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Foreword

In 1982, Claude Chevalley expressed three specific wishes with respect to the
publication of his Works.

First, he stated very clearly that such a publication should include his non-
technical papers. His reasons for that were two-fold. One reason was his life-
long commitment to epistemology and to politics, which made him strongly
opposed to the View otherwise currently held that mathematics involves only
half of a man. As he wrote to G.C. Rota on November 29th, 1982: “An
important number of papers published by me are not of a mathematical
nature. Some have epistemological features which might explain their presence
in an edition of collected papers of a mathematician, but quite a number of
them are concerned with theoretical politics (...) they reflect an aspect of
myself the omission of which would, I think, give a wrong idea of my lines of
thinking”. On the other hand, Chevalley thought that the Collected Works
of a mathematician ought to be read not only by other mathematicians, but
also by historians of science. But the history of mathematics could not be
anything pure and detached from the world of general ideas: “I think that
history of mathematics should not be what it too often is, namely a collection
of statements of the form ‘in the year X, mathematician A proved theorem
B’ , but should study the relationship between such and such a mathematical
trend and the general epistemological, philosophical or social trend at the
time of a certain publication” . For these two reasons, he did not want his
technical papers to be published separately from his other work. Though he
was never fully satisfied with the various ways in which he himself spoke
about the connection between his own mathematical achievements and the
“epistemological, philosophical or social trend of ideas” that surrounded him,
still he clearly wanted to bear witness to such a connection.

Chevalley’s second wish had to do with some out-of-date features, and also
typographical defects, of his mathematical papers: “As for the mathematical
papers, I know that some of them contain statements which are either false or
at least inaccurate, and I do not see the interest of publishing statements of
theorems which might be misleading to the reader. Of course, this drawback
might be erased by the insertion of appropriate notes; the trouble is that these
papers bear upon matters on which I have not thought for a long time, and
that it would mean a large amount of work to check every sentence of them,
a work which I do not particularly wish to undertake myself, and a pensum
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that I would not like to inflict on anybody e ”. So described, the logic of the
situation would have led directly to the abandonment of the very project of
publishing the Works, if various people had not generously agreed to devote
some of their time to the above-mentioned task of proof-reading.

Finally, Chevalley also wished to add to the papers already published
a number of unpublished manuscripts, mathematical and non-mathematical.
The mathematical manuscripts were to include two long “rédactions Bourbaki”
that Bourbaki did not accept - a familiar predicament for the members of the
group - namely, “Introduction to Set Theory” and “Elementary Geometry”. As
Chevalley wrote: “That choice should in my opinion include two unpublished
papers which were written for ‘Bourbaki’, but were not accepted for publica-
tion, and which are among what I consider as the best of my mathematical
endeavours”. Together-with these two manuscripts, Chevalley hoped to publish
several other things: “I would like to include some texts concerned with things
I have thought of during these last years, but which are not yet in publishable
form” (letter to K. Peters, June 8th, 1983). At the beginning of 1984, he was
working on a list of all the unpublished material that he wanted to bring to
light. This list, which he was not able to complete, will be published in Volume -
I (Class Field Theory) of the Collected Works, together with the integral text
of the letters which we have been quoting above.

Thanks to the help and support of Springer-Verlag and the French
National Center for Scientific Research (CNRS), it has now become possible
to publish Chevalley’s Works in a way that should fulfill the essence of his
requirements, and we hope that the volumes that will come out will provide
a fitting image of his contributions and personality.

Each volume will be devoted to a special theme and will feature an
introduction by a specialist of the field. As it happens chronological ordering
and thematic ordering are almost identical, and the only discrepancy will
be with the non-technical papers and the unpublished manuscripts, often
difficult to date back. The first volume, “Class Field Theory” , includes
the two obituaries that were written by J. Tits and J. Dieudonné after
Chevalley died in 1984. Letters by and to Jacques Herbrand and Emmy
Noether will be published in the volume on epistemology and politics. We
hope to establish a complete bibliography, to be included in the last volume,
that will otherwise include large parts of the unpublished material. Finally,
most of the mathematical or philosophical correspondence that Chevalley held
with other people is missing. This is partly due to the fact that his healthy
disrespect for glory and the absence of a personal need to keep a record of
his own existence had devastating effects on his archives. We will therefore
be grateful for copies of any such letters, in case they exist and seem to be
interesting or important.

Catherine CHEVALLEY Pierre CARTIER
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Foreword to this Volume

This volume represents the first step in the ambitious project of publishing
Claude Chevalley’s Collected Works. The project is supported by a contract
(code name : GDR 942) with the French Centre National de la Recherche
Scientifiqae (CNRS), and I am acting as chairman of the editorial committee.

Our idea was to collect in this volume the writings of Claude Chevalley
about spinors. This is a rather minor variation in his scientific work, but well in
tune with his long-standing interest in group theory. When Chevalley wrote
his two books (here reprinted as the main two parts), spinors were a well-
established tool in theoretical physics, and E. Cartan had already published
his account of the theory. But Chevalley’s approach to Clifford algebras was
quite new in the 1950’s, at a time where universal algebra was blossoming and
developing fast. This explains why we are reprinting his Nagoya lectures about
“Some important algebras”. As explained in the review by Jean Dieudonné,
originally published in the Bulletin of the American Mathematical Society
and appended here, Chevalley’s exposition of the algebraic theory of spinors
contains a number of interesting innovations. But Chevalley was an algebraist
at heart, and gives no hint of the applications to theoretical physics. Since
the 1950’s, spinors (and the associated Dirac equation) have developed into
a fundamental tool in differential geometry and especially in the theory of
Riemannian manifolds. The Postface by Jean-Pierre Bourguignon aims to
retrace this new line of mathematical thinking and to provide an up-to-date
account.

Some editorial work was required while producing this volume. We felt
an obligation to proofread carefully all these texts (see the comment by
Dieudonné), and to correct misprints and occasional slips of the pen. But
the text has remained essentially unaltered.

We have to thank a number of people for their cooperation in this
project. The members of the Chevalley Seminar (and especially Michel Broué,
Michel Enguehard and Jacques Tits) gave us their continual moral support
and exerted friendly pressure. We thank also Jean-Pierre Serre and Armand
Borel for their advice and steady insistence. S. Iyanaga, a life-long friend of
Chevalley, was instrumental in securing the permissions needed to reprint the
Japanese lectures; to him, and to the ofiicers of the Mathematical Society
of Japan, we extend our warmest thanks. Henri Cartan lent us his own
copy of Algebraic Theory of Spinors for reproduction purposes and made the
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suggestion of appending Dieudonné’s review.‘The staff of the I.H.E.S. was very
helpful: we thank especially Marie-Claude Vergne for her dedicated typing and
the directors Marcel Berger and Jean-Pierre Bourguignon for their support of
the project. As mentioned above, we have to acknowledge financial support
by the C.N.R.S.

Without the faithful friendship of Catherine Chevalley, nothing would have
been possible. A special thank-you to her!

September 1995 Pierre CARTIER
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Preface

The theory of exterior algebras was introduced by Grassmann in order to
study algebraically geometric problems concerning the linear varieties in a
projective space. But this theory was forgotten for a long time; E. Cartan
discovered it again and applied it to the study of differential forms and mul-
tiple integrals over a differentiable or analytic variety. For this reason, the
theory of exterior algebras will be interesting not only for algebraists but
also for analysts.

In these lectures we shall present a more general algebra called “Clifford
algebra” associated to a quadratic form. If the quadratic form reduces to 0,
the Clifford algebra reduces to “exterior algebra”.

The applications of the theory of exterior algebras are very wide, e.g.:
theory of determinants, representation of linear variety in a projective space
using Pliicker coordinates, and the theory of difierential forms and their ap-
plications to many branches of analysis. But I am sorry not to be able to
describe them in detail because of the limitation of time.

June, 1954 C. Chevalley



Conventions

Throughout these lectures, we mean by a ring a ring with unit element 1 (or
1’ as the case may be), and also by a homomorphism of such rings a homo-
morphism which maps unit upon unit. A will always denote a commutative
ring.

By amodule over A, we invariably mean a unitary module. Thus a module
over A is a set M such that

1) M has a structure of an additive group,
2) for every 0 E A and :1: e M, an element an: e M called scalar multiple

is defined and we have
i) a(.'z: + y): as: + ay,
ii) (a + fi)x= a1: + fix,
iii) Ot(fiav)= (0mm,
iv) 1 - :1:= 2:.

A map of a module over A into a module over A is called linear if it is
a homomorphism of the underlying additive groups which commutes with
scalar multiplication by every element of A.

Analgebra E over A means a module over A with an associative multipli-
cation which makes E a ring satisfying

04%) = (M)?! = aMy) (rm; 6 E; a E A)-
A homomorphism of algebras will always mean a ring homomorphism which
is linear. An ideal of an algebra means always a two-sided ideal. A subset S
of an algebra is called a set of generators of E if E is the smallest subalgebra
containing 5' and the unit 1 of E.

In dealing with modules or algebras over A, an element of the basic ring A
is often called a scalar. In the case of algebras, any element of the subalgebra
A - 1 is called a scalar; a scalar clearly commutes with every element of the
algebra.



CHAPTER I.
GRADED ALGEBRAS

1. Free Algebras

The first basic type of algebras we want to consider is the free algebra.
Let E be an algebra over A generated by a given set of generators (11:5);eI
(I: any set of indices). Let a = (i1, - - - ,ih) be a finite sequence of elements
of I and put ya = 2:41 - - - as“. The number h is called the length of 0. Among
the “finite sequences” we always admit the empty sequence 0'0, whose length
is 0, i.e., a sequence with no term, and we put y‘7o = 1. We define the
composition of two finite sequences a = (i1,---,ih) and a’ = (j1,---,jk)
by 00" = (i1,---,ih,j1,---,jk). For 0'0, we define 000 = 000 = a, i.e., 00
is the unit for this composition. Evidently this composition is associative:
(oa’)a” = 0(0’0”), and we have you: = yayal.

Theorem 1.1. Every element of E is a linear combination of the y, ’s,
a running over all finite sequences of elements of I.

Proof. Denote by E1 the module spanned by all the ya’s. We shall show
E = E1. First we prove:

Lemma 1.1. E1 is closed under multiplication.

Proof. Let 2, 2’ be two elements of E1 and put

2 = Eda-ya, z, = Zara-ya-
0' 0'

Though these two sums seem apparently infinite, we have in fact (1.0 = 0 and
a; = 0 except for a. finite number of 0’s. Then we have

22, = Edda/dyad", yaa’ E El;
0,0”

the sum being finite, we have zz’ e E1.

Now we return to the proof of Theorem 1.1. The module E1 is thus a
subalgebra of E, and if a = (i),y, = m,- and also yao = 1. Therefore E1,
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containing the set of generators (an) and 1, contains E itself, so that we
obtain E = E1, which proves Theorem 1.1.

Definition 1.1. If the ya ’3 are linearly independent over A, then E is
called a free algebra, and the set (2:01.61 is called a free system of generators
of E.

Existence and uniqueness of free algebras. We-first prove the unique-
ness. For this, we shall show a more precise condition called “universality”.
An algebra F over A with a system of generators (2:01.61 is called universal
if, given any algebra E over A generated by a set of elements (twig indexed
by the same set I, there is a unique homomorphism (p : F —> E such that
<p(a:,-) = 5,- for all i.

Theorem 1.2. A free algebra F with its free system of generators is
universal.

Proof. By definition, the set {ya = 1:;1 ---1:,-h} forms a base of F as a
module over A. Thus there is a linear mapping (,0 : F ——> E such that

(1) Milo) = €i1"'€ih for every 0 = (i1, - ' - J1»)-
If a = (i1, - - - ,ih), a’ = (31,- - - ,jk) are two finite sequences of elements of I,
we have

(2) w (yaya') = w (2900’) = €i1"‘€ii.§j1”'€jk = Milo) 90(ya')‘
This proves that (p is not only linear, but also a homomorphism of F into E.
Especially putting a = (i) reap. a = 00, we have (p (23,) = 5, and 90(1) = 1,
which proves our assertion.

Remark that, in general, any homomorphism (p is uniquely determined
when the values (p (22,) on a set of generators (56,-) are given.

Corollary. The free algebra generated by (“701'sI is unique up to iso-
morphism. More precisely, let F, F’ be two free algebras with free systems of
generators (“When (ml’)i'eI' respectively, and let I and I’ be equipotent. Then
F and F’ are isomorphic.

Proof. We may assume that I = I’. By Theorem 1.2, we have two homo-
morphisms

go : F —> F’ such that <p(a:,-) = x;
and

cp’ : F’ —* F such that <p’(a:;) = x,-

The composite mapping1 (p’ o (p : F —i F’ ——> F maps each 11:,- to itself, and by
the uniqueness of homomorphism, (p’ o (,0 must be the identity in F. Similarly

I <p’ o w is defined by w’ o <p(m) = ¢’(<p(-'v))-
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(p o <p’ is the identity in F’. Therefore ip is an isomorphism and (p’ = 90*,
which proves that F and F’ are isomorphic to each other.

Now we shall prove the existence of a free algebra, having any given set
(13);“ as its free system of generators. Let E be the set of all finite sequences
of elements of I. From the theory of linear algebra, we may assume that there
exists a module M over A with a base equipotent to 2. Let (316)662 be the
base of M; we introduce a structure of algebra into M. For this, we have only
to define an associative multiplication for the elements of the base. We define
it by

yaya’ = you’-

Since the composition in 2 is associative, we have the associativity: (yayal) y,»
= y, (yaryan ). Thus M is a free algebra over A having the free system of gen-
erators (cm-LEI.

2. Graded Algebras

Let F be the free algebra with the free system of generators ($01.6I, and put
y, = mil - - - mih (a = (i1, - - -,ih)). We shall classify the elements y, by the
length of a.

Let Fh be the module spanned by the go’s, a being of length h. Then F
is the direct sum of F0, F1, F2, - -- as a module:

(1) F=F0®F1®F2$---®Fh$”'

and evidently

(2) Fh - Fh’ C Fh+h',
because the length of the composite 00’ of a and a’ is equal to the sum of
the lengths of a and 0’.

The free algebra F = F0 69 F1 69 - - - 63 Fh 69 - -- is a typical example of the
following general notion of graded algebra.

Definition 1.2. Let F be an additive group. A F-graded algebra is an
algebra E which is given together with a direct sum decomposition as a module

(3) E=ZE1.
761"

where the E, ’s are submodules of E, in such a way that

(4) E7 - E7: C E7+7:,i.e., a: E E1 and a," e E7: imply mm’ 6 E1+1’-
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By a homomorphism of a F-gmded algebra E = E: E, into another
761‘

F-gmded algebra E’ = 2 E1, is meant a homomorphism (p : E —> E’ of the
761‘

algebras such that (p (E7) C Ely.

In a. F-graded algebra E = 2E7 an element belonging to E7 is called
homogeneous of degree 7. The zero element 0 of E is homogeneous of any
degree, but each element of E other than 0 is homogeneous of at most one
degree '7 e F. Any element 1: of E is uniquely decomposed into the sum of
homogeneous elements

(5) {I} = 2x1, $7 6 E7,
‘16!"

where the 277’s are 0 except for a finite number of 1’s. Each an, in (5) is called
the 'y-component of 1:.

Lemma 1.2. The unit 1 is always homogeneous of degree 0 (0 : zero
element of 1").

Proof. Decompose 1 into the sum of its homogeneous components:

1 = 2 e7, e, e E1.

If :33 e E is homogeneous of degree fl 6 I‘, then we have

E5 3:173 =xp-1=zmp-e.y.
'1

Since 1:5 - e, e E5?” we must have (13,3 -e9 = $5 and 2:5 -e., = 0 for all '7 7E 0.
This implies that eg is a right unit element for all homogeneous elements, and
accordingly for all elements a: = 22:, in E. Thus e9 = 1, and our assertion is
proved.

Corollary. Scalars are homogeneous of degree 0 (9 : zero element of I‘)

Among others, the following two special types of F—gradations are of much
importance:

i) F—gradations where F = Z is the additive group of integers. In this
case, we say simply “graded” instead of “Z—graded”.

ii) F—gradations where 1'1 is the group with two elements 0 and 1. In
this case we write E = E... 63 E. in place of E = E0 63 E1, and E is called
semi-graded.
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A free algebraF = F069F1€9~-69Fh$--- can be considered as agraded
algebra with F}, = {0} for all h < 0.

Remark. A F-graded algebra is not a special kind of algebra. In fact, any
algebra may be considered as a F-graded algebra with degree 0 for every
element.

Homogeneous submodules.

Definition 1.3. A submodule M of a F-graded algebra E = zE, is said
to be homogeneous if the homogeneous components of any element of M still

belong to M. This is equivalent to the condition that M = Z (M n E,).
‘7

Theorem 1.3. If a submodule M or an ideal 5.1 of a F-graded algebra E
is generated by2 homogeneous elements, then it is homogeneous.

Proof. Let M be a submodule of E spanned by a set S of homogeneous
elements and let M’ be the set of elements of M whose homogeneous com-
ponents belong to M. It is evident that S C M’ C M, since S consists of
homogeneous elements. We shall show that M’ is a submodule. If :1: = 2 m7
and :1:’ = 2:11, are in M’, then mix’ = 2(m7imfy), and an, id, 6 M,
so that we have a: i: m’ 6 M’. Also for a e A, we have similarly as: e M’.
Thus M’ being a submodule containing the set S of generators of M, we have
M’ D M, and so M = M’, which proves that M is homogeneous.

For the case of ideals, we consider the ideal 11 generated by a set S of
homogeneous elements. Then 5.1 is spanned, as a module, by all elements of
the form xsy, where a: e E,s e S and y e E. Putting a: = 22.3,, y = Zyfi,
we have

$81! = (212%) s (2,3: ya) = tsys
1.16

and since mysyp is homogeneous, Ll is also spanned by the elements 2,331,;
which are homogeneous. Thus 11, being generated as a module by homoge-
neous elements, is homogeneous as was seen above. Hence Theorem 1.3 is
proved.

Let E = zE, be a F—graded algebra and 5.1 a homogeneous ideal in E.
We have the direct sum decomposition of 11 into its homogeneous parts:

2 The word “generated by” has somewhat different meanings for the cases of
submodules and of ideals. In the former case, a submodule M is generated by S
if every element of M is a linear combination of the elements of S, while in the
latter case, an ideal 5.1 is generated by S if 11 is the smallest ideal containing the
set S.
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11:221.” 11, =unE,.
1

The quotient algebra E/11 has also the structure of I"-graded algebra, because
E/il = 2,1 (EV/111) (direct sum of submodules) and (Ev/111). (Em/117:) C
E744: #1144]. Therefore E/ll is a F-graded algebra and 2,, (EV/111) gives its
homogeneous decomposition. The canonical homomorphism 1p : E —-> E/fl is
a homomorphism not only of algebras, but also of F—graded algebras.

3. Homogeneous Linear Mappings 3

Let E, E’ be two F—graded algebras over the same ring A, and let A be a
linear mapping of E into E’, i.e., a mapping A : E —> E’ such that

A(.'I: + y) = A(.'c) + A(y), A(aa:) = aA(a:)

for every :13, y e E; a e A.

Definition 1.4. Let I/ be any element of F ; A is called homogeneous of
degree 11 if A (E1) C E11“, for all 'y e F.

Evidently, if A : E —¢ E’ is homogeneous of degree 11 and A’ : E’ —> E” is
homogeneous of degree 11’, then A’ o A is homogeneous of degree V + V’.

A linear mapping A : E —> E’ cannot always be decomposed into a finite
sum of homogeneous mappings as can be shown by a counter-example. But if
the decomposition is possible, it is unique; it is sufficient to prove the following:

Lemma 1.3. Let {A,,}uG 1. be a family of linear mappings E —> E’, in
which each A; is homogeneous of degree 11. If Ay(:c) = O (a: : any element in
E) except for a finite number of 1/ e I' and 2., AV = 0, then A,, = 0 for all
I! E F.

Proof. For an element 30., of E7 , we have 2A,, (1:7) = 0, but since
II

A,, (1:1) 6 El”, for each u E I‘, we have All (1:1) = 0 for all u e I‘. For an
arbitrary a: e E, let x = 2 an, be the homogeneous decomposition of :c; then
Ay(a:) = 21 A,, (1.7) = 0, which proves that A,, = 0 (V e F).

3 This notion can be defined not only for graded algebras, but also for “graded
modules”. But we shall restrict ourselves to the case of graded algebras, because
we use it in this case only.

10
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4. Associated Gradations and the Main Involution

Let I‘, f" be additive groups and let a homomorphism 1' : F —> f be given. To

any F—graded algebra E = 2 E1, we associate the following f—gradation of
161“

E. For each 7 E F, put

E; = Z~ E, (E; = {0} if 7'16) is empty).
verdh)

Then obviously E = 2 E; and E; - F47, C E; 3,. In this way E = 2E;
376}:

can be considered as a F—graded algebra.

Definition 1.5. The f—gmdation 2 E; is called the f-gmdation of E
761':

associated to the F-gmdation E = Z E.y (with respect to 'r).
‘YEI‘

~ We shall write E" instead of E if it is taken with the associated
F-gradation rather than with the original F-gradation. Obviously, we have
the

Lemma 1.4. Every homogeneous element, every homogeneous submod-
ale, and every homogeneous ideal in E are also homogeneous in E".

In the special case where l5 is the group consisting of two elements 0 and
1, and where 7' is onto, we write E" = E1 69 E: instead of E"' = E0 63 E1,
and we call it the associated semi-graded algebra of E. In that case, the
kernel T-l(0) C 1" is denoted by 1"..., which is a subgroup of index 2, while
7‘1 (1) C I‘ is denoted by I‘_, which is the coset of I‘ with respect to [1,. other
than F+. Remark that every subgroup of I‘ of index 2 can be preassigned
as 1"... in some unique associated semi-gradation. It may happen that 1" has
a unique subgroup of index 2. If it is the case, then reference to the map 7'
can be omitted without any ambiguity. For example, to every graded (i.e.,
Z—graded) algebra E = E E, is associated a unique semi-graded algebra

hzinteger

E‘ = E: e E:, where E3 = E E, and E: = Z Eh. Clearly, if E is a
h:even ’ h:odd

semi—graded algebra, then its associated semi-gradation is identical with the
original semi-gradation.

11
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Main involutiOn. Fixing a subgroup I'+ C F of index 2, let E = 2 E, be
ver

a F—graded algebra, and let E’ = E1 EB E1 be the associated semi-gradation
of E. Every element a: e E can be decomposed uniquely into the sum of its
Ei-component 22+ and its Ei-component 2:- : a: = 1:... + :1:_. If we define a.
map J : E —> E by

J(1:)=z+—:c_ (m=a:+ +1:_ GE),

then J is one-to-one and linear, preserves the degree in the F-gradation of E,
maps unit upon unit, and is an involution (i.e., JoJ = identity). Moreover, J
preserves the multiplication. In fact let a: = x+ +x_, y = y+ +y_ (:14, 31+ 6
Ei;$—, y- E E1)-Then($y)+ = m+y+ +a:_y_, (M!)— = fit-31+ +$+y—, and
so we have -

J(963/) = (x+y+ + a241—) - (m—y+ + aI+y—)
= (22+ - w—)(y+ - 31—) = J(m)J(y)-

Therefore, J is an involutive automorphism of the F-graded algebra E,
which we call the main involution of E.

For convenience’s sake, we define the symbolical power J" (V E F) of the
main involution as follows:

JV— J If V61".

_ identity if V e I‘+’

Also we define the power (—1)" (1/ e 1") of the scalar (—1) of A as follows:

y_ —1 if 1/611(‘1)—{1 if ueI‘+'
Then we have, just as in the case of usual powers, the following identities:

i) J" o J”, = J"+"’
ii) (-1)",(-1)"' ,= (-1)"+"'
iii) (J")" =I(Jll )ll ,
W) ((-1)")" = ((-1)" )"-
We shall denote iii) and iv) respectively by JW, and by (—1)""' for the

sake of simplicity, though no product is defined in general in F. Any power
of the identity map is understood to be the identity map, and any power of
1 is understood to be 1.

If a: = Z m, (x, e E7), then we can write
ver

v) J(z) = Z (—1)'7a:..,.
76F

12
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If 1" = Z, the additive group of integers, then these definitions agree with
the usual definitions of powers of an automorphism, or of an element of an
algebra.

5. Derivations

The definition of derivations in a graded algebra given here is somewhat
different from the conventional definition of the derivations in the ordinary
algebraic systems. In the sequel, when we speak of derivations, we understand
that a fixed subgroup 1"+ C 1" of index 2 is given.

Now, let E, E’ be two F—graded algebras over A and let (p be a homo-
morphism of E into E’.

Definition 1.6. A cp-derivation D of E into E’ means a linear mapping
D : E —> E’, homogeneous of some given degree 1/ e 1", such that for 92,31 in
E,

(1) D(my) = D(m)<p(y) + <P (J"w) D(y),
where JV is the power of the main involution defined above.

In the case where E = E’ and (p is the identity, D is called simply a
” derivation”. Therefore a derivation D of E is a homogeneous linear mapping
of degree V, such that

(2) D(my) = D(a:)y + (We) D(y) for x,y e E.

If 1" = Z, the additive group of integers, (2) can be written as

(2’) D(a:y) = D(a:)y + (—1)’“’a:D(y) for :1: e Eh, y e E.

If the elements of E are all of degree 0 (0 : zero element of 1"), then D
must be of degree 0, and (2) reduces to

(3) D(my) = 13(33):! + mD(y),
which coincides with the ordinary definition of derivation. Also, when 1/ be-
longs to 1"+ formula. (2) reduces to (3), while if 1/ belongs to I". and a: E E1
then (2) reduces to

(4) D(xy) = D(m)y - 10(11)-
A derivation of degree 1/ in 1"_ is sometimes called “anti-derivation”, but we
do not use this terminology in these lectures.

13
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The formula (1) can be written in another form. Denote by L,, the oper-
ation of left multiplication by :1: : Lzy = my. Then (1) is equivalent to

(5) DOLE = LDC») 0(p+L‘P(Jv$) 0D.

In the case where E = E’, and (p is the identity,

(6) DoL, =LD(,,, +LmoD.
Remark that (5) and (6) do not contain the “parameter” y.

Lemma 1.5. For every tp-dertvatton D, we have D(1) = 0.

Proof. Substituting :1: = y = 1 in (1), we get

D(1) = D(1'1) = D(1)<P(1) + 90 (J"1) D(1),
and since J"1 = 1, 90(1) = 1, we'obtain D(1) = D(1) + D(1), which proves
D(1) = 0.

Evidently, if D and D’ are (p-derivations of the same degree, D :I: D’ is
again a (p-derivation. Also we have

Lemma 1.6. If <p : E —) E’ and cp’ : E’ —> E” are homomorphisms and
if D, D’ are a (pi-derivation of E into E’ and a <p’-derivatton of E’ into E”
respectively, then 90’ o D and D’ o (p are (90’ o <p)-derz'vatz'ons of E into E” .

Proof. We have only to check the condition (1). By direct calculation we
have

(r’ 0 D)(my) = w’(D(x))<p’(<p(y)) + <p’(<P(J"x))<p’(D(y))
and

(D' o way) = D’(<p(x))so’(<p(y)) + w'(so(J"’m>)D'<so<y)),
and since cp’ o D and D’ o<p are of degrees 11 and 11’ respectively, our assertion
is proved.

Theorem 1.4. Let D be a. cp-derivat'ion of E into E’, F a homogeneous
subalgebra of E, S a set of homogeneous generators of F, and let F’ be a
homogeneous subalgebra of E’. Then if D(S) C F’ and 90(3) C F’, we have
D(F) C F’ and <p(F) C F’.

Proof. The latter inclusion is evident, because (,0 is a homomorphism.
The former is proved as follows. Let F1 be the set of elements :1: E F such
that D(m) E F’. It is evident that F1 is closed under addition and scalar
multiplication. Also if D(m) E F’ and :1: = 2x7, then the D(a»,)’s are the
homogeneous components of D(zr) hence D(m.,) e F’, so we obtain :0.7 6 F1.
Therefore F1 is a homogeneous submodule of F, so that a: 6 F1 implies J":1: 6
F1. Now for :r,y in F1, we have

14
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D(xy) = D($)<p(y) + ¢(J"m)D(y),

and since D(m), <p(y), <p(J"a:), D(y) all belong to F’, we have my 6 F1, which
proves that F1 is a. subalgebra containing S. Since S is a set of generators of
F, we have F C F1, which proves D(F) C F’. Corollary 1. Let 11 and 11’ be
homogeneous ideals of E and E’ respectively, and S be a set of homogeneous
generators offl. If D(S) C 11’, <p(S) C 11’, we have D(ll) C 11’, and 90(11) C
11’.

Proof. Again the latter inclusion is evident. The former is proved in a
similar manner as before, showing that the set

111={a:|a:€11, D(z)€ll’}

is a homogeneous ideal.

Corollary 2. Let F,S’ be as before. If D(S) = {0}, then
17-(1-‘7')={0}-4

Proof. In a similar manner as in the proof of Theorem 1.4, we can show
that

F2={:t:|xeF, D(m)=0}

is a homogeneous subalgebra, which proves F C F2.

Corollary 3. Let F, S be as before. If two (p-deri'uations D, D’ coincide
with each other on S, then they coincide on F.

Proof. From this assumption, D and D’ are of the same degree. Then
apply Corollary 2 to the derivation D — D’.

It follows from this corollary that a derivation D is completely determined
if its values on the elements of a set of generators are given.

Theorem 1.5. Let E, E’ be F—graded algebras, (p a homomorphism of E
into E’, and D a tp-derivation of E into E’. Also letLl and 11’ be homogeneous
ideals in E and E’ respectively such that D(il) C Ll’, and <p(Ll) C 11’. Under
these assumptions, the induced mapping D : E/ll —> E’ /11’ obtained from D
is a ¢—derivation, where a means the induced homomorphism E/ll —> E’/5.1’
obtained from (p.

4 Note that this assertion holds without any assumption on (p.

15
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If we use “commutative diagrams”5 the maps 5 and ¢ are represented
as follows:

E g E'
11:1 1 1/2'

$5E/n —» E’/11’

where 1/) and 1,!” are the canonical mappings.

Proof. From the theory of mappings of modules, it is easy to see that
5 is a linear mapping which makes the diagram commutative. The other
conditions (5 being homogeneous and satisfying (1)) are proved by direct
calculation from the definitions.

5 is called the derivation deduced from D by going over to the quotient
algebra E/LL

Hereafter to the end of this paragraph, we assume that E = E’ and (p is
the identity.

5 In a. diagram, let every vertex represent a set, and let each oriented edge rep-
resent a mapping. A directed path in a diagram represents a mapping which
is the composition of the successive mappings assigned to its edges. If, for
any two vertices, any two directed paths connecting them give the same map-
ping, then the diagram is said to be commutative. For example in the dia-
gram depicted below, for the vertices P and Q and the paths as in it, the
commutativity means f4 0 f3 0 f; o f1(z) = 95 o 94 0 ga o 92 o 91 o f1(:z:) =
f4 096 093 092 091 °f1(a:) = for every :5 e P.

P

f1 8, ‘

V
82V! ,

f2 V V

83 84
86 85

f3 f4 Q

16
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Theorem 1.6. Let D,D’ be two derivations of E of degrees 11 and V’
respectively. Then

(7) A = DD’ — (—1)""'D’D
is again a derivation. 6

Proof. It is evident that A is linear and homogeneous of degree I! + 11’.
We have only to check the condition (6) (equivalent to (2)). For D and D’
we have by (6)

DLa: = LDm + LJI’zD, D'Lg = [JD/3 + LJyn’.
Then

DD’L3 = DLD’z + DLJVIID’
= LDD’m + LJVD’zD + LDJVIED’ + LJy+ur$DD’ ,

D’DLm = D’LDg; + D’LmD
= LDIDE + LJul DZD’ + LDIMD + LMWD’D,

and then

4L1. = [DD’ — (—1)""’D’D] L.c = L4,, + LJWEA + LesD’ + Leap
Where

9 = DJ", — (—1)""'J"'D and 6’ = J"D’ — (—1)""'D’J".
Now it is sufficient to prove that 9 = 9’ = 0, i.e.,

(8) DJ", = (—1)W’J"’D and J"D’ = (—1)""’D’J".
But the former relation is obtained from the latter one by exchanging D and
D’, so we show the latter one. For a homogeneous element :1: of degree 7 in
E, D’:1: is homogeneous of degree 7 + u’, and then

J"D’.1: = (—1)"('Y+"I)D’a: = (—1)"”ID’(—1)"":1: = (—1)""'D’J":c
which proves (8). Thus our proof is completed.

Corollary 1. If 1/ or u’ is in 1"..., and in particular when U = u’ = 0,
then

[D,D’] = DD’ — D’D

is again a derivation. If both 11 and 11’ are in I'_, then

DD’ + D’D

is a derivation.

6 We omit the symbol 0 in the composition of mappings for the sake of simplicity.
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Corollary 2. If D is a derivation of degree 11 e I‘_, then D2 is also a
derivation of degree 21/ 6 1]..

Proof. If we put D = D’ in the last part in Corollary 1, we conclude that
2D2 is a derivation, and the constant coefficient 2 may be omitted, provided
that A is a field of characteristic other than 2.

However, we shall prove this assertion directly as follows. The character-
istic property that D is a derivation of some degree 11 in F. is

(9) BL. = LB. + LJzD.
Then D2 is of degree 21/ in F+, and we have

19s = DLDz + DLhD = L02. + Lmzo + LDMD + LJJIDZ.
But since D is of degree I! 6 11, we have JD = —DJ from (8), and then

D2L1 = L132.c + Ls,

which means that D2 is a derivation of degree 21/ E I‘+.

6. Existence of Derivations in Free Algebras

Let F be the free algebra with free system of generators (when over a
commutative ring A. Then F is so graded that xi is of degree 1 for every
i e I. Let E be a graded algebra over A and (p a homomorphism of F into
E.

Theorem 1.7. Assume that for each i e I, a homogeneous element y,- e
E of degree 1/ + 1 is preassigned arbitrarily, where V is a. fixed integer. Then
there exists one and only one (p-deriuation D of F into E, which is of degree
11 and satisfies D (an) = 115.

Proof. The uniqueness follows from Corollary 3 to Theorem 1.4. So we
shall prove the existence. By Theorem 1.1, the elements pa = {1.3-1 ”-31:13, form
a base of F where o = (i1, - - - , ih) runs over the set 2 consisting of all finite
sequences taken from I. We shall define 6(1),) 6 E by induction on the length
of a. First we put

(1) 6 (p00) = 5(1) = 0

for the empty sequence 00. If 6 (pa) has already been defined for every 0 with
length less than h, we set

(2) 6(1’51 ' ' 'xih) = 6 (mil ' ' ”Tin—1) 90(531'41) + (P (JV ($111 ' ' '$ih—1))y‘ih'

18
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In the case where h = 1, we have 6(a) = 3/5. From the definition, 6(1),) is
homogeneous of degree h+ V if a has the length h. For, if h = 1, 6(9),) =.y; is
of degree V+1 by assumption, and if this property has already been proved up
to h—1, the degrees of the terms on the right hand side in (2) are (h—1+V)+1
and (h — 1) + (u + 1) respectively, which are both equal to h + 11. Hence 6(pa)
is of degree h + 11.

Now we define a linear mapping D : F —» E such that D(p,) = 6(1)")
for all a e 2‘. Since (17,) forms a base of F, such D always exists and is
determined uniquely. Evidently D is linear and homogeneous of degree V.
Next we shall show the condition

(3) D(uv) = D(u)<p(v) + tp(J"u)D(v) (rm) 6 F).

We first remark that

Dwain) = D(Pa)<P(x:-) + <P(J"Pa)D(mi)
holds by (2), and then forming a linear combination of (1),), we obtain by
linearity of D, '

(4) D(uwi) = D(u)<P($i) + <P(J"U)D(mi)-
Now we denote by F1 the set of all elements 1) of F which satisfy the condition
(3) for all u in F. From (4), we have m,- 6 F1 and also 1 6 F1, for ifv = 1, (3)
reduces to a trivial relation D(u) = D(u). We shall prove that v 6 F1 implies
me; 6 F1. In fact, substituting cm in (4), we have

DWI/xi) = D(W)<P(xi) + <P(J"(W))D(xe)
= D(“)‘P(v)<P(-’L‘i) + <P(J"U)D(v)90($¢)

+ Lp(J"u)<p(J"v)D(x.~) (since 1) 6 F1)
= D(U)<P(Wi) + <P(J"10 lD(U)‘P(-”3i) + <P(Jl’v)D(1i)l
= D(U)<P(vri) + 90(J"u)D(v$i) (again by (4)),

which proves our assertion. Therefore beginning with mil 6 F1 and repeating
this process, we have pa 6 F1 for every 0 = (i1, - - - , 12h). Then by the linearity
of D, we have finally that all the elements of F belong to F1, which proves
that D is a (p-derivation satisfying the conditions of Theorem 1.7.
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CHAPTER II.
TENSOR ALGEBRAS

Tensors are usually represented by a quantity with many indices such as
Tg‘j‘fjjf. However, we avoid such a representation in these lectures not only on
aesthetic ground, but also due to a more essential reason. Tensors have indices
because of the use of bases; on modules without bases, such a representation
is impossible, while tensors can be also defined in such cases.

To define a tensor algebra, we shall use the universal algebra, then prove
the existence and uniqueness of the tensor algebra.

1. Tensor Algebras

Definition 2.1. Let M be a module 0061' the basic ring A. An algebra T
is called a tensor algebra over M if it satisfies the following universality
conditions:

1) T is an algebra containing M as a submodule, and is generated by M.1
2) For any linear mapping A of M into an algebra E over A, there is

a homomorphism 0 of T into E which extends A. This is represented in the
commutative diagram:

Theorem 2.1. For any module M over A, there exists a tensor algebra
T over M. It is unique up to isomorphism.

Proof. Uniqueness: Let T, T’ be two algebras with the above universality
properties over M. Then T I) M, T’ D M and the injection I' : M —> T'
extends to a homomorphism 0 2 T —> T’. Similarly the injection I : M —> T

1 This means that T is generated by M and 1 in the ordinary sense. See the
“Conventions” .
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extends to a homomorphism 0’ : T’ —> T. The mapping 0’ o 0 is an endomor—
phism of T, which coincides with the identity on M. But since M generates
T, 0’ o 0 is the identity mapping of T. Similarly 0 o 0’ is the identity mapping
of T’, which proVes that T and T’ are isomorphic as algebras. Therefore the
tensor algebra over M is unique up to isomorphism.

Existence: First we shall construct an algebra satisfying a somewhat mod-
ified form of condition '2), and then we shall show that this algebra also
satisfies 1). I

For a while, we forget the structure of module of M and consider M
as a mere set. In Chap. I, 1, we constructed a free algebra F over A freely
generated by the set M. To distinguish the addition, substraction and scalar
multiplication in this algebra from those of M, we denote the former opera-
tions by -i-, 4, and a - a:(ci 6 A) respectively. Therefore we remark that when
93,31 6 M, we have $41; ¢ M, rel—y 9! M, and 01-3: 9! M in general. Next, we
denote by S the set of all elements in F of the forms

(1) 564-11493 + y) (may 6 M)
and

(2) a - z;(a:c) (a E A,.’L‘ 6 M).

Let I be the ideal in F generated by 5'. Put T = F/‘I (quotient algebra),
and denote by go the canonical mapping of F onto T.

We first prove:
Lemma 2.1. The algebra T satisfies the following condition:
2’) If A is a linear mapping of M into an algebra E over A, there exists

a homomorphism 0 : T —> E such that

(3) - (9 o <p)(:r:) = Mac) for all :1: E M.

The relation (3) is represented in the commutative diagram where I means
the injection of M into F:

T

‘91. e

I

Proof. By the universality of free algebras (Theorem 1.2), there exists a
homomorphism 9 : F ‘—> E which extends A:
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Next we prove 6(5) = {0}. It is sufficient to prove that 9 maps all generators
of I upon 0. Since each generator of ‘I has the form (1) or (2), we consider
them separately. In fact,

9(mty;($ + 9)) = 9(58) + 9(11) - 9(1n + y)
(6 : F —> E is a homomorphism.)

= A(:1:) + My) — Mm + y) (6 extends A.)
= 0 (A is linear.),

and similarly we have

6((1 - m4am) = a6(:1:) — 6(ax) = aA(:r.) — Maw) =

which proves our assertion. Hence the kernel of 9 containing ‘1, 6 defines a
homomorphism 0 : T —) E and if a: E M, we have (0 o <p)(:c) = 9(2) = Mm) :

JF
ITM I/

which proves our Lemma.

Now we shall prove that T also satisfies condition 1) in Definition 2.1.
From the definition of I and T = F/CC, it is clear that the restriction of (p to
M is linear. Hence it is sufficient to prove that <p induces an isomorphism on
M, i.e.,

(4) T n M = {0}.
Although (4) may be proved directly, we shall prove it using the above Lemma
2.1. Put E = A 63 M (direct sum). Since A has a unit element 1, E is the set
of elements of the form a - 1 + x, (a E A, :t: E M). Define a multiplication in
E by

(5) (a-1+:I:)(b-1+y)=ab-1+(bx+ay) (a,b€A; 1:,yEM).

Then we have my = O for in, y E M. It is easy to verify that E is an associative
algebra over A with unit element, and the injection of M into E is a linear
mapping. Therefore we have a homomorphism 0 : T —> E such that

(6) (0 o <p)(a:) = a: for all a: e M,

by Lemma 2.1. If m e M n ‘I, we have <p(x) = 0 and then (6) asserts that
a: = 0, which proves (4).
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This proves that M and the submodule <p(M) of T are isomorphic with
each other as modules. So we identify them.2 Since T is a quotient algebra
of the free algebra generated by M, then M is also a set of generators of T.
This proves that T satisfies the condition 1). Therefore the algebra T thus
constructed is a tensor algebra over M, which completes our proof of exis-
tence.

Example 1. When M has a base consisting of only one element {x}, the
tensor algebra T over M = A2 is the polynomial ring A[:z:].

Proof. Let T be the tensor algebra over M and P be the algebra of
polynomials in X with coefficients in A. There exists a linear mapping A :
M —> P which maps :1: upon X, and we have a homomorphism (p : T —r P
which extends A. On the other hand, T being an algebra generated by 2:, an
element y E T has the form Zakzk, and

«2 (23am) = Zak(w(m))’“ = 2am.
Thus, 90 : T —> P is surjective. Also, (,0 (Z akx’“) = 0 implies 20,k = 0,
and then we must have a], = 0, which means that tp is an isomorphism of T
with P. Therefore we may put T = P = A[:1:].

2. Graded Structure of Tensor Algebras

In the above construction of the tensor algebra T over M, the ideal I is
generated by S whose elements are all of degree 1 in F. Hence defining all the
elements of M as of degree 1, the ideal ‘I is homogeneous (cf. Theorem 1.3),
and F/S = T is a graded algebra. Decomposing F and T into homogeneous
components,

F = 2F,“ and T: Zn,
h h

we have

(1) T}, = Fh/(Fh n z)
and especially,

Th=0 for h<0, To=A-1, T1=M.

Also Th is spanned as a module by the products of h elements of M.

We shall give a universality property of Th similar to that of T.

2 The identification is made possible by the following property: Given any set X,
and a set M, there is a set Y equipotent to X which does not meet M.
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Theorem 2.2. Let h 2 1 and ,6 be any h-linear mapping 3 of M" =
M x x M into a module N over A. Then there exists a linear mapping
1b of T}, into N such that

(2) ¢(x1---mh)=fl(x1,---,xh) for all ml,---,:1:h in M.

In the left hand side of (2), $1 - - - 51:}. 2'3 the product of 361, ~ - - ,1», in the tensor
algebra T.

Proof. Let .S' be the set of generators of ‘I. An element of ‘I is the sum of
a finite number of elements of the form

ansnb, (s e 5'; a,b e F),

where I: is the free multiplication in F. Hence if u 6 Fh n 5, it has the form

m

u = Zainsgnbi, (s,- E S; a;,b; e F),
11:1

and decomposing a,- and bi into homogeneous components

a.- = 2% b.- = 2b.: (an: e F]... bu e Fe),
k t

we have

u = Z agknsinbu.

i,k,l

Here a“: I: s,- 5 big is homogeneous of degree k+€+1, because 31- is homogeneous
of degree 1. On the other hand, any homogeneous element of degree It in F
is the sum of products of k elements of M. Therefore we have that
(3) any u'in F}. n I is the sum of elements of the form:

x1D---Elxkl:lsny1EI---Dy¢,

(k+£+1=h;k,£20; x1,---,a:k, y1,---,y¢ in M; sin S).

Now the set {21:1 --- EIZh | 21, ~ - - ,2}, E M} forming a base of Fh, for a given
h—linear mapping f] : Mh —> N, there exists a linear mapping l? : F}. —> N,
such that

3 A h-linear mapping means a function [3(21, - - - ,zp.) of h arguments
1:1, - - - ,wp. in M, which is linear with respect to each argument when the other
h — 1 are kept fixed, i.e., we have '

5(1131, ' ' ' ,xi—1,ami + b$i,$i+1, ' ' ' #31:) = aB(a;1, ' - ',1:i—1,-’Di,$i+1, - - - ,$h)
+bfi($1,"',$i—1,$£,$i+1,"',$h),

for a,be A;1:1,-~,:t;.,:z:£ e M;i= 1,...,h_
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IF(21I:1 uzh) = [3(21,---,zh) for all 21,---,zh in M.

Now we shall show that

(4) W(Fh n ‘1) = {0}-
In fact, by the above remark (3), it is sufficient to show that

(5) W(a:1unxku(x-i—y;(a:+y))ny1n---ny¢) =0,

and

(6) M70313 nxku(a-x;am)ny1n mm) = 0, (k+€+ 1 = h).

Since W is linear in each of its arguments, we have

sump: mnxkn(m-i-y—'~(m +y))ny1n --|:1y¢)
= W(1'1|:| - - - nmknzuylu .. - mm)

+ L303“: - - ' nmknynyln Elyg)
— W(:1:1|:I--- nxkn(a:+ y)ny1n nyl)

= fi($la""$k)x,yb”'ay€) +fi(31,“',$k,y,y1,"',y£)

_fi($1)'"v:_l:kax+yvy17"'1y€)

= 0 (because ,6 is h-linear),

and similarly we have (6), and then (4) is proved.

Thus, by (1) and (4), 117 defines a linear mapping «p of Th = Fh/(Fh n ‘33)
into N, such that W = 1p 0 <ph (here cph is the restriction of (p to Fh).
In diagrams this is represented by:

Th

M
F}.

'T:\MhfiN_

Moreover, for 21, - - ~ , Z], in M, we have

¢(zl...zh) =W(21D"'U1h) =fi(zla"'azh)s

which proves our Theorem.

Now we shall define the tensor product of modules using the tensor
algebra described above. A characteristic property of tensor products will
be given later (cf. section 4).
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Definition 2.2. Let M,N be two modules over A. We set
P = M 69 N (direct sum), and let T be the tensor algebra over P. The
submodule Q of T2 spanned by all products {mg l a: e M, y 6 N} is called
the tensor product of M and N,and denoted by M ® N. The element pg of
Q (:1: e M, y E N) is also denoted byw®y.

From Theorem 2.2, we deduce easily:

Corollary. Let there be given a bilinear (= 2-linear) mapping ,6 of M X N
into a third module R. Then there exists a linear mapping 1/; of M 8: N into
R, such that 1,1101: ® y) = fi(m,y) for every :1: e M and y e N.

We leave it to the reader to formulate a similar definition of the tensor
product M1 ® ~ - - ® Mh of h modules M, over A.

Example 2. If M has a base {11:5},eI = B, then T is isomorphic to the
free algebra on B. Therefore, a tensor is represented in the form a;,...,~h once
a base has been chosen.

Proof. Let U be the free algebra on B and again we use the notations
-l-, 4, El and a - :1: for the laws of composition in U to distinguish them from
the ones in M.

Let A : M —> U be the linear mapping which is the identity on B :

Malay-1 + - - - +ana:,-,,) = a1 -x.-,-l—----i—an-:t,-n.

Then there is a homomorphism 0 : T —> U which extends A by the property 2)
of T. On the other hand, since B C M C T, the universality property of free
algebra U asserts that there exists a homomorphism 9’ : U -> T which is the
identity on B. These relations are represented in the commutative diagram:

B M

It A ‘1
9|

U—___"_____ T

Then 0’ o 0 is an endomorphism of T and is the identity on B. Since B is
a base of M, 0’ o 0 is also the identity on M, hence on the algebra T gen-
erated by M. Similarly 0 o 0’ is an endomorphism of U and is the identity
on B, hence also on the algebra U generated by B. Therefore 0 and 0’ are
isomorphisms which are reciprocal with each other. Also since A maps M into
U1 (submodule of elements homogeneous of degree 1 in U),-T is isomorphic
to U not only as an algebra, but also as a graded algebra, which proves our
assertion. If {rm-he, is a base of M, every element in Th is of the form
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2 041...“:351 - - - 1:5,.

i1,-~,ih€I

where ail...“ e A are the components of the tensor in the familiar way.

3. Derivations in a Tensor Algebra

Now,-we consider a module M over A and the tensor algebra T = EhTh over
M. We shall prove the following:

Theorem 2.3. If A : M —> Ty+1 is a linear mapping (:2 : any integer
2 —1), then A may be extended uniquely to a derivation in T (of degree 11).

Proof. Uniqueness is obvious since M generates T. So we prOve the ex-
istence of an extension. Consider the free algebra F on the set M. Then
we can write T = F/‘l', Tu+1 = Fy+1/(Fu+1 n '33), where ‘I is the ideal in
F generated by the elements of the forms

m—l—yi-(m + y) (m, y e M),
a-x;(a:e) (aEA,xeM).

Denote by 7r : F,,+1 —> Ty+1 the canonical map in the factorization Ty+1 =
F.,+1/(F,,+1n‘I). For each a: e M, we select an element 11(3) 6 F.,+1 such that
A(:1:) = 7r(A(a:)). This defines a map A : M ——> F,,+1 'such that the diagram

M———- Tv+1A In
Fv-‘v-l

is commutative. Since M is a system of free generators of F, according to
Theorem 1.7 the map A : M —) F,,+1 can be extended to a derivation D of
F (of degree V). Now we shall show that

(1) 0(5) c s.

In fact, we have

D(m+y4(w + 11)) = D(x)+D(y)4D(x + 21) (say 6 M),
so that

(2) ”(13054-11496 + y))) = ”(D($)) + ”(D(y)) - ”(DOB + 11))-
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But now, since x,y, a: + y are in M, we have

D(m) = 11(m), D(y) = 11(9), D(-'v + y) = 11(1' + 31)-
Therefore the right hand side of the equality (2) can be rewritten as

M1“) + My) - M33 + 11),
which is zero, since A is linear. This proves that D(:I:-l-y;(:c + y)) lies in the
kernel of 1r, and therefore in ‘1. Likewise we obtain D(a - x;(a:c)) e ‘I, and
accbrding to Corollary 1 to Theorem 1.4 this proves (1). Thus D induces a
derivation d of T in such a way that the diagram ‘

D
F —> F

.1 i.
d

T —> T

(1r : F —» T canonical map) is commutative. To see that d is an extension
of A, let x e M. Then a: = 1r(:c) and

d(=v) = d(1r($)) = «(1700» = «(11(3» = Mm)-
This proves Theorem 2.3.

Tensor representation. Next, we want to make the following observation.
Let M, N be modules over A, T(M), T(N) their tensor algebras and A : M —+
N a linear map. Then, as a special case of the universality theorem for tensor
algebras, A extends uniquely to a homomorphism A : T(M) —r T(N). In the
special case where M = N, and where A is an automorphism (i.e. an invertible
linear mapping) of M, A extends to an endomorphism A : T(M) —-> T(M).
We assert that this endomorphism A is an automomhism. To prove this,
let A’ be the inverse of A. Then A’ extends also to an endomorphism A’ :
T(M) —-> T(M), and the composite endomorphism A o A’ : T(M) —> T(M)
coincides with the identity on M, so that A o A’ = identity on T(M) which
is generated by M. The same is true for A’ o A. Thus A, with its inverse A’,
is an automorphism.

Now, the restriction of this automorphism A on the h—th part Th(M) of
T(M) gives an automorphism Ah of Th(M). The correspondence A —} Ah is a
homomorphism of the group of automorphisms of M into that of the module
Th (M). This homomorphism we call the tensor representation of degree h.

Remark. Suppose M is a submodule of N, for which the injection map
M -—> N is denoted by A. Then the homomorphism A : T(M) —> T(N)
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induced by A is, in general, not an injection. However, in some special cases,
A is an injection; for example, in case where N is the direct sum of M and
some other module P : N = M QB P, or in case where both M,N are free
modules.

The following provides an example in which A is not an injection. Let
A = Z be the ring of integers, N = {0, 1,2,3} the cyclic group of order 4,
and let M = {0, 2} be the subgroup of N of index 2. Then A maps the non-
zero element 2 ® 2 of M ® M = M upon the zero element of N (8) N = N, for
we have A(2®2) = 2®2 = 4(1®1)= 0. This shows that A : T(M) —» T(N)
is not an injection.

4. Preliminaries About Tensor Product of Modules

Before considering the tensor product of semi-graded algebras, we give here
some preliminaries about tensor product of modules.

Characterization. Let M1, - - -,Mh be modules over A. Then the tensor
product P = M1 8 - - - 8 My, can be characterized in the following manner:

1) P is a. module over A into which there is a h-linear map

QIM1X---XMh—)P

such that the elements a(a:1, - - - ,azh) = m1®- - ~®mh (form; 6 M,~, i = 1, - - - ,h)
span P.
Here we say that the map a is h-linear if a(a:1, - - ~ ,mh) depends linearly on
each one of the entries 221, - - - , 2.7, when the others are fixed.

2) If fl is a. h-linear mapping of M1 x X M}, into a module Q, then.
there is a linear maptp : P—rQ such thatcpoa=fl.

Associativity and commutativity. Let M1, - - ~ ,Mk, Mk+1,--- ,Mh (1 S
k < h) be modules over A, and put P=M1®-'-®Mh, P’ = (M1®---®
Mk)®(Mk+1 ®~ - -®Mh). Then there is an isomorphism P —> P’ which maps
xl®---®mk®xk+1®'”®$h upon (9:1®---®$k)®($k+1®‘“®xh) for
onyx,- e M,- (i= 1,---,h).

Given the characteristic properties 1), 2) for the tensor product, we need
only to prove 1) that (:31 ® - - - ®mk) ® (22,,“ ® -- - ®zch) e P’ (:13,- 6 M,, i =
1, - - - , h) depends linearly on each argument, and P’ is spanned by elements of
the above form, and 2) that, given any multilinear“ map ,6 : M1 x - - - x Mh —+
Q, then there is a linear map (p : P’ —» Q such that

4 We say “multilinear” instead of “Ii-linear” when we don’t want to mention ex-
plicitly h.
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<p((:v1®---®xk)®(xk+1®~-®wh)) =fi(-’E1,"',-’Bh)-
1) is obvious. In order to construct the map (,0 : P’ -—> Q, we consider first

the mapping

($1,"' ,xk) _) [3(l ' ‘,$k, mli:+1a' " 91-h)

for each set of given values of mk+1,-- - , am. This mapping is a. k-linear map
from M1 x ... X My, into Q. Therefore, there is a linear map, say 1/)“+,,...,z,_ :
M1®~~®Mk —>Q, suchthat

¢$k+1."',zh(x1 ® ‘ ' ' ® wk) = fim’lv ' ' ' axle, $k+1a ' ' ' ’13,!)-

Now, let t be any element in M1 ® ~ - - ® Mk. For this fixed t, we consider
the mapping

(mk+1w ' ' ' axh) _’ ¢$k+l’”'a$h (t)

We assert that this is a multilinear mapping. In fact, this is true if t is of the
form t = 1:1 (8) - - - (8 wk, because in that case we have

¢zh+1,---,mh (t) = ficrla ' ' ' amk, mic-Fl, ' ' ' axh)-

Let now t = 2 am, where each t, is of the form x1®- - -®a:k. Since ¢$k+,,...,$,_ :
M1 <8) - - - (3M,c —> Q is linear, we obtain

¢2k+1wn$h (t) = Zai¢$k+11m13h (ti)-
1'

Each summand airbzk+,,...,zh (ti) being multilinear in (n+1, - - - ,wh), we can
conclude that ¢mh+1.---,w.. (t) is ,multilinear in (93k+1, - - - ,mh). Thus for given
t e M1®---®Mk, thereis alinear map '7; : Mk+1®m®Mh —» Q such that
'yt(a:k+1 ® ' ' - ® 112;.) = ¢¢k+17...,$h (t).

Similarly, we can prove that, for any fixed element u in Mk+1 ® - - -® Mh,
the mapping t —> 7:01) is linear. Thus, the mapping (t, u.) —> 7; (u) is a bilinear
map from (M1 8) - -- ® Mk) x (Mk+1 ® - - - (8' Mb) into Q and so, there is a
linear map

(p:(M1®"'®Mk)®(Mk+1®"'®Mh)—’Q

suchthat

<p(t®u)='yt(u) (tEM1®---®Mk, ueMk+1®---®Mh).

Thus, fort=x1®---®a:k, u=xk+1®---®wh, we have

90((331®"'®xk)®(xk+l®”‘®$h))=fi($ia"',$k, $k+~1,"',$h),

which proves 2). Thus our assertion is proved.
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By identifying :51 ® - - - (8)33,c ®mk+1 ®---®mh with

($1®---®$k)®($k+1®"'®1€h)

wetake

M1®~-®Mh=(M1®"'®Mk)®(Mk+1®"'®Mh)'
Let again M1, - - - , M}. be modules over A, and let 1r be any permutation

of {1, - - - , h}. Then there is an isomorphism A, of M1 ®- - -®M;. onto M,(1)®
- - - ® M1,“) such that

M0101 ®--- @0311) = 90m) ®"'®$1r(h) (mi 6 Mai = 1,"'h)-
In fact, since the mapping

(9:1, - - - NM -> 931r(1)®'-'®$1r(h)

is h-linear, there exists a linear map A, : M1®~ - -®Mh —> M,,(1)®- - -®M,,(h)
such that

A1061 ®_- - - @3311) = 931:0) ® "'®$1r(h)-
So it remains only to prove that A, is invertible. Let A; : M,,(1)®- - -®M,r(h) —>
M1 (8- - -®Mh be the linear map obtained similarly from the h—linear mapping

(x1r(1)"",-T1r(h)) —> 21 ® - - - @961.-

Then
Alr($7r(1)®"-®$w(h)) = 1:1 ® - - - ® 513!”

so that
A, o A; = identity mapping of M7,“) ® - - - ® M,,(h),
A!” o A, = identity mapping of M1 (8 - - - ® Mh.

This proves that A1,, with its inverse A}, is an isomorphism.
Remark. Identification of (w1®- - -®a:k)®(xk+1®- - ~®mh) with (1:1 ®- - ~®wh

in the case of associativity does not cause any confusion, While identification
will not be permitted in the case of commutativity. The reader must be careful
not to make the following sort of mistakes. Consider the case M1 = M2 = M,
£131,562 in M. Can we identify m2 @221 with .721 @222 in M 8) M ? No! These
two elements are by no means identical in general.

5. Tensor Product of Semi-Graded Algebras

Let E, E’ be semi-graded algebras over A:

E=E+eaE_, E’=EjreaE’_.
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Now, we shall give E®E’, the tensor product of the modules E, E’, a structure
of semi-graded algebra. To do this, we first define the multiplication in E®E’,
in terms of a bilinear map (E 8) E’) x (E 8) E’) —> E ® E’.

Since (E®E{,)$(E®E’_) = E®E’ = (E+®E’)€B(E_ ®E’), it suffices
to define four bilinear maps:

(E®E;) X (E+®E’) —, E®E’,
(E®Eq_) x (E_ ®E’) —» E®E’,
(E®E’_) x (E+®E’) —> E®E’,
(E®E'_) X (E_ ®E’) —> E®E’,

which will be well defined as soon as 4-linear maps:
Ef._xE+xE’ —> E®E’,
EixE_ xE’ —> E®E’,
ExE’_ xE+xE’ —» E®E’,
ExE’_ xE- xE’ —> E®E’,

are given. The first three maps are defined by

a: E E, y’ 6 E’,and either
I I I I mIEEIayEE+(xixiyiy)_’my®xy 01‘ 3’EE ,yEE—

or z'€E_,3/€E+
while the last one is defined by

(m,m’,y,y’) -> -(wy ®m’y’) (3 6 Ew’ e EL,y 6 E—w' G E')-*

In this way, we obtain a bilinear multiplication (E®E’)-(E®E’) C E®E’ .
Now we assert that this multiplication is associative. Since every element of
E ® E’ is a linear combination of elements of the form :1: (8 x’, where both
a: and a:’ are nonzero and homogeneous in the semi-gradations, it will be
sufficient to check the associativity of the multiplication for elements of that
form. For convenience’s sake, we set, for :1: 95 0 in E,

0 if x e E+,

6(96) = 1 if a: e E_,

where 0, 1 denote the elements of the gradation group I‘ = {0, 1}. Then We
have '

6(1‘11) = 5(33) + 8(9),
if both m,y are homogeneous , and m,y,my are nonzero. Similarly we define
e’(a:’) for any nonzero homogeneous element 2’ in E’. Then as is easily seen,
we have

(1) (2 ® 37’) - (9 ® 31’) = (-1)5'(”')5"’)($y ® sis/)5
5 See p. 12 for the definition of (—1)""I.

32



TENSOR ALGEBRAS

(a: E E,y’ E E’, m’ homogeneous in E’ ,y homogeneous in E).

Now we check the identity

(2) ((x ® w’) - (y @y'» - (2 ée z') = (x m') - «y ®y’) . (z ® a»
for 1:, y, z nonzero and homogeneous in E and m’, y’, z’ nonzero and homoge-
neous in E’.

Computing the left hand side of (2), we obtain

«as ea m’) - (y ® y'» - (2 ® 2') = (—1>"<“’>‘<~>(wy 09 m - (2 ® 2')
= (_1)5,($I)E(y)+el(m,yl)5(z) (myz ® mlylzl)

= (_1)€’(m’)8(y)+e’(m’)s(Z)+£’(v’)6(z)(xyz ® xryrzr),

while the right hand side of (2) can be reduced as. follows

(x 69 m') - «y 8» y') - (2 ® 2'» = (AW/”(we ® 2c') - (yz 69 M
= (—1)=’<v’>e<z>+€’<“’>6<w>(zyz ® m’y’z’)
= (_1)e’(y’)e(z)+e’(2’)e(y)+s’(x’)s(z) (xyz ® m/zl).

This proves the associativity of the multiplication. If 1, 1’ are the multiplicar
tive units in E, E’ respectively, then it is clear that 1 ® 1’ e E ® E’ is the
multiplicative unit in E 8) E’.

Thus E (8 E’ is an associative algebra, which is semi-graded, namely, if
we put ‘

(E o E’)+ = (E+ «a E;) e (E. o E’_),
(E 09 E’)— = (E+ ® EL) EB (57— ® E4).

then
E®E’ = (E®E’)+$(E®E’)_, and
(E ® E’)+ - (E ® E’)+ C (E ® E’)+,
(E®E’)+ - (E®E’)_ C (E®E’)_,
(E 85 E’)- - (E ® E’)+ C (E (8) E’)-,
(E®E’)_ - (E ®E’)_ c (E®E’)+.

Observe that, if E, E’ are F-graded algebrasand a fixed subgroup I‘+ of
I‘ of index 2 is given, then by the associated semi-gradations

E+_= Z E,,E_ = Z 13,,
7611}. ’16P.

/ _ I I __ Im—Zan—Zm
'16P... ’76P.
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E ® E’ is a semi-graded algebra. The associative algebra E ® E’ also admits
the following F-gradation:

E®E’ = Z(E®E’)3, where
fler

(E ®E’)p = E E1 ® E9],
1+7’=fi

of which the associated semi-gradation is just the semi-gradation of E 8) E’
given above. Direct definition of the multiplication in the F-graded algebra
E (8 E’ is given by

(a: (853’) - (y ®y’) = (—1)’7’7(:I:y ®x’y’) (:1: E E,.:1:’ 6 E11,, 3/ E E7, 3/ E E’).
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CHAPTER III.
CLIFFORD ALGEBRAS

1. Clifford Algebras

A Clifford algebra is an algebra associated to a. quadratic form f, and, roughly
speaking, the one satisfying

(1) 9:2 = f(-’L') ~1-
First we define a quadratic form without using any base of a _module.

Definition 3.1. Let M be a module over the basic ring A. A quadratic
form on M is a mapping f : M —> A such that

1) f(aa:) = a2f(s:) for all a E A, :c E M;
2) the mapping (:6, y) -+ f(:6 + y) - f(x) - f(y) = Way) 0f M X M into

A is bilinear.
Then [3 is called the bilinear form associated to f.

It is obvious from the definition that ,6 is symmetric:

mm, 11) = My, 06)
and ,8(s:,:c) = 2f(:z:).

Two elements :L',y of M such that ,B(:c,y) = 0 are said to be orthogonal
to each other. When M is a free module over A with a base :31, - - - ,xn and

n

f(-’L‘) = “25:11;) = E? + - - - + 5.2., then we have
i=1

595,?!) = m:€i$u2m$il = 2(£101 + ' ‘ ‘ +62%)-
Hence the above definition of orthogonality coincides with the ordinary one
in the n-dimensional Euclidean space.

Hereafter we suppose given a quadratic form f on M.

Definition 3.2. Let T be the tensor algebra over M, and denote by 69
the multiplication1 in T. Let c be the ideal generated in T by the elements of
the form '

1 In this chapter, we denote it this way to distinguish it from the various other
multiplications which will be considered later.



CLIFFORD ALGEBRAS

(2) gc®II7-f($)-1.
for z in M, where 1 is the unit of T.- The quotient algebra C = T/c is
called the Clifl'ord algebra associated to M and f.

If 11': T —> C IS the canonical mapping, 1r(M)1s a submodule of C', which
generates C as an algebra. Also we have

(1r(zt))2 = f(a:) - 1 if a: e M.

We remark that the kernel of 11' in M is not always 0, and we cannot
identify M and 7r(M) in general. However, if we wish to construct an algebra
satisfying (1), the universality leads to this definition as is shown in the
following:

Theorem 3.1. Assume that we have a linear mapping A of M into an
algebra F such that ()\(ar:))2 = f(2:) - 1 for all :r in M. Then there exists a
homomorphism <p of 0 into F such that

A(a:) = <p(7r(a:)), for all :1: in M.

This is represented in the diagram:

7.M——>F

.\TA/ .0
,\

Proof. The definition of the tensor algebra asserts the existence of a ho-
momorphism A : T —> F which extends A. For a: in M, we have

As s w '— f(a=) - 1) = (AW — m) - 1 = 0.
Thus the generators of c being mapped upon 0, we have A(c) = {O}, which
proves that A defines a homomorphism go of 0 into F satisfying A = ‘p 0 7r.
Theorem 3.1 follows since A is the restriction of A to M.

1c(M) C

. There exists a quadratic form 9 On 1r(M) with values in the subring
A - 1 of C, such that

= g(y) ' 1a

for all y'in 1r(M) ; moreover f = g 0 1r.

Semi-graded structure of Clifford algebras. We have shown in the pre-
vious chapter that the tensor algebra T is graded, and a fortiori, T is a
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semi-graded algebra. Since the element :1: (8a: or f(2:) - 1 is of degree 2 or 0
respectively, the elements (2) are homogeneous in the semi-gradation of T.
Decomposing T into T... EB T_, (2) belongs to T4,, and c is homogeneous in
the semi-gradation of T, which proves that C = T/c, is a semi-graded algebra.
Putting C = 0+ EB C_,C'+ (resp. C_) is generated (as module over A) by
the products of an even (resp. odd) number of elements of 1r(M), because

0+ = Z «(17.) and 0. = 2 «(Th).
h:even h:odd

If we put? = 7r(a:) for :1: e M, we have 352 = f(:z;) - 1, and then

(3) 55+ W= (MW—E —y
=f(w+y) 1-f($)-1-f(y)-1=fi(w,y)-1-

Therefore, if a: and y are orthogonal, we obtain Tit] + 51" = 0 that is:

(4) W = :5.

2. Exterior Algebras

Definition 3.3. When the quadratic form f reduces to 0, the Clifiord algebra
C’ associated to f= 0 is called the exterior algebra over M.

One proves easily, for 2:, y in M, the relations

(1) ma: = 0

and

(2) my + ya: = 0, or my = —y2:,

in the case of the exterior algebra. The generators of c reduce to :0 ® a: 6 T2
which are homogeneous not only in the semi-gradation of T, but also in the

' graded structure of T, so that the exterior algebra E = T/c has the structure
of a graded algebra.

Theorem 3.2. In the case of the exterior algebra E o'uer M, the canonical
mapping 1r of T into E is injecti'ue on M, and identifying M with 1r(M), we
may embed M into E.

Proof. The elements of c are sums of elements of the form

U®(a:®a:)®v
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where :1: E M, and u,v are homogeneous in T. If u E Th,'u 6 T1,, then
u (8 (:1: ® 1:) ® 1) belongs to Th+k+2 and this element has a degree not less
than 2 or else is equal to 0. Therefore the homogeneous components of an
element of c which are not 0 must be of degree 2 2. On the other hand, the
elements of M being of degree 1, we have c n M = {0}, which proves that 7r
is an isomorphism of M onto 1r(M).

Henceforth we identify M with its image under 1r in E. Then we have
E0 = A - 1, E1 = M. For h > 1, E, is spanned by the products of h elements
of M, i.e., by the elements :31 - - -a:h, where 1:,- e M.

3. Structure of the Clifford Algebra when M has a
Base

Let M be a module over A and f a quadratic form on M. Let C = T/c be
the Clifford algebra associated to M and f.

1°. First we consider the case M = A - a: (i.e., M is freely generated by
a single element m). As we have already proved in Chap. II, 1, the tensor
algebra T over M = A - a: is the polynomial ring A[a:], and c is generated by
x2 — f(:1:) - 1. If we denote by g the image of :1: under 1r, 0 = T/c has the form
A 63 A - § where 52 = f(§) - 1. Hence A -§ being a free module with a base
g, the canonical mapping of M into C is an isomorphism A - a: —r A - E C C.
Therefore we may embed M into C in this case.

2°. Next we consider the case where M = N 69 P (direct sum), and N
and P are orthogonal with each other, i.e.,

,B(:c,y) =0 for all m E N,y e P.

By the orthogonality property, we have

(1) f(1:+y)=f(a:)+f(y) if xeN and yeP.

Theorem 3.3. Under such conditions, let CM, CN and 0p be the Clifford
algebras o'uer M,N and P associated to f or the restrictions of f on N and
P respectively. Then we have

(2) CM = CN ® Cp (tensor product of semi—graded algebras).

Proof. Let TM,TN and Tp be the tensor algebras over M, N and P and
7TM,7I'N,7l'p the canonical mappings of TM into CM, TN into CN, Tp into
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Cp respectiv'ely. By the definition of tensor algebra, the injection mapping
(p : N ——> M can be extended to a. homomorphism (,7 : TN ——> TM, and since

$(m6133—f(x)-1)=x§x—f(x)_-1, for :L'EN,

¢ defines a homomorphism of CN into CM which will be denoted also by
(p. Similarly we have a homomorphism 1/) of 0p into CM, which extends the
injection mapping «p : P —> M.

I 1I'N
N—-—>TN—>C'N

r1 51 rl
M—>TM—>CM

I 1rM

The product cp(u)i,b('u) in CM being bilinear with respect to u 6 ON, 1) 6
Op, we have, by the characteristic property of tensor product, a linear map-
ping 0 of the-module CN (8) Op into CM such that

(3) 9(u ® 0) = MUM/1(0) (u E Cmv 6 Cr)-
By the orthogonality of N and P, we have for a: e N,y e P,

(4) 5? = *5?

where f = 7rM(<P(96)) = <p(7rN(w)) and fl = 1rM(1/1(y)) = ¢(rp(y))-
Now 0N = (CN)+ 69 (ON). (semi-graded), where (CN)+, (ON)- are

spanned by the products of even or odd numbers of elements of 7rN(N) re-
spectively. Similarly we put 0p = (Op)... €B(0p)_. By the anti-commutativity
(4), we have

{<p(a)1,b(v) = ¢(v)<p(a) if either a E (CN)+ or v e (Cp)+,

<p(u)z/J(v) = —t,b(v)<,0(u) if both u 6 (ON). and 'v e (012)-.

Here we shall show:

Lemma 3.1. The linear mapping 0 defined above is a homomorphism of
CN ®Cp into CM, i.e., 0 satisfies

(6) 0((u®v)(u’ ®v’)) = 0(u®v)0(u’ ®v’), for u,u’ 6 CN; v,v' 6 Op,

where the term in the parentheses in the left hand side of (6) is the product
of n ® 1) and a’ ® v’ in CN 8) 0;: which has been defined in Chap. II, 5.
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Proof. It is sufficient to prove that (6) holds when u, v, u’,v’ are all ho-
mogeneous in the semi-graded structure.

Putting
{0 if v e (Cp)+

n =

1 if ’U E (013)-,

5':
{0 1f uIE(CN)+

1 if u’e(CN)_,
we have (u ® 1)) (11/ ® '0’) = (—1)"" uu’ 8) vv’ by the definition of the product
in the tensor algebra (Chap. II, 5). Then we have

0((u ® v)(u’ 85 v’)) = (—1)’75’9(uu’ ® 110’)

=(—1)"€’<p(uu’)¢(vv’) by (3)
= (—1)"-€’¢(u)so(u')¢(v)¢(v')

since (,0 and 1b are homomorphisms.

On the other hand (5) is equivalent to

(5') WWW) = (—1)"E’<p(u’)¢(v),
and then

9(u ‘8 1090/ ® 0') _= <P(U)¢(U)<P(U')¢(v') by (3)
. = (-1)""<P(U)tp(U')1/1(v)¢(v') by (5').

which proves our assertion (6).

After having constructed a homomorphism 0 : CN 8) 0p —> CM, we next
construct a homomorphism in the opposite direction /\ : CM —+ ON ® Cp.
First define a. linear mapping A0 : N 63 P —» CN ® C'p by

(7) Ao(:l:+y) =1rN(:I:)®1+1®1rp(y) (:reN,yeP),

where 1 is the unit in GP or CN. Since CN ® OP is an algebra, we have

(A000 + 11))2 = (WNW) ® 1)2 + (1 ® WP(y))2 + “(1‘) ‘8 7rp(y)
+ (1 ® 7rp(y))-(7r1v(w)® 1)

and since 1rN(a:) 6 (CN)_, 7rp(y) E (Cp)_, the last two terms cancel out
with each other by the definition of the semi-graded tensor product. Also

(WNW) ® 1)2 = ("NC/0))2 ® 1 = f(1')(1 ‘8 1),
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and similarly (1 ® 7rp(y)).2 = f(y)(1 ® 1). Thus we have

(Ao($ + 21))2 = f($)(1 ® 1) + f(y)(1 ® 1)
= f(w+y)(1®1) by (1),

i.e., we obtain

(8) (x\o(2))2 = f(z)(1 ® 1) (z 6 M)-

According to Theorem 3.1, A0 can be extended to a homomorphism
A : CM —-> CN (8) Op satisfying

(9) A(1rM(z)) = Ao(z) for all z 6 M.

Let :1: in N. We remark that

(10) 9(7FN($) 8’ 1) = <P(7TN(9=))1/1(1) = 7r1w(<.0(€1¢)) - 1 = 77M(m)
by (3). Now we have by (10), (9) and (7),

(A 0 9)(7rN(w) ® 1) = r\(7rM($)) = Ao(m) = 7rxv(x) ® 1,
and similarly (A o 0)(1 ® 7rp(y)) = 1 ® 7rp(y) for y in P. But since ON 8) Op
is generated as an algebra by elements of the forms 1m (3:) ® 1 and 1 ® 7rp(y),
the homomorphism A o 9 is the identity on CN (8) Op. On the other hand, we
have by (9), (7) and (10)

(9 ° A)(7TM($ + 9)) = 6'(>\o(90 + 11)) = 9(7FN(93) 8’ 1) + 9(1 ® WP(1/))
= 7rM(:r) + 1rM(y) = 1rM(a:+y) (:r e N,y e P),

and since the elements 7rM (a: + y) generate CM, the homomorphism 0 o A is
also the identity on CM. Hence CM and CN 8) Op are isomorphic with each
other, which proves our Theorem.

3°. When A is a field K of characteristic 7e 2, and M is of dimension 2
over K, it is well known that f is represented in the form

f(§w+1_7y)= 0&2 +bn2 (ab 6 K).
'by a Suitable choice of base :3, y. If we put N = K - 2:, P = K - y, a: and
y are orthogonal, since f does not contain the term £17. Therefore we have
CM = ON 8) Op, and since N or P is generated by only one element as} or y
respectively, the considerations in 1° give now

CN=K®KIII, Cp=K$Ky.
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Thus we obtain

CM=(KGBKzr)®(K®Ky)=K€BK®Ky63Kx®K$Kx®Ky,

which proves that GM is spanned as a vector space by four linearly indepen-
dent elements 1 ® 1 = 1, 1 8) y, :1: ® 1, and :1: (8 y. The products between these
basic elements are given by the following:

(a:®1)2=a:2®1=f(:z:)-1=a-1,
(1®y)2=1®y2=f(y)'1=b-1,
(w®1)(1®y)=w®y=—(1®y)(w®1),
(since both m®1 and 1®y are of degree 1).

Putting m®1 = X,1®y = Y, we have x®y = XY, and the products are
givenby _

X2 =a, Y2 =b, XY: —YX.
This is nothing but a generalized quaternion algebra over K. In the case where
a = b = —1 and K is the real number field, this is the ordinary quaternion
algebra of Hamilton.

4°. Suppose that M has a base consisting of a finite number of elements
an, - - - , xn which are mutually orthogonal:

Mitt-£1) = 0, (1'7é i)-
It is well known in the theory of quadratic forms that, when A is a field of
characteristic aé 2, we can always find such a base.2

Theorem 3.4. Under such assumptions, M is identified with the sub-
modale 1r(M) of the Clifiord algebra CM over M. Also CM is spanned by the
linearly independent elements 32,-, - - 13,-, (i1 < - -- < ih).

Proof. Since this is proved when n = 1 in 1°, we proceed by induction
on n, and assume that this statement has already been proved for n — 1.
Put N = A31 + + Awn_1, and P = A1,. ; then N and P satisfy the
assumptions of Theorem 3.3, so we have CM E CN ® Cp. Under this isomor-
phism, 1rM(:c + y) corresponds to 7rN(:c) ® 1 + 1 ® 1rp(y) (a: 6 My 6 P). By
the inductive assumption, we can identify a: with 1rN(a:) and y with 1rp(y).
Also a: (8) 1 + 1 ® y being 0 if and only if a: = y = 0, the correspondence
M, 3 (a: + y) —>':1: ® 1 + 1 ® y = 1rM(:r + y) is an isomorphism. Thus M
may be identified with 7rM(M). Next by our inductive assumption, UN is
spanned by the linearly independent elements :rj, -- - 1:1, (1 S 3'1 < < j], S
n — 1) and OP is generated by 1 and 2:". Therefore the tensor product of
the modules ON and OP is spanned by the linearly independent elements

2 In the case of characteristic 2, such a base exists only in the trivial case where
the quadratic form f is the square of a linear form.
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xJ-l Haj-”(1 S jl < < jk S n— 1) and mjl-nmjkxm i.e., by 3&1 ---:1:¢,.
(1 3 i1 < < ih S n), which proves our assertion.

5°. In particular when M has a finite base x1,---,:c,., and f = 0, the
exterior algebra E over M has a base consisting of the 2" elements 2:51 - - - Iva.
(i1 < ' ' - < ih). In this case E is not only semigraded, but also graded, and if
we denote by E = ZEm the decomposition into homogeneous components,

in

Em is spanned by the products of m elements $51 -- aim (i1 < - - - < im). We
have Em = {0} if m > n, and E, is spanned by one element :31 - urn 76 0.
This proves that n is uniquely determined by M. Therefore if we take another
finite3 base y1,-- - ,yp of M, we have p = n, i.e., the number of the elements
of the base is invariant.

4. Canonical Anti-Automorphism

The notations A, M, f, ,6,T, c,C’ = T/c = 0+ 69 C_,7r are all as before.
Lemma 3.2. For every linear form A : M —> A, there exists a derivation

d,\ in C of odd degree , i.e., d,\(C+) C 0., and d,\(C_) C 0+, which satisfies

(1) dl(1r(x)) = Mm) - 1 for x e M,
and

(2) d: = o.

I 1r
M—>T—>.C

lA 16A ldA
I 1r

A—-—>T—>C

Proof. Since A may be considered as a linear mapping A : T1 ——> To, there
exists a derivation 6A in T of degree —1 which extends A, as was proved in
the previous chapter (cf. Theorem 2.3). We have

6A(:1: ® a: — f(1:) - 1) = 6,\(:c 8) ac) (since 6,\(1) = 0)
= 6A(a:) ®x — :1: ® 6,\(m) (6,\ is of degree — 1)
=A(:1:)-1®z—A(a:)-m®1 =A(a:)(a:—:z:) =0,

3 If M has a finite base 2:1 , - - - , 1-,, ,this property holds if we delete the word “finite”
for the base (y).
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hence 6,\ (c) = 0. Therefore 6,\ defines a derivation d,\ in C, which satisfies the
condition (1). Also 6: is again a derivation since 6,\ is of odd degree, and we
have ' '

6,30”) = 6,\(6,\(x)) = (MAW) ' 1) = M93) ' 6A1) = 0,
for a: in M, which proves (2) since 1r(M) generates C as an algebra.

Now, if for any element :1: aé 0 of M, there is a linear form A : M —» A
such that Mm) 96 0, we obtain di(7r(a;)) aé 0 and then 1r(:1:) aé 0. When A is a
field, every element :1: 51$ 0 of M satisfies this condition, and we obtain:

Corollary. If A is a field, it : M —> 7r(M) C C is an isomorphism, and
we may identify M with 1r(M) in C.

Canonical anti-automorphism. Hereafter we assume that 1r : M -—>
7r(M) C C is an isomorphism. The above corollary asserts that this assump-
tion holds when A is a field.

Theorem 3.5. There is an anti-automorphism of C of order 2, i.e., a
linear mapping a —> a satisfying as = on, and fi = a, which leaves the
elements of M fired.

This mapping is called the canonical (or main) anti-automorphism of 0.

Proof. Let C" be the “opposite algebra” of 0, La, 0’ be an algebra with
the same structure of A-module as C, and a multiplication given by u x v =
on (u,'v E C). Ifa: e M, we have xxx—f(m)-1 = xm-f(m)-1 = 0 and then the
injection of M into C" can be extended to a homomorphism C' 3 a —> E e C'
by the universality of the Clifford algebra. This homomorphism is linear and
satisfies

(3) —v=axt=ta

and also E = x, for a: E M. Taking the mapping ‘ again on (3), we have
fi = fi = i? which proves that a —> fl is a endomorphism of G. Since
a: = f holds for a: e M, the map a —> i is the identity of C, and then
u —-> E is an involution. Hence a —> E is an isomorphism of 0' onto C", Le,
an anti-automorphism of C.

For m1,m2,- - - ,1», in M, we have

(4) xlxz...xh=xh...m2§1=$h...m2xl'

When f = 0 (the case of exterior algebra), we can interchange terms in
the right hand side of (4) by the anti-commutativity xy = —ya:, and then we
obtain

m= (.1)(h—l)+(h-2)+----2+1.,,31,,,2 . umh = (.1)h(h—1)/2L,,1:,;2 . . '27»
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Now, since E, is spanned by the elements 11:1 - - ah, we have

(5) a = (—1)h(h"1)/2u. for all u e Eh.

In the case of exterior algebra, (5) can be taken as the definition of the
canonical anti-automorphism u —> H. We can prove directly that u —» fl
defined by (5) satisfies the conditions of the canonical anti-automorphism,
using the property:

no = (—1)hkvu, for u E Eh, v e Ek.

5. Derivations in the Exterior Algebras; Trace

_In the case of an exterior algebra, we have the decomposition into homoge-
neous components T = 2Tb, E = ZEh in the Z—gradation.

h h

Lemma 3.3. If a linear mapping (p _: M —> E, can be decomposed as work
with a linear mapping 1/) : M —> Th, and the canonical mapping 1r : T}, —> Eh,
there exists a derivation d of degree h—1 in E, which extends go. It is uniquely
determined.

The above condition on <p is always satisfied when M is a free module,
or when A is a field, or when h = 1 since T1 = E1.

Proof. The uniqueness follows. from the fact that a derivation is uniquely
determined by its effect on the generators of an algebra.

We shall prove the existence. Since M = T1, there exists a derivation 6
in T of degree h — 1 which extends 1/1, by Theorem 2.3. Let a: be in M. We
have then

(1) 6(a: ® 11:) = 6(a) ® :6 + (—1)h‘1x <8) 501:): 1/)(x) ® a: — (—1)h:1: ® 1/)(w)

and operating by 1r on (1), we obtain

«(5(1‘ 69 96)) = 90(5”) ~76 - (-1)"r - <P(w) = 0
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since 90(3) 6 Eh, a: e E1, and 1r(x) = :1: for a: e M. Since the ideal c generated
by 1: ® :1: (a: E M) in T is the kernel of 7r, then 6 defines a derivation d of E,
which extends (p.

:\M I 18/5;Y‘L

KM
Eh ‘

Corollary. Any endomorphism of M = E1 can be extended to a uniquely
determined derivation of degree 0 in E.

Now let 3(M) be the set of all endomorphisms of M. Then 3(M) is again
a module over the basic ring A, and indeed it is also an algebra. For every
element (,0 e 3(M), we have a derivation do of degree 0 in E by the above
corollary.

Lemma 3.4. The derivation dw depends linearly on (p, i.e.,

(2) daqp+bqp’ = adv + halt] (a, b 6 A; 90, ¢’ 6 SW»,
and for the “bracket operation” [<p,<p’] = <p<p’ — cp’cp, the following holds

(3) dlzp,<p’] = [dwadtp’l(= d‘pdw’ — d‘p’dwl-

Proof. Since the proof of (2) is similar, we shall prove (3) only . The right
hand side of (3) is again a derivation of degree 0 in E, since do is of degree
0. It is therefore sufficient to prove that both sides of (3) coincide on the
generating set M of E. In fact, for :1: in M, we have

timings) = [n <P’](x) = (‘P‘P' - <p’tp)(m) = <p<p’(w) — <P’<P(w)
= d¢(‘PI(-'L‘)) _ dw’(‘P($)) = dwdso’ (1') _ dw’dtp($)
= (dwd‘p’ — dwdwxx),

which proves our assertion.
Now we assume that En is a free module of rank 1 for some integer n, and

En, = {0} if n’ > n. For example, this property holds if M is a free module
with a base of n elements. Let g be a generator of En, that is En = A - 5.
Since d‘p maps En into En, we have

dipé = 3<p€a

where s“, is a uniquely determined element of A, which does not depend upon
the special choice of g.
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Definition 3.4. The scalar s“, is called the trace of the endomorphism (p
of M and is denoted by Trgo.

Lemma 3.5. The map (,0 —> Trip is linear in 3(M) and

(4) Tr w’ = 11‘ cp’<p-
Proof . The former is evident from (2). For the latter, we have by defini-

tion, ‘
dwd‘p’é = d<p(3<p’£) = s¢’(dtp€) = slP’slpé

and similarly
d‘pld‘pé = swswg.

But since we have assumed that A is commutative, we obtain

swsvz’ = sw’sw
and therefore we have

(TNW' _ ‘PI‘Pllg = d¢¢’—w’v§ = (dqodqf _ dwdolg
= (sws‘p — s¢s¢:)§ = 0

which proves (4).

Remark. By (4) we have, for example,

Tr tpsofcp” = Tr<p”<p<p’ = Tr tp’<p”sp-
But an equation like 'I‘r<p<p’<p” = ’I‘rcp’<p<p” is false in general. Also cp —+ Tup
is not a homomorphism of algebras of 3(M) into A.

When M is a free module with a base 9:1, - - - ,mn, any element <p of 3(M)
is represented by a square matrix (a,,-) of order n, such that

n

900%) = Zajimj-
i=1

We shall show that the trace defined above coincides with the classical one
defined as the sum of diagonal elements of a matrix. In our present case, we
have E, = Accl - - - as” so we may take g = x1 - - «on. Then

(Tr <P)€ = dwé = d¢($1---wn)
=(d‘pm1)a:2---:z:,, + 11:1(d¢:1:2)1:3- uxn + - - - + x1---xn_1(d‘,:1:,,)

= Z$1"'$k—1‘P(xk)$k+l"'$n
n n= 231 . - (2%) mm - -

i=1
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since dq, is a derivation of degree 0. But, since xua: = :tma'u = 0, for a: E M,‘
and u homogeneous in E, we have

n

—1 (2mm) mk+1---mn = akkwl mm]: - ~21; = akké
i=1

which proves that

(Tr 90K = (2disk) E,
k=1

i.e., Trcp = all +022 + " ' +0411".

Our definition of the trace is intrinsic: it is evident that Tr <p is determined
by (,0 only and does not depend upon the special choice of a base.

6. Orthogonal Groups and Spinors (-a Review)

Let K be a field of characteristic p(2 0), and V a finite dimensional vector
space over K. Also let f be a quadratic form on V, [i the associated bilinear
form. We assume that fl is non-degenerate, i.e., ,6(:r,yo) = 0 for all a: E V,
implies yo = 0. We denote by C the Clifford algebra associated to V and f.

Definition 3.5. An automorphism s of V is said to be orthogonal with
respect to f ifs leaves f invariant, i.e.,

f(s:1:) = f(:c) for all a: e V.

We use the terminology “orthogonal transformation” instead of “orthog-
onal automorphism”. The set of all orthogonal transformations is a. group
which is called the orthogonal group of f and denoted by _0(f).

Definition 3.6. The set F of all u in C, such that v has an inverse u‘1
and

uVu‘1 C V,i.e.,u:w,_1 E V for all :1: e V,
is a group under multiplication, which is called the Clifi'ord group of f.

If u belongs to the Clifford group I‘ of f, 3,, : :1: —> tutu—1 is an orthogonal
transformation, because

f(8u($)) 1 = (Su(x))2= (mm 1)2 = “962“"1 = u(“a") ' 1)u_1 = f(m) '1-
Hence the correspondence x : u ——> su is a linear representation of P, which
is called the vector representation of 1". The kernel of this representation is
the set of invertible elements in the center of C.
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. If s is an automorphism of V, it is represented (in a' given base of V)
by a matrix whose determinant is taken as the determinant4 of 3. If s is
orthogonal, we have det s = :|:1. The set

{s€0(f)|dets=1-}
is a subgroup of 0(f), which is of index 2 unless the characteristic p of K is
2. When 1): 2, we have dets = 1 for all s e 0(f).

Let C = 0+ (B C. be the homogeneous decomposition of 0' in the semi-
graded structure and put F+ = F n 0.... We define 0+(f) as follows:

if 'p¢2,0+(f)={s60(f)Idets=1},
(1) {

if P = 2,0‘L(f) = {X(u) | u E F+}-

It can be proved that in both cases, {x(u) | u e 1"} coincides with.‘
0+(f), and 0+(f) is a subgroup of 0(f) of index 2.

Let u —> u be the canonical anti-automorphism constructed in 4. We
can prove that ‘uu 6-K - 1 for every u E I‘"'. Putting flu = A(u) - 1,
A Is a homomorphism of 1"+ into K* ,where K* is the multiplicative group -
of non-zero elements In K. The kernel F+ of this homomorphism A'18 called
the reduced Clifi'ord group. Also we denote by {2 the 1mage of IE" under the
vector representation x, and call it the reduced orthogonal group.

When K is IR, the real number field, and f(x) = f (2L1 ,-x.-) = £3 +
- - + 5,2; (positive definite), 0+ (f) is the ordinary special orthogonal group.

It is well known that 0+(f) is not simply connected if n 2 3 ; the Poincaré
group of 0+ (f) is actually of order 2 when n 2 3. Also we have {2 = 0+(f)
and x : F5" —> .0 = O+(f) is a covering mapping.

We now return to the general case. A linear subspace W of V is called
totally singular if the restriction of the quadratic form to‘W is the zero
quadratic form on W. All maximal totally singular subspaces of V have the
same dimension, and the common dimension is called the index of f. It is
evident thatf 1s of index 0 if and only if there is no x 75 0 with f(x) 0. We
quote without proof the main result about these groups:

If the index off is not 0, we have5

(2) ' 0mm 2 K*/<K*)2.
4 See chapter IV, 3 for an intrinsic definition of the determinant.
5 K" denotes as above the multiplicative group of elements aé 0'1n the field K, and

(K*)2 the subgroup of squares
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Moreover .Q is the commutator subgroup of O(f) except when K has only two
elements, dimV = 4 and f is of index 2. If furthemore n = dimV 2 3, {2
is the commutator subgroup of 0" (f). Also when n = dimV = 2, 0+(f) is
abelian, and its commutator subgroup consists only of {e}.

On the other hand, the structure of {2 when the index of f is 0 is quite
unknown.

Now we assume that V is of even dimension, namely 2n, and let .121 , - - - , 1:”,
311, ' - - ,yn be a base of V. Suppose that f can be reduced to the following
form:

(3) f (E{in + 2mm) = ZEflh-G
i‘I

When K is algebraically closed, every quadratic form whose associated bilin-
earform ,8 is non-degenerate can be reduced to this form. 0n the contrary,
if K is not algebraically closed, such a reduction is not always possible, as
shown by the example of the quadratic form .52 + 172 over the real number
field. Under these assumptions, the Clilford algebra C is isomorphic to a full
matric algebra and has the dimension 22", while 0+ is of dimension 22n‘1.
There is a minimal left ideal 11 in C, of dimension 2". For u E C, 11 is stable
under left multiplication by u and then the transformation Au : g -> ufi is
a representation of 0'. Moreover u —» Au induces a faithful representation
of F(C C'). This is called the spin representation of the group F, and the
elements of 11 are called spinors.

The origin of this name is as follows. When E. Cartan classified the simple
representations of all simple Lie algebras, he discovered a new representation
of the orthogonal Lie algebra. But he did not give a specific name to it, and
much later, he called the elements on which this new representation operates
spinors, generalizing the terminology adopted by the physicists in a special
case for the rotation group of the three dimensional space.

The spin representation of F is simple except when K has only two ele-
ments, n = 1 and f is of index 1. Also the spin representation of 1"+ is the
sum of two simple representations.

Assume now that 11 is homogeneous in the semi-graded structure of C',
i.e.,

(4) 11=11+®11_, where fli=flnCi.

This corresponds to the decomposition of the spin representation of F+ into
two simple ones, and each of them is called the half spin representation. Each
half spin representation is of degree 2“‘1.

6 It is then customary to say that the quadratic form is hyperbolic (or split).
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When 'n > 2, the kernel of each half spin representation is of order 1 or
2. On the contrary, if n = 2, i.e., if V is of dimension 4, it is not so. This
corresponds to the fact that the rotation group of dimension 4 is not simple.
When n = 2, let A1, A2 be the kernels of the two half spin representations
of IE" ; we have

F+ = Al - A2 (direct product),

and the spin representation of I? splits into two parts. Then Al operates on
11+ and fixes Ll- , while 42 operates on 11- and fixes 5.1+. The representation
Au(u 6 A1) produces all automorphisms of determinant 1 on 11..., and then
each of Al and Ag is isomorphic to the multiplicative group of two-by-two
matrices of determinant 1.

Similar considerations hold for quadratic forms in an odd number of vari-
ables. For instance, consider a quadratic form in three variables of the type

(5) f(Ew+ny+CZ) =€n+€2-
Then the corresponding reduced Clifford group is isomorphic to the group
of two-by-two matrices of determinant 1, and covers the special orthogonal
groups in three variables.

When K is R, the real number field, a quadratic form cannot always be
written in the form (3) as we have remarked above. But if we extend K to
the complex number field C, the representation as (3) is possible, and the
real quadratic form f is extended to a complex quadratic form. This may be
an answer to the question why the spinors in the Euclidean space are usually
treated using the complex number field.
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CHAPTER IV.
SOME APPLICATIONS OF
EXTERIOR ALGEBRAS

1. Pliicker Coordinates

Let K be a field, V a finite n—dimensional vector space over K, and E the
exterior algebra over V. The decomposition into homogeneous components of

E is denoted by E = ZEm. If an, - - - ,a:,, is a base of V, the (7:) elements
m

13,-, ~--a:,-m (i1 < < im) form abase of Em.

Definition 4.1. An element a of Em is called decomposable if a is the
product of m elements of V.

Any element in Em is the sum of a finite number of decomposable ele-
ments. We remark that aa = 0 if a is decomposable.

Let W be an m—dimensional linear subspace of V with a base y1,~ - - ,ym.
By the canonical mapping of W into V, the exterior algebra F of W is
naturally isomorphic to the subalgebra of E generated by W, and the ho-
mogeneous component Fm of degree m in F is therefore contained in Em.
On the other hand, Fm is of dimension 1, spanned by yl - - -ym. Thus to any
linear subspace W in V of dimension m, there corresponds a 1-dimensional
subspace of Em, namely Fm. Conversely, if Fm is a 1-dimensional subspace
of Em spanned by a decomposable element, we have an m-dimensional linear
subspace W, such that the homogeneous component of degree 711. of the ex-
terior algebra over W is Fm. Also we haves = 0 if, and only if a: E W. In
fact,let3,/1,---,ym beabaseofW. Ifwe Wandm960,wemaytakea:=y1,
and by F = K{y1---ym} we have myl - - -ym = 0, and then m = 0. Con-
versely, if :1: ¢ W, the m+1 elements :0, gm, - - - , y,n being linearly independent,
they are part of a base of V, which proves 'xyl - - -ym aé 0. Also we have:

Theorem 4.1. The elements .721, - - - ,xm of V are linearly independent if
and only ifml---xm 75 0 in E.

Also the family of all m—dimensional linear subspaces of V, and the fam-
ily of 1-dimensional subspaces of Em which are spanned by decomposable
elements, correspond in a one—to—one manner with each other. If we take a
base x1,---,xn of V, we have
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2/1 - - - ym = E 0131.4,”i ‘ - ' aim, 015,1...1'". E K

i1<---<im

for a base y1,- - - , ym of W. The ratios of various a;,...,-m’s are invariant if we
take another base yi,---,y§n of W, since y1---ym is a base of Fm.

Definition 4.2. These ratios of airflim ’s are called the Plficker coordi-
nates of W.

Since the base of Fm is decomposable, the Pliicker coordinates cannot
be chosen freely, but must satisfy some identities. For example, if n = 4 and
m = 2, the identity reads:

0120134 + 0131024 + 0123014 = 0-

2. Exponential Mapping

Let V be a finite dimensional vector space over the field K, n its dimension
and E the exterior algebra of V. We shall define the exponential mapping in
E. The ordinary exponential function is defined by the power series

2:2 mm(1) expm=1+x+§+---+m+-~.

For a: e E, we may consider the multiplication in E to define 9:2, 1:3, - - ., and
if :1; is a homogeneous element of degree > 0, we have m’" = 0 for sufficiently
large m. But it will cause a difiiculty to define expa: by (1), because of the
factor A unless the characteristic of K is 0. So, we shall proceed in anotherm! ’
way. If a: is decomposable, we have x2 = 0 and then expa: may be defined
simply by 1 +113. If we restrict ourselves to elements a, b, - - - of even degree, we
have the commutativity ab = ba, and we may expect the “addition theorem”
of exponential function:

(2) exp<a + b) = (exp a)(exp b).
Hence exp :1: may be defined through decomposing a: into a sum of decompos-
able elements. However, in order to assert the uniqueness of this definition,
we shall begin with proving some lemmas.

Lemma 4.1. If a: e Eh,h 2 1,2 aé 0, then there exist h derivations
d1,---,dh of degree —1in E such that d1 - --d;.(:c) 75 0.

Since K is a field, we may even assume that (11 - - -dh(a:) = 1 by multiply-
ing by a suitable scalar.
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Proof. Let y1,-- -,y,1 be a base of V. Since the elements y“ ---y,-,, (£1 <
--- < in) form a base of Eh, we can write

(3) $= Z a(i1"”1ih)yfi “'yip.’ a(i11"'aih) EK-
i1<---<ip.

Since :3 aé 0, there is at least a sequence of indices (51, - - - ,ih) such that
0161," 37;.) 7E 0. Now for each u = 1, - - - , h, there exists a linear form A” on
V such that

(4) Au(y;u) = 1 and Au(y,-)E0 for all iaéty.

By the extension theorem (see Lemma 3.3), there is a derivation d,, of degree
—1 which extends A". We have by the definition of a derivation,

d.,(y.-1 ...y,-,_) = (d.,(y.-1))y.-, "'yih — yii(dll(yi2))yia ' "315.. + ‘ "
+ (_1)h_lyii ' ' ' yin—1(dv(yih))'

But (4) shows that d.,(y,-) = Ay(y,-) aé 0 only if i = L, and then we obtain

du(yi1”'yih) = 0 if iv 93 {i11"',ih}'
When i, e {11, - - 0 ,z‘h}, namely 3,, = i,, we have

tin/(11:1 Wyn.) = (—1)"1yi1 will; - - We,"
where the symbol A above 1%, means that this factor should be omitted from
the product. Then we have

tMm) = Zia(i1,---,ih)ys1-~z7;---yz-,.,
where the summation is taken over the family of indices such that

i1<---<ih, iue{i1,---,ih}.

By successive applications of dy, we have

(11 - - -dh(.'1:) = i061, - - - in),

by usin_g, (3), since d1 - - -d;,(y1-1 --- ya.) vanishes unless (121,- - - ,z'h) contains all
i1, - - - ,ih. This proves our assertion since we have assumed that

ai1,---,ih)¢0.

Lemma 4.2. An element :1: e E has the property that (1(1) = 0 for every
derivation d of degree —1 in E, if and only if a: 6 E0.
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. Proof. It is evident that :1: e E0 implies d(:z:) = 0 for every derivation d
of degree —1. For the converse, we shall prove the oontraposition, i.e., the
proposition that if :1: ¢ E0, then there exists a derivation of degree —1 such
that d(:1:) 76 0. Let :1: = Eh an, be the homogeneous decomposition of 2:.
Since :1: 9! E0, we have an integer h 2 1 such that an, aé 0 and w,- = 0
for i > h. By the above Lemma 4.1, we have a derivation d of degree —1,
such that d(:1:;,) aé 0. Since d(:co) = 0 and d(a:) = d(:v1) + - -- + d(mh) is the
homogeneous decomposition of d(m), we have d(:r) 9E 0 from d(a:h) aé 0, which
proves our statement.

Lemma 4.3. If a is decomposable of degree 2 2, and d is a derivation of
degree —-1, we have ad(a) = 0.

Proof. Putting a = xb, where :1: e V and b is again a decomposable
element of degree 2 1, we have d(a) = d(a:)b — xd(b), and then

ad(a) = xbd(:1:)b — mbzrd(b) = d(:r:)a:bb i wmbd(b) = 0,

since $3: = 0, bb = 0.

If the degree of a is even and the characteristic of K is not 2, this lemma
can also be proved from d(aa) = 0.

Lemma 4.4. Let a1, - - - ,ak be decomposable elements of strictly positive
even degree, such that a1 + - - - + a;c = 0. Then we have

(5) 2 “51042 ' ' ' air:- = 07
i1<-"<im '

for every integer in such that 1 S m S k.

Proof . We first remark that the case m = 2 is easily settled unless the
characteristic of K is 2. In fact, we have a? .= 0, and agaj ‘= aJ-ag, because
the ai’s are decomposable elements of even degree. Hence we obtain

0: (a1 +---+ak)2 = za§+2agaj =2Zagaj,
s igéj 1<j

and then the constant factor 2 can be removed, provided that the character-
istic is not 2.

But we shall give a proof which is valid in the general case. Putting

u= 2 as; main,
i1<---<im

it is sufficient by Lemma 4.2 to show that d(a) = 0 for every derivation d
of degree —1. Since the a,’s are all of even degree, they commute with any
element in E. Thus we have
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(1(a) = Z [d(a’il )a’iz I I ' aim + a’i1d(ai2 )ais ' ' ' aim

i1<m<im

+ ' ' ' + an "'aim_1d(aimll
= Z [aiz"'aidn)+ailais“'aimd(ai2)

i1<"‘<im

+ ' ' ' + ai1"'aim_1d(aim)l
= Z aj1---ajm_ld(a.-)

J'1<~--<J'-m_1
iEU1r~-.jm_1l

k. w) (W)
j1<...<jm_1 i=1

— Z aj1---ajm_1d(a.->.
j1<"'<jm—1

iE(j1.---,j1n—1)

|| A M 3::

But since Zd(a,-) = d(2 ai) = 0 by our assumption, and a;d(a,,-) = 0 by
Lemma 4.3, we have d(u) = 0 which proves our statement.

Now we shall give the definition of the exponential mapping on the space
F of elements with homogeneous components of even degree:

F=E2®E4$---€BE2h$---.

First we define expa = 1+a if a. is decomposable. For any element u e F,
it is possible in at least one way to represent 11, in the form u = a1 + - - - + (1],
where each a; is decomposable and of even degree, because each E2}, has a
base consisting of decomposable elements. Then we define

(6) expu= (1+a1)(1+a2)---(1+ak).

While the decomposition u = a1 + - ~ -+ a), into decomposable elements is not
unique, exp u is determined uniquely by u. Precisely speaking, if we represent
u in two ways

u=a1+---+ak=b1+---+bg,
where a, and bj are decomposable, we have

(7) (1 + a1)(1 + a2) - - - (1 + ch) = (1 + b1)(1 + b2) - - - (1 + be).

In fact, putting ak+1 = —b1,-- -, ak+¢ = —b¢ we have (11 +0.2 +- - - +ak+¢ = 0,
where 04, - - - ,ak.” are all decomposable. Then we have by Lemma 4.4 that

(5) Z ai,---a.,-m=0 for 1_<_m5k+l.
1.'l.<"‘<i'rn
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The expression (1 +a1)(1 +0.2) - - - (1 +ak+¢) can be expanded by the “polyno-
mial theorem” since the ad’s are mutually commutative, and all terms except
1 vanish because of (5). Thus we obtain,

(8) (1+a1)---(1+ak)(1—b1)---(1—bg) = (1+a1)(1+a2)---(1+ak+¢) = 1.

On the other hand we have (1 + bj)(1 -— b,-) = 1 —— b? = 1, since bj is decom-
posable. Multiplying by (1 + b1)(1 + b2) - - - (1 + b,) both sides of (8), we have
(7), since (1,, bj are mutually commutative.

Definition 4.3. The mapping u -> expu defined above is called the err-
ponentz'al mapping of F into E.

It is evident from the definition that expu satisfies

(2’) exp(a + b) = (exp a)(exp b) (a, b E F).

In particular when the dimension of V is even, namely 2m, we take a base
111, ' - - ,yzm. Let F be a homogeneous element of degree 2. The homogeneous
component of degree 2m of exp I‘ is a multiple of y1 - - - ygm, namely

(ep)2m=Pp-y1---ygm, PFEK-

Definition 4.4. Pp is called the Pfaflian of 1" E E2.

If I‘ is represented as a sum of m decomposable elements1 of degree 2,
putting 1" = a1 + - - - + am, we have

ep‘=(1+a1)---(1+a,,,),

and expanding the right hand side by the polynomial theorem, the term
of degree 2m is merely a1---a,m. On the other hand, using the polynomial
theorem for 1"" = (a1 + + am)“, and noticing that a? = 0, we have
1"" = mlal - - ~am, which proves

(9) m!(exp I‘)2.,,, = 1"".

If the characteristic of K is 0 or relatively prime to m!, we obtain

(9’) (exp F)2m = I‘m/ml.

3. Determinants

Let V be a finite n—dimensional vector space over K. Any endomorphism s
of V is extended uniquely to an endomorphism S, of the exterior algebra E,

1 This condition is always satisfied according to the theory of skew-symmetric
forms, but here we merely assmne it.
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which is homogeneous of degree 0. Since E7. is of dimension 1 and S, (En) C
En, there exists a-uniquely determined scalar A, such that

(1) 3,2 = 4,2 for z e E".

Definition 4.5. This A, is called the determinant of the endomorphism
s and denoted by det s.

The classical properties of the determinant are easily proved from this
definition. For example, we shall show:

Theorem 4.2. 1° (det s)(det s’) = det(s o 3’).
2°. det s 76 0 if and only if s is an automorphism of V.

Proof. 1°. Let 3,3’ be two endomorphisms of V. Then S. o 3,: is an
endomorphism of E which coincides with 3,0,, in V, and thus we have
S, 0 3,1 = 5°31 since V generates E. Therefore, for z 6 En, we obtain

4,0812: = Saos’z = (S, O SSI)Z = S,(A,IZ) = A,I(S,Z) = 481432,

which proves our assertion, since K is commutative.
2°. If:1:1,---,.1r:n is abase of V, E" is spanned by mlu-mn and we have

(2) Am ~ - - mu = Ss(a=1 - "$11) = 5:031) ' - . so.) = 8(291) - ' - 8(mn),
since S, is a homomorphism. Therefore by Theorem 4.1, det s aé 0 if and only
if s(a:1), - - - , s(:r,,) are linearly independent, and in turn this is equivalent to
the fact that s is an automorphism of V.

Now, if we write
71—

8($¢) = Zajixj,
i=1

we have

Asxl ---:1:,, = s(:r:1) - - - s(:1:,,) = (2011-13) - - - (Zajnwj)

= 2 “£11 "‘ai,.nmi1"'-Tin-

But an, - - - min = 0 if there exists a pair of indices such that in = i, (u 9E 11),
and when the indices (121,- - ~ , in) are all distinct, we have 33,-, -- mm" =
sgn(i1,---,z',,)(:z:1---a:,,), where sgn(i1,---,in) is +1 or —1 according as
(l1, - - - , in) is an even or odd permutation of (1, - - - , n). Thus we obtain

A331 ' ' '1'" = E 04'11 ' ' 'ainnsgn(i1a ' ' ' ain)xl ' ' 'xn
1'19"“)3-1:
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which proves that

(3) det 8 = det(a.j,-) = nn(i1,- ' ' {13700411 ' ' ' 0.5"”,

where the summation is taken over all the sequences (i1, - - - ,z‘n) such that
h, - - - , in are all distinct. This shows that det 3 may be expressed as a poly-
nomial with coefficients :l:1 in the afi’s.

Now, let U be a vector space of Zn dimensions over K ; we assume
that U is given as the direct sum of two n—dimensional linear subspaces V
and W: U = VéBW. Let x1,---,m,. and y1,---,yn be bases ofV and W
respectively. Taken together they form a base of U. We define a bilinear form
,6 on U x U by setting

(4) ,6(.’L'i,$j) =fi(yi1yj) =0, 16(xiayj) =fl(yjaxi) =61'j (7')]. = 1v"')n)'

Then ,6 is a symmetric non-degenerate bilinear form on U x U, satisfying
fi(V, V) = MW, W) = {0}-

The set of all linear forms on V is again an n—dimensional vector space
over K which is called the dual space of V and denoted by V*. In our present
case, for any y E W, the functional over V defined by

(5) MM) = Way). for as e V,

is linear, and belongs to V*. Since Aw (1:5) = 6.3-, the mapping A : y —+ A1,, is
a linear isomorphism of W onto V*. Therefore we may identify W and V*
with each other.

If s is an automorphism of V, we can define an automorphism ‘s of V“
by

(‘sA)(a:) = Mam).

‘ We have easily (‘3)‘1 = ‘(s‘1) and this automorphism of V" is denoted by 3.
Since V* is identified with W, 3 is also an automorphism of W. Then there
exists an automorphism Ha of U which coincides with s on V and 3 on W
respectively. We shall prove the following:

Theorem 4.3. We have det H, = 1.

We first prove the following:

Lemma 4.5. Consider

n

9=E$i®yi
i=1
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which is an element of degree 2 in the tensor algebra over U. Then H, ea:-
tends to an automorphism of the tensor algebra over U, and this extended
automorphism leaves 6 fixed.

Proof of Lemma 4.5. What we have to prove is the identity
n n

(6) 283:.- 69% =2m¢ ®ys-
i=1 i=1

Since we have identified V* with W, putting

813i = Zakixk,
k=1

we have by (4) and (5)

[3(mi,t3yk) = (tsAkxi) = Aydsxi) = WWW/k)
n

= “lat = 5(931', Edwin")-
j=1

This implies

TI

(7) tsyk = Z akjyj,
i=1

which proves that the matrix corresponding to ‘3 is the transposed matrix of
the matrix corresponding to 3. Applying 3 to (7), we have

n.

yk. = 2011:4390,
i=1

and then

11 n n

2 337i 69 3w = Z akimk ® 3.111 = 2 (wk 8? Zaki(3yi))
i=1 i,k Ic=1 i=1

n

= z 17,6 ® yk:
k=1

which proves (6).
Now we return to the proof of det Ha = 1. Since the exterior algebra EU

over U was defined as a quotient of the tensor algebra over U (see Chap. III,
2), we denote the canonical image of 6 in EU by I‘. Then F is represented
by
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n

F = 2353);.

12:1

By Lemma 4.5, the automorphism E, of EU which extends H. leaves I‘
fixed. Then 2, leaves exp I‘ invariant, because the exponential mapping is
defined intrinsically in the exterior algebra. More precisely, since any, and
25(xiyi) = s(x,-)§(y,~) are decomposable and sum to P, we have

exp F = (1 + x1y1)(1 + 962112) - - ‘ (1 + wnyn)
= (1 + Es($lyl))(1 + 2.9032312» ‘ ' ' (1 + 25(0),.97.»
= 28((1 + $1311)“ + $292) ' ' ' (1 + $111171» = 25(exP F)-

Hence 2'}, leaves also invariant the component (exp 1")2n of the highest di-
mension of exp 1". On the other hand, I‘ being the sum of n decomposable
elements, we have

(exp F)2n = 113191132312 - ' 'xnym.
as we remarked at the end of section 2, and this is a basic element in (EU)2,..
Therefore we have by the definition of the determinant

(det' Hexmlyl ' ' 'mnyn) = 2801:1311 ' ' ' xnyn)

= $1311 ‘ ' ' xnym

which proves det Ha = 1.
Theorem 4.4. Let U, V,W be as before. If a is an automorphism of U,

which leaves V and W invariant, and if we denote by av, ow the restrictions
of a to V and W respectively, then

det o = (det av)(det aw).

Proof. This theorem follows from EU g By (8: Ew, but we shall give a
simpler proof. Let 11:1,- - ,mn and y1,- - -,y,. be bases of V and W respectively.
We denote by E the automorphism of EU which extends a. By definition of
the determinant, we have

270131 ' - -mn) = (detav)(wl - --mn),
since EV is generated by 271, - - - ,1», in EU and 2(Ev) C Ev. Similarly we
have

E(y1~-yn) = (detaw)(y1---yn),
and then.

(det0)(x1---xny1---yn) = 2(21 - - ~mny1 - --yn)
= 2(31 - - -wn)E(y1 ' - '11..) = (det 0v)(a=1 - - ‘ wn)(det aw)(y1 - - - yn)

= (detav)(detaw)($1---xny1Wyn).
which proves our statement.
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Corollary. The determinant of an automorphism s of V is equal to the
determinant of its transposed one: det ‘3 = det s.

Proof. The automorphism H. of U which coincides with s on V and E
on W satisfies the conditions of Theorem 4.4. Then we have, from the two
theorems above, that

(det s)(det§) = det H. = 1.

On the other hand (det§)(det 1‘3) = 1, because 3 = (‘8)‘1, which proves our
assertion.

4. An Application to Combinatorial Topology

As an application of the theory of exterior algebras, we shall give a proof of
a fundamental property of combinatorial topology: that the boundary of a
boundary is 0.

Let {Pa} be a set of “vertices”. We construct a vector space V of which
the Pa’s form a base. Any element of V is a 0-dimensional chain in the
homology theory. Now a simplex a is ordinarily defined as a set of a finite
number of vertices, namely a = (Pal, - - - ,Pah) with an orientation which
makes a a skew-symmetric symbol. This law of orientation is quite the same
one as in the exterior algebra; it is appropriate to represent the simplex
o = (Pal, - - - ,Pah) by the element Pa,1 - - oPah in the exterior algebra Ev
over V. A p—dimensional simplex is of degree p + 1 in Ev. Next we define the
boundary operation. There exists a linear form 6 on V such that 6P0, = 1 for
all (1. Then we have a derivation d of degree ——1 in EV which extends 6. If
we apply (1 to a simplex o = (13.11,” -,Pa,_), we have

do = (dP¢,,,)Pc,,2 ---Pa,. —- P¢,,,(dP,,,,)P.,,3 - - - Pub

+ - - - + (—1)"'1Pa, ---P,,,_,(dpa,)
=13”...t —Pa1Pa3'-'Pa,. +...+(_1)r-1pal...fia

+...+(_1)h-1pa1...pah_1.

”pa”.,.

This expression coincides with the ordinary definition of the boundary oper-
ation. So, we define the boundary operation by d. Then d being a derivation
of odd degree, d2 is again a derivation and the property

«1201.) = d(dP..) = «1(1) = 0,
proves d2 = 0. Hence the boundary of a boundary is 0.
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Although there are many other interesting applications of the exterior
algebras, we omit them because of limitation of time. We only mention an
application to physics; the equations of Maxwell in the theory of electro-
magnetism may be represented elegantly using the exterior algebra of differ-
ential forms.2

2 See Erich Kfihler, Bemerktmgen fiber die Maxwellschen Gleichungen, Hamburg
Abhandlungen, 12 (1938), pp. 1-28.

63





The Algebraic Theory
of Spinors



INTRODUCTION

When E. Cartan classified the simple representations of all simple
Lie algebras, he discovered a hitherto unknown representation of the
orthogonal Lie algebra g, which could not be obtained from the repre-
sentation on the vectors on which 9 operates by the classical operations

' of constructing tensor products and decomposing them into simple (or
irreducible) representation spaces. Cartan did not give a specific name
to this representation; it was only later that, generalizing the terminology
adopted in a special case by the physicists, he called the elements on
which this new representation operates spinors. The simplest case of a
spin representation is the one which presents itself for the orthogonal
Lie algebra in 3 variables; this Lie algebra is well known to be isomorphic
to the special unitary Lie algebra on 2 variables, which shows that it
has a faithful representation of degree 2: this is its spin representation.
Similarly, the fact that the orthogonal Lie algebra in 6 variables is
isomorphic to the special unitary algebra in 4 variables reflects a
special property of the spin representation of the first one of these
algebras.

In his book, Legons sur h théorie des spineurs,‘ Cartan recognized the
connection between the spinors for a quadratic form Q and the maximal
linear varieties of the quadratic cone of equation Q = 0. This connec-
tion is similar to the one which exists between subspaces of a vector
space V and certain elements (the decomposable ones) of the exterior
algebra over V: while every maximal linear variety on the cone Q = 0
is represented by a spinor, determined up to a scalar factor, not every
spinor is correlated in this manner to a linear variety. Those which are
we call “pure spinors”; in his book, Cartan indicates that it is possible
to construct quadratic equations in the coefficients of an arbitrary
spinor which give necessary and sufficient conditions for the spinor to
be pure. '

lE. Cartan, Logan: surlathéorio des spineurs (Paris: Hermann et Cie., 1938), 2
volumes.



INTRODUCTION

The construction of the notion of spinor given by Cartan was rather
complicated. In their paper,2 R. Brauer and H. Weyl gave a much
simpler presentation of the theory, based on the use of Clifford algebras.
We follow their method in the present book, but we complete it by a
simple construction of the pure spinors and of their relation with linear
varieties on the cone Q = 0. In particular, we obtain a parametric
representation, of the pure spinors which is valid for all basic fields,
while their characterization by the quadratic equations of Cartan
breaks down for fields of characteristic 2.

The present book is oriented towards the algebraic and geometric
applications of the theory of spinors; the author’s lack of competence
is the main reason for the complete absence of any application to
physical theory. One of the most elegant purely mathematical applica-
tions is the one to the principle of triality in 8-dimensional space; we
have devoted to it the last chapter of the present book, including a
construction of the Cayley-Dickson algebra of octonions. We have not,
however, included the description of the close connection which exists
between the principle of triality on the one hand and, on the other
hand, the exceptional Jordan algebra of dimension 27 and the five
exceptional Lie groups; interesting as they are, these topics would
have taken us too far away from the main subject of this book. In
Chapter I, we establish those basic results in the theory of orthogonal
groups which are to be of use in the remainder of the book; however,
we have nOt included there the main result of the theory, namely, that
the factor group of the commutator group of the orthogonal group
by its center is simple when the index of the form is > 0; for this result
we refer the reader to the book Sur les groupes classiques by J.
Dieudonné.a

3R. Brauer and H. Weyl, “Spinors in n Dimensions,” American Journal of Mathe-
matics, 67 (1935), 425.

'J. Dieudonné, Sur les groupes classiques (Paris: Hermann et Cie., 1948).
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PRELIMINARIES

l. Terminology
Throughout this book, with the exception of Section 4.2, we shall

use the following conventions. The word “algebra” will mean “algebra
with a unit element”; the symbol 1 will be used freely to denote the
unit elements of the various algebras encountered (although unit
elements may sometimes be denoted by specific symbols other than 1).
We shall say that an algebra A is generated by a subset S of A when
no proper subalgebra of A contains S and 1, i.e., when {1} U S is a
set of generators of A in the usual sense. By a homomorphism of an
algebra A into an algebra B, we shall mean a homomorphism in the
usual sense which, furthermore, maps the unit element of A upon that
of B. .

A representation of an algebra A (respectively: of a group G) on a
vector space M is a homomorphism of A (respectively: G) into the algebra
(respectively: group) of endomorphisms (respectively: automorphisms)
of M. We say that p is simple if M a5 {0} and if the only subspaces
of M which are mapped into themselves by all operations of p(A)
(respectively: p(G)) are {0} and M. If, in addition, it is true that the
only endomorphisms of M which commute with all operations of p(A)
(respectively: p(G)) are the scalar multiples of the identity, then p is
called absolutely simple. If M can'be represented as a direct sum of
subspaces 95 {0}, each of which is mapped into itself by the operations
of p(A) (respectively: p(G)), and is minimal with respect to this property,
then p is called semi-simple. If this is the case, andM is finite-dimensional,
then M may also be represented as the direct sum of subspaces M1 , - - - ,
M,. such that, for each i, the restrictions to M.- of the operations of
p(A) (respectively: p(G)) give a simple representation p.- of A (respec-
tively: G). We shall then say that p is equivalent to the “sum” of the
simple representations p.- , and we write p E p; + - - - + p). . If h > 1,
then we say that p “splits” into the representations p, , - - - , p. . If p’
is any simple representation of A (respectively: G), then the number of
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indices 1' such that p. is equivalent to p’ is uniquely determined, and
the sum of the spaces M.- relative to these indices is uniquely deter-
mined. In particular, if the representations p. are all inequivalent to
each other, then the spaces M. are uniquely determined.

When 8 is an operation on a set M, we shall frequently denote by
s-a: (instead of s(z)) the transform by s of an a: e M.

2. Associative Algebras
We shall make a frequent use of the theory of finite-dimensional

associative algebras; for an exposition of these results and their proofs,
we refer the reader to a book by Jacobson.1

3. Exterior Algebras
We shall make use of a certain number of results on exterior algebras,

which we indicate here.
Let M be a vector space over a field' K, and E the exterior algebra2

of M. For any h 2 0, the products of h elements of M span a subspace
E. of E, and E is the direct sum of the spaces E. (h = 0, 1, . - -). The
elements of E. are called homogeneous of degree h; those among them
which are representable as products of h elements of M are called
decomposable. Assume now that M is of finite dimension m; then E...
isofdimensionlandE. = [0} forh > m;if(x., ,2...)isabaseof
M, then x. A A xmisabase ofE. . Ifh S m, then the products

xiaAn'Axl'A’ il<"'<iksms

form a base of E. . Any ideal I ;£ {0} ofE contains E... . For, let u =
u. + u... + + u..beanelement 95 OofI,withu.¢E,.,u,. 9! 0;
write '

“A = 200.1 , "' 13-013“ A "' A xii ,

where (131 , - - - , :3.) runs over the strictly increasing sequences of h
integers between 1 and m, and let (j. , - - - .j.) be a sequence such that
c(j. , - - - , j.) 75 0. Letlc. , ~ - - , 16..-. be all integers between 1 and m
not occurring among j. , - - - , j. ; then it is easily seen that

wk. A "' Axk-_.Au

=00” iii)“. A Axkn—lix A A17“

lN. Jacobson, The Theory of Rings (New York: The American Mathematical
Society, 1943).

’See N. Bourbaki, Elements de mathématique, Paris: Hermann et Cie., Algebra
Chapter III (1947); or C. Chevalley, Theorie des groupes de Lie (Paris: Hermann et
Cie., 1951), II, Chapter I. [Editor’s note] see also the first part in this volume.
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and the right side is an element 75 0 of E. because

(33h) "' :zku-ehy "' :13.)

is a base of M.
Any linear mapping f of M into a vector space M’ over K may be

extended, in a unique manner, to a homomorphism F of E into the
exterior algebra E’ of M’; and F maps E, into the space E; of homo-
geneous elements of degree h of E’. In particular, any endomorphism f
of M may be extended to a homomorphism F of E into itself. If
dim M = m, ere E, , then we have F(e) = (det f)e.

Let g be a linear form on M. Then there exists a uniquely determined
antiderivation 6, of E such that 8,-x = 9(2) - 1 for all a; e M. The opera-
tion 6, is homogeneous of degree — 1; i.e., it maps any E. into E»: y and
1 upon {0}. We have 6,” = 0; if g, g' are linear forms and a, a’ scalars,
then we have 6., = a8, , 6,", = 5, + 6,. , 8.6,. + 8,: 6, = 0.

Let M* be the dual space of M, and E* the exterior algebra of M*.
Then, for each h, there exists a canonical bilinear form (u, u*) -—)
(u,'u*) on E. X E*,,, which defines an isomorphism of E", with the
dual of E. . Let s be any endomorphism of M, and ‘8 the transpose of s,
which is an endomorphism of M* and maps any linear form 2* 2 M*
upon the linear form a; —> (:c“, 8-2:) = Ia:*(s-:c). Let S. , 8*, be the re-
striction to E. , E*, of the homomorphisms of the algebras E, E* into
themselves which extend s, 8*; then we have (u*, [Sh-u) = ' (S*,, -u*, u)
for any u e E. , u*e E*,.
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CHAPTER I

QUADRATIC FORMS

'l.l . Bilinear Forms
Let M and N be vector spaces over the same field K. A. bilinear form

on M X N is by definition a mapping B of M X N into K with the
following propertyzfor every x e M, the partial function M: y —)B(:c, y)
is a linear function on N; for every y e N, the partial function in: :c ->
B(:c, y) is a linear function on M.

This being the case, we see immediately that the mapping A: a: -> A.
is a linear mapping of M into the dual space N* of N, While the mapping
u: y —) p, is a linear mapping of N into the dual space M* of M. We
shall say that )x and M are the linear mappings associated to B on the
left and on the right. Every linear mapping A of M into N* is associated
to the left to a uniquely determined bilinear form B, given by

30:, y) = (K(x))(y)-
Similarly, any linear mapping of N into M* is associated to the right
to a uniquely determined bilinear form.

Let P be a subspace of M. Then the set of elements y e N such that
B(:c, y) = 0 for all a; e P is obviously a subspace P’ of N, which is called
the right conjugate space of P (with respect to B). Similarly, if Q is any
subspace of N, the set of elements a: e M such that B(:c, y) = 0 for all
y a Q is a subspace Q’ of M, called the left conjugate space of Q. The
following relations are obvious:

P C (P’)’ for any subspace P of M,

Q C (Q’)’ for any subspace Q of N,
(P1 + P,)’ = P’l n P’, if Pl , P, are subspaces of M,

(Q; + Q2)’ = Q’; 0 Q', if Ql , Q2 are subspaces of N.
The form B is called nondegenerate if we have M’ = {0}, N’ = {0};

this amounts to saying that the linear mappings A, u introduced above
are one-to-one.
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If B is any bilinear form on M X N, and a: e M, y s N, then the value
of B(:e, y) depends only on the classes 5 of a: nlodulo N’ and y of y
modulo M’; if we set 3(5, 7) = B(:c, y), then B is obviously a non-
degenerate bilinear form on the product (M/N’) X (N/M’).

Now assume that M and N are both finite-dimensional and denote
their dimensions by m, n. If B is nondegenerate, then A is an isomorph-
ism of M with a subspace of N*, and u an isomorphismof N with a
subspace of M*. But N* is of dimension n, and M* of dimension m;
it follows that m S n, n 5 m, whence n = m. Now, if we drop the
assumption that B is nondegenerate, then we see that M/N’ and
N/M’ have the same dimension; their dimension is called the rank
of the bilinear form B.

1.1.1. Let B be a nondegenerate bilinear form on the product of two
m-dimensional vector spaces M and N. If P is a p—dimensional subspace
of M, then its conjugate P’ is of dimension m —' p, and (P’)’ = P; if Q
is a q-dimensional subspace of N, then Q’ is of dimension m — q and
(Q’)’ = -

The linear mapping x associated to the left to B is an isomorphism
of M with the dual N* of N, and P’ is the set of solutions of the linear
equations A,(y) = 0 for all a; a P. Since A maps P upon a p—dimensional
subspace of N*, P’ is of dimension m -— p. We prove in the same way
that Q’ is of dimension m — q; in particular, (P’)’ is of dimension
m — (m —' p) = p and contains P, whence (P’)’ = P; we see in the
same way that (Q’)’ = Q. ‘

We shall be mainly interested in bilinear forms B on the product
M X M of a finite-dimensional vector space M by itself. Let (2:, , - - -
x...) be a base of M, and set bi, = B(a:,, sci). Then, clearly, we have

3(2 (1,-3.- , z a’;x;) = Z bfiaialf .
-1{-1 i Li-l

The matrix B = (b.-,) is called the matrix of the form B with respect to
the base (a; , - - - , z...); its determinant is called the discriminant of B
with respect to the base (:cl , - - - , x..). It is clear that any (n X n)-square
matrix with coeficients in K is the matrix of some uniquely determined
bilinear form on M X M. Let (:c*,, - - - , 3*...) be the base of the dual
M* of M dual to the base (:421 , - - - , x...) of M. The notation being as
above, we have

#21014) = bu ,
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QUADRA'I’IC FORMS

whence

#2: = '2; butts;

B is therefore also the matrix which represents It with respect to the
bases (2:, , , x...) of M and (x*,, -- - , 3*.) of M“. Since the rank r
of B is the rank of the linear mapping :4, r is equal to the rank of B.
Then, a necessary and sufficient condition for B to be nondegenerate
is for its discriminant (with respect to any base) to be 96 0.

Let (1111 , - - - , y...) be any other base of M. Write

y, = '23 tin-17: ;

and let T be the matrix (t,,). Then we see immediately that the matrix
of B with respect to the base (3/, , - - - , y...) is 'T.B.T., where ”1‘ is the
transpose of T. Its determinant is the product (det B) (det T)”.

We shall be interested mainly in bilinear forms B which are symmetric,
i.e., such that

30:. y) = B(v, 2')
for any 2:, y in M. Moreover, in the case where K is of characteristic 2,
we shall be interested only in those bilinear forms B for which

B(:c, :c) = 0

for all a: e M. Such a form is usually called alternating. In the case of
characteristic 2, the condition of being alternating implies the symmetry,
for the relations B(:c, z) = B(y, y) = B(:t + y, a: + y) = 0 imply
B(:c, y) + B(y, 2:) = 0. We shall make the convention in that case to call
symmetric only those bilinear forms which are alternating.

If B is symmetric, the distinction between left and right conjugates
disappears, and we shall therefore simply speak of the conjugate of a
subspace of M.

A subspace P of M is called isotropic if it has an element 75 0 in
common with its conjugate P’, and totally isotropic if P C P’. To say
that P is isotropic is to say that the restriction B, of B to P X P is
degenerate; to say that P is totally isotropic is to say that B, = 0.
An element a: e M is called isotropic if B(1:, 2:) = 0. If P is a subspace
of M, every element of P n P’ is isotropic; if K is of characteristic 2,
every element of M is isotropic.

1.1.2. Let. B be a nondegenerate symmetric bilinear form on M X M,
M of finite dimension. If P is a nonisotropic subspace of M, P’ is non-
isotropic and M is the direct sum of P and P'.
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Let m and p be the dimensions of M and P; then P’ is of dimension
m — 1). We have P n P’ = {0} and (P’)’ = P, which shows that P’
is not isotropic; since dim P + dim P’ = dim M and P n P’ = {0},
M is the direct sum of P and P’.
1.2. Quadratic Forms

Let M be a vector space over a field K. A quadratic form on M is by
definition a mapping Q of M into K which has the following properties: -

(a) Q(ax) = 2Q(:I:) (a e K, a: e M).

(b) The mapping (2:, y) -+ Q(x + y) — (2(3) - 001) is a bilinear form
B on M X M.

We shall say that B is the bilinear form associated to Q. It is clear
from the definition that B(y, x) = B(a:, y) for any 2;, y c M. Moreover,
we have Q(2z) = 4Q(z) by (a), whence, by (b),

B(:c, :c) = 20(x).

It follows that B(:c, z) = 0 if K is of characteristic 2; B is therefore
symmetric.

If there is given a quadratic form Q on M, we shall call conjugate of a
subspace P of M the conjugate of P relative to the bilinear form B
associated to Q; and we define similarly the notions of isotropic spaces,
totally isotropic spaces, and isotropic elements.

The restriction of the mapping Q to a subspace N of M is a quadratic
form on N whose associated bilinear form is the restriction of B to
N X N. If this restriction is the zero quadratic form on N, then we say
that N is totally singular. Any 2: a M such that 0(a) = 0 is a called
singular. -

1.2.1. Any totally singq subspace N of M is totally isotropic. If
the characteristic of K is s6 2, any totally isotropic subspace is totally
singular.

Ifx, yzN,wehave:c +y¢Nand

B(x. y) = 0(2 + y) - Q(w) -_Q(y) = 0,
which proves the first assertion. The second one follows immediately
from the formula B(x, x) = 2Q(:c).

Let M’ be the conjugate of the whole space M. If K is not of character-
istic 2, M’ is totally singular. If K is of characteristic 2, we have Q(:c + y)
= Q(:c) + Q(y) for x, y c M’, from which it follows immediately that
the set M’o of singular vectors contained in M’ is a vector subspace of
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M’. Assume that M is finite-dimensional; let m, m’, We be the dimensions
of M, M’, M’o . Then m — m’ is the rank of B. The number m -— m’o is
called the rank of Q, and m’ — m’o is called its defect. The defect is 0
if K is not of characteristic 2.

We shall now assume that M is finite dimensional.

1.2.2. Let Bo be any bilinear form on M X M. Then 1: —> BO (1:, x) is
a quadratic form‘ on Q, and any quadratic form may be represented in this
manner. '

We have Bo (ax, are) = a’Bo (x, x) if a e K, and Bo (x + y, a: + y) —
BO (:6, :c) - Bo (y, y) = Bo (:e, y) + Bo (y, x), which proves the first
assertion. Now, let Q be any quadratic form on M, B its associated
bilinear form, and (:1:1 , - - - , x...) a base of M. Let b,-,- = B(:e.- , x,); then,
clearly, we have

0(21 0:33;) = 21 aicvi) + 2 (150'i - (1)
,_ a- I'<i

We may define a bilinear form B0 on M X M by the formula

30(2 ail}.- , Z alixg) = 2 a;a’.-Q($;) + z aid/5b“ .
i-l i-l i-l i<i

It is then clear that Q(:e) = Bo (:c, x).
If K is not of characteristic 2, we may take, in I.2.2, Bo = % B.

I.2.3. Let K’ be an overfield of K, MK' the vector space over K’ deduced
from M by extending the basic field to K' and Q a quadratic form on M.
Then there exists a uniquely determined quadratic form on M” which
extends Q. Its associated bilinear form is an extension of that of Q.

Let Bo be a bilinear form on M X M such that Q(:e) = BO (3:, z).
Then B0 may be extended to a bilinear form 3’.) on Mm X MK'. For,
let (2:1 , - - - , x...) be a base of M; then it suflices to take for B’o the
bilinear form on MI" X MK' whose matrix with respect to (x, , - - - , 2,.)
is the same as that of Bo . The formula Q’(x) = B’o(:c, x) then defines
a quadratic form on MK' which extends Q. If a quadratic form Q’1 on
MK' extends Q, its associated bilinear form clearly extends B. Making
use of formula (1) above, applied to Q’1 , where a, , ~ - - , a, are allowed
to run over K’, we see that there exists only one quadratic form over
MI" which extends Q.

Two quadratic forms Q, Q, on vector spaces M, M1 over K are called
equivalent when there is an isomorphism a' of M with M. such that
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Q, («r-x) = Q(:c) for all a: e M. This clearly implies that B, (or-x, 0-1;) =
B(:c, y) for any x, y s M, if B, B1 , are the associated bilinear forms to
Q1 Q1 -

1.3. Special Bases
We shall denote by Q a quadratic form on a finite dimensional vector

space M, and by B the bilinear form associated to Q. Two vectors 1:, y
in M are called orthogonal to each other if B(x, y) = 0.

I.3.1. If K is not of characteristic 2, then M has a base composed of
mutually orthogonal vectors.

We prove this by induction on the dimension m of M. If m = 0,
there is nothing to prove. Assume that the statement is true for spaces
of dimension m — 1. If Q = 0, then the statement is trivial. Assume
that Q 75 0, and let x, be a vector such that Q(:c1) 95 0; let N be the
conjugate space of Km, . It is clear that N is of dimension _>_ m —- 1;
since Q(:v1) 9'5 0 and K is not of characteristic 2, B(:c, , 2:1) s5 0, and
z; is not in N. We conclude that M is the direct sum of Km, and N,
and that dim N = m — 1. Thus, there is a base (2:, , - - - , x...) of N
composed of mutually orthogonal vectors. Then (2:, , $2 , - - - , x...) is a
base of M composed of mutually orthogonal vectors.

Any base of M whose vectors are mutually orthogonal is called an
orthogonal base.

I.3.2. Assume that the bilinear form B is nondegenerate. Let N be a
totally isotropic subspace of M of dimension r. Then there exists a totally
isotropic subspace P of dimension 1' such that N n P = {0} and N + P
is not isotropic. If (an - - - ,.x,) is a base of N, and P has the properties
stated above, there is a base (111 , - - - , 21,) of P such that B(x.- , y,-) = 5‘,
(1 S i, j S r). If N is totally singular, then P may be taken to be totally
singular. Let R be the conjugate space of N + P. If N is maximal in the
set of totally singular subspaces, then we have Q(:c) 75 0 for every 2; 76 0
in R.

Let p be any integer 2 0 and < r; suppose that we have already
constructed p vectors yl , - - - , y, with the following properties:
B(x:,y.-) = inforl S i S 131 Si 5 mthespacespanned byyx. ---,
y, is totally isotropic and is totally singular in case N is. The conjugate
of the space spanned by the z,’s for i s5 p + 1 is of dimension m — r + 1,
if m = dim M (by I.1.1.), while the conjugate of N is of dimension
m — 1'. Thus, there is a vector :1; such that B(y, as) = 0 for i 75 p + 1,
B(y, :c,+l) 95 0, and we may obviously assume that B(y, xv”) = 1.
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Since N is totally isotropic, any 1/ a y + N has the same properties as
11. Let b, = B(y, y.) for i S p and

9

y’=y—Z;b.-x.-;
then 31’ has the same properties as y and is further orthogonal to
yr, ,y,.Ifc2K,thenwehave

B(ylv _ ”9+1 1 y, _ 639“) = B(y’a y') _ 26)

Q(y, _ at“) = Q(y,) + 020(1),“) '— C.

If K in of characteristic 75 2, then we may choose 0 such that y’ — at,“
is isotropic. If K is of characteristic 2, any vector is isotropic. Thus, we
may always select 0 in such a way that 31,,+1 = y’ -- at,“ is isotropic.
If K is not of characteristic 2, this implies that Q(y,+1) = 0. If K is of
characteristic 2 and N totally singular, then Q(a:,+,) = 0 and we may
take 0 such that Q(y,+1) = 0. It is clear that

Ben. .21....) = 6.... (1 s i g r)
and that

Bum/i) =0 (1 Si,j$p+l),
which shows that the space spanned by y; , - - - , y,” is totally isotropic.
If N is totally singular, then Q(y.) = 0 (l S i S p + l), and the space
spanned by y, , - - - , y,” is totally singular.

At the end of this construction, we obtain r vectors y; , - - ° , :11. such
thatB(:c¢ ,y,) = 6,, (1 S i,j S r) andthespaceP = Ky, + + Ky,
is totally isotropic; moreover, P is totally singular if N is. We have

3(1): ,2 ail/i) = as (1 S ‘i S 7))
i-l

which implies that y; , - - ' , yr are linearly independent and that P has
only 0 in common with the conjugate N’ of N; this in turn obviously

implies that N + P is not isotropic. Let R be its conjugate; then M is
the direct sum of N + P and R (1.1.2). If N is totally singular and R
contains a z 96 0 such that Q(z) = 0, then we have B(2, 1:) = 0 for every
1: eN, whence Q(:c + z) = Q(:v) + 0(2) + B(z, :c) = 0 and N + K2 is
totally singular. This concludes the proof of 1.3.2.

1.3.3. Assume that B is nondegenerate and that there is an 2: ;£ 0 in M
suchthatQ(x) = 0. ThenforanyaeK,thereisazeMsuchthatQ(z) = a.

It follows from 1.3.2, applied to N = Kx, that there is a y a M such
that Q(y) = 0, B(:c, y) = 1. We then have Q(:c + ay) = a.
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1.3.4. Assume K is algebraically closed. Denote by m the dimension
ofMandnamaximaltotallg singularsubspaceofM.IfBisnon—
degenerate, N is of dimension [m/2] (integral part of m/2). If we assume
further that K is of characteristic 2, then m is even.

The notation being as I.3.2, assume that N is maximal totally singular.
Let 2, z’ be vectors in R; since K is algebraically closed, we can find
elements a, a’ not both 0 of K such that

Q(az + a’z’) = a’Q(z) + aa'B(z, 2') + GHQ“) = 0'
It follows that as + a’z’ = 0, and that R is of dimension 0 or 1, whence
m = 2r orm = 2r + 1. Assume thatm = 2r + 1, and lets be an element
75 0 of R. Since 2 belongs to the conjugate of N + P but not to that of
M, we have B(z, z) 5'5 0, and K is not of characteristic 2.

Still assuming that K is algebraically closed, we see that, if m is even,
Mhasabasecchn- ,x,,g,, ,g,) suchthat

0(2 (aex‘ + bat/9) = g; “ab.“ 2 (1)

while,ifmisodd,Mhasabase (x1, ,x,,y1, ,y,,z) suchthat

0(2-31 (an-17; + belle) + 02) = ‘21 Gabi + 02- (2)

These results are valid under the assumption that Q is of maximal
rank m equal to the dimension of M and has defect 0 if K is of character-
istic 2.

1.4. The Orthogonal Group
We shall denote by Q a quadratic form on a finite-dimensional vector

space M over a field K; we shall assume that the associated bilinear
form B of Q is nondegenerate.

A linear mapping s of M into itself is called orthogonal (relative to Q)
if we have Q(s-z) = Q(:c) for all x e M. It follows immediately that
B(s-x, s-y) = B(a:, y) for all x, y a M. Thus, if s-a: = 0, then we have
B(:c, g) = 0 for every y e M, whence a: = 0; this shows that any ortho-
gonal mapping is an automorphism of M. It is clear that the orthogonal
mappings form a group; this group is called the orthogonal group of Q
and will be denoted by G.

A vector-space isomorphism s of a subspace N of M with a subspace
P is called a Q-isomorphism if Q(s-x) = Q(:c) for every n: e N; this
implies that B(s-a:, s-y) = B(:c, y) for z, y a N.
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1.4.1. The assumptions and notation being as stated above, every
Q—isomorphism of a subspace N of M with a subspace P may be extended
to an operation of the group G.

We proceed by induction on the dimension n of N. Our statement is
obvious for n = 0. Assume that n > 0 and that the statement is true
for subspaces of dimension n — 1. Let U be an (n -— l)-dimensional
subspace of N. The restriction of s to U may be extended to an opera-
tion so a G’. Let s’(x) = so“s(s(x)) for :c 2 N. Then 8’ is a Q-isomorphism
of N which leaves the elements of U fixed. If 8’ extends to an operation
8’, e G, then 803’, is an element of G which extends 8. Thus, we see that
we may assume without loss of generality that 8 leaves the elements of
U fixed. Let 25 be the set of subspaces V of M with the following property:
3 may be extended to a Q—isomorphism of V + N, leaving the elements
of V fixed. Let V, be a maximal element of 23, and s, the Q—isomorphism
of N, = V, + N which extends s and leaves the elements of V, fixed.
Let P, = s,(N,), U, = _V, + U; if U, = N, , then s, is the identity and
the statement is obvious. If not, let x, be an element of N, not in U, ,
and y, = s,-:t, , whence N, = U, + Km, , P, = U, + Ky, , Q(x,) =
Q(%)-

Assume that we have elements 2, z’ e M with the following properties:
2 is not in N, , z’ is not in P, , z’ - z is in the conjugate space U’, of U, ,
B(z’ , y,) = B(z, x,), Q(z) = Q(z’). Then we may extend s, to an iso-
morphism s, of N, + Kz with P, + Kz’ which maps 2. upon 2’ . We shall
see that s, is a Q-isomorphism. Any 2: a N, is of the form u + ax, ,
u e U, , a 2K, and s,-:e = u + ay, . Since B(z’ — z, u) = 0, B(z, 13,) =
B(z’ , y,), we have B(z, 2:) = B(z' , s,-a:); on the other hand, we have
Q(:o) = Q(s,-:e), whence, for b e K,

Q(bz + m) = b’Q(Z) + 193(2, x) + (2(3)
= b’Q(Z’) + bB(z’, 81-96) + 0(81-2) = Q(bZ’+ 81%),

which proves that s, is a Q—isomorphism.
Let H be the conjugate of the space K(z, — 31,); if z e H, then we

have B(z, :c,) = B(z, y,). Applying the above considerations with
z' = e, we see that it follows from the maximal character of V, that 2
lies in N, or in P, , whence H = (H n N,) U (H n P,). WereH n N,
and H n P, both 75 H, then there would exist elements 2, e H n N, ,
z', eH n P, such that z, is not inH n P, and 2’, not in H H N,; z =
z, + 2’, would then be an element of H not belonging to N, U P, ,
which is impossible. Thus, H is contained in one of the spaces N, , P, .
If N, = M, then we are through. If not, we see that H, which is of

80



OUADRATIC FORMS

dimension dim M — 1, is identical with one of the spaces NI or Pl ,
which shows that z, — y; is orthogonal to at least one of 2:, , yl . But we
have 3(31 , $1) = B(y1 , 111); thus; BC”: ’ $1 — 1/1) = B(lli — x1 1 1/1)
and both at, and y; are in H. It follows immediately that N, = P, = H.
Let 7. be an element of M not in H, whence B(z, 2:1 — y;) 75 0. Then it
is clear that M = H + Kz = N1 + Kz. We shall construct an element
2’ with the properties stated above; 3, will then be an operation of G
extending s. It is clear that y, is not in UI ; the conjugate of U’1 being
U1 , U’1 contains a vector which is not orthogonal to y, , and therefore
also a vector it such that B(u, y,) = B(z, 3;, — y,). Since B(x, — y! , y,)
= 0, u is not in K(x1 -— y,); i.e., u is not in the conjugate of H; since
u 2 U’,, H = N1 = U1 +Kx,, we have B(u, 2:1) 75 0 and B(z+u,
x, — y,) = B(u, 1:1) 75 0, which shows that z + u is not in P1 = H. Let c
be any element of K; since 2;, — yl 2 Pl , z + u + c (x, — y,) is not in
P, . Since 2;, — y, is in the conjugate of H and U, C H, (z + u +
c(a:1 — y,)) — z isin U’l . We have

'ci — 1/1) = QC“) + 0(311) '— 3(31 , y1) = 20(331) — 3(551 p 3/1)

= B(31 , 2:1) _ 3(531 2 y1) = 0-

It follows that

Q(z + u + 6(221 — 21.)) = Q(z + u) + cB(z + u, 2:1 - yo-
Since B(z + u, x, — y,) 75 0, 0 may be determined in such a way that
Q(z + u + 6(1‘1 — y,)) = (2(2). If we set 2’ = z + u + 0031 — 91):
z and 2' have the required properties, and 1.4.1 is proved.

I.4.2. Let N be a totally singular subspace of M. Then every auto-
morphism of N may be extended to an operation of G.

This follows immediately from 1.4.1.

1.4.3. All maximal totally singular subspaces of M have the same
dimension and are permuted transitively among themselves by the opera-
tions of G.

It follows immediately from 1.4.1 that, if N and P are totally singular
subspaces of the same dimension, there is an operation 3 of G which
transforms N into P. If P, is a totally singular space containing P,
s“(P1) is a totally singular space containing N. Assume that N is
maximal totally singular of dimension 1‘; every subspace of a totally
singular space being totally singular, it is clear that there cannot exist
any totally singular subspace of dimension > r in M.
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The common dimension of all totally singular maximal subspaces
of M is called the index of Q. Let r be its value. Then it follows from
I.3.2 that r S [m/2]. Moreover, if m is even and r = [m/2], there is a
'base of M with respect to which Q has the expression (1)of 1.3; if K is
'of characteristic 2, m is necessarily even. '

1.4.4. The notations and assumptions being as above, let 8 be an opera-
tion of G, L the set of elements of M leftfixed by s, and u the linear mapping
a: —> 8-2: — a: of M into itself. Then u(M) is the conjugate space of L.

If a: e M, y e L, then B(y, s-a) = B(s-y, 8-2:) = B(y, :c) and y is
orthogonal to s-a‘ — a. Let y be the dimension of L; since L is the kernel
of u, u(M) is of dimension m — v (where m = dim M); being contained
in the conjugate of L, it is identical to it.

1.4.5. The notations and assumptions being as above, assume further
that Q is of index m/2 = r, and let N be a maximal totally singular sub-
space of M. Let H be the group of orthogonal mappings which leave all points
ofNfizedx eM, ssH, thens-x - abetongstoN. Leteatotallg
singularsubspaceosuchthatM = N + P.IfseH,yeP,y’eP, set
I‘.(y, y’) = B(y, s-y’); then 1", is an alternating bilinear form on P X P,
and s —+ I‘. is an isomorphism of H with the additive group of all alter-
nating bilinear forms on P X P. The rank of I‘. is the dimension of the
image of M under the mapping a: —> M: — a. If s, s’ are elements ofH
such that I‘. and I‘.: have the same rank, then s and s’ are conjugate to
each other in G.

If :1: e M, 8-2; — a: is in the conjugate N’ of N by 1.4.4; but N’ contains
Nandisofdimensionm — r = r, whenceN’ = Nand s-z — :csN.
The function I‘. is obviously bilinear. If y e P, then we have 0 = Q(y) =
(Ks-y) = Q(y + (8-11 - 11)) = B(y,s-y - 2/) = I‘.(y,y),since (Ks-y - y)
= 0; it follows that I‘. is alternating. If s, s’ are in H, then s- (s’-y — y)
= s'-y — y and therefore we have ss'-y — y = (8-31 — y) + (s’-y - y),
1‘... = I‘. + I‘,. . If I‘. = 0, then for any 11’ eP, s-y’ — y’ is in N and
also in the conjugate of P, which is P, whence s'y’ = y’ , and s is the
identity. Conversely, let I‘ be any alternating bilinear form on P X P.
For any a: s N, let A. be the linear form 1; —> B(a:, y) on P; then a: —+ A.
is a linear mapping of N into the dual P* of P. We have B(:c, :c’) = 0
if :c’ e N; thus, A, = 0 implies B(x, z) = 0 for all z e M, whence :c = 0,
and :c -—) A, is an isomorphism of N with P*. It follows that, for every
11/ s P, there is a unique u(y’) e N such that B(y, u(y’)) = I‘(y, y’) for
all y e P; u is obviously a linear mapping of P into N. The formula
s(:c + y) = a: + y + u(y) (1: e N, y e P) defines an automorphism of
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the vector space M. Since Q(a:) = Q(y) = Q(u(y)) = 0, B(x, u(y)) = 0,
BC”: “(10) = r(yi y) = 0! we have QC” + y + “(y)) = 3(3) y) =
Q(:c + y) and s a G. It is clear that I‘. = I‘. The rank of I‘ is even; let it
be 2 p. Then it is well known that there is a base (y, , - - - , y.) of P such
thatI‘(y,,y,) = 1ift= 2k — 1,j = 2k,kSp, — 1ifi= 2k,j = 2k —
1: k S P and 0 OtherWise- L913 (Cu-1 = “(9%), $2» = - "(yet-1) if k 5 Pi
then we have B(x, , y,) = 6,, if 1 S t, j S 2 p. It follows easily that we
may include 2;, , - - - , z” in a base (a:l , - - - , 2,) of N such that B(:c¢ , y,)
= 6,, (1 5133' S r). We have

3'y25-1 = yam - mu , 8-3/2. = ya. + x2)... (k S p) _
and s-y, = y.- if t > 2p. Now, let 8’ be an operation of H such that 1‘.-
is of rank 2p; let (23’, , - - - , :c’, , y’I , - - - , y’,) be determined from I‘.:
as (x, , - - - 2. x, , yl , - -- , y.) have been from I‘. Since Q(:c,-) = Q(:t’;) =
Q(ya) = 001’.) = 0, B(:v.~ , 11:) = B(x’: , 11G). the automorphism t 0f M
which maps :0, upon 2:" and y, upon y’, (1 S t S r) is in G, and it is
clear that tst" = s’.
1.5. Symmetries

We denote by Q a quadratic form on a vector space M of finite
dimension m over a field K; we assume that theassociated bilinear
form B of Q is nondegenerate. We denote by Gthe orthogonal group
of Q.

Let H be a hyperplane whose conjugate contains a nonsingular vector
2. Let Q(z) = a, and, for a: e M,

8-2: = a: - a"B(:c, z)z.
Then 8 is an endomorphism of M, and an easy computation shows that
Q(s-x) = Q(:t); i.e., sis orthogonal. It is clear that s does not change if
we replace 2 by Ice, k 76 0; the conjugate of H being Kz, 8 depends only
on H and is called the symmetry with respect to H. It is clear that 8
leaves the points of H and only these invariant; since B(z, z) = 20(2),
we have 8-2 = — z. The operation 8 is the only orthogonal operation
distinct from the identity which leaves the points of H fixed. For, let
8’ be an operation with these properties. Clearly, if a: is not in H, s’ -:o r6 a:
and s’ -:v — x is in the conjugate of H (by 1.4.4), whence s’ -:o = 1: + 102.
Since Q(s’ 4:) = Q(a:), we have IcB(x, z) + lc’a = 0, and, since It s5 0,
we have k = — a"1 B(:t, z), whence s’ = 8. If t e G, then, clearly, tst‘1

lis the symmetry with respect to the hyperplane t(H).Moreover s = 8'.
1.5.1 (Cartan, Dieudonné). Except in the case where K has only 2

elements, M is of dimension 4 and Q of index 2, every operation of G
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belongs to the group G’ generated by the symmetries with respect to the
hyperplanes whose conjugates contain nonsingular vectors.

If s e G, denote by L(s) the set of fixed points of s, by 11(8) its dimension,
and by u. the linear mapping :1: —> 8-2: — :8. Assume that u, (M) contains
a nonsingular vector 2 = 8-111 — y, and let t be the symmetry with '
respect to the conjugate hyperplane H of K2. Then we have

0(2) = Q(s-y) + Q(y) - B(s'y, y) = 2%» — B(s-y, y)
= B(y, y) - B(s-y, y) = —B(2, 1/)

and t-y = y + z = 3-111, whence t(s-y) = y, and y s L(ts). On the other
hand, L(s) C H (by 1.4.4), whence L(s) + Ky C L(ts) and v(ts) > v(s).
Now assume that s’ is one of the elements of the coset G’s for which
v(s’) is the largest possible: then we see that u.,(M) is totally singular.
Let us call singular those 8 c G for which n. (M) is totally singular; if s
is singular, we call index of s the dimension p(s) = m — v(s) of u.(M).

Now we shall prove that any two maximal totally singular spaces
N, N’ may be transformed into each other by an operation of G’. It is
clearly sufficient to prove that, if N n N’ is of dimension 1 < dim N,
there exists a hyperplane H whose conjugate contains a nonsingular
vector such that the symmetry t with respect to H transforms N’ into
a space t(N’)'such that dim (N n t(N’)) > Z. Since dim (N + N’)
> dim N, N + N’ contains a nonsingular vector 2 = a: + :c’ (a: c N,
z’ e N’). Since Q(z) = B(:c, x’) 96 0, 1: does not belong to N’. We take for
H the conjugate of K2; then we have

t(x’) = :c’ — (B(:c, x’))"B(:o, :c’)z = —a: e N.
On the other hand, if :c” eN n N’, we have B(:c, x”) = B(:c’, x”) =
B(2:, 1:”) = O and :c” s t(N’); thus, we have N f\ t(N’) D N n N’ + Kx,
which proves our assertion.

This being said, let 8 be a singular operation of G; then u,(M) is
contained in a maximal totally singular space N; since the conjugate of
N is in the conjugate of u. (M), it is in L(s). Let HN be the group of
operations of G which leave fixed all points of the conjugate of N.
There is a maximal totally singular space P such that N + P is not
isotropic (1.3.2); let R be the conjugate of this space. If r = dim N,
then the conjugate of N, which is of dimension m — r, contains N + R,
also of dimension m — r; this conjugate is therefore N + R. Any
Q—automorphism of N + P may obviously be extended to an operation
of G, leaving the points of R fixed. Thus, it follows from I.4.5 that HN
is an abelian group which is isomorphic under a mapping 8 —-> I‘, to the
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additive group of alternating bilinear forms on P X P, and the rank of
I‘. is the index of 8. Thus, two operations of same index of HN are
conjugate in G.

Every singular operation 8’ may be transformed into an operation of
HN by some operation of G". For, let N’ be a maximal totally singular
space containing u.I(M) and t an operation of G’ such that t(N’) = N.
Since 8’ leaves the elements of the conjugate of N’ fixed, ts’t‘1 is in HN .

Now, it is clear that G’ is a normal subgroup of G. It follows from
what we have just said that G = H”G"; G/G’ is therefore abelian.
Moreover, if s, s’ are singular operations with the same index, then they
are conjugate in G, which shows that their classes E, E’ modulo G" are
equal. Thus, if there are singular operations 8, s’ such that s, s’, and
83’ have the same index, then E = E’ = EE’, and s, s’ e G’. If K has more
than 2 elements, let a be 5.5 0, — 1 in K, and s e HN . Then I‘. , aI‘. ,
and (1 + a) I‘, have the same rank, whence s a G’. If K has two ele-
ments, let 1' be the index of Q; if r = 0 or 1, then HN contains only the
identity (the rank of any alternating bilinear form being even). Assume
that r 2 2, m > 4. Every alternating form is obviously representable
as a sum of forms of rank 2. It will therefore be sufficient to prove that
s a G’ when sis singular of index 2 in HN . We can then find two linearly
independent vectors 3/, , ya of P and two linearly independent vectors
x; , :c, of N such that s-yl = y, + :12, , 8-3;, = y, + x1 . The space X,
spanned by x, , x, , y, , y, is not isotropic of dimension 4; the conjugate
R0 of X0 is therefore not isotr0pic and of dimension > 0. Its elements
are left fixed by s, and it contains some nonsingular vector 2. Let t; , t, ,
t, , t, be the symmetries with respect to the conjugates of z, z + x1 + x, ,
z + x, , z + x1 , and let t = tltztah . Since K is of characteristic 2, we
have

t4-y, = y1+z+$12

fairy, = yr +2 "F 551:

tztatpyl = y, + x, ,

t-yl '= y; + x, .

We see in the same way that t-y, = y, + a3, . It is clear that t; leaves
x, and a; fixed (13 = 1, 2, 3, 4) and that its restriction to R0 is the same
as that of t1 , which shows that t leaves the elements of R0 fixed. Thus,
we have t = s, which completes the proof.

It is easily verified that the case where K has 2 elements, dim M = 4
and Q is of index 2 is actually exceptional. The group G’ is then of
index 2 in G.
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1.6. Representation of G on the Multivectors
We make the same assumptions as in Section 5.
Let E be the exterior algebra over the space M. Then every operator

:7 e G, being an automorphism of the vector space M, may be extended
to an automorphism {(a) of the algebra E; g- is clearly a faithful repre-
sentation of G by automorphisms of E. For any h, let E, be the space
of homogeneous elements of degree h of E. The operations {(a), a' e G,
are homogeneous of degree 0; let 5(a) be the restriction of {(a) to Eh.
Then 5 is a representation of G, which is called the representation on the
h-vectors. ‘

Let also M* be the dual of the space M. To any 0' e G there is as-
sociated an automorphism ‘a of M*, the transpose of a': if f is any
linear form on M, then ‘mf is the linear form a: —> f(a-x). Let a* =
‘a"; then a' ——> a* is a representation of G. Let E* be the exterior algebra
over M*; then (7* may be extended to an automorphism {*(a) of E*,
which is homogeneous of degree 0. Let (“*(o') be the restriction of
{*(c) to the space E*;. of homogeneous elements of degree h of E*;
then 33* is a representation of G, which is called'the representation on
the h-covectors.

The representations 5“,. , {5* are equivalent to each other. For, there
is associated to B an isomorphism go of M into M’_“ which assigns to
every 1: e M the linear form 1; -—> B(a:, g) on M. Let a" be in G; then,
for z, y e M, we have

(v*-¢(x))(y) = (¢(x))(a"‘-y) = B(:c, a"-y)
= 307x, 3/) = (¢(tr'w))(y),

since B is invariant under 0'; thus, 0* = (p o woe". The isomorphism
go may be extended to an isomorphism <I> of E with E*; -<I> o {(0) 0 CD“
is an automorphism of E* which extends «7*, whence {*(a) = <I> o {(a) o
<I>". It is clear that <I>(E,.) = E*;; if <15 is the restriction of (I) to E.’, then
{.*(a) = chop, (a)'o-<I>,."‘, which proves that 33. , 5* are equivalent
to each other.

Let A be any representation of a group A on a finite-dimensional
vector space V; let V* be the dual of V and, for any u e A, let ‘(x(«))
be the transpose of Ma), which is an automorphism of V*. Let x*(«) =
'()\(¢r))'1 ; then X“ is again a representation of A. Any representation
a of A which is equivalent to )6" is said to be contragredient to A. Let
W be the space of p. In order for A, u to be contragredient to each other,
it is necessary and sufficient that there should exist a nondegenerate
bilinear form 5 on V X W with the property that
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mus-x, Mal-y) = an, :1) ' (1)
forallceA, zeV,yzW.

For, assume first that A and u are contragredient to each other, and
let p be an isomorphism of W with V* such that ¢(u(a')- y) = A*(a) My)
for all y e W. Then the bilinear form 48: (z, y) —r (¢(y))(:c) satisfies
condition (1), as can be verified immediately, and this bilinear form is
nondegenerate because go is an isomorphism. Conversely, assume that
there exists a nondegenerate bilinear form B for which (1) is true. Then
the mapping p which assigns to every 1/ e W the linear form a: -—> B(:c, y)
is an isomorphism of W with V“ and we verify immediately that
¢(p(a) ~y) = x*(¢) -¢p(y) for a' c A, y e W, which shows that p. is equiva-
lent to N“.

If u is contragredient to A, then X is to it. Two representations which
are both contragredient to a third one are equivalent to each other.

The representations 3‘, , 533* of G are not only equivalent but also
contragredient to each other, as follows from the duality theory of
exterior algebras.l

1.6.1. Let G!+ be the group of operations of determinant 1 in G, and let
I. be the representation of G on the h-vectors (0 S h S m). Then the repre-
sentations of G+ induced by 3'1. and I.-. are equivalent to each other.

Let e be a basic element of the one-dimensional space E... For any
a s G, we have f(¢r)-e = (det a)e, whence f(¢r)-e = e if a' e G’". If u c E",
o e Eta-In u A v is in E..; set u A v = fl(u, v)e. Then 5 is a bilinear form
on E. X Em-.. It is well known that, for any nonzero u c Eh, there is a
9 8 Eat-h such that u A v = e, which shows that .6 is nondegenerate. If
a' e G“, u c EA, 1; e E.._,,, then we have

5’00"“ A 9 = (559)”) A (in-1(6)”)-
Since {(a) -e = e, we have

fi(§h(¢)°u’ {II-“‘0'” = I301, 0);

this shows that the representations of G” induced by I. , I,” are con-
tragredient to each other. Since r. is contragredient to itself, 1.6.1 is
proved.

1.6.2. Assume that the characteristic of K is 79 2. Then the represen-
tations I. ofG’ on the spaces of h-vectors (0 S h S m, where m = dim M)
are all simple, except in the following case: K has only 3 elements, m = 2,

1N. Bourbaki ,op. cit., Algebre III: (1947), Corollary to Proposition 1, Section 8,
No. 2.
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h = l, and Q is of index 1. Let G+ be the group of operations of determinant
1 in G’ and 53,“ the representation of G+ induced by g . If 2h ;£ m, then
r, +is simple. If 2h = m, then {if is either simple or equivalent to the sum
of two simple representations; if r, + is not simple and if we are not consider-
ing the exceptional case mentioned above, then the two simple representations
into which 3‘, + splits are inequivalent to each other and also inequivalent
to all {ffor k 75 h.

Since K is not of characteristic 2, M has a base (2:, , - - - , x") com-
posed of mutually orthogonal vectors. For any subset A of {1, - - - , m}
composed of h elements i1 , ,i. with il < - -- < i, , set

(M) =x.-i/\ Axu;
the elements £(A) form a base of E, . Let H be the group of all auto-
morphisms s(e1 , - . . , e.) of M, where

3(51 y , Em)'xi = 55134 (1 S ’1: S m):

the Eg’s being :I: 1. It is clear that H C G and that H n G!+ is composed
of the s(ex , - - - , e...) for which

We have

§n(8(ei , ,em))-£(A) = x4(s(61 , , 6..))£(A),
where

XA(3(€1 2 " ' r 6m» = H 56 -

This shows that the representation (5)” of H induced by 33. is equiv-
alent to the sum of C(m, h) representations of degree 1, say 91.4 . If A
and A’ are two distinct sets of h elements, then the functions x4 , x4.
are distinct; moreover, their restrictions to H+ are distinct except in
the case where h = m/2 and A, A’ are complementary to each other.
For, ifiis in A but not in A', and ifwe set 6; = — 1, e,- = 1 forj 75 i,
then we have '

XA(3(51 J ' ' ' y 6m» ;£ XA'(s(el ’ ' ° ' r 5,»,

which shows that x4 96 x4: . Except in the case where h = m/2 and
A, A’ are complementary to each other, it is easily seen that we can
find an index k which either belongs to both A and A’ or does not belong
to either of them; i being selected as above, set e.- = e], = — 1, e,- = 1
for lo ;£ i, j; then s(el , - - - , e...) is in H+ and x4 (s(e1 , - - - , e...)) #5 x4.
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(8(e1 , - - - , e...)), which proves that the restrictions of x4 , x... to H"
are distinct. Thus, we see that (53,)” splits into mutually inequivalent
representations of H, and that the same is true of the representation
(5,)“ of H+ induced by 3‘. if h ;£ m/2. It follows that any subspace
of E. which is mapped into itself by the operations of §,(H) is spanned by
a certain number of the elements £(A), and that the same is true if we.
assume only that the space is mapped into itself by the operations of _
{,(H‘) and that h sé m/2.

Now, let U be a subspace 75 {0} of E. which is mapped into itself
by the operations of (“G”); if h = m/2, assume further that U is
mapped into itself by the operations of §,(G). Then, for any base (x’, ,

- , 1:3.) of M composed of mutually orthogonal vectors, U has a base
composed of elements of the form

x,“ A U. A x’ig-

Assume that £(A) e U for some A = {i1 , - - - , in}: and suppose first
that K has more than 3 elements. Let i be an index belonging to A and
j an index not belonging to A. Then, for a a K, we have Q(z, + (13,-) =
Q(x,) + a”Q(x,-), and, since K has more than 3 elements, we may select
a 75 0 such that Q(z, + axi) ;£ 0. It is then clear that we can find a
b ?5 0 in K such that x.- '+ bx, is orthogonal to z,- + ax,- . Let x" = x.
ifksé i,j,a:’.- = z.- +ax,-,x’,- = x, +bx,;then(:c’,, ,z’.) isabase
of M composed of mutually orthogonal vectors, and x, = cx’, + dm’,
with c 5'6 0, d 95 0; we have 554 .= 65’ + (15”, where

£’=x’.-,/\ Ax’“

and E” is the product derived from 5’ by replacing in it the factor x’,
by x’, . From what we have said above, it follows that 5’, s” are in U.
Let B be the set obtained from A by replacing 1: by j; since 2:, is a linear
combination of :c’, , x’, , £(B) is a linear combination of 5’, E”, whence
5(3) 2 U. Thus, if £(A) e U, then 5(3) 8 U whenever B is obtained from
A by replacing one of its elements by an index not occurring in it. It
follows immediately that every £(A) belongs to U, whence U = E, .
This proves that 3‘, is simple and that g', +is simple if h 75 m/2. Suppose
now that K has3 elements, and set a, = Q(a:,) = :I: 1. If a.- = a, = - 1,
then the space spanned by x.- , x,- is also spanned by x,- + x,- , x.- — x, ,
which are orthogonal to each other, and Q(x,- + x,) = Q(x.- — 16,-) = 1.
It follows that, by a suitable choice of the base (as; , - - - , as“), we may
assume that at most 1 of the elements a,- is — 1. Moreover, the same
argument as above shows that, if £(A) a U, and if 'i e A, j is not in A,
and a,- = a,- , then 5(3) 2 U, where B is the set deduced from A by
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replacing in it i by j. Thus, we have U = E, if all a.- are equal to + 1.
If not, let a, = + 1 for i <,m, a... = — 1. Let a, be the set of those
subsets A of {1, - - - , m} with h elements which contain m, and a, the
set of those which do not. If £(A) e U for some A e a.- , then the same is
true for any other A’ z a; (1: =. 1, 2). Assume further in this case that
m _>_ 3, and set x’._, = w..., + 13..-, , m’.-. = z”, — 23..-, , x’; = 2:,
for Ic # m — 1, m — 2. Then (x’l, , x’..) is a base of M composed
of mutually orthogonal vectors and Q(x’,) = 1 if 13 < m - 2, Q(:c'.-) =
_lif‘iZm_2.IfA={1:1,”',1:},},7:1<"'<‘ih,set I

£’(A) = x". A A $2,.
Assume that m e A implies £(A) e U; then clearly, m e A also implies
e’(A) a U. If h = m, then U = E, . If not, let A be a set containing m-
but not m — 1, and let B be the set obtained by replacing m by m — 1
in A. Since Q(a:,',,_,) = Q(x,’.,) and £’(A) e U, we have £’(B) a U. But
B does not contain m, and £’(B) is a linear combination of the £(B’)
for B’ e a, . It follows that U must contain some £(B’) with B’ a a2 , and
therefore that U = E. . Similarly, if A 8 a2 implies £(A) e U, then we
have also £’(A) e U if A e a, . Let, then, A be a set of a, containing m — 1
and B the set obtained by replacing m —- 1 by m in A; then 5’(B) e U,
and it follows that U = E, . If m = 2, a1 = 1, a, = — 1, then Q is of
index 1, since :22, + as, is singular. The cases m = 0, 1 being trivial, we
see that g‘. is always simple unless we are considering the exceptional
case of the statement 1.6.2 and that if is simple if h 5£ m/2. Assume
now that m = 2r, h = r and that 33(8) maps U into itself for all s e G”.
Disregarding the obvious case m = 0, there is an operation t in G but
not in G“, and G is the union 01"G+ and G+t. Since t’ e G“, it is clear that
U + t(U) is mapped into itself by all operations of 9(0). If we are
not considering the exceptional-case, this implies that U + t(U) = E, .
Assume further that U has been taken of the smallest possible dimen-

. sion among the spaces 75 {0}, which are mapped into themselves by
the operations of {,(G+). Since G+t = tG‘”, t(U) is mapped into itself
by the operations of 33(0”), and so is U n t(U). The latter space is
therefore either {0} or U. If it is {0}, then E, is the direct sum of U
and t(U); the representation of G” on the space U being simple by
construction of U, the same is true of its representation on t(U),
and 53* is equivalent to the sum of two simple representations. If
Ufl t(U) = U, then we have t(U) = Uand U = U + t(U) = Er , in
which case {I is simple. In the exceptional case, we have m = 2, K
has 3 elements, (2(a) 75 (Kara), and the only nonsingular vectors are
:l: 2:; , :b 2:, . Since Q(a:1) 76 Q(x,), the group G is then identical to the
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group H introduced above, and Kzl , K3}, are mapped into themselves
by all operations of G. These spaces give two inequivalent representa-
tions of G’, but two equivalent simple representations of G”.

It remains to prove that, if {I is not simple-and if we are not in the
exceptional case, then the two simple representations of which {3* is
composed are inequivalent to each other and to all representations
33.“, lo 75 r. Let R be the algebra of endomorphisms of E, which commute
with every {,(s), s e G, and R“ the algebra of those which commute
with every 13(8), 8 e G'". Let a' be in R; then a' commutes in particular
with the operations of r, (H). Now we have seen that the representation
(13)" splits into mutually inequivalent representations, whose spaces
are spanned by the elements £(A). It follows that a'-£(A) = A4 £(A),
where M is a scalar. For any scalar A, let U, be the space spanned by
those s e E, such that a-E = M; since a commutes with the operations
of 33(0), these operations map U). into itself, whence U, = {0} or E, ,
since I, is simple. It follows that the M’s are all equal and that R = K~I,
where I is the identity mapping of E, . Now, let a and a* be the algebras
of endomorphisms generated by §,(G) and 3’,(G+), respectively. These
algebras are semi-simple, since 3', , If are semi-simple. It follows that

[a :K-Il-[R :K-I] = [a+ :K-I]-[,R‘+ :K-I] -- (dimE,)'.
On the other hand, let t be in G but not in G’”. Then we have tG"'t'1 = G",
from which it follows that 3-,(t) a+ $30") = a“, and therefore that
a“ + 3',(t)a+ is an algebra. Since G = tG‘, this algebra contains {,(G')
and is therefore identical to a. We conclude that [azK-I] = 2[a*:K-I],
whence [RH K -1] = 2[R:K-I] = 2. Thus, 53+ is a commutative algebra
of dimension 2. If E, = U + U’, where U, U’ are of dimension i dim E,
and mapped upon themselves by ,the operations of {,(G+), then the
endomorphism 1- which leaves the elements of U fixed but maps those
of U’ upon 0 is in 53+, and 58* has zero divisors. Thus, 5%" is not simple,
while it is well known that, were the representations of G" on U, U’
equivalent to each other, then 9" would be simple. .

To every subset A of {1, - - - , m} we have associated above a homo-
morphism x, of the group H+ into K. If A has r elements and A’ has k
elements, we have x, # x4o , for it is then always possible to find an
index 1', which is either in both A and A’ or neither in A nor in A’, and,
proceeding as we did above, we can find an s 2 H+ such that x4(s) 75
x448). It follows that none of the representations of degree 1 of H+
into which 5* splits are equivalent to any of those into which if
splits. Therefore, the two simple representations of G+ into which 33*
splits are inequivalent to all If, k 75 r, and 1.6.2 is proved.
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Remark. The proof of the fact that R = K-I does not make use of
the fact that h = 1‘. Thus, we see that, barring the exceptional case,
the representations 1“,, are not only simple, but actually absolutely
simple. We would see in the same way that 53." is absolutely simple
if 2h 75 m; if m = 21', h = r, and if 33* splits into two simple representa-
tions, then these representations are absolutely simple.

We shall now determine under which condition 53* is not simple.
In order to do this, we shall construct a linear automorphism «r of the
vector space (not the algebra!) E which commutes with all operations
of {(G“). If a: a M, then y —i v}: B(:c, y) is a linear function on M; it follows
that there exists an antiderivation 6(1) of E such that 6(x)-y = 5%
B(x, y) -1 for all y e M. The operations 6(x) are homogeneous of degree
— 1, and (6(a))2 = 0. Let (g be the algebra of endomorphisms of the
vector space E. Since (6(:::))2 = 0», the linear mapping a: —> 6(x) of M
into (E may be extended to a homomorphism of E into CE; we shall
denote the imageof a E a E under this homomorphism by 6(5). Since
B is nondegenerate, a: —+ 6(x) is an isomorphism of the vector space M
into (g; it follows that 5 ——> 6(5) is an isomorphism of E. Let 3 be a basic
element of the one-dimensional space E,” ; set 0(5) = 6(£)-e. If 5 =
z; A - - - A x. , x.- e M, then 6(5) = 6(x1) - - - 6(a:,.) is homogeneous of
degree —h (i.e., it maps E; into EH. for any k); it follows that 0' maps
E. into E"._,. . Let s be in G; then {(s) is an automorphism of E which
maps each Eh onto itself. If x e M, E, n z E, we have 6(x)-E A n =
(6(x) -.E) A 11 + J(5) A (6(x) ~17), where J is the main involution of E.
Applying this formula to {(s) -E, {(8) '11 instead of E, n, and observing
that {(s) commutes with J, we see immediately that {(8) 6(x) (r (s))‘1 is an
antiderivation. If y a M, this antiderivation maps {(8)11 = 8-11 upon
% B(:z:, y)-1 = % B(s-:c, s-y)-1; it follows that {(3) 6(12) (§'(.ss))'l =
6(s-x). It follows immediately that {(8) 6(5) (§'(s))'l = 6(3'(s)-£) for
any 5 e E. Assume now that s e G’“; then {(s) -e = (det 8):: = e, and we
have c'r(§(s)-£) = {(8) «7(5), which shows that 0' commutes with {(8).
Let us now determine the operation 02. Let (a:1 , - - - , x...) be a base of
M composed of mutually orthogonal vectors and assume that e = x,
A - - - A x... ; set a.- = Q(x,-) and define the elements £(A), for all subsets
A of {1, - - - , m}, as in the proof of I.6.2. We have 6(x,)-x, = 0 if
12 75 j; 6(x.-) -x.- = a.- - 1. An easy computation then gives

«(504» = (-1)"‘“”"‘”(kl:l4 a»)£(A’),
where A’ is the complementary set of A. Let

D=Ha.-;
i-l
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22'D is the discriminant of B with respect to the base (at:1 , - - - , :c..).
We then have

”2(E) = (_1)§m(m+1)—m D5 = (_l)§m(m-1) DE-

Assume now that m = 2r, and let a, be the restriction of a to E, , I, the
identity mapping of E, . It is clear that a', , I, are linearly independent
and therefore form a base of the algebra denoted by R“ in the proof of
1.6.2. The representation r: splits or not according as to whether it"
has zero divisors 75 0 or not. Since (— 1)""""'" = (— 1)’, we obtain:

1.6.3. Let A be the discriminant of B with respect to same base of M.
Assume that m = 2r. Then 13* is simple if (— 1)' A is not a square in
K and splits into two simple representations if (— 1)’ A is a square in K.

1.6.4. If m = 2r and Q is of maximal index r, then 33* splits into two
simple representations.

For, in that case, M has a base (2;, , --- , x...) such that B(.r, , xi) =
1ifi=2lc —1,j=2lcori=2lc,j=2k —1(where1$k$r)
and is 0 otherwise. The discriminant of B with respect to this base is
(— 1)’, which proves 1.6.4.

We propose now to investigate the representation 5",, of the commu-
tator subgroup G’ of G induced by 3', {In order to do this, we need some
auxiliary results.

Let P be a nonisotropic plane (2-dimensional subspace) in M. An
operation s e 6” which leaves all elements of the conjugate of P fixed
is called a plane rotation of plane P.

I.6.5. The field K being of characteristic 75 2, the group Gr’+ of opera—
tions of determinant 1 in G is generated by the plane rotations.

This is obvious if the dimension m of M is 1 or 2; assume m > 2. Let
{3 be the set of hyperplanes whose conjugates contain nonsingular
vectors; if H 2 .6, let t” be the symmetry with respect to H. Then G is
generated by the operations ta (1.5.1), and det t” = — 1, which shows
that G+ is generated by the products tut”. , H, H’ in If). If H n H’ is
not isotropic, let P be its conjugate; then tut”. is a rotation of plane P.
Assume now that H n H' is isotropic. Let 2 be a vector # 0 in the
intersection of H n H’ and its conjugate, and let 2’ be a singular vector
in H such that B(z, z’) = 1 (observe that, K not being of characteristic
2, H is not isotropic). Let P be the conjugate of K2 + Kz’ with respect
to the restriction of B to H X H. Then, since Kz + Kz' is not isotropic,
P is a nonisotropic subspace of dimension m — 3 of H n H’. Let N be
its conjugate, which is of dimension 3; then N n H and N n H’ (which

93



QUADRATIC FORMS

are the conjugates of P with respect to the restrictions of B to H X H
and H' X H’) are nonisotropic subspaces of N; we have N n H =
Kz + Kz’, z e N f\ H’. Let x’, be a nonsingular vector in N n H’. If
B(:¢:’l , 2’) $5 0, set x’ = x’, ; if not, let k be an element 75 0 of K such
that Q(:c’, + kz) = Q(:v’1) + kB(:c’1 , z) 5:6 0 (there exists such an element,
since Q(z’1) 95 0 and K has more than 2 elements); then set x’ = :c’1 + kz,
whence B(a:’, z’) = k 95 0. The element x’ is a nonsingular element of
N n H’, and N n H’ = Kz + Kx’ ; since N n H’ is not isotropic,
we have B(z, x’) 7s 0. The conjugate of Kx’ has a vector :4: s6 0 in .
common with N n H. Since B(:c’, z) 76 0, B(x’, z') 75 0, a: is not in Kz
or Kz’. But it is clear that the only singular elements of N n H are
those of K2 U Kz’ ; thus, a: is not singular. Let H” = P + K2: + Kx’.
Since Q(:c) 95 0, Q(x’) 75 0, B(x, x’) = 0, K2: + Kx’ is a nonisotropic
subspace of the conjugate of P, and H” is a nonisotropic hyperplane,
whence H” c {9. The spaces H n H” = P + Kx, H’ n H” = P + Km’
are not isotropic. Now, we may write tut”, = (tHu) (tautm), and
from what was said above, tHH and tguty. are plane rotations, which
shows that tat”, is a product of two plane rotations; 1.6.5 is thereby
proved.

Consider now the case where m = 3. We shall establish that the repre-
sentation r’, of G’ is then simple. The notations S), t” being as in the
proof of I.6.5, we observe that, if s e G, H a .6, then taunt]! c G’, for it
is clear that Lug, = stas”. Were {’1 not simple, then there would exist
a one-dimensional subspace N of M which would be mapped into itself
by the operations of §’,(G’). For, if N, is a 2-dimensional subspace of
M which is invariant by the operations of {’1(G’), then so is the con-
jugate N of N1 . Assume for a moment that this is the case. Let a: be a
basic vector of N. If Q(x) = 0, let x’ be a singular vector such that
3(2), x’) = 1, and H = Kx + c’, whence H c .f). Let :c” be an element
95 0 of the conjugate of H, whence Q(:c”) 75 0. Then H contains a
vector 11 such that Q(y) = Q(x”) (by 1.3.3). Let s be an operation of G
such that 8-1:” = y. Then we have tga: = 2:, but we see immediately
'that tumx is not in Km = N; thus, tumors; is not in N, which results in
a contradiction. If Q(a:) ;£ 0, let H, be the conjugate of Kx. Since {1
induces a simple representation of G, there is an s e G such that s(Ho)
7s Ho . If a: is not in s(Ho), this nonisotropic plane contains at least one
nonsingular vector not in Ho 0 s(Ho), which is of dimension 1 (as
follows immediately from the fact that K has more than 2 elements).
If K has more than 3 elements and K1: C s(Ho), it is easily seen that
8010 contains a nonsingular vector which is neither in K2; nor in Ho .
In that case, H0 contains a nonsingular vector y such that 3.31 is neither
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in K1: nor in Ho . Let H be the conjugate hyperplane of Ky; then tH-x =
2:, but tum .1: is not in K3, and we again have a contradiction. Assume
now that K has only 3 elements. In that case, it is easily seen that Q
takes all values 75 0 (i.e.,-1 and — 1) in Ho . On the other. hand, since
8 does not transform Ho into itself and is a product of symmetries with
respect to hyperplanes in .f), there is at least one H’ e if) such that t3.
(Ho) 75 Ho , whence tH.(Kx) 75 Km. If y’ is a vector 95 0 in the conjugate
of H’, then there is a y 3 H, such that Q(y) = Q(y’); thus, there is an
s’ a G such that s’(y) = 11’. If H is the conjugate of Ky, then H’ =
s’ (H) and t..m,tg does not transform K2: into itself. Thus, our assertion
that g", is simple if m = 3 is proved.

Still assuming that m = 3, let (E be the algebra of all endomorphisms
of M and Q’ the subalgebra of (E generated by G’. Since 03’ admits a
faithful simple representation of degree 3, (5’ is a simple algebra. The
dimension of (5’ over its center is the square of a number which divides
3; thus, (5’ is either (E or a commutative subfield of 62. Now, let H be
in S) and s an operation of G such that s(H) 75 H; then hunt, = s’ is
in G", is distinct from the identity I, and leaves invariant any vector z
in s(H) n H. Since s(H) n H is of dimension 1, s’ -— I, which is an
element 75 0 of (5/, is not invertible (because (8’ — I) ~z = 0); it follows
that (5] is not a field, whence (i’ = (E.

The space (8” spanned by the elements 8, — s, , s1 , s, 2 G", is obviously
an ideal in GE’, and @’ = (9,” + KI. Since G’ is simple, we have E” = (E.
It follows that, if L 1s a linear function on G2 which remains constant
on G”, then L = 0.

Assume now that m is _>3, but otherwise arbitrary. If Z'is any
3-dimensional nonisotropic subspace of M, we denote by Hz the group
of operations in G which leave invariant the elements of the conjugate
of Z, by H; the group H, n G”, and by Hz’ the group H, n G’. The
restrictions to Z of the operations of Hg (respectively: HH, H,’)
include all operations of the orthogonal group of the restriction of
Q to Z (respectively: all operations of determinant 1 in this group, all
operations of the commutator subgroup of this group). We select a
base in Z, and if s e Hz , we denote by Z (s) the matrix which represents
the restriction of s to Z with respect to this base. Let 9 be a linear
representation of G+ on a vector space T; assume that the following
condition is satisfied: for any choice of Z in M (satisfying the con-
ditions indicated above) and for any u e T, the coefficients of the ex-
pression of 0(s)- u, where s c Hz , as a linear combination of the elements
of a base of T may be expressed as polynomials of degrees < 1 in the
coeflicients of 2 (3). Let U be a subspace of T which is mapped into
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itself by all operations of 9(G’); then we shall see that U is mapped into
itself by all operations of 0(G”). Making use of 1.6.5 and observing
that any nonisotropic plane is contained in some nonisotropic -3-di—
mensional space, we see that it will be sufficient to prove that U is
mapped into itself by all operations of 9(Hz+) when Z is any noniso-
tropic 3-dimensional subspace of M. Let u be in U and let L be a linear
function on T which vanishes on U. Then we may write L(0(s) -u) =
L,(s) + (11 for s e Hz”, where L1 is a linear form on E and al is a con-
stant. We have L(9(s) -u) = 0 if s e Hz’ ; thus, L1 remains constant on
Hz ’ ,' whence L1 = 0, as we have proved above. Since L(u) = 0, we have
a1 = 0, and L(0(s) -u) = 0 for all s e Hz". This being true for any linear
function on T which vanishes on U, we have 0(8) -u e U, which proves
our assertion. '

We apply this to the case where 0 = {1. , for some h > 0. We shall
prove that the condition indicated above is satisfied. Let (x, , x, , 2:3 ,
- -- - , x...) be a base of M composed ofmutually orthogonal vectors such
that (x, , x, , x3) is abase of Z. Let E be the subalgebra of E generated
by 34 , ' - - , x... and -E,,_the space of homogeneous elements of degree 10
of E; the elements of E are invariant by the operations 'of §h(H_z_). If
a eE-H, , let A(a) be the space spanned by x; A :62 A x; A a; if a s E", ,
let 3(3) be the space spanned by :61 A x, A a, $2 A maA a, as A :61 A a;
if a _2_Ek_1 , let 0(a) be the space spanned by x; A a, x, A a, an A a; if
a s E,. , let D(a) = Ka. Then EA is the sum of the spaces A(a), 3(a),
0(a), D(a) (for all possible a) and the direct sum of some of these
spaces. Identifying H7,“ to the group of operations of determinant 1
of the orthogonal group of the restriction of Q to Z, let p; (h = 0, 1, 2, 3)
be the representation of this group on the k-vectors. Then we see that
the representation of Hz” induced by g. is the sum of a certain number
of representations each of which is equivalent to some pk . But we know
that p0 and p3 are trivial representations (they map every element of
H2+ upon the identity) and that p1 is equivalent to p, . It follows im-
mediately that, for any u z E,. , the coefficients of the expression of
9(8) -u (for s e H2*) as linear combination of a base of E. may be ex-
pressed as polynomials of degrees S 1 in the coefficients of E (s).

I.6.6. Assume that M is of dimension 2 3 and that K is not of character-
istic 2. Let G, G", and G’ be the orthogonal group of Q, the group of opera-
tions of determinant 1 in G’ and the commutator subgroup of G. Let 3). be the
representation of G on the h—vectors, and g5.“ , 5"). the representations of G",
G” induced by $3. . If 2h 75 m, then 5",. is simple. If 2h = m and if is
simple, then I,» is simple. If 2h = m and if is not simple, let {3.} and
gym" be the two simple representations of which it is the sum; then the
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representations 1",... , {’H of G’ induced by {bf and {MR are simple.
These representations are inequivalent to each other and to all r’. for all
k sé h. ’

Any subspace of E. which is invariant by the operations of §’.(G’) is
likewise invariant by those of §.*(G+). It follows that f’. is simple
whenever if is. If {f is not simple, then 33,." and 5,? are inequivalent
to each other; the spaces T. , T, of these representations, together with
{0} and E. , are therefore the only subspaces of E. which are invariant
by the operations of §,+(G+); they are also the only ones invariant by
the operations of f’.(G’), which shows that i")... , g”... are inequivalent
to each other. A similar argument, applied to the representation 0 =
i’u +, 3‘. of G on E. + E.(k 75 h), shows that I’M , 1"” are inequivalent
to 3",, if k 75 h.

Consider now the case where m = 2. Assume that M contains a
1-dimensional space c which is invariant by all operations of G’.
Suppose first that Q(1:) 75 0; then let H be the hyperplane Km and
t” be the symmetry with respect to H. Let s be any operation in G and
tum the symmetry with respect to s(H). Then amt” transforms Kx
into itself, whence tum -:c a K27, which shows that s-a: is either in K2:
or in its conjugate. If K has more than 3 elements or if Q is of index 0,
there is an s e G such that y = s-x is not in Ks. Then we have B(:c, y) = 0
and Q(a:c + by) = oz(a2 + b”) if a = Q(x); moreover, any vector 2 with
Q(z) = Q(:c) is either in Km or in Ky, which shows that ab # 0 implies
a2 + b9 95 1. Setting a = 2uv/(u2 + o”), b = (u2 — v”)/(ua + v”), we
see that, if u, v s5 0 in K, then u” is in”, which implies that K has 3
or 5 elements. Moreover, if K has 5 elements, then — 1 is a square in
K and Q is of index 1. It follows that, if Q is of index 0 and K has more
than 3 elements, 3", is simple. If Q is of index 1, then M = Kz + Kz’,
with singular vectors 2, z’, and it is easily seen that K2, K2’ are mapped
into themselves by all operations of G’; {’1 is then not simple.

In the case where the basic field is of characteristic 2, it is easy to see
that the representation of G on the h-vectors is in general not simple
(not even semi-simple) if h > 1. In the case where h = 1, we have the
following results:

I.6.7. Assume that K is of characteristic 2. The representation of G
on the space M is then simple except in the following case: K has 2 elements,
dim M = 2, and Q is of index 1. The representation of the commutator
subgroup G’ of G on M is simple except in the following cases: (a) dim
M = 2 and Q is of index 1; (b) K has 2 elements, dim M = 4, and Q is
of index 2.
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Let N be a subspace of M distinct from {0} and M which is mapped
into itself by every operation of G’ ; then the conjugate N’ of N is like-
wise mapped into itself by every operation of G’.

We shall first discuss the case where N contains some nonsingular
vector 2:. Let s be any element of G and y = 8-3:; denote by t, and t, the
symmetries with respect to the conjugates of K2: and Ky. Then at, =
st,s", whence t,t, = at," e G’, and therefore t,t,(N) = N. Since a; e N,
we have 't,(N) = N, whence t,(N) = N. If 2 e N, then t,-z = z ——
(Q(y))‘l B(z, y)y. If, for some 2 e N, we have B(z, 1/) ¢ 0, then y is in
N (since 2 and t,-z are in N); if not, then y is in N’. Let U be the space
spanned by all vectors 3-2:, s s G; then it is clear that U is mapped into
itself by every operation of G, and it follows from what we have just
said that U C N + N’. Let U’ be the conjugate of U, and let u be any
nonsingular vector in M; then the symmetry t. with respect to the
conjugate of Kv maps U into itself, from which it follows in the same
manner as above that 1) lies either in U or in U’. Let V = U + U’,
and let W be a subspace of M supplementary to V.

Assume first that W # {0}. Let w be an element 95 0 in W, and 9
any element in V. Since all nonsingular elements of M are in V, .we
have Q(w) = O, and 0 = (2(2) + w) = Q(v) +_ B(v, w), or Q(v) = 3(1), w).
The restriction of Q to V is therefore linear; in particular, if k a K,
Ic'Q(v) = Q(kv) = kQ(v); taking a such that Q(v) 5£ 0, we see that
k2 = k; i.e., K has only 2 elements. If 2 is any singular element 75 0 of
M, there is an s s G such that 8-2 = w (I.4.1); since V = U + U’ is
mapped into itself by the operations of G, 2 cannOt be in V, which shows
that Q(v) = B(v, w) 75 0 for all u 9-5 0 in V. Were V of dimension > 1,
it would contain at least one vector v 5'5 0 such that B(v, w) = 0, which
is impossible. Thus, dim V = 1, whence dim U = dim U’ = 1, and,
since dim U’ = dim M - dim U, we have dim M = 2. Since Q(w) = 0,
Q is of index 1.

Assume now that W = {0}, whence U + U’ = M. We shall see that
U’ = {0} in that case. For, assume for a moment that U’ contains an
element x’ 76 0. Taking a: to be 79 0 in U, a; + x’ is neither in U nor in
U’, whence Q(x + x’) = 0. Since B(:v, x’) = 0, we have Q(w) + Q(x’) =
0, Q(w) = Q(x’). But this implies the existence of an s e G such that
8-1: = x’, in contradiction to the assumption that s(U) = U. Thus,
we have U’ = {0}, whence U = N + N’ = M. Since dim N’ =
dim M — dim N, it follows that N n N’ = {0}. Since B(x, 2:) = 0 for
every at, this implies dim N > 1. Let :1: again be nonsingular in N, and let
az’ be 75 0 in N’. SinceNfl N’ = {0}, the restriction of B to N X N is
nondegenerate, and N contains a vector y such that b = B(x, y) 75 0.
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We assert that Q(:c’) = Q(y). Were this not the case, if we set a =
b(Q(y) + 0WD", then

Q(x + a(y + w’))‘ = Q(:c) + a’Q(1/) + ab + d’QCc’) = 0(a).
and there would exist an s e G such that 8-1: = x + a(y + :v’). But a
would be 75 0, and 8-2: would lie neither in N nor in N’, which is im-
possible. Thus, Q is constant on the set of elements 96 0 in N’. This
constant is at! 0, while, otherwise, B would be 0 on N’ X N’ and N’
would be contained in its conjugate N. Since Q(lc:c’) = Q(a:’) for every
lo 2 K, k 5'5 0, we have'lca = 1, and K has only 2 elements. Let 3’ and
x” be linearly independent elements in N’; then we have 1 = Q(x’ + x”)
= Q(x’) + Q(a:”) + B(:v’, x”) = B(:c’, 1:”); were N’ of dimension > 2,
then itwould clearly contain two linearly independent vectors orthogonal
to each other, which is not the case. Thus, dim N = dim N’ = 2, and
dim M = 4. Exchanging the roles played by N and N’, we see that
Q(:c) = 1 for all a: 9-5 0 in N and B(x, y) = 1 if z, y are linearly inde-
pendent in N. Let (x, , x,) be a base of N and (x’, , x’,) a base of N’.
Set 2, = z, + x’, , z, = x, + z’, ; then we have Q(z,) = Q(z,) = B(z, , 2,)
= 0, and Q is of index 2.

Assume now that N is totally singular. Were N’ not totally singular,
we could replace N by N’ in the preceding argument. Assume now that
N and N’ are totally singular, and let r = dim N. Then N and N’ are
totally isotropic, and each one is contained in the other, whence N = N’.
Since dim N’ = dim M — r, we have dim M = 2r, and M is the direct
sum of N and of a totally singular space P. Let N, be any subspace of
N and P, the intersection of P with the conjugate of N, ; then N, = N1
+ P, is totally singular of dimension r, and there exists an s c G such
that s(N) = N, (I.4.1). Since G’ is a normal subgroup of G, it is clear
that N, is still mapped into itself by every operation of G’ ; the same is
therefore true of N, = N n N, and of the conjugate N’, of N, . If r > 1,
then we may take N, to be 75 {0} and N; then N’, is 95 {0}, M and is
of dimension > 1', which implies that it contains a nonsingular vector,
and we are reduced to the previous case. If r = 1, then dim M = 2
and Q is of index 1.

If dim M = 2 and Q is of index 1, then we have M = Kat + Ky,
with Q(z) = Q(y) = 0, B(x, y) = 1. The only singular vectors of M are
those of K2: U Ky, which shows that the operations of G permute K1:
and Ky among themselves. This permutation gives rise to a representa-
tion of G on the group of permutations of the set {Kz, Ky}, which is
abelian; the kernel of this representation contains G’, which shows that
the operations of G’ map K1: and Ky upon themselves. The auto-
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morphism of M which exchanges a; and y is obviously in G, and neither
of the spaces Kx, Ky is mapped into itself by the operations of G. If
K has more than 2 elements, then no non totally singular subspace of
M can be mapped into itself by every operation of G’, and, a fortiori, of
G. If K has only 2 elements, then M has only one non totally singular
space of dimension 1, namely, K(x + y), and this space is mapped into
itself by every operation of G. Assume now that K has 2 elements, that
dim M = 4, and that Q is of index 2. Then M has a base (1:, , x2 , y; , ya)
composed of singular vectors such that B(a:,- , z,) = B(x, , 11,-) =
B(y,-,y,-) = 0ifi¢j,B(a:.-,y,-) = 1.Setu = x, +y.,v = :0, +x, +
y2 , N = Ku + Kv; then the restriction of Q to N is of index 0, the con-
jugate N’ ofN is spanned by u’ = 2:: + ya , v’ = z, + x, + yl , and
the restriction of Q to N’ is of index 0. If 2 e N, z’ 2 N’, z 75 0, z’ 75 0,
then we have Q(z + z’) = l + 1 = 0; thus, every nonsingular vector
is either in N or in N’. Conversely, let P be a 2-dimensional subspace
which contains no singular vector ;£ 0. Then we have P C N U N’,
from which it follows easily that P is either Nor N’. Thus, the operations
of G permute N and N’ among themselves, and, by the same argument
as above, those of G’ map both N and N’ upon themselves. Moreover,
it follows from our analysis that N and N’ are the only subspaces
5'6 {0}, M which are mapped into themselves by all operations of G’.
Since Q(u) = Q(u’), there is an s a G which maps u upon u’, whence
8(N) = 'N’; this shows that the representation of G on M is then simple.
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CHAPTER II

THE CLIFFORD ALGEBRA

In this chapter, Q will denote a quadratic form on a vector space
M of finite dimension m over a field K; B will denote the associated
bilinear form of Q.

2.1. Definition of- the Clifford Algebra
Let T be the tensor algebra of the vector space M, and I the ideal

generated in T by the elements 2: ® a: — Q(x) -1 for all a: e M. Then
the factor algebra C’ = T/I is called the Clifiord algebra of the quadratic
form Q.

The algebra T is a graded algebra; let T" be the space of homogeneous
elements of degree h of T. Denote by T+ the sum of all spaces T" for
h even, by T- the sum of the spaces T" for h odd; T is then the direct
sum of TJ, and T- , and we have

T+T+ C T, ; T+T- C T- ; T-T+ C T- ; T-T- C T+ .

The ideal I is generated by elements belonging to T+ . Since T has a
base composed of homogeneous elements, it is clear that every element
of I may be written as a sum of elements of I n T+ and I (W T_ . Let
0+ and C'- be the vector spaces T+/(I n T+) and T-/(I n T-). Then,
clearly, C is the direct sum of 0+ and 0- and

am C 0+ ; 0+0- C 0'- ; 0_C'+ C C'_ ; 0-0- C 0+ .
The elements of 0+ are called even, those of 0- add; the even elements
form a subalgebra of 0. The linear mapping J of 0 onto itself defined
by J(u) =' u if u : 0+ , J(u) = — u if u s C- is an automorphism of C,
called the main involution. If K is of characteristic 2, J is the identity.

Now, let h be any integer 2 0. The mapping (x, , - - - , x.) —-> 3:; ®
- - - ® 1:, of M" (the product of h times M by itself) into T" is clearly
multilinear. It follows that there exists a linear mapping on." of T" into
itself such that an.” (1:, ® - - - ® an.) = 2:. ® - - - ® a:l whenever :c, ,

- , x. are in M. Let ar be the linear mapping of T onto itself which
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extends all the mappings 01,7. It is clear that 01")” is the identity. If
:61, "'yxhiyly "' ,y,areinM,t=x1®---®x,.,t’=y1®---
® 1;, , then we have

a’(t®t’) = 21.69 @y,®x.® ®x. =aT(t')'®aT(t),
which proves that err is an antiautomorphism. of T. This antiauto-
morphism leaves the elements of T° + T1 fixed; it maps upon them-
selves the generators :1: ® a: — Q(:c)-1 of I. Now, I is the set of all
elements which are sums of products of the form t® (2: ® :6 — Q(:c) - 1)
® t’, with t, t’ e T, x e M; it follows immediately that aT(I) = I. Thus,
0:7 defines in a natural manner a linear mapping a of C' = T/I onto
itself. It is clear that a is an antiautomorphism of 0, whose square is
the identity; it is called the main antiautomorphism of 0.

Let C’ be an algebra over K. Assume that we have a linear mapping
go of M onto a subspace M’ of C’ such that (¢(x))’ = Q(x) - 1 for all a: e M.
Let 1r be the natural mapping of T onto 0’ = T/I. Then there is a
homomorphism ,p of 0' into C" such that ¢(1r(:c)) = ¢(x) for a: e M. For,
we know that go may be extended to a homomorphism Q of -T into C".
If x a M, then <I>(x ® a: -- Q(x) -1) = ((903))2 — Q(:c)-1 = 0; this shows
that the kernel of <I> contains I. Thus, (I) may be factored in the form
<1) = III 0 1r, where it is a homomorphism of 0 into C’ with the required
property. If M’ generates C”, then, clearly, we have Il/(C) = C”. .

We shall now construct such an algebra C’. We start with the exterior
algebra E on M, in which the multiplication will be denoted by the
sign A. We know that, A being any linear function on M, there exists
an antiderivation 6 of E such that 61: = Ms) -1 for a: e M; 5 is homo-
geneous of degree — l and 6’ = 0. There exists a bilinear form Bo on
M X M such that Bo(z, x) = Q(:c) for all a: e M (1.2.2). We denote by
6, the antiderivation of E such that

52'?! = Bo(x, 30-1 (3/211!)-
Let L, be the operator u —-> x A u of left multiplication by a: in E; set
L’, = L, + 5, . Then :1; —-> L’, is a linear mapping go of M into the algebra '
(E of endomorphisms of the vector space E. If a: a M, we have 6,2 = 0
and

L26: + 62L: = Q($)'I,

where I is the identity mapping. For, if u z E, we have 6,L,-u = 6,
(a: A u) = (6,:c) A u — x A (6,14) = Q(x)u - L,6,-u. Sincere A a: = 0, we
have L,2 = 0. It follows that L’,2 = Q(x)I. This shows that there is a
homomorphism .p of 0 into GS such that ‘l/(w(a:)) = L’, for a: e M. If
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a; e M, then L',- = 1:, since 6,- 1 = 0, and a: —> L’, is an isomorphism
of M. It follows immediately that ‘n' induces an isomorphism of M into
0. We shall henceforth identify the elements of M with their images in
0 under M. Thus, M will be considered as a subspace of 0. We have

a? = Q(:c)-1 if xeM. (1)
Applying this to x, y, and x + y (where z, y e M) and remembering
that 0(1? + 3/) — Q($) - 9(0) = 3(17; y), we obtain

xy+yx=B(x,y)-1 (ayeML (2)
The result established above becomes

II.1_.1. Let p be a linear mapping of M into an algebra 0’ over K.
Assume that (go(a:))a = Q(:e)-1 for a: 2 M. Then go may be extended to a
homomorphism 1P of 0 into 0’. If ¢(M) generates 0’, then 41(0) = 0’.

Let us now return to the homomorphism :I/ of 0 into 6 considered
above. Set 0(a) = Ill(u)'1 for u s 0. Then 0 is a linear mapping of 0
into E. We remind the reader that an element A s (E is called homo-
geneous of degree d if A transforms any homogeneous element of degree
h of E into a homogeneous element of degree h + d. If A1 , - - - , A.
are homogeneous of respective degrees d1 , . - - , db , then A1 - - - A; is
homogeneous of degree d; + - - - + d. . For any a: e M, L’. is homo-
geneous of degree + 1 and 8, of degree — 1. Let :0; , - - - , x. be in M.
Then we have

“-171 ' ' ' $1.) = (Ls: + as.) ' ' ' (Ln + 5”),

and this may be written as

$(xl"'xh)=-L=;"°Ln+5A1!) (3)
d--h

where A, is homogeneous of degree d. It follows that
5-:

0(x1--'xu)=w1/\"°Ax»+;’£a, (4)
where $4 is homogeneous of degree d. For any h, let E" be the space of'
homogeneous elements of degree h of E and F. = 2 “5E“. The space
E“ is spanned by the products of h elements of M. Thus, it follows
from (4) that E. C 0(0) + F. . We have F0 = {0}. It follows im-
mediately by induction on h that E. C 0(0) for every h, whence 0(0)
‘= E. We conclude that 0 is of dimension at least equal to the dimension
2" of E.
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II.1.2. Let (x1, , x...) bea base ofM. Ifa = (i1 , , i.) isa
strictly increasing sequence of integers i. , - - - , i,. between 1 and m, let
P(o‘) be the product an, - - - x... in 0. Then the elements P(o) form a base
of C, which is of dimension 2’".

(Observe that, among the sequences a', we include the empty sequence
«0 ; P(a’d) is 1.) For any h 2 0, let 0,. be the space spanned by the P(a)
for the sequences a' of length h, and set D,. = 2,..5. C. . It is clear that
0., = D, = K-1, 01 = M. We shall prove that, if 0' = (i1 , , i.),
then x.P(a) is a linear combination of the elements P(a"), where 0"
runs over the sequences (j. , , jg!) such that h’ S h + 1 and j1 2
min {i, i1 , , i.}. This is true if h = 0. Assume that it is .true for
h — 1, h being > 0. If i < i1, then we have :1:.~P(a) = P(a’) with
a’ = (i, i, , - - - , i.). Ifi = i. , then we have x.P(¢r) = Q(:c.)P((i2 , - - - ,
i.)) by formula (1) above. Ifi > i, , let a. = (i2 , - - - , i»); then it follows
from formula (2) above that

ilk-PU) = BC”; ; $6.)P(°’i) '" xi.$¢P(0’i):

and it follows from our inductive assumption that x.P(a.) is a linear
combination of the P(a'") for the sequences cr” = (k1 , - - - , k...) such
that h” S h, k. 2 min {i, i, , , i,.} > i1 . For any such sequence,
a" = (i. , Ic1 , - - - , k“) is strictly increasing and

xa.P(c”) = P(¢r’),
and this proves our assertion for h. It follows that x.D... C D... for all i,
whence xD... C D... for all :1: e M. Since M generates C, we have vD... C
D... for all u e C, whence v = v- 1 e D.n and D... = C. There are exactly
2'" sequences 0'; thus, D... is of dimension 5 2'”. But we know already that
D... is of dimension 2 2’". It follows that the elements P(a), which
generate the vector space D... , are linearly independent, which proves
II.1.2.

II.1.3. Let the notation be as in II.1.1. If ¢(M) generates C’ and C"
is of dimension 2 2'”, then 30 is an isomorphism of C’ with C”.

For we have NC) '= C’ and C is of dimension 2'".

11.1.4. Let N be a subspace of M. Then the subalgebra of 0 generated
by N is isomorphic to'the Clifiord algebra of the restriction of Q to N.

Let (x, , ,z...) beabase ocontainingabase (x1, ,x.) of
N. The products 3., - - - z... , where i, < - - - < i, S n are linearly
independent in the algebra D generated by N, whence dim D Z 2";
11.1.4. then follows from 11.1.3.
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II.1.5. Let K' be an overfield of K, M" and 0'" the vector space and
the algebra deduced from M and C, respectively, by extension to K’ of the
basic field, and Q’ the quadratic form on Mx' which extends Q. Then 0'"
is isomorphic to the Clifiord algebra of Q’.

Let (x. , - - - , 21,.) be a base of M and a1 , , a... elements of K’.
We have

(i may = E ataxia + .2“ “MGM-xi + $11“)
i-l

= 2 area.) .+ 2 a.-a.B<x. , x.) = 9(2)! (1.3.).
Since 0" is of dimension 2'”, 11.1.5 follows from 11.1.3.

Let us now return to the consideration of the linear mapping 0 of 0'
onto E introduced above. Since dim 0 = 2'" = dim E, 0 is a linear
isomorphism which coincides with the identity on K -1 and on M.
We shall generally identify the underlying vector space of C' with that
of E by means of 0. If u, v are in E, uv will denote their product in C',
while u A v will denote their product in E. It should be kept in mind,
however, that our identification depends on the choice of a bilinear
'form Bo such that Bo (x, :c) = Q(x).-

We observe that, informula (3) above, A; can only be 95 0 if d E h
(mod 2), because a product of h — r operators L... and r operators
6,. is of degree h — 2r. On the other hand, 0+ (respectively: 0..) is
obviously spanned by the products of an even (respectively: odd)
number of factors in M. It follows that 0+ (respectively: 0.) is the set
of elements of E whose homogeneous components 76 0 are all of even
(respectively: odd) degree. This shows that the main involution of C'
is the same as that of E. On the other hand, we see that

xiv-MExIA-nAxh (mod 2 EA.)
lush—2

for any :cl , , an. in M. We have therefore obtained the following
results:

11.1.6. Let there be given a bilinear form 130 on M X M such that
Q(:c) = Bo(:c, x) for a: a M. We can then identify the underlying vector
space of the Clifiord algebra C with that of the exterior algebra E of M
in such a way that, for any a: s M, the operator of left multiplication by
a: in C' is L. + 8. , where L, is the operator of left multiplication by x in E
and 6, the antiderivation of E such that 6,-y = Bo(x, y) -1 for y 2 M. Let
C; be the subspace of C spanned by the products of at most h elements of
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M and E. the space of homogeneous elements of degree h of E'; then we
have 0,. = EMS, Eh: . Ifxl , - - - , z, are in M, then we have, for h 2 2,
:s1 x. E x, A A a, (mod 05-2). We have 0+ = Eh", E, ,
C- = 2;. odd Eh -

2.2. Structure of the Clifford Algebra
11.2.1. Assume that M is of even dimension Zr and that Q is of rank

m and defect 0. Then the Clifford algebra C of Q is a central simple algebra.
If Q is furthermore of index r, then C is isomorphic to the algebra of all
matrices of degree 2' with coefiicients in K.-

Let K’ be an algebraically closed overfield of K, M” the vector
space deduced from M by extension to K’ of the basic field, and Q’ the
quadratic form on MK' which extends Q. Then Q’ is still of rank m and
defect 0, and is of index r (by 1.3.4). Taking 11.1.5. into account, we
see that it suffices to prove 11.2.1 in the case where Q is of index r.
Assume that this is the case. Let N and P be two totally singular sub-
spaces of M which are supplementary to each other and of dimension
r. Let (2:, , - - - , x.) and (y, , - - - , y.) be bases of N and P such that
B(:c; , 31,-) = 6,, (1 S i, j S r). Let Bo be the bilinear form on M X M
defined by the conditions

Bo(x.- ; xi) = Bo(’!/.' ’ 211;) = 30(1?‘ ; yi) = 03

Bo(y.- 1 xi) = 5H (1 S 73,1. S 7')-

It is easily seen that Bo(x, :c) = Q(:c) for all x e M. The form Bo vanishes
on N X N, on N X P, and on P X P, and its restriction to P X N is
nondegenerate. Using Bo , we identify the space 0 to the underlying
vector space of the exterior algebra E on M, as explained in 11.1.6.
Let E" and EP be the subalgebras of E generated by N and P, re-
spectively. We use the same notation as in Section 1. If a: e N, then
6,(N) = {0}; since 6, is an antiderivation, ME”) = {0} and it follows
that an = a: A u for all u e E”. This shows that E” is identical (as an
algebra) with the subalgebra of 0 generated by N. We see in the same
way that E" is a subalgebra of C'. We setf = y; - - - y, = y. A - - - A y. ,
and we consider the left ideal Cf of C. The elements an, - . - x,,y,-, - - - 11,, ,
wherei, < < i, S r,j1 < <j. S r, formabase ofC (by
11.1.2); and we have yd = y.- /\ f = O (1 S i S r). It follows immedi-
ately that the elements 56,-, - - - x,,f form a base of Of, i.e., that u —> uf
(u e E”) is a linear isomorphism of EN with Cf; 0f is therefore of dimen-
sion 2'. To every element w 2 C we may associate the endomorphism
p(w) of E” defined by the condition that
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wuf = (p(w) 401'
for all u e E". It is clear that p is a linear representation. If w s E" , it
is clear that p00) is the operator of left multiplication by w in E" .
Since Bo vanishes on N X P, we see that, if a; e N, 5, maps P, and
therefore also Er, upon {0}. It follows that xv = x A v if v zE’, whence
uf = u A f for all u e E”. Now, let 3/ be in P. Then we have yuf =
y A uf + 6,,(uf). The first termis y A (u A f) = 0, since ydivides 1'.
We have 6,,(uf) = (6,,u) A f + J(u) A 6,1', but 6,1' = 0, since Bo van-
ishes on P x P, whence yuf = (6,,u)f. Since 6,, maps N into K - 1, it maps
E" into itself. It follows that '

p(y)-u = 6,-u (ysP,ueEN).

The operation 6,, maps :5, upon 1, 1:,- upon 0 if j 75 i. Let e = x, - - - z, .
Since 6,, is an antiderivation, we see easily that 8,,“ - -- 6,, maps
2:, - - - 1:.“ upon 1 for any h, whence p(f) -e = 1. On the other hand,
p(f), which is homogeneous of degree — r, maps any homogeneous
element of degree < r of E” upon 0. Let 2 be the set of strictly in-
creasing sequences of integers between 1 and r; if a‘ = (i1 , - - - , i.), set

£(0’) = a)“ ... x“ .

We shall see that, given a' and a, in 2, there is a w s C such
that p(w) -£(a) = £(o‘1), p(w) -E(a') = 0 if a" yfi a. If a' is of length h, let
1' be the strictly increasing sequence formed by the integers not appear-
ing in 0'. Then p(£(‘r))-£(a") is £6 (with e = :l: 1) if a’ = a, is 0 if the
length of a" is at least equal to the length of a and a" 95 a, and is homo-
geneous of degree < r if the length of a" is strictly less than that of a.
It follows that p(ef£(r)) maps £(a) upon 1 and £(a’) upon 0 if 6’ vi 0';
thus, = s £(al)f £(r) has the required properties. Since the 5(a) form
a base of E”, it follows immediately that p(C') is the algebra of all vector-
space endomorphisms of E", i..,e that p(C’) is of dimension 2" = 2"
equal to that of 0. We conclude that p is a faithful representation of C,
and 11.2.1 is proved.

Moreover, the proof shows that the ideal Cf 1s a minimal left ideal
of C and_1s_1dent1cal to ENf. If we observe that the elements 11,,-
yhz“ z.-, (il < < i, S 23.7} < <j. S r) alsoformabase
of C, we see that f0 = fE'" is a minimal right ideal.

We gather in the following statement the supplementary information
we have obtained in the proof:

_II.2.2. The notation being as in 112.1, assume further that Q is of
index 1' = m/2. Let N and P be two supplementary totally singular sub-
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spaces of M, and let 0" and C? be the subalgebras of 0’ generated by N
and P, which may be identified to the exterior algebras of these spaces. Let
f be the product of the elements of a base of P. Then Cf and f0 are, re-
spectively, a minimal left ideal and a minimal right ideal; we have 0f =
C" , f0 = fC". Letu be in C":ifz 2N, then x(uf) = (scu)f = (x A u)f;
if y e P, then y(uf) = (6,-u)f, where 6,, is the antiderivation of C" such
that 6,-2; = B(x, y) for a: s N.

Now we prove the following statement:

11.2.3. The notation and assumptions being as in II.2.1, assume
further that M 75 {0}; then the algebra (L, is either simple or the direct sum
of two simple ideals. The center Z of 0+ is of dimension 2; it is either a
quadratic separable extension of K or the direct sum of two fields isomorphic
with K. Assume that K is not of characteristic 2 and let D be thediscrimi-
nant of B with respect to a base of M; then Z is spanned by 1 and by an
element 2 such that z’ = (— 1)’D, and z anticommutes with every element
of C- .

Let S be a minimal left ideal of 0; let p be the representation of C'
which assigns to every u e C the mapping 2) —> uv of S into itself; then
p is simple. Let p+ be the representation of 0+ induced by p; among all
subspaces 96 {0} of S which are mapped into themselves by the opera-
tions of p(C'+) = p+(0+), let S’ be one of smallest possible dimension.
Let a: be a nonsingular element of M; then a: is odd and invertible, from
which it follows immediately that C- = 220+ = 041:, 0+ = 0-x = mC- .
Let S” be the transform of S’ by p(x); then it is clear from the preceding
equalities that S” is mapped into itself by all operations of p+ (0+) and
that S’ + S” is mapped into itself by every operation of p(C). Since
p is simple, S’ + S" is the whole of S. If S’ n S” ?5 {0}, then S’ n S” =
S’ in virtue of the minimal character of S’; since S” has the same
dimension as S’, this implies S” = S’ = S. If S’ n S” = {0}, then
S is the direct sum of S', S’’ . Thus, p+ is either simple or the sum of two
simple representations. Since it is a faithful representation, C+ is semi-
simple and, since any simple representation of 0., “occurs” in any
faithful representation, 0+ is simple or the sum of two simple ideals.
The algebra 0+ is not central simple, because its dimension 2""1 is
not a square; therefore, Z 75 K -1. Let K’ be an algebraically closed
overfield of K, let M”, C”, 0+1”, ZK' be the vector space and the
algebras deduced from M, C, 0+ , Z by extension to K’ of the basic
field, and let Q’ be the quadratic form on MK ' which extends Q. Then
we may regard C" as the Clifford algebra of Q’; it is clear that 0+” is
the algebra of even elements of C" and Z" the center of 0+”. Apply
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the results we have just proved to 0+": since Z" 75 K’ - 1, 0+" is the
sum of two simple ideals and [Z": K’ - l] = 2, since every simple algebra
over K’ is central simple. This proves that [Z: K - 1] = 2. If Z is a field,
then it is separable over K, since Z“' is semi—simple; if not, it is the
direct sum of two fields isomorphic to K.

Assume now that K is not of characteristic 2. Let (:2:l , - - - , x...) be
a base of M composed of mutually orthogonal vectors; set a, = 0(a),
z’ = x1 x...Wehavex.-x, +1.39% = Oifi aéj;sincem — lisodd,
z’ anticommutes with each x.- . It follows that z’ anticommutes with
every element of C- and commutes with every element of 0+ . Since
m is even, 2’ is in 0+ but obviously not in K ~ 1, whence Z = K - 1 + K -z’.
We easily compute z” to be (—1)""""“’2 a, - - - a... = (—1)’ a1 - - - a... .
The discriminant of B with respect to the base (a:l , - - - , 1;...) is 2" a, - - -
a... ; if B’, B are the matrices which represent B with respect to (2:1 , - . - ,
2:...) and to any other base (y, , - - - , y...) of M, then there exists an
invertible matrix T such that ‘T-B’ -T = B and the discriminant D of
B with respect to (y, , - - - , y...) is (det T)'2" a1 - - - a... . Thus, there is
an a 75 0 in K such that (az’)2 = (— 1)'D, and z = az’ has the required
properties.

Remark. The representation p of 0' which has been used in the
proof of II.2.3 is simple. Since 0 is simple, all simple representations of
C are equivalent to p. Thus, we see that the representation of 0+ induced
by a simple representation of C is either simple or the sum of two simple
representations.

11.2.4. The notation being as in 11.2.3, assume further that K is not
of characteristic 2 and that 0.. is not simple. Then Z is spanned by 1 and
by an element 21 of square 1 which anticommutes with every element of
C'- ; the two simple ideals of 0+ are 0+ (1 — 21) and 0+ (1 + 21).

SinceZ = K-l + K-zisnotafield and z2 eK-l, we have 22 = a’-1,
a 2K; set 2, = a'Iz. Then z,” = 1, and e; = (l — 20/2, e, = (1 + zl)/2
are central idempotents of 0+ such that e, e, = 0, el + e, = 1. It is clear
that e; ;£ 0, e, 75 0; since 0,. is the sum of two simple ideals, these
ideals are 0+ 61 and 0+9 .

II.2.5. Let the space M be represented as the direct sum of two spaces
N, P each of which is in the conjugate space of the other. Let C", C" be the
subalgebras of 0 generated by N and P. Then. there is a vector space iso-
morphism 0 of the space 0'” ()3) OP with C such that 0(u ® v) = uv for
u c C", v a 0'”. If K is of characteristic 2, then 0 is also an isomorphism
with respect to multiplication. Assume further that N is not isotropic
and of even dimension Zr, and let D be the discriminant of the restriction
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of B to N X N with respect to same base of N. Then 0 is isomorphic as
, an algebra to the tensor product of C” by the Clifiord algebra of the re-

striction of (— 1)’DQ to P.

Let (2:; , ,xn ,y1 , , 31,) beabase ocomposed ofabase
(:2:1 , - , 2:") of N and a base (y1 , - - - , 3],) of P. Then the elements

$.‘I"'$”=E('I:1,"',’l:k) (il<"'<ibsn)

form a base of C", the

yin"'yiq=77(jl;"')j¢) (j1<"'<j¢SP)

a base of 0'", and the products £(i1 , ~~~ , z") ”(jl , - -- , j.) a base of C.
It follows that there is a vector-space isomorphism 0 of 0" ® 0'" with
C such that 0(u®v) = uv whenever uis of the form £011 , - - - , 13,) and v
of the form 11(j, , - - - , j.); the formula. 0(u ()9 v) = an is then true in
general by linearity. Let

C+N=CNHC+ C_”=C”flC_ C+P=CPflC+ C_P=C'Pf\C'_.
We know that we may regard C” and 0" as the Clifford algebras of the
restrictions of Q to N and P; 0+” and C-" are then the sets of even
and odd elements of C”, and we have similar statements for 0?. 'If
a: s N, y e P, then we have B(:c, y) = 0, whence my + ya; = 0. It follows
that every element of 0+" commutes with every element of (7", while
an element of C.” anticommutes with the elements of 0-? and com-
mutes with those of OK. If K is of characteristic 2, then every element
of C" commutes with every element of CF, and 9 is an isomorphism of
algebras. Assume now that N is even-dimensional and not isotropic.
Then the center of 0.," contains an element 2 such that e2 = (— 1)'D
which anticommutes with every element of 0-”. It is then clear that
every element of the vector space 0” = 0+? + zC'-’ commutes with
every element of 0'”. Since z commutes with every element of C”, we
see immediately that C" is a subalgebra of C, which is generated by the
space 2P (for z is invertible). If y c P, then we have (243/)2 =
(—1)'D-Q(y) -1; it follows that there exists a homomorphism go of the
Clifford algebra C” of the restriction of (— 1)'DQ to P onto 0’. But 0’
and C'” are clearly both of dimension 2’; (p is therefore an isomorphism.
0n the other hand, there is a homomorphism 0’ of the tensor product
0'” ® 0’ into the algebra C such that 0’(u ® 12’) = uv’ for u s C”, v’ a C’.
The algebra 0'(C” ® 0’) contains 0” and zP; it contains therefore N
and P = z"(zP); since M = N + P, we have M C 0’(C'" ® 0’) and
0’(0" ® 0’) = 0. But 0'" ® 0’ is of dimension 2"-2’ = 2" = dim C,
and 0’ is therefore an isomorphism.
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II.2.6. Assume that m = 2r + 1 is odd and that B is nondegenerate;
let D be the discriminant of B with respect to a base of N. Then the center
Z of C is of dimension 2; it is spanned by 1 and by an odd element 2 such
that z’ = 2(— 1)'D. The algebra C’+ is central simple, and C is isomorphic
to Z (8 0+ ; C’ is either simple or the direct sum of two simple ideals.

Since B is nondegenerate and m odd, K is not of characteristic 2.
Let 3., be any nonsingular vector in M and N ' the conjugate of K3,, ;
then B(zo , mo) 73 0 and N is not isotropic. Since no is invertible, y —>
my (y e N) is a linear isomorphism of N with a subspace N’ of 0., . Let
C+’ be the subalgebra of 0,. generated by N’. If y e N, then we have
my + yxo = 0, whence (may)2 = —Q(xo) Q(y). Let C'" be the Clifford
algebra of the restriction of the quadratic form — Q(:co) Q to N; then
there is a homomorphism a of 0” onto C'J such that ¢(y) = may for
y e N (by II.1.1). But 0” is simple; «2 is therefore an isomorphism. We
have dim 0+’ = dim C" = 2"”. On the other hand, u —> xou is obviously
a linear isomorphism of 0+ onto 0. ; since 0 = Q. + 0. (direct), C+
is of dimension 2"". Thus, 0.. = 0+’ is isomorphic to C” and is central
simple. We may include no in a base (:1:o , x, , - - - , mg.) of M composed of
mutually orthogonal vectors; set a,- = Q(:c,-), so = 102:, - - . x,, . We have
mm =. — xix, if i 96 j; since m is odd, it follows that 2., commutes with V
every x.- , which proves that z is in the center of C. The discriminants of
B with respect to any two bases of M differing from each other by a
square factor, D is of the form 2b'ao - - - a2, , b e K. Set 2 = 2s; then we
easily see that z’ = 2( — 1)'D. Moreover, 1 and z are linearly independ-
ent; Z = K - 1 + K2 is therefore a subalgebra of dimension 2 of the center
of C, and there is a homomorphism 0 of Z ® 0., into C such that 0(u ® 1))
= uv for u e Z, c a 0+ . Since 2 is odd and invertible, we obviously have
20.. = C- . Thus, 0(Z ® 0..) contains 0.. and C- and is the whole of
C. We have dim Z ® 0'+ = 2.2"”1 = dim C, and 9 is therefore an iso-
morphism. Since 0+ is central simple, it follows immediately that Z is
the whole center of 0'. If 2(— 1)'D is not a square in K, Z is a field and
C is simple: if 2( — 1) 'D is a square in K, then, since K is not of character-
istic 2, Z is the direct sum of two fields isomorphic to K - 1 and C is the
direct sum of two simple ideals.

II.2.7. Let M’ be the conjugate of M, P the set of singular vectors of
M’, and N a subspace of M supplementary to P. The ideal 1) generated
by P in C is in the radical of C, and 0/13 is isomorphic to the C'lifiord
algebra of the restriction of Q to N.

Since M’ is totally isotropic, P is a subspace of M’ and P = M’ when
K is not of characteristic 2. Let y be an element of P. Then B(z, y) = 0
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for every x 2 M, whence ya: = — my. It follows that y anticommutes
with the elements of C- and commutes with the elements of 0+ . On the
otherhand,wehavey2 = Q(y)-1 = 0. Ha = u+ + u- ,u+ 20., ,u- e C- ,
we have uy = :y(u+ — u_), whence (yu)a = 0. The elements of the left
ideal 1210 being nilpotent, this ideal is in the radical of C, and p is in the
radical. Let 0'” be the subalgebra of 0' generated by N; then C” + p is
obviously a subalgebra of 0' containing N + P = M, whence ON + n =
0. 11.27 will therefore be proved if we show that ON 0 p = {0}. If K is
of characteristic 5'5 2, then P = M’ and the restriction of B to N X N ‘
is nondegenerate. Thus, it follows from 11.2.1 and II.2.6 that C" is
semi-simple, whence 0,,- n p = {0}, since p is in the radical of C. More-
over, we see that p is then exactly the radical of 0’. Assume that K is of
characteristic 2; let 012 be the algebra generated by P. Since Q is zero
on P, 0,: is obviously isomorphic to the exterior algebra of P and is
the direct sum of K - 1 and of the ideal 3)., generated by P in (JP . On the
other hand, there is an isomorphism 0 of 01., ® 0,. with C such that
0(u ® 0) = up for u 2 C”, v a 0,. (II.2.5). Now, 0'" ® 0,. is the direct
sum of 0N ® K -1 and 0” ® no , and the latter set is the ideal generated
by no in C. It follows immediately that 0(C'N ()9 po) = p and that C’ is
the direct sum of 0N and p. This .ends the proof of 11.27.

The notation being as in 112.7, let R be a subspace of M’ supple-
mentary to P in M’. We may assume that R C N; let S be a subspace
of N supplementary to R. Then M is the direct sum of S and M’.
Assume that K is of characteristic 2 (otherwise R = {0}). The restric-
tion of B to S X 8 being nondegenerate, S is even-dimensional and the
algebra Cs generated by S is central simple. If 0,; is the algebra generated
by R, 0” is isomorphic to 0’5 69 CR . Let us now consider the structure
of 0,2. Let {x1 , - - - , sud} be a base of R, and Q(x.-) = a. (1 S 1' S r).
We have mm,- + xix.- = B(:c,- , x,)-1 = 0, and 0,, is a commutative
algebra. Let L be the subfield of an algebraic closure of K obtained by
adjunction of all", - - - , adm to K. We may assume that L = K(a1m,
- - - , mm), e being an integer S d, and that [L:K] = 2". Each a.- (1 S i
S d) is the square of an element a,“ of L; if u, , - - - , ud are in K, we
have, in L,

(2‘: nan-"3)2 = 2‘: “52a; = Q( 2d: max).
{-1 i-l i-l

Therefore, it follows from II.1.1 that there exists a homomorphism ‘p
of CR onto L such that Mr.) = a,“ (1 S i S d). Let R’ = Kx; + - - ~
+ Kx. , and let 03. be the algebra generated by R’; thence CE. is of '
dimension 2‘ = [L:K], and M05“), which contains agm for 1 S i S e,
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is the whole of L. This shows that It is an isomorphism of 03. with L.
Let us assume from now on that 03. = L. If i > e, then there is a z‘ e L
such that z" = x,” = ag-l; it follows that (x; — 2,)” = 0. The elements
:0, — z; (i > e) generate a nilpotent ideal 91 of C; , and it is clear that
every element of CE is congruent modulo SR to some element in L. This
shows that the kernel of x]; is ill and that 92 is the radical. Thus, we see
that the quotient of OR by its radical is a field, purely inseparable of
exponent 1 over K.

2.3. The Group of Clifford
We shall now assume that the bilinear form B is nondegenerate, i.e.,

that Q is of rank m and defect 0. In particular, if K is of characteristic 2,
m is even. We denote by 0' the Clifi'ord algebra of Q and by G the orthogonal
group 01‘ Q.

We shall call Clifi‘ord group of G, and denote by 1“, the group of
invertible elements 8 of C such that exs'1 e M for every 2: s M. If s a I‘,
we shall denote by x(s) the linear automorphism x —> sis" of M. It
is clear that x is a. linear representation of I‘; we shall call it the vector
representation of I‘, to distinguish it from the spin representation to
be introduced later. '

Let s be in I‘. Then we have, for :c s M, Q(sxs")-1 = (sxs")' =
sm’s‘1 = Q(a:) ~1. It follows that x maps 1‘ into the orthogonal group
G of Q.

II.3.1. If m is even, then x(I‘) = G. If m is odd, then x(I‘) is the
group G” of operations of determinant 1 in G'. If a: is any nonsingular
element of M, then a: e I‘ and x(x) is the mapping y —) — r-g, where r
is the symmetry with respect to the conjugate hyperplane of Kw. Let Z“ .
be themultiplicative group of invertible elements of the center Z of C; then
Z* is the kernel of X and, except in the case where K is a field with 2 ele-
ments, dim M = 4 and Q is ofindex 2, Z* U (I‘ n M) is s set ofgenerators
of the group I‘.

Let 0' be any operation in G. Then we have («r-3:)2 = Q(o:t)-1 =
Q(:v) - 1 for a; e M, and it follows from 11.1.1 that a may be extended to
an automorphism o" of the algebra C. If 0" leaves the elements of the
center Z of 0 fixed, then 0" is an inner automorphism. This follows from
the Noether-Skolem theorem if C is simple. If not, then C is the direct
sum of two simple ideals al and a2 ; a.- is generated by a central idem-
potent e, and is central simple. It follows that c' transforms in into
itself and that its restriction to a; is an inner automorphism produced
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by an element 8.- of a,- which is invertible in a.- ; since 818, = 0, s = s, + s,
is invertible in 0 and a’ is the inner automorphism produced by 3.

Now, if m is even, 0 is central simple, and v’ is an inner automorphism
u ——> sus", 3 being invertible in 0. Since cr’(M) = M, 8 belongs to I‘ and
x(8) = «1.

Let g’ be the mapping a: —> — x (1; e M), and g" the automorphism of
C which extends g-. It is clear that {’(u) = — u for any n e C'- . Now,
if m is odd, then Z contains an odd element 2: ;£ 0 (11.2.6) and K is not
of characteristic 2. Since {’(z) = —- z, i" does not leave the elements of
Z fixed. Were f in x(I‘), there would exist an s c I‘ such that §’-:c =
8128-1 for all a: a M. Since M generates C, we would have g"-u = sue"1
for all u e 0, which is not the case. Thus, if m is odd, 3' does not belong
to x(I‘) and x(I‘) 75 G.

Let a: be a nonsingular element of M. Then a: is invertible, and x” =
(Q(x))":v. We have my + ya: = 3(2), y) -1 for y e M, whence

zyx“ = (426%))" B(w, y)x - y = - r-y.
where r is the symmetry with respect to the conjugate of K -a:. It follows
that a; e I‘ and that x(z) = — -r. It is clear that Z* C I‘, and that Z*
is in the kernel of x- Conversely, if s 2 I‘, x(s) = 1,‘ then s commutes
with every element of M, and s a Z n I‘ = Z*. Assume that we are not
considering the exceptional case mentioned in the statement. Any opera-
tion a' of G may be written as a product 7'1 - - - 1,. of symmetries with
respect to hyperplanes whose conjugates contain nonsingular vectors
2:, , - .. , x, (by I.5.1). Thus, since 5" = 1, we have a' = g"‘x(:z;1 - -- 3,).
If m is odd, then we have det r.- = -,- 1, det r = — 1, and, if c a G”,
then we have h —=- 0 (mod 2) and a' = x($x - - - an); if a' = x(s), s a I‘,
then s = soar:1 - - - :r, with so a Z*. If m is even, then :- belongs to the
group generated by 1‘ n M. This is obvious if K is of characteristic 2,
3‘ being then the identity; if not, let (yI , - - - , y...) be a base of M com-
posed of mutually orthogonal vectors. Then x(y.-) -y, is - y,- if i s5 j,
and x(y.-) -y.- = y, ,whence gr = x(y, - - - y"). Thus, it follows in the same
way as above that any 8 e 1‘ belongs to the group generated by I‘ n M
and Z*.

II.3.2. Every 3 e I‘ may be written in the form 28’, where z is in the
center of C and s’ is an element of I‘ which is either even or odd. If m is
even, 8 is either even or odd.

If we are not in the exceptional case of II.3.1, then s is the product
of an element of Z* by a certain number of elements of I‘ n M, which
proves our assertion in that case. If m is even, we may also use the
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following argument, which applies even in the exceptional case. If
a = x(s), then we have sa: = (a'x)s for all :1: cM. Let s = 8+ + s- ,
s+ c 0.. , s- c C'- . Since a: and «7-1: are odd, we have 8+1: = (er-293+ ,
and s“s+ commutes with every n: c M and belongs therefore to the
centerK-l ofC'. Ifs+ = as,aeK,andifa sé 0thensiseven;ifa = 0,
then s = s- is odd.

We shall denote by I" the groupPflC+, and set G+= x (1“).
11.3.3. If m > 0, the group x(I"') is a subgroup of index 2 of G. If

K is not of characteristic 2, then x(I‘+) is the group of operations of deter-
minant l in G.

Since m > 0, M contains a nonsingular vector :c; :c is an odd element
of I‘, whence I‘ 96 I“. If m is even, then the center of C' is K-l, which
is in 0+ ; it follows immediately that x(I‘+) is then of index 2 in G. If
m is odd, then the center of 0 contains an invertible odd element (by
11.2.6); this element is in I‘ but not in I‘+ . Thus, it follows from 11.3.2
that every element of I‘ is the product of an element of the center of
C by an element of I", whence x(I‘) = x(1‘+). This group is the group
of operations of determinant 1 in G. The determinant of any element
of G is :1: 1, and G contains an operation of determinant — 1, for in-
stance, the mapping :1: —9 - a. It follows that x(I‘+) is of index 2 in G.
Now, assume that m is even and that the characteristic of K is ;£ 2.
Any s e I‘ is representable in the form or, ’- - - :c. , c c K, :c, c 1‘ H M
(1 S i S h), and it is easily seen that det x(:c,-) = — 1 (1 g i S h),

‘ whence det x(s) = (— 1)”. Thus, det x(s) is 1 or — 1 according as to
whether 8 is in I‘+ or not, and this completes the proof of 11.3.3.

The group I‘+ will be called the special C’lifiord group of Q; the group
x(G’*) will be called the special orthogonal group*of Q or also the group
of rotations (its elements being called rotations). If K is of characteristic
2, then every operation of G is of determinant 1, but G+ is then still of
index 2 in G.

II.3.4. If m is even > 0, the group 1"+ is generated by the products of
two nonsingular elements of M except in the case where K has 2 elements,
m = 4, and Q is of index 2. If m is odd, let 2 be an odd invertible element
of the center of 0. Then I‘+ is generated by the products :cz, where :0 runs
over the nonsingular elements of M.

The assertion relative to the case m even follows immediately from
11.3.1. Assume m~ odd; it is clear-that, for any nonsingular a: e M, an
belongs to I". Let, conversely, s be in I”; then, by 11.3.1, s may be
written as s = f x, :c. , where g‘ is in the center of C and 3.52M.
* It follows from 11.2.1 (m even) and 11.2.6 (m odd) that Z (1 0+ = K - 1 where

Z is the center of C. Therefore the kernel of the homomorphism from I'+ to G+
induced by x is equal to K - 1 [Editor’s note].
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The center of C is K-1 + K -2 (II.2.6); if h is even, then 3' 2 K - 1, while,
if h is odd, { e K - z. The element 22, which is an even element of the center
of C’, is of the form a- 1, a e K, a ?5 0. If h = 2h’, then we may write

8 = (ra‘wziszz) (me);
if h = 2h’ + 1, let gr = c2. Then we have

s = a‘“'(cxlz) (xh_lz)(:r,.z);
this concludes the proof of 11.3.4.

It is easily seen that the case where K has 2 elements, m = 4, and
Q is of index 2 is actually an exceptional case.

We shall now take into consideration the main antiautomorphism a
of the algebra C which has been introduced in II.1. We know that
«1(a) = a: for :c e M; it follows that a(C'+) = 0+ , a(0_) = C- .

II.3.5. If s is any element of the Clifi'ord group I‘, then a(s) e I‘ and
a(s)s is an element of the center of C'; if s e I", then a(s)s c K-1.*

Let a = x(s); then, for a: 2 M, we have so: = (a-x)s, whence xa(s) =
a(s)o'-:r and a(s)sx = xa(s)s, which shows that a(s)s is in the center of
C'. This element being obviously invertible, it follows that (2(5) 2 I‘.
If s is even, then so is a(s)s, and a(s)s c K - 1.*

Let s and t be in 1‘. Then we have a(st)st = a(t)a(s)st = a(s)8a(t)t,
which shows that s —-) a(s)s is a homomorphism of I‘ into the multi-
plicative group of invertible elements of the center of 0. Whenever
a(s)s is in K - 1, we shall set a(s)s = Ms) - 1, Ms) e K. This always happens
if s e I”. It also happens if s e 1‘ H M, for then Ms) = Q(s); thus, Ms)
is always defined for all s s I‘ if m is even. We have

Me-l) = c’, if ceK, c 75 0;

Mrs) = Q(x), if x: M, Q(:v) 75 0.

The element Ms) (when it is defined) will be called the norm of s, and
x will be called the norm homomorphism.

We shall denote by Po the group of elements 3 e I‘ such that a(s)s = l,
and by I‘o" the group To 0 I”. We shall call I‘o+ the reduced Clifiord
group of I‘; the group x(I‘.,") will be called the reduced orthogonal group of
Q and will be denoted by Go”.

The group P/I‘o is clearly abelian, which shows that the commutator
subgroup I" of 1‘ is contained in P0 . If s is an element of I‘ such that
x(s) is not in G“, then x(I‘) is generated by x(I‘+) and x(s), and I‘ is gen—
erated by I”, s, and its center. It follows that P/I‘+ is abelian and that
* see footnote p.115.
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I" C I", whence I" C 1'0“". If m is even, then G = x(1‘) and we see
that the commutator subgroup G’ of G is in Go”. If m is odd, then the
center of G contains an element 1* not in G+ (namely, the mapping 2:
—> — x), and G = G'+ U 6G"), which shows that G’ is also the com-
mutator subgroup of G‘”; since G" = x(I‘"), we see that, here again,
G, C 00+.

III.3.6. Let H be the subgroup of the multiplicative group K. of elements
95 0 in K which is generated by the products Q(x)Q(y), x and y running
over the nonsingular elements of M, and let K." be the group of squares of
elements of K. . If m > 0, the group G“/G¢,+ is isomorphic to H/K.’.

The kernel of the restriction*of x to I‘+ is K.- 1. Since any element
of this kernel is an even element of the center of C, G”/G’.,+ is isomorphic
to I‘+/K.I‘o+, i.e., also to >\(I‘+)/)\(K.). 1f K has only 2 elements, then
H = K. = K.” = M1”) and 11.3.6 is obvious. “Assume that this is not
the case. We have MK.) = K.’; if m is even, then I‘+ is generated by
the products xy, for x, y 2 1‘ 0 M, whence MI“) = H. Assume m odd,
and let (x. , - - - , xm) be a base of M composed of mutually orthogonal
vectors. Then 2 = x1 ' - - x... is an odd invertible element of the center
of C, and I‘+ is generated by the products xz, with x e I‘ n M (11.3.4).
We have M562) = M”) = (Q(x;) 0(a)) --- (006.4) Q($..-1)) we.)
Q(x)) and M1”) = H; 11.3.6 is thereby proved.

11.3.7. If the index of Q is > 0, then G“/Go+ is isomorphic to K./K.’.
This follows from 11.3.6, since Q then assumes all values in K (by

1.3.3).
11.3.8. Assume that the index of Q is > 0 and that we are not in the

following exceptional case: K has 2 elements, dim M = 4, and Q is of
index 2. Then Go+ is the group of commutators of G.

Since Q is of index > 0, there exist two singular vectors x, y such
that B(x, y) = 1. The plane P = Kx + Ky is not isotropic; let P’ be
its conjugate. We shall prove that'every a e G is the product of an
element of the commutator subgroup G’ of G and of an operation which
leaves the elements of P’ fixed. We first consider the case where a is
the symmetry with respect to a hyperplane H whose conjugate contains
a nonsingular vector 2. Let 2. = a: + Q(z)y, whence Q(z) = Q(z,). There
is a -r c G such that r-z = 21 (1.4.1); we may write 0' = (o' -r a" r")
(r o r"), and Tar" is the symmetry with respect to the conjugate HI of
K2, . Since P’ C H1 , ra-r" leaves the elements of P’ fixed, which proves
our assertion in that case. To establish it in the general case, it will be
* see footnote p.115.
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sufficient (in virtue of I.5.1) to show that, if our assertion is true of
a', a", then it is also true of do". We have a' = (no, , a' = 0’1 «’2, where
a, , 0’1 2 G’ and a, , ar’, leave the elements of P’ fixed; thus, we have
do” = (alaza’lcrg—l) (aza’g), which proves our assertion for aa’. Now,
let a = 610’, be in GK, 0'; e G’, a, , leaving the elements of P’ fixed. Since
G’ C Go", we have a, a G)“. The only singular vectors of P are those of
K2: and Ky; thus, (72-2: is either in K1: or in Ky. Moreover, it is clear
that any operation of Go+ which leaves a: and the elements of P’ fixed is
the identity.We shall see that it is impossible that or; -a: = ay, a s K.For,
let then 1' be the symmetry with respect to the conjugate hyperplane of
K(:c - ay). (We have a 95 0, whence Q(:z: — ay) ;é 0.) Then it is easily
seen that r-x = ay, and r leaves the element of P’ fixed. Since 1 is not in
G“, 0'2 5'5 1', which proves our assertion. Therefore, we have «3-1: = ax,
a e K, whence a,-y = a—‘y. Let s = a- 1 + (1 — a)ya:; any element of P’
anticommutes with every element of P and commutes therefore with s.
We have

(a-l + (1 — a)yx)(a-1+(l — a)xy) = a-l,
so that

s‘1 = a‘1 (a-l + (1 — a)xy).

We have 8333' = am and, since 8 = 1 — (1 — a)xy, sys‘1 = a"y. This
shows that s s I‘+ and x(s) = a, . On the other hand, there is an s’ 2 I1,"
such that x(s’) = a2 ; it follows that s’s‘1 is in the center of I”, i.e., that
s = cs’, 6 a scalar? We have a(s) = a-1 + (1 — a):cy, whence c2 =
M8) = a. Now let 0'3 be the operation of G which maps :1; upon 02:, 1]
upon c"y, and the elements of P’ upon themselves, and let 1- be the
operation of G which exchanges x and y and maps the elements of P’
upon themselves. Then we see that W3" 1" as -:c = c’x = a, -:c, whence
a, = 1173-1 1‘1 as a G'. Thus, we have proved that G,” C G’. Since
G’ C GE, II.3.8 is proved.

l.

II.3.9. The assumptions being as in II.3.8, assume furthermore that
dim M > 2. Then Go+ is also the commutator subgroup of G”.

We have only to prove that the commutator subgroup G’ of G is
contained in the commutator subgroup H of G". It is clear that H is a
normal subgroup of G. Let a1 , a, , 1' be in G; the formula

(”162) 7(0'10’2)_l7'-1 = 01(0270'2-17-1)°'1_l(0'11'0'1_1 7-1)

shows that, if the commutators of a" , -r and of a, , 1' are in H, then
so is the commutator of a, a, , 1. Every element of G is a product of
symmetries with respect to hyperplanes (whose conjugates contain
* see footnote p.115.
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nonsingular vectors). It will therefore ”be sufficient to prove that, if a
is such a symmetry and -r e G, then on" r" e H, or, which amounts to
the same, that far-1 a" e H. Decomposing 1- into symmetries, we are
reduced to consider the case where a' and 1' are symmetries with respect
to hyperplanes whose conjugates contain nonsingular vectors a: and y.
The conjugate of Ky is obviously not totally singular; let y’ be a non-
singular vector of this conjugate and o’ the symmetry with respect to
the conjugate hyperplane of Ky’. Let g- = ac"; then a = {a’ and, since
a" commutes with -r, it follows from the formula written above that it is
sufficient to show that {ff—11:1 e H. Assume first that the conjugate
space P of K1: + Ky’ is not totally singular, and then let x’ be a non-
singular vector of P and let 1’ be the symmetry with respect to the
conjugate of Kz’. Then 1’ commutes with o' and a’, and therefore with
3'. We write -r = 'r'r'-'r'; since 1' commutes with g' and rr’ 2 G“, the
commutators of 3' and 1" and of f and 71’ are in H,which shows that the
commutator of y and -r is in H. Assume now that P is totally singular.
Then we have P C K2: + Ky’ and, since K2: is not singular, P 75 Kc:
+ Ky’. If m = dim M, then P is of dimension m - 2. Since m > 2,
P is of dimension 1 and m = 3. But, if m is odd, then the center of G
contains an element not in G+ (namely, the mapping a: —> — z), from
which it follows immediately that G and G+ have the same commutator
subgroup.

2.4. Spinors (Even Dimension)

We assume that the space M is of even dimension m = 2r, and that B is
nondegenerate. We denote by G the orthogonal group of Q, by 0 its Cliflord
algebra, by 0+ , C- the spaces of even and odd elements of C', by I‘ the
Clifi‘ord group of Q, by I‘+ its special Clifiord group, and by I‘o+ its reduced
Clifi'ord group.

We know that all simple representations of the simple algebra C’ are
equivalent. We select one of them, say p, and we call the space S of this
representation the space of spinors of Q. The representation p of C is
called the spin representation of C; the representation p+ of 0+ induced
by p is called the spin representation of 0+ . The representation p of 0
induces a representation of I‘, which will still be denoted by p; it also
induces representations of l"+ and I‘o" which are denoted by p+, po+ ; all
these representations are also called spin representations.

II.4.1. Except in the case where K has 2 elements, m = 2, and Q is of
index 1, I‘ is a set of generators of the algebra C and the spin representation
of I‘ is simple.
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We first establish the following:
Lemma. 1. Let R be a finite-dimensional vector space over a field K

and Q1 a quadratic form on R whose associated bilinear form B, is non-
degenerate. Let 2:1 be any element ;£ 0 of R and N the subspace of R spanned
by all vectors x such that Q(x) = Q(:c1). Then we have ‘N = R unless R is
of dimension 2, Q is of index 1, and K has either 2 or 3 elements.

It is obvious that N is mapped into itself by the operations of the
orthogonal group G, of the form Q1 . Lemma 1 therefore follows from
I.6.2 and 1.6.7.

Now, I‘ contains every nonsingular vector of M. If m = 2 and K has
3 elements, we see immediately that there exist two linearly independent
nonsingular vectors in M. Thus, if we are not considering the exceptional
case of II.4.1, then M is spanned by I‘ H M, which shows that I‘ gener-
ates 0. Since the spin representation of C is simple, so is the spin repre-
sentation of I‘. If we are considering the exceptional case, then M is
spanned by two singular vectors it and y such that B(x, y) = 1. Then
1" = {1, :c + y}, and it is easily seen that the spin representation of I‘
is not simple.

Consider now the representation p+ of 0+ . This representation is
either simple or the sum of two simple representations (see the remark
which follows the proof of II.2.3). If 0+ is not simple, then 0.. has two
inequivalent simple representations, and both must occur in p", since
p+ is faithful. In that case, p+ is the sum of two inequivalent simple
representations. It follows that S may be represented in one and only
one way as the sum of two subspaces each of which yields a simple
representation of 0+ . These two spaces are then called the spaces of
half-spinors, and the corresponding representations of 0.. the half-spin
representations. The representations of I", I‘o+ induced by the half-spin
representations of 0+ are called the half-spin representations of these
groups.

II.4.2. The spin representation p+ of 11+ is either simple or the sum of
two simple representations. If 0+ is not simple and if we are not in the
exceptional case of II.4.1, then the half-spin representations of I” are
simple and inequivalent to each other.

We have seen in the proof of II.4.1 that, if we are not considering the
exceptional case, M is spanned by its nonsingular vectors. On the other
hand, 0+ is generated by all products of 2 elements of M and therefore
also (outside the exceptional case) by the products of two nonsingular
vectors of M. But these products are in I‘+, and I‘+ is therefore a set of
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generators of the algebra 0+ . In the exceptional case of 11.4.1, we have
1‘+ = {l} and the spin representation splits into two simple repre—
sentations; 11.4.2 is thereby proved.

11.4.3. The spin representation po+ of I‘o“ is either simple or the sum
of two simple representations; if the spin representation of I‘+ is simple,
then so is 170+. If 0+ is not a simple algebra, then the half-spin representations
of I‘a+ are simple; they are inequivalent to each other except if m = 2, Q
is of index 1, and K has either 2 or 3 elements.

We may assume M sari {0}; let x, be a nonsingular vector in M and
a, = Q(a:,). Assume that M is spanned by the set of all vectors a: such
that Q(x) = Q(x1). Since 0.. is generated by all products of two elements
of M, it is also generated by the elements of the form af‘xy, where x,
y are vectors such that (2(a) = Q(y) = a1 . But al‘lxy then belongs
to 1‘3, since Mal—lay) = a," Q(a:) Q(y); thus, 1%,“ is in that case a set
of generators of 0+ . If the set of vectors a: such that Q(:c) = a does not
span M, then m = 2, Q is of index 1, and K has either 2 or 3 elements.
In these cases, it is easily seen that the representation p+ of I” is never
simple: it splits into two representations of degree 1. Since every repre-
sentation of degree 1 is simple, 11.4.3 is proved.

2.5. Spinors (Odd Dimension)

We assume now that the space M is of odd dimension m = 2r + 1 and
that B is nondegenerate. Otherwise, we use the same notation as in Section 4.

The algebra 0+ is now central simple (11.2.6),and its simple repre-
sentations are all equivalent to each other. We select one, say p”, which
we call the spin representation; the space S of this representation will
be called the space of spinors. The representations of I”, It," induced
by p+ are called the spin representations of these groups.

11.5.1. The group I‘o" is a set of generators of the algebra C+ ; the
spin representations of 1‘", I“,+ are simple.

Let 2:, be a nonsingular vector in M. Then M is spanned by the vectors
Q(x) such that Q(a:) = Q(x,) (Lemma 1, 11.4). It follows as in the
proof of 11.4.3 that 1“," is a set of generators of the algebra 0+ . The
second assertion of 11.5.1 follows immediately from the first.

11.5.2. If the algebra C is not simple, then it is possible in exactly
two ways to extend the spin representation of 0+ to a representation of the
algebra C.

The center Z of C is spanned by 1 and by an odd element 2 such that
z2 e K - 1. Since G is not simple, 2’ must be a square in K, and we may
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assume without loss of generality that z2 = 1. Any u s C is uniquely
representable in the form u = ul + me, where u, , u2 are in 0+ . Since
2 is in the center of C, the mappings (p: u ——> u1 + “2 and go’: u —> u1 — u,
are homomorphisms of 0' into 0+ ; the representations p = p+ age,
p’ = ,9+ 0 q” are representations of C which extend p+. Conversely, let
” be any representation of C’ which extends p+. Let 0' = p”(z); then

' a” is the identity mapping I of the space S of spinors, and a commutes
with every operation of p+(0+). The space S is the sum of the space S,
of elements w such that a'-'w = w and of the space S, of elements w’
such that a-w’ = — w’. But these spaces are mapped into themselves
by the operations of p+ (0+). Since p"' is simple, one of S1 , S, is S and
the other {0}, whence a' = :tI. It follows that p" is one of the repre-
sentation p, p’

If C is not simple, then the two representations of C’ which extend
p+ are called the two spin representations of C; the representations of
I‘ induced by these spin representations are called the spin representa-
tions of I‘.

2.6. Imbedded Spaces

We shall assume that B is nondegenerate. We sha_ll denote_by M a non-
isotropic subspace of M, by_Q the restriction of Q to M, by C', C the_C'lifiord
a_lgebras of Q, Q, by 0+ , 0+ the algebras of even elements of C, C, by I‘,
I‘ the Clifiord groups of Q, Q, by I‘ ,I‘+ their special Clifiord groups, by
To , To their reduce_d Clifiord groups.

We_shall i_dentify C’ to the subalgebra of 0 generated by M; we then
have C+= 0 fl C+ .

II.6. 1. The group I‘ is a subgroup of I”; if 5' e I‘, then the norm of
s_ is the_same whether_we consider s as an elemen_t of I‘ or of I‘, and

=I‘ n D,” .IfM is of even dimension, then I‘ C I‘ and any element
ofI‘hasthesamenormin I‘asinl‘.

Let N be the conjuga__te space of M. If y s N, then y anticommutes
with every elem_ent of M, it follows that y anticommutes with every
odd element of C and commutes with every element of 0+. If s 2 I‘ is
either even or odd, then_we have sy§ 1 = :ty and s_Z_V§ 1 = N. Since
_M—= M iN sME'1 = M, sisin I‘. Thisshowsthat I‘ C I‘ andthat
I‘ C I‘ if M is of even dimeilsion (see II.3.2). It 1s obvious that the main
antiautomorphism of C induces the main antiautomorphism of C;
the remaining statements of II.6.1 follow immediately from this
observation.
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11.6.2. Let x and 55 be the vector repgeyentations of I‘find I‘; ifE e I‘ n .5,
then 2(5) is the restriction of x(§) to M, and_, if E e I”, then x(§) leao_es
fixed the elements of the cenjugate space of M. The representation of I"
induced by the spin representation of I“ is the sum of a certain number of
representations equivalent to th_e_ spin representation of I”. Assume now
that 0+ is not simple and that M ;é M. Then the representation of I‘+ in-
duced by a half-spin representation of I” is the sum of a certain number
of representations equivalent to the spin representation of I”.

If s e I‘ n I', then we have_x(‘s) -x = Ems" for all :c e M, which shows
that the restriction of x6) to M is i6). Every element Lof the conjugate
space of M anticommutes with _every element of M and therefore
com_mutes with ev_ery element o_f 0+ , which shows that x(§)-y= y if
s_e L. We have 0+ C 0+ , if 0+ 18 simple, then the representation of
0+ induced by a representation of 0+ 1s the sum of a certain number of
representations all equiva_lent to the spin representation of 0+ . (Observe
that the unit element of_C+ 1s also unit element of (L,--) This shows that
the representation of I‘+ induced by the spin representation of I‘+
(or by a half-spin representation of I‘, if 0+ is not simple) is the sum of
a certain number of representa_tions equivalent to the spin representa-
tion of I”. Assume now that 0+ 13 not simple but that 0+ 13, and let
1' be the representation of 0+ induced _by the spin representation of
0+ . Let an and a, be the two half-spin representations of 0+ ; then the
spin representation of 0+ is a), + (02-. The representation -r is the sum of
a certain number of simple representation of (1+ , each one of which is
equivalent to w, or u, ; we wish to prove that w, and a, occur the same
number of times in 1'. We may obviously assume M 75 M. The regular

- representation of 0+ on itself is the sum of a certain number of repre-
sentations all equivalent to the spin representation; it will therefore be
sufficient to prove that_w1 and we occur the same number of times in
the representatign 9 of. 0+ induced by the regular representation of 0+ .

The algebra 0+ is the_sum of two simple ideals 3, and E, . Let 5 be a
nonsingular element of M; then ii ——> iii" is an automorphism j oiC’+ .
We assert that j exchanges the ideals_E1 and E, . We may write f1, = 0+5.- ,
where e,- is a central idempotent of 0+. If we had_j(a,) = a1 , then we .
would have 51 = :cefa‘: ‘ ;but it is clear that C= 0+ + 04:; since e1 is
in the center of 0+ , it would_be 1n the center of 0. But this 1s impossible,
since, 0 not being simple, M is of even dimensign and 0 central simple.
It follows_that j(a1) = a2 , j(a,) = a1. Since M 95 M, the conjugate
space of M contains some nonisotropic vector y; since y anticommutes
with every element of M, it commutes with every element of 0+. The
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element 5y is an invertible element of 0+ ; let 1" be the mapping u —>
(iv/)ufiy)‘l of C’+ into itself. Then 3" extends j. Let SUE.- be the set of
elements u a 0+ such that e.-u = 0 (i = 1, 2); then it is clear that 0..
is the direct sum of W21 and am, (because e, + e, = 1, 616, = 0). Since
j’-el = e2 , j’- e2 = e, , j’ transforms we, into 9.722 , and 2m, , an, have_the
same dimension. It is clear that 179)};- C 912.- (13 = 1, 2) for any it a 0+ ;
denote by 0,-(17) the restriction of 0(17) to sm. . Then 0 is the sum of the
representations 0, and 02 , which are of the same degree. One of the
representations w; , wz map 61 upon 0 and £2 upon the identity, and the
other maps e, upon 0 and e; upon the identity; we may assume that
w.~(e.-) = 0. It is then clear that 0. is the sum of a certain number of
representations equivalent to w.- (i = 1, 2). Since 01 , 0, are of the same
degree and col , w, of the same degree, it is clear that w; occurs as many
times in 01 as (02 in 0, , and therefore that w, and 0:, occur the same
number of times in 0 and in -r. This shows that 1- is the sum of a certain
number of representations equivalent to the spin representation of 0+ .

Assume now that 0+ is not simple. Let p. be a half-spin repre-
sentation of 0+ and 'r' the representation of 0+ induced by p1 . We shall
see that co1 , 0),, also occur the same number of times in -r’. The algebra
0+ is the sum of two simple ideals of which one, say a, is represented
faithfully under p1 , while the other one is mapped upon {0} . Let 0'; be the
representation of 0., which assigns to every u a 0., the mapping w, ->
uw1 of a into itself. Then (71 is the sum of a certain number of repre-
sentations equivalent to p1 , and the representation 0’ of 0+ induced
by 0'; is the sum-of a certain number of representations equivalent to
1’: it will be sufficient to prove that ml and w, occur the same number of
times in 0’. The automorphism j’ defined above is an inner automorphism
of 0+ and therefore transforms a into itself. The proof then goes exactly
as above, decomposing a into the direct sum iD’Z’l + SUZ’, of the spaces
932’; = 93?.- n a, which are transformed into each other by y".

2.7. Extension of the Basic Field

Let M be a finite-dimensional vector space of dimension m over a
field K, and Q a quadratic form on M whose associated bilinear form is
nondegenerate. Let K’ be an overfield of K, let M’ be the vector space
over K’ which is deduced from M by extending to K’ the basic field,
and let Q’ be the quadratic form on M’ which extends Q. Then the
Clifford algebra C" of Q’ may be identified to the algebra deduced from
C by extending the basic field to K’ (II.1.5). It is clear that C’+ =
C’+ n C and that the main antiautomorphism of C is the restriction
to C of the main antiautomorphism of 0". Let I‘, I”, 13," be the Clifford

124



THE CLIFFORD AlGEBRA

group, the special Clifford group, and the reduced Clifford group of
Q, and I", I‘”, I"’o+ those of Q’. Then it is clear that

I‘ C I" I‘+ C I"+ I‘o+ C I"o+.

Let x, x' be the vector representations of I‘, I". Then, for s s I‘, x(s)
is obviously the restriction of x’(s) to M. If M is even-dimensional,
let p and p’ be the spin representations of C’ and C’. If S is the space of
spinors for Q, then p may be extended to a representation p" of C’ on
the space S" deduced from S by extension to K’ of the basic field.
Since px'(l) is the identity, pK' is the sum of a certain number of repre-
sentations of 0’ equivalent to the spin representation. It follows that,
for any one of the groups I‘, I”, I‘o", the representation deduced from
the spin representation by extension of the basic field is the sum of a
certain number of representations all equivalent to the one induced
by the spin representation of the corresponding group I", I‘”, or I"o+.
If 0+ is not simple, then the same is true of C’+ and the simple ideals
of C”, are those generated by the simple ideals of 0+ . This shows that
the representation of I‘+ or I‘D+ deduced by extension of the basic field
of a half-spin representation is the sum of a certain number of repre-
sentations all equivalent to the one induced by a suitable half-spin
representation of the corresponding group I"+ or I"o+.

If M is odd-dimensional, we see in the same way that the representa-
tion of I‘+ or I‘.,+ deduced by extending the basic field from the spin
representation is the sum of a certain number of representations all
equivalent to the one induced by the spin representation of I"+ or
I"0+.

2.8. The Theorem of Hurwiiz
Let M be a vector space of finite dimension m over a field K and Q

a quadratic form on M whose associated bilinear form B is nonde-
generate. In certain cases, it is possible to find a bilinear mapping go
of M X M into M which satisfies the identity

Q(¢(x, 21)) = Q(z)Q(y) (x, y e114)- (1)
For instance, if m = 1 and Q takes the value 1, let x; be such that

Q(:r,) = 1. If 2:, y e M, set a: = ax, , y = bx, ; then the mapping defined
by ¢(:c, y) = abrc1 has the required property.

Now, assuming that K is not of characteristic 2, let Z be a commuta-
tive algebra of dimension 2 over K with a base (1:, , :52) such that as, is
the unit element and x,” = ax, , a being an element ,5 0 in K. Then
there is an automorphism z —-) 2 of order 2 of Z such that 5:, = — as, ;
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if a: = ux, + vx, e Z (with u, v e K), then we have 965 = (u.2 — (1122)::1 ;
set Q(a:) = u" — av2 = x5. Then the associated bilinear form of Q is
clearly nondegenerate. We have

Q(xy)x1 = $213? = aim? = Q(x)Q(y)x1 ,
whence 0061/) = Q(x)Q(y)-

The algebra Z defined above may be imbedded into a “generalized
quaternion algebra L” which is generated by Z and by an element x;
such that :63“ = b1:l , b a K, b 75 0, and macaw," = — x, = BE, , whence
zazza'l = E for every 2 e Z. The elements 2:, , x, , 1:3 , 32x3 = as. form a
base of L. If

4

x = z um},- 8 L,
{-1

set
4

5 = 14,221 —- Eugx; .
i-Z

We then have 51 = x1 , E,- = — x.- if i > 1. The multiplication in L is
defined by the formulas

m.- = m. = z.- (i = 1, 2, 3, 4) x: = ax. 'x§‘= bx, x: = —aba:1,
$2533 = —$3x2 = $4 $21M = “3 = _xgxg flux; = bx: = _xax4 .

It follows immediately that the mapping a: —> 5 is an antiautomorphism
of L. The only elements left fixed by this antiautomorphism are those
of K2:l . The conjugate of «:5 being xi itself, we have xi = Q(x):c1 ,
Q(x) a scalar. An easy computation gives

40(g31 max) = u.” — au: — bu: + aw, coy) = away).
Were K of characteristic 2, we could construct similar examples by

taking for Z a commutative algebra of dimension 2 over K which is
either the sum of two fields isomorphic to K or a separable quadratic
extension of K.

On the other hand, if M is of dimension 8 and Q of index 4, we shall
construct in ' IV -5 a mapping go which has the property (1).

We shall now prove a result due to Hurwitz,1 which states that, if

1A. Hurwitz, “Uber die Komposition der quadratischen Formen von beliebig
vielen Variabeln,” Nachn'chten van der Kbniglichen Gesellschaft der Wissenschaften zu
Gb'ttingen, 1898, p. 309, or Mathematische Werke, (Basel: Birkhauser, 1932), II, p. 565;
see also ”Uber die Komposition der quadratischen Formen,” Mathematische Annalen,’
88 (1923), p. 1, or Mathematischc Werke, II, p. 641.
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m s6 1, 2, 4, 8, there exists no bilinear mapping p of M X M into M
for which (1) holds.

Assume that we have a bilinear mapping go for which (1) is true.
Let x, y, 2 be elements of M; we then have ¢(:c, y + z) = ¢(:1:, y) +
¢(x, z); applying (1) by replacing successively y by y, z and y + 2, we
easily obtain the formula

B(¢(!€, y), dz, 2)) = Q(x)B(y, 2). (2)
Replacing a: by x, :c’ and a; + x’ in (2), we easily obtain

B(¢(x, 3/), 9006’, 2)) + B(¢(-’¢’, y), We 2)) = 3(10, $9301, z)- (3)
Conversely, assume that we have a subset S of M such that the formulas
(1), (2), (3) are valid whenever x, x’, y, z are in S. If S spans the vector
space M, then (1) is valid for all x, y e M. For, let first y be in S and a:
any element of M; write

I

a; = Z 0‘13:
i-l

with a.- a K, x, s S. Then we have

cw, y» = a; aw. . y»
= 2; areas. , y» + z mama. , y), m.- .11»
= ‘21 aa2Q($a)Q(?/) + '1: “£0.30”: , $i)Q(1/)

= Q(x)Q(y) 7

which shows that (1) is true if a; a M, y s S. On the other hand, if y,
z a S, we have, by using (2), (3),

B(¢(x, y), «006, 2)) = ,2 aaai3(¢(m . y), We ,2»
hi-l

I:

= Z #0m z) + Z a«a:B(z« , may, 2)
= Q(x)B(:l/, 2),

which shows that (2) is true if a: e M, y, z e S. Now let a: and y be arbi-
trary in M; writing y as a linear combination of elements of S, we see
by a computation similar to the one made above that Q(¢(x, .y)) =

' Q(x)Q(y)-
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This being said, let K’ be an overfield of K. Denote by M’ the vector
space over K’ deduced from M by extending the basic field and by
Q’ the quadratic form on M’ which extends Q. It is easily seen that
«2 may be extended to a bilinear mapping 99’ of M’ X M’ into M’. Since
M spans M’, it follows from what we have just said that Q’(p’ (x, y)) =
Q’(x)Q’(y) for all :15, y e M’. This shows that, in proving Hurwitz’s
Theorem, we may replace K by any larger field. In particular, we may
assume that Q has its maximal possible index 1' (i.e., m = 2r or m =
2r + 1). We shall also assume that m > 2. The space M contains at
least one element x, such that Q(x,) = 1, for, if x, y are such that
Q(x) = Q(y) = O, B(x, y) = 1, then x, = a: + g has the required
property. The mapping <71 : y —> ¢(x1 , y) then belongs to the orthogonal
group G of Q. Set Mac, y) = 01—1. (¢(x, y)). Then it is clear that Q(i//(:c, y))
= Q(z)Q(y) and Mar, , y) = y for all y s M. For any :1: e‘M, we denote
by L,‘ the mapping y ——) “2:, y). We first prove that m is even. Let
$750 be any singular vector; then we have Q(L,-y) = 0 for all y e M, and
L,(M) is totally singular. The dimension p of this space is therefore
S 1'. On the other hand, if y is a nonsingular vector, then the mapping
z'—» ¢(z, y) is one-to—one. For, we easily see (in the same way that we
proved formula (2)) that .B(¢z(z, y), ¢(z’ , y)) = B(z, z’)Q(y) for all z,
z’ s M. Thus, the condition ¢(z’, y) = 0 implies B(z, z’) = 0 for all
z c M, whence z’ = 0. This shows that the kernel of L1 is totally singular.
The dimension of this kernel is m — p; thus, we have m S p + r = 27',
which shows that m 75 21' + 1 and that m is even.

Let a; be any element of M such that B(to, 2:1) = 0.Then Q(ip(:z:l + x, y))
is equal on the one hand to

Q(x1 + x)Q(y) = (1 + Q(:v))Q(1/)
and on the other hand to

Q(y + L.-y) =' Q(y) + Q<x>Q<y> + Bel, L.-y);
thus, we have B(y, L,-y) = 0. Replacing y by y, z and y + z in this
formula, we obtain immediately

B(y7 Ls'z) + B(z7 Lay) = O

Replacing 2 by L,-z, we obtain

3(31, Lzz'z) = —Q(x)B(y, Z),
01'

B(y, (L,2 + Q(x)I)-z) = 0,
where I is the identity mapping. We conclude that

L,2 = —Q(x)-I if B(x, x.) = 0. (4)
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Let H be the conjugate hyperplane of Km, . If K is of characteristic 2,
let N be a subspace of H supplementary to Kx. ; if not, let N be any
(m - 2)-dimensional nonisotropic subspace of H. Let C" be the Clifford
algebra of the restriction of — Q to N, and let an be the algebra of all
endomorphisms of M. It follows from (4) and from 11.1.1 that the
linear mapping a: —> L, of N into ED? may be extended to a homomorphism
0 of 0’ into 9.72. The space N is not isotropic; since N is of even dimension
m — 2, C’ is central simple and 0 is an isomorphism. The algebra C" is of
dimension 2”""’; its simple representations are therefore all equivalent,
and their degrees are multiples of 2'”. Since 0(0’) contains the identity,
m = 2r must be a multiple of 2'”, and r is a multiple of 2"“. It is
easily seen that this can happen only for 1' = 2 or 4 (since m > 2 by
assumption), which proves Hurwitz’s Theorem.
2.9. Quadratic Forms over the Real Numbers

Let M be a vector space of finite dimension m over the field of real
numbers, and Q a quadratic form of rank m over. M. If a: is not singular
in M, then there is a real number a such that Q(ax) = :1. Thus, M
has a base (1:. , - - - , x...) composed of mutually orthogonal vectors :6.
such that Q(:c.-) = :l:1. We may assume that Qua.-.) = 1, Q05...) =
— 1 for 1 S k S v, 1: being some integer S m/2, while the Q(x.-) are all
equal to each other for i > 2v; let e be their common value. Then
we' have

Q(; (1.40.) = I; (“gt-1 — ugh) + 6 6;“ 0&2:

where e = d: 1. If we denote by N the space spanned by the elements
:52..., + an (1 S k S v), by P the space spanned by the elements
2:2,.-. — x... (1 5 k S v), and by R the space spanned by 2:2,... , - - - , x... ,
then M = N + P + R, N, and P are totally singular and the restric-
tion of Q to R is definite (positive if e > 0, negative if e < 0). The con-
jugate of N is N + R, and the only singular vectors of this space are
those of N, which shows that v is the index of Q. .If we denote by p the
number of indices 12 such that Q(z.) = 1 and by q the number of indices
1' for which Q(:c.-) < 0, then to is the smallest of p, q, while p + q = m;
'eis + lifp > q,-— 1 ifp < q. Let (x’l, ,x’...) beanyotherbase
with the same properties as (x. , - - - , x”), and let N’, P’, R’, p’, q’, e’
be determined for this new base as N, P, R, p, g, e have been for (m, ,

- , 1...). The restrictions of Q to N + P, N' + P’ are equivalent;
the same is therefore true of its restrictions to R, R’, whence e = e'
(if 2 v 75 m). We have p’ + q’ = p + g, min (p, q} = min {p’, q’}, and
p > q if and only if p’ > q’; it follows that p = p’, q = q’. This is the
famous law of inertia.
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Let us now determine the structure of the Clifford algebra 0 of Q.
The discriminant of the restriction of B to (N + P) X (N X P) is
(— 1)'2". Thus, 0 is isomorphic to the tensor product of the Clifford
algebras Co , C. of the restrictions of Q to N + P and R (11.2.5), and
Co is isomorphic to a full matrix algebra (11.2.1). Let us now assume
that Q is of index 0, and suppose first that m = 21‘ is even. There is
only one central division algebra 75 K over the field K of real numbers
(up to isomorphism), and this is the algebra $2 of quaternions. Thus, 0
is either isomorphic to a full matrix algebra over K or to a full matrix
algebra over 9. Set {(Q) = + 1 in the first case, {(Q) = — 1 in the
second case. Also set e(Q) = + 1 or — 1, according to whether Q is
positive or negative definite. If m = 2, then C has a base (1, 2:1- , x, ,
xlxa) such that x,” = e-l, x,” = 6-1, Crag)” = — 1. If e = + 1, then
C has zero divisors (for instance, :3, — 1); if e = — 1, then we recognize
the classical base of 9; thus, {(Q) = e(Q) if m = 2. If m > 2, let N be a
nonisotropic subspace of dimension m .— 2 of M, and N’ the conjugate
of N; then C is isomorphic to the tensor product of the Clifford algebra
of the restriction Q” of Q to N by that of (— 1)"1QNI , where Q". is the
restriction of Q to N’ (11.2.5, observing that the discriminant of the
restriction of B to N X N is a square). Since (2 ® (2 is a full matrix
algebra, we have

{(0) = I(Q~)s‘((- 1)"‘Qm) = (-1)'"‘§(Q~)e-
It follows immediately that

{(Q) = (—1)"""”e'(Q)-
Moreover, 0+ is simple if r is odd, and is the direct sum of two ideals
if r is even (by 11.2.3).

Suppose now that m = 21‘ + 1 is odd. Let me be any element 75 0
in M, and N the conjugate of K330 . Then C’+ is isomorphic to the Clifford
algebra of the restriction of — e Q to N (see the proof of 11.2.6). Thus,
0.. is isomorphic to a full matrix algebra over K if (— 1)"'“’” = 1,
over (I if (— 1)"'“’” = — 1.Moreover,0 is simple if (— 1)'e = — 1,
but is the sum of two simple ideals if (— 1)'e = + 1.

Returning now to the general case, we observe that the Clifford
group I‘ of Q is a closed subgroup of the multiplicative group of in-
vertible elements of C (where C is given its natural vector-space to-
pology); 1‘I is therefore a Lie group. We shall determine its Lie algebra.
For any X e 0’, let L(X) be the operator of left multiplication by X in 0'.
Then L(X) is an endomorphism of the finite-dimensional vector space
0'; as such, it has an exponential
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exp me = 2: (kl)"(L(X))"-
Wemaywritethisas

lim L( E (k!)“X").
n—Nfl b-O

It is clear that u ——> L(u) is a homeomorphism of 0 with a subspace of
the vector space of endomorphism of the vector space structure of 0.
We conclude that

E (ho—‘X‘
he

tends to a limit in 0 as n increases indefinitely. We denote this limit
by exp X, and we then have exp L(X) = L(exp X). We know that the
exponential of a matrix depends continuously on this matrix; it follows
that X -—> exp X is a continuous mapping of 0 into itself. We have
exp (X + Y) = (exp X) (exp Y) ifXY = YX; in particular, exp X is
invertible, and (exp X)‘1 = exp (- X). Let 0* be the multiplicative
group of invertible elements of 0. Then t —) exp tX (t a K) is a one-
parameter subgroup of 0*; thus, we see that L(0) is in the Lie algebra
of L(0*). But L(0*) is obviously of dimension 5 2" and L(0) is of
dimension 2'". Thus, L(0) is the full Lie algebra of L(0*). If we set
[X, Y] = XY -— YX for X, Yin 0, we have L([X, Y]) = [L(X), L(Y)];
thus, we see that we may regard 0 as the Lie algebra of 0*, 0 being
made into a Lie algebra by means of the law of composition (X, Y) —>
[X, Y]- .

If u e 0*, denote by x(u) the mapping w —) man" of 0 into itself;
x is a linear representation of 0*. Regarding 0 as the Lie algebra of 0*,
x is clearly the adjoint representation of 0*. If we denote by A(X)
the mapping Y —) [X, Y], then x (exp X) = exp A(X). Now, I‘ is the
group of all u e 0* such that (x(u))(M) = M; for X to belong to the
Lie algebra of I‘, it is necessary and sufficient that exp tA(X) should
map M into itself for all real t, i.e., that A(X) should map M into itself.
We propose now to determine the elements X with this property.

Let x, y be in M; then we have, for z e M,

961/2 — my = xB(y, 2) - (x2 + my
= B(y, ex - B(x, z)y

and my belongs to the Lie algebra of I‘. If m is odd, then the center Z of
0 is spanned by 1 and by an odd element 2, and A(Z) = 0. Let c be the
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space spanned by the elements my (1:, y e M) and by z (the last one only
if m is odd). Then c is clearly of dimension 1 + m(m — 1)/2 if m is even,
2 + m (m — 1)/2 if m is odd. Now, the image of I‘ under its vector
representation is G or G+ (depending on the parity of m), and it is well
known that G and G" are of dimension m(m — 1)/2. The representation
x is continuous, and its kernel is the intersection of I‘ with the center of
Z; this kernel is of dimension 1 if m is even, 2 if m is odd. This shows that
I‘ is of dimension 1 + m(m -— 1)/2 if m is even, 2 + m(m — 1)/2 if m is
odd. This shows that c is the full Lie algebra of F. The Lie algebra of I‘+
is obviously the space c+ spanned by the products mg, m, y e M. If a is
the main antiautomorphism of C', then, clearly, a (exp X) = exp a(X)
(X e C). It follows immediately that the Lie algebra c0+ of I‘o+ is the set
of X 2 6+ such that a(X) + X = O._This is easily seen to be the space
spanned by all products my, where x, y are vectors of M orthogonal to
each other.

If Q is definite (either positive or negative), then it is well known that
G“ is a connected group. In that case, we have Go+ = G+ in virtue of
II.3.6. The kernel of the vector representation x of I‘o" is composed of
1 and — 1. If m > 1, then — 1 belongs to the connected component of
1 in PE. For, let a: and y be two vectors of M orthogonal to each other,
such that Q(:c) = Q(y) = :1: 1. Then we have (my)2 = —- 1 and
exp try = cost + (sin t)xy, whence exp my = - 1; since exp txy e I‘o“ for
all real t, - 1 belongs to the connected component of 1. It follbws easily
that To is a connected group, which “covers” G exactly twice. If m
> 1, then it is known that the Poincaré group of G is of order 2; 1‘0
is then the simply connected covering group of G.

If, however, Q 1s of index 75 0, then Go is of index 2 in G+ (by 11.3.6).
Every element a' sufficiently near the identity in the Lie group G+
belongs to a one-parameter subgroup and is therefore a square in G‘”,
whence tr 2 Go”. It follows that Go+ is an open subgroup of G+ and con-
tains the connected component of the identity in G”. We shall establish
that GS is connected. If :v is a nonsingular vector in M, then there is a
scalar a such that Q(a:c) = :1: 1. Thus, an element 8 z I‘+ may be repre-
sented in the form 3 = 6221 - - - $2,, , where x.- e M, Q(:c.-) = :I: 1 (1 S i
g 2 h), and c s K. If p is the number of indices 13 such that Q(w,) = - 1,
then we have Ms) = (— 1)’c2; thus, 8 belongs to In," if and only if
c = :l: 1 and p is even. Moreover, we may assume that Q(x,) = - - - =
0(2),) = - 1, 0%“) = --- = Q(rv2») = + 1- For. if 0(a) = 1.
Q(xm) = — 1, we may write

—-1
xixi+1 = $i+1($a+1 33113:“)
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and Q(x§i,x,x,+,) = + l; by a succession of transformations of this
kind, we may bring all factors :0.- with Q(:c.-) < 0 in front of the product.
Thus, D,“ is generated by :I; l and by the products zy, where z, y are
vectors such that Q(a:) = Q(y) = :l: 1. Consider now'any such product
zy. If x, y are linearly dependent, then we have xy = :l: 1. If not, then
they span a plane P. Let D be the set of vectors m’ a P such that Q(:c') =
Q(x). We shall see that y belongs either to the connected component of
a; or to that of — x inD. If P is isotropic, then P = K2: + Kz, where z
is a singular vector such that B(x, z) = 0, and D consists of all vectors
:I: a: + az, a e K, which proves our assertion in that case. If P is not
isotropic and the restriction of Q to P is of index 1, then we have
P = K: + Kz’, where z, z’ are singular vectors such that B(z, z’) = 1.
In that case, D is the set of all vectors of the form lcz + Q(x)lc"z’, with
k 75 0; D has two components (corresponding to the cases where k > 0,
k < 0), one of which contains a: and the other -—- :c. If the restriction of
Q to P is of index 0, then D is clearly connected. It follows that my
belongs either to the component of 1 or to that of —- 1 in 1%,“. Thus,
I‘.,+ has at most two connected components, and, if it has two, then one
of them contains 1 and the other — 1. It follows immediately that
Go“ = x(I‘o+) is connected. It is easily seen that I‘o+ itself is connected
ifm > 2, butnotifm == 2.
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CHAPTER III

FORMS OF MAXIMAL INDEX

We shall denote by M a vector space of finite dimension m over a field
K and by Q a quadratic form on M whose associated bilinear form B is
nondegenerate. We shall furthermore assume that Q is of maximal index,
i.e., of index m/2 if m is even, (m — 1) /2 if m is odd. We shall denote by
G the orthogonal group of Q, by G“ its group of rotations, by Go+ its re-
stricted orthogonal group, by 0 its Clifi‘ord algebra, by 0+ and C'_ the spaces
of even and odd elements of C', by I‘ the Clifford group of Q, by x the vector
representation of 1‘, by I‘+ the special Clifford group of Q, by I“,+ its re-
duced Clifi’ord group, by p, N, 90+ the spin representations of I‘, I”,
I‘o+ (the first one only in the case m even), by A the norm homomorphism,
and by a the main antiautomorphism of C.

Except in Section 3.8, we shall assume that m is even and we shall set
m = 2r. We shall then denote by N and P fixed totally singular r-dimen-
sional subspaces of M such that M = N + P, by C" and C" the subalgebras
of 0’ generated by N and P, and by f the product of the elements of some
base of P. Then Cf is a minimal left ideal of C, and we have Cf = CNf
(11.2.2). There is a representation p of C’ on C" such that vuf = (p(v) ~u)f
if v c 0', u s 0'". Since Cf is a minimal left ideal, p is simple. We may
therefore take the space S of spinors to be C", p being the spin representa-
tion. We shall always assume that S has been defined in this manner.

The space 0" may be identified to the exterior algebra of N. For
any integer h, let 0,." be the space of homogeneous elements of degree
h of C”; 0” fl 0+ is then the sum of the spaces 0,," for h even, While
0" fl 0.. is the sum of the spaces 0,." for h odd; we shall denote these
spaces by 0+", 0-".

If x e N, then p(x) is the operation of left mutiplication by x in C”,
while, if y e P, p(y) is the homogeneous antiderivation of degree — 1 of
C" such that p(y)-:1: = B(x, y) -1 for x e N (II.2.2). It follows immedi-
ately that, if z c M, then p(z) maps 0,." into C-” and 0." into 0,". We
conclude that, if u 8 0+ , then p(u) maps each one of the spaces 0+” ,
0'.” into itself; we denote by p,+(u), p.-+(u) the restrictions of p(u) =
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p+(u) to 0+”, 0-". Thus, we see that the spin representation p+ of 0+
is not simple. We shall deduce from this that 0+ itself is not simple.
The algebra (L. is of dimension 2"", while the algebra of all endomor-
phisms of the vector space 0" is of dimension 2’". Since 0,. is semi-
simple, the algebra .3 of vector-space endomorphisms of C’" which
commute with all operations of p(C+) is of dimension 2"'/2""1 = 2.
The center Z 'of.0+ is of dimension 2 (11.2.3), and ,3 D p(Z), whence
,3 = p(Z). Were 0,. simple, then Z would be a. field; the same would be
true of 3, and, by a well-known theorem, p+ would be simple, which is
not the case.

Thus, the spaces of half-spinors are 0.." and 0-”; we shall denote
0+" (respectively: CL") by S, (respectively: S.-) and call it the space
of even (respectively: odd) half-spinors. The half-spin representations
of 1"“, In," on the spaces S, , S, will be denoted by p;, pf for I“, and
by Po.p+, P0,;+ for I‘04--

3.1. Pure Spinors
'Let Z be any totally singular subspace of dimension 1‘ of M, 0‘ the

subalgebra of 0 generated by Z, and f, the product of the elements of
some base of Z. Then f, is determined by Z up to a scalar factor 76 0
(as follows from the fact that 0’ may be identified to the exterior
algebra of Z), and s' is a minimal right ideal of C (by 11.2.2).

III.1.1. The intersection of any minimal left ideal of C' with any
minimal right ideal is a vector space of dimension 1 over K.

The algebra p(C) is the algebra of all endomorphisms of S. Let a
be a minimal left ideal of C: then we have a = Ce, where e is an idem-

~ potent. The operation p(e) , being idempotent, is a projection; let H be its
kernel and H’ = (p(e)) (S). It is clear that for any 1) e C, p(ve) maps H
upon {0} . Conversely, let v’ be in C and such that p(v’) maps H upon {0};
it is then clear that v’ = v’e (since p(e) maps the elements of H’upon
themselves). Thus, a is the set of all elements a c C such that p(v) maps
H upon {0} . Conversely, if H. is any subspace of S, the set a, of elements
1) c C such that p(v) maps H1 upon {0} is a left ideal, and, if H1 3 H,
then al C a. Since a is minimal, it follows immediately that H is a
hyperplane. Let now I) be a minimal right ideal; then I) = e’C, where
e’ is an idempotent. The operation p(e’) is a projection; let D be its
kernel and D’ = (p(e’))(S); then the operations of 5 map S into D’.
Conversely, let 1) be in C’ and such that (p(v))(S) C D’. Since p(e’) is
the identity on D’, we have 2) = e’v c [1. Conversely, for any subspace
D,’ of S, the set of v s 0 such that p(v) maps S into D1’ is a right ideal
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I), , and D!" C D’ implies I). C it. Since I) is minimal, D’ must be of
dimension 1. Now, a (W b is the set of v e C such that p(v) maps H upon
[0} and S into D’; if x is in S but not in H and y 9! 0 in D’, then v e a
n 1) implies that p(v) -a: = ay, a s K, and v is uniquely determined when
a is given. It follows that a M b is of dimension 1.

This being said, let us return to the notation used above. The space
Of 0 f20' is one-dimensional, and may therefore be written in the
form Szf, where S; is a one-dimensional subspace of S. Any element
75 0 of this space is called a representative spinor of Z. Any element
of S which is representative of some r-dimensional totally singular
space is called a pure spinor.

III.1.2. Let Z be a totally singular r-dimensional subspace of M.
Then there exists an s s I‘ such that sPs‘1 = Z; for any such 8, p(s) -1 is
a representative spinor for Z.

Any vector-space isomorphism of P with Z may be extended to an
operation a of G (by 1.4.1) ; there is an s s I‘ such that x(s) = a' (by 11.3.1).
It is clear that sPs‘1 = Z; it follows that fz = sfs'1 is ;£ 0 and is the
product of the elements of a base of Z. We have sf _2 Cf, sf = f28 2 ha;
thus, sf spans Cf n f20 and p(s) -1 is a representative spinor for Z.

III.1.3. Let Z be a totally singular r-dimensional subspace of M and
uz a representative spinor for Z. If s s I‘, then p(s) -uz is a representative
spinor for the space sZs“.

This follows immediately from III.1.2.
III.1.4. Let Z be a totally singular r—dimensional subspace of M and

u, a representative spinor for Z. Then Z is the set of elements a; e M such
that p(s)-u, = 0. If u a S is such that p(x)-u = 0 for all a: a Z, then
u = auz with some a e K.

If u e S, 2: cM, s a I‘, the conditions p(x)u = 0, p(s‘lxs) - (p(s"‘) ~u) = 0
are equivalent. It is therefore sufficient to prove the first assertion of
III.1.4 in the case where Z = P; in that case, we may obviously assume
that uz = 1. If x’ s N, x” 2 P, then p(x’)-l = x’ and p(:::”) is an anti-
derivation of C" = S, which maps 1 upon 0, whence p(sc’ + x”) - 1 = :c’.
This is 0 if and only if x’ = 0, i.e., a: s P. Since Z may be transformed into
N by an operation of G, it is sufficient to prove the second assertion in the
case where Z = N. Let then u be an element of C” such that p(s) -u = 0
for all x e N; since 0'" is the exterior algebra of N and p(x) -u = :cu =
a: A u, it is well known that this implies that u is a scalar multiple of a
basic element e of C,” ; it follows that KuN = Ku,, and III.1.4 is proved.
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It follows from III.1.4 that a totally singular r—dimensional subspace
of M is uniquely determined when any representative spinor of it is
given.

III.1.5. A representative spinor of any totally singular r-dimensional
subspace of M is always a half-spinor (i.e., either even or odd). If m > 0,
there are both even and odd pure spinors.

We know that any 8 e I‘ is either even or odd (II.3.2), and that, if
m > 0, then there are even and odd elements in I‘; III.1.5 therefore
follows from III.1.2.

We shall call even (respectively: add) those maximal totally isotropic
subspaces of M whose representative half-spinors are even (respectively:
odd).

III.1.6. Let Z and Z’ be maximal totally singular subspaces of M.
A necessary and sufl‘icient condition for Z and Z’ to be transformable into
each other by an operation of G“ is that Z and Z’ be both even or both odd.

We know that Z may be transformed into Z’ by an operation of G,
i.e., that there is an s e I‘ such that Z’ = sZs"; III.1.6 then follows
immediately from III.1.2.

Let (x, , - - - , 1,) be a base of N. If u = E“,- aiixiz, is an element of
C2", we set exp u = II“,- (1 + an-zixi) (observe that the elements of
C,” are in the center of 0'"). Since (mm-)2 = 0, it is clear that

exp (14 + u’) = (eXP u)(exp u’)
for any u, u’ in 0'3". If u = arm, a: = 22-1 a.-:c.- , then we have
exp u = 1 + u, as follows immediately from the fact that (x.:c.-) (mm) = 0.
Using the formula exp (u + u’) = (exp u) (exp u’) and observing that
(mix) (3:12;) = 0, we see immediately that exp u = 1 + u whenever
u = ya: is a decomposable element. This proves that our definition of
exp u 'does not depend on the special base we have selected in N. We
have exp 0 = 1; it follows that exp u is always invertible and that
(exp u)‘1 = exp (— u). For any u e 0,", exp u is in CL” and differs from
1 + u by an element of 2,,>1 Cu".

III.1.7'. If u 2 C3", then exp u belongs to 1‘0“, and x(exp u) leaves the
elements of N fixed. Any operation of G which leaves all elements of N
fixed is in 00+ and may be written in the form x(exp u), u e 0,". If Z, Z’,
Z” are maximal totally singular subspaces of M such that Z’ 0 Z =
Z” n Z, then there is an operation of Go+ which leaves all points of Z
fixed and which transforms Z’ into Z’'.
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The elements exp u, u 8 C2", obviously form a group H, image of the
additive group of 0,” under the homomorphism u —-> exp u. Every
element of 0,” being a. sum of decomposable elements, in order to prove
that exp u e I‘, it will be sufficient to show that exp (mm) a I‘ if x1 , x,
are elements of N.‘We then have max, = —x,x, , x,” = 3,2 = 0, and,
for y e M,

xiy + 3/336 = B(x|' ) y)'1 (7: = 1: 2):

whence, if u = 2:12;, ,

(exp u)y(exp u)“ = (1 + x1x2)y(1 — mm)
= y + B(x2 , 10x; — B(xx , 20:02 - ' (1)

This shows that exp u e I‘. It is obvious that exp u e I”. If 2:, , x, c N,
then we have act-1:32) = :3l = — can; thus, if u is decomposable, we
have a(exp u) = exp (— u) = (exp u)“, whence exp u e I‘o+; the same
is therefore true for all u c 0,”. Since exp u commutes with every element
of N, x(exp u) leaves the elements of N fixed.

Coming back to formula (1), we observe that, if y a P, then p(y) is-
an antiderivation of C" which maps any a: e N upon B(x, y) - 1, whence
p(y)-:c,:c, = B(x, , y)x, — B(:c, , y)x1 . Thus, (1) may be written as

x(exp u)-y = y - p(y)-u (yeP, u = $1962)-
Now, if u = u1 + - - - + u. , each u, being decomposable, then

7!

exp u = 11 (exp u.)
and x (exp 14..) leaves the elements of N fixed. It follows immediately
that the formula

x(exp u)-y = y - p(y)-u (MP)
is valid for every u e 0,". Now, let 0' be any operation of G which leaves
all elements of N fixed. We have seen in the proof of 1.4.5 that there
exist bases (3:, , - - - , x,) of N and (y, , - - - , y.) of P such that B(z.- , y,)
= 5H (1 S 7:; .7 S 7') and U'yzk—i = 1121.4 “‘ 172k , mm = 1121: + m2k—l
for Is S p, p being an integer S r/2, while c-y; = y.- for 11 > 2p. If we
set u = 2:12;, + - - - + 22,432, , then «7-3; = X (exp u) -y for y a P, whence
a'- = x (exp u), since both sides leave the elements of N fixed and
M = N + P.

In order to prove the last assertion, we first observe that there is a
-r e G such that 1-(Z) = N (1.4.1). Set Z’, = 1' Z’), Z”, = 1(Z”); then
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Z’,, Z”, are maximal totally singular spaces which have the same
intersection with N. If there is a or, a Go" which leaves the points of N
fixed and transforms Z’l into Z’’1, then-r"crl 1' is in Go“ (for Go" is a normal
subgroup of G), transforms Z’ into Z” and leaves the elements of Z
fixed. Thus, we see that we may assume that Z = N.

Let (x1, ,z.) beabaseo’flNand (:01, ,x,)abaseofN
containing 2:, , , x. . Let (y, , , y,) be abase ofPsuch that
B(:c, , y,) = 6,, (1 S i, j S r) and let P; be the subspace of P spanned
by y“; , ' ' ' , y, . It is clear that P, is the intersection of P with the
conjugate of Z’ n N, and that Z’, = (Z’ n N) + P1 is a maximal
totally singular subspace of M such that Z’, n N = Z’ n N. It will
be sufficient to prove that Z’, Z” may be transformed into Z’, by
operations of G leaving the points of N fixed, for we know that these
operations will then belong to 60*. It will furthermore be sufficient to
present the argument in the case of Z’. We may represent Z’ as the
direct sum of Z’ n N and of a space U’ of dimension 1' — h. If 2 e U’,
we write 2 = f(z) + 9(2), 1(2) 2N, 9(2) sP. Since U’ n N = {0}, 9 is
a linear isomorphism of U’ with a subspace of P. If a: a Z’ n N, then we
have B(z, z) = 0 and B(a;, j(z)) = 0 because N and Z’ are totally
isotropic. It follows that B(a:, 9(2)) = 0, whence 9(2) 2 P; ; since 9(U’)
and P1 are of dimension r — h, 9 is a linear isomorphism of U’ with
P1 . The sum N + U’ is direct; let 9 be the linear mapping of N + U’
into M which coincides with the identity on N and with 9 on U’ ; then
9(Z’) = Z’,. Moreover, 9 is a Q—isomorphism. For, let a: be in N and z
in U’; then Q(6(x + 2)) = 00:: + 9(2)) = Btu, 9(2)) = B(x, 2) because
B(x, .f(z)) = 0; but Q(a: + z) is also B(x, 2), since Q(x) = 0(2) = 0,
which proves our assertion. Thus, 9 may be extended to an operation
a' a G (1.4.1); 0 leaves the elements of N fixed and maps Z’ onto 2,3,
which concludes the proof.

III.1.8. Let x, , - - - , 9:, be linearly independent elements of N. Denote
by A the space spanned by x. , - - - , as. and by A’ the intersection ofP with
the conjugate of A. Then Z’ = A + A’ is a maximal totally singular
subspace of M, and x, - - - :c. is a representative spinor for Z’.

It is clear that Z’ is totally singular. We have dim A = h and dim A’ =
r — h, since the restriction of B to N X P is nondegenerate; since
A flA’ = {0}, we have dimZ’ = r. IfxeA, then we have p(:¢;)-:::1 - - - x.
= xx, - - - x. = 0. If y e A’, then p(y) is an antiderivation of C" which
maps 2:, upon B(a:, , y)-1 = 0 (1 S i S h), whence p(y)-:z:l - - - x, = 0.
Thus, we have p(z)-a:1 - - - m. = 0 for all z a Z’, which shows (by III.1.4)
that x, - - - x. is a representative spinor for Z’.
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III.1.9. A necessary and suflicient condition for a spinor u to be pure
is that u be representable in the form c(exp v)x, - - - x. , where x, , - - - , x,
are linearly independent elements of N, c e K, c 75 O, and v e 0,”. If u is
representative for the maximal totally singular space Z, then x, , - - - , :0,
form a base o n N.

If xl , - -- , x, are linearly independent, then x, - ~ - x, is pure and
representative for a space Zl such that Z, n N = Kxx + - - - + Kxh
(III.1.8). If v e 02”, then exp v e I‘ n C”, and p(exp v) is the operation
of multiplication by exp v in 0'”. Thus, (exp v)x1 - - - x,. is representative
for the space (x(exp v)) (Z1), whose intersection with N is the same as
that of Zl , since x(exp v) leaves the elements of N fixed. Conversely,
let Z be any maximal totally singular subspace of M, and (x1 , - - - , x»)
a base of Z n N. Define A, A’, Z’ as in III.1.8. Then it follows from
III.1.7 that there is a v e C,” such that x(exp v) transforms Z’ into Z;
(exp v)xl - - - x, is therefore a representative spinor for Z.

III.1.10. Let Z, Z’ be maximal totally singular subspaces of M, and
h = dim (Z n Z’). If h —=- r (mod 2), then Z, Z’ are of the same kind
(both even or both odd) ; if not, then Z, Z’ are of opposite kinds.

There is an operation a of G which transforms Z into N, and it is
clear that Z and Z’ are of the same kind if and only if c(Z) and c(Z’)
are (for, if 1' a G transforms Z into Z’, then are" transforms a'(Z) into
a" Z’), and the conditions 1' s G”, are" a G” are equivalent to each other).
It is therefore sufficient to prove III.1.10 in the case where Z = N. A
representative spinor for Z is then the product of the elements of a base
of N, and is homogeneous of degree r. A representative spinor for Z’ is
of the form u’ = c(exp v)xl - ~ - x, , with v s 0,”, x, , - - - , x. forming a
base of Z’ n N. Thus, u’ is even or odd according as to whether h is
even or odd, which proves III.1.10.

III.1.11. Any totally singular subspace U of dimension r — 1 of M is
contained in exactly one even and exactly one odd maximal totally singular
subspace of M.

We may transform U into a subspace of N by an operation of G. It
will therefore be sufficient to prove III.1.11 when U C N. Let (x, , - . - ,
x,_,) be a base of U. Let Z be a maximal totally singular space containing
U. If Z is of the same kind as N, then dim (Z n N) E r (mod 2) and
dim (Z n N) Z r — 1, whence Z = N. If not, we see in the same way
that Z n N = U. Let then u be a representative spinor for Z; then we
have u = ax, - - - x,_1 + bxl - - - x, , where x, is an element of N not in
U. Since it is even or odd, u = ax, - - - x,_, , and Z is uniquely deter-
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mined. Conversely, 2:, - - - :r,_1 is a pure spinor and represents a maximal
totally singular Space not of the same kind as N and containing U.

III.1.12. Let u, u’ be pure spinors which are representative for distinct
maximal totally singular space Z, Z’. A necessary and sufiicient condition
for u + u’ to be pure is that dim (Z n Z’) = r — 2. If this is so, then the
linear combinations 76 0 of u, u’ are representative spinors for all maximal
totally singular spaces Z” such that Z M Z” = Z fl Z’ or Z” = Z.

Since Z may be transformed into N by an operation of G, it is easily
seen that it suffices to prove III.1.12 in the case where Z = N and u
is the product of the elements of a base of N. Write u’ = c(exp 0)
(:1:1 -- - x.),wherec,"and (a:1 , ,x,)isabaseo’f\N. Ifu + u’
is pure, it is representative for a space Z” such that Z” n N = Z’ n N.
For, we have p(x) -u = 0 for all 2: c N, which shows that the conditions
p(a:)-u’ = 0, p(:c)-(u + u’) = 0 are equivalent to each other. Thus,
we have

u+u’ =c’(expv’):r, an, c’eK, v’eC,”.

We have h < r and u is homogeneous of degree r; writing that u’,
u + u’ have the same homogeneous component of degree h, we obtain
c = c’. The homogeneous components of degree h + 2 of u’, u + u’
are cox, - - - x1. , co’xl - - - :0. . Were h < r — 2, then we would have
m:1 - - - x, = v’x, - - - 2., from which it would easily follow that
(exp v):z:l - - - 2:. = (exp v’)z1 - - - a». , u’ = u + u’, which is impossible.
Thus, we have h 2 r — 2. Since u + u’ is even or odd, we have h a r
(mod 2) and therefore h = r — 2. Conversely, assume that h = r — 2.
Then we have u = 1:, - - - :e,_22:,_1x, , where x,_1 , :c, are suitably selected
elements of N, and

-lu + u’ = c(exp v + c x,..1x,)xx - - - 23-2 ;

but this clearly equal to c(exp (v + c“:r,-1:t,))x, - - - :c,_, , and u + u’
is pure. Let Z” be any maximal totally singular subspace of M such
that Z” n N = Z’ n N, and u” a representative spinor for Z”. Then
u” is a multiple of a, - - - x,-, , and its homogeneous component of
degree r — 2 is of the form ax, - - - w,-2 , a e K, while its homogeneous
component of degree 1' — 1 is 0. Thus, u” — ac'lu’ is h0mogeneous of
degree r and therefore a scalar multiple of u.

3.2. A Bilineclr Invariant

Let a be the main antiautomorphism of 0. If Z is any subspace of M,
a clearly transforms into itself the subalgebra 0" generated by Z. If
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Z is totally singular, then Cz is isomorphic to the exterior algebra of Z;
il , , 2,. eZ, thenwehave

“(31 ' ‘ ' 3h) = 2h ‘ ' ’ 21 = (_1)h(h-1)/2zl ' ' ' Zn -

It follows that a multiplies every homogeneous element of degree h of
Oz by (_ 1)II(h—l)/2.

We shall apply this to the case where Z = N. If u, v c C", then we have

a(uf)vf = a(f)a(u)vf = (-1)'("””fa(U)vf,
since f is homogeneous of degree r in 0’". We have a(u)v e C" and
fa(u)vf = (p(f)-a(u)v)f. Let us now determine the operation p(f).
Let e be the product of the elements of a base (:51 , - - - , x,) of N, and
let (1]; , ' - - , y,) be the base of P such that B(x,- , y,-) = 6” . Since p(y;)
is a homogeneous operator of degree — 1, p(f) is of degree — r and maps
upon 0 every homogeneous element of degree < r of 0’”. On the other
hand, p(y.-) maps 1:.- upon 1 and :5, upon 0 if 11 75 j; it follows easily, since
each p(y;) is an antiderivation, that p(y; - - - 31,) maps e upon
(- 1)""”’2-1. We have f = cyl - - - y, , c a scalar 75 0. Thus, we see
that, if de is the homogeneous component of degree r of a(u)v, then

p(f) -a(u)v = (-— 1)'("”’”cd- 1.

We may obviously select e in such a way that c = 1. This being done,
we denote by [3(u, v)e the homogeneous component of degree r of a(u)v,
whence

a(uf)vf = Mu, v)f- (1)
It is clear that I3 is a bilinear form on S X S (S = 0” being the space
of spinors).

III.2.1. Let A be the norm homomorphism of the Clifl'ord group 1‘.
Then we have, for s c I‘, u, v e S,

B(p(8)'u, p(8)-v) = K(8)B(u, 0).
For we have (p(s)-u)f = suf, (p(s)-v)f = svf, and

«(sufmf = at(Uf)¢r(8)svf' = )\(8)a(uf)vf-
III.2.2. Leta: be in M, u and v in S. Then we have

mt, poo-u) = comm, v),
6(p($)-u, 0) = Mu, p(x)-v)-
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The first formula is obtained by exactly the same computation that
was used in proving III.2.1. We have (p(x)-u)f = and, a(xuf)vf =
a(uf)a(z)vf = a(uf):wf, which proves the second formula.

It follows from 1112.1 that B is a bilinear invariant of the spin repre-
sentation of IV.

The form 3 is nondegenerate. For, if u is an element ¢ 0 in the ex-
terior algebra C”, we have a(u) 75 0 and there is a v a C” such that
a(u)v = e, whence fl(u, v) = 1.

Since a is an antiautomorphism, a:2 is an automorphism. Since
a’(:c) = x for a: e M, a:2 is the identity, and a(a(u)v) = a(v)u. Since
a(e) .= (— 1)"""”e, we have

50), u) = (-1)"""”fi(u, v)- (2)
111.23. Let S, , S; be the spaces of even and odd half-spinors. If r a 0

(mod 2), then [3 is zero on S, X S.- and S; X S, ; ifr E 1 (mod 2), then
BiszeroonS, X S,andonS; X S“

For, if u, v are homogeneous of degrees 6., , 6. , then Ma, 1)) = 0 if
6.. + 6, ¢ 1', and, in particular, if 6.. + 6. has not the same parity as 1'.

1112.4. Let Z and Z’ be maximal totally singular subspaces of M,
and u, u’ representative spinors for Z, Z’. A necessary and suficient con-
ditionw 0 Z’ to be sé {0} is that [3(u, u’) = 0.

There is an operation a e G such that c(Z) = N; let 8 be in I‘ and
such that x(s) = a; p(s) 'u and p(s) -a’ are then representative spinors
for a(Z) = N and 0(Z’). By III.2.1, it will be suficient to prove our
assertion in the case where Z = N, u = e. In that case, we have
e(exp v) = e for any homogeneous v of degree 2, and the'result follows
immediately from III.1.9 .

Besides a, we may consider; the antiautomorphism 3: product of a
by the main involution of C: a transforms any a: e M into — x. If u,
v e, M, denote by B(u, v)e the homogeneous component of degree r of
07(14):). We have 2(f) = (— 1)"’“’” , &(e) = (- 1)"'“’”e, and we
see as above that E(uf)vf = 3(11, v)f. If s s I‘, then 52(8) = (1(8) if s e I“,
5(8) = —- (1(8) if s is odd. Proceeding as above, we show that

EMS-u, P(8)'v) = 6(8)>\(8)I§(u, 0) (3)
if s e I‘, u, v e S, where e(s) is -— 1 if sis odd, +1 in the opposite case.
Moreover, if a: e M, then we have

5090"“, p(:c)-v) = -Q($)I§(u; v), (4)

5(p(z)-u, v) = —3(% p(x)'v)- (5)
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Since &(u) = a(u) if u c s, , &(u) = — a(’u) if u e s,. , we see that B
coincides with [3 on 8,, X 8, with — f) on 8.- X 8.

III.2.5. The only bilinear invariants of the spin representation of
I‘o+ are the linear combinations of B, [3, unless m = 2 and K has either
2 or 3 elements.

Let [3’ be a bilinear invariant of the spin representation po+ of 11,".
Let 8* be the dual space of 8, and w the representation of I‘o+ on 8*
contragredient to po+ (i.e., if s 2 Pi, w(s) is the transpose of po”(s“)).
There are associated to I3, 6’ linear mappings (p, <p’ of 8 into 8*, and we
have w(8) °<P = ¢°Po+(s)x w(S) Or’ = <p’ °Po+(3) for s e Po+; moreover,
go is a linear isomorphism. Thus, go’ = (p 0 up, where w is an automorphism
of S which commutes with every operation of po+(I‘o+). We have seen
in the proof of 11.4.3 that, barring the exceptional cases of the state-
ment of III.2.5, I‘o+ is a set of generators of 0+ . Let pf, 95‘ be the
representations of 0+ on the spaces 8,, , 8.- . Then p,+(0+), p;+(C+) are
algebras of dimension 22"2 (they are isomorphic to the simple ideals.
of 0+), and 8, , 8.- are of dimension 2"1 . Thus, p,+(0+) and p.-+(C+)
are the algebras of all endomorphisms of 8, and 8.- , which shows that
the representations of 1‘0““ on 8, , 8; are absolutely simple. Besid'es,
these representations are inequivalent to each other (II.4.3). It follows
immediately that the algebra of endomorphisms tl’ of 8 which commute
with all operations of po+(I‘o+) is of dimension 2. (It is spanned by I
and by the operator which maps the elements of 8, upon themselves,
those of 8.- upon 0.) Thus, the space of bilinear invariants of p0+ is of
dimension 2, and is therefore spanned by B, 5, since 6, B are obviously
linearly independent.

III.2.6. Let Z be a maximal totally singular subspace of M and 0' an
operation of G such that a(Z) = Z. Let a, be the restriction of 0' to Z. Then
there exists an s e I“+ such that x(s) = 0', Ms) = det a, .

Let 1- be an operation of G’ which transforms Z into N. Then o’ =
for" transforms N into itself, and, if a’N is the restriction of o" to N,
then det 0’" = det a, . Let t 2 I‘ be such that x(t) = -r; if x(s’) = «7’,
then we have x(t"s’t) = a', Mt‘ls’t) = Ms’), and t'ls’t e I‘+ if s’ c I”.
Thus, we see that we may assume that Z = N. Let s, be any element of
I‘ such that x(sl) = 0'. Since o(N) = N, a is in G’+ and sl 8 I“. The
automorphism w —> saws," of C transforms N into itself; thus, we have
810N81_1 = C". If u e 8 = C”, we may write s,uf = smsf‘slf; we have
81f = (p(s,) -1)f, whence p(81)°u = (slusfl) (p(s,)-1). Now, 1 is a repre-
sentative spinor for P; thus, p(s,) - 1 is a representative spinor for a(P).
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Since P n N = {0}, c(P) n N = {0} and' p(81)-1 = c (exp 0), v c CN’
(by III.1.9). The mapping a -> sins," is the automorphism of C" which
extends a”, whence sles,‘1 = (det afle; moreover, 8,13,“1 = 1.‘ Thus,
we have p(sl)-1 = c exp 1:, p(81)-e = c (det oN)e. We have B(p(sl)-l,
p(&) -e) = M8,) 13(1, e); on the other hand, we have exp 0 c 1‘0" (III.1.7),
whence )3 (exp 0, (exp o)e) = [3(1, e). Since [3(1, e) yrs 0, we have c’det
a” = M8,), and s = 0—18, has the required property.

III.2.7. Any two maximal totally singular subspaces Z, Z’ of M may
be transformed into each other by an operation of G0 = x(I‘o).

Let a’ be an element of G such that a'(Z’) = Z and s an element of I‘
such that x(s) = a'. It will be suflicient to prove that there is an
s’ e I‘ such that (x(s’)) (Z) = Z, Ms’) = (A(s))". We can find an auto-
morphism of Z of determinant (A(s))'1; this automorphism is a Q-auto-
morphism and may be extended to an operation a" c G. It follows from
III.2.6 that there is an s’ c I‘ such that x(s’) = 0', Ms’) = 0(3))"; 8’
has the required properties.

In the case where K is not of characteristic 2 and r(r — 1) a 0 (mod 4),
fl is symmetric and, if we set 7(a) = %B(u, u), 7 is a quadratic form on 8
whose associated bilinear form is B.- It is clear that

70(8) -u) = Ms)?» (8 2 1‘. u e S), (6)
7(p(x) -u) = Q(w)7(u) (96 e M, u e S)- (7)

Moreover, y is of maximal index. For, let (x, , - - - , m.) be a base of N.
Foreachsubset {in ,i,.} = Hof {1, ,r},withi, < < 13;,
let

£(H) = xi. ton;
these elements form a base of S. Barring the trivial case where r = 0,
it is easily seen that we can form a set {H,,} of 2"1 of the sets H, no
two of which are complementary to each other. We then have B(£(H,.),
_£(H1)) = 0 (1 S k, l S 2'”), and 7 vanishes on the space 3' spanned by
the Hk’s. Since dim g‘ = 2'”, 7 is of index 2'”. If r E 1 (mod 4), then
7 is zero on S, , S.- . If r E 0 (mod 4), then the restrictions of 'y to S, ,
S, are of rank 2"1 and of index 2"”, for we see immediately that our
set {Hk} must contain 2"2 elements of even cardinal numbers and
2"2 elements of odd cardinal numbers.

Assume now that K is of characteristic 2. We shall see that, provided
r > 2, there is a quadratic form 7 on S with properties similar to the
one constructed above in the case where K is not of characteristic 2
and r(r — 1) E 0 (mod 4). We make use of the operation of “reduced
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squaring” in 0", introduced by G. Papy‘. Using the same notation as
above, we further number the elements £(H) by indices 0, l, ' - . , 2' — 1
so as to arrange them in a sequence (£0 , ~ - - , 3,) (p = 2' — 1) such that
$0 = LE: =nor1 Signlf

u=za£n aitK:
i -0

we set
um = Z a;a,-£.-£,- + a0”.

i<1

It is clear that (cu m = a’u'“ if a c K. Since 2;” = 0 for i > 0, an easy
computation shows that (u + v)”' = um + uv + v'“ for u, v e S.
From this we deduce by induction on h that

(M + +u»)‘“ = in!“ + Emu: (8)
k-l k<l

forukeS, 1 S In S h. LetxbeinNand

u = 2 “(fr
i-O

in S; then we have

(mu ‘2‘ = :3 (ma-Y“,

since (315;) (555,-) = 0. Now, write

9; = z bkxh ;
k-l

each am}; is either 0 or a 5." of index 13' > 0: in either case, Clair)!“ =
On the other hand, we have (wkgi) (35.5.) = 0 if i > 0, since 23,-” =
Thus, we have

0.
0.

($15)!“ = do, 2 bkblxkxl ,k<l

and (mom = 0 if the homogeneous component of degree 0 of u is 0.
Now, let (2:3, - - ' , x’,) be any other base of M; let £3 (0 S i S 2' — 1)
be the products

x", ...:.:’..A (£1 < ... <1“).

'G. Papy,“Sur l’arithmétique dans les algébres de Grassmann," Académie Royale
de Belgique, Classe des Sciences, Ménwz'rea, 26 (1952).
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We may assume that E'o = 1, E’, = m" for 1 5 1' 5 r. Then, by what we
have just proved, we have (23")m = 0 for i > r. If a" e K (0 S 'i S
2' — l), we find, by (8),

, m .
(2 any.) = at” + 2; meta-£9 + j; a',’(£'.-)"'.

I'IO I’< -I

This formula shows that, although um may depend on the choice of the
base in M, its homogeneous component of degree 1' does not, provided
1' > 2 (for (£’.-)m = (:z:’.-)m is homogeneous of degree 2 if 1 S i S r).
Assuming from now on that r > 2, we denote by 7(u)e the homogeneous
component of degree 1' of u”'; 7 is a quadratic form on S.

Since K is of characteristic 2, a induces the identity automorphism
of C" = S, whence «1(a)» = w), and 5(u, v)e is the homogeneous com-
ponent of the degree 1- of no. Since (u + v)'“ = u'“ + no + v‘", we have

70‘ + 1)) = 7C“) + 7(0) + 3(1‘, 2)), (9)

which shows that B is the bilinear form associated to 7.
It follows from the computation made above that 7(zu) = 0 for any

x z N, u c S. We shall see that we have also 7(p(y)-u) = 0 for every
y e P. We may obviously assume y 96 0; let (a:l , - - - , x,) be a base of N
such that B(z, , y) = 0 forz' > 1, B(:c, , y) = 1. Since p(y) is an anti-
derivation which maps any a: a N upon B(z, y) - 1, we see that, if 12, < ' - '
< i, , p(y) maps to“ -- - an, upon 0 if 121 > 1, upon an, - - - x,,ifi1 = 1.
If we write

P(y)'u = ‘22 biEi

(in the notation used above), then b, = 0 whenever 1:, is one of the factors
of 5, , and it follows immediately that the homogeneous component of
degree 1' of (p(y) Nu)m is 0, which proves our assertion.

We shall now prove that formula (7) is true in our case for any a: 2 M.
The mapping u —-> 7(p(x) nu) — Q(a:) 7(u) is obviously a quadratic form
7' on S. It follows from (9) and III.2.2 that the associated bilinear form
of 7' is 0, i.e., that 7’ is quasi-linear. To prove that 7’ = 0, it will there-
fore be suflicient to show that 7’(u) = 0 for all elements u of a subset
of S which spans 8. In particular, it will be sufficient to prove that
'y’(£,) = 0 (0 S i S p), in the notation introduced above. It is clear
that 7(5) = 0; we have therefore to prove that 7(p(m) -£.-) = 0. This
is clear if $.- is either 1 or x.- (1 S 2' S r). If f, is a product of h > 1
factors 11:, , we write a: = 1,..- + x; , m” e N, w, c P; since h > 1, we may
write 5, in the form x’u’, where x’ is an element of N such that 30”» , x’) =
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0 and u’ a product of h — 1 factors in N. Then p(x)-£,- is xNx’u’ +
x’ -p(:ep)£,- = ce'v’, with v’ e S, and we have seen that the homogeneous
component of degree 1' of (x’v’)”' is 0 for all x’ e N, v’ e S. Thus, (7)Vis
true for our form 7.

Since 7‘ > 2, m > 4, it follows from II.3.1 that I‘ is generated by the
elements of I‘ n M. Since Mx) = Q(x) if :e e I‘ n M, it follows im-
mediately from (7) that (6) is true for all s e I‘.

The form 7 is still of maximal index 2"1, and, if r is even, the restric-
tions of 7 to S, and S, are of maximal index 2"”. The proofs of these
assertions are exactly the same as in the case where K is not of character-
istic 2.

If r = 2, K of characteristic 2, there is no quadratic form 7 on S for
which (9) and (7) hold. For, let (a:l , 222) be a base of N such that 3:11;; =
e. By (7), 7(1) = (2(a) 7(1) = 0 for all a: c N; thus, 0 = 7(1:l + 1:2) =
fix, , :62), while 78(2:1 , x2) is 1. ‘

Remark. If s is any element of 0 (not necessarily in 1‘) such that
a(s)s is a scalar multiple A - 1 of 1, then we have

me) -u, p(s) -v> =' me. u) (u, v e 8);
this is proved in the same manner that we proved III.2.1. Similarly,
if sis such that oz(s)s = )i- 1, then we have

302(8) -u, p(s) 4)) = Wu, v)-
3.3. The Tensor Product of the Spin Representation with Itself

We consider now the space S ® S, tensor product of the space S of
spinors with itself. This is the space of a representation p ® p of I‘,
tensor product of p with itself, which is defined by the condition that

(n ® p)(8) '14 ® 0 = 00(8) '10 ® (p(8) 'v)‘
fors 2 I‘, u, v: S.

If s e I‘, then we know that a(s)s = Ms) - 1, Ms) being a scalar 5'5 0.

III.3.1. The representation p ® p of the group I‘ is equivalent to the
representation which assigns to every 8 e I‘ the endomorphism w —* Ms)swe—l
of the vector space 0.

The mapping (a, v) —> ufoz(v) of S X S into C’ is clearly bilinear; as
such, it defines a linear mapping (p of the tensor product S ()9 S into 0
such that ¢(u ® v) = ufa(v) for any a, v e S. We have ¢(S ® S) = C’.
For, let 11) be in C; then wuf = (p(w) -u)f, whence wufa(v) = (p(w) -u)
fa(v) e ¢(S 69 S). 0n the other hand, we have a(f)a(v)a(w) = a(wvf) =
a(f)a(p(w) -v) and a(f) = :I: f, whence a(f)a(v)a(w) e ¢(S ® S). Since
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:2 is a mapping of 0 onto itself, we conclude that ¢(S ® S) is a two-sided
ideal, obviously 5'6 {0}, in 0. Since C is simple, cp(S ® S) = 0. But
S ® S and 0 have the same dimension 2"; go is therefore an isomorphism.
Moreover, if s e I‘, then we have ¢(p(s) -u, p(s) -v) = sufa(v)a(s) =
A(s)sufa(v)s_1, which proves III.3.1.

We shall identify the space 8 ® S to 0 by means of the mapping
(0 introduced in the proof of III.3.1. For any h 2 0, let 0,. be the space
spanned by the products of at most h elements of 0; it is then clear that
0,. is mapped into itself by the operations of (p ® p) (1‘). Thus, 0,./0,-,
is the space of a representation 0,. of I‘: if 173 e 0,./0,-, is the coset modulo
0,-, of a w c 0,. , then 0,.(s)fl is the coset of (p ® p) (s)-w. It follows
immediately from 1113.1 that 0,.(s) = A(s)0’,.(x(s)), where 0’, is a
representation of x(I‘) = G (x being the vector representation of 1‘,
whose kernel is the intersection of I‘ with the center of 0). We shall see
that 0’, is equivalent to the representation of G on the h-vectors. '

We define a bilinear form B0 on M X M such that Bo(:c, x) = Q(:c)
in the manner indicated in the proof of 11.2.1. Thus, B0 is zero on N X N,
on N X P, and on P X P and coincides with B on P X N. Making use
of Bo , we identify the underlying vector space of 0 with that of the
exterior algebra E of M in the manner described in 11.1.6. Let E, be the
space of homogeneous elements of degree h of E. Then we have 0,. =
2,“, EM, 0,., = 2,.S,_,E,.,, so that 0,. is the direct sum of 0,-, and
E, . Let sbe in 1‘, and 2:, , . - - , x,inM; set a = x(s), a".- = 6-1:, = sans"
(1 S i S h) and denote by 3', the representation of G on the h-vectors.
Then we have

o®osop~m=umm~rh
and' 0’,(¢r) transforms the coset of x, - - - 1,. modulo 0,..1 into that of
x’, - - - $0.. On the other hand, 5(a) transforms 2:, A . -- A 2),. into
z’, A - -- A x’,. Now, we have

xv “EMA-”Am mwmn,
53,1 z" E 37,1 A /\ 22', (mOd Cb—i);

and the elements of E, form a complete system of representatives for the
elements of 0,. modulo 0,-, . It follows immediately that 0’, is equivalent
to {A .

III.3.2. Let u be an element 75 0 of S. In order for u to be a pure
spinor, it is necessary and suflicient that the following conditions be satis-
fied: (a) u is either even or odd; (b) n ® a = ufa(u) belongs to the space
.0, spanned by the products of r elements of M. If u is a representative
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spinor of a maximal totally singular space Z, then ufa(u) is the product
of the elements of a base of Z.

Assume first that u is representative of Z. Let s be an element of I‘
such that sPs" = Z. Then we have uf = asf, a e K, a 75 0, and
a(f) a(u) = aa(f)a(s) = a>\(s)a(f)s"; but a(f) = :l: f, whencefa(u) =
aMs)fs"1 and ufa(u) = a2A(s)sfs'1. It is clear that sfs" is the product

. of the elements of a base of Z and therefore belongs to C, .
Now, let 2 be the set of elements a ;£ 0 of S which satisfy conditions

(a) and (b). Then 2 contains the set of pure spinors. Let u be in E and
s in I‘; then p(s) -u is either even or odd and

(1(8) 'u)fa(p(8) '10 = >\(~"')8(uf0!(u))8'1
by the proof of III.3.1, whence p(s) -u s 2). Assume first that we are not
considering the exceptional case where r = 1, K has only 2 elements, and
Q is of index 1. Then p is simple (11.4.1). It follows that S is spanned by
the elements of the form p(s) -u. Now, S is the exterior algebra E” of the
space N; since the elements p(s) -u span 2, we see that one of them has a
homogeneous component of degree 0 in E" which is 75 0. In order to
prove that u is a pure spinor, it suffices to prove that p(s) -u is one; thus,
we may assume that the homogeneous component of degree 0 of u is
75 0, and even (by multiplication by a scalar ;£ 0) that this component
is 1. Since it is either even or odd, u is then even. Let uh be its homo-
geneous component of degree h; then we have u,. = 0 for h odd. The
homogeneous component of degree 2 of the element (exp m)"1 of I‘
is — u, ; that of (exp u2)"u is therefore 0. Since (exp uz)‘1 e I‘, we see
that we may restrict ourselves without loss of generality to the case
where u, = 0. We shall then prove that u = 1, which will establish that
u is a pure spinor.

To do this, we first prove that, if a: s N, u s E, 310% 0, then am e 2).
It is clear that am is either even or odd and that xufa(xu) = x(ufa(u))x.
Thus, we have only to prove that $0.1: Q C, . Let zl , - - - , 2, be in M;
then we have, by 11.1.6

x2,---z,xEx/\z,A---Az./\x=0 (modC’.),

which proves our assertion.
Return now to the case where uo = 1, a2 = 0. Were u # 1, then there

would exist a smallest h > 0 such that ab 75 0, and h would be 2 4.
Let then w be a decomposable element of S, homogeneous of degree
r — h, such that with = e. (It will be remembered that e is the product
of the elements of a certain base of N.) Thus, wu = w + 9 would be in
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2. The proof will therefore be complete if we show that, w being a
homogeneous decomposable element 75 0 of degree h S r — 4, w + e
cannot be in 2. There exist bases (a5, , - -- , :c,) of N, (y. , , y,) of
P such that

w=x,---x. e=xl---x, f=y,---y, B(a:;,y,-)=6“.

We have (w + e)f(a(w + e)) = wfa(w) + efa(e) + wfa(e) + efaz(w).
We know that w and e are pure spinors (III.1.9); it will therefore be
sufficient to prove that wfa(e) + efa(w) is not in C, . Let No be the
space spanned by ml , - - - , x, ; by III.1.8, x1 - - - 22,. = w is a representa-
tive spinor for No + Po , where Po is the space of elements of P which
are orthogonal to those of No . This space is spanned by y.“ , - - - , y, .
It follows from the part of 11132 which has been proved already that
wfa(w) = ax, my“, y, , a sf 0 inK. Let w’ = 2:»+1 x,;
then we have e = (— 1)“"“w’w , a(e) = (— 1)"‘""’ a(w)a(w'), and

wfair!) + dam)
= ax: x»[(-1)""""y»+1 31.x, mm + 9:.“ my.” yr].
For any 2 c M, let L(z) be the operator of left multiplication by z in E
and 6(2) the antiderivation of E which maps any 2’ c M upon Bo(z, z’) - 1.
Then the operator of multiplication by z in C is L(z) + 6(2). We have

I‘

11;.“ ' ' ' 11:93: ' ' ' 335+: = H (L(y.-) + 6(y.~))-x, ' ' ' $1..” .
€-h+1

If i 75 j, v e E, then we have 5(y‘)y, = 0, whence 8(y.-)-y,- A v = — y;
A 6(y.-) -v, and 6(y.-) anticommutes with L(y,-). Thus, we have

T r

all: (LG/6) + “ii/i» = €111 L(’!l-') 'l" “25+: (-1)"'P;6(y;) + A,

where P.- is the product deduced from L(y,.+,) - - - L(y,) by omitting
the factor L(y‘) and where A is a sum of homogeneous operators whose
degreesare <r— h — 2. Wehavex, w.” = x, A Am“, and
6(y.-) -:c, - - - as“, = (— 1)""£; , where E; is the product deduced from
2:, A - - - A 2,.“ by omitting the factor x; . If :1; e N, we have 6(x) = 0,
so that the operators of left multiplication by a: in E and C are identical
to each other. It follows that the homogeneous component of degree
1' + (r — h) — 2 of wfa(e) + efa(w) is

r
(—1)“'"’"ax, A A 1:,“ 2 Fri;

i-h+l
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and P,-£, = :l: E.- /\ 77.- , Where m is the product deduced from 11,.“
A - - - A y. by omitting the factor y,- . This shows that the homogeneous
component of degree r + (r — h — 2) of wfa(e) + efa(w) in E is yé 0.
Since r — h 2 4, wfa(e) + efa(w) is not in C, , which concludes the
proof of III.3.2.

If we consider the exceptional case mentioned above, then S is of
dimension 2, S, and S,- are of dimension 1, and the conclusion that u
is pure follows from the assumption that u is even or odd.

III.3.3. Let Z and Z’ be maximal totally singular subspaces of M, u
and 11/ representative spinors for Z and Z’, and h = dim Z n Z’. Then
ufa(u’) is in 0..-; but not in C..._,_, .

We first establish

Lemma 1. Let the notation be as in III.3.3, and let Zl , Z’1 be maximal
totally singular subspaces of M such that dim (Z1 M Z’,) = h. Then there
exists an operation a" e G such that a(Z) = Z1 , o'(Z’) = Z’l .

There is a vector-space isomorphism of Z with Z, which transforms
Z n Z’ into Z1 M Z’ 1 ; since Z is totally singular, this isomorphism is a
Q—isomorphism and may be extended to an operation «71 of G. It follows
immediately that it is sufficient to consider the case where Z = Z1 ,
Z n Z’ = Z n Z’1 . In that case, Lemma 1 follows from III.1.7.

This being said, we can now prove III.3.3. Let (2:, , - - - , x.) be a
base ofN and (y1, --- , y,) a base of P such that B(x.- , y,) = 6;,- (1 S i,
j _<_ r), y, - - - y, = f, and let Z’o be the maximal totally singular space
whose representative spinor is x, - - - :c,. . Then Z’o H N is of dimension
h, and there exists a a’ e G such that a'(Z) = N, a(Z’) = Z’o . Since e is
a representative spinor for N, we have p(s) -u = ae, p(s) ~u’ = bx, - - - as,”
where a, b are scalars 75 0; thus, we have

abefaz(:t;l - - - x“) = )‘(s)s(ufa(u’))s“.
Since the mapping w —> sws'1 maps each 0,, onto itself, it is sufficient
to prove that efa(:c1 - - - an.) = et - - - x, is in 0,“, but not in C',,._,,_l .
This element may be written as 3:l - - - x,wfa(w), where w = x1 - -
a». , and it follows from 1113.2 that wfa(w) is the product of the elements
of some base of Z’o . Now, Z’o is spanned by x, , - - - , x, and by those
elements of P which are orthogonal to 2:, , - - - , 2:, (see III.1.8); thus,
(2:1 , - - - , a». , y“; , - - - , 11,) is a base of Z’o. Since Z'o is totally singular,
the algebra generated by it in C is isomorphic to the exterior algebra
of Z’o , and the products of the elements of the various bases of Z’o
differ only from each other by scalar factors 75 0. This shows that
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(:61 ' " xu)fa(x; ' ' - $1.) = 631 ' ' ' “MIA“ " ' yr 1 (1)
where c is a scalar 95 0. Thus, we have

efa(z1 xi.) = o’er/n+1 yr . (2)
where c’ is a scalar 74 0. This shows that efa(:rl - - - z.) is in 0,.-. and
is congruent mod C',...,._1 to the element c’x, A - -- A :c. A y.“ A - - -
A y, , which is an element 75 0 in E.-. ; III.3.3 is thereby proved.

3.4. The Tensor Product of the Spin Representation with Itself
(Characteristic =,é 2)

We shall assume in this section that K is not of characteristic 2.
Since K is of characteristic 96 2, we may make use of the bilinear

form B0 = %B on M X M, which has the property that Bo(:c, :c) =
Q(:c). Making use of 11.1.6, we shall identify 0' with the exterior algebra
E of M by making use of the bilinear form B/2. This identification is
different from the one used in Section 3. But now the algebra E may be
defined in terms of C and M alone, without making use of a special
choice of totally singular subspaces N and P. As a consequence, any
automorphism j of C' with transforms M into itself will also be an auto-
morphism of E. Let us prove this point more explicitly.

If a: e M, denote by 6, the antiderivation of E which maps any y e M
updn %B(:c, y) - 1, and by L, , L’, the operators of left multiplication by
:c in E and 0', whence L’, = L, + 5, . Let a: and y be in M. Since 5, is
an antiderivation of E and y homogeneous of degree 1, we have 6,L,, +
L6, = %B(a:, y) I, where I is the identity. On the other hand, we know
that 6,” = 0 for every 2 s M; applying, this to :c, y, and a: + y, We obtain
6.6,, + 6,6, = 0. It follows that 6,L’,, + L’,6, = %B(:c, y)I. The operator
5. is uniquely characterized by the following properties: it is linear, it
maps 1 upon 0, and, for any :11 2 M, we have 6,,L’, + L',6, = %B(z, y)I.
For, let 6 be any operator with these properties and 6’ = 6, - 6. Let
a be the set of u e 0 such that 5’ -u = 0. Then a is a vector space con-
taining 1 and M; if u c a, then B'oyu = 5’L’,u = — L’,6’-u = 0; since
M generates C', it follows immediately that a = C, 6’ = 0. Now, let j
be an automorphism of C such that j(M) = M. Since j is an automor-
phism, we have jL’, j'1 = L;_, for any y a M. Thus, we have

j5zf"L5--. + L,’-.,j6.f‘ = $306. IDI-
On the other hand, since my + ya: = B(:c, y) - 1, we have B(j-:c, j-y) =
B(:c, y); we conclude that j6,j"1 = 6,., . Thus, we have

jL,j" = j(L'. — a,)j“ = L;., — 5,, = L... .
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and P,-£.~ = :l: E; /\ m, Where m is the product deduced from y“,
/\ - - - /\ y, by omitting the factor y,- . This shows that the homogeneous
component of degree r + (r — h — 2) of wfa(e) + efa(w) in E is 95 0.
Since 1' — h 2 4, wfa(e) + efa(w) is not in C, , which concludes the
proof of III.3.2.

If we consider the exceptional case mentioned above, then S is of
dimension 2, S, and S.- are of dimension 1, and the conclusion that u
is pure follows from the assumption that u is even or odd.

III.3.3. Let Z and Z’ be maximal totally singular subspaces of M, u
and u' representative spinors for Z and Z’, and h = dim Z (W Z’. Then
ufa(u’) is in 0..-, but not in Cm_,_, .

We first establish

Lemma 1. Let the notation be as in III.3.3, and let Z, , Z’l be maximal
totally singular subspaces of M such that dim (Z, M Z’,) = h. Then there
exists an operation a' e G such that a(Z) = Z, , a'(Z') = Z’, .

There is a vector-space isomorphism of Z with Z, which transforms
Z (N Z’ into Zl R Z’ , ; since Z is totally singular, this isomorphism is a
Q—isomorphism and may be extended to an operation a', of G. It follows
immediately that it is sufficient to consider the case where Z = Z, ,
Z (N Z’ = Z n Z’1 . In that case, Lemma 1 follows from III.1.7.

This being said, we can now prove III.3.3. Let (x, , , x,) be a
base ofN and (y,, --- , y,) a base ofP such that B(x,- , 3],) = 6,, (1 S i,
j S r), y, - - - y, = f, and let Z’o be the maximal totally singular space
whose representative spinor is x, .- - - x, . Then Z’o n N is of dimension
h, and there exists a 0’ e G such that a'(Z) = N, 0(Z’) = Z’o . Since e is
a representative spinor for N, we have p(s) -u = ae, p(s) -u’ = bx, - - - x,,
where a, b are scalars 75 0; thus, we have

abefa(x, xh) = A(s)s(ufa(u’))s‘1.
Since the mapping w —> sws"l maps each 0,, onto itself, it is sufficient
to prove that efa(x,_ - - - x,.) = efx, - - - x, is in C..._,. but not in 0,.._,._, .
This element may be written as :l:x,.+, - - - x,wfa(w), where w = x, - -
x, , and it follows from 111.32 that wfa(w) is the product of the elements
of some base of Z’o . Now, Z’o is spanned by x, , - - - , x, and by those
elements of P which are orthogonal to x, , - - - , x, (see III.1.8); thus,
(x, , - - - , x, , y,“ , - - - , y,) is a base of Z’o. Since Z’ois totally singular, .
the algebra generated by it in C is isomorphic to the exterior algebra
of Z',, , and the products of the elements of the various bases of Z’o
differ only from each other by scalar factors 75 0. This shows that
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(21 ' ' ' $h)fa($1 ' ‘ ' 27h) = 031 ‘ ' ‘ Mill-+1 ' " y' 7 (I)
where c is a scalar #5 0. Thus, we have

efa(x1 z.) = o’er/n+1 y, , (2)
where c’ is a scalar 75 0. This shows that efaz(:z:l - - - x.) is in 0,.-. and
is congruent mod 0.4—; to the element c’a:l A - - - A 1:, A y“, A - - -
A y, , which is an element 96 0 in E.-. ; III.3.3 is thereby proved.

3.4. The Tensor Product of the Spin Representation with Itself
(Characteristic 7e 2)

We shall assume in this section that K is not of characteristic 2.
Since K is of characteristic s5 2, we may make use of the bilinear

form B0 = %B on M X M, which has the property that Bo(x, x) =
Q(x). Making use of II.1.6, we shall identify 0 with the exterior algebra
E of M by making use of the bilinear form B/2. This identification is
difierent from the one used in Section 3. But now the algebra E may be
defined in terms of C and M alone, without making use of a special
choice of totally singular subspaces N and P. As a consequence, any
automorphism j of C' with transforms M into itself will also be an auto-
morphism of E. Let us prove this point more explicitly.

If x e M, denote by 6, the antiderivation of E which maps any y e M
upo'n %B(x, y) - 1, and by L, , L’, the operators of left multiplication by
a: in E and C, whence L’, = L, + 6, . Let a: and y be in M. Since 6, is
an antiderivation of E and y homogeneous of degree 1, we have LL, +
L5, = %B(x, y) I, where I is the identity. On the other hand, we know
that 6,” = 0 for every 2 e M; applying this to :c, y, and x + y, we obtain
6.6,, + 8,6, = 0. It follows that 6,L’,, + L’,6, = #30:, y)I. The operator
6, is uniquely characterized by the following properties: it is linear, it
maps 1 upon 0, and, for any 3/ e M, we have 6,L’, + L’,6, = §B(x, y)I.
For, let 5 be any operator with these properties and 8' = 8, — 6. Let
a be the set of u e C such that 8’ -u = 0. Then a is a vector space con-
taining 1 and M; if u e a, then 8’ -yu = 5’L’,u = — L’,6’-u = 0; since
M generates C, it follows immediately that a = C, 6’ = 0. Now, letj
be an automorphism of C such that j(M) = M. Since j is an automor-
phism, we have jL’, j"1 = LL, for any y e M. Thus, we have

1°5t i-. + Lam“ = 153(9), y)1-
On the other hand, since my + ya; = B(a:, y) - 1, we have B(j-:c, j-y) =
B(:c, y); we conclude that 3'64"1 = 6,., . Thus, we have

jL=j_l = jays — 5;)Jh1 = Li's _ 6i" = Li‘: '
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Since M generates E, it follows immediately from this formula that j
is an automorphism of E.

We apply this to the case where j(u) = sue", 8 being an element of
the Clifford group I‘. Since j is an automorphism of E and maps M onto
itself, j maps the space E. of homogeneous elements of degree h of E
onto itself for any h. In Section 3.3, we have denoted by 0 the repre-
sentation of G which is defined by the formula

0(x(s)) -u = gas"1 for s s I‘,
and by 9,.(0') the restriction of 0 to 0,. (the space spanned by the products
of at most h elements of M). We have seen that the representation of G
on C',./G,._l defined in a natural manner by 0,, is equivalent to the repre-
sentation $3. of G on the h-vectors. Since 0,. is the direct sum of 0,.-. and
E, , we see that 0,. is equivalent to the direct sum of 0,.-. and f. . Thus,
0 is equivalent to the direct sum of {a , y. , - - - , gr... .

Let u and v be any elements of S. Then ufa(v) is an element of
C = E. We set

me» = 2 mu, 2»), '
where B, is the homogeneous component of degree h of ufa(v). Each
B. is then obviously a bilinear mapping of S X S into E, , and we have,
for s e I‘,

1349(8)“, 9(3) '0) = K(8){n(x(8)) -I3a.(u, 0), (1)
where x is the vector representation of I‘, p its spin representation, and
5“,. the representation of G on h—vectors.

We shall now study the symmetry properties of the mappings 13,. . In
order to do this, we need the following result:

III.4.1. The antiautomorph'ism a of C is also an antiautomorphism of
E; it multiplies the elements of E, by (_ 1)""'-1W_

Let 9:. , - - - , an. be mutually orthogonal vectors in M. Then we have

$1...xh=ml/\ ... A37).-

We prove this by induction on h. It is obvious if h = 0 or 1. Assume
that h > 1 and that our assertion is true for h —— 1. Then we have

931(332 17») =17: A (172 "'$r.)+ 5(332 "'h),

where 8 is the antiderivation of E such that 8-1: = %B(:c. , x) if :c e M.
Since 2:. , - - - , x, are mutually orthogonal, we have 6-2:.- = 0 for i > 1,
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whence 6-1:, - - - x. = 8-(z, A - - - A x.) = O, and our formula is true
for h. Now, we have act, - - - z.) = 2,. - - - x, , whence

act; A A175) =$AA A331
= (_l)h(h-l)/2xl A _.. A xh .

Since M has a base composed of mutually orthogonal vectors, E. is
spanned by the elements of the form xi A - - - A x,” x, , - - - , x. mutually
orthogonal. It follows that a multiplies every element of E. by
(-— 1)“‘"”’, from which it follows easily that it is an antiautomorphism
of E.

This being said, let u, v be in S. Then we have

«Wat!» = 1161090410
and a(f) = (— 1)"""’2 ;thus, we have

3"”, u) = (—1)'('—1)/2C.¢(ph(u, I)»

and therefore

no», u) = (—1)""“”*“H"'s.(u, v). (2)
The space S is the-direct sum of the spaces S, of even half-spinors and
S; of odd half-spinors. We propose to study 5,.(u, u) when u, v are half-
spinors. If r is even, then f 2 0+ and ufa(v) is in 04. if u, v are of the
same kind, in C- if they are of opposite kinds; if r is odd, then f e C-
and ufa(v) is in 0’- if u, v are of the same kind, in 0+ if they are of
opposite kinds. Since 0, = 2...... E. , C'_ = 2:, odd E, , we have proved
the following statement:

III.4.2. If h —=. 1' (mod 2), then 3,. vanishes on S, X S.- and on S; X S, ;
ifh ,5 r + 1 (mod 2), then ,6. vanishes on S, X S, and S; X S; .

Let (1': , , 1,) and (y1 , , y,) be bases of N and P such that
BC": , Iii) = 5w (1 S i,j S T); 3/1 yr = f- Leticia-1 = $1: — 11/1: ,
:09, = :0; + y. (1 S h S r); then (2:3, , 3’...) isabase of M com-
posed of mutually orthogonal vectors, and Q(x’.-) = (— 1)‘ (1 S 1' S m).
Let 2 = x’, x’m = z’; A - -- A $2.; then 2 anticommutes with x’;
(1 S 1' S m), which shows that z anticommutes with every element
of C- and is in the center of 0+ . Let 2', , ~ - - , i. be integers such that
121 < < inthenwehave

I I _ II I
55:“ 117-12 —("1)$i. xi..-» 7

where {jl , - . - , j,._,.} is the complementary set of {it , - - - , 23.} and
j; < - - - < j..._;. ; in particular, 22 = 1. Comparing with what was said
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in the proof of 1.6.3, we see that the operation of right multiplication
by 2 may also be defined as follows: for any x e M, let 5(x) be the anti—
derivation of E which maps any 11 s M upon %B(x, y) -1; if E, , - - - , 5,.
are in M, then

(£1 A ' ' ‘ A 5h)? = 5(51) ' ' ' 5050'?-

We have ash—1 A x5; = 2x; A y,, , 5(y,,)-x., = Jig-1, 6(yk)-y,, = 0, whence
6(yk)-(x;;_1 A xii) = 11,. On the other hand, we have 6(yk)-x; =
_6(y,,) ~y;- = 0 if k 515 I. It follows easily that

f2 = 6(y1)6(yr-z = f-
Since zs1 = (— 1)'f, we have zf'= (— 1)'f.

III.4.3. Let u be a spinor and v a half-spinor; set 5 = + 1 if v is even,
e = — lifvisodd. Thenwehave

,3.._,.(u, v) = eBh(u, v)z.
We have

ufa(v) = :20 61"“: D),

whence

ufa(v)z = 2“: 51.04, ”)3-

On the other hand, (1(1)) is in 0+ if v is even, in 0'- if v is odd, whence

ufa(v)z = eufZa(v)

= wfa(v).

Our assertion then follows from the fact that the operation of right
multiplication by z transforms E. into E..._,. .

We may now make the results of 1113.2, 11133 more precise.

III.4.4. Let u be an element 5'5 0 of S. In order for u to be a pure
spinor, it is necessary and suficient that 13,,(u, u) = 0 for all k 75 r. Let
u and u’ be representative spinors for maximal totally singular spaces Z
and Z’, and let h = dim (Z (W Z’). Then we have [3,,(u, u’) = 0 if k < h
or k > m — h; 3,.(u, u’) is the exterior product of the elements of some
base of Z 0 Z’, while fi...-,.(u, u’) is the exterior product of the elements of
same base of Z + Z’.

If u is a representative spinor of a maximal totally singular space Z,
then ufa(u) is the product in C of the elements of a base of Z (by III.3.2) ;
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these elements being mutually orthogonal, their product in C is also
their product in E, and, since Z is of dimension r, it belongs to E,'.
Assume conversely that 6,,(u) = 0 for lc ¢ 1'. In order to prove that u
is a pure spinor, it suffices in virtue of 111.32 to show that u is either
even or odd. Write u = u, + u, , where u, e S, , u, a S, , whence 6.,(u, u)
= Mu. , up) + Mu: , m) + Mu. , u.) + Mus . u:J- If ’0 sé 7 (mod 2).
then we have BK“: ; up) = Mus, “6) = 0; Whence mu. ; ui) + 31:01: , u,)
= 0; if k E 1' (mod 2), then we have B.(u, , 14,-) = B.(u; , 14,) = 0. Thus,
we have 6,,(u, , m) + fi.(u.- , u,) = 0 for every k, and

up 69 u: + u.- @214, = was.) + u.-fa(u..)

= #2:) (mu, 3 W) + BK“.- , u,» = 0.

Were u, and u, 95 0, then they would be linearly independent and
u, ®'u, + u, (8 u, could not be 0. Thus, u is either even or odd.

We proceed now to prove the second assertion of III.4.4. Let (:1:l , ~ - - ,
x.) and (y, , - - - , y.) be bases of N and P such that B(a:, , 31,) = 8,,
(1 _<_ i,j S r), y; y, = f; setx, x, = e. ThespaceZo spanned
by as; , - - - , 2:. , y.“ , - - - , y, is totally singular and dim (N (W Z.) = h.
It results from Lemma 1, III.3, that there is a o' e G such that a(Z) = N,
a'(Z’) = Z. ; let 8 be an operation of I‘ such that a = x(s). We know
that e and x, - - - 2,. are representative spinors for N and Z0 (see III.1.8).
Thus, p(s)-u and p(s)-u’ are scalar multiples ;£ 0 of e and x, -- - 3,. ,
respectively. We have '

349(8) -u. p(s) -u') = k(s)sflk(u, u’)s"-
The mapping to —> ms" is an automorphism of E and transforms a base
of Z A Z’ (respectively: Z + Z’) into a base of N n Z0 (respectively:
N + Z0). Thus, we see that it is sufficient to prove the second assértidn
of III.4.4 in the case where u = e, u’ = x, - - - m. . Making use of fermula
(2), III.3, we then have

Maw) = cw; - - - any“; - - - y,
(where c is a scalar 75 0). This element is in C..-“ and is congruent
modulo C.._,,-, to the exterior product at, A - - - A x, A y.“ A - - -
A y, . It follows that 5,,(14, u’) = 0 if k > m — h, while

flm—»(u,u’) =czlA Aw, Aym A Ay, ;.
this is the product in E of the elements of a base of N .+ Z, . Making
use of 111.43, we have 3,,(u, u’) = 0 if k < h, and

fin(u,u’) = :I:6(x1 A Amy/\ym A Ayn“
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Making use of what was said above about the operator of right multi-
plication by 2, this is

:I:cr5(z1) 6(xr)6(y»+1) 5(y. -2-
But 2 is a basic element of E,I , and is therefore a scalar multiple 76 0
ofa:l A /\ :r, A y; A /\ y, .Wehave 6(x.)-x,- = 8(y;)-y, = 0,
6(x.-)-y, = %-1 (1 S i, j S 1‘). Since each 6(x) is an antiderivation, it
follows immediately that

5(9):) ' ' ' “11%) “(l/n+1) ' ' ' 5(y,)-z = 6,161 /\ ' ' ' /\ $1. ,

where c’ is a scalar 75 0. This is the product in E of the elements of a
base of N M Z, , which completes the proof of III.4.4.

If a’ e G’, let 3 be an element of I‘ such that x(3) = a', and {(6) the
mapping w -> sws‘1 (w e C’ = S Q) S). Let r“ be the representation of
G+ induced by 3‘; if 0 S h S m, let 5* be the representation of Cr'+ on
the h-vectors. We know that if is simple if h 95 7', while If is equivalent
to the sum of two simple representations 3‘,” and {1” (see 1.6.2 and
I.6.4).The representation 3” is the sum of the representations 5." for
0 S h S m; If is equivalent to (“4", so that we may write

5“ a 2 2} at + r.” + :J”
On the other hand, 0 = S ()9 S is the direct sum of the four spaces
S, ® S, , S.- ® S.- , S, ()9 S.- , S.- ® S, , each of which is clearly mapped
into itself by the operations of §+(G+) (because

(10(8) 'u)fa(p(8) 'v) = k(-‘3)8(ufc\t(v))8'l
if s e I‘, and, if s e I”, then p(s) maps S, and S; into themselves). If
a a 6*, let 3-,,(a), (“(a), g',.-(a), 31-,(a), be the restrictions of {(a) to these
four spaces. We wish to analyze the representations 3,, , g}.- , §,.- , r...
into their simple components. Let E’, and E”r be the spaces of f,”
and g1”. We write

7-!

C = "23(17):. + E's—1.) + E" + E”,-
'0

We know that the representations 5." (h S r — 1), L", I,“ are all
inequivalent except if K has only 3 elements and r = 1 (1.6.2). Let us
leave this trivial exceptional case aside. Then any subspace of C which
is mapped into itself by the operations of 3"“ (G+) is the sum of its inter-
sections with the spaces E. + Em-» , E'., E”,. On the other hand, it
follows from 111.42 that '
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SI®SD+Si®Si Eh,
A-r(mod2)

while

Sp®si+si®8p= E E5.
hflr(nod2)

Let h be 5 1' (mod 2) and s an element ;£ 0 of E. ;write£ =- £’ + £”,
where E’ s S,® S, , f” e S.- ® S.- . Ifu’s S, , u a S, thenwehave

ufa(u’)z = ufza(u’) = ufa(u’),
while, if u’ e S.- , then we have

ufa(u’)z = —ufa(u’).

It follows that

$2 = 5' — E"-

If h 96 r, then £2, which is ;.e 0 in E.._,. , is linearly independent of £ and
neither 5’ nor 3;” can be 0. Since £’ and 15” are linear combinations of E,
£2, we see that both S, ® S, and S,- ® S.- meet E. + E.-. , which
proves that if occurs in both I” and 3'“ . Since in." occurs exactly
twice in 3'” + g'“ , it occurs exactly once in g, and in I“ . Consider
now the case where h = 1'. Since :42' = 1, the mapping 5 —> £2 is an auto-
morphism of order 2 of E, , and E, is the direct sum of the space E,,, of
those 5’s such that £2: = E and of the space E,,.- of those E c E, such that
£2 = — 5. Both these spaces are mapped into themselves by the opera-
tions of §,(G+) because 2 commutes with every element of I”. It is clear
that Em. C S, ® S, , E,,.- C S; ® S.- . None of the spaces EM, , Em ,
can be the whole of E, . This follows easily from the description given
above of the operation of right multiplication by 2, but it can also be
proved as follows. Were for instance E”, = E, , then {W would be

. equivalent to
r-l

Ell-rm) §h+ + fr..-
hill)

and {.1 t0

r—1

Eli-rm {n+5
h-O

but this is impossible, since I” and 1'“ clearly have the same degree. It
follows that E”, , E,,.- , are the spaces of the two simple representations
L”, 5’”; from now on we shall denote by in: (respectively: 33,-") the
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one of the two representations t,’+, 33'” whose space is E,_, (respectively:
E,,.-). We then obtain the following formulas:

r—l

g.” g hEh-HmodZ) 0+ + I'm-*3
-0

r—l.

{as g Enron“) 31+ + 333+-h-O
A similar analysis, but simpler, gives

._,_ 7—1

{as g. I." = guano“) {n+-

On the other hand, S, ()9 S, is the direct sum of the space (S, ® S,)' of
symmetric tensors of degree 2 over S, and of the space (S, ()9 S,)" of
alternating tensors; (S, ® S,)‘ is spanned by the elements a ® v + v ®
u, u, v: S, , and (S, ® S,)" by the elements a ® 0 — v ® a. We have a
similar decomposition for S.- ® S,- . Let 3',,', £39“, 311', I,“ be the repre-
sentations of G+ on the spaces (S, Q) S,)', (S, ® S, ', (S.- ® S,)‘,
(S. ()9 S,)“ . Taking formula (2) into account, we obtain

“2

r—1

3-”. Fin-r“) {75+ + {rm-*9
-0

r—1
4.

1m“ 5’ Eh-r+2(4) {It 7
-0

r-!

(is. g IZIL-rfl) 53+ 'l.‘ {hit
‘0

r-l

til" g hZh-r+2(4) {la-l.
'0

III.4.5. Let (5, , - - - , 5,) be a base of an even (respectively: odd) maximal
totally singular space Z. Then S, A - - - A E, is in E,,, (respectively:
E,_.-) and E,,, is spanned by elements of this form.

Let u be a representative spinor for Z; then we have u e S, if Z is
even, a e S, if Z is odd, and

BK“, u) = “fa(u) = “(£1 A ' ' ' A $1"

a a scalar yfi 0, which proves the first assertion. The elements of the
form 3;“, /\ - - - A 5, are obviously permuted among themselves by the
operations of {.(G); since In“, (“fare simple, this proves the second
assertion.
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3.5. lmbedded Spaces
III.5.1. Let M’ be a nonisotropic (m — 2)-dimensional subspace of

M, Q’ the restriction of Q to M’ and I"+ the special Clifi'ord group of Q’.
Then either one of the half-spin representations of I‘+ induces a repre-
sentation of I"+ which is equivalent to the spin representation.

We know that the representation of I"+ induced by a half-spin repre-
sentation of I‘I+ is the sum of a certain number of representations of
1‘”, which are all equivalent to the spin representation (11.6.2). This
representation is of degree 2'”. Since the Clifford algebra C" of Q’ is
of dimension 2“"", its simple representations are of degree 5 0
(mod 2'”), and the spin representation of I"+ can occur only once in
the representation induced by a half-spin representation of I“. The
argument also proves that C’ is isomorphic to a full matrix algebra
over K.

Let us now consider the case where Q’ is itself of maximal index r — 1.
Let M’ = N’ + P’ be a representation of M’ as the sum of two totally
singular subspaces N’ and P’ of dimension r — 1. Then N’ is contained
in at least one maximal totally singular subspace N1 of M and P’ in
exactly two maximal totally singular subspaces Pl , P, of M, one of
which is even and the other odd (III.1.11). Since N’ n P’ = {0},
P‘ n N, is of dimension S 1; P, 0 N1 and P, n N, cannot both be
of dimension 1 in virtue of III.1.10; assume then that PI fl N1 = {0},
whence M = N1 + P1 . We shall assume that N1 and P1 are the spaces
N and P which we have selected for the study of Q. Let 0’” be the
subalgebra of C (or 0’) generated by N’; then we may take CN' to be
the space of spinors S’ for Q’. We propose to define explicitly an iso-
morphism of S’ with 0+" = S, , which realizes the equivalence of the
representation of I"+ induced by p: with the spin representation of
I"+. The restrictions of B to N’ X P’ and to N X P being nondegenerate,
it is clear that we can find vectors an e N, yo 8 P with the following
properties: 2:0 and yo are orthogonal to N’ + P’, and B(:co , yo) = 1.
WethenhaveN = N’ + Kzo , P = P’ + Kyo . Set 03" = 0"" 0 0+,
C'."' = 0"" fl 0. ; then 0"" is the direct sum of these two spaces, which
are the spaces of even and odd half-spinors for Q’. Define a linear mapping
go of 0"" into S, by the formula

go(u’+ + u’-) = u’+ + u’_:oo (u’+ a 0+”, u’- e C'_N').
Let p’ be the spin representation of C" and p,+ the half-spin representa—
tion of 0+ on S, . We propose to compute «p(p’(v')'u’) for u’ e S’ ,
o’ e 0’. Let f’ be the product of the elements of a base of P’. We have
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by definition (p’(v’) -u’)f’ = u'u’f’. On the other hand, it is clear that
f'yo is the product of the elements of a base of P and therefore differs
only by a scalar factor from f, whence (p’ (v’)-u')f = v’u’f. Now, 2:.)
is orthogonal to every element of P’, whence xof’ =—(—1)'f’xo, and it
follows that (p’(v’) -u")xof = v’u’xof. If we decompose u’ in u’+ + u’- ,
u’, s CH”, u’- e C-" , we have

¢(p'(v’)'U') = p'(v’)'u’+ + (p'(v')'u’—)$o if 0’ 8 0'“
¢(p’(v’)-u’) = (p’(v’)-u'+):::o + p’(v')-u’_ if v’ e C’_.

If v’ 2 C’+ C 0+ , then we have (p,+ (v’) -u)f = v’uf for all u e S, . It follows
immediately that

<p(p’(v’) -u’) = p,+(v’)-:p(u') if v’ e C’+.
If v’ e C’- , p,"(v’) is not defined because 0’ is not in 0+ . In order to
treat that case, we set £0 = 2:0 + yo , whence £0“ = 1. On the other hand,
we observe that the center of C"+ contains an element 2’ of square 1
which anticommutes with every element of 0’. (11.2.4; if- K is of
characteristic 2, we take 2’ = 1). If K is of characteristic 2, then z’f = f.
If not, the simple ideals of which CC, is the sum are C"+(1 — z’) and
C”+(1 + 2’). Since f’ is a half-spinor for Q’ and the ideals C"+(1 — z’)
and C’+(1 + z’) are the kernels of the two half-spin representations of
C’+, one of the elements (1 — z')f’, (1 + 2’)f’ is 0; replacing if necessary
2’ by — 2’, we may assume that z’f’ = f’, whence z’f = f. This being
said, we have .

¢(p’(v’) 'u’)f = v’u’+xof + v’u’—f,
(p,+(v’£oZ’)-¢(u’))f = v’Eoz’u’J + v’EoZ’u’-xof-

Since 50 is in the conjugate space of M’, it anticommutes with every
element of M’; it follows that 3502’ commutes with every element of M’,
and therefore also of 0". Thus, we have Eoz’u’ +f = u’+£oz’f = u’+£of.
Similarly, :co anticommutes with every element of M' and commutes
with z’, whence v’goz’uLxOf = v’u’_£oxof. It is clear that yof = 0, whence
sof = 20f. We have $03 = 0, xoyo + yoxo = 1, whence £0270f = yoxof = f.
We conclude that

¢(p’(v’)'U’) = P;+(v’£oZ’)-¢(u’) (v' 6 CC)-
Let up be the mapping of 0" into 0, defined by

(0(1)’+ +v’-) =v’++v’_£oz’ 1f v’+eC'+,v’_eC’_.

Since (5302’)2 = £022” = 1 and 502’ commutes with every element of
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0’, 'P is clearly a homomorphism, and therefore an isomorphism, since
0’ is simple. We have

¢(p’(v’) 44’) = pp+(¢(v’)) '¢(U’) (v’ a 0’)-
The mapping p: 0 ill is a representation of degree 2"1 of 0’, and there-
fore equivalent to p’. Since p’ is simple and 1p 75 0, go is an isomorphism
of S’ with S, by Schur’s lemma. If s’ e I‘", then

¢(p’(8') 'u’) = p.+(8') 100/):
and p realizes the equivalence of p’ and of the representation of I"+
induced by pf. Moreover, we have determined explicitly a representa-
tion pf 0 up of C" on S, which extends the restriction of pf to C"+.

Let now S.- be the space of odd half-spinors for Q; define a linear
mapping go’ of S’ into S.- by

¢’(u+’ + u_’) = u+’xo + w (W e 03”. u_’ e 0—")-
Then it is easily seen that (p' is a linear isomorphism and that

¢’(p’(v’)-u’) = pa+(¢(v’))-¢’(u’) (v’ 2 OJ)-
We shall now determine the elements u’ 2 S’ such that ga(u’) is a pure

spinor for Q. Let Z be any even maximal totally singular subspace of
M, u a representative spinor for Z, and u’ the element of S’ such that
¢(u’) = u. The space Z n M’ is of dimension r — 1 or r — 2 (for M’
cannot contain any totally singular space of dimension r). If x’ 2 Z n M’,
then we have so(p’($’)-u’) = p»*(¢(x’))-u, Mx’) = x’soz’ = Eoz’x’, and
p,+(¢(a:’)) = p(£oz’)p(x’), where p is the spin representation of 0. Since
x’ a Z, we have p(:c’)-u = 0, whence p’(x’)-u’ = 0. If Z n M’ is of
dimension r — 1, it is a maximal totally singular subspace of M’, and
u’ is a representative spinor for this space (III.1.4). Conversely, any
maximal totally singular subspace of M’ is contained in exactly one
even maximal totally singular subspace of M (III.1.11), which shows
that the image under (p of any pure spinor for Q’ is a pure spinor for Q.

Assume now that dim (Z (W M’) = r — 2. Then Z (N M’ is contained
in exactly two maximal totally singular subspaces Z+’, Z-’ of M’,
with Z+’even and Z-’ odd (III.1.11) ; let u-’, u-’ be representative spinors
for Z+’, Z-’. Then m = ¢(u+’) and u- = ¢p(u-') are pure spinors for Q
and represent even maximal totally singular subspaces Z+ , Z- of M
such that Z+ n M’ = Z+’, Z- (N M’ = Z-’. The space Z, D Z- con-
tains Z n M’, which is of dimension 1' — 2; since Z+ , Z- are distinct, it
follows from III.1.10 that Z+ N Z- = Z n M’. Making use of III.1.12,
we see that u is a linear combination of m and u_ , and therefore that
u’ is a linear combination of u+’ and u-'.
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Let conversely u+’, u-’ be pure spinors for Q’, representative for
maximal totally singular subspaces Z,’ , Z-’ of M’ such that dim
(Z,’ n Z_’) = r —— 2. Then the same argument as above shows that
¢(u+’), ¢(u_’) are representative spinors for even maximal totally
singular subspaces of M whose intersection is of dimension r — 2;
therefore, ¢(u+’ + u_’) is pure for Q in virtue of III.1.12. Thus, we
have the following results:

III.5.2. Let M’ be a nonisotropic (m — 2)-dimensional subspace of
M (with m > 2), Q’ the restriction of Q to M’, which we assume to be of
index r - 1, S’ the space of spinors for Q’, S, the space of even half—spinors
for Q and (p the isomorphism of S’ with S, constructed above. Let u’ be in
S’; in order for (004’) to be pure for Q, it is necessary and sufiicient that
one of the following conditions be satisfied: (a) u’ is pure for Q’; or (b)

= u,’ + u_’, where u+.’ and u-’ are pure for Q' and represent maximal
totally singular subspaces Z+’, Z-’ of M’ whose intersection is of dimension
r — 2. In case (a), ¢(u’) represents a maximal totally singular subspace
Z of M whose intersection with M’ is of dimension r — 1 and represented
by u’; in case (b), ¢(u’) represents a maximal totally singular subspace
Z of M whose intersection with M’ is Z,’ 0 Z_’.

Let S = S, + S. be the space of spinors for Q. Let e’ be the product
of the elements of a base of N’; then e = e’xo is the product of the
elements of a base of N. We have associated to e a bilinear invariant B
of the spin representation of 1‘0“” and to e’ a bilinear invariant 13’ of the
spin representation of 1‘0"“ (Section 3.2). We shall now investigate the
mutual relationship between f1, [3’ and the mappings go, (pl introduced
above. Let u’ and v’ be elements of S’, with u’ = u’+ + u’_ , v’ =
v’ +v’_,u”+,v+ in 0+"', u’_, v’- in Of". Ifu, v arein S, 5(u, v) is
defined by the condition that [3(u, v)e is the homogeneous component of
degree r of a(u)v. We have

a(¢(u’))¢(v') = («(U’Q + xoa(U’—))(v’+ + 0’40)-
An element of 0’" has 0 as its homogeneous component of degree r.
Since e’xo = e and x0 anticommutes with every element of 0-”- and
commutes with every element of 03”, we have

fi(¢(u’), ¢(v’)) = 13’(U’+ , v'—) — fl’W— ,v'+)-
A similar computation gives

fi(¢’(u'). ¢’(v’)) = I3’(u’— ,v’+) - l3’(u'+ ,v’—),
I3(¢(u'), ¢'(v')) = t3’(u’+ , v’+) + B'(u’— , v’—)-
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3.6. The Kernels of the Half-Spin Representations
III.6.1. Assume that the dimension m of M is 2 6. Then the kernels

of the half-spin representations of I‘+ are of order 1 if K is of characteristic
2, of order 2 if K is of characteristic 75 2. In the latter case, these kernels
are {1, z} and {1, — z}, where z is an element of the center of 0+ whose
square is 1 and which anticommutes with every element of M.

Let s be an element of the kernel of the half-spin representation
p: of I‘+ on the even half-spinors, and let 0' = x(s) be the image of s
under the vector representation. If Z is any even maximal totally
singular subspace of M and u a representative spinor for Z, then
p(s)-u = u; but p(s)-u is a representative spinor for a(Z), whence
a(Z) = Z. Now, let a: be any singular vector 9'5 0 in M. We shall see
that, under the assumption m 2 6, K1: is the intersection of all even
maximal totally singular spaces which contain it. The space K2: is
contained in at least one maximal totally singular space, and therefore
also, since r 2 3, in at 'least one totally singular space of dimension
r — 1. Making use of 111111, we see that K2: is contained in some
even maximal totally singular space Zl . Let x, be an element of Z1
not in Ks. Since r 2 3, 5:: belongs to some (r — 2)-dimensional subspace
U of Z1 which does not contain a, . The space U + Kr, , of dimension
1‘ - 1, is contained in some odd maximal totally singular space Z’.
Since an, is not in U, there is a subspace V of dimension r — 1 of Z’
which contains U but not :6, , and V is contained in some even maximal
totally singular space Z, . We have U C Z2 , whence Kx C Z, ; but
Z, n Z’ is V, to which 1:, does not belong, and z, is not in Z2 . This
shows that K1: is the intersection of all even maximal totally singular
spaces which contain it, whence «7(Kx) = Krc. Thus, we have ar-zc = a(:c):c
for any singular vector x, a(a:) being a scalar. If a: and y are singular,
orthogonal to each other and linearly independent, then x + y is singular,
and 6'06 + y) = a($ + y) (:c + y). whence WI) = M?!) = a(=v + 11)-
It follows immediately that there exist scalars a and b such that c - x = as;
for all .1: s N, a-y = by for all y e P. If x is an element 75 0 in N, there
is at least a y 75 0 in P such that B(:e, y) = 0, since r 2 2. This shows
that a = b and that c-x = are for all :e s M (since M = N + P). Since
0' belongs to the orthogonal group of Q, we have a2 = 1. If K is of
characteristic 2, then a = 1, and s is in the center of C’, whence s. = c- 1,
c s K. Since p,+(s) is the identity, c = 1 and s = 1. Assume now that
K is not of characteristic 2. If a = 1, we see as above that s = 1. If a =
— 1, we observe that the center of 0+ contains an element 2 of square 1
which anticommutes with every element of M and that the simple
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ideals of which 0+ is the sum are 0+ (1 — z) and 0+ (1 + z) (II.2.4).
One at least of z, — z is therefore in the kernel of p,+, and we may
assume that it is 2. If s’ = s2", then s’ is in the kernel of p: and x(s’)
is the identity, whence s’ = 1, s = z.

The assertion relative to the kernel of p,-+ may be proved exactly in
the same manner; III.6.1 is thereby proved.

III.6.2. Let M1 be an even-dimensional space over a field K and Q
a quadratic form an M1 whose associated bilinear form is nondegenerate.
Assume that the algebra (0,)+ of even elements of the Clifford algebra 01
of Q is not simple. Let PH be the special Clifford group of Q1 . Assume
that dim M1 2 6. Then, if K is of characteristic 2, the half-spin repre-
sentations of I", are faithful. IfK is of characteristic 75 2, then the kernels
of these representations are {1, z} and {1, — z}, where z is an element
of the center of (0'1)+ whose square is 1 and which anticommutes with every
element of M1 .

If K is not of characteristic 2, we know that (0,) + contains an element
2 with thestated properties. Let K’ be an algebraically closed overfield
of K. Since any quadratic form on a finite—dimensional space over K’
is of maximal index (when its associated bilinear form is nondegenerate),
III.6.2 follows from III.6.1 and from what has been said in Section 2.7.

3.7. The Case m = 6

We shall assume in this section that M is of dimension 6, except in the
statement of III.7.3.

Let (x, , x2 , x3) and (y, , y, , ya) be bases of _N and P such that
B(a:.- , 31,-) = 6,,- (1 g i,j S 3), ytyzya = f. We set u., = e = magma ,
u,- = z.- (i = 1, 2, 3). Then uo , u, , u2 , ua form a base of S.- . Every
element u 75 0 of S,- is a pure spinor. This is clear if u e Kuo . If not,
thenu = a: + ce, :1: 2N, 1: ;£ 0, c 2K and we may write ce = age, where
y, z e N, whence u = :1: exp (ye), which shows that u is pure (III.1.9).
It follows immediately that every element 95 0 of S, is likewise a pure
spinor.

III.7.1. The representation p.-+ of 1"” on the space S,- maps I” onto
the group of all automorphisms of S.- whose determinants are squares of
elements of K.

We first prove that

det 105(8) = >38)
if s e I”. First let 8 be inI‘f; then x(s) is in GK, which is the commutator
subgroup of G+ (II.3.9). Since G!+ = x(I‘+), the commutator subgroup
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of G'+ is the image of that of 1"” under x, and there is an element 8’ of
the commutator subgroup (P‘)’ of I‘“ such that x(s’) = x(s), whence
s’ = cs, 0 c K. It is clear that k((l‘+)') = {1}, whence Ms’) = 1 = Ms)
and c2 = 1, c = :t 1. On the other hand, p,-+(8') = cp,*(s), whence
det p,+(s) = c" det p,-+(8'). But we have det p,-+(s’) = 1, since 8’ a (I‘+)’,
whence det p,+(s) = 1. Now, let 8 be any element of I". Let k be an
element 75 — 1 in K; set t = 1 + kylxl . It is clear that t commutes
with x, , z, , y, , y, . We have a(t) = 1 + kxly. , a(t)t= (1+ k)-1, as
follows immediately from the fact that my, + ya, = 1, x,” = y,” = 0.
Thus, we have

t—1 = (1 + k)—l(1 + kxlyi):

and

mt" = (1 + k)"a:, .
Writing

t= 1+lc—kxly1,

t" = (1 + k)"(1 + k - kym),
we see that

til/1f! = (1 + k)y1 -

Thus, t is in I‘, and obviously in I", and Mt) = 1 + 19. Let us now
compute p,-(t). The operation p(y1) is an antiderivation which maps
2:, upon 1, at, , x, upon 0. Thus, we have p(x1y,) -u0 = no , p(x,y,) -u, =
u: , p(xiy1)-u2 = p(zly.)-ua = 0 and 909% = no , p(t)-u1 = u1,p(t)-u2
= (1 + k)“: , P(t)'ua = (1 + k)us 2 Whence det 9:“) = (1 + I“)2 =
A36). Select k in such a way that (1 + k)>\(s) = 1: then ts 2 IV, and
det p,"(s) = (det p.-“(t))'1 = (1 + Ic)’2 = X"(s), which proves our
formula.

This being said, let p. be any automorphism of S.- whose determinant
is a square. Then u(uo) is representative for an odd maximal totally
singular space Z. There is a a, 2 G+ such that a,(Z) = N; write a" =
x(s,), s, e I”, whence p‘+(31)'fl(uo) = one , a c K. We set p1 = p,-+(sl)u.
We have N C S.- ; let a: be 75 0 in N and let 8 be an operation of I‘+
such that x(s) transforms N into itself. Then p.-+(s) -a: is representative
for a maximal totally singular space Z’, such that x(s) -:c 2 Z’,, as follows
immediately from the fact that a: is representative for a space Z, such
that a; 2 Z, (III.1.4). This being said, we may write u1(x) = f(x) +
a(a:)uo , f being a linear mapping of N into itself and a(x) a scalar.
Since [1.1 transforms Kuo into itself, f is an automorphism of N. Since
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N is totally singular, f is' a Q-automorphism and may therefore be
extended to an operation 0'; a G’; since a,(N) = N, 0’; is in G+ and we
may write a, = x(s,), 82 s 1"“. For any a: 2 N, p;+(82) -:o is representative
for a maximal totally singular space Z’, such that f(x) 9. Z’z . It follows
that

115(82):: = C(w)(exp v(x))f(x), C(55) 2 K, v06) i 02",
i.e., p.-+(s,):c = c(x)f(:o) + a’(m)uo . If k e K, then clearly, we have
c(k:c) = c(x), since f(kw) = kf(x). If x, y are linearly independent, then
we have

C(x + y)f($ -_|- y) = 6(x)f(x) + c(2/)f(y)
= 6(99 + y)(f(x) + f(y)),

whence c(x) = C(y) = c(x + :11)- It follows that c(:c) is constant on the
set of element x 95 0 of N; let 6 be its constant value and 33 = (‘8, :
then p,(a:) a p.-+(sa)-x (mod Km) for all x a N, and p,+(sa)uo e Kuo .
Let u, = p.-+(sa")p, : then p,(:c) = a: + a1(:t)uo for .1; c N, at being a
linear function on N. Now, observe that, if v = clxaxa + map; +
03x13, , then (exp v)x; = ciuo (i = 1, 2, 3), (exp v)uo = no . Take 0; .=
— a,(:1:,) (i = 1, 2, 3), and set 84 = exp 1). Then p;+(84) is the operation
of multiplication by exp 1) in S.- ; if p, = p,-+(s4)u3 , then we have us(x) =
:c for a: e N, #a(’uo) = buo , b e K. We have det u, = b; since [13 is the
product of m by an element of p;+(P+), b is a square. For any (1 75 0
in K, we have constructed above an element t = t, of I‘+ such that
p,-+(t1) changes uo into itself, u, into u1 , u, into du, , us into dug , and
we have Mtl) = d. We may similarly construct elements t; (i = 2, 3)
such that A6,) = d, and .0305.) changes no and u.- into themselves, u,
into du, if j ;-€ 0, i. Then p,-+(d"t1t,t3) changes u.- into u.- (i = 1, 2, 3),
no into d‘2uo . If we select d so that d"2 = b, we have u; = p.-+(d'2t1t2t,),
which concludes the proof of III.7.1.

III.7.2. The group p,+(I‘o+) is the group of automorphisms of de-
terminant 1 of S‘ .

We know already that det p,+(s) = 1 if s c I‘o+ (proof of III.7.1).
Let u be an automorphism of determinant 1 of S.- ; then we may write '
n = p,+(s), 3: I”, and A2(s) = detu = 1, whence M3) = :l: 1. If Ms) 75 1,
then K is not of characteristic 2 and the kernel of p.-+ contains an element
2 of the center of 0+ such that z’ = 1. If (E, , - - - , $0) is a base of M
composed of mutually orthogonal vectors, then 2 is a scalar multiple
of £1 - - - E. , from which it follows easily that a(z) = — z, whence
M2) = — 1; we then haven = p.-"(sz), Msz) = 1.
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It follows immediately from the preceding results that p,+(I‘+)
(respectively: p,+(I‘o+)) is the group of automorphisms of S, whose
determinants are squares in K (respectively: are 1).

Now, let M’ be the conjugate of the space spanned by x, , yl . Then
M’ is not isotropic and of dimension 4; the restriction Q’ of Q to M’
is of index 2. Let I"+ and I‘D” be the special Clifford group and the
reduced Clifford group of 0’. Identifying the Clifford algebra C" of
Q’ to the subalgebra of 0' generated by M’, I"+ and I‘D” are subgroups
of I‘+ and I‘o”, respectively; the representation p.-+ of I‘+ induces a
representation of I"+ which is equivalent to the spin representation of
this group (see II.6.2). Let S" be the subspace of S.- spanned by no , u;
and S”.- the subspace spanned by u; , ua ; we shall see that these spaces
are invariant by the operations of p,-+(I"+). The space S’, is the set of
elements u s S.- such that p(x1)-u = 23,14 = 0; since p(y,) is an anti-
derivation which maps any a; e N upon B(x, y1)-1, S”, is the space of
elements u e S.- such that p(y,) -u = 0. We have, for any 8 e I”,

p.-+(sx18“)-(p.-+(8) -u) = 125(8) °(pe+(rb1) -u),
and a similar formula for yl ; it follows immediately that p.-+(s) maps
S" and S”,- into themselves if s s I‘”. If we denote by p,’+(s), p.-"+(s)
the restrictions of p.-+(s) to S’, , S”.- , then p,” and p,-"+ are equivalent
to the two half-spin representations of I‘”. We shall see that the de-
terminants of p,’+(s), p;"+(8) are both equal to Ms). This is obvious if
K has only 2 elements. If not, then the reduced orthogonal group
Go” of Q’ is the commutator subgroup of its special orthogonal group
(11.3.9), and we see exactly as in the proof of III.7.1 that, if s e To”,
then det p,’+(s) = det p.-”+(s) = 1. On the other hand, if we set 132 =
1 + log/2x, , with k 75 — 1, then we see as in the proof of III.7.1 that
t, e F“, that Mtg) = 1 + k, and that p.-+(t2) transforms uo into uo , ul
into (1 + k)u, , uz into ug , and us into (1 + k)u3 . It is clear that t, e
I"+ and that det p,’+(t2) = det p;"+(t2) = Mtg). If s c I‘”, then we can
determine k in such a way that A(t2))\(s) = 1, whence det p.-’+(t,s) =
det p.-”+(tgs) = 1, Mtzs) = 1, which proves our assertion.

Conversely, let M be an automorphism of S.- such that u(S’.-) =
S".- , u(S".-) = S”; with the property that the determinants of the
restrictions of p to S’; , S”; are equal to each other. Then det u is a
square, and there is an s in I” such that p. = p;+(s). Then p+ (x(s) ~31)
maps the elements of 8’, upon 0. This shows that x(s) ~x, belongs to the
maximal totally singular spaces whose representative spinors are x.
and magma , i.e., x(s):z:1 8 Km, . A similar argument shows that x(s) -y1 2
Kyl - Since B(X(s) 'xl , X(s)'yi) = 1: we have 7((3) '31 = 0331 ’ X(3) 'y1 =
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fly; for some c e K. Let k = c — 1, t = l + Icylac1 ; then (see proof of
III.7.1), x(t"s) leaves 351 and y1 fixed, whence x(t“‘s) e G’+ and 17‘s =
08’, with some s’ e P”. The determinants of the restrictions of p;+(t) to
S’“ S”.- are 1 and (1 + k)” = c”, respectively. By our condition on
it, these determinants are equal to each other, whence c = :I: 1. If
e 79 1, ”we observe that the kernel of p¢+ contains an element 2 which
anticommutes with every element of M, and p. = p.-+(zs), so that we
are reduced to the case where c = 1, in which case t = 1 and s = s’ e I‘”.

In particular, we see that p.-+(I‘o’+) is the group of automorphisms
of S, which leave S", S”.- invariant and whose restrictions to these
spaces areof determinant 1. This gives the following results:

III.7.3. If m =‘ 4, then I‘.,+ is the direct product of two subgroups
each one of which is isomorphic to the group of automorphisms of de-
terminant 1 of a 2-dimensional vector space over K. These groups are the
kernels of the two half-spin representations of I‘o+.

3.8. The Case of Odd Dimension
We denote by M a vector space of odd dimension 2r — __1_ over a

field K of characteristic ¢ 2 and by Q a quadratic form on M whose
associated bilinear form B is nondegenerate and w_hich 1s of maximal
index r — 1. We deno_te by_C' the Clifford algebra of Q,__by 0+ the algebra
of even elements o_f C, by :S the space of spinors for Q, by p the spin
representation of 0+ , by I‘, I”, I‘o+ the group of_Clifford, the special
Clifford group, and the reduced Clifford group of Q, and by 3, 72+, if
the spin representations of these groups.

We select two maximal totally singular subspaces N’, P’ of M_whose
sum M’ = N’ + P’ 1s direct and a nonisotropic subspace of M. We
select a basic vector 2., of the conjugate space of M’, and we set

a = QGO) -

We may imb_e_d M in a vector space M of dimension m = 2r which is
the sum of M__and of a one-dimensional space spanned by a vector
53’; we extend Q to a quadratic form Q on M by setting

Q(a‘c + car) = 6(5) — ac“ (cc K)
if 5 s M. It is then clear that Q is of rank 2r. It is furthermore of index
r, for Q(£o + 5'0) = 0 and £0 + 5’0 is orthogonal to every element of
N’ (relatively to the associated bilinear form B of Q), which shows that
N = N’ + K(£o + E’o) is totally singular for Q. Moreover, P = P’ +
K(£o - £’o) is totally singular and M = N + P. We shall use for Q
the notation which was introduced earlier in this chapter, it being
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understood that N and P are the spaces which were used in defining
the space of spinors.

Either one of the half-sp_in representations of I“ induces a repre-
sentation of degree 2"1 of I”; this representation is equivalent to the
spin representation of this group in virtue of 11.6.2. Let pf be the
representation of I‘+ on the even half-spinors. Denote by if the repre-
sentation of G+ on the hrvectors, and by In; the one of the two simple
representations of which if is the sum which occurs in p,+ ® (3:.
Denote by 0f the representation 8 ——> )‘(s)3',.+ (x(s)) of I" (where M8)
is the norm of s) and by am,“ the representation 8 —> A(s)§‘,_,+(x(s)).
Then we have proved in Section 3.4 that

1-2

P: ® P: g 21...”) 0h+ + 0n:-

It follows that Ta“ ® ",5“ is the sum of representations respectively
equivalent to the representations of I‘ induced by the 0,. (0 < h < r —
2, h—= r (mod 2)) and 0 .In order_to study these representations,
denote by E the exterior algebra of 171, which we identify with the
subalgebra (1f the exterior algebra E on M which is generated by M.
Let E. and_E,, be the spaces of homogeneous elements of degree h of E,
E, whence E, = E n E, . Taking a base of M composed of a base of
M and of E'o, we see immediately that every element of E, is u_niquely
representable in the form u A g, +_v, where u 2 EM and v c E, . We
identify the orthogonal group G of Q to the subgroup of_G composed
of the operat_ions which leave E’o fixed, and we denote by 3‘“ the repre-
sentation of G+ on the h—vectors. It 1s clear that, if"a a G, then

f»+(E)'(u A50 +0) = (flu—1+(3)411) A E’o + {A ((7)4)

if u c E,_, , v e E, . This shows that the representation of G” induced
by If is equivalent to 5-1+ + 53," ih > 0, to_§'o+ if h = 0. This applies
in particular if h = r; in that case, {"1“ and If argequivalent to each
other (because 7' + (r — 1) is the dimension of M) and are simple.
Since gr, is equivalent to the sum of g, , and of another representation
r, ,- of the sa_me degree as {,f,, it follows immedia_tely that t_he repre-
sentation of G+ induced by I, p is equivalent to 5-1+. Let 9,, be the
representation 8 —> Ms) gr, (x(s)) of I‘ ,then we obtain the formula

3* ® 3* g z; "9:. (1)

Let 6, be an isomorphism of E with the space S, of even half-spinors
for Q such that

MG) 0 s3, = 53.. 0 T6)
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for all 5 e f‘”. Let S be the space of spinors for Q. Then we have defined
for each h (0 < h < 27‘) a bilinear mapping I31. of S X S into E» such
that

fi1(p(8)-u, p(8)-v) = >\(8)§u(x(8))-/3h(u, v)
for all s e I‘, u, v 2 S, p being the spin representation of I‘ (see Section
3.4); .13. is identically zero on S, X S, if h ¢ 1‘ (mod 2) but not if h E 1‘
(mod 2). If 0 _<_ h S 2r — 1, let h’ be_equal to h if h E 1' (mod 2), to
h + 1 if h é r (mod 2). Let a, E be in S; then fl£(6,(fi), 6,60) may be
represented in the form To A {5’0 + 171’, Where w s E,.,_l (17) = 0 if h’ = 0),
1:0, 2 EM. We define 3,,(17, ELto lg To if 11’ = h + 1, 171’ if h’ = h. Thus,
13,. is a bilinear mapping of S X S into E; , and we have

films) a, 71TH») = Astra-cc» Jam, :7)
for any 5 e I”, 17 e S, v a S. It is easily seen that 3,. 75 0 for 0 s h S 27' —
1. It is easy to verify that

7310:, a) = (—1>"”'""H’”Eh<u, 5)
(see formula (2), Section 3.4). If we set

Bow, a = Em, a1, 1307, a) 2K,
(3 is a bilinear form on S X S, which is an invariant of the spin repre-
sentation of 1‘0+ ._ _

The mappings [3,. , I3 depend on the choice of the isomorphism a, . It
should be observed, however, that this mapping is determined up to a
scalar factor. For any other isomorphism g—o', with the same property
as go, i_s_ of the form (p, o w, where w is an automorphism of the_vector
space S which commutes with eve_y operation of p++(I‘ ). Since I‘ is a
set of generator_s of the algebra 0+ (II.4.2), w commutes with every
operation of p (0+). Butp (0+) 1s of dimension 2" a,and S of dimension
2"1, which shows thatp (0+) is the algebra of all endomorphisms of _S
and therefore that w is a scalar multiple of the identity.

.We shall now extend to the odd-dimensional case the notion of a
_p_ure spinor. Let Z be a maximal totally singular subspace of M; then
Z is of dimension r — 1 and therefore contained in a uniquely deter-
mined even maximal totally singular subspace Z of M (III.1.11_). Let
u be a representative spinor for Z, and let 17 be the element of S such
that 6,,(17) = u. Then 17 depends on the choice of 51. , but the one-di-
mensional space Kfi depends only on Z. Any basic elenlent of this space
is called a representative spinor for Z; any element of S which is repre-
sentative for some maximal totally singular space is called a mm:
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spinor. If Z is any maximal totally singular subspace of M, then Z n M
is of dimension r — 1 or r and cannot be of dimension r, since it is totally
singular. It follows that a necessary and sufficient condition for a spinor
a a S to be pure is for 6,,(17) to be pure.

III.8. 1. Let Z be a m_aximal totally singular subspace of M and u a
representative spinor for Z. Let 2 be an odd_invertible element of the center
of C; then Z is t_he set of all elements a: e M such that p (zx)_-u-—0 and
any elgnent of S which is mapped upon 0 by (it p (22:), a: e Z, is in K17.
If E e I”, then 7(5) ~17. is representative for 26) (Z).

Let u = 70,07); then u is a pure spinor for Q, which is representatiye
for the even maximal totally singular subspace Z of M containing Z.
If 5 8 M, then we have GAITGB-ii) = pfi-fifi) = p(i)'(p(5)'
6,(u)). Si_nce E is invertible, a necessary and sufiicient condition for :‘c‘
to be in Z, or what amounts to the same, in Z is that 3* (25:) «a = 0 (see
III.1.4). The space Z is also contained in some odd maximal totally
singular subspace Z’ of M; let u’ be a representative spinor for Z’. We
shall see that Ku + Ku’ is the_space of all spinors for Q which are
mapped upon 0 by all p(i), 5 e Z. We can_find an operation 0’ of the
orthogonal group G of Q which transforms Z into a subspace Z, of N.
Let (1?: , - - - , 12-1) be a base of Z, . Let u” be a spinor such that p(i) -u”
= 0 for all 5 2 Z. If we set u”1 = p(s) -u”, then we have six-u”, = p(sc,)u"1
= 0 (1 S i S r — 1), which means that the element u”1 of the exterior
algebra C" of N is a multiple of 2:1 - - - 2a-, . If x, is an element of N not
in Zl , then u”1 is a linear combination of x, - - - :z;,_I and x, - - - $.41), ,
which are representative spinors for the two maximal totally singular
subspaces of M containing Z1 . It follows _t_hat u” is a linear combination
of u and u’. Now, if 17” is an element of S such that-7:125) "ll” = 0 for
all 5 2 Z, and u’’ = 6417"), then u’’ is a linear combination of u, u’ by
what we have just said. But u, u” are even half-spinors and3’ an odd
half-spinor, which shows that u” e Ku and 17." a K52. If 3 e I‘ C I‘,
t_hen p, (s_) u is representative for x(s) (Z), whose intersection with
M 1s x(s) (Z), which shows that p+ (s) u is representative for x(s) (Z).

_ III.8.2. A necessary and suflicient condition for a spinor u 9'5 0 in
Sto be pure is that e,(u,a) = OforO S h < r — 1.

Let u = 6,,(5); a necessary and sufficient condition for u to be pure is
that 6,.(u, u) = 0 for k sé r (III.4.4). Since u is even, it is already suf-
ficient that 6,,(u, u) = 0 for 0 S k < r by III.4.3. On the other hand,
[3,,(u, u) is always 0 if k é r (mod 2) by III.4.2. Our_assertion then
follows immediately from the definition of the mappings [3,. .
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From now on, we shall assume that the Clifl‘ord algebra 5 of 6 is not
simple. Let_(x1 , - - - , 25-1) and (y; , - - - , y,_,) be bases of N’ and P’
such that B(x; , 11,-) = 6“ (1 é i,j S r — 1). Then (x1__, - - - , x,_1 ,
y, , - - ~ , y,_1 , So) is a base of M and the discriminant of B with respect
to this base is 2a(— 1)"1. Making use of II.2.6, we see that a must
then be a square in K. Thus, under proper choice of £0 , we may assume
that a = 1. Let Q’ be the restriction of Q to M’ = N’ + P’, and C” be
the Clifford algebra of Q’. The center of the algebra 0",. of even elements
of C’ is spanned by 1 and by an element 2’ of square 1 which anti-
commutes with every element of M’; 2’ may be selected in such a. way
that z’f = f (see Section 3.5)._If we set 2 = 2’50 , then 5 is an odd inver-
tible element of the center of 0 and 2’ = 1. In Section 3.5 we have con-
structed an isomorphism 1]; of C’ with a subalgebra of 0+ :

10(u’+ + u’_) = u’+ + u'J'Eo
if u’+ s C’1, u’_ e C’_. Since z’50 = 2, we see that MC”) C 0... Since
0’ and 0+ are of the same dimension 22r 2, we ha_ve MC”) = 0+. The
reciprocal mapping of yb’ is an isomorphism of 0., with C". This iso-
morphism may _be extended to a homomorphism 1r of 0 onto 0’. For
any element of C ma_y be uniquely represented in the form 17., + E- ,
whe_re u+ a 0+ , u- s C’- , and u+ + u_ —-> u, + we is a homomorphism
of 0 onto 0+. Composing this homomorphism with the reciprocal
of t, we obtain a mapping 1r with the required property. If x’ e M’,
then we have x’ = (x’§)§, whence «(3’) = as’; as for £0 , we write also
£0 _——:_ (£032 = 2'2, and we see that «(50): 2’; 1r induces an isomorphis_m
of M = M’ + Kgo with the subspace M’ = M_’ + Kz’ of C”. Ifj a M,
t_hen we have (1r(i))’= 1r(5’_) = Q(E)--1. If_§_ e I‘, then we have sME" =
M, which shows that 1r(§)M’(7r(§))_1 = M’. C_9nversely, let 8’ be an
invertible element of C” such__that s’JTI’s’ 1 = M’. The_n s’ is_the 1mage
under 1r of some element s__a 0+ and_, since 1r(z)_= 1, Me C 0, we have
§(M§)'s"‘ = M, whence 5M 1 = M and s e I‘. Thus,_we see that 1r
induces a homomorphism of the group I‘_onto t_he group I" of invert_ible
elements 8’ e C’ such that s’M’s’ l = M’, 7r(I‘) is identical to 1r(I‘ ),
and 1r induces_an isomorphism on I‘.

The group I‘+ is generated by the products ":55, where 5 runs over the
invertible elements of M (II.3.4). Iifollows that the group I" is gener-
ated by the invertible elements of M’ (i.e., by the elements of this space
whose squares are not 0). If p’ is_the spin representation of C", then
p’ 01:- induces a representation of 0+ on the space S’ of spinors for Q’,
and this_representation is obviously equivalent to the 'spin representa-
tion of 0+ . Thus, p’ 0 1r induces a representation of I” on S’ which is
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gquiv_alent to the spin representation of I". The norm homomorphism
A of I‘+ defines a homomorphism N of I" i_nto the multiplicative group
of elements ¢ 0 in K. We shall say that N is the norm homomorphism
of I".

If (51 , - - ~ , E...) is a base of M composed of mutually orthogonal
vectors, £1 - - - E... is an odd invertible element of the center of C’ and is
therefore a scalar multiple of E. It follows immediately that 3(2) =
(—1)"‘§. If :c’ e M’, then we have a’(x’) = x’, &(xp(x’)) = 5(x’2) =
5(2):c’ = (—1)"1 11/(3’). It follows that a 01/1 coincides with up 0 a’ on
C’+ , with (—1)"1 ¢ 0 a’ on C"- . If we denote by 5’ the product of the
main involution of C’ by its main antiautomorphism, then we see that
E o ‘0 coincides with \l/ o a’ if r is odd, with ¢ 0 3’ if r is even. In pagticular,
if we denote by I‘b’ the kernel of the norm homomorphism of I", then
we have

50' n I"+ = r0”.
Making use of the remark at the end of Section 3.2, we see that, if
§’ 2 I", u’, v’ s S’, then

com-w, wed-w) = WWW, v')
if r is odd, while

§'(p’(§’)-u’, p’(§’)-v’) = i’fi’fi’w, 0’)
if r is even; in these formulas, B’ and [3" are the bilinear forms on S' X S’
which were introduced in Section 3.2.
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CHAPTER IV

THE PRINCIPLE ‘OF TRIALITY

We shall denote by M an 8-dimensional vector space over a field K
and by Q a quadratic form on M of rank 8, of defect 0 (in case K is of
characteristic 2) and of index 4. We shall use the notation introduced
in Chapter III; in particular, we denote by N and P two four-dimensional
totally singular subspaces of M which are supplementary to each other,
by f the product in the Clifford algebra C of Q of the elements of a base
of P, and by 0” the subalgebra of 0 generated by N; we take S = C"
to be the space of spinors for Q, and we denote by S, and S; the spaces of
even and odd half-spinors. The representations of the subgroup I‘+ of
the group of Clifford on the spaces S, S, , S.- are denoted by p+, p,+,
pf; the vector representation of the group of Clifford I‘ is denoted
by x, and its spin representation by p.

We have constructed in Section 3.2 a bilinear form B on S X S,
defined as follows: if u, v are in S, then B(u, v)e is the homogeneous
component of degree 4 of oz(u)v, where a is the main antiautomorphism
of 0’. Since 7' = 4, B is symmetric and vanishes on S, X S,- and on S.- X S,
and its restrictions to S, X S, and S.- X S; are nondegenerate. If 2 e M,
then we have

B(p(2)-u, p(Z)-v) = Q(Z)fl(u, v),
and, for any 8 e I‘,

500(8) 'u, p(8) 4)) = MS)I3(u, 0)-
Moreover, since 1‘ = 4, there exists a quadratic form 7 on S such that

7(u + v) = 7(a) + 7(0) + Mu, 0)
for any u, v e S,'and

7(p(Z)-u) = Q(Z)7(u) (z s M),
703(8) 'u) = k(8)7(u) (8 e I‘).
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This form has been explicitly constructed; if K is not of characteristic 2,
then we have 7(u) == %fi(u, u).

4.1. A New Characterization of Pure Spinors
IV.1.1. Let u be an element ;£ 0 of S. In order for u to be a pure

spinor, it is necessary and sufficient that the following conditions be satis-
fied: u is either even or Odd, and 7(u) = 0.

Suppose first that u is a representative spinor for a maximal totally
singular space Z. There is an operation 0' of G which transforms Z into
P, whence p(s)-u = 11-1, a a scalar 75 0, since 1 is a representative
spinor for P. But 7(1) is obviously 0, whence 7(u) = (>\(s))_1 1(p(8) -u)
= 0. Assume now that our conditions are satisfied. Proceeding exactly
as in the proof of 111.32, we see that there is an s 2 I‘ such that p(s) -u is
even, and the homogeneous component of degree 0 of p(s)-u (in 0",
identified to the exterior algebra of N) is 75 0, while its homogeneous
component of degree 2 is 0. Since N is of dimension 4, p(s) -u is then of
the form a - 1 + be, a ;£ 0 (where e is the product of the elements of a
base of N). If K is not of characteristic 2, then B(p(s)-u, p(s) -u) -e is
the homogeneous component of degree 4 of

a(p(8)-u)p(8)-u = (a-1 + be)”,
whence

7(p(s)-u) = %fl(p(s)~u, p(s)-u) = ab-
The formula 7(p(8) -u) = ab is also true in case K is of characteristic 2,
in view of our explicit construction of 7 (Section 3.2). Since 7(p(8) -u) =
A(s)'y(u) = 0, we have b = 0 and p(s)-u = a-l is pure, which shows
that 'u is pure.

4.2. Construction of an Algebra
We shall now introduce the vector space A = M X S, of dimension

8 + 16 = 24. This space is the direct sum of the two subspaces M X {0}
and {0} X S; we shall identify these two spaces to M and S, respectively.
It should be observed that the spaces M and S, as they have been
defined, have the space N in common. Our identification is therefore
logically illicit; in all rigor, we should consider A as the sum of two
spaces respectively isomorphic to M and to S. We do not do it, in order
to avoid complications of notation, but it should be kept in mind that
the elements of N are now doubled: they appear either as elements of
M or as elements of S and should be distinguished from each other
according as to whether they function in one or the other capacity.
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We define a quadratic form (2 on A by the formula

90: +14) = QCB) +700 (xeM,ueS)-
The bilinear form associated with Q will be denoted by A. If x, x’ a M,
u, u’ e S, then we have

A(a: + u , x’ + u') = B(:c, m’) + Mu, u’).

It follows, immediately that A is nondegenerate. The subspaces M,
S, , S.- of A are nonisotropic (with respect to A), and the conjugate of
any one of them is the sum of the other two.

We shall now define a cubic form F on A by the formula

F($ + u + ul) = B(P(x)'ui u');

where a: e M, u s S, , u’ s S,- . We have, by 11122,

F(x + u + u’) = 6(p(x)-u, u’) = 3(u. p(~’6)'U’)- (1)
From the cubic form F we deduce by the process of polarization a

trilinear form <I> on the space A X A X A. The form (I) is defined as
follows. Let E, 11, 5' be the elements of A.~Then

4’05, m s“) = F(£ + n + I) + F(£) + F(n) + F6)
— [1412+ 1;) + Fe + r) + F(: +91.

Let (.5, , - - - , 524) be a base of A, and set
24 24

£=Eaisir n=zbi£ia I=c§w
o' - 1 I' - 1 0' - 1

Then it is easily verified that <I>(£, n, 3') is of the form
24 ,
Z diam-hick ,

0' . 1' .k-l

where the d,-,-,,’s are fixed constants, which proves that (D is trilinear.
If K has infinitely many elements, then cI>(£,=, n, g') may also be defined
as follows: F(a£ + by + 03‘) being expressed as a polynomial in a, b,
c, then the coefficient of the term in abc in this polynomial is <I>(£, 17, f).
The trilinear form (I) is obviously symmetric.

We can now define a law of composition in A. Let E and 17 be in A.
Then g” —+ <I>(£, 11, g') is a linear form on A. Since the bilinear form A
is nondegenerate, there exists a unique element to of A such that
A(w, :) =-4>(£, n, f) for all gr 2 A. We set w = £0 1;; thus, we have

44$) ’7) g.) = Ago 771%)
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The mapping (5, 11) -> £0 ’7 is obviously bilinear; it is the law of compo-
sition of a structure of (nonassociative) algebra. on A. Since (P is sym-
metric, this algebra is obviously commutative.

The law of composition in the algebra A being defined in terms of
the forms (2 and F only, it is clear that any automorphism of the vector
space A which leaves these two forms invariant is an automorphism of
the algebra A.

IV.2.1. If each one of the elements 5, n, g- lies in one of the spaces M,
S, , S,- , then we have

@0311, I) = F(£ + n + I)-
We have F(w) = 0 if u lies in one of the three spaces M + S, , S, +

S.- , S.- + M, as follows immediately from the definition of F. Thus,
under 0111‘ assumption) F“), F07): FG’)’ F(£ + ’7); F(’7 + ()1 FG‘ + £)
are all zero, which proves IV.2.1.

Suppose that 5 and n are both in M, or both in S, or both in S; . Then
we have <I>(£, n, 5') = 0 if 3' lies in either one of the spaces M, S, , S, , and
therefore, by linearity, <I>(£, m r) = 0 for any i" z A. This proves:

IV.2.2. We have E o n = 0 if E, 1) both lie in one and the same of the
spaces M, S, , S.- .

Now, assume that t e M, n e S, . Then we have @(E, ’0, g‘) = 0 when
feM + S,,whence A(£on, I) = Oforg'eM + S, .Thus, Eonliesin
the conjugate of M + S, with respect to A, i.e., in S; . Proceeding in a
similar manner, we obtain the formulas

MOS,CS.- S,0S.-CM S.-0MCS,. (2)

IV.2.3. Leta: be in M and u in S. Then we have

won = p(x)°u 705°“) = Q(x)7(u) 21° (960%) = Q(w)u-
It is clearly sufficient to prove the first of these formulas in the case

where u is in either S, or S.- . Assume for instance that u s S, , whence
:coueS; . Ifu’sS; ,wehave13(xou,u’)= A(xou,u’ = <I>(:c,u,u’) =
F(:e + u + u’) = B(p(:c)-u, u’), whence :cou = p(x)-u, since the re-
striction of 3 to S; X S.- is nondegenerate. We proceed in exactly the
same way if u c S; . The second formula of IV.2.3 follows immediately
from the first. Moreover, we have a: o u s S, whence a: o (a: o u) =
p(=v)-(p(r)-u) = p(wz)-u = 000% since $2 = Q(x)-1.

' If x, y are in M and u e S, then we have

13(93 0 u, y 0 u) = BOB. WM) (3)
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The left side is 7((1: + y) 0 u) — 'y(x o u) — 7(1/ 0 u), which is (Q(x + y)
— Q(x) — Q(y))'y(u) by IV.2.3, which proves (3).

Now, let 3 be an element of I‘. If x e M, u s S, , u’ c S.- , set

n(8)'(x + u + u’) = x(8)-:v + p(8)-u + p(8)-u’-
Then It is clearly a linear representation of the group I‘. We have
Q(x(S)-x) = Q(~’c), 7(p(8)'(u + u’)) = MSMu + u’). If s e 1‘0 , then
u(s) leaves the quadratic form 52 invariant. We shall now prove the
formula

F(y(s) -w) = )‘(8)F(w) (8 e I‘, w e A). (4)

Setw = a:+u+u’,xeM,ueS,,u’sS.-.Wehave

F(n(8)'w) = 3(P(x(8)'x)'(p(8)'u), P(8)'u’)-
Now x s a; = 8188—1 whence’ I

p(x(8)':v) = ;)(8)p(7v)(io(8))"1

F(#(8)-w) = 3(p(8)p(w)'u, 10(8) 4")
= >\(8)6(p(x)-u,14’)
= K(8)F(w),

and

which proves (4). It follows immediately that

t1°(n(8)-£, u(8)-m 11(8)!) = >\(8)‘I>(£, m I) (5)
if E, 11, r are in A.

Let a: be in M and u, u’ in S. Then

9(8) (96 0 u) = #0?) '(x 0 U)
= u(8) '16 ° #(8) 'u
= x(s) '90 ° p(8)-'u,

(11(8) '14) 0 (11(8) 4") = (13(8) '14) 0 (9(8) 44’)
= X(8)(x(8) '(u 0 u’»
= M8) '(n(8) '- (u 0 u’))-

(6)

For we have

x(8) -x 0 9(3) -u = p(x(3) -m)p(8) '14
= p(8)p(x)-u.
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which proves the first formula. We have p(s) -u o p(s) .- u’ e M, and, for
y 2 Mr '

B(p(s)-u° p(S)-u’. y) = <I>(u(8)-u, u(8)-u’, y)

= k(8)<1>(u,u’, n(s“)-y)
= A(s)B(u ou', x(s") e)

and

B(x(s) -u 0 u’, y) = B(u o u’, x(8") '11),
which proves the second formula (6).

It is clear that every automorphism of the vector space- A which
leaves the quadratic form 9 and the cubic form F invariant leaves also
the trilinear form <I> invariant and is therefore an automorphism of the
structure of algebra of A. Thus, every operation of ”(1‘0) is an auto-
morphism of the algebra A.

IV.2.4. Any automorphism a of the algebra A which transforms each
one of the spaces M and S into itself belongs to the group u(I‘o).

We know that the representation p of the Clifford algebra 0 maps 0
onto the algebra. of all endomorphisms of the vector space S. Thus,
there exists an element 3 e C’ such that a-u = p(s) -u for all u s S. Since
a' induces an automorphisms of S, s is invertible in 0'. Let x be in M;
then we have p(s)p(:v)-u = a(xou) = a-xo a-u = p(a’-x)p(8)-u, and
p(ar-x) = p(s)p(:c)p(s") = p(s:cs‘1). Since p is a faithful representation
of C, sacs"l = a-a', which proves that s s I‘, and that a' = u(s). It remains
only to prove that )‘(s) = 1. We have, for u, u' e S, u(s)-u ou’ =
u(s)-uo p(s)-u’. Comparing with the second formula of (6), we see
that Ms) = 1 provided there exist elements u, u’ c S such that u o u' 75 0.
Now, let :60 be a nonsingular vector in M and u’ an element 75 0 of S.- .
Since (p(xo))”-u = Q(:vo)u, the mapping a —-> p(xo)-u of S, into S.- is
one-to-one; since S, and S.- have the same dimension, it is an iso-
morphism of S, with S,- , and there exists an it 2 S, such that B(p(xo) -u,
u’) ,5 0; since B(uou’, x0) = B(p(}ro)-u, u.) (by IV.2.1), we have
u o u’ 75 0 and IV.2.4 is proved.

4.3. The Principle of Triulity
IV.3.1 (Principle of triality). There exists an automorphism J of

order 3 of the vector space A which has the following properties: J leaves
the quadratic form 9 and the cubic form F invariant; .7 maps M onto
S, , S, onto S.- , and S,- onto M.
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There exists an element x, a M such that Q(x1) = 1. For, if a: and y
are elements of M such that Q(x) = Q(y) = 0, B(x, y) = 1, then 1;; =
a; + y has the required property. We have x, z I‘ and M221) = x,” = 1,
whence x, 2 Po . It follows that the operation [1(221) (see Section 4.2)
leaves 9 and F invariant; it is clear that ”(2:1) maps M onto itself, S,
onto S,- , and S.- onto S, .

Now, we know that the restrictions of 7 to S, and S,- are of index 4.
If u, v are-in S, , 7(a) = 7(2)) = 0, and, if [3(u, v) = 1,’then we have
7(u + v) = 1. We see in the same way that 7 takes the value 1 at some
point of S.- .

Now, let u; be any point of S, such that 7(u,) = 1. We shall associate
to ul an automorphism 7- of A. If a: a M, then we set 1(3) = u; o a: =
azoul s S.- . If x, y 2M, then we have

13(T-x, r-y) = B(x, y)
by formula (3), Section 4.2. Thus, if r-y = 0, then B(:c, y) = 0 for all
a: s M and y = 0; this proves that a: —> 7-1; is a one-to-one mapping
of M into S.- ..Since M and S; have the same dimension 8, our mapping
is a linear isomorphism of M with S.- . Every 14’ e S.- may therefore be
written in one and only one way in the form r-x, for some :2 c M, and
we set r-u’ = :0. Having now defined 1' on M and S,- , we extend it by
linearity to M + S.- ; we obtain in this way an automorphism of order
2 of M + S,- . There remains to define 1' on S, , which we do by the
formula

r-u = 13(u,u1)u1 - u (u e S,)- (1)
If 1-’ is the symmetry in S, with respect to the conjugate hyperplane
of Kul , relative to the restriction of the quadratic form 7 to S, , then,
we have r-u = — r’-u (since 7(u,) = 1). It follows that the mapping
of S, into itself defined by (1) is an automorphism of order 2 of S, .
Completing the definition of r by linearity, we see that we obtain an
automorphism 1- of order 2 of A which maps any a: a M upon u, o x.
This automorphism leaves the forms 9 and F invariant. For, let a: be
inM,uin S,, andu’ in S.- . Thenwehave 7-1: 2S.- , r-ueS, , r-u’ eM,
and

0(1-(9: + u + u’)) = 7(u1 0 x) + 7(T-u) + Q(r-u’)-
We have 7(u1 o x) = 7(u,)Q(x) by IV. 2.3, and this is Q(x). We have
y(1- - u) = 7(u) because the restriction of 1- to S, belongs to the orthogonal
group of the restriction of 'y to S, . If u’ = ’111 o y, with y e M, then we

182



THE PRINCIPLE 0F TRIALITY

have r-u’ = y, whence 7(u’) = Q(y) = 7(r-u’), and this shows that
1 leaves (2 invariant. We have

F(r-(x + u + u’)) = 6(1-u, p(r-u’) o (u; o 96))
by formula (1), Section 4.2. Again let u’
u, o a: = p(x) -u1 , we have p(-r-u’) - (ul 0 x)

u; 03/ = p(y)-u1 ; since
p(yx) -u1 . Thus, we have

F(T-(gv + u + u’)) = Mu, un)fi(u1 , p(yx)-u1) — Mu. p(yx)-u1).
Now, we have my + ya: = B(x, y) - 1, whence

Mu, p(y)p(w)'u1) = B(x, y)fi(u, “1) - 6(u, p(x)p(y)-ux)-
Making use of formulas (1), (3), Section 4.2, we have

B(x, y) = B(y. 56) = 13(you1 , won.) = B(p(y)-ui , law-u.)
= 5(141 , P(y$)'u1)

and therefore

F(r-(x + u + u’)) = 13(u, p(x)p(y)-u1),
but p(y) -u1 = y 0 u1 = u’, and

F(1-(2: + u + u’)) = B(u. p(w)'u') = F(x + u + u’),
which proves that -r leaves F invariant.

Set 0 = 'rp.(xl)'r—1 = 1p(x1)1' and 9' = p.(x1)'r(p.(x1))_1 = u(x,)-rp.(x1).
These two operations are of order 2 and leave 9 and F invariant. We
shall prove that they are identical. Let a: be in M; then we have

0-2: = ¢(#(x:)-(u1°x)) = T(p(x1)p(x)-u1)
= B(u1 , p(x1)p(:v)-un)u1 — p(x:)p(=v)'u1 -

We have $11: + xx, = Bu, 1:.) -1 and

B(x, 2:1) = B(:v1 , w) = 13(501 0 ul , a: o u,)

= fi(p(x1)-ux , p(=v)-u:) = 13(u1 . Maxi-m).
whence 0-1: = p(x)p(xl) -ul . On the other hand, we have

9’4: = n(w1)r-(x(xn)-w)== n(wx)'(u1 ° $196961“)
= n(w1)'(P(x1m1")'ux) = p($1)p(xxxw1")'ul
= P0517!) 'ui ,
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since at," = 1; thus, 9’ coincides with 0 on M. On the other hand, we
verify immediately that 0 and 9’ both map M into S, : -r maps M into
S, , u(x1) maps S, into S, , and 1 maps S, into itself, whence 0(M) C
S, ; u(a:1) maps M into itself, 1 maps M into S, , and u(x1) maps S.- into
S, , whence 0’ (M) C S, . Since 0 and 0’ are of order 2 and coincide with
each other on M, they coincide with each other on S, , and 00’ coincides
with the identity on M + S, . On the other hand, 6 and 0’ belong to the
orthogonal group of the quadratic form 9, and so does 00’; since 00’ maps
M + S, into itself, it maps also into itself the conjugate S.- of M + S,
with respect to the associated bilinear form A of (2. Since 0 and 0’ leave
(2 and F invariant, so does 00’, and 00’ is an automorphism of the algebra
A. Thus, it follows from IV.2.4 that 00’ = [1(8) for some 8 e To . Since
(00’) (x) = x for a: s: M, 8 belongs to the kernel of the vector representap
tion of I‘, whence s = 0-1 for some 0 e K. Since u(s)-u = cu = u for
u s S, , we have c = 1 and 90’ is the identity, whence 0 = 9’. Writing
that 0’0 is the identity mapping I, we obtain

“(‘51) 17415:) Tu(:c1) ,- =

Let J = p.(x1)'r: then J3 = I. It is clear that J leaves F and (2 invariant,
maps M onto S, , S, onto S, , and S, onto M; IV.3.1 is thereby proved.

It is clear that J is an automorphism of the algebra A. Making use
of this automorphism, we obtain more formulas on the law of compo-
sition 0. It follows from IV.2.3 that Q(J -x o J ~u) = 7(J ~x)7(J -u) if
a: 2M, u s S, , whence

Q(u 0 u’) = 70070!) (u e S, , u’ 2 SJ- (2)
Since :00 (:30 u) = Q(:c)-u, we have

J-xo (J-xo J-u) = 7(J-x)J-u,

J"-xo (J‘lxo J‘l-u’) = 'y(J‘l -x)J“u’,
whence

no (no u’) = y(u)u’, u’ o (u o u’) = 7(u’)u (u e S, , u’ e S.-). (3)
Applying J and J‘1 again, we find the formulas

uo (uo x) = 7(u)x, u’o (u’ox) = 7(u’)x (a: s M, us S, , u’ e S,). (4)

Making use of formula (3), Section 4.2, we obtain

B(ul o u’, u, o u’) = 7(u’)]3(u1 , 14,) (ul , u, e S, , u’ e S,),

B(uou’1 , uou',) = 7(u)8(u’1 , u’;) (u c S, , u’l , u’, a Si). (5)
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Consider now the operation 0 = 0’ introduced above. We have

J"#0601 = Tn(xn)n(xx)n(x1)1 = 1110307 = 9- .
If u a S, + S‘ , then we have u(:c,)-u = xlou, whence 0J'1-u =
J'lxIOJ'Iu. We have J":z:1 = rp(x1)-z1 = 1- - x1 = xlou, ; denote
this element by u’l. Then we see that 0-0 = u’l o v = v o u’; if v e J"(S)
= M + S, . On the other hand, we have u(:c,)-:c = B(a:1_ , :z:):z:1 —- :c
if a: e M. Thus, we obtain the formulas

9.v=vou’1 (veM+S,,

0“!" = [3(10’; u’Du’: _ u, (u, 3 Si)' (6)
0n the other hand, -r is an automorphism of order 2 of A and 7-1; =
maul for a: e M. We have (soul) 0141 = :c by formula (4), whence
'r-(xoul) = (soul) cu1 . It follows that 74/ = u’oul for all u’ e S.- ,
and we have

r-v=v°ur (veM+S.-),
r-u = 48(u,ui)u1 - u (M 8,). (7)

4.4. Geometric Interpretation
Denote by Z and Z’ two maximal totally singular subspaces of M,

by u and u’ representative spinors for Z and Z’.
Let x be a point of M. We know that a necessary and sufficient

condition for a: to be in Z is that a: o u = p(:c) ~14 = 0 (III.1.4). Assume
now that this condition is not satisfied. The space Z + K2: is then of
dimension 5; we shall see that this space contains exactly one maximal
totally singular subspace Z1 ,5 Z and that p(:c)-u is a representative
spinor for Z, . The conjugate of Z is Z itself and therefore does not
contain :6, which shows that Z contains an element y such that B(:v, y)
= 1. Let x, = a: — Q(x)y; then Q(x,) = 0 and x1 is not in Z. Let R be
the space of elements 2 e Z such that B(:z:, z) = 0; R is of dimension 3,
and Z1 = R + K2; is of dimension 4 and totally singular, because
Q(x1) = 0 and x1 is orthogonal to every element of R, since both a: and
y are. The space Ris in the conjugate of Z + Kw; if Z’1 is any totally
singular subspace of Z + K22, then so is R + Z’l , whence R C Z’l if
Z’1 is maximal totally singular. Moreover, Z’ 1 , which is of dimension 4,
has an element sf 0 in common with the 2-dimensional subspace Kx +
Ky of Z + Kx; if Z’l 75 Z, then y is not in Z’, and Z’1 contains an
element of the form a; + ay, a e K. Since Q(a: + ay) = 0, we have a =
—Q(:c) and x; a Z’1 , whence Z'l = Z1 , which shows that Z1 is the only
totally singular subspace sé Z of Z + Km. We have 7(p(x) -u) = Q(z)7(u)
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= 0, which shows that p(x) -u is a pure spinor (IV.1.1). Since y e Z, we
have p(y) -u = 0, whence p(x) -u = p(x1) -u. We have p(x1) - (p(x1) -u) =
p(x1’) -u = 0, since x1a '3 0; it follows that xll belongs to the space of
which p(x) -u is a representative spinor. If 2 s R, then we have B(z, x) =
0, whence 2x + xz = O, and

p(z)-(p(x)-u) = —p(z)-(p(Z)-U) = 0,
since 2 e Z. It follows immediately that p(x) -u is a representative spinor
for Z, . Thus, we have proved the following statement:

IV.4.1. Let u be a representative spinor for a maximal totally singular
space Z and 2: an element of M not in Z. Then x o u is a representative
spinor for the unique maximal totally singular space 75 Z contained in
Z + Kx.

Further, we observe that uo (xou) = y(u)x = 0 by formula (4),
Section 4.3.

Assume now that Z M Z’ is of dimension 3. Then Z + Z’ is of dimen-
sion 5, and, if x is any element of Z’ not in Z, then u’ = cp(x) -u, c a
scalar, whence uou’ = 0. We shall now prove that the converse of
this is true:

IV.4.2. Let Z and Z’ be maximal totally isotropic subspaces of M one
of which is even and the other odd. Let u, u’ be representative spinors for
Z, Z’. Then a necessary and suflicient condition for Z 0 Z’ to be of dimen-
sion 3 is that u o u’ = 0.

We know already that the condition is necessary. Now, assume that
u o u’ = 0. Wemay assume that Z is even and Z’ odd. Let the automor-
phism J have the properties of IV.3.1, and set v = J(u), y = J(u’),
whence v e S.- , y e M. We have 7(2)) = 7(u) = 0, and v is pure; moreover,
v 0 y = J(u o u’) = (L 'which shows that 3/ belongs to the maximal
totally singular space Z of which v is a representative spinor. Let' x be
an element 01M such that B(x, y) sf 0, Z the maximal totally singular
subspace of Z + Kx distinct from Z, and v1 a representative spinor for
Z, . Then, we have v = ago 01 , a being a scalar 75 0. We have v1 2 S, ,
whence z = J”‘(v,) 2M and u = au’ 0 2. Making use of IV.4.1, we con-
clude that dim Z (N Z’ = 3.

IV.4.3. Let Z and Z’ be maximal totally singular subspaces of M one
of which is even and the other odd, and let u, u’ be representative spinors
for Z, Z’. If uou’ 75 0, then dim (Z M Z’) = 1 and uou’ is a basic
vector of Z n Z’.
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We know that dim (Z n Z’) a 1 (mod 2); since this dimension is
75 3, it is 1. We have no (uou’) = 7(u)11’ = 0, u’ 0(uou’) = y(u’)u =
0; it follows_that nou’ e Z 0 Z’.

Let now M be the projective space whose points are the one-dimen-
sional subspaces of M. Those one-dimensional spags which contain
singular vectors form a quadric hypersurface Q in M. If P a Q, then
any basic vector 2: of the subspace P of M will be called a representative
vector for P. To the 4-dimensional totally singulsg' subspaces of M
correspond 3-dimensional projective subvarieties of Q; if L corresponds
to a 4-dimensional totally singular space Z, then any representative
spinor for Z will also be called a representative spinor for L. The spaces
L fall into two categories, corresponding to the two kinds of pure
spinors; we shall denote by 8. (respectively: 8;) the set of 3-dimensional
projective varieties of Q whose representative spinors are even (re-
spectively; odd). To the automorphism J of_IV.3.1, there corresponds a
mapping J which assigns to every point of Q a variety in 8. , to_every
variety in 2 a variety in 8.- and to every variety in 8; a point of Q.

IV.4.4. Let P and P; be d1'st1'-nct po1'nts of Q. A necessary a_nd snfiicient
condition for the l1'ne PP; joining P to P1 to be on Q 18 that J(P), J(P1)
should meet each other. If L, ,L, are in 8. , a__necessgry and suflicient con-
d1't1'on for L and L1 to meet each other is that J(L), J(L,) should meet each
other.

Let x and x, be representative points for P_, Pl . A necessary and
sufficient condition for the line PP1 to be on Q is that K2: + Km; be
totally singular. Since a: and x1 are singular, this condition is equivalent
to the condition that B(x, x1) = 0. Now, we have 6(J ~13, J -x1) =
B(x, :01) and, if 11, 11’ e S, , ,8(J -u, J -u’) = 13011, 11’). On the other hand,
we know that, if Z, Z’ are maximal totally singular subspaces of M and
u, 11’ representative spinors for Z, Z’, then a necessary and sufficient
condition for Z n Z’ to be 75 {0} is that [3(u, u’) = 0 (III.2.4); IV.4.4
follows immediately from these facts.

IV.4.5. Let P be a point of Q and L a variet_-y 1n 8._. A necessary and
sufl‘icient cond1t1'on for P to belong to L 13 that J(P), J(L) should have a
2-d1'men31'onal projective variety 1n common.

This follows immediately from IV.4.2.

4.5. The Octonions
Let us select once and for all an element x, e M such that Q(:c,) = 1

and an element a, 2 S, such that 701;) = 1. We shall set 11’; = 1:1 0 111 ,
Whence “,1 8 S,- , 7(u’1) =
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Let a: and y be in M. Then we have wou’l a S,,,you1 e S. ,Iand
(wou’1)0(you1)cM. We set

My = (won’1)°(y°u1);
this formula. defines a bilinear law of composition on M X M, i.e., a
structure of algebra on M. We shall call this algebra the algebra of
octam'ons.

The element x, is the unit element for our law of composition, for
x1 0 u’1 = x, 0 (:1:1 0 u,) = a, (by IV.2.3), ul 0 (y o u!) = y by formula
(4), Section 4.3, and, similarly, 2:, on, = u’1 , (moan) 011/, = 2:. Let
x and y be in M. Then we have

Q(x * y) = Q(x)Q(y)- (1)
For, Q(:z: * y) = 7(xou’1)'y(you1) by formula (2), Section 43, and
7(x 0 u’=1) Q($), 7(31 0 u1)= Q(y) by IV 2 3

We have :61 e I‘; for any a: e M, set

5 = x(x1)-x = xlml = B(w, zonal — x;
then 5 is called the conjugate octomion of x.

IV.5.1. The mapping a: —-> E is an antiautomorphism of the algebra of
octom'ons.

In order to see this, we use the automorphisms 1-, 0 of A which were
introduced in Section 4.3. Making use of formulas (6), (7), Section 4.3,
we see that we may write

x*y = o-xOT-y.

The operation x(a:,) extends to an automorphism u(:c,) of A. We have
0 = u($1)‘m($1), ‘T =1 u(x1)9#($1); since ”(1:1) is of order 2, we have
p(x,)-a: * y = (r-E)O(0-y) = (0-?)09-5) = g * E, which proves
IV.5.1.

We shall now prove the formula

3: * (x * y)= £20011 (1:, y s M)- (2)
We have

5 * (x * y) = Mam-920092031)
because 1- is an automorphism of order 2. Now, 0u(:v1) = [1.0301 =
1-0, since 0 = m(x;)r (see Section 4.3). Thus

5 * (x * y) = 19(960 (x0 fir-21)) = 10-(Q(x)01-y) = Q(x)y,
which proves (2).
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If we replace 5 by its value B(:v, wow, — a: in (2), we obtain

B(x. xox * y - x * (a: * y) = Q(x)y-
On the other hand, it follows from (2) that ET: * a: = Q(x)x, , whence

B(x, wax — x * a: = Q(:c):c,
and

B(x, m * y — (a: * x) * y = 00%.
which proves that

x*(x*y) = (x*x)*y-
Going over to the conjugates, we obtain, in virtue of IV.5.1, (i * :c *

5 = E * (E * :70), or, since x, y are arbitrary, (y * x) * x = y * (a: * 2:).
Thus, the difference

U(x, 11.2) = w*(y*2) - (My) *2
is zero if y is equal to either a: or 2:. Writing that U(a:, y + z, y + z) = 0,
we obtain U(.1:, y, z) = — U(1:, z, y), whence U(x, y, x) = 0. Thus, we
see that U(x, y, z) .= 0 whenever two of x, y, z are equal to each other.
This is the characteristic property of what is called the alternating
algebras. It implies that the algebra generated by any two octonions is
associative, a fact which it is also easy to check directly.

We have defined the law of composition * in M in terms of the law
of composition of the algebra A. It is also possible to do the converse.
Let J be the operation ”(2:01; we know that J is an automorphism of
order 3 of A, and every element of A is uniquely representable in the
form a: + J -y + J2-z, where x, y, z are in M. Moveover, we have
J-y = u(x,)ry = 0-5, Jz-z = m(x1)z = 1-2, whence Jy 0 J22 = y * E
and therefore J’y o z = J(§ * E), y 0 J: = J’(37 * E), i.e.,

xOJ-y=J'-(Ei*§), xOf-z=J(5*E), JyOJzz=y*2. (3)
We shall now determine the automorphisms of the algebra of octonions.

We have constructed in Section 4.2 a representation II of the group
P0 by automorphisms of A. Let s be any element of IV such that
u(s) a, = x, , u(s) Nu, = u. .Then we have also p(s) -u’1 = u(s) '1); o a, =
u’;. Ifx, y eM, then

x(s)-w * y = ”(s-x * y
= u(s) -(:c o u’:) o (y o u.)
= (x(s)-z° u’1)° (x(s)-y°un)
= (x(8)-x) * (x(s)-y),
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which prOves that x(s) is an automorphism of the algebra of octonions.
Let conversely a' be any automorphism of this algebra. Since :51 is the
neutral element, we have a-x, = x1 . We shall prove that a-E = W for
every x s M. We have

Q(:z:):t:l = E * :c = B(:c, x01: — a: * x,
whence

Q(x)xl = B(x, mod-a: — a-a: * 0-3:,

but also

Q(a-a:)x, = B(a-:c, moo-x — a-x * 6'1},

and therefore

(Q(a'x) - Q(x))x1 = (BOT-x, x1) - B(x, 21))6-96-
If 1;, x1 are linearly independent, then so are 0-1:: and x1 , and B(¢r-x, x1)
= B(:r, :31); this last formula is also obviously true if a: 2 Km, . Since
5 = B(x, x1) x. - :c, it is clear that a-E = 375. We may now extend a to
a. linear automorphism E of the 'vector space A by setting

E-(x + J-y + Jz-z) = 6-2: + J-cry + Jz-az.
. Making use of the formulas (3), we see immediately that E is an auto-
morphism of A, and this automorphism maps M, S, , and 8, onto
themselves. It follows by IV. 2.4 that E = p(s), where s is some element
of I‘o+. Moreover, it is clear that E commutes with J. We have J «1:1 =
y.(x1)‘r-x1 = :cl 0 (u1 0:01) = u1 ; since 3-551 = at, , we have E-ul = u, ,
and [1(8) leaves u1 fixed.

The automorphisms of the algebra of octonions may be characterized
in still another manner. Let s be any element of PH; then [1.(8) is an
automorphism of A, and so is J,u(s)J". It follows from IV.2.4 that
J[.4(8)J'1 may be written in the form 110-8), where j -s is an obviously
uniquely determined element of I‘o”; the mapping 8 -—> j-s is an auto-
morphism of order 3 of I‘o". It is clear that j- (c - 1) = c- 1 if c is an element
9'5 0 of K; thus, j maps the kernel of the vector representation x of
I‘o+ into itself and defines an aut'omorphismj of order 3 of the group
Go+ = x(I‘o+). We have seen above that an automorphism a" of the
algebra of octonions may be written in the form x(s), where s is an
element of I‘o+ such that n(s) = a' commutes with J; it follows that a
is an element of Go" which is _left invariant by j. Conversely, let a be
any element of Go“ such that j-a = 0'. Write E = x(s), where s 2 PK.
We have x(j-s) = x(s), whence j -s = cs, 6 e K. Since j is of order 3,
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we have c8 = 1; on the other hand, we have Ms) = 1, Mj -s) = 1, whence
c2 = 1. It follows that c = 1 and that u(s) commutes with J. Let :c,
y be in M, and x’ = a-x, y’ = a-y; then we have

5’*17’= J-x'o W = Jn(8)'x° Jams-y
= u(s)J-x°n(s)J’-y = a-(Jxo J’y) = «(5 W)

and a' is an automorphism for the law of composition (2:, y) —+ E * y.
This law of composition admits x, as its neutral element, whence 6'23; =
p(s)‘x1 = x1 . Since u(s)J = Ju(s) and J -x1 = u1 , [1(8) leaves ul fixed,
and a = x(s) is an automorphism of the algebra of octonions. Thus,
the group of automorphisms of the algebra of octonions is the group of
elements of GI which are left fixed by the automorphism j of order 3 of
this group.

If x is an octonion, we set

Sp :1: = B(:t, an)

and call this element the trace of at. It is clear that

Sp ":1"; = Sp 1:.

We shall now prove that

pw =B(E,y)
if x, y are octonions. The left side is

B(w * y, x1) = A((96 0 u’1)°(y 0 ul), 701) = W" 0 u’u y o u: 231);
by the symmetry of *I>, this is also 1

@(x1 , a; o u’l, y o u,) = Mr, 0 (:to u’,), y 0 ul).

Now, we have

551° (wou’l) = P($1)P($)‘u'1 = P®P(x1)‘u'1 = Pa)”: 2

since p(:v,)-u’1 = ul . Thus, Sp :1: * y = Mica, , youl) = B(5, 3/) by
formula (3), Section 4.2.

Since x(x1) belongs to the orthogonal group of Q, we have 3(5, 5) =
B(a:, y); it follows immediately that

Spy*:c =p*y.

0n the other hand, since B is nondegenerate, the same is true of the
bilinear form (2:, y) —-> Sp 1: * y.
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Let ac, y, 2 be octonions. Then we have

Sp(x*y)*z=p*(y*2)-
The left side is equal to

B(§, x * y) = A(u(x,)z, 0-2: 0 r-y)

= <I>(p(x,)z, 0-1:, 7.1,)

= <I>(-r-z, p.(x1)-x, 0-3;)
because the automorphism meal) of A leaves <I> invariant and ru(x_,)9 =
p.(a:,), m(x1)r = 0. Now we have

<I>(-r-z, u(z1)-:c, 0-1;) = <I>(p(x1)-x, 0-y, r-z) = Sp :1; * (y *2).
Since Sp y * :1: = Sp :1: * y, we see that

Sp(x*y)*z =Sp(y*2)*x =Sp(2*x) *1/-
We have

Sp(z*w) *(y*2) =Sp(x*y) *(HZ),
for, from the preceding formulas, the left side is equal to

Spa/*2) *(Z*x) =Spy*(2*(2*x))-
But 2 * (z * x) = (z * z) * x, and the left side of our formula is equal to

Spy*((2*z)*w) =Sp((2*2) *76) *y
=Sp(2*z) *(xw)
= Sp(x*y) *(2*2)-

Replacing 2 by z, t, z + tin the formula we have just proved, we obtain

Sp(t*x) *(y*2) +Sp(y*t)*(2*x) =Sp(z*y)*(t*z+2*t),
where 2:, y, z, t are any octonions.
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Review by -J. Dieudonné of
The Algebraic Theory of Spinors
by C. Chevalley

Reprinted from the
Bulletin .of the American Mathematical Society
Vol. 60, No. 4 pp. 408-413 July, 1954

Most of the results of the theory of spinors are due to its founder
E. Cartan; and, until this year, the only place where they could be
found in book form was E. Cartan’s own Legons sur la theorie dc:
spineurs, published in 1938. Strangely enough, the deep and unerring
geometric insight which guided Cartan’s researches, and places him
among the greatest mathematicians of all time, is too often smothered
in his books under complicated and seemingly gratuitous computa—
tions: witness, for instance, his fantastic definition of spinors (at the
beginning of the second volume of the work quoted above) by means
of the coefficients of a system of (non-independent) linear equations
defining a maximal isotropic subspace! The reason for this is most
probably to be found in the fact that E. Cartan’s generation did not
have at its disposal the geometric language which modern linear
algebra has given us, and which now makes it possible to express in
a. clear and concise way concepts and results which otherwise would
remain hopelessly buried under forbidding. swarms of matrices.

The remarkably skillful way in which this language is used is cer-
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tainly the most conspicuous feature of Chevalley’s book. It goes with-
out saying that, as usual in modern algebra, the basic field K of the
theory is arbitrary (whereas E. Cartan considered only the real and
complex number fields of classical analysis); the specialist will, how-
ever, be amazed to see that the author has succeeded in pushing this
generality so far that in the greater part of the book, no special treat-
ment is necessary for fields of characteristic 2; and indeed, so great is
the author's virtuosity that the non-specialist will need a very thor-
ough reading of the book to realize that this case actually exhibits
special features at all.

The first chapter begins with the fundamental properties of the
orthogonal groups: as mentioned above, characteristic 2 is included
from the start, and all the necessary results are proved in 14 pages,
including the best proof of Witt's theorem known to the reviewer,
and a new proof of the generation of the orthogonal groups by sym-
metries (the author extends that name to the orthogonal transvec-
tions in the case of characteristic 2; the justification for this is of
course that both can be given the same definition and handled in
exactly the same way). The second half of the chapter is devoted to
the study of the representations of the orthogonal group on the p-
vectors, their decompositions into simple components and the clas-
sification of these with regard to equivalence: this is done not only
for the orthogonal group, but also for the subgroup of rotations and
the group of commutators; for characteristic 2, only the case p = 1 is
considered (the representation being no longer completely reducible
for p> 1).

The first part of chapter II gives a complete study of the Clifford
algebra of a quadratic form, and can be considered as the first such
study in the literature, for all other books on spinors or quadratic
forms are in such a hurry to reach their main theme that they are
content with giving the Clifford algebra the most cursory treatment,
brought down to the minimum number of properties they really
need. Chevalley’s presentation of the theory is entirely original; the
main novelty consists in exhibiting a fundamental connection be-
tween the Clifford algebra C and the exterior algebra E of the under-
lying vector space M (it has long been noticed that the two algebras
exhibit very similar features, but this had remained very vague until
now). The quadratic form Q(x) being written as Bo(x, x), where 3,,
is a symmetric*bilinear form, Chevalley shows that C, as a vector
space, can be identified with E, and that the multiplication in C can
be obtained from the multiplication in E and the form Bo in the
following explicit way: it is suflicient to define multiplication on the

* In characteristic 2, we have to take Bo as not symmetric in gemeral
[Editor’s note].
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left by an element xEM (since they generate C); the operator
L,’ :s—ms can then be written L; =L.+6., where L. is the operator
of left multiplication by x in E, and 5, the (unique) antiderivation of
E such that 6;-y=3o(x, y) for every yEM. This is the cornerstone
on which all subsequent developments are based. First the simplicity
of C when M has even dimension n =2r and Q is nondegenerate (and
nondefective when the characteristic is 2) is proved by reducing the
question to the case in which Q has maximal index 7, and then ex-
hibiting a faithful representation w—rp(w) of C onto the ring of vec-
tor-space endomorphisms of the exterior algebra built on an isotropic
subspace N of M, of maximal dimension 1‘ (a method Which Will
acquire fundamental importance in chapters III and IV). From this
follow easily the structure of the subalgebra 0" consisting of elements
of even order in C, relations between-C and the Clifiord algebras of
the restrictions of Q to two supplementary orthogonal subspaces of
M, the structure of C and ,0" when n is odd, and finally the determi-
nation of the radical of C when Q is degenerate or defective.

The classical connection between C and the orthogonal group
0,,(K, Q) (Q is henceforth taken as nondegenerate and nondefective)
is then developed: to avoid trouble with such ill-defined concepts as
“many-valued representations,” Chevalley starts with the group I‘
of invertible elements SEC such that sMs‘1=M, and shows that
x-esxs“ is a transformation x(s) of the orthogonal group 0., x being
a mapping of I‘ onto 0,. (with a single exception, when K has 2 ele-
ments, n =4 and the index of Q is 2). To the subgroup I‘+ of even ele-
ments of I‘ corresponds the group of rotations 0: ; on the other hand,
if t—rt‘ is the natural anti-automorphism of C (associating to a product
x1362 - - - x, of elements of M the product x,x,-1 - - ~ x1 taken in the
reverse order) the elements 361“ have a “norm” Ms) =55“ in K, and
those having norm 1 form a normal subgroup I‘J' of I‘+, which is
mapped onto a normal subgroup 0,.’ of 0,? , containing the commuta-
tor subgroup Q. of 0... Following Eichler, it is proved that for forms
Q of index v>0, 0.: =9, and 0:79,. is isomorphic to the multiplica-
tive group of elements of K, modulo the squares in K.

Spinors are next introduced, as forming a space in which (for 1:
even) acts a simple representation p of C; the restriction p+ of p to
0" is either simple or splits into two simple nonequivalent representa-
tions, the half-spin representations. Similar definitions are given in
the odd-dimensional case, and the following sections study the re-
striction of the spin representation of C to the Clifford algebra of the
restriction of Q to a non-isotropic subspace, and its extension When
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the base field K is extended. The chapter ends with a study of the
classical case of quadratic forms over the real field (with special
emphasis on the relationship between the Clifford algebra and the
Lie algebra of the orthogonal group), and with a very elegant proof
of Hurwitz's theorem on quadratic forms “permitting composition,"
using the simplicity of the Clifford algebra. _

Chapters III and IV are restricted to the special case of quadratic
forms of maximal index [rt/2]; no attempt is made to extend the
results obtained in that case (in particular, the principle of triality)
to more general ones, and this is probably the only part of E. Cartan’s
theory which is not covered by the book. Chapter III begins with the
exposition of the theory of pure spinors, one of the most beautiful
discoveries of E. Cartan. which unfortunately also constitutes one of
the most obscure parts of his book. Here everything is neatly cleared
up by Chevalley; the dimension n=2r being even, the space M is
decomposed into a direct sum of two totally isotropic subspaces N
and P, and the space S of spinors is identified with the subalgebra
C" of C generated by .N (and isomorphic to the exterior algebra of
N); iff is an r-vector representing P, Cf= C”f is a minimal ideal, and
the spin representation p is defined by vuf= (p(v) ~u)f for uEC" =8,
96 C. Now for every maximal isotropic subspace 2, let fz be the prod-
uct in C of the elements of a base of Z ;sis a minimal right ideal of C,
and its intersection with Cf is a 1-dimensional vector subspace; any
element of that space can be written uzf where M is a spinor well deter-
mined up to a scalar factor, and these spinors are the pure spinors
associated to 2. Such a spinor entirely determines Z, as the set of
vectors x such that p(x) «4; =0, and conversely this condition is char-
acteristic for the pure spinors associated to Z. Pure spinors play for
maximal isotropic subspaces a part similar to the one which decom-

- posable p-vectors play for p-dimensional vector spaces in exterior
algebra. Their study is developed in great detail: they are always
half-spinors, and the two families of pure half-spinors correspond to
the two intransitivity classes of maximal isotrOpic spaces under the
group of rotations; a sum u+u’ of two pure spinors is pure if and-only
if the intersection of their corresponding subspaces has dimension
r—2. An interesting feature, which is an original contribution of the
author, is an expression of the elements sEI‘ such that x(s) leaves
all elements of N invariant; s can be written uniquely in the form
exp (14), where u= Zmagpca; is a 2-vector in N (the car's being a
base of N), and exp (14) = Ha<;(1+ag,x,x;) by definition. Using this,
the author can show that a pure spinor corresponding to a maximal
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isotropic subspace Z can be written exp(u)x,x, - - - xi, where the x.-'s
form a base for ZflN.

Next there is introduced, after Cartan, the bilinear invariant
B(u, v) on SXS, as being the scalar such that (ufl’vf=B(u, v)f; its
invariance is expressed by the equation

500(5) 44. p(S) -v) = M9504. 9)
for any 361‘. It is shown that 3 is a nondegenerate bilinear form,
which is either symmetric or antisymmetric according to the parity
of r(r—1)/2; and 5(u, v) =0 for pure spinors u, v is the condition for
their corresponding subspaces to have an intersection not reduced to 0.

The following sections are devoted to the study of the tensor prod-
uct of the spin representation p by itself. First the tensor product
385 of the space S by itself can be identified to C, by the linear
mapping ¢(u®v) =ufv’, and this immediately shows that the tensor
product p @p can be identified with the representation which, to each
sEI‘, assigns the endomorphism w->7\(s)sws-1 of the vector space C.
The most complete results are obtained in the case of characteristic
#2; then one can choose the form Bo in an intrinsic way, as B(x, y)
—}(Q(x+y) —Q(x) —Q(y)), and it can be shown that with this par-
ticular identification of C to the exterior algebra E, any automor-
phism of C is also an automorphism of E. In particular, an inner auto-
morphism of C leaves invariant the subspaces of p-vectors when it
leaves M invariant. i.e. when it is determined by an element 561‘.
This gives immediately the decomposition of p®p in a direct sum of
representations in the spaces of multivectors, studied in chapter I.
To this decomposition corresponds a decomposition of ufu’, for u and
v in S, into the sum 22-03,.(14, v), where 5,. is a bilinear mapping of
SXS into the space E]. of h-vectors, which is covariant under the
representation p®p. The study of these mappings enables one to
describe completely the decomposition of the representation p®p
when restricted to the group 1“; they also yield a characterization of
pure spinors, and a criterion giving the dimension of the intersection
202’ of two maximal isotropic subspaces, in terms of the correspond-
ing pure spinors.

The remaining sections of chapter III are taken up by the relations
between the half-spin representations of I‘+ and their restrictions to
the subgroup leaving invariant the elements of a nonisotropic plane,
the determination of the kernels of the half-spin representations, the
extension of the theory to odd dimensional spaces (by imbedding the
space as a hyperplane in an even-dimensional space), and finally an
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application of spinor theory to get the classical description of the
orthogonal group in 6 variables when the index is 3 (as isomorphic to
a linear group in 4 variables): this does not seem to the reviewer to
bring any information which may not be obtained in a quicker and
more natural way by the classical method.

Chapter IV develops the famous “principle of triality.” The di-
mension being 2r=8, and the index equal to 4, the spaces 5,, S.- of
half-spinors have the same dimension 8 as M. Following Cartan, the
direct sum A =M+S,+S.- is considered, and on it are defined: 1°
a symmetric bilinearform A(x+v, x’ +v’) =B(x, x’) +B(v, v’) for x, x’
in M, v, u’ in S; 2° a trilinear symmetric form 45(5, 1), I) such that
¢(x, u, u’) =B(p(x)-u, u’) for xEM, uES,, was}. From these one
defines a (non-associative, but commutative) multiplication E o n in
A. by the condition «ME, 11, y) =A(£ o n, g). All these definitions are
invariant under the group To (subgroup of the SET such that Ms)
=ss’ =1) and conversely any automorphism of A which leaves in-
variant each of the subspaces M, S is produced by an element of 1“,.
But in addition, there is an automorphism j of A, of order 3, which
permutes M, 5,, and S.- cyclically, and the existence of such an auto-
morphism constitutes the principle of triality; it can be shown that
for xEM, j(x) is of the form ulo xES‘ and j“(x)=u{ cases,"
where 141 is a fixed semi-spinor in S, and 141’ a fixed semi-spinor in 5;.
Beautiful geometric interpretations of the multiplication £0 1) and
of the automorphism j can be given when they act on pure spinors.
Finally, the mapping (x, y)—>x ty= (x o 141’ ) o (y o 141) defines a
nonassociative multiplication in M itself, which is shown to be that
of the Cayley-Dickson algebra of octonionsg on the other hand, j de-
fines in a natural way an automorphismj of the commutator subgroup
9., and the subgroup of 9. consisting of the-invariant elements under
that automorphism constitutes the group of automorphisms of the
algebra of octonions. At this point the stage is set for the geometric
study of the exceptional Lie groups, in which the author has recently
made such. remarkable progress (in work unfortunately still partly
unpublished); and it is to be hoped that in the near future, taking
up the task where he breaks it off here, he will lead us into this fas-
cinating new geometry and thus add to the thanks he has deserved
from all mathematicians for the splendid job he has done in this
volume. .

The proofreading has not been too careful, and a list of corrections
would be welcome, as also an index of notations.*

* These defects have been corrected as far as possible in the present edition.
[Editor’s note].
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Postface

SPINORS IN 1995

Since its appearance in the series of the Bicentennial of Columbia University,
The Algebraic Theory of Spinors by Claude Chevalley has been a much sought
after reference book. Three concurrent reasons contribute to this fact. Firstly,
this book is no exception in Claude Chevalley’s work. It presents the whole
story of one subject in a concise and especially clear manner. Secondly, until
recently, very few comprehensive and mathematically oriented books have
appeared on this subject. Finally, the use of spinors has been spreading ever
since. To give an idea of this blossoming, the number of articles containing
the word spinor in their titles went from about 4 a year at the time when
the book came out to 70 a year in the 80’s and to 120 in 1993*. It is this
last aspect, namely the reasons for the considerable growth in the number of
people interested in spinors, that will concern us most in this postface, and
justify its somewhat unusual length.

Among mathematicians, the widening interest in spinors came along with
the cross-fertilization of subfields, which is one of the main characteristics of
the evolution of Mathematics in the 80’s. Algebra, Geometry, Topology, and
Analysis are all subtly interwoven in the new developments involving spinors.
Many of the mathematical facts feeding this growth were known much earlier,
but it took the very powerful push from ideas and conjectures originating in
Theoretical Physics to foster the formidable development we now witness.
Nevertheless, spinors remain somewhat mysterious, as is the effectiveness of
ideas borrowed from Quantum Physics to provide insights into geometric,
topological or even number-theoretic problems. We have not yet reached the
age of “Spinormania”, but Roger Penrose (cf. [9]) has seriously advocated
that everything should be thought about in terms of spinors. (It is true that
he was focusing his attention on questions connected to General Relativity.)
Up to now, such a systematic rethinking has not yet been carried out. In this

* These figures are derived from the notices of articles covered by the Zentralblatt fiir
Mathematik.
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direction however, one can note that Alain Connes places spinors at the base
of his construction of a non-commutative Riemannian Geometry.

Chevalley’s style is as dry and systematic as possible, a style taught with
great success by his colleague Nicolas Bourbaki at the time of the first edition.
In his book, there is no hint about History, nor comments about relevance to
Physics. One does encounter the expression “physical theory” in the intro-
duction but this is just to give the author an opportunity modestly to excuse
himself for “the complete absence ofany physical application” due to “lack of
competence”. In this postface, we will depart from this attitude. In so doing,
we are knowingly turning our back on the Bourbaki era. It was indeed one
of the great moments of mathematical thinking, but nevertheless its message
has aged, and new stimulations for a better and deeper understanding of
mathematical facts come from many directions. We hope to be forgiven for
this act of “lese-majesté” in postfacing a book by one of the founders of the
group.

In the following sections, we would like to suggest some of the routes
in the mathematical territory along which, today, one does meet spinors, or
their substitutes. On reflection, it did not seem completely inappropriate to
mark the itinerary with milestones borrowed from the vocabulary of Algebra,
Topology, Geometry, Analysis and, to close, Supergeometry.

1. The Algebraic Landscape
The algebraic side of the theory of spinors has been clearly established since
the work of Elie Cartan, completed by that of Richard Brauer and Hermann
Weyl. The main advantage of the latters’ presentation over Cartan’s is the
use of Clifford algebras over vector spaces endowed with non-degenerate sym-
metric bilinear forms (which we most of the time take to be Euclidean). That
these algebras should be considered on apar with exterior or symmetric alge-
bras is precisely the point of view adopted by Chevalley in the lectures given
in Japan in 1955 and reproduced in this new edition.

One of the main recent developments in Algebra comes from the perva-
sive use of Zg-graded algebras, i.e. algebras A that can be decomposed into
a direct sum A = A... 69 A_, where A... is called the even part of A and
A- the odd part. These factors are assumed to satisfy the graded subalgebra
properties A+A+ C A+, A_A+ C A_, A+A_ C A_, and A_A_ C A+. Clif-
ford algebras are typical examples of such algebras. Nowadays, these algebras
are more often called superalgebms. This shift in terminology will be carried
much further in Section 5, where we will have a glimpse of supergeometry.
Interest in not necessarily commutative Zg-graded algebras developed in the
70’s, in particular after the work of Irving Kaplansky and Victor Kac, who
extended to Zz—graded algebras the classification of finite-dimensional sim-
ple Lie algebras due to Elie Cartan. Among these new objects one does find
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finite-dimensional analbgs of Cartan’s ungraded infinite-dimensional simple
Lie algebras. The representation theory of Zz-graded algebras was developed
by Bertram Kostant shortly afterwards. Of course, it involves the action of
Zg-graded algebras on Zg—graded modules, i.e. vector spaces E that decom-
pose as E = E+ 69 E_, and where the even elements of the algebra preserve
the factors and the odd ones exchange them. In even dimension, the space
of spinors is a typical exemple of a Zz-graded vector space. An operator of
great importance in this context is the graded identity, which is the identity
operator I on E+ and —I on E_. Multiples of it in the complex setting are
called chiralz'ty operators by physicists.

As Chevalley discusses in Chapter III of his book, the tensor product
EV (8) EV of the spinor space EV constructed over an n—dimensional vector
space V gives back the vector space underlying the exterior algebra AV, i.e.
the direct sum of the spaces of exterior k-vectors AkV. (In this Euclidean
context, vectors are often identified with forms, using the duality the metric
defines, and as a result exterior k—vectors with exterior k—forms.) In particular
this means that a vector, i.e. a mere element of A1V = V, can be built from
spinors. Or, the other way around, it suggests an interpretation of spinors as
“square roots of vectors, and more generally ofexterior products of vectors”.
The idea that, when dealing with spinors and notions connected with them,
one is taking a square root of more traditional objects will appear repeatedly
in this postface.

Roger Penrose has taken the standpoint of rebuilding basic constituents
of space-time from spinors in order to acquire a new vision of physical space.
Spinors built on a 4-dimensional vector space are especially appropriate in
Penrose’s eyes because they are intimately related to complex structures of
the underlying vector space. In higher dimensions, one has to restrict one’s
attention to the so—called pure spinors, already introduced by Elie Cartan,
which form a subvariety of the space of spinors. When dim V = 4, the space
of spinors EV is also 4-dimensional (over C since, for the sake of simplicity,
we only consider complex spinors here). This very dimension is also the only
one in which the spin group Spin; (for a Euclidean metric) is non-simple, and
even a product (of two copies of SUz). Hence, the chiral decomposition EV =
E+V 69 E_V into spaces of half—spinors, which occurs in any even dimension,
takes a specific form. Indeed, each factor SU2 of the group Spin4 acts only on
one kind of spinor, hence the name left and right spinors given respectively
to elements of E+V and E_V._ Complex structures on V inducing a given
orientation can be identified with the projective space of half-spinors PEiV.
This being said, the spinorial description of all basic geometric objects goes
as follows. (Complexified) vectors are elements of E+V ® E_V. The space
of exterior 2-forms AV" (which we identify with the space AV of 2-vectors)
is usually identified with the Lie algebra of the orthogonal group built on
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V. It decomposes as a direct sum of two ideals corresponding to the factors
of the Lie algebra of Spin4. The tWo factors in this decomposition are called
respectively the space A+V of self-dual forms and the space A_V of anti-self-
dual ones. One then has AiV ® C = S2EiV. One can go on building the
usual tensorial objects from spinors. Let us just mention two more examples.
The space 53V of traceless symmetric 2—tensors is a space of 4-spinors since
83V (8) C = $22+V (8 S22- V. The other point we make has to do with-3/2—
spinors, objects often not considered by mathematicians, and holds true no
matter what the dimension n of V. Spin % spinors are elements of the space
23/2V C EV (8) V lying orthogonally to the image of Z‘V in EV 8) V by the
map taking a spinor «p to 2L1 e,-.1,b <8) e,- where (e,-) denotes an orthonormal
basis for the metric g, a trivial suspension. The graviton, which is supposed
to be the exchange particle for the gravitational interaction, has spin 2, and
the gravitino, which is its companion, has a wave function that takes its
values in 273/2V, hence has spin %. Since the challenge of unifying Quantum
Mechanics with General Relativity is still with us, the interest of physicists
in such spaces can hardly be overemphasized. Note though that the difficulty
of this unification was identified at an early stage in the development of these
two theories.

Penrose has also been one of the main advocates of the study of twistors.
objects which at a point in space-time encode a complex structure. His start-
ing point was that the formulation of Quantum Mechanics requires the use of
complex numbers to make sense of amplitudes of wave functions. Since there
is a priori no natural complex structure on space-time, the radical solution is
to consider all of them at once, and to try and formulate all traditional laws
in terms of that enlarged space. As we mentioned earlier, this can be thought
of as working in the projective space of the space of spinors. (For this part
of the discussion, we assumed that dim V = 4.)

Another major development has taken place since the appearance of
Chevalley’s book, namely the drive for each mathematical concept to give
the proper definition that carries over to infinite dimension. A number of
geometrical and analytical tools have indeed been extended successfully to
infinite-dimensional spaces. In this movement, some new phenomena were
discovered. As an example pertaining to our discussion, N.H. Kuiper proved
that the general linear group of a Hilbert space is contractible. Thus we are
forced to start from another definition of the spin representations as was done
by Andrew Pressley and Graeme Segal. The main new idea is to obtain the
space of 'spinors as holomorphic sections of a line bundle over the space of
complex structures. This line bundle is a square root of the restriction to
that space of the determinant bundle on the Grassmannian. This leads us
naturally to think of spinors in more geometric terms. We develop this point
of view in the next section.
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2. The Topological Side

We begin our discussion by using only Clifford algebras. Since the appearance
of Chevalley’s book, Clifford algebras have been recognized to play an im-
portant role in various fundamental constructions in Topology. One typical
instance is the famous vector field problem on spheres, i.e. the determina-
tion of the number of everywhere linearly independent vector fields that can
be defined on the sphere. This of course depends on the dimension, but the
problem has close ties with the structure of the Clifford algebra of the real
vector space in which the sphere naturally lives (cf. [6]).

The periodicity of Clifford algebras is also directly connected with basic
properties of K—theory, a homological theory which has developed in many
different contexts, with emphasis on algebra or on topology.

As we have seen, spinors make sense only over a vector space V endowed
with a non-degenerate bilinear form 9. In the sequel, we will restrict our-
selves to the case where g is a (Euclidean) scalar product. It is therefore a
natural challenge to try and carry over the notion of spinor to Riemannian
manifolds. In his book [4] published in 1937, Elie Cartan states a fact, as
the last theorem, in a way that probably led to misinterpretation. We quote
here the English translation : “With the geometric sense we have given to the
word “spinor” it is impossible to introduce fields of spinors into the classical
Riemannian technique”. He immediately goes on to explain what he means
by that, namely: “Having chosen an arbitrary system of coordinates for the
space, it is impossible to represent a spinor by any finite number N whatso-
ever of components...”. This is just a reformulation of the fact that, in gen-
eral coordinate systems, spinor representations do not make sense as finite-
dimensional representations. This is because all finite-dimensional represen-
tations of the universal (double) cover of the general linear group GLn(R)
do factorize through the general linear group GLn(R) itself. One sees the
exotic candidate spin representations only if one allows infinite-dimensional
representations, e.g., the direct sum of all traditional spin representations.
To make sense of the usual spinors, one has to work in a moving orthonor-
mal frame (called a m'erbez'n in 4 dimensions by physicists, and a m'elbez'n in
arbitrary dimension).

Elie Cartan then connects this point with works of L. Infeld and van der
Waerden. In view of the difficulty of making sense of spinors in arbitrary
coordinate systems, they propose to consider spinors defined over external
variables and not connected to the metric on space-time. This is very much
in the spirit of what is later to be called gauge theory.

As has now become standard, fixing a Riemannian metric 9 over an n—
dimensional manifold M is the same as reducing the structure group of the
tangent bundle 1rM : TM —> M from GLn to On. In fact since we have
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spoken mainly of the group Spin", we will assume that M is oriented, so that
a further reduction is possible to SO”. The reduction process is even better
seen by considering the son-principal bundle SOgM —> M of g—orthonormal
and positive frames. In order to be able to speak globally of the notion of
spinor on M, it is necessary to dispose over M of a Spinn-principal bundle
P which double covers $09M in such a way that over each point of the base
manifold M the fiber of P isomorphic to Spinn double covers the fiber of
$09M, isomorphic to SO". Thanks to the cohomology sequence associated
to the exact sequence of groups expressing this double cover, it is possi-
ble to express what has to be achieved in cohomological (hence topological)
terms. The global construction carmot be carried out on an arbitrary mani-
fold M. For that, M has to satisfy the topological condition that its second
Stiefel—Whitney class wz (M) 6 H2 (M, Z2) vanishes. Differentiable manifolds
satisfying this topological condition, i.e. manifolds over which the notion of
spinor makes sense globally, are called spin manifolds. Since n-spheres are
(n — 1)-connected, spinors make sense globally over them. Typical examples
of non-spin manifolds are the complex projective spaces of even complex di-
mension.

The vanishing of the second Stiefel-Whitney class can be shown to be
equivalent to the orientability of the loop space of M. This statement, which
seems a priori of little use, is connected with several interesting situations
frequently met in Theoretical Physics. In a sense, one can say that spin
manifolds form a family of manifolds which have to be simpler since, over
them, one has the possibility of globally defining various kinds of square roots.
They enjoy very striking integrality properties, To name one, the Rokhlin
divisibility property says that the signature of a compact 4-dimensiona1 spin
manifoId is divisible by 16. We will see in Section 3 how this fact can be
recovered using spinor fields.

The notion of a spin manifold leads naturally to that of spin cobordism,
i.e. the equivalence relation between spin manifolds, which declares equivalent
two manifolds that form two components of the boundary of a spin manifold,
with the proper spin structure induced on the boundary. Using the connected
sum and the product as operations, spin oobordism classes can be made into
a ring, which contains among its generators interesting manifolds such as K3
surfaces. It is directly connected 'with the characteristic KO—numbers of the
space reduced to a point, the set of which exhibits an eight—fold periodicity.
Up to a shift of the degree by one, the KO-groups agree with the stable
homotopy groups of the orthogonal group, thus connecting with the famous
Bott Periodicity Theorem. Thanks to the Index Theorem, KO-numbers can
be interpreted as extended indices for the Dirac operator acting on spinors,
as we shall explain in the next section.
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3. Spinors and Dirac Operators in Global Analysis
The main new development in this direction occurred with the introduction
by Michael Atiyah and Isadore M. Singer of Dirac operators on general spin
manifolds. This happened in the late 50’s when they were completing the
proof of the Index Theorem. The path had been opened by Paul Adrien
Maurice Dirac. Indeed, in 1928, looking for a relativistically invariant wave
operator analogous to the Schrodinger operator, he defined a square root of
the classical second-order wave operator (usually called the d’Alembertian)
over Minkowski space-time R4, by allowing the coefficients of the operator
to be matrices One easily sees that the matrices associated with the differ-
ential monomials, or in more sophisticated jargon the principal symbol, of
the Dirac operator have to satisfy the defining relations of a Clifford algebra.
Therefore, the wave functions on which the Dirac operator acts live at each
point in a module over this algebra, i.e. can be described in terms of the
fundamental representations of this algebra, therefore are spinor fields. This
is an interesting instance where the symbolic calculus of differential operators
connects in a typical instance to nontrivial algebra.

Atiyah and Singer were interested in elliptic operators acting on sec-
tions of vector bundles over compact manifolds. Therefore their principal
symbols involve positive definite metrics. Thanks to the geometric develop-
ments presented at the beginning of the preceding section, they circumvented
the objection that could be drawn erroneously from Elie Cartan’s statement
there quoted. They went ahead, and defined the Dirac operator D on general
Riemannian spin manifolds using the Levi—Civita covariant derivative D asso-
ciated to the Riemannian metric 9 extended to spinor fields as follows: if «p is
a spinor field, ((3,) an orthonormal basis, and . denotes Clifford multiplication,
then

n

m; = Zebu” .
i=1

In this connection, ’D is up to a zero-th order operator a square root of the
operator D*D which is of Laplace-Beltrami type. The Dirac operator is not
just any operator since the symbolic calculus goes further, as we now explain.

Index theorems for elliptic operators on compact manifolds relate their
analytic index (IndAnal) to their geometric index (IndGeom). By definition,
for an operator P, IndAnalP = dim kerP — dim ker P* (where P“ is the ad-
joint of the operator P), hence the index is by definition an integer, whereas
IndGeomP is a topological expression determined by the principal symbol of
P. Here, chirality plays an important role since on the full space of spinor
fields the Dirac operator is self-adjoint, hence has a vanishing index by def—
inition. In even dimension, the operator of interest is the restriction of the
Dirac operator to spinors of a given chirality, its adjoint being the restriction
of the Dirac operator to spinors of opposite chirality.
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A further general geometric construction is also of great importance here.
One can twist the bundle of spinors by an auxiliary bundle, and using an aux-
iliary connection define a twisted Dirac operator. In some cases, this construc-
tion has the advantage of freeing one from the topological condition needed
to have a globally defined spin structure. The key property is then that prin-
cipal symbols of twisted Dirac operators generate all elliptic symbols up to
homotopy. This means that, provided its validity for one operator P extends
to operators homotopic to P through elliptic operators, the index theorem
is established as soon as one proves it for (twisted) Dirac operators. This
brings the heart of the matter back to a very geometric discussion. A very
important example of this situation is given by the fundamental geometric
operator d + 6 defined on the space {2M of exterior differential forms. (Here,
6 denotes the codifierential, namely the adjoint of d.) Again, the key point is
to view {2M as a superalgebra. There are two geometrically natural ways of
doing this, namely by using the Zz-gradation inherited from the gradation
by degree (the index is then the Euler characteristic x(M) of M), or by-using
here also the chirality operator defined by the Hodge map *, mapping k-forms
to (n — k)-forms on an n—dimensional Riemannian manifold (the index is then
the signature 0(M) of M).

In spite of the fantastic success story of the Dirac operator, showing that
it goes deeply into the structure of the manifold on which it is defined, it is
to be noted that the theory of first-order operator systems, by opposition to
scalar operators, is not yet considered with great interest by analysts. In this
direction, it is quite remarkable that one of the first versions of the theory
of pseudo-differential operators was derived by William K. Allard, using the
calculus of Clifford algebras, and did not get- much attention.

More important for our later developments is the fact that the most recent
versions of the index theorem are based on asymptotics for the heat kernel
for Dirac operators (cf. [1]). This of course involves a precise knowledge of the
interplay between the Dirac operator and Riemannian Geometry because the
formulas needed can only be obtained after taking into account the extent
to which the space deviates from flat Euclidean space, i.e. by mastering the
curvature tensor and its derivatives. Seminal work in this direction was done
by P. Gilkey and V.K. Patodi, but the vision that such developments could
be possible should probably be attributed to I.M. Singer. The link with the
topological side of the index formula then comes from the Chern-Weil theory
of characteristic classes, i.e. by expressing characteristic numbers as integrals
of polynomials in the curvature, a generalization of the GauB—Bonnet formula.

4. Classical Geometric Developments

In the same period, spinors have started to make their way up to the top of
the geometer’s checklist. Because a metric is needed to make sense of them,
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it is not surprising that they made their first noted appearance in the context
of Riemannian Geometry in relation with the Dirac operator. Generalizing
Dirac’s fundamental computation, André Lichnerowicz established a formula
relating the square of the Dirac operator to a rough Laplacian, namely

D2=D*D+%Scal.

Here, D denotes the Levi-Civita derivative associated with the metric, D* its
formal adjoint (so that D*D is a non-negative differential operator when the
metric g is positive definite), and Seal the scalar curvature of 9.

On a compact manifold, this formula precludes the coexistence of a har-
monic spinor and of a metric with positive scalar curvature. When the topol-
ogy of the manifold M forces the existence of harmonic spinors (via the In-
dex Theorem), e.g., when M is 4k-dimensional with non-vanishing A-genus
fl(M), then M admits no metric 'with positive curvature. (A thorough study
of harmonic spinors had been conducted earlier by Nigel Hitchin in [5], quite
an influential article.)

This fact opens the way to systematic methods deeply linking the van-
ishing of Spin—cohordism invariants and the existence of metrics with posi-
tive scalar curvature. The bridge was built by Misha Gromov and H. Blaine
Lawson who observed that above dimension 5 the existence of metrics with
positive scalar curvature depends only on the Spin-cobordism class of the
manifold (and that simply connected non-spin manifolds all have such met-
rics).

This family of results can be considered as the birth of a Spin Geometry,
i.e. the collection of geometric phenomena that can be detected by spinors
and that are not detected by other means. A lot remains to be done in this
direction. We give three more examples of what light the use of spinors can
shed in geometric situations.

First, we come back to Rokhlin’s theorem, i.e. the divisibility by 16 of
the signature of a compact 4—dimensional spin manifold. To prove it using
the index theorem, one needs one piece of refined algebraic information on
spinors. Indeed, a direct application of the index theorem gives that the
signature is divisible by 8 since in dimension 4 the signature is an eightfold of
the A—genus which is the index of the Dirac operator, hence an integer. Now,
coming back to the definition of the index as the difference of dimensions
of the spaces of positive and negative harmonic spinors, and using the extra
piece of spinorial information that the space of harmonic spinors is naturally
symplectic in that dimension, hence is an even-dimensional vector space, one
gets that the signature is divisible by 16.

Another application is the proof of the Positive Mass Conjecture in Gen-
eral Relativity by the method suggested by Edward Witten (cf. [10]). It goes
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as follows: he constructs a special spinor field (in fact, a harmonic field for
a modified Dirac operator with special behaviour at infinity) on a spacelike
hypersurface whose energy is the mass.

The last one appeared only in 1994, and has taken the name of Seiberg
and Witten. Over a compact 4-dimensional manifold, they introduced a sys-
tem of coupled non-linear equations linking a connection on a line bundle
and a line-bundle valued spinor field. The moduli space of solutions of this
system turns out to reveal a lot about the differential structure of the man-
ifold, as did Donaldson’s theory of antiself-dual SUz-connections. The main
advantage of the Seiberg-Witten approach over Donaldson’s is that the mod-
uli space is compact. This makes the analysis a lot simpler. Using this system
of equations, the study of symplectic structures on 4-dimensional manifolds
can also be carried much further, regarding both their existence and the role
that they play in 4-dimensional differentialtopology as proved very recently
by Clifford Taubes. Many other insights into the internal structure of dif-
ferential 4—manifolds are expected to emerge from this point of view which
involves spinors in a crucial (although totally non-elucidated) way. Note that
the constructions in Seiberg-Witten theory rely only on the use of a more
malleable structure than a spin structure, called a Spine-structure. This in-
troduces the possibility of twisting by a line bundle to circumvent in many
cases the obstruction coming from the Stiefel-Whitney class. In particular
this allows us to draw conclixsions on all 4—dimensional manifolds.

These (still scarce) examples suggest that 8. Spin Geometry really exists.
So far only isolated islands of this Geometry have been discovered. The whole
story may only be accessible by making a big jump into more abstract math-
ematics. One such jump is advocated by Alain Connes who, for some time,
has been systematically developing a Non-Commutative Differential Geom-
etry. In his approach, the notion of a non-commutative Riemannian Metric
comes out of the consideration of a fundamental operator of Dirac type, that
he calls a K-cycle. Fascinating connections with the standard model of Ele-
mentary Particle Physics are emerging.

An even more grandiose picture may eventually emerge, as theoretical
physicists have been claiming for a few years. This is the now long story of
the quest for supersymmetries, hence the quest for a Supergeometry.

5. Supergeometry

Bewildered by the small number of families of particles, physicists have tried
to get an explanation by considering theories that would contain symmetries
of a new kind, namely transformations that would map bosons to fermions,
and conversely. These particles are represented by wave functions which are
respectively of a standard type or of spinorial type. This led to the systematic
study of algebras mixing commuting and anticommuting variables.
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Because some of the findings of physicists went even further, and shed
new light on some number-theoretic identities by considering some quantum-
theoretic expansions, this suggested a grander picture, as presented by Yuri
Manin in [7] and [8]. Instead of taking as model the traditional linear space
R" with the polynomial coordinate ring R[:c1, - --,:1:"] and the usual differ-
ential calculus, one tries to define a new enlarged geometry. Supergeome—
try is the study of spaces associated, via the now classical Gelfand corre-
spondence between algebras and their spectra, with the ring Z[a:1, - - - ,ar'";
51,- - - , 5"]. The coordinates (8) are variables of a new type which anticom-
mute between themselves (hence the adjective odd attached to them) and
commute with the classical coordinates (22‘) (called even). The arithmetic
side is contained in the use of the ring of integers. More elaborate rings hav-
ing an arithmetical content can also be considered. A lot of new constructions
have to be performed in order to deal with these new spaces. One can define
a generalized calculus, and also a new notion of determinant as introduced
by Berezin (cf. [2]). The crucial point is to take all dimensions on an equal
footing. This has led in particular to a new approach to the study of dio—
phantine equations, often called arithmetic geometry and linked to the name
of Arakelov. One has to go further than a mere differential calculus, and
more elaborate structures have to be taken into consideration, opening new
research directions in Riemannian Geometry for example.

Many interesting clues about generalized index theorems have come from
the scheme that would be implied by the existence of a Dirac operator on loop
spaces (cf. [11]). No consistent mathematical definition of it has been given
so far, but Witten, Quillen and Jean-Michel Bismut have drawn from these
considerations vast generalizations of the original Index Theorems. (Many
quotes could be made in this connection, we just name [3].) An important
new concept, directly related to these considerations of even and odd vari-
ables hence to Supergeometry, is the enlargement of the traditional notion of
connection to superconnections, a major step taken initially by Quillen. This
is an extremely active area of research with deep links to Complex Analysis,
Number Theory, and also to the many facets of Quantum Field Theories.

6. Conclusion

Few subjects justify better than the Theory of Spinors the following excerpt
from the General Editor’s preface to the first edition of Chevalley’s book,
as one of the volumes of the Columbia Bicentennial Editions and Studies:
“Scholarship exemplifies the meaning of free activity, and seeks no other jus-
tification than the value of its fruits”.

Indeed, the first appearance of spinors is due to the systematism of a
mathematician, pursuing the tedious work of classifying all facets of a well-
defined mathematical notion. Hence spinors appear as odd-looking objects in
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a dark corner. Later, they were brought frontstage by their use in developing
a very speculative physical theory, the spinning electron of Dirac.

But it was only after the first publication of Chevalley’s book that spinors
started to play such a crucial role in different areas of Mathematics. Their
position now is at one of the most active frontiers of Mathematics, at the
crossroads of three of its most lively branches, Geometry, Topology and Anal-
ys1s.

“Fundamental concepts are rare” as Shiing Shen Chern likes to say, hence
they are likely to have many faces. Spinors have many faces.
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