(a) 
that is not in L(a)u i , giving L(21)u 2  n L(a)u, = O. For if cru i  = fiu 2  
where  ci',  L(g) then for 0 * 0 u 2  = (13-1 a)u 1 , which contradicts 
u 2 eL()u i .  Proceeding in this manner completes the proof of the 
lemma. 

In the manner of the lemma we write 

L(a)R(a) = L(a)u, + 	+ L(a)u s . 

Since for u regular dim {L(g)u} = n we have dim (L(g)R(a)) = ns, 
with s 	n.  If s <n  then we may extend the set {u 1 , u 2 , . . 	u s } to a 
basis for R(g) by choosing us 	. . 	u n . Since, as we stated in the 
lemma, R(2) C L(a)R(a) 

us +1 = Ecriu; 	with cr i  E L(g). 
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However, since L(9)) and R(a) are commuting subalgebras [14 1 , )3] = 0 
VS E L(a) where the bracket denotes the commutator. In particular 
[us +1 , /3] = 0 giving 

E[ce„ P]u, = O. 

Since the sum is direct, in the vector space sense, we must have 

131 = 0 	vpe L(a) = 1, 	s. 
That is, the a, are in the centre of L(a). But L(g) = a which is 
central, so the a, must all be multiples of the identity by the base field 
F. The expansion of u„ as a sum of the first s u, then contradicts 
their F-linear independence and so we must have s = n and the proof is 
complete. 

There is another reason for the prominent role played by matrix 
algebras. The structure of an important class of algebras may be given in 
terms of matrix algebras and division algebras. More generally the 
recalcitrant (or interesting) parts of an algebra may be collected together 
into a certain ideal such that the structure of the quotient modulo this 
ideal is given in terms of matrix and division algebras. The existence of 
this ideal will now be established. 

A non-zero element of an algebra is called nilpotent if some finite 
power of it vanishes. The smallest such power is called the index of that 
element. An algebra is called nilpotent of index v if v is the smallest 
integer such that all products of v terms vanish. We have already 
encountered the concept of a two-sided ideal; single-sided ideals are 
defined as follows. A left ideal of an algebra si is a subspace 1' such 
that AT C 2. Right ideals are defined in the obvious way. It follows 
that single-sided ideals are subalgebras, and so we may talk of nilpotent 
single-sided ideals. 

The sum of two nilpotent left ideals is a nilpotent left ideal. 	(A8) 

Let ga and T be nilpotent left ideals of index a and /3 respectively. Then 
+ T is certainly a left ideal. If any element of + cf is raised to the 

power k then it will be a linear combination of terms of the form 
a = ala, ak  where the a, are in or T. Suppose that p terms in 
this product are in 91, and that j is the largest integer such that al  E3a. 
Then if  a • _ 1  e€  we set  a • _ 1 a1  = a;, where a; E A, since 31 is a left 
ideal. Proceeding in this manner we can write a = b, . . bpr with the 
b, in 93 and r in T. Similarly, we have a =c, c gs where the  c•  
in T and s is in -A Here p + q = k. So if k = + - 1 then p < 
gives q )3, whereas q < 13 gives p a and so we must have a = O. 
That is, 03 + is nilpotent with index no greater than one less than the 
sum of those of and T. Obviously this result is just as valid for right 
ideals. 
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If 2 is a nilpotent left ideal then .1 = 	+ 2.4 is a nilpotent 
two-sided ideal. 	 (A9) 

Firstly note that 	is indeed an ideal; for .942 C 2 since 2 is a left 
ideal and so si2s4. C 2sti, thus .1 is a left ideal. Similarly Asti C  1 and 
so 4.911 C 2.si C J, making .1 a right ideal. As well as being a left ideal 
2.34 is nilpotent. For if x E 2,94, x = la for I E 2, a E A and X k  k - 1 a  

where l' = al, is in 2. So 254 is nilpotent with index less than or equal 
to that of 2. Since is the sum of two nilpotent left ideals, the previous 
theorem shows that 3) is nilpotent. 

These two results have been established for the purpose of proving 
the following. 

Every nilpotent left, right and two-sided ideal is contained in 
a unique maximal nilpotent ideal, the radical. 	 (A10) 

Let X be a nilpotent ideal of largest dimension. If X' is any nilpotent 
ideal then, by (A8), X + X' is a nilpotent left ideal, and similarly it is a 
nilpotent right ideal and so an ideal. But X is of maximal dimension so 
we must have X' C X. If now 2 is a nilpotent left ideal then the above 
result and (A9) combine to give 2 C (2 + 2.91) C X. Similarly for right 
ideals. 

Before making the anticipated good use of the existence of the 
nilpotent radical it is necessary to establish some properties of other 
important elements of an algebra, the idempotents. A non-zero P is 
idempotent if P 2  =  P.  An obvious example of an idempotent is the 
identity of a division algebra. 

The identity is the only idempotent in a division algebra. 	(All) 

Suppose P2  = P and P is not zero. Then P is invertible and 
p -1p2 =_ p -1 P, that is P = 1. Of course, a unit element is a very 
special example of an idempotent. A more general example is provided 
by the diagonal elements of an ordinary matrix basis. A large class of 
algebras have an idempotent. 

Every non-nilpotent algebra contains an idempotent. 	 (Al2) 

Obviously a nilpotent algebra cannot contain an idempotent. We will 
show that if an algebra does not contain an idempotent then in fact it 
must be nilpotent. Suppose that s4 contains an a such that 
slak =  sua"  for some power k. Then if = sa k  1, is a left ideal 
of A, and hence an algebra, satisfying Ra = gi and hence Rb = 
where b c 01 is given by b = a k  . So there must be some P E gi such that 
Pb = b, giving (P 2  — P)b = O. But Rb = 9.3 means that there is no 
non-zero x with xb = 0 and so 91, and thus sq, contains an idempotent. 
So if .54 does not contain an idempotent we must have 
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dim (alai') < dim (Aak -1 ) for all powers k of all a e si. The finite 
dimensionality of A means that there must be a finite a such that 
Ace = 0; in particular aa + = O. Since this is true for all a, A is 
nilpotent. 

The existence of an idempotent enables an algebra to be written as a 
direct vector space sum of subalgebras. Let P be an idempotent in 
then 2(P) is defined to be the left ideal consisting of a E A such that 
aP = O. Similarly the right ideal R(P) is defined to consist of all a e A 
such that Pa = 0, and we define .4(P) = .T(P) n gt(P). The following 
theorem gives the two-sided Peirce decomposition of A. 

If P is idempotent in si then 

= PAP + P(P) + gt(P)P + J(P). 	 (A13) 

All the terms in this sum are algebras. PA(P) consists of all a E si such 
that Pa = aP = a; P2(P) consists of all a E Si with Pa = a, aP = 0; 
R(P)P consists of all a E  s4 with Pa = 0, aP = a and if a e 4(P) 
Pa = aP = O. So obviously these algebras are non-intersecting and what 
we need to show is that they span al. To see this we write 

a = PaP + P(a — aP) + (a — Pa)P + (a — Pa — aP + PaP) 

where each term in the sum lies in one of the subalgebras contained in 
the Peirce decomposition. 

Elements of J(P) are said to be (algebraically) orthogonal to P. An 
idempotent is called principal if there is no idempotent orthogonal to it. 
We can now go one step further from (Al2) with 

Every non-nilpotent algebra contains a principal idempotent. 	(A14) 

If ..91 is non-nilpotent then it certainly contains an idempotent. If u is a 
non-principal idempotent then there exists an idempotent y such that 
uu = vu = O. That is, y c 1(u). If P = u + y then P is idempotent with 
Pu = uP = u and Pv = yP = y. So if xP = 0 then xu = xP = 0, and if 
Px = 0 then ux = uPx = 0, that is, J(P) C 4(u). In fact .1(P) must be 
strictly contained in .1(u) for u e ,l(u) but not in l(P). If P is not 
principal then we set P' = P + w where w E .1(P). Since .1(P) C 1(u) if 
this process is continued it will eventually produce a principal idempo-
tent since J(u) is finite dimensional. 

Of fundamental importance are the primitive idempotents. An 
idempotent is primitive if it can not be written as a sum of two 
orthogonal idempotents. The following could have formed an alternative 
definition of a primitive idempotent. 

P is the only idempotent of PAP iff P is primitive. 	 (A15) 

If P were not primitive then P = u + y with u v = vu = O. So 
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Pu = uP = u and Pv = vP = v and thus both u and v are in PAP. 
Conversely, if u is an idempotent in PAP then P — u is idempotent 
since P is the identity in PAP. Further, u(P — u) = (P — u)u = 0 and 
so P = (P — u)+ u, the sum of two orthogonal idempotents. The 
nomenclature is explained by the following. 

Every non-primitive idempotent is the sum of a set of 
pairwise orthogonal primitive idempotents. 	 (A16) 

If P is not primitive then P = u + v, where u and v are orthogonal 
idempotents. Suppose that v is not primitive, then y = w + x with w 
and x orthogonal. Now v w = wv = w and vx = xv = x and so 
uw = uvw = 0, wu = wvu = O. Similarly ux = xu = 0 and so {u , w, x} 
are pairwise orthogonal idempotents. If we continue in this way then the 
process must terminate due to the finiteness of sei and we will arrive at a 
set of pairwise orthogonal primitives. 

Attention will now be focused on algebras whose radical is zero. It 
will transpire that we can completely determine the structure of all such 
algebras. An algebra whose radical is zero is called semi -simple. The 
first consequence of the definition is 

A semi-simple algebra has a unit element. 	 (A17) 

If .91 is semi-simple then it is not nilpotent and so, by (A14), contains a 
principal idempotent P say. The Peirce decomposition of (A13) then 
gives 

where 91 = P(P) + 9t(P)P + .1(P). 93 is spanned by (P) and R(P). 
We shall show that these single-sided ideals are nilpotent and hence 
contained in the radical, which is zero by hypothesis. This will give 

= P.AP; but P is the identity in PAP, and hence of A. If P is 
principal then .1(P), which contains all elements orthogonal to P, can 
contain no idempotent and thus must be nilpotent. Since 9t(P) and 
2(P) consist of all elements annihilated by left and right multiplication 
by P respectively 9(P)2(P) C  3 (P). So if / E (P) and r E (P) then 
(rI)  = 0 where a is the index of  3 (P). Since (/r)a" + 1  = l(rl) r = 0 then 
the ideal Y(P)9t(P) is nilpotent of index less that or equal to a + 1. 
Now 

Y(P)A = Y(P)(PAP + P(P) + 91,(P)P + J(P)) 

= Z(P)9(P)P + Y(P)56 (P). 

Since  Wt(P) is a right ideal 9i,(P)P C R(P) 	and 	since 
(P) = I(P)  fl  k(P) obviously J(P) C R(P) and so 	(P)si C 

I(P)R(P). In particular, Y(P)Y(P) C 9(P)94P). Since Y(P)94P) is 
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nilpotent of index -sa + 1 if x e 2(P) (x 2 )"+ I = 0, and so 2(P) is 
a nilpotent left ideal, contained in the radical. In exactly the same way 
we show that R(P) is nilpotent and the proof follows. 

The primitive idempotents in a semi-simple algebra have the following 
important property. 

If P is an idempotent in a semi-simple A then PAP is a 
division algebra iff P is primitive. 	 (A18) 

Suppose that PAP is a division algebra. Then P is the identity which, 
by (All), is the only idempotent in Ps4P. (A15) then ensures that P is 
primitive. To prove the converse we shall use the following 

Lemma 
If P is an idempotent of a semi-simple A then PAP is semi-simple. 

For suppose that y E X0, the radical of PAP. Then Ay is a left ideal 
of si. Since P is the identity in Ps4P 

(ay) 1  = ayP(aPy) 

= ay(PaPy)". 

But PaP c PAP and so PaPy C 0 . Thus if a is the index of X 0 , Ay is 
nilpotent of index a + 1. Since A is semi-simple Ay = 0 which, since 
A has a unit, gives y --= 0 and PsiP is semi-simple. 

Suppose now that P is primitive then PAP is semi-simple, by the 
above lemma, with unity P. If a is any non-zero element of PAP then 
PAPa is a non-zero left ideal of PAP; further it is not nilpotent since 
PAP is semi-simple. (Al2) ensures that PAPa contains an idempotent, 
but any idempotent in PA Pa is certainly idempotent in PAP for which 
P is the only idempotent since P is primitive ((A15)). That is, 
P c PAPa say P = ba for b E PAP. Since P is the identity in PAP this 
says that every non-zero a has a left inverse, and hence an inverse by 
(A4). 

The semi-simple algebras are not quite as 'simple' as the simple ones. 
An algebra that is not a one-dimensional nilpotent algebra is called 
simple if the only ideals are the zero ideal and the algebra itself. Simple 
algebras are certainly semi-simple. To see this we need only check that 
simple algebras cannot be nilpotent. Suppose that X is a nilpotent 
algebra, then XX is an ideal strictly contained in X. If this is not the 
zero ideal then X cannot be simple. If J■f,l■C is zero but the dimension of 
X is greater than one then any linear subspace of one less dimension is a 
non-zero ideal of X. The only exceptional case of a one-dimensional 
nilpotent algebra has to be excluded by the caveat in the definition. The 
study of semi-simple algebras may be reduced to the study of simple 
ones by the following. 
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An algebra is semi-simple iff it is simple or a direct sum of 
simple components. 	 (A19) 

A direct sum of simple algebras is obviously semi-simple since the only 
ideals are smaller sums of simple algebras which are not nilpotent. To 
go the other way we shall use two lemmas. 

Lemma 1 
If si has an ideal with a unit element then sa is reducible. 

Let 33 be an ideal of .94 and  1 be the unit in A. The Peirce 
decomposition of si is 

= 1,044 + lu(l)  + 341 g3 )1 a  + 4(1 9 ). 

If 9'(1 ga ) = 1 90i1 6,1  + 44(10 + gl,(101 91  then g(43 ) C 	since 1 g3  E 
which is a two-sided ideal of si. So if b E gl we have b = b1  +  b 2  with 
b 1  E 92(1 )  and b 2  E 3(1 a ). Then 61 93  = b 1  since b 2  is orthogonal to 1 30  
but b1a  = b so in fact we must have 1(43 ) = A. Since J(1 93 ) is 
orthogonal to 1 g, it is orthogonal to A and so s9. = 338.1(1 91 ). 

Lemma 2 
A non-zero ideal of a semi-simple algebra is semi-simple. 

Suppose that A is an ideal in a semi-simple 54, and that X is the 
radical of A. Then 93X91 C X since X is an ideal of 91 and .9431 C 
since A is an ideal of si. So sdP.X03).94 C glSa which is thus an ideal 
in sii; further it is nilpotent since it is contained in the radical of A. 
Since si is semi-simple 93X93 = O. Now (siXs61 ) 3  C (X,9)X(s4X.99.) and 
&IX s4. C g3 so (stiNs4) 3  C 91N91, which we have shown is zero. That is, 
siXsti is a nilpotent ideal in a semi-simple si so siXsi = O. Since si has a 
unit element this gives X = 0 and 33 is semi-simple. 

We may now return to the proof of the theorem. If si is semi-simple 
but not simple then it has a non-zero ideal which, by Lemma 2, is 
semi-simple and hence has a unit. Lemma 1 then ensures that al is 
reducible. The components are certainly ideals and so semi-simple, and 
we may proceed to reduce them. If .54 is finite then we must arrive at an 
expression of si as a direct sum of irreducible components. The 
components are ideals, hence semi-simple, and irreducible hence simple. 

The reduction of a semi-simple algebra to simple components 
is unique up to an ordering of the components. 	 (A20) 

Let s4 = @ i C) . . .J T  with the A, simple. The identity of .9i can be 
written as a sum of the identities in the 33 1 = e i 0 . . . Se,. Suppose 

= 	... CA, then k = k e i + k e 2 + ...%k e rVk =1, 
= k e, then T k, C se  = ÇJ  and the above sum must be direct: 
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.911  = EAT bsi 
g=i 

so <€ k  is an ideal if and only if all the k , are ideals of 91 i . But the a 
are simple, so = @, or (Ckj = O. If the k are irreducible then for a 
given k not more than one (C k i  can be non-zero and it follows that the 
Cc  are just the 91, up to a possible relabelling. 

The above two theorems determine the structure of semi-simple 
algebras in terms of simple ones. Before turning to the classification of 
these we consider representations of semi-simple algebras. Again the 
representation theory will reduce to that of simple algebras and so we 
consider this case first. 

All irreducible representations of a simple algebra are equiva- 
lent. 	 (A21) 

If is any minimal left ideal of a simple al then we will show that any 
irreducible representation of .94 is equivalent to the representation on 
induced by the regular representation. 

Let p be some irreducible representation of si that maps .94 into 
End V, where V has no invariant subspaces under multiplication by 
p(si) . We first note that any minimal left ideal of End V, the pth 
column say, carries an equivalent representation to that carried by V. 
For if V is displayed as a 'column vector', with a basis {b k } consisting of 
zeroes except for a one in the kth row, then a basis for End V, {e il } , is 
formed by the arrays whose only non-zero element is a one in the 
intersection of the ith row and the jth column. Elementary rules of 
matrix multiplication then give e y b k  = bik b,. A basis for the pth 
column is { e kp ) where k ranges over the order of the matrices, and 
e g e kp  = bike,,,. So the pth column, for any p carries a representation 
equivalent to that carried by V. 

We introduce a linear transformation S that maps the minimal left 
ideal, 4, of .s4 into the pth column of End V: 

S4 = p(1)e pp . 

Since 4 carries an irreducible representation of sti then p(4) carries an 
irreducible representation of p(A) and so p(J)e pp  certainly transforms 
irreducibly under p(.94). But this is a subspace of the pth column which 
transforms irreducibly, so either S is a vector space isomorphism or 
p(4)e pp  = O. There must be some p for which this is non-zero, for 
otherwise we would have p(J) = 0, which cannot be since si is simple. 
So at least for some choice of p, S is a vector space isomorphism 
between the minimal left ideal .1 and the pth column of End V. If f E 
then the following diagram shows the equivalence of the representation 
carried by the pth column (and hence V) and that carried by 4: 

where s4T k,si C  21 , 
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L(a) 
af 

s 	 s 
p(a) 

kne pp 

 

p(a)p(f)e pp =p(af)e pp . 

 

Thus any irreducible representation of a simple algebra is equivalent to 
that induced on any minimal left ideal by the regular representation. 

We are now in a position to consider representations of semi-simple 
algebras. 

Irreducible representations of a semi-simple algebra are 
equivalent if and only if their kernels are the same. 	 (A22) 

Equivalent representations must certainly have the same kernel, so what 
we need to show is that irreducible representations of a semi-simple 
algebra with the same kernel are in fact equivalent. A semi-
simple algebra is the direct sum of simple ones, and so a representation 
can be irreducible only if the kernel contains all but one of the simple 
component algebras. Thus irreducible representations with the same 
kernel are irreducible representations of the same simple component 
algebra, and are thus equivalent by the preceeding result. 

We now return to the classification of algebras by studying the simple 
ones. The main result is given below. 

An algebra sti is simple iff ,91 = acmt, where g is a division 
algebra and ht a total matrix algebra. 	 (A23) 

First we do the easy bit and assume si = gam,. Then .54 has an 
identity. Let b be a non-zero element of an ideal J, then b = Ew b u e 
with at least one (bpq  say) non-vanishing coefficient in a. But 

bpq  = Ee,pbe q, 

and so 

pq - le ipbe qi  = 1. 

That is 1 C .946.94 C J, giving .s4 C and thus si is simple. 
If now si is simple it has a unit element 1 = Z7=1 Pi  where the {Pi } 

are pairwise orthogonal primitive idempotents. If A i/  -= P1 .91P1  then the 
are certainly subspaces, and are in fact algebras since they are closed 

under multiplication. Multiplying two different algebras gives 

slijApk = AijP jP pS4  pk = slijAjk(5.0 

=Pi..9113;s4P05jp. 
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Now siPisi is a two-sided ideal, which is not zero since it contains Pi , 
and so the simplicity of si gives siPi.si = sti and hence 

ijpk = PAPk 6ip 

= 	ilc (5 1p 

In particular si„ =isii  for any j. Since P 1  E .91 there must be 
elements e il , e l;  in sip  and sl ip  respectively, such that e ije JI  =  P. If 
we now define e ij  E by e i;  = e ile i;  then 

P ke ti = e ijâik 

e i;Pk  = 

This gives 

e iie po  = e 4P;Pp e pq  

= e ife ig 6ip  

= e zi e lje, i e lq4 

= eiiPiewSip 

= e ii e iq ôjp  

= e iq jp 

In particular the e d  are idempotent. But e ll  c PialPi  with P, primitive, 
so P1 s4P1  contains only one idempotent, namely Pi , so we must have 
e = Pi . So the e,1  span a total matrix algebra  Ait  whose identity is 

= EP, = 1 

the identity of si. 
Since for each k  P,,  is primitive, Pk siPk  is a division algebra with Pk  

as identity. Each si kk  is an isomorphic copy of si ll , say. For if a(') E S4 11 
we define a( k ) - — kk by a (k)  = ekicrweik. Then for a,(1) ,  sw e  

1ff (
1)e) (k)  = ekicr (1)0" ) elk 

= ekicr (1) PIP (1) eik 

since P 1  is the identity in si ll  

= ekiame Ike awe lk 

since the e q  are a matrix basis and so ( co1)p(1))(k) = a,(k)fi(k). This 
mapping from si ll  to A id, is obviously invertible and so indeed we have 
an isomorphism. By taking the direct sum of all elements in si ll  with 
their isomorphic images in all a i 1,1, we obtain another copy of si - 	a 
say. That is, if au)  E 	we define a,  E  9  to be 
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a, = 

It is straightforward to see that a si ll;  further, elements of a 
commute with all the elements of At. For if a E a 

ae = Ea( k )e = a(Oe = e ii a( ne lie 

= e il œwe i • = e iie Jl awe l;  = e 4 c0-0 = Ee (k) 

= e ,i a. 

For every a E sa set  a1(k) = e ki cie jk . Then 

aii ( k )  = e"e liaepe 1k = ekiaii (1)elk 

so if  a 11  = k a,j ( k )  then a-1  E a. Further 

Eai;e 4  = Ea 4 (k)e = Ea4 (i)e 4  
i.j,k 

Ee i,ae fie i;  = Ee ipae il  = EPiaPj  = a. 

Since this is true for every a E Si we have ai = aitt where a and At 
are as constructed in the proof. 

The expression of a simple .91 as si = 	cannot be unique. For if 
e i;  is a matrix basis then so is erij  = se 11s-1 where s is any regular 
element of A. Then a = i, ia'ije with 

= Ee'oe'jk  = Ese kis-Jaseiks-' = s(s - las),1s -1  

that is, a'q  E SaS -1 . It turns out though that the choice of a and At is 
unique up to an inner automorphism like this. Note that if 
sti = acxitt = watt then we must have a' = a. For if a E a' we can 
write a = E i,j a u e ,1  with the a E a, and if a,  is to commute with Al then 
a' = + e22 + - + enn) = a n  since the identities in sa and At 
coincide. So if sa = aoht = 'am.' where At' = silts - I then we cer-
tainly have a' = sas-t. 

If sa is simple such that sa = OA and .94 = a'OAC then 
there is an  S E  si such that Alt,' = sAts -1 , at = sas-i. 	 (A24) 

In view of the above comments it is sufficient to prove that Art' = 
Let {e,i } 	= 1, 	n be a basis for At and {e l,' q } p, q = 1, . . 	m 
be a basis for Ait'.  Without loss of generality we assume m n. We 
write 

e'11 = Ec n-eti 	C U E  a 	 (i) 
i,j= 1 
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with at least one (c),1  say) of the c y  not zero. If we set 
--1 a = c „e ip e'n 	 (ii) 

and 

b = 	 (iii) 

then a E e n stien , b E C i sie n  with 

ab = C le e' e pq lp 11 ql 

= E e e 	by (i) pq lp 	Cq _ q _ qi  
i,j= 1 

_ -1 — c Pq cPq e ll  = e n  

that is 

Also 

ab =  e 11 . 	 (iv) 

(ba) 2  = b(ab)a 

= be  ii a 	by (iv) 

= ba 

so ba is an idempotent in e'11 s4e'11  = a'e'11;  further it is not zero since 
a(ba)b = (ab) 2  =  e 11 , by (iv). But the identity is the only idempotent in 
a' so we must have 

If we now introduce 

and 

then 

ba = 

h --= 
i=1 

g = Ee i' i be ii  
j=1 

hg = 	e 11 ae 1 e 1 be 11  — 
i.j=1 	 i=1 

= Ee il abe ii 	since a E 
i=1 

= 	e 1 e 11 e 1 	by (iv) 
i=1 

= Ee ll 
 i=1 
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that is 
hg = 1. 	 (viii) 

So h must be the inverse of g ((A4)) and gh = 1. But 

gh = 	e 1 be 1 1e 1 1 ae 1  = 
i,]=1 	 i=1 

= 	= 	by (v). 

Since 'L 	1 we must have m = n, and hence .RE—At. In fact 

= E e,be ipe,e gl ae4 
p,q=1 

	

= C i be llaCi  = 
	

by (NI). 

This completes the proof. 
A consequence of this theorem is the following which we will 

frequently use. 

If P is an idempotent in a simple si then P = E;. _ ,P, where 
the P, are pairwise orthogonal primitives, and the uniquely 
determined r is called the rank of P. Two idempotents in si 
are similar iff they have the same rank. (A25) 

Any idempotent can certainly be written as a sum of pairwise orthogon-
al primitives, this is (A16). To go further we shall use 

Lemma 
If P is idempotent in a simple A. then Ps4P is simple. 

Let 9'1 be a non-zero ideal in PAP. Since 9.3 is an ideal in PAP the 
left-hand side is contained in a But .9491,54 is an ideal in the simple 
and so the right-hand side gives PAP. Thus 91 = PAP. 

If si is simple then Ps4P is simple with identity P. If P = Er, =1P, with 
the P, primitive then PAP can be written as a tensor product of some 
division algebra and a total matrix algebra with the  P.  diagonal 
elements. The order of the matrices will then be r, which was shown in 
(A24) to be uniquely determined. It was also shown in (A24) that all 
matrix bases are similar, and so as a corollary all primitives are similar. 
If {P,} are pairwise orthogonal primitives then so are {sP,,s -1 }, thus 
similarity preserves the rank of an idempotent. To see that having the 
same rank is sufficient for idempotents to be similar note that if 

P =  P1  = 

with {P,) and {Q,) being different sets of pairwise orthogonal primi- 
tives then we can choose matrix bases with either the {P,} or the {Q,} 
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as diagonals, and (A24) then ensures the existence of an s:Q, = sP,s" 

The theorem above applies to simple algebras. However the first part 
may be seen to apply to the semi-simple case. For if P is an element of 
a semi-simple si then P = QI CIQ 2 CD ... 0Q, where the Q, are in the 
simple components. P is idempotent if and only if all the Q, are 
idempotent. By the above theorem each Q, will have a unique rank and 
so the rank of an idempotent in a semi-simple algebra is uniquely 
determined. As a special case a primitive in a semi-simple algebra must 
be primitive in one of the simple components. Thus, of course, not all 
primitives, and hence all idempotents of the same rank, will be similar 
in a semi-simple algebra. 

A subset of all simple algebras is provided by the central simple ones; 
that is those simple algebras whose centre is generated by the identity. 
For these algebras we have the following important result. 

Every automorphism of a central simple algebra is an inner 
automorphism. (A26) 

If si is central simple then si = aag n  where a is a central division 
algebra, and ,54 °P = g °P0.4/VP. The existence of the involution of 
transposition on matrices shows that At n °13  = At,, and so  
aogoPeht n,, by (A6). We are now in a position, at last, to make use 
of (A7), giving si0.91°P = End a0,itt n 2, that is A.® SPP = A, where m 
is the dimension of si, and we have again used (A6). We extend any 
automorphism, t, on si to one on si0.91°P, T, by defining (ab) T  = a`b 
Va  E b E saw. In the 'uniqueness theorem', (A24), we essentially 
proved that all automorphisms of a total matrix algebra are inner. Thus 
for every X E 3/0SVP, X T  = SXS -I  where s c .940s4°P, that is at = sas' 
for a E si and b = sbs-1  for b E SPP. Thus s must commute with every 
element of se". Since si°P is central simple s must be in si, and so t is 
inner. 

So far we have assumed that all algebras are over some field, F, 
which has not warranted much attention; indeed we have usually simply 
referred to an algebra as si rather than as si over F. In a moment we 
shall assume a restriction on the choice of F. The situation for the 
simple algebras is also such that we may regard a simple algebra over F 
as an algebra over certain other fields. If .94 over F is simple then the 
centre is a commutative division algebra, that is, a field. In an 
obvious way si is an algebra over %, making al over central simple. In 
the following section we will examine involutions of a simple algebra si 
over F where F is assumed not to be of characteristic two. (As stated in 
the introduction for the purposes of this book F can be taken to be one 
of the zero characteristic fi elds IR or C.) 

If si over F has an involution T then the set of T-symmetric 
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quantities forms a subspace Yr. That is, aEY r  if and only if a T  = a. 
Similarly we define .9- 7- to be the set of T-skew quantities, and then we 
have .94 = T. For if a c sa., a = + aT ) + .1(a — a T ). The sum 
is direct since if a = aT and a = —a T  then a + a = 0 which (for 
characteristic not two) gives a = O. What is more, if the centre contains 
a T-skew q then al -=  12 T  ±  q92 7.. If q is a non-zero element of the 
centre (of a simple algebra) then it has an inverse which is also T-skew. 
If a Eg T  then a = qq- la, and (q -l a) T  = a  Tq -1T = aq  -1 = q - la. The 
T-symmetric quantities in the centre will form a subfield of T, say. 
We will refer to an involution as being an involution over `6, say, when 
ce is the subfield of the centre T left invariant by the involution. 

If si over F is simple with J and T involutions over then 
TJ is an automorphism of .9i over T. 	 (A27) 

If T and J are involutions then TJ is certainly an automorphism of .94 
over F. What we need to show is that it leaves elements in the centre 
invariant. The involutions T and J induce automorphisms of the centre, 
T. An element of T is T-symmetric if and only if it is J-symmetric. This 
is, in fact, sufficient to show that T and J induce the same automorph-
ism on 'C. Let q be a non-zero J-skew element of ce then qq T  is 
manifestly T-symmetric, and hence J-symmetric. But ( qq r). = 

which since q is invertible, gives q TJ = _qT. SO (q + q T ) i  = 
—(q + qT). But q + qT is manifestly T-symmetric, and thus J-
symmetric. Since any element that is both J-symmetric and J-skew must 
be zero we have qT = —q. We have shown then that any J-skew 
element of is also T-skew. But any element of T can be written as a 
sum of J-symmetric and J-skew parts and thus T and J coincide on 

 Since T and J are involutions TJ must leave all elements of invariant. 
The observation that if sti over F is simple then si over is central 

simple gives (A26) a wider range of applicability than might at first sight 
be supposed. In particular, it enables us to prove the following. 

If si over F is simple and T is an involution over 	then 
J:a 	a is an involution over '6 iff there exists an s with 
s = +S T  such that af = saTs -1 . 	 (A28) 

First the easy bit. If  a  = saTs-1  then La 	ai is an anti- 
automorphism. Furthermore aff = s(saTs -1)Ts-1 = S(S T ) -l as Ts -1 , so if 
s T  = ±s, J is an involution. Inner automorphisms leave all elements of 
the centre invariant. So if T is an involution over t then so is J. 

Conversely let J be an involution over (6, then JT is an automorphism 
over T ((A27)). (A26) then ensures the existence of a g such that 

a. T = g -1 ag 
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a" = (g- 'ag)T 
= g Ta T( g T)-1 

Since J is an involution 

a  = 	= g r(g rar(e)-1)7-(g r)_i 

= g Tg -t ag(g r)-1 .  

Since this is true for all a we must have g rg -1  -= A E T. If A = —1 then 
there is nothing left to do, if not then set s = g + gT = g(1+ A) and s 
will have the desired property. Obviously the choice of such an s is 
determined only up to multiplication by an element of the centre. 

A familiar example of an involution is provided by transposition of 
matrices. In some ordinary matrix basis we define T such that evil,. =  e 11 .  
For some other basis fe) we define J by ey = e,. T and J are 
examples of what we shall call equivalent involutions. Two involutions, 
V and J, will be called equivalent if there is some automorphism S such 
that a' = asvs - ■ ((as)v)s-.. If an inner S relates equivalent involutions 
J and V, related to some 'standard' involution T by 

a V = va T V -1 

J 	• T-1 a = ja 	, 

then j = ilsysT for some A. E 

In classifying the structure of algebras we showed first the existence of 
the radical. Semi-simple algebras were then defined to have zero radical. 
It was possible to determine the structure of a semi-simple algebra 
completely in terms of simple ones, whose structure was in turn given as 
a tensor product of a division algebra and a total matrix algebra. Most 
of the structure theorems for associative algebras were first given by J H 
M Wedderburn, and we shall refer to the expression of a simple ..9El such 
as a = aalt as the Wedderburn decomposition of A. It is all very well 
to be able to determine the structure of algebras whose radical is zero, 
but it would be rather limiting if it told us nothing about algebras with a 
radical. However, this is not the case. The most important result on the 
structure of algebras is known as Wedderburn's principal structure 
theorem. It states that (subject to certain caveats relating to the 
underlying field) any algebra is the vector space sum of its radical and 
the semi-simple algebra obtained from the quotient modulo the radical. 
We shall not need this result and so will not give the proof. This may be 
found in (for example) Albert [1], Kochendorffer [3] or, for the case of 
zero characteristic field, in Dickson [2]. As was stated in the introduc-
tion to this Appendix we will really only be concerned in this book with 
algebras over the real field. For this case one can go further in 
determining the structure of all semi-simple algebras. The Wedderburn 
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structure theorem reduces the classification of simple algebras over the 
reals to the classification of real division algebras. This had already been 
done by Frobenius in 1878. He showed that the only associative real 
division algebras are 11, C and H; the reals themselves, the algebra of 
complex numbers and the quaternion algebra. A proof may be found in 
Dickson [2] or Kochendorffer [3]. In view of this we now give a brief 
discussion of these algebras. 

Let si be a one-dimensional algebra over IR. Then a basis is provided 
by u where u 2  = Au. If  A = 0 then si is nilpotent of index two. If A 0 
then it is invertible and if P =  Au, P is an idempotent. For any a E si 
we have a = 1.4P,  p c IR and I:a p clearly establishes an isomorphism 
between si and IR. 

The real algebra COR) is a two-dimensional algebra generated by i 
where i 2  = —1. This real commutative algebra is not central. It has the 
well known involution of complex conjugation *:i 

The real quaternion algebra H(IR) has a basis {1,  i ,  j, k} whose 
multiplication table is given in table Al. The algebra is generated by the 
subspace spanned by {i, j}, say. (We note here that the other four-
dimensional real simple algebra At 2 (IR) is generated by {a, 0}  where 
a,2 =  1,  p2 = 1 and  c43 = — f3a . For example, a =  e 12  e 21 , 

e — e 21 .) The quaternions are not commutative but the algebra is 
central. In the given basis, {i, j, k} span the subspace of vector 
quaternions, whilst the identity spans the scalar quaternions. The involu-
tion of quaternion conjugation, q, is defined to change the sign of 
the vector part of every quaternion. Then qg is self-conjugate and 
hence in the centre. By inspection q4 is seen to be strictly positive for 
non-zero q, say qg = A 2 . Then q'  Â -2 4 and indeed H is a division 
algebra. Suppose that T is some other involution, then (A28) ensures 
that qT = to - i where t = ±t. Since the only self-conjugate quaternions 
are in the centre, to get an involution distinct from conjugation we must 
have f = —t. In particular we define = kqk where k is one of the 
'standard' basis vectors. This involution will be called a reversion since it 
leaves the generators {i, j} invariant, but of course reverses their order 
in products. By taking any vector quaternion t we have an involution 
given by qT = to - '. However, all such involutions are equivalent to 
reversion. Without loss of generality we can choose the defining t to 
satisfy t 2  = —1. Then if t and k are linearly independent they generate 
H. To see this all we need to check is that the commutator [t, k], which 
is certainly a vector quaternion since it is anticonjugate, is not a linear 
combination of t and k. But t and k both anticommute with [t, k], which 
thus cannot be a linear combination of them. Since {k, t) generate H 
we may define an automorphism, G, by t 1  = k, k G = t. This auto-
morphism must be inner since H is a central division algebra and hence 
central simple. That is, t = gkg -1  for some g, and g - ' = Â. --2g for some 



APPENDIX A 	 339 

E Fi. So if s =  A -1 g then t = sld, which is the criterion for T to be 
equivalent to reversion. 

Table Al The quaternion algebra 

1 

1 1  j 1 k 
—1 k 

— 1 
1 1 —k —1 i 
k k 1 —i —1 

Just as it is important to know that any positive real number can be 
written as a square of a positive number, and that any complex number 
can be written as a square, it will prove important to know that any 
reversion symmetric quaternion can be written as a square of a reversion 
symmetric quaternion. As we have remarked qq is a positive real 
number and so we may introduce a norm defined by 1q1 2  = qq. 
Reversion is related to conjugation by q  = k -1 4k, and for any g we 
have  q1 	4/ ti p ,  so if  y  = j)' then 

k - lyk  

1Y 2  
Writing 1 + q as 1 + q = q-l q + q = (1+ g-1 )g gives 
g = (1+ q -1 ) -1 (1 + g), for any g. In particular, if y o  is a unit-norm 
reversion symmetric quaternion then 

Yo = ( 1  + Yo -I ) -1 ( 1  + yo) 
k -1 (1 + k - Iy 0k)k(1 + y o ) 

1 1  + Yc, 1 1 2 
 (  1 + y o   ) 2  

For any g we have 	= k-l ci kkcA - 1 = k-l qqk = 	q1 2 , so 
from (i) 

± y o2 = 	+ YO) 1(1 2  = 1 1  + yo1 2 . 

Thus (ii) gives y o  = x 2 , for the reversion symmetric x given by 

x = , 	 
11+ y o  
1 + y o  

Then for a reversion symmetric y of arbitrary norm we can write 

Y =1Y1Yo = {1Y1 12x) 2 , since any positive real number has a real square 

y  — = (i) 

by (i) 

II + yo —1 1 
since k 2  = —1. 	(ii) 

root. 
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It will be useful to be able to identify the tensor products of these 
division algebras. Obviously ROE IF1, F1OC = C and IFIOH = H. 

The algebra UDC has a basis {1,  i,  j, ij} where i and j commute and 
i2 = j2 = _1. So if P = 1(1+ ij) and Q =1(1— ij) then P and Q are 
orthogonal idempotents such that 1 = P + Q. The algebra P(COC)P 
has P as identity, and since P is in the centre of COC we have 
P(COC)P = (COC)P, which is a two-sided ideal. Similarly for 
(COC)Q. Since P and Q are orthogonal 

COC = (C0C)PO(COC)Q. 

We may choose {P,iP) as basis for (COC)P and so have 
(COC)P = C. Similarly for the other ideal giving 

COC COC. 	 (A29) 

The algebra COH has a basis {1, z,  i,  j, k, zi, zj, zk} where {1, z) 
is a basis for the complex subalgebra that commutes with the quaternion 
subalgebra spanned by {1,  i ,  j, k } . COH may be generated by {z,  i,  j } . 
The subset {1, z) spans the centre which is thus isomorphic to C. If 
e n  = 2k(1 + zi) and e 22  = .1(1 — zi) then e ll, e 22  are orthogonal 
idempotents with 1 = e ll  + e,2 . If we choose e 21  = je ll  = e22j and 
e 1 2 = —je/2 = e ii j then the e u  form an ordinary basis for At 2 (IF1), so 

C(E)®H(11) C(111)0.4 2 (11). 	 (A30) 

We do not have to do any work to determine the structure of HOH. 
The quaternion algebra is a central division algebra and, since it has the 
involution of conjugation, H = H°P. So from Theorem 4 we have 

H(R)OH(F1) 	.M.4 (1F1). 	 (A31) 

Having completed our review of associative algebras we turn now to a 
generalisation of the concept of a vector space in which the field is 
replaced with a ring, or associative algebra, with unit element. A right 
R-module  M.  over the ring R is an additive Abelian group with a map 
from 

M x R 	M:(x, q)1--xq 

such that 

x(9192) = (xq 0.72 	 (i) 

x(q i  + q2 ) = xq i  + xq 2 	 (ii) 

(x + y)q = xq + yq 

xi  = x 	 (iii) 

where 1 is the identity in R. 
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The writing of the element from R on the right-hand side is of 
significance in (i) when R is non-commutative; in this case the above are 
obviously altered to give a left R-module. The notion of a linear map 
may readily be extended to apply to left (or right) R-modules. If I is a 
minimal left ideal in an algebra with unity, then I is an example of a 
left .94-module. If si is simple with sl = aatit then I is also a right 
2 -module, for multiplication on the right by a will preserve the I. In 
this case I is simultaneously a left si-module and a right 2-module, with 
the szi action being right 2-linear, and the a action being left si-linear. 
Thus for simple algebras we are lead to consider right H-modules. 
Although the concept of linear independence extends to modules, in 
general an R-module need have no basis. However, H-modules do have 
bases, the number of basis vectors determining the quaternionic dimen-
sion, dim H. Thus, for example, if I is a minimal left ideal in 
si -= HOER, then dim H I = r, whereas dim B I = 4r. 
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Vector Calculus on E3  

As an illustration of the methods of differential calculus it is useful to 
make contact with the elementary vector calculus of Euclidean 3-space. 
Such a space regarded as a manifold has the special property of 
admitting a class of global charts. We might call one such a chart a 
Cartesian chart since the coordinate maps {x'} i = 1, 2, 3 yield the 
familiar Cartesian coordinates x'(p) for p E fl 3 •In  such a global chart 
the Euclidean metric tensor is expressed as 

3 

g = Edx'Odx'  
i=1 

The orthonormal frames {X }  = (313x', 313x 2 , 3/3x 3 ) and co-frames 
{e' }  = {dx 1 , dx 2 , dx 3 } are in this case naturally dual to each other. 
Observe also that dx' = 3/3x'. For some problems other non-global 
charts are useful. The familiar 'spherical polar' chart with coordinate 
functions (r, 0, cp) has co-domain 

0 < r(p) < co 

0 < p(p) 27T 

0 < 0(p)  < VT.  

The polar chart is related to the Cartesian chart on the overlap by the 
transformation of coordinates 

t)2 4_ (x 2)2 ± (x 3)2]1/2 

If we tried to cover the whole surface r = constant (* 0), with a 
single coordinate chart there would arise an ambiguity in assigning 

r = [(xi)2  + (x2 ) 2  + (x3 ) 2 1 1/2  

[(x') 2 (0 2 1 0  
= sin -1  [(x 1)2 + (x 2)2 ± (x 3)2r2 

= cos -1  
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coordinates to the poles of the sphere. Such ambiguities can give rise to 
'singularities' in subsequent calculations, these pathologies reflecting 
only an improper use of coordinates. In a polar chart we may write 

ax' 	 ax 	ax 	---d0x  

	

ax' 	 ax'  
g = 	

ar 
 E(dr + 

30 
	dO + 	

ar 
—i dcp)0( i dr + i d0 + 

t=1 	 acp 	 30 	acp 

or, since 

= r sin 0 cos cp 

x 2  = r sin 0 sin cp 

x 3  = r cos 0 

g = drOdr + r 2d00d0 + r 2  sin 2 040dcp. 

Similarly 
3 

g *  =  
1=1 

3 

= ERar/ax93, + (30/3x93 0  + (aqqaX I )adORarlaX r )a, 
1=1 

+ (3013.03e  + (acp/ax9a q,] 

3 	3 	1 a 	3 	1 	a 	3 

	

=—® + 0 	+ 
ar 	ar 	r2  ae 30 	r2  sin 2 0 cp 3

. 

Hence an orthonormal co-frame in this chart is {E'} = {dr, rd0, 
r sin 0 dcp} with dual (orthonormal) frame 

	

(17,) ila la 	1  
tar'  r 30' rsin 0 acid .  

The metric duals of dr,  dû,  dcp are the local vector fields 

	

a 	3 1 	3 

	

= , = 	El) = 	 a r 

	

r2  30' 	r 2 sin 2 0 acp 

(Observe that points p with r(p) = 0, 0(p) = 0 are outside our working 
chart.) 

On the overlap U of a Cartesian chart and our polar chart, for 
f E 5 -, (U) we may write 

df = (3f/ax9dx = (af/ar)dr + (af/30)d0 + (3f/acp)dcp. 

The metric dual of df is called the gradient of f, sometimes written 
grad f. On U 

grad f = cif = (afiaxi)atax ,  = 	13 r)di + (3f130)de + (afiacp)d—cp 

af \ 3 	1 (  af)  a 	1 	( af \  3  

= 3/. Jar 	r2 \30 ae 	r2  sin 2 0k 3 99 )a€P •  
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In terms of the orthonormal basis { Y,} 

gradf — af  )y, + 1 (  af  )Y 2  ± 
ar 	r 80 

If Z is a vector field on U we may write 

Z = 	= ra/ar + ra/30 + (Paia(f) 

where 	r 	F(U). The 'rate of change of f' in the direction 
specified by the vector Z, or the directional derivative of f in the 
direction Z, is defined as Z(f). In terms of the vector field grad f 

Z(f) df(Z) = g(Z, crf) = g(Z, grad f). 

In three-dimensional Euclidean space it is customary to use a dot 
notation for the metric evaluated on two vectors, namely g(X, Y) -=- 

X.Y. This casts the expression for the directional derivative into the 
form 

Z(f) = grad f.Z. 

Let us explicitly compute the * map associated with the Euclidean 
metric. If (E') is any orthonormal co-frame with respect to this g then, 
with *1 = El A E 2  A E 3 , we find 

* El 	E2 A  E3 ,  * E2 E3 A  El , * E3 	El A  E2 

* (E1 A  E2) 	E3 , * (E2 A  E3) =  E ',  * (E3 A  El) = E2 

*(E I  A E 2  A E 3 ) = 1. 

Consequently, in this case, ** = 1 on all forms. The * map for 
Euclidean 11:1 3  establishes a relation between 2-forms and 1-forms. The 
metric dual, —, maps 1-forms to vector fields. Thus there is a corres-
pondence given by the Euclidean metric tensor between 2-forms and 
vector fields on IR 3 . Given two vector fields in any g-orthonormal frame, 
X = Y = J, we have 

-(17  A 	— 	2 V) 1:7- 1 A -1>- 2 	(VV
)

-17 2 A k- 3 

(VV 	 A VI. 

But since { } is an orthonormal co-frame 

* (1-; A 	= (VV.. 	•2 1 ) 	(VV 

± 	 V) 1-7 2 	r T* E'. 

Hence the orthonormal components of the vector field *(I A  k) 
correspond to the components of the cross or vector product of two 
vectors with orthonormal components ( 1 ), ('') respectively. Such a 
correspondence also enables us to make contact with the operation curl. 

1  ( af  
Y 3 . 

r sin 	ario 
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For a vector field V on UE FP we define 
— 

curl V = 

For example, in a Cartesian chart with V = 

17  = 1»dx] 

dV = (a l  V 2  – 321( 1 )dX 1  A dX 2 	(32V3  - a3172 )dX 2  A dX 3  

+ (a 3 v1 — 3 i v3)dx3 A dx 1  

*d -17  = (3 1 1/ 2  – a 2 V 1 )dx 3  + (a 2 v3  — 3 3 v2)dxl + (a 3 v1 — 8 1 v3)dx2. 

Thus, indeed, the orthonormal components of *d i7  have the expected 
form for the components of the curl of the vector field with orthonormal 
components (v1, v2, v3). If we work in the polar chart with 

= Vra, + vea, + 

= viy, + v2y2  + v3y3  

where 1/' = V', V 2  = r1/ 8 , V3  = r sin 01/ 9', then 

= V 1 E 1  + V2 E 2  + V3 E 3  

= V`dr + r2 1/ 64:10 + r 2  sin 2 0VTdcp 

where E' = dr, E 2  = rd0, E3  = r sin Odcp. Hence 

dV = 3 8 1/rd0 A  dr + 3 g,Vrdcp A dr + a r (r 2 1/Nr A dO 

+ 3 9,(r 2 1Mdcp A dO + a r(r2 sin 2 0 Vv)dr A cicp 

+ 9(r2  sin 2 0 V)d0 A cicp 

= [3 r (r 2 V 9) – aeVr ]-irE l  A E 2 	[8 0(r2  sin 2 9V)  

1 
– 39,(r21/6)1 

r 2  sin 9
E 2  A E 3 	[3 9,1».  

– a r (r 2  sin 2 0 V 	
1

cP)] 
r sin 0

E 3  A El 

SO 

*d = [a(r170) – a0 V1(11r)E 3  + NV" 

– 3,(r 2  sin  2 9 V)]1/(r sin 0)E 2  + [3 0(r 2  sin 2 0 V(P) 

– 9,(r 2 Ve)111(r 2  sin 0)E'. 

The orthonormal components of *d fl once again provide the classical 
component expression of the curl of V, here in polar coordinates. 

The maps * and – also give a correspondence between vector fields 
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and 0-forms on 111 3 . The 0-form div V associated with a vector field V is 
defined by 

(div V) = 

In a Cartesian chart 

* = Vldx 2  A dX 3  V2 dX 3  A dx 1  + V3 dx 1  A dX 2  

d* = (3 1 0 + ay2 + 331/ 3 )dX 1  A dX 2  A dX 3 . 

But in this case *1 = dxl A dX 2  A dX 3  so 

*d* V = a i vi + a 2 v2 + a 3 v3. 

Exercise B1 
Compute div V in the polar chart above. 

Thus the operations of grad, curl and div in IR 3  are seen to 
correspond to the application of the exterior derivative d to 0, 1 and 2 
forms respectively followed by the metric correspondence relating such 
forms to their metric duals. It is a worthwhile exercise to verify the 
vector analysis identities 

grad (f7 )  = ( grad f)h + f( grad h) 

curl (fv) = (grad f) x  u  + f( curl v) 

div (fv) = g( gradf, v) + f div v 

div (v x u) = g(v, curl u). 

by associating differential forms of the appropriate degree with the 
functions f, h and vectors u, v. These relations all follow from the 
properties of the Hodge map, the Leibnitz rule for d and its nilpotency, 
d 2  = 0. 

By composing the operator *d with itself one obtains a higher-order 
differential operator on forms. If f E 5,(R 3 ) then in a Cartesian chart 

*df = if dx 2  A dX 3  a2fdX3 A dx + 3 3  f dx 1  A dX 2  

*d*df = (a; + a + ai)f 

this being the Laplacian operator on the function f. The Hodge map 
affords us an efficent way to calculate the Laplacian in any chart. The 
trick is to express forms in a coordinate (or natural) coframe prior 
to the action of d thus exploiting d 2  = 0 for each natural basis form, but 
to revert to the orthonormal co-frame prior to taking a Hodge dual. For 
example, in any polar chart 

df = a dr + GfdO + a,f dcp 

= 34E1  + (11r)a E2  + 1/(r sin 0)3 (pf E3 
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*df = a rf E2 A E 3  + (11r)a of E 3  A 	+ 1/(r sin Oa j El A E 2 . 

Or, reverting to a natural basis, 

*df = a rfr 2  sin 0 de A dcp + sin 03 of dcp A dr + (1/ sin 0)3 9,f dr A de. 

Now apply d taking notice of the fact that dû A dû = 0 etc: 

d*df = (3 r (r 2  sin 03J) + a e( sin 0 3 ef)
± 
	e(aV))clr A dO A dcp. 

But 	*(dr A dO A d(p) = 1/(r 2  sin O)*( E' E 2  A E 3 ) = 1/r 2  sin O. 	Thus 
finally 

1 	 1  
*d*df = —

1 
a r (r 2 3 rf) + 	3 8 ( sin 03 6f) + 	a2 f. 

r 2 	 r 2  sin 0 	 r 2  sin 2 0 

The notion of a Laplacian can be generalised to an operator on 
p-forms, in which case it is usually called more generally the Laplace–
Beltrami operator. If cy  E rA p (U) then Aœ E FA(U) is defined in 
Euclidean 3-space by 

Act' = (- 1)P i(d*d* – *d*d)a 

which reduces to the above Laplacian on 0-forms. The components of 
the Laplace–Beltrami operator on a 1-form give the 'vector Laplacian'. 

Many physical theories are formulated in terms of tensor fields 
satisfying field equations. Such field equations often arise as the result 
of setting to zero certain forms constructed out of d and * and other 
differential forms. For instance, the static Newtonian gravitational field 
in Euclidean 3-space devoid of matter is described in terms of a real 
function 4120 on  11V subject to the equation d*c14) = 0 or, after applying * 

(LI = 0. 

Solutions to this equation define a vector field X = cl419 called the 
Newtonian gravitational field. The integral curves of X describe lines of 
gravitational force. A massive (test) particle experiences 'Newtonian 
acceleration' in the direction determined by X To describe in more 
detail the interaction of this field with massive particles requires a 
formulation of Newton's laws of motion. Surprisingly we must wait until 
Chapter 6 before the notion of particle acceleration is defined. Suffice to 
say here that a massive particle is endowed with a parameter m, its 
inertial mass, such that it experiences the Newtonian gravitational 'force' 
mdc1). A smooth distribution of matter can generate a Newtonian 
gravitational field. If the distribution is specified by the mass density 
0-form p E .5'(lR 3 ), it acts as a source of Newtonian gravity according to 
Poisson's equation: 

d*dcl) = p*l. 

(NB Both sides of this equation E rA3(1R3).) 
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Exercise B2 
Obtain in the IR 3  cylindrical polar chart with coordinates (r, cp, z) and 
orthonormal co-frames e' = dr, e 2  = rclq9, e 3  = dz the component equa-
tion for the Newtonian potential (1), 

(1/03,(ra 1 0) + (1/r 2 )3 2,(1) + aill) = p. 
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Index 

Abelian, 308 
Acceleration, 203 
Adjoint involutions, 67, 71 
Algebra, 307, 316 
Almost complex structure, 303 
Alt, alternating map, 5 
Angular momentum, 197 
Anti-automorphism (algebra), 319 
Anticommuting spinors, 103 
Antisymmetric, 4 

tensor gauge fields, 260 
Atiyah—Singer index, 306 
Atlas, 130 
Automorphism, 3 

group, 119, 308, 313 
Autoparallel, 202 

Basis (vector space), 311 
Bianchi's first identity, 213 
Bianchi's second identity, 213 
Bijective, 309, 312 
Bilinear covariants, 93 
Bilinear form. 314 
Bispinor, 100 
Boost, 186 

orbit, 187 
Boundary, 125, 168 
Brans—Dicke theory, 250 

Calabi—Yau, 306 
Central algebra, 316 
Centre (ring), 310 
Centre, 308 

Chain rule, 135 
Characteristic 

field, 310 
zero, 310 

Charge 
conjugate spinor, 96 
conjugation (Dirac spinor), 287 
conjugation (of spinor fields), 266 
electric, 190 

Charged scalar field, 241 
Chart transformations, 131 
Chiral spinor, 97 
Ck map, 129 
Christoffel symbols, 222 
Clifford 

2-forms, 252, 253 
algebra, 23 
algebra, (complexified), 60, 80 
commutator, 50, 107 
group, 42 
group (Lie algebra of), 51 
product (relation to exterior 

product), 24 
sub-bundles, 276, 306 
subgroups, 46, 71 

Clock, 183 
Closed forms, 188 
Closed sets, 125 
Co-derivative, 189 
Coherence (on overlaps), 263 
Co-homologous, 188 
Commutative, 308 

ring, 310 
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Commutator 
of Lie and covariant derivative, 

231 
of Lie and spinor covariant 

derivative, 273 
Complete vector field, 158 
Complex 

conjugation, 41, 81, 95 
structure, 116, 315 
structure (on spinor space), 59 
vector space, 315 

Complexification, 315 
Complexified Clifford algebra, 60, 80 
Components (vector), 311 
Conformal 

2-forms, 226 
group, 192 
isometry, 191 
Killing vector, 231 
symmetry (of Maxwell's 

equations), 192 
tensor, 226 

Conformally 
flat, 227 
related, 225 

Conjugate 
linear map, 315 
space, 44 

Connection 
1-forms, 200, 207 
components, 200 

Conservation laws, 237 
Conserved currents (Dirac equation), 

280 
Constant curvature, 225 
Continuous 

function, 125 
map, 129 

Contracted Bianchi identities, 219 
Contraction map (on tensors), 17 
Contragradient, 17 

degree, 16 
Contravariant, 141 

degree, 16 
Coordinate 

basis, 143 
chart, 130 

Coset, 308 

Cotangent bundle, 147 
Coulomb solution, 190, 193 
Covariances of Dirac equation, 280 
Covariant derivative, 200, 206 

of spinor fields, 267 
of tensor spinors, 296 
of tensors, 199 

Covariant degree, 16 
Covariant differentiation (Clifford 

forms), 252 
Covariant differential, 207 
Covariant exterior derivative, 216 
Cross product, 344 
Curl, 345 
Curvature, 199 

constant, 225 
forms, 209 
operator, 209 
operator (of spinor), 271, 279 
operator as Clifford commutator, 

253 
scalar, 219 
tensor, 208 

Curve, 134 

Decomposable, 3, 8 
Degree, 2, 313 

of tensor, 2, 16 
Degree, (s) group of, 313 
Derivation, 4, 127 
Diffeomorphism, 129, 132 
Differentiable 

manifold, 129 
map, 129 
structure, 131 

Differential form, 146 
Dimension, 311, 316 
Dirac 

adjoint spinor, 92 
equation, 278, 282 
matrices, (see gamma matrix) 
operator, 278 
spinors, 92, 104 
stress tensor, 290 

Direct product (group), 309 
Direct sum, 3 

algebra, 317 
vector space, 312 
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Directional derivative, 138, 344 
Divergence, 221, 346 

of Maxwell stress tensor, 256 
Division 

algebra, 316 
ring, 310 

Dominant energy condition, 237 
Dual space, 313 
Duality rotation, 116 
Duffin—Kemmer—Petiau equations, 

260 

Eddington—Finkelstein coordinates, 
248 

Einstein 
(n — 1)-forms, 220 
field equations, 234, 236, 247 
—Maxwell system, 240 
space, 222 
summation convention, 311 
tensor, 220 
—Yang—Mills system, 240 
—Kahler stress tensor, 259 

Electric charge, 190 
Electrically charged fluids, 242 
Electromagnetic radiation, 185 
Electron, 181 
Endomorphism, 313 
Energy, 186 
Energy conditions on the stress 

tensor, 236 
Equivalent 

involutions, 337 
representation, 316, 321 

Eta (ij) 

on Clifford algebra, 23 
on exterior algebra, 7 

Euclidean 
manifolds, 174 
vector space, 123 

Even subalgebra, 39, 80 
Exact, 188 
Exponential map, 203 
Exterior 

algebra (as quotient of tensor 
algebra), 5 

derivative, 154 
p-form, 5 
product, 5  

External direct sum, 315 
bundle, 151 

f-related vector fields, 143 
Faces, 167 
Faithful representation, 316, 321 
Falling freely, 177 
Fermi—Walker or F-connection, 234 
Fibre, 145 
Field, 310 

algebraically closed, 310 
characteristic of, 310 

Fierz rearrangement, 98, 285 
First structure equation, 208 
'Flag' (null flag), 116 
Flux, 195 
Frame, 311 

Galilean 
group, 177 
-relativistic, 176 

Gamma (y) matrix, 37, 86 
Gauge invariance of 

electromagnetism, 188 
General linear group, 311 
Generalised spinor structure, 263 
Generators, 308 

algebra, 317 
of a subgroup, 308 
of a vector subspace, 312 

Geodesics, 203 
Germ, 137 
Graded 

algebra, 316 
subspace, 313 
vector space, 313 

Gradient, 344 
Gravitation with torsion, 249 
Gravitational mass, 206 
Gravitational waves (with neutrinos), 

293 
Group, 307 

representation, 316 
Gyroscopes, 234 

H-module, 60 
Harmonic, 190 
Hausdorff, 126 
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Hermitian, 41, 63, 84, 87, 90, 269, 
300 

conjugate, 92 
Hodge de Rham operator, 254 
Hodge map, 13, 15, 173, 180 

and Clifford products, 28 
Homeomorphism, 126 
Homogeneous 

elements of a graded vector space, 
313 

linear map, 313 
Homogenous, 2 
Homologous, 191 
Homomorphism 

algebra, 318 
group, 308 

Horizon, 248 

Ideal, 10, 23, 317 
fluid, 242 
observer, 183 

Ideal of an algebra, 317 
Ideal, single sided, 323 
Idempotent, 324 
Identity, 307 

ring, 310 
Imbedded (submanifold), 133 
Imbedding, 133 
Immersion, 133 
Index 

of inner product, 66, 76, 85 
of nilpotent element, 323 

Inequivalent involutions, 68 
Inertial 

chart, 184 
mass, 347 
reference systems 

Infeld, 99 
Injective, 309, 312 

tangent map, 133 
Inner, outer, 309 
Inner automorphism 

algebra, 318 
group, 309 

Inner products (on spinor fields), 264 
Instantaneous, 185 
Integral curve, 157 
Integration, 167 

Interior derivative, 4 
on Clifford algebra, 23 
on exterior forms, 9 

Interior multiplication, 11 
Intrinsic spin, 290 
Invariance group, 314 
Invariant subgroup, 308 
Invertible element (ring), 310 
Involutions, 4, 336 
Involutary anti-automorphism (see 

also 	4 
Involution 

classification of involutions in the 
real Clifford algebras, 78 

equivalence of, 337 
inequivalent involutions of real 

algebras, 68 
on tensor product of algebras, 72 

Irreducible representation, 316, 321 
Isometry, 173 
Isomorphism 

algebra, 318 
group, 309 

Isotropic 
coordinates, 247 
subspace, 106 

Jacobi identity, 142 
Jacobian, 128 

Kahler 
2-form, 305 
equation, 256 
manifold, 304 

Kernel, 309, 312, 318 
Killing 

currents, 196 
spinor, 300 
vector, 174 

Killing's equation, 229 
Klein—Gordon field, 239 
Komar form, 239 

Laplace—Beltrami operator, 189, 254 
Laplacian operator on spinors, 279 
Left and right duals, 229 
Left coset, 308 
Left ideal, 323 



INDEX 	 355 

Left R-module, 341-2 
Length (of a curve), 183 
Levi—Civita antisymmetric symbol, 

15 
Lichnerowicz theorem, 299 
Lie algebra of Clifford group, 51 
Lie-algebra-valued p-forms, 240 
Lie bracket 
Lie derivative 

on spinors, 271 
on tensors, 161 

Light-cone, 181 
Linear 

connection, 200 
dependence, 311 
frame, 311 
map, 312 
quotient space, 312 
space of linear maps, 313 
transformation, 313 

Local frame, 172 
Locally symmetric space, 303 
Lorentz force law, 243 
Lorentzian 

Clifford algebra, 85, 113 
connection, 232 
manifold, 172 

Lorenz gauge, 190 
Lowering convention, 314 

Majorana conjugate spinor, 95 
Majorana spinor, 96, 104, 115 
Majorana—Weyl spinor, 97, 104 
Mass—energy, 185 
Maximal 

integral curve, 158 
isotropic subspace, 107 

Maxwell stress (Clifford form), 255 
Maxwell stress tensor, 194, 197 
Maxwell's equations, 178, 181, 188 

Clifford form, 255 
Metric, 314 

compatible, 214 
compatible connection forms, 215 
dual, 14, 314 
on p-forms, 14, 27 
tensor field, 171 
topology, 126 

Minimal left ideal, 55 
Minkowski spacetime, 181-2 
Mixed tensor, 16 
Module, 340 
Momentum, 186 
Multi-index, 9, 27 
Multilinear, 2, 16 
Multipole, 191 

n-form, 10 
Natural 

basis, 143 
dual basis, 313 
local basis, 

Neighbourhood, 124 
Neutrino waves (with gravity), 293 
Newtonian 

acceleration, 205, 206 
angle, 186 
gravitational coupling, 247 
length, 186 
potential, 206 
velocity, 185 

Nilpotent, 323 
Norm homomorphism, on Clifford 

group, 46 
Non-associative algebra, 119 
Non-degenerate metric, 314 
Non-nilpotent algebra, 324 
Non-rotating frame, 234 
Normal 

coordinates, 203 
neighbourhood, 203 
subgroup, 308 

Odd dimensions, 89, 92 
of a group, 309 
of a linear space, 313 
of an algebra, 318 

One-parameter diffeomorphism, 156 
Open set, 125 
Opposite algebra, 4, 319 
Or a ring, 310 
Orbital angular momentum, 290 
Order, 2, 307 
Ordinary matrix algebra, 320 
Orientation, 14, 132 
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Oriented 
r-chain, 168 
r-cube, 167 

Orthochronous transformations, 47 
Orthogonal 

group, 42, 314 
idempotent, 325 

Orthonormal basis, 314 
Outer automorphism (group), 310 

p-form, 5 
Parallel, 201 

along a curve, 201 
spinor, 303 
transport map, 202 
vector field, 202 

Parallelism, 199 
Parametrise, 171 

curve, 134 
Parity-preserving orthogonal 

transformations, 47, 49 
Period (of an automorphism), 119 
Photons, 185 
Physical dimensions, 178 
Pierce decomposition, 325 
Pin groups, 46 

example of Pin(3, 1), 53 
Pinor structure, 263 
Plane-wave basis (for Dirac 

equation), 288 
Poincaré, 178 

group, 182 
Polarities, 179 
Potential, 188 
Primitive idempotent, 325 
Principal idempotent, 325 
Proca field, 240 
Product manifold, 145 
Projection rNperator, 26 
Proper time, 183 

parametrisation, 183 
Pseudo-Riemannian, 172 

connection, 221 
Pullback, 133 

map, on functions, 133 
on forms, 148 

Pure spinors, 106, 108  

Quantum theory, 282 
Quotient algebra, 10, 25 
Quaternion 

conjugation, 65, 73, 338 
reversion, 339 

Quaternions, 338 
Quotient 

algebra, 318 
group, 308 

R-module, 340 
Racah time reversal, 94 
Radical, 324 
Raising and lowering conventions, 19 
Rank, 2, 312 

of an idempotent, 334 
of tangent map, 133 

Rank-two spinor, 103 
Rarita—Schwinger equations, 296 
Reducible 

algebra, 317 
representation, 119, 316, 321 

Reflections, 43 
Regular element (ring), 310 
Regular representation (algebra), 321 
Reissner—NordstrOm solution, 243 
Representation 

equivalent, reducible, faithful, 316 
of an algebra, 321 
of a group, 316 

Representative, 308 
spinor, 108 

Representing spinors, 275 
Reversion (quaternions), 338 
Ricci 

1-forms, 210 
tensor, 210 

Riemannian, 172 
Ring, 310 
Rotational isometry, 174 

Scalar field, 239 
Schwarzschild metric, 247 
Second structure equation, 209 
Section, 146 

of a tangent bundle, 146 
Sectional curvature, 223 
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Semi-direct product, 51 
group, 310 

Semi-orientation, 48 
Semi-simple (algebra), 326 
Semi-spinor representation, 55 
Semi-spinors, 97 
Signature, 314 
Simple (algebra), 327 
Smooth manifold, 131 
Spacetime, 181 
Span, 311 
Spatial direction, 185 
Special orthogonal group, 45 
Spherical harmonics, 258 
Spin(' 

manifold, 306 
structure, 264 

Spin groups, 46 
example of spin(3, 1), 53 

Spin-invariant products, 62 
Spin manifold, 262 
Spinor 

bundle, 261 
covariant exterior derivative, 297 
field, 262 
frame, 263, 293 
Laplacian, 279 
representation, 55 
structure, 262 

Spinors, 54 
Standard spinor frames, 263 
Star map (see Hodge map) 
Static metric, 244 
Stationary, 184 

metric, 244 
observer, 184 

Stokes's theorem, 169 
Stress energy tensor, 236 
Stress tensor 

Dirac, 290 
fluids, 242 
Kahler, 259 
Klein—Gordon, 239 
Maxwell, 194 
Proca, 240 
Yang—Mills, 240 

Strong energy condition, 237 

Structure 
constants, 174 
equations, first, 208 
equations, second, 209 
functions, 215, 280 

Subalgebra, 316 
Subgroup, 308 
Submanifold, 133 
Sum (vector space), 312 
Summation convention, 311 
Supergravity, 249, 296 
Supersymmetry, 283, 301 
Surjective, 309, 312 
Symmetric metric, 314 
Symmetrisation, 4 

(see projection operators) 

Tangent, 136 
bundle, 143 
map, 138 
plane, 223 
space, 127, 137 
vector, 136, 142 

Tensor, 2 
algebra, 2 
algebra (mixed), 16 
field, 150 
product (of algebras), 319 
spinors, 294 
the group of all, 309 

Time reversal (on spinors), 49 
Topological 

manifold, 124, 127 
space, 124 
subspace, 125 

Topology, 125 
Torque, 197 
Torsion 2-forms, 208 
Torsion tensor, 208 
Total matrix algebra, 320 
Trace 

in Clifford algebra, 91 
of a tensor, 18 
theorems, 91 

Translational isometry, 174 
Translations, 182 
Triality, 106, 117, 120 
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Weak energy condition, 237 
Wedderburn (structure theorems), 

Twisted vector rei 
Twistor, 299 

equation, 298 
Two-component formalism, 	Weyl 

U(1) 
covariant derivative, 241 

of spinor, 270 
exterior covariant derivative, 241 

Unit element (ring), 310 
Units, 181 

Valence, 103 
van der Waerden formalism, 99 
Vector analysis in Euclidean 3-space, 

342 
Vector 

field, 141 
representation, 42 

twisted, 45 
space, 310 
subspace, 312 

Volumn form, 14 

eguatiow 279 
Weyl 

spinor, 97, 100, 108 
tensor, 226 

Wigner time reversal, 94, 288 
Witt basis, 107 
Witt index, 66 
World line, 183 

X () 
the involutory anti-automorphism, 

4 
the involution on exterior algebras, 

8 
the involution on Clifford algebras, 

23 

Yang—Mills field, 240 

Z(mod 2), 2, 22, 47 
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