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Foreword

From the wide variety of material collected by various 
authors under the name of mathematical games and 
pastimes, there can be extracted several groups of 
“classical pastimes”, which drew the attention of mathe­
maticians for a long time;

(1) Pastimes, connected with the search for original 
solutions of problems, which permit a practically un­
limited number of solutions (see e. g. “Magic squares” — 
ch. 16, “The problem of the chess knight” — ch. 19, 
etc.). Here, the interest is usually centred on establish­
ing how many solutions there are, working out methods 
leading to large groups of solutions, or on solutions 
satisfying some special requirements.

(2) Mathematical games, i. e. games in which two 
players aim at a definite goal, through a number of 
“moves” made one after the other in accordance with 
agreed rules: here it turns out to be possible to pre­
determine the victor for any initial situation, and to 
indicate how he is to win, no matter what the opponent’s 
moves are (see e. g. ch. 10).

(3) “Games for one person”, i. e. pastimes in which 
it is necessary to reach a definite, predetermined goal 
by means of a number of operations, carried out by the 
player himself, in accordance with given rules (see e.g. 
chs. 11-14): here the interest is centred on the con­
ditions under which the goal is reached, and it is required 
to find the least number of moves necessary to reach 
that goal.

The greater part of this book is devoted to classical 
games.

ix



X Foreword

The first few chapters deal with various systems of 
notation and with certain topics in the theory of num­
bers, the knowledge of which is necessary for the 
understanding of the theory of various mathematical 
games. But for some readers these chapters might be 
interesting in themselves.

The theory of some isolated games is presented fairly 
fully here; in other cases only results are given; and 
reference is made to sources, where proof of these results 
can be found.

Side by side with classical pastimes, the book devotes 
much space also to “contemporary” pastimes quick 
reckoning, re-cutting of figures, construction of curves, 
and models of polyhedra.

Deserving particular attention are the problems which 
admit a practically inexhaustible or even infinite number 
of solutions (“Construction of parquets”, “Construction 
of pleasing patterns”, etc.).

Here, everybody, by applying persistence and inven­
tiveness, can attempt to obtain interesting results.

Whereas such classical pastimes as, for example, con­
structing “magic squares” may be enjoyed by a 
comparatively narrow section of people, the cutting out 
of, say, symmetrical figures in paper, the construction 
of pleasing patterns, searching for numerical curiosities, 
by not requiring any mathematical preparation, might 
give pleasure to both amateur and professional mathe­
maticians. The same can be said about pastimes requir­
ing knowledge confined to that obtained in the 8th to 
10th classes of the secondary school (construction of 
parquets, of interesting curves and borders, etc.).

In group activities it is possible to arrange competi­
tions in making up original parquets, in the construction 
of curves and borders, in obtaining attractive symmetri­
cal figures cut out of paper, and so on. Each participant 
in such competitions can dazzle with his inventiveness, 
accuracy of execution, or artistry of colouring the figures 
obtained.

Such collective activity can be rounded off by com-



Foreword xi

piling an album or by organizing an exhibition of the 
best items.

Many pastimes and even single problems may suggest 
to the amateur mathematician themes for independent 
investigations (the use of knight’s moves instead of the 
“short” moves of the fook in the “game of 15”, the 
search for interesting identities — see § 37 —, the gene­
ralization of the problem about tourists — problem 
No. 13 in § 37 — and so on).

On the whole, this book caters for readers with 
mathematical knowledge within the limits of the 9th 
and 10th classes of the secondary school, even though 
the greatest part of the material is accessible to pupils 
of the 8th class, and some topics — even to school- 
children of the 5th and 6th classes.

Many chapters can be used by teachers of mathe­
matics for extracurricular activities.

Various categories of readers can use the book in 
various ways: persons not particularly fond of mathe­
matics can become acquainted with curious properties 
of numbers or figures, without going into the funda­
mentals of the games and pastimes, and taking for 
granted single propositions; amateur mathematicians 
are advised to study certain parts of the book with 
pencil and paper, solving the problems given and 
answering the questions posed.

§ 38 gives answers to the problems to be found in 
the text, questions and hints towards their solution 
and also proofs of certain of the theorems mentioned in 
the text. References to the appropriate section of § 38 
are given in small figures between ordinary brackets.

References to books in which the reader may find a 
more detailed discussion of the topics touched upon are 
given by a number enclosed in square brackets. This 
number refers to the corresponding entry in the biblio­
graphy at the end of the book.



§ 1. Various systems of notation

A certain amateur mathematician had the following 
notes in his jotter:

361
30

61
60
100
74
40
30

3205 (five and five is ten: 3217
+  4775 we write 2 and carry -  1452

10202 1, and so on . . .) 1545
435 (five sevens are j/104231

x 47 thirty-five: we 4
3713 write 3 and carry 47 442

2164 4 and so on . . .) X 7 421
25553 563 2131

x 3 2131
17
43

=  -  (cancelling by five)

14
24-0525 Therefore 361

14
24-052 

52 1_
14

100 and so on

Verification: 0-052 = ---- =  —
770

(after cancelling by 52);
, 1 24 x  14 +  1 36124_|---- = -------------------- ----

14 14 14

At first glance all these operations make a very 
queer impression; however, everything becomes clear 
when it is taken into account that all operations were 
carried out in the system of notation with the base 8.

1



Mathematical Games and Pastimes

The crux of the matter is that in our usual system 
of notation, the separate digits of the number N, 
depending on their place, indicate the number of units, 
tens, hundreds, etc., or the number of tenth, hundredth, 
etc., parts forming the number N.

By selecting, as the base of a system of notation, 
any number k, i. e., by regarding k units of any order 
(and not ten units, as is done in the decimal system) 
as forming one unit of the next largest order, we arrive 
at the so-called system of counting to the base k.

If /c<10, the digits from k to nine become super­
fluous (it is no accident that in all examples cited above 
the digits 8 and 9 are absent!). If A:>10 then it is neces­
sary to invent symbols for numbers from 10 to k—1 
inclusive; for example, in the duodecimal system, the 
numbers 10 and 11 may be denoted by a and res­
pectively.

When a number is written down in the base k system, 
it is convenient to indicate in brackets (on the right, 
below) the base of the system as written down in the 
customary decimal system, for example

1 101(2) =  1 x 2 3+ l  x 2 2+ 0 x 2  +  l =  13,
20 120(3) = 2 x 3 4+ l x 3 2+ 2 x 3  =  177,
*13/3(12) =  lOx 123+1 x 122+ 3 x  12 +  11 =  17471,

1-672(8) =  ! + -
477
256

(1)

In the last example on the left, there is a so-called 
r a d i x  f r a c t i o n ,  which is analogous to a decimal 
fraction.

When k is large, the numbers 10 to k —1 can be 
written down by making use of the decimal system, 
joining these number-symbols by a short stroke on top; 
for example:

10 0 6_1 l(i6)_= 10 x  163+ 6  x  16 +  11 =  4203,
3 13 12 41(60) =  3 x  603+13 x 602+12 x  60 +  

+41 =  695561,
0-30 10(M) =  — +  —  =  —

60 602 360

2

(2)



Various Systems of Notation

It can be seen from equalities in (1) and (2) that it 
is quite simple to change over from writing a number 
down in the base-Ar system to writing it down in the 
convenient decimal system.

It is also quite easy to solve a converse problem: 
to write down a natural number N  given in the decimal 
system, in the system with base k.

Let ». , ,N  =  kqi+co,
qt =  kqz+Ci, 
q2 =  k q s+ C 2,

qn—2 — Afg„_i +  Cn_2,
qn—\ =  kqn+c„_i.

Here q1 and c0 are the quotient and the remainder 
obtained, when N  is divided by k; in general q,+1 
and c, are the quotient and remainder obtained in the 
division of q, by k. Each of the remainders c0, cv  c2, . .  
c„_x is less than k, but greater than or equal to zero; 
0 <qn<k. Hence
N  =  (kqz+Ci) k-t-co=q2k2-\-Cik+c0 =

=  {qsk-\-c2) k2+Cik+c0 =  . . . =  qnkn-\-Cn-ikn 1-|- 
+  c„_2/fB“2+  . • • +czkz+ cik+ c0 =

— l̂ n—2 • . • C2ClCo(k)< 
It is convenient to carry out calculations according 

to a scheme, which becomes clear from the following 
example; express 695561 in the system of notation with 
the base sixty.

695561 | 60
60 11592 | 60

95 60 193 | 60
60 559 180 3
355 540 13
300 192
556 180
540 12

161
120
41

3
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Therefore

695561 = 3 13 12 41(60).

If N =  then in order to write N  down in the system
of notation with base k, it is sufficient to write down a 
and b in this system. The fraction obtained can be 
represented in the form of a hase-k fraction, by dividing 
a by b in the base-A: system. Here the number a (we 
suppose a<6) and the remainders obtained in the 
process of division, must be split up into units of lower
orders ( equal ^ , . . .j adding on a zero on the
right-hand side of each of them. Let us represent, for

17 4instance, jg in the duodecimal system, and  ̂ in the
system with base three:

£  =  =  0'114(12), since when Zc = 12lO 10(12)
15-0 1 16 

_ 14 6 O-lT 4
_ 60

60
0

T = <M120102)(3)> since __11-0 | 21
*”  21 0-120102. . .

__ T26
112
_ 1 0 0

21
J 200

112
11 and so on

(the last remainder 11(3) coincides with the initial 
number a = 11 (3), therefore, the required fraction is 
recurring.

4



Various Systems of Notation

It is easy to verify the truth of the result obtained 
by applying the following rule: in order to convert a 
recurring base-/c fraction, into a vulgar fraction, the 
whole period of the fraction should be divided by a 
number, which is written down by means of as many 
“k —1” as there are digits in the period (prove (J) this 
rule, making use of the formula for the sum of terms 
of an infinitely decreasing geometrical progression).

In this case k =  3, therefore

0.(120102)0)
120102(3) 11(3)
222222(3) 21(3)

(after cancelling by 10212(3) — check!).
In order to make it easy to multiply and divide 

numbers in the system with base-/c, it is useful to have 
multiplication tables, which give products of pairs of 
numbers not exceeding k —1.

For example, for k = 8 and for k =  12 we have 
respectively:

2 3 4 5 6 7 2 3 4 5 6 7 8 9 a P

2 4 6 10 12 14 16 2 4 6 8 a 10 12 14 16 18 la
3 6 11 14 17 22 25 3 6 9 10 13 16 19 20 23 26 29
4 10 14 20 24 30 34 4 8 10 14 18 20 24 28 30 34 38
5 12 17 24 31 36 43 5 a 13 18 21 26 2/3 34 39 42 47
6 14 22 30 36 44 52 6 10 16 20 26 30 36 40 46 50 56
7 16 25 34 43 52 61 7 12 19 24 2/1 36 41 48 53 5a 65

8 14 20 28 34 40 48 54 60 68 74
9 16 23 30 39 46 53 60 69 76 83
a 18 26 34 42 50 5 a 68 76 84 92

p la 29 38 47 56 65 74 83 92 a l

For example, 5 x 6  =  36(8); 5 x 7  — 2/J(12).
Prove (2), that the extraction of square roots in any 

system of notation is carried out exactly in the same 
way as in the decimal system (see example at the beginn­
ing of this chapter). 5

2 5
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The Binary System of Notation
In the binary system of notation any whole number 

can be written down by means of the digits 1 and 0; this 
means, that any natural number is a sum of various 
powers of 2:

N  =  2ai+ 2 a2 +  . . . + 2 “* (ai > a 2 > ...> a 4>0).
The trick involving guessing a number is based on 

this property of integers: on cards with “headings” 
1, 2, 4, 8, 16 (Fig. 1), integers are written down in such 
a way that any given number N  occurs only on those 
cards the sum of whose headings equals N. For example, 
27 (1 + 2 + 8  +  16) should be absent only on the card 
with the heading 4 and so on.

Having got someone to think of a number not exceed­
ing 31, and to point out exactly in which cards the 
number is to be found, it is possible to guess immediately 
what that number was, by adding up the numbers in 
the headings of the cards pointed out.

This trick can be mechanized by writing out the 
tables indicated on the laminae which weigh 1, 2, 4, 8, 
16 g respectively. If the laminae containing the number 
thought of are placed on a sufficiently sensitive spring 
balance, the pointer will come to rest at that number. 
Another possibility of mechanizing the trick is referred 
to in [25], p. 71. 6

6



Various Systems of Notation

The binary system of notation is used frequently in 
contemporary electronic computers. The situation is that 
elements, which are used to represent numbers in these 
machines, can exist in two easily distinguishable states 
(for example, positive and negative charge of a portion 
of the dielectric, opposite magnetization of a portion 
of magnetic tape, etc.). Thus, each such element can 
be used to represent one order of the number expressed 
in the binary system (one state represents zero in a 
given order, the other state represents 1). It is also of 
some significance, that it is much simpler to operate 
on two kinds of digits (0 and 1) only. The binary system 
finds some application also in the theory of games with 
three piles of objects (see § 10).

The System of Notation with the Base Three
In the system of notation with the base 3, any whole 

number can be represented by means of the digits 0, 
1 and 2. However, if “negative digits” are introduced, 
as is done, for example, in representing logarithms with 
a negative characteristic, then it follows from the 
equation

2 x  3">=3m+1—3m= l  ><3m+1+ l  x 3 m 
that any number can be represented in the system with 
base 3 by means of the digits 0, 1, 1 and therefore, 
we have the following.

T h e o r e m . Any integer is an algebraic sum of various 
powers of three, i. e.

N  =  3ai+ 3 a2+  . . . - 3 ^ - 3 ^ -  . . ., (3)
where <x.v  a2, . . ., (}v  ft2, . . .  are various non-negative 
integers; there might not necessarily be any negative 
terms in the eqn (3).

For instance, for the number 1910 we have:
N  = 1910 ” 2121202(3)_= 212121 fp) = 212211 f (3) _= 
= 2 1 3 l i l l (3)=  2201111(3) = 3101111(3) = 10101l'll(3)
= 37_ 3 5 _ 33 _ 32 +  3_30
(in the process of transformation, the 3 acts temporarily 
as a digit).

2* 7
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Hence there follows naturally the solution of the 
ancient problem about four weights, by means of which 
any load from 1 to 40 kg can be weighed on a beam 
balancef).

For a detailed analysis of the problem and its genera­
lization, see [30], pp. 176-178 (supplemented by S. 0. 
Shatunovsky) and in [25], pp. 76-90.

Indeed, by placing on one pan of the balance weights 
of 3"1 kg, 3“2 kg, etc., and on the other pan — kg, 

kg, etc. [see (3)], we can weigh a load of N  kg. 
Therefore a set of weights of 1 kg, 3 kg, 9 k g ,. . ., 
3n kg permits the weighing of any whole-number load 
of N  kg, where

3»+1 — l
N < 1 + 3 + 9 +  . . .  +3" -  -

a
when n = 3

Problems. 1. Represent (3<I) the numbers 2713 and 409 in 
the system of notation with the base 5, by means of the digits 
0, 1, 2 (you are allowed to use “negative” digits).

2. Verify the correctness of the operations carried out at 
the beginning of this chapter in two ways:

(a) by carrying out all operations directly in the scale to 
base 8,

(b) by representing the numbers with which the operations 
were carried out, and the resulting numbers, in the decimal 
system.

3. Represent ^ and ^  in the form of fractions in the binary,
base-3, duodecimal, and base-60 systems. For verification, 
transform the fractions obtained into ordinary ones.

4. Having represented 676 in the binary, base-3 and base-5 
systems, extract the square root of the numbers obtained.

5. Show (M) that in order to change over from the base-8 
system to the binary one it is sufficient to express each figure 
as a three-digit number in the binary system; for example:

7315(g) = 111 011 001 101(2)
and conversely

^000^01^0(2) = 2056(8).
t) Footnote: the problem of the weights was investigated as far 

back as A. D. 1202 by Leonardo of Pisa (Fibonacci).

8



Various Systems of Notation

Taking into account this rule and analogous rules for the 
transition from the system to the base 4 and the system to 
the base 16 to the binary one, etc., show that

1 1 4  13(le) = 5515(e) and 773(B) = 13323<4).

6. Prove (*) that when k > 5 the number 123454321^ is 
a perfect square.

7. How is it possible (") to determine the natural number 
N  (up to 1000) thought of by someone, by asking 10 questions 
the answer to each of which is “yes" or “no” ?

8. It is no accident, that each of the cards in Fig. 1. contains 
16 numbers.

In general, if s cards with headings 1, 2, 4, 8 ,. . ., 2*-a, 2,_1 
are taken, and any number m (from 1 to 2*-1) is written down 
in all those cards, whose headings add up to m, then each 
card will contain 2*-1 numbers. Attempt to prove thistheorem(«).

9



§ 2. Some Facts from the Theory 
of Numbers

If, given a and b, it is possible to pick such a number 
c, that a = be, it is said that a is divisible by b, and b 
is called the divisor of the number a (unless otherwise 
stated, only natural numbers are dealt with in this 
chapter).

The number p is called prime if it has two positive 
divisors only; 1 and p.

Any composite (i. e. not prime) number n can be 
represented in the form:

n = pfp? . .  . pi, (1)

where p1, p2........pt are prime numbers and a, /J,. . .,
a are natural numbers: if there are no identical numbers 
among plf p2, . . pk, then (1) is called the canonical 
factorization of n.

In any course on the subject of the theory of numbers 
there is to be found the proof of the following

T h e o re m . For any number n there exists only one 
canonical factorization (provided factorisations differing 
only in the order of factors are not regarded as different).

Some readers might regard it as strange that mathema­
ticians waste efforts on proving such self-evident 
theorems. However, the following example, taken from 
another numerical region (not from the realm of natural 
numbers) shows that a perfectly analogous and seemingly 
self-evident theorem can be wrong. We shall call 
“ composite” the complex number a+ b  |A(—■6), where 
a and b are any whole numbers, if it can be represented 
in the form:

a+b  jA-6 = (c+d K—6 )(e+ / K -6),

10



Theory of Numbers

where c, d, e and /  are whole numbers (which can, in 
particular, be zeros) and each factor is neither 1 nor 
— 1. Otherwise we call it prime.

According to this definition, the numbers 20 — ]((—6), 
7 (here a = 7, b = 0), and 6 (a = 6, 6 = 0) are com­
posite numbers:

2 0 -  Y- 6 = (2+3 Y—6) (1 -2  f - 6 ) ,
7 = (1 + f —6) (1 —f —6),
6 = 2 x 3 - ( K - 6 ) x ( -  f —6).

But it is possible to prove, thatnumbers f ( —6), — f ( —6), 
2, 3 are “prime” numbers (see e. g. [24], pp. 84-85). 
It follows that the composite number 6 can be factorized 
into primes in two different waysl

Functions x(n) and S(n)
Let us denote the number of positive divisors of n 

by r(n), and their sum by S(n).
For example, r (10) = 4 and S  (10) = 18, since 10 has 

only four positive divisors; 1, 2, 5, 10.
If n — plp% . . . pk is the canonical factorization of n, 

then
T(71) = (a +  1) (/3+1) (y+1) . . . (cr+1), (2)

S(n) = (I+P1+P1 +  • • ■ + p “) (I+P2 +  • • • +P2) x
x ( l+ p 3 +  • • • +piT) • • • ( l+ p * +  • • • +p*)- (3)

Indeed, any number of the form
. , . ,  p r p f p r . . .  f ,m which
0 < a ' < a ;  0 0 < y < y ;  . . .; O + o '+ c t .

(4)

(5)
is a divisor of n.
Since a' can be selected in (a +  1) ways, /f can be 
selected in (/? +  1) ways, etc., there exist (a +  1) 
(/? +  1) ways of selecting a pair of numbers a', /S' 
(each specific value a' can be combined with any of 
the /3 +  1 values of /S'), and there are (a  +  l)(/3  +  l) 
(y +  1) ways of selecting a triplet of numbers a', /S', y' 
(any specific pair a', /S' can be combined with any of the 
y +  1 values of y'). 11

11
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Continuing this reasoning, we conclude that the group 
of numbers «', fi', y', .  . ., a', satisfying condition (5) 
can be selected in (a  +  1) (/? +  1) (y +  1). . . (a +  1) 
ways. Therefore formula (2) is correct. The truth of 
formula (3) is deduced from the fact that on multi­
plying out the polynomials in the right-hand-side of 
(3) we obtain the sum of all possible terms of form (4).

If iS(n) - 2n, the number n is called perfect. For 
example, 6 and 28 are perfect numbers, since S  (6) = 12 
and £(28) = 56.

Euclid established that even numbers of the form

N  ~ 2« (2a+1 -  1), (6)

where a  is a natural number and 2a+1 —1 is a prime 
number are perfect (see [2], pp. 72-74). On the other 
hand, no perfect even numbers exist with any other 
canonical factorization.

So far, it is established that numbers of the form 
2a+1 — 1 (called Mersenne numbers, after a French 
scholar of the XVII century) are prime for a =  1, 2, 
4, 6, 12, 16, 30, 60, 88, 106, 126,520,606, 1278,2202, 
2280; that is, so far only seventeen perfect numbers 
are known.

The first seven perfect numbers are as follows

6, 28, 496, 8128, 33 550 336, 8 589 869 056,
137 438 691 328.

To this day it is not known whether there exist odd 
perfect numbers.

In mediaeval times, mystics among mathematicians 
paid great attention to so-called amicable numbers, 
that is numbers a and b, for which S(a) = S(b) = a +  b. 
Using formula (3), prove that 220 and 284 are amicable 
numbers. Numbers 18416 and 17246 are also amicable.

Function x (the integral part of x)
The function [x] equals the greatest integer not 

exceeding x (x is any real number).

12
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y

-i— i— i— '__ i__i__i__ i_
- 3 - 2 - 1  I 2 3 4  5 x

Fig. 2 

[K 7] =  2,
19

[6] =  6.

- 4 ,

The function [x\ has “discontinuities”, i. e. it varies 
by leaps. Figure 2 shows the graph of this function: 
the left end of each of the horizontal segments belongs 
to the graph (bold dots) and the right end does not 
belong to it.

Try to prove (7), that if nl = plp^pl • • • P (the cano­
nical factorization of the number nl), then

" n A
+ + 3

Pi. Pi. Pi
for /?, y, . . a.

+  • • analogous formulae occur

Knowing this, it is easy to determine, for example, 
how many zeros are at the end of the number 1001 
Indeed, let 100! = 2°3V . . .  97a. Then

13
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Therefore 1001 is divisible by (2+5)24 i. e. it ends in 
twenty four zeros.

1. Prove<8>, that, in accordance with formula (6), when a =  
=  2280 a 1373-figure perfect number is obtained (1 log 2 
=« 0.301029996).

2. Making use of the formula (3) prove <B>, that for N =  2a 
(2 0+1 — 1), where 2 “+1— 1 is a prime nu mber, S (N ) = 2  N.

3. Find the greatest natural number k, for which 
101 x 102 x . . .  X 999 x 1000 is an integer/10*

4. Show<U) that 1322 314 049 613 223 140 496 =  363 636 3642 
is the smallest perfect square, which has two identical digits 
side by side when it is written down in the decimal system 
(in other systems of notation a similar problem has smaller 
solutions, for example 11(3) =  22; 882 882(33) =  73322;
288 288(33) =  39002). Seek out perfect cubes which are written 
down in some system of notation with two identical digits 
sidebyside (for example: 23 =  1 1 (7>, 101101001 101101001<3) =  
=  57 ). 14
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§ 3. Congruences

If the integers a and b, when divided by the natural 
number m, yield equal remainders, i. e. a = mq1 +  r 
and b = mq2 +  r (r, qx, q2 are integers, and 0 <  r <  m), 
they are called congruent, modulo m and we write 
a =  b (mod m). For example 27 = —13 (mod 8). Ob­
viously the difference a — b of two numbers a, b which 
are congruent modulo m is divisible by m. In our case, 
27 — (—13) = 40; 40 is divisible by 8.

We suggest, that the reader proves the following 
properties of congruences:

if a = b (mod m), c = d (mod m), then:
(1) a +  c s  b +  d (mod m)
(2) a — c = b — d (mod m)
(3) ka = kb (mod m) (k is any integer)
(4) ac = bd (mod m)
(5) an = bn (mod m) (n is any natural number)

(take into account, that a = b +  mt, 
c = d +  mt' where t and /' are integers).

The enumerated properties easily yield (12) the theo­
rem:

T h e o r e m . If a  =  /? ( mod m), and if f (z) =  a 0 +  
-(- axz +  . . . +  onzn is a polynomial with integral coeffi­
cients, then f(oi) = f((i) (mod m).

This theorem helps in working out the tests for 
divisibility of a natural number IV by 7, 9, 11, 13.

Let N  = CkCk^c-uz. . . c2cxc0(10j = c*10* +  c*_110-1 +  
+  • • • +c2102 +  qlO +  c0 = C, 1000* +  Cs-X 1000'-1 +  
+  . . . +  Ca10002 +  Q1000 +  C0; here C0, Cv . . ., 
are numbers, which are obtained, when the number N

15
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is divided up from right to left into divisions of three
digits each :s = ^-j and C, may be a one-digit, two-digit
or three-digit number (for instance, IV — 15 032 104 341 
= 341 +  104 x 1000 +  32 x 10002 +  15 x 10003; 
here s = 3, C0 = 341, Cx = 104, C2 = 32 and C3 = 15). 

On introducing the notation
C ^  +  Cfc-iZ4- 1-}- . . .  + C 2z2 +  C,Z+C0 =  /(z ),

Csz, +Cs- 1zs- 1+  . . . +CjZ-f-C0= F(z),
we have

N  = /(10) = F(1000),
/(l) = Ck +  +  . . . +  c2 +  cx -f- Cq = a(N) (the
sum of digits of number N)

/ ( —1)—Co—Ci-f c2— . . . + ( —1)* ck = a' (N),
F ( - l ) - C 0- C 1+C1-  . . . + ( - l ) 'C s = 2 '(N ) :
we shall name the latter two sums, conditionally, the 
algebraic sum of digits, and the algebraic sum of three-digit 
divisions of the number N.

Since 10 = 1 (mod 9), it follows from the last theorem 
that /  (10) = /  (1) (mod 9) or N  = a (N) (mod 9), i. e. 
N  when divided by 9 gives the same remainder, as a N, 
therefore N  is divisible by 9 when and only when a N  
is divisible by 9.

Similarly, from the congruence 10 = — l(mod 11) we 
have: /  (10) = /  ( — 1) (mod 11), or N  = a' (N ) (mod 11), 
therefore N  is divisible by 11, if the algebraic sum of 
the digits of the number N  is divisible by 11 (and con­
versely).

It follows from the easily verifiable congruences 
1000 — —1 (mod 7): 1000 = —1 (mod 11) and 1000 
- - 1 (mod 13) that
F(1000) = F ( -1 )  (mod 7), F(1000)s F ( - l )  (mod 11) 
and

F (1 0 0 0 )sF (- l)  (mod 13).
or

N  = Jg'(N) (mod 7), N  = ^ \ N )  (mod 11),
N  S 22'(N) (mod 13),

16
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i. e. N  is divisible by 7 if the algebraic sum of the three- 
digit divisions of the number N  is divisible by 7 (and 
conversely I); the tests for divisibility by 11 and 13 are 
formulated in the same way.

Similar arguments apply also in deducing the tests 
for divisibility of numbers, written down in the base-/r 
system of notation, by k —1 and by Ar-f-1: the number N  
is divisible by k —1 (by k + 1) when and only when 
the sum of its digits (the algebraic sum of digits), 
N  being written down in the base-/r system, is divisible 
by Ar—1 (by &+1). [Give the details of these arguments.]

Find the tests for divisibility by 5 and by 13 in the 
base-8 system, the tests for divisibility by 2, by 4 and 
by 7 in the base-3 system, the tests for divisibility by 
13 and by 8 in the base-5 system of notation(13).

Congruences help to solve easily problems of the 
following type: find the remainder obtained in dividing 
the number N  =  136B +  48 x 1050 by 17. Obviously, 
we must find the smallest non-negative number con­
gruent with N, modulo 17; applying the relevant pro­
perty of congruences, we get: 1309 +  48 x 10“° = 
= (—4)89 -  3 x 1002rt = 4 x 1634 -  3 (—2)25 = 
S - 4  ( - 1 ) 34 +  6 x 16® a  - 4  6 (- l)«  ■ 2 (mod 17), 
therefore, the required remainder equals 2.

Find(14) in the same way, the last two digits of num­
bers 293293, 21000, 6989 +  3131.

Euler’s Functions
The number of numbers, smaller than n (n is a natural 

number) and relatively prime to n, is called Euler's 
Function ip(n).
for n = 2  | 3 4 [ 5 6 [ 7 8 9 10 | 12 20 36

<p(n) =  1 | 2 2 1 4 2 J  6 4 6 4 | 4 8 12

(for example, y> (10) =  4, since of the numbers, which 
are smaller than 10, only four numbers — 1, 3, 7, 9 
are relatively prime to 10). We make the convention 
that y> (1) =  1.

17
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It is easy to prove(15) that, when p  is prime,
ip(p) =  p —1 and ip(pk) =  pk—pk~1.
In the theory of numbers, there is a theorem which 

states that for a and b which are relatively prime, 
ip (ab) =  y> (a) ip (b). It follows hence, that, if n =  
=  PiP$ . . . pi is the canonical factorization of n, then

< p (n )= (P i-p t~ 1) ( p H - p t 1 ■ • • ( p l - p T 1)- (1)
Gauss proved that the sum of the values of Euler’s 

function, which have been calculated for all divisors 
of the number n, equals n. For instance

*(1)+ ?>(2) +  p(5)+ p(10)=1 + 1 + 4 + 4 —10.

Euler proved that, for relatively prime k and n, 
it is always true that /r n̂) = 1 (mod n): in particular, 
when p is prime and a is not divisible by p, aP-1 = 1 
(mod p) (“Fermat’s little theorem”).

We recommend that the reader verifies the truth of 
Euler’s, Gauss’ and Fermat’s theorems for a series of 
particular examples.

It follows from Euler’s theorem, that the “exponential 
congruence” kz = 1 (mod n), for relative primes k and 
n, is bound to have the solution z — ip (n) : however, 
it may turn out that this congruence is true also for 
smaller values of z.

The smallest natural number z0, satisfying this con­
gruence is called the index to which k belongs, modulo n. 
It can be proved(18) that z0 must be a divisor of the 
number ip (n). In order to find, for instance, the smallest 
root of the congruence 60z = 1 (mod 17), all divisors 
of the number y>(17) =  16 must be tested. Since 
60* =  9Z (mod 17) and 92 = — 4 (mod 17), 94 = 
= (—4)2 = — l (mod 17), 98 = 1 (mod 17), therefore 
60 belongs to the index 8, modulo 17.

If the fraction— in its smallest terms is represented
in the form of a base-k fraction (k and n being relatively 
prime) the number of digits in the period of this fraction 
equals(17) the index z0, to which k belongs, modulo n.

18
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For instance, representing ^  in the form of a systematic
fraction in the 60-based system of notation, we shall 
have 8 digits in the period of the continued fraction. 
Make sure for yourselves by dividing 1 by 17, that
— =  0(3 3T 45 52 56 28 7)m .

Find, in the manner indicated, the number of digits 
in the periods of the continued decimal fractions cor­
responding to the vulgar fractions -y> 
and verify the results by direct division by 7,13 and 19. 19
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§ 4. Continued Fractions and 
Indeterminate Equations

Any positive rational number (a and b being na­
tural numbers) can be represented in the form of a 
so-called (terminating) continued fraction.

Let the quotient obtained in dividing a by b be qQ 
and the remainder be rx; on dividing b by r, the quotient 
is ft and the remainder r2; on dividing rx by r2 the quo­
tient is q2 and the remainder r3, etc. At some stage rn_ t

must divide by r„ without a remainder (r—  =  qn)-
rn

In the theory of numbers it is proved that r„ =  (a, b) 
[(a, b) is the greatest common divisor of the numbers 
a and 6], The process of finding the greatest common 
divisor of two numbers by means of consecutive divi­
sions is called Euclid’s algorithm.

The division is usually laid out in the compact form :

_  a \— 
q«

_  b \l±

_  rl\j±
[tfyqz

\r3

Cn—l \~rn
qnrn %

6

20
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Obviously
a , r, , 1  , 1
-  =  7» +  — -  <ta +  — — qo --------   —h h h * 2

?l +  —
A

7o — • • • — 7° +
71

?2 + 3̂ +

This is the continued fraction required. It is often 
written down in the form:

a _  1
— — 7o H—  i
b 7i +  1

17z + _L 
7a +

1
“I------- i

7n-l +  J -  ,
7n

where any unity is divided by the whole expression 
underneath it.

It is also convenient to write this down in the agreed 
form

~  =  [7o> 7l> ?2 * ■ • 7n—1> 7«]>0

where only the partial denominators 

7o» 7i» 72» • • ■> 7"-i> 7n*
are shown.
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For instance
173
39

Because

2
2
0

* * * * * *

[4 ,2, 3, 2, 2],

.5
4

2“

17 
15 
| 2 

2

39
34
[5_
3

173 |_39 
156 T  
|J 7  
“ 2

If the fraction is terminated at the k-th partial 
denominator, then, on representing the abbreviated 
continued fraction q0, qlt ■ ■ ., qk-v 7* in the form of 
a vulgar fraction, we obtain the so-called /r-th con-

P  P  nvergent fraction — . Obviously —  =  . .
Vlt vn

p Convergent fractions have a number of important 
roperties (see [2] or [28]).
Property 1. The numerators and denominators of 

three neighbouring terminating fractions are connected 
by a recurrence relationship

Pk +1 =  Pkqk+i-\-Pk-l‘* Qk+l = Gfc?fc + l +  Oft-l> (1)
enabling us to calculate easily the convergent fractions 
from known partial denominators.

Having worked out for the fraction ^  — =  4 =  j
P  4 Q

and „1 =  4 +  7T =  it, we can find the remaining con-Vl 4 z
vergent fractions by means of the formulae (1). The results 
of the calculation can be conveniently set out in a table
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k 0 1 2 3 4

q* 4 2 3 2 2

p k 4 9 31 71 173

Qt 1 2 7 16 39

For example;

P 2 = P\qi ~{~Po= 9 • 3 -(-4=31,
Q2 — Qi92+Oo = 2-3-(-1=7

and so on.

Property 2. Always

— < — =  <T . . . < — < — < — .
Oo 0* O4 ft On Os Qa Ol

Property 3. For any k we have

Pk, _  P±±  =  (-I)* " 1 (2)
Ofc Ok—1 QkQk-l

or
PftQfc-i-Q fcPk-i^-l)*-1. (3)

It follows from here that (P*, 0*) — 1> because other­
wise [i. e. when (Pk, Qk) > 1 ]  the expression PkQk- x —
— QkPk-i, which equals (—I)4 *, is not divisible by the 
number (Pk, Qk).

If (a, b) — 1, then it follows from ^ that

a =  Pn and b =  Qn and from (3) we have, when k =  n.
®0n—1 ftPn—1 = ( l)n_'• (4)

The eqn. (4) is the key to the integral solution of 
the so-called indeterminate equation

ax+by=c, (5)
where a, b and c are integers, and (a, b) =  1.
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Indeed, having rewritten (4) in the form 
a(-l)»-icQ n_1+ 6 ( - l ) ncPn_1- c ,  

it is possible to state, that the numbers
* b - ( - l )" -1c(?n-i> y0 = ( - l ) ncPn- i  (6)

represent one of the integral solutions of the eqn. (5). 
It is easy to show(16) that:

(1) all remaining solutions of the equation (5) are 
obtainable from (6) by means of the formulae: x =  
=  x0 +  bt, y =  yo — af, where t is an arbitrary integer;

(2) when (a, b) >  1, the equation ax +  by =  c has 
no integral solution if c is not divisible by (a, b) (if, on 
the other hand c is divisible by (a, b), then, on dividing 
all terms of the eqn. (5) by (a, b) we arrive at the 
equation a'x -f- b'y =  c', where (a', b') = 1 ) .

Let us clarify the above by means of an example. 
In a jar, containing both spiders and beetles, there 

are altogether 38 legs. How many spiders (x) and how 
many beetles (y) are there in the jar, if a spider has 8 
legs and a beetle 6?

Obviously, 8x +  6y =  38, or 4x +  3y =  19. Here 
a =  4, b =  3, c =  19. For the continued fraction

I " 1 + 5 ’ ^ - T a"d § - | - Therefore
I0 = (-1 )1-1x19x1  = 19, y0 = ( - l ) l x l 9 x l  =  —19, 

whence
x =  19+3/; y = —19—4f.

The sense of the problem makes us interested in 
positive values of x and y only i. e. it should by 19 +
+  3f >  0 and -  19 -  4f >  0, or <  t <  -  —.
When / =  — 5 we have: x-± =  4; y1 =  1 (four spiders 
and one beetle) and when t =  — 6 we get x2 =  1. 
y2 =  5 (one spider and five beetles).

We shall indicate one more method of solving the 
eqn. (5). We rewrite it in the form ax — c =  — by. 
Obviously, it is required to find integral values of x. 
for which the difference ax — c is divisible by b, i. e.

ax=c(mod b). (7)
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This condition is satisfied by x = ca*^-1 (mod b). 
Indeed, substituting this value in the congruence (7), 
we obtain aca!p(b)~1 = c x 1 (mod b) (the latter transition 
is made on the basis of Euler’s Theorem).

For instance, for the equation 4x +  3y =  19 we have 
i s  19 x 4,,(3)~1 (mod 3) = 1 x  l 2-1 (mod 3) or x =  
=  1 +  3s; but in that case y =  5 — 4s. For s = 0 
we get xL = 1 and y± = 5 and for s =  1 we get x2 = 4 
and y2 = 1.

Solve, by any of the methods shown, the indeter­
minate equations

1) 617x—125y = 91, 2) 12x+31y=170

(see in [22] problems “auditing a cooperative” and 
“the trick of guessing someone’s birth date”).

It is also possible to expand any irrational number 
into a continued fraction. Separating out the integral 
part of a we get

then

a = 9o +  —  (?o = [a]* —  <1* ai >1) 
ai v ai /

«i —  (? i— [ai]>
a2

a2 =  Qz H------
a3

(<72 — [a2]> a3 ̂>1) CtC.

After repeating this operation n times we get a =  
=  [<70, qv  . . ., qn- i ,  a„]: since for any n, oc„ is irrational, 
the process never ends, and we obtain an (infinite) 
continued fraction;

& = [l7o» ?1> <72> • ■ •’ Qn — \> qm • ■ ■]•
If a is a “quadratic irrationality” i. e. a = a~ ^ c

where a, b, c, d are integers, then the partial deno­
minators beginning with a certain number repeat 
themselves periodically (see [2]). For example:
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/3  = 1 +  (/3  — 1) = 1 + 1
1 1 + V  3 + 1

= 1 +
1 +

]/3 - 1

K3 — 1 

= 1 + -
1 +

= 1 +
1 + K3 + 1

K3 — 1 

1 +  T  +  2 +  (K3 - 1 )

Since a3 = f3  — 1 = ax therefore the partial deno­
minators begin to repeat themselves in the future.

Commonly, we should write; f 3  =  [l, 1, 2, 1, 2,
1, 2 . . . ] .

Show by a similar method that f  5 =  [2, 4, 4 ,. . .]  
and Y7 =  [2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1 ,. . .]•

The properties of terminating fractions shown above, 
which also hold for infinite continued fractions, permit 
the easy finding of rational numbers as close as desired 
to a, provided sufficient partial denominators are known.

Indeed, on the basis of the second property of con­
vergent fractions, a is enclosed between any neighbouring 

P  Pconvergent fractions and — But the absolute value
Cft-1 Qk

of their difference equals —---- — (third property).
Q k - l  Qk

Therefore the error of the approximate equation
P  1a & 7:- is less than ^ „ For example, for f5  = 
Qk- 1 Qk- 1 Qk

= [2, 4, 4, 4 . . .] we have
Ic 0 1 2 3 4 ...

2 4 4 4 4 ...

Pk 2 9 38 161 682 ...

Qk 1 4 17 72 305 ...
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therefore, J/5 ^  (error <  17^72j, ^  (error<

724305)’ etc‘
Find (19) convergent fractions for f2  = [1, 2, 2, . . .] 

and for ]/3 = [1, 1, 2, 1, 2 , . . . ] ,  which differ from
f2  and from ]/3 respectively by less than 10“6.

The expansion of f  m into a continued fraction gives 
a simple method of solving in whole numbers the so- 
called equation of Pell

x2 —my2 = 1 .  (8

Let 1fm = [q0, qv  q2........qs-y  qs, qy  q2, . . ■] (the period
of the continued fraction is underlined).

It turns out (see [2]) that, for s even, the equation 
(8) has as its solutions the pairs of numbers (Ps_j, 

(^>2s-i> Qzs-i) »(Pss-i* Qi)s-i>) etc., and for s odd, 
the pairs of numbers (P^-v  <22s-i)> (Pu-u Q^-i)* (Pes-1» 
Qgs- i) etc.

In [2] a table is given of expansions of ]/m into a 
continued fraction, when m <  100, and also the smallest 
whole positive solutions of the equations x2 — my2 = 1.
For flO = [3, 6, 6, 6 ,. . .] we have

k 0 1 2 3 ...

qk 3 6 6 6 ...

Pk 3 19 117 721 ...

Qk 1 6 37 228 ...

Since s = 1, the solutions of the equation x2 — 10y2 = 
= 1 are the pairs of numbers x1 = Px = 19 and yt = Qx 
= 6; x2 = P 3 = 721 and y2 = Q3 = 228, etc. 27
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Forf32 =  (5, 1, 1, 1, 10, 1, 1, . . .] we have

k 0 1 2 3 4 5 6 7

5 1 1 1 10 1 1 1

Pk 5 6 11 17 181 198 379 577

<2* 1 1 2 3 32 35 67 102

Since s = 4, the solutions of the equation x2 — 32y2 = 
= 1 are the pairs of numbers xx = P 3 = 17 and yl = 
= Q3 = 3; z2 = P7 = 577 and y2 = Q-j = 102 etc.

Given that ]A89 =  [9, 2, 3, 3, 18, 2, 3 , . . . ]  and 
f61 =  [7, 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14, 1, 4, 3 ,. . .], 
show that the smallest integral solutions of the equations 
x2 — 89y 2 = 1 and x2 — 61 y 2 = 1 are the pairs of 
numbers (500 001,53000) and 1766 319 049,226 153 980) 
respectively.

In an article by the Polish mathematician Sierpinski 
the smallest solution of the equation x2 — 991 y2 = 1 
is given: = 379 516 400 906 811 930 638 014 896 080
and yt = 12 055 735 790 331 359 447 442 538 767.

This means that for any integral value of y not 
exceeding the number yv  y(991i/2 +  1), is an irrational 
number, and the rational number Xj is obtained, when 
at least y = yv

In order to imagine how great are the numbers Xj and 
yx in the last example, note, that if we were to take a 
milliard (1018) years to work out values of V(991y2 +  1) 
for y =  1, 2, 3, 4 ,. . . using one second for each calcu­
lation, we should not achieve an exact extraction of the 
square root.

Yet we could not maintain that V(9911/2 +  1) is 
irrational for any natural y ; once we increase the “testing 
time” approximately 400 times, we arrive at y, and we 
discover that V(991y2 +  1) is a rational number.

Let us consider one more problem, ascribed to Archi­
medes, and reducible in the end to an equation of 
type (8). 28
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In a manuscript discovered at the end of the eight­
eenth century it is said that Archimedes had found an 
ancient inscription and had sent the problem contained 
in it to the mathematicians of Alexandria.

The problem was to determine the size of the herd 
of cows and oxen belonging to the Sun. It followed from 
the first part of the data, given in verse in the problem 
(see [16] pp. 204-206), that the herd consisted of white, 
black, brown and dappled oxen and cows, and the num­
bers of oxen (U, X, Y, Z) and cows (u, x, y, z) of the 
different hues were connected by the relationships

t/ = — X + Y ; X  = — Z + Y ; Z = —  U + Y ;
6 20 42

u - X (x + x ) ; x - A (z + z) ; * - - £ ( * + » > ;

Amateur calculators can find (20)
U = 10 366 482 t, 
X  -  7 460 514 t, 
Y  -  7 358 060 t, 
Z =  4 149 387 t.

u = 7 206 360 t, 
x = 4 893 246 t, 
y = 3 515 820 t, 
z = 5 439 123 t

(t takes any integral values).
However, in the second part of the text of the problem, 

which is directed to the person who is to solve it, it is 
noted that the chief difficulties of the problem are 
those created by the supplementary conditions;

“If you count up how many cattle there were,
How many fat oxen and
How many milch-cows of various hues there were 
No one dare call you a fool at numbers.
Yet do not call yourself wise if you fail 
To reckon with different ways of the ox.”
After enumerating the different ways and habits 

of oxen, the concluding part of the text of the problem 
says: 29
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“Find all this and with the eye of your soul
encircle the herd and be able to pass
on your knowledge. Then step forth in pride;
Victory is yours and you’re wisest of all.”
If the habits of oxen are taken into account, then t 

in the given formulae has to be selected in such a way 
that

(1) the sum U +  X , which equals 17826 996/, is a 
perfect square, for which / should be taken as 
equal to 4 456 749s2, where s is any natural 
number;

(2) the sum Y  +  Z, which equals 11 507 447/, is a 
“triangular number”, i. e. a number of the form

n(n + l)
2
By substituting the expression obtained above in 

place of /, we come to the equation 51 285 803 909 803 s2 
= n(n+l)

2
If we multiply both sides of this equation by 8, then 

add 1 to both sides, and, finally substitute w for 2n +  1, 
we obtain the Pellian equation;

ia2—410 286 423 278 424 s2= 1.
If we denote the number of cattle in the herd by N  

(its smallest value), then when all the supplementary 
conditions are taken into account, it turns out (accord­
ing to calculations published in 1880 by Amthor) that

N  ^  77x 10206 S43.
It is doubtful whether the reader will manage “with 

the eye of his soul to encircle the herd and be able to 
pass on his knowledge” ! 30
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§ 5. Pythagorean and Heronic Triples

The well-known relationship between the hypotenuse 
and the other two sides of a right-angled triangle, 
x2 +  y 2 = z2, can be considered as an indeterminate 
equation with three unknowns.

It turns out [21, that all possible triples of integers 
which are relatively prime in pairs, and that satisfy 
the above equation (“Pythagorean triples”), are ob­
tainable from the formulae;

x = u2 — v2 

y = 2 uv
Z =  U2 +  V2

if we give the auxiliary variables relatively prime values 
and make one of them even, while the other one is odd. 
(If this condition is not observed, we obtain Pythago­
rean Triples, whose highest common factor is greater 
than 1.)

For example
u V X y Z

2 1 3 4 54 1 15 8 17
3 2 5 12 134 3 7 24 255 2 21 20 29
3 1 8 6 10

Pythagorean Triples are just a particular case of 
“Heronic Triples” — the name for three integers ex­
pressing the lengths of the sides of a triangle with an 
integral area. 31
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It is easy to prove(21) that any of the altitudes of a 
“Hcronic triangle” (for instance, BD in Fig. 3) gives 
two right-angled triangles (ABD  and BDC) with ra­
tional sides, either adjacent or overlapping each other.

If we take triangles A and 
A' with integral sides a, b, c 
and a', b , c' (c and c' are the 
hypotenuses) and we multiply
all sides of A by-- we obtain
the triangle A. with sides a',

* — , similar to the tri-(Z o
angle A- 

By causing the identical 
sides of the triangles A> and 
A' to become common to 
them both, we obtain two 
triangles with rational sides

—c, c \ -  £ ±  b' . Multiplying these numbers by a, we
obtain two Heronic triples a'c, ac', |a'b ±  b' a\.

In the same way, equalizing the side a with the
side b' (multiplying the sides of triangle A by -£), or 
equalizing the side b with the side a' [multiplying by 
y , or equalizing b with b' (multiplying by y)] we can 
get six more Heronic triples:

a'c, be', |a'a ±  b'b\: b'c, ac', \b'b ±  a'a\:
b'c, be', |b'a ±  a'b\.

For instance, for the Pythagorean triples (3, 4, 5) 
and 15, 8, 17) it is easy to find, by the method shown, 
8 Heronic triples; (75, 51, 84), (75, 51, 36), (75, 68, 77), 
(75, 68, 13), (30, 51, 77), (40, 51, 13), (40, 68, 84), 
(40, 68, 36). The first two and the last two triples, when 
divided by 3 and 4 respectively, give: (25, 17, 28), (25, 
17, 12), (10, 17, 21), (10, 17, 9).

Find (12) Heronic triples using the Pythagorean triples
(1) (3, 4, 5) and (5, 12, 13),
(2) (7, 24, 25) and (7, 24, 25). 32

B

(b)

F ig . 3
>/ 1 ~./
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§ 6. Arithmetical Pastimes

There are arithmetical problems, whose solution is not 
connected with any theory, and require of the solver 
only ingenuity and patience.

Problems of this kind include the search for interest­
ing relationships between numbers, for numerical curio­
sities, and so on.

Let us quote several typical examples;
1. Distribute symbols of arithmetical operations and, 

if necessary, brackets between the numbers 1 2 3 4 5 
6 7 8 9, without changing their order, in such a way 
that the result should be a given number N. For example, 
when N  ■= y2  and when N  =  1, we have: V2 = (123 —45): 
(67+89); 1 = 1 +  2 — 3 + 4  — 5 — 6 +  7 — 8 + 9 ;  
1 =  1 +  23 — 45 — 67 +  89 and so on.

One may set oneself the task of representing in this 
way the greatest possible number of natural numbers

kor fractions (for instance, fractions of the form 5,
where k = 1, 2, 3 ,. . .). Or conversely, one could take 
some number and try to represent it in all possible 
ways.

Certain restrictions may be introduced into the 
problem, for example by permitting the use of the 
signs +  and — only: or conversely, freedom of action 
may be increased by permitting the use of radicals or 
changing the order of the digits (for instance, 100 =  
=  672 -  4385 -  1 -  V9) etc.

2. Distribute the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 in 
given schemes in such a way that on carrying out the 
operations indicated correct equalities are obtained
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( a )  -----x ----------= -------------- (e.g. 12 x 483=
= 5796, etc.)

(b ) --------x ------ = ------ x ------
( c )  --------------- x — = ------x --------
3. Distribute the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 in 

such a way, that the product of three three-digit
nu m bers:-------- x ---------- x ----------- is as great
as possible (or as small as possible).

4. Distribute the digits 0, 1 ,2 , 3, 4, 5, 6, 7 8, 9 in
such a way that — — — ------------------   = n,
where n equals one of the numbers 2, 3, 4, 5, 6, 7, 8, 9 
(see [39], 1945, No. 3).

5. Certain numbers can be represented in a different 
form, without introducing new digits: e. g. 660 =  
= 6 1 -6 0 ;  1395 = 15 x 93; 145 = 11 +  4! +  51;
144 = (1 +4)1  + 4 !  = (1 +  f4)I x 41 387 420 489 =
_ 387 + 420-489

Try to find similar equalities.
6. By using once each of the digits 1, 2, 3, 4, 5, 6 and 

each of the operations — addition, subtraction, multi­
plication, division and raising to a power — obtain 
the greatest possible number ([36], 1946, No. 2, p. 49).

7. In the expression 1t2 -3 -4 -5 -6  :-7-̂ 8-̂ 9 brackets 
should be distributed in such a way, that after calcul­
ations, the greatest possible (or the smallest possible) 
number is obtained.

8. In the examples 41096 x 83 = 3410968 and 8 x 
x 86 =  688 the multiplication by a two-digit number 
has been simplified; the second digit of the multiplier 
is placed at the beginning of the multiplicand and the 
first at the end.

Look for similar examples.
9. It is mentioned in a certain journal that within 

the bounds of the first ten thousand there exist only 
eight numbers which can be written down in two sys­
tems of notation by three identical digits.

The smallest and the largest of them are 273 =  1111« = 6 
= 333(9) and 9114 = 222(67) = 14 14 14(25>; try to find 
the rest. 34
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Could you find the numbers (a) written down in 
three systems of notation by three identical digits; 
(b) written down in two systems by four identical 
digits.

10. Enthusiasts can be recommended to collect 
existing numerical curiosities and seek new ones. We 
quote here several examples which can suggest themes 
for independent researches.

a) TO 10 4 4,i3,= lT lT 2(13); 4 4 10 10^ = 7 72(13)
b) 77782—22232 = 55 555 555;
c) 888 8892—111 1122 = 777 777 777 777;
d) 999 999 9992 = 12 345 678 987 654 321 x (1 + 2  +  

+ 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2  +  1).
How would you verify the truth of the last three 

equations in the simplest possible way?(23)
11. Amusing cancelling. There are fractions whose 

magnitude does not alter on crossing out identical 
digits, or even groups of digits, in the numerator and
the denominator. For instance; —- = —; ;
2666 266 26 2 , 143185 1435 . 4251935345

" 665 = “ '6665 
425345

65 17018560 170560 ’ 91819355185

9185185 e ĉ‘ ^  *s Poss^ e to set oneself the task of 
finding all fractions admitting such “cancelling” by 
discussing the number of digits in the numerator and 
the denominator and what places should the “cancel­
lable” digits occupy. For instance, it is easy to obtain
from * 6 = — (a =N> c), that c =  Q10° 6. ; within the10 o + c c ' yo + o
bounds of ten, integral values of b and c are obtained
only for a =  1, 2, 4, which gives fractions , - r̂ , 
26 49
64 ’ 98 '

12. Using four 4’s (other variants require five 5’s, 
four 5’s etc.) represent any number from 1 to n where

4
n is a natural number. For example; 1 = 4 — 4 +  j  ; 

447 = 4-----4 etc. 35
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We can agree to use the “factorial” sign |21 = 41

+  j  — 4j the “radical” sign |l7  = J/44 -f -~j, and to 

introduce a “point above the figure” to represent recur­
rent decimal fractions. For example: 19 = | + - ^  and 
so on.
If we admit the use of the logarithm sign, then, as 
follows from the formula

it is even possible to express any natural number n by 
means of three 4’s. 36
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§ 7. Numerical Tricks

One sometimes comes across people who carry out 
mentally and with phenomenal speed, operations with 
multi-digit numbers. Such calculators, by utilizing a 
number of numerical tricks and various artificial steps, 
astonish audiences with one or two spectacular acts.

Of course, even when knowing the secret of this or 
that “act”, not everybody can be successful as a per­
former. The knowledge of the secret helps in the simplest 
cases only.

Let us describe several simple numerical tricks.

Guessing a Number, Thought of by Someone
Having asked someone to think of a number and to 

carry out certain definite operations with it, it is easy 
to determine the number thought of from the result 
of the calculations.

Here are several examples:
1. Ask someone to think of a number, to add 3 to it, 

multiply the sum by 6, subtract the number thought 
of from the product, subtract another 8, and, finally, 
divide the rest by 5. When you are given the result, 
you can state the number thought of straight away. 
As it follows from the equation [ ( i - ) - 3 ) x 6 - i - 8 ] t  
- 5  = x +  2, it is sufficient to diminish the result 
obtained by 2.

2. Ask someone to think of two numbers x and y, 
up to one hundred (the day of the month, the age of a 37
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person, the size of shoes, the change of a rouble, etc.) 
and carry out a series of operations which are deter­
mined by the left-hand side of the equation

(2 x x + 5 ) x50+z/—365= 100x+y—115=N.

Then, knowing N, you can determine x and ij (having 
added 115 to N  and split N  into two numbers by sepa- 
ating the two last digits).

3. Ask someone to think of the day (I) of the month 
(m) of the year (/?) of some event that happened in 
the twentieth century (the last two figures of the year 
should be taken) and carry out operations indicated in 
the left-hand side of the equation
[(20Z+222)x5+m]xlOO+n +  l l l  =

= 10 000Z +100m +n+lll 111 =  N.
on Z, n and m. In order to determine the date thought 
of, 111 111 must be subtracted from N  and the differ­
ence split up into groups of two digits each, from right 
to left. For example, if JV =  201656, the date thought 
of was 9. 05. 45, i. e. 9 May 1945. Any number of similar 
tricks can be invented.

The Guessing of the Results of Operations 
with an Unknown Number

There exist a number of tricks based on the fact 
that certain definite operations give identical results 
for a fairly wide class of numbers. This sometimes occurs 
due to the exclusion of the number thought of in the 
process of carrying out the operations, at other times 
because of the properties of the class of numbers or 
of the operations which are carried out.

1. If you write down on the right- hand side of any 
three-digit number N  the same number once again, 
and divide the six-digit number thus obtained (it 
equals 1001 x  N  =  N  x  7 x  11 x 13) by 7, divide 
the quotient obtained by N, finally, divide the second 
quotient by 11, the number resulting is always 13.
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Most people find it surprising that all divisions come 
out exactly, although N  is chosen at random.

2. Since any odd prime number other than 3 can be 
represented in the form 6/c ±  1, therefore p2 +  17 =  
=  36/c2 ±  12/c +  18, i. e. p2 +  17 always yields the 
remainder 6 on being divided by 12.

3. If in a three-figure number abc (a, b, c are the 
digits of the number) a > c ,  then:

(1) in the difference abc — cba = a/3y, = 9 = a +  /?
always,

(2) a/3y +  y/3a = 1089.
Thus, knowing only one of the end digits of a/3y 

it is possible to state at once the difference between the 
number abc which was thought of and the inverted 
number, and, knowing nothing of a/3y it is possible to 
guess the outcome of adding a/3y +  y/3a for any number 
thought of.

The Determination of a Number Thought of,
Using Three Tables

When numbers from 1 to 60 are distributed in their 
order in each of three tables, in such a way, that the 
first table is made up of three columns of twenty num­
bers each, the second one of four columns with 15 nu- 
bers in each, and the third of five columns of 12 numbers 
each (see Fig. 4), it is easy to determine quickly the 
number N (N <  60) thought of by someone, if that 
person points out the numbers, a, /?, y, of the columns 
in which the number thought of occurs in each of the 
three tables; N  equals the remainder of the division 
of the number 40a + 4 5 /3 +  36y by 60 or, in other 
words, N  equals the smallest positive number, congruent 
with the sum (40a +  45/3 +  36y), modulo 60. For 
example, for a = 3, /3 = 2, y = 1, 40a +  45/3 +  36y = 
= 0 +  30 +  36 = 6 (mod 60) i. e. N  = 6 (24).

A similar question can be solved for numbers up to 
420, distributed in four tables with three, four, five 
and seven columns: if a, /3, y, 5 are the numbers of 39
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columns in which the number thought of is to be found 
then it equals the remainder of the division of the

I n m
1 2 3
4 5 6
7 8 9
• • •
• • •
• • •

55 56 5 7

5 8 59 6 0

I n m EZ 1 n m nz V

1 2 3 4 1 2 3 4 5

5 6 7 8 6 7 8 9 10

• • • • •

• • • • • • • • •

51 52 5 3 5 4 5 5

53 5 4 5 5 5 6 5 6 57 5 8 5 9 6 0

5 7 5 8 5 9 6 0

numbers 280a +  105/? +  336y +  1205 by 420. Attempt 
to prove this, extending somewhat the arguments put 
forward in § 38 (see note[21]).

A Card Trick

Having asked someone to remove one card from a 
pack of 36 cards, it is possible to guess the name of the 
card by glancing quickly at each remaining card in 
turn (while holding the pack in one’s hand). Here it is 
unnecessary to attempt to retain in one’s memory the 
cards that remained in the pack, but it is sufficient 
to calculate the sum S  of the remaining points, which 
is quite simple, given some practice. Counting an ace 
as one point for simplicity, we have for S  : 190 <  <200  
and therefore it is only necessary to find the number 
of units in S (discarding the tens).

If that number equals, for example, 3, then S = 193, 
and it follows that the card removed from the pack was 
a seven, whose suit can be easily established on a 
second quick glance through the pack.

Who Took What?
The person who is to do the guessing gives one, two 

and three coins to three persons, A, B and C, respecti- 40

40



Numerical Tricks

vely and leaves 18 more coins on the table. A, B  and C, 
in his absence, distribute among themselves three 
objects: a fork, a spoon and a knife, after which the 
possessor of the fork takes as many additional coins as 
he received in the first place, and the possessors of the 
spoon and the knife respectively take double and four 
times as many coins, as they received originally.

For each of the six possible distributions of objects 
among A, B and C: /, s, k; s, f, k; /, k, s; s, k, f; k, 
f, s: k, s, /, there will be 1, 2, 3, 4, 5, 6, 7 coins left on 
the table, respectively. If you invent a simple method 
for remembering the variants of distribution of three 
objects among three persons in the same sequence as 
that written down above, you will be able successfully 
to guess who took what, from the number of coins left 
on the table.

In order to determine the owners of n different objects 
in a similar way — by coins left — it is necessary to 
select n different numbers av  a2, . . .  an (for the initial 
distribution of coins) and n multipliers, mv m2, . .  ., mn 
such that for different distributions of these multipliers
among the numbers av a2........a„ there would arise n!
unequal, but differing as little as possible, sums of the 
form

rnaiQ\-}'rna,Q2-\- • • • ~\~maifln

(oq, a2, . . ., an are the number-names of objects, taken 
by the 1st, 2nd . .  ., nth person, respectively). For 
n =  4 it is possible to take, for example a, =  1, a2 =  2, 
a3 =  3, a4 =  4 and the multipliers m1 :1, 2, 5, 15 (see 
[30] Ch. 12).

The Extraction of Roots of Multidigit Numbers

By making use of a number of simple procedures, 
it is fairly easy to extract mentally odd roots from 
numbers which are exact powers of two-digit or even 
three-digit numbers. 41
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When working out YN, the number N  should be 
split up into divisions, from right to left, each division 
containing s digits (the last division on the left may 
contain fewer digits, of course).

The last digit of the root can be easily determined by 
using the following two rules:

I. Numbers ns, n9, n13, . . . ,  n4̂ 1 always end in the 
same digit as n.

II. If the last digit of n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
then n3, n7, n11. . ., n45 -  1 end with 0 ,1 ,8 , 7, 4, 5, 6, 3, 
2, 9 respectively. ,

The first digit of the root YN  when s =  3 is obtained 
easily if the values n3 are known for 1 5̂  n <L 9; when 
s =  5, 7, 9, etc., the table of logarithms of the first 
nine numbers (to the second decimal place) should be 
memorized;

n 1 2 3 4 5 6 7 8 9

log n 0 0-30 0-48 0-60 0-70 0-78 0-85 0-90 0-95

E x a m p l e s .  1. It is possible to write down immedia-
3

tely ]/314432 =  68, by applying rule II and noting 
that 63 <  314 <  73.

7 7

2. YN  =  1/17565568854912 =  n. Since 
1013 < N  < 2  x  10]3,
therefore 13‘0 <  log IV <  13-3,
(consequently)!-85 <  log n =  y  log N  <  1-9, i. e.,

in accordance with the table shown, 70 <  n <  80: on 
applying rule II we get n =  78.

3. The 25th root of a 48-digit number ending in 8 
equals 68 (45 <  log N  <  46, consequently 1-8 <  log

n < i  lo§ N  < 1>84)-
If N  ends in one of the digits 1, 3, 7, 9, it is possible

3

to find the last two digits of y N  if we know the last 42
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3

two digits of the number N. For instance; ]/ . . .  53 =  
=  n =  10 z +  7. We work out mentally: (7 +  10z)3 =  
=  343 +  147 x z x  10 +  . . .  (the last two terms do 
not influence the number of units or the number of 
tens).

Since N  has five tens and 343 has four tens, the num­
ber 147z ends in 1 and z ends in 3 i. e. n =  100y +  37.

This procedure sometimes enables calculators, having 
asked someone to dictate slowly the digits of N  from 
right to left, to give the answer (for N  <  10B) before 
the end of dictation.

When certain other circumstances are taken into 
account, this procedure can be used even when the last 
digit of N  differs from 1, 3, 7 or 9; it can be applied, 
when s =  5, 7, etc. While referring those who are 
interested to [18], where several procedures used by 
performing calculators are described, we shall give here 
the description of one more method of finding one of

3

the digits of the number n =  YN, when knowing the 
remaining digits of n.

This method is based on the following rule(25):
if, on dividing n3 by 11, we obtain the remainder d :
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
then, on dividing n by 11, we get the remainder d :
0, 1, 7, 9, 5, 3, 8, 6, 2, 4, 10.
As it is known from § 3, N  = a'(N) (mod 11) where 

a’ (N) is the algebraic sum of digits of the number N. 
Therefore it is necessary to find a'(N) and determine d, 
which is congruent with it, modulo 11 (0 <Ld<, 10).

If the correspondence between d and dx is remembered 
(and lightning calculators have to keep plenty of things 
in mind I) it only remains to find the one unknown 
digit of the number n required from the known dx 
and the condition dx = a' (n) (mod 11). Example:
3

]/54 053 028 541 =  3z81 =  n. (How to determine all 
the other digits, apart from Z, is described above.)

As a'(N) s  1 — 4 + 5 — 8 + 2  — 0 +  3 — 5 + 0  — 
— 4 +  5 =  — 5 and — 5 = 6 (mod 11), therefore 43
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d =  6, consequently a'{n) =  1 — 8 + Z —3 =  Z — 10 
should be congruent with dx =  8, modulo 11, whence 
z =  7.

It goes without saying, that only a person with great 
aptitude for calculations, and having been specially 
trained, would be capable of performing all these cal­
culations mentally at a speed. 44
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§ 8. Rapid Calculations

The desire to simplify operations with many-figure 
numbers brought about the invention, in the 17th 
century, of tables of logarithms, and thereafter of the 
logarithmic ruler.

In the 19th century arithmometers made their appear­
ance, and the beginning of the 20th century saw the 
advent of automatic calculating machines; about fifteen 
years ago there appeared electronic computers which 
are capable of solving problems, requiring millions of 
operations with multidigit numbers, within a matter 
of hours.

Abbreviated Multiplication

In multiplying, say, the numbers 7496 and 3852 
we shall write down the complete products of each 
digit of the multiplicand by each digit of the multi­
plier in their respective orders.

X 7
3

4
8

9
5

6
2

0 0 0 14 8 18 12
0 0 35 20 45 30
0 56 32 72 48

21 12 27 18

8 8 7 4 5 9 2
7 10 13 10 4 T
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Any vertical column enclosed by the horizontal 
lines contains (from the top) (1) the product of the unit 
digit of the multiplier and the corresponding digit 
(a) of the multiplicand, (2) the products of the remaining 
digits of the multiplier, taken from right to left and the 
digits of the multiplicand to the right of a, taken 
simultaneously from left to right.

For example, in the hundreds we have:
8 (= 2 x 4 ), 45 (= 5x9), 48(= 8x6);

here a = 4. In the ten thousands we have:
0( = 2 xO), 35( = 5 x7), 32( = 8 x4), 27( = 3 x 9 );

here a = 0.
Adding up the numbers in each column and adding 

to them the “tens” carried in memory, which were 
obtained in adding up the numbers in the neighbouring 
order on the right (see numbers under the little arcs) 
we obtain, from right to left, all the numbers of the 
required product.

The numbers in the rows joined by the figured bracket, 
do not have to be set down in writing, and addition 
of the corresponding two-digit numbers can be carried 
out mentally. For this purpose, it is necessary, of 
course, to learn to add up two-digit numbers faultlessly 
and at a high speed.

For example having arrived at the order of hundreds 
(we have carried 4 from the order of tens) we announce 
(looking at 2 and 4 and then at 5 and 9, and finally 
at 8 and 6); “8 and 4 is 12, and 45 is 57, and 48 is 105, 
carry 10” (and we write 5 in the order of hundreds).

Practise first with two-digit and then with three- 
digit, etc. numbers, and you will see that after a while 
it is possible to multiply multidigit numbers easily and 
quickly.

Abbreviated Division

In dividing multidigit numbers it is easy to learn, 
while multiplying the divisor by the current digit of the 
quotient, to subtract simultaneously (without writing 46
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it down) the product thus obtained from the number N, 
which is formed by the first few digits of the dividend, 
or by one of the intermediate remainders. The digits 
of the difference required are determined in such a way 
(from right to left) as to give the number N, when 
added to the above product.

4 Q f i2 4 2  I 0 2 7
For instance: — —5~ . Here the digits of the

difference 8, 2, 3 are obtained as follows: noting men­
tally that 5 x 7 = 35 and that 8 has to be added in 
order to obtain a number ending in 3, we say “35 and 
8 is 43, carry 4 (we write down the digit 8 of the differ­
ence); 4 and 10 (5 x  2) is 14, and 2 is 16, carry 1 (we 
write down the digit 2 of the difference), 1 and 45 
(5 x  9) is and 3 is 49” (we write down the digit 
3 of the difference required.

The Abacus and Napier’s Bods

= 3 9 8 7  

= 7 9 7 4  

= 1 1 9 6 1  

= 1 5 9 4 8  

= 1 9 9 3 5  

= 2 3 9 2 2  

= 2 7 9 0 9  

= 3  1 8 9 6  

= 3 5 6 8 3

(a)

Fig. 5

The multiplication and division of multidigit numbers 
is considerably simplified, when an abacus and so-called 
Napier’s rods are available.

Each one of the Napier’s rods gives products of the 
digits in its “heading” and 1, 2, 3, 4, 5, 6, 7, 8, 9 (see 
Fig. 5a). Here, the tens appear above the sloping line 
in the correspondingbox, 
and the units below it.

When several rods are 
laid side by side in such 
a way that their head­
ings form the multipli­
cand, and if an auxil- 
liary rod is laid along­
side on the left, to indi­
cate the numbers of 
rows, the product of the 
multiplicand in the head­
ing and 1, 2, 3, 4, 5,
6, 7, 8, 9 are easily read 
off directly.
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For example (see Fig. 5a).

3987x8 7 6 /
/  2

= 31 896

(The tens above the sloping line are added to the units 
in the neighbouring box on the left.)

When multiplying together multidigit numbers, the 
products of the multiplicand and separate digits of the 
multiplier can, for convenience, be counted off immedia­
tely on the abacus (in the corresponding order).

Figure 6 shows the different stages of multiplying 
3987 by 672,

I. 23922 hundreds (3987 x 6) are counted off on the 
abacus.

II. 27909 tens (3987 x  7) are added on to the number 
counted off.

III. 7974 units are added on to the number obtained.
On the other hand, in dividing say, 2225575 by

3987, it is required to:
1. Count off the dividend on the abacus (Fig. 7a)
2. Find, in Napier’s rods a number, closest to 22255, 

but smaller (this will be 19935 =  3987 x 5) and sub-

Tl ■ ■ ■
Tp oorrrrr 2
xraooco------------ c 7
D------------ onrmnnr 9
j ------------ mpnnnr 0

.1

-------------am joooa

X O E l u

D -------------------- fTTTTTTT

jjjyyyXO ■ (

n

7
9
7
A

mrnrrrr
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Fig. 6

tract it from 22255. At the same time, count off the 
first digit (5) of the quotient on the top wire (Fig. 7b).

3. Find, in Napier’s rods, the number closest to 23207, 
but smaller (this will be 19935 =  3987 x  5).
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and subtract it from 23207 and count off the second 
digit (5) of the quotient on the second wire from the 
top (Fig. 7c).

4. Find, in Napier’s rods, the number closest to 
32725, but smaller (this will be 31896 =  3987 x 8) 
and subtract it from 32725, and count off the third 
digit (8) of the quotient on the third wire from the top.

As a net result we have the quotient required (558) 
on the top wires, and the remainder (829) on the bottom 
ones (Fig. Id).

Make some Napier’s rods out of thick cardboard or 
smooth plywood, and practise multiplying and dividing 
multi-figure numbers, using the abacus.

Two or three sets of rods should be prepared, since 
the multiplicand might have digits that are alike: 
don’t  forget rods with the heading “0” !

Napier’s rods may he useful even in calculations in 
other systems of notation. In Fig 5b a rod is shown 
for multiplying seven by the numbers, 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11 — in the duodecimal system of 
notation (a =  10, /9 =  11).
The Extraction of the Square Root

It is well known, that the sum of n consecutive odd 
numbers equals n2: 1 +  3 +  5 . . . +  (2n — 3) +  

(2n — 1) =  n2. Therefore, the calculation of j/N  
(.N being a natural number) can be reduced to solving 
the problem; what is the greatest number of terms of 
the form 1, 3, 5, 7, 9, 11 . . ., whose sum does not 
exceed N. This problem is easily solved on the abacus. 49
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However, for large N  the operation might be too 
exhausting, so it is better to split the number N into 
divisions and calculate (from left to right) the conse­
cutive digits of the root required.

If N  is a three-digit or four-digit number we put
1fN  = 10a+5.

Instead of consecutively subtracting from N  10a 
terms of the sum

S =  1 + 3 + 5 +  . . . +  (2 0 a -3 )+ (2 0 a - l)  = (10a)2, 
and then b terms of the sum 

5' = (20a-f l)-f-(20a4-3)+ . . . + (2 0 + 2 5 -1 ) , 
it is simpler to subtract, from the “senior” division 
of N, a terms only; 1 +  3 +  5 +  . . . +  (2a — 1) =  
=  a2 (which is equivalent to subtracting a2 x 100 =  
=  S from N) and then subtract the terms of the sum 
s' (where the first term is greater than the product 
of a and 20 by one) from the remaining quantity. 

Figure 8 shows the course of calculating J/1369.
We subtract the numbers 1, 3, 5, from the first 

division, and we slide one bead over along the top 
wire for each completed subtraction.
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Then, on subtracting numbers 61, 63, 65, 67,.  . . 
(61 = 3 x 20 +  1), consecutively from the remainder 
(460), and moving one bead for each completed sub­
traction along the second wire from the top, we obtain 
■J/1369 =  37. In order to speed up the process separate 
digits of the root required can be determined mentally 
and the sum of several terms of the form indicated can 
be subtracted at once from the corresponding remainder.
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For example, having noted mentally that in the 
extraction of the root of 1369 the second digit is a seven, 
it is then possible, instead of subtracting the numbers 
61, 63, 65, 67, 69, 71, 73 from the remainder (469), 
to subtract all at once 7 x 60 + (1  +  3 +  5 +  7 +  
+  9 +  11 +  13) =  7 x 60 +  72 =  7 x 67, and to  
count off seven beads on the second top wire.

It is true, that in this way the advantage of this 
method is lost, and the whole process is an exact copy 
of the usual method of extracting the square root on 
paper.

If N  is a 5-digit or a 6-digit number, then a in (1) 
is a 2-digit number. In order to find it, it is necessary 
to extract the root of two senior divisions of the number 
N  and then find b in a similar manner to the above.

For instance, when calculating 1/86436, on subtracting 
the numbers 1, 3, from 8 we obtain 46436; we then 
subtract the numbers 41, 43, 45, 47, 49, 51, 53, 55, 57 
(41 = 2  x 20 +  1) from 464, and, finally we subtract 
numbers 581, 583, 585, 587 (581 =  2 x 290 +  1) from 
the remainder obtained (2336). We obtain on the top 
wires: )/86436 =  294.

We shall describe one more procedure for extracting 
the square root of numbers, one that enables us to 
find directly a rational number, little different from the 
root required. Let

where a is the approximate value of the root required 
and a is the error of approximation, and it is known

From (2) we have (]/ A — a)n — a", whence, on raising 
the binomial to the power n, we can easily obtain, for 
instance: 
for n = 2

Y A = a+oc^a. (2)

that ] a | <  y and y can equal 1 5  1
10 ’ 10 ’ 100 ’ etc

51
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for n = 3

for n = 5

. a3 +3aA  a3 , ...F A ----- —--------h--------------   Oi+aj, (4)
3a2 A 3a2-)-A

^ _ a5 +  10a3A +5aA 2 a5

5a4+10a2A + A 2 +  5a4+10a2A -f A2 «;+«:■( 5)

If we take the first terms of these equations as the 
approximate value of J/A, then the absolute value of 
the error will not exceed the numbers

2a ’ 3a2 +  A ’ 5a4+10a2A + A 2 * 
respectively.

For example, ]/l0  =  3 +  a = 3; 0 <  a <  0-2 (since 
3-22 = 10-24).

From the formula (3)
y io ~  3M-10 =  i i  = 3.1666_

2 x 3  6
(with excess, since, according to the formula (3),

0 22<  0, always, and la^ <  2 ^ + 3  <  0-0067), and from the 
formula (5)
I/10^ 35 +  10x 33x 10 + 5 x 3 x l 0 2 =  4443 
 ̂ ~  5 x 3 4 +  10x32x 10 +  102 1405

3-16227758...

(with defect, since, in this case a.\ >  0, and

I«i| < - ^ <  0-000 00023:
1 ' 1405

therefore 3 x 16227758 <  ]/10 < 3 ^  16227782.
The roots of the third, fifth, etc., powers can be 

extracted in a similar manner (see [9], pp. 375-378).

Addition and Subtraction In Place of Multiplication

Prior to the invention of logarithmic tables, there 
existed so-called prostapheretic tables, which were used 
to facilitate the multiplication of large numbers. (The
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name was derived from the Greek words “prostesis”, 
meaning adding, and “aphareisis”, meaning taking 
away.) These tables consisted of tables of values of the
function (see § 2) for natural values of Z (see
[10] pp. 55-56). Since for integral a and b

ah _  (a +  &)2 (a -b )3 [ (a+b)3 r { a - b f
4 4 4 J [ 4 J

(the numbers a +  b and a — b are either both even or 
both odd; in the latter case the fractional parts of * 24

and ^  4& are identical), the multiplication of
a and b is reduced to finding a +  b, a — b, and then
finding the difference of the numbers — and ^
whose values are taken from the tables.

For the multiplication of three numbers the follow­
ing identity may be used

abc = —  ((a-f-J+c)1 — (a-\-b—c)3 — (a—c — b)3
24 - ( & + c - a ) 3}. (6)

It follows from it that the existence of a table of 
Z8values of the function enables us to reduce the cal­

culation of the product abc to the determination of 
numbers a +  b +  c, a +  b — c, a +  c — b, b +  c — a, 
and from them, with the help of tables, to the finding 
of the right-hand-side of the eqn. (6).

An example of this kind of table is shown here for 
1 <  Z <  30. In it ordinary figures represent the values
of | ^ |  and small figures give the values k, where

z3
24

r z3 
124 * 5 -

0 ^  k ^  23,
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\  units 

tens
0 1 2 3 4 5 6 7 8 9

0 0i 0, 1. 2io 5. 9o 147 21, 30,

1 41ie 55n 720 91ij 114„ 140„ 170„ 204i7 243o 285ie

2 333s 38521 443le 506a 2760 65L 732e 820, 914161016,

It is simple to obtain, using formula (6) and the 
table;
9 x 9 x 9 = 8203 —309 —30b—309 = 729,
1 7 x 3x 4  = 10165—3852i—9113+ 5 6 = 544 (checkl).

On Calculating Logarithms

We shall also describe a simple procedure enabling 
us to calculate logarithms of numbers with the aid of 
tables of cubes of natural numbers (see [11]). Take 
Barlow’s tables [3], which give, among others, the cubes 
of all 4 digit numbers, and check all calculations given 
below.

Let
/ * / * ( *

log 13 = c0-c^zCs. . .  pi = c0 +  ~
o 6Z oJ

i. e. the logarithm required is represented in the form 
of systematic fraction, base 3.

Then

10 e‘+ T  + T  + = 13,
therefore, c0 = 1.
Dividing both sides of the equation by 10Co = 10 

and then cubing them, we obtain

Cl +  - f  +  - - -  +  . .  ■
10 3 9 = l - 3 3 = 2-197,
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Since in the exact cubing of 2-197 and in further 
calculations, the numbers obtained would be very 
unwieldy, we shall in future calculations use four signi­
ficant figures only, and we shall determine the lou>er 
and upper bounds (L. B. and U. B.) of the numbers 
concerning us. (Whenever we round of. a number, we 
shall write its value with excess in the column U. B. 
and its value with defect in the column L. B.).

Further calculations yield:

c, + + . . .
10 3

L. B. U. B.

ca =  110-60 10-61
ctC* + — + ... 

10 3 1-191 1-195 c8 =  0

10 3 1-689 1-707 c4 =  0

c.+ -— + ••• 
10 3 4-818 4-974

oII
1

CmH--7T + . . .
10 3 111-8 123-1 c6 =  2

CmC1 + + • • 
10 3 1-397 1-866 ci =  0

C. +
10 3 2-726 6-498 Ca =  0

<•. + —  + ■ • • 
10 3 20-25 274-4 Cq =  lj cg —1 2

<•1. + . 
10 3 8-303 20-67 cio= 0, c10 =  1

C l ,

10 3 572-4 8-832 cu =  2, cn = 0
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Hence
1 2  1 2  

1 + — + — + — + — < l o g l 3 <
3 2  3e 39  311

<  1H------ 1 1-----1—  4~ ■ ■
3 2  3 0  3 9  310

1,113911 <  log 1,3 <1,113979.

Try to calculate in this way the logarithm of this 
or that number and compare the result obtained with 
the value of that logarithm, taken from the logarithmic 
tables.
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§ 9. Numerical Giants

In physics, chemistry, and astronomy, numerical 
“giants” and “dwarfs” are often encountered; for 
example, distances from the earth to the nearest stars 
are of the order of 1013 to 1014 km, the radius of an atom 
is of the order of 10~8 cm, the number of molecules 
in one gram-molecule of a substance equals 6 x  1023 
approximately (Avogadro’s number).

In order to obtain a clearer image of the dimensions 
of these numbers, it is useful to make various artificial 
comparisons. For example, the following gives a vivid 
picture of Avogadro’s number;

If a tumblerful of water containing nothing but 
marked molecules were to be poured into, and mixed 
evenly with, the waters of the five world oceans, then 
every tumblerful of oceanic water would contain no less 
than five hundred marked molecules(28).

It is much more complicated to give a distinct 
representation of large and small numbers encountered 
in solving various mathematical problems. Let us dis­
cuss several examples:

1. log x increases with increasing x so slowly, that 
the inequality log x >  100 holds only when x >  10100.

In order to imagine the size of this number, verify 
by calculation^7) that it exceeds the number of molecules 
of water required to fill a cube, whose edge is 70 million 
light years (regarding the density of water as continuing 
to be I, and that one cubic centimeter of water contains
j  1 x  1023 molecules).
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How, then, can one picture the size of the number 
K  =  (99)9 = 4-28 x 10369693099 (check, given that log 
9 = 0-95424250943932 . . .) in comparison with which 
even the numbers of the herd in Archimedes’ problem 
(N = 77 x 10206543; see § 4) is a number of “ultra- 
ultra-microscopic dimensions”.

But a number much exceeding (99)9 is also connected 
with Archimedes. In his work “Psammiles” (The Sand- 
Reckoner) Archimedes brings the classification of num­
bers up to the number 1080 000 000 000 000 000 in our 
notation. In Archimedes’ classification — see [15] 
p. 13 — this number contains a myriad myriad units 
of the myriad-myriad order, of the myriad-myriad 
period; myriad = 10000.

However, even this giant of Archimedes has to yield 
pride of place to the apparently insignificant looking
number Q =  444‘. Indeed Q =  4 l256 >  4r33X1°1S4 >  
jQsx io‘« ^ 2 jn or(jer to give an idea about the 
“length” of the number Q, when written down in 
the decimal system of notation (but certainly not about 
the number Q itself) a certain book of the nineteenth 
century says: “Imagine a segment of such length, that 
a light-ray would require quintillion (1030) years to 
traverse it. Then imagine a sphere with a diameter, 
equal to this segment, filled with printers’ ink. All this 
ink would be insufficient to print this number even 
if the smallest type in existence were used.” (see [15], 
p. 31-32).

Indeed, it can be established easily(28), that the 
volume of this sphere is less than x 10144cm3 (check!).

Supposing that each cubic centimeter of ink is suffi­
cient to print 1 000 000 000 digits, we could manage 
to print a number smaller than one containing  ̂ x 10153 
digits but Q contains more than 8 x  10153 digits.

2. It is known that ax (for a >  1), increases, with 
the increase of x, faster than x" (n > 0 )  and x" increases 
f aster than logt x (b > 1 ) .
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This means, that

lim — = 0 and lim ̂ °gt> X = 0.
*-» a* xn

However, for instance, the equation lim /  (x) =  0,glOOOOOO
where /(i)  =  ioooooi* may seem paradoxical, if judged 
by the beginning of the table

X 0 1 2 10* 10 ' 10” 10“

0 1 2* M0 Ml j q « Ml eel 1Q7 MO 000 JQ1I 000 000 JQll 000 0M

1-000001* 1 1-000001 1-000002 e => 2,718 gll ^  104.H C10? MM _ e10 «« ,
^10<«,42O.1O

But the ending of the table shows that for some 
value x in the interval (1013, 1014), f(x) =  1 and, since 
log /(l 014) =-- — 29-43 x 106 (check) therefore /(1014) <  
10-29Xi°6. The number e, which is to be found in the 
table is the base of the so-called natural logarithms: 
logeN = InN and the natural and the decimal loga­
rithms of the same number are connected by the re­
lationship; InN = log N x  2-3025851.

In higher mathematics it can be shown that

e = lim (l +  -)"=  2-7182818 . . . ,

hence log e =? 0-4342945 and e 4= 10°-43 4294S.
Attempt to prove(29), that for the function

9(x) = logl-nooo°l1,xl-000001
<p(e31 000 °°°) >  1, but f>(e32 000 00°) <  1.

3. The factorial function nl increases extraordinarily 
swiftly, when n increases. In order to appreciate the 
speed of growth of this function the inequalities (see

i
[26]) ]/(2nn) r "  n" <  n! <  ]/(2nn) i f  e~a eun (Stirling’s 
formula) can be used, whence
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— In (2nn)-\-n In n—n<ln  (n!)<

<  — In (27rn) +  n In n—n A— -— .
2 12n

These inequalities — for large values of n — give 
close bounds for ln(n!). With their aid, it is easy to 
verify(30) that, after appropriate multiplications, the 
number 10 000! contains 35 660 digits, the number 
100 000! contains 456 574 digits, and the number 
100 000! contains 5 565 709 digits.
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§ 10. Games with Piles of Objects

Three games, whose theory has been fully and ex­
haustively worked out, are described below. In each 
of them, the majority of first moves are favourable to 
the player making them, i. e. if he plays correctly, he is 
assured of winning, and only exceptional situations 
favour his opponent. (It is assumed, that both players 
are familiar with the theory of the game.) Thus the 
games can only serve as such for persons unacquainted 
with their theory.

Bachet’s Game
From a pile, initially containing n objects, two 

players take alternately an arbitrary number of objects 
(but no less than one and no more than a) at a time. 
The winner is that player, who takes, when his turn 
comes, all the remaining objects. The situation is un­
favourable for the player making the next move, if the 
number of objects in the pile (denote it by m) is divi­
sible by a +  1. Indeed, when m = a +  1 any move 
by the player results in his opponent collecting all 
remaining objects. If m = (a -+- l)s (s is any natural 
number), then the opponent can, by making the appro­
priate move after any move by the player, leave (a +  
+  1) x (s — 1) objects in the pile, then (a +  1) (s — 2) 
objects, and so on, finally bringing the number of ob­
jects in the pile to a +  1, which secures his victory.

In all other initial situations (when m = (a +  1) 
s +  /■; 1 <1 r <. a) the first player, by taking r objects, 
condemns his opponent to defeat.
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This game was described by Bachet in a slightly 
different form, as early as in 1612. Two players call 
out numbers from 1 to 10 and the winner is the player, 
who first makes up the sum of numbers called by the 
two players to one hundred.

Tsyanshidzi (a game with two piles of objects)
The theory of the Chinese national game tsyanshidzi 

(“picking stones”) is much more complicated. Its rules 
are as follows.

Two players are allowed to select, from two piles of 
various objects, either; (1) an arbitrary number of 
objects from one pile (even all the objects, but not 
fewer than one) or (2) simultaneously the same number 
(also arbitrary) of objects from each pile, but no fewer 
than one object from each pile.

The player, who takes all remaining objects, when 
it is his turn to make a move — we call thus each of the 
above-mentioned operations — is the winner.

We shall call the situation, in which the piles contain 
I and k objects respectively, position (k, /) or (/, k) 
(the order does not matter in this case). Let us construct 
so-called “special” positions

(c0, d0), (Cj, di), (c2» dz)> • • *» (C/7» dn), * . ., (1)
starting from the following conditions:

(1) c0 =  d0 =  0.
(2) the component c„ of the position (cn, dn) (n = 

= 1, 2, 3 ,. . .) is taken to equal the smallest of the 
natural numbers unused in the construction of the 
positions (c0, d0), fo, d j , . . . ,  (cn_ltdn- i )•

(3) dn =  cn +  n.
The remaining positions we call non-special.
Here are the first two special positions (0, 0), (1, 2), 

(3, 5,) (4, 7), (6, 10), (8, 13), (9, 15).
Special positions possess three properties:
I. Every natural number enters one and only one 

position.
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Indeed, taking the smallest of the numbers, not used 
in the preceding special positions, for c„, we guarantee, 
that every natural number is bound to be in one of the 
positions (1). It is clear, that c„ does not coincide with 
any of the components of the preceding special positions, 
and since, for k <  n, dn =  c„ +  n >  ck +  k =  dk >  
>  ck, dn cannot coincide with any of the components 
of the preceding positions either.

II. Any move transforms any special position into a 
non-special one.

Indeed, if the move alters one of the components of 
the special position (c„, dn) only, a non-special position 
arises, as the unchanged component cannot be a part 
of two different special positions; if, on the other hand, 
the move carried out diminishes both components 
cn and dn to the same extent, their difference remains 
equal to n, while in all the other special positions 
(ck, dk) the difference between the components dk — ck 
equals k ^  n (see condition 3).

III. It is possible to pass from a non-special position 
to a special one, by means of an appropriate move.

P r o o f :  given the non-special position (a, a), where 
a •+■ 0, it is possible to arrive at the special position 
(0, 0) by taking away a objects from each of the piles. 
If, on the other hand, the non-special position (a, b), 
where a <  b, is given, the following variants are pos­
sible :

1. a = ck; b>ck+ k = d k.
Obviously, it is sufficient to remove b — dk objects 
from the second pile; this gives the special position 
(<i. dk)

2. a = ck; 6<c*-(-/f, i.e. b—ck = b—a = h<.k.
It is sufficient to remove ck — ch from each pile; this 
gives the special position (ch, b — ck +  c„) =  (ch, h +
+  C'h) — (c/i> dh)-

3. a =  dk. It is sufficient to take b — dk objects 
from the second pile; this gives the special position 
(,dk> Cfc) =  (cjc> dkj.
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It follows from the properties II and III, that after 
any move by the player from a special position, his 
opponent can reduce the matter to one of the special 
positions. If the opponent keeps repeating this man­
oeuvre, there will be obtained special positions with 
constantly diminishing components, until there arises 
the special position (c0, d0) = (0, 0). This means, that 
the opponent removes the remaining objects, and thus 
wins. If the position is non-special, the player can, by 
an appropriate move, reduce it to a special one. By 
acting similarly every time, the player wins.

Thus, if both players proceed correctly, the player, 
who makes the first move secures a win, if the initial 
position is non-special, and cannot escape defeat if 
the position is special.

We note, without proof (see [25], pp. 43-52, or [32], 
p. 426) that, for a given k, ck and dk can be calculated 
from the formulae;

Ck (2)

dk

For example, for k
- ( * s+/ 5 )-
= 100:

(3 )

Cioo = (l00 - - - t H ) = [100-1x6180327 . . .] = 161,

rfioo = (lO O-M ^S. ] = [100-2x6180327 . . .] = 261.

From formulae (2) and (3) we have: ck <  k ^
<C ck +  1,
ck 0 x 6180327... = ck - <  k <  (ck+ 1) -̂5 -  1 =  

= (c*+l) 0x6180327 . .  ., (4)

dk Ox 3819672. .. = dk 3 < k  < ( d k + 1) 3 ~ ^ 5 =

= (dA +  l) 0x3819672 . . .
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In order to find the correct move in any given position 
(a, b) it is convenient to have at hand a fairly extensive 
table of special positions. If a table of this kind is not 
available, or if neither of the numbers a and b occurs 
in a table of special positions that is available, then the 
following steps should be taken: it should be discovered,

ber. If some whole number k is to be found within the 
first interval, then a =  ck; if it is in the second interval, 
then a =  dk.

In both cases, it is possible to achieve a special 
position by applying property III. It can be easily 
proved(31) that one of these intervals must contain 
some whole number, and both these intervals cannot 
contain a whole number at the same time.

Nim (a game with three piles of objects)

The origin of this game is unknown; its substance is 
as follows: there are three piles of objects; two players 
each take an arbitrary number of objects (not less than 
one) from one of the piles, (the choice is left to the player 
on each occasion). The winner is the player who takes 
all remaining objects, when it is his turn to move. To 
make the theory clear it is useful to recall, that any 
number can be represented uniquely in the form of a 
sum of various powers of 2.

Let us call the position (h, k, I) in which the piles 
contain h, k, I objects respectively, a special one, if 
each of the numbers 2s (s — 0, 1, 2, . . .) either does 
not occur at all in the expansion of the numbers h, k, I 
into sums of various powers of 2, or occurs in these 
expansions twice altogether.

which of the intervals

contains the whole num-

3. 17 =  24+2°,
29 =  24+ 2 3+ 2 2+2°, 
97 =  2®+2s+2°.
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If, on the other hand, at least one of the numbers 
2* (s =  0, 1 , 2 . . . )  appears in the expansions of the 
numbers h, k, I, once, or 3 times, we shall call the po­
sition (h, k, I) non-special.

For example, the position (18, 21, 7) is special, since
18 =  2 4 +  21: 21 =  24 22 +  2°; 7 =  22 +  21 +  2°. 
Obviously, for any n, the position (0, n, n) (one pile 
removed) is a special one.

The theory of this game is based on the following 
theorems;
T h e o r e m  I. The player, whose next move takes place, 
while the positions are the special ones, (1, 2, 3) and 
(0, n, n), is doomed to defeat.

Indeed, for any move by the player from the position 
(0, n, n) the opponent needs only take the same number 
of objects from another pile, to reduce the situation to 
position (0, m, m), where m < n ;  these tactics will 
finally get him to the position (0, 0, 0) i. e. to victory.

By considering a few variants the reader can verify 
easily, that the initial position (1, 2, 3) also leads to 
the inevitable defeat of the player, who moves first. 
T h e o r e m  II. Given any two numbers m and n, it is pos­
sible to pick (uniquely) a third number p in such a way 
that the position (m, n, p) is a special one.

Indeed, it is sufficient (and necessary) to include in 
the number p those powers of 2 which appear once 
altogether in the expansions of numbers m and n, 
and leave out of the number p those powers of 2 that 
do not appear in the numbers m and n at all, or appear 
in both m and n.

For example, for m =  19 =  24 +  21 +  2° and n =  
=  37 =  2s +  22 +  2°, p should include 2s , 24, 22 and 
21, which gives p =  54, which together with numbers
19 and 37, forms a special position; all other numbers 
form non-special positions with 19 and 37.
T h e o r e m  III. Any move made from the special position 
(k, I, m) leads to a non-special position.

This follows directly from Theorem II.
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T h e o re m  IV. From any non-special position it is pos­
sible to achieve a special position by means of an appro­
priate move.

In order to prove this we consider the following two 
cases.

1. The highest power of 2 appears either in just one 
of the numbers or in all three at once; then it is suffi­
cient to diminish the greatest of the numbers to the 
size of the number forming a special position with the 
other two numbers. If, initially, two largest numbers 
are alike, then any of them can be diminished. (It is 
also possible to take away the whole of the smaller 
pile of objects.)

2. Suppose the highest power of 2, say 2*, appears 
in the expansion of 2 numbers only. Then attention 
should be directed at 2*~x, 2*~2 etc., until we come across 
the power of 2 (denote it by 2r), which appears in the 
expansions of either one or all three of the given num­
bers.

To obtain a special position, it is sufficient to diminish 
one of the numbers in such a way, that it alters only 
at its “tail-end” (i. e. the part of the corresponding sum 
of powers of 2, which contains 2r and lower powers 
of 2). Here, in accordance with the first case considered 
above, the number with the greatest tail-end should 
be diminished; if two numbers happen to have the 
same tail-end, either may be diminished (or take away 
the whole of the tail-end of the third number).

E x a m p l e s  :
1. h =  14 =  23+ 2 2+ 2 x,

k =  21 =  24+ 2 2+2°,
I =  39 =  2s+ 2 2+ 2 1+2°.

Here we have the first case; it is sufficient to di­
minish the number I in such a way, as to obtain the 
number V =  24 +  23 +  21 4- 2° =  27, i. e. 12 objects 
should be taken from the third pile.

2. h =  81 =  26-f-24+2°,
A =  121 =  26+ 2 5+ 2 4+ 2 3+2°,
I =  55 =  2s+ 2 4+ 2 2+ 2 1+2°.
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Here each of the numbers 2® and 25 appears in the 
expansion of the given numbers twice. Since 24 appears 
in all three numbers and the tail-end is greatest in the 
number k, it should be brought down to 22 +  21, which 
transforms the number k into k1 =  2® +  2s +  22 +  
+  21 =  102, making up a special position with h and I.

Thus, taking 19 objects from the second pile, we 
arrive at the special position (81, 102, 55).

h =  29 =  24+ 2 3+ 2 2+2°, 
k =  58 =  25+ 2 4+ 2 3+ 2 1,
1 = 4  5 =  25+ 2 3+ 2 2+2°.

This is a second variant of the second case: 2s and 
2 4 appear twice each in the expansion and the greatest 
tailend (23 +  22 +  2°) belongs to two numbers, h and I. 
Therefore, the tail-end belonging to one of them can be 
diminished by six units, bringing it down to 22 +  21 +  
+  2° =  7, and this leads either to the special position 
(h — 6, k, I) =  (23, 58, 45) or to the special position 
(h, k, I — 6) =  (29, 58, 39). It is also possible simply 
to discard the tail-end of the number k, which leads 
to the special position (h, k — 10, /) =  (29, 48, 45).

It follows from the two last theorems, that:
1. The player who moves first starting from any spe­

cial position is doomed to defeat, since his opponent 
can always create, with his next move, another special 
position, and by repeating this maneouvre will, sooner 
or later, reduce the situation to the position (0, n, n) 
or (1, 2, 3), which ensures his victory.

2. In any non-special initial position, the player 
making the first move has to create a special position 
and his victory is assured.

The game “Nim” can take also the following form: 
three chessmen are placed in arbitrary positions on a 
chess board. Two persons in turn move the chessmen 
spiral-fashion (Fig. 9), in the direction of square A, 
in each move displacing one of the chessmen by an 
arbitrary number of squares (two, or even three chess-
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men may land in one square at a time). The game ends 
when all chessmen reach A and the winner is the player 
who ends the game by his move.

N o t e  1. An attempt can be made to construct a 
theory of games with somewhat modified conditions; 
e.g. in Bachet’s game, we might allow the player to 
take 3 to 15 objects at a move, when the number of 
objects in the pile exceeds 50, 
and 1 to 10 objects, when the 
number of objects in the pile 
does not exceed 50.

In the game with two piles 
of objects, the number of 
objects taken at each move 
can be limited, or it can be 
permitted to take objects from 
both piles simultaneously only 
in the ratio 1 :2, etc.

In the game “Nim” an ad­
ditional move can be intro­
duced — the taking of equal numbers of objects from 
two or even all three piles.

Of course, it is not always easy to construct a theory 
of a game, and often that theory is not at all simple 
or elegant. However, it is highly probable that individual 
cases may lead to interesting results.

N o t e  2. Even when the players are familiar with 
the theory of the second or the third game, but the time 
allotted to thinking out the moves is limited, the result 
of the game depends on the skill of the participants.

A number of hints towards the correct conduct of 
the game with two piles of objects can be found in an 
article by I. V. Arnold ([38] issue 7, pp. 16-24) where 
a curious connection between special positions and 
Fibonacci Numbers is also pointed out.

In the game with two piles of objects try to:
a) Find correct moves for each of the following posi­

tions (27, 37), (14, 90), (47, 69), <33a>.
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b) Establish which of the numbers 40, 55, 140, 400 
are the smaller and which the greater components of 
special positions, and find in each case the second 
component of the position(33b).

c) Construct special positions up to (c10, dl0), making 
use of conditions (l)-(3) (p. 62) and also of formulae 
(2) and (3). Compare the results.

In the game “Nim”,find the correct move (or correct 
moves) in each of the following positions (10, 17, 25), 
(47, 99, 181), (25, 43, 50), (29, 29, 18), (93, 29, 74)<34).
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§ 11. Meleda

The game of Chinese origin, meleda — described as 
far back as the middle of the 16th century by the Italian 
mathematician Cardano — is depicted in Fig. 10a.

8 7  6  5 4  3  2  I

It is required to remove from a wire hairpin, ab, 
with a handle, all rings joined together by means of 
threads tied to a stick cd.

The threads can be exchanged for thin wires, and the 
stick cd for a plank kl with small holes, through which 
corresponding wires are threaded, the ends of the wares 
being subsequently thickened (Fig. 106). The planning 
of the solution, which is a consequence of the construc­
tional properties of the meleda and the recounting of 
all the operations needed to carry it out, adds up to an 
interesting mathematical problem.

On holding a meleda in one’s hands (and it is quite 
easy to make one) it is not difficult to ascertain the 
following:
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(1) Ring 1 can be dropped (i. e. it can be taken off 
the pin and passed through it downwards) or raised 
(i. e. it can be passed through the pin upwards and on 
to the pin) regardless of whether any other ring is on 
the pin or off it at the time.

(2) Any of the rings numbered 3, 4, 5, 6 . . . can be 
dropped or raised when, and only when, a ring with the 
number less by one is on the pin, and all the rings with 
even smaller numbers are off it.

(3) Ring 2 can be dropped or raised, wherever the 
other rings may be, only together with ring 1.

From now on, the raising or dropping of any ring 
and also the simultaneous raising or dropping of rings 
1 and 2 will be called a move.

Suppose the meleda has n rings; A, B, C, D . . ., 
K , L, M, whose numbers are n, n — 1, n — 2, n — 3 , . . .  
3, 2, 1 respectively. In the diagram, we shall denote 
the rings by placing the appropriate letter above the 
horizontal line if the ring is raised, and below the 
line if the ring is dropped.

We denote by uh (k <. n) the least number of moves 
required to drop (or raise) the rings numbered 1 , 2 , . . . ,  
k - \ , k .

The dropping of the nth ring (see I in Fig. 11) should 
be preceded by the situation II, which requires at least 
u„_2 moves to reach it. By dropping the ring A in the 
next move, we arrive at the situation III having used 
up u„_2 +  1 moves altogether. It is easy to confirm that 
starting from situation III, in order to drop ring B it 
is necessary to pass through the situation IV as one of 
the intermediate stages.

Indeed, for ring B to be dropped, ring C must be 
threaded onto the pin, the situation arising after the 
raising of C is shown in diagram V, where the ring D 
is in the way for dropping ring B.

Continuing to reason in this manner, we convince 
ourselves that the dropping of D must be preceded by
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situation VI, in which the dropping of D is blocked by 
ring F; in striving to drop ring F  we must go through 
the situation VII, etc.

In the final count it will be seen that the situation 
IV cannot be avoided.

A B  C D  E F G H I . . . K L M

A B__________________________________________
C D E F G H I . . . K L M

B__________________________________________
A C D E F G H I . . . K L M

B C D E F G H I . . . K L M

A

B C 0_________________________________
A E F G H I . . . K L M

B C D E F_________________________
A G H I . . . K L M

B C D E F G H________________
A I . . .K L M

Fig. 11.

Since in the transition from III to IV at least un_2 
moves are required (just as many as in the transition 
from IV to III), and since to drop all the rings from the 
situation IV, which can be considered as a sort of me­
leda with 77 — 1 rings, at least un_1 more moves are 
required, therefore

Un =  U/1-2 +  1+Un-2 +  Un-l= Un-l+2Un-2 +  l* (1)
Obviously, u, =  u2 =  1. Making use of the recurrence 
relationship (1), we obtain

Uq =  u2+2lli +  l =  4,
U4 =  Us+2u2 +  1 =  7,
uE =  U4+2u3+1 =  16 etc.

Applying the method of mathematical induction we 
can easily find that

1

n

m

e

2

VI

3zn
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Un =  - [  2 » - l - ( - l ) » ] ,

whence it follows that u„ increases rapidly with n; 
for example u21 =  220 =  1 048 576.

P r o b le m .  In each of the situations shown in Fig. 12, 
find the shortest wag of dropping and the shortest wag 
of raising all rings and determine the corresponding 
numbers of moves(35).

II 10 S 5 4 3 1

12 9 7 6 2

10 9 6 5 2  1
12 II 8 7 4 3

II 9 7 5 3 1
12 10 8 6 4 2

12 10 9 6 5 4
II 8 7 3 2  1

Fig. 12.

N o t e .  If rings are replaced by numbered players 
leaving a ring drawn on the ground, or entering it in 
accordance with the three rules of dropping and raising 
rings, we obtain a livelier game, with the same principal 
scheme.

Such a modification of the game deserves to be noted 
also for the reason that, having freed oneself of the 
constructional peculiarities of the meleda, it is easy to 
alter the conditions of the game, subjecting the move­
ments of the players to other rules, and in these altered 
conditions to seek the shortest solution of the problem. 
The construction of a wire analogue of the game with 
different conditions represents an additional problem, 
whose solution can be crowned by the creation of a new 
and interesting puzzle.
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§ 12. Lucas’ Game

In the game, invented by the French mathematician 
Lucas (he called it “The Tower of Hanoi”) it is required 
to transfer n circular laminae of various sizes from 
column A (Fig. 13) to column B, using column C as an 
auxilliary one; only one lamina is to be transferred at 
one move (it can be moved from any column on to 
any other column), but it is forbidden to place a larger 
lamina on top of a smaller one.

It is required to indicate the shortest method of 
solution and to determine the corresponding number 
of moves u„.

Since in order to 
transfer the lowest 
lamina to B  it is 
necessary first to 
transfer (using co­
lumn B as an auxil­
liary one) the remain­
ing laminae on to 
column C, which 
requires no less than 
u„_x moves, therefore it is obvious that u„ =  u„_x +  1 
+  u„_x =  2u„_1 +  1 whence, using mathematical induc­
tion^8) it is easy to obtain un =  2" — 1.

Readers can set themselves a number of problems 
of a particular or general nature, connected with Lucas’ 
game. Let us denote the laminae in order of increasing 
size by numbers 1, 2, 3, 4 ,. . . . We can try to find, 
for example, the smallest number of moves which are
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needed to move from the position A (8, 4, 3), B (7, 5 
1), C (6, 2) — the brackets contain the numbers of the 
laminae on each column, reading from below upwards — 
to the position B (8, 7, 6, 5, 4, 3, 2, 1) or from the 
position

{A(2m, 2m—2, 2m—4, . . .» 6, 4, 2),
B(2m—1, 2m—3, . . 5, 3, 1)}

or
{ A(2m, 2m—I, . . m +2, m +1),

B(m, m—1, . . 3 ,  2, 1)} 
to the position

B(2m, 2m—1, 2 m -2 , . . 4, 3, 2, 1).
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§. 13. Solitaire

The game, which goes by the name of solitaire is 
carried out on a board with 33 squares (Fig. 14). Such 
a board is easily obtained by covering the four corners 
of a chessboard in such a way as to leave a cruciform 
shape (cf. Fig. 14). In Fig. 14, each square is marked by 
a pair of numbers, indicating the numbers of the hori­
zontal and vertical rows, at the intersection of which 
the square is situated.

At the beginning of the game each square, except an 
arbitrary one is occupied by a draughts piece.

It is required to remove 31 pieces, given the initial 
empty square (a, b) and the final square (c, d) which 
should contain the piece surviving at the end of the 
game.

The rules of the game are as 
follows: any piece can be remo­
ved from the board, if in the 
next square (in the horizontal 
or vertical directions) there is 
some other piece (the remover) 
and if there is on the opposite 
side an empty square to which 
the remover is transfered. Fig- 14.

73 74 75

63 64 65

51 52 53 54 55 56 57

41 42 43 4 4 45 4 6 47

31 32 33 34 35 36 37

23 24 25

13 14 15

It follows from the theory of the game (see [1] or 
33]) that there is a solution when, and only when, 
a = c (mod 3) and b = d (mod 3).

As an example let us cite the solution of the problem, 
when square (44) is both the initial one and the final 
one.
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1. 64—44 6. 75—73 11. 65—45 16. 34—36
2. 56—54 7. 43—63 12. 15—35 17. 37—35
3. 44—64 8. 73—53 13. 45—25 18. 25—45
4. 52—54 9. 54—52 14. 37—35 19. 46—44
5. 73—53 10. 35—55 15. 57—37 20. 23—43

21. 31—33 27. 34—32
22. 43—23 28. 13—33
23. 51—31 29. 32—34
24. 52—32 30. 34—54
25. 31—33 31. 64—44
26. 14—34

Here each move is written down by indicating the 
number of the starting square for the remover and the 
number of the square to which it moves (at the same 
time removing the piece from the intermediate square.

Attempt to remove 31 pieces a) when the starting 
square is (5, 7) and the final square is (2, 4) or b) when 
the starting square is (5, 5) and the final square is 
<5, 2) («).
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§. 14. The “Game of Fifteen” 
and Similar Games

The essence of the “game of fifteen” is as follows: a 
box, subdivided into sixteen squares, has fifteen num­
bered pieces distributed on it at random (see, e.g. I 
in Fig. 15). It is required to progress towards a normal 
arrangement III by means of a series of simple rook 
moves consisting each time of moving some piece to 
an adjacent empty square.

Fig. 15.

For example, by moving the piece 12 we go on from 
I to II; after that the pieces 10 or 11 may be moved 
to the empty square. Any arrangement of pieces is
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called a permutation. It turns out that certain permu­
tations are insolvable, i. e. they cannot be transformed 
into permutation III.

The basis of this situation rests on very simple argu­
ments: we agree to say that two pieces are in relative 
disorder if a piece with a greater number is placed 
before a piece with a smaller one; for instance, the per­
mutation III contains no inversions, but in the permu­
tation I the piece 1 forms two inversions (with pieces 
3 and 9) the piece 2 makes two more inversions with 
the same pieces, the piece 3 forms one inversion with 9, 
(the inversions of piece 3 with 2, and 3 with 1 having 
been accounted for already) etc.

It can be easily verified that the permutation I 
contains 4S inversions altogether.

We shall imagine that the empty square contains 
the piece 16 (fictitious), and consequently each move is 
reduced to a transposition (changing places of the fic­
titious piece 16 with a neighbouring piece).

In permutations I, III, IV none of the pieces form an 
inversion with piece 16; in the permutation II each of 
the pieces numbered 13, 5, 4, 12, do so.

Permutations with an even number of inversions (taking 
the fictitious piece 16 into account), e.g. permutations II 
and III, shall be called even, and permutations with an odd 
number of inversions, e.g. I and IV, shall be called odd.

In higher algebra there is a proof (see [20]) that the 
transposition of any two elements of the permutation 
alters its type, and consequently any move in the 
“fifteen” game, being a transposition of some piece with 
piece 16, alters the type of the permutation. (Compare 
for example, the transition from I to II.) It is clear 
that an even number of moves leads to a permutation 
of the original type, and an odd number of moves 
to a permutation of an opposite type.

If the sixteen squares are painted, for convenience, 
in the manner of a chessboard, then the colour of the 
empty box changes with each move, and therefore the 
following theorem holds:

80



The Game of Fifteen

T h e o r e m  I. All odd permutations with an empty white 
square and all even permutations with an empty black 
square are insolvable, i.e. not reducible to permutation III.

Indeed, it is only possible to progress from an odd 
permutation with an empty white square to a permu­
tation with an empty square (also white) in the lower 
right corner in an even number of moves, i.e. only an 
odd permutation can be obtained here, and therefore 
we cannot arrive at permutation III.

The insolvability of even permutations with a black 
square empty can be proved similarly.

The following more general theorem is also true.
T h e o r e m  II. If, in addition to simple moves of the 

rook, we permit, in the game of fifteen, the movement 
of any piece to the empty square, and also the transposition 
of any two pieces, then no odd permutation can lead to 
permutation III  by an even number of moves, and no 
even permutation can lead to permutation I II  by an odd 
number of moves.

Indeed, when the rules of the game are altered in 
this manner, any move, (a transposition of two pieces, 
one of which may be fictitious) alters the type of per­
mutation (prove this). But permutation III, which 
has to be reached eventually, is an even one.

Since a knight’s move 
(in the same way as 
simple moves of the 
rook) causes the colour 
of the empty square 
to change alternately, 
theorem I holds also 
for the modified game 
of fifteen, when the 
pieces can move into 
the empty square in the 
manner of the knight.

T h e o r e m  III. Any even permutation with an empty 
white square and any odd permutation with an empty

81



Mathematical Games and Pastimes

black square are solvable, i.e. they can be reduced to 
permutation III.  The remaining permutations can be 
reduced to permutation IV.

We consider first the movement of five pieces in a 
rectangle of six squares. If we concentrate on the rela­
tive positions of pieces only in the clockwise direction 
(without taking into account the position of the empty 
square) then the distributions I, II, III (Fig. 16) can 
all be characterized by the same permutation 1 4 3 5 2 
(or, which is the same, by permutations 4 3 5 2 1, 
3 5 2 1 4, etc.).

It is easily seen that any horizontal move (say, the 
move transforming I into II) and the vertical moves in 
the end columns (say, the move transforming II into 
III) do not alter the relative disposition of the pieces, 
and any move in the middle column (say, the move 
of the piece 4 in the distribution I, leading to distri­
bution IV) does change the relative position of the pieces, 
the permutation 1 3 5 4 2 characterizing the new dis­
tribution being obtained from the previous permutation 
by moving the appropriate number two steps: 1 3 5 4 2. 
By making use of this, it is easy to place any three pieces, 
say, 1, 2 and 3, alongside each other in the order of 
increasing numbers; thus, starting from the permu­
tation 1 4 3 5 2, on moving first the piece 2, then the 
piece 4 in the middle column (it is necessary to create 
the possibility of these moves by a preliminary circular 
movement of the pieces) we arrive at the permuta­
tion 1 2 3 4 5. (Another starting position might have 
led to 1 2 3 5 4.)

In accordance with these proofs, the following se­
quence of moves can be employed to bring about order 
among the pieces, starting from any position (this does 
not generally give the shortest solution):

(1) First, the situation must be reached, where the 
rectangle “1 2 5 C 9 10” (the numbers of squares form­
ing the rectangle are given here in accordance with 
the normal permutation III) contains the pieces 1 and 2 
and three additional pieces, one square remaining empty.
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(2) Pieces 1 and 2 are moved to their appropriate 
places.

(3) By a similar procedure, place the following pieces 
in their proper places:

3 and 4 acting within the rectangle “3 4 7 8 11 12”
5 and 6 acting within the rectangle “5 6 9 10 13 14”
7 and 8 acting within the rectangle “7 8 11 12 15 16”
9 and 13 acting within the rectangle “9 10 11 13 14 15”

(4) The pieces 10, 11, 12, 14 and 15 turn up in the 
rectangle “10, 11, 12, 14, 15, 16” and three of them — 
10, 11 and 12 — can be moved to their proper places, 
which leads either to the permutation III, provided 
the starting position satisfied the conditions of theorem 
III, or to the permutation IV.

It is possible to modify somewhat the game of fifteen, 
by using pieces with letters spelling out some phrase 
printed on them. If one of the letters appears twice 
and each of the others once, then it is possible to arrive 
at a correct distribution by means of a series of moves.

Let us take the Russian phrase:* “my naveli po- 
r(ya)dok”. We ascribe the numbers to the letters in 
the following way: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

m y n a v e l  i p o  r (ya) d o k 
and having given either 10 or 14 to each of the letters o, 
we obtain, for any initial position, two permutations

©m§U®m0 ®a ©®m©Iffm ®B

®jj |mp
Wma.

B®i ©
©0 ®
S@1P f!fyj

(a) (b)

Fig. 17.
♦[Translator’snote: for obvious reasons this must be trans­

literated rather than translated. In fact, it means “we have 
introduced order” .]
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of different types, since they are transformed into 
each other by means of one transposition. It follows 
that one of the permutations must be solvable.

If we ascribe 10 to the top letter “o”, and 14 to the bot­
tom letter “o” in Fig. 17, we obtain a permutation of the 
even type (44 inversions), if, on the other hand, we 
assign the numbers to “o” in the reverse order, as in the 
diagram, we obtain an odd permutation (47 inversions).

Since the empty square in the distribution (a) is 
black, the top letter “o” must be transferred to the 
fourteenth square and the bottom one to the tenth 
square, in order to arrive at the distribution (b).

All that was said about the game of fifteen holds 
also for the “game of nine”, where eight pieces move 
within a square with nine subdivisions.

Let us investigate an interesting variety of the game 
of nine called “chameleon”. The game is played on a 
“board” with nine squares joined by straight lines

.
1

3

s 5
w k

7 W 4
0 M

9

0 J e t ©
1 * E
imp o Hapo©LhJo

Fig. 18.
(Fig. 18a). Eight pieces* have each a letter of the word 
“(ch)ameleon” written on them and the pieces are 
distributed in a random fashion on eight of the squares. 

* In Russian Ch is one letter
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Fig. 19.

It is required to distribute the pieces by moving them 
along the lines joining the squares in such a way that, 
when read clockwise, starting from square 1, they 
should form the word “(ch)ameleon”.

Having numbered the squares of the board as in 
Fig. 18a, it is easy to see that any two squares are joined 
by a straight line when and only when squares with 
identical numbers in diagram (b) are connected by 
simple moves of the rook.

Since the word “(ch)ameleon” 
contains two “e”s and the remain­
ing letters appear once only (just as 
in the phrase used above there were 
two letters “o”), therefore, in ac­
cordance with the above, any initial 
distribution of pieces in (6) can be 
brought to the position (c) and there­
fore also to (d), which corresponds to the solution of the 
game (compare with (a)).

The games described in this section are one-person 
games. However, several persons can compete in find­
ing shortest ways of changing from one selected po­
sition to another.

In order to complicate the game of fifteen, it is 
possible to forbid certain moves; for instance, it can be 
proved (try to do so) (3a) that the partitions depicted 
in diagram 19 do not interfere with the transition from 
any starting position to position III or IV) (Fig. 15).

P r o b l e m :  Will Theorem III, which was proved above, 
hold if the moves of the knight are substituted for the 
simple moves of the rook? A similar question may be 
posed in connection with a square board containing 
36 squares and 35 numbered pieces, substituting, in 
place of the usual knight, a “2, 3 knight” one of whose 
coordinates changes with each move by two units and 
the other by three units.
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§15. Problems on Determining the Number 
of Ways of Reaching a Goal

Problems about Jumpers
1. In how many ways can a man, standing in front 

of a row of rectangles drawn on the ground (Fig. 20), 
reach the n-th rectangle jumping from left to right, landing 
only inside the rectangles, the jumps being of any desired 
length.

Let us denote the number of ways of reaching the 
sth rectangle by ue. In solving this problem, it must 
be taken into account, that it is possible (but in only 
one way) for the jumper to jump directly to the nth 
rectangle, without landing in the intermediate ones. 
This leads to a term 1 in the expression for un. He can 
also land in k intermediate rectangles in ways.
Therefore we have the expression

N o t e  1. Obviously, we have incidentally found the 
number of various representations of the number n 
in the form of a sum of positive integral terms (includ­
ing also the case of a “sum” consisting of one term) 
and two representations are regarded as different, if 
they differ either in the terms themselves or in their 
order.

Fig. 20.
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N o t e  2. If the jumper is allowed to land an even 
number of times only, he has 1 +  Cn-l +  C t- i  +  • • • 
i.e. 2"“ 2 ways at his disposal.

2. In how many ways can a man reach the n-th rec­
tangle, if he is allowed to make only single (i.e. into 
the next rectangle) or double (i.e. missing out one rec­
tangle) jumps?

Denote the number of ways of reaching the 5-th rec­
tangle by vs. Since the jumper can reach the rectangle 
numbered s from rectangles numbers s — 1 and 5  — 2 
only, and to reach these rectangles he has vs_Y and us_2 
respective ways available, therefore for s > 2  the 
following equation holds:

P«=P*-i+P*-a (2)
It is easy to verify directly, that

1̂  = 1 and »2 = 2. (3)
Starting from (3), it is possible to determine consecu­

tively the values of va, v4, v6, . .  ., by means of the 
relationship (2), i.e. to represent the solution of the 
problem in the form of a table:
s  I 1 I 2  I 3  I 4  I 5  I 6  | 7  | 8  | 9  | 10  | 11  | 1 2  [ 1 3  | 14  
v .  | 1 ] 2  | 3  | 5  | 8 11 3  | 2 1  j 3 4  I 5 5 ]  8 9  11 4 4 12 3 3  j 3 7 7  | 6 1 0

Equation 2 is a particular case of so-called finite- 
difference equations

Vx+m  =  F ( V x ,  V x+l ,  • • • j ^ x + m —1 ) .  (5)
studied in calculating finite differences.

If values u0) ult u2, . .  ., wm_i are known, then it 
is easy, with the help of eqn. (5), also known as the 
recurrence relationship for the function vx, to find 
consecutively vm, vm+1, vm+2, . . . .  i. e. to obtain a 
tabular solution of equation (5). However, it would be 
inconvenient to try to find, say, w1000 in this way, and 
it is usual to try to represent the solution in the form 
Vx =  /(x).

It is easy to verify(39), that eqns. (2) and (3) are 
satisfied by the function

7* 8 7
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By calculating the values v3, v4, vB, . . . with the 
help of this function we arrive at the same numbers 
as are obtained in table (4) (Check I).

An elementary discussion of the theory of linear 
finite — difference equations with constant coefficients:

Px+m =" flowx~t-^l^x  + l 4 ” • • • 4 "Q m -l^ x + m -l»

is the subject of an interesting book by A. I. Marku- 
shevitch [17].

N o t e  3. The “problem about rabbits” of Leonardo 
Fibonacci (see [17] p. 7) also leads to the solution of 
eqn. (2), and as a consequence, the numbers (4) are 
called Fibonacci numbers. They possess a series of inter­
esting properties (see [7]). We shall note here only their 
connection with binomial coefficients. It follows from 
the solution of the second problem about the jumper, 
that vn equals the number of various representations 
of the natural number n in the form of a sum in which 
each term equals 1 or 2, two representations being 
deemed different even if they differ only in the order 
of the terms. On the other hand, the number of repre­

sentations, in which 2 is encountered k times (o k < ^ j
equals C^_h, because in this case the total number of 
terms equals n — k, and there are C„_fc ways of selecting 
k places out of n — k places occupied by two. 
Therefore:

p i
i>„ = 1 +Cn_1+C |_2+  . . . +C n _j-nj (7)

N o t e  4. In the first problem about the jumper it 
was possible to establish the relationship

Us =  1 + U1 +  U 2-|- ■ • • 4 " Us—l ,  (8 )

whence it is easy to arrive at the equation (when tq =  1)
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N o t e  5. It is possible to vary the conditions in the 
problem about jumpers in all kinds of ways: for example, 
having allowed, generally speaking, single, double or 
treble jumps, one might add, that only single jumps 
are allowed from rectangles (including the starting 
one) with numbers divisible, say, by 5.

Denoting by w, the number of ways of reaching the 
s-th rectangle in these conditions, we have, instead of 
one equation, a set of equations 
ws = fors = 5A: and fors = 5Zr±l,

• ws= Ws-i+iVs- 3  fors = 5/c+2,
Ws^Ws-i+Ws- 2 fors = 5/c+3:

here w1 =  1, w2 =  1, w3 =  2.
Attempt(40) to verify, by tabulating values of w„ 

that in this case the jumper can reach the fifteenth 
rectangle in 1619 ways.

Let us now progress to problems in which the required 
function depends on two or more integral arguments.

The problem about the Rook

In how many ways (in the least number of moves) 
can a rook be moved from square (0, 0) to square (m, n), 
if only simple moves are employed i. e. moves to the neigh­
bouring square either horizontally or vertically.

The numbers in brackets denote the number of the 
column and the number of the row respectively, at 
whose intersection the square is to be found, the left- 
hand column and the bottom row having the number 0 
ascribed to them (m and n are non-negative integers).

Denote the number of ways of progressing from 
square (0, 0) to square (i, y) by uXi„. Obviously, for any 
positive x and

ux> o = 1 and u0ig = 1. (9)
Since the rook can only reach square (x, y), when 

x >  0 and y >  0, either from square {x — 1, y) or 
from square (x, y — 1), which can be reached in ux_i, „ 
y and ux, y_! ways respectively, therefore

Ux, u = Ux-l, ff +  Ux, y-i. (10)
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We have obtained a recurrence relation for the function 
uXiV, which depends on two integral (and in our problem 
non-negative also) arguments.

If we write in each square of 
the board the corresponding 
value of ux>„, then, on the basis 
of (9) and (10), all squares of the 
left-hand column and bottom 
row can be fdled by units, and 
then (see [10]) gradually we can 
fill the remaining squares by 
writing in numbers equal to the 
sum of two neighbouring num­
bers (the one below and the one on the left).
This gives us a solution (in the form of a table) of eqn. 
(10) given conditions (9) (see Fig. 21).

The problem about the rook can be solved in a simpler 
way, giving us incidentally a solution of eqn. (10) in 
the form of a convenient formula.

Note, that (m +  n) moves are required for moving 
the rook from square (0, 0) to square (m, n) — m moves 
in the horizontal direction and n moves in the vertical 
one. Separate ways of moving the rook can be described 
by a scheme consisting of the letters h and v indicating 
the order in which horizontal and vertical moves are 
made.

1

1 5 vyyyfr
1 s IO

i 3 a IO Ik
I 3 1 5

m 1 a a ■
Fig. 21.

Obviously, there are altogether C™+n =  — n , ‘ 
various ways of selecting m places occupied by the 
letter h out of m +  n places in the scheme, which is the 
solution of the problem about the rook. And the solu­
tion of eqn. (10), given conditions (9) is the function

a. (x+g)  1
x \ y l

A problem about a Spider

(11)

In how many ways can a spider, situated at the origin 
of a set of coordinates, crawl (by the shortest path) to the 
nodal point (k, I, m) of a space latticed
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(In a space lattice, any nodal point, i. e. a point with 
integral coordinates, is connected by little rods parallel 
to the coordinate axes to six neighbouring nodal points.) 
This problem is a natural generalization of the problem 
of the rook. If we denote the number of ways of reaching 
the point (x, y, z) by ux,y z, we have, for natural x, y, z

O -x , y ,  z =  U x - l ,  y , z  ~1“ 0 - 1 , z  +  Ux, y , z - i  ( 1 2 )

To this difference equation with an unknown function 
depending on three integral arguments the following 
conditions, arising from the solution of the preceding 
problem, must be added:

u*, y, o (s +  y) 1 ,
*!y! ,Ux'°’z

(*+*)i... ( y + z)1
---------------------- I  U .  Z  ----- ------------------------

xlz! ylzl
(13)

Any actual method of the spider’s movement from 
the node (0, 0, 0) to the node (k, I, m) can be character­
ized by a sequence of letters x, y, z, indicating in what 
order the movements of the spider occur in the direc­
tions of the axes Ox, Oy, Oz; therefore uk:lifn equals 
the number of ways in which k +  I +  m places can be 
filled by k letters “x”, I letters “y” and m letters “z”.

But k places out of the k + 1 +  m places available 
can be filled with letters “x” in waYs-

To each of these methods there correspond
ways of filling I places with letters “y”. Therefore, the 
total number of possible selections of k places in the 
scheme (for filling with the letters “x”) and I places 
(for filling with the letters “y”) equals

(/r+Z+tfi)I (Z+m)l _  (Zc+Z+m)!
Ic\ (l+m )l Z1 m! k il l  ml

Thus, the solution of eqn. (12) with the limiting con­
ditions (13) is the function ux,y,2 =  v !
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Polydimensional Problems

The problem about a spider can be generalized to 
cover a four-dimensional lattice, whose nodal points 
are obtained from nodal points of the three-dimensional 
lattice by displacing them in the direction of a “fourth 
axis’’ On, by 1, 2, 3 etc. units of length. There is no 
necessity to direct the axis Ou perpendicularly to the 
axes Ox, Oy, Oz — for this, one would have to come 
out into 4-dimensional space. It is sufficient to imagine 
a series of 3-dimensional lattices, whose respective nodes 
are connected by unit rods parallel to the axis Ou.

This can be realized for three-dimensional lattices 
with a finite number of nodes in the form of a model, 
where the respective nodes of the zero, first, second, 
etc. three-dimensional lattices are in fact connected 
with each other by means of “unit wires”.

In such a four-dimensional lattice each node is char­
acterized by four integers (coordinates of the node).

Continuing the geometrical terminology the set m of 
numbers a,, a2, . . . ,  am is often regarded as coordinates 
of a point in m-dimensional space.

If we take the numbers a„ «2, . . . ,  am to be non­
negative integers, and if we regard nodes as neigh­
bouring, if only one of their coordinates differs by a 
unit and all the other coordinates are identical, then the 
transition from node 0  (0, 0 ,. . ., 0 to the node A (alt 
a2, . . ., am), for a1 +  az om =  n, can be effected 
in n moves (progressing each time into some neigh­
bouring node).

If we denote the moves, as a result of which only the 
first coordinate, or only the second coordinate, etc., 
increases by xv  x2, etc. respectively, then the number 
of ways of moving from node 0 (0, 0, . . ., 0) to the node 
A (a v, a2 . .  ., am) in n moves equals the number of 
various "permutations with repetitions” of n elements:
X rr*  t *  •  t »  nr» 'Y» •  7 *  rr>  < r

j j  • • •> • ''J*  a ,2> *C2’ • • •* **■'2 * • • • a 'ffi» • • •»s ■ ■ -V ■ ' N  ̂ ■ "V  ■ " ^
a1 elements o2 elements am elements

9 2



Ways of Reaching a Goal

By repeating the arguments given in the problem about 
the spider, show that this number equals aj~dTra~i (tt)- 

Filling a barrel with water can serve as an example 
of a multidimensional problem. Barrels numbered 
1, 2, . .  m — 1, m have capacities of av a.z, . . am_x, am 
buckets respectively; in how many ways can all the 
barrels be filled if each full bucket empties completely 
into one of the barrels?

It is obvious that the number of ways equals
(Ol " H  Q a  + ........................................ ~1~ am) 1

Qi! aa I am I

A chess Problem about a King
In how many ways can a king move from the square 

(0, 0) to the square (k, I) if it moves in the direction of 
increase of one or both coordinates'!*

Denote the number required by wki,. If the king, in 
its progress, makes s diagonal moves (obviously s <; k, 
s £ Q  then the number of horizontal moves equals 
k — s; the number of vertical ones equals I — s, and 
the total number of moves equals k +  I — s. Either 
way in which the king moves, there being s diagonal
moves, can be characterized in ways
(verify by calculating in how many ways can k — s 
letters h, I — s letters v and s letters d be arranged). 
Therefore, when k 1.

(/<•+/)! (*+7-1)1 , , ____ZJ___ ... .
k’1 kill + ( / f -l )I  (/-1)!1! +  '* 01(f-/c)l/r!’^

where the first term is the number of ways reaching 
square (k, I) without diagonal moves, the second term 
is the number of ways of reaching square (/c, /) with 
one diagonal move and so on.

We suggest that the reader, starting from the identity 
Wx , y =  Wx , y - l  +  U>x-l, y +  ̂ x - l ,  y - l  (15)

and the conditions , ....
U>x,o = U>o,y=l> (16)

* When both coordinates change the move is called a diago­
nal move
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compiles a table of values of function wx,y, filling it 
■with values of squares of the board, and compares the 
results with values obtained from formula (14).

By modifying the conditions of the problem some­
what, we may try to find the number of ways in which 
the king may be moved from some specific square to 
some other square of the chessboard in the least number 
of moves.

We split the board into zones consisting of squares, 
which can be reached by the king in 1 move, in 2 moves, 
etc. (Fig. 22), letting the solutions for, say, the first three 
zones be known beforehand (see numbers in the squares 
of these zones).

Since the square /5 of the fourth zone can be reached 
only from squares e4, /4, g4 of the third zone, and these 
squares can in turn be reached in seven, six and three 
ways respectively, the king can reach square /5 in 
sixteen ways (7 +  6 +  3).

Evidently, the square g5 
can be reached in 10 (3 +
+  6 +  1) ways, and the 
square /i5 in four (3 +  1) 
ways, etc.

On filling in, consecuti­
vely, the squares of the 
4th 5th, etc., zones, it is 
easy to verify that the 
king disposes of 12, 20,
266 and 357 ways of reach­
ing squares a2, al, c8 
and d8 respectively.

8 W s
m iH

7
w ■ § P

6
m iff B

5
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4 i 3 1 7 i i
3 H 3 s 2 1 i 3
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w ,

2 1 1 2 i
1 p 4 I I

' M l

m
i i 4

Q b c d e f 9 h

F ig . 2 2 .

Miscellaneous Problems
There exist a number of problems in which it is 

difficult or impossible to construct a difference equation 
for the function required. This is the case, for example, 
if the chess knight is substituted for the king, or if 
in the problems about the rook and about the spider
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certain moves are forbidden by setting up partitions 
on the board, or by destroying certain rods in the 
space network.

In problems of this kind, the zones, all of whose 
squares can be reached in k moves (k =  1, 2, 3 , . . . )  
may have quite a peculiar shape, therefore the squares 
of different zones are either numbered or painted in 
different colours for convenience. Here, naturally, all 
squares of zone k must be revealed before proceeding 
to determine the (k +  /)th zone.

In Fig. 23, the large figures mark the squares which 
belong to the first two zones in the problem about a 
knight on an unbounded chessboard; small figures 
indicate in how many ways the knight can reach va­
rious squares of these zones from square A.

Obviously, of the unfilled squares, those which can 
be reached by the knight’s move from at least one of 
the squares of the second zone, belong to the third 
zone. For example, the square B belongs to the third 
zone, and since it is connected, via the knight’s move,

with 5 squares of 
the second zone 
(enclosed in a frame), 
the knight can reach 
it from square A in 
nine ways (1 + 2 + 2  
+  2 + 2 ) .

Fig. 23. Fig. 24.
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Similarly, we find that the squares, C, D and E of 
the third zone can be reached by the knight in 1, 6 
and 12 ways.

Verify that in the presence of partitions indicated 
in Fig. 24, the twelfth zone in the problem of the rook, 
starting from A, consists of four squares, each of 
which can be reached by the rook in eight ways(42).

Similar questions can be set in problems about the 
king and about the spider, and the set of forbidden 
moves can be made up in any desired manner. It is 
possible to aim at achieving some complicated pattern 
with the “/e-zones”.

It is easy to see that the fifth, sixth, etc. zones in 
the problem about the knight, are of a fairly regular 
shape, and when k ]> 5 the following formula holds 
for the number Nk of squares of the kth zone: Nk =  
=  120 +  28 (n -  5).

Consider the following questions:
1. In how many ways can the king reach the fourth 

zone in 4 moves, using an unbounded board(43)?
2. In how many ways can 2 (3, 4) pawns, situated 

in the second row of the chessboard, be brought to 
the eight row?(44) (We have in mind various methods 
of alternating the moves of various pawns, and also the 
right of each pawn to make use of the initial double 
move or to renounce it.)

3. Try to find the general solution of the problem 
about the knight, i.e. to determine (at least when 
k ;> 5) the dependence of the number of ways of reach­
ing separate squares of an unbounded chessboard on 
their situation on the board.

A similar question can be set, given any particular 
values of p and q, for the “p, q-knight”, in whose move 
one of the coordinates changes by p units, and the other 
by q units.
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We give the name of a magic n2-square to a square 
subdivided into n2 smaller squares, having written into 
them the first n2 natural numbers in such a way that 
the sums of numbers in any horizontal or vertical row, 
and also along any diagonal of the square is equal to

one and the same number s, =  n^ 2+ H the sums 
of vertical and horizontal rows only are identical, then 
the square is called semi-magic. Figure 25 shows a 
magic square known as Diirer’s square after a mathe­
matician and artist of the sixteenth century, who 
depicted it in the well-known painting “Melancholy”. 
The two middle numbers of the bottom row form the 
figure 1514 — the date at which the painting was 
completed.

It is easy to investigate fully the topic of magic

squares, when n =  3. Indeed, s3 =  3(3 2+ 1) = 1 5 ,  and
there exist only eight ways of expressing the number 
15 in the form of a sum of various numbers (from 
1 to 9):
1 5 = 1 + 5 + 9 = 1 + 6 + 8 =
= 2 + 4 + 9 = 2 + 5 + 8 = 2 + 6 + 7 = 3 + 4 + 8 =

= 3 + 5 + 7 = 4 + 5 + 6 .
Note that each of the numbers 1, 3, 7, 9 enters into two 
of the sums given, each of the numbers 2, 4, 6, 8 into 
three of them, and the number 5 only comes into four. 
On the other hand, of the eight rows of three squares 
each — three horizontal ones, three vertical ones and
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two diagonal ones — three rows pass through each of 
the corner squares, four through the central square and 
two through all the remaining sqaures. Therefore the 
number 5 is found to be situated in the central square, 
the numbers 2, 4, 6, 8 in the corner squares, and the 
numbers 1, 3, 7, 9 in the remaining squares of the 
larger square.

Fig. 25.

Since the numbers 2, 4, 6 and 8 can be distributed 
in the corner squares so that the diagonal sums equal 
15 each in eight ways only, and their position fully 
determines the position of the numbers 1, 3, 7 and 9, 
it can be stated that there exist only eight nine-square 
magic squares. Two of them, being mirror-images of 
each other are shown in Fig. 25 b, c; the six remaining 
ones are obtained from these squares by rotating them 
about their centres by 90°, 180°, 270°. With the increase 
of n, the number N  of various squares with n2 small 
squares in them, increases rapidly, and, although a 
general formula expressing the dependence of N  on 
n has not been found yet, it has been established that 
there exist 880 various sixteen-square magic squares, 
and as soon as we reach n =  7, the number of magic 
squares reaches hundreds of millions.

There are several methods of constructing magic 
squares, proposed by various authors. One of the most 
elegant methods is the method of terraces, proposed by 
Bachet: n2 numbers are written out in order (see Fig. 26, 
where n =  5) in n rows parallel to one of the diagonals 
of the square, each row containing n numbers, and the 
middlemost of the numbers being placed in the centre 
of the square. We leave it to the reader to prove that

16 3 2 13

5 10 II 8

9 6 7 12

4 15 14 1

(o)
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the parallel transference of all parts (terraces) situated 
outside the square, inside and on to the opposite side 
of the square, leads to magic square.

Using mirror images and rotations by 90,° 180° and 
270°, it is possible to obtain from each “Bachet square” 
seven more magic squares.

5

4 10

3 9 15 3 16 9 2 2 15

2 e 14 2 0 2 0 e 21 14 2
1 7 13 19 2 5 7 2 5 13 19

6 12 ie 2 4 2 4 12 5 IB 6

23II 17 2 3 II 4 17 10

16 22

21

Fig. 26.

A convenient method for constructing magic squares 
with an even number of little squares was proposed by 
Ball.

Let us call operations, in which numbers a and p, 
a and y, a and b, symmetrical with respect to straight 
lines BB', A A' and to the centre of the square res­
pectively, (Fig. 27a) change places, horizontal, vertical 
and central transpositions, and let us denote them by 
(*, ft), (a, y), (a, b).

It can be seen easily that two central transpositions 
(a, 6) and (/?, y), where the numbers a, /?, y, b (situated 
at the opposite vertices of a rectangle, whose axes 
of symmetry are straight lines A A', BB') change places, 
are equivalent to two horizontal transpositions (a, P) 
and (ot, 6) and to two vertical transpositions (a, y) 
and (P, b) carried out consecutively.

If a square, containing (2m2) little squares, is filled 
with natural numbers from 1 to 4m2 inclusive, written 
out in their natural order (filling, from left to right, 
the top, then the second, third, etc. rows) it is easy 
to prove (see [25] pp. 173-176) that:

99



Mathematical Games and Pastimes

1. Both diagonals satisfy the condition for a magic 
square i.e. the sums of numbers in each diagonal 
equal m(4m2 +  1).

2. Any two vertical (horizontal) rows symmetrical 
about the straight line BB' {AA') satisfy the condition 
of magicality if any m horizontal (vertical) transposi­
tions are carried out.

+ - - +
4- 1 +

4- 4- 1
— 4- 4- — 1

— + 4- + —
4- +

Ab)

0 0

(□)

36 2 4 3 35 31
7 29 27 10 26 12
13 14 22 2) 17 24
19 23 16 15 2 0 18
3d 9 28 6 25
6 32 33 34 5 I

(c)

(b1)
T + + 4-++ +4-+ -H+ 4-
-I- ++ 4-+ 4- 4- 4-it 4-+ 4-++ +++ + 4- T

6 4 2 62 4 5 59 7 57
9 55 54 12 13 SI 50 16
17 47 19 45 44 22 42 24
40 26 27 37 36 30 31 33
32 34 35 29 28 38 39 25
41 23 43 21 2d 46 18 48
49 15 14 52 53 II 10 56
8 58 6 60 61 3 63 1

(d) Id')
Fig. 27.

16 2 3 13
5 11 10 8
9 7 6 12
4 14 IS 1

(c'l

—4- I I 4- —
— 1 4- 4- 1 —

4- T 4-
4- 4- 4- 4-
4- 4- 4- 4-

4* T + 4-
— T 4- 4- T —

- 4- 1 1 1- -

( e )

The essence of Ball’s method consists of selecting 
transpositions as a result of which all rows and columns 
satisfy the condition of magicality, and the elements 
of each diagonal remain in the same diagonal (having 
perhaps changed places with each other).

Let us agree to indicate horizontal (vertical) trans­
positions, to which the appropriate numbers are to be 
subjected, by horizontal (vertical) strokes in the little 
squares symmetrical with respect to BB' (AA'); and 
to indicate two diagonal transpositions of numbers, 
situated in the vertices of a rectangle, by little crosses 
situated at the vertices of the rectangle, whose centre 
is at the centre of the square (these transpositions as 
was noted above, take the place of two horizontal and 
two vertical transpositions, carried out consecutively).

Figure 27, b, c, d, shows diagrammatically (for m =  3, 
2, 4) the operations, as a result of which corresponding 
“naturally” filled “4m2-squares” (not shown in the 
drawing) are transformed into squares (b'), (c'), (d').
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Since, in this case, the numbers of a diagonal remain 
in the same diagonal, and m numbers of any horizontal 
or vertical row exchange places with the corresponding 
numbers of the symmetrically situated row, the squares 
(6'), (c'), (d') are magic ones.

We recommend that the reader verifies in a series 
of examples, that the finding of sequences of operations 
leading to magic squares does not present any great 
difficulties, and for any given m it can generally speak­
ing be accomplished in many ways, (see, in greater 
detail [25], pp. 176-186).

It should be noted that for an even m the construction 
of a scheme for the transition from a naturally filled 
square to a magic one is much simpler than when m 
is odd, in which case the scheme must include both 
crosses and horizontal and vertical strokes.

When m is even, the scheme can consist of crosses 
alone (see, for instance, scheme d), which, however, 
is not a necessary condition, as can be seen, for instance, 
from the scheme e).

Let us widen somewhat the concept of magic “n2- 
squares” by allowing that their little squares can be 
filled by numbers from k +  1 to A: +  n2.

It is possible to look for squares satisfying various 
additional conditions. For example, as far back as 
1544 Stifel constructed a magic “72-square”, which, 
on discarding all boundary little squares yielded a 
magic “52-square” filled by natural numbers from 13 
to 37, which in its turn was capable of being transformed 
by the same method into a “S^square” filled with 
numbers from 21 to 29 (Fig. 28a).

Figure 286 shows a supermagic square, i. e. one such 
that when an identical square is added to it on the right, 
all sums obtained by addition in “diagonal directions” 
are the same.

It is possible to construct a magic “92-square” 
disintegrating into 9 magic squares of nine little squares 
each (see [30] p. 106).
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By analogy with magic squares it is possible to con­
struct magic “n3-cubes”, whose subdivisions contain 
the first n3 numbers (or numbers from k +  1 to k +  n3), 
which are distributed in such a way, that the sums of 
numbers in any of the 3n2 rows parallel to an edge of 
the cube, and along any of the diagonals of the cube 
are the same.

In [30], on pp. 108-109, the reader can find examples 
of magic “43-cube” and “53-cube” (it is impossible to 
construct a magic “33-cube”).

It is possible to introduce the concept of magic rec­
tangles, which give identical sums along the diagonal 
directions and the short rows, differing from the sums 
of the numbers in the long rows of the rectangle, which 
in turn are identical among themselves.

4 0 1 2 3 42 41 46

38 31 13 14 32 35 12

39 30 26 21 28 20 II

43 33 27 25 23 17 7

6 16 22 29 24 34 44

5 15 37 36 10 19 45

4 49 48 47 8 9 10

(o)

2 9 II 18 25 2 ! 9 ! 11 ' 18 j 25 !

16 23 5 7 14 1 1 1 1 1 16 i 23 i 5 * 7 ' 14

10 12 19 21 3 10 ! 12 ! 19 ! 21 ' 3 ! -  -I
2<i! i ; e I 15 j it J24 1 8 15 17

13 20 22 4 6 13 E  20 j 22 i 4 ! 6 1

(b)
F ig . 28 .

Figure 29 shows (a) a magic hexagon, and (b) and (c) 
“magic stars”, which give identical sums on adding 
up the numbers in any of the given rectilinear directions. 
Figure 29d shows the so-called central projection of a 
regular dodecahedron (see explanation in Fig. 117) 
drawn inside the circle I. If we write down the sums of 
numbers situated (1) at the vertices of any face of the 
dodecahedron (19 +  2 +  11 +  8 +  25, 11 +  8 +  17 +  
+  5 + 2 4 ,  etc), (2) along any of the dotted lines, (3) 
along the circumference of the circle, then each of the 
19 sums equals 65.

Try to work out the following problems:
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1. Is it possible to construct a magic triangle and a 
magic pentagon analogous to the hexagon (a) by dis­
tributing in schemes (e) and (/) numbers 1 to 7 and 1 to 
11 respectively?^5)

2. In the star (b), in addition to each quartet of 
numbers along its sides giving 26 when added up, the 
four numbers in the vertices of the great rhombi also 
give the same sum (12 +  1 + 7 + 6 ,  etc. ) and so do 
each five numbers adjacent to the vertices of the star 
( 3 + 4  +  8 +  1 + 1 0 ,  etc.).

Try to find substantially different methods of dis­
tributing numbers from 1 to 12 in the same scheme, 
in such a way as to get each of the fifteen groups 
indicated to add up to 26 again.

(a) (b) (C)

3. Distribute numbers from 1 to 9 in the little squares 
of a 32-square in such a way, that each of the four corner 
sums, consisting of three terms each, equals the same 
number s. For example, for square (g) we have s =
=  14 =  4 +  7 +  3 =  3 +  6 +  5 =  5 +  8 + 1  = 1  +  
+  9 +  4.
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In [34] it is shown, that the number n of substantially 
different solutions of the problem depends on s in the
following manner: 5 12 13 14 15 16 17 18

n 3 6 10 9 10 6 3 When
s <  12 and when s >  18 the problem has no solution.

By combining mirror images and rotations through 
90°, 180° and 270°, each of the 47 substantially different 
solutions yield 7 more solutions, not substantially differ­
ent from it.

Try to investigate the analogous problem for the 
42-square (h) and the 33-cube (/) where the subdivisions 
containing terms of corner sums are marked in.
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§ 17. Euler Squares

If the little squares of an n2-square are filled by n 
elements of the first kind: av a2, . . . an and n elements 
of the second kind: bt, b2, . . . bn (each of them is taken n 
times) in such a way, that:

(1) each little square contains one element of each 
kind;

1.1 2 ,2 3 ,3

2 .3 3,1 1.2

3 ,2 1,3 2,1

(0)

1,1 2 ,2 3 .3 4 ,4

3 ,4 4 ,3 1.2 2,1

4 ,2 3,1 2 ,4 1,3

2 .3 1,4 4,1 3 ,2

(b)

\ \ \ \ \I—I—I—I—I— |—rT T "i
1.1 2 ,2  3 ,3  4 ,4  5 ,5  I , I !2 ,2 |3 ,3 |4 ,4 j5 ,5 j

3 .4  4 ,5  5,1 1,2  2 ,3  3 ,4 |4 ,5 '5 ,1  J I,2 i2 ,3]----  -------------------------1-----1 —  1—  + — *
5 .2  1,3 2 ,4  3 ,5  4,1 5,2|J_,3

2 .5  3,1 4 ,2  5 ,3  1,4 2 ,5 ]3 ,1 |4 ,2 |5 ,3 ! l ,4 l
------------------------------------ 1-----r -~ i— i------ 1
4 ,3 5 ,4  1 ,5 2 ,1  3 ,2  4 ,3 i5 ,4 l 1,512,1'3,211 1 I_l_l_L__L_I

(C)
Fig. 30.

(2) each element of the first kind is combined with 
each element of the second kind once only;

(3) each row and each column contain all the elements 
of both the first and the second kind, then a so-called 
Euler square has been constructed.

If the third property applies also to the diagonals 
of the square, we have a diagonal Euler square. Figure 30 
shows Euler squares for n =  3, 4, 5, the little squares 
showing the indices only of the elements of the first 
and second kinds.

The square (b) is a diagonal one, and the square (c) 
even possesses a property of this sort: if a second iden­
tical square is added on to it on the right, then in any 
of the ten diagonal directions, indicated by arrows in

105



Mathematical Games and Pastimes

the diagram, any element of the first or second kind 
is bound to be encountered. Such a square bears the 
name of an all-diagonal Euler square.

The problem of constructing Euler squares can be 
formulated differently: “Let each of the n2 elements 
be characterised by its belonging to one of n classes 
and to one of n categories, and at the same time any 
two objects differ from each other either in class, or in 
category, or in both at the same time.

It is required to distribute the objects among the 
little square of the “/i2-square” in such a way as to 
have representatives of all classes and all categories 
in each horizontal and each vertical row.

For n =  4, we can, for instance, take the four cards, 
ace, king, queen and jack of the four suits, and for 
n >  4 we can take n2 pieces of cardboard with n differ­
ent diagrams on them (squares, triangles, circles, etc.,) 
painted in n different colours.

Euler himself tried unsuccessfully to solve a problem 
about 36 officers (6 officers of various ranks from 
each of 6 different regiments). It has been proved 
since that this problem is insoluble, i. e. when n =  6, 
no Euler square can be constructed.

By diminishing each number in the little squares 
of an Euler square by one, and then regarding the pairs 
of numbers as digits of numbers written in the base-n 
system of notation, we can from any Euler square 
obtain a semi-magic square, and from any diagonal 
Euler square a magic square.

We suggest that the reader obtains, in the same way, 
a super-magic 52-square from the all-diagonal square (e).

Any Euler square can be considered as a combination 
of two Latin squares, i. e. squares filled by n elements 
(each taken n times) in such a way as to encounter 
any one of these elements in each row and in each 
column. Here there should be combinations of each 
element of the first Latin square with each of the n 
elements of the second one.
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§ 18. Pastimes with Dominoes

As is well known, each domino is divided into two 
halves, which contain combinations with repetitions 
of numbers 0, 1 ,2 ,  3, 4, 5, 6, marked in by dots. The 
domino whose halves contain k and I dots shall be 
denoted by (k, I).

By laying the dominoes with their identical halves 
next to each other we can construct a “chain”. A chain 
with identical halves at its ends can be closed. By 
breaking a closed chain at this or that point we can 
obtain open chains.

We may consider a “generalized domino set” as one 
on the halves of whose dominoes all possible combina­
tions with repetitions of numbers 0, 1, 2 , . . . ,  n — 1, 
n appear.

Try to solve the following problems:
1. Show(47) that the number of dominoes and the 

sum of all points of a generalized domino are equal
to (n+- 1)2(n + 2) and n(/l + 1)2 (n +  2)- respectively.

2. Prove(47) that when
n is even, and one domino 
(a, b), where a ^  b, is
removed from the comp­
lete set, the remaining 
dominoes can form an 
open chain only, ending 
in halves containing a and 
b points respectively.

3. Prove(4tt) that whenn 
is odd, a complete set of
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dominoes cannot be arranged in a chain and that the 
longest chain contains no more than ri_+ ^+ J^  
dominoes.

4. Distribute 28 dominoes among 4 players in such 
a way, that the second and the third player do not 
get a chance to put down a single domino until the 
first player finishes the game.

5. The diagram which appears in Fig. 31 can be sub­
divided into 14 squares, each containing 4 identical 
numbers. By interchanging numbers 0, 1 ,2 ,  3, 4, 5, 6 
and making use of mirror reflections in the vertical 
axis of the diagram, it is possible to obtain 10 080 
( = 2  x 7!) diagrams (including the given one) not 
differing significantly among themselves.

Could you manage to find a diagram of the same kind 
with a significantly different subdivision into fourteen 
squares each containing 4 identical numbers?

6. In Fig. 32 the dominoes 
are set out in such a way 
that on discarding men­
tally the right-hand column 
of zeros, we obtain a 72- 
square, in which the sum 
of points along any diago­
nal and in any horizontal 
or vertical row equals 
twenty-four.

Could you succeed in 
constructing an analogous 
(n — l)2 - square for a 

Fig. 32. generalized domino set?

1 5 0 4 | |  5 5 If

6 5 | | 2 2 3 3 l.

3 1 I 1 6 _?JL2 3
3 5 | | 2 4 II 4

3 F 1 2 i

1 ! 1 1 4 6 | | 2

1 4 5 1 1 4 1 1 1 6 3 |
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§ 19. Problems Connected with the 
Chess Board

In § 15, we considered problems in which it was 
required to determine the number of ways of moving 
a chess piece from one square of the board to another.

Let us investigate two more classical problems, those 
of the queens and of the knight, and a number of topics 
related to them. Some of them are interesting because 
of their close connection with the theory of sets, others 
may serve as a source of research and of formulating 
original solutions. Many interesting problems about 
queen or knight can be found in a book by L. Y. Okunev 
[21].

A Problem about Rooks
In how many ways can n rooks be distributed on an 

iln2-board” in such a way, that they do not threaten each 
other?

Obviously, the rooks must be placed in different 
rows and different columns of the board. Any such 
distribution of n pieces on a chess board can be cha­
racterized by a permutation of the numbers 1, 2, 3, . . ., 
(n — 2), (n — 1), n, if we let the consecutive numbers 
of the permutation denote the numbers of the rows 
occupied by pieces in the first, second, etc., columns 
respectively.

Since any permutation corresponds to a definite 
solution of our problem, and different permutations 
obviously correspond to different solutions, the total 
number of solutions of the problem under discussion 
equals nl
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The problem about rooks gains considerably in 
complexity if we become interested only in those solu­
tions in which no rook is placed on the diagonal joining 
the lower left-hand square and the upper right-hand 
square. The total number of such solutions, N, is de­
termined from the formula

N
121 31 4! n )

(see [21] p. 13).
it equals the number of permutations of n elements, 
in which no element occupies its normal place.

By diversifying the imposed limitations (for example, 
by demanding that the rooks be placed on white 
squares only or by making both diagonals a “for­
bidden zone”, etc.) it is possible to arrive at combina­
torial problems of greater or less degree of difficulty.

A Problem about the Queens
In how many ways can n queens be distributed on an 

“n2 board” in such a way that they do not threaten each 
other?

Queens, situated in squares (p , q) and (s, t), threaten 
each other diagonally, when and only when | p — s j =  
=  j q — t \ , here p, s are the numbers of columns and 
q, t are the numbers of rows at whose intersection the 
squares (p, q) and {s, t), respectively, are situated.

In the corresponding permuta­
tion (see problem about the rooks) 
the numbers q and t should be 
occupying the pth and the sth 
place respectively. A permutation 
of n numbers characterizes a parti­
cular solution of the problem, when 
the difference of the place-num­
bers of places occupied by any 
two numbers is not the same as the 

difference of the numbers themselves in absolute value.

1—  
1

W a

777V,

W A

r - n
# 1

HI m
W A

m j

W a , 1

ii§ #
W /\

m<2222. m
1

_  j
Fig. 33.
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It is easy to verify that, when n =  2, and when n =  3, 
the problem about the queens is insoluble. The solu­
bility of the problem, when n =  4 and when n =  5 
is easily verified from Fig. 33; and for n ;> 6 the solu­
bility of the problem is seen from the examination of 
permutations given in the following table:
Form of Permutation, giving solution of problem 
numbers about queens

6/C+4} 2> 4> 6» 8>-> n~ 2> n’ 3» 5> 7’- ’ n ~ 3’ n ~ 1 
6/c+2 4, n—2, n—4, n—6, ..., 10, 8, 6, n, 2, n — 1,

1, n—5, n —7, ..., 5, 3, n—3

6^ + 5} n> 2) 4’ 6’ 3* n~ 3> 5,...,n—4̂, n—2
6/C+3 n, 4, n—3, n—5...... 10, 8, 6, n—1, 2, n—2,

1, n—6, n —8, ..., 7, 5, 3, n—4
Attempt to prove that in each of the permutations 

shown the difference of any two numbers differs in 
absolute value from the difference of their place- 
numbers (see [21] pp. 23-25). Verify this, say, for k =  1 
and for k =  2.

The question of the number of solutions of the prob­
lem about queens on an “n2-board” for an arbitrary n 
has not been resolved yet, in spite of the efforts of 
numerous mathematicians. In a particular case (n =  8), 
it has been established, that the problem has 92 solu­
tions. Among those, there are only 12 “independent” 
solutions; they are characterized by the permutations

15863724 25741863 27581463 
16837425 26174835 35841726 
24683175 26831475 36258174
25713864 27368514 35281746

The remaining solutions are obtained from these 
twelve by means of the “reflection of all pieces” in the 
vertical midline of the chessboard, and by means of 
rotating the pieces (taken in the “initial” and the 
“reflected” positions) through 90°, 180°, 270° with 
respect to the centre of the chessboard. Ill
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In Fig. 34 the upper row gives a solution corresponding 
to the permutation 15863724, and three solutions obtained 
from it by rotation by 90°, 180° and 270°; in the lower row, 
there are to be found the “reflected” solution and solutions 
obtained from it by rotating through the same angles as 
before. Thus, each of the permutations shown gives, gene­
rally speaking, eight solutions altogether; the exception is 
provided by the last permutation, which gives three 
additional solutions only.

The two prohlems considered can be generalized in 
various directions. For example, n rooks or n queens 
may be distributed on an “m2-board” (m >  n) or on 
a “p, g-board” (p ^  n, q ;> n).

Solutions of the problem may be sought, in which, 
say, no two of the pieces set out are connected by the 
knight’s move, etc.

Finally, a rectangular, three-dimensional “/^-net­
work” (or even a /c-dimensional “n^-network”) may be 
taken, extending to n — 1 units in the direction of each 
dimension, and n2 (nk~1 respectively) rooks or queens, 
not threatening each other, distributed at its nodes.

Here we assume that the rook’s move and the queen’s 
move takes us from any given nodal point to any nodal 
point only one of whose coordinates differs from the 
corresponding coordinate of the initial node, and the 
queen’s move can take us also into nodal points, two 
of whose coordinates differ from the corresponding 
coordinates by numbers having equal absolute values. 
The queen’s move can, of course, be defined differently, 
e. g., by supposing that nodes A(a15 a2, . . ., ak) and B(bv  
b2, • . ., bk) are connected by the queen’s move, if the 
differences bs — as (when s =  1, 2, . . ., k — 1, k), 
without depending on each other, take on one of 
three values: 0, m, —m (m being an arbitrary integer), 
at least one of the differences being other than zero.

When the queen’s move is treated in this way, the 
question of determining the smallest values of n (for 
various k), for which the problem about queens is 
soluble, acquires some interest.
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Note that the problem about distributing n 
bishops (situated on both white and black squares) 
on an n2-board turns out to be intermediate in diffi­
culty between the problems about the rooks and about 
the queens. The number of its solutions was established 
comparatively recently by the Soviet mathematician
S. E. Arshon ([38], 8th edition, pp. 24-29.).

A Problem about a Knight
Using the knight’s moves, visit each square of the 

chessboard once and once only.
This problem drew the attention of many prominent 

mathematicians, who suggested a series of procedures 
towards obtaining some of its particular solutions (see 
[21], pp. 54-74). To this day, however, it has not been 
established what is the total number of solutions of this 
problem, although it is known that that number is 
very great.

The usual chessboard may be given up in favour of 
an /inboard (n 8) or a rectangular m, n-board. 
Finally, simple rectangular boards can be exchanged 
for boards with blank spaces inside them.

Figure 35 shows several solutions of the problem 
about the knight, featuring bizarre patterns obtained 
on joining up, by means of straight lines, the centres 
of the squares consecutively visited by the knight in its 
journey over the chessboard.

The Russian chess-player of the 19th century, Yanich, 
found a solution of the problem about the knight, 
leading, by numbering the squares in the order in which 
they are visited, to a semi-magic square, with equal 
sums along the rows and along the columns (s =  260) 
(Fig. 35 c).

A “p, g-knight”, moving each time p squares in one 
direction and g'-squares in the other, can be substituted 
for the usual knight, p and q being numbers of which 
one is even and the other odd, otherwise the p, ^-knight 
would have to move in squares of one colour only.
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It is easy to verify, that a 32-board cannot be covered 
by the moves of an ordinary knight. The same applies 
to a 42-board although on a rectangular 3, 4-board 
the problem is soluble.

It is natural, that with the increase of the numbers p  
and q (or at least one of them) the problem may become 
insoluble on an n2-board, even for some values n > 4 .

It is interesting to investigate, for instance, whether 
an onboard (for n =  5, 6, 7, 8) can be covered by a 
2, 3-knight and 1, 4-knight.

In those cases in which the problem turns out to be 
insoluble, the question can be posed about the minimal 
number of squares left out in the coverage (for instance, 
an ordinary knight can visit all squares of a 32-board, 
except the central one). In the soluble cases, solutions 
with original patterns may be sought.

(a)

50 1 1 24 63 14 37 26 35

23 62 51 12 25 34 15 38

10 49 6 4 21 4 0 13 3 6 27

61 22 9 52 33 28 39 16

48 7 6 0 1 20 41 54 29

59 4 45 8 53 32 17 4 2

6 47 2 57 4 4 19 30 55

3 58 5 4 6 31 56 4 3 18

(cl (d)
* Fig. 35
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The usual problem about the knight is equivalent 
to the following arithmetical problem; write down 64 
pairs of integers of various kinds; (au bx), (a2, b2), . . ., 
(a6i, be4). (numbers ak and bk can have values from 1 
to 8) such, that for any two neighbouring pairs the 
following condition would hold

(flft+i—o*)2+(6*+i —bic)2 = 5 
(one component changes by one unit, and the other 
one by two units). If, in addition (a64 — aL) 2 +  (̂ 64 — 
— bj)2 =  5, it is possible to get from the final point 
to the starting point by means of the knight’s move. 
A coverage of the board, satisfying the latter equation 
is called closed.

Miscellaneous Problems
Problems, involving the coverage of the board by the 

king or by the rook (simple moves of the rook) are also 
of interest.

Since a rook, in any position, has at his disposal, 
four moves at most, while the king and the knight 
can make as many as eight different moves from 
certain squares, it is natural to expect that problems 
involving the rook are the simplest ones.

Gould you find how many different ways are available 
to the rook for covering an nMjoard, when n =  3, 
4, 5, . . .  or for covering an m, n-board for various values

of m and n (perhaps you may 
even succeed in finding a ge­
neral solution of this problem, 
for any m and n).

It should be noted, that for 
odd values of the product mn, 
there do not exist any closed 
coverages of an m, n-board 
by a rook, since the starting 
square and the final square 
are necessarily of the same 
colour (the rook must make
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an even number of moves in order to reach the final 
square) and they cannot be spanned by a simple move of 
the rook.

It is also obvious that, for 
boards with an even number 
of squares, the starting square 
and the final square cannot 
be (for the rook) of the same 
colour, which explains, in 
particular, the insolubility of 
the following problem: start­
ing from room A (Fig. 36), 
visit all rooms once and finish 
your circuit in room B.

It remains to take note of 
the problems in which this or that chess-piece must 
pass through all squares of the board, but does not 
have to stop in each, and perhaps passes through cer­
tain of them several times. It is easy to verify, for 
instance, that the rook can cover an n2-board in 2n — 1 
moves. For a 32-board the substitution of a queen for 
a rook does not diminish the number of moves required 
to cover the board. However, if a square area of nine 
squares is situated inside a large board, and if the 
queen is allowed to cross its boundaries, the whole 
area can be covered in four moves (Fig. 37) and not 
in five as is the case with the rook. A similar question 
can be set for n > 3 ,  for an n2-area situated inside a 
large board.

Fig. 38.
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It is interesting to seek solutions of the problem about 
the knight (king or rook), where the chess-piece follows 
a broken-line circuit (see Fig. 38). Here, for noncloserl 
coverages, the starting square and the final square 
may be shown in addition.

Questions for Consideration

1. For fairly small n and k, consider the problem 
about the knight in the case of an n,c-network (see p. 
103), assuming that the nodes of the network, 
a2, . . ., ak) and B (bv b2, . . ., bk) are connected by 
knight’s moves, if

k
2

i ~ l
(a, — b,)2 =  5 and =  3.

Consider an analogous question for the “p, g-knight”, 
when p and q are fairly small (see p. 104).

2. A bishop can pass through all similarly coloured 
squares of an 82-board in 17 moves (Fig. 39a). What is 
the least number of moves, in which it can pass through 
all similarly coloured squares of an n2-board (n =  9, 
10, 11, . . . )?

3. By moving alternately white and black bishops 
(Fig. 39b) make them change places in 36 moves, in 
such a way, that at no time do the bishops of differ­
ing colours threaten each other.

(a)
Fig. 39.
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Fig. 40.

4. Show that there exist only 8 ways of covering 
a 3, 4-board by the knight’s move and that all these 
ways are open(51).

5. A chess-piece, whose move connects two squares, 
(k, I) and (m, n), of a chessboard, for which (k — m) 2 +  
+  (I -  n)2 =  25 posesses an interesting property. This 
piece moves both as a rook (over four squares into 
the fifth one) and as a 3, 4-knight; it can make exactly 
4 moves from any square of an 82-board.

Would the reader succeed in creating other pieces, 
posessing an analogous property on an n2-board (n = 6, 
7, 9, 10, . . .) or in an n2-network (k = 3, 4, . . .)?

6. In Fig. 40 it is seen that 5 queens in an 82-board 
can keep all squares within their striking distance, and 
in an l l 2-board they can keep so all squares, except 
those occupied by the queens themselves. Find the 
greatest values of Nx and 1V2 on condition that n queens 
(n =  6, 7, 8, 9, . . .) can keep within striking distance 
all squares of an IV^-board or all squares of an N22- 
board, except the ones occupied by the queens them­
selves.
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§ 20. Making up Timetables

Let us discuss a few problems on making up time­
tables, in accordance with which members of a certain 
collective can be grouped together, while certain supple­
mentary conditions are also fulfilled.

1. 13 children are required to do 6 different exercises.

while standing in a circle. Can this be done in such a 
way that each child has new neighbours on each occasion?

Substituting letters from A to N  for children, we 
put A on the polygon, whose vertices divide the circle 
into 12 equal parts (Fig. 41a) and we distribute the 
remaining letters evenly along the circumference.

On moving along the polygon in the initial position, 
shown in the drawing, and on rotating the polygon 
about the centre (A moves with the polygon, all the 
other letters stay in their places) through 30°, 60°, 
90°, 120°, and 150°, we obtain six sequences of letters:
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1) A BCDEFGHIKLMNA, 2) ADBFCHEKGMINLA 
3) A FDU BKCM ENG LI A , 4) A11FKDM BNC LEI G A 
5) AKHMFNDLBICGEA , 6) AMKNHLFIDGBECA
in which any letter has all other letters as neighbours 
at some time.

Try to prove that this procedure can also be used in 
the general case, when 2n +  1 children have to carry 
out n exercises. Try to find a simpler method of solving 
this problem.

2. Make up a timetable of a chess tournament with 
eight participants.

We apply a method, similar to the one used in the 
previous problem: having placed No. 1 in the centre 
of the circle, and the remaining seven numbers at the 
vertices of an inscribed septagon, we make up a time­
table for two days with the aid of a polygon, whose 
sides are drawn thick and thin alternately (Fig. 416), 
by joining together first the numbers at the ends of 
the thick lines, and then the numbers at the ends of the 
thin lines;

1" day; 1 ,2  4 ,7  6 ,5  8,3;
2nd day; 3, 1 2 ,4  7, 6 5,8.

If we keep to the given direction of going round the 
circle, and iif we assume that the first number of each 
pair plays white and the second black, then every 
player will get a chance of playing both white and 
black in the course of the two days.

By rotating the polygon about the centre, in a clock­
wise direction, through ^  and radians re­
spectively, and using the thick lines only in the last
case, it is easy to make up a timetable for the 
five days:

remaining

3rd day 1 ,4 6, 2 8, 7 3, 5
4th day 5,1 4 ,6 2, 8 7 ,3
5th day 1 ,6 8 ,4 3, 2 5, 7
6th day 7, 1 6, 8 4 ,3 2, 5
7th day 1 ,8 3, 6 5 ,4 7 ,2
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The method shown is applicable, when n (the number 
of players) is even; if n is odd, it is sufficient to intro­
duce a fictitious player, and the participant who is 
to meet the fictitious player is regarded as free for that 
day. For example, by diminishing all numbers in the 
timetable obtained above by 1, and regarding the 
player No. 0 as the fictitious one, we obtain a time­
table in which each of the 7 players has 3 games with 
the white pieces and 3 games with the black and has 
1 day free of play.

3. Fifteen children play every day in yroups of three. 
Make up a weekly timetable in such a way, that every 
child has different partners each day.

This problem, proposed by Kirkman in 1850 (in a 
somewhat different form) drew the immediate attention 
of a number of important mathematicians. Here is 
one of its possible solutions:

1st day: a, b, c d, e, f g, h, i k, I m, n, o
2nd day: a, d, g b, e, h c, 1, 0 j, n, i i, k, f
3rd day: a , j , m b, k, n c, /, i d, h, o g> e,l
4th day: a, i, o b, d, j c, e, k 9» n>f i, h, I
5th day: a, f, I b, g, m c, h, n d, i, k }, e, o
6th day: a, h, k b, /, o c> g> i d, I, n m, e, i
7th day: a, e, n b, i, I c, d, m g, k, o h h, f

Certain authors produced methods of solving ana­
logous problems for n =  5 x 3fc, for n =  3k, for n =  
=  63 (= 26 -  1) and for n =  255 (=  28 -  1).

It would be interesting to find, for the basic problem 
and its variants, easily remembered timetables, enabling 
the participants themselves to realize the necessary 
groupings in a simple way.

Sylvester, the English mathematician of the 19th 
century, posed the problem (apparently still unsolved) 
about the distribution of all possible combinations 3 
at a time (their number =  C?5 =  455) in 13 complexes, 
each of which on being subdivided into seven groups 
would give a solution of Kirkman’s problem.
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The solution of this problem is equivalent to the 
making up of a quarterly (13 weeks) timetable, in which 
no combination repeats itself.

Many interesting details connected with Kirkman’s 
problem and its generalizations are to be found in 
[33] v. II, pp. 97-117.

In the problems discussed and in similar problems, 
we may try to find the number of significantly different 
timetables, regarding two timetables as having no signi­
ficant difference if one can be obtained from the other 
by means of some substitution (interchange of one 
element by another), carried out throughout the time­
table, and by means of separate days changing places.

Consider the following problem.
P r o b le m .  Make up a timetable (for different values 

of n) for n -f 1 dags so that n2 schoolchildren are separ­
ated into classes of n children at a time, and any child 
has different classmates on each occasion.

There exists a simple method of solving this problem, 
when n is a prime number, but this method is not 
applicable, when n is a compound number ([33] II, 
pp. 94-96).

123



§ 21. The “Problem of Josephus Flavius” 
and Similar Ones

Suppose that n elements are arranged in a circle, then 
they are counted, and every /cth element is removed 
(if the problem is being solved on paper, the element 
is crossed out, if it is being solved by having objects 
distributed in a circle, then it is done by laying the 
object aside); having removed one element, the count 
is resumed from the next surviving element, etc.

The following questions can be set here:
1. Which element is removed on the 5th count (1 <  

<. s <, n)  ̂ This was the problem, when n =  40 and 
k =  3, that had to be solved according to tradition, 
by the historian Josephus Flavius, for s =  39 and for 
s =  40, in order to “survive”, together with his friend, 
after 38 removals (see [25] pp. 122-123).

2. How should n elements be distributed, so that they 
are removed in a prearranged order?

In order to solve the latter problem it is sufficient, 
having written out a row of the first n natural numbers 
standing in for the given elements, and moving from left 
to right, to underline every /cth number, and to indicate 
underneath it in which turn it was removed. Here, 
on reaching the extreme right surviving number, we 
continue the count from the left end, which is equi­
valent to a movement round a circle.

Let us find, say, in what order should 9 cards of one 
suit be arranged, so that they can be laid out in order 
of value, from the ace to the six, by transferring one 
card after another from the top of the pack to its bottom, 
and laying every fourth one on the table.
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The Problem of Josephus Flavius

Suppose the cards in the original pack are numbered 
from top to bottom

1 2 3 4 5 6 7 8 9
(9) (8) (3) (1) (6) (5) (7) (2) (4)

The numbers in brackets are obtained as follows: we 
move from left to right along the top row; we mark 
off every fourth number and we write its ordinal number 
underneath it in brackets. In further moves from left 
to right the marked numbers are no longer taken into 
account (the corresponding cards are laid on the table).

Since it is required that the first card to be laid 
down is an ace, it should be placed fourth from top, 
the king should be in the eighth place, the queen in the 
third, etc., and finally the six in the first place on top. 
Therefore, the order of the cards should be as follows; 
six, seven, queen, ace, nine, ten, eight, king, jack.

For large values of n, especially if we are interested 
in the position of one particular element, which should 
be the sth removed, there exists a simpler method, one 
that does not require the predetermination of the po­
sitions of the elements removed previously. (See [25] 
ch. IV).

Denote by {x} the smallest integer satisfying the in­
equality {z} x and call the sequence
Ul =  ( f l ) , U2 =  , 0 % ~  {£[2*7} 9 • • • 9 @ n  ~  1^} 9 • • •

an integral geometric progression with the common ratio q.
In order to find the number t of the element to be 

removed sth (the initial number of elements being n, 
and the element removed each time being the kth) 
we must construct an integral geometrical progression,

k
in which a =  k (n — s) +  1 and q =  f ; if the
greatest of the terms of this progression, which do not 
exceed the number nk, is denoted by A, then t =  
=  nk +  1 — A.

In the case of the problem about the nine cards quoted 
above, let us find, say, the number of the card which 
is the fifth one to be laid on the table. Here n =  9,
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k =  4, s =  5, q =  j- =  j  ’ n/e =  36. Therefore 

^  = {4 (9—5 )+ l}  = 17, a2 = | i 7 x  —J = 23,

a3 = (2 3 X -J  = 31, o4 = | 3 1 x - |  = 42>n/c:

therefore, A =  31 and t — 36 +  1 — 31 = 6 ,  i.e. the 
lifth card to be laid on the table is the sixth card of 
the pack.

Solve the following problems:
1. Establish(51a) by two methods, that Josephus 

Flavius and his comrade had to occupy the 13th and 
the 28th places respectively, in order to be removed last 
and one-but-last.

2. Arrange 36 playing cards in such a way, that on 
transferring 5 cards to the bottom of the pack and 
laying the sixth one on the table, there would appear 
in order of seniority, successively, all cards of one suit, 
then of the second, third and, finally, the fourth suit(51a).

Having constructed an integral geometric progression, 
determine in which place should the ace of the third 
suit be found (s = 19); find the same for the jack of the 
fourth suit (s = 31) and the seven of the second suit 
(s = 17).
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§ 22. Pastimes Connected with Objects 
Changing Places

In the first four problems of this chapter it is required 
to arrive at a given arrangement of objects by moving 
the objects according to definite rules. Some of these 
problems can serve as a basis for further investigations 
and generalization.

At the end of the chapter a problem is considered, in 
which a second application of a certain operation leads, 
in the final count, to the initial distribution of objects. 
The determination of the number of operations required 
for that purpose is connected with the properties of 
so-called substitutions (see p. 118) and the solution of 
the problem in a general form requires the aid of the 
theory of numbers.

The transposition of objects in pairs

In draughts, four black pieces and four white ones 
are arranged alternately in a straight line. According 
to the rules of the game we may transfer any two 
neighbouring pieces (without changing their relative 
positions and without 
separating them) to a o •  O 
new position along the 
same straight line. The 
purpose of the game is 
to rearrange the pieces 
in four moves in such 
a way that four black

a) o 
12) C
( 3 )  0

(4)

C
O

•  o
•  o
•
•  •  
•  •
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•  •
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o
c
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pieces appear on the left and four white pieces on the 
right. (The solution is shown in Fig. 42.) This problem 
can be generalized in the following direction: There 
are k kinds of pieces, s of each kind. Investigate, for 
what values of k and s it is possible to change over 
from the arrangement (a) to the arrangement (b) (Fig. 
43) by means of a number of moves (in [25] pp. 189-191, 
it is proved that the problem is soluble for any s >  4 if 
k -  2).

(a) Q(D ••• © O ©  ••• ©    © @  **• ®

(b) © © - • * © © © • • • © © © • • • ©  .......... © © • " ©

Fig. 43.

It can be agreed that each move means the trans­
ference of, say, three instead of two neighbouring 
pieces; and it may be presupposed that the pieces are 
laid in the new places in their direct order only, or in 
their reverse order only, or finally, both in the direct 
and the reverse order. It is also possible to require a 
different final arrangement of pieces.

Lucas’ Problem

The pieces are arranged as in Fig. 44. It is required 
that the white pieces and the black pieces change 
places; the white pieces are allowed to move to the 
right only and the black pieces are allowed to move to 
the left only, and any piece moves either to a neigh-

o o o o o
Fig. 44.

bouring empty square, or to an empty square behind 
the nearest piece of the opposite colour.
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Having (after an uncomplicated analysis) discarded 
moves leading to insoluble positions, we arrive easily 
at a solution which can be written down thus 
w b b w w w b b b b w w w w w b b b b b w w w w w b b b b
w w w b b w .  Here the letters “w" and “b” denote the 
colour of the pieces moved successively.

The Gathering of Coins in Piles
8 coins are arranged in a row. It is required to re­

arrange the coins in such a way as to obtain four piles 
containing 2 coins each.
Here each coin can be joined 
only to the coin 2 coins away 
from it (either singly or in a 
pile). The practically obvious 
solution consists of the suc­
cessive transfer of the fifth 
coin on to the second one, the 
third one on to the seventh, the fourth on to the first, 
and, finally, the sixth on to the eight (see Fig. 45).

Try to find the solution of a similar problem for pn 
coins (p ;> 4) which have to be collected in p piles, n 
coins in each, and the transferable coin has to pass 
over n neighbouring coins (either separate or joined 
up — fully or partially — into piles) (see [25]).

Rum a
[34] contains a description of a game of Indian 

origin, called “Tschuka-Ruma”. Let us demonstrate 
it in a somewhat modified form.

2n -f 1 hollows are distributed in a circle. At the 
beginning of the game one hollow is empty (the ruma) 
and each of the others contains n balls (in Fig. 46 n =  2).

The aim of the game is to gather all the balls in the 
ruma.

The following action is called a move: all balls situated 
in some hollow A are distributed one by one in the 
neighbouring hollows (movement takes place clock­
wise). If the number of balls to be distributed exceeds

© © © @ © © © ©  

(3) (I) (2) (4)oo oo
1.4 2 ,5 7,3 8,6

Fig. 45.
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2/i, one ball gets into 
the hollow A and the 
remaining balls are again 
distributed one by one 
in the neighbouring hol­
lows.

The first move can be 
made from any hollow. 
If, after some move 

(including the first one), the last of the balls gets 
into the ruma, the next move can be made from any 
hollow, except the ruma, and if it gets into some other 
hollow, then the next move should be to distribute the 
balls from the hollow into which the last ball was put, 
on condition that this hollow was not empty before 
that, since in that case the game is regarded as lost.

It is easy to verify that the first move (for n =  2) 
should be made from the hollow No. 3, since in every 
other case, the second move will cause us to get the 
last ball into an empty hollow and to lose the game. 
By trial and error, we can find out that moves made 
successively from hollows numbered 3, 4, 2, 3, 4, 1, 
4, 2, 3, 4, lead us to our goal.

When n =  3, the greatest number of balls which 
can be transferred into the ruma is evidently fifteen. 
For n =  2 there are no less than nine different solutions 
of the problem.

It would be interesting to construct a theory of the 
game, or at least to investigate a series of particular 
cases, in each of which it is required either to find the 
way (or several ways) of reaching the goal, or to deter­
mine the greatest number of balls which can be trans­
ferred into the ruma.

It is possible to think of various modifications of 
the game, by placing, say, s balls (s +  n) in each hollow, 
by changing the rules of the moves etc.
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The Repeated Performance of the Same Operation

There exist a number of card-games based on the 
fact that by repeatedly disturbing an arrangement of 
certain objects in accordance with some definite law, 
we arrive in the end at their initial arrangement.

The explanation of this phenomenon, so puzzling to 
the uninitiated, is based on simple properties of 
permutations.

If we have n numbered objects av a2, . . ., an, the 
transition from their initial arrangement to the arrange­
ment a oq, a a2, . . ., a a„ (where oq, a2, . . ., a„ is some 
arrangement of numbers 1, 2, . . ., n) can be character­

ized by the permutation ^  _  1 ^ 3 .  . .  n - 1  n J g ^ ^ .
U i« 20!3. . .  a„_i txr)

ing what number (a,) should be substituted for the 
number (f) in the upper row of the permutation A.

The elements av  a2, . . ., an are often denoted by 
numbers from 1 to n for convenience.

Suppose, for example, the permutation A =

5 8 6 3 7 1 4  2) iS aPPlied first t0 the arran§e-
ment 1 2 3 4 5 6 7 8  and then to the arrangement 
obtained in this way, etc. This gives us

A A A  
12 3 4 5 6 7 8 -v 5  8 6 3 71 4 2-^7  2 16  4 5 3 8 -^ 4  8 5 l r3 7 6 2->- 

(I )  ( I I )  ( I I I )  ( IV )
A  A  A  (1)

3 2 7 5 6 4 1 8  6 8 4 7 1 3 5 2  ->- 1 2 3 4 5 6 7 8
(V )  (V I )  (I )

We shall give the name of a product of two permutations 
C and D to the permutation which is equivalent to the 
permutation C and D carried out one after the other 
(first C and then D).

For example, if C =  |  and D _  jj \  «)

. Indeed, in the permutation C,then CD (1 2 3 4 51 
U  1 2 5 3j
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1 is changed to 2, and in the permutation D, 2 is changed 
to 4, therefore in the permutation CD, 1 becomes 4, 
etc.

Verify that DC =  (*  ̂ , i. e. DC =h CD.

It is easy to see, that A2 =  [7 \  j g 4 5 3 g) the per­

mutation which changes the permutation I in the 
scheme (1) into the permutation III, also the per­
mutation II into the permutation IV, etc.

Since the application of permutation A 6 times

changes I to I, therefore A6 =  (} \  3 4 5 g 7 g)>

i. e., all elements remain in their places. A permu­
tation of this kind is called the identity, and is denoted 
by the letter E.

The smallest natural number s, for which B* =  E, 
is called the order of the permutation B. Therefore 
the order of the permutation A is 6.

For the speedy determination of the order of any 
permutation (especially when the number of elements 
being permuted is great) it is convenient to break it 
down into “independent cycles”.

For example, it is easy to notice, that in the per­
mutation A the element 1 becomes 5, the element 5 
becomes 7, the element 7 becomes 4, the element 4 
becomes 3, the element 3 becomes 6, the element 6 
becomes 1, (the cycle is closed).

In other words, the elements 1, 5, 7, 4, 3, 6 replace 
one another in a cyclic order. This can be characterised

by a “cyclic permutation” (5 7 4 3 5 1 ! , which is

often written down in a one-line form: (1 5 7 4 3 6) 
or (7 4 3 6 1 5) etc., where it must be remembered, 
that each element written down is replaced by the next 
one, and the last element is replaced by the first one
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(therefore, it is of no consequence which element is 
the first one to be written down in a cyclic permutation 
as long as the sequence of the elements is preserved).

In addition, in the permutation A, the element 2 
is replaced by 8 and 8 by 2, which gives the cycle 
(2 8); this is also called the transposition of the elements 
2 and 8.

Cycles (1 5 7 4 3 8) and (2 8) are called independent, 
since they do not possess any elements in common. 
Thus A equals the product of two cyclic permutations 
A =  (1 5 7 4 3 6) (2 8).

, ,  f 1 2 3 4 5  6 7 8 9  1CA _Venfy, for example, that B -  g 2 4 , „ 1Q 5 7 3 6J -
= (1 9 3 4) (2) (5 8 7) (6 10) (here even a single element 
cycle is to be found).

It is easy to prove(52) that the order of a permutation 
is equal to the lowest common multiple of the orders 
of the independent cycles into which the permutation 
can be broken up. Thus for example, the order of the 
permutation A is 6 (the lowest common multiple of 
the numbers 6 and 2) and the order of the permutation 
B is 12 (the lowest common multiple of 4, 1, 3, 2).

In the scheme (1) it should be noted, that in each 
of the transitions I-*II, II~*TII, III-* IV etc., which 
are given by the one permutation A, the element from 
the fifth place is transferred to the 1st place, that from 
the eight place to the 2nd place, that from the 6th 
to the 3rd, that from the 3rd to the 4th, that from the 
7th to the 5th, that from the 1st to the 6th, that from 
the 4th to the 7th, that from the second place to the 
8th place.

It can be proved that this circumstance is no accident. 
In addition, the converse also takes place, i. e. if in a 
series of transitions from one permutation to the 
second, from the second one to the third, from the third 
to the fourth, etc., all transitions are carried out accord­
ing to the same rule — in the sense of changing the order 
of places occupied by the elements — then all these
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transitions can be characterized by one and the same 
permutation M, showing which element is substituted 
for any specific element(53).

In having established the order of the permutation M, 
we have at the same time found how many times the 
mutual arrangement of elements has to be changed by 
the method which is of interest to us, in order to arrive 
once again at their initial arrangement.

An interesting illustration in connection with the 
problem discussed above is provided by

Monge’s Shuffle

We shall clarify the alteration in the mutual arrange­
ment of objects, known as Monge’s shuffle, with the 
aid of the following example: suppose 2n pupils are 
arranged in a row (Fig. 47a) and then they form a double 
row by means of making every second pupil step behind 
the pupil beside him (Fig. 476). After that the second 
row, headed by the former extreme left-flank pupil 
carries out an “outflanking manoeuvre” (in accordance 
with the diagram in Fig. 47c) and finds itself at the 
right end, while the left-flank pupil is now the extreme 
right-flank pupil (in Fig. 47 n =  5 and the pupils are 
facing us).

Given a pack containing 2n cards, Monge’s shuffle 
is carried out as follows; holding the pack face down 
in the left hand, we pay out into the right hand each

M © © © @ © © © © ® ®

(b)

(0 ® ® © ® ® © @ © © ®
F ig .  4 7 .

card from the top 
of the pack in turn, 
but putting it alter­
nately on top and 
underneath the cards 
accumulating in the 
righthand. Evidently, 
this operation is cha­
racterized by the per­
mutation :
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^  _ /I 2 . . . n - l / i n  +  1 n + 2 . . . 2 n - l  2n\
~ \ 2 n 2 n - 2 . . .  4 2 1 3 . . . 2 n - 3  2 n - l  J'

For n =  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, . . . the 
order M =  s =  2, 3, 6, 4, 6, 10, 14, 5, 18, 10, 12, 21, 
26 . . .

We suggest that the reader verifies this table, by 
calculating the corresponding values of s for various 
values of n.

For example:
. 0 „. ( 1 2 3 4 5 6 7 8 9  101112 13 1415 161
lo rn = 8 Af = (16 14 12 108 6 4 2  i 3 5 7  9 1113 15]’
M  = (1 16 15 13 9) (2 14 11 5 8) (3 12 7 4 10) (6)
i. e. s =  5.

Try to verify (with cards or with any other numbered 
objects), that the repetition of Monge’s shuffle s 
times leads to the initial arrangement of objects.

It is possible to have a row of 2n sportsmen and to 
carry out s regroupings according to the scheme shown 
in Fig. 47. The result is the re-establishment of the 
original order.

There exists a T h e o r e m  ([25], p p . 32-36) w h ich  
states: The order of the permutation M is equal to the 
smallest root of the congruence

2Z = — 1 (mod4n +  1),

and in the case when this congruence has no solutions, 
it equals the smallest root of the congruence 2Z = 1 (mod 
4n -f- 1).

Verify this theorem for various values n. For instance, 
for n =  8, 4n -f 1 =  33: on calculating various powers 
of 2 we obtain 25 = — 1 (mod 33), i. e. for n =  8, 
s =  5.

If n =  5, 4/i +  1 =  21. For various powers of 2, 
we have: 2* = — 5 (mod 21), 25 = — 10 (mod 21), 
2* = — 20 3 1 (mod 21). Therefore, for n =  5, the 
order of the permutation M equals 6.
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§ 23. The Simplest Methods of 
Constructing Pleasing Patterns

There is scarcely anyone who does not admire the 
marvellous shapes of snowflakes, the delightful designs 
of lace created by great master-craftsmen, the compli­
cated drawings on carpets and textiles and patterns 
on floors inlaid with ceramic tiles of different shapes and 
colours.

But the creation of pleasing geometric patterns is 
accessible to everyone, who has sufficient patience.

This and the next few chapters are devoted to geo­
metric pastimes of varying degree of difficulty, whose 
goal is the obtaining of pleasing patterns, borders, 
curves, etc. We begin with the simplest ones.

Patterns on squared paper
Anyone can sketch, with little difficulty, various

fanciful figures on 
“squared”paper;here 
it is not necessary to 
move along the sides 
of the little squares 
only, but diagonals 
of the little squares 
and of rectangles to 
be found on the pa­
per can be drawn in 
also (Fig. 48).

Similar construc­
tions can be carried 
out also on paper

S/ \ /\\ y\ /7
)

\/ \/ \L \ \\\ % 2/\ /\ /7 s / \\ /z\ /
Fig. 48.
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Simple Construction of Pleasing Patterns

with triangular cells, which can be easily made from 
paper with simple lines ruled on it; let two arbitrary 
points, A and B (Fig. 49) be situated on one of the 
lines of the ruled paper; we find a point C, such, 
that AC =  BC =  AB. Having cut the paper along 
AC, we obtain a homemade ruler, with intervals of 
length a marked along its side. With its help we mark 
off along one of the lines a new sheet of paper the seg­
ment M N  = na (in Fig. 49, n =  5) and, having sub­
divided it simultaneously into segments of length a, 
we construct an equilateral triangle MNL, and through 
the points of subdivision of its sides we draw lines 
parallel to the sides ML and NL.

In the construction of a border, it may be permitted 
to draw, in the triangular network so obtained, the 
medians of the triangles, which is equivalent to the
using of a network with triangles having a side of y
(see Fig. 50).

/
/

p  /

/ A
A a

/ 7 \ a / \ A
/ /  \ / A M

/  \ / W W \
A  B M N

Fig. 49.

Taking as a basis a square or a triangular network, 
try to arrange a competition for the best pattern, 
taking into account the originality of the drawing, 
the accuracy of execution and the quality of colouring 
(the size of the drawing must be agreed upon, for
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example, a rectangle of 
12 x 20 squares, a big 
square of 10 x 10 squ­
ares, a hexagon of side 
6a).

Using Compasses and a 
Ruler

By making use of 
compasses and a ruler 
it is possible to construct 
the most varied figu­
res. It is convenient 

to make use of a circumference subdivided into n 
equal parts (for n =  3, 4, 5, 6, 8, 10 etc., this is 
easily done, and for n =  7, 9, 11 etc. and even for n =  5, 
10, a protractor can be used). In order to save labour, 
it is possible, having first checked the construction 
very carefully, to pierce the centre and the vertices of 
a regular polygon with a sharp needle, and so carry 
the marks through onto several clean sheets of paper.

By drawing chords of equal length through the points 
of subdivision of the circumference, we obtain various 
regular starlike polygons.

If we now draw circles (or arcs) of various radii and
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centres at the vertices of regular polygons and at the 
points of intersection of circles, and if we then join 
the different pairs of points by straight lines, we can 
obtain an infinite variety of figures, whose attractive­
ness is enhanced by successful colouring.

In addition to a circle, other figures can be used as a 
base — rectangle, triangle, etc. (see Fig. 51).

Symmetrical Figures
Two points, A and A' are called symmetrical with 

respect to the straight line I, if A and A' are equidistant 
from and on opposite sides of I, and A A' I.

A plane figure is called symmetrical with respect to 
a straight line Z, if for any point B  on it there can be

found a point B' (also belonging to the figure), symmetri­
cal to the point B with respect to the line Z. The straight- 
line Z is called an axis of symmetry.

Figure 52 depicts figures possessing 1, 2, 3, 4 and 5 
axes of symmetry respectively.

Figures with several axes of symmetry can be easily 
cut out of paper: a sheet of thin paper is folded double

(c)

Fig. 52.
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and then folded again n times in the form of a “sector”
180°with a central angle of ——  : on cutting the sector

along some curve and unfolding the paper, we obtain 
a figure possessing n axes of symmetry. If coloured 
paper is used, we obtain lacy doilies in various colours 
with fancy patterns.

Fig. 53.

We shall call the point 0 the centre of symmetry of the 
nth order of the given figure, if on rotating the figure
about the point 0 by an angle of , it coincides with
its original position. For example, in Fig. 52, the shapes 
b, c, d, e possess centres of symmetry of the 2nd, 3rd, 
4th and 5th order respectively.
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For the construction of figures possessing central sym­
metry of the nth order, a cardboard template in the 
form of a sector with a curved edge and an angle of
360° . ,  ,—— . is useful.

Let us draw n rays from the point 0, forming angles 
360°of —— . By placing the cardboard template between

each pair of neighbouring rays in turn, (so that the 
point 0' coincides with 0) and outlining in pencil the 
outer edge of the sector, we obtain a symmetrical 
figure similar to the one depicted in Fig. 53a.

One can also use a template of any desired shape and 
superimpose it on each ray in turn in one particular 
way, for example, so that two of its points, A and B 
are situated on each ray at the same distance from 0 
in each case (Fig. 535).

We shall mention one more method of constructing 
symmetrical figures — the method of folding a sheet 
of paper containing an ink blot and pressing the two 
halves together. Some very fanciful figures with one 
axis of symmetry are often obtained in this way (Fig. 
53c).
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§ 24. Regular Polygons from Rhombi

It can be seen from Fig. 54a, that if we take a sep­
tangular star made up of 7 rhombi of side a and acute
angle a =  ^ , and place a second layer of rhombi of

4 71angle /S =  2a =  , between its arms, then place yet
* 6 71

another 7 rhombi of angle y =  3a =  -y  in the gaps
of the new star, we obtain a regular 14-sided polygon 
of side a.

Having taken an octangular star (Fig. 546) consisting 
of 8 rhombi of angle «' =  y .  we have a second layer

of squares |/?' =  2a =  and a third layer of rhombi
exactly like those in the central star ( /  =  3a' =  ti — a')- 
All 3 layers of rhombi form a regular octagon of side 2a.

Attempt to prove that, if a =  ^  and m is odd

(m <_ 3), then m 2 1 layers of rhombi form a regular
2m sided polygon of side a, and if m is even (m >  4)
th en m layers of rhombi form a regular m-sided
polygon of side 2a(54). Since each layer has m rhombi, 
it follows that for m odd, any regular 2/n-sided polygon 
of side b can be subdivided either into 2m (m — 1)
rhombi of side y , or into m ^ —— rhombi of side b
(see, e. g. Fig. 546, c).

Note that the subdivision of a regular 2m-sided 
polygon of side 2a into rhombi of side a may be obtained 
by rotating the smaller regular 2m-sided polygon of
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side a about one of its vertices consecutively through 
angles £  ’ 7? ’ ^ .........  (2/n -  1) -  (see ABCDEFGH
and ABCDEFGHJK in Fig. 54 c, d). The smaller 
2m-sided polygon which is to be rotated, consists 
of the same kinds of rhombi as the large one, but 
it has only a quarter of the number of rhombi of each 
kind than has the large 2m-sided polygon.

The subdivision of a 2m-polygon of side a into rhombi 
of side a (m being odd I) can be obtained by rotating 
the equilateral (m +  l)-angled figure of side a, in which
two opposite angles equal (m — 1) and each of the 

remaining m — 1 angles equals ~  (m — 2), about a
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vertex with angle ^  (m — 1), by , 2 — , . .  .(m —

—1) — radian (see, e.g. in the fourteen-sided polygon
(a) the octagon ABCDEFGH and in the decagon (a) the 
hexagon ABCDEF).

i

In order to obtain, in the final count, a regular poly­
gon of m sides, each side equal to 2a, m being odd, it is 
required to take as the central figure not a star of m 
rhombi, but a regular star-shaped m-sided polygon,
whose angle a at the apex equals — and the angle /?

at the “gap” equals 3* =  — and the “depth of the
gap” AB  =  a [(a) and (b) in Fig. 55 correspond to 
m =  7 and m =  l l ] .  Prove, that the addition of

layers of rhombi to such a polygon always
leads to a regular m-sided polygon of side 2a(5S). Here 
the whole subdivision of the m-sided polygon into 
rhombi can be carried out with the help of m small 
“open” regular polygons [like ABCDEFG in Fig. (a) 
or ABCDEFGHJKL in Fig. (6)] which change one 
into the next on rotating about the centre of the star
by the angle
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§ 25. The Construction of Figures 
from Given Parts

Mosaic
In the game called “mosaic” various figures are made 

up of a definite set of coloured tiles. The sets usually 
consist of squares, rhombi and right-angled triangles 
with an acute angle of 45° (Fig. 56).

In the simplest case, all tiles are 
placed according to drawings en­
closed with the game. But it is 
possible to try to find original figu­
res, without reference to these 
drawings and without restricting 
oneself as to the shape of the figure, 
using all the tiles given or some 
part of them.

Perhaps the reader might invent 
new interesting variants of the game with sets of tiles 
containing various equilateral triangles, parallelograms, 
regular polygons, etc. The variants invented may be 
realised on thick cardboard by sticking on bits of 
coloured paper.

If we use, instead of cardboard or wooden tiles, thin 
coloured laminae made of glass or transparent plastic, 
and permit overlapping, then even a two-colour mosaic 
may yield considerable variety and colourfulness of 
design when viewed against the light.

Figures out of Pieces of a Square

One useful and enjoyable pastime is the construction 
of figures out of the 7 portions of a square obtained
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when it is cut up according to Fig. 57a. In the con­
struction all seven pieces must be used up and no 
amount of overlapping is 
allowed.

Figure 58 shows sym­
metrical figures, borrowed 
from the book by V. I.
Obreimov [19]. Try to 
construct these figures out 
of the parts of the square 
given in Fig. 57a.

These parts can be fitted together to form many 
other figures (for example, pictures of various objects, 
animals, etc.

A less widespread variant of this game (see [23] 
part 1, p. 209) is the construction of figures out of 
portions of the square depicted in Fig. 57b.
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Constructions from Given Parts

Hold a competition in inventing figures that can be 
constructed out of these portions. The winner is the 
person, who is quickest at constructing figures proposed 
by his opponent.

Could you manage to subdivide a square into 7 
portions in a different way, so that various symmetrical 
figures may be constructed out of them?

If desired, the game may be made more complicated 
by inventing figures to be fitted together, say, out 
of six or five pieces of the square and without indicating 
which pieces are to be used.

Rectangles Out of Squares
In the last 20 years there appeared in certain mathe­

matical magazines a number of articles dealing with the 
question of constructing rectangles out of squares, 
no two of which are alike.

It turns out that it is impossible to construct a rec­
tangle out of n different squares, if n <  9. When n =  9, 
the problem has two solutions; it is possible to construct 
a rectangle out of squares whose sides are in the ratio 
1:4:7:8:9:10:14:15:18 (Fig. 59) and also out of squares, 
whose sides are in the ratio 2:5:7:9:16:25:28:33:36. 
Construct^6) a rectangle out of 10 squares whose 
sides are in the ratio 3:11:12:23:34:35:38:41:44:45, 
and one out of 13 squares with sides being in the ratio 
1 :4:5:9:14:19:33:52:56:69:70:71:72 (it is useful to solve 
first the question of the ratio of sides of each of the 
rectangles under construction).

The smallest number of various squares from which 
a large square can be constructed is 26. Construct a 
large square, taking into account that the sides of the 
squares making it up are to each other as 1:11:41:42: 
43:44 :85:168:172:183:194:205:209:5:7:20:27:34:61:95: 
108:113:118:123:136:231, and that the first 13 squares 
form a rectangle with sides in the ratio 608:377, and 
the last 13 squares form a rectangle with sides in the 
ratio 608:231 (57).
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In the book by B. A. Kordemskii and N. V. Rusalev
[14] the connection is noted between the problem 
of constructing rectangles out of squares and the pro­
blem of determining the distribution of currents in 
closed circuits composed of several conductors.

It is interesting to note that the problem of con­
structing a right-angled parallelepiped out of a finite 
number of cubes, no two of which are alike, is insoluble.

Indeed, suppose the problem has a solution and v is 
the volume of the smallest cube. Since in any rectangle 
constructed out of squares, no two of which are alike, 
the smallest square cannot be next to the side of the 
rectangle (prove this(S8)), therefore the smallest of the 
cubes (Kx) next to the lower base of the parallelepiped 
is surrounded by cubes of greater dimensions; the 
smallest of the cubes (X2), at the bottom of the “well” 
so formed, is also surrounded by larger cubes, which 
form a well with a smaller cross-section, and so on.

Among the cubes 
K v K v K 3,. . . ,  there 
will appear, finally, 
cubes whose volumes 
are less than and 
this contradicts the 
initial supposition.

Solve also the fol­
lowing two problems:
(1) Subdivide a cube 
into n cubes (among 
which there may be 
identical ones) for 
n = 34 and for n = 
= 50(5<J). Try to es­

tablish for what values of n this problem is insoluble.
(2) Prove(60) that for n +  2, 3, 5 a square can be sub­
divided into n squares (among which there may be 
identical ones).

10
14

4
7 8

18
5

Fig. 59
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§ 26. The Construction of Parquets

One interesting geometrical pastime is the construc­
tion of parquets — this is the short description of the 
activity of covering a plane with figures of a certain 
shape or several given shapes in a certain regular 
sequence.

Fig. 60.

Examples of the simplest kind of parquets are: 
ordinary squared paper and a plane covered by identi­
cal regular triangles. If the separate units are combined 
into complexes by some method or other, a wide 
variety of different “derived” parquets may be ob­
tained. The variety may be increased, if some units 
are increased in size at the expense of others, by sub-
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dividing the others by curves or various straight lines. 
Figure 60 shows several examples of derived parquets, 
which extend indefinitely (we suggest that the reader 
verifies that).

Derived parquets can also be constructed out of 
parquets composed of regular polygons with various 
numbers of sides.

In order to investigate the question of filling a plane 
with regular polygons it is necessary, firstly, to take 
into account all possible kinds of nodal points, i. e. 
to find various combinations of regular polygons, 

whose vertices concur at a point, 
and which cover, without over­
lapping, the vicinity of that point, 
and verify in each case the possi­
bility of infinite continuation of a 
parquet with nodal points of the 
type found.

For example, it is easy to verify 
that a regular triangle, a regular 
septagon, and a regular 42-sided 
polygon may form a nodal point, 
but it is not possible to cover the 
whole plane with regular polygons 

Fig. 61. forming nodes of the type (3, 7,
42) only. Indeed, if the triangle 

ABC, the septagon Slt and the 42-sided polygon iSa 
concur at the vertex a (Fig. 61), then the vertex B 
should be the point at which the septagon Sx should 
join the triangle ABC and the 42-sided polygon, but 
then the point C cannot be a nodal point of the type 
(3, 7, 42).

Prove that, although nodes of the type (5, 5, 10 
do exist, it is not possible to fill a plane with regular 
pentagons and decagons(61).

In searching for various types of nodal points, it 
should be noted that the order k of a nodal point 
(i. e. the number of polygons concurring there) cannot
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exceed 6. In addition, if regular nv n2, . .  nfc-sided 
polygons concur at a node of the /cth order, it is easy 
to prove(62) that

k - 2(—+ — + . . .+ —) = 2.
v fti n2 n i )

For example, for k = 3, we have the relation ~j- +

+ -Jj- + — -  , which is satisfied by the following nodes
(8,*8, 4)?(12, 12, 3), (10, 5, 5), (12, 6, 4) (6, 6, 6) (3, 7, 
42), etc.

For k =  4, we have -ir + -ir + -ij- + — = 1 ;  this con-nx n, /ig /ig
dition is satisfied by nodes: (6, 3, 4, 4), (6, 3, 6, 3),etc.

It is impossible to exhaust all parquets. Indeed, 
taking, say, a triangular network and joining up some 
of the triangles into hexagons in various ways, we can 
obtain an infinite variety of parquets constructed out 
of triangles and hexagons (Fig. 62).

Therefore it is advisable to lay down quite rigid 
limiting conditions in constructing parquets. For ex­
ample, there can be a requirement that the sets of 
polygons surrounding each node be the same for each 
node. This requirement is not fulfilled in parquets
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(a), (b) and (c), since here some nodes are of the fifth 
order and some of the sixth order, but it is fulfilled for 
parquets (d) and (e).

If an additional condition is imposed, namely, that 
the mutual disposition of the polygons adjoining some 
node of the parquet should be the same as for all the 
other nodes, then parquet (d) must fail, since at the 
node A triangles and hexagons alternate, but at the 
node B both hexagons are side by side.

It can be required, that all identical polygons of the 
parquet are single-type in the sense that any two poly­
gons of the same name, together with their adjacent 
polygons can be made to coincide with each other fully 
[see (a), (b), (c), (d) in Fig. 63].

Or it may be permitted to make use of polygons of 
two different types [for example, in the parquet (e) 
all squares and all hexagons are single-type, but not 
the triangles, since some triangles have 3 squares 
adjoining them, and others have 2 squares and a tri­
angle adjoining them].

It can be seen from (c), (g), (h), (i), (/) of Fig. 63, 
that there are five ways of surrounding a regular 
hexagon with squares and regular triangles on condition 
that all 6 vertices of the hexagon are nodes of the 
fourth order, and no two hexagons have so much as a 
common vertex.

Try to investigate what types of hexagons may be 
encountered at one and the same time in an infinitely 
extended parquet, how they border on each other 
whether there exist parquets other than (c) where 
the hexagons are all of one type.

On comparing Fig. (a), (6), (c), (e), (/) it can be seen 
that new parquets can be obtained from those which 
contain regular dodecagons (by subdividing the dode­
cagons into constituent parts).

By joining up each four neighbouring triangles and 
the corresponding two neighbouring squares in the 
parquet (/) into complexes, we obtain a parquet, all 
of whose units and all of whose nodes are single-type,
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(g) (h) (i) (j)

Fig. 63.

but irregular units make their appearance (rectangles 
made up to two squares).

Let us note an interesting property of equilateral
360°hexagons, two of whose opposite angles are each

(n is some natural number) and the remaining angles 
are equal. Using tiles of this kind it is possible to 
construct, in addition to the parquet (a) of Fig. 64 
with parallel units, the parquet (b), where the units 
fill n sectors of form AOB, concurring at centre 0 
(in the drawing, n =  7) and n similar sectors, BCD, 
AEF , . .  ., whose vertices do not quite reach the 
centre.
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Regular pentagons, in combination with regular 
decagons and star-like pentagons, can produce interest­
ing parquets with a great number of units, but an 
infinite extension of the parquet cannot be achieved 
here.

An infinitely extended parquet can be constructed(63) 
out of regular pentagons in combination with rhombi 
of the form (d), whose acute angle equals 36°, and also 
out of equilateral pentagons of form (c), with right 
angles at vertices B  and D  and other angles of 120° 
each and AB =  BC ■ CD =  DE.

Many interesting parquets with attractive units are 
to be found in [31].

The construction of parquets and, in particular, their 
investigation is accessible to persons with a certain 
amount of mathematical preparation. But the colouring 
of a parquet that has been constructed already, the 
joining up of its units into complexes and even the 
changing of the form of the units of a prepared parquet, 
does not require any mathematical preparation.

Two-colour Parquets
The book by V. I. Obreimov [19] contains the des­

cription of square parquets, which are composed of 
square tiles divided diagonally into two equal triangles 
(a white one and a black one).
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Taking a complex of four little squares, for instance 
ABCD in Fig. 65, it is possible to build on to it (on 
the right and underneath), three other complexes, in 
such a way that a 16-square symmetrical parquet is 
obtained, possessing a horizontal (AE) and a vertical 
(CF) axis of symmetry.

Complexes of 9, 16, 25, etc., squares may be taken 
instead of one of 4.

Since it is possible to construct 4”’ various complexes 
out of n2 squares therefore it is practically impossible 
to exhaust the number of symmetrical parquets built 
up of 4n2 squares, for n > 2 .

If, in a symmetrical parquet, any four squares, sym­
metrical with respect to both axes of symmetry of the 
large square, for instance the squares a, /J, y, 8, in 
Fig. 65, were to change places without losing their 
orientation, in the horizontal direction (i. e. if we carry 
out transpositions (a, y) and (/?, <5) or in the vertical 
direction (transpositions («, 0) and (y, $)), we again 
obtain a symmetrical parquet.

D C

F
fa) (b) (c)

F ig . 65

Thus, horizontal transpositions («, y) and (/S, fi) trans­
form parquet (a) into parquet (b) and the latter is 
transformed by the vertical transpositions (1,5), (2, 6), 
(3, 7) and (4, 8) into the parquet (c).

We shall call two parquets related or belonging to 
the same class, if we can pass from the one to the other 
by means of one or several transpositions of parallel 
rows of squares, symmetrical with respect to the 
horizontal or vertical axes of symmetry of the parquet.
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For example, the parquets (b) and (c) in Fig. 65 are 
related since they are obtained from each other by 
transposing the top and the bottom horizontal rows.

The reader should determine, for n =  2, 3, 4 ,. . ., 
the number of the many various classes into which 
sets of symmetrical multisquare parquets, consisting of 
4n2 squares can be divided.

It is also possible to construct hexagonal parquets 
from triangles painted in two or three colours [see 
Fig. 66a, b].

On constructing a large equilateral triangle ABC 
(Fig. 66c, where n =  2) or A'B'C' (Fig. 66d, where 
n =  3) out of 4 (9, 16, and, in general, n2) triangles 
of form (a), and reflecting it in the side BC (B'C' 
respectively) and reflecting the rhombus ABCD (A'B' 
C'D') thus obtained in AB  and BD (in A'B' and B'D') 
we obtain a regular hexagon with three axes of symmetry 
[see (e) and (/)] consisting of 6n2 small two-coloured 
triangles.

(g)

Fig. 66.
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If you carry out the reflection in the reverse order 
(first the triangles ABC in the side AB, and then the 
rhombus obtained from sides BE and BC) the same 
hexagon is obtained (e4).

The most varied square parquets with the most 
fantastic designs can be laid out from 4n2 tiles of four 
colours; since 4 triangles with a common vertex at the 
centre of the square can be painted in 6 substantially 
different ways [Fig. 66 <7], therefore we can agree either 
to use up all 6 sorts of squares, or to introduce some 
sort of restrictions.
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§ 27. Re-cutting of Figures

Two figures (by that we shall understand two plane 
figures or two bodies) are called equi-composed if one 
of them can be subdivided into parts, which when 
joined together give the other figure.

We shall call this process the recutting of one figure 
to form the other.

T h e o re m  I. If each of the figures A and B is equi- 
composed with a certain figure C, then the figures A and 
B are also equi-composed with each other.

Indeed, if figure C (Fig. 67) is subdivided by conti­
nuous lines (planes for solid bodies) into parts which 
can make up figure A, and by dotted lines into parts 
forming figure B, then the set of numbered parts, 
subdividing C by the two kinds of lines is a collection 
of pieces, out of which the figure A can be put together 
by joining pieces 1, 2; 3, 4, 5 etc. and the figure B  can 
be put together by joining pieces 1, 3, 12; 2, 4, 6, 9 etc.

The following theorem is self-evident:
T h e o r e m  II. Any two equi-composed figures are equal 

in area.
The converse theorem does not hold, i.e. the equi-com- 

position of two figures does 
not follow, generally speak­
ing, from their equality in 
area. Several theorem squoted 
below refer to special cases, 
where equality in are a of two 
figures leads to their equi- 
composition.
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T h e o r e m  III. Parallelograms with equal bases and 
equal altitudes are equi-composed (see Fig. 68a).

T h e o re m  IV. Any two rectangles that are equal in 
area are equi-composed.

Using the condition ab =  cd, show that AB  || CD || LM  
(Fig. 686); on drawing EDF  || AB, it is easily seen that 
Sx =  S \:  S2 =  S'a; and S3 and S'3 are equi-composed).

T h e o r e m  V. Any two parallelograms, which are equal 
in area, are equi-composed.

(On the basis of Theorem III, each of these parallelo­
grams is equi-composed with some rectangle; it remains 
to apply Theorems I and IV.)

T h e o r e m  VI. Any triangle and rectangle that are 
equal in area, are equi-composed.

(It should be noted that any triangle ABC is equi- 
composed with some parallelogram ADFC, Fig. 68c).

B D K L C E L

T h e o r e m  VII. Any two polygons, which are equal in 
area are equi-composed.

Indeed, having subdivided each polygon (P  and Q) 
into triangles (px, p2, . . . ,  pm and qv  q2, . .  ., qn, res­
pectively), it is sufficient to recut all triangles into 
rectangles (p \, p'2, . . ., p'm and q\, q'v  . . ., q'n) with 
a common altitude h. The rectangle with the altitude h, 
composed of p \ ,  p \ , . . . ,  p'm (it can be composed 
of qv qz, . . ., qn as well) is equi-composed with P  and Q.

As we see, the theorem, converse of the Theorem II, 
is true for any polygons.

Fig. 68
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In the last century attempts were made to prove that 
a theorem, analogous to the Theorem VII is true for 
polyhedra. But in 1901 Denn, a German mathematician 
proved that a cube and a tetrahedron that are equal 
in volume, are not equi-composed (the proof of Denn’s 
Theorem, and many interesting details connected with 
the equi-composition of figures, can be found in the book 
by V. G. Boltyanskii [5]).

If we however, limit ourselves to polyhedra of special 
form, then in some cases their equi-composition follows 
from their equality in volume.

T h e o r e m  VIII. Rectangular parallelepipeds, which 
are equal in volume, are equi-composed.

Let us denote these rectangular parallelepipeds by 
P  and Q. Let a, b, c be the edges of P  and av bv  c,, 
be the edges of Q and let abc =  Gj^q. We take an 
auxiliary rectangular parallelepiped, R, with edges 
alt b', c, where â b' =  ab and b'c =  61c1; it is easy to 
prove that P  and R  are equi-composed (they have 
equal altitude, c, and their bases have equal areas) 
and that so are Q and R.

T h e o re m  IX. Any prism can be recut into some rec­
tangular parallelepiped.

Indeed, let P  be an inclined prism of side edge I. 
Let us carry out a section ABCDE, perpendicular 
to the side edges. Then the pieces I and II (Fig. 69) 
make up a right-angled prism 
P', with height I and base 
ABCDE (if a plane, perpen­
dicular to side edges and cutt­
ing all of them cannot be 
constructed — perhaps the 
prism is too broad and short 
— then the prism can be first 
subdivided into narrow prisms 
with a smaller base, and then 
each of these recut in the way 
prescribed into a right-angled 
prism).
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According to Theorem VII, by subdividing a polygon 
ABCDE into pieces «;1 04, . . a„, it can be recut into 
some rectangle; it follows that a rectangular parallele­
piped P" of height I can be constructed out of the right- 
angled prisms, with bases 0̂ , o^,. . . ,  «„ and heights Z, 
which make up P'.

T h e o r e m  X. Any two prisms of equal volumes are 
equi-composed (this follows from Theorems VIII and IX).

Problems on recutting figures are often accompanied 
by indicating the number of parts into which they have 
to be subdivided. For example:

1. By subdividing a rectangle 9 x  16 cm2 into two 
parts, recut it into a square (65a).

2. By subdividing a rectangle a x b cm2 into two
parts recut it into a rectangle X — —  cm2

9

/  ^—
/

^_ / 7

b(m +  l )n  c(n +1) 
x  m ( n  +  1) x  n

cm3 (m and n are integers) or 
into a parallelepiped

amn b(m +  1)x —- X
12

(n is a natural number) (05t).
3. By subdividing a rectangular parallelepiped 8 x  

X 8 x 27 cm3 into 4 parts,
recut it into a cube of edge 
12 cm (see Fig. 70).

Try to prepare cardboard 
models of four parts, which can 
be used both for the construc­
tion of a cube of edge 12 cm 
and for the construction of a 
parallelepiped 8 x 8 x 18 cm3.

4. By subdividing a rectangu­
lar parallelepiped abc cm3 into 4 
parts, recut it into a parallelepi-

j  am
Ped m+T

'12

(m +  1) (n +  1J 
, c(n +  1)

m

cm3 (a8).
5. Figure 71 shows how to 

cut up, each into two parts, a

1
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rug (a) and a piece of check oilcloth (b) in order to make 
of the pieces obtained, a square rug in the first case and 
a chessboard in the second case.

Try to think of similar problems in which the consti­
tuent parts have three, four, six, points.

6. Triangles ASB, BSC, CSD (Fig. 72) have a common 
vertex at S  and equal bases along the same straight line 
and next to each other (AB  =  BC =  CD).

Prove that each of them is composed of the same set 
of pieces, numbered 1, 2, 3, 4 (BK ||C L||A5; jB2J|| 
C F ||DS; BM \\CS; CN\\ BS).

Investigate an analogous problem for n triangles 
(n =  4, 5, 6 , . .  .) having a common vertex and equal, 
adjoining bases in one straight line, supposing that 
they are subdivided by means of straight lines passing 
through the vertices adjacent to the bases of the tri­
angles, and which parallel the end sides of all triangles 
together.

to)

Fig. 71.

7. Square A (Fig. 73) is to be recut (07) into figures 
B, C, D by cutting it up into 3 parts in the first two 
cases and into 4 in the last case.

N o t e :  In your mathematical circle you can organise 
a competition in inventing interesting figures, which 
can be built up from a definite number of parts of a 
square, or any given figure (circle, regular hexagon, 
etc.).
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Figure 74 shows how six num­
bered pieces of a regular pentagon 
ABCDE of side a, can be put 
together to form an equilateral
triangle of side i  =

x 1-993 (see [39], 1952, No. 
2, p. 106). Constructions are as 
follows Fig 72.

(1) D K  is BD produced and
D K =  DE, i.e. a  EDK  =  A BCD’,

(2) EL =  LK; M N \\A B : CP =  DU; BQ =  EL,
i. e. EDML =  BCPQ and A QPD =  t\IM K  =  

= A LNE;
(3) ET =  ^  =  ES =  TS =  TU =  EV, i. e. the

equilateral triangle SU V is equal in area to the 
pengaton ABCDE:

(4) RW  || UV (but RW  and AB  are not parallel 
therefore A TUF  =  A TSR and A EHF  =  
=  A EWS. In addition, since the quadrilaterals 
ABRW  and NMFH, whose corresponding sides 
are parallel, are equal in area, it follows that 
they coincide.

In the book by B. A. Kordensky and N. V. Rusalyov 
[14] it is shown how to recut a square into a regular 
triangle, a regular hexagon and a regular pentagon.
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Fig. 74.

by subdividing it into 5, 5, and 6 pieces. Try to recut 
a regular septagon into a regular triangle or into a 
square, a regular hexagon into a regular octagon, etc. 
Here one should strive to achieve the smallest number 
of pieces of a reasonably large size.

It is possible that by using Theorem I, you might 
succeed in subdividing a triangle (a hexagon, etc.) 
into pieces not too small in size, out of which one could 
construct both a square and a regular pentagon (or a 
square and a regular septagon, etc.). This would lead 
to an interesting puzzle: out of the given set of pieces, 
construct any of the given regular polygons.

It can be seen from Fig. 75 
that a regular dodecagon can 
be subdivided into identical 
pieces in such a way that out 
of a double supply of these 
pieces a regular dodecagon of 
double the area may be con­
structed.

Investigate the following 
problem; what are the va­
lues of n and k, for which a 
regular n-sided polygon can be 
split up into identical pieces
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(as few as possible) so that k sets of such pieces 
can be used to construct a similar figure of area k 
times as large as the original one.

The reader should try to subdivide a square into 
n pieces such that on discarding one of them, 2 (or 
even 3) of the remaining pieces can be rearranged each 
time into a smaller square.

A similar question can be set for a regular triangle, 
pentagon, etc.
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§. 28. The Construction of Curves

Rosettes
Lovers of attractive geometrical figures can occupy 
themselves in drawing curves with equations in polar
coordinates, of the form r =  a +  b sin , where
a, b, m, n are given numbers.

We select a unit of length e, a pole 0  and a polar 
axis Ox (Fig. 76) for polar coordinates. The position 
of any point M  is determined by the polar radius OM 
and the polar angle <p, formed by the ray OM and the 
ray Ox. The number r such that OM =  re and the 
numerical value of the angle <p, expressed in degrees or 
in radian, are called the polar coordinates of the point M.

9 0 °

270°

Fig. 76.
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For any point other than the pole 0, it can be taken 
that 0  (p<^2n and r >  0. However, in drawing
curves, corresponding to equations of the form r =  f (<p). 
it is natural to give the variable q> any values (including 
negative ones, and those exceeding 2n) and r might 
be either positive or negative.

In order to find the point (<p, r) we draw a line from 
the point 0, to form an angle q> with the axis Ox, and 
we measure off along it (if r >  0), or along its conti­
nuation in the opposite direction (if r <  0) a segment 
of length |r| e.

Everything is much simplified if a coordinate net­
work is constructed consisting of concentric circles of 
radii e, 2e, 3e, etc. (with centre at the pole 0) and 
rays, for which f  = 0°, 10°, 20°,. . ., 340°, 350°; these 
rays are of use both for q> < 0 °  and for <p >360°; 
for example, for <p =  740° and for q> =  — 340°, we arrive 
at the ray for which <p =  20° [see in Fig. 76 points 
M  (40°, 3), N  (120°, - 3 ) ,  P (-1 2 3 0 ° , 2)].

Let us consider the curves:

I. r=  sin 3p, II. r = — +  sin 3?,

3
III. r= 1+sin 3 <p, IV. r = — H sin 3 <p.

2
We compile a table

9

0OCO1 - 2 0 ° 1 h-k. O
! 

O 0 ° 1 0 ° 2 0 ° CO 0 0

sin 3 9 9 — 1 -0-87 -0 -5 0 0-5 0-87 1

^  +  sin 3p —0-5 -0-37 0 0-5 1 1-37 1-5

1 -f~ sin 3 (p 0 0-13 0-5 1 1-5 1-87 2

3  . „— +  sin 3p 0-5 0-63 1 1-5 2 2-37 2-5

12*
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<p * o
1 

o
1 1

O 
1

o
 

II

oO
 

I 
C

O 70° oOC
O 90°

sin 3 <p 0-87 0-5 0 - 0 - 5 —0-87 —1

1
— +  sin 3 9 ? 1-37 1 0-5 0 -0 -3 7 —0-5

1 +  sin 3 <p 1-87 1-5 1 0-5 0-13 0

3
— +  sin 3 q> 2-37 2 1-5 1 0-63 0-5

K f \
Here 0-87 is the approximate value of 2 j

We shall call a portion of a plane, for whose points 
a <p <; /?, a sector. On joining the points (0°; 0), 
(10°; 0-5), (20°; 0-87), (30°; 1), (40°; 0-87)
(50°; 0-5), (60°, 0) by a smooth curve we obtain a “po­
sitive loop” (1) of the curve I, in the sector (0°, 60°) 
(see Fig. 77a). On continuing the table to ip — 360° 
and joining the points (60°; 0), (70°; —0-5), (80°; 
-0-87), (90°; -1 ) ,  (100°; -0-87), (110°; -0 -5), (120°, 0) 
of the drawing, situated in the sector (240°, 300°), 
we obtain in this sector, a “negative loop” (2).

It is easy to find out that it will be followed by 
a positive loop (3) in the sector (120°, 180°) , a negative 
loop (4) in the sector (0°, 60°), positive loop (5) in the 
sector (240°, 300°) and, finally, negative loop (6) in 
sector (120°, 180°). _

In the curve I, the loops (1) and (4) coincide and so 
do (2) and (5), (3) and (6).

But the last three rows of the table show that
(1) in the curve II (the rows of the table corresponding

to r = 2 +  sin 3 q>) the first positive loop (1) is situated
in sector (—10°, 70°) the greatest r =  1-5), the next 
loop, which is negative (2) lies in sector (250°, 290°) 
(the greatest value of r is 0-5) etc. (see Fig. 77a).

(2) in the curve III there are positive loops only in 
sectors (-3 0 °, 90°), (90°, 210°) and (210°, 330°) (Fig. 77b).
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(3) in the curve IV the smallest value of r is 0-5 and 
the loops are of an “unfinished” form (Fig. 77b). The 
situation is entirely analogous as far as the curves

, . bq> , A 1 3r = a+sm  — when a= 0 , 1. —.
3 2 2

are concerned. Here it is convenient to change the value 
of the angle “<p” by 18° at a time (from 0° to 1080°). 
When a =  0, the first (positive) and the second (nega-

169



Mathematical Games and Pastimes

(a)

lb)
Fig. 78a, b.

tivc) lobes are situated in the sectors (0°, 108°) and
(288°, 396°) (Fig. 78a) and when a =  ^ the loops are
situated in the sectors (—18°, 126°) and (306°, 378°) 
(Fig. 78b). When a =  1 there are five positive loops 
only in the sectors (—54°, 162°), (162°, 378°), etc.:3
the same, but with unfinished loops happens when a =  
(Fig. 78c).

In general, for the curve r =  sin j the first 

positive loop is situated within the sector [Q0,1- — -I.
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(c)

Fig. 78c.

(c) (d)
Fig. 79.
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since in this sector 0° <  — <  180°. W heni < — m <  1,n  i  ^  n
the loop occupies a sector greater than 180° but smaller
than 360°, and w h e n o n e  loop requires a sector 
greater than 360° (Fig. 79 shows the form of the lobes

13H§)
(c)

Fig. 80.

Regarding m and n as relatively prime, we consider
the equation r =  sin f-^ j The following cases may 
occur: '

(1) m is even, n is odd. On varyingfrom 0 to 3600 n, we
obtain a closed rosette of 2m loops|360°n =  2mj
the last of which is negative; therefore, on vary­
ing <p further, we again traverse the rosette (in Fig. 
80a, m =  4, n =  3).
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(2) m odd, n even. On varying <p from 0 to n x 180° 
(a whole number of circles we obtain m loops
|n x 180° h- — — = /nj but the last one is positive,
therefore, on varying q> further from n x 180° to 
n x 360°, we obtain loops, which are diametrically 
opposed to the ones already constructed; in total we 
again obtain a rosette of 2m loops (in Fig. 806, m =  5, 
n --- 2).

(3) m and n are odd. On varying <p from 0° to n 
x 180° m lobes are obtained, and since the last one is 
positive, therefore the next (m +  l)th loop is negative 
and coincides with the very first positive loop; on the 
whole, when <p varies from n x  180“ to n x 360° we 
obtain all m loops which have been constructed al­
ready, but those which were positive in the first cir­
cuit become negative, and vice versa (in Fig. 80c, 
m =  5 and n =  3).

Lissajous Curves
Many interesting curves can be constructed in the 

Cartesian coordinates also. Particularly simple is the 
construction of curves, whose equations are given in 
the parametric form:

x = <p(t), 
S =  <p(t).

where t is a parameter.
In this case, the construction of the curve is pre­

ceded by the calculation of the values of x and y  cor­
responding to values of the parameter t (increasing or 
decreasing) of sufficient degree of approximation. The 
points (i, y) are marked on the paper and joined by 
a smooth continuous line in order of t increasing. For

example, for the equations j _  gJJJ we have
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1 0° 15° oO
 

:
CO j

45° 60° 75° 90° 105°

X 0 0-5 0-87 1 0-87 0-5 0 -0 - 5

y 0 0-7 1 0-7 0 —0-7 —1 -0 - 7

Having continued this table to t =  360° and marked 
in the points Aa, Av As, . AM in the drawing, in 
accordance with the values of x and y obtained, it is 
easy to obtain the curve depicted in Fig. 81.

This is one of the so-called Lissajous curves, charac­
terized by the general equations

x = a sin mt, 
y = b sin n(t-\- a).

If we take time as the parameter t, the Lissajous 
figures represent the result of compounding two simple 
harmonic vibrations occurring in mutually perpendicular 
directions.

Verify that the equations (I) x =  sin St; y =  sin 5/; 
(II) x =  sin 31; y =  cos 51; (III) x =  sin 31; y =  sin 41; 
(IV) x =  sin (t — 45°), y =  sin t are those whose curves 
are shown in Fig. 82. In addition to Lissajous curves,
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the drawing contains squares of side 2, inside which 
and touching whose sides, these curves are situated. 
In general, the curve (1) is situated inside a rectangle 
of sides 2a and 2b.

In constructing Lissajous curves, it is useful to pre­
determine the points of contact of the curve with the 
sides of the corresponding rectangle, and also to draw 
beforehand auxiliary straight lines inside the rectangle:

yji
1

V— / — x y\ \  /
Y vAt \ /  \py y 0 \ J

Y V
PAT AI /  \ / \J

i

y.
1

A  o

n

F ig . 8 2 , I  a n d  II .
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horizontal ones at a distance of b sin 15°, b sin 30°, 
b sin 45°, b sin 60°, b sin 75° from the origin of the 
coordinates, and vertical ones at distances a sin 15°, 
a sin 30°, etc., from the origin (regarding q> as varying 
15° at a time and a =  0).

A Lissajous curve is open if, for some value of the 
parameter t, the curve becomes “wedged” at a vertex

Fig 82, III and IV.
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of the rectangle: as <p increases further, the point tra­
verses the same curve in the opposite direction (see, 
e. g. the curve I in Fig. 82).

Find under what conditions the curve (I) a =  0, 
is open(68). It is useful to investigate how the substi­
tution of, say, equations x =  sin St; y =  sin 5 (t +  3°) 
for eqns. (/) transforms an open curve into a closed 
one.

Cycloids, Epicycloids, Hypocycloids

Readers will derive great pleasure from a close 
acquaintance with the cycloid, the epicycloid and the 
hypocycloid — these are the names of the curves 
described by the point M situated on the circumference 
of a circle, radius r, rolling along a straight line (cycloid), 
along the circumference of a stationary circle of radius 
R, touching it on the outside (epicycloid) and along 
the circumference of a stationary circle of radius R, 
touching it on the inside (hypocycloid).

The equations of these curves can be represented 
in the parametric form, thus:

Fig. 83.

x = r (t—sin i), 
y = r (1 —cos t).
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x = R[(l +m)  cos mt—m cos (l+ m )t], 
y = R[( 1 +m) sin mt—m sin (1 +m) /], 
i  = i?[(l —m) cos mt-\-m cos (1— m )/], 
y = R[(m—l) sin m t+m  sin (1 —m) f],

j *
where m =  ^ (see [27], vol. I).

The book by G. N. Berman [4] is devoted to interest­
ing properties of these curves, and it shows also the 
external form of epicycloids and hypocycloids for va­
rious values of m. In Fig. 83 an epicycloid (a) for

2 2 m =  ^ and a hypocycloid (b) for m =  g are shown.

Interesting Broken Lines

Great possibilities in varying the form of curves are 
opened up by the use of the sign of absolute value in 
equations of curves.

For example, the curves (a), (5), (c) and (d) in Fig. 84 
correspond to equations y = sin x, y =  | sin x | , | y | =  
=  sin x and | y | = | sin x| .

epicycloid

hypocycloid

Fig. 84.
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The curve corresponding to the equation
M  +  |y| = i .  (2)

represents a square ABCD (Fig. 85a), since, for example, 
for the second quadrant, where x <  0 and y >  0, the 
eqn. (2) can be rewritten in the form — x +  y =  1 
and this is the equation of the straight line I, only a 
segment of which, lying in the second quadrant, is 
taken.

Show that to the equations

I. \2y — 1| +  \2y +  11 +  y = N  = 4-

i i .  |x | +  IyI +  y = ^ { |* — y| +  |*  +  y|} = V2 +  1,

III. |* | +  | 0 l | - 3 | - 3 |  = 1
there correspond a regular hexagon, a regular octagon, 
and a “figure eight”, as shown in Fig. 856, c, d (see [35] 
pp. 194-195). (69)

Perhaps the reader would succeed in finding equations 
giving a regular dodecagon, sixteen-sided polygon, etc. 
The solution of this problem for regular pentagon, 
septagon, etc. is more complicated.
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Lines, corresponding to the equations of form

y = m arc sin [sin k (x—a)].

are also quite unusual.
It follows from the equation y =  arc sin (sin x) that

(1) — ^ |  and (2) sin y = sinx.

When — ~ x <; , these two conditions are sa­

tisfied by the function y =  x. In the interval | — ^ > rjrj
its graph is the segment AB of the broken line shown 
in Fig. 86.

In the interval ̂  <; x ^  we have y =  n — x, 
since sin (n — x) =  sin x, and in this interval 
— 71 — x < ,^  • Here the graph is the segment BC.

Since sinx is a periodic function of period 2 n, the
( 71 3 71

— 2 » ~2

is repeated once again in the regions 
etc.

To the equation y  =  arc sin (sin kx) there corresponds
2tithe broken line I  with the period-^- (the period of 

the function sin kx) (in Fig. 87, k =  2).
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Adding to the right-hand side a factor m, we obtain 
the equation y =  m arcsin (sinkx), to which there 
corresponds, for m > 0  a broken line of the form II

, and for m <  0 a broken line of form III
( m  =  -  2).

Finally, it is easy to see (70) that by displacing the 
latter lines to the right by a distance a, we obtain 
graphs of functions of the form

y — m arcsin [sin k(x—a)].

We suggest that the reader verifies that the set of 
lines shown in Fig. 88 corresponds to the equation

y  -

2 . (  . 7TX I [ 2 ■ (  • 7TX1— arcsin I sin —  Illy — arcsin I sin —  I 

X | y -  -arcsin jsin 7̂ " 1^ || y +

X

_ . ( . 7i(x — 1)VH—  arcsin sm —------ -
n \ 2 )

= 0

(the product equals zero only when one of the factors 
becomes zero. By making the first, second, third and 
fourth factors in turn become zero, we obtain the
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respective equations of the open polygons (a), (b), 
(c), (cf)]. Additional explanations to Fig. 88 are to be 
found in the next chapter.

Ornate curves
Certain curves, whose equations contain very high 

powers of numbers, possess certain very interesting 
properties (see M. L. Frank’s article in [38], 6th issue, 
45-54).

For example, for the equation y1000000 = x we have 
the table:

X 0 io -° 1 1010 1Q1U0 000

y 0 ±0-999986 ±1 ± 1-000023 ±1-2583
check I

from which it can be seen, that a considerable part of 
the curve does not differ to any practical extent from 
the broken line LMNP  (Fig. 89).

Figure 90 shows the graph of the function y  =  sin x 
2 (sin 1)1000000

X 89°45 89°50 90°

2 (sin x) i 000 000 0-00016 0-032 2
check1

It can be seen from the table, that the second term 
of the given function differs very little from zero, 
even when the value of x is quite close to 90° (also to 
270°, etc), therefore there appear in the vicinity of
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certain points of the ordinary sine curve (̂ 4, B, etc.) 
very narrow upward peaks, which look like segments 
AC, BD, etc., when the curve is drawn to a compara­
tively small scale.

y

M1 ,

■_______________  »O

N

1 X

Fig. 89.

To the equation y1000001 =  sin ^  there corresponds
a curve, differing very little from the broken curve 
ABCDEFGHI (Fig. 91) (as soon as 1 =  0-000001, 
y  = 0-999984).

Terms containing smaller powers of some periodic 
function can be used to alter the form of other compa­
ratively simple curves. 1

y

A D E i
7T 2 jr ,

0 \
B C

Fig. 91.
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By using a table of values of sin x and the table 
below, which can be continued easily,

X sin 3 x sin6 3x sin9 3x

0 0 0 0

5° 0-259 0-0001 0-000

10° 0-5 0-031 0-002

15° 0-707 0-178 0-044

20° 0-866 0-487 0-28

25° 0-966 0-84 0-73

C
O o o 1 1 1

try to draw large scale graphs of the following functions 

y = sin i  -f~ ~  (sin 3x)5

y = sin x — -  (sin 3x)9.

The influence of additional terms on the form of a 
curve can be usefully studied also in polar coordinates.

The interesting article by N. F. Chetverukhin ([37], 
1930, No. 5) contains some of the equations found by 
the German mathematician and naturalist Habenicht 
for the geometric forms found in the plant world.

For example, the curves, shown in Fig. 92 correspond 
to equations r =  4 (1 +  cos 3 <p) and r =  4 (1 +  cos 3 <p) 
+  4 sin2 3 <p.

The equations
r = 5 +  2 cos q> +  3 cos71 q>

and
r = 5 + 2  cos <p +  3 cos71 q> — sin2 18 <p cos4 —

2
give the outlines of “a lilac leaf” and “a nettle leaf”.
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(b)
Fig. 92.

We advise the reader to construct the curve r =  5 +  
■f 2 cos (p first, and then to observe the influence of 
the term 3 cos71 <p followed by the influence of the term
— sin2 18 <p cos4 2 ‘
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Perhaps, some readers, after studying the article 
by N. F. Chetverukhin, will continue Habenicht’s 
researches and obtain new interesting results.

The function y  =  1 +  ]/(log cos 2 nnx) is quite pecu­
liar. It gives real values (equal unity) only for

yi

0
(a) y -

i -

(b)
• • •

0 3
2.

X

Fig. 93.

1 2x =  0, or ±  — ±  — , . . .  In all other cases the ex­
pression under the root sign is either negative or ima­
ginary.

Fig. 94.
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Construction of Curves

The graph of this function is a set of points situated 
above the axis Ox at a distance of 1 and at the distance
from each other of -jj- (see Fig. 93a).

If the graph of the function y =  f (x) is known, 
then, by preserving only those points of this curve,

1 2whose abscissae areO, ±  — , ±  — , etc., we obtain the
graph of the function y  =  /  (x) { 1 +  ]/(lg cos 2 n nx) }
(see Fig. 936, where /  (i) =  sin ^  and n =  4).

The use of the function /  (x) =  [x] (see § 2) helps 
to convert uninteresting functions into functions with 
graphs of quite original form. For example. Fig. 94 
shows (a) the graph of the function y =  x — [x] and
(6) the graph of the function y =  arc sin (sin̂ 7t3:)j ■
the little hollow circles indicate that the corresponding 
points do not appear in the graph.
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§ 29. Mathematical Borders

We apply the name mathematical border to a drawing 
characterized by some equation or inequality (or even 
a set of equations or a set of inequalities) in which a 
certain pattern is repeated many times.

For example, the set of inequalities

is satisfied by the coordinates of points, which lie above 
the sine curve (for them y >  sin x) and below the 
curve y =  sin x, at the same time, i.e. the region of 
solutions of the set (1) consists of the regions, shaded 
in Fig. 95.

Let us denote the first and the second factor in the 
inequality

by fi{x, y) and /,(*, y).
This inequality is satisfied by the coordinates of 

points, for which /x (x, y) >  0 and /2 (x, y) <  0 at the 
same time (they lie in the shaded region in Fig. 95) 
and by the coordinates of points for which fx (x, y) < 0  
and /2 (x, y) >  0 (they fill the regions marked by aster­
isks.)

(1)

(y—sin x) (y+sin x)<0. (2)

Fig. 95.
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The whole region of solutions of the inequality (2) 
consists of the shaded areas and the starred areas. 
If in the inequality
r 2 n x \][ , 2 . ( . nx\a ----- arcsin sin —  a —  arcsm sin —  x71 [ 2 JJL » { 2 JJ

r  2  . I . j t ( x — 1 )  Y]X V----- arcsin sin —---------   x[ n I 2 JJ
X y +  — a r c s i n ^ s i n (3)

we denote the factors in the left-hand side by <pv <p2, 
q>3, <Pt respectively, then the inequality (3) will be 
satisfied by the coordinates of points at which either 
one of the factors is negative and the rest positive 
(these are, for instance, regions a in Fig. 88, where 
9?! <  0 and <pv <p2, <p3 >  0, regions /?, where <pt <  0 
and 9>x, <p2, <p3 >  0, etc.) or three factors in the left-hand 
side are negative and the fourth one is positive (regions 
a' where <j>v <p2, <p4, <  0 and q>2 >  0, regions /T, where 
<Pv <Pv 9* <  0 and <p3 >  0, etc.).

The whole region of solutions of inequality (3) cons­
ists of squares, shaded-in in Fig. 88.

By increasing the number of factors in the left-hand 
side of the inequality, selecting them in such a way, 
that the curves and broken lines at which they become 
zero are shifted relative to each other by this or that 
distance, by taking a set of simple inequalities in place 
of one complex inequality, etc., it is possible to vary 
the form of drawings obtained very considerably.

We leave it to the reader to verify that the regions 
of solutions of 

(1) the inequality

{y2—arcsin2 (sinx)} y2—arcsin2 sin |x  )]} < 0 (4)

(2) the inequality
0_2 ^ —1 <P„ *̂1 ^2 ^
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where ®k=<Pk(x, y) = y2—arcsin2 and k =

= —2, -  1, 0, 1, 2;
(3) the inequality

[y2—sin2 x] < 0; (6)

(4) the set of inequalities

y2 — arcsin2 ŝin-̂ —-j <  0,

-(*rarcsin2 nsin— (a:—1) 
2

< 0 :

and (5) the set of inequalities

?)<»■
n(x—1)

8
7t(x—3) 

8
n(x—6) 

8

6 \2— 1 arcsin2 n J
6,12- 1 arcsin2 n J

— arcsin2 n J

y2 -  f-— arcsin2nr 1

sin

sin

sin

< 0 ,

< 0 ,

< 0

(7')

(7")

(8')

(8” )

(8"')

(8'"')

consist repectively of the shaded figures (a, b, c, d, e). 
In Fig. 96 (in Fig. 96d) a dotted line marks the wide 
rhombi, which give the solution of the inequality (7') 
only and the tall rhombi, which give the solution of the 
inequality (7'') only. In Fig. 96e, the large rhombi I 
delimit the region of solutions of inequality (8'), the 
rhombi II delimit the region of solutions of the ine­
quality (8”) etc.; the common part of these regions 
gives a chain of little rhombi.

By making use of inequalities with high powers of 
variables, it is possible to increase the variety of mathe­
matical borders. For example, to the inequality

(yi oooooi _ sin x) I (2y)ioooooi_sin (X — 1)1 < 0  (9)

190



Mathematical Borders
yj

m m  e  i n m

Fig. 96. 
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and to the inequality

|yioQoooi—sin -^ j — — arcsin sin — j <  0 (10)

there correspond regions of solutions differing to an 
extremely small degree from those shown in Fig. 
97a and 97b.

The construction of mathematical borders may serve 
as a competition theme in senior forms at school; 
by gathering together the best borders, an album full 
of colourful and fanciful drawings can be obtained.
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§ 30. Models of Polyhedra

Suppose the opposite edges of a regular tetrahedron, 
the opposite vertices of a cube and of a regular icosa­
hedron (where A B _L q and CD_L q), the opposite faces 
of a regular octahedron and a regular dodecahedron 
(Fig. 98) lie in two parallel planes, q and a.

If we intersect all these polyhedra by a plane parallel 
to Q and a and half-way between them, we obtain 
as cross-sections, a square, two regular hexagons and 
two regular decagons.

If we prepare models of the two halves of each poly­
hedron and join them by a hinged join (by sticking 
them together along a common edge with a narrow strip 
of strong paper or cloth) we obtain visual models of 
the cross-sections and the parts into which the poly­
hedra are split by the “medial plane”.

Figure 99 gives plane developments of the dodeca­
hedron and icosahedron.

Models, showing the transition from one regular 
polyhedron to another are also interesting and instruc­
tive. It can be seen from Fig. 100a that a regular octa-
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Fig. 99.

hedron ABCDEF can be completed to form a regular 
tetrahedron KLM N  by adding on to each of its four 
faces a little tetrahedron.

In turn, by adding identical triangular pyramids 
KLM V, LMNT, K M  NS  and KLN U  to all the faces 
of the regular tetrahedron KLM N, we obtain a cube. 
Having glued up these pyramids separately and having 
joined them up by means of hinged joins along the 
edges MN, NL, and LM, we obtain an “envelope” 
which can be tucked round the tetrahedron KLM N  
to form a cube (Fig. 1006).
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Models of Polyhedra

For the cube, it is possible to glue together an envelope 
of identical lids ABCDKL, ADEFMN, etc., transform­
ing it into a regular dodecahedron (Fig. 101a). Figure 
101ft shows separately the unfolded lid of this kind; 
the obtuse angles of the triangles and trapeziums are
108° each and ft =  2 Cos 3 6 °  ^  618a.

Finally, out of the twelve polyhedra, shown on Fig. 
101c, it is possible to glue together an envelope, which 
transforms a regular dodecahedron of edge a into a 
regular icosahedron circumscribed about the dodeca­
hedron. Each little lid is bounded by a regular pentagon 
ABCDE of side a, 5 isosceles triangles {AKE, EMD, 
etc.) of lateral side ft ^  0.535a and 5 identical quadri­
laterals (EKSM , DMSL, etc.) E K  =  EM =  ft; KS  =  
=  SM  0.927a; KEM  =  120°, EKS =  EMS =  90°.

Using models, it is possible to become acquainted 
with prismatoids of various forms — this is the name 
given to convex polyhedra, whose bases are polygons of 
any shape, which lie between parallel planes, and whose 
side faces are triangles (or, in some cases, trapeziums)
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all of whose vertices coincide with the corresponding 
vertices of the bases. Figure 102 shows a prismatoid 
ABCDKLM  with triangular and quadrilateral bases, 
a prismatoid EFHQR with triangular and “bi-angular” 
(segment QR) bases, and a so-called regular antiprism — 
this is the name of prismatoids, whose bases are identical 
regular n-sided polygons, whose side-faces are equilateral 
triangles, and in which the “line of centres of bases” 
Oi 02 is perpendicular to q and the bases are rotated
relative to each other by an angle .

It is easy to construct a plane development of a 
prismatoid if we are given its projection on to the 
plane q (or a) and its height h (Fig. 103).

The bases of the prismatoid appear undistorted in the 
projection; in order to determine, for example, the true 
shape of the face CDM it is necessary to draw M 'P±CD  
and measure off PMi =  ] /(M’P 2 +  /i2) (see Fig. 102). 
The true shape of other side faces adjacent to the base 
ABCD is determined similarly, and so are the faces 
adjacent to the base KLM  (they are marked in dotted 
lines in Fig. 103).

We cut out figures ALX BL2 CM1DK1 A and 
K 'A l L'C1 M'D1 K' (having left enough material at the 
edges for glueing) and then we easily glue together 
the prismatoid itself.

Construct plane developments and glue together mo­
dels of several irregular prismatoids, and also of several 
regular antiprisms (for n =  5, 6, 7 ,. . .).
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Models of Polyhedra

As can be seen from Fig. 104, a cube may be con­
structed out of three identical pyramids; LABCD, 
LMNCD, LAKND, which have a common edge LD

(the diagonal of the cube) and square bases ABCD, 
NMCD, A K N D ; hence it follows — without using 
the formula for the volume of a pyramid — that the 
volume of a pyramid with a square base, whose side 
edge equals the side of the base a and is perpendicular
to the plane of the base, equals -g- .

By rotating the cube about the diagonal LD through 
120° and through 240°, we see that the pyramids 
LABCD, LNMCD, LAKN D  are transformed into each 
other.

L M

Make a composite model of a 
cube out of models of these pyra­
mids, by joining the first one 
with the second one by means 
of a hinged join along the edge 
LC, and the first one with the 
third one, in the same way, along 
the edge LA .

If we fill space with identical 
cubes in such a way that any two 
neighbouring cubes have a common
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face, and if we mentally colour them white and black in 
chesslike order, then on passing planes through the edges 
of each black cube ABCDKLMN  (Fig. 105) so that 
they pass at the same time through the centres Ox, 0 2 
of the neighbouring cubes, (say, the plane OxKN), 
we shall have split up each white cube into six identical 
pyramids.

If we join on to each black cube the adjacent white 
pyramids, we find that we have filled space with so- 
called rhombic dodecahedra.

A rhombic dodecahedron has 8 angles bounded by 
three faces and 6 angles bounded by four faces, and 
each of its twelve faces is a rhombus, whose diagonals 
are in the ratio 1: ]/2. Prove that planes of form 01K N  
and K 0 2N  coincide.

02

Construct 5-6 identical rhombic dodecahedra and 
it will be seen that they fit each other very well.

If the cube ABCDKLMN  (Fig. 106) is subdivided 
into eight little cubes by planes parallel to the faces 
and passing through the centre of the cube, and if we
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cut off from each little cube that half of it which is 
adjacent to the corresponding vertex of the large cube 
(for instance, the septahedron NXYZPQRSTU  adja­
cent to the vertex N), we are left with a polyhedron 
of 6 square and 8 regular hexagonal faces, composed 
as if of 8 little half-cubes with a common vertex in the 
centre 0  of the large cube.

An exactly similar 
polyhedron can [be 
constructed out of 8 
half-cubes grouped 
about the point N, 
if it is supposed that 
the operation descri­
bed above is perform­
ed on each of 8 large 
cubes with a common 
vertex N.

Therefore, it is pos­
sible to fill space, 
without any gaps, Fig. 106.
with the fourteen-
faced polyhedra shown in Fig. 106. This can be veri­
fied visually by making up 5 of such polyhedra of 
identical dimensions.

It is possible to make folding models of certain 
polyhedra, using firm cardboard. For instance, cut 4 
regular triangles out of cardboard and hinge them 
together in two pairs by glueing firm material along 
the straight line AB  and along the straight line CD 
(Fig. 107a).

If we join the rhombi obtained by means of a thin 
taut elastic band ONMLKVUTSRQPO, threaded 
through openings M  and L, V and U, S  and R, P  and Q, 
then the elastic band, by becoming shorter, tends to 
change the plane figure (a) into the tetrahedron (b) 
(points U and V lie on the median of the triangle 
ABC, etc.).
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In order to obtain folding models of a regular dodeca­
hedron we superimpose a rosette of six regular card­
board pentagons, five of which are joined by a hinge­
like join with the sixth central pentagon ABODE 
(Fig. 107c), over a similar rosette with central pentagon 
PQRST and an elastic band is threaded tautly through 
the twenty holes shown in the drawings.

P r o b le m s :  1. By passing planes through each of the 
twelve edges of a cube so that the planes make equal 
angles with the faces bounding the corresponding angle, 
we arrive at a rhombic dodecahedron (Fig. 105).

By passing planes through the edges of a rhombic 
dodecahedron, so that they are equally inclined to its 
corresponding faces, we arrive at the polyhedron Sx
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circumscribed about the rhombic dodecahedron; subse­
quently, it is possible to obtain S2, from Sl in the same 
way, and from <S2 — S3, etc.

Attempt to determine the form of the faces of St 
and S2 and to construct their models.

Similar problems can be set, using in place of a cube 
as base some other polyhedron (a regular dodecahedron, 
a regular pentagonal antiprism etc.).

What is the result, it we take a regular tetrahedron 
or a regular octahedron as the starting polyhedron?(71).

2. If we fill space with identical parallelepipeds of

Fig. 108.

arbitrary shape, coloured as for chess, then, on joining 
on to each black parallelepiped 6 pyramids whose 
vertices are at the centres of the neighbouring parallele­
pipeds, we obtain dodecahedra, filling space without 
gaps (Fig. 108a). On cutting off 8 halves of little parallele­
pipeds from each large parallelepiped, we obtain 14- 
faced polyhedra, also capable of filling space (Fig. 
1086).

Try to construct plane developments of the 12-faced 
and 14-faced polyhedra obtained as above, if you are 
given the height h of the parallelepiped and its pro­
jection on to its base plane.

Having glued together several polyhedra of each type, 
verify that your models do fit in with each other exactly.

201



§ 31. Pastimes with a Sheet 
and a Strip of Paper

A triangular sheet of paper enables us to demonstrate 
easily, without using geometric instruments, that the 
three bisectors of angles (the three medians, the three 
altitudes, the three perpendiculars at mid-points of 
sides) of a triangle are concurrent.

(a)
Fig. 109.

Indeed, any of the lines indicated can be easily con­
structed by folding the sheet in an appropriate manner. 
If the triangle ABC is obtuse, then, in order to obtain 
the centre of the circumscribed circle, we must take a 
sheet in the form AKLBC  (Fig. 109a); and in order 
to obtain the orthocentre we must take a sheet in the 
form ABDE, with continuations of sides AC and BC 
marked in by folds in the paper.

It is even simpler to prove the theorem about the sum 
of the angles of a triangle (Fig. 1096).

It is also possible to divide approximately — without 
drawing instruments — any angle ABC into three 
equal parts, for which it is sufficient (Fig. 110a) to
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fold the paper along the line BK, which passes through 
the vertex of the angle, in such a way, that angles 
KBA' and A'BC are equal. With some practice, it is 
possible to do it freehand quite accurately.

Regular Polygons

If a strip ABCD with parallel edges (Fig. 1106) has 
<  ABC = 90°, then, on folding it along the straight 
lines, BK, KL, LM, M N , . . ., it is possible to close 
the resulting “letter-cum-envelope” by means of the 
last “incomplete triangle” and thus obtain the shape 
of an equilateral triangle. If the strip is only half- 
folded along the lines BK, K L , . . ., then the side sur­
faces of various regular antiprisms may be constructed 
out of it (see § 30).

A strip of paper with parallel edges can be used to 
construct a regular pentagon, by tying the strip in a 
knot (Fig. 110c) and carefully pulling the knot tight, 
then pressing it flat in the form of a regular pentagon 
KLM EF  (Fig. llOd).

If we then push the strip EFCD, bending it along 
the straight line EF, underneath the trapezium KLM F,

Fig. 110.
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we obtain a “letter-cum-envelope” in the shape of a 
regular pentagon. When viewed against the light, and 
if made of fairly fine paper, this figure clearly shows 
a regular pentagonal star with a dark middle.

By folding a sufficiently long strip ABCD along a
straight line KL  [ <  AKL  =  —J, we obtain the first
three vertices, K, L, M, of a regular septagon (in Fig. 
I l l  we must mentally lengthen the strip considerably 
beyond the “curved boundaries” CD, then etc.).

By folding the strip, consecutively, along the straight 
line M N  (so that NC2 passes through point K) along 
the straight line K P  (so that PD3 passes through the 
point N), along the straight line NQ (so that QC4 
passes through the point P) along the straight line 
PR (so that RDb passes through the point Q and PC&, 
through the point L) and finally, along the straight 
line QL (as a result of which the edges of the strip 
should pass through the points M  and R), we obtain 
a regular pentagon MNQLKPR, and when viewed 
against the light, it shows several septagonal stars.
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Mobius’ Strip

Bring into close proximity the two ends, AB  and CD 
of a strip of paper, give it a twist (so that the point C 
coincides with B and D with A) and glue together the 
ends AB  and CD while the strip is still twisted (Fig. 
112). This gives the so-called Mobius strip — a one­
sided surface, which cannot be coloured differently on 
each side; having start­
ed applying paint at 
some point and proced- B D 
ing along the strip, 
we eventually arrive at 
the starting point on 
the opposite side of the Fig. 112.
paper.

When a Mobius strip is cut along a line, equidistant 
from its edges, it does not fall apart, but is transformed 
into a “fully twisted ring”, and the latter, on being 
cut along its median, gives two rings, twisted twice 
and interlinked in a fantastic manner. This rather 
striking property of a Mobius strip can be used as a 
basis for a trick to impress and mystify unsophisticated 
audiences.

Readers might well carry out a systematic investi­
gation of the behaviour of a Mobius strip, and of re­
peatedly twisted paper rings, when they are cut along 
their median, or along two lines equidistant from each 
other and from the corresponding edges, etc.

Greater details of the properties of the Mobius 
strip are given in [6], pp. 117-132.

The Construction of a Regular Icosahedron
Take a strip of firm paper of width 10-12 centi­

metres, fold it in accordance with Fig. 1106 and cut 
out several equilateral triangles. Each of them can be 
accurately subdivided freehand into sixteen equilateral 
triangles, folding the paper first along the lines M'K', 
K'L', L'M', which join the mid-points of the sides,
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(L is made to coincide 
with the mid-point L' of 
side KM' and the paper 
is pressed along the line 
M'K', etc.), then along 
the lines PQ, RS, TQ, 
etc. (see Fig. 113).

If we slit the paper 
along segments PH, FS, 
TI then, by rotating, say, 
the rhombus PLQH about 
the vertex H in an anti­

clockwise direction, in such a way that the triangle 
IIQP becomes situated underneath the triangle HM'P, 
and by folding it along its diagonal PQ until the ver­
tex L coincides with point H, we obtain an angle 
bounded by five faces, having vertex H (kept well to­
gether by the bent triangle PQL, particularly if a 
drop of glue is placed at its centre beforehand).

Having constructed, in a similar way, angles of 5 
faces with vertices at points I and F, we obtain a model 
of half the surface of a regular icosahedron.

Using 4-5 halves of icosahedra, sliding them on to 
each other in such a way that each two halves in direct 
contact have 4 faces in common, it is easy to obtain 
a sufficiently stable model of a regular icosahedron.

The reader might try constructing stable models of a 
regular tetrahedron, octahedron and icosahedron out 
of several strips of paper of the same width, subdivided 
into equilateral triangles (see Fig. 1106), and also 
a model of a regular dodecahedron out of several strips 
of paper each of which is “tied” in regular pentagons 
situated close to each other (see Fig. llOd).

L
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§ 32. The Four-Colour Problem

Suppose we have to colour arbitrary regions of a plane 
or a spherical surface (for instance, the political map 
of the world) in such a way, that no neighbouring 
regions (i.e. having a common boundary, no matter 
how short) are coloured in the same way. Regions that 
touch at one or several points are not regarded as 
neighbouring and can be painted the same colour.

Experience shows that this can always be done by 
means of at most four colours, if, of course, we abandon 
the custom of painting all water areas on maps, which 
are also regarded as separate regions, the same colour.

It may happen, of course, that on painting the first 
few regions in the wrong order, a fifth colour may 
become necessary (for example, to paint over the central 
region in Fig. 114a where the numbers of colours used 
are marked in), but, by colouring the first regions in 
a different order, we can always succeed in using four 
colours only (Fig. 114ft).

However, no one has succeeded in proving rigorously 
that it is impossible to subdivide a plane in such a way, 
that a fifth colour would be required, although it has 
been proved that 5 colours are always sufficient. 
([24], pp. 90-101).

It is interesting that the surface of a torus (Fig. 114c) 
can be subdivided into as many as 7 regions each of 
which borders on all the others, and so, in general, 
we cannot colour a map on torus with less than 7 co­
lours. However, it has been proved that it is impossible
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to subdivide the surface of a torus into regions in such 
a way that an eighth colour is required to colour all 
regions in all the various ways.

It is easy to see that in the case of space regions, 
completely different circumstances arise, namely, that 
any number of regions can be taken, each of which 
has a border with all the other regions in the form of 
a portion of some surface. It is sufficient to take two 
rows of long blocks laid on top of each other in different 
directions (Fig. 114c) and join up each two blocks 
of the same number into separate regions.

We shall indicate several problems related to the 
4-colour problem.

1. Having glued together a model of a body (e) 
topologically equivalent to the torus, subdivide its 
surface into seven regions, each of which borders on 
six others.

2. A large “bridge” is situated in the middle of a 
courtyard. Subdivide the territory of the courtyard 
into seven sectors, using the upper surface of the bridge 
as well as the area under the bridge, so that any two 
sectors border on each other. Show the solution on a 
model (e) consisting of a sheet of paper, with a strip of 
paper stuck on to it in the form of a bridge.

3. Prove(72) that an arbitrary number of straight 
lines subdivides a plane into regions, for the painting 
of which two colours are sufficient. What would the 
situation be in a space, which has been subdivided 
into regions by arbitrary planes?
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The Four-Colour Problem

4. Prove(73) that there exist 8 tetrahedra (not neces­
sarily regular ones) which can be distributed in space 
so that each of them has a common border with every 
other one, in the form of a portion of a face, without 
degeneration into a line or a point.

5. It can be seen from Fig. 114<7 that the territory 
of an island can be subdivided into six regions and they 
can be distributed among five states in such a way 
that any two states have bordering possessions. If it 
is required that the possessions of any state be coloured 
in one way, it is inevitable that five colours must be 
used.

Try to find, for m — 6, 7, 8, 9 ,. . . ,  the smallest 
number n of regions into which an island has to be 
subdivided, so that when the regions are distributed 
among m states, any two states have bordering posses­
sions.
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Perhaps you may find a formula of the form

^least = /(m).
It is also possible, having subdivided the island into 

complicated and fancifully shaped regions, to consider 
the distribution of the regions amongst the greatest 
possible number of states, m, so that any two states 
have bordering possessions.
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§ 33. Drawing Figures at one Stroke 
of the Pencil

It is possible to trace at one stroke, that is without 
lifting the pencil off the paper and without retracing 
any of the lines, a fairly complex figure (Fig. 115a), 
consisting of a number of “nodes” joined by “paths”. 
(The paths may be curved (Fig. 115d) but it is impos­
sible to trace out the very simple figure (b) in this 
way.)

Fig. 115.

Let us call a point, from which there issue k paths, 
a node of the /cth order, or a “/c-node”. Thus, the figure 
(a) has 2 nodes of the third order and 17 nodes of the 
fourth order. Evidently, any intermediate point on any 
of the paths can be considered as a node of the second 
order.
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In tracing the figure in pencil we shall distinguish 
the initial, final and intermediate nodes.

T h e o re m . If a figure can be drawn at one stroke, 
none of its odd nodes can be an intermediate one.

Indeed, a “(2m +  l)-node” can only be an initial 
one or a final one, since by passing through it m times 
we use 2m paths, and it is only possible to start or to 
complete the figure along the remaining path.

It follows from this theorem that it is impossible to 
draw a figure, possessing more than two odd nodes, 
at one stroke. In particular it is impossible to draw 
figure (b), which has four triple nodes.

Let us discuss the well known Euler problem about 
the seven bridges of Konigsberg: is it possible to cross 
each of the seven bridges, connecting islands A and B  
with each other and with the river banks C and D once 
only? (Fig. 115a.)

Substituting points for the banks and the islands and 
lines for the bridges, we reduce Euler’s problem to the 
question of drawing figure (d) at one stroke, which is 
impossible, as it has four odd nodes.

Prove(74) that the number of nodes of odd order is 
even for any figure.

If we can pass from any point of a figure to any other 
point of it along paths belonging to it, the figure is 
called connected.

It can be proved that any connected figure without 
odd nodes, or with two odd nodes, can always be drawn 
at one stroke ([25], ch. 8).

The proof and the finding of a method of drawing 
of a figure which is drawable are based on the fact 
that when the tracing out of the figure is unsuccesful, 
and not all the lines of the figure have been included, 
it is always possible to find a point common to both 
the paths traced out and the paths left out in the tracing. 
It is possible to include a closed path along the untraced 
paths, beginning and ending at that point, into the first
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variant of drawing, which diminishes the number of 
paths untraced. This should be repeated until all the 
paths are traced out at once.

Obviously, when two odd nodes are present one must 
be a starting point and the other one a final point; 
if all nodes are even, any point of the figure may be 
taken as a point of departure, and the tracing will be 
completed at that point.

If we agree that every line of the figure can be traced 
out exactly twice (that is every path joining two 
nodes is mentally exchanged for two paths) the order 
of each node is doubled, and any connected figure can 
be drawn at one stroke.

The double tracing of a figure can be completed 
immediately if Tarry’s rule is utilized ([25], p. 239-442): 
after reaching a certain node along the path I for the 
first time, this path I should be avoided for a return 
visit into this node until this is possible again, that is 
to pass along this path for the second time after all 
the paths issuing from this node have been used twice; 
at the same time, it is not possible to leave a node 
twice along the same path (the second journey along 
any path is made in the opposite direction.)

In Fig. 116, 16 numbered journeys are made, in 
accordance with Tarry’s rule; here the curved arrow­
heads show the paths of first-time approach to any 
unvisited node (this path can 
be used to move out of the node 
only after all the approaching 
paths have been used twice).

For any second approach to 
a node, the corresponding path 
is marked by a simple ar- 
rowshead. Such a path can 
be used for a second jour­
ney (in the opposite direc­
tion) at any time. For 
example, in place of the 
fifth move, the segment M
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to D may be traced out, but no other move can be 
substituted for the eight one, since one journey has 
already been completed, along DM  from the node D 
(the fourth move) and the curved arrowhead on DC 
shows that this path is taken from the node D last.

The Tarry’s rule is of fundamental significance in 
the problem about mazes. Any maze can be regarded 
as a set of points (platforms, rooms, etc.) connected 
by lines (roads, corridors, etc.).

It follows from Tarry’s rule that any connected maze 
(i. e. a maze without inaccessible points) can always 
be traversed by a person unacquainted with its plan 
in such a way that all paths are traversed twice. For 
that, in addition to “curved and simple arrowheads”, 
one should mark paths with “halt sign” warning against 
retracing a passage for the second time in the same 
direction.
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§ 34. Hamilton’s Game

In the year 1857 the Irish mathematician Hamilton 
proposed a game, which he called “a journey around 
a dodecahedron”, consisting of a journey from vertex 
to vertex of a regular dodecahedron, on condition that 
movement can take place only along the edges, and 
no vertex can be visited more than once.

X

If a central projection of the dodecahedron is made,
i.e. its vertices and edges (Fig. 117a) are projected 
onto a plane passing through the face ABCDE, from 
the point 0, which is situated at a small height above 
the centre of the face VWXYZ, the configuration (b) 
is obtained.

One of the problems in Hamilton’s game is the con­
struction of closed circuits connecting all twenty ver­
tices. It seems (see [25] or [30]) that, having made any
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four moves from some vertex, it is possible to visit all 
remaining vertices and return to the original vertex 
with the twentieth move.

The question can be set about the number of circuits 
possible on being given, say, the first three vertices and 
the last one (depending on how they are placed, 0, 1, 
2, 4 or 6 circuits are possible) or the first two and the 
last two vertices, etc. Here, we may be forbidden to 
visit certain vertices or to use certain edges.

A game may be considered involving two participants 
marking in the links of a “polygon of the circuit”, 
one of the participants aiming at completing the circuit 
(not necessarily a closed one) of all the twenty vertices, 
while the other participant aims at creating a situation 
in which some of the vertices are left unvisited (for 
example, the polygon SZYXNPDCRQ).

The polygon can be drawn by the players by placing 
numbered white and black pawns in turn in the corres­
ponding vertices. The game becomes more complex and 
interesting if, instead of the configuration (b) we take 
a wooden dodecahedron with pins at the vertices on 
to which one can push well fitting rings.

Perhaps the reader may succeed in constructing a 
theory of the game, by proving the inevitability of 
defeat of one of the players if his opponent plays 
correctly (it is necessary, of course, to consider two 
alternatives, one when the player creating the impasse 
plays white, the other when he plays black).
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Journeys around other polyhedra can be substituted 
for the journey around the regular dodecahedron. It is 
interesting for example, that it is impossible to visit 
all vertices of a rhombic dodecahedron while observing 
the rules of Hamilton’s game (see § 30), since the 
rhombic dodecahedron has six angles bounded by four 
faces and eight angles bounded by three faces, and 
any edge joins different kinds of vertices.

Figure 118 shows a space configuration in which 
there are open circuits, but closed circuits are impossible 
(Why?) («).

Try to find a polyhedron possessing the sam e pro­
perty.

Hamilton also put forward another game — a journey 
round the faces of a polyhedron, in which the passage 
from one face to another is only permitted if the faces 
have a common edge.

We suggest that the reader verifies(76) that the 
paths followed in Hamilton’s second game as carried 
out on a regular octahedron and on a regular icosa-

Fig. 119.
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hedron are exactly the same as the paths followed 
in the first game as carried out on a cube and on a 
regular dodecahedron respectively.

The problem about a chess-knight in § 19 can be 
regarded as a problem of visiting every point of a given 
arrangement of points according to the rules of Hamil­
ton’s game; it is sufficient to replace squares of the 
board by points, perhaps situated differently, and to 
join up the points corresponding to knight’s moves on 
the chess-board by lines.

Figure 119 shows a plane (a) arrangement and a space
(b) arrangement corresponding to a “3,4-board” (c) 
and a ‘H^board” (d).
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§ 35. Arranging Points on a Plane 
and in Space

Problems of this type are usually “materialized” i. e. 
points are replaced by coins, nuts or other objects. 

Let us quote a few typical problems:
1. Ten coins are arranged in the form of an equila­

teral triangle (see Fig. 120a). By moving three coins 
to new places, obtain a new equilateral triangle.

(a)
• • •

(b)

Fig. 120.

2. It can be seen from Fig. 1206 that 9 coins can be 
distributed in 8 rows of 3 coins in each, i. e. it is pos­
sible to indicate 8 straight lines, each passing through 
the centres of 3 coins.
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Move two coins(78) in such a way that the 9 coins 
become arranged in 10 rows each of 3 coins.

3. Figures 120c, d ,  show two fundamentally similar 
but outwardly different arrangements of 19 coins in 9 
rows of 5 coins each.

Arrange 19 coins in 10 rows, 5 coins in each row(79).
Organize among your friends a competition in finding 

arrangements of n points in m rows, p points in each
row, such that the ratio is the greatest possible 
(in order to be definite, n should not be allowed to 
exceed a certain number n0).

Attempt to investigate problems similar to the con­
struction of magic squares. For example: can integers 
from 1 to 19 be placed at the nodal points of the con­
figuration (c) of Fig. 120 in such a way, that the sums 
of numbers lying in any of the 9 straight lines are the 
same.

4. Arrange(80) 6 points in a plane, so that any 3 
points are the vertices of an isosceles triangle.

5. Arrange(81) 8 points in space, so that all 56triangles 
(Cl) whose vertices are in the given points are isosceles 
triangles.

Study the problem of distributing n points in a draw­
ing (n =  7, 8, 9, . . .) so that among the C“ triangles 
there were as many as possible isosceles ones. An 
analogous question may be set (for n — 9, 10, 11,. . .) 
for space.

All these problems may be considered also in m-dimen- 
sional space, if we regard points as being sets of m 
real numbers written down is a definite order, and the 
distance between the points

A (ocj, a2, ..., ot/n) and •••> Pm)

is calculated from the formula

d  = /(otj — /?i)̂ +(a2— $>)2+ ••• +(«m — P m)2 •

6. Using the latter formula, show(82) that in four­
dimensional space, every 3 of the following 5 points
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o  (o, o, o, o), A (i , o, o, o), 0 , 0j ,

are the vertices of an equilateral triangle.
Problems 2 and 3 are close to an interesting problem 

in projection geometry — the construction of configu­
rations.

A plane configuration (pm, qn) is the name of a system 
of p points and q straight lines, in which m straight 
lines pass through each point and each straight line 
passes through n points (of the given ones).

It is easy to prove(83) that pm =  qn must take place. 
If p =  q and m =  n, then instead of (pm, qn) we can 
write (pm) for short.

Figure 121 shows configurations (32), (62, 43), (93), 
(93) and (103). It is interesting that there does not 
exist, say, the configuration (73) (see [8], pp. 107-109).

Fig. 121.
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§. 36. Problems of a Logical Nature

Problems of a logical nature deserve attention not 
only because of their apparent entertainment value, 
but also, because in solving them, as in solving mathe­
matical problems, we acquire quickness of mind, per­
sistence, and the ability of finding a weak spot in the 
conditions of the problem, of which we can take advantage 
in finally solving it. Let us quote several examples:

1. Some schoolchildren, while playing, split up into 
two groups: the serious ones who answer every question 
correctly, and the jokers who give wrong answers to 
every question.

The teacher, having learned of the matter, asked 
Ivanov whether he was one of the serious ones, or a 
joker. Having failed to hear the answer, he asked 
Petrov and Sidorov; “What did Ivanov say?” Petrov 
answered “Ivanov said that he was a serious one”. 
Sidorov answered “Ivanov said that he was a joker”. 
What were Petrov and Sidorov?(84).

2. 6 schoolchildren, who were taking part in Sunday 
work (Translator’s note: there is a Soviet custom of 
asking schoolchildren or employees of an institution 
to put in an occasional Sunday’s voluntary work on 
some project) split up into 3 teams. The leaders of the 
teams were Volodya, Petya, and Vaysa; Volodya and 
Misha were given logs 2 metres long; Petya and Kostya
were given logs 1 * metres long and Vaysa and Alyosha
were given logs 1 metre long. The logs were sawn into
2-metre lengths.

222



Problems of a Logical Nature

The wall newspa­
per reported that the 
team leader Lavrov 
with Rozhkov have 
sawn up 26 lengths, 
the team leader Gal­
kin with Komkov 
have sawn up 27 
lengths and team 
leader Kozlov with 
Yevdokimov have sawn up 28 lengths of log. What 
is Komkov’s first name?(85).

3. Three friends, Andrey, Boris and Vadim were 
sitting bareheaded one behind the other (Fig. 122). 
Boris and Vadim were not allowed to look behind them. 
Boris could see the head of Vadim, who was sitting 
below him, and Andrey could see the heads of both 
his friends.

Each friend had a hat of a colour unknown to him, 
placed on his head. It was taken out of a sack 
containing two white and three black hats (this was 
known to all three of them). Two hats of a colour 
unknown to all remained in the sack.

Andrey announced that he couldn’t determine the 
colour of his hat. Boris heard his friend’s answer and 
said that he, too, lacked data to determine the colour 
of his hat. Could Vadim determine the colour of his 
hat on the basis of his friends’ answers'.^86).

Of particular note are problems, whose solutions 
require a meticulous analysis of numerous data, at 
first glance little connected with the quantities required. 
For example:

4. Five schoolchildren took part in a bicycle race. 
After the race five fans announced:

I. Seryozha was second and Kolya was third.
II. Nadya was third and Tolya was fifth.

III. Tolya was first and Nadya was second.
IV. Seryozha was second and Vanya was fourth.
V. Kolya was first and Vanya was fourth.
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If we know that one of the statements made by each 
fan is true and the other is false, find the correct distri­
bution of places(87).

5. Sixteen students were returning to Leningrad after 
their winter holidays. It so happened that four, A, B, C 
and D were natives of Kiev, four, E, F, G, and H of 
Moscow, four I, J, K and L of Saratov, and four, M, N, 
0  and P of Fergana. It also happened that A, E, I 
and M were 20 years old; B, F, J and N were 21; C, 
G, K and 0  were 22; D, H, L and P were 23.

Among them there were four mathematicians, four 
chemists, four geologists and four biologists, and any 
four students of one subject hailed from different towns 
and were of different ages.

Four students attended 1st year classes, four were 
second year students, four were third year and four 
were fourth year students, and any four attending 
classes of the same year came from different towns, 
were of different ages and studied different subjects.

Finally, four were enthusiastic footballers, four were 
boxers, four were volleyball players, and four were chess 
players, and followers of any one of the sports came 
from different towns, were of different ages, studied 
different subjects and attended classes of a different 
year.

Establish the subject, the year of study and the fa­
vourite sport of each student, if it is known, that I  is 
a volleyball player, F is a footballer, C is a biologist, 
D is a mathematician in his 1st year of study and a 
chess player, G is a chemist in his 2nd year of study 
and a chess player and J is a geologist in his third year 
of study and a chess player.

For greater clarity, it is convenient to construct a 
table (see below).

The compartments of this table should contain the 
department, year and favourite sport of each student.

The table shows the information given in the problem; 
it remains to fill(8S) the blanks in the table.
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Age

Town 20 years 21 years 22 years 23 years

Kiev i > ■B, C, biol,—.— D, math.
I, chess

Moscow E, , ?■ . F,—,—, 
footb.

G, chem, II, H,—,—,—. 
chess

Saratov
volleyb.

J, geol. III.
chess

K, — .

Fergana M,—,—,— N,—,—,—. 0 ,— p —

Logical problems include those concerned with redis­
covering erased figures, and with the deciphering of 
arithmetical operations in which figures are replaced 
by letters.

Solving problems of this kind develops logical think­
ing, and the invention of new problems of this type 
can serve as a source of entertainment.

In the examples quoted below, it is possible, by 
taking all circumstances into account, to reinstate the 
erased numbers, and to decode the values of the letters 
(uniquely in each example) (").

I. Reinstate the erased numbers in the operations 
written down below

a) _ &3fC3|E
_$

***
**

b)

***
* 8*

4***

0 0
II. Find the values of the letters in the following 

notation of summing of multi-digit numbers:

(q) s m e h (b) forty
g r o m ten

ten
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(similar letters must be replaced by the same digit 
throughout an example, and different letters by differ­
ent digits.)

These problems are related to the so-called arithme­
tical rebuses, in which the operations of dividing two 
multidigit numbers can be written down in code, by 
taking some ten-letter word as a “key” and replacing 
mentally each successive letter of the word by the 
digits 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. It is best 
to set the rebus to a group of several persons, gradually 
writing down (at intervals of 2 to 3 minutes) the succes­
sive digits of the quotient, of the product of these digits 
and the divisor, and of the corresponding remainders, 
until one of the solvers finds the “key” of the rebus.

Suppose the word “troodolubye” is to serve as a 
“key” and the operation to be coded is that of divid­
ing 240176 by 119. Having carried out the division in
numbers, for convenience, the 
it down in the coded form;

“leader” then writes

r d e t u i t t y
r e t
0) (2)

First, the letters marked (1) should be written down; 
here the solvers can notice already that from r x  t t y  =  
=  r(oo)b it follows that r x  m <  r and, therefore, 
m =  I: it may be also guessed that the next letter in 
the quotient has the value zero.

After the letters marked (2) have been written down, 
the solvers may notice that r =  2 (rtu — tty is a two- 
digit number, therefore r — t =  1) and b =  8 (since 
e =  0 and r(oo)b +  r — r d e).

If someone, on writing these letters into his spaces 
for the “key” required, guesses that the “key” is the 
word “troodolubye”, then the following portion of
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letters written down may, generally speaking, either 
confirm or upset his guess (in this case, it will confirm 
it).

The complexity of problems of this type increases 
considerably, if the digits are coded by ten different 
letters, not forming any “word-key”.

We shall quote three more problems in whose solu­
tions the logical element predominates. The last one 
can also serve as an interesting illustration of the theory 
of indeterminate equations of the first degree.

Difficult Crossings
Three merchants A, B and C and their servants 

a, b and c must cross a river in a two-seater boat in 
such a way that no servant remains without his master 
in the company of even one of the remaining mer­
chants.

One of the possible solutions is given by the scheme 
crossing | ab be AB BC ab ac 
returning | b c Bb a a 
If n merchants with servants are taken, then, for 

n =  4 and n =  5, the problem becomes insoluble for 
a two-seater boat, but has a solution if a three-seater 
boat is used.

We suggest that the reader shows how the crossing 
is realized
(a) when n =  2 (two-seater boat), by making three 

“direct” journeys.
(b) when n =  4 (three-seater boat) by making five 

“direct” journeys,
(c) when n =  5 (three-seater boat) by making six 

“direct” journeys (”).
When n =  6, a three-seater boat is no longer ade­

quate, but, evidently, for any value n, a four-seater 
boat is sufficient.

If an island, where temporary landings may be made, 
is introduced, then the problem can be solved with a 
two-seater boat, for any value of n.
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The Detection of a False Coin
Lately, problems on detecting false coins, differing 

from the normal ones by weight only, have become very 
popular.

In the simplest form of the problem, it is required 
to detect a single (lighter) coin in a pile containing n =  
=  3ft coins, by means of k weighings on a beam balance 
(without weights).

Here it is sufficient to divide the coins into three 
groups with 3fc_1 coins in each, and to place any two 
of these on the pans; this shows the group of 3*-1 coins 
containing the false coin immediately.

Proceeding in the same way with this group, we find 
the group of 3k~2 coins containing the false coin, etc. 
Problems in which it is not stated whether the coin 
is lighter or heavier, are more complex.

Here is one of the possible solutions of the following 
problem:

One of twelve coins is false. Detect this coin by means 
of three weighings and determine whether it is heavier 
or lighter than the normal coin (see also [29] part I 
problem 6).

If at each weighing we put four coins on each pan of 
the balance, as shown in the second and third columns 
of the table below (only the numbers ascribed to 
the coins are shown) it is easy to see that for 24 possible 
assumptions:

A
Fig. 123.

the false coin is light and its 
number is 1, 2, 3, 4, 5, 6, 7, 
8,9,10, 11, 12, and: the false 
coin is heavy and its number 
is 1, 2, 3, 4, 5, 6, 7,8,9 ,10, 
11, 12 (see the lower rows of 
the table) we obtain 24 dif­
ferent possibilities of the re­
sults of weighing, shown in 
the numbered columns of 
the table.
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Having established, in the course of the weighings, 
which situation actually takes place, we find in the 
two lowest rows of the table the answer to the questions 
posed in the problem.

Problems of this kind are being generalized in various 
ways (see, for example, [29], part I, problem 5), and 
give an example of a mathematical pastime awaiting 
the construction of a complete theory.

For the sake of variety, the use of a balance with m 
pans can be admitted (Fig. 123, where m = 4), enabling 
us to find, at one weighing (from the position of the 
nodal point A), which of the m groups of coins is lighter 
(or heavier) than the rest.

Problems on Dividing Liquids
We first consider a problem encountered (in a slightly 

different form) in Chuquet (1484) and in Tartaglia 
(1586).

It is required to pour off 4 litres of wine from a full 
vessel of capacity 8 litres, using two empty vessels of 
capacity five and three litres respectively.

Suppose that we first pour the liquid into the medium 
vessel. If we avoid the obviously superfluous actions, 
it is easy to arrive at a solution represented by the 
scheme:
8, 0, 0-* 3, 5, 0 -  3, 2, 3-», 6, 2, 0 ^  6, 0, 2^

- 1 ,  5, 2-* 1, 4, 3-> 4, 4, 0.
It can be seen from this scheme that the liquid is 

poured each time into the empty medium vessel (filling 
it) and then it is returned in portions equal to the capa­
city of the small vessel.

In another method of solution of the problem, the 
small and the medium vessels exchange their roles: 
the liquid is poured from the large vessel into the 
empty small vessel (filling it) and it is returned in por­
tions equal to the capacity of the medium vessel:
8, 0, 0-+ 5, 0, 3-* 5, 3, 0-> 2, 3, 3-^ 2, 5, 1-^

-  7, 0, 1 -  7, 1, 0 -  4, 1, 3-> 4, 4, 0.
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In general, if we denote the capacities of three vessels 
by a, b, c {a is an even number, a >  b >  c, and, of
course, b +  c <; \  a), then, if b and c are relatively
prime and if a <; 6 +  c — 1, both methods lead to the 
result which follows from the solubility in positive 
integers of the equations

a—bx+cy = — 
2

and a—cu+bv
2 ’

corresponding to the first and second methods respec­
tively (see Ch. 4).

But, as soon as a =  b +  c — 2, one of the methods 
may turn out to be useless (for instance, if, in the first 
method, there arises the situation (6 — 1, 0, c — 1)), 
it is impossible to fill the medium vessel from the large 
one and it is impossible to pour c litres of wine from 
the small vessel into the large one, but then the second 
method must give the result (see [25], ch. 3). For 
example, when a =  20, 6 =  13 and c =  9, ten litres 
of wine can be separated out only by the second me­
thod^1).

For a <  b +  c — 2, the problem may turn out to be 
insoluble, which the reader may verify by taking, for 
instance, a =  16, 6 =  12, and c =  7('j2).
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In this chapter problems are collected from various 
branches of mathematics. Some of them are accessible 
to a wide circle of readers, others are intended for 
persons with mathematical training. In a number of 
cases, a pencil, paper and persistence are all that is 
required. Certain problems may suggest themes for 
independent research.

The Geometrical Demonstration of the Formula

l 2+ 2 2+ 3 2+  . . . + ( n - l ) 2+ n 2 = n(n+ l )(2n +  l )
6

Suppose cubes of unit edge are arranged in n layers, 
there being n2, (n — l )2, . . ., 32, 22, l 2 cubes in succes­
sive layers from bottom to top, (in Fig. 124, n =  5). 

On circumscribing the pyramid OADBC, which has
OA =  OB =  OC =  n +  1 (its volume equals — ^  ^ 
about the whole pile of cubes, we find, that the sum of 
volumes of all cubes equals
l 2+ 2 2+ 3 2+  • • • + ( n - l ) 2+ n 2 =

=   ̂ ^  -̂---[n +(n—1)+  . . . + 3 + 2  +  1] —

_ ( „ 4  i ) i  =  (n + ! )3 _  n (n + 1) _  { L tl  =
V ' ‘ 3 3 2 3

_  n (n + 1) (2n + l)
6

ere the expression in the square brackets equals the
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sum of the volumes of prisms AFIIEPQ |volume =  

KPQBML ^volume =  and similar prisms in all the

remaining layers: j  (n +  1) is the sum of volumes of
little pyramids, (EPKDQ , etc.).

Try to prove in a similar way that
n(4n2—1)

l 2+32+ 5 2+ 7 2+  . . .  + (2n —3)2 +  ( 2 n - l ) 2 =  ~  (“)•

c

Exercises for the Development of Geometrical Intuition
Below, several problems are given, each of which 

can be used in competitions with the motto “who 
can spot most”.

To solve problems of this kind, we have to be syste­
matic in counting up the figures of the given type 
discovered in the drawing; in the problem No. 4 it is 
necessary to think out meticulously in what order to 
pick out the figures of the form given so that none 
of them is missed.
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The reader can invent any number of similar problems 
without any difficulty.

1. How many triangles, squares and rectangles can 
be seen in Fig. 125a?('J4).

2. Determine the number of triangles in Fig. 1256(y5).
3. How many triangles, regular hexagons and rhombi 

are there in Fig. 125c?(96).
4. Flow many squares and how many rectangles can 

be seen in an ordinary chessboard?; in an n2-board?; 
in an m, n-board?

How many cubes and how many rectangular parallele­
pipeds can be seen in a cube of edge 10 cm, which is 
subdivided by planes parallel to the faces of the cube 
into little cubes of edge 1 cm?(97)

5. In how many ways can the word (sh)ala(sh) be 
read, by moving along straight paths, curved paths 
and broken paths (Fig. 125d) if the initial and the final 
letters (sh) are not to coincide?(!’8)

234



Rag-Bag

Let us also mention a game which can be conducted 
with any polygon bounded by a very complicated 
non-convex line (see, e. g. Fig. 125e): a point is placed 
in the drawing, and it is required to tell as quickly as 
possible, whether the point is situated inside or out­
side the polygon.

Interesting Identities

1. It is easy to verify, that (3s2n — 2sn — l)2 +  
4s2n +  4 s'1)2 s  (5s2n -j- 2sn -f- l ) 2. Therefore, from the 
formulae

an= 3 s2n—2sn—1: 6n= 4 s2n+4sn: c„=5s2"H-2sn-)-l

(where s and n are natural numbers and s > 1 )  it is 
possible to obtain any number of Pythagorean triples 
of numbers (see § 5).

The angles of a right-angled triangle of sides an, 
bn, cn, when n is sufficiently great, differ by as little 
as we please from those of a triangle with sides 3, 4, 
5, for

lim —  =  lim
n— to bn n— “

3s2n—2sn —1 ..---------------- =  lim
4s2n+4s"

_2 _  J _
s n S2n

4+ l

3
4 '

Try to find an analogous identity, leading to rec­
tangular triangles with integral sides “nearly similar” 
to a triangle of side 5, 12, 13.

2. Look for identities in which the product of two 
“unwieldy” polynomials equals a polynomial with few 
terms; for example (x8—4x7+8x6—

— 10x5-|-8x4—4x3+2x2—x + ^ j  x̂8 -f 4x7 + 8 x 6+  10x5+

8x4+4x3-f 2x2+ x + —]̂ = x8+  —  .
A) 2 16
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3. The identity a3^ (t-b )»  =  a + J - b ) can be used for 
“inadmissible cancellations” leading to correct results, 
for example

3734-133 =  37 +  13 =  50 
37*+243 37+24 ~  61

Perhaps you could succeed in finding similar identi­
ties, where the indices of the fourth power could be 
“cancelled” in the numerator and the denominator.

f  (— ) , .
( m +  1 \m+i -  (rn+  1 p + i  1S a4. The identity

positive rational 
the inadmissible

og, m
number) shows 
cancellation of

sometimes 
log sign:

^ can lead to a correct result. For example

771
that

the

, 9 9
°£ 4 4

— 27 =  27 ĥ6re m =2)-
log:

8 8

5. The identity ][ . a  F a

leads to a number of curious equations. For example:

= 5 f 2l - = 2 f l i etc
6. By cancelling, quite without reason, the symbol 

sin in the numerator and in the denominator of the 
right-hand-side of the identity

sin « +  sin 2a +  . . . +  sin no.

. (n + l)a  . /ia sin - —1—— • sin —  
2 2

and then in both sides of the identity, we arrive at the 
identity
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n +  1 n
—2~ a-Tj a

cc+2oc +  • • • +  Hoc = ---- ■--------a
*2

Verify this identity.
7. Prove (i°0), that [3(10* +  10*"1 +  . . . +  102 +  

+  10 +  1) n +  1 ]2 s  n2 (lO2**1 +  102* +  . . . +  10*+1) +  
+  (6n—n2) (10* +  10*-1 +  . . . +  10 +  1) +  1.

This identity leads to two series of interesting nume­
rical equations: for n =  1 and k =  1, 2, 3, 4 , . . .  we 
have 342 =  1156; 3342 =  111556; 33342 =  11115556; 
333342 =  1111155556, etc., for n =  2 and k =  1, 2, 
3, 4 , . . .  also we have: 672 =  4489; 6672 =  444889; 
66672 =  44448889; 666672 =  4444488889, etc.

Try to find identities leading to similar series of 
numerical equations in other scales of notation.

Optical Illusions
Try to look at a distant wall through your index 

fingers, whose tips you have made to touch about

Fig. 126.
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35-50 cm. away in front of your face. You will have 
the impression that your fingers keep a little “sausage” 
between them, which remains “suspended” in the air 
when you pull your fingers apart slightly.

The length of this “sausage” is the greater the farther 
is the object viewed “through the fingers”. The number 
of “sausages” may be increased by making several 
fingers of your hands touch in pairs.

This strange phenomenon can be explained very 
simply: the portion of wall enclosed by the lines ABC 
and KLM  cannot be seen by the right eye (Fig. 126a, 
b), and the portion of wall enclosed by the lines AB'C 
and KL'M  cannot be seen by the left eye. In total 
the portion of wall, which cannot be seen altogether 
has the shape of the figure shaded-in in Fig. 126a, b.

For the same reason a narrow vertical slit cut out 
of the face KLM N  of a box of approximate dimensions 
10 x 15 x 30 cm3 (see Fig. 126c) is seen as two parallel 
slits (or as a wide slit with a vertical join), if we look 
through the slit with both eyes at a wall facing the 
“absent face” ABCD.

If we replace the slit in the face KLM N  by four point- 
apertures distributed at the vertices of some square, 
and if we place a photographic plate in the position of 
face ABCD, then, on photographing a light circle on 
a dark background by means of this “camera-obscura”, 
we obtain (for appropriate dimensions of the circle) 
a “rosette” (see Fig. 126d) in which the intensity of the 
light decreases with the increase of the number of the 
region.

Such a photograph gives an idea of what would be 
seen by a four-eyed creature, if it were looking through 
a circular opening in the face NKLM  at an evenly 
illuminated wall (at the absent face ABCD) and if 
its visual impressions from each eye were to overlap 
each other in its consciousness.

For variety, fingers may be replaced by two strips 
of cardboard, I and II (touching, or slightly apart) 
of this or that profile (Fig. 126e); parallel vertical slits
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may be replaced by curved slits. By photographing 
various objects and by selecting the point-apertures in 
the “camera-obscura” in various ways, amateur photo­
graphers may obtain unusual “geometric photog­
raphs”.

In conclusion, we shall mention one curious optical 
illusion: if we look with our right eye through a tube 
at some object and if we screen it with the left hand, 
which touches the tube, from the left eye, we get the 
impression, that the object can be seen also by the left 
eye, through a “hole in the hand” (Fig. 126/).

Miscellaneous Problems
First, we shall quote several simple problems and 

questions.
1. One tumbler contains m cm3 of water and another 

tumbler contains n cm3 of spirits. First, a cm3 of water 
were poured from the first tumbler into the second, then 
(after thorough mixing) a cm3 of the mixture were 
poured back.

If it is assumed, for the sake of simplicity, that the 
volume of the mixture equals the sum of volumes of the 
liquids involved, determine, whether the amount of 
spirits mixed with the water in the first tumbler (by 
volume) is greater or less than the amount of water 
in the second tumbler?(101).

2. Petrov was asked “whose portrait is hanging on 
the wall?” Petrov answered “The father of the one that 
is hanging is the only son of the father that is speaking”. 
Whose portrait was it?(102).

3. How many great-great-grandparents altogether 
had all your own great-great-grandparents?(103).

4. How would an angle of 15' look, when you look 
at it through a magnifying glass of magnification 4?(104)

5. By how many per cent does the purchasing power 
of the population increase, if the prices of all goods 
drop by 20%?(105).
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6. If the purchasing power of the population increased 
first by 20%, then by 25%, by how many percent did 
the purchasing power of the population increase alto­
gether?^05®).

7. How many times do the hour and minute hands 
of a clock form a right angle in 24 hours?(108).

8. When Kolya was as young as Olya is now 
The years of Aunt Polya
Were as many as now
Are those of Kolya together with
Those of Olya.
How old was Kolya 
When Auntie Polya 
Was the age of Kolya?(107).

9. A pilot flew from point A and, having flown 
800 km due south (to the point B), he then flew due 
east. On flying 800 km more (to the point C) he noticed 
a bear underneath. What colour was the bear, given 
that AB =  AC?(108)

10. A and B sold a herd of oxen, and obtained as 
many roubles for each ox as there were oxen in the herd. 
Desiring to divide the money equally, they each took 
10 roubles in turn from the sum obtained. A got 10 
roubles extra and added his purse to the remainder in 
compensation. What was the price of the purse?(100).

11. Three men with their wives entered a shop. Each 
of the six persons bought several articles, and paid 
for each article as many roubles as the number of 
articles he or she bought.

Each husband spent 45 roubles more than his wife; 
Yuri spent 525 roubles more than Olga, Login spent 
13 roubles more than Nina. The names of the rest were 
Alexander and Tatyana.

Who is married to whom and how many articles 
did each person buy?(110).

12. Someone divided a sum of money in his possession 
among some children. The first child received one rouble
and Jr of the remainder, the second received two roubles

240



Rag-Bag

and g of the new remainder, the third received three

roubles and ^ of the new remainder, etc.
Given that all the money (S roubles) was distributed 

equally among the children, determine S and the 
number of children.

It is remarkable that by equalizing the shares of the 
children we get a set of simultaneous equations with S 
unknown, giving S  = 25. The square of any natural 
number possesses an analogous porperty(m) : taking
out of n2, 1 and —  ̂ of the remainder, then 2 and

| of the new remainder, etc., we obtain a series n+1 ’ ’
of equal amounts.

Perhaps the reader might find some other class of 
numbers whose properties could serve as a source of 
a series of entertaining problems?

13. Pavel walked from M  to get to N. At exactly 
the same time Gleb left M  on a motorcycle, whose 
driver was Yuri. After travelling part of the way, 
Gleb continued on foot, while Yuri drove back to meet 
Pavel and took him on as a passenger. All arrived at N  
simultaneously. Knowing that MN  = s km, the speed 
of a man on foot is u km/hr and the speed of a motor­
cycle is v km/hr, find the time taken by the three friends 
to get from M  to IV(112).

This problem can be generalized by supposing, for 
example, that the motorcyclist (or two motorcyclists, 
travelling at speeds of km/hr and v2 km/hr) helps 
a group of n friends to arrive at their destination 
simultaneously, it being also supposed that one of the 
motorcyclists aiding the walkers can transport two 
passengers at a time, etc.

Try to investigate various variants of the problem, 
making up timetables of movements of the group on 
every occasion.

14. A certain job was started after 4 o’clock and 
finished after 7 o’clock, and the time shown on the
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clock at the beginning of the job is changed into the 
time shown at the end of it by interchanging the posi­
tions of the hour hand and the minute hand.

Determine the duration of the job and show that the 
hands are equally inclined to the vertical at the beginn­
ing and at the end of work.(113)

15. How many times in 24 hr do the times on the 
clock have the property, that the interchange of the 
hour hand and the minute hand leads to meaningful 
readings of the clock?(114).

16. Prove that for every natural number k the total

centimetre can be laid out on squared paper with squ­
ares 1 cm2 in such a way that it does not cover any of 
the nodal points.(116)

18. Is it possible to draw a straight line to intersect 
given straight lines lv  l2, l3, h, which are arranged in 
space in a random fashion?

19. A number of circles Cv  C2, C3, . . . are drawn be­
tween a straight line I and a circle C0 touching it, in 
such a way that Ck+1 touches the circles Ck and C0 
and the straight line I.

Find the radius of the circle CIOOO, if the radius of 
circle C0 equals 1 km and the radius of circle Q is 
1 mm.(118)

20. Prove that a ray of light, having been reflected 
from three mutually perpendicular mirrors in turn 
becomes parallel to its original direction but in the 
opposite sense.(119)

number of digits in the 
sequence of numbers 1, 
2, 3, . . .  10* -  1, 10* 
equals the number of 
zeros in the sequence 
of numbers 1, 2, 3, . . .
10*+1 -  1,’ io*+Vu)-

Fig. 127

17. Prove that a 
plane figure S of ar­
bitrary form, whose area 
is less than one square
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21. How should a ray of light be directed inside a 
rectangular parallelepiped with mirror faces, in order 
that it returns to its starting point after being reflected 
from all six faces? (12°)

22. A pilot flew 2000 km due south, 2000 km due east 
and 2000 km due north. He arrived at his starting 
point. Where did he fly from? (The problem has many 
solutions).(121)

23. An aeroplane flew out of Leningrad, and having 
travelled a km due north, a km due east, and a km 
due south found himself 3a km east of Leningrad. 
Find a(122).

24. What is the area of an equilateral triangle drawn 
on the surface of the earth, if each of its angles equals 
72°? Here we are concerned with a so-called spherical 
triangle, formed by the arcs of great circles drawn 
through the vertices of the triangles(123).

25. Determine the angles of an equilateral triangle 
of side 1 km drawn on the perfectly smooth surface of 
a frozen lake(124).

Puzzles
1. Show, that it is possible to pass from the “pleating” 

(a) in Fig. 128, to the pleating (b) without breaking 
the string rings (see [12] for analogous problems).

2. How should three string rings be linked, so that 
by cutting one of them, the other two could be separated 
without additional cutting?

Solve the analogous problem for n string rings(125).
3. If we treat the meaning of the word “inside” 

with a slight degree of freedom, we can solve the 
following jocular problem: find three completely identi­
cal bodies, A, B and C, which can be arranged in such 
a way that A is inside B, B is inside C, C is inside A.

The conditions of the problem are satisfied by slightly 
stretched frames, “fitted into each other” — see Fig. 
128c.
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A similar problem can be solved with respect to n 
identical solids. Let n snakes (they can be imagined in 
the form of narrow thin walled “conical” sacks) be 
situated along a circle of radius R and each begin to 
swallow the snake in front of it with equal “speeds 
of swallowing” for all snakes (see Fig. 129a, where 
n = 2).

Fig. 128.

When each snake swallows half of its victim, there 
appears a double ring of radius 1/2R (Fig. 1296); when 
each of the snakes is 99% inside the snake swallowing 
it, the ring of radius R/100 consists of one hundred 
layers, etc.

244



Rag-Bag

4. After tying a piece of string in the form of the 
knot (d) (Fig. 128) and after passing from it to the 
knot (e) it is easy to show, that on pulling ends A and 
B, no knot remains in the string.

It follows that when the ends A and B  are fixed, 
the string can be folded in the form of the “knot” (e). 
Try to carry this out!

17
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§ 38. Notes and Answers to Problems

(1) Suppose 0 ’(ax a2 . . . Ot)rkj = a; denote the 
number in the period of this fraction by N: ax a2 . . .
®s—i Qs(k)== N, 
then

a = ^ l  +  A +  . . .  +  a!z L + a . + _ai_ +  _aL_ +  _  
k k2 /c*-1 /c* /c*+1 A*+2

. Q«-i _j_ _ ai ,̂~1d~a2̂ *~2~l~ • • • +
’ ‘ ' +  +  /c2* A*

a1A-*-14-a1/f*-2+  . . . + a s . N N NH---------------------------------- 4- . . .  ---- h  ----H  ---- h =
A2* A* A2* A3*

_  iV _  __________ N_________
~  k*—1 ~  /c—1 k—1 . . . A—1 A - l w

(the s-digit number in the denominator is written down 
by means of s digits “k — 1”).

(2) Suppose the square root is extracted from the 
four-digit number N  = abcd(k) (a, b, c, d are the digits 
of number N  as written down in the system of notation 
with base k; below we shall omit to add the suffix 
“k”. If the first digit a of the root required is found, 
i. e. a2 <; ab =  ak +  b <  (a +  l ) 2, then

\  abed = a . . .

a'b'cd

Evidently, N  =  abed =  a2A2 +  a'b'cd.
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Now, it is necessary to find the greatest digit, p, 
for which (a.k +  p)2 =  a2/c2 +  2a pk +  P2 <; N, or 
(2a k +  P) p <; N  — a2A2 =  a'b'cd, i. e. we seek the 
greatest digit p, which, when written down on the 
right of the number 2a, gives a number (equal to 
2ak +  P), whose product with ft does not exceed the 
remainder a'b'cd. But the same rule is followed in 
extracting the square root in the decimal system of 
notation.

In extracting roots from numbers which can be 
subdivided into three divisions, we denote by a the 
two-digit number, which is obtained, in the manner 
indicated, in the extraction of the root from the two 
senior divisions, and by /?, the required units digit, 
all the reasoning given above remains valid.

For numbers which can be split up into four divi­
sions, the root of the first three senior divisions is 
sought first, and then — by the method indicated — 
the units digit of the required root, etc.

(*) 2713 = 41323(B) = 41332(5) = 41422(5) = 112122(b).
Check: ll2122<5) = 55- 5 4+ 2 -5 3- 5 2- 2 - 5 - 2  =

= 2713; 409 = 3114(b) = 12l2l(w.

(3b) Let N  =  abc(8> =  a x 8 2 +  6 x 8  +  c where 
none of the digits a, b and c exceeds seven. If a =  
— ai*a«3(a)> b — PiPiPsl?) > c =  yiYzYsiz)> where each digit 
«!, aa, a3, p lt  p v  p 3, y v  y 2, y 3 equals either zero or unity, 
then
N  =  (a1-22-fa2-2-|-a3)-2e-l-(/?1*22-l-^2-2-l-$))-23
+  (7i- 22+y2-2-fy3) = a1-28-(-a2-27-)-a3-2a-)- 
+  ft ■ 2 s +  Pi • 24+ p3 • 23+yi • 22 -f y2 ■ 2 + y 3 =
= aia2a3/?1/?2/I3y1}'2y3(2).

By reading these equations from right to left we 
obtain a rule of transition from the binary system of 
notation to that of base eight: three-digit numbers 
obtained in splitting up a number written in the binary

17*
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system into divisions (from right to left) give the digits 
of the same number, written down in the system of 
notation with base eight.

(4) For any k > 5  123 454 32%  =  11111%-
(5) Since N  1000 <  1024 =  210, the number N  

can be written down in the binary system, using no 
more than ten digits, each of which may be either zero 
or unity.

To determine N  it is sufficient to ask ten questions:
1. Is the first digit on the right of the number N, as 

written down in the binary system, unity?
2. Is the second digit unity? etc.
(6) It is easy to verify, that the theorem is true for 

s =  1 and for s =  2. Let us apply the method of 
mathematical induction to prove the theorem in general: 
suppose the theorem to be true for s =  n (i. e. for num­
bers from 1 to 2" — 1 we have n cards, each of which 
contains 2”"1 numbers), prove that it is also true for 
s =  n -1- 1.

Any number m satisfying the conditions 2 n<, m <, 
< ,  2”+1 — 1 can be represented in the form m =  2” -f- x , 
where 0 < . x  < ,  2" — 1. All these 2" numbers find them­
selves in the (n -f- 1 )th card with the heading 2" ; any 
number m will get into any particular card only when 
1 x <, 2" — 1 (depending on terms of form 2a into 
which x  breaks down); therefore in each of the preced­
ing cards there appear 2n~1 new numbers (we have assum­
ed the truth of the theorem for s =  n). In the final 
count each of the n -f- 1 cards contains 2” numbers.

(7) As is well known
nl = I x 2 x 3 x 4 x 5 . . .  (n—2 )x (n —1) n. (1).

If we examine each of these factors in turn, we find 
that after every py “steps” we come across factors 
divisible by the prime number py; their number is
[^J ’ but of those, are divisible by pj, jpj are divisible
by p“, etc.
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Therefore the number of factors in the eqn. (1), 
which contain the factor pl exactly once, twice, three 
times, etc., equals the respective numbers

n n '
-P\.

>
[ j d

n n
Lp?.

>
Lp? J

a
n n

.Pi. Lp?J
n '

+ . . s
pfJ

+ 2

n
V i

n
Pl

n
Pii

etc. Therefore

n +  3 n
Pi JJ

' n

(8) N  =  24S61 — 22280: here the number to be sub­
tracted is much smaller than the diminuend. Since 
log 24561 =  4561 x  0-301029996 = 1372-997, therefore 
24501 (anci therefore also N) contains 1373 digits.

(9) S( N)  ( l+ 2 + 2 2+  . . . +2") { l+ (2 a+1—1)} =
Oo+l —1

2°+; = 2-2“ (2a+I—1) = 2N.
2 - 1

(10)
1000 j + |  1000 j + r iooo

L 73
= 142+20+2 = 164.

100
72

= 14 +  2 = 16:

since the numerator equals (1000 !)■*- (100!), therefore 
k =  164 — 16 =  148.

(11) If two s-digit numbers N  written down side by 
side form a 2s-digit number which is an exact square, 
this means that

(1) 10s"1 ^  N  <  10s and
(2) (10s +  1) x IV is a perfect square.
But then 10s +  1 must be divisible by the square of 

some integer (otherwise, the smallest value N  satis­
fying the second condition is 10s + 1 ,  which contra­
dicts the first condition).

For the determination of the smallest value of s, 
for which 10s +  1 is divisible by p2, it is convenient,
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using the properties of congruences (see § 3) to seek 
the smallest root of the congruence 10® = — 1 (mod p2); 
for example, for p = 11 we have

102 = -2 1  (mod 121);.
101 =320 = 78 (mod 121); 
106 = 540 = 56 (mod 121); 
108 =760 = 34 (mod 121); 
1010 = -2 3 0  = 12 (mod 121);

103 = —210 = 32 (modl21); 
105 =780 = 54 (mod 121); 
lÔ  =560 = 76 (mod 121); 
109 = 3 4 0 = -23(m odl21); 
10n=120= - 1  (mod 121).

MOll +1 -I
Evidently, (10n+ l )  I— — **| is an exact square, if A:

is any natural number. It is easy to check that 4 
is the smallest value of k which makes the expression 
in the square brackets become an eleven-digit number 
(equal to 13 223 140 496).

By direct inspection it can be seen that the congru­
ence of form 10s = 1  (mod /c2), where k is any prime 
number, is not satisfied when s <  11; therefore,
1 322 314 049 613 223 140 496 =  1 s  4]' =
=  363 636 3642 is the smallest perfect square, which 
can be written down in the decimal system by writing 
down two identical numbers side by side.

(12) If a = /? (mod m), then as = /3s (mod m), there­
fore also asas = as/3s (mod m). In addition it is obvious, 
that a0 = a0 (mod m).

Adding the last congruence to the congruences 
asas = as/?s (mod m) (for s = 1, 2 ,. . .n) term by term 
we obtain a0 +  a1 a +  aga2 +  . . . - }-  ana" = aQ +  ax/3 +  
+  a2̂ 2 +  . . . +  a„i3" (mod m) or /(a) = /(/3) (mod m).

(13) Since 82 = — 1 (mod 5), therefore, by reasoning 
in the same way as in deducing the test for divisibility 
by 7 in the decimal system, we obtain the fact that the 
number M  written down in the system of notation with 
base eight, is divisible by 5, if the algebraic sum of 
two-digit divisions of the number N  is divisible by 
5 (and conversely 1). In order to obtain the remaining 
signs of divisibility it is sufficient to take into account.
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that 82 = — 1 (mod 13), 52 s  _  l (mod 13); 52 = 1 
(mod 8); 3 = 1 (mod 2); 3 = — 1 (mod 4); 33 = — 1 
(mod 7).

(14) It is sufficient to lind the smallest positive two- 
digit (or single-digit) number congruent, modulo 100, 
with the given number.

For example, 293293 = ( —7)293 = — 7 x  49146 = — 
-  7 x 240173 s  93 x l 73 a 93 (mod 100).

Therefore 293293 — 93 is divisible by 100 (293293 
gives the remainder 93, when divided by 100).

(15) Among the numbers 1, 2, 3, 4 , . . .  p* — 2, 
pk — 1, p \  the following are divisible by p: p, 2p, 
3p , . . . pfc-'p =  p* (altogether p*-> numbers). The re­
maining pft — pk~l numbers are relatively prime to p.

(16) If <p (n), on being divided by z0 were to give the 
quotient q and the remainder r (0 <  r <  z0), i. e. 
<p(ri) =  qz0 -f- r, then it would follow from kq>(n) = 1 
(mod n), that

kp»+T = (k'o)ql<r = l t x k r= 1 (mod n). 
and this is impossible, since r<Zo.

(17) Suppose that the numbers m and n are written 
down in the base-/r system of notation and m < n .  
If k20 = 1 (mod n) (z0 is the smallest positive number 
possessing this property) then it also holds that mkz0 = 
= m (mod n). This means that by writing down, to the 
right of m, z0 zeros (which is equivalent to multiplying 
m by k20) and by dividing the number thus obtained 
by n, we have m as the remainder, and a certain group 
of digits. CjC2 . . .cz0 as quotient. A further adding on of 
z„ zeros to the remainder again gives the same group 
of digits in the quotient, etc.

(18) (1) Substituting x0 +  u in place of x, and yQ +  v 
in place of y  in the equation ax +  by =  c, we get ax0 +  
+  au +  by0 +  bv =  c. Since ax0 +  by0 =  c, therefore 
au +  bv must be equal to zero, whence au =  — bv; 
therefore au should be divisible by b. But a and b are 
relatively prime, therefore u must be divisible by b.
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1. e. u =  bt (t may be any integer); then v =  — at. 
And so x0 +  bt and y0 ■ — at, t being any integer, satisfy 
the given equation.

(2) For an integral x and y, ax +  by is divisible by 
(a, b) and therefore cannot equal the number c, which 
is not divisible by (a, b), as was given.

(19) Since V2 =  [1, 2, 2, 2, 2 ,. . .] and V3 =  [1, 1,
2, 1, 2, 1, 2 . . .], the continued fractions for =  V2are

1 3 7 17 41 99 239 577 1393 3363
T ’ ~23 ¥ ’ 12’ 29’ 70’ ’169’’ 4 0 8 ’ "985"’ 2378’" ' ’

and for f3
1 2 5 7 19 26 71 97 265 362 989 1351 3691
7 ’ 7 ’ ~3 ’ 7 ’ n ’ 1 5 ’ 4 i ’ 56’ 7 5 7 ’ 7 0 7 ’ ¥ 7 7 ’ 7 8 7 ’ 2 1 3 1 ’ '''

Therefore, f2  

1351

1393

780

985

= 1-7320512 . . ., here

= 1x4142131 . .  .and / 3  ^

n 1393
985 <

1
985x2378

and n  - 1351
780 <

1
780x2131

(20) From the first three equations with four un­
knowns, it is possible to express X , Y  and Z by U and

6e t  1 6 0 2  =  " 8 9 T  =  T 5 8 0 "  =  2 2 2 6  =  s ’ w h e r e  s  i s  a n Y 
number.

From the last four equations it is possible to express 
x, y, z and a by X , Y, Z, U. If we then take s =  46571, 
we obtain the values of X , Y, Z, U, x, y, z, u given in 
the text.

(21) If ABC is a “heronic triangle” (see Fig. 4) the 
lengths of the segments AD, BD, DC are rational,

n n  2 X  S 5 A B C  A n  A C 2 +  A B 2 — BC* , n r  
since BD =  ----Ac---- AD = ------- 2xAC------ and DC ~
=  | AC— AD\.

(22) The Pythagorean triples (3, 4, 5) and (5, 12, 13) 
give rise to the heronic triples (25, 39, 56), (25, 39, 16) 
(25, 52, 63), (25, 52, 33), (20, 13, 21), (20, 13, 11), (15, 
13, 14), (15, 13, 8).
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The Pythagorean triples (7, 24, 25) and (7, 24, 25) 
(give rise to three heronic triples only: (25, 25, 48), 
(25, 25, 14), (175, 600, 527), (the fourth “heronic 
triangle”, made up of two triangles, similar to the given 
“Pythagorean triangles”, has sides 7, 24 and 25).

(23) b; 55 555 555 =  10 001 x 5555 =  (7778+2223) x  
x (7778-2223); d) 12 345 678 987 654 321 =
=  111 111 1112;
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 8 + 7 + 6 + 5 + 4 + 3 +  
+ 2 + 1  = 81 = 92.

(23a)

(24) If the number x, 1 <  x <  60 is situated in columns 
numbered a, j?, y ,  in the tables shown in Fig. 4, then 

x = a (mod 3), (1)
x = (3 (mod 4), (2)
x = y  (mod 5). (3)

From (1) it follows that
x = 3y +  a. (4)

Substituting this expression in (2) we get 3y +  a = p 
(mod 4), or 9y +  3a. = 3/? (mod 4), whence y = 3/5 —
— 3a = a — (mod 4) or

y =  a — p +  4z. (5)
(On multiplying both sides of the congruence by a 

number mutually prime with the modulo, we obtain 
a congruence “equivalent” to the initial one — they 
both have the same roots: try to prove this.) 

Substituting (5) in (4) we get
x =  3 (a — /5) +  12z+a = 4a—3/?+12z. (6)

From (6) and (3) we have 4a — 3/? +  12z == y (mod 5) 
or 12a — 9/5 +  36z = 3y  (mod 5), whence z = 3 y  —
—  12a +  9/5 =  3 y  +  3a +  4/5 (mod 5).
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Therefore, z =  3-y +  3a +  4/3 +  51, which on sub­
stitution in (6) gives
x = 4 a —3/J +  12 ( 3 y + 3 a + 4 / J + 5 Q  =

= 40a+45j3+36y+60f, (7)
or x = 40a +  45/3 +  36y (mod 60).

(25) Suppose it follows from n = dx (mod 11) that 
n3 = dj3 = d (mod 11), where 0 <  dj <  10 and 0 <  
<  d < 1 0 , i. e. dl is the remainder in dividing n by 
11, and d is the remainder in dividing n3 by 11.

It is easy to verify, that when dx equals 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, the corresponding values of d are 0, 1, 
8, 5, 9, 4, 7, 2, 6, 3, 10, i. e. to each of the eleven values 
of d there corresponds “its own” value of dx different 
from others.

If we write out the values of d in order: 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, the corresponding values of dx are 0, 1, 
7, 9, 5, 3, 8, 6, 2, 4, 10.

(26) For verification, it is sufficient to take into 
account, that: (1) the volume of water in all oceans is 
less than 1.4 X 1021 litres (7 X 1021 tumblersfull); (2) a
tumblerfull contains gram-molecules of water,
therefore the number of “marked” molecules is equal

. , , . 6 x  1028 X 200 2 „approximately to -------jg------- , or  ̂2 X 1025.
(27) A light year is the distance L “covered” by light 

in one year
L = 3 6 5 x 2 5 x 2 4 x 6 0 x 6 0 x 3 x l0 10cm < 9 5 x l0 16cm <  
1018 cm.

If v is the volume of a cube of edge 7 x 107 L, and if 
N  is the number of molecules of water, necessary to 
fill such a cube then
a<(95 x l0 16x 7 x  107)3 cm2=(0-665 xlO 26)3 cm3 < ( | j 2X

x 1078 cm3 
and

N <  x
6 x 1023 

8

OA
1078 = — x 1010°. 

81

254



Notes and Answers to Problems

(27a) Let m =  4256: log m = 256 x log 4 >  256 X 
X 0.602055 =  154.12608 and m >  1.336 X 10154. 
Therefore, Q =  4m >  4i-33exiois4 and log Q >  1-336 x 
X 10154 x 0.602055 >  0.80434 X 10154 >  8 X 10153 i. e. 
Q >108X10154

(28) The radius of the sphere R =  L <  X 95 x2 2
1016 cm — see note(27). The volume y < l 7rx

47-53 X 10138 cm3 <  -  x  100144 cm3.
(” ) lo g i.000001 (e31xio«) =  3 i  x  106 lo g ^ o ,™  31 x l 0 6x  

X 10° =  3 x  1 X 1013: (e31XlO6)lO-e =  e3l£ ii100-»3X31 =  1013-33^
~  2-2 x 1013; loft.,,0000! (e32x106)^  3-2 x 1043; (e32xio»)io-«_ 
= e32c- 5-86 x 1013.

(30) Let, for example n =  10 000. It follows from 
Stirling’s formula, that
log |/2jiX 104—10 000 loge+40 000<  log (10 0001)<

<  log 104- 1 0  000 log e +  40 000+ log — . B 6 120000
Since log e =  0.4342945, log n =  0.49715, log 2 =

=  0.30103 and jl̂ oooo *s a ver^ sma^ num^er> therefore
log (10 000!) =  |  (0.49715 +  0-30103+4) -  4342.945+
+  40 000 =  35659-454 i.e. 10 000! is a 35 660-digit 
number.

(31) If we suppose that there exist two integers k
and k', such that a — < /r < (a =  1) 1 and a ^

3_ye
<  * <  (a +  1) ——— .then on adding these inequalities term
by term we obtain a <  /c +  A:' < a  +  1, which is
impossible (a and a +  1 are neighbouring integers).

Obviously, a certain integer s is trapped between
V5 — 1 V5__1the numbers a — —̂ and a —2— +  1 • If s is smaller

V5 — 1 V5_1than a — —̂ H----- 2— » it is to be found in the first
V5 — 1 Y5 — 1 interval, if, on the other hand, a — -̂--- b

Y5 — 1<  a —s— +  1» then, on rewriting these inequalities in
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the form (a +  l ) ( l  — j <  s <  ax (l — j +  1,

. , , lX 3 - y 5  ^ ^ 3 -V 5  .we obtain (a 1) — —̂ >  a +  1 — s >  a —^ e-
the second interval contains the integer a +  1 -  s.

(32) Let us compile a table of special positions (ck, 
dk), using three rules, given at the beginning of § 11.

k j 0 1| 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21122 23 24 25 .

c* 0 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 25 27 29 30 32 33 35 37 38 40

d t l  0 2 5 7 10113 j 15118120123126j 28131 j 34 |36p9j4lj44p7j49|52j54 j 57 j 60 [ 62 j 65

Correct moves; (27, 37)~>-(16, 26); (14, 90) ->■ 
(14, 23); (47, 69) (47, 29).

(33) It is easy to verify that for a =  40, 55, 140, the 
intervals (a x 0.618 . . ., (a +  1) 0.618 . . .) contains the 
integers 25, 34, 87, and for a =  400, the integer 153 
is contained in the interval (a X 0.381 . . ., (a +  1) 
0-381 . . .). Therefore 40 =  c2S (d2S =  c25 +  25 =  65), 
55 =  c34 (d34 =  c34 +  34 =  89), 140 =  c87 (dS7 =  c87 -f- 
+  87 =  227), 400 =  d]S3 (c153 =  400 -  153 =  247).

(34) Correct moves: (10, 17, 25) — >- (8, 17, 25); (47, 
99, 181)-^ (47, 99, 76); (25, 43, 50) is a special position 
and all moves lead to defeat; from the position (29, 29, 
18) it is possible to move to (15, 29, 18), or to (29, 29, 0), 
and from (93, 29, 74) to one of the positions (87, 29, 74), 
(93, 23, 74), (93, 29, 64).

(35) As an example, we shall examine the situation, 
in which the rings numbered 12, 9, 7, 6, 2 are off, and 
the remaining rings are on the pin.

In order to take off 11, we must take off 8, 5, 4, 3, 1, 
after which it remains to make 1 +  uB +  a10 moves 
(take off 11, take up 1 to 9, take off 1 to 10).

But in order to take off 8, we must pass through the 
situation, when 1 to 7 are raised, as one of the inter­
mediate stages, and for this we must take off, 1, 3, 4 
(u moves), raise 6 (one move), take off 5 (u4 +  us
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moves), raise 7 (one move) raise 1 to 5 (us moves): 
for all this we use 2u5 +  u4 +  9 moves altogether. 
Adding to it u8 (to take oil 1 to 8) and the 1 +  u9 +  u10 
mentioned above we get altogether

uio+ug+U8+2u5+U4+10 moves

(36) To verify that the formula un =  2n — 1 is valid, 
it is sufficient (1) to show that it holds for n =  1, 
(2) assuming that the formula holds for n =  k (k is 
any natural number), to prove that it also holds for 
n =  k +  1.

The first follows from the fact that one lamina can 
be transferred from the column A to the column B 
in one move, i. e. ux =  1 =  21 — 1. Supposing now, 
that uk =  2k — 1 we use the formula, proved in § 12, 
un =  2u„_! +  1, and we get uk+1 =  2uk +  1 =  2(2k— 
-  1) +  1 =  2k+1 -  1.

(37)
a) 55— 57, 75—55, 54—56, 74—54, 53—55, 73—53, 43—63, 

51—53, 63—43, 33—53, 41—43, 53—33, 23—43, 31—33, 
43—23, 13—33, 15—13, 25—23, 34—32, 13—33, 32—34, 
45—25, 37—35, 57—37, 34—36, 37—35, 25—45, 56— 54, 
54—34, 46—44, 44—24.

b) 53—55, 73—53, 75—73, 65—63, 52—54, 73—53, 54—52, 
51—53, 31—51, 32—52, 43—63, 51—53, 63—43, 45—65, 
57—55, 65—45, 35—55, 47—45, 55—35, 25—45, 37—35, 
45—25, 15—35, 13—15, 23—25, 34—36, 15—35, 36—34, 
33—53, 34—54, 54—52.

(38) If we move the pieces along the line shown in 
Fig. 130a which forms a closed “ring”, one of whose 
squares is “empty”, the arrangement of the pieces with 
respect to each other along this ring does not alter. 
We must arrange the pieces in the ring — if the starting 
position is solvable — in the following order (see Fig. 
15 III).

1, 2, 3, 4, 8, 12, *, 15, 14, 13, 9, 10, 11, 7, 6, 5 (1)
(counting from the upper left square and proceeding 
clockwise. * is the empty square). We shall say, that 
here No. 2 follows No. 1, No. 3 follows No. 2, No. 15 
follows No. 12, No. 1 follows No. 5, etc.
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The mutual arrangement of pieces in the ring changes 
only when B is an empty square, and the piece from A 
is moved there (or vice versa): the piece which is being 
moved moves two places “leftwards” (or “rightwards”) 
along the ring. For example, in order to shift No. 9

Fig. 130.

two places “leftwards”, when the initial permutation is 
5, 7, 14, 11, 13, 15, 1, 2, 9, 8, 6, 4, 3, 10, *, 12 (2) 

it is necessary to create, by means of a circular displace­
ment of pieces, the situation b in Fig. 130, and then 
displace No. 9 into the empty square. This gives us 
2, *, 8, 6, 4, 3, 10, 12, 5, 7, 14, 11, 13, 15, 9, 1.

Having then shifted No. 15 two places “leftwards” 
in an analogous manner, we manage to get No. 9 to 
follow No. 13, just like in the permutation (1).

Subsequently, we get, in the same way, No. 10 to 
follow No. 9, No. 11 to follow No. 10, No. 7 to follow 
No. 11, etc. Here if the permutation (2) is “solvable”, 
we arrive finally at permutation (1) and if (2) is “non- 
solvable” we arrive at the permutation 1, 2, 3, 4, 8, 
12, *, 14, 15, 13, 9, 10, 11, 7, 6, 5, equivalent to IV in 
Fig. 15.

(39) For n = 1 and for n = 2 formula (6) in § 15 
gives: 1

1 \ (  1 + / 5  )3 ( 1 - / 5  V) 2 { 3 / 5  +  (/5)3} n
V5 \ l  2 J i 2 J |  8 / 5
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Then

(40) Using the three relationships connecting wsr 
ws.i5 ws.2, ws.3 in turn, and taking into account that 
w1 =  w2 =  1 and w2 =  2, it is easy to get
s | o| l | 2\ 3| 4| 5| 6| l\ 8| 9| 10| l l |  12j 13| 14| 15|...
w3\ | l |~ l p 2 |  4| l\ 13| 17| 30| 60}l07|l97|257]454|908jl619|...

by filling in the lower row of the table (the numbers 
printed in bold type are those of “the squares with 
sticky soil”).

(41) Any particular method of transition from the
node 0  (0, 0 ,. . 0) to the node A (av a2, . .  ., am) where
ai +  a2 +  ■ • • +  am =  n can be characterized by an
arrangement of n letters, among which the letter x, 
(indicating that the corresponding move increases the 
first coordinate of the point by one) is encountered ax 
times, the letter x2 is encountered a2 times, etc. and 
finally, the letter xm is encountered am times. But ax 
places out of n can be filled by the letter xx in C'1 ways:
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to each of these ways there correspond the remaining 
n — ax empty places. It follows that we can pick ax 
places for xx and a2 places for x2 (out of n places) in 
Q , C?-fll ways. To each of these ways there correspond 
C “3.ai-a2 ways of distributing a3 letters x3 in the remain­
ing n — ax — a2 places, i.e. there are altogether C“'X 
x C“2-ai X Cn*.ai-a2 methods of placing letters xv x2 and x3.

Continuing this reasoning, we arrive at the result, 
that for the distribution ax letters xv a2 letters x2, . . ., 
am.1 letters xm.x (letters xm take up automatically the 
remaining empty am places), there are

. f  'at  r ' a l  C & m -X  =
' - ' n  ' - ' n —01 —01 • • * v- 'n  _ f l i—

_  n! (n —a,)!
a,! (n — aL)l a2\ (n — al — a2)\

(n — al — a2 — . .  .-flm -2)! _____ n!
Um —d U7/1I ud a2l . . . Um!

methods.

12 © 4 8 8 © 8 16

© 2 © 4 © 16 48 8

8 2 4 © 8 4 8 16 ©
6 2 2 2 © 8 © 8

4 © 2 © 2 © 4 8

© 2 © 2 2 4 © 4

1 2 2 © 2 2 2 ©
A ] © 4 6 8 © 12

Fig. 131.

(42) Figure 131 shows in how many ways a rook can 
reach a particular square of a chessboard with “ob­
stacles”, in the least number of “short moves”.
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For convenience, the data referring to the squares 
of the fourth zone (2, 2, 4, 2, 2) of the eighth zone (10, 
2, 2, 2, 4, 8, 2, 2, 2, 10) and the twelfth zone (8, 8, 8, 8) 
are encircled.

(43) Figure 132 shows, 
that the fourth zone con­
sists of thirty-two squares.
The king can get into the 
fourth zone in 320 ways 
(the sum of numbers in 
the squares of the fourth 
zone).

(44) Two pawns can be 
transferred from the second 
line to the eighth line in:

(a) 12 moves, without 
taking advantage of the
right of the double move, in ways;

(b) 11 moves, making use of the right of the double 
move in the case of the first pawn only (or the second
pawn only) in — - ways;

(c) 10 moves, making use of the right of the double 
move for both pawns, in ~ y  ways. We have, for the

two pawns, altogether 1 ^ - +  2 ~  ways.
Similarly, we have, for three and four pawns,

616161 +  3 51 6! 6: +  3 51 51 61 +  51 5! 51 WayS and 
24! | t 231 | 22! , 21! .
6! 6! 61 6! 4 51 61 6: 6! +  6 51 51 61 61 +  4 5! 51 5! 6! ^

+  i i w s i w ays resPectively-
(45) (a) A triangle cannot be constructed as it would 

need to have [see Fig. 29e] six directions, in each of 
which the sum of three numbers should be the same. 
But the number 12 can be represented in five ways 
only as a sum of three different numbers not exceeding 
seven; 12 = 1 +  4 +  7 =  1 + 5 + 6  =  2 +  3 +  7 =

I 4 10 16 19 16 10 4 1

4 i 3 6 7 6 3 1 4

10 3 1 2 3 2 1 3 10

16 6 2 1 1 1 2 6 16

19 7 3 1 1 3 7 19

16 6 2 1 1 2 6 16

10 3 1 2 3 2 1 3 10

4 1 3 6 7 6 3 1 4

1 4 10 16 19 16 10 4 1

Fig. 132.
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=  2 +  4 +  6 =  3 +  4 +  5 (there are only four ways 
of representing each of the numbers 11 and 13 as a 
sum of three numbers, there are four ways for 10 
and 14, three ways for 9 and 15, etc.).

(b) It is not possible to construct a pentagon, since 
the number at its centre must be a part of five equal 
sums, each of which consists of three different numbers 
not exceeding eleven: but it is easy to verify directly 
that it is impossible to find such a number.

(46) (1) A generalized domino set has n +  1 pieces

of the form (k, k) and Cn2+1 =  ~ +2~~ pieces of form 
(/, m) where I ^  m, and the total number of pieces 

is a +  1 +
(2) Each number k is encountered n times in combi­

nation with numbers m not equal to k, and twice in 
the piece (k, k). Therefore, the sum of all points equals
(0 +  1 +  2 +  -. . +  n) (n +  2) = n(n + ^ (n +  2).

(47) If the piece (a, b) (a ±  b) is removed from the 
complete set of generalized dominoes, when n is even, 
a points (as also b points) are encountered in the re­
maining pieces an odd number (n +  1) of times (see(46), 
2).

On the other hand, evidently, any closed chain con­
tains each number of points an even number of times; 
any number of points may be contained an odd number 
of times only in an open chain, and this number of 
points will then be at one of the ends of the chain.

(48) When n is odd each number of points is encount­
ered an odd number (n +  2) of times in a generalized 
domino set. In an open chain, only those numbers of 
points that are to be found at the ends of the chain are 
contained an odd number of times in the chain. There­
fore, at least n — 1 of the numbers 0, 1, 2, 3 ,. . ., 
n — 1, n are to be found on the pieces, not included
in the chain, i. e. at least j  (n — 1) pieces of the domino
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set cannot be arranged in a chain. But there are alto­

gether (n + 1)2(n + 2) pieces. Therefore a chain can be
, c . . (n +  l)(n  +  2) n — 1 na+ 2 n + 3made up of at, m ost,------- -̂-------------------------- -̂----

pieces.
(49) One of the possible distributions of pieces is as 

follows; 1st player; (0, 0), (0, 1), (0, 2), (0, 3), (1, 4), 
(1, 5), (1,6); IVth player: (1, 1), (1, 2), (1, 3) ,(0, 4), 
(0, 5), (0, 6), (2, 2).

Players I and IV make a chain
(0, 0) (0, 4) (4, 1) (1, 2) (2, 0) (0,5) (5, 1) (1, 1) (1,0) 

(0, 6) (6, 1)(1,3) (3,0)
(players II and III cannot enter the game, as they do 
not possess pieces containing zero points, or one point).

(50) Let us number the squares 
of a “4,5-board” (Fig. 39b) as 
shown in Fig. 133.

The following sequence of moves 
leads to the goal:
1. 19—14 2— 7 10. 17—11 4— 10
2. 18—15 3— 6 11. 2—12 19— 9
3. 14— 8 7—13 12. 11—16 10— 5
4. 15—12 6— 9 13. 12— 7 9—14
5. 20— 5 1—16 14. 18—13 3— 8
6. 5— 2 16—19 15. 16— 6 5—15
7. 8— 11 13—10 16. 7— 2 14—19
8. 12—18 9— 3 17. 13— 4 8—17
9. 11— 1 10—20 18. 6— 3 15—18

(51) Figure 119a, shows a plane arrangement, whose 
coverage according to Hamilton’s rules is equivalent 
to the coverage of a “3, 4-board” by the chess knight. 
It is easy to verify that one cannot visit all points of 
the arrangement, moving along the segments and visit­
ing each point once only, if one starts at any of the points 
L, M, R, B, C, Q. The possible circuits are

I 2 3 4

5 6 7 8

9 10 a 12

13 14 15 16

17 ie 19 20

Fig. 133.

NBPMAQCKRDLS, 
N  BPM A QCSLDRK, 
NQAMPBRKCSLD, 
NQAMPBRDLSCK,

PMAQNBRKCSLD, 
PM  AQN BRDLSCK, 
AMPBNQCKRDLS, 
AMPBNQCSLDRK,
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each, of which represents an open polygon which can, 
naturally, be traversed also in the reverse order (which 
we do not regard as a new circuit).

(51a) If we write down the first forty natural numbers 
in their order, and if we begin discarding every third 
number, beginning from left to right (by underlining 
it and indicating in brackets in which turn it was dis­
carded) we obtain
JLJJ_J3_4_5 9̂  _10_11 12 Jl3 tA 15 J45 JL7 J18 _19 20
( 37)(14)(1)(23)(29) (2) ( 15) (33)(3) (24) (16) (4 ) (39) (30) (6) ( 17) (25 ) (6) (36) (18)

^ ^ ^ 2 4 2 5 2 6 2 7 2 8 2 9 3 0 3 1 ^ 2 3 3 3 4 3 5 ^ 6  37 J 8 3 9 ^ 0
( 7)  (34) (26) (8) ( 19) (31) (9) ( 40) (20) (10) (27)(38) ( 11) (21) (32) ( 12) (28) (22) ( 13) ( 35)

whence it can be seen that the element No. 13 is the 
one-but-last to be discarded, and No. 28 is the last one.

k(2) In our case n =  40, k =  3, q =  =  3, nk
- 120. For s =  39 ax =  k(n — s) +  1 =  4 and the integral 
geometric progression consists of numbers 4, 6, 9, 14, 
21, 32, 48, 72, 108, 162 . .  . . Since 162 >  nk =  120, 
therefore A =  108 and t =  nk 1 — A =  120 +  1 —
— 108 =  13, i. e. the thirteenth element is discarded 
39th.

If s =  40, a1 =  1 and the “integral geometric pro­
gression” consists of numbers 1, 2, 3, 5, 8, 12, 18, 27, 
41, 62, 93, 140 . .  . .

Since 140 >  nk =  120, we have A =  93 and t =  120 
-f 1 — 93 =  28, i. e. the 28th element was discarded 
40 th.

(516)
1_ 2_ 3 j£_5__6_7 §_ j^_10 n i 2  13 1415 16 17 18

(28) (19) (22) (36) ( 161( 1) ( 7) ( 12) (35) (31) (25) (2) ( 20) (8) (27) (13) (17) (3 )

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
( 23) (30) (9) (32) (29) (4) (14) (21) ( 18) ( 10) (34) (5) (26) (24) ( 16) (33) ( 11) (6)

It can be seen from the above table that the cards 
should be arranged in the following order: the ace of 
spades, (the twenty-eighth card or, in other words the 
first card of the fourth suit) the ace of clubs (card No. 
19 — the first card of the third suit) the knave of clubs 
(card No. 22 — the fourth card of the third suit) etc.
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Since n =  36, k =  6, q =  = |-> nk — 216,
we obtain the following integral geometric progression
when s =  19: a1 =  6 x 17+  1 =103, 124, 149, 179, 215, 258 . .  . 
when s =31: f l ,= 6 x  5 + 1 = 3 1 , 38, 46, 56, 68, 82, 99, 119,143

172, 207, 249, . . . 
when s =  17: ^  =  6 x 1 9 + 1 = 1 1 5 , 138, 166, 200, 240, . . .

Since in these “progressions” the greatest numbers 
not exceeding the number nk are 215, 207, 200, the 
corresponding values of t are 2(216 — 215 +- 1), 
10(216 -  207 +  1) and 17(216 -  200 +  1) see the bold 
type figures in the table.

(52) If we distribute the elements av  a2, . . ., at 
round a circle in a clockwise direction, and we then 
transfer each of them anti-clockwise into the place 
occupied by its neighbour, then this operation is 
equivalent to the cyclic permutation C = (av  a2, . . ., 
ak)•

Evidently, O  = E, since after k repetitions of this 
operation all elements find themselves once again in 
their original places.

If the permutation A is equal to the product of 
several independent cycles: A = C1 • Ca . . . Cs, whose 
orders are k^ kz, . . ., ks, then, in the permutation 
Am all elements will find themselves in their former 
places only in the case when m is divisible by kv  by 
kz, by k3, etc. The smallest value m satisfying these 
conditions equals the smallest common factor of the 
numbers kv kz, . . ., ks.

(53) Suppose that in accordance with the rule of 
transition from one permutation to another, then to 
the next, etc., indicated in the text of § 22, in each 
transition the elements occupying, say, places numbered 
04, a2, . . ., as are replaced by each other in a cyclic 
order. Then the permutation M  will contain the cycle 
(a\, a'z, . . ., a's), where a \, a'z, . . . ,  a's are elements 
which had been occupying places numbered a15 a2, 
. . . , as to begin with.

265



Mathematical Games and Pastimes

Other cycles forming a part of the required permu­
tation M  are brought to light in a similar way.

(54) We denote the angles of the rhombi of the /rth 
layer nearest to the centre by uk. If the point A is 
common to the rhombi of the (k — 1) th and the 
(k +  l)th layers, then txk_1 +  2{n — a.k) +  a+ftl=  2n 
(see Fig. 134a) whence ak+1 — a* = v.k — *k-i> i. e. 
ax, a2, a3, . . . form an arithmetical progression, whose
common difference equals ai =  7^’ since a2 =  2ax (Fig. 

1346), whence a2 — ax =  ax =  therefore a.k =  k ~

If mis odd, then =  2^1 x ^  =  " ^ 2 1 ,
2 2 m 2m

i. e. a equals the angle of a regular 2m-sided
a

polygon. Other angles of the 2m-sided polygon are made 
up of three angles, whose sum is equal to

, n/ , 2n m —3 , n ( m — 1
a. m + 2 ( j i —a ,) = —  x ----------b 2 \ n ------------ xm-1 I V m-y m 2  \ 22 2 v

2rc 1 n . jr(m — 1)x ----  =  —  (m—3 + 2 )=  —-------  =  a ■>
m  m  y 1 ' m  2 tz l .> 2

"I  n{m—2)J m
i. e. a ^ —  1 equals the angle of a regular m-sided
polygon: at the same time “the composite angle” 
(like the angle D in Fig. 546) equals

mWhen m is even a -y  — 2* m _
1 m 2 1

Fig. 134.
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oc m
2

+  2(n -  oc ) =

= 2n -f- 2n
m - 7 1 .

(55) If we denote the angle of the rhombus of the 
/fth layer nearest to the centre of the regular polygon,

by <xk, then it is easy to prove, that a* =  (2k +  1) • ^

(it is sufficient to establish, that «i =  ^  and ®2 =  ^
and to make use of the self-evident equality +  
+  a,(+1 +  2 (n — «k) =  2n, whence it follows that ax, 
a2, a3, a4, etc., form an arithmetic progression). But

then « i  (m - 3 )  =  {2 (i==®) +  1 } £  -  and
this is the angle of a regular m-sided polygon. In addi­
tion, “the composite angle” (like the angle with vertex 
E in Fig. 55 ft) equals

am-5 + 2(» -  «„_,) = ( m - 4 ) ^  +  2 71  —

n(m — 2)‘ 
m

It is easy to verify that each of the angles of the 
“open polygon” (like the polygon ABCDEFGHIKL

in Fig. 55ft equals n — , whence it follows that the
“open polygon” is regular (for example, if a is the 
angle at the vertex of a starlike polygon, then k ABC =  
=  a +  (jr — ax) =  a +  tz — 3a =  n — 2 a, t-i BCD =  
=  ax +  (tc — otg) =  3a +  n — 5a =  n — 2a, etc., and

7i — 2<x= 7i — 7— =  ” (mm , which is the angle of m m  0
a regular m-sided polygon.

(56) If we take the sides of the constituent squares
to equal 2 cm, 5 cm, 7 cm, etc., the areas of the rectangles
Slt S2, S3, composed of nine, ten and thirteen squares
respectively, are
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4209 cm2 (22+ 5 2+ 7 2+ 9 2+ 162+252+282+332+362), 
10270 cm2(32+ l l 2 +  122+232-f342+352+382+

+412+442+452),
27495 cm2 ( l2+ 4 2-f 52+ 9 2+142+192+ 332-f 522+  

+562+ 692+702+712+ 722).
Since 4209 =  3 x  23 x  61, the sides of the rectangle 

S, can equal either 3 cm and 1403 cm, or 69 cm and 
61 cm, or 23 cm and 183 cm. The first and the third 
cases do not apply, as no side of <Sx must be less than 
the side of the largest of the constituent squares (36 cm). 
Therefore the sides of the rectangle S1 are 69 cm and 
61 cm.

Similarly 10 270 =  2 x 5 x 13 x  79 =  79 x 130 =  
=  65 x 158. But 65 cm cannot be represented as a sum 
of sides of squares of given dimensions. Therefore the 
sides of S2 are 79 cm and 130 cm. The sides of the 
rectangle S3 are 141 cm and 195 cm, for 27 495=  
=  3 x 3 x  5 x  13 x  47 =  141 x  195 (other ways of 
factorizing the number 27 495 to give two factors do 
not agree with the dimensions of the constituent 
squares).

If we write “square a” for “square of side a”, then 
consists of (reading from left to right) squares 36, 

33 (upper row) 5, 28 (underneath 33); 25, 9, 2 (under­
neath 36); 7 (underneath 2 and 5), 16 (underneath 9 
and 7); S2 consists of squares 41, 44, 45 (upper row); 
38, 3 (underneath 41); 35, 12 (underneath 3 and 44); 
11, 34 (underneath 45); 23 (underneath 12 and 11); 
S3 consists of squares 71, 72, 52 (upper row): 19, 33 
(underneath 52); 5, 14 (underneath 19); 70, 1 (under­
neath 71); 69, 4 (underneath 1 and 72); 9 (underneath 
4 and 5); 56 (underneath 9, 14, 33).

(57) “Rectangle 608 x 377” consists of squares 209, 
205, 194 (upper row), 11, 183 (underneath 194); 44, 172 
(underneath 205 and 11); 168, 41 (underneath 209); 
1, 43 (underneath 44;) 42 (underneath 41 and 1); 85 
(underneath 42 and 43). “Rectangle 608 x 231” con­
sists of squares 231, 95, 61, 108, 113 (upper row), 34,
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27 (underneath 61); 7, 20 (underneath 27); 136 (under­
neath 95, 34 and 7); 123, 5 (underneath 128); 118 
(underneath 5 and 113).

(58) If the smallest square ABCD were to adjoin 
(along its side AB) one of the sides of a rectangle, then it 
would be held between two larger squares, or it would be 
“pressed” by a larger square to the neighbouring side 
of the rectangle; in both cases no square of larger 
dimensions could adjoin the side CD of the smallest 
square.

(59) (1) a3 =  f^ )3+  17 (?-)'+ 16 (j )3, i.e. a cube of 
edge a can be split up into 34 cubes: one cube of edge 

[^ j 17 cubes of edge [yj and 16 cubes of edge ^ - j .

(2) a3 =  a (-f-|3+  48 [-|-j3 i.e. a cube of edge a can 

be split up into 50 cubes: 2 cubes of edge |^-J and 48

cubes of edge [-|-j.
(60) A square of side a can be split up into 4 squares,

into 6 squares [one of side

8 squares [one of side [^ j,

But if a square can be subdivided into s parts, then, 
by subdividing any one of the squares obtained into 
four parts we can subdivide the original square into 
s +  3 parts. Therefore, a square can be subdivided into 
seven (4 +  3) into ten (7 +  3), etc., and, in general, 
into 4 +  3k squares. By similar reasoning, we show 
that a large square can be subdivided into 6 +  3Z 
squares and 8 +  3m squares (/c, Z, m are natural num­
bers).

But any natural number n, beginning with 6 can be 
represented in one of the forms 6 +  3Z, 4 +  3k, 8 +  3m, 
since all these numbers, when divided by three, leave 
a remainder, which is either 0-1 or 2.

(¥)• five of side (ill*into

seven of side |-|-
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(61) All vertices of some 
regular decagon should be nodes 
of the type (10, 5, 5) — see Fig. 
135. But then points B  and D 
cannot be nodes of the same 
type, since in this case two 
regular decagons and one regu­
lar pentagon would “meet” at 
C, which is impossible.

(62) Each angle of a re­
gular m-sided polygon equals
of angles, whose vertices are

at the node (nl5 n2, . . ., nk) equals 360°, therefore
180° (71,-2) , 180° (n2 — 2) , , 180° ( n * - 2)
------iT------H---------ir--------h • ■ • + -------------  =  360 .nk

Dividing throughout by 180° we get k — 2 Tii n2

(63) Figure 136 a shows that it is possible to construct 
a hexagon KCLMNP, whose opposite sides are parallel 
and equal, out of four pentagons of form ABCDE, 
(AB =  BC =  CD =  DE ; <  B =  <  D =  90°; <  A =  
=  < C  =  <  F  =  120°) and it is easy to cover a plane 
with such hexagons. Figure 1366 shows that a plane 
can be covered with regular pentagons and rhombi 
of acute angle 36°.
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(64) It is sufficient to prove that whether we begin 
by reflecting the triangle ABC in side BC or in the side 
AB, the arbitrary point M  in the triangle ABC pro­
duces, finally, the same set of five points Mv  M„ 
M3, M4, Ms (Fig. 137).

A C

Fig. 137.

(65 a) See Fig. 138.
(656) It is sufficient to draw straight lines, parallel 

to the sides of the rectangle and dividing side a into 
n +  1 parts and side b into n parts, and to draw the 
broken line as shown in Fig. 139 (in this drawing n =  6).

(tQin(66) Figure 140 shows a parallelepiped  ̂ x

a m
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X b ^ x c” composed of two halves, Vj and V2 
of the parallelepiped “a x b x c” (in the drawing 
m =  4 and PQ =  b{-m + 1). .
On carrying out a section through the broken line 
ABCDEF, parallel to the edge PQ, we cut each of the 
halves Vx and Va into two parts; on shifting the right-
hand sides upwards by j and leftwards by ■ +  ̂+ ^

we obtain a paralellepiped— a™n—r x - m̂ +  ̂ x c ('n+^ r  1 r  (m+ l)(n + 1) m n
(in the drawing n =  3). The re-cutting of the paralelle­
piped a x b x c  into the parallelepiped JtUiL x b('™+ ^  _|_ ^ 1 1 1 1 m + 1 7n(n+l)

c is carried out similarly.
(67) See Fig. 141.
(68) In order that the curve ( x =  a sin mt may pass

\ y =  b sin nt
through one of the vertices of a rectangle “circumscribed” 
about the curve, it is required to have, for some value 
of the parameter t, mt =  (2k +  1) x 90° and nt =  (21 -f- 
+  1) x  x 90°, where k and I are some integers, and 
that is possible only on condition that integers k and
I may be found, for which — =  1 •n 21 + 1

In this case, fort -  -  (2,+1>90" =  t„ we havem n
|x0| =  |y0| =  1- We leave it to the reader to verify 
that points (xx, yx) and (x2, y2) corresponding to the 
values of the parameter tx =  t0 —At and f2 =  t0 -)- At ( At 
is arbitrary) coincide.

(69) I. If we do not utilize the sign of absolute value,
the equation \(2y — 1)| +  \2y +  1| +  =  4 is writ­
ten down differently in each of the regions Ar A2, Aa, 
A4, As, Ae (Fig. 142a). For example, when y ;> 1/2
and 0 (region A2) we have 2y — 1 +  2 y + l  +  =

=  4, or y — ^  =  1. This equation corresponds to the
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straight line I, from which the segment KL, lying in 
the region A 2, is taken. When y <; y 2 and x ;> 0, we
have 1 — 2z/ +  2z/ +  l +  ^  =  4, or x =  ^ , and this
is the equation of the straight line m, from which only 
the segment MN  lying in the region Ae, is taken etc.

II. If the sign of absolute value is not used, the equa­
tion \x\ +  |y| +  ^  J  |x — y\ +  |x +  y  [ J  =  2 +  1 is writ­
ten down differently in each of the eight “sectors” Bk 
(1 <. k^> 8), into which a plane is divided by the coor­
dinate axes and by the bisectors of angles between the 
coordinates (see Fig. 1426). For example, in sector, F 4, 
where x <; 0, y ;> 0, x — y 0, x +  y <; 0, we have
-  * +  y +  ^ { y  -  x +  ( - x  — y ) } =  1 +  V2, or y —
— (1 +  f2)x = 1  -f 42, and this is the equation of the 
straight line I, passing through the point (—1, 0) at 
an angle 67°30' to the axis Ox (tan67°30' =  1 -f- y2). 
The part PQ of the straight line, which lies in the sector 
.B4 gives the side BQ of a regular octagon. We leave
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it to the reader to prove that the sides of a regular 
octagon lying in other sectors are obtained in the 
same way.

III. Since x and y enter the equation \x\ +  | \y\ — 3| — 
— 3| =  1 only within the sign of absolute value, it is 
sufficient to construct a part of the “curve”, lying in 
the first quarter, then to construct “curves” symmet­
rical to it with respect to the axis Ox, the axis Oy and 
the origin of the coordinates.

For x]> 0 andy ]> 0, we have [x| +  [y —3|—3 =  1, 
whence it either follows, that x +  jy—3|— 3 =  1.

I J/—3| = 4 —x, (1)
or x-\- \y—3| — 3 =  — 1, this is

|y—3 |= 2 —x. (2)
The eqn. (1) makes sense only when x <, 4, and from 

it follows either y — 3 =  4 —x (the straight line I, 
from which the segment AB, where x <, 4, should 
be taken) or y — 3 =  x — 4 (the straight line m, 
from which the segment BC has to be taken, for x <: 4) 
(see Fig. 142c).

The eqn. (2) gives y — 3 =  2 — x (the straight line 
I' from which the segment DE, where x < , 2 ,  must 
be taken) or y — 3 =  x — 2 (the straight line m', 
from which the segment FE,  where x<,  2, should be 
taken).

(70) Let y =  /(x) be the equation of the curve I 
and let the curve I' be shifted to the right by a with
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respect to I, (Fig. 143). If a'(x, y) is any point on the 
curve I', and A{X, Y) the corresponding point of the 
curve I, i. e. X  =  x and Y  — y, then Y =  /  (X) and 
therefore

y =  f ( x -  «),

this is the equation of the curve I’, which is satisfied by 
the coordinates of any point on it.

(70a) Seven-figure tables of logarithms should be 
used.

(71) (1) Six planes, passing through the edges of a 
regular tetrahedron and equally inclined to the corres­
ponding faces of the tetrahedron, form at their inter­
section a cube, (see Fig. 1006).

(2) Twelve long diagonals of a rhombic dodecahedron 
(Ov Oz, etc. — see Fig. 105) serve as the edges of a 
certain regular octahedron. Planes passing through the 
edges of this octahedron and equally inclined to its 
corresponding faces, bound a rhombic dodecahedron, 
depicted in Fig. 105.

(72) Suppose, that two colours are sufficient to colour 
regions into which the plane is divided by n straight 
lines. If, on drawing the (n +  l)th straight line, we 
preserve the colour of all regions (and portions of re­
gions) of the “nth-subdivision” on one side of the 
(n +  l)th line, and on the other side we change the 
colour of each region into the other one, then each two 
bordering regions of the (n -j- l)th subdivision are 
coloured differently. Since two colours are sufficient.
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when n =  1, and we have proved the transition from 
n to n 1, therefore it is possible to colour a plane 
sub-divided into regions by any number of straight 
lines, using two colours only.

These arguments hold also in the case of space broken 
up by n planes.

(73) It can be seen from Fig. 144 that any two of 
four triangles ABD, BCE, CAF,  DEF  have a common 
border in the shape of a segment of a straight line; 
the same occurs in the four triangles KLP, LMQ, 
MKN,  NPQ.

In addition, any of the triangles of the first four 
overlaps partially with any triangle of the second four 
(and conversely, of course).

Therefore, it we take a point S  above the plane of the 
drawing, and a point T below the plane of the drawing, 
then any two of the eight tetrahedra SABD,  SBCE, 
SCAF,  SDEF,  TKLP,  TLMQ, TMKN,  TNPQ have 
a common boundary in the form of a certain portion 
of a face.

(74) If we take into account all nx paths issuing from 
an “rq-node”, all n2 paths issuing from an “0,-node”, 
etc., and finally, all ns paths issuing from an “ns-node”, 
then each path is accounted for twice; therefore, the

total number of paths equals ni + " + n* •
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If the numerator of this fraction were to contain an 
odd number of odd terms, the total number of paths 
would be fractional!

(75) In Fig. 118, seven points are broken up into two 
groups: K , L, M, N  and A, B, C. The arrangement of 
paths is such that from any point of the first group it is 
possible to go over directly only to a particular point 
of the second group and vice versa.

In order to visit all points, we have to begin the jour­
ney at some point of the first group and complete it 
at some point of the same group; but is impossible to 
get from the last point to the initial point directly.

(76) If we inscribe in a regular octahedron a cube with 
vertices at the centres of the faces of the octahedron, 
a move from one face of the octahedron to another is 
possible only when the vertices of the cube lying in 
these faces are also the ends of some edge of the cube.

Similar arguments apply also in the case of a dode­
cahedron inscribed in a regular icosahedron.

A

(77) In Fig. 145a the arrows show how the coins 
A, B, C should be moved.
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(78) In Fig. 1456 the arrows show where to put coins 
D and E.

(79) The solution is shown in Fig. 145c.
(80) The points should be placed at the vertices and 

at the centre of a regular pentagon (see Fig. 145d.)
(81) To the six points of the preceding problem we 

must add two points, A7 and Ae, situated on the per­
pendicular to the plane of the drawing through the 
centre Alt and the following should hold: A1A7 =  
= A-̂ Â  = A1A2 (although one of the “triangles”

A±A7A6 has an angle of 180° at a vertex).
(82) It is sufficient to prove that the length of seg­

ments OA, OB, OC, OD, AB, AC, AD, BC, BD, CD 
are equal. For example

etc.
(83) The total number of straight lines in the configu­

ration (pm, qn) equals q.
If we were to account for m straight lines passing 

through the first point, then for m straight lines passing 
through the second point, etc., and finally, for m 
straight lines passing through the pth point, we would 
have “counted up” pm straight lines; but, in this 
case, each straight line would have been accounted 
for n times (since one and the same straight line passes
through n points) therefore —  =  q.

(84) We should note, that, whatever Ivanov is, he 
must answer the question for the teacher, whether he
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is a serious one or a joker, in one way only: “I am se­
rious”. But then it is clear that Petrov is serious, and 
Sidorov is a joker.

(85) Since of the numbers 26, 27,28, only 27 is divisible 
by 3, therefore Galkin and Komkov were sawing up 
logs of length l 1/* m, and therefore their names are 
Petya and Kostya. But Kostya was not among the 
team leaders, and it was given that Komkov was not 
a team leader. Therefore Komkov is Kostya.

(86) Yes, he could. Indeed, from Andrey’s answer, 
it should be clear to his friends that they cannot be 
wearing two white hats.

If Vadim were wearing a white hat, Boris could have 
determined the colour of his hat easily, but since he 
could not do that, Vadim’s hat must have been black. 
The problem can be generalized easily: we can speak 
of n friends, sitting one behind the other, and of 
2n +  1 hats (n white ones and n +  1 black ones).

(87) Assuming that Seryozha is No. 2, (i. e. he took 
second place) we have: From 1 — Kolya is not No. 3, 
from IV — Vanya is not No. 4, from V — Kolya is 
No. 1, from II — Tolya is not No. 1, Nadya is No. 2, 
i. e. we arrive at a contradiction: both Seryozha and 
Nadya took second place.

Assuming, that Kolya is No. 3, we obtain from I — 
Seryozha is not No. 2, from IV — Vanya is No. 4, from 
II — Nadya is not No. 3, Tolya is No. 5, from III — 
Tolya is not No. 1, Nadya is No. 2: therefore Seryozha’s 
lot is place No. 1. Thus in the order of their numbers 
we have; Seryozha, Nadya, Kolya, Vanya, Tolya.

(88) Since it is known that three of the chess-players 
hail from Saratov, Moscow and Kiev, and their ages 
are 21, 22 and 23 years, therefore the fourth chess­
player comes from Fergana and he is 20 (student M); 
he is a biologist (since the remaining three chess players 
are a mathematician, a chemist, a geologist) and he is 
in his fourth year of study (the remaining chess-players
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are 1st, 2nd and 3rd year students). These data are 
entered under the numbers 1, 2, 3 in the table, where 
the data given in the problem are entered in bold print.

Age

Town

Kiev

Moscow

20 years 21 years : 22 years 23 years

A. geol.
(5)

2nd, footb. 
(17) (28)

E. math.
(6) 

3rd, box.

B. chem. I'., hiol.
(4) 3rd,volleyb.i

4th, box. (22) (30)
(18) (29) ;

B. matli. 
1st, chess

F. biol.
(13) 

1st, footb.

G. chem. 
2nd, chess

H. geol. 
( 12) 

4th,vollcyb.
(16) (27) (19) (26) (31)

Saratov I. chem. J. geol. K. math.
1
1 L. biol.

(7) 3rd, chess (8) (9)
1st, volleyh. 4th, footb. | 2nd, box.
(15) (21) (33) | (25) (34)

Fergana M. biol. N. math. 0. geol. P. chem.
(2) (14) (10) (11)

4th, chess 2nd, volleyb 1st, box. 3rd,footb
(3) (1) (20) (32) (23) (35) (24) (36)

Under No. 4 we write down, that B is a chemist 
(since the Kiev men, C and D are a biologist and a 
mathematician respectively, and the student J  is 21 
years old and he is a geologist).

Under the numbers 5-14, easily determinable infor­
mation about the specialization of the remaining stu­
dents is entered in the table. Then, under number 15, 
we note down: the chemist from Saratov, I, is a 1st 
year student (since the Saratov man J  is a 3rd year 
student, the chemist G is a second year student, and the
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twenty-year-old M  is a fourth year student). The 
courses followed by the remaining students are deter­
mined similarly (under 16-26).

The twenty-year old Muscovite E, is a boxer (No. 27) 
since the Muscovites F and G are a footballer and a chess 
player respectively, and the twenty-year old I  is a volley­
ball player. Further, under numbers 28-36, the favou­
rite forms of sport of the students are indicated (for 
example. No. 29 B is a boxer, since the Kiev men 
A and D are a footballer and a chess player respectively, 
and the chemist /  is a volleyball player and so on).

(89) (1)
*'***'* _  ***

**
4***
****

0
It is seen immediately, that the first digit of the root 

required is 3, since its square is a one-digit number 
and it is a result of the extraction of square roots from 
the upper division consisting of two digits.

The second digit of the root required can only be 
unity, since even 62 x 2 would have given a three- 
digit product, and not a two-digit one. (See two asterisks 
in the fourth row). Finally, it follows from 62z x z =  
=  4***, that z (the last digit of the root sought) can 
only be a seven.

* * * * * *  j* * *
_****

***
*iM
****
****

0
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It may be seen immediately that the quotient is 989, 
since the product of the divisor and 8 is a three-digit 
number, and its product with the end numbers of the 
quotient are four-digit numbers (see the 4th, 2nd and 
6th rows of the pattern of division).

Let us denote the-whole of the divisor by z. Then 
8z <  1000 and 9z >  1000, i. e. I l l  <  z <  125. When 
z =  112, the dividend =  989 x 112 =  110 768 and the 
division of the number 110 768 by 112 takes place in 
exact accordance with the given pattern. But for z =  
— 113, 114, etc., the first remainder would not have 
been a two-digit one as it would follow from the pattern, 
but a three-digit one; for example, when z =  113, we 
have

111757(=989xll3).  whenz=114: 112746 (989x114)
1007 ( = 113x9) = 1026 (=114x9)
100 101

etc. Thus the only solution is 110 768 — 112 — 989.
(3) s m e h 

g r o m 
g r e m i

It can be seen immediately, that <7= 1. Therefore 
p ^ l ;  but p cannot be greater than one, either, since 
when p =  2, even if c =  9, on adding up the hundreds, 
there should be “carry two” and that is impossible. 
Thus p =  0.

It is easy to see that m <  9, since if m =  9, on 
investigating addition in the order of hundreds, we 
would have obtained e =  0, and this is impossible, 
since p =  0. Therefore, m <  9 and e =  m +  1.

Evidently, c =  9. On investigating addition in the 
order of tens, we obtain: 0  — 8, since e =  m +  1 and 
0  =N= c =  9.

So, we have
9 m e h 
1 0 8 m
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By investigating five variants: m =  2, 3, 4, 5, 6, it 
is easy to discover that m =  5 is the only one that 
does not lead to a contradiction, but gives: 9567 +  
4- 1085 =  10 652.

4) forty 
ten 

+  ten 
sixty

It is easy to establish that n — 0 and e =  5. Since 
i 0, therefore i =  1 (if i =  2, even if o =  9, the addi­
tion in the order of hundreds would collect “carry 
three”, which is impossible). For the same reason, 
o =  9. Thus we have:

+

forty
150
<50

sixty
Therefore, s =  /  +  1 and in the order of hundreds 

we collect “two to carry”. But for f =  7 and s =  8, 
it is possible to get in the order of hundreds: 8 +  8 +  
+  4 +  1 =  21, or 8 + 8 + 3  +  1 = 2 0 ,  but then x 
coincides either with i or with n.

It is easy to verify that when /  =  3 and s =  4, 
x coincides with one of the “digits” s, f, i, n, in all 
variants.

Only when / =  2, s =  3, and r =  7, t =  8, do we 
get a value for x, that does not coincide with any one 
of the other “digits” : x =  4, and then y  =  6.

Thus, the only solution is 29 786 +  850 +  850 =  
=  21 486.

(90) (1) Cross: 
Return:

Aa
A

AB
a

ab

(2) Cross: 
Return:

abc AB
c

BCD
Bb

abc
a

cd
c

(3) Cross: abc cde ABC CDE bed
Return: c
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(91) The first method gives (20, 0, 0) ->  (7, 13, 0)->  
(7, 4, 9) ->  (16, 4, 0) ->  (16, 0, 4) ->  (3, 13, 4) ->  
(3, 8, 9) —> (12, 8, 0) —> (12, 0,8). As we have arrived 
at the situation (b — 1, 0, c — 1), the first method is 
unsuitable.

The second method gives (20, 0, 0) ->  (11, 0, 9) —> 
(11, 9, 0) ->  (2, 9, 9) ->  (2, 13, 5) ->  (15, 0, 5) ->  
(15, 5, 10) ->  (6, 5, 9) ->  (6, 13, 1) ->  (19, 0, 1) ->  
(19, 1, 0) — (10, 1,9) ->  (10,10,0), i. e. it leads to the 
required goal.

(92) The first method gives (16, 0, 0) ->  (4, 12, 0) —>
(4, 5, 7) —> (11, 5, 0 )—> (11, 0, 5); it is unsuitable as 
it leads to the position (&-> 1, 0, c ^ -2 ) . The second 
method gives (16,0,0) —> (9, 0, 7) ->  (9, 7, 0) —> (2, 7, 
7) ->  (2,12,2) ->  (14,0, 2) ->  (14, 2, 0) ->  (7, 2, 7) ->  
(7, 9, 0) ->  (0, 9, 7) (0, 12, 4) -> (12, 0, 4) ->  (12,
4, 0), ->  (5, 4, 7) ->  (5, 11, 0). As we have arrived at 
a situation, where the small vessel cannot be filled (from 
the large vessel) and a portion equal to the capacity 
of the medium vessel cannot be returned to the large 
vessel, the second method is also unsuitable for divid­
ing the liquid into two equal parts.

(93) A side of the base of a circumscribed pyramid

equals 2n +  1, and its height equals n +  rj- (if the
central cubes of all layers are in one column). 
Therefore
l 2+ 3 2+ 5 2+  . . . + (2 n -3 )2+ ( 2 n - l ) 2 =

(94) There are 31 squares, 124 triangles, 87 rectangles 
(including the squares).

(95) Thirty-five triangles.
(96) 78 triangles, 11 regular hexagons, 66 rhombi.

-A____2(2 n
3

• • • + 5 + 3  +  1]— 4n>- —-
O D
1 1 _  n(4n2 —1)
3 _ 6 “  3
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(97) (1) Suppose iVj (m, n) is the number of squares, 
and N2(m, n) is the number of rectangles which can be 
seen on an “m, n-board”.

If m <, n and a is the side of a square of a chess­
board, then an “m, n-board” contains m columns of 
width a, each containing n squares of side a, n — 1 
columns of width 2a, each containing n — 1 squares 
of side 2a, m — 2 columns of width 3a, each contain­
ing n — 2 squares of side 3a, etc., finally, one column 
of width ma, containing n — m +  1 squares of side ma. 
Therefore

N t(m, n) = m n+(m —1) (n—l)+ (m ~ 2 ) (n—2) +  . . .
. . . +2(n—m + 2 )+ l(n —m -fl).

It is possible to select a column of any particular 
width on an “m, n-board” in -m^ + ̂  ways. Having

selected a column it is possible to see in it
rectangles with base equal to the width of the column 
(n rectangles of altitude a, n — 1 rectangles of altitude 
2a, etc., finally, two rectangles of altitude (n — 1) a 
and one of altitude na).

Therefore, N2(m, n) _  m(m + 1) _j_ n<'n  ̂ ^ . i n par­
ticular N^n, n) = n2 +  (n — l ) 2 +  (n — 2)2 +  . . . +  
+  3! +  2s +  1> =  n<2n + *>(" + 11 : N, (8,8) « 204;
N ,(n, n) =  '■'<'■+!>■ ; N,<8, 8) =  1296.

(2) We can select a square of side k cm in the base 
of a ‘T03-cube” in (10 — k +  l )2 ways. In the column 
with the selected base there are (10 — k +  1) “/c3-cubes”. 
Therefore, in a “103-cube” it is possible to “see” (10 — 
— k +  l)3 “/c3-cubes”. Since k can be any number from 
1 to 10, therefore it is possible to see in a “103-cube” 
3025 cubes of various sorts ( l3 -f 23 +  33 +  43 -f 53 +  
+  63 +  73 +  83 +  93 +  103).

Since a rectangle can be selected in the base of a 
“103-cube” in 3025 ways (= iV2(10, 10)= 552), and in
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a column with any particular base we can see 55 rec­
tangular parallelepipeds with that base (10 +  9 +  8 +  
+  . . . +  2 +  1), therefore it is possible to see 553 
different rectangular parallelepipeds in a “103-cube”.

(98) In forty-four ways.
(99) Adding the following identities term by term

/ a 1 a 1 3 asin a  sin - =  —cos--------cos —
2 2 2 2 3

• n • a 1 3 a  1 5 asin 2 a sin - =  —cos---------- cos---- .
2 2 2 2 2

. a 1 (2/7 - l ) a 1sin /la  sin —=  —COS-i------- — -----cos
2 2 2 2

(2/7 + l)a 
2 )

we obtain

(sin a-f sin 2a+- . . .  -f- sin n«) sin— =
6

1 a 1 (2n+-l)a . (/l-fl)a . fia=  -  cos -  =  -  cos - — 1—-— = sin -—1 sin —
2 2 2 2 2 2

whence

sin a+sin 2 a  +  . . . +- sin m  =  

(100)

. (/7 +  l ) a  . nxsin C) -  sin —-

sin-

[3 (1 0 * + 1 0 ft-M -  • • • + 1 0  +  l ) n  +  l ] 2 =
n(10*+1 — 1) 1 2 ^  /12(lQ 2t+2_2X 10t+1 +  l )

2n(10i:+1—1) , . 102*+2_10*+1-1----------------------+  1 = n2----- -— :---------1-

(6 n—ri2)

3
10*+1- 1
10—1

10—1

+ 1 =n2(102ifc+1+102,:-l- . . . +

+  10*+J)+ (6 n —n2) (10fc+ 10fc“i +  . . . + ! )  +  !•
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(101) Since the volume of the liquid in the first 
tumbler remains unchanged after two pourings, there­
fore the volume of spirits which passed into the first 
tumbler equals the volume of water which passed into 
the second tumbler (the note about “thorough mixing 
would have needed to be used in the arithmetical — 
much longer 1 — solution, which, true, would have 
enabled us to determine also the amount of admixture 
in each tumbler).

(102) The portrait on the wall was that of Petrov’s 
grandson. (Petrov’s fancy answer could be rephrased 
thus; “I am the grandfather of the hanging one”).

(103) Since everyone has 8 great-great-grandfathers 
and 8 great-great-grandmothers, and each of these 
sixteen persons had 16 direct ancestors in the “fourth 
generation” in his turn, the number required is 256 
(16 x 16).

The number of direct ancestors in the “eighth gene­
ration” would be less than 256 if there were cases, say 
of marriages between second cousins, etc.

(104) 15'; if we join up any points A and C situated 
on the sides of the angle ABC , we see through a magni­
fying glass a similar triangle A'B'C  with angles equal 
to those of triangle ABC.

(105) By 25%. (If say, one kg of potatoes costs a 
roubles, then its cost after price reductions is 0-8a 
roubles, and a roubles now buys 1-25 kg potatoes.)

(105a) By 50%. (If before reductions, 100 roubles 
buys b kg of potatoes, 100 roubles could buy 1-2b kg 
of potatoes after the first reduction, and T2 x T256 =  
= 1-5 b kgm of potatoes after the second reduction.)

(106) 44 times. (In 24 hr the minute hand makes 24 
revolutions and the hour hand makes 2 revolutions; 
therefore, the minute hand overtakes the hour hand 
22 times, and the hands form a right angle twice between 
each two “overtakings”.)

(107) Suppose at present Kolya is x years old and Olya 
is y years old. It follows from the conditions of the 
problem that aunt Polya was x +  y years old at the
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time when Kolya was y years old, i. e. aunt Polya is x 
years older than Kolya, so that she is 2x years old at 
present; y years ago she was “of Kolya’s age” and Kolya 
was a newly born baby.

(108) The pilot saw a white (polar) bear, because it 
follows from the condition AB =  AC, that the point 
A is at the North Pole. {A could be also near the South 
Pole — see note (121) — but there are no bears there.)

(109) Denote the number of oxen by 10a +  b (0 <  
<  b <  9). A and B gained 100a2 +  20ab +  b2 roubles 
from the sale. The part of the sum gained 100a2 -f- 2ab 
was distributed equally by taking 10 roubles each in 
turn. In the remaining amount (b2 roubles) the number 
of tens must be odd, because when A took the last 10 
roubles in his turn, there remained less than ten roubles.

Since, when 0 <  b <  9, b2 =  0, 1,4,  9, 16, 25, 36, 49, 
64, 81 and only in the numbers 16 and 36 the number 
of tens is odd, the remainder turns out to be 6 roubles. 
From the equation 10 — x — 6 + x w e  find that the 
purse cost 2 roubles.

(110) Suppose the husbands bought s, x, z objects, 
and their wives bought t, y and w objects respectively. 
Then s2 — t2 =  x2 — y2 =  z2 _  w2 =  45, or (s -f t)
(s - t )  =  (x +  y) (x — y) =  (z +  w) (z w) — 45.

But the number 45 can be factorized in three ways 
only: 45 =  45 x 1 =  15 x 3 =  9 x 5. From the equa­
tions s +  t =  45 and s — t =  1 we find s =  23 and 
t =  22. Similarly, we find x =  9, y =  6 and z =  7, 
w =  2. Therefore, the husbands spent: 529 roubles 
(Yuri), 81 roubles (Alexander) 49 roubles (Login), 
and their wives spent: 484 roubles (Tatyana), 36 roubles 
(Nina), 4 roubles (Olga).

(111) Suppose the total amount of money in the
general case is x (when -  ■ j- part of the remainder 
is added each time).

x — 1
j*  _ ^  —------------

Then 1 +  x~^ = 2  + -------- . f1 + *, whence x =  n2n +  1 n +  1
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n2_ I
The first child’s share is (in roubles): 1 +  n +T =  n>2_   ey

the second child’s share is 2 +  — -  + i—  =  2 + (n —2) =

=  n, the third child’sshareis3 +  n n ^ —- = 3  + (n — 3) =
=  n, etc. If we suppose that the first k children rece­
ived n roubles each, the (k +  l)th child’s share is 
k  +  1 n 2- k n - ~ ( k ± ^ l l  =  k  _|_ i  _|_ n  _  (A +  ! )  =  n  I t

follows hence, that each child received n roubles.
(112) If Gleb walked x km (towards the end of the 

road), then Pavel walked the same distance at the 
beginning of the road (they arrived at N  simultaneously!)

While Gleb walked x km with a speed of u km/hr, 
Yuri travelled 2s — 3z km with a speed of v km/hr 
(s — 2x to meet Pavel and s — x to catch up with
Gleb). Therefore 2s^ 3x =  — , whence x =  — ^ r -  

and the time taken was —  + t  f !  hr.
X  D  V ( V  +  3 u )

(113) The circumference of the clock face is divided 
into 60 minute “divisions”. Suppose the job began at 
4* o’clock, and ended at 7y o’clock. As the hour hand 
moves 12 times slower than the minute hand, we have

. .  / i = 1 2 ( y  — 2 0 ) , 5 2 8 0two equations: y j2(i_35) > whence x — ~143 =  x„.
3 3 0 0

y =  w  =  y°-
It is easy to verify that x 0 — 30 =  30 — yn (see 

Fig. 146).
(114) If the time shown by the clock retains sense, 

when the hour hand and the minute hand change places 
in positions “m hr x min” and “n hr y min”, we must

have!— = 12(y_5m) navel y  = 12(x —5 n )
6 0 (n  +  12)m  

143  ■

whence x = 60(/7i +  1 2 n )  
1 4 3 '" '

Since m and n vary from 0 to 11 inclusively, each 
pair of numbers m, n n) gives two instants when
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the hands can interchange places “painlessly”. In 12 hr 
there are 132 (2 x C212) such instants, and in 24 hr 
there are 264 such instants.

In addition, the hour hand and the minute hand 
“coincide” 22 times in 25 hr, i. e. they can “interchange 
places” without changing positions.

(115) Every s-digit number n is confined within the 
limits 10s-1 <, n. <  10s. There are altogether 9 x 10s-1 
s-digit numbers and the total number of digits in them 
is 9s x 10s-1. In all s-digit numbers the first digit 
is not zero, and in the remaining places zero and one 
of the other digits is encountered an equal number of 
times. Therefore, the number of zeros in all s-digit num­
bers e q u a l s _  9(s _  i) x  10s-2 (the
same number as that of all digits in all (s — 1) 
digit numbers).

If is the total number of digits in the sequence of 
numbers 1, 2, 3 ,. . ., 10k — 1, 10* and N2 is the total 
number of zeros in the sequence 1, 2, 3, . . ., 10k+1 — 1, 
10k+1, then Nx =  N2 =  9 +  9 x 2 x l 0 + 9 x 3 x  
X 10* +  . . . +  9 x k x  lO*-1 +  k +  1 (k +  1 is the 
number of digits in the number 10k, or the number 
of zeros in 10k+1).

6 0

30

Fig. 146.
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(116) We place the figure S  on paper in any way 
desired (Fig. 147). We then transfer in a parallel manner 
all squares occupied by the figure into some single 
square w. Here the areas occupied by the figure may 
overlap.

In w there is bound 
to be a point A not 
occupied by pieces of 
figure S. There are poi­
nts Av A2, . . .  in other 
squares, which occupy 
the same positions in 
other squares as A oc­
cupies in w, and are not 
covered by portions of
S. It is sufficient to shift 
the paper under S, so 
that the nodes coincide 
with A, An A2, etc.

(117) If we are given 
lines Zx and Za distributed at random in space, it is, 
generally speaking, possible to draw a straight line m 
through A, which intersects Zx and Za (this is impossible 
in exceptional cases, when Zx || Za and A does not lie 
in the plane containing Zx and l2). It is sufficient to pass 
planes through A and Zx and through A and Z2 and their 
intersection is the required straight line m.

By picking various points A on the straight line Z3 
we obtain an infinite set of lines m1, ma, . .  ., each inter­
secting lv  l2, Z3.

The straight lines mv  m2, m 3, . .  . form a so-called 
ruled surface, which is intersected by Z4, generally speak­
ing, at some point B lying on some straight line mv 
This straight line intersects lv  Z2, Z3, Z4.

(118) Suppose Rs is the radius of the circle Cs (0
<. s <, 1000), 0 is the centre of circle C0 and Om is the 
centre of circle Cm (1 <, m <, 1000).

The radii of circles C0, Ck, Ck+, are connected by the 
relationship

Fig. 147. 

a point A and two straight
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R k+1 = RgR k .

( V r0 - W k )2 ’ ( I )

(from the triangle OOkA (see Fig. 148) we have (R0 +  
+  Rk)2 -  (R0 =  Rky  =  z2 or X =  2 l/(R0Rk); similarly, 
from the triangles OOk+lB and OkOk+l C we get 
(x +  y) =  2 ]'(RoRk+i) and y =  2 )'(RkRk+,); therefore

]f~R0R k + i — Y R kR,:+ l = .
Expressing the lengths of radii in km we have R0 — 1, 
=  10~6. According to formula (1), for k =  1 we get

R  = 1 x 10~6 =  _ 1_
2 (1 - 1 0 - 3)2 9992 ’

and for k =  2,

9992 { 999 J 9982
Assuming that

Rm = ---------   , (2)
(1 0 0 0 -m + l)2

from formula (1) we geti?m+1 =  (ido^H p (transition 
from m to m +  1) and, as formula (2) holds for m
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equal to unity, it is true for any m not exceeding one 
thousand, since, when m =  1000, it gives I?100o = 1 
and the circle C1001 cannot be constructed.

(119) Let the direction of the ray m, incident on the 
plane Oxy be characterized by the unit vector e =  AO =  
=  (ex, ey, ez) (the brackets contain the components of 
vector e parallel to the coordinate axes). The ray m', 
reflected from the plane Oxy (or from a plane, parallel 
to Oxy) has, as unit vector, ex =  (ex, eg, —ez), the only 
change is the sign of the components parallel to the 
axis 0 2 (see Fig. 149).

The unit vectors of rays m" and m'", obtained on 
reflecting ray m' from the plane parallel to plane Oxz 
and of ray m" from the plane parallel to the plane 
Oyz are e2 = (<?*, ~e„, —ez).

and e3 = (—ex, —eg, —ez). Therefore, m"' \ \m and the 
direction of the ray m"' is opposite to that of ray m.

(120) The components a , /?, y (parallel to the edges 
of the parallelepiped) of the unit vector e (a , /3, y) 
characterizing the required direction of the ray, do not 
alter in absolute magnitude on being reflected from 
the faces of the parallelepiped. Therefore, if an imaginary 
point moves along the incident ray and along all reflected 
rays, the sums of its displacements in the direction of 
each of the axes Ox, Oy and Oz (regarding as positive 
the displacements both up and down, rightwards and 
leftwards and “towards us” and “away from us”) 
are proportional to the numbers |a|, )/?:, |yl.
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But, at the time of the point’s return, after reflection 
from all faces, to the starting point, these summary 
displacements equal the doubled lengths of edges, 
a ,  b, c of the parallelepiped, therefore |a| : |/?[ : jy| = 
= a:b:c ,  i. e. the ray should be directed parallel to one 
of the diagonals of the parallelepiped.

The solution of the problem does not really become 
any more complicated, if the ray sought is to be reflected 
from the left face, the right face and the back face 
three times, from the front face twice, from the lower 
face four times and from the upper face five times. 
Try to give the corresponding arguments when the 
distances of the starting point from the left, front 
and bottom faces of the parallelepiped are a ' , b', c' 
respectively.

(121) The obvious solution: A — North Pole; less 
obvious solutions: A — any point in the Southern 
Hemisphere, situated on the parallel I’ 2000 1cm to the
North of parallel I, whose length equals km
(n is any natural number).

(122) Since the aeroplane flew a  km eastwards and 
found itself at the end of the journey 3a km east of 
Leningrad, it must have been flying eastwards along 
a “parallel <p” whose radius r is three times smaller 
than the radius r of the Leningrad parallel (latitude
60°North); therefore,R cos =<Pfi =  j  =  -Rc°s 60. ^
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whence q> 80°30' (Fig. 150 gives the projection 
of the Northern Hemisphere on to a plane parallel to 
the earth’s axis). Therefore a is the length of the arc 
of the meridian between parallel 60° and parallel

80°30' i. e. a ^ 40000 km x 20.5 
360 ^  2278 km.

(123) It should be taken into account that the sum 
of angles of a spherical triangle is always greater, than 
180°, and its area is calculated from the formula

S a b c  = (a +  /J +  y — ri)R2
where a, /?, y are the values of the angles A, B, C ex­
pressed in radian measure.

Indeed, if any pair of the sides of the spherical tri­
angle BC are produced to meet (see Fig. 151) we get

“lunes” ABA'CA, BAB'CB, CAC'BC, the areas of 
whose surfaces are

S a b a 'c a  =  , (1)
2?r

S b a b 'o b  = 4 tcB?--^—
2 n
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and

Scacbc = S abc +  S abc = AttR 2--^— .
2 n

If we substitute SA-RC for 5,4BC..,in the last equation, 
we get

S abc +  S a'B'c = l:rcfi2-— - (3)
2 7Z

(any two sides of spherical triangles ABC' and A'B'C 
are alike, and although these triangles cannot, generally 
speaking, coincide on being superimposed upon each 
other, it can be proved that S A'B.C =

Summing eqns. (1), (2) and (3) term by term we get
2 S abc = 2;zft2- 2 f t 2(a£ +  +y),

whence
S abc=  (a +  /?-j-y — tc) f t2.

For example, in the triangle DEF, formed by the 
arcs DE and DF of two meridians, which intersect 
at right angles, and the arc EF  of the equator, each

angle equals Therefore, SBEF =  ( -  +  ^ R2 =
nR*

= —  (just one eighth of the area of the whole sphere).
a

(124) Since the radius of the earth ft 6370 km 
and the area of the given spherical triangle ABC —

Y3— S ^  km2, therefore, assuming <  A =  <  B = 
=  <  C =  a rad, we get (see the preceding note)

S Y33« — -jp 4-x- 637q̂  rad. Multiplying the right-
, , , 180 X 60 X 60 . , . . . .hand side b y ------- -------- in order to express it in
seconds, we obtain <  A =  < f t  =  <  C ^  60°0'0-0007"

(125) Figure 152 shows three methods of linking three 
string rings; the first two methods can be easily used 
also for linking n rings in such a way that if one ring 
is broken the remaining rings can be parted without 
any further breakages.
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