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We offer this publication as a homage to the great 
Mathematics Education Consultant whose memory will be 
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turned admirers.
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Narayanan for type setting the same, M/S M.K.Graphics 
and J.V.Printers for bringing out this book in record time.

We do look forward to your valuable encouragement and 
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With best wishes/kind regards, 
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WELCOME

I am sure you know what a magic square means. It is a 
square array of numbers so arranged that the row sums, the 
column sums and the two diagonal sums are all equal. The 
common sum is called the sum and the magic square is usually 
of the additive or arithmetic type.

The most familiar one as you know is made up of digits 
1 to 9 and arranged in three rows of 3 digits each such that 
entries in each row, each column or each diagonal total to 15. 
You would have checked this to be true and learnt to build 
a magic square with any 9 consecutive numbers. Since you 
have not been provoked or encouraged to examine its structural 
properties, your interest would have flagged. But you don’t 
know how much you have missed.

Many great mathematicians like Euler and Ramanujan 
have shown fascination for magic squares and the wonderful 
questions they raise. Magic squares have a hoary past 
with the ancient Chinese and Indians taking the credit for 
their development and popularisation. They were first used 
as talismans or media for instant astrological predictions. 
Magic squares form a big chunk in the lore of recreational 
mathematics made respectable by the contributions of pioneers 
like Dudeney, Sam Loyd and recently Martin Gardner. This 
area of recreational mathematics continues to have its unsolved 
problems challenging enough for mathematicians, even in this 
computer age.

The third order magic square, the magic square of any 
order for that matter, has exciting structural properties and 
poses interesting issues to be settled by mathematical reasoning 
or logic. Since the third order basic square,that is the one 
built with numbers 1 to 9, is unique, taking up mathematical 
questions arising from it provides a delightful avenue to learn 
and enjoy mathematical ways of thinking.



Iii building a magic square, there are, no doubt, 
techniques but mere' knowledge of technique without 
understanding the mathematical questions that get raised is 
not at all illuminating and insightful and hence less rewarding.

We shall confine ourselves to the third order, that is 9 
cell magic square and discuss the mathematics of it in such a 
manner you could acquire the know-how to study magic squares 
of higher orders, particularly the 4th, that comes next. From 
the magic square of the 4th order onwards the the structural 
ramifications and properties get wider and deeper. It is no 
wonder that even today one can come across some persons 
devoting their life time to unfolding the beauties of magic 
squares.

So you are welcome to flex your mathematical muscles in 
getting a better understanding of the magic in magic squares. 
To provide a sense of completeness and have a greater insight, 
not only will the additive or arithmetic magic squares with 
magic sums be considered, but also the multiplicative or 
geometric magic squares with magic products taken up as an 
exercise in appreciation of duality in mathematical thinking.

Towards the end a passage to group theory is made to fire 
your imagination and rouse your creativity.

Note: The contents of this book are based on the talks given by 
the author to students and teachers in the NBHM sponsored 
workshops conducted on ‘Creativity in Mathematics Teaching’ 
at Coimbatore, Bhubaneswar, Guwahati and Rajkot in 1987-88 
to mark Ramanujan Centenary Celebrations.

Thanks go to Prof. M.S. Rangachari and Prof. 
G. Rangan of the Ramanujan Institute for Advanced Study 
in Mathematics, Madras, Prof. Phoolan Prasad of the Indian 
Institute of Science, Bangalore and Prof. K.R. Parthasarathy of 
the Indian Statistical Institute, Delhi for providing me incentive 
and encouragement in making this contribution of mine.

Author



PART-A

1.0 WARMING UP

1.0 A magic square, as everybody knows, is a square 
array usually of natural numbers so arranged or positioned 
as to get the totals along each row, each column and each 
diagonal the same and their common total is usually called 
the magic sum. No number is repeated. So it can also be 
explicitly called non-repeating magic square.

Since any magic square can be generated by multiplication 
and / or addition from a basic magic square made up of 
consecutive numbers starting with 1 and ending with a 
square number such as 9, 16, 25 etc., we shall first of all 
consider basic magic squares.

The first order basic magic square is very trivial as the 
magic sum is simply 1.

Consider the second order, 2 by 2 or 4 cell basic magic 
square formed with numbers 1 to 4

1 2
3 4

The diagonal total are l-|-4=2+3=5. But the row totals 
and the column totals are all different from 5. Try as 
you may in positioning the digits in different ways, which 
are finite in number, you have to conclude that there is 
no second order magic square, unless all the entries 
are the same in which case it is the most trivial type of 
magic square violating the condition that no two entries 
could be the same.



1.1 The next move has to be to consider the square 
array formed with numbers 1 to 9.

1 2 3
4 5 6
7 8 9

As you strike the row totals, column totals and the diagonal 
totals, you notice the interesting situation of the diagonal 
totals the same as the middle row total and the middle 
column total.

3 + 5 + 7=14-5 + 9 4 + 5 + 6 _ 2 + 5 + 8
diagonal totals middle row total middle column total

You connect fail to notice also that 1 & 9, 2 & 8, 3 & 7, 4 &: 
6 are complements of 10 and 5 is its own ten-complement.

Our curiosity eggs us on to alter the positions of the digits 
to see if a magic square gets formed. What happens if 
(2,5,8) and (4,5,6) are positioned diagonal wise and the 
empty cells suitably filled with the complement pairs (1 & 
9) & (3 & 7).

Try and see:

Lo! The magic square does appear. 
What about other arrangements?

It appears as though there can be eight arrangements as



presented below:

4 9 2 8 3 4 6 1 8
3 5 7 1 5 9 7 5 3
8 1 6 6 7 2 2 9 4

2 9 4
7 5 3
6 1 8

8 1 6
3 5 7
4 9 2

4 3 8
9 5 1
2 7 6

6 7 2
1 5 9
8 3 4

But given one of these, the rest can be obtained by quarter 
turn, half turn or three quarter turn, flipping about the 
middle row, middle column or either of the diagonals. 
Recall that the square has central or rotational symmetry 
and four axial or reflexive symmetries.

Central or rotational symmetries



Axial or reflexive symmetries

Flipping Flipping
about the about the 
horizontal vertical

median medina

Flipping 
about the 

main 
diagonal

Flipping 
about the 

other 
diagonal

So these are not to be considered as eight different 
arrangements but eight variations of the same arrangement 
and hence the 3rd order basic magic square, any 3rd order 
magic square for that matter, is unique.



2.0 DISCOVERIES OF TECHNIQUES

2.1 It is natural to stumble upon clever techniques 
in building magic squares while observing the positional 
behaviour of entries in the cells. Some techniques are 
demanding and some are almost routine and simple. We 
shall begin with the most popular technique which any one 
can follow and build up a 9 cell magic square.

2.2 Technique 1
Take a serrated third order square as shown below:

Write the numbers 1 to 9 in order diagonally as shown 
below. Find out to which empty cell each of the numbers 
outside the square should be taken. It is easily seen that 
no number moves to the neighboring empty cell but to the 
opposite empty cell to get the magic square formed.



This diagonalwise marking of entries and their subsequent 
movements can be done in 7 other variations as shown 
below. It is left to you to complete the magic square in 
each variation.

Since there cannot be any more variations, you can say 
by virtue if the method of proof by exhaustion, that there 
could only be eight variations of the third order basic magic 
square and of any third order magic square for that matter.



You cannot fail to make some observations as mentioned 
below regarding the positional behaviour of numbers.

P) 1 gets placed only in the mid cell of the top or bottom 
row, left or right column and not in any corner cell. 
Can you prove it by exhaustion?

(2) 5 which is the middle of the numbers
1,2,3,4,5,6,7,8,9
always occupies the central cell. Why?
The reason as you can see is that 5 its own 
complement and except the central cell, every other 
cell has a counter part along the column, row or 
diagonal. We shall also try to prove it generally later.

(3) The entries placed symmetrically with respect to the 
central cell are in A.P.

2.3 Technique 2
Since 4,5,6 get placed crosswise, what would happen if we 
place 1 in the middle cell of the top or bottom row, the left 
or right column and move crosswise? Notice that with 1 in 
the middle of the top row, a crosswise move or a cross-jump 
means one step to the right followed by one step up.

As you go about following this technique, you discover two 
situations:

(1) Whenever you have to go outside, the entry gets made 
in the end cell of the corresponding row or column.

(2) Whenever you get blocked by meeting with a cell 
already filled or facing the corner of a cell, the entry 
gets made in the neighboring cell located opposite to 
the side for crosswise movement.



For practice fix 1 in any other mid cell and proceed by this 
cross-jump method to fill up the cells to have the magic 
square formed.

At this juncture if you can visualise the bottom row as lying 
next to the top row and the left column as lying next to 
the right column, outside squares need not be considered. 
(Imagine if need be the square wrapped round a cylinder 
to facilitate the above consideration.)



2.4 Technique 3

Examine
1 2 3
4 5 6
7 8 9

and write the second and third row entries as sums of 2 
numbers involving 1,2 & 3, as shown below:

0+1 0+2 0+3
3+1 3+2 3+3
6+1 6+2 6+3

Now this can be given in the form of an addition table:

+ 1 2 3
0 1 2 3
3 4 5 6
6 7 8 9

This suggests building up two auxiliary repeating type 
of magic squares of the same order with 2 sets of triads 
in A.P. or Arithmetic Progression and then forming a 
composite square by adding the entry in each cell of one 
latin square to corresponding cell of the other latin square. 
Of course the composite square should have to be a magic 
square. This requires care in constructing the two auxiliary 
squares. This repeating type of magic square is called a 
latin square.

3 1 2
1 2 3
2 3 1



6
0 3 6

0

3 6 0
0 3 6
6 0 3

Now adding the entries cell wise, we get the magic square

in Arithmetic Progression, 2 latin squares can be formed 
suitably so as to build the magic suare by cell-to-cell 
addition.

2.5 General Treatment

Instead of examining a number of particular cases, don’t 
you feel mathematically inclined to dispose of the same 
questions about magic squares generally? If so, let us 
proceed as follows:

Let A,B,C and P,Q,R be the two sets of numbers 
such that B — A — C — B = d or A + C = 2B and 
Q — P = R — Q — d' or P + R = 2Q. Better start with 
the addition table formed by A,B,C and P,Q, R.

+ A B C

P A + P B + P C + P

Q A + Q B + Q C + Q

R A + R B + R C + R

Take the sequence of the nine entries:
A + F, B + P, C + P, A + Q, B + Q, C + Q, A + R, B + R 



and C + R, and form a third order magic square, using 
any of the techniques seen so far. Now you get

B + R A + P C + Q

C + P B + Q A + R

A + Q C + R B + P

Can you prove that this is a magic square with the 
hypothesis that A,B,C are in A.P. and P,Q,R also in 
A.P.?

The magic sum is obviously

A + B + C + P + Q + R

Each of the row totals and column totals is seen to be equal 
to the magic sum.

What remains to be proved is that each diagonal total is 
also equal to the magic sum. Now the two diagonal totals 
are:

A + B + C + 3Q and 3B + P + Q + R

We have to prove that
3B+P+Q+R=A+B+C+P+Q+R

Since 2Q = P + R (P, Q, R are in A.P) 3Q = P + Q + R

A + B + C + 3Q = A + B + C + P + Q + R

Similarly the other diagonal sum can also be shown to be 
equal to the magic sum.

What is the converse of this theorem?

If the entries A + P, B + P, C + P, A + Q, B + Q,



C A Q, A + R, B + R, C + R, form a magic square, then 
the two triads, one of A, B, C and the other of P, Q, R are 
each in Arithmetic Progression.

As before we find that each of the row totals and the 
column totals is A + B + C + P + Q + R. Since this 
is a magic square

A + B A C A 3Q — A-\-B-\-C-\-P A Q A R
2Q = P + R

That is P, Q&R are in A.P. Similarly 2B = A+C showing 
A, B and C are in A.P.

Incidentally, you can see that the entries need not be 
consecutive as now

(i) B — A and C — B need not be equal to 1 and 
P = 0 , Q = 3 and R = 6 .

(ii) Only when B = A A 1, C = B A 1, P = 0, Q = 3 , 
R = 6, the nine entries will be consecutive: see the 
table given below:

+ A A + 1 A + 2 
0 A + 0 A + 1 A A 2 
3 Aa3 Aa4 Aa5 
6 Aa6 A+7 Aa8

When A = 1, you get the basic magic square.

(iii) Also, if P 0, Q 3, R 6 then rowwise the entries
will be contiguous.

+ A A A 1 A A 2
p 
Q 
R

A + P A + P A 1 A + P+ 2
A + Q A + Q + 1 A + Q+ 2
A + R A + R A 1 A A R A 2



As an interesting example, consider the 3rd order square 
entries on a calendar sheet and you can always build a 
magic square with the entries.

2 3 4

9 10 11

16 17 18

17 2 11

4 10 16

9 18 3

9 cell entries on a 
calendar sheet

built into a magic 
square.

The structure can be seen, if it is presented in the form of 
an addition table:

+ 2 2+1 2+2
0
7

14

2+0 2+0+1 2+0+2
2+7 2+7+1 2+7+2
2+14 2+14+1 2+14+2

2.6 There is a general question to be answered.



can be written as

a b c 

def 

9 h i

a b c 
def 

9 h i

a b c 
def 

9 h i

+ ...1 times

added to 
k k k 
k k k 
k k k

the trivial form of a magic square, the proposition gets 
proved.

What is the magic sum? It is 3(/m + k).

This shows that with one magic square, any number of 
magic squares can be generated.

2.7 Problem: Prove that

(cl k'jI (b + k)l (c + k)l
(d + k)l (e + (f + k)l
(g + k)l (h + k)l (i + k)l

is a magic square, given

a b c
d e f
9 h i

is a magic square.



3.0 SOME THEOREMS ABOUT ENTRIES

3.1 Central cell entry

If a, b, c, d, e, f, g, h, i, with a<b<c<d<e<f<g< 
h < i, or the other way, are the nine entries in a magic 
square with the magic sum m, it can be shown that e is 
the central cell entry. Given that

is a magic square with the magic sum m,

a + b + c = m, 
a + d + g = m, 
c + f + i = rn, 
g + h + i — m, 

(Set 1)

a + e + i = m 
b + e + h = m 
c + e + g = m 
d + e + f = m 

(Set 2)

By addition in Set 2,

ci + b •+ c + d + c + f + g 4- h 4- i 4~ 3e = 4 m 
=> m + m + m + 3e — 4m (from Set 1) 

m
C = J

Since,
a + e + i m
-----------= — = e etc.

3 3

e is the mean of each triad and thus is the central cell 
entry.



3.2 Some more interesting properties can also be seen. 
Since a + e + i = 3e, a + i = 2e and so a, e, i and in A.P. 
Similarly b, e, h; c, e, g& d, e, f are in A.P. Also

a + d = h + i,d + g = b + c, g + h = c + f, f T i = a T b

3.3 The cell for the least entry:

First of all, show that the least number of the sequence 
1,2,3,4,5,6,7,8 & 9 cannot occupy any position except the 
midcell of the border row or column. Without loss of 
generality, it is enough if the mid cell of top row alone is 
considered, since the third order magic square is unique 
by virtue of invariance of triads through rotation and 
reflection. If the least number 1 does not occupy the mid 
cell, it should occupy either of the corner cells of the top 
row. It is enough to show that it cannot occupy the left 
corner cell or the right corner cell.

Suppose it occupies the left corner cell. Since it has been 
shown that 5 has to be in the central cell, two cells are seen
occupied. Now, the bottom 
right corner cell and the 
top left corner cell are 
symmetrically placed about the 
central cell. Every pair of such 
cells are occupied by additive 
complements of 10. Since 9 
is the additive complement of 
1,9 goes into the bottom right 
corner cell. The magic sum has 
to be 15.

Consider the possible entries in 
the top mid cell. It cannot



be 2,3 or 4 as the entry in 
the top row right corner will 
then exceed 9 in order to get 
L magic sum 15. Suppose 
it is 6. Then the top row 
corner cell will get filled up 
by 8 and the bottom row mid 
cell by 4. But the sum of 
the two entries in the right end 
column exceeds 15. So 6 gets 
disallowed. On similar grounds 
7 and 8 get disallowed. When 
it is 7, it gets repeated also. 
All the possibilities have been 
exhausted. So 1 cannot go into 
a corner cell.

3.4 A problem set

1. If A, B, C form an A.P., show that
As + t, Bs + t,Cs + t form an A.P.

2. Show that

m — p m + p — q m + q

m + p + q m m — p — q

m — q m — p + q m + p



forms a magic square with the magic sum 3m,. Write 
the entries as a sequence of numbers from the least 
to the greatest. Give this sequence in the form of an 
addition table. For what values of m.p.q can you 
get the magic square?

1
5
9

8
3
4

6
7
2

3. Find the condition for the entries in the two addition 
tables

each in A.P. Construct two such examples of magic 
squares with numbers. List all possible values of 
(t, y, z) .and (a,b,c).

4. Show that if a,b,c,d,e, f, g,h,i with a < b < c < 
d<e<f<g<h<i form a magic square, the 
least entry a cannot occupy a corner cell.



4.0 A QUEST FOR MORE MAGICAL 
PROPERTIES

Suppose the magic sum is to be zero, how can the magic 
square be formed?
4.1 Start with the magic square

Subtract 5 from each entry and since it is to be subtracted 
from three entries in each row, column or diagonal, the 
magic sum becomes zero. But negative numbers appear. 
You can see the exciting role played by negative numbers 
in revealing the structure of the magic square.

This may be called the Skeleton Magic Square. You cannot 
fail to notice that the end entries about the central cell 
along any row, column or diagonal are opposites of each 
other. The absolute values of entries in the top row and 
the bottom row, the left column and the right column are 
the same, showing up the hidden magical property that not 
only the top row total and the bottom row total are the 
same but also totals got by adding the squares of the 
entries in them are the same.
4.2 This skeleton magic square provokes us to view the 
general form of the magic square in another way as shown 
below presented in two stages.



Stage 1 Stage 2

X +p x — q x + r

X — s x 4- 0 x + s

x — r x + q x — p

Can you find the condition that p, q, r, s should satisfy for 
the square to be zero magic?
4.3 Problem set

1. Rebuild the magic square with q and s written in 
terms of p and r .

2. Show that
(x+p)2-f-(x-9)2+(a;+r)2 = (x-r)2+(x+q)2+(x-p)2 
given that p + r = q .

3. Show that

(z+p)2 + (z —s)2 + (z-r)2 = (a;+r)2 + (x+s)2 + (x—p)2 
given that r — p = —s .

4. Show that (x — r)2 + x2 + (x + r)2 (x + p}2 + x2 + 
(z - p)2.

5. Show that the sum of the squares of the entries either 
in the top row or the bottom row is 3m2 + 26 where 
m is the entry in the central cell.

6. Show that the sum of the squares of the entries either 
in the left column or the right column is 3m2 + 14 
with the usual meaning for m.



7. If the common difference of nine entries to form a 
magic square is k , show that the sum of the squares 
of the entries either in the top row or the bottom 
row is 3m  4- 26k  and the sum of the squares of the 
entries either in the left column or the right column 
is 3m  + 14A;  .

2 2

2 2

2. Examine if there could be a similar expression for the 
sum of squares of entries in the left column or right 
column.

8. Consider the magic square

b 4- r a + p c 4- q

c + p b + q a + r

a + q c + r b + p

Where a + c = 2b and p 4- r = 2q.

Show that (6 4-r)2 4-(a 4-p)2(c 4-q)2
= (a + <?)2 + (c + r)2 + (&+ p)2 

and (b 4- r)2 4- (c + p)2 4- (a 4- q)2
= (c 4-<?)2 4-(a 4-r)2 4-(& 4-p)2

4.4 Projects:

1. Find if an expression can be formed for the sum of the 
squares of entries in the top row or bottom row, in 
terms of m where m = b+q, t the common difference 
of a, b, c and s the common difference of p, q, r .



5.0 MULTIPLICATIVE MAGIC SQUARE

So far you have acquired the experience to handle third 
order additive or arithmetic magic squares and get their 
properties. It is natural therefore to look for the experience 
of handling third order multiplicative or geometric magic 
squares and getting their properties.

5.1 Multiplicative law of indices suggests a way out 
immediately. Treat the entries of the additive magic 
square as the indices for a non-zero base and easily the 
multiplicative magic square is formed.

Additive magic 
square with 
the magic 

sum 15

multiplicative 
magic square 

with the magic 
product a15

cP a1 a6

a3 a5 a7

a4 a9 a2

5.2 Consider the geometric magic square formed 
with a =2.

Fig. A

28 21 26

23 25 27

24 to 22

Fig. B

256 2 64

8 32 128

16 512 4



Do you know what number plays a role in multiplication 
akin to the role played by 0 in addition? It is 1. You have 
seen how to build an arithmetic magic square with 0 as 
th- magic sum, using integers. You would naturally be 
interested in building a geometric magic square with 1 as 
the magic product, using fractions.

Divide the central cell entry in fig. A by 25 and in fig. B 
by 32.

What do you get? Watch the duality.
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8 1 
16 2

i 
4 1 4

1
2 16 i
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Where you get opposites in an arithmetic magic 
square, you get reciprocals in a geometric magic 
square. Where you get the additive identity 0 in an 
arithmetic magic square, you get the multiplicative 
identity 1 in a geometric magic square. When 0 is 
the magic sum, 1 is the magic product.

So the duality consists in replacing + by x, — by 4- 
and x by raising to power. This would help you in 
stating corresponding theorems in respect of geometric 
magic squares and proving them without effort, almost 
mechanically.

Now you can straight away state the corresponding 
theorems in respect of the geometric magic square. For 
convenience, the theorems pertaining to the arithmetic 
magic square are repeated for you to give their duals



relating to the geometric magic square. Proving is left to 
you.

Do you like to have the geometric magic square also 
starting with 1 in the top middle cell? Divide each entry

4096. The pair of entries in the cells symmetrically placed 
with respect to 16 are multiplicative complements of 162 .

Notice that where as 3 times the entry in the central cell 
in the arithmetic magic square is taken to get the magic 
sum, the magic product becomes the cube of the entry in 
the central cell. The symmetrically positioned cell entry 
pairs are additive complements of twice the entry in the 
central cell in arithmetic magic square whereas they are 
multiplicative complements of the square of the entry in 
the central cell.

A + C = 2B; P + R = 2Q

+ A B C X A B C
p A + P B + P C + P P AP BP CP
Q A + Q B + Q C + Q Q AQ BQ CQ
R A + R B + R C + R R AR BR CR

AC = B2, PR = Q2
Arthmetic array Geonetric array



Prove that the above 
1) 9 entries can be used

to form am arithmetic 
magic square with the 
magic sum A+B+C+ 
P + Q + R.

Prove that the 
above 9 entries 
can be used to 
form a geometric 
magic square with 
the magic product 
ABCDPQR.
Prove also its 
converse.

Its converse has also 
been proved.

2) + A + 0 A + l A + 2
0 A + 0 A + l A + 2
3 A + 3 A + 4 A + 5
6 A + 6 A + 7 A + 8

Prove that the above 
9 entices can from a 
magic square with the 
magic sum 3A + 12 or 
3(A + 4).

X A0 A1 A2
1
3
9

A0 A1 A2 
3A° 3A1 3A2 
9A° 9A1 9A2

Prove that the above 
9 entries can be used 
to form a geometric 
magic square with the 
magic product 27A3 or 
A3 x 27 or (a x 3)3

q p r

1 
s 1 s

1 
r p 1

Prove that this is a 
zero magic sum magic 
square where p = q + r 
and q = s + r

Prove that the above 
9 entries form a one 
magic product magic 
square where p = qr 
and q=sr



4) If a b c
d e f
9 h i

is an arithmetic magic 
square with the sum 
3m, then 

is a geometric magic 
square with the magic 
product m3, then

al + k bl + k cl A k

dl + k el + k fl + k

gl “I- k hl + k il + k

ka1 kb1 kc1

kd1 ke1 kf

kgx kh1 kil

forms also an 
arithmetic magic 
square with the magic 
sum 3(Zm + k).

5) If A, B, C form an 
A.P. it is prove that 
As T~ t, Bs + t, Cs -f-1 
also form an A.P.

forms a geometric 
square with the magic 
product (fcm1)3.

If A, B, C form a G.P., 
prove that tAs, tBs, 
tCs form a G.P.

6) Prove tha ; Prove that
m —p m + p — q m + q

m+p + q m m — p — q

m — q m — p + q m+p

m 
P

mp 
Q mq

mpq m m
P9

m 
P

mg 
P mp

forms an arithmetic 
magic square with the 
magic sum 3m.

forms a geometic 
magic square with the 
magic product m3.



6.0 BjUILDING THE MAGIC SQUARE WITH 
INCOMPLETE ENTRIES

6.1 You have seen that of the six data that determine a 
triangle, three if properly chosen are enough to build the 
triangle. The sides should satisfy the condition that the 
total length of any two of them should be greater than the 
third and the three data cannot be the three angles as the 
third angle can be determined, once any two angles are 
given, the sum of the three angles of a triangle being 2 
right angles.

Likewise you can study the minimum number of cells to be 
filled to determine or complete a magic square.

6.2 Given the entries in any row or column, the magic 
square can be completed. If the entries are to be natural 
numbers, the sum of the entries should be a multiple of 3. 
Now complete the magic square with entries given in the 
first row, say a, b and c.

Step 1

Since this is a magic square, the 
row sum is the magic sum. Let it 
be 3m



Step 3

a b c

m

2m — c 2m — a

Now the bottom corner cell 
entries can be made as they 
are along 3 cell diagonals, 
each with 2 cells already 
filled up.

Step 4

a b c

m — a + c m m — c + a

2m — c 2m — b 2m — a

Now the remaining 
cells in the border 
columns and bottom 
row can easily be 
filled up.

It is easily seen the bottom row sums up to 3m.
2m — c+2m — b+2m — a = fym-(a+b+c) = 6m —3m — 3m 
Note that the solution is unique, as the entries involve only 
a + b 4- c and a, b, c which are given.

6.3 Given the entries along a diagonal, the magic square 
can be completed.
If this were to be a magic square with natural number 
entries, then a + c = 2b. In other words a, b, c are in A.P.

Note that a comer cell entry appears in 
three sums. So the corner cells can be 
called VIP cells. So filling them gets 
precedence.



Step 2

a b — d

b

b + d c

Since the entries in the 
diagonal have to be in A.P., 
put b — d in the right corner 
cell of top row and b+d in the 
left corner cell of the bottom 
row, such that d < b.

Now the rest of the cells can be easily filled with the magic 
sum in view.

Step 3

a 2b — a + b b + d Check the row 
and column

2b — a — d b 2b + d — c
sums, as the 
enties in either 
of two diagonals 
sum up to the 
magic sum 3b.b + d 2b — c — d c

The sum of the entries in the middle row or column is 
5b — (a + c) = 5b — 2b = 3b. Hence this is a magic square.

6.4 Given the central cell entry, and a corner cell entry, 
the magic square can be formed.

This is a refinement of § 6.3. Since the entries in any 
diagonal cell have to be in A.P. the filling can be done 
as in § 6.3, once the bottom row right corner cell is filled 
up as shown overleaf:



common difference:
a < b b — a
Step 4 Step 5

a 26 — ci 4- d b — d

b

b + d a — d 2b — a

a 26 — d 4- d b — d

1 
b a + d

b + d a — d 2b — a

(iv) (v)

d < b
Step 6

a 26 — a 4- d b — d

2b — a — d b a + d

b + d a — d 2b — a

(vi)

6.5 Given the entries in middle row or middle column, 
the magic square can be completed.



As before the diagonal cells are to be taken care of. Besides, 
the entries along any diagonal have to be in A.P. Since 
the entries can be made in different ways, the solution 
cannot be unique. Completing a magic square in steps 
is shown below. Checking up the sums is also shown below:

Step 1 Step 2 Step 3

a
b
c

b — e a b — d
b

b + d c b — e

b — e a b — d
b — d + e b b + d — e

b + d c b + e

e < d < b-,b + d + e = cr,a + c = 2b

6.6 Given the central cell entry alone, the magic square 
can be formed. This is a refinement of § 6.3 taken to a 
higher stage. Since the diagonal entries have to be in A.P. 
and the magic sum thrice the entry in the central cell, the 
completion of a magic square is easily done. But the magic 
square will not be unique.

Completing the magic square in stages is shown below. 
Checking up the sum poses no difficulty.

Step 1 Step 2 Step 3

a — e a — d
a

a + d a + e

a — e tz + e + d a — d
a — d + e a a + d — e

a + d a — e — d a + e

e, d < a

So the minimum number of entries to be given to complete 
a magic square is 1, provided the entry is in the central 
cell.



6.7 Problem set:

1) Complete the magic squares:

(i) (ii) (iii)

2) Build a magic square with the nine numbers:
1,7,13; 31,37,43; 61, 67 and 73.

6.8 Projects
1. Examine if a magic square can be formed given the 

corner cell entries in a border row (or column) and 
the entry in the mid cell in the opposite border row 
(or column).

2. A number which is a multiple of 3 is given to be 
the magic sum. Assuming it to be 3m, show that

i i ■ 3m — 12the least entry is ---- ----- , if the entries are to be
consecutive. Show also how to build the magic square 
of the third order to have the given number as the 
magic sum.



3. Make a study similar to projects 1&2 in respect of 
the geometric magic square of the third order.

4. Complete the magic square arithmetically, given the 
four corner cell entries.

5. Find the values that the magic sum can take in an 
arithmetic magic square, when the entries are from 
different number systems.

6. Find the values that the magic product can take in 
a geometric magic square, when the entries are from 
different number systems.



7.0 IRREGULAR MAGIC SQUARES

An anti magic square, as you can expect, should have 
all its row totals, column totals and the diagonal totals 
different.

It is interesting to discover that the solution for building 
an anti magic square is not unique.

7.1 Here are a few models of anti-magic square built with 
numbers 1 to 9 for your study.

The first one is of the spiraling type.

7.2 If more than one row, column or diagonal but not 
all have their entry totals the same, semi magic squares 
are formed. A few models of semi magic squares built with



7.3 Pi ajects

Anti r agic squares and semi magic squares are exciting 
areas or investigation for getting an excellent exposure 
to mat rematical ways of thinking. You can restrict your 
investi gation to squares of the arithmetic type if you so 
desire.

1. fhudy the conditions for the row sums, the column 
s ums and the diagonal sums to be all different.

2. J ;udy the conditions for the required number of row 
S ims, the column sums and the diagonal sums to be 
tjp.e same, while the rest are different.



8.0 MATHEMATICAL BY-PRODUCTS FROM 
MAGIC SQUARES

Surprisingly enough, mathematical ideas developed in a 
certain context get applied in solving some problems which 
appear to be intractable in other areas in mathematics.

The third order magic square has a fascinating application 
in some problems of number theory.

8.1 Consider the problem of finding six square numbers 
such that the sum of three of them is equal to the 
sum of the rest. Any third degree magic square gives the 
solution instantly. But the solution can never be unique, 
as it relates to an indeterminate equation of the second 
degree in six unknowns. An indeterminate equation has no 
unique solution or solutions. The number of solutions is 
not finite either, unless some conditions are imposed. In 
symbols, the problem can be presented as follows:

8.2 Find a,b,c,p,q,r such that a1+b2+c2 = p2 + q2 + r2 .

Solution: Take the basic third order magic square itself. 
This gives a = 8 , b = 1, c — 6 and p — 4 , q — 9, r = 2.

For more solutions through magic squares related to this

basic one see § 4.2 and § 4.3, Problem 2. For 
more solutions you can take a — 8n, b — n, 
c = 6n and p = 4n, q = 9n, r = 2n, n E N.

8 1 6
3 5 7
4 9 2



For more general solutions, you can take
a = 8n 4- k or n(8 + k) 
b = n + k or n(l + k) 
c = 6n + k or n(6 + k)

p = 4n + k or n(4 4- k) 
q = 9n + k or n(9 + k) 
r = 2n 4- k or n(2 4- k)

where n,k e N.

8.3 PROBLEM SET

1. Prove
(8n 4- k)2 4- (n 4- A;)2 4- (6n 4- k)2

= (4n 4- k)2 4- (9n 4- k)2 4- (2n 4- k)2 
and give six solutions for the indeterminate equation:

2 , 12 , 2 2 । 2 , 2a + b + c = p + q + r

2. Show that

(z4-5)24-(z—2)24-(z4-3)2 = (z4-l)24-(z4-6)24-(z — l)2

and give the identity in more general form.

3. Show that

(rc 4- 5)2 4- x2 4- (x 4- I)2 = (x 4- 3)2 4- (x 4- 4)2 4- (x - I)2

is also an identity. Use it to solve the indeterminate 
equation.

2 , >2 । 2 2 , 2 , 2a + b 4- c — p + q 4- r

4. For what values of alt bi, Ci, a2, b2, c2, b^, c3, for
0 < eq < 10(i = 1, 2, 3) is
(lOOdj 4~ 106i Ci) 4- (100a2 4" 1062 4" c2)

4- (100ci3 4“ IO63 4- c3) = (100ci 4“ IO61 4~ fli)
4- (100c2 4- 1062 4- u2) 4- (100c3 4~ 1063 4- tz3) ?



PART - B

9.0 PREDICTING THE TOP ROW ENTRIES

In section 2, you have seen 8 variations of the basic 
third order magic square and how they are related to the 
rotational and reflective symmetries of a square. This 
provides you an opening to enjoy a prediction game 
with your friends through compositions of rotation and 
reflection. Give your friend a square card board showing 
the magic square on the right.

Rotating clockwise positions:

i
8 I 1 I 6

8 1 6
3 5 7
4 9 2

4 3 8
9 5 1

a
4 3 8

2 7 6

obtained by turning through a right angle (or a quarter 
turn clockwise) 

the b position obtained through turning further through a 
right angle clockwise, that is, turning on the whole through 
2 right angles (or a half turn) clockwise.



6 7 2
1 5 9
8 3 4

6 7 2

the c position obtained through turning still further 
through a right angle clockwise, that is, turning on the 
whole through 3 right angles (or three quarter turn) 
clod wise.
Notice that when the square is still further more turned 
through a right angle clockwise, that is, turning, on the 
whole, through 4 right angles (or full turn) clockwise, the 
original position showing 

or i is got.

Flipping positions:

Flipping the basic magic square i position about the middle 
column giving

6 1 8
7 5 3
2 9 4

P 
6 1118

So the p position is obtained through flipping the entries of 
the basic magic square taken as i about the vertical axis 
of symmetry; that is, interchange of columns 1 & 3 from 
the left.



Flipping the basic magic square i position about the middle 
row gives

q
4 9 2

So that q position is obtained through flipping the entries 
of the basic magic square taken as i about the horizontal 
axis of symmetry, that is, interchange of rows 1 & 3 from 
the top.

Now flipping the basic magic square i about the main 
diagonal gives

8 1 6
3 5 7
4 9 2

2 7 6
9 5 1
4 3 8

r
2 I 7 I 6

So the r position is obtained through flipping the entries of 
the basic magic square taken as i about the main diagonal 
along the left bottom corner to the right top corner.

Again flipping the basic magic square i about the other 
diagonal gives

s
8 I 3 I 4

So the s position is obtained through flipping the entries 
of the basic magic square taken as i about the other 



diagonal along the left top corner to the right bottom 
corner.
Prepare a set of magic square cards showing the eight 
variations. Since one rotation or flipping can be followed by 
another rotation or flipping, it will help to use the cards and 
build a table of compositions of two movements for playing 
the prediction game. While reading the tables, take an 
entry for movement in the left marginal column first and 
then an entry in the top marginal row next. Make your 
own table and tally the entries given here with yours.

Some examples:

1. Taking the position obtained by turning the original 
position i through three quarters of a turn and then 
flipping it about the vertical axis of symmetry i.e. cp 
gives the position that would be obtained by flipping 
the original position about the main diagonal i.e. 
cp=r.

2. c (in the left marginal column) followed by p (in top 
marginal row) is not r. Note pc r but s. Hence 
the order gets stressed. The composition is not 
commutative always.



Second
POSITION TABLE

First move 
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no turn or 
clockwise 
full turn i 1 a b c p q r s
clockwise 
quarter turn a a b c i s r P q
clockwise 
half turn b b c i a q P s r
clockwise 
three quarter 
turn c c i a b r s q p
flipping about 
the vertical axis/
column of
symmetry p p r q s 1 b a c
flipping about 
the horizontal
axis/rowof 
symmetry q q s p r b i c a
flipping about the 
main diagonal
(left bottom to
right top) r r q s p c a J b
flipping about the 
other diagonal 
(left lop to right 
bottom) s s p r q a c b i



For the prediction about the finial position use the table 
given below:

a b c P q s
8 1 1 1 6 4 | 3 | 8 2 1 9 1 4 6 | 7 ] 2 6 1 1 1 8 4 | 9 | 2 2 | 7 | 6 8 1 3 1 4

A model game is presented to get started.
Ask your friend to make the following movement in order.

Start with 4 3 8 in a position.

Your friend’s moves on
Your instructions

Your simultaneous 
calculations using the table.

Rotate it clockwise half turn ab = c
Flip it next along the main diagonal cr = q
Rotate it next clockwise quarter turn qa = s
Flip it next about the horizontal and stop sq = c

Now you can tell him the top row entries.

It is c or 6 7 2



10.0 AN ELEMENTARY INTRODUCTION TO 
GROUP THEORY

We now attempt a mathematical connection between the 
magic square of the third order and the abstract concept 
of a finite group.

The game provides the backdrop for exposure to an 
elementary introduction to the theory of groups, a model of 
mathematical excellence in axiomatic thinking. It is dealt 
with here because of its extensive applications whenever 
symmetry is an underlying factor such as crystallography, 
particle physics, fields of a force, quantum mechanics, 
besides its natural application in algebra and geometry 
and art in particular. While resorting to group theoretic 
approach, physicists found themselves compelled to predict 
the existence of an unobserved particle and even give its 
characteristics. This happened in the sixties. What wonder 
it was when the existence of the particle and its property 
were confirmed by later experiments! Incidentally, it will 
be realised how the prediction game can be played without 
the table, once certain transformations are remembered.
The group as a mathematical entity was identified and 
recognised in the eighteenth century while attempting to 
find the general solution for the polynomial equation of 
the 5th degree, quintic equation as it is called. This led 
to triggering a lot of research in developing this theory. 
Galois (1811-1832), Able (1802-1829) and Lagrange 
(1736-1813) are some of the immoral names associated with 
the theory of groups.
A set of elements with a binary operation on it is called a 
closed system, when the outcome of the operation on two 
elements of the set is an element of the system. Recall the 



various number systems:

N = the system of natural or counting numbers 
1,2,3,

W = {0,1,2,3,- -}

Qo" — the system of fractional or measuring numbers 
of the form r, a e W, b e N.

Z — the system of integers or motion numbers
0, ±1,±2, •••

Q = the system of rational numbers of the form 
a, b e Z, b / 0 and so on.

10.1 The basic characteristics of the group surface 
wile solving the first degree polynomial equation 
ax + b = 0 .
Let us consider some particular equations and find 
out why they do not have solution in some of the 
systems.

(1) Consider the equation x + 3 = 3. Equations of this 
type have no solution in N. Why? There is no 
natural number which when added to 3 gives the sum 
3. But it has solution in other systems as 0 is an 
element in them. Since addition of 0 to a number 
does not change the number, it is called the identity 
element, additive identity for that matter.

(2) Consider the equation x + 5 = 0. Equations of this 
type have no solution in N,W and Q+. Why? 
There is no number which when added to 5 given 



the sum 0. But it has solution in Z and Q. For 
(—5)+ 5 = 0. —5 is the opposite or the additive 
inverse of 5. As you know every number in Z and 
Q has its additive inverse. Additive inverse of ( — 1) 
is 1 and so on.

We shall solve this equation step by step observe the 
properties used

x + 5 = 0
(x + 5) + (—5) = 0 + (—5) Additive property of the 

equation.
x + [5 + (-5)] = 0 + (-5) Associative property of 

addition.
x + 0 = 0 + (-5) Property of additive 

inverses.
x = —5 Additive identity property

So that solution set is {—5} .

Thus we see that even to solve an equation of the type 
x + b = 0 in a number system, the number system should 
have

1) Closure for addition (i.e. addition should be a binary 
operation)

2) Associative property for addition

3) Identity for addition

4) Each number should have its additive inverse.

Now consider



(3) 4:r = 4. Equations of this type have solutions in 
the number systems mentioned earlier. Why? 1 is 
in each system and 4 times 1 is 4. The role played 
by 1 in multiplication is akin to the role played by 0 
in addition and hence 1 is called the multiplicative 
identity in each system.

(4) 4;r = 1. Equations of this type have no solutions in 
N,W and Z. Why? 4 multiplied by | = 1 but | 
is neither a natural number, a whole number nor an 
integer. In other words, in these systems no number 
(of course zero is out of consideration) in W&Z has 
a reciprocal or multiplicative inverse.

As before, we shall solve this equation step by step and 
observe the properties used.

4rr = 1

=> | x 1

(1) a binary operation or closure for an operation

=> (| x 4)rr = | x 1

==> 1 ■ X = | X 1

X = 4=? X 4

Multiplicative property of 
the equation
Associative property of 
multiplication
Property of multiplicative 
inverses.
Multiplicative identity 
property.

So the solution set is {|} .
We can stop this exploration at this stage and state that a 
system which has the following structural properties:



(2) associative property for the operation

(3) identity for the operation and

(4) inverse for each element with respect to the operation 
is defined to constitute a group. With these four 
fundamental assumptions, mathematicians have built 
up a magnificent edifice of hundreds of theorems 
proved with remarkable elegance thereby giving 
aesthetic joy to the cultivated mind in mathematics 
and logic.

It is important to understand that groups do not just 
deal with numbers but also entities that have number-like 
characteristics.

We have seen that Z is a group for addition; Q+ for 
multiplication and these are infinite groups. We shall not 
consider in this elementary introduction infinite groups but 
only finite groups. When the number of elements of a group 
is a natural number, it is a finite group and the order of 
the group is the number of its elements.

A word about binary operation.
Consider „ „3x2 — o

5 + 4 = 9
8-1 = 7

10 + 2 = 5

What do we find? With two numbers a unique third 
number is associated in each case. This can be put in 
general form thus a □ b = c where □ means some binary 
operation. Let us start with an example of a group of one 
element.



10.2 A group of 1st order (a group of 1 element)
Consider a point on the rim of a 
ring. Through what turn should 
we rotate the ring in its plane, 
say, clockwise to get back to this 
position of the ring. Obviously 
only 1 full turn. This therefore 
turns out to be the identity 
position. Not only that; it is also 
the inverse. This can be shown in 
the form of a table.

□ i
--------- This show that i Di = i.

i i 

i □ i — i where i is the identity 
element. Note that i is its own 
inverse.

10.3 A group of 2nd order
Consider two points opposite to 
each other on the rim of a ring. 
Now, through what turn should 
we rotate the ring, say, clockwise 
to get back this appearance of 
the ring. Not only will full 
turn secure it but also half turn. 
Numbering the points 1 & 2, what 
happens when clockwise half turn 
is made? 1 goes to 2 and 2 goes 
to 1. Next half turn sees 2 going to 1 and 1 to 2. So we 



can denote half turn as
/ 1 2 \ 
k 2 1 ;

and full turn and no turn as ^12/
~ .. ( 1 2 \ , / 1 2 \Denoting I 2 । 1 as a and I 2 ) 35 1 we can glve
here the table of transformations of positions as follows:

□
1 
a

i a
3 a 
a i

10.4 It is interesting to view the outcome of two 
transformations as a product of transformations. Consider 

/ 1 2 \
V 2 1 )

1 2 \
2 1 J

which stands for half turn followed by half turn or a □ a 
or simply aa

1 2 \ /2 1 ) “ V 1 2
1 2

1 2 \
2 1 J

fl 2 \We can spell it out thus: 1 goes to 2 the first ( 2 1 ) an<^ 
fl 2 \2 goes 1 in the second ( 2 1 ) SivinS 1 going to 1.2 goes 

fl 2 \to 1 in the first ( o i ) and 1 goes to 2 in the second 
fl 2 \(21) giying 2 going to 2. So we get the outcome as 1 

fl 2 \going to 1 and 2 going to 2, that is ( । 2 ) which is i.
Thus a □ a is i.



This can also be shown as below.

1
2

2
1

1
2

and so aa is
that is aa = i.

2 \
2 J

10.5 A group of the 3rd order. Consider three points 
forming the vertices of an inscribed equilateral triangle in 
the ring. Not only does the rotation full turn restore this 
initial positional appearance but also rotations through 
| rd turn (or 120° ) and | rd turn (or 240°). After naming 
the points clockwise, these turns of | and | can be 
represented respectively by the following transformations

_ ( 1 2 3 \ . / 1 2 3 \ _ ( 1 2 3 \a — \ 2 3 1 J ’ b~ ( 3 1 2 ) ’ 1 - 1 2 3 J

Working out the product of two transformations as before 
we can give the table

□ i a b
i z a b
a a b i
b b i a

(i) Find baa using the table 
and interpret it in terms of 
turns.

(ii) Give the transformation as 
ordered pairs.



(iii) Show

7 1 2 3 W 1 2 3 \
I I
\ 2 3 1/ \ 3 2 2 I

10.6 A group of 4th
order. Consider four
points forming the vertices 
of an inscribed square in the 
ring. Not only does the 
full turn restore the initial 
positional appearance but 
alos | turn (90°), |
turn (or 180°), | turn 
(or 270°). After naming 
the points clockwise, these 
turns of |,2,|,and j can 
be represented respectively 
by the following 
transformations

12 3 1/12 3

3 2 1/12 3 1

/ 1 2 3 4
a =

y 2 3 4 1

I 1 2 3 4
c =

14 12 3

/ 1 2 3 4 
b =

13 4 12

/ 1 
i =

1 1
2 3 4

2 3 4

Working out the product of two transformations as before,



we can get the table
o i a b c
i
a 
b
c

i a b c 
a b c i 
b c i a 
c i a b

Find aabcca and interpret it in terms of turns.

10.7 Since an equilateral triangle has 3 axial symmetries 
as well, besides 3 rotational symmetries, we can extend the 
table in §10.5 to include the following:
Flipping or reflecting 
about the axis to side 
2-3 can be represented

( 1 2 3 \
by = P

113 2/

Flipping or reflecting 
about the axis to side 
3-1 can be represented

( 1 2 3 \ 
by = q

\ 3 2 1 /
Reflecting about the axis to side 1-2 can be represented by

1 2 3 = r
2 1 3

Now the enlarged table of transformations forms a group 
of the 6th order.



□ i a b P q r
i i a b P q r
a a b i q r P
b b i a r P q
P P r q i b a
q q P r a i b
r r q P b a i

10.8 Since a square has 4 axial symmetries, besides 4 
rotational or centre symmetries, we can extend the table 
in §10.6 include the following.

Flipping about the
vertical axis of
symmetry can be
represented by the
transformation.

( 1 2 3 4
y 2 1 4 3

Flipping about 
horizontal axis 
symmetry can 
represented by 
transformation.

the 
of 
be 

the

12 3 4
4 3 2 1

Flipping about the other diagonal (line joining the corners



4 & 2) can be represented by the transformation:

12 3 4
3 2 14

Flipping about the other diagonal (line joining the corners 
1 & 3) can be represented by

f 1 2 3 4
y 1 4 3 2

Now the enlarged table of transformations forms a group 
of the 8th order.

□ i a b c P q r s
i i a b c P q r s
a a b c i s r P q
b b c i a q P s r
c c i a b r s q P
P P r q s i b a c
q q s P r b i c a
r r q s P c a i b
s s p r q a c b i

Since these are all finite groups, show that each of the
tables hither-to built up shows that the elements indeed 
form a group by establishing properties: (1) closure, (2) 
associative, (3) identity, (4) inverse.

Dissociating the situational meaning here of i, a, b, c, etc. 
and determining their relations by means of composition 
table helps consideration of abstract groups.



10.9 It is interesting to notice how permutations can be 
viewed to form a transformation group.
This introduction will whet your appetite to study more 
about the group and its fascinating characteristics and 
dramatic uses. We can now associate the appearance 
of triads in each position of the magic square with a 
transformation.

8 1 6 t------------ > 1 2 3
1 2 3

4
4

no turn or clockwise full turn

1 2
2 3

clockwise |

clockwise |

1 2
3 4

1
4

2
1

3 4 \
4 1 / 

turn

3 4 \
1 2 / 

turn

3 4 \
2 3 J

clockwise | turn

6 18 <---- > p <--- > 2 3 4 \
1 4 3 J

flipping about the vetical 
line of symmetry



4 9 2 <—> q i—> 1
4

2 3 4 \
3 2 1 J

flipping about the horizontal 
line of symmetry 

3 4 \
1 4 /

1 2
3 2

flipping about the main 
diagonal (left bottom corner 
to right top corner)

2 3 4 \
4 3 2 )

flipping about the other 
diagonal (left top corner to 
right bottom corner)

By remembering this table of correspondences for relating 
the top row triad of each magic square to a transformation, 
prediction can be done through computation without 
referring to the table and that will make you a wizard.

Projects

1. Find all the permutations of 1 2 3 4 and treating each 
as a transformation of 1 2 3 4 build the table of binary 
products of transformations. Examine the table and 
find if the elements constitute a group? What is its 
order?



2. If a set with an operation satisfies the four 
characteristics of a group, it becomes a group. 
If a subset of the group also satisfies the four 
characteristics under the same operation, the subset 
becomes a subgroup

Consider the finite groups of order 1,2,3,4,6 and 8 
developed in this Section 10 and explore the existence 
of subgroups in each order. Discover the relation 
between the order of a subgroup of a finite group 
and the order of the group. If you succeed you would 
have rediscovered a theorem of Lagrange:

The order of any subgroup of a finite group 
divides the order of the group.



PART - C
11.0 EQUI MAGIC SQUARES

11.1 Consider the skeleton form of the third order Magic 
Square

fig. 1
p -p-q q

-p + q 0 p-q
-q p + Q -p

Row totals, column totals and diagonal totals give the 
magic sum 0. If the magic sum is a multiple of 3, then 
the third order magic square can be built thus:

fig- 2
1+p 1 R.1 SI” T + <z

f-p + q m 
3 f+p-q

^-q f + p + q l~p

This shows that for the same magic sum, more than one 
magic square can be formed depending on the values of p 
and q.
You have seen earlier seen earlier that the magic square 
can be built with entries in a Cayley table got by summing 
two arithmetic progressions.

fig- 3

+ 1 2 3
0 1 2 3
3 4 5 6
6 7 8 9

On altering the positions you know how to fix the third



order magic square with the magic sum 15.

You know also that this can be presented in 8 different ways 
(axial symmetry 4, rotational symmetry 4). Incidentally, 
it is worth noticing that the skeleton magic square for this 
third order magic square can be formed by taking p = 1 
and q = 3 in fig. 1. p and q are nothing but the common 
differences of their row wise arithmetic progression 1,2,3 
and the column wise arithmetic progression 0,3,6. Adding 
5 to each entry fig. 4 is obtained.

squares having the same sum, otherwise called equi magic 
squares.

11.2 First of all examine the skeleton magic square in fig 
1 and find out for all values of p and q, the magic square 
will cease to be a perfect one, that is one without repeated 
entries. Obviously p^q.

Next p and q cannot be consecutive numbers 1 & 2. If 



p — 1 and q = 2, then —p + q = —1 + 2 = 1. Then two 
cells will have the same entries leading to a trivial magic 
square, or to state more generally p / 2q or q 7^ 2p. 
Otherwise — p + q = — 2q + q or q . But q is already an 
entry resulting in repeated entries which is not permissible 
for a perfect magic square.

Finally, (p, <7) 0 (y — a, a) • Otherwise
—p — q — -& + a-a = o o

(skeleton magic square) and
Hk-n-a=--- = 0 3 * 3 3 u-

In a perfect magic square no entry can be 0. Of course 
(p, 9) = (m>n) and (P> ?) — (n>m) given the same magic 
square. With the above mentioned conditions, study how 
to build equimagic squares for the same sum. Starting with 
5 the magic sum for the third order magic square with 
numbers 1 to 9, the central entry is 5, build Cayley table 
with 3 term arithmetic progressions having respectively p 
and q for their common difference.

p= 1

6 1 8
7 5 3
2 9 4

Table Magic square

11.3 A better approach will be to construct the skeleton 
square first with p and q and add y to each entry in the



skeleton square which would fix the desired magic square.

6 1 8
7 5 3
2 9 4

It can be easily seen that (p, q) can only be (1,3) for the 
magic sum 15 or the central entry 5.
For, (P,q) / (1,1), (1,2) and (1,4).

So 15 sum magic squares can be had in a unique way with 
its presentation in 8 different ways involving axial and point 
symmetries of the group of 8 elements whose multiplication 
table was discussed in detail earlier.

11.4 Enumeration

So the number of equimagic squares for a given multiple of 
3 depends on the values that p and q can take. Consider 
the magic sum 18. The central value is 6. (p, q) =
(1,3), (1,4) and (2,3). So there can be only 3 different 
equimagic squares having the magic sum 18. Build them. 
Are you getting the following?



7 2 9 7 1 10 8 1 9
8 6 4 9 6 3 7 6 5
3 10 5 2 11 5 3 11 4

You would have seen by now a short cut in building the 
magic square without building the skeleton square in full. 
Fix | of the magic sum 18, that is 6 in the central cell. Add 
6 to 1 & 3 and fix them in the corner squares in the top row. 
Then fix the entries in the corresponding opposite corners 
to make up the sum 12. The remaining entries rowwise and 
columnwise are fixed to get the magic sum 18.

Consider the number of different equimagic squares for a 
few more magic sums 21, 24, 27 and 30, say.

Magic sum 21, Central entry 7
M = (1,3), (1,4), (1,5), (2,3)

Magic sum 24, Central entry 8
()>,?) = (1,3),(1,4),(1,5),(1,6);

(2,3), (2,5), (3,4)

Magic sum 27, Central entry 9
(p.tri = (1,3), (1,4), (1,5), (1,6), (1,7);

(2,3), (2,5), (3,4),(3,5)

Magic sum 30, Central entry 10
M = (1,3), (1,4), (1,5), (1,6), (1,7), (1,8);

(2,3), (2,5), (2,6), (2,7), (3,4), (3,5), (4,5)

It is interesting to tabulate the squares with entry 1, entry 
2 etc., in the top left corner of each of the equimagic squares 
for a given magic sum.



Magic 
sum and
Central 
entry

Number of squares with 
top left corner entry in the 

skeleton magic squares

Total 
number of 
different 

equimagic 
squares1 2 3 4 5 6 7

(15) 5 1 1
(18) 6 2 1 3
(21) 7 3 1 4
(24) 8 4 2 1 7
(27) 9 5 3 2 10
(30) 10 6 4 2 1 13
(33) 11 7 5 3 2 17
(36) 12 8 6 4 3 1 22
(39) 13 9 7 5 4 2 27
(42) 14 10 8 6 4 3 1 32
(45) 15 11 9 7 5 4 2 38
(48) 16 12 10 8 6 4 3 1 44

Note: Compare the above table with the table in §9.0. the 
eight different moves used in the prediction game form a 
group. If we know one magic square of third order with 
central entry 5, all the other magic squares are obtained 
form this by making the 8th order group of §10.0 to act on 
this square. Don’t you observe the surprising connection 
now. On the other hand, if the central entry of the third 
order magic square is different from 5, it is not generally 
the case that any magic square is obtainable from any 
other by a transformation pertaining to the group just now 
mentioned. However, this group plays a crucial role in the 
case of these magic squares too. In this case all the magic 



squares which are not obtainable by transformations in the 
group are to be treated as constituting a block of magic 
squares. The action of the group on this block exhausts 
all possible magic squares. The action of the group on 
this block exhausts all possible magic squares. When the 
central entry n = 5 this block only consists of one element. 
When n = 6 it consists of 4 elements and so on. A 
distribution of the blocks is shown by the above table.

11.5 Problem: Show that when (p, q) = (1,3), the 
entries are consecutive for any magic sum.

11.6 Project: Find a formula as well as recurrence 
formula for finding the number of equimagic squares for 
a given magic sum.
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GOOD BYE

I hope you have enjoyed the mathematical 
experiences in handling third order magic squares and 
getting to know the basic elements of group theory. You 
would certainly have enjoyed much if you had done a lot of 
work on your own.

This gives you adequate background to handle 4th 
order magic squares and study more of groups, finite as 
well as infinite. Unlike the basic third order magic square 
with entries from 1 to 9, the basic fourth order magic square 
with entries from 1 to 16 is not unique. An analogy will 
help you in your eagerness to pursue further this line of 
study.

Having swimming experience in a pond, you can 
confidently take to swimming in a lake. But swimming 
in an ocean is different.

Remember working in the field of magic squares of 
higher orders is akin to swimming in an ocean. With all the 
formation shocks and surprises and the challenging projects 
that suggest themselves, you can find an excellent use 
for your mathematics tools introduced in the classrooms 
by your teachers. Magic squares can have a place in 
sophisticated mathematics as well (See The Mathematical 
Intelligencer, Vol. 14, No.3, 1992). You can acquire more 
mathematics tools by studying groups and their behavior. 
For one who would like to have a healthy pastime all 
through one’s life at least expense, magic squares claim 
preference. For one who would like to keep company with 
world class mathematicians group theory is a must.

Wish you an exciting time!



Books for further enlightenment and enjoyment:

1) W.H. Benson and O. Jacoby: New Recreations 
with Magic Squares, Dover Publications, New York, 
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2) Irving Adler: Groups In The New Mathematics, 
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Macmillan, New York, 1980.
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