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During the present year, observational research in reference to
this object is likely to prove of an unusually interesting character,
as there are several features which deserve (and will doubtless
receive) special attention. During 1901, the red spot exhibited
a singular acceleration of motion when compared with its rate in
previous years, for it maintained a longitude of 45°, consistently
with a rotation period of oh. 55m. 40s.°6, upon which system
IT. of Mr, Crommelin’s ephemerides is based. It will there-
fore be most important to trace the position of the spot in
ensuing months, as it seems probable that this curiously durable
marking, after a constantly increasing retardation between about
1878 and 19oo which augmented its rotation period from gh,
55m. 34s.°5 to 9h. 55m. 41s.'8, will now travel with greater
celerity and give a period becoming shorter with the time
until the minimum is reached. If these oscillations in velocity
are developed at regular intervals, it will soon be possible to
determine the length of the cycle for observations of the red
spot or of the hollow in the great southern belt date from
1831. There is some significant evidence in support of the
conjecture that the motion of certain markings as well as the
apparition of particular spots in various latitudes are recurrent
on the planet, and some of the reappearances appear to take
place at periods not differing materially from the time of
Jupiter’s revolution round the sun. The red spot may be
fooked for near mid-transit on March 13 at 18h. 7m,, on March
25 at 18h. 4m., on March 30 at 17h. 13m., on April 6 at
18h. om., and on April 11 at 17h. gm.

Observers should now endeavour to redetect the rapidly
moving dark spots which appeared in the north temperate belt
of Jupiter in 1880 and 1891r. There were a number of spots
visible in this latitude in 1901, but the writer found their mean
rate of rotation gh. 5gm. 50s. This is nearly 8 minutes in
excess of the rotation period found for certain irregular markings
in approximately the same latitude in the autumn of 1880
which gave a rate of gh. 48m. Itisa verysingular circumstance
that in a similar latitude of Jupiter spots are developed showing
respectively the shortest and longest rotation periods of any
which have ever been observed.

In 1901, a large dark spot was often seen in the south or
tropical 1 zone of the planet, and this may prove a repetition of
the object observed in the same latitude in 1889-91. This spot
exhibits a rotation period of gh. 55m. 18s.°5, and its more rapid
movement will enable it to overtake the red spot in about June,
1902, should both the markings remain visible until that
month. The longitude of the south temperate or tropical spot
will be as follows during the next three months, and it will
follow the red spot at the time-intervals stated if the latter
object retains the same longitude (=45°) as in 1901 :—

Follows

Longitude Red spot.

1g02 h. m.
March 17, I10°5 . . . . . I 48
April 17 94°1 . ... 1 21
May 17 . 77°7 0 54

The writer obtained an. observation of this marking on
February 27, when it appeared to be central at 18h. 40m., which
would make its longitude 123°'8, but it-was very imperfectly
seen. The instrument used was a 4-inch Cooke refractor, power
175.

Another important feature for reobservation in 1902 will be
the white and dark spots plentifully grouped along the equatorial
region of the planet. " In the three years 1898, 1899 and 1900,
the rotation period of the equatorial current differed very little,
the mean value from a large number of spots being gh. som. 24s.,
or 5m. 17s.°7 less than the rate of the red spot. But in 1901
the mean rotation period of 28 equatorial spots observed at
Bristol was gh. 50m. 29s., or 5m. 12s. less than that of the red
spot.

When further observations of these variations have been
pursued during many oppositions, the outcome may be both
interesting and important as affording a good clue to the physical
condition and phenomena of the planet. That great atmo-
spheric changes are in progress on the disc is evident, and it is
the facility with which they may be observed and compared
which renders this object a' singularly attractive one to the
possessors of telescopes. W. F. DENNING.

1 This interesting marking exhibited a motion coinciding with that of
objects placed in the planet’s south temperate zone, though its pesition en-
croached on the south tropical as well as the south temperate region.
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MAGIC SQUARES AND OTHER PROBLEMS
UPON A4 CHESS-BOARD!

’I‘HE construction of magic squares is an amusement of great

antiquity ; we hear of them being constructed in India and
in China before the Christian era, whilst they appear to have
been introduced into Europe by Moschopulus, who flourished at
Constantinople early in the fifteenth century. On the diagram
you see a simple example of a magic square, one celébrated as
being drawn by Albert Diirer in his picture of ¢‘ Melancholy,”
painted about the year 1500 (Fig. 1). Itisone of the fourth order,
volving 16 compartments or cells. In describing such squares,
the horizontal lines of cells are called ¢ rows,” the vertical lines
““ columns,” and the oblique lines going from corner to corner
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‘‘diagonals.” In the 16 compartments are placed the first 16
numbers, 1, 2, 3,. . . 16, and the magic property consists in
this, that the numbers are placed in such wise that the sum of
the numbers in every row, column and diagonal is the same,
viz., in this case, 34.

It is probable that magic squares were so called because the
properties they possessed seemed to be extraordinary and
wonderful ; they were, indeed, regarded with superstitious
reverence and employed as talismans. Cornelius Agrippa con-
structed magic squares of orders 3, 4, 5, 6, 7, 8, 9, and
associated them with the seven heavenly bodies, Saturn, Jupiter,
Mars, the Sun, Venus, Mercury and the Moon. A magic square
engraved on a silver plate was regarded as a charm against the
plague, and to this day such charms are worn in the east.

However, what was at first merely a practice of magicians
and talisman makers has now for a long time become a serious
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study for mathematicians. Not that they have imagined that it
would lead them to anything of solid advantage, but because
the theory of such squares was seen to be fraught with difficulty,
and it was considered possible that some new properties of num-
bers might be discovered which mathematicians could turn to
account. This has, in fact, proved to be the casej for
from a certain point of view the subject has been found to ‘be
algebraical rather than arithmetical, and to be intimately con-
nected with great departments of science, such as the *in-
finitesimal calculus,” ““the .calculus of operations” and the
“ theory of groups.”

In the next diagram (Fig. 2) I show you a magic square of
order 3, the sum of the numbers in each row, column 'and

1 A discourse delivered at the Royal Institution on Friday evening,
February 14, by Major P. A, MacMahon, F.R.S.
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diagonal being 65. This number 65 is obtained by multiplying
25, the number of cells, by the next higher number, 26, an(_i tl}en
dividing by twice the order of the square, viz., 10. A similar
rule applies in the case of a magic square of any order. The
formation of these squares has a fascination for many persons,
and, as a consequence, a large amount of ingenuity ha_ls been ex-
pended in forming particular examples and in discovering general
principles of formation. As an example of the amount of
labour that some have expended on this matter, it may be
mentioned that in 1693 Frénicle, a Frenchman, published a
work of more than 500 pages upon magic squares. In this
work he showed that 880 magic squares of the fourth order
could be constructed, and in an appendix he gave the actual
diagrams of the whole of them. The number of magic squares
of the order § has not been exactly determined, but it has been
shown that the number certainly exceeds 60,000. .

As a consequence it is not very difficult to compose particular
specimens, and, for the most part, the fascinated individuals, to
whom I have alluded, have devoted their enexgies'to the d{s»
covery of principles of formation. Of such principles I will
give a few, remarking that the cases of squares of uneven order
I, 3, 5 . . are more simple than those of even order
4, 6, . . .and that no magic square of order 2 exists at all.
The simplest of all methods for an uneven order is shown in the
diagram (Fig. 3), where certain additional cells are added to the
square, the numbers written as shown in natural order dia-
gonally, and then the numbers which are outside the square
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projected into the empty compartments according to an easily"

understood law, The second method is associated with the
name of De la Loubére, though it is stated that he learnt it
during a visit to Siam in 1687. The number 1 (see Fig. 2)is
placed in the middle cell of the top row, and the successive
numbers placed in their natural order in a diagonal line sloping
upwards to the right subject to the laws :—

(1) When the top row is reached, the next number is written
at the bottom of the next column.

(2) When the right-hand column is reached, the next number
is written on the left of the row above.

(3) When it is impossible to proceed according to the above
rules, the number is placed in the cell immediately below the
last number written.

If we commence by writing the number 1 in any cell except
that above indicated, a square is reached which is magic in
regard to rows and columns, but not in regard to diagonals.

Subsequent writers have shown that starting with the left-
hand bottom cell and using the move of the knight instead of
that of the bishop, the general principle of De la Loubére
will also lead to a magic square (Fig. 4). The next method is
that of De la Hire, and dates from 1705. Two subsidiary
squares are constructed as shown, the one involving five
numbers 1, 2, 3, 4, 5, and the other five numbers o, 3, 10, 15,
20. When these squares are properly formed and a third
square constructed by adding together the numbers in cor-
responding cells, this third square is magic (Fig. 5). Time
does not permit me to enter into the exact method of forming
the subsidiary squares, and I will merely mention that each of
them possesses a particular property, viz., only five different
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. achieved by mathematicians.
¢ many ways it is possible to form a magic square of any order

numbers are involved, and all five appear in each column and
in each row ; in other words, no row and no column contains
two numbers of the same kind, but no diagonal property is
necessarily involved. Such squares are of a great scientific
importance, and have been termed by Euler and subsequent
writers ‘‘ Latin squares,” for a reason that will presently
appear. From ascientific point of view, the chief interest of all
arrangements such as I consider this evening lies, not in their
actual formation, but in the enumeration of all possible ways. of
forming them, and in this respect very little has been hitherto

203
2019
19215
25/ 8 |16
| |14 |22

FiG. 4.

7
13

H
i7
23
4
10

24
S
6
12
18

No person living: knows in how

exceeding 4. The fact is, that before we can attempt to
enumerate magic squares we must see our way to solve problems
of a far more simple character. For example, before we can
enumerate the squares that can be formed by De la Hire’s
method we must take a first step by finding out how many
Latin squares can be formed of the different orders. For the
order 5 the question is, ‘“In how many ways can five different
objects be placed in the cells so that each column and each
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row contains each object?” It may occur to some here this
evening that such a discussion might be interesting or curious,
but could not possibly be of any scientific value. ~ But such is
not the case. A department of mathematics that is universally
acknowledged to be of fundamental importance is the ¢ theory
of groups.” Operations of this theory and those connected with
logical and other algebras possess what is termed a ““multiplica-
tion table,” which denotes the laws to which the operations
are subject. In Fig. 6 you see such a table of order 6
slightly modified from Burnside’s ¢‘ Treatise on the Theory of
Groups™; it is, as you see, a Latin square, and the chief problem
that awaits solution is the enumeration of such tables; the
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questions are not parallel because @// Latin squares do not give
rise to tables in the theory of groups ; but still, we must walk
before we can run, and a step in the right direction is the
enumeration of a// Latin squares. When I call to mind that
the theory of groups has an important bearing upon many
branches of physical science, notably upon dynamics, I consider
that I have made good my point.

I now concentrate attention on these Latin squares, and ob-
serve that the theory of the enumeration has nothing to do with
the particular numbers that occupy the compartments ; the only
essential is that the numbers shall be different one from
another. My attention was first called to the subject of the
Latin square by a work of the renowned mathematician Euler,
written 1n 1782, entitled ¢ Recherches sur une nouvelle espece
de Quarrés Magiques.” I may say that Euler seems to have
been the first to grasp the necessity of considering squares
possessing what may be termed a magical property of a far less
recondite character than that possessed by the magic squares of
the ancients, and, as we shall see presently, he might have gone a
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step further in the same direction with advantage and have com-
menced with arrangements of a more simple character than that
of the Latin square, with arrangements, in fact, which present
no difficulties of enumeration, but which supply the key to the
unlocking of the secrets of which we are in search. e com-
mences by remarking that a curious problem had been exercising
the wits of many persons. HHe describes it as follows :—There
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are 36 officers of six different ranks drawn from six different
regiments, and the problem is to arrange them in a square of
order 6, one officer in each compartment, in such wise that in
each row, as well as in each column, there appears an officer of
each rank and also an officer of each regiment. Of a single
regiment we have, suppose, a colonel, lieutenant-colonel, major,
captain, first lieutenant and second lieutenant, and similarly for
five other regiments, so that there are in all 36 officers who
must be so placed that in each row and in each column each
rank is represented, and also each regiment. Euler denotes the six
regiments by the Latin letters a, 4, ¢, d, ¢, /, and the six ranks by
the Greek letters a, 8, 7, 8, ¢, 0, and observes that the character
of an officer is determined by a combination of two letters, the
one Latin and the other Greek ; there are 36 such combina-
tions, and the problem consists in placing these combinations
in the 36 compartments in such wise that every row and every
column contains the 6 Latin letters and also the 6 Greek
letters (Fig. 7). Euler found no solution of this problem in the
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case of a square of order 6, and since Euler’s time no one has
succeeded either in' finding a solution or in proving that no
solution exists. Anyone interested has, therefore, this question
before him at the present moment, and I recommend it to any-
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one present who desires an exercise of his wits and a trial of
his patience and ingenuity. It is easy to prove that when the
square is of order 2, viz. the case of 4 officers of two different
ranks drawn from two different regiments, there is no solution ;
Euler gave his opinion to the effect that no solution is possible
whenever the order of the square is two greater than a multiple
of four. In other simple cases he obtained solutions ; for ex-
ample, for theorder 3, the problem of 9 officers of three different
ranks drawn from three different regiments, it is easy to discover
the solution shown in the diagram (Fig. 8), and, as demonstrated
by Euler, whenever one solution has been constructed there isa
simple process by which a certain number of others can be
derived from it. Now if you look at that diagram and suppose
the Greek letters obliterated, you will see that the Latin letters
are arranged so that each of the letters occurs in each row and
in each column, the magical property mentioned above, and for
this reason Euler termed such arrangements Latin squares and
stated that the first step in the solution of the problem is to
enumerate the Latin squares of a given order. Asshowing the
intimate connection between the Graeco-Latin square of Euler
and ordinary magic squares, it should be noticed that the method
of De la Hire, by employing Latin and Greek letters for the
elements in his’ two subsidiary Latin squares, gives rise imme-
diately to the Greco-Latin square of Euler. Euler says in
regard to the problem of the Latin square, ‘“ The complete
enumeration of the Latin squares of a given order is a very
important question, but seems to me of extreme difficulty, the
more so as all known methods of the doctrine of combinations
appear to give usno help,” and again, *‘ the enumeration appears
to be beyond the bounds of possibility when the order exceeds
5.” Moreover, Cayley, in 1890, that is 108 years later, gave a
résumé of what had been done in the matter, but did not see
his way to a solution of the question. Under these circum-
stances, you will see how futile it is to expect a solution of the
magic-square problem when the far simpler question of the
Latin square has for so long proved such a tough nut to crack.
The problem of the Latin square has eventually been com-
pletely solved, and in order to lead you up gradually to an
understanding of the method that has proved successful, I ask
you to look at the Latin square of order 5 that you see in the
diagram (Fig. 9). The first row of letters can be written
in any order, but not so the second row, for each column
when the second row is written must contain two different
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letters. We must, therefore, be able to solve the compara-
tively simple question of the number of possible arrange-
ments of the first two rows, For a given order of 'the
letters in the first row, in how many ways can we write the
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letters in the second row so that each column contains a pair of
different letters ? This is a famous question, of which the solu-
tion is well known ; it is known to mathematicians as the “pro-
bléme des rencontres.” It may be stated in a variety of ways;
one of the most interesting is as follows :—A person writes a
number of letters and addresses the corresponding envelopes ;
if he now put the letters at random into the envelopes, what is
the probability that not a single letter is in the right envelope ?

Passing on to the problem of determining the number of ways
of arranging the first three rows so that each column contains
three different letters, it may be stated that up to 1898 no
solution of it had been given ; while it is obvious that as the
number of the rows is increased the resulting problems will be
of enhanced difficulty. A particular case of the three-row problem
had, however, been considered under the title *“ probleme des
ménages” and a solution obtained. It may be stated as
follows :—

A given number of married ladies take their seats at a round
table in given positions ;. in how many ways can their husbands
be seated so that each is between two ladies, but not next to his
own wife? For order g, that is 5 ladies, the question comes to
this :—Write down § letters and underneath them the same letters
shifted one-place to the left ; in how many ways can the third
row be -written: so that each column contains three different
letters? This particular case of the three-row problem for any
order presents mo .real-difficulty. The results are that in the
cases of 3, 4, 55,6 . . ., married couples there are 1, 2, 13, 80,
&c., ways.

Since the year 1890, ‘the problem of the Latin square has
been completely solved by an entirely new methed, which has
also proved successful in solving similar questions of a far more
recondite character, and I am here this evening to attempt to
give you some notion of the method and some account of the
series of problems to which that method has been found to be
applicable,

There.1s, as viewed mathematically, a fundamental difference
between arithmetic and algebra; the former may be regarded as
an algebra in which the numerical magnitudes under considera-
tion. are restricted to be integers ; the two branches contem-
plate discontinuous and continuous magnitude respectively.
Similarly, in geometry we have the continuous theory, which con-
templates figures generated by points moving from one place to
another and in doing so passing over an infinite succession of
points, tracing a line in a plane or in space, and also a dis-
continuous theory, in which the position of a point varies suddenly,
per saltum, and we are not concerned with any continuously
varying motion or position. The present problems are concerned
sometimes with this discontinuous geometry and sometimes with
an additional discontinuity in regard to numerical magnitude,
and the object is to count and not to measure. Far removed
as these questions are, apparently, from the subject-matter of a
calculus’ of infinitely small quantities and the variation of
quantities by infinitesimal increments, my purpose is to show
that they are intimately connected with them and that success
is- a necessary consequence of the relationship. I must first
take you to 2 much simpler problem than that of the Latin
square, to one which in a variety of ways is very easy of solu-
tion, but which happens to be perhaps the simplestillustration
of the method. In the game of chess a castle can move either
horizontally or vertically, and it is easy to place 8 castles on the
board so-that no piece can be taken by any other piece. One
such - arrangement is shown in Fig. 10. The condition is
simply that one castle must be in each row and also in each
column. Every such arrangement is a diagrammatic representa-
tion of a certain mathematical process performed upon a certain
algebraical function. For consider the process of differentiating
85 it may be performed as follows :—Write down 2% as the
product of 8 x’s,

XX XX XXX X

and now substitute unity for x in all possible ways and add the
results ; the substitution can take place in eight different ways,
and the addition results in 847, which will be recognised as the
differential coefficient. Observe that the process of differentia-
tion is thus broken up into eight minor processes, each of which
may be diagrammatically represented on the first row of the
chess-board by a unit placed in the compartment corresponding
to the particular x for which unity has been substituted. If we
now perform differentiation a second time, we may take the
results of the above minor processes and in each of them again
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Substitute unity for x in‘all possible ways; since in each the
Sybstitution can take place in seven different ways, it is seen
that we can regard the process of differentiating twice as com-
posed. of 8 x 7 = 56 minor processes, each of which can be
diagrammatically represented by two units, one in _each of the
first two rows of the chess-board, in positions corresponding to
the substitutions of unity for x that have been carried out.
Proceeding in this manner in regular order up to the eighth
differentiation, we find. that the whole process of differentiat-
ing % eight times in succession can be decomposed into
8 X 7 X6 X5 X4X3X2X I =40,320 minor processes, each
of which is denoted by a diagram which slight reflection shows
is a solution of the castle problem (Fig. 11). There are, in
fact, no more solutions, and the whole series of 40,320 diagrams
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constitutes a picture in detail of the differentiations. Simple
differentiations of integral powers thus yield the enumerative
solutions of the castle problem on chess-boards of any size.

We have here a clue to a method for the investigation of
these chess-board problems ; it is the- grain of mustard seed
which has grown up into a tree of vigorous growth, throwing
out branches and roots in all sorts of unexpected directions.
The above illustrations of differentiation gave birth to the idea
that it might be possible to design pairs of mathematical pro-
cesses and functions which would yield the solution of chess-
board problems of a more difficult character. Two plans of
operation present themselves. In the first place€ we may take
up a particular question, the Latin square for instance, and
attempt to design, on the one hand, a process, and, on the

HE8E828828
Bk o ik 2ok o o o S
THHER=SEIE8E
Rk 20k o ok o 2 o o SR ot
SR T e ok o oo ol o
HEEHEREE8E
HEERE R SRS

RS8R

Fic. 17,

other hand, a function the combination of which will lead to
the series of diagrams. In the second place, we may have no
particular problem in view, but simply start by designing a
process and a function, and examine the properties of the series
of diagrams to which the combination leads. The first of these
plans is_the more difficult, but was actually accomplished in the
case of the Latin square and some other questions; but 'the
second plan, which is the proper method of investigation, met
with great success, and the Latin square was one of its first
victims, a solution of a more elegant nature being obtained than
that which had resulted from the first plan of operations. There
is such an extensive choice of processes and functions that many
solutions are obtainable of any particular problem. I will now
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give you an idea of a solution of the Latin square, which is not
the most elegant that has been found, but which is the most
suitable to explain to an audience. Suppose we have five
collections of objects, each collection containing the same five
different objects, a, &, ¢, d, ¢ (Fig. 12). I suppose the objects
distribated amongst five different persons in the following
manner :—The first person takes one object from each collection,
so as to obtain each of the five objects ; he can do this in 120
different ways ; we will suppose that he takes « from the first,
b from the second, ¢ from the third, & from the fourth, ¢ from
the fifth ; the collections then become as you see in Fig. 12,
second row. Now suppose the second man to advance with
the intention of taking one object from each collection and ob-
taining each of the five objects, he has not the same liberty
of choice as had the first, because he cannot take @ from the
first collection or 4 from the second, &c. However, he has
a good choice in his selection, and we will suppose him to take
& from the first collection, & from the second, ¢ from the third,

(abede) (abede) (abede) (abede) (abede)
(.bede) (a.cde) (ab.de) (abe.e) (abed.)
(..cde) (a.c.e) (ab.d.) (.bc.e) (ab.d.)
(...de) (a.c..) (ab...) (..c.e) (.b.d.)
(covve) (a...) (b)) (o) (Lody)

FiG. 12.

@ from the fourth, ¢ from the fifth., The collections then be
come as you see in the third row. The third man who has
the same task finds his choice more restricted, but he
elects to take ¢ from the first, ¢ from the second, & from
the third, é from the fourth and @ from the fifth. The
fourth man finds he can take 4, ¢, «, ¢, 6, and this leaves ¢, a,
4, ¢, d for the last man. If we plot the selections that have
been made by the five men, we find the Latin square shown in
Fig. o.

Every division of the objects that can be made on this plan
gives rise to a Latin square, and all possible distributions give
rise to the whole of the Latin squares. Now it happens that
a mathematical process exists (connected with algebraical
symmetric functions) that acts towards a function representing
the. five collections in exactly the same way as I have supposed
the men to act, and when the process is performed five times in
succession, an integer results which denotes exactly the number
of Latin squares of order 5 that can be constructed. Moreover,
en route the ‘‘probléme des rencontres” and the problems
connected with any definite number of rows of the space are
also solved.

I will now mention some questions of a more difficult

character that are readily solved by the method. In the
aabc aadbbd aada b
abea abab aaba
bcaa bbaa abaa
caab baba baaa
Fie. 13.

“ probleme des ménages” you will recollect that the condition
was that no man must sit next to his wife. If the condition be

" that there must be at least four {(or any even number) persons
between him and his wife, the question. is just as easily solved.
Latin squares where the letters are not all different in each row
and column are easily. counted. Illustrations of these are
shown in Fig. 13. One of these extended to order §
gives the solution of the problem of placing 16 castles on a
chess-board, 8 black and 8 white, so that no castle can take
another of its own colour.

Theoretically, the Greeco-Latin squares of Euler can be
counted, but I am bound to say that the most laborious calcula-
tions are necessary to arrive at a numerical result or even to
establish that in certain cases the number sought is zero.

Next consider a square of any size and any number of dif-
ferent letters, each of which must appear in each row and in
each column, while there is no restriction as to the number that
may appear in any one compartment. In this case the result
is very simple ; suppose the square of order 4 (Fig. 14), and
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that there are seven different letters that must appear in each
row and column; the number of arrangements is (4 !)7, viz.,
4, the order of the square, must be multiplied by each lower
number and the number thus reached multiplied seven times by
itself.

Finally, if there be given for each row and for each columu
a different assemblage of letters and no restriction be placed
upon the contents of any compartment, the number of squares
in which all these conditions are satisfied can be counted. This,
of course, is a far more recondite question than that of the Latin
square, and cannot' be attacked at all by any other method.

I now pass to certain purely numerical problems. Suppose
we have a square lattice of any size and are told that
numbers are to be placed in the compartments in such wise that
the sums of the numbers in the different rows and columns are
to have any given values the same or different. This very
general question, hitherto regarded as unassailable, is solved
quite easily. The solution is not more difficult when the lattice
is rectangular instead of square and when any desired limita-
tion is imposed upon the magnitude of the numbers.

Up to this point, the solutions obtained depend upon processes
of the differential calculus. A whole series of other problems,
similar in general character, but in one respect essentially dif-
ferent, arises from the processesof the calculus of finite differences.
Into these time does not.permit me to enter. In the case of
magic squares as generally understood, the method brought
forward marks a distinct advance in cornection with De la
Hire’s method of formation by means of a pair of Latin squares,
but apart from this a great difficulty is involved in the condition

abed efl | g

e | abc

dg | f

ab | ¢

[ | deg

g | [ | ¢ |abde

Fie. 14.

that no two numbers must be the same. Still, a statement can
be made as to a succession of mathematical processes which
result in a number which enumerates the magic squares of a
given order. In any cases except those of the first few orders,
the processes involve an absolutely prohibitive amount of labour,
so that it cannot yet be said that a practical solution of the
question has been obtained.

Scientifically speaking, it is the assignment of the processes
and not the actual performance of them that is interesting ; it is
the method involved rather than the results flowing from the
method that is attractive ; it is the connecting link between
two, to all appearance, widely separated departments of mathe-
matics that 1t has been fascinating to forge and to strengthen.
Of all the subjects that for hundreds of years past have from
time to time engaged the attention of mathematicians, perhaps
the most isolated has been the subject of these chess-board
arrangements. This isolation does not, I believe, any longer
exist, The whole series of diagrams formed according to any
given laws must be regarded as a pictorial representation, in
greatest detail, of the manner in which a certain process is
performed. We have to exercise our wits to discover what this
process is. To say and to establish that problems of the general
nature of the magic square are intimately connected with the
infinitesimal calculus and the calculus of finite differences is to
sum the matter up. Much, however, remains to be done. The
present method is not able to deal with diagonal properties,
or with arrangements which depend upon the knight’s move.
The subject is only in its infancy at present. More workers
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are required who will, without doubt, introduce new ideas and
obtain results far transcending those we are in possession of

now. The latest work has shown that the method is applicable |

to boards of triangular and trapezoidal shapes, and also to solid
boards in three dimensions, so that the remote ground occupied
by magic and Nasik cubes will soon be invaded.

In conclusion, I bring before you an interesting example of
magic arrangement that I found whilst engaged in rammaging
amongst the books and documerits of the old Mathematical
Society of Spitalfields (1717-1845) for the purpose of extracting
something which might interest. or amuse, if it might not in-
struct, the audience I addressed in Section A of the British
Association for the Advancement of Science at Glasgow last
autumn, It is an arrangement of the first eighteen numbers on
five connected triangles ; the magical property consists in the
circumstance that the numbers 19, 38 and 57 appear as sums in
a variety of ways. The number 19 appears nine times, 38
twelve times and 57 fourteen times (Fig. 15).

16

9= 74+12=144 5= 4+1.
= 6418==174+ 2= 9+10
=16+ 3= 1+418= 8+11

38= Y4114 144 6=114 2-+15+10=15+416+ 6+ 1
=114104 8--14=10+154 1--12= 1+ 6+14+17
=144 3+ 4+17= 8+10+-12-+18==12+4 1417+ 8
= 84+18+184 4=18+4124 84+ 5= 8417+ 4+ 9

5T= T+144 4+ 5-4+12416= 6+17+ 9+18-+10+ 2=16+ 1+ 8+18+ 3+11
= T+114 24154+16+ 6=11-+104+16+ 14 6+14=14+ 3410412+ 1417
== 3413412+ 8117+ 4= 4418418+ 54 8+ 9
= 0+ 44 8-+10+15+16=18+13+12+ 1+ 6+ 7= 5+ 8+17+14+114 2
= 9+ 8412410411+ 7=18+ 4+17+ 1+15+ 2= 54184 8+14+ 6+16

FiG. 15.

I should say that I feel conscious that I have not been able
to introduce the subject of my lecture without occasional and,
perhaps, in the circumstances, unavoidable obscurity. For
the rest, I have felt somewhat doubtful as to the interest I might
arouse in these problems, but the managers honoured me
by inviting me to display to you some of the chips from a
pure mathematician’s workshop, and I felt no hesitation in
accepting.

FORTHCOMING BOOKS OF SCIENCE.

Mr. Felix Alcan (Paris) promises :—* Les Bases scientifiques
de l'Education physique,” by Démeny; ‘ Les Grands Phé-
nomenes géologiques,” by Prof. S, Meunier ; ‘“Manuel d’Electro-
théropie,” by A. Weill ; ¢ Traité d’Intubation du Larynx,” by
Bonain ; ¢ Manuel d’Histologie pathologique,” tome ii,, by
MM. Durante, Dominici, &e.

Mr, Edward Arnold gives notice of :—‘¢ Elementary Princi-
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ples in Statistical Mechanics, by Dr. J. W. Gibbs, and ¢ The
Elements of Experimental Phonetics,” by Dr. E. W. Scripture.

Messrs. G. BRell and Sons announce:—*‘ Comparative Anatomy
of Animals, an Introduction to the Study of,” by Dr. G. C.
Bourne, vol. ii.:—The Coelomata, illustrated ; ‘¢ Elementary
General Science,” by D. E. Jones and Dr. D. S. Macnair ; “ In-
jurious and Useful Insects,” by Prof. L. C. Miall, F.R.S,,
illustrated ; *“ Physiography,” by H. N. Dickson ; ‘¢ Electricity
and Magnetism,” by Dr. Oliver J. Lodge, F.R.S.; ‘¢ Light,”
by A. E. Tutton, F.R.S.

Messrs. A, and C. Black promise :—** Problems in Astro-
physics,” by Agnes M. Clerke, and a new edition of the same
writer’s ‘¢ History of Astronomy during the Nineteenth Century.”

The announcements of the Cambridge University Press in-
clude :—** Catalogue of Scientific Papers,” compiled by the
Royal Society, vol. xii., supplementary volume; °‘Scientific
Papers,” by John William Strutt, Baron Rayleigh, F.R.S,, vol.
iv. ; ““ Theory of Differential Equations,” by Prof.- A. R. For-
syth, F.R.S., part iil. :—Ordinary Linear Equations ; ‘‘ Mathe-
matical Analysis,” by E. T. Whittaker; * The Algebra of
Invariants,” by J. H. Grace and A. Young ; ‘¢ Electric Waves,
being an Adams Prize Essay in the University of Cambridge,”
by H. M. Macdonald, F.R.S. ; ¢‘ A Treatise on Determinants,”
by R. F. Scott, a new edition by G. B. Mathews, F.R.S. ;
“The Electrical Properties of Gases,” by Prof. J. J. Thomson,
F.R.S.; “A Treatise on Spherical Astronomy,” by Sir
Robert S. Ball, F.R.S. ; * Fossil Plants, a Manual for Students
of Botany and Geology,”’ by A. C. Seward, F.R.S., vol. ii.; ““ A
Primer of Botany,” by F. F. Blackman; ‘““A Primer of
Geology,” by J. E. Marr, F.R.S. ; “‘Immunity in Infectious
Diseases,” by Prof. E, Metchnikoff, authorised English trans-
lation by F. G. Binnie, illustrated ; ‘‘ Index Nominum Ani-
malium,” compiled by C. D. Sherborn under the supervision of
a Committee appointed by the British Assaciation and with the
support of the British Association, the Royal Society and the
Zoological Society, vol. i. (1758-1800); *f Zoological Results
based on Material from New Britain, New Guinea, Loyalty
Islands and elsewhere, collected during the years 18935, 1896
and 1897,” by Dr. A. Willey, part vii. Conclusion ; ‘*Reports
of the Anthropological Expedition to Torres Straits by the
members of the Expedition,” edited by Dr. A, C. Haddon,
F.R.S. (it is expected that the work will be completed in five
volumes); ¢ Fauna Hawaiiensis, or the Zoology of the Sand-
wich Islands: being results of the Explorations instituted by
the Joint Committee appointed by the Royal Society of London
for promoting Natural- Knowledge and the British Association
for the Advancement of Science, and carried on with the as-
sistance of those bodies and of the Trustees of the Bernice
Pauahi Bishop Museum,” edited by Dr. D. Sharp, F.R.S.;
“ The Fauna and Geography of the Maldive and Laccadive
Archipelagoes : being the Account of the Work carried on and
of the Collections made by an Expedition during the years
1899 and 1900 under the Leadership of J. S. Gardiner,” vol.
ii. part ii. ; * The Geographical Distribution of Diseases,” by
Dr. F. G.Clemow ; ““ An Introduction to Logic,” by W. E.
Johnson ; “ Euclid, Books i.-iii., with Simple Exercises,” by
R. T. Wright; ‘“ An Introduction to Physiography,” by W. N.
Shaw, F.R.S.; ‘“A Brief History of Geographical Discovery
since 1400,” by Dr. F. H, H. Guillemard; and a new
edition of ¢“ Solution and Electrolysis,” by W, C. D, Whetham.

Messrs, Cassell and Co., Ltd., give notice of :—** The Ascent
of Aconcagua,” by Sir W. M. Conway, illustrated ; Cassell’s
“Cyclopeedia of Mechanics,” edited by P. N. Hasluck, second
series, illustrated; “¢ The Automobile : its Construction and
Management,” translated from Gerard Lavergne’s ‘¢ Manuel
Théoretique et Pratique de ’Automobile sur Route,” revised
and edited by P. N. Hasluck, illustrated.

Messrs. W, and R. Chambers, Ltd., call attention to :—*¢¢ The
Nineteenth” Century Series,” containing ‘¢ Medicine, Surgery,
and Hygiene in the Century,” by Dr. E. H. Stafford ; ‘‘ Progress
of India, Japan, and China in the Century,” by the Right Hon.
Sir R. Temple, Bart., F.R.S.; ““ Progress of the United States
of America in the Century,” by Prof. W. P. Trent ; ‘“ Progress
of British Empire in the Century,” by J. S. Little ; *“ Progress
of Canada in the Century,” by J. C. Hopkins; ‘‘ Progress of
Australasia in the Century,” by T. A. Coghlan-and T. T.
Ewing ; ¢ Progress of New Zealand in the Century ”; ¢‘Dis-
coveries and Explorations of the Century,” by Prof. C. G. D.
Roberts ; *¢ Economic and Industrial Progress of the Century,”
by Dr. H. de B. Gibbins; “‘Inventions of the Century,” by
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