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PUBLISHERS PREFACE. 

HE essays which comprise this volume appeared first in The 

Momist at different times during the years 1905 to 1916, and 

under different circumstances. Some of the diagrams were photo- 

graphed from the authors’ drawings, others were set in type, and 

different authors have presented the results of their labors in 

different styles. In compiling all these in book form the original 

presentation has been largely preserved, and in this way uniformity 

has been sacrificed to some extent. Clarity of presentation was 

deemed the main thing, and so it happens that elegance of typo- 

graphical appearance has been considered of secondary importance. 

Since mathematical readers will care mainly for the thoughts pre- 

sented, we hope they wil] overlook the typographical shortcomings. 

The first edition contained only the first eight chapters, and these 

have now been carefully revised. The book has been doubled in 

volume through the interest aroused by the first edition in mathe- 

matical minds who have contributed their labors to the solution of 

problems along the same line. 

In conclusion we wish to call attention to the title vignette 

which is an ancient Tibetan magic square borne on the back of 

the cosmic tortoise. 





INTRODUCTION. 

ies peculiar interest of magic squares and all lusus numerorum 

in general lies in the fact that they possess the charm of mys- 

tery. They appear to betray some hidden intelligence which by a 

preconceived plan produces the impression of intentional design, a 

phenomenon which finds its close analogue in nature. 

Although magic squares have no immediate practical use, they 

have always exercised a great influence upon thinking people. It 

seems to me that they contain a lesson of great value in being a 

palpable instance of the symmetry of mathematics, throwing thereby 

a clear light upon the order that pervades the universe wherever 

we turn, in the infinitesimally small interrelations of atoms as well 

as in the immeasurable domain of the starry heavens, an order 

which, although of a different kind and still more intricate, is also 

traceable in the development of organized life, and even in the 

complex domain of human action. 

Pythagoras says that number is the origin of all things, and 

certainly the law of number is the key that unlocks the secrets of 

the universe. But the law of number possesses an immanent order, 

which is at first sight mystifying, but on a more intimate acquain- 

tance we easily understand it to be intrinsically necessary; and th‘s 

law of number explains the wondrous consistency of the laws of 

nature. Magic squares are conspicuous instances of the intrinsic 

harmony of number, and so they will serve as an interpreter of the 

cosmic order that dominates all existence. Though they are a mere 

intellectual play they not only illustrate the nature of mathematics, 

but also, incidentally, the nature of existence dominated by mathe- 

matical regularity. — 



vill INTRODUCTION. 

In arithmetic we create a universe of figures by the process of 

counting ; in geometry we create another universe by drawing lines 

in the abstract field of imagination, laying down definite directions ; 

in algebra we produce magnitudes of a still more abstract nature, ex- 

pressed by letters. In all these cases the first step producing the gen- 

eral conditions in which we move, lays down the rule to which all 

further steps are subject, and so every one of these universes is 

dominated by a consistency, producing a wonderful symmetry. 

There is no science that teaches the harmonies of nature more 

clearly than mathematics, and the magic squares are like a mirror 

which reflects the symmetry of the divine norm immanent in all 

things, in the immeasurable immensity of the cosmos and in the 

construction of the atom not less than in the mysterious depths of 

the human mind. 

PAuis GAR US: 



CHAPTER «1, 

MAGIC SQUARES. 

Aes study of magic squares probably dates back to prehistoric 

times. Examples have been found in Chinese literature written 

about A.D, 1125* which were evidently copied from still older 

documents. It is recorded that as early as the ninth century magic 

squares were used by Arabian astrologers in their calculations of 

horoscopes etc. Hence the probable origin of the term “magic” 

which has survived to the present day. 

THE ESSENTIAL CHARACTERISTICS OF MAGIC SQUARES. 

} A magic square consists of a series of numbers so arranged 

in a square, that the sum of each row and column and of both the 

corner diagonals shall be the same amount which may be termed 

the summation (S). Any square arrangement of numbers that 

fulfils these conditions may properly be called a magic square. 

Various features may be added to such a square which may en- 

hance its value as a mathematical curio, but these must be considered 

non-essentials. 

There are thus many different kinds of magic squares, but this 

chapter will be devoted principally to the description of associated 

or regular magic squares, in which the sum of any two numbers 

that are located in cells diametrically equidistant from the center 

of the square equals the sum of the first and last, terms of the 

series, or m7 + I. 

Magic squares with an odd number of cells are usually con- 

* See page 19 of Chinese Philosophy by Paul Carus. 
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structed by methods which differ from those governing the con- 

struction of squares having an even number of cells, so these two 

classes will be considered under separate headings. 

ASSOCIATED OR REGULAR MAGIC SQUARES OF ODD NUMBERS. 

The square of 3 X 3 shown in Fig. 1 covers the smallest ag- 

gregation of numbers that is capable of magic square arrangement, 

and it is also the only possible arrangement of nine different num- 

bers, relatively to each other, which fulfils the required conditions. 

It will be seen that the sum of each of the three vertical, the three 

horizontal, and the two corner diagonal columns in this square is 

15, making in all eight columns having that total: also that the sum 

of any two opposite numbers is 10, which is twice the center num- 

ber, or n?+ 1. 

The next largest odd magic square is that of 5 X 5, and there 

are a great many different arrangements of twenty-five numbers, 

aes [as 
PENA 

S15. | 4 | 6 | 73 [20422 | S65; 

vol alepe|a]. 
BPZZiEIE 

Fig. 1. Fig. 2. 

which will show magic results, each arrangement being the pro- 

duction of a different constructive method. Fig. 2 illustrates one 

of the oldest and best known arrangements of this square. 

The sum of each of the five horizontal, the five vertical, and the 

two corner diagonal columns is 65, and the sum of any two numbers 

which are diametrically equidistant from the center number is 26, 

or twice the center number. 

In order intelligently to follow the rule used in the construction 
of this square it may be conceived that its upper and lower edges 
are bent around backwards and united to form a horizontal cylinder 
with the numbers on the outside, the lower line of figures thus 
coming next in order to the upper line. It may also be conceived 
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that the square is bent around backwards in a direction at right 
angles to that which was last considered, so that it forms a vertical 
cylinder with the extreme right- and left-hand columns adjacent to 
each other. 

An understanding of this simple conception will assist the 
student to follow other methods of building odd magic squares 
that are to be described. which are based on a right- or left-hand 

diagonal formation. 

Referring to Fig. 2, it will be seen that the square is started 

by writing unity in the center cell of the upper row, the consecutive 

numbers proceeding diagonally therefrom in a right-hand direction. 

Using the conception of a horizontal cylinder, 2 will be located in the 

lower row, followed by 3 in the next upper cell to the right. Here 

the formation of the vertical cylinder being conceived, the next up- 

per cell will be where 4 is written, then 5; further progress being 

here blocked by 1 which already occupies the next upper cell in 

diagonal order. 

When a block thus occurs in the regular spacing (which will 

be at every fifth number in a 5 X 5 square) the next number must 

in this case be written in the cell vertically below the one last filled, 

so that 6 is written in the cell below 5, and the right-hand diagonal 

order is then continued in cells occupied by 7 and 8. Here the 

horizontal cylinder is imagined, showing the location of 9, then the 

conception of the vertical cylinder will indicate the location of 10; 

further regular progression being here once more blocked by 6, 

so Ii is written under 10 and the diagonal order continued to, 15. 

A mental picture of the combination of vertical and horizontal cyl- 

inders will here show that further diagonal progress is blocked by 

II, so 16 is written under 15. The vertical cylinder will then indi- 

cate the cell in which 17 must be located, and the horizontal cylinder 

‘will show the next cell diagonally upwards to the right to be occu- 

pied by 18, and so on until the final number 25 is reached and the 

square completed. 

Fig. 3 illustrates the development of a 7 X 7 square constructed 

according to the preceding method, and the student is advised to 

follow the sequence of the numbers to impress the rule on his mem- 
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ory. A variation of the last method is shown in Fig. 4, illustrating 

another 7 X 7 square. In this example 1 is placed in the next cell 

horizonally to the right of the center cell, and the consecutive 

numbers proceed diagonally upward therefrom, as before, in a 

right-hand direction until a block occurs. The next number is then 

written in the second cell horizontally to the right of the last cell 

filled (instead of the cell below as in previous examples) and the 

upward diagonal order is resumed until the next block occurs. 

38 \47 

Sy 5 

Then two cells to the right again, and regular diagonal order con- 

tinued, and so on until all the cells are filled. 

The preceding examples may be again varied by writing the 

numbers in left-hand instead of right-hand diagonal sequence, 

making use of the same spacing of numbers as before when blocks 

occur in the regular sequence of construction. 

We now come to a series of very interesting methods for 

building odd magic squares which involve the use of the knight’s 

move in chess, and it is worthy of note that the squares formed by 
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these methods possess curious characteristics in addition to those 
previously referred to. To chess-players the knight’s move will 
require no coniment, but for those who are not familiar with this 
game it may be explained as a move of two cells straight forward 
in any direction and one cell to either right or left. 

The magic square of 5 & 5 illustrated in Fig. 5 is started by 
placing 1 in the center cell of the upper row, and the knight’s 

move employed in its construction will be two cells upward and 

one cell to the right. 

Using the idea of the horizontal cylinder 2 must be written 

in the second line from the bottom, as shown, and then 3 in the 

second line from the top. Now conceiving a combination of the 

horizontal and vertical cylinders, the next move will locat2 4 in the 

extreme lower left-hand corner, and then 5.in the middle row. We 

now find that the next move is blocked by 1, so 6 is written below 

5, and the knight’s moves are then continued, and so until the 

last number, 25, is written in the middle cell of the lower line, and 

the square is thus completed. 

In common with the odd magic squares which were previously 

described, it will be found that in this square the sum of each of 

the five horizontal, the five perpendicular, and the two corner diag- 

onal columns is 65, also that the sum of any two numbers that are 

diagonally equidistant from the center is 26, or twice the number 

in the center cell, thus filling all the qualifications of an associated 

magic square. 

In addition, however, to these characteristics it will be noted 

.that each spiral row of figures around the horizontal and vertical 

cylinders traced either right-handed or left-handed also amounts 

to 65. In the vertical cylinder, there are five right-hand, and five 

left-hand spirals, two of which form the corner diagonal col- 

umns across the square, leaving eight new combinations. The same 

number of combinations will also be found in the horizontal cylin- 

der. Counting therefore five horizontal columns, five vertical col- 

umns, two corner diagonal columns, and eight right- and left- 

hand spiral columns, there are in all twenty columns each of 

_ which will sum up to 65, whereas in the 5 X 5 square shown 
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in Fig. 2 there will be found only sixteen columns that will amount 

to that number. 

This method of construction is subject to a number of varta- 

tions. For example, the knight’s move may be upwards and to the 

left hand instead of to the right, or it may be made downward and 

either to the right or left hand, and also in other directions. There 

are in fact eight different ways in which the knight’s move may 

be started from the center cell in the upper line. Six of these 

moves are indicated by figure 2’s in different cells of Fig. 6, and. 

each of these moves if continued in its own direction, varied by 

the breaks as before described, will produce a different but associated 

square. The remaining two possible knight’s moves, indicated by 

cyphers, will not produce magic squares under the above rules. 

mee 
i7\= [sle7[9 V7 
23) 8 [al 2 [|_| 
Leste [sl | 

Fig. 7. 

It may here be desirable to explain another method for locating 

numbers in their proper cells which some may prefer to that which 

involves the conception of the double cylinder. This method con- 

sists in constructing parts of auxiliary squares around two or more 

sides of the main square, and temporarily writing the numbers in 

the cells of these auxiliary squares when their regular placing car- 

ries them outside the limits of the main square. The temporary 
location of these numbers in the cells of the auxiliary squares will 
then indicate into which cells of the main square they must be per- 
manently transferred. 

Fig. 7 shows a 5 X 5 main square with parts of three auxiliary 
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squares, and the main square will be built up in the same way as 

Fig. 5. 

Starting with 1 in the center of the top line, the first knight’s 
move of two cells upward and one to the right takes 2 across the 
top margin of the main square into the second cell of the second 
line from the bottom in one of the auxiliary squares, so 2 must be 

transferred to the same relative position in the main square. Start- 
ing again from 2 in the main square, the next move places 3 within 

‘the main square, but 4 goes out of it into the lower left-hand corner 

of an auxiliary square, from which it must be transferred to the 

same location in the main square, and so on throughout. 

The method last described and also the conception of the double 

cylinders may be considered simply as aids to the beginner. With 

a little practice the student will be able to select the proper cells in 

the square as fast as figures can be written therein. 

Having thus explained these specific lines of construction, the 

general principles governing the development of odd magic squares 

by these methods may now be formulated. 

1. The center cell in the square must always contain the middle 

number of the series of numbers used, i. e., a number which 

is equal to one-half the sum of the first and last numbers of 

the series; or n? + I. 

2. Noassociated magic square can therefore be started from its 

center cell, but it may be started from any cell other than 

the center one. 

3. With certain specific exceptions which will be referred to 

later on, odd magic squares may be constructed by either 

right- or left-hand diagonal sequence, or by a number of so- 

called knight’s moves, varied in all cases by periodical and 

well defined departures from normal spacing. 

4. The directions and dimensions of these departures from 

normal spacing, or “break-moves,” as they may be termed, 

are governed by the relative spacing of cells occupied by 

the first and last numbers of the series, and may be deter- 

mined as follows: 
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Rute: Place the first number of the series in any desired cell 

(excepting the center one) and the last number of the series 

in the cell which is diametrically opposite to the cell con- 

taining the first number. The relative spacing between the 

cell that contains the last number of the series and the cell 

that contains the first number of the series must then be 

repeated whenever a block occurs in the regular progres- 

sion. 

EXAMPLES. 

Using a blank square of 5 X 5, I may be written in the middle 

cell of the upper line. The diametrically opposite cell to this being 

the middle cell in the lower line, 25 must be written therein. 1 will 

therefore be located four cells above in the middle vertical column, 

or what is the same thing, and easier to follow, one cell below 25. 

Fign.s. Fig. 9. 

When, therefore, a square of 5 X 5 is commenced with the first 

number in the middle cell of the upper line, the break-move will 

be one cell downward, irrespective of the method of regular ad- 

vance. Fig. 8 shows the break-moves in a 5 x 5 square as above 

described using a right-hand upward diagonal advance. 

Again using a blank 5 X 5 square, I may be written in the cell 
immediately to the right of the center cell, bringing 25 into the cell 
to the left of the center cell. The break-moves in this case will 

therefore be two cells to the right of the last cell occupied, irrespec- 
tive of the method used for regular advance. Fig. 9 illustrates the 
break-moves in the above case, when a right-hand upward diagonal 
advance is used. The positions of these break-moves in the square 
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will naturally vary with the method of advance, but the relative 
spacing of the moves themselves will remain unchanged. 

Note: The foregoing break-moves were previously described in 
several specific examples (See Figs. 1, 2, 3, 4, and 5). and 
the reader will now observe how they agree with the gen- 

eral rule. 

Once more using a blank square of 5 X 5, I may be written 

in the upper left-hand corner and 25 in the lower right-hand corner. 

1 will then occupy a position four cells removed from 25 in a left- 

hand upward diagonal, or what is the same thing and easier to 

follow, the next cell in a right-hand downward diagonal. This will 

therefore be the break-move whenever a block occurs in the regular 

spacing. Fig. 10 shows the break-moves which occur when a 

knight’s move of two cells to the right and one cell upward is used 

for the regular advance. 

As a final example we will write 1 in the second cell from the 

left in the upper line of a 5 X 5 square, which calls for the placing 

of 25 in the second square from the right in the lower line. The 

place relation between 25 and 1 may then be described by a knight's 

move of two cells to the left and one cell downward, and this will 

be the break-move whenever a block occurs in the regular spacing. 

The break-moves shown in Fig. 11 occur when an upward right- 

hand diagonal sequence is used for the regular advance. 

As before stated odd magic squares may be commenced in 

any cell excepting the center one, and associated squares may be 

built up from such commencements by a great variety of moves, 
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such as right-hand diagonal sequence, upward or downward, left- 

hand diagonal sequence upward or downward, or a number of 

knight’s moves in various directions. There are four possible moves 

from each cell in diagonal sequence, and eight possible moves from 

each cell by the knight’s move. Some of these moves will produce 

associated magic squares, but there will be found many exceptions 

which can be shown most readily by diagrams. 

Fig. 12 is a 5 X 5 square in which the pointed arrow heads in- 

dicate the directions of diagonal sequence by which associated 

squares may be constructed, while the blunt arrow heads show the 

directions of diagonal sequence which will lead to imperfect results. 

Fig. 13 illustrates the various normal knight’s moves which may be 

started from each cell and also indicates with pointed and blunt 

arrow heads the moves which will lead to perfect or imperfect re- 

sults. For example it will be seen from Fig. 12 that an associated 

5 X 5 square cannot be built by starting from either of the four 

corner cells in any direction of diagonal sequence, but Fig. 13 shows 

four different normal knight’s moves from each corner cell, any 

of which will produce associated squares. It.also shows four other 

normal knight’s moves which produce imperfect squares. 

EXAMPLES OF 5 X 5 MAGIC SQUARES. 

Figs. 14 and 15 show two 5X5 squares, each having I in 
the upper left-hand corner cell and 25 in the lower right-hand 
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corner cell, and being constructed with different knight’s moves. 
Fig. 16 shows a similar square in which an elongated knight’s move 

PAZAPAEAZA PARA RARz a ee 
Samoe 
Ecieaa 

Fig. 14. 

NS 
EI 

is used for regular advance. 
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Fig. 16. 

The break-move is necessarily the 

Same in each example. (See Fig. 10.) 

Pa 
rele |74| a1 7 | 
||| 6 [| 
“ala [val 5 [27 
7 jo [2 slr 

Fig. 17. 
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Fig. 18. 

Figs. 17, 18, 19 and 20 show four 5 x 5 squares, each having 

I in the second cell from the left in the upper line and 25 in the 

ey pepe] 
[2324 3 || 
ale aa /| 
paps] [4s 
fe ba peas 

Fig. 109. 

EnPARIZIED 
isle ler] [7 | 
fe [esa [ze 
valeale |e | 
a Pale besl | 

Fig. 20. 

second cell from thé right in the lower line, and being built up 

respectively with right- and left-hand upward diagonal sequence 
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and upward right- and downward left-hand knight’s moves, and 

with similar break-moves in each example. See Fig. 11.) 

Figs. 21, 22, and 23 illustrate three 5 X 5 squares, each having 

1 in the upper right-hand corner and 25 in the lower left-hand 

corner, and being built up respectively with upward and downward 

right-hand normal knight’s moves, and a downward right-hand 

elongated knight’s move. 

For the sake of simplicity these examples have been shown in 

5 X 5 squares, but the rules will naturally apply to all sizes of odd 

magic squares by using the appropriate numbers. The explana- 

tions have also been given at some length because they cover gen- 

eral and comprehensive methods, a good understanding of which 

is desirable. 

It is clear that no special significance can be attached to the 

eae 
7/15 fol 7 [os pile 7b 

[|| ea 
ae 

PSENEAZIZ: 
igs 2i. Fig. 22. Fig, ‘23. 

so-called knight’s move, per se, as applied to the construction of 

magic squares, it being only one of many methods of regular spa- 

cing, all of which will produce equivalent results. For example, the 

3 X 3 square shown in Fig. 1 may be said to be built up by a suc- 

cession of abbreviated knight’s moves of one cell to the right and 

one cell upwards. Squares illustrated in Figs. 2, 3, and 4 are also 

constructed by this abbreviated knight’s move, but the square illus- 
trated in Fig. 5 is built up by the normal knight’s move. 

It is equally easy to construct squares by means of an elongated 
knight’s move, say, four cells to the right and one cell upwards 
as shown in Fig. 24, or by a move consisting of two cells to the 
right and two cells downwards, as shown in Fig. 25, the latter being 
equivalent to a right hand downward diagonal sequence wherein 
alternate cells are consecutively filled. 
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There are in fact almost innumerable combinations of moves 
by which these odd magic squares may be constructed. 

The foregoing method for building odd magic squares by a 

continuous process involves the regular spacing of consecutive 

numbers varied by different well defined break-moves, but other 

methods of construction have been known for many years. 

pope) p= 
ea|oaloo 25) 7] 4 [75] ee] 
|] alsslar| 4] 2 |e 
22] 24 ol ar|eaa 7 
po aoa] | lee 7] 
Eararaiecea e 
| [eo | oor] eles 
ale [rel] aloes 
else 9] se Lerleal ee 

Fig. 25. 

Ss 360. 

One of the most interesting of these other methods involves 

the use of two or more primary ‘squares, the sums of numbers in 

similarly located cells of which constitute the correct numbers for 
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transfer into the corresponding cells of the magic square that is 

to be constructed therefrom. 

This method has been ascribed primarily to De la Hire but has 

been more recently improved by Prof. Scheffler. 

It may be simply illustrated by the construction of a few 5 X 5 

squares as examples. Figs. 26 and 27 show two simple primary 

squares in which the numbers I to 5 are so arranged that like num- 

bers occur once and only once in similarly placed cells in the two 

squares ; also that pairs of unlike numbers are not repeated in the 

same order in any similarly placed cells. Thus, 5 occupies the ex- 

treme right-hand cell in the lower line of each square, but this com- 

bination does not occur in any of the other cells. So also in Fig. 27 

4 occupies the extreme right-hand cell in the upper line, and in Fig. 

Fig. 26: - : Fig. 27. 

26 this cell contains 2. No other cell, however, in Fig. 27 that con- 

tains 4 corresponds in position with a cell in Fig. 26 that contains 2. 

Leaving the numbers in Fig. 26 unaltered, the numbers in Fig. 27 

must now be changed to their respective root numbers, thus pro- 

ducing the root square shown in Fig. 28. By adding the cell num- 

bers of the primary square Fig. 26 to the corresponding cell numbers 

Rrimary: numbers<... 23 21h aan ys. 

Root numbers. ....:.. O50, e Gece: 

of the root square Fig. 28, the magic square shown in Fig. 29 is 
formed, which is also identical with the one previously given in 
Fig: 14. 

The simple and direct formation of Fig. 14 may be thus com- 
pared with the De la Hire method for arriving at the same result. 
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It is evident that the root square shown in Fig. 28 may be dis- 
pensed with by mentally substituting the root numbers for the pri- 
mary numbers given.in Fig. 27 when performing the addition, and 
by so doing only two primary squares are required to construct the 
magic square. The arrangement of the numbers r'to’5 in the two 
primary squares is obviously open to an immense number of varia- 

Fig. 28. 

tions, each of which will result in the formation of a different but 

associated magic square. Any of these squares, however, may be 

readily constructed by the direct methods previously explained. 

A few of these variations are given as examples, the root num- 

bers remaining unchanged. The root square Fig. 32 is formed 

from the primary square Fig. 31, and if the numbers in Fig. 32 

are added to those in the primary square Fig. 30, the magic square 

Fig. 33 will be produced. This square will be found identical with 

that shown in Fig. 15. 

As a final example the magic square shown in Fig. 37, pre- 

viously given in Fig. 17, is made by the addition of numbers in the 
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primary square Fig. 34 to the numbers occupying similar cells in 

root square Fig. 36, the latter being derived from the primary square 

Fig. 35. If the root square shown in Fig. 38 is now constructed 

Zs 

70 

Bre 
als bs) 
Pies 
pels [eel 
pall [2 bs 

Fig. 32. . Fig. 33. 

from the primary square Fig. 34 and the root numbers therein added 

to the primary numbers in Fig. 35, the magic square shown in Fig. 

39 is obtained, showing that two different magic squares may be 

ean 
fo also] = 
eels -a)s [2 
7s[a| 5 [oe 

Fig. 36. 

pale pa] =| 
pala] [a] = 
= [eelro] o [a 

al aol 
EIPZIZAA 
|20\/0] 6 | 
fala|iol a [ar 
72 [2 [aan 

PIPAEEAES 
PAaPAZArA 
peleslal = [a 

Fig. 37. Fig. 38. Fig. 30. 

made from any two primary squares by forming a root square from 
each of them in turn. Fig. 39 has not been given before in this 
book, but it may be directly produced by an elongated knight’s 
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move consisting of two cells to the right and two downward, using 
the normal knight’s move of two cells to the left and one cell down- 
ward as a break-move at every block in the regular spacing. 

It will be observed in all the preceding examples that the 
number 3 invariably occupies the center cell in all 5 x 5 primary 
squares, thus bringing Io in the center of the root squares, and 13 in 
‘the center of the magic squares, no other number being admissible 
in the center cell of an associated 5 X 5 magic square. A careful 

study of these examples should suffice to make the student familiar 
with the De la Hire system for building odd magic squares, and 

Fig. 41. 

this knowledge is desirable in order that he may properly appre- 

ciate the other methods which have been described. 

Before concluding this branch of the subject, mention may 

be made of another method for constructing odd magic squares 

which is said to have been originated by Bachet de Mezeriac. 

The application of this method to a 5 X 5 square will suffice for 

an example. 

The numbers 1 to 25 are written consecutively in diagonal 

columns, as shown in Fig. 40, and those numbers which come 

outside the center square are transferred to the empty cells on 

the opposite sides of the latter without changing their order. The 

result will be the magic square of 5 X 5 shown in Fig. 41. It 

- will be seen that the arrangement of numbers in this magic square 
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is similar to that in the 7X7 square shown in Fig. 4, which 

was built by writing the numbers 1 to 49 consecutively according 

to rule. The 5 <5 square shown in Fig. 41 may also be written 

out directly by the same rule without any preliminary or additional 

work. 

ASSOCIATED OR REGULAR MAGIC SQUARES OF EVEN 

NUMBERS. 

The numbers in the two corner diagonal columns in these magic 

squares may be determined by writing the numbers of the series in 

arithmetical order in horizontal rows, beginning with the first 

number in the left-hand cell of the upper line and writing line after 

line as in a book, ending with the last number in the right-hand cell 

ple 
valaleled 

Fig. AZ. 

of the lower line. The numbers then found in the two diagonal 

columns will be in magic square order, but the position of the other 

numbers must generaily be changed. 

The smallest even magic square that can be built is that of 

4X4, and one of its forms is’ shown in Fig. 42. It will be 

seen that the sum of each of the four horizontal, the four vertical, 

and the two corner diagonal columns in this square is 34, making 

in all ten columns having that total; also that the sum of any two 

diametrically opposite numbers is 17, which is the sum of the first 

and last numbers of the series. It is therefore an associated square 

of 4 X 4. 
The first step in the construction of this square is shown in 

Fig. 43, in which only the two corner diagonal columns, which are 
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written in heavy figures, have the correct summation. The numbers 
in these two columns must therefore be left as they are, but the loca- 
tion of all the other numbers, which are written in light figures, must 
be changed. A simple method for effecting this change consists in 

substituting for each number the complement between it and 17. 

Thus, the complement between 2 and 17 is 15, so 15 may be written 

in the place of 2, and so on throughout. All of the light figure 

Tone = eee 
Fela eye aS 
Agia eke tal 
Pees were oes : 

Fig. 44. Tig. 45.. 

numbers being thus changed, the result will be the magic square 

shown in Fig. 42. 

The same relative arrangement of figures may be attained by 

leaving the light figure numbers in their original positions as shown 

in Fig. 43, and changing the heavy figure numbers in the two 

corner diagonal columns to their respective complements with 17. 

It will be seen that this is only a reversal of the order of the figures 

[7 |asloa|a 2/4] [7 | 2|sfals 
so] 5 |2s|27 BBneve 
CIC ae IR 
73 77 2f |22|20 78 19 4a 23 | 24 

I |/0 40} 29 25 25° 24] 27 | 2+ 29) 30 | 

elle fdaetoccte 
Fig. 46. Fig. 47. 

SESS 

in the two corner diagonal columns, and the resulting magic square 

which is shown in Fig. 44 is simply an inversion of Fig. 42. 

Fig. 45 is a geometrical diagram of the numbers in Fig. A2s 

and it indicates a regular law in their arrangement, which also holds 

good in many larger even squares, as will be seen later on. 
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There are many other etrangements of sixteen numbers which 

will fulfil the required conditions but the examples given will suffice 

to illustrate the principles of this square. 

The next even magic square is that of 6 X 6, and one of its 

many variations is shown in Fig. 46. An analysis of this square 

Bee 
3a] [2slar [ee 
2a|23|75|74] [7a 
lap a |2a) =] 
|e =| [| 
pala] ba 

Fig. 48. 

N 

cS 

with the aid of geometrical diagrams will point the way not only 

to its own reconstruction but also to an easy method for building 

other 6 X 6 squares of this class. 

Fig. 47 shows a 6 X 6 square in which all the numbers from 

I to 36 are written in arithmetical sequence, and the twelve numbers 

in the two corner diagonal columns will be found in magic square 

order, all other numbers requiring rearrangement. Leaving there- 

fore the numbers in the diagonal columns unchanged, the next step 

will be to write in the places of the other numbers their complements 

with 37, making the square shown in Fig. 48. In this square 

twenty-four numbers (written in heavy figures) out of the total of 
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thirty-six numbers, will be found in magic square order, twelve 
numbers (written in light figures) being still incorrectly located. 
Finally, the respective positions of these twelve numbers being re- 
versed in pairs, the magic square given in Fig. 46 will be produced. 

Fig. 50 shows the geometrical diagrams of this square, A 
being a diagram of the first and sixth lines, B of the second and 
fifth lines, and C of the third and fourth lines. The striking ir- 

regularity of these diagrams points to the irregularity of the 

square which they represent, in which, although the sum of each 

of the two corner diagonal, the six horizontal, and the six perpendic- 

ular columns is 111, yet only in the two diagonal columns does the 

sum of any two numbers which occupy diametrically opposite cells, 

amount to 37, or the sum of the first and last numbers of the series. 

Owing to their pronounced irregularities, these diagrams convey 

7 36 z 30 13 24 

2 IS 8 2g 44 23 

2 15 2 J Rea 9 sg B 2 

4 33 fo 27 46 2s 

a J2 4 Gs 26 2 20 

6 3s /2 ) 235 “8 19 

Fig. 59. 

but little meaning, and in order to analyze their value for further 

constructive work it will be necessary to go a step backwards and 

make diagrams of the intermediate square Fig. 48. These diagrams 

are shown in Fig. 49, and the twelve numbers therein which must 

be transposed (as already referred to) are marked by small circles 

around dots, each pair of numbers to be transposed in position 

being connected by a dotted line. The numbers in the two corner 

diagonal columns which were permanently located from the be- 

ginning are marked with small circles. 

We have here correct geometrical figures with definite and well 

defined irregularities. The series of geometrical figures shown in 

' A, B, and C remain unchanged in shape for all variations of these 

_ 6X6 squares, but by modifying the irregularities we may readily 
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obtain the data for building a large number of variants, all showing, 

however, the same general characteristics as Fig. 46. 

A series of these diagrams, with some modifications of their 

irregularities, is given in Fig. 51, and in order to build a variety 

of 6 X 6 magic squares therefrom it is only necessary to select three 

/ 2 3 4 

Fig. 51 (First Part). 

diagrams in the order A, B, and C, which have each a different form 

of wregularity, and after numbering them in arithmetical sequence 
from I to 36, as shown in Fig. 49, copy the numbers in diagrammatic 

order into the cells of a 6 X 6 square. 

It must be remembered that the cells in the corner diagonal 
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columns of these even magic squares may be correctly filled by writing 
the numbers in arithmetical order according to the rule previously 
given, so in beginning any new even square it will be found helpful 
to first write the numbers in these columns, and they will then serve 

as guides in the further development of the square. 

ay 6 7. & 

Fig. 51 (Second Part). 

Taking for example the 6 X 6 magic square shown in Fig. 46, 

it will be seen from Fig. 49 that it is constructed from the diagrams 

marked 1—9 and 17 in Fig. 51. Comparing the first line of Fig. 46 

with diagram A, Fig. 49, the sequence of numbers is 1,—35,—34 

ya unbroken order; then the diagram shows that 33 and 3 must be 
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transposed, so 3 is written next (instead of 33) then 32 and 6 in 

unbroken order. In the last line of this square (still using diagram 

A) 31 comes first, then, seeing that 5 and 2 must be transposed, 

2 is written instead of 5; then 4; then as 3 and 33 must be trans- 

posed, 33 is written instead of 3, 5 instead of 2, and the line is 

finished with 36. Diagram B gives the development of the second 

TABLE SHOWING 128 CHANGES WHICH MAY BE RUNG ON 

THE TWENTY-FOUR DIAGRAMS IN FIG. 5I. 

A B GC 
he Oy? i 9 17, 18, I9 or 2016 changes 
6c ‘ a3 ce IO oe c of “ec — 16 “ce 

ce ““ “ae “ce II ce 6é 6“ “ce — 16 “ce 

“e ce “cc “é 12 “ce “c“c “ce “ec a 16 ce 

5 Oe OF 8 13 21,922.23 Otec4 10 
a3 é 6é 6é 14 6 ce “cc “cs — 16 “ 

e “é “ec 6é 15 ce 6<é ins ce — 16 ce 

x3 66 6c 66 16 oe ce “ec “cc — 16 ““ 

Total changes = 128 

EXAMPLES. 

Cale 
oa] «foal [v7 [a 
(2 [sa|r5|-4|e0|-0 
Pamardcar 

[2 bal [= | 
Square derived from dia- Square derived from dia- 

grams 2, Io, and 18. grams 8, 13, and 22. 

PARSE 
ba] [ee] =7| 2s 
ze) |-6|20]0 
3 [2s] 7 [ee| a 

and fifth lines of the square in the same manner, and diagram C 

the development of the third and fourth lines, thus completing the 

square. 

Tne annexed table shows 128 changes which may be rung on 

the twenty-four diagrams shown in Figure 51, each combination 

giving a different 6 X 6 square, and many others might be added 

to the list. 

The next size of even magic square is that of 8 < 8, and instead 
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of presenting one of these squares ready made and analyzing it, 
we will now use the information which has been offered by previous 
examples in the construction of a new square of this size. 

Referring to Fig. 45, the regular geometrical diagrams of the 
4 X 4 square naturally suggest that an expansion of the same may 

be utilized to construct an 8 X 8 square. This expanded diagram 

¢ oe 7 a ants ue as 4o 

2 63 fo Ss 4é 47 26 eG 

re) b2 4 x7 “419 ye 47 3é 

4% Ge ‘2 $3 20 “ss 2e 37 

sf fe ol $2 2 44 29 3é 

€ cg 1 wo 23 43 ee oe 

vd vu a So 23 42 7 Jy 

& 37 16 49 2% at 32 33 

Fig. 52. 

is accordingly shown in Fig. 52, and in Fig. 53 we have the magic 

square that is produced by -copying the numbers in diagrammatic 

order, 

acacia ae 
pale [7 [es] sale bebo 
erro eater [a alo 
foo |ae [ve eo [oefoe] v2 
a fo [oe [oer [area oe 
alos oa] [oe] el orle7 
paolo bale loelos| 2 
ead [a feelers [= le 

Fig. 53. 

Totals = 260. 

As might be anticipated, this square is associated and the ease 

with which it has been constructed points to the simplicity of the 

method employed. 

The magic square shown in Fig. 53 is, however, only one of a 
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multitude of 8 X 8 squares, all of which have the same general 

characteristics and may be constructed with equal facility from 

a oF 1s vo | 23 

é 57 46 “9) 24 

Fig. 55. 

various regular diagrams that can be readily derived from trans- 

positions of Fig. 52. Five of these variations are illustrated in Fig. 
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54, which also show the transpositions by which they are formed 
from the original diagrams. “To construct an associated magic square 
from either of these variations it is only necessary to make four 
copies of the one selected, annex the numbers 1 to 64 in arithmetical 

17 |e] 2 
4| al se] | 32] [5] 9 
Par arae Seaey 
33 | 3% 30 26 | 29 | 27 39] 4 

eee 
24|23 [43 | 25] 4 44] 26 26|78 | 

Biss siisio 
elas] 3 [+ [= [6 [el 44 

Fig. 56. 

Totals = 260. 

order as before explained, and then copy the numbers in diagram- 

matic sequence into the cells of an 8 X 8 square. 

It will be noted in the construction of the 4x 4 and 8X 8& 

, by} 9 so] 7 M& | 25" 4yo 

2 G8 10 Sas oe 47 26 39 

3 62 uw sy 19 a6 27 bs 

4 os 12 53 | 20 “SE | 2 7 

x Go “3 $2 | 27 wu} 29 36 

6 Rie) Ms ree MES “3 Jo 3S 

7 oe | SF so | 28 “2 } 3 S45 

$ 3 4% 49 | 44 “eH o2 33 

Fig. 57 

squares that only one form of diagram has been hitherto used for 

each square, whereas three different forms were required for the 

6X6 square. It is possible, however, to use either two, three, or 

four different diagrams in the construction of an 8 X 8 square, as 



28 

4 by 

2 63 

J 62 

4 bs 

x Go 

6 So 

UY SF 

J 7 

MAGIC SQUARES. 

Tr alee] 2 |e 
22-0 e [ss foe] [ao 
ez | |r| 20|27|ealer|or| 
eo va 7 [ae [23s el 
32 |3/ |35|36)37 

24 wie a as |e, 23 

2 [oe ora 2 fo [oe] 
|e [le [2 [| 

se] esfes|2 ooo] [or 
(aloo orf 7 al 2 
iz ls ele ol 

Totals = 260. 

Totals = 260. 

Fig. 58. 
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shown in the annexed examples. Fig. 55 illustrates two different 
forms from which the magic square Fig. 56 is constructed. Fig. 57 
shows three different forms which are used in connection with the 
square in Fig. 58, and in a similar manner Figs. 59 and 60 show 

four different diagrams and the square derived therefrom. The 

400 
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of 

Fig. 61. 

foregoing examples are sufficient to illustrate the immense number 

of different 8 X 8 magic squares that may be constructed by the 

aid of various diagrams. 

We now come to the magic square of 10 X 10, and applying 

the comparative method to the last exampies, it will be easy to ex- 
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pand the three diagrams of the 6 X 6 square (Fig. 49) into five 

diagrams that are required for the construction of a series of 

TPs PPS Pee 
ba exo esa] 7 sa | 
oral 2a|r729|24|7e| 22077 
27 foo |e oo] 467 [os [aoe 
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Fig. 62. 

Totals = 505. 

10-X Io squares. These five diagrams are shown in Fig. 61, and 

in Fig. 62 we have the magic square which is made by copying the 
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Fig. 63 (First part). 

numbers from 1 to 100 in diagrammatic order into the cells of a 

Io X IO square. 

It will be unnecessary to proceed further with the construction 
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of other 10 X 10 squares. for the reader will recognize the strik- 
ing resemblance between the diagrams of the 6 & 6 and the Io x 
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Io squares, especially in connection with their respective irregu- 

larities. 
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It will also be seen that the same methods which were used for 

varying the 6 X 6 diagrams, are equally applicable to the 10 X Io 

diagrams, so that an almost infinite variety of changes may be rung 

on them, from which a corresponding number of Io X Io squares 

may be derived, each of which will be different but will resemble 

the series of 6 X 6 squares in their curious and characteristic im- 

perfections. 

Fig. 65 (First part). 

We have thus far studied the construction of even magic 

squares up to and including that of 10 X Io, and it is worthy 

of remark that when one-half the number of cells in one side of 

an even magic square is an even number the square can be made 

associated, but when it is an uneven number it is impossible to 

build a fully associated square with a straight arithmetical series. The 
difficulty can however be easily overcome by using a suitable number 

series. As this subject is fully treated in Cahpter XI under the. 
heading, “Notes on the Construction of Magic Squares of Orders 
in which 7 is of the General Form 4p +2,” it is not discussed here. 

Fig. 63 shows a series of diagrams from which the 12 12 
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140 

137 

Fig. 65 (Second Part). 
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Fig. 66. 

“ 
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square in Fig. 64 is derived. The geometrical design of these 

diagrams is the same as that shown in Fig. 52 for the 8 X 8 square, 

and it is manifest that all the variations that were made in the 8 X 8 

diagrams are also possible in the 12X12 diagrams, besides an 

immense number of additional changes which are allowed by the 

increased size of the square. 

In Fig. 65 we have a series of diagrams illustrating the de- 

velopment of the 14 X 14 magic square shown in Fig. 66. These 

diagrams being plainly derived from the diagrams of the 6 X 6 and 

10 X 10 squares, no explanation of them will be required, and it is 

evident that the diagrammatic method may be readily applied to 

the construction of all sizes of even magic squares. 

It will be noted that the foregoing diagrams illustrate in a 

graphic manner the interesting results attained by the harmonious 

association of figures, and they also clearly demonstrate the almost 

infinite variety of possible combinations. 

Fig. 67. Fig. 68. Fig. 60. 

THE CONSTRUCTION OF EVEN MAGIC SQUARES BY DE LA 

HIRE’S METHOD. ; 

An associated magic square of 4X 4 may be constructed as 

follows: 

1. Fill the corner diagonal columns of a 4 X 4 square with the 

numbers I to 4 in arithmetical sequence, starting from the 

upper and lower left hand corners (Fig. 67). 

2. Fill the remaining empty cells with the missing numbers of 

the series I to 4 so that the sum of every perpendicular and 

horizontal column equals 10 (Fig. 68). 
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3. Construct another 44 square, having all numbers in the 
same positions relatively to each other as in the last square, 

but reversing the direction of all horizontal and perpendicular 
columns (Fig. 69). 

4. Form the root square Fig. 70 from Fig. 69 by substituting 
root numbers for primary numbers, and then add the numbers 
in this root square to similarly located numbers in the primary 
square Fig. 68. The result will be the associated square of 

4 X 4 shown in Fig. 72. 

By making the root square Fig. 71 from the primary square 

Fig. 68 and adding the numbers therein to similarly located numbers 

PRIMARY ROOT 

NUMBERS NUMBERS 

= ie) 

WwW Nd 

Big. 73: 

in the primary square Fig. 69, the same magic square of 4 X 4 will 

be produced, but with all horizontal and perpendicular columns re- 

versed in direction as shown in Fig. 73. 

The magic square of 6 X 6 shown in Figure 46 and also a 

large number of variations of same may be readily constructed by 

the De la Hire method, and the easiest way to explain the process 

will be to analyze the above mentioned square into the necessary 

primary and root squares, using the primary numbers 1 to 6 with 

their respective root numbers as follows: 

Primary, numbers: .:. .«. Lelie 34 eeA® £5585 0. 

Root niambers ac6.6.. 3's. Cae Omit 2pblon 242-30: 



30 MAGIC SQUARES. 

The cells of two 6 X 6 squares may be respectively filled with 

primary and root numbers by analyzing the contents of each cell in 

Fig. 46. Commencing at the left-hand cell in the upper row, we 

note that this cell contains 1. In order to produce this number by 

the addition of a primary number to a root number it is evident that 

o and 1 must be selected and written into their respective cells. 

The second number in the top row of Fig. 46 being 35, the root 

number 30 must be written in the second cell of the root square and 

the primary number 5 in the second cell of the primary square, and 

so on throughout all the cells, the finished squares being shown in 

Figs. 74 and 75. 

Another primary square may now be derived from the root 

square Fig. 74 by writing into the various cells of the former the 

7 N\35 \34)\ 3 (32 0 |30|30|0 |3s0\0 

Ba EA ze FAL // 24 Baba ics rl 

24 | | 23 | 3 | 76 | ya 2, vs | 72 | 72 72 76 | 

ADI 2 ania 
paled|e[alssles| = |B aa] | laa 2 
plete bsls [3] belo [a so ooo 

Fig. 46 (Dup.) Fig. 74. 

primary numbers that correspond to the root numbers of the latter. 

This second primary square is shown in Fig. 76. It will be seen that 

the numbers in Fig. 76 occupy the same relative positions to each 

other as the numbers of the first primary square (Fig. 75), but the 

direction of all columns is changed from horizontal to perpen- 

dicular, and vice versa. 

To distinguish and identify the two primary squares which are 

used in these operations, the first one (in this case Fig. 75) will in 

future be termed the A primary square, and the second one (in this 

case Fig. 76) the B primary square. 

It is evident that the magic square of 6 X 6 shown in Fig. 46 

may now be reconstructed by adding the cell numbers in Fig. 74 
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to the similarly placed cell numbers in Fig. 75. Having thus in- 
versely traced the development of the magic square from its A and B 
primary and root squares, it will be useful to note some of the general 
characteristics of even primary squares, and also to study the rules 

which govern their construction, as these rules will be found in- 

structive in assisting the student to work out an almost endless 

variety of even magic squares of all dimensions. 

1. Referring to the 6 X 6A primary square shown in Fig. 75, it 

will be noted that the two corner diagonal columns contain 

the numbers 1 to 6 in arithmetical order, starting respectively 

from the upper and lower left hand corner cells, and that the 

diagonal columns of the B primary square in Fig. 76 also 

contain the same numbers in arithmetical order but starting 

from the two upper corner cells. The numbers in the two 

corner diagonal columns are subject to many arrangements 

which differ from the above but it will be unnecessary to 

consider them in the present article. 

2. The numbers in the A primary square Fig. 75 have the same 

relative arrangement as those in the B primary square Fig. 

76, but the horizontal columns in one square form the per- 

pendicular columns in the other and vice versa. This is a 

general but not a universal relationship between A and B 

primary squares. , 

3. The sum of the series 1 to 6 is 21 and the sum of every 

column in both A and B 6X6 primary squares must also 

be 21. 
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4. The sum of every column in a 6 X 6 root square must be 90, 

and under these conditions it follows that the sum of every 

column of a 6 X6 magic square which is formed by the 

combination of a primary square with a root square must be 

I11 (21-+90=II1). 

5. With the necessary changes in numbers the above rules hold 

good for all sizes of A and B primary squares and root 

squares of this class. 

We may now proceed to show how a variety of 6 X 6 magic 

squares can be produced by different combinations of numbers in 

primary and root squares. The six horizontal columns in Fig. 75 

show some of the combinations of numbers from 1 to 6 that can be 

used in 6 X 6 A primary squares, and the positions of these columns 

or rows of figures relatively to each other may be changed so as 

to produce a vast variety of squares which will naturally lead to 
the development of a corresponding number of 6 X 6 magic squares. 

In order to illustrate this in a systematic manner the different 

rows of figures in Fig. 75 may be rearranged and identified by letters 
as given in Fig. 77. 
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Fig. 78 shows the sequence of numbers in the diagonal columns 
of these 6 X 6 A primary squares, and as this arrangement cannot 
be changed in this series, the various horizontal columns or rows in 
Fig. 77 must be selected accordingly. The small letters at the right 

Non t. No. 2. No. 3. No. 4. No. 5. No. 6. 

a a b b Cc B 

ad é if é a f 

& d C d d é 

ad G a C é a 

é f | é if xe a 

b b a a b b 

Fig. 79. 

of Fig. 78 indicate the different horizontal columns that may be used 

for the respective lines in the square; thus either a, b, or c column 

in Fig. 77 may be used for the first and sixth lines, a, e, or f for the 

second and fifth, and c, d, or e for the third and fourth lines, but 

neither b, c, or d can be used in the second or fifth lines, and so forth. 

Six different combinations of columns are given in Fig, 79, 

from which twelve different 6 X6 magic squares may be con- 

structed. Taking column No. 1 as an example, Fig. 80 shows an 

eS 2 Qa ny & 

Fig. 80. 

A primary square made from the combination a, f, c, d, e, b, and 

Fig. 81 is the B primary square formed by reversing the direction 

of the horizontal and perpendicular columns of Fig. 80. The root 

square Fig. 82 is then made from Fig. 81 and the 6 X 6 magic 

square in Fig. 84 is the result of adding the cell numbers of Fig. 82 

to the corresponding cell numbers in Fig. 80. 
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The above operation may be varied by reversing the horizontal 

columns of the root square Fig. 82 right and left as shown in Fig, 

83 and then forming the magic square given in Fig. 85. In this way 

two different magic squares may be derived from each combination. 

epee Te 
lee Ah 

ys | ve 72, 7Z 72 | 74] 

lala pea 
24|20) [4 [ao] 
ol? [oo] 2 [o fe 

Fig. 82. 

It will be noted that all the 6 X 6 magic squares that are con- 

structed by these rules are similar in their general characteristics 

to the 6 X 6 squares which are built up by the diagrammatic system. 

Associated 88 magic squares may be constructed in great vari- 

ety by the method now under consideration, and the different com- 

ps pa 
sale baleyl7[7 | 

binations of numbers from I to 8 given in Fig. 86 will be found use- 

ful for laying out a large number of A primary squares. 

Fig. 87 shows the fixed numbers in the diagonal columns of 
these 8 X 8 A primary squares, and also designates by letters the 
specific rows of figures which may be used for the different hori- 

zontal columns. Thus the row marked a in Fig. 86 may be used 
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for the first, fourth, fifth, and eighth horizontal columns but cannot 
be employed for the second, third, sixth or seventh columns, and so 
forth. 

Fig. 88 suggests half a dozen combinations which will form 

as many primary squares, and it is evident that the number of 

possible variations is very large. It will suffice to develop the first 

and third of the series in Fig. 88 as examples. 

Ist line’ Q°0, C. 0,0tLe 

and “ b, c, aa, dd, oree. 

ard G, 8.0, OF CC: 

Ain Gb d.ce or ee. 

Sih QU; @ scC. OF ce: 

Ours. d, @, ad, or cc. 

ih b, c, aa, dd, or ee. 

Stive Ds 6d. Ole, 

Fig. 87. 

Fig. 89 is the A primary square developed from column No. 1 

in Fig. 88, and Fig. 90 is the B primary square made by reversing 

the direction of all horizontal and perpendicular columns of Fig. 89. 

Substituting root numbers for the primary numbers in Fig. 90, and 
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adding these root numbers to the primary numbers in Fig. 89 gives 

the regular magic square of 8 X 8 shown in Fig. 91. The latter will 

be found identical with the square which may be written out directly 

from diagrams in Fig. 52. 

INGoiE, Iie, Ios. 3,. ING. Zs. IN@s as INO. ©: 

a | b (é ad € a 

aa b G dd Ce b 

aa | d CC e e é 

a | b CL d ee d 

a =i b CC d ce ad 

aa | ad CC é é @ 

wae ol b C dd ce b 

a | b Cc d € a 

Fig. 88. 

Fig. 92 shows an A primary square produced from column 

No. 3 in Fig. 88. The B primary square Fig. 93 being made in the 

regular way by reversing the direction of the columns in Fig. 92. 

Primary enuinbetower: ieee Ot LO.mn aE: 

Root numbers ..... Oy Of 10, 247032 2 AO. eAC eos 

Fig. 80. Fig. go. 

The associated magic square of 8 X 8 in Fig 94 is developed from 
these two primary squares as in the last example, and it will be 
found similar to the square which may be formed directly from 
diagram No. 2 in Fig. 54. 
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Pores == 260), 

Fig. 93. Fig. 92. 

Q 
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S| 

%& 

NES 

7 
[vole fos 
2 2 

7 
47 20|2/ 

39 2FP | 29 

37 |osf26| 72 

2 [ro [vels3| sa] roo 
4E 

40 

32 2355 

a 
[e4 
OY. 

Fig. 95. Fig. 94. 
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Fig. 95 shows another 8 X 8 magic square which is constructed 

by combining the A primary square in Fig. 89 with the B primary 

square in Fig. 93 after changing the latter to a root square in the 

manner before described. This magic square may also be directly 

constructed from diagram No. 4 in Fig. 54. 

It is evident that an almost unlimited number of different 

8 X 8 magic squares may be made by the foregoing methods, and 

their application to the formation of other and larger squares is 

so obvious that it will be unnecessarry to present any further ex- 

amples. 

COMPOSITE MAGIC SQUARES. 

These squares may be described as a series of small magic 

squares arranged quadratically in magic square order. 

The 9 X 9 square shown in Fig. 96 is the smallest of this class 

that can be constructed and it consists of nine 3 X 3 sub-squares 

arranged in the same order as the numerals 1 to g inclusive in the 

3 X 3 square shown in Fig. 1. The first sub-square occupies the 

lelele eal 
6 eel zo] se [7 [oe foo a 
er|z2| eal [a [2 [oo|velo7 
pe [2 [eel oo [a |e ore 
[sae] a7 [ool [v0] 
bea rae eee be 
| faa [ve a [eb [> 
se fae rely7 [ra = be [8 
7 fee [elo [ref [| 

Fig. 96. 

Totals = 369. 

middle section of the first horizontal row of sub-squares, and it 
contains the numbers I to 9 inclusive arranged in regular magic 
square order being a duplicate of Fig. 1. The second sub-square 
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is located in the right hand lower corner of the third horizontal row 
of sub-squares and it contains the numbers Io to 18 inclusive ar- 

ranged in magic square order, and so on to the last sub-square 
which occupies the middle section of the third horizontal row of 

mag 

Totals = 369. 

: 3 ax 

y24| 8 |79 [p27 22 ? 

20 | 722 |/23 W'S NEF 190\9/ | FS 

M4 JO\93|F3|2| 96 

pea rs eel 
Peeloe [ox for [re | 20 |e [re eel 
oo fos [os or [72 zee [eo bool elon ar 
|e oe oa reo ov ve 

eo er foe ella [= [ef 
eee on [fee oe [fe 
eae no fe eb bo [De 

Fig. 98. 

sub-squares, and which contains the numbers 73 to 81 inclusive. 

This peculiar arrangement of the numbers I to 81 inclusive 

forms a magic square in which the characteristics of the ordinary 
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9 X 9 square are multiplied to a remarkable extent, for whereas in 

the latter square (Fig. 97) there are only twenty columns which 

sum up to 369, in the compound square of 9 XQ there are an 

immense number of combination columns which yield this amount. 

This is evident from the fact that there are eight columns in the 

first sub-square which yield the number 15; also eight columns in 

the middle sub-square which yield the number 123—and eight col- 

umns in the last sub-square which sum up to the number 231—and 

15 + 123 + 231 = 360. 

By Pa 
ala[o a) +] 3 0 o 23 bz [els|27 

4 22 

x 2/ eda ls é 20 

Fig. 99. Z \o o| 79 

: ¢ “Ee 

g Bl [2 pepe é 
Pal 7a] ok ol 
fe pa|s)2 [er os Soa 
ce [ola|e|a i 

13 73 

Fig. 102. Fig. 100. Fig. 101. 

Totals of 3 X 3 squares = 39. 
Totals of 5 X 5 squares = 65. 

The 15 X 15 comes next in order and this may be coristructed 

with twenty-five 3 X 3’s or nine 5 X 5’s, and so on in the larger 

sizes of these squares. 

The next larger square of this class is that of 16 & 16 which 

can only be built with sixteen sub-squares of 4 4. Next comes 

the 18 X18 compound square which may be constructed with 

thirty-six sub-squares of 3 X 3 or with nine sub-squares of 6 X 6, 
and so on indefinitely with larger and larger compound squares. 
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CONCENTRIC MAGIC SQUARES. 

Beginning with a small central magic square it is possible to 
arrange one or more panels of numbers concentrically around it so 
that after the addition of each panel, the enlarged square will still 
retain magic qualifications. 

Either a 3X 3 or a 4X4 magic square may be used as a 
nucleus, and the square will obviously remain either odd or even, 
according to its beginning, irrespective of the number of panels 

which may be successively added to it. The center square will 

2 0 24 2 2¢ 

3 o o 23 

4 Yes 22 

ZAEAEIPAES > VA» 
PAarazieD {Z\(\) + 
vel [als| z|o/\ | 
ze bay7/e| 5 Ne 

o , 7 

43 

eimrarie 
- Fig. 103. 

43 

Fig. 104. Fig. 105. 

Totals of 3 X 3 square = 39. 

Totals of 5 X 5 square = 65. 

naturally be associated, but after one or more panels have been added 

the enlarged square will no longer be associated, because the pecu- 

liar features of its construction will not permit the sum of every 

pair of diametrically opposite numbers to equal the sum of Me 

first and last numbers of the series used. The sum of every hori- 

zontal and perpendicular column and of the two corner diagonal 

columns will, however, be the same amount. 
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The smallest concentric square that can be constructed is that 

of 5 X 5, an example of which is illustrated in Fig. 99. 

The center square of 3 X 3 begins with 9 and continues, with 

increments of I, up to 17, the center number being-13 in accordance 

with the general rule for a 5 X 5 square made with the series of 

Dragonal Columns /- x 7 Panel. ys S Panel. 3x 3 Souare. 

A . / 49 7) 37, 2/ 22 

. . 

2 4s WZ, 36 22 2£ 
e . 

J 4? 1/5 © QO 3s 23 ‘yp 27 

4o oO 46 16 j4% 24% 26 

Ss AS Ye 33 

25 
6 v4 J . sMal ied Z Fig. 1009. 
Wi 43 “9 \0 o| 37 

& 42 20 IO 

af 4t f 
Fig. 108. 

40 \o oO] «2 

“ 39 

Papas egia0 
hsfoelaoh=|o7] =| 
ce foafer |e [aaa] 6] 
7 bes eslerbalos 
ef} >afoo| 
Pas boo hae af 
Le lobesbeale lo [a 

Fig. 106. Fig. Ir0. 

42-5, 38 

otalstores*< 2csdtiahe == 75 

Totals of 5 X 5 square = 125 

‘Totals of 7X 7 square= 175, 

numbers rt to 25. The development of the two corner diagonal 

columns is given in diagram Fig. 100, the numbers for these col- 

umns being indicated by small circles. The proper sequence of the 
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other twelve numbers in the panels is shown in Fig. tor. - The 
relative positions of the nine numbers in the central 3 X 3 square 
cannot be changed, but the entire square may be inverted or turned 
one quarter, one half, or three quarters around, so as to vary the 

Diagonal Columns, IXO Panel, LX L Level SX ST Ravel 3X3 Sguare, 
’ ‘ y s/ 65 | 29 $3 137 43 

: 2 50 64 | 30 py nh 

3 JI 63| 3/ o o 7 ig \ 43 

4 7é& | o 62| 32 30 | 40 ya 

So O77. 6/ | 33 49 Be 

6 76 60 | 3% 48 Fig. a 

y: Je $9! 3Slq o|47 

é T¥ 3E | 36 46 

3 73 57 Fig. 114. 

? 40 72 o| 6 

u W 5S 

12 jo SY 

13\o 069 

sy 68 

Fig. 112 f zi 

TOTALS * 

3X 3 square 123, 
5 X 5 square aha are 7X 7 square 287, 
9 X 9 square 369. 73 [a7 [so |72|7s| 27 [725 

Fig. 116. 

position of the numbers in it relatively to the surrounding panel 

numbers. Fig. 102 shows a 5 X 5 concentric square in which the 

panel numbers occupy the same cells as in Fig. 99, but the central 
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3 X 3 square is turned around one quarter of a revolution to the 

right. 

Several variations may also be made in the location of the panel 

numbers, an example being given in Figs. 103, 104, and 105. Many 

Wambers wn Noni bers ere Dermbers wv 

Diagonal Columns OXGO Fined, Liste Strep, 

4 36 70 0 386 7 26 

2 br 72 25 

3: 54 13 ey7a 

4 33 /4 23 

G 32 1S 22 

4 é/ 6 ow oo 26 

Fr 30 7 20 

& 29 “8 79 

& 2 Fig. 1109. 

WD GE 27 

4 26 Fig. 118. 

PALS PIE 
a] [esleaya] = | 
laa 
pas|o|2[af2 
eles |e 
lel ele be 

Fig. 117. Fig. 120. 

44 238 

16 CMe 

Y. 20 

Totals of 4X 4 square= 74. 

Totals of 6 X 6 square = 111. 

other changes in the relative positions of the panel numbers are 

selfevident. 

One of many variations of the 7 X 7 concentric magic square 

is shown in Fig. 110. The 3 X 3 central square in this example is 

started with 21 and finished with 29 in order to comply with the 
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general rule that 25 must occupy the center cell in a 7X7 square 
that includes the series of numbers 1 to 49. The numbers for the 
two corner diagonal columns are indicated in their proper order 
by small circles in Fig. 106, and the arrangement of the panel num- 
bers is given in Figs. 107, 108, and 109. As a final example of an 

WNanrbers im WNern bers ww Mei bers er 

Dragenal Columns. 6X6 Panels 4X Me Sguare. 

/ 36 40 0 IG uw 26 

2 3 72 25 

3 34 73 24 

4 33 "4 23 

a 32 1S 22 

6 J/ 6\o 0] 37 16 2s 

SO “7, 20 

& 29 18 19 

9g ae Fig. 123. 

70 27 

yo or Fig. 122. 

ear 
2a Peels ee] + 

wk \ ps 7 Za 
pelel-r bel olor 

a LAS» fe [esl [Ps feal20 
ag # MARIA 

e ° 
Figs 121, Fig. 124. 

‘otals of 474 square —.-74. 

Totals of 6 X 6 square = III. 

odd concentric square Fig. 116 shows one of 9 X 9, its development 

being given in Figs. 111, 112, 113, 114, and 115. 

All these diagrams are simple and obvious expansions of those 

shown in Figs. 100 and tor in connection with the 5 X 5 concentric 

square, and they and their numerous variations may be expanded 
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indefinitely and used for the construction of larger odd magic 

squares of this class. 

The smallest even concentric magic square is that of 6 X 6, of 

Diagenal Columns. EXE Bernel, : Ox6 Pinel. , Axle Sguare. 

/ Oy fo o 64 | 10 0 00 2S 4 

63 46 49 26 39 
“ . 

3 O2 Pap 4E ain 38 

4 or 18 47 28 37 

St ve fe 46 29 , 36 

6 5d 206 , fo) be Jo 3s 

We SG 2/ BM 3/ 3y 

9 56 | 28 eee Fig. 128. 
i) Son 24 Ms - 

7 ne ica 274 

/2 o3 

13 F2 

= “|e [es [oe] a [o [olor |e | 
Pre -aleela|-afeo] 2 
befor 2olvo|ae|>o]-e [0 
2 betel 
fe oe [oa [29] [2 
sf aafor [er] 26 oo] 7] 
rakes a|e7 [ee] 
ele Te leLale D7 [a] 

Fig. 125. Fig. 129. 

S fe) ie) y N % Ss k G G & i & 

Fig. 126. 

Totals of 4 X 4 square = 130. 

Totals of 6 X 6 square = 195. 

Totals of 8 X 8 square = 260. 

which Fig. 120 is an example. The development of this square 

may be traced in the diagrams given in Figs. 117, 118, and 119. 

The center square of 4 X 4 is associated, but after the panel is added 
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the enlarged square ceases to be so, as already noted. Figs. 121, 
122, 123, and 124 illustrate another example of this square with 
diagrams of development. 

Dragonal lelumns 10 XAOLinel. 

/ 400) 40 0 100 

z 99 

3 GF 

+ | 4 97 

96 

9S 

$21 7 Ig 

8 93 

|] 8 92 
O75 

00 of 

“u 90 

ee 72 9 

43 b§ 
63 

i Mt 87 

ISR AS $6 

oss | 16 gs 

Sea '| 77 by 

15 63 

Fig. 130. . Fig. 131: 

TOTALS: 

4X 4 square = 202 

6X 6 square = 303 
8X 8 square = 404 

Io X IO square = 505 
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Fig. 132. 
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aa [ee] = feo] [mop ]ea] 0 
A telelel ral 2 

331474 
pallets lose ler 

29] 20] v4|es|eo)s7|a7|72| 60 
7 | so 523] 27] o/[ao| 2 
eee 
32 |4s|2[ss| 64|39| 39 

ce zeta [alee ael ooo 
orf [s [287 lool [ee 

Fig. 135. 

4X4 Souare. 
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Fig. 134 

~ 

ee 
A concentric square of 8 X 8 with diagrams are given in Figs. 

125, 126, 127, 128, and 129, and one of Io X IO in Figs.1120, 1315 

132, 133, 134, and 135. It will be seen that all these larger squares 
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have been developed in a very easy manner from successive expan- 

sions of the diagrams used for the 6 X 6 square in Figs. 117, 118, 

and 119. 

The rules governing the formation of concentric magic squares 

have been hitherto considered somewhat difficult, but by the aid of 

diagrams, their construction in great variety and of any size has 

been reduced to an operation of extreme simplicity, involving only 

the necessary patience to construct the diagrams and copy the num- 

bers. 

GENERAL NOTES ON THE CONSTRUCTION OF MAGIC SQUARES. 

There are two variables that govern the summation of magic 

squares formed of numbers that follow each other with equal in- 

crements throughout the series, viz. : 

1. The Initial, or starting number. ~ 

2. The Increment, or increasing number. 

When these two variables are known, the summations can be 

easily determined, or when either of these variables and the sum- 

mation are known, the other variable can be readily derived. 

The most interesting problem in this connection is the construc- 

tion of squares with predetermined summations, and_ this subject 

will therefore be first considered, assuming that the reader is familiar 

with the usual methods of building odd and even squares. 

ee ik 

If a square of 3 X 3 is constructed in the usual manner, that is, 

beginning with unity and proceeding with regular increments of 

I, the total of each column will be 15. 

Totalstasa15 

Fig. 136. 

If 2 is used as the initial number instead of 1 and the square 
is again constructed with regular increments of 1, the total of each 

column will be 18. 
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If 2 is still used as the initial number and the square is once 
more constructed with regular increments of 2 instead of 1, the 

total of each column will be 30. 

Fig. 138. 

It therefore follows that there must be initial numbers, the use 

of which with given increments will entail summations of any pre- 

deterinined amount, and there must also be increments, the use of 

which with given initial numbers, will likewise produce predeter- 

mined summations. 

These initial numbers and increments may readily be determined 

by a simple form of equation which will establish a connection be- 

tween them and the summation numbers. 

Pet: 

A = initial number, 

6 =mcrement, 

n = number of cells in one side of square, 

S = summation. 

iaciwines = i.and § —1 

2 +1) ays! 

If A and @ are more or less than unity, the following general 

formula may be used: 
© 

An + p— Gi ft )i=—S. 

It will be found convenient to substitute a constant, (K) for 
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7 (n? 1) in the above equation, and a table of these constants is 
2 

therefore appended for all squares from 3 xX 3 to 12% 12. 

Squares: Const-== Is 

3b G3 12 

4x4 3° 

57 5 60 

oO xa6 105 

Vigo: 168 

So x6 252 

9X9 300 
LOK LO 495 

Tle Se 660 

TA SK 2 858 

When using the above constants the equation will be: 

An+BK=S. 

EXAMPLES. 

What initial number is required for the square of 3 X 3, with: 

I as the increment, to produce 1903 as the summation? 

Transposing the last equation: 

S—BK 

11 
=A, 

or 

1903 = 701 O& 12) 
3 

== 6307 /..= hiitial Ne. 

Totals = 1902. 

We will now apply the same equation to a square of 4 X 4, in 

which case: 

ace = LOO EG ce ATT AS 
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Also to a square of 5 & 5, 

1903 — 6 903 a xX 60) = 306.6: Initial No. 

37¢.6| 381-6 

[374.6 373.6] 340-6 387-6 | 359.6 

778 |3793 
2 

Fig, 141. 

Y Totals = 1903. 

w& 

ON 

And for a square of 6X 6. 

T0032 == (1 XC 105))— & 
G = 

Fig. 142. 

ZOO, initial No: 

Totals 

== 1002. 

ely 

eit ol 

The preceding examples illustrate the. construction of squares 

built up with progressive increments of 1, but the operation may be 

varied by using increments that are greater or less than unity. 

EXAMPLES. 

What initial number must be used in a square of 3 X 3, with 

increments of 3, to produce a summation of 1903? 
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Applying the equation given on page 56, but making B = 3 

instead of 1, we have: 

1903 — 12 
993 sa) == 022 “5: 

3 

6221/, is therefore the initial number and by using this in a 

3 X 3 square with progressive increments of 3, the desired results 

are obtained. 

Lotals = 10903: 

To find the initial number with increments of Io. 

1903+ (10 X32)" 50941/, = Initial No. 

Totals = 1903. 

Or to find the initial number with increments of 1/3. 

1903 — (/.)X 12) 5 == 633 = Initial No. 

asst ear | aa | 
Fig. 145. 

Totals = 1903. 

These examples being sufficient to illustrate the rule, we will 

pass on another step and show how to build squares with predeter- 

mined summations, using any desired initial numbers, with proper 

increments. 
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EXAMPLES. 

What increment number must be used in a square of 3 X 3, 

wherein 1 is the initial number and 1903 the desired summation ? 

Referring to equation on page 56 and transposing, we have 

SD 

K 

1903 — (1 X 3) 
Be 

== 93 == increments of 

156 7/, == 1ncrement, 

Starting therefore with unity and building up the square with 

successive increments of 158*/,, we obtain the desired result. 

Details 1903, 

When it is desired to start with any number larger or smaller 

than unity, the numbers in the equation can be modified accordingly. 

Thus if 4 is selected as an initial number, the equation will be: 

1903 — (4 X-3). = 167 7 = rucrement. 

Fig. 147. 

Totals = 1903. 

With an initial number of */;. 

1903 — (7/3 X 3) _ 158% = Increment. 

Totals = 1903. 
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It is thus demonstrated that any initial number may be used 

providing (in a square of 3 X 3) it is less than one-third of the 

summation. In a square of 4 X 4 it must be less than one-fourth 

of the summation, and so on. 

To illustrate an extreme case, we will select 634 as an initial 

number in a 3 X 3 square and find the increment which will result 

in a summation of 1903. 

= Increment. 

Fig. 149. 

1903 — (634 X 3) __ 1/ 
= 12 

I2 

Totals = 1902: 

Having now considered the formation of magic squares. with 

predetermined summations by the use of proper initial numbers 

and increments, it only remains to show that the summation of any 

square may be found, when the initial number and the increment 

are given, by the application of the equation shown on page 56, viz.: 

An+BK=S. 

EXAMPLES. 

Find the summation of a square of 3 & 3 using 5 as the initial : 

number, and 7 as the increment. 

(5 X 3) + (7 X 12) = 99 = Summation. 

What will be the summation of a square of 4 X 4 using 9 as 

an initial number and 11 as an increment? 

(9X4) + (11x 30) = 366 = Summation. 
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[vse | 42 | 
eal 
1O8 

Potals== 306; 

“XN 

% 

R a 37 Dp: 

Fig. 151. 

The preceding equations may also be used for the construction 

of magic squares involving zero and minus quantities, as illustrated 

in the following examples. 

What will be the summation of a square of 3 & 3, using Io as 

the initial number with — 2 increments? 

(10 X 3) + (—2 X 12) = 6 = Summation. 

What initial number must be used in a square of 3 X 3 with 

increments of — 3 to produce a summation of 3? 

AS 13 = Initial No. 

opalsm = 2. 

What initial number is required for a 3 X 3 square, with in- 

crements of 1, to produce a summation of o? 

et t2) Saag ataalNo. 

otalsi=—103 

Fig. 154. 
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What increment must be used in a square of 3 X 3 wherein 

12 is the initial number and — 12 the required summation? 

— Fo = ke > 
4. nerement, 

Totals = — 12. 

What increment must be used.in a square of 4 X 4 wherein 48 

is the initial number and 42 the summation? 

42— (48.4) ee 
30 ma 

Spas bea 

Fig. 156. 

— 5 = Increment. 

Totals = 42; 

The foregoing rules have been applied to examples in squares 

of small size only for the sake of brevity and simplicity, but the 

principles explained can evidently be expanded to any extent that 

may be desired. 

Numbers following each other with uniform increments have 

been used throughout this article in the construction’ of magic 

squares, in order to illustrate their formation according to certain 

rules in a simple manner. It has however been shown by various 

writers that the series of numbers used in the construction of 

every magic square is divided by the breakmoves into m groups of n 

numbers per group (n representing the number of cells in one 

side of the square), and that the numbers in these groups do not 

necessarily follow each other in regular order with equal increments, 

but under certain well defined rules they may be arranged in a 
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great variety of irregular sequences and still produce perfect magic 

squares. 

Referring to Fig. 40 as an example, many different 5 x 5 

squares may be formed by varying the sequence of the five groups, 

and also by changing the arrangement of the numbers in each group. 

Instead of writing the five diagonal columns in Fig. 40 with 

the numbers 1 to 25 in arithmetical order thus: 

CEL Th i gr ne ny Maen 

Dae P= 7 tw SIG. § 10 

Cte ieee Qo LA lA TS 

AweiGaet 7! I1Ss019 6.2G 

Cyt 2A 25 

they may be arranged in the order b e c a d, which will develop 

the 5 X 5 square shown in Fig. 17. 

Other variations may be made by re-arranging the consecutive 

numbers in each group, as for example thus: 

Os eel Aim WS a2 oS 

Bie On iGten ite “7 TO 

| eco Gen EN one eS 

Bei 36239 08S! 1179 20 

BRET SBA OB?» B20" 25 

The foregoing may be considered as only suggestive of many 

ways of grouping numbers by which magic squares may be pro- 

duced in great variety, which however will be generally found to 

follow regular constructive rules, providing that these rules are 

applied to series of numbers arranged in similar consecutive order. 
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WAGLG CUBE: 

HE curious and interesting characteristics of magic squares 

may be developed in figures of three dimensions constituting 

magic cubes. 

Cubes of odd numbers may be constructed by direct and con- 

tinuous process, and cubes of even numbers may be built up by the 

aid of geometrical diagrams. In each case the constructive meth- 

ods resemble those which -were previously explained in connection 

with odd and even magic squares. 

As the cube is a figure of three dimensions it is naturally more 

difficult to construct in magic formation than the square (which 

has only two dimensions) because the interrelations between the 

various numbers are more complext than those in a square and not 

so easily adjusted one with the other to sum the magic constants. 

THB ESSENTIAL CHARA CGEERIS DIGS OPSMAGIC CUBES: 

A magic cube consists of a series of numbers so arranged in 

cubical form that each row of numbers running parallel with any 

of its edges, and also each of its four great diagonals shall sum 

the same amount. Any cubical arrangement of numbers that fulfils 

these conditions may be properly termed a magic cube. As in the 

case of magic squares, various interesting but non-essential features 

may be added to these requisites, and in this way many different 

kinds of magic cubes may be constructed. In the present chapter, 

however, associated or regular magic cubes will be principally 

described. 



MAGIC CUBES. 65 

ASSOCIATED’ OR REGULAR MAGIC CUBES OF ODD NUMBERS. 

The smallest magic cube is naturally 3 x 3 X 3. 
ay Py Fig. 157 shows one of these cubes, and in columns Lativand 

III, Fig. 158, there are given the nine different squares which it 
contains. In this cube there are twenty-seven straight columns, 
two diagonal columns in each of the three middle squares, and four 
diagonal columns connecting the eight corners of the cube, making 
in all thirty-seven columns each of which sums up to 42. The 
center number is also 14 or (m* + 1)/2 and the sum of any pair of 

diametrically opposite numbers is 28 or * -+ t. 

Totals = 42. 

Tig. 157. 

In describing the direct method of building odd magic squares, 

many forms of regular advance moves were explained, including 

right and left diagonal sequence, and various’ so-called “knight’s 

moves.” It was also shown that the order of regular advance was 

periodically broken by other well-defined spacings which were 

‘termed “breakmoves.” In building odd magic squares, only one 

form of breakmove was employed in each square, but in the con- 

struction of odd magic cubes, two kinds are required in each cube 

which for distinction may be termed m and n° breakmoves respec- 

tively. In magic cubes which commence with unity and proceed 

with increments of 1, the n° breakmoves occur between each mul- 

tiple of n? and the next following number, which in a 3 X 3 X 3 

cube brings them between 9 and 10, 18 and 19, and also between 

the last and first numbers of the series, 27 and 1. The  breakmoves 
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are made between all other multiples of 1, which in the above case 

brings them between 3 and 4, 6 and 7, 12 and 13, 15 and 16, 21 and 

22, and 24 and 25. With this explanation the rules for building 

the magic cube shown in Fig. 1 may now be formulated, and for 

convenience of observation and construction, the cube is divided 

horizontally into three sections or layers, each section being shown 

separately in Column 1, Fig. 158. 

It may be mentioned that when a move is to be continued up- 

ward from the top square it is carried around to the bottom square, 

THREE SQUARES THREE SQUARES THREE SQUARES 

FROM TOP TO BOTTOM FROM FRONT TO BACK FROM LEFT TO RIGHT 

COLUMN I. COLUMN II, COLUMN IIl. 

Fig. 158. 

All totals = 42. 

and when a move is to be made downward from the bottom square, 

it is carried around to the top square, the conception being similar 

to that of the horizontal cylinder used in connection with odd magic 

squares. 

Commencing with 1 in the center cell of the top square, the 

cells in the three squares are filled with consecutive numbers up 
to 27 in accordance with the following directions: 

Adv~nce move. One cell down in next square up (from last 

entry). 
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n breakmove. One cell in downward right-hand diagonal in 
next square down (from last entry). 

n* breakmove. Same cell in next square down (from last 

entry). 

If it is desired to build this cube from the three vertical squares 
from front to back of Fig. 157, as shown in Column Lier ieee: 
the directions will then be as follows: commencing with 1 in the 
middle cell of the upper row of numbers in the middle square, 

Advance move. One cell up in next square up. 

n breakmove. One cell in downward right-hand diagonal in 

next square up. 

n° breakmove. Next cell down in same square. 

TABLE I. 

RE! Ie ee 

sana 2 
Nw] G hts hs 

Xs Nee clans NSS 

Fig. 159. 

Finally. the same cube may be constructed from the three vertical 

squares running from left to right side of Fig. 157, as shown in 

Column III, Fig. 158 commencing, as in the last example, with 1 

in the middle cell of the upper row of numbers in the middle 

square, and proceeding as follows: 

Advance move. Three consecutive cells in upward right-hand 

diagonal in same square (as last entry). 

n breakmove. One cell in downward right-hand diagonal in 

next square down. 
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n? breakmove. One cell down in same square (as last entry). 

Five variations may be derived from this cube in the simple 

way illustrated in Table I on the preceding page. 

Assign three-figure values to the numbers 1 to 27 inclusive in 

terms of 1, 2, 3 as given in Table I, Fig. 159, and change the 

numbers in the three squares in Column I, Fig. 158, to their cor- 

responding three-figure values, thus producing the square shown in 

Fig. 160. It is evident that if the arrangement of numbers in the 

three squares in Column I were unknown, they could be readily 

produced from Fig. 160 by the translation of the three-figure values 

into regular numbers in accordance with Table I, but more than 

217 |713 13 12|7 [244 Deore 

Tep Ba en lm wae an ed Oo ee ed ee 4 
Sguare 

CEng hes NMA Nes eM 2 bode to ae 
Adal. ie 

ee. eb ales a Nea 2, las | ono 
Sguare - 

Botts 
Sguare 

BRE sf, 

this can be accomplished. -The letters A, B, C,.in Table T indicate 

the normal order of the numerals 1, 2, 3, but by changing this order 

other triplets of 3 & 3 squares can be made which will differ more 

or less from the original models in the arrangement of their cell 

numbers, but which will retain their general magic characteristics. 

The changes which may be rung on A, B, C, are naturally six, as 

follows: 

ATSB AC: (Ge, 1B. JAN, 

BrYcenk. Baa 

(Cs a 1B he CoB 
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The combination of 1, 2, 3 being given in normal order in the 
original cube, the five cubes’ formed from the other combinations 
are shown in Figs. 161-165. 

These magic cubes may also be constructed by the direct method 

in accordance with the annexed directions. 

FIG. 161 (B.C.A.) FIG. 162. (C.A.B.) FIG, 163. (C.B.A.) FIG. 164. (B.A.C.) FIG. 165.(A.C.3B.) 

Fig. 166 is an example of another 3 X 3 X 3 cube in which the 

first number occupies a corner cell, and the last number fills the 

diametrically opposite corner cell, the middle number coming in 

TOP SQUARE. MIDDLE SQUARE. BOTTOM SQUARE. 

Fig. 166. 

the center cell in accordance with the rule. Fig. 167 shows this 

cube with the numbers changed to their three-figure values from 

which five variations of Fig. 166 may be derived, or they may be 

constructed directly by the directions which are marked with the 

changes of A. B. C. for convenient reference. 
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The analysis of the numbers in Fig. 157 and Fig. 166 into their 

three-figure values in terms of I, 2, 3, as shown in Figs. 160 and 

167, makes clear the curious mathematical order of their arrange- 

ment which is not apparent on the face of the regular numbers as 

DIRECTIONS FOR CONSTRUCTING THE 3X33 MAGIC CUBE SHOWN IN FIG. 157 

AND FIVE VARIATIONS OF THE SAME. 

22 BREAKMOVES 2” BREAKMOVES 

One cell in right-hand 

downward diagonal 

in next square down 

One cell to left in 

next square up 

Same cell in next 

square down 

Same as in A. B. C. 

One cell up in next 

square up 

Same asinC. A. B. 

Same asin B.C. A. 

COMBINA- 
ADVANCE MOVES 

TION 

RBC One cell down in next 

square up 

Three consecutive 

BoCoA cells in upward 

left-hand diagonal 

in same square 

Cue BR One cell to right in 

next square up 

GaBwA Same asin B.C. A. 

B. A. C Same as in A. B. C. 

A.C. B Same asin C. A. B. Same asin A. B. C. 

Same as in A. B. C. 

Same asin A. B C. 

Same as in A. B. C. 

Same asin A. B.C. 

they appear in the various cells of the cubes. For example, it may 
be seen that in every subsquare in Figs. 160 and 167 (corresponding 

to horizontal columns in the cubes) the numbers 1, 2, 3 are each 
repeated three times. Also in every horizontal and perpendicular 
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column there is the same triple repetition. Furthermore, all the 
coral columns in the cubes which sum up to 42, if followed into 
their analyses in Figs. 160 and 167 will also be found to carry simi- 
lar repetitions. A brief study of these figures will also disclose 
other curious mathematical qualities pertaining to their intrinsic 

symmetrical arrangement. 

The next odd magic cube in order is 5 & 5 & 5, and Fig. 168 

shows one of its many possible variations. For convenience, it is 

divided into five horizontal sections or layers, forming five 5 & 5 

squares from the top to the bottom of the cube. 

Commencing with 1 in the first cell of the middle horizontal 

Tojo 

Sguare 

Middle 

Sguare 

Boltlom 

Sguare. 

Fig. 167. 

column in the third square, this cube may be constructed by filling 

in the various cells with consecutive numbers up to 125 in accord- 

ance with the following directions: 

Advance moves. One cell up in next square down. 

n breakmove. Two cells to the left and one cell down (knight’s 

move) in same square as the last entry. 

n2 breakmove. One cell to right in same square as last entry. 

This cube exhibits some interesting qualifications. Examin- 

ing first the five horizontal squares from the top to the bottom of 

the cube as shown in Fig. 168, there are: 
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50 straight columns summing up to.... 

to corner diagonal columns summing up to.. 

40 sub-diagonal columns summing up to.... 

x 

o11,0) ese 8 

Total 100 columns having the same summation. 

DIRECTIONS FOR CONSTRUCTING THE 3X3 X3 MAGIC CUBE SHOWN IN FIG. 166 

AND FIVE VARIATIONS OF THE SAME. 

COMBINA- 

TIONS 
ADVANCE MOVES 72 BREAKMOVES 

One cell to left in next 

square up 

Three consecutive 

cells in upward left- 

hand diagonal. in 

same square 

2? BREAKMOVES 

One cell in upward 
left-hand diagonal 

in next square down 

One cell in upward 

right-hand diago- 

nal in next square 

up 

One cell in downward 

right-hand diago- 

nal in next square 

down 

Same as in A. B. C. 

One cell up in next 

square up 

One cell in downward 

left-hand diagonal 

in next square up 

Same as in A. B. C. 

Samelas imi-Bs Ga A: Same as inC. A. B. Same asin A. B. GC. 

Same asin A. B. C. Same asin B. C. A. 

“ 

Same asin A. B. C. 

Same as in C. A, B. |} Same asin A. B. C. Same asinA B.C. 

In the five vertical squares from front to 

there are: 

back of this cube 
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50 straight columns summing up to......... 315 
6 corner diagonal columns summing up to .. 315 

20 sub-diagonal columns summing up to.... 315 
Total 76 columns having the same summation. 

In the five vertical squares from right to left of cube, there are, 
as in the last case, 76 columns which all sum up to 315. In the com- 
plete cube there are also four great diagonals and also a number 

of broken diagonals that sum up to 315. 

ie 

ares eno a 
ial eal a 
a abslini7 
[56 | 777] 29 | 29 

PaNHICACYZ 
TOP SQUARE. 

DS 

De 

Paes par 
as va 
sz\v|24| 30] 94 
= [a7 [423 | 
aloo bes 3 fer 

3. 

Salva 
[voles] 7 
[satan a 
eledvol7 oe 
pas bealalra 

ie [aaa 
ERP 
|e alr [oa 
vera lor 
4] |r| z0 

Fig. 168. 

Z 

w|72 
Parad 
oe ealee [9 

BOTTOM SQUARE 

A table similar to Fig. 159 may be laid out giving three-figure 

values for the numbers in 5 X 5 X 5 cubes from I to 125, and by 

changing the numbers in Fig. 168 to these three-figure values, a 

square similar to Fig. 160 will be produced from which five varia- 

tions of Fig. 168 may be derived. Similar results, however, can 

be obtained -with less work by means of a table of numbers con- 

structed as shown in Fig. 169. (Table II.) 

The three-figure values of cell numbers in 5X5 X 5 magic 

cubes are found from this table as follows: 
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Select the root-number which is nearest to the cell-number, but 

below it in value. Then write down 

t. The section number in which the root-number is found, 

1) . The primary number over the root-number, 

3. The difference between the root-number and the cell-number. 

Three figures will thus be determined which will represent the 

required three-figure value of the cell-number. 

Examples. The first number in the first row of the upper 

Square in Fig. 168 is 67. The nearest root-number to this and be- 

low it in value is 65 in section 3 under the primary number 4 and the 

TABI, Li. 

Prima 1Y MOS. 

Reool Nos 

Panta 7Yy Mes. 

Root Nes 

| 

Fig. 169. 

difference between the root-number and the cell-number is 2. The 

three-number value of 67 is therefore 3. 4. 2. Again, the fourth 

number in the same row is 10. The nearest root-number but below 

it in value is 5 in section 1 under the primary number 2, and the 

difference between the root-number and the cell-number is 5. The 

three-figure value of Io is therefore 1. 2.5. By these simple opera- 

tions the three-figure values of all the cell-numbers in the 5 & 5 & 5 

cube in Fig. 168 may be quickly determined, and by the system of 
transposition previously explained, five variations of this cube may 

be constructed. 
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The shorter method of building these 5 x 5 X 5 cubes by the 
direct process of filling the different cells in regular order with 
consecutive numbers may, however, be considered by some to be 
preferable to the more roundabout way. (See directions in the 
following table.) 

DIRECTIONS FOR CONSTRUCTING THE 5X55 MAGIC CUBE SHOWN IN FIG, 168 

AND FIVE VARIATIONS OF THE SAME. 

COMBINA- 
eros ADVANCE MOVES 22 BREAKMOVES a BREAKMOVES 

O 7 ‘ Two cells to left and | One cell to right in 

AL BSC A ee ea one down in same same square as last 
square down 

square as last entry entry 

Two cells ae a Two cells in-upward 

B.C. A vee Sl toy Diels left hand diagonal | Same as in A. B. C. 

Ee DASE are in next square down 
bers in same square 

Twocellsinlefthand | One cell in right- 

CAB downward diago- hand downward Un enacting RAR oe 

nal in next square agonal in _ next 

up square up 

C. B. A, | Same asin B, C. A. | SameasinC. A. B. | Sameasin A. B.C. 

B. A. C..| Same as in A. B. C. Same asin B. C. A. Same asin A. B.C. 

A. G-B: |-Same.as in C. A. B. Same asin A. B.C. | Sameasin A. B.C. 

* 

Fig. 170 is another example of a 5 X 5 X 5 magic cube which 

is commenced in the upper left-hand corner of the top square, and 

finished in the lower right-hand corner of the bottom square, the 
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middle number of the series (63) appearing in the center cell of the 

cube according to rule. 

Odd magic cubes may be commenced in various cells other 

than those shown in the preceding pages, and they may be built 

up with an almost infinite number of variations. It would, however, 

be only superfluous and tiresome to amplify the subject further, as 

the examples already submitted cover the important points of con- 

struction, and may readily be applied to further extensions. 

ie ey & 

fe bolealeraa 
| stella 

TOP SQUARE. BOTTOM SQUARE, 

2 4. 

/04\ 60\ aT 
z 
23|79|35|M/ 

66\22\75 |3 4 

Any sizes of odd magic cubes larger than 5 X 5 & 5 may be 

constructed by the directions which govern the formation of 3 X 3 

Xie. ands <5 cas Cubes, 

4 7\103\ 5D 

By 102, 

ASSOCIATED OR REGULAR MAGIC CUBES OF EVEN NUMBERS. 

Magic cubes of even numbers may be built by the aid of geo- 
metric diagrams, similar to those illustrated in the preceding chap- 
ter, which describes the construction of even magic squares. 
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Fig. 171 shows one of the many possible arrangements of a 
‘4X 4X 4 cube, the diagram of which is given in Fig. 172) 

There are fifty-two columns in this cube which sum up to 130, 
viz., sixteen vertical columns from the top of the cube to the 

DIRECTIONS FOR CONSTRUCTING THE 555 MAGIC CUBE SHOWN IN FIG. 170 

AND FIVE VARIATIONS OF THE SAME. 

COMBINA- F 
ADVANCE MOVES 2 BREAKMOVES 2” BREAKMOVES 

TIONS 

Five consecutive cells | One cell in upward | Onecellin downward 

ABC in upward left hand right-hand diago- right-hand diago- 

diagonal in next nal in next square nal in next square 

square up up down 

One cell in downward 

BEGsA: Two cells down in left-hand diagonal SeaeheinAeB Co 

second square down in second square 

down 

Two cells in down- 

CoAB Two cells to right in ward right Baud Coase mit BO) 

next square up diagonal in next 

square down 

CG, B.A. | Someas in B. C. A. Same asin C. A. B. | Sameasin A. B. C. 

Bene. Sime asin A. B.C, -| Sameas in B.C1A. |“Samé as in A. B.,C, 

A.C. B. | SameasinC. A. B. | Sameasin A. B.C. | Sameas in A. B. C. 

bottom, sixteen horizontal columns from the front to the back, six- 

teen horizontal columns from right to left, and four diagonal columns 

uniting the four pairs of opposite corners. The sum of any two 
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numbers, which are diametrically opposite to each other and equi- 

distant from the center of the cube also equals 65 or m* + I. 

Another feature of this cube is that the sum of the four num- 

bers in each of the forty-eight sub-squares of 2 X 2 is 130. 

It has been shown in the chapter on “Magic Squares” that the 

[+ [es os | / 64 17 46 

2 63 48 47 

3 62 19 46 
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Totals = 130. 
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square of 4 X 4 could be formed by writing the numbers 1 to 16 

in arithmetical order, then leaving the numbers in the two corner 

diagonals unchanged, but changing all the other numbers to their 

complements with 17 or m* + 1. It will be noted in the magic cube 

of 4X 4X 4, given in Fig. 171, that in the first and last of the 
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four sections (I and IV) this rule also holds good. In the two 
middle sections (II and II) the rule is reversed: the numbers in the 
two corner diagonals being complements with 65 or m? + 1, and all 
the other numbers in arithmetical order. 

Fig. 173 shows four squares or sections of a cube, with the 
numbers 1 to 64 written in arithmetical order. Those numbers 
that occupy corresponding cells in Fig. 171 are enclosed within 
circles. If all the other numbers in Fig. 173 are changed to their 
complements with 65, the total arrangement of numbers will then 

be the same as in Fig. 171. 

In his interesting and inetructive chapter entitled “Reflections 

on Magic Squares’* Dr. Paul Carus gives a novel and ingenious 

analysis of even squares in different “orders” of numbering, these 

orders being termed respectively 0, ro, i and ri. It is shown that 

the two magic squares of 4 X 4 (in the chapter referred to) con- 

Hig. 173; 

sist only of o and ro numbers; ro numbers being in fact the com- 

plements of o numbers with n?-+ 1. This rule also obtains in the 

magic cube of 4 X 4 X 4 given in Fig. 171. The four sections of 

this cube may in fact be filled out by writing the o numbers, in arith- 

metical order in the cells of the two corner diagonal columns of 

sections I and IV, and in all the cells of sections I] and III, ex- 

cepting those of the two corner diagonal columns, and then writing 

the ro numbers, also in arithmetical order, in the remaining empty 

cells of the four sections. 

Fig. 171 may be considered as typical of all magic cubes of 

4X44 and their multiples, of this class, but a great many ieee 

tions may be effected by simple transpositions. For example, Fig. 

* See p. 113 ff. 
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174 is a 4X 4X 4 cube which is constructed by writing the four 

numbers that are contained in the 2 & 2 sub-squares (Fig. 171) in 

a straight line, and there are many other possible transpositions 

which will change the relative order of the numbers, without de- 

stroying the magic characteristics of the cube. 
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46 YG 32 33 
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Totaisi==-140: 

The arrangement of the numbers in Fig. 174 follows the dia- 

grammatic order shown in Fig. 175. 

The next even magic cube is 6 X 6 X 6, but as Chapter IX 
of this book has been devoted to a description of these cubes they 

will be passed over here. 
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The 8X 8X8 magic cube follows next in order. Fig. 176 
shows this cube divided, for convenience, into eight horizontal layers 
or sections, and Fig. 177 gives the diagrammatic order of the num- 
bers in the first and eighth sections, the intermediate sections being 
built from similar diagrams, numbered in arithmetical order. 
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Fig. 176. 

It will be seen from these diagrams that the 8 X 8 X 8 magic 

cube is simply an expansion of the 4X 4X4 cube, just as the 

8X8 magic square is an expansion of the 4X 4 square. In like 

manner all the diagrams which were given for different arrange- 

ments of 8X8 magic squares may also be employed in the con- 

struction of 8 X 8 X 8 magic cubes. 
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An examination of Fig. 176 will show that, like the 4X 4 x 4 

cube in Fig. 171 it is built up of o and ro numbers exclusively. In 

sections I, IV, V, and VIII, the cells in the corner diagonal columns, 

and in certain other cells which are placed in definite geometrical 

relations thereto, contain 0 numbers, while all the other cells con- 
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Section VIII. 
(Second Part.) 

tain ro numbers. In sections II, III, VI, and VII, the relative 

positions of the o and ro numbers are reversed. 

By noting the symmetrical disposition of these two orders of 
numbers in the different sections, the cube may be readily con- 
structed without the aid of any geometrical diagrams. Fig. 178 
shows sections I and II of Fig. 176 filled with o and ro symbols 
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without regard to numerical values, and the relative symmetrical 

arrangement of the two orders is therein plainly illustrated. This 

clear and lucid analysis, for which we are indebted to Dr. Carus, 

reduces. the formation of a rather complicated numerical structure 

to an operation of the utmost simplicity. 

In this cube there are 192 straight columns, and 4 great diag- 

onals (which unite the eight corners of the cube) each of which 

sums up to 2052; also 384 half columns and the same number of 

2 X 2 sub-squares each of which has the summation of 1026. It 

will also be seen that the sum of any two numbers, which are lo- 

cated in cells diametrically opposite to each other and equidistant 

from the center of the cube, is 513 or nm? +1. 

GENERAL NOTES ON MAGfE—CUBES. 

Magic cubes may be constructed having any desired summa- 

tions by using suitable initial numbers with given increments, or 

by applying proper increments to given initial numbers. 

The formula for determining the summations of magic cubes 

is similar to that which was given in connection with magic squares 

and may be expressed as follows: 

et: 

A = initial number, 

8 = increment, 

m —=number of cells in each column of cube, 

S = summation ; 

then iff A. Soi arid B= 7 — 

ep law 1) se 

If A and @ are more or less than unity, the following general 

formula may be employed: 

Ant BE, (1 — ies & 

To shorten the above equation, (nm? — 1) may be expressed 

as a constant (K) for each size of cube as follows: 
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Cubes. Const. = K, 

Ae Gat ea terete © «Sto aie sv a wah 39 

Ae ENS Ae wmiernteret-.”, «Sroka Gis one a eck 126 

Bey ares alates a rth oaeae eel 310 

OMICS ACR en ck a ae eee ee 645 

OPP I ine SER aD RES Sere ae LOT; 

Oe PO ee nine and cis Shure 2044 

2 ROS SO GRE IR Py Ree nA fey cae a 3276 

LOD MLO NELO sh aration t «cw qaatin con ue 4995 

When using the above constants the equation will be: 

(1) An+ BK=S, 
Or: 

S— An 

(2) eee 
Of: 

S— BK _ (3) PRESS A. 

EXAMPLES. 

What increment number is required for the cube of 3 & 3 X 3 

with an initial number of 10 to produce summations of 1087 

Expressing equation (2) in figure values: 

108 — (10 X 3) Lee 

eel 
z 

is, yO, Ses wes 

What increments should be used in a cube of 4X 4X4 to 

, produce summations of 704 if the initial number is 50? 

—7oA— (50 X 4). 
126 

4. 
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Section I (Top). Section II. Section III. Section IV (Bottom). 

Fig. 180. 

Totals = 704. 

x ese 

What initial number must be used with increments of Io to 

produce summations of 1906 in a 3 X 3 X 3 cube? 

Expressing equation (3) in figure values: 

1906 — as X 39) 

Top Section. Middle Section. Bottom Section. 

Fig. 181. 

Totals = 1906. 

= 505 */s: 

What initial number is required for the cube of 5X5 X5, 

with 4 as increment number, to produce summations of 1906?* 

1906 — (4 X-310) 

5 

The preceding simple examples will be sufficient to illustrate 

= 133.2 

the formule given, and may suggest other problems to those who 

are interested in the subject. . 

It will be noted that the magic cubes which have been described 

in this chapter are all in the same general class as the magic squares 

which formed the subject of the previous chapter. 

There are, however, many classes of magic squares and-cor- 

responding cubes which differ from these in the general arrange- 

* This example was contributed by the late Mr, D. B. Ventres of Deep 
River, Conn. 
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ment of numbers and in various other features, while retaining the 
common characteristic of having similar column values. An ex- 
ample of this differentiation is seen in the interesting “Jaina’’ square 
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Fig. 182. 

described by Dr. Carus in his “Reflections on Magic Squares.” 

Squares of this class can readily be expanded into cubes which will 

naturally carry with them the peculiar features of the squares. 
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Another class is illustrated in the “Franklin Squares,’ and 

these can also be expanded into cubes constructed on the same 

general principles. 

The subject of magic squares and cubes is indeed inexhaustible 

and may be indefinitely extended. The philosophical significance 

of these studies has been so ably set forth by Dr. Carus that the 

writer considers it unnecessary to add anything in this connection, 

but he trusts that the present endeavor to popularize these inter- 

esting problems may some time lead to useful results. 



CHAPTER IL. 

THE FRANKLIN SQUARES. 

ple following letter with squares of 8&8 and 16 X 16 is 
copied from “Letters and papers on Philosophical subjects by 

Benjamin Franklin, LL. D., F.R.S.,” a work which was printed in 

London, England, in 1769. 

From BENJAMIN FRANKLIN ESQ. OF PHILADELPHIA. 

eo PETER COLLINSON Esg.. aT Lonpon. 

DeEAR S1rR:—According to your request I now send you the arith- 

metical curiosity of which this is the history. 

Being one day in the country at the house of our common 

friend, the late learned Mr. Logan, he showed me a folio French 

book filled with magic squares, wrote, if I forget not by one Mr. 

Frenicle, in which he said the author had discovered great ingenuity 

and dexterity in the management of numbers; and though several 

other foreigners had distinguished themselves in the same way, he 

did not recollect that any one Englishman had done anything of the 

kind remarkable. 

I said it was perhaps a mark of the good sense of our mathe- 

maticians that they would not spend their time in things that were 

merely difficiles nuge, incapable of any useful application. He 

answered that many of the arithmetical or mathematical questions 

publicly proposed in England were equally trifling and useless. 

Perhaps the considering and answering such questions, I replied, 

may not be altogether useless if it produces by practice an habitual 
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readiness and exactness in mathematical disquisitions, which readi- 

ness may, on many occasions be of real use. In the same way 

says he, may the making of these squares be of use. I then con- 

fessed to him that in my younger days, having once some leisure 

(which I still think I might have employed more usefully) I had 

amused myself in making these kind of magic squares, and, at 

length had acquired such a knack at it, that I could fill the cells of 

any magic square of reasonable size with a series of numbers as 

fast as I could write them, disposed in such a manner that the sums 

of every row, horizontal, perpendicular or diagonal, should be 

equal; but not being satisfied with these, which I looked on as com- 

PAPEL 

£794 74 7026/4 

sy sloteloahs 
Fig. 183. 

mon and easy things, I had imposed on myself more difficult tasks, 

and succeeded in making other magic squares with a variety of 

properties, and much more curious. He then showed me several 

in the same book of an uncommon and more curious kind; but as 

I thought none of them equal to some I remembered to have made, 

he desired me to let him see them; and accordingly the next time 

I visited him, I carried him a square of 8 which I found among my 

old papers, and which I will now give you with an account of its 

properties (see Fig. 183). The properties are: 

1. That every straight row (horizontal or vertical) of 8 num- 

bers added together, makes 260, and half of each row, half of 260. 

2. That the bent row of 8 numbers ascending and descending 
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diagonally, viz., from 16 ascending to 10 and from 23 descending to 
17 and every one of its parallel bent rows of 8numbers make 260, etc. 
etc. And lastly the four corner numbers with the four middle numbers 
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make 260. So this magical square seems perfect in its kind, but 

these are not all its properties, there are 5 other curious ones which 

at some time I will explain to you. 

Mr. Logan then showed me an old arithmetical book in quarto, 



Q2 THE FRANKLIN SQUARES. 

wrote, I think by one Stifelius, which contained a square of 16 

which he said he should imagine to be a work of great labour; but 

if I forget not, it had only the common properties of making the 

same sum, viz., 2056 in every row, horizontal, vertical and diagonal. 

Not willing to be outdone by Mr. Stifelius, even in the size of my 

square, I went home, and made that evening the following magical 

square of 16 (see Fig. 184) which besides having all the properties 

of the foregoing square of 8, 1. e., it would make 2056 in all the 

same rows and diagonals, had this added, that a four-square hole 

being cut in a piece of paper of such a size as to take in and show 

through it just 16 of the little squares, when laid on the greater 
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Fig. 186. 

square, the sum of the 16 numbers so appearing through the hole, 

wherever it was placed on the greater square should likewise make 

2056. This I sent to our friend the next morning, who after some 

days sent it back in a letter with these words: 

“I return to thee thy astonishing 

“or most stupendous piece 

“of the magical square in which”.... 

—but the compliment is too extravagant and therefore, for his sake, 

as well as my own I ought not to repeat it. Nor is it necessary, 

for I make no question but you will readily allow the square of 16 
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2 

to be the most magically magical of any magic square ever made 

by any magician. 

I am etc. Disie 

It will be seen that the squares shown in Figures 183 and 184 

are not perfect according to the rules for magic squares previously 
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given, but the interesting feature of their bent diagonal columns 

calls for more than passing notice. In order to facilitate the study 

of their construction, a 4X 4 square is given in Fig. 185 which 

presents similar characteristics. 
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The dotted lines in.this square indicate four bent diagonal col- 

umns, each of which has a total of 34; three of these columns.being 

intact within the square and one being broken. Four bent diagonal 

columns may be formed from each of the four sides of the square, 

but only twelve of these sixteen columns have the proper totals. 

Adding to these the eight straight columns, we find that this square 

contains twenty columns with summations of 34. The 4 X 4 “Jaina” 

square contains sixteen columns which sum up to 34 while the 

ordinary 4 X 4 magic square may contain only twelve. 

The 8 & 8 Franklin square (Fig. 183) contains forty-eight col- 

umns which sum up to 260, viz., eight horizontal, eight vertical, six- 

teen bent horizontal diagonals, and sixteen bent vertical diagonals, 
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Fig. 188. 

whereas the pandiagonal associated 8 & 8 magic square may contain 

only thirty-two columns and diagonals of the same summation. 

In addition to the other characteristics mentioned by Franklin 

in his letter concerning his 8 X 8 magic square it may be stated that 

the sum of the numbers in any 2 X 2 sub-square contained therein 

is 130, and that the sum of any four numbers that are arranged dia- 

metrically equidistant from the center of the square also equals 130. 

In regard to his 16 X 16 square, Franklin states in his letter 

that the sum of the numbers in any 4 X 4 sub-square contained 

therein is 2056. The sub-division may indeed be carried still further, 

for it will be observed that the sum of the numbers in any 2X 2 
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sub Square is 514, and there are also other curious: features which a 
little study will disclose. 
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The Franklin Squares possess a unique and peculiar symmetry 

in the arrangement of their numbers which is not clearly observable 

on their faces, but which is brought out very strikingly in their 

wrt 
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geometrical diagrams as given in Figs. 186 and 187, which illustrate 

respectively the diagrams of the 4 < 4 and 8 X 8 squares. 

Magic cubes may be readily constructed by expanding these 

diagrams and writing in the appropriate numbers. 

The cube of 4 X 4 X 4 and its diagram are given as examples 

in Figs. 188 and 189, and it will be observed that the curious char- 

acteristics of the square are carried into the cube. 

AN ANALYSIS OF THE FRANKLIN SQUARES. 

In The Life and Times of Benjamin Franklin, by James Parton, 

(Vol. I, pp. 255-257), there is an account of two magic squares, one 

8 X 8, the other 16 X 16, which are given here in Figs. 191 and 192. 

==200) 

PROPERTIES OF FRANKLIN'S 8X8 SQUARE. 

Fig. 1090. 

Mr. Parton explains the 8X8 square as follows: 

“This square, as explained by its contriver, contains astonishing 

“properties: every straight row (horizontal or vertical) added to- 
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FRANKLIN 8X8 SQUARE. 
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“gether makes 260, and each half row half 260. The bent row of 
“eight numbers ascending and descending diagonally, viz., from 16 
“ascending to 10, and from 23 descending to 17, and every one of 

“its parallel bent rows of eight numbers, makes 260. Also, the bent 

= 2056 - = 2056 + 128 

i 

a1 

= 2056 = 2056 

PROPERTIES OF FRANKLIN'S I6X16 SQUARE. 

Fig. 193 (con.). 

“row from 52 descending to 54, and from 43 ascending to 45, and 

“every one of its parallel bent rows of eight numbers, makes 260. 

“Also, the bent row from 45 to 43, descending to the left, and from 
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“23 to 17, descending to the right, and every one of its parallel bent 

“rows of eight numbers, makes 260. Also, the bent row from 52 

HtOESA: descending to the right, and from 10 to 16, descending to 

“the left, and every one of its parailel bent rows of eight numbers, 

“makes 260. Also, the parallel bent rows next to the above-men- 

“tioned, which are shortened to three numbers ascending and three 

“descending, etc., as from 53 to 4 ascending and from 29 to 44 

“descending, make, with the two corner numbers, 260. Also, the two 

“numbers, 14, 61, ascending, and 36, 19, descending, with the lower 

“four numbers situated like them, viz., 50, 1, descending, and 32, 47, 

“ascending, makes 260. And, lastly, the four corner numbers, with 

“the four middle numbers, make 260. 

“But even these are not all the properties of this marvelous 

“square. Its contriver declared that it has ‘five other curious ones,’ 

“which he does not explain; but which the ingenious reader may 

“discover if he can.” 

These remarkable characteristics which Mr. Parton enumerates 

are illustrated graphically in the accompanying diagrams in which the 

relative position of the cells containing the numbers which make up 

the number 260, is indicated by the relation of the small hollow 

squares (Fig. 190). 

I'ranklin’s 1616 square is constructed upon the same principle 

as the smaller, and Mr. Parton continues: 

“Nor was this the most wonderful of Franklin’s magical 

“squares. He made one of sixteen cells in each row, which besides’ 

“possessing the properties of the squares given above (the amount, 

“however added, being always 2056), had also this most remark- 

“able peculiarity: a square hole being cut in a piece of paper of such 

“a size as to take in and show through it just sixteen of’ the little 

“squares, when laid on the greater square, the sum of sixteen num- 

“bers, so appearing through the hole, wherever it was placed on the 

“greater square, should likewise make 2056.” 

The additional peculiarity which Mr. Parton notes of the 16 

16 square is no more remarkable than the corresponding fact which 
is true of the smaller square, that the sum of the numbers in any 
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2X2 combination of its cells yields 130. The properties: of the 

larger square are also graphically represented here (Fig. 193). 

A clue to the construction of these squares may be found as 

follows: 

We write down the numbers in numerical order and call the 

cells after the precedent of the chess-board, with two sets of symbols, 

letters and numbers. We call this “the plan of construction” (Fig. 

194). 
Before we construct the general scheme of Franklin’s square 

we will build up another magic square, a little less complex in prin- 

ciple, which will be preparatory work for more complicated squares. 

We will simply intermix the ordinary series of numbers according 

to a definite rule alternately reversing the letters so that the odd 

rows are in alphabetical order and the even-ones reversed. In order 

to distribute the numbers in a regular fashion so that no combina- 

tion of letter and number would occur twice, we start with I in the 

upper left-hand corner and pass consecutively downwards, alter- 

nating between the first and second cells in the successive rows, 

thence ascending by the same method of simple alternation from 1 

in the lower left-hand corner. We have now the key to a scheme 

for the distribution of numbers in an 8X8 magic square. It is the 

first step in the construction of the Franklin 8X8 magic square, and 

we call it “the key to the scheme of simple alternation” (Fig. 195). 

It goes without saying that the effect would be the same if we 

begin in the same way in the right-hand corners,—only we must 

beware of a distribution that would occasion repetitions. . 

To complete the scheme we have to repeat the letters, alternately 

inverting their order row after row, and the first two given figures 

must be repeated throughout every row, as they are started. The 

top and bottom rows will read 1, 8; 1, 8; 1, 8; 1, 8. The second 

row from the top and also from the bottom will be 7,2; 7, 2; 7, 2: 

7, 2. The third row from the top and bottom will be 3, 6; 3, 6; 

3,6; .3, 6; and thertwo center tows 5.94585 e4j05e14> ewes 

every line the sum of two consecutive figures yields 9. . This is the . 

second step, yielding the completed scheme of simple alternation 

(Fig. 106). 
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The square is now produced by substituting for the letter and 
figure combinations, the corresponding figures according to the con- 
secutive arrangement in the plan of construction (Fig. 197). 

Trying the results we find that all horizontal rows sum up to 
200, while the vertical rows are alternately 260 — 4, and 260 + 4. 
The diagonal from the upper right to the lower left corner yields 
a sum of 260+ 32, while the other diagonal from the left upper 

corner descending to the right lower corner makes 260—32. The 

upper halves of the two diagonals yield 260, and also the sum of 

the lower halves, and the sum total of both diagonals is accordingly 

520 or 2X260. The sum of the two left-hand half diagonals re- 

sults in 260—16, and the sum of the two half diagonals to the 

right-hand side makes 260+16. The sum of the four central cells 

plus the four extreme corner cells yields also 260. 

Considering the fact that the figures 1 to 8 of our scheme run 

up and down in alternate succession, we naturally have an arrange- 

ment of figures in which sets of two belong together. This binate 

peculiarity is evidenced in the result just stated, that the rows yield 

sums which are the same with an alternate addition and subtraction 

of an equal amount. So we have a symmetry which is astonishing 

and might be deemed magical, if it were not a matter of intrinsic 

necessity. 

We represent these peculiarities in the adjoined diagrams (Fig. 

198) which, however, by no means exhaust all the possibilities. 

We must bear in mind that these magic squares are to be re- 

garded as continuous; that is to say, they are as if their opposite 

sides in either direction passed over into one another as if they 

were joined both ways in the shape of a cylinder. In other words 

when we cross the boundary of the square on the right hand, the first 

row of cells outside to the right has to be regarded as identical 

with the first row of cells on the left; and in the same way the 

uppermost or first horizontal row of cells corresponds to the first 

row of cells below the bottom row. This remarkable property of 

the square will bring out some additional peculiarities which mathe- 

maticians may easily derive according to general principles; espe- 

cially what was stated of the sum of the lower and upper half- 
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Fig. 198. PROPERTIES OF 8X8 SQUARE BY SIMPLE ALTERNATION. 
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B= 2066+ 8 == 2056 
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Fig. 199. PROPERTIES OF 16X16 SQUARE BY SIMPLE ALTERNATION. 
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diagonal of any bent series of cells running staircase fashion either 
upward or downward to the center, and hence proceeding in the 
Opposite way to the other side. 

The magic square constructed according to the method of sim- 

= 
= 2056 — 128 =alternately 2056 — 64 and 2056 + 64 

= 2056 + 128 = alternately 2056 — 64 and 2056 + 64 

PROPERTIES OF 16X16 SQUARE BY SIMPLE ALTERNATION. 

Fig. 199 (con.). 

ple alternation of figures is not, however, the square of Benjamin 

Franklin, but we can easily transform the former into the latter 

by slight modifications. 

We notice that in certain features the sum total of the bent 
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Fig. 200. First Steps. Fig. 201. 

KEY TO THE SCHEME OF ALTERNATION WITH BINATE TRANSPOSITION. 

Fig. 202. Second Step. Fig. 203. Third Step. 

SCHEME OF ALTERNATION WITH SQUARE CONSTRUCTED BY ALTERNA 

BINATE TRANSPOSITION. TION WITH BINATE TRANSPOSITION 

Fig. 204. SCHEME OF FRANKLIN'S 8X8 SQUARE. 
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Fig. 207, SCHEME OF SIMPLE ALTERNATION. 
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Fig. 208. 16 X 16 MAGIC SQUARE CONSTRUCTED BY SIMPLE ALTERNATION. 
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ig. 209. KEY TO THE SCHEME OF ALTERNATION WITH QUATERNATE TRANS- 
POSITION, 

Fig. 210. SCHEME OF ALTERNATION WITH QUATERNATE TRANSPOSITION. 
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Fig. 2*). A SQUARE CONSTRUCTED BY ALTERNATION WITH QUATERNATE TRANS 

POSITION, 

Fig. 212. SCHEME OF FRANKLIN’S 16 X 16 SQUARE. 
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diagonals represents regularities which counterbalance one another 
on the right- and the left-hand side. In order to offset these results 
we have to shift the figures of our scheme. 

We take the diagram which forms the key to the scheme of our 
distribution by simple alternation (Fig. 195), and cutting it in the 
middle, turn the lower half upside down, giving the first two rows as 
seen in Fig. 200 in which the heavy lines indicate the cutting. Cutting 

then the upper half in two (i. e., in binate sections), and transposing 

the second quarter to the bottom, we have the key to the entire ar- 

rangement of figures; in which the alternation starts as in the 

scheme for simple alternation but skips the four center rows passing 

from 2 in the second cell of the second row to 3 in the first cell of 

the seventh, and from 4 in the second cell of the eighth passing to 

5 in the first cell, and thence upwards in similar alternation, again 

passing over the four central rows to the second and ending with 8 

in the second cell of the first row. Then the same alternation is pro- 

duced in the four center rows. It is obvious that this can not start 

in the first cell as that would duplicate the first row, so we start with 

1 in the second cell passing down uninterruptedly to 4 and ascending 

as before from 5 to 8. 

A closer examination will show that the rows are binate, which 

means in sets of two. The four inner numbers, 3, 4, 5, 6 and the 

two outer sets of two numbers each, 1, 2 and 7, 8, are brought to- 

gether thus imparting to the whole square a binate character (Fig. 

202). 

We are now provided with a key to build up a magic square 

after the pattern of Franklin. We have simply to complete it in 

the same way as our last square repeating the letters with their 

order alternately reversed as before, and repeating the figures in 

each line. 

When we insert their figure values we have a square which is 

not the same as Franklin’s, but possesses in principle the same 

qualities (Fig. 203). 

To make our 8X8 square of binate transposition into the 

Franklin square we must first take its obverse square; that is to 

say, we preserve exactly the same order but holding the paper 
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with the figures toward the light we read them off from the obverse 

side, and then take the mirror picture of the result, holding the 

mirror on either horizontal side. So far we have still our square 

with the peculiarities of our scheme, but which lacks one of the 

incidental characteristics of Franklin’s square. We must notice 

that he makes four cells in both horizontal and vertical directions 

sum up to 130 which property is necessarily limited only to two 

sets of four cells in each row. If we write down the sum of 1-+-2++ 

3+4+5+6+7+8=2% 18, we will find that the middle set 3-+4-+- 

5+6 is equal to the rest consisting of the sum of two extremes, 

1+4,and 7+8. In this way we cut out in our scheme (Fig. 202), the 

rows represented by the letters C, D, E, F in either order and ac- 

cordingly we can shift either of the two first or two last vertical 

rows to the other side. Franklin did the former, thus beginning 

his square with G, in the left upper corner as in Fig. 204. We have 

indicated this division by heavier lines in both schemes. 

The greater square of Franklin, which is 1616, is made after 

the same fashion, and the adjoined diagrams (Figs. 205-212) will 

sufficiently explain its construction. 

We do not know the method employed by Franklin; we pos- 

sess only the result, but it is not probable that he derived his square 

according to the scheme employed here. 

Our 16X16 square is not exactly the same as the square of 

Franklin, but it belongs to the same class. Our method gives the 

key to the construction, and it is understood that the system here 

represented will allow us to construct many more squares by simply 

pushing the square beyond its limits into the opposite row which 

by this move has to be transferred. ‘ 

There is the same relation between Franklin’s 16X16 square 

and our square constructed by alternation with quaternate trans- 

position, that exists between the corresponding 8X8 squares. 

Ps. Cy 



CHAPTER IVs: 

REFLECTIONS ON MAGIC SQUARES. 

M ATHEMATICS, especially in the field where it touches philos- 
ophy, has always been my foible, and so Mr. W. S. Andrews’s 

article on “Magic Squares” tempted me to seek a graphic key to the 

interrelation among their figures which should reveal at a glance 

the mystery of their construction. 

THE ORDER OF FIGURES. 

In odd magic squares, 3 X 3, 5X5, 7X7, etc., there is no 

difficulty whatever, as Mr. Andrews’s diagrams show at a glance 

-(Fig. 213). The consecutive figures run up slantingly in the form 

§ 
7 (2: 

Fig. 2133. A SPECIMEN OF 5x5 MAGIC SQUARE. 

of a staircasé, so as to let the next higher figure pass over into the 

next higher or lower cell of the next row, and those figures that ac- 

cording to this method would fall outside of the square, revert 

into it as if the magic square were for the time (at the moment of 

crossing its boundary) connected with its opposite side into the 
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shape of a cylinder. This cannot be done at once with both its two 

opposite vertical and its two opposite horizontal sides, but the pro- 

cess is easily represented in the plane by having the magic square 

extended on all its sides, and on passing its limits on one side we 

must treat the extension as if we had entered into the magic square 

on the side opposite to where we left it. If we now transfer the 

figures to their respective places in the inside square, they are shoved 

over in a way which by a regular transposition will counteract their 

regular increase of counting and so equalize the sums of entire rows. 

The case is somewhat more complicated with even magic 

squares, and a suggestion which I propose to offer here, pertains 

to their formation. Mr. Andrews begins their discussion by stating 

that “in regard to regular or associated magic squares it is not only 

necessary that each row, column and corner diagonal shall sum 

the same amount, but also that the pairs of numbers which sum 

n> +1 must occupy cells which are located diametrically equidis- 

tant from the center of the square.” 

The smallest magic square of even numbers is, of course, 4 X 4; 

and he points out that if we write the figures in their regular order 

in a 4 X 4 square, those standing on the diagonal lines can remain 

in their places, while the rest are to be reversed so as to replace 

every figure by its complementary to 17 (i. e., 2 by 15, 3°by 14, 5 by 

12, 9 by 8) the number 17 being the sum of the highest and lowest 

numbers of the magic square (i. e., m7 -+ 1). It is by this reversal 

of figures that the inequalities of the natural order are equalized 

again, so as to make the sum of each row equal to 34, which is one 

fourth of the sum total of all figures, the general formula being 

1+2+3+4-+...." F 1 
5 eae +1). 

We will now try to find out more about the relation which the 

magic square arrangement bears to the normal sequence of figures. 

For each corner there are two ways, one horizontal and one 

vertical, in which figures can be written in the normal sequence; 

accordingly there are altogether eight possible arrangements, from 

which we select one as fundamental, and regard all cthers as mere 

variations, produced by inverting and reversing the order. 
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As the fundamental arrangement we choose the ordinary way 
of writing from the left to the right, proceeding in parallel lines 
downward. We call this “the original order” or o. Its reverse 
proceeds from the lower right-hand corner toward the left, and 
line by line upward, thus beginning the series where the ordinary 

arrengement ends, and ending where it started, as reflected on the 

ground glass of a camera. We call this order “the reversed orig- 

inal,” or simply ro. 

Another order is produced by following the Hebrew and Arabic 

mode of writing: we begin in the upper right-hand corner, proceed- 

ing to the left, and then continue in the same way line by line 

downward. This, the inverse direction to the original way, we call 

briefly « or “mirror” order. 

The reverse order of i, starting in the lower left corner, pro- 

ceeding to the right, and line by line upward, we call ri, or “lake” 

order. Further on we shall have occasion to present these four orders 

by the following symbols: 0 by @; ro by @; 1 by >; ri by +. 

1}2}3lalslel lels[4]3f2]. 
171819 |10) 19] 12 12/11/10) 9| 8] 7 
13/14115/16/17| 18 181171 16/15/14] 13 
19 | 20] 21) 22 | 23) 24 24|23| 22] 21| 20/19 | 

25 | 26 | 27] 28 | 29 | 30 /30/ 29| 28 | 27| 26 | 25 

31| 32 33 [34 35 | 36 36 | 35 | 34| 33 | 32] 31 

ORDER 0 (@), ORIGINAL. ORDER 7 (>), MIRROR. 

31] 32133 | 34| 35|36| 36 | 35] 34| 33] 32] 31 

25 | 26 |27 | 28 29 | 30 30 | 29 | 28 | 27| 26 | 25 

19 |20|21| 22/23] 24 24| 23/| 22| 21] 20] 19 

1314/15/16 /17]18 18/17/16] 15/14/13 

7/8] 9/10l11/12 2/11/1019] 8] 7 

1 aes 4|5|6 6[5|4[3|2 | 

ORDER 71 (+), LAKE. ORDER ro (@)), CAMERA. 

Fig. 214. 
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Fig. 215. EVEN SQUARES IN MULTIPLES OF FOUR.* 

* These squares, 4 X 4 and its multiples, consist of o and ro orders only, 
and it will be sufficient to write out the two 4 X 4 squares, which show how 
o and ro are mutually interchangeable. 

0 \ro|ro\o | |ro| 0 | 0 |ro| 

|ro| 0 |o |ro| [0 |ro|ro|o | 

[role [o [ro [2 |ro|ro| 2 | 
| o|ro|ro|o o|ro|ro|o | |ro| 0 |o |ro| } 
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It will be noticed that i is the vertical mirror picture of o and 
ro of rt, and vice versa. Further if the mirror is placed upon one 
of the horizontal lines, ri is the mirror picture a o as well as ro of i 
and vice versa. 

There are four more arrangements. There is the Chinese way 

of writing downward in vertical columns as well as its inversion, 

and the reversed order of both. This method originated by the use 

of bamboo strips as writing material in China, and we may utilize 

the two vowel sounds of the word “bamboo” (viz., a and ~) to name 

the left and the right downward order, a the left and wu the right, 

the reverse of the right ru and of the left ra, but for our present 

purpose there will be no occasion to use them. 

Now we must bear in mind that magic squares originate from 

the ordinary and normal consecutive arrangement by such transpo- 

sitions as will counteract the regular increase of value in the nor- 

mally progressive series of figures; and these transpositions depend 

upon the location of the several cells. All transpositions in the 

cells of even magic squares are brought about by the substitution 

of figures of the ro, 1, and 7 order for the original figures of the 

ordinary or o order, and the symmetry which dominates these 

changes-becomes apparent in the diagrams, which present at a glance 

the order to which each cell in a magic square belongs. 

Numbers of the same order are grouped not unlike the Chladni 

acoustic figures, and it seems to me that the origin of the regular- 

ity of both the magic figures and this phenomenon of acoustics, is 

due to an analogous law of symmetry. 

The dominance of one order 0, ro, i, or ri, in each cell of an 

even magic square, is simply due to a definite method of their 

selection from the four different orders of counting. Never can 

a figure appear in a cell where it does not belong by right of some 

regular order, either 0, ro, 1, or rh. 

The magic square of 4 X 4, consists only of o and ro figures, 

and the same rule applies to the simplest construction of even squares 

of multiples of four, such as 8 X 2,,and 12>< 12. 

There are several ways of constructing a magic square of 6 X 6. 

Our first sample consists of 12 0, 12 ro, 6 ri, and 6 1 figures. The 
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12 0 hold the diagonal lines. The 12 ro go parallel with one of 

these diagonals, and stand in such positions that if the whole magic 

square were diagonally turned upon itself, they would exactly cover 

the 6 i, and 6 vi figures. And again the 67 and 6 77 also hold toward - 

each other places in the same way corresponding to one another ; 

if the magic square were turned upon itself around the other diag- 

onal, each ri figure would cover one of the 7 order. 

| 
is |es|-5|-4[20)0 

Fig. 216. 6X6 EVEN SQUARES. 

If we compare the magic squares with the sand-covered glass 

plates which Chladni used, and think of every cell as equally filled 

with the four figures that would fall upon it according to the normal 

sequence of o, ro, i, and ri; and further if we compare their change 

into a magic square to a musical note harmonizing whole rows into 

equal sums, we would find (if by some magic process the different 

values of the several figures would mechanically be turned up so 

Oo (e) 

RO 

as to be evenly balanced in rows) that they would present geomet- 

tically harmonious designs as much as the Chladni acoustic figures. 

The progressive transformations of 0, ro, i, and ri, by mirroring, 

are not unlike the air waves of notes in which o represents the crest 

of the wave, ro the trough, 7 and 77 the nodes. 

In placing the mirror at right angles progressively from o. to 

i, from 7 to ro, from ro to ri, and from ri to 0, we return to the 

beginning thus completing a whole sweep of the circle.* The re- 

* See diagram on page 115. 
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Fig. 217. CHLADNI FIGURES.* 

* The letter a indicates where the surface is touched with a finger; while 
b marks the place where the bow strikes the glass plate. In the four upper 
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verse of o which is ro represents one-half turn, i and 77 the first and 

third quarter in the whole circuit, and it is natural, therefore, that 

a symmetry-producing wave should produce a similar effect in the 

magic square to that of a note upon the sand of a Chladni glass 

plate. 

MAGIC SQUARES IN SYMBOLS. 

The diagrams which are offered here in Fig. 218 are the best 

evidence of their resemblance to the Chladni figures, both exhibiting 

in their formation, the effect of the law of symmetry. The most 
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Constructed from all the orders, 0, ro, i, and ri. 

Fig. 218. 

diagrams the plate has been fastened - in the center, while in the lower o ones 
it has been held tight in an excentric position, indicated by the white dot. 
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elegant way of rendering the different orders, i, ri, 0, and vo, visible 
at a glance, would be by printing the cells in four different colors, 

@ri++++6 
FOSOooeer 
OSOLOSS 
++ F@@R++ 
++ hO@Ri+ 
OSOr LOSS 
FOSeeser 
@ri+++k@ 
ANOTHER 8X8 SQUARE. 

It will be noted that in this square the arrangement of the 0 symbols 
corresponds very closely to the distribution of the sand in the second of the 
Chladni diagrams. The same may be said of the two following figures, and it 
is especially true of the first one of the 8 X 8 squares just preceding. 

O82 1820@ 
LOSSOe® 
©0082 
+@O@O+ 
'¥O++08 
@+ +8+®@ 

@1++80 
SOSLOO 
+2008 
+0018 
+@@+O+ 
@+0080 

12.0, 12 ro, 6 1, 6 rt. 

0508210080 
SOSOSSOSO+ 
©OO0SO00801® 
OS SOS SOO 
2089001806 
20+ 8001-68 
@:+ 80800110 
+8@@@008O64+ 
080110807 
O20: @1+6c@ 

40 0, 40 ro, 101, 10 71. 

The reader will notice that there is a remarkable resemblance 

between the symmetry displayed in this figure and in the fourth 

of the Chladni diagrams. 

Fig. 218.(con.). EXAMPLES OF 6X6 AND 10X10 MAGIC SQUARES. 

but for proving our case, it will be sufficient to have the four orders 

represented by four symbols, omitting their figure values, and we 
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here propose to indicate the order of o by @, v0 by @, 7 by >&, 

ri by +. 

THE MAGIC SQUARE IN CHINA. 

In the introduction to the Chou edition of the Yih King, we 

find some arithmetical diagrams and among them the Loh-Shu, the 

scroll of the river Loh, which is a mathematical square from I to g, 

so written that all the odd numbers are expressed by white dots, 

i. e., yang symbols, the emblem of heaven, while the even numbers 

THE SCROLL OF LOH. THE MAP OF Ho.* 

(According to Ts‘ai Yiiang-ting. ) 

Fig. 219. TWO ARITHMETICAL DESIGNS OF ANCIENT CHINA. 

are in black dots; i. e., yin symbols, the emblem of earth. The in- 

vention of the scroll is attributed to Fuh-Hi, the mythical founder 

of Chinese civilization, who according to Chinese reports lived 2858- 

2738 B. C. But it goes without saying that we have to deal here 

with a reconstruction of an ancient document, and not with the 

document itself. The scroll of Loh is shown in Fig. 219. 

The first unequivocal appearance of the Loh-Shu in the form of 

a magic square is in the latter part of the posterior Chou dynasty 

cause it helps to illustrate the spirit of the times when the scroll of Loh was 
composed in China. The map of Ho contains five groups of odd and even 
figures, the numbers of heaven and earth respectively. If the former are re- 
garded as positive and the latter as negative, the difference of each group 
will uniformly yield +5 or —5. 
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(951-1126 A. D.) or the beginning of the Southern Sung dynasty 
(1127-1333 A. D.). The Loh-Shu is incorporated in the writings 
of Ts‘ai Yuian-Ting who lived from 1135-1108 A. D. (cf. Mayers, 
Chinese Reader's Manual, I, 754a), but similar arithmetical dia- 
grams are traceable as reconstructions of primitive documents among 
scholars that lived under the reign of Sung Hwei-Tsung, which 
lasted from 1ro1-1125 A. D. (See Mayers, C. R. M., p. BZ) 

The Yih King is unquestionably very ancient and the symbols 

yang and yin as emblems of heaven and earth are inseparable from 

its contents. They existed at the time of Confucius (551-479 B. C.), 

for he wrote several chapters which are called appendices to the 

Yih King, and in them he says (III, I, IX, 49-50. S. B. E., XVI, 

pases.) 

“To keaven belongs 1; to earth, 2; to heaven, 3; to earth, 4; 

to heaven, 5; to earth, 6; to heaven, 7; to earth, 8; to heaven, 9; 

to earth, 10. 

“The numbers belonging to heaven are five, and those belonging 

to earth are five. The numbers of these two series correspond to 

each other, and each one has another that may be considered its 

mate. The heavenly numbers amount to 25, and the earthly to 30. 

The numbers of heaven and earth together amount to 55. It is 

by these that the changes and transformations are effected, and the 

spiritlike agencies kept in movement.” 

This passage was written about 500 B. C. and is approximately 

simultaneous with the philosophy of Pythagoras in the Occident, 

who declares number to be the essence of all things. 

One thing is sure, that the magic square among the Chinese 

cannot have been derived from Europe. It is highly probable, how- 

ever, that both countries received suggestions and a general impulse 

from India and perhaps ultimately from Babylonia. But the devel- 

opment of the yang and yin symbols in their numerical and occult 

significance can be traced back in China to a hoary antiquity so as 

to render it typically Chinese, and thus it seems strange that the 

same idea of the odd numbers as belonging to heaven and the even 

ones to earth appears in ancient Greece. 

I owe the following communication to a personal letter from 
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Professor David Eugene Smith of the Teachers’ College of New 

York: 

“There is a Latin aphorism, probably as old as Pythagoras, 

Deus imparibus numeris gaudet. Virgil paraphrases this as follows: 

Numero deus impare gaudet. (Ecl. viii, 75). In the edition I have 

at hand* there is a footnote which gives the ancient idea of the 

nature of odd and even numbers, saying: 

“",.impar numerus immortalis, quia dividi integer non potest, 

par numerus mortalis, quia dividi potest; licet Varro dicat Pytha- 

goreos putare imparem numerum habere finem, parem esse infimitum 

[a curious idea which I have not seen elsewhere]; ideo medendi 

causa multarumque rerum impares numeros servari: nam, ut supra 

dictum est, superi dit impari, infert part gaudent. 

“There are several references among the later commentators 

to the fact that the odd numbers are masculine, divine, heavenly, 

while the even ones were feminine, mortal, earthly, but I cannot just 

at this writing place my hands upon them. 

“As to the magic square, Professor Fujisawa, at the Inter- 

national Congress of Mathematicians at Paris in 1900, made the 

assertion that the mathematics derived at an early time from the 

Chinese (independent of their own native mathematics. which was 

of a somewhat more scientific character), included the study of 

these squares, going as far as the first 400 numbers. He did not, 

however, give the dates of these contributions, if indeed they are’ 

known.” 

As to other magic squares, Professor Smith writes in another 

letter: 

“The magic square is found in a work by Abraham ben Ezra 

in the eleventh century. It is also found in Arabic works of the 

twelfth century. In 1904, Professor Schilling contributed to the 

Mathematical Society of Gottingen the fact that’ Professor Kielhorn 

had found a Jaina inscription of the twelfth or thirteenth century 

*P. Virgilii Maronis | Opera,|cum integris commentariis | Servii, Phi- 
largyrii, Pierii,| Accedunt | Scaligeri et Lindenbrogii] .... . | Pancratius 
Masvicius| ...|Tom. I,| ... | Leonardiae,| ... | . . claToccxvi1| 
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in the city of Khajuraho, India, a magic square of the notable 
peculiarity that each sub-square sums to BA 

Fig. 220 is the square which Professor Smith encloses. 
We must assume that we are confronted in many cases with 

an independent parallel development, but it appears that suggestions 
must have gone out over the whole world in most primitive times 
perhaps from Mesopotamia, the cradle of Babylonian civilization, 
or later from India, the center of a most brilliant development of 

scientific and religious thought. 

How old the magic square in China may be, is difficult to say. 

It seems more than probable that its first appearance in the twelfth 

century is not the time of its invention, but rather the date of a 

Deu lA 

Dele Samo tt 

16) 3 (101 5 

SEA AGE jl SH es 

Fig. 220. 

recapitulation of former accomplishments, the exact date of which 

can no longer be determined. 

THE JAINA SQUARE. 

Professor Kielhorn’s Jaina square is not “an associated or 

regular magic square” according to Mr. Andrews’s definition, quoted 

above. While the sums of all the rows, horizontal, vertical, and 

diagonal, are equal, the figures equidistant from the center are not 

equal to m2 + 1, viz., the sum of the first and last numbers of the 

series. Yet it will be seen that in other respects this square is more 

regular, for it represents a distribution of the figure values in what 

might be called absolute equilibrium. 

First we must observe that the Jaina square is continuous, 

by which I mean that it may vertically as well as horizontally be 

‘turned upon itself and the rule still holds good that wherever we 

may start four consecutive numbers in whatever direction, back- 
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ward or forward, upward or downward, in horizontal, vertical, or 

-slanting lines, always yield the same sum, viz. 34, which is 2(”°--1) ; 

and so does any small square of 2 X 2 cells. Since we can not bend 

the square upon itself at once in two directions, we. make the result 

visible in Fig. 221, by extending the square in each direction by 

half its own size. 

Wherever 4 X 4 cells are taken out from this extended square, 

we shall find them satisfying all the conditions of this peculiar kind 

of magic squares. S 

The construction of this ancient Jaina equilibrium-square re- 

auires another method than we have suggested for Mr. Andrews’ 

“associated squares,” and the following considerations will afford us 

the key as shown in Fig. 222. 

First we write the numbers down into the cells of the square 

in their consecutive order and call the four rows in one direction 

AGeB, G, Ds in the, other direction 1,/2,.23.4.. Our aim ice toace= 

distribute them so as to have no two numbers of the same denomi- 

nation in the same row. In other words, each row must contain 

one and only one of each of the four letters, and also one and only 

one of each of the four figures. 

_We start in the left upper corner and write down in the first 

horizontal row the letters A, B, C, and D, in their ordinary succes- 

sion, and in the second horizontal row, the same letters in their 
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inverted order. We do the same with the numbers in the first and 
second vertical rows. All that remains to be done is to fill out the 
rest in such a way as not to repeat either a letter or a number. In 
the first row there are still missing for C and D the numbers 2 and a3 
of which 2 must belong to C, for C, appears already in the second 
row and 3 is left for D. 

In the second row there are missing 1 and 4, of which 1 must 
belong to B, because we have B, in the first row. 

In the first vertical row the letters B and C are missing, of 

which B must belong to 3, leaving C to 4. 

Le ea eae | 

Paetees | sy A A,|B4/c|D 

Baleaei) Or fed 408 Dy|C3|/ B/ A 

CHO ON At 12 i) & 

D| 13} 14] 15] 16 rae, 

In Consecutive Order. The Start for a Redistribution. 

1] 8 | 10 15 | 

14 11] 5 4 

Wi 22) NG 9 

12/13] 3 | 6 | 

The Perfected Redistribution. Figure Values of the Square. 

Fig. 222. 

In the second vertical row A and D are missing for 1 and 2. 

A, and D, exist, so A must go to 2, and D to I. 

In the same simple fashion all the columns are filled out, and 

then the cell names replaced by their figure values, which yields 

the same kind of magic square as the one communicated by Prof. 

Smith, with these differences only, that ours starts in the left 

corner with number 1 and the vertical rows are exchanged with 

the horizontal ones. It is scarcely necessary to point out the beauti- 

ful symmetry in the distribution of the figures which becomes fully 

apparent when we consider their cell names. Both the letters, A, 
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B, C, D, and the figures, 1, 2, 3, 4, are harmoniously distributed 

over the whole square, so as to leave to each small square its dis- 

tinct individuality, as appears from Fig. 223. 

Fig. 223. 

The center square in each case exhibits a cross relation, thus: 

In a similar way each one of the four groups of four cells in 

each of the corners possesses an arrangement of its own which is 

symmetrically different from the others. 



CHAPTER, V; 

A MATHEMATICAL STUDY OF MAGIC 
SQUARES. 

A NEW ANALYSIS. 

AGIC squares are not simple puzzles to be solved by the old 

rule of “Try and try again,” but are visible results of “order” 

as applied to numbers. Their construction is therefore governed by . 

laws that are as fixed and immutable as the laws of geometry. 

It will be the object of this essay to investigate these laws, and 

evolve certain rules therefrom. Many rules have been published 

Fig. 225. Fig. 226. Bigi227. 

by which various magic squares may be constructed, but they do 

not seem to cover the ground comprehensively. 

Let Fig. 224 represent a 3 X 3 magic square. By inspection we 

note that: 

h+c=b-+m 

andht+m=g-+c¢ 

therefore 2h =b-+.g 

In this way four equations may be evolved as follows: 
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2h == 0-9 

an=b+d 

2c=d+tm 

2a=m+g 

It will be seen that the first terms of these equations are the 

quantities which occur in the four corner cells, and therefore that 

the quantity in each corner cell is a mean between the two quan- 

tities in the two opposite cells that are located in the middle of 

the outside rows. It is therefore evident that the least quantity in 

the magic square must occupy a middle cell in one of the four 

outside rows, and that it cannot occupy a corner cell. 

Since the middle cell of an outside row must be occupied by the 

least quantity, and since any of these cells may be made the middle 

cell of the upper row by rotating the square, we may consider this 

cell to be so occupied. 

Having thus located the least quantity, it is plain that the next 

higher quantity must be placed in one of the lower corner cells, 

and since a simple reflection in a mirror would reverse the position 

of the lower corner cells, it follows that the second smallest quantity 

may occupy either of these corner cells. Next we may write more 

equations as follows: 

a+e+n=S (or summation) 

d+e+g=S 

ht+e+tc=S 

also 

at+d+h=S 

m+gte=S 
therefore 

Glee ms 

and 

pa—ey it 

Hence the quantity in the central cell is an arithmetical mean 
between any two quantities with which it forms a straight row or 
column. 
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With these facts in view a magic square may now be constructed 
as shown in Fig. 225. 

Let %, representing the least quantity, be placed in the middle 
upper cell, and x -+ y in the lower right-hand corner cell, y being 

the increment over 1. 

Since ++ y is the mean between x and the quantity in the 
left-hand central cell, this cell must evidently contain + + 2y. 

Now writing ++ v in the lower left-hand corner cell, (con- 

sidering v as the increment over x) it follows that the central 

right-hand cell must contain x + 2v. 

Next, as the quantity in the central cell in the square is a mean 

between + -+ 2y and x + 2v, it must be filled with r-tv+ty. It 

now follows that the lower central cell must contain + + 2v + 2y, 

and the upper left-hand corner cell ++ 2v-+y, and finally the 

upper right-hand corner cell must contain ++ v-+ 2y, thus com- 

pleting the square which necessarily must be magic with any con- 

ceivable values which may be assigned to +, v, and y. 

We may assign values to x, v, and y which will produce the 

numbers I to 9 inclusive in arithmetical progression. Evidently + 

must equal 1, and as there must be a number 2, either v or y must 

equal 1 also. 

Assuming y=1, if v=1 or 2, duplicate numbers would 

~ result, therefore v cannot be less than 3. 

Using these values, viz, += 1, y=1 and v= 3, the familiar 

3 X 3 magic square shown in Fig 226 is produced. 

Although in Fig. 226 the series of numbers used has an initial 

number of 1, and also a constant increment of 1, this is only an 

accidental feature pertaining to this particular square, the real fact 

being that a magic square, of 3 X 3 is always composed of three sets 

each of three numbers. The difference between the numbers of 

each trio is uniform, but the difference between the last term of one 

trio and the first term of the next trio is not necessarily the same as 

the difference between the numbers of the trios. 

For example, if += 2, y= 5 and v=8, the resulting square 

will be as shown in Fig. 227. 
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Fig. 228. 
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The trios in this square are as follows: 

2— 7—I12 

10 — 15 — 20 

18 — 23 — 28 

The difference between the numbers of these trios is aa. 
and the difference between the homologous numbers is v — 8. 

A recognition of these different sets of increments is essential 

to the proper understanding of the magic square. Their existence 

is masked in the 3 X 3 square shown in Fig. 226 by the more or less 

accidental quality that in this particular square the difference be- 

tween adjacent numbers is always 1. Nevertheless the square given 

in Fig. 226 is really made up of three trios, as follows: 

Ist trio I1T— 2— 3 

2d “ 4—5—6 

in which the difference between the numbers of the trios is y = 1, 

and the difference between the homologous numbers is v = 3. 

Having thus acquired a clear conception of the structure of a 

3 X 3 magic square, we are in a position to examine a 9 X 9 com- 

pound square intelligently, this square being only an expansion of 

the 3 X 3 square, and governed by the same constructive rules. 

Referring to Fig. 229 the upper middle cells of the nine sub- 

squares may first be filled, using for this purpose the terms, +r, ¢, and 

s. Using these as the initial terms of the subsquares the square may 

then be completed, using y as the increment between the terms of 

each trio, and v as the increment between the homologous terms of 

the trios. The completed square is shown in Fig. 228, in which the 

assignment of any values to x, y, v, t and s, will yield a perfect, 

compound 9 X 9 square. 

Values may be assigned to x, y, v, t and s which will produce 

the series 1 to 81 inclusive. As stated before in connection with 

the 3 X 3 square, + must naturally equal 1, and in order to produce 

2, one of the remaining symbols must equal 1. In order to avoid 

duplicates, the next larger number must at least equal 3, and by 
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the same reason the next must not be less than g and the remaining 
one not less than 27. Because 1+1-+ 34 9 + 27 = 41, which 
is the middle number of the series 1—8r, therefore just these 
values must be assigned to the five: symbols. The only symbol 
whose value is fixed, however, is x, the other four symbols may have 

the values 1 — 3 —9 or 27 assigned to them indiscriminately, thus 
producing all the possible variations of a 9 X 9 compound magic 

square. 

If uw is first made 1 and y = 2, and afterwards y is made 1 and 

v = 2, the resulting squares will be simply reflections of each other, 

etc. Six fundamental forms of 9 X 9 compound magic squares 

may be constructed as shown in Figs. 230, 231, and 232. 

Only six forms may be made, because, excluding + whose value 

is fixed, only six different couples may be made from the four re- 

maining symbols. Six cells being determined, the rest of the square 

becomes fixed. 

These squares are arranged in three groups of two each, on 

account of the curious fact that the squares in each pair are mu- 

tually convertible into each other by the following process: 

If the homologous cells of each 3 X 3 subsquare be taken in 

order as they occur in the 9 X 9 square, a new magic 3 X 3 square 

will result. And if this process is followed with all the cells and 

the resulting nine 3 X 3 squares are arranged in magic square 

order a new 9 X 9 compound square will result. 

For example, referring to the upper square in Fig. 230, if the 

numbers in the central cells of the nine 3 X 3 subsquares are ar- 

ranged in magic square order, the resulting square will be the 

central 3 X 3 square in the lower 9 X 9 square in Fig. 230. This 

law holds good in each of the three groups of two squares (T'igs. 

230, 231 and 232) and no fundamental forms other than these can 

be constructed. 

The question may be asked: How many variations of 9 X 9 

compound magic squares can be made? Since each subsquare may 

assume any of eight aspects without disturbing the general order of 

the complete square, and since there are six radically different, or 
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fundamental forms obtainable, the number of possible variations 

is 6 X 8°! 

We will now notice the construction of a 4 X 4 magic square 

as represented in Fig. 233. From our knowledge of this magic 

square we are enabled to write four equations as follows: 

ath+tpty=S (Summation) 

gth+n+m=S 

poems kG 
ttotn+d=S 

By inspection of Fig. 233 it is seen that the sum of the initial 

terms of these four equations equals S, and likewise that the sum 

Fig. 233. Fig, 234. Fig. 235 Fig. 236 

of their final terms also equals S. Hence h+n > ot+tp=S. It 

therefore follows: 

(ist) That the sum of the terms contained in the inside 2X 2 

square of a4 X 4 square is equal 10S 

(2d) Because the middle terms of the two diagonal columns 

compose this inside 2 X 2 square, their end terms, or the terms in 

the four corner cells of the 4 X 4 square must also equal S, or: 

atd+i+y=S 

(3d) Because the two middle terms of each of the two inside 
columns (either horizontal or perpendicular) also compose the cen- 
tral 2 X 2 square, their four end terms must likewise equal S. 

We may also note the following equations: 

b+ctvtr=S 

b+ctatd=S 
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therefore 

a+d=vt+*4, 

which shows (4th) that the sum of the terms in any two contiguous 
corner cells ts equal to the sum of the terms in the two middle cells 
in the opposite outside column. 

Because 

Yth+tuntm=s 

and 

o+th+n+p=S 

it follows that 

Gg -m—o-+ p 

or, (5th) that the sum of the two end terms of any inside column, 

(either horizontal or perpendicular) is equal to the sum of the two 

middle terms in the other parallel column. 

Since 

tto+nt+d=—s 

and 

h+otn+p=S 

therefore 

t+d=h-+p 

or (6th) the sum of the two end terms of a diagonal column is equal 

to the sum of the two inside terms of the other diagonal column. 

These six laws govern all 4 < 4 magic squares, but the regu- 

lar or associated squares, also possess the additional feature that 

the sum of the numbers in any two cells that are equally distant 

from the center and symmetrically opposite to each other in the 

square equals S/2. 

Squares of larger dimensions do not seem to be reducible to 

laws, on. account of their complexity. 

NOTES ON NUMBER SERIES USED IN THE CONSTRUCTION OF 

MAGIC SQUARES. 

It has long been known that magic squares may be constructed 

from series of numbers which do not progress in arithmetical order. 
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Experiment will show, however, that any haphazard series cannot 

be used for this purpose, but that a definite order of sequence 

is necessary which will entail certain relationships between different 

members of the series. It will therefore be our endeavor to deter- 

mine these relationships and express the same in definite terms. 

Let Fig. 237 represent a magic square of 4X4. By our 

rule No, 4 it is seen that “the sum of the terms in any two con- 

tiguous corner cells is equal to the sum of the terms in the two 

middle cells in the opposite outside column.” ‘Therefore in Fig. 

237,a+d—v-s, and it therefore follows that a—v—=s—d. 

In other words, these four quantities form a group with the inter- 

Fig. 237. Fig. 238. Fig. 239. Fig. 240 

relationship as shown. By the same rule (No. 4) it is also seen 

that a+t=I/-+ pf, and hence also, a—l= p—+t, giving another 

group of four numbers having the same form of interrelationship, 

and since both groups have “a” as an initial number, it is evident 

that the increment used in one of these groups must be different 

from that used in the other, or duplicate numbers would result. It 

therefore follows that the numbers composing a magic square are 

not made up of a single group, but necessarily of more than one 

group. 

Since the term Ce: 

a” forms a part of two groups, we may 

write both groups as shown in Fig. 238, one horizontally and the 

other perpendicularly. 

Next, by rule No. 5, it is shown that “the sum of the two end 
terms of any inside column (either horizontal or perpendicular) is 
equal to the sum of the two middle terms in the other parallel col- 
umn.” It therefore follows that v+ b=k+ 0 or v—o=k—b. 
Using the term v as the initial number, we write this series perpen- 
dicularly as shown in Fig. 239. In the same way it is seen that 
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l+g=n-+0, or 1—o=n—g, thus forming the second hori- 
zontal column in the square (Fig. 240). Next ptm=h-+k or 
p—k=h—vm, forming the third horizontal column and in this 
simple manner the square may be completed as shown in Fig. 241. 

It is therefore evident that a 44 magic square may be 
formed of any series of numbers whose interrelations are such as 
to permit them to be placed as shown in Fig. 241. Nec, 

_ The numbers 1 to 16 may be so placed in a great variety of 

ways, but the fact must not be lost sight of that they only inciden- 
tally possess the quality of being a single series in straight arith- 

metical order, being really composed of as many groups as there 

are cells in a column of the square. Unless this fact’ is remem- 

bered, a clear conception of magical series cannot be formed. 

In illustration of the above remarks, three diagrams are given 

in Figs. 242-244. Figs. 242 and 243 show arrangements of the 

4-2=3-% 2-9=7-l4 
eo pe ea ‘aie ofa 
5S-6=7-8 J0-18 = 21-26 
Te Pe ee | ae tee Ws ee 

9G -10=// -/2 y 12-U =19-18 
I 1 (eet ; I | aL 

13 —/ly=/ 5-16 20-17 = 33-80 

Fig. 241. Fig. 242. eric 243) Fig. 244. 

numbers I to 16 from which the diverse squares Figs. 245 and 246 

are formed by the usual method of construction. 

Fig. 244 shows an irregular series of sixteen numbers, which, 

when placed in the order of magnitude run as follows: 

2-7-9-10-I I-12-14-15-17-18-19-20-21-26-30-33 

The magic square formed from this series is given in Fig. 247. 

In the study of these number series the natural question presents 

itself: Can as many diverse squares be formed from one series as 

from another? This question opens up a wide and but little ex- 

plored region as to the diverse constitution of magic squares. This 

idea can therefore be merely touched upon in the present article, 

examples of several different plans of construction being given in 

illustration and the field left at present to other explorers. 

Three examples will be given, Fig. 245 being what is termed 
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an associated square, or one in which any two numbers that are 

diametrically opposite and equidistant from the center of the square 

will be equal in summation to any other pair of numbers so 

situated. The second, Fig. 246, is a square in which the sum 

of every diagonal of the four sub-squares of 2 x 2 is equal, and 

the fourth, Fig. 248, a square in which the pairs of numbers having 

similar summations are arranged symmetrically in relation to a 

perpendicular line through the center of the square. 

Returning now to the question, but little reflection is required 

to show that it must be answered in the negative for the following 

reasons. Tig. 247 represents a magic square having no. special 

qualities excepting that the columns, horizontal, perpendicular and 

diagonal, all have the same summation, viz., 66. Hence amy series 

Cee) Pee) Eee ea 
elels| Pll] Plel-lo] Valea lo! 

raletala| felebela| [zie belo 
Pees] Feleizbo| Wlele ts 

Fig. 245. Fig. 246. Fig. 247. Fig. 248. 

of numbers that can be arranged as shown in Fig. 241 will yield 

magic squares as outlined. But that it shall also preduce squares 

that are associated, may or may not be the case accordingly as the 

series may or may not be capable of still further arrangement. 

Referring to Fig. 237, 1f we amend our definition by now call- 

ing it an associated square, we must at once introduce the following 

continuous equation : 

at+y=ht+o=t+d=n+k=b+s=c+v=gtp=m+4l, 

and if we make our diagram of magic square producing numbers 

conform to these new requirements, the number of groups will at 
once be greatly curtailed. 

The multiplicity of algebraical signs necessary in our amended 
diagram is so great that it can only be studied in detail, che complete 
diagram being a network of minus and equality signs. 

The result will therefore only be given here, formulated in the 
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following laws which apply in large measure to all associated 
squares. 

I. Associated magic squares are made of as many series or 

groups of numbers as there are cells in a column. 

II. Each series or group is composed of as many numbers as 

there are groups. 

III. The differences between any two adjoining numbers of a 

EE) 
pelselor| «| 
arama 
aa 

Fig. 240. Fig. 250. 

3 -/3=/§ - 28 
» | | 4 ! 

4-14 =19 -29 
i} i] Wl i] 

2/-3/=36- 46 
ean bt Sia! | 

22-32= 37-47 

series must obtain between the corresponding numbers of all the 

series. 

IV. The initial terms of the series compose another series, as 

do the second, third, fourth terms and so on. 

V. The differences between any adjoining numbers of these 

secondary series must also obtain between.the corresponding terms 

of all the secondary series. 

eee 
ala| [enlz 
pals [2 foelse 
zoe |p7|e9]7 
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Fig. 251. | Fig. 252: 

The foregoing rules may be illustrated by the series and asso- 

ciated square shown in Figs. 242 and 245. 

Following and consequent upon the foregoing interrelations 

of these numbers is the remarkable quality possessed by the asso- 

ciated magic square producing series as follows: | 

If the entire series is written out in the order of magnitude and 
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the differences between the adjacent numbers are written below, 

the row of differences will be found to be geometrically arranged 

on each side of the center as will be seen in the following series 

taken from Fig. 249. 

3-4 — 13-14-18-19-21-22-28-29-31-32-36-37-46-47 | 

LQ “L-4 -1 22a 6) ee ee 

In the above example the number 6 occupies the center and the 

other numbers are arranged in symmetrical order on each side of it. 

It is the belief of the writer that this rule applies to all associated 

squares whether odd or even. 

The following example will suffice to illustrate the rule as 

applied to a 5 X 5 magic square, Fig. 251 showing the series and 

Fig. 252 the square. 

LT .4..7 58 10.11.1314. 155 07-18.20.21.22, 2422522725 - 20-3 5132234 Oo 5esoetk 

3533 Te2st 2 1 12 1, 2 | te 2a ee ee nS 

The diagram shown in Fig. 253 is given to impress upon the 

reader the idea that a natural series of continuous numbers may 

be arranged in a great variety of different magic square producing 

series. A perfect 9 X 9 square will be produced with any con- 

ceivable values that may be assigned to the symbols a, b, c, d and g, 

used in this diagram. If the square is to be normal we must assign 

the numbers 1, 1, 3,9, 27 for these symbols, and a must equal 1. It 

is then evident that for 2 there is a choice of four cells, as this num- 

ber may be eithera + b,a+c,a+dora+tg. Selecting a+ b for 

2, makes b=1. There is then a choice of three for 4, and for 

this number we will choose a+d, making d=3. A choice of 

two, (a+g and a+c) now remains for 10. Selecting a+ g, 

(and thus making g=9) 28 becomes the fixed value of a+ c, 

giving the value of 27 to c. It is thus evident that after locating 

I in any cell (other than the central cell) we may then produce at 

will (4X 3X 2=) 24 different 9 X 9 magic squares. Neverthe- 

less, each of these twenty-four squares will be made on exactly 
the same plan, and using the same breakmoves; the variations, 
radical as they may appear to be, are only so because different 
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series of the same numbers are employed, of which series, it has 
been shown, there are at least twenty-four. 

If the reader will take Fig. 253 and fill in number values, 
EaUsIng “b” (successively) = 3, 9, and 27, he will acquire a clear 
idea of the part taken in magic squares by the series conception. 

The work of determining the possible number of 9 X 9 magic 
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Fig. 253. 

squares is now greatly simplified, for all elements are thus de- 

termined saving one, i. e., the number of possible modes of pro- 

gression. . 

1 may be located in any of 80 cells and progress may be made 

in x ways, and 24 variants may be constructed in each case. There- 

fore, the possible number of different 9 X 9 squares will be at least 
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S0DG24 ar = 10204, 

A single example will serve to illustrate the possibilities open 

to x, the numerical value of which will be left for the present for 

others to determine. As previously given, let 

=) 

Drew 

Ces 
ee, 
C= 27 

Then Fig. 254 will represent -a g X 9 square based on the 

arrangement of symbols given in Fig. 253. 

Fig. 254. 

Considering the numbers 1 to 81 to be arranged in arithmetical 

order the construction of this square must be governed by the fol- 

lowing rule: | 

Regular spacing: Three successive cells in upward right-hand 

diagonal. 

Breakmoves between 

3 and 4 

eee | Three cells down and one to left. 
Oech sO! 2] (Extended knight’s move.) 

ne 13 etc. | 
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and between 

27 and 28 | 
54 “ 55 } two cells to the right. 
ek be aoe ee 

In fact, however, the square is built up by the common rule, 

viz. : 

Regular spacing: Nine successive cells in upward right-hand 

diagonal, and all breakmoves, two cells to the right, the numbers 

I to 81 being arranged in the following series: 

Teo 3 28 . 29.30 S508 Sy, 

Anne Piezo 58.59.60 

7.8.9 34,.35.30 Gimcasos etc, Ctc. 

As shown above, the numbers 1 to 81 may be arranged in at 

least twenty-four of such magic square producing series, thus giving 

twenty-four different squares, by the same method of progression, 

and using the same breakmoves. 



CHAPTER SY I 

MAGICS AND PYTHAGOREAN NUMBERS. 

“T have compiled this discourse, which asks 
for your consideration and pardon not only be- 
cause the matter itself is by no means easy to 
be handled, but also because the doctrines herein 
contained are somewhat contrary to those held 
by most of the Platonic philosophers.” Plutarch. 

HE mysterious relationships of numbers have attracted the 

minds of men in all ages. The many-sided Franklin, whose 200th 

anniversary the philosophical, scientific, and literary worlds have 

recently celebrated, used to amuse himself with the construction 

of magic squares and in his memoirs has given an example of his 

skill in this direction, by showing a very complicated square with 

the comment that he believes the same to be the most magical magic 

square yet constructed by any magician. 

That magic squares have had in centuries past a deeper mean- 

ing for the minds of men than that of simple mathematical curios 

we may infer from the celebrated picture by Albert Durer entitled 

“Melancolia,” engraved in 1514. The symbolism of this engraving 

has interested to a marked degree almost every observer. The figure 

of the brooding genius sitting listless and dejected amid her un- 

completed labors, the scattered tools, the swaying balance, the flow- 

ing sands of the glass, and the magic square of 16 beneath the bell, 

—these and other details reveal an attitude of mind and a connection 

of thought, which the great artist never expressed in words, but 

left for every beholder to interpret for himself. 

The discovery of the, arrangement of numbers in the form of 

magic diagrams was undoubtedly known to the ancient Egyptians 
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and this may have fornsed part of the knowledge which Pythagoras 
brought back from his foreign travels. We have no direct aruiete 
that the Pythagorean philosophers in their studies of the relation- 
ship of numbers ever combined them into harmonic figures, yet ths 

Th | I 

Sac) 

MELANCHOLY. 

supposition that they did so is not at all improbable. Such diagrams 

and their symbolic meanings may well have formed part of the 

arcana of the esoteric school of Pythagoras, for similar facts were 

accounted by ancient writers as constituting a part of the aporrheta 
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of the order and the story is told of an unworthy disciple who re- 

vealed the secret of the construction of the dodecahedron inscribed 

within a sphere, this being a symbol of the universe. 

Among the best expositions of the Pythagorean philosophy are 

sections of the “Timzus” and “Republic” of Plato. These dia- 

logues were written after Plato’s return from Magna Grecia, where 

from contact with Archytas of Tarentum and other philosophers, 

he imbibed so much of the Italian school that his whole system of 

philosophy became permeated with Pythagorean ideas. It is even 

suggested that he incorporated into these dialogues parts of the 

lost writings of Philolaus, whose works he is known to have pur- 

chased. -No portions of the dialogues named have been more 

uzzling to commentators than the vague references to different 

numbers, such as the number 729, which is chosen to express the 

difference between the kingly man and the tyrant, or the so-called 

number of the State in the “Republic,” or the harmonic number of 

the soul in the “Timzeus” of which Plutarch said that “it would be 

an endless toil to recite the contentions and disputes that have from 

hence arisen among his interpreters.” Either our text of these pas- 

sages is corrupt or Plato is very obscure, throwing out indirect hints 

which would be intelligible only to those previously informed. Plato 

states himself in the “Phzedrus” that “all writings are to be regarded 

purely as a means of recollection for him who already knows,” and 

he, therefore, probably wrote more for the benefit of his hearers . 

than for distant posterity. 

It is upon the principle of a magic square that I wish to inter- 

pret the celebrated passage in the “Republic” referring to the number 

729, proceeding from this to a discussion of certain other numbers 

of peculiar significance in the Pythagorean system. My efforts in 

this direction are to be regarded as purely fanciful ; the same may be 

said, however, of the majority of other methods of interpretation. 

The passage from the “Republic” referred to (Book IX, § 587-8, 
Jowett’s translation) reads as follows: 

Socrates. “And if a person tells the measure of the interval 
which separates the king from the tyrant in truth of pleasure, he 
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will find him, when the multiplication is completed living 729 times 
more pleasantly, and the tyrant more painfully by this same interval.” 

Glaucon. “What a wonderful calculation.” 
Socrates. “Yet a true calculation and a number which closely 

concerns human life, if human life is concerned with days and nights 
and months and years.” 

The number 729 is found to be of great importance all through 
the Pythagorean system. Plutarch states that this was the number 
belonging to the sun, just as 243 was ascribed to Venus, 81 to Mer- 
cury, 27 to the moon, 9 to the earth, and 3 to Antichthon (the earth 
opposite to ours). These and many s‘milar numbers were derived 

from one of the progressions of the Tetractys,—1:2::4:8 and 1:3 

::9:27. The figures of the above proportions were combined by 

Plato into one series, I, 2, 3, 4,9, 8, 27. (Timzus, § 35). Plutarch 

in his “Procreation of the Soul,’ which is simply a commentary 

upon Plato’s “Timezeus,” has rep- 
1 

resented the numbers inthe form 

of a triangle; the interior num- 

bers, 5, 13, and 35, representing 

the sums of the opposite pairs, 

were also of great importance. 

The deep significance of the 

Tetractys in the system of Py- 

thagoras may be inferred from 

a fragment of an oath contained 

in the “Golden Verses.” 

Nal pa tov duerepov Wuxyd Tapaddvta TeTpaKTov 

Tlayav, devdov dicews pilopar’ éxovcav: 

“Yea, by our Tetractys which giveth the soul the fount and 

source of ever flowing nature!” 

Odd numbers were especially favored by the Pythagoreans 

and of these certain ones such as 3 and its higher powers were 

considered to have a higher significance than others and in this way, 

perhaps, arose the distinction between expressible and psi ths 

or ineffable numbers (dpibmot pytol Kat appyror). Numbers which 

expressed some astronomical fact also held high places of honor, 
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as may be seen from a statement by Plutarch (Joc. cit.) in reference 

to the Tetractys. ‘Now the final member of the series, which is 

27, has this peculiarity, that it is equal to the sum of the preceding 

numbers (1+2+3+4+9-++8) ; it also represents the periodical num- 

ber of days in which the moon completes her monthly course; the 

Pythagoreans have made it the tone of all their harmonic intervals.” 

326]439)468 413 |274 303) 248 oe 87 700|728|674]545|564]509| 18]}.47] 92 [205] 234 || 78| 40 
79|414 [4 275 301(588 61 4|640|675] 701 |727|610|536) 562] 98 232||I5 
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This passage indicates sufficiently the SPs importance of 
the number 27. 

If we construct a magic square 2727 upon the plan of a 
checker-board—arranging the numbers 1 to 729 first in numerical 
order, then shifting the 9 largest squares (9XQg) into the positions 
indicated in the familiar 3X3 square, repeating the process with 
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the subdivisions of the 99 squares and so on down—we will arrive 
at the following combination. . 

It will be noted that we have 365 white squares or days and 
364 dark squares or nights—a veritable “checkerboard of nights and 
days.” The number 365, the days of the solar year, very appro- 
priately occupies the centre of the system. The columns, hori- 
zontals, and diagonals of the central square 3X3 foot up 1095, or 
the days of a 3 year period, those of the larger center square 9X9 
foot up 3285 the days of a 9 year period, while those of the entire 
combination 2727 foot up 9855,” the days of a 27 year period,— 
in other words, periods of years corresponding to the Tetractys 
I, 3,9, 27. We may with safety borrow the language of Plato and 

say that the above arrangement of numbers “is concerned with days 

and nights and months and years.” 

The interpretation of the other passage referred to in the “Re- 

public’—the finding of the number of the State—(Book VIII, 

§ 546) has been a subject of the greatest speculation and by con- 

sulting the various editions of Plato it will be found that scarcely 

any two critics agree upon a solution.* As Jowett remarks, it is 

a puzzle almost as great as that of the Beast in the Book of Reve- 

lation. Unfortunately we have no starting-point from which to 

begin our calculations; this and the very uncertain meanings of 

many of the Greek terms have caused many commentators to give 

up the solution of the problem in sheer despair. Aristotle, who was 

a hearer of Plato’s, writes as if having a full knowledge of the 

mystery; Cicero, however, was unable to solve the riddle and his 

sentiment became voiced in the proverb numeris Platonicis nihil 

obscurius. 

By taking a hint from our magic square and starting with the 

1This method of constructing composite magic squares is, so far as I 

know, original with the writer. It bears some resemblance to the method of 

Schubert (see “Compound Magic Squares,” p. 44); the numbers of each 

square, however, increase in periods of threes instead of by sequence. 

2Not only the perpendiculars, horizontals, and diagonals of this large 

square foot up 9855, but there are an almost indefinite number of zig-zag 

lines, which give the same footing. 

® Schleiermacher, Donaldson, and Schneider suggest 216, and much may 

be said in favor of this number. Jowett gives 8000 as the possible solution. 

Others suggest 951, 5040, 17,500, 1728, 10,000, etc. 
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number 27, I believe we may arrive at as good a solution of the 

problem as any that I have seen suggested. The following inter- 

pretation of the Greek terms is offered. 

avenoec Suvapyevai Te Kal 

OvvaoTEevouevat 

peig arooracetc 

rérrapac dé bpove AaPBov- 

oal 

GuolwovvTwy TE Kat avo- 

potovvTwr Kai avtdvtwv 
. ; 

Kat obivdTvwv 

TaVTa Tpoonyopa Kat pyTa 

Tpoe GAAnAa arépyvav 

Ee nL = 
ov émizpitoc TuAuHY, 

meuTrad. ovovyeic 

Tpic avénbeic 

the square of the num- 

ber times its root, 

increased by thrice the 

first terms (of the 

Tetractys) 

and four times the 

whole series 

of numbers unlike yet 

bearing the same ra- 

tio whether increas- 

ing or decreasing 

27°X P 27= 2187 

(r4+2+3+4+9)X3= 57 

(1+-2+3+4+9+8+27) X 4= 216 

(i. e. 1:2::4:8 or 8:4: :2:1 It may also refer 

to the ascending and descending figures 

of the triangle. 8, 4, 2, 1, 3,9, 27) 

makes the sum com- 

mensurable and ex- 

pressible in all its 

parts. sum= 2460 

(i e. 2460 is easily divisible by 1, 2, 3, 4, 5, 

6, 10, 12 etc.) 

this sum increased by 

% 

and adding 5 

is multiplied by 3 

2460X1Y%= 3280 

3280-+5= 3285 

3285X3= 9855 

This solution of the problem, 9855, it will be noted, brings us 

again but by a different route to the magic number of our large 

square. The second part of the passage contains a description of 

the number by which the above calculation may be verified. 

dbo adpuoviag TapéxeTac 

THY [ev Lonv LoaKee, 

éxaTov TOCaVTAKLC, 

THY O& LoounKy Mev, 

TH TpouHner de, 

(the number) yields 

two harmonic parts, 

of which is a 

square 

one 

multiplied by roo: 

the other has one side 

equal to the square 

and the other oblong 

9X100= goo 

3 

3X2985= 8955 

sum= 9855 
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The remainder of the passage describes the length of the ob- 
long which we have shown above to be 2085: 

Exatov pév apijuav ard (the oblong) is 100 
dtaméTpav TeuTadoc, times the side of a 

rectangle having di- 

agonals of 5. 100 X 3= 300 

(i. e. having sides of 3 and 4.) 

onva@v Jeouévwn évoc Exao- less of one each of the 

TOV, expressible parts, i. e. 

4and 5 

appytwv dé dveiv, and 2 of the inexpressi- 300—(5+44+3+3)= 285 
ble 

Exatov dé KUBwv tpiddog _ plus 100 times the cube 

of 3 (3)? 100= 2700 

sum= 2985 

Plato states that the number of the State “represents a geo- 

metrical figure which has control over the good and evil of births. 

For when your guardians are ignorant of the right seasons and unite 

bride and bridegroom out of due time, the children will not be 

goodly and happy.” The number 9855, expressing a period of 

27 years, might thus represent the dividing line between the ages 

when men and women should begin to bear children to the State,— 

20-27 years for women, 27-34 years for men. (See also “Republic,” 

Book V, § 460). Aristotle in his “Politics” (V, 12. 8) says in 

reference to the number of the State that when the progression of 

number is increased by '/, and 5 is added, 2 harmonies are produced 

giving a solid diagram. This, as may be seen from our analysis of 

the first part of the passage, may have reference to the number 

3285, which, being represented by 37365, may be said to have the 

dimensions of a solid. 

In his “Reflections on Magic Squares” Dr. Carus gives some 

very striking examples of the relationship between magic squares 

and the musical figures of Chladni. I would like to touch before 

concluding upon a closely related subject and show certain connec- 

tions which exist between the magic square, which we have con- 

structed, and the numbers of the Pythagorean harmonic scale. This 

scale had, however, more than a musical significance among the 



154 MAGIC SQUARES AND PYTHAGOREAN NUMBERS. 

Greek philosophers; it was extended to comprehend the harmony 

of planetary movements and above all else to represent the manner 

in which the “soul of the universe” was composed. It is especially 

in the latter sense that Plato employs the scale in his “Timzeus.” 

In a treatise by Timzeus the Locrian upon the “Soul of the 

World and Nature,” we find the following passage: “Now all these 

proportions are combined harmonically according to numbers, which 

proportions the demiurge has divided according to a scale scien- 

tifically, so that a person is not ignorant of what things and by what 

means the soul is combined; which the deity has not ranked after 

the substance of the body...., but he made it older by taking the 

first of unities which is 384. Now of these the first being assumed 

it is easy to reckon the double and triple; and all the terms, with 

their complements and eights must amount to 114,695.” (Trans- 

lation by Burge.) 

Plato’s account of the combination of the soul is very similar 

to the above, though he seems to have selected 192, (384/2) for the 

first number. Plutarch in his commentary makes no mention of 

Timeus, but states that Crantor* was the first to select 384, for the 

reason that it represented the product of 8°X6, and is the lowest 

number which can be taken for the increase by eighths without 

leaving fractions. Another very possible reason, which I have not 

seen mentioned, is that 384 is the harmonic ratio of 27?/2 or 364.5, 

a number which expresses very closely the days of the year. 

243 :256: 3304.5 :384. 

The proportion 243:256(3°:4*) was employed by the Pyth- 

agoreans to mark the ratio’ which two unequal semitones of the 

harmonic scale bear to one another. ; 

Batteux has calculated the 36 terms of the Pythagorean scale 
starting with 384 and his series must be considered correct, for it 
fulfils the conditions specified by Timzeus,—the numbers all footing 

4 Crantor lived nearly too years after Timzus the Locrian. The treatise 
upon the “Soul of the World and Nature,” which bears the latter’s name 
probably belongs to a much later period. 

*For further references to this ratio see Plato’s “Timzus,” 
on wis : 

S 6 

Plutarch’s “Procreation of the Soul,” § 18. » $36, and 
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up 114,695: A few of the numbers of this harmonic scale marking 
the “first unity” and several of the semitones will be given. 

( z 384 
Ist octave as 486 

Bs 123 (For Batteux’s full series and 
Cc method of calculation the 

972 2nd octave F 1458 reader is referred to Burge’s 

a translation of Plato Vol. VI. 

= 1944 5 Gai) 
3rd octave | B-flat 2187 P 

4th octave B flat 4374 

By referring to our magic square it will be noted that the first 

of unities,’ 384, constitutes the magic number of the small 3 Xx 3 

square beginning with the number too. If we arrange the magic 

numbers of the 81 squares (3><3) in the order of their magnitudes 

we find that they fall into 9 series of 9g numbers, each series beginning 

as follows: 

I II III IV Ay VI VII Vill IX 

87 330 573 816 1059 1302 1545 1788 2031 

The intervals between these series are worthy of note. 

INTERVALS. 

Between I and II 243 the first member of the ratio 243:256. 

<c ARP SDE 486 Cof the rst octave 

a6 ee LV, 720 ge ore a TSL ea 

es Piece 0726 cee ee 2nd 

cy Test VAT retigey 1! Ol) Ee erayell 9M 

os Tec iG BOA (ge Cees tC ama 

If we arrange the magic numbers of the large squares (9X9) 

in the same way, it will be found that they fall into 3 series of 3 

numbers, each series beginning 

I II Ill 

1017 3204 5391 

Interval between I and II = 2187 B-flat of the 3rd octave. 

se 6 I a III = 4374 B-flat cee 4th ae 

Numerous other instances might be given of the very intimate 

connection between magic squares and various Pythagorean num- 

bers, but these must be left for the curious-minded to develop for 

themselves. Such connections as we have noted are no doubt in 
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some respects purely accidental, being due to the intrinsic harmony 

of numbers and therefore not implying a knowledge by the ancients 

of magic squares as we now know them. The harmonic arrangement 

by the Greeks of numbers in geometrical forms both plane and 

solid may, however, be accepted, and Plato’s descriptions of various 

numbers obscure and meaningless as they were to succeeding gen- 

erations, may have been easily comprehended by his hearers when 

illustrated by a mathematical diagram or model.® 

Differences between the methods of notation in ancient and 

modern times have necessarily produced differences in the concep- 

tion of numerical relations. The expression of numbers among the 

Greeks by letters of the alphabet was what led to the idea that every 

name must have a numerical attribute, but the connection of the 

letters of the name was in many cases lost, the number being re- 

garded as a pure attribute of the object itself. A similar confusion 

of symbols arose in the representation of various concepts by geo- 

metrical forms, such as the five letters of YTEIA and the symboliza- 

tion of health by the Pythagoreans under the form of the pentalpha 

or five-pointed star. 

It was the great defect of the Greek schools that in their search 

for truth, methods of experimental research were not cultivated. 

Plato in his “Republic” (Book VII, § 530-531) ridicules the em- 

piricists, who sought knowledge by studying the stars or by com- 

pariag the sounds of musical strings, and insists that no value is’ 

to be placed upon the testimony of the senses. “Let the heavens 

alone and train the intellect” is his constant advice. 

If the examples set by Pythagoras in acoustics and by Archi- 

medes in statics had been generally followed by the Greek philos- 

ophers, our knowledge of natural phenomena might have been ad- 

vanced a thousand years. But as it happened there came to prevail 

but one idea intensified by both Plato and Aristotle, and handed 

down through the scholastics even to the present time, that knowl- 

*The description of the number of the State in the “Republic” and that 
of the Soul in the “Timzus” render such a mode of representation almost 
necessary. Plutarch (‘Procreation of Soul,” §12) gives an illustration of an 
harmonic diagram 5X7 containing 35 small squares “which comprehends in 
its subdivisions all the proportions of the first concords of music.” 
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edge was to be sought for only from within. Hence came the flood 
of idle speculations which characterized the later Pythagorean and 
Platonic schools and which eventually undermined the structure of 
ancient philosophy. But beneath the abstractions of these schools 
one can discover a strong undercurrent of truth. Many Pythago- 

reans understood by number that which is now termed natural law. 
Such undoubtedly was the meaning of Philolaus when he wrote 
“Number is the bond of the eternal continuance of things,” a senti- 

ment which the modern physicist could not express more fittingly. 

As the first study of importance for the youth of his “Republic” 

Plato selected the science of numbers; he chose as the second ge- 

ometry and as the third astronomy, but the point which he empha- 

sized above all was that these and all other sciences should be 

studied in their “mutual relationships that we may learn the nature 

of the bond which unites them.” “For only then,” he states, “will 

a pursuit of them have a value for our object, and the labor, which 

might otherwise prove fruitless, be well bestowed.” Noble utter- 

ance! and how much greater need of this at the present day with 

our complexity of sciences and tendency towards narrow speciali- 

zation. 

In the spirit of the great master whom we have just quoted 

we may compare the physical universe to an immense magic square. 

Isolated investigators in different areas have discovered here and 

there a few seemingly restricted laws, and paying no regard to the 

territory beyond their confines, are as yet oblivious of the great 

pervading and unifying Bond which connects the scattered parts 

and binds them into one harmonious system. Omar, the astron- 

omer-poet, may have had such a thought in mind, when he wrote: 

“Yes; and a single Alif were the clue— 
Could you but find it—to the treasure-house 

And peradventure to the Master too; 

RV hose secret presence, through creation’s veins 

Running quicksilverlike eludes your pains ;” etc. 

When Plato’s advice is followed and the “mutual relationships 

between our sciences” are understood we may perchance find this 

clue, and having found it be surprised to discover as great a sim- 
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plicity underlying the whole fabric of natural phenomena as exists 

in the construction of a magic square. 

CrASB: 

. MR. BROWNE’S SQUARE AND LUSUS NUMERORUM. 

The 27 X 27 square of Mr. C. A. Browne, Jr. is interesting 

because, in additon to its arithmetical qualities commonly possessed 

by magic squares, it represents some ulterior significance of our 

calendar system referring to the days of the month as well as the 

days of the year and cycles of years. It is wonderful, and at first 

sight mystifying, to observe how the course of nature reflects even 

to intricate details the intrinsic harmony of mathematical relations ; 

and yet when we consider that nature and pure thought are simply 

the result of conditions first laid down and then consistently carried 

out in definite functions of a distinct and stable character, we: will 

no longer be puzzled but understand why science is possible, why 

man’s reason contains the clue to many problems of nature and, 

generally speaking, why reason with all its wealth of a priori 

thoughts can develop at all in a world that at first sight seems to be 

a mere chaos of particular facts. The purely formal relations of 

mathematics, materially considered mere nonentities, constitute the 

bond of union which encompasses the universe, stars as well as 

motes, the motions of the Milky Way not less than the minute com- 

binations of chemical atoms, and also the construction of pure © 

thought in man’s mind. 

Mr. Browne’s square is of great interest to Greek schouars be- 

cause it throws light on an obscure passage in Plato’s Republic, re- 

ferring to a magic square the center of which is 365, the number of 

days in’a year. ' 

The construction of Mr. Browne’s square is based upon the 
simplest square of odd numbers which is 3X3. But it becomes 
somewhat complicated by being extended to three in the third power 

which is 27. Odd magic squares, as we have seen, are built up 

by a progression in staircase fashion, but since those numbers 
that fall outside the square have to be transferred to their cor- 
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responding places inside, the first and last staircases are changed 
into the knight’s move of the chessboard, and only the middle one 
retains its original staircase form. We must construct the square 
so that the central figure, which in a 3X 3 square is 5, must always 
fall in the central cell. Accordingly, we must start the square 
beginning with figure 1 outside of the square in any middle cell 
immediately bordering upon it, which gives four starting-points 
from which we may either proceed from the right or the left, either 
upwards or downwards which yields eight possibilities of the 3x3 

square. For the construction of his 2727 square, Mr. Browne 

might have taken any of these eight possibilities as his pattern. 

9 

7 

BE 
GE 
Ea 
3 

8| 3/4 Ds ee?! 

7 1 

THE EIGHT POSSIBLE ARRANGEMENTS OF THE 3X3 MAGIC SQUARE, 

Fig. 257. 

He selected the one starting on the top of the square and moving 

toward the right, and thus he always follows the peculiar arrange- 

ment of this particular square. It is the fourth of the eight arrange- 

ments shown in Fig. 274. Any one who will take the trouble to ° 

trace the regular succession of Mr. Browne’s square will find that it 

is a constant repetition of the knight’s move, the staircase move 

and again a knight’s move on a small scale of 3X3 which is repeated 

on a larger scale 9X9, thus leading to the wonderful regularity 

which, according to Mr. Browne’s interpretation of Plato, astonished 

the sages of ancient Greece. 

Any one who discovers at random some magic square with its 
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immanent harmony of numbers, is naturally impressed by its ap- 

parent occult power, and ‘so it happens that they were deemed super- 

natural and have been called “magic.” They seem to be the product 

of some secret intelligence and to contain a message of ulterior 

meaning. But if we have the key to their regularity we know that 

the harmony that pervades them is necessary and intrinsic. 

Nor is the regularity limited to magic squares. There are 

other number combinations which exhibit surprising qualities, and 

I will here select a few striking cases. 

If we write down all the nine figures in ascending and descend- 

ing order we have a number which is equal to the square of a num- 

ber consisting of the figure 9 repeated 9 times, divided by the sum 

of an ascending and descending series of all the figures thus: 

BPE EE SME fe ya 999999999 999999999 ; 
RoE 2 eS 4-95-05 7 to Oe ti Cad tes tee ee 

The secret of this mysterious coincidence is that 11 X 1I==121; 

LiL X TLI= 12321} F1ii <1ill—-12 343216 ete, and -aestniouman 

ascending and descending series which starts with I is always 

equal to the square of its highest number. 1-+2+1=522; I1+2+ 

3+4+3+2+1=4X4, etc., which we will illustrate by one more 

instance of the same kind, as follows: 

7777777 X 7777777 
I 243-44 5+6+7-+6-+ 544-3 24em 

There are more instances of numerical regularities. 

1234567654321= 

All numbers consisting of six equal figures are divisible by 7, 

and also, as a matter of course, by 3 and 11, as indicated in the 

foilowing list: 

Pitty 5572 

222227) 7307 A0 

333333 : 7=47619 
444444 763492 
555555: 7=79305 
666666 : 7=95238 

CLE Lf 7 AALELS 
888888 : 7—=1 26984 

999999 : 7=142857 
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= ; arr Finally we will offer two more strange coincidences of a /usus 
numerorum. 

Oox9g+I1I=I1 

IX 9O-+-2=11 

I2X9+3=III 

123 X94 41111 

E234 XO Se LITiT 

12345 X9+6=IIIIII 

123456 X9+7=I1IIIIII 

1234567 X9+8=111111II 

12345078 X 9 +9 =IIIIIIIII 

123456789 X 9 + IO = IIIIIIII11. 

IxX8+i=9 

12X8+2=908 

123-8 3 = 987 
1234 X 8+ 4= 9876 

12345 X 8+ 5 = 98765 
123456 X 8 + 6 = 987654 

1234567 X 8+ 7 = 9876543 
12345078 X 8 + 8 = 98765432 

123456789 XK 8 + 9 = 987654321. 

No wonder that such strange regularities impress the human 

mind. A man who knows only the externality of these results will 

naturally be inclined toward occultism. The world of numbers as 

much as the actual universe is full of regularities which can be 

reduced to definite rules and laws giving us a key that will unlock 

their mysteries and enable us to predict certain results under defi- 

nite conditions. Here is the key to the significance of the a priori. . 

Mathematics is a purely mental construction, but its compo- 

sition is not arbitrary. On the contrary it is tracing the results of 

our own doings and taking the consequences of the conditions we 

have created. Though the scope of our imagination with all its 

possibilities be infinite, the results of our construction are definitely 

determined as soon as we have laid their foundation, and the actual 
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world is simply one realization of the infinite potentialities of being. 

Its regularities can be unraveled as surely as the harmonic relations 

of a magic square. 

Facts are just as much determined as our thoughts, and if we 

can but gain a clue to their formation we can solve the problem of 

their nature, and are enabled to predict their occurrence and some- 

times even to adapt them to our own needs and purposes. 

A study of magic squares may have no practical application, 

but an acquaintance with them will certainly prove useful, if it 

were merely to gain an insight into the fabric of regularities of any 

kind. PG. 



CHAPTER VAI. 

SOME CURIOUS MAGIC SQUARES AND COM- 

BINATIONS. 

M** curious and interesting magic squares and combinations 

have been devised by the ingenious, a selection of which will 

_ be given in the following pages, some of the examples being here 

presented for the first time in print. 

The curious irregularities of the 6 X 6 magic squares were re- 

ferred to in the first chapter, and many unsuccessful attempts have 

been made to construct regular squares of this order. An interesting 

z 
fs bo [eal-oheslo7 
pefel fs [ele 

Fig. 258. Fig. 259. 

6 X 6 square is illustrated in a work entitled Games, Ancient and 

Oriental by Edward Falkener,* and is here reproduced in Fig. 258. 

It will be seen however that the two corner diagonals of this square 

do not sum 111, but by a transposition of the figures this imper- 

fection is corrected in Fig. 259. Other transpositions are also pos- 

sible which will effect the same result. The peculiarity of this 

* Published by Longmans Green & Co., London and New York, 1892. 
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square consists in its being divided into nine 2 X 2 squares in each 

of the four subdivisions of which the numbers follow in arithmetical 

sequence, and the 2X 2 squares are arranged in the order of a 

3 X 3 magic square, according to the progressive value of the 

numbers 1 to 36. The construction of this-6 X 6 square is regu- 

lar only in relation to the totals of the 2 X 2 squares, as shown in 

Fig. 260. 

Fig. 261 is a remarkable 8 X 8 square which is given on page 

300 of the above mentioned book, and which is presented by Mr. 

Falkener as “the most perfect magic square of 8 X 8 that can be 

constructed.” Some of its properties are as follows: 

1. The whole is a magic square of 8 X 8. 

2. Each quarter is an associated 4 X 4 square. 

3. The sixteen 2X 2 subsquares have a constant summation 

OfWL 30; 

Fig. 260. 

4. Each quarter contains four 3 X 3 squares the corner numbers 

of which sum 130. 

5. Any 5 X 5 square which is contained within the 8 & 8 square 

has its corner numbers in arithmetical sequence. 

A very interesting class of squares is referred to in the same 

work on pages 337-338 and 339 as follows: 

“The Rev. A. H. Frost, while a missionary for many years in 

India, of the Church Missionary Society, interested himself in his 

leisure hours in the study of these squares and cubes, and in the 
articles which he published on the subject gave them the name of 

‘Nasik’ from the town in which he resided. He has also deposited 
‘Nasik’ cubes in the South Kensington Museum (London) and he 
has a vast mass of unpublished materials of an exhaustive nature 
most carefully worked out. 
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“Mr. Kesson has also treated the same subject in a different way 
and more popular form in the Queen.* He gives them the very 
appropriate name of Caissan Squares, a name given to these squares, 

he says, by Sir William Jones. 

“The proper name, however, for such squares should rather be 
‘Indian,’ for not only have the Brahmins been known to be great 
adepts in the formation of such squares from time immemorial, not 

only does Mr. Frost give his an Indian name, but one of these 

squares is represented over the gate of Gwalior, while the natives of 

mee 
B21 3S \47 

HY? N\ GE eS 

3O | 40\43 

49 \ 11 

India wear them as amulets, and La Loubére, who wrote in 1693, 

expressly calls them ‘Indian Squares.’ 

“In these Indian squares it is necessary not merely that the 

summation of the rows, columns and diagonals should be alike, but 

that the numbers of such squares should be so harmoniously bal- 

anced that the summation of any eight numbers in one direction 

as in the moves of a bishop or a knight should also be alike.” 

An example of one of these squares is given in Fig. 262 and 

examination will show it to be of the same order as the “Jaina” 

square described by Dr. Carus in a previous chapter (pp. 125 6), 

but having enlarged characteristics consequent on its increase in 

size. It will be seen that the extraordinary properties as quoted 

——-= 

* Published in London, England. 
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above in italics exist in this square, so that starting from any cell 

in the square, with a few exceptions, any eight numbers that are 

covered by eight consecutive similar moves will sum 260. In 

addition to this the numbers in every 2 X 2 square, whether taken 

within the square or constructively, sum 130; thus, I + 58+ 16 

+ 55—130 and 1+ 16+ 61 + 52 = 130, also 1+ 58+ 40+ 31 

= 130 etc. Furthermore, (as in the Jaina square) the properties 

of this square will necessarily remain unchanged if columns are 

taken from one side and put on the other, or if they are removed 

from the top to the bottom, or vice versa, it being a perfectly con- 

tinuous square in every direction. 

The wonderful symmetry of this square naturally invites atten- 

tion to the method of its construction, which is very simple, as may 

BREE 
EAU PAA 

Fig. 263. Fig. 264. 

be seen by following the natural sequence of the numbers 1 to 32 

in Fig. 263 which shows the disposition of the numbers of the first 

half of the series. The second half is simply a complementary repe- 

tition of the first half. The numbers of this square are. arranged 
symmetrically in relation to similarly located cells in diagonally 

opposite quarters, thus, (referring to Fig. 262) 1+64=65 and ~ 
4+ 61=65 etc. This feature permits the completion of Fig. 263 
by filling in the vacant cells at random with their respective differ- 
ences between 65 and the various numbers already entered. 

Fig. 264 shows a 4 X 4 square constructed by the same method 
and having similar properties, with natural limitations due to its 
small size. This square strikingly resembles the Jaina square as 
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modified by Dr. Carus (see Fig. 222, p. 127) the numbers and 
arrangement of same in the two corner diagonal columns being 
identical in both squares, while the other numbers are differently 
located. 

Fig. 265 is an original 8 X 8 square contributed by Mr. L. S. 
Frierson, which combines to a limited extent some of the curious 

characteristics of the Franklin and the Jaina or Indian squares. It 

possesses the following properties: 

I. Considered as a whole it is an 8 & 8 magic square. 

2. Each quarter is in itself a magic square. 

3. The four central hotizontal columns make two 4 & 4 magic 

squares. 

Tig. 265. Fig. 266. 

4. It contains twenty-five 2 X 2 squares, each having a con- 

stant summation of 130. 

5. It also contains twenty-four 3 X 3 squares, the four corner 

cells of which have a constant summation of 130. 

6. Any 4X4 square has a constant summation of 520. 

7. In any 5 X 5 square the four corner cells contain numbers 

in arithmetical sequence. 

8. Any rectangular parallelogram which is concentric with 

any of the nine subcenters contains numbers in its corner 

cells that will sum 130, excepting when the diagonals’ of 

any of the four subsquares of 4 X 4 form one side of the 

parallelogram. 
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g. Any octagon of two cells on a side, that is concentric with 

any of the nine subcenters will have a constant summation 

of 260. 

to. No less than 192 columns of eight consecutive numbers 

may be found having the constant summation of 260 as 

follows (see Fig. 266) : 

Horizontal ‘columns i). soak ese eee too 8 

Perpendicularicolumtis Seu me cee oe ee 8 

Perpendicular:zig-zags" GAN to Aq) Gone ate ee 8 

Horitzontalnzio-zavs.( AstOeN) ese es ee eee 8 

Cornergdiavonals i pratt rocte ne memrore: a aes 2 

Constructive diaconalshGD 10: Dy.) seer. sso aicte entero 6 

Bent diagonals (as in Franklin squares) (T to T, and 

TitovE 5.2 teas ee eee 16 

Columns partly straight and partly zig-zag (as V to V,) 88 

Columns partly diagonal and partly zig-zag (as Pto D,) 32 

Double bent diagonal columns (as Mto N)_........... 16 

Mr. Frierson has also constructed an 8 X 8 square shown in 

Fig. 267, which is still more curious than the last one, in that it 

perfectly combines the salient features of the Franklin and the In- 

dian squares, viz., the bent and the continuous diagonals, besides 

exhibiting many other interesting properties, some of which may 

be mentioned as follows: 

1. Any 2X 2 square has a constant summation of 130, with 

four exceptions. 

2. The corner cells of any 3 X 3 square which lies wholly to 

the right or left of the axis AB sum 130. 

3.. The corner cells) of anye2> cee ono os rectangle 

perpendicular to AB and symmetrical therewith sum 130. 
4. The corner cells of any 2X 7 or 3 X 6 rectangle diagonal 

to AB sum 130, as 12+ 50+ 45 + 23 = 130, 49 + 164 

19 + 46 = 130 etc., etc. 
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5. The corner cells of any 5 <5 square contain numbers in 
arithmetical progression. 

6. Any constructive diagonal column sums 260. 
7. Any bent diagonal sums 260. 

8. Any reflected diagonal sums 260. 

(Nore: Reflected diagonals are shown in dotted lines on Fig. 267.) 

By dividing this square into quarters, and subdividing each 
quarter into four 2 X 2 squares, the numbers will be found sym- 
metrically arranged in relation to cells that are similarly located in 

diagonally opposite 2 X 2 squares in each quarter, thus: 64 + 1—= 

65, 57 +8=65 etc. 

eal [alo] ]5] 
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Fig. 267. Fig. 268. 

Another 8 X 8 square by Mr. Frierson is given in Fig. 268 

which is alike remarkable for its constructive simplicity. and for 

its curious properties. Like Fig. 267 this square combines the 

principal features of the Indian and the Franklin squares in its 

bent and continuous diagonal columns. 

To render its structure graphically plain, the numbers 1 to 32. 

are written within circles. The numbers in the complete square are 

arranged symmetrically in relation to the two heavy horizontal lines 

so that when the numbers in the first half of the series are entered, 

the remaining numbers may be filled in at random as explained in 

connection with the 8 < 8 Indian square (Fig. 263). 

Two other examples of the Frierson squares showing inter- 
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esting constructive features are given in Figs. 269 and 270. The 

scheme followed in these squares may also be employed in making 

magic rectangles, two examples of which are given in Figs. 271 

and 272. In Fig. 272 the numbers are arranged in the following 

series before they are entered in the rectangle: | 

Leo SuahO MeL le el jae [a2 eee 2 

2 SO sal Oona peal ome 

2 TAL la Stet 

AV SA 212 Gel Ono 

IS) SNe 

Fig. 271. Bisa272) 

Figs. 273 and 274 are ingenious combinations of 4 < 4 squares 
also devised by Mr. Frierson. Fig. 273 is a magic cross which 
possesses many unique features. It is said to contain the almost 
incredible number of 160,144 different columns of twenty-one num- 
bers which sum 1471. 
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Some of the properties found in the magic pentagram Fig. 274 
may be stated as follows: 

Each 4 X 4 rhombus is perfectly magic, with summations of 
162. It therefore follows that from any point to the next the num- 

zs pare 
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Big. 273° 

bers sum 324, and also that every bent row of eight numbers which 

is parallel with the rows from point to point sums 324. 

In each 4 X 4 rhombus there are five others of 2 2 whose 

numbers stim 162, also four others of 3 X 3, the corner numbers of 

which sum 162. 
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In each 4 X 4 rhombus, every number ends with one of two 

numbers, viz., o.and 1, 2 and 9, 3 and 8, 4 and 7, 5 anduos 

Fig. 274. : 

Modifications of the concentric magic squares (described in the 

first chapter) have been devised by Mr. Frierson, two examples of 

which are shown in Figs. 275 and 276. 

Fig. 275. Fig. 276. 

A 5X5 magic square, curiously quartered with four 2x 3 
magic rectangles, devised by Dr. Planck, is shown in Fig. 277. | 

The interesting 9 X 9 magic, Fig. 278, was made by Mtr. Frier- 
son. It possesses the following properties: 
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1. All odd and even numbers are segregated. 
2. Any pair of numbers located equally above and below the 

horizontal axis end in the same integer. 

3. The sum of any pair of numbers located equally right and 

left of the perpendicular axis ends with 2. 

4. The twenty-five odd numbers within the circles make a 

balanced 5X5 square. 

S of 9? = 360 
S of 2205 

S of 42 = 165 

S of square = 

S of rectangles = 

cad ad alls ele 
2 24 | 73] 3 {78 | 

aoe 
| v3] fee] 4 | 

Fig. 277. 

26] « (3) rl ze eo 
elroy 

/339|/348|/33 7337/3246 7330 

paaloesponef sods 
Fig. 279. Fig. 280. 

LS) 

5. The sixteen odd nitmbers between the circles make a bal- 

anced 4 X 4 square. 

6. The great square is associated. S, 

It is purposed to treat of magic squares composed exclusively 

of prime numbers in another book. Mr. Chas. D. Shuldham has 

contributed original 4X 4 and 5 <5 magics, having the lowest 
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possible summations when made exclusively of consecutive com- 

posite numbers, as shown in Figs. 279 and 280, 

There is nothing curious in the construction of these squares, 

as in this particular they follow the same rules that are applied to 

all squares that are made from any consecutive arithmetical series. 

Thus in the square of order 4 given in Fig. 279, 524 takes the 

place of 1 in an ordinary square, 525 of 2, and so on. They are 

here submitted to the reader simply as examples of common squares, 

having the lowest possible summations that can be made from a 

series containing no prime numbers. There are many longer se- 

quences of consecutive composite numbers, from which larger squares 

might be made, but they run into such high values that the construc- 

tion of magics therewith becomes laborious. 

Dr. C. Planck has kindly contributed the following list of con- 

secutive composite numbers that can be used for squares of order 6 

to order 12 under the condition of lowest possible summations. 

Bor Order” <6. 15,684. — 15,719 = 36numbers 

Sie 7. 19,010 = 10,755) 4 349 eee 
eee ol 8. = -31,308°—"~— "31 AG1 == 364 ed 

ae Q. 155,022 —* 156,002 = 81 - 

Pu 10." 370,202 = "370520 l=) LOO manna 

“tec E42. 15257,202. == 41,457-6225 aod a 

12. 2,010,734 — 2,010,877 = 144 ee 

Many attempts have been made to construct magic squares 

from a natural series of numbers by locating each succeeding num- 

ber a knight’s move from the last one, until every cell in the square 

is included in one continuous knight’s tour. This difficult problem 
however has never been solved, and the square in question probably 

does not exist. Many squares have been made that sum correctly 

in their lines and columns, but they all fail in their two diagonals and 

therefore are not strictly magic. 

In Games Ancient and Oriental (p. 325) one of the most 
interesting squares of the above description is presented, and it is 
reproduced here in Fig. 281, the knight’s tour being shown in Fig. 
282. 
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This square, like all others of its kind, fails in its two diagonals, 

but it is remarkable in being quartered, i. e., all of its four corner 

4X 4's are magic in their lines and columns, which sum 130. 

Furthermore, if each corner 4 X 4 is subdivided into 2 * 2’s, each 

of the latter contains numbers that sum 130. It is stated that this 

square was made by Mr. Beverly and published in the Philosophical 

Magazine in 1848. 

If the use of consecutive numbers is disregarded, a continuous 

PaaS 
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Fig. 281. Fig. 282. 

knight’s tour may be traced through many different magic squares, 

in which every period of m numbers throughout the tour will sum S. 

A square having this quality is shown in Fig. 261. The knight’s 

A 

/ 

Fig. 283. 

tour through this square is given in Fig. 283 in which ans starting 

numbers of each period of eight are marked by circles with arrow 

heads indicating the direction of progression. 
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Oddities and curios in magics might be illustrated almost with- 

out end, but one more will suffice as a final example. 

Fig. 284 shows an 18 X 18 magic made by Mr, Harry A. 

Sayles, the most interesting feature of which is the method of its 

production from the values of "/y9. The lines of recurring deci- 

mals for\449, 40, ~19. seek 1849 are arranged one below the other 

so as to form a magic square. S=81. It will be seen that the 

sequence of the digits in all lines is the same, the position of the 

decimal point in relation to the series being the only difference. 

Ze, = hols] 2] [3] 715] 7] s[o[4]7]o[ 4[ 3] 4 2] 7 
| 3) 2] @| 3] 7 | so [alisha 
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Fig. 284. 

A peculiar feature of the recurring decimals used in this square 
may be mentioned, although it is common to many other such 
series, with variations. 149 = .052631578947368421..... decimal 
repeats. Starting with the first 5 and dividing by 2 each integer 

determines the next integer following, thus: 
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The same procession follows for "/;) and also for 1/(19 X 2") 

though the operation will not apply in all cases to the first few 

numbers of each series. 

Ti ihedecimal .05263..... I, consisting of 18 figures, is divided 

into two even sections of 9 figures each, and one section superposed 

on the other, the sum will be a series of 9’s thus: 

.052631578 

947308421 

0 989 

The series is thus shown to consist of nine 9’s = 81, so that each 

line of the square, Fig. 284, must sum 81. Also, as any two num- 

bers symmetrically located above and below the horizontal axis 

of the square sum 9, each column also consists of nine 9’s = 81. 

It is not easy to understand why each of the two diagonals 

of this square should sum 81, but if they are written one over the 

other, each pair of numbers will sum 9. 

Considering its constructive origin, and the above mentioned 

interesting features, this square, notwithstanding its simplicity, may 

be fairly said to present one of the most remarkable illustrations of 

the intrinsic harmony of numbers. W.S.A. 



CHAPTER Viit 

NOTES ON VARIOUS CONSTRUCTIVE PLANS BY WHICH 

MAGIC SQUARES MAY BE CLASSIFIED. 

ay odd magic square must necessarily have a central cell, and if 

the square is to be associated, this cell must be occupied by the 

middle number of the series,[(m? + 1)/2] around which the other 

numbers must be arranged and balanced in pairs, the sum of each 

pair being n?+ 1. Although in 5 X 5 and larger odd squares the 

pairs of numbers are capable of arrangement in a multitude of 

different ways relative to each other as pairs, yet when one number 

of a pair is located, the position of the other number becomes 

fixed in order to satisfy the rule that the sum of any two numbers 

that are diametrically equidistant from the center ‘number must 

equal twice that number, or n? + 1. 

In an even magic square, however, there is no central cell and 

no middle number in the series, so the method of construction ‘is 

not thus limited, butt he pairs of numbers which sum n? + 1 may 

be harmoniously balanced either around the center of the square, 

as in odd squares, or in a variety of other ways. | 

Mr. L. S. Frierson has cleverly utilized this feature as the basis 

for a series of constructive plans, according to which the various 

types of even squares may be classified. He has shown eleven dif- 

ferent plans and Mr. Henry E. Dudeney has contributed the twelfth, 

all of which may be used in connection with 4 & 4 squares. These 

twelve constructive plans clearly differentiate the various types 

of 4 X 4 squares,—there being for example one plan for the asso- 

ciated or regular squares, another plan for the Franklin squares, 
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another for the pandiagonal or continuous squares and so forth, so 
that a knowledge of these plans makes it easy to classify all 4 x 4 
squares. Six of the eleven plans given by Mr. Frierson cover 

distinct methods of arrangement, the remaining five plans being 

made up of various combinations. 

PLAN NO: 1. 

In this plan, which is the simplest of all, the pairs of numbers 

that sum ° + 1 are arranged symmetrically in adjacent cells, form- 

Y4|/ 
7 |e 
2 |\/35\.3 |/4 

EARAVZAEA 
Fig. 285. Fig. 286.. 

ing two vertical columns, as shown in Fig. 285, and diagrammatically 

in Fig. 286. 

PLAN NO. 2. 

This plan differs from No. 1 only in the fact that the pairs of 

lebelo 
Fig. 287. Fig. 288. 

numbers are placed in alternate instead of in adjacent columns, as 

seen in Figs. 287 and 288. 

PLAN NO. 3. 

Fig. 280. Fig. 290. 
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According to this plan the pairs of numbers are arranged sym- 

metrically on each side of the central axis, one-half of the elements 

being adjacent to each other, and the other half constructively ad- 

jacent as shown in Figs. 289 and 290. This arrangement furnishes 

the Franklin squares when expanded to 8 X 8, providing that the 

numbers in all 2X 2 subsquares are arranged to sum 130 (See 

Figs. 291 and 292). If this condition is not fulfilled, only half of 

I/ |4Z6\35S130 |/9 

28 ieee 

39 \42 

25|24 

B4IY7 

Fig. 201. Fig. 292. 

the bent diagonals will have proper summations. An imperfect 

Franklin square of this type may be seen in Fig. 268. 

PLAN NO. 4. 

In this plan the pairs of numbers are arranged adjacent to each 

other diagonally, producing four centers of equilibrium (See Figs. 

293 and 294). 

Fig. 294. 

Magic squares constructed on this plan exhibit in part the fea- 
tures of the Franklin and the pandiagonal squares. 
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PLAN NO. 5. 

The pairs of numbers in this plan are arranged in alternate 
cells in the diagonal columns, and it produces the continuous squares 

which have been termed Jaina, Nasik and pandiagonal squares. 
Fig. 295 is the Jaina square as modified by Dr. Carus (Fig. 222, p. 

127), and Fig. 296 shows the arrangement of the pairs of numbers. 

Fig. 295. Fig. 206. 

The diagram of the Nasik square (Fig. 262) is a simple expansion 

of Fig. 296, and the diagram of the Frierson square (Fig. 267) 

shows a design like Fig. 296 repeated in each of its four quarters. 

PLAN NO. 6. 

Under this plan the pairs of numbers are balanced symmet- 

rically around the center of the square, and this arrangement is 

common to all associated squares, whether odd or even. Fig. 297 

Fig. 207. Fig. a 

shows a common form of 4X4 square, the diagrammatic plan 

being given in Fig. 2098. 
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PLAN NO. 7. 

Magic squares on this plan are formed by combining plans 

Fig. 2090. Fig. 300. 

Nos. 1 to 3, a square and its diagram being shown in Figs. 299 and 

300. 

PLAN NO. 8. 

This plan covers another combination of plans 1 and 3, and 

Figs. 301 and 302 show square and diagram. 

Fig. 301. Fig. 302. 

PLAN NO. 9. 

This is a combination of plans 2 and 3, a square and its dia- 
gram being given in Figs. 303 and 304. 

Fig. 304. 
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PLAN NO. IO. 

This is also a combination of plans 2 and 3 and is illustrated in 
Figs. 305 and 306. 

Fig. 305. Fig. 300. 

PANS NO} Tl. 

One-half of this square is made in accordance with plan No. 

2, but in the other half the pairs of numbers are located apart by 

knight’s moves, which is different from any plan hitherto considered. 

It is impossible to arrange the entire square on the plan of the 

Fig. 307. Fig. 308. 

knight’s move. Figs. 307 and 308 show this square and its construc- 

tive plan. 

PLAN NO. 12. 

We are indebted to Mr. Henry E. Dudeney for the combination 

shown in Figs. 309-310, thus filling a complete dozen plans which 

probably cover all types of 4 X 4 magic squares. 



184 NOTES ON VARIOUS CONSTRUCTIVEx PLANS. 

In even squares larger than 4 x 4 these plans naturally exhibit 

great diversity of design. The following 6 X 6 squares with their 

respective plans are given as examples in Figs. 311, 312 to 321, 322. 

Fig. 315. Fig. 316. 

Figs. 315 and 317 are identical with 6 X 6 squares shown on 
pages 19 and 24. All squares of this class have the same charac- 
teristic plans. 
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The peculiar structure of the squares shown in Figs. 319 and 
321 is visualized in their plans (Figs. 320 and 322). Fig. 314 is 
worthy of notice in having eight pairs of numbers located apart 

Fig. 319. ; Fig. 320. 

sap bd 
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Fig, 321. 

by knight’s moves. Figs. 323, 324 and 325 illustrate another 6 X 6 

square with its plan and numerical diagram. It will be —— ue 

the latter is symmetrically balanced on each side, differing in this 
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4\20\ 25 77 

pele le yo 

Fig. 325. 

respect from the numerical diagrams of the 6 X 6 squares as de- 

scribed in Chapter I. 

Figs. 326-333 are four 6 X 6 magic squares contributed by 

Mr. E. Black which show an interesting symmetry in their con- 

structive plans. 
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Hig. 326. 
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Fig. 332. Fig. 333. 

THE MATHEMATICAL VALUE OF MAGIC SQUARES. 

The following quotations bearing on the above subject are 

copied from a paper entitled “Magic Squares and Other Problems 

on a Chessboard” by Major P. A. MacMahon, R.A., D.Sc., F-R.S., 

published in Proceedings of the Royal Institution of Great Britain, 

Vol. XVII, No. 96, pp. 50-61, Feb. 4, 1892. 

“The construction of magic squares is an amusement of great 

antiquity; we hear of their being constructed in India and China 
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before the Christian era, while they appear to have been introduced 

into Europe by Moscopulus who flourished at Constantinople early 

in the fifteenth century. 

“However, what was at first merely a practice of magicians 

and talisman makers has now for a long time become a serious 

study for mathematicians. Not that they have imagined that it 

would lead them to anything of solid advantage, but because the 

theory was seen to be fraught with difficulty, and it was considered 

possible that some new properties of numbers might be discovered 

which mathematicians could turn to account. This has in fact 

proved to be the case, for from a certain point of view the subject 

has been found to be algebraical rather than arithmetical and to be 

intimately connected with great departments of science such as the 

‘infinitesimal calculus,’ the ‘calculus of operations,’ and the ‘theory 

of groups.’ . 

“No person living knows in how many ways it is possible to 

form a magic square of any order exceeding 4 4. The fact is 

that before we can attempt to enumerate magic squares we must 

see our way to solve problems of a far more simple character. 

“To say and to establish that problems of the general nature 

of the magic square are intimately connected with the infinitesi- 

mal calculus and the calculus of finite differences is to sum the 

matter up.” 

k 3K K 

It is therefore evident that this field of study is by no means 

limited, and if this may be said in connection with magic squares 

the statement will naturally apply with a larger meaning to the 

consideration of magic cubes. 



GHAPTER IX. 

MAGIC CUBES OF THE SIXTH ORDER: 

le is stated by Dr. C. Planck in his article on “The Theory of 
Reversions,” Chapter XII, pp. 298 and 304, that the first magic 

cube of this order was made by the late W. Firth, Scholar of 

Emanuel, Cambridge, England, in 1889. The pseudo-skeleton of 

Firth’s construction is shown in Fig. 585, on p. 304 and its develop- 

ment into a magic 6* is given by Dr. Planck in Fig. 587. He also 

presents in Fig. 597 in the same chapter another magic 6? which he 

made in 1894 by the artifice of “index-cubes,”’ and gives a full 

explanation of his method. 

Although the cube presented in this chapter by Prof. H. M. 

Kingery is imperfect in its great diagonals, and therefore not 

strictly magic, it possesses many novel and interesting features, 

being an ingenious example of the general principle of the “Frank-’ 

lin” squares carried into the third dimension, and showing, as it 

does, perfect “bent diagonals.” The same method will construct 

cubes of 10, 14, and other cubes of the 4p + 2 orders. 

The second article in this chapter by Mr. Harry A. Sayles 

gives a clear and concise solution of the problem by the La Hireian 

method. Mr. Sayles’s cube is strictly magic. 

The cube offered in the third article by the late John Worthing- 

ton, besides being strictly magic, shows the unique feature of hav- 

ing perfect diagonals-on the six outside squares. W.S. A. 

A “FRANKLIN” CUBE OF SIX. 

For a long time after cubes had been constructed and analyzed 

consisting of odd numbers and those evenly even (divisible by 4), 

the peculiar properties of the oddly even numbers baffled all attempts 
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to treat them in like manner. While the following construction 

does not comply with all the criteria laid down for “magic” cubes 

it has some remarkable features which appear to the writer to 

deserve attention. It will at least serve to arouse some criticism 

and discussion, and may contain hints for a complete solution of 

the problem. 

In the first place six magic squares were constructed, exactly 

similar in plan except that three of them began (at the upper left- 

hand corner) with odd numbers, each of which was I or I plus a 

multiple of 36, and the other three with even numbers, each a mul- 

tiple of 18. In the first three squares the numbers were arranged 

in ascending order, in the other three descending. The initial 

numbers were so chosen that their sum was 651, or (n/2)(n* +1), 

which is the proper summation for each dimension of the projected 

magic cube. In the construction of these original squares, by the 

way, the diagrams presented in the first chapter of this book 

proved a great convenience and saved much time. 

Each of the six squares so made is “magic” in that it has the 

same sum (651) for each column, horizontal row and corner diag- 

onal. As the initial numbers have the same sum the similarity of 

the squares, with ascending arrangement in one half and descending 

in the other half, insures the same totals throughout for numbers 

occupying corresponding cells in the several squares; e. g., taking 

the third number in the upper row of each square and adding the 

six together we reach the sum 651, and so for any other position 

of the thirty-six. 

In constructing our cube we may let the original six squares 

serve as the horizontal layers or strata. We have seen that the 

vertical columns in the cube must by construction have the correct 

summation. Furthermore, as the successive right-and-left rows in 

the horizontal squares constitute the rows of the vertical squares 
facing the front or back of the cube, and as the columns in the 
horizontal squares constitute the rows of the vertical squares facing 
right or left, it is easily seen that each of these twelve vertical 
squares has the correct summation for all its columns and rows. 

Here appears the first imperfection of our cube. Neither the 
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ices as 
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diagonals of the vertical squares nor those of the cube itself have 
the desired totals, though their average footing is correct. It is true 
further that the footings of the two cubic diagonals originating at 
Opposite extremities of the same plane diagonal average 651, though 
neither alone is right. 

At this point, however, we come upon an interesting fact. 

While the cubic diagonals vary, the two half-diagonals originating 

at opposite extremities of either plane diagonal in either the upper 

or the lower face, and meeting at the center of the cube, together 

have the sum 651. These correspond in the cube to the “bent 

diagonals” of Franklin’s “square of squares.” Of course a moment’s 

reflection will show that this feature is inevitable. The original 

squares were so constructed that in their diagonals the numbers 

equidistant from the middle were “complementary,” that is, taken 

together they equaled 217, or n*-+ I, m representing the number of 

cells in a side of the square. In taking one complementary pair from 

each of three successive squares to make our “bent diagonal’ we 

must of necessity have 3 X 217 = 651. 

As in the Franklin squares, so in this cube do the “bent diag- 

onals” parallel to those already described have the same totals. A 

plane square may be thought of as being bent around a cylinder so 

as to bring its upper edge into contact with the lower, and when 

this is done with a Franklin square it will be seen that there is 

one of these “bent diagonals” for each row. In like manner, if it 

were possible by some fourth-dimension process analogous to this 

to set our cube upon itself, we should see that there were six (or 

in general nm) “bent diagonals” for each diagonal in each of the 

horizontal faces, or 24 in all, and all having the same sum, 651. 

The occurrences of S may be tabulated as follows: 

Im, thesvertical columris =. 2s-..0. sac 36 or =m’ 

In the:rows from front to back ......... 36 or n° 

In the rows from right to left .....:..... 36 or 1? 

In the diagonals of the original square .... 12 or 2m 

In the cubic “bent diagonals” ........... 24 or 4n 

144 or 3n2-L6n 
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The column of n values at the right represents the “general” num- 

bers, found in cubes of 10, 14, etc., as well as in that of 6. 

All these characteristics are present no matter in what order 

the original squares are piled, which gives us 720 permutations. 

Furthermore, only one form of magic square was employed, and 

Mr. Andrews has given diagrams to illustrate at least 128 forms, 

any one of which might have been used in the construction of our 

cube.* Still further, numerous transpositions within the squares 

are possible—always provided the vertical totals are guarded by 

making the same transpositions in two squares, one ascending and 

the other descending. From this it is easy to see that the numbers 

I-216 may be arranged in a very great number of different ways 

to produce such a cube. 

So much for the general arrangement. If we so pile our originai 

syuares as to bring together the three which begin with odd numbers 

and follow them with the others (or vice versa) we find some new 

features of interest. In the arrangement already discussed none 

of the vertical squares has the correct sum for any form of diagona!. 

The arrangement now suggested shows “bent diagonals” for the 

vertical squares facing right and left as follows: Each of the outside 

squares—at the extreme right or left—has four “bent diagonals” 

facing the upper and four facing the lower edge. These have their 

origin in the first, second, fourth and fifth rows moving upward or 

‘downward, i. e., in the first two rows of each group—those yielded 

by original squares starting with odd and those with even numbers. 

Each of the four inside vertical squares has but two “bent diag- 

onals” facing its upper and two facing its lower edge, and these 

start in the first and fourth rows—the first of each group of three. 

This will be true no matter in what order the original squares are 

piled, provided the odd ones are kept together and the evens to- 

gether. This will add 32 (8 for each of the two outer and 4 for each 

of the four inner squares) to the 144 appearances of the sum 651 

tabulated above, making 176; but this will apply, of course, only ~ 
to the cube in which the odd squares are successive and the even 
squares successive. As the possible permutations of three objects 

uh SKE) 400}, 22) Bkavel Be). 
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number 6, and as each of these permutations of squares beginning 
with odd numbers can be combined with any one of the equal num- 
ber of permutations of the even squares, a total of 30 arrangements 
is possible. 

While the straight diagonals of these squares do not give the 
required footing the two in each square facing right or left average 
that sum: thus the diagonals of the left-hand square have totals of 
506 and 7096, of the second square 708 and 594, third 982 and 320, 

fourth 596 and 706, fifth 798 and 504, and the right-hand square 

986 and 316, each pair averaging 651. I have not yet found any 

arrangement which yields the desired total for the diagonals, either 

straight or bent, of the vertical squares facing back or front; nor do 

their diagonals, like those just discussed, average 651 for any single 

square, though that is the exact average of the whole twelve. 

By precisely similar methods we can construct cubes of Io, 14, 

18, and any other oddly-even numbers, and find them possessed of 

the same features. I have written out the squares for the magic 

cube of 10, but time would fail to carry actual construction into 

higher numbers. Each column and row in the Io-cube foots up 

5005, in the 14-cube 19,215, in the 30-cube 405,015, and in a cube 

of 42 no less than 1,555,869! Life is too short for the construction 

and testing of squares and cubes involving such sums. 

That it is possible to build an absolutely “perfect” cube of 6 is 

difficult to affirm and dangerous to deny. The present construction 

fails in that the ordinary diagonals of the vertical squares and of 

the cube itself are unequal, and the difficulty is made to appear in- 

superable from the fact that while the proper summation is 651, 

an odd number, all the refractory diagonals are even in their sum- 

mation. 

The diagrams in Figure 335 are especially valuable because 

they show how the numbers of the natural series 1-216 are arranged 

in the squares which constitute the cube. This is a device of Mr. 

Andrews’s own invention, and certainly is ingenious and beautiful. 

. The diagrams here given for squares of six can be expanded on 

well-defined principles to apply to those of any oddly-even number, 

and several of them are printed in Chapter I. 
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It will be noticed that the numbers 1-108 are placed at the left 

of the diagrams, and those from 109 to 216 inclusive at the right in 

inverse order. Consequently the sum of those opposite each other 

is everywhere 217. In each diagram are two pairs of numbers con- 

nected by dotted lines and marked ©. These in every case are to 

be interchanged. Starting then at the heavy dot at the top we follow 

the black line across to 215, down to 212 (stibstituting 3 for 213) 

and back to 6; then across on the dotted line to 210 and along the 

zigzag black line to 8, 208, 207, 11 and 7 (interchanged with 205) ; 

down the dotted line to 204, then to 203, 15; 16, 14 (in place of 200), 

199; then across the diagram and upward, observing the same meth- 

ods, back to 216. This gives us the numbers which constitute our 

square No. I, written from left to right in successive rows. In like 

manner the diagrams in column II give us-square No. II, and so 

on to the end. It is worthy of notice that in the fourth column of 

diagrams the numbers are written in the reverse of their natural 

order. This is because it was necessary in writing the fourth square 

to begin with the number 145 (which naturally would be at the bot- 

tom of the diagram) in order to give the initial numbers the desired 

sum of 651. H. M. K. 

Ne VUNGIGy CUB e OH se SixXe 

The two very interesting articles on Oddly-Even Magic Squares 

by Messrs. D. F. Savage and W. S. Andrews, which ‘appear in 

Chapter X, might suggest the possibilities of extending those 

methods of construction into magic cubes. It is an ‘interesting 

proposition and might lead to many surprising results. 

Although the cube to be described here is not exactly of the 
nature mentioned above, it follows similar principles of construc- 
tion and involves features quite unusual to cubes of this class. 

The six respective layers of this cube are shown in Fig. 336. All 
of its 108 columns, and its four great diagonals give the constant 
summation of 651. If we divide this into 27 smaller cubes, which 

we will call cubelets, of eight cells each, the six faces, and also 
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two diagonal planes of any cubelet give constant summations. 
For example, we will note the central cubelet of the first and 
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Fig. 336. 

second layer, which is shown diagrammatically in Fig. 337. Its 

summations are as follows. 

The six faces: 

192 B 3 165 Toy 30 

oe 05 ans 102 30 84 165 

III 84 57 III 138 3 

Bg Ju? a7. 390 390 a0 
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The two diagonal planes: 

Di, 192 

30 i 

165 84 

138 3 

399 390 

Fig. 337. 

Also, if the sum of the eight cells in each of the cubelets be 

taken as a whole, we have a 33X32 cube with 37 summations, each 

amounting to 2604. ; ‘ 

The construction of this cube is by La Hireian method, using 

two primary cubes shown in Figs. 338 and 339. Fig. 338 con- 

tains 27 cubelets, each containing eight cells with eight equal num- 

bers; the numbers in the respective cubelets ranking in order as the 

series, I, 2, 3,....27. These 27 cubelets are arranged according to 

the methods of any 3X3X3 cube. This gives us a primary cube — 

with all the features of the final cube. 

Fig. 339 is also divided ino 27 cubelets, each of which must con- 

tain the series 0, 27, 54, 81, 108, 135, 162, 189. The arrangement 

of the numbers in these 27 cubelets must be such as will give the 

primary cube all the required features of the final cube. The eight 

numbers of the cubelet series are, for convenience, divided by 27, 

and give the series 0, I, 2, 3, 4, 5, 6, 7, which can easily be brought 

back to the former series after the primary cube is constructed. 
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To construct the cubelet, we divide the above series into two 
sets of four numbers each, so that the sums of the two sets are equal, 
and the complementaries of one set are found in the other. This 
division is 0, 5, 6, 3 and 7, 2, 1, 4, which separates the complemen- 

Fig. 338. 

taries and gives two sets, each amounting to 14. We can place one 

set in any desired order on one face, and it only remains to place 

the four complementaries in the opposite face, so that the four lines 

connecting complementary pairs are parallel. 
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These cubelets are arranged in the primary cube with the 

0, 5, 6, 3 faces placed in the rst, 3d, and 5th layers, and thet7.s2ea. 

faces placed in the 2d, 4th, and 6th layers, which arrangement satis- 

fies the summations perpendicular to the layers. 

Fig. 339. 

It now remains to adjust the pairs in the cubelets to suit the 
summations in the layers and the four diagonals. We first arrange 
the pairs that will give the diagonal summations, and by doing so, 
we set the position of four numbers in each of the layers 3 and 4, 
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and eight numbers in each of the layers i, 2, 5 and 6. We then ar- 
range the remaining numbers in the layers 1, 3 and 5 to suit the 
twelve summations of each layer, which consequently locates the 
numbers for layers 2, 4 and 6, since complementary pairs must lie 

perpendicularly to the cubes layers. This gives us a primary cube 

such as that shown in Fig. 330. 

The numbers in each cell of Fig. 339 must then be multiplied by 

27, and added to the respective cells in Fig. 338, which combination 

gives us the final cube shown in Fig. 336. HA; S. 

MAGICICUBE OFF Six. 

In the cube, whose horizontal squares are shown in Fig. 340, the 

sum of each of the normal rows (those perpendicular to the 

faces of the cube) is 651, and the sum of each of the sixteen 

diagonals connecting the corners of the cube is the same. 

These diagonals include the entire diagonals of the surfaces 

of the cube and the four diagonals of the solid running from corner 

to corner through the center of the cube. 

DIAGONALS. 

Top Square. TOO me TiGa ITS elo t 104.5 107 
BOQ 12 eel ive 2026205 (hata 

Bottom Square. itt ity tor 905 ¥-67-"-110 
LOO Ul teee 14. be cO7 2 204 wetO5 

Front Square. Ui) 131 Wis2 eh OZ 84 II0 

TO7— 31st -29" F1H07 185" Tos 

Rear Square. 1OOm 1 20h aE 20 gw O35, Os IOS 

100. 6 308225 01 Ol. ESSaxiit 

Left Square. TOG) B37h, 40 oe tole 105 

ito 120) 121) 80.02 111 

Right Square. 0G, 34 eu 1036-177 4.110 

TOveet2 74 125, ¥-00%) .94" 108 



N 

N
 

MAGIC CUBES OF THE SIXTH ORDER. 

110 
105 
tie 

66 

78 
1529 514/77 

139 
61 

171 

100 

109 

Diagonals of 

Li, 
6 

143 the Solid. 

153 156 63 107 
112 108 AQ 172 406 

SECOND SQUARE. FIRST OR TOP SQUARE. 

FOURTH SQUARE. THIRD SQUARE, 

SIXTH OR BOTTOM SQUARE. FIFTH SQUARE. 
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The foregoing cube was constructed in the following manner. 
The foundation of this construction is the cube of 3 which is 

shown in Fig. 341. 

FIRST OR SECOND OR THIRD OR 

TOP SQUARE MIDDLE SQUARE. BOTTOM SQUARE 

[8 [x2 | 22 
jx [tale] [aa [| 

10 [23] | 

FIRST, OR TOP, AND SECOND SQUARES. 

as ae | 52 [136] 196 
at [oa | 2 | | 15 [6 

Fig. 342. THe Basic Cure. 

The sum of each normal row in the above cube, whether run- 

ning from left to right, from rear to front or from top to bottom, 

is 42; and the sum of each diagonal of which the central term 14 

is a member, as 19 14 9, 5 14 23, 15 14 13, etc., is also 42. 
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Deduct 1 from each term of the above cube and multiply 

the remainder by 8. With each of these multiples construct a cubic 

group consisting of eight repetitions of the multiple. Substitute 

FIRST OR TOP SQUARE. SECOND SQUARE, 

Fig. 343. Tue Groupe Cune. 
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SECOND SQUARE. FIRST OR TOP SQUARE, 

FOURTH SQUARE, THIRD SQUARE. 

PIBPE SQUARE. SIXTH OR BOTTOM SQUARE. 

ig. 344. Tue Complete CUBE. am 
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each of these groups for that term of the cube from which it was 

derived, and the result will be a cube with six terms in each row. 

The horizontal squares of this cube are shown in Fig. 342, the 

second square being the same as the first, the fourth as the third, 

and the sixth as the fifth. 

The sum of the terms in each normal row of the preceding 

cube is 624, and the sum of each diagonal which includes two terms 

from the central group of the cube is also 624. It follows that the 

middle two squares in each normal direction are magical and that 

each diagonal of the solid has the same sum as the normal rows. 

This cube is called the basic cube. 

Another magic cube with six terms in each row was next con- 

structed. This cube is called the group cube. Each position which 

in the basic cube is occupied by a cubic group of eight equal num- 

bers is occupied in the group cube by a cubic group consisting of 

the numbers 1, 2, 3, 4, 5, 6, 7, 8. All of the rows and diagonals 

which have equal sums in the basic cube will have equal sums in the 

group cube. 

Adding together the terms which occupy corresponding posi- 

tions in the basic cube and the group cube the result is the complete 

cube shown in Fig. 344, containing the numbers from 1 to 6° = 216. 

In the complete cube the middle two squares in each direction 

are magical while the outer squares are not. 

To bring these magical squares to the surface the squares, of 

each set of parallel squares may be permuted as follows: 

Orivinal orders, vse. 8 $5 25 BieAy bes 

Permuted order ....... Be 2 ea Osa 

The result is the final cube shown in Fig. 340. 

The above permutation is subject to two conditions. The sev- 
eral sets of parallel squares must all be permuted in the same man- 
ner. Any two parallel squares which in the original cube are located 
on opposite sides of the middle plane of the cube and at an equal 
distance from it, in the permuted cube must be located on opposite 
sides of the middle plane of the cube and at an equal distance from it. 
These conditions are for the protection of the diagonals. J. w. 



CHAPTER! 3. 

VARIOUS KINDS OF MAGIC SQUARES. 

OVERLAPPING MAGIC SQUARES. 

PECULIAR species of compound squares may be called over- 

lapping magic squares. In these the division is not made as usual 

by some factor of the root into four, nine, sixteen or more subsquares 

of equal area, but into several subsquares or panels not all of the 

same size, some lying contiguous, while others. overlap. The sim- 

plest specimens have two minor squares of equal measure apart in 

opposite corners, and in the other corners two major squares which 

overlap at the center, having as common territory a middle square 

2 X 2, 3 X 3, or larger, or only a single cell. Such division can be 

made whether the root of the square is a composite or a prime 

number, as 4-5-9; 4-60-10; 5-6-11 ; 6-9-15; 8-12-20 etc. The natural 

series I to m* may be entered in such manner that each subsquare 

shall be magic by itself, and the whole square also magic to a higher 

or lower degree. For example the 9-square admits of division into 

two minor squares 4 X 4, and two major squares 5 X 5 which over- 

lap in the center having one cell in common. For convenience, the 

process of construction may begin with an orderly arrangement of 

materials. 

The series 1 to 81 is given in Fig. 345, which may be termed a 

primitive square. The nine natural grades of nine terms each, ap- 

pear in direct order on horizontal lines. It is evident that any natural 

series I to n? when thus arranged will exhibit m distinct grades of n 

terms each, the common difference being unity in the horizontal 

direction, m vertically, n+1 on direct diagonals, and n—1 on trans- 
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verse diagonals. This primitive square is therefore something more ~ 

than a mere assemblage of numbers, for, on dividing it as proposed, 

there is seen in each section a set of terms which may be handled 

as regular grades, and with a little manipulation may become mag- 

ical. The whole square with all its component parts may be tilted 

over to right or left 45°, so that all grades will be turned into a diag- 

onal direction, and all diagonals will become rectangular rows, and 

presto, the magic square appears in short order. The principle has 

been admirably presented and employed in various connections on 

pp. 17 and 113. It is a well-known fact that the primitive square 

gives in its middle rows an average-and equal summation ; it is also 

a fact not so generally recognized, or so distinctly stated, that all 

Fig. 345. 

the diagonal rows are already correct for a magic square.. Thus in 

this 9-square the direct diagonal, 1, 11, 21, 31 etc. to 81 is a mathe- 

matical series, 43 normal cyuplets = 369. Also the parallel partial 

diagonal 2, 12, 22, 32, etc. to 72, eight terms, and 73 to complete it, 

= 369. So of all the broken diagonals of that system; so also of 

all the nine transverse diagonals; each contains 44 normal couplets 
or the value thereof = 369. The greater includes the less, and these 
features are prominent in the subsquares. By the expeditious plan 
indicated above we might obtain in each section some squares of fair 
magical quality, quite regular and symmetrical, but when paired 
they would not be equivalent, and it is obvious that the coupled 
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squares must have an equal summation of rows, whatever may be 
their difference of complexion and constitution. The major squares 
are like those once famous Siamese twins, Eng and Chang, united by 
a vinculum, an organic part of each, through which vital currents 
must flow; the central cell containing the middle term 41, must be 
their bond of union, while it separates the other pair. The materials 
being parceled out and ready to hand, antecedents above and con- 

sequents below, an equitable allotment may be made of normal 

couplets to each square. Thus from N. W. section two erades may 

be taken as they stand horizontally, or vertically, or diagonally or 

any way symmetrically. The consequents belonging to those, found 

in S. E. section will furnish two grades more and complete the 

square. The other eight terms from above and their consequents 

from below will empty those compartments and supply the twin 

4-square with an exact equivalent. Some elaborate and elegant 

specimens, magic to a high degree, may be obtained from the follow- 

ing distribution : 

Pavorade st, 3.1%, 130 all odd), 2, 4,10, 12 (all’even) ; 

2d grade 19, 21, 29, 31 and 20, 22, 28, 30. 

Then from N. E. section two grades may be taken for one of 

the major squares; thus 5, 6, 7, 8, 9 and 23, 24, 25, 26, 27 leaving 

for the twin-squaré, 14, 15,16, 17, 18 and 32, 33, 34, 35, 36. To 

each we join the respective consequents of all those terms forming 

4th and-5th grades, and they have an equal assignment. But each 

requires a middle grade, and the only material remaining is that 

whole middie grade of the g-square. Evidently the middle portion, 

39, 40, 41, 42, 43 must serve for both, and the 37, 38, and their 

partners 44, 45 must be left out as undesirable citizens. Each hav- 

ing received its quota may organize by any plan that will produce 

a magic and bring the middle grade near the corner, and especially 

the number 41 into a corner cell. 

In the 5-square Fig. 346 we may begin anywhere, say the cell 

below the center and write the Ist grade, 14, 15, 16, 17, 18, by a 

uniform oblique step moving to the left and downward. From the 

end of this grade a new departure is found by counting two cells 

down or three cells up if more convenient, and the 2d grade, 32, 
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33, 34, 35, 36 goes in by the same step of the Ist grade. All the 

grades follow the same rule. The leading terms 14, 32, 39, 40, 04 

may be placed in advance, as they go by a uniform step of their 

own, analogous to that of the grades; then there will be no need of 

any “break-move,” but each grade can form on its own leader 

wherever that may stand, making its proper circuit and returning 

to its starting point. The steps are so chosen and adjusted that 

every number finds its appointed cell unoccupied, each series often 

crossing the path of others but always avoiding collision. The re- 

sulting square is magic to a high degree. It has its twelve normal 

couplets arranged geometrically radiating around that unmatched 

middle term 41 in the central cell. In all rectangular rows and in 

all diagonals, entire and broken, the five numbers give by addition 

ye” "i 

@ eae 
Brmomn 

Ba [30] 47] 72 (29) 
MoOmaea ke ENE: 

4] 2 lexlerloo! 74| 2 lea lor|o 
Fig. 346. Fig. 347. 

the constant S = 205. There are twenty such rows. Other re- 

markable features might be mentioned. 

For the twin square Fig. 347 as the repetition of some térms and 

omission of others may be thought a blemish, we will try that dis- 

carded middle grade, 37, 38, 41, 44, 45. The other grades must be 

reconstructed by borrowing a few numbers from N. W. section so 

as to conform to this in their sequence of differences, as Mr. Frier- 

son has ably shown (Fig. 249, p. 141). Thus the new series in line 

5-6-9-12-13, 23-24-27-30-31, »37-38-(41)-44-45 etc. has the differ- 

ences I 3 3 I repeated throughout, and the larger grades will 
necessarily have the same, and the differences between thie grades 
will be reciprocal, and thus the series of differences will be balanced 
geometrically on each side of the center, as well as the normal 
couplets. Therefore we proceed with confidence to construct the 
5-square Fig. 347 by the same rule as used in Fig. 346, only applied 
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in contrary directions, counting two cells to right and one upward. 
When completed it will be the reciprocal of Fig. 346 in pattern, 
equivalent in summation, having only the térm AI in common and 
possessing similar magical: properties. It remains to be seen how 
those disorganized grades in the N. W. section can be made available 
for the two minor squares. Fortunately, the fragments allow this 
distribution : 

Regular grades 1, 2, 3, 4,—irregular grades 7, 8, 10, 11 

EQuI2O; eae 25, 26, 28, 20 

These we proceed to enter in the twin squares Figs. 348 and 

349. The familiar two-step is the only one available, and the last 

half of each grade must be reversed, or another appropriate permu- 

tation employed in order to secure the best results. Also the 4th 

grade comes in before the 3d. But these being consequents, may 

re leel-el ea ole|o 
Fig. 348. Fig. 349. 

go in naturally, each diagonally opposite its antecedent. The squares 

thus made are magical to a very high degree. All rectangular and 

all diagonal rows to the number of sixteen have the constant 

S = 164. Each quadrate group of four numbers = 164. There are 

nine of these overlapping 2-squares. The corner numbers or two 

numbers taken on one side together with the two directly opposite 

= 164. The corner numbers of any 3-squares = 164. There are 

four of these overlapping combinations arising from the peculiar 

distribution of the eight normal couplets. 

These squares may pass through many changes by shifting 

whole rows from side to side, that is to say that we may choose any 

cell as starting point. In fact both of them have been thus changed 

when taking a position in the main square. The major squares 

shown in Figs. 346 and 347 pass through similar changes in order to 
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bring the number 41 to a corner. With these four subsquares all 

in place we have the 9-square, shown in Fig. 350, containing the 

whole series 1 to 81. The twenty continuous rows have the con- 

stant S = 164-+ 205 = 369. Besides the 4-squares in N. W. and 

S. E. there is a 4-square in each of the other corners overlapping 

the 5-square, not wholly magic but having eight normal couplets 

placed geometrically opposite, so that taken by fours symmetrically 

they = 164. The four corner numbers 31 + 36 + 22 + 73 = 164. 

This combination may be taken as typical of the odd squares 

which have a pair of subsquares overlapping by a single cell. What- 

ever peculiarities each individual may exhibit they must all conform 

PE ae Cee 
10 | 26| 74|\ 54] 49|43|32 17566 

Z| -7|7 [22 [vs] 6 [47] 20 
2 les raf] aol oa) cole 7 
2] ao] 2 |safo7|2e| 0 |deler 
V2 |er|oe| = brlee [2a] [a 
Ll xsl74[ 9 [2el 2 [ae] 7 79 
ral @ [23| os ae | po] 27 [2 [22 
2? eel [po] | 7 [os pe |e 

Fig. 350. 

to the requirement of equal summation in coupled subsquares ; and 

for the distribution of values the plan of taking as a unit of measure 

the normal couplet of the general series is so efficacious and of such 

universal application that no other plan need be suggested. These 

principles apply also to the even squares which have no central cell 

but a block of four cells at the intersection of the axes. For ex- 

ample, the 14-square, Fig. 351, has two minor subsquares 6 & 6, and 

two major squares 8 X 8, with a middle square 2 & 2. This indi- 

cates a convenient subdivision of the whole area into 2-squares. 

Thus in N. W. section we have sixteen blocks ; it is a quasi-4-square, 

and the compartments may be numbered from 1 to 16 following 

some approved pattern of the magic square, taking such point of 
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departure as will bring 16-to the central block. This is called 1 for 
me-s. HE section in which 2, 3, etc. to 16 are located as before. 
Now as these single numbers give a constant sum in every line, 
so will any mathematical series that may replace them in the same 
order as Ist, 2d, 3d terms etc. Thus in 1 the numbers 1. ZO aa 

in 2; 5, 6, 7, 8, and so on by current groups, will give correct results. 
In this case the numbers 1 to 18, and 19 to 36 with their consequents 
should be reserved for the twin minor squares. So that here in 

the N. W. section we begin with 37, 38, in 1 instead of 1, 2, leaving 

143\ 6.5| 737 56 | 42] 44 1544 7 78 
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the 3, 4 spaces to be occupied by the consequents 159, 160. Then 

in 2 we continue 39, 40 (instead of 5, 6) and so following the path 

of the primary series, putting two terms into each 2-square, and 

arriving with 67, 68 at the middle square. Then the coupled terms 

go on 69, 70-—71, 72 etc. by some magic step across the S. E. section 

reaching the new No. 16 with the terms 97, 98. This exhausts 

the antecedents. Each 2-square is half full. We may follow a 

reversed track putting in the consequents 99, 100 etc. returning to the 
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starting point with 159, 160. It is evident that all the 2-squares 

are equivalent, and that each double row of four of them = 1576, 

but it does not follow that each single row will = 788. In fact they 

do so, but that is due to the position of each block as direct or re- 

versed or inverted according to a chart or theorem employed in 

work of this kind. The sixteen rectangular rows, the two entire 

diagonals and those which pass through the centers of the 2 < 2 

blocks sum up correctly. There are also many bent diagonals and 

lees|26 S222 S57 73 v\ 27 | 139| 79 aye 
Be 7 |228| 4 |22/)\2/9] 753 as|xo| F7 \/47 SF | He 
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NN 

zigzag rows of eight numbers that = 788. Each quarter of the 
square = 1576 and any overlapping 4-square made by four of the 
blocks gives the same total. The minor squares are inlaid. Thus in 
the N. E. square if the twenty numbers around the central block be 
dropped out and the three at each angle be brought together around 
the block we shall have a 4-square magical to a high degree. In 
fact this is only reversing the process of construction. 

Fig. 352 is a 15-square which develops the overlapping principle 
to an unusual extent. There are two minor squares 66, and two 
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major squares ) X 9 with a middle square 3 X 3 in common. The 
whole area might have been cut up into 3-squares. The present 
division was an experiment that turned out remarkably well. The 
general series, I to 225 is thus apportioned. For N. W. 6-square 
the numbers 1 to 18 and 208 to 225; for S.E. 1g to 36 and 190 to 
207; that is just eighteen normal couplets to each. For S. W. 9- 
square the numbers 37 to 72 and 154 to 189; for N.E. 73 to 108 
and 118 to 153; for the middle square, 109 to 117. Figs. 353 and 
354 show the method of construction. The nine middle terms are 
first arranged as a 3-square, and around this are placed by a well- 

known process (Fig. 103, p. 47) eight normal couplets 1or + 125 

etc. forming a border and making a 5-square. By a similar process 
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this is enlarged to a 7-square, and this again to a g-square, Fig. 353. 

Each of these concentric, or bordered, or overlapping squares is 

magic by itself. The twin square N. E. is made by the same process 

with the same 3-square as nucleus. In order to bring this nucleus to 

the corner of each so that they may coalesce with a bond of union, 

both of the squares are turned inside out. That is, whole rows are 

carried from bottom to top and from left to right. Such trans- 

position does not affect the value of any rectangular row, but it 

does affect the diagonals. In this case the corner numbers, 74, I 38 

and 152 become grouped around the other corner 88, each of the 

couplets having the same diagonal position as before. Thus we 
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obtain a 7-square with double border or panel on the North and 

East, still magic. This 7-square may now be moved down and out 

a little, from the border so as to give room to place its bottom 

row above, and its left column to the right, and we have a 5-square 

with panels of four rows. Again we move a little down and out 

leaving space for the bottom and left rows of the 5-square and thus 

the 3-square advances to the required position, and the four squares 

still overlap and retain all of their magical properties. The twin 

square S. W. passes through analogous transformation. The minor 

squares were first built up as bordered 4°’s as shown in Fig. 354 and 

then the single border was changed to double panel on two sides, 

but they might have gone in without change to fill the corners of the 

main square. As all this. work was done by the aid of movable 

numbered blocks the various operations—were more simple and 

rapid than any verbal description can be. The 15-square (Fig. 352) 

as a whole has the constant S = 1695 in thirty rectangular rows 

and two diagonals, and possibly some other rows will give a correct 

result. If the double border of fifty-two normal couplets be re- 

moved the remaining I1-square, 4-7-11 will be found made up of 

two 4-squares and two overlapping 7-squares with middle 3-square, 

all magic. Within this is a volunteer 7-square, of which we must 

not expect too much, but its six middle rows and two ‘diagonals are 

correct, and the corner 2 X 2 blocks pertaining to the 4-squares 

although not composed of actual couplets have the value thereof, 

224 + 228. However, without those blocks we have two overlapping 

5-squares all right. By the way, these 4-squares have a very high 

degree of magic, like those shown in Fig. 350, with their 2-squares 

and 3-squares so curiously overlapping. Indeed, this recent study 

had its origin some years ago from observing these special features 

of the 4-square at its best state. The same traits were recognized 

in the 8’s and other congeners ; also some remarkable results found 
in the oddly-even squares when filled by current groups, as well as 
in the quartered squares, led gradually to the general scheme of 
overlapping squares as here presented. Denes. 
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ODDLY-EVEN MAGIC SQUARES. 

A convenient classification of magic squares is found by recog- 
nition of the root as either a prime number or evenly-even, or oddly- 
even, or oddly-odd. These four classes have many common traits, 
but owing to some characteristic differences, a universal rule of 
construction has hitherto seemed unattainable. The oddly-even 

squares especially, have proved intractable to methods that are 

readily applicable to the other classes, and it is commonly believed 

that they are incapable of attaining the high degree of magical 

character which appears in those others. 

As some extensive explorations, recently made along those lines, 

have reached a very high latitude, the results will now be presented, 

showing a plan for giving to this peculiar sort, more than the 

ordinary magical properties. 

Problem: To make oddly-even squares which shall have proper 

summation in all diagonal and rectangular rows except two, which 

two shall contain S—1 and S-+1 respectively. This problem is 

solved by the use of auxiliary squares. 

If m is an oddly-even root, and the natural series I, 2, 3 etc. to 

n® is written in current groups of four terms, thus: 

I.2.3.4.—5.6.7.8.—Q.10.11.12.—13.14.15.16. ete. 

tees ——O. E29. —. “1. 2: 3 .-— 0.11. 2.3 .. Cte. 

7 I Cpe 9 1 etc. 

then from each current group a series 0.1.2.3 may be subtracted, 

leaving a series 1.5.9.13 etc. to n*—3, a regular progression of 

n?/4 terms available for constructing a square whose side is /2. 

As there are four such series, four such squares, exactly alike, 

readily made magic by well-known rules, when fitted together around 

a center, will constitute an oddly-even square possessing the magical 

character to a high degree. This will serve as the principal auxil- 

iary. Another square of the same size must now be filled with the 

series 0.1.2.3 repeated n?/4 times. The summation 37/2 being 

always odd, cannot be secured at once in every line, nor equally 

divided in the half lines, but all diagonal and all rectangular rows, 



218 VARIOUS KINDS OF MAGIC SQUARES. 

except two of the latter, can be made to sum up correctly. Hence 

the completed square will show a minimum of imperfection. 

In illustration of these general principles, a few examples will 

be given, beginning properly with the 2-square, smallest of all and 

first of the oddly-even. This is but an embryo, yet it exhibits in 

its nucleated cells some germs of the magical character, capable of 

indefinite expansion and growth, not only in connection with those 

of its own sort, but also with all the other sorts. Everything being 

reduced to lowest terms, a very general, if not a universal principle 

of construction may be discovered here.. Proceeding strictly by 

rule, the series 1.2.3.4. affords only the term 1. repeated four 

times, and the series 0.1.2.3. taken once. The main auxiliary 

(Fig. 355) is a genuine quartered 2-square, equal and identical and 

regular and continuous every way.. S=2. 

ioe > se ig 35 On emo’ C577 en to oC Om OMNI O® 

The second auxiliary (Fig. 356) taking the terms in direct order, 

has eight lines of summation, showing equality, S=3, in all four 

diagonals, while the four rectangular rows give inequalities 1.5 

and 2.4; an exact balance of values. This second auxiliary may 

pass through eight reversed, inverted or revolved phases, its semi- 

magic character being unchanged. Other orders may be employed, 

as shown in Figs. 357 and 358, bringing equality into horizontal or 

vertical rows, but not in both directions at the same time. Now 

any one of these variables may combine with the constant shown 

in Fig. 355, developing as many as twenty-four different arrange- 

ments of the 2-square, one example of which is given in Fig. 359. 

It cannot become magic unless all its terms are equal; a series 

whose common difference is reduced to zero. As already suggested, 

this 2-square plays an important part in the present scheme for 
producing larger squares, pervading them with its kaleidoscopic 
changes, and forming, we may say, the very warp and woof of their 

substance and structure. 

The 6-square now claims particular attention. The main auxil- 
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iary, Fig. 360, consists of four 3-Squares, each containing the series 
1.5.9.13 etc. to 33. The 3-square is infantile; it has but one plan 
of construction ; it is indeed regular and can not be otherwise, but it 
is imperfect. However, in this combination each of the four has a 
different aspect, reversed or inverted so that the inequalities of par- 
tial diagonals exactly balance. With this adjustment of subsquares 
the 6-square as a whole becomes a perfect quartered square, S102; 

it is a quasi 2-square analogous to Fig. 355. 

The four initial terms, I.1.1.1 symmetrically placed, are now 

to be regarded as one group, a 2-square scattered into the four 

quarters; so also with the other groups 5.5.5.5 etc. Lines con- 

necting like terms in each quarter will form squares or other 

leads [Jol 
[2 |ezlesf25)-71 3 
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Fig. 360. 

rectangles, a pattern, as shown in Fig. 363, with which the sec- 

ond auxiliary must agree. The series 0.1.2.3 is used nine times 

to form this second square as in Fig. 361. There are two con- 

ditions: to secure in as many lines as possible the proper summation, 

and also an adjustment to the pattern of Fig. 360. For in order that 

the square which is to be produced by combination of the two 

auxiliaries shall contain all the terms of the original series, 1 to 36, 

a group 0.1.2.3 of the one must correspond with the group 1.1.1.1 

of the other, so as to restore by addition the first current group 

1.2.3.4. Another set 0.1.2.3 must coincide with the 5.5.5.5; 

another with the 9.9.9.9 and so on with all the groups. The 

auxiliary Fig. 361 meets these conditions. It has all diagonals cor- 

rect, and also all rectangular rows, except the 2d and 5th verticals, 

which sum up respectively 8 and Io. 
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Consequently, the finished square Fig. 362 shows inequality in 

the corresponding rows. However, the original series has been 

restored, the current groups scattered according to the pattern, and 

although not strictly magic it has the inevitable inequality reduced 

toa minimum. The faulty verticals can be easily equalized by trans- 

posing the 33 and 34 or some other pair of numbers therein, but 

the four diagonals that pass through the pair will then become in- 

correct, and however these inequalities may be shifted about they 

can never be wholly eliminated. It is obvious that many varieties 

of the finished square having the same properties may be obtained 

by reversing or revolving either of the auxiliaries, and many more 

by some other arrangement of the subsquares. It will be observed 

eS 
Alimirs=simiiall 
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Fig. 362. , : Fig. 363. 

that in Fig. 360 the group 21 is at the center, and that each 3-square 

may revolve on its main diagonal, I and 25, 9 and 33, 29 and 5 

changing places. Now the subsquares may be placed so as to bring 

either the 5 or the 13 or the 29 group at the center, with two 

changes in each case. So that there may be 8X8 X8=512 variations 

of this kind. There are other possible arrangements of the sub- 

squares that will preserve the balance of the partial diagonals, but 

the pattern will be partly rhomboidal and the concentric figures 

tilted to right and left. These will require special adaptation of 

the second auxiliary. 

We come now to the 10-square, no longer hampered as in the 

6-square, by the imperfection of the subsquares. The main auxil- 

iary "ig. 364 consists of four 5-squares, precisely alike, each contain- 
ing, theyseries 175% Qsetc.mtono7, <S==245) in every respect regular 

and continuous. All four face the same way, but they might have 
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been written. right and left, as was necessary for the 3-square. The 
groups 1.1.1.1, 5.5.5.5 etc. are analogously located, and the pat- 
tern consists of equal squares, not concentric but overlapping. The 
10-square as a whole is regular and continuous. S—ago. 
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The second auxiliary Fig. 365 is supposed to have at first the 

normal arrangement in the top line 0.3.0.0.3.2.2.1.2.2. which 

would lead to correct results in the rectangular rows, but an alter- 

nation of values in all diagonals, 14 or 16. This has been equalized 

by exchange of half the middle columns, right and left, making all 
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the diagonals — 15, but as the portions exchanged are unequal 

those two columns are unbalanced. The exchange of half columns 

might have taken place in the 1st and 8th, or in the 2d and 6th, either 

the upper or the lower half, or otherwise symmetrically, the same 

results following. 

The resultant square Fig. 366 contains all the original series, 1 to 

100; it has the constant S=so5 in thirty-eight out of the total of 

forty rows. When made magic by transposition of 15 and 16, or 

some other pair of numbers in those affected columns, the four 

diagonals that pass through such pair must bear the inequality. 

Here, as in the previous example,-the object is to give the second 
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auxiliary equal summation in all diagonals at the expense of two 

verticals, and then to correct the corresponding error of the fin- 

ished square by exchange of two numbers that differ by unity. 

In all cases the main auxiliary is a quartered square, but the 

second auxiliary is not; hence the completed square cannot have the 

half lines equal, since S is always an odd number. - However, 

there are some remarkable combinations and progressions. For 

instance in Fig. 366 the half lines in the top row are 252 + 253; in 

the second row 253-4252; and so on, alternating all the way down. 

Also in the top row the alternate numbers 73+86-+20-+31+43=253 

and the 32, 41 etc. of course = 252. The same peculiarity is found 
in all the rows. Figs. 364 nad 365 have similar combinations. Also 
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Figs. 360, 361 and 362. This gives rise to some Nasik progressions. 
Thus in Fig. 364 from upper left corner by an oblique step one cell to 
the right and five cells down: 73+-29+85-+-41 etc. ten terms, prac- 
tically the same as the top row==490. This progression may be 
taken right or left, up or down, starting from any cell at pleasure. 
In Fig. 365 the ten terms will always give the constant S = 15 by the 

knight’s move (2,1) or (1,2) or by the elongated step (3,4). Fig. 

366 has not so much of the Nasik property. The oblique step one to the 

right and five down, 73+29+86 44 etc. ten terms = 505. This 

progression may start from any cell moving up and down, right and 

left by a sort of zigzag. The second auxiliary is richest in this 

Nasik property, the main auxiliary less so, as it is made by the 

knight’s move; and the completed square still less so, as the other 

two neutralize each other to some extent. A vast number of varia- 

tions may be obtained in the larger squares, as the subsquares 

admit of so many different constructive plans. 

The examples already presented may serve as models for the 

larger sizes; these are familiar and easily handled, and they clearly 

show the rationale of the process. If any one wishes to traverse 

wider areas and to set down more numbers in rank and file, no 

further computations are required. The terms 0.1.2.3 are always 

employed: the series 1.5.9 etc. to 97, and after that IoI.105.109 

and so on. The principal auxiliary may be made magic by any 

approved process as elegant. and elaborate as desired, the four sub- 

squares being facsimiles. The second auxiliary has for all sizes an 

arrangement analogous to that already given which may be tabu- 

lated as follows: 

3.05 ~ 2 24 top row 
ee cc 

6-square, oO 
To-Sqtiare, «0 30 0 3-—2.-2 I 2:2 

iesduare, 0 3°340 00 3-——-22 21221 Eee 

1S-square, 03 3300003-—2222I12 112 

etc. 

ce (a3 

The top row being thus written, under each term is placed its 

complement, and all succeeding rows follow the same rule, so that 

the 1st, 3d, 5th etc. are the same, and the 4th, 6th, 8th etc. are repe- 

titions of the 2d. This brings all the 0.3 terms on one side and all 
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the 1.2 terms on the opposite. In columns there is a regular alter- 

nation of like terms; in horizontals the like terms are mostly con- 

secutive, thus bringing the diagonals more nearly to an equality 

so that they may be corrected by wholesale at one operation. This 

systematic and somewhat mechanical arrangement insures correct 

summation in rows and columns, facilitates the handling of diag- 

onals, and provides automatically for the required pattern of the 

2-squares, in which both the auxiliaries and the completed square 

must agree. In making a square from the table it should be ob- 

served that an exchange of half columns is required, either the 

upper or the lower half, preferably of the middle columns; but as 

we have seen in the 1o-square, several other points may be found 

suitable for the exchange. 

Fig. 368. Fig. 369. 

This plan and process for developing to so high a degree of 

excellence, the oddly-even squares, starting with the 2-square, and 

constantly employing its endless combinations, is equally applicable . 

to the evenly-even squares. They do not need it, as there are many 

well-known, convenient and expeditious methods for their construc- - 

tion. However, in closing we will give a specimen of the 4-square, 

type of all that class, showing the pervading influence therein of the 

truly ubiquitous 2-square. 

The primaries Figs. 367 and 368 as well as the complete square 

Fig. 369 singly and together fill the bill with no discount. Each 

is a quartered square, magic to a high degree. Each contains 

numerous 2-squares, four being compact in the quarters and five 

others overlapping. And there are many more variously scattered 

abroad especially in Fig. 368. While these specimens seem to con- 

form exactly to foregoing rules they were actually made by contin- 
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uous process using the knight's move (2,1) and (1,2). The pattern 
is rhomboidal. 

In all the combinations here presented, and especially in these 
last specimens, the 2-square is pervasive and organic. “So we have 
a symmetry,” as one of our philosophical writers has said—‘“which is 
astonishing, and might be deemed magical, if it were not a matter 
of intrinsic necessity.” - pone oar 6 

NOTES ON ODDLY-EVEN MAGIC SQUARES. 

The foregoing article on oddly-even squares by Mr. D. F. 

Savage is a valuable contribution to the general literature on magic 

squares. Mr. Savage has not only clearly described a clever and 

unique method of constructing oddly-even squares, but he has also 

lucidly demonstrated the apparent limit of their possible perfection. 

The arrangement of concentric quartets of four consecutive 

numbers in his 6X6 square is strikingly peculiar, and in studying 

this feature it occurred to the writer that it might be employed in 

the development of these squares by a direct and continuous process, 

using the arithmetical series 1 to ”* taken in groups of four con- 

secutive terms, 1.2.3.4. —5.6.7.8. etc. 

The constructive method used by Mr. Savage is based on the 

well-known and elegant plan of De la Hire, but the two number 

series which he has chosen for the first and second auxiliary squares 

are unusual, if not entirely new. It is difficult to see how these 

unique squares could have been originally evolved by any other 

method than that adopted by Mr. Savage, and the different con- 

structive scheme presented herewith must be regarded as only a 

natural outcome of the study of his original plan. It may also tend 

to throw a little additional light on the “ubiquitous 22 square” and 

to make somewhat clearer the peculiar features that obtain in these 

oddly-even squares. 

Referring to Fig. 370 (which is a reflected inversion of Fig. 

361 and therefore requires no further explanation) it will be seen 

that this square contains nine quadrate groups of the series: ONL. 

2.3., the numbers in each group being scattered in each of the 
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3X3 quarters, and in concentric relationship to the 66 square. 

The numbers of these quadrate groups are not, however, distributed 

in any apparent order as viewed numerically, although the diagram 

of their consecutive forms, which will be referred to later on, re- 

veals the symmetry of their arrangement. 

Any middle outside cell of the 3X3 quarters containing a 

° ( 1 3 3S ut 16 14 

2 3 -2 ° 12 10 13 1S 
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Sige 371. 

cypher can be used-as a starting point for a 6X6 square, and in- 

spection will show four such cells in Fig. 370. 

Selecting the second cell from the left in the upper line to start 
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Fig. 372. Higess72. 

from, the numbers in the quadrate concentric group of which this 

cell is a member will be seen to have the formation shown in Fig. 
371A, so the first group of four numbers (1.2.3.4) in the series 
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I to 36 are similarly placed in Fig. 372, running also in the same 
relative numerical order. 

To secure magic results in the completed square, each suc- 
ceeding entry in the 3X3 quarters must follow the last entry in 
magic square order. For the next entry in Fig. 372 there is conse- 
quently a choice of two cells. Selecting the lower right-hand 

corner cell of the 33 quarter of Fig. 370 used at the start, it is seen 

to be occupied by 1, and the formation of the quadrate concentric 

group is as shown in Fig. 371B. The terms 5.6.7.8 are therefore 

entered in Fig. 372 in similarly located cells, and as before, in the 
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Fig. 374. Fig. 375. 

same relative numerical order. The next quadrate group of 9.10. , 

11.12 have the order shown in Fig. 371C,—13.14.15.16 are ar- 

ranged as in Fig. 371D, and so on until all of the 36 cells are filled. 

The resulting finished square is shown in Fig. 373. 

Fig. 374 shows the different forms of the nine consecutive 

quadrate groups contained in Fig. 373, written in regular order, and 

it discloses the harmonious relationship of the couplets. 

There are two alternative forms for the first group, as shown 

in Fig. 374. If the square is to be pan-diagonal or continuous at the 

expense of the summation of two vertical columns, the right-hand 
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form must be used, but if the square is to be strictly magic at the 

expense of making four diagonals incorrect, then the left-hand 

form is correct. 

This graphic presentation of number order is instructive, as it 

shows at a glance certain structural peculiarities which are not ap- 

parent on the face of the square. 
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Fig. 376. 

Another of the many variants of this 66 square may be made 

by starting from the fourth cell of the second line in Fig. 370, this 

being also a middle outside cell of a 3X3 square. 

Under this change the forms of the quadrate groups are shown 

in Fig. 375, the resulting square being given in Fig. 376. 
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Fig. 377. 
When these 6X6 squares are made pan-diagonal, i. e., perfect 

in all their diagonals, the normal couplets are arranged in harmonic 
relation throughout the square, the two paired numbers that equal 
n*-+-1 being always located in the same diagonal and equally spaced 
n/2 cells apart. If the square is made strictly magic, however, this 

aN 
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harmonic arrangement of the couplets is naturally disturbed in the 
imperfect. diagonals. 

The above remarks and rules will of course apply generally to 
IoX1o0 and larger squares of this class. A 10X10 square modified 

a = ’ > 
‘ from Mr. Savage’s example to secure the harmonic arrangement 

of the cou : red to, is given in Fi plets, as above referred to, is given in Fig. 377. w.s. a. 

NOTES ON PANDIAGONAL AND ASSOCIATED MAGIC SQUARES. 

The reader’s attention is invited to the plan of a magic square 

of the thirteenth order shown in Fig. 378 which is original with the 

Fig. 378. 

writer. It is composed of four magic squares of the fourth order, 

two of the fifth order, two of the seventh order, two of the ninth 

order, one of the eleventh order and finally the total square of the 

thirteenth order, thus making twelve perfect magics in one, several 

of which have cell numbers in common with each other. 

To construct this square it became necessary to take the arith- 

metical series 1, 2, 3.... 169 and resolve it into different series 

capable of making the sub-squares. A close study of the con- 

stitution of all these squares became a prerequisite, and the fol- 
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lowing observations are in a large part the fruit of the effort to 

accomplish the square shown. This article is intended however 

to cover more particularly the constitution of squares of the fifth 

order. The results naturally apply in a large degree to all magic 

squares, but especially to those of uneven orders. 

It has of course been long known that magic squares can be 

built with series other than the natural series I, 2, 3.... ?, but the 

perplexing fact was discovered, that although a magic square might 

result from one set of numbers when arranged by some rule, yet 

when put together by another method the construction would fail 

to give magic results, although the second rule would work all right 

with another series. It therefore became apparent that these rules 

were in a way only accidentally right. With the view of explaining 

these puzzling facts, we will endeavor to analyze the magic square 

and discover, if possible, its raison détre. 

The simplest, and therefore what may be termed a “primitive” 

square, is one in which a single number is so disposed that every 

column contains this number once and only once. Such a square 

is shown in Fig. 379, which is only one of many other arrangements 

by which the same result will follow. In this square every column 

has the same summation (a) and it is therefore, in a limited sense, 

a magic square. 

Our next observation is that the empty cells of this figure may 
be filled with other quantities, resulting, under proper arrangement, 
in a square whose every column will still have a constant summa- 
tion. Such a square is shown in Fig. 380 in which every column sums 
a+b-+c-+d- g, each quantity appearing once and only once 
in each row, column, and diagonal. These squares however have 
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the fatal defect of duplicate numbers, which can not be tolerated. 
This defect can be removed by constructing another primitive square, 
of five other numbers (Fig. 381), superimposing one square upon the 
other, and adding together the numbers thus brought together. 
This idea is De la Hire’s theory, and it lies at the very foundation 
of magical science. If however we add a to x in one cell and in 
another cell add them together again, duplicate numbers will still 
result, but this can be obviated by making the geometrical pattern 
in one square the reverse of the same pattern in the other square. 
This idea is illustrated in Figs. 380 and 381, wherein the positions of 

a and w are reversed. Hence, in the addition of cell numbers in 

two such squares a series of diverse numbers must result. These 

series are necessarily magical because the resulting square is so. 

We can now lay down the first law regarding the constitution of 

magical series, viz., A magic series is made by the addition, term to 

term, of x quantities to x other quantities. 

As an example, let us take five quantities, a, b, c, d and g, and 

add them successively to five other quantities +, y, s, t and v, and 

we have the series: 

a+r a+y a+s a+t atv 

bt-wr b+y bo+s b+t btw 

c+ c+y c+s c+t c+u 
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This series, with any values given to the respective symbols, will 

produce magic squares if properly arranged. It is therefore a 

universal series, being convertible into any other possible series. 

We will now study this series, to discover its peculiar proper- 

ties if we can, so that hereafter it may be possible at a glance to 

determine whether or not a given set of values can produce mag- 

ical results. First, there will be found in this series a property 

which may be laid down as a law, viz.: 

There is a constant difference between the homologous num- 

bers of any two rows or columns, whether adjacent to each other 

or not. For example, between the members of the first row and the 
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corresponding members of the second row there is always the con- 

stant difference of a—b. Also between the third and fourth rows 

there is a constant difference c—d, and between the second and 

third columns we find the constant difference y — s etc., ete. Second, 

it will be seen that any column can occupy any vertical position in 

the system and that any row could exchange place with any other 

row. (As any column could therefore occupy any of five positions 

in the system, in the arrangement of columns we see a total of 

6 AS 3X 2 Gr =i ZO scoIces: 

Also we see a choice of 120 in the rows, and these two factors 

indicate a total of 14,400 different arrangements of the 25 numbers 

and a similar number of variants in the resulting squares, to which 

point we will revert later on.) 

This uniformity of difference between homologous numbers of 
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any two rows, or columns, appears to be the only essential quality 

of a magical series. It will be further seen that this must neces- 

sarily be so, because of the process by which the series is made, 1. e., 

the successive addition of the terms of one series to those of the 

other series. 

As the next step we will take two series of five numbers each, 

and, with these quantities we will construct the square shown in 

Fig. 382 which combines the-two primitives, Figs. 380 and 381. 

By observation we see that this is a pure square, i. e., in no 

row, column, or diagonal is any quantity repeated or lacking. Be- 

cause any value may be assigned to each of the ten symbols used, 
it will be seen that this species of square depends for its peculiar 
properties upon the geometrical arrangement of its members and not 
on their arithmetical values; also that the five mumbers represented 
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by the symbols a, b, c, d, g, need not bear any special ratio to each 
other, and the same heterogeneity may obtain between the numbers 
Fepresented by +, y, s, t, v. 

There is however another species of magic square which is 
termed “associated” or “regular,” and which has the property that 
the sum of any two diametrically opposite numbers equals twice 
the contents of the central cell. If we suppose Fig. 382 to be such 

a square we at once obtain the following equations: 

(1) (e-Ps)-(d | a 2d Pay vr 4s = 2y 
(2) (d+t) + (dv) =2d+2y wt+u=a2y 
(3) (e+y9) + (g+9) =2d+ 27 .c¢+g= 2d 
(4) (a+y) + (0+9) = 20+ 2y -.0+b= ad 

Hence it is evident that if we are to have an associated square, 

the element d must be an arithmetical mean between the quantities 

c and g and also between a and b.. Also, y must be a mean between 

w« and s, and between tandv. It therefore follows that an associated 

square can only be made when the proper arithmetical relations 

exist between the numbers used, while the construction of a con- 

tinuous or pandiagonal square depends upon the method of ar- 

rangement of the numbers. 

The proper relations are embraced in the above outline, i. e., 

that the central term of each of the five (or x) quantities shall be 

a mean between the diametrically opposite pair. For example, 

fare el borat, 2,3) 45.0 Of 1,2, 10,18, 19, sOr..1, 10,11, 12, 21 

are all series which, when combined with similar series, will yield 

magical series from which associated magic squares may be con- 

structed. 

The failure to appreciate this distinction between pandiagonal 

and associated squares is responsible for much confusion that exists, 

and because the natural series I, 2,3,4....2” happens, as it were, 

accidentally to be such a series as will yield associated squares, em- 

pirical rules have been evolved for the production of squares which 

are only applicable to such a series, and which consequently fail 

“when another series is used. For example, the old time Indian 

sspj2 uipj422 & 01 pardde uaa uorsse1s01d [euoseIp Iejnse1 fo apni 
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of series will yield magic results, but when applied to another class 

of series it fails utterly! 

As an example in point, the following series, which is composed 

of prime numbers, will yield the continuous or Nasik magic square 

shown in Fig, 383, but a square made from the same numbers ar- 

ranged according to the old rule is not magic in its diagonals as 

shown in Fig. 384. 
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The fundamentally partial rules, given by some authors, have 

elevated the central row of the proposed-numbers into a sort of 

axis on which they propose to build. This central row of the series 

is thrown by their rules into one or the other diagonal of the com- 

pleted square. The fact that this central row adds to the correct 

stummation is, as before stated, simply an accident accruing to the 

normal series. The central row does not sum correctly in many 

magical series, and rules which throw this row into a diagonal are 

therefore incompetent .to take care of such series. 

Returning to the general square, Fig. 382, it will be seen that 

because each row, column and diagonal contains every one of the 

ten quantities composing the series, the sum of these ten quantities, 

equals the summation of the square. Hence it is easy to make a 

square whose summation shall be any desired amount, and also at 

the same time to make the square contain certain predetermined 

numbers. ay 

For example, suppose it is desired to make a square whose 

summation shall be 666, and which shall likewise contain the num- 

bers 6, 111, 3 and 222. To solve this problem, two sets of five 

numbers each must be selected, the sum of the two sets being 666, 
and the sums of some members in pairs being the special numbers 

wished. The two series of five numbers each in this case may be 
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3 fe) 

6 108 

20 216 

50 100 

100 63 

179 + 487 = 666 
from which by regular process we derive the magic square series 
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containing the four predetermined numbers. The resulting magic 
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Fig. 385. Fig. 386. Fig. 387. 
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square is shown in Fig. 385, the summation of which is 666 and which 

is continuous or pandiagonal. As many as eight predetermined num- 

bers can be made to appear together with a predetermined sum- 

mation, in a square of the fifth order, but in this case duplicate 

numbers can hardly be avoided if the numbers are selected at ran- 

dom. We may go still further and force four predetermined num- 

bers into four certain cells of any chosen column or row as per fol- 

lowing example: ' 

A certain person was born on the ist day of the 8th month, 

was married at the age of 19, had 15 children and is now 102 years 

old. Make a pandiagonal square whose S= 102 and in which 

numbers 1, 8, 15, 19 shall occupy the first, third, fourth and fifth 

cells of the upper row. 

Referring to the universal square given in Fig. 382, 
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etvas =o: a oe 

eee Sea 55 
d=9 PaO 

ge -6 Ue 1s 

These eight quantities sum 43, so that the other pair (b and y) 

must sum 59, (43-+59==102). Making therefore b==20 and 

y = 30, and replacing these values in Fig. 382, we get the desired 

square shown in Fig. 386. 

As previously shown, continuous squares are dependent on the 

geometrical placing of the numbers, while associated squares depend 

also upon the arithmetical qualities of the numbers used. In this 

connection it may be of interest to note that a square of third order 

can not be made continuous, but must be associated -a square of the 

fourth order may be made either continuous or associated, but can 

not combine these qualities; in a square of the fifth order both qual- 

ities may belong to the same square. As I showed in the first article 

of this chapter, very many continuous or Nasik squares of the 

fifth order may be constructed, and it will now be proven that asso- 

ciated Nasik squares of this order can only be made in fewer 

numbers. 

In a continuous or “pure” square each number of the sub-series 

must appear once and only once in each row, column, and diagonal 

(broken or entire). Drawing a square, Fig. 387, and placing in it 

an element + as shown, the cells in which this element cannot then: 

be placed are marked with circles. In the second row only two cells 

are found vacant, thus giving only two choices, indicating two 

forms of the square. Drawing now another square, Fig. 388, and 

filling its first row with five numbers, represented by the symbols 

t, v, x, y and s, and choosing one of the two permissible cells for x in 

the second row, it will be seem that there can be but two variants 

when once the first row is filled, the contents of every cell in the 

square being forced as soon as the choice between the two cells in 

the second row is made for x. For the other subsidiary square, 
Fig. 389, with numbers represented by the symbols, a, b, c, d and g 

there is no choice, except in the filling of the first row. If this row 
is filled, for example, as shown in Fig. 380, all the other cells in this 



VARIOUS KINDS OF MAGIC SQUARES. 237 

Square must be filled in the manner: shown in order that it may fit 
Fig. 388. 

Now, therefore, taking the five symbols x, y, s, t, v, any one 

of them may be placed in the first cell of the first line of Fig. 388. 
For the second cell there will remain a choice of four symbols, for 

the third cell three, for the fourth cell two, for the fifth cell no 

choice, and finally in the second line there will be a choice of two 

cells. In the second subsidiary there will be, as before, a choice of 

five, four, three and finally two, and no choice in the second row. 

Collecting these choices we have (5x 4x3x2x2) X (5X4X3X2) 

= 28,800, so that exactly 28,800 continuous or Nasik squares of the 

fifth order may be made from any series derived from ten numbers. 

Fig. 390. 

Only one-eighth of these, or 3600, will be really diverse since any 

square shows eight manifestations by turning and reflection. 

The question now arises, how many of these 3600 diverse Nasik 

squares are also associated? To determine this query, let us take the 

regular series I, 2,3....25 made from the ten numbers 

Oo Ge tOe er tae = 20 

Making the first subsidiary square with the numbers 1, 2, 3,4, 5, 

(Fig. 390) as the square is to be associated, the central cell must 

contain the number 3. Selecting the upward left-hand diagonal to 

work on, we can place either 1, 2, 4 or 5 in the next upward cell of 

this diagonal (a choice of four). Choosing 4, we must then write 

2 in its associated cell. For the upper corner cell there remains 

a choice of two numbers, 1 and 5. Selecting 1, the location of 5 

is forced. Next, by inspection it will be seen that the number 1 
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may be placed in either of the cells marked O, giving two choices. 

Selecting the upper cell, every remaining cell in the square becomes 

forced. For this square we have therefore only 

42% 2:= 16 choices; 

For the second subsidiary square (Fig. 391) the number Io must 

occupy the central cell. In the left-hand upper diagonal adjacent 

cell we can place either 0, 5, 15 or 20 (four choices). Selecting 

o for this cell, 20 becomes fixed in the cell associated with that con- 

taining o. In the upper left-hand corner cell we can place either 

5 or 15 (two choices). Selecting 15, 5 becomes fixed. Now we 

cannot in this square have any further choices, because all other 

15's must be located as shown, and so with all the rest of the num- 

bers, as may be easily verified. The total number of choices in this 
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Fig. 301. Fig. 392. Fig. 303. 

square are therefore 4 x 2=8, and for both of the two subsidiaries, 

16 x8== 128. Furthermore, as we have seen that each square has’ 

eight manifestations, there are really only 1284 = 16 different plans 

of squares of this order which combine the associated and Nasik 

features. 

If a continuous square is expanded indefinitely, any square 

block of twenty-five figures will be magic. Hence, with any given 

square, twenty-five squares may be made, only one of which can be 

associated. There are therefore 16 x 25 — 400 variants which can 

be made according to the above plan. We have however just now 

shown that there are 3600 different plans of continuous squares of 
this order. Hence it is seen that only one plan in nine (369%) —g) 

of continuous squares can be made associated by shifting the lines 
and columns. Bearing in mind the fact that eight variants of a 
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square may be made by turning and reflection, it is interesting to 
note that if we wish a square of the fifth order to be both associated 
and continuous, we can locate unity in any one of the four cells 
marked O in Fig. 392, but by no constructive process can the de- 
sired result be effected, if unity is located in any cells marked es 

Then having selected the cell for 1, the cell next to 1 in the same 

column with the central cell (13) must contain one of the four 

numbers 7, 9, 17, or 19. The choices thus entailed yield our esti- 

mated number of sixteen diverse associated Nasik squares, which 

may be naturally increased eight times by turning and reflection. 

That we must place in the same row with 1 and 13, one of the 

four numbers 7, 9, 17, or 19 is apparent when it is noted that of 

the series 

Lees CS eg gat eS 
POS IOs 15-— 20 

having placed 3 and Io in the central cells of the two subsidiaries, 

and o and 1 in two other cells, we are then compelled to use in the 

same line either 5 or I5 in one subsidiary and either 2 or 4 in the 

other subsidiary, the combination of which four numbers affords 

only 7 and 17, or 9 and I9. 

With these facts now before us we are better prepared to con- 

struct those squares in which only prime numbers are used, etc. 

Reviewing a list of primes it will be seen that every number ex- 

cepting 2 and 5 ends in either 1, 3, 7 or 9. Arranging them there- 

fore in regular order according to their terminal figures as 

Cl heyoiie At 

5S eA, 

7 17 37 47 ete. 

we can make an easier selection of desired numbers. 

A little trial develops the fact that it is impossible to make 

five rows of prime numbers, showing the same differences between 

every row, or members thereof, and therefore a set of differences 

must be found, such as 6, 30, 30, 6 (or some other suitable set). 

Using the above set of differences, the series of twenty-five primes 

shown on page 234 may be found. In this series it will be seen that 
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similar differences exist between the homologous numbers of any 

row, or column, and it is therefore only necessary to arrange the 

numbers by a regular rule, in order to produce the magic square in 

Fig. 383. 

These facts throw a flood of light upon a problem on which 

gallons of ink have been wasted, i. e., the production of pandiagonal 

and regular squares of the sixth order. It is impossible to dis- 

tribute six marks among the thirty-six cells of this square so that 

one and only one mark shall appear in every column, row and 

diagonal. Hence a primitive pandiagonal magic square of this 

13423 
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order is excluded by a geometrical necessity. In this case the 

natural series of numbers is not adapted to construct pandiagonal 

squares of this order. That the difficulty is simply an arithmetical 

one is proven by the fact that 6x6 pandiagonal squares can be 

made with other series, as shown in Fig. 393. We are indebted to 

Dr. C. Planck for this interesting square which is magic in its six 

rows, six columns and twelve diagonals, and is also four-ply and 

nine-ply, i. €., any square group of four or nine cells respectively, 

sums four or nine times the mean. It is constructed from a series 
made by arranging the numbers 1 to 49 in a square and eliminating 
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all numbers in the central line and column, thus leaving thirty-six 
numbers as follows :* 

20mm 315 33 S34 0R 35 
36) 37°38. 40: 41° 42 
A344 45 47 48 40 

Fig. 394 shows the completed square which is illustrated in 

skeleton form in Fig. 378. All the subsquares are faultless except 

the small internal 3 x 3, in which one diagonal is incorrect. 

is. Ee 

SERRATED MAGIC SQUARES, 

The curious form of magic squares which is to be described 

here possesses a striking difference from the general form of magic 

squares. 

Fig. 395. Fig. 396. 

To conform with the saw-tooth edges of this class of squares, 

I have ventured to call them “serrated” magic squares. 

A square containing the series I, 2, 3, 4,...-4I is shown in 

Fig. 395. Its diagonals are the horizontal and vertical series of nine 

numbers, as A in Fig. 396. Its rows and columns are zigzag as 

* For further information regarding squares of this type wherein m is of 

the form 4p-++ B. See p. 267. 
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shown at B, and are sixteen in number, a quantity which is always 

equal to the number of cells which form the serrations. 

All of this class of squares must necessarily contain the two 

above features. 

Pag 307: 

But, owing to its Nasik formation, Fig. 395 possesses other fea- 

tures as follows: 

There are nine summations each of the square and cruciform, 

as at C and D in Fig. 396, the centers of which are’ 40, I1, 32, 5, 21, 

37, 10, 31 and 2 respectively. Of E and F there are six summations 

each, and of the form G there are twelve summations. 

This square was formed by the interconcentric position of the 

two Nasik squares shown in Fig. 397, and the method of selecting 

their numbers is clearly shown in Fig. 398. 

There are numerous other selections for the sub-squares and 
the summations are not necessarily constant. This is shown by the 
following equations. 
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Let N and equal the number of cells on a side of the large 
and small squares respectively, and let S equal the summations. 

Then, when the means of each sub-square are equal 

__ (1+ N?+-2’) (N+7) 
= 2 

When the large square has the first of the series and the small 

square has the last of the series 

S) 

2 2 f g-_NG+N") 2 +x?) 

Z Z 

When the large square has the last of the series and the small 

square has the first of the series 

+N2n 

2 2 g=SULN palin Wiener 

Fig. 399. 

Only in such squares that fit the first equation, is it possible to 

have complementary pairs balanced about the center ; in other words 

known as regular or associated squares. 

Fig. 399 is one of this class and has summations of 855. In 

this case the mean of the series was used in the 7X7 sub-square and 

the remaining extremes made up the 8X8 square. 
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Figs. 400, 401, and 402 are the smallest possible examples of 

serrated squares. Fig. 400 is regular and is formed with the first 

of the above mentioned equations, and its summations are 91. Fig. 

Fig. 400. Fig. 401. Fig. 402. 

401 is formed with the second equation and its summations are 97. 

Fig. 402 is formed with the third equation and its summations are 85. 

Ti AS 

LOZENGE MAGIC SQUARES. 

Recently the writer has noticed in a weekly periodical a few 

examples of magic squares in which all of the odd numbers are 

arranged sequentially in the form of a square, the points of which 

meet the centers of the sides of the main square and the even 

numbers filling in the corners as shown in Fig. 405. 

These articles merely showed the completed square and did not 

show or describe any method of construction. 

A few simple methods of constructing these squares are de- 

scribed below, which may be found of some interest. 

To construct such squares, m must necessarily be odd, as= 35-5; 

7 a ER CLG. 

A La Hireian method is shown in Figs. 403, 404, and 405, in 

which the first two figures are primary squares used to form the 

main square, Fig. 405. We begin by filling in the cells of Fig. 403, 

placing I in the top central cell and numbering downward 1, 2, 3 

to 7 or n. We now repeat these numbers pan-diagonally down to 

the left filling the square. 

Fig. 404 is filled in the same manner, only that we use the series 
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O, I, 2, to 6 or n—1 in our Céntral vertical column, and repeat these 
pan-diagonally down to the right. The cell numbers in Fig. 404 are 
then multiplied by 7 or m and added to the same respective cell 
numbers of Fig. 403, which gives us the final square Fig. 40s. 

Fig. 403. Fig. 404. 

Another method is shown in Fig. 406 where we have five sub- 

squares placed in the form of a cross. The central one of these is 

filled consecutively from 1 to m?. We then take the even numbers of 

the upper quarter, in this case 2, 8 and 4, and place them in the 

same respective cells in the lower sub-square. The lower quarter 

Fig. 406. 

or 22, 18 and 24, are placed in the upper square. Likewise the 

left-hand quarter is placed in the right-hand square, and the right- 

hand quarter in the left-hand square. This gives us the required 

square, which is shown in heavy numbers. 

A third method is to write the numbers consecutively, in the 

form of a square, over an area of adjacent squares as in Fig. 407. 
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The mean of the series must be placed in the center cell of the 

central or main square and the four next nearest to the center must 

find their places in the corner cells of the main square, which con- 

Fig. 409. 

sequently governs the spacing in writing the series. We then re- 
move all these numbers to the same respective cells in the main 

square, and this gives us the square shown in Fig. 408. 
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This last method is not preferable, owing to the largeness of 
the primary arrangement, which becomes very large in larger squares, 
It might however be used in the break-move style where the steps 

are equal to the distance from the center cell to the corner cell, and 

the breakmoves are one cell down when 1 is at the top. 

What seems to be the most simple method is shown in Fig. 409 

where the odd numbers are written consecutively in the main square, 

and directly following in the same order of progression the even 

numbers are written. 

Fig. 410. 

The even numbers necessarily run over into three adjacent sub- 

squares. These are removed to the same respective cells in the 

main square, the result of which is shown in Fig. 410. 

The summations of Fig. 405 are 175, the summations of Figs. 

406 and 408 are 65, and the summations for Fig. 410 are 369. Also, 

all complementary pairs are balanced about the center. 

H.A.S. 



CHAPT RRA: 

SUNDRY CONSTRUGTIVE METHODS 

A NEW METHOD FOR MAKING MAGIC SQUARES OF ODD 

ORDERS. 

N an endeavor to discover a general rule whereby all forms of 

magic squares might be constructed, and thereby to solve the 

question as to the possible number of squares of the fifth order, a 

method was devised whereby squares may be made, for whose con- 

struction the rules at present known to the writer appear to be in- 

adequate. 

A general rule, however, seems as yet to be unattainable; nor 

does the solution of the possible number of squares of an order 

higher than-four seem to be yet in sight, though, because of the - 

discovery, so to speak, of hitherto unknown variants, the goal must, 

at least, have been brought nearer to realization. | 

The new method now to be described does not pretend to be 

other than a partial rule, i. e., a rule by which most, but possibly 

not all kinds of magic squares may be made. It is based on De-la 

Hire’s method, 1. e., on the implied theory that a normal magic square. 

is made up of two primary squares, the one superimposed on the 

other and the numbers in similarly placed cells added together. This 

theory is governed by the fact that a given series of numbers may 

be produced by the consecutive addition of the terms of two or more 

diverse series of numbers. For example, the series of natural num- 

bers from one to sixteen may be regarded (a) as a single series, 

as stated, or (b) as the result of the addition, successively, of all 
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the terms of a series of ight terms to those of another series of 
two terms. For example, if series No. 1 is composed of O-I-2-3-4-5-6 
and 7 and series No. 2 is composed of 1 and 9, all the numbers from 
I to 16 may be thus produced. Or (c) a series of four numbers, 
added successively to all the terms of another series of four num- 
bers, will likewise produce the same result, as for example 0-1-2 
and 3, and 1-5-9 and 13. 

Without undertaking to trace out the steps leading up to the rule 

to be described, we wili at once state the method in connection with 

a5 X5 square. First, two primary squares must be made, which 

will hereafter be respectively referred to as the A and B primary 

squares. If the proposed magic square is to be-associated, that is, if 

its complementary couplets are to be arranged geometrically equi- 

distant from the center, the central cell of each square must naturally 

Higa arr, Fig. 412. Fig. 413. 

be occupied by the central number of the series of which the square 

is composed. The two series in this case may be I-2-3-4-5 and 0-5- 

10-15-20. The central number of the first series being 3 and of the 

second series 10, these two numbers must occupy the central cells of 

their respective squares. 

In each of these squares, each of the terms of its series must be 

represented five times, or as many times as the series has terms. 

Having placed 3 and to in their respective central cells, four other 

cells in each square must be similarly filled. To locate these cells, 

any geometrical design may be selected which is balanced about the 

central cell. Having done this in primary square A the reverse of 

the same design must be taken for primary square B, two examples 

being shown in Figs. 411 and 412 and Figs. 413 and 414. 
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Having selected a design, the next step will be to fill the central 

row, which may be done by writing in any of the four empty cells 

in this row, any of the four remaining terms of the series. The 

@) 

Fig. 414. ; Fig. 415. Fig. 416. 

opposite cell to the one so filled must then be filled with the com- 

plementary number of the one last entered. Next, in either of the 

two remaining empty cells, write either of the remaining two terms 
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of the series, and, in the last empty cell the then remaining number, 

which will complete the central row as shown in Fig. 415. All the 

other rows in the square must then be filled, using the same order 
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of numbers as in this basic row, and the square will be completed as 
shown in Fig. 416. The second square can then be made up with the 
numbers of its series in exactly the same way, as shown in Fig. 417. 
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Adding together the terms of Figs. 416 and 417, will give the asso- 
ciated 5 X 5 magic square shown in Fig. 418, which can not be made 
by any previously published rule known to the writer. Another 
example may be given to impress the method on the student’s mind, 
Fig. 419 showing the plan, Figs. 420 and 421 the A and B primary 
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squares, and Fig. 422 the resulting magic square. Any odd square 

can be readily made by this method, a 7 X 7 being shown. Fig. 423 

shows the plan, Figs. 424 and 425 being the primary squares and 

426 the complete example. Returning to the 5 x 5 square, it will be 

seen that in filling out the central row of the A primary square 
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Fig. 415, for the first of the four empty cells, there is a choice of 

16, and next a choice of four. Also for the B primary square there 

are the same choices. Hence we have 

(16 X 4)? = 4096 choices. 
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In addition to this, by reversing the patterns in the two primary 

squares, the above number can be doubled. 

It is therefore evident that with any chosen geometrical plan, 

8192 variants of associated 5 X 5 squares can be produced, and as at 

least five distinct plans can be made, 40,960 different 5 X 5 asso- 

ciated squares can thus be formed. This however is not the limit, 

for the writer believes it to be a law that all “figures of equilibrium” 

Fig. 427. Fig. 428. Fig. 429. 

will produce magic squares as well as geometrically balanced dia- 

grams or plans. 

Referring to Fig. 427, if the circles represent equal weights 

connected as by the dotted lines, the system would balance at the 

center of the square. This therefore is a “figure of equilibrium” 

and it may be used as a basis for magic squares, as follows: Fill the 

ISSA Bes 
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Fig. 430. Fig. 431. Fig. 432. 

marked cells. with a number, as for example I as in Fig. 428; then 

with the other numbers of the series, (excepting only the central 

number) make three other similar “figures of equilibrium” as shown 

separately in Figs. 429, 430 and 431, and collectively in Fig. 432. 
The five cells remaining empty will be geometrically balanced, and 
must be filled with the middle terms of the series (in this instance 
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3) thus completing the A primary square as shown in Fig. 433. 
Fill the B primary square with the series O-5-I0-15-20 in the same 
manner as above described and as shown in Fig. 434. The com- 
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Fig. 433. Fig. 434. Fig. 435. 

bination of Figs. 433 and 434 produces the associated magic square 

given in Fig. 435. 

There are at least five different “figures of equilibrium” that 

Fig. 436. Fig. 437. Fig. 438. - 

can be drawn in a 5 X 5 square, and these can be readily shown to 

give as many variants as the geometrical class, which as before 

noted yielded 40,960 different squares. The number may therefore 
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Fig. 4309. Fig. 440. 

now be doubled, raising the total to 81,920 associated 5 X 5 magic 

squares that are capable of being produced by the rules thus far 

considered. 
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The student must not however imagine that the possibilities of 

this method are now exhausted, for a further study of the subject 

will show that a geometrical pattern or design may often be used 

not only with its own reverse as shown, but also with another 

entirely different design, thus rendering our search for the universal 

rule still more difficult. 

Fig. 441. Fig. 442, 

For example the pattern shown in Fig. 436 may be combined in 

turn with its reverse shown in Fig. 437 and also with Fig. 438, mak- 

ing the two associated magic squares shown in Figs. 439 and 440. 

In consideration of this as yet unexplored territory, therefore, 

Fig. 444. Fig. 445. 

the rules herein briefly outlined can only be considered as partial, 
and fall short of the “universal” rule for which the writer has been 
seeking. Their comprehensiveness however is evidenced by the 
fact that any square made by any other rule heretofore known to the 
writer, may be made by these rules, and also a great variety of other 
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squares which may only be made with great difficulty, if at all, by 
the older methods. 

To show the application of these rules to the older methods, 
a few squares given in Chapter I may be analyzed. 

Figs. 441, 442 and 443 show the plans of 5 x 5 squares given 
in Figs. 22, 23 and 41 in the above mentioned chapter. 

Their comprehensiveness is still further emphasized in squares 
of larger size, as for example in the 7 X 7 square shown in Fig. 426. 
Two final examples are shown in Figs. 444 and 445 which give 

plans of two 9 X 9 squares-which if worked out will be found to 

be unique and beyond the power of any other rule to produce. In 

conclusion an original and curious 8 X 8 square is submitted in 
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Fig. 446. Fig. 447. 

Fig. 449. This square is both associated and continuous or Nasik, 

inasmuch as all constructive diagonals give the correct summation. 

The theory upon which the writer proceeded in the construction 

of this square was to consider it as a compound square composed 

of four 4 X 4 squares, the latter being in themselves continuous 

but not associated. That the latter quality might obtain in the 

8 X 8 square, each quarter of the 4 X 4 square is made the exact 

counterpart of the similar quarter in the diagonally opposite 4 X 4 

square, but turned on its axis 180 degrees. 

Having in this manner made an associated and continuous 

8 X 8 square composed of four 4 X 4 squares, each containing the 

series I to 16 inclusive, another 8 X 8 square, made with similar 



250 SUNDRY CONSTRUCTIVE METHODS. 

properties, with a proper number series and added to the first square 

term to term will necessarily yield the desired result. 

Practically, the work was done as follows: In one quarter of 

an 8X 8 square, a continuous (but not associated) 4 * 4 square 

was inscribed, and in the diagonally opposite quarter another 4 X 4 

square was written in the manner heretofore described and now 

illustrated in Fig. 446. A simple computation will show that in the 

unfilled parts of Fig. 446, if it is to be continuous, the contents of 

the cells C and D must be 29 and A and B must equal 5. Hence 

A and B may contain respectively 1 and-4, or else 2 and 3. Choosing 

2 and 3 for A and B, and 14 and 15 for D and C, they were located 

a Ome 
i) BO “5 \° [es bal ale, za 

3 sol palo Foo] olor 
Crd Ene 

5 |20 [colas [32 [os] 6 [2 | 
er fea) #92 | 7 | AMnOORHE 

VN PaaS, pede ee 
Le) (e2) 32|76 48 44e|/7 | 30 70 aS 

Fig. 448. hy Fig. 4409. 
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So 

as marked by circles in Fig. 447, the associated or centrally bal- 

anced idea being thus preserved. . 

The other two quarters of the 8 X 8 square were then com- 

pleted in the usual way of making Nasik 4 X 4 squares, thus pro- 

ducing the A primary square shown in Fig. 447, which, in aecord- 

ance with our theory must be both associated and continuous which 

inspection confirms. 

As only the numbers in the series I to 16 inclusive appear in this 

square, it is evident that they must be considered term by term with 

another square made with the series 0-16-32-48 in order that the 
final square may contain the series rt to 64 inclusive. This is accom- 

plished in Fig. 448, which shows a 4 X 4 square both associated and 
continuous, composed of the numbers in the above mentioned 

series. 
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At this point, two courses of operation seemed to be open, the 
first being to expand Fig. 448 into an 8 & 8 square, as in the case of 
the A primary square, Fig. 447, and the second being to consider 
Fig. 447 as a 4 X 4 square, built up of sixteen subsquares of 2 X 2 
regarded as units. 

The latter course was chosen as the easier one, and each indi- 

vidual term in Fig. 448 was added to each of the four numbers in the 

corresponding quadruple cells of Fig. 447, thus giving four terms 
in the complete square as shown in Fg. 449. For example o being 

the term in the upper left-hand cell of Fig. 448, this term was added 

to I-14-15-4 in the first quadruple cell of Fig. 447, leaving these 

numbers unchanged in their value, so they were simply transferred 

to the complete magic square Fig. 449. The second quadruple cell 

in Fig. 447 contains the numbers 7-12-9-6, and as the second cell 

in Fig. 448 contains the number 48, this number was added to 

each of the last mentioned four terms, converting them respectively 

into 55-00-57 and 54, which numbers were inscribed into the cor- 

responding cells of Fig. 449, and so on throughout. 

Attention may here be called to the “figure of equilibrium” 

shown in, Fig. 448 by circles and its quadruple reappearance in Fig. 

449 which is a complete associated and continuous 8 X 8 magic 

square, having many unique summations. ; Laser 

THE CONSTRUCTION OF MAGIC SQUARES AND RECTANGLES 

BY THE METHOD OF “COMPLEMENTARY DIFFERENCES.’* 

We are indebted to Dr. C. Planck for a new and power- 

ful method for producing magic squares, rectangles etc. This 

method is especally attractive and valuable in furnishing a general 

or universal rule covering the construction of all conceivable types 

of squares and rectangles, both odd and even. It is not indeed the 

easiest and best method for making all kinds of squares, as in many 

cases much simpler rules can be used to advantage, but it will be 

found exceedingly helpful in the production of new variants, which 

* This article has been compiled almost entirely from correspondence re- 

ceived by the writer from Dr. Planck, and in a large part of it the text of his 

letters has been copied almost verbatim. Its publication in present form has 

naturally received his sanction and endorsement. W.S. A. 
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might otherwise remain undiscovered, seeing that they may be non- 

La Hireian and ungoverned by any obvious constructive plan. 

When a series of numbers is arranged in two associated col- 

umns, as shown in Fig. 450, each pair of numbers has its distinctive 

difference, and these “complementary differences,” as they are 

termed by Dr. Planck, may be used very effectively in the con- 

struction of magic squares and rectangles. In practice it is often 

quite as efficient and simpler to use half the differences, as given in 

Fig. 450. 

In illustrating this method we will first apply it to the con- 

7 
= 

Fig. 450. Fig. 452. 

struction of an associated or regular 3 x 5 magic rectangle, in which 

the natural numbers 1 to 15 inclusive are to be so arranged that 

every long row sums 40, and every short column sums 24. The 

center cell must necessarily be occupied by 8, which is the middle 

number of the series, and the complementary numbers must lie in 

associated cells, such as aa—bb—cc in Fig. 451. 

The first operation is to lay out a 3x5 rectangle and fill it 

with such numbers that all the short columns shall sum 24, but 

in which the numbers in the columns will not be placed in any 

particular order. When two columns of this rectangle are filled 
three pairs of complementary numbers will have been used, and 
their differences will have disappeared, as these two columns must 
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each sum 24. Hence, one complementary difference must equal 
the sum of the other two. 

We have therefore (neglecting the middle column) to make 
two equations of the forms a=b+c from the complementary dif- 
ferences, without using the same difference twice. Thus: 

is such a pair of equations. 

The first equation indicates that the greater of the two comple- 

ments whose half difference is 7 can lie in the same column with 

the lesser members of the pairs whose half differences are 6 and 1. 

In other words, the numbers 15, 7 and 2 can lie in one column, 

and their complements 14, 9 and 1 in the associated column. The 

second equation (5=3+2) gives similar information regarding 

the other pair of associated columns, and the three remaining num- 

bers must then be placed in the middle column, thus producing the 

rectangle shown in Fig. 452. 

These equations determine nothing as to the placing of the 

numbers in the rows, since in Fig. 452 the numbers in the columns 

have no definite order. 

The rows may now be attacked in a similar manner. Two of 

the complementary differences in the upper or lower row must equal 

the other three, and the equation will therefore be of the order 

a+b=c+dt+e. 

In order that the disposition of numbers in the columns shall 

not be disturbed, the numbers used in this equation must be so 

_ chosen that any two numbers which appear together on the same 

side of an equality sign in the short column equation, must not so 

appear in a long row equation, also if two numbers appear on the 

opposite sides of an equality sign in a short column equation, they 

must not so appear in the long row equation. 

There is only one such equation which will conform to the 

above rules, viz., 

64+2=4+3+1. 
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Interpreting this as before we have the rectangle given in Fig 

453, in which each of the three rows sums 40. We have now two 

rectangles, Fig. 452 showing the correct numbers in the columns, 

and Fig. 453 showing the proper disposition of the numbers in the 

rows. By combining them we get the associated or regular magic 

/ 
Fig. 453. Fig. 454. 

rectangle given in Fig. 454. 

Ara 

If a mere shuffling of pairs of complementary rows or columns 

is ignored, this is the only solution of the problem.* 

There are two pairs of equations of the form 

a=b+c 

d=e+f 

namely, the one given in (I) and 

UE TA 
PEE Meri MIRC eS or oan ino as oon Dec (11) 

42341) 
and there are nine equations of the form 

a+b=c+d+e 

but of these nine equations only one will go with (1) and none 

will go with (II) so as to conform with the above rules. 

If the condition of association is relaxed there are thirty-nine 

different 3x 5 magic rectangles. 

This method can naturally be used for constructing all sizes of 

magic rectangles which are possible,t but we will only consider 

~ one of 5x7 as a final example. 

_ .*The solution of this problem of the associated rectangle is the first step 
in the construction of the higher ornate magics of composite odd orders. For 
example, if the above single solution for the 3X5 rectangle did not exist it 
would be impossible to construct a magic, pan-diagonal, associated (= regu- 
lar) square of order 15, which shall be both 9-ply and 25-ply, i. e., any square 
bunch of 9 cells to sum ‘up 9 times the mean, and any square bunch of 25 cells 
25 times the mean. C. P. 

+ A magic rectangle with an odd number of cells in one side and an even 
number in the other, is impossible with consecutive numbers. c. p. 
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Fig. 455 shows the asséciated series of natural numbers from 

1 to 35 with their half differences, from which the numbers must 

be chosen in accordance with the above rules. In this case three 

will be three equations of the order 

Cor SRE OG yee GN 2, 

& 

7 

6 

4 

3 

Pg 

Z 

at+b=c+d+e 

for the columns, and two equations of the order 

a+b+ced+et+fr+g 
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for the rows. The following selection of numbers will satisfy 

the conditions: 

1417= 94 742 

Ahsea ues (Meg a ooGore lot 20 van po CoO Du LOO Coe (III) 

155216 = 1422 

for the columns, and 

12+134+16=17+1149+ z 

(7 82 AQ = 2 oso 

for the rows. 

Fig. 456 is a rectangle made from (III) in which all the 

columns sum 90, and Fig. 457 is a rectangle made from (IV) in 

which all the rows sum 126. Combining these two rectangles pro- 

duces Fig. 458 which is magic and associated. 

We will now consider this method in connection with magic 

squares and will apply it to the construction of a square of order 5 

as a first example. In this case two equations of the order 

a+b=c¢+ae 

will be required for the rows and two more similar equations for 

the columns. 

The following will be found suitable for the rows: 

12+11=10+9+4 2 ee * 
and 

11+8=12+6+1 ete ad eee Te oe 
for the columns. 

It will be seen that the rule for pairs of numbers in the same 
equation is fulfilled in the above selection. In (V) 12 and 11 are on 
the same side of an equality sign, but in (VI) these numbers are 
on opposite sides, also, 10 and 9 are on the same side in (V) and 
on opposite sides in (VI) and so on. 
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The resulting magic square is given in Fig. 459, it is non- 
La Hireian, and could not easily be made in any way other than as 
above described. 

The construction of a square of order 6 under this method 
presents more difficulties than previous examples, on account of 
the inherent disabilities natural to this square and we will consider 
it as a final example. The method to be employed is precisely the 

same as that previously discussed. 

For the columns three equations should be made of the form: 

at+b+c=d+e+f 

or 

@+b =c+d+e+f 

and three similar equations are required for the rows, all being 

subject to the rule for “pairs and equality sign” as above described. 

PARREAEAES 
Eararaeaiz 
aes)ol 
7 a\e|e 5 
feel lesle 

Fig. 459. 

On trial, however, this will be found to be impossible,* but if for 

one of the row- or column-equations we substitute an inequality 

whose difference is 2 we shall obtain a square of 6, which will be 

“associated,” but in. which two lines or columns will be erratic, one 

showing a correct summation —1 and the other a correct summa- 

tion +1. The following equations (VII) may be used for the 

columns: 

7 11+ 7= 9+ 5+ 341) 

Dee tee iam 21+19415 fee te cca ioe ora oe EO Phe (VII) 

35 431423=33429+27 ° =J 

and for the rows: 

* It is demonstrably impossible for all orders = 4p + 2, ier O10, 14s etc Ce 
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29 +25 = 334 134+ ae) 

Bh eIO es = ole eee CVE 

ih ep ete 

Fig. 460 shows the complementary 
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Fig. 463. Fig. 460. 

pairs of natural numbers 1 to 36 with their whole differences, 
which in this case are used in the equations (VII) and (VIII) in- 
stead of the half differences, because these differences cannot be 
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halved without ‘involving fractions. Fig. 461 is the square derived 
from equations (VII) and will be found correct in the columns. 
Fig. 462 is the square formed from equations (VIII) and is correct 
in the Ist, 2d, 5th, and 6th rows, but erratic in the 3d and 4th rows. 
The finished six-square made by combining Figs. 461 and 462 is 

a: kena ; shown in Fig. 463 which is associated or regular, and which gives 

a2 apa[s 
als [vel eof es] 
al7|s0 3 po foe 
eles] [2] 4 bs 
rahe fealer|ea] | 
ele les) 7 

Fig. 464. Fig. 465. 

correct summations in all the columns and rows excepting the 3d 

and 4th rows which show — 1 and +1 inequalities respectively. 

Fig. 463, like Fig. 459, could not probably be produced by any 

other method than the one herein employed, and both of these 

squares therefore demonstrate the value of the methods for con- 

structing new variants. Fig. 463 can be readily converted into a 

ree 
Eleble 
ErAeaZ 
pale Lele 

Fig. 466. Fig. 467. 

continuous or pan-diagonal square by first interchanging the 4th 

and 6th columns and then, in the square so formed, interchanging 

the 4th and 6th rows. The result of these changes is given in 

Fig. 464 which shows correct summations in all columns and rows, 

excepting in the 3d and 6th rows which carry the inequalities 

shown in Fig. 463. This square has lost. its property of association 

by the above change but has now correct summation in all its diag- 
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onals. It is a demonstrable fact that squares of orders 4p+2, 

(i. e., 6, 10, 14 etc.) cannot be made perfectly magic in columns and 

rows and at the same time either associated or pandiagonal when 

constructed with consecutive numbers. 

Dr. Planck also points out that the change which converts all 

even associated squares into pan-diagonal squares may be tersely 

expressed as follows: 

Divide the square into four quarters as shown in Fig. 465. 

Leave A untouched. 

Reflect B. 

Invert C. 

Reflect and invert D. 

ae 2 
| 12 [v0] aler leo] -olv0 
[75 |x0|e for | 7a e0|77 
23] 6] [oso ofa 
|| os [zaler | fa 
eels [ool eer] 4 [olay 
salealeals [or |ealea] 7 
7 foales [ale 3 [> [or 

Fig. 468. 

The inverse change from pan-diagonal to association is not 

necessarily effective, but it may be demonstrated with the “Jaina” 

square given by Dr. Carus on p. 125, which is here repeated in Fig. 

466. This is a continuous or pan-diagonal square, but after making 

the above mentioned changes it becomes an associated or regular 

square as shown in Fig. 467. 

Magic squares of the 8th order can however be made to com- 
bine the pan-diagonal and associated features as shown in Fig. 468 
which is contributed by Mr. Frierson, and this is true also of all 
larger squares of orders 4. W.S. A. 
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NOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF 
ORDERS IN WHICH n IS OF THE GENERAL FORM 4p +2. 

It is well known that magic squares of the above orders, i. e., 

62, 102, 142, 182, etc., cannot be made perfectly pandiagonal and ornate 

with the natural series of numbers. 

Dr. C. Planck has however pointed out that this disability is 

purely arithmetical, seeing that these magics can be readily con- 

structed as perfect and ornate as any others with a properly selected 

series of numbers. 

In all of these squares n is of the general form 4p +2, but they 

can be divided into two classes: 

Class I. Where x is of the form 8p — 2, as 6?, 14”, 22? etc. 

Class II. Where is of the form 8p + 2, as 10”, 18*, 26? etc. 

The series for all magics of Class I may be derived by making 

a square of the natural series 1 to (m+1)? and discarding the numbers 

in the middle row and column. 

Thus, for a 6? magic the series will be: 

Leander 6 7 

8 9 10 — 12 13 14 

15 16 17 — 19 20 21 

29 30 31 — 33 34 35 

36 37 38 — 40 41 42 

43 44 45 — 47 48 49 

The series for all magics of Class II may be made by writing 

a square of the natural numbers 1 to (+3)? and discarding the 

numbers in the three middle rows and columns. The series for a 

10? magic, for example, will be: 

ee eee Ae 8 Gee TS SO. 10 1 912: 13 

mmc iGmerl 7! 1S. 5. 3 > 22t. 93- 240125. 26 

Beemer rast. 400. 42°35 $36) 137) 38, 89 

neat ag Aa AS 40 50 “51 1°52 

esi setoG. 5/7... * Ol, 62 63% 04° 65 
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105.°106 107 108 109... 113. 114 1) SeTionli7. 

LIS STAOeIZ08 IZ tia 126 127° 128-129" 130 

I3le 132213321342 135 139 140 141 142 143 

144°145.°146 147. 148 '5. 5 ASZeiSel soe oomtoe 

157 158. 159° 160:16ly wy. = 1658160 167 siesar 

By using series as above described, pandiagonal magics with 

double-ply properties, or associated magics may be readily made 

either by the La Hireian method with magic rectangles, or by the 

path method as developed by Dr. C. Planck. 

fats Piatt [als 

Fig. 471, 

Referring now to the La Hireian method and using the 6 

magic as a first example, the rectangles required for making the 

two auxiliary squares will necessarily be 2x3, and the numbers used 

therein will be those commonly employed for squares of the seventh 

order, i. e., (6+1)?, with the middle numbers omitted thus: 

1’ 326-3532 FSS omen 

0 “7. 14 == 28. 35=-42 

It may be shown that a magic rectangle having an odd number ~ 

of cells-in one side, and an even number of cells in the other side 

is impossible with consecutive numbers, but with a series made as 
above it can be constructed without any difficulty, as shown in 
Figs. 469 and 470. 
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Two auxiliary squares may now be made by filling 71 
their respective rectangles. If this is done eae ae t rethought, 
a plain pandiagonal magic of the sixth order may result, but if 
attention is given to ornate qualities in the two auxiliaries, these fea- 
tures will naturally be carried into the final square. For example, by 

_the arrangement of rectangles shown in Figs. 471 and 472 both ee 
laries are made magic in their six rows, six columns and twelve 

Buiglasis 
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| = bes} 6 [7 
Biesabiscs 
(29) 20|29[73) os ea 

[= 
EREIEZ 

elslsal? 
ABBE 
paiaisisi- 

Fig. 474. 

diagonals, and’ they are also 4-ply and 9-ply. Their complementary 

couplets are also harmoniously connected throughout in steps of 

3, 3. These ornate features are therefore transmitted into the fin- 

ished 6? magic shown in Fig. 473. If it is desired to make this square 

associated, that is with its complementary couplets evenly balanced 

around its center, it is only necessary to introduce the feature of 

association into the two auxiliary squares by a rearrangement of 
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their magic rectangles as shown in Figs. 474, 475 and 476. the last 

figure being a pandiagonal associated magic. 

The next larger square of Class I is 142, and it can be made 

with the natural series 1 to (1441)? arranged in a square, discard- 

ing, as before, all the numbers in the central row and column. 

The rectangles for this square will necessarily be 2x7 and the ~ 

numbers written therein will be those ordinarily used for a square 

Tepe le 
ala foo) 2 [or] 
ss|r4|o7 7 po] 27 
29 | zo) sa] 9fse| 76 
val foe [olor ea 
Tele rls [es 

Fig. 476. 

of the fifteenth order, (14+1)?, with the middle numbers omitted, 

thus: ° 

P62) 34 5. 6 7 OO el Ll 2k ee 

0.15307 45 60°.75 90° —* {120.135 150.165. 180:195e2i0 

Simple forms of magic rectangles for the auxiliaries are shown 

in Figs. 477 and 478 but many other arrangements of the couplets 

will work equally well. 

= opp re] RAEN APArAPs 
Fig. 477. Fig. 478. 

The smallest magic of Class II is 102, the series for which is 
given below. The rectangles used for filling the two auxiliaries of 
this square are 2x5, and they can be made with the numbers which 
would be commonly used for a square of the thirteenth order (10+3)2 
omitting the three middle numbers in each row thus: 
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Pe eee ar tee O10" 11 12 413 
Oe wom OM OZ es 1042117 130-143 156 

Figs. 47 gs. 479 and 480 show these two rectangles with a simple ar- 
rangement of the numbers. The two auxiliaries and the finished 102 
magic are given in Figs. 481, 482 and 483. Fig. 483 is magic in its 

Ble ya[=] faba AZEN Za ee 
Fig. 470. Fig. 480. 

ten rows, ten columns and twenty diagonals. It is also 4-ply and 

25-ply. Like the 6? magic, this square can also be associated by 

changing the disposition of the magic rectangles in the auxiliaries. 

The above examples will suffice to explain the general con- 

re rahe AeA EA Ra ARs 
WA eae ea 72 | 322 2) 
Pea Ae ARS a 
Zee ae 
PARSZAPARA CI EAARAEA 
eae es 7 (2) Alva) Bra) 2) 
RAR EAR 
ze) 3 vo] | [72] 2 [eo] 2 
lz |v[alelsle|o| ale 
pie )s (22) 21 

Fig. 481. 

struction of these squares by the La Hireian method with magic 

rectangles. It may however be stated that although the series pre- 

viously described for use in building these squares include the lower 

numerical values, there are other series of higher numbers which 

will produce equivalent magic results. 
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The following table illustrates another rule covering the selec- 
tion of numbers for all magic squares of these orders. 

ORDER 

OF NATURAL SERIES | DISCARDING NUMBERS IN 
SQUARE | 

6th | 1 to ( 6+1)2 | the middle row and column. 

10th | 1 to (10+3) the 3 middle rows and columns. 
patie) toto (1445))2 the 5 middle rows and columns. 

18th: |. 1 to(18+7)? the 7 middle rows and columns. 

22nd | 1 to (2249) the 9 middle rows and columns. 

26th 1 to (26+11)? the 11 middle rows and columns. 

| and so forth. 

These figures show that this rule is equivalent to taking the 

Seon =a" ee n—4 
numbers of the natural series ee and omitting the central A 

rows and columns. In comparing the above with the rules pre- 

viously given, for which we are indebted to Dr. C. Planck, it will 

be seen that in cases of magics larger than 10? it involves the use of 

unnecessarily large numbers. 

The numerical values of the ply properties of these squares 

are naturally governed by the dimensions of the magic rectangles 

used in their construction. Thus the rectangle of the 6? magic 

(Fig. 473) is 2x3, and this square is 2?-ply and 3*-ply. The rectangle 

of the 10? magic being 2x5, the square may be made 2?-ply. and 

52-ply, and so forth. 

The formation of these squares by the “path” method which has 

been so ably developed by Dr. C. Planck* may now be considered. 

The first. step is to rearrange the numbers of the given series in 

such a cyclic order or sequence, that each number being written con- 

secutively into the square by a well defined rule or path, the re- 

sulting magic will be identical with that made by the La Hireian 

method, or equivalent thereto in magic qualities. Starting, as before, 

with the 62 magic, the proper sequence of the first six numbers is 

found in what may be termed the “continuous diagonal” of its magic 

rectangle. Referring to Fig. 469, this sequence is seen to be 1, 2, 5, 

*The Theory of Path Nasiks, by C. Planck, M.A., M.R.C.S., published 

by A. T. Lawrence, Rugby, England. 
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7, 6, 3, but it is obvious that there may be as many different se- 

_ quences as there are variations in the magic rectangles. 

The complete series given on page 267 must now be rearranged 

in its. lines and columns in accordance with the numerical sequence 

a0g000 
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eizazacaee 
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Fig. 484. Fig. 485. 

of the first six numbers as above indicated. To make this arrange- 

ment quite clear, the series given on p. 267 is reproduced in Fig. 484, 

the numbers written in circles outside the square showing the numer- 

ical order of lines and columns under rearrangement. Fig. 485 shows 

the complete series in new cyclic order, and to construct a square 

directly therefrom, it is only necessary to write these numbers con- 

Fig. 486. : Fig. 487. 

secutively along the proper paths. Since the square will be pandiag- 

onal 1¢ may be commenced anywhere, so in the present example we 

will place 1 in the fourth cell from the top in the first column, and 
will use the paths followed in Fig. 473 so as to reproduce that square. 
The paths may be written | 3, 2| and since we can always write 

> 
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-(n =a) instead of a, we may write this | 3,2 |. This only means 
-2,3 

that the numbers in the first column of Fig. 485 (which may be 

termed the leading numbers) are to be placed in order along the 

path (3, 2), as in the numbers enclosed in circles in Fig. 473; and 

then starting from each cell thus occupied, the remaining five num- 

bers in each of the six rows of Fig. 485 are to be written along the 

path (—2, 3). It will be seen that this is equivalent to writing the 

successive rows of Fig. 485 intact along the path (—2, 3), or (3, -2 

and using a “break-step” (1, -1), as in Fig. 486 where the first 

break-step is shown with an arrow. The break-step is always given 

by summing up the coordinates ; thus, the paths here being | Spe ) 

—2, 3.| 
by summing the columns we get (1, 5), that is (1,-1). The re- 

sulting square is, of course, identical with Fig. 473. 

As previously stated, this square being pandiagonal, it may be 
commenced in any of its thirty-six cells, and by using the same 
methods as before, different aspects of Fig. 473 will be produced. 
Also, since by this method complementary pairs are always -sepa- 
rated by a step (/2, n/2), any of the thirty-six squares thus formed 
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may be made associated by the method described under the heading 
“Magic Squares by Complementary Differences,” viz., Divide the 
square into four quarters as shown in Fig. 487; leave A untouched, 
reflect B, invert C and reflect and invert D. For this concise and 

elegant method of changing the relative positions of the comple- 
mentary couplets in a square we are indebted to Dr. Planck. 

The next square in order is 102. The series of numbers used 

is given on page 267 and their rearrangement in proper cyclic order 

for direct entry may be found as before in the continuous diagonal 

of its magic rectangle. The sequence shown in Fig. 479 is, 1, 2, 3, 4, 

9, 13, 12, 11, 10, 5, and the complete rearrangement of the series in 

accordance therewith is given in Fig. 488. Various 10? magics may 

be made by using this series with different paths. The paths | 5, 4| 

, 

5,2| will make Fig. 489, which is rf 

Ze 
equivalent to Fig. 483 in its ornate features. 

will produce Fig. 483, and 

These squares and all similarly constructed larger ones of these 

orders may be changed to the form of association wherein the com- 

plementary couplets are evenly balanced around the center of the 

square, by the method previously explained. It will be unnecessary 

to prolong the present article by giving any examples of larger 

squares of this class, but the simple forms of magic rectangles for 

18? and 22? and 26? magics, shown in Figs. 490, 491, and 492, may be 

of some assistance to those who desire to devote further study to 

these interesting squares.* Mors, ho mee Ee 

NOTES ON THE CONSTRUCTION OF MAGIC SQUARES OF 

ORDERS IN WHICH u IS OF THE GENERAL FORM 8p-+2. 

It has just been shown that the minimum series to be used in 

constructing this. class of squares is selected from the series 1, 2, 

* More generally, if p, q are relative primes, the square of order pq will 

be magic on its pg rows, pg columns and 2 pq diagonals, and at the same time 

p2-ply and q?-ply, if it be constructed with the paths a , and the period be 

taken from the continuous diagonal of the magic rectangle p X q. The limi- 

tations are dictated by the magic rectangle. Evidently p and g must both be 

1, and consecutive numbers must fail if the order is =2 (mod. 4); in all 

other cases consecutive numbers will suffice. C. P. 
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ef (n+ 3)2, by discarding 3 rows and columns from the natural 

square of the order n+ 3. 

It is not necessary, however, to discard the three central rows 

and columns, as was therein explained, there being numerous 

nae)’ 
variations, the total number of which is aay equal to ee 
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Fig. 499. ean Fig. 501. 

therefore the 10? can be constructed with 9 different series, the 18? 

with 25 different series, the 26? with 49 different series, and so on. 

In Figs. 493 to 501 are shown all the possible variations of dis- 
carding rows and columns for the 102, Fig. 493 representing the 
series explained in the foregoing article. 

The central row and column must always be discarded, the 
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remaining two rows and columns can be cast out symmetrically in 
relation to their parallel central row or column and should be an 
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In other words, we cast odd number of rows or columns from it. 

out the central row, then on each side of it we cast out the lst¥3d; 
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Sth, or 7th, etc. rows from it, and irrespective of the rows, we do 

likewise with the columns. 

In a manner already explained, numbers are selected according 

to the series desired and arranged in rectangles with which the 

magic square is constructed. 

A set of rectangles with their respective series is shown in 

Fig. 502, and the following table will give directions for their use. 

SERIES RECTANGLES (SEE Fig. 502) 

Fig. 493 * A and X 

Fig. 494 B and X 

Fig. 495 Crandexs 

Fig. 496 A and Y 

Fig. 497 

Fig. 498 

Fig. 499 

Fig. 500 

Fig. 501 

Fig. 503. 

For example, suppose we were to construct a square, using the 

series denoted in Fig. 495. By referring to the table it is seen that we 

must employ rectangles C and X. By using the La Hireian method 

these rectangles are placed as shown in Fig. 503, care being taken to 
arrange them in respect to the final square, whether it is to be asso- 

ciated or non-associated.* 

* See preceding article. 
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A non-associated square resulting from rectangles C and X is 
shown in Fig. 504. Another example is shown in Figs. 505, 506 
and 507. Here a series corresponding to Fig. 500 has been selected 
and the natural square is shown in Fig. 505, the heavy lines indi- 
cating the discarded rows and columns. The rows and columns 
are re-arranged according to the numerical sequence of the contin- 
uous diagonals* of rectangles B and Z of Fig. 502, this re-arrange- 

ment being shown in Fig. 506. 

In constructing the final square, Fig. 507, an advance move —4, 

—5 and a break move 1, 1 was used. 

-It will be unnecessary to show examples of higher orders of 

these squares, as their methods of construction are only extensions 

of what has been already described. It may be mentioned that these 

squares when non-associated can be transformed into associated 

squares by the method given in the preceding article. H.A.S. 

GEOMETRIC MAGIC SQUARES AND CUBES. 

The term “geometric” has been applied to that class of magic 

squares wherein the numbers in the different rows, columns, and 

diagonals being multiplied together give similar products. They 

are analogous in all respects to arithmetical magic squares. 

Any feature produced in an arithmetical square can likewise 

be produced in a geometric square, the only difference being that the 

features of the former are shown by summations while those of the . 

latter are shown by products. Where we use an arithmetical series 

for one, we use a geometric series for the other, and where one is 

constructed by a method of differences the other is constructed by 

ratios. 

These geometric squares may be considered unattractive because 

of the large numbers involved, but they are interesting to study, 

even though the actual squares are not constructed. The absurdity 

of constructing large geometric squares can be easily shown. For 

example, suppose we were to construct an 8th order square using 

the series 2°, 2', 22, 2%,....2°%, the lowest number would be 1 and 

* See preceding article. 
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the highest number would be 9,223,372,036,854,775,808. Who would 

be willing to test the accuracy of such a square by multiplying to- 

gether the numbers in any of its rows or columns? 

Analogous to the arithmetical squares the geometric squares 

may be constructed with a straight geometric series, a broken geo- 

metric series, or a series which has no regular progression. 

I have divided the methods of construction into four groups, 

namely: the “Exponential method,” the “Exponential La Hireian 

method,” the “Ratio method,” and the “Factorial method.” 

The Exponential Method. 

The most common way of constructing these squares is with 

a straight geometric series, arranged in the same order as a straight 

arithmetical series would be in any summation square. This is 

equivalent to the following. 

-Form any magic with a straight arithmetical series as in Fig. 

508. Consider these numbers as exponents by repeating any number 

Fig. 508. Fig. 509. Fig. 510. 

(in this case 2) before each of them, which will give us a square as 

shown in Fig. 509. It may be noticed that 2 is taken 12 times as a 
factor in each of the rows, columns, and diagonals, therefore form- 

ing a geometric square with constant products of 4096. The square 

transposed in natural numbers is shown in Fig. 510. 

Fig. 511. Fig. 512. Fig. 513. 

Fig. 511, 512 and 513 show the same process involving negative 
exponents. 
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Figs. 514, 515 and 516 show how fractional exponents may be 
used; and the use of both fractional and negative exponents is 
shown in Figs. 517, 518 and 519. 

Figs. 520 and 521 show the exponential method applied to a 
fourth order square. The exponents in Fig. 520 taken alone, ob- 

viously form an arithmetical magic. | 

This square is an associated square with the products of each 

complementary pair equaling 32. 

Fig, 521. 

The Exponential La Hireian Method. 

Two primary squares are shown in Figs. 522 and 523. One is 

filled with the powers 0, 1 and 2 of the factor 2, and the other with 

the powers 0, 1 and 2 of the factor 5. Each primary square in itself 

is a geometric magic with triplicate numbers. Figs. 522 and 523 

multiplied together, cell by cell, will produce the magic shown in 

Fig. 524. 

The factor numbers, in this case 2 and 5, are not necessarily 
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different, but when they are alike the exponents must suit the con- 

dition, to avoid duplicate numbers in the final square. To make this 

clearer: if we form two primary squares that will add together and 

form an arithmetical magic, the same factor number may be added 

to each of these primary squares, using the former numbers as ex- 

= 1000 

ponents, and the two will become geometric primary squares that 

will multiply together and form a geometric magic without duplicate 

numbers. 

Figs. 525, 526 and 527 show the same methods applied to the 

fourth order squares. This is a Jaina square, and is consequently 

pandiagonal and also contains the other Jaina features. 

= 2985984 

Fe] Palle 
BGIEaEd acaeaea Bee 
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Iiee, Sis, Fig. 526. Fig. 527. 

Figs. 528, 529, 530 show the application of a double set of 

factors to the primary squares. The constants of Fig. 528 are 

3x 5° and those of Fig. 529 are 2?x7. This is also a Jaina square. 

The Ratio Method. 

If we fill a square with numbers as in Fig. 531, such that the 

ratios between all horizontally adjacent cells are equal, and the 
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ratios between all vertically adjacent cells are equal, we have a 
natural square which can be formed into a geometric magic by any 
of the well-known methods. 

The horizontal ratios in Fig. 531 are 2 as represented by the 
figure at the end of the division line, and the vertical ratios are 3 
as indicated, and Fig. 532 shows the magic arrangement of this 

series. 

In a fourth order square, as in Fig. 533, the horizontal ratios 

= 21000 

Bec 

Fig. 528. Fig. 520. Fig. 530. 

are not necessarily equal, and neither are the vertical ratios. A 

magic may be made from this natural square by forming the num- 

bers in the upper row into a primary square as in Fig. 534. The 

numbers in the left-hand column are then formed into another pri- 

mary square as in Fig. 535. These two primary squares will then 

produce the magic shown in Fig. 536. 

Fig. 531. Fig. 532. 

Fig. 537 is a balanced natural square. This series will produce 

a perfect Jaina, or Nasik,* or an associated square. Figs. 538, 539 

and 540 show it arranged in a Nasik formation. 

Mr. L. S. Frierson’s arithmetical equation squares also have 

their geometric brothers. Where he applies the equation a—b= 

* A concise description of Nasik squares is given in Enc. Brit. 
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c—d, we use the proportion a:b::c:d. Fig. 542 shows a natural 

equation square, and besides the proportions there shown, the diag- 

onals of the magic depend on the necessary proportion a:b::c:d 

as indicated in the respective cells of Fig. 544a. 
P7500 

Fig. 533. Fig. 534. iigasac. Fig. 530. 

The magic is then formed by revolving the diagonals 180° as 

is shown in Fig. 543, or by interchanging the numbers represented 

by like letters in Fig. 541. 

Big. 537: Fig. 538. 

Another form of natural equation square is shown in Fig. 546. 

The diagonals in this square depend on the equation axb=cxd- 

(see Fig. 544). The magic is made by interchanging the numbers 

P= 14112 

Fig. 541. 

represented by like letters in Fig. 545, producing Fig. 547 and then 

adjusting to bring the numbers represented by the A’s and D’s in 

Fig. 545, in one diagonal and the numbers represented by the B’s 

and C’s in the other diagonal, or in other words, shifting the left- 
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hand column of Fig. 547 so as to make it the right-hand column, 
and then shifting the bottom line of the square thus formed to the 
top. The result of these changes is shown in Fig. 548. 
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Fig. 552. 

Fig. 549 is a fifth order natural square, and Figs. 550, 551 and 

552 clearly show the method of forming the magic, which 1s pan- 

diagonal. 
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In the same manner Dr. Planck constructed his arithmetical 

Nasik squares* of orders 4p+2, we can likewise construct geo- 

metric squares. 

Fig. 553 shows a natural 7 x7 square with the central row and 

column cast out. This is formed by path method into the Nasik 

square, rearranging the columns in this order 1, 4, 32, 64,.16, 2 

IDSs 2a O< Mo 
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Fig. 553. Fig. 554. 

fel [ alate 

and the:rows.in this*order 1,-21, 27%, 2™,2°* 2) 2 and usitiemevades 

move 2, 3 and a break-move —1, — 1. 

The Factorial Method. 

In this method we fill two primary squares, each with m sets 

of any m different numbers, such that each row, column, and diag- 

onal contains each of the different numbers. 

To avoid duplicates in the magic, the primary squares should 

have only one number in common, or they may not have any number 

in common. Also, no two numbers in one primary square should 

have the same ratio as two numbers in the other primary square. 

This may be more clearly explained by an example. Suppose 

we select two sets of numbers as follows for constructing a fourth 

order square. 
- 

ty 2 

ie (site ss NSS 

Four sets of the upper row of numbers are to fill one primary 

* See “Notes on the Construction of Magic Squares” (n in the form of 
4p -+ 2), p. 267. 
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square and four sets of the iower row are to fill the other. These 
two groups contain only one number in common, but the magic 
would contain duplicate numbers due to the duplicate ratios 2:4 as 
3:6. Therefore 2x6=4x3, consequently the duplicate numbers 
would be 12. But if we interchange the numbers 2 and 5, the fault 

will be corrected and the square can then be constructed without 

duplicate numbers. 

The square in Fig. 555 is constructed with the two groups 
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Fig. 557. Fig. 558. 

A: fifth order square is shown in Fig. 556 and in this case the 

“following groups are used: 

Pd 48 

| Sagabe ars ete) Py 

This square is pan-diagonally magic. 

I will now show how a Nasik sixth order square may be made 

by a method derived from Dr. Planck’s method of constructing 

Nasik squares with arithmetical series. 

Fill two six-celled rectangles, each with six different numbers, 

the two rectangles to have no more than one number in common. 
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The numbers in each rectangle should be arranged so that the 

products of its horizontal rows are equal, and the products of its 

vertical rows are equal. 

Two of such sets of numbers that will suit the above conditions 

will not be found so readily as in Dr. Planck’s examples above men- 

729| 192 | 9 146656, 3 | 576 

32 | 486 |2592| 2 |7776| 162 
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Fig. 560. 

tioned. 

P = 101,559,950,668,416. 

The two sets forming the magic rectangles in Figs. 557 and 558 

are taken from the following groups: 

Di AnD nee ieee 

Saw One OF muse eee 

Each group is a geometrical series of seven numbers, and in form- 

ing the rectangle, the central number in each group is omitted. 
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sl 
The rectangles are arranged in primary squares as shown in 

Fig. 559, and the two rectangles in Figs, 557 and 558 so arranged 

will produce the square in Fig. 560. This square is pan-diagonal, 

2°-ply and 3?-ply.* 

_ *Asquare is said to be m?-ply when the numbers in any m2 group of con- 
tiguous cells give a constant product in geometric squares, or a constant sum 
in arithmetical squares. 
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Geometric Magic Cubes. 

I will here briefly describe the analogy between the series which 
may be used in constructing cubes, and those used in constructing 

squares. 

It is obvious that an unbroken geometric series of any sort may 

Oe 
[se 

be arranged in a cube of any order, by placing the numbers in the 

cube in the same. progression as the numbers of an arithmetical 

series would be placed in forming an arithmetical cube. This may 

be accomplished by an extension of the method exemplified in Figs. 

508 to 521 inclusive. 
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In using the Exponential La Hireian method, the same process 

is followed in cubes as in squares, the main difference being that 

three primary cubes are necessarily used. 

Fig. 561 shows a natural cubic series, obtained by the ratio 

method. The three squares represent the three planes of the cube. 
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The numbers 5 at the left of the first square represent the ratio 

between vertically adjacent cells in each of the planes. The num- 

bers 2 above represent the ratio between horizontally adjacent cells 

in each of the planes, and the numbers 3 between the squares repre- 

sent the ratio between adjacent cells from plane to plane. 

By rearranging this series into a cube according to the path 

methods as in arithmetical cubes many results may be obtained, 

one of which is shown in Fig. 562. 

A fourth order balanced or associated series is shown in Fig. 

563. This series is analogous to the plane series in Fig. 537, and 

may be transformed into a magic cube by the following well-known 

method: 

Interchange the numbers in all associated pairs of cells which 

are inclosed in circles, producing the result shown in Fig. 564. 

The possibilities in using the Factorial method in constructing 

cubes, have not been investigated by the writer. HPARS: 
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Di iit PORY OLR VERSIONS. 

QUARES like those shown in Figs. 565 and 566, in which the 

numbers occur in their natural order, are known as natural 

squares. In such squares, it will be noticed that the numbers in 

associated cells are complementary, i. e., their sum is twice the 

mean number. It follows that any two columns equally distant 

from the central bar of the lattice are complementary columns, 

that is, the magic sum will be the mean of their sums. Further any 

two numbers in these complementary columns which lie in the same 
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Fig. 565. Fig. 560. 

row have a constant difference, and therefore the sums of the two 

columns differ by m times this difference. If then we raise the 

lighter column and depress the heavier column by n/2 times this 

difference we shall bring both to the mean value. Now we can 

effect this change by interchanging half the numbers in the one 

column with the numbers in the other column lying in their respec- 

tive rows, The same is true with regard to rows, so that if we can 

make 1/2 horizontal interchanges between every pair of comple- 

mentary columns and the same number of vertical interchanges 
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between every pair of complementary rows, we shall have the 

magic sum in all rows dnd columns. It is easy to see that we can 

do this by reversing half the rows and half the columns, provided 

the two operations are so arranged as not to interfere with one 

another. This last condition can be assured by always turning over 

columns and rows in associated pairs, for then we shall have made 

horizontal interchanges only between pairs of numbers previously 

untouched between pairs, each of whose constituents has already 

received an equal vertical displacement; and similarly with the 

vertical interchanges. By this method, it will be noticed, we always 

secure magic central diagonals, for however we choose our rows 

and columns we only alter the central diagonals of the natural 

Fig. 567. 

square (which are already magic) by interchanging pairs of com- 

plementaries with other pairs of complementaries. 

Since the 1/2 columns have to be arranged in pairs on either 

side of the central vertical bar of the lattice, 1/2 must be even,. 

and so the method, 7m its simplest form, applies only to orders = 

(mod 4). We may formulate the rule thus: For orders of form 4m, 

reverse m pairs of complementary columns and m pairs of comple- 

mentary rows, and the crude magic is completed. 

In the following example the curved lines indicate the rows 

and columns which have been reversed (Fig. 567). 

We have said that this method applies only when n/2 is even 
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but we shall now show that by a slight modification it can be applied 
to all even orders. For suppose u is double-of-odd; we cannot 
then arrange half the columns in pairs about the center since their 
number is odd, but we can so arrange n/2—1 rows and n/2—1 

columns, and if we reverse all these rows and columns we shall 

have made n/2—1 interchanges between every pair of comple- 

mentary rows and columns. We now require only to make the 

Fig. 568. 

one further interchange between every pair of rows and columns, 

without interfering with the previous changes or with the central 

diagonals. To effect this is always easy with any orders = 2 

ded) 0,4. 10, 14) etc.) exceptme the first. In the case. of 6? 

an artifice is necessary. If we reverse the two central diagonals 

of a square it will be found, on examination, that this is equivalent 

to reversing two rows and two columns; in fact, this gives us a 
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Fig. 569. Fig. 570. 

method of forming the magic 4? from the natural square with the 

least number of displacements, thus: 

Applying this idea, we can complete the crude magic 6° from 

the scheme shown in Fig. 569 where horizontal lines indicate hori- 

zontal interchanges, and vertical lines vertical interchanges; the 

lines through the diagonals implying that the diagonals are to be | 

reversed. The resulting magic is shown in Fig. 570. 



298 THE THEORY OF REVERSIONS. 

The general method here described is known as the method 

of reversions, and the artifice used in the double-of-odd orders is 

called the broken reversion. The method of reversions, as applied 

to all even orders, both in squares and cubes, was first(?) investi- 

gated by the late W. Firth, Scholar of Emmanuel, Cambridge.* 

The broken reversion for 6? may, of course, be made in 

various ways, but the above scheme is one of the most symmetrical, 

and may be memorialized thus: For horizontal changes commence 

at the two middle cells of the bottom row, and progress upward 

and divergently along two knight's paths. For vertical changes turn 

the square on one of its sides and proceed as before. 

92] 8 [04] 95 [96 [97 | 3 
12/13] 84] 85 [86 |87 gs 
20 | 23 |74|75 |76 

40 | 39 65 |64 | 

9 {10 | 
jig [1 | 

28 |22 |30 | 
ne 33 [62 [31 
FH 49| 48 | 57 | 56 |5s 

HEEe 59 | 58| 47 | 46 | 45 

a : acide Bele sa rs fo 
ei a i [fo fo 

Sp eE EES eeE 
liked Vara Fig. 572. 

In dealing with larger double-of-odd orders we may leave the 

central diagonals “intact” and invert n/2—1 rows and n/2—1 

columns. The broken reversion can then always be effécted in a 

multitude of ways. It must be kept in mind, however, that in 

making horizontal:changes we*must not touch numbers which have 

been already moved horizontally, and if we use a number which 

has received a vertical displacement we can only change it with 

a number which has received an equal vertical displacement, and 
similarly with vertical interchanges. Lastly we must not touch 

the central diagonals. 

* Died 1889. For historical notice see pp. 304-305. 
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Fig. 571 is such a scheme for 10%, with the four central rows 
and columns reversed, and Fig. 572 shows the completed magic. 

It is unnecessary to formulate a rule for making the reversions 
in these cases, because we are about to consider the method from a 

broader standpoint which will lead up to a general rule. 

If the reader will consider the method used in forming the 

magic 6° by reversing the central diagonals, he will find that this 

artifice amounts to taking in every column two numbers equally 

distant from the central horizontal bar and interchanging each of 

them with its complementary in the associated cell, the operation 

being so arranged that two and only two numbers are moved in 

each row. This, as we have already pointed out, is equivalent to 

reversing two rows and two columns. Now these skew inter- 

changes need not be made on the central diagonals—they can be 

made in any part of the lattice, provided the conditions just laid 

down are attended to. If then we make a second series of skew 

changes of like kind, we shall have, in effect, reversed 4 rows and 4 

columns, and so on, each complete skew reversion representing 

two rows and columns. Now if nm =2 (mod 4) we have to reverse 

n/2—%1 rows and columns before making the broken reversion, 

therefore the same result is attained by making (m—2)/4 com- 

plete sets of skew reversions and one broken reversion. In like 

manner, if » =o (mod 4), instead of reversing n/2 rows and 

columns we need only to make /4 sets of skew reversions. 

We shall define the symbol [x] as implying that skew inter- 

changes are to be made between opposed pairs of the four numbers 

symmetrically situated with regard to the central horizontal and 

vertical bars, one of which numbers occupies the cell in which the 

symbol is placed. In other words we shall assume that Fig. 5734 

indicates what we have hitherto represented as in Fig. 573b. 

Further, it is quite unnecessary to use two symbols for a vertical 

or horizontal change, for Fig. 573c¢ sufficiently indicates the same 

as Fig. 573d. If these abbreviations are granted, a scheme like 

Fig. 569 may be replaced by a small square like Fig. 574, which is 

to be applied to the top left-hand corner of the natural 6°, 

Fig. 575 is the extended scheme from Fig. 574, and Fig. 576 
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is the resulting magic. The small squares of symbols like Fig. 574 

may be called index squares. 

The law of formation for index squares is sufficiently obvious. 

To secure magic rows and columns in the resulting square, the 

symbols — and | must occtir once on each row and column of the 

index, and the symbol & an equal number of times on each row 

and column; that is, if there are two series X X....X the symbol 

must appear twice in every row and twice in every. column, and 

b c d 

BEA 
Fig. 573. 

so on. But we already know by the theory of paths that these 

conditions can be assured by laying the successive symbolic periods 

along parallel paths of the index, whose coordinates are prime to 

the order of the index. If we decide always to use parallel diagonal 

paths and always to apply the index to the top left-hand corner 

of the natural square, the index square will be completely repre- 

3615 133}4 |2 [31 

25 |29 110 | 9 |26 |12 

19 114 116 {15 | 23 | 24 

7 |11|27 |28| 8 |30 

6 {32} 3 |34] 35] 1 | 

Fig. 576. 

sented by its top row. In Fig 574 this is | x |—] | |, which we 

may call the index-rod of the square, or we may simply call. Fig. 

576 the magic | X | —]| | |]. Remembering that we require (n—2) /4 

sets of skew reversions when m = 2 (mod 4) and /4 when n =o, 

it is obvious that the following rule will give crude magic squares 

of any even order n: 

Take a rod of /2 cells, m/4 symbols of the form X, (using 

the integral part of n/4 only), and if there is a remainder when n 
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is divided by 4, add the symbols | and —. Place one of the sym- 
bols < in the left-hand cell of the rod, and the other symbols 

in any cell, but not more than one in each cell. The result is an 

index-rod for the magic n?. 

Take a square lattice of order 1/2, and lay the rod along the 

top row of the lattice. Fill up every diagonal slanting downward 

and to the right which has a symbol in its highest cell with repeti- 

tions of that symbol. The resulting index-square if applied to the 

top left-hand corner of the natural n?, with the symbols allowed 

the operative powers already defined, will produce the magic n’. 

The following are index-rods for squares of even orders: 

sod 10° Px Tx) 

6 [x[-l) 12? [x] | [x[x]_| 

8? [x]_IxL_] 14? [x[=[x]_ | [xh] 

When the number of cells in the rod exceeds the number of 

symbols, as it always does excepting with 6’, the first cell may be 

left blank. Also, if there are sufficient blank cells, a & may 

wD |: i) 122 

109 

esr sf 

ss 

132 

143 

Fig. 577. 

‘be replaced by two vertical and two. horizontal symbols. Thus 12° 

might be given so [xX | 1 | | |[—|]X|—l. This presentation of 
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12? is shown in Figs. 577, 578, and 14? from the index-rod given 

above, in Figs. 579 and 580. 

: Of course the employment of diagonal paths in the construction 

of the index is purely a matter of convenience. In the following 

index for 107, (Fig. 581) the skew-symbols are placed along two 

= as Lye) wn ON 43 11531143]151] 52 |149]| 49 50 [146 1 E 47 

00 

oh [x[=[x]_ | TxL1 109 
75 By 119|120|76 122| 74 |124 12 

137 59 [13 

50| 46 |152| 44 
3 |165} 31 

78| 18 |180] 1 

on 

\o 

bt — — NX — 00 DRBBEBE = 

aS 

|x] J [x] tx!) 

Fig. 570. 

parallel paths (2, 1) and the. symbols — and | are then added so 

that each shall appear once in each row and once in each column, 

but neither of them on the diagonal of the index slanting upward 
and to the left. 

Crude cubes of even orders we shall treat by the index-rod 
as in the section on squares. The reader will remember that we 
constructed squares of orders =o (mod 4) by reversing half the 
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rows and half the columns, and it is easy to obtain an analogous 
method for the cubes of the same family. Suppose we reverse the 
V-planes* in associated pairs; that is, turn each through an angle 
of 180° round a horizontal axis parallel to the paper-plane so that 

' the associated columns in each plane are interchanged and reversed. 
We evidently give to every row of the cube the magic sum, for half 
the numbers in each row will be exchanged for their complemen- 

Magic in rows only. 

Fig. 582. The natural 43 with V-planes reversed. 

Magic in rows and columns.* 

Being Fig. 583 with H-planes reversed. 

29 49 

20 | 47 | 46 |17 
Magic in rows, columns and lines. 

12|55|54] 9 

61} 2 | 3 | 64 

Fig. 584. Being Fig. 19, with P-planes reversed. 

CRUDE MAGIC 4°. 

taries. If we do likewise with H-planes and P-planes the rows and 

linest will become magic. But as with the square, and for like 

reasons, these three operations can be performed without mutual 

* P-plane = Presentation-, or Paper-plane ; H-plane = Horizontal plane; 

V-plane = Vertical plane. : 

+ “Line” = a contiguous series of cells measured at right angles to the 

paper-plane. 
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interference. Hence the simple general rule for all cubes of the 

double-of-even orders: 

Reverse, in associated pairs, half the V-planes, half the H- 

planes and half the P-planes. 

With this method the central great diagonals, of course, main- 

tain their magic properties, as they must do for the cube to be 

considered even a crude magic. To make the operation clear to 

Fig. 585. 

the reader we append views of 4° at each separate stage, the central 

pair of planes being used at each reversion. 

By this method the reader can make any crude magic cube of 

order 4m. With orders of form 4m- 2 we find the same diffi- 

culties as with squares of like orders., So far as we are aware 

no magic cube of this family had been constructed until Firth suc- 

Fig. 586. 

ceeded with 6° in 1889. Firth’s original cube was built up by the 

method of “pseudo-cubes,” being an extension to solid magics of 
Thompson’s method. The cube of 216 cells was divided into 27 

subsidiary cubes each containing 2 cells in an edge. The’ cells of 
each subsidiary were filled with the numbers rt to 8 in such a way 
that each row, column, line, and central great diagonal of the large 
cube summed 27. The cube was then completed by using the 
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magic 3° in the same way that 6? is constructed from Ce Steogde 
formulated no rule for arrangement of the numbers in the pseudo- 
cubes, and great difficulty was encountered in balancing the central 
great diagonals. His pseudo-skeleton is shown in Fig. 585, where 
each plate represents two P-planes of 6°, each plate containing 9 

pseudo-cubes. The numbers in the subsidiaries are shown in dia- 
grammatic perspective, the four “larger” numbers lying in the 

anterior layer, and the four “smaller” numbers, grouped in the 

center, in the posterior layer. 
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Fig. 587. \ 

If we use this with the magic of Fig. 586 we obtain the magic 

6° shown in Fig. 587. : 

This cube is non-La Hireian, as is frequently the case with 

— INS: 

\o 

= 

Ke) 

i) (oe) 

— —_ 

WwW 

magics constructed by this method. 

The scheme of pseudo-cubes for 6® once found, we can easily 

extend the method to any double-of-odd order in the following 

manner. Take the pseudo-scheme of next lower order [e. g., 6° to 

make 10%, 10? to make 14° etc.]. To each of three outside plates 

of cubes, which meet at any corner of the skeleton, apply a replica- 

plate, and to each of the other three faces a complementary to the 
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plate opposed to it, that is a plate in which each number replaces 

its complementary number (1 for 8, 2 for 7, etc.). We now have 

a properly balanced skeleton for the next double-of-odd order, 

wanting only its 12 edges. Consider any three edges that meet at 

a corner of the cube; they can be completed (wanting their corner- 

cubes) by placing in each of them any row of cubes from the 

original skeleton. Each of these three edges has three other edges 

parallel to it, two lying in the same square planes with it and the 

third diagonally opposed to it. In the former we may place edges 

complementary to the edge to which they are parallel, and in the 

latter a replica of the same. The skeleton wants now only its 8 

corner pseudo-cubes. Take any cube and place it in four corners, 

no two of which are in the same row, line, column, or great diag- 

onal (e. g., B, C, E, H in Fig. 602), and in the four remaining 

corners place its complementary cube. The skeleton is now com- 

plete, and the cube may be formed from the odd magic of half its 

order. 

This method we shall not follow further, but shall now turn 

to the consideration of index-cubes, an artifice far preferable. 

Before proceeding, the reader should carefully study the method 

of the index-rod as used for magic squares (pp. 299-302). 

The reversion of a pair of planes in each of the three aspects, 

as previously employed for. 4%, is evidently equivalent to inter- 

changing two numbers with their complementaries in every row, 

line, and column of the natural cube. If therefore we define the - 

symbol as implying that such an interchange is to be made not 

only from the cell in which it is placed, but also from the three 

other cells with which it is symmetrically situated in regard to the 

central horizontal and vertical bars of its P-plane, and can make 

one such symbol operate in every row, line and column of an index- 

cube whose edge is half that of the great cube, we shall have 

secured the equivalent of the above-mentioned reversion. For 

example, a X placed in the second cell of the top row of any 
P-plane of 4°, will denote that the four numbers marked a in Fig. 

588 are each to be interchanged with its complement, which lies in 

the associated cell in the associated P-plane. | 
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From this it follows that we shall have a complete reversion 
scheme for any order 4m, by placing in every row, line and column 
of the index (2m)*, m of the symbols X. In the case of orders 
4m X 2, after placing m such symbols in the cube (2m + 1)*, we 
have still to make the equivalent of one reversed plane in each of 
the three aspects. This amounts to making one symmetrical ver- 
tical interchange, one symmetrical horizontal interchange, and one 

symmetrical interchange at right angles to the paper-plane in every 

row, line and column. If we use the symbol | to denote such a ver- 

tical interchange, not only for the cell in which it stands, but also 

for the associated cell, and give like meanings to — and -, for hori- 

zontal changes and changes along lines, we shall have made the 

broken reversion when we allow each of these symbols to operate 

once in every row, column and line of the index. For example, 

a in Fig. 589 means Db in its own P-plane, and c in the associated 

P-plane; while d indicates that the numbers lying in its own 

P-plane as in ¢ are to be interchanged, A with A and B with B, 

with the numbers lying in the associated plane f. We can always 

prepare the index, provided the rod does not contain a less number 

of cells than the number of symbols, by the following rule, n 

being the order. 

Take an index-rod of /2 cells, 1/4 symbols of the form x, 

(using the integral part of m/4 only), and if there is any remainder 

when 2 is divided by 4 add the three symbols |, —,-. Now prepare 

an index square in the way described on page 300, but using the 
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diagonals upward and to the right instead of upward to the lett 

and take this square as the first P-plane of an index-cube. Fill 

I I IV 

aPER] PEPE ENE 
| s | so] 58] 8 | 21| 43 | 42| 24 53 |11| 10 | 56 

| 9 | 55] 54| 12, a 28 57| 7 \-6 \60 

reluhsls BoEE elatt 
Fig. 590. 

every great diagonal of the cube, running to the right, down and 

away, which has a symbol in this P-plane cell, with repetitions of 

that symbol.t This index-cube applied to the near, left-hand, top 

fo |x| x1 [=| 
[x[x]> [1 [=| I=] [x [x1] 
Index Rod. Index Square. 

Fig. 591. 

corner of the natural m*, with the symbols allowed the operative 

powers already defined, will make the magic n’*. 

This method for even orders applies universally with the single 

prs x 
a EEE 

Fig. 592. Index Cube. 

exception of 6°, and in the case of 6* we shall presently show 

that the broken reversion can still be made by scattering the sym- 

bols over the whole cube. The following are index-rods for various 

cubes. 

43 12° 

8° 148 
10° [x] 1 |=[x[+] 

* Either way will do, but it happens that the former has been used in the 
examples which follow. 

1 More briefly, in the language of Paths, the symbols are laid, in the square, 
on (1, 1); their repetitions in the cube, on (1, —1, 1). 
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As in the case of index-rods for squares, the first cell may be 
left blank, otherwise it must contain a X. 

Fig. 593. Extended Reversion Scheme for 103. 

Fig. 590 is a 4°, made with the index-rod given above. It has 

only half the numbers removed from their natural places. Figs. 
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591 and 592 are the index-rod, index-square and index-cube for 
10*, and Fig. 593 is the extended reversion scheme obtained from 
these, in which \ and / denote single changes between associated 
cells, and the symbols |, —, and -, single changes parallel to columns, 
rows, and lines. Figs. 594 and 595 show the resulting cube 

If we attack 6° by the general rule, we find 4 symbols, x, —, 
|, -, and only 3 cells in the rod; the construction is therefore 

601 aioe 696|607]393]392|610 3|704]2 
390] 389 2 614 a 616|687|618]382 712|713|287|2 
380] 322|623[624|376]375| 627] 678|629 21|722|27 
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Fig. 595. Last 4 plates of 10%, made from Fig. 593. (Sum = 5005.) 

impossible. Suppose we construct an index-cube from the rod 

|} XT 1 [—\, we shall find it impossible to distribute the remaining 

symbol [-] in the extended reversion-scheme obtained from this 

index. The feat, however, is possible if we make (for this case 

only) a slight change in the meanings of | and —. By the general 

rule X operates’on 4 cells in its own P-plane, where, by the rule of 
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I with 6 ; 
association, the planes are paired thus: |2 “ 5 In interpreting 

13“ 4 
the meanings of | and —, in this special case, we must make 

Fig. 596. Extended Reversion-Scheme for 6%. 

oe ith 
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that a [|], for example, in the second P-plane has its usual 
meaning in that plane, and also acts on the two cells which would 
be the associated cells if the 4th plane were to become the 5th, etc. 
If we extend this scheme, there will be just room to properly dis- 

tribute the [-]’s in the two parallelopipeds which form the right- 

a 52 ae 50 
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| 14] 16| 15] 23] 24 | 25 * 33 | 32 | 24| 
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hand upper and left-hand lower quarters of the cube, as shown 

in Fig. 596. aie 

This scheme produces the cube shown in Fig. 597, which 1s magic 

on its 36 rows, 36 columns, 36 lines, and on its 4 central great diag- 

onals. 
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Fig. 596 is the identical scheme discovered by Firth in 1889, 

and was obtained a few months later than the pseudo-skeleton 

shown in Fig. 585. A year or two earlier he had discovered the 

broken reversion for squares of even order, but he never general- 

ized the method, or conceived the idea of an index-cube. The 

development of the method as here described was worked out by 

the present writer in 1894. About the same time Rouse Ball, of 

Trinity College, Cambridge, independently arrived at the method 

of reversions for squares (compare the earlier editions of his 

Fig. 605, st reversion. Fig. 600, 2d reversion. Fig. 607, 3d reversion. 

A Bae D 

Te 
Fig. 608, 4th reversion. 

Mathematical Recreations, Macmillan), and in the act edition, 

1905, he adopts the idea of an index-square; but he makes no 

application to cubes or higher dimensions. There is reason to 

believe, however, that the idea of reversions by means of an index- 

square was known to Fermat. In his letter to Mersenne of April 

I, 1640, (Ciuvres de Fermat, Vol. II, p. 193), he gives the square 

of order 6 shown in Fig. 598. This is obtained by applying the 
index (Fig. 599) to the bottom left-hand corner of the natural 

square written from below upward, i. e., with the numbers 1 to 6 
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in the bottom row, 7 to 12 in the row above this, etc. There is 
nothing surprising in this method of writing the natural square, in 
fact it is suggested by the conventions of Cartesian geometry, with 
which Fermat was familar. There is a much later similar instance: 
Cayley, in 1890, dealing with “Latin squares,” writes from below 
upward, although Euler, in his original Memoire (1782), wrote 
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Fig. 600. 

from above downward. Another square of order 6, given by 

Fermat, in the same place, is made from the same index, but is dis- 

guised because he uses a “deformed” natural square. 

It is interesting to note that all these reversion magics (unlike 

those made by Thompson’s method), are La Hireian, and also that 

the La Hireian scheme can be obtained by turning a single outline 
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on itself. To explaiif this statement we will translate the square 

in Fig. 576 into the scale whose radix is 6, first decreasing every 

number by unity. This last artifice is merely equivalent to using 

the 22 consecutive numbers from o to n?—1, instead of from 1 to 

n2, and is convenient because it brings the scheme of units and 

mec 
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205} 50 | 51 }208 

the scheme of 6’s digits into uniformity. 
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Fig. 610. 

If we examine this result as shown in Fig. 600 we find that 

the scheme for units can be converted into that for the 6’s, by 

turning the skeleton through 180° about the axis AB; that is to 

say, a single outline turned upon itself will produce the magic. 

The same is true of the cube; that is, just as we can obtain 

a La Hireian scheme for a square by turning a single square outline 
once upon itself, so a similar scheme for a cube can be obtained 
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by turning a cubic outline twice upon itself. If we reduce all the 
numbers in Fig. 597 by unity and then “unroll” the cube, we get 
the La Hireian scheme of Fig. 601 in the scale radix 6. : 

If now we represent the skeleton of the 62's: (left-hand) digits 
by Fig. 602, and give this cube the “twist” indicated by Fig. 603, we 
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Fig. 611. 

shall get the skeleon of the 6’s (middle) digits, and the turn 

suggested by Fig. 604 gives that of the units (right-hand) digits. 

Thus a single outline turned twice upon itself gives the scheme. 

We can construct any crude magic octahedroid* of double- 

* DIMENSIONS REGULAR FIGURE: BOUNDARIES 

Tetragon (or square | 4 one-dimensional straight lines 

Hexahedron (cube) 6 two-dimensional squares 

Octahedroid 8 three-dimensional cubes 

etes etc. ter 
wm OO 09 
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of-even order, by the method of reversions, as shown with 4* in 

Figs. 605 to 608. 

The first three reversions will be easily understood from the 

figures, but the fourth requires some explanation. It actually 

amounts to an interchange between every pair of numbers in asso- 

ciated cells of the parallelopiped formed by the two central cubical 
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128]131]130 125 

1137]118]119]140 

133]12211231136 

116] 143 142]113] 78 [177 

selections. If the reader will use a box or some other “rectangular” 
solid as a model, and numbers the 8 corners, he will find that such 

a change cannot be effected in three-dimensional space by turning 
the parallelopiped as a whole, on the same principle that a right 
hand cannot, by any turn, be converted into a left hand. But such 
a change can be produced by a single turn in 4-dimensional space; 
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in fact this last reversion is tnade with regard to an axis in the 4th, 
or imaginary direction. The following four figures (609-612) show 
each stage of the process, and if the reader will compare them with 
the results of a like series of reversions made from a different 
aspect of the natural octahedroid, he will find that the “imaginary” 
reversion then becomes a real reversion, while one of the reversions 

which was real becomes imaginary. Fig. 609 is the natural 4! 

after the first reversion, magic in columns only; Fig. 610 is Fig. 
609 after the second reversion, magic in rows and columns; Fig. 

611 is Fig. 610 after the third reversion, magic in rows, columns 

and lines ; and Fig. 612 is Fig. 611 after the fourth reversion, magic 

|_|x[x| Ps x eS 
Sp OL 
x] | pt [xP [Px [x] px B 
meseat Es ESE ESE 

| [xix] [x] | 
| [x[x] Pt | px] 
xt | [x] [x Pct | AEs CAME 
txt [xt | ppt Pt [xx 

Fig. 613. Skew Reversion for 4}. 

in rows, columns, lines and i’s, = crude magic 4*. The symbol 1 

denotes series of cells parallel to the imaginary edge. 

Fig. 612 is magic on its 64 rows, 64 columns, 64 lines, and 64 

i’s and on its 8 central hyperdiagonals. Throughout the above opera- 

tions the columns of squares have been taken as forming the four 

cells of the P,-aspect ;* the rows of squares taken to form cubes, 

of course, show the P,-aspect. 

This construction has been introduced merely to accentuate 

the analogy between magics of various dimensions; we might have 

* Since the 4th dimension is the square of the second, two aspects of the 

octahedroid are shown in the presentation plane. The 3d and 4th aspects are 

in H-planes and V-planes. Since there are two P- plane aspects it might appear 

that each would produce a different H-plane and V-plane aspect; but this is 

a delusion. 
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obtained the magic 4 much more rapidly by a method analogous 

to that used for 4° (Fig. 590). We have simply to interchange 

each number in the natural octahedroid occupying a cell marked 

[xX] in Fig. 613, with its complementary number lying in the 

associated cell of the associated cube. Fig. 613 is the extended 

skew-reversion scheme from the index-rod | |X]. 

All magic octahedroids of double-of-odd order > 10* can be 

constructed by the index-rod, for just as we construct an index- 

square from the rod, and an index-cube from the square, so we 

can construct an index-octahedroid from the cube. The magics 6* 

and 10* have not the capacity for construction by the general rule, 

but they may be obtained by scattering the symbols over the whole 

figure as we did with 6°. CoE: 



CHAPTER XT, 

PeaGiC CIRCLES =SPHERES AND STARS. 

AGIC circles, spheres and stars have been apparently much 

less studied than magic squares and cubes. We cannot say 
that this is because their range of variety and development is limited, _ 

but it may be that our interest in them has been discouraged, owing 

to the difficulty of showing them clearly on paper, which is espe- 

cially the case with those of three dimensions. 

It is the aim of the present chapter to give a few examples of 

what might be done in this line, and to explain certain methods of 

construction which are similar in some respects to the methods used 

in constructing magic squares. 

MAGIC CIRCLES. 

The most simple form of magic spheres is embodied in all per- 

fect dice. It is commonly known that the opposite faces of a die 

contain complementary numbers; that is, 6 is opposite to I, 5 is 

opposite to 2, and 4 is opposite to 3—the complementaries in each 

case adding to 7—consequently, any band of four numbers encire- 

ling the die, gives a summation of 14. This is illustrated in Fig. 614, 

which gives a spherical representation of the die; and if we imagine 

this sphere flattened into a plane, we have the diagram shown in 

Fig. 615, which is the simplest form of magic circle. 

-Fig. 616 is another construction giving the same results as Fig. 

615; the only difference being in the arrangement of the circles. It 

will be noticed in these two diagrams that any pair of complementary 
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numbers is common to two circles, which is a rule also used in con- 

structing many of the following diagrams. 

Fig. 617 contains the series 1, 2,3.... 12 arranged in four circles 

of six numbers each, with totals of 39. Any one of these circles 

laps the other three, making six points of intersection on which are 

placed three pairs of complementary numbers according to the above 

rule. The most simple way of following this rule is to start by pla- 

cing number I at any desired point of intersection; then by tracing 

yo @ 
Fig. 615. Fig. 616. 

Fig. 617. Fig. 618. 

out the two circles from this point, we find their second point of 
intersection, on which must be placed the complementary number 
of 1. Accordingly we locate 2 and its complementary, 3 and its com- 

plementary, and so on until the diagram is completed. 

Fig. 618 is the same as Fig. 617, differing only in the arrange- 
ment of the circles. 

Fig. 619 contains the series 1, 2,3.... 20 arranged in five circles 
of eight numbers each, with totals of 84. 
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Fig.620 contains the series 1,2,3....14 arranged in five circles 
of six numbers each, with totals of 45. It will be noticed in this 
diagram, that the 1 and 14 pair is placed at the intersections of 
three circles, but such intersections may exist as long as each circle 

contains the same number of pairs. 

Fig. 621. 

Fig. 621 contains the series 1, 2, 3....24 arranged in six circles 

of eight numbers each, with totals of 100. 

Fig. 622 contains the series I, 2, 3....30 arranged in six circles 

of ten numbers each; with totals of 155. Also, if we add together 

any two diametrical lines of four and six numbers respectively, we 

will get totals of 155; but this is only in consequence of the comple- 

mentaries being diametrically opposite. 
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Fig. 623 contains the series I, 2, 3...40 arranged in eight 

circles of ten numbers each, with totals of 205. 

Fig. 624 contains the series 1, 2, 3....8 arranged in eight circles 

of four numbers each, with totals of 18. This diagram involves a 

feature not found in any of the foregoing examples, which is due 

to the arrangement of the circles. It will be noticed that each 

Fig. 622. 

number marks the intersection of -four circles, but we find that no 

other point is common to the same four circles, consequently we need 

more than the foregoing rule to meet these conditions. If we place 

the pairs on horizontally opposite points, all but the two large circles 

will contain two pairs of complementaries. The totals of the two 

large circles must be accomplished by adjusting the pairs. This 
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adjustment is made in Fig. 625, which shows the two selections that 
will give totals of 18. 

Fig. 626 contains the series 1, 2, 3.... 24 arranged in ten 
circles of six numbers each, with totals of 75. This is Recomnnciede 
by placing the pairs on radial lines such that each of the six equal 

circles contains three pairs. It then only remains to adjust these 

pairs to give the constant totals to each of the four concentric circles. 

Their adjustment is shown diagrammatically in Fig. 627, which is 

one of many selections that would suit this case. 

Fig. 628 contains the series I, 2, 3..-. 12 arranged in seven 

circles and two diametrical lines of four numbers each with totals 

of 20. 

The large number of tangential points renders this problem 
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quite difficult, and it appears to be solvable only by La Hireian 
methods. It was derived by adding together the respective num- 
bers of the two primary diagrams Figs. 629 and 630, and Fig. 630 
was in turn derived from the two primary diagrams Figs. 631 
and 632. 

We begin first with Fig. 629 by placing four each of the num- 

Fig. 628. Tig. 6209. 

( 

eo 

I— 

Fig. 630. 

bers 0, 4, and. 8 so that we get nine totals amounting to 16. This 

is done by placing the 4’s on the non-tangential circle; which leaves 

it an easy matter to place the o’s and 8’s in their required positions. 

Fig. 630 must then be constructed so as to contain three sets of the 

‘series I, 2, 3, 4; each set to correspond in position respective to the 

three sets in Fig. 629, and give totals of Io. This could be done by 
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experiment, but their positions are much easier found with the two 

diagrams, Figs. 631 and 632. Fig.631 contains six o’s and six 2’s 

giving totals of 4, while Fig. 632 contains six 1’s and six 2’s giving 

: Fig. 633. 

totals of 6. It will be noticed in Fig. 629 that the o’s form a hori- 
zontal diamond, the 8’s a vertical diamond and the 4’s a square, 
which three figures are shown by dotted lines in Figs. 631 and 632. 
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Besides giving the required totals, Figs. 631 and 632 must have their 
numbers so arranged, that we can add together the respective dia- 
monds and squares, and obtain the series 1, 2, 3, 4 for each diamond 

and square, which is shown in Fig. 630. Figs. 630 and 629 are then 

added together which gives us the result as shown in Fig. 628. 

This diagram was first designed for a sphere, in which case 

Fig. 634. 

the two diametrical lines and the 5, 6, 7, 8 circle were great circles 

on the sphere and placed at right angles to each other as are the 

three circles in Fig.614. The six remaining circles were equal and 

had their tangential points resting on the great circles. The dia- 

grams used here are easier delineated and much easier to under- 

stand than the sphere would have been. 

Fig. 633 contains the series I, 2, 3 ..-- 54 arranged in nine 
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circles of twelve numbers each with totals of 330. The arrange- 

ment also forms six 3X3 magic squares. 

We begin this figure by placing the numbers 1 to 9 in magic 

square order, filling any one of the six groups of points; then, 

*. Fig. 635. Fig. 636. Fig. 637. 

according to the first general rule, we locate the complementaries 

of each of these numbers, forming a second and complementary 

square. We locate the remaining two pairs of squares in the same 

manner. The pairs of squares in the figure are located in the same 

ae 

Fig. 638. Fig. ae 

relative positions as the pairs of numbers in Fig. 616, in which respect 

the two figures are identical. 

Fig. 634 contains the series 1, 2, 3 .... 96 aranged in twelve 

circles of sixteen numbers each, with totals of 776. The sum of the 
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sixteen numbers in each of the six squares is also 770. These 
Squares possess the features of the ancient Jaina square, and are 
constructed by the La Hireian method as follows. 

he sseries Op<a/08, 12)... 92°are arranged in six horizontal 

groups of four numbers, as shown in Fig. 637, by running the series 

down, up, down, and up through the four respective vertical rows. 

The upper horizontal row of Fig. 637 is used to form the primary 

square Fig. 636; likewise, five other squares are formed with the 

remaining groups of Fig. 637. These six squares are each, in turn, 

added to the primary square, Fig. 635, giving the six squares in Fig. 

634. There is no necessary order in the placing of these squares, 

since their summations are equal. 

Figs. 638 and 639 show the convenience of using circles to show 

up the features of magic squares. The two diagrams represent the 

same square, and show eighteen summations amounting to 34. 

H. A.S. 

MAGIC SPHERES. 

In constructing the following spheres, a general rule of placing 

complementary numbers diametrically opposite, has been followed, 

in which cases we would term them associated. This conforms with 

a characteristic of magic squares and cubes. 

Fig. 640 is a sphere containing the series 1, 2, 3. ...26 arranged 

-in nine circles of eight numbers each, with totals of 108. 

In this example, it is only necessary to place the pairs at dia- 

metrically opposite points; because all the circles are great circles, 

which necessitates the diametrically opposite position of any pair 

common to two or more circles. Otherwise we are at liberty to 

place the pairs as desired ; so, in this sphere it was chosen to place 

the series 1, 2, 3....9 in magic square form, on the front face, and 

in consequence, we form a complementary square on the rear face. 

Fig. 641 is a sphere containing the series 1, 2, 3....26, arranged 

in seven circles of eight numbers each, with totals of 108. 

This was accomplished by placing the two means of the series 

at the poles, and the eight extremes in diametrically opposite pairs 
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on the central horizontal circle. In order to give the sphere “associ- 

ated” qualities, as mentioned before, the remaining numbers should 

be placed as shown by diagram in Fig. 642. This shows the two 

selections for the upper and lower horizontal circles. The numbers 

for the upper circle are arranged at random, and the numbers in the 

lower circle are arranged in respect to their complementaries in the 

upper circle. 

Fig. 6409. 

Tig. 644 is a sphere containing the series 1, 2,3....62 arranged 

in eleven circles of twelve numbers each, with totals of 378. 

This is a modification of the last example and represents the 
parallels and meridians of the earth. Its method of construction 

is also similar, and the selections are clearly shown in Fig. 643. 

Fig. 645 shows two concentric spheres containing the: series 
I, 2,3 .... 12 arranged in six circles of four numbers each, with 
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totals of 26, It also has three diametrical lines running through the 
spheres with totals of 26. 

The method for constructing this is simple, it being only neces- 
sary to select three pairs of numbers for each sphere and place the 

complementaries diametrically opposite each other. 

Fig. 646 is the same as the last example with the exception that 

Pa 

77-4 26r ay 

Fig. 641. 

two of the circles do not give the constant total of 26; but with this 

sacrifice, however, we are able to get twelve additional summations 

of 26, which are shown by the dotted circles in Figs. 647, 648 and 

649. Fig. 647 shows the vertical receding plane of eight: numbers , 

Fig. 648, the horizontal plane; and Fig. 649, the plane parallel to the 

picture, the latter containing the two concentric circles that do not 

give totals of 26. 



334 MAGIC CIRCLES, SPHERES AND STARS. 

In this example all pairs are placed on radial lines with one 

number in each sphere which satisfies the summations of the twelve 

dotted circles. The selections for the four concentric circles are 
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shown in Fig. 650. The full lines show the selections for Fig. 647 
and the dotted lines for Fig. 648. It is impossible to get constant 
totals for all six concentric circles. 
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Fig. 651 is a sphere containing the series 1, 2, 3... .98, ar- 
ranged in fifteen circles of sixteen numbers each, with totals of 792. 
It contains six 3X3 magic squares, two of which, each form the 
nucleus of a 55 concentric square. Also, the sum of any two dia- 

metrically opposite numbers is 99. 

.To construct this figure, we must select two complementary 

(PSI. of <7 
aaa Shay -- 734 

Sie 

sets of 25 numbers each, that will form the. two concentric squares; 

and four sets of 9 numbers each, to form the remaining squares, the 

four sets to be selected in two complementary pairs. 

This selection is shown in Fig. 652, in which the numbers en- 

closed in full and dotted circles represent'the selection for the front 

and back concentric squares respectively. The numbers marked with 



336 MGIC CIRCLES, SPHERES AND STARS, 



MAGIC CIRCLES, SPHERES AND STARS. B37. 

T, B, L and R represent the selections for the top, bottom, left and 
right horizon squares respectively. 

After arranging the numbers in the top horizon square, we 
locate the complementary of each number, diametrically opposite 
and accordingly form the bottom square. The same method is used 

in placing the left and right square. 

The numbers for the front concentric square are duplicated in 

haa 

wos--4; 

UT 
= = == 95 80 47 

Fig. 651. 

Fig. 653. Theatimbers marked by dot and circle represent the selec- 

tion for the nucleus square, and the diagram shows the selections 

for the sides of the surrounding panel, the numbers 4, 70, 34 and 40 

forming the corners. 

By placing the complementaries of each of the above 25 num- 

bers, diametrically opposite, we form the rear concentric square. 

After forming the six squares, we find there are twelve num- 
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bers left, which are shown in Fig. 654. These are used to form the 
four horizon triads. Two pairs are placed on the central circle, and 
by selection, as shown in the diagram, we fill in the other two 

circles with complementary numbers diametrically opposite. The 

above selection is such that it forms two groups of numbers, each 

with a summation of 198; this being the amount necessary to com- 

plete the required summations of the horizon circles. 

There are many selections, other than those shown in Fig. 652, 

which could have been taken. A much simpler one would be to 

select the top 25 pairs for the front and back concentric squares. 

H- Ay S. 

MAGIC STARS. 

We are indebted to Mr. Frederick A. Morton, Newark, N. J., 

for these plain and simple rules for constructing magic stars of all 

orders. 

A five-pointed star being the smallest that can be made, the 

rules will be first applied to this one. 

Choosing for its constant, or summation (S) =48, then: 

(5x48) /2=120=sum of series. 

Divide 120 into two parts, say 80 and 40, although many other 

divisions will work out equally well. Next find a series of five 

numbers, the sum of which is one of the above two numbers. 

Selecting 40, the series 6+7+8+9+10=40 can be used. These 

numbers must now be written in the central pentagon of the star 

following the direction of the dotted lines, as shown in Fig. 655. 

Find the sum of every pair of these numbers around the circle 

. beginning in this case with 6+9=15 and copy the sums in a sepa- 

rate column (A) as shown below: 
(A) 

6+ 9=15 1742154 16=48 

7+410=17 16+174+15=48 

8+ 6=14 15+14+19=48 

O27 =16 19+16+13=48 

10+ 8=18 13+184+17=48 
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x9! 

Place on each side of 15, numbers not previously used in the 

central pentagon, which will make the total of the three numbers 

=48 or S. 17 and 16 are here selected. Copy the last 1umber of 

the trio (16) under the first number (17) as shown above, and 

under 16 write the number required to make the sum ot the second 

trio=48 (in this case 15). Write 15 under 16, and proceed as 

before to the end. If proper numbers are selected .o make the 

sum of the first trio=48, it will be found that the first number of 

the first trio will be the same as the last number of the last trio 

(in this case 17) and this result will indicate that the star will sum 

correctly if the numbers in the first column are written in their 

Fig. 655. Fig. 656. 

proper order at the points of the star, as shown in Fig. 656. If the 

first and last numbers prove different, a simple operation may be 

used to correct the error. When the last number is more than the 

first number, add half the difference between the two numbers to 

the first number and proceed as before, but if the last number is 

less than the first number, then subtract half the difference from 

the first number. One or other of these operations will always 

correct the error. 

For example, if 14 and 19 had been chosen instead of 17 and 

16, the numbers would then run as follows: 

14+154+19=48 

19+17+12=48 

12+14+22=48 

22+16+10=48 

10+18+20=48 
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The difference between the first and last numbers is seen to be 6 
and 20 being more than 14, half of 6 added to 14 makes 17 which 
is the correct starting number. Again, if 21 and 12 had been se 
lected, then: 

21+15+12=48 

12417419=48 
194+14415=48 
154164+17=48 

+184+13=48 

Fiz. 650. Fig. 360. 

The difference between the first and last numbers is here 8, and the 

last number being Jess than the first, half of this difference sub- 

tracted from 21 leaves 17 as before. 

It is obvious that the constant S of a star of any order may 

be changed almost indefinitely by adding or subtracting a number 

selected so as to avoid the introduction of duplicates. Thus, the 
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constant of the star shown in Fig. 656 may be reduced from 48 to 

40 by subtracting 4 from each of the five inside numbers, or it may 

be increased to 56 by adding 4 to each of the five outside numbers, 

and another variant may then be made by using the five inside 

numbers of S=40, and the five outside numbers of S=56. These 

three variants are shown respectively in Figs. 657, 658 and 659. 

It is also obvious that any pair of five-pointed or other stars 

may be superposed to form a new star, and by rotating one stat 

over the other, four other variants may be made; but in these and 

similar operations duplicate numbers will frequently occur, which 

Fig. 661. Figs G62. 

of course will make the variant ineligible although its constant 

must necessarily remain correct. 

Variants may also be made in this and all other orders of 

magic stars, by changing each number therein to its complement 

with some other number that is larger than the highest number 

used in the original star. The highest number in Fig. 656, for example, 

is 19. Choosing 20 as a number on which to base the desired variant. 

19 in Fig. 656 is changed to 1, 17 to 3 and so on throughout, thus 

making the new five-pointed star shown in Fig. 660 with S = 32. 

The above notes on the construction of variants are given ip 

detail as they apply to all orders of magic stars and will not need 
repetition. 

The construction of a six-pointed star may now be considered 
Selecting 27 as a constant: 



MAGIC CIRCLES, SPHERES AND STARS. 343 

(6x 27)/Z=81=sum of the series. 

Divide 81 into two parts, say 60 and 21, and let the sum of the 
six numbers in the inner hexagon=21, leaving 60 to be divided 
among the outer points. Select a series of six numbers, the sum 
of which is 21, say 1, 2, 3, 4, 5, 6, and arrange these six numbers in 

hexagonal form, so that the sum of each pair of opposite numbers 

Fig. 665. Fig. 666. 

=7. Fig. 661 shows that these six inside numbers form part of two 

triangles, made respectively with single and double lines. The 

outside numbers of each of these two triangles must be computed 

separately according to the method used in connection with the 

five-pointed star. ‘Beginning with the two upper numbers in the 

single-lined triangle and adding the couplets together we have: 
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(A) 
3+1=4 12+4+11=27 

5+4=9 1149+ 7=27 

64+2= 7+84+12=27 

Writing these sums in a separate column (A) and proceeding as 

before described, the numbers 12, 11, 7 are obtained for the points 

of the single-lined triangle, and in the same manner 13, 8, 9 are 

found for the points of the double-lined triangle, thus completing 

the six-pointed star Fig. 661. 

The next larger star has seven points. Selecting 30 for a con- 

stant, which is the lowest possible: 

(7 x 30) /2=105=sum of the series. 

Dividing this sum as before into two parts, say 31 and 74, 

seven numbers are found to sum 74, say, 6+8+10+11+12+134+14 

Fig. 667. Fig. 668. 

=/4, and these numbers are written around the inside heptagon 

as shown in Fig. 662. Adding them together in pairs, their sums are 

written in a column and treated as shown below, thus determining 

the numbers for the points of Fig. 662. 

144°13=27 14+274+2=30 

10+11=21 2+21+7=30 

64+12=18 7+18+5=30 

8+14=22 5+224+3=30 

1ia0=23 342344 =30 

11+ 6=17 44174+9=30 

12+ 8=20 9+20+1=30 
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The next larger star has eight points and it can be made in 
two different ways, viz., By arranging the numbers in one con- 
tinuous line throughout as in stars already described having an odd 
number of points, or by making it of two interlocking squares. 
The latter form of this star may be constructed by first making a 
4° with one extra cell on each of its four sdes, as shown in Fig. 663. 

A series of sixteen numbers is then selected which will meet the 

conditions shown by italics a, a, a, and J, b, b, in the Heures 1. €., 

all differences between row numbers must be the same, and also all 

differences between column numbers, but the two differences must 

be unlike. The constant (S) of the series when the latter is ar- 

ranged as a magic 4” must also be some multiple of 4. The series 

is then put into magic formation by the old and well-known rule 
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for making magic squares of the 4th order. The central De 

square is now eliminated and the numbers. therein transferred to 

the four extra outside cells as indicated by the letters A. B. C. D. 

Finally all numbers are transferred in their order into an eight- 

pointed star. 

Fig. 674. Fig. 675. 

A series of numbers meeting the required conditions is shown 

in Fig. 664, and its arrangement according to the above rules is given 

in Fig. 665, the numbers in which, transferred to an eight-pointed 

star, being shown in Fig. 666, S=40. The 4° magic arrangement of 
the series must be made in accordance with Fig. 665, for other magic 
arrangements will often fail to work out, and will never do so in 
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accordance with Fig. 663. The above instructions cover the simplest 
method of making this form of. star but it can be constructed in 
many other different ways and also with constants which are not 

evenly divisible by 4. 

Turning now to the construction of the eight-pointed star by 
the continuous line method, inspection of Figs. 666 and 667 will show 
that although the number of points is the same in each star yet the 

arrangement of numbers in their relation to one another in the 

eight quartets is entirely different. 

Fig. 676. 

Choosing a constant of 39 for an example: 

(39x 8) /2=150=sumi of series. 

This sum is now divided into two parts, say 36 and 120. The sum 

of the first eight digits being 36, they may be placed around the 

inside octagon so that the sum of each opposite pair of numbers=9, - 

as shown in Fig. 667. Adding them together in pairs, as indicated 

by the connecting lines in the figure, their sums are written in a 

column and treated as before explained, thus giving the correct 

numbers to be arranged around the points of the star Fig. 667. 

These rules for making magic stars of all orders are so simple 

that further examples are deemed unnecessary. Nine-, ten-, eleven-, 

and twelve-pointed stars, made by the methods described, are shown 
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respectively in Figs. 668, 669, 670 and 671. Several other diagrams 

of ingenious and more intricate star patterns made by Mr. Morton 

are also appended for the interest of the reader in Figs. 672 to 681 

inclusive. 
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Fig. 670. 
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Fig. 681. 
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MAGIC OCTAHEDROIDS. 

MAGIC IN THE FOURTH DIMENSION. 

Definition of terms: Row is a general term; rank denotes a hori- 
zontal right-to-left row; file a row from front to back; and column 

a vertical row in a cube—not used of any horizontal dimension. 

F nm? numbers of a given series can be grouped so as to form a 

magic square and m such squares be so placed as to constitute a 

magic cube, why may we not go a step further and group cubes 

in relations of the fourth dimension? In a magic square containing 

: a ny er).. : 
the natural series 1. ..1” the summation is oe. in a magic cube 

n(n8--T). 
with the series I... it is ; and in an analogous fourth- 

n(nt-Ltr) 
ce dimension construction it naturally will be 

With this idea in mind I have made some experiments, and the 

results are interesting. The analogy with squares and cubes is not 

perfect, for rows of numbers can be arranged side by side to repre- 

sent a visible square, squares can be piled one upon another to make 

a visible cube, but cubes cannot be so combined in drawing as to 

picture to the eye their higher relations. My expectation a priori 

was that some connection or relation, probably through some form 

of diagonal-of-diagonal, would be found to exist between the cubes 

containing the n* terms of a series. This particular feature did ap- 

pear in the cases where n was odd. Here is how it worked out: 

I. When n is odd. 

1. Let w==3, then S=123.—The natural series 1...81 was di- 
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vided into three sub-series such that the sum of each would be 

one-third the sum of the whole. In dealing with any such series 

when 1 is odd there will be m sub-series, each starting with one of 

the first 1 numbers, and the difference between successive terms will 

be n-+1, except after a multiple of 7, when the difference is 1. In 

the present case the three sub-series begin respectively with 1, 2, 3, 

and the first is I 5 9 10 14 18 I9 23 27 28 32 36 37 41 45 46 50 54 

55 59 63 64 68 72 73 77 81. These numbers were arranged in 

three squares constituting a magic cube, and the row of squares 

so formed was flanked on right and left by similar rows formed from 

the other two sub-series (see Fig. 682). 

I II Ill 

| 2]2]a] 5] a] 
alm alalaelalale 
es] 6 [el 23 |] 353 13 
ale SESE 
atatatetata saat 
25] 36) 7a] |) [os 
co] 7 fer] 27] [9] [5] 7 
|| 6 || se 9] 7 3 fo 
a ifs] « [a] ==] | 

Fig. 682. (3*) 

5 

It is not easy—perhaps it is not possible—to make an abso- 

lutely perfect cube of 3. These are not perfect, yet they have many 

striking features. Taking the three cubes separately we find that 

in each all the “straight” dimensions—rank, file and column—have 

the proper footing, 123. In the middle cube there are two plane 

diagonals having the same summation, and in cubes I and III one 

each. In cube II four cubic diagonals and four diagonals of vertical 

squares are correct; I and III each have one cubic diagonal and one 
vertical-square diagonal. 

So much for the original cubes; now for some combinations. 
The three squares on the diagonal running down from left to right 
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will make a magic cube with rank, file, column, cubic diagonals, 
two plane diagonals and four vertical-square diagonals (37 in all) 
correct. ‘Two other cubes can be formed by starting with the top 
squares of II and III respectively and following the “broken diag- 
onals” running downward to the right. In each of these S occurs 
at least 28 times (in 9 ranks, 9 files, 9 columns and one cubic diag- 

I Il U IV Vv 
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onal). Various other combinations may be found by taking the 

squares together in horizontal rows and noting how some columns 

and assorted diagonals have the proper summation, but the most 

important and significant are those already pointed out. In all the 

sum 123 occurs over 200 times in this small figure. 

One most interesting fact remains to be noticed. While the 
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three cubes were constructed separately and independently the figure 

formed by combining them is an absolutely perfect square of 9, with 

a summation of 369 in rank, file and corner diagonal (besides all 

“broken” diagonals running downward to the right), and a perfect 

balancing of complementary numbers about the center. Any such 

pair, taken with the central number 41, gives us the familiar sum 123, 

Ill IV 

and this serves to bind the whole together in a remarkable manner. 

I I 

252| 6 

2441233 

coal 

189| 73 |183 [182/76 | 8r 175 \174/ 84 [168) 90 | ot [165 

72 180 78 | 79 |177}172| 86 | 87 | 169] 93 | 163/162) 96 

113/133 |123 

Fig. 684. (44) 

2. Let n= 5, then S= 1565.—In Fig. 683 is represented a group 

of 5-cubes each made up of the numbers in a sub-series of the nat- 

ural series I...625. In accordance with the principle stated in a pre- 

vious paragraph the central sub-series is 1 7 13 19 25 26 32... 625, 

and the other four can easily be discovered by inspection. Each of 

the twenty-five small squares has the summation 1565 in rank, file, 

corner diagonal and broken diagonals, twenty times altogether in 

each square, or 500 times for all. 
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Combining the five squares in col. I we have a cube in which 
all the 75 “straight” rows (rank, file and vertical column), all the 
horizontal diagonals and three of the four cubic diagonals foot up 
1565. In cube III all the cubic diagonals are correct. Each cube 
also has seven vertical-square diagonals with the same summation. 
Taking together the squares in horizontal rows we find certain 
diagonals having the same sum, but the columns do not. The five 
squares in either diagonal of the large square, however, combine to 

produce almost perfect cubes, with rank, file, column and cubic 

diagonals all correct, and many diagonals of vertical squares. 

A still more remarkable fact is that the squares in the broken 

diagonals running in either direction also combine to produce cubes 

as nearly perfect as those first considered. Indeed, the great square 

seems to be an enlarged copy of the small squares, and where the 

cells in the small ones unite to produce S the corresponding squares 

in the large figure unite to produce cubes more or less perfect. 

Many other combinations are discoverable, but these are sufficient 

to illustrate the principle, and show the interrelations of the cubes 

and their constituent squares. The summation 1565 occurs in this 

figure not less than 1400 times. 

The plane figure containing the five cubes (or twenty-five 

squares) is itself a perfect square with a summation of 7825 

for every rank, file, corner or broken diagonal. Furthermore all 

complementary pairs are balanced about the center, as in Fig. 682. 

Any square group of four, nine or sixteen of the small squares is 

magic, and if the group of nine is taken at the center it is “perfect.” 

It is worthy of notice that all the powers of m above the first lie in 

the middle rank of squares, and that all other multiples of are 

grouped in regular relations in the other ranks and have the same 

grouping in all the squares of any given rank. The same is true 

of the figure illustrating 7*, which is to be considered next. 

3. Let n=7, then S=8407.—This is so similar in all its prop- 

erties to the 5-construction just discussed that it hardly needs sep- 

arate description. It is more nearly perfect in all its parts than the 

5‘, having a larger proportion of its vertical-square diagonals cor- 

rect. Any square group of four, nine, sixteen, twenty-five or thirty . 
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six small squares is magic, and if the group of nine or twenty-five 

be taken at the center of the figure it is “perfect.” The grouping 

of multiples and powers of n is very similar to that already described 

LOrmeS 

II. When n is even. 

I. Let n==4, then S=514.—The numbers may be arranged in 
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Fig. 686, 84, First Part (One cube written). 

either of two ways. If we take the diagram for the 4-cube as 

given in Chapter II, page 78, and simply extend it to cover 

the larger numbers involved we shall have a group of four cubes 

in which all the “straight” dimensions have S==514, but no diag- 
onals except the four cubic diagonals. Each horizontal row of 
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Squares will produce a cube having exactly the same properties as 
those in the four vertical rows. If the four squares in either diag- 
onal of the figure be piled together neither vertical columns nor 
cubic diagonals will have the correct summation, but all the diagonals 
of vertical squares in either direction will. Regarding the whole 

group of sixteen squares as a plane square we find it magic, having 
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bd on 

w& 

the summation 2056 in every rank, file and corner diagonal, 1028 

in each half-rank or half-file, and 514 in each quarter-rank or 

quarter-file. Furthermore all complementary pairs are balanced about 

the center. 

The alternative arrangement shown in Fig. 684 makes each of the 
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small squares perfect in itself, with every rank, file and corner diag- 

onal footing up 514 and complementary pairs balanced about the | 

center. As in the other arrangement the squares in each vertical 

or horizontal row combine to make cubes whose “straight” dimen- 

sions all have the right summation. In addition the new form has 

the two plane diagonals of each original square (eight for each 

cube), but sacrifices the four cubic diagonals in each cube. In lieu 

of these we find a complete set of “bent diagonals” (“Franklin”) 

like those described for the magic cube of six in Chapter IX. 

If the four squares in either diagonal of the large figure be 

piled up it will be found that neither cubic diagonal nor vertical 

column is correct, but that all diagonals of vertical squares facing 

toward front or back are. Taken as a plane figure the whole group 

makes up a magic square of 16 with the summation 2056 in every 

rank, file or corner diagonal, half that summation in half of each 

of those dimensions, and one-fourth of it in each quarter dimension. 

2. Let n==6, then S=3891.—With the natural series 1...1296. 

squares were constructed which combined to produce the six magic 

cubes of six indicated by the Roman numerals in Figure 685. 

These have all the characteristics of the 6-cube described in Chap- 

ter IX—108 “straight” rows, 12 plane diagonals and. 25 “bent” 

diagonals in each cube, with the addition of 32 vertical-square 

diagonals if the squares are piled in a certain order. A seventh 

cube with the same features is made by combining the squares in 

the lowest horizontal row—i. e., the bottom squares of the num- 

bered cubes. The feature of the cubic bent diagonals is found on 

combining any three of the small squares, no matter in what order 

they are taken. In view of the recent discussion of this Cube it seems 

unnecessary to give any further account of it now. 

The whole figure, made up as it is of thirty-six magic squares, 

is itself a magic square of 36 with the proper summation (23346) 

for every rank, file and corner diagonal, and the corresponding 

fractional part of that for each half, third or sixth of those dimen- 
sions. Any square group of four, nine, sixteen or twenty-five of the 

small squares will be magic in all its dimensions. 
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3. Let n=8, then S==16388.—The numbers 1.. .4096 may be 
arranged in several different ways. If the diagrams in Chap- 
‘ter Il be adopted we have a group of eight cubes in which 
rank, file, column and cubic diagonal are correct (and in which 
the halves of these dimensions have the half summation), but all 

plane diagonals are irregular. If the plan be adopted of construct- 

ing the small squares of complementary couplets, as in the 6-cube, 

the plane diagonals are equalized at the cost of certain other features. 

I have used therefore a plan which combines to some extent the ad- 

vantages of both the others. 

It will be noticed that each of the small squares in Fig. 686 is 

perfect in that it has the summation 16388 for rank, file and corner 

diagonal (also for broken diagonals if each of the separated parts 

contain two, four or six—not an odd number of cells), and in balan- 

cing complementary couplets. When the eight squares are piled 

one upon the other a cube results in which rank, file, column, the 

plane diagonals of each ‘horizontal square, the four ordinary cubic 

diagonals and 32 cubic bent diagonals all have S=16388. What is 

still more remarkable, the half of each of the “straight” dimensions 

and of each cubic diagonal has half that sum. Indeed this cube of 

eight can be sliced into eight cubes of 4 in each of which every rank, 

file, column and cubic diagonal has the footing 8194; and each of 

these 4-cubes can be subdivided into eight tiny 2-cubes in each of 

which the eight numbers foot up 16388. 

So much for the features of the single cube here presented. 

As a matter of fact only the one cube has actually been written out. 

The plan of its construction, however, is so simple and the relations 

of numbers so uniform in the powers of 8 that it was easy to in- 

vestigate the properties of the whole 8* scheme without having the 

squares actually before me. I give here the initial number of each 

of the eight squares in each of the eight cubes, leaving it for some 

one possessed of more leisure to write them all out and verify my 

statements as to the intercubical features. It should be remembered 

that in each square the number diagonally opposite the one, here 

given is its complement, i. e., the number which added to it will 

give the sum 4097. 
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Each of the sixty-four numbers given above will be at the 

upper left-hand corner of a square and its complement at the lower 

right-hand corner. The footings given are for these initial numbers, 

but the arrangement of numbers in the squares is such that the 

footing will be the same for every one of the sixty-four columns 

in each cube. If the numbers in each horizontal line of the table 

above be added they will be found to have the same sum: conse- 

quently the squares headed by them must make a cube as nearly 

perfect as the example given in Fig. 686, which is cube I of the table 

above. But the sum of half the numbers in each_line is half of 

16388, and hencé each of the eight cubes formed by taking the 

squares in the horizontal rows is capable of subdivision into 4-cubes 

and 2-cubes, like our original cube. We thus have sixteen cubes, each 

with the characteristics described for the one presented in Fig. 686. 

If we pile the squares lying in the diagonal of our great square 

(starting with 1, 289, etc., or 2304, 2528, etc.) we find that its col- 

umns and cubic diagonals are not correct; but all the ‘diagonals of 

its vertical squares are so, and even here the remarkable feature of 

the half-dimension persists. 

Of course there is nothing to prevent one’s going still further 

and examining constructions involving the fifth or even higher pow- 

ers, but the utility of such research may well be doubted. The purpose 

of this article is to suggest in sketch rather than to discuss exhaus- 

tively an interesting field of study for some one who may have time 

to develop it. H. M. K. 
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FOUR-FOLD MAGICS.* 

A magic square has two magic directions parallel to its sides 
through any cell—a row and a column; a magic cube has three magic 
directions parallel to its edges, a row, a column and a “line,” the latter 
being measured at right angles to the paper-plane. By analogy, 
if for no other reason, a magic 4-fold should have four magic direc- 
tions parallel to its linear edges, a row, a column, a line, and an “i.” 

{The 7 is a convenient abbreviation for the imaginary direction, 

after the symbol i — \/—1.] It is quite easy to determine by analogy 

how the imaginary direction is to be taken. If we look at a cube, 

set Out as sO many square sections on a plane, we see that the direc- 

tions we have chosen to call rows and columns are shown in the 

square sections, and the third direction along a line is found by 

taking any cell in the first square plate, the similarly situated cell 

in the second plate, then that in the third and so on. In an octra- 

hedroid the rows, columns and lines are given by the several cubical 

sections, viewed as solids, while the fourth or imaginary direction 

is found by starting at any cell in the first cube, passing to the cor- 

responding cell of the second cube, then to that of the third, and 

so on. 

If we denote each of the nine subsidiaries of order 3 in Fig. 687 

by the number in its central cell, and take the three squares 45, I, 

77, in that order, to form the plates of a first cube; 73, 41, 9 to form 

a second cube, and 5, 81, 37 for a third cube, we get an associated 

octahedroid, which is magic along the four directions parallel to its 

edges and on its 8 central hyperdiagonals. We find the magic sum 

* The subject has been treated before in: 

Frost (A. H.), “The Properties of Nasik Cubes,” Quarterly Journal of 

Mathematics, London, 1878, p. 93. 

“C. P.” (C. Planck), “Magic Squares, Cubes, etc.,” The English Mechanic, 

London, March 16, 1888. ; 

Arnoux (Gabriel), Arithmétique graphique, Paris, 1804, Gauthier- Villars 

et Fils. ; 

ry of Path Nasiks, 1905. Printed for private circu- 

ee ae ie ot hs Pe Museum, the Bodleian, Oxford, and the 

University Library, Cambridge. 
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on g rows, 9 columns and 18 diagonals, the nine subsidiaries equally 

weighted and magic in rows and columns, and further the square is 

g-ply, that is, the nine numbers in any square scction of order 3 

cive the magic sum of the great square. 

It will be convenient here to turn aside and examine the evo- 

lution of the Nasik idea and the general analogy between the figures 

of various dimensions in order that we may determine how the Nasik 

concept ought to be expanded when we apply it in the higher dimen- 

sions. This method of treatment is suggested by Professor King- 

perhaps it is not possible—to ery’s remark, p. 352, 

make an absolutely perfect cube of 3.” If we insist on magic central 

78 | 16, 

37 | 59. a eee 

8 ea Pa WP? 

79 11 | 24 | 

63 | 64) 5 

= 35 

34 74 [15 | ES) 

23 = 55] 68 Si 

66 | 4 | 53 | 30 

diagonals we know that, in the restricted sense, there is only one 

° 

magic square of order 3, but if we reckon reflections and reversions 

as different there are 8. If we insist on magic central great diag- - 

onals in the cube, as by analogy we ought to do, then, in the re- 

stricted sense, there are just 4 magic cubes of order 3. But each 

of these can be placed on any one of six bases and then viewed from 

any one of four sides, and each view thus obtained can be duplicated 

by reflection. In the extended sense, therefore, there are 192 magic 

cubes of order 3. None of these, however, has the least claim to 

be considered “perfect.” This last term has been used with several 

different meanings by various writers on the subject. From the 

present writer’s point of view the Nasik idea, as presently to be de- 
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veloped, ought to stand pre-eminent; next in importance comes 
the ply property, then the adornment of magic subsidiaries, with the 
properties of association, bent diagonals of Franklin, etc., etc., tak- 
ing subordinate places. 

The lattice idea certainly goes back to prehistoric time, and 
what we now call the rows and columns of a rectangular lattice 

first appealed to man because they disclose contiguous rectilinear 

series of cells, that is sets of cells, whose centers are in a straight 

line, and each of which has linear contact with the next. It must 

soon have been noticed that two other series exist in every square, 

which fulfil the same conditions, only now the contact is punctate 

instead of linear. They are what we call the central diagonals. It 

was not until the congruent nature of the problem was realized that 

it became apparent that a square lattice has as many diagonals as 

rows and columns together. Yet the ancient Hindus certainly recog- 

nized this congruent feature. The eccentric diagonals have been 

called “broken diagonals,” but they are really not broken if we re- 

member that we tacitly assume all space of the dimensions under 

consideration saturated with contiguous replicas of the figure before 

us, cells similarly situated in the several replicas being considered 

identical. A. H. Frost* nearly 50 years ago invented the term “Nasik” * 

to embrace that species of square which shows magic summations 

on all its contiguovs rectilinear series of cells, and later extended 

the idea by analogy to cubes,t and with less success to a figure in 

four dimensions. If the Nasik criterion be applied to 3-dimensional 

magics what does it require? We must have 3 magic directions 

through any cell parallel to the edges, (planar contact), 6 such 

directions in the diagonals of square sections parallel to the faces 

(linear contact), and 4 directions parallel to the great diagonals of 

the cube (point contact), a total of 13 magic directions through 

every cell. It has long been known that the smallest square which 

can be nasik is of order 4, or if the square is to be associated, (that 

* Quarterly Journal of Mathematics, London, 1865, and 1878, pp. 34 and 93. 

+ The idea of the crude magic cube is, of course, much older: Fermat 

gives a 4° in his letter to Mersenne of the 1st of April, 1640. CEuvres de 

Fermat, Vol. II, p. 101. 
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is with every pair of complementary numbers occupying cells which 

are equally displaced from the center of the figure in opposite di- 

rections), then the smallest Nasik order is 5. Frost stated definitely* 

that in the case of a cube the smallest Nasik order is 9; Arnoux? was 

of opinion that it would be 8, though he failed to construct such a ° 

magic. It is only quite recently? that the present writer has shown 

that the smallest Nasik order in k dimensions is always 2", (or 

2k if we require association). 

It is not difficult to perceive that if we push the Nasik analogy 

to higher dimensions the number of magic directions through any 

cell of a k-fold must be $(3% 1), for we require magic directions 

from every cell through each cell of the surrounding little k-fold 

of order 3. Ina 4-fold Nasik, therefore, there are 40 contiguous 

rectilinear summations through any cell. But how are we to de- 

termine these 40 directions and what names are we to assign to the 

magic figures in the 4th and higher dimensions? By far the best 

nomenciature for the latter purpose is that invented by Stringham,$ 

who calJled the regular m-dimensional figure, which has 1 (m—1)- 

dimensional boundaries, an m-fold n-hedroid. Thus the square is 

a 2-fold tetrahedroid (tetragon), the cube a 3-fold hexahedroid 

(hexahedron) ; then come the 4-fold octahedroid, the 5-fold deca- 

hedroid, and so on. Of course the 2-fold octahedroid is the plane 

octagon, the 3-fold tetrahedroid the solid tetrahedron; but since the 

regular figure in k dimensions which is analogous to the square and 

cube has always 2k (k—1)-dimensional boundaries—is in fact a 

k-fold 2k-hedroid—the terms octahedroid, decahedroid, etc., as ap- 

plied to magics, are without ambiguity, and may be appropriately 

used for magics in 4, 5, etc. dimensions, while retaining the familiar 

“square,” “cube,” for the lower dimensions. 

To obtain a complete knowledge of these figures, requires a 

study of analytical geometry of the 4th and higher dimensions, but, 

by analogy, on first principles, we can obtain sufficient for our pur- 

pose. If we had only a linear one-dimensional space at command 

* Quarterly Journal, Vol. XV, p. 110. 

7 Arithmétique graphique, Paris, 1894, p. 140. 
£ Theory of Path Nasiks, 1905. 

§ American Journal of Mathematics, Vol. I1I, 1880. 
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we could represent a square of order n in two ways, (“aspects”), 
either by laying the m rows, in order, along our Hie dimension, 
or by dealing similarly with the n columns. In the first aspect, by 
rows, the cells which form any column cannot appear as contiguous, 

thoug 7 j re i gh they actually are so when we represent the figure as a square 

20 42 | 61 | 

72 1 | 50| 

5+ || 

27| 37] 59 

67} 8 | 48 

EE] 
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68| 9 | 46 
19| 41] 63 

32| 81| 

Fig. 689. V-aspect. Fig. 690. H-aspect. 

on a plane. Similarly we can represent a cube on a plane in three 

aspects. Suppose the paper-plane is placed vertically before us and 

the cube is represented by m squares on that plane (P-plane ‘aspect). 

We get a second aspect by taking, in order, the first column of each 

square to fori the first square of the new aspect, all the second col- 
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umns, in order, to form the second square of the new aspect, and so 

on (V-plane aspect). We obtain a third aspect by dealing simi- 

larly with the rows (H-plane aspect). Here the “lines,” which 

appear as contiguous cells in the V- or H-plane aspects do not so 

appear in the P-plane aspect, though they actually are contiguous 

when we examine the cube as a solid in three dimensions. Now 

consider an octahedroid represented by 1 cubes in a space of three 

dimensions. We get a second aspect by taking the m anterior, vertical 

square plates of each cube, in order, to form a first new cube; the 

1 plates immediately behind the anterior plate in each cube to form 

a second new cube, and so on. Evidently we obtain a third aspect, 

in like manner, by slicing each cube into vertical, antero-posterior 

plates, and a fourth aspect by using the horizontal plates. Carrying 

on the same reasoning, it becomes clear that we can represent a 

k-fold of order n, in kR—1 dimensions, by » (k—1)-folds, in k dif- 

ferent aspects. Thus we can represent a 5-fold decahedroid of 

order n, in 4-dimensional space, by 1 4-fold octahedroids, and this in 

5 different ways or aspects. 

Return now to Fig. 687 and the rule which follows it, for form- 

ing from it the magic octahedroid of order 3. If we decide to 

represent the three cubic sections of the octahedroid.by successive - 

columns of squares we get Fig. 688. 

If we obtain a second aspect by using the square plates of the 

paper-plane, as explained above, we find that this is equivalent 

to taking the successive rows of squares from Fig. 688 to form our 

three cubes, instead of taking the columns of squares. Thus the 

presentation plane shows two different aspects of an- octahedroid; 

this is due to the fact that the fourth dimension is the square of 

the second. We may call these aspects P,- and P,-aspects. The 

aspect obtained by using antero-posterior vertical planes is shown in 

Fig. 689, that from horizontal planes in Fig.690. We may call these 

the V- and H-aspects. If we use the rows of squares in Figs. 689 

or 690 we get correct representations of the octahedroid, but these 
are not new aspects, they are merely repetitions of P,, for they give 

new views of the same three cubes as shown in P,. In the same 

way, if we turned all the P-plane plates of a cube upside down 
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we should not call that’a new aspect of the ciibe. The aspects 
P,, V, H can be obtained from P, by turning the octahedroid as a 
whole in 4-dimensional space, just as the V-plane and H-plane 
aspects of a cube can be obtained from the P-plane aspect by 

turning the cube in 3-dimensional space. Fig. 699, above, is Fig. 
688 turned through a right angle about the plane of ry; we can 

turn about a plane in 4 dimensions just as we turn about a 

straight line in 3 dimensions or about a point in 2 dimensions. It 

will be noticed that in the four aspects each of the 4 directions 

parallel to an edge becomes in turn imaginary, so that it cannot be 

made to appear as a series of contiguous cells in 3-dimensional 

space; yet if we had a 4-dimensional space at command, these four 

directions could all be made to appear as‘series of contiguous cells. 

There is one point, however, which must not: be overlooked. When 

we represent a cube as so many squares, the rows and columns ap- 

pear as little squares having linear contact, but actually, in the 

cube, the cells are all cubelets having planar contact. Similarly, in 

an octahedroid represented as so many cubes the rows and col- 

umns appear as cubelets having planar contact, but in the octa- 

hedroid the cells are really little octahedroids having solid, 3-dimen- 

sional contact. 

When we examine the above octahedroid (Figs. 688-690) in all 

its aspects we see that there are through every cell 4 different direc- 

tions parallel to the edges, 12 directions parallel to the diagonals 

of the square faces, and 16 directions parallel to the great diagonals 

of the several cubical sections. There remain for consideration the 

hyperdiagonals, which bear to the octahedroid the same relation that 

the great diagonals bear to a cube. If we represent a cube by squares 

on a plane we can obtain the great diagonals by starting at any 

‘corner cell of an outside plate, then passing to the next cell of the 

corresponding diagonal of the succeeding plate, and so on. Simi- 

larly we obtain the hyperdiagonals of the octahedroid by starting 

from any corner cell of an outside cube, passing to the next cell 

on the corresponding great diagonal of the succeeding cube, and so 

on. Evidently there are 8 central hyperdiagonals, for we can start 
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at any one of the 8 corners of one outside cube and end at the oppo- 

site corner of the other outside cube. There are therefore, through 

any cell, 8 different directions parallel to the central hyperdiagonals. 

With the directions already enumerated this makes a total of 40 

directions through each cell and agrees with the result already stated.* 

Evidently the number of k-dimensional diagonals of a k-fold is 2°—, 

and if the analogy with the magic square is to be carried through 

then all the central k-dimensional diagonals of a k-fold ought always 

to be magic. 

The smallest octahedroid which can have all these 40 directions 

magic is 16%, and the writer has given one of the 256 square plates 

of this magic and a general formula by which the number occupying 

any specified cell can be-determined. But it will be interesting to 

determine how nearly we can approach this ideal in the lower orders. 

The octahedroid of order 3 can be but crude, and practically Fig. 688 

cannot be improved upon. All rows, columns, lines, and “7’’s are 

magic, and likewise the 8 central hyper-diagonals. Of course, since 

the figure is associated, all central rectilinear paths are magic, but 

this is of little account and other asymmetrical magic diagonal sum- 

mations are purely accidental and therefore negligible. 

Turning to the next odd order, 5: Professor Kingery’s Fig. 683 

is not a magic octahedroid as it stands, but a magic can be obtained 

from it by taking the diagonals of subsidiary squares to form the 

5 cubes. Denoting each subsidiary by the number in its central ‘cell, 

we may use 602, 41, 210, etc. for the first cube; 291, 460 etc. for 

the second cube; 85, 149, etc. for the middle cube, etc., etc.: But 

few of the plane diagonals through any cell of this octahedroid are 

magic. In fact no octahedroid of lower order than 8 can have all 

its plain diagonals magic; but by sacrificing this property we can 

obtain a 5* with many more magic properties than the above. 

In Fig. 691 the great square is magic, Nasik and 25-ply: the 25 

subsidiaries are purposely not Nasik, but they are all magic in rows 

* If we call the diagonals in square sections parallel to faces 2-dimensional, 
those parallel to the great diagonals of cubical sections 3-dimensional, etc., etc., 
then the number of m-dimensional diagonals of a k-fold is 2™—1k!/m!(k—m)! 
In fact the number required is the (m+1)th term of the expansion of 
Y2(1+2)*. It will be noticed that this reckons rows, columns etc. as “diag- 
onals of one dimension.” 
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and columns. If we take-up the subsidiaries in the way just de- 

scribed, viz., 513, 221, etc., for the first cube; 205, 413, etc., for the 

second cube, and so on, we get a 5*, which has 20 contiguous recti- 

linear summations through any cell, viz., the 4 directions parallel 

to the edges and the whole of the 16 three-dimensional diagonals 

parallel to the great diagonals of any cubical section. If the reader 
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will write out the four aspects of the octahedroid, in the way already 

explained, he will be able to verify this statement. As an example, 

the 20 summations through the cell containing the number 325, 

which lies in the first plate of the first cube of the P,-aspect, are here 

shown: 
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é CUBICAL DIAGONALS 
ee ee we a, 
= v4 s 

Sig EOuwer wae | P,-ASPECT | P2-ASPECT | V-ASPECT | H ASPECT 

325 325 325 325/325 325 325 325/325 325 325 325/325 325 325 325/325 325 325 325 
513. 8 508 512/534 388 607 3/538 392 611 7/533 387 608 4/413 103 507 509 
201 466 216 204|143 576 169 456/126 589 152 469|141 579 166 458|501 406 219 218 

419 154 404 416/477 44 451 164/494 31 468 151|479 41 454 162|119 214 401 402 
107 612 112 108| 86 232 13 617| 82 228 9 613 | 87 233 12 616/207 517 113 I11 

Since there are 20 magic summations through each of the 625 

cells and each summation involves 5 cells, the total number of dif- 

ferent symmetrical magic summations in this octahedroid is 2500. 

This does not include the 8 central hyperdiagonals, which are also 

magic, for this is not a symmetrical property since all the hyper- 

diagonals are not magic. 

The next odd order, 7, was the-one which Frost attacked. 

Glass models of his 7 cubes were for many years to be seen at the 

South Kensington Museum, London, and possibly are still there. 

He does not appear to have completely grasped the analogy between 

magics in 3 and 4 dimensions, and from the account he gives in 

The Quarterly Journal, he evidently assumed that the figure was 

magic on all its plane diagonals. Actually it is magic on all plane 

diagonals only in the P-aspect; in the other 3 aspects it is Nasik in 

one set of planes but only semi-Nasik in the other two sets of planes, 

therefore of the 12 plane diagonals through any cell of the octa- 

hedroid only 9 are magic.* Frost obtained his figure by direct 

application of the method of paths; the present writer using the 

method of formative square has obtained an example with one ad- 

ditional plane magic diagonal. It is shown as a great square of order 

49, magic on its 49 rows, 49 columns and 98 diagonals, and 49-ply, that 

is any square bunch of 49 numbers gives the same sum as a row 

or column. The 49 subsidiaries are equally weighted Nasiks, magic 

on their 7 rows, 7 columns and 14 diagonals. If the subsidiaries be 

taken up along the Indian paths, as in the previous examples, we 

get 7 cubes forming an octahedroid of order 7. This is magic on 

the 4 directions parallel to the edges, is completely plane Nasik in 

* Probably the reader will have alrealy noticed that although there are 4 
aspects, and 6 plane diagonals appear in each aspect, yet there are only 12 
plane diagonals in all, since, with this method of enumeration, each diagonal 
occurs twice. 
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the P, and P,-aspects, and in the other two aspects it is Nasik in two 
sets of planes and crude in the third set. Therefore of the 12 plane 
diagonals through any cell to are magic. It is practically certain 
that we can go no further in this direction with this order, but by 
giving up the magic plane diagonals we can, as with 5* above, obtain 
a larger number of magic summations on the higher diagonals. 

When we consider the even orders we find those 2 = (mod 4) 

of little interest. The powerful methods used for the other orders 

are now useless if we insist on using consecutive numbers: we must 

employ other methods. The best methods here are either to use an 

extension of Thompson’s method of pseudo-cubes, as employed by 

Mr. Worthington in his construction of 6° (pp. 201-206),* or, best 

of all, to use the method of reversions. 

With orders = o(mod 4) we can give a greater number of ornate 

features than with any other orders. We quote one example be- 

low (Fig. 692). 

The columns of Fig. 692 give the 4 cubes of an octahedroid of 

order 4, which is crude in plane diagonals, but is magic on every 

other contiguous rectilinear path, it has therefore 28 such paths 

through each cell. The 28 magic paths through the cell containing 

the number 155 are displayed below. 

CUBICAL DIAGONALS 

= —= 

: | P4-ASPECT | P2-ASPECT | V-ASPFCT | H-ASPECT 
2 
° 
eS) 

155 155 155 155|155 155 155 155|155 155 155 155|155 155 155 155|155 155 155 155 
38 7o 98 101} 2 50 242 194| 5 53 245 197| 77 125 113 65] 36 33 225 228 
QI 171 I51 154/103 103 103 103|106 106 106 106/166 166 166 166] 86 86 86 86 

230 118 110 104/254 206 14 62|248 200 8 56/116 68 80 128/237 240 48 45 

OLUMN 

HYPERDIAGONALS 

155 155 155 155 155 155 155 155 
256 208 16 64 253° 205 1361 

102 102 102 102 102 I02 102 102 

| = 49 241 193 4 52 244 196] 

But this does not exhaust the magic properties, for this figure 

is 4-ply in every plane section parallel to any face of the octahedroid. 

*It was by this method that Firth in the 80's constructed what was, almost 

certainly, the first correct magic cube of order 6. Mr. Worthington’s intro- 

duction of magic central diagonals on all the faces is new. Though, of course, 

not a symmetrical summation, thts is a very pleasing feature. 
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If the reader will examine the figure in its four aspects he will find 

that 6 such planes can be drawn through any cell, and since a given 

number is a member of four different 4-ply bundles in each plane, 

it follows that each number is a member of 24 different bundles. 

If we add the 28 rectilinear summations through any cell we see 
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that each of the 256 numbers takes part in 52 different summations. 

The total number of different magic summations in the octahedroid 

is therefore 256 x 52: = 3328. The six planes parallel to the faces 

through 155 are shown in I’ig. 693, and from them the: 24 different 
bundles in which 155 is involved can be at once determined. 
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The reader might object that the border cells of a square section 
cannot be involved in 4 bundles of that section; but this would 
be to overlook the congruent property. The number 107, which 
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2s| so 0fs 
axes 00 108 }151 }105 

occupies a corner cell of the first section given above is contained in 

the following bundles: 

251 107|214 

182| Ir 

134 134 s9| | 
107| 1107)214| |203/182). | 22 

It is noticeable that the four corner cells of a square form one of its 

4-ply bundles. 

It would have been desirable to indicate the methods by which 

the above examples have been constructed, but exigencies of space 

forbid. The four orders dealt with, 3, 5, 7, 4, were all obtained in 

different ways. Fig. 692 was constructed by direct application, in 

four dimensions, of the method of paths; in fact, it is the octahedroid 

oS HEP A 

2212 

2122 

2 Sess 4, 

The whole of its magic properties may be deduced by examination 

of the determinant and its adjoint, without any reference to the 

constructed figure. There is therefore nothing empirical about this 

method. 
Gar 
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ORNATE MAGIC SQUARES: 

GENERAL RULE FOR CONSTRUCTING ORNATE MAGIC SQUARES 

OF ORDERS =0 (mod 4). 

fs a square lattice of order 4m and draw heavy lines at 

every fourth vertical bar and also at every fourth horizontal bar, 

thus dividing the lattice into m? subsquares of order 4. The “period” 

consists of the 4m natural numbers 1, 2, 3.... 4m. Choose from 

these any two pairs of complementary numbers, that is, pairs whose 

sum is 41+1 and arrange these four numbers, four times repeated, 

as in a Jaina square (first type) in the left-hand square of the top 

row of subsquares in the large lattice. It is essential that the Jaina 

pattern shall contain only one complementary couplet in each of 

its four columns, i. e., ifthe two pairs are a, a, and b, b,, every 

column must consist entirely of a’s, or entirely of b’s. The first 

Jaina type can be obtained by using the paths (1, 2) (2, 1) and the 

order a, b, a, b, four times repeated. This gives the square shown. 

in Fig. 694, which fulfils the conditions. Proceed in the same way 

with each of the m subsquares in the top row, using a diffcrent 

pair of complementaries:in each subsquare. Since the period 1, 

2, 3.... 4m contains 2m complementary pairs and two pairs are 

used for each subsquare, it follows that when the top row of sub- 

squares is filled up, all the 4m numbers will have been used. 

Now fill all the remaining rows of subsquares in the large 

lattice with replicas of the top row. The outline so constructed can 

always be turned over either of its central diagonals without repe- 

tition. The resulting square will therefore contain the first (421)? 
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numbers without repetition-or omission, and it will always have the 

following magic properties. 

A. The Great Square..... 

1. is magic on its 4m rows and 4m columns; 

Pees 
oa| ers] 30) 24] as|o7| 32 
as] 2 oe] [ar] # |e] 

Fig. 604. Fig. 695. 

2. is pandiagonal, i. e., magic on its 8m diagonals ; 

3. has Franklin’s property of bent diagonals in an extended 

sense; 1. e., we can start at any cell in the top row, and proceeding 

downward bend the diagonal at any heavy horizontal bar. It 

Repel) Pee bee- 
rlelelo[stela| 7] [alse aleol sa] eolva}eo 
PIEIEACAEAPAPAPa 
E EEV EAE 
Platalaletelel-|  [ebele 
elsizlel- Viele] x 

oA] 2 || o oe foal 
Fig. 696. : Fig. 697. 

matters not how many times we bend, or at which of the heavy 

bars, providing only that when the traverse is completed, the number 

of cells passed over in the one direction (downward to the right) 

shall be exactly equal to the number passed over in the other direc- 
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tion (downward to the jeft). Similarly we may start at any cell 
in the left-hand column and, proceeding diagonally to the right, 
bend the diagonal at amy heavy vertical bar under the same limita- 
tions. 

It will be noticed that when the order of the square is =4 
(mod 8), i. e., when m is odd, the central bars are not heavy bars, 

Bee eee eae maa 
62) 38 |377| 23 \364] 3G 

a 2 ere A \398\/7 1385 geo goeoceco 
sites 6/|\22 1378 37 [263] 253} 24.137 jes bas] 267 vo ba] 26h 574 Lbs7l 33 [sey] 20 | 

2 poe bo 
peo as 

43 th SS |B5S7\AS 4e S3IF DS 350) SZ 35; 

IBD 78 |\337| G3 |\a24) 75 34] 

43) 44-\358| 57 |3S#S| 46 |3 

23 Samana lee ier kr 
ee V8 \297)/03 264)76) a 295|/05 | = SE EAP 
jee ro ee eee os le aor |e [2n|soalane|7|ana|oefans|ralavelvoofroelra [207|ee| val ” [ano 
ahs Damen eee me 
Pee sess eo a ae 
selene [rales aren allel 
|r se foe eee ole 
ssp ae ee ease eerea 
sfc oer ere ore acl 
ysl ee earner eel ae osc 
oor afer reserve lc era 

Fig. 700. 

a 

and also the number of rows of subsquares is odd. We cannot 

therefore in these cases get a magic bent diagonal traverse from 

top to bottom of the square, but we may stop at the last heavy bar 

before reaching the bottom of the square, when we shall have a 

sum 4(m-—1) times the mean, or we may carry the diagonal beyond 

the bottom of the square and traverse the top row of subsquares a 

: 
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We 

can get in these cases a diagonal traverse 4m times the mean by 

second time, when the sum will be 4(m-+1) times the mean. 
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4. The great square is 4-ply, and therefore 4-symmetrical, 
1. €., we may choose any vertical and any horizontal bar (not 
necessarily heavy bars) and we shall find that any four cells, sym- 
metrically situated with regard to these two bars as axes, will con- 
tain numbers whose sum is four times the mean. It follows that 
any 4m cells which form a symmetrical figure with regard to any 

such axes will contain numbers whose sum is the magic sum of the 

great square. 

B. The Subsquares..... 

5. are balanced Jaina squares, i. e., each of them has the 36 

summations of a Jaina and in each case the magic sum is four times 

the mean number of the great square. 

6. They have the property of subsidiary minors, i. e., if we 

1.16 —2./5 | /3.4—/4.3 [/2.-5 —1.6 | 8.3 —7.1/0 

“SO 00nnn Son BaD 
ralel [ele [sol[als|2|7[e [ole [7 
fabs lela|ele[ [le] sle] a] 2[e ba) 
pelel Tall bolls elalel= [llr 

Fig. 702. 

erase any p rows of subsquares, and any fp columns of the same 

and draw the remaining rows and columns together, we have a 

square with all the properties of the original great square. 

: EXAMPLES 

In every case the Jaina pattern quoted above is used. Fig. 695 is 

an example of order 8 and the complementaries have been paired 

thus: 2,7 with 3,6; and 4,5 with 1,8. The La Hireian primaries 

of Fig. 695 are shown in Figs. 696 and 697. 

Fig. 698 is an example of an order 12 square in which the pairing 

of the complementaries is 3,10 with 4-9 -4,12 with 5,3; and? 6,7 

wet 2 LT. 
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A square of order 16 is shown in Fig. 699. The couplets in this 

square are taken thus: 

Siand 3 O. waths7 andelO: 1 and 16 -~withobeand 12: 

4 and 13 with 6 and 11; 2 and 15 with 3 and 1/4. 

Figs. 700 and 701 show respectively squares of orders 20 and 24 

in which the couplets are taken in numerical order, 1. e., for order 

20, 1 and 20 with 2 and 19; 3 and 18 with 4 and 1/7, etc. 

In Fig. 701 there are 1008 magic diagonal summations. Since we 

needs eed ad 
zea] 2 [or [ooo een on zo oe 
a7 st ese oa a |e | [are a 
een | |e err] [627 wee ao 
3 |e cece oe ale r7 [oe aspera 
eden a [9 |e |as zea |r| 08 foo eerie 
[a eee oe se en vee 
eels] of oe asl [oe [ra fe a 
re |e eae meen] are 676 [es meh |aa 
eo] [| oar 8 ao zon 
[ae ese eo oe ra [ve 7 boro 
in| [7 [eles vor] |e bean baavsieor| 
[ease leer] a [orl] a [oo faearoep] 
eas 7 [| el lve] 7 [200s rpostela ol 
[ae ae feo oe fc cs |e [afer 
| [| a eal] 7 Loe for ef 

Fig. 703. 

can bend at any heavy bar, the number of bent diagonals from top 

to bottom, starting at a given cell in the top row, is the same as the 

number of combinations of 6 things 3 at a time, viz., 20. Therefore 

there are 20x 24=480 bent diagonals from top to bottom and 480 

more from side to side. Adding the 48 continuous diagonals we 

get 1008. 

In the foregoing pages the question of magic knight paths has 
not been considered. It is, however, easy for all orders > 8 and =0 
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(mod 8) to add the knight Nasik property without sacrificing any of 
the other features, by a proper choice of the complementary coup- 
lets for the subsquare outlines. The example shown in Fig. 702 will 
explain. It shows the top row of subsquares in a scheme for order 
16. The numbers above the squares indicate the couplets used, 
the Jaina pattern, Fig. 694, being used throughout. The rule is 
simple: the leading numbers, 1, 13, 12, 8 must sum four times 

the mean of the period, i. e., 34, while of course no one of them 

may be a complement of any other. Their complementaries 16, 

4, 5, 9, will then have the same sum, and the second members in 

each square will be similarly related. The square is completed by 

filling the remaining rows with replicas and turning over a central 

diagonal. Fig. 703 is a square of order 16 constructed from the 

outline Fig. 702. It has all the properties of the 16? shown in Fig. 

699 and is also magic on its 64 knight paths. 

The following is an arrangement of the couplets for a square 

of order 24: 

| | 
|1.24-4.2118.17-5,20]10.15-13. 12111,14.16.9|22,3-18.7|23.2-19.6 

GaP. 

ORNATE MAGIC SQUARES OF COMPOSITE ODD ORDERS. 

When we consider these orders in the light of the general rule 

used for orders = 0 (mod 4) it appears at first sight that they 

cannot be made to fulfil all the conditions; but it is not essential 

to the ply property, nor to the balanced magic subsquares that the 

numbers be taken in complementary pairs for the subsquares of the 

outline. All that is necessary is that the groups of numbers chosen 

shall all have the same sum. 

Suppose, as an illustration, we are dealing with order 15. If 

we can arrange the first 15 natural numbers in five balanced 

columns, three in a column, and form five magic outlines of order 3, 

using a different column thrice repeated for each outline, we shall 

have five balanced magic outlines like Fig. 704. These can be ar- 
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ranged in the first row of subsquares with replicas in the following 

rows. If we can turn this outline upon itself in some way to avoid 

repetitions, we shall have a magic square which will be 9-ply and 

with magic subsquares. But will it be pandiagonal? 

a Taya[7 >| 
alles 

Fig. 704. Fig. 705. 

In the small outlines of 9 cells made from Fig. 704 as a pattern, 

it will be noticed that like numbers must always occur in parallel 

diagonals; therefore if we arrange the five small squares so that 

like numbers always lie along “ diagonals, the great outline will 

| 2 2 | a i | a 
EAE 
abla Ged EA EA ACE 

Fig. 706. 

be “boxed” and therefore magic in \ diagonals, but in the / 

diagonals we shall have in every case only five different numbers 

each occurring thrice. The problem is thus reduced to finding a. 

NZ 01 ca Aaa aa 
efolala al [aloe ele] 
2 (els |e [slole | bale| 7 [la = 
MEGoneeousee. | 
aa la|e bala elel Lele] 7/44 

Fig. 707. 

magic rectangle 3x5. We therefore construct such a rectangle by 
the method of “Complementary Differences’”* as shown in Fig. 705. 

In Fig. 706 we have the five magic outlines constructed from the 
five columns of the rectangle, and placed side by side with like 

* See “The Construction of Magic Squares and See a the Method 
of Complementary Differences,” by W. S. Andrews, pp. 257 ff 
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numbers always in the / diagonals, and so disposed that the number 
in any / diagonal is always succeeded (when the diagonal passes 
across into a neighboring square) by the number which succeeds it 
in its row in the rectangle. 

If an associated square is required the magic rectangle must 
be associated and the large rectangle of subsquares must also be 
associated as a whole. It will be noticed that all these conditions 
will be fulfilled in practice if we write the successive columns of the 

ns [As] a Yao fa 0 a] re 
salen || arse esd 9 oes7 ec] as 2 

I8 |57|/99| 68 531207) GF /43|/02| 49 |\203\72 

#2 |2| 70 [ as 7 [ae a (oe 29072 [7 
Veolvas IT |\200| 73 \/4#/\ 95 | 5S zos|5 /435\ 96 |\50 208166 | 

164\ /6 \/74\/34\ 76 |\/59\ 29 \(66|729| 89 |/51\ 24-\/79|/2/ | &F 

/17| 4- ye3|42 2/4\//3 ae 3F 222\/c5] & \492 

/42\/OI\47 TS \ 73797 60 |-97 O7 \/50| 92\$2\2/0|G2 

1G0\ 18 \/7O\130\7§ \161 | 25° ys8|3/ 85153) 26 |/75|/23|8O 

g 8 
“N 

SN 

* 8 SS 

Ni 

Fig. 708. S = 1695 

magic rectangle Fig. 705 along the \_ central diagonals of the suc- 

cessive square outlines in the larger rectangle Fig. 706 and fill in all 

the / diagonals with replicas. If now all the remaining rows of 

subsquares be filled with replicas of the top row it will be found 

that the whole outline cannot be turned over either of its central 

diagonals without repetitions in the magic, but it can be turned 

successfully in its own plane, about its central point through one 

right angle, without repetitions. (This will bring the top row in 

coincidence with the left-hand column, so that the right-hand square 
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in Fig. 706 is turned on its side and lies over the left-hand square.) 

The resulting magic is shown in Fig. 709. It is magic on its 15 rows, 

15 columns, 30 diagonals and 60 knight paths, also 9-ply and asso- 

ciated. The 25 subsquares of order 3 all sum 339 on their 3 rows 

and 3 columns. (It is easy to see that only one of them can have 

magic central diagonals, for a magic of order 3 can only have this 

property when it is associated, and in this case the mean number 

must occupy the central cell, but there is here only one mean num- 

6 \/2 208|/2 2420s] 1 30/98] 9 ys496| 

o2\/5 22\ 200 73 \26\199\ 8 vs2|205) 3 |73/ 203| / es 

35 ae ae /28\207| 4- \723\206| 70 \/2/ Zon 4 

ber al foe (poaa [or 
‘oles aopaclas eo eye alsa ool [a9 
psto7|o7 psa [aaron seo [7p 
pez [rer bs ve raz ra ae 
2 face] 07100 ape] cael os 
ele ba e727 paola ve 
oa] ra] eco ra [lr [|e] efor 
eos} 77 ess [oa 27] 7 [ore 
|e ana asa |= e787 76 |e 
ze jesler| zoom os aaa) 2a [| 
7 en} 7 | senor foe ere se| ele 
[502225 |e bool bern eo 

Hig. 709. == 16005, 

ber, viz., 113, therefore only the central subsquare can have magic 

diagonals. ) 

In exactly the same manner as above described, by using the 

long rows of the magic rectangle, Fig. 705, instead of the short col: 

umns, we can construct another ornate magic of order 15. 

Fig. 707 shows the first row of 25-celled subsquares constructed 

from the rows of the rectangle, and using a magic square of order 

5 as pattern. If we fill the two remaining rows of subsquares with 

replicas the outline can be turned over either of its central diagonals. 
The resulting square is shown in Fig. 710. It is magic on 15 rows, 
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15 columns, 30 diagonals and 60 knight paths, also 25-ply and asso- 
ciated. Also the nine subsquares of order 5 are balanced nasiks, 
summing 565 on their 5 rows, 5 columns and 10 diagonals. 

The above method can of course be used when the order is 
the square of an odd number, e. g., orders 9, 25, etc. These have 

previously been dealt with by a simpler method which is not appli- 

cable when the order is the product of different odd numbers. 

7 poe |ea| 7/56 oo 26] ar rule 2 [abe roe 
es ete bela 

YosV73 YosV73 76 | 28 | 28 V30 ea 

67 |24 /25|167 Vo7| 83 | 6 [133 1538\/8O a 29\/2 6072 

ys6/76|77 |e7 pao y29 153|/68| 153|/68| 90 |23 a tS YS5V7. §2 aes 

/2 II \791\225) 8 \3/ \//8 83 /7| 4 

4/6 227 2 |42|706\/93|\2/3| /S5' | 38 ae 220 

17 132 | 17|189|2/6) 3 | 45 \73\/8/\223 0 | vo |37 

ieee beater 
2a pe ealeee 9 [xa|on poslral 7 [aaa cer|aal 
oa nc ael 7 [7/|relacs ee [379 5070 
nooo mame wom 
“poole asoeceeer 
ras ober orl bh 

Fig. 710. S=1005 

% 

A similar distinction arises in the case of orders = 0 (mod 4) 

previously considered. These were first constructed by a rule which 

applied only to orders of form 2”, e. g., 4, 8, 16, .32, etc., but the 

general rule is effective in every case. 

There are two other ornate squares of order 15, shown in Figs. 

708 and 711, these four forms of ornate squares being numbered in 

ascending order of difficulty in construction. Fig. 708 is constructed 

by using the paths | 2 =] and taking the period from the continuous 

diagonal of the magic rectangle Fig. 705. 
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Fig. 708 is magic on 15 rows, 15 columns, 30 diagonals, 60 knight 

paths, and is 9-ply, 25-ply and associated. 

The square shown in Fig. 711 has been only recently obtained; 

for many years the conditions therein fulfilled were believed to be 

impossible. It is magic on 15 rows, 15 columns and 30 diagonals, 

and is 3x5 rectangular ply, i. e., any rectangle 3x5 with long axis 

horizontal contains numbers whose sum is the magic sum of the 

square. Also the 15 subrectangles are balanced magics, summing 

S/ 1/03] 32 II \/85| 89 \/60 

crf slacks oa 
:aslz7|r4a|o0| 7 [are [aaleo| ra eel ae [eens 70 
[37 ves) 20 [726] 75 | 22 |r0e] v0 [-orl¢o| as) ae] 2a paar | 
alabetabaad a atetataetsria 
eae of aad a 7 [eae | 
per re a7| 39 aa 0 sve ool wa 9 
2 | | 5 [se ale 7 vey 
zea (76a 77 (ee 28 7a as [a [a 
2 sla [oe ba 7 [905 [erode [oe Ya 

GO 117\173\2/4| / | S2|/08|/70\2/ 

202\ 63 2/ 197| G9\/25| 29 

V57\33 |/07/| 780) 88 | 152) 39|95|/9A 85|/65| 42 | 98 184176) 

2/5| 14-\ $5|/20)177| 2/8| 4 |4G\//2|\/6F ane 

23 |/39|496\ G7 /23|26\/4/ 208| G2 |/29| 20 

IDs keas S= 1605 

:<3 in their three long rows and 339 in their five short columns. 

This square is not associated, and only half of its knight paths are 

magic. ; 

The three squares of order 15, shown in Figs. 708, 709, and 

710 are described as magic on their 60 knight paths, but actually 

they are higher Nasiks of Class I, as defined at the end of my 

pamphlet on The Theory of Path Nasiks.* Further, the squares in 

Figs. 709 and 710 have the following additional properties. 

x 

AS & AN ~S 

BRE 

*The Theory of Path Nasiks, by C. Planck, M.A., M.R.C.S., printed by 
A. J. Lawrence, Rugby, Eng. 
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a 

Referring to the squaré in Fig. 710 showing subsquares of order 
5; if we superpose the diagonals of these subsquares in the manner 
described in my paper on “Fourfold Magics” (above, page 363, 
last paragraph), we obtain three magic parallelopipeds 5x5 x3. 

Denoting each subsquare by the number in its central cell, the three 

parallelopipeds will be: 

if Oe Oo 117, 

Pewee tay el tS: 49. 

EIT a= 109, Ding 173: 

These three together form an octahedroid 5x53 x3 which is 

associated and magic in each of the four directions parallel to its 

edges. 

If we deal in like manner with Fig. 709 which has subsquares of 

order 3 we obtain five magic parallelopipeds of order 3x3 x5 to- 

gether forming an associated magic octahedroid of order 3x3x5x5. 

Since the lengths of the edges are the same as those of the octa- 

hedroid formed from Fig. 710 square, these two four-dimensional 

figures are identical but the distribution of the numbers in their 

cells is not the same. They can however be made completely iden- 

tical both in form and distribution of numbers by a slight change 

in our method of dealing with the square Fig. 709, i. e., by taking 

the square plates to form the parallelopipeds from the knight paths 

instead of the diagonals. Using the path (—1,2) we get 225, 106, 3, 

188, 43 for the first plates of each parallelopiped, and then using 

(2,-—1) for the successive plates of each, we obtain the parallelo- 

pipeds: 

Ps 225, 8, Giese eli sees te 

ieee tOGe 9193754215; 15; 38 

IT. 3 Abt eo" 113) el Sles2e3 

eeeeios, 2211, 13, Oeics 

v 3g ths 1952. ~215, 1 

This octahedroid is completely identical with that previously ob- 

tained from I’ig. 710, as can be easily verified by taking any number 
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at random and writing down the four series of numbers through 

its containing cell parallel to the edges, first in one octahedroid 

and then in the other. The sets so obtained will be found iden- 

tical. 

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDERS 
Sy ZAIN Da lG) B Yes bIcis: 

The following simple method for constructing ornate magic 

squares of the above orders is presented in the belief that it is new 

and original. All squares of orders 4m can be made by this method, 

so it will suffice to explain in detail only the rules for constructing 

squares of order 8. 

Fig. 712. Fig. 713. 

I. Make a magic rectangle with the first eight digits as shown 

in Fig. 712. This is the only form in which this rectangle can be 

made, i. e., no complementary couplet therein can be inverted 
without destroying the magic feature, but the relative positions of 
the couplets can naturally be shifted without affecting it. 
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II. Draw a table diagram such as Fig. 714, and write the row 
numbers of the magic rectangle Fig. 712, alternately at the top and 
bottom of the eight columns as shown by dotted lines. 

III. Following the arithmetical order of the numbered columns, 

write in the numbers | to 64 downward and upward, thus making 

the table, Fig. 715. 

zor] ee] aaa] 2 
ess] Calls belsberlalo 

Fig. 710. Fig. 720. 

Note. A variety of different tables may be made on the above 

principle by changing the progression, and each table will produce 

a different magic square. Any number that will divide n* (which 

in this case is 64) without remainder may-be used as an increment. 

Thus in the present case 2, 4, 8, 16 and 32 are available. When the 
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addition produces a number larger than 64, the lowest unused num- 

ber of the series is substituted. For example, if 32 is made the 
increment, the numbers in the columns of the table will run thus: 

APS SoN2, ROA. Opa CLC) 

because 

12632 = 33, es 32 =65 substitute 2 

Qe S24. Mah se B57) = (5) = 3 etc. 

IV. The table must now be indexed with some arrangement 

of the numbers 1 to 8 under the following conditions: The first 
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a a #| © pips ree a alors ele al be 
23 faa a rar eel ral | +| @ ee 2 foe repre = [oe a ae [oop 
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ol za fae eo fem elle lpm] 
te Berean aoa ea oa 
fessor err ee roof] 2 Ofer brea joel» Poel fades re) 

Fig. 725. 

four digits used must include no complementary couplet, and the 

last four digits must be selected so as to balance each of the first 

four with its complementary. The straight arithmetical series is 

used in Fig. 715 as it fulfils the above conditions, but any series, 



3904 ORNATE MAGIC SQUARES. 

such as shown in the subjoined examples, will produce magic 

results, and each arrangement will make a different magic square. 

Pr 2 3 4 eee ee 

Baas S/o OES 

325 wl alG eae 

| S658 eS 1s 3 Sree 

DL eee ee teed hee eas 

6s (4) 81203 > va 

Aes ee 6 Mi Dn we AV aed ae 

Sk Tacs O cama) ale CLC 

8 SAS Se tS SoS 

XN 8 

ss 

Fig. 726. 

The index numbers are written in columns on each side of the 

table, those on one side being in reverse order to those on the 

other side. One set of these numbers may be conveniently written 
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in circles for identification, or any other way of distinguishing the 
similar numbers may be used. 

ir A: ae Oe : ; V. Make another 2x4 magic rectangle with a re-arrangement 

Pista] | (a payalea pepe 
LOMNDID| FMD 77 NAAN ND (GES 

Fig. 727. Fig. 728. 
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el fel s Jota] A] 2 

Fig. 729. 
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Fig. 730. 

S NX 

NG 
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of couplets, such as shown in Fig. 713. Any other arrangement 

that differs from Fig. 712 would, however, answer equally well. 

VI. Draw an 8x8 lattice (Fig. 716) and write opposite the 
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alternate cells of the two outside columns the eight numbers in 

Fig. 713 in their linear order, from the top of the lattice down- 

ward, and the same numbers (im circles) opposite the remaining 

alternate cells from the bottom of the lattice upward. 

Inspection of Figs. 715 and 716 will assist a clear understand- 

ing of the above directions. 

The magic square is now made by filling the cells of the lattice 

with the numbers from the table in linear groups of four, according 

pNG& Ww & &® DN 

BEARADN HHRNBA 

SRAAN 

PMNTS Ts Rls [8] SI Pelsiefal eels] sy REE 
8) SI §| 

Pans 
Fig. 732. 

to their index numbers. The linear‘groups of four numbers in the 

left-hand half of square are written from left to right and those 

in the right-hand half of square from right to left. 

Another example of an order 8 magic square, including rect- 

angles and table, is shown in Figs. 717, 718, 719 and 720. The 

progressive increment in the table, Fig. 717, is 32, as referred to 

in a previous paragraph, and the index numbers are written in the 

order shown in the first column of numbers on page 392. 

The magic squares, Figs. 716 and 720, are 4-ply, associated and 
pandiagonal. 

In using the above rules there are at least three different ways 
for producing variations. 
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. By changing the progression in the table. 

. By making divisions in the table (as in Fig. 726). 
Se OTS . By using different arrangements of couplets in rectangles. 
d. By using different arrangements of index numbers. 

It is therefore evident that the possible number of variants is 
very large, and each of them will possess the same ornate qualities 

as those above described. 

A magic square of order 12 is given in Fig. 721, and the table 
used in its construction with two 2x6 magic rectangles in Figs. 

722,723 and 724. This square is 4-ply, associated and pandiagonal. 

ep eee 
eo freleao| = fr ele 

= [foal 
sesso ea |e fea = 

Fig. 733. 

A magic square of order 16 with its table and rectangles are 

shown in Figs. 725, 726, 727 and 728. In addition to the ornate 

features common to the squares shown in Figs. 716, 720 and 721, 

this square is also knight Nasik. Fig. 725 can readily be changed 

into a balanced, quartered, 4-ply, pandiagonal Franklin magic square 

by one transposition, as shown in Fig. 730, which is indexed by the 

rectangle Fig. 729. By this change it ceases to be associated and 

knight Nasik, but acquires other ornate features besides becoming 

a Franklin square. It contains nine magic subsquares of order 

8, each of which is pandiagonal; also, the numbers in the corner 
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cells of any 4x4, 8x8, 12x12 square and the corner cells of the 
great square sum S/4=514, as do also the corner numbers in any 
2x4, 2x6, 2x8 rectangle etc. 

The “table” method for constructing ornate magics is not limited 
to the foregoing rules. For a long time the writer endeavored in 
vain to make tables that would be competent to produce Franklin 

ee NE PG OIG ENT Ge Pe N 

Fig. 737- 

squares directly without any transpositions, until it occurred to him 

that this might be accomplished by bending the columns of the table. 

This simple device worked out with perfect success, thus adding 

another link to the scheme for making all kinds of the 4m squares 

by this method. The bending of the table columns also leads to the 

construction of a, number of ether ornate variants, as will be shown 

in examples to follow. 
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Fig. 731 is a table constructed with the:straight series 1 to 64. 

the bending of the columns being shown by the dotted lines. As 

in tables previously explained, each column of numbers is started 

and finished following the arithmetical sequence of the numerals 

atsthe top and bottom of the table, but the four middle numbers of 

each column are bent three spaces out of line either to right or left. 

It will be seen that the column numerals are written in couplets 

pate el eee 
rela = [eo fled 7s eae veer roo [a 
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Fig. 738. 
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=n+1, as marked by brackets. The relative positions of these 

couplets may, however, be varied. 

The horizontal lines of the table are indexed with the first eight 

digits in straight series, but either of the series shown on page 3. 

or an equivalent, may be used. 

This form of table differs essentially in one feature from those 
previously described, there being no vertical central division, and 
each complete line of eight numbers is copied into, the magic square 
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as written in the table. A table made in this way with bent columns 
is in fact a square that is magic in its lines and columns but not in 
its diagonals. The re-arrangement of its lines by the index num- 
bers corrects its diagonals and imparts its ornate features. 

An 8x8 lattice is aow drawn and indexed on one side with the 

SAU a eat ee ek 

Fig. 739. 

first eight digits, so selected that alternate numbers form couplets 

=n+1 in each subdivision of the square. 

Finally, the lines from the table (Fig. 731) are transferred to 

the lattice in accordance with the index numbers, and the square 

thus made (Fig. 732) is 4-ply, pandiagonal, and Franklin; also 

each corner subsquare of order 4 is a magic pandiagonal. 
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Notre. In some cases the numbers of the indexing couplets are 

more widely separated, as in Fig. 734; while in other cases they 

may be written adjoining each other. In all cases, however, a sym- 

metrical arrangement of couplets is observed, but their positions, 

as shown in these examples, is an essential feature only in connec- 

tion with the particular squares illustrated. 

Fig. 733 shows another table in which the columns are bent 

2/9 26 93) 
ee 

/3Q Vis 134 eg’ 

Fig. 740. 

through a space of four columns, which produces the magic square, 

Fig. 734. This square is 4-ply, pandiagonal and knight Nasik. 

Fig. 735 is a table with bent columns from which the square 

of order 12, shown in Fig. 736, is constructed. This square is 4-ply 

and pandiagonal, and it contains nine pandiagonal subsquares of 

order 4, as shown by the heavy bars in the lattice. 

A table and square of order 16 are shown in Figs. 737 and 738. 

‘The square is 4-ply, pandiagonal and Franklin, and it also possesses 
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many other interesting features. It is composed of 16 subsquares 
of order 4, as shown by the heavy bars, and each subsquare is magic 
and pandiagonal. 

Fig. 739 is a table from which our final example of magic 
square, shown in Figs. 740 and 741, is constructed. The table 
series is made with increments of 32 and the columns are bent as 

marked by the dotted lines. The square is 4-ply (and therefore 

4 symmetrical) quartered, pandiagonal, knight Nasik, Franklin and 

magic in its reflected diagonals. Also, any 9x9 square has its 
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Fig. 741. 
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corner numbers in arithmetical sequence. Fig. 740 shows it laid 

out in one continuous re-entrant knight’s tour. The first number 

of each of the 32 periods of 8 numbers is enclosed in a dotted cell 

and an arrowhead points the direction of progression. The num- 

bers in each of these periods sum S/2= 1028, also, the numbers in 

each half period sum S/4=514. Although this feature exists in 
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many other squares, it may not be commonly known. Fig. 741 is 

the same square written in the usual way to facilitate the checking 

up of its several ornate qualities. 

F. A. W. 

THE CONSTRUCTION OF ORNATE MAGIC SQUARES OF ORDER 

16 BY MAGIC RECTANGLES. 

In the preceding paper Mr. Woodruff presents a remarkable 

magic of order 16 which is 4-ply, pandiagonal, associated and 

knight Nasik, a combination of ornate properties which has prob- 

ably never been accomplished before in this order of square, and it 

is constructed moreover by a unique method of his own devising. 

(See Fig. 725.) 

An analysis of Mr. Woodruff’s magic by the La Hireian plan 

shows its primary to be composed of sundry 2x8 rectangles having 

no particular numerical arrangement that indicates intentional de- 

sign. This feature might naturally be expected in a square made 

by a new method, but it suggested to the writer that squares similar 

to Mr. Woodruff’s in their ornate qualifications might be formed 

by applying the well-known method of magic rectangles on the La 

Hireian principle, as described in the present paper. 

In using 2x8 magic rectangles for making ornate squares of 

order 16 by the La Hireian method, it is found that certain rect- 
angles will produce knight Nasik squares while others will not. By 
inspection of the arrangement of the numbers in any 2x8 magic 
rectangle, guided by a simple rule, it may easily be determined if 
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a knight Nasik square will’ result from its use, and if not, how the 
numbers may be re-arranged to produce Nasik results. 

There are four knight paths through each cell of a square, as 
shown by dotted lines in Fig. 742, and the numbers included in 
each of these paths must obviously sum the magic constant of the 

square to be constructed if the latter is to be knight Nasik. 

The La Hireian primary of order 16, shown in Fig. 743, i 

made up of sixteen 2 x 8 magic rectangles, as indicated by the heavy 
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Hig. 743. 

bars. Starting from any cell in Fig. 743, the sum of the numbers 

included in the complete knight paths, indicated by aa and bb in 

Fig. 742, will sum 136=S, but the paths cc and dd will sum either 

104 or 168, and therefore this primary is incompetent to produce a 

knight Nasik magic square. 

The knight paths aa and bb are necessarily Nasik, as they 

include the numbers in one or other of the long rows of numbers 

in the magic rectangles which sum 68. The other two knight paths, 
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cc and dd, fail to be Nasik because they include the numbers en- 

closed in circles in Fig. 743, or their complementaries, and these 

numbers do not sum 68. It therefore follows that in order to 

produce a knight Nasik primary, the magic rectangle from which 

it is formed must show a summation of 68 for the numbers enclosed 

in circles in Fig. 743 and their complementaries. A re-arrangement 

of the couplets in the 2x8 magic rectangle, without inverting any 

couplet, is shown in the La Hireian primary square, Fig. 744. By 
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Fig. 744. 

this re-arrangement, the numbers in circles are made to sum 68, 

and the rectangle is therefore competent to produce a knight Nasik 

square. A second La Hireian primary (Fig. 745) is made by 
changing the numbers in Fig. 744 to their root numbers and then 
turning this primary around its central point 90° to the right, thus 
changing the horizontal lines in Fig. 744 into the vertical columns 
in Fig. 745. The final magic square, Fig. 746, is constructed in the 
usual way by adding together the numbers in these two primaries, 
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cell by cell. Like its two primaries, this square is 4-ply, associated, 
pandiagonal and knight Nasik. 

If the magic square shown in Fig. 746 is divided into 2x8 
rectangles in the same way as Fig. 744 or Fig. 745, these rectangles 
will show the same features in summations as the rectangles of the 
primary squares, i. e., each summation will be S/2. 

Using the natural series 1 to 16 inclusive, it is only possible 
to construct four distinct forms of 2 x 8 magic rectangles, as shown 
in Figs. 747 and 748. The four columns of numbers in Fig. 747 
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show the selection of numbers in the upper and lower rows of the 

four forms of 2x8 rectangles, the numbers in circles being those 

used in the upper rows of the respective rectangles. 

The designs below the rectangles in Fig. 748, Forms I, II, HI 

and IV, show the geometric arrangement of the numbers as written 

in the upper and lower lines of same. In the upper row of Form 

III rectangle there is a departure from the column sequence of, 
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numbers in order to make it suitable for constructing Nasik magic 

squares, and it is rather curious that this change is required only 

in this one rectangle out of the four. The relative positions of the 

couplets in each form of 2x8 rectangle may naturally be re- 

arranged in a great many different ways without disturbing their 

general magic qualities, although in some cases such re-arrangement 

will upset the magic summation of the numbers in a zig-zag line 

of cells, which, as previously noted, is of vital importance when 

the square is to be knight Nasik. 
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Fig. 746. 

Inspection of these examples will show that the couplet 1—16 
is common to all four forms, but in every other case there is a 

difference. Thus the couplet 2—15 is only found in Form I, and 
it is inverted in the other three forms. The couplet 3—14 exists 
only in Form II, being elsewhere inverted. The couplet 413 is 
seen in Forms IIT and IV, and is inverted in Forms I and Il—and - 
so forth. 
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Form I. 
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Fig. 749. 
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The above described method will produce knight Nasik squares 

of all orders =0 (mod8) excepting order 8, but it will not apply 

in this respect to orders = 4 (mod 8). 

Fig. 749 shows a 2x12 magic rectangle that may be used 

for a magic square of order 24 covering the knight Nasik property. 

W.S. A. 

PANDIAGONAL-CONCENTRIC MAGIC SQUARES OF ORDERS 4m. 

These squares are composed of a central pandiagonal square 

surrounded by one or more bands of numbers, each band, together 

with its enclosed numbers, forming a pandiagonal magic square. 

The squares described here are of orders 4m and the bands 

or borders are composed of double strings of numbers. The central 

square and bands are constructed simultaneously instead of by the 

45|28| 35 | 22|47| 26 | 35| 2 

49|3 \63|0|7|\ 6 \6\2 

Ears aeaeaPe Ed 
s|a[ale|/l=[2[2I 
aielsaleaalsed 
el [ele bale fel 
sel [|e ae [a7 
ERE CA eal 

Fig. 750. 

usual method of first forming the nucleus square and arranging 

the bands successively around it. 

A square of the 8th order is shown in Fig. 750, both the central 
4° and 8° being pandiagonal. It is 4° ply, i. e., any square group 
of 16 numbers gives a constant total of 8(nm?+1), where =the num- 
ber of cells on the edge of the magic. It is also magic in all of its . 
Franklin diagonals; i. e., each diagonal string of numbers bending 
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at right angles on either of the horizontal or vertical center lines 
of the square, as is shown by dotted lines, gives constant totals. 
In any size concentric square of the type here described, all of its 
concentric squares of orders 8m will be found to possess the Frank- 
lin bent diagonals. 

The analysis of these pandiagonal-concentric squares is best 
illustrated by their La Hireian method of construction, which is 

sa ‘ee elite % 

N} NN] O ] %! 

Sap KS Oe 

age rleleleleiate|al 
Fig. 751. 

here explained in connection with the 12th order square. The 

square lattice of the subsidiary square, Fig. 751, is, for convenience 

of construction, divided into square sections of 16 cells each. In 

each of the corner sections (regardless of the size of the square 

to be formed) are placed four 1’s, their position to be as shown in 

Fig. 751. Each of these 1’s is the initial number of the series 1, 2, 

Sie oe (n/4)?, which must be written in the lattice in natural order, 

each number falling in the same respective cell of a 16-cell section 

as the initial number. Two of these series are indicated in Fig. 751 

by circles enclosing the numbers, and inspection will show that each 

of the remaining series of numbers is written in the lattice in the 
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same manner, though they are in a reversed or reflected order. Any 

size subsidiary square thus filled possesses all the magic features 

99 | 54 | 72 \45 

e| 20] ar 
ee 

of the final square. 

A second subsidiary square of the 4th order is constructed with 

the series 0, (1/4)?, 2(n/4)?, 3(”/4)?,.....- 15(/4)?, which must 

be so arranged as to produce a pandiagonal magic such as is shown 

rede od ea eae 
eee ee 

| 90 | 67 | 96 40 | 87 | 64.| 99 

3 |v | pe} 

Ji02| 61 | 37 

19 \//4.\ 13 \/4/|\22|/17| 70 

72 | 91 |39 | 88 | 69 | 94| 42 | 85 | 66 | 97 

9 |18 ane 6 \/2/| 33 |\/30| 2 |/24 

Fig. 753. 

in Fig. 752. It is obvious that if this square is pandiagonal, several 

of these squares may be contiguously arranged to form a larger 

square that is pandiagonal and 4?-ply, and also has the concentric 

features previously mentioned. 
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Fig. 752 is now added to each section of Fig. 751, cell to cell, 
which will produce the final magic square in Fig. 753. 

With a little practice, any size square of order 4m may be con- 
structed without the use of subsidiary squares, by writing the numbers 
directly into the square and following the same order of numeral 

procession as shown in Fig. 754. Other processes of direct con- 
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Fig. 754. 

struction may be discovered by numerous arrangements and com- 

binations of the subsidiary squares. 

Fig. 754 contains pandiagonal squares of the 4th, Sth, 12th and 

16th orders and is 4°-ply. The 8th and 16th order squares are also 

magic in their Franklin bent diagonals. 

These concentric squares involve another magic feature in 

respect to zig-zag strings of numbers. These strings pass from 
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side to side, or from top to bottom, and bend at right angles after 

every fourth cell as indicated by the dotted line in Fig. 754. It should 

be noted, however, that in squares of orders 8m-+4 the central four 

numbers of a zig-zag string must run parallel to the side of the 

square, and the string must be symmetrical in respect to the center 

line of the square which divides the string in halves. For example 

in a squaze of the 20th order, the zig-zag string should be of this form 

NT ee and not of this form ~~, 

In fact any group or string of numbers in these squares, that 

is symmetrical to the horizontal or vertical center line of the magic 

and is selected in accordance with the magic properties of the 16- 

cell subsidiary square, will give the sum [r(m?+1)]/2, where r= 

the number of cells in the group or string, and m = the number of 

cells in the edge of the magic. One of these strings is exemplified 

in Fig. 754 by the numbers enclosed in circles. . 

To explain what is meant above in reference to selecting the 

numbers in accordance with the magic properties of the 16-cell sub- 

sidiary square, note that the numbers, 27, 107, 214, 166, in the exem- 

plified string, form a magic row in the small subsidiary square, 70, 

235, 179, 30 and 251, 86, 14, 163 \form magic diagonals, and 66, 

159, 255, 34 and 141, 239, 82, 52 form ply groups. 

HH. Als, 
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