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Series Preface

The field of aerospace is multidisciplinary and wide ranging, covering a large variety of disciplines and
domains, not only in engineering but in many related supporting activities. These combine to enable the
aerospace industry to produce innovative and technologically advanced products. The wealth of knowledge
and experience that has been gained by expert practitioners in the aerospace field needs to be passed on to
others working in the industry and to researchers, teachers, and the student body in universities.

The Aerospace Series aims to be a practical, topical, and relevant series of books for people working in
the aerospace industry, including engineering professionals and operators, academics, and allied professions
such as commercial and legal executives. The range of topics is intended to be wide ranging, covering design
and development, manufacture, operation, and support of aircraft, as well as topics such as infrastructure
operations and advances in research and technology.

Flight dynamics, stability, and control are scientific disciplines of key importance for the design and
operation of all flight vehicles. While there are many textbooks dealing with these topics for fixed-wing
aircraft, there are relatively few covering the more complex topic of rotorcraft flight dynamics.

This book, Helicopter Flight Dynamics, is the third edition of the important textbook covering the
flight dynamics and flying qualities of helicopters and tiltrotor aircraft. New material covering the modelling,
simulation, and flying qualities of tiltrotors, the historical development of the flying qualities of rotorcraft,
and coupled system theory applied to rotorcraft has significantly strengthened the content and scope. The
book is aimed at practising engineers but is also highly relevant for undergraduate and graduate courses in
rotorcraft flight dynamics and flying qualities.

Peter Belobaba, Jonathan Cooper and Allan Seabridge
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Long ago, in the late 1960s, the author was introduced to a clever mathematical method for explaining and
predicting the loss of stability that can occur when pilots increase their control gain to reduce the excursions
in aircraft flight path, attitude, or speed. The clever part of the approximation came from a recognition that,
although both pilot and aircraft dynamics might be complex — multidimensional and nonlinear — in combi-
nation, a new dynamic emerged that could be represented by a relatively simple, linear, model of low order.
Effectively, the pilot action separated the combined system dynamics into two or more subsystems. In the
extreme case of very high pilot gain, the controlled states become fully constrained while the uncontrolled
states form into new modes with the potential risk of instability. The author’s understanding of flight dynam-
ics was in its infancy in 1968, but this technique enabled physical interpretations that became one of the
foundations on which his continued learning would be based — a foundation of analytic approximations that
provide insight into why and how things happen the way they do.

The publication on this research (Ref. 4A.6), titled The Strongly Controlled Aircraft, applied Ronald
Milne’s theory of weakly-coupled systems; Ronald was the author’s supervisor for his final-year undergradu-
ate project. Many engineers have influenced the author’s thinking and career journey but none so significantly
as Ronald Milne, following the fortuitous choice of final year project. A great feeling of sadness, but also
honour, arose when the author was asked by Ronald’s family to write his obituary for the Royal Aeronautical
Society in 2014.

In earlier editions of this book, the author applied this theory to helicopters, developing low-order
approximations to the natural modes and revealing instabilities resulting from strong flight-path and atti-
tude control. In this third edition, the author takes the opportunity to examine aircraft accidents through the
‘lens’ of strongly-controlled-aircraft theory. In the case of speed instability on the approach for fixed-wing
aircraft, the aeronautical science underpinning the causal factors has been understood for decades. In a new
appendix to Chapter 5, the author describes the roots of this understanding and applies this to recent acci-
dents; one on a commercial fixed-wing transport, the other on a commercial rotorcraft for comparison. In
the case of directional instability due to adverse yaw, the author has applied the theory to a simulation of the
XV-15 to explore the possible contributing factors in a recent accident on a tiltrotor; this analysis is contained
in an appendix to Chapter 10.

Chapter 10 is one of two new chapters in the third edition and presents an integrated treatment of
modelling, simulation, and flying qualities of tiltrotor aircraft. The author has drawn on publications from
research and operational tiltrotors and the extensive risk-reduction work conducted under several projects,
part-funded by the European Union, in preparation for a future civil tiltrotor. Bringing the content of this
chapter together has been a major task and could not have been accomplished without the support of several
colleagues who deserve mention. Understanding the functioning of gimbal rotors, with constant-velocity or
universal joints connecting the rotor to the drive shaft, was especially challenging. Most of the literature
associated with modelling of tiltrotors treat the rotor as a combination of articulated blades, modelled like
the rotors described in Chapter 3. The author broke free of this misrepresentation based on the understanding
that, with either type of joint, out-of-plane cyclic flapping did not lead to a resisting centrifugal force. David
Miller, of Boeing Rotorcraft, gave the author guidance and his patience as this revelation emerged; to be
obvious once understood. David had been involved in many aspects of the V-22 design and development
and provided the author with insight into many aspects of tiltrotors that are to be found in Chapter 10. Other
engineers who the author consulted on the material in Chapter 10 include Phil Dunford (ex-Boeing), Wayne
Johnson (NASA), Al Brand (Bell Helicopters), Andrea Ragazzi (Leonardo Helicopters), Pierangelo Masarati
(Politecnico di Milano), Chengjian He (ART), and Roy Bradley. All were positive and supportive and helped
to shape the material herein.
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Special thanks to Binoy Manimala (now with Leonardo Helicopters), who worked with the author as
a post-doc researcher at Liverpool and developed the FLIGHTLAB models of the XV-15, EUROTILT, and
ERICA tiltrotor configurations. Binoy also contributed to much of the research on tiltrotor structural load
alleviation (SLA), along with Daniel Walker, and the author has drawn examples from our papers in Chapter
10. Colleagues across Europe in the RHILP, ACT-TILT, and NICETRIP projects are acknowledged for their
contributions to the tiltrotor research undertaken at Liverpool. The early work in RHILP was particularly
significant, under the leadership of Philippe Rollet (Airbus Helicopters), in laying the foundations for the
research on tiltrotor flying qualities, modelling and SLA in these projects. Thanks to co-authors on the flying
qualities papers from these projects, Michael Meyer, Victoria Brookes, and Neil Cameron. Thanks to Fabio
Nannoni and Luca Medici (Leonardo Helicopters) for the use of images of their aircraft, ERICA, the AW609,
and NGCTR.

Chapter 9 is also new in this third edition and draws significantly on the author’s 2012 American
Helicopter Society (AHS) Nikolsky Lecture and subsequent written paper. The chapter discusses the ‘story
of an idea’ that quality can be quantified. This was an important aspect of the development of flying quali-
ties standards, test procedures, and technologies. The author takes the reader back to the mid-1940s to find
the starting point in the story. Since then, operational requirements, innovative technologies and regulatory
standards have evolved together as the narrative continued. The author acknowledges the contributions from
numerous engineers and pilots to this evolution throughout the chapter and, of course, the AHS for allowing
the reproduction of material.

Chapter 5 has been augmented with extensions to the theory of weakly-coupled-systems and applica-
tions to rotorcraft. The new appendix in this chapter examines and compares the low-speed speed instability
problem for fixed and rotary-wing aircraft. The author draws material from accident investigations but shows
analysis for one of the case aircraft described in Chapter 4, rather than the accident aircraft.

The author originally intended to expand Chapter 3 significantly but decided that the Chapter 10 mate-
rial on Level 2, multibody-dynamic modelling of tiltrotors would suffice. Chapter 3 has, however, been
augmented with material from recent research at Liverpool on simulation fidelity, where we refer to the
predictive fidelity of the flight model and perceptive fidelity of the simulation experienced by the pilot. The
author is grateful to the team at Liverpool for the strong collaboration on this theme, particularly Mark White,
Linghai Lu, Philip Perfect (now with Blue Bear Systems), Emma Timson (now with Airbus Helicopters), and
our colleagues at the Institute for Aerospace Research in Ottawa — Bill Gubbels and pilots Rob Erdos and
the late Stephan Carignan.

Special gratitude is owed to Dr. Linghai Lu (post-doc researcher with the author and now a senior
lecturer at Liverpool John Moores University) for his constant and untiring support to the author in the
preparation of this third edition. Creating and re-creating simulation results for helicopters and tiltrotors,
reviewing and commenting on the author’s analysis and textural descriptions, and producing charts of data,
Linghai has been an immense help to the author.

The author’s continuing collaboration with creative artist Mark Straker has resulted in a set of new
technical figures and sketches that can be found throughout the book. Mark also worked with the author to
create the cover design for this third edition. Mark’s consistent quality and willingness to work from the
author’s rough sketches deserves very special thanks.

Thanks to staff at Wiley publishing for working with me on the production of this book.

Thanks again to you, the reader, and I do hope my book helps you develop a good understanding of
helicopter and tiltrotor flight dynamics; above all else, that is my intention.

Gareth D. Padfield
Caldy, United Kingdom
January 2018
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In the preface to the first edition of my book, I talked about flight dynamics as a ‘living and mature subject, to
which many contributions are yet to be made’; 1 believe this statement is still true and every new generation
of engineers has something new to add to the store of knowledge. During the 10 years since its publication,
the disciplines of flight dynamics and handling/flying qualities engineering have matured into a systems
approach to the design and development of those functions and technologies required to support the piloting
task. At the same time, as pilot-centred operational attributes, flying qualities are recognised as the product of
a continual tension between performance and safety. These two descriptions and the interplay between them
highlight the importance of the subject to continuing helicopter development. The most obvious contributors
to flying qualities are the air vehicle dynamics — the stability and control characteristics — and these aspects
were treated in some depth in the first edition. Flying qualities are much more, however, and this has also been
emphasized. They are a product of the four elements: the aircraft, the pilot, the task, and the environment,
and it is this broader, holistic view of the subject, which is both a technical discipline and an operational
attribute, which emphasizes the importance to flight safety and operational effectiveness. I have tried to draw
out this emphasis in the new material presented in Chapter 8, Degraded Flying Qualities, which constitutes
the bulk of the new content in this second edition.

During the preparation of the first edition, ADS-33C was being used extensively in a range of mili-
tary aircraft programmes. The handling qualities (HQs) criteria represented key performance drivers for the
RAH-66 Comanche, and although this aircraft programme would eventually be cancelled, industry and the
surrounding helicopter ‘community’ would learn about the technology required to deliver Level 1 HQs across
arange of operational requirements. The last decade has seen ADS-33 applied to aircraft such as NH-90 and
the United Kingdom’s attack helicopter, and also to new operations including maritime rotorcraft and heli-
copters carrying external loads, and used as a design guide for civil tilt rotor aircraft. It is now common at
annual European and American Helicopter Fora to hear presentations on new applications of ADS-33 or
extensions to its theoretical basis. The Standard has also been refined over this period and currently exists
in the ADS-33E-PRF (performance) version, emphasizing its status as a performance requirement. A brief
resume of developments is added to Chapter 6.

Significant advances have also been made on the modelling and simulation front, and it is very satisfying
to see the considerable pace at which the modelling of complex helicopter aerodynamics is moving. It surely
will not be very long before the results of accurate physical flow modelling will be fully embodied into
efficient, whole aircraft design codes and real-time simulation. A combination of high-quality computer tools
for comprehensive synthesis and analysis and robust design criteria pave the way for massive reductions in
timescales and costs for design, development, and certification. The modelling and simulation material in
Chapters 3-5 is largely unchanged in this second edition. This is simply a result of the author needing to put
limits on what is achievable within the timescale available.

In August 1999, I left government ‘service’ to join The University of Liverpool with a mandate to lead
the aerospace activity, both on the research and the learning and teaching (L&T) axes. I was confident that my
30 years of experience would enable me to transition naturally into academia on the research axis. I had very
little experience on the L&T axis however, but have developed undergraduate modules in rotorcraft flight,
aircraft performance and flight handling qualities. I confirm the adage — to learn something properly, you
need to teach it — and it has been very satisfying to ‘plough’ some of my experience back into the formative
‘soil’ of future careers.

As with the first edition, while this work is a consolidation of my knowledge and understanding, much
has been drawn from the efforts and results of others, and not only is acknowledging this fact appropriate but
it also feels satisfying to record these thanks, particularly to the very special and highly motivated group of
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individuals in the Flight Science and Technology Research Group at the University of Liverpool. This group
has formed and grown organically, as any university research group might, over the period since 2000 and,
hopefully, will continue to develop capabilities and contribute to the universal pool of knowledge and under-
standing. Those, in academe who have had the pleasure and privilege to ‘lead’ a group of young post-graduate
students and post-doctoral researchers will perhaps understand the sense in which I derive satisfaction from
witnessing the development of independent researchers, and adding my mite to the process.

Thanks to Ben Lawrence and Binoy Manimala, who have become experts in FLIGHTLAB and other
computational flight dynamics analyses and helped me in numerous ways, but particularly related to inves-
tigating the effects of trailing wake vortices on helicopters. Neil Cameron derived the results presented in
Chapter 8 on the effects of control system failures on the handing qualities of tiltrotor aircraft. Gary Clark
worked closely with me to produce the results in Chapter 8 relating to terrain-following flight in degraded
visibility. Immeasurable gratitude to Mark White, the simulation laboratory manager in FS&T, who has
worked with me on most of the research projects initiated over the last five years. The support of Advanced
Rotorcraft Technology, particularly Ronald Du Val and Chengjian He, with various FLIGHTLAB issues and
the development of the HELIFLIGHT simulator, has been extensive and is gratefully acknowledged.

Those involved in flight dynamics and handling qualities research will understand the significant con-
tribution that test pilots make to the subject, and at Liverpool we have been very fortunate indeed to have
the sustained and consistently excellent support from several ex-military test pilots, and this is the place to
acknowledge their contribution to my developing knowledge captured in this book. Sincere thanks to Andy
Berryman, Nigel Talbot, Martin Mayer, Steve Cheyne, and Charlie Brown; they should hopefully know how
important I consider their contributions to be.

Thanks to Roger Hoh and colleagues at Hoh Aeronautics, whose continuous commitment to handling
qualities excellence has been inspirational to me. Roger has also made contributions to the research activities
in FS&T, particularly related to the development of handling criteria in degraded conditions and the attendant
design of displays for flight in degraded visual environments. The whole subject of visual perception in flight
control has been illuminated to me through close collaboration with David Lee, Professor of Perception in
Action at The University of Edinburgh. David’s contributions to my understanding of the role of optical flow
and optical tau in the control of motion has been significant and is gratefully acknowledged.

Over the last 10 years I have received paper and electronic communications from colleagues and readers
of the first edition worldwide who have been complementary and have politely identified various errors or
misprints, which have been corrected. These communications have been rather too numerous to identify and
mention individually here, but it is hoped that a collective thank you will be appreciated.

Mark Straker produced the figures in the form they appear in this book to his usual very high standard;
thanks again, Mark, for your creative support.

Finally, grateful thanks to Julia Burden at Blackwell Publishing, who has been unrelenting in her encour-
agement, dare I say persistence, with me to produce material for this second edition. Any Head of a large
academic department (at Liverpool I am currently Head of Engineering with 900 students and 250 staff) will
know what a challenging and rather absorbing business it can be, especially when one takes it on to direct
and increase the pace of change. So, I was reluctant to commit to this second edition until I felt that I had
sufficient new research completed to justify a new edition; the reader will now find a consolidation of much
of that new work in the new Chapter 8. Only the authors who have worked under the pressures of a tight
schedule, whilst at the same time having a busy day job, will know how and where I found the time.

So, this book is offered to both a new and old readership, who might also find some light-hearted relief
in a ‘refreshed’ version of one of my poems, or sky-songs as I call them, Helicopter Blues, which can be
sung in a 12-bar blues arrangement like Robert Johnson’s “When You Got a Good Friend’ (normally in EM
but in Am if you're feeling cool).

I got the helicopter blues

They’re going ‘round in my head

I got the helicopter blues

They re still going ‘round in my head

brother please tell me what to do about these helicopter blues
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My engine she’s failing

Gotta reduce my torque

My engine she keeps failing

Gotta pull back on my power

seems like I’'m autorotating from all these helicopter blues

My tail rotor ain’t working

Ain’t got no place to go

My tail rotor she ain’t working

Ain’t got no place to turn

These helicopter blues brother, they’re driving me insane

My humms are a humming

Feel all fatigued, used and abused

My humms are humming

I’m worn out from all this aerofoil toil

If I don’t get some maintenance sister, I've had it with these helicopter blues

My gearbox is whining

Must need more lubrication

I said I can’t stand this whining

please ease my pain with boiling oil

If I don’t get that stuff right now

I’m gonna lock up with those helicopter blues

Dark blue or light

The blues got a strong hold on me

It really don’t matter which it is

The blues got no respect for me

Well, if only I could change to green

Maybe I could shake off these helicopter blues

I’ve designed a new helicopter

It’1l be free of the blues

I’ve used special techniques and powerful computers

I’'m sure I know what I’'m doing

now [ gotta find someone to help me chase away these helicopter blues

I went to see Boeing

Said I got this new blues-free design

I went up to see Boeing, told them my story and it sounded fine
But they said why, blue’s our favourite colour

Besides which, you’re European

So I took my design to Eurocopter

I should have thought of them first

If I'd only gone to Eurocopter

I wouldn’t be sitting here dying of thirst

They said ‘c’est la vie mon ami’, vous ne pouvez pas faire un hélicoptere sans bleu

I went to see Sikorsky

I thought — They’ll fix the blues

They sent for Nick Lappos to fix the helicopter blues
Nick said don’t be such a baby, Gareth

Just enjoy those helicopter blues

xxi
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Now what would Ray Prouty do?

People say, Ray — he ain’t got no blues

Please help me Ray — how much more aerodynamics do I need
Maybe Ray would say, wake up and smell the coffee

Learn how to hide those helicopter blues

I’ve learned to live with them now

I’m talking about the helicopter blues

Even got to enjoy them

Those sweet, soothing helicopter blues

I’m as weary as hell but please don’t take away my helicopter blues

Gareth D. Padfield
Caldy, England



Preface to First Edition

In this preface, I want to communicate three things. First, I would like to share with the reader my motivation
for taking on this project. Second, I want to try to identify my intended audience and, third, I want to record
some special acknowledgements to colleagues who have helped me.

When I decided to pursue a career as an aeronautical engineer, my motivation stemmed from an aesthetic
delight in flight and things that flew, combined with an uncanny interest in tackling, and sometimes solving,
difficult technical problems. Both held a mystery for me and together, unbeknown to me at the time, helped
me to ‘escape’ the Welsh mining community in which I had been sculptured, on to the roads of learning and
earning. Long before that, in the late 1940s, when I was taking my first gasps of Welsh air, the Royal Aircraft
Establishment (RAE) had been conducting the first research flight trials to understand helicopter stability
and control. It should be remembered that at that time, practical helicopters had been around for less than
a decade. From reading the technical reports and talking with engineers who worked in those days, I have
an image of an exciting and productive era, with test and theory continuously wrestling to provide first-time
answers to the many puzzles of helicopter flight dynamics.

Although there have been quiet periods since then, the RAE sustained its helicopter research pro-
gramme through the 1950s, 1960s, and 1970s, and by the time I took charge of the activities at Bedford in
the mid-1980s, it had established itself at the leading edge of research into rotor aerodynamics and helicopter
flight dynamics. My own helicopter journey began in the Research Department at Westland Helicopters in
the early 1970s. At that time, Westland was engaged with the flight testing of the prototype Lynx, a helicopter
full of innovation for a 1960s design. This was also an exciting era, when the foundations of my understand-
ing of helicopter flight dynamics were laid down. Working with a small and enthusiastic group of research
engineers, the mysteries began to unfold, but at times it felt as if the more I learned, the less I understood.
1 do not want to use the word enthusiastic lightly in this context; a great number of helicopter engineers that I
have known have a degree of enthusiasm that goes way beyond the call of duty, so to speak, and I do believe
that this is a special characteristic of people in this relatively small community. While it is inevitable that
our endeavours are fuelled by the needs of others — the ubiquitous customer, for example — enthusiasm for
the helicopter and all of the attendant technologies is a powerful and dynamic force. In writing this book
I have tried to share some of my enthusiasm and knowledge of helicopter flight dynamics with as large an
audience as possible, and that was probably sufficient personal motivation to undertake the task. This moti-
vation is augmented by a feeling that my own experience in theory and test has given me insight into, and
a somewhat unique way of looking at, the subject of flight dynamics that I hope will appeal to the reader in
search of understanding.

There are, however, more pragmatic reasons for writing this book. While fixed-wing flight dynamics,
stability, and control have been covered from a number of perspectives in more than a dozen treatises over
the years, there has never been a helicopter textbook dedicated to the subject; so there is, at least, a perceived
gap in the available literature, and, perhaps more importantly, the time is ripe to fill that gap. The last 10-20
years has seen a significant amount of research in flight simulation and flying qualities for helicopters, much
of which has appeared in the open literature but is scattered in scores of individual references. This book
attempts to capture the essence of this work from the author’s perspective, as a practitioner involved in the
RAE (Defence Research Agency DRA) research in national and international programmes. It has been a
busy and productive period — indeed it is still continuing — and I hope that this book conveys the impression
of a living and mature subject, to which many contributions are yet to be made.

The book is written mainly for practising flight dynamics engineers. In some organizations, such a
person might be described as a flying qualities engineer, a flight simulation engineer, or even a flight controls
engineer, but my personal view is that these titles reflect sub-disciplines within the larger field of flight
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dynamics. Key activities of the flight dynamics engineer are simulation modelling, flying qualities, and flight
control. Simulation brings the engineer into a special and intimate relationship with the system he or she is
modelling, and the helicopter is a classic example.

The present era appears to be characterized by fast-disappearing computational constraints on our abil-
ity to model and simulate the complex aeroelastic interactions involved in helicopter flight. Keeping step
with these advances, the flight dynamics engineer must, at the same time, preserve an understanding of the
link between cause and effect. After all, the very objectives of modelling and simulation are to gain an under-
standing of the effects of various design features and insight into the sensitivity of flight behaviour to changes
in configuration and flight condition. In the modelling task, the flight dynamics engineer will need to address
all the underlying assumptions, and test them against experimental data, in a way that provides as complete a
calibration as possible. The flight dynamics engineer will also have a good understanding of flying qualities
and the piloting task, and he or she will appreciate the importance of the external and internal influences on
these qualities and the need for mission-oriented criteria. Good flying qualities underpin safe flight, and this
book attempts to make the essence of the theoretical developments and test database, assembled over the
period from the early 1980s through to the present time, accessible to practising engineers. Flight testing is
an important part of flight dynamics, supporting both simulation validation and the development of flying
qualities criteria. In this book, I have attempted to provide the tools for building and analysing simulation
models of helicopter flight, and to present an up-to-date treatment of flying qualities criteria and flight test
techniques.

While this is primarily a specialist’s book, it is also written for those with empathy for the broader vision,
within which flight dynamics plays its part. It is hoped that the book, or parts of the book, will appeal to test
pilots and flight test engineers and offer something useful to engineers without aeronautical backgrounds, or
those who have specialized in the aerodynamic or controls disciplines and wish to gain a broader perspective
of the functionality of the total aircraft.

In writing Chapters 2, 6, and 7, I have tried to avoid a dependence on ‘difficult’” mathematics.
Chapters 3-5, on the other hand, require a reasonable grasp of analytical and vectorial mechanics as would,
for example, be taught in the more extensive engineering courses at first and higher degree levels. With
regard to education programmes, I have had in mind that different parts of the book could well form the
subject of one or two term courses at post-graduate or even advanced undergraduate level. I would strongly
recommend Chapter 2 to all who have embarked on a learning programme with this book. Taught well, I
have always considered that flight dynamics is inspirational and, hence, a motivating subject at university
level, dealing with whole aircraft and the way they fly, and, at the same time, the integration of the parts that
make the whole. I have personally gained much from the subject and this book also serves as an attempt to
return my own personal understandings into the well of knowledge.

In the sense that this book is an offering, it also reflects the great deal of gratitude I feel towards many
colleagues over the years, who have helped to make the business enjoyable, challenging, and stimulating
for me. I have been fortunate to be part of several endeavours, both nationally and internationally, that have
achieved significant progress, compared with the sometimes more limited progress possible by individuals
working on their own. International collaboration has always held a special interest for me and I am grateful
to Advisory Report on Rotorcraft System Identification (AGARD), Garteur, Technical Cooperation Program
(TTCP) and other, less formal, ties with European and North American agencies, for providing the auspices
for collaboration. Once again, this book is full of the fruits of these activities. I genuinely consider that heli-
copters of the future will perform better, be safer, and be easier to fly because of the efforts of the various
research groups working together in the field of flight dynamics, feeding the results into the acquisition pro-
cesses in the form of the requirements specifications, and into the manufacturing process, through improved
tools and technologies.

In the preparation of this book, several colleagues have given me specific support, which I would like to
acknowledge. For assistance in the generation and presentation of key results, I would like to acknowledge
the Rotorcraft Group at DRA Bedford. But my gratitude to the Bedford team goes far beyond the specific
support activities, and I resist identifying individual contributions for that reason. As a team, we have pushed
forward in many directions over the last 10 years, sometimes at the exciting but lonely leading edge, at other
times filling in the gaps left by others pushing forward with greater pace and urgency. I want to record that this
book very much reflects these team efforts, as indicated by the many cited references. [ was anxious to have
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the book reviewed in a critical light before signing it off for publication, and my thanks go to colleagues and
friends Ronald Milne, Ronald DuVal, Alan Simpson, Ian Simons, and David Key for being kind enough to
read individual chapters and for providing me with important critical reviews. A special thanks to Roy Bradley
for reviewing the book in its entirety and for offering many valuable ideas that have been implemented to
make the book better.

I first had the serious idea of writing this book about four years ago. I was familiar with the Blackwell
Science series and I liked their productions, so I approached them first. From the beginning, my publisher at
Blackwell, Julia Burden, was helpful and encouraging. Later, during the preparation, the support from Julia
and her team was sustained and all negotiations have been both positive and constructive; I would like to
express my gratitude for this important contribution. I would like also to acknowledge the vital support of
my employer, the DRA, for allowing me to use material from my research activities at RAE and DRA over
the past 18 years. My particular thanks to my boss, Peter England, manager, Flight Dynamics and Simulation
Department at DRA Bedford, who has been continually supportive with a positive attitude that has freed me
from any feelings of conflict of interest. Acknowledgements for DRA material used and figures or quotes
from other sources are included elsewhere in this book. The figures in this book were produced by two artists,
those in Chapter 2 by Peter Wells and the rest by Mark Straker. Both worked from often very rough drafts
and have, I believe, done an excellent job — thank you both.

All these people have helped me along the road in a variety of different ways, as I have tried to indicate,
but I am fully accountable for what is written in this book. I am responsible for the variations in style and
‘colour’, inevitable and perhaps even desirable in a book of this scope and size. There have been moments
when I have been guided by inspiration and others where I have had to be more concerned with making
sure the mathematics was correct. I have done my best in this second area and apologise in advance for the
inevitable errors that will have crept in. My final thanks go to you, the reader, for at least starting the journey
through this work. I hope that you enjoy the learning and I wish you good fortune with the application of
your own ideas, some of which may germinate from reading this book. It might help to know that this book
will continue to be my guide to flight dynamics and I will be looking for ways in which the presentation can
be improved.

Gareth D. Padfield
Sharnbrook, England
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Notation

ag main rotor blade lift curve slope (1/rad)

ab, cosine, sine components of left rotor gimbal tilt angle

ay,b, cosine, sine components of right rotor gimbal tilt angle

a, constant acceleration of the = guide

ayr tail rotor blade lift curve slope (1/rad)

Ay_ 1,0y _ns--. coefficients of characteristic (eigenvalue) equation

a, acceleration of P relative to fixed earth (components a,, a,, a,) (m/s?, ft/s?)

a,, acceleration vector of P relative to G (m/s2, ft/s2)

Ay, Ay, Aoy, acceleration components of a blade element in rotating blade axes system (m/s?, ft/s?)

a peak normal acceleration (m/s?, ft/s?)

c rotor blade chord (m, ft)

c constant 7 motion

d(y, rp,) local drag force per unit span acting on blade element (N/m, 1bf/ft)

eR flap hinge offset (m, ft)

e, R lag hinge offset (m, ft)

f(r) forcing function vector

Fsw), f,(w) coefficients in blade flapping equation

(), £ (rp) in-plane and out-of-plane aerodynamic loads on rotor blade at radial station r,

g acceleration due to gravity (m/s2, ft/s?)

8100 81c1 lateral cyclic stick—blade angle gearing constants

8150 81s1 longitudinal cyclic stick—blade angle gearing constants

8ec0» 8eel collective lever—lateral cyclic blade angle gearing constants

8:10 pedal/collective lever—tail rotor control run gearing constant

80 84 nonlinear trim functions

8500 &scl collective lever-longitudinal cyclic blade angle gearing constants

87105 &71 pedal-tail rotor collective blade angle gearing constant

gr tail rotor gearing

h height above ground (m, ft)

h, eye-height

h, h height (m, ft), height rate (m/s, ft/s)

hy, height of fin centre of pressure above fuselage reference point along negative z-axis
(m, ft)

hg height of main rotor hub above fuselage reference point (m, ft)

hp height of tail rotor hub above fuselage reference point (m, ft)

i,j, k unit vectors along x-, y- and z-axes

k 7-coupling constant

k lift dependent drag parameter

k, interlink gearing between differential collective pitch and aileron

ki, ky, ky inertia coupling parameters

ki kg, feedforward gains (rad/unit stick movement)

ks = tan tail rotor delta 3 angle

kg kp gains in roll axis control system (rad/rad, rad/(rad/s))
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XXX Notation

K pe critical value of k; for fuselage-rotor coupling

k, feedback gain in collective — normal acceleration loop (rad/m?)

k, gain for yaw rate feedback

ko gain for vertical velocity feedback

Ky main rotor downwash factor at fuselage

ki main rotor downwash factor at fin

k,r main rotor downwash factor at tail rotor

Kip main rotor downwash factor at tailplane

ko, k, feedback gains in pitch axis control system (rad/rad, rad/(rad/s))

kgis ki trim damping factors

Z(y, 1) lift per unit span (N/m, Ibf/ft)

L Lig lift on blade element on left (blade 2) and right (blade 1) sides of blade pair 1

L fuselage reference length (m, ft)

Ly distance of fin centre of pressure aft of fuselage reference point along negative x-axis
(m, ft)

Iy distance of tail rotor hub aft of fuselage reference point (m, ft)

Ly distance of tailplane centre of pressure aft of fuselage reference point (m, ft)

m(r) blade mass distribution

my,, apparent mass of air displaced by rotor in vertical motion

n, Ny load factor (g)

pqr angular velocity components of helicopter about fuselage x-, y- and z-axes (rad/s)

ppk/A¢ attitude quickness parameter (1/s)

Dyss Ps steady state roll rate (rad/s)

r,r, (7) blade radial distance (with overbar — normalized by radius R) (m, ft)

KT, radial distance from vortex core and vortex core radius

Ly position vector of P relative to G (components x, y, z) (m, ft)

Qs steady-state pitch rate

s Laplace transform variable

s rotor solidity = N,¢/zR

Sy tail rotor solidity

t time (s)

1 normalized time (#/T)

t, time in a manoeuvre when the reversal occurs (s)

Z, heave time constant (—=1/Z,,) (s)

i, t,, normalized by T

1 manoeuvre time (s)

1,10, 50. 90 time constants — time to 10%, 50%, 90% of steady-state response (s)

u (7 control vector

u, v, w translational velocity components of helicopter along fuselage x-, y- and z-axes
(6w = w, etc.) (m/s, ft/s)

ubl, oLy translational velocities in blade axes (Appendix 10D)

v; induced velocity at disc (m/s, ft/s)

Vinover induced velocity at disc in hover (m/s, ft/s)

Vieo induced velocity in the far field below rotor (m/s, ft/s)

\/ eigenvectors of AT

Voo V, velocity vector of G, P relative to fixed Earth

Vore velocity vector of P relative to G (components u,,, vy, W,,)

v, velocity of motion guide (m/s, ft/s)

Veo initial velocity of motion guide (m/s, ft/s)

w velocity along aircraft z-axis (m/s, ft/s)

W steady-state velocity along aircraft z-axis (m/s, ft/s)

w (1 1) blade out-of-plane bending displacement (m, ft)

W vertical velocity (m/s, ft/s)
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Notation

gust velocity component along z-axis (m/s, ft/s)
maximum value of velocity in ramp gust (m/s, ft/s)
eigenvectors of A

w—k A QR4 total downwash over fuselage (m/s, ft/s)
steady-state normal velocity (m/s, ft/s)

steady-state velocity along aircraft z axis (m/s, ft/s)
state vector

position and position command in pilot/vehicle system
distance along x- and z-directions

distance (normalised distance (with hat)) to go in manoeuvre (m, ft)
normalised velocity and acceleration in manoeuvre

mutually orthogonal directions of fuselage axes — x forward, y to starboard, z down;

centred at the helicopter’s centre of mass
initial condition vector x(0)
blade axes system (proprotor)

centre of gravity (centre of mass) location forward of fuselage reference point (m, ft)

equilibrium value of state vector
distance in eye-height/s
velocity in eye-heights
initial displacement of motion guide (m, ft)
gimbal axes system (proprotor)
hub axes system (proprotor)
distance to go in motion guide (m, ft)
distance to go in manoeuvre (m, ft)
edge rate (1/s)
elemental state vectors (f — fuselage, r — rotor, p — powerplant, ¢ — control)
distance of ground below rotor (m, ft)
system and control matrices
system matrices; ff — fuselage subsystem, fr — rotor to fuselage coupling
submatrices in partitioned form of A
blade area (m?, ft?)
rotor disc area (m?, ft?)
agility factor — ratio of ideal to actual manoeuvre time
x- and y-axes acceleration components of aircraft relative to Earth (m/s?, ft/s?)
control matrices; ff fuselage subsystem, fr rotor to fuselage coupling
aircraft drag coefficient, zero lift drag coefficient and lift coefficient
1

= mhft deficiency factor
_ 4pS

T 164
time—l)dependent damping matrix in individual blade flapping equations

normalized fuselage force and moment coefficients, i=x, y, z, [, m, n
aerodynamic flap moment coefficient about roll axis

slope of lift curve on wing or aerofoil vs. incidence

slope of lift curve on aileron/flaperon

maximum aerofoil (wing) lift coefficient

time-dependent damping matrix in multiblade flapping equations
constant damping matrix in multiblade flapping equations
aerodynamic flap moment about pitch axis

fuselage aerodynamic yawing moment coefficients

main rotor torque coefficient

induced and profile torque coefficients

tail rotor torque coefficient

rotor thrust coefficient



©

XXXii Notation

Cr, tail rotor thrust coefficient

Cy weight coefficient

C.C,C, main rotor force coefficients

Cyry V normalized sideforce on fin

C, lag damping

Cyp normalized tailplane force

D aircraft drag (N, 1bf)

D(s) denominator of closed-loop transfer function

D (y) time-dependent stiffness matrix in individual blade flapping equations

D,,(y) time-dependent stiffness matrix in multiblade flapping equations

D,,0(w) constant stiffness matrix in multi-blade flapping equations

E(I(r) distributed blade stiffness

FO out-of-plane rotor blade force

F® in-plane rotor blade force

F(r 1) distributed aerodynamic load normal to blade surface

F(x, u, 1) nonlinear vector function of aircraft motion

F (()1) main rotor force component

F ﬂ) one-per-rev cosine component of F(1)

F 51) one-per-rev sine component of F1)

F;lc) two-per-rev cosine component of F(V

F;ls) two-per-rev sine component of F()

F ii) one-per-rev cosine component of F®

F ﬁ) one-per-rev sine component of F\?

Fg vector of external forces acting at centre of mass (components X,Y, Z)

F; tail rotor-fin blockage factor

F,,F,,etc. flap derivatives in heave/coning/inflow rotor model

G,(s), H,(s) engine/rotorspeed governor transfer function

G1p(@) cross-spectral density function between lateral cyclic and roll rate

H,, (@) frequency response function between lateral cyclic and roll rate

H,(y) time-dependent forcing function matrix in individual blade flapping equations

H,,(y) time-dependent forcing function matrix in multi-blade flapping equations

H,,,(y) forcing function matrix in multi-blade flapping equations

1 flap moment of inertia (kg m?, slug ft?)

I, moment of inertia of nth bending mode (kg m?, slug ft?)

I moment of inertia of rotor and transmission system (kg m?; slug ft?)

I, 1, moments of inertia of tiltrotor shaft and drive train associated with rotor rotation rate
“ and aircraft yaw rate (kg m?)

I, I, etc. inflow derivatives in heave/coning/inflow rotor model

L1, 1. moments of inertia of the helicopter about the x-, y- and z-axes (kg m?; slug ft?)

I, h product of inertia of the helicopter about the x- and z-axes (kg m?; slug ft?)

K; rotorspeed droop factor

K, centre-spring rotor stiffness (Nm/rad, ft 1b/rad)

Ky Koy attitude feedback gains for feedback to series and parallel actuators

Kor Ko Ki gains in tiltrotor governor feedforward model (Fig. 10.71)

K, K, pilot and display scaling gains

L M, N external aerodynamic moments about the x-, y- and z-axes (N m, ft1b)

L, transformation matrix from multi-blade to individual blade coordinates

L, My, N, fuselage aerodynamic moments about centre of gravity (N m, ft1b)

L, Ng, fin aerodynamic moments about centre of gravity (N m, ft1b)

Lgo,Mgh control derivatives normalized by moments of inertia (1/s%)
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Notation Xxxiii
Ly, Ny, My tail rotor moments about centre of gravity (N m, ft1b)
L,M, etc. moment derivatives normalized by moments of inertia (see Appendix 4B.2 for various
units)
L, turbulence scale for vertical velocity component (m, ft)
M, M, Mach number, drag divergence Mach number
M, mass of helicopter (kg, 1b)
My, My, M blade hub moment due to aerodynamics (A), inertia (/) and spring (S) (Nm)
My, My, cosine and sine components of blade aerodynamic moment M,, (Nm)
M, first moment of mass of rotor blade (kg m; slug ft)
M, hub moment about the centre of mass (Nm/rad)
Mg vector of external moments acting at centre of mass (components L, M, N)
M,(qr) 0,7 rotor hub moment (N m, ft1b)
M, L, main rotor hub pitch and roll moments (N m, ft1b)
My, Ly main rotor pitch and roll moments (N m, ft Ib)
M, tail plane pitching moment (N m, ft 1b)
My, M, ., M, tiltrotor inplane loads in multiblade coordinates (Nm)

M, M, M, tiltrotor inplane loads in individual-blade coordinates (Nm)

M;, pitching moment due to longitudinal stick/elevator (rad/s* in.)
N, number of blades on main rotor
Nyu tiltrotor blade inplane aerodynamic moment (Nm)
Ny yawing moment due to rotor about rotor hub (N m, ft1b)

rgtive effective yaw damping in Dutch roll motion (1/s)

., 0., R, trim angular velocities in fuselage axes system (rad/s)
P; rotor induced power (kW, HP)
P, (1 blade generalized coordinate for out-of-plane bending
P, permutation matrix in trim algorithm
Py main rotor power (kW, HP)
P, tail rotor power (kW, HP)
PP, position of aircraft from hover box (m, ft)
O R weighting matrices in linear-quadratic-Gaussian approach to control
Qe accessories torque (N m, ft1b)
0, Qg engine torque (N m, ft1b)

omas maximum continuous engine torque (N m, ft1b)
Or main rotor torque, proprotor torque (N m, ft 1b)
0, tiltrotor interconnect drive shaft torque (Nm, ft1b)
Or tail rotor torque (N m, ft1lb)
0., quickness for aircraft vertical gust response (1/s)
R rotor radius (m, ft)
R(s) numerator of closed-loop transfer function
Ry tail rotor radius (m, ft)

2
Sy Stiffness number 4.
/8

Sp fin area (m?2, ft?)
S, (r blade mode shape for out-of-plane bending
S, S, fuselage plan and side areas (m?, ft?)
S,p tail plane area (m?, ft%)
S. 0,1 shear force at rotor hub (N, 1bf)
T main rotor thrust (N, Ibf)
T manoeuvre duration (s)
Ty time constant in heave axis first-order equivalent system (s)
Thioni transformation matrix from hub to blade axes
Ty, rotor thrust in-ground effect (N, 1bf)
T rotor thrust out-of-ground effect (N, 1bf)



©

XXXiV Notation

N

distance between edges on surface (m, ft)

propr Xuprop thrust and drag derivative due to propeller

~

T, tail rotor thrust (N, 1bf)
T, lead time in pitch response (sec)
Ty, incidence lag (sec)
u,v,w, trim velocities in fuselage axes system (m/s, ft/s, knots)
Up, Uy normal and in-plane rotor velocities (m/s, ft/s)
Uy, U, normal and in-plane rotor velocities on tiltrotor in airplane mode (m/s, ft/s) (note u,
reverse sign to Up)
V.V, aircraft forward velocity (m/s, ft/s)
V. rotor climb velocity (m/s, ft/s)
V. tangential velocity at the edge of the vortex core (m/s, ft/s)
vV, rotor descent velocity (m/s, ft/s)
v total velocity incident on fuselage (m/s, ft/s)
er total velocity in trim (m/s, ft/s, knots)
an total velocity incident on fin (m/s, ft/s)
V,ir)(O, 1) rotor hub shear force (N, 1bf)
Vies resultant velocity at rotor disc (m/s, ft/s)
Vi total velocity incident on tailplane (m/s, ft/s)
V(1) tangential velocity in vortex as a function of distance from core r (m/s, ft/s)
VeV velocity components of aircraft relative to Earth
w aircraft weight (N, kgf, 1bf)
w eigenvector matrix associated with A
X, Y, Z external aerodynamic forces acting along the x-, y- and z-axes (N, Ibf)
X, X, Xp, X. pilot cockpit controls for tiltrotor aircraft (inches)
X, pilot throttle control (%)
Xf, Yf, Zf components of X, ¥, Z from fuselage (N, 1bf)
Xiws Yoo rotor forces in hub/wind axis system (N, 1bf)
X, Xp components of X from main and tail rotors (N, 1bf)
X, X, components of X from empennage (fp — horizontal tailplane, fin — vertical fin) (N, Ibf)
X, X, etc. X force derivatives normalized by aircraft mass (see Appendix 4B.2 for various units)
wuprop X, from propeller
Y() principal matrix solution of dynamic equations of motion in vector form
Y, aerodynamic sideforce acting on fin (N, 1bf)
Yp, Y, (s) transfer function of pilot and aircraft
Y, component of Y force from tail rotor (N, Ibf)
Y, Y, etc. Y force derivatives normalized by aircraft mass (see Appendix 4B.2 for various units)
Z, heave damping derivative (1/s)
Zy, heave control sensitivity derivative (see Appendix 4B.2 for various units)
- component of Z force from tailplane (N, 1bf)
Z,,Z,etc. Z force derivatives normalized by aircraft mass (see Appendix 4B.2 for various units)
a(y,rt) total incidence at local blade station (rad)
a wing incidence (rad)
a, a, incidence break points in Beddoes theory (rad)
e effective cosine component of one-per-rev rotor blade incidence (rad)
Ay effective sine component of one-per-rev rotor blade incidence (rad)
a, disc incidence (rad)
ay incidence of resultant velocity to fuselage (rad)
Utap> Ly components of local blade incidence (rad)
X flow component of local blade incidence (rad)
Upireins Xwist components of local blade incidence (rad)
a, incidence of resultant velocity to tailplane
0 zero-lift incidence angle on tailplane (rad)
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Notation XXXV

rotor flap angle (positive up) (rad)

sideslip velocity (rad)

flapping angles of individual blades on a tiltrotor

sideslip angle at fuselage (rad)

sideslip angle at fin (rad)

= dp,./00,,, flapping derivative with respect to cyclic pitch

rotor blade coning, longitudinal and lateral flapping angles (subscript w denotes
hub/wind axes) — in multi-blade coordinates (rad)

tail rotor coning angle (rad)

tail rotor cyclic (fore — aft) flapping angle (rad)

tail rotor cyclic (fore — aft) flapping angle in tail rotor hub/wind axes (rad)
differential coning multi-blade flap coordinate (rad)

zero-lift sideslip angle on fin (rad)

vector of individual blade coordinates

flap angle of i th blade (rad)

cyclic multi-blade flap coordinates (rad)

vector of multi-blade coordinates

proprotor nacelle angle (0 — helicopter, 90° — airplane)

flapping angles for blades on right and left proprotors

ratio of instantaneous normal velocity to steady state value § = ~—

55

main rotor profile drag coefficient

main rotor lift dependent profile drag coefficient

tail rotor or tiltrotor delta 3 angle (tan~! k3)

tiltrotor fixed wing control surface (flaperon, elevator, rudder) angles (rad)
pilot cyclic control displacements

collective lever displacement

tiltrotor flap deflection (flap effectiveness factor) (rad)
tail rotor profile drag coefficient

tail rotor lift dependent profile drag coefficient
perturbations in velocity components (m/s, ft/s)
inverse of determinant in rotor stability matrix

flight path angle (rad or deg)

rate of change of y with time (rad/s or deg/s)

r=7y (rad or deg)

7, normalized by final value y,

rate of change with normalized time 7

final value of flight path angle (rad or deg)

tuned aircraft response

ca,R*
Lock number = 2%

= C’Iy; equivalent Lﬂock number

flight path angle in trim (rad)

shaft angle (positive forward, rad)

tail rotor Lock number

coherence function associated with frequency response fit between lateral cyclic and
roll rate

pilot’s collective lever and cyclic stick positions (positive up, aft, and to port)

cyclic gearing constants

tail rotor control run variable

aileron, elevator and rudder angles (rad, deg)

pedal position (inch)

rotor uniform and first harmonic inflow velocities in hub/shaft axes (normalized
by QR)
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XXXVi Notation
Aor tail rotor uniform inflow component
Aer inflow gain
A eigenvalue
A main rotor inflow
Ain hover inflow
Afy a fixed-wing aircraft eigenvalue
Ay flap frequency ratio; /1[23 =1+ 1;’;2
X main rotor wake angle (rad)
Xe track angle in equilibrium flight (rad)
X1 X2 wake angle limits for downwash on tail (rad)
Agr tail rotor flap frequency ratio
Ay flap frequency ratio for nth bending mode
Ag blade pitch frequency ratio
A, phugoid mode eigenvalue
A, roll subsidence eigenvalue
Ag spiral mode eigenvalue
Agp short-period mode eigenvalue
Ap normalized downwash at tailplane
A blade lag frequency ratio
u advance ratio V/QR
u real part of eigenvalue or damping (1/s)
U, normalized climb velocity
Uy normalized descent velocity
Ur normalized velocity at tail rotor
Hyp normalized velocity at tailplane
Hys Hys My velocities of the rotor hub in hub/shaft axes (normalized by QR)
Myr total normalized tail rotor inflow velocity
% lateral acceleration (normalized sideforce) on helicopter (m/s?, ft/s?)
v turbulence component wavenumber = frequency/airspeed
0 optical flow angle (rad)
0, collective pitch angle (rad)
50 collective pitch normalized by 6,
Oor final value of collective (rad)
0, p,yw Euler angles defining the orientation of the aircraft relative to the Earth
(rad)
0o, Oor main and tail rotor collective pitch angles (rad)
004 differential collective pitch (rad)
0.4 differential longitudinal cyclic pitch (rad)
057 tail rotor collective pitch angle after delta 3 correction (rad)
0075 R blade pitch at 3/4 radius (rad)
0,0, longitudinal and lateral cyclic pitch (subscript w denotes hub/wind axes) (rad)
01 tail rotor cyclic pitch applied through ; angle (rad)
0,, main rotor blade linear twist (rad)

P air density (kg/m?, slug/ft)

o rms turbulence intensity

o combination of roll angle and lateral flapping (rad)

T time to contact surface or object or time to close a gap in a state (s)
T rate of change of = with time

T tau guide (constant accel or decel) (s)

tau to the surface during climb manoeuvre (s)

surface
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Notation XXXVii

T, tau of the motion variable x, defined as i where x is the distance or gap to a surface,
object or new state and i is the instantaneous velocity (s)

T6m To Tk Various time constants in tiltrotor governor feedforward model (secs)

Ty, Ty time constants in Beddoes dynamic stall model (s)

T4 time constant of rotor flap motion (s)

T —Tes actuator time constants (s)

Tols Tons Tpa engine time constants (s)

T, time delay in heave axis equivalent system

T, inflow time constant (s)

Tiat estimated time delay between lateral cyclic input and aircraft response (s)

7, roll time constant (= —1/Lp) (s)

7, phase delay between attitude response and control input at high frequency (s)

T ped estimated time delay between pedal input and aircraft response (s)

o” angular velocity in blade axes (Appendix 10.D)

@y, bandwidth frequency for attitude response (rad/s)

@,, natural frequency of low-order equivalent system for roll response (rad/s)

, crossover frequency defined by point of neutral stability (rad/s)

w, Dutch roll frequency (rad/s)

on fuel flow variable

oM natural frequency of roll regressing flap mode (rad/s)

B Dl fuel flow variable at maximum contingency and flight idle

o, angular velocity vector of aircraft with components p, ¢, r

o, angular velocity of the tiltrotor gimbal (rad/s)

o, phugoid frequency (rad/s)

op frequency associated with control system stiffness (rad/s)

g, C, pitch short-period frequency (rad/s) and relative damping

@, task bandwidth (rad/s)

, angular velocity in blade axes =p,,, cos y — g, sin y (rad/s)

, angular velocity in blade axes =p,,, sin y + g,,,, cos y (rad/s)

O Dy, O, components of angular velocity of a tiltrotor blade in blade axes (rad/s)

(P phase angle between cyclic pitch and cyclic flapping (rad)

174 heading angle, positive to starboard (rad)

v rotor blade azimuth angle, positive in direction of rotor rotation (rad)

VLW, rotor azimuth angles on left and right rotors of a tiltrotor (rad)

v, rotor sideslip angle (rad)

/g8 azimuth angle of ith rotor blade (rad)

¢ blade lag angle (rad)

¢y Dutch roll damping factor

¢, phugoid damping factor

Co pitch short period damping factor

Abpp pitch dropback (rad)

D, phase margin (degrees)

D,,.v) power spectrum of w component of turbulence

e,o,Y%, equilibrium or trim Euler angles (rad)

Qor Qp main rotor speed (rad/s)

Q tiltrotor interconnect drive shaft rotational speed (rad/s)

Q. aircraft angular velocity in trim flight (rad/s)

Q; rotorspeed at flight idle (rad/s)

(O ratio of Q,, to Q,

Q, rotorspeed at maximum continuous power

Qp tail rotor speed (rad/s)
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Notation

first harmonic cosine component

first harmonic sine component

blade

Dutch roll

equilibrium or trim condition

gravity component or centre of mass G

hub axes

hub to blade (axis transformation)
hub/wind axes

no-feathering (plane/axes)

phugoid

in control system, relating to pilot and autostabiliser inputs
phugoid

spiral

steady state

short period

tip path (plane/axes)

main rotor, tail rotor, fuselage, fin, tailplane

differentiation with respect to time ¢

differentiation with respect to azimuth angle y
Laplace transformed variable or normalised variable



List of Abbreviations

AC
ACAH
ACP
ACS
ACT
ACT-TILT
ACT-FHS
ACVH
AD

AD
ADFCS
ADOCS
ADS
AEO
AFCS
AFS
AGARD
AH
AHS
ATAA
ALXW
APC
AR

AS
ASE
ASRA
ATA
AvP

BL

CA
CAA
CAP
CAR
CC

CF
CFD
CGI
CH
CHR
CPS

CS
CSM
CTP
CTR

attitude command

attitude command attitude hold
aerodynamic computation point
active control system

active control technology

active control technology for tiltrotors
Active control technology — flying helicopter simulator
attitude command velocity hold
attentional demands
acceleration-deceleration

advanced digital flight control system
advanced digital optical control system
Aeronautical Design Standard

air engineering officer

automatic flight control system
advanced flight simulator

Advisory Group for Aeronautical Research and Development
attack helicopter

American Helicopter Society
American Institute of Aeronautics and Astronautics
approach and landing in cross-wind
aircraft-pilot coupling

aspect ratio (in MTE)

Aerospatiale

automatic stabilisation equipment
Advanced Systems Research Aircraft
air-to-air

Aviation Publication

butt line

collision avoidance

Civil Aviation Authority

control anticipation parameter

Civil Air Regulations

conversion corridor

CentriFugal (force)

computational fluid dynamics
computer-generated imagery

cargo helicopter

Cooper—Harper Rating (as in HQR)
corridor protection system
Certification Standards (EASA)
conceptual simulation model

Critical Technology Programme

civil tiltrotor
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CvV
DAFCS
DART
DCP
DERA
DMP
DLR
DoF
DRA
DVE
EAS
EASA
ECD
ECF
EHST
EPSRC
ERICA
ERF
FAA
FB-412
FDR
FFS
FLME
FoV
FPVS
FRL
FS
FSAA
FTM
FUMS
FXV-15
GARTEUR
GSR
GTR
GUI
GVE
HM, CM, AM
HMD
HP
HQR
H-SE
HT
HUMS
IADP
1AS

1C

IFR
IHST
IMC

1P

IPR
KIAS
LCTR
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List of Abbreviations

constant velocity (joint)

Digital Automatic Flight Control System
Development of Advanced Rotor for Tiltrotor
differential collective pitch

Defence Evaluation and Research Agency
differential motion parallax

Deutsche Forschungs- und Versuchsantalt fuer Luft- und Raumfahrt
degree of freedom

Defence Research Agency

degraded visual environment

estimated air speed

European Aviation Standards Agency
Eurocopter Deutschland

Eurocopter France

European Helicopter Safety Team
Engineering and Physical Science Research Council
Enhanced Rotorcraft Innovative Concept Achievement
European Rotorcraft Forum

Federal Aviation Authority

FLIGHTLAB Bell 412 simulation model
flight data recorder

force feel system

FLIGHTLAB Model Editor

field of view

flight path vector system

Flight Research Laboratory (Canada)
Fuselage Station

flight simulator for advanced aircraft

flight test manoeuvre

fatigue usage monitoring system
FLIGHTLAB model of XV-15 tiltrotor
Group for Aeronautical Research and Technology in Europe
Glideslope re-capture

generic tiltrotor

graphical user interface

good visual environment

helicopter mode, conversion mode, airplane mode
helmet-mounted display

horse power

handling qualities rating

Helicopter-Safety Enhancement

Hover turn

health and usage monitoring system
Innovative Aircraft Demonstrator Platforms
indicated air speed

interconnecting shaft (tiltrotor)

instrument flight rules

International Helicopter Safety Team
instrument meteorological conditions
integrated project

in-progress-review

indicated air speed (knots)

large civil tiltrotor



LHX
LT™M
LOES
MA/OA
MBB
MBC
MBD
MSA
MDA
MTE
NACA
NAE
NASA
NGCTR
NICETRIP
NoE
NRC
NTSB
OFE
OGP
OH
ovC
PAFCA
PAPI
PF

PM
PECS
PHC

PI

PIO
PSD
RAE
RAeS
RASCAL
RC
RC/RCC
RCAH
RHILP
ROD
(R)RPM/rpm
RSS

RT
RTR
RVP
SA

SA
SAE
SAR
SCAS
SDG
SFE
SFR
SHOL
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List of Abbreviations

light helicopter experimental

lateral translation mode

low-order-equivalent system

missed approach/obstacle-avoid
Messerschmit—Bolkow—Blohm

multi-blade coordinates

multi-body dynamics

multi-segment approach

minimum descent altitude

mission task element
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shown flying by the large motion system of the DRA advanced flight simulator
(Photograph courtesy of Simon Pighills)
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Introduction

The underlying premise of this book is that flight dynamics and control is a central discipline, at the heart of
aeronautics, linking the aerodynamic and structural sciences with the applied technologies of systems and
avionics and, above all, with the pilot. Flight dynamics engineers need to have breadth and depth in their
domain of interest, and often hold a special responsibility in design and research departments. It is asserted
that more than any other aerospace discipline, flight dynamics offers a viewpoint on, and is connected to, the
key rotorcraft attributes and technologies — from the detailed fluid dynamics associated with the interaction
of the main rotor wake with the empennage, to the servo-aeroelastic couplings between the rotor and control
system, through to the evaluation of enhanced safety, operational advantage, and mission effectiveness of
good flying qualities. It is further asserted that the multidisciplinary nature of rotorcraft flight dynamics
places it in a unique position to hold the key to concurrency in requirements capture and design, i.e. the
ability to optimise under the influence of multiple constraints.

In the author’s view, the role of the practising flight dynamics engineer is therefore an important one,
and there is a need for guidebooks and practitioner’s manuals on the subject to assist in the development of
the required skills and knowledge. This book is an attempt at such a manual, and it discusses flight dynamics
under two main headings — simulation modelling and flying qualities. The importance of good simulation
fidelity and robust flying qualities criteria in the requirements capture and design phases of a new project
cannot be overstated, and this theme will be expanded on later in this chapter and throughout the book.
Together, these attributes underpin confidence in decision-making during the high-risk early design phase
and are directed toward the twin goals of achieving super-safe flying qualities and getting designs right,
first time. These goals have motivated much of the research conducted in government research laboratories,
industry, and universities for several decades.

In this short general Introduction, the aim is to give the reader a qualitative appreciation of the two main
subjects — simulation modelling and flying qualities. The topics that come within the scope of flight dynamics
are also addressed briefly but are not covered in the book for various reasons. Finally, a brief roadmap to the
nine technical chapters is presented.

SIMULATION MODELLING

It is beyond dispute that the observed behaviour of aircraft is so complex and puzzling that, without a
well-developed theory, the subject could not be treated intelligently.

We use this quotation from Duncan (Ref. 1.1) in expanded form as a guiding light at the beginning of
Chapter 3, the discourse on building simulation models. Duncan wrote these words in relation to fixed-wing
aircraft many decades ago and they still hold a profound truth today. However, while it may be ‘beyond dis-
pute’ that well-developed theories of flight are vital, a measure of the development level at any one time can
be gauged by the ability of Industry to predict behaviour correctly before first flight, and rotorcraft experience
to date is not good. In the 1989 American Helicopter Society (AHS) Nikolsky Lecture (Ref. 1.2), Crawford
promotes a back-to-basics approach to improving rotorcraft modelling to avoid major redesign effort result-
ing from poor predictive capability. Crawford cites examples of the redesign required to improve, or simply

Helicopter Flight Dynamics: Including a Treatment of Tiltrotor Aircraft, Third Edition. Gareth D. Padfield.
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put right, flight performance, vibration levels, and flying qualities for several contemporary US military heli-
copters. A similar story could be told for European helicopters. In Ref. 1.3, the author presents data on the
percentage of development test flying devoted to handling and control, with values between 25% and 50%
being quite typical. The message is that helicopters take a considerable length of time to qualify to opera-
tional standard, usually much longer than originally planned, and a principal reason lies with the deficiencies
in analytical design methods. Highlighting this aspect further, Dunford discusses the evolution of the V-22
Osprey in Ref. 1.4 citing the immaturity of aeromechanics prediction as a contributor to the 18-year-long
development phase. In this third edition of the book, tiltrotor aircraft feature as a topic in Chapter 10.

Underlying the failure to model flight behaviour adequately are three aspects. First, there is no escaping
that the rotorcraft is an extremely complex dynamic system and the modelling task requires extensive skill and
effort. Second, such complexity needs significant investment in analytical methods and specialist modelling
skills, and the recognition by programme managers that these are most effectively applied in the formative
stages of design. The channelling of these investments towards the critically deficient areas is also clearly
very important. Third, there is still a serious shortage of high-quality, validation test data, both at model
scale and from full-scale flight test. There is an adage in the world of flight dynamics relating to the merits
of test versus theory, which goes something like — ‘everyone believes the test results, except the person
who made the measurements, and nobody believes the theoretical results, except the person who calculated
them’. This stems from the knowledge that it is easier, for example, to program the computer to output rotor
blade incidence at 3/4 radius on the retreating side of the disc than it is to measure this incidence. What
are required, in the author’s opinion, are research and development programmes that integrate the test and
modelling activities so that the requirements for the one drive the other.

There are some signs that the importance of modelling and modelling skills is recognised at the right
levels, but the problem will require constant attention to guard against the attitude that ‘big’ resources
should be reserved for production, when the user and manufacturer, in theory, receive their greatest rewards.
Chapters 3-5 of this book are concerned with modelling conventional helicopters, but we shall not dwell on
the deficiencies of the acquisition process, but rather on where the modelling deficiencies lie. Chapter 10
addresses modelling and simulation of tiltrotors. The author has taken the opportunity in this Introduction
to reinforce the philosophy promoted in Crawford’s Nikolsky Lecture with the thought that the reader may
well be concerned as much with the engineering ‘values’ as with the technical detail.

No matter how good the modelling capability, without criteria as a guide, helicopter designers cannot
even start on the optimization process; with respect to flying qualities, a completely new approach has been
developed, and forms a significant content of this book.

FLYING QUALITIES

Experience has shown that a large percentage, perhaps as much as 65%, of the lifecycle cost of an
aircraft is committed during the early design and definition phases of a new development program. It
is clear, furthermore, that the handling qualities of military helicopters are also largely committed in
these early definition phases and, with them, much of the mission capability of the vehicle. For these
reasons, sound design standards are of paramount importance both in achieving desired performance
and avoiding unnecessary program cost.

This quotation, extracted from Ref. 1.5, states the underlying motivation for the development of flying
qualities criteria — they give the best chance of having mission performance designed in, whether through
safety and economics with civil helicopters or through military effectiveness. But flying quality is an elusive
topic and it has two equally important facets that can easily get mixed up — the objective and the subjective.
Only recently has enough effort been directed towards establishing a valid set of flying qualities criteria and
test techniques for rotorcraft that has enabled both the subjective and objective aspects to be addressed in a
complementary way. That effort has been orchestrated under the auspices of several different collaborative
programmes to harness the use of flight and ground-based simulation facilities and key skills in North
America and Europe. The result was Aeronautical Design Standard (ADS)-33, which has changed the way
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the helicopter community thinks, discusses, and acts about flying quality. Although the primary target for
ADS-33 was the Light Helicopter Experimental (LHX), and later the RAH-66 Comanche programme, other
nations have used or developed the standard to meet their own needs for requirements capture and design.
Chapters 68 of this book will refer extensively to ADS-33, with the aim of giving the reader some insight
into its development. The reader should note, however, that these chapters, like ADS-33 itself, address how
a helicopter with good flying qualities should behave, rather than how to construct a helicopter with good
flying qualities. In this third edition, the author looks back before ADS-33 and, in the new Chapter 9, explores
the origins of rotorcraft flying qualities, and builds on the ‘story of an idea’ that quality can be quantified.

In search of the meaning of flying quality, the author has come across many different interpretations,
from Pirsig’s somewhat abstract but appealing, ‘at the moment of pure quality, subject and object are identi-
cal’ (Ref. 1.6), to a point of view put forward by one flight dynamics engineer: ‘flying qualities are what you
get when you’ve done all the other things’. Unfortunately, the second interpretation has a certain ring of truth
because, until ADS-33, there was very little coherent guidance on what constituted good flying qualities.
The first breakthrough for the flying qualities discipline came with the recognition that criteria needed to be
related to task. The subjective rating scale, developed by Cooper and Harper (Ref. 1.7) in the late 1960s,
was already task and mission oriented. In the conduct of a handling qualities experiment, the Cooper—Harper
approach forces the engineer to define a task with performance standards and to agree with the pilot on what
constitutes minimal or extensive levels of compensation. But the objective criteria at that time were more
oriented to the stability and control characteristics of aircraft than to their ability to perform tasks well. The
relationship is clearly important but the lack of task-oriented test data meant that early attempts to define
criteria boundaries involved a large degree of guesswork and hypothesis. Once the two ingredients essential
for success in the development of new criteria, task-orientation and test data, were recognised and resources
were channelled effectively, the combined expertise of several agencies focused their efforts, and during the
1980s and 1990s, a completely new approach was developed. With the advent of digital flight control sys-
tems, which provide the capability to confer different mission flying qualities in the same aircraft, this new
approach can be exploited to the full.

One of the aspects of the new approach is the relationship between the internal attributes of the
air-vehicle and the external influences. The same aircraft might have perfectly good handling qualities for
nap-of-the-earth operations in the day environment, but degrade severely at night; obviously, the visual
cues available to the pilot play a fundamental role in the perception of flying qualities. This is a fact
of operational life, but the emphasis on the relationship between the internal attributes and the external
influences encourages design teams to think more synergistically, e.g. the quality of the vision aids, and what
the symbology should do, becomes part of the same flying qualities problem as what goes into the control
system, and, more importantly, the issues need to be integrated in the same solution. We try to emphasise
the importance of this synergy first in Chapter 2, then later in Chapters 6 and 7.

The point is made on several occasions in this book, for emphasis, that good flying qualities make
for safe and effective operations; all else being equal, less accidents will occur with an aircraft with good
handling qualities compared with an aircraft with merely acceptable handling, and operations will be more
productive. This statement may be intuitive, but there is very little supporting data to quantify this, although
the compelling evidence is growing. Later, in Chapter 7, the potential benefits of handling to flight safety and
effectiveness through a probabilistic analysis are examined, considering the pilot as a component with failure
characteristics like any other critical aircraft component. The results may appear controversial and they are
certainly tentative, but they point to one way in which the question ‘How valuable are flying qualities?” may
be answered. This theme is continued in Chapter 8, where the author presents an analysis of the effects of
degraded handling qualities on safety and operations, looking in detail at the impact of degraded visual con-
ditions, flight system failures, and strong atmospheric disturbances. Chapter 10 addresses the flying qualities
of tiltrotors.

MissING Torics

It seems to be a common feature of book writing that the end product turns out quite different than originally
intended, and Helicopter Flight Dynamics is no exception. It was planned to be much shorter and to cover
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a wider range of subjects! In hindsight, the initial plan was perhaps too ambitious, although the extent of the
final product, cut back considerably in scope, has surprised even the author.

There are three major topic areas, originally intended as separate chapters, that have virtually
disappeared — stability and control augmentation (including active control), design for flying qualities, and
simulation validation (including system identification tools). All three are referred to as required, usually
briefly, throughout the book, but there have been such advances in recent years that to give these topics
appropriate coverage would have extended the book considerably. They remain topics for future treatment,
particularly the progress with digital flight control and the use of simulators in design, development, and
certification. In the context of both these topics, we appear to be in an era of rapid development, suggesting
that a better time to document the state of the art may well be some years from now. The absence of a
chapter or section on simulation model validation techniques may appear to be particularly surprising, but is
compensated for by the availability of the AGARD (Advisory Report on Rotorcraft System Identification),
which gave a detailed coverage of the state of the art in this subject up to the early 1990s (Ref. 1.8).

Since the publication of the first and second editions, significant strides have been made in the devel-
opment of simulation models for use in design and training simulators. Refs. 1.9 and 1.10 review some of
these developments but we are somewhat in mid-stream with this new push to quantify and increase fidelity
and the author has resisted the temptation to bring this topic into the second or third editions. Chapter 3 does
briefly discuss some of the latest developments, however.

The book says very little about the internal hardware of flight dynamics — the pilot’s controls and the
mechanical components of the control system including the hydraulic actuators. The pilot’s displays and
instruments and their importance for flight in poor visibility are briefly treated in Chapter 7 and the associated
perceptual issues are treated in some depth in Chapter 8, but the author is conscious of the many missing
elements here. In Chapter 3, the emphasis has been on modelling the main rotor, and many other elements,
such as the engine and transmission systems, are given limited coverage.

It is hoped that the book will be judged more on what it contains than on what it doesn’t.

SIMPLE GUIDE TO THE BOOK

Following this Introduction, the book contains nine technical chapters. For an overview of the subject of
helicopter flight dynamics, the reader is referred to the Introductory Tour in Chapter 2. Engineers familiar with
flight dynamics, but new to rotorcraft, may find this a useful starting point for developing an understanding of
how and why helicopters work. Chapters 3-5 are a self-contained group concerned with modelling helicopter
flight dynamics. To derive benefit from these chapters requires a working knowledge of the mathematical
analysis tools of dynamic systems. Chapter 3 aims to provide sufficient knowledge and understanding to
enable a basic flight simulation of a helicopter to be created.

Chapter 4 discusses the problems of trim and stability, providing a range of analytical tools necessary to
work at these two facets of helicopter flight mechanics. Chapter 5 extends the analysis of stability to consid-
erations of constrained motion and completes the ‘working with models’ theme of Chapters 4 and 5 with a
discussion on helicopter response characteristics. In Chapters 4 and 5, flight test data from the Royal Aircraft
Establishment’s (RAE’s) research Puma and Lynx and the Deutsche Forschungs- und Versuchsantalt fuer
Luft- und Raumfahrt (DLR’s) Bo105 are used extensively to provide a measure of validation to the mod-
elling. In Chapter 5 of the third edition, the author has included a detailed analysis of two accidents using the
approximation theory from Chapter 4. This piece shows how both rotary and fixed-wing aircraft can suffer
the same adverse aircraft-pilot-coupling during low speed flight. Chapters 6 and 7 deal with helicopter flying
qualities from objective and subjective standpoints respectively, although Chapter 7 also covers several ‘other
topics’, including agility and flight in degraded visual conditions. Chapters 6 and 7 are also self-contained
and do not require the same background mathematical knowledge as that required for the modelling chapters.
A unified framework for discussing the response characteristics of flying qualities is laid out in Chapter 6,
where each of the four ‘control’ axes are discussed in turn. Quality criteria are described, drawing heavily
on ADS-33 and the associated publications in the open literature. Chapter 8 was new in the second edition
and contains a detailed treatment of the sources of degraded flying qualities, particularly flight in degraded
visual conditions, the effects of failures in flight system functions, and the impact of severe atmospheric



©

Helicopter and Tiltrotor Flight Dynamics

disturbances. These subjects are also discussed within the framework of quantitative handling qualities engi-
neering, linking with ADS-33, where appropriate. The idea here is that degraded flying qualities should be
taken into consideration in design with appropriate mitigation technologies.

Two new chapters have been written for the third edition. Chapter 9 documents the historical develop-
ments of rotorcraft flying qualities, placing the advances reported in Chapters 6 and 7 in context. Chapter 10
presents an extensive coverage of the flight dynamics of tiltrotor aircraft.

Chapters 3 and 4 are complemented and supported by appendices. Herein lie the tables of configura-
tion data and stability and control derivative charts and tables for the three case study aircraft. Chapter 10
is similarly complemented with its own appendices, featuring data on the tiltrotor case study aircraft, the
Bell/NASA/Army XV-15.

The author has found it convenient to use both metric and British systems of units as appropriate
throughout the book, although with a preference for metric where an option was available. Although the
metric system is strictly the primary world system of units of measurements, many helicopters are designed
to the older British system. Publications, particularly those from the United States, often contain data and
charts using the British system, and it has seemed inappropriate to change units for the sake of unification.
This does not apply, of course, to cases where data from different sources are compared. Helicopter engineers
are used to working in mixed units; for example, it is not uncommon to find, in the same paper, references to
height in feet, distance in metres and speed in knots — such is the rich variety of the world of the helicopter
engineer.

A final point before launching into Chapter 2: The author discusses in Chapter 3 and elsewhere how
mathematical models are useful for predicting behaviour and how they can help engineers understand
behavioural causes and effects. Finding analytical approximations to complex behaviour is often the best
pathway to understanding causal relationships, and the reader should find examples of this throughout the
book. In Chapters 5 and 10, analytic models offer explanations for root causes of accidents and represent
classic examples of the power of analytics. More generally, approximations to flying qualities parameters
can build the bridge between design criteria and engineering configuration. It is hoped that the book will
encourage the reader to develop skills in analytic modelling to strengthen this bridge and advance the
knowledge base of rotorcraft flight dynamics.



An EHI01 Merlin approaching a Type 23 Frigate during development flight
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Helicopter and Tiltrotor Flight
Dynamics — An Introductory Tour

In aviation history, the nineteenth century is characterized by man’s relentless search for a
practical flying machine. The 1860s saw a peculiar burst of enthusiasm for helicopters in Europe
and the above picture, showing an 1863 design by Gabrielle de la Landelle, reflects the fascina-
tion with aerial tour-boats at that time. The present chapter takes the form of a “tour of flight
dynamics” on which the innovative, and more practical, European designs from the 1960s — the
Lynx, Puma, and Bol05 — will be introduced as the principal reference aircraft of this book.
These splendid designs are significant in the evolution of the modern helicopter, and an under-
standing of their behaviour will provide important learning material on this tour and throughout
the book.

INTRODUCTION

This chapter is intended to guide the reader on a Tour of the subject of this book with the aim of instilling
increased motivation by sampling and linking the wide range of subtopics that make the whole. The chapter
is likely to raise more questions than it will answer. It will point to later chapters of the book where these are
picked up and addressed in more detail. The Tour topics will range from relatively simple concepts such as
how the helicopter’s controls work, to more complex effects such as the influence of rotor design on dynamic
stability, the conflict between stability and controllability, and the specialised handling qualities required for
military and civil mission task elements (MTEs). All these topics lie within the domain of the flight dynamics
engineer and within the scope of this book. This chapter is required reading for the reader who wishes to
benefit most from the book. Many concepts are introduced and developed in fundamental form here in this
chapter, and the material in later chapters will draw on the resulting understanding gained by the reader.

Helicopter Flight Dynamics: Including a Treatment of Tiltrotor Aircraft, Third Edition. Gareth D. Padfield.
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One feature is re-emphasised here. This book is concerned with modelling flight dynamics and develop-
ing criteria for flying qualities, rather than how to design and build a helicopter or tiltrotor to achieve defined
levels of quality. We cannot, nor do we wish to, ignore design issues; requirements can be credible only if they
are achievable with the available hardware. However, largely because of the author’s own background and
experience, design will not be a central topic in this book and there will be no chapter dedicated to it. Design
issues will be discussed in context throughout the later chapters and some of the principal considerations will
be summarised on this Tour, in Section 2.5.

FouUR REFERENCE POINTS

We begin by introducing four useful reference points for developing an appreciation of flying qualities and
flight dynamics; these are summarised in Figure 2.1 and comprise the following:

(1) the mission and the associated piloting tasks;

(2) the operational environment;

(3) the vehicle configuration, dynamics, and the flight envelope;
(4) the pilot and pilot—vehicle interface (pvi).

With this perspective, the vehicle dynamics can be regarded as internal attributes, the mission and environ-
ment as the external influences and the pilot, and pvi as the connecting human factors. While these initially
need to be discussed separately, it is their interaction and interdependence that widen the scope of the subject
of flight dynamics to reveal its considerable scale. The influences of the mission task on the pilot’s work-
load, in terms of precision and urgency, and the external environment, in terms of visibility and gustiness,
and hence the scope for exploiting the aircraft’s internal attributes, are profound, and in many ways, are key
concerns and primary drivers in rotorcraft technology development. Flying qualities are determined at the
confluence of these references.

2.2.1 The Mission and Piloting Tasks

Flying qualities change with the weather or, more generally, with the severity of the environment in which the
rotorcraft operates; they also change with flight condition, mission type and phase, and individual mission
tasks. This variability will be emphasised repeatedly and in many guises throughout this book to emphasise

Vehicle dynamics

P M:sglon
operational piloting task

flight envelope

Operational Environment

Pilot
&
pilot/vehicle interface

Fig. 2.1 The four reference points of rotorcraft flight dynamics
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Fig. 2.2 Flying task hierarchy

that we are not just talking about an aircraft’s stability and control characteristics, but more about the synergy
between the internals and the externals referred to above. In later sections, the need for a systematic flying
qualities structure that provides a framework for describing criteria will be addressed, but we need to do the
same with the mission and the associated flying tasks.

For our purposes, it is convenient to describe the flying tasks within a hierarchy as shown in Figure 2.2.
An operation is made up of many missions, which, in turn, are composed of a series of contiguous mission
task elements (MTEs). An MTE is a collection of individual manoeuvres and will have a definite start and
finish and prescribed temporal and spatial performance requirements. The manoeuvre sample is the smallest
flying element, often relating to a single flying axis, e.g. change in pitch or roll attitude. Objective flying
qualities criteria are normally defined for, and tested with, manoeuvre samples; subjective pilot assessments
are normally conducted by flying MTEs.

The flying qualities requirements in the US Army’s handling qualities requirements, Aeronautical
Design Standard (ADS)-33C (Ref. 2.1), are related directly to the required MTEs. Hence, while missions, and
correspondingly aircraft type, may be quite different, MTEs are often common and are a key discriminator
of flying qualities. For example, both utility transports in the 30-ton weight category and anti-armour heli-
copters in the 10-ton weight category may need to fly slaloms and precision hovers in their nap-of-the-earth
(NoE) missions. This is one of the many areas where ADS-33C departs significantly from its predecessor,
Mil Spec 8501A (Ref. 2.2), where aircraft weight and size served as the key defining parameters. The MTE
basis of ADS-33C also contrasts with the fixed-wing requirements, MIL-F-8785C (Ref. 2.3), where flight
phases are defined as the discriminating mission elements. Thus, the nonterminal flight phases in Category
A (distinguished by rapid manoeuvring and precision tracking) include air-to-air combat, in-flight refuelling
(receiver), and terrain following, while Category B (gradual manoeuvres) includes climb, in-flight refuelling
(tanker), and emergency deceleration. Terminal flight phases (accurate flight path control, gradual manoeu-
vres) are classified under Category C, including take-off, approach, and landing. Through the MTE and flight
phase, current rotary and fixed-wing flying qualities requirements are described as mission-oriented criteria.

To understand better how this relates to helicopter and tiltrotor flight dynamics, we shall now briefly
discuss two typical reference missions. Figure 2.3 illustrates a civil mission, described as the offshore supply
mission; Figure 2.4 illustrates the military mission, described as the armed reconnaissance mission. On each
figure a selected phase has been expanded and shown to comprise a sequence of MTEs (Figures 2.3b and
2.4b). A typical MTE is extracted and defined in more detail (Figures 2.3c and 2.4c¢). In the case of the civil
mission, we have selected the landing onto the helideck; for the military mission, the ‘mask—unmask-mask’
sidestep is the selected MTE. It is difficult to break the MTEs down further; they are normally multi-axis
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Fig. 2.3 Elements of a civil mission — offshore supply: (a) offshore supply mission; (b) mission phase: approach and
land; (c) mission task element: landing

Fig. 2.4 Elements of a military mission — armed reconnaissance: (a) armed reconnaissance mission; (b) mission
phase — NoE; (c) mission task element — sidestep
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tasks and, as such, contain several concurrent manoeuvre samples. The accompanying MTE text defines the
constraints and performance requirements, which are likely to be dependent on a range of factors. For the civil
mission, for example, the spatial constraints will be dictated by the size of the helideck and the touchdown
velocity by the strength of the undercarriage. The military MTE will be influenced by weapon performance
characteristics and any spatial constraints imposed by the need to remain concealed from the radar systems
of threats. Further discussion on the design of flight test manoeuvres as stylised MTEs for the evaluation of
flying qualities is contained in Chapter 7 and later in Chapter 10 for tiltrotors.

Ultimately, the MTE performance will determine the flying qualities requirements of the rotorcraft. This
is a fundamental point. If all that a rotorcraft had to do was to fly from one airport to another in daylight and
good weather, it is unlikely that flying qualities would ever be a design challenge; taking what comes from
meeting other performance requirements would probably be quite sufficient. But if a rotorcraft is required
to land on the back of a ship in sea state 6 or to be used to fight at night, then conferring satisfactory flying
qualities that minimise the probability of mission or even flight failure is a major design challenge. Criteria
that adequately address the developing missions are the cornerstones of design, and the associated MTEs are
the data source for the criteria.

The reference to weather and flying at night suggests that the purely kinematic definition of the MTE
concept is insufficient for defining the full operating context; the environment — in terms of weather, temper-
ature, and visibility — are equally important and bring us to the second reference point.

2.2.2 The Operational Environment
A typical operational requirement will include a definition of the environmental conditions in which the
rotorcraft needs to work in terms of temperature, density altitude, wind strength, and visibility. These will
then be reflected in an aircraft’s flight manual. The requirement’s wording may take the form: “This helicopter
must be able to operate (i.e. conduct its intended mission, including start-up and shut-down) in the following
conditions — 5000 ft. altitude, 15 °C, wind speeds of 40 knots gusting to 50 knots, from any direction, in day
or night’. This description defines the limits to the operational capability in the form of a multidimensional
envelope.

Throughout the history of aviation, the need to extend operations into poor weather and at night has been
a dominant driver for both economic and military effectiveness. Fifty years ago, helicopters were fair-weather
machines with marginal performance; now they regularly operate in conditions from hot and dry to cold, wet,
and windy, and in low visibility. One of the unique operational capabilities of the helicopter is its ability to
operate in the NoE or, more generally, in near-earth conditions defined in Ref. 2.1 as ‘operations sufficiently
close to the ground or fixed objects on the ground, or near water and in the vicinity of ships, oil derricks, etc.,
that flying is primarily accomplished with reference to outside objects’. In near-earth operations, avoiding
the ground and obstacles clearly dominates the pilot’s attention and, in poor visibility, the pilot is forced to
fly more slowly to maintain the same workload. During the formative years of ADS-33, it was recognised
that the classification of the quality of the visual cues in terms of instrument or visual flight conditions was
inadequate to describe the conditions in the NoE. To quote from Hoh (Ref. 2.4):

The most critical contributor to the total pilot workload appears to be the quality of the
out-of-the-window cues for detecting aircraft attitudes, and, to a lesser extent, position, and
velocity. Currently, these cues are categorized in a very gross way by designating the environment
as either VMC (visual meteorological conditions) or IMC (instrument meteorological conditions). A
more discriminating approach is to classify visibility in terms of the detailed attitude and position cues
available during the experiment or proposed mission and to associate handling qualities requirements
with these finer grained classifications.

The concept of the outside visual cues (OVCs) was introduced, along with an OVC pilot rating that
provided a subjective measure of the visual cue quality. The stimulus for the development of this concept was
the recognition that handling qualities are particularly affected by the visual cues in the NoE, yet there was no
process or methodology to quantify this contribution. One problem is that the cue is a dynamic variable and
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can be judged only when used in its intended role. Eventually, out of the confusion surrounding this subject
emerged the usable cue environment (UCE), which was to become established as one of the key innovations
of ADS-33. In its developed form, the UCE embraces not only the OVC but also any artificial vision aids
provided to the pilot, and is determined from an aggregate of pilot visual cue ratings (VCRs) relating to the
pilot’s ability to perceive changes in, and adjust, aircraft attitude and velocity. Handling qualities in degraded
visual conditions, the OVC and the UCE will be discussed in more detail in Chapter 7.

The MTE and the UCE are two important building blocks in the new language of flying qualities; a
third relates to the aircraft’s response characteristics and provides a vital link between the MTE and UCE.

2.2.3 The Vehicle Configuration, Dynamics, and Flight Envelope

The helicopter, or tiltrotor, is required to perform as a dynamic system within the user-defined operational
flight envelope (OFE), or that combination of airspeed, altitude, rate of climb/descent, sideslip, turn rate, load
factor, and other limiting parameters that bound the vehicle dynamics, required to fulfil the user’s function.
Beyond this lies the manufacturer-defined safe flight envelope (SFE), which sets the limits to safe flight,
normally in terms of the same parameters as the OFE, but represents the physical limits of structural, aero-
dynamic, powerplant, transmission, or flight control capabilities. The margin between the OFE and the SFE
needs to be large enough so that inadvertent transient excursions beyond the OFE are tolerable. Within the
OFE, the flight mechanics of a rotorcraft can be discussed in terms of three characteristics — trim, stability,
and response — a classification covered in more detail in Chapters 4 and 5 and later in Chapter 10 for tiltrotors.

Trim is concerned with the ability to maintain flight equilibrium with controls fixed; the most general
trim condition is a turning (about the vertical axis), descending or climbing (assuming constant air density
and temperature), sideslipping manoeuvre at constant speed. More conventional flight conditions such as
hover, cruise, autorotation, or sustained turns are also trims, of course, but the general case is distinguished
by the four ‘outer’ flight-path states, and this is simply a consequence of having four independent helicopter
controls — three for the main rotor and one for the tail rotor. The rotorspeed is not normally controllable
by the pilot, but is set to lie within the automatically governed range. For a helicopter, the so-called inner
states — the fuselage attitudes and rates — are uniquely defined by the flight path states in a trim condition. For
tilt rotors and other compound rotorcraft, the additional controls provide more flexibility in trim; the former
will be examined in Chapter 10.

Stability is concerned with the behaviour of the aircraft when disturbed from its trim condition; will it
return or will it depart from its equilibrium point? The initial tendency has been called the static stability, while
the longer-term characteristics, the dynamic stability. These are useful physical concepts, though rather crude,
but the keys to developing a deeper understanding and quantification of rotorcraft stability comes from theo-
retical modelling of the interacting forces and moments. From there come the concepts of small perturbation
theory and linearization, of stability and control derivatives and the natural modes of motion and their stability
characteristics. The insight value gained from theoretical modelling is particularly high when considering the
response to pilot controls and external disturbances. Typically, a helicopter responds to a single-axis control
input with multi-axis behaviour; cross-coupling is almost synonymous with helicopters. In this book, we shall
be dealing with direct and coupled responses, sometimes described as on-axis and off-axis responses. On-axis
responses will be discussed within a framework of response types — rate, attitude, and translational-rate
responses will feature as types that characterise the initial response following a step control input. Further
discussion is deferred until the modelling section within this Tour and later in Chapters 3-5. Some qualitative
appreciation of vehicle dynamics can be gained, however, without recourse to detailed modelling.

Rotor Controls

Figure 2.5 illustrates the conventional main rotor collective and cyclic controls applied through a swash plate.
Collective applies the same pitch angle to all blades and is the primary mechanism for direct lift or thrust con-
trol on the rotor. Cyclic is more complicated and can be fully appreciated only when the rotor is rotating. The
cyclic operates through a swash plate or similar device (see Figure 2.5), which has nonrotating and rotating
halves, the latter attached to the blades with pitch link rods, and the former to the control actuators. Tilting
the swash plate gives rise to a one-per-rev sinusoidal variation in blade pitch with the maximum/minimum
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Fig. 2.6 Control actions as helicopter transitions into forward flight: (a) hover; (b) forward acceleration;
(c) translational lift

axis normal to the tilt direction. The rotor responds to collective and cyclic inputs by flapping as a disc, in
coning, and tilting modes. In hover the responses are uncoupled with collective pitch resulting in coning and
cyclic pitch resulting in rotor disc tilting. The concept of the rotor as a coning and tilting disc (defined by the
rotor blade tip path plane) will be further developed in the modelling chapters. The sequence of sketches in
Figure 2.6 illustrates how the pilot would need to apply cockpit main rotor controls to transition into forward
flight from an out-of-ground-effect (oge) hover. Points of interest in this sequence are:

(1) Forward cyclic (#,,) tilts the rotor disc forward through the application of cyclic pitch with a
maximum/minimum axis laterally — pitching the blade down on the advancing side and pitching up on
the retreating side of the disc; this 90° phase shift between pitch and flap is the most fundamental facet
of rotor behaviour and will be revisited later on this Tour and in the modelling chapters;
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(2) Forward tilt of the rotor directs the thrust vector forward and applies a pitching moment to the helicopter
fuselage, hence tilting the thrust vector further forward and accelerating the aircraft into forward flight;

(3) As the helicopter accelerates, the pilot first raises his collective (1) to maintain height, then lowers it as
the rotor thrust increases through ‘translational lift’ — the dynamic pressure increasing more rapidly on
the advancing side of the disc than it decreases on the retreating side; cyclic needs to be moved
increasingly forward and to the left (,.) (for anticlockwise rotors) as forward speed is increased. The
cyclic requirements are determined by the asymmetric fore—aft and lateral aerodynamic loadings
induced in the rotor by forward flight.

The main rotor combines the primary mechanisms for propulsive force and control, aspects that are clearly
demonstrated in the simple manoeuvre described above. Typical control ranges for main rotor controls are
15° for collective, more than 20° for longitudinal cyclic and 15° for lateral cyclic, which requires that each
individual blade has a pitch range of more than 30°. At the same time, the tail rotor provides the anti-torque
reaction (due to the powerplant) in hover and forward flight, while serving as a yaw control device in manoeu-
vres. Tail rotors, or other such controllers on single main rotor helicopters, e.g. Fenestron/fantail or Notar
(Refs. 2.5, 2.6), are normally fitted only with collective control applied through the pilot’s pedals on the
cockpit floor, often with a range of more than 40°; such a large range is required to counteract the negative
pitch applied by the built-in pitch/flap coupling normally found on tail rotors to alleviate transient flapping.

Two Distinct Flight Regimes

It is convenient for descriptive purposes to consider the flight of the helicopter in two distinct
regimes — hover/low speed (up to about 45 knots), including vertical manoeuvring, and mid/high
speed flight (up to V,, — never-exceed velocity). The low-speed regime is very much unique to the helicopter
as an operationally useful regime; no other flight vehicles are so flexible and efficient at manoeuvring slowly,
close to the ground and obstacles, with the pilot able to manoeuvre the aircraft almost with disregard for
flight direction. The pilot has direct control of thrust with collective and the response is fairly immediate
(time constant to maximum acceleration O(0.1 s)); the vertical rate time constant is much greater, O(3 s),
giving the pilot the impression of an acceleration command response type (see Section 2.3). Typical hover
thrust margins at operational weights are between 5% and 10% providing an initial horizontal acceleration
capability of about 0.3-0.5g. This margin increases through the low-speed regime as the (induced rotor)
power required reduces (see Chapter 3). Pitch and roll manoeuvring are accomplished through tilting the
rotor disc and hence rotating the fuselage and rotor thrust (time constant for rate response types O(0.5 s)),
yaw through tail rotor collective (yaw rate time constant O(2 s)), and vertical through collective, as described
above. Flight in the low-speed regime can be gentle and docile or aggressive and agile, depending on aircraft
performance and the urgency with which the pilot ‘attacks’ a particular manoeuvre. The pilot cannot adopt
a carefree handling approach, however. Apart from the need to monitor and respect flight envelope limits, a
pilot must be wary of several behavioural quirks of the conventional helicopter in its privileged low-speed
regime. Many of these are not fully understood and similar physical mechanisms appear to lead to quite
different handling behaviour depending on the aircraft configuration. A descriptive parlance has built up
over the years, some of which has developed in an almost mythical fashion as pilots relate anecdotes of their
experiences ‘close to the edge’. These include ground horseshoe effect, pitch-up, vortex ring and power
settling, fishtailing, and inflow roll. Later, in Chapter 3, some of these effects will be explained through
modelling, but it is worth noting that such phenomena are difficult to model accurately, often being the
result of strongly interacting, nonlinear, and time-dependent forces. A brief glimpse of just two will suffice
for the moment.

Figure 2.7 illustrates the tail rotor control requirements for early Marks (Mks 1-5) of Lynx at high
all-up-weight, in the low-speed regime corresponding to winds from different ‘forward’ azimuths (for pedal
positions <40%). The asymmetry is striking, and the ‘hole’ in the envelope with winds from green 060-075
(green winds from starboard in directions between 60° and 75° from aircraft nose) is clearly shown. This has
been attributed to main rotor wake/tail rotor interactions, which lead to a loss of tail rotor effectiveness when
the main rotor wake becomes entrained in the tail rotor. The loss of control and high-power requirements
threatening at this edge of the envelope provide for very little margin between the OFE and SFE.
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Fig. 2.7 Lynx MKk 5 tail rotor control limits in hover with winds from different directions

A second example is the so-called vortex-ring condition, which occurs in near-vertical descent con-
ditions at moderate rates of descent (O(500-800 ft/min)) on the main rotor and corresponding conditions
in sideways motion on the tail rotor. Figure 2.8, derived from Drees (Ref. 2.7), illustrates the flow pat-
terns through a rotor operating in vertical flight. At the two extremes of helicopter (propeller) and windmill
states, the flow is relatively uniform. Before the ideal autorotation condition is reached, where the induced
downwash is equal and opposite to the upflow, a state of irregular and strong vorticity develops, where the
upflow/downwash becomes entrained together in a doughnut-shaped vortex. The downwash increases as
the vortex grows in strength, leading to large reductions in rotor blade incidences spanwise. Entering the
vortex-ring state, the helicopter will increase its rate of descent very rapidly as the lift is lost; any further
application of collective by the pilot will tend to reduce the rotor efficiency even further — rates of descent of
more than 3000 ft/min can build up very rapidly. The consequences of entering a vortex ring when close to
the ground are extremely hazardous. Chapter 10 discusses the peculiar characteristics of tiltrotors in vortex
ring state, including so-called asymmetric vortex ring, where only one rotor enters the condition.

Rotor Stall Boundaries

While aeroplane stall boundaries in level flight can occur at low speed, helicopter stall boundaries typically
occur at the high-speed end of the OFE. Figure 2.9 shows the aerodynamic mechanisms at work at the
boundary. As the helicopter flies faster, forward cyclic is increased to counteract the lateral lift asymmetry
due to cyclical dynamic pressure variations. Forward cyclic increases retreating blade pitch/incidence and
reduces advancing blade pitch/incidence («); at the same time, forward flight brings cyclical Mach number
(M) variations and the a versus M locus takes the shape sketched in Figure 2.10. The stall boundary is also
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drawn, showing how both advancing and retreating blades are close to the limit at high speed. The low-speed,
trailing edge-type, high incidence (O(15°)) stall on the retreating blade is usually triggered first, often by the
sharp local incidence perturbations induced by the trailing tip vortex from previous blades. Shock-induced
boundary layer separation will stall the advancing blade at very low incidence (O(1-2°)). Both retreating
and advancing blade stall are initially local, transient effects, and self-limiting because of the decreasing
incidence and increasing velocities in the fourth quadrant of the disc and the decreasing Mach number in
the second quadrant. The overall effect on rotor lift will not be nearly as dramatic as when an aeroplane
stalls at low speed. However, the rotor blade lift stall is usually accompanied by a large change in blade
chordwise pitching moment, which in turn induces a strong, potentially more sustained, torsional oscillation
and fluctuating stall, increasing vibration levels and inducing strong aircraft pitch and roll motions.

Rotor stall and the attendant increase in loads therefore determine the limits to forward speed for heli-
copters. This and other effects can be illustrated on a plot of rotor lift (or thrust 7) limits against forward
speed V. It is more general to normalise these quantities as thrust coefficient C and advance ratio y, where

oo T _v

T @rear YT QR
where Q is the rotorspeed, R the rotor radius, and p the air density. Figure 2.11 shows how the thrust limits vary
with advance ratio and includes the sustained or power limit boundary, the retreating and advancing blade
limit lines, the maximum thrust line and the structural boundary. The parameter s is the solidity defined as
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the ratio of blade area to disc area. The retreating and advancing blade thrust lines in the figure correspond
to both level and manoeuvring flight. At a given speed, the thrust coefficient can be increased in level flight,
by increasing weight or height flown or by increasing the load factor in a manoeuvre. The manoeuvre can be
sustained or transient and the limits will be different for the two cases, the loading peak moving inboard and
ahead of the retreating side of the disc in the transient case. The retreating/advancing blade limits define the
onset of increased vibration caused by local stall, and flight beyond these limits is accompanied by a marked
increase in the fatigue life usage. These are soft limits, in that they are contained within the OFE and the
pilot can fly through them. However, the usage spectrum for the aircraft will, in turn, define the amount of
time the aircraft is likely (designed) to spend at different C; or load factors, which, in turn, will define the
service life of stressed components. The maximum thrust line defines the potential limit of the rotor, before
local stall spreads so wide that the total lift reduces. The other imposed limits are defined by the capability
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of the powerplant and structural strength of critical components in the rotor and fuselage. The latter is an
SFE design limit, set well outside the OFE. However, rotors at high speed, just like the wings on fixed-wing
aeroplanes, are sometimes aerodynamically capable of exceeding this.

Having dwelt on aspects of rotor physics and the importance of rotor thrust limits, it needs to be empha-
sised that the pilot does not normally know what the rotor thrust is; he or she can infer it from a load factor or
g metre, and from a knowledge of take-off weight and fuel burn, but the rotor limits of more immediate and
critical interest to the pilot will be torque (more correctly a coupled rotor/transmission limit) and rotorspeed.
Rotorspeed is automatically governed on turbine-powered helicopters, and controlled to remain within a nar-
row range, dropping only about 5% between autorotation and full power climb, for example. Overtorquing
and overspeeding are potential hazards for the rotor at the two extremes and are particularly dangerous when
the pilot tries to demand full performance in emergency situations, e.g. evasive hard turn or pop-up to avoid
an obstacle.

Rotor limits — whether thrust, torque, or rotorspeed in nature — play a major role in the flight dynamics
of helicopters, in the changing aeroelastic behaviour through to the handling qualities experienced by the
pilot. Understanding the mechanisms at work near the flight envelope boundary is important in the provision
of carefree handling, a subject we shall return to in Chapter 7.

2.2.4 The Pilot and Pilot—Vehicle Interface

This aspect of the subject draws its conceptual and application boundaries from the engineering and psycho-
logical facets of the human factors discipline. We are concerned in this book with the piloting task and hence
with only that function in the crew station; the crew have other, perhaps more important, mission-related
duties, but the degree of spare capacity that the pilot has available to devote to these will depend critically
on his flying workload. The flying task can be visualised as a closed-loop feedback system with the pilot as
the key sensor and motivator (Figure 2.12).

The elements of Figure 2.12 form this fourth reference point. The pilot will be well trained and highly
adaptive (this is particularly true of helicopter pilots), and ultimately his or her skills and experience will
determine how well a mission is performed. Pilots gather information visually from the outside world and
instrument displays, from motion cues and tactile sensory organs. They continuously make judgements of
the quality of their flight path management and apply any required corrections through their controllers. The
pilot’s acceptance of any new function or new method of achieving an existing function that assists the piloting
task is so important that it is vital that prototypes are evaluated with test pilots prior to delivery into service.
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This is emphasised because of its profound impact on the flying qualities process, e.g. the development of new
handling criteria, new helmet-mounted display formats or multi-axis sidesticks. Pilot-subjective opinion of
quality, its measurement, interpretation, and correlation with objective measures, underpins all substantiated
data and hence needs to be central to all new developments. Here lies a small catch; most pilots learn to live
with and love their aircraft and to compensate for deficiencies. They will almost certainly have invested some
of their ego in their high level of skill and ability to perform well in difficult situations. Any developments that
call for changes in the way they fly can be met by resistance. To a large extent, this reflects a natural caution
and needs to be heeded; test pilots are trained to be critical and to challenge the engineer’s assumptions
because ultimately, they will have to work with the new developments.

Later in this book, in Chapter 6 and, more particularly, Chapter 7, the key role that test pilots have played
in the development of flying qualities and flight control technology over many decades will be addressed.
In Chapter 8 the treatment of the topic of degraded handling qualities will expose some of the dangerous
conditions that pilots can experience. Lessons learnt through the author’s personal experience of working
with test pilots will be covered.

2.2.5 Résumé of the Four Reference Points

Figure 2.13 illustrates in composite form the interactional nature of the flight dynamics process as reflected
by the four reference points. The figure, drawing from the parlance of ADS-33, tells us that to achieve Level
1 handling qualities in a UCE of 1, a rate response type is adequate; to achieve the same in UCEs of 2 and
3 require AC (attitude command) or TRC (translational rate command) response types, respectively. This
classification represents a fundamental development in helicopter handling qualities that lifts the veil off a
very complex and confused matter. The figure also shows that if the UCE can be upgraded from a 3 to a 2,
then reduced augmentation will be required. A major trade-off between the quality of the visual cues and the
quality of the control augmentation emerges. This will be a focus of attention in later chapters. Figure 2.13
also reflects the requirement that the optimum vehicle dynamic characteristics may need to change for differ-
ent MTEs and at the edges of the OFE; terminology borrowed from fixed-wing parlance serves to describe
these features — task-tailored or mission-oriented flying qualities and carefree handling. Above all else, the
quality requirements for flying are driven by the performance and piloting workload demands in the MTEs,
which are themselves regularly changing user-defined requirements. The whole subject is thus evolving from
the four reference points — the mission, the environment, the vehicle, and the pilot; they support the flight
dynamics discipline and provide an application framework for understanding and interpreting the modelling
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and criteria of task-oriented flying qualities. Continuing the Tour, we address the first of three key technical
areas with stronger analytical content — theoretical modelling.

MODELLING HELICOPTER/TILTROTOR FLIGHT DYNAMICS

A mathematical description or simulation of a helicopter’s or tilt rotor’s flight dynamics needs to embody the
important aerodynamic, structural, and other internal dynamic effects (e.g. engine, actuation) that combine
to influence the response of the aircraft to pilot’s controls (handling qualities) and external atmospheric
disturbances (ride qualities). The problem is highly complex and the dynamic behaviour of the rotorcraft is
often limited by local effects that rapidly grow in their influence to inhibit larger or faster motion, e.g. blade
stall. The helicopter behaviour is naturally dominated by the main and tail rotors, and these will receive
primary attention in this stage of the Tour; we need a framework to place the modelling in context.

2.3.1 The Problem Domain

A convenient and intuitive framework for introducing this important topic is illustrated in Figure 2.14, where
the natural modelling dimensions of frequency and amplitude are used to characterise the range of problems
within the OFE. The three fundamentals of flight dynamics — trim, stability, and response — can be seen
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delineated, with the latter expressed in terms of the manoeuvre envelope from normal to maximum at the OFE
boundary. The figure also serves as a guide to the scope of flight dynamics as covered in this book. At small
amplitudes and high frequency, the problem domain merges with that of the loads and vibration engineer.
The separating frequency is not distinct. The flight dynamicist is principally interested in the loads that can
displace the aircraft’s flight path, and over which the human or automatic pilot has some direct control. On
the rotor, these reduce to the zeroth and first harmonic motions and loads — all higher harmonics transmit zero
mean vibrations to the fuselage; so, the distinction would appear deceptively simple. The first harmonic loads
will be transmitted through the various load paths to the fuselage at a frequency depending on the number of
blades. Perhaps the only general statement that can be made regarding the extent of the flight dynamicist’s
domain is that they must be cognisant of all loads and motions that are of primary (generally, controlled)
and secondary (generally, uncontrolled) interest in the achievement of good flying qualities. So, for example,
the forced response of the first elastic torsion mode of the rotor blades (natural frequency O(20 Hz)) at
one-per-rev could be critical to modelling the rotor cyclic pitch requirements correctly (Ref. 2.8); including
a model of the lead/lag blade dynamics could be critical to establishing the limits on rate stabilisation gain in
an automatic flight control system (AFCS) (Ref. 2.9); modelling the fuselage bending frequencies and mode
shapes could be critical to the flight control system sensor design and layout (Ref. 2.10).

At the other extreme, the discipline merges with that of the performance and structural engineers,
although both will be generally concerned with behaviour across the OFE boundary. Power requirements
and trim efficiency (range and payload issues) are part of the flight dynamicist’s remit. The aircraft’s static
and dynamic (fatigue) structural strength present constraints on what can be achieved from the point of view
of flight path control. These constraints need to be well understood by the flight dynamicist.

In summary, vibration, structural loads, and steady-state performance traditionally define the edges of
the OFE within the framework of Figure 2.14. Good flying qualities then ensure that the OFE can be used
safely, in particular that there will always be sufficient control margin to enable recovery in emergency situ-
ations. But control margin can be interpreted in a dynamic context, including concepts such as pilot-induced
oscillations and agility. Just as with high-performance fixed-wing aircraft, the dynamic OFE can be limited,
and hence defined, by flying qualities for rotorcraft. In practice, a balanced design will embrace these in
harmony with the central flight dynamics issues, drawing on concurrent engineering techniques (Ref. 2.11)
to quantify the trade-offs and to identify any critical conflicts.

2.3.2 Multiple Interacting Subsystems

The behaviour of a helicopter in flight can be modelled as the combination of many interacting subsystems.
Figure 2.15 highlights the main rotor element, the fuselage, powerplant, flight control system, empennage
and tail rotor elements and the resulting forces and moments. Shown in simplified form in Figure 2.16 is the
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orthogonal body axes system, fixed at the centre of gravity/mass (cg/cm) of the whole aircraft, about which
the aircraft dynamics are referred. Strictly speaking, the cg will move as the rotor blades flap, but we shall
assume that the cg is located at the mean position, relative to a particular trim state. The equations governing
the behaviour of these interactions are developed from the application of physical laws, e.g. conservation of
energy and Newton’s laws of motion, to the individual components, and commonly take the form of nonlinear
differential equations written in the first-order vector form

((ii_)t( =f(x,u,7) 2.1

with initial conditions x(0) =x,,.
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x (1) is the column vector of state variables; u (¢) is the vector of control variables and f is a nonlinear
function of the aircraft motion, control inputs and external disturbances. The reader is directed to Appendix
4A for a brief exposition on the matrix—vector theory used in this and later chapters. For the special case
where only the six rigid-body degrees of freedom (DoFs) are considered, the state vector x comprises the
three translational velocity components u, v, and w; the three rotational velocity components p, g, and r; and
the Euler angles ¢, 6, and y. The three Euler attitude angles augment the equations of motion through the
kinematic relationship between the fuselage rates p, ¢, and r and the rates of change of the Euler angles. The
velocities are referred to an axes system fixed at the cg as shown in Figure 2.16 and the Euler angles define
the orientation of the fuselage with respect to an earth-fixed axes system.

The DoFs are usually arranged in the state vector as longitudinal and lateral motion subsets, as

x={u,w,q,0,v,p,,r,y}

The function f then contains the applied forces and moments, again referred to the aircraft cg, from aerody-
namic, structural, gravitational, and inertial sources. Strictly speaking, the inertial and gravitational forces
are not ‘applied’, but it is convenient to label them so and place them on the right-hand side of the describing
equation. The derivation of these equations from Newton’s laws of motion will be carried out later in Chapter
3 and its appendix. It is important to note that this 6-DoF model, while itself complex and widely used, is still
an approximation to the aircraft behaviour; all higher DoFs, associated with the rotors (including aeroelastic
effects), powerplant/transmission, control system and the disturbed airflow, are embodied in a quasi-steady
manner in the equations, having lost their own individual dynamics and independence as DoFs in the model
reduction. This process of approximation is a common feature of flight dynamics, in the search for sim-
plicity to enhance physical understanding and ease the computational burden, and will feature extensively
throughout Chapters 4 and 5.

2.3.3 Trim, Stability, and Response
Continuing the discussion of the 6-DoF model, the solutions to the three fundamental problems of flight
dynamics can be written as

Trim: f(x,,u,) =0 2.2)
Stability:  det [/11 - (g—i) ] —0 2.3)
Response:  x(t) = x(0) + / f(x(7),u(r), r)dr 2.4)

0

The trim solution is represented by the zero of a nonlinear algebraic function, where the controls u, required
to hold a defined state x, (subscript e refers to equilibrium) are computed. With four controls, only four states
can be prescribed in trim, the remaining set forming into the additional unknowns in Eq. (2.1). A trimmed
flight condition is defined as one in which the rate of change (of magnitude) of the aircraft’s state vector is
zero and the resultant of the applied forces and moments is zero. In a trimmed manoeuvre, the aircraft will
be accelerating under the action of nonzero resultant aerodynamic and gravitational forces and moments, but
these will then be balanced by effects such as centrifugal (CF) and gyroscopic inertial forces and moments.
The trim equations and associated problems, e.g. predicting performance and control margins, will be further
developed in Chapter 4.

The solution of the stability problem is found by linearizing the equations about a trim condition and
computing the eigenvalues of the aircraft system matrix, written in Eq. (2.3) as the partial derivative of the
forcing vector with respect to the system states. After linearization of Eq. (2.1), the resulting first-order,
constant coefficient differential equations have solutions of the form e*, the stability of which is determined
by the signs of the real parts of the eigenvalues A. The stability thus found refers to small motions about the
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Fig. 2.17 Typical presentation of flight mechanics results for trim, stability, and response

trim point: will the aircraft return to — or depart from — the trim point if disturbed by, say, a gust? For larger
motions, nonlinearities can alter the behaviour and recourse to the full equations is usually necessary.

The response solution given by Eq. (2.4) is found from the time integral of the forcing function and
allows the evolution of the aircraft states, forces, and moments to be computed following disturbed initial
conditions x(0), and/or prescribed control inputs and atmospheric disturbances. The nonlinear equations are
usually solved numerically; analytical solutions generally do not exist. Sometimes, narrow-range approx-
imate solutions can be found to describe special large-amplitude nonlinear motion, e.g. limit cycles, but
these are exceptional and are usually developed to support the diagnosis of behaviour unaccounted for in the
original design.

The sketches in Figure 2.17 illustrate typical ways in which trim, stability, and response results are
presented; the key variable in the trim and stability sketches is the helicopter’s forward speed. The trim
control positions are shown with their characteristic shapes; the stability characteristics are shown as loci
of eigenvalues plotted on the complex plane; the short-term responses to step inputs, or the step responses,
are shown as a function of time. This form of presentation will be revisited later on this Tour and in later
chapters.

The reader of this Tour may feel too quickly plunged into abstraction with the above equations and their
descriptions; the intention is to give some exposure to mathematical concepts that are part of the toolkit of the
flight dynamicist. Fluency in the parlance of this mathematics is essential for the serious practitioner. Perhaps
even more essential is a thorough understanding of the fundamentals of rotor flapping behaviour, which is
the next stop on this Tour; here we shall need to rely extensively on theoretical analysis. A full derivation of
the results will be given later in Chapters 3-5.

2.3.4 The Flapping Rotor in a Vacuum

The equations of motion of a flapping articulated rotor will be developed in a series of steps (Figure 2.18a—e),
designed to highlight several key features of rotor behaviour. Figure 2.18a shows a rotating blade (€, rad/s)
free to flap (f, rad) about a hinge at the centre of rotation; to add some generality we shall add a flapping
spring at the hinge (K, Nm/rad). The flapping angle f is referred to the rotor shaft; other reference sys-
tems, e.g. relative to the control axis, are discussed in Appendix 3A. It will be shown later in Chapter 3 that
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Fig. 2.18 Sketches of rotor flapping and pitch: (a) rotor flapping in vacuum; (b) gyroscopic moments in vacuum;
(c) rotor coning in air; (d) before shaft tilt; (e) after shaft tilt showing effective cyclic path

this simple centre-spring representation is quite adequate for describing the flapping behaviour of teetering,
articulated, and hingeless or bearingless rotors, under a wide range of conditions. Initially, we consider the
case of flapping in a vacuum, i.e. no aerodynamics, and we neglect the effects of gravity. The first qualitative
point to grasp concerns what happens to the rotor when the rotor shaft is suddenly tilted to a new angle.
For the case of zero spring stiffness, the rotor disc will remain aligned in its original position, there being
no mechanism to generate a turning moment on the blade. With a spring added, the blade will develop a
persistent oscillation about the new shaft orientation, with the inertial moment due to out-of-plane flapping
and the centrifugal moment continually in balance.

The dynamic equation of flapping can be derived by taking moments about the flap hinge during accel-
erated motion, so that the hinge moment K/ is balanced by the inertial moments, thus

R

K,p=— / m(r){rf + rQ?p) dr (2.5)

0

where m(r) is the blade mass distribution (kg/m) and () indicates differentiation with respect to time ¢. Setting
(') as differentiation with respect to y = Qt, the blade azimuth angle, Eq. (2.5) can be rearranged and written
as

B’ + 458 =0 (2.6)

where the flapping frequency ratio 4 is given by the expression

K
R=1+—L

L 2.7
=t @.7)
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and where the flap moment of inertia is
R

Iy = / m(r)r* dr (2.8)

0

The two inertial terms in Eq. (2.5) represent the contributions from accelerated flapping out of the plane of
rotation, rf, and the in-plane centrifugal acceleration arising from the blade displacement acting towards the
centre of the axis of rotation, rQ?g. Here, as will be the case throughout this book, we assume that g is small,
so that sin f ~ f and cos f ~ 1.

For the special case where K =0, the solution to Eq. (2.6) is simple harmonic motion with a natural
frequency of one-per-rev, i.e. A2 = 1. If the blade is disturbed in flap, the motion will take the form of a
persistent, undamped, oscillation with frequency €; the disc cut by the blade in space will take up a new tilt
angle equal to the angle of the initial disturbance. Again, with K, set to zero, there will be no tendency for
the shaft to tilt in response to the flapping, since no moments can be transmitted through the flapping hinge.
For the case with nonzero K, the frequency ratio is greater than unity and the natural frequency of disturbed
motion is faster than one-per-rev, disturbed flapping taking the form of a disc precessing against the rotor
rotation, if the shaft is fixed. With the shaft free to rotate, the hub moment generated by the spring will cause
the shaft to rotate into the direction normal to the disc. Typically, the stiffness of a hingeless rotor blade can
be represented by a spring giving an equivalent if} of between 1.1 and 1.3. The higher values are typical of
the first generation of hingeless rotor helicopters, e.g. Lynx and Bo105, the lower more typical of modern
bearingless designs. The overall stiffness is therefore dominated by the centrifugal force field.

Before including the effects of blade aerodynamics, we consider the case where the shaft is rotated in
pitch and roll, p and g (see Figure 2.18b). The blade now experiences additional gyroscopic accelerations
caused by mutually perpendicular angular velocities, p, ¢, and Q. If we neglect the small effects of shaft
angular accelerations, the equation of motion can be written as

g+ ,ﬁ,ﬁ = é(p cosy — gsiny) (2.9)

The conventional zero reference for blade azimuth is at the rear of the disc and y is positive in the direction
of rotor rotation; in Eq. (2.9) the rotor is rotating anticlockwise when viewed from above. For clockwise
rotors, the roll rate term would be negative. The steady-state solution to the ‘forced’ motion takes the form

f = p.cosy + f siny (2.10)
where
2 -2

=— = p P=— 2.11
Q(/lz—l)p ! Q(A;—l)q @11

ﬁlc

These solutions represent the classic gyroscopic motions experienced when any rotating mass is rotated out
of plane; the resulting motion is orthogonal to the applied rotation. f,,. is a longitudinal disc tilt in response
to a roll rate; f,; a lateral tilt in response to a pitch rate. The moment transmitted by the single blade to the
shaft, in the rotating axes system, is simply K, §; in the nonrotating shaft axes, the moment can be written
as pitch (positive nose up) and roll (positive to starboard) components:

K
M = —K,;p(cos w) = —7”(/}10(1 +cos2y) + B, sin 2y) (2.12)

K
L=-K;pGsiny) = —Tﬁ(ﬁ“(l — cos2y) + B, sin 2y) (2.13)

Each component, therefore, has a steady value plus an equally large wobble at two-per-rev. For a rotor with
N, evenly spaced blades, it can be shown that the oscillatory moments cancel, leaving the steady values

K,
M=-N,= b, (2.14)



28

©

Helicopter and Tiltrotor Flight Dynamics

K,
L=-N,=f, 2.15)

This is a general result that will carry through to the situation when the rotor is working in air, i.e. the zeroth
harmonic hub moments that displace the flight path of the aircraft are proportional to the tilt of the rotor
disc. It is appropriate to highlight that we have neglected the moment of the in-plane rotor loads in forming
these hub moment expressions. They are therefore strictly approximations to a more complex effect, which
we shall discuss in more detail in Chapter 3. We shall see, however, that the aerodynamic loads are not only
one-per-rev but also two-per-rev and higher, giving rise to vibratory moments.

Before considering the effects of aerodynamics, there are two points that need to be made about the
solution given by Eq. (2.11). First, what happens when /1; = 1? This is the classic case of resonance, when
according to theory, the response becomes infinite; clearly, the assumption of small flap angles would break
down well before this and the nonlinearity in the centrifugal stiffening with amplitude would limit the motion.
The second point is that the solution given by Eq. (2.11) is only part of the complete solution. Unless the
initial conditions of the blade motion were very carefully set up, the response would actually be the sum of
two undamped motions, one with the one-per-rev forcing frequency and the other with the natural frequency
Ag. A complex response would develop, with the combination of two close frequencies leading to a beating
response or, in special cases, nonperiodic chaotic behaviour. Such situations are somewhat academic for the
helicopter, as the aerodynamic forces distort the response described above in a dramatic way.

2.3.5 The Flapping Rotor in Air — Aerodynamic Damping

Figure 2.18c shows the blade in air, with the distributed aerodynamic lift (7, y) acting normal to the resultant
velocity; we are neglecting the drag forces in this case. If the shaft is now tilted to a new reference position,
the blades will realign with the shaft, even with zero spring stiffness. Figure 2.18d,e illustrates what happens.
When the shaft is tilted, say, in pitch by angle 6, the blades experience an effective cyclic pitch change with
maximum and minimum at the lateral positions (y =90° and 180°). The blades will then flap to restore the
zero hub moment condition.

For small flap angles, the equation of flap motion can now be written in the approximate form

R
1" 2, 2 . 1
B+ Ap= ﬁ(pcosy/—qsmu/)+ Iﬂ? £(r,w)rdr (2.16)
0
A simple expression for the aerodynamic loading can be formulated with reference to Figure 2.19, with the
assumptions of two-dimensional, steady aerofoil theory, i.e.

£(r,w) = %szcaOa 2.17)

where V is the resultant velocity of the airflow, p the air density, and ¢ the blade chord. The lift is assumed
to be proportional to the incidence of the airflow to the chord line, a, up to stalling incidence, with lift curve
slope a,. In Figure 2.19 the incidence is shown to comprise two components, one from the applied blade
pitch angle 6 and one from the induced inflow ¢, given by

¢ = tan™! & &
Ur Ur

~

(2.18)

where U and U, are the in-plane and normal velocity components respectively (the bar signifies nondimen-
sionalisation with QR). Using the simplification that U, <« Uy, Eq. 2.16 can be written as

1

2 —
'+ /lf;ﬂ = é(pcosy/ —gsiny) + % /(UTG + UyUp)Tdr (2.19)
0
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Fig. 2.19 Components of rotor blade incidence

where 7 = r/R and the Lock number, 7, is defined as (Ref. 2.12)

pcagR*
Ty

(2.20)

The Lock number is an important nondimensional scaling coefficient, giving the ratio of aerodynamic to
inertia forces acting on a rotor blade.

To develop the present analysis further, we consider the hovering rotor and a constant inflow velocity
v; over the rotor disc, so that the velocities at station r along the blade are given by

Uy=7, Up=—A+ é(p siny + gcosy) — 78’ 2.21)
where
4= 2
"7 OR

We defer the discussion on rotor downwash until later in this chapter and Chapter 3; for the present pur-
poses, we merely state that a uniform distribution over the disc is a reasonable approximation to support the
arguments developed in this chapter.

Eq. (2.19) can then be expanded and rearranged as

p+ %ﬂ’+ﬂ§ﬁ= é(pcosy/—qsinu/)+ % (0— g/li+ésiny/

Gov)
= 222
+ g cosV (2.22)

The flapping Eq. (2.22) can tell us a great deal about the behaviour of a rotor in response to aerodynamic
loads; the presence of the flap damping ' alters the response characteristics significantly. We can write the
applied blade pitch in the form (cf. Figure 2.5 and the early discussion on rotor controls)

0=0y+0,.cosy + 0, siny (2.23)

where 6, is the collective pitch and 8, and 8, the longitudinal and lateral cyclic pitch, respectively. The
forcing function on the right-hand side of Eq. (2.22) is therefore made up of constant and first harmonic
terms. In the general flight case, with the pilot active on his controls, the rotor controls 6, 8,., and €, and
the fuselage rates p and ¢ will vary continuously with time. As a first approximation, we shall assume that
these variations are slow compared with the rotor blade transient flapping. We can quantify this approximation
by noting that the aerodynamic damping in Eq. (2.22), y/8, varies between about 0.7 and 1.3. In terms of the
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Fig. 2.20 The three rotor disc degrees of freedom

response to a step input, this corresponds to rise times (to 63% of steady-state flapping) between 60° and 112°
azimuth (y ¢34, = 16 In(2)/y). Rotorspeeds vary from about 27 rad/s on the AS330 Puma to about 44 rad/s on
the Messerschmit-Bolkow—Blohm (MBB) Bo105, giving flap time constants between 0.02 and 0.07 s at the
extremes. Provided that the time constants associated with the control activity and fuselage angular motion
are an order of magnitude greater than this, the assumption of rotor quasi-steadiness during aircraft motions
will be valid. We shall return to this assumption a little later on this Tour, but for now, we assume that the
rotor flapping has time to achieve a new steady-state, one-per-rev motion following each incremental change
in control and fuselage angular velocity. We write the rotor flapping motion in the quasi-steady-state form

B =By + Bi.cosy + By siny (2.24)

B, is the rotor coning and f,,. and f,, the longitudinal and lateral flapping, respectively. The cyclic flapping
can be interpreted as a tilt of the rotor disc in the longitudinal (forward) f,. and lateral (port) §,, planes. The
coning has an obvious physical interpretation (see Figure 2.20).

The quasi-steady coning and first harmonic flapping solution to Eq. (2.22) can be obtained by substi-
tuting Egs. (2.23) and (2.24) into Eq. (2.22) and equating constant and first harmonic coefficients. Collecting
terms, we can write

4 4
ﬂ0=87<00_§’1i) (2.25)
B
1 16 — 16\ —
ﬂ(:—{50(—05+<5——1> +<S +—> } (2.26)
lc 1+S§ pY1 1 ﬂy p 1] ” q
1 16\ — 16 —
= S0, +0,.+ S+ — —(S;,— -1 (2.27)
d 1+S§{’“ 1 (” y)p <”y )q}

where the stiffness number

8(/12 -1
Syp=——— (2.28)
Y
and
p=%. 7=¢
Q’ Q

The stiffness number S, is a useful nondimensional parameter in that it provides a measure of the ratio of
hub stiffness to aerodynamic moments.
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2.3.6 Flapping Derivatives
The coefficients in Egs. (2.26) and (2.27) can be interpreted as partial derivatives of flapping with respect to
the controls and aircraft motion; hence, we can write

aﬂlc _aﬁls 1

= = 2.29
20, 00,, 1+5; 22
0 0 s

ﬂlc‘ — ﬂls — p (230)
00,, 00, 1+ S;
0 0
@=@=L<Sﬁ+5> (2.31)
dq op 1+ Sf, Y
ap,, 0
e s _ 1 (sﬁ1—6 - 1) @32)
op g 1+5; Y

The partial derivatives in Egs. (2.29-2.32) represent the changes in flapping with changes in cyclic pitch and
shaft rotation and are shown plotted against the stiffness number for different values of y in Figure 2.21a—c.
Although S, is shown plotted up to unity, a maximum realistic value for current hingeless rotors with heavy
blades (small value of y) is about 0.5, with more typical values between 0.05 and 0.3. The control derivatives
illustrated in Figure 2.21a show that the direct flapping response, 0, /06, is approximately unity up to
typical maximum values of stiffness, i.e. a hingeless rotor blade flaps by about the same amount as a teetering
or articulated rotor. However, the variation of the coupled flap response, 9, /00, ., is much more significant,
being as much as 30% of the primary response at an S, of 0.3. When this level of flap cross-coupling is
transmitted through the hub to the fuselage, an even larger ratio of pitch/roll response coupling can result due
the relative magnitudes of the aircraft inertias.

2.3.7 The Fundamental 90° Phase Shift

A fundamental result of rotor dynamics emerges from the above analysis, that the flapping response is approx-
imately 90° out of phase with the applied cyclic pitch, i.e. 8, gives —f, ., and 0, gives f,,. For blades freely
articulated at the centre of rotation, or teetering rotors, the response is lagged by exactly 90° in hover; for hin-
geless rotors, such as the Lynx and Bo105, the phase angle is about 75°-80°. The phase delay (approximately
the ratio of the derivatives in Eq. (2.29) to Eq. (2.30)) is a result of the rotor being aerodynamically forced,
through cyclic pitch, close to resonance, i.e. one-per-rev. The second-order character of Eq. (2.22) results in
a low-frequency response in-phase with inputs and a high-frequency response with a 180° phase lag. The
innovation of cyclic pitch, forcing the rotor close to its natural flapping frequency, is amazingly simple and
effective — practically no energy is required and a degree of pitch results in a degree of flapping. A degree of
flapping can generate between O (for teetering rotors), 500 (for articulated rotors) and greater than 2000 Nm
(for hingeless rotors) of hub moment, depending on the rotor stiffness.

The flap-damping derivatives, given by Eqs. (2.31) and (2.32), are illustrated in Figure 2.21b, c. The
direct flap damping, df,./dq, is practically independent of stiffness up to S;=0.5; the cross-damping,
0p,./dp, varies linearly with S; and changes sign at high values of S;. In contrast with the in-vacuo case,
the direct flapping response now opposes the shaft motion. The disc follows the rotating shaft, lagged by an
angle given by the ratio of the flap derivatives in the figures. For very heavy blades (e.g. y =4), the direct
flap response is about four times the coupled motion; for very light blades, the disc tilt angles are more
equal. This rather complex response stems from the two components on the right-hand side of the flapping
equation, Eq. (2.22), one aerodynamic due to the distribution of airloads from the angular motion, the
other from the gyroscopic flapping motion. The resultant effect of these competing forces on the helicopter
motion is also complex and needs to be revisited for further discussion in Chapters 3 and 4. Nevertheless,
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Fig. 2.21 Variation of flap derivatives with stiffness number in hover: (a) control; (b) damping; (c) cross-coupling

it should be clear to the reader that the calculation of the correct Lock number for a rotor is critical to the
accurate prediction of both primary and coupled responses. Complicating factors are that most blades have
strongly nonuniform mass distributions and aerodynamic loadings and any blade deformation will further
affect the ratio of aerodynamic to inertia forces. The concept of the equivalent Lock number is often used in
helicopter flight dynamics to encapsulate several of these effects. The degree to which this approach is valid
will be discussed later in Chapter 3.

2.3.8 Hub Moments and Rotor/Fuselage Coupling

From the previous discussion, we can see the importance of the two key parameters, 45 and y, in determining
the flapping behaviour and hence hub moment. The hub moments due to the out-of-plane rotor loads are
proportional to the rotor stiffness, as given by Egs. (2.14) and (2.15); these can be written in the form

. Kﬂ Nb 2 2
Pitch moment: M = —beﬂlc = —79 Iﬂ(ﬂﬁ - Dp,. (2.33)
Kﬂ N, 2 2
Roll moment: L= —Nb7ﬂ1s = —79 1 (A5 = DBy (2.34)

To this point in the analysis we have described rotor motions with fixed or prescribed shaft rotations to bring
out the partial effects of control effectiveness and flap damping. We can now extend the analysis to shaft-free
motion. To simplify the analysis, we consider only the roll motion and assume that the centre of mass of the
rotor and shaft lies at the hub centre. The motion of the shaft is described by the simple equation relating the
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rate of change of angular momentum to the applied moment:
IL.p=L (2.35)

where 1, is the roll moment of inertia of the helicopter. By combining Eq. (2.27) with Eq. (2.34), the equation
describing the one DoF roll motion of the helicopter, with quasi-steady rotor, can be written in the first-order
differential form of a rate response type:

p-Lp=Ly 0, (2.36)

where the rolling moment derivatives are given by

N,S,1,Q N, S, yI1,Q?
o~ T b N __bTAET (2.37)
i I e 16 1,

where the approximation that S2 << 1 has been made. Nondimensionalising by the roll moment of inertia
I transforms these into angular acceleration derivatives.

These are the most primitive forms of the roll damping and cyclic control derivatives for a helicopter, but
they contain most of the first-order effects, as will be observed in Chapters 4 and 5. The solution to Eq. (2.36)
is a simple exponential transient superimposed on the steady-state solution. For a simple step input in lateral
cyclic, this takes the form

L Lglf
p= - - ey o, 239)
14

The time constant (time to reach 63% of steady state) of the motion, 7,, is given by — (I/L,), the control
sensitivity (initial acceleration) by L, , and the rate sensitivity (steady-state rate response per degree of
cyclic) by
L Q
pyy(deg /5. deg) = ——2= = ~ =2 (2.39)

L, 16

These are the three handling qualities parameters associated with the time response of Eq. (2.36), and
Figure 2.22 illustrates the effects of the primary rotor parameters. The fixed parameters for this test case are
Q=35rad/s, N, =4, 1,/1,,=0.25.
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Fig. 2.22 Linear variation of rotor damping with control sensitivity in hover
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Four points are worth highlighting:

(1) Contrary to popular understanding, the steady-state roll rate response to a step lateral cyclic is
independent of rotor flapping stiffness; teetering and hingeless rotors have effectively the same rate
sensitivity.

(2) Rate sensitivity varies linearly with Lock number.

(3) Both control sensitivity and damping increase linearly with rotor stiffness.

(4) The response time constant is inversely proportional to rotor stiffness.

These points are further brought out in the generalised sketches in Figure 2.23a, b, illustrating the first-order
time response in roll rate from a step lateral cyclic input. These time response characteristics were used to
describe short-term handling qualities until the early 1980s when the revision to Mil Spec 8501A (Ref. 2.2)
introduced the frequency domain as a more meaningful format, at least for nonclassical short-term response.
One of the reasons for this is that the approximation of quasi-steady flapping motion begins to break down
when the separation between the frequency of rotor flap modes and fuselage attitude modes decreases. The
full derivation of the equations of flap motion will be covered in Chapter 3, but to complete this analysis
of rotor/fuselage coupling in hover, we shall briefly examine the next, improved, level of approximation.
Egs. (2.40) and (2.41) describe the coupled motion when only first-order lateral flapping (the so-called flap
regressive mode) and fuselage roll are considered. The other rotor modes — the coning and advancing flap
modes — and coupling into pitch, are neglected at this stage.

. 0

fro+ D =y D (2.40)

Tp,, T,
I.’_Lﬁl‘_ﬁls =0 (2.41)

where N /
1

L =2 2o =- 2.42
By 0, 2 ]xx( p ) 5 1, ( )

and 16 1
= - 2.43
/714 ]/Q TP Lp ( )

The time constants Ty, and 7, are associated with the disc and fuselage (shaft) response, respectively. The
modes of motion are now coupled roll/flap with eigenvalues given by the characteristic equation

PENL PP,

Tﬂls Tﬂ]sTP

=0 (2.44)

The roots of Eq. (2.44) can be approximated by the uncoupled values only for small values of stiffness
and relatively high values of Lock number. Figure 2.24 shows the variation of the exact and uncoupled
approximate roots with (/lé — 1) for the case when y = 8. The approximation of quasi-steady rotor behaviour

P P
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A v
t t
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Fig. 2.23 Effects of rotor parameters on roll rate response: (a) rotor stiffness; (b) Lock number
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Fig. 2.24 Variation of roll/flap exact and approximate mode eigenvalues with rotor stiffness

will be valid for small offset articulated rotors and soft bearingless designs, but for hingeless rotors with /12
much above 1.1, the fuselage response is fast enough to be influenced by the rotor transient response, and the
resultant motion is a coupled roll/flap oscillation. Note again that the rotor disc time constant is independent
of stiffness and is a function only of rotorspeed and Lock number (Eq. (2.43)).

2.3.9 Linearization in General

The assumptions made to establish the above approximate results have not been discussed; we have neglected
detailed blade aerodynamic and deformation effects and we have assumed the rotorspeed to be constant; these
are important effects that will need to be considered later in Chapter 3, but would have detracted from the
main points we have tried to establish in the foregoing analysis. One of these is the concept of the motion
derivative, or partial change in the rotor forces and moments with rotor motion. If the rotor were an entirely
linear system, then the total force and moment could be formulated as the sum of individual effects each
written as a derivative times a motion.

This approach, which will normally be valid for small enough motion, has been established in both
fixed- and rotary-wing flight dynamics since the early days of flying (Ref. 2.13) and enables the stability
characteristics of an aircraft to be determined. The assumption is made that the aerodynamic forces and
moments can be expressed as a multidimensional analytic function of the motion of the aircraft about the
trim condition; hence the rolling moment, for example, can be written as

L=L +0_Lu+02_Lu2+...+a_Lv+...+a_LW+...+0_L +...+a_L
= Trim T 51T o2 v ow o’ 9g?
+ terms due to higher motion derivatives (e.g., p) and controls (2.45)

For small motions, the linear terms will normally dominate and the approximation can be written in the form

L=L,,+Lu+Lyv+Lw+Lp+Lqg+Lr

trim
+ acceleration and control terms (2.46)
In this 6-DoF approximation, each component of the helicopter will contribute to each derivative; hence, for

example, there will be an X, and an N, for the rotor, fuselage, empennage, and even the tail rotor, although
many of these components, while dominating some derivatives, will have a negligible contribution to others.
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Dynamic effects beyond the motion in the six rigid-body DoFs will be folded into the latter in quasi-steady
form, e.g. rotor, air mass dynamics, and engine/transmission. For example, if the rotor DoFs were represented
by the vector x, and the fuselage by X/, then the linearised, coupled equations can be written in the form

7| _ |2 B [Xe| = |Pr P (Y
SR VAN N 2
‘We have included, for completeness, fuselage, and rotor controls. Folding the rotor DoFs into the fuselage as
quasi-steady motions will be valid if the characteristic frequencies of the two elements are widely separate
and the resultant approximation for the fuselage motion can then be written as

X —[Ay — ApALA X, = [By — A AL'B Ju, + [B, — A, AL'B, Ju, (2.48)
In the above, we have employed the weakly coupled approximation theory of Milne (Ref. 2.14), an approach
used extensively in Chapters 4 and 5. The technique will serve us well in reducing and hence isolating the
dynamics to single DoFs in some cases, thus maximizing the potential physical insight gained from such

analysis. The real strength in linearization comes from the ability to derive stability properties of the dynamic
motions.

2.3.10 Stability and Control Résumé

This Tour would be incomplete without a short discussion on stability and control derivatives and a descrip-
tion of typical helicopter stability characteristics. To do this, we need to introduce the helicopter model
configurations we will be working with in this book and some basic principles of building the aircraft
equations of motion. The three baseline simulation configurations are described in Appendix 4B and rep-
resent the Aerospatiale (Eurocopter France (ECF)) SA330 Puma, Westland Lynx, and MBB (Eurocopter
Deutschland (ECD)) Bo105 helicopters. The Puma is a transport helicopter in the 6-ton class, the Lynx is
a utility transport/anti-armour helicopter in the 4-ton class and the Bo105 is a light-utility/anti-armour heli-
copter in the 2.5-ton class. Both the Puma and Bo105 operate in civil and military variants throughout the
world; the military Lynx operates with both land and sea forces throughout the world. All three helicopters
were designed in the 1960s and have been continuously improved in a series of new Marks since that time.
The Bo105 and Lynx were the first hingeless rotor helicopters to enter production and service. On these
aircraft, both flap and lead—lag blade motion are achieved through elastic bending, with blade pitch varied
through rotations at a bearing near the blade root. On the Puma, the blade flap and lead-lag motions largely
occur through articulation with the hinges close to the hub centre. The distance of the hinges from the hub
centre is a critical parameter in determining the magnitude of the hub moment induced by blade flapping
and lagging; the moments are approximately proportional to the hinge offset, up to values of about 10% of
the blade radius. Typical values of the flap hinge offset are found between 3% and 5% of the blade radius.
Hingeless rotors are often quoted as having an effective hinge offset, to describe their moment-producing
capability, compared with articulated rotor helicopters. The Puma has a flap hinge offset of 3.8%, while the
Lynx and Bo105 have effective offsets of about 12.5% and 14%, respectively. We can expect the moment
capability of the two hingeless rotor aircraft to be about three times that of the Puma. This translates into
higher values of 4; and S, and hence, higher rotor moment derivatives with respect to all variables, not only
rates and controls as described in the above analysis.

The simulation model of the three aircraft will be described in Chapter 3 and is based on the Royal Air-
craft Establishment (RAE) Helisim model (Ref. 2.15). The model is generic in form, with two input files, one
describing the aircraft configuration data (e.g. geometry, mass properties, aerodynamic and structural char-
acteristics, control system parameters), the other the flight condition parameters (e.g. airspeed, climb/descent
rate, sideslip, and turn rate), and atmospheric conditions. The datasets for the three Helisim aircraft are in
Chapter 4, Section 4B.1, while Section 4B.2 contains charts of the stability and control derivatives. The
derivatives are computed using a numerical perturbation technique applied to the full nonlinear equations of
motion and are not generally derived in explicit analytic form. Chapters 3 and 4 will include some analytic
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formulations to illustrate the physics at work; it should be possible to gain insight into the primary aerody-
namic effects for all the important derivatives in this way. The static stability derivative M, is a good example
and allows us to highlight some of the differences between fixed- and rotary-wing aircraft.

2.3.11 The Static Stability Derivative M
In simple physical terms, the derivative M,, represents the change in pitching moment about the aircraft’s
centre of mass when the aircraft is subjected to a perturbation in normal velocity w or, effectively, incidence.
If the perturbation leads to a positive, pitch-up, moment, then M,, is positive and the aircraft is said to be
statically unstable in pitch; if M, is negative then the aircraft is statically stable. Static stability refers to the
initial tendency only and the M,, effect is analogous to the spring in a simple spring/mass/damper dynamic
system. In fixed-wing aircraft flight dynamics, the derivative is proportional to the distance between the
aircraft’s centre of mass and the overall aerodynamic centre, i.e. the point about which the resultant lift force
acts when the incidence is changed. This distance metric, in normalised form, referred to as the static margin,
does not carry directly across to helicopters, because as the incidence changes, not only does the aerodynamic
lift on the rotor change, but it also rotates (as the rotor disc tilts). So, while we can consider an effective static
margin for helicopters, this is not commonly used because the parameter is very configuration dependent and
is also a function of perturbation amplitude. There is another reason why the static margin concept has not
been adopted in helicopter flight dynamics. Prior to the deliberate design of fixed-wing aircraft with negative
static margins to improve performance, fundamental configuration, and layout parameters were defined to
achieve a positive static margin. Most helicopters are inherently unstable in pitch, and very little can be
achieved with layout and configuration parameters to change this, other than through the stabilizing effect
of a large tailplane at high speed (e.g. UH-60). When the rotor is subjected to a positive incidence change
in forward flight, the advancing blade experiences a greater lift increment than does the retreating blade (see
Figure 2.25). The 90° phase shift in response means that the rotor disc flaps back and cones up and hence
applies a positive pitching moment to the aircraft. The rotor contribution to M,, will tend to increase with
forward speed; the contributions from the fuselage and horizontal stabiliser will also increase with airspeed
but tend to cancel each other, leaving the rotor contribution as the primary contribution. Figure 2.26 illustrates
the variation in M,, for the three baseline aircraft in forward flight. The effect of the hingeless rotors on M,,
is quite striking, leading to large destabilizing moments at high speed. It is interesting to consider the effect
of this static instability on the dynamic, or longer term, stability of the aircraft.

A standard approximation to the short-term dynamic response of a fixed-wing aircraft can be derived
by considering the coupled pitch/heave motions, if the airspeed is constant. This is a gross approximation for
helicopters but can be used to approximate high-speed flight in certain circumstances (Ref. 2.16). Figure 2.27

v
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Fig. 2.25 Incidence perturbation on advancing and retreating blades during encounter with vertical gust
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Fig. 2.26 Variation of static stability derivative, M, , with forward speed for Bo105, Lynx, and Puma
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Fig. 2.27 Constant pitch and heave motions

illustrates generalised longitudinal motion, distinguishing between pitch and incidence. For the present, we
postulate that the assumption of constant speed applies, and that the perturbations in heave velocity, w, and
pitch rate, g, can be described by the linearised equations:

1,4 =6M
Mo = M,U,q + 6Z (2.49)

where [, is the pitch moment of inertia of the helicopter about the reference axes and M,, is the mass. U, is
the trim or equilibrium forward velocity and 6Z and 6M are the perturbation Z force and pitching moment.
Expanding the perturbed force and moment into derivative form, we can write the perturbation equations of

motion in matrix form:
d (w zZ, Z,+U, Zois Zyo 1
— s § 2.50
dt [61] [M M, [ ] [M(m My 250

The derivatives Z,,, M, ,» ete., correspond to the linear terms in the expansion of the normal force and pitch
moment, as described in Eq. (2.45). It is more convenient to discuss these derivatives in semi-normalised
form, and we therefore write these in Eq. (2.50), and throughout the book, without any distinguishing dress-
ings, as

M, = I—W Z,= ATW etc. (2.51)
¥y a
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The solution to Eq. (2.50) is given by a combination of transient and steady-state components, the former
having an exponential character, with the exponents, the stability discriminants, as the solutions to the char-
acteristic equation

¥ —-Z,+M)A+ZM,-M,(Z,+U,)=0 (2.52)

According to Eq. (2.52), when the static stability derivative M, is zero, then the pitch and heave motions are
uncoupled, giving two first-order transients (decay rates given by Z, and M,). As M,, becomes increasingly
positive, the aircraft will not experience dynamic instability until the manoeuvre margin, the stiffness term
in Eq. (2.52), becomes zero. Long before this, however, the above approximation breaks down.

One of the chief reasons why this short period approximation has a limited application range with heli-
copters is the strong coupling with speed variations, reflected in the speed derivatives, particularly M,. This
speed-stability derivative is normally zero for fixed-wing aircraft at subsonic speeds, because the moments
from all aerodynamic surfaces are proportional to dynamic pressure and hence perturbations tend to cancel
one another. For the helicopter, the derivative M|, is significant even in the hover, again caused by differen-
tial effects on advancing and retreating blades leading to flapback; so, while this positive derivative can be
described as statically stable, it contributes to the dynamic instability of the pitch phugoid. This effect will be
further explored in Chapter 4, along with the second reason why low-order approximations are less widely
applicable for helicopters, namely cross-coupling. Practically all helicopter motions are coupled, but some
couplings are more significant than others, in terms of their effect on the direct response on the one hand,
and the degree of pilot off-axis compensation required, on the other.

Alongside the fundamentals of flapping, the rotor thrust, and torque response to normal velocity changes
are key rotor aeromechanics effects that need some attention on this Tour.

2.3.12 Rotor Thrust, Inflow, Z , and Vertical Gust Response in Hover
The rotor thrust 7 in hover can be determined from the integration of the lift forces on the blades

N, R
T = Z / Gy, r) dr (2.53)
i=1 0

Using Eq. (2.17)—(2.21), the thrust coefficient in hover and vertical flight can be written as

ags {6y M, — A
Cr=— |\~ 2.54
T=" <3 T ) (2.54)

Again, we have assumed that the induced downwash 4; is constant over the rotor disc; u, is the normal
velocity of the rotor, positive down, and approximates to the aircraft velocity component w. Before we can
calculate the vertical damping derivative Z,,, we need an expression for the uniform downwash. The induced
rotor downwash is one of the most important individual components of helicopter flight dynamics; it can
also be the most complex. The downwash, representing the discharged energy from the lifting rotor, takes
the form of a spiralling vortex wake with velocities that vary in space and time. We shall give a more compre-
hensive treatment in Chapter 3, but in this introduction to the topic we make some major simplifications. We
assume that the rotor takes the form of an actuator disc (Ref. 2.17) supporting a pressure change and accel-
erating the air mass, so that the induced velocity can be derived by equating the work done by the integrated
pressures with the change in air-mass momentum. In hover, the downwash over the rotor disc can then be
written as

T
.= 2.55
vl/mver 2 y) Ad ( )

where A is the rotor disc area and p is the air density.
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Or, in normalised form

Vi Cr
A=—= — (2.56)
QR 2

The rotor thrust coefficient C, will typically vary between 0.005 and 0.01 for helicopters in 1g flight, depend-
ing on the tip speed, density altitude and aircraft weight. Hover downwash 4; then varies between 0.05 and
0.07. The physical downwash is proportional to the square root of the rotor disc loading, L, and at sea level
is given by

v, =145, (2.57)

For low disc loading rotors (L, = 6 Ibf/ft>, 280 N/m?), the downwash is about 35 ft/s (10 m/s); for high disc
loading rotors (L, =12 1b/ft2, 560 N/m?), the downwash rises to over 50 ft/s (15 m/s).
The simple momentum considerations that led to Eq. (2.55) can be extended to the energy and hence

power required in the hover
T3 /2

L V@AY

The subscript i refers to the induced power, which accounts for about 70% of the power required in hover;
for a 10000 Ib (4540 kg) helicopter developing a downwash of 40 ft/s (typical of a Lynx), the induced power
comes to nearly 730 horsepower (HP) (545 kW).

Equations (2.54) and (2.56) can be used to derive the heave damping derivative

p(QR)ZR? 0C;

Z,=—— (2.59)
M, ou,
where
oCy 2ays4;
e e — (2.60)
ou, 164, +agys
and hence

_ 2aA,p(@QR),

= 2.61
Y (164; + aps)M,, 261)

where A,, is the blade area and s the solidity, or ratio of blade area to disc area. For our reference Helisim
Lynx configuration, the value of Z,, is about —0.33 s~! in hover, giving a heave motion time constant of about
3 s (rise time to 63% of steady state). This is typical of heave time constants for most helicopters in hover.
With such a long time constant, the vertical response would seem more like an acceleration than a velocity
type to the pilot. The response to vertical gusts, w,, can be derived from the first-order approximation to the

heave dynamics
(ii_v: -Zw=2Zw (2.62)
The initial acceleration response to a sharp-edge vertical gust provides a useful measure of the ride qualities

of the helicopter, in terms of vertical bumpiness

dw

W0~ Z,w, (2.63)
A gust of magnitude 30 ft/s (10 m/s) would therefore produce an acceleration bump in Helisim Lynx of
about 0.3 g. Additional effects such as the blade flapping, downwash lag, and rotor penetration will modify
the response. Vertical gusts of this magnitude are rare in the hovering regime close to the ground, and the low
values of Z , and the typical gust strengths make the vertical gust response in hovering flight benign. There are
some important exceptions to this general result, e.g. helicopters operating close to structures or obstacles
with large downdrafts (e.g. approaching oil rigs) or encountering the wakes of other aircraft (see Chapter
8) that make the vertical performance and handling qualities, such as power margin and heave sensitivity,
particularly critical. We shall return to gust response as a special topic in Chapter 5.
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2.3.13 Gust Response in Forward Flight

A similar analysis can be conducted for the rotor in forward flight, leading to the following set of approximate
equations for the induced downwash and heave damping; V is the flight speed and V' is the total velocity at
the disc

T
= 2.64
[y AV (2.64)
aC 24,
r_ _“9SH (2.65)
ou, 8u +ays
v
= 2.66
M= R (2.66)
a, VA
z, =20 4 (2.67)
2M, 8u + ays

The coefficient outside the parenthesis in Eq. (2.67) is the expression for the corresponding value of heave
damping for a fixed-wing aircraft with wing area A,,.

a, VA
7 =— pay w
Wrw M

a

(2.68)

The key parameter is again blade/wing loading. The factor in parenthesis in Eq. (2.67) indicates that the
helicopter heave damping or gust response parameter flattens off at high-speed while the fixed-wing gust
sensitivity continues to increase linearly. At lower speeds, the rotary-wing factor in Eq. (2.67) increases to
greater than one. Typical values of lift curve slope for a helicopter blade can be as much as 50% higher
than a moderate aspect-ratio aeroplane wing. It would seem therefore that all else being equal, the helicopter
will be more sensitive to gusts at low-speed. However, typical blade loadings are considerably higher than
wing loadings for the same aircraft weight; values of 100 Ib/ft?> (4800 N/m?) are typical for helicopters,
while fixed-wing executive transports have wing loadings around 40 1b/ft> (1900 N/m?). Military jets have
higher wing loadings, up to 70 Ib/ft> (3350 N/m?) for an aircraft like the Harrier, but this is still quite a
bit lower than typical blade loadings. Figure 2.28 shows a comparison of heave damping for our Helisim
Puma helicopter (a, = 6, blade area =144 ft> (13.4 m?)) with a similar class of fixed-wing transport (ay=4,
wing area =350 ft? (32.6 m?)), both weighing in at 13 500 1b (6130 kg). Only the curve for the rotary-wing
aircraft has been extended to zero speed, the Puma point corresponding to the value of Z, given by Eq.
(2.61). The helicopter is seen to be more sensitive to gusts below about 50 m/s (150 ft/s); above this speed,
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Fig. 2.28 Variation of heave damping, Z,,, with airspeed for rotary- and fixed-wing aircraft
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the helicopter value remains constant, while the aeroplane response continues to increase. Three points are
worth developing about this result for the helicopter:

(1) The alleviation due to blade flapping is often cited as a major cause of the lower gust sensitivity of
helicopters. In fact, this effect is fairly small as far as the vertical gust response is concerned. The rotor
coning response, which determines the way that the vertical load is transmitted to the fuselage, reaches
its steady state very quickly, typically in about 100 ms. While this delay will take the edge off a truly
sharp gust, the gust front is usually of ramp form, extending over several of the blade response time
constants.

(2) The Z,, derivative reflects the initial response only; a full assessment of ride qualities will need to
consider the short-term transient response of the helicopter and, of course, the shape of the gust. We
shall see later in Chapter 5 that there is a key relationship between gust shape and aircraft short-term
response that leads to the concept of the worst-case gust, when there is tuning or resonance between the
aircraft response and the gust scale/amplitude.

(3) The third point concerns the insensitivity of the response with speed for the helicopter at higher speeds.
It is not obvious why this should be the case, but the result is clearly connected with the rotation of the
rotor. To explore this point further, it will help to revisit the thrust equation; thus, exploiting the
modelling approach to the full:

Ny

R
T=Z/f(u/,r) dr
i=1 0

or
1
2C; -2 ==
— = [ (U0+U,U;) dr (2.69)
ags
0
where . _
UpxT+usiny, Up=pu, — A —pupcosy —rp’ (2.70)

The vertical gust response stems from the product of velocities EPUT in Eq. (2.69). It can be seen from
Eq. (2.70) that the forward velocity term in ET varies one-per-rev, therefore contributing nothing to the
quasi-steady hub loading. The most significant contribution to the gust response in the fuselage comes
through as an N, -per-rev vibration superimposed on the steady component represented by the derivative
Z,,. The ride bumpiness of a helicopter, therefore, has quite a different character from that of a fixed-wing
aircraft where the lift component proportional to velocity dominates the response.

2.3.14 Vector-Differential Form of Equations of Motion
Returning now to the general linear problem, we shall find it convenient to use the vector—matrix shorthand
form of the equations of motion, written in the form

% — Ax =Bu +1(y) (2.71)

where
x={u,w,q,0,v,p,, 7, y}

A and B are the matrices of stability and control derivatives, and we have included a forcing function f(7) to
represent external disturbances, e.g. gusts. Eq. (2.71) is a linear differential equation with constant coefficients
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that has an exact solution with analytic form
t

tory Tour 43

x(1) = Y()x(0) + / Y(t —7)(Bu+f(z)) dr

0
Y =0,

Y(t) = U diag [exp(4,0]U",

t<0

t>0

(2.72)

The response behaviour is uniquely determined by the principal matrix solution Y(#) (Ref. 2.18), which is
itself derived from the eigenvalues A, and eigenvectors u; (arranged as columns in the matrix U) of the matrix
A. The stability of small motions about the trim condition is determined by the real parts of the eigenval-

ues and the complete response to controls u or disturbances f is a 1

inear combination of the eigenvectors.

Figure 2.29a,b show how the eigenvalues for the Helisim Lynx and Helisim Puma configurations vary with
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speed from hover to 160 knots; at the higher speeds, the conventional fixed-wing parlance for naming the
modes associated with the eigenvalues is appropriate. The pitch instability at high speed for the hingeless
rotor Helisim Lynx has already been discussed in terms of the loss of manoeuvre stability. At lower speeds,
the modes change character, until at the hover they take on shapes peculiar to the helicopter (e.g. heave/yaw
oscillation, pitch/roll pendulum mode). The heave/yaw mode tends to be coupled, due to the fuselage yaw
reaction to changes in rotor torque, induced by perturbations in the rotor heave/inflow velocity. The eigen-
vectors represent the mode shapes, or the ratio of the response contributions in the various DoFs. The modes
are linearly independent, meaning that no one can be made up as a collection of the others. If the initial
conditions, control inputs, or gust disturbance have their energy distributed throughout the DoFs with the
same ratio as in an eigenvector, then the response will be restricted to that mode only. More discussion on
the physics of the modes can be found in Chapter 4.

The key value of the linearised equations of motion is in the analysis of stability; they also form the
basic model for control system design. Both uses draw on the considerable range of mathematical techniques
developed for linear systems analysis. We shall return to these later in Chapters 4 and 5, but we need to say a
little more about the two inherently nonlinear problems of flight mechanics — trim and response. The former
is obtained as the solution to the algebraic Eq. (2.2) and generally takes the form of the controls required
to hold a steady flight condition. The general form of control variations with forward speed is illustrated in
Figure 2.30. The longitudinal cyclic moves forward as speed increases to counteract the flapback caused by
forward speed effects (M, effect). The lateral cyclic must compensate for the rolling moment due to the tail
rotor thrust and the lateral flapping induced in response to coning and longitudinal variations in rotor inflow.
The collective follows the shape of the power required, decreasing to the minimum power speed at around
70 knots then increasing again sharply at higher speeds. The tail rotor collective follows the general shape
of the main rotor collective; at high-speed the pedal required decreases as some of the anti-torque yawing
moment is typically produced by the vertical stabiliser.

While it is true that the response problem is inherently nonlinear, it is also true that for small perturba-
tions, the linearised equations developed for stability analysis can be used to predict the dynamic behaviour.
Figure 2.31 illustrates and compares the pitch response of the Helisim Lynx fitted with a standard and soft
rotor as a function of control input size; the response is normalised by the input size to indicate the degree
of nonlinearity present. Also shown in the figure is the normal acceleration response; clearly, for the larger
inputs the assumptions of constant speed implicit in any linearization would break down for the standard
stiffer rotor. The rotor thrust would also have changed significantly in the manoeuvre and, together with the
larger speed excursions for the stiffer rotor, produce the nonlinear response shown.
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Fig. 2.30 Variation of trim control angles with forward speed for Puma
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Fig. 2.31 Nonlinear pitch response for Lynx at 100 knots

2.3.15 Validation

How well a theoretical simulation needs to model the helicopter behaviour depends very much on the appli-
cation; in the simulation world, the measure of quality is described as the fidelity or validation level. Fidelity
is normally judged by comparison with test data, both model and full scale. The validation process can be
described in terms of two kinds of fidelity — functional and physical (Ref. 2.19), defined as follows:

Functional fidelity is the level of fidelity of the overall model to achieve compliance with some functional
requirement, e.g. for our application, can the model be used to predict flying qualities parameters?

Physical fidelity is the level of fidelity of the individual modelling assumptions in the model components, in
terms of their ability to represent the underlying physics, e.g. does the rotor aerodynamic inflow
formulation capture the fluid mechanics of the wake correctly?

It is convenient and also useful to distinguish between these two approaches because they focus attention
on the two ends of the problem — have we modelled the physics correctly, and does the pilot perceive that
the simulation ‘feels’ right? It might be imagined that the one would follow from the other, and while this
is true to an extent, it is also true that simulation models will continue to be characterised by a collection of
aerodynamic and structural approximations, patched together and each correct over a limited range, for the
foreseeable future. It is also something of a paradox that the conceptual product of complexity and physical
understanding can effectively be constant in simulation. The more complex the model becomes, then while
the model fidelity may be increasing, the ability to interpret cause and effect, and hence gain physical under-
standing of the model behaviour, diminishes. Against this stands the argument that, in general, only through
adding complexity can fidelity be improved. A rule of thumb is that the model needs to be only as complex
as the fidelity requirements dictate; improvements beyond this are generally not cost-effective. The problem
is that we typically do not know how far to go at the initial stages of a model development, and we need to be
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guided by the results of validation studies reported in the literature. We briefly return to the topic of fidelity
at the end of Chapter 3.

During the 1990s, there was a surge of activity in this research area, with the techniques of system
identification underpinning practically all the progress (Refs. 2.20-2.22). System identification is essentially
a process of reconstructing a simulation model structure and associated parameters from experimental data.
The techniques range from simple curve fitting to complex statistical error analysis, but they have been used
in aeronautics in various guises from the early days of data analysis (see the work of Shinbrot in Ref. 2.23).
The helicopter presents special problems to system identification, but these are reasonably well understood,
if not always accounted for.

An example illustrating the essence of system identification can be drawn from the roll response dynam-
ics described earlier in this chapter; if we assume the first-order model structure, then the equation of motion
and measurement equation take the form

p-Lp= LHI(OI(V. +¢,

p =) +e, @.73)

The second equation is included to show that in most cases, we shall be considering problems where the
variable or state of interest is not the same as that measured; there will generally be some measurement error
function ¢,, and some calibration function f involved. Also, the equation of motion will not fully model the
situation and we introduce the process error function ¢, . Ironically, it is the estimation of the characteristics
of these error or noise functions that has motivated the development of a significant amount of the system
identification methodology.

The solution for roll rate can be written in either a form suitable for forward (numerical) integration

p=py+ /(Lpp(r) + Ly 0,.(7)) dr (2.74)
or an analytic form
t
P =peet’ + / e "IL, 0,.(7) dr (2.75)
0

The identification problem associated with Eq. (2.73) becomes, ‘from flight test measurements of roll rate
response to a measured lateral cyclic input, estimate values of the damping and control sensitivity derivatives
L, and Ly, >. In starting at this point, we are skipping over two of the three subprocesses of system identifi-
cation — state estimation and model structure estimation, processes that aim to quantify better the measure-
ment and process noise. There are two general approaches to solving the identification problem — equation
error and output error. With the equation error method, we work with the first equation of (2.73), but we need
measurements of both roll rate and roll acceleration, and rewrite the equation in the form

pe=L, p,+Ly 0 (2.76)

le,

Subscripts m and e denote measurements and estimated states, respectively. The identification process now
involves achieving the best fit between the estimated roll acceleration p,from Eq. (2.76) and the measured roll
acceleration p,,,, varying the parameters L, and L, to achieve the fit (Figure 2.32). Eq. (2.76) will yield one-fit
equation for each measurement point, and hence with n measurement times we have two unknowns and n
equations — the classic overdetermined problem. In matrix form, the n equations can be combined in the form

x=By+e (2.77)

where x is the vector of acceleration measurements, B is the (n X 2) matrix of roll rate and lateral cyclic
measurements, and y is the vector of unknown derivatives Lp and La, ; eis the error vector function. Eq. (2.77)

a!
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Fig. 2.32 Equation error identification process

cannot be inverted in the conventional manner because the matrix B is not square. However, a pseudo-inverse
can be defined that will provide the so-called least-squares solution to the fitting process, i.e. the error function
is minimised so that the sum of the squares of the error between measured and estimated acceleration is
minimised over a defined time interval. The least-squares solution is given by

y=(B"B)"'B'x (2.78)

Provided that the errors are randomly distributed with a normal distribution and zero mean, the derivatives
so estimated from Eq. (2.78) will be unbiased and have high confidence factors.

The second approach to system identification is the output error method, where the starting equation is
the solution or output of the equation of motion. In the present example, either the analytic (Eq. (2.74)) or
numerical (Eq. (2.73)) solution can be used; it is usually more convenient to work with the latter, giving the
estimated roll rate in this case as

t
Pe=pg, + / Lyp(7) + Ly, 0, (2) dr (2.79)
0

The error function is then formed from the difference between the measured and estimated roll rate, which
can once again be minimised in a least-squares sense across the time history to yield the best estimates of
the damping and control derivatives (Figure 2.33).

Provided that the model structures are correct, the processes we have described will always yield ‘good’
derivative estimates in the absence of noise, if enough measurements are available to cover the frequencies of
interest; in fact, the two methods are equivalent in this simple case. Most identification work with simulated
data falls into this category, and new variants of the two basic methods are often tested with simulation data
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Fig. 2.33 Output error identification process
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prior to being applied to test data. Without contamination with a realistic level of noise, simulation data
can give a very misleading impression of the robustness level of system identification methods applied to
helicopters. Expanding on this, we can classify noise into two sources for the purposes of the discussion:

(1) measurement noise, appearing on the measured signals, but not on the quantities being measured;
(2) process noise, appearing on the response outputs, reflecting unmodelled effects.

It can be shown (Ref. 2.24) that results from equation error methods are susceptible to measurement noise,
while those from output error analysis suffer from process noise. Both can go terribly wrong if the error
sources are deterministic and cannot therefore be modelled as random noise. An approach that purports to
account for both error sources is the so-called maximum likelihood technique, whereby the output error
method is used in conjunction with a filtering process that calculates the error functions iteratively with the
model parameters.

Identifying stability and control derivatives from flight test data can be used to provide accurate linear
models for control law design or in the estimation of handling qualities parameters. Our principal interest
in this Tour is the application to simulation model validation. How can we use the estimated parameters
to quantify the levels of modelling fidelity? The difficulty is that the estimated parameters are made up of
contributions from many different elements, e.g. main rotor and empennage, and the process of isolating the
source of a deficient force or moment prediction is not obvious. Two approaches to tackling this problem are
described in Ref. 2.25; one where the model parameters are physically based and where the modelling element
of interest is isolated from the other components through prescribed dynamics — the so-called open-loop or
constrained method. The second method involves establishing the relationship between the derivatives and
the physical rotorcraft parameters, hence enabling the degree of distortion of the physical parameters required
to match the test data. Both these methods are useful and have been used in several different applications.

Large parameter distortions most commonly result from one of two sources in helicopter flight dynam-
ics, both related to model structure deficiencies — missing DoFs or missing nonlinearities, or a combination
of both. A certain degree of model structure mismatch will always be present and will be reflected in the
confidence values in the estimated parameters. Large errors can, however, lead to unrealistic values of some
parameters that are effectively being used to compensate for the missing parts. Knowing when this is hap-
pening in any particular application is part of the ‘art’ of system identification. One of the keys to success
involves designing an appropriate test input that ensures that the model structure of interest remains valid
in terms of frequency and amplitude, bringing us back to the two characteristic dimensions of modelling. A
technique that has considerable potential in this area is the method of inverse simulation.

2.3.16 Inverse Simulation

The process of validation and fidelity assessment is ultimately concerned with understanding the accuracy
and range of application of the various assumptions distributed throughout the modelling. At the heart of
this lies the prediction of the external forces and moments, particularly the aerodynamic loads. One of the
problems with direct or forward simulation, where the simulation model is driven by prescribed control inputs
and the motion time histories derived from the integration of the forces and moments, is that the comparisons
of simulation and flight can very quickly depart with even the smallest modelling errors. The value of the
comparison in providing validation insight then becomes very dubious, as the simulation and flight are soon
engaged in very different manoeuvres. The concept behind inverse simulation is to prescribe, using flight test
data, the motion of the helicopter in the simulation and hence derive the required forces and moments for
comparison with those predicted by theory. One form of the process can be conceived in closed-loop form
with the error between the model and flight forming the function to be minimised by a feedback controller
(Figure 2.34). If we assume that the model structure is linear with n DoFs x, for which we also have flight
measurements X,,, then the process can be written as

% — Ax =B +u*) (2.80)

u =kx-x,) (2.81)
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Fig. 2.34 Inverse simulation as a feedback process

The modelling errors have been embodied into a dummy control variable u* in Egs. (2.80) and (2.81). The
gain matrix k can be determined using a variety of minimization algorithms to achieve the optimum match
between flight and theory; the example given in Ref. 2.26 uses the conventional quadratic least-squares per-
formance index

P, = / (x-x,)"R(x —x,) dt (2.82)

The elements of the weighting matrix R can be selected to achieve distributed fits over the different
motion variables. The method is a special form of system identification, with the unmodelled effects being
estimated as effective controls. The latter can then be converted into residual forces and moments that can
be analysed to describe the unmodelled loads or DoFs. A special form of the inverse simulation method
that has received greatest attention (Refs. 2.27, 2.28) corresponds to the case where the feedback control in
Figure 2.34 and Eq. (2.81) has infinite gain. Effectively, four of the helicopter’s DoFs can now be prescribed
exactly, and the remaining DoFs and the four controls are then estimated. The technique was originally
developed to provide an assessment tool for flying qualities; the kinematics of MTEs could be prescribed
and the ability of different aircraft configurations to fly through the manoeuvres compared (Ref. 2.29). Later,
the technique was used to support validation work and has become well established (Ref. 2.26).

2.3.17 Modelling Review

If you have made it this far, you might feel somewhat daunted at the scale of the modelling task described on
this Tour; if so, then Chapters 3—5 will offer little respite, as the subject becomes even deeper and broader.
If, on the other hand you are motivated by this facet of flight dynamics, then the later chapters should bring
further delights, as well as the tools and knowledge that are essential for practising the flight dynamics disci-
pline. The modelling activity has been conveniently characterised in terms of frequency and amplitude; we
refer to Figure 2.14 for setting the framework and highlight again the merging with the loads and vibration
disciplines. Later chapters will discuss this overlap in greater detail, emphasizing that while there is a con-
ceptual boundary defined by the pilot-controllable frequencies, in practice the problems begin to overlap at
the edges of the flight envelope and where high gain active control is employed.

Much of the ground covered in this part of the Tour has utilised analytic approximations to aircraft and
rotor dynamics; this approach is always required to provide physical insight and will be employed to a great
extent in the later modelling chapters. The general approach will be to search among the coupled-interacting
components for combinations of motion that are, in some sense, weakly coupled; if they can be found, there
lies the key to analytic approximations. However, we cannot escape the complexity of both the aerodynamic
and structural modelling, and Chapter 3 will formulate expressions for the loads from first principles; ana-
lytic approximations can then be validated against the more comprehensive theories to establish their range
of application. With today’s computing performance and new functionality, the approach to modelling is
developing rapidly. For example, there are now far more papers published that compare numerical rather
than analytic results from comprehensive models with test data. Analytic approximations tend, nowadays,
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to be a rarity. The comprehensive models are expected to be more accurate and have higher fidelity, but the
cost is sometimes the loss of physical understanding, and the author is particularly sensitive to this, having
lived through the transition from a previous era, characterised by analytic modelling, to the present, more
numerical one. Chapters 3 and 4 will reflect this and will be packed full of the author’s well-established
prejudices.

We have touched on the vast topic of validation and the question of how good a model should be. This
topic will be revisited in Chapter 5; the answer is quite simple — it depends! The author likens the question,
‘How good is your model?’ to “What’s the weather like on Earth?’ It depends on where you are and the
time of year, etc. So, while the initial, somewhat defensive answer may be simple, to address the question
seriously is a major task. This book will take a snapshot of the scene in the early 21st century, but things
are moving fast in this field, and new validation criteria, along with test data from individual components,
all matched to more comprehensive models, are likely to change the ‘weather’ considerably within the next
two decades.

In the modelling of helicopter flight dynamics, of principal concern are the flying qualities. The late
twentieth century saw extensive developments of quality criteria, and the accurate prediction of the associated
handling and ride qualities parameters is now at the forefront of all functional validation, which conveniently
leads us to the next stage of the Tour.

FLYING QUALITIES

In this book, we loosely divide flying qualities into two categories — handling qualities, reflecting the aircraft’s
behaviour in response to pilot controls, and ride qualities, reflecting the response to external disturbances.
Agreement on definitions is not widespread, and we shall return to some of the debating points later in Chapter
6. A most useful definition of handling qualities has been provided by Cooper and Harper (Ref. 2.30) as
‘those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able
to perform the tasks required in support of an aircraft role’. We shall expand on this definition later, but as a
starting point it has stood the test of time and is in widespread use today. It is worth elaborating on the key
words in this definition.

Quantifying an aircraft’s characteristics or its internal attributes, while complex and selective, can be
achieved on a rational and systematic basis; after all, an aircraft’s response is largely predictable and repeat-
able. Defining a useful task or mission is also relatively straightforward, although we should be very careful
to recognise the importance of the task performance levels required. Quantifying the pilot’s abilities is con-
siderably more difficult and elusive. To this end, the Cooper—Harper pilot subjective rating scale (Ref. 2.30)
was introduced and has now achieved almost universal acceptance as a measure of handling qualities.

2.4.1 Pilot Opinion
The scale, shown in summarised form in Figure 2.35, is divided into three levels; the crucial discriminators
are task performance and pilot workload. Pilot handling quality ratings (HQRs) are given for a particular
aircraft configuration, flying a particular task under particular environmental conditions; these points cannot
be overemphasised. Some projection from the simulated experimental test situation to the operational situa-
tion will be required of the test pilot, but extrapolation of handling qualities from known to new conditions
is generally unacceptable, which explains why compliance testing needs to be comprehensive and can be so
time consuming.

The rating scale is structured as a decision tree, requiring the pilot to arrive at his or her ratings following
a sequence of questions/answers, thoughtful considerations and, possibly, dialogue with the test engineer. A
Level 1 aircraft is satisfactory without improvement, and if this could be achieved throughout the OFE and
for all mission tasks, then there should never be complaints concerning the piloting task. In practice, there has
probably never been an aircraft this good, and Level 2 or even, on occasions, Level 3 characteristics have been
features of operational aircraft. With a Level 2 aircraft, the pilot can still achieve adequate performance but
must use moderate to extensive compensation and, therefore, workload. At the extreme of Level 2 (HQR 6),
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Fig. 2.35 The Cooper—Harper handling qualities rating scale — summarised form

the mission is still flyable, but the pilot has little spare capacity for other duties and will not be able to sustain
the flying for extended periods without the dangers that come from fatigue, i.e. the attendant safety hazards
that follow from the increased risk of pilot error. These are the penalties of poor flying qualities. Beyond
Level 2, the unacceptable should never be allowed in normal operational states, but this category is needed
to describe the behaviour in emergency conditions associated with flight in severely degraded atmospheric
conditions or following the loss of critical flight systems.

The dilemma is that while performance targets can be defined on a mission requirement basis, the
workload, and hence rating, can vary from pilot to pilot. The need for several opinions, to overcome the
problem of pilot variability, increases the duration of a test programme and brings with it the need to resolve
any strong differences of opinion. Pilot ratings will then typically be displayed as a mean and range, as in
Figure 2.36. The range display is vital, for it shows not only the variability but also whether the opinions
cross the levels. Half ratings are allowed, except the 3.5 and 6.5 points; these points are not available when
the pilot follows the HQR decision sequence properly (Figure 2.35).

2.4.2 Quantifying Quality Objectively

While pilot-subjective opinion will always be the deciding factor, quantitative criteria are needed as
design targets and to enable compliance demonstration throughout the design and certification phases. The
most comprehensive set of requirements in existence is provided by the US Army’s ADS for handling
qualities — ADS-33 (Ref. 2.1), which will be referred to regularly throughout this text, particularly in Chapters
6-9. During the initiation of these requirements, it was recognised that new criteria were urgently needed
but could only ever be as valid as the underlying database from which they were developed. Hoh (Ref. 2.4),
the principal author of ADS-33, commented that key questions needed to be asked of any existing test data:

(1) Were the data generated with similar manoeuvre precision and aggressiveness required in current and
future operational missions?

(2) Were the data generated with outside visual cues and atmospheric disturbances relevant to and
consistent with current operations?
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Most of the existing data at that time (early 1980s) were eliminated when exposed to the scrutiny of these
questions, and the facilities of several NATO countries were harnessed to support the development of a
new and more appropriate database, notably Canada (National Aeronautical Establishment (NAE), Ottawa),
Germany (Deutsche Forschungs- und Versuchsantalt fuer Luft- und Raumfahrt (DLR), Braunschweig), UK
(Defence Research Agency (DRA) Bedford, then the RAE) and, of course, the United States itself, with the
activity orchestrated by the US Army Aeroflightdynamics Directorate at the Ames Research Centre.

The criteria in ADS-33 have been validated in development and any gaps represent areas where data
are sparse or nonexistent. To quote from ADS-33:

The requirements of this specification shall be applied in order to assure that no limitations on flight
safety or on the capability to perform intended missions will result from deficiencies in flying qualities.

For flight within the OFE, Level 1 handling qualities are required. Three innovations in ADS-33 requiring
specification to ensure Level 1 handling are the MTE, the UCE, and the response type (e.g. rate command,
attitude hold - RCAH). These can be seen to relate directly to three of the reference points discussed earlier
in this chapter. Referring to Figure 2.13, we see how, for slalom and sidestep MTEs, rate command response
types are deemed adequate to provide Level 1 pitch or roll handling qualities for flight in conditions of a
UCE 1. For low-speed operations, however, the response type will need upgrading to attitude command,
attitude hold (ACAH) for flight in the degraded visual environment of a UCE 2, while a translational rate
command with position hold (TRCPH) is needed for flight in UCE 3. The task, the environment, and the
aircraft dynamics therefore interact to determine the flying qualities.

2.4.3 Frequency and Amplitude — Exposing the Natural Dimensions

At a deeper level, the response types themselves can be classified further in terms of their frequency and
amplitude characteristics, a perspective that we found useful in the modelling discipline described in the
previous stop on this Tour. Figure 2.37 illustrates the structure, with the response classified into three levels
of amplitude (small, moderate, and large) and three frequency ranges, corresponding to long-, mid-, and
short-term behaviour. The zero-frequency motion is identified as the trim line. In recognition of the multitude
of cross-couplings inherent to helicopters, we have added the third dimension on the figure; to date, the
criteria for cross-coupling requirements are considerably more immature than for the direct response. The
boundary curve in the figure indicates the limits to practical flying, with higher frequency attitude and flight
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path motions restricted to small amplitude, and large amplitude motions restricted to the lower frequency
range. This representation will provide a convenient structure for developing quantitative response criteria
later in Chapter 6.

Typical helicopter characteristics can now be discussed within the framework of this response-type
classification. An unstable, low-frequency oscillation involving changes in speed and height characterises
the mid-long term, small amplitude response and stability of helicopter pitch motion. This mode can take
the form of a mildly unstable pendulum-type motion in the hover, to a rapidly divergent ‘phugoid’ oscillation
at high speed. Aircraft design and configuration parameters, e.g. cg location, rotor type, and tailplane design,
can have a marked effect on the stability of this mode in forward flight. At forward cg extremes, the oscillation
can stabilise at moderate speeds, whereas with aft cg loadings for some configurations, particularly hingeless
rotors or helicopters with small horizontal tailplanes, the oscillation can split into two aperiodic divergences at
high speed, with time to double amplitude less than 1 s in severe cases. The mode differs from the fixed-wing
phugoid in that speed changes during the climbs and dives induce pitching moments, which cause significant
variations in fuselage and rotor incidence and thrust.

2.4.4 Stability — Early Surprises Compared with Aeroplanes

In the early days of helicopter testing, these differences were often a surprise to the fixed-wing test pilots.
Research into helicopter flying qualities at the RAE goes back to the 1940s, when engineers and pilots were
getting a grip on the theory and practice, respectively. In these early days of helicopter research, one of the
key concerns was stability, or rather, the lack of it. Stewart and Zbrozek (Ref. 2.31) describe a loss-of-control
incident on an S-51 helicopter at RAE in 1948. Quoting from the pilot’s report in the reference:

When the observer said he was ready with his auto-observer, I pushed the stick forward about six
inches and returned it quickly to its original position. The aircraft continued in straight and level
flight for approximately three to five seconds before it slowly started a phugoid motion, with the nose
dropping away slightly in the first instance. Each oscillation became greater, i.e. the dive and climb
becoming steeper with every oscillation; it was accompanied by roll, at the bottom of the dive during
the ‘pull-out’, it had maximum bank to the right.

The observer intimated recovery action to be taken at the end of the third oscillation; as the
aircraft came over the top from the climb to go into the dive, I eased the stick forward to help it over
the top. The stick felt light and there appeared to be no additional response from the aircraft; as the
aircraft commenced diving again, I eased the stick back to where I considered I had pushed it from,
thinking that I would let the speed build up somewhat before easing the stick further back to pull out
of the dive. Quite a steep dive developed and just as I was about to ease the stick back, probably
three seconds after the previous stick movement, there was suddenly severe vibration throughout what
seemed to be the whole machine. From then on until recovery was effected (I estimate five to ten seconds
later), I have no clear recollection of what took place. I think that immediately after the vibration, the
aircraft flicked sharply to the left and nearly on to its back; it then fell more or less the right way up but
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the fuselage was spinning, I think, to the right. It fell into a steep dive and repeated the performance
again, I selected autorotation quite early during the proceedings. Once I saw the rotor rpm at 140, and
later at 250. There were moments when the stick was very light and others when it was extremely heavy.
The machine, I think, did three of these manoeuvres, it seemed to want to recover during the second
dive but it actually responded to the controls during the third dive. Height when straight and level was
400 feet above sea level (height loss 800 feet). The aircraft responded normally to the controls when
under control again, I flew back to the airfield and landed.

The pilot had excited the phugoid mode with a longitudinal cyclic pulse; recovery action was initiated at
the end of the third oscillation, the aircraft increased speed in a dive and during the pull-out the blades hit the
droop stop, and eventually the fuselage, causing a rapid uncontrollable rolling motion. The resulting erratic
motions, during which the pilot became disoriented, eventually settled down and the aircraft was flown back
to RAE and landed safely. The auto-observer recorded a peak normal acceleration of more than 4g during
the manoeuvre, causing severe buckling to occur in the rear fuselage (Figure 2.38). Here are two conclusions
of the analysis of this incident:

(1) ‘... large rapid movements of the controls are to be avoided, particularly at high speed’.
(2) ‘some form of flight testing technique should be devised whereby the susceptibility of a helicopter to
this trouble should be ascertained in the prototype stage’.

These conclusions are as relevant today as they were in the early days of helicopter flight testing; the trou-
ble noted above is still a feature of unaugmented helicopters. Today, however, there exist flying qualities
criteria that define the boundaries of acceptable mid-term pitch characteristics. Figure 2.39 illustrates the
frequency/damping requirements set down in ADS-33; the Level 1/2 and 2/3 boundaries are shown for both
helicopters and fixed-wing aircraft (Ref. 2.3) for ‘fully attended’' flight. Also included are the loci of charac-
teristics for the two baseline simulation configurations, Helisim Lynx and Helisim Puma, in bare airframe or
unstabilised configurations. Several points can be drawn out of this figure. First, there is a range where charac-
teristics that are acceptable as Level 1 for helicopters are classified as Level 3 for fixed-wing aircraft. Second,

Fig. 2.38 Fuselage failure on Sikorsky S-51 (Ref. 2.31)

IPilot can devote full attention to attitude and flight path control.
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Fig. 2.39 Long period pitch stability characteristics

for most of their flight envelopes, our two Helisim aircraft will not even meet the Level 3 requirements of the
fixed-wing criteria. The fact is that it is impossible to build helicopters that, without augmentation, meet the
fixed-wing standards; earlier in this chapter we discussed one of the reasons for this concerning the positive
stability derivative M,,. But this is not a good reason for degrading the boundaries for safe flight. On the
contrary, the boundaries in Figure 2.39 are defined by flight results, which implies that rotary-wing pilots are
willing to accept much less than their fixed-wing counterparts. Hoh, in Ref. 2.4, has suggested two reasons
for this:

(1) ‘Helicopter pilots are trained to cope with, and expect as normal, severe instabilities and cross-axis
coupling’.
(2) ‘The tasks used in the evaluations were not particularly demanding’.

The two reasons go together, and helicopters could not be used safely for anything but gentle tasks in benign
conditions until feedback autostabilization could be designed and built to suppress the naturally divergent
tendencies.

Included in Figure 2.39 is the helicopter boundary for ‘divided attention’? operations; this eliminates all
unstable machines by requiring a damping ratio of 0.35. Thus, helicopters that must to operate in poor weather
or where the pilot needs to release the controls, or divert his attention to carry out a secondary task, should
have some form of artificial stabilization. This conclusion applies to both military and civil operations, the

2Pilot required to perform non-control-related sidetasks for a moderate period of time.
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increased emphasis on safety for the latter providing an interesting counterpoint; criteria for civil helicopter
flying qualities will be discussed further in Chapter 6.

The S-51 incident described above illustrates two important consequences of flying qualities deficien-
cies — that pilot disorientation and aircraft strength are the limiting factors, i.e. the things that eventually
‘give’, and can therefore terminate the situation following loss of control. This is the key to understanding
that good flying qualities are mission critical.

2.4.5 Pilot-in-the-Loop Control; Attacking a Manoeuvre
A pilot’s most immediate impressions of a helicopter’s flying qualities are likely to be formed as he or she
attempts to maintain attitude and position in the hover, and later as the pilot manoeuvres and accelerates into
forward flight. Here, the qualities of most interest are not the mid- to long-term stability characteristics, but
more the small-moderate—large amplitude, short-term response to control inputs (see Figure 2.37).
Consider the kinematics of a manoeuvre to change aircraft attitude. This may correspond, for example,
to the initial phase of an acceleration from the hover (pitch) or a bank manoeuvre to turn in forward flight
(roll). The so-called task portrait sketches in Figure 2.40 illustrate the variations in pilot’s control inputs (a),
the attitudes (b) and rates (c) and include the manoeuvre (phase plane) portrait (d) and task signature diagrams
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Fig. 2.40 Task portrait for roll/pitch and stop manoeuvre
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((e) and (f)), corresponding to three different pilot control strategies. The example assumes a simple rate
response type. Case 1 corresponds to the pilot applying maximum control input as rapidly as possible and
stabilizing out with an attitude change. Case 2 corresponds to the pilot manoeuvring more gently to achieve
the same attitude. Case 3 corresponds to the pilot applying a much sharper maximum-pulse input, achieving
much the same rate as in case 2 but settling to a smaller final attitude. For the third case, the input is so sharp
that the aircraft does not have time to reach its steady-state rate response. The three cases are distinguished by
the degree of aggressiveness and the size of the pilot input, i.e. by different frequency and amplitude content.
The task signature diagrams (e) and (f) are constructed by computing the peak rate, p ., and associated attitude
change A¢ for the different manoeuvres; each represents a point on the diagram. The ratio of peak rate to
attitude change, shown in Figure 2.40f, is a key parameter. Designated the quickness parameter in ADS-33,
this ratio has a maximum achievable value for a given attitude change. For large manoeuvres, the limit is
naturally set by the maximum achievable rate or the attitude control power, p(q),,..; case 1 represents an
example of such a situation. The quickness is a frequency measure and, for small amplitudes, represents the
maximum closed-loop frequency achievable from the aircraft. It is therefore, on the one hand, a measure of
the inherent manoeuvre performance or agility of the aircraft and, on the other, a handling qualities parameter.
If the maximum achievable quickness is too small, then the pilot may complain that the aircraft is too sluggish
for tracking-type tasks; if the quickness is too high, then the pilot may complain of jerkiness or oversensitivity.

2.4.6 Bandwidth — A Parameter for All Seasons?

For the small-amplitude, higher-frequency end of the response spectrum, two classic measures of quality — the
step response character and low-order-equivalent system (LOES) response — have proved deficient for cap-
turing the important features that relate to tracking and pursuit-type tasks in helicopters. The equivalent
systems approach adopted in the fixed-wing community has many attractions, but the rotorcraft’s nonclas-
sical response types really make the LOES a nonstarter in most cases. Also, the detailed shape of the step
response function appears to be sensitive to small imperfections in the control input shape and measure-
ment inaccuracies. Strictly speaking, of course, the small amplitude tracking behaviour should have little to
do with the step response and much more to do with amplitude and phase at high frequency. Nevertheless,
the direction taken by ADS-33, in this area, was clarified only after considerable debate and effort, and it is
probably fair to say that there is still some controversy associated with the adoption of the bandwidth criteria.

For simple response types, maximum quickness is a close approximation to this more fundamental
handling qualities parameter — bandwidth (Ref. 2.32). This parameter will be discussed in more detail in
Chapter 6, but some elaboration at this point is worthwhile. In qualitative terms, the bandwidth is that fre-
quency beyond which closed-loop stability is threatened. That may seem a long step from the preceding
discussion, and some additional exposure is necessary. For any closed-loop tracking task, the natural delays
in the pilot’s perceptual pathways, neuromuscular and psychomotor systems (Ref. 2.33), give rise to increas-
ing control problems as the disturbance frequency increases. Without the application of pilot control lead,
the closed-loop pilot/aircraft system will gradually lose stability as the pilot gain or disturbing frequency
increases.

The point of instability is commonly referred to as the crossover frequency, and the bandwidth frequency
corresponds to some lower value that provides an adequate stability margin. In practice, this is defined as
the highest frequency at which the pilot can double his gain or allow a 135° phase lag between control input
and aircraft attitude response without causing instability. The higher the bandwidth, the larger will be the
aircraft’s safety margin in high gain tracking tasks, but just as we have implied a possible upper limit on the
quickness, so bandwidth may be limited by similar overresponsiveness.

We have already introduced some new flying qualities language, e.g. crossover, perceptual pathways,
gain, and lead/lag, and the reader will need to carry these concepts forward to later chapters for elaboration.
The whole question of short-term attitude control has been discussed at some length because of its critical
importance to any flying task; changing attitude tilts the rotor thrust vector and reorients the aircraft and hence
the flight path vector. It is not surprising that handling criteria are most substantially developed on this topic.
For the case of small-amplitude, high-frequency pitch motions (see Figure 2.37), bandwidth criteria have
been developed for both fixed- and rotary-wing aircraft. For both types of aircraft, the criteria are displayed
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Fig. 2.41 Comparison of rotary- and fixed-wing aircraft pitch bandwidth requirements

in two-parameter form with the phase delay parameter, 7,. Phase delay relates to the rate of change of phase
with frequency above the crossover frequency and is also a measure of the equivalent time delay between
attitude response and pilot control input.

Figure 2.41 tells a similar story to the comparison of fixed- and rotary-wing criteria for mid-term stabil-
ity (cf. Figure 2.39); there is a range in the 7, ,,,, plane where Level 1 helicopter characteristics correspond
to Level 3 aeroplane characteristics. The boundaries in Figure 2.41 are typical of the mission-oriented cri-
teria found in modern specifications; they apply to air-combat tasks for helicopters and, more generally, to
Category A flight phases for aeroplanes (see Ref. 2.3). They have been developed from the best available
test data relating to current operational requirements. To a large extent, the striking differences between the
fixed wing and rotary wing relate directly to different task requirements; so far, rotary-wing aircraft have not
been required to deliver the performance of their fixed-wing counterparts. On the other hand, it would be
very difficult to confer such bandwidth performance on a conventional helicopter from an engineering point
of view, so a large degree of capability tailoring is inevitable. In later chapters, some of the configuration
constraints and design limitations will be discussed in more detail.

Earlier, we dismissed equivalent low-order systems as being inadequate at characterizing helicopter
attitude characteristics. While this is true for conventional helicopters without, or having limited author-
ity, stability, and control augmentation, future aircraft with task-tailored control laws can more usefully be
described in this way. Later, in Chapters 6 and 7, we shall introduce the conceptual simulation model (CSM,
Ref. 2.34), which is, in effect, a greatly simplified helicopter model in LOES form. The assumption under-
lying this model structure is that with active control, the flying qualities can be tailored in a wide range of
different forms described now by simple equivalent systems. Flying qualities research at RAE/DRA (DRA,
1991-1995) using the CSM enabled many of the desirable characteristics of future helicopters with active
control technology (ACT) to be identified. This theme will be pursued in the later flying qualities chapters.

There is one helicopter flying characteristic that can, at least for the limited frequency range associated
with pilot control, be described in terms of a simple first-order response — the vertical or heave axis in the
hover. While it is recognised that the vertical axis dynamics are dominated by air mass and flapping motion
at higher frequency, below about 5 rad/s the vertical velocity response (/) to collective (6,) can be described
by the LOES: .

ﬁ Ke—T,’lqu

= 2.83
1) Ti‘S+1 ( )

c h,

This formulation characterises the first-order velocity response as a transfer function, with gain or control

power K and time lag T}, . The pure time delay 7;, is an artefact included to capture any initial delay in achiev-
eq eq

ing maximum vertical acceleration, e.g. due to rotor or air-mass dynamics. The acceptable flying qualities
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can then be defined in terms of the LOES parameters. Vertical axis flying qualities and flight-path control
in forward flight are also profoundly affected by the dynamic characteristics of the engine and rotorspeed
governor system. Agile behaviour can be sustained only with rapid and sustained thrust and torque response,
both of which are dependent on fast powerplant dynamics. As usual there is a trade-off, and too much agility
can be unusable and wasteful. This will be a recurring theme of Chapter 7.

2.4.7 Flying a Mission Task Element

Flying qualities parameters need to be physically meaningful and measurable. Assembled together as a
requirement specification, they need to embrace the CACTUS rules (Ref. 2.35) outlined in Chapter 6. Also
in Chapter 6, the range of different criteria and the measurement of associated parameters in flight and simu-
lation will be critically reviewed in the light of these underlying requirements. It needs to be re-emphasised
that in most functional roles today, both military and civil helicopters need some form of artificial stability
and control augmentation to achieve Level 1 flying qualities, which therefore become important drivers for
both bare-airframe and AFCS design. Before exploring the scope for artificial augmentation on this Tour,
it is worth illustrating just how, in a demanding and fully attentive flying task, an MTE, flying qualities
deficiencies can lead to reduced task performance and increased pilot workload.

Test techniques for the demonstration of flying qualities compliance must exercise the aircraft to the
limits of its performance. Figure 2.42 illustrates two NoE, hover to hover, repositioning manoeuvres: the
quickhop and the sidestep. Tests conducted at the RAE/DRA Bedford in the mid-1980s demonstrated the
importance of the task urgency or aggression factor (Ref. 2.36) on pilot workload and task performance. The
manoeuvres were flown at increasing levels of aggression until the shortest possible task time was achieved.
Start and finish position constraints, together with a height/track corridor, defined the acceptable flight path.
Performance was increased by increasing the initial pitch or roll angle, to develop the maximum translational
acceleration; both test aircraft, Lynx, and Puma, were operated at relatively low weights, allowing for accel-
erations over the ground of greater than 0.8 g (~40° roll/pitch) corresponding to a hover thrust margin of
about 30%. Figure 2.43 shows the recorded pilot HQRs as a function of task time for a Puma flying a 200 ft
(60 m) sidestep. Above 11 s the pilot returned marginal Level 1 ratings; any reduction in task time below
this resulted in increasing workload. In fact, the pilot was unable to reduce the task time below 9 s and still
achieve the flight path performance requirements. On one occasion, the wheels hit the ground during the final
recover to the hover; the pilot was applying full lateral cyclic, collective, and pedal control, but, because of
the roll response and engine/rotorspeed governor characteristics, the manoeuvre was not arrested in time.
The low kinetic energy of the aircraft meant that no structural damage was incurred, but the pilot judged that
he was out of control and returned an HQR of 10 (Figure 2.43).
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Fig. 2.42 Examples of low-speed mission task elements with performance requirements
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Fig. 2.43 Variations of pilot HQRs with task time for Puma 200 ft sidestep

2.4.8 The CIliff Edge and Carefree Handling

A combination of deficiencies in vehicle dynamics, the need for the pilot to monitor carefully critical param-
eters for proximity to flight limits, the poor outside visual references at high aircraft attitude angles and the
overall pilot stress induced by the need to fly a tightly constrained flight path very close to the ground result
in a Level 2-3 situation. Of course, the Puma, as a medium support helicopter, was not designed to fly 200 ft
sidesteps in 8 s — the approximate limit for the test configuration. Nevertheless, pilots were inhibited from
using the full performance (bank angles of 30° were the maximum measured) and many of the pilots’ con-
cerns are common to other types. A similar pattern emerged for the Lynx in the RAE tests and on aircraft
used in trials conducted by the US Army (Ref. 2.37) during the same period. Also, the same trend appears
for other MTEs, and is considered to represent a fundamental challenge to designers. Close to, say, within
20% of vehicle limits, it appears that the ‘edge’ is reached in several ways at the same time; flying qual-
ities deficiencies are emerging strongly, just when the pilot has the greatest need for safe and predictable,
or carefree, handling. The concept of carefree handling has been a familiar reality in aeroplane designs for
some years, protecting against spin departure (e.g. Tornado) or deep stall (e.g. F-16) for example, but is yet
to be implemented, at least in an active form, in helicopters. At the time of writing, another form of carefree
handling, providing structural load alleviation, is being built into the computers of the fly-by-wire control
system in the V22 Osprey. We return to this topic in Chapters 7 and 10.

2.4.9 Agility Factor

The RAE tests previously described were part of a larger research programme aimed at providing a better
understanding of the flying qualities deficiencies of current military types and quantifying future require-
ments. Of special interest was the impact of flying qualities on agility; the concept of agility will be developed
further in Chapter 7 but, for this introductory Tour, a suitable definition is (Ref. 2.38)

the ability to adapt and respond rapidly and precisely with safety and with poise, to maximise mission
effectiveness.

A key question that the results of the above research raised concerned how the agility might be related to
the flying qualities. One interpretation the author favours is that agility is indeed a flying quality. This is
supported by the concept of the agility factor: if the performance used in an MTE could be normalised by
the performance inherently available in the aircraft, then in the limit, this ratio would reveal the extent of
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usable performance. A more convenient way of computing this factor is to take the ratio of the theoretically
ideal task time with the achieved task time. The ideal time is computed based on the assumption that the
time to maximum acceleration is zero. So, in the sidestep (or any similar lateral translational manoeuvre,
for example), the bank angle changes are achieved instantaneously. In a pure bank and stop manoeuvre,
the roll rate would be assumed to develop instantaneously. The agility factor is useful for comparing the
inherent agility of configurations with the same performance or competing to meet the same performance
requirements. The calculation procedure and some of the factor’s nuances will be elaborated on in Chapter
7. The Puma sidestep and quickhop MTE data converted to agility factors are shown with the HQRs in
Figure 2.44. The trends shown previously in the time plots now appear even more dramatic; maximum agility
factors for the Puma of 0.5-0.6 are achievable with borderline Level 2-3 HQRs only. The pilot can barely
attain the adequate performance level, even with considerable workload. These tests were conducted in a
clinical environment, with well-defined ground features and flown by skilled test pilots with opportunity to
practice. In a real-world situation, the increased workload from other duties and the uncertainties of rapidly
changing circumstances would inevitably lead to a further loss of agility or the increased risks of operation
in the Level 3 regime; the pilot must choose in favour of safety or performance.

In agility factor experiments, the definition of the level of manoeuvre attack needs to be related to the
key manoeuvre parameter, e.g. aircraft speed, attitude, turn rate, or target motion. By increasing attack in an
experiment, we are trying to reduce the time constant of the task or reduce the task bandwidth. It is sufficient
to define three levels — low, moderate, and high — the lower corresponding to normal manoeuvring and the
upper to emergency manoeuvres.

2.4.10 Pilot’s Workload
The chief attributes of agility are speed, precision, and safety, and all can be eroded by the increased dif-
ficulties of the operational situation. Not only the time pressures, but also the atmospheric conditions (e.g.
gustiness) and UCE (see Section 2.2) will affect the agility factor and achieved HQRs significantly. In many
of these cases, there is a close correlation between pilot control activity, task difficulty, and pilot rating, and
in such cases the level of control activity can be related to pilot workload. Figure 2.45 shows the pilot’s lateral
cyclic control for two different levels of aggression when flying a slalom MTE on the RAE’s advanced flight
simulator (AFS). The details of this and other experiments will be provided in Chapter 7, but for now, the
varying frequency and amplitude levels are highlighted. The HQR levels are also noted on the legend, indi-
cating the degradation from Level 1 to 2 as the aggression is increased. In the case shown, the degradation
corresponds to a task bandwidth increase.

Another way of representing the pilot control activity is in the frequency domain, and Figure 2.46
illustrates the power spectral density function for the lateral cyclic, showing the amount of control energy
applied by the pilot at the different frequencies. The marked increase in effort for the higher aggression
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case is evident, particularly above 1.5 Hz. There is evidence that one of the critical parameters as far as
the pilot workload is concerned is the ratio of aircraft bandwidth to task bandwidth. The latter is easy to
comprehend for an aircraft flying, for example, a sinusoidal slalom, when the task bandwidth is related to
the ground track geometry and the aircraft ground speed. Bandwidths for more angular MTE tracks are less
obvious, but usually some ratio of speed, or mean speed, to distance will suffice. Figure 2.47 illustrates
conceptually the expected trend. A workload metric, e.g. the rms of control activity or frequency at which
some proportion of the activity is accounted for, is plotted against the bandwidth ratio. As the ratio increases,
one expects the pilot’s task to become easier, as shown. Conversely, as the ratio reduces, through either
reduced aircraft bandwidth or increased task bandwidth, workload increases. There is a point at which the
workload increases significantly, corresponding perhaps to pilot-induced oscillation onset, when the metric
may no longer correlate with workload and where the control strategy is dominated by the so-called remnant,
often reflecting confusion and a breakdown of the pilot acting as a quasilinear element responding to task cue
errors. Being able to detect incipient breakdown is important for establishing flying qualities boundaries and
for giving a pilot some warning of a potential high workload situation. Research in this field is still relatively
immature, and most experiments rely heavily on subjective pilot opinion. To the author’s knowledge, there
are no reliable workload meters, the human equivalent of a mechanical health and usage monitoring system
(HUMS), used in operational service.

2.4.11 Inceptors and Displays

This Tour of flying qualities would not be complete without some discussion on the other key characteristics
associated with the air vehicle that have a primary effect on flight path control — the pilot’s inceptors and dis-
plays. To dispel any myths that these are secondary issues, it must be said that poor characteristics in either
of these two areas can ruin otherwise excellent flying qualities. Of course, pilots can and will compensate
for poor mechanical characteristics in cockpit controls, but the tactile and visual cues provided through these
elements are essential for many flight phases. Sidestick controls and helmet-mounted displays are compo-
nents of ACT and are likely to feature large in the cockpits of future helicopters (Figures 2.48 and 2.49).
Examples of recent research with these devices will be outlined in Chapter 7.

2.4.12 Operational Benefits of Flying Qualities
So, what are the operational benefits of good flying qualities? Are they significant or merely nice to have?
We have seen that one of the potential consequences of flying qualities deficiencies is loss of control, leading
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Fig. 2.48 CAE four-axis sidestick onboard the Canadian NRC variable stability Bell 205

Fig. 2.49 GEC biocular helmet-mounted display
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to structural damage, pilot disorientation, and a crash. We have also seen that an aircraft that exhibits Level
1 characteristics in one situation can be Level 2 or even 3 in degraded or more demanding conditions. A
question then arises as to the likelihood of an aircraft running into these situations in practice. This topic has
recently received attention in the fixed-wing civil transport community to quantify the probability of human
error leading to a crash (Ref. 2.38). The same approach was taken to quantify the benefits of having baseline
Level 1, as opposed to Level 2, flying qualities for military rotorcraft (Ref. 2.39). This research, which will
be described in more detail in Chapter 7, derived a result that is summarised in Figure 2.50. This shows the
probability of achieving MTE success, failure or loss of control (Ieading to a crash) as a function of mean HQR
(derived, for example, from an ADS-33 objective assessment). The results are somewhat intuitive and fall out
from fairly simple statistical analysis. There are several assumptions that need careful examination before
the kind of results depicted in Figure 2.50 can be substantiated, however, and these will be pursued further
in Chapter 7. The approach, while somewhat controversial, has considerable appeal and opens opportunities
for providing a direct effectiveness measure for flying qualities.

2.4.13 Flying Qualities Review

A key emphasis on this stage of the Tour has been to highlight the importance of the relationship between
flying qualities and the task or mission. Outside the context of a role and related tasks, the meaning of quality
becomes vague and academic. Flying or handling qualities are not just stability and response properties
of the air vehicle, but the synergy between what we have called the internal attributes of the aircraft and
external influences. Flying qualities can be assessed objectively through analysis and clinical measurements,
and subjectively through pilot opinion of the ability to fly MTEs within defined performance and workload
constraints. The 1980s and 1990s saw considerable development in helicopter flying qualities, relevant to both
design criteria and compliance demonstration, and Chapters 6 and 7 will present and discuss many of the new
concepts in depth. There still exist gaps in the knowledge base, however, largely due to an inadequate flight
test database, and these areas will be highlighted. One of the important underdeveloped areas relates to the
requirement for upper flying qualities limits. These are important for military roles requiring agility, where
the assumption that more performance is always better is strongly countered by experience with oversensitive
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control response and unusable control powers. Agility will be covered in the section on special flying qualities
in Chapter 7. The quantification of handling qualities degradation due to a variety of internal and external
effects also represents a significant gap, and in Chapter 8 we discuss some the more significant issues.

The historical context of rotorcraft flying qualities, and their development from an idea that a subjective
quality might be quantifiable, is the subject of Chapter 9 in the third edition of the book. Here, the author
looks back more than 70 years to the formative period of flying qualities as a starting point. There are then
natural phases in the evolution of the discipline, marked by developing user needs, emerging technologies,
and growth in the underlying engineering science, or changes in the regulatory standards. This material serves
to complement that in Chapters 68, placing the current state of the art in context.

It is recognised that without some form of stability and control augmentation system (SCAS), heli-
copters stand little chance of achieving Level 1 flying qualities for anything but the simplest of tasks. How-
ever, we need to be interested in the so-called bare-airframe flight dynamics for several reasons. First, the
unaugmented characteristics form the baseline for SCAS design; the better they are known, the more likely
that the SCAS design will work properly first time. Second, the case of failed augmentation systems must be
considered; the level of bare-airframe characteristics determines whether the SCAS is flight-safety or mission
critical, i.e. whether the mission or even safe flight can be continued. Third, the better the flying qualities con-
ferred by bare-airframe design, the less authority the SCAS requires, or the lower the gains in the feedback
loops, and hence the more robust will the aircraft be to SCAS failures. And fourth, with a limited authority
SCAS, any saturation in manoeuvring flight will expose the pilot to the bare-airframe characteristics; any
problems associated with these conditions need to be well understood.

Clearly, SCAS performance is closely linked with the flight dynamics of the bare airframe and they
both together form one of the drivers in the overall helicopter design, a subject that we now briefly visit on
the next stop of this Tour.

DESIGN FOR FLYING QUALITIES; STABILITY AND CONTROL AUGMENTATION

In the helicopter design trade-off, flying qualities have often had to take a low priority. In the early days, just as
with fixed-wing aircraft, solving the basic control problem was the breakthrough required for the development
to progress with pace, driven largely by performance considerations. The basic layout of the single rotor
helicopter has remained the same since the early Sikorsky machines. What characterises a modern helicopter
is its higher performance (speed, payload), much improved reliability — hence greater safety, smoother ride,
and a suite of mission avionic systems that enable civil operations in poorer weather and military operations
as an autonomous weapon system. Performance, reliability, comfort, and functionality have been the drivers
in helicopter development, and for many years flying quality was a byproduct of the design, with deficiencies
compensated for by highly trained pilots with a can-do attitude. As we have seen from our discussions earlier
on this Tour, helicopter flying characteristics are typically much poorer than fixed-wing aircraft in the same
‘class’. In some cases, helicopters fall in the Level 3 quality area when built. The principal flying qualities
deficiencies in the helicopter can be summarised as follows:

(1) Impurity of the primary response in all axes, i.e. typically there is a mix of attitude or rate and varying
significantly from hover to high speed.

(2) There is strong cross-couplings in all axes.

(3) The degradation of response quality at flight envelope limits and the lack of any natural carefree
handling functions, e.g. the aerodynamic capability of the rotor typically exceeds the structural
capability.

(4) The stability of a helicopter is characterised by a number of modes with low damping and frequency at
low speed; as forward speed is increased, both longitudinal and lateral modes increase in frequency, as
the tail surfaces contribute aerodynamic stiffness, but the modal damping can reduce and stability can
often worsen, particularly with highly responsive hingeless rotors.

(5) The rotor presents a significant filter to high bandwidth control.

The combination of these deficiencies has always demanded great skill from helicopter pilots and, coupled
with today’s requirements for extended operations in poor weather and visibility, and the need to relieve the
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piloting task in threat-intensive operations, led to the essential requirement for stability and control augmen-
tation. Before discussing artificial stability, one first needs to look more closely at the key natural design
features that contribute to flying qualities. The discussion will map directly onto the five headings in the
above list, and an attempt is made to illustrate how, even within the flying qualities discipline, compromises
must be made, usually to satisfy both high- and low-speed requirements simultaneously.

2.5.1 Impurity of Primary Response

The helicopter rotor is sensitive to velocity perturbations in all directions, and there is very little the rotor
designer can do about this that doesn’t compromise control response. Early attempts to build in natural
dynamic couplings that neutralised the rotor from external disturbances (Refs. 2.40, 2.41) resulted in com-
plex rotor mechanisms that only partially succeeded in performing well, but, for better or worse, were never
pursued to fruition and production. Such endeavours were soon overtaken by the advances in ‘electronic’ sta-
bilization. All motion axes of a helicopter have natural damping that resists the motion, providing a basic rate
command control response in the very short term. However, soon after a control input is applied, the changes
in incidence and sideslip give rise to velocity variations that alter the natural rate response characteristics in
all axes. This can occur within a very short time (O(1 s)) as for the pitch axis response in high-speed flight,
or longer (O(several seconds)) as for the yaw response in hover. The impurities require the pilot to stay in the
loop to apply compensatory control inputs, as any manoeuvre develops. Apart from the main rotor sensitiv-
ity, the tail rotor and empennage sensitivities to main rotor wake effects can also introduce strong impurities
into the control response. The size, location, and incidence of the horizontal stabiliser can have a profound
effect on the pilot’s ability to establish trims in low-speed flight. Likewise, the tail rotor position, direction of
rotation, and proximity to the vertical stabiliser can significantly affect the pilot’s ability to maintain heading
in low-speed flight (Ref. 2.42). Both horizontal and vertical tail surfaces are practically redundant in hover
and low-speed flight but provide natural stiffness and damping in high-speed flight to compensate for the
unstable rotor and fuselage. The modelling of the interactional flow-fields is clearly important for predicting
response impurities and will be discussed further in Chapter 3.

2.5.2 Strong Cross-Couplings

Perhaps the greatest distinguishing feature of helicopters, and a bane in the designer’s life, cross-couplings
come in all shapes and sizes. On hingeless rotor helicopters in hover, the off-axis roll response from a pitch
input can be as large as the on-axis response. At high speed, the pitch response from collective can be as
strong as from longitudinal cyclic. The yaw response from collective, due to the torque reaction, can require
an equivalent tail rotor collective input to compensate. At high speed the pitch response from yaw can lead
to dissimilar control strategies being required in right and left turns. These high levels of impurity again stem
principally from the main rotor and its powerful wake and are inherent features of helicopters. During the
1970s and 1980s, several new designs underwent extensive flight test development to minimise the flying
qualities deficiencies caused by cross-couplings and response impurities. The residual forces and moments
and associated aircraft accelerations induced by these couplings can lead to serious shortcomings if high
performance is being sought. For example, the saga of the empennage development for the AH64 (Ref. 2.43)
and the AS360 series helicopters (Ref. 2.44) indicate, on the one hand, how extensive the redesign to fix
handling qualities can be, and, on the other, how much improvement can be obtained by careful attention to
detail, e.g. in the aerodynamic characteristics of the horizontal and vertical stabilisers.

2.5.3 Response Degradation at Flight Envelope Limits

The boundary of the OFE should not be characterised by loss of control or performance; there should always
be a safe control and performance margin for operation at the OFE limit. Most of these limit boundaries are
not sign-posted, however, and inadvertent excursions into the region between the OFE and the SFE boundary
can and do happen, particularly when the crew’s attention is diverted to other matters. Helicopters with
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low power margins can get caught in large-scale downdrafts behind buildings and other obstacles or terrain
culture, making it very difficult for a pilot to arrest a rate of descent. Turning downwind can cause a helicopter
to fly close to the vortex-ring region if the pilot judges his speed relative to the ground rather than the air. Both
these examples can lead to a sharp reduction in lift and height and represent conditions most like wing stall
for a fixed-wing aircraft. Hovering or manoeuvring at low speed close to obstacles in strong winds can also
lead to loss of tail rotor control authority, or even, in exceptional cases, to a loss of cyclic control margins.
Being out-of- (moment) control close to obstacles can be as dangerous as losing lift. At high speed, or while
manoeuvring in the mid-speed range, the rotor can experience local blade stall. While this is unlikely to have
much effect on the overall lift, if the retreating blade stalls first, the aircraft will experience a nose-up pitching
moment, further exacerbating the stall. Forward motion on the cyclic to correct the motion applies a further
pitch increase on the retreating side of the disc, worsening the stall. There are very little data available on the
handling qualities effects when the rotor is partially stalled in high-speed flight, but clearly flying qualities will
degrade. Once again, the designer is forced to make a compromise. A low disc loading, highly twisted rotor
serves hover and low-speed performance and handling, while a high disc loading, untwisted rotor gives better
manoeuvrability and ride at high speed. From the designer’s perspective, the alternate yaw control devices
like the fenestron and Notar (Refs. 2.5, 2.6) are attractive options to the open tail rotor if vulnerability is a
major concern, even though handling and performance may be compromised.

2.5.4 Poor Stability

The instabilities of the helicopter fall into two categories — those at low speed due to the rotor and those at
high speed due to the rotor; the designer can do very little about the first with airframe design, but he can
make flight at high speed almost as stable as a fixed-wing aircraft. Unfortunately, if he chooses the latter
option, he will almost certainly compromise control and agility. Building large enough fixed empennage
stabilisers will always work but will, in turn, increase the demands on the rotor for manoeuvres. Selecting a
rotor with zero or low equivalent hinge offset (e.g. most articulated rotors) will probably result in the pitch
axis being marginally stable in high speed, but will again reduce the agility of the aircraft. On the other hand,
a hingeless rotor, providing a roll time constant equivalent to a fixed-wing aircraft (O(0.1 s)), will also result
in an unstable pitch mode with time to double of less than 1 s at high speed.

At low speed, without mechanical feedback, the single rotor helicopter is naturally unstable. The cou-
pled pitch/roll, so-called pendulum instability is a product of the flapping rotor’s response to velocity pertur-
bations. The mode is a docile one, and is easily controlled once the required strategy is learnt, but requires
considerable attention by the pilot. However, if the outside world visual cues degrade, so that the pilot has
difficulty perceiving attitude and velocity relative to the ground, then the hover task becomes increasingly
difficult and Level 3 qualities are soon experienced.

2.5.5 The Rotor as a Control Filter
The main rotor is the motivator for all but yaw control on the conventional helicopter, and before the fuselage
can respond, the rotor must respond. The faster the rotorspeed, the faster the rotor flap response to control
application and hence the faster the fuselage response. In many respects, the rotor acts like an actuator in
the control circuit but there is one important difference. The rotor DoFs, the flap, lag, and torsional motions,
are considerably more complex than a simple servo system and can have low enough damping to threaten
stability for high gain control tasks. Such potential problems are usually cured in the design of the SCAS, but
often at the expense of introducing even further lags into the control loops. With typical actuator and rotor
time constants, the overall effective time delay between pilot control input and rotor control demand can be
greater than 100 ms. Such a delay can halve the response bandwidth capability of an ‘instantaneous’ rotor.
The five issues discussed above are compounded by the special problem associated with manoeu-
vring close to the ground and surrounding relief — providing an adequate field of view (FoV); the issue
was expressed succinctly by Prouty (Ref. 2.45):

The most important flying cue a pilot can have is a good view of the ground and everything around.
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FoV is a significant design compromise; most helicopters suffer from an inadequate FoV from a flying qual-
ities perspective. Overhead panels in side-by-side cockpits obscure the view into turns and tandem seaters
can be deficient in forward and downward views.

Fixing flying qualities deficiencies during flight test development can be very expensive and empha-
sises the importance of accurate simulation, model testing, and analytical tools in the design process. It also
emphasises the critical importance of validated design criteria — what constitutes good flying qualities for
helicopters — and this book addresses this question directly in Chapter 6.

2.5.6 Artificial Stability

It should be clear to the reader from the various discussions on this Tour that it is difficult to design and
build helicopters that naturally exhibit Level 1 flying qualities. Pilots need help to fly and perform mis-
sions effectively in helicopters, and modern SCAS and integrated displays go some way to providing this.
Autostabilisers were first developed to increase the helicopter’s operational envelope to include flight under
instrument conditions. The priority was to provide artificial stability to ensure that the aircraft would not wan-
der off when the pilot’s attention was divided with other tasks. If we consider the addition of rate damping
in the pitch axis, we can write the feedback law in proportional form:

0y, = kyq (2.84)
Figure 2.51 shows a block diagram of this feedback loop. With this proportional feedback working, as the
helicopter flies through turbulence, every 1 deg/s of pitch rate change is counteracted by k; of longitudinal
cyclic pitch 6, . The higher the value of gain k,, the greater the ‘artificial” stability conferred on the helicopter.
The root loci in Figure 2.52 illustrates how the high-speed unstable pitch mode can be stabilised through pitch
rate feedback for Helisim Lynx. We can see that even with quite high values of gain magnitudes (~0.25 deg/s),
the aircraft is still marginally unstable. Gain magnitudes much higher than about 0.2 would not be acceptable
because the limited authority of today’s SCAS designs (typically about £10% of actuator range) would result
in the augmentation quickly saturating in manoeuvres or moderate turbulence. We can conclude from this
discussion that rate feedback is insufficient to provide the levels of stability required for meeting Level 1
flying qualities in divided-attention operations. If we include attitude stabilization in the feedback loop, the
control law can be written in proportional plus integral form

01, =k, +k, / gdt (2.85)

Attitude feedback provides an effective stiffness in the pitch axis, and increasing k, serves to increase the
frequency of the unstable pitch mode as shown in Figure 2.52. An appropriate combination of rate and attitude
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Fig. 2.51 Simple feedback augmenting pitch rate damping
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Fig. 2.52 Variation of long period pitch mode frequency and damping with autostabiliser gains for Lynx at 140 knots

feedback can now be found to ensure Level 1 flying qualities and most modern SCAS designs incorporate both
components. Rate and attitude feedbacks provide stability augmentation, but do nothing positive for control
augmentation; in fact, the control response is reduced as the stability augmentation fights the pilot’s actions
as well as disturbances. Control augmentation is accomplished by feeding forward the pilot’s control signals
into the SCAS, applying shaping functions, or effectively disabling elements of the stability augmentation
during manoeuvres. Different SCAS designs accomplish this in different ways; the Lynx system augments
the initial response with a feedforward signal from the pilot’s control, while the Puma system disables the
attitude stabilization whenever the pilot moves the controls. More modern systems accomplish the same task
with greater sophistication, but modern SCAS designs that interface with mechanical control systems will
always be limited in their potential by the authority constraints designed to protect against failures. In the
limit, increasing the authority of the augmentation system takes us towards ACT where the pilot’s control
(inceptor) inputs are combined with multiple sensor data in a digital computer to provide tailored response
characteristics. ACT is a developing technology for rotorcraft, although many types are now in service with
digital fly-by-wire control systems; the potential benefits to both military performance and civil safety are
considerable and can be classed under three general headings:

(1) task-tailored Level 1 flying qualities throughout the OFE, e.g. tailored for shipboard recoveries,
underslung load positioning or air combat;

(2) carefree handling, ensuring safe operations at the edges of the OFE;

(3) integration with mission functions, e.g. navigation, HUMS.

The introduction of ACT into rotorcraft also offers the designer the opportunity to explore control-configured
designs, in much the same way that fixed-wing military aircraft have developed over the last two decades.
Even with the conventional single-rotor helicopter, ACT can free the designer to remove the empennage
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stabilisers altogether or alternatively to make them movable under computer control. The main rotor could
be made smaller or lighter if a carefree handling system were able to ensure prescribed loading patterns
in manoeuvres and at the OFE boundary. Of course, it is with the more advanced rotorcraft concepts, with
multiple control motivators, e.g. tiltrotors and thrust/lift compounding, that ACT offers the greatest design
freedoms and flying qualities enhancement.

TILTROTOR FLIGHT DYNAMICS

The author has dedicated Chapter 10 of the third edition of this book to the modelling, simulation, and
flying qualities of tiltrotor aircraft. In many respects, tiltrotors are different from helicopters, in both design
and behaviour. At the time of writing, only a single type of tiltrotor is in operational service, but others are
in various stages of development and are expected to be certified for civil and military applications over
the next decade. But, what are the significant differences with a conventional helicopter? First there is the
gimbal rotor and its attachment to the drive shaft through a universal or constant velocity joint. Both types
of joints reorient the angular velocity and momentum from the input drive shaft to the gimbal and its blades.
The CF inertia force is always directed along the blade when the gimbal tilts, so this restoring effect — so
dominant in the articulated and hingeless rotors of conventional helicopters — is absent in tiltrotors. How the
dynamics of gimbal rotors function and still feature a —90° phase between cyclic pitch and cyclic flapping is
dealt with in Chapter 10. The conversion-mode and the conversion process itself present new challenges for
both modelling and flying qualities analysis. The author draws on contributions to a series of tiltrotor critical
technology projects to characterise the flight dynamics in conversion. How the flying qualities criteria for
conventional helicopters merge into those for fixed-wing aircraft is also a topic receiving detailed treatment.
A special issue concerns the need for structural load alleviation in tiltrotors, particularly in airplane-mode
when the inclination of the lift forces in the plane of the rotating gimbal leads to high levels of yoke chord
oscillatory stresses. These can be alleviated through active control, but the impact on flying qualities needs
to be considered. Examples of how this can be achieved are presented. Chapter 10 features the FLIGHTLAB
model of the XV-15 aircraft, developed at the University of Liverpool, to illustrate the issues just described,
as well as many others.

In Chapters 3-9, many aspects of helicopter flight dynamics read across to tiltrotor flight dynamics,
and the use of the word helicopter is not always meant to exclude tiltrotors. The author has not attempted
to differentiate, and it is expected that readers will be able to exercise their own judgements regarding this
read-across.

CHAPTER REVIEW

The subject of flight dynamics is characterised by an interplay between theory and experiment. This Tour has
attempted to highlight this interplay in several ways. Marking the four reference points early on the Tour — the
environment, the vehicle, the task, and the pilot — an attempt has been made to reveal the considerable scope of
the subject and the skills required of the flight dynamics engineer. The importance of strong analytical tools,
fundamental to the understanding of the behaviour of the helicopter’s interacting subsystems, was emphasised
in the modelling section. The powerful effect of aerodynamics on the flapping rotor was examined in some
detail, with the resonant response highlighted as perhaps the single most important characteristic of helicopter
rotor dynamics, enabling easy control of the rotor disc tilt. The modelling of flight dynamics was discussed
within the framework of the frequency and amplitude of motion with three fundamental problems — trim,
stability, and response. The second major topic on the landscape of this Tour was flying quality, characterised
by three key properties. Flying qualities are pilot-centred attributes; they are mission- and even task-oriented,
and they are ultimately the synergy between the internal attributes of the aircraft and the external environment
in which it operates. Flying qualities are safety attributes, but good flying qualities also allow the performance
of the helicopter, or tiltrotor, to be fully exploited. The remaining chapters of this book cover modelling and
flying qualities in detail.



The instrumented rotorhead of the RAE (DRA) research Puma (Photograph courtesy of
DRA Bedford)

The RAE (DRA) research Puma in trimmed flight over the Bedfordshire countryside
(Photograph courtesy of DRA Bedford)
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Modelling Helicopter Flight Dynamics:
Building a Simulation Model

It is beyond dispute that the observed behaviour of aircraft is so complex and puzzling that
without a well-developed theory, the subject could not be treated intelligently. Theory has at
least three useful functions:

(a) it provides a background for the analysis of actual occurrences;

(b) it provides a rational basis for the planning of experiments and tests, thus securing
economy of effort;

(c) it helps the designer to design intelligently.

Theory, however, is never complete, final, or exact. Like design and construction, it is continually
developing and adapting to circumstances.
(Duncan 1952)

INTRODUCTION AND SCOPE

The attributes of theory described by Duncan in this chapter’s guiding quote have a ring of eternal validity
to them. With today’s perspective, we could add a little more. Theory helps the flying qualities engineer to
gain a deep understanding of the behaviour of flight and the limiting conditions imposed by the demands of
flying tasks, hence providing insight and stimulating inspiration. The classic text by Duncan (Ref. 3.1) was
directed at fixed-wing aircraft, of course. Describing the flight behaviour of the helicopter presents an even
more difficult challenge to mathematical modelling. The vehicle can be viewed as a complex arrangement
of interacting subsystems, shown in component form in Figure 3.1. The problem is dominated by the rotor,
and this will be reflected by the attention given to this component in this chapter. The rotor blades bend and
twist under the influence of unsteady and nonlinear aerodynamic loads, which are themselves a function of
the blade motion.

Figure 3.2 illustrates this aeroelastic problem as a feedback system. The two feedback loops provide
incidence perturbations due to blade (and fuselage) motion and downwash, which are added to those due to
atmospheric disturbances and blade pitch control inputs. The calculation of these two incidence perturbations
dominates rotor modelling and hence features large in this chapter. For the calculation of aerodynamic loads,
we shall be concerned with the blade motion relative to the air and hence the motion of the hub and fuselage as
well as the motion of the blades relative to the hub. Relative motion will be a recurring theme in this chapter,
which brings into focus the need for common reference frames. This subject is given separate treatment in
the appendix to this chapter, where the various axes transformations required to derive the relative motion
are set down. Expressions for the accelerations of the fuselage centre of gravity and a rotor blade element
are derived in Sections 3A.1 and 3A 4, respectively. Rotor blades operate in their own wake and that of their
neighbour blades. Modelling these effects has probably consumed more research effort in the rotary-wing
field than any other topic, ranging from simple momentum theory (Ref. 3.2) to three-dimensional flowfield
solutions of the viscous fluid equations (Ref. 3.3).

The modelling requirements of blade motion and rotor downwash or inflow need to be related to the
application. The terms downwash and inflow are used synonymously in this book; in some references the
inflow includes components of free stream flow relative to the rotor, and not just the self-induced downwash.
The rule of thumb, highlighted in Chapter 2, that models should be as simple as required needs to be borne
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Fig. 3.1 The helicopter as an arrangement of interacting subsystems

in mind. We refer to Figure 2.14 in the Introductory Tour, reproduced here in modified form (Figure 3.3), to
highlight the key dimensions — frequency and amplitude. In flight dynamics, a heuristic rule of thumb, which
we shall work with, states that the modelled frequency range in terms of forces and moments needs to extend
to two or three times the range at which normal pilot and control system activity occurs. If we are solely
concerned with the response to pilot control inputs for normal (corresponding to gentle to moderate actions)
frequencies up to about 4 rad/s, then achievement of accuracy out to about 10 rad/s is probably good enough.
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Fig. 3.3 Helicopter response characteristics on a frequency—amplitude plane

With high gain feedback control systems that will be operating up to this latter frequency, modelling out to
25-30 rad/s may be required. The principal reason for this extended range stems from the fact that not only
the controlled modes are of interest but also the uncontrolled modes, associated with the rotors, actuators,
and transmission system, that could potentially lose stability in the striving to achieve high performance in
the primary control loops. The required range will depend on several detailed factors, and some of these will
emerge as we examine model fidelity in this and later chapters. With respect to amplitude, the need to model
gross manoeuvres defines the problem; in other words, the horizontal axis in Figure 3.3 extends outwards to
the boundary of the operational flight envelope (OFE).

It is convenient to describe the different degrees of rotor complexity in three levels, differentiated by
the different application areas, as shown in Table 3.1.

Appended to the fuselage and drive system, basic Level 1 modelling defines the conventional six degree
of freedom (DoF) flight mechanics formulation for the fuselage, with the quasi-steady rotor taking up its new
position relative to the fuselage instantaneously. We have also included in this level the rotor DoFs in so-called
multiblade coordinate (MBC) form (see Section 3.2.1), whereby the rotor dynamics are consolidated as a disc
with coning and tilting freedoms. Perhaps the strongest distinguishing feature of Level 1 models is the ana-
lytically integrated aerodynamic loads giving closed form expressions for the hub forces and moments. The
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Level 1

Level 2

Level 3

Aerodynamics

Dynamics

Applications

linear 2-D dynamic
inflow/local momentum
theory analytically
integrated loads

rigid blades

(1) quasi-steady motion

(2) 3 DoF flap

(3) 6 DoF flap + lag

(4) 6 DoF flap + lag +
quasi-steady torsion

parametric trends for flying

qualities and performance

studies

well within operational

flight envelope

nonlinear (limited 3-D)
dynamic inflow/local
momentum theory local
effects of blade vortex
interaction unsteady 2-D
compressibility numerically
integrated loads
(1) rigid blades with options
as in Level 1
(2) limited number of blade
elastic modes

parametric trends for flying
qualities and performance
studies up to operational
flight envelope

medium bandwidth

nonlinear 3-D full wake
analysis (free or prescribed)
unsteady 2-D
compressibility
numerically integrated
loads

detailed structural
representation as elastic
modes or finite elements

rotor design

rotor limit loads prediction

vibration analysis

rotor stability analysis up to
safe flight envelope

low bandwidth control appropriate to high gain

active flight control

aerodynamic downwash representation in our Level 1 models extends from simple momentum to dynamic
inflow.

The analysis of flight dynamics problems through modelling is deferred until Chapters 4 and 5. Chapter
3 deals with model building. For the most part, the model elements are derived from approximations that
allow analytic formulations. In this sense, the modelling is far from state of the art compared with current
standards of simulation modelling. This is particularly true regarding the rotor aerodynamics, but the Level 1
modelling described in this chapter is aimed at describing the key features of helicopter flight and the impor-
tant trends in behaviour with varying design parameters. In many cases, the simplified analytic modelling
approximates reality to within 20%, and while this would be clearly inadequate for design purposes, it is
ideal for establishing fundamental principles and trends.

In Section 3.2, expressions for the forces and moments acting on the various components of the heli-
copter are derived; the main rotor, tail rotor (TR), fuselage and empennage, powerplant, and flight control
system are initially considered in isolation, as far as this is possible. In Section 3.3, the combined forces
and moments on these elements are assembled with the inertial and gravitational forces to form the overall
helicopter equations of motion.

Section 3.4 of this chapter takes the reader briefly beyond the realms of Level 1 modelling to the more
detailed and higher fidelity blade element and aeroelastic rotor formulations and the complexities of interac-
tional aerodynamic modelling. The flight regimes where this, Level 2, modelling is required are discussed,
and results of the kind of influence that aeroelasticity and detailed wake modelling have on flight dynamics
are presented.

This chapter has an appendix concerned with defining the motion of the aircraft and rotor in terms of
different axes systems as frames of reference. Section 3A.1 describes the inertial motion of an aircraft as
a rigid body free to move in three translational and three rotational DoFs. Sections 3A.2 and 3A.3 develop
supporting results for the orientation of the aircraft and the components of the gravitational force. Sections
3A.4 and 3A.5 focus on the rotor dynamics, deriving expressions for the acceleration and velocity of a blade
element and discussing different axes systems used in the literature for describing the blade motion.
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THE FORMULATION OF HELICOPTER FORCES AND MOMENTS
IN LEVEL 1 MODELLING

In the following four subsections, analytic expressions for the forces and moments on the various helicopter
components are derived. The forces and moments are referred to a system of body-fixed axes centred at the
aircraft’s centre of gravity/mass, as illustrated in Figure 3.1. In general, the axes will be oriented at an angle
relative to the principal axes of inertia, with the x-direction pointing forward along some convenient fuse-
lage reference line. The equations of motion for the six fuselage DoFs are assembled by applying Newton’s
laws of motion relating the applied forces and moments to the resulting translational and rotational acceler-
ations. Expressions for the inertial velocities and accelerations in the fuselage-fixed axes system are derived
in Section 3A.1, with the resulting equations of motion taking the classic form as given below.
Force equations

X .

1= —(wg—vr)+ - —gsinf 3.1

i (wq —vr) M, g sin 3.1)

. Y .

v =—(ur —wp) + A + gcosfsing 3.2)

. z

w=—(vp—uq)+ A + gcosfcos ¢ 3.3)
Moment equations

Lp =y, —1)gr+1.(+pg+L (3.4)

])'.Vq =~ Lo+ Ixz(r2 - p2) +M 3.5)

Li=,-L)pg+1.,(p-qr)+N (3.6)

where u, v, and w and p, ¢, and r are the inertial velocities in the moving axes system; ¢, 0, and y are the
Euler rotations defining the orientation of the fuselage axes with respect to earth and hence the components
of the gravitational force. I, Iyy, etc., are the fuselage moments of inertia about the reference axes and M, is
the aircraft mass. The external forces and moments can be written as the sum of the contributions from the

different aircraft components; thus, for the rolling moment
L=Lp+Lyp+L+L,+L, 3.7

where the subscripts stand for: rotor, R, tail rotor, TR; fuselage, f; horizontal tailplane, #p; and vertical fin, f.

In Chapters 4 and 5, we shall be concerned with the trim, stability, and response solutions to Eqgs.
(3.1)—(3.6). Before we can address these aspects, we need to derive the expressions for the component forces
and moments. The following four sections contain some fairly intense mathematical analyses for the reader
who requires a deeper understanding of the aeromechanics of helicopters. The modelling is based essentially
on the Royal Aircraft Establishment’s (RAE’s) first generation, Level 1 simulation model Helisim (Ref. 3.4).

A few words on notation may be useful before we begin. First, the main rotor analysis is conducted
in shaft axes, compared with the rotor-aligned, no-flapping, or no-feathering systems. Section 3A.5 gives a
comparison of some expressions in the three systems. Second, the reader will find the same variable name
used for different states or parameters throughout the chapter. While the author accepts that there is some
risk of confusion here, this is balanced against the need to maintain a degree of conformity with traditional
practice. It is also expected that the serious reader of Chapters 3, 4, and 5 will easily cope with any potential
ambiguities. Hence, for example, the variable r will be used for rotor radial position and aircraft yaw rate;
the variable f will be used for flap angle and fuselage sideslip angle; the variable w will be used for blade
displacement and aircraft inertial velocity along the z direction. A third point, and this applies more to the
analysis of Chapters 4 and 5, relates to the use of capitals or lowercase for trim and perturbation quantities.
For the work in the later modelling chapters we reserve capitals, with subscripts e (equilibrium), for trim
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states, and lowercase letters for perturbation variables in the linear analysis. In Chapter 3, where, in general,
we will be dealing with variables from a zero reference, the conventional lowercase nomenclature is adopted.
Possible ambiguities arise when comparing analysis from Chapters 3, 4, and 5, although the author believes
that the scope for confusion is minimal.

3.2.1 Main Rotor

The mechanism of cyclic blade flapping provides indirect control of the direction of the rotor thrust and the
rotor hub moments (i.e. the pilot has direct control only of blade pitch); hence, it is the primary source of
manoeuvre capability. Blade flap retention arrangements are generally of three kinds — teetering, articulated,
and hingeless, or more generally, bearingless (Figure 3.4). The three different arrangements can appear very
contrasting, but the amplitude of the flapping motion itself, in response to gusts and control inputs, is very
similar. The primary difference lies in the hub moment capability. One of the key features of the Helisim
model family is the use of a common analogue model for all three types — the so-called centre-spring equiv-
alent rotor (CSER). We need to examine the elastic motion of blade flapping to establish the fidelity of this
general approximation. The effects of blade lag and torsion dynamics are considered later in this section.

(@)

(b)

()

Fig. 3.4 Three flap arrangements: (a) teetering; (b) articulated; (c) hingeless

Blade Flapping Dynamics — Introduction

We begin with a closer examination of the hingeless rotor. Figure 3.5 illustrates the out-of-plane bending, or
flapping, of a typical rotating blade cantilevered to the rotor hub. Using the commonly accepted engineer’s
bending theory, the linearised equation of motion for the out-of-plane deflexion w(r, ) takes the form of a
partial differential equation in space radius r and time ¢, and can be written (Ref. 3.5) as

R

0% *w *w 5 ow  *w
ﬁ<E1m>+m¥+Q mra—m mrdr =F(rt) (38)
r
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Fig. 3.5 Out-of-plane bending of a rotor blade

where EI(r) and m(r) are the blade radial stiffness and mass distribution functions and €2 is the rotorspeed.
The function F(7; t) represents the radial distribution of the time-varying aerodynamic load, assumed here
to act normal to the plane of rotation. As in the case of a nonrotating beam, the solution to Eq. (3.8) can be
written in separated variable form, as the summed product of mode shapes S, () and generalised coordinates
P,(1),1.e.

wir,0) = ) S,(rP,(1) (3.9)

n=1

with the time and spatial functions satisfying Eqs. (3.10) and (3.11), respectively, i.e.

R
&P 1
— Y LP,0 = I / F(r,0S,dr
0
R
I, = / mS>dr (3.10)

0

R
2 d%s ds, d*s
d <EI ") +Q* mr—= — —- /mrdr —-mA2Q*S, =0

dr? dr? dr dr?

r

n=12,...,00 (3.11)

I, and 4, are the modal inertias and natural frequencies. The mode shapes are linearly independent and have
been orthogonalised, i.e.

R R

328, 328,
/mSp(r)Sn(r)dr= 0, /EI o ﬁdr =0, p#n (3.12)
0 0

The hub (denoted by subscript /) bending moment and shear force in the rotating system, denoted by the
superscript (7), can then be written as

R

o= [ [F(r, o—m <f;7;” . 92w>] rdr (3.13)

0
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R
2
V0,1 = / [F(r, fH— m%] dr (3.14)
0

Substituting the expression for the aerodynamic loading F (7, f) from Eq. (3.8) into Eq. (3.13), and after some
reduction, the hub moment can be written as the sum of contributions from the different modes, i.e.

R
MP0,1) = Q? Zuﬁ - DP,(1) / mrS, dr (3.15)
n=1 0

Retaining only the first mode gives

R

M0, 1) ~ Q42 = DP (1) / mrS, dr (3.16)
0

where P, is given by Eq. (3.10) with n=1. Eqgs. (3.10) and (3.16) provide the solution for the first mode
of flapping response of a rotor blade. How well this will approximate the complete solution for the blade
response depends on the form of the aerodynamic load F( ). From Egs. (3.10) and (3.12), if the loading
can be approximated by a distribution with the same shape as S}, then the first mode response would suffice.
Clearly this is not generally the case, but the higher mode responses can be expected to be less and less
significant. It will be shown that the first mode frequency is always close to one-per-rev, and combined
with the predominant forcing at one-per-rev the first flap mode generally does approximate the zero and
one-per-rev blade dynamics and hub moments reasonably well, for the frequency range of interest in flight
dynamics. The approximate model used in the Helisim formulation simplifies the first mode formulation even
further to accommodate teetering and articulated rotors as well. The articulation and elasticity is assumed to
be concentrated in a hinged spring at the centre of rotation (Figure 3.6), otherwise the blade is straight and
rigid; thus

S == 3.17
1= % (3.17)

Such a shape, although not orthogonal to the elastic modes, does satisfy Eq. (3.11) in a distributional sense.
The centre-spring model is used below to represent all classes of retention system and contrasts with the
offset-hinge and spring model used in several other studies. In the offset-hinge model, the hinge offset is
largely determined from the natural frequency whereas in the centre-spring model, the stiffness is provided
by the hinge spring. In many ways the models are equivalent, but they differ in some important features. It
will be helpful to derive some of the characteristics of blade flapping before we compare the effectiveness of
the different formulations. Further discussion is therefore deferred until later in this section.

The Centre-Spring Equivalent Rotor
Reference to Figure 3.6 shows that the equation of motion for the blade flap angle §,(¢) of the ith blade can
be obtained by taking moments about the centre hinge with spring strength K;; thus

R

/ rp{f.(ry) —may}dr, + KB, =0 (3.18)

0

The blade radial distance has now been written with a subscript b to distinguish it from similar variables. We
have neglected the blade weight force in Eq. (3.18); the mean lift and acceleration forces are typically one
or two orders of magnitude higher. We follow the normal convention of setting the blade azimuth angle, v,
to zero at the rear of the disc, with a positive direction following the rotor. The analysis in this book applies
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{(r)dr,

Fig. 3.6 The centre-spring equivalent rotor analogue

to a rotor rotating anticlockwise when viewed from above. From Figure 3.7, the aerodynamic load f, (r,, 1)
can be written in terms of the lift and drag forces as

fo=—Ccos¢p—dsing ~ - —d¢ (3.19)

where ¢ is the incidence angle between the rotor inflow and the plane normal to the rotor shaft. We are now
working in the blade axes system, of course, as defined in Section 3A.4, where the z direction lies normal
to the plane of no-pitch. The acceleration normal to the blade element, a,, includes the component of the
gyroscopic effect due to the rotation of the fuselage and hub, and is given approximately by (see Section 3A.4)

ay, = 1, (2Q(py,, cosy; — qy,, siny;) + (g, COsSy; + py,, siny;) — Q- f) (3.20)

The angular velocities and accelerations have been referred to hub—wind axes in this formulation, and hence
the subscript -zw. Before expanding and reducing the hub moment in Eq. (3.18) further, we need to review the
range of approximations to be made for the aerodynamic lift force. The aerodynamic loads are in general
unsteady, nonlinear, and three-dimensional in character; our first approximation neglects these effects, and,
in a wide range of flight cases, the approximations lead to a reasonable prediction of the overall behaviour
of the rotor. So, our starting aerodynamic assumptions are as follows:

(1) The rotor lift force is a linear function of local blade incidence and the drag force is a simple quadratic
function of lift — both with constant coefficients. Neglecting blade stall and compressibility can have a
significant effect on the prediction of performance and dynamic behaviour at high forward speeds.
Figure 2.10 illustrated the proximity of the local blade incidence to stall particularly at rotor azimuth
angles 90° and 180°. Without these effects modelled, the rotor will be able to continue developing lift at

{ (r, )

Fig. 3.7 Aerodynamic loads on a typical aerofoil section

a!



Q@

@3

4

5

~

)

)

~

©

Modelling Helicopter Flight Dynamics: Building a Simulation Model 83

low drag beyond the stall and drag divergence boundary, which is clearly unrealistic. The assumption of
constant lift curve slope neglects the linear spanwise and one-per-rev timewise variations due to
compressibility effects. The former can be accounted for to some extent by an effective rotor lift curve
slope, particularly at low speed, but the azimuthal variations give rise to changes in cyclic and collective
trim control angles in forward flight, which the constant linear model cannot simulate.

Unsteady (i.e. frequency dependent) aerodynamic effects are ignored. Rotor unsteady aerodynamic
effects can be conveniently divided into two problems — one involves the calculation of the response of
the rotor blade lift and pitching moment to changes in local incidence, while the other involves the
calculation of the unsteady local incidence due to the time variations of the rotor wake velocities. Both
require additional DoFs to be taken into account. While the unsteady wake effects are accounted for in a
relatively crude but effective manner through the local/dynamic inflow theory described in this section,
the time-dependent developments of blade lift and pitching moment are ignored, resulting in a small
phase shift of rotor response to disturbances.

Tip losses and root cut-out effects are ignored. The lift on a rotor blade reduces to zero at the blade tip
and at the root end of the lifting portion of the blade. These effects can be accounted for when the
fall-off is properly modelled at the root and tip, but an alternative is to carry out the load integrations
between an effective root and tip. A tip loss factor of about 3% R is commonly used, while integrating
from the start of the lifting blade accounts for most of the root loss. Both effects are small and account
for only a few percent of performance and response. Including them in the analysis increases the length
of the equations significantly, however, and can obscure some of the more significant effects. In the
analysis that follows, we therefore omit these loss terms, recognizing that to achieve accurate
predictions of power, for example, they need to be included.

Nonuniform spanwise inflow distribution is neglected. The assumption of uniform inflow is a gross
simplification, even in the hover, of the complex effects of the rotor wake, but provides a very effective
approximation for predicting power and thrust. The use of uniform inflow stems from the assumption
that the rotor is designed to develop minimum induced drag, and hence has ideal blade twist. In such an
ideal case, the circulation would be constant along the blade span, with the only induced losses
emanating from the tip and root vortices. Ideal twist, for a constant chord blade, is actually inversely
proportional to radius, and the linear twist angles of O(10°), found on most helicopters, give a
reasonable, if not good, approximation to the effects of ideal twist over the outer lifting portion of the
blades. The actual nonuniformity of the inflow has a similar shape to the bound circulation, increasing
outboard and giving rise to an increase in drag compared with the uniform inflow theory. The blade
pitch at the outer stations of a real blade will need to be increased relative to the uniform inflow blade to
produce the same lift. This increase produces more lift inboard as well, and the resulting comparison of
trim control angles may not be significantly different.

Reversed flow effects are ignored. The reversed flow region occupies the small disc inboard on the
retreating side of the disc, where the air flows over the blades from trailing to leading edge. Up to
moderate forward speeds, the extent of this region is small and the associated dynamic pressures low,
justifying its omission from the analysis of rotor forces. At higher speeds, the importance of the reversed
flow region increases, resulting in an increment to the collective pitch required to provide the rotor
thrust, but decreasing the profile drag and hence rotor torque.

These approximations make it possible to derive manageable analytic expressions for the flapping and rotor
loads. Referring to Figure 3.7, the aerodynamic loads can be written in the form

where

. 1 2.2 Up
Lift:  ¢(y,r,) = =p(U:+ Ul)ca, | 0+ — (3.21)
2 Uy
1
Drag: d(y,r,) = 5p(U% + U}p)es (3.22)
8 =35+ 5,C (3.23)

a!
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We have assumed that the blade profile drag coefficient 6 can be written in terms of a mean value plus a
thrust-dependent term to account for blade incidence changes (Refs. 3.6, 3.7). The nondimensional in-plane
and normal velocity components can be written as

Uy =7,(1 +@,p) + usiny (3.24)
Up = (u, — Ao — Pucosy) + 7@, — ' — 1)) (3.25)

We have introduced into these expressions several new symbols that need definition:

7, = 2 (3.26)
Ty = R .
5 5 1/2
Upyy Uyt Vi

= e _ 327
"= or ( (QR)? > 3:27)

= Zhw (3.28)
H=qr '

The velocities uy,,,, v;,,, and w,,, are the hub velocities in the hub-wind system, oriented relative to the aircraft
x-axis by the relative airspeed or wind direction in the x—y plane. f§ is the blade flap angle and 6 is the blade
pitch angle. The fuselage angular velocity components in the blade system, normalised by QR, are given by

x = Phw COSYW; = G, SINY;

e

Sl

v = Py SINY; + Gy, COS Y, (3.29)
The downwash, A, normal to the plane of the rotor disc, is written in the form of a uniform and linearly
varying distribution

V; _
A= oR = Ay + A4 (W, (3.30)

This simple formulation will be discussed in more detail later in this chapter.
We can now develop and expand Eq. (3.18) to give the second-order differential equation of flapping
motion for a single blade, with the prime indicating differentiation with respect to azimuth angle y:

— —/

1
2 —_ —
n % / (U0 + U, Up);7, d7, (3.31)
0

The blade Lock number y is a fundamental parameter that expresses the ratio of aerodynamic to inertia forces
acting on the blade; the flap frequency ratio, 4,, is derived directly from the hub stiffness and the flap moment
of inertia /;:

R

pcaOR4 2 Kﬂ / 2
= , AM=1+—, I[,= [ mrdr (3.32)
p
P ’ 1,Q2

0

where a,, is the constant blade lift curve slope, p is the air density and c the blade chord.
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Writing the blade pitch angle 6 as a combination of applied pitch and linear twist, in the form

0=0,+7,0, (3.33)

we may expand Eq. (3.31) into the form

B+ [y B+ (A + yucosy, fy)p; =

— —/
2 l(ﬁw + %) cosy; — (Z]W - p?“) sin u/i]
+ v Vapby +SomOn + ik, — 4) +f,(@, — 4] (3.34)

where the aerodynamic coefficients, f, are given by the expressions

4 .
1+ 5” sin y;
Jp = — 3 (3.35)
% + 2usiny;
fe=h= s (3.36)
1+ g,u siny; + 2u’sin’y,
Jop = A (3.37)
g +2usiny; + %/fsinzq/i
Joow = g (3.38)
4 .
1+ 5;4 siny;
Jo=—"—% (3.39)

8

These aerodynamic coefficients have been expanded up to O(u?); neglecting higher-order terms incurs errors
of less than 10% in the flap response below u of about 0.35. In Chapter 2, the Introductory Tour of this subject,
we examined the solution of Eq. (3.34) at the hover condition. The behaviour was discussed in some depth
there, and to avoid duplication of the associated analysis we shall restrict ourselves to a short résumé of the
key points from the material in Chapter 2.

(1) The blade flap response is dominated by the centrifugal stiffness, so that the natural frequency is always
close to one-per-rev; even on hingeless rotors like the Lynx and Bo105, the flap frequency ratio, 4, is
only about 10% higher than for a teetering rotor.

(2) The flap response to cyclic pitch is close to phase resonance, and hence is about 90° out of phase with the
pitch control input; the stiffer the rotor, the smaller the phase lag, but even the Lynx, with its moderately
stiff rotor, has about 80° of lag between cyclic pitch and flap. The phase lag ¢, is inversely proportional
to the stiffness number (effectively, the ratio of stiffness to blade aerodynamic moment), given by

2
| -1

- Sy=—— 3.40
S, 7w/ (G40

tan ¢, = —

(3) There is a fundamental rotor resistance to fuselage rotations, due to the aerodynamic damping and
gyroscopic forces. Rotating the fuselage with a pitch (g) or roll (p) rate leads to a disc flapping lagged
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the fuselage motion by a time given approximately by (see Eq. (2.43))

~ 16 (3.41)

T = y_Q
Hence the faster the rotorspeed, or the lighter the blades, for example, the higher is the rotor damping
and the faster is the disc response to control inputs or fuselage motion.

(4) The rotor hub stiffness moment is proportional to the product of the spring strength and the flap angle;
teetering rotors cannot therefore produce a hub moment, and hingeless rotors, as on the Bo105 and the
Lynx, can develop hub moments about four times those for typical articulated rotors.

(5) The increased hub moment capability of hingeless rotors transforms into increased control sensitivity
and damping and hence greater responsiveness at the expense of greater sensitivity to extraneous inputs
such as gusts. The control power, or final steady-state rate per degree of cyclic, is independent of rotor
stiffness to first order, since it is derived from the ratio of control sensitivity to damping, both of which
increase in the same proportion with rotor stiffness.

(6) The flapping of rotors with stiffness numbers up to about 0.3 is very similar — e.g. approximately 1° flap
for 1° cyclic pitch.

The behaviour of a rotor with N, blades will be described by the solution of a set of uncoupled differential
equations of the form Eq. (3.34), phased relative to each other. However, the wake and swash plate dynam-
ics will couple implicitly the blade dynamics. We return to this aspect later, but for the moment, assume
a decoupled system. Each equation has periodic coefficients in the forward flight case, but is linear in the
flap DoFs (once again, ignoring the effects of wake inflow). In Chapter 2, we examined the hover case and
assumed that the blade dynamics were fast relative to the fuselage motion, hence enabling the approximation
that the blade motion was essentially periodic with slowly varying coefficients. The rotor blades were effec-
tively operating in two timescales, one associated with the rotor rotational speed and the other associated
with the slower fuselage motion. Through this approximation, we were able to deduce many fundamental
facets of rotor behaviour, as noted above. It was also highlighted that the approximation breaks down when
the frequencies of the rotor and fuselage modes approached one another, as can happen, for example, with
hingeless rotors. This quasi-steady approximation can be approached from a more general perspective in the
forward flight case by employing the so-called MBCs (Refs. 3.4, 3.8).

Multiblade Coordinates
We can introduce a transformation from the individual blade coordinates (IBCs) to the disc coordinates, or
MBCs, as follows:

1 Ny
=5 21 B (3.42)
N,
Boa = Ni Y B=1y (3.43)
b =1
N,
p. = 1% Y B;cosjy; (3.44)
b =1
2
B = 17,, ,Z:’ p; sinjy; (3.45)
or, in vector form, as
ﬂ/ = LﬁﬁM
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where, for a four-bladed rotor

B, = {ﬂl’ﬁz’ﬁ3’ﬂ4}’ By = {ﬁo,ﬂ()d,ﬁlf,ﬁls} (3.46)
and
1 =1 cosy siny
|1 1 siny —cosy
Li=l1 2 —cosy —siny (3.47)
1 1 —siny cosy
giving

1 1 1 1

L‘1=l -1 1 -1 1
B 4(2cosy 2siny —2cosy —2siny
2siny —2cosy —2siny 2cosy

(3.48)

In forming the matrix Lz we use the relationship between the individual blade azimuth angles, namely

vi=|w-3a-1] (3.49)

Once again, the reference zero angle for blade 1 is at the rear of the disc. The MBCs can be viewed as
disc mode shapes (Figure 3.8). The first, ), is referred to as coning — all the blades flap together in a cone.
The first two cyclic modes f,,. and S, represent first harmonic longitudinal and lateral disc tilts, while the
higher harmonics appear as a disc warping. For N, =4, the strangest mode of all is the differential coning,
Poq» Which can be visualised as a mode with opposite pairs of blades moving in unison, but in opposition to
neighbour pairs, as shown in Figure 3.8. The transformation to MBCs has not involved any approximation;
there are the same number of MBCs as there are IBCs, and the individual blade motions can be completely
reconstituted from the MBC motions. There is one other important aspect that is worth highlighting. MBCs
are not strictly equivalent to the harmonic coefficients in a Fourier expansion of the blade angle. In general,
each blade will be forced and will respond with higher than a one-per-rev component (e.g. two-, three- and
four-per-rev), yet with N, =3, only first harmonic MBCs will exist; the higher harmonics are then folded
into the first harmonics. The real benefit of MBCs emerges when we conduct the coordinate transformation
L, on the uncoupled individual blade Eq. (3.34), written in matrix form as

"'+ C,(w)B) + D, (w)B; = H,(y) (3.50)

hence forming the MBC equations

W+ Cy@)By, + Dy w)By = Hy(y) (3.51)

where the coefficient matrices are derived from the following expressions:

Cy = L,;l {21}, + C/Ly)} (3.52)
D, = L,;1 {L} +C/Lj +D,L;} (3.53)
H, =L;'H, (3.54)

The MBC system described by Eq. (3.51) can be distinguished from the IBC system in two important ways.
First, the equations are now coupled, and second, the periodic terms in the coefficient matrices no longer
contain first harmonic terms but have the lowest frequency content at N,/2 per-rev (i.e. two for a four-bladed
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Fig. 3.8 The rotor disc in multiblade coordinates

rotor). A common approximation is to neglect these terms, hence reducing Eq. (3.51) to a set of ordinary
differential equations with constant coefficients that can then be appended to the fuselage equations of motion
allowing the wide range of linear stationary stability analysis tools to be brought to bear. In the absence of
periodic terms, MBC equations take the form

1+ CaoBly + DyoBy = Hyo(w) (3.55)

where the constant coefficient matrices can be expanded, for a four-bladed rotor, as shown below:

2
10 0 =
3/4
01 0 0
Y
Cw=%|0 0 1 % (3.56)
4 0_&1
M
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842
L0 0 0
Y
847
v 0o — 0 0
7 14
Dy, = 5|4 8(}% — 1 r (3.57)
p 0 —2 Ll
3 y 5
2\ 8(42—-1)
0O 0 -— <1 — 'M_> s
2 Y
[ 1 W, 4 4 2 1
00(1 + ”2) + 40tw <§ + F) + gl’lglsw + §(”z - /10) + §ﬂ(phw - ’11sw)
0
o7 16 (= s (3.58)
MO 8 —\ P+ T + chw I+ ? + @hw - ﬂlcw) ’
4
—
16 [ — p 8 3 _
_7 (qhw - %) 5“0() + 2/’191»1/ + Hlsw (1 + 5”2) + ZM(MZ - /10) + (phw - /llsw)
The blade pitch angle and downwash functions have been written in the form
b, =0y +0,.cosy + 0, ;siny (3.59)
A=Ay +71,(4.cosy + A siny) (3.60)

Some physical understanding of the MBC dynamics can be gleaned from a closer examination of the hover
condition. The free response of the MBC then reveals the coning and differential coning as independent,
uncoupled, DoFs with damping y/8 and natural frequency 4,4, or approximately one-per-rev. The cyclic mode
equations are coupled and can be expanded as

B+ Ll o+ 2 =D+ 20+ Lp =0 (.6

|4 4
ﬂig+gﬁ;s+(ﬂz_ l)ﬁls_zﬂiv'i'gﬁlc:() (362)
The eigenvalues of this cyclic flapping system are given by the roots of the following equation, and are shown
sketched in Figure 3.9:

.y 5 2 7\2
(P+lasaz-1) +(2a+1) =0 (3.63)
8 A 8
The two modes have been described as the flap precession (or regressing flap mode) and nutation (or advanc-
ing flap mode) to highlight the analogy with a gyroscope; both have the same damping factor as the coning
mode but their frequencies are widely separated, the precession lying approximately at (45 — 1) and the nuta-
tion well beyond this at (4, + 1). While the nutation flap mode is unlikely to couple with the fuselage motions,
the regressing flap mode frequency can be of the same order as the highest frequency fuselage modes. An
often-used approximation to this mode assumes that the inertia terms are zero and that the simpler, first-order
formulation is adequate for describing the rotor flap as described in Chapter 2 (Eq. (2.40)). The motion tends
to be more strongly coupled with the roll axis because of the lower time constant associated with roll than
with pitch motion. The roll to pitch time constants are scaled by the ratio of the roll to pitch moment of iner-
tia, a parameter with a typical value of about 0.25. We shall return to this approximation later in this chapter
and in Chapter 5.



90

©

Helicopter and Tiltrotor Flight Dynamics

-3 1 (4)

-
>l

advancing
flap

regressing
flap

L
-2 -1_m 1 2
regressing Re(4)
flap

./

Fig. 3.9 Eigenvalues of a multiblade coordinate rotor system

The differential coning is of little interest to us, except in the reconstruction of the individual blade
motions; each pair of blade exerts the same effective load on the rotor hub, making this motion reactionless.
Ignoring this mode, we see that the quasi-steady motion of the coning and cyclic flapping modes can be

derived from Eq. (3.55) and written in vector—matrix form as

By = DyHysg

or expanded as
By = A0+ Ap M+ Ap,0

where the subvectors are defined by
By = {By. Bie» By}
0= {605 etw’ glsw’ Blcw}
A= {(ﬂz - /10)7 A]sw’ A’lcw}
— — — —_
@ = {phw’ Qhws Phws qhw}
and the coefficient matrices can be written as shown in Eqgs. (3.70), (3.71), and (3.72). Here

1

=TT
1+Sﬂ

(3.64)

(3.65)

(3.66)
(3.67)
(3.68)
(3.69)

These quasi-steady flap equations can be used to calculate rotor trim conditions to O(u?) and to approximate

the rotor dynamics associated with low-frequency fuselage motions.
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In this way, the concept of flapping derivatives comes into play. These were introduced in Chapter 2 and
examples were given in Eqs. (2.29)—(2.32); the primary flap control response and damping in the hover were

derived as
0B _ OBy _ 1

06, 0. 1+S
9B, _ 9y, 1 16
—_— = Sﬂ + —

og dp 1+S2

showing the strong dependence of rotor flap damping on Lock number, compared with the weak dependence
of flap response due to both control and shaft angular motion on rotor stiffness. To emphasise the point, we
can conclude that conventional rotor types, from teetering to hingeless, all flap in much the same way. Of
course, a hingeless rotor will not need to flap nearly as much and the pilot might be expected to make smaller
control inputs than with an articulated rotor, to produce the same hub moment and hence to fly the same
manoeuvre.

The coupled rotor-body motions, whether quasi-steady or with first- or second-order flapping dynamics,
are formed from coupling the hub motions with the rotor and driving the hub, and hence the fuselage, with
the rotor forces. The expressions for the hub forces and moments in MBC form will now be derived.

Rotor Forces and Moments
Returning to the fundamental frames of reference given in Section 3A, in association with Figure 3.10, we
note that the hub forces in the hub-wind frame can be written as

R
N,
X =D, / {=(f, — ma,),B; cos w; — (f, — may,); siny; + ma, cos y, }dr, (3.73)
=17
N, K
Y,, = Z /{(fz —may,),p; siny; — (fy - mayb)[- cos y; — ma,, siny; }dr, (3.74)
i=1 0
NI: R
Zp = / (f, = may, + ma,,p)dr, (3.75)
i=1
0

The expressions for the inertial accelerations of the blade element are derived in Section 3A. The aerodynamic
loading is approximated by a simple lift and drag pair, with overall inflow angle assumed small, so that

fo=—Ccos¢p—dsing ~ - —d¢ (3.76)
fy=dcosp—Csing~d—C (3.77)
-ma,,
s 7
M
’ \v){?& (f,-mae)
cR- (—fz‘mazb)

Fig. 3.10 The forces and moments acting on a rotor hub
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Performing the integrations analytically using the approximations derived in Eqgs. (3.21) and (3.22), we may
write the forces in coefficient form as

<2Cxw > — th
4o$ % P(QR)?7R*sa,

Ny
_ 1% 3 FO@p cosy; + O siny, (3.78)
b =1

()t
do$ 1 p(QR)zerzsao

Nb
= Y O sinw, + FOy)cos v, (3.79)
N, i=1
2C.,, Z,, N 2C
( z > - o _ 1% Z —F(y) = — <_T> (3.80)
ays EP(QR)Z”RZS% b = ays
where ]
2 _ _
FOy) = —/{UTGi + UpUy}dr, (3.81)
is the lift or normal force, and
1 —2
2 — — — 6Up| _
Foy,) = - UpUr6,+Up — p dr, (3.82)
0

0

is the in-plane force, comprising an induced and profile drag component. The rotor solidity s is defined as

= Nic (3.83)
S = ”R .

The F functions can be expanded to give the expressions

FO@) = (3 + psiny + p’sin 1//) 0, + (‘l‘ + gMsinl//+ %yzsinzll/)@w

3
1 sin _
+ §+“2"’>(w},—/11—ﬂ’)
1
+ (E +u smw) (4. — dg — Prcosy) (3.84)
Susing) @ #)

a!
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— Pucosy)@, — 4, — )

+(u, — Ay — Bucosw)’ + (u, — Ay

@, -4 =FY 5 /1 , 202

+———<—+y51nw+MSIHW)
3 ag \3

(3.85)

This pair of normal and in-plane forces will produce vibratory (i.e. harmonics of rotorspeed) and quasi-steady
loads at the hub. The quasi-steady components in the hub—wind axes system are of chief interest in flight
dynamics and can be derived by expanding the loads in the rotating system, given by Eqgs. (3.84) and (3.85)

up to second harmonic; thus
FOy) =
FOw) =

Using Eqgs (3.78)—(3.80), we may write the hub force coefficients as

(1) (1) (1)
_2CXW — FL + FZC ﬁ + iﬁ
a,s 2 4 tewt 5Pt

2C,, 2C
()~
610S Ll()S

where the harmonic coefficients are given by the expressions

2 b -y
a _ 1wy u Phw M.~ 4o
Fb—%<3+2)+2<ﬂw+2>+( -

(alcw 4 tew  Zlow elcw ﬂlsw

2 — #bo

2
Fis) - _ﬂ()ﬁ]m < ﬂlcw

(a]m 013%

u
Zﬂlcw>

a SWV_HS‘V
+6, (% + (s, — Ag) —

a, 0,,, + ,B
F(l) — _ﬁ Tlsw 1sw lew _tw
2% 5 2 +—+tu 90 + >

F(l)
ﬂlrw

(1)

2C,, Fg” F(l) R
()= (e

u
Zﬂlsw(alcw

Xpsw — elsw H ﬁlcwﬂ
o (B 8 ()

H,o— Ao 3 _ Bi.
+ alsw <ZT +u <§(phw - /llsw 4

H 5hw - j’l(w 5/4
+ Zalcw <T - ﬁlsw ”ﬁ0> - a_O

)

(1) (1) (D) o; (1) (1) o;
Fy o+ F cosy + F  siny + F, ' cos2y + F,’ sin 2y

(2) (2) (2) o; (2) (2) o;
Fy o+ F cosy + F ' siny + F, " cos 2y + F, sin 2y

) 14420,

- elcw)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)
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Fizc) = (@10 = O = 2B 1) (P‘z =4y — %Hﬁlcw> - %ﬁlsw(alsw = 015)
+0, <(x1cw ; Orow g (/30 + gﬂmv))
(1t (52

He=4o p (Pp =
+010w< Z2 _Z<MTSW_'BICW

ZI w A cow
+ _glsw (% - ﬁlsw - ﬂﬁo) (3.97)

The effective blade incidence angles are given by

X = l_)hw - 1lsw + ﬂlcw + elsw (398)
Aoy = C_Ihw - /llcw - ﬂlxw + elcw (399)

The foregoing expressions for the rotor forces highlight that in the nonrotating hub—wind—shaft axes system,
a multitude of physical effects combine to produce the resultants. While the normal force, the rotor thrust, is
given by a relatively simple equation, the in-plane forces are very complex indeed. However, some physical
interpretation can be made. The F, (()1) Py and F ilc) f, components are the first harmonics of the product of the
lift and flapping in the direction of motion and represent the contribution to X and Y from blades in the fore
and aft positions. The terms F' 52‘) and F ﬁ) represent the contributions to X and Y from the induced and profile
drag acting on the advancing and retreating blades. In hover, the combination of these effects reduces to the
simple result that the in-plane contributions from the blade lift forces cancel, and the hub forces are given
entirely by the tilt of the rotor thrust vector, i.e.

Cyw = CrBiey (3.100)
Cyw = _CTﬂlxw (3101)

The assumption that the rotor thrust is normal to the disc throughout the flight envelope provides a common
approximation in helicopter flight dynamics, effectively ignoring the many small contributions of the blade
lift to the rotor in-plane forces given in the above equations. The approximation fails to model many effects,
however, particularly in lateral trims and dynamics.

As an illustration, Figure 3.11a shows a comparison of the rotor Y force in trim as a function of flight
speed for the Helisim Bo105; the disc tilt approximation is grossly in error. The corresponding lateral cyclic
comparison is shown in Figure 3.11b, indicating that the effect of the approximation on lateral trim is less
significant. The disc tilt approximation is weakest in manoeuvres, particularly for teetering rotors or articu-
lated rotors with small flapping hinge offsets, when the damping moment is dominated by the rotor lateral
force rather than the hub moments.

The most significant of the 3.90 series of equations is the first, the zeroth harmonic rotor thrust that
appears in normalised form in Eq. (3.90) itself. This simple equation is one of the most important in helicopter
flight dynamics, and we will return to it for more discussion when we explore the rotor downwash in the next
section. To complete this rather lengthy derivation of the rotor forces and moments, we need to orient the
hub—wind force components into shaft axes and derive the hub moments.

Using the transformation matrix derived in the Section 3A.4, namely

A [cgs w, —sin ww] (3.102)
sy, Ccosy,,
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Fig. 3.11 Rotor side force and lateral cyclic variations in trimmed flight: (a) rotor side force (Bo105); (b) lateral
cyclic pitch (Bo105)

we can write the X, Y forces in the shaft axes system aligned along the fuselage nominal plane of symmetry,

o=l

X = A xw

[Cy Cyw

The rotor hub roll (L) and pitch (M) moments in shaft axes, due to the rotor stiffness effect, are simple linear
functions of the flapping angles in MBCs and can be written in the form

(3.103)

N

L, = —7”1(1,/313 (3.104)
N

M, = 7’3 3P (3.105)

The disc flap angles can be obtained from the corresponding hub—wind values by applying the transformation

ﬂlc — ﬁlcw
|:ﬂ1x:| =4 I:ﬂlsw:|

The hub stiffness can be written in terms of the flap frequency ratio, i.e.

(3.106)

_ 2 2
Ky = (22— DI,Q

showing the relationship between hub moment and flap frequency (cf. Eq. (3.32)). The equivalent K, for a
hingeless rotor can be three to four times that for an articulated rotor, and it is this amplification, rather than
any significant difference in the magnitude of the flapping for the different rotor types, that produces the
greater hub moments with hingeless rotors.
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Rotor Torque

The remaining moment produced by the rotor is the rotor torque and this produces a dominant component
about the shaft axis, plus smaller components in pitch and roll due to the inclination of the disc to the plane
normal to the shaft. Referring to Figure 3.10, the torque moment, approximated by the yawing moment in
the hub—wind axes, can be obtained by integrating the moments of the in-plane loads about the shaft axis

N,

R
N, =) / ry(f, = may,)dr, (3.107)
i=1
0

We can neglect all the inertia terms except the accelerating torque caused by the rotor angular acceleration,
hence reducing Eq. (3.107) to the form,

N,
Ny=Y /{r,,(d — £¢)}dr, + [,Q (3.108)
i=1 0

where I, is the moment of inertia of the rotor blades and hub about the shaft axis, plus any additional rotating
components in the transmission system. Normalizing the torque equation gives

N 2C I _
o _Te,2 (_R >g' (3.109)
SPQRP TR say  Gos ¥ \Nplp

where

Q== (3.110)

and the aerodynamic torque coefficient can be written as

1
2C, _ ) _

0 — 6 =2 _ 2 Or
_— = U,U0+U,— —U, | dr,= — _— 3.111
ags [rb < pUT0* O a T> g <a0s> <P(QR)27TR3> ( )

where Qj, is the rotor torque.

The above expression for torque can be expanded in a similar manner to the rotor forces earlier in this
chapter. The resulting analysis and formulation is extensive and unwieldy, and a considerably simpler, but
very effective, approximation can be derived by rearranging the terms in Eq. (3.111) as follows.

Writing Eq. (3.24) in the alternative approximate form

7, ~ Up — usiny (3.112)
we may express the rotor torque in the form
1 _ 1
2C, — . Up—_ = -
— :—/(UT—,usmu/)_—frb+/rbddrb (3.113)
aygs ) UT 0

where the normalised aerodynamic loads are given by the expressions

[ — ) — —
£=U,0+U,U,, d=2U, (3.114)
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The three components of torque can then be written as

’C 1 1 _ 1
_ — Up _
e __ /U,fd?b + ,usinu//ﬁ— dr, [+ /7bdd7b (3.115)
0

ays
0 0

Expanding Eq. (3.115) and making further approximations to neglect small terms leads to the final equation
for rotor aerodynamic torque, comprising the induced terms formed from the product of force and velocity
and the profile torque, namely

2C 2
e Y —(yz—/lo)<2CST>+ﬂ< & >+—(1+3M) (3.116)

apS dy aps 4a,

The rotor disc tilt relative to the shaft results in components of the torque in the roll and pitch directions. Once
again, only one-per-rev roll and pitch moments in the rotating frame of reference will transform through as
steady moments in the hub—wind axes. Neglecting the harmonics of rotor torque, we see that the hub moments
can therefore be approximated by the orientation of the steady torque through the one-per-rev disc tilt

Lyo = _ = b (3.117)

%ﬂ“ (3.118)

My, = )

‘We shall return to the discussion of hub forces and moments later in Section 3.4 and Chapter 4. We still have
considerable modelling ground to cover however, not only for the different helicopter components but also
with the main rotor to cover the details of the ‘inner’ dynamic elements. First, we take a closer look at rotor
inflow.

Rotor Inflow

The rotor inflow is the name given to the flowfield induced by the rotor at the rotor disc, thus contributing to the
local blade incidence and dynamic pressure. In general, the induced flow at the rotor consists of components
due to the shed vorticity from all the blades, extending into the far wake of the aircraft. To take account
of these effects fully, a complex vortex wake, distorted by itself and the aircraft motion would need to be
modelled. We shall assume that for flight dynamics analysis it is sufficient to consider the normal component
of inflow, i.e. the rotor-induced downwash. We shall also make several gross assumptions about the rotor and
the character of the fluid motion in the wake to derive relatively simple formula for the downwash. The use of
approximations to the rotor wake for flight dynamics applications has been the subject of two comprehensive
reviews of rotor inflow (Refs. 3.9, 3.10), which deal with both quasi-static and dynamic effects; the reader is
directed towards these works to gain a deeper understanding of the historical development of inflow modelling
within the broader context of wake analysis. The simplest representation of the rotor wake is based on actuator
disc theory, a mathematical artefact effectively representing a rotor with infinite number of blades, able to
accelerate the air through the disc and to support a pressure jump across it. We begin by considering the rotor
in axial flight.

Momentum Theory for Axial Flight

Figures 3.12 a—c illustrate the flow states for the rotor in axial motion, i.e. when the resultant flow is always
normal to the rotor disc, corresponding to hover, climbing or descending flight. The flow is assumed to be
steady, inviscid, and incompressible with a well-defined slipstream between the flowfield generated by the
actuator disc (i.e. streamtube extending to infinity) and the external flow. Physically, this last condition is
violated in descending flight when the flow is required to turn back on itself; we shall return to this point
later. A further assumption we will make is that the pressure in the far wake returns to atmospheric. These
assumptions are discussed in detail by Bramwell (Ref. 3.6) and Johnson (Ref. 3.7), and will not be laboured
here. The simplest theory that allows us to derive the relationship between rotor thrust and torque and the
rotor inflow is commonly known as momentum theory, utilizing the conservation laws of mass, momentum,
and energy. Our initial theoretical development will be based on the global momentum theory, which assumes

a!
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Fig. 3.12 Rotor flow states in axial motion: (a) hover; (b) climb; (c) descent

that the inflow is uniformly distributed over the rotor disc. Referring to Figure 3.12, we note that 7 is the
rotor thrust, v the velocity at various stations in the streamtube, v; the inflow at the disc, V, the climb velocity,
and V, the rotor descent velocity.

First, we shall consider the hover and climb states (Figure 3.12a, b). If 7iz is the mass flow rate (constant
at each station) and A, the rotor disc area, then we can write the mass flow through the rotor as

= pA,V, +v,) (3.119)

The rate of change of momentum between the undisturbed upstream conditions and the far wake can be
equated to the rotor loading to give

T =i(V, +v, ) =V, = iw,_ (3.120)

where v; is the induced flow in the fully developed wake.
The change in kinetic energy of the flow can be related to the work done by the rotor (actuator disc);
thus
1. 2 1. ., 1. 2
T(V.+v;, )= Em(VC +v ) - EmVC = Em(ZVCvioo + viw) (3.121)

From these relationships we can deduce that the induced velocity in the far wake is accelerated to twice the
rotor inflow, i.e.

v, =2, (3.122)
The expression for the rotor thrust can now be written directly in terms of the conditions at the rotor disc;
hence

T =2pA, (V. +v)v; (3.123)
Writing the inflow in normalised form
Vi

we may express the hover-induced velocity (with V,=0) in terms of the rotor thrust coefficient, C, i.e.

c
v, = T or Ay, =1/ = (3.125)
hover 2 . Ad 2

The inflow in the climb situation can be written as

Cr
A= — (3.1206)
2p, + 1)
or, derived from the positive solution of the quadratic
A=+ A)A; (3.127)

a!
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as
2
A= —% + [(%) + ,lfh] (3.128)
where
VC
b= o (3.129)

The case of vertical descent is more complicated. Strictly, the flow state satisfies the requirements for the
application of momentum theory only in conditions where the wake is fully established above the rotor and
the flow is upwards throughout the streamtube. This rotor condition is called the windmill brake state, in
recognition of the similarity to a windmill, which extracts energy from the air (Figure 3.12c). The work done
by the rotor on the air is now negative and, following a similar analysis to that for the climb, the rotor thrust
can be written as

T =2pA;(V; = v)v; (3.130)
The inflow at the disc in the windmill brake state can therefore be written as
P (ﬂ)z_iz (3.131)
T2 2 ih :
where
_ Va (3.132)
Ha = Qr '

The physical solutions of Eqs. (3.128) and (3.131) are shown plotted as the full lines in Figure 3.13. The
dashed lines correspond to the ‘unrealistic’ solutions. These solutions include descent rates from hover
through to the windmill brake condition, thus encompassing the ideal autorotation condition when the inflow
equals the descent rate. This region includes the vortex-ring condition where the wake beneath the rotor
becomes entrained in the air moving upwards relative to the rotor outside the wake and, in turn, becoming
part of the inflow above the rotor again. This circulating flow forms a toroidal-shaped vortex, which has a
very nonuniform and unsteady character, leading to large areas of high inflow in the centre of the disc and
stall outboard. The vortex-ring condition is not amenable to modelling via momentum considerations alone.
However, there is evidence that the mean inflow at the rotor can be approximated by a semi-empirical shaping
function linking the helicopter and windmill rotor states shown in Figure 3.13. The linear approximations
suggested by Young (Ref. 3.11) are shown in the figure as the chain dotted lines, and these match the test data
gathered by Castles and Gray in the early 1950s (Ref. 3.12) reasonably well. Young’s empirical relationships
take the form

_ Ha
,1,._,1ih<1+/1—_>, 0<—py <152, (3.133)

Ip

_ Ha
A=A <7 - 3/1_.) =15 < —pg <24, (3.134)

tp

One of the important features of approximations like Young’s is that they enable an estimate of the induced
velocity in ideal autorotation to be derived. It should be noted that the dashed curve obtained from the momen-
tum solution in Figure 3.13 never actually crosses the autorotation line. Young’s approximation estimates that

the autorotation line is crossed at u
d

2.

Iy

=1.8 (3.135)

As pointed out by Bramwell (Ref. 3.6), the rotor thrust in this condition equates to the drag of a circular
plate of the same diameter as the rotor, i.e. the rotor is descending with a rate of descent similar to that of a
parachute. We return to the modelling of vortex ring state in the context of tiltrotor aircraft Chapter 10.
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Fig. 3.13 Momentum theory solutions for rotor inflow in axial flight

Momentum Theory in Forward Flight

In high-speed flight, the downwash field of a rotor is like that of a fixed-wing aircraft with circular planform
and the momentum approximations for deriving the induced flow at the wing apply (Ref. 3.13). Figure 3.14
illustrates the flow streamtube, with freestream velocity V at angle of incidence « to the disc, and the actuator
disc inducing a velocity v; at the rotor. The induced flow in the far wake is again twice the flow at the rotor
(wing) and the conservation laws give the mass flux as

m = pA,V,, (3.136)
and hence the rotor thrust (or wing lift) as

T =m2v; = 2pA,V,v; (3.137)
where the resultant velocity at the rotor is given by

V2 = (Vcosa,)? + (Vsina, + v, (3.138)

Normalizing velocities and rotor thrust in the usual way gives the general expression
Cr

24/ + (4 = )]

A=

(3.139)

rotor
disc

2v; t

Fig. 3.14 Flow through a rotor in forward flight
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where
Vecosa,

Vsina,
= Tar

QR

TR (3.140)

and where a, is the disc incidence, shown in Figure 3.14. Strictly, Eq. (3.139) applies to high-speed flight,
where the downwash velocities are much smaller than in hover, but the solution also reduces to the cases of
hover and axial motion in the limit when g = 0. In fact, this general equation is a reasonable approximation to
the mean value of rotor inflow across a wide range of flight conditions, including steep descent, and provides
an estimate of the induced power required.

Summarizing, we see that the rotor inflow can be approximated in hover and high-speed flight by the
formulae

T
V=0, v = 3.141
K <2Adl’> ( )

T
V>v, v = 3.142
>V, v VA ( )

showing the dependence on the square root of disc loading in hover, and proportional to disc loading in
forward flight.

Between hover and u values of about 0.1 (about 40 knots for Lynx), the mean normal component of the
rotor wake velocities is still high, but now gives rise to strong nonuniformities along the longitudinal, or, more
generally, the flight axis of the disc. Several approximations to this nonuniformity were derived in the early
developments of rotor aerodynamic theory using the vortex form of actuator disc theory (Refs. 3.14-3.16).
It was shown that a good approximation to the inflow could be achieved with a first harmonic with a linear
variation along the disc determined by the wake angle relative to the disc, given by

;
A=Ay + E”AW cosy,, (3.143)
where
X T
AMew = /lotan<3>, x < 5
X T
Ay = Ay ot (5) x> (3.144)
and the wake angle, y, is given by
x =tan”! ( s > (3.145)
/10 —H;

where 4 is the uniform component of inflow as given by Eq. (3.139).

The solution of Eq. (3.144) can be combined with that of Eq. (3.139) to give the results shown in
Figure 3.15 where, again, a, is the disc incidence and V is the resultant velocity of the free stream relative
to the rotor. The solution curves for the (nonphysical) vertical descent cases are included. The nonuniform
component is approximately equal to the uniform component in high-speed straight and level flight, i.e. the
inflow is zero at the front of the disc. In low-speed steep descent, the nonuniform component varies strongly
with speed and is also of similar magnitude to the uniform component. Longitudinal variations in blade
incidence lead to first harmonic lateral flapping and hence rolling moments. Flight in steep descent is often
characterised by high vibration, strong and erratic rolling moments and, as the vortex-ring region is entered,
loss of vertical control power and high rates of descent (Ref. 3.17). The simple uniform/nonuniform inflow
model given above begins to account for some of these effects (e.g. power settling, Ref. 3.18) but cannot be
regarded as a proper representation of either the causal physics or flight dynamics effects; in particular, the
dramatic loss of control power caused by the build-up of the toroidal vortex ring is not captured by the simple
model, and recourse to empiricism is required to model this effect.
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Fig. 3.15 General inflow solution from momentum theory

An effective analysis to predict the boundaries of the vortex-ring state, using momentum theory, was
conducted in the early 1970s (Ref. 3.19) and extended in the 1990s using classical vortex theory (Ref. 3.20).
Wolkovitch’s results are summarised in Figure 3.16, showing the predicted upper and lower boundaries as a
function of normalised horizontal velocity; the so-called region of roughness measured previously by Drees
(Ref. 3.21) is also shown. The parameter k shown on Figure 3.16 is an empirical constant scaling the down-
ward velocity of the wake vorticity. The lower boundary is set at a value of k< 2, i.e. before the wake is
fully contracted, indicating breakdown of the protective tube of vorticity a finite distance below the rotor.
Knowledge of the boundary locations is valuable for including appropriate flags in simulation models (e.g.
Helisim). Once again, though, the simple momentum and vortex theories are inadequate at modelling the
flow and predicting flight dynamics within the vortex-ring region. We shall return to this topic in Chapters 4
and 5 when discussing trim and control response, and later in Chapter 10 relating to tiltrotor aircraft.

The momentum theory used to formulate the expressions for the rotor inflow is strictly applicable only
in steady flight when the rotor is trimmed and in slowly varying conditions. We can, however, gain an appre-
ciation of the effects of inflow on rotor thrust during manoeuvres through the concept of the lift deficiency
function (Ref. 3.7). When the rotor thrust changes, the inflow changes in sympathy, increasing for increas-
ing thrust and decreasing for decreasing thrust. Considering the thrust changes as perturbations on the mean
component, we can write

8C, =6C, + 9Cr kY (3.146)
T = %7y EYS 0s i .
where, from the thrust equation (Eq. (3.91))
oC ans
(—T> =-2 (3.147)
94; ) os 4



104

©

Helicopter and Tiltrotor Flight Dynamics

rate of
descent
parameter, k = 1.0: upper boundary
V sin Vv,

T T

< _i lower boundary
with k = 1.54

1.0
lower boundary
with k = 1.41

N N

region of roughness from
flow visualization

1.0 20

20

o

horizontal velocity parameter, V cos y/v,

Fig. 3.16 Vortex-ring boundaries (Ref. 3.19)

and where the quasi-steady thrust coefficient changes without change in the inflow. If the inflow changes are
due entirely to thrust changes, we can write

a4,
64 = 55 C (3.148)
T

The derivatives of inflow with thrust have simple approximate forms at hover and in forward flight

04, 1
—=—, u=0 (3.149)
aC; 44
04; 1
—x—, u>02 (3.150)
oCr  2u

Combining these relationships, we can write the thrust changes as the product of a deficiency function and
the quasi-steady thrust change, i.e.

o
6C,=C SCTQS (3.151)
where 1
C' = — Qs M= 0 (3.152)
1+
164,
and !
C = —Q H> 0.2 (3.153)
0
1+ —
8u

Rotor thrust changes are therefore reduced to about 60—70% in hover and 80% in the mid-speed range, by the
effects of inflow. This would apply, for example, to the thrust changes due to control inputs. It is important
to note that these deficiency functions do not apply to the thrust changes from changes in rotor velocities. In
particular, when the vertical velocity component changes, there are additional inflow perturbations that lead
to even further lift reductions. In hover, the deficiency function for vertical velocity changes is half that due
to collective pitch changes, i.e.

C = ¢

w5 u=0 (3.154)

a!
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In forward flight, the lift loss is recovered and Eq. (3.151) also applies to the vertical velocity pertur-
bations. This simple analysis demonstrates how the gust sensitivity of rotors increases strongly from hover
to mid-speed, but levels out to the constant quasi-steady value at high speed (see discussion on vertical gust
response in Chapter 2).

Because the inflow depends on the thrust and the thrust depends on the inflow, an iterative solution is
required. Defining the zero function g, as

8o = /10 - m (3155)
where
A=p*+ (g — ) (3.156)

and recalling that the thrust coefficient can be written as (Eq. (3.91))

as 1 1\ H Py A 2
=— (6, =+ —= i — =1 0 3.157
CT 2 <0<3+2>+2<1m+2>+( 2 +4( +M)[w ( )

Newton’s iterative scheme gives

Ao, = Ao, +1ii(A) (3.158)
where
8o )
ho=—(—29 (3.159)
! <dgo/d/10 d=dg,
i.e.
(249 A2 = CpA
hy=— ’ (3.160)

ags
202 + %A = Crp, = 4p)

For most flight conditions, the above scheme should provide rapid estimates of the inflow at time 7, from
a knowledge of conditions at time ;. The stability of the algorithm is determined by the variation of the
function g, and the initial value of A,. However, in certain flight conditions near the hover, the iteration can
diverge, and the damping constant fis included to stabilise the calculation; a value of 0.6 for f appears to be
a reasonable compromise between achieving stability and rapid convergence (Ref. 3.4).

A further approximation involved in the above inflow formulation is the assumption that the freestream
velocity component normal to the disc (i.e. V sin a,) is the same as . This is a reasonable approximation
for small flapping angles, and even for the larger angles typical of low-speed manoeuvres the errors are
small because of the insensitivity of the inflow to disc incidence (see Figure 3.15). The approximation is
convenient because there is no requirement to know the disc tilt or rotor flapping relative to the shaft to
compute the inflow, hence leading to a further simplification in the iteration procedure.

The simple momentum inflow derived above is effective in predicting the gross and slowly varying
uniform and rectangular, wake-induced, inflow components. In practice, the inflow distribution varies with
flight condition and unsteady rotor loading (e.g. in manoeuvres) in a much more complex manner. Intuitively,
we can imagine the inflow varying around the disc and along the blades, continuously satisfying local flow
balance conditions and conservation principles. Locally, the flow must respond to local changes in blade
loading, so if, for example, there are one-per-rev rotor forces and moments, we might expect the inflow to
be related to these. We can also expect the inflow to take a finite time to develop as the air mass is accel-
erated to its new velocity. Also, the rotor wake is far more complex and discrete than the uniform flow in a
streamtube assumption of momentum theory. It is known that local blade—vortex interactions can cause very
large local perturbations in blade inflow and hence incidence. These can be sufficient to stall the blade in
certain conditions and are important for predicting rotor stall boundaries and the resulting flight dynamics at
the flight envelope limits. We shall return to this last topic later in the discussion on advanced, high-fidelity
modelling. Before leaving inflow, however, we shall examine the theoretical developments needed to improve
the prediction of the nonuniform and unsteady components.

a!
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Local-Differential Momentum Theory and Dynamic Inflow

We begin by considering the simple momentum theory applied to the rotor disc element shown in Figure 3.17.
We make the gross assumption that the relationship between the change in momentum and the work done by
the load across the element applies locally as well as globally, giving the equations for the mass flow through
the element and the thrust differential as shown in Egs. (3.161) and (3.162).

dm = erbdrhd(// (3.161)
dT = dm2v; (3.162)

Using the two-dimensional blade element theory, these can be combined into the form

Ny (1 T T _ 2 N1/2

7 <2paoc(9UT + UTUp)drbdy/> =2pr,(u” + (A; — p)7)/~A;dry dy (3.163)
Integrating around the disc and along the blades leads to the solution for the mean uniform component of
inflow derived earlier. If, instead of averaging the load around the disc, we apply the momentum balance
to the one-per-rev components of the load, and inflow, then expressions for the nonuniform inflow can be
derived. Writing the first harmonic inflow in the form

A= Ay + 7, (A cosy + A siny) (3.164)

Eq. (3.163) can be expanded to give a first harmonic balance, which, in hover, results in the expressions

3aps 1 )
= 3.165
€716 4, ' ( )
and 3
aps 1
=V _F 3.166
BTO16 4y (3.166)

where the F loadings are given by Egs. (3.92) and (3.93). These one-per-reyv lift forces are closely related to
the aerodynamic moments at the hub in the nonrotating fuselage frame — the pitching moment C,,, and the
rolling moment C, , i.e.

2C

e —§F§‘> (3.167)
ays 8

2C

oma _ 3 FO (3.168)
ayS g ¢

These hub moments are already functions of the nonuniform inflow distributions; hence, just as with the
rotor thrust and the uniform inflow, we find that the moments are reduced by a similar moment deficiency

Sn

Fig. 3.17 Local momentum theory applied to a rotor disc
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factor
C= Cg Craos (3.169)
Cyvta = €\ Chags (3.170)

where, as before, the deficiency factors are given by

1
r_
C = l—aos (3.171)
164,
in hover, with typical value 0.6, and
1
r_
C = —ags (3.172)
14+ —
8u

in forward flight, with typical value of 0.8 when y = 0.3. In hover, the first harmonic inflow components given
by Eqgs. (3.165) and (3.166) can be expanded as

b= C -2 0, ~ pr,+7) (3.173)
e = 116/10 le 1s T4 .

A —C’—aos @,.+ p,.+D) (3.174)
Is = 116/10 Is e TP .

As the rotor blade develops an aerodynamic moment, the flowfield responds with the linear, harmonic dis-
tributions derived above. The associated deficiency factors have often been cited as the cause of mismatches
between theory and test (Refs. 3.9, 3.22-3.29), and there is no doubt that the resulting overall effects on flight
dynamics can be significant. The assumptions are fragile, however, and the theory can, at best, be regarded as
providing a very approximate solution to a complex problem. Developments with more detailed spatial and
temporal inflow distributions are likely to offer even higher fidelity in rotor modelling (see Pitt and Peters,
Ref 3.26, and articles by Peters et al., Refs. 3.27-3.29).

The inflow analysis outlined above has ignored any time dependency other than the quasi-steady effects
and harmonic variations. In reality, there will always be a transient lag in the build-up or decay of the inflow
field; in effect, the flow is a dynamic element in its own right. An extension of momentum theory has also
been made to include the dynamics of an apparent mass of fluid, first by Carpenter and Fridovitch in 1953
(Ref. 3.30). To introduce this theory, we return to axial flight; Carpenter and Fridovitch suggested that the
transient inflow could be taken into account by including an accelerated mass of air occupying 63.7% of the
air mass of the circumscribed sphere of the rotor. Thus, we write the thrust balancing the mass flow through
the rotor to include an apparent mass term

T= 0.637,)%7:13%,. +24,0v,(V, +v,) (3.175)

To understand how this additional effect contributes to the motion, we can linearise Eq. (3.175) about a steady
hover trim; writing

h=d, +6k, (3.176)
and
Cr=Cp, +6Cr (3.177)
the perturbation equation takes the form
Tydi+ 64 = A, 6Cy (3.178)

where the time constant and the steady-state inflow gain are given by

0.849 I
7= . A, = (3.179)

Lrim Lirim
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For typical rotors, moderately loaded in the hover, the time constant for the uniform inflow works out at about
0.1 s. The time taken for small adjustments in uniform inflow is therefore very rapid, according to simple
momentum considerations, but this estimate is clearly a linear function of the apparent mass. Since this early
work, the concept of dynamic inflow has been developed by several researchers, but it is the work of Peters,
stemming from the early Ref. 3.23 and continuing through to Ref. 3.29, that has provided the most coherent
perspective on the subject from a fluid mechanics standpoint. The general formulation of a 3-DoF dynamic
inflow model can be written in the form

AO ’10 CT
[M]4 4y, ¢ +|L A =3CL (3.180)
j'lc /110 CM

The matrices M and L are the apparent mass and gain functions, respectively; C;, C,, and C,, are the thrust,
rolling, and pitching aerodynamic moment perturbations inducing the uniform and first harmonic inflow
changes. The mass and gain matrices can be derived from several different theories (e.g. actuator disc, vortex
theory). Peters has extended the modelling to an unsteady three-dimensional finite-state wake (Ref. 3.29),
which embraces the traditional theories of Theordorsen and Lowey (Ref. 3.31). Dynamic inflow will be
discussed again in the context of stability and control derivatives in Chapter 4, and the reader is referred to
Refs. 3.28 and 3.29 for full details of the aerodynamic theory.'

Before discussing additional rotor dynamic DoFs and progressing on to other helicopter components,
we return to the centre-spring model for a further examination of its merits as a general approximation.

Rotor Flapping—Further Considerations of the Centre-Spring Approximation

The centre-spring equivalent rotor (CSER), a rigid blade analogue for modelling all types of blade flap
retention systems, was originally proposed by Sissingh (Ref. 3.32) and has considerable appeal because of
the relatively simple expressions, particularly for hub moments, that result. However, even for moderately
stiff hingeless rotors like those on the Lynx and Bo105, the blade shape is rather a gross approximation to the
elastic deformation, and a more common approximation used to model such blades is the offset-hinge and
spring analogue originally introduced by Young (Ref. 3.33). Figure 3.18 illustrates the comparison between
the centre-spring, offset-hinge and spring and a typical first elastic mode shape. Young proposed a method
for determining the values of offset-hinge and spring strength, the latter from the nonrotating natural flap
frequency, which is then made up with the offset to match the rotating frequency. The ratio of offset to spring
strength is not unique and other methods for establishing the mix have been proposed; for example, Bramwell

elastic

offset hinge

centre spring

Fig. 3.18 Different approximate models for a hingeless rotor blade

Readers can also refer to David Peters review paper 'How Dynamic Inflow Survives in the Competitive World of
Rotorcraft Aerodynamics, JOURNAL OF THE AMERICAN HELICOPTER SOCIETY 54, 011001 (2009)
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(Ref. 3.34) derives an expression for the offset e in terms of the first elastic mode frequency ratio 4, in
the form

e= 1 (3.181)

with the spring strength in this case being zero. In Reichert’s method (Ref. 3.35), the offset hinge is located by
extending the first mode tip tangent to meet the undeformed reference line. The first elastic mode frequency
is then made up with the addition of a spring, which can have a negative stiffness. Approximate modelling
options therefore range from the centre spring out to Bramwell’s limit with no spring. The questions that
naturally arise are, first, whether these different options are equivalent or what are the important differences
in the modelling of flapping motion and hub moments, and second, which is the most appropriate model for
flight dynamics applications? We will try to address these questions in the following discussion.

We refer to the analysis of elastic blade flapping at the beginning of Chapter 3 and the series of equations
from (3.8) to (3.16), developing the approximate expression for the hub flap moment due to rotor stiffness in

the form
R

MP(0,1) & Q242 = DP, (1) / mrS,dr (3.182)
0

where S| is the first elastic mode shape and P, is the time-dependent blade tip deflection. The ‘mode shape’
of the offset-hinge model, with flap hinge at eR, can be written in the form

S =0 0<r<eR

r—eR
R(1 —¢)

$y(r) = eR<r<R (3.183)

If we substitute Eq. (3.183) into Eq. (3.182), we obtain the hub flap moment

» eRM
M,”(0,1) = QL (45 — D) <1 + 1_> (3.184)
p
where
R R
Iy = / m(r — eR}*dr, M, = / m(r — eR)dr (3.185)
eR eR

and the tip deflection is approximately related to the flapping angles by the linear expression
P, (1) # RB,(t) = R(1 — e)B(1) (3.186)

The expression for the flap frequency ratio 4, can be derived from the same method of analysis used for the
centre-spring model. Thus, the equation for the flapping motion can be written in the form

R
1" 2 eRMﬂ 14 -2 7T = —
B+ AP = <1+ 7 >6x+5/(UT0+UTUP)(rh—e)drb (3.187)
b eR
where, as before
p=
dy
and the Lock number is given by
pcagR*
= (3.188)
Iy
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The in-plane and normal velocity components at the disc are given by (cf. Egs. (3.24) and (3.25))

Uy =7,(1 + @ p) + psiny

UP=yZ—Ao—uﬂcosy/+7b(5y—Al)—(Fb—e)ﬁ' (3.189)
and the combined inertial acceleration function is given by the expression

o, = —2q)siny + (7 +2p)cosy (3.190)

Finally, the flap frequency ratio is made up of a contribution from the spring stiffness and another from the
offset hinge, given by
K, eRM

B=1+—+
s
1,2,

(3.191)

The hub moment given by Eq. (3.184) is clearly in phase with the blade tip deflection. However, a more
detailed analysis of the dynamics of the offset-hinge model developed by Bramwell (Ref. 3.34) reveals that
this simple phase relationship is not strictly true for the offset-hinge model. Referring to Figure 3.19, the hub
flap moment can be written as the sum of three components, i.e.

eR
M©(0,1) = K, — RS, + / F(r,tyrdr (3.192)
0

The shear force at the flap hinge is given by the balance of integrated aerodynamic (F(z, f)) and inertial loads
on the blade; thus

R
S, =- / [F(r, 1) — m(r — eR)f]dr (3.193)
eR

If we assume a first harmonic flap response so that
f=-Qp (3.194)

then the flap moment about the hub centre takes the form

R eR
MD(0,1) = Q2Iy(45 — D) + eR / F(r,ndr + / rF(r,t)dr (3.195)
eR 0
*f(r) dr a,, m(rydr
—
Kb
s
N ,BT a,gmir) dr
H ——»5, b
- e

JAL T

Fig. 3.19 The offset-hinge model of rotorblade flapping
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The third component due to the lift on the flap arm is O(e?) in the hover and will be neglected. The result
given by Eq. (3.195) indicates that the hub moment will be out of phase with blade flapping to the extent that
any first harmonic aerodynamic load is out of phase with flap. Before examining this phase relationship in
a little more detail, we need to explain the inconsistency between Young’s result above in Eq. (3.184) and
the correct expression given by Eq. (3.195). To uncover the anomaly, it is necessary to return to the primitive
expression for the hub flap moment derived from bending theory (cf. Eq. (3.13)):

R
2
MP0,1) = / [F(r, f—m <aa—t;” + 92w>] rdr (3.196)
0

Using Egs. (3.9) and (3.10), the hub moment can then be written in the form

R
R o / mrS,dr R
0

M(r)((),t)=/F(r, t)rdr—ZR—/F(r,z)Sndr

0 =l / mS*dr "o
0
R

+Q2 Y (22 - 1P, / mrS, dr (3.197)
n=1 0

If an infinite set of modes is included in the hub moment expression, then the first two terms in Eq. (3.197)
cancel, leaving each modal moment in phase with its corresponding blade tip deflection. With only a finite
number of modes included, this is no longer the case (Bramwell, Ref. 3.34). In particular, if only the first
elastic mode is retained, then the hub flap moment has a residual

R
R / mrS, dr
o

MD,1) = / F(r,n|r——
0 / mS%dr
0

R
S, dr+92(,ﬁ—1)P,/ mrS, dr (3.198)
0

When the aerodynamic loading has the same shape as the first mode, i.e.
F(r,t) <« mS, (3.199)

then the first term in Eq. (3.198) vanishes and the hub moment expression reduces to that given by Young
(Ref. 3.33). These conditions will not, in general, be satisfied since, even in hover, there are 2 terms in the
aerodynamic loading. Substituting the mode shape for the offset hinge, given by Eq. (3.183), into Eq. (3.198),
leads to the correct hub moment with the out-of-phase aerodynamic component as given by Eq. (3.195).
Neglecting the effect of the in-plane loads, we see that the roll-and-pitch hub flap moments applied to the
fuselage from a single blade in nonrotating coordinates, are given by the transformation

L, =-M"siny (3.200)
M, = —-M" cosy (3.201)

Substituting for the aerodynamic loads in Eqgs. (3.200) and (3.201) and expanding to give the quasi-steady
(zeroth harmonic) components, leads to the hover result

2L, ) eRMI, eRMﬂ0 . _
por = U= DR = (145 ) (=20
y p+ﬁlc<l——e)+91j
_L (3.202)
2 3
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2M, eRM eRM
== = DB~ — ”<1+ ﬂ“>(5'+213)
B B B

ot (3.203)

The blade mass coefficient is given by
R

M, = / mdr, (3.204)

eR

The inertial and aerodynamic components proportional to the offset ¢ in the above are clearly absent in
the centre-spring model when the hub moment is always in phase with the flapping. The extent to which the
additional terms are out of phase with the flapping can be estimated by examining the hub moment derivatives.
By far the most significant variations with offset appear in the control coupling derivatives. Expressions for
the flapping derivatives can be derived from the harmonic solutions to the flapping equations; hence

ap S 4
o= b, =, == (1-3e) (3.205)
le ¢ : B
9P 1 8 4
36, = o, =, =7 (1-3¢) (1-3¢) 620
where 5
8
dy=83+(1-3e) (3.207)

The hub roll moment control derivatives can therefore be written to an accuracy of O(e?) in the form

2Lhe|~ 8 4 3
1,0 <;> = =Spbus,,. — R3brc,, (1 - 56) (3.208)
2L, /g 4 3

0ls _

To compare numerical values for the roll control derivatives with various combinations of offset and spring
stiffness, it is assumed that the flap frequency ratio 4, and the blade Lock number remain constant throughout.
These would normally be set using the corresponding values for the first elastic flap mode frequency and the
modal inertia given by Eq. (3.11). The values selected are otherwise arbitrary and uses of the offset-spring
model in the literature are not consistent in this regard. We chose to draw our comparison for a moderately
stiff rotor, with yﬁ = 1.2 and S; =0.2. Figure 3.20 shows a cross-plot of the flap control derivatives for values
of offset e extending out to 0.15. With ¢ =0, the flap frequency ratio is augmented entirely with the centre
spring; at e =0.15, the offset alone determines the augmented frequency ratio. The result shows that the rotor
flapping changes in character as hinge offset is increased, with the flap/control phase angle decreasing from
about 80° for the centre-spring configuration to about 70° with 15% offset. The corresponding roll and pitch
hub moment derivatives are illustrated in Figure 3.21 for the same case. Figure 3.21 shows that over the range
of offset-hinge values considered, the primary control derivative increases by 50% while the cross-coupling
derivative increases by over 100%. The second curve in Figure 3.21 shows the variation of the hub moment
in phase with the flapping. More than 50% of the change in the primary roll moment derivative is due to the
aerodynamic moment from disc flapping in the longitudinal direction. These moments could not be developed
from just the first mode of an elastic blade and are a special feature of large offset-hinge rotors.
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Fig. 3.20 Cross-plot of rotor flap control derivatives
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Fig. 3.21 Cross-plot of roll control derivatives as a function of flap hinge offset

The results indicate that there is no simple equivalence between the centre-spring model and the
offset-hinge model. Even with Young’s approximation, where the aerodynamic shear force at the hinge is
neglected, the flapping is amplified as shown above. A degree of equivalence, at least for control moments,
can be achieved by varying the blade inertia as the offset hinge is increased, hence increasing the effective
Lock number, but the relationship is not obvious. Even so, the noticeable decrease in control phasing,
coupled with the out-of-phase moments, gives rise to a dynamic behaviour which is not representative of
the first elastic flap mode. On the other hand, the appeal of the centre-spring model is its simplicity, coupled
with the preservation of the correct phasing between control and flapping and between flapping and hub
moment. The major weakness of the centre-spring model is the crude approximation to the blade shape and
corresponding tip deflection and velocity, aspects where the offset-hinge model is more representative.

The selection of parameters for the centre-spring model is relatively straightforward. In the case of
hingeless or bearingless rotors, the spring strength and blade inertia are chosen to match the first elastic mode
frequency ratio and modal inertia, respectively. For articulated rotors, the spring strength is again selected to
give the correct flap frequency ratio, but now the inertia is changed to match the rotor blade Lock number
about the real offset flap hinge.

It needs to be remembered that the rigid blade models discussed above are only approximations to the
motion of an elastic blade and specifically to the first cantilever flap mode. The blade responds by deforming
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in all its modes, although the contribution of higher bending modes to the quasi-steady hub moments is
usually assumed to be small enough to be neglected. As part of a study of hingeless rotors, Shupe (Refs. 3.36
and 3.37) examined the effects of the second flap bending mode on flight dynamics. Because this mode often
has a frequency close to three-per-rev, it can have a significant forced response, even at one-per-rev, and
Shupe has argued that the inclusion of this effect is important at high speed. This brings us to the domain
of aeroelasticity and we defer further discussion until Section 3.4, where we shall explore higher fidelity
modelling issues in more detail.

Rotor blades need to lag and twist in addition to flap, and here we discuss briefly the potential contri-
butions of these DoFs to helicopter flight dynamics.

Rotor in-Plane Motion: Lead-Lag

Rigid or elastic lead-lag blade motion attenuates the in-plane forces on the rotor. On articulated rotors, the
rigid-blade lead—lag motion revolves about an offset hinge, necessary to enable the applied torque to rotate the
rotor. On hingeless rotors, lead—lag takes the form of in-plane bending. Because the in-plane aerodynamic
damping forces are low, it is usual to find mechanical dampers attached to the lead—lag hinge. Additional
mechanical in-plane damping is even found on some hingeless rotors. A comprehensive discussion on the
significance of lead—lag on blade stability and loads is provided by Johnson in Ref. 3.7. For most flight
mechanics analysis, the presence of lead—lag motion contributes little to the overall response and stability of
the helicopter. However, there is one aspect that is relevant and needs to be referred to. To aid the discussion,
the coupled equations of flap/lead—lag motion are required; for the present purposes, we assume that the flap
and lag blade inertias are equal and describe the coupled motion in the simplified form:

g+ Af,ﬁ -2p¢ = M, (3.210)

¢+ C L+ A+ 2P =M, (3.211)

We assume that both the flap (#) and lead—lag ({) motion can be approximated by the centre-spring equivalent
model as illustrated in Figures 3.6 and 3.22. The direct inertial forces are balanced by restoring moments;

in the case of the lag motion, the centrifugal stiffening works only with an offset lag hinge (or centre-spring
emulation of centrifugal stiffness). If the lag hinge offset is e,, then the frequency is given by

2_ 3 9
/1,: =3 <1 Py (3.212)

The natural lag frequency 4, is typically about 0.25 € for articulated rotors; hingeless rotors can have sub-
critical (<€, e.g. Lynx, Bol105) or supercritical (>, e.g. propellers) lag frequencies, but 4, should be far
removed from Q to reduce the amount of in-plane lag response to excitation. The flap and lag equations above
have a similar form. We have included a mechanical viscous lag damper C, for completeness. M and M, are

Coriolis force from flap

o lag inertia reaction +
f

equivalent
spring/damper

centrifugal force

aerodynamic force

Fig. 3.22 Rotor blade lag motion



©

Modelling Helicopter Flight Dynamics: Building a Simulation Model 115
- @
Q
- 2.0
=
/ )
lag B
1.0
modes
flap
modes =
\-
L i ]
-1.0 -0.5 0 05
#
Q

Fig. 3.23 Flap and lag mode eigenvalues

the aerodynamic flap and lag moments. Flap and lag motions are coupled, dynamically through the Coriolis
forces in Egs. (3.210) and (3.211), and aerodynamically from the variations in rotor blade lift and drag forces.
The Coriolis effects are caused by blade elements moving towards and from the axis of rotation as the rotor
flaps and lags. Because of the lower inherent damping in lag, the Coriolis moment tends to be more signif-
icant in the lag equation due to flap motion. In addition, the lag aerodynamic moment M, will be strongly
influenced by in-plane lift forces caused by application of blade pitch and variations in induced inflow. The
impact of these effects will be felt in the frequency range associated with the coupled rotor/fuselage motions.
In terms of MBCs, the regressing and advancing lag modes will be located at (1 — 4,) and (1 + 4,), respec-
tively. A typical layout of the uncoupled flap and lag modes is shown on the complex eigenvalue plane in
Figure 3.23. The flap modes are well damped and located far into the left plane. In contrast, the lag modes
are often weakly damped, even with mechanical dampers, and are more susceptible to being driven unsta-
ble. The most common form of stability problem associated with the lag DoF is ground resonance, whereby
the coupled rotor/fuselage/undercarriage system develops a form of flutter; the in-plane rotation of the rotor
centre of mass resonates with the fuselage/undercarriage system.

Another potential problem, seemingly less well understood, arises through the coupling of rotor and
fuselage motions in flight. Several references examined this topic in the early days of hingeless rotor devel-
opment (Refs. 3.38, 3.39), when the emphasis was on avoiding any hinges or bearings at the rotor hub to
simplify the design and maintenance procedures. Control of rotor in-plane motion and loads through feed-
back of roll motion to cyclic pitch was postulated. This design feature has never been exploited, but the
sensitivity of lag motion to attitude feedback control has emerged as a major consideration in the design of
autostabilisation systems. The problem is discussed in Ref. 3.6 and can be attributed to the combination of
aerodynamic effects due to cyclic pitch and the powerful Coriolis moment in Eq. 3.211. Both the regressing
and advancing lag modes are at risk here. In Ref. 3.40, Curtiss discusses the physical origin of the couplings
and shows an example of where the regressing lag mode goes unstable at a relatively low value of gain in
a roll rate to lateral cyclic feedback control system (—0.2%/s). In contrast, the roll-regressing mode can be
driven unstable at higher values of roll attitude feedback gain. The results of Ref. 3.40 and the later Bo105
study by Tischler (Ref. 3.41) give clear messages to the designers of autostabilisers and, particularly, high
gain active control systems for helicopters. Designs will need to be evaluated with models that include the
lead—-lag dynamics before implementation on an aircraft. However, the modelling requirements for specific
applications are likely to be considerably more complex than is implied by the simple analysis outlined
above. Pitch—flap—lag couplings, nonlinear mechanical lag damping and pre-cone are examples of features
of relatively small importance in themselves, but which can have a powerful effect on the form of the coupled
rotor/fuselage modes.
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Of course, one of the key driving mechanisms in the coupling process is the development of in-plane
aerodynamic loads caused by blade pitch; any additional dynamic blade twist and pitch effects will also
contribute to the overall coupled motion, but blade pitch effects have such a profound first-order effect on
flapping itself that it is in this context that they are now discussed.

Rotor Blade Pitch

In previous analysis in this chapter the blade pitch angle was assumed to be prescribed at the pitch bearing in
terms of the cyclic and collective applied through the swash plate. Later, in Section 3.4, the effects of blade
elastic torsion are referred to, but there are aspects of rigid blade pitch motion that can be addressed prior
to this. Consider a centrally hinged blade with a torsional spring to simulate control system stiffness, K, as
shown in Figure 3.24. For simplicity, we assume coincident hinges and centre of mass and elastic axis so that
pitch—flap coupling is absent. The equation of motion for rigid blade pitch takes the form

0" + 430 = M, + w6, (3.213)
where the pitch natural frequency is given by

A=l+ow

2 (3.214)

2
0
where M is the normalised applied moment and 6; is the applied blade pitch. The natural frequency for free
pitch motion (i.e. with zero control system stiffness) is one-per-rev; because the so-called propeller moment
contribution to the restoring moment. This effect is illustrated in Figure 3.25 where mass elements along the
chord line experience in-plane inertial moments due to small components of the large centrifugal force field.
For rigid control systems, § = 6,. The control system stiffness is usually relatively high, giving values of w,
between 2 and 6 Q. In this range, we usually find the first elastic torsion mode frequency, the response of
which can dominate that of the rigid blade component. A similar form to Eq. 3.213 will apply to the first
elastic mode, which will have a nearly linear variation along the blade radius. This aspect will be considered
later in Section 3.4, but there are two aspects that are relevant to both rigid and elastic blade torsion, which
will be addressed here.

First, we consider the gyroscopic contribution to the applied moment M. Just as we found with flap
motion earlier in this chapter, as the rotor shaft rotates under the action of pitch and roll moments, so the

propeller moment

control
//’7 M, system

stiffness

Fig. 3.24 Rotor blade pitch motion

‘}deé
i\

centrifugal force

x-Q%dm

Fig. 3.25 Coriolis forces acting to twist a rotor blade
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rotor blade will experience nose-up gyroscopic pitching moments of magnitude given by the expression
Mp g0y = —2(p siny + g cosy) (3.215)
The induced cyclic pitch response can then be written as

-2p -2q
2_ 1’ e = 73
21 21

Is —

(3.216)

where p and g are the helicopter roll and pitch rates, with the bar signifying normalization by €. For low blade
torsional or swash plate stiffness, the magnitude of the gyroscopic pitch effects can therefore be significant.
More than a degree of induced cyclic can occur with a soft torsional rotor rolling rapidly (Ref. 3.42).

The second aspect concerns the location of the pitch bearing relative to the flap and lag hinges. If the
pitch application takes place outboard of the flap and lag hinges, then there is no kinematic coupling from
pitch into the other rotor DoFs. However, with an inboard pitch bearing, the application of pitch causes
in-plane motion with a flapped blade and out-of-plane motion for a lagged blade. The additional motion
also results in an increased effective pitch inertia and hence reduced torsional frequency. These effects are
most significant with hingeless rotors that have large effective hinge offsets. On the Lynx, the sequence
of rotations is essentially flap/lag followed by pitch, while the reverse is the case for the Bo105 helicopter
(Figures 3.26a and b). The arrangement of the flap and lag real or virtual hinges is also important for coupling
of these motions into pitch. Reference 3.7 describes the various structural mechanisms that contribute to these
couplings, noting that the case of matched flap and lag stiffness close to the blade root minimises the induced
torsional moments (e.g. Westland Lynx).

As already noted, any discussion of blade torsion would be deficient without consideration of blade
elastic effects and we shall return to these briefly later. However, the number of parameters governing the
dynamics is large and includes the location of the elastic axis relative to the mass axis and aerodynamic centre,
the stiffness distribution and any pre-cone and twist. Introducing this degree of complexity into the structural
dynamics also calls for a consistent approach to the blade section aerodynamics, including chordwise pitching
moments and unsteady aerodynamics. These are all topics for further discussion in Section 3.4.

Before we proceed with detailing the modelling of the other rotorcraft components, there is one final
rotor-related aerodynamic effect to be considered — ground effect.

Ground Effect on Inflow and Induced Power

Operating helicopters close to the ground introduces a range of special characteristics in the flight dynamic
behaviour. The most significant is the effect on the induced velocity at the rotor and hence the rotor thrust
and power required. A succinct analysis of the principal effects from momentum considerations was reported
in Ref. 3.43, where, in addition, comparison with test data provided useful validation for a relatively simple
theory. Close to the ground, the rotor downwash field is strongly influenced by the surface as shown in
Figure 3.27. In Ref. 3.43, Cheeseman and Bennett modelled the ground plane influence with a rotor of equal
and opposite strength, in momentum terms, at an equidistance below the ground (Figure 3.27). This mirror
image was achieved with a simple fluid source that, according to potential flow theory, served to reduce the
inflow v; at the rotor disc in hover by an amount given by

Agvi

oV, =
! 167[Z§

(3.217)

where Z, is the distance of the ground below the rotor disc and A, is the rotor disc area. The rotor thrust, at
constant power, can be written as the ratio of the induced velocity out-of-ground effect (oge) to the induced
velocity in-ground effect (ige). Reference 3.43 goes on to derive an approximation for the equivalent thrust
change in forward flight with velocity V, the approximation reducing to the correct expression in hover, given
by Eq. 3.218.

L (3.218)
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(b)
Fig. 3.26 Lynx (a) and Bo105 (b) rotor hubs
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Fig. 3.28 Influence of ground effect on rotor thrust (Ref. 3.43)
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Fig. 3.29 Influence of ground effect on power (Ref. 3.43)
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Figure 3.28 illustrates the variation in normalised thrust as a function of rotor height above ground and
forward velocity. Ground effect is most significant in hover, and, below heights of the order of a rotor radius,
thrust increments of 5-15% are predicted. In forward flight, ground effect becomes insignificant above nor-
malised speeds of 2. Simple momentum considerations are unable to predict any influence of blade loading
on ground effect. By combining momentum theory with blade element theory, it can be shown that increasing
blade loading typically reduces ground effect such that a 10% increase in blade loading reduces the ige thrust
increment by about 10% (Ref. 3.43). Another interesting result from these predictions is that the increase in
power required as a helicopter transitions oge is greater than the decrease in power due to the reduction in
induced velocity. Figure 3.29, from Ref. 3.43, illustrates the point, showing the variation in power required
as a function of forward speed, and reflects practical observations that a power increase is required as a heli-
copter flies off the ground cushion (Ref. 3.44). Further discussion of ground effect, particularly the effects
on nonuniform inflow and hub moments, can be found in Ref. 3.45.

3.2.2 The Tail Rotor
The tail rotor operates in a complex flowfield, particularly in low-speed flight, in-ground effect, sideways
flight, and in the transition to forward flight. The wake of the main rotor, together with the disturbed air shed
from the main rotor hub, rear fuselage, and vertical stabiliser, interacts with the tail rotor to create a strongly
nonuniform flowfield that can dominate the tail rotor loading and control requirements. The basic equations
for tail rotor forces and moments are similar to those for the main rotor, but a high-fidelity tail rotor model
will require a sophisticated formulation for the normal and in-plane components of local induced inflow.
Initially, we shall ignore the nonuniform effects described above and derive the tail rotor forces and moments
from simple considerations. The interactional effects will be discussed in more detail in Section 3.4.2. The
relatively small thrust developed by the tail rotor, compared with the main rotor (between 500 and 1000 Ib
(2220 and 4440 N) for a Lynx-class helicopter), means that the X and Z components of force are also relatively
small and, as a first approximation, we shall ignore these.

Referring to the tail rotor subsystem in Figure 3.30, we note that the tail rotor sideforce can be written
in the form

C
Y, = p(QR;spa, (xR2) ( Ir >FT (3.219)
T g, St

where Q; and R; are the tail rotor speed and radius, sz, and 4, the solidity and mean lift curve slope, and
CTT the thrust coefficient given by Eq. 3.220:
Iy

= (3.220)
ﬂ(QTRT)z(”R%)

Cr,

Fig. 3.30 Sketch of tail rotor subsystem
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The scaling factor F7 is introduced here as an empirical fin blockage factor, related to the ratio of fin area Sy,
to tail rotor area (Ref. 3.46):
_35m

F.=1
r 47rR%.

(3.221)

Using the same two-dimensional blade element theory applied to the main rotor thrust derivation, we can
write the tail rotor thrust coefficient as

2C;, 0; 3 (u,, = 4o,) U
L Iy 2) T Tl P 3222
<aoTST) 3 ( o)t T T (3-222)

where GST and OTXT are the effective tail rotor collective and cyclic pitch, respectively. Tail rotors are usually
designed with a built-in coupling between flap and pitch, the 6, angle, defined by the parameter k; =tan 65,
hence producing additional pitch inputs when the rotor disc cones and tilts (in MBC parlance). This coupling
is designed to reduce transient flapping angles and blade stresses. However, it also results in reduced control
sensitivity; the relationship can be written in the form

0y =0y, + ks,

01, =01, + ksfyy, (3.223)
where 907- and 915'7- are the control-system- and pilot-applied control inputs; the cyclic inputs are usually zero
as tail rotors are not normally fitted with a tilting swash plate. Note that the cyclic change is applied at the
same azimuth as the flapping, rather than with the 90° phase shift as with swash-plate-applied cyclic on the
main rotor; the 6;-applied cyclic is therefore fairly ineffective at reducing disc tilt and is actually likely to

give rise to more first harmonic cyclic flapping than would otherwise occur. Again, using the main rotor
derivations, particularly the coning relationship in Eq. 3.64, we note that the effective collective pitch may

be written as
4 4
bo, + ka(ﬁ) 3= Ao,)
* B/ T

0r =
-k 25 ) i+ )
84
T

The 8, angle is typically set to —45°, which reduces the tail rotor control effectiveness significantly. The
cyclic flap angles can be written in the hub—wind axes form (using the cyclic relationships in Eq. 3.64)

8 y Y 4\?
= ky+| — 0, +2 k+ | — = -2
3”Tl3 (16A§>T] Or ”Tl3 (16A§>T(3>1(MZT o)

Brow, = ; (3.225)
4 4 2 2
ll + k3<8—/lz>T(§yT) +12(1 + 2;4T)]

8
Prow, = =3 HrBo, = 2z, = Jo,) = ks(L+ 24Py, (3.226)

(3.224)

The tail rotor hub aerodynamic velocities are given by

[ + (w = ke Ao + qy + x5, )R]/

= (3.227)
! QTRT
(=v+ Uy +x.)r—hyp)
n, = L 7 (3.228)
QTRT
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where the velocities of the tail rotor hub relative to the aircraft centre of gravity have been taken into account,
and the factor k, scales the normal component of main rotor inflow at the tail rotor (at this point no time lag
is included, but see later in Chapter 4). The tail rotor uniform inflow is given by the expression

“r 3.229
= . (3.229)
20uz + (1, = 49,)11'/2

Ao,

The inflow is determined iteratively in conjunction with the tail rotor thrust coefficient. In the above equations,
we have assumed that the tail rotor has zero hinge moment, a valid approximation for the rotor forces. For
teetering hub blade retention (e.g. in the Bo105), the coning angle at the hub centre can be assumed to be
zero and no collective pitch reductions occur.

The tail rotor torque can be derived using the same assumptions as for the main rotor, i.e.

1 2 3 ZCQT
Or = EP(QTRT) nRyay sy (3.230)

ay St

with induced and profile torque components as defined by

2C, 2C Fy
0, T,
L) =, = Ao Lo+ L1 +3u3) (3.231)
ao, St ao, St 4ay,

The mean blade drag coefficient is written as

8 =8y, +8,, C§T (3.232)

While the tail rotor torque is quite small, the high rotorspeed results in a significant power consumption,
which can be as much as 30% of the main rotor power and is given by the expression

P, = 0,9, (3.233)

The tail rotor forces and moments referred to the aircraft centre of gravity are given approximately by the
expressions

Xp % Tyfy,, (3.234)
Y, =T, (3.235)
Zy ~ ~Trhy,, (3.236)
Ly~ hY, (3.237)
My~ (I +x,0Z; — Oy (3.238)
Np =~y +x,)Y; (3.239)

The above expressions undoubtedly reflect a crude approximation to the complex aerodynamic environment
in which the tail rotor normally operates, both in low- and high-speed flight. We revisit the complexities of
interactional aerodynamics briefly in Section 3.4.2.

3.2.3 Fuselage and Empennage
The Fuselage Aerodynamic Forces and Moments

The flow around the fuselage and empennage is characterised by strong nonlinearities and distorted by the
influence of the main rotor wake. The associated forces and moments due to the surface pressures and skin
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friction are therefore complex functions of flight speed and direction. While computer modelling of the
integrated flowfield is no longer an impossible task, most of the flight mechanics modelling to date has been
based on empirical fitting of wind tunnel test data, gathered at a limited range of dynamic pressure and
fuselage angles of incidence, at model (Ref. 3.47) or full scale (Ref. 3.48). Assuming similar fluid dynamics
at the test and full-scale flight conditions, we note that the forces at a general flight speed, or dynamic pressure,
can be estimated from the data at the measured conditions through the relationship

( oV;S >
F(Vf’ pf) = F(Vtest’ ptext) T2 o (3240)
P test VtestS test

where the subscript test refers to the tunnel test conditions and S is a reference area. Most of the published
test data have been measured on isolated fuselage shapes, although the findings of Ref. 3.47 have shed light
on the principal effects of rotor wake/fuselage interaction and the approximate formulation outlined below
is based on this work.

The three most significant components in forward flight are the fuselage drag, which dominates the
power requirement at high speed, and the pitching and yawing moment changes with incidence and sideslip,
respectively. The fuselage rolling moment is usually small except for configurations with deep hulls where
the fuselage aerodynamic centre can be significantly below the aircraft centre of gravity. At lower speeds, the
fuselage aerodynamic loads are correspondingly smaller, although significant effects will be the sideforce in
sideways flight and the vertical load and yawing moment due to the main rotor wake. The fuselage moments
are generally destabilizing, resulting from the greater planform and side area ahead of the aircraft centre of
gravity. These two points will not, in general, be coincident. In addition, wind tunnel test data are relative to
a third point, generally referred to as the ‘fuselage aerodynamic reference point’, to be distinguished from
our ‘fuselage reference point’ below the main rotor hub on the aircraft x-axis. Fuselage aerodynamic data
measured in a wind tunnel are usually presented in wind tunnel axes as lift, drag, sideforce, and corresponding
moments about the tunnel-fixed reference system. We assume that the transformation from wind tunnel to
fuselage axes has been applied so that we work with forces in the moving fuselage axes system. The effect
of rotor downwash can be approximated by assuming the fuselage is immersed in the uniform component,
through the assumption of superposition; hence, the fuselage incidence and velocity can be written as

g =t (L), V=@ w2 2 <0 (3.241)
; » _
w
a=tan”' (=), V,=@+V+wd)? 1,>0 (3.242)
f u f A 0
where
w, =w =k QRA, (3.243)

and k,; is a constant considering the increase in downwash at the fuselage relative to the rotor disc. The
fuselage sideslip angle is defined as

—_an-l (Y
g, = sin <Vf> (3.244)

The forces and moments may now be written in the generalised form:

X, = 30V35,Cylay. ) (3245)
2= 30V3S,Cotar. ) (3.246)
M; = %pvfspzfcmf(af, By) (3.247)
Y, = %prSsC)f(txf, By) (3.248)
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_1
)

I
Np=3

Ly = 5pV;S1,Cylay, ) (3.249)

PV} SdpCop(aty. ) (3.250)

where S, and S are the plan and side areas of the helicopter fuselage, respectively. Typically, the force and
moment coefficients will be derived from look-up table functions of incidence and sideslip. Piecewise linear
variations illustrating the main characteristics over the incidence and sideslip range, —180° to +180°, are
shown in Figure 3.31. The yaw moment is sometimes defined as two functions corresponding to forward and
rearward flight, i.e.

Cy=Cy,u>0
Cy=Cy,, u<0 (3.251)

The fuselage X force has a minimum value at small angles of incidence, and is practically zero in vertical
flight (¢ =90°). The pitching moment increases linearly with incidence up to some moderate value when
flow separation at the leeward fuselage hull causes a loss in circulatory lift and moment and a corresponding
loading reversal. The Y and Z forces have similar shapes, rising to maximum values at 90° of incidence
and sideslip, respectively. The breakpoints shown in Figure 3.31 are very much dependent on the fuselage
configuration. To account for local, more strongly nonlinear effects, smaller incidence and sideslip intervals
would certainly be required. Numerical values for Lynx, Bo105, and Puma fuselage aerodynamic coefficients
are given in Appendix 4B. Here the data are taken from wind tunnel tests conducted so that X, Z, and M varied
only with angle of incidence and Y and N varied only with angle of sideslip. Using these data in conjunction
with the Equations 3.241-3.250, one should be careful to acknowledge the absence of the cross effects, e.g.

Cy Cy
Cyf Co

as
Cor Cor

Z \_/ /_\/3

Fig. 3.31 Typical variation of fuselage aerodynamic force coefficients with incidence angles
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the variation of X force with sideslip. The simplest expedient is to delete the v? term in the expression for Ve
Egs. 3.241 and 3.242. A more general approach could be to assume a simple cosf shape so that the X force
becomes zero at f=90°.

The above discussion has been restricted to essentially steady effects whereas, in practice, the relatively
bulbous shapes of typical helicopter fuselages, with irregular contours (e.g. engine and rotor shaft cowlings),
give rise to important unsteady separation effects that are difficult to simulate accurately at model scale;
unsteady effects in manoeuvring flight are also difficult to account for. The problem is exacerbated by the
immersion in the rotor downwash at low speed. Sophisticated wind-tunnel and computer modelling tech-
niques are available nowadays but are often very expensive, and lack of full-scale validation data reduces
confidence in such techniques.

The Empennage Aerodynamic Forces and Moments

The horizontal tailplane and vertical fin, together forming the empennage of a helicopter, perform two prin-
cipal functions. In steady forward flight, the horizontal tailplane generates a trim load that reduces the main
rotor fore—aft flapping; similarly, the vertical fin generates a sideforce and yawing moment serving to reduce
the tail rotor thrust requirement. In manoeuvres, the tail surfaces provide pitch and yaw damping and stiffness
and enhance the pitch and directional stability. As with the fuselage, the force and moments can be expressed
in terms of coefficients that are functions of incidence and sideslip angles. Referring to the physical layout in
Figure 3.32, we note that the principal components are the tailplane normal force, denoted Z, ), and given by

1
Zy = EpVS,S,pCzw(a[p,ﬂ,p) (3.252)

which gives rise to a pitching moment at the centre of gravity, i.e.

M,p = (l,p + xcg)Z,p (3.253)
and the fin sideforce, denoted by an, i.e.
1
Vi = 50V SuConl ) (3.254)

Fig. 3.32 Empennage layout
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which gives rise to a yawing moment at the centre of gravity, i.e.
N;, = =y, + x,.)Yy, (3.255)

where S, and S;, are the tailplane and fin areas, respectively.
The local incidence at the tailplane, assumed constant across its span, may be written as

w+q(l, +x.,) — k,lt QRA,

@, = a, +tan”’ : . u>0 (3.256)

u
(atp)reverse = (atp)f()rward +7, u< 0 (3257)

The local flow velocity at the tail can be written in the form
, w+ w4+ g, +x.0) — IQWQRAO)2

Hyp = ) (3.258)

(QR)

where

Vi

ﬂz‘p = ﬁ (3259)

The parameter k,,, defines the amplification of the main rotor wake uniform velocity from the rotor disc to
the tail. The tailplane incidence setting is denoted by a,,,. The main rotor wake will impinge on the horizontal
tail surface only when the wake angle falls between y, and y, (see Figure 3.33), given by

7, =tan™! by~ R and g, = tan™' b (3.260)
hr - htp hr - th

otherwise, k,,, can be set to zero.

In Ref. 3.49, Loftin gives wind tunnel measurements for a National Advisory Committee for Aeronau-
tics (NACA) 0012 aerofoil section for the complete range of incidence, —180° < & < 180°. From these data,
an approximation to the normal force coefficient can be derived in the form

|CZrP| < Clel Cth(atP) = _aOfP sin atp (3261)
sina,,
|Cz | > CZ Cz (atp) = _CZ —_— (3262)
N i » " | sina,, |

where ay,, is, effectively, the slope of the tailplane lift coefficient curve for small angles of incidence. The
value of this parameter is assumed to be a mean value for the whole surface. Typically, helicopter tailplanes
are low aspect ratio surfaces, sometimes having endplates to increase the effective angle of attack. Values of

rotor disc

-....‘\iis‘-,‘i."-:\\;‘-_‘.:‘: M 3
X\

horizontal
stabilizer

Fig. 3.33 Influence of rotor downwash on tail surfaces
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ay,, between 3.5 and 4.5 are typical. The constant limit value C,,, is approximately 2 for the NACA 0012
aerofoil, corresponding to the drag coefficient in two-dimensional vertical flow.

The above formulation, leading to constant rotor downwash over the tailplane, can be improved in two
relatively simple respects. First, the spanwise variation of downwash at the tail can be derived from the lateral
distribution of downwash from the main rotor, 4,,. Second, the downwash at time ¢ at the tail can be estimated
from the loading conditions at time ¢ — 6 on the main rotor, where 67 is the time taken for the flow to reach
the tail. This effect manifests itself in an acceleration derivative, or force and moment due to rate of change of
incidence, and is discussed in more detail in Chapter 4. The lateral variation in downwash over the horizontal
tail generates a roll moment and can also lead to a strong variation of pitching moment with sideslip, as
discussed by Cooper (Ref. 3.50), and Curtiss and McKillip (Ref. 3.51).

The local angle of sideslip and velocity (in x — y plane) at the vertical fin may be written in the form

v — r(lfn +x,.,)+ hf,,p
B = By, + sin™! [ ‘ (3.263)
i fng an(QR)
v = r(ly, +x.)) + 1
2 n cg
= 3.264
Vi

The loading on the vertical surface can be derived in much the same way as the tailplane, either as a simple
analytic function or via a look-up table. One additional complexity, characteristic of helicopter fins, is that
they are sometimes quite thick aerofoil sections, carrying within them the tail rotor torque tube. The lift
generated at small values of incidence on aerofoils with thickness ratios greater than about 20% can be
negated by the lower surface suction near the trailing edge, as discussed by Hoerner and Borst (Ref. 3.52).
Figure 3.34, approximated from wind tunnel measurements on the Sud Aviation (SA) 330 Puma (Ref. 3.53),
shows how the fin sideforce varies with sideslip angle; over the first 5° of incidence, no lift (sideforce) is
produced. This effect partly explains the loss of directional stability and attendant weak Dutch roll damping
on the Puma, an aspect that will be the subject of further discussion in Chapters 4 and 5.

Can
04 r
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ﬂc
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Fig. 3.34 Variation of vertical stabiliser sideforce with sideslip — Puma

The forces generated by the empennage at small values of incidence and sideslip can be represented
either by look-up tables or by high-order polynomials, e.g. the Puma fin sideforce requires at least a fifth-order
function to match the strongly nonlinear feature illustrated in Figure 3.34 (see Section 4B.1).

3.2.4 Powerplant and Rotor Governor
In this section, we derive a simplified model for a helicopter’s rotorspeed and associated engine and rotor
governor dynamics based on the Helisim powerplant model (Ref. 3.4). The rotorspeed of a turbine-powered
helicopter is normally automatically governed to operate over a narrow range with the steady-state relation-
ship given by the equation

0,=-K(Q-Q) (3.266)
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where Q, is the turbine engine torque output at the rotor gearbox,  is the rotorspeed and £, is the so-called
idling rotorspeed, corresponding to approximately zero engine torque. Eq. (3.260) is sometimes described as
the droop law of the rotor, the droop constant K; indicating the reduction in steady-state rotorspeed between
autorotation and full power (e.g. in climb or high-speed flight). The rotor control system enforces this droop
to prevent any ‘hunting’ that might be experienced should the control law attempt to maintain constant rotor-
speed. Rotorspeed control systems typically have two components, one relating the change (or error) in
rotorspeed with the fuel flow, w,, to the engine, i.e. in transfer function form

Q
—[G,(5)] — (3.267)
@y
the second relating the fuel input to the required engine torque output
—S[H,(5)] - (3.268)

The simplest representative form for the fuel control system transfer functions is a first-order lag

w(s) K

G,(s) u (3.269)

ﬁ( s) 1+ 7, S
where a bar above a quantity signifies its Laplace transform.

The gain K,; can be selected to give a prescribed rotorspeed droop (e.g. between 5 and 10%) from flight
idle fuel flow to maximum contingency fuel flow; we write the ratio of these two values in the form

Of e

= o (3.270)
o,
idle
The time constant 7,; will determine how quickly the fuel is pumped to the turbine and, for a fast engine
response, needs to be O(0.1 s).
The engine torque response to the fuel injection can be written as a lead—lag element

0 1
2O _ =k [ (3.271)
@ (s) ¢ 2\ 1+1,s

e

The gain K, can be set to give, say, 100% Q, at some value of fuel flow w, (e.g. 75% wy,,,), thus allowing
a margin for maximum contingency torque. In the engine model used in Ref. 3.4, the time constants in this
dynamic element are a function of engine torque. Figure 3.35 illustrates the piecewise relationship showing
tighter control at the engine power limit. Linear approximations for the lag and lead constants can be written
in the form

T, = TEZ(QE) R Ty + 1 0,
TeS = Tes (Qe) ~ 7'-3(] + T3| Qe (3272)

where the time constant coefficients change values at Q, = 100%.
Coupling the two-engine/rotor subsystems gives the transfer function equation

= G,(5)H,(s) (3.273)

ol
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Fig. 3.35 Variation of engine time constants with torque

or, in time-domain, differential form

.. 1 , .
Qe == T {(Tel + TL’})QE + Qe + K3(Q - Qi + TFZQ)} (3274)
e] (’,3
where
K,=K,K, = Cem (3.275)
’ ane Qt(l - Qmi) .
and
Qm
Q. =—2 (3.276)
Q

This second-order, nonlinear differential equation is activated by a change in rotor speed and acceleration.
These changes initially come through the dynamics of the rotor/transmission system, assumed here to be
represented by a simple equation relating the rotor acceleration (relative to the fuselage, Q — i) to the applied
torque, i.e. the difference between the applied engine torque and the combination of main rotor Q and tail

rotor torque Q, referred to the main rotor through the gearing g, i.e.
.1
Q=7+ I_(Qe - 0r — 8707) (3.277)
R

where I is the combined moment of inertia of the rotor hub and blades and rotating transmission through to
the free turbine, or clutch if the rotor is disconnected as in autorotation.

3.2.5 Flight Control System

The flight control system model includes the pilot’s controls, mechanical linkages, actuation system and con-
trol rods; it also includes any augmentation through feedback control and hence will, in general, encompass
the sensors, computing element and any additional actuation in parallel and/or in series with those driven
by the mechanical inputs from the pilot. This description corresponds to the classical layout found in most
contemporary helicopters. Discussion on the modelling requirements for full authority, digital, active control
systems are not covered in this book. We refer to Figure 3.36 as we develop the model of the flight control
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Fig. 3.36 Schematic of helicopter flight control system

system, from the rotors through to the cockpit controls — the cyclic, collective, and pedals. In the following
analysis, the cockpit controls are represented by the variable #, with appropriate subscripts; in all cases,

0<n<1 (3.278)

with the positive sense defined by a positive increase in the corresponding rotor blade angle (see Figure 3.36).
The automatic flight control system (AFCS) is usually made up of stability and control augmentation system
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(SCAS) functions, applied through series actuators, and autopilot functions applied through parallel actua-
tors. In this section we consider only the modelling of the SCAS.

Pitch and Roll Control

The swash plate concept was introduced in Chapter 2 (Figure 2.5) as one of the key innovations in helicopter
development, allowing one-per-rev variations in rotor blade pitch to be input in a quasi-steady manner from
the actuators. The approximately 90° phase shift between cyclic pitch and the cyclic flapping response comes
as a result of forcing the rotor with lift changes at resonance. In practice, cyclic pitch can be applied through
a variety of mechanisms; the conventional swash plate is by far the most common, but Kaman helicopters
incorporate aerodynamic surfaces in the form of trailing edge flaps and cyclic control in the Westland Lynx
is effected through the dangleberry, with the blade control rods running inside the rotor shaft. Whatever the
physical mechanism, cyclic pitch requires very little energy to apply at one-per-rev, and, for our purposes, a
generalised swash plate is considered, with a minimum of three actuators to provide the capability of tilting
the swash plate at an arbitrary angle relative to the rotor shaft.

Progressing downwards along the control rods (assumed rigid) from the blades, and through the rotating
swash plate, we come to the mixing unit. This combines the actuation outputs from the two cyclic controls
with a phase angle. For articulated and hingeless rotor configurations, even in the hover, the phase lag between
cyclic pitch and flap is less than 90° and, to achieve a pure pitch or roll control, the pilot needs to apply a cou-
pled input. As the forward speed increases, the response coupling changes due to the increased aerodynamic
damping effects. A single mixing is usually selected as a compromise between these different conditions and
can be written in the form

0| _ | cosy, siny;, Q;X
[915] a [— siny, cosy;| |0]. (3.279)

where y,is the mixing angle, usually between 8° and 12°, and a prime simply denotes the cyclic angle before
mixing.

The next stage in the reverse sequence is the actuation itself. Most modern helicopters incorporate
powered flying controls through hydraulic actuation. The actuation system is quite a complicated mechanism
with its own feedback control designed to ensure that the response and stability to control inputs has good
performance and stability characteristics. The actuation system has inherent nonlinearities at both small and
large amplitudes, including rate limiting when the pilot demands more than the hydraulic system can supply.
Typical rate limits are of the order 100% of full actuator range per second. Helicopters fitted with an AFCS
usually incorporate a limited authority series actuation system driven by the voltage outputs of the SCAS
element. As shown in Figure 3.36, these augmentation inputs to the actuators are limited to amplitudes of
the order +10% of the full actuator throw. For our purposes, we assume that each actuation element can
be represented by a first-order lag, although it must be recognised that this is a crude approximation to the
complex behaviour of a complicated servo-elastic system; hence, we write the cyclic actuator outputs as the
sum of pilot (subscript p) and AFCS (subscript a) inputs in the transfer function form

— —

— Blsl, + als[,
P (3.280)

I+7.48

—/ —

/ 01(_‘ + 910
=—r ¢ (3.281)

e 1+7,s

The time constants 7,; and 7, are typically between 25 and 100 ms, giving actuation bandwidths between
40 and 10 rad/s. For systems operating at the lower end of this bandwidth range, we can expect the actuation
to inhibit rapid control action by the pilot.

The mechanical control runs connect the actuators to the pilot’s cyclic stick through a series of levers
and pulleys. At the stick itself, an artificial feel system is usually incorporated to provide the pilot with stick
centring tactile cues. A simple spring with a breakout force is the most common form of feel system found in
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helicopters, with a constant spring gradient, independent of flight condition or manoeuvre state. If we neglect
the dynamics of these elements, then the relationship for roll and pitch cyclic can be written in the simple
algebraic form as

eixp = gls() + gl.v1 Nis + (gxco + gsclnlx)nc (3282)
9;01, = glco + glcl Me t (gcco + gccl ’710)’70 (3283)

where the g coefficients are the gains and offsets, and #,,. and 7, are the pilot’s cyclic stick inputs. Included in
the above equations are simple interlinks between the collective and cyclic, so that a collective input from the
pilot also drives the cyclic control runs. In this way, collective to roll and pitch couplings can be minimised.
The coefficients in Egs. (3.282)—(3.283) can conveniently be expressed in terms of four parameters:

0,,,~ the pitch at zero cyclic stick and zero collective lever

6,,,— the pitch at maximum cyclic stick and zero collective lever

0, — the pitch at zero cyclic stick and maximum collective lever

6}, the pitch at maximum cyclic stick and maximum collective lever

The coefficients can therefore be written as

81s, = elso

815, = 91sI - ‘91s0

8ic, = 91s2 - alxl

8ic, = (015, = 0,) = (65, — by5) (3.284)

This analysis assumes a linear relationship between control movement and actuator input. In practice, the
mechanical system will exhibit some nonlinearities, particularly at the extremities of control throw due to
the geometry of the linkage, and look-up tables will be a more appropriate representation. For example,
Figure 3.37 illustrates the cyclic/collective interlink functionality for the Lynx helicopter (Ref. 3.54).
Regarding the autostabiliser inputs, these will, in general, be complex functions of sensor and control
inputs with various filters arranged to stabilise the feedback dynamics and protect against sensor noise. For
the present purposes, we shall assume that the autostabiliser adds feedback control signals proportional to
attitude and angular rate, together with a feedforward signal proportional to the pilot’s control input, referred

collective stick
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max  70% 60% 50% 40% 30% 20% 10% 0%
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(mech. input to pitch servo)

Fig. 3.37 Geometry of mechanical interlink between collective and cyclic for Lynx (Ref. 3.54)
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to some adjustable datum (Figure 3.36). This allows the zero or mid-range of the autostabiliser to be reset
by the pilot during flight. This would be necessary, for example, if the attitude gains were high enough to
cause saturation as the speed increases from hover to high speed. Other systems automatically disengage the
attitude stabilization when the pilot moves his control, thus obviating the need for a pilot-adjustable zero
(e.g. Puma). The simple proportional autostabiliser can be described by the equations

01y, = ko + kyq + k(1 — myy) (3.285)
01, = kg + kp + ky (. — 111, (3.286)

In Chapter 4, we shall demonstrate how rate stabilization alone is typically inadequate for stabilizing a heli-
copter’s unstable pitch motion. However, with a combination of fairly modest values of rate and attitude
gains, k (0[0.1]), a helicopter can be stabilised throughout its OFE, and a pilot can fly ‘hands off” or at least
with some divided attention, hence allowing certification in instrument flight rules (IFR) conditions. How-
ever, a low-authority AFCS will quickly saturate in aggressive manoeuvres, or during flight in moderate to
severe turbulence, and can be regarded only as an aid to steady flight.

Yaw Control
In a similar way, the pilot and autostabiliser commands are input to the yaw actuator servo in the simplified
first-order transfer function form _ _

007” +0or,

0y = ——° 3.287
or 1+ TS ( )

The gearing between the actuator input and the yaw control run variable, A, can be written as

Oor. = 81, + 81,1, (3.288)

P

where the control run is generally proportional to both pedal, #,,, and collective lever, 7., inputs, in the form
e, = 8er, (1 = 1,) + (1 =287 )1, (3.289)

In Eq. (3.289), the collective lever accounts for the normal mechanical interlink between collective and yaw
to reduce yaw excursions following power inputs. Eq. (3.289) is a linear approximation to a relationship that
can become strongly nonlinear at the extremes of the control range, when the interlink geometry reduces the
sensitivity. Figure 3.38 illustrates the nonlinear variation for the Lynx helicopter (Ref. 3.54).
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Fig. 3.38 Geometry of mechanical link between tail rotor control run and cockpit controls for Lynx (Ref. 3.54)
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Heave Control

Finally, the main rotor collective pitch output from the main rotor servos, achieved through raising and low-
ering the swash plate, can be written in terms of the mechanical and electrical inputs from the pilot and
autostabiliser, respectively, namely

_ 0, +0,
9, =——" 3.290
o7 1+ Te,S ( )
The gearing with the collective lever is written as
90’7 = gCo + gclrlc (3.291)

For most modern helicopters, there is no autostabiliser component in the collective channel, but for com-
pleteness we include here a simple model of the so-called collective acceleration control (Ref. 3.55) found
in the Lynx. An error signal proportional to the normal acceleration is fed back to the collective, i.e.

6y, = kea, (3.292)
For the Lynx, this system was implemented to provide dissimilar redundancy in the SCAS. At high speeds, the
collective is a very effective pitch control on hingeless rotor helicopters, and this additional loop supplements
the cyclic stabilization of aircraft pitch attitude and rate.

INTEGRATED EQUATIONS OF MOTION OF THE HELICOPTER

In the preceding sections, the equations for the individual helicopter subsystems were derived. A working
simulation model requires the integration of the subsystems in sequential or concurrent form, depending on
the processing architecture. Figure 3.39 illustrates a typical arrangement showing how the component forces
and moments depend on the aircraft motion, controls, and atmospheric disturbances. The general nonlinear
equations of motion take the form

x =F(x,u,1) (3.293)

where the state vector x has components from the fuselage x,, rotors x,, engine/rotorspeed x,, and control
actuation X, subsystems, i.e.

X = {Xf,xr,xp,xc} (3.294)
X = {u,w,q,0,v,p,$,r} (3.295)
X, = {By, P1c> Pis> Ao Ares A ) (3.296)
x, ={Q,0,, 0,} (3.297)
X, = (05,0, 0,..0o1) (3.298)

where we have assumed only first-order flapping dynamics.
SCAS inputs apart, the control vector is made up of main and tail rotor cockpit controls,

u = (1, My My Mog) (3.299)

Written in the explicit form of Eq. (3.293), the helicopter dynamic system is described as instantaneous and
nonstationary. The instantaneous property of the system refers to the fact that there are no hysteretic or more
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general hereditary effects in the formulation as derived in this chapter. In practice, of course, the rotor wake
can contain strong hereditary effects, resulting in loads on the various components that are functions of past
motion. These effects are usually ignored in Level 1 model formulations, but we shall return to this discussion
later in Section 3.4. The nonstationary dynamic property refers to the condition that the solution depends on
the instant at which the motion is initiated through the explicit dependence on time ¢. One effect, included
in this category, would be the dependence on the variation of the atmospheric velocities—wind gusts and
turbulence. Another arises from the appearance of aerodynamic terms in Eq. (3.293), which vary with rotor
azimuth.

The solution of Eq. (3.293) depends on the initial conditions — usually the helicopter trim state — and
the time histories of controls and atmospheric disturbances. The trim conditions can be calculated by setting
the rates of change of the state vector to zero and solving the resultant algebraic equations. However, with
only four controls, only four of the flight states can be defined; the values of the remaining 17 variables from
Eq. (3.293) are typically computed numerically. Generally, the trim states are unique, i.e. for a given set of
control positions there is only one steady-state solution of the equations of motion.

The conventional method of solving for the time variations of the simulation equations is through
forward numerical integration. At each time step, the forces and moments on the various components are com-
puted and consolidated to produce the total force and moment at the aircraft centre of mass (see Figure 3.39).
The simplest integration scheme will then derive the motion of the aircraft at the end of the next time step
by assuming some particular form for the accelerations. Some integration methods smooth the response over
several time steps, while others step backwards and forwards through the equations to achieve the smoothest
response. These various elaborations are required to ensure efficient convergence and sufficient accuracy and
will be required when dynamic properties are present in the system (Ref. 3.56). In recent years, the use of
inverse simulation has been gaining favour, particularly for model validation research and for comparing
different aircraft flying the same manoeuvre. With inverse simulation, instead of the control positions being
prescribed as functions of time, some subset of the aircraft dynamic response is defined and the controls
required to fly the manoeuvre computed. The whole area of trim and response will be discussed in more
detail in Chapters 4 and 5, along with the third ‘problem’ of flight dynamics — stability. In these chapters,
the analysis will largely be confined to what we have described as Level 1 modelling, as set down in detail
in Chapter 3. However, we have made the point on several occasions that a higher level of modelling fidelity
is required for predicting flight dynamics in some areas of the flight envelope. Before we proceed to discuss
modelling applications, we need to review and discuss some of the missing aeromechanics effects, beyond
Level 1 modelling.

BEYOND LEVEL 1 MODELLING

‘Theory is never complete, final or exact. Like design and construction, it is continually developing and
adapting itself to circumstances’. We consider again Duncan’s introductory words and reflect that the topic
of this final section in this model-building chapter could well form the subject of a book in its own right.
In fact, higher levels of modelling are strictly outside the intended scope of the present book, but we shall
attempt to discuss briefly some of the important factors and issues that need to be considered as the mod-
elling domain expands to encompass ‘higher’ DoFs, nonlinearities and unsteady effects. The motivation for
improving a simulation model comes from a requirement for greater accuracy or a wider range of application,
or perhaps both.

We have already stated that the so-called Level 1 modelling of this chapter, augmented with ‘correction’
factors for particular types, should be quite adequate for defining trends and preliminary design work and
should certainly be adequate for gaining a first-order understanding of helicopter flight dynamics. In Chapters
4 and 5 comparison with test data will confirm this, but the features that make the Level 1 rotor modelling so
amenable to analysis — rigid blades, linear aerodynamics, and trapezoidal wake structure — are also the source
of its limitations. Figure 3.40, for example, taken from Ref. 3.57, compares the rotor incidence distribution
for the Puma helicopter (viewed from below) derived from flight measurements of rotor blade leading edge
pressure, with the Level 1 Helisim prediction.
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Fig. 3.40 Comparison of rotor incidence distribution measured on the RAE research Puma with theory: (a) flight;
(b) Helisim (Ref. 3.57)

The flight condition is a straight and level trim at 100 knots. While there are similarities in the two
contour plots, theory fails to capture many of the details in the flight measurements. The region of high
incidence on the retreating side is more extensive and further outboard in the flight results, and there is a
clearly defined ridge in the flight measurement caused by the blade vortex interaction, which is, of course,
completely missed by Helisim. At this 100-knot trim condition, Helisim may well predict the controls to trim
reasonably accurately, simply because the integrated forces and moments tend to smooth out the effects of
the detailed differences apparent in Figure 3.40.

However, there are various problems where the details become significant in the predictive capability
of modelling. Examples include the pitch-up effect of blade stall in ‘high g’ manoeuvres, the transient rotor
torque excursions in rapid rolls, the effects of blade icing or battle damage on power and control margins.
If we consider the effects of the rotor wake on the tail rotor and empennage, then the simple trapezoidal
downwash model fails to predict important effects, such as tail rotor control margins in quartering flight
or the strong couplings induced by the wake effects on the rear fuselage and empennage, particularly in
manoeuvres. High-fidelity simulation requires that these effects can be predicted, and to achieve this we
need to consider the modelling elements at Levels 2 and 3, as described in Table 3.1.

The following qualitative discussions will draw heavily from the published works of selected contrib-
utors to the field of enhanced rotorcraft modelling. The author is all too aware of the enormous amount of
published work and achievements by a great number of researchers in Europe, North America, and Asia in
recent years, particularly to rotor aeroelastic modelling, and a complete review is surely the topic for another
text. The aim here is to draw the readers’ attention to selected advances that lay emphasis on physical under-
standing.

3.4.1 Rotor Aerodynamics and Dynamics

Rotor Aerodynamics

The linear aerodynamic theory used in Level 1 rotor modelling is a crude approximation to reality and,
while quite effective at predicting trends and gross effects, has an air of sterility when compared with the
rich and varied content of the fluid dynamics of the real flow through rotors. Compressibility, unsteadi-
ness, three-dimensional, and viscous effects have captured the attention of several generations of helicopter
engineers; they are vital ingredients for rotor design, but the extent of the more academic interest in real
aerodynamic effects is a measure of the scientific challenge intrinsic to rotor modelling. It is convenient to
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frame the following discussion into two parts — the prediction of the local rotor blade angle of incidence and
the prediction of the local rotor blade lift, drag, and pitching moment. While the two problems are part of the
same feedback system, e.g. the incidence depends on the lift and the lift depends on the incidence, separating
the discussion provides the opportunity to distinguish between some of the critical issues in both topics.

Modelling Section Lift, Drag, and Pitching Moment

The rotor blade section loading actions of interest are the lift, drag, and pitching moment. All three are
important, and all three can signal limiting effects in terms of blade flap, lag, and torsion response. A common
approximation to real flow effects assumes two-dimensional, quasi-steady variations with local incidence and
Mach number uniquely determining the blade loading. In Ref. 3.58, Prouty gives an account of empirical
findings based on analysis of a wide range of two-dimensional aerofoil test data. Key parameters defining
the performance and behaviour of an aerofoil section are the maximum achievable lift coefficient C;,,,, and
the drag divergence Mach number M. Both depend critically on the geometry of the aerofoil, as expected,
and hence on the type of rotor stall. Prouty identifies three types of stall to which rotor blades are prone — thin
aerofoil, leading edge and trailing edge stall.

Prouty’s findings suggest that aerofoil sections with thickness-to-chord ratios greater than about 8% will
normally experience trailing edge stall and, at their best, achieve values of C;,, . up to about 1.6. For thinner
aerofoils, leading edge stall is more likely, with a C, ., that increases with thickness/chord up to about 1.8.
The general effects of trailing and leading edge stall on lift, drag, and moment coefficients are sketched in
Figure 3.41, where these are shown as functions of incidence. Trailing edge stall is characterised by a gradual
increase in the region of separated flow moving forward from the trailing edge. Leading edge stall is triggered
by the bursting of a laminar separation bubble over the nose of the aerofoil giving rise to sharp changes in lift,
drag, and pitching moment. Generally, thin aerofoils are favoured for their performance (high M) at high
Mach number on the advancing side of the disc, and thicker aerofoils are favoured for their performance (high
Cy na) at low Mach number and high incidence on the retreating side. Most helicopter blades are therefore
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Fig. 3.41 Types of aerofoil stall: (a) trailing edge stall; (b) leading edge stall
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designed as a compromise between these two conflicting requirements and may experience both types of
stall within the operating envelope. Reference 3.59 describes the evolution of the cambered aerofoil sections
adopted for the Lynx helicopter, showing a favourable all-round comparison with the thicker, symmetrical
NACA 0012 section. The latter was typical of aerofoil sections used on helicopter rotors before the 1970s.

In blade element rotor simulation models, the lift, drag, and pitching moment coefficients are usually
stored in table look-up form as nonlinear functions of incidence and Mach number, with the data tables
derived from either wind tunnel tests or theoretical predictions. In Ref. 3.6, Bramwell reports on the effects
of swirl and other three-dimensional, in-plane effects on section characteristics with significant changes in
C, ,.a. Darticularly at the higher Mach numbers. Also, in Ref. 3.60, Leishman draws attention to the powerful
effects of sweep angle on C;,,,.. Generally, however, for a large extent of the rotor radius, the two-dimensional
approximation is relatively accurate. An exception is close to the tip, where three-dimensional effects due
to the interaction of the upper and lower surface flows result in marked changes in the chordwise pressure
distribution for a given incidence and Mach number. Accurate modelling of the tip aerodynamics is still the
subject of intense research and renewed impetus with the advent of novel tip sections and planforms.

In forward flight and manoeuvres, the section incidence and Mach number are changing continuously,
and we need to consider the effects of aerodynamic unsteadiness on the section characteristics. In a series of
papers (e.g. Refs. 3.61-3.64), Beddoes and Leishman have reported the development of an indicial theory
for unsteady compressible aerodynamics applicable to both attached and separated flow, for the computa-
tion of section lift, drag, and pitching moment. In attached flow, the shed wake near the aerofoil induces a
time-dependent circulatory force on the section, with a transient growth corresponding to about five chord
lengths. A noncirculatory lift also develops (due to the aerofoil virtual mass) and decays to zero in approx-
imately the same spatial scale. Both effects are approximated in the Beddoes model by combinations of
exponential functions (Ref. 3.63) responding to arbitrary motions of an aerofoil in pitch and heave. To account
for the response of the aerofoil to its passage through the wake and individual vortices of other blades, the
method also models the loading actions due to arbitrary variations in the incidence of the airflow (Ref. 3.64).
A special feature of these developments has been the extension to the modelling of separated flow and the
prediction of dynamic stall (see earlier paper by Johnson and Ham for discussion of the physics of dynamic
stall, Ref. 3.65). In unsteady motion, the passage of shed vorticity over the aerofoil upper surface following
leading edge stall gives rise to a delay in both lift and moment ‘break’, resulting in an overshoot of lift to
well beyond the normal quasi-steady value of C,,, .. Beddoes has encapsulated this effect in a semi-empirical
model, summarised in Figure 3.42, taken from Ref. 3.62. To quote from Ref. 3.62:

For each Mach number the angle of attack (a;) which delimits attached flow is determined by the break
in pitching moment and a further angle (a,) is used to represent the condition where flow separation
and hence centre of pressure is stabilised. In application, when the local value of angle of attack
exceeds a; the onset of separation is assumed to be delayed for a finite period of time (t ;) during which
the lift and moment behave as appropriate for attached flow. When this time delay is exceeded, flow
separation is assumed to be initiated by the shedding of a vortex from the surface of the aerofoil and
after a period of time (t,), during which the vortex traverses the chord, it passes free of the surface. In
this interval, lift is generated by the vortex and the overall level maintained equivalent to that for fully
attached flow but the centre of pressure moves aft as a function of both angle of attack and time. When
the vortex passes free of the surface, the lift decays rapidly to a value appropriate to fully separated
flow assuming that the angle of attack is still sufficiently high. If and when the angle of attack reduces
below the value a; re-attachment of the flow is represented by the attached flow model, re-initialised
to account for the current lift deficiency.

Beddoes goes on to suggest ways that the method can be extended to account for trailing edge stall and
in compressible conditions, when stall is more often triggered by shock wave-boundary layer interaction
(Ref. 3.62). Unsteady aerodynamic effects are essential ingredients to understanding many rotor character-
istics at high speed and in manoeuvres, and have found practical application in current-generation loads,
vibration, and aeroelastic stability prediction models. The impact on flight dynamics is less well explored,
but two important considerations provide evidence that for some problems, unsteady aerodynamic effects
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Fig. 3.42 Time delay model for dynamic stall (Ref. 3.62) (T.E., trailing edge; L.E., leading edge; C.P., centre of
pressure)

may need to be simulated in real-time applications. First, we consider the azimuthal extent of the devel-
opment of unsteady lift and moment. The linear potential theory discussed above predicts a time to reach
steady-state lift following a step change in incidence of about 5-10 chord lengths, equating to between 10°
and 20° azimuth. Even the lower frequency one-per-rev incidence changes associated with cyclic pitch will
lead to a not-insignificant phase lag, depending on the rotorspeed. Phase lags as low as 5° between control
inputs and lift change can have a significant effect on pitch to roll cross-coupling. Second, modelling the trig-
ger to blade stall correctly is important for simulating flight in gross manoeuvres, when the azimuthal/radial
location of initial stall can determine the evolution of the separated flow and hence the effect on pitch and roll
hub moments particularly. Dynamic, rather than quasi-steady stall, is, of course, the norm in forward flight
and manoeuvring conditions.

With two-dimensional test data tables, three-dimensional and low-frequency unsteady corrections and
an empirical stall model, deriving the section forces and pitching moment is a relatively straightforward
computational task. A much more significant task is involved in estimating the local incidence.

Modelling Local Incidence
The local incidence at azimuth station y and radial station r can be expanded as a linear combination of
contributions from several sources, as indicated by Eq. (3.300):

a(y, 13 1) = Qe + Ay + Xy + @y, F o (3.300)

The component a,,,., is the contribution from the physical pitch of the blade applied through the swash plate
and pitch control system. The «,,;, component includes contributions from both static and dynamic twist;
the latter will be discussed below in the next section, Rotor Dynamics. The ay,, component due to rigid
blade motion has been fully modelled within the Level 1 framework; again, we shall return to the elastic flap
contribution below. The a,, component corresponds to the inclination of incident flow at the hub. Within
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the body of this chapter, the modelling of a;,4,, has been limited to momentum theory, which although
very effective, is a gross simplification of the real helical vortex wake of a rotor. Downwash, in the form of
vorticity, is shed from a rotor blade in two ways, one associated with the shedding of a (spanwise) vortex
wake due to the time-varying lift on the blade, the other associated with the trailing vorticity due to the
spanwise variation in blade lift. We have already discussed the inflow component associated with the near
(shed) vortex wake due to unsteady motion; it was implicit in the indicial theory of Beddoes and Leishman.
Modelling the trailing vortex system and its effect on the inflow at the rotor disc has been the subject of
research since the early days of rotor development. Bramwell (Ref. 3.6) presents a comprehensive review of
activities up to the early 1970s, when the emphasis was on what can be described as ‘prescribed” wakes, i.e.
the position of the vortex lines or sheets are prescribed in space and the induced velocity at the disc derived
using the Biot—Savart law. The strength of the vorticity is a function of the lift when the vorticity was shed
from the rotor, which is itself a function of the inflow.

Solving the prescribed wake problem thus requires an iterative procedure. Free wake analysis allows
the wake vorticity to interact with itself, and hence, the position of the wake becomes a third unknown in the
problem; a free wake will tend to roll-up with time and hence gives a more realistic picture of the flowfield
downstream of the rotor. Whether prescribed or free, vortex wakes are computationally intensive to model
and have not, to date, found application in flight simulation. As distributed flowfield singularities, they also
represent only approximate solutions to the underlying equations of fluid dynamics. In recent years, com-
prehensive rotor analysis models are beginning to adopt more extensive solutions to the three-dimensional
flowfield, using so-called computational fluid dynamics techniques (Ref. 3.3). The complexity of such tools
and the potential of the achievable accuracy may be somewhat bewildering to the flight dynamicist, and a
real need remains for simpler approximations that have more tractable forms with the facility for deriving
linearised perturbations for stability analysis. Earlier, in Section 3.2.1, we referred to the development of
wake models that exhibit these features (Refs. 3.28, 3.29), the so-called finite-state wake structures. Here,
the inflow at the rotor is modelled as a series of modal functions in space—time, each satisfying the rotor
boundary conditions and the underlying continuity and momentum equations, through the relationship with
the blade lift distribution. The theory results in a series of ordinary differential equations for the coupled
inflow/lift which can be appended to the rotor dynamic model. Comparison with test results for rotor inflow
in trimmed flight (Ref. 3.29) shows good agreement and encourages further development and application
with this class of rotor aerodynamic model.

Rotor Dynamics

Several of the important components of local blade incidence stem from the motion and shape of the blade
relative to the hub. A characteristic of Level 1 (flight dynamics) modelling is the approximation of rigid blade
motion for flap, lag, and torsion. We have seen how the CSER can be used to represent the different types of
flap retention system — teetering, articulated or bearingless. In MBC form, the dynamics of one-per-rev disc
tilting are apparently well represented. Since the hub moments of interest are produced by the one-per-rev
flapping, this level of approximation would appear to be adequate for problems in the frequency range of
interest to the flight dynamicist. However, a significant simplification in the centre-spring approximation
involves the relationship between the disc tilt and the hub moment.

We have suggested earlier that the linear relationship is a powerful attribute of the centre-spring model; if
we look more closely at the potential effects of elastic blade motion, we see that what appears to be a strength
of the approximation in many cases is a weakness in others. With the centre-spring model, it can easily be
shown that the moment computed from the disc tilt and the hub moment computed from the integrated
aerodynamic loads are always in balance, and hence always in phase. More generally, for both articulated
and hingeless rotor approximate models, this is not the case. Consider the blade flap moment (in rotating
axes) at the hub, given by Eq. (3.15), but expanded to show how the time-dependent generalised (modal)
coordinates can be written as a summation of harmonics with coefficients a,, and b,,, as in Eq. (3.301):

m=1

R
M0,1) = Q? Z(,ﬁ -1 / mrS,(r)dr <Z a,, cosmy + b,, sin mw) (3.301)
n=1
0
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Fig. 3.43 Rotor blade shape at the advancing (90°) and retreating (270°) azimuth angles for Lynx at 150 knots

Each mode will contribute to the rotating hub moment through the different harmonics, but only the first har-
monic contribution to each will be transmitted through to result in quasi-steady fuselage motions. The extent
of the contribution of higher modes to the hub moment depends entirely on the character of the aerodynamic
forcing; the stronger the radial nonlinearity in the one-per-rev aerodynamic forces, the greater will be the
excitation of the higher modes. Of course, the higher the frequency of the mode, the more attenuated will
be its one-per-rev tip response, but equally, the hub moment for a given tip deflection will be greater for the
higher modes.

An illustration of the potential magnitude of contributions to the hub moment from higher elastic modes
is provided by Figure 3.43. The blade bending at azimuth stations 90° and 270° are shown for the Lynx rotor in
trim at 150 knots, derived from the RAE aeroelastic rotor model. The rotor model used to compute the results
shown includes first and second flap modes, first torsion, and first lead—lag. The shape of the blade highlights
the strong contribution from the second flap mode in the trim condition, with the ‘node’ (zero displacement)
at about 50% radius. In fact, the hub moment, defined by the curvature of the blade at the hub, has an opposite
sign to the tilt of the disc. The total hub rolling moment (in fuselage axes), computed from either the modal
curvature or integrated aerodynamics, is about —1000 Nm (to port), clearly in opposition to the disc tilt to
starboard. For the case with only the fundamental flap mode retained, the hub moment derived from the
first mode curvature is about +2000 Nm (to starboard), while the aerodynamic moment integrates to about
—600 Nm (cf. Figure 3.43). This result argues strongly for a harmony in the model between aerodynamic and
dynamic formulations, particularly for high-speed flight (¢ > 0.3) when nonlinear aerodynamics and hence
the effects of higher modes are likely to become more pronounced.

Shupe, in Ref. 3.36, presents results on the effect of the second flap mode over a wide range of condi-
tions, supporting the above conclusion that the influence of the loading on the shape of the hingeless blade
at high speed is significant, and higher order modes need to be included in simulation modelling for flight
dynamics. Shupe also noted the powerful effects of blade twist on the distribution of out-of-plane bending
between the first and second flap modes; twist tends to pull the blade loading inboard, hence leading to a
radial aerodynamic distribution with a shape more like the second flap mode. A subtle effect that should be
noted here is that the response of the second flap mode to one-per-rev aerodynamic loads will not feature
the 90° phase shift associated with the first flap mode. The natural frequency of mode flap 2 is an order of
magnitude higher than that for mode flap 1 and the phase lag at one-per-rev will be very small. Hence, lateral
cyclic (6,,.) will lead primarily to longitudinal disc tilt (#,.) in mode flap 2, thus having a stronger effect on
cross-coupling than the direct response. The influence of the second flap mode in flight dynamics is yet to be
fully explored and remains a research topic worthy of further investigation.
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Blade dynamic twist will clearly have a major effect on local blade incidence, flapping, and hub
moments and can arise from several sources. Any offset of the blade chordwise centre of mass or elastic axis
from the quarter chord will result in a coupling of the flap and torsion DoFs in the elastic modes. The shift
of the chordwise aerodynamic centre due to compressibility, stall, or by design through swept tip planforms
will also be a source of torsional moments from the section aerodynamic pitching moment.

References 3.66-3.68 report results of flight dynamics simulation models that incorporate elastic modes,
paying attention to the effect of elastic torsion. For the cases studied in both Ref. 3.67, using the FLIGHTLAB
simulation model, and Ref. 3.68, using the UM-GENHEL simulation model, elastic torsion was shown to
have a negligible effect on aircraft trim, stability and dynamic response; comparisons were made with test
data for the articulated rotor UH-60 helicopter in hover and forward flight. Articulated rotor helicopters are
normally designed so that the blade pitch control is positioned outboard of the flap and lag hinges, thereby
reducing kinematic couplings. On hingeless rotors, combined flap and lag bending outboard of the pitch
control will produce torsional moments leading to elastic twist of the whole blade or flexing of the control
system. This feature was described in the context of the design of the Westland Lynx helicopter in Ref. 3.69.
The combination of an inboard flapping element with high lag stiffness and a circular section element with
matched flap and lag stiffness outboard of the feathering hinge resulted in a minimization of torsion—flap—lag
coupling on Lynx. For both articulated and hingeless rotors, it should be clear that the potential for elastic
couplings and/or forced torsional response is quite high, and even with designs that have emphasised the
reduction of the sources of coupled torsional moments, we can expect the combination of many small elastic
and particularly unsteady aerodynamic effects to lead to both transient and steady-state elastic twist.

Aeroelastic effects clearly complicate rotor dynamics but are likely to be an important ingredient and
a common feature of future high-fidelity rotorcraft simulations. It will be clear to the serious student of the
subject that most of the approximations lie in the formulation of the aerodynamic theory, particularly the
dynamic inflow, but the degree of aeroelastic modelling required to complete the feedback loop correctly
is not well researched. As new rotor designs with tailored elastic properties and flexible surfaces become
mature enough for application, we should expect an associated increase in the motivation for understanding
and developing more general and definitive rules for the effects of aeroelasticity on flight stability and control.

3.4.2 Interactional Aerodynamics

The helicopter is characterised by an abundance of interactional aerodynamic effects, often unseen in design
but powerful in the (usually adverse) effects in flight. A principal source of interactions is the main rotor
wake as it descends over the fuselage, empennage, and through the tail rotor disc. The main rotor wake also
interacts with the ground and with itself, in vortex-ring conditions. The modelling problem is therefore largely
an extension of the problem of predicting the wake effects at the rotor disc; for interactional aerodynamics,
we are interested in the development of the wake within approximately one rotor diameter of the rotor. In
this space—time frame, the wake is in unsteady transition between its early form as identifiable vorticity and
fully developed rolled-up form, and presents a formidable modelling problem.

Several factors combine to increase the significance of interactional aerodynamics — higher disc load-
ings resulting in stronger downwash, more compact configurations often with relatively large fuselage and
empennage areas and the increased use of helicopters in low level, nap-of-the-earth operations. From a design
perspective, the most useful information relating to interactional aerodynamics can be found in reports of full
and model scale testing, and more recently in computational fluid dynamics analysis. In Ref. 3.44, Prouty
discusses several datasets showing the effects of rotor downwash on the empennage. A review of test results
from a period of activity at Boeing helicopters is reported by Sheridan in Ref. 3.70. In this reference, inter-
actions are classified into downstream (e.g. rotor/empennage upset loads, tail rotor/loss of effectiveness),
localised (e.g. rotor/fuselage download, tail rotor/fin blockage), ground proximity (e.g. trim power, unsteady
loads from ground vortex), and external interaction (e.g. helicopter/helicopter upset loads, ground winds) cat-
egories. One problem that has received considerable attention through testing is the interaction of the rotor
downwash with the rear fuselage (tail-boom) at low speed. In Ref. 3.71, Brocklehurst describes the successful
implementation of fuselage strakes to control the separation of the circulatory flow caused by the downwash
flowing over the tail-boom in sideways flight. Ref. 3.72 discusses several similar test programmes on US
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helicopters. In all these cases, the use of the strakes reduced the tail rotor control and power requirements,
hence recovering the flight envelope from the restrictions caused by the high tail-boom sideforces.

The interaction of the main rotor wake with the tail rotor has been the subject of an extensive test
programme at the RAE Bedford (Refs. 3.73, 3.74), aimed at providing data for interactional modelling devel-
opments. In Ref. 3.73, from an analysis of Lynx flight test data with an instrumented tail rotor, Ellin identified
several regions of the flight envelope where the interactional aerodynamics could be categorised. Particular
attention was paid to the so-called quartering-flight problem, where the tail rotor control requirements for
trim can be considerably different from calculations based on an essentially isolated tail rotor. Figure 3.44
shows a plan view of the helicopter in quartering flight — hovering with a wind from about 45° to starboard.
There exists a fairly narrow range of wind directions when the tail rotor is exposed to the powerful effect of
the advancing blade tip vortices as they are swept downstream. A similar situation will arise in quartering
flight from the left, although the tail rotor control margins are considerably greater for this lower (tail rotor)
power condition. From a detailed study of tail rotor pressure data, Ellin identified the passage of individual
main rotor tip vortices through the tail rotor disc. Based on this evidence, Ellin constructed a Beddoes main
rotor wake (Ref. 3.75) and modelled, in a semi-empirical manner, the effect of the main rotor vortices on the
tail rotor control margin. Effectively, the advancing blade tip vortices introduce a powerful in-plane velocity
component at the tail rotor disc. For the case of the Lynx Mk 5, with its ‘top-forward’ tail rotor rotation
direction, this leads to a reduction in dynamic pressure and an increase in control angle and power to achieve
the same rotor thrust. Tail rotors with ‘top-aft’ rotations (e.g. Lynx Mk 7) do not suffer from this problem,
and the control requirements, at least in right quartering flight, can actually be improved in some circum-
stances, although interactions with the aerodynamics of the vertical fin are also an important ingredient of
this complex problem. Figure 3.45 shows the pedal control margin for Lynx Mk 5 hovering in a wind from
all directions around the clock out to 30 knots.

Figure 3.45a presents Ellin’s flight measurements. The limiting condition corresponding to right quar-
tering flight is shown as the 10% margin contour. The situation in left quartering flight manifests itself in a
drawing out of the 60% contour as shown, although the situation is further complicated in left flight by the
tail rotor experiencing vortex-ring flow states. Figure 3.45b shows the same result predicted by Helisim with
an isolated tail rotor; clearly none of the nonuniformities caused by the interactions with the main rotor wake
and fin is present. In comparison, Figure 3.45¢ shows the Helisim pedal margin results after correction of the
dynamic pressure experienced by the tail rotor, using the Beddoes main rotor wake. The nonuniformities in
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Fig. 3.45 Comparison of the tail rotor pedal margin measured on the RAE research Lynx with theory: (a) flight; (b)
Helisim; (c) Helisim corrected (Ref. 3.73)

quartering flight are now well predicted, although in flight to the left, the predicted margin is still 10-15%
greater than in flight. The results of Ellin’s research point towards the direction of improved modelling for
main rotor wake/tail rotor interactions, although achieving real-time operation with the kind of prescribed
wake used remains a significant task.

A similar investigation into the effects of main rotor wake/tail rotor interaction on yaw control effec-
tiveness is reported in Ref. 3.76, using the University of Maryland Advanced Rotor Code (UMARC). For
predicting the distribution of main rotor wake velocity perturbations behind the rotor, a free wake model was
used and correlated against wind-tunnel test data. In general, a good comparison was found, except for the
critical positions close to the main rotor tip vortices, where peak velocities some 100% greater than predicted
were measured. Correlation of predicted tail rotor control margin at the critical quartering flight azimuths was
reasonable, although theory typically underestimated the control margins by about 10-15%. The UMARC
analysis was conducted on an SH-2 helicopter with top-forward tail rotor rotation, and the positive effects of
main rotor wake/tail rotor interaction were predicted to be much stronger in theory than measured in flight.
The Maryland research in this area represents one of the first applications of comprehensive rotor modelling
to wake/tail interactions and their effects on flying qualities.

The series of papers by Curtiss and his co-workers at Princeton University report another important set
of findings in interactional aerodynamics; in this case, special attention was paid to the effect of the main
rotor wake on the empennage (Refs. 3.77, 3.78). Reference 3.78 compares results using a flat prescribed
wake (Ref. 3.79) with a free wake (Ref. 3.80) for predicting the induced velocity distribution at the location
of the horizontal stabiliser for a UH-60 helicopter.

Comparison of the nondimensional downwash (normalised by momentum value of uniform downwash
at the disc) predicted by the two methods, as a function of lateral displacement at the tail surface, is shown
in Figure 3.46. The UH-60 tailplane has a full span of about 0.5R. The simpler flat wake captures most
of the features in the considerably more complex free wake model, although the peak velocities from the
rolled-up wake on the advancing and retreating sides are overestimated by about 30% with the flat wake.
The much stronger induced flow on the advancing side of the disc is clearly predicted by both models. The
upwash outside the rotor disc (/R > 1.0) is also predicted by both models. One of the applications studied in
Ref. 3.78 involved the prediction of cross-coupling from sideslip into pitch, a characteristic known to feature
quite large on the UH-60. From Figure 3.46, we can deduce that sideslip will give rise to significant variations
in the levels of downwash at the horizontal stabiliser — a sideslip of 15°, for example, will cause a shift in the
downwash pattern by about 0.25R, to left or right.

Figure 3.47 compares the pitch rate response to a pedal doublet input at 100 knots; the flight test results
are also plotted for comparison (Ref. 3.78). The powerful pitching moment, developing during the first second
of the manoeuvre, is reasonably well predicted by both interactional aerodynamic models. As an aside, we
would not expect to see any pitch response from the Helisim model until the yawing and rolling motions had
developed. The free wake model appears to match flight test fairly well until the motion has decayed after
about 10 s, while the flat wake underpredicts the oscillatory damping.



146

©

Helicopter and Tiltrotor Flight Dynamics

normalized 1.0 -
upwash 00 R °o°
A 05} °o°°° o0
ho
00
,05 -
,1 0 -
free wake
1oy prediction
20
Yy flat wake
normalized —25F predicon 0 o
| 1 1 ¢ [ X1 | |
downwash 3.0, 555 70 05 0.0 05 10 15 2.0
Y/R
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Fig. 3.47 Comparison of pitch rate response to pedal input; UH-60, 100 knots (Ref. 3.78)

Ultimately, the value of interactional aerodynamic modelling will be measured by its effectiveness at
predicting the degrading or enhancing effects on operational performance. To reiterate, the motivation for
developing an increased modelling capability for use in design and requirements capture, in terms of the
potential payoff, is very high. Much of the redesign effort on helicopters has been driven by the unexpected
negative impact of interactional problems (Ref. 3.81), and there is a real need for renewed efforts to improve
the predictive capability of modelling. This must, of course, be matched by the gathering of appropriate
validation test data.

At the time of writing, ‘operational’ simulation models with a comprehensive treatment of nonlinear,
unsteady rotor and interactional aerodynamics are becoming commonplace in industry, government research
laboratories and in academia. Some of these have been referred to above. The computational power to run
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blade-element rotor models, with elastic modes and quite sophisticated aerodynamic effects, in real time, is
now available and affordable. The domain of flight dynamics is rapidly overlapping with the prediction of
loads, vibration, rotor aeroelastic stability and aeroacoustics. Yet the overall effects on our understanding of
helicopter flight dynamics, stemming from the vigorous developments in recent years, does not appear to
have been cumulative. This is partly because of the human factor — the reservoirs of knowledge are people
rather than reports and journal papers — but there is another important issue. In the author’s view, the pace
associated with our ability to computer-model detailed fluid and structural dynamics has far outpaced our
ability to understand the underlying causal physics.

Even if the ‘perfect’ simulation model existed, its effective use in requirements capture, design, and
development would need to be underpinned by our ability to interpret the outputs meaningfully. While the
perfect model does not yet exist, it is the vision of many rotorcraft engineers, but the achievement of this
goal will need to be accompanied by two companion activities in the author’s view, or not realised at all.
First, recalling how important the interplay between theory and experiment has been in the development
of rotorcraft, confidence in simulation modelling will increase only through validation against test data.
High-quality measurements of surface and flowfield aerodynamics and component loads are difficult and
expensive to make and are often available only for commercially sensitive programmes. The focus needs to
be on generic test data, with an emphasis on manoeuvring flight and into areas at flight envelope boundaries
where nonlinearities govern dynamic behaviour. Second, there needs to be renewed emphasis on the devel-
opment of narrow range approximations that truly expose cause and effect and, just like the critical missing
jigsaw piece, provide significant insight and understanding. However, the skills required to build a simulation
model and those required to derive analytic approximations, while complementary, are quite different, and it
is a mistake to assume that the former begets the latter. University courses and industrial training programmes
must recognise the importance of these integrated modelling skills or there is a real danger that the analytical
skills will be lost in favour of computational skills. Chapters 4 and 5, and later Chapter 10, are concerned
with working with simulation models, where validation and analytic approximation feature strongly.

CHAPTER 3 EPILOGUE

Modelling and simulation provide the tools, and the eyeglass, to exploration and understanding of the
behaviour of rotorcraft, within and beyond their normal flight envelope. The new Chapter 10 of this third
edition examines the flight dynamics of tiltrotor aircraft, and the author has selected a quote from Phil
Dunford as the leading statement. Dunford is discussing the evolution of the V-22 tiltrotor when he remarks
that, ‘Rotorcraft aeromechanics may be too complex to ever predict with high confidence’. The author
suspects that the sentiment behind this statement has been felt by many rotorcraft engineers on the front line
in design and development and will continue to be for some time to come. Nevertheless, the complexities
need not stall progress, but rather be the stimulus for increased endeavour. Modelling and simulation are
contained within a broader discipline, virtual engineering (VE), centred on the creation of virtual prototypes
(VPs) and, later, virtual twins that support both creativity and decision making. The rotorcraft industry needs
VE first to ensure that decisions made early in the life cycle, at the requirements capture and preliminary
design phases, for example, are reliably informed. Then later, in design, development, and qualification,
virtual prototypes can become centres of attention for critical reviews and, ultimately, certification itself. As
aircraft enter service, the virtual twins can be used to support crew training and fleet upgrades. A significant
challenge is to ensure that model fidelity is good enough, not only for supporting design decisions but also
for establishing requirements based on sufficiently mature technologies. To reinforce the importance of
this life-cycle perspective, Figure 3.48 illustrates the general form of the cumulative % of life-cycle costs,
both expended and committed (Refs. 3.82, 3.83). In general, 75% of a product’s cost can be committed
through the decisions made and actions taken in the first 10% of the life cycle. If we consider the cost to fix
problems in this first 10% as one unit, then the cost to fix grows by several orders of magnitude as a project
advances. Flight dynamics, encompassing whole vehicle behaviour for performance and handling qualities
engineering, and flight management and control system design, features throughout these phases.
Confidence in the power of VE stems from the verification and validation of the models within. Ver-
ification addresses whether the virtual prototype behaves as intended and validation addresses whether the
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Fig. 3.48 Committed and expended costs during the life cycle of a product (Refs. 3.82, 3.83)

Fig. 3.49 The UoL HELIFLIGHT-R ground-based flight simulator (left) and NRC ASRA in-flight simulator (right)
(Ref. 3.92)

virtual prototype behaves like the real aircraft. Both need to be fulfilled. But how close does the match need
to be before the virtual prototype is sufficiently valid to fulfil its purpose? We use the word fidelity to describe
this closeness of match. The question was addressed by a Garteur action group (HAG-12), with emphasis
on the accuracy of flight models used in crew training simulators (Ref. 3.84). The group concluded that the
methods for achieving certification standards and the standards themselves (e.g. Ref. 3.85) lacked a rigorous
engineering science basis. Using the metrics from ADS-33 (Ref. 3.86) it was shown that, in some cases, a
VP could pass the certification criteria but lie in a different flying qualities level than the aircraft. Research
at Liverpool, concurrent with the Garteur activity, was focussed on casting the rotorcraft simulation fidelity
‘problem’ within the framework of flying qualities engineering (Refs. 3.87-3.97). We continue the Epilogue
with some snapshots from this research. The facilities used were the Canadian Flight Research Laboratory’s
in-flight simulator, the Advanced Systems Research Aircraft (ASRA), and The University of Liverpool’s
HELIFLIGHT-R ground-based simulator (Ref. 3.92). Figure 3.49 illustrates these facilities with the pod of
the original HELIFLIGHT simulator, described in Appendix 8A, shown in the background.
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(Ref. 3.95)

The key argument for using flying qualities metrics in the certification standards for the flight model in
training simulators is that these are the metrics that best define the flying characteristics of an aircraft; they
are complete, consistent, quantify goodness, and are underpinned by engineering science and validated by
test. Training simulators are used to impart flying skills so correspondance between the flight model and the
real aircraft is best described using these metrics. The adoption of methods from flying/handling qualities
engineering goes further than flight model fidelity. We can now refer to both predictive fidelity (of the flight
model) and perceptual fidelity of the simulation experience, drawing on the predicted handling qualities and
(pilot) assigned handling qualities structure. Figures 3.50 and 3.51 show results for the pitch and roll attitude
bandwidth, phase delay, and quickness in hover; the FLIGHTLAB FB-412 is compared with the ASRA,
both configured with attitude-command, attitude-hold response types for the bandwidth metrics, and bare
airframe for quickness (Ref. 3.95). The reader is referred to Chapter 6 for more details on these metrics.
On the bandwidth-phase delay chart, the 10% error and 20% error contours around the flight test points are
added to illustrate the potential format for acceptable fidelity tolerances. The FB-412 model appears to lie on
the 10-20% boundary for pitch but outside the 20% boundary for roll. The quickness charts show a broadly
similar picture. The Level boundaries on these charts are for handling qualities of course, but the idea of
quality levels for fidelity is a natural extension. Establishing the tolerances for sufficient fidelity will require
more orchestrated research along the lines of that undertaken to create the test database for ADS-33.

A pilot’s experience of a flight simulator, and the consequent training benefit, depends on the fidelity of
the flight model, of course, but also on the fidelity of the other elements involved, including the visual, and
motion system, cockpit representation, audio cues etc. This total experience must be sufficiently realistic that
pilots behave as if they were in the real world. We describe this as the perceptual fidelity and we can both
quantify this with metrics and capture pilot opinion through a suitable rating scale, the simulation fidelity
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rating (SFR) scale (Refs. 3.95 and 3.96). The embryonic SFR scale is based on two key attributes, the achieved
performance and the level of adaptation required, as summarised in Figures 3.52 and 3.53.

The rating scale is applicable to all three stages of training — skills acquisition, skills development, and
skills assessment. For skills acquisition, the fidelity levels are defined as:

(a) Level 1 fidelity: Simulation training is sufficient to allow operational performance to be attained with
minimal pilot adaptation. There is complete transfer of training from the simulator to the aircraft in this
task.

(b) Level 2 fidelity: Additional training in the aircraft would be required to achieve an operational level of
performance. There is limited positive transfer of training from the simulator to the aircraft in this task
but no negative transfer of training.

(c) Level 3 fidelity: Negative transfer of training occurs (i.e. the pilot learns an inappropriate technique),
and the simulator is not suitable for training to fly the aircraft in this task.

Similarly, the levels for skills development are defined as:

(a) Level 1 fidelity: Simulation training is sufficient to restore previous performance capabilities.

(b) Level 2 fidelity: Simulation training provides limited improved performance capability. Additional
training is required.

(c) Level 3 fidelity: No positive transfer of training occurs. The simulator is unsuitable for training.

Finally, the levels for skills assessment are defined as:

(a) Level 1 fidelity: Simulation is sufficient to demonstrate skills associated with qualified performance
comprehensively.

(b) Level 2 fidelity: Performance in the simulator demonstrates limited elements of the required skills.

(c) Level 3 fidelity: Performance in the simulator does not serve to demonstrate the required skills.

The SFR is still in its early stages of development and will need to be exercised in earnest application, and
likely further developed, before it is readily accepted by industry and regulators. The research at Liverpool
has once again exposed the challenges of capturing subjective opinion in a way that allows quantification.
Like compensation, adaptation is a difficult characteristic to define precisely and, the author suspects, will
require particularly reflective test pilots to assist engineers in this task.

Simulation fidelity is on the agenda of the International Helicopter Safety Team (IHST) (Ref. 3.98) in the
form of Helicopter Safety Enhancement H-SE 81 — Improve Simulator Modelling for Outside-the-Envelope
Flight Conditions. The task as of 2018 includes

Coordinate with the FAA, industry, and academia to review existing helicopter simulator/physics-based
models and conduct research/testing to develop recommendations for improved helicopter
mathematical/physics-based models. The intent is to provide recommendations for developing
better mathematical/physics-based models for helicopter flight dynamics in order to achieve more
realistic, higher-fidelity simulations of outside-the-envelope flight conditions. Current models are
not accurate at edge-of-the-envelope and outside-of-the-envelope flight regimes. This may lead to
unrealistic training of maneuvers such as loss of tail rotor effectiveness, vortex ring state/settling with
power, and autorotations and a negative transfer of training when similar situations are encountered
during actual flight.

The motivation behind the important work of the IHST is powerful, and the author anticipates that this safety
enhancement task will spur necessary developments in the whole area of flight simulator fidelity.

In the preparation of the third edition of this book, the author has been all too conscious that the sig-
nificant advancements in rotorcraft modelling and simulation over the last decade could have justified a
completely new chapter, describing how Level 2 modelling is now the baseline for even preliminary design
studies and Level 3 is becoming commonplace in flight dynamics applications. The discoveries of new vehicle
behaviours, or at least the root causes of those behaviours, through computational fluid-structural dynamics
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FIDELITY CHARACTERISTICS

\

FIT FOR PURPOSE
Full transfer of training
for the selected task.
Simulator training sufficient for
acquisition/n of
performance.

COMPARATIVE PERFORMANCE
& PILOT'S TASK STRATEGY

FIDELITY FIDELITY
RATING  LEVEL

Negligible adaptation of task strategy
required for equivalent performance

Minimal adaptation of task strategy
required for equivalent performance

FIDELITY WARRANTS IMPROVEMENT

Similar performance attainable with
minimal ion of task strategy

Equivalent performance attainable with
moderate adaptation of task strategy

Similar performance attainable with
moderate adaptation of task strategy

Similar or equivalent performance attainable
with ion of task strategy

Similar or equr 1t per attainable
but excessive adaptation of task strateqy required

Similar performance not attainable with

or less of task strategy

I5-oquivalent No Limited transfer of training
ith inimal tovel ot for the selected task.
WL & i ive . Additional training required
adaptation? for operational performance.
* Yes
Is similar or better
performance attainable No NOT FIT FOR PURPOSE
without i L IMPROVEMENT MANDATORY
adaptation? - Negative transfer of training occurs.
* Yes
] ] No NOT FIT FOR PURPOSE
Does fidelity permit task > IMPROVEMENT MANDATORY

execution?

Task cannot be r

Similar performance not attainable with
excessive adapt of task strategy

An entirely inappropriate task strateqgy is required,

or similar performance is not attainable

ATTEMPT TASK

Fig. 3.52 A rating scale for the assessment of flight simulator fidelity
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COMPARATIVE PERFORMANCE
Equivalent Similar Mot similar
Negligible LEVEL 1
g Full Transfer of Training
E Minimal (SFR 1-2)
=
E :
g Maderate LEVEL S ;
< Limited Transfer of Training
E Considerable (SFR 3-8)
w
=
é LEVEL 3
] Excessive Negative Transfer of Training
(SFR 7-9)

Fig. 3.53 Levels of comparative performance and control strategy adaptation used in the SFR scale

experiments is providing more confidence in the use of these Level 3 tools early in design and in require-
ments capture. The progress in computing power is enabling such methods to become much more routine
in application. The treatment of Level 2 modelling has been given limited attention in the new chapter on
tiltrotor aircraft, where the author also touches on some Level 3 material.

The developments and applications in rotorcraft virtual engineering was the topic of an international
conference held at the University of Liverpool in 2016 (see Ref. 3.99 and Ref. 3.100 for a summary of this
event). VE was defined as the ‘creation and use of Virtual Prototypes to support decision-making through-
out a product’s life-cycle’, which may be 50+ years for a rotorcraft. The application range is broader than
flight dynamics, of course, but the conference highlighted the importance of cross-disciplinary integration to
maximise optimisation potential. The author shared a vision for VE in the rotorcraft life cycle, with six key
aspects:

(1) Let the virtual prototype become the centre of attention for synthesis, analysis, and decision-making
throughout the rotorcraft life cycle:
* Discovery and insight through the presentation of data and information as knowledge;
* Opening Windows into the unknown;
* Spurs to innovation through visualisations of complex behaviours.
(i) Use common VPs and data throughout rotorcraft life-cycle phases:
 Rapid prototyping of ideas supporting real-time optimisation and what-if trade studies;
* Enabling true optimization;
* Core elements of critical design reviews integrating function, fit, and form and economic viability.
(iii)) Undertake VP verification and validation in regulatory-style throughout the life cycle.
(iv) Create a VE approach to failure analysis, from the fractured pipe and the broken wire to the software
bug and the confused pilot.
(v) Industry and academia, working in partnership, focus on developing engineers with advanced VE skills
and competencies for dealing with very complex systems.
(vi) Use VE to restore grace, imagination, and artistry to the design process.

Realising this vision requires strong leadership, starting at the top of organisations and woven into corporate
cultures. It remains to be seen if this kind of leadership will shape the pathways in future rotorcraft design
and development.

In the author’s conference keynote, the contribution of the Polish renaissance mathematician, Nicolaus
Copernicus (Ref. 3.101), to the heritage of tackling problems with mathematics was highlighted. Coperni-
cus’s ‘problem’ was the formulation of a model for the universe with the sun at the centre (the heliocentric
hypothesis); he described two kinds of mathematical modellers:

(a) Instrumentalists, who believe that mathematical models are used to facilitate calculations and to make
predictions;
(b) Realists, who believe that a successful mathematical treatment reveals how things must be.
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In the modern parlance of virtual engineering, instrumentalists create product models to predict behaviour,
but these models can be so complex and the outputs potentially so confusing that we also need the realists to
create mathematical relationships that help us understand connections between cause and effect, bringing us
back to the author’s point he has tried to emphasise throughout the book about the importance of analytical
skills.

APPENDIX 3A FRAMES OF REFERENCE AND COORDINATE TRANSFORMATIONS

3A.1 The Inertial Motion of the Aircraft

In this appendix, we shall derive the equations of translational and rotational motion of a helicopter assumed
to be a rigid body, referred to an axes system fixed at the centre of mass of the aircraft (assumed to be fixed
in the aircraft). The axes, illustrated in Figure 3A.1, move with time-varying velocity components u, v, w and
D, q, 1, under the action of applied forces X, ¥, Zand L, M, N.

The evolutionary equations of motion can be derived by equating the rates of change of the linear and
angular momentum to the applied forces and moments. Assuming constant mass, the equations are con-
veniently constructed by selecting an arbitrary material point, P, inside the fuselage and by deriving the
expression for the absolute acceleration of this point. The acceleration can then be integrated over the fuse-
lage volume to derive the effective change in angular momentum and hence the total inertia force. A similar
process leads to the angular acceleration and corresponding inertial moment. The centre of the moving axes
is located at the helicopter’s centre of mass, G. As the helicopter translates and rotates, the axes therefore
remain fixed to material points in the fuselage. This is an approximation since the flapping and lagging motion
of the rotor cause its centre of mass to shift and wobble about some mean position, but we shall neglect this
effect, the mass of the blades being typically <5% of the total mass of the helicopter. In Figure 3A.1, i, j, and
k are unit vectors along the x, y, and z axes, respectively.

We can derive the expression for the absolute acceleration of the material point P by summing together
the acceleration of P relative to G and the acceleration of G relative to fixed earth. The process is initiated by
considering the position vector of the point P relative to G, namely

Ty =X+ yj+ 7k (3A.1)
The velocity can then be written as
Ve = Epe = (i + 3j + 2K) + (xd + yj + 2K) (3A.2)

Since the reference axes system is moving, the unit vectors change direction and therefore have time deriva-
tives; these can be derived by considering small changes in the angles 60, about each axis. Hence

i = jo60, — koo, (BA3)

(v.Y)

w.2)

Fig. 3A.1 The fuselage-fixed reference axes system
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and
dl 1 dez kday . k 3A4
g =g kg T e (BA4)

Defining the angular velocity vector as
o, =pi+qgj+rk (3AY5)

we note from Eq. (3A.4) that the unit vector derivatives can be written as the vector product.
i=o,Ai (BA.6)
with similar forms about the j and k axes.

Since the fuselage is assumed to be rigid, the distance of the material point P from the centre of mass
is fixed and the velocity of P relative to G can be written as

Vy/g = 0y AT, (BA.7)
or in expanded form as
Ve =@z =i+ (rx —p2)j+ py — gk =u, ,i+v,, j+w, Kk (3A.8)

Similarly, the acceleration of P relative to G can be written as

8,0 = Ve = (el + 0,0+, K) + (0 + v, + w0, K)

=, TONY, (3A.9)

or, in expanded form, as

= (up/g A qu/g)i + (vp/g ~PWpse T mp/g)j
+ 00/ = Gty g + PV, K (3A.10)

Writing the inertial velocity (relative to fixed earth) of the aircraft centre of mass, G, in component form as
v, = ui+vj+wk (BA.11)

we can write the velocity of P relative to the earth reference as
v,=u-ry+ qi+ (v —pz+m)j+ (w—gx+pyk (3A.12)

Similarly, the acceleration of P takes the form

a,=a, +0,AV, (3A.13)
or
a,= a i+ ayj +ak (BA.14)
with components
a, =i —rv+qw—x(q* + 1) +y(pq — i)+ z2(pr + §) (3A.15)
a),=1'/—pw+ru—y(p2+r2)+z(qr—p)+x(pq+i’) (3A.16)
a, =w—qu+pv—zp*+r*)+x(pr — §) +y(qr + p) (3A.17)
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These are the components of acceleration of a point distance x, y, z from the centre of mass when the velocity
components of the axes are given by u(?), v(f), w(t) and p(?), g(1), r(?).
We now assume that the sum of the external forces acting on the aircraft can be written in component
form acting at the centre of mass, i.e.
F,=Xi+Yj+Zk (3A.18)

If the material point, P, consists of an element of mass dm, then the total inertia force acting on the
fuselage is the sum of all elemental forces; the equations of motion thus take the component forms

X= / a,dm (3A.19)
body

Y= / a,dm (3A.20)
body

7= / a.dm (3A.21)
body

Since G is the centre of mass, then by definition
/ xdm = / ydm = / zdm =0 (3A.22)
body body body

and the mass of the aircraft is given by

M, = / dm (3A.23)
body

The translational equations of motion of the aircraft are therefore given by the relatively simple equations

X=M,(it—rv+qgw)
Y=M,(V—pw+ ru)
Z=M,W— qu+ pv) (3A.24)

Thus, in addition to the translational acceleration of the centre of mass, the inertial loading is composed of the
centrifugal terms when the aircraft is manoeuvring with rotational motion. For the rotational motion itself,
the external moment vector about the centre of mass can be written in the form

M, = Li+ Mj + Nk (3A.25)
The integrated inertial moment can be written as

/rp/\apdm= /(yaz—zay)dm i+ /(zax—xaz)dm j

body body body

+ /(xay—yax)dm k (3A.26)
body
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Considering the component of rolling motion about the fuselage x-axis, we have
L= /(yaz - zay)dm (3A.27)
body
and substituting for a, and a, we obtain

L=P/(yz+z2)dm—qr/(z2—yz)dm+(r2—q2)/yzdm

body body body

—(pg + i) / xzdm + (pr— §) / xydm (3A.28)

body body

Defining the moments and product (/,,) of inertia as

x-axis : [ = / O* + 22)dm (3A.29)
body

yaxis : I, = / (& +2%)dm (3A.30)
body

zaxis : I, = / F +y*)dm (3A31)
body

xz-axis . I, = /xzdm (3A.32)
body

the external moments can finally be equated to the inertial moments in the form

L=1.p— Uy~ 1)qr =1 (pg+7)
M= I,V)'q -, —Iopr+ IXZ(PZ - ’"2)
N =1, -, —1,)pq—1.(p—rq) (3A.33)

which are the rotational equations of motion of the aircraft.
The product of inertia, /_, is retained because of the characteristic asymmetry of the fuselage shape in

s Lxz9

the xz plane, giving typical values of I,, comparable to /..

3A.2 The Orientation Problem — Angular Coordinates of the Aircraft

The helicopter fuselage can take up a new position by rotations about three independent directions. The new
position is not unique, since the finite orientations are not vector quantities, and the rotation sequence is not
permutable. The standard sequence used in flight dynamics is first yaw, y, then pitch, €, and then roll, ¢, as
illustrated in Figure 3A.2. We can consider the initial position as a quite general one and the fuselage is first
rotated about the z-axis (unit vector k) through the angle y (yaw). The unit vectors in the rotated frame can
be related to those in the original frame by the transformation W, i.e.

iy cosy siny O] i,
Ji|=|-siny cosy Of| j, | or {b} =¥{a} (3A.34)
kq 0 0 1|1k



©

Modelling Helicopter Flight Dynamics: Building a Simulation Model 157

X

(a) (b) (c)
Fig. 3A.2 The fuselage Euler angles: (a) yaw; (b) pitch; (c) roll

Next, the fuselage is rotated about the new y-axis (unit vector j,) through the (pitch) angle 6, i.e.

i, cos® 0 —sinf] _il_
jil=1 0 1 O Ji | or {c} =0O{b} (3A.35)
k, sing 0 cosd ||k

Finally, the rotation is about the x-axis (roll), through the angle ¢, i.e.
L] [t o o ][i]

Jo|=|0 cos¢ sing||j; | or {d} =P{c} (3A.36)

k, 0 —sing cos¢ ||k,

Any vector, d, in the new axes system can therefore be related to the components in the original system by
the relationship
{d} = PO¥{a} =TI'{a} (3A.37)

Since all the transformation matrices are themselves orthogonal, i.e.
YT =1 etc. (3A.38)

the product is also orthogonal, hence
r'=r-! (3A.39)

where
cos 6 cos y cos @ siny —sinf

sin ¢p sin @ cos y— sin ¢ sin @ siny+ sin ¢ cos O

r= cos ¢ siny cos ¢pcos (3A.40)
cos ¢ sin @ cos y+ cos ¢ sin @ siny— cos ¢ cos @
sin ¢ sin sin ¢p cos

Of interest is the relationship between the time rate of change of the orientation angles and the fuselage
angular velocities in the body axes system, i.e.

o, =pi, + gj, + 1k,
=k, + 0j, + i, (BA41)
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Using Egs. (3A.34)—(3A.36), we can derive

p=¢ —siné
q=0cos ¢+ singcos
r=—0sin¢ + 1 cos ¢ cos 0 (3A.42)

3A.3 Components of Gravitational Acceleration along the Aircraft Axes

The relationships derived in Section 3A.2 are particularly important in flight dynamics as the gravitational
components appear in the equations of motion in terms of the so-called Euler angles, 6, ¢, w, while the
aerodynamic forces are referenced directly to the fuselage angular motion. We assume for helicopter flight
dynamics that the gravitational force always acts in the vertical sense and the components in the fuselage-fixed
axes are therefore easily obtained with reference to the transformation matrix given in Eq. (3A.40). The
gravitational acceleration components along the fuselage x, y, and z axes can therefore be written in terms of
the Euler roll and pitch angles as

a, =-—gsin 0
a, =gcos fsin¢

a, =gcos 6 cos ¢ (3A.43)

3A.4 The Rotor System — Kinematics of a Blade Element

The components of velocity and acceleration of a blade element relative to the air through which it is travel-
ling, and the inertial axes system, are important for calculating the blade dynamics and loads. When the hub is
fixed, the only accelerations experienced by a flapping blade are due to the centrifugal force and out-of-plane
motion. When the hub is free to translate and rotate, then the velocities and accelerations of the hub contribute
to the accelerations at a blade element. We begin with an analysis of the transformation between vectors in
the nonrotating hub reference system and vectors in the blade axes system.

Figure 3A.3 illustrates the hub reference axes, with the x and y directions oriented parallel to the fuselage
axes centred at the centre of mass. The z direction is directed downwards along the rotor shaft, which, in
turn, is tilted forward relative to the fuselage z-axis by an angle y,. The blade referenced axes system has
the positive x direction along the blade quarter chord line. The zero-azimuth position is conventionally at the
rear of the disc as shown in the figure, with the positive rotation anticlockwise when viewed from above, i.e.
in the negative sense about the z-axis. Positive flapping is upwards. The positive y and z directions are such
that the blade and hub systems align when the flapping is zero and the azimuth angle is 180°.

We shall derive the relationship between components in the rotating and nonrotating systems by consid-
ering the unit vectors. The orientation sequence is first azimuth, then flap. Translational and angular velocities
and accelerations in the hub system can be related to the blade system by the transformation

i, —cosy —siny 0| cosp 0 sinp (|1,
Jo|=| siny —cosy O 0O 1 0 i (3A.44)
k, 0 0 1|[—sinp 0 cosp||k,

or, in expanded form
i, —cosycosf —siny —cosysinf || i,
Jn|=| sinycosf —cosy sinysinf ||j, (3A.45)
k, —sin g 0 cos f k,
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blade element

blade element

Fig. 3A.3 Three views of the hub and blade reference axes systems (Ref. 3.83)

The hub velocity components in the hub reference system are related to the velocities of the centre of mass,
u, v, and w through the transformation

uy, cosy, 0 siny, u—qhg
v, | = 0O 1 0 v+phg+rx, (3A.46)
wy, —siny, 0 cosy, W= g X,

where y is the forward tilt of the rotor shaft and Ay and x,, are the distances of the rotor hub relative to
the aircraft centre of mass, along the negative z direction and forward x direction (fuselage reference axes),
respectively.

It is more convenient, in the derivation of rotor kinematics and loads, to refer to a nonrotating hub axes
system that is aligned with the resultant velocity in the plane of the rotor disc; we refer to this system as the
hub—wind system, with subscript 4w. The translational velocity vector of the hub can therefore be written
with just two components:

Viow = Upoli + Wi Ky (3A.47)

The angular velocity of the hub takes the form
Oy = PiAiny + Dy + T K (3A.48)
The hub—wind velocities are given by the relationships

Uy, = U, COS Y, + v, siny,, = (uﬁ + vi)l/2
th = 0

Wi = W, (3A.49)
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Piw| = | COSW SNV, | 1P (3A.50)
Dhw —smy,, cosy,, | |q
Ty =T + Ii/w (3A51)

where the rotor sideslip angle, v, is defined by the expressions

up Vi
S — __h
[ 2, .2 [ 2, .2
u, +v; u, +v;

We now write the angular velocity components transformed to the rotating system as

[a)x] _ [cosq/ —siny/] [phw] (3A.53)
@y

siny cosy | gy,

cosy,, = siny,, = (3A.52)

Using the transformation matrix in Eq. (3A.45), and if the flapping angle f remains small so that cos f~ 1
and sin f = f, the velocities at blade station r,, in the blade axes system, may be written as

Up = —Uy, COSY — thﬁ

vy, = =y, Siny —r,(Q —ry,, + fo,)

wy = —up, B cosy +wy, + (o, — ) (BA.54)
Similarly, the blade accelerations can be derived, but in this case the number of terms increases considerably
and it is worth stepping back to the basic derivations. The hub—wind subscript iw will be omitted in this

analysis to declutter the expressions but we can bring it back in the final analysis. The angular velocity
components of the blade element, in the blade axes system can be written,

o = (Qf — w)i, + (f — o)), — Qk, (3A.55)

In the derivation of these expressions, nonlinear terms in f have been omitted and the product relationships
for unit vectors has been employed, e.g.

i, A, =Ky Ky AJ, =i,

i, Ak, =—j,, i,Al,=0 (3A.56)

The acceleration at a blade element can be written in the form

a:ﬂ:w/\r+w/\1" (BA.57)
dt
or
Aa=DdATr+®A(@AT) (BA.58)

The position vector r is the radial location r times the unit vector i,. The expression for the acceleration has
a great many nonlinear terms like p f or ¢ f that are normally small compared with the linear terms so will
be omitted.

The first term in Eq. (3A.58) can be expanded as

® = L,o, +j,0, + ko, +i,0, +j,0, + ko, (3A.59)
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Since i, = @ A, etc., the first three terms in Eq. (3A.60) cancel out and we are left with the rates of change
of the angular velocity components, noting that

o, =-Qw,, o,=Qw (3A.60)

the acceleration then takes the form
a=ayi, + ay,j, +a,k, (3A.61)

where,

agy = ry(—(Q — 1, +2fw, +2Q - r,)pw,)
ayy, = ryp(=(Q = i1,,) = By, SINY = Py, COS W) + 1y, B0, — QBP)
ay, = 1,(2Qw, + (g, cosy + p,,, siny) — 1y, @, — (2 — o) B = 1) (3A.62)

We have neglected the accelerations of the hub in these expressions. The term a,,, is the acceleration outward
along the blade and is dominated by the (negative of) the centripetal acceleration, due to the rotor rotation
about the drive shaft, which acts towards the centre of rotation. A typical value for the rotor-speed of a
helicopter is 30 rad/s and if the blade radius is 10 m, the acceleration at the tip is 9000 m/s, or about 920 g.
The blade feels the resulting inertial reaction, the so-called centrifugal force, pulling it outwards.

The term a_, is the normal acceleration out of the plane of rotation, and there are three important compo-
nents. The first is the acceleration due to blade flapping, the final term in the expression. When the blade flaps
up and down once every revolution, this term is equal and opposite to the Q?f term in a,,, the component
normal to the blade of the centripetal acceleration.

The first term in a,,, is the gyroscopic acceleration. If moments act on the helicopter such that a roll rate
p or pitch rate g are produced, then this is the response of the rotor to the resulting change (in direction) of its
angular momentum. If the helicopter rolls to starboard with rate p then the maximum normal acceleration at
the blade tip (r=R) is 2QRp occurring at the rear of the disc. If the roll rate is 0.5 rad/s then the gyroscopic
acceleration is 300 m/s?, more than 30g. This inertial effect can be seen in pronounced form if you try to
pitch or roll a wheel when it is rotating around its shaft. The wheel will try to turn at 90° to the direction you
apply the moment, i.e. to roll or pitch, respectively. Note the 2 in this expression; one came from the first
term in Eq. (3A.58), and the other came from the second term (see Eq. (3A.60)).

The expression for a,;, contains many nonlinear terms, e.g. the product of flap and pitch and roll rates
and flap rate. The rotor blades of a hovering helicopter will flap up, or cone, caused by the aerodynamic lift,
until the component of centrifugal force normal to the blade is equal and opposite to the lift force. There is
normally a steady coning angle and then this term in ay,, is linear in flap rate p. This acceleration acts in the
same direction as the blade rotation (negative y, direction) and is proportional to the velocity of the blade
element towards the centre of rotation.

As the blade flaps up with rate f§, this acceleration means that the blade rotation rate is increasing,
effectively an Q. The higher the coning or flap rate, the larger is this effect; as the blade element moves closer
to the centre of rotation due to the blade flapping up or down, to maintain a constant angular momentum, the
rotor must speed up. In a helicopter rotor, this results in the blades oscillating in lead-lag, and we see lag
dampers attached to the root of the blades to minimise this effect.

3A.5 Rotor Reference Planes — Hub, Tip Path, and No-Feathering

In rotor dynamics analysis, three natural reference axes systems have found application in various texts and
reports — the hub (or shaft) system, the tip-path plane (or no-flapping) system, and the no-feathering system.
These are illustrated in Figure 3A.4, where the hub plane has been drawn horizontal for convenience. In this
book, we consistently use the hub system but it is useful to compare expressions for key rotor quantities in
the three systems. The motivation for adopting the rotor-oriented no-flapping or no-feathering systems is that
they greatly simplify the expressions for the rotor X and Y forces, as shown in Ref. 3A.1 The no-feathering
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(a) (b)

Fig. 3A.4 Reference planes for rotor dynamics: (a) longitudinal plane; (b) lateral plane

axes are equivalent to the, so-called, control axes when the rotor pitch/flap coupling is zero. The control axis
is aligned along the swash plate.

Assuming small angles, the normalised velocities in the rotor systems are related to those in the hub
system by the approximate relationships

Hip = My + ﬂzhﬁu-
Hop = Moy = Hy Prc (3A.63)

and

Hpp = By — M1
Hopp = Moy + 1,0, (3A.64)

Similarly, the disc incidences are given by the expressions

atp =a, — ﬂlc

o, = o, + 0y (3A.65)
and the nonrotating rotor forces are given as
X=X, —T0,
X, =X, + TP, (3A.66)
Y,=Y,-Tp;
Y, =Y,-T6, (3A.67)

where it is assumed that the rotor thrust 7 and Z forces in the three systems have the same magnitude and
opposite directions.

In hover, the alignment of the tip-path plane and the no-feathering plane highlights the equivalence of
flapping and feathering. These expressions are valid only for rotors with flap articulation at the centre of
rotation. Elastic motion of hingeless rotors and flapping of articulated rotors with offset flap hinges cannot
be described with these rotor axes systems. It should also be noted that the induced inflow discussed earlier
in this chapter, 4, is strictly referred to the tip-path plane, giving the inflow normal to the hub plane as

Ay = Ay — uby, (3A.68)
This effect is considered in the derivation of the rotor torque given in this chapter (Eq. (3A.116)), but not in

the iterative calculation of A. The small flap angle approximation will give negligible errors for trim flight,
but could be more significant during manoeuvres when the flapping angles are large.



The Empire Test Pilot School’s Lynx in an agile pitch manoeuvre (Photograph courtesy
of DTEO Boscombe Down and the Controller HMSO)
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Modelling Helicopter Flight Dynamics:
Trim and Stability Analysis

The challenge and responsibility of modern engineering practice demand a high level of creative
activity which, in turn, requires the support of strong analytical capability. The primary focus
should be on the engineering significance of physical quantities with the mathematical structure
acting in a supporting role.

(Meriam 1966)

INTRODUCTION AND SCOPE

Meriam’s words of advice at the head of this chapter should act as a guiding light for engineers wishing
to strengthen their skills in flight dynamics (Ref. 4.1). In Chapter 3 we sought to describe the physics and
mathematics required for building a simulation model of helicopter flight behaviour. This chapter takes the
products of this work and develops various forms of analysis to gain insight into how helicopters behave
the way they do, hence establishing the engineering significance of the physics. Within the framework
illustrated in our reference Figure 4.1, the mechanics of helicopter flight can be described in terms of
three aspects — trim, stability, and response — as shown by the regions highlighted in the figure. The trim
problem concerns the control positions required to hold the helicopter in equilibrium. The aircraft may
be climbing, turning, and may be at large angles of incidence and sideslip, but if the three translational
velocity components are constant with the controls fixed, then the aircraft is in trim. Strictly, climbing
and diving flight cannot be described as trim conditions, because the changing air density will require
continual corrections to the controls. Provided the rates of climb or descent are relatively small, however,
the helicopter will be, practically speaking, in trim. Stability is concerned with the behaviour of the aircraft
following a disturbance from trim. Classically, static stability is determined by the initial tendency (i.e. will
the aircraft tend to return to, or depart from, the initial trim?), while dynamic stability concerns longer-term
effects. These are useful physical concepts and will be embraced within the more general theory of the
stability of the natural modes of motion, developed from the linear theory of flight mechanics. Response to
pilot control inputs and to atmospheric disturbances are essentially nonlinear problems, but some insight can
be gained from extending the linear approximations to finite amplitude motion. We shall discuss response in
more detail in Chapter 5. Trim, stability, and response make up the flying characteristics. Later in Chapters
6 and 7, the reader will find that these flying characteristics are part of the domain of flying qualities. These
later chapters will be concerned with how to quantify and measure flying quality, while here in Chapters 4
and 5 we are more interested in the physical mechanisms that generate the response.
Typical problems tackled by the flight dynamicist through mathematical modelling include:

(1) determination of the control margins at the edges of the operational flight envelope (OFE) and safe flight
envelope (SFE);

(2) design of flight control laws that confer Level 1 handling qualities throughout the OFE;

(3) simulation of the effects of tail rotor drive failure in forward flight — establish the pitch, roll, and yaw
excursions after 3 s;

(4) derivation of the sensitivity of roll attitude bandwidth to rotor flapping stiffness;

Helicopter Flight Dynamics: Including a Treatment of Tiltrotor Aircraft, Third Edition. Gareth D. Padfield.
© 2018 G.D. Padfield. Published 2018 by John Wiley & Sons Ltd.
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Fig. 4.1 The territory of helicopter flight mechanics

(5) establishing the tailplane size required to ensure natural pitch stability at high speed;

(6) determination of the effects of main rotor blade twist on power required for various missions;

(7) establishing the maximum take-off weight, hence payload, of a twin-engine helicopter while
conforming to the civil certification requirements for fly-away capability following a single engine
failure;

(8) assessment and comparison of various candidate aircrafts’ ability to meet the flying qualities
standard — ADS-33.

Of course, we could continue adding more tasks, but the range of problems has, hopefully, been adequately
demonstrated with the above list. Setting down this ‘short list’ of activities, some of which the author has
been intimately involved with over the past 40 years, serves as a reminder of the importance of modelling
in aircraft design and development — relying on experiment to tackle these problems would be prohibitively
expensive. This is, of course, not to devalue or diminish the importance of flight testing.

Before we engage the supporting mathematics for describing the trim and stability problems, it may
be useful for the reader to explore how all three are encapsulated in the relatively simple problem of heave
motion in vertical flight. The key equations taken from Chapter 3 relate to the thrust coefficient C; and
uniform component of inflow 4, through the rotor; see Egs. (3.91), (3.139):

26, 0, H.—4 0,

B Zow 4.1
ays 3 * 2 * 4 @1
C
dy= 7 — 4.2)
2(4 = 1)

This approximation of uniform rotor inflow is strictly applicable only when the blade twist has the ideal
variation, inversely proportional to radius, giving constant circulation across the rotor and minimum induced
drag. Linear blade washout of 10° or more generally gives a reasonably good approximation to the ideal
loading.

In its simplest form, the trim problem amounts to determining the collective pitch 6|, required to hold
a hover, which is often written in terms of the equivalent pitch at the three-quarter radius, rather than at the
rotor hub; i.e. from Egs. (4.1) and (4.2), we can write

B 3 _ 2C; 1 Cp
GER_90+ZHIW_3 a_os+§ —_— 4.3)
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For moderate values of thrust coefficient (C; = 0.007) and typical values of solidity (s = N,c/zR ~0.09) the
collective required to hover is approximately doubled by the presence of the induced velocity. The rotor
torque required is then the sum of the induced and profile contributions; see Eq. (3.116):

15
T
Co=0Cy + CQp = —2 + CQp 4.4)

Eq. (4.4) shows the nonlinear relationship between torque and thrust in hover.

The trim problem is generally formulated as a set of nonlinear algebraic equations. In the case exam-
ined, the unique solution was obtained by simple rearrangement. In a more general trim, when the rele-
vant equations are coupled, this will not be as straightforward and recourse to numerical solutions will be
necessary.

Analysis of the dynamic stability and response problems requires the formulation of the equation of
motion relating the normal acceleration to the applied thrust

W= = @.5)

Stability and response characteristics may be assessed (in the first approximation) by analysis of the linearised
form of the nonlinear Eq. (4.5). We write the normal velocity (w =QRy, in hover) as the sum of a trim or
equilibrium value (subscript ¢) and a perturbation value

w=W,+oéw (4.6)

If we assume that the Z force acting on the helicopter in the hover is an analytic function of the control 6,
and normal velocity w, together with their time rates of change, then the force can be expanded as a Taylor
series about the trim value (Ref. 4.2), in the form

0Z. . oz 10°Z . az ..
Z=27,+ZLow+ 2260+ =L Zow +- -+ Lot 47
e ow™ T 90,70 T 22" ' @7

In the simple form of thrust equation given by Eq. (4.5), there are no unsteady aerodynamic effects, and hence
there are no explicit acceleration derivatives. For small and slow changes in w (i.e. 6w) and 6, (i.e. 66,), the
first two (linear) perturbation terms in Eq. (4.7) will approximate the changes in the applied force, i.e.

0Z. | oz
Z~7Z,+ %Zow+ 2250 48
e T o’ T 90,70 “4-8)

The stability problem concerns the nature of the solution of the homogeneous equation
w—Zw=0 4.9

where we have subsumed the aircraft mass M, within the heave damping derivative Z,, without any dressing,
which is normal practice in helicopter flight dynamics, i.e.

Z, =— (4.10)

In Eq. (4.9), we have used lowercase w for the perturbation in heave velocity away from the trim condition
(cf. Eq. (4.8) 6w — w, assumed small). This will be the general practice throughout this book; lowercase u,
v and w, p, ¢, and r denoting either total or perturbation velocities, depending on the context. The solution
of Eq. (4.9) will be stable if and only if Z,, is negative, as then the solution will be a simple exponential
subsidence.
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The heave-damping derivative can be estimated from the derivative of thrust coefficient with rotor heave

velocity
oCy _1 1- % _ 2aysA @110
ou, 2 oy, 164, + agys
giving the result
2a,A,p(QR) A
2068,y (4.12)

v (164 + ags)M,

which ensures stability. The damping derivative, or the heave eigenvalue (see Appendix 4B), typically has a
value of between —0.25 and —0.4 (1/s) in hover and, from Eq. (4.12), is a linear function of lift curve slope,
a,, and is inversely proportional to blade loading (M,/A,). The natural time constant of helicopter vertical
motion in hover is therefore relatively large, falling between 4 and 2.5 s.

The response to small collective control inputs is governed by the inhomogeneous linear differential
equation

w—Zw= 29090(1‘) 4.13)
where the thrust derivative
& _8 L/lo (4.14)
00, 3\ 164, +agys

is used to determine the control derivative

7 = _8 @Ap(QR’ Ay (4.15)
b7 3164y +ays)M, ’

The ratio of the control derivative to the heave damping gives the steady-state response in heave velocity to

a step change in collective pitch as

W = —§QR 0, (4.16)

sS85

The rate sensitivity, or the steady-state rate per degree of collective, is seen to be a function of tip speed only.
The rate of climb following a step input in collective is therefore independent of disc loading, lift curve slope,
air density, and solidity according to the simplifying assumptions of momentum theory. These assumptions,
of which uniform inflow and constant lift curve slope are probably the most significant, were discussed at
the beginning of Chapter 3.
The nature of the response to a vertical gust was described in some detail in Chapter 2, the equation of
motion taking the form
W—Z,w=Z,w,(1) (4.17)

The initial vertical acceleration is given by the product of the heave damping and the gust strength. A vertical
gust of 5m/s gives rise to a bump of about 0.2 g for the higher levels of vertical damping. Reducing the blade
loading has a powerful effect on the sensitivity to vertical gusts according to Eq. (4.12), although overall, the
helicopter is relatively insensitive to vertical gusts in the hover.

Helicopter vertical motion in hover is probably the simplest to analyse, but even here our simplifying
approximations break down at higher frequencies and amplitudes, as unsteady aerodynamics, blade stall,
and rotor dynamic effects alter the details of the motion considerably. We shall return to this example later
in Chapter 5. More general helicopter motions, in both hover and forward flight, tend to be coupled, and
adequate single degree of freedom (DoF) descriptions are a rarity. As we progress through Chapters 4 and
5, however, the approach outlined above will form the pattern — that is, taking the basic nonlinear equations
from Chapter 3 for trim and then linearizing for stability, control, and small perturbation response analysis.

Chapter 4 is structured as follows. The techniques for describing and analysing trim and stability are
set down in Sections 4.2 and 4.3, respectively. The expressions for the general trim problem will be derived,
i.e. a turning, climbing/descending, sideslipping manoeuvre. Stability analysis requires linearization about



168

4.2

©

Helicopter and Tiltrotor Flight Dynamics

a trim point and an examination of the eigenvalues and eigenvectors of the system. The key, 6 DoF, stabil-
ity and control derivatives will be highlighted and their physical significance described. The natural modes
of motion predicted from 6-DoF theory are also described. One of the major aids to physical interpre-
tation of helicopter dynamic behaviour comes from the various approximations to the full equations of
motion. Section 4.3 deals with this topic, principally with linear, narrow range approximations that high-
light how the various aerodynamic effects interact to shape the natural modes of helicopter motion. Work-
ing with modelling approximations is at the heart of a flight dynamics engineer’s practice, and we aim to
give this area ample attention in both Chapters 4 and 5 to help the serious reader develop the required
skills. The underlying mathematical methods used draw heavily on the theory of finite dimensional vector
spaces, and Appendix 4A presents a summary of the key results required to gain maximum value from this
chapter.

The theory of the stability of helicopter motion will be continued in Chapter 5, with special emphasis
on constrained motion. The response problem is inherently nonlinear, and typical behaviour will also be
described in Chapter 5, with solutions from forward and inverse simulation. Discussion on some of the
important differences between results using quasi-steady and higher order rotor models is also deferred until
Chapter 5.

In order that some of the fundamental physical concepts of helicopter flight mechanics can be discussed
in terms of analytical expressions, it is necessary to make gross approximations regarding the rotor dynamic
and aerodynamic behaviour. We include all the assumptions associated with Level 1 modelling as discussed
at the beginning of Chapter 3, and then go further to assume a simple trapezoidal downwash field and ignore
the in-plane lift loads in the calculation of rotor forces and moments. These latter effects can be important,
but the assumption that the lift forces are normal to the disc plane leads to a significant simplification in the
trim and stability analyses. In most cases, this assumption leads to results that are 80% or more of the answer
derived from considerably more complex rotor modelling, and the resulting approximate theory can be used
to gain the first-order insight into flight dynamics, which is particularly useful for the prediction of trends
and in preliminary design.

We have already referred to Appendix 4A, containing the background theory of vector—matrix mechan-
ics; two additional appendices complete the Chapter 4 series. Section 4B. 1 presents the configuration datasets,
including aerodynamic, structural, mass, and geometric properties, for the three helicopters in this book — the
Lynx, Puma, and Bo105. Section 4B.2 presents, in graphical form, the complete set of stability and control
derivatives for the three aircraft, predicted from two-sided numerical perturbations applied to the full Helisim
nonlinear equations of motion. In the second edition of the book, a new Section 4B.3, presenting these deriva-
tives and associated eigenvalues in tabular form, was included. An analysis of the trim orientation problem
is given in Appendix 4C.

TRIM ANALYSIS

The simplest trim concept is portrayed in Figure 4.2a—c. The helicopter, flying forward in straight trimmed
flight, is assumed to consist of a main and tail rotor with a fuselage experiencing only a drag force. The rotor
is assumed to be teetering in flap, with no moments transmitted through the hub to the fuselage, and the
centre of mass lies on the shaft, below the rotor. Assuming the fuselage pitch and roll attitudes are small, the
following elementary model of trim can be constructed.

The balance of forces in the vertical direction gives the thrust approximately equal to the weight

T=W (4.18)
This condition holds true up to moderate forward speeds for most helicopters. Balancing the forces along
forward fuselage axis gives the approximate pitch angle as the ratio of drag to thrust

D
0~—= 4.19
T ( )
Since the thrust remains essentially constant in trimmed straight flight, the pitch angle follows the drag

and varies as the square of forward speed. In our simple model, the absence of any aerodynamic pitching
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(a)

(b)

w

Fig. 4.2 Simple consideration of trim in hover: (a) longitudinal (view from port); (b) yaw (view from above); (c) roll
(view from front)

moment from the fuselage or tail requires that the hub moment is zero, or that the disc has zero longitudinal

flapping.
From Figure 4.2b, the tail rotor thrust can be written as the main rotor torque divided by the tail arm
T ~ % (4.20)
Iy

The tail rotor thrust therefore has the same form as the main rotor torque, with the bucket at minimum main
rotor power. In practice, the vertical fin is usually designed to produce a sideforce in forward flight, hence
reducing the thrust required from the tail rotor. Figure 4.2c then shows the balance of rolling moment from
the main and tail rotors, to give the lateral disc flapping

ﬁls ~ ]/;IT?
R

(4.21)
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Thus, the disc tilts to port, for anticlockwise rotors, and the disc tilt varies as the tail rotor thrust.
The balance of sideforce gives the bank angle

Iy hy
¢~Mg(1_ﬁ> (4.22)

a

If the tail rotor is located at the same height above the fuselage reference line as the main rotor, then the
required bank angle is zero, for this simple helicopter design. In practice, the two terms in the numerator
of Eq. (4.22) are of the same order and the neglected in-plane lift forces have a significant influence on the
resulting bank angle.

From the force and moment balance can be derived the required control angles — main/tail rotor collec-
tives producing the required thrusts and the lateral cyclic from the lateral disc tilt.

4.2.1 The General Trim Problem

The elementary analysis outlined above illustrates the primary mechanisms of trim and provides some insight
into the required pilot trim strategy, but is too crude to be of any real practical use. The most general trim
condition resembles a spin mode illustrated in Figure 4.3. The spin axis is always directed vertically in
the trim, thus ensuring that the rates of change of the Euler angles # and ¢ are both zero, and hence the
gravitational force components are constant. The aircraft can be climbing or descending and flying out of
lateral balance with sideslip. The general condition requires that the rate of change of magnitude of the
velocity vector is identically zero. Considering Eqgs. (3.1)—(3.6) from Chapter 3, we see that the trim forms
reduce to

X, .
-W,0,-V,R,) + A7‘ —gsin®, =0 (4.23)
Y
—(U,R,—W,P,)+ ﬁe +gcos®,sin®, =0 (4.24)
ZE
-(vV,p,-U,Q,) + o +gcos®,cos®, =0 (4.25)
a
(Iyy - IZZ)QeRe + IszeQe + Le =0 (426)
(L, = LIRP, +1 (R —P))+M, =0 @.27)
(Ixx - I_vy)PeQe + IszeRe + Ne =0 (428)

where the reader is reminded that the subscript e refers to the equilibrium condition. For the case where the
turn rate is zero, the applied aerodynamic loads, X,, Y,, and Z,, balance the gravitational force components and
the applied moments L,, M,, and N, are zero. For a nonzero turn rate, the nonzero inertial forces, and moments
(centrifugal, Coriolis, gyroscopic) are included in the trim balance. For our first-order approximation, we
assume that the applied forces and moments are functions of the translational velocities (u, v, w), the angular
velocities (p, g, r), and the rotor controls (6, 8, 0., 8,7). The Euler angles are given by the relationship
between the body axis angular rates and the rate of change of Euler angle W, the turn rate about the vertical
axis, given in Eq. (3A.42), i.e.

P,=-¥,sin0®, (4.29)
Q,=W¥,sin®,cos O, (4.30)
R,=W¥,cos®,cos®, 4.31)

The combination of 13 unknowns and 9 equations means that to define a unique solution, four of the variables
may be viewed as arbitrary and must be prescribed. The prescription is itself somewhat arbitrary, although
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—

Fig. 4.3 The general trim condition of an aircraft

particular groupings have become more popular and convenient than others. We shall concern ourselves with
the classic case where the four prescribed trim states are defined as in Figure 4.3, i.e.

Vie flight speed

e . flight path angle
Q, =Y, turn rate

g, Sideslip

In Appendix 4C, the relationships between the prescribed trim conditions and the body axis aerodynamic
velocities are derived. In particular, an expression for the track angle between the projection of the fuselage
x-axis and the projection of the flight velocity vector, both onto the horizontal plane, is given by the numerical
solution of a nonlinear equation. Since the trim Eqs. (4.23)—(4.28) are nonlinear, and are usually solved
iteratively, initial values of some of the unknown flight states need to be estimated before they are calculated.
In the following sequence of calculations, initial values are estimated for the Euler pitch and roll angles ©,
and @, the rotorspeed Q, the main and tail rotor uniform downwash components A, and A, and the main
rotor lateral flapping angle f,.

The solution of the trim problem can be found by using a variety of different techniques, many of which
are available as closed software packages, that find the minimum of a set of nonlinear equations within defined
constraints. The sequential process outlined below and summarised in Figure 4.4 is recognised as rather
inefficient in view of the multiple iteration loops — one for pitch, one for roll, one for rotorspeed, and one for
each of the downwash components — but it does enable us to describe a sequence of partial trims, provides
some physical insight into the trim process, and can assist in identifying ‘trim locks’, or regions of the flight
envelope where it becomes difficult or even impossible to find a trim solution. The process is expanded as a
sequence in Figure 4.5. The first stage is the computation of the aerodynamic velocities, enabling the fuselage
forces and moments to be calculated, using the initial estimates of aerodynamic incidence angles. The three
iteration loops can then be cycled.

4.2.2 Longitudinal Partial Trim
The main rotor thrust coefficient, longitudinal flapping, and fuselage pitch attitude are calculated from the
three longitudinal equations (A, B, and C in Figure 4.5). At this point, a comparison with the previous
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Fig. 4.4 Sequence of calculations in the trim iteration — summary

estimated value of pitch attitude is made; if the new estimate is close to the previous one, defined by the
tolerance v,, then the partial longitudinal trim is held and the process moves on to the lateral/directional trim.
If the iteration has not converged to within the tolerance, the process returns to the start and repeats until
convergence is satisfied. Note that the new estimate of pitch attitude in Figure 4.5 is given by

©, =0, +k(g -6, ) (4.32)

i—1

where
®e = 80(697 Cbe, Vf(‘, Yfe’Q(,(,ﬁe, QR) (4.33)
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Fig. 4.5 Part I — Sequence of calculations in the trim iteration — expanded form.
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In some cases, the iteration can diverge away from, rather than converge towards, the true solution, and the
value of the damping factor k, can be selected to ensure convergence; the smaller (<1) the k factor, the
slower, but more stable, is the iterative process. The key calculations in this longitudinal phase of the trim
algorithm are the thrust coefficient, the longitudinal disc flapping, and the pitch angle itself. For straight flight,
the thrust remains relatively constant; in turning manoeuvres, the inertial term in the normal acceleration
a, predominantly the U, Q, term, will result in an increased thrust. The longitudinal flapping is derived
from a more complicated expression, but essentially the rotor needs to flap to balance the resultant of the
aerodynamic moments from the fuselage and empennage in straight flight. If the tail rotor is canted then an
additional flap component will be required. Many helicopters are designed with a forward main rotor shaft
tilt so that, at the cruise condition, the fuselage is level and the one-per-rev longitudinal flapping is zero or
very small. We have already noted that the pitch angle is essentially derived from the ratio of drag to thrust,
hence exhibiting a quadratic form with forward speed.

Figure 4.6a illustrates the variation of pitch angle with speed for Helisim Bo105 together with a com-
parison against the DLR flight measurements. Note the hover pitch attitude of about 3°, due to the forward
shaft tilt. The transition region is typically characterised by an increase in pitch angle as the main rotor down-
wash impinges on the horizontal stabilizer; this effect is evident in the flight data, but not well predicted by
simulation. Some helicopters feature a movable horizontal stabilizer to reduce this pitch-up tendency at low
speed and to maintain a level fuselage in high-speed flight. In forward flight, the comparison between flight
and theory suggests a higher full-scale value of fuselage drag than that used in the simulation; this is typical
of the comparison with this level of modelling, with the simulation under-predicting the fuselage nose-down
pitch at high speed by as much as 2°. In non-straight flight, the trim pitch angle will vary with turn rate and
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Fig. 4.6 Pitch angle in trim: (a) Trim pitch angle as a function of forward speed — comparison of flight and theory;
(b) Trim pitch angle as a function of turn rate
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Fig. 4.7 Longitudinal flapping for Lynx and Puma as a function of forward speed

flight path angle. The strongest variations occur in climbing and descending flight, and Figure 4.6b illustrates
the kind of effect found on Lynx in climbs. The turn rate extends out to 0.4 rad/s, corresponding to a bank
angle of nearly 60° at the 80-knot condition shown. As the climb rate increases, indicated by the increasingly
negative flight path angle, the pitch angle to trim rises markedly; a negative flight path angle of —0.15rad
corresponds to a climb rate of about 1200 ft/min at the 80 knots trim speed. The increased pitch attitude at
this steep bank angle is required to maintain zero sideslip. If the nose were set on the horizon in this condition
then the sideslip angle would correspond to the pitch angle shown in Figure 4.6b; the correct pitch attitude
is achieved by balancing the turn with pedals, rather than pulling back on the cyclic stick.

One further point on longitudinal trim relates to the differences between helicopters with different rotor
types. Since the pitch angle is determined primarily by the ratio of drag to lift on the whole vehicle, we
should not expect to find any significant differences in pitch attitude to trim between hingeless and articulated
rotor helicopters, but we might expect to see differences in longitudinal flapping angle. Note the previous
observation that the longitudinal flapping will compensate for any residual moment on the other helicopter
components. Figure 4.7 compares the longitudinal disc tilt for the Lynx and Puma across the speed range.
The large difference in trim flap at hover is partly due to the different baseline centre of gravity (cg) locations
for the two aircraft. The Puma cg lies practically under the hub at the fuselage reference point; the hover
flap-back then almost equates to the forward shaft tilt. For the Lynx, with its aft cg lying practically on the
shaft axis, the hover flap is close to zero. For both aircraft, as forward speed increases, the disc tilts further
forward, implying that the residual pitch moment from both aircraft is nose up (i.e. from the horizontal
stabiliser). The change in disc tilt for both aircraft is only about 1.5° across the speed range.

4.2.3 Lateral/Directional Partial Trim

Satisfaction of the longitudinal trim at this stage in Figure 4.5 does not guarantee a valid trim; estimates of
the lateral trim have been used and the process now must continue with the aim of correcting both. Having
derived a new estimate for the lateral trim, the longitudinal cycle will then need to be repeated until all six
force and moment equations balance properly. But the next stage in Figure 4.5 involves the calculation of a
new value for the main rotor downwash (D in Figure 4.5), which is itself an iterative process (see Chapter 3),
and the estimation of the main rotor torque and power required (E). With these calculations performed, the
tail rotor thrust can be estimated from the yawing moment equation (F), the lateral flapping corrected from
the rolling moment equation (G) and the new value of roll attitude derived from the sideforce equation (H).
A check is now made on the convergence of the roll attitude in the same way as described for the pitch
attitude, with defined convergence tolerance and damping factor. For both pitch and roll attitude, the number
of iterations required, and hence the speed of convergence, depends critically on the initial guesses; clearly,
the further away from the correct solution that the initial guess is, the longer will convergence take. For
straight flight, setting the initial values to zero is usually adequate for rapid convergence. Figure 4.8a shows
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Fig. 4.8 Roll angle in trim: (a) Trim roll angle as a function of forward speed; (b) Trim roll angle as a function of
turn rate

the variation in roll attitude with forward speed for the Lynx, illustrating the powerful effect of adding the
in-plane lift loads in the calculation of rotor sideforce (see Chapter 3). In turning flight, the bank angle will
become large, and an initial guess based on the rules of simple circular motion is usually sufficient to ensure

rapid convergence, i.e.
Qae er

o, = tan"! [—] (4.34)

8

Figure 4.8b shows how the Lynx roll attitude varies with turn rate at the 80-knot trim point. The approxi-
mate result given by Eq. (4.34) is plotted for comparison and shows how accurate by this simple kinematic
relationship predicts the Lynx result.

Atlarge turn rates, in forward flight, the roll attitude iteration can become sensitive to the sign of the error
between the initial guess and the correct solution. If the initial @ results in a lateral acceleration greater than
the weight component, then this simple trim procedure will diverge, no matter how much damping is added.
The trim iteration will converge only when a ® estimate greater than the solution is introduced. These details
will need to be considered when a simple trim algorithm is used, but they are usually catered for in the more
sophisticated nonlinear numerical search algorithms. In sideslip flight, the bank angle also varies significantly,
as shown in Figure 4.9, where Lynx trim results for bank angle, flapping angles, and tail rotor thrust coefficient
are plotted. The bank angle is approximately linear with sideslip up to about 30°, with both aerodynamic and
gravitational sideforces on the aircraft varying approximately as sin f. Longitudinal flapping increases at a
greater rate than lateral flapping, as the rotor thrust is tilted further forward to compensate for the increased
drag in sideslip flight.
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Fig. 4.9 Lynx trimmed in sideslipping flight at 100 knots

4.2.4 Rotorspeed/Torque Partial Trim
When the lateral and directional trim have converged, the tail rotor downwash is calculated (I), followed by
the tail rotor collective (J), including the effect of the 6, pitch/flap coupling (K) and tail rotor torque (L).
The total engine torque required can now be calculated, from which the rotorspeed can be updated using the
droop law (M in Figure 4.5). The rotorspeed calculation is the final stage in the iterative cycle and the whole
sequential process described above must be repeated until convergence is achieved.

The remaining calculations in Figure 4.5 determine the main rotor control angles, first in the hub/wind
axes system (N, O) (see Section 3A.4), followed by a transformation into hub axes, to give the swash plate
control outputs (P). We shall return to this in Section 4.2.6.

4.2.5 Balance of Forces and Moments

Trim is concerned with balancing the forces and moments acting on the aircraft. A typical trim is given by
Table 4.1, where the various contributions to the forces and moments are given for a Lynx in a climbing turn
(case y;, =—0.15rad, Q,, =0.4rad/s in Figure 4.6b).

For our approximate model, many of the second-order effects have been neglected, as can be seen in
Table 4.1 (e.g. the X force from the empennage and X and Z force from the tail rotor, the fuselage rolling
moment and tail rotor pitching moment). The inertial force components along the body axes are seen to be
large, arising from the centrifugal force due to the angular motion of the aircraft. For the case shown, the
trim tolerances were set at values that left the residual forces and moments as shown in the ‘Total’ row. With
zero initial value for pitch attitude and roll attitude set by Eq. (4.34), convergence can usually be achieved to
these levels of force within a few iterations.

Table 4.1 Trim forces and moments — Lynx at 80 knots in climbing turn (er =-0.15rad, Q,, =0.4rad/s).

Component X (N) Y(N) Z (N) L (Nm) M (N m) N (Nm)
Gravity —5647.92 35035.54 23087.88 0.00 0.00 0.00
Inertial 1735.41 —38456.29 58781.41 86.49 —18.87 49.80
Rotor 5921.18 —415.68 —82034.80 —4239.18 1045.06 28827.72
Fuselage —2008.32 0.00 225.79 0.00 -571.94 0.00
Tailplane 0.00 0.00 —60.291 0.00 —454.238 0.00
Fin 0.00 374.801 0.00 201.013 0.00 —2830.976
Tail rotor 0.00 3457.164 0.00 3951.677 0.00 —26046.555
Total 0.3556 —4.4629 —0.0136 0.0005 0.0002 —0.0098
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4.2.6 Control Angles to Support the Forces and Moments

At this point in the trim algorithm, the various forces and moments on the components are, practically speak-
ing, balanced, and now we must look at the internal rotor equations to compute the controls required to hold
these forces. The main rotor control angles are derived from the inverse of the flapping angle calculations
given in the (3.60) series of equations (see Chapter 3), coupled with the thrust coefficient equation for the
collective pitch.

Figures 4.10a—d show a comparison between flight and theory of the main and tail rotor controls for
the Bo105 as a function of forward speed. The errors give an indication of the level of fidelity achievable
with the Level 1 modelling of Chapter 3. The nonlinear aerodynamic and blade twist effects increase the
collective pitch required in flight relative to Helisim. As noted above in the discussion on longitudinal trim,
the downwash over the tail causes a pitch up in the low-speed regime, giving rise to an increase in the required
forward cyclic; the comparison for the Bo105 is good in the mid-speed region (Figure 4.10a). Also, at low
speed and into the transition region, the inflow roll increases the left cyclic required, revealing a failing in the
simple trapezoidal model of longitudinal inflow predicted by the Glauert representation (Figure 4.10b). The
comparison of main rotor collective pitch is illustrated in Figure 4.10c. The under-prediction by about 10% in
hover, increasing to over 30% at high speed, is typical of linear aerodynamic theory. The tail rotor pitch is also
usually under-predicted (Figure 4.10d) as a combined result of missing tail rotor losses and under-predicted
main rotor torque, most noticeably at high speed. At moderate- to high-speed flight, the absence of tail rotor
flapping and the powerful interactions with the aerodynamics of the rear fuselage and vertical fin increase
the modelling discrepancies.

The power required, shown in Figure 4.11 for the Bo105, has the characteristic bucket profile as a
function of forward speed, reflecting the reduction in induced (rotor drag) power and increase in parasite
(fuselage drag) power as speed increases. At high speed, nonlinear rotor aerodynamic terms have a signif-
icant effect on collective pitch and power required, leading to the gross errors with the simplified Level 1
modelling as shown by the comparison with Bo105 flight test data in Figures 4.10c and 4.11. For moderate
rates of climb and descent, the Level 1 theory predicts the basic trends in power required and control angles.
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Fig. 4.10 Bo105 control angles in level trimmed flight: (a) longitudinal cyclic; (b) lateral cyclic; (c) main rotor
collective; (d) tail rotor collective
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The rotor is particularly efficient in climbing flight. While the power required to climb a fixed-wing aircraft is
approximately equal to the rate of change of potential energy, the increased mass flow through the rotor of a
helicopter reduces the power required to half this value. For similar reasons, the rotor is inefficient in descent,
the power reduction corresponding to only half the rate of loss of potential energy. These simple results are
explicable through the momentum theory of Level 1 modelling. In steep descent, however, strongly nonlinear
aerodynamic effects dominate the trim (and stability and response) requirements.

We have already discussed the vortex-ring region in both Chapters 2 and 3 and highlighted the inad-
equacy of simple momentum theory for predicting the power required and response characteristics. On the
other hand, for higher rates of descent, between vortex ring and autorotation, the empirical modifications
to momentum theory discussed in Chapter 3 provide a reasonable interpolation between the helicopter and
windmill solutions to the momentum equations for rotor inflow.

An analysis of trim requirements in helicopter descending flight is reported by Heyson in Ref. 4.3. At
steep angles of descent, and flight speeds of about 1.5 times the induced velocity in hover, the power required
to increase the rate of descent increases. Figure 4.12, taken from Ref. 4.3, illustrates the power required as a
function of glide slope angle for several different values of flight speed along the glide slope. The reference
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Fig. 4.12 Power required in descending flight (from Ref. 4.3): (a) § =0°; (b) 8 =15°
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velocity w;, and power P, correspond to the hover values; otherwise, the results are quite general. At steep
angles of descent (>60°), the power required to increase the rate of descent at a constant speed increases.

Also shown in Figure 4.12b is a power contour for the rotor pitched up by 15°, showing the expanded
region of increased power required as a function of flight path angle. Heyson refers to this, and the associ-
ated response characteristics, as power settling, and comments on the operational significance of this strong
nonlinearity. To quote from Heyson’s report,

A pilot flying a steep approach generally flies with reference to the ground either visually or through the
use of some avionic system. Although he can sense sidewinds as a drift, his perception of a headwind
or tailwind is poor. Even a light tail wind can produce a major difference between the glideslope with
respect to the surrounding air mass and the geometric glideslope. If the flight is stabilised near one
of the minimum power points, Figure 12 shows many combinations of y, 0, and Vg/w;, for which a
tailwind induced change of only 10° or 15° in y increases the required shaft power by 50 to 100% of
the installed power. In the presence of such a major increase in required power, the helicopter settles,
thus increasing the glide slope and still further increasing the required power.

With the above discussion on steep descent, we have strayed into the response domain, showing the impor-
tance of predictable trim characteristics to the pilot’s flying task. We shall return to this aspect in Chapters 5
and 7.

Predicting the trim control angles required, the power required and the steady loads on the various com-
ponents forms a basis for calculating such static characteristics as the control margins at the flight envelope
boundary, payload and range capabilities, and limit loads on the tail boom in sideslipping flight. Achievement
of accurate estimates (e.g. to within a few percent of the true values) of such parameters will almost certainly
require more detailed modelling than that described in the above analysis. The main rotor forces are a more
complex function of rotor motion, and the aerodynamics can be strongly nonlinear in high speed or at high
thrust coefficient. The fuselage and empennage forces can be strongly influenced by the rotor wake and the
tail rotor flapping can tilt the disc and thrust vector and change the power required. In some cases, these
will be first-order effects and cannot be ignored. Certainly, the component interactions will tend to spoil the
simple sequential nature of the algorithm described above, giving rise to many more potential convergence
problems and demanding more sophistication in the iterative solution. For trend predictions, however, the
simple theory can be remarkably accurate; the characteristic shapes of the trim control curves are evidence
of this. Examination of the effects of small changes from some baseline configuration can also provide useful
insight into the sensitivities to design configuration or flight state parameters.

Trim solutions are generally unique, with a fixed set of control positions defining each equilibrium
condition. A question that arises out of the study of trim is what happens if the aircraft is disturbed by a
small amount from the trim? This could happen with a small gust or nudge of the controls. Will the aircraft
immediately settle into a new trim, return to the original trim or depart away from the trim state in an unsta-
ble fashion? These questions cannot be answered from analysis of the trim equations; they require the full
dynamic equations of motion from which the time evolution of the flight trajectory and fuselage attitudes can
be determined. While a wide flight envelope simulator will usually require the full nonlinear equations, the
answers to our questions regarding the effects of small perturbations can generally be found through analysis
of the linearised equations using the concepts of the stability and control derivatives.

STABILITY ANALYSIS

Stability of motion in a dynamic system is an intuitive concept that grasped the imagination of early pioneers
of aviation. The supporting archetypal theory for flight stability was developed in the very early days of
manned flight (Refs. 4.2 and 4.4). The concept that stability and control were unlikely partners, the latter
gaining from shortcomings in the former, was also recognised in these same early days, such that marginal
stability, or even instability, was a useful property when considering the required piloting effort. Since that
time much has been written on stability and control, and much of the theoretical foundation for the stability of
low-speed, fixed-wing aircraft was already well developed by the time that early helicopters were in serious
development.
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The first helicopters were unstable, but the presence of mild instabilities at low speed was probably
something of a blessing because control power was fairly marginal on these early craft. While fixed-wing
aircraft have developed and can easily be conferred with high levels of natural stability and compatible levels
of control, basically helicopters are still naturally unstable and require some level of artificial stabilization
to ensure safe control in poor weather and when flying under instrument flight rules (IFR). The degree of
stability required in helicopters to ensure safe operations is an important flying quality consideration, and it
will be discussed in some detail later in Chapter 6.

Understanding the flight behaviour of helicopters, why they are so difficult to build with natural stabil-
ity, and developing rational explanations for the many curious dynamic characteristics cannot be achieved
simply through deriving the equations of Chapter 3, or even by building a simulation model. These are
necessary but insufficient activities. The development of a deep understanding of flight behaviour comes
from the intellectual interplay between theory and practice, with an emphasis on hands-on practice and
analytical theory. Most of the understanding of stability and control has come from relatively simple the-
oretical approximations that permit expression of cause and effect in parametric form. Coincidentally, the
publication of the earliest texts that provided a definitive treatment of both fixed- and rotary-wing sta-
bility and control occurred in 1952 (Refs. 4.2, 4.5). Both these texts deal with fundamental concepts in
analytical terms that are still valid today. While our ability to model more and more complex represen-
tations of the aerodynamics and dynamics of aircraft seems to extend every year, our understanding of
why things happen the way they do essentially comes from simple theory melded with a good physical
understanding.

With these words of introduction, we embark on this section on stability (and control) with the guiding
light in search of simple approximations to complex behaviour. We shall draw heavily on the theory of
linear dynamic systems but the underlying vector-matrix theoretical methods, including a discussion on
eigenanalysis, are contained in Appendix 4A, to which the unfamiliar reader is referred. Features of the
classical description of aircraft stability are the concepts of static and dynamic stability, the former relating
to the immediate behaviour following a disturbance, the latter to the longer-term behaviour. These are useful
but elementary concepts, particularly for fixed-wing aircraft, drawing parallels with stiffness and damping in
a simple mechanical analogue, but the distinction is blurred in the study of helicopter motion because of the
stronger couplings between longitudinal and lateral motions. The perspective we shall take here is to draw the
distinction between local and global stability — the former relating to the stability of motion following small
disturbances from a trim condition, the latter relating to larger, potentially unbounded motion. Of course,
unbounded motion is only a theoretical concept, and ultimately the issue is likely to be one of strength rather
than stability in this case. Analysis tools for large nonlinear motions of aircraft are limited and tend either to be
based on the assumption that the motion is nearly linear (i.e. nonlinearities are weak), so that approximating
describing functions can be used, or to be applicable to very special forms of strong nonlinearity that can be
described analytically.

Nonlinear analysis of fixed-wing aircraft has been stimulated by such phenomena as stall (including
deep stall), spinning, inertial coupling, and wing rocking. The need to understand the flight dynamics in
these situations has led to extensive research into analytical methods that are able to predict the various kinds
of departure, particularly during the 1970s and 1980s (Ref. 4.6). Helicopter flight dynamics also has its share
of essentially nonlinear phenomena including vortex-ring state, main rotor wake—tail rotor interactions, rotor
stall, and rotor wake—empennage interactions. Much less constructive analytic work has been done on these
nonlinear problems, and many potentially fruitful areas of research need attention. The methods developed for
fixed-wing analysis will be equally applicable to helicopters and, just as the transfer of basic linear analysis
techniques gave the helicopter engineers considerable leverage in early days, so too will the describing func-
tion and bifurcation techniques that have enabled so much insight into the dynamics of fixed-wing combat
aircraft. Nonlinear problems are considerably more difficult than linear ones, one consolation being that they
are usually considerably more interesting too, but little has been published to date on nonlinear helicopter
flight dynamics.

In this chapter, we restrict the discussion to linear analysis. We shall consider classical 6-DoF motion in
detail. This level of approximation is generally good for low-moderate frequency, handling qualities analysis.
The assumption underlying the 6-DoF theory is that the higher-order rotor and inflow dynamics are much
faster than the fuselage motions and have time to reach their steady state well within the typical time constants
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of the whole aircraft response modes. This topic has been discussed in the Tour of Chapter 2 and the conditions
for validity are outlined in Appendix 4A.

4.3.1 Linearization
Consider the helicopter equations of motion described in nonlinear form, given by

x=Fx,u,1) (4.35)
In 6-DoF form, the motion states and controls are

x={u,w,q,0,v,p,¢,r, v}

where u, v, and w are the translational velocities along the three orthogonal directions of the fuselage fixed
axes system described in Appendix 3A; p, g, and r are the angular velocities about the x-, y-, and z-axes and
0, ¢, and y are the Euler angles, defining the orientation of the body axes relative to the earth.
The control vector has four components: main rotor collective, longitudinal cyclic, lateral cyclic, and
tail rotor collective:
u = {6,060, 007}

The expanded form of Eq. (4.35) can be written as Eq. (4.36) combined with the Euler angles, Eq. (4.37)
(inverse of Eq. (3A.42)), as derived in Chapter 3 and Appendix 3A.

X .
| = — — + — — 4]
u (Wq vr) g sim

a

V= —(ur—wp)+ A% + gcosfsing

a

w=—(p—uq)+ ]l% + gcosfcosg

a

Lop =y, —1)gr+1.(+pg) +L
L=, I p+1.0" -p)+M
IZZ}-’ = (IXX - I)v)pq + Ixz(p - qr) + N (436)

¢ =p+gsinptanf + rcos ¢ tan
6 =qgcos—rsing

W = gsingsech + rcos ¢ sec 4.37)

Using small perturbation theory, we assume that during disturbed motion, the helicopter behaviour can be
described as a perturbation from the trim, written in the form

X =X, + 0X (4.38)

A fundamental assumption of linearization is that the external forces X, Y, and Z and moments L, M, and N can
be represented as analytic functions of the disturbed motion variables and their derivatives. Taylor’s theorem
for analytic functions then implies that if the force and moment functions (i.e. the aerodynamic loadings)
and all its derivatives are known at any one point (the trim condition), then the behaviour of that function
anywhere in its analytic range can be estimated from an expansion of the function in a series about the
known point. The requirement that the aerodynamic and dynamic loads be analytic functions of the motion
and control variables is generally valid, but features such as hysteresis and sharp discontinuities are examples
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of nonanalytic behaviour where the process will break down. Linearization amounts to neglecting all except
the linear terms in the expansion. The validity of linearization depends on the behaviour of the forces at small
amplitude, i.e. as the motion and control disturbances become very small, the dominant effect should be a
linear one. The forces can then be written in the approximate form

XZXE+%5M+%5W+"'+%5004‘"-,6[& (4.39)
All six forces and moments can be expanded in this manner. The linear approximation also contains terms
in the rates of change of motion and control variables with time, but we shall neglect these initially. The
partial nature of the derivatives indicates that they are obtained with all the other DoFs held fixed — this is
simply another manifestation of the linearity assumption. For further analysis, we shall drop the perturbation
notation, hence referring to the perturbed variables by their regular characters u, v, w, etc., and write the
derivatives in the form, e.g.

X_x, L, . e (4.40)
ou 00,. le
The linearised equations of motion for the full 6 DoFs, describing perturbed motion about a general trim

condition, can then be written as
x — Ax = Bu(?) + f(r) (4.41)

where the additional function f(#) has been included to represent atmospheric and other disturbances.
Following from Eq. (4.40), the so-called system and control matrices are derived from the partial derivatives
of the nonlinear function F, i.e.

and . OF
- (% )_ (4.43)

In fully expanded form, the system and control matrices can be written as shown in Egs. (4.44) and (4.45)
on page 185. In Eq. (4.44) the heading angle y has been omitted, the direction of flight in the horizontal
plane having no effect on the aerodynamic or dynamic forces and moments. The derivatives are written in
semi-normalised form, i.e.

XLl
X, = AZ (4.46)
where M, is the aircraft mass, and
I, 1
Ll — 2z L + XZ N (4‘47)
g Ixxlzz - I)%z v Ixszz - IJ%Z i
! IXZ Ixx
N, = L + N (4.48)

]xxlzz_l.’%z ' ] I _I/%Z '

xXx7zz

I, and I, are the roll and yaw moments of inertia and /. is the roll/yaw product of inertia. The k constants
in the inertia terms in Eq. (4.44) are given by the expressions

Ixz(lzz +1, - Iyy)
k, = —_— (4.49)
Ixxlzz - Ixz

L, 1)+
k2= zz\'zz »y . Xz (4.50)
]xxlzz - ]xz

e = [xx(lyy_lxx)_lzz 4.51)
T Ixxlzz - I\%Z .
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In addition to the linearised aerodynamic forces and moment, Eq. (4.44) also contains perturbational inertial,
gravitational, and kinematic effects linearised about the trim condition defined by

(De’ Ge’ Ue’ Ve’ We’ P@’ Qeng

The trim angular velocities are given in terms of the aircraft turn rate in Eqgs. (4.29)-(4.31).

Eq. (4.41) is the fundamental linearised form for describing the stability and response of small motion
about a trim condition. The coefficients in the A and B matrices represent the slope of the forces and moments
at the trim point reflecting the strict definition of the stability and control derivatives. Analytic differentiation
of the force and moment expressions is required to deliver the exact values of the derivatives. In practice,
two other methods for derivative calculation are more commonly used, leading to equivalent linearizations
for finite amplitude motion.

The first method is simply the numerical differencing equivalent to analytic differentiation. The forces
and moments are perturbed by each of the states in turn, either one-sided or two-sided, as illustrated con-
ceptually in Figure 4.13; the effect of increasing the perturbation size is illustrated in the hypothetical case
shown in Figure 4.13b, where the strong nonlinearity gives rise to a significant difference with the small
perturbation case in Figure 4.13a. The numerical derivatives will converge to the analytic, true, values as the
perturbation size reduces to zero. If there is any significant nonlinearity at small amplitude, then the slope at
the trim may not give the best fit to the force over the amplitude range of interest. Often, larger perturbation
values are used to ensure the best overall linearization over the range of motion amplitude of interest in a
particular application, e.g. order 1 m/s for velocities and 0.1 rad for controls, attitudes, and rates. In each case,
it is important to estimate the degree of nonlinearity over the range of interest, as the derivative value used
can have a significant effect on stability and response characteristics.

Before we examine the derivatives themselves in more detail, we should refer to the second numerical
method for deriving derivative estimates. This involves a fitting or model-matching process whereby a linear
model structure is used to fit the response of the nonlinear simulation model. This method can also be applied
to flight data and is described under the general heading — system identification. We discussed the approach
briefly in Chapter 2 and we shall give more attention to applications in Chapter 5. The system identification
approach seeks to find the best overall model fit and, as such, will embody the effects of any nonlinearities and
couplings into the equivalent derivative estimates. The states are no longer perturbed independently; instead,
the nonlinear model, or test aircraft, is excited by the controls so that the aircraft responds in some ‘optimal’
manner that leads to the maximum identifiability of the derivatives. The derivatives are varied as a group until
the best fit is obtained. How these estimates relate to the pure analytic and numerical equivalents will depend
on several factors, including the degree of nonlinearity, the correlation between states in the response, and
the extent of the measurement noise on the test data. In this chapter, we shall discuss only the analytic and
numeric methods of derivative estimation, returning briefly to the global system identification approach in
the applications in Chapter 5.

o force o force

=

J state J state

(a) (b)

Fig. 4.13 Derivative calculation by backward-forward differencing: (a) small perturbation; (b) large perturbation
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4.3.2 The Derivatives

There are 36 stability derivatives and 24 control derivatives in the standard 6-DoF set. In this section, we shall
discuss a limited number of the more important derivatives and their variation with configuration and flight
condition parameters. The complete set of numerical derivatives for all three reference aircraft are contained
as charts in Appendix 4B.2, and the reader may find it useful to refer to these as the discussion unfolds. It
should be noted that the derivatives plotted in Appendix 4B include the inertial and gravitational effects from
Eq. (4.44). For example, the elements Z and Y, tend to be dominated by the forward velocity term U,. Each
derivative is made up of a contribution from the different aircraft components — the main rotor, fuselage, etc.
In view of the dominant nature of the rotor in helicopter flight dynamics, we shall give particular, but certainly
not exclusive, attention to main rotor derivatives in the following discussion. The three most significant rotor
disc variables are the rotor thrust 7'and the two multi-blade coordinate disc tilts f, . and §, . During disturbed
motion these rotor states will vary according to the algebraic relationships derived in Chapter 3 (Egs. (3.90),
(3.65)). Considering the simple approximation that the rotor thrust is normal to the disc, for small flapping
angles, the rotor X and Y forces take the form

Xp=Tp., Yr=-Tp, (4.52)
The derivatives with respect to any motion or control variable can then be written as, for example,

0Xg _oT i
2R _ 04 T
ou ou hre t ou

(4.53)

Rotor force and moment derivatives are therefore closely related to individual thrust and flapping derivatives.
Many of the derivatives are strongly nonlinear functions of velocity, particularly the velocity derivatives them-
selves. The derivatives are also nonlinear functions of the changes in downwash during perturbed motion,
and can be written as a linear combination of the individual effects, as in the thrust coefficient change with
advance ratio, given by

oC oC 0C; 04 0Cr 04 0C, 04
_T= <_T> +_T_0+_T ls+ T lc (454)
ou O ) j—eonst 040 O 0A, Ou 0Ay. O
where C; is the thrust coefficient and y the advance ratio defined by
T Vv
Cr=— | = — 4.55
= rezre T QR (4.55)
and the A’s are the components of the rotor induced inflow in the harmonic, trapezoidal form
w; r .
A= OR =/10+I—€(/llssmy/+ﬂlccosu/) (4.56)

The thrust coefficient partial derivative with respect to ¢ can be written as

oCy ays 0,, 015,
< aﬂ >A=const 2 [” < 0 2 2 ( )

The rotor force, moment, and flapping equations as derived in Chapter 3 are expressed in terms of the advance
ratio in hub/wind axes. The relationships between the velocity components at the aircraft centre of mass and
the rotor in-plane and out-of-plane velocities are given in Chapter 3, Section 3A.4. It is not the intention
here to derive general analytic expressions for the derivatives; hence, we shall not be concerned with the full
details of the transformation from rotor to fuselage axes except where this is important for enhancing our
understanding.
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The Translational Velocity Derivatives

Velocity perturbations give rise to rotor flapping, changes in rotor lift, and drag and the incidence and sideslip
angles of the flow around the fuselage and empennage. Although we can see from the equations in the (3.70)
series of Chapter 3 that the flapping appears to be a strongly nonlinear function of forward velocity, the
longitudinal cyclic required to trim, as shown in Figure 4.10a, is fairly linear up to moderate forward speeds.
This gives evidence that the moment required to trim the flapping at various speeds is fairly constant and hence
the primary longitudinal flapping derivative with forward speed is also relatively constant. The orientation
between the fuselage axes and rotor hub/wind axes depends on the shaft tilt, rotor flapping, and sideslip angle;
hence, a u velocity perturbation in the fuselage system, say, will transform to give p,, y,, and p, disturbances
in the rotor axes. This complicates interpretation. For example, the rotor force response to y, perturbations
is much stronger than the response to the in-plane velocities, and the resolution of this force through only
small angles can be the same order of magnitude as the in-plane loads. This is demonstrated in the derivatives
X, and Z, at low speed where the initial tendency is to vary in the opposite direction to the general trend in
forward flight.

The Derivatives X,,, ¥, X,, and Y, (M, and L)
The four derivatives X,, ¥,, X, , and Y, are closely associated with each other at low speed. They are shown as
a function of speed for the Lynx in straight and level flight in Figure 4.14. In high-speed flight, the coupling
derivatives are insignificant and the direct force dampings X, and Y, are practically linear with speed and
reflect the drag and sideforce on the rotor—fuselage combination, respectively. At hover and at low speed,
all four derivatives are the same order of magnitude. The direct derivatives are principally due to the disc
tilts to aft and port following perturbations in # and v; see Eq. (4.53). The coupling derivatives are less obvi-
ous, and we must consider the theory of nonuniform inflow, described in Chapter 3, for an explanation to
the surprisingly large values of X, and Y, extending to about 40 knots forward flight. At the hover condi-
tion, a perturbation in forward velocity u leads to a strong variation in wake angle y (Eq. 3.145) and hence
nonuniform inflow 4,.. An approximation to the increase in inflow at the rear of the disc can be derived from
Eq. (3.144):
% ~ 1 4.58)
ou 2 .
For every 1 m/s increase in forward velocity, the downwash increases by 0.5 m/s at the rear of the disc.
The linear variation of inflow along the blade radius results in a uniform incidence change; hence, the
effect is identical to cyclic pitch in the hover. The direct rotor response to a longitudinal incidence distri-
bution is therefore a lateral disc tilt §,;. The derivative of lateral flapping with inflow can be derived from
Eq. (3.71), as
o 805 -1

=- LS, =
Ok 148 p %

(4.59)

where the stiffness number is given in terms of the flap frequency ratio and Lock number.
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Fig. 4.14 Variation of force/velocity derivatives with forward speed
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The stiffness number ranges up to values of about 0.3 for current helicopters; hence the lateral flap-
ping derivative in Eq. (4.58) is close to unity and a perturbation of 1 m/s in forward velocity leads to about
0.2°-0.3° lateral disc tilt to starboard, depending on the rotorspeed. Similar arguments can be made to
explain the low-speed variation of X, and the same effect will be reflected in the moment derivatives M,
and L,. These variations in nonuniform inflow can be expected to affect the coupling of lateral and lon-
gitudinal motions at low speed. We shall return to this topic later when discussing the natural modes of
motion.

The Derivatives M, and M,

The derivatives M, and M, the so-called speed and incidence static stability derivatives, have a major effect
on longitudinal stability and hence handling qualities. For fixed-wing aircraft flying at low subsonic speeds,
the speed stability derivative is practically zero — all the aerodynamic moments are proportional to dynamic
pressure and the derivative works out to be proportional to the trim value of aerodynamic pitching moment,
i.e. zero. With a helicopter, the main rotor moments due to speed changes are roughly constant across the
speed range, but the aerodynamic loads on the fuselage and empennage are strong functions of forward
velocity. In particular, the normal load on the horizontal stabilizer gives a strong pitching moment at the
centre of mass, and this component provides a contribution to M, proportional to the trim load on the tail.
Figure 4.15 compares the variation of the two static stability derivatives with speed for Lynx and Puma.
The fourfold increase in magnitude of M,, for the Lynx relative to the Puma is a result of the much higher
rotor moments generated by the hingeless rotor for the same velocity perturbation. Both aircraft exhibit static
speed stability; an increase in forward speed causes the disc to flap back, together with an increase in the
download on the tailplane, resulting in a nose-up pitching moment and a tendency to reduce speed. This
positive (apparent) speed stability is important for good handling qualities in forward flight (see Chapter 6),
but can degrade dynamic stability in both hover and forward flight (see the later section on stability of the
natural modes). Comparing the incidence stability derivative M,, for the two aircraft, we can see similar
orders of magnitude, but the Lynx exhibits instability while the Puma is stable. This derivative was discussed
at some length in Chapter 2 (see Figures 2.25 and 2.26). In forward flight, a positive perturbation in normal
velocity, w, causes a greater increase in lift on the advancing than on the retreating side of the disc. The disc
flaps back giving rise to a positive, nose-up, destabilizing, pitching moment. This effect does not change in
character between an articulated rotor (Puma) and a hingeless rotor (Lynx), but the magnitude is scaled by
the hub stiffness. The pitching moments arise from three major sources — the main rotor, the tailplane, and
the fuselage (Figure 4.16), written as shown in Eq. (4.60).

M =My + M, +M, (4.60)
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Fig. 4.15 Variation of longitudinal static stability derivatives with forward speed
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Fig. 4.16 Sketch showing pitching moments at the aircraft centre of mass

In very approximate form, the rotor moment can be written as a combination of a moment proportional to
the disc tilt and one proportional to the rotor thrust, i.e.

N
M~ — <7”K,, + hRT> B — (g + hpy)T + (U, + x.)Z,, + M, 4.61)

The pitching moments from the rotor, tailplane, and fuselage are shown in Figure 4.16. The contribution of the
tail to M,, is always stabilizing — with a positive incidence change, the tail lift increases (Z,, reduces), resulting
in a nose-down pitch moment. The importance of the horizontal tail to the derivative M,, and helicopter pitch
stability is outlined in Ref. 4.7, where the sizing of the tail for the YUH-61A is discussed. The contribution
from the fuselage is nearly always destabilizing; typically, the aerodynamic centre of the fuselage is forward
of the centre of mass. The overall contribution from the main rotor depends on the balance between the first
two terms in Eq. (4.61). We have already stated that the disc always flaps back with a positive (upward)
perturbation in w, but the thrust also increases; hence the second term, due to the offset of the thrust from the
centre of mass, is stabilizing for configurations with forward centre of mass and shaft tilt. This is the major
effect for fixed-wing aircraft, where the distance between the centre of mass and the aerodynamic centre of
the whole aircraft is referred to as the static margin. For small offset articulated rotors, with a centre of mass
well forward of the shaft, the thrust offset effect can be as large as the hub moment term in Eq. (4.61), resulting
in a fairly small overall rotor moment. This is the case for the Puma, with our baseline configuration having a
forward centre of mass location; also, the flap hinge offset is only 3.8% of the rotor radius. For hingeless rotors
with aft centre of mass, both thrust offset and hub moment effects are destabilizing, with the hub moment
due to flapping dominating. All three contributions to the incidence stability vary approximately linearly
with speed above about 40 knots. Figure 4.17 illustrates the contributions from the different components to
M,, at the 120-knot high-speed condition. The overall magnitude of all three components is greater for the
Lynx, reflecting the much smaller pitch moment of inertia (which normalises the derivative) for that aircraft
compared with the Puma.

The Derivatives M,,, M, and M,

Before leaving the pitching moment derivatives with speed, it should be noted that the incidence at the empen-
nage is a combination of the fuselage incidence and the effect of the rotor downwash at the tail. This effect
will normally be taken into account when perturbing the forces and moments with the w perturbation; the
rotor thrust and the downwash will change, resulting in an incidence perturbation at the tail. The magni-
tude of the downwash at the tail depends on the distance between the tail and rotor. Let a, be the fuselage
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Fig. 4.17 Contributions to the static stability derivative M,, at 120 knots for Lynx and Puma

incidence, u the advance ratio and itp the downwash at the tail. We can write the incidence at the tail in
the form

a, =a — — (4.62)

The downwash at the tail at time 7 was generated at the rotor disc at time 7 — ¢, /U, earlier. If we assume that
this time increment is small compared with the response time, we can write

Z’ﬂtp dA ftp
ﬂtp(l‘) I~ ktpi <t - a) & ktp </l(l‘) - EE) (4.63)

where k,, is the amplification factor on the downwash. The incidence at the tail therefore depends explicitly
on the rate of change of rotor inflow with time. Applying the theory of small perturbations, we can write this
downwash acceleration as a linear combination of the rates of change of aircraft states and controls, i.e.

di _ 04, . 0A
L2+ Lyt 4.64
ar " 96, 0" ow” (464

Thus, we find the appearance of acceleration derivatives like M, in the longitudinal motion, for which analytic
expressions are relatively straightforward to derive from the thrust coefficient and uniform inflow equations.
The presence of nonuniform inflow and wake contraction complicates the overall effect, reducing the valid-
ity of the above simple approximation. Nevertheless, the physical mechanism is similar to that found on
fixed-wing aircraft where the downwash lag at the tail, attributed entirely to incidence changes on the main
wing, leads to an effective acceleration derivative. Any lateral variation in rotor downwash at the tail will
also lead to changes in pitching moments during yaw manoeuvres. This effect is discussed in Refs. 4.8—4.10
where relatively simple flat wake models are shown to be effective in modelling the pitching moment due
to sideslip (see Chapter 3), leading to the derivatives M, and M, in a similar fashion to the effect from w
perturbations.

The Derivative Z,,

The heave-damping derivative Z,, has already been discussed in some depth in the Introductory Tour to this
book (Chapter 2) and earlier on in the present chapter. While the fuselage and empennage will undoubtedly
contribute in high-speed flight, the main rotor tends to dominate Z,, throughout the flight envelope and can
be approximated by the thrust coefficient derivative in Eq. (4.65)

QR)zR? 0C
Z, = _PQR)7R” 9Cy (4.65)
M ou,

a
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Expressions for the thrust coefficient and uniform inflow component A, were derived in Chapter 3 (Eq. (3.90)
series) in the form given below in Eqs. (4.66) and (4.67):

ays 1 P M, — A 1
Cr=" [90 <§ + %) + g <91sw + 7) + < 5 0) +0+ ;42)9,W] (4.66)
C,
P 4.67)

24/[p% + (A9 — )"

The thrust coefficient is therefore proportional to the normal velocity component, y_, as expected from the
assumed linear aerodynamics, but the induced inflow will also vary during vertical perturbations such that

acT:(&) +&ﬂ=@<1_ﬂ> (4.68)
ou, ou, ) ,.o OA Op, 4 ou,

Good approximations for heave damping in hover and forward flight (4 > 0.15) can be obtained and are
summarised in Table 4.2.

Rotor blade loading, defined as the aircraft mass divided by the blade area (M_/A,), is a very important
parameter defining the heave damping at hover and in forward flight. The derivative Z,, represents the initial
acceleration following an abrupt vertical gust and is inversely proportional to blade loading (see Chapter 2,
Eq. (2.63)). The much higher typical blade loadings on rotorcraft, compared with fixed-wing aircraft of sim-
ilar weight, partly account for the smaller values of Z,,, and hence lower gust sensitivity, for helicopters in
forward flight. A second major factor is disguised in the variation of the heave damping with speed. The
forward flight approximation in Table 4.2 is shown plotted against the Lynx value from the Helisim sim-
ulation model in Figure 4.18; the 10% difference at the higher values of advance ratio is attributed to the

Table 4.2 Approximations for heave damping derivative Z,.

Hover Forward flight
5 T T
v, A v, N ———
fo 2pA, e 2pA,V!
oC; 2ay5h oC;, 2a,s5u
ou, - 164, + ays ou, = 8u +ays
o 2ayA,p(R) A, 7~ _pao,u(QR)Ab 4
" (164 + ags)M, L 2M, 8 + ays
Z, (1/s)-0.47
-05Ft
-06
approximation
07k (Table 4.2)
-08 |
09 | Helisim
_1'0 n L i 1 e L " J
0 0.1 0.2 0.3 0.4
u

Fig. 4.18 Comparison of Z,, approximate and ‘exact’ results for Lynx
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fuselage and tail. The variation is seen to level off at higher speeds, while the gust sensitivity of fixed-wing
aircraft continues to increase linearly with speed (see Figure 2.28). As discussed in Chapter 2, the reason for
the asymptotic behaviour of the helicopter damping stems from the increased harmonic distribution of the
airloads as the speed increases. The thrust coefficient can be written as

1

2 o

Lr_ / Tr0+T,U,) d (4.69)
0

ays
and the in-plane and normal velocity components can be approximated by the expressions
Up~F+psing, U,=pu,—i—up cosy —7p' (4.70)

The harmonic components of thrust in the expanded form of Eq. (4.69) therefore define the level of
quasi-steady and vibratory loads that reach the fuselage. Perturbations in w show up in the second term in
parenthesis in Eq. (4.69). The component that increases linearly with forward speed is also a one-per-rev
loading. Hence, while the zero-per-rev or quasi-steady term levels off at higher speeds, the vibratory
response to a gust at N,-per-rev, where N, is the number of blades, continues to increase. While these loads
do not result in significant flight path or attitude changes, and therefore are unlikely to cause handling
problems, they do affect the overall ride quality. Further discussion on the general topic of ride quality is
contained in Chapter 5.

The Derivatives L,, N,

The remaining velocity derivatives belong to the lateral/directional DoFs, and the most significant are the
sideslip derivatives — the dihedral effect L, and the weathercock stability N,. The magnitude of these two
moments as sideslip increases determines the lateral/directional static stability characteristics. A positive
value of N, is stabilizing, while a negative value of L, is stabilizing. Both have the same kind of effects on
rotary-wing as on fixed-wing aircraft but with rotary-wing aircraft the new component is the tail rotor, which
can contribute strongly to both. The magnitude of the tail rotor contribution to the dihedral effect depends
on the height of the tail rotor above the aircraft centre of mass. The fuselage can also contribute to L, if the
aerodynamic centre is offset vertically from the centre of mass, as in the case of deep fuselage hulls, which
typically leads to a negative L, component. But once again, the main rotor is usually the dominant effect,
especially for helicopters with hingeless rotors, where all the main rotor moments are magnified roughly pro-
portionally with the rotor stiffness. In hover, the derivative L, is generated by similar aerodynamics to those
of the pitch derivative M, and as forward flight increases some of the basic similarities remain. As the blades
are exposed to the velocity perturbation, the advancing blade experiences an increase in lift, the retreating
blade a decrease, and the one-per-rev flapping response occurs approximately 90° around the azimuth, giving
a rolling moment to port (starboard for clockwise rotors) for a lateral velocity perturbation and a pitch-up
moment in response to a longitudinal velocity perturbation. The extent of the flap response depends on the
rotor stiffness, the Lock number and the trim lift on the rotor blades. To examine the flap derivatives, we can
refer back to Egs. (3.70)—(3.72) from Chapter 3. At hover, we can write

2
aﬂlx _ aﬂlc _ Y 4 16/1/3
o) ") L Tse G\ )%
ty ) o e ) umo 822 y
2
+<(§)sﬂ+—y (4. — 4o) @.71)

or, for the special case of a rotor hinged at the hub centre with zero spring stiffness, the flap response depends
only on the trim lift on the rotor blades, i.e.

2
( ﬂls) — 80, -2, 4.72)
()uy 4=0 3
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The dihedral effect can therefore potentially change sign for teetering rotors at low and negative rotor thrust
conditions that are outside the operational flight envelope for such aircraft, because of such reversals of flap
response and the associated hub moments.

The directional stability derivative N, is critically important for both static and dynamic stability of
helicopters. The main contributors are the tail rotor, the vertical fin, and the fuselage. The latter is usually
destabilizing with the fuselage centre of pressure in front of the centre of mass; both the tail rotor and vertical
fin are stabilizing (i.e. positive N,). All are approximately linear with speed up to moderate forward speeds.
However, the contribution from the tail rotor is similar to the heave damping on the main rotor, arising from
a change in tail rotor thrust due to a change in velocity normal to the disc, and levels off at high speed; the
contributions from the fin and fuselage continue to increase in the positive and negative senses, respectively.
The weathercock stability is strongly influenced by the tail rotor 6, angle (see Chapter 3, Section 3.2.2),
which reduces blade pitch as a function of blade flapping. On the four-bladed Lynx tail rotor, changes in tail
rotor thrust lead to changes in rotor coning and hence changes in tail rotor collective. Figure 4.19 illustrates
the comparison of N, for the Lynx, with and without 5, showing that 6, produces a reduction of about 40%
at high speed.

For the Lynx, the low-speed values of N, tend to be dominated by the inertia coupling with roll (and
hence the much stronger dihedral effect L,) through the product of inertia /., (see Eq. (4.48)). The reduced
effectiveness of the tail rotor to directional stability makes the contribution of the vertical fin all the more
important. For helicopters with high set tail rotors, these vertical surfaces also carry the tail rotor drive shaft
and can have high ratios of thickness to chord. Aerofoil sections having this property can exhibit a flattening
or even reversal of the lift curve slope at small incidence values (Ref. 4.11). In such cases, it can be expected
that the yawing moment due to sideslip will exhibit a strong nonlinearity with sideslip velocity. The Puma
features this characteristic and the associated effects on stability have been discussed in Ref. 4.12; the fin
aerodynamics are summarised in Section 4B.1. Figure 4.20 shows how the value of N, for the Puma varies
with the magnitude of the velocity perturbation at a trim speed of 120 knots. At small amplitude, up to about
5 m/s perturbation (corresponding to about 5° of sideslip), the fin contributes nothing to the weathercock
stability. As the perturbation is increased up to 30 m/s (corresponding to nearly 30° of sideslip) there is a
10-fold increase in N,. The effects of this nonlinearity on stability and response will be discussed later, but
are obviously significant and need to be accounted for in the linearization process.

The Derivatives N, N,,, L, L,,

These four derivatives play an important role in coupling the low-frequency longitudinal and lateral motions
of the helicopter. The yawing moment derivatives stem largely from the changes in main rotor torque with
velocity perturbations, although there is also an effect from the fin (), like the contribution of the horizontal
stabilizer to M,,. The N,, effect can be quite significant since torque changes to vertical velocity are similar
to the direct control coupling — torque changes from collective inputs. The L, effect reflects the changes in

N, {rad'ms) 0.2

without 63

with 63

100 200
forward speed (kn)

Fig. 4.19 Effect of tail rotor 6, angle on weathercock stability derivative N,
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Fig. 4.20 Variation of derivative N, with ‘v’ velocity perturbation for Puma

lateral cyclic to trim with forward speed, being dominated by the main rotor effect at low speed. Forward
velocity perturbations increase the incidence on the forward part of the (coned) disc and reduce the incidence
at the rear. The disc will therefore tilt to starboard for anticlockwise rotors (port for clockwise rotors). As
forward speed increases, the four derivatives show similar trends and the dominating main rotor components
are closely related through the shaft tilt and product of inertia.

The Angular Velocity Derivatives

Our discussion on derivatives with respect to roll, pitch, and yaw rate covers three distinct groups — the force
derivatives, the roll/pitch moment derivatives due to roll and pitch and the roll/yaw derivatives due to yaw
and pitch. Derivatives in the first group largely share their positions in the system matrix (Eq. (4.44)) with the
trim inertial velocity components. In some cases, the inertial velocities are so dominant that the aerodynamic
effects are negligible (e.g. Z,, Y,). In other cases, the aerodynamic effects are important to primary response
characteristics. Two such examples are X, and Y),.

The Derivatives X Y,
These derivatives are dominated by the main rotor contributions. For teetering rotors and low flap hinge-offset
rotors, the changes in rotor hub X and Y forces are the primary contribution to the pitch and roll moments
about the aircraft centre of mass. Hence, the derivatives X, and Y, can contribute significantly to aircraft
pitch and roll damping. The basic physical effects for the two derivatives are the same and can be understood
from an analysis of a teetering rotor in hovering flight. If we assume that the thrust acts normal to the disc in
manoeuvres, and ignoring the small drag forces, then the rotor X force can be written as the tilt of the thrust
vector:

X=Tp, (4.73)

The pitch rate derivative is then simply related to the derivative of flapping with respect to pitch rate. As
the aircraft pitches, the rotor disc lags the shaft by an amount proportional to the pitch rate. This effect was
modelled in Chapter 3 and the relationships were set down in Egs. (3.71) and (3.72). For a centrally hinged
rotor with zero spring stiffness, the disc lags the shaft by an amount given by the expression

0B, _ 16

ag  yQ

4.74)

The Lock number ¥ is the ratio of aerodynamic to inertia forces acting on the rotor blade; hence, the disc will
flap more with heavy blades of low aspect ratio; physically, the rotor lags further behind the fuselage with
heavy blades. Eq. (4.74) implies that the force during pitching produces a pitch damping moment about the
centre of mass that opposes the pitch rate. However, the assumption that the thrust remains normal to the disc
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has ignored the effect of the in-plane lift forces due to the inclination of the lift vectors on individual blade
sections. To examine this effect in more detail, we need to recall the expressions for the rotor hub forces from
Chapter 3, Egs. (3.88)—(3.99). Considering longitudinal motion only, thus dropping the hub/wind dressings,
the normalised X rotor force can be written as

AN o
ays T o e 2 '

The first term in Eq. (4.75) represents the contribution from the fore and aft blades to the X force when the
disc is tilted and is related to the rotor thrust coefficient by the expression

F"=- <&> (4.76)

ays

This effect accounts for only half of the approximation given by Eq. (4.73). Additional effects come from
the rotor blades in the lateral positions, and here the contributions are from the in-plane tilt of the lift
force, i.e.

0 A
P = (go - ﬂo) b= 50y @.77)

During a pitch manoeuvre from the hover, the cyclic pitch can be written as (see Eq. (3.72))

16

0, = =P+ Jal (4.78)

Hence, substituting Eq. (4.78) into Eq. (4.77) and then into Eq. (4.75), the force derivative can be written in
the form

% e (15— NP _¢ (15- 16 (4.79)
ag T\ 12Cplaps) oq T T\ 12C;/aps ) yQ ’

We can see that the thrust is inclined relative to the disc during pitching manoeuvres due to the in-plane loads
when the blades are in the lateral position. The scaling coefficient given in Eq. (4.79) reduces in the hover to

<1.5—L> S L (4.80)
12CT/aOS hover 8\/(2CT)

and has been described as the Amer effect (Ref. 4.13). Further discussion can be found in Bramwell (Ref. 4.14)
and in the early paper by Sissingh (Ref. 4.15). Although our analysis has been confined to hover, the approx-
imation in Eq. (4.79) is reasonably good up to moderate forward speeds. The effect is most pronounced in
conditions of high collective pitch setting and low thrust, e.g. high-power climb, where the rotor damping
can reduce by as much as 50%. In autorotation, the Amer effect almost disappears. This effect is strong for
a tiltrotor in airplane mode, as we shall explore in Chapter 10.

The Derivatives Mq, Lp, Mp, Lq

The direct and coupled damping derivatives are collectively one of the most important groupings in the system
matrix. Primary damping derivatives reflect short-term, small and moderate amplitude, handling character-
istics, while the cross-dampings play a dominant role in the level of pitch—roll and roll-pitch couplings.
They are the most potent derivatives in handling qualities terms, yet because of their close association with
short-term rotor stability and response, they can also be unreliable as handling parameters. We shall discuss
this issue later in Chapter 5 and in more detail in Chapter 7, but first we need to explore the many physical
mechanisms that make up these derivatives. There has already been some discussion on the roll-damping
derivative in Chapter 2, when some of the fundamental concepts of rotor dynamics were introduced. The
reader is referred to the Tour (Section 2.3) for a refresher.
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Taking the pitch moment as our example for the following elucidation, we write the rotor moment about
the centre of mass in the approximate form

K
MR=—<Nb7ﬂ+ThR> ﬂlc (481)

where K is the flapping stiffness, T the rotor thrust, and &y, the rotor vertical displacement from the centre
of mass. In this simple analysis, we have ignored the moment due to the in-plane rotor loads, but we shall
discuss the effects of these later in this section. The rotor moment therefore has two components — one due
to the moment of the thrust vector tilt from the centre of mass, the other from the hub moment arising from
real or effective rotor stiffness. Effective stiffness arises from any flap hinge offset, where the hub moment
is generated by the offset of the blade lift shear force at the flap hinge. According to Eq. (4.81), the rotor
moment is proportional to, and hence in phase with, the rotor disc tilt (for the centre-spring rotor). The
relative contributions of the two components depend on the rotor stiffness. The hub pitch moment can be
expanded in the form (see Egs. (3.104), (3.105))

Kﬁ N, 2 2
and the corresponding roll moment as
K N,
B b
Ly==N,—P, = _7921ﬁ(,1; - DBy, (4.83)

The hub moment derivatives can therefore be derived directly from the flapping derivatives. Since the
quasi-steady assumption indicates that the disc tilt reaches its steady-state value before the fuselage begins
to move, the flap derivatives can be obtained from the matrix in Eq. (3.72); thus, in hover, where the flap
effects are symmetrical, we can write

3, 9

e _ e 1 <S,j+§> (4.84)
dq op 1+Sﬂ 4
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% _ b _ 1 . (s,,E - 1) (4.85)
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The stiffness number S is given by Eq. (4.59).

The variation of the flap-damping derivatives in Egs. (4.84) and (4.85) with the fundamental stiffness
and Lock number parameters has been discussed in Chapter 2 (see Figures 2.21b and c). For values of stiffness
number up to about 0.4, corresponding to the practical limits employed in most current helicopters, the direct
flap derivative is fairly constant, so that helicopters with hingeless rotors flap in very much the same way as
helicopters with teetering rotors. The Lock number has a much more dramatic effect on the direct flap motion.
Looking at the coupling derivatives, we can see a linear variation over the same range of stiffness number,
with rotors having low Lock number experiencing a reversal of sign. This effect is manifested in the Bo105
helicopter, as illustrated in the derivative charts of Section 4B.2, where the Lock number of 5 and stiffness
number of about 0.4 result in a practical cancelling of the rolling moment due to pitch rate L. The rotor Lock
number is critically important to the degree of pitch—roll coupling.

From the theory of flapping dynamics derived in Chapter 3, we can explain the presence of the two
terms in the flap derivatives. The primary mechanism for flap and rotor damping derives from the second
term in parenthesis in Eq. (4.84) and is caused by the aerodynamic moment generated by the flapping rate
(at azimuth positions 90° and 270°) that occurs when the rotor is pitching. The disc precesses because of
the aerodynamic action at these azimuth stations, and lags the rotor shaft by the angle (16/yQ) X pitch rate.
The primary mechanism for coupling is the change in one-per-rev aerodynamic lift generated when the rotor
pitches or rolls, as shown in the second term in Eq. (4.85), adding an effective cyclic pitch. Both effects
are relatively insensitive to changes in rotor stiffness. The additional terms in S, in Eq. (4.84) and (4.85)
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arise from the fact that the flap response is less than 90° out of phase with the applied aerodynamic load.
The direct aerodynamic effects, giving rise to the longitudinal and lateral flapping, therefore couple into
the lateral and longitudinal flapping, respectively. The effect on the coupling is especially strong since the
direct flap derivative provides a component in the coupling sense through the sign of the phase angle between
aerodynamic load and flap response.

Combining the flap derivatives with the hub moments in Eq. (4.82) and (4.83), we can derive approxi-
mate expressions for the rotor hub moment derivatives, in semi-normalised form, for small values of S 5

N,S,1,Q ,
M), ~ ——P P (1 s —) 4.86
= == (15,7 (4.86)
N, S, y
(L), ~ - (1 + SﬁE> (4.87)
N,S,1,Q
L)y ~ % (sﬁ - %) (4.88)
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bOptp (Sﬂ 7) (4.89)

(M), ~ - -~
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The hub moment derivatives are therefore scaled by the stiffness number, but otherwise follow the same
behaviour as the flap derivatives. They also increase with blade number and rotorspeed. It is interesting to
compare the magnitude of the hub moment with the thrust tilt contribution to the rotor derivatives. For the
Lynx, the hub moment represents about 80% of the total pitch and roll damping. For the Puma, the fraction
is nearer 30% and the overall magnitude is about 25% of that for the Lynx. Such is the powerful effect of
rotor flap stiffness on all the hub moment derivatives reflected in the values of S, for the Lynx and Puma of
0.22 and 0.044, respectively. As can be seen from the derivative charts in Section 4B.2, except for the pitch
damping, most of the rate derivatives discussed above are fairly constant over the speed range, reflecting
the insensitivity with forward speed of rotor response to equivalent cyclic pitch change. The pitch-damping
derivative M, also has a significant stabilizing contribution from the horizontal tailplane, amounting to about
40% of the total at high speed.

Before leaving the roll and pitch moment derivatives, it is important that we consider the influence of the
in-plane rotor loads on the moments transmitted to the fuselage. In our previous discussion of the force deriva-
tives X, and Y,,, we have seen how the Amer effect reduces the effective rotor damping, most significantly on
teetering rotors in low-thrust flight conditions. An additional effect stems from the orientation of the in-plane
loads relative to the shaft when the rotor disc is tilted with one-per-rev flapping. The effect is illustrated in
Figure 4.21, showing the component of rotor torque oriented as a pitching moment with lateral flapping (the
same effect gives a rolling moment with longitudinal flapping). The incremental hub moments can be written
in terms of the product of the steady torque component and the disc tilt; hence, for four-bladed rotors

(5L)torque = _%ﬂl(; (4.90)
(6M)t0rque = %ﬁls (491)

These moments will then combine with the thrust vector tilt and hub moment to give the total rotor moment.
To examine the contribution of all three effects to the derivatives, we compare the breakdown for the
Puma and Lynx. The Helisim predicted hover torque for the Puma and Lynx work out at about 31 000 N m and
18 000 N m, respectively. The corresponding rotor thrusts are 57 000 and 42 000 N and the effective spring
stiffnesses 48 000 and 166 000 Nm/rad. The resultant derivative breakdown can then be written in the form

Puma Lynx
9. 9Py, 9. 9py,
M, =—6.62 0.46 M, =-27.82 0.66 4.92
K dq * dq K dq * dq (4-92)
0 d P P
M, =—-6.62 Pre +0.46 Prs M =-27.82 bre +0.66 by (4.93)
P op op r op op
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2 components of
- rotor torque

Fig. 4.21 Source of rotor hub couple due to inclination of rotor torque to the shaft

The effect of the torque moment on the direct damping derivative is therefore negligible. In the case of the
coupling derivative, the effect appears to be of concern only for articulated rotors, and then only for rotors
with very light blades (see the low Lock number cases in Figures 2.21b and c).

The Derivatives N,, L,, N,

The final set of rate derivatives have little in common in terms of their physical makeup but share, along with
their ‘big brother’ L, the property of having a primary influence on the character of the lateral/directional
stability and control characteristics of the helicopter. We begin with a discussion of the yaw-damping deriva-
tive N,. In our previous discussion of the force derivatives, we rather dismissed the sideforce due to yaw rate
Y,, since the inertial effect due to forward speed (U,r) was so dominating. The aerodynamic contribution to
Y,, however, is directly linked to the yaw damping and is dominated by the loads on the tail rotor and vertical
fin. If these components are at approximately the same location, we can write the yaw damping as

Ma
N, m —£,—2Y, (4.94)

t
r IZZ r

In the hover, our theory predicts that N, is almost entirely due to the tail rotor, with a numerical value of
between —0.25 and —0.4, depending on the tail rotor design parameters, akin to the effect of main rotor
design parameters on Z,, (see Table 4.2). The low value of yaw damping is reduced even further (by about
30%) by the effect of the mechanical §; coupling built into tail rotors to reduce transient flapping. The fin
blockage effects on the tail rotor can reduce N, by another 10-30%, depending on the separation and relative
cover of the tail rotor from the fin. Yaw motion in the hover is therefore very lightly damped with a time
constant of several seconds.

In low-speed manoeuvres, the effect of the main rotor downwash over the tail boom can have a strong
effect on the yaw damping. The flow inclination over the tail boom can give rise to strong circulatory loads for
deep, slender tail booms. This effect has been explored in terms of tail rotor control margins in sideways flight
(Refs.4.9,4.16, and 4.17), and the associated tail boom loads in steady conditions, from which we can deduce
the kind of effects that might be expected in manoeuvres. The magnitude of the moment from the sideloads on
the tail boom in a yaw manoeuvre depends on several factors, including the strength and distribution of main
rotor downwash, the tail boom thickness ratio, and the location of any strakes to control the flow separation
points (Ref. 4.16). A fixed strake, located to one side of the tail boom (e.g. to reduce the tail rotor power
requirement in right sideways flight), is likely to cause significant asymmetry in yaw manoeuvres. Main
rotors with low values of static twist will have downwash distributions that increase significantly towards
the rotor tips, leading to a tail boom centre of pressure in manoeuvres that is well aft of the aircraft centre
of mass. The overall effect is quite complex and will depend on the direction of flight, but increments to the
yaw damping derivative could be quite high, perhaps even as much as 100%.

As forward speed increases, so does the yaw damping in an approximately proportional way up to
moderate speeds, before levelling off at high speed, again akin to the heave damping on the main rotor.

a!
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The reduced value of N, for the Puma, compared with Lynx and Bo105, shown in Appendix 4B, stems from
the low fin effectiveness at small sideslip angles discussed earlier in the context of the weathercock stability
derivative N,. For larger sideslip excursions, the derivative increases to the same level as the other aircraft.

One small additional modifying effect to the yaw damping is related to the rotorspeed governor sensing
a yaw rate as an effective change in rotorspeed. At low forward speeds, the yaw rate can be as high as 1 rad/s,
or between 2% and 4% of the rotorspeed. This will translate into a power change — and hence a torque change
and a yaw reaction on the fuselage serving to increase the yaw damping, with a magnitude depending on the
gain and droop in the rotorspeed governor control loop.

N, and L, couple the yaw and roll DoFs together. The rolling moment due to yaw rate has its physical
origin in the vertical offset of the tail rotor thrust and vertical fin sideforce from the aircraft centre of mass.
L, should therefore be positive, with the tail rotor thrust increasing to starboard as the aircraft nose yaws to
starboard. However, if the offsets are small and the product of inertia /,, relatively high, so that the contribu-
tion of N, to L, increases, L, can change sign, a situation occurring in the Lynx, as shown in the derivative
charts of Section 4B.2.

The derivative N, is more significant, and although the acrodynamic effects from the main and tail rotor
are relatively small, any product of inertia /,, will couple the roll into yaw with powerful consequences. This
effect can be seen most clearly for the Lynx and Bo105 helicopters. The large negative values of N, cause an
adverse yaw effect, turning the aircraft away from the direction of the roll (hence turn). In the next section,
we shall see how this effect influences the stability characteristics of the lateral/directional motion.

Before leaving N, and the stability derivatives, however, it is worth discussing the observed effect of
large torque changes during rapid roll manoeuvres (Refs. 4.18, 4.19). On some helicopters this effect can
be so severe that overtorquing can occur and the issue is given attention in the cautionary notes in aircrew
manuals. The effect can be represented as an effective N,. During low to moderate amplitude manoeuvres,
the changes in rotor torque caused by the drag increments on the blades are relatively benign. However, as
the roll rate is increased, the rotor blades can stall, particularly when rolling to the retreating side of the disc
(e.g. a roll rate of 90°/s will generate a local incidence change of about 3° at the blade tip). The resulting
transient rotor tor