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Preface
Motivation and Goal

With the advancement of more and more sophisticated greenhouses all over the world, automatic 
control of greenhouse climate has become imperative. Computerized control systems on the market 
today in countries with a well-developed greenhouse industry offer the grower the opportunity to 
manipulate the indoor environment according to his wishes. The task of the computer system is to 
realize the climate schedule desired by the grower and to provide information and feedback about 
the system’s behavior. Automatic control in countries with an upcoming greenhouse industry is 
developing along the same lines. The focus of commercially available control systems is on control 
of the climate. The gradual piling up of ad hoc solutions ultimately has led to untransparent systems 
with hundreds of user settings. How the settings should be chosen is left to the grower. While the 
importance of these systems for the success of the greenhouse industry is acknowledged, on lean-
ing back, one may ask: Are these systems really solving the true problem of the grower? Will these 
systems, at the end of the day, yield the largest profit to the grower? Will they lead to the desired 
sustainability so badly needed in the industry? The answers to these questions have motivated us 
and other researchers from various parts of the world to rethink the system and to look for different 
approaches. They form the motivation for writing this book. 

This book is about optimal control of greenhouse cultivation. We use the word cultivation rather 
than climate to express that it is not so much the indoor climate we are interested in, but rather the 
cultivation of horticultural crops. Climate control is an instrument to reach that goal, but without 
considering the crop the system is not complete. Secondly, we use the word optimal to express 
that our aim is to achieve the result in which the grower is interested: maximum profit, within 
environmental, legal, and societal constraints. When we say optimal, we really mean optimal in an 
economic sense, and not in the sense of the rather loose use of the word to indicate some measure 
of best technical performance. Thinking in terms of economic optimality immediately leads to a 
different view on climate control. Standard setpoint control design is trying to suppress the effect of 
disturbances. In the case of greenhouses, the major disturbance is the weather. At the same time, it 
is a resource, as, after all, the greenhouse is a solar collector. So, instead of suppressing the effect 
of the weather, economic optimal control will try to exploit the opportunities offered by the weather 
as much as possible.

If the economic problem can be solved by optimal control methods, will the grower then become 
superfluous? Not at all. The role of the grower as entrepreneur will be as important as always. 
However, as we hope to demonstrate in the book, the way business information—for instance, about 
expected prices of sold products or about developments on the energy market—can be conveyed to 
the daily operation of the greenhouse is completely transparent in the optimal control setting. This 
is in contrast to the current situation, in which a grower has to translate his economic expectations 
into hundreds of settings for the greenhouse climate computer, virtually without any help from the 
system. The grower also remains important in judging risks and setting constraints to the freedom 
of operation of the optimal controller, if necessary, but in contrast to the current situation, the opti-
mal control framework offers an opportunity to show the effects of his actions.

Science and Models

Truly optimal control of greenhouse cultivation cannot be reached without using scientific informa-
tion. The best way to encapsulate, communicate, and implement scientific knowledge is via mecha-
nistic models that describe the dynamics of the climate and the crop. While solutions that formalize 
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xii	 Preface

expert knowledge in some form may provide useful practical solutions, they will never be able to 
offer real optimality. The same is true for black-box methods that are based on data for a single 
particular solution. Therefore, in this book, the emphasis will be on the use of science-based mecha-
nistic dynamic models to achieve our goal. These models must obviously be cast in a form that is 
suitable for the methodology of optimal control, and for this reason, our methods are based on the 
state–space representation of the relevant dynamic models.

Target Group, Philosophy, and Contents

The target group we had in mind are researchers working in the area of greenhouse control, as 
well as engineers employed by system providers. The book may also be of interest to practitioners 
who are advising growers, or to scientifically trained growers. The book begins with an introduc-
tory chapter that briefly points to the growing importance of the greenhouse industry in producing 
food and flowers worldwide. The greenhouse–crop system is briefly described. This part elucidates 
the central role of fast physiological crop processes, i.e., photosynthesis and evapotranspiration, 
in the process, as these affect both the greenhouse climate and crop growth and development. 
They are therefore the pivot in any integrated greenhouse–crop model. Finally, it is shown that the 
greenhouse cultivation control problem has a hierarchical structure and that, in general, much less 
feedback information is available for the crop than for the greenhouse. It sets the scene for what 
will appear to be a key issue in the book: in which way is information best exchanged between the 
various hierarchical layers?

Chapter 2 provides a tutorial introduction to optimal control, on the basis of a very simple but 
illustrative example. Having a model, a goal function, and an optimization method, the control 
inputs that are required to achieve the best goal function value are computed. To keep things clear, 
the example avoids uncertainties at this stage. Hence, the solutions obtained are open-loop solu-
tions—the controls are computed in advance and are applied as computed. The purpose is to give 
the reader a feel for what optimal control is about. In passing, we note here that optimal control is 
really optimal steering. Finding the open-loop solution is also known in the literature as “dynamic 
optimization.” Throughout the book we will use these terms rather loosely.

In Chapter 3, the theory of open-loop optimal control is given. The necessary conditions for 
optimality that play a central role in solving the problem are discussed, and important notions like 
the Hamiltonian and the adjoint variables or costates are introduced. Also, direct and indirect solu-
tion methods are summarized and illustrated on the basis of examples. The discussion is kept as 
concise as possible. The reader who is interested in more in-depth treatment is referred to a number 
of excellent books on the topics. The main idea here is to demystify the idea that optimal control 
is really something for the brave. The fact that tools are readily available now should convince the 
practitioner of the feasibility of the method, we hope.

Up until Chapter 3, uncertainties have not played a significant role. In the greenhouse, however, 
these uncertainties are dominantly present. For instance, the weather is variable and partly unpre-
dictable, and, hence, our models will not be perfect. Some form of feedback is necessary, thus lead-
ing to a closed-loop system. This is the topic dealt with in Chapter 4. An explanation is given of why 
“standard” linear quadratic feedback is not going to work in greenhouse climate control. The solu-
tion is found in time-scale decomposition, which separates the slow crop biomass response from the 
fast greenhouse climate response. This ultimately leads to a two-step solution. First a slow optimal 
control problem is solved. This is, in fact, dynamic optimization, and it leads to optimal state trajec-
tories and optimal costate trajectories for the crop states. Next, the online control is realized with a 
receding horizon optimal controller, which uses the same economic cost criterion, augmented with 
a term to value the long-term development of the crop. It appears that the costates of the slow vari-
ables, i.e., the crop biomass, are the pivot variables in this approach. The receding horizon controller 
is a model-predictive controller that updates its initial state on the basis of observed information, 
thus providing the feedback that is of paramount importance. However, unlike standard model 
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predictive controller (MPC), the criterion is still economic. The treatise in Chapter 4 can be seen as 
the core of the methodology developed in the book.

Chapter 5 places the developed optimal control method in the frame of hierarchical control, and 
it provides an extensive overview of the literature on model-based or model-inspired greenhouse 
climate control in general. Methods that are not model-based, such as expert systems, are mentioned 
but not discussed in detail, as they cannot provide optimality. As said before, the key differences 
between various hierarchical solutions offered in the literature lie in the way information is trans-
ferred between the layers. In the hierarchical setup, first a dynamic optimization of the crop system 
is used, usually considering the greenhouse dynamics as pseudo-static. The focus is on the crop. 
Then, there are two different lines. One uses the state variables as setpoints for lower level control-
lers. The controller can be anything in this setup, and various solutions offered in the literature are 
reviewed. The other is the optimal control solution in Chapter 4, which conveys the slow costates 
and uses at the lower level again an (economically) optimal controller. Our goal in Chapter 5 is to 
place the numerous control studies reported in the literature into the perspective of hierarchical 
optimal control. It is clear that an essential step in achieving optimality is the dynamic optimiza-
tion over a season on the basis of crop models. If this step would become part of the control system, 
already a big leap would be made toward true optimality, even if our proposed second step of trying 
to achieve optimality at the online level as well is not adopted.

The next three chapters discuss examples of various realistic applications of the fully integrated 
control with optimality at all levels. Chapter 6 deals with lettuce, which is a single-harvest crop. It 
has, among other topics, an interesting discussion on the economic interpretation of the costates. 
Chapter  7 describes a real experiment with a continuous-harvest crop, the tomato. A big-leaf, big-
fruit model is presented as an approximation of the crop behavior. Calibration of crop and green-
house models is briefly discussed. Ultimately, a number of interesting outcomes for various periods 
of the year are discussed at some length. In Chapter 8, the problem is solved for a solar greenhouse 
to illustrate the applicability of the approach to more complicated systems. It also presents unique 
comprehensive models for the crop photosynthesis and evapotranspiration and for the greenhouse 
physics. It also shows that optimal control studies can be used to study the effect of specific pieces 
of equipment on the overall performance of the system, thus linking control to design. Our purpose 
in presenting these examples is to show the feasibility of the approach and to point out to the reader 
a number of specific points that require attention in practical applications.

Finally, in Chapter 9, we sketch a number of exciting developments in the greenhouse industry. 
Most of these are inspired by the strongly felt need to make the industry more sustainable. Our 
expectation is that these innovations will call upon more sophisticated control systems than are 
available today. We argue why the optimal cultivation control methodology presented in this book 
offers an excellent starting point for the development of the systems of the future. We also discuss a 
number of societal and organizational bottlenecks that may preclude the adoption of more advanced 
technologies, together with a number of technical points that need further attention. This chapter is 
mainly intended as a source of inspiration of further work by scientists and also to give practitioners 
backing if they want to convince their superiors to move in new directions.

The authors’ context

In agriculture, there are many applications of systems and control theory, but the most eye-
catching ones are robotics and climate control. As people interested in control issues, and being 
at  Wageningen University and Research Centre, with its roots in agriculture, it is only natural that 
we have to work in these directions. In addition, being in The Netherlands, which hosts an important 
greenhouse industry and possesses a world reputation in advanced greenhouse applications, there 
was really no way not to become involved in greenhouse climate control. The history of green-
house work in Wageningen goes back to the 1970s, with pioneers like Alexander Udink ten Cate 
and Gerard Bot, who started modeling and control in The Netherlands and also had a leading role 
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internationally. In the 1990s, under the inspiring lead of Hugo Challa, who unfortunately died way 
too early, a working group was established aiming at bringing greenhouse control to a higher scien-
tific level. A large number of Ph.D. students worked in this frame, among them Eldert van Henten, 
one of the authors of this book, who in The Netherlands pioneered the field covered by this book in 
the late 1980s and early 1990s. Under the supervision of Jan Bontsema, he introduced the two–time 
scale approach that is an important theme in this book. He is responsible for Chapter 6 about lettuce 
application. Further Ph.D. studies were guided by, among others, Gerard van Willigenburg, one of 
the strongest advocates of the optimal control methodology. He is the principal author of Chapters 
2–4, and was strongly urging to perform the practical test of the tomato example in Chapter 7, 
which resulted in the Ph.D. dissertation of Frank Tap. The current Chapter 7 is a full remake of the 
work of Tap, for which Gerrit van Straten is responsible. Another student of Gerrit and Gerard was 
Rachel van Ooteghem, who has written Chapter 8 about the solar greenhouse. Gerrit van Straten is 
the principal author of the other chapters and the main coordinator of the whole project. Chapter 9 is 
the result of a number of formal and informal discussions among us, as authors, and with scientists 
and representatives of internationally operating greenhouse climate computer vendors.

Finally

Our main motivation to write the book has not been altered over the years. While the greenhouse 
industry has a high potential to make a significant contribution to the needs of mankind, its survival 
will critically depend upon the ability to reach sustainability. Developments toward this goal will 
lead to more and more complex solutions. Even though this may not yet be visible in upcoming 
nations, it will be the worldwide trend. It is our strong conviction that well developed modern green-
house crop cultivation cannot be based upon standard basic control solutions. Far more advanced 
solutions are needed to reach a profitable and sustainable greenhouse production system without 
complicating the life of the grower. We hope to have demonstrated in this book that the optimal 
control framework is, indeed, a most powerful, science-based, and feasible solution to achieve this 
goal. We hope that the reader will find inspiration in this book, and we will be glad to receive any 
feedback from our audience.

Gerrit van Straten
Gerard van Willigenburg

Eldert van Henten
Rachel van Ooteghem

Wageningen, The Netherlands
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Notation Conventions

Notation of Greenhouse and Crop Principal Variables

Symbol

Symbol Description Unit Variables Description Unit

Φ mass flow rate kg s–1 φ specific mass flow 
rate

kg m–2[gh] s–1

Q heat exchange rate W (J s–1) q specific heat 
exchange 

W m–2[gh]

F volumetric flow rate m3 s–1 j heat or mass flux 
(generic)

units m–2[gh]

T temperature K T C temperature °C

C concentration kg m–3 p pressure Pa (N m–2)

RH relative humidity (–)

v velocity m s–1

A surface area m2 V volume m3

W biomass 
(dry weight)

kg[dw] m–2[gh] B biomass 
(fresh weight)

kg[fw] m–2[gh]

D development stage – S integral value (depends on subscript)

Subscripts
a greenhouse air below screen o outdoor 

al artificial lighting equipment out going out of the system

aq aquifer p pipe system (unspecified)

as greenhouse air above screen q with respect to heat

B assimilate buffer r roof (cover)

boil boiler ri roof indoor side

c crop ro roof outdoor side

CO2 carbon dioxide roots roots

e equipment (utility) s upper soil layer

F fruit sc screen

g greenhouse compartment sk sky

he heat exchanger ss lower soil layer (subsoil)

hp heat pump stem stem

H2O water T with respect to temperature

in going into the system u upper heating net

l lower heating net uc upper cooling net

L leaf v with respect to ventilation

V vegetative

Superscripts
Ap aperture high upper bound

cond conduction low lower bound

cons condensation lsd leeward side

dem demand lwv longwave radiation

fw fresh weight max maximum
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xx	 Notation Conventions

Superscripts (continued)

min minimum vp valve position

ppm ppm vent ventilation

rad global radiation wb wet bulb

ref reference wsd windward side

sat saturation % percentage

sp setpoint

Note:	 With concentrations: the first subscript refers to the substance, e.g., CO2, H2O, unless it is clear from the context what 
is meant. Then there is a comma, followed by an indicator for the location/compartment, e.g., a (air), s (soil), and c 
(crop).

	 Flows and transport terms are denoted by capital letters if they are in units mass or energy per time unit (e.g., Φ, Q) 
and in lower case if they refer to flows per unit greenhouse area (e.g., φ, q). The first subscript indicates the substance, 

e.g., CO2. It followed by a comma and then source and destination separated by an underscore, e.g., ΦCO ,a_c2  .
	 Superscripts are used to denote specific attributes. If there is no ambiguity, they are left out.
	 Parameters are often chapter specific. They are defined at first appearance and are also summarized in tables per 

chapter.

Generic Systems Notation
Variable Symbol Vector Dim
State x nx

Control input u nu

External input (disturbance) d nd

System output (noise-free) y ny

Measured (observed) output yobs ny

Auxiliary variables of interest (computable) z nz

Parameters p np

Costate (adjoint variable) λ nx

Cost function J

Hamiltonian H

Terminal cost Φ
Penalty P

Running cost L

Unit price c

System Notation Superscripts and Overscripts
Lower bound xmin Steady state xss

Upper bound xmax Estimated/forecasted ˆ, ˆx d

Optimal x* Averaged or filtered/slow subproblem x d,

Slow xs Nominal dnom

Fast xf Observed yobs

© 2011 by Taylor and Francis Group, LLC



1

1 Introduction and 
Problem Statement

1.1  Greenhouse-Crop Cultivation—Benefits and ChallengeS

Of all agricultural production activities, the greenhouse industry is worldwide the fastest grow-
ing sector. There are two major reasons for this. First, the greenhouse separates the crop from the 
environment, thus providing some way of shelter from the direct influence of the external weather 
conditions. This enables the production of crops that otherwise could not be produced at that spe-
cific location. Second, the greenhouse enclosure permits the manipulation of the crop environment. 
This asset allows the grower to steer the cultivation in a desirable direction. It leads to higher crop 
yield, prolonged production period, better quality, and less use of protective chemicals. The added 
value per unit surface area in greenhouse crops is much higher than that in open-field cultivation. 
The downside of this intensification is that with current designs, greenhouse production has a higher 
demand per unit area for resources. In moderate climate zones, energy is needed, whereas in (semi)
arid zones, the cooling and availability of water is of major concern. On the other hand, in view of 
the growing concern about sustainability, one has to realize that, after all, the greenhouse is a solar 
collector, and this will ultimately be another factor that will contribute to the growth of the green-
house sector in the future.

Over time, greenhouses have evolved from very simple structures with little or no options for 
control to very advanced, modern industrial structures, with various ways to manipulate the envi-
ronmental conditions experienced by the plant. A greenhouse in this book means a structure that 
covers the crop and that has at least one device that can be manipulated to modify the internal envi-
ronmental conditions. This latter condition excludes simple plastic shields over crops on the open 
soil. Slightly paraphrasing Hanan (1998), it will also be assumed that the greenhouse is intended to 
grow crops that have an economic value. A factor that is common to all greenhouses is that solar 
energy is allowed to enter the structure to provide energy for photosynthesis. We will not deal so 
much with the plant factory, where the light is coming exclusively from lamps, although the core 
methodology is applicable there as well. An important implication of having the sun’s radiation as 
input is that it introduces a degree of unpredictability that has to be dealt with. Because the sun is a 
resource, the task is not so much to suppress its effect on the internal climate but, rather, to exploit 
it.

In general, it can be assumed that the goal of the grower is to make a profit. The economy of 
greenhouse cultivation is determined by a number of factors, determined by decisions that the 
grower has to make. These can be listed as follows:

Investments in greenhouse type and infrastructure. These are guided by arguments related •	
to the target crops and available designs on the market, which differ in terms of type 
of substrate, expected resource use, flexibility of operation, degree of automation, and 
expected performance. Once the structure is chosen, it is relatively difficult to modify it. 
Strategic choice on the kind of crops to be grown and on the initiation of a new batch of •	
crops. Once the decision has been made, it cannot be changed, but another decision is pos-
sible for the next batch.
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Operational costs, which exist of more or less fixed capital costs, that is, interest on invest-•	
ment loans and depreciation costs, and variable resource costs, being labor costs, costs of 
logistics and materials, and energy costs. There is normally a positive correlation between 
total variable costs and amount of resources used, but the actual amount to be paid can be 
influenced by contracting. 
Income from selling the crop and other potential revenues against marketing costs. There •	
is in general a positive correlation between crop yield and income, but the actual realiza-
tion of these relationships depends among other things on product quality, time of delivery, 
branding, contracting, and market prices.

The use of materials and energy as well as crop yield and quality can be influenced by operating the 
adjustable components of the greenhouse, such as heating input, window opening, screening, and 
CO2 dosage. Hence, it can be expected that the way these controls are operated influences the final 
economic result. The final result will also be determined by the actual realization of the weather, 
which is beyond the control of the grower and which will always lead to year-by-year variability 
in income. No controller can prevent this, but what we can expect from a control strategy is that, 
ideally, under the given circumstances, the control exploits the opportunities and contributes in the 
best possible way to the net profit of the grower. To go for this ideal is the main philosophy in this 
book.

1.2 A utomatic Control

To fully exploit the enhanced possibilities for crop and resource management in greenhouses, it 
is indispensable to perform the adjustment of the control variables in an automatic way. This is 
because it is almost impossible for a human being to understand and manipulate systems with more 
than two dependent processes without additional aid. Changing, for instance, the opening of a win-
dow with the purpose of reducing the relative humidity, also will have an effect on temperature and 
will therefore call for additional measures. Moreover, if the opening of the windows had to be done 
manually, as in the early days, the labor costs would be unaffordable in our current time. Hence, 
the introduction of automatic controllers and computer-controlled greenhouses in the second half 
of the twentieth century was a major step forward to economically attractive crop production. Even 
the most basic automatic control will enhance the capacities of the greenhouse industry in emerg-
ing greenhouse areas all over the world. In addition, the availability of automatic control systems 
opens up new avenues for optimization of greenhouse-crop cultivation, as will be explored in this 
book.

1.3 E lementary Description of the Greenhouse-Crop System

By way of example, Figures 1.1 and 1.2 show two types of differing greenhouses. One is the par-
ral type, as is frequently used in warmer areas, for instance, in the Mediterranean area, Latin 
America, and several parts of China. The control options are to open the side ventilators, using 
a roller bar, and the roof ventilators by changing the opening angle. The openings are generally 
covered by insect screens to prevent insect intrusion. The other is a Venlo type of greenhouse, as 
in use in moderate climate zones, for instance, in The Netherlands and other Western European 
countries, North America, and New Zealand. Here, there is a heating system to supply heat, the 
windows can be opened to provide ventilation, a screen can be used to prevent heat loss during 
the night (not shown),  and there can be CO2 dosage. There can be short-term and long-term heat 
buffers, together with heat exchangers and heat pumps, which are left out here for simplicity. 
Also, the irrigation and fertigation system is left out. It is assumed that these water-sided sys-
tems are operated in such a way that water and nutrient supply are not limiting crop growth and 
development.
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Radiation from the sun is used for photosynthesis and also acts as a heat source to the green-
house. Surplus moisture content, generated by crop evapotranspiration, is ventilated to the outside 
air. Heat losses occur via the greenhouse cover and by ventilation. Ventilation also exchanges CO2 
with the outside air.

The crop experiences the local environmental variables temperature, moisture content, and CO2 
concentration. Crop photosynthesis, evapotranspiration, growth, and development depend on these 
variables. On the other hand, the crop influences these variables itself via photosynthesis, respiration, 
and evapotranspiration. The greenhouse climate also depends on the external weather conditions. 
Apart from solar radiation, the most important external disturbances are outside air temperature, 
moisture content, and wind speed. Wind speed influences the heat exchange coefficient of the wall 
and cover and also affects the ventilation rate through openings in the cover.

In the Venlo design, the environmental conditions of the crop can be further manipulated by 
supplying heat and CO2. Heating is often also added to the parral greenhouses. Depending on 
the greenhouse layout, there can be many more control processes that influence the climate and 
the crop, such as shading, cooling, and supplementary lighting. Other control methods used by the 
grower are manipulations with the crop itself, like spacing, pruning, removing leaves, and harvest-
ing. These manipulations are not done in an automatic fashion.

Despite the differences between greenhouse nurseries, the essential behavior can be described by 
generic energy and mass balances. The accumulation of energy, mass, and biomass in greenhouse 

Roof
ventilator Solar radiation

Side ventilator

Insect
screen

CO2 valve

Mixing valve

Heat buffer tankBoiler

Solar radiation

Ventilator

FIGURE 1.1  Schematic examples of greenhouse layouts. Top: parral greenhouse. Bottom: Venlo-type 
greenhouse.
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FIGURE 1.2  Details of actuator structures. Top: roll-up side ventilator in a parral greenhouse. Bottom: win-
dow opening construction in a modern greenhouse. Photographs by G. van Straten.
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and crop and the physical flows between them are visualized in the scheme in of Figure 1.3 abstract 
form.

In Figure 1.3, the subscripts g, c, o, and e are used to denote the greenhouse compartment (g), the 
crop compartment (c), the environment outside the greenhouse (o), and the equipment or utilities that 
supply the resources (e), respectively. The shadowed rectangles denote the greenhouse and crop com-
partments that have storage capacity. The stored energies and masses in greenhouse and crop per unit 
projected greenhouse area are formally denoted here by the vectors Sg and Sc, respectively. The solid 
arrows denote flows of energy, water, or carbonaceous material. It is customary to express them per 
unit projected greenhouse area so that flows become fluxes,* denoted by the vector j. The subscripts 
and the arrow direction denote in which direction the fluxes are counted positive; for example, je_g 
represents fluxes of heat and CO2 toward the greenhouse from the resource utility equipment. Fluxes 
can be negative, for instance, in the case of withdrawal of energy by pad-and-fan cooling.

The masses and energies Sg and Sc depend on the size of the system and are therefore extensive 
variables. They can easily be coupled to intensive variables such as concentrations or temperatures. 
The intensive variables are indicated formally in the scheme by the vectors xg and xc for green-
house and crop, respectively. Although mass and energy balances are most easily set up in terms of 
extensive variables, it is often convenient to work with intensive variables, not only because they are 
more directly related to variables that are measured but also because the fluxes depend directly on 
these intensive variables. For instance, the flux of carbon dioxide from the greenhouse to the crop 
depends on the CO2 concentration as well as—depending on the model—on the leaf area index, an 
intensive variable that is in a rather complicated way related to the extensive variable crop biomass. 
Similarly, the heat exchanged by ventilation depends on the temperatures of the greenhouse air and 
the ambient temperature as well as on the latent heat difference determined by the humidity ratio, 
which is an intensive variable.

The dashed arrows represent by which factors the fluxes are influenced. They can therefore be 
seen as information flows. There are two types of influential factors, commonly called inputs: the 

*	The term “flux” is used here merely as shorthand for “flows per unit greenhouse projected area” and should be sharply 
distinguished from a flux through an associated contact area.
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FIGURE 1.3  Elementary energy and mass fluxes and influencing factors in greenhouse-crop systems.
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control variable u and the environmental external variable d. The presence of the dashed arrow (1) 
from the control variable u toward je_g indicates that these fluxes are subject to the control inputs. 
These are the opening of the heating valve and the valve for CO2 supply, for instance. However, the 
actual flux may also depend on the state of the greenhouse. The heat input flux, for instance, is not a 
unique function of the position of the heating valve but depends on the greenhouse temperature (2) 
and the direct radiation received by the heating pipes.

The flux between the greenhouse air and the environment jg_o consists of various components. 
Water and CO2 are exchanged via ventilation, and heat is exchanged via radiation, ventilation, and 
transport through the walls. The window opening is a control (3), but as the ventilation flux at a given 
window opening also depends on the wind speed, there is also a dashed arrow from the environment 
(4). Similarly, the radiation flux through screens, and the heat loss through thermal screens is con-
trolled not only by the opening of the screens but also by the radiation itself (4). Clearly, moisture, 
CO2, and heat exchanged depend on the concentrations of water vapor, CO2, and temperature (5).

The main fluxes related to the exchange between the greenhouse internal environment and the 
crop ( jg_c) are the CO2 uptake by photosynthesis, the CO2 release by various forms of respiration, 
and the release of water by evapotranspiration. They depend on the greenhouse states (6) as well as 
the crop states (7) and also, indirectly, on the environment, in casu the solar radiation (8). This is 
expressed in the scheme by dg, which can be viewed as a direct throughput; that is, dg is an instan-
taneous function of d. By screening or artificial lighting, dg can be manipulated and hence have 
a direct influence on the greenhouse-crop fluxes. Otherwise, these fluxes cannot be manipulated 
directly, except by measures not related to the greenhouse climate, such as watering and application 
of growth stimulating or suppressing means. As the crop is harvested, there is a flux of mass from 
the crop compartment to the environment ( jc_o), depending on the crop state itself (9). Also picking 
leaves, removing surplus buds, and so forth belong to this group. All of these are generally based 
on discrete actions. A dashed line marked “decisions” is used in the scheme to indicate these non-
automatic control influences (10). The resulting fluxes obviously depend on the state of the crop (9). 
The measures indicated as “decisions” are not in the scope of the greenhouse controller, but they do 
affect its operation because they influence the state of the crop. There is no fundamental reason why 
they cannot be included in the control, but in this book they are not considered further.

The previous description provides the basis for modeling of greenhouse and crops, which plays 
a central role in design and control of greenhouse cultivation. It should be noted that the control-
lable fluxes have constraints that are determined not only by the installed capacity but also by the 
environmental conditions and the system variables. The ventilation flow is an example because at 
maximum window opening the actual flow still depends on wind speed and greenhouse tempera-
ture. Similarly, the maximum heat flow from heating pipe to greenhouse is not fully defined by 
maximum valve opening but also depends on the temperature difference between boiler tempera-
ture and greenhouse air temperature. Hence, controllable fluxes have time-varying constraints, and 
in modeling one has to be prepared to cope with this additional complication.

1.4  Measurements and Instrumentation

An important component of modern greenhouses is the instrumentation. Most physical variables 
relevant in a greenhouse can be measured by automatic sensors. This holds for wet and dry bulb 
temperature, CO2 concentration, and relative humidity. The absolute moisture content can be com-
puted from these data. Inside radiation can also be measured, although it is somewhat less common. 
The most important disturbances can be measured with sensors as well, that is, outdoor tempera-
ture, outdoor CO2 concentration, outdoor relative humidity, wind speed, and diffuse and direct 
solar radiation. All these data are sampled data, that is, samples are taken and stored electronically 
at regular interval or, sometimes, only at times when something is changing. Also, in principle, 
the control inputs are known, although it must be said that these important data are not always 
recorded. Overall, the measurements provide quite a good input–output picture of the physical part 
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of the greenhouse-crop system. Sensor information about the state of the crop is less easy to obtain 
and is not standard in the current greenhouse industry, but there are some developments, such as 
continuous measurement of crop weight on measurement gullies, observations of crop evapotrans-
piration with lysimeters, and some ways of automatic measurement of photosynthesis, for example, 
by fluorescence.

An issue of considerable practical interest in installing sensors and using sensor information is 
that the spatial distribution within the greenhouse is usually not homogeneous. Developments in 
wireless sensor technology make it possible to deploy a large array of sensors, especially tempera-
ture sensors, which gradually allow to see ever increasing detail of the distribution and its dynam-
ics. The existence of spatial distributions is a factor to account for, but it does not preclude the use 
of optimal control. Therefore, in order not to complicate the treatment of control principles more 
than necessary, in this book we will pretend that the greenhouse is homogeneous, unless otherwise 
indicated.

1.5 D ecomposition, Fluxes, and Information Flows

Formally, mass and energy balances for the greenhouse-crop system have the following general 
form:

	
S j j j jg e_g o_g g_c g_g= + − +

	
(1.1)

	
S j j jc g_c c_o c_c= − +

	
(1.2)

The additional terms jg_g and jc_c have been introduced here to allow for exchange of mass and 
energy between various components of the state vector within a compartment: in the greenhouse, 
for instance, the conversion of vapor into condensed water in the greenhouse or the exchange of heat 
between greenhouse air and soil, and in the crop, for instance, the conversion from assimilates into 
structural matter.

It is clear from Equations 1.1 and 1.2 that only the term jg_c appears in both. It underlines what 
is already obvious from Figure 1.3, namely, that the exchange of energy and matter between green-
house and crop plays a central role. In practice, jg_c encompasses photosynthesis, respiration, and 
evapotranspiration.

As the fluxes depend on the intensive variables, such as temperature and concentration, rather 
than the extensive variables, it is more convenient to set up models of the system in terms of inten-
sive variables. The relation between energy and mass extensive quantities and intensive variables 
can be expressed formally as

	 S = Kx	 (1.3)

where matrix K stands for capacities, typically volume for concentrations, and heat capacity for 
temperature, expressed per unit greenhouse area. Provided that the number of differential equations 
in Equations 1.1 and 1.2 was sufficient to describe the system, the number of independent intensive 
variables for which a differential equation is required must be equal to the number of independent 
extensive variables. Hence, the matrix K is square. It has the principal capacities on the diagonal, 
but occasionally off-diagonal elements occur; for instance, the extensive variable latent heat is cou-
pled to the intensive variables temperature and moisture content. Written out, we have

	

S k x k x k x k xi i i in n ij j

j

n

= + + + =
=

∑1 1 2 2

1



	

(1.4)
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8	 Optimal Control of Greenhouse Cultivation

so that index ij links the ith extensive variable to the jth intensive variable and where most of kij,i ≠ 
j are zero.

In principle, the capacities may be functions of the intensive variables. An example is the tem-
perature dependency of density of the air. So, formally, we have

	




S x x= +K K 	 (1.5)

Let

	



k
k

x
xij

ij

m
m

m

= ∑ d

d
	

(1.6)

Then it can be seen that, overall, it is possible to write

	


S x= M 	 (1.7)

where M is a complicated capacity term that depends not only on the principal capacities K but also 
on the working point x and the sensitivities dkij/dxm appearing in Equation 1.6. Making the reason-
able assumption that the greenhouse capacities do not depend on the crop-intensive variables and 
vice versa, we may formally write

	
x j j j jg e_g o_g g_c g_g+ += −( )−Mg

1

	
(1.8)

	
x j j jc c g_c c_o c_c= − +( )−M 1

	
(1.9)

which together with constitutive relations that link the fluxes to the intensive variables yield a model 
expressed in intensive variables. Because of the dependencies of the expanded capacities M on the 
actual working point, these equations become nonlinear, even if the fluxes are linear. On the other 
hand, the dependencies of the capacities on the intensive variables are rather weak over the operat-
ing range encountered in greenhouses, and hence the contribution is generally small.

Equations 1.8 and 1.9 show that the central role of the evapotranspiration and the net crop pho-
tosynthesis is preserved when the equations are written as differential equations for the intensive 
variables of greenhouse and crop. In addition, they show that in steady state it suffices to equate the 
fluxes, and the complication resulting from state-dependent capacities vanishes. A steady state for 
the crop may seem less relevant, but in crops that continue to deliver fruits, such as tomato, there 
could be a steady state, and Equation 1.9 together with a policy to maintain the number of fruits 
constant then yields a harvest control law.

Writing out the flux terms using the information in Figure 1.3 gives

	
x j x u d j x u d j x x dg g e_g g o_g g g_c g c g, , , , , , (= ( ) + ( ) −−M 1 uu j x d u) , ( )g_g g g( ) + ( )( )

	
(1.10)

	
x j x x d u j x u j xc c g_c c g c_o c dec c_c c, , ( ) ( , ) (= ( ) − +−M 1

g ,, , ( )gx d ug( )
	

(1.11)

or, more concisely, by further aggregating into general nonlinear vector-valued rate of change func-
tions fg and fc,
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x f x x u d u dg g g c g( , , , ( ), )=

	 (1.12)

	
x f x x d u uc c g c( , , ( ), )= g dec 	

(1.13)

In this way, it becomes clear that apart from discrete handling on the crop, the influence of the 
controls on the crop is indirect via the greenhouse states xg and the direct throughput dg(u). We may 
therefore see the greenhouse as the instrument to control the crop.

The main reason to represent the greenhouse-crop system in the form of Equations 1.1 and 1.2 or 
Equations 1.8 and 1.9 is that it clearly brings out the central role of the greenhouse-crop interactive 
processes photosynthesis, respiration, and transpiration. In a slightly different form, this is repre-
sented again in Figure 1.4. The difference from Figure 1.3 is that jg_c now is no longer treated as a 
physical flow but rather as an information flow that enters both the greenhouse and the crop compart-
ment. A distinctive feature of these elementary crop processes is that they are fast as compared with 
crop growth and development. In fact, they are usually assumed to be instantaneous. We will, when 
convenient, denote photosynthesis, respiration, and evapotranspiration as the “fast crop processes.”

If greenhouse and crop are modeled as two compartments, with the fast processes in between, 
there are two ways to draw the subsystem boundaries in Figure 1.4, as shown in Figure 1.5. 

The most natural way is to take photosynthesis and transpiration as part of the crop. In that case, 
the greenhouse states and the direct throughput component of the external inputs (i.e., photosyn-
thetic active radiation) are the inputs for the crop model. The (net) CO2 and the water vapor fluxes 
appear as an output, which are taken by the greenhouse model as (disturbance) input. The other way 
is to incorporate photosynthesis and transpiration as part of the greenhouse model. Then, the green-
house model has the crop state as (disturbance) input, in addition to the control u and the external 
input d. The fast process fluxes are an output, which are taken by the crop model as inputs. At first 
sight, this may not seem to be a very logical choice, but in approaches that concentrate on the control 
of the greenhouse, without considering the crop explicitly, it is necessary to incorporate (simple) 
models for CO2 uptake and evapotranspiration, and this is provided by this scheme. Moreover, fast 
processes are kept in the fast compartment, which will turn out to be an advantage in later time 
scale decompositions.

Greenhouse
u

d

dg

xg

Photosynthesis
evapotranspiration

xc

jg_c

Crop
Decisions

FIGURE 1.4  Central role of photosynthesis and evapotranspiration.
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10	 Optimal Control of Greenhouse Cultivation

1.6  General State–Space Representation

In systems theory terms, the dynamics of the combined greenhouse-crop system as briefly described 
earlier can be represented by the following general state–space description:

	

x f x u d

y g x u d

x

( ) ( ( ), ( ), ( ))

( ) ( ( ), ( ), ( ))

t t t t

t t t t

=

=

∈ℜℜ ∈ℜ ∈ℜ ∈ℜn n n nx u d y, , ,u d y 	

(1.14)

where x(t) is an nx-dimensional vector of system states (e.g., air temperature, air moisture content, 
air CO2 concentration, assimilate carbon content of the crop, structural carbon content of the crop, 
fruit weight), u(t) is an nu-dimensional vector of control inputs (e.g., heat input or mixing valve posi-
tion, window opening, CO2 supply rate, screen position), d(t) is an nd-dimensional vector of external 
disturbances (e.g., solar radiation, outside air temperature, outside CO2 concentration, wind speed), 
and y(t) is an ny-dimensional vector of outputs (e.g., air temperature, relative humidity, crop dry and 
fresh weight). The physical model in Equations 1.1 and 1.2 usually provides us with a natural choice 

d

u
Greenhouse

dg

xg

jg_c

Photosynthesis
evapotrans-

piration xc
Crop

Decisions

DecisionsCrop

jg_c

xc

Photosynthesis
evapotrans-

pirationxg

dg

d

u
Greenhouse

FIGURE 1.5  Two ways of assigning photosynthesis and transpiration. Top: to crop model. Bottom: to green-
house model.
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of suitable state variables, but without giving details at this stage, it should be noted that there is 
not a single unique choice for the states and hence for the variables chosen in Equations 1.8 and 1.9. 
The exact specification is required in each particular case. The functions f and g are vector-valued 
functions of dimensions nx and ny, respectively, where f specifies the rate of change of the states and 
g how the output variables of interest depend on the states and the inputs.

The input–output information flow in a greenhouse-crop system can be represented schematically 
as shown in Figure 1.6. Also, the measured outputs are indicated formally. The vector yg

obs is used 
to indicate the observed measurements of the greenhouse, obtained from instruments. Similarly, the 
observations on the crop are indicated by yc

obs. There may also be measurements on the exchange 
processes j, for instance, on photosynthesis. These can be taken as part of the vector yg

obs or yc
obs, 

whatever is most convenient in the spirit of Figure 1.5. If the schedule of Figure 1.5 is used, measure
ments of CO2 assimilation, photosynthesis, and crop transpiration are components of yg

obs, thus col-
lecting all measurements that can be done in an automatic fashion. Most observations on the crop 
are made visually by the grower or by measuring the weight of pruned leaves and harvested product. 
These are not automated, which is the reason to show them as a dashed line in Figure 1.6.

In the design of controller solutions, the view on inputs and outputs is very determining for the 
chosen solution. This will be clear from the discussion on hierarchical control below. The issue is 
elaborated further in Chapter 5.

1.7 H ierarchical Computerized Control

The control of the greenhouse-crop system by modern computerized controllers has a hierarchical 
structure as depicted in Figure 1.7. 

In Figure 1.7, there are three major entities. At the top is the actual physical greenhouse-crop 
system. As explained before, it experiences the instantaneous influence of the weather, which in 
control terms is an uncontrollable external input signal. The actual values at time t are indicated by 
d(t). The position of the actuators, for example window openings and mixing valves, is the control 
input. The instantaneous value at any time is indicated by u(t). The observations obtained from the 
sensors are, as before, yg

obs and those from the crop yc
obs. These output variables are manifest to the 

climate controller as (sampled data) inputs. 
The state variables that appear when the greenhouse-crop system is modeled using physical 

principles are not manifest to the climate control computer. Only the observed outputs are available. 
Meaningful and operational interpretations of the relation between the states and the outputs can 
only be given if we start to model the system, but for the hierarchical scheme here, this is not neces-
sary. This is very much in line with practice, where a large proportion of climate computers work 

u
Greenhouse

d

ygobs

Crop
Decisions

ycobs

FIGURE 1.6  Greenhouse-crop I/O information flow.
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12	 Optimal Control of Greenhouse Cultivation

without explicit models for greenhouse and crop. We will later see that if we want to be optimal, 
modeling of the system will become necessary.

The second major component of the overall system is the climate computer. We use this term 
here for any kind of automatic controller. In principle, within the climate computer, there are two 
levels: an operational level that performs the actual control and a strategic level that serves as a 
kind of supervisor. The major characteristic of the operational part is that it takes observations on 
the greenhouse physics, and possibly the crop, and returns control variables in the form of actuator 
commands. This system acts on the time scale of minutes. The fact that there are sometimes distrib-
uted local controllers, for instance, a controller that operates the windows to the desired position, is 
not important for the current discussion and is ignored at this stage. The operational control may or 
may not use actual and forecasted values of the weather. A sequence of future values is indicated 
in the scheme by curly brackets. In fact, the notation {d(t)} is equivalent to d(t), t0 ≤ t ≤ tf, where t0 
represents the current time and tf the final time.

The operational controller receives “supervisory” information from the tactical level. The task of 
the supervisor is to translate the grower information on the tactical level in some way to information 
that can be used on the operational level. The kind of information exchange between these two var-
ies from system to system and will be the main theme of the discussions in later chapters on control. 
On the tactical level, long-term weather expectations may or may not be used. 

At the basis is the grower. The grower observes the crop and decides on corrective actions if he 
feels the need for it. These decisions are based on external information, such as market prices, blue
prints, and his own experience. The grower interacts with the greenhouse climate computer via 
settings. In a classical greenhouse climate controller, these are upper and lower bounds of day and 
night temperatures, upper bounds on relative humidity, window opening enhancement at high radia-
tion, and many more. This can easily amount to several hundreds of settings.

{ }( )td
nom

)(td

)(tu )(tyobs
g

{ })(td

)(tyobs
c

Actual
weather

Expected
weather

Nominal
weather

Actuator commands

Greenhouse Crop

Greenhouse – Crop System

Sensor data

Controller

Supervisor

Operational settings

External information

Grower

Climate computer

Crop observations

FIGURE 1.7  Hierarchical framework for greenhouse cultivation control.
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Hence, computerized control is an intrinsic part of present-day modern greenhouses. The func-
tions of a current hierarchical climate computer can be summarized as follows:

	 (1)	It takes care of realizing a suitable protected environment despite fluctuations of external 
weather (controller function, operational level on scale of minutes).

	 (2)	It acts as a program memory and supervisory layer, which can be operated by the grower as 
a tool to steer his cultivation (supervisory function, tactical level on longer time scales).

1.8 C urrent Status of Computerized Control

The controller algorithms that can be found in current climate computers often have been designed 
in a heuristic way, starting from switching rules to decide about heating and ventilation, and supple-
mented with single loop proportional controllers. Temperature control, humidity control, and car-
bon dioxide control interact in a way that is not constant but is dependent on whether the system is 
in heating or cooling mode. Moreover, a set of decision rules is needed to resolve conflicts between 
the temperature and the humidity controller because the ventilation actuators serve to release sur-
plus heat as well as surplus moisture. To leave room for the controllers, usually there is an opera-
tion band, which can be defined by the grower. On top of this, automatic adaptations are made to 
allow higher temperatures when the solar radiation is higher. The grower can adjust the settings and 
desired trajectories in accordance with his observations on the status of the crop based on his expe-
rience and skill. Also, he decides on risks of condensation of moisture on fruits or on overheating of 
plants by setting constraints to humidity or by operating a fog system. Finally, the main algorithm 
can be overruled by safety considerations, for example, in the case of rain or stormy weather.

Although highly successful, the computer systems in use today leave much to be improved. First, 
from the point of view of low-level controller performance, it is unlikely that desirable character-
istics, such as overshoot, rise time, suppression of oscillations, and offset, can be handled in a sys-
tematic and insightful way in the heuristic rule-based assembly of separate loops found in today’s 
controller programs. Second, the computer’s function as a memory for programmable trajectories 
introduces a very large number of user adjustable settings to define them. Modifications in trajec-
tory definitions have a definite effect on the energy and other resources consumption as well as on 
the growth and development of the crop, but the exact effect is unknown to the grower and is only 
inferred from experience. Third, despite current energy management overlays, there is little infor-
mation about the economics of the operation and about the grower-accessible factors that determine 
the economics. If a grower is making changes in settings, the consequences for the process and its 
economy are essentially unknown.

In the scientific community, several efforts have been made to improve this situation. It is also the 
main motivation for writing this book. In principle, the best operation strategy is achieved by cal-
culating control actions on the basis of optimization of an explicitly formulated and well-conceived 
goal function that combines expected benefits, costs, and risks. Hence, the problem discussed and 
solved in this book is as follows:

Given the actual external input variables and expectations about them in the near future and given the 
currently observed output variables of the greenhouse, how can the control inputs be chosen such that 
over a specified cultivation period an explicitly formulated benefit function is maximized. 

Obviously, instead of maximizing a benefit function, a cost function can be minimized. The goal 
function, be it benefit or cost, is free to be formulated by the ultimate user and can be anything that 
the grower wishes to achieve. This will be elaborated in great detail in the chapters to follow. Also, 
a mathematical formulation of the problem is postponed to later chapters. The interested reader who 
cannot wait may wish to jump to the introductory sections of Chapter 5. What is important here is 
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14	 Optimal Control of Greenhouse Cultivation

that we adopt the idea of optimality as the leading principle for providing control solutions to the 
cultivation as a whole, not just for the control of greenhouse climate. 

1.9 H ow Is This Book Organized?

In this chapter, we have briefly defined greenhouse cultivation and outlined the problem. As 
we focus  on finding an optimal solution, we start in Chapter 2 with an appetizer example. An 
extremely simplified problem is used to illustrate the basic principles of open-loop optimal control. 
In Chapter 3, the optimal control methodology is worked out in somewhat larger detail. We choose 
to first discuss the open-loop problem arising from the assumption that the models are perfect and 
that all external variables are fully known in advance. This part is relevant as it elucidates some 
properties of optimal control that are relevant in a true feedback application. The latter is the topic 
of Chapter 4, where the loop is closed to counteract the effect of uncertainties, in model behavior 
as well as in future disturbance inputs. The main line of the methodology worked out in this book 
is to first solve, offline, a dynamic optimization problem on the scale of a full season, using smooth 
nominal external weather, and next to solve online a model-predictive optimal control problem to 
counteract uncertainties in the model and to exploit the possibilities offered by the actual weather. 
Unlike many similar approaches, a distinctive characteristic is that we use an economic criterion 
on both levels. The target is to maximize the profit to the grower. Another distinctive characteristic 
is the way the offline seasonal problem is connected to the online control problem. It will turn out 
that the costates of the slow crop variables are serving as the linking pin, which is quite different 
from the usual setpoint control. Chapter 5 summarizes the optimal control framework as outlined 
in Chapters 2–4 and sets out to see how historical developments fit into this framework on the basis 
of an extensive review of the relevant literature. 

The series of chapters that follow are particular applications that underline the approach and 
discuss a set of issues that need to be solved before optimal control can be applied in practice. As 
models play a crucial role, the first part of each chapter is devoted to modeling the most important 
physical and biological phenomena in a form that is suitable for use in (optimal) control. The lat-
ter addition is important because most crop models described in the literature are not intended for 
control and are therefore often not in a suitable form. Our purpose is to present simple yet relevant 
models, and gradually a generic pattern can be recognized. Having defined the models, in each 
chapter there is next the definition of the respective goal functions. Finally, the problem is solved, 
often in open loop as well as, ultimately, in closed loop. Sample cases are presented on a single 
harvest crop (lettuce (Chapter 6)), a continuous harvest crop (tomato (Chapter 7)), and an elaborate 
modern greenhouse (the solar greenhouse (Chapter 8)). Each chapter discusses at some length a 
number of issues encountered when implementing optimal control, offers solutions, and describes 
the results in some detail. In all chapters, the main theme of solving first an offline seasonal problem 
and connecting it to the online control via the costates is recurring.

Finally, in Chapter 9, on retrospect, an overview is given of the developments that can be expected 
in the greenhouse industry and its consequences for control. The need for advanced controllers is 
expected to grow. A discussion is devoted to potential showstoppers for the actual application of 
optimal control in practice and what can be done about it. Scientific and technological challenges 
are summarized. This final chapter is intended as a stimulus, incentive, and source of inspiration to 
scientists and developers to bring the ultimate goal of optimality in greenhouse cultivation control 
closer worldwide.

Reference

Hanan, J.J. 1998. Greenhouses—Advanced Technology for Protected Horticulture. Boca Raton: CRC Press.
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2 Introduction to 
Optimal Control of 
Greenhouse Climate

2.1 I ntroduction and Motivation

The advantages of using optimal instead of conventional greenhouse climate control can be sum-
marized as follows. An optimal control approach to greenhouse climate control fully exploits 
scientific quantitative knowledge concerning the greenhouse, the greenhouse equipment, and the 
crop. These are all captured in a mathematical dynamic model. Furthermore the goals of a grower, 
which usually come down to maximizing profit, are also stated quantitatively and explicitly in terms 
of a mathematical cost function that is maximized. This cost function is based on auction prices 
obtained for the crop as well as the costs associated with greenhouse climate management, such as 
heating costs. The latter costs are often underestimated by growers that focus on the welfare of the 
crop. Optimal control reveals that crop welfare may be retained against less operating costs such 
as heating. Sometimes a slight loss of crop quality may save a lot of operating costs leading also to 
higher profits. These outcomes are partly due to the fact that the optimal controller cleverly exploits 
weather predictions and measurements. The tuning of an optimal greenhouse control system is per-
formed by changing something in the order of ten settings that all have a clear meaning and inter-
pretation. Conventional greenhouse climate controllers usually have several hundreds of settings 
the meaning of which is usually not very transparent. Growers often use only a few of these settings. 
In general, however, no two growers use the same settings to control their greenhouses.

The control of greenhouse climate is characterized by the fact that several processes, such as 
crop growth and greenhouse climate change, occur on different time scales. The development of the 
crop occurs on a time scale of weeks or months, whereas most of the greenhouse climate changes 
on a daily basis. Both greenhouse climate and crop growth are influenced by light, which may 
change on a time scale of seconds or minutes, especially on cloudy days, which occur quite often 
in The Netherlands. The different time scales complicate a control system design. The control sys-
tem becomes computationally very expensive as well as inaccurate. In overcoming these problems, 
short- and long-term objectives have to be separated and assessed against one another. Optimal 
control enables a quantitative approach to this problem that is again very transparent and based on 
quantitative scientific knowledge that relates to these different time scales.

What is the meaning of the word optimal in optimal control? It means that given the mathemati-
cal model of the system and given the cost function, an optimal controller computes the best control, 
i.e., the control that maximizes the cost function. In practice the optimal controller will not be truly 
optimal because the mathematical model will not be an exact description of the system but only an 
approximation. Also the cost function may not perfectly describe the actual goals. So in practice 
the optimality depends critically on the accuracy of the mathematical model and the cost function. 
They should therefore be selected with care.
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2.2 A  Simple Illustrative Example

The optimal control of any system, in our case a greenhouse, is based on two things. First, it is 
based on a mathematical dynamic model of the system. In our case the system is the greenhouse, 
including its equipment, the crop, and also the outside weather. Second, it is based on a math-
ematical cost function that is either maximized or minimized. In our case the cost function is profit, 
which must be maximized. The profit equals the money obtained from selling the crops minus the 
costs required for maintaining a favorable greenhouse climate.

The following example is deliberately kept very simple, and therefore does not meet the require-
ments of accuracy stated at the end of the last section. The illustrative example is only meant to 
illustrate the main ideas and problems associated with optimal greenhouse climate control. 

Example 1

Consider the following mathematical dynamic model of the greenhouse, and the crop:

	
W c ITW= 1 ,	 (2.1)

	
T c T T c H= −( ) +2 3o ,

	
(2.2)

where,
W (kg m–2) denotes dry weight of the crop
I (W m–2) denotes light intensity of the light entering the greenhouse
T (°C) denotes the greenhouse air temperature
To (°C) denotes the outside temperature
H (W m–2) denotes the heat input from the greenhouse heating system
c1, c2, c3 are constants

Equation 2.1 states that the increase of crop weight is positively proportional to both light and 
temperature. Equation 2.2 is a simple description of how the greenhouse temperature T changes 
due to the outside temperature To and the heat input H obtained from the greenhouse heating 
system. It actually is a very simple heat balance equation. The information flow diagram of the 
system is shown in Figure 2.1. The constant c3 represents the heat efficiency of the heating system 
in the greenhouse.

o

HarvestH

To

Temperature  
T

Biomass  
W

I

FIGURE 2.1  Information flow diagram.
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Note that in this simple model there is no heat contribution from the light. A close inspection 
of the equations reveals that biomass increase is stimulated by elevated temperatures, provided 
there is light. On the other hand, increasing the temperature costs energy, so there will be a trade 
off. If there is no light, heating will make no sense.

The cost function J(€ m–2) that is meant to represent profit reads as follows:

	

J c W t c H t
t

t

= ( ) − ∫5 4

0

f d
f

.

	

(2.3)

The first term c5W(tf) on the right in Equation 2.3 represents the money obtained from selling the 
harvested crops at the end of the growing period that starts at time t0 (h) and ends at time tf (h). As 
a result the constant c5 represents the auction price for one unit of dry weight W(tf). The integral 
on the right represents the costs of heating the greenhouse. In this simple example heating costs 
with are the only costs associated with greenhouse climate control. As a result the constant c4 
represents the costs associated with one unit of heating H. In addition to Equations 2.1 through 
2.3 to obtain an optimal control problem the initial conditions of the system, i.e., W(t0) and T(t0), 
have to be specified. These may be considered part of the systems model.

2.3  General Formulation of Optimal Control Problems

To analyze and solve optimal control problems, they are represented in a general form called the 
state–space form. This form distinguishes between fundamentally different types of variables and 
enables the use of standard software to solve the optimal control problem. In this section the opti-
mal control Example 1 (which covers Equations 2.1 through 2.3) including the initial conditions 
W(t0) and T(t0) will be represented in state–space form. To do this we need to first recognize the 
state variables of the system described by Equations 2.1 and 2.2. State variables are variables of 
which time derivatives appear in the system Equations 2.1 and 2.2, which means W and T are state 
variables. Time derivatives of state variables are also state variables up to (and thus not including) 
the highest order time derivative that appears in the equations. Since the highest order time deriva-
tive of both W and T in Equations 2.1 and 2.2 is the first-time derivative, W and T are the only state 
variables. State variables are always denoted by the symbol x. Therefore, we obtain

	 x1 = W, x2 = T.	 (2.4)

The other variables in Equations 2.1 and 2.2, except for those that are constant, are called input vari-
ables or inputs of the system. Two types of inputs are distinguished: control inputs that can be manipu-
lated versus external inputs that are determined by external conditions. Control inputs are represented 
by the symbol u. Therefore,

	 u1 = H,	 (2.5)

because the heating can be manipulated. External inputs are represented by the symbol d. 
Therefore,

	 d1 = I, d2 = To,	 (2.6)

since both the light I and the outside temperature To are not constant and cannot be manipulated but 
are determined by external conditions. Now the remaining variables are constants. These constants 
are called the parameters of the system denoted by the symbol p. Therefore, we obtain

	 p1 = c1,  p2 = c2,  p3 = c3.	 (2.7)
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Using the new state–space notations (2.4 through 2.7), the systems model (2.1 and 2.2) can be 
represented by,

	
x p d x1 1 1 2= ,	 (2.8)

	
x p d x p u2 2 2 2 3 1= −( ) + .

	
(2.9)

In the optimal control literature, it is common practice to employ vector notation. Introducing the 
vectors
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(2.10)

Equations 2.8 and 2.9 can be rewritten as

	

x =
− +
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(2.11)

The right-hand side of Equation 2.11 is called a vector function because it is a vector that is a 
function of other variables that are collected in the vectors x, u, d, and p. Let us denote this vector 
function by f(x, u, d, p). Then Equation 2.11 reads

	
x f x u d p= ( ), , , ,

	
(2.12)

where

	

f x u d p( , , , )
( )

=
− +













p d x x

p d x p u
1 1 2 1

2 2 2 3 1

.

	

(2.13)

Since the vectors x, u, p, d in Equation 2.12 can have arbitrary dimensions, and since the vector 
function f(x, u, d, p) can be selected arbitrarily, Equation 2.12 is a general state–space representa-
tion of a system. By specifying the vector function f(x, u, d, p), we specify the system. The general 
state–space system representation in Equation 2.12 is encountered in most of the optimal control 
and systems literature. The initial conditions W(t0) and T(t0) of the system, 2.1 and 2.2, in state–
space form are represented by,
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(2.14)

In summary, a general and complete system representation in state–space form of any system is 
given by Equation 2.12 with initial conditions x(t0). By specifying the vector function f(x, u, d, p) 
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and the vector x(t0), you specify the system and its initial conditions, respectively. Given the inputs 
u(t), d(t), t0 ≤ t ≤ tf to the system, Equation 2.12 together with its associated initial condition x(t0) 
determine the system behavior x(t), t0 ≤ t ≤ tf, i.e., the solution to Equation 2.12. Although analytical 
solutions of Equation 2.12 cannot be obtained in general, numerical solutions can be obtained by 
means of numerical integration, for which many software tools are available. Numerical integration 
tools are also needed to solve general optimal control problems.

The dimensions of the vectors x, u, d, p are denoted by nx, nu, nd, np respectively. From Equation 
2.12 observe that the dimension of the vector function f(x, u, d, p), which will often be referred to 
as just f, equals nx. The dimension nx of the state vector x is also called the dimension of the system.

The notation of the cost function follows in a straightforward manner from the state–space 
notation of the system. However, in optimal control it is usually assumed that the cost function is 
minimized instead of maximized. By reversing the sign of the cost function, maximization can be 
replaced with minimization. With this in mind the cost function (2.3) that has to be maximized now 
turns into the following cost function that is minimized:

	

J p x t p u t
t

t

= − ( ) + ∫5 1 4 1

0

f d
f

,

	

(2.15)

where

	 p4 = c4,  p5 = c5.	 (2.16)

To express that the cost function depends on the control input trajectory u(t), t0 ≤ t ≤ tf , the cost 
function J is often written as J(u(t)). Mathematically, J(u(t)) is a cost functional since it is a function 
of another function (mathematically a function is a function of a variable). Introducing

	 Φ(x(tf)) = −p5x1(tf)	 (2.17)

and

	 L(x, u, d, p) = p4u1,	 (2.18)

the cost function (2.15) reads

	

J t t L d
t

t

( ( )) ( , , , ) t
f

u x x u d p= ( )( ) + ∫Φ f

0

.

	

(2.19)

Equation 2.19 is a general representation of a cost function because Φ(x(tf)) can be an arbitrary sca-
lar function, which also applies to L(x, u, d, p). Because Φ(x(tf)) depends solely on the terminal state 
x(tf) of the system, it is called the terminal costs. In our example these are the negative costs (benefit) 
− p5x1(tf) of selling the crop after harvesting it at the terminal time tf. Because L(x, u, d, p) represents 
costs that occur while “running” from the initial time t0 to the final time tf, these are called the run-
ning costs. In our example these are the costs p4u1 associated with greenhouse heating.

To summarize, a general optimal control problem reads as follows. Given the system

	
x f x u d p= ( , , , ),	 (2.20)
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with initial conditions,

	 x(t0) = x0,	 (2.21)

and given the external input trajectory,

	 d(t), t0 ≤ t ≤ tf,	 (2.22)

find the control input trajectory,

	 u(t), t0 ≤ t ≤ tf,	 (2.23)

that minimizes the functional cost,

	

J t t L t
t

t

( ( )) ( , , , )df

f

u x x u d p= ( )( ) + ∫Φ
0

.

	

(2.24)

To specify completely an optimal control problem, one has to provide the following:

	 1.	Systems model f(x, u, d, p) with the associated parameter values
	 2.	 Initial time t0 and terminal time tf

	 3.	 Initial conditions x0 of the system
	 4.	External input trajectory d(t), t0 ≤ t ≤ tf

	 5.	Running costs L(x, u, d, p)
	 6.	Terminal costs Φ(x(tf))

Example 2

For the simple illustrative optimal control Example 1 described here and in the previous section, 
the specifications mentioned above are
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(2.25)

(2)	 t0 = 0, tf = 48,	 (2.26)

(3)
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(2.27)

(4)

	

d( )
( )

( )

max( , sin( / .
t

d t

d t

t t
=













=
• −1

2

0 800 4 0π f 665

15 10 4 0 65 0

π

π π

))

sin( / . )
,

+ • −













≤ ≤
t t

t t t
f

f,

	

(2.28)
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(5)	 L(x, u, d, p) = p4u1,	 (2.29)

(6)	 Φ(x(tf)) = −p5x1.	 (2.30)

2.4  Benefits and Difficulties Associated with Optimal Control

By means of solutions to the simple illustrative optimal control example presented in the previous 
section, benefits and difficulties associated with the optimal control of greenhouse climate will be 
demonstrated. Solutions are obtained from optimal control algorithms that will be briefly discussed 
in the next section. For the parameter values specified in the previous section, Figure 2.2 represents 
the solution to the optimal greenhouse climate control problem. Several variables in these figures 
have been scaled to obtain a clear visualization.

The optimal control input H(t) = u1(t), 0 ≤ t ≤ 48 is a so called bang-bang control because the heat 
input is either maximal or minimal. From Figure 2.2 it then follows that the maximum value of the 
heat input is assumed to be 100 W m–2, whereas the minimum is obviously 0 W m–2. The associated 
minimal costs are computed to be –3.30 € m–2 so the profit amounts to 3.30 € m–2. The fact that the 
maximum profit and the associated optimal heat input can be calculated even in advance is a very 
attractive property of optimal control in comparison with conventional greenhouse climate control. 
If the maximum or minimum value of the heat input H(t) = u1(t), 0 ≤ t ≤ 48 changes, so does the 
optimal heat input, and the associated minimal costs. This reveals that the maximum and minimum 
values of the heat input u1 must be considered part of the optimal control problem formulation. 
General bounds on control inputs are described by,

	 u u u i ni i i u
min max , , , . . . ,≤ ≤ = 1 2 ,	 (2.31)

where ui
max and ui

min represent known upper and lower bounds on the associated control input ui, 
respectively.

As to the optimal heat input from Figure 2.2, observe that maximum heating is applied roughly 
when there is light, which is to be expected from inspection of Equation 2.1. Also from Figure 2.2, 
observe that at very low levels of light it is not beneficial to switch the heater on. It can be deduced 
from optimal control theory that for our illustrative optimal control problem the optimal heating will 
always be of the bang-bang type because both f(x, u, d, p) and L(x, u, d, p) are linear functions of u.

Given any greenhouse systems model and any associated cost function, optimal control is able 
to compute the optimal control and associated maximum profit. Therefore, we can change, for 
instance, the parameters of the problem such as the heating costs p4 and the auction price p5, and see 
how this affects our optimal control and maximum profit. This information is highly interesting and 
relevant to both growers and legislators who, for instance, want to reduce energy consumption. As 
an example, Table 2.1 lists the minimum costs J(u(t)) against several parameter values of the heating 
costs p4 and the auction price p5, where all the other optimal control problem parameters and data 
are as specified before.

As expected, with increasing heating costs, the profit −J(u(t)) decreases and with an increasing 
auction price, and the profit −J(u(t)) increases. The interesting thing is that we can tell exactly how 
much and that for every case we can compute the optimal heat input.

To compute the optimal control u(t), t0 ≤ t ≤ tf, we have to specify the external inputs d(t) over 
the time horizon t0 ≤ t ≤ tf, of interest because the external inputs influence the system behavior. In 
the case of optimal greenhouse climate control, according to Equation 2.6 the external inputs d are 
weather conditions such as outside temperature and light (solar radiation). Depending on the time 
horizon of interest, these are difficult to predict accurately. Like the mathematical model and the 
cost function, for the control to be approximately optimal, the predictions of the external inputs 
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d(t), t0 ≤ t ≤ tf have to be accurate. The optimal control of greenhouse climate therefore uses weather 
predictions to specify d(t), t0 ≤ t ≤ tf. These predictions will however not always be accurate. This 
degrades the optimality of the control.

The processes involved in greenhouse climate control occur on very different time scales. 
Although in our simple example a horizon of two days was considered, in actual practice crops are 
grown over a period of months. Whereas crop growth occurs on a large time scale of months, the 
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FIGURE 2.2  (a) Optimal heating, associated temperatures, and light. (b) Optimal system behavior and run-
ning costs.
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greenhouse climate changes on a daily basis and light may even change on a time scale of minutes 
or even seconds!

The facts mentioned above cause the following problems. A preferably accurate weather predic-
tion over months is required whereas the computation of optimal controls over this period should be 
performed taking time steps on the smallest time scale of minutes or seconds. As to predicting the 
weather over a period of months, we can usually do no better than taking averaged weather recorded 
over several identical periods in previous years. Over a shorter period of, say, one or two days, we 
can usually come up with much better weather predictions. Computing optimal controls over a 
period of months taking time steps at the small time scale level of seconds or minutes is compu
tationally very expensive. Moreover, due to the large differences in time scales these computations 
may become inaccurate.

Research on optimal greenhouse climate control performed over the last two decades has sug-
gested the following solutions to these problems. The optimal greenhouse climate control prob-
lem should be decomposed into separate optimal control problems on two or three different time 
scales. The solutions of these separate optimal control problems can be obtained relatively easily 
and quickly. Together these solutions produce an optimal control that takes into account all relevant 
time scales and uses accurate weather predictions on a time scale of one or two days, and averaged 
weather on the long run. This seems to be the best approach to preserve optimality as much as pos-
sible while obtaining optimal controllers that can be implemented in practice because they are not 
too expensive computationally.

We end this section by illustrating that ordinary approaches to deal with the problem of optimal 
control for systems having different time scales lead to a significant loss of optimality in the case 
of optimal greenhouse climate control. This loss is very much prevented by the approach described 
above. The general approach is to presume the systems differential equations to be in equilibrium 
(static) on the small time scale(s). Equation 2.1 describes the dry weight accumulation of the crop 
that occurs on a much larger time scale than the greenhouse temperature changes described by 
Equation 2.2. Presuming Equation 2.2 to be in equilibrium we obtain,

	 0 = c2(To − T) + c3H,	 (2.32)

which implies,

	
T T

c

c
H= +o

3

2

.
	

(2.33)

TABLE 2.1
Minimum Costs as a Function of Various Parameters

J(u(t)) p4 J(u(t)) p5

–3.5126e+000  
–3.4669e+000  
–3.4251e+000  
–3.3823e+000  
–3.3400e+000  
–3.3002e+000  
–3.2625e+000  
–3.2251e+000  
–3.1890e+000  
–3.1531e+000  
–3.1194e+000  

2.2727e–004
2.5000e–004
2.7273e–004
2.9545e–004
3.1818e–004
3.4091e–004
3.6364e–004
3.8636e–004
4.0909e–004
4.3182e–004
4.5455e–004

–9.3070e–001  
–1.4239e+000  
–2.0255e+000  
–2.6562e+000  
–3.3000e+000  
–3.9524e+000  
–4.6057e+000  
–5.2672e+000  
–5.9295e+000  

4.5455e+001
6.8182e+001
9.0909e+001
1.1364e+002
1.3636e+002
1.5909e+002
1.8182e+002
2.0455e+002
2.2727e+002
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Substitution of Equation 2.33 into Equation 2.1 gives

	

W c L T
c

c
H= +





1

3

2
o .

	
(2.34)

Equation 2.34 is used to replace the state–space Equations 2.1 and 2.2 and is meant to approxi-
mately describe the dry weight accumulation on the large time scale of months presuming that on 
the small time scale of days or minutes the system is approximately in equilibrium as described 
by Equation 2.32. In this way a new optimal control problem is obtained that can be solved using 
numerical integration taking time steps at the level of the large time scale of months to prevent 
excessive computation. Taking time steps on the large time scale level of months, however, pre-
sumes that the light L and the outside temperature To vary hardly on the level of the small time 
scale of days or minutes. This is clearly not so and that is the reason why in the case of greenhouse 
climate control this approach results in a serious loss of optimality. To demonstrate this we compute 
the optimal control for the system 2.34 taking the average value of L, and To over 0 ≤ t ≤ 48 to apply 
at every time 0 ≤ t ≤ 48. It turns out that the optimal heating in this case is everywhere equal to zero. 
The associated minimum costs are computed to be –1.88 € m–2. Next we apply this optimal control 
to the “real system” described by Equations 2.1 and 2.2 with the real light L = d1 and outside tem-
perature To = d2 patterns given by Equation 2.28. Then the costs (Equation 2.3) are computed to be 
–2.79 € m–2, whereas the optimal costs computed earlier was –3.30 € m–2.

Computing the optimal costs using Equation 2.34 and average values for light and outside tem-
perature leads to a loss of profit of 43%. Applying the optimal control computed in this manner to 
the real system with the real external light and temperature conditions still leads to a loss of profit 
of 15.5%.
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3 Open-Loop Optimal Control

3.1 I ntroduction

When exactly is a control called optimal? What exactly is needed to compute optimal controls? 
To answer these questions, a summary of optimal control theory is presented. Along with it, by 
a simple optimal greenhouse control example, important interpretations are provided. Next, opti-
mal control algorithms are described and classified. These algorithms generate so-called open-loop 
optimal controls. The methodology to obtain these controls in open loop is also known as dynamic 
optimization. In practice, the control of greenhouses also requires feedback. Feedback control is the 
topic of the next chapter.

3.2 O ptimal Control Theory

There are several excellent and classic books on the theory of optimal control (e.g., Bryson and Ho, 
1969; Bryson, 1999; Lewis, 1986; Stengel, 1994). Here, we summarize the major line of thought to 
serve as a basis for understanding the main theme developed in this book.

Recall the general optimal control problem described by Equations 3.1 through 3.5, for conve-
nience, repeated here.

Given the system,

	
x f x u d p= ( , , , ),	 (3.1)

with initial conditions,

	 x(t0) = x0,	 (3.2)

and given the external input trajectory,

	 d(t), t0 ≤ t ≤ tf,	 (3.3)

find the control input trajectory,

	 u(t), t0 ≤ t ≤ tf,	 (3.4)

that minimizes the cost functional,

	

J t t L t
t

t

( ( )) ( ) ( , , , )u x x u d p= ( ) + ∫Φ f d
f

0

.

	

(3.5)

This problem is an optimization problem because the cost functional J(u(t)) given by Equation 
3.5 has to be minimized by choosing suitably the control input trajectory u(t), t0 ≤ t ≤ tf. Moreover, 
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this optimization problem has dynamic constraints specified by Equation 3.1 that represents the 
dynamic systems model. Equation 3.1, that is, x f x u d p= ( , , , ), describes nx dynamic constraints 
x fi i= ( , , , )x u d p , i = 1, 2, . . . , nx, that have to be satisfied at each time t0 ≤ t ≤ tf.

Optimization problems without constraints can be solved by repeatedly calculating several values 
of the cost functional and several associated first derivatives. According to Lagrange theory, opti-
mization problems with constraints can be solved by transforming them into optimization problems 
without constraints that have the same solution. This is done by introducing one additional variable 
associated to each constraint. At every time t0 ≤ t ≤ tf, we have nx additional variables because for 
the optimal control problem (3.1 through 3.5) we have nx constraints represented by x f x u d p= ( , , , ) 
that have to be satisfied at every time t0 ≤ t ≤ tf. These variables are denoted by λi(t), i = 1, 2, . . . , nx 
and are called Lagrange multipliers. Each λi(t) is associated with the constraint x fi i= ( , , , )x u d p  , i = 
0, 1, . . . , nx at every time t0 ≤ t ≤ tf. The vector,
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(3.6)

of Lagrange multipliers is also called a Lagrange multiplier. According to Lagrange theory, the 
optimal control problem (3.1 through 3.5) with dynamic constraints has the same solution as the 
following problem without constraints.

Given the external input trajectory d(t), t0 ≤ t ≤ tf, find the optimal control input trajectory u(t), 
t0 ≤ t ≤ tf, that minimizes the cost functional,

	

′ = ( )( ) + + −J t t L( ( )) ( , , , ) ( ( , , , ))u x x u d p x f x u d pΦ f
T dλλ  tt

t

t

0

f

∫ .

	

(3.7)

Observe that the augmented cost functional J′(u(t)) in 3.7 equals the original one (3.5), with 
λλT( ( , , , ))x f x u d p−  added to the integrand. Observe that if the constraint (3.1), that is, x f x u d p= ( , , , ) , 
is satisfied at every time t0 ≤ t ≤ tf, the augmented cost function J′(u(t)) equals the original one. By 
applying mathematical techniques, we obtain the following necessary optimality conditions for the 
solution of the unconstrained optimization problem and therefore also of our original optimal con-
trol problem (3.1 through 3.5),

	
x f x u d p x x= ≤ ≤ ( ) =( , , , ), ,ft t t t0 0 0,	

(3.8)
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(3.9)
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(3.10)
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A large class of numerical algorithms to solve optimal control problems is based on these necessary 

optimality conditions. In Equations 3.9 and 3.10, derivatives of vector functions like 
∂
∂

f
x

 appear. 

Recall that 
∂
∂

f
x

 is a matrix of which element i,j is by definition ∂
∂

f

x
i

j

. Observe that Equations 3.8 

through 3.10 only contain function values and values of first derivatives associated to the optimiza-
tion problem.

Equation 3.8 represents the system dynamics that determine the system behavior x(t) of the 
nx state variables at each time t0 ≤ t ≤ tf. Next, it represents the initial conditions of the system. 
Equation 3.9 represents the dynamics of what is called the adjoined system. It determines the behav-
ior of what is called the costate λ(t), that is, the nx Lagrange multipliers that are adjoined to the 
constrained optimization problem to turn it into an unconstrained one. Next, it specifies the terminal 
condition of this adjoined system. Finally, Equation 3.10 represents a coupling between Equations 
3.8 and 3.9, that is, the system and the adjoined system at each time t0 ≤ t ≤ tf.

Equation 3.10 can often be used to express the control input u(t) as an explicit function of both 
the state x(t) and the costate λ(t), that is,

	 u(t) = h(x(t), λ(t)), t0 ≤ t ≤ tf.	 (3.11)

Substitution of 3.11 into 3.8 and 3.9 eliminates u(t) and leaves a problem where we have to find the 
initial costate λ(t0) and the terminal state x(tf) such that 3.8 and 3.9 are satisfied. Finding these vec-
tors at the two time boundaries, t0 and tf, is called a two-point boundary value problem.

A control input u(t), t0 ≤ t ≤ tf, that satisfies the necessary optimality conditions (3.8 through 
3.10) is called optimal. Optimality is indicated by an asterisk (*). Therefore, u*(t), x*(t), and λ*(t), 
t0 ≤ t ≤ tf denote an optimal control input history (trajectory) and the associated optimal state and 
costate histories (trajectories). Furthermore, J* = J(u*(t)) indicates the minimal costs.

The optimal costate has an interesting interpretation that will play a major role in the decomposi-
tion of optimal control problems to deal with different time scales. It can be shown that,
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(3.12)

Therefore, the optimal costate may be interpreted as the marginal value of the state x in terms of 
the optimal costs J* at any time t0 ≤ t ≤ tf along the optimal solution. In other words, it can be 
interpreted as the cost sensitivity to state perturbations from the optimal trajectory at any time t 
(Stengel 1994, p. 207).

To determine the necessary optimality conditions (3.8 through 3.10), it is beneficial to first deter-

mine ∂
∂

f
x

, ∂
∂
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, ∂
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f
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, ∂
∂
L
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, ∂
∂ =

Φ
x

t tf

.

Example 1

For the optimal control problem specified in Example 2 of Chapter 2 by Equations 2.25 through 
2.30, we obtain,
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(3.13)
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Therefore, the necessary optimality conditions (3.8 through 3.10) are,
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From Equation 3.16, observe that λ 2
4

3

( )t
p
p

=
−

, 0 ≤ t ≤ 48. From Equation 3.15, λ 1 0= , 0 ≤ t ≤ 48, so 

λ1(t) is constant as well. However, this is incompatible with λ λ λ2 1 1 1 2 2= −p d p , which must also be 
satisfied according to Equation 3.15. Therefore, the necessary optimality conditions (3.8 through 
3.10) cannot be satisfied. 

The outcome of Example 1 seems to contradict the fact that we obtained numerical solutions 
for the optimal control problem described in this section. However, the optimal control problem in 
this section had the additional property that the control input has an upper and lower bound. For 
problems having this additional property, the necessary optimality condition (3.10) does not apply 
and must be replaced by one that is more general. To introduce this generalized necessary optimality 
condition, it is convenient to first introduce the so-called Hamiltonian H(x, u, λ, d, p) associated to 
an optimal control problem,

	 H(x, u, λ, d, p) = L(x, u, d, p) + λTf(x, u, d, p), t0 ≤ t ≤ tf.	 (3.17)

The necessary optimality condition (3.10) is replaced by the following one that also applies to 
cases where the control input is in any way restricted, such as by upper and lower bounds,

	 H(x*, u*, λ*, d, p) ≤ H(x*, u, λ*, d, p), t0 ≤ t ≤ tf.	 (3.18)

In Equation 3.18, the difference between the left-hand and the right-hand side is that u on the 
right-hand side represents any admissible control input, that is, any control input that satisfies the 
restrictions imposed on it, such as upper and lower bounds. On the other hand, u* on the left-hand 
side is the optimal control that must also be admissible. Stated in words, Equation 3.18 demands 
that the value of the Hamiltonian along an optimal solution u*(t), x*(t), and λ*(t) should be minimal 
with respect to all admissible controls. Equation 3.18 is known as Pontryagin’s minimum principle. 
This principle and the associated Hamiltonian have the following interesting interpretation. Using 
Equations 3.12 and 3.8, the Hamiltonian (3.17) can be written as,

	
H L

J
t

L
J

x u d p x u d p
x

x
x u d p, , , , , , ,

*
, , ,λλ( ) = ( ) + ∂

∂
= ( ) +d

d
d **

,
d ft

t t t0 ≤ ≤ .
	

(3.19)

Multiplying Equation 3.19 with an infinitely small time increment dt, we obtain,

	 H(x, u, λ, d, p)dt = L(x, u, d, p)dt + dJ*, t0 ≤ t ≤ tf,	 (3.20)
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where,

	
d

f fdJ J Jt t t t t
* * *

, ,= − + .
	

(3.21)

Hence, over every infinitely small time interval (t, t + dt), t0 ≤ t ≤ tf, Equation 3.20 describes the 
running costs L(x, u, d, p)dt associated with this time interval together with the contribution dJ* 
over this time interval to the costs Jt t0 ,

*
f
. Clearly, these together must be minimal to guarantee Jt t0 ,

*
f
 

to be minimal as stated by Pontryagin’s minimum principle.

Example 2

Reconsider Example 1 in this section with additional upper and lower bounds on the heat input,

	 0 ≤ u1(t) ≤ 100, t0 ≤ t ≤ tf,	 (3.22)

then Equation 3.18 reads,

	

p u
p d x

p d x p u
4 1 2

1 1 2

2 2 2 3 1
1
* * *

*

* *
+ 



 −



 +





λ λ














≤ + 



 −


p u

p d x

p d x
4 1 1 2

1 1 2

2 2 2

λ λ* *
*

*
 +



















p u3 1

,

	

(3.23)

which after multiplying out, collecting the terms in u1, and equating identical terms on both sides 
becomes

	
p p u p p u4 2 3 1 4 2 3 1+



 ≤ +
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(3.24)

According to Equation 3.24, the optimal control is indeed bang-bang, that is, either maximal or 
minimal as determined by the following so-called switching rule,
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(3.25)

For obvious reasons in Equation 3.25, p p4 2 3+ λ*  is called the switching function associated with 
the control input u1.

For optimal control problems where both f(x, u, d, p) and L(x, u, d, p) are linear functions of u, 

the switching function for each control input ui, i = 1, 2, . . . , nu, equals 
∂
∂
H
ui

.

Having introduced the Hamiltonian (3.17), the necessary optimality conditions (3.9 and 3.10) can 
be written more compactly,
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(3.26)
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(3.27)

Observe that Equation 3.27 is a necessary condition for Equation 3.18 to hold in the special case that 
the control input u(t) is not in any way restricted, that is, in the case that any control is admissible.

In summary, the necessary optimality conditions for a general optimal control problem including 
restrictions on the control input are given by,
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(3.28)

	

− = ∂
∂







≤ ≤ = ∂
∂











=

λλ λλ
H

t t t t
t t

x x

T

f f

f

, , ( )0
Φ



T

,

	

(3.29)
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(3.30)

In the special case that there are no restrictions on the control input u(t), t0 ≤ t ≤ tf, Equation 3.30 
may be replaced with,
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(3.31)

Many numerical algorithms to solve optimal control problems are based on the necessary optimal-
ity conditions (3.28 through 3.31). These algorithms are considered in the next section.

3.3 O ptimal Control Algorithms

It is common terminology to distinguish between direct and indirect methods to solve optimal 
control problems numerically. Indirect methods are based on the necessary optimality conditions 
presented in the previous section, whereas direct methods take a nonlinear programming (NLP) 
approach to solve optimal control problems. Indirect methods exploit the specific structure of an 
optimal control problem that is reflected in the necessary optimality conditions. Exploiting the 
structure of a problem in general provides solution methods and algorithms that are computationally 
more efficient.

Direct methods transform the optimal control problem into a general NLP problem, thus not 
exploiting the specific structure of the optimal control problem. Although the structure is lost in 
the transformation, much of it can be retained by computing the derivatives required by any NLP 
algorithm in a suitable manner. This manner is again dictated by the necessary optimality conditions 
presented in the previous section. Most of the optimal control software that is commercially avail-
able nowadays takes this approach. Probably this is because NLP algorithms are particularly well 
developed and can handle almost any type of constraint. Indirect methods are less well developed 
and have difficulties in handling several types of constraints.

In this section, the indirect methods and the associated algorithms are considered first. Their 
treatment facilitates the explanation of how optimal control problems can be transformed into NLP 
problems. This transformation and the associated NLP algorithms together with the special compu-
tation of derivatives are considered next.
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3.3.1  Indirect Methods

Of the four necessary optimality conditions (3.28 through 3.30), three are generally easy to satisfy 
a priori. Starting from a solution that satisfies three optimality conditions a priori, indirect solution 
methods iterate toward satisfying the fourth condition. Therefore, there are basically four types of 
indirect methods. Each one is characterized by the optimality condition that is not satisfied a priori. 
We will describe and discuss briefly the most common of these four types, namely, the one that 
does not satisfy Equation 3.30 a priori. The algorithms of this type are described by the following 
steps.

	 1.	Start with a guess of the optimal control trajectory: u(t), t0 ≤ t ≤ tf.
	 2.	Starting from x(t0) given by Equation 3.28, numerically integrate the systems model 

x f x u d p= ( , , , ) also given by 3.28, forward in time using the known external input d(t) 
and control input u(t), t0 ≤ t ≤ tf. Store x(t), t0 ≤ t ≤ tf.

	 3.	From x(tf) computed under step 2, compute λλ( )t
t t

f

f

= ∂
∂ =

Φ
x

. Starting from λ(tf), numeri-

cally integrate the adjoined system − = ∂
∂





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λλ
H
x

T

, given by Equation 3.29, backward in time 

using u(t), d(t), x(t), t0 ≤ t ≤ tf. Store λ(t), t0 ≤ t ≤ tf.

	 4.	Using u(t), d(t), x(t), λ(t), t0 ≤ t ≤ tf, compute 
∂
∂


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H L
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T T T

λλ , t0 ≤ t ≤ tf.

	 5.	Find the scalar α > 0 that defines a new control trajectory ′ = − ∂
∂





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u u
u

( ) ( )t t
H

α
T

, t0 ≤ t 

≤ tf, such that J(u′(t)) is (approximately) minimal. At any time t0 ≤ t ≤ tf, where ′ui , i = 1, 
2, . . . , nu exceeds one of its bounds, set it to this bound. Compute ΔJ = J(u(t)) − J(u′(t)) ≥ 
0. Replace u(t) with u′(t), t0 ≤ t ≤ tf.

	 6.	 If the cost function improvement ΔJ falls repeatedly below a small tolerance ε > 0, go to 
the next step; otherwise, go to step 2.

	 7.	For i = 1, 2, . . . , nu, verify if ∂
∂
H

ui

 is “small” at all times t0 ≤ t ≤ tf, where ui is not at a bound. 

If so, u*(t):= u(t), x*(t):= x(t), and λ*(t):= λ(t), t0 ≤ t ≤ tf.

Step 1 is an important step because if the guess of the optimal control is poor, the algorithm needs 
more iterations (computation time) to find the solution or it may not find a solution at all. Also, 
depending on the control guess, the algorithm may find a local solution.

In performing step 2, we satisfy a priori Equation 3.28.
In performing steps 3 and 4, we satisfy a priori Equation 3.29. Therefore, only Equation 3.30 is 

not satisfied a priori.
Steps 5 and 6 improve the satisfaction of Pontryagin’s minimum principle, that is, Equation 

3.30. 
Step 5 uses gradients, that is, first derivatives ∂

∂




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H
u

T

 to improve the control. It searches for a con-

trol improvement in the direction − ∂
∂





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H
u

T

, which complies with Pontryagin’s minimum principle 

to minimize H with respect to u. This type of algorithm is therefore called a gradient type algorithm. 
Searching in the gradient direction is not very efficient, especially if one is near the optimal solution. 
More efficient algorithms such as conjugate gradient algorithms during each iteration do not just 

use the current value ∂
∂





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H
u

T

 but also values obtained from previous iterations to compute a search 
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direction. Basically, these more advanced algorithms try to estimate higher derivatives to improve 
the search direction. This intends to improve the speed of convergence of the algorithm.

Simple versions of the algorithm do not search for α but use a fixed small value for α. The search 
for α is called a line search. Although the line search itself takes additional computation time, it gen-
erally improves the efficiency of the algorithm. By evaluating the cost function J(u′(t)) over a wide 
range of α’s, we can try to find a global minimum. Implementing such a global line search increases 
the chances of finding a global solution of the optimal control problem.

Step 7 checks whether the improvement of the costs is sufficient to justify continuation of the 
algorithm. It should be noted that the improvement of the costs can be very small during some itera-
tions. Therefore, one only stops iterating when several consecutive iterations have failed to provide 
significant improvement of the costs.

Step 8 is a step that verifies whether Pontryagin’s minimum principle is approximately satisfied. 
In that case, the optimal control and the associated state and costate trajectories are obtained.

The advantages of this most common type of indirect method compared with the other three 
can be roughly stated as follows. The algorithm requires an initial guess of the control input and 
no guesses for the costate, whereas the other types of indirect methods do. Usually by experience 
or simulation experiments, one can come up with a control that provides reasonable costs, in other 
words with a reasonable initial guess of the optimal control. It is generally more difficult to come 
up with reasonable guesses for the costate. Moreover, very often the other algorithms turn out to be 
highly sensitive to initial guesses of the costate. This causes convergence problems and makes them 
less robust. Several of the other direct methods use Equation 3.11 to turn the problem into a two-
point boundary value problem to be solved. For optimal greenhouse climate control problems, the 
systems model and cost function can be quite large and complicated. Then, finding Equation 3.11 
from the optimality condition (3.30 or 3.31) is difficult if not impossible.

To perform steps 2 and 3, numerical integration has to be performed. Numerical integration is 
performed by taking a finite number of small time steps from t0 to tf or vice versa and by comput-
ing the state x(t) and costate λ(t) at these intermediate times. During step 5, to compute the costs 

J t t L tf
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t f
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 for different control histories u(t) = u′(t), the following aug-

mented system is integrated numerically,
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(3.32)

Note that Equation 3.32 is identical to the systems model with initial conditions (3.28) augmented 
with the differential equation,

	
J L J tr r= =( , , , ), ( )x u d p 0 0.	 (3.33)

From Equation 3.32, observe that J t L tf

t

t

r d
f

( ) ( , , , )= ∫ x u d p

0

 represents precisely the running costs 

that is required to compute J t t L t
t

t

( ( )) ( , , , )u x x u d p= ( )( ) + ∫Φ f d
f

0

. Also Jr(t), t0 ≤ t ≤ tf, may be 
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viewed as an additional state variable that represents the running costs L t
t

t

( , , , )x u d p d

0

∫  at any time 

t0 ≤ t ≤ tf. Introducing Jr(t) as an additional state variable, a new optimal control problem formula-
tion that is equivalent to the original one is obtained, where the system is now the augmented system 
(3.32) and where the cost function equals,

	 J(u(t)) = Φ(x(tf)) + Jr(tf).	 (3.34)

From Equation 3.34, observe that this augmented equivalent optimal control problem has no run-
ning costs because Jr has become a state variable now. Therefore, Equation 3.32 may also be viewed 
as a way to transform any optimal control problem with running costs into one without running 
costs. This is known as the Mayer formulation of the optimal control problem.

During every small time step involved in numerical integration, the control input and the external 
input are either assumed constant or interpolated in some manner. In both cases, this implies that 
the control and the external inputs that are continuous functions in principle are parameterized, that 
is, described by a finite number of parameters. The parameterization of control inputs is the key to 
transforming optimal control problems into NLP problems.

3.3.2 D irect Methods and Control Parameterization

The objective of any optimal control problem is to find an optimal control trajectory u(t), t0 ≤ t ≤ 
tf. To specify an arbitrary control trajectory u(t), t0 ≤ t ≤ tf, infinitely many parameters are needed 
in principle because there are infinitely many times t in between t0 and tf. Fourier analysis is an 
example of the fact that arbitrary time functions can be approximated by using only finitely many 
parameters, namely the Fourier coefficients. The approximation of arbitrary control trajectories u(t), 
t0 ≤ t ≤ tf, by finitely many parameters is called control parameterization. Numerical integration 
that is used by indirect methods to solve optimal control problems actually also uses control param
eterization as explained at the end of the previous section. One of the most simple parameterizations 
of the control input is the following piecewise constant parameterization,

	 u(t) = u(tk), tk ≤ t ≤ tk+1, k = 0, 1, . . . , N – 1, tN = tf.	 (3.35)

Equation 3.35 approximates u(t), t0 ≤ t ≤ tf, using a finite number of vectors u(ti), i = 0, 1, . . . , N, 
and so using a finite number of parameters. The approximations are staircase functions. Equation 
3.35 is called a piecewise constant control parameterization. By varying the parameters, that is, the 
components of the vectors u(tk), k = 0, 1, . . . , N – 1, many different control histories are obtained, 
although each is restricted to being a staircase function (see Figure 3.1).

For every choice of parameters u(tk), k = 0, 1, . . . , N – 1, using 3.35 to determine the control input 
at any time t0 ≤ t ≤ tf, we can calculate the associated costs J(u(t)), given by Equation 3.34, through 
numerical integration of Equation 3.32. Observe that this computation ensures that the dynamic con-
straints, that is, the systems model and its initial conditions, are automatically satisfied. This demon-
strates that J(u(t)) can be viewed as a (complicated, nonlinear) computable function of the variables 
u(tk), k = 0, 1, . . . , N – 1. In other words, by using the control parameterization (3.35), the optimal con-
trol problem is transformed into a problem where the function J of the parameters u(tk), k = 0, 1, . . . , 
N – 1, has to be minimized. In general, any type of control parameterization can be used to transform 
an optimal control problem into a (nonlinear) function minimization problem.

If the control inputs u(t), t0 ≤ t ≤ tf, are in any way restricted, these restrictions have to be trans-
lated into restrictions on the parameters that approximate the control input trajectory. If the control 
parameterization (3.35) is used and if the restrictions concern lower and upper bounds, then the 
translation is particularly easy,
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u u t u i n ki i k i u

min max , , ,. . . , , , ,. . . ,≤ ( ) ≤ = =1 2 0 1 N − 1.
	

(3.36)

If the parameters u(tk ), k = 0, 1, . . . , N – 1, of the nonlinear functions J to be minimized are in any 
way restricted, such as by 3.36, then the function minimization problem is called an NLP problem. 
A general NLP problem reads as follows.

Minimize the scalar function,

	 J(s),	 (3.37)

with respect to the variables collected in the vector s while satisfying the following two types of 
general constraints,

	 Ei(s) = 0, i = 1, 2, . . . , nE,	 (3.38)

	 Ii(s) ≤ 0, i = 1, 2, . . . , nI.	 (3.39)

In Equations 3.38 and 3.39, E(s) and I(s) are arbitrary vector functions of dimension nE and 
nI. The index i refers to their components. Equation 3.38 therefore describes nE equality constraint 
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FIGURE 3.1  Control parameterization and evaluation of constraints.
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in s, whereas Equation 3.39 describes nI inequality constraint in s. Any number and type of equal-
ity and inequality constraints in s can be written in the form of 3.38 and 3.39.

Using the control parameterization (3.36), any optimal control problem with bounds on the con-
trol inputs (3.36) can be represented as an NLP problem (3.37 and 3.39) as follows,
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(3.40)

The cost function J(s) is computed through numerical integration of Equation 3.32 using the control 
parameterization (3.35).

Observe that ns, the dimension of the vector s, of to be optimized variables equals Nnu and that nI, 
the dimension of the vector function I(s), of constraints equals 2Nnu. The more accurate the control 
parameterization (3.35) becomes, the larger the N, hence the larger the number of variables to be 
optimized as well the number of constraints of the NLP problem.

Numerical algorithms to solve NLP problems are very well established. Most of them require 
repeated computations of
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for several different values of s. To compute the derivatives (3.41), the algorithms supply two options. 
Either the user specifies analytical expressions or a computational procedure to compute the deriva-
tives, or the algorithm uses finite differences to automatically approximate the derivatives. The for-
mer is generally more accurate (unless mistakes are made), whereas the latter does not require any 
additional effort from the user because only function evaluations of J(s), E(s), and I(s) are needed 
that are performed automatically by the algorithm.

Although the specific structure of an optimal control problem is lost in the transformation into an 
NLP problem, much of it can be retained by supplying a computation of the derivatives (3.41) on the 
basis of the necessary optimality conditions (3.28 through 3.30) that do carry the specific structure 
of an optimal control problem. This derivative computation is based on the following equality that 
approximately holds for any optimal control problem with a parameterized control (3.35),
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(3.42)

Observe from Equation 3.42 that the derivatives 
∂

∂ ( )
J

tku
, t0 ≤ t ≤ tf, can be computed using steps 2 

and 3 used by indirect methods because these compute 
∂
∂
H
u

, t0 ≤ t ≤ tf. This computation of 
∂
∂
H
u , 

© 2011 by Taylor and Francis Group, LLC



36	 Optimal Control of Greenhouse Cultivation

t0 ≤ t ≤ tf, is based on the necessary optimality conditions (3.28 through 3.30). By using it, the effi-
ciency of the NLP algorithm increases seriously as compared with the automatic computation of 
derivatives by finite differences. This is especially so if the number of time steps N or the number 
of control inputs Nu or both are large.

Notoriously difficult constraints that is regularly encountered in practice and cannot be handled 
easily by indirect methods are the upper and lower bounds on state variables,

	 x x t x t t t i ni i i x
min max( ) , , , , . . . ,≤ ≤ ≤ ≤ =f0 1 2 .	 (3.43)

If these state constraints are approximated by (see Figure 3.1)

	
x x t x i n ki i k i x

min max , , , . . . , , , , ,≤ ( ) ≤ = =1 2 0 1 2 N. . . , ,
	

(3.44)

they can be implemented as
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(3.45)

where x(tk), k = 0, 1, . . . , N, is computed through numerical integration of 3.28 using the control 
parameterization (3.35).

Observe from Equations 3.44 and 3.45 and Figure 3.1 that the constraint (3.43) is only imple-
mented at times tk, k = 0, 1, . . . , N, so it may be violated in between. This constitutes the approxi-
mation. Also observe that the larger we take N, the more accurate the approximation becomes at the 
expense of additional constraints in 3.45.

If the constraints represented by the vector functions E, I do not depend on the control input u, 
such as Equation 3.45, their components may be interpreted as cost functions (3.5) without running 
costs and with tf replaced by tk, that is,

	 J(u(t)) = Φ(x(tk)), t0 ≤ t ≤ tk.	 (3.46)

Therefore, the derivatives 
∂
∂

∂
∂

E
s

I
s

,  associated with such equality and inequality constraints can be 

computed similar to 3.42.
Applying the above interpretation (3.46) to the vector function (3.45), the derivative of every 

component of 3.45 can be computed similar to 3.42. By executing steps 2 and 3 used by indirect 
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methods, with tf replaced by tk, 
∂
∂
H
u

, t0 ≤ t ≤ tk is obtained. In that case, the following terminal val-
ues λ(tk) apply to step 3,

	

λλ( )
( )

max

t
x x

k

t t

i i

t tk
k

= ∂
∂











=
∂ −( )

∂






=

=

Φ x
x x

T










= =

T

, , , . . . , , , , . . . , ,

(

i n k N

t

x

k

1 2 0 1

λλ ))
( )

min

= ∂
∂











=
∂ −( )

∂










=
=

Φ x
x x

t t

i i

t tk
k

x x
T






= =

T

, , , . . . , , , , . . . , .i n k Nx1 2 0 1

	

(3.47)

The first terminal value λ(tk) in Equation 3.47 has components that are all zero except for λi(tk) = 1 
and applies to the first half of 3.45. The second has components that are all zero except for λi(tk) = 
–1 and applies to the second half of 3.45.

Other than the simple piecewise constant control parameterization, 3.35 may be used to transform 
optimal control problems into NLP problems. Often, spline functions or other polynomial functions 
are used, which are more smooth and may therefore more accurately and efficiently approximate 
continuous optimal control inputs. The piecewise constant control parameterization (3.35) has the 
following advantage. Because Equation 3.42 only applies to piecewise constant control parameter-
izations, these enable the derivative computations treated in this section that seriously speed up the 
NLP algorithm because they exploit the special structure of an optimal control problem. Moreover, 
as a by-product of these computations, we also obtain the optimal costate λ*(t), t0 ≤ t ≤ tf. This is 
important because the costate has the interesting interpretation (3.12) and is moreover required for 
the decomposition of optimal control problems into separate ones to accommodate for different time 
scales. Also, the optimal controller is generally implemented by a digital computer that is connected 
to the system by analog-to-digital and digital-to-analog converters. If the digital-to-analog convert-
ers act as zero-order hold circuits, which they generally do, the control is truly piecewise constant. 
Then, 3.35 becomes an exact description of the control input.

To end this section, we draw attention to an NLP approach that uses polynomial approximations 
for the state as well. In that case, the dynamic constraints (3.1) are translated into equality constraints 
E(s). These constraints concern the polynomial coefficients that determine the state and the control 
trajectories x*(t) and u*(t), t0 ≤ t ≤ tf. These constraints are evaluated at a finite number of times in 
between t0 and tf. In this case, the associated NLP problem no longer requires numerical integration 
to perform function evaluations. Therefore, the computational efficiency may increase, depending 
on the number and nature of the equality constraints that replace the dynamic constraints.

In summary, indirect methods to solve optimal control problems fully exploit the structure of an opti-
mal control problem that is reflected in the necessary optimality conditions used to solve the problem. 
In general, this provides algorithms that are computationally most efficient. Algorithms of this type are 
characterized by steps 1–7 described in this section. Step 5, which determines the control improvement 
during each iteration of the algorithm, is a critical step with respect to computational efficiency. Such a 
step is also performed by direct methods that use NLP solvers. One might roughly conclude that NLP 
algorithms are better developed with respect to this step than indirect methods to solve optimal control 
problems. The drawback of losing the specific structure of an optimal control problem through the 
transformation into an NLP problem can be largely compensated for by using user-supplied derivative 
computations that do exploit this specific structure. Together with the fact that several types of optimal 
control constraints can be handled more easily by the NLP approach, this probably explains why most 
commercially available software tools used to solve optimal control problems are of this type.

Recently, we investigated the MATLAB® optimal control toolbox called PROPT, which is com-
mercially available from TOMLAB (Ross and Fahroo, 2004; Rutquist and Edvall, 2009). It uses 
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polynomial approximations of both the state and control and NLP. Through a number of examples 
that have been added to this toolbox, one of them concerning optimal greenhouse climate control, 
we discovered that it performs very efficiently (solutions are obtained in a few seconds) and is highly 
user friendly (students with only basic knowledge of optimal control easily use it).

Commercially available optimal control software in principle only requires that the user specify 
the optimal control problem data including the constraints. In general, however, the convergence of 
optimal control algorithms depends critically on the initialization of the algorithm and the condition-
ing of the problem. Ill conditioning may, for instance, occur because of widely different time scales. 
Therefore, it is advisable to start with a simplified problem and perform some analysis, for example, 
by simulations that may be verified against experimental results, to come up with a reasonable ini-
tialization. Next, after critically judging and examining the solutions, one may proceed in one or 
several steps toward the whole problem.
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4 Closed-Loop Optimal Control

4.1 I ntroduction

What happens if we apply the optimal controls u(t), t0 ≤ t ≤ tf, computed in the previous chapter, 
directly to the greenhouse? Will the greenhouse climate behavior x(t), t0 ≤ t ≤ tf be optimal? In other 
words, will x(t) = x*(t), t0 ≤ t ≤ tf hold? The most simple and straightforward answer would be yes. 
Unfortunately, this answer is only correct if all elements of the optimal control problem formula-
tion are perfect descriptions of reality. Most optimal control problem formulations like the ones for 
greenhouses are not. The initial condition,

	 x(t0) = x0,	  (4.1)

and the dynamic systems model,

	
x f x u d p( ) ( ( ), ( ), ( ), )t t t t= ,	  (4.2)

are at best very good approximations of reality. When controlling a greenhouse the external input 
trajectory d(t), t0 ≤ t ≤ tf, needed to solve the optimal control problem, will not be perfect, either, 
because it involves weather predictions. The cost function

	

J t t t L t t t t
t

t

( ( )) , ( ( ), ( ), ( ), )
f

u x x u d p= ( )( ) + ∫Φ f f d

0

,	 (4.3)

is a description of the control objectives and as such can be perfect. Because the dynamic model, the 
initial condition and the external input trajectory d(t), t0 ≤ t ≤ tf are at best very good approximations 
x(t) = x*(t), t0 ≤ t ≤ tf will not hold. Stated differently,

	 Δx(t) = x(t) – x*(t) ≠ 0,	 (4.4)

for almost any t0 ≤ t ≤ tf. The associated important question now is: How large are the state per-
turbations (deviations) Δx(t)? This clearly depends on the magnitude of the errors just mentioned 
and the way these propagate. Without going into details, practical applications require a feedback 
control mechanism to limit the state perturbations in Equation 4.4. Observe that in Equation 4.4 x(t) 
represents actual system behavior. To obtain information about actual system behavior measure-
ments must be performed on the system. Variables that are measured are also called outputs of the 
system. In general they are functions of the current state, input, external input and the parameters 
of the system. This is described by,

	 y(t) = g(x(t), u(t), d(t), p).	 (4.5)

In Equation 4.5 y is a ny dimensional column vector, its components being the measured variables 
(outputs), and g is the associated vector function. For control purposes the most favorable situation is,
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	 y(t) = x(t),	 (4.6)

meaning that all state variables (the complete state) are measured. When Equation 4.6 applies, con-
trol engineers call this “having full state information.” In most practical circumstances, however, 
instead of the special case Equation 4.6, the general description Equation 4.5 applies. In that case 
state estimators are applied to obtain estimates ˆ( )x t  of x(t). These state estimators are designed 
using Equations 4.1, 4.2, and 4.5. State estimation will be briefly treated in Section 4.2.

Having x(t) the actual system behavior or estimates ˆ( )x t  of these, one can compute the state per-
turbations Δx(t) = x(t) – x*(t). In contrast to the optimal control computations performed so far this 
computation must be done online because only then the actual system behavior becomes manifest 
and can be measured. Knowing the actual state of the system one has to adjust the optimal control 
u*(t) to limit the state perturbations. This adjustment can only be performed online. The adjustment 
is called feedback control. A control system with feedback is called a feedback control system.

In the next sections, we address the issue of feedback control system design. In Section 4.3, we 
address a general, very common, and attractive feedback control system design. But we argue that 
this design is generally unsuitable for greenhouse climate control. In Section 4.3.1, the feedback 
control system design for greenhouse climate control is presented. It is based on receding horizon 
control. Receding horizon control enables a suitable feedback. Moreover, it overcomes the nasty 
problem of dealing with widely different time scales. This is a characteristic of most greenhouse 
optimal control problems that tends to destroy the accuracy of numerical solutions.

4.2  State Estimation

Mathematical descriptions of practical problems are hardly ever exact. In dealing with the actual 
control of systems, it is therefore necessary to monitor the actual behavior of the system on-line 
in some manner. As explained in the previous section, this enables one to compute or correct the 
controls. The most favorable situation is the special case where we have complete state informa-
tion as described by Equation 4.6. In the general case described by Equation 4.5 a state estimator 
is required to generate estimates ˆ( )x t  of the actual state x(t). These estimates are later used for 
control computations. State estimators are based on Equations 4.1, 4.2, and 4.5 that mathematically 
describe the system and the measurements. A widely used state estimators is called the Kalman fil-
ter, named after its discoverer, who played a leading role in systems theory between 1955 and 1970. 
The Kalman filter is described by,

	
ˆ ( ) ˆ( ), ( ), ( ), ( ) ( ) ˆ( ) , ˆx f x u d p y y xt t t t t t t= ( ) + −( )K (( ) ˆt0 0= x ,	 (4.7)

	
ˆ( ) ˆ( ), ( ), ( ),y g x u d pt t t t= ( ).	 (4.8)

Equation 4.7 is a differential equation that determines the state estimates ˆ( )x t  with initial value x̂0 , 
an estimate of the initial state. This differential equation at each time t0 ≤ t ≤ tf has the measured 
values y(t) as an input. In Equation 4.8 ˆ( )y t  represents estimates of these measurements based on 
the current estimate ˆ( )x t  of the state and the current inputs u(t), d(t). Observe that if the actual 
measurements y(t) equal estimates ˆ( )y t  the term K( )( ( ) ˆ( ))t t ty y−  in Equation 4.7 is equal to zero. 
Then the propagation of the state estimate ˆ( )x t  is entirely determined by ˆ( ) ( ˆ( ), ( ), ( ), )x f x u d pt t t t=  , 
in other words the systems model (4.2). If not, then the term K( )( ( ) ˆ( ))t t ty y−  corrects the model. 
This makes sense because there is a difference between the expected (estimated) measurements 
ˆ( )y t  and the actual ones y(t). Besides y y( ) ˆ( )t t− , which is called the innovation, the magnitude of 
the correction is determined by the entries of the nx × ny matrix K(t) in Equation 4.7. This matrix 
is called the Kalman gain of the state estimator. Observe that apart from the Kalman gain K(t), the 
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state estimator (Kalman filter) is entirely determined by the equations describing the systems model 
and the measurements, namely Equations 4.1, 4.2, and 4.5. The Kalman gain K(t) entirely deter-
mines the state estimator design. Many techniques are available to determine it (see, for instance, 
Lewis, 1986). We will not go into detail here but just mention that most of these techniques require 
as an input measures of errors in the model the initial state and the measurements.

Example 1

Reconsider Example 1 from Chapter 2 that concerns our heavily simplified greenhouse. For this 
example,
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Recall that x2 represents the greenhouse temperature. Suppose this temperature is measured. This 
is described by,

	 y(t) = g(x(t), u(t), d(t), p) = x2(t).	 (4.10)

For this example, the Kalman filter in Equations 4.7 and 4.8 becomes,
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with initial condition 
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4.3 L inear Quadratic Feedback

Feedback control system design concerns the online adjustment of the (optimal) control to the 
actual system behavior. In this section, we consider the computation of control corrections:

	 Δu(t) = u(t) – u*(t),	 (4.12)

intended to limit the state perturbations Δx(t) = x(t) – x*(t). Clearly the computation of the control 
correction Δu(t) at any time t0 ≤ t ≤ tf requires Δx(t) or estimates ∆ˆ( )x t  of it. A simple very common 
feedback control law is the following one:

	 Δu(t) = –L(t)Δx(t).	 (4.13)

Equation 4.13 represents a linear feedback control law in which L(t) is a known time-variable matrix 
of dimensions nu × nx. The feedback control law in Equation 4.13 is actually an optimal feedback con-
trol law because it solves a so-called linear quadratic (LQ) optimal control problem that is associated 
with the original optimal control problem from which u*(t) was computed. Details concerning this 
association and the LQ optimal control problem can be found in Athans (1971) and Van Willigenburg 
and De Koning (2006). The feedback control law in Equation 4.13 is highly attractive because it 
requires just a single multiplication of the stored feedback matrix L(t) with the online measured (esti-
mated) state perturbation Δx(t). Therefore, it is most suitable for online implementation.
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In practice the linear feedback control law in Equation 4.13 performs well only if the errors 
are modest. The errors associated with optimal greenhouse climate control are not modest in gen-
eral. This is mainly due to significant errors in the weather prediction. This is especially serious 
because the weather, such as the light conditions, heavily determine the optimal control. Therefore, 
greenhouse climate control requires another type of feedback control system design. This design is 
treated in the next section.

4.3.1  Feedback by Receding Horizon Control

4.3.1.1 T he Problem of Widely Different Time Scales
The more the time scales of a system differ, the more inaccurate and inefficient numerical integra-
tion becomes. This causes optimal control computations to become inaccurate and inefficient. This 
problem can be largely overcome by employing suitable time scale decompositions of the optimal 
control problem. In the context of greenhouse cultivation, the method was analyzed in some detail in 
van Henten (1994), applied in a real experiment by Tap (2000), and described in concise form in Van 
Henten and Bontsema (2009). Time scale decomposition results in separate optimal control prob-
lems that can be solved accurately and efficiently. Together these produce an approximately optimal 
control. Moreover, the time scale decomposition presented in this section introduces feedback.

Reconsider the optimal control problem given by Equations 4.1 through 4.3. Suppose the system 
in Equation 4.2 operates on two time scales that lie wide apart. This implies that part of the system’s 
first-order differential equations x fi i= ( , , , )x u d p , i = 1, 2, . . . , nx produce derivatives xi that are 
small relative to xi, whereas others produce derivatives xi  that are large relative to xi. Let us collect 
the former state variables that vary slowly into the vector xs and let us collect the latter state vari-
ables that vary fast into the vector xf. Separating the state variables in this manner, the following 
system description applies that forms the basis of a time scale decomposition,

	
x f x x u d ps s s f( ) ( ), ( ), ( ), ( ),t t t t t= ( ),	 (4.14)

	
x f x x u d pf f s f( ) ( ), ( ), ( ), ( ),t t t t t= ( ).	 (4.15)

In Equation 4.14, f s collects the components of f associated with the states xs that vary slowly, 
whereas f f collects the components associated with the states xf that vary fast. Singular perturbation 
theory reveals that if there would be no external inputs d the optimal control varies only slowly, i.e., 
at the level of the large time scale except near the initial and terminal time t0, tf. This implies that 
except near the time boundaries t0, tf we may consider the “fast dynamics” in Equation 4.15 that 
operate on the small time scale to be in equilibrium:

	 0 = f f(xs(t), xf(t), u(t), d(t), p).	 (4.16)

With the approximation in Equation (4.16) the dynamic system in Equations 4.14 and 4.15 turns into 
what is called a differential algebraic system because Equation 4.16 represents algebraic equations. 
Neglecting the fast transients near the time boundaries t0, tf, an optimal control problem for the dif-
ferential algebraic system in Equation 4.14, Equation 4.16 is obtained that approximates the original 
one and no longer suffers from two time scales. To see this, observe that one can solve xf(t) from 
Equation 4.16, knowing xs, u, d at all times t0 ≤ t ≤ tf. This effectively eliminates xf(t) from Equation 
4.14, which then becomes a differential equation containing just the slow state xs(t). From the slow 
state xs(t), the fast state xf(t) can be recovered through Equation 4.16.
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Example 2

Reconsider Example 1 from Chapter 2 that concerns our heavily simplified greenhouse. For this 
example,
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Recall that x1(t) is the crop dry weight and x2(t) the greenhouse temperature. Obviously the changes 
of the greenhouse temperature x2(t) occur much faster than those of the crop dry weight x1(t). 
Therefore, we may select xs = x1, xf = x2. Then from Equations 4.7, 4.14, and 4.15 we obtain,

	
 x t x t f x t x t t t p d1 1 1( ) ( ) ( ), ( ), ( ), ( ), (s s s f= = ( ) =u d p tt x t) ( )2 ,	 (4.18)

	
 x t x t f x t x t t t p d2 2 2( ) ( ) ( ), ( ), ( ), ( ), (f f s f= = ( ) =u d p tt x t p u t) ( ) ( )−( ) +2 3 1 .	 (4.19)

Assuming the fast state to be in equilibrium, we obtain from Equation 4.16,

	 0 = p2(d2(t) – x2(t)) + p3u1(t).	 (4.20)

From Equation 4.20, we obtain,

	
x t d t

p
p

u t2 2
3

2
1( ) ( ) ( )= + .	 (4.21)

Observe that Equation 4.21 expresses the fast state xf(t) = x2(t) explicitly in terms of the slow state 
xs(t) = x1(t), the control u(t), the external inputs d(t), and the parameters p. So there is no need to 
solve Equation 4.20 numerically. The example is special in the sense that the fast state xf(t) = x2(t) 
does not at all depend on the slow state xs(t) = x1(t) but only on the control and external inputs u(t), 
d(t). Finally, using Equations 4.18 and 4.21,
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Equation 4.22 represents a dynamic systems model that only contains the slow state xs(t) = x1(t). 
Knowing the slow state xs(t) = x1(t), the fast state is recovered from Equation 4.21.

The approach described above provides an accurate approximation except near the time bound-
aries t0, tf. Optimal control methods have been proposed that take into account the fast transient 
behavior near these time boundaries that improve the accuracy though often only marginally. With 
respect to fast transients the situation becomes entirely different when the system is affected by 
external inputs that vary fast, i.e., at the level of the small time scale. These external inputs cause the 
approximation in Equation 4.16, that assumes the fast dynamics to be in equilibrium, to be violated 
permanently and not just near the time boundaries t0, tf. Optimal greenhouse climate control prob-
lems are of this type due to weather variations that act as external inputs that vary fast, i.e., at the 
level of the small time scale. In these cases the approach presented in the next subsection has been 
proposed in the literature. This approach realizes feedback that deals appropriately with the differ-
ent types of uncertainty associated with the model and the external inputs. Moreover, it resolves the 
problem of widely different time scales.
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4.3.1.2  Feedback Design for Optimal Greenhouse Climate Control
The feedback design for optimal greenhouse climate control consists of two major computations. 
The first one concerns an offline computation, whereas the second concerns the online feed-
back using information obtained from the first. The next two subsections describe the two major 
computations.

4.3.1.2.1  First Major Computation
Solve offline the following optimal control problem that only considers the slow dynamics, presum-
ing the fast dynamics are in equilibrium despite the fast variations of the external inputs.
Given the system,

	
x f x x u d p x xs s s f s

0
s( ) ( ), ( ), ( ), ( ), , ( )t t t t t t= ( ) =0 ,	 (4.23)

	 0 = f f(xs(t), xf(t), u(t), d(t), p),	 (4.24)

and the external input trajectory,

	 d d( ) ( ), ft t t t t= ≤ ≤0 ,	 (4.25)

find the control trajectory,

	 u(t), t0 ≤ t ≤ tf,	 (4.26)

that minimizes the original cost functional in Equation 4.3, i.e.,

	

J t t L t t t t t
t

( ( )) ( ), ( ), ( ), ( ),f
s fu x x x u d p= ( )( ) + ( )Φ d

0

ttf

∫ .	 (4.27)

In Equation 4.25 d( )t , t0 ≤ t ≤ tf represents an external input trajectory containing only slow varia
tions, i.e., variations at the level of the slow time scale. In the case of greenhouse climate control, 
it  may be associated with averaged or filtered weather conditions recorded over one or several 
similar time periods. Denote the optimal control and associated state and costate trajectories of this 
optimal control problem by respectively,

	 us*(t), xs*(t), λs*(t), t0 ≤ t ≤ tf.	 (4.28)

The optimal control problem (4.23 through 4.27) is called the slow subproblem. This is associated 
with the original optimal control problem (4.1 through 4.3). This ends the first major computation.

Example 3

Reconsider Example 2 that concerns our heavily simplified greenhouse. For this example,

	







x t

x t
t t t t1

2

( )

( )
( ) ( ( ), ( ), ( ), )













= = =x f x u d p
pp d t x t

p d t x t p u t
1 1 2

2 2 2 3 1

( ) ( )

( ( ) ( )) ( )− +












.	 (4.29)
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Recall that the slow state xs(t) = x1(t) is the crop dry weight and that the fast state xf(t) = x2(t) is the 
greenhouse temperature. Example 1 in Chapter 2 considered the optimal control of the green-
house based on the following cost function:

	

J t p x t p u t t
t

t

( ( )) ( )df

f

u = − ( ) + ∫5 1 4 1

0

.	 (4.30)

The first major computation described in this subsection for this example reads as follows. Equation 
4.24 becomes,

	 0 = p2(d2(t) – x2(t)) + p3u1(t),	 (4.31)

and is identical to Equation 4.21 of Example 2. From Equation 4.31 we obtain,

	
x t d t

p
p

u t2 2
3

2
1( ) ( ) ( )= + .	 (4.32)

This is identical to Equation 4.21 of Example 2. The slow system dynamics in Equation 4.23 
become,

	
x t f x t x t t t x t xs
1 1 2 1 0 0

1( ) ( ), ( ), ( ), ( ), , ( )= ( ) =u d p ,	 (4.33)

and using Equation 4.32,

	
x t f x t x t t t p d t d t1 1 2 1 1 2( ) ( ), ( ), ( ), ( ), ( ) ( )s= ( ) =u d p ++







=p
p

u t x t x3

2
1 1 0 0

1( ) , ( ) .	 (4.34)

Because the cost function in Equation 4.30 does not involve the fast state xf = x2, Equation 4.32 is 
not needed to eliminate it. Therefore, the cost function in Equation 4.30 remains unchanged:

	

J t p x t p u t t
t

t

( ( )) ( )df

f

u = − ( ) + ∫5 1 4 1

0

.	 (4.35)

4.3.1.2.2  Second Major Computation
Solve online the following optimal control problem repeatedly.
Given the system,

	
x f x x u d p x xf f s* f f f, , , , , ( ) ˆ ( )= ( ) =t ts s ,	 (4.36)

and the external input trajectory,

	 d d( ) ˆ ( ), s st t t t t h= ≤ ≤ + ,	 (4.37)

find the control trajectory,

	 u(t), ts ≤ t ≤ ts + h,	 (4.38)
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that minimizes the cost functional,

	

J t L tf s* f s* s s* f( ( )) , , , , ( ) , , , ,
T

u x x u d p f x x u d p= ( ) + (λλ ))( )
+

∫ d

s

s

t
t

t h

.	 (4.39)

The optimal control problem in Equations 4.36 through 4.39 is called the fast subproblem. 
Observe that the cost functional in Equation 4.39 is determined entirely by the original optimal 
control problem as well as the solution to the slow subproblem. The initial time ts of the fast sub-
problem, that is solved repeatedly online, increases with every repetition by an amount of T starting 
at t0 and ending with tf – T. Here T represents the sampling period of the feedback control system. In 
Equations 4.36 through 4.39, h represents the time horizon of the fast subproblem that satisfies h > 
T. Denote the optimal control and associated state and costate trajectories by,

	 uf*(t), xf*(t), λf*(t)ts ≤ t ≤ ts + h.	  (4.40)

Only the first part uf*(t), ts ≤ t ≤ ts + T of the optimal control trajectory is supplied to the system. In 
Equation 4.36, ˆ ( )f

sx t  represents an estimate of the fast states at time ts. These may be obtained from 
a state estimator that employs measurements of the greenhouse climate. In Equation 4.37 ˆ ( )d t , ts ≤ 
t ≤ ts + h represents estimates of the external input. In the case of greenhouse climate control, these 
will be short-term weather predictions. The online computation of the estimate ˆ ( )f

sx t  and the associ-
ated optimal control in Equation 4.40 must be performed in between times ts – T and ts. Therefore, 
the sampling period T of the control system is lower bounded by computational resources. Equations 
4.36 and 4.39 depend on xs*, the optimal state trajectory obtained from the slow subproblem. Due to 
modeling errors and inaccurate estimates of the fast states and external inputs, despite the feedback, 
the slow states xs may deviate significantly from xs*. If, by taking crop measurements, more accurate 
online estimates ˆ sx  can be obtained for xs, these might be employed instead of xs*. Doing so, λs*(t), t0 
≤ t ≤ tf is the only information used from the slow subproblem. This information, however, is highly 
relevant because from the interpretation associated to Equation 4.39 it can be seen that λs*(t) repre-
sents the momentary marginal value of the slow states associated with the crop. Not considering the 
value of the crop, leave alone its variability in time, is a major problem when treating greenhouse 
(optimal) control problems only at the level of the small time scale.

Example 4

Reconsider once more the optimal control problem associated with the heavily simplified green-
house characterized by,
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,	 (4.41)

	

J t p x t p u t t
t

t

( ( )) ( )df

f

u = − ( ) + ∫5 1 4 1

0

.	 (4.42)

Recall that the slow state is the crop dry weight xs(t) = x1(t) and the fast state is the greenhouse tem-
perature xf(t) = x2(t). From the solution of the associated slow subproblem described in the previous 
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subsection, we obtain λ λs* *( ) ( )t t= 1 , t0 ≤ t ≤ tf. The fast subproblem described in this subsection that 
has to be solved repeatedly on-line is characterized by

	
x f f s* f( ), ( ), ( ), ( ), ( ( ) ( )= ( ) = −f x t x t t t p d t x tu d p 2 2 2 )) ( )+ p u t3 1 ,	 (4.43)

	

J u t L x t x t t t t f xf s* f s* s s( ( )) ( ), ( ), ( ), ( ), ( )= ( ) +u d p λ ** f( ), ( ), ( ), ( ), d

( )

t x t t t t

p u t

t

t h

s

s

u d p( )( )

= +

+

∫

4 1 1λ**( ) ( ) ( ) d .t p d t x t t
t

t h

s

s

1 1 2( )
+

∫

,

	 (4.44)

A special feature of this problem is that neither f f(xs*(t), xf(t), u(t), d(t), p) nor L(xs*(t), xf(t), u(t), 
d(t), p) depends on the optimal long-term slow state x t x ts* *( ) ( )= 1 . If they would depend on the opti-
mal long-term slow state, then one should preferably replace x t x ts* *( ) ( )= 1  with ˆ ( ) ˆ ( )sx t x t= 1  obtained 
from a state estimator.

4.3.2 C onclusions

The feedback control system design for optimal greenhouse climate control presented in this chap-
ter has the following attractive and necessary features:

	 1.	Both the slow and fast subproblems obtained from the time-scale decomposition no longer 
suffer from different time scales and therefore can be solved accurately and efficiently.

	 2.	The separation into these two subproblems also enables the use of a long-term averaged 
weather prediction d( )t , t0 ≤ t ≤ tf and a short-term more-accurate weather prediction ˆ ( )d t , 
ts ≤ t ≤ ts + h.

	 3.	Moreover, by repeatedly solving the fast subproblem, feedback is achieved, which is neces-
sary to deal properly with errors associated with the model and the weather predictions. 

Because the approach is motivated by singular perturbation methods applied to optimal control 
problems, it appears to be approximately optimal. The precise conditions under which they are valid 
as well as the proof of this remains an open area of research. An important source of suboptimality 
relates to the assumption that the fast dynamics are in equilibrium when solving the slow subprob-
lem. Because the slow subproblem is solved offline one might consider not making this assumption 
by solving the original full problem with fast-varying, long-term weather predictions. This seri-
ously increases the computation time and storage required for the weather data. Also it reintroduces 
the danger that these computations become inaccurate. What might be gained is a more accurate 
costate trajectory that determines how the crop and climate must be valued when solving the fast 
subproblem online. On the other hand fast-varying long-term weather predictions will never be very 
accurate. So what has been gained in principle may be lost in practice. Therefore, from a practical 
point of view the feedback and time-scale decompositions presented in this section appear to pre-
serve optimality as much as possible.

Interesting design issues related to the optimal control approach described in this section involve 
the selection of both h and T. These must be related to dynamic properties of the system as well as 
to the accuracy of predictions of the state and the external inputs. Also the online computational 
resources may affect them.
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5 Greenhouse Cultivation 
Control Paradigms

5.1 I ntroduction

Ever since the existence of greenhouses, the control of the indoor environment has attracted the 
attention of engineers and scientists. This has led to a large number of approaches and proposed 
solutions. Differences arise partly because of differences in greenhouse layout, target crops, and 
weather conditions on the spot and certainly also partly because of a particular view to climate 
control, skills, and technical opportunities. Hence, it is not easy to oversee the field and judge the 
suitability of proposed solutions for any particular situation. Therefore, there is a need to put the 
various controller paradigms into a common framework, if possible. To provide such a framework 
is the purpose of this chapter.

Having argued in the previous chapters that the optimal control methodology provides, in prin-
ciple, the most comprehensive way of solving the problem, it will turn out that solutions as proposed 
in the literature can all be viewed as parts or elements of the total solution. Hence, the optimal 
control paradigm provides a nice framework to put the various contributions from the literature 
into a common perspective. In this way, the strong and weaker points of the various proposed solu-
tions can be analyzed against the background of the ultimate desire to be as close to the theoretical 
optimum as possible.

We begin this chapter by first briefly revisiting and summarizing the method as outlined in the 
previous chapters, supplemented with a number of implementation considerations. Next, on the 
basis of this overview, we will classify the various solutions in the literature in the remaining sec-
tions in the chapter.

5.2 O ptimal Control Revisited

5.2.1 G eneric Problem Statement

Optimal control is achieved by solving the following problem. Given the system model with the 
initial state,

	
x f x u d x x( ) ( ), ( ), ( ) , ( )t t t t t= ( ) =0 0,	 (5.1)

with output accessible to observation,

	 y(t) = g(x(t), u(t), d(t)),	 (5.2)

plus additional output representing auxiliary variables of interest,

	 z(t) = h(x(t), u(t), d(t)),	 (5.3)
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find the control trajectory,

	 u(t), t0 ≤ t ≤ tf,	 (5.4)

that minimizes the goal function,

	

J t t t t t L
t

t

u x z( ), , ( ), ( )f0 f f d

o

f

( ) = ( ) + ( )
=

=

∫Φ τ τ
τ

τ

,	 (5.5)

subject to the additional inequality constraints,

	 c(x(t), u(t), d(t)) ≤ 0, t0 ≤ t ≤ tf.	 (5.6)

The input d(t) is introduced to account for external input variables that are measurable but not 
accessible to control. In greenhouse control, this pertains to the weather. Its inclusion is important 
because part of the optimal control task is to exploit the weather rather than to suppress its influence. 
Note that there is a subtle but important difference between viewing d(t) as an observable external 
input and viewing d(t) as an unobservable (stochastic) disturbance input.

In addition to the treatment in Chapter 3, here we have introduced variables of interest z(t). These 
are variables that, just like the customary outputs y(t), can be computed from the states, control 
inputs and external inputs, but without having a counterpart in the actually observed variables y obs(t). 
Examples of observational model outputs y(t) are temperature or relative humidity, for which sensors 
are available. Examples of variables of interest z(t) are the heating rate or the ventilation rate, for 
which usually no direct measurements are available. From a mathematical point of view, their intro-
duction is not strictly necessary because by virtue of Equations 5.3 and 5.2, the formulation of the 
goal function in Equation 5.5 is completely equivalent with the formulation given earlier in Equation 
3.5. Nevertheless, they are introduced here because of their role in practical implementations.

Another addition is the explicit formulation of constraint conditions in Equation 5.6. They are 
formulated as inequality constraints and can refer to input constraints—defined by the operating 
range of the actuators, state constraints such as maximum allowable temperatures, or output con-
straints such as maximum allowable relative humidity. In Equation 5.6, c(.) is a vector-valued func-
tion with as many elements as there are constraints. Note that the consideration of state constraints 
would not be necessary if the models were accurate over the entire space domain of interest. If, for 
instance, a high temperature would be detrimental to the crop, and this phenomenon was correctly 
captured in the models, then the optimal control algorithm would automatically avoid that high 
temperatures occur.

5.2.2 O pen-Loop Solution of the Whole Problem

The open-loop solution can be calculated offline, that is, without taking actual data into account, 
except for an initial condition,

	 x(t0) = x0,	 (5.7)

and an assumed trajectory, called the nominal trajectory, of the external inputs,

	 d(t) = dnom(t),	 t0 ≤ t ≤ tf.	 (5.8)

A particularly powerful solution method involves the formation of the Hamiltonian,
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	 H(x, u, λ, d) = L(x, u, d) + λTf(x, u, d),	 t0 ≤ t ≤ tf,	 (5.9)

where λ is the adjoint variable or costate, and requiring, among others, that

	

∂
∂

= ≤ ≤H
t t t

u
0 0, f.	 (5.10)

This method transforms the original problem of finding the optimal control trajectory by maximiz-
ing J over the full horizon to maximizing, at every time, the Hamiltonian with respect to the actual 
control. The requirement that the Hamiltonian is stationary with respect to infinitesimal control 
variations is part of a set of necessary conditions, as outlined in Chapter 3. It leads to locally optimal 
solutions but not necessarily to solutions that minimize J globally (Stengel, 1994).

Performing the optimization by one of the methods outlined in Chapter 4 leads to the following 
results:

Control trajectory,•	

	 u*(t),	 t0 ≤ t ≤ tf .	 (5.11)

State trajectory,•	

	 x*(t),	 t0 ≤ t ≤ tf.	 (5.12)

Costate trajectory,•	

	 λ*(t),	 t0 ≤ t ≤ tf.	 (5.13)

Goal function evolution,•	

	 J*(t) ≡ J(u*(t)),	 t0 ≤ t ≤ tf,	 (5.14)

with ultimate value J*(tf).
It should be noted that even if no use is made of a solution method that involves costates, the 

costate can still be computed afterward from the optimal solution by using Equation 3.9 or 3.12.

5.2.3 T he Choice of the Weather

Ignoring for the moment the considerable problem of actually computing the offline full solution, 
it is clear that assumptions about the weather have a major effect on the result of the offline open-
loop optimization. At this point, it is relevant to distinguish and define a number of different cases 
regarding the generation of the nominal weather input trajectory. 

	 1.	The most direct way is to take one actual realization as observed in the past. The associ-
ated solution is called here a single realization solution. It is useful for analysis purposes 
but does not give information about the variability among realizations. We denote the goal 
function at final time for the jth input realization by J j*, or simply J* if there is just one 
realization.

	 2.	 Instead of a single realization, solutions can be generated for a number of realizations, 
which are then aggregated. The associated solution is called a solution with multiple real-
izations. The aggregate is obtained by averaging in the solution space. The mean of the 
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goal function values at final time then represents an expectation of the average achievable 
goal. It can be expressed as

	

J
N

J j

j

N

* *=
=

∑1

1

.	 (5.15)

	 In addition, an impression can be obtained of the variance. Input, state, and costate trajec-
tories are an ensemble of individual trajectories.

	 3.	Another option is to generate the nominal trajectory by averaging and smoothing the 
weather input over a number of realizations. Averaging or smoothing takes place in exter-
nal input space to yield the smooth nominal input dnom. This method alters the frequency 
spectrum of the data as it reduces higher frequencies, but it increases the chances of finding 
a solution. The associated goal function is denoted by J*( )dnom . Methods and analyses that 
can help in generating input data from historical data, including reduced information such 
as daily minimum and maximum values, are described for instance by Alscher, Krug, and 
Liebig (2001); Jones, Jones, and Hwang (1990); Marsh and Albright (1991a); and Seginer 
and Jenkins (1987).

A solution that is obtained with one of the preliminary assumed input patterns is called an a pri-
ori solution because it can be computed in advance. When needed, the subscript “prior” is used. 
Afterward, when the real weather is known, the problem can be repeated with the actual disturbance 
input as observed. This is called an a posteriori solution. The a posteriori solution represents the 
result that could have been obtained had the true weather been known in advance. When needed, this 
is denoted by the subscript “post.” We denote the pattern obtained with the real weather in as much 
detail as possible, that is, the pattern belonging to Jpost*  according to method 1, the dream pattern. 
This name expresses that it is something to dream of but that it can never be achieved in practice.

5.2.4 C losed-Loop Solution of the Whole Problem

5.2.4.1 O nline Solution by Repeated Optimization
A closed-loop online solution can theoretically be obtained if at time instant t the problem as defined 
by Equations 5.1 through 5.6 is solved again, but now with an estimated initial state and with a mod-
ified expectation of the weather and other observable disturbances. The state is estimated from the 
observation data as given in Equations 4.7 and 4.8. In online applications, sampled data are always 
used; hence, the state estimator has to be cast in sampled data form:

Time update (prediction step before the observation is available):•	

	

ˆ ( ) ˆ( ) ( ), ( ), ( )x x f x d ut tk k

t

t

k

k

−
−

+

=

= + ( )
−

∫1

1

τ τ τ τ
τ

d ,	 (5.16)

	 where tk = t0 + kT, and T is the sampling interval of the observations. Notation ˆ( )x tk
−  

denotes the predicted value at time tk resulting from the state equations before the mea-
surements are available. Remark that for the evaluation of the integral, it is necessary to 
make assumptions on the trajectory of d(t) over the interval (tk–1, tk) and likewise on the 
control u(t).
Measurement update (correction step, once the observation •	 y obs(tk) is available):
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ˆ ( ) ˆ( ) ( ) ( ) ( )x x y yt t t t tk k k k k

+ − −= + −( )K obs ,	 (5.17)

where

	
ˆ( ) ˆ( ), ( ), ( )y g x u dt t t tk k k k

− −= ( )obs .	 (5.18)

In Equation 5.17, a correction is made to the predicted state on the basis of the difference between 
the actual observation and the expected, predicted output at time tk. Note that in the calculation 
of the latter, the actual control input and the actually observed external input are used (assuming, 
for convenience, the same sampling interval for the external inputs as for the system outputs). The 
Kalman gain matrix follows from the Kalman filter design, as mentioned in Chapter 4 (e.g., see 
Lewis, 1986). 

In the equations above, the observations are denoted by y obs. There is a subtle difference between 
the observation data y(t) as generated by the model from the true x, u, and d via output Equation 5.2 
and the actual observation data:

	 y obs(tk) = y(tk) + ε(tk).	 (5.19)

The error ε(tk) contains the effects of errors in the readout function g—usually small—plus mea-
surement noise because of sampling errors and instrument noise. The measurement or sampling 
error ε(tk) must not be confused with the innovation yobs(tk) – y(tk

–) in Equation 5.17. The latter uses 
the model-predicted output because the purpose of the filter is to correct for unknown modeling 
and input errors on the basis of observations. It is not the intention to correct for measurement and 
sampling errors of the output variables themselves. It follows that the state estimator will be better 
if the output observation error can be kept small.

The optimization is now performed by resetting the initial time to the current time, that is, t0 = 
tk, taking as initial condition,

	 x x( ) ( )ˆt tk= + ,	 (5.20)

and minimizing the goal function,

	

J t t t t t Lk

t

t

k

u x z( ), , ( ), ( )f f f d
f

( ) = ( ) + ( )
=

=

∫Φ τ τ
τ

τ

,	 (5.21)

subject to the constraints as before while using as external input the current value plus an actualized 
prediction. In an online situation, it is realistic to use the following input pattern,

	

d

d

d

d( )

( ),
ˆ ( ),

( ),

t

t t t

t t t t h

t t t h

k

k k d

k

=
=

< ≤ +

> +

obs

nom
dd










,	 (5.22)

that is, the observed input is used at actual time, an actualized forecast is used over a forecast inter-
val hd, and beyond that the nominal pattern is used.
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The result of this optimization is a control pattern from current time tk,

	 u*(t),	 tk ≤ t ≤ tf,	   (5.23)

and similarly optimal states and costates. In the implementation, it is usually assumed that the con-
trol is kept constant over a control interval. The applied control is the first calculated value of the 
optimized trajectory, that is, u*(tk).

The goal function value at final time J*(tk, tf) represents in this case the expected costs for the 
time to go and will gradually decrease if final time gets nearer. The a posteriori overall performance 
over the full cultivation time must be computed afterward by running the model with the actually 
applied controls and the actually observed external input values. To be able to do this, these data 
must be kept in store. 

Feedback in this solution is obtained from the resetting of the initial state on the basis of data. 
If, instead of Equation 5.20, x x( ) ˆ( )t tk= −  is used, which is already computable at the previous time 
step, then the time interval (tk–1, tk) minus the time needed to evaluate Equation 5.16 is available to 
complete the optimization. Depending on the complexity of the problem, this may or may not be 
enough. To date, no real online applications of this approach have been reported for the greenhouse 
cultivation problem in the literature, probably because of these computational demands. 

5.2.4.2 O nline Solution by Using Stationarity of the Hamiltonian
The solution of an open-loop problem with nominal weather as outlined in Sections 5.2.2 and 5.2.3 
results in time trajectories of the costates. If it appears that these time trajectories are insensitive to 
the weather, Equation 5.10 together with the state estimate according to Equations 5.16 through 5.18 
and an actually measured weather dobs(tk) provides a closed feedback law, from which the required 
control can be computed without the need for searching an optimization space. If this were pos-
sible, it would be very attractive. The method is also known as tracking the necessary condition of 
optimality (Srinivasan et al. (2003) proposed it for optimal control of batch reactors).

The main difficulty in application to greenhouses is the assumption that the costates will be 
nearly invariant to the weather pattern and the actual state. Although the low frequent crop bio-
mass states probably have costates that are also low frequent, this is most likely not the case for the 
greenhouse states. In a study on nitrate in lettuce, De Graaf (2006) explored the possibilities of the 
necessary condition of optimality method. An analysis was made of the typical open-loop patterns. 
It appears that in that study, during considerably long periods during a day, the controls are at the 
constraints, meaning that Equation 5.10 cannot be used as it does not apply when the controls are at 
the constraints. All that can be said at this stage is that more research is needed to really know the 
limitations and merits of online application (see also Section 9.4.7.3 in Chapter 9).

5.2.5 T ime-Scale Decomposition

Because of widely different time scales in greenhouses, the task of computing the control as 
described in the previous sections can be horrendous. As outlined in Chapter 4, a time-scale 
decomposition is possible (see also Van Henten and Bontsema 2009). In open loop, it reduces the 
computational burden and increases the accuracy. Moreover, in closed loop, it offers ways to limit 
the online computations. It is composed of two steps: offline solution of a slow subproblem as dis-
cussed below in Section 5.2.5.1 and subsequently solving a fast subproblem online with feedback. 
In greenhouse control, the slow subproblem is related to the crop—or, if applicable, to seasonal 
energy storage—whereas the fast subproblem is related to the greenhouse dynamics, including 
crop evapotranspiration and photosynthesis. The issue here is, what information is conveyed from 
the offline subproblem to the online problem and in what way? This is the topic of Sections 5.2.5.2 
through 5.2.5.5. 
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5.2.5.1 O ffline Solution of the Slow Subproblem
Repeating Equations 4.23 and 4.24 in slightly different form, the following slow subproblem is 
solved offline, assuming the greenhouse to be pseudostatic:

	
x f x x u ds s s f nom( ) ( ), ( ), ( ), ( )t t t t t= ( ),	 (5.24)

	 0 = f  f(xs(t), xf(t), u(t), dnom(t)).	 (5.25)

The original dynamics of the greenhouse Equation 4.15 acts as a filter that filters out very high 
frequencies, whereas Equation 5.25 has no filtering properties. Therefore, in evaluating Equation 
5.25, smooth input signals must be used, as otherwise one would get unrealistic high frequencies in 
the fast system states. Often, smoothed nominal inputs dnom derived from historical data are used, 
as discussed in Section 5.2.3.

The result of the calculation are optimal controls, slow states, and costates, that is,

	 u x*( ), ( ), ( ),s* s*t t t t t tλλ 0 ≤ ≤ f,	 (5.26)

where the overbar denotes that the solution is approximate compared with the full solution. For 
simplicity, it will be left out in the sequel. In addition to Equation 5.26, we have an output equation 
that calculates observation variables according to

	
y g x x u d*( ) ( ), ( ), * ( ), ( )s*t t t t t= ( )f* nom ,	 (5.27)

where xf*(t) is obtained by solving

	 0 = f x x u df s* f*( ( ), ( ), * ( ), ( ))t t t tnom .	 (5.28)

Similarly, it would be possible to compute the optimal trajectory of variables of interest:

	
z h x x u d*( ) ( ), , * ( ), ( )s* f*t t t t= ( )nom .	 (5.29)

And finally, also, an a priori expectation of the goal function is obtained, Jnom* (dnom(t), t0, tf).

5.2.5.2 O nline Implementation
From here on, there are two major pathways to achieve a practical online controller. These are as 
follows:

	 1.	Use the output trajectories as setpoint to low-level controllers. This is the usual hierarchi-
cal scheme as encountered in industry, and it is the dominant approach in the greenhouse 
control literature (Section 5.2.5.3).

	 2.	Use the slow costate as shadow prices and repeatedly solve online an optimal control 
problem on the basis of the same economic goal function as used on the level of the slow 
subproblem but over a shorter horizon. This leads to the receding horizon optimal control-
ler (Section 5.2.5.4).
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Both approaches can be seen as hierarchical solutions, in the sense that there is a decoupling between 
offline calculations and online control. Strictly speaking, the term hierarchical should perhaps be 
reserved for the first pathway because the link between activities on the two levels is rather loose, 
and various solutions on each level can be chosen without affecting the main structure. The second 
pathway may be better denoted by the term decomposed, which underlines that the two parts of the 
problem are closely interlinked. In essence, this is caused by the desire to achieve the economically 
best solution; changes in economic goal can be accommodated at both levels in an integrated fash-
ion. We now analyze both solutions in somewhat greater detail.

5.2.5.3 H ierarchical Control, Setpoint Tracking
This approach is inspired by practice in industrial automation, where the calculated optimal output 
trajectories are used as setpoints for low-level controllers (Richalet et al., 1978). The information 
flow is shown in Figure 5.1.

The task of the low-level control system is to adjust the controls such that the offline-calculated 
optimal trajectory yg

sp*( )t , or, in fact, any setpoint yg
sp( )t , is followed while suppressing disturbances. 

This approach has also been proposed for greenhouses (e.g., Arnold, 1988; Challa and Van Straten, 
1991; Markert, 1990; Rodríguez et al., 2008; Reinisch et al., 1989; Schmidt et al., 1987; Sigrimis, 
Arvanitis, and Pasgianos, 2000; Tantau, 1991, 1993; Udink ten Cate, Bot, and Dixhoorn, 1978). In 
the calculation of the optimal trajectory, the greenhouse is nearly always treated as pseudostatic. 
This is based on the assumption that the greenhouse is fast with respect to the seasonal behavior of 
the crop. As the setpoints are computed on the basis of the assumed nominal dnom(t), the low-level 
controller will strive to suppress any effects of deviations caused by the actual d(t). As such, it does 
not exploit the opportunities that might be present in the actual weather. Note that handling the online 
problem by controllers replaces the fast subproblem as formulated earlier by a feedback controller 
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FIGURE 5.1  Hierarchical control. Information transfer via setpoints.
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design problem. By doing so, there may not be an explicit goal function at the lowest level. Rather, 
the controller is designed on the basis of control performance considerations, such as setpoint track-
ing and disturbance rejection. If designed as a multivariable optimal controller, there is a goal func-
tion, but it is a quadratic criterion with no obvious relation to economics. In the hierarchical setup, 
on the low level, there is no obvious link any more to the economic goal function used in the slow 
subproblem. Also, the low-level controller does not exploit the external signals.

It should be noted that the low-level control may itself consist of a layered structure. An inter-
mediate controller may generate setpoints for fast local control loops, such as, for instance, a flow 
controller.

5.2.5.4 R eceding Horizon Optimal Control with Slow Costates as Inputs
A solution that does allow the exploitation of variations in the external weather is the receding 
horizon optimal control presented in Chapter 4. Although the calculated optimal states and controls 
provide useful insight on the nature of the problem, the evolution of the slow costates λs*(t), t0 ≤ t 
≤ tf, is viewed as the main result of the optimization in this integrated solution (Gal, Seginer, and 
Angel, 1984; Ioslovich, Gutman, and Linker, 2009; Seginer, 1989, 2008; Van Henten, 1994; Van 
Henten and Bontsema, 2009; Van Straten, 1999). This is shown in Figure 5.2.

The optimal slow costates λs*(t) are used in the augmented goal function that runs over the 
shorter horizon, as clearly described in Section 4.1.2.2:

	

J t Lf( ) s* f s* s( ( )) ( ), ( ), ( ), ˆ ( ) ( )u x x u d f= ( ) +τ τ τ τ τλλ T xx x u ds*( ), ( ), ( ), ˆ ( )τ τ τ τ τf d( )( )
+

∫
t

t h

k

k

.	 (5.30)
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FIGURE 5.2  Decomposed control. Information transfer via slow costates.
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The meaning of Equation 5.30 becomes more clear by substituting Equation 4.23, leading to

	

J t L
t

t
t

t

k

k

(f) s* f s*
s

( ( )) , , , ˆu x x u d
x= ( ) +







λλ

T d
d

d

++

∫
h

,	 (5.31)

where, for readability, obvious shorthand notation is used. We can see from this equation that a rate 
of change of the slow variables, read the crop, is valued by the slow costates λs*. The costates thus 
act as a kind of instantaneous price for an increase in crop biomass components, and its value may 
vary over the season, as computed from the solution of the slow subproblem. It is also clear from 
Equation 5.31 that the receding horizon uses the short-term forecast of the weather ˆ ( )d t .

The optimal control trajectory from the current time tk until the time at the end of the horizon 
tk + h is usually approximated by a sequence of piecewise constant controls. The first control is 
applied, and at the next sampling instant the computation is repeated. To reduce computation time, 
the control can be parameterized by piecewise constant controls over intervals that are larger than 
the sampling interval of the observational data. Instead of a continuous control function or a large 
number of control values, in this way, it is only necessary to compute a limited number of control 
values. As the computation is repeated at the sampling instances, the actual control pattern still has 
the corresponding finer time resolution.

The online-calculated sequence of a priori short-term goal functions J(f)*(tk), t0 ≤ tk ≤ tf – h, is, 
in general, not equal to the actually realized sequence of short-term goal functions because these 
depend on the real weather. Moreover, as J(f) at any time pertains to a shorter horizon that moves 
in time, it provides no direct information on the value of the goal function that is achieved by 
the receding horizon controller over the full season. The realized goal Jpost

RHOC must be computed 
afterward by a simulation with the control input as actually applied and with weather as actually 
occurred. To be able to do this, these data must have been stored.

The receding horizon controller as presented here can be seen as a kind of model-predictive 
controller (MPC). It should be noted, however, that because of its economics-inspired goal function, 
it is quite different from the standard MPC that uses a quadratic goal function. The latter may pro-
vide good tracking and disturbance rejection but not necessarily good exploitation of opportunities 
offered by the external disturbances. 

As in the case oriented on setpoint tracking (Section 5.2.5.3), the receding horizon controller may 
compute control actuator positions directly, or it may compute setpoints for fast local controllers.

5.2.5.5 E xplaining the Difference: The Sailing Analogy
The difference between the hierarchical scheme with setpoint control and the decomposed scheme 
with receding horizon control and slow costates can be illustrated by the following analogy. Consider 
the sailboat in Figure 5.3.

The goal is to get as fast as possible from point A to point C while rounding the buoy B on star-
board. The first step in both approaches is to make an open-loop calculation of the optimal path 
to sail under the prevailing wind (solid line). In the hierarchical approach using setpoints, this will 
be the path to track online. But will it lead to winning the match? If the wind is as forecasted and 
only small disturbances occur, the answer may be yes, although it becomes somewhat tricky near 
the constraint buoy B. If, on the other hand, the wind is gusty and makes large sweeps, then it is 
quite easy to see that chasing the trajectory is a particularly bad policy and may even be unfeasible. 
Instead, using the receding horizon control, the actual online control balances the achievable fastest 
speed over the near future against the need to get closer to point B and finally to point C. Therefore, 
the result will be better (dashed line). In view of the disturbances, it does not make much sense to be 
worried about the actions to be taken later, so a shorter horizon is justified, provided the long-term 
goal is accommodated by valuing a path that brings the target nearer in the long run. In short, in the 
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presence of large disturbances, it would be wise to exploit the opportunities and to give in when the 
circumstances are unfavorable, just waiting for better times to come.

Because in greenhouse cultivation the disturbances, especially solar radiation, are large, in 
short-term fluctuations as well as in daily averages, we may expect that just keeping a setpoint, for 
example, for temperature, will invoke an economic loss. To avoid this, a controller that preserves the 
economic goal function on each level is very likely achieving the best possible result. One can see 
that instead of suppressing the influence of the disturbance, it is exploited. In addition, because of 
the predictive nature of the receding horizon controller, anticipatory actions are taken in response 
to the weather forecast.

One may wonder about the analogy of the fast lowest level controllers in the sailing case. An 
example of this would be a servo that controls the rudder to take the position commanded by the 
wheel. If well designed and well tuned, such controllers are fast and accurate and might be consid-
ered to be ideal. In some cases, it may, however, be worthwhile to study losses because of the con-
troller dynamics. For instance, in greenhouse heating with a pipe system, one could think of taking 
the pipe temperature as the control input for the glasshouse and leave it to a lower level controller to 
adjust the pipe temperature by manipulating the mixing valve according to the demand. However, 
since there is considerable inertia due to the heat capacity of the pipe system, the assumption of 
instantaneous response in this case can be questioned, and without precautions, there is no guaran-
tee that the commanded pipe temperature can indeed be realized.

An important side remark is in order. In the presence of hard constraints, it may be risky to sail 
the optimal path because if there is a wind gust from a different angle near the constraint, the ship 
may be swept away, potentially resulting in a collision with the buoy or yielding a failed passage 
around the buoy and thus requiring an extra round. To avoid this, a safety margin is needed, at the 
expense of some sacrifice of optimality, to back off from the constraint. In greenhouses, it is well 
known that growers prefer to stay away from high moisture to assure that no condensation takes 
place on the crop, which is seen as a higher risk for fungal diseases, although this policy usually 
costs some energy. Remarkably enough, the aspect of risk avoidance has not been discussed exten-
sively in the literature on optimal greenhouse cultivation so far.

A 

B 

C 

1 

FIGURE 5.3  Optimal trajectories when sailing. Solid line: optimal trajectory with wind indicated by solid 
arrows. Dashed line: new optimal trajectory when at point 1 wind shifts as indicated by the dashed lines.
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5.3 E arlier Surveys of Greenhouse Climate Control Solutions

Before proceeding to a classification along the lines above of proposed greenhouse-crop control 
systems in the literature, we summarize some classifications contained in earlier surveys.

Udink ten Cate and Challa (1984) described the relation between the greenhouse climate and the 
final yield as a hierarchical system. On the basis of loosely defined time scales, they consider three 
different levels: (1) the greenhouse air system; (2) the diurnal crop responses, such as photosynthe-
sis, storage of assimilates, respiration, water status, and evapotranspiration; and (3) crop growth and 
development. Under the assumption that the output of each level is measurable or computable by 
simulation, each can be controlled locally in some optimal way, where the settings or bounds are 
supplied by optimization at the higher level. Older literature is cited, which uses a trade-off between 
averaged expected costs and yield to generate a set of trajectories. These may include trajectories 
of process rates, such as photosynthesis. They may serve as settings for a controller on level 2, 
using measurements of the diurnal crop process rates as input, and instantaneous climate states as 
outputs to serve as settings for controllers at level 1. This approach is coined the speaking plant 
approach. The exact methodology of information transfer is not worked out, and, as the authors say, 
the scheme will lead to suboptimal solutions. Nevertheless, at the time, this was a large improve-
ment over the rule-based heuristic controllers in use so far.

In an article emerging from his earlier work on dynamic optimization of crop growth, Seginer 
(1993) divided the literature into four classes. The classes distinguished are (1) expert systems or 
rule-based systems, (2) exploiting crop integration capacity, (3) instantaneous optimization, and 
(4) seasonal optimization. In classes 1 and 3, no information about the future is required in con-
trast to classes 2 and 4, where an assumption about the future daily or seasonal weather is needed. 
An explicit crop model is used in classes 3 and 4 only. Table 5.1 summarizes this.

In all cases, it is in effect assumed that there exist sufficiently fast low-level controllers that can 
realize the computed climate air conditions.

In passing, it is interesting to note that Seginer (1993) showed on the basis of simple exam-
ples and using a pseudostatic greenhouse how classes 2–4 can all be cast in the framework of the 
Hamiltonian methodology. In all these examples, the costate associated with the crop—be it the 
temperature integral, the development stage, or the biomass—plays a central role.

Albright et al. (2001) confronted the current state of greenhouse-crop cultivation with the needs 
of growing plants in space. They too started from a hierarchical decomposition, following Van 
Henten (1994), who adapted the general industrial scheme of Richalet et al. (1978) to the greenhouse 
industry. Level 0 refers to the actuators (with time scales measured in seconds), level 1 refers to the 
greenhouse climate (with time scales measured in minutes), and level 2 deals with crop growth and 
production (ranging from hours to weeks). The third level refers to decisions regarding produc-
tion space, type of crops grown, and timing, which is relevant on the scale of a growing season or 
year. This level concerns business decisions by the grower and is not considered part of the control 
system. Partial solutions for each level as found in the literature are briefly reviewed, such as time-
based operation, switching control systems, local P and PI loops, and model-based control. The 

TABLE 5.1
Categories of Crop Cultivation Optimization

Future Information Explicit Crop Model

No Yes

No Expert systems; rules Instantaneous optimization

Yes Crop integration Seasonal optimization

Source: Based on Seginer, I., Acta Horticult., 328, 79, 1993.
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second large group concerns supervisory control, which integrates the current time, the midrange, 
and the longer time horizon. In the midrange, solutions that make use of the integrative capacity of 
the crop are discussed, and integrating knowledge-based control examples that try to make a link 
between long-term and current control are also reviewed.

The status of greenhouse climate control in China has been reviewed by Ding et al. (2009). Most 
research and development efforts have been directed to the hardware, such as programmable logic 
controllers (PLCs), microcontrollers, and (wireless) sensor networks, and to the performance of 
low-level control loops. The need for a development toward economic optimization on the basis of 
knowledge of the greenhouse and crop behavior is well recognized, but this goal is considered not 
easy to achieve.

5.4 �C lassification of Proposed Greenhouse 
Climate Control Solutions

On the basis of the overview of the optimal control methodology above, we are now ready to classify 
the various contributions proposed in the literature. We used the hierarchy or decomposition in two 
levels as the major guideline. The following major categories are distinguished.

	 1.	References that focus on the fast time scales, that is, online control of the greenhouse cli-
mate. This approach is related but not necessarily equal to the fast subproblem in optimal 
control. A major distinction in this class is between
a.	 Realizing specified climate conditions (settings or setpoints)
b.	 Accommodating the integrator capacity of the crop
c.	 Controlling fast crop processes

	 2.	References that focus on the slow time scale, that is, generating control strategies moti-
vated by the behavior of the crop. This approach is related but not necessarily equal to the 
slow subproblem in optimal control. A major distinction in this class is between
a.	 Solutions that use simple strategies or expert judgment
b.	 Solutions based on dynamic optimization

	 3.	References that discuss both levels in an integrated fashion. This approach is related but 
not equal to the full-fledged optimal control problem. The subclasses here are
a.	 System integration based on reasoning, for example, expert systems
b.	 Hierarchical control based on setpoints
c.	 Truly integrated optimal or near-optimal control

In categories 3b and 3c, only references are discussed where implementation issues of the integra-
tion are discussed. Otherwise, as the slow and fast problems can be separated, they are mentioned 
under categories 1a and 2b.

In each category, there are many variants that depend on (1) the degree to which the solution 
accommodates or exploits common attributes of greenhouse-crop cultivation systems, (2) the dif-
ferences in situation, for example, type of crop grown or economic constraints, and (3) the differ-
ences in methodology (model type, optimization method). A brief overview of these variants is 
given in the succeeding paragraphs as a reference, but we did not use these as the basis of catego-
rizing the literature because they are less generic than the classification adopted in the previous 
paragraphs.

Differences by Attributes

The greenhouse system is multivariable. Some investigations deal with partial control •	
solutions for separate variables, for example, temperature, CO2, or humidity, whereas oth-
ers take interactions into account.
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Important external inputs can be monitored by automatic sensors. This allows feed-•	
forward compensation. Some articles only discuss pure feedback, whereas others involve 
feed-forward compensation as well.
External inputs can be forecasted over short horizons. Solutions may or may not anticipate •	
future weather.
Most physical variables in the greenhouse are monitored. Most references do not consider •	
state estimation because the physical states can be often reconstructed directly from the 
measurements by inverting the algebraic output equation. Other approaches have expanded 
state variables for which no direct measurements are available, or they take measurement 
and modeling error into account to reconstruct the state. Although it is easy to obtain 
feedback from the greenhouse variables, the situation is less favorable regarding the crop. 
There are developments toward direct measurement of plant process rates, such as evapo-
transpiration or photosynthesis, but it is less easy to obtain useful information from the 
canopy.
The solar radiation is an external disturbance input and a resource at the same time. A •	
standard control view is to suppress the effect of variations in solar radiation on internal 
climate as opposed to solutions that try to exploit the variability.
There are time-varying constraints on the effect of actuators. Actuator constraints are •	
common, for example, maximum window opening. However, when the ventilation rate 
is seen as the control, its maximum is not known as it depends on both the window aper-
ture and the wind speed. This issue has to do with the choice of the system boundary. For 
instance, the tube temperature rather than the heating valve can be seen as the input. In 
that case, the attainable maximum value is state dependent because it depends on the heat 
exchange rate with the greenhouse air.
There are physically determined time-varying and interacting state constraints. The achiev-•	
able temperature and moisture content in the greenhouse cannot be chosen freely because 
they are constrained by actuation limits and by saturation bounds dictated by saturation 
laws (Albright et al., 2001; Pasgianos et al., 2003; Takakura, 1974). This is relevant in con-
trol solutions that use greenhouse climate setpoints.

Situational Differences

Crop type. There is a large variety in crop types in greenhouse cultivation that can have a •	
profound effect on the type of solutions found. Important differences can be noted between 
single harvest crops, for example, seedlings, lettuce, flowers, and pot plants, and multiple 
harvest crops, for example, tomato, sweet pepper, and cucumber. These differences lead to 
differences in goal functions because there is a value to be summed or integrated during 
the cultivation in the multiple harvest crop, whereas there is a value only to the final state 
in the single harvest crop. The value of a crop may be from the whole plant (seedlings, 
lettuce, and pot plants) or from a part of the crop only (flowers, fruits, or even roots). The 
latter usually requires more elaborate models.
Economic conditions. Proposed control solutions differ with respect to the control objec-•	
tives. In solutions that focus on the greenhouse, the control objectives can be to minimize 
violation of user set bounds, to minimize controlled output error, to minimize sum of 
control effort and controlled output error, to minimize control effort within user set state 
conditions, and to minimize bound violations of integrated variables over time.

		  In solutions that focus on the crop, objectives can be to maximize yield or photosyn-
thetic rate or to optimize by trading off between yield benefits and instantaneous expected 
costs. The full-fledged optimal solutions try to maximize economic profit by trading off 
between expected long-term crop yield and integrated costs. Also, there may be different 
ways of dealing with constraints: hard constraints or soft constraints, where violation is 
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translated in equivalent costs. Attention for other attributes of the ultimate control meth-
odology is also causing differences, such as robustness, risk, ease of implementation, and 
information exchange with the grower.
Greenhouse layout and design. It is clear that the available equipment and the greenhouse •	
layout also yield differences in the actual outcome. In particular, the presence of short- 
and long-term heat storage devices, units for cogeneration of heat and electricity, lighting 
equipment, sprinklers, or fogging units, air coolers, and heat pumps have a profound effect 
on the type of solutions and the ultimate economic result.

Differences by Methodology Used

Further time-scale decompositions. Within the major time scales, a further distinction is •	
often made. For instance, the heating pipe system has its own local controller, thus sup-
pressing the influence of boiler temperature fluctuations, whereas the setpoint is generated 
by the greenhouse climate, thus leading to cascade control. Other examples are local flow 
controllers for heat exchangers.
Model types. Another distinction that can be made is between the design stage and the •	
actual implementation stage of a control system. In the design stage, almost always some 
kind of model is used. Design models can be of various types—for example, transfer func-
tion models, discrete time recursive models, mechanistic differential equations, and so 
forth. In the implementation, the actual controller may or may not contain the model. Ideal 
for implementation is a control law in closed form; that is, the actual control action is com-
puted from an algebraic relation between known variables. The model used for the design 
is not in the controller, but its influence is expressed in the controller parameters. In other 
solutions, such as receding horizon optimal control, the model is used online as well. 
Optimization method. There are references where a solution of the control problem is •	
offered without optimization. Others use optimization but differ in the solution method. 
In particular, it is relevant in the current discussion to distinguish between the use of 
Pontryagin’s maximum principle/Hamiltonian approach, which naturally yields costates, 
and optimization methods that do not use this methodology. Even in the latter case, costates 
can always be computed afterward, although we did not find references where this is in 
fact done.
Suboptimal approximate solutions. In fact, all solutions are suboptimal with respect to •	
the dream pattern, but some authors have been looking on purpose for approximate solu-
tions to avoid excessive online computations or for other reasons, for example, mainte-
nance of models. These suboptimal approximate solutions form another class that can be 
distinguished.

5.4.1  Focus on Feedback Control of Fast Greenhouse and Fast Crop Subsystems

5.4.1.1  General Overview 
The idea of feedback control is to maintain or satisfy given conditions that are supposed to be favor-
able to the crop. Pure single loop feedback control is rare in greenhouse climate control, as there is 
no clear-cut connection between the variables to be controlled and the available actuators. The win-
dows, for instance, are used for both temperature control and humidity control. Conversely, modi-
fying the temperature by heating also affects the relative humidity. Moreover, operational control 
constraints are often hit. Nevertheless, properly designed multivariable feedback/feed-forward con-
trollers are relevant in a hierarchical setup, where the slow subproblem is used to compute desired 
state trajectories. The realization of these desired trajectories can then be done with standard con-
trol objectives, such as minimizing integral squared error.
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Acceptable operational ranges or setpoints vary over time, most notably between day and night. 
Often, in a real-climate computer, these curves and bounds are defined by a number of defini-
tion points called settings. To the controller, it is immaterial how the settings are derived. In daily 
practice, the settings are often chosen heuristically by the grower on the basis of extension service 
advice, his own experience, and/or his visual observation of the crop status. Research by experimen-
tal stations has been directed to the improvement of climate trajectories and has led to an impressive 
set of “blueprints” for many crops. Settings or setpoint trajectories may also originate from seasonal 
optimizations, that is, the solution of the slow subproblem. 

In the realization of the desired trajectories by the controller, there is no trade-off between ben-
efits from selling the crop and operational costs. In this approach, the problem is reduced to a con-
troller design problem. Hence, the full machinery of controller design theory can be used to design 
a controller.

Because the crop is not part of the control system, the economic result depends to a large extent 
on how the settings are chosen. Unless additional tools are provided, such as simulation aids or bal-
ance calculations, there is no clue about the extent of effects of settings changes.

5.4.1.2 R ealizing a Given Greenhouse Climate
5.4.1.2.1  PI Control
Early designs of PI control on the basis of transfer function models have been described, for exam-
ple, by Udink ten Cate (1987). In principle, transfer function descriptions can be obtained from 
experimentation. The theory assumes linearity. In commercial nurseries, P or PI control is com-
monly used in the control of greenhouse heating pipe temperature, which is part of cascade control 
of greenhouse air temperature. Nonlinear response behavior can be tackled by adjusting the con-
troller gain to the actual operation point, known as gain scheduling. A recent example in relation to 
event-based sampling and wireless sensor networks is described by Pawlowski et al. (2009). 

5.4.1.2.2  Forward Compensation, Pseudoderivative Feedback
Using models, it is also possible to provide feed-forward compensation (e.g., see Udink ten Cate, 
1987). This requires the measurement of external inputs to be able to cancel their effects in advance. 
Static compensation of heat load by solar input can be achieved by turning the heater down. In prac-
tice, the inertia of the actuator system has to be taken into account. To cope with this and also with 
time delays in the loop, pseudoderivative feedback with load compensation has been proposed by 
Setiawan, Albright, and Phelan (2000).

5.4.1.2.3  Decoupling and Feedback Linearization
The design of feed-forward/feedback controller relies on linear models. Boulard and Baille (1993) 
linearized the heat and vapor balances to obtain linearized equations that allow the taking into 
account of the coupling between these systems because of ventilation and fogging. Decoupling 
between temperature and CO2 loops was achieved by Linker, Gutman, and Seginer (1999), where 
temperature is controlled in a loop with the ventilation, and the CO2 loop is conditional on the 
achieved ventilation rate. 

The greenhouse dynamics is bilinear with respect to the ventilation rate as control. By writing 
the (scalar) system in the mixed linear/nonlinear control affine form,

	
x ax f x b x u= + +( ) ( ) ,	 (5.32)

and by defining a virtual model-based control u′ via

	
u

u f x

b x
b x= ′ − ≠( )

( )
, ( ) 0,	 (5.33)
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a system is obtained that is linear in the virtual control, and any linear controller design methodol-
ogy can be used. This method was proposed by Berenguel et al. (2006) for ventilation control. A 
multivariable case including psychometric constraints was presented by Pasgianos et al. (2003). 
They also give an extensive account on coupling issues and constraints related to the psychometric 
properties. The same treatment can also be found in the study of Albright et al. (2001).

5.4.1.2.4  State or Output Feedback Multivariable Control
A state feedback controller takes the closed form, in discrete time, of

	 δu(tk) = –Kδx(tk),	 (5.34)

where δx(tk) = x(tk) – xref(tk) and δu(tk) = u(tk) – uref(tk) are deviation variables from a trajectory that 
satisfies the state equation x f x u dref ref ref ref( , , )= , and K is a gain matrix. The gain matrix follows 
from the minimization of a quadratic goal function in conjunction with a linear state space system 
model (Kwakernaak and Sivan, 1972). Often, in practice, a stationary reference state is taken, equal 
to the nominal setpoint, leading to an implicit function from which an associated required station-
ary reference input can be selected under an assumed mean value of the external input. The correct 
selection of reference values is a much ignored issue in the control literature at large. However, by 
implementing 5.34 in incremental form and by ignoring changes in reference values over a control 
interval, the reference trajectories are not explicitly appearing anymore, that is,

	 u(tk+1) = u(tk) – K(x(tk+1) – x(tk)).	 (5.35)

The gain matrix K can be designed by pole placement of the closed loop, which gives the closed-
loop response a particular dynamics, or by minimizing a quadratic error (linear quadratic designs). 
Such designs require linear or linearized models of the system. An application to greenhouse con-
trol was proposed by Van Henten (1989).

Equation 5.34 is based on the availability of the states. These have to be reconstructed from 
data. In most greenhouse applications, the reconstruction is rather straightforward as states or state-
related outputs are measured. However, this assumes that the measurements are reliable representa-
tives of the true states. Because spatial effects can be quite important, sensor information from a 
specific location may not be sufficiently representative for spatially averaged variables in a lumped 
model. Therefore, state reconstructors have also been proposed for greenhouse control, such as the 
reference quoted by Piñón et al. (2005) and Speetjens, Stigter, and Van Straten (2009).

A special case is constituted by the so-called true digital control design philosophy discussed in 
the next section.

5.4.1.2.5  Proportional-Integral-Plus Control
A special class of PI controllers derives from the true digital control philosophy originating from 
Young et al. (1987). These so-called proportional-integral-plus controller designs start from the idea 
that in a digital controller, such as encountered in the current industry, it is attractive to set up the 
input–output models directly in sampled data space; that is, the model is formulated as a discrete 
time autoregressive moving average model of the form

	

y k a y k a y k a y k n

b u k b

n( ) ( ) ( ) . . . ( )

( )

= − + − + + −

+ − +

1 2

1 2

1 2

1 uu k b u k mm( ) . . . ( )− + + −2 ,	 (5.36)

where u and y are defined as deviation variables. Next, a state vector is defined as

	
x( ) ( ) ( ) ( ) ( ) ( ) ( )k y k y k y k n u k u k m z k= − − + − − +



1 1 1 1 

,	 (5.37)
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where z(k) is an integral of error term 

	 z(k) = z(k – 1) + (yd(k) – y(k)),	 (5.38)

with yd(k) as the reference value. This term is provided to cope with offsets because of load varia-
tions, as is also customary in ordinary PI controllers. A load variation arises if the external input 
deviates from the external input assumed in deriving the nominal operation point. Note that the 
external input is not appearing in Equation 5.36 but is contained in the derivation of the operating 
point with respect to which the deviation variables are defined. Because a nonzero external input 
deviation requires a nonzero control effort to keep the controlled state at the nominal zero point, 
integral action is needed.

Next, using Equations 5.37 and 5.38, Equation 5.36 can be written in nonminimal state space 
form as

	 x(k) = Fx(k – 1) + gu(k – 1) + hyd(k),	 (5.39)

where the matrix F and the vectors g and h follow easily by equating Equations 5.36 through 5.39. 
They are composed of the coefficients of Equation 5.36.

The controller then follows as a standard state feedback controller

	 u(k) = –Kx(k).	 (5.40)

The gain vector K can be chosen by pole placement or by applying a linear quadratic optimization.
This approach has been applied to a scale model of the nutrient film technique (Young, Tych, 

and Chotai, 1991), to the free air carbon dioxide enrichment systems (Lees et al., 1998), and to the 
carbon dioxide enrichment in open top chambers (Taylor et al., 2000). Young et al. (1994) described 
an application for greenhouse temperature control and a multivariable expansion to control relative 
humidity and CO2 as well. Preliminary results were reported, which show that relative humidity can 
be controlled within ±3 percent and temperature to within ±0.5°C.

5.4.1.2.6  Robust Control
Robust control aims at designing controllers that maintain certain properties, most notably stabil-
ity and to some extent performance, under deviations from the design model. The application of 
the robust control design philosophy (e.g., see Morari and Zafiriou, 1989) has also been proposed 
for greenhouses (Bennis et al., 2008). The designer must set the expected uncertainty bounds in 
the system’s responses in the frequency domain, or alternatively, the parameter uncertainty may be 
formulated explicitly (Linker, Gutman, and Seginer, 1999). The controller is intended to work in a 
stable fashion over a wide range of actual operation points, but such designs tend to be conservative, 
especially in situations like a greenhouse, where variability in external inputs can be exploited.

5.4.1.2.7  Adaptive Control
Another answer to uncertainty in greenhouse modeling is provided by various adaptive control 
philosophies (Aström and Wittenmark, 1994). In this case, adjustments are made either directly to 
the controller parameters or indirectly by adjusting parameters of the system model that is used to 
achieve the controller. An example of an adaptive temperature controller was presented by Arvanitis, 
Paraskevopoulos, and Vernardos (2000), where a pole-placement technique is used in a linear 
quadratic (LQ) setting on the basis of multirate recursive parameter estimation. Also, Rodríguez 
et al. (2008) referred to adaptive controller designs. Online parameter estimation on the basis of an 
extended Kalman filter for an adaptive optimal controller in a novel water recovering greenhouse in 
semiarid regions was reported by Speetjens (2008).
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5.4.1.2.8  Model-Predictive Control
MPCs have gained quite some popularity in the chemical industry. The basics go back to Richalet 
et al. (1978). The idea is to use models to predict the future time course of the variable to be con-
trolled and then compute the time trajectory of the control that minimizes a weighted sum between 
the quadratic difference of the output from a reference trajectory and a quadratic measure of the 
differential control effort. In discrete time, the goal function to be minimized at each actual discrete 
time instant tk is

	

J u t u t y t y t u tk k M j j( ), . . . , ( ) ˆ( ) ( ) (+ −( ) = −( ) +1

2
ref β∆ jj

j k

k N

)2

1







= +

+

∑ ,	 (5.41)

where M < N is the control horizon, N is the prediction horizon, ˆ( )y t j  is the predicted output at future 
times tj, yref(tj) is a desired reference trajectory, and Δu(tj) = u(tj) – u(tj–1) is the control move. The 
factor β is a design parameter that weighs the relative importance of tracking error versus control 
effort.

The MPC problem can be solved explicitly—thus leading to a closed feedback control law—if 
the model is cast in a control autoregressive integrative moving average form (e.g., see Camacho and 
Bordons, 1995). MPC can be seen as a special case of optimal control, where the goal function has 
the quadratic form of Equation 5.41. It provides solutions that are optimal from the point of view 
of control performance, but this is not necessarily optimal in an economic sense. Conversely, the 
receding horizon control introduced in Section 5.2.5.4 can be seen as a special case of an MPC, if 
one refrains from the rather restrictive custom to reserve the term MPC for the quadratic goal case.

One interesting property of MPC is that it can easily deal with constraints on inputs and outputs 
(Maciejowski, 2002). Often, in that case, no closed solutions can be found anymore, thus introducing 
the need for online optimization. The implementation of MPC is nearly always in a receding hori-
zon fashion, where the prediction horizon is taken sufficiently far away to make sure that transient 
effects due to the control are leveled out.

Because MPC is a universal and flexible multivariable controller, its use has also been proposed 
for greenhouses. An early application, without using the term MPC, was performed by Diezemann 
et al. (1986). They used a static optimization at the top level, with time-series crop models and 
generated smooth weather, to obtain the setpoint trajectory. MPC is used to calculate the controls, 
which themselves may be setpoints for low-level PI controllers. More recent applications have been 
reported by Berenguel et al. (2006), Blasco et al. (2007), El Ghoumari, Tantau, and Serrano (2005), 
Piñón et al. (2005), and Ramírez-Arias et al. (2005).

5.4.1.3 C ontrol of Greenhouse Climate within Operational Bounds

5.4.1.3.1  Heuristic Solutions
Basically, most commercial control solutions are heuristic. The design of the actual control loops 
varies greatly. Historically, control loops were set up as separate loops for temperature and humid-
ity, but because the actuators for these variables partly coincide, for example, window opening 
for both ventilation and cooling, heuristic solutions are needed to prioritize the operation of the 
ventilators for either temperature or humidity control. An example of this type of control action 
can be found in the book of Bakker et al. (1995). Other heuristic additions were made, for example, 
incrementing the window opening under high radiation. The effect of this is that the temperature in 
the greenhouse is allowed to be higher and that there is more ventilation. From what we know about 
the behavior of the crop, this makes sense: with more solar radiation, there is more evapotranspi-
ration and also more photosynthesis. The latter calls for a faster rate of conversion of assimilates 
into structural biomass, which is achieved by a higher temperature. The degree of action is entirely 
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determined by the grower and depends on his experience. In passing, we note that an optimal con-
trol scheme with a correct crop biomass model would automatically render this behavior, without 
the need for grower interaction.

5.4.1.3.2  Multiobjective Controllers
Xu, Hu, and Zhu (2009) pointed out that control within operational bounds can in fact be seen as 
a multiobjective optimization problem. They argue that the operation of the heating, fogging, and 
ventilation controls is associated to costs and that each needs to be minimized while maintaining 
favorable conditions for the crop. The latter is achieved by constraints on the states. The cost func-
tions for each are taken as quadratic functions. Minimization with an evolutionary algorithm within 
the predefined constraint region leads to a Pareto optimal front. They then propose to pick from 
this front the control that has the lowest energy cost. The method, coined multiobjective compatible 
control, has been evaluated in simulation for piecewise constant control intervals of 15 minutes over 
a prediction horizon up to 75 minutes. Control intervals of twenty minutes with a prediction horizon 
up to 80 minutes in a similar approach were used by Hu, Xu, and Hu (2009). Here, the authors mini-
mize a quadratic difference from a desired temperature and moisture content, separately, and from 
the resulting Pareto front, they take the sum of the quadratic input costs to select. The idea to see the 
greenhouse control problem as a multiobjective control has also been developed by Zhang (2008) 
as a case to illustrate a general algorithm based on analogy with the immune system, coined mul-
tiobjective immune algorithm. Simple discrete time models are used to describe the temperature, 
CO2, and crop biomass inside the greenhouse in response to the controls and external conditions. 
Moisture effects are not considered. The external conditions are modeled by sinusoidal patterns 
with an additive random component. The multiple objectives are to maximize monetary value of the 
crop and to minimize heating and CO2 costs within a constrained domain over a specific horizon. 
At each control step, the algorithm computes a Pareto optimal front, but as only one actual control 
can be applied, in the end it is necessary to use a decision rule to obtain one single implementable 
control vector. In the presented case, the sum of the instantaneous monetary value of crop minus the 
heating and CO2 costs was taken. Unfortunately, no comparison was made with standard optimal 
control, and the benefits of multiobjective control over standard optimal control with a single goal 
function were not discussed.

5.4.1.4  Greenhouse Climate Control with Cost Minimization
Although economics is often given as motive to design the advanced controllers described in the 
previous sections, economics is not explicitly included, and there is no guarantee that the economi-
cally best result is indeed achieved. Instead of designing the controller on the basis of pure control 
criteria, control solutions have been proposed, where the controller does have an economic goal 
function. The overall structure of this approach is illustrated in Figure 5.4.

5.4.1.4.1  Minimizing Costs within Operational Bounds
Basically, in this approach, a new optimal control problem is formulated, with crop demands as 
constraints and cost of energy and other resources as part of the goal function. There are no states 
associated with the crop. Some authors use the Hamiltonian approach to solve the resulting opti-
mization problem. The usual way of thinking is to try to save energy (Bailey and Seginer, 1989; 
Marsh and Albright, 1991b) or to minimize CO2 costs (Challa and Schapendonk, 1986; Ioslovich 
et al., 1995; Seginer et al., 1986), that is, to minimize costs while satisfying conditions related to 
crop yield. The long-term crop aspects are covered by blueprints and the like. Gutman et al. (1993), 
building on Seginer (1988), used the Hamiltonian approach to strive for minimization of heating 
costs by exploiting deviations allowed from the standard blueprints expressed in temperature sums 
on the basis of perfect weather conditions. The result is a nonlinear MPC. Assuming that a value 
is attached to the photosynthetic rate, Trigui, Barrington, and Gauthier (2001) proposed to use the 
Hamiltonian approach to optimize a short-term goal function with costates for the fast variables.
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Partial or approximate solutions are summarized in the paragraphs that follow.

5.4.1.4.2  CO2 Enrichment
As photosynthesis rate depends on CO2 and usual ambient concentrations are well below photo
synthetic saturation levels, an idea to raise crop productivity that has been around for a long time is 
to increase the CO2 concentration in the greenhouse (e.g., see Wittwer and Robb, 1964). An early 
heuristic automatic controller was described by Harper, Mitchell, and Pallas (1979), who based the 
strategy on ambient light level and internal greenhouse temperature. A method to supplement the 
CO2 concentration to ambient levels on the basis of predictions by crop models and greenhouse 
balance equations was described by Kläring et al. (2007). These methods do not use any economic 
optimization. In the 1980s, publications appear that balance costs of CO2 production against an 
assumed value of photosynthetic rate. Initially, instantaneous optimization is used, for example, 
Challa and Schapendonk (1986), who used numerical procedures to find the optimum, or Critten 
(1991), who based the optimization on analytical expressions. An implementation experiment was 
reported by Van Meurs and Van Henten (1994). Ferentinos, Albright, and Ramani (2000), who were 
interested in producing a fixed lettuce head in a fixed amount of time, tried to trade off the cost of 
daily supplementary light against CO2 dosage cost, which is essentially based on the idea that less 
light can be to some degree compensated by more CO2. The desired daily CO2 concentration is com-
puted on the basis of an empirical model that relates it to the target daily light integral. An online 
procedure on the basis of an hourly iterative calculation that maximizes the margin between crop 
values—derived from the actual photosynthetic rate—and CO2 cost for pure CO2 dosage under the 
prevailing weather conditions was presented by Chalabi et al. (2002a).

The use of more advanced optimization theory in CO2 enrichment was reviewed by Chalabi 
(1992), who exploited the integration capacity of the crop (see below). An analytical expression for 
the CO2 setpoint is derived, which depends directly on the actual ventilation rate and further on the 
past history of the CO2 concentration and the light. The analysis unites earlier attempts in the litera-
ture, which either hinged on the assumption of full canopy closure or on the requirement to reach 
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FIGURE 5.4  Hierarchical control with focus on running cost minimization.
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a fixed final state. Only in the case of full canopy closure, the optimal strategy does not depend on 
the past history. 

If flue gas is used for CO2 production, there is a coupling between heat generation and CO2 pro-
duction, and because CO2 is needed during the day and heat mainly during the night, this has led 
in practice to the introduction of heat storage tanks to break the coupling between the two controls 
CO2 supply and heat supply. The increased number of degrees of freedom, thanks to this techno-
logical development, was reported to tremendously increase the economic return of the nursery 
(Chalabi et al., 2002b; Vermeulen, 1989).

Ioslovich et al. (1995) described CO2 enrichment on the basis of optimal control methodology 
for greenhouses in hot areas, where suboptimal solutions are offered to realize online operation of 
CO2 dosage and ventilators.

5.4.1.4.3  Temperature Integral
In the approaches above, information or beliefs on what is good for the crop are expressed in set-
tings or bounds for the state or output variables of the system. Another approach assumes that the 
requirements of the crop can be expressed in terms of integrals over time. This idea goes back to 
the observation that in open field crops the development is quite well described by the concept of 
degree-days. In other words, maintaining a temperature integral over a period, say, one or a few 
days, is considered to create correct conditions for the crop. This boils down to striving for a mean 
temperature, without tight control of the actual temperature. Lower values can be compensated by 
higher values at a later time, which then can be used to achieve cost savings. Experimental evidence 
of temperature integration in case of a greenhouse tomato crop was provided, among others, by De 
Koning (1990) and Hurd and Graves (1984).

Bailey and Chalabi (1994) described shifting some of the heating during the day to periods with 
low wind—and hence less heat loss to the environment—while maintaining a temperature integral. 
On the basis of this, Chalabi, Bailey, and Wilkinson (1996) published an algorithm to achieve a run-
ning twenty-four-hour temperature integral within constraints set by the grower using weather fore-
casts received daily. In the same class belongs optimal use of daily heat storage buffers, which allow 
the decoupling of heat demand from heat supply and flue gas CO2 use (e.g., see Chalabi et al., 2002b). 
Other studies on minimizing resources with temperature integration were reported by Körner and 
Challa (2003a, 2003b), Lacroix (1999), and Sigrimis, Anastasiou, and Rerras (2000). Gutman et al. 
(1993) described a solution to control the temperature integral over a limited 96-hour horizon within 
predefined bounds while minimizing heating costs in a situation without humidity constraints. The 
problem was solved with linear programming, but the article also contains an in-depth analysis of 
the solution using costates and Pontryagin’s maximum principle. Seginer, Gary, and Tchamitchian 
(1994) presented a detailed analysis for assessing the effects of day and night temperatures on crop 
yield and stated that “deviations from the optimal temperature may often be tolerated, provided that 
the mean temperature is maintained.”

The idea that lower temperatures can be compensated by higher ones later on has led to commer-
cially available controllers. In one Dutch controller available on the market, weather forecasts are 
used in conjunction with a greenhouse climate balance and a calculation of the evapotranspiration 
to compute the most favorable heating temperature trajectory, that is, the trajectory that minimizes 
the heating costs, having the temperature sum over the day as constraint. Another commercial con-
troller does not use forecasts but compensates surpluses or shortages on the next day.

Plant physiology suggests that it is actually important to maintain the source–sink balance, mean-
ing that the desired temperature integral should be increased with higher light sum over a day. This 
happens naturally in an outdoor environment, but it is interesting to note that because of the poor 
control power of practical greenhouses, this behavior occurs more or less inadvertently in green-
houses as well. This observation questions the utility of tight temperature control. A time-averaged 
analysis of crop models on the basis of structural and nonstructural biomass (assimilates) shows that 
balanced growth boils down to assuming that over periods of days there is no net accumulation of 
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nonstructural biomass (Van Straten, 1999). Any time evolution of CO2, temperature, and light that 
keeps the time-integrated growth the same would yield the same biomass. Control of the source–
sink balance is a form of rate control to be discussed later.

It should be mentioned that simple crop models describing biomass dynamics by integrals can-
not describe development aspects. In ornamental crops, there may be effects on stem elongation 
and flowering if the temperature pattern is changed. Such changes can be triggered by switching to 
a regime with higher night than day temperatures, so called negative “difference” (DIF). A strat-
egy that combines more or less heuristic modifications of the playground for cost minimization by 
introducing dynamic bounds taking this into account is worked out for chrysanthemum by Körner 
and Challa (2003a, 2003b, 2003c). 

5.4.1.4.4  Light Integral
A special case arises if the purpose is to produce a crop with predefined properties over a fixed cul-
tivation time at all times during the year despite variation in solar input. Albright, Both, and Chiu 
(2000) discussed this problem, where the idea is to produce a contracted number of lettuce heads 
of a specific weight per unit time. This is achieved by maintaining, at a constant temperature, a 
daily light integral using supplementary lighting, which, in principle, does not require optimization. 
The original strategy is compared with a new strategy on the basis of minimizing the distance to a 
reference trajectory by Seginer, Albright, and Ioslovich (2006), which can be viewed as a setpoint 
tracking controller. As mentioned, an optimization problem results when trading off light integral 
against CO2, as studied by Ferentinos, Albright, and Ramani (2000).

5.4.1.4.5  Thermal Screens
Bailey (1988) and Bailey and Chalabi (1994) briefly described the operation of thermal screens on the 
basis of a trade-off between energy savings versus instantaneous loss of production that is assumed 
proportional to the light intensity reduction. The optimum is obtained by simulation. Seginer and 
Albright (1980) found the break-even point by equating the rate of cost savings of heat loss preven-
tion due to closing the curtains to the rate of cost increase due to prolonged production time. The 
latter includes space occupation as well as potential effects of price changes over the expanded time. 
A simple crop production model is used, which is linear in temperature integral and light integral, 
and the costs are computed from a static energy balance within humidity constraints. 

5.4.1.5 C ontrolling Fast Crop Processes: The “Speaking Plant”
Instead of setpoints or short-term integral values, one could also consider the fast physiological crop 
processes as the variable to be controlled. Then the task of the online controller will be to realize 
predefined rates of, for example, photosynthesis and transpiration. For this approach to work, it is 
necessary to measure these variables, or, alternatively, to reconstruct them from available signals 
using models (soft sensor). Ehret et al. (2001) presented an overview of current crop rate measur-
ing possibilities. The idea of using observed crop processes as the variables to be controlled is also 
known under the name “speaking plant” concept (Udink ten Cate, Bot, and Dixhoorn, 1978). An 
early application was described by Hashimoto (1980), who proposed to use the electrical capaci-
tance of the stem and the leaf temperature as indicators of the short-term plant growth. An interpre-
tation of the concept from different perspectives was given by Hashimoto (1989). The concept has 
received quite some attention in Japan in the frame of the so-called plant factories, where there is 
more control over the environment because of the use of artificial lighting. This is also relevant for 
manned space missions. There is also a tendency to use online monitoring of crop responses as early 
warning systems to detect unintended crop stress conditions (e.g., see Dekock et al., 2006).

5.4.1.5.1  Transpiration Control
Stanghellini and Van Meurs (1992) experimented with a method to keep transpiration of the crop at a 
desired level by manipulating the greenhouse temperature and ventilation rate, arguing that sustaining 
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a “minimal” rate of transpiration is required to prevent the effects of calcium deficiencies such as 
blossom-end rot in tomato. They motivate their work by suggestions made in the plant production 
literature that control of crop processes rather than of environmental variables might be a more direct 
way to prevent unsatisfactory crop development and to satisfy quality requirements. Transpiration 
is calculated from measured variables in the greenhouse using an extensive transpiration model.

Schmidt (1996) presented heuristic control rules in combination with an adaptive model to con-
trol leaf temperature and to keep plant evapotranspiration within specific bounds. For rapid online 
measurement of canopy transpiration, the models were adapted by the measurement of photosyn-
thetic rate and a gas exchange method not further specified. Canopy temperature measurements by 
an infrared sensor were used as a direct indicator of crop behavior in the study of Langton et al. 
(2002). They proposed control strategies on the basis of the difference between canopy temperature 
and air temperature. 

Körner and Challa (2004) described a process-related control method inspired by relative humid-
ity effects on crop state, such as calcium deficiency, plant water stress, and crop-related processes 
such as crop growth, crop development, and airborne fungal diseases (e.g., powdery mildew, chry-
santhemum white rust, and gray mould) on chrysanthemums. Tantau and Lange (2003) also elabo-
rated the idea that control can be used to reduce pesticide use.

5.4.1.5.2  Photosynthesis
An example of a combination of a photosynthetic model with heuristics in determining the online 
operation of the controls is the IntelliGrow system, as described by Aaslyng et al. (2003). The core 
of this system is a table that relates, at each irradiation level, the photosynthesis rate to temperature 
and CO2. At each radiation level, the desired photosynthetic rate is heuristically set equal to 80 
percent of the maximum attainable rate, and next the CO2 and temperature setpoints are selected 
that can be realized with the lowest energy input on the basis of a simple static balance. No specific 
details are given on the role of humidity, perhaps not being too important in the reported applica-
tion, that is, potted roses.

5.4.1.5.3  Assimilate Balance
The principle of maintaining the assimilate source–sink balance was used in a simulation study 
by Elings et al. (2006). An elaborate crop model, applicable to tomato and sweet pepper, is used to 
assess the actual balance between assimilate production, mainly driven by light and CO2, and to 
assimilate consumption by growth, which is mainly temperature driven. The assimilate balance is 
maintained on a daily basis, using the short-term integration capacity of the crop. Results suggest 
that it is indeed advantageous to correlate daily temperature setpoint to light sum. Moreover, the 
freedom to chose a temperature trajectory within the specified integral offers some room for energy 
savings by shifting some of the heating and ventilation to more favorable periods during the day.

Morimoto and Hashimoto (2000) described an attempt to control the instantaneous assimilate 
balance in the production of hydroponic tomato seedlings. The ratio of leaf length and stem diam-
eter, which can both be measured online, is taken as predictor of balanced growth. 

5.4.1.5.4  Rate of Development
On the basis of a model of the effect of light and temperature on the rate of leaf development in 
cucumber, Schapendonk et al. (1984) developed a static optimization scheme to find the cultivation 
temperature under the prevailing light conditions where the marginal benefits from leaf production 
balance the marginal value of energy input.

5.4.2  Focus on Strategies Driven by Slow Crop Processes

The major motivation for approaches in this category is the view that greenhouse cultivation is pri-
marily concerned with producing a valuable crop. The climate control is an instrument to achieve 
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this. Information on the crop is taken into account either by using expert rules (see Section 5.4.3.1) 
or by using crop models. The majority of publications in this category try to minimize the differ-
ence between expected costs and benefits obtained from the crop production. As the focus is on the 
crop, the greenhouse is incorporated only to obtain an estimate of the expected cost of operation. 
The common assumption here is that on the time scale of the crop, the greenhouse dynamics can 
be ignored. This problem is equivalent to the slow subproblem of optimal control. The results of the 
solution of the slow subproblem are often denoted by the term control strategy because it pertains to 
the long term. The issue of how to actually use the strategic information online is left to the control 
engineer. This will be discussed in Sections 5.4.3.2 through 5.4.3.7.

5.4.2.1 A ssessing Economics by Simulation or Local Optimization
If a crop model, a greenhouse model, a control method, and a model for prices and external weather 
are available, it is possible to compute the economic result of various heuristic setpoint strategies by 
simulation. This is the approach taken by Jones, Jones, and Hwang (1990) for tomato. The extensive 
tomato crop model TOMGRO was used. The greenhouse, although calibrated in a dynamic fashion, 
was finally used only to compute the required control fluxes and associated costs to maintain a 
preset setpoint. It was demonstrated how settings for heating temperature (i.e., the temperature level 
below which the heating is switched on) affect the economic result, but no detailed time trajectories 
have been investigated.

One step further is a development described by Marsh and Albright (1991a, 1991b) for production 
of hydroponic lettuce. This entails the calculation of a daytime temperature setpoint for a specific 
day by maximizing the difference between predicted value of the crop at harvest time using a fixed 
temperature (25°C) and nominal daily solar radiation for the remaining part of the season and the 
energy costs for that day. The crop model used was SUCROS, and the calculation of the energy 
costs was based on a simple pseudostatic heat balance for the greenhouse according to the following 
rephrased algorithm during daytime hours, executed for every hour:
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where Tg
sp and To are the greenhouse air setpoint temperature and the outdoor temperature, respec-

tively (K), uq is the heat input from the heater (W m–2[gh]), U U
A

As

= g_o
g_o  is the overall heat trans-

fer coefficient (W m–2[gh] K–1) between greenhouse compartment and outdoor environment with 
respect to the greenhouse projected area As (m2[gh]), b is a positive factor <1 correcting the heat 
input from the sun for evapotranspiration (–), τr is the roof transmissivity (–), I is the solar radiation 
intensity expressed in energy units (W m–2[gh]), qal_g is the heat flux associated with lighting equip-
ment (W m–2[gh]), φg_o

vent is the volumetric flux of air due to ventilation (m3[air] m–2[gh] s–1), and
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p
A

a

s

= ρ
. The superscript “dem” stands for “demand”. The heat demand belonging to the actual 

ambient conditions and the daytime temperature setpoint to be optimized are computed in Equation 
5.42. If negative,  it means there is a need for cooling, which is achieved by opening the venti-
lation windows. If opening the windows can satisfy the temperature setpoint, it is implemented. 
Otherwise, the maximum ventilation is applied, and the temperature goes up beyond the setpoint 
according to Equation 5.44.

This resulting problem is a simple optimization problem with just a single decision variable (day-
time temperature), which is easily found. Note that it is not required to compute future operational 
costs because they are not influenced by the decision for the day. This method has been coined 
as the sequential control search by Seginer and Sher (1993), where the method was applied to the 
tomato model TOMGRO and where also the sensitivity of the method for assumptions about the 
assumed greenhouse temperatures in the future and for future weather was investigated. Although, 
of course, the future costs do depend on the assumed temperature setpoint, the day-by-day optimal 
control decisions appear to be virtually independent of the choice of future setpoints or weather, 
and consequently, the realized objective function is hardly affected by knowledge of the long-term 
weather. A numerical analysis for lettuce in the study of Seginer and McClendon (1992) suggests 
that this simplified sequential control search approach gives about the same state trajectories as the 
whole slow problem.

Optimal selection of a temperature and CO2 concentration out of a set of predefined day/night 
temperature and CO2 setpoints to manage crop cultivation was described by Alscher, Krug, and 
Liebig (2001). An empirical regression type crop model is used, and the economic criterion encom-
passes benefit from selling the crop minus the direct costs and the so-called opportunity costs asso-
ciated with a longer occupation of the greenhouse when the crop lags behind. 

It has to be noted that in all these studies, the effect of humidity control on ventilation and costs 
has not been taken into account. This biases the solutions and the economic result.

5.4.2.2 O ptimal Strategies Using Dynamic Optimization
Seminal articles in this category have been written by Seginer (1980) in cooperation with several 
coauthors. In general, for the purpose of the analysis, very simple crop models are striven for. One 
of the earliest contributions was described by Seginer (1980), which we represent here in slightly 
paraphrased form. To start with, it is assumed that a stage in the development of a crop can approxi-
mately be described by

	

d
d
W
t

G g W= ( ) ( )z ,	 (5.45)

where W is the biomass. G(z) is equal to the relative growth rate as observed in early stages of crop 
growth, where g(W) = W, and to absolute growth rate at mature stages, where g(W) = 1. The vector 
z = [xf(u, d) d]T represents the crop environmental conditions inside the greenhouse, for example, 
temperature, light intensity, and so forth. The desired crop biomass increase is from WA to WB. The 
time needed to realize this increment can be deduced from the equality 
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If the desired biomass increment is fixed and the model is known, the left-hand side is a known con-
stant γ. Hence, any change in greenhouse states expressed in z leads to a different harvest time via 
the right hand side integral. This is supposed to generate costs because of space usage and also can 
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give losses or benefits because of changes in market prices. The latter can be especially significant 
for timely crops, such as carnations for Mother’s Day. We will denote these terminal costs by Φ 
for later use. The net costs (benefits) must be balanced against the cost of operating the equipment, 
which here is assumed to be directly proportional to the corrective fluxes needed to keep the green-
house at the desired trajectory of z(t). This amounts to assuming that the greenhouse is pseudostatic. 
Under further assumptions, the problem can be solved by linear programming, but this has not been 
worked out. A simple example is given for the optimal operation of a thermal screen.

The basic methodology along this line of thoughts has been worked out further by Gal, Seginer, 
and Angel (1984). The greenhouse is modeled by a set of pseudostatic equations:

	 h(xf, u, d) = 0.	 (5.47)

The associated costs are denoted by L(u), and hence the total costs to be minimized by the choice 
of u(t) are given by
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The condition that one wishes to reach, in this case a specific crop increment as given in Equation 
5.46, is handled as a constraint:
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where γ is a constant and where 5.47 is used to eliminate xf. This problem is equivalent to finding the 
control sequence u*(t) that minimizes, at any time tA ≤ t ≤ tB, the Hamiltonian defined by

	 H = L(u(t)) – λG(u(t), d(t)),	 (5.50)

where the termination time tB is determined by
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Although this is a problem with fixed crop increment requirements and variable time, it is perhaps 
the first article that introduces the idea of a Lagrange multiplier in greenhouse climate control, 
which has its equivalent in the dynamic costate of optimal control with fixed final time. It is shown 
that the Lagrange multiplier λ represents the marginal cost worth paying for an additional unit of 
growth rate. A proposal has been made to realize online control on the basis of a strategy that uses 
the optimal Lagrange multiplier. Also, the sensitivity of the solution to permutations in the assumed 
weather is discussed. The proposed control methodology has been applied in a simulation study by 
Seginer et al. (1986) for optimal CO2 enrichment. 

In a later article, Seginer (1989) extended the case of fixed final state and variable final time 
described above and applied it to the optimal cultivation of tomato seedlings, where the separation 
of the crop model (5.45) into the product of mutually independent terms is quite a good approxima-
tion. It was shown that the optimal solution above, that is, the solution that generates control actions 
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to minimize costs at the expense of longer cultivation duration under unfavorable weather, actually 
applies to a situation where production space is not limiting the grower. The level of the product 
market price then does not influence the result—which could be deduced from the fact that Φ does 
not appear in the equivalent optimal problem (Equation 5.49 or 5.50)—although variation in the 
expected final price results in changes in the policy. On the other hand, it was shown that when the 
grower is constrained by area, it makes sense to apply a higher intensity of cultivation, that is, heat-
ing and CO2 dosage, when the market price is higher.

The breakdown of the crop biomass model as a product of a biomass-dependent term and a term 
that solely depends on the greenhouse environmental conditions, as in Equation 5.45, was also the 
basis of a further development for a two-stage crop described by Seginer and Ioslovich (1998), with 
continuous harvest in the second generative stage. In the notation used here, the development can be 
summarized as follows. Let Equation 5.45 now describe the time course of the total biomass, that 
is, the biomass still on the plant plus the biomass already harvested. The accumulated yield at final 
time can formally be described by
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where fF is some function of biomass or time, expressing which fraction of the biomass produced is 
going into fruits. Assume that this has a price pF, then the goal function to be maximized is
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Hence, the associated Hamiltonian is

	 H = λg(W)G(z) + pFfFg(W)G(z) – L(u),	 (5.54)

or by combining terms,

	 H = NG(z) – L(u).	 (5.55)

The term N is called a transformed costate and is defined by comparing Equations 5.54 and 5.55 as

	 N = (λ + pFfF)g(W).	 (5.56)

In the vegetative period, when fF is zero, the transformed costate is the product of the original 
costate λ(t) and the biomass-dependent term g(W(t)), which is associated to leaf area index. It was 
shown that, during this period, N is constant. A constant N implies that the costate itself varies 
(decreases) over time when the canopy closes. This confirms the results found numerically by Van 
Henten (1994) for lettuce. A constant N also implies that when the vegetative biomass does not 
increase anymore (i.e., g(W) ≈ 1), the costate would become more or less constant, depending on 
the fraction of biomass that is allocated to the fruits. The assertion is that the transformed costate, 
being essentially constant, may be a better candidate to transfer long-term information to the daily 
control than the costate itself.

Ioslovich, Gutman, and Linker (2009) expanded the idea to three stages. Tomato growth was 
divided into vegetative, mixed vegetative–generative, and generative stage. As discussed by Seginer 
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and Ioslovich (1998), part of the analysis deals with the transition between stages. Ultimately, the 
transition depends on the number of accumulated effective degree-days (i.e., the integral of the tem-
perature when the temperature reaches values above a threshold). The actual parameters are derived 
from comparison with the calibrated TOMGRO model. The length of the vegetative stage depends 
on the controls but not on the accumulated biomass at the moment that the required effective degree-
days are reached. The end of the mixed period is defined by the maximum amount of vegetative 
mass plus green fruits that can be sustained for the assimilate partitioning function assumed, which 
is different for each stage and is also derived from TOMGRO. Here again, the green biomass at the 
end of the stage does not depend on the controls. Finally, in the reproductive stage, all assimilates 
are allocated to the fruits. This stage ends at the fixed final time. Next, an analytical solution is 
obtained for the seasonal optimal control problem with the aim to maximize the economic yield for 
the grower, using a pseudostatic greenhouse and a constant fixed periodic weather. The solution is 
derived by evaluating the Krotov–Bellman sufficient conditions. This method requires the proposi-
tion of a Krotov–Bellman function for each stage and requires continuity at the stage transitions. 
The authors show that, again, N is constant throughout the growing season. They propose to use 
the optimal N as a basis for online control, but no details are given. The idea was also put forward 
by Seginer (2008), who coins the term cultivation intensity to denote the transformed costate. He 
also shows two examples on how this might be used online to accommodate variable weather or 
inaccurate models.

In the approaches above, there is only one single costate in contrast to the two costates associ-
ated with the leaves and fruits in the study of Van Straten, Van Willigenburg, and Tap (2002), where 
under realistic weather conditions, the values were reported to vary over the season.

The separation of the basic crop model as independent products as in 5.45 was also used by 
Chalabi (1992) for dynamic optimization of CO2 dosage already described earlier.

5.4.2.2.1  Other Studies on the Nature of Costates and Optimal Control Solutions
Seginer et al. (1991) presented costate trajectories for a two-state lettuce crop, where the states are 
biomass and leaf area ratio using smoothed nominal synthetic periodic weather, in a comparative 
study on the effects of approximate optimization schemes. In this study, the effect of various crop 
models and two nonoptimizing strategies on the ultimate economic result in lettuce cultivation was 
evaluated. The problem formulation is, as before, directed to fixed final crop weight and variable 
final time. The costate for leaf area ratio decreases to zero in about ten days, suggesting that in the 
beginning, it makes sense to achieve canopy closure as soon as possible. 

Van Henten (1994) and Van Henten and Bontsema (1991) also computed optimal temperature 
and CO2 trajectories for lettuce cultivation, both with single-state (biomass) or two-state (struc-
tural and nonstructural biomass) crop models. They used long-year smooth averaged daily weather 
patterns as well as actually observed weather as hind-cast weather forecast (cf. Chapter 6). The 
computations showed that the optimal temperature and CO2 profiles with real weather are strongly 
fluctuating as compared with a calculation based on long-year averages, although the trend is simi-
lar. This shows that setpoints generated by open-loop calculations with real weather do not qualify 
as good setpoints for online control. However, it does not mean that solutions where setpoints are 
obtained from smoothed weather will also result in solutions that are much further away from the 
actual posterior optimum. All costate trajectories show a decreasing trend toward zero in about 
twenty days, equally suggesting that initial investment in dry matter production is worthwhile. 
Although not said explicitly, this amounts to on average higher greenhouse temperatures at the 
beginning of the growing season, and lower ones later on, consistent with the findings of Seginer 
et al. (1991). However, as shown by De Graaf (2006) in a study on optimal control of nitrate in let-
tuce, the actual optimal online greenhouse temperatures are fluctuating quite heavily throughout 
the season, as driven by the actual weather, which is also more consistent with the findings of Gal, 
Seginer, and Angel (1984), who stated that the control, that is, the temperature setpoint, should 
depend on the actual weather only. Although this may be the case, the results of Seginer et al. 
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(1991) suggest that—for the particular models and cost evaluations chosen—the ultimate economic 
result in the case of lettuce cultivation is not much different when applying dynamic temperature 
setpoints versus a single, optimized, fixed setpoint. The effect of the cultivation system choice 
on the optimal control policy was studied by Ioslovich and Seginer (2002) for the same case of 
nitrate concentration in lettuce but then assuming constant weather. When it is possible to continu-
ously adjust the spacing, the optimal control policy turns out to be to maintain the canopy density 
constant, with a nonunique alternating temperature and a constant ventilation temperature. With 
constant spacing, the optimal temperature and the nutrient supply theoretically show a bang-bang 
behavior.

The use of a pseudostatic greenhouse assumption in the offline optimization implies that the true 
costs of resource use are an approximation. The rapid adjustment of crop-related fluxes to the actual 
weather, in conjunction with the greenhouse dynamics, leads to changes in the greenhouse climate 
that force the system away from equilibrium. It is likely that trying to follow optimal temperature 
and CO2 settings computed on the basis of assumed weather patterns will lead to the need of large 
control inputs. Hence, the true costs will almost certainly be quite different from those assumed in 
the seasonal optimization. A similar argument applies to the application of static balances. Because 
in reality the greenhouse can only respond to changes in control inputs with some sluggishness, 
the actual patterns will be different from those assumed in the optimization. Ioslovich et al. (1995) 
showed that if a constant optimal control solution exists to the dynamic problem, it is also optimal to 
the static problem obtained by setting the time derivatives equal to zero. However, when the deriva-
tives are nonzero, the existence of a static solution may be questioned. They also show that the opti-
mality of quasi–steady-state approximations degrades as the frequency of the external disturbance 
inputs increases. Some ideas of the sensitivity of the goal function to actual disturbances may also 
be obtained from the study of Trigui, Barrington, and Gauthier (2001). Van Henten (2003) inves-
tigated the sensitivity of the optimal control solution to parameter uncertainties and model errors. 
Both the model description of crop growth and production and the outside climate conditions have 
a strong impact on the performance. Humidity control plays a dominant role in economic optimal 
greenhouse climate management, emphasizing the need for an accurate description of humidity 
effects on crop growth and production. The study revealed that the dynamic response times in the 
greenhouse climate do not seem to be limiting factors for economic optimal greenhouse climate 
control. A study by Tap et al. (1993) suggests that it is, however, important to take the fast dynamics 
of the weather into account. 

A numerical evaluation of various dynamic losses for a simple greenhouse/crop model was 
described by Van Straten and Van Willigenburg (2008), who compared, among others, receding 
horizon control with PI control using setpoints. In the simple model used, losses on the order of 5 
to 10 percent were reported.

Most studies have been restricted to temperature and CO2 alone. However, rapid weather fluctua-
tions as well as large deviations from assumed patterns will cause quite a different humidity regime 
in the greenhouse. Because humidity needs to be maintained within certain limits, this leads to 
control actions not foreseen in the optimization, and again the actual costs can be quite different 
from those assumed. De Halleux and Gauthier (1998) and Tap, Van Straten, and Van Willigenburg 
(1998) have shown that in temperate climate zones, the humidity constraints have a considerable 
effect on the value of the goal function.

5.4.3  Integration, Application, and Implementation

This section describes publications reporting on the integration of both levels of control. The 
separation considered in the previous sections is somewhat arbitrary, but the emphasis here is 
on implementable ideas. First, knowledge-based solutions without optimization are briefly men-
tioned, whereas the remainder of this section deals with solutions involving economically optimal 
control. 
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5.4.3.1 E xpert Systems
This class of greenhouse management solutions is based on the idea that formalizing experience and 
expert knowledge could lead to improved—hence more economical—greenhouse operation. This 
approach does not focus on dynamic optimization and will therefore not be discussed extensively 
here, but some notable developments need to be mentioned. An early survey is provided by Martin-
Clouaire, Schotman, and Tchamitchian (1996).

Artificial intelligence decision support tools, in synergism with low-level process controllers or 
schedulers, were investigated by Sigrimis, Arvanitis, and Pasgianos (2000). They built an environ-
ment that incorporates a native fuzzy knowledge–based system plus a number of procedural control 
functions that allows flexible interfacing with the greenhouse operation.

Tchamitchian et al. (2006) discussed the expert system SERRISTE, which is a decision-making 
system to generate daily climate settings for greenhouse-grown tomatoes. The system is set up as 
a constraint satisfaction problem using a mathematical formalism to express expert practices and 
knowledge as constraint rules. An important notion used is the concept of crop vigor, which is a 
conglomerate of assessments made by visual inspection of the grower on vegetative and generative 
balance, crop head, butt formation, and the like. Although this is not a scientific concept per se, it 
has to be recognized that it takes into account aspects of crop development that are not encapsulated 
by current crop models. A practical test against common practice revealed similar harvest rates but 
5 to 20 percent lower energy consumption. 

Constraint satisfaction was also the basic approach of Schotman (2000), who was focusing on 
preventing blossom-end rot in tomatoes.

Lafont and Balmat (2002) described a controller on the basis of fuzzy rules. Fuzzy rules must be 
deduced from practical experience, which implies that the existing control must already be fairly 
successful. Also ideas have been put forward to mimic a grower’s behavior by machine learning 
(Kurata and Eguchi, 1990) or by neural nets (Seginer, 1997). Kolokotsa et al. (2010) described a 
system of two fuzzy controllers designed on the basis of rules aiming at minimizing CO2 supply and 
energy and water use, but the setpoints need to be determined by the user and no crop optimization 
is involved.

It should be noted that the expected benefit of expert systems could be evaluated by simulation, 
but there is within this framework no way to know how far these solutions are away from the opti-
mum. Moreover, to do such simulations in a trustworthy way, a comprehensive model is needed, the 
lack of which was the very motive to use an expert system.

5.4.3.2 I mplementation of Optimal Control—Overview
The possible outcomes of the optimization procedure for the slow problem are as follows:

The control sequences. They are less suitable for online control as they are not robust •	
against variations in external inputs.
The trajectories of the fast states. Many authors consider these as setpoints for low-level •	
online controllers. 
The trajectories of the slow states. These could be used as targets to track, if observations •	
on the crop can be obtained.
The costates of the slow variables. They serve as biomass shadow prices on the level of the •	
online control.

5.4.3.3 D irect Application of Computed Controls
Direct application of the controls is frequently used in robotics. The necessary feedback is pro-
vided by a linear quadratic controller that makes small adjustments to the control to compensate for 
observed state deviations (Athans, 1971). The scheme was proposed for greenhouses as well (Challa 
and Van Straten, 1991) but abandoned later because this approach is not robust against variations 
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in external inputs when they are large and when the goal is to exploit them. In an application to 
tomato seedlings, Pucheta et al. (2006), using a two-state crop model derived from TOMGRO and a 
static greenhouse model, directly applied the calculated ventilation and heating control and solved 
the robustness issue by frequent recalculation of the slow problem by feeding back observed crop 
information.

5.4.3.4 H ierarchical Control with Settings
Here we discuss some references where authors deal with both the long-term solution and the online 
control on the basis of setpoints. Admittedly, the distinction with Section 5.4.2.2 is somewhat arbi-
trary, but here we list primarily contributions that deal with implementation aspects, taking into 
account all relevant variables.

A method that uses a hierarchical decomposition with offline optimization, a nine-day discretiza-
tion, and a crop model on the basis of an input–output time-series model derived from an elaborate 
cucumber model has been described and tested by Schmidt et al. (1987). They solved the optimiza-
tion problem with the help of Lagrange multipliers and repeated the optimization periodically to 
correct for linearization errors and changes in weather. The variables used at the lower level are 
nighttime temperature, daytime temperature, and CO2 concentration. Yield improvements of 15 
percent as compared with standard heuristic control are reported. The idea of a so-called control 
model of the crop in the form of an input–output discrete time model calibrated on the basis of 
a more elaborate mechanistic model has been further exploited by Arnold (1988). He also uses 
repeated optimization of the slow problem to cope with variations in weather. The control model 
for the crop is adjusted for the actually observed crop yield. He also proposes to split the sea-
sonal period into more tractable shorter partial periods, using temperature integrals as constraints. 
The temperature integrals are obtained from a seasonal optimization that is performed only once. 
Reinisch et al. (1989) described an application in simulation to cucumber and tomatoes. The ideas 
have been further elaborated by Markert (1990), who divided the season into twenty-four unequal 
periods. Period-wise constant optimized temperature sums for cucumber are obtained as the result 
of the slow subproblem and then translated with the help of the actual outdoor temperature and solar 
radiation into settings for a conventional greenhouse control system. 

Rodríguez et al. (2008) described a hierarchical setup using sequential programming to solve 
a seasonal optimization maximizing biomass dry weight minus operational costs via the calcula-
tion of temperature setpoints. On the lower level, they used an MPC designed on the basis of a 
hybrid representation of the system that represents the switching between heating and ventilation 
dynamics. The temperature setpoints are modified to stay within bounds dictated by the humidity 
balance.

5.4.3.5 I mplementations of Optimal Control Using Meta-Information
Once a seasonal optimization has been done, it might be possible to see repeating patterns that can 
be used to build a kind of meta-model suitable for online control. 

Seginer and McClendon (1992) ran dynamic optimizations for several years of historical weather 
data and then trained a neural network to arrive at temperature setpoints depending on the actual 
state and the actual weather. Similar ideas on greenhouse ventilation using experimental data are 
found in the study of Seginer, Boulard, and Bailey (1994). An overview of the usefulness of nonlin-
ear mappings, be it from dynamic optimal control computations or from mimicking an experienced 
grower, was presented by Seginer (1997).

In a study on controlling nitrate in lettuce, De Graaf (2006) translated the offline optimal control 
solutions in a set of rules to be followed online. On the basis of observed crop evolutions, advices 
are transmitted on a daily basis to the greenhouse.

Van Henten et al. (2006) described how a model for sweet pepper fruit formation (Buwalda et al., 
2006) is used to generate settings for a standard advanced climate control computer to eliminate the 
waves in fruit production that are observed in the market because of biological synchronization of 
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the production among growers. Such waves adversely affect market prices. Attempts are described 
to control sweet pepper in two counterphase compartments or to level out the onset of fruits via 
optimal control of the climate.

5.4.3.6 T racking the Slow Variables—Crop Development
A model of floral development rate of the pot plant Cineraria was proposed by Nilsson and Nybrant 
(1992) to ensure that a plant bears flowers at a predefined moment. The method was made adaptive 
by Nilsson and Nybrant (1996). As such, this approach is a model-based replacement of the “blue-
print” approach. Empirical evidence on how daily mean temperature affects the development and 
flowering rate allows the construction of an ideal development line, using nominal expected day 
length and radiation sums. Online, if the real development—to be observed by the grower—is ahead 
or behind the desirable development, the daily mean temperature is adjusted. 

5.4.3.7 I ntegrated Optimal Control
Here we discuss solutions that use optimization on both levels.

Pohlheim and Heissner (1996, 1997) presented a computation of the heating, ventilation, and 
CO2 dosage rate by optimizing an economic goal function online. The value of the crop is evalu-
ated by simply integrating the photosynthetic rate—derived from an empirical regression equation 
expression—using a fixed price, thus avoiding the need to solve the slow subproblem. The control 
horizon is two hours. Control parameterization is used, having piecewise linear controls over a 
fifteen-minute interval, which yields an optimization problem with twenty-seven variables to be 
found. This problem is solved by a genetic algorithm. A computation time of fifteen to thirty min-
utes is reported, thus making a receding horizon control impossible. Instead, a new control compu-
tation is done for the next horizon of two hours, using the last calculated states as initial condition. 
Simulations are presented using smooth ten-year–averaged weather.

The receding horizon control of Equation 5.31 was implemented in a real application for a tomato 
production during the reproductive stage, as described by Tap (2000), Tap, Van Straten, and Van 
Willigenburg (1997), and Tap, Van Willigenburg, and Van Straten (1996). An experimental com-
parison of an optimally controlled greenhouse with a traditionally controlled greenhouse was made, 
showing that yield and quality are comparable. Computation of the economic benefit by simulation 
shows that 10 to 15 percent savings are easily obtained. More details on this study are provided in 
Chapter 7. Van Ooteghem (2007) applied the receding horizon optimal control methodology to a 
design of a novel solar greenhouse with long-term heat storage in an aquifer in conjunction with a 
heat pump. More details on this application are given in Chapter 8.

5.5 D iscussion and Conclusion

The optimal control methodology offers a convenient framework for classification of the numer-
ous solutions to the greenhouse cultivation control as described in the literature. The methodology 
hinges on two notions: the time-scale decomposition and the desire to exploit the opportunities 
offered by the natural variation of the sun. The method, however, does rely on the availability of 
realistic models for crop and greenhouse. Moreover, most feedback available is from observations 
on the greenhouse climate, whereas automatic feedback from the crop is not easy because of lack 
of instrumentation to measure biomass and development online. Because of this lack, constraints 
on climate conditions are still needed to prevent the system to move toward areas with unknown 
effects. It is likely that this results in larger conservatism than necessary. On the other hand, it has to 
be recognized that certain aspects related to threats such as infections or diseases, when occurring, 
may lead to such large losses that some sacrifice of optimality to avoid risk is imperative as long as 
accurate models to describe these threats are lacking. So far, this aspect has been hardly studied. 
In addition to these limitations, there are only very few examples of real applications; hence, it is a 
task of considerable interest to study and alleviate the difficulties that might lead to this reluctance 
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of the industry to implement optimal cultivation (Van Straten, Challa, and Buwalda, 2000). This 
topic will be discussed further in Chapter 9.
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6 A Seminal Case: Lettuce*

6.1 I ntroduction

One of the first developments in the Wageningen school on optimal greenhouse control goes back 
to the thesis of Van Henten (1994). The main aspects of the approach and important results are 
described in this chapter.

At the time of this development in the early 1990s, it was observed that greenhouse climate 
control in practice was essentially based on the realization of climate strategies originating from 
horticultural research and the grower’s own experience (as it is still today). The motivation of the 
research was that, in principle, greenhouse climate control can be made more efficient by explicitly 
balancing the benefits associated with the sellable crop against the operating costs of manipulating 
the climate conditioning equipment. While this idea was not new, and had been promoted by others, 
most of this earlier work was largely focusing on either the crop, ignoring the greenhouse dynamics, 
or on optimizing the greenhouse dynamics, while considering the conditions for the crop as given. 
In this chapter, the two aspects are combined in an integrated fashion. In addition, the early analyses 
were largely based on simple analytical models or approximated solution methods.

Although optimal control methodology was known from the 1950s, the advent of fast computers 
and new software, in combination with more advanced climate models and crop models, renewed the 
interest in investigating the possibilities and intricacies of optimal greenhouse cultivation control.

So as not to complicate the analysis, a vegetative crop, lettuce, was selected as a case. Although 
lettuce is not considered economically as one of the important crops in protected cultivation, it 
has been used to illustrate the principle of the optimal control approach. It is a single harvest crop 
which, from the point of view of modeling and optimal control, is much easier to deal with than 
multiple harvests crops like tomatoes and cucumber. However, the optimal control methodology is 
equally applicable to the latter type of crops as well.

This chapter will focus on optimal climate control for a lettuce crop production system, graphi-
cally depicted in Figure 6.1. A simple one-state crop model will be used to describe dry matter 
production of the lettuce crop. The greenhouse model is also relatively simple, only considering the 
air temperature, humidity, and CO2 concentration as state variables. Heating, natural ventilation, 
and CO2 supply are taken into account as control inputs. External conditions include outdoor solar 
radiation, temperature, humidity, CO2 concentration, and wind speed. The models were calibrated 
and validated against real data.

Another focus of discussion here is the calculation of open-loop control strategies, albeit with 
realistic weather realizations, and with prices for the produce that fluctuate with the seasons, as 
observed in practice. This is a stepping stone toward real online optimal control.

The models of crop production and greenhouse climate will be described first. Then, the optimal 
control problem will be defined. Based on these premises, four case studies will be devoted to the 
following:

	 1.	An economic interpretation and analysis of the optimal control problem
	 2.	A comparison of optimal control versus control strategies implemented by the grower to 

assess the potential improvements of using the optimal control approach

*	Notation: Chapter-specific symbols are defined in the text and are listed together with parameter values in Table 6.1.
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	 3.	A sensitivity analysis in which the relative sensitivity of the performance to variations in 
the parameter values is determined

	 4.	A time-scale decomposition of the optimal control problem

6.2  Models

The lettuce crop production process is described by a four state variable dynamic model. The model 
describes the evolution in time of the dry matter content of the lettuce crop W in kg[dm] m–2[gh], 
the carbon dioxide concentration in the greenhouse CCO ,a2

 in kg[CO2] m–3[gh], the air temperature 
in the greenhouse Ta

C in °C and the humidity content of the greenhouse air CH O,a2
 in kg[H2O] m–3, 

with the equations:

	

d
d CO ,a_c W,c_a2

a
CW

t
c c W T= − −( )

αβϕ 2 0 1 2 5. .

 	
(kg[dm] m–2[gh] m–1)

 
(6.1)

where cα,β is a yield factor, ϕCO ,a_c2
 is the gross canopy photosynthesis rate in kg[CO2] m–2[gh] s–1, 

cW,c_a in s–1 is the respiration rate expressed in terms of the amount of respired dry matter,

	

d

d
CO _a
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cap CO ,a_c CO ,c_a

2

2

2 2
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c W
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= − +

−1
2

0 1 2
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. .55( ) + −



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


uCO CO ,g_o2 2

ϕ
	

(kg[CO2] m–2[gh] s–1)  (6.2)

where cCO
cap

2
 is the greenhouse volume in m3 [air] m–2[gh], cCO ,c_a2

 in s–1 is the respiration coefficient 
expressed in terms of the amount of carbon dioxide produced, uCO2

 is the supply rate of carbon diox-
ide in kg[CO2] m–2[gh] s–1, and φ CO ,g_o2

 is the mass exchange of carbon dioxide through the vents in 
kg[CO2] m–2[gh] s–1,

CO2 concentration
Humidity
Air temperature
Wind speed

Solar radiation

Heating
CO2 supply
Ventilation

Greenhouse
climate

Air tempera-
ture
CO2 concen-
tration
Humidity

Crop
Crop
dry weight

FIGURE 6.1  A schematic diagram of a lettuce crop production system.
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TABLE 6.1
Symbols, Parameters, and Their Nominal Values in Order of Appearance
W kg[dm] m–2[gh] Dry matter content of the lettuce crop

CCO ,a2
kg[CO2] m–3[gh] Carbon dioxide concentration in the greenhouse

Ta
C °C Air temperature in the greenhouse

CH O,a2
kg[H2O] m–3[gh] Humidity content of the greenhouse air

cαβ 0.544 Yield factor

ϕ CO ,a_c2
kg[CO2] m–2[gh] s–1 Gross canopy photosynthesis rate

cW,c_a 2.65 × 10–7 s–1 Respiration rate

cCO
cap

2
4.1 m3[air] m–2[gh] Greenhouse volume 

cCO ,c_a2 4.87 × 10–7 s–1 Respiration coefficient

uCO2 kg[CO2] m–2[gh] s–1 Supply rate of carbon dioxide

φ CO ,g_o2
kg[CO2] m–2[gh] s–1 Mass exchange of carbon dioxide through the vents

ca
cap 30000 J m–2[gh] °C–1 Effective heat capacity of the greenhouse air

uq W m–2[gh] Energy supply by the heating system

qg_o
trans,vent W m–2[gh] Energy exchange with the outdoor air by ventilation and 

transmission through the cover

qo_g
rad W m–2[gh] Heat load by solar radiation

cH O
cap

2
m3[air] m–2[gh] Greenhouse volume

ϕ H O,c_a2
kg[H2O] m–2[gh] s–1 Canopy transpiration

ϕ H O,g_o2 kg[H2O] m–2[gh] s–1 Mass exchange of water vapor through the vents

cLAI,W 53 m2[L] kg–1[dw] Effective canopy surface

cI0

phot 3.55 × 10–9 kg[CO2] J–1 Light use efficiency

I0 W m–2[gh] Solar radiation outside the greenhouse

cCO ,1
phot

2
5.11 × 10–6 m s–1 °C–2 Temperature influence on gross canopy photosynthesis

cCO ,2
phot

2
2.30 × 10–4 m s–1 °C–1 Temperature influence on gross canopy photosynthesis

cCO ,3
phot

2
6.29 × 10–4 m s–1 Temperature influence on gross canopy photosynthesis

cΓ
phot 5.2 × 10–5 kg[CO2] m–3[air] Carbon dioxide compensation point

uv m3[air] m–2[gh] s–1 Ventilation rate through the vents in

cleak 0.75 × 10–4 m s–1 Ventilation leakage through the cover

CCO ,o2
kg[CO2] m–3 Carbon dioxide concentration outside the greenhouse

ccap
vent 1290 J m–3[gh] °C–1 Heat capacity per volume unit of greenhouse air

cg_o
trans,vent 6.1 W m–2[gh] °C–1 Overall heat transfer through the cover

To
c °C Outside air temperature

qo_g
rad W m–2[gh] Energy input to the greenhouse system by solar radiation

co_g
rad 0.2 – Heat load coefficient due to solar radiation

cc_a
evap 3.6 × 10–3 m s–1 Mass transfer coefficient for water vapor between leaf and air

cH O,1
sat

2
9348 J m–3 Parameterizes saturation water vapor pressure

cH O,2
sat

2
17.4 – Parameterizes saturation water vapor pressure

cH O,3
sat

2
239 °C Parameterizes saturation water vapor pressure

(continued)
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TABLE 6.1 (Continued)
Symbols, Parameters, and Their Nominal Values in Order of Appearance
cR 8314 J K–1 kmol–1 Gas constant

cT 273.15 K Parameterizes the conversion of temperature from °C to K

CH O,o2
kg[H2O] m–3[air] Humidity concentration outside the greenhouse

cW,1
income

 1.8 Dfl m–2[gh] Parameterizes gross income of lettuce cultivation

cW,2
income 16 Dfl kg–1[dw] m–2[gh] Parameterizes gross income of lettuce cultivation

cq
cost 6.35 × 10–9 Dfl J–1 Energy price 

cCO
cost

2
42 × 10–2 Dfl kg–1[CO2] Price of carbon dioxide 

uCO
min

2
0 kg[CO2] m–2 s–1 Lower bound on CO2 supply rate

uCO
max

2
1.2 × 10–6 kg[CO2] m–2 s–1 Upper bound on CO2 supply rate

uq
min 0 W m–2 Lower bound on energy input by the heating system

uq
max 150 W m–2 Upper bound on energy input by the heating system

uv
min 0 m s–1 Lower bound on the ventilation rate

uv
max 7.5 × 10–3 

Vwind 

m s –1 Upper bound on the ventilation rate

Ta
c,max 6.5 °C Lower bound on the air temperature

Ta
c,min 40 °C Upper bound on the air temperature

CCO _a
min

2
0 kg[CO2] m–3 Lower bound on the CO2 concentration in the greenhouse

CCO ,a
max

2
2.75 × 10–3 kg[CO2] m–3 Upper bound on the CO2 concentration in the greenhouse

RH O,a
min

2
0 % Lower bound on relative humidity

RH O,a
max

2
90 % Upper bound on relative humidity

CH O,a
sat

2
kg[H2O] m–3[air] Saturation water vapor pressure

cH O,4
sat

2
10998 J m–3 Parameterizes the saturation water vapor pressure 

Px(t) Dfl m–2
[gh] s–1 Penalty functions 

cpenalty Dfl m–2[gh] s–1 Weighting factor

k Counter

PT Penalty on Ta
C

PCO2
Penalty on CCO2,a

PH O2
Penalty on CH2O,a

λW Dfl kg–1[dw] Costate of W

λ CO
f

2
Dfl m kg–1[CO2] Costate of CCO2,a

λ T
f Dfl m–2[gh] °C–1 Costate of Ta

C

λ H O2

f Dfl m kg–1[H2O] Costate of CH2O,a

cH O
penalty

2
Weighting factor in penalty on CH2O,a

cCO _o2  1 Perturbation parameter on CCO2,o

cI0
1 Perturbation parameter on I0

cH O_o2
1 Perturbation parameter on CH2O,o

cT0
1 Perturbation parameter on T0
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where ca
cap is the effective heat capacity of the greenhouse air in J m–2[gh] °C–1, uq is the energy 

supply by the heating system in W m–2[gh], qg_o
trans, vent is the energy exchange with the outdoor air 

by ventilation and transmission through the cover in W m–2[gh], and qo_g
rad  is the heat load by solar 

radiation in W m–2[gh],
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where cH O
cap

2
 is the greenhouse volume in m3[air] m–2[gh], ϕH O,c_a2

 is the canopy transpiration in 
kg[H2O] m–2[gh] s–1, and ϕH O,g_o2

 is the mass exchange of water vapor through the vents in kg[H2O] 
m–2[gh] s–1.

The gross photosynthesis rate ϕ CO ,a_c2
 in kg[CO2] m–2[gh] s–1 is described by:
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(6.5)

where cLAI,W is the effective canopy surface in m2[L] kg–1[dw], cI0

phot  is the light use efficiency in 
kg[CO2] J–1, I0 is the solar radiation outside the greenhouse in W m–2[gh], cCO ,1

phot

2
 in m s–1 °C–2, cCO ,2

phot

2
 

in m s–1 °C–1, and cCO ,3
phot

2
 in m s–1 parameterize the temperature influence on gross canopy photosyn-

thesis, and cΓ
phot is the carbon dioxide compensation point in kg[CO2] m–3[air]. The mass transfer of 

carbon dioxide due to ventilation and leakage ϕCO ,g_a2
 in kg[CO2] m–2[gh] s–1 is defined by

	
ϕ CO ,g_o leak CO ,a CO ,o2 2 2

= +( ) −( )u c C Cv 	 (kg[CO2] m–2[gh] s–1)  (6.6)

where uv is the ventilation rate through the vents in m3[air] m–2[gh] s–1, cleak is the leakage through 
the cover in m3[air] m–2[gh] s–1, and CCO ,o2

 is the carbon dioxide concentration outside the green-
house in kg[CO2] m–3. The energy transfer between the indoor environment and the outdoor envi-
ronment due to ventilation and transmission qg_o

trans, vent in W m–2[gh] is covered by the equation

	
q c u c T Tvg_o

trans,vent
cap
vent

g_o
trans

a
C

o
C= +( ) −( )

	
(W m–2[gh])  (6.7)

in which ccap,a
vent  is the heat capacity per volume unit of greenhouse air in J m–3[gh] °C–1, cg_o

trans in 
W  m–2[gh] °C–1 parameterizes the overall heat transfer through the cover, To

C in °C stands for 
the outside air temperature. The energy input to the greenhouse system by solar radiation qo_g

rad  in 
W m–2[gh], is described by

	 q c Io_g
rad

o_g
rad= 0 	

(W m–2[gh])  (6.8)
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where co_g
rad  is the heat load coefficient due to solar radiation. Canopy transpiration ϕH O,c_a2

 in kg[H2O] 
m–2[gh] s–1 is governed by the equation

	

ϕH O,c_a
c W

c_a
evap

a
c

T
2

LAI,We= −( )
+

−1 2 1c
c

c T c

sat

R

H O,

(( ) −










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
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+
e

H2O,2
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a
c

a
c

H2O,3
sat

2H O,a

c T

T c
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(kg[H2O] m–2[gh] s–1)  (6.9)

in which the term 
c

c T cR

c T

T cH O,1
sat

2

a
c

T

e

H2O,2
sat

a
C

a
c

H2O,3
sat

+( )
+

 in kg[H2O] m–3 represents the saturated water vapor content 

at canopy temperature, i.e., air temperature Ta
C, cc_a

evap is the mass transfer coefficient in m s–1, cH O,1
sat

2
 in 

J m–3, cH O,2
sat

2
 and cH O,3

sat
2

 in °C parameterize the saturation water vapor pressure, cR is the gas constant 
in J K–1 kmol–1, and cT parameterizes the conversion of temperature from °C to K. The mass transfer 
of water vapor by ventilation φ H O,g_o2

 in kg[H2O] m–2[gh] s–1 is described by

	
ϕH O,g_o v leak H O,a H O,o2 2 2

= +( ) −( )u c C C
	

(kg[H2O] m–2[gh] s–1)  (6.10)

in which CH2O,o in kg[H2O] m–3[air] is the humidity concentration outside the greenhouse.
Model parameters are listed in Table 6.1. The model, though being of rather simple structure was 

found to describe measured data rather well. For a more detailed description and verification of this 
model, the reader is referred to Van Henten (1994).

6.3 T he Optimal Control Problem

In this example, for the single harvest crop lettuce, the net economic revenue of the controlled crop 
production process is described by

	

J t c u t c u t t
t

t

= ( )( ) − +( )∫Φ x f q
cost

q CO
cost

CO2 2

f

d( ) ( )

0 	

(Dfl m–2[gh])  (6.11)

where Φ(x(tf)) in Dfl m–2[gh] is the gross income obtained at harvest time tf when selling the har-
vested product at the auction, and c u t c u tq

cost
q CO

cost
CO2 2

( ) ( )+  is the running costs of the climate condi-
tioning equipment in Dfl m–2[gh] s–1.

In The Netherlands, lettuce is sold at auctions in grades based on the fresh weight and on the 
quality of the produce. Despite the fact that quality aspects have a significant effect on the value of 
the produce, quantitative relations between the greenhouse climate and crop quality that are needed 
to derive optimal greenhouse climate control strategies are not well developed. Therefore, in this 
study quality aspects were neglected and attention was focused on a quantitative relation between 
the harvest weight and auction price of a lettuce crop. Analysis of the auction price of lettuce in the 
period 1985–1990 revealed a linear relationship Φ( ( )) ( )x t c c W tf W,1

income
W,2
income

f= + , parameterized by 
cW,1

income in Dfl m–2[gh] and cW,2
income in Dfl kg–1[dw] m–2[gh], between the auction price and the harvest 

weight of lettuce W in kg[dw] m–2[gh]. The positive correlation found means that a higher harvest 
weight obtained, for example, by taking suitable climate control measures is rewarded by a higher 
gross economic return.
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The running costs of the climate conditioning equipment are assumed to be linearly related to 
the amount of energy uq in W m–2[gh] and the amount of carbon dioxide uCO2

 in kg[CO2] m–2[gh] s–1 
put into the system. These running costs are parameterized by the energy price cq

cost in Dfl J–1 and 
the price of carbon dioxide cCO

cost
2
 in Dfl kg–1[CO2], respectively. Their values are given in Table 6.1. 

It is assumed that no costs were associated with natural ventilation used for cooling and dehumidi-
fication. The contributions of the electrical equipment used for greenhouse climate conditioning, 
such as pumps and valves, to the operating costs are ignored. Furthermore, it is assumed that other 
production factors, such as the nutrient and water supply, screening and those not directly related to 
greenhouse climate control, such as labor input, pest and disease control, do not affect the control 
strategies. Consequently, they are not included in the performance criteria.

Equation 6.11 states that the net economic return of the crop production process to be optimized 
is defined as the difference between the gross economic return of the crop production process and 
the operating costs of the climate conditioning equipment integrated over the whole growing period 
starting at the planting date t0 and ending at harvest time tf.

Physical limitations on the control inputs uCO2
, uq, and uv are represented by the linear inequal-

ity constraints u u uCO
min

CO CO
max

2 2 2
≤ ≤ , u u uq

min
q q

max≤ ≤ , u u uv
min

v v
max≤ ≤ , respectively. Bounds are also 

imposed on the temperature in the greenhouse Ta
C, the carbon dioxide concentration CCO2,a, and 

the humidity level CH2O,a to prevent the control system from driving the process into unfavorable 
conditions for crop growth and development. These bounds are represented by the linear inequality 
constraints T T Ta

C,min
a
C

a
C,max≤ ≤ , C C CCO ,a

min
CO ,a CO ,a

max
2 2 2

≤ ≤ , and C C CH O,a
min

H O,a H O,a
max

2 2 2
≤ ≤ . In fact, these 

bounds represent the limitations of the rather simple crop growth model used in this research, 
because the adverse effect of unfavorable climate conditions on crop growth and development 
should have been covered by the dynamic crop growth model. In the example considered, bounds 
are imposed on the relative humidity instead of the absolute humidity. This requires the transforma-

tion C
R

C TH O,a
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max
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100
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 and RH O,a
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2
 being the lower 

and upper bound on the relative humidity, respectively, and the saturation water vapor pressure 
CH O,a

sat
2

 in kg[H2O] m–3[air] is a function of the temperature Ta
C:
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where cH O,4
sat

2
 in J m–3 parameterizes the saturation water vapor pressure together with the parameters 

cH O,2
sat

2
 and cH O,3

sat
2

.
To deal with the inequality constraints on the state variables (Pierre, 1969), the performance 

criterion of Equation 6.11 is extended with penalty functions Px(t) in Dfl m–2
[gh] s–1, having the 

general form

	

P t c
x t x x

x x
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k
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( ) min max

max min
= − −

−








penalty 2

2

	

(Dfl m–2 [gh])  (6.13)

where cpenalty Dfl m–2[gh] s–1 is a weighting factor, x is a state variable, xmin, and xmax are the lower 
and the upper bounds put on the state variable, respectively, and the exponent k forces the penalty 
function to attain values near zero between the bounds and very steep slopes close to the bounds 
when k = 1, 2, . . . , ∞. In this way, the controlled system is prevented from traversing the bounds. To 
guarantee consistency in the units used, the penalty is expressed in Dfl m–2[gh] s–1. In a way this is 
a slightly artificial construction, though one may argue that by modifying the weighting parameter 
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cpenalty the grower is able to express his attitude toward taking risks when the health of the crop is 
considered.

After adding penalties for violations of the constraints on the temperature, carbon dioxide con-
centration, and humidity, PT, PCO2

, and PH O2
 respectively, the resulting performance measure has the 

following form:

J c c W t c u t c= + ( )( ) − +W,1
income

W,2
income

f q
cost

q CO2
( ) ccost

CO CO T H O2 2 2

f

du t P t P t P t t
t

t

( ) ( ) ( ) ( )+ + +( )∫
0   

(Dfl m–2 [gh])

(6.14)

With the preliminaries presented above, the optimal control problem is defined as to find optimal 
control strategies for the control variables uCO2

, uq, and uv over the time-interval t ∈ [tb, tf], maximiz-
ing the performance criterion of Equation 6.14, subject to the differential equation constraints of 
Equations 6.1 through 6.4 and the linear inequality constraints on the controlled variables.

For the example considered, the Hamiltonian H has the following form:
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(Dfl m–2 [gh])  (6.15)

in which λW in Dfl kg–1[dw], λ CO
f

2
 in Dfl m kg–1[CO2], λ T

f  in Dfl m–2[gh] °C–1, and λ H O
f

2
 in Dfl m 

kg–1[H2O] are so-called adjoint variables or costates related to the state variables W, CCO2,a, Ta
C and 

CH2O,a. The dynamics of the costates are described by the general equation:

	
− = ∂

∂
λλ

H
x

	 (Dfl m–2 [gh] s–1)  (6.16)

where λ is the costate and x is the state variable. The costates express the marginal value of a change 
in the associated state variables. If a costate is positive, an increment of the associated state variable 
will have a positive effect on the final net economic return, and vice versa. The Hamiltonian can 
be seen as a momentary profit rate in which current costs are balanced against future revenues. In 
this way the Hamiltonian is a great source of information for interpretation of the optimal control 
problem and the results of the sensitivity analysis in Sections 6.4.1 and 6.4.3.

The Maximum Principle of Pontryagin asserts that to maximize the performance criterion in 
Equation 6.14 it is sufficient to maximize the Hamiltonian at all time instants in the optimization 
interval, i.e., 

	 H t H t( , , *, , , ) ( , , , , , )* * * * * * * *x x u x x us f s f s f s fλλ λλ λλ λλ≥ 	 (6.17)
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in which xs*, xf*, u*, λs*, and λf* are the optimal values of the states, control inputs, and costates. 
Here xs and λs refer to the slow state W and its associated costate λW; xf, and λs refer to the fast state 
variables CCO2,a, CH2O,a, and Ta

C and their respective costates.
In the iterative solution, the state and costate equations were simulated in double-precision with 

an integration time step of half a minute using a fourth order Runge–Kutta algorithm described by 
Press et al. (1986). A modified steepest ascent algorithm exploiting the gradient information ∂ ∂H/ u 
was used for the iterative solution of the optimal control problem (Kirk, 1970; Van Henten, 1994).

6.4 O ptimal Control Case Studies

6.4.1 A nalysis of the Optimal Control Problem

Building on the work of Van Henten (1994), in this section the structure and particular characteris-
tics of the optimal control problem are investigated.

The performance criterion J, Equation 6.14, expresses a net economic return of crop production, 
evaluated over the whole production period. In dynamic optimization, the performance criterion 
J is replaced by a local performance criterion, the Hamiltonian, Equation 6.15. The Hamiltonian 
accounts for the momentary contribution of a control action to the running costs L and long-term 
revenues from a change in the state due to a control action, λTf. Here f is the generalized system 
equation. The revenues of an investment in a change of the state are determined by the costate or 
marginal value of a state variable λ.

The marginal value of a state variable at a certain moment during the growing period is equiva-
lent with the sensitivity of the economic return at harvest time, i.e., J, to a small variation of that 
particular state at that time in the growing period. In view of that interpretation, the absolute value 
and sign of a costate are of special interest. Given the definition of the performance criterion as in 
Equation 6.14, a positive costate value indicates benefits from a positive change in the associated 
state, a negative costate value indicates that losses will result from an increment of the state at that 
particular moment in time. A large (small) positive costate value indicates large (small) benefits 
from a positive change in the associated state. If at a given moment in time a costate equals zero, the 
performance of the controlled process is not affected by a change of the associated state variable at 
that time.

So, from the value and sign of the costate it can be deduced whether a change in the associated 
state will result in an improvement or a loss of economic performance of the controlled process. The 
economic feasibility of a controlled change of the state, however, is determined by the stationarity 
condition

	

∂
∂

= − ∂
∂

+ ∂
∂





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=H L
u u

f
u

0
T

λλ
	

(6.18)

This equation asserts that an optimal greenhouse climate control action is characterized by the fact 
that its marginal contribution to the gross economic return expressed by ( / )∂ ∂f u T λλ just outweighs 
its marginal contribution to the momentary operating costs ( / )∂ ∂L u . This notion is depicted in 
Figure 6.2 for λ = 1 and λ = 2. Because ∂ ∂ >f u/ 0, a higher marginal value yields a higher optimal 
control and vice versa.

For unconstrained optimal control problems, the stationarity condition coincides with the 
Maximum Principle of Pontryagin, which asserts that a maximizing control should satisfy

	 H(x*, u*, λ*, t) ≥ H(x*, u, λ*, t)	 (6.19)

© 2011 by Taylor and Francis Group, LLC



98	 Optimal Control of Greenhouse Cultivation

However, if the control is constrained by, e.g., inequality constraints of the form 0 = umin ≤ u ≤ umax, 
then a control that satisfies the maximum principle does not automatically satisfy the stationarity 
condition. This can be seen as follows. Assume that at a certain moment during the growing period 
the marginal value of the state is zero, i.e., λ = 0, then we can see in Figure 6.2 that the maximiz-
ing control will be u = umin = 0 because any increase in the control will yield smaller values of the 
Hamiltonian. While Equation 6.19 has been satisfied, Equation 6.18 is not satisfied by the maximiz-
ing control, because − ∂ ∂ <L u/ 0, which contradicts the requirement defined in Equation 6.18. An 
identical argument will show the limitation of the stationarity condition if an upper bound umax is 
encountered. Still, for controls lying between the constraint boundaries, both Equations 6.18 and 
6.19 constitute the same necessary condition for optimality of the control and may be used simulta-
neously in an analysis for understanding of the optimal control problems.

The partial derivatives of the Hamiltonian (Equation 6.15) with respect to the control inputs 
being the basis of the stationarity condition reveal the following properties. The economic optimal 
operation of the carbon dioxide supply is solely determined by the marginal value of the carbon 
dioxide concentration in the greenhouse, i.e., λ CO

f
2
. However, because the ventilation affects all 

three greenhouse climate states—carbon dioxide concentration, air temperature, and humidity—
the operation of the ventilation windows is affected by their respective costates λ CO

f
2
, λ T

f , and λ H O
f

2
. 

The dry matter production is not affected by the control inputs as can be seen in Equation 6.1, and 
therefore the marginal value of crop dry weight λW does not influence the operation of the climate 
conditioning equipment directly. However, λW is indirectly involved in the operation of the climate 
conditioning equipment by its impact on the marginal values of the carbon dioxide concentration, 
air temperature, and humidity through the equation:

	
− = ∂

∂
λλf

f

H

x 	
(6.20)
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FIGURE 6.2  Optimal control: the balance between additional gross income λ ∂ ∂f u/  and additional costs 
∂ ∂L u/  yields the optimal net return, (–) denotes the Hamiltonian H, (– ·) denotes the operating costs L, and 
(---) denotes the gross income λf for λ = 1 and λ = 2. The tangents at the gross income curve indicate where 
∂ ∂ = ∂ ∂f u L u/ / , i.e., where H is maximized, the maximum of H is indicated by vertical lines.
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Concentrating on carbon dioxide supply and heating first, Equations 6.2 and 6.3 reveal the trivial 
observation that carbon dioxide supply increases the carbon dioxide concentration and heating 
increases the temperature in the greenhouse. Both effects are effectively summarized by saying that 
∂ ∂ >f u/ 0 in which f is the general system equation or model. If the costates related with the carbon 
dioxide concentration and air temperature are less than zero, i.e., λ λCO

f
T
f

2
, < 0, then the marginal 

contribution of the control to the economic return at the end of the growing period will be less than 
zero, i.e., ( / )∂ ∂ <f u 0λλf , because ∂ ∂ >f u/ 0. Additionally, application of carbon dioxide and heating 
energy to the greenhouse yields higher running costs of the climate conditioning equipment, i.e., 
∂ ∂ >L/ u 0. Consequently, using the arguments in line with the Maximum Principle of Pontryagin, 
this implies that the control input resulting in the largest value of the Hamiltonian will be uCO2

, uq = 
0. Summarizing, carbon dioxide and heating energy will not be supplied to the greenhouse if the 
marginal contribution of the carbon dioxide concentration and air temperature in the greenhouse to 
the final economic return is less than zero.

However, if λ CO
f

2
> 0 and λ T

f > 0, i.e., if the carbon dioxide and air temperature positively affect 
the final economic return, application of carbon dioxide and heating energy to the greenhouse may 
be economically feasible. Then, referring to Figure 6.2 and the interpretation of the stationarity 
condition given at the beginning of this section, the marginal contribution of the control to the 
economic return should outweigh its marginal contribution to the costs. From the Hamiltonian in 
Equation 6.15 and the necessary conditions in Equations 6.18 and 6.19 it can be deduced that for an 
optimizing control uCO2

 and uq larger than zero, the costates should have values λ CO
f

CO
cost

CO
cap

2 2 2
≥ c c  and 

λ T q ac cf cost cap≥ . This requirement illustrates that if the running costs of the climate conditioning equip-
ment, i.e., cCO

cost
2
 and cq

cost, increase, the marginal contribution of the carbon dioxide concentration and 
air temperature to the final economic return, need to be higher before actual operation of the climate 
conditioning equipment becomes economically feasible. In other words, the control strategies have 
an energy conservation attitude in situations with high energy costs. Alternatively, a reduction of 
the running costs will yield a more generous operation of the climate conditioning equipment. Also, 
λ CO

f
CO
cost

CO
cap

2 22
≥ c c  and λ T

f c c≥ q
cost

a
cap indicate that for economic optimal greenhouse climate operation 

the mass and heat capacity of the greenhouse (cCO
cap

2
 and ca

cap), i.e., the greenhouse volume, should be 
kept as small as possible, because the equations show that with a higher energy and mass capacity 
the marginal contribution of the carbon dioxide concentration and the air temperature to the final 
economic return need to be higher before heating and carbon dioxide is supplied to the greenhouse. 
With large mass and heat capacities, it will require more energy and carbon dioxide to attain a unit 
increase of the carbon dioxide concentration in the greenhouse.

For the ventilation, the analysis yields a slightly different picture because no operating costs are 
related with the ventilation and the impact of ventilation on the indoor climate is different from the 
influence of the heating and carbon dioxide supply. Generally, the air temperature, carbon dioxide, 
and humidity levels in the greenhouse are higher than outside the greenhouse and a higher ventila-
tion rate results in reduction of the air temperature, carbon dioxide concentration, and humidity 
in the greenhouse, i.e., ∂ ∂ <f u/ 0. Sometimes, however, it may happen that due to a very high crop 
photosynthesis rate, the carbon dioxide concentration in the greenhouse air is lower than the carbon 
dioxide concentration in the outside air (Schapendonk and Gaastra, 1984). Then, a higher ventila
tion rate will yield a higher carbon dioxide concentration in the greenhouse, i.e., ∂ ∂ >f u/ 0.

If the carbon dioxide concentration and air temperature have a positive contribution to the final 
economic return, i.e., λ λCO

f
T
f

2
, > 0, for an optimal ventilation rate the marginal contribution of the 

control to the final economic return, i.e., ( / )∂ ∂f u λλf, should be larger or equal to zero. If the carbon 
dioxide concentration and air temperature in the greenhouse exceed the outside conditions, any 
increment in the ventilation rate will yield a loss of carbon dioxide and energy from the inside air 
(∂ ∂ <f u/ 0). Thus the ventilation rate which yields the largest value of the Hamiltonian is uv = 0. If, 
however, λ CO

f
2

> 0 and the carbon dioxide concentration in the outside air exceeds the concentration 
in the greenhouse, then ventilation may be used to open a “cheap” carbon dioxide source to improve 
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the inside climate. The optimal ventilation rate will equalize the inside carbon dioxide concentra-
tion with the outside concentration such that ∂ ∂ =f u/ 0, thus, satisfying the stationarity condition.

A positive value of the humidity costate λ H O
f

2
 is not considered here, because it will be shown 

in Section 6.4.3 that the marginal value of humidity does not exceed zero in the control problem 
considered in this research.

If the marginal value of the carbon dioxide concentration, air temperature, and humidity is less 
than zero, i.e., λ λ λCO

f f
H O
f

2 2
, ,T < 0, and the inside climatic conditions exceed the outside conditions, 

the previous line of reasoning will yield exactly the opposite result. If for instance λ T
f < 0, a reduc-

tion of the air temperature will yield a positive contribution to the performance. If the inside tem-
perature is higher than the outside temperature, an increment in the ventilation flux will contribute 
to a reduction of the air temperature, ∂ ∂ <f u/ 0. Because the marginal contribution of the control 
to the final economic return should be larger or equal to zero, the ventilation rate will be increased 
until λ T

f < 0, or the inside temperature equals the outside temperature, thus resulting in ∂ ∂ =f u/ 0. 
For the carbon dioxide concentration and humidity, similar arguments can be used.

The previous analysis has shed some light on the operation of the climate conditioning equip-
ment depending on the marginal values of carbon dioxide, air temperature, and humidity. What 
remains is to get insight into how the costates λ CO

f
2
, λ T

f , and λ H O
f

2
 are affected for instance by the 

state of the crop and the outside climatic conditions.
In the control problem considered, Equation 6.14 shows that the gross economic return is solely 

determined by the state of the crop at harvest time, i.e., W(tf). It is expected that the costates associ-
ated with the air temperature, carbon dioxide concentration, and humidity will be determined by 
their effect on dry matter production and consequently the final gross economic return.

In this research it is assumed that humidity does not directly affect crop growth. And if, for 
the moment, the humidity constraint is neglected, for instance by setting cH O

penalty

2
= 0, humidity is 

eliminated from the Hamiltonian and does not affect the economic performance of the controlled 
process anymore. Consequently, λ H O

f
2

= 0. The effect of constraints on the costates will be investi-
gated below.

Figure 6.3 shows the response of the rate of dry matter production, i.e., Equation 6.1, to the car-
bon dioxide concentration in the greenhouse at different light levels. During the day, any increment 
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FIGURE 6.3  The response of the dry matter production rate to the carbon dioxide concentration, after 
canopy closure, under different light regimes (–: 0 W m–2, ---: 50 W m–2, …: 100 W m–2, –·–: 150 W m–2, –x–: 
200 W m–2).
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in carbon dioxide concentration contributes to an increase in dry matter production which suggests 
that during the day λ CO

f
2

> 0. If the radiation level increases, an increment in the carbon dioxide 
level in the greenhouse yields an even higher dry matter production rate, which indicates that λ CO

f
2
 

is positively related to the radiation level. At night the carbon dioxide concentration does not affect 
dry matter production because the photosynthesis rate is zero and the marginal value of carbon 
dioxide is then zero.

In Figure 6.4, the response of the crop growth to air temperature is shown. This rate has an opti-
mum response to temperature during the day. Below the optimum temperature, an increment in the 
air temperature contributes to a higher dry matter production and consequently to a higher gross 
economic return. So, during the day, the marginal value of the air temperature is expected to be 
larger than zero, i.e., λ T

f < 0. However, for an air temperature exceeding the optimum temperature, 
the marginal value of the air temperature will be less than zero because any increment in the air 
temperature will yield a reduction in the dry matter production rate. Observe that at low tempera-
tures the slope of the response curve is positively correlated with the radiation level, which suggests 
a positive correlation of λ T

f  with radiation. At night a temperature rise will result in higher respira-
tory losses of dry matter, thus affecting the gross economic return in a negative way. Therefore, the 
marginal value of air temperature is expected to be less than zero at night. Consequently, additional 
heating does not seem to be profitable at night. This seems to contradict standard horticultural 
practice where during lettuce production the greenhouse is heated at night to achieve a minimum 
temperature between 7 and 10°C. This indicates a potential flaw in the crop growth model used in 
this research.

In the example considered, the marginal value of the humidity, i.e., λ H O
f

2
, is completely determined 

by the constraint imposed on the humidity level in the greenhouse. If constraints are imposed on 
the humidity level in the greenhouse, i.e., cH O

penalty

2
> 0, the humidity affects the performance through 

a penalty function. If the humidity stays within the constraint boundaries, the penalty on the perfor-
mance will be almost zero and consequently the marginal value of humidity will be approximately 
zero. However, if the humidity level approaches, for instance, the constraint boundary CH O,a2

max , then 
any increase in the humidity level will yield a reduction of the performance criterion J, which will 
result in a distinct negative marginal value of humidity, i.e., λ H O

f
2

< 0 at that time.
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FIGURE 6.4  The response of the dry matter production rate to air temperature, after canopy closure, under 
different light regimes (–: 0 W m–2, ---: 50 W m–2, …: 100 W m–2, –·–: 150 W m–2, –x–: 200 W m–2).
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For the carbon dioxide concentration and air temperature, the constraints have the same impact 
on the respective costates. Constraint violations will have a strong negative influence on the mar-
ginal value. 

It has been shown that the costates λ T
f  and λ CO

f
2
 uniquely determine the operation of heating 

and CO2 supply, respectively. In the operation of the ventilation windows, however, contradicting 
objectives are encountered. It may occur during the day that λ CO

f
2

> 0 demands a reduction in ven-
tilation rate to reduce losses of carbon dioxide to the outside air, whereas at the same time λ H O

f
2

< 0 
demands a higher ventilation rate to reduce the humidity level in the greenhouse and consequently 
to reduce the penalty on the performance of the controlled process. Obviously, a trade-off between 
both objectives will result in an optimum ventilation rate under the given circumstances.

Until now, the effect of single variable analysis of the operation of the climate conditioning 
equipment was performed. A closer inspection of the costate equations for λ CO

f
2
, λ T

f , and λ H O
f

2
 will 

reveal that the marginal values of the various state variables are determined by a complex inter-
action of effects of state variables, costates, and external inputs. A clear example is the equation 
describing the dynamics of λ T

f . Analysis of this equation shows, for instance, that the humidity con-
straint has a positive effect on the marginal value of the air temperature. A higher temperature will 
result in a reduction of the humidity constraint penalty. This positive effect suggests that heating 
may be used as a means to reduce the relative humidity in the greenhouse. When humidity control 
is considered, this positive costate of air temperature results in contradicting objectives with respect 
to ventilation. Then the necessary conditions in Equations 6.18 and 6.19 applied to the Hamiltonian 
in Equation 6.15 show that the positive λ T

f  induces a reduction of ventilation whereas, at the same 
time the negative λ H O

f
2

 will demand a higher ventilation rate. Possibly, heating and ventilation will 
be used simultaneously to achieve the single objective of controlling humidity in the greenhouse.

6.4.2 C omparison of Optimal Control with Climate Control Supervised by a Grower

Following Van Henten (1994) and Van Henten et al. (1997), a comparison is made between optimal 
control strategies and control strategies implemented by growers.

6.4.2.1  Materials and Methods
In an experimental greenhouse at DLO-Institute of Agricultural Engineering (IMAG-DLO) a let-
tuce crop was grown from January 21, 1992, until March 17, 1992. The four-span Venlo-type exper-
imental greenhouse was oriented East–West and had a floor area of approximately 300 m2. The roof 
consisted of single glass panes with 20 half pane ventilation windows on lee and windward sides. A 
hot water heating system consisting of four pipes per span was mounted parallel to the gutters at a 
height of approximately 2.0 m. In the greenhouse, a distribution network of one hose per span was 
used to supply carbon dioxide from a storage tank. 

Lettuce plants were sown and grown at a nursery in peat blocks and then planted at a density of 
18 plants per square meter of soil in a recirculating nutrient film technique system (NFT) consisting 
of 13 gutters per two spans. The commonly grown lettuce cultivar “Norden” was used.

Using an updated version of the IMAG-DLO computer control system implemented on a Digital 
PDP-11/73 (Van Meurs, 1980), the greenhouse climate was controlled according to the rules followed 
in normal horticultural practice. During the first few days of the cultivation period, the day and night 
temperature setpoints were 14°C. Then, the night temperature was lowered to 10°C, whereas the 
day air temperature setpoint was at least 14°C and increased dependent on the solar radiation level. 
During the day, carbon dioxide was supplied to a maximum concentration of 750 ppm depending 
on the amount of solar radiation and the opening of the ventilators. With a separate computer, the 
nutrient solution was controlled to have an electrical conductivity (EC) of around 2.3 mS and a pH of 
around six. At regular intervals during the growing period, the grower was advised by a commercial 
extension service. In this way the crop was grown using standard horticultural practice.
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Using a data logging system connected to the greenhouse climate computer, measurements of 
the indoor climate, outdoor climate, and actuators of the climate conditioning system were recorded. 
The measurements of the indoor climate included single spot measurements of air temperature and 
humidity for which dry and wet bulb thermometers (ventilated and radiation shielded) were used. 
A spatial average value of the carbon dioxide concentration in the greenhouse was measured with a 
Siemens infrared absorption spectrometer. 

Recordings of the actuators of the climate control system included the mean value of the inlet 
and outlet temperatures of the heating system, the valve position of the carbon dioxide supply sys-
tem and the window aperture of both lee and windward side ventilation windows. 

Outside the greenhouse, solar radiation, air temperature, relative humidity, and wind speed 
were measured with a Kipp solarimeter, dry and wet bulb thermometers (ventilated and radiation 
shielded), and a cup anemometer, respectively.

The measurements of the actuators, the indoor climate, and crop growth obtained during the 
greenhouse experiment in early 1992, represent the behavior of the controlled process using conven-
tional greenhouse climate strategies defined by the grower. These data have been used as a reference 
in the comparison with optimal control strategies obtained by simulation. 

This case study focused on the slow dynamics in the crop production process. Therefore, the data 
of the actuators, indoor climate, and outdoor climate were averaged over periods of half an hour. 
The performance of the grower’s approach to greenhouse climate management was evaluated by 
simulating the system Equations 6.1 to 6.4, neglecting the dynamics of the greenhouse climate, and 
by calculating the value of the performance measure (Equation 6.14) and using the energy price and 
the actual price obtained at the auction. 

The performance of the greenhouse climate control strategy of the grower was compared with 
two optimization runs in which complete knowledge about the auction price, the energy price, and 
the outdoor climate for the whole growing period was considered. In the first simulation “Optimal 
1,” the optimal control problem was solved with time-invariant constraints on air temperature, 
humidity, and carbon dioxide concentration. In greenhouse practice, the operation of the ventilators 
is determined to a certain extent by requirements on the humidity level in the greenhouse. Because 
using a time-invariant constraint on the relative humidity does not reflect practical management 
of humidity in greenhouses, in a second run, hereafter referred to as “Optimal 2,” optimal control 
trajectories were calculated for heating and carbon dioxide supply only, omitting the humidity con-
straint and using the measured ventilation regime used by the grower, to control the humidity level 
in the greenhouse.

6.4.2.2 R esults
In Figure 6.5, performance data of the three control approaches are presented on a relative basis. 
The data include the simulated harvest weight, the energy consumption, the carbon dioxide con-
sumption, and the net economic return which, in the context of the present research, is defined as 
the difference between the value of the crop at harvest time and the climate conditioning costs 
integrated over the whole growing period.

In terms of net economic return, a considerable difference in performance is observed between 
the grower’s climate control strategies and the optimal control ones. The results of the Optimal 1 
simulation experiment, in which the relative humidity was limited by an upper bound of 90%, indi-
cate a higher dry matter production and less energy and carbon dioxide consumption compared to 
the grower’s results. In simulation run Optimal 2, in which the ventilation strategy of the grower 
was used to control the relative humidity in the greenhouse, the energy and carbon dioxide con-
sumption are smaller than the counterpart results of the grower. Although fresh weight production 
in this simulation was approximately the same as that of the grower, the reduced carbon dioxide 
and energy consumption yielded a higher net economic return. These simulations show that with 
optimal control, energy and carbon dioxide are used more efficiently.
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Table 6.2 gives the total carbon dioxide and energy consumptions and ventilation exchanges 
over the full production cycle for the three different control strategies. In simulation Optimal 1, a 
lower ventilation rate during the day was calculated than was used by the grower. However, at night, 
optimal ventilation was much higher. Although in simulation Optimal 1 less carbon dioxide was 
consumed than the grower had used, the reduced ventilation rate during the day resulted in a higher 
carbon dioxide concentration in the greenhouse, thus yielding the observed higher fresh weight pro-
duction. Another distinct difference between the optimal and grower’s climate control strategies is 
the reduced energy consumption during the day and, to a lesser extent, during the night (Table 6.2). 
Using the ventilation regime of the grower (Optimal 2) during both day and night, less energy and 
about half the amount of carbon dioxide were used.

Further insight into the differences between the grower’s management strategies and the optimal 
control strategies in greenhouse climate management is obtained by comparing the measured and 
calculated control and state trajectories.
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FIGURE 6.5  The overall performance of the controlled crop production process using the grower’s climate 
control strategies (Grower), optimal strategies using a humidity constraint (Optimal 1), and optimal strategies 
using the ventilation regime of the grower (Optimal 2).

TABLE 6.2
Total Carbon Dioxide Consumption, Energy Consumption, and Ventilation 
During the Whole Growing Period in Early 1992 with Greenhouse Climate 
Control According to the Grower (Grower), Optimal Control with Humidity 
Constraint (Optimal 1), and Optimal Control without Humidity Constraint, 
Using the Measured Ventilation Trajectories Implemented by the Grower 
(Optimal 2)

Carbon Dioxide 
Consumption (kg[CO2] m–2)

Energy Consumption 
(MJ m–2) Ventilation (m3 m–2)

Day Night Day Night Day Night

Grower 1.23 – 105 127 5439 2955

Optimal 1 0.94 – 43 110 3519 6298

Optimal 2 0.68 – 45 88 5439 2955
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Averaged measured data of solar radiation are presented in Figure 6.6 for a period of 5 represen-
tative days. The time course of carbon dioxide supply, ventilation air exchange, and heat consump-
tion of the grower’s experiment and those corresponding to the Optimal 1 simulation are shown in 
Figure 6.7. The simulated greenhouse climate variables driven by the external climatic conditions 
of Figure 6.6 and control inputs of Figure 6.7 are presented in Figure 6.8.

Figures 6.6 through 6.8 can help clarify some of the differences found in Figure 6.5 and Table 
6.2. For example, Figure 6.7a shows that, using optimal control strategies, the carbon dioxide supply 
responds to the solar radiation in a different way than that using grower’s control strategies. Due 
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FIGURE 6.6  Solar radiation (Io) over a 5-day period.
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FIGURE 6.7  Trajectories of carbon dioxide supply rate uCO2 (a), ventilation rate uv (b), and heating energy uq 
(c), corresponding to the grower (---) and to optimal control strategy Optimal 1 (—).

© 2011 by Taylor and Francis Group, LLC



106	 Optimal Control of Greenhouse Cultivation

to the unfavorable radiation conditions as well as the high ventilation rates during days 2 and 3, in 
the optimal control approach the supply of carbon dioxide to the greenhouse air was not considered 
profitable under these circumstances. In the greenhouse climate control strategy implemented by 
the grower, the carbon dioxide setpoint was adapted to the solar radiation as well as to the ventila-
tion rate. The carbon dioxide supply in days 2 and 3 was more than that using optimal control strat-
egies. On the contrary, the control strategy implemented by the grower did not enrich adequately 
with carbon dioxide under the favorable radiation conditions of days 4 and 5. During this period, 
the grower seemed to prefer a high ventilation rate to reduce the relative humidity in the greenhouse 
(see Figure 6.7b and c) and consequently reduced the carbon dioxide supply rate to prevent excessive 
losses of carbon dioxide to the outside air. 

In Figure 6.8a it is shown that when using optimal control strategies under favorable circum-
stances, the carbon dioxide concentration in the greenhouse exceeded 1000 ppm whereas the 
grower used an upper limit of 750 ppm to limit the carbon dioxide consumption.

The high ventilation regime implemented by the grower during the day was mainly intended 
to reduce the humidity level in the greenhouse and consequently to prevent fungal diseases and 
physiological damage, such as marginal spot. A relative humidity as low as 60% can be seen in 
Figure 6.8c. In the optimal control approach, however, the ventilation rate was reduced during the 
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day to achieve a more efficient use of the carbon dioxide supplied. Consequently, a higher relative 
humidity (90%) was encountered than in practice. At night the differences in the humidity levels 
were found to be rather small.

With regard to the air temperature in the greenhouse, the grower used a minimum value of 14°C 
during the day. On average, this setpoint was almost equivalent to the calculated optimal air tem-
perature during the five days shown. Due to the high ventilation regime used by the grower during 
the day, more heating energy was needed to realize the air temperature setpoint which explains 
to a certain extent the high daytime energy consumption observed in Table 6.2. The optimal air 
temperature trajectories in Figure 6.8b also suggest that adjustment of the indoor temperature to 
the outside climatic conditions such as solar radiation may improve the efficiency of greenhouse 
climate management.

The difference in energy consumption at night between the grower’s strategies and the optimal 
control strategies is partly explained by the fact that, especially during the first two weeks of the 
growing period, the grower used an air temperature setpoint of 14°C. Further analysis revealed that 
with the particular crop growth model used, heating is not considered profitable at night (Van Henten, 
1994). The resulting high air temperature has a negative effect on the dry matter production due to 
increased maintenance respiration at high temperatures. Therefore at night the air temperature was 
determined by the lower bound constraint so that values as low as 7°C were simulated. Also in the 
optimal control approach, the heat pulse at sunrise, implemented by the grower to activate the crop 
was not considered economically feasible because the possible benefits in terms of crop quantity or 
quality of this approach were not described by the model used. Clearly, the heat pulse implemented 
by the grower contributed to a higher energy consumption.

In a qualitative sense, the optimal control strategies used in simulation Optimal 2 (not shown) 
yielded the same results as those calculated in simulation Optimal 1. The improved efficiency of 
greenhouse climate control was achieved by a more efficient use of carbon dioxide and a reduction 
of the energy consumption due to the absence of the heat pulse at sunrise and the lower air tempera-
ture at night. Although less heat energy was used during the day, even though the ventilation regime 
of the grower was adopted, only a slightly higher humidity level in the greenhouse was reached than 
with the optimal control strategies.

6.4.2.3 D iscussion
The differences in efficiency between the optimal control strategies and the grower’s control strate-
gies for greenhouse climate management are significant and one may argue whether such improve-
ments can be achieved in practice. The following observations are made.

Albeit the crop growth model used for the calculation of the optimal control strategies quite 
accurately simulates crop fresh weight production, it does not account for other aspects related 
to crop quality, such as head formation, and the occurrence of physiological damage and fun-
gal diseases under humid conditions. These deficiencies may affect the favorable results of the 
optimization, for example, in the following way. In greenhouse management practice, the high 
humidity levels calculated in simulation “Optimal 1” (in which the time-invariant constraint on 
the humidity was imposed) may be unfavorable for the quality of a lettuce crop. However, in 
simulation Optimal 2 (in which the ventilation regime adopted by the grower was used to control 
the humidity level) it was shown that carbon dioxide as well as heating energy were still used 
more efficiently. Furthermore, the optimal carbon dioxide concentrations and air temperatures, 
calculated in Optimal 1, were reasonable and are not expected to have an adverse effect on let-
tuce growth. Therefore, the major trends of the results reported in this chapter are still expected 
to hold. 

Still, the optimal control approach strongly relies on an appropriate model of the process to be 
controlled. Therefore, to expand the ideas presented in this chapter, further research in the field of 
modeling the greenhouse crop production process is required. But, also, feedback control based 
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on moving horizon optimal control techniques can effectively deal with uncertainty and model 
inaccuracy in nonlinear optimal control problems (e.g., Yang and Polak, 1993).

The optimal control simulations represented an ideal situation because the control trajectories 
were calculated after the greenhouse experiment had ended using complete knowledge about the 
outside climatic conditions as well as the auction price. In practice, these external factors have to be 
predicted and inaccuracies in these predictions may reduce the benefits of optimal control suggested 
in this chapter. Still, they are not expected to alter the major trends of these results. 

Although further research is needed, these uncertainty issues have already received attention in 
the literature. The potential of predicting auction prices was investigated by Van Henten (1994). An 
analysis of the auction price of lettuce revealed that the estimates of the parameters used to describe 
the linear relation between harvest weight and product price of lettuce showed a very distinct sea-
sonal pattern with a high auto-correlation function which offers the opportunity to predict the 
auction price using for example an auto-regressive model. Favorable results of short term weather 
forecasting using time series analysis were reported by Brown et al. (1984) and Huang and Chalabi 
(1994). A potential benefit is expected from the conjunction of these short-term weather forecasts 
with long-term meteorological weather forecasts. Also, as stated earlier, moving horizon optimal 
control techniques can effectively deal with uncertainty in nonlinear optimal control problems (e.g., 
Yang and Polak, 1993). This was confirmed by Tap et al. (1996) and Tap (2000) who reported on the 
effectiveness of this approach in dealing with the uncertainty in the outdoor climate conditions.

It appears that constraints, especially the humidity ones, play an important role in optimal green-
house climate control. Hence, a more accurate assessment of the effect of humidity and other micro-
climatic variables on the quality and quantity of crop production, either in terms of model equations 
or in terms of (time-variant) constraints, is required.

In the present analysis the greenhouse climate dynamics were neglected based on the premise 
that only the slow trends in the outside climatic conditions were considered. In reality, rapid fluctua-
tions in the outside climatic conditions do occur and their impact on optimal greenhouse climate 
management has not been considered in this study. Investigation of the effect of this assumption, 
which is commonly made in greenhouse climate optimization (e.g., Critten, 1991; Seginer, 1991; 
Van Henten and Bontsema, 1991; Bailey and Chalabi, 1994), has not yet been conclusive (Tap et 
al., 1993; Van Henten, 1994; Ioslovich et al., 1995). Therefore the main results obtained in this 
study are believed to hold. However, when online optimal control of the greenhouse climate is 
considered, the rapid fluctuations in the process and thus, for reasons of stability, the greenhouse 
climate dynamics have to be accounted for. A computational framework based on a two time-scale 
decomposition of the greenhouse climate control described in Section 6.4.4 and Van Henten and 
Bontsema (1992, 1996, 2009) and Van Henten (1994), deals effectively with the greenhouse climate 
dynamics as well. The applicability of this approach has been confirmed by Tap et al. (1996) and 
Tap (2000).

In the past, the considerable computer power required for the numerical solution of the optimal 
control problem has been an obstacle for the practical online implementation of optimal greenhouse 
control strategies. Recently, online control experiments convincingly showed that with the current 
performance of relatively inexpensive digital computers, this obstacle is circumvented (Van Meurs 
and Van Henten, 1994; Tap et al., 1996). 

6.4.2.4 C oncluding Remarks
In this chapter a comparative analysis, supported by experimental work, was carried out to deter-
mine the potential improvement in economics and energy efficiency in using optimal control strate-
gies in greenhouse climate management over a whole growing season of a lettuce crop. The results 
obtained support the conclusion that a considerable improvement in the efficiency of greenhouse 
climate management is possible. This improvement may well exceed 15%. Clearly, the final test 
of the merits of optimal control has to be obtained in full scale validation experiments in the 
greenhouse.
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6.4.3 S ensitivity Analysis of the Optimal Control Problem

Following the work of Van Henten (1994, 2003), the sensitivity of the performance of the optimal 
control strategies with respect to parameter variations is investigated.

6.4.3.1  Materials and Methods
Using variational arguments, first-order approximations of the performance sensitivity were derived 
by Courtin and Rootenberg (1971) and Evers (1979, 1980). The performance sensitivity with respect 
to the values of the state variables at the beginning of the growing period x( ),tb  equals:
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in which x* and u* are the optimal state and control trajectories, respectively, cnom denotes the nomi-
nal value of the model parameter and m, represents the total number of model parameters. 

The calculation of the first-order sensitivity contained two steps. First of all, the open-loop optimal 
control problem was solved. Then secondly, the effect of small perturbations of the model parame-
ters on the performance measure was evaluated using the above-mentioned first-order measure of the 
performance sensitivity with respect to parameter perturbations. For the model parameters, this first-
order measure was obtained by integrating the partial derivatives of the Hamiltonian with respect to 
the model parameters over the whole optimization interval. In the actual computation, these partial 
derivatives can be calculated analytically or numerically with a central difference approximation 
(e.g., Gill et al., 1981). In this research, analytical derivatives were obtained and implemented in the 
simulation software based on FORTRAN. For the initial conditions of the state variables, the perfor-
mance sensitivity was determined by the value of the associated costates at the starting time t0.

To compare the impact of perturbations in the different model parameters and the initial condi-
tions of the state variables on the system performance, it was considered to be more convenient to 
express the sensitivity as the fractional change in the performance criterion as a result of the frac-
tional change in the parameter value, i.e., a relative sensitivity criterion. For every state variable and 
model parameter, the relative sensitivity measure was defined as

	

∂
∂ ( )

( )
= ∂

∂
J

x t

x t

J
i n

J
c

c

Ji

i

j

j

0

0
1

nom nom

and
*

, , . . . , ,
*

,

 

j = 1, . . . ,m

	

(6.23)

By doing so, the interpretation of the results became straightforward. A relative sensitivity measure 
larger (less) than zero indicated that a small positive perturbation in the parameter resulted in an 
increase (decrease) of the value of the performance criterion. To be more precise, a value of the rela-
tive sensitivity measure of 1, indicated that a parameter change of 1% should result in a 1% change 
of the value of the performance criterion. For a relative performance sensitivity measure having a 
value larger or smaller than unity, the interpretation changed accordingly. As the first-order sensitiv-
ity analysis was based on a first-order Taylor series approximation of the change in performance due 
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to a change in a parameter, the validity of the previous interpretation was limited to small parameter 
variations only. Still, the relative performance sensitivity measure should provide valuable insight 
into the contribution of certain model parameters to the control strategies calculated.

Besides the performance sensitivity with respect to variations in the initial conditions and model 
parameters, the performance sensitivity with respect to small perturbations in the external inputs 
was evaluated. This was accomplished by multiplying each external input with a time-invariant 
parameter, i.e., cCO2_o, cI0

, cH2O_o and cTo
, having a nominal value of one. Clearly, the effect of this 

perturbation parameter was that throughout the whole optimization interval the external inputs are 
perturbed by the same amount. This may not sound fully realistic but it should give an impression of 
the relative importance of the external inputs on the performance of the optimal controlled process. 
In the sensitivity analysis, these perturbation parameters were treated as normal model parameters.

6.4.3.2 R esults and Discussion
The results of the sensitivity analysis are presented in Table 6.3. These results show that the con-
straint on the relative humidity seems to play a primary role in the performance of the optimal 
control problem. The importance of the humidity state constraint is indicated by the large sensitivity 
measure of cR, cT, cH O,2

sat
2

, cH O,3
sat

2
 and cH O,4

sat
2

, parameterizing the saturation water vapor pressure used in 
the definition of the constraint on the relative humidity. Although these parameters are also involved 
in the description of the canopy transpiration, their effect on the performance of the control strate-
gies through the canopy transpiration seems to be of secondary importance. This can be inferred 
from the sign of the sensitivity measure. Taking cR as an example, this can be seen as follows. An 
increment in the value of cR results in a reduction of the saturation water vapor pressure. When the 
humidity constraint is encountered during daytime, the costate λ H O,a

f
2

 takes large negative values as 
can be seen in Figure 6.9 and indicated in Section 6.4.1. This indicates the required reduction of the 
humidity in the greenhouse. Focusing on the humidity balance in the Hamiltonian equation, it can 
be seen that given λ H O,a

f
2

< 0 and assuming the saturation water vapor pressure to be larger than the 
absolute humidity level in the greenhouse, any reduction in the water vapor pressure would result 
in a larger value of the Hamiltonian, thus suggesting a positive effect of an increment in cR on the 
performance measure. The sign of the sensitivity measure, however, is negative. Therefore another 
effect of cR is dominating. Close to the humidity constraint, the partial derivative of the penalty 
function takes very large positive values. Then, any reduction of the saturation water vapor pressure 
will result in an increasing penalty, thus yielding the negative effect on the performance measure 
observed in the sensitivity analysis. Apparently, the penalty function related to the humidity con-
straint dominates the Hamiltonian, thus emphasizing the importance of an accurate definition of the 
humidity constraint in optimal greenhouse climate control.

As the constraint on the relative humidity is of such great importance in the control strategies, 
an accurate description of the humidity balance in the greenhouse, including processes like canopy 
transpiration, seems required. This is confirmed by the relatively large performance sensitivity of 
parameter cc_a

evap expressing the mass transfer coefficient for evaporative water vapor transport from 
the leaves to the ambient air. Under equal circumstances, a small positive increment in this param-
eter will result in a higher canopy transpiration and, consequently, it will result in an earlier conflict 
with the humidity constraint. The accompanying increment in the value of the penalty results in no 
sensitivity measure in Table 6.3.

In this example of lettuce cultivation, the gross economic return is determined by the dry mat-
ter production. Table 6.3 shows that most of the crop-related parameters more or less affect the 
performance of the control strategies. The sensitivity analysis of a lettuce growth model reported 
by Van Henten and Van Straten (1994) revealed the importance of parameters such as cαβ, cLAI,W, 
cI0

phot and cCO ,2
phot

2
. Consequently, in the present study a significant performance sensitivity for perturba-

tions in these parameters was expected as well. Apart from the parameter cLAI,W, Table 6.3 shows 
the expected relatively large performance sensitivity for these parameters, thus emphasizing the 
fact that for optimal greenhouse climate control their accurate parameterization is required. The 
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TABLE 6.3
Relative Performance Sensitivity of the Model Parameter in Decreasing Order of Their 
Absolute Values

Parameter Relative Sensitivity Parameter Relative Sensitivity

cH O,2
sat

2
5.4178 cLAI,W –0.1542

cH O,4
sat

2
4.5173 cCO ,3

phot

2
–0.1399

cH O,3
sat

2
–3.9328 cleak –0.1116

cCO _o2
1.6637 ccap,q,v –0.0958

cαβ 1.7807 cTo
0.0963

cI0 1.2627 cH O,cap2
0.0919

cI0

rad 1.1783 W(tb) 0.0600

cH O_o2
–1.0804 cCO2,cap –0.0500

cR –1.0800 cCO ,c_a2
0.0148

cT –1.0349 cΓ
phot –0.0123

cCO ,2
phot

2
0.8742 ca,cap –0.0095

cCO ,1
phot

2
–0.3668 cH O,1

sat
2

–0.0064

cq –0.3617 T tba
c ( ) 0.0007

cg_o
trans,vent –0.3418 co_g

rad 0.0004
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FIGURE 6.9  The costate trajectory of the humidity during 2 days of the 50 days optimization interval.
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performance sensitivity for parameter cLAI,W, however, is much less distinct than was expected. The 
reason for this is the fact that cLAI,W is also involved in the humidity balance of the greenhouse in 
which it describes the effective surface of the canopy. Before canopy closure, any increment of the 
canopy transpiration will result in more frequent conflicts with the humidity constraints. This has 
a negative effect on the performance measure, thus partly outweighing the positive effects of early 
canopy closure on dry matter production of the canopy.

Because the important role of the humidity has been discussed in some detail above, further 
analysis is focused on the parameters in the energy and carbon dioxide balances. Parameters that 
most clearly affect the dynamic behavior of the carbon dioxide concentration and air temperature 
in the greenhouse are the mass and heat capacities cCO

cap

2
 and ca

cap, respectively. Table 6.3 reveals that 
the effect of a perturbation in their values on the performance is relatively small. The heat and 
mass capacities of the greenhouse air determine to a large extent the dynamic rate with which the 
greenhouse climate can be modified: a larger capacity will result in a longer response time. The 
small performance sensitivity suggests that the greenhouse climate system is fast enough to deal 
with fast fluctuations in the external inputs in an economic optimal fashion. This can be seen as fol-
lows. If large benefits can be obtained by rapid modifications of the greenhouse climate anticipating 
rapid fluctuations in the external inputs such as the solar radiation, any decrease in response time 
will contribute to a significant improvement of the economic performance. Then, a pronounced 
performance sensitivity with respect to these parameters is expected. Compared with, for instance, 
crop growth related parameters, however, cCO

cap

2
 and ca

cap have a small impact on the performance. 
Apparently, the response time of the greenhouse climate is not a limiting factor in the economic 
optimal control of the crop production process. Or alternatively, the relatively small performance 
sensitivity to changes in the heat and mass capacity of the greenhouse air suggest that in economic 
optimal greenhouse climate control very fast modifications of the greenhouse climate do not con-
tribute much to an improvement of the economic performance.

These observations are in line with the results of the sensitivity analysis of the two state vari-
able crop growth model done by Van Henten and Van Straten (1994). Then it was found that crop 
growth is much more sensitive to changes in the long-term average of, for instance, the carbon diox-
ide concentration than to rapid fluctuations. Because in this example the performance of optimal 
greenhouse climate control is largely determined by the dry matter production, this would suggest 
a large performance sensitivity for parameters affecting the average indoor climate. In the present 
sensitivity analysis, this is confirmed by the significant sensitivity of the performance measure to 
a change in the carbon dioxide concentration in the outside air induced by cCO2_o. Clearly, such a 
change does affect the long-term average carbon dioxide concentration in the greenhouse air, but 
not so much its dynamic rate of change.

In the sensitivity analysis of Van Henten and Van Straten (1994), it was concluded that during 
the day lettuce growth is not strongly influenced by the air temperature in the greenhouse. Due to 
this relatively low temperature sensitivity of crop growth and the comparably high heating costs, the 
greenhouse air is rarely heated during the day. Still, parameter cg_o

trans,vent, describing the energy losses 
to the outside air by transmission through the greenhouse cover and natural ventilation through the 
windows, shows a high performance sensitivity. During the major part of the growing period, heat-
ing energy is supplied to the greenhouse at night to satisfy the minimum temperature constraint. 
This minimum temperature constraint to a large extent determines the total energy consumption. 
Any reduction in the energy loss to the outside air will result in a reduction of the energy consump-
tion required for heating the greenhouse. This results in a negative performance sensitivity. As the 
greenhouse climate is not exposed to rapid changes in the outside conditions during nighttime, 
economic optimal control does not require extremely fast modifications of the greenhouse air tem-
perature. This explains the relatively low performance sensitivity of the heat capacity ca

cap. 
The very large positive performance sensitivity for perturbations in the solar radiation and out-

side carbon dioxide concentration is explained by the large sensitivity of crop growth for these 
climatic conditions. The large negative sensitivity for an increase in the outside humidity is due to 
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the constraint on the relative humidity, which will then be more difficult to satisfy. The large perfor-
mance sensitivities emphasize the need for accurate assessment, i.e., prediction and measurement, 
of these outside climatic conditions.

The total operating costs of the climate conditioning equipment (±1.00 Dfl m–2[gh]) is rela-
tively small compared with the gross economic return of the crop production (±5.25 Dfl m–2[gh]). 
Therefore, a relatively small performance sensitivity for the operating costs expressed by the param-
eters cCO

cost
2
 and cq

cost is found. Because in the simulations the overall heating costs exceeded the costs 
for carbon dioxide supply, the performance sensitivity for cCO

cost
2
 is smaller than for cq

cost.
For all state variables the performance sensitivity to a perturbation in their initial conditions 

is relatively small. For the greenhouse climate variables this is explained by the fact that due to 
the fast system dynamics a small perturbation in the greenhouse climate has a very short lifetime 
that does not affect the performance of the system significantly. The low sensitivity of the initial 
dry weight of the crop, however, is unexpected. The start weight of the crop would be expected to 
have a significant positive effect on the final economic return. In this example, this still will be the 
case. In the optimization, however, rapid crop growth also has an adverse effect on the performance 
because the size of the crop has a positive influence on canopy transpiration and thus will result in 
humidity constraint violations. In this example, this negative effect partly outweighed the positive 
impact of a large start weight. 

Finally, it is interesting to note that some of the insights obtained in this research are in line with 
experiences from horticultural practice. As in the example in this research, in Dutch horticultural 
practice humidity considerations play a dominant role in ventilation control. In practice, abundant 
ventilation is used as a risk aversion strategy against physiological disorder and diseases, but the 
underlying mechanisms are not yet very well understood. This research clearly emphasizes that a 
more prudent use of ventilation for humidity control can have a significant positive effect on the 
economic performance of greenhouse crop production. In the past few years this notion has been 
gaining interest in horticultural practice as well. Another example is the thermal heat loss through 
the greenhouse cover, in this research represented by the parameter cg_o

trans,vent. The high performance 
sensitivity confirms that growers rightly choose to reduce energy losses through the greenhouse 
cover by means of thermal isolation.

6.4.3.3 C oncluding Remarks
With respect to the methodology used in this research, the following conclusions are drawn.

First of all, it was found that the first-order sensitivity analysis is a simple and straightforward 
way to obtain deeper insight into the operation of the optimal control problem and the relative impor-
tance of the model parameters, the initial conditions of the state variables and the external inputs, 
without having to go through extensive recalculations of the optimal control strategies. Secondly, 
the present study confirmed that a sensitivity analysis of the model to parameter variations and a 
sensitivity analysis of an optimal control problem including the same model might yield different 
results. Though the process model has an undisputed role in optimal control, it is the balancing of 
various objectives such as costs, revenues, and penalties that determine the optimal control strate-
gies. Finally, the intermediate variables in the solution of the optimal control problem such as the 
Hamiltonian and the costate trajectories, were found to be instrumental for a better understanding of 
the role of the model and model parameters in the determination of the optimal control strategies.

Application of the sensitivity analysis to an optimal control problem in greenhouse crop produc-
tion led to the following conclusions:

	 1.	The constraint on the humidity strongly influences the performance of optimal greenhouse 
climate management. Because these constraints were included as a first step to deal with 
adverse effects of high relative humidity on the quality of the crop, future research on 
greenhouse climate management should focus on a proper assessment of these effects in 
terms of quantitative models or modified climate constraints.

© 2011 by Taylor and Francis Group, LLC



114	 Optimal Control of Greenhouse Cultivation

	 2.	 In optimal greenhouse climate management, the dynamics of crop growth play a dominant 
role and require accurate models of crop growth and development.

	 3.	The relatively small performance sensitivity to changes in the heat and mass capacities of 
the greenhouse air indicate that the response time of the greenhouse climate is not a limit-
ing factor for economic optimal control.

	 4.	The outside climate conditions such as solar radiation, carbon dioxide concentration, and 
humidity, and to a lesser extent the temperature, are important in greenhouse climate man-
agement. Consequently their accurate measurement and prediction is required.

6.4.4 T ime-Scale Decomposition

Following the work of Van Henten (1994), Van Henten and Bontsema (2009) and the methodology 
description of Chapter 4, this section presents the results of the time-scale decomposition of the 
optimal greenhouse climate management problem.

6.4.4.1  Materials and Methods
In this example a growing period of 50 days was considered. Two-minute measurements of out-
door climate conditions, including solar radiation, wind speed, temperature and humidity, obtained 
during a growing experiment in early 1992, were used as external inputs during the solution (Van 
Henten, 1994). 

Three optimization runs were done. First, using the systems equations in Equations 6.1 through 
6.4, the performance measure of Equation 6.14, and the resulting Hamiltonian of Equation 6.15, 
the  full problem was solved to yield trajectories for all state variables W, CCO2,a, CH2O,a, and Ta

C, 
associated costates λW, λCO2,a, λH2O,a, and λ

Ta
C, as well as a value of the performance measure J. These 

results were used to evaluate the decomposition.
Second, the so-called slow subproblem was solved. In this subproblem the dynamics of the slow 

state variable W was explicitly taken into account, but for the fast state variables CCO2,a, CH2O,a, and 
Ta

C the dynamic model Equations 6.2 through 6.4 were reduced to their quasi-steady-state form. As 
a performance measure, again Equation 6.14 was used. This slowsubproblem yielded trajectories of 
W , CCO ,a2

, CH O,a2
, and Ta

c, their associated costates λ W, λ CO ,a2
, λ H O,a2

, and λ
Ta

C, as well as the control 
inputs uCO2

, uq, and uv. The bar indicates the slow subproblem.
Third, using the trajectories of W  and λ W, the so-called fast subproblem was solved. This optimi-

zation problem took explicitly into account the dynamic model equations of the fast state variables 
in Equations 6.2 through 6.4. For this optimization problem the modified performance measure 
was derived in accordance with the methodology described in Van Henten (1994), Van Henten and 
Bontsema (2009), and Chapter 4.

The decomposition was evaluated using the following criteria:

The optimal control trajectories of the fast subproblem should approximate the optimal •	
control trajectories of the original full optimal control problem, i.e., u u*( ) *( )t t≅ .
The evolution of the slow state and costate variables simulated with the optimal control tra-•	
jectories of the fast subproblem should approximate the state trajectories of the full control 
problem, i.e., x u x u( *) ( *) ≅  and λλ λλ( *) *( )u u≅ .
The evolution of the fast state and costate variables calculated in the fast subproblem should •	
approximate the evolution of the fast state variables calculated in the full control problem, 
i.e., x xf f( ) ( )t t≅  and λλ λλf f( ) ( )t t≅ .
The performance of the optimal control system using the solution of the fast subproblem •	 u( )t  
should approximate the performance of the full optimal control system, i.e., J Ju u( ) ≅ ( ).
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6.4.4.2 R esults
In Figure 6.10a it is shown that the crop growth trajectory obtained in the slow sub-problem agrees 
well with the evolution of the crop state obtained in the solution of the full control problem, though 
an underestimation does occur. However, if the full system dynamics were simulated using the opti-
mal controls of the fast subproblem, a more accurate approximation was obtained. The same can be 
observed for the slow costate trajectories (see Figure 6.10b). Figure 6.11 shows the rapid fluctuations 
of the solar radiation over two days during the 50-day production cycle. Figure 6.12 presents, for the 
same two days, the optimal state trajectories of the carbon dioxide concentration in the greenhouse. 
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FIGURE 6.10  State trajectories (a) and costate trajectories (b) obtained in the solution of the full control 
problem (—) and the slow subproblem (---) and a simulation of the full system dynamics using the optimal 
control trajectories of the fast subproblem (– •).
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It is clearly illustrated that the slow subproblem produces an inaccurate approximation of the fast 
system dynamics, because the rapid fluctuations in the external inputs are much faster than the 
dynamics of the fast subsystem (compare Figure 6.12a and b). On the other hand, the same figure 
shows that the trajectories calculated in the fast subproblem accurately describe the dynamics of the 
fast subsystem (compare Figure 6.12a and c). The same can be observed for the fast costate trajec-
tories associated with the carbon dioxide concentration (see Figure 6.13) as well as for the state and 
costate trajectories of the temperature and humidity in the greenhouse (not shown). 
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FIGURE 6.11  Solar radiation during two days of the 50-day production cycle.
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FIGURE 6.12  Optimal carbon dioxide concentration obtained in the solution of (a) the full problem, (b) the 
slow subproblem, and (c) the fast subproblem.
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Figure 6.14 shows the trajectories of the carbon dioxide supply rate. Again, the solution of the 
slow subproblem is not an accurate approximation of the optimal control of the full problem, but the 
solution of the fast subproblem is. Similar observations can be made for the control trajectories of 
energy supply and ventilation rate (not shown).

Finally, evaluation of the performance using the control inputs calculated in the fast subprob-
lem, yielded only a 2% reduction compared with the performance obtained in the solution of the 
full optimal control problem. So, an accurate approximation was obtained for this optimal control 
problem. This result is obtained because as shown in Figure 6.10 the slow system dynamics indeed 
do not respond to a large extent to the rapid fluctuations in the fast system dynamics, external inputs 
and control inputs, which was the main assumption on which this decomposition was based. 

It was just shown that an optimal control problem arising in greenhouse climate management 
during one lettuce production cycle can be hierarchically decomposed into two subproblems: one 
dealing with the slow crop growth dynamics and one dealing with the relatively fast greenhouse 
climate dynamics. But what is the implication of this result for greenhouse climate management in 
horticultural practice?

Figure 6.15 shows in a schematic diagram the procedure a grower uses nowadays to control crop 
growth and production by means of climate conditioning. Depending on the current state of the 
crop, the grower decides on the  setpoints of the greenhouse climate variables such as air tempera-
ture, humidity and carbon dioxide concentration. These setpoints are usually not defined as fixed 
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FIGURE 6.13  Costate of carbon dioxide concentration obtained after solving (a) the full problem, (b) the 
slow subproblem, and (c) the fast subproblem.
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Setpoints for
environmental

conditions Valve
settings

Measurements of aerial and root
environment

Observations of environment and crop status

Grower

Outdoor
climate

Process
computer

FIGURE 6.15  A schematic diagram of the climate control procedure in current horticultural practice.
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values. Following rules defined by the grower based on experience, they may change during actual 
operation of the climate conditioning equipment in response to changes in the outside climate con-
ditions. Such adaptations of the setpoints include, for instance, a solar radiation dependent change 
of the air temperature setpoint, and radiation and ventilation dependent adaptation of the carbon 
dioxide  setpoint. The grower may also put bounds on the ventilator’s aperture and the temperature 
of the heating pipes. A minimum temperature of the heating pipes is often used to assure circulation 
of air within the canopy. All together in modern greenhouse climate control computer systems, a 
large number of parameters (>150) need to be specified by the grower. Once the grower has decided 
on the settings of all these parameters, the greenhouse climate computer aims to achieve the desired 
climate in the greenhouse using measurements of the indoor climate and standard PI feedback 
control techniques. But there is a second indirect feedback loop from the crop growth process to 
the grower, in which during the growing season the grower may decide to modify the settings on 
the control computer based on observations of the actual state of the crop and detected or expected 
indoor and outdoor climate conditions.

Optimal control techniques can improve the performance of a crop production cycle, as was shown 
by Van Henten, Bontsema, and Van Straten (1997). But there is the challenging issue of implement-
ing an optimal control system given modeling errors, rapidly fluctuating disturbances that are hard 
to predict but have a strong impact on the economic performance of the system, and finally, large 
differences in dynamic response times. It is at this point where the above shown decomposition may 
play a role. Figure 6.16 shows a hierarchical scheme for greenhouse climate control based on the 
previously described and validated decomposition of optimal greenhouse climate management. The 
hierarchical control scheme contains two control loops, an outer loop controlling the (slow) crop 
growth dynamics and an inner loop controlling the (fast) greenhouse climate dynamics.

Using a long-term weather prediction (e.g., long-term averages), a prediction of the auction price 
and a measurement of the initial state of the crop, the slow subproblem is solved for the outer con-
trol loop. Due to modeling errors and errors in the predictions of the weather and the auction price, 
the actual state and costate may deviate from the pre-calculated trajectories and state feedback is 
therefore required. Repeated solution of the control problem using new information about the state 
of the crop, the auction price and the weather is hence needed. Because we are dealing with a fixed 
final time problem, the recurrent solution will consider a slowly decreasing time interval as t0 slowly 
approaches the harvest time tf. Recalculation should take place once a week, i.e., the time-scale of 
the slow crop growth dynamics.
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FIGURE 6.16  Optimal greenhouse climate management: a new hierarchical concept.
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Using the state and costate trajectories calculated in the outer loop and a short-term weather 
prediction, the fast subproblem is solved for the inner control loop to control the greenhouse cli
mate dynamics. This can be achieved in a receding horizon optimal control framework, as was 
demonstrated by Tap (2000). For that purpose the performance criterion of the fast subproblem has 
the favorable property that it does not have to be optimized over a whole growing period, but only 
over that time interval during which a control action affects the greenhouse climate. In horticultural 
practice this time interval will be in the order of one hour or less.

It is interesting to observe that the schemes shown in Figures 6.15 and 6.16 have a strong resem-
blance, both showing a hierarchical decomposition. However, in the latter the grower’s expert 
knowledge is at least partially replaced by a quantitative model of crop growth and production. 

Hierarchical control schemes for greenhouse climate management have been proposed before 
by, for instance, Udink ten Cate, Bot, and Van Dixhoorn (1978), Tantau (1991), and Challa and 
Van Straten (1991). They were all built on a proven scheme due to Richalet et al. (1978) that found 
common application in industrial practice. These schemes used setpoint optimization techniques to 
improve system performance at the highest level, neglecting the fast system dynamics, and relied on  
setpoint tracking techniques for the lowest control level in which economic performance was not 
explicitly considered. The interesting feature of the hierarchical structure presented in this chapter 
is the fact that at each level, i.e., both at the highest and the lowest control level, an economic perfor-
mance criterion is used that has a direct relationship with the main objective of economic optimal 
greenhouse climate management defined at the highest level. 

6.4.4.3 C oncluding Remarks
In this chapter it has been shown that based on differences in response times, an optimal control 
problem in greenhouse climate management can be decomposed into two subproblems, one dealing 
with the slow system dynamics concerning crop growth and evolution, and one dealing with the 
faster greenhouse climate dynamics. For this particular problem, the decomposition was found to 
be sufficiently accurate. To generalize this concept, further research is required aiming at deriving 
a formal proof of this decomposition.

Based on this decomposition, a hierarchical scheme for greenhouse climate management has 
been proposed. This scheme is characterized by the fact that:

	 1.	At each control level, control of the dynamic process responses is emphasized.
	 2.	At each control level, a performance criterion is used that has a clear and direct relationship 

with the main objective of economic optimal greenhouse climate management defined at 
the highest level.

	 3.	The relation between the control levels is defined in terms of state and costate trajectories, 
with the costate trajectories expressing the economic value of achieving the reference state 
trajectory at the lower level.

	 4.	 It is easy to implement in a receding horizon optimal control framework.

6.5 C oncluding Remarks

This chapter has shed some light onto the advantages and characteristics of optimal greenhouse 
climate management.

Solutions of the optimal control problem are sometimes straightforward and clear. However, 
sometimes, results are counterintuitive. Section 6.4.1 has produced some insight into the particular 
characteristics of the optimal control problem. This offers a basis for further understanding of the 
optimization problem considered. Additionally, it can be used to instruct growers on how to improve 
the performance of their greenhouse climate management and, moreover, this insight can be used to 
convince growers of the advantages of model-based optimal greenhouse climate management.
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Section 6.4.2 showed that optimal climate management may yield a better performance than 
current climate control practices. It is this potential advantage that should inspire researchers to 
proceed along this route and to improve climate control focusing on more efficient and effective use 
of resources using the optimal control paradigm. Still, in this section some limitations were also 
discussed, of which modeling errors and uncertainty in the auction prices as well as the outdoor 
weather are the most important ones. Some of these issues are considered in later chapters of this 
book.

Further to Section 6.4.1, Section 6.4.3 produced more insight into the characteristics of the opti-
mal problem considered. It was shown that humidity constraint plays a dominant role in this opti-
mization problem. This is not unexpected, because climate control in temperate climates like The 
Netherlands is largely based on consideration about the humidity level in the greenhouse and its 
consequences for both quantity and quality of the produced crop. Further research is needed to 
quantify effects of humidity on the crop status as well as to more accurately assess the possibly time 
varying bounds on the indoor climate as used in the optimal control problem.

In literature many hierarchical schemes have been proposed essentially to deal with the dif-
ferences in response times in the greenhouse crop production system. As shown in Section 6.4.4, 
exploiting the differences in response times offers the opportunity to decompose the optimal control 
problem, yet maintaining a properly and consistently defined performance criterion at all control 
levels. This approach can be used to put optimal control to work in practice, as demonstrated in 
Chapter 7.

References

Bailey, B.J., and Z.S. Chalabi. 1994. Improving the cost effectiveness of greenhouse climate control. Computers 
and Electronics in Agriculture 10: 203–214.

Brown, B.G., R.W. Katz, and A.H. Murphy. 1984. Time series models to simulate and forecast wind speed and 
wind power. Journal of Climate and Applied Meteorology 23: 1184–1195.

Challa, H., and G. Van Straten. 1991. Reflections about optimal climate control in greenhouse cultivation. In 
Mathematical and Control Applications in Agriculture and Horticulture, ed. Y. Hashimoto and W. Day, 
1:13–18, IFAC Workshop Series.

Courtin, P., and J. Rootenberg. 1971. Performance index sensitivity of optimal control systems. IEEE 
Transactions on Automatic Control AC-16: 275–277.

Critten, D.L. 1991. Optimization of CO2 concentration in greenhouses: A modelling analysis for a lettuce crop. 
Journal of Agricultural Engineering Research 48: 261–271.

Evers, A.H. 1979. Sensitivity analysis of optimal control problems, PhD diss., Technical University, Enschede, 
The Netherlands.

Evers, A.H. 1980. Sensitivity analysis in dynamic optimization. Journal of Optimization Theory and Appli
cations 32: 17–37.

Gill, P.E., W. Murray, and M.H. Wright. 1981. Practical Optimization. New York: Academic Press, Inc.
Huang, Z., and Z.S. Chalabi. 1995. Use of time-series analysis to model and forecast wind speed. Journal of 

Wind Engineering and Industrial Aerodynamics 56: 311–322.
Ioslovich, I., I. Seginer, P.-O. Gutman, and M. Borshchevsky. 1995. Sub-optimal CO2 enrichment of green-

houses. Journal of Agricultural Engineering Research 60: 117–136. 
Kirk, D.E. 1970. Optimal Control Theory. Englewood Cliffs, New Jersey: Prentice-Hall.
Pierre, D.A. 1969. Optimization Theory with Applications. New York: John Wiley and Sons Inc.
Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. 1986. Numerical Recipes. Cambridge, UK: 

Cambridge University Press.
Richalet, S., A. Rault, J.L. Testud, and J. Papon. 1978. Model predictive heuristic control: application to indus-

trial process. Automatica 14: 413–428.
Schapendonk, A.H. C.M., and P. Gaastra. 1984. A simulation study on CO2 concentration in protected cultiva-

tion. Scientia Horticulturae 23: 217–229.
Seginer, I., 1991. Optimal greenhouse temperature trajectories for a multi state variable tomato model. In 

Mathematical and Control Applications in Agriculture and Horticulture, ed. Y. Hashimoto and W. Day, 
1: 73–79. IFAC Workshop Series.

© 2011 by Taylor and Francis Group, LLC



122	 Optimal Control of Greenhouse Cultivation

Tantau, H.J. 1991. Optimal control for plant production in greenhouses. In Mathematical and Control 
Applications in Agriculture and Horticulture, ed. Y. Hashimoto and W. Day, 1: 1–6. IFAC Workshop 
Series.

Tap, R.F. 2000. Economics-based optimal control of greenhouse tomato crop production, PhD dissertation, 
Wageningen Agricultural University, Wageningen, The Netherlands.

Tap, R.F., L.G. Van Willigenburg, and G. Van Straten. 1996. Experimental results of receding horizon optimal 
control of greenhouse climate. Acta Horticulturae 406: 229–238.

Tap, R.F., L.G. Van Willigenburg, G. Van Straten, and E.J. Van Henten. 1993. Optimal control of greenhouse 
climate: computation of the influence of fast and slow dynamics. In Proceedings of the 12th IFAC World 
Congress, ed. G.C. Goodwin, R.J. Evans, J.B. Cruz Jr, and U. Jaaksoo, 321–324. Sydney, Australia: The 
Institution of Engineers.

Udink ten Cate, A.J., G.P.A. Bot, and J.J. Dixhoorn. 1978. Computer control of greenhouse climates. Acta 
Horticulturae 87: 265–272.

Van Henten, E.J. 1994. Greenhouse climate management: an optimal control approach. Ph.D dissertation, 
Wageningen Agricultural University, Wageningen, The Netherlands. 

Van Henten, E.J. 2003. Sensitivity analysis of an optimal control problem in greenhouse climate management. 
Biosystems Engineering 85: 355–364.

Van Henten, E.J., and J. Bontsema. 1991. Optimal control of greenhouse climate. In Mathematical and Control 
Applications in Agriculture, ed.  Y. Hashimoto and W. Day, 1: 27–32. IFAC Workshop Series.

Van Henten, E.J., and J. Bontsema. 1992. Singular perturbation methods applied to a variational problem in 
greenhouse climate control. In Proceedings of the 31st IEEE Congress on Decision and Control, ed. T. 
Basar, 3068–3069. New York: IEEE Control Systems Society.

Van Henten, E.J., and J. Bontsema. 1996. Greenhouse climate control: a two time-scale approach. Acta 
Horticulturae 406: 213–219. 

Van Henten, E.J., and J. Bontsema. 2009. Time scale decomposition of an optimal control problem in green-
house climate management. Control Engineering Practice 17: 88–96.

Van Henten, E.J., and G. Van Straten. 1994. Sensitivity analysis of a dynamic growth model of lettuce. Journal 
of Agricultural Engineering Research 59: 19–31. 

Van Henten, E.J., J. Bontsema, and G. Van Straten. 1997. Improving the efficiency of greenhouse climate con-
trol: an optimal control approach. Netherlands Journal of Agricultural Science 45: 109–125.

Van Meurs, W. Th. M. 1980. The climate control computer system at the IMAG, Wageningen. Acta Horticulturae 
106: 77–83.

Van Meurs, W. Th. M., and E.J. Van Henten. 1994. An experiment on the optimization of CO2 in greenhouse 
climate control. Acta Horticulturae 366: 201–208. 

Yang, T.H., and E. Polak. 1993. Moving horizon control of non-linear systems with input saturations, distur-
bances and plant uncertainty. International Journal of Control 58: 875–903. 

© 2011 by Taylor and Francis Group, LLC



123

7 An Experimental 
Application: Tomato*

7.1 �I ntroduction

In the previous chapters, the foundation is laid for the optimal control of greenhouse cultivation 
on the basis of the theory of optimal control. The solution of open-loop control was simplified by 
distinguishing two time scales. Simulation results showed the necessary optimal control actions 
under a priori known but realistic weather fluctuations. Important insights were obtained regard-
ing the potential benefits of optimal control that integrates greenhouse dynamics and crop models, 
expressed in direct profit to the grower.

To arrive at a real application, two additional issues must be solved. The first has to do with the 
variability in the weather. The use of realistic weather patterns, as done in the previous chapter, is 
important to study the effect of weather dynamics on the control actions, but it is not sufficient for 
online control. The premise of open-loop control computation, namely that the weather is known 
over the full optimization horizon, is obviously violated in a real online situation. It should be 
noted that the issue is not to suppress the influence of the weather, which is the normal situation in 
control, but rather to exploit the weather as much as possible. Hence, a solution for this problem is 
needed. The second issue is that open-loop simulations assume the model and model parameters to 
be correct and that the initial conditions and exogenous variables are known with great precision. In 
practice, deviations are unavoidable.

The answer to uncertainty is feedback. The two–time-scale decomposition as described in the 
previous chapter is transformed into a receding horizon optimal controller, with a goal function 
expressed in the same economic terms as before but over a shorter horizon. The long-term effects 
are incorporated via the slow costates, as discussed in Chapter 4. Feedback is provided by correct-
ing the predicted state by observations. The weather is incorporated by short-term weather fore-
casts. The majority of the contents of this chapter originated from Tap (2000).

The crop chosen here as a case is tomato. This is a generative crop that poses larger challenges 
to the model as compared with a crop like lettuce. Moreover, it is of larger economic interest. A 
distinctive feature is that in the productive stage, the harvest is more or less continuous. The crop 
model is a three-state model, with the assimilates and the fruit and leaf biomass as states. In addi-
tion, a virtual development state is used to control the harvest. The greenhouse climate model is a 
relatively simple lumped parameter model, with the greenhouse air temperature, a virtual soil tem
perature, the CO2 concentration, and the water vapor concentration in the air as states. In addition, 
the heating pipe temperature dynamics is modeled. Much effort is put into the experimental calibra-
tion and validation of the models.

Although in the previous chapter the evaluation of the optimal control was done by simulations 
only, here a comparative experiment is described showing the difference between the conventional 
control and the receding horizon optimal control over the period of one month. The assessment 
of seasonal effects is done by using the calibrated models in simulation that mimics the online 
control.

*	Notation: Chapter-specific symbols are defined in the text and are listed together with parameter values in Tables 7.2 
and 7.3.
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7.2 �T omato Model

The tomato state–space model has been developed by Tap (2000) on the basis of the work of De Kon
ing (1994). It is called a big leaf–big fruit model because no distinction is made between leaf or 
fruit number. It is formulated here in a slightly more generic form than the original version. The 
model describes the evolvement of leaf and fruit biomass after anthesis of the first fruit. The model 
has three principle states: nonstructural biomass, that is, assimilates, which can be viewed as an assim-
ilate buffer (WB), and structural biomass in leaves (WL) and fruits (WF), as shown in Figure 7.1.

At first, we describe the mass balances for the vegetative structural parts, that is, the sum of 
leaves, stems, and roots (WV), and the generative parts (fruit biomass WF). Later, instead of working 
with the sum of all vegetative parts, the leaves only are taken as the states. The basic mass balances 
are as follows.

Assimilates:

	

d
d

B
V V V F F F B,V B,F

W

t
P G G G G R R= − − − − − −θ θ .	 (kg[dw] m–2[gh] s–1)  (7.1)

rate of change of assimilates ( WB) = 

+ Production of assimilates by photosynthesis (P)
– Conversion of assimilates to vegetative biomass by growth (GV)
– Use of assimilates as energy to drive vegetative growth (fraction θV of GV)
– Conversion of assimilates to generative (fruit) biomass by growth (GF)
– Use of assimilates as energy to drive generative (fruit) growth (fraction θF of GF)
– Drain of assimilates for maintenance of vegetative parts (RB,V)
– Drain of assimilates for maintenance of generative parts (RB,F)

Vegetative parts:
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V V,V L

W

t
G R H= − − ,

	
(kg[dw] m–2[gh] s–1)  (7.2)

rate of change of leaf biomass ( WV) = 

+ Conversion of assimilates to leaf biomass by growth (GV)
– Use of biomass for maintenance when there is a lack of assimilates (RV,V)
– Leaf picking rate (HL)

Generative parts (fruits):

	

d
d

F
F F,F F

W

t
G R H= − − ,

	
(kg[dw] m–2[gh] s–1)  (7.3)

rate of change of fruit biomass ( WF) = 

+ Conversion of assimilates to fruit biomass by growth (GF)
– Use of biomass for maintenance when there is a lack of assimilates (RF,F)
– Fruit harvest rate (HF)

where all biomasses and rates are expressed in dry weight per unit greenhouse projected area.
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WB

WL

WF
Fruit

growth

Fruit
maintenance

Stem/roots

Leaf growth
respiration

Photosynthesis

Light
CO2

Leaf
maintenance

Fruit growth
respiration

Leaf
picking

Fruit
harvest

Temperature

Leaf
growth

FIGURE 7.1  Big fruit–big leaf model. The rectangles represent the biomass states (WB assimilate buffer, WL leaf biomass, and WF fruit biomass). Solid lines represent 
carbon mass flows, dashed lines information flows. Internal information loops are left out for readability.
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7.2.1 � Working with Leaves Instead of Generative Parts

In the model, it is assumed that the leaf is a fixed fraction z of the total vegetative parts:

	
z

W

W W W
=

+ +
L

L stem roots

.
	

(–)  (7.4)

Consequently,

	
W W W W

z
WV L stem roots L= + + = 1

,
	

(kg[dw] m–2[gh])
 

(7.5)

and provided that the initial time is chosen such that the fixed ratio is already obeyed,

	
G

z
GV L= 1

,
	

(kg[dw] m–2[gh] s–1)  (7.6)

	
R

z
RV L= 1

,
	

(kg[dw] m–2[gh] s–1)  (7.7)

where GL and RL are the leaf growth and leaf maintenance, respectively. It has to be noted that leaf 
picking disturbs the fixed ratio. This effect is ignored in the model.

7.2.2 �A ssimilate Pool

Assimilates are being produced by photosynthesis. The gross canopy photosynthesis rate in dry 
matter per unit area is P. Assimilates are converted to leaf and fruits. This is commonly known 
as growth. Leaf and fruits have a “demand” for assimilates, which will be honored if there are suf-
ficient assimilates available. In addition to the leaves, there are other plant parts, such as stem and 
roots.

If we denote the unit area growth demand of leaves and fruits as GL
dem and GF

dem, then the amount 
of assimilates turned into structural matter by the actual growth is

	

h
G

z
G{}⋅ +







L
dem

F
dem ,

	

(kg[dw] m–2[gh] s–1)  (7.8)

where h{⋅} is a smooth switching function that has a value of one if the assimilates are plenty and 
goes to zero when the assimilates are depleted. Hence, the actual leaf and fruit growth rates are 
given by

	 G h GL L
dem= ⋅{} 	 (kg[dw] m–2[gh] s–1)  (7.9)

and

	 G h GF F
dem= ⋅{} ,	 (kg[dw] m–2[gh] s–1)  (7.10)
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respectively. This shows that actual growth comes to a halt when the buffer is empty. The curly 
brackets in h{⋅} are used here to remind us that h is not a constant parameter but a function of the 
relative abundance of the assimilates (to be explained later).

To realize structural growth, energy is needed, which is also drawn from the assimilate pool. If 
we denote the additional amount of assimilates needed for one unit of structural fruit and vegetative 
parts by θF and θV, respectively, the actual drawing from the assimilate pool for growth, including 
growth respiration, is

	

h
G

z
G{}⋅ +( ) + +( )





1 1θ θV

L
dem

F F
dem .

	

(kg[dw] m–2[gh] s–1)  (7.11)

The terms (1 + θF) and (1 + θV) are also known as the fruit assimilate requirement ratio and the 
vegetative assimilate requirement ratio, respectively.

Even if the plant does not grow, it requires energy for maintenance. This is obtained by respiring 
some of the assimilates. Unlike growth, respiration will continue even if the assimilate buffer is 
empty. In that case, some of the structural biomass is reallocated to be used as maintenance energy. 
The total drawing of assimilates from the assimilation pool for respiration is

	
h

R

z
R{}⋅ +







L
F ,

	
(kg[dw] m–2[gh] s–1)  (7.12)

where RF and RL are the respiration needs of fruits and leaves, and, as before, h{⋅} is a smooth func-
tion that goes to 0 when the assimilates get depleted. For convenience, the same function is used 
as for growth. This is not a severe limitation because the exact form of h{⋅} is not so important. 
Equation 7.12 implies that RB,V and RB,F in Equation 7.1 are replaced by

	
R h

R

zB,V
L= ⋅{}

	
(kg[dw] m–2[gh] s–1)  (7.13)

and

	 RB,F = h{⋅}RF ,	 (kg[dw] m–2[gh] s–1)  (7.14)

respectively. If the buffer is empty, the respiration needs will be satisfied by conversion of structural 
biomass. Denoting by WB the total assimilates in the canopy, expressed as dry weight per unit area, 
the following mass balance holds,

	

d
d

B V
L
dem

F F
demW

t
P h

z
G G h= − ⋅

+( )
+ +( )











−{} {
1

1
θ

θ ⋅⋅ +






}
R

z
RL

F .

	

(kg[dw] m–2[gh] s–1)  (7.15)

To see more clearly what happens, we can split this into

when WB is plenty (h = 1): 
d
d

B V
L
dem

F F
dem L

F

W

t
P

z
G G

R

z
R= −

+( )
− +( ) − −

1
1

θ
θ ;

when WB is near zero (h = 0): 
d
d

BW

t
P= .
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It is perhaps useful to analyze the role of the function h{⋅} a little further. It serves as a kind 
of switching function to indicate the change in operation mode of the plant when the assimilates 
change from an abundant state to a depleted state. Typical shapes of switching functions as a func-
tion of WB are shown in Figure 7.2. The sharp discrete switch (curve 1) leads to jittering of the model 
around the switching value of WB. This can be seen because during the day, when P > 0 and h = 0, 
WB will increase, but as soon as it reaches the switching level, that is, if h jumps to one, the growth 
and respiration terms will drag WB down again. Hence, even with constant photosynthesis and 
assimilate demands, there is no steady state. By smoothing the function, for instance, by an S-shape 
form (curve 2), there is a steady state, which is given by the value of WB belonging to

	

h
P

z
G G

R

z

ss
ss

V
L
dem,ss

F F
dem,ss L

ss
{}⋅ =

+( )
+ +( ) + +

1
1

θ
θ RRF

ss

.	 (–)  (7.16)

Tap (2000) has used the saturated curve given by

	 h e p W= − −1 h B,	 (–)  (7.17)

with ph a (positive) parameter (curve 3).

0 1 2 3 4 5
0

0.5

1

WB/WB50%

h

2

3

1

FIGURE 7.2  Examples of switching functions (step, exponential, and S-shape).

© 2011 by Taylor and Francis Group, LLC



An Experimental Application: Tomato	 129

7.2.3 �L eaf and Fruit Biomass

The leaf growth is equal to the amount of assimilates converted to structural leaf biomass in the 
canopy and is given by h{⋅}GL

dem. The model does not incorporate an extra state for stem and roots, 
but by the factor z it is assumed that each increment in leaf will be accompanied by a proportional 
increment in stem and root. If there are no sufficient assimilates, growth simply stops, but mainte-
nance respiration is assumed to happen at all times. Normally, assimilates are used for maintenance, 
but in lack of assimilates, maintenance in the model goes at the expense of structural parts, that is, 
the leaves and the fruits. The mass balance for the canopy leaf biomass per unit area, WL, reads

	

d
d

L
L
dem

L L
W

t
h G h R H= ⋅ − − ⋅ −{} ( {})1 .	 (kg[dw] m–2[gh] s–1)  (7.18)

The term HL is a formal term to express the fact that leaves are pruned from time to time.
Similarly, for the fruits, the following mass balance holds

	

d
d

F
F
dem

FF
W

t
h G h R H= − −( ) −{·} {·}1 .	 (kg[dw] m–2[gh] s–1)  (7.19)

We see that

when WB is plenty (h = 1):	
d
d

d
d

L
L
dem

L

F
F
dem

F

W

t
G H

W

t
G H

= −

= − ;

when WB is near zero (h = 0):	
d
d

d
d

L
L L

F
F F

W

t
R H

W

t
R H

= − −

= −
 

.

7.2.4 �L osses

To know the amount of CO2 returned to the greenhouse environment, it is relevant to list all loss 
terms here. By adding up all biomass forms, we obtain the following:

in case of abundant WB: 
d

d
tot V

L
dem

F F
dem

L F L F

W

t
P

z
G G

z
R R

z
H H= − − − − − −θ

θ
1 1

;

in case of depleted WB: 
d

d
tot

L F L F

W

t
P

z
R R

z
H H= − − − −1 1

.

The fixed ratio between leaves and roots–shoot requires the rather artificial condition that whenever 
leaves are pruned, an equivalent proportion of stem and root is taken out. The harvest obviously is 
not returned as CO2 to the greenhouse, but the respiratory terms are, so the total amount respired 
per unit time R is given by

	
R h

z
G G

R

z
R= +







+ +{·}
θ

θV
L
dem

F F
dem L

F .	 (kg[dw] m–2[gh] s–1)  (7.20)
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Equation (7.20) expresses that the total respiration is obviously the sum of the total growth respira-
tion—in case there is growth—and the total maintenance respiration.

7.2.5 �C onstitutive Relations

To complete the model, equations are needed that link the rate of change terms to the states of the 
model and the external inputs.

7.2.5.1 �P hotosynthesis
The gross photosynthesis depends on the photosynthetic activate radiation (PAR) (I PAR) and on the 
CO2 concentration (CCO2

 ), both with a saturation curve. With young plants, the photosynthesis is 
roughly proportional to the leaf area per unit greenhouse area (LAI), whereas the photosynthesis 
becomes practically independent of the standing biomass when the canopy closes. As the LAI is not 
a separate state in the model, a reduction function is used that depends on the leaf biomass:

	
f

W p

W p

m

mm
L m

L m

{}
( )

( )
⋅ =

+1
.	 (–)  (7.21)

The factor fm can be seen as a kind of “maturity” factor. It is near zero when the plant is young and 
will approach one as the canopy closes and the plant gets more mature. The parameter pm is the leaf 
dry weight where the maturity factor is 0.5 (kg[dw] m–2[gh]), and m is a dimensionless parameter.

The overall photosynthesis rate is given by

	

P P
I

I K

C

C K
f=

+ +
max { }·

PAR

PAR
I

CO

CO C
m

2

2

,	 (kg[dw] m–2[gh] s–1)  (7.22)

with parameters Pmax as the maximum gross canopy photosynthetic rate (kg[dw] m–2[gh] s–1), KI as 
the half saturation PAR light intensity (W[PAR] m–2), and KC as the half saturation CO2 concentra-
tion in the air (kg[CO2] m–3). The PAR light intensity at the crop level I PAR is simply set proportional 
to the global radiation

	 IPAR = fPAR/IτrIo ,	 (W[PAR] m–2)  (7.23)

where fPAR/I is the fraction PAR of the global radiation, τr is the transmittance of the roof, and Io is 
the global radiation (W m–2[gh]).

7.2.5.2 � Growth Demand
The growth demand of the leaves and the fruits is assumed to be roughly proportional to the total 
biomass. An attempt has been made, however, to encapsulate the fact that in the early stages of bear-
ing fruits the size distribution is toward smaller fruits, the relative growth rate tends to be larger. 
This is expressed in a dimensionless development factor fD{⋅} to be explained later. Growth of fruits 
is also assumed to be temperature dependent, which is modeled with a Q10 relation. The growth 
demand equation therefore is

	 G k f T f WF
dem

GF
ref

TG D F= ⋅( ) {} ,	 (kg[dw] m–2[gh] s–1)  (7.24)

with

	 f T Q
T T

TG G

G
ref

( ) =
−

10
10 .	 (–)  (7.25)
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The parameter kGF
ref  is the reference growth rate coefficient of fruits (s–1), that is, the growth rate at 

the reference temperature.
The growth demand of leaves and hence of all vegetative parts is modeled as

	 G f T k f T f WL
dem

L/F GF
ref

TG D L= ⋅( ) ( ) {} .	 (kg[dw] m–2[gh] s–1)  (7.26)

In this formulation, the same growth rate coefficient as for the fruits is applied to the leaves, but it 
is modified by a temperature-dependent ratio that expresses by which factor the specific leaf growth 
rate is larger or smaller than the specific fruit growth rate. This ratio plays an important role in con-
trolling the vegetative and generative growth relative to each other. It is expressed as

	 f T f e
T T

L/F L/F
ref L/F

ref

( ) =
−( )ν2

.	 (–)  (7.27)

Parameter TL/F
ref is the pivot temperature. With a negative ν2, increasing the temperature above the 

pivot temperature means relatively more generative growth. Parameter fL/F
ref is a dimensionless con-

stant expressing how much larger the growth demand of the leaves is as compared with that of the 
fruits at the pivot temperature.

7.2.5.3	 Maintenance Respiration
The maintenance respiration demand of the leaves is modeled as a simple first-order expression of 
the biomass,

	 R k f T WL RL
ref

TR L= ( ) ,	 (kg[dw] m–2[gh] s–1)  (7.28)

where kRL
ref  is the respiration rate at the reference temperature Tref, and fTR(T) is a function of the 

temperature, modeled as a Q10 relation, that is,

	 f T Q
T T

TR R

R
ref

( ) =
−

10
10 .	 (–)  (7.29)

The temperature here should be, strictly speaking, the leaf temperature, but as this is not a state in 
the model, the air temperature is used instead.

The same holds, by analogy, for the fruits:

	 R k f T WF RF
ref

TR F= ( ) ,	 (kg[dw] m–2[gh] s–1)  (7.30)

where, for simplicity, the same temperature dependency is assumed.
Refer to Section 9.4.3 for a discussion on modeling maintenance and growth respiration.

7.2.5.4 �D evelopment State
The correction factor for the fruit growth rate in Equation 7.24 is given by

	
f

c c D

c cD
f f

f f

= −
−

1 2

1 2

.	 (–)  (7.31)
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Here, D is the development stage for the plant, defined in the next paragraph. Note that fD is equal to 
1 if D = 1. With the parameters given by Tap (2000), the correction factor stays near 1, even at low 
values of the development stage.

The development stage is an artificial state variable that measures in a way the temperature his-
tory passed since anthesis. It could, in principle, also be used to predict the onset of fruits, although 
that is not done in the proposed model. The basis for the formula derived as approximation by Tap 
(2000) goes back to the research of De Koning (1994), who provided a detailed analysis of growth 
of individual fruits, which obviously cannot be incorporated in the big fruit–big leaf model. The 
overall crop development stage is modeled as an additional state variable, according to the empirical 
expression, originally presented as

	

d
d d d

d
d anthesis H

D

t
c c

T

c
c t t k= +







− −( ) −1 2
3

4ln .	 (s–1)  (7.32)

Here, the constants cd1, cd2, cd3, and cd4 are parameters deduced from the underlying empirical devel-
opment models. There is a term that reduces the development stage proportional to the time since 
anthesis, which expresses a kind of aging of the plant or, put differently, expresses that the vigor of 
the plant gets less when the plant gets older. Parameter cd3 is a pivot temperature (293 K, 20°C) so 
that when T > cd3, the development rate grows faster than at the pivot temperature and slower when 
T < cd3. The term kH (s–1) is the development rate effect due to harvest as discussed in the next sec-
tion. It is included to express that the average plant development reduces when the ripest fruits are 
harvested.

The disadvantage of the formulation of Equation 7.32 is the explicit dependency on time, which 
is not desirable. The term t – tanthesis is actually a state variable that expresses the crop age since 
anthesis. Therefore, it is better to introduce a new state variable, called eD here. The state equation 
for eD is

	

d
d

D anthesis

anthesis

e

t

t t

t t
=

<
≥







0

1
,	 (–)  (7.33)

where tanthesis should somehow be linked to the development state. Lack of this relation restricts the 
validity of the model to stages in the crop development since fruit set begins.

7.2.5.5 �H arvest Rate
In practice, growers prune the leaves of lower internodes, and of course fruits that are ripe will be 
picked. Strictly speaking, the harvest is a controllable input. In stand-alone simulations for assess-
ment of the potential options for harvest, it makes sense to model the harvest process. To this end, it 
can be assumed that harvest starts when some fruits are ripe. This is set to appear when D reaches 
the value one. A continuous harvest is achieved by regulating the harvest so that D stays equal to 
one. Hence,

	

k c D c c
T

c
c eH H d d

d
d D= +







−






( ) ln1 2

3
4 ,	 (s–1)  (7.34)

where the control function cH(D),

	 cH(D) = U(D – 1),	 (–)  (7.35)
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is the unit Heaviside step function, that is, if D < 1, cH(D) = 0, and if D ≥ 1, cH(D) = 1. In practical 
operational ranges, when harvest has started, it will continue and D remains one so that the goal to 
control kH is easily achieved by discarding the development stage state equation entirely. In other 
words, as soon as fruit picking begins, D remains one, and kH is computed from

	
k c c

T

c
c eH d d

d
d D= +







−1 2
3

4ln .	 (7.36)

The harvest rate itself is in fact a control, or it may be known from the data. In stand-alone simula-
tions, an assumption has to be made to relate the harvest rate to the states of the model. In that case, 
it is simply set proportional to the biomass, that is,

	 HF = kHFWF,	 (kg[dw] m–2[gh] s–1)  (7.37)

	 HL = kHLWL.	 (kg[dw] m–2[gh] s–1)  (7.38)

The rate coefficients kHF and kHL are not constants but are made functions of the development stage 
effect due to harvest,

	 kHF = cyFkH,	 (s–1)  (7.39)

	 kHL = cyLkH,	 (s–1)  (7.40)

with cyF and cyL as the dimensionless harvest parameters. In view of Equation 7.34, this implies that 
as the crop matures, the relative harvest rate reduces.

Although leaf pruning has no direct economic benefit, it is important, as the presence of leaf 
biomass in this model entails more respiration losses.

It should be noticed that the total harvested fruit amount can be easily computed from

	

S t k W t
t

t

HF HF F d (kg[dm] m [gh])
f

( ) = ∫ −

0

2,	 (kg[dw] m–2[gh] s–1)  (7.41)

or, alternatively, from the auxiliary state equation,

	

d
d

HF
HF F

S

t
k W= .	 (kg[dw] m–2[gh] s–1)  (7.42)

As this state does not feed back to the crop behavior, it is a nonessential state for the dynamics (see 
Section 7.4).

7.3 � Greenhouse Climate Model

As in the case of lettuce discussed in the previous chapter, it is important to discuss the choices of 
the system boundaries and the consequences of this choice. Figure 7.3 shows two common solu-
tions. It shows the greenhouse compartment as an information flow diagram, with separate blocks 
for the pipe system and the ventilation system. In the top picture, the boundaries are drawn such that 
the heat input from the heating pipes and the ventilation flux are considered as independent inputs. 
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Alternatively, the boundaries can be drawn in such a way that the heating pipe and the ventilation 
subsystems are an integral part of the total system. In that case, the control inputs are the mixing 
valve for the heating and the window aperture for the ventilation. Additional (disturbance) inputs 
are the boiler temperature, the greenhouse temperature, and the wind speed. A separate model is 
needed to describe the pipe temperature dynamics. Similarly, a model is needed to express the ven-
tilation flux as a function of wind speed, buoyancy, and window aperture.

It is clear that the first option is simpler to use but is more remote from practice. Moreover, it can 
be seen that there is a difficulty because the ventilation and the heat fluxes depend on the green-
house temperature and are therefore not truly freely controllable inputs. On the other hand, if it 
were possible to build a fast controller that would be able to realize the demanded heating flux, one 
could in the frame of optimal control refrain from separate modeling of the heating pipe system. It 
would, however, require an accurate online measurement of the transferred heat. This is not easy to 
realize. A compromise would be to measure and to control the pipe temperature, in which case for 
the optimal control it would not be necessary to model the piping system. Instead, the pipe tempera-
ture now becomes the system input, and any fluctuations in boiler temperature are dealt with by the 
local controller. Another aspect is that it simply might not be possible to supply the demanded heat 
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FIGURE 7.3  Different choices for the system boundaries. Top: excluding the pipe and ventilator systems. 
Bottom: with integrated models for heating pipe and ventilation dynamics.
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under all circumstances. This occurs when actuators get saturated. Moreover, a heat input in the 
optimal control could become negative, but it is clear that the heating pipe system cannot provide 
the required cooling in that case. Hence, there are constraints that must be taken into account when 
the heat input is taken as a variable to be optimized. These are the reasons to model the pipe system 
separately. This model can then also be used to study the effects of a local pipe temperature control-
ler on the optimization result.

Similar arguments apply to the ventilation flux, with the additional difficulty that there are to 
date no good solutions to obtain a direct measurement of the ventilation flux, which would be a 
requirement if one would wish to use a local ventilation controller. In addition, constraints play an 
important role because the ventilation flux capacity depends quite a lot on the wind speed. So, par-
ticularly on quiet days, the required ventilation may not be realized. A disadvantage clearly is that 
it is now necessary to have the wind speed as external disturbance.

For all these reasons, in this study, it was decided to model not only the main greenhouse compart-
ment but also the heating pipe system and the ventilation. We come back to this point in Section 7.3.3. 

7.3.1 �H eat Balances

Greenhouse compartment (terms toward greenhouse compartment are positive, loss terms negative)

	
K

T

t
q q q q q qg

g
o_g
rad

g_o
vent

g_o
cond

g_s p_g g_

d

d
= − − − + + rr

cons
g_c
trans− q .	 (W m–2[gh])  (7.43)

In Equation 7.43, we chose to express all flux variables in flows per square meter projected 
ground area of the greenhouse. The advantage of this is that in this form it is easy to analyze the 
various contributions in heat and mass balances because they are all expressed in the same units. 
The disadvantage is that some care must be taken to convert fluxes that conventionally are taken 
with respect to local surface areas into the correct per unit greenhouse area units.

Kg is the (virtual) heat capacity of the greenhouse compartment (J m–2[gh] K–1). If it would be 
determined solely by the air heat capacity, it could be computed from 

	

K c
V

Ag a p,a
g

g

= ρ ,	 (J m–2[gh] k–1)  (7.44)

but this value should be seen as a lower limit because the crop and the greenhouse materials such 
as gutters and the like also contribute to the heat capacity. The greenhouse compartment thus is 
a lumped compartment, combining radiation-receiving materials (except the heating pipes) and 
greenhouse air. The second-order effect of radiation received by materials, which is then transferred 
to the air, is ignored in this simple model (for a more elaborate physical model, see Chapter 8). To 
clearly distinguish this lumped model from models where the greenhouse compartment is separated 
in various components, such as in Chapter 8, the subscript g is used to remind the reader that we 
are talking about the lumped greenhouse compartment and not about just the air (which is denoted 
by subscript “a”). The rate of change of the (sensible) heat content in the greenhouse compartment 
(W m–2[gh]) is the sum of various contributions, specified as follows:

Solar radiation absorbed•	

	
q Io_g

rad
g o= η ,	 (W m–2[gh])  (7.45)
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	 where Io is the global radiation and ηg is the fraction contributing to heat gain of the green-
house compartment (air and solids). In the model, the heat absorbed by the heating pipe 
system is considered separately and is equal to

	

η ηp
p

g

=
A

A
,	 (–)  (7.46)

	 where the term Ap/Ag amounts to the total (visual) pipe surface area per unit greenhouse 
projected area. The fraction ηg therefore can be written as

	

η η η ηg p
p

g

= − = −






1

A

A
.	 (W m–2[gh])  (7.47)

	 It should be noted that the η used here will be higher than the heat absorption coefficient 
of Chapter 6 because in Chapter 6, the factor is also needed to account for the tempera-
ture mitigating effect of evapotranspiration, which is separated out here by the last term of 
Equation 7.43. As an approximation, it is simply set equal to the transmittance of the roof

	 η = τr .	 (–)  (7.48)

Heat loss by ventilation•	

	
q u c T Tg_o

vent
v a p,a g o= −( )ρ ,	 (W m–2[gh])  (7.49)

	 where uv is the volumetric ventilation flow rate per unit greenhouse area (m3[air] m–2[gh] 
s–1). With the standard symbol convention, u FAv g_o

vent≡ 1
g

. The notation uv is used here to 
allow comparison with the model presented in Chapter 6, where the ventilation flow is 
treated as a control input (for more details, see Section 7.3.3). Remark that the ratio uv /h is 
the refreshment rate (s–1) of the greenhouse (with the effective height h = Vg/Ag). The venti-
lation flow rate is related to the wind speed and the windward (0 1≤ ≤uv

Apwsd ) and lee side 
(0 1≤ ≤uv

Aplsd ) relative window openings according to

	

u
p u

p u
p p u vv

v1
Aplsd

v2
Aplsd v3 v4

Apwsdv

v
v=

+
+ +






1
++ pv5,	 (m3[air] m–2[gh]) s–1)  (7.50)

	 where pvj, j = 1, . . . , 5 are parameters, and v is the wind speed (De Jong, 1990; Van Henten, 
1994). The superscripts “Aplsd” and “Apwsd” are used to distinguish the relative apertures 
uv

Aplsd and uv
Apwsd as control inputs from the resulting airflow uv that serves as control input 

in Chapter 6 (for more details, see Section 7.3.3). As normally the windows are opened first 
on the leeward side and then on the windward side, it is convenient to introduce a single 
control variable 0 ≤ uv

Ap ≤ 2, from which uv
Aplsd and uv

Apwsd can be computed according to

	
u

u u
v
Apwsd v

Ap
v
Ap

=
− + −1 1

2
,	 (–)  (7.51)
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	 u u uv v
Aplsd

v
Ap Apwsd= − .	 (–)  (7.52)

	 In Equation 7.49, the latent heat transport associated with the moisture content difference 
of the exchanged air, is ignored.

Heat loss by conduction through the roof and walls,•	

	

q U
A

A
T Tg_o

cond
g_o

g_o

g
g o= −( ),	 (W m–2[gh])  (7.53)

	 where Ug_o (W m–2 K–1) is the overall heat transfer coefficient of the cover, defined as the 
sum of roof and walls, and the factor Ag_o/Ag is the total area of the cover per unit green-
house projected area. 

Heat exchange with the soil•	

	

q U
A

A
T Tg_s g_s

g_s

g
g s= −( ),	 (W m–2[gh])  (7.54)

	 where Ug_s is the overall heat transfer coefficient toward the soil, and Ag_s/Ag is the ratio of 
the effective contact area of the soil relative to the ground area. This ratio will be close to 
one. The soil temperature Ts is another state variable of the model (Section 7.3.1.1).

Heat supplied via the pipe system •	

	

q U
A

A
T Tp_g p_g

p_g

g
p g= −( ),	 (W m–2[gh])  (7.55)

	 where Up_g is the overall heat transfer coefficient from the water in the heating pipes to the 
greenhouse air, and Ap_g/Ap is the ratio of the contact area of the pipes relative to the ground 
area. The pipe temperature Tp is modeled with its own heat balance and is therefore a state 
variable as well (Section 7.3.1.2).

		  The overall heat transfer coefficient depends on a mix of forced and free convection. It 
is modeled by

	
U p p T Tp_g p p2 g p= + −1 ,	 (W K–1 m–2)  (7.56)

	 where pp1 and pp2 are parameters.

Part of the heat released to the greenhouse compartment due to condensation of moisture •	
on walls and roof,

	
qg_r

cons
H O_g_r
cons

2
= −Λ( )1 κ ϕ ,	 (W m–2[gh])  (7.57)
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	 where Λ (J kg–1) is the evaporation heat of water, and ϕH O_g_r
cons

2
 (kg[H2O] m[gh]–2 s–1) is the 

condensation flux, as specified later. The factor 1 – κ expresses which part of the condensa-
tion heat is favoring the greenhouse air. It means that a fraction κ is lost to the environment. 
The factor κ is the ratio of inner resistance to total resistance toward transport of heat via 
the greenhouse cover.

Heat withdrawn from the greenhouse by the canopy for evapotranspiration•	

	
q Eg_c

trans
c= Λ ,	 (W m–2[gh])  (7.58)

	 where Ec is the evapotranspiration rate of the canopy (kg[H2O] m–2[gh] s–1), and Λ is the 
heat of evaporation of water (J kg–1). The modeling of Ec is described in Section 7.3.2.

7.3.1.1 � Soil
A lumped soil compartment is considered as a first-order approximation of exchange of heat with 
the ground in the greenhouse. In the model, it is assumed that the soil does not receive direct heat 
by radiation (full soil coverage).

	
K

T

t
q qs

s
g_s s_ss

d
d

= − .	 (W m–2[gh])  (7.59)

The rate of change of the heat contents in the soil, with virtual heat capacity Ks (J m–2[gh] K–1), is 
equal to the heat loss from the greenhouse air (qg_s) minus the heat loss from soil to deeper soil:

	 qs_ss = Us_ss(Ts – Tss),	 (W m–2[gh])  (7.60)

where Us_ss is the overall heat transfer coefficient toward the soil, and Tss is the subsoil temperature, 
assumed to be a constant parameter.

7.3.1.2 �H eating Pipe System

	
K

T

t
q q qp

p
boil_p p_g o_p

radd

d
= − + .	 (W m–2[gh])  (7.61)

The rate of change of the heat in the pipes is given by the left-hand side. Note that the pipe heat 
capacity refers, as before, to a unit ground area, that is,

	
K c

V

Ap H O p,H O
p

g
2 2

= ρ .	 (J K–1 m–2 [gh])  (7.62)

In Equation 7.61, the pipe temperature is a lumped variable representing the effective mean tem-
perature over the length of the pipe, irrespective of the presence of a gradient. The rate of change 
is equal to the heat supply to the pipe system, qboil_p, which is equivalent to the difference in heat 
content of water entering and leaving the pipe system per unit ground area (W m[gh]–2): 
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q q q
A

c F T Tboil_p in_p p_out
g

H O p,H O p p_in p_ou2 2
= − = −1

ρ tt( ),	 (W m–2[gh])  (7.63)

minus the loss of heat to the greenhouse qp_g, Equation 7.55, plus some gain due to radiation toward 
the pipes qo_p

rad . The latter is introduced because it was observed that even without heat input from the 
boiler, the water in the pipes gets hotter during daytime. The received radiation is modeled by

	
q Io_p

rad
p o= η ,	 (W m–2[gh])  (7.64)

where ηp is given by Equation 7.46.
Note that the total heat absorbed by the complete greenhouse is given by

	
q q q Irad

o_g
rad

o_p
rad

o= + = η .	 (W m–2[gh])  (7.65)

The heat supplied to the pipe system depends on the layout of the system. In the experimental setup, 
the layout was as given in Figure 7.4. In the system, it is assumed that the flow from the boiler (Fboil) 
and the flow of the circulation pump (Fp) are known fixed variables. Also the temperature of the 
boiler Tboil is considered to be known and fixed. The heating valve is a three-way valve, defined by 
its opening uq

vp. Position 0 (0%) means no supply to the heating pipe circuit with full recirculation 
back to the boiler via the bypass, position 1 (100%) means that all hot water is entering the heating 
pipe circuit. Using an overall heat balance for this system and the mean temperature,

	
T

T T
p

p_in p_out=
+
2

,	 (K)  (7.66)

it can be shown that the heat energy supply rate from the boiler to the lumped pipe system is given by

	

u
A

c F
u

F

F
u

Tboil_p
g

w pw p
q
vp

p

boil
q
vp

boil=
−








1 2

2

ρ −−( )Tp .	 (W m–2[gh])  (7.67)

u F

u F

u F pFboilF vp
q boil

boilT _p inT

pF
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boilT

( )1 vp
q boil− boilT

boilF

_boil inT
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q boil

_p outT

Lum
ped pipe

system

Boiler

FIGURE 7.4  Heating pipe system as used in the experiment.
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Note that the relationship between the valve position uq
vp (control variable) and the actual heat input 

to the greenhouse is nonlinear due to this construction.
An alternative to the model above is to assume the existence of a well-working pipe temperature 

controller. In that case, the heat transfer to the greenhouse would still be given by Equation 7.55, 
but then the pipe temperature setpoint is the control input (if the controller is really fast, it can be 
set equal to the actual pipe temperature), and any disturbances in boiler temperature or flows would 
be accommodated by the controller. On the other hand, at the expense of two flow sensors (needed 
anyway if one wishes to know the realized heat input) and a thermometer to measure the boiler 
temperature (usually already there), it is easy to correct a computed control for variations in these 
quantities. Once again, using the pipe model automatically takes into account constraints, which is 
not guaranteed if the pipe temperature is taken as the free manipulative variable, as it is quite con-
ceivable that under circumstance the commanded pipe temperature cannot be realized.

Ideally, the parameterization of the lumped pipe model above has to take account of the longitu-
dinal temperature gradient in the pipe system. This would require a distributed heating pipe model, 
for instance, the one described by De Zwart (1996). One would then have to relate the lumped 
parameters to the parameters of the distributed model by equating the heat transfer from both 
models. This is possible for stationary conditions, but the dynamics will still be somewhat different. 
Another option is to minimize the difference in the Bode diagram of the lumped and the distributed 
model over the frequency range of interest.

7.3.2 � Mass Balances

7.3.2.1 W ater Vapor in the Greenhouse Air

	

V

A

C

t
Eg

g

H O
c H O,g_o

vent
H O,g_r
consd

d
2

2 2
= − −ϕ ϕ .	 (kg[H2O] m–2[gh] s–1)  (7.68)

The rate of change of the concentration of vapor in the air times the capacity, that is, the volume 
Vg (m3) per unit greenhouse ground area Ag (m2[gh]) equals the evapotranspiration Ec (kg[H2O] 
m–2[gh] s–1) minus the loss with ventilation ϕH O,g_o

vent
2

 minus the loss due to condensation ϕH O,g_r
cons

2
.

The evapotranspiration is modeled with a general Penman–Monteith form (cf. Jolliet and Bailey, 
1992):

	
E I pc c g o c H O2

= + ⋅α η β ∆ {},	 (kg[H2O] m–2[gh] s–1)  (7.69)

where ∆pH O2
{⋅} is the vapor pressure deficit, that is, the difference between the saturation vapor pres-

sure at the canopy temperature Tc and the actual vapor pressure in the air:

	
∆p p T pH O H O

sat
c H O2 2 2

= −( ) .	 (Pa)  (7.70)

The saturation pressure pH O
sat

2
 at temperature T (K) is an empirical relation as defined in Section 8.B.1,

	

p T c
c T

c T
H O
sat

s
s2

C

s
C2

( ) exp=
+







1

3

,	 (Pa)  (7.71)

with TC = T – 273, the temperature in degrees Celsius. Because the canopy temperature is not a state 
in this simple model, its temperature is set equal to the greenhouse air temperature, that is,
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	 Tc = Tg.	 (K)  (7.72)

Equation 7.69 is valid for full coverage. To correct for stages of crop growth where full coverage has 
not been reached, here we simply multiply by the crop maturity factor (Equation 7.21), that is,

	
E f I pc m c g o c H O2

= ⋅ + ⋅( ){} {}α η β ∆ .	 (kg[H2O] m–2[gh] s–1)  (7.73)

The parameters αc and βc depend slightly on temperature, radiation intensity, and CO2 concentra-
tion. This is ignored here. A more elaborate evapotranspiration model is presented in Chapter 8.

It should be noted that Equation 7.73 merely expresses how the evaporation depends on the short 
wave radiation, that is, the heat load to the crop is not expressed explicitly. Instead, in the model, 
the total heat load entering the greenhouse first is used to increase the temperature, and part of it is 
taken back due to the evapotranspiration (see Equation 7.43). This is different from more elaborate 
models that have separate states for the canopy temperature, such as the model in Chapter 8. 

The ventilation loss is given by

	
ϕH O,g_o

vent
v H O H O,o2 2 2

= −( )u C C .	 (kg[H2O] m–2[gh] s–1)  (7.74)

Condensation only occurs when the moisture concentration in the air is higher than the saturation 
concentration belonging to the roof temperature. The driving force for moisture transport can be 
expressed in terms of the vapor concentration (kg[H2O] m–3), the humidity mixing ratio (kg[H2O] 
kg–1[dry air]), or the vapor pressure (Pa). In view of the similarity with crop evapotranspiration, we 
choose to express the condensation as function of the vapor pressure surplus:

	

ϕH O,g_r
cons r

g
H O H O

sat
rg_r2 2 2

= −( )k
A

A
p p T( ) ,	 (kg[H2O] m–2[gh] s–1)  (7.75)

where Ar is the total surface of the cover, that is, roof plus walls. Condensation only occurs when 
there is a positive driving force toward the cold surface, which can be expressed in a single formula 
without if statements as

	

ϕH O,g_r
cons

g_r
r

g

H O H O
sat

r H O H O

2

2 2 2 2=
− + −

k
A

A

p T pp p( ) ssat
r( )T

2
.	 (kg[H2O] m–2[gh] s–1)  (7.76)

The mass transfer rate is computed from

	

k c
T T

cT

c

g_r m1
g r

g_r

m2

=
−

, 	 (kg[H2O] m–2 s–1 Pa–1)  (7.77)

with cm1 and cm2 as parameters (Monteith and Unsworth, 1990). The constant cTg_r
 in the denomina-

tor is equal to 1 K and is added to make the equation dimensionally correct. 
The roof (cover) temperature is a weighted mean between outside and inside air temperature, 

	 Tr = (1 – κ)Tg + κTo ,	 (K)  (7.78)

with 0 ≤ κ ≤ 1 as given before.
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7.3.2.2 C arbon Dioxide in the Greenhouse Air

	

V

A

C

t
P R ug

g

CO
CO dw CO /dw CO ,g_o

vent
CO

d

d
2

2 2
= − + − +η η ϕ

2 / 22
.	 (kg[CO2] m–2[gh] s–1)  (7.79)

The total mass of CO2 in the greenhouse is V Cg CO2
, where Vg (m3) is the greenhouse air volume, 

and CCO2
 (kg[CO2] m–3) is the concentration. The rate of change of the CO2 mass (kg) per unit 

greenhouse ground area Ag equals the amount taken up by photosynthesis, ηCO /dw2
P, where ηCO /dw2

 
(kg[CO2) kg–1[dw]) is the amount of CO2 needed to form one unit of biomass plus the amount 
returned by respiration ηCO /dw2

R minus the loss by ventilation (ϕCO ,g_o
vent

2
) plus the supply (uCO2

). P and 
R (kg[dw] m–2[gh] s–1) are the photosynthesis and the total crop respiration as described in Sections 
7.2.4 and 7.2.5.

The ventilation loss is given by

	
ϕCO

vent
v CO CO2,g_o 2 2_o

= −( )u C C .	 (kg[CO2] m–2[gh] s–1)  (7.80)

The supply can be conveniently expressed in relative valve opening uCO
vp

2
 (in practice often realized 

via the duty cycle of a pulse-width modulated valve)

	
u uCO CO CO

vp
CO
max

2 2,in_g 2 2,in_g
≡ =ϕ ϕ .	 (kg[CO2] m–2[gh] s–1)  (7.81)

7.3.3 �C omparison of Lumped Model with Control Input by Actuators or by Fluxes

In the model above, the heating valve position, the window aperture, and the CO2 valve position are 
handled as the control input. These are therefore directly referring to the actual actuators physically 
present in the greenhouse. In Chapter 6 and in many studies in the literature, the control problem is 
simplified to deal with the heat flux, the ventilation flux, and the CO2 flux (flows per unit greenhouse 
projected area) as controls. The relationship is depicted in Figure 7.5. In fact, in the lumped model of 
Chapter 6, the boundary is shifted more inward. It can be seen that the heat input and the ventilation 
rate are not simply determined by the valve position or window aperture alone but also depend on 
the temperature of the greenhouse air and on external factors, such as the boiler temperature and 
the wind speed. As argued before, this means that treating the fluxes as input has the risk that a flux 
demanded by the optimal controller cannot be delivered in practice. It is possible to incorporate this 
in the optimal control, but in that case, we end up with state and external input-dependent bounds, 
which is more complicated. On the other hand, the flux approach is easier to implement and to 
understand because it does not require extensive modeling of the heat and ventilation system. As 
a final remark, it has to be noted that because of the heat capacity of the pipe system, the net heat 
delivered to the greenhouse u q qq p_g o_g

rad= −  is not at all times equal to the net heat supplied by the 
boiler uq = qboil_p, as

	
q q q K

T

tp_g o_p
rad

boil_p p
pd

d
− = − ,	 (W m–2[gh])  (7.82)

so that, strictly speaking, it matters how uq in the flux lumped model is evaluated. This is the rea-
son to put uq between brackets in Figure 7.5. However, when the costs are evaluated by taking the 
integrals over time of the lumped heat supply to the greenhouse as evaluated by the left-hand side 
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of Equation 7.82 or the actual heat supply withdrawn from the boiler qboil_p as defined by Equation 
7.67, the contribution of the d/dt term in the right-hand side of Equation 7.82 vanishes so that the two 
alternative terms will lead to the same energy costs in the optimization.

7.4 � State–Space Form of the Complete Greenhouse-Crop Model

Together, Equations 7.1 through 7.81 form a set of ordinary differential equations that can easily be 
cast in standard state–space form

	

x f x u d p

y g x u d p

=

=

( , , , )

( , , , ) 	
(7.83)

by defining

	 The crop state vector,*

	 xc = [WB, WL, WF, D]T,	 (7.84)

	 The greenhouse state vector,

	
xg g s p H O CO

T

2 2
=  T T T C C, , , , ,	 (7.85)

*	Strictly speaking, also eD, Eq. 7.33.
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FIGURE 7.5  Information flow comparison between lumped systems with actuators as control input and 
lumped systems with fluxes as input (uq).
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	 The total state vector,

	

x
x

x
=













c

g

,	 (7.86)

	 The control inputs,

	
u =  u u uq

vp
v
Ap

CO
vp

T

2
, , ,	 (7.87)

	 The external inputs,

	
d = [ , , , , , ]I T v T C Co o ss H O_o CO _o

T
2 2

,	 (7.88)

and the parameter vector p that combines all other constant quantities.
The vector-valued function f can be decomposed in a vector-valued function fc for the crop, 

essentially consisting of the right-hand side of Equations 7.15, 7.18, 7.19, and 7.32, with proper 
substitutions,

	
x f x u d x pc c c g

T= ( , , [ ] , ),	 (7.89)

and a vector-valued function fg, essentially consisting of the right-hand sides of Equations 7.43, 7.59, 
7.61, 7.68, and 7.79, with proper substitutions,

	
x f x u d x pg g g c

T= ( , , [ ] , ) .	 (7.90)

The outputs (variables of interest) can be chosen freely, but if additional integrated values are 
needed, such as the harvested fruit biomass as defined in 7.42 or the total energy consumption, then 
the system must be expanded with additional integrators to compute these nonessential states, which 
is easy to do. These additional states are nonessential because there is no feedback to the system 
itself. Figure 7.6 illustrates the information flow in the model, with separate representations for the 
greenhouse subsystem and the crop subsystem. Note that the states of the greenhouse act as inputs 
to the crop—they can be viewed as disturbance or as control inputs—and that the states of the 
crop act as disturbance inputs to the greenhouse. The equations for output variables and integrated 
outputs can be modified at any time, without affecting the underlying state dynamics of the system. 
An important subset of the outputs are the equations that relate the commonly measured variables 
temperature, relative humidity (RH) (%), and CO2 (ppm) to the states of the system:

	

y =

















=

T

C

g T

g C T

g C

RH

CO
ppm

H O

CO2

2

2

1

2

3

( )

( , )

( )













,

	

(7.91)

where g1(T) = T, g2 is a function that relates RH to vapor concentration and temperature (see Section 
8.B.2), and g3 is a conversion function from kg[CO2] m–3 to ppm.

© 2011 by Taylor and Francis Group, LLC



An Experimental Application: Tomato	 145

7.5 �C alibration and Model Results

Before the model can be used for control, it is necessary to calibrate it by matching the model outputs 
with observations. Some parameters are known from prior knowledge or independent measurements, 
and others need to be adjusted to the actual situation. A too large number is not feasible, so it makes 
sense to apply a systematic procedure for parameter selection for calibration. Here, a sensitivity analysis 
was used to identify unknown but sensitive parameters that were later used for parameter estimation.

7.5.1 �C alibration of the Big Leaf–Big Fruit Model

The big leaf–big fruit model is in fact a reduced model of more elaborate descriptions of tomato 
growth, which takes into account the development of separate internodes and fruit classes (De 
Koning, 1994). Although a number of parameters could be obtained from the underlying investiga-
tions, there are still a number left for calibration.

A sensitivity analysis was performed with the first-order sensitivity system (see, e.g., Frank, 
1978). Together with information on the reliability of parameters from the literature, this led to a 
preliminary selection of parameters for which further analysis would be worthwhile.

Table 7.1 gives the mean sensitivities for eight selected parameters, evaluated as the mean of the 
absolute values of the relative sensitivities over a cultivation period. They are expressed as percent-
age change in the variable of interest per percentage change in the parameter. The analysis was done 
using a preliminary calibrated model on data from an experimental greenhouse.

The parameters cd1 and cd3 are related to the development stage (Equation 7.32) together with cd2 
and cd4, which have a similar effect and are not shown for that reason. All other parameters have 
no effect on the development stage because it only depends on the temperature. However, as the 
development rate determines the moment where harvesting starts, its parameters also affect the 
other states. The reference temperature TL/F

ref in the relation that determines the vegetative/genera-
tive distribution (Equation 7.27) also has a large effect on the fruit and leaf biomass (WF and WL, 
respectively). The same holds for ν2 and fL/F

ref . It is also interesting to discuss briefly the role of Pmax
 

(Equation 7.22). One percent increase over the full period leads to a substantial relative increase in 
leaf and fruits on the plant, on average. The increase is more than proportional because increasing 
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( )d t ( )gx t
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∫

FIGURE 7.6  Information flow in state–space form of the greenhouse-crop system together with outputs and 
integrated outputs.

© 2011 by Taylor and Francis Group, LLC



146	 Optimal Control of Greenhouse Cultivation

the photosynthesis rate without a similar increase in respiration leads to more gain. The cumulative 
fruit and leaf harvest also increase, but less, which is because the harvest in the model is a first-order 
process, leaving fruits and leaves on the plant at the end of the season.

Although Table 7.1 suggests that the vegetative/generative parameters are good candidates for 
calibration, this was not done because they were considered to be well known from the independent 
experiments. Moreover, it was questionable whether the temperature conditions in the greenhouse 
would have a sufficiently wide range to get reliable results. The excitation of inputs in crop growth 
experiments is an issue that needs further discussion in relation to optimal control. There is a danger 
that the optimal control exploits regions of the model—if that is favorable to the goal function—for 
which the model has not been properly calibrated. This should of course be avoided, for example, 
by introducing constraints.

Ultimately, the following parameters were selected for calibration:

The maximum photosynthesis rate •	 Pmax as it directly determines the biomass level.
The parameter •	 pm that determines the reduction factor in early stages of plant development 
when the leaf area index has not reached its maximum (Equation 7.21).
The parameter •	 fL/F

ref  that determines the vegetative/generative ratio (Equation 7.27).
The proportionality factors of the harvest •	 cyF and cyL (Equations 7.39 and 7.40).

TABLE 7.1
Seasonal Averaged Sensitivities, Ignoring Sign Changes, of Model States and Cumulative 
Outputs to Some Selected Parameters (%/%)

cyL cyF fL/F
ref P max pm cd1 cd3 TL/F

ref

WF 0.4 0.1 3.4 3.8 4.2 1.0 1.1 10.9

WL 0.1 0.1 2.1 2.4 3.1 0.7 0.8 6.8

D 0.0 0.0 0.0 0.0 0.0 1.0 1.2 0.0

SWF 0.2 0.7 1.9 1.6 1.2 7.7 8.9 6.1

SWL 0.1 0.7 1.2 1.0 0.9 7.9 9.2 4.0

20 40 60 80 100
0

20

40

60

80

100

120

140

Time (day)

W
F (g

/m
2 )

20 40 60 80 100
0

20

40

60

80

100

120

Time (day)

W
L (g

/m
2 )

FIGURE 7.7  Validation of the big fruit–big leaf model on independent experimental data. Circles: average 
biomass (g[dw] m–2[gh]) over five or six replicas. Error bars show upper and lower limits of observed values. 
Solid line: model simulation.
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It should be noted that for the purpose of calibration it is probably more accurate to treat the actu-
ally observed harvest as input, but in an optimal control setting, it is necessary to have a harvest 
model because otherwise it is not possible to compute the benefit. With the given formulation, the 
effect of the harvest model on the crop biomass is that with higher the temperature, more fruits and 
leaves can be harvested because conversion of assimilates into structural biomass is faster, at least 
temporarily over a period that the assimilate buffer can support it.

The calibration was performed on experimental data described by Heuvelink (1995). The 
model was calibrated on the simultaneous fit of experiments 7 and 8. A validation was done on 
the data from experiment 10. This experiment lasted from early August until the end of November. 
Consequently, the global radiation was decreasing, on average, during this period. The temperature 
setpoint in the greenhouse was 18°C, but especially during August, early September, and early 
October, temperatures during the day were considerably higher, in the order of magnitude of 25°C. 
CO2 was occasionally dosed, but concentrations were not much higher than the target value of 300 
ppm. The solar radiation was gradually decreasing toward the end of the period, with lower spells 
around days 50–60 and 75–85 after the first appearance of the fruits. Figure 7.7 shows the result of 
experiment and simulation. In the experiment, the assessment of fruit and leaf dry weight was done 
by slaughtering five to six plants. The bars show the upper and lower limit of these data, thus clearly 
indicating that crop experiments are subject to large experimental uncertainty. The big fruit–big 

TABLE 7.2
Nominal Crop Model Parameters, in Order of Appearance in the Text

Symbol Value Units Meaning

z 0.6081 – Fraction leaf of total vegetative mass

θF 0.2 – Surplus assimilate requirement factor per unit fruit increment

θV 0.23 – Surplus assimilate requirement factor per unit vegetative increment

ph 2.70 × 10–3 m2 kg–1[dw] Parameter of switching function

pm 1.78 × 10–2 kg m–2 Parameter in maturity factor

m 2.511 – Parameter in maturity factor

Pmax 2.25 × 10–6 kg[dw] m–2[gh] s–1 Maximum gross canopy photosynthesis rate

KI 577 W m–2 Monod constant for PAR

KC 0.211 kg[CO2] m–3 Monod constant for CO2

fPAR/I 0.475 – PAR fraction of global radiation

τr 0.7 – Transmittance of the roof

kGF
ref 3.81941 × 10–6 s–1 Reference fruit growth rate coefficient

TGF
ref 20 °C Reference temperature

Q10G 1.6 – Temperature function parameter growth

f L/F
ref 1.3774 – Reference leaf–fruit partitioning factor

ν2 –0.168 K–1 Fruit–leaf partitioning parameter

TL/F
ref 19 °C Fruit–leaf partitioning reference temperature

kRL
ref 2.89 × 10–7 s–1 Maintenance respiration coefficient leaf

Q10R 2 – Temperature function parameter respiration

TR
ref 25 °C Reference temperature for respiration

kRF
ref 1.16 × 10–7 s–1 Maintenance respiration coefficient leaf

cf1 4.6296 × 10–6 s–1 Parameter in fruit growth function

cf2 8.1019 × 10–7 s–1 Parameter in fruit growth function

cd1 2.13 × 10–7 s–1 Parameter in development rate function

cd2 2.47 × 10–7 s–1 Parameter in development rate function

cd3 20 °C Parameter in development rate function

cd4 7.50 × 10–11 s–2 Parameter in development rate function

cyF 1.636 – Parameter in harvest function (fruit)

cyL 0.4805 – Parameter in harvest function (leaf)
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leaf model performs quite well in reproducing the observed fruit weights, but from the leaf weight, 
it is clear that the model is not perfect. Especially in the period around day 60, the true leaf weight is 
quite a bit lower than expected by the model. This may be due to the attempt to model the leaf pick-
ing instead of using the real events driven by the grower’s decision. A full list of the crop parameters 
is given in Table 7.2.

7.5.2 �C alibration of the Heating Pipe and Greenhouse Climate Model

In a similar fashion, the heating pipe model was calibrated using the observed greenhouse air tem-
peratures as inputs. After calibration of the pipe model, using the greenhouse data as inputs, the 
greenhouse model was calibrated using the observed heating pipe temperatures as inputs. Details 
about the parameter selection procedure as well as the covariance matrix of the parameter estimates 
can be found in the study of Tap (2000). An example of a calibration result for one particular day is 
shown in Figure 7.8. Despite the lumped nature of the model, which is certainly a limitation, quite 
good results are obtained.

When the model is validated by applying it to independent data in the same period of the year, 
quite good results are obtained, as shown in Figure 7.9. The largest deviations are observed with 
the calculated RH. The model is quite sensitive to the parameters of the crop evaporation model 
(Equation 7.73). Moreover, any temperature deviations will also be visible in the RH fit. In com-
paring real data to model results, it should be kept in mind that local CO2, moisture content, and 
temperature differences, which can be quite substantial, are not captured in a lumped model. A full 
list of the greenhouse parameters is given in Table 7.3.
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FIGURE 7.8  Example of calibration result for the heating pipe submodel and greenhouse climate model. 
Left-top: greenhouse air temperature; right-top: heating pipe temperature; lower left: CO2 concentration; lower 
right: water vapor concentration; dashed: measured; solid: simulated.
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7.5.3 �C onclusions about the Models

The efforts to calibrate and validate the greenhouse and crop models finally result in a set of useful 
dynamic models in state–space form that can be used for dynamic optimization and optimal con-
trol. Rather than trying to make the models better, at the expense of larger data needs or increased 
complication, it is better to first see how sensitive to model errors the ultimate problem is for which 

TABLE 7.3
Nominal Greenhouse Model Parameters, in Order of Appearance in the Text

Symbol Value Units Meaning

ρa 1.29 kg m–3 Density of air

cpa 1010 J K–1 kg–1 Heat capacity of air

Kg 32000 J m–2[gh] K–1 Greenhouse effective capacity

η 0.7 – Absorbed heat relative to total net radiation energy received

τr 0.7 Transmissivity of greenhouse cover

pv1 7.17 × 10–5 %–1 Ventilation parameter

pv2 0.0156 %–1 Ventilation parameter

pv3 2.71 × 10–5 – Ventilation parameter

pv4 6.32 × 10–5 %–1 Ventilation parameter

pv5 7.40 × 10–5 m s–1 Ventilation parameter

U
A

Ag_o
g_o

g

7.9 W K–1 m–2 Effective heat transfer coefficient through wall per unit 
greenhouse area

Ug_s 5.75 W K–1 m–2 Effective heat transfer coefficient to the soil

U
A

Ap_g
p_g

g

Effective heat transfer from pipes to air per unit greenhouse 
area

p
A

Ap1
p_g

g
1.524 W K–1 m–2 Parameter in heat transfer pipe to greenhouse 

pp2 3 K0.5 Parameter in heat transfer pipe to greenhouse 

Λ 2.26 × 10+6 J kg–1 Heat of evaporation of water

κ 0.75 – Fraction of condensation latent heat lost to outdoors

Ks 120000 J m–2[gh] K–1 Soil effective heat capacity

Us_ss 2 W K–1 m–2 Effective heat transfer coefficient to deeper soil

ρH O2
998 kg m–3 Density of water

cp,H O2
4180 J K–1 kg–1 Specific heat of water

V

A
p

g

0.004 m3 m–2[gh] Heating pipe volume per unit greenhouse area

αc 2.60 × 10–7 kg[H2O] J–1 Penman–Monteith factor for crop evapotranspiration

βc 2.30 × 10–8 kg[H2O] m–2 s–1 Pa–1 Penman–Monteith factor for crop evapotranspiration

cs1 0.18407 Pa °C–3 Parameter in vapor saturation pressure formula

cs2 0.97838 Pa °C–2 Parameter in vapor saturation pressure formula

cs3 51.492 Pa °C–1 Parameter in vapor saturation pressure formula

Fp 4.00 × 10–4 m3 s–1 Pipe pump flow

Tboil 80 °C Boiler temperature

cm1 6.25 × 10–12 kg[H2O] m–2 s–1 Pa–1 Condensation mass transfer parameter (pressure deficit 
base)

cm2 0.33 – Condensation mass transfer parameter 

cT_gr 1 K Dimension parameter in condensation mass transfer

ηCO /dw2
1.4667 kg[CO2] kg–1[dw] Ratio CO2 per unit dry weight

ϕCO ,in_g
max

2
2.10 × 10–6 kg[CO2] m–2[gh] s–1 Maximum CO2 injection flux
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the models are designed in the first place—in this case, optimal control. If the problem is robust 
against model errors, improvements do not pay off. If not, methods for online model adaptation may 
also provide an answer.

7.6 �O pen-Loop Optimization

As a first step in the design of an optimal greenhouse cultivation controller, open-loop calculations 
are performed. The methodology is summarized in Section 7.6.2. The goal of the open-loop compu-
tation is in fact to obtain estimates of the time evolution of the costates of the slow variables because 
these are needed in the ultimate feedback control to account for the long-term effects, as outlined 
in Chapter 5. The open-loop calculations also provide insight into the expected optimal time evolu-
tion of the states under nominal weather conditions and of the expected seasonal costs and benefits. 
Moreover, the results can indicate bottlenecks in the system, in particular when constraints are 
frequently violated.

7.6.1 � Problem to Be Solved

The problem to be solved is to minimize the cost function,

	

J c S c u c u P P P t
t

t

= − + + + + +( )∫F HF CO CO q q CO H O T2 2 2 2

0

f

d ,	 (€ m–2[gh])  (7.92)

subject to the state Equation (7.83) and the initial conditions,

	 x(to) = xo,	 (7.93)

and control constraints,
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In Equation 7.92, the harvested fruit biomass SHF has a market price cF, and the benefit from selling 
the crop is hence a negative contribution to the costs. The first two terms under the integral are the 
costs of CO2 injection (with CO2 market price cCO2

) and the costs of heating, where it is assumed that 
the heat delivered to the greenhouse can be valued with market price cq. The variable uq and uCO2

 are 
related to the true controls (value positions uq

vp and u
CO

vp

2
) via the relations given in Sections 7.3.1 and  

7.3.2, respectively. Instead of choosing hard state constraints to express the desire to stay away from 
unmodeled detrimental effects of climate variables on the crop, here penalties are used that value 
constraint violations in virtual cost terms. The penalties have the general form

	

P

x x

x x

jj

j j j

j j j

=
−

−
= { }




 α

α

( )

( )

,

lb

ub
2 2CO H O T0







= = =x C x C x TCO CO H O H O T g2 2 2 2
, , .	 (€ s–1 m–2[gh])  (7.95)

© 2011 by Taylor and Francis Group, LLC



152	 Optimal Control of Greenhouse Cultivation

Note that Equation 7.92 can also be written as
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thus showing the harvest rate as a (negative) running cost.
To keep the problem numerically tangible, on the scale of the open-loop seasonal optimization, 

it was assumed that the greenhouse part of the state equations was in pseudoequilibrium. Hence, 
Equation 7.90 changes into an algebraic relation

	
0 f x u d x p= 



g g c

T

( , , , ).	 (7.97)

This is an implicit formula from which, at any given value of the external inputs, the crop states and 
the control inputs of the actual greenhouse variables can be computed. This assumption implies that 
on the scale of the seasonal optimization it is assumed that the greenhouse responds to changes by 
reaching a new steady state rapidly.

7.6.2  Method

The problem was solved for a cultivation period from March 1 until October 31. The period •	
before March 1 did not have fruits yet, and is not considered.
The choice was made to take as the nominal weather the hourly average of real data, col-•	
lected during a greenhouse control experiment over the cultivation period. Data are for 
Wageningen, 1995.
The pseudostatic greenhouse Equation 7.97 was solved numerically by a zero finding •	
procedure.
In the calculation of the pseudostatic greenhouse, the optimal seasonal values of the slow •	
state variables xc* are needed. Instead, values computed by simulation using the actual 
controls as applied in the experiment were used. This is more accurate. However, this is a 
rather special case because normally the controls are not known yet. It could be done here, 
thanks to the fact that an experiment had already been done.
Penalties were used on the basis of Equation 7.95, with constraint values and parameters •	
set as shown in Table 7.4.
The optimization problem was solved with the sequential search method by Seginer and •	
Sher (1993). This amounted to finding 3 (controls) × 245 (days) × 24 (hours) numbers that 
together minimize the goal function, in an iterative fashion.

Table 7.4
Soft Constraints and Penalty Function Parameters

Tg Night (°C) Tg Day (°C) CCO2
 (ppm) RH (%)

Lower bound 15 17 – 65

Upper bound 25 25 1000 90

Slope 5 × 10–6 Dfl °C–1 5 × 10–6 Dfl °C–1 1 × 10–8 Dfl ppm–1 1.17 Dfl %–1
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7.6.3 R esults

The open-loop calculations were done afterward with a true hourly averaged weather pattern. The 
resulting state trajectories will thus depend on the weather as it occurred. In a hierarchical setup, 
one could conceive to use the calculated state trajectories as setpoints, but because the future weather 
will surely deviate from the weather used for the optimization, this is not a good policy. The most 
important outcomes of the procedure are the costates for the slow state variables, in particular the 
costates for the leaf and fruit biomass, because those will be used in the receding horizon control-
ler (Van Straten, Van Willigenburg, and Tap, 2002). Figure 7.10 shows the time evolution of the 
slow states together with the costates for leaves and fruits, respectively. As the costate represents 
the sensitivity of the goal function to a marginal change in the corresponding state and as the goal 
function in Equation 7.92 is formulated as costs, a positive value means that a change in the state, 
without affecting the other states, would lead to higher costs and vice versa. It can be seen that over 
the period shown, where the plant is carrying fruits, it is always beneficial to produce more fruits if 
that would be possible without additional costs. In reality, as the graphs are valid for the optimum, 
such action would entail additional costs that would exactly balance the gain. The value of addi-
tional fruits decreases and finally becomes zero at the end of the optimization period, meaning that 
an additional unit of fruit at the end does not contribute to the goal function value anymore, which 
makes sense. The same holds for the leaves at the end. In the beginning of a fruit carrying plant, 
further investments in leaves is not profitable (positive costate in the beginning). In other words, 
putting more efforts in leaves would lead to higher costs; that is, an increment in leaves has a nega-
tive marginal price. Near day 80, however, an increment in leaves leads to less costs; that is, in that 
period, leaf increments bring more money (negative costate value in cost terms) and hence have a 
positive marginal price. It makes sense to invest in leaves in that period to guarantee the ability of 
the crop to produce fruits later on.

Figure 7.11 allows the analysis of the time evolution of the long-term criterion and its compo-
nents. All values are expressed in monetary units, here Dfl m–2 (price level 1995; 1 € = Dfl 2.20). 
Note that the scales are different for each subplot. On the benefit side (negative costs) is the income 
of about 28 Dfl m–2 from the harvested fruits (a). Among the direct costs, the CO2 injection costs 
(less than 1 Dfl m–2 (b)) are negligible as compared with the heating costs of 12–13 Dfl m–2. The true 
net costs (Jreal; Dfl m–2) are determined by the difference between the CO2 and heating costs (b + c) 
and the fruit income (a) and amount to about –28 + 13 = –15 Dfl m–2, in other words, a net-positive 
income. However, this is only realized if nothing happens to the crop because of violation of the 
constraints. The penalty for CO2 (d) is negligible, but the temperature (e) and humidity penalties 
( f) make significant contributions to the overall long-term criterion (i). During summer, the tem-
perature penalty is quite high because, during daytime, it is often physically impossible to keep the 
temperature below the upper temperature boundary. In summer also the RH penalty has its highest 
values. Hence, the grower pays an insurance premium to himself of about 13 Dfl m–2 for a too high 
temperature and puts aside about 6 Dfl m–2 for a too high humidity level. If nothing happens, indeed 
he can add those amounts to (i), thus giving 4–19 ≈ 15 Dfl m–2 real profit, which is of course the 
same as the real direct costs (g). It should be kept in mind that the true economic costs of green-
house operation are also determined by other factors, such as labor and capital costs. 

Despite the limited direct value of the state trajectories obtained in the open-loop computation, 
it is interesting and instructive to look at the state trajectories and the necessary controls in some 
detail. The discussion will be done on the basis of fourteen-day excerpts from the data for four 
selected periods: March 1–14, April 20–May 4, June 15–28, and September 17–30, with weather 
data for 1995.

Figure 7.12 (top) shows the outside temperature and radiation in early March. The temperature in 
this period was quite low, below 10°C, and so was the global radiation. The middle panel shows the 
pipe temperature that resulted from the optimal heating valve position as computed by the optimiza-
tion. During the night, in the absence of the solar heat input, the heating valve is often fully open, 
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and the pipe temperature reaches the maximum achievable temperature at the given boiler tempera-
ture setting. During the day, the greenhouse is heated as well, but less. The resulting greenhouse 
temperature reaches a plateau of about 24°C, whereas at night the temperature is allowed to drop to 
its lower bound. This shows that the optimization in a way confirms common practice, where during 
the day a higher temperature is set than at night. However, it is also clear that the range suggested by 
the optimal control is wider than what is currently used by growers (typically between 16 and 17 at 
night and 22 during the day). It is also interesting to point to the behavior of the optimal control at 
day 5. Because there is almost no light, the onset of the heating is delayed, and the optimal green-
house temperature is lower than usual.

Figure 7.13 (top) shows the assimilate buffer. It is plotted together with the solar radiation to 
show that the buildup of assimilates is of course strongly correlated with radiation. This is clear at 
day 5, where no assimilates are formed because of the lack of radiation. Figure 7.13 also shows that 
the assimilate buffer pattern has a slight lag, meaning that the assimilate load to the plant reaches 
a peak in the afternoon. The middle panel shows that during the day there is still so much evapo-
transpiration that the RH reaches its allowed maximum of 90%. Despite this, it is not necessary to 
open the windows during the day because the higher temperatures allow higher moisture contents 
in the air without violating the RH constraint. Conversely, at night, when temperatures drop, it is 
sometimes required to ventilate. The required window opening varies among similar days because 
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of differences in wind speed (not shown). CO2 dosages and resulting CO2 concentrations are shown 
in the lower panel. The patterns are not very clear, but it can be seen that the higher CO2 concentra-
tions often occur during night as a consequence of the respiration assumed in the model. During the 
day, this stored CO2 is first consumed before any additional CO2 is given. One would perhaps have 
expected more CO2 dosage, for instance, on day 10, but apparently the rise in assimilates is already 
large so that extra CO2 dosage does not pay off. It should be remembered that in the optimization, 
CO2 has a price. This is different from a situation where CO2 from flue gas is injected in the system 
because this CO2 is essentially free as long as the generated heat can be used.

Figures 7.14 and 7.15 show the situation at the end of April. Outdoor temperatures have gone up, 
reaching a day maximum of 20°C on day 55 (Figure 7.14, top). Also the solar radiation is higher, 
peaking to about 700 W m–2. As a consequence, the optimal heating pipe temperature goes down 
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(Figure 7.14, middle), with a rise again in the colder spell in the middle of the period. Interestingly 
enough, the required greenhouse temperatures during the day are lower than those in March. Note 
that the period of elevated temperature within a day is longer than the daylight period. This is 
because an elevated temperature is favorable for converting assimilates into biomass as long as there 
are assimilates (Figure 7.15, top), even if the assimilate biomass is low (e.g., on day 58). One might 
think that it could be more favorable to have the greenhouse temperature high, but at a lower level, 
for an ever longer period, to make sure that the assimilates are just exhausted when the new day 
begins. The reason that this does not happen probably has to do with the maintenance losses, which 
are also temperature driven. Another factor in the model is that the distribution of fruit and leaves 
is also temperature driven, while over the season, the marginal values of leaf and fruit vary with 
respect to each other. Figure 7.15 (middle) shows that the RH is always at its upper bound, requiring 
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ventilation, and it is also clear from the lower panel that the need for ventilation suppresses the CO2 
concentrations in the greenhouse. Dosage of CO2 then does not pay off because all injected CO2 
would disappear via the open windows.

In Figures 7.16 and 7.17, the patterns are given for summer conditions starting at June 15. In 
the beginning of the period, vary bad weather occurred. Unlike similar conditions as in the begin-
ning of the season (March, Figure 7.12), daytime greenhouse temperatures are not raised to 24°C 
but are settled at much lower values (lower panel). This might have to do with the marginal leaf 
value. In this period, investment in leaves is not profitable, and consequently the temperature can 
stay low when the outside conditions are unfavorable. There is still some heating but quite low 
(middle panel). It is interesting to note that the optimization yields a pipe temperature that is still 
elevated. This may seem to look similar to current practice of “minimum pipe” temperatures used 
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by growers “to keep the crop activated.” Hence, the optimal control seems to give a justification 
for this empirical behavior. It should not be forgotten, though, that reasons that are not in the 
model, such as keeping the root zone at higher temperature, might equally well be a valid reason. 
As long as this is not described by scientifically based models, it will not be possible to demystify 
this practice.

The larger standing crop biomass creates more evapotranspiration when the sun is shining 
(Figure 7.17), and it often occurs that ventilation by opening the windows is not enough to keep the 
RH at its allowed maximum. Values larger than 100% suggest that the condensation in the model 
may not be sufficiently fast. On bright days, occasionally CO2 dosage is applied (Figure 7.17, lower 
panel), even on days where the windows are fully open. On such days, there are low wind speeds, 
thus rendering the ventilation losses still relatively low, as testified by the high humidity. The dosage 
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of CO2 is hardly visible in the CO2 concentrations themselves because all dosed CO2 is immediately 
taken up by the crop. 

Finally, Figures 7.18 and 7.19 present the situation at the end of September, which is the end of 
the optimization period. Outdoor conditions are characteristic for late summer and early autumn, 
with fair levels of outdoor temperature and solar radiation (Figure 7.18, top). Still heating is applied 
(middle panel), as it is profitable to have elevated temperatures again (lower panel). At the end of 
the season, the marginal value of the leaves that became positive again should be steered to zero to 
direct as much assimilates as possible to the fruits. In the model, the production of fruits is favored 
over leaves if the temperature is high (Equation 7.27), which explains the elevated day temperatures. 
Figure 7.19 (middle) shows that the ventilation is sufficient to keep the RH at its maximum bound, 
but the RH is high all the time. CO2 concentrations can be high, particularly if they rose directly 
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after sunset because of respiration. Once high, they stay high when the overall ventilation rate is 
low. No dosage of CO2 takes place in this period (Figure 7.19, bottom).

Looking at all the figures together, it is interesting to note that according to the model, the control 
is chosen in such a way that there is no carryover of assimilates from one day to the other because 
assimilates are always depleted before the next sunrise. One could say that the optimization assures 
that the source–sink ratio averaged over a day is about 1. It also suggests that with this model, there 
is no point in compensating low temperatures a few days earlier by higher temperatures later. 

7.6.4 R ecapitulation of the Open-Loop Step

In the previous section, it has been shown how the open-loop optimization leads to trajectories of 
controls, greenhouse, and crop states over the season. The calculation was performed afterward, 
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using the actual weather. In a realistic situation, of course, the weather is not yet known. One pos-
sibility to tackle this is to use a nominal weather file. It is not immediately clear how this should 
be constructed. Using a single realization of real weather has the advantage that all high frequent 
information (on the scale of half an hour or so) is maintained so that the estimates of the achievable 
goal function value are as realistic as possible for that particular weather pattern. Ideally, one would 
need a large set of realistic weather patterns and compute the optimal controls, states and costates, 
as well as the goal function for each to obtain a statistical distribution. It would show what the effect 
of the weather is on achievable goals under the assumption of optimal control.

However, even if this information would be available, it is not yet obvious how to use it to build 
an online optimal controller. The results above support the view outlined in Chapter 5 that it is not 
a good idea to use the states obtained from optimization under realistic weather as setpoints. As 
explained in that chapter, following the two–time-scale decomposition principle, the slow costates 
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are better candidates to convey long-term information to the short term. In the next section, this is 
worked out for the real application described in this chapter.

7.7 T wo–Time-Scale Receding Horizon OPTIMAL Controller (RHOC)

According to the procedure outlined in Chapter 5, the next step is to develop an online optimal 
controller. Once again, an optimal control problem is solved, but now for the short term with a lim-
ited horizon and using offline information from a seasonal optimization. The calculated control is 
implemented, and at the next sampling instant, the actual state is measured and used as a new initial 
value. At the next control interval, the game is repeated, whereby the horizon recedes toward the 
future. As explained, this approach is known as a receding horizon optimal controller (RHOC). As 
in this case the long-term information originates from a time-scale decomposition, we sometimes 
refer to this procedure as the two-step receding horizon optimal control. 
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7.7.1  Problem to Be Solved

The procedure is outlined in Chapter 5, Section 3.1.2. Let the costate for the slow state variables be 
denoted by 
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known for the full seasonal horizon from initial time t0 to final time tf. Let the current time be 
denoted by ts. Then, to obtain a feedback controller for the short term, the following optimal control 
problem is solved:

Find, with u as defined in Equation 7.87, 
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subject to the state Equations 7.89 and 7.90, the penalties of Equation 7.95, and using as disturbances 
the current expected external input trajectories over the horizon,

	
ˆ ( ),d t t t t hs s< < + ,	 (7.101)

with d as defined in Equation 7.88. The initial conditions at ts for the greenhouse states are recon-
structed from the observations, that is,

	
x f xg s g

obs
s( ) ( )t t= ( ),	 (7.102)

whereas the initial conditions for the slow crop states follow from the slow subproblem,

	 x xc s c s( ) *( )t t= .	 (7.103)

Equation 7.100 specifies that in the short term, the goal function is the same economics-based 
goal function as used for the seasonal optimization but enhanced with a contribution that is propor-
tional to the rate of change of the crop variables, with the instantaneous costates as proportionality 
factor. Thus, the costates act as shadow prices to value the investment in fruit dry weight (before 
harvest) and in leaf dry weight. This assures that the optimization takes into account the long-term 
effect and prevents the selling out of resources on the short term.

Once the optimal trajectory over the horizon has been found, only the initial value of the control 
trajectory at time ts, us*(ts) is applied to the plant, during the control interval T, that is,

© 2011 by Taylor and Francis Group, LLC



An Experimental Application: Tomato	 165

	 u u( ) ( ),t t t t t T= < < +s s s s
* .	 (7.104)

At the next control interval ts + T, the optimization is repeated using the reconstructed greenhouse 
states from the new observations at ts + T as initial conditions.

7.7.2  Method

The two–time-scale receding horizon controller was implemented in a real greenhouse •	
experiment in Wageningen, over the period August 3 until October 31, 1995. The crop 
already had fruits.
At the time of the experiment, the seasonal costates for the slow variables were not yet •	
available. Therefore, a fixed price was used of 20 Dfl kg–1[dw], equal for leaves and fruits, 
that is, λWF = –0.02 Dfl g–1[dw] and λWL = –0.02 Dfl g–1[dw]. A zero marginal value was set 
for the buffer costate because the assimilate buffer is only an intermediate variable of which 
the optimal trajectory will be driven by the benefits from an increase in leaf and fruits.
The optimal control problem was solved online, using a sample interval of 60 s, that •	
is, every minute an optimal control problem was solved, and the control computed was 
imposed on the greenhouse and held during the control interval.
Instead of using the crop variables from the slow subproblem, online-simulated values are •	
used. These are more accurate as they are computed with the real weather as it appeared 
rather than with the assumed long-term nominal weather. With this choice, the crop 
costates are the only information arising from the long-term optimization that is conveyed 
to the short term.
A simple calculation based on inversion of Equation 7.91 was used to reconstruct the actual •	
greenhouse states.
The horizon for the optimization was set at one hour. This is motivated by a separate analy-•	
sis of the effect of the horizon on the optimization result.
The weather forecast over the control horizon was a “lazy man” forecast, meaning that the •	
actually observed climate conditions at the sample interval are supposed to remain the same 
over the full prediction horizon. The prediction horizon was set the same as the optimiza-
tion horizon.
The penalties were the same as in Table 7.2, except for the maximum of the RH, which •	
was set at 95%.
Initial conditions were taken from the actual situation on August 3, 1995, including esti-•	
mates of biomass of leaf and fruit.
The solution is constrained by the real-time restriction that a solution should be available •	
at the end of each one-minute control interval. This means that the optimization is forced 
to stop searching, even if no convergence to the optimum is yet obtained. This should be 
kept in mind in interpreting the results. The solution found is used as the initial guess for 
the next time interval.

7.7.3 R esults

Data have been stored for each of the days during the experiments. These include at any control 
instant with one-minute interval the actual solar radiation, outdoor temperature, and wind speed, 
the computed optimal control sequences in steps of one minute over the coming hour, the evolution 
of the modified goal function and goal function components in steps of one minute over the coming 
hour, and the resulting predicted greenhouse conditions over the coming hour. In addition, experi-
mental data for the controls and climate variables in the greenhouse are available.
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In general, the measured controls show short delays as compared with the calculated ones 
because in reality it takes some time to adjust the valves and windows. In the plots below, only the 
calculated controls are shown because on this scale the difference with the realized ones is negli-
gible. Of each sequence of sixty computed control actions evaluated at any time t, only the first is 
presented because these are actually implemented to the real greenhouse. Likewise, with the state 
variables, not the predicted state over the coming hour, but the observed states at the control instant 
are presented.

To illustrate the behavior of the receding horizon controller, two days are shown in more detail 
here. Figure 7.20 shows the pattern at September 1, 1995 (day of year 244). This day is character-
ized by a cold night, followed by a bright day and elevated day temperatures. During the night, the 
heating valve ( uq

vp ) is opened a number of times to satisfy the lower temperature constraint. Notice 
the almost bang-bang nature of the heating. During the day, no heating is needed as the temperature 
rises naturally, and the RH remains below its lower bound. The windows are opened during the day 
to prevent too high temperatures that would only lead to respiration losses. Because of the open 
windows, there is no point in dosing CO2, except during a short period in the morning, when the 
windows are still closed. Notice that during the night, with the windows partly closed, CO2 rises 
because of the respiration, whereas the open windows during the day ensure sufficient exchange 
with the outside conditions to prevent the CO2 from dropping very low.

Another example is September 23, 1995 (day of year 266, Figure 7.21). This day is characterized 
by a mild night and cloudy weather during the day, with overall low radiation. Not much heating 
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is needed during the night to stay above the lower temperature limit. The moisture content reaches 
the upper bound in the morning, leading to opening of the windows. When radiation peaks at about 
midday, windows are closed and CO2 is dosed, until the moisture contents hit the 95% bound, after 
which ventilation is needed to get rid of the surplus moisture. Again, it is clearly seen that during 
the night, CO2 rises, even if the windows are open in the evening hours. The ventilation effect of 
opening the windows at the end of the day is limited because of the low wind speed.

7.8 E valuation of Optimal Control

7.8.1 S ensitivity of RHOC to Modeling Errors

During the experiment, the actual measurements are used to update the states to serve as initial 
conditions for the coming horizon. To investigate the influence of modeling errors, a simulation 
was done as if the receding horizon optimal controller was online, but without an update from the 
observations. Any differences between reality and model prediction then show up as differences in 
calculated controls.

Figure 7.22 compares the simulated and observed states together with the differences between the 
controls. Comparing the experimental and simulation results reveals that during the night in simu-
lation, the controller can keep the temperature much closer to its lower boundary value. Looking 
at the heating valve (uq

vp) and window controls (uA
v

p), it appears that the overall pattern is the same 
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in both cases, but in simulation the controls have less large excursions. This may be an indication 
of the effects of modeling errors, mainly in the ventilation part, although it might partly be also 
because in simulation there is no need to force the optimization routine to stop searching after the 
control interval elapses. The ventilation part of the model does not include free convection; thus, 
implicitly it assumes that for zero wind speed, there is no ventilation. An indication for this is that 
in the preceding night hours, when the wind speed is low, the simulated CO2 concentration is quite 
a bit higher than the measured one. It also supports the observation that the simulated RH during 
that period is higher than that in the real system.

The effect on the control patterns of replacing real observations with simulated values appears 
to be rather limited. Some suboptimality may be expected if predictions are steadily wrong. On the 
other hand, comparing one-step-ahead predictions with real observations should give clues to (auto-
matic) adjustment of models. Overall, the RHOC does not show signs of instability and therefore 
looks rather robust against modeling errors.

7.8.2 S ensitivity of Slow Costates to the Nominal Weather

Unfortunately, no analysis was made on the sensitivity of the costate patterns to the weather. Figure 
7.10 suggests that the slow costates have less high-frequency variation than the weather itself or than 
the optimal state trajectories. Consequently, they are more suitable to convey long-term information 
to the short-term optimization than those rapidly fluctuating signals. Ideally, it would be required to 
calculate the costate trajectories for nominal weather and apply these in the optimization. During 
the season, updates can be made to reflect the actual past.

7.8.3 S ensitivity of RHOC to Slow Costates

Because after the experiment the real costate trajectories for the slow state variables were known, 
it was possible to compute afterward the sensitivity of the short-term receding horizon controller 
to the slow costates. In Figure 7.10, it can be seen that at September 1 the value of the fruit weight 
costate (λWF) is about –0.02 Dfl g[dw]–1, which is the same as used in the experiments and which 
is also equal to the value of the harvested fruits. The costate associated to the leaf biomass (λWL) 
is about 0.027 Dfl g[dw]–1, meaning that the marginal costs increase if more leaves are produced 
at that time. At September 1, being near to the end of the season, investing in more leaves does not 
pay off. However, in the experiment, a fixed value of –0.02 Dfl g[dw]–1 was used, which is just the 
opposite. Thus, the controls in the experiment tend to favor generative growth more than is the case 
in the simulation with the correct costates. This can be seen in Figure 7.23, which shows that with 
the correct leaf costate, the temperature is made considerably higher. At higher temperature in the 
model the allocation of assimilates is more directed to fruits, which makes sense if investment in 
leaves is no longer necessary. A higher temperature is achieved by invoking less ventilation, as can 
be seen by comparing the window openings. The action is not hampered by humidity constraints as 
higher temperatures also help decrease the RH. Because there are less ventilation losses, the opti-
mal control algorithm tries to take advantage of this situation by opening the CO2 valve more often, 
although the effect on the CO2 content remains quite small.

7.8.4 S ensitivity of RHOC to Weather Forecast and Prediction Horizon

The control solution depends on the horizon length and, consequently, on the accuracy of the 
weather forecast over the horizon length. In the tomato case of this chapter, this was not investi-
gated explicitly. The long-term effects of crop growth are encapsulated via the marginal value of 
the biomass increase, according to Equation 7.100. Therefore, one would perhaps expect that the 
short-term receding horizon controller does not have to look over longer time horizons than that in 
agreement with the physical time constants of the system. These can be evaluated by looking at the 
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eigenvalues of the linearized physical model and appear to be on the order of, say, half an hour. This 
supports the choice for a horizon of one hour.

Another indication is obtained from a study reported by Tap, Van Willigenburg, and Van Straten 
(1996b). The crop in that study was lettuce, but a goal function of the same shape as in Equation 
7.100 was used. The receding horizon controller as described in this chapter was simulated over 
24 hours for several selected days during the season. It was observed how the goal function value 
achieved for a particular day changed with the prediction horizon for four different cases. An exam-
ple of an outcome is shown in Figure 7.24. The following situations have been compared:

	 1.	Open-loop optimal control over 24 hours with perfect weather. This results in the reference 
value, that is, the best theoretically achievable value, represented by the straight line in 
Figure 7.24.

	 2.	Perfect weather prediction. The difference with the open-loop calculation is that the con-
trol can only take into account the forecast over the selected horizon length. It is seen that 
losses occur if the horizon is very short (45% loss with a horizon of one minute, about 
20% loss with a horizon of 20 minutes), but as the horizon length gets more than one hour, 
almost no further losses occur, suggesting that knowing the weather over a longer time 
horizon has little influence on the immediate decisions to be taken. Conversely, it can be 
said that knowing the weather in some detail over the coming few hours can significantly 
improve the economic result.

	 3.	Lazy man weather prediction. That is, at any control interval of one minute, it is assumed 
that the weather over the coming control horizon remains the same as currently observed. 
The constant pattern is updated every minute, but unlike a perfect weather prediction, 
there is no time variation in the pattern. It can be seen that there is a loss with respect to the 
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FIGURE 7.24  Effect of the optimization horizon and type of weather forecast on the criterion function. 
Lettuce model (adapted from Tap, Van Willigenburg, and Van Straten, 1996b).
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perfect weather, but it remains limited up to a horizon of one hour. With longer horizons, 
the loss becomes larger again.

	 4.	Also a comparison was made with a commercially available consumer prediction of 
hourly radiation over the coming 24 hours, which are made available at 7:00 and 11:00 
a.m. Because these forecasts are intended for the general public and pertain to a large area, 
deviations from the local weather are large at any time, and consequently there are consid-
erable losses.

Clearly, cases 1 and 2 cannot be realized in practice. However, forecasts that are currently available 
commercially for the greenhouse industry in The Netherlands become more and more detailed and 
can therefore be used with advantage, provided they are specific for local conditions. Estimates 
for local conditions can be obtained by combining regional forecasts with local measurements via 
Kalman filters, as shown by Doeswijk and Keesman (2005). The study also shows that if such 
forecasts are lacking, still very good results can be obtained by using local observations together 
with the lazy man prediction. The choice of the one hour horizon in the tomato experiment was 
motivated by the result described above.

7.9 �Ass essment of Economic Result as Compared 
with Conventional Control

The optimal control algorithm has been tested and compared with a conventional controller in two 
experiments in 1994 and 1995 (Tap, 2000; Tap, Van Willigenburg, and Van Straten, 1996a). The 
experiments were done in two compartments of a real greenhouse with tomatoes. One compartment 
was controlled by a conventional climate computer and the other by the receding horizon optimal 
control algorithm. The first experiment from 1994 is mainly used to overcome practical imple-
mentation problems. In the second experiment in 1995, both compartments were controlled by a 
conventional controller until day 214. From then on, the optimal controller has taken over control in 
the optimal control compartment.

Figure 7.25 shows the crop measurements in both compartments. Obviously, the differences in 
growth and yield up to day 214 are not caused by the control. After that day, the optimal and con-
ventional fruit weight and harvested fruit weight stay almost equal to each other, except for slightly 
more leaves in the optimal control compartment. This can be explained by the lower greenhouse 
temperature obtained in the optimally controlled greenhouse, causing a more vegetative crop. In 
general, in the optimally controlled greenhouse, the pipe temperature is higher and the optimal 
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window opening is larger than the conventional ones. Together, this results in an RH that is about 
5–10% lower, despite the fact that the conventional controller was given an upper RH boundary 
setting of 90% and the optimal controller one of 95%. It shows that the optimal controller, with 
the present settings, values the maintaining of the upper RH boundary more than the conventional 
controller, resulting in a lower optimal RH at the expense of a higher heat input. As to the control 
actions, these are more smooth in the conventional greenhouse than in the optimally controlled 
one. The latter tends to bang-bang control because no costs were imposed on control movements. 
It means that windows are opened further, with in theory a potential risk of cold spells. In practice, 
however, no visual differences in crop health were observed, with the crop in the optimal compart-
ment looking more vigorous. The experiments clearly indicated that the control of the RH strongly 
influences the overall behavior of the controller. To stick to the upper RH boundary, the optimal 
pipe temperature is higher and the optimal windows are opened farther than is the case in the con-
ventional case, resulting in a lower CO2 concentration and temperature.

7.9.1 S imulated Comparison

The experiment has not run long enough in comparison with the time constants of the crop to expect 
any significant differences in crop behavior between conventional and optimal control. Moreover, 
the experiment is performed only once, so considering the variability in plants, the results are not 
statistically reliable. Therefore, to demonstrate any differences by experiments, experiments must 
last longer, and several repetitions are needed.

To get a good impression of the expected difference over a whole season, simulation is a good 
tool. In contrast to practice, the crop is deterministic, thus eliminating any stochastical differences; 
in addition, reliable energy consumption evaluations are much easier to perform in simulation. 
Although simulation is subject to model inaccuracies, a simulated comparison is still useful as both 
controllers control the same greenhouse-crop model. The absolute value of the simulated harvest 
and energy consumption may differ from the true ones, but the relative performance of the different 
controllers is expected to be affected less.

7.9.1.1 I nitial Conditions
Because the optimal controller computations are lengthy (at the time of the experiment, it was about 
a quarter of real time), computation over a whole season is infeasible. Therefore, the comparison is 
performed for four characteristic days throughout the year 1995 (March 2, May 22, August 13, and 
October 31), using the observed weather. Initial states are taken equal and are obtained from the 
seasonal optimization for the crop states and from a run for the preceding day with a conventional 
controller for the greenhouse states. It should be noted that as the conventional controller behaves 
differently from the optimal one, the initial values obtained this way are suboptimal for the optimal 
case.

7.9.1.2  Matching the Humidity Constraint Violation
As can be learned from the experimental results, the conventional controller takes the constraints 
much less seriously than the optimal controller. This creates a different playing ground. To make a 
fair comparison, it is necessary to grant the optimal controller the same optimization space as the 
conventional one. As shown before, this is particularly relevant for the humidity constraint. The task 
is performed by adapting the humidity penalty in such a way that it is the same in the conventional 
and optimal case.

The procedure used to match the humidity constraint violation between the two controllers is 
based on the following reasoning. Because the conventional controller is widespread in practice, it 
has been assumed that the humidity trajectories it realizes are acceptable to the growers, despite 
the violation of the bounds. In addition, it has been assumed that it does not matter when exactly 
the constraint violations occur. The humidity penalty is defined in Equation 7.95, where the slope 
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parameter α represents the costs in money units of exceeding these boundaries by 1% during one 
second. By an iterative procedure, the slope parameter in the optimal controller is selected in such 
a way that on average the penalty equals the conventional one. The details of this procedure were 
described by Tap (2000).

The matching α, named α*, is quite sensitive to the chosen day and season. Ideally, one would 
have to compute it for the whole season. Here, simply, the value is taken that matches the humidity 
penalties averaged over the four selected days (0.5 × 10–7 Dfl m–2 s–1 (%RH)–1).

7.9.1.3 H umidity Penalty and Heat Input
The slope parameter determines to what extent the humidity boundaries are maintained. As the 
slope increases, the heat input will increase, but it turns out that this strongly depends on the 
weather of the considered day. The total heat input for the four days increases approximately by 
11% when the slope is increasing from α = 0 to the matching one α = α*. This indicates that 11% of 
the optimal energy consumption is related to dehumidification. The actual percentage for a specific 
day can be larger or smaller. This value is of the same order of magnitude as the annual values De 
Halleux and Gauthier (1998) found in their simulation experiments under Quebec climatic condi-
tions using different ventilation regimes (12.6% for on–off control, and 18.4% for proportional 
control).

7.9.1.4 R esults
Figure 7.26 summarizes the results as averaged daily values of the criterion function and its com-
ponents expressed in income terms (Equation 7.100 with an opposite sign), both for the optimal and 
the conventional controller averaged over the four simulated days.

First, it can be seen that the humidity penalty matching procedure was successful because the 
penalties are practically equal for both greenhouses (oval in Figure 7.26). It has to be noted, how-
ever, that a considerable difference can still occur during individual days because it is not possible 
to find a single matching α that equates the humidity penalty on every individual day. On average, 
in the optimally controlled greenhouse fewer fruits are harvested (5%), but then the heat demand is 
13% lower. Hence, per unit weight of harvested fruit, there is an 8% lower energy consumption; that 
is, the optimally controlled greenhouse has an 8% higher energy efficiency than the conventional 
one. None of the controllers violate the CO2 bounds. The cost of CO2 dosage, the CO2 penalty, and 
the marginal value of the costate are combined in the “other” category because they are gener-
ally low. The temperature constraints are violated more often in the conventional greenhouse. The 
higher temperature penalty represents a higher risk of damage to the crop because of too high or 
too low temperatures. The optimal controller takes the penalties more seriously, probably at the 
expense of some costs. If the “optimal” temperature penalty parameter was set such that the penalty 
would be equal to the conventional one, by a similar procedure as for the humidity constraint, the 
comparison would have been more in favor of the optimal controller.

There are quite remarkable differences in the long-term investment terms of the goal function 
(the last bracketed term in the integral of Equation 7.100). In the conventional controller, the (future) 
benefits of both fruits and leaves are negative. Because they are not taken into account in the con-
ventional controller, there is a tendency to neglect investment in future production capacity. In 
practice, it is the task of the grower to adjust the settings to maintain a good balance between veg-
etative and generative growth, but this is not always successful. It is one of the advantages of the 
two–time-scale receding horizon optimal controller that this is automatically achieved, provided 
that the distribution model (especially Equation 7.27) is an accurate description of reality.

Together, the fruit harvest, the heating costs, and the CO2 costs constitute the cash flow over 
the day. Over the four chosen days, the conventional controller has a 3% higher immediate cash 
flow. This is possible because on the selected days the conventional controller cashes costs invested 
earlier in fruits and invests less in future harvest. The optimal controller is, however, achieving a 
better goal function value (–J), as expected, because in the minimization, not only is the cash flow 
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taken into account but also the risk of damage to the plant because of violation of the bounds and 
the expected future profit because of investments in leaf and fruit. The value of –J shows that on 
average for these four days, the conventional controller suffers a loss, whereas the optimal control 
gains a profit. Another way of evaluating the controllers is by taking the investment in future fruits 
into account. If nothing happens, these fruits will sooner or later be harvested as well and then 
generate a true cash flow. The sum of instantaneous cash flow and expected future benefits, coined 
projected gain, is presented at the bottom line of Figure 7.26 and clearly shows the superiority of 
the optimal controller.

7.10 D iscussion and Conclusions

Before concluding, it is good to discuss a few aspects that emerged during the research reported in 
this chapter.

First, there are a couple of  numerical issues. The solution of an optimal control problem at every 
control instant is computationally very demanding. Although with a prediction horizon of one hour 
and a control interval of one minute, trajectories could be found in the experiment as described 
in this chapter, it is not always certain that the solution really converged in that time interval. 
Moreover, in simulation, computation times that get in the same order of magnitude as real time are 
a problem. A possibility to reduce computation time is to assume piecewise constant control over 
a longer period than the control interval. With a horizon of one hour and, say, fifteen minutes of 
piecewise constant control, only four numbers per control variable have to be found to minimize 
the cost function. Another aspect is that there is no guarantee that the optimization is not trapped 
into local minima. In the experiment, this possibility has never led to instabilities or odd solutions, 
but local minima may be hampering the achievement of true optimality. The fact that significant 
improvements were found is perhaps somewhat reassuring to practitioners.

On the theoretical side, more insight into the sensitivity of the goal function J to the various 
influential factors would help come up with practical near-optimal implementations or with solu-
tions that are easier to explain to the user. An analysis of the variation of J to variation in model 
parameters (e.g., see Van Henten, 2003), weather inputs, and slow costates would also be welcome 
to see how much effort needs to be put into model improvement. In the current application, it has not 
been investigated how sensitive the slow costates are for the weather. One can expect that the costate 
patterns, when computed over a number of realizations of the weather, have a certain distribution. 
In a “nominal” controller, the mean of this distribution will naturally have to be used, but it would 
be good to know how much worse or better the result in any real year can be. It needs to be said 
that optimal control cannot prevent the occurrence of good or bad years, but within the possibilities 
offered by the weather, it does the best it can. Another option that has not yet been explored is to 
repeat the long-term optimization a few times during the season to adapt the nominal trajectory to 
the actual past.

The current results have been obtained without feedback from the crop. In lack of suitable 
online crop sensors at the time of the experiment, the crop evolution of the model was open loop 
during the receding horizon experiment. Sampling data came too late for use online. Crop moni-
toring is expected to improve the situation, in particular to adjust the important distribution of 
assimilates over generative and vegetative parts. Changes in the temperature sensitivity of this 
process are likely to have a significant effect on the result, although it should be kept in mind 
that in a conventional controller this is the case as well. As in the classical controller, it will still 
be necessary that the grower observes visual characteristics of the crop. In the optimal control-
ler, deviations from a desired behavior need to be introduced by modifying the constraints. The 
advantage of optimal control is that within this new playground, a new optimum is automatically 
found.

It was assumed in the application that prices of commodities and yield market prices were con-
stant throughout the optimization period. It is known that this is not the case in normal practice. 
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In case of substantial price movements it may be necessary to recompute the long-term optimiza-
tion. However, unlike classical control, it is very easy to include price information at any time. The 
optimal controller will allow adjustment to the actual situation in an automatic fashion and in an 
optimal way. The correct formulation of the goal function is crucial in this process, but in doing so 
it stimulates clear and crisp thinking about what the grower really wants to achieve.

On the basis of this comprehensive real experiment, as well as the experimentally supported 
simulations presented in this chapter, the following can be concluded:

The receding horizon controller appears to be quite robust against modeling errors. •	
Modeling errors will lead to less than optimal performance but do not seem to give rise to 
controller instability.
The results suggest that it does make sense to exploit the actual weather. A lazy man •	
local forecast already gives good results, and some further benefits can be gained by using 
local short-term weather forecasts. Gains in energy efficiency in the order of magnitude of 
10–15% seem achievable, just on the basis of control, without investments in equipment.
Humidity control contributes significantly to the costs of greenhouse operation (10–20%). •	
The use of penalty functions in the goal function provides for a mechanism to satisfy the 
constraints in a much better way than with classical control. Without precautions, this may 
lead to higher energy costs in exchange for much lower risk. Carefully choosing the humid-
ity constraints and penalty parameters is therefore important. There is a delicate balance 
between the risk accepted and the economic result that can be achieved. More insight into 
the risks of stretching the bounds is an important premise to achieve further energy sav-
ings. This is true as well in a conventional controller setting.
The receding horizon optimal controller as developed here incorporates in an elegant way •	
the long-term (crop) effects in the short-term control. The result is a variable climate, 
which is much more in agreement with a natural situation. Crop quality was at least as 
good as with conventional control.
The experiment described in this chapter has provided the proof of principle that optimal •	
control is feasible in practice.
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8 An Advanced Application: 
The Solar Greenhouse

8.1 I ntroduction

The flexibility of the receding horizon optimal control is illustrated in this chapter, where the meth-
odology is applied to a novel advanced greenhouse design, called the solar greenhouse. In this green-
house, surplus heat collected during the summer is stored in an aquifer, using a heat exchanger, and 
retrieved in the winter using a heat pump. In addition, ventilation, when it is needed, is done with 
heat recovery. Moreover, materials with better heat insulation properties are used for the cover.

In contrast to the time-scale decomposition approaches in the previous chapters, a different route 
is followed here (Van Ooteghem, 2007). There is no specific crop; the crop model is a simple one-
state biomass model, using the net photosynthesis. Differences between crops can be expressed by 
different model parameter choices. The long-term effects are circumvented by assuming that any 
biomass produced sooner or later will lead to income. This amounts to the assumption that a unit of 
biomass increase has the same value at any time during the cultivation. Unwanted developmental 
effects are avoided by constraints on temperature and by the temperature integral concept. The 
long-term effects of the aquifer are tackled by calculating an averaged annual time pattern for the 
energy content, and requiring that the controller remain in the neighborhood of this pattern.

Elaborate models for photosynthesis and crop evapotranspiration are used to encapsulate the 
larger operational ranges to be expected from the optimal control. Also the greenhouse climate 
model is an elaborate model. The states are: CO2 concentration, water concentration, air tempera-
tures in compartments above and below a thermal screen, and temperatures of the roof, the crop, 
and the soil. Additional models describe the temperatures of upper and lower heating pipes, the 
cooling net, the heat pump, and the energy content of the aquifer. Exchanges by convection, conduc-
tion, and radiation are described separately.

Part of the model is calibrated against experimental data for a conventional greenhouse. The 
parameters for the new elements such as heat exchanger and heat pump are derived by design.

To obtain control solutions, a restriction is first introduced on the degrees of freedom for the 
control actions, avoiding actions that are unlikely to be optimal, such as heating and cooling at the 
same time. To avoid local minima, a grid search is performed to get a crude optimal trajectory, and 
finally a gradient method is used for fine-tuning. These modifications are significant to reduce the 
computation time, which is a prerequisite for on-line applications.

Results have been obtained by year-round simulations, thus allowing the assessment of the sav-
ings of the solar greenhouse as compared with conventional greenhouses without the solar elements. 
Note that, in this case, it was assumed that the conventional greenhouse was also controlled by a 
receding horizon optimal controller. Effects of the temperature integral and effects of the weather 
forecasts on the expected benefits (i.e., before a control action is invoked) and the real benefits (i.e., 
with the realized control) are investigated, leading to more insight into the aspects that are relevant 
to the economic result.
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8.2 D escription of the Solar Greenhouse Concept

An accurate model of the controlled system is necessary for the successful application of optimal 
control. Based on this model and a mathematical description of the control objectives, the optimal 
controller finds the best solution. In practice, the successful application of optimal control depends 
critically on the quality of the model. Van Henten (1994) and Tap (2000) found that parts of the 
greenhouse behavior were not well described by their models. This negatively affects the perfor-
mance of the optimal control.

For the receding horizon optimal control concept used in Section 8.7.2, a state-space descrip-
tion of the system is needed. The model should be sufficiently small with respect to the number of 
differential equations, controls, and external inputs to limit the on-line computational load. On the 
other hand, it should be sufficiently accurate.

In this section a dynamic model for the solar greenhouse is developed. With a few small modifi-
cations this model can be turned into a model for the conventional greenhouse.

A conventional greenhouse is heated by a boiler, which in The Netherlands is also used to provide 
CO2 for crop growth. The roof has a high transmission of solar radiation, but poor heat-insulating 
properties. The greenhouse can be cooled by opening the windows, which also provides a means to 
decrease humidity.

In the solar greenhouse design, the heat insulation and the transmission of solar radiation are 
maximized. A warm- and a cold-water aquifer* layer are used to store and retrieve the surplus solar 
energy. At times of heat demand, the greenhouse can be heated with little energy input with a heat 
pump and warm aquifer water. At times of heat surplus, the greenhouse can be cooled with a heat 
exchanger and cold aquifer water, while energy is harvested for use at times of heat demand. In 
contrast to common greenhouses, the CO2 supply in the solar greenhouse concept is detached from 
the boiler, thus avoiding the need to use the boiler at times of CO2 demand. It is assumed that the 
CO2 can be acquired from a power plant.† Ventilation with heat recovery is used to dehumidify the 
greenhouse at times of heat demand.

The solar greenhouse has the following changes compared with a conventional greenhouse:

Improved•	  insulation value and improved light transmission cover: To minimize heat loss 
to outdoor air and maximize the input of solar radiation. This will result in a higher crop 
yield and lower energy consumption.
Ventilation•	  with heat recovery: If ventilation is needed for high humidity but not for cool-
ing, the sensible heat loss can be partially recovered by exchanging the air through a heat 
exchanger. The outdoor air is preheated by the indoor greenhouse air, while the humidity 
content is decreased. Latent heat that is vented out is lost. If ventilation is needed to prevent 
high humidity and high temperature, the windows are used—as in normal greenhouse 
practice.
Aquifer•	 : A long-term storage of water in the lower soil layers. The aquifer has a cold 
( )Taq

C,cold C= °10  and a warm ( )Taq
C,warm C= °16  side. When the greenhouse is cooled, cold 

water is taken from the cold aquifer side, heat is extracted from the greenhouse with the 
heat exchanger, and the resulting warm water is stored in the warm aquifer side. When the 
greenhouse is heated, warm water is taken from the warm aquifer side, heat is supplied 
to the greenhouse with the heat pump, and the resulting cold water is stored in the cold 
aquifer side.
Heat•	  exchanger: Heat can be extracted from the greenhouse by a heat exchanger. The heat 
exchanger is used to cool water in the finned upper cooling net pipes with water from the 

*	An aquifer is a formation of water-bearing sand material in the soil that can contain and transmit water. Wells can be 
drilled into the aquifers and water can be pumped into and out of the water layers.

†	 It is possible in The Netherlands to retrieve pure CO2. Shell Pernis/OCAP currently supplies about 200 growers with CO2, 
thus reducing the CO2 emission by 170 kilotons CO2 per year. This saves the growers 95 million m3 gas.
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cold aquifer side. The cooling net extracts energy from the greenhouse. Water from the 
cold aquifer side is heated to a temperature above Taq

warm. Water with a temperature Taq
warm is 

stored in the warm aquifer side.
Heat•	  pump: Heat can be supplied to the greenhouse by a heat pump. The heat pump is 
used to heat water in the lower heating net with water from the warm aquifer side. The 
heat pump can attain a heating temperature of about 33°C. The lower heating net supplies 
energy to the greenhouse. Water from the warm aquifer side is cooled to a temperature 
below Taq

cold. Water with a temperature Taq
cold is stored in the cold aquifer side.

Boiler•	 : Used for additional heating if the heat pump cannot supply enough heat.
Carbon dioxide•	  supply: Separate CO2 supply, because CO2 is no longer supplied by the boiler.
Gas•	  motor or electric drive: Used to run the heat pump; the exhaust gas can be used to 
give additional heat.

The gas motor might be replaced by a windmill that supplies electricity (sustainable instead of fossil 
energy). In the ideal set-up, the boiler is only needed as a backup. The heating and storage devices 
have to be controlled to optimize the heat use. This will ensure appropriate production and quality 
and low energy consumption.

The model of the conventional greenhouse used in this research is developed based on the 
model by Heesen (1997), who exploited the research by Bot (1983), De Jong (1990), De Zwart 
(1996), and Van Henten (1994). This conventional greenhouse model has been modified to include 
a thermal screen and a double glass cover. For the solar greenhouse it has been extended with 
the solar greenhouse elements described above, which give new possibilities for heating, cooling, 
and dehumidification. The greenhouse model uses the crop model for the exchange of heat, CO2, 
and water with the crop. This section gives a complete and detailed description of the greenhouse 
model.

The outline of the succeeding sections is as follows. The system is described in Section 8.3, 
where an overview is given of the system with its states, control inputs, and external inputs. The 
state equations mainly contain terms that describe the exchange of heat, water, and CO2. In Section 
8.4, these exchange terms are worked out. In Section 8.5 the crop biophysics are described. In 
Section 8.6 the model is calibrated and validated to investigate its accuracy and suitability for opti-
mal control purposes. In Section 8.7 the optimal control method is explained and the results are 
presented and discussed.

8.3  System Description

The greenhouse configuration is described in Section 8.3.1. In Section 8.3.2, all assumptions made 
in this model are described. Section 8.4 gives the states, control and external inputs, and the state 
equations that govern the system behavior.

8.3.1 G reenhouse Configuration

The greenhouse configuration is given in Figure 8.1. The greenhouse is a Venlo greenhouse with a 
north–south orientation. A Venlo greenhouse is a multi-span greenhouse. 

A heating system consisting of a boiler, a condenser, and a heat pump can be used to heat the 
greenhouse. The lower heating net can be heated with the boiler to a temperature of 90°C and with 
the heat pump to a temperature of about 33°C. The upper heating net is heated by the condenser to 
a temperature of 45°C. The condenser is heated by the flue gas of the boiler. The heating system is 
described in Sections 8.4.6.1 and 8.4.6.3.

A cooling system consisting of a heat exchanger can be used to cool the greenhouse. The upper 
cooling net can be cooled with the heat exchanger to a temperature of about 10°C. The cooling sys-
tem is described in Section 8.4.6.4.
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The heat pump and the heat exchanger operate in conjunction with an aquifer. A warm- and a 
cold-water aquifer layer are used to store and retrieve the surplus solar energy. The warm-water layer 
has a temperature of Taq

C,warm C= °16  and the cold-water layer has a temperature of Taq
C,cold C= °10 . The 

warm water is used by the heat pump to heat the greenhouse. The cold water is used by the heat 
exchanger to cool the greenhouse.

A thermal screen can be closed during the night to reduce the heat loss to the environment if the 
temperature of the outdoor air is low. The thermal screen is operated based on rules used in com-
mon practice, which are described in Section 8.4.4.

Ventilation by opening windows can be used to cool the greenhouse and to decrease humidity. 
At times of heat demand, the humidity can be decreased by using ventilation with heat recovery. 
The sensible heat that is normally lost during ventilation through windows is partially recovered by 
exchanging the air through a heat exchanger. The ventilation model is described in Section 8.4.5.

The roof has a double-layer zigzag cover, which has a high insulation value and light transmis-
sion. This decreases heat loss to the environment and increases radiation in the greenhouse. To 
minimize fossil energy consumption, no lighting is used.

The control input trajectories consist of actuator settings, such as window apertures and valve 
positions of, for instance, the boiler. For the heat and mass transport, the following elements are 
taken into account: air (above and below the screen), crop, heating and cooling net pipes, roof, 
screen, and soil. These elements are modeled as lumped parameter models, which are assumed 
internally homogeneous. The soil and the roof are divided into two layers/parts.

8.3.2 A ssumptions

The following assumptions are made:

The greenhouse has a north–south orientation.•	
Each span in the multispan greenhouse has the same layout with respect to the configura-•	
tion of the heating and the cooling net, the thermal screen, and its size.
The lower heating net is below the canopy and the upper heating and cooling net are above •	
the canopy, but below the screen.
All outdoor weather conditions are not influenced by the greenhouse climate conditions.•	
All compounds (crop, roof glass, upper soil layer, lower and upper heating net, upper cool-•	
ing net, screen, aquifer, etc.) and gasses (greenhouse air above and below the screen) are 
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FIGURE 8.1  Greenhouse configuration.
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homogeneous—they have a uniform temperature. The air in the greenhouse above and 
below the screen is perfectly mixed (with respect to CO2 and H2O concentration).
When the screen is fully opened (•	 Clsc = 0), the temperature and the CO2 and H2O concen-
trations can be averaged (proportional with the heat capacity and volume of the air above 
and below the screen). This is necessary to avoid numerical problems in the integration 
(see Section 8.4.4.3). The screen is impermeable for all gasses (H2O, CO2, and air). The 
screen transmits part of the solar radiation. The exchange of heat, CO2, and H2O through 
the screen opening can be described by a simple air-exchange rate.
The heating nets and the cooling net can be described as a number of loops of pipes with a •	
specific length and diameter. The temperature of the water in the lower and upper heating 
net and the cooling net can be described by simplified equations. In these equations, it is 
assumed that one temperature can be used to describe the energy content of the net. This 
temperature depends on the incoming temperature, from which the outgoing temperature 
can be directly computed with the heat-exchange terms (Van Ooteghem, 2007).
One soil layer can be used to approximate the temperature of the upper soil layer •	 Ts (Van 
Ooteghem, 2007).
The double-glass zigzag roof cover consists of two layers of glass with air in between. The •	
temperature of the outdoor side of the roof Tro can be directly computed from the tem-
perature of the indoor side of the roof Tri and their heat exchange terms (Van Ooteghem, 
2007).
The heat pump is a compression heat pump. It is assumed that the heat transfer between the •	
heat pump and the lower net has no dynamics (direct transfer of heat).
The heat exchanger is a countercurrent heat exchanger. It is assumed that the heat transfer •	
between the heat exchanger and the upper cooling net has no dynamics (direct transfer of 
heat).
The aquifer has an infinite amount of warm and cold water available. The loading and •	
unloading of the aquifer buffers is limited by government demands, which indirectly cor-
rects for the fact that the buffers are not infinite.
Water that condensates on the indoor side of the roof, on the screen and on the upper cool-•	
ing net pipes is directly removed and therefore not available for evaporation.
When ventilation with heat recovery is used, a fixed fraction •	 ηvhr of the sensible heat is 
recovered.
The CO•	 2 assimilation by the crop is instantaneously converted to biomass.
The boiler runs on (natural) gas.•	
The CO•	 2 supply in the solar greenhouse is assumed to be detached from the boiler. It is 
assumed that the CO2 can be acquired from a power plant.

8.4 T he Solar Greenhouse Model

The greenhouse model is written in state-space form

	
x f x u d= ( , , , )t 	

where t is time, x are the states, u are the control inputs, d are the external inputs, and f is a nonlin-
ear function. This function is integrated by using a Runge-Kutta fourth-order integration algorithm 
(Press et al., 1986) to obtain the states.

The model description given here is based on the model described by Heesen (1997), which 
in turn is based on the research by Bot (1983), De Jong (1990), De Zwart (1996), and Van Henten 
(1994). This model has been extended with a thermal screen, a double-glass cover, and the so-called 
solar greenhouse elements: heat pump, heat exchanger, ventilation with heat recovery, and a cooling 
net to describe the solar greenhouse behavior. The main external input is the weather.
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The state equations have been formed based on the laws of conservation of enthalpy and mat-
ter. The dynamic behavior of the states is described using first-order differential equations, which 
match the state-space description of the systems. The notational conventions for the model used in 
this section are given in Table 8.1.

A description of the states x, the control inputs u, and the external inputs d is given in Table 8.2. 
The state variables x, the external inputs d, and the control inputs u are shown in Figure 8.2. In this 
figure, the boxes for the state variables x are bold, for the external inputs d are dashed, and for the 
control inputs u are dotted or dash-dotted. The dotted and the dash-dotted boxes are used to distin-
guish between the control inputs that are set by the optimal control and the control inputs that are 
directly derived from external inputs or from other control inputs.

The screen condition csc is either zero or one, where csc = 0 indicates that the screen is fully 
opened and csc = 1 indicates that the screen is (possibly partly) closed. The screen condition is a 
discrete switch that can be interpreted as an external input d, since it only depends on the outdoor 
shortwave solar radiation Io and the temperature To of the outdoor air (see Section 8.4.4.1).

TABLE 8.1
Notational Conventions

Symbol Description Unit Symbol Description Unit

Variables

Φ Mass flow rate kg s−1 T Temperature K

F Volume rate m3 s−1 V Volume m3

A Surface area m2 ρ · cp · V Heat capacity J K−1

Q Heat exchange W

Subscripts
a Greenhouse air below screen out Going out of the system

as Greenhouse air above screen rad Shortwave radiation

c Crop ri Roof indoor side

CO2 Carbon dioxide ro Roof outdoor side

he Heat exchanger s Upper soil layer

hp Heat pump ss Subsoil layer

H2O Water sc Screen

in Going into the system sk Sky

l Lower heating net u Upper heating net

o Outdoor uc Upper cooling net

Superscripts

* Optimal control ppm In unit (ppm)

★ Estimated reference rad Shortwave radiation

C In unit (°C) ref Reference

cold Cold side aquifer sat Saturation

cons Condensation sp Setpoint

lwv Longwave radiation T Temperature

max Maximum TI Temperature integral

mbar In unit (mbar) trans Transpiration

min Minimum warm Warm side aquifer

mol In unit (mol) wb Wet bulb
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The state equations are:
Carbon dioxide concentration indoor air below the screen
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Carbon dioxide concentration indoor air above the screen
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TABLE 8.2
States, Control Inputs, and External Inputs

Symbol Description Unit

States x
CCO2,a, CCO2,as CO2 concentration indoor air below/above screen kg[CO2] m–3

CH2O,a, CH2O,as H2O concentration indoor air below/above screen kg[H2O] m–3

Ta, Tas Temperature indoor air below/above screen K

Tc Temperature crop K

Tri Temperature roof indoor side K

Ts Temperature soil (upper layer) K

Tl, Tu Temperature lower/upper heating net K

Tuc Temperature upper cooling net K

Tsc Temperature thermal screen K

ST Temperature integral K day

B Total biomass (fresh weight) kg[fw] m–2[gh]

Eaq Aquifer energy content J m–2[gh]

Control Inputs u
vpCO2

Valve position CO2 supply [0,1]

Aplsd, Apwsd Window aperture lee-side/windward-side [0,1]

Clsc Thermal screen closure [0,1]

opvhr Option ventilation heat recovery {0,1}

vpl, vpu Valve position lower/upper net [0,1]

vphe Valve position heat exchanger [0,1]

vphp Valve position heat pump [0,1]

External Inputs d
Io Outdoor shortwave solar radiation W m–2[gh]

vo Outdoor wind speed m s–1

To Temperature outdoor air K

To
wb † Temperature wet bulb K

Tsk Temperature sky K

CCO2,o CO2 concentration outdoor air kg[CO2] m–3

†	 H2O concentration outdoor air CH2O,o can be computed from the temperatures To and To
wb

 (see Appendix B).
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Water concentration indoor air below the screen
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FIGURE 8.2  States x (solid box), external inputs d (dashed box) and control inputs u (dotted and dash-dotted 
boxes) in the solar greenhouse.
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Water concentration indoor air above the screen
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Temperature indoor air below the screen
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Temperature indoor air above the screen
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Temperature crop
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Temperature soil
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Temperature lower net
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Temperature upper net
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Temperature upper cooling net
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Temperature indoor side of the roof (double or single glass cover)
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Temperature screen
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Temperature integral temperature indoor air below the screen (more details in Section 8.5.3)
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Total biomass (fresh weight)
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Table 8.3 gives the sizes of greenhouse components, while Table 8.4 gives some parameter values. 
In the subsequent sections, the carbon dioxide, water, and heat exchanges in the greenhouse are 
described.

8.4.1  Carbon Dioxide Model

The differential equations for the carbon dioxide concentrations of the indoor air below and above 
the screen (CCO2,a, CCO2,as (kg[CO2] m–3)) and the total biomass (B (kg[fw] m–2[gh])) are given in 
Section 8.4. The carbon dioxide mass flow rates are described in the subsequent sections. The carbon 
dioxide concentrations, the biomass, and the carbon dioxide mass flows are shown in Figure 8.3.

All carbon dioxide concentrations CCO2,x are here expressed in the SI unit (kg[CO2] m–3[air]). 
Often the carbon dioxide concentration CCO ,x

ppm

2
 is used, which is expressed in (µmol[CO2] mol–1​[air]), 

because this is the unit used in practice. This concentration can be computed with C
C

fCO ,x
ppm

2

CO2 ,x

ppm=  
(see Equation 8.135).

TABLE 8.3
Sizes

Component

Diameter, Thickness, 
or Width 

(m)
Length 

(m)
Quantity 

(–)

Lower heating net dl = 0.051 ll = 2 (ls – 2 + 0.75) = 109.5 nl = 2.5

Upper heating net du = 0.028 lu = 2 (ls – 2 + 0.75) = 109.5 nu = 2.5

Upper cooling net duc = 0.051 luc = 2 (ls – 2 + 0.75) = 109.5 nuc = 2.5

Roof (glass) dr = 0.004 dra = 0.01 (air cavity)

Soil layer ds = 0.65 dxs = 1.247 (centers)

Leaf lf = 0.035 LAI = 3

Screen dsc = 0.0005

Greenhouse span ws = 4 ls = 56 ns = 14

Gutter, ridge hg = 4.5 hr = hg + 0.5 ws · tan(γ)

Window wwin = 2.25 hwin = 1 nwin = ns · nwins = 14 · 12 = 168
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TABLE 8.4
Parameter Values

Material Density Specific Heat 
Capacity

Area Volume Heat Capacity

ρ 

kg
m3







cp 
J

kg K⋅⋅






A
(m2)

V
(m3)

ρ ⋅ cp ⋅ V 

⋅⋅




106 J

K

Water Lower 
heating net

Upper 
heating net

Upper 
cooling net

ρH2O = 998 cp,H2O = 4186 Al = ns · nl · π · dl · ll 
≈ 614.05

Au = ns · nu · π · du ·lu 
≈ 337.12

Auc = 4ns · nuc · π · 
duc luc 

≈ 2456.19

V A dl l l= ⋅ ⋅1
4  

≈ 7.83
V A du u u= ⋅ ⋅1

4  
≈ 2.36

V dA
uc uc

uc= ⋅ ⋅
4

1
4

 
≈ 7.83

32.71

9.86

32.71

Air Below screen

Above screen

ρa a
= ⋅1 29 0. T

T

ρas as
= ⋅1 29 0. T

T

cp,a = 1000 Va = As · hg 
≈ 14112

V A h hsas n g= ⋅ −1
2

( ) 
≈ 1267.03

16.68

1.50

Sand ρs = 1600 cp,s = 800

Soil 70% sand, 
20% water, 
10% air

As = ns · ls · ws 
≈ 3136

Vs = As · ds 
≈ 2038.40

3529.78

Crop 	 ρc = 700 cp,c = 3500 Ac = 2LAI · As 
≈ 18816

Vc = LAI · As · dc 
≈ 28.22

69.14

Roof 
(glass)

ρr = 2500 cpr = 840 A Ar ( ) s= ⋅1
cos γ

 
≈ 3382.28

Vr = Ar · dr 
≈ 13.53

28.41

Screen ρsc = 1500 cp,sc = 1500 Asc = As 
≈ 3136

Vsc = Asc · dsc 
≈ 1.57

3.53

Note:	 Where necessary, a temperature of 25°C is used to calculate the values in this table. Here ns, ls and ws is the number of spans, 
length and width per span; n is number of heating or cooling pipes per span, d is the outer diameter of the pipe and l is the length 
of one loop of pipe; 2LAI is the leaf area index, 2 for two sides of the leaf; 4 indicates the surface area amplification for the 
finned cooling pipe compared with a normal pipe and γ

π= ° ⋅
°

22
180

 (rad) is the angle of the roof with the horizontal plane.

C a

C as

C ,o

ФCO2, as_o

vpB

Ф a_as

Ф a_c Ф in_a

CO2

CO2,

CO2,

CO2,

CO2,CO2,

CO2  

FIGURE 8.3  States x (solid box), external input d (dashed box), and control input u (dash-dotted box) in the 
carbon dioxide model.
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8.4.1.1 C arbon Dioxide Supply
In the solar greenhouse case, the carbon dioxide supply is independent of boiler operation, which 
means that the maximum CO2 supply ΦCO2

max  is a design parameter.
The mass flow rate of carbon dioxide ΦCO2,in_a supplied to the indoor air is described by

	
Φ ΦCO ,in_a CO CO

max
2 2 2

= ⋅vp
	

(kg[CO2] s–1)  (8.17)

in which ΦCO2

max = × −5 10 5 As kg[CO2] s–1 is the maximum mass flow rate CO2 supply, where vpCO2
∈[ , ]0 1  

is the valve position carbon dioxide supply (control input).
In a conventional greenhouse in The Netherlands, carbon dioxide is a side product of energy 

supply by the boiler. The carbon dioxide supply by the boiler is therefore limited by the amount of 
carbon dioxide ΦCO ,in_a

max
2

 produced by the boiler, so

	
Φ Φ ΦCO ,in_a CO CO CO ,in_a2 2 2 2

= ⋅( )min ,max maxvp 	 (kg[CO2] s–1)  (8.18)

in which

	
ΦCO ,in_a gas CO _gas2 2

max = ⋅F f 	 (kg[CO2] s–1)  (8.19)

in which the conversion factor fCO2_gas = 1.78 kg[CO2] m–3[gas], where Fgas (m3[gas] s–1) is the gas 
flow needed by the boiler.

The gas flow Fgas needed by the boiler is defined by

	
F

Q
Hgas

boil

boil u

=
⋅η 	

(m3[gas]s–1)  (8.20)

in which the efficiency of the boiler ηboil = 0.95 and the (high) combustion value of gas Hu = 
35.17 × 106 J m–3[gas], where Qboil (W) (Equation 8.78) is the energy supply by the boiler for heat 
supply. The high combustion value of gas is the amount of energy available from its complete com-
bustion, including condensation of water vapor that results from the combustion.

8.4.1.2 P hotosynthesis and Respiration
The mass flow rate of carbon dioxide ΦCO2,a_c from the indoor air to the canopy (the net photosyn-
thesis rate of the canopy) is described by

	
ΦCO ,a_c cg c2

= −P r
	 (kg[CO2] s–1)

 
(8.21)

in which the gross assimilation rate of the canopy Pcg is given by

	 Pcg = As · Pg	 (kg[CO2] s–1)  (8.22)

and the dark respiration rate of the canopy rc is given by

	 rc = As · rD	 (kg[CO2] s–1)  (8.23)
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where Pg (kg[CO2] m–2[gh] s–1) is the gross assimilation rate of the canopy, rD (kg[CO2] m–2[gh] 
s–1) is the dark respiration rate of the canopy, and As (m2[gh]) is the surface area of the soil. Several 
different models can be used to compute these rates (Van Ooteghem, 2007). A new photosynthesis 
model was formed based on existing models in literature (see Section 8.5.2.1), which is used to com-
pute the gross assimilation rate Pg and the dark respiration rate rD of the canopy.

This carbon dioxide is used to produce biomass. It is assumed that the CO2 assimilation by the 
crop is instantaneously converted to biomass. For the conversion from the consumed CO2 to the 
fresh weight biomass increase rate, the conversion factor fCO2,B is used

	

f
c c

pCO ,B
f cs

2 w ASRQ
=

−
⋅ ⋅1

1 100 	

(kg[fw] kg–1[CO2])  (8.24)

in which the percentage water in total fresh weight biomass pw = 94%, the fraction of produced 
biomass material for dry weight cf = 1, the conversion factor from CO2 to CH2O (fraction of molar 
masses) ccs [ ] [ ]= −30

44 2 2
1kg CH O kg CO , and the conversion factor from dry weight to CH2O (glucose 

requirement) ASRQ = 1.2 kg[CH2O] kg[dw]–1.
For the long-term temperature effects on crop development, temperature integration is used. This 

is described in Section 8.5.3.

8.4.1.3 C arbon Dioxide Transport due to Ventilation
The mass flow rate of carbon dioxide ΦCO2,as_o from the indoor to the outdoor air is described by

	
ΦCO ,as_o as_o CO ,as CO ,o2 2 2

= ⋅ −F C C( )
	

(kg[CO2] s–1)  (8.25)

where Fas_o (m3 s–1) is the ventilation flow (Equation 8.58), CCO2,as (kg m–3) is the carbon dioxide 
concentration of indoor air above the screen and CCO2,o (kg m–3) is the carbon dioxide concentration 
of outdoor air.

8.4.1.4 C arbon Dioxide Transport past the Screen
The mass flow rate of carbon dioxide ΦCO2,a_as from the indoor air below the screen to the indoor air 
above the screen is described by

	
ΦCO ,a_as a_as CO ,a CO ,as2 2 2

= ⋅ −( )F C C
	

(kg[CO2] s–1)  (8.26)

where Fa_as (m3 s–1) is the volume flow of air from below the screen to above the screen (Equation 
8.53), CCO2,a (kg m–3) is the carbon dioxide concentration of indoor air below the screen, and CCO2,as 
(kg m–3) is the carbon dioxide concentration of indoor air above the screen.

8.4.2  Water Vapor Model

The differential equations for the water vapor concentrations of the indoor air below and above the 
screen ( , ( ))C CH O,a H O,as2 2

kg[H O] m2
3−  are given in Section 8.4. The water vapor mass flow rates are 

described in the subsequent sections. The water vapor concentrations and the water vapor mass 
flows are shown in Figure 8.4.
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8.4.2.1 C anopy Transpiration
The canopy transpiration is determined based on the thesis of Stanghellini (1987). The mass flow 
rate of water vapor ΦH O,c_a2

 from the canopy to the indoor air due to transpiration (kg[H2O] s–1) is 
given in Section 8.5.1.

8.4.2.2 C ondensation of Water
Water will condense on a surface when the concentration of water vapor in the air is higher than the 
saturation concentration of water vapor of the surface. The saturation concentration of water vapor 
of the surface depends on the surface temperature and the humidity of the air. It is assumed that 
water that condenses is directly removed, and is therefore not available for evaporation.

The mass flow rate of water vapor ΦH2O,A_B from compartment A that condensates on surface B is

	
ΦH O,A_B B H O,A_B H O,A H O,B

sat
2 2 2 2

= ⋅ ⋅ −max( ( ), )A k C C 0
	

(kg[H2O] s–1)
 

(8.27)

where AB (m2) is the surface area of surface B, kH2O,A_B (m s–1) is the mass transfer coefficient of 
water vapor from the air in compartment A to surface B, CH O,B

sat
2

 (kg[H2O] m–3[air]) is the satura-
tion concentration of water vapor at the temperature of surface B (see Appendix B.1), and CH2O,A 
(kg[H2O] m–3[air]) is the concentration of water vapor at the temperature of the air in compartment 
A. If C CH O,A H O,B

sat
2 2

≤ , then ΦH2O,A_B = 0 (no condensation).
The mass transfer coefficient of water vapor kH2O,A_B from the air in compartment A to the surface 

B is defined by Bot (1983)

	

k

c Le
H O,A_B

A_B

A p,a

2
=

⋅ ⋅

α

ρ
2
3

	

 (m s–1)  (8.28)

where αA_B (W m–2 K–1) is the heat transfer coefficient from the air in compartment A to the sur-
face B (see Table 8.5), ρA (kg m–3) is the density of air in compartment A (temperature dependent), 

CH2O,a

CH2O,as

CH2O,o

ФH2O,a_uc

ФH2O,c_a

Ф ,as_o

ФH2O, a_sc

Ф ,as_sc

CH2O,uc

CH2O,ri

CH2O,c

C , sc

ФH2O,as_ri

ФH2O,a_as

H2O

H2O

H2O

FIGURE 8.4  States x (solid box) and external input d (dashed box) in the water vapor model.
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cp,a (J kg–1 K–1) is the specific heat capacity of air and Le = 0.89 (–) is the Lewis number for water 
vapor in air.

In Table 8.5, the condensation of water is given for all surfaces in the greenhouse to which it 
applies, based on the Equations 8.27 and 8.28. The equations and the values for the surfaces and the 
heat transfer coefficients αA_B are given in Tables 8.4 and 8.6.

8.4.2.3 W ater Vapor Transport due to Ventilation
The mass flow rate of water vapor ΦH2O,as–o from the indoor air above the screen to the outdoor air 
is described by

	 ΦH2O,as–o = Fas_o · (CH2O,as – CH2O,o)	 (kg[H2O] s–1)  (8.29)

where Fas_o (m3 s–1) is the ventilation flow (Equation 8.58), CH2O,as (kg m–3) is the water concentration 
of indoor air above the screen, and CH2O,o (kg m–3) is the water concentration of outdoor air.

8.4.2.4 W ater Vapor Transport past the Screen
The mass flow rate of water vapor ΦH2O,a_as from the indoor air below the screen to the indoor air 
above the screen is described by

	 ΦH2O,a_as = Fa_as · (CH2O,a – CH2O,as)	 (kg[H2O] s–1)  (8.30)

where Fa_as (m3 s–1) is the volume flow of air from below the screen to above the screen (Equation 
8.53), CH2O,a (kg m–3) is the water concentration of indoor air below the screen and CH2O,as (kg m–3) 
is the water concentration of indoor air above the screen.

8.4.3 T hermal Model

The differential equations for the temperatures of the roof, the indoor air below, and above the 
screen, the crop, the soil (upper layer), the lower and the upper heating net, the upper cooling net, 
and the thermal screen (Tri, Ta, Tas, Tc, Ts, Tl, Tu, Tuc, Tsc (K)) are given in Section 8.4. The heat transfer 
terms are described in the subsequent sections. The temperatures and the heat transfer terms are 
shown in Figure 8.5. The control inputs vpl, vpu, vphp, and vphe in the thermal model, and the heat 
transfer terms corresponding to these control inputs Qin_l, Ql_out, Qin_u, Qu_out, Qin_uc, Quc_out, Qhe , and 
Qhp are not incorporated in this figure.

TABLE 8.5
Condensation of Water

ΦH2O,A_B CH2O,A CH O,B
sat

2
AB kH2O,A_B αA_B ρA

kg H O
s

[ ]2





kg H O
m air

[ ]
[ ]

2
3







kg H O
m air

[ ]
[ ]

2
3





 (m2)

m
s







W
m K2







kg
m3







Indoor air above screen 
to roof indoor side

ΦH2O,as_ri CH2O,as CH O,ri
sat

2
Ar kH2O,as_ri αas_ri ρas

Indoor air below screen 
to upper cooling net

ΦH2O,a_uc CH2O,a CH O,uc
sat

2
Auc kH2O,a_uc αuc_a ρa

Indoor air below screen 
to screen

ΦH2O,a_sc CH2O,a CH O,sc
sat

2
Asc kH2O,a_sc αa_sc ρa

Indoor air above screen 
to screen

ΦH2O,as_sc CH2O,as CH O,sc
sat

2
Asc kH2O,as_sc αas_sc ρas
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8.4.3.1 C onvection
Convection is the heat transfer between a solid and a gas or fluid material. Convection is also part of 
the ventilation process and the heat exchange past the screen. The heat transfer QA_B from A to B is 
described by the equation (Newton’s law of cooling)

	 QA_B = AA_B · αA_B · (TA – TB)	 (W)  (8.31)

where AA_B (m2) is the surface area for heat transfer, αA_B (W m–2 K–1) is the heat transfer coefficient 
between A and B, and TA and TB (K) are the temperatures of A and B.

In Table 8.6, the convective heat transfer is given for all surfaces in the greenhouse to which it applies, 
based on Equation 8.31. The equations and the values for the surfaces can be found in Table 8.4.

Convection, Heat Exchange past the Screen
The heat exchange Qa_as between indoor air below the screen and indoor air above the screen is defined by

	 Q c F T Ta_as a p,a a_as a as= ⋅ ⋅ ⋅ −ρ ( )	 (W) 
(8.32)

TABLE 8.6
Convection

QA_B TA TB AA_B αA_B 

(W) (K) (K) (m2)
W

m K2







Source 
Reference

Indoor air below screen to canopy Qa_c Ta Tc Ac α
ρ

a_c
a p,a

heat,b

=
⋅ c

R

z

Indoor air below screen to soil Qa_s Ta Ts As

αa_s
a s a s

a s a s

if

if
=

− <

− ≥




1 7

1 3

3

4

. | |

. | |

T T T T

T T T T





z

Indoor air above screen to roof 
indoor side

Qas_ri Tas Tri Ar αas_ri as ri= −33 | |T T s

Lower net to indoor air below 
screen

Ql_a Tl Ta Al

α l_a
l a

l

=
−

1 284.
| |T T

d

z

Roof outdoor side to outdoor air Qro_o Tro To Ar

α ro_o
o o

o o

if

2.5 if
=

+ <

≥







2 8 1 2 4

40 8

. .
.

v v

v v

b

Screen to indoor air below screen Qsc_a Tsc Ta Asc αa_sc sc a sc= ⋅ −Cl T T33 | | s

Screen to indoor air above screen Qsc_as Tsc Tas Asc αas_sc sc as sc= ⋅ −Cl T T33 | | s

Upper net to indoor air below 
screen

Qu_a Tu Ta Au

α u_a
u a

u

=
−

1 284.
| |T T

d

z

Upper cooling net to indoor air 
below screen

Quc_a Tuc Ta Auc

α uc_a
uc a

uc

=
−

1 284.
| |T T

d

z

Source:	 From zDe Zwart (1996); sStoffers (1989); bBot (1983).
Note:	 Where Rheat,b is the boundary layer resistance to convective heat transfer, vo is the wind speed and Clsc is the screen 

closure.
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FIGURE 8.5  States x (solid box) and external inputs d (dashed and dash-dotted boxes) in the thermal model.
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where ρa  (kg m–3) is the average density of air below and above the screen, cp,a (J kg–1 K–1) is the specific 
heat capacity of air, Fa_as (m3 s–1) is the volume flow of air from below the screen to above the screen 
(Equation 8.53), and Ta and Tas (K) are the temperatures of the air below and above the screen.

Convection, Heat Exchange through Ventilation
The heat exchange Qas_o between indoor and outdoor air by natural ventilation is defined by

	 Qas_o = (1–opvhr · ηvhr) · ρas · cp,a · Fas_o · (Tas – To) 	 (W)  (8.33)

where ρas (kg m–3) is the density of air above the screen, cp,a (J kg–1 K–1) is the specific heat capacity 
of air, Fas_o (m3 s–1) is the ventilation flow (Equation 8.58), and Tas and To (K) are the temperatures 
of the air above the screen and the outdoor air.

The option ventilation with heat recovery opvhr = 1 indicates that ventilation with heat recovery 
is used. The option opvhr = 0 applies to normal ventilation. When ventilation with heat recovery is 
used, the outdoor air is preheated by the indoor greenhouse air with a heat exchanger. It is assumed 
that a fixed fraction of the sensible heat is recovered. The efficiency factor for the ventilation with 
heat recovery ηvhr = 0.9, which means that 90% of the sensible heat is recovered. Latent heat that is 
vented out is lost. Ventilation with heat recovery is used when the greenhouse is heated; otherwise, 
normal ventilation is used:

	

op vp vp

op vp vp

vhr hp l

vhr hp l

= ∀ = =

= ∀ > >

0 0 0

1 0 0

&

|
	

(–)

 

(8.34)

where vphp ∈ [0, 1] and vpl ∈ [0, 1] (–) are the valve positions of the heat pump and the lower net 
(boiler) (both control inputs).

8.4.3.2 L ongwave Radiation Absorption
Radiation absorption is the heat transfer due to radiation between two materials. For longwave 
radiation absorption, the heat transfer QA_B from object A to object B is described by the equation 
(Stefan–Boltzmann)

	
Q A E E T TA_B A_B A B A_B A

4
B
4= ⋅ ⋅ ⋅ ⋅ ⋅ −χ σ ( )

	
(W)  (8.35)

where AA_B (m2) is the surface area for heat transfer, EA and EB (–) are the emission coefficients for A 
and B, χA_B (–) is the view factor from A to B, σ = 5.67051 × 10–8 W m–2 K–4 is the Stefan–Boltzmann 
constant and TA and TB (K) are the temperatures of A and B. The view factors are derived in Van 
Ooteghem (2007) based on the work by Sparrow and Cess (1970) and Van Strien (1988). The values 
of the emission coefficients can be found in Table 8.7.

In Table 8.7, the heat transfer through longwave radiation is given for all surfaces in the green-
house to which it applies, based on Equation 8.35. The equations and the values for the surfaces can 
be found in Table 8.4.

The transmittance of longwave radiation τc_Il by the canopy is computed based on the extinction 
coefficient for longwave radiation by the canopy kc_Il = 0.64 and the leaf area index LAI (m2[leaf] 
m–2[gh])

	
τ c_Il e c_Il= − ⋅k LAI

	
(–)

 
(8.36)

8.4.3.3  Shortwave Radiation Absorption
The shortwave radiation (also called global or solar radiation) is defined as the radiation received 
directly or indirectly from the sun by an horizontal plane at the Earth’s surface, integrated over all 
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TABLE 8.7
Longwave Radiation

QA_B TA TB AA_B EA EB χA_B 
(W) (K) (K) (m2) (–) (–) (–)

Lower net to roof 
indoor side

Ql_ri Tl Tri Al El Eri χl_ri = 0.5 (1 – Clsc) · τc_Il

Lower net to screen Ql_sc Tl Tsc Al El Esc χl_sc = 0.5 Clsc · τc_Il

Lower net to soil Ql_s Tl Ts Al El Es χl_s = 0.5

Lower net to canopy Ql_c Tl Tc Al El Ec χl_c = 1 – χl_s – χl_ri – χl_sc

Upper net to roof 
indoor side

Qu_ri Tu Tri Au Eu Eri χu_ri = 0.5 (1 – Clsc)

Upper net to screen Qu_sc Tu Tsc Au Eu Esc χu_sc = 0.5 Clsc

Upper net to soil Qu_s Tu Ts Au Eu Es χu_s = 0.5 τc_Il

Upper net to canopy Qu_c Tu Tc Au Eu Ec χu_c = 1 – χu_ri – χu_sc – χu_s

Upper cooling net to 
roof indoor side

Quc_ri Tuc Tri Auc Euc Eri χuc_ri = 0.5 (1 – Clsc)

Upper cooling net to 
screen

Quc_sc Tuc Tsc Auc Euc Esc χuc_sc = 0.5 Clsc

Upper cooling net to 
soil

Quc_s Tuc Ts Auc Euc Es χuc_s = 0.5 τc_Il

Upper cooling net to 
canopy

Quc_c Tuc Tc Auc Euc Ec χuc_c = 1 – χuc_ri – χuc_sc – χuc_s

Soil to canopy Qs_c Ts Tc As Es Ec χs_c = (1 – τc_Il) · (1 – χs_l)

Soil to roof indoor side Qs_ri Ts Tri As Es Eri χs_ri = (1 – Clsc) ·
(1–χs_c – χs_l – χs_u – χs_uc)

Soil to screen Qs_sc Ts Tsc As Es Esc χs_sc = Clsc · (1–χs_c – χs_l – χs_u – χs_uc)

Roof outdoor side to 
sky

Qro_sk Tro Tsk Ar Ero Esk χ γro_sk
s

r

= ⋅ =1
A
A

cos( )

Roof indoor side to 
roof outdoor side

Qri_ro
lwv Tri Tro Ar Eri Ero χri_ro = 1

Roof indoor side to 
canopy

Qri_c Tri Tc Ar Eri Ec χ τ

χ

ri_c sc c_Il

ro_sk
u

r

uc

= − ⋅ − ⋅

− −

( ) ( )

. .

1 1

0 5 0 5

Cl

A
A

A
Arr







Screen to roof indoor 
side

Qsc_ri Tsc Tri As Esc Eri χsc_ri = Clsc

Canopy to screen Qc_sc Tc Tsc As Ec Esc χ τc_sc sc c_Il

u

sc

uc

sc

= ⋅ − ⋅

− −






Cl

A
A

A
A

( )

. .

1

1 0 5 0 5

Note:	 Clsc ∈ [0,1] is the thermal screen closure, τc_Il (–) is the transmittance of longwave radiation by the canopy and γ 
(rad) is the angle of the roof with the horizontal plane. The emission coefficients values are: El = Eu = Euc = Eri = 

Ero = 0.95, Es = 0.7, Esc = 0.9, Esk = 1, and Ec = 1 – τc_Il (–). Some intermediate variables: χ χ χ χ χ χs_l
l

s
l_ s_u

u

s
u_s s_uc

uc

s
uc_s, ,= ⋅ = ⋅ = ⋅A

A
A
A

A
As

χ χ χ χ χ χs_l
l

s
l_ s_u

u

s
u_s s_uc

uc

s
uc_s, ,= ⋅ = ⋅ = ⋅A

A
A
A

A
As .
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wavelengths in the shortwave interval. In good approximation, the sun can be considered a black 
body with a surface temperature of about 5700 K. It consists of two components: the direct and the 
diffuse radiation.

For shortwave radiation absorption, the heat Qrad_A absorbed by object A is described by the 
equation

	 Qrad_A = AA · ηA–Is · Io	 (W)  (8.37)

where AA (m2) is the surface area for heat transfer, ηA_Is (–) is the shortwave radiation absorption 
coefficient for A, and Io (W m–2[gh]) is the outdoor shortwave solar radiation. The absorption coef-
ficient depends on the transmitted shortwave radiation, which depends on the position of the object 
A in the greenhouse. Also, corrections are made for the transmittance of shortwave radiation by the 
roof τr_Is and by the screen τsc_Is (–).

In Table 8.8, the heat transfer through shortwave radiation is given for all surfaces in the green-
house to which it applies, based on Equation 8.37. The equations and the values for the surfaces can 
be found in Table 8.4.

The transmittance τr_Is of shortwave radiation by the roof (–) is given by

	 τr_Is = fdif · τdifR + (1 – fdif) · τdirR	 (–)  (8.38)

with transmittance of diffuse radiation by the roof τdifR = 0.78, where τdirR (–) is the transmittance 
of direct radiation by the roof and fdif (–) is the fraction diffuse radiation in shortwave radiation (see 
Appendix A).

The transmittance τdirR of the roof for direct PAR radiation is determined from transmissivity 
table by De Zwart (1996), here approximated by a function:
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(–)  (8.39)

TABLE 8.8
Shortwave Radiation

Qrad_A AA ηA_Is 

(W) (m2) (–)

Roof indoor side Qrad_ri Ar η τri_Is r_Is= 0 02.

Roof outdoor side Qrad_ro Ar ηro_Is  = 0.02

Screen Qrad_sc Asc ηsc_Is = τr_Is · Clsc · (1 – βsc_Is – τsc_Is0)

Upper net Qrad_u Au ηu_Is = τr_Is · τsc_Is · 0.5 (1 – βu_Is)

Upper cooling net Qrad_uc Auc ηuc_Is = τr_Is · τsc_Is · 0.5 (1 – βuc_Is)

Lower net Qrad_l Al ηl_Is = τr_Is · τsc_Is · (τc_Il + (1 – τc_Il) · τc_Is) · 0.5 (1 – βI_Is)

Soil Qrad_s As ηs_Is = τr_Is · τsc_Is · (τc_Il + (1 – τc_Il) · τc_Is) · 0.5 (1 – βs_Is)

Canopy Qrad_c As ηc_Is = τr_Is · τsc_Is · (1 + τc_Is · βs_Is) · (1 – τc_Is – βc_Is)

Note:	 Clsc ∈ [0,1] is the thermal screen closure. The shortwave radiation coefficients for reflection by the lower, upper, and 
upper cooling net, soil, screen and canopy (dense stand) are: βl–Is = βu–Is = βuc–Is = 0.83, βs–Is = 0.58, βsc–Is = 0.05, and 
βc–Is∞ = 0.12 (–). For the pipes 0.5 indicates that only half the pipe surface is seen by the shortwave radiation. τc_Is and 
τc_Il (–) are the transmittance of shortwave and longwave radiation by the canopy. The term τc_Il + (1 – τc_Il) · τc_Is is 
used for the total transmittance of the canopy for radiation. Note that for Qrad_c the surface area As of the soil is used, 
not the surface area Ac of the crop. This is due to the definition of the absorption coefficient ηc_Is by Stanghellini 
(1987). For the roof the transmittance τ r_Is  is used because it is a single layer of glass, while τr_Is holds for a double 
glass cover. If the roof has a single glass cover, ηro_Is = 0.
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where βsun is the elevation of the sun. For the zigzag roof it is assumed that the transmittance of the 
roof for direct PAR radiation τdirR is as high as with a single glass roof.

The transmittance τsc_Is of shortwave radiation by the screen (–) is given by

	 τsc_Is = (1 – Clsc) + τsc_Is0 · Clsc	 (–)  (8.40)

in which the transmittance of the fully closed screen τsc_Is0 = 0.8. This gives the transmittance τsc_Is = 
0.8 if the screen is fully closed (Clsc = 1) and τsc_Is = 1 if the screen is fully opened (Clsc = 0).

The shortwave radiation absorption coefficient ηA_Is for A describes the part of the shortwave 
radiation that is absorbed by object A. In general, there is a term for the fraction going past the 
screen and a term correcting for reflection

	 ηA_Is = 1 – βA_Is – τA_Is	 (–)  (8.41)

where βA_Is (–) is the shortwave radiation coefficient for reflection by the object A. It is assumed that 
all shortwave radiation not reflected or transmitted by the object A is absorbed.

The reflection coefficient βc_Is for shortwave radiation by the canopy is given by Stanghellini 
(1987) as

	 βc_Is = (1 – τc_Il) · βc_Is∞	 (–)  (8.42)

where βc_Is∞ (–) is the shortwave radiation coefficient for reflection by the canopy for a dense stand 
and τc_Il (–) (Equation 8.36) is the transmittance of longwave radiation by the canopy, which is used 
here as a measure for the permeability of the canopy.

The transmittance τc_Is of shortwave radiation by the canopy is computed based on the extinction 
coefficient kc_Is = 0.48 for shortwave radiation by the canopy and the leaf area index LAI (m2[leaf] 
m–2[gh])

	
τ c_Is e c_Is= − ⋅k LAI

	 (–)  (8.43)

8.4.3.4 C onduction
For conduction, the heat transfer QA_B between the locations A and B in a homogeneous medium is 
described by the equation

	
Q A

d
T TA_B A_B A B= ⋅ ⋅ −λ

( )
	

(W)  (8.44)

where AA_B (m2) is the surface area for heat transfer, λ (W m–1 K–1) is the thermal conductivity of the 
homogeneous medium, d (m) is the distance between the locations A and B and TA and TB (K) are 
the temperatures of A and B.

In Table 8.9, the heat transfer through conduction is given for conduction through soil and air 
based on Equation 8.44. The equations and the values for the surfaces can be found in Table 8.4.

TABLE 8.9
Conduction

QA_B AA_B λ d TA TB 

(W) (m2)

W
m K





 (m) (K) (K)

Upper soil layer to subsoil layer Qs_ss As λs = 0.86 dxs Ts Tss

Roof indoor side to roof outdoor side Qri_ro Ar λa = 24 × 10–3 dra Tri Tro
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The temperature Tss of the subsoil layer is a function of the day number dayNR [1365].

	 Tss = T0 + 15 + 2.5 sin(1.72 × 10–2 (dayNR – 140))	 (K)  (8.45)

Instead of six soil layers (De Zwart, 1996), only one layer is used. This defines the value for the 
distance dxs between the center of the upper soil layer and the subsoil layer in Table 8.9, and the 
distance ds that defines the volume Vs in Equation 8.8. Values for these distances have been derived 
in Van Ooteghem (2007) from the model by De Zwart (1996). The estimated values are ds = 0.65 
m and dxs{0,7} = 1.247 m.

8.4.3.5 L atent Heat Exchange
Latent heat exchange is due to a change in the level of “free” energy of water. It is not directly 
sensed as an increase or decrease in temperature. As the surrounding environment loses heat, water 
condenses, and it changes from a higher to a lower state of “free” energy, whereby latent heat is 
released to the environment. As the surrounding environment is heated, water evaporates, and it 
changes from a lower to a higher state of “free” energy, whereby latent heat is absorbed from the 
environment. The same equation is also used for crop transpiration.

The heat transfer QA_B
cons between air and a surface A and B is described by the equation

	
QA_B

cons
H O,A_B2

= ⋅Λ Φ
	

(W)  (8.46)

where Λ = 2.26 × 106 J kg−1 is the heat of evaporation of water and ΦH2O,A_B (kg s−1) (see Table 8.6) 
is the mass flow rate of water vapor from air to surface or vice versa.

In Table 8.10, the heat transfer through latent heat exchange is given, based on Equation 8.46.

8.4.4  Modeling the Screen

A thermal screen is used to decrease heat loss during cold periods with little solar radiation, in 
particular at night. Thermal screens are either open or closed, and are not designed for frequent 
operation during the day. In principle, the discrete screen condition csc ∈ {0,1} is a control variable 
that could be part of the optimal control. However, because strong dynamic operation is undesirable, 
and the rules for opening or closure are rather straightforward, it was decided to assume that the 
screens are operated in a similar fashion as in commercial greenhouses. This solution can be seen 
as a local control solution, that need not be the concern of the optimal controller. The adopted rules 
for the screen closure are described in Section 8.4.4.1.

In the calculations it is assumed that the screen can be opened or closed within 3 min. If the 
screen is closed, temperature, CO2, and H2O concentrations above and below the screen will differ. 

TABLE 8.10
Latent Heat Exchange

QA_B
cons ΦH2O,A_B

(W)

kg H O
s

2[ ]





Condensation of water from indoor air above screen on roof indoor side Qas_ri
cons ΦH2O,as_ri

Condensation of water from indoor air below screen on upper cooling net Qa_uc
cons ΦH2O,a_uc

Condensation of water from indoor air below screen on screen Qa_sc
cons ΦH2O,a_sc

Condensation of water from indoor air above screen on screen Qas_sc
cons ΦH2O,as_sc

Transpiration of water from canopy to indoor air below screen Qc_a
trans ΦH2O,c_a
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Therefore, separate state variables are used to describe these temperatures and concentrations above 
and below the screen (see Section 8.4). When the screen is open, it is assumed that temperatures and 
concentrations are averaged proportional to the heat capacities above and below the screen (Section 
8.4.4.3).

It is assumed that the screen material is impermeable for all gases (air, H2O, and CO2). If the 
screen is closed, only part of the solar radiation is transmitted through the screen. The transmittance 
by the screen is given in Equation 8.40.

When the screen is closed, a small crack opening of 3% is left to carry off water, meaning that 
some exchange of air, H2O, and CO2 is still possible. This air exchange is described by a simple air 
exchange rate (Section 8.4.4.2).

8.4.4.1  Screen Closure
The screen crack of 3% gives a screen closure Clsc (0,1) defined by

	 Clsc = 0.97csc	 (−)  (8.47)

where csc ∈ {0,1} is the screen condition.
The control variable for screen closure is the screen condition csc ∈ {0,1} with a value zero if the 

screen is closed, and one if the screen is open. The screen condition depends only on the external 
inputs d: the outdoor shortwave solar radiation Io, and the temperature of the outdoor air To. The 
screen condition is a logical (Boolean) combination of separate screen conditions for radiation csc

rad 
and temperature csc

T.

	 c c csc sc
rad

sc
T= & 	 (−)  (8.48)

which means that both conditions must be one for the screen to close. 
The screen condition csc

rad for radiation is switched if the outdoor shortwave solar radiation Io (W 
m–2[gh]) enters the region between the two parameters I Io

min
o
maxand , according to
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(−)  (8.49)

in which I I0
2

0
220 60min max[ ], [ ]= =− −W m gh W m gh  , and ts,u = 30 min is the time interval for the con-

trol inputs. In this way, a region is created in which the screen condition csc
rad does not change. This is done 

to prevent the screen from opening and closing more than once in response to small variations in the 
radiation at sunrise and sunset. The screen condition is initialized at initial time t0 with

	

c t
I I

I I
sc
rad if

if
0

0 0

0 0
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1
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(−)  (8.50)
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A similar construct is used for the screen condition csc
T  for temperature, according to
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in which T T T T0 0 0 08 12min max= + = +K and K, where T0 = 273.15 K. As with csc
rad, this creates a 

region in which the screen condition csc
T does not change. The screen condition is initialized at initial 

time t0 with
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(−)  (8.52)

8.4.4.2 V olume Flow Air past the Screen
The convective air exchange through the screen material and along the crack opening is caused 
by the temperature difference and the pressure difference above and below the screen. A physi-
cal model of the air exchange exists (De Zwart, 1996). It describes the air exchange rate past the 
screen as a function of the temperature difference and the pressure difference below and above 
the screen. In the simulation, these equations give numerical problems due to the fast dynamics of 
this air exchange. It is therefore described by a simplified equation, in which it is assumed that the 
air exchange speed between the air below and above the screen (past the screen) is constant. It is 
assumed that the screen is impermeable for all gases (H2O, CO2, and air), so there is no exchange 
through the screen material.

The volume flow Fa_as of air from below the screen to above the screen is given by

	 Fa_as = va_as · Asc · (1− Clsc)	 (m3 s−1)  (8.53)

in which the air exchange rate va_as between the air below and above the screen is given by

	 va_as = 0.05	 (m s−1)  (8.54)

where Asc (m2) is the surface area of the screen and Clsc ∈ [0,1] is the thermal screen closure.

8.4.4.3 T emperatures and Concentrations of CO2 and H2O When the Screen is Open
When screens are opened or closed, the system structure changes: The differential equations for 
temperature, CO2 concentration, and H2O concentration above and below the screen are differ-
ent. This can be seen in the corresponding state equations (Equations 8.1 through 8.6). When the 
screens are open the concentrations and temperatures above and below the screen are equal, while 
when the screens are closed the concentrations and temperatures differ.

When the screen is opened, a very rapid exchange of air, and therefore heat, CO2, and H2O 
occurs. This exchange causes the system to become very stiff, which leads to numerical integration 
problems (large derivatives, small step size for integration).
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To avoid numerical integration problems the temperatures and concentrations above and below 
the screen are averaged when the screen is opened. To average, in the temperature the heat capacity 
ρ · cp · V is used, and in the concentrations the volume V is used. If csc = 0 (screen is opened), this 
results in
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which means that the new values (after the screen has opened) are computed based on the values on 
the previous control time interval (before the screen was opened). These computations are based on 
steady state assumptions: Before the screen is opened, the temperatures and CO2 and H2O concen-
trations above and below the screen are different, and after the screen is opened, they are equal.

8.4.5  Modeling Ventilation

Greenhouse ventilation is performed through the opening of windows. Furthermore, there is always 
a certain amount of ventilation due to leakage. The air exchange through the windows is caused by 
the temperature difference between the indoor and outdoor air and by the outdoor wind speed. The 
equations given in this section are taken from the thesis of De Jong (1990).

Ventilation causes the exchange of carbon dioxide, water vapor exchange, and heat. These are 
described in Sections 8.4.1.3, 8.4.2.3, and 8.4.3.1.

8.4.5.1 V olume Flow of Air through Windows and Leakage
The ventilation flow Fas_o is the sum of the ventilation through the windows and the ventilation due 
to leakage

	 Fas_o = Fleak + Fwin	 (m3 s–1)  (8.58)

where Fleak (m3 s–1) is the ventilation due to leakage of the greenhouse construction and Fwin (m3 s–1) 
is the ventilation through the windows.

The ventilation flow Fleak due to leakage of the greenhouse construction is described by

	 Fleak = As · (8.3 × 10–5 + 3.5 × 10–5 vo · fa) 	  (m3 s–1)  (8.59)

where As (m2) is the surface area of the soil, vo (m s–1) is the outdoor wind speed and fa = 1 is the 
infiltration factor.
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The ventilation flow Fwin through the windows is described by

	
F F F Fwin wind T_lsd T_wsd= + +( )2 2

∆ ∆
 	

(m3 s–1)  (8.60)

where Fwind (m3 s–1) is the wind-induced component, and FΔT_lsd and FΔT_wsd (m3 s–1) are the compo-
nents determined by the temperature difference between indoor and outdoor air, subdivided into 
lee- and windward-side.

The wind-induced component Fwind is described by

	 Fwind = nwin · ( flsd + fwsd) · vo · wwin · hwin	 (m3 s–1)  (8.61)

where flsd and fwsd (–) are the ventilation functions for the lee- and the windward-side, wwin and hwin 
(m) are the width and the height of the window and nwin (–) is the total number of windows per side 
of the greenhouse span.

The ventilation functions flsd and fwsd for the lee- and the windward-side are defined by

	 f c Ap c Ap c Ap clsd lsd lsd lsd lsd lsd lsd lsd= ⋅ − ⋅ + ⋅ +3
3

2
2

1 00 	 (–)  (8.62)

	 f c Ap c Ap c Ap cwsd wsd wsd wsd wsd wsd wsd wsd= ⋅ − ⋅ + ⋅ +3
3

2
2

1 00 	 (–)  (8.63)

where Aplsd ∈ [0,1] and Apwsd ∈ [0,1] are the window aperture of the lee- and the windward-side 
(control inputs), and the ventilation function coefficients for the lee- and the windward-side (–) are 
given by: clsd0 = 1.26730 × 10–4, clsd1 = 4.71176 × 10–2, clsd2 = 3.77646 × 10–2, clsd3 = 1.21774 × 10–2, 
cwsd0 = 5.91362 × 10–4, cwsd1 = 7.08828 × 10–2, cwsd2 = 4.48621 × 10–2, and cwsd3 = 2.42856 × 10–2.

The components FΔT_lsd and FΔT_wsd determined by the temperature difference between indoor 
and outdoor air for lee- and windward-side are defined by
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(m3 s–1)  (8.65)

where wwin (m) is the window width, cw = 0.6 (–) is the discharge coefficient through the windows, 
g = 9.81 m s–2 is gravity, Lwin_lsd and Lwin_wsd (m) are the lengths of the vertical projection of the win-
dows opening on the lee- and the windward-side, and Tas and To (K) are the temperatures of the air 
above the screen and the outdoor air.

The lengths Lwin_lsd and Lwin_wsd of the vertical projection of the windows opening on the lee- and 
the windward-side are computed by

	 Lwin_lsd = 2 hwin · cos(γ – 0.5 Aplsd · Θmax) · sin (0.5 Aplsd · Θmax)	 (m)  (8.66)
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	 Lwin_wsd = 2 hwin · cos(γ – 0.5 Apwsd · Θmax) · sin (0.5 Apwsd Θmax)	 (m)  (8.67)

where hwin (m) is the window height, γ (rad) is the angle of the roof with the horizontal plane and 
Θmax = ° ⋅ °40 180

π  (rad) is the maximum angle of the window aperture.

8.4.6  Modeling the Heating and the Cooling System

This part of the model is often left out by assuming local controllers. This option was not chosen 
here, due to physical constraints it cannot be guaranteed that the assumed setpoints can be realized, 
which would make the optimal control suboptimal.

The heating system consists of a boiler, a condenser, and a heat pump (see Figure 8.6). The boiler 
can be used to heat the lower net to a temperature of about 90°C. The condenser is heated by the 
flue gas of the boiler. It can be used to heat the upper net to a temperature of about 45°C. The heat 
pump can be used to heat the lower net to a temperature of about 33°C. The heating system with 
the boiler, the condenser, and the heat pump is described in Sections 8.4.6.1 and 8.4.6.3.

The cooling system consists of a heat exchanger (see Figure 8.7). The heat exchanger can be used 
to cool the upper cooling net to a temperature of about 10°C. The cooling system is described in 
Section 8.4.6.4.

The heat pump and the heat exchanger operate in conjunction with an aquifer. The aquifer has a 
warm (Taq

C,warm C)= °16  and a cold (Taq
C,cold C)= °10  side. The warm water is used by the heat pump 

to heat the greenhouse. The cold water is used by the heat exchanger to cool the greenhouse.
In the dimensions (length of pipes, number of loops) of the lower and upper heating net and the 

cooling net it is assumed that the layout is the same in every greenhouse span. The net can then be 
described by a number of loops of pipes with a specific length and diameter. The flow entering a net 
is equal to the flow leaving the net, and for each net there is one water temperature entering the net 
and one water temperature leaving the net.

8.4.6.1 H eating System Boiler and Condenser
The boiler is used to heat the lower net to a temperature of about 90°C. The flue gas of the boiler 
is used to heat a condenser, which heats the upper net to a temperature of about 45°C. The heating 
system is shown in Figure 8.6. The input of the lower net is taken from the boiler. The output of the 
lower net is the input of the heat pump. The output of the heat pump can be partly led through the 
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FIGURE 8.6  Heating with boiler, condenser, and heat pump.
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boiler and partly through the lower net bypass. If the valve position of the lower net vpl = 0, then 
no water is led to the boiler, and if the valve position of the lower net vpl = 1, then no water is led 
through the lower net bypass. The input of the upper net is taken from the condenser. The output of 
the upper net can be partly led through the condenser and partly through the upper net bypass. If the 
valve position of the upper net vpu = 0, then no water is led to the condenser, and if the valve position 
of the upper net vpu = 1, then no water is led through the upper net bypass.

Lower Net
The input of the lower net (where it enters the greenhouse) is taken from the boiler and the lower net 
bypass. The output of the lower net (where it leaves the greenhouse) is the input of the heat pump. 
The energy transport terms Qin_l and Ql_out due to the water flow into and out of the lower net are 
defined by

	
Q c F Tin_l H O p,H O l

max
in_l2 2

= ⋅ ⋅ ⋅ρ
	 (W)  (8.68)

	
Q c F Tl_out H O p,H O l

max
l_out2 2

= ⋅ ⋅ ⋅ρ
	

(W)  (8.69)

where ρH2O kg m–3 is the density of water, cp,H2O · (J kg–1 K–1) is the specific heat capacity of water, 
Fl

3m smax .= × − −1 62 10 3 1 is the maximum pump flow rate of water into the lower net and Tin_l and 
Tl_out (K) are the water temperatures entering and leaving the lower net.

The water temperature Tin_l entering the lower net is defined by

	 Tin_l = vpl · Tboil + (1 – vpl) · Tl_bypass	 (K)  (8.70)

in which the boiler water temperature Tboil = T0 + 90 K, where vpl ∈ [0,1] is the valve position of the 
lower net (control input). The water temperature Tl_bypass through the lower net bypass is equal to the 
water temperature Thp_out leaving the heat pump

	 Tl_bypass = Thp_out	 (K)  (8.71)
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FIGURE 8.7  Cooling with heat exchanger.
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The water temperature Tl_out leaving the lower net is given by (Van Ooteghem, 2007)

	

T T
Q Q Q Q Q Q

l_out l
rad_l l_a l_c l_ri l_s l_sc

H O2

= +
− − − − −

ρ ⋅⋅ ⋅c Fp,H O l2

max

	

(K)  (8.72)

where Tl (K) is the lower net water temperature, ρH2O (kg m–3) is the density of water, and cp,H2O 
(J kg–1 K–1) is the specific heat capacity of water.

Upper Net
The input of the upper net (where it enters the greenhouse) is taken from the condenser and the 
upper net bypass. The output of the upper net (where it leaves the greenhouse) can be partly led 
through the condenser and partly through the upper net bypass. The energy transport terms Qin_u 
and Qu_out due to the water flow into and out of the upper net are defined by

	
Q c F Tin_u H O p,H O u in_u2 2

= ⋅ ⋅ ⋅ρ max 	 (W)  (8.73)

	
Q c F Tu_out H O p,H O u u_out2 2

= ⋅ ⋅ ⋅ρ max

	
(W)  (8.74)

where ρH2O (kg m–3) is the density of water, cp,H2O (J kg–1 K–1) is the specific heat capacity of water, 
Fl m smax .= × − −1 08 10 3 3 1 is the maximum pump flow rate of water into the upper net and Tin_u and 
Tu_out (K) are the water temperatures entering and leaving the upper net.

The water temperature Tin_u entering the upper net is defined by

	 Tin_u = vpu · Tcond + (1 – vpu) · Tu_bypass	 (K)  (8.75)

in which the condenser water temperature Tcond = T0 + 45 K, where vpu ∈ [0,1] is the valve position 
of the upper net (control input). The water temperature Tu_bypass through the upper net bypass is equal 
to the water temperature Tu_out leaving the upper net

	 Tu_bypass = Tu_out	 (K)  (8.76)

The water temperature Tu_out leaving the upper net is given by (Van Ooteghem, 2007)

	

T T
Q Q Q Q Q Q

u_out u
rad_u u_a u_c u_ri u_s u_sc

H O2

= +
− − − − −

ρ ⋅⋅ ⋅c Fp,H O u2

max

	

(K)  (8.77)

where Tu (K) is the upper net water temperature, ρH2O (kg m–3) is the density of upper net water, and 
cp,H2O (J kg–1 K–1) is the specific heat capacity of water.

Boiler
The energy supply Qboil by the boiler is defined by

	 Qboil = ρH2O · cp,H2O · Fboil · (Tboil – Tin_boil)	 (W)  (8.78)

where ρH2O (kg m–3) is the density of water, cp,H2O (J kg–1 K–1) is the specific heat capacity of water, 
Fboil (m3 s–1) is the flow rate of water leaving the boiler, and Tboil and Tin_boil (K) are the water 
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temperatures in the boiler and entering the boiler. The water temperature Tboil is either set to a fixed 
value (Tboil = T0 + 90 K), or follows from data.

The flow rate of water Fboil leaving the boiler is determined by

	 F vp Fboil l l
max= ⋅ 	 (m3[H2O] s–1)  (8.79)

where Fl
max (m3[H2O] s–1) is the maximum pump flow rate into the lower net and vpl ∈ [0,1] is the 

valve position of the lower net (control input).
The water temperature Tin_boil entering the boiler is equal to the water temperature in the lower 

net bypass Tl_bypass

	 Tin_boil = Tl_bypass	 (K)  (8.80)

8.4.6.2 T he Aquifer
An aquifer is a formation of water-bearing sand material in the soil that can contain and transmit 
water. Wells can be drilled into the aquifers and water can be pumped into and out of the water lay-
ers. The heat pump and the heat exchanger operate in conjunction with an aquifer. The aquifer has a 
warm ( )Taq

C,warm C= °16  and a cold ( )Taq
C,cold C= °10  side. The warm water is used by the heat pump to 

heat the greenhouse and the cold water is used by the heat exchanger to cool the greenhouse.
It is assumed that the aquifer has an infinite amount of warm and cold water available. The load-

ing and unloading of the aquifer buffers is limited by government demands, because the aquifer has 
to be energy neutral year-round. This indirectly corrects for the fact that the buffers are not infinite. 
These issues are worked out in the optimal control in Section 8.7.1.1.

8.4.6.3 H eating System Heat Pump
A gasfired heat pump is used to heat the lower net to a temperature of about 33°C. The heat pump 
heats the water in the lower net with water from the warm side of the aquifer. The cold water 
obtained in this process is led to the cold side of the aquifer. The heating system is shown in Figure 
8.6. It is assumed that the heat transfer between the heat pump and the lower net has no dynamics 
(direct transfer of heat).

The lower net equations are given in Section 8.4.6.1. The heat pump equations are taken from 
Van Ooteghem (2007). The configuration and the energy transport of the heat pump is given in 
Figure 8.8. In this figure, the following water temperatures (K) are shown: Tin_hp and Thp_out flowing 
into and out of the heat pump (greenhouse side), Taq

warm and Thp_aq
cold  of the warm and the cold side of the 

aquifer (aquifer side) and Ths and Tcs of the warm and the cold side of the heat pump (inside the heat 
pump). Water temperature Thp_aq

cold  should be lower than the desired water temperature Taq
cold, so that the 

Qh

Qc

QhpHeat pump

Ths

Tcs

Lower heating net
Thp_out

Gas

vphp

Aquifer

Tin_hp

cold
aqT
warm

aqT

warm
aqT cold

aqhpT _

FIGURE 8.8  Configuration and energy transport heat pump.
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water temperature Taq
cold can be achieved by mixing with water with temperature Taq

warm. This has to 
be solved locally (outside the system boundary considered here).

The water temperature Taq
warm of the warm side of the aquifer (aquifer side) is known, as well as 

the water temperature Tin_hp flowing into the heat pump (greenhouse side). With the valve position 
vphp of the heat pump (control input), the water temperature Thp_out flowing out of the heat pump 
(greenhouse side), the water temperatures Ths and Tcs (inside the heat pump), the water temperature 
Thp_aq

cold  (aquifer side), the energy transport terms Qh, and Qc, and the energy used by the heat pump 
Qhp can be computed.

Heat Pump
The water temperature Tin_hp entering the heat pump is equal to the water temperature Tl_out leaving 
the lower net

	 Tin_hp = Tl_out	 (K)  (8.81)

The water temperature Thp_out (K) leaving the heat pump can be partly led through the boiler and 
partly through the lower net bypass. If the valve position of the heat pump vphp = 0, then no water is 
led through the heat pump (the heat pump is off). It is assumed here that a compression heat pump 
is used. The operation of a compression heat pump is based on the compression and evaporation of 
a fluid. The fluid evaporates when thermal energy Qc is added from the warm side of the aquifer. 
The fluid condenses when thermal energy Qh is subtracted by the lower net. The energy used by the 
heat pump to drive this process Qhp is given by

	 Qhp = Qh – Qc	 (W)  (8.82)

This amount of energy determines the coefficient of performance COP of the heat pump

	
COP

Q
Q Q

=
−

h

h c

	 (W)  (8.83)

The energy transport Qh due to the water flow on the lower net side and the energy transport Qc due 
to the water flow on the aquifer side are given by (see Figure 8.8)

	
Q c F T Th H O p H O l

max
hp_out in_hp2 2

= ⋅ ⋅ ⋅ −( )ρ , 	
(W)  (8.84)

	
Q c vp F T Tc H O p H O hp hp

max
aq
warm

hp_aq
cold

2 2
= ⋅ ⋅ ⋅ ⋅ −( )ρ ,

	
(W)  (8.85)

where ρH2O (kg m–3) is the density of water, cp,H2O (J kg–1 K–1) is the specific heat capacity of water, 
Fl

max and Fhp
max m s= × − −1 5 10 3 3 1. ( ) are the maximum pump flow rates of water into the lower net and 

through the heat pump and vphp ∈ [0,1] is the valve position of the heat pump (control input).
The resulting temperature Thp_aq

cold  of the aquifer water cooled by the heat pump is given by (Van 
Ooteghem, 2007)
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T

c h T T vp

hp_aq
cold

hp hp_out in_hp hp

=

⋅ −( ) ⋅ ⋅ −( ) ⋅ ⋅η 1 11 FF T

F T T

hp aq
warm

l hp_out in_hp

max

max

⋅

+ ⋅ −( )
hp hp_out in_hp aq

warm⋅ −( ) ⋅ −( ) ⋅ ⋅ −( ) + ⋅1 11 1η c h T T T h11

1 1

1

1

−( )( )
⋅ −( ) ⋅ ⋅ −( ) ⋅ ⋅ηhp hp_out in_hp hp hpc h T T vp Fmmax

max
l hp_out in_hp+ ⋅ −( ) ⋅ ⋅ −( )F T T c h1 1 1

	

(K)  (8.86)

in which h

k A

Fp
1 =

⋅

⋅ ⋅
e

hp hp

H2O H2O l
maxρ c ,  and c

k A

vp Fp
1 =

⋅

⋅ ⋅
e

hp hp

H2O H2O hp hp
maxρ c , , where khp = 250 W m–2 K–1 is the heat pump 

heat transfer coefficient, Ahp = 500 m2 is the heat pump surface for heat transfer, and ηhp = 0.4 (–) is 
the efficiency of the heat pump.

The water temperature Thp_out leaving the heat pump is given by (Van Ooteghem, 2007)

	

T
a

b php out_ =
⋅

⋅ − −






+

1
12

3 3 7
T

T T

33
2 30 8

6 7

2
6 6 7p p

b a c a p p p
T T

T T T T T T T⋅



⋅ ⋅ − ⋅ − ⋅( )( ⋅ ⋅

T T T T T T+ ⋅ ⋅ − ⋅ −8 3 12 2a b d a e c(( ) ⋅

+ ⋅ ⋅ + − ⋅ ⋅( ) ⋅ )





p

a d b a b c p

T

T T T T T T T

7

2 3
6

1
2

6 3 8 4




	

(K)  (8.87)

where aT, bT, cT, dT and eT, are parameters of a fourth-order equation and pT1, pT2, pT3, pT4, pT5, 
and pT6 are parameter combinations (Van Ooteghem, 2007).

The minimum valve position vphp—determined by the heat pump characteristics—is vphp
min .= 0 57 . 

Below this value the temperature T T Thp_aq
cold K)≤ =0 0 273 15( . . Because the optimal control will com-

pute the value for the valve position vphp
*  between 0 and 1, the valve position is scaled between the 

minimum valve position vphp
min and the maximum value of 1

	

vp
vp vp vp vp

vp
hp

hp
min

hp hp
min

hpif

if
=

−( ) ⋅ + =1 0

0

* *

hhp
* =







 0

	

(–)  (8.88)

where vphp
*  is the valve position computed by the optimal control.

There are some restrictions as to the operation of the heat pump. The heat pump cannot be 
operated:

If the temperature •	 Tin_hp is too high ( )T Tin_hp in_hp
max> , because the heat pump cannot increase 

this temperature any further. With the chosen heat pump characteristics this temperature 
T Tin_hp

max K= +0 30 1. .
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If the valve position •	 vphp
*  of the heat pump is so low that the temperature T T vp vphp_aq

cold
hp hp

min≤ <0( * )  
T T vp vphp_aq

cold
hp hp

min≤ <0( * )  , because this would mean that the aquifer water would freeze. This is 
avoided by using Equation 8.88.
If the resulting water temperature •	 Thp_aq

cold  for the cold side of the aquifer is higher than the 
desired temperature Taq

cold, the desired temperature cannot be reached by mixing with water 
with temperature Taq

warm. If this occurs, the valve position vphp
*  is decreased by 0.1, making 

the water run slower and decreasing the temperature Thp_aq
cold . The valve position is decreased 

further until T Thp_aq
cold

aq
cold< .

The heat pump is turned off (•	 vphp = 0) if any of the temperature differences between the 
incoming and outgoing water from the lower net or the aquifer and the condensation and 
the evaporation temperature Ths and Tcs (K) is lower than or equal to zero, which would 
mean that the heat transfer would take place in the opposite direction. It is also turned off 
if T Thp_aq

cold ≤ 0, because then the aquifer water would freeze.

8.4.6.4 C ooling System Heat Exchanger
The heat exchanger is used to cool the upper cooling net to a temperature of about 10°C. The heat 
exchanger cools the water in the upper cooling net with water from the cold side of the aquifer. The 
warm water obtained in this process is led to the warm side of the aquifer. The cooling system is 
shown in Figure 8.7. It is assumed that the heat transfer between the heat exchanger and the upper 
cooling net has no dynamics (direct transfer of heat).

The upper cooling net equations are given in Section 8.4.6.4. The heat exchanger equations are 
taken from Van Ooteghem (2007). The configuration and the energy transport of the heat exchanger 
is given in Figure 8.9. In this figure, the following water temperatures (K) are shown: Tin_he and 
The_out flowing into and out of the heat exchanger (greenhouse side) and Taq

cold and The_aq
warm of the cold 

and the warm side of the aquifer (aquifer side). Water temperature Taq
warm should be higher than the 

desired water temperature Taq
warm, so that the water temperature Taq

warm can be achieved by mixing with 
water with temperature Taq

cold. This has to be solved locally (outside the system boundary considered 
here).

The water temperature Taq
cold of the cold side of the aquifer (aquifer side) is known, as well as the 

water temperature Tin_he flowing into the heat exchanger (greenhouse side). With the valve posi-
tion vphe of the heat exchanger (control input), the water temperature The_out flowing out of the heat 
exchanger (greenhouse side), the water temperature The_aq

warm (aquifer side) and the energy transport 
term Qhe can be computed.

Upper Cooling Net
The input of the upper cooling net is taken from the heat exchanger. The output of the upper cooling 
net is the input of the heat exchanger. The energy transport terms Qin_uc and Quc_out due to the water 
flow into and out of the upper cooling net are defined by

Heat exchanger

vphe

Upper cooling net
Tin_heThe_out

Qhe

Aquifer
cold

aqT
warm

aqT

cold
aqT warm

aqheT _

FIGURE 8.9  Configuration and energy transport heat exchanger.
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Q c F Tin_uc H O p H O uc

max
in_uc= ⋅ ⋅ ⋅ρ

2 2, 	
(W)

 
(8.89)

	
Q c F Tuc_out H O p H O uc

max
uc_out= ⋅ ⋅ ⋅ρ

2 2, 	
(W)

  (8.90)

where ρH2O (kg m–3) is the density of water, cp,H2O (J kg–1 K–1) is the specific heat capacity of water, 
Fuc

max m s= × − −6 10 3 3 1 is the maximum pump flow rate of water into the upper cooling net and Tin_uc 
and Tuc_out (K) are the water temperatures entering and leaving the upper cooling net. The water 
temperature Tin_uc entering the upper cooling net is equal to the water temperature leaving the heat 
exchanger

	 Tin_uc = The_out	 (K)  (8.91)

The water temperature Tuc_out leaving the upper cooling net is given by (Van Ooteghem, 2007)

	

T T
Q Q Q Q Q

uc_out uc
rad_uc a_uc

cons
uc_a uc_c uc_r= +

+ − − − ii uc_s uc_sc

H O p,H O uc
max

2

− −
⋅ ⋅

Q Q

c Fρ
2 	

(K)

 

(8.92)

where Tuc (K) is the upper cooling net temperature, ρH2O (kg m–3) is the density of water, and cp,H2O 

(J kg–1 K–1) is the specific heat capacity of water.

Heat Exchanger
The water temperature Tin_he entering the heat exchanger is equal to the water temperature Tuc_out 
leaving the upper cooling net

	 Tin_he = Tuc_out	 (K)  (8.93)

The water temperature The_out (K) leaving the heat exchanger is the input of the upper cooling net 
(Equation 8.91). If the valve position of the heat exchanger vphe = 0, then no water is led through the 
heat exchanger (the heat exchanger is off).

It is assumed here that a countercurrent heat exchanger is used. The energy transfer Qhe by 
the heat exchanger is defined by the energy transport due to the water flow on the aquifer side, 
given by

	
Q c vp F T The H O p,H O he he he_aq

warm
aq
cold

2 2
= ⋅ ⋅ ⋅ ⋅ −(ρ max ))

	
(W)  (8.94)

where ρH2O (kg m–3) is the density of water, cp,H2O (J kg–1 K–1) is the specific heat capacity of water, 
Fhe

3m smax .= × − −5 7 10 3 1 is the maximum pump flow rate of water through the heat exchanger, and 
vphe ∈ [0,1] is the valve position of the heat exchanger (control input).

The resulting temperature The_aq
warm of the aquifer water heated by the heat exchanger is given by 

(Van Ooteghem, 2007)

	

T

c T vp F F

T
he_aq
warm

he aq
cold

he he
max

uc
max

in=

⋅ ⋅ ⋅ −( )
+ __he uc he

he he he uc
hif

⋅ ⋅ −( )
⋅ ⋅ −

F c

c vp F F
c

max

max max
 

1
ee

aq
cold

heif

>

=






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


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

1

1T c
	

(K)  (8.95)

© 2011 by Taylor and Francis Group, LLC



214	 Optimal Control of Greenhouse Cultivation

in which c

k A

c F vp Fp

he e
he he

H O H O uc he he=
⋅

⋅
⋅ −

⋅






ρ
2 2

1 1

,
max max





, where khe = 250 W m–2 K–1 is the heat exchanger heat trans-

fer coefficient, Ahe = 2500 m2 is the heat exchanger surface for heat transfer, and Fuc m smax ( )3 1−  is the 
maximum pump flow rate of water into the upper cooling net.

The water temperature The_out leaving the heat exchanger is given by (Van Ooteghem, 2007)

	
T T

vp F T T
he_out in_he

he he he_aq
warm

aq
cold

= −
⋅ ⋅ −( )max

FFuc
max

	
(K)  (8.96)

The minimum valve position vphe—determined by the heat exchanger characteristics—is 
vphe

min .= 0 43. Below this value the mean temperature difference ΔTm_he < 0 (Van Ooteghem, 2007; 
Van Kimmenade, 1986). Because the optimal control will compute the value for the valve position 
vphe

*  between zero and one, the valve position is scaled between the minimum valve position vphe
min 

and the maximum value of one

	

vp
vp vp vp vp

vp
he

he he he he

h

if

if

=
−( ) ⋅ + >1 0

0

min min* *

ee
* =







 0

	

(–)  (8.97)

where vphe
*  is the valve position computed by the optimal control.

There are some restrictions as to the operation of the heat exchanger. The heat exchanger cannot 
be operated:

If the temperature •	 Tin_he is too low ( )minT Tin_he in_he<  the heat exchanger cannot decrease this 
temperature any further. The minimum temperature is equal to the temperature of the 
warm aquifer side T Tin_he aq

warmmin = .
If the valve position of the heat pump •	 vphe

*  is so low that the temperature difference 
∆T vp vpm_he he he< <0 ( * )min , which would mean that heat transfer would take place in the 
opposite direction.
If the resulting temperature for the warm side of the aquifer •	 The_aq

warm is lower than the desired 
temperature Taq

warm, because the desired temperature cannot be reached by mixing with 
water with temperature Taq

cold. If this occurs, the valve position vphe
*  is decreased by 0.1, such 

that the water runs slower, increasing temperature The_aq
warm. The valve position is decreased 

further until T The_aq
warm

aq
warm> .

The heat exchanger is turned off (•	 vphe = 0) if any of the temperature differences between 
the incoming water and the warm side or the outgoing water and the cold side of the heat 
exchanger is lower than or equal to zero, which would mean that the heat transfer would 
take place in the opposite direction.

8.5  Model of Crop Biophysics

The Dutch solar greenhouse design aims at reducing fossil energy use in Dutch horticulture (Bot, 
2001). It reduces the required heating while maintaining or increasing crop yield and quality. It 
is therefore beneficial if larger temperature fluctuations are allowed compared with conventional 
greenhouses. This may lead to temperature and humidity extremes that are beyond the range for 
which the current crop models are designed and tested. It is important that the crop model also gives 
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an accurate description of the relevant crop processes for these extreme values for temperature and 
humidity.

In the literature many models are given for various parts of the crop growth process. To limit 
the on-line computational load in the optimal control computation, the model should be sufficiently 
small with respect to the number of differential equations. It should, however, also be sufficiently 
accurate. The time scale considered is also important, because a longer time scale requires a longer 
prediction horizon in the optimal control context.

The crop processes considered here are the rates of photosynthesis, dark respiration, and evapo-
transpiration. The description of the evapotranspiration process is based on the resistances for 
H2O diffusion. These resistances are closely related to the resistances for CO2 diffusion, which are 
important for the photosynthesis rate. From the photosynthesis and dark respiration the crop total 
biomass is obtained. It is assumed that the photosynthesis and respiration directly affect the biomass 
weight. No subdivision into vegetative and generative state or partitioning into fruit and leaves is  
taken into account. Temperature integration is used as a descriptive method for long-term tempera-
ture effects on crop development. It is assumed that the grower is able to set optimal control values 
for the greenhouse temperature and humidity and for the temperature integration such that proper 
crop development is ensured during all its development stages. The crop is grown on substrate, 
which is placed in a gutter, and covered with white plastic. It is assumed that water and nutrient sup-
ply are well controlled and not limiting crop photosynthesis and evaporation.

From the various models available in the literature for the simulation of crop and leaf photo-
synthesis, a new model is formed. For the new model to be suitable for optimal control purposes, 
it should be a complete model of sufficient accuracy over the full range of working conditions. It 
must describe the crop gross photosynthesis rate as a function of light intensity, CO2 concentration, 
and temperature. The effect of the control and external inputs on the crop processes should be well 
described. Furthermore, it is favorable to have a limited number of differential equations (lower 
order model) to limit the online computation time.

A complete and detailed description of a new crop processes model that is suitable for optimal 
control purposes is given in this section. The different physical and physiological processes that 
together make up the model are described in different subsections. The evapotranspiration process 
is described in Section 8.5.1 and the crop photosynthesis and respiration are described in Section 
8.5.2. A number of models from the literature are compared. The temperature integration is given 
in Section 8.5.3.

8.5.1 E vapotranspiration

The  evapotranspiration process concerns the evaporation of water from the leaf to the greenhouse 
air. This process is important for the water and nutrient transport from roots to leaves and fruits. It 
is also important to decrease the temperature of the crop. Water is mainly evaporated through the 
leaf stomata. The canopy transpiration is thus a function of the resistance of the stomata and the 
leaf boundary layer. In the literature, these resistances are often assumed to be constant. Because 
we want to use the crop model for extreme temperature and humidity values, we are not in the 
domain where these constant resistances apply. We therefore use a model to compute the leaf 
resistances.

The model by Stanghellini (1987) is used for the evaporation process. This model is an adapta-
tion of the Penman–Monteith–Rijtema method (the combination method) to determine the actual 
instead of the potential transpiration rate in a greenhouse. Where the Penman–Monteith–Rijtema 
method determines the potential transpiration rate, the Stanghellini method determines the actual 
transpiration rate in a greenhouse. The transpiration rate depends on light intensity, CO2 concentra-
tion, temperature, and humidity. All relations—if not otherwise noted—are taken from Stanghellini 
(1987).
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The canopy transpiration ΦH2O,c_a or the mass flow rate of water vapor from crop to indoor air is

	
ΦH O,c_a c H O,c_a H O,c

sat
H O,a2 2 2 2

= ⋅ ⋅ −( )( )max ,A k C C 0
	

(kg[H2O] s–1)  (8.98)

where Ac (m2[leaf]) is surface area of the canopy, kH2O,c_a (m s–1) is the mass transfer coefficient of 
water vapor from the crop to the indoor air, CH O,c

sat
2

3
2

kg[H O] m air( [ ])−  is the saturation concentration 
of water vapor at the temperature of the crop (see Appendix B.1) and CH2O,a (kg[H2O] m–3[air]) is 
the concentration water vapor at the temperature of the indoor air. If C CH O,c

sat
H O,a2 2

≤  then ΦH2O,c_a = 
0 (no evapotranspiration).

Bot (1983) describes the total resistance to diffusion of water as the boundary layer resistance in 
series with the cuticular resistance parallel to the stomatal resistance. From this the mass transfer 
coefficient kH2O,c_a from crop to indoor air is derived as

	

k

R
R R

R R

H O,c_a

H O,b
cut H O,s

cut H O,s

2

2

2

2

=
+

⋅
+

1

	

(m s–1)

 

(8.99)

in which the leaf cuticular resistance Rcut = 2000 s m–1, where RH2O,s (s m–1) is the stomatal resistance 
to diffusion of water and RH2O,b (s m–1) is the boundary layer resistance to diffusion of water.

The stomatal resistance to diffusion of water RH2O,s is described by

	 RH2O,s = Rmin · fI · fTc · fCO2
 · fH2O	 (s m−1)  (8.100)

in which the radiation dependency fI is given by
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(–)  (8.101)

the temperature dependency fTc is given by

	

f
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the CO2 dependency fCO2
 is given by
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the humidity dependency fH2O is given by

	

f
p

H O2
H2O,c
mbar

e

=
+

−

4

1 255
0 54274 . ∆

	

(–)  (8.104)

and the minimum internal crop resistance Rmin = 82.003 s m–1 (Jarvis’s model). The term 
qrad_c W m leaf–2
2LAI ( [ ]) determines the leaf shortwave radiation absorption from the heat absorbed by 
the canopy q Q

Arad_c
–2rad_c

s
W m gh= ( [ ]) and the leaf area index LAI (m2[leaf] m–2[gh]). Tc (K) is the 

temperature of the crop, T0 = 273.15 K, CCO ,a
ppm

2
 (μmol[CO2] mol–1[air]) is the CO2 concentration of the 

indoor air, and ∆pH O,c
mbar

2
 (mbar) is the crop saturation deficit. All numbers in Equations 8.100 through 

8.104 are model parameters, determined by Stanghellini for tomato. De Zwart (1996) also gives 
values for roses.

The dependencies of the stomatal resistance to diffusion of water RH2O,s (s m–1) are given in 
Figure 8.10. The radiation dependency fI decreases from 8 to 1 for increasing values of radiation, 
which indicates that radiation only influences the resistance at low light intensities. The temperature 
dependency fTc is parabolic with a minimum at 24.5°C. The humidity dependency fH2O is constant at 
a maximum of 4 for vapor pressure differences above about 15 mbar and decreases at lower vapor 
pressure differences. This is due to stomata closure at low humidity values to prevent dehydration. 
The CO2 dependency fCO2

 increases to 1.5 if the CO2 concentration increases.
The boundary layer resistance to diffusion of water RH2O,b is described by Monteith and Unsworth 

(1990) as

	
R Le RH O,b heat,b2

= ⋅
2
3

	
(s m–1)  (8.105)
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FIGURE 8.10  Stomatal resistance parameters fI, fTc, fCO2
 and fH2O. Default values parameters—if not varied—

are: qrad_c = 293.06 W m–2[gh] (Io = 500 W m–2[gh], ηc_Is = 0.586), Tc
C = 20 C° *, ∆p RHH O,c

mbar
a2

mbar= =3 51 85. ( %) , 
CCO ,a

ppm
22

mol[CO ] mol air= −1000 1µ [ ] and Ta
C C= 20° * ..

*Ta and Tc in (K) in computations, in (°C) here for readability.
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where Rheat,b (s m–1) is the boundary layer resistance to convective heat transfer and Le = 0.89 (–) is 
the Lewis number for water vapor in air.

The boundary layer resistance to convective heat transfer Rheat,b is given by

	

R
l

l T T v

f
heat,b

f c a a

=
⋅ − +( )

1174

207 2
1
4

	

(s m–1)  (8.106)

in which the mean leaf width lf = 0.035 m and the wind speed (in the greenhouse) va = 0.09 m s–1, 
where │Tc – Ta │ (K) is the temperature difference between the crop and the greenhouse air.

8.5.2 C rop Photosynthesis and Respiration

The photosynthesis process concerns the chemical assimilation of CO2 and water to assimilates for 
maintenance, growth, and development. The canopy extracts CO2 from its environment. The photo
synthesis rate is mainly influenced by light intensity, CO2 concentration, and temperature. The 
photosynthesis rate increases with the radiation intensity and CO2 concentration. Furthermore the 
photosynthesis rate increases with temperature to a maximum value, and then decreases at higher 
temperatures. Because the solar greenhouse may have lower and higher temperatures than a con-
ventional greenhouse, the photosynthesis model must describe the photosynthesis process well over 
a wide temperature range.

Various models are available for the simulation of crop and leaf photosynthesis. These models 
describe the photosynthesis process in different ways. There are two mainstream approaches to 
photosynthesis modeling. Leaf photosynthesis describes the photosynthesis rate of a single leaf. 
Crop photosynthesis describes the overall photosynthesis rate of the canopy as a whole. In principle, 
crop photosynthesis can be obtained from leaf photosynthesis by some form of spatial integration 
over the canopy. The models are compared, and from these models a new model is formed, to give 
an accurate description of the crop gross photosynthesis rate as a function of light intensity, CO2 
concentration, and temperature.

The new photosynthesis model is a crop photosynthesis model. For the description of the bio-
chemical processes on a leaf level, the leaf photosynthesis model by Farquhar et al. (1980) is used 
because is gives the most detailed description from the models selected here. For the light intercep-
tion in the crop layers and the Gaussian integration, the model by Goudriaan and Van Laar (1994) 
and Heuvelink (1996) is used because we need a crop and not a leaf photosynthesis model.

The photosynthesis rate can be limited by the stomatal and boundary layer resistances to CO2 
diffusion, which are a function of the resistances to H2O diffusion. Often constant resistances to 
CO2 diffusion are used. Because we are not working in the temperature and humidity ranges where 
these constant resistances apply, the resistances found from Section 8.5.1 by Stanghellini (1987) are 
used.

The new crop photosynthesis model is described here in detail. This model has been validated 
by Körner and Van Ooteghem (2003) and Körner et al. (2001a,b, 2002, 2003, 2009). It was found 
that the model showed good accordance with measured data. The resistances computed with the 
evaporation model resulted in better results in most cases compared to constant resistances.

8.5.2.1 P hotosynthesis Model
A number of general parameters and their values are given in Table 8.11. The purpose of the model is 
to describe the CO2 assimilation rate of the canopy (in kg[CO2] m–2[gh] s–1) as a function of the out-
door shortwave solar radiation Io (W m–2 [gh]), the CO2 concentration CCO ,a

ppm
22

mol[CO ] mol air( [ ])µ −1 , 
the temperature of the crop Tc (K), and the relative humidity RHa (%).
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TABLE 8.11
Photosynthesis Model and General Parameters

Name Value Unit Contents
Source 

Reference

Constants
Rg 8.314 J mol–1 K–1 Gas constant

ρCO2
1.98 × 10–6 mg[CO2] m–3[CO2] CO2 density at T0

MCO2
44 × 10–9 kg[CO2] μmol–1[CO2] Molar mass CO2

T0 273.15 K 273.15 K = 0°C

T25 T0 + 25 K 273.15 K + 25 K = 25°C

ζ 4.59 μmol[photons] J–1 Conversion factor, J to photons

ρChl 0.45 g[Chl] m–2[leaf] Superficial chlorophyll density a

Constants at 25°C
pO2,i 210 mbar O2 partial pressure inside stomata a, b

KC25 310 μbar Michaelis–Menten constant Rubisco 
carboxylation (CO2)

b

KO25 155 mbar Michaelis–Menten constant Rubisco 
oxygenation (O2)

b

kC 2.5 s–1 Turnover number of RuP2 (carboxylase) a

Et 87.0 μmol[CO2] g–1[Chl] Total concentration of enzyme sites a

VCmax25 ρChl · kC · Et μmol[CO2] m–2[leaf] s–1 Maximum carboxylation rate at 25°C a

rD25,L
molµ 1.1 μmol[CO2] m–2[leaf] s–1 Dark respiration at 25°C a

Jmax25 467ρChl μmol[e–] m–2[leaf] s–1 Maximum electron transport rate at 25°C a

Radiation Parameters
slo 0.5 – Specific leaf orientation c

δ 0.15 – Scattering coefficient b, d

kdifBL 0.8 – Extinction coefficient diffuse PAR and black 
leaves

e

kdif kdifBL . 1 − δ – Extinction coefficient diffuse PAR c

kdirBL slo
sin β

– Extinction coefficient direct PAR and black 
leaves

c

kdir kdifBL . 1 − δ – Extinction coefficient direct PAR e

τdif e–kdif LAI – Transmittance diffuse PAR b

τdirBL e–kdirBL·
LAI – Transmittance direct PAR and black leaves b

τdir e–kdir · LAI – Transmittance direct PAR total b

βdif 1 1

1 1

− −
+ −

δ

δ

– Reflection coefficient canopy diffuse PAR e

βdir 2

1 +
⋅

k
k

difBL

dirBL

difβ
– Reflection coefficient canopy direct PAR e

IP,o fpar · Io W m–2[gh] PAR outside greenhouse e

IP,dif,o fdifpar · IP,o W m–2[gh] Diffuse PAR outside greenhouse e

IP,dir,o IP,o – IP,dif,o W m–2[gh] Direct PAR outside greenhouse e

IP,dif τdifR · τsc_Is · IP,dif,o W m–2[gh] Diffuse PAR inside greenhouse

IP,dir τdirR · τsc_Is · IP,dir,o W m–2[gh] Direct PAR inside greenhouse

IP fpar · τdifR · τsc_Is · Io W m–2[gh] PAR inside greenhouse

(continued )
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Gross Assimilation and Dark Respiration
The gross canopy assimilation rate Pg is found by multiplying the gross leaf assimilation rate Pg,L 
by the leaf area index LAI

	 Pg = Pg,L ⋅ LAI	 (kg[CO2] m–2[gh] s–1)  (8.107)

The canopy dark respiration rate rD is equal to

	 rD = rD,L ⋅ LAI	 (kg[CO2] m–2[gh] s–1)  (8.108)

where rD,L (kg[CO2] m–2[leaf] s–1) is the leaf dark respiration rate.
In general, the gross leaf assimilation rate Pg,L is determined from the negative exponential light-

response curve (Goudriaan and Van Laar, 1994)

	
P P

I

Pg,L g e
A

g
max= ⋅

−






−max

1

ε

	
(kg[CO2] m–2[gh] s–1)  (8.109)

where Pg
max (kg[CO2]m–2[leaf] s–1) is the maximum gross assimilation rate, ε (kg[CO2] J–1) is the 

light use efficiency by photorespiration and IA (W m–2[gh]) is the absorbed radiation.
The absorbed radiation IA depends on the position of a leaf in the canopy. It is determined by the 

gradual extinction of radiation with canopy depth as a whole and by the leaves being either sunlit 
or shaded at any single level in the canopy. Therefore the assimilation rate is computed through 
a three-point Gaussian integration over the crop depth. The Gaussian integration determines the 
canopy assimilation rate from the average assimilation rate for three layers in the canopy. Two sum-
mation counters are used: l1 ∈ {1,2,3} for the integration over the canopy depth, and l2 ∈ {1,2,3} for 
the correction of IA,ppd for the canopy depth.

The values of the relative depth Xg of the canopy and the weight factor Wg needed for the three-
point Gaussian integration are

TABLE 8.11 (Continued)
Photosynthesis Model and General Parameters

Name Value Unit Contents
Source 

Reference

Temperature Parameters, Arrhenius Function
EC 59356 J mol–1 Activation energy KC Rubisco carboxylation a

EO 35948 J mol–1 Activation energy KO Rubisco oxygenation a

EM 39017 J mol–1 Activation energy KM Michaelis–Menten 
constant

EVC 58520 J mol–1 Activation energy VCmax maximum carboxylation 
rate

a

ED 66405 J mol–1 Activation energy rD dark respiration rate a

EJ 37000 J mol–1 Activation energy Jmax maximum electron 
transport rate

a

Source:	 a Farquhar et al. (1980); b Gijzen (1994); c Spitters (1986); d Heuvelink (1996); e Goudriaan and Van Laar (1994).
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Note: if LAI is higher than 3, a five-point Gaussian integration should be used for accuracy.
The leaf area index LAIl at layer l1—used to determine the transmittance τdif and τdir—is a func-

tion of the depth in the canopy

	 LAIl(l1) = LAI ⋅ Xg(l1)	 (m2[leaf] m–2[gh])  (8.112)

The gross leaf assimilation rate Pg,L is computed from the assimilation rate of the sunlit and the 
shaded part with the fraction sunlit leaf area fSLA (–)

	

P W l f P l f Pg

l

g,L SLA g,sun SLA g,s= ⋅ ⋅ + −( ) ⋅
=

∑
1 1

3

1 1 1( ) ( ) hhd( )l1( )
	

(kg[CO2] m–2[leaf] s–1)  (8.113)

in which the fraction sunlit leaf area  fSLA = τdirBL(l1). This summation moves through the crop layers 
from top to bottom.

The gross assimilation rates Pg,sun of the sunlit part and Pg,shd of the shaded part at layer l1 are 
defined by

	

P l P W l

I l l
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g e
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(kg[CO2] m–2[leaf] s–1)  (8.115)

The absorbed radiation IA,sun of the sunlit part and IA,shd of the shaded part of the canopy can be 
defined as a function of various absorbed radiation terms (Spitters, 1986; Goudriaan and Van Laar, 
1994)

	 IA,sun(l1,l2) = IA,shd(l1) + IA,ppd(l1) ⋅ Xg(l2)	 (W m–2[leaf])  (8.116)

	 IA,shd(l1) = IA,dif(l1) + IA,tdir(l1) – IA,dir(l1)	 (W m–2[leaf])  (8.117)
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in which the diffuse flux IA,dif, the total direct flux IA,tdir, the direct flux IA,dir, and the direct flux of 
leaves perpendicular on the direct beam IA,ppd are given by

	 IA,dif(l1) = (1 – βdif) ⋅ IP,dif ⋅ kdif ⋅ τdif(l1)	 (W m–2[leaf])  (8.118)

	 IA,tdir(l1) = (1 – βdir) ⋅ IP,dir ⋅ kdir ⋅ τdir(l1)	 (W m–2[leaf])  (8.119)

	 IA,dir(l1) = (1 – δ) ⋅ IP,dir ⋅ kdirBL ⋅ τdirBL(l1)	 (W m–2[leaf])  (8.120)

	
I l IA,ppd P,dir1

1( ) = − ⋅δ
βsin 	

(W m–2[leaf])  (8.121)

The summation in Equation 8.114 is needed for the sunlit leaves. The sunlit part IA,sun of the absorbed 
radiation gives an average value over all sines of incidence of the direct beam on the leaves. Because 
in principle any sine of incidence can occur, this part has to be integrated separately.

Photosynthesis Parameters
The light use efficiency by photorespiration ε (kg[CO2] J–1) and the maximum gross assimilation 
rate Pg CO m leaf smax( ] [ ] )kg[ 2

2 1− −  depend on the photosynthesis parameters. The photosynthesis 
parameters depend on the CO2 concentration CCO ,a

ppm mol[CO mol air
2 2

1( ] [ ])µ −  in the greenhouse and 
the temperature of the crop Tc (K).

The light use efficiency by photorespiration ε (Goudriaan and Van Laar, 1994) is given by

	

ε ψ= ⋅
( ) −

( ) +
.

max ,

max ,

M C

C

CO CO ,a
ppm

CO ,a
ppm

2 2

2
4 2

Γ Γ

Γ Γ
	 (kg[CO2] J–1)  (8.122)

in which the number of electrons (e–) per fixed CO2 is 4, where CCO ,a
ppm

2
mol[CO mol air( ] [ ])µ 2

1−  is the 
CO2 concentration in the greenhouse, Γ (μmol[CO2] mol–1[air]) is the CO2 compensation concentra-
tion, MCO2

 (kg[CO2] μmol–1[CO2]) is the molar mass of CO2, and ψ (μmol[e–] J–1) is the conversion 
factor from (J) to (μmol[e–]).

The conversion factor ψ is

	
ψ ζ=

−
⋅

1

2

Fp 	 (μmol[e–] J–1)  (8.123)

in which the fraction PAR (photosynthesis active radiation) absorbed by nonphotosynthetic tissues 
Fp = 0.3, the number of electrons (e–) per absorbed photon is 2, and the conversion factor ζ = 4.59 
μmol[photons] J–1.

The CO2 compensation concentration Γ in the absence of dark respiration (Farquhar et al., 1980)
is defined by

	
Γ = ⋅ ⋅K

K
p fC

O
O ,i OC22

	 (μmol[CO2] mol–1[air])  (8.124)
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in which the O2 partial pressure inside the stomata pO2,i = 210 mbar and the ratio of VOmax (maxi-
mum oxygenation rate) to VCmax (maximum carboxylation rate) f V

VOC = =O

C

max

max
.0 21 (which is assumed 

constant). The Michaelis–Menten constants KC for Rubisco carboxylation and KO for Rubisco oxy-
genation are given by

	 K K
E

T T

T R T
C C25 e

C
c

c g= ⋅
⋅ −

⋅ ⋅
25

25 	 (μbar)  (8.125)

	 K K
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T T
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O
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25

25

	 (mbar)  (8.126)

where Tc (K) is the temperature of the crop.
The maximum gross assimilation rate Pg

max is determined by adding the maximum net assimila-
tion rate and the leaf dark respiration rate

	
P P rg n D,L

max max= + 	 (kg[CO2] m–2[leaf] s–1)  (8.127)

The leaf dark respiration rate rD,L is given by

	
r M rD,L CO D,L

mol
2

= ⋅ µ 	 (kg[CO2] m–2[leaf] s–1)  (8.128)

in which the leaf dark respiration rate rD,L
molµ  (Farquhar et al., 1980) is

	
r r

E
T T

T R T
D,L

mol
D25,L

mol e
D

c

c gµ µ= ⋅
⋅ −

⋅ ⋅
25

25 	 (μmol[CO2] m–2[leaf] s–1)  (8.129)

The maximum (light saturated) net assimilation rate Pn
max is a function of the maximum net assimi-

lation rate Pnc limited by CO2, the maximum endogenous photosynthetic capacity Pmm, and a factor 
Θ for the degree of curvature (Goudriaan and Van Laar, 1994)

	
P

P P P P P P
n
max =

+ − +( ) − ⋅ ⋅mm nc mm nc mm nc

2
4

2

Θ

Θ 	
(kg[CO2] m–2[leaf] s–1)  (8.130)

in which Θ = 0.7. The rate Pn
max is the solution of the nonrectangular hyperbola Θ ⋅ P P P P P Pn mm nc n mm nc

max max( ) .
2

0− + ⋅ + ⋅ = 
P P P P P Pn mm nc n mm nc

max max( ) .
2

0− + ⋅ + ⋅ =  This function gives a close approximation of the negative exponential 
function.

The maximum endogenous photosynthetic capacity Pmm is defined by

	
P

M
Jmm

CO2=
4

. max
	

(kg[CO2] m–2[leaf] s–1)  (8.131)
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in which the maximum electron transport rate Jmax (Farquhar et al., 1980; Gijzen, 1994) is given 
by

	

J J
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	 (μmol[e–] m–2[leaf] s–1)  (8.132)

and the constants S = 710 J mol–1 K–1 and H = 220000 J mol–1.
The CO2 limited rate Pnc of net photosynthesis (Goudriaan and Van Laar, 1994) is defined by

	

P
f

R
Cnc

ppm

CO ,tot
CO ,a
ppm

2
2

= ⋅ ( ) −( )max , Γ Γ 	 (kg[CO2] m–2[leaf] s–1)  (8.133)

where Γ (μmol[CO2] mol–1[air]) is the CO2 compensation concentration in absence of dark respira-

tion, CCO ,a
ppm

2
 (μmol[CO2] mol–1[air]) is the CO2 concentration in the greenhouse, and RCO2,tot (s m–1) is 

the total resistance to CO2 diffusion.
To convert from the unit (μmol[CO2] mol–1[air]) to (kg[CO2] m–3[air]) we use the volume of 1 mol 

of gas (ideal gas law)

	
V

n R T

p
Tmol g

bar

=
⋅ ⋅

= ⋅ ⋅1 8 314
101325

.
	 (m3[gas] mol–1[gas])  (8.134)

and the molar mass of CO2 MCO2
 = 44 × 10–9 kg[CO2] μmol–1[CO2], so we find

	
f

M

V
ppm CO

mol
2= 	 (kg[CO2] mol[air] m –3[air] μmol–1[CO2])  (8.135)

This is sometimes approximated in the literature by f ppm = 1.83 × 10–6.
The total resistance to CO2 diffusion RCO2,tot is determined by adding stomatal, boundary layer, 

and carboxylation resistance

	 RCO2,tot = RCO2,s + RCO2,b + RCO2,c	 (s m–1)  (8.136)

The stomatal and boundary layer resistance to CO2 diffusion RCO2,s and RCO2,b are computed from 
the stomatal and boundary layer resistance to H2O diffusion RH2O,s (Equation 8.100), and RH2O,b 
(Equation 8.105) from Section 8.5.1. For CO2 these resistances are larger than for water vapor 
because the diffusion coefficient is lower (Monteith and Unsworth, 1990).

	 RCO2,s = 1.6RH2O,s	 (s m–1)  (8.137)

	 RCO2,b = 1.37RH2O,b	 (s m–1)  (8.138)
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The carboxylation resistance RCO2,c (Goudriaan and Van Laar, 1994; Gijzen, 1994) is given by

	

R
K

V M

T

CO ,c
M

Cmax

CO

CO
2

2

2

= ⋅
ρ

	
(s m–1)  (8.139)

where KM is the effective Michaelis–Menten constant for carboxylation and VCmax is the maximum 
carboxylation rate (Farquhar et al., 1980)

	

K K
p

KM C
O ,i

O

2= ⋅ +






1 	 (μbar)  (8.140)
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⋅ ⋅
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	 (μmol[CO2] m–2[leaf] s–1)  (8.141)

The CO2 density ρ CO2

T  at temperature Tc (K) is defined by the law for ideal gas as

	
ρ ρCO CO

c
2 2

T T
T

= ⋅ 0

	
(mg[CO2] m–3[CO2])  (8.142)

where ρCO2
 is the CO2 density at T0.

8.5.3 T emperature Integration

Temperature integration is used as a descriptive method for long-term temperature effects on crop 
development. A descriptive method is used because—to our best knowledge—no simple accurate 
models for crop development exist. More elaborate models for crop development do exist. These 
models, however, work on a larger time scale (days, up to 10-day periods), are too detailed (many 
crop development stages), are too crop-specific, or are not developed for greenhouse climate but for 
the open field (different temperature, humidity, and CO2 conditions).

The temperature integration concept is based on the results of horticultural research, which 
indicates that crop growth responds to long-term average temperatures rather than specific day 
and night temperature profiles (Sigrimis et al., 2000). Photosynthesis is an almost instantaneous 
process, while the processing of the assimilates is a slower, dynamical process. It can be assumed 
that the crop stores the assimilates in a carbohydrate pool (Seginer et al., 1994). The capacity of the 
assimilate pool is crop specific and it probably differs for each development stage. Temperature inte-
gration is a simplified approach to the same theory. The buffering capacity is not specified in this 
concept, but it is assumed sufficient over a period of several days (De Koning, 1988). The concept is 
mainly based on empirical observations.

Much research has been done on temperature integration to describe crop development (Van den 
Bosch, 1998; Gijzen et al., 1998; Körner and Challa, 2003; Elings et al., 2005), and it is already in 
use by many commercial greenhouse horticulturists. The duration of the temperature integration 
and the boundary values described here are based on the research by Körner and Challa (2003), 
who developed temperature integration rules specifically for the solar greenhouse. The underly-
ing assumption is that crop development is determined by an average temperature, rather than the 
actual temperature. In addition, it is assumed that temperature deviations that occurred long ago can 
no longer be compensated for—as far as their influence on crop development is concerned—and 
should therefore not be taken into account.
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For the temperature integral used here, a time period of 6 days is considered. From these 6 days, 
5 days (tp (s)) are in the past, and 1 day (tf (s)) is used to correct for this past.

The temperature integral is determined from the temperature of the indoor air Ta. An example is 
given in Figure 8.11. The average temperature of the indoor air Ta_ts (dashed) is saved at every sam-
pling interval ts (1800 s) for the days in the past (tp). The predicted temperature course T̂a for the day 
in the future (tf) is found by simulating the greenhouse-with-crop model during the next day. The 
temperature T Ta

ref K= +0 19  (solid line) is the reference temperature for the temperature integral.
The temperature integral trajectory ST at time t is described by

	

S t
n

T t T S tT T( , ) ˆ ( , ) ( )τ ν ν τ
τ

= ⋅ −( ) + ∀ ≤∫1
0

0

0
secs

a a
ref d ≤≤ tf 	 (K day)  (8.143)

in which tf = 1nsecs s (1 day)* is the future horizon, where t (s) is the current time and ˆ ( , )T ta ν  (K) is 
the predicted temperature of the indoor air at time ν  based on information until time t. This gives a 
trajectory ST(t, τ) for every time t, where τ runs from 0 to tf (see Figure 8.12).

The initial value ST0(t) of the temperature integral is defined so that temperature deviations that 
occurred more than 5 days ago are not taken into account. The initial value of the temperature inte-
gral ST0(t) at time t (s) is therefore computed over the past horizon tp (s)

	

S t
n

T TT

t tp

t

0
1

( ) ( ( ) )= ⋅ −
−
∫

secs
a a

ref dν ν

	

(K day)  (8.144)

in which tp = 5nsecs s (5 days) is the past horizon, where Ta (K) is the temperature of the indoor air.
This integral is approximated numerically by a summation, where the average temperature of the 

indoor air Ta_ts is saved at every sampling interval ts (1800 s)

*	Because the unit of the temperature integral is (K day), time has to be converted from (s) to (day) with the number of 
seconds in a day nsecs = 86400 s day–1.
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where kv is the discrete time step. In the example given in Figure 8.12 the initial value ST0(t) = –0.194 
K day. The initial value ST0(t) of the temperature integral is recomputed (and thus changed) at every 
time interval ts.

From the temperature integral ST in Equation 8.143 a predicted average temperature deviation 
∆Ta

TI is computed, which will be used in the optimal control to ensure proper crop development.
The predicted average temperature deviation trajectory ∆T ta

TI ( , )τ  at time t is given by

	

∆ fT t
S t

t
t

n

a
TI T

p

secs

( , )
( , )

τ
τ

ττ= ∀ ≤ ≤+ 0

	

(K)  (8.146)

This describes the average deviation between the past and forecasted temperatures Ta and T̂a and the 
reference temperature Ta

ref (see Figure 8.12).
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8.6  Sensitivity Analysis, Calibration, and Validation

The greenhouse model and the crop model described in this chapter are developed for use in a 
receding horizon optimal control context. This form of optimal control has a feedback component: 
the model simulation is repeated at set times (every receding horizon time step ts) with new mea-
sured data. For the model validation, it is important to know on which time scale the results should 
be evaluated. Furthermore it is important to know which states or outputs should be well described 
by the model.

The control horizon tf of the receding horizon optimal controller is one day, which means that 
the model should approximate the measured data over a time span of one day. The dynamic behav-
ior of the temperatures Ta and Tc, the humidity CH2O,a, and the CO2 concentration CCO2,a should be 
described well.

The model is validated by simulating the greenhouse with crop model with known control inputs 
u and known external inputs d for a conventional greenhouse. The resulting simulated data are 
compared with the measured data. It was found that the model results agreed quite well with the 
measured data on some days, and less well on other days. To improve the model, parameter esti-
mation was performed (Section 8.6.3). The parameters likely to improve the model were found by 
performing sensitivity analysis. More details can be found in Van Ooteghem (2007).

8.6.1 C onventional versus Solar Greenhouse Model

The data used for the model calibration and validation are from a greenhouse in Olsthoorn, The 
Netherlands. The sampling time Δt of the data is 1 min. The names of the data sets like 040323 
indicate the measurement date (yymmdd).

8.6.1.1 C ontrol Inputs
Some control inputs u are different from those defined in Table 8.2, e.g., instead of the valve posi-
tions vpl and vpu the water temperatures Tin_l and Tin_u (K) are measured. These differences are taken 
into account and corrected for. The upper heating net was not used in this greenhouse, so vpu = 0.

8.6.1.2 E xternal Inputs
All external inputs d used in the model are measured. From the first evaluation of the simulation 
results it was found that the sky temperature Tsk is not a measured but a computed value. It was 
computed with the equations given below, with a clouded fraction of the sky cTsk = 1. This means 
that it was assumed that the sky was 100% clouded (overcast sky). If this fraction is changed to 0.5 
(partly cloudy sky), the computed sky temperature is 10°C lower than the “measured” sky tempera-
ture. This difference for the sky temperature was found to give a large difference in the simulation 
results. To correct for this, the sky temperature is computed. Because the clouded fraction of the sky 
cTsk is unknown, it is a parameter in the parameter estimation (Section 8.6.3).

The sky temperature Tsk can be computed from the temperature and the humidity of the outdoor 
air (Monteith and Unsworth, 1990).

	

T c E T c TT Tsk sk sky_clear sk= − ⋅ ⋅ + ⋅ −






( )1
9

0
4

0
4

4
σ

	

(K)  (8.147)

in which the fictive emission coefficient Esky_clear of the clear sky is given by

	
E pysk _clear H O o2

= + × −0 53 6 10 3. , 	 (–)  (8.148)
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where To (K) is the outdoor air temperature, cTsk ∈ [0,1] (–) is the clouded fraction of the sky, σ 
(W m–2 K–4) is the Stefan–Boltzmann constant and pH2O,o (N m–2) is the vapor pressure of the out-
door air.

8.6.1.3  States
The following states are measured, and can be compared with simulated results: temperatures of 
the indoor air below and above the screen, crop, and indoor side of the roof (Ta, Tas, Tc, Tri (K)) and 
concentrations of CO2 and H2O below the screen (CCO2,a, CH2O,a (kg m–3)).

8.6.2 S ensitivity Analysis

Sensitivity analysis is used to find model terms and parameters for which the model is most sensi-
tive. This is used to find suitable model parameters to calibrate the model. It is also used to analyze 
sensitivity to the inputs. Parameters that are suitable for calibration are both sensitive and not well 
established. No adjustments are made to the well-established physical and physiological equations.

Two data sets were selected (040323, 040925). These data sets were expected to give good 
results for the sensitivity analysis, because they both show excitation of all the control and external 
inputs u and d. The sensitivity analysis is performed over a period of 2 days (040322–040323), 
where only the result of the second day is used for the analysis. This is done to make sure that the 
initial state values have little influence on the result.

Instead of changing the actual model terms and parameters themselves, they are multiplied by 
the parameters p, which have a nominal value of one. This introduces scaling of the model param-
eters, which is necessary because they are not in the same range (e.g., cTsk COand Φ

2

max ). Then the sen-
sitivity to these parameters p is investigated. The results are called relative sensitivities (Bernaerts 
and Van Impe, 2004). The Fisher information matrix of the relative sensitivities is used to indicate 
which parameters are most important.

This procedure is first used to determine the sensitivity to the control inputs (vpCO2
, Aplsd, Apwsd, 

Clsc, vpboil, Tboil, Tin_l, Tin_u) and the external inputs ( , , , , , ).I v T T T Co o o o
wb

sk CO ,o2

The most important inputs are

Control inputs•	  u: Aplsd, vpCO2
, Clsc, Tboil, Tin_l, which means that Apwsd, vpboil, and Tin_u are 

less important. For Tin_u it is obvious that it has no influence, because the upper net is not 
used.
External inputs•	  d: ( , , , , , )I v T T T Co o o o

wb
sk CO ,o2

, which means that they are all important.

For model validation and calibration it is important to have data of the sensitive control inputs u and 
the external inputs d. These are in general not parameters to adjust. The only exception in this case 
is the sky temperature Tsk, which is not measured but computed from measurements. Now the same 
procedure is used to determine the sensitivity of the 46 exchange terms in the model to determine 
the most important ones. The 11 most important exchange terms are:

Exchange terms•	  (Q, Φ): Q Q Q Q Qin_l l_out rad_c ro_o ro_sk CO a_c CO ,2
, , , , , ,,Φ Φ

2 aas_o H O,as_o CO ,in_a as_ri
cons

H O,as_r2 2 2
, , , [ ,Φ Φ ΦQ ii c_a

trans
H O,c_a2

], [ , ]Q Φ
Q Q Q Q Qin_l l_out rad_c ro_o ro_sk CO a_c CO ,2

, , , , , ,,Φ Φ
2 aas_o H O,as_o CO ,in_a as_ri

cons
H O,as_r2 2 2

, , , [ ,Φ Φ ΦQ ii c_a
trans

H O,c_a2
], [ , ]Q Φ . The terms in brackets use the same parameter.

From these remaining 11 sensitive terms the underlying equations are studied in more detail to 
locate model parameters within these terms that are not well known. This leaves the following six 
parameters for calibration: c h F FTsk difR win boil l CO, and

2
, , , , .max max maxτ Φ  These parameters are estimated to 

fit the model to the measured data.
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8.6.3  Parameter Estimation

To calibrate the six parameters, the measured states (Ta, Tas, Tc, Tri, CCO2,a, CH2O,a) have to be com-
pared with the simulated states. The parameters are fitted on one day of data (040323). The initial 
state values are based on the measured values when they are available. Otherwise an estimate is 
made from the known values. It is assumed that the time constants are smaller than 1/3 of a day.

The following six parameter values are found from the parameter calibration: c h F FTsk difR win boil= = = = × −0 6 0 55 1 1 62 10 3. , . , , . ,maxτ ll CO sand
2

max max. , .= × = ×− −1 62 10 0 4 103 5Φ A 
c h F FTsk difR win boil= = = = × −0 6 0 55 1 1 62 10 3. , . , , . ,maxτ ll CO sand

2

max max. , .= × = ×− −1 62 10 0 4 103 5Φ A . The measured and 
simulated states are given in Figure 8.13.

From these results it can be seen that after calibration the greenhouse with crop model gives a 
good description of the dynamic behavior. The temperatures Ta and Tc of the indoor air and the crop 
and the humidity CH2O,a are well described. The CO2 concentration CCO2,a fits less well. Although 
the dynamics seem quite good, there is a static deviation during nighttime. Because the deviation is 
during the night, the problem is not that bad. The CO2 concentration influences the total biomass B 
mainly through the photosynthesis rate Pg during daytime. These terms are important in the optimal 
control concept, so they should match well.

From the measured data it is found that the time constants of the processes are:

5 min: between outdoor shortwave solar radiation •	 Io and the temperature Ta of the indoor 
air below the screen
18 min: between CO•	 2 supply with valve vpCO2

 and the change in CO2 concentration CCO2,a 
of the indoor air
40 min: between the aperture •	 Aplsd and Apwsd of the windows and the change in humidity 
CH2O,a

This indicates that the assumption that the time constants are smaller than 1
3
 of a day is valid.
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FIGURE 8.13  Estimation: measured (–) and simulated (– –) states x, data set 040323.
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To verify the overall validity of the parameter values, they are subsequently used on other data 
sets in other seasons (040617 and 040910). These results are given in Figures 8.14 and 8.15. From 
these results, it can be seen that the simulations give a fair fit of the measurements. The deviation in 
the CO2 concentration is again seen.

All calibrated parameters are assumed to have a fixed value during the day. The parameter 
cTsk describes the fraction of clouded sky, which is unlikely to stay the same all day. It is therefore 
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FIGURE 8.14  Validation: measured (–) and simulated (– –) states x, data set 040617.
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strongly recommended to measure the sky temperature Tsk, instead of computing it. This is expected 
to further enhance the accuracy of the calibrated model. For 040323 the value cTsk = 0.60 was found 
in the parameter estimation. If this parameter is estimated for 040617 and 040910 (keeping all other 
parameters as found for 040323), the fraction of the clouded sky is 0.77 and 0.24, respectively.

8.7 O ptimal Control

The methodology followed for the optimal control of the solar greenhouse differs from the examples 
on lettuce and tomato in the previous chapters. Here the emphasis is on the physics part, because 
the purpose of this research is the investigation of the potential energetic advantage of additional 
energy-saving equipment. The crop is modeled as a single biomass state, where any increase in mass 
is valued at a fixed price as soon as it is produced. So, there is no computation of a long-term costate 
development, as with the lettuce and tomato cases. Instead the study focuses on the best possible 
exploitation of the fluctuating weather. This is achieved by a receding horizon controller, which acts 
as a closed loop solution.

In the work of Van Ooteghem (2007), the optimal control is also worked out for a system without 
temperature integration. Here only the version with temperature integration is described.

8.7.1 C ost Function

Optimal control is concerned with the computation of optimal control input trajectories based on 
a cost function. The control solution consists of actuator trajectories (e.g., window apertures and 
valve positions) that result in state trajectories (e.g., temperature, humidity, and CO2 concentration) 
that optimize a cost function. The aim is to minimize fossil energy consumption, while maximizing 
biomass and keeping temperature and relative humidity within certain bounds. In the cost function, 
costs are defined to penalize fossil energy consumption, to reward biomass increase and to keep 
temperature, humidity, temperature integral, and the aquifer energy content within bounds.

Using a state-space greenhouse-with-crop model describing the dynamic behavior of the green-
house (Section 8.4) and the crop (Section 8.5) in time together with weather predictions (SELyear; 
Breuer and Van de Braak, 1989), the influence of control changes on greenhouse climate can be 
simulated. The state-space model has the general form (see also Equation 4.2)

	
x f x u d= ( , , , )t 	 (8.149)

where t is time, x x= ∈( )t nx
  is the state vector, u u= ∈( )t nu

  is the control input vector, 
d d= ∈( )t nd

  is the external input vector, and f is a nonlinear vector function. The description of 
these variables is given in Table 8.2.

The goal is to minimize the cost function, which has the general form (see also Equation 4.3)

	

J t L t t
t

t f

( ) ( , ) ( , , )u x x u= + ∫Φ f d

0 	

(cost)  (8.150)

where the terminal cost Φ : 

nx + →1  and the running costs L n n nx u d: 

+ + + →1  are differentiable 
a sufficient number of times with respect to their arguments. The final time tf is set to the control 
horizon, which is equal to one day and therefore will not be subject to optimization.

The control inputs are constrained by

	 u u u i n t tui i i flmin max( ) ,. . . , ;≤ ≤ = ≤ ≤τ τ0
	 (8.151)
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A control input trajectory u(τ) that satisfies the constraints in Equation 8.151 is called admissible. 
For the states there are trajectory constraints (bounds, see Equation 8.155), which are considered 
“soft.” With these prerequisites the control problem is to find

	
u u

u
*( ) argmin ( )τ = J

	
(8.152)

given the expected external inputs (weather prediction) d( )τ  for τ ∈ [t0, tf], subject to the differential 
equations (Equation 8.149) and the control input constraints (Equation 8.151). In other words, the 
objective is to find admissible input trajectories u*(τ) on the time interval τ ∈ [t0, tf] such that the 
process given by Equation 8.149 has control and state trajectories that minimize the performance 
criterion (cost function value) J. The resulting control input and state trajectories are referred to as 
the optimal trajectories.

The values used for the weight factors c and the bounds (to be defined below) in the cost function 
are given in Table 8.12. Some terms are taken per square meter to enhance the portability of the 
cost function to other greenhouse dimensions. The weight factors indicate how important specific 
greenhouse conditions are; they however do not represent euros or dollars. They have to be balanced 
such that one penalty does not outweigh another penalty. The weight factors have been tuned based 
on open loop computations of single days throughout the year to make sure that they hold in differ-
ent seasons.

The terminal cost Φ is determined by the yield in the form of biomass B (Equation 8.15) and the 
average temperature deviation ∆Ta

TI at the end of the control horizon tf (determined from the tem-
perature integral ST in Equation 8.14)

	

Φ
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( , ) ( ( ) ( ))
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x
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t c B t B t

t
f f
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= − ⋅ −B

B

0
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TI

f

f

( )

( , )Φ x 	

(cost)  (8.153)

TABLE 8.12
Cost Function: Weight Factors and Bounds

Symbol Unit xmin xmax

cost
day unit⋅⋅ J(u)

Ta
C
 
† °C 10 34 cT = 5

P tTa d∫
RHa % – 85 cRH = 5

P tRHa d∫
∆Ta_TI

C † °C –6 6 cTI = 25
P tTI d∫

Eaq J m–2[gh] Eaq
min

 
‡ Eaq

max
 
‡ caq = 10 × 106

P taq d∫
Qused W m–2[gh] cQ = 61.44

L tQ d∫
CCO ,a

ppm

2
μmol[CO2] mol–1[air] 320 1000 cCO2

 = 0 0

B kg m–2[gh] cB = 76.8 ΦB

Ta
C,ref

 
† °C 19 cTI = 25 ΦTI

†	 T T Ta a
TI

a
refand, ∆  in (K) in computations, in (°C) here for readability.

‡	 Aquifer energy content bounds are derived in Section 8.7.1.1.
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where cB and cTI are the weight factors for biomass and temperature integral. Terminal cost ΦB 
should preferably be large and negative and ΦTI should be zero. These terminal costs are used as 
soft terminal constraints.

The running cost L contains penalties P for the loss of crop yield due to exceeding temperature, 
humidity and temperature integration bounds, exceeding the aquifer energy content bounds, and 
the cost of energy. To this end the running cost L (cost s–1) is given by the sum of the penalties for 
temperature Ta (PTa), relative humidity RHa (PRHa), temperature integral ∆ TI

TIT Pa ( ), year-round aqui-
fer energy content Eaq (Paq), and the costs for the energy consumption Qused (LQ)

	

L t P t P t P t( , , ) ( , , ) ( , , ) ( , , )x u x u x u x u= + +Ta RHa TI

aq Q+ +P t L t( , , ) ( , , )x u x u
	 (cost s–1)  (8.154)

The penalties for temperature PTa, relative humidity PRHa, temperature integral PTI, and aquifer 
energy content Paq are given by
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(cost s–1)	

where cx is the weight factor associated with exceeding the boundary values xmin and xmax of state 
x. The penalty function increases linearly in value with the deviation from the boundary values. In 
between the boundary values, the penalty function is zero. This is implemented as a smoothed ver-
sion of this equation
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(cost s–1)  (8.155)

in which β = 1 × 10−3. This function is smooth around xmin and xmax. These penalties are used as soft 
constraints.

The cost for the energy consumption LQ is given by

	 LQ(x,u,t) = cQ · Qused	 (cost s–1)  (8.156)

where cQ is the weight factor for energy use and Qused is the total amount of energy used per square 
meter greenhouse. This is defined as

	
Q

Q Q

Aused
boil hp

s

=
+

	
(W m–2[gh])  (8.157)

where Qboil (W) is the energy used by the boiler, Qhp (W) is the energy used by the heat pump, and 
As (m2[gh]) is the surface area of the soil. The energy Qused is a measure for the total gas use per 
square meter greenhouse surface.

There is no penalty on the CO2 concentration (cCO2
 = 0); the bounds are used for the proportional 

controller (see Equation 8.168).
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The boundary values for temperature and temperature integral are taken from Körner (2003). 
Because temperature integration is used, the temperature bounds can be quite wide, as the tempera-
ture integral will keep the average temperature at its reference value Ta

ref.
From the penalties, running costs, and terminal costs given here, the running cost LQ represents 

gas use, the penalty Paq represents aquifer energy content and all other penalties (PTa, PRHa, PTI) and 
terminal costs (ΦB, ΦTI) represent terms that are important for crop growth and development.

The temperature integral is a special case. It is used as a descriptive method for long-term tem-
perature effects on crop development, to compensate for the lack of a reliable long-term crop model. 
The temperature integral bounds are used to ensure proper crop development by safeguarding the 
system from moving into physiologically unattractive or unacceptable regions. The aims for the 
temperature integral are to keep the average temperature deviation ∆Ta

TI within the boundary values 
of ±6 K (see Table 8.12) and to obtain an average temperature deviation of zero at the end of the 
control horizon of one day, so
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This is translated to two terms in the cost function: the terminal cost ΦTI, which penalizes long-term 
crop processes, and the penalty ∫PTI, which penalizes short-term crop processes. These penalties 
both depend on the predicted average temperature deviation trajectory ∆Ta

TI in Equation 8.146.
The other special case is the aquifer energy content. There are long-term governmental require-

ments that state that the aquifer has to be approximately energy neutral year-round. Because we are 
only looking one day ahead with our RHOC, control this poses a bit of a problem. To incorporate 
this demand in the RHOC cost function, some a priori knowledge about the course of the aquifer 
energy content has to be used. This a priori knowledge is then translated to bounds on the aquifer 
energy content, which are used as constraints in the cost function. This is explained in the next 
section.

8.7.1.1 D erivation Bounds for Aquifer Energy Content
An aquifer is a formation of water-bearing sand material in the soil that can contain and transmit 
water. The aquifer has a warm and a cold side. The warm water is used by the heat pump to heat the 
greenhouse and the cold water is used by the heat exchanger to cool the greenhouse.

The aquifer must be approximately energy neutral year-round. This means that the amount of 
energy put into the aquifer must equal the amount of energy withdrawn from the aquifer. If this 
demand is not fulfilled the aquifer will warm up or cool down, which is unwanted. Therefore this 
demand must be incorporated in the cost function of the optimal control.

In the receding horizon control, the control horizon is one day. This means that the aquifer 
energy content cannot be directly computed for a period of one year in the optimal control proce-
dure. A solution is found in which a year-round reference curve for the accumulated energy content 
of the aquifer is used. The reference curve is based on a year-round optimal control run with the 
grid search method (see Section 8.7.3.1). It gives an indication of what the energy content will look 
like. Relative to this reference curve bounds are defined which represent the freedom to deviate 
from this curve. These bounds for the accumulated energy content of the aquifer can then be used 
as optimal control bounds. The energy accumulated in the aquifer must stay between these bounds. 
The bounds are time-dependent because the reference curve is not a constant.

It is assumed that the aquifer has an infinite amount of warm and cold water available. The 
aquifer energy content bounds will limit the amount of energy that can be stored or retrieved. This 
indirectly corrects for the fact that the buffers are not infinite.
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Government Demands
The government demands that the aquifer is energy neutral year-round. At any arbitrary reference 
date, the aquifer will have a specific initial energy content. Starting from that date the accumulated 
energy is monitored to make sure that the amount of energy stored in the aquifer is equal to the 
amount of energy retrieved from the aquifer over a period of one year.

If Eaq(t) (J m−2[gh]) describes the accumulated energy content of the aquifer over the period t, the 
government demand is

	 Eaq(nsecs_yr) = 0	 (J m−2[gh])  (8.159)

in which nsecs_yr = 31536000 s yr−1 is the number of seconds in a year.
The energy content Eaq of the aquifer, accumulated over a period t is given by
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(J m−2[gh])  (8.160)

in which Ehe is the amount of energy extracted from the greenhouse by the heat exchanger and 
stored in the aquifer, Ehp is the amount of energy supplied to the greenhouse by the heat pump and 
retrieved from the aquifer, and Eaq0 (J m−2[gh]) is the initial value of the accumulated energy content 
of the aquifer. This is the energy that has been accumulated in the previous period, which should 
still be corrected for by the optimal control. At the first start of the aquifer use, Eaq0 = 0 (no energy 
accumulated yet). The energy transport term Qhe (W) is the heat extracted from the greenhouse and 
supplied to the aquifer by the heat exchanger. The energy transport term Qc (W) is the heat retrieved 
from the aquifer and supplied to the greenhouse by the heat pump.

In the receding horizon control, the control horizon is one day, which means that a demand for 
a year cannot be implemented directly. The actual requirement by the government is not quite as 
strict as defined in Equation 8.159. A grower should not deplete or warm up the aquifer too much, 
so the deviation of the energy content year-round should be within limits, such that it can be cor-
rected during the next year. It is necessary to know the shape of the energy content curve to define 
limits relative to this curve, which can serve as bounds for the optimal control. This is the topic of 
the next section.

The Energy Content of the Aquifer
To achieve that the aquifer is energy neutral year-round, the optimal control needs a function that 
describes the bounds for the amount of energy stored in the aquifer as a function of time. To obtain 
a reference curve for the energy content Eaq

 year-round, the energy content is determined with the 
weather data from the SELyear (Breuer and Van de Braak, 1989) and the receding horizon optimal 
control with grid search as described in Section 8.7.3.1. The initial version of this reference curve 
has been developed by Van Dongen (2004).

The amounts of energy Ehe stored in the aquifer and Ehp retrieved by the heat pump are given in 
Figure 8.16. The heat exchanger is used in spring and summer (May through August). This results 
in the energy curve for Ehe stored by the heat exchanger shown in Figure 8.16a, which has a clear 
S shape. The heat pump is used intensively in fall and winter to heat the greenhouse, and slightly 
less in spring and summer to reduce the relative humidity in the greenhouse. This results in the 
energy curve for Ehp retrieved by the heat pump shown in Figure 8.16b, which is almost linear with 
time with a slight S shape.
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From the initial run it was found that more energy is retrieved from the aquifer (Ehp) than stored 
in the aquifer (Ehe). The aim is to get an energy content reference curve Eaq

 that is equal to zero at 
the end of the year. This means that the energy curves Ehp and Ehe should have the same value at 
the end of the year. The energy Ehe is therefore scaled to match Ehp. It is assumed that the optimal 
control can increase the amount of energy Ehe supplied to the aquifer by the heat exchanger to match 
the amount of energy Ehp retrieved from the aquifer by using the heat exchanger more intensively.

To find a function for the amount of energy Eaq, functions are estimated for Ehe and Ehp. The 
energy Ehe stored by the heat exchanger is approximated by an S-shaped curve. The energy Ehp 
retrieved by the heat pump is approximated by a linear function in combination with an S-shaped 
curve. This gives
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in which max(Ehe) = 435 × 106 J m−2[gh] and the fraction of the year is t
nsecs_yr

,  where t (s) is time, 
nsecs_yr (s yr−1) is the number of seconds per year and phe and php are the parameters for the heat 
exchanger and the heat pump curve. Parameter calibration gives the following values: phe,a = 18, 
phe,b = 0.52, php,a = 9, php,b = 0.50, and php,c = 610 × 106. The estimated curves are given in Figure 
8.16 as dashed lines.

The estimated function for the amount of energy Eaq
 stored in the aquifer as a function of time 

is given by

	
E t E t E tap he hp
  ( ) ( ) ( )= − 	 (J m−2[gh])  (8.163)
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FIGURE 8.16  Energy extraction and supply for the aquifer with SELyear, computed (—) and estimated (– –) 
curves.
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The result is shown in Figure 8.17, where the dashed line is the aquifer energy content reference 
curve Eaq

 and the line represents the originally computed values.
The aquifer does not have to be exactly energy neutral year-round. Bounds are defined around 

the aquifer energy content reference curve. These aquifer energy content reference bounds are rela-
tive to the aquifer energy content reference curve Eaq

. The government does not allow net heat stor-
age in the aquifer year-round. The energy content is thus allowed to deviate more to the negative 
side than to the positive side. Furthermore the bounds are wider during summer to allow for more 
deviation in the period that energy is harvested. The bounds are set to Eaq

min and Eaq
max
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where t
nsecs_yr

 is the fraction of the year, t (s) is time, and nsecs_yr (s yr−1) is the number of seconds per 
year.

The resulting demand for the optimal control is to keep the aquifer energy content Eaq between 
these bounds

	
E E t Eaq aq aq

min max( )≤ ≤
	 (J m−2[gh])  (8.166)

These bounds are shown in Figure 8.17 as dashed lines.
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The impact of the penalty ∫Paq for the aquifer energy content has been tested by running the 
solar greenhouse optimization for a week in summer and winter. In summer, the initial aquifer 
energy content Eaq was set to a value above its upper bound Eaq

max. This prevented the use of the heat 
exchanger; the greenhouse was cooled by opening the windows. In winter, the aquifer energy con-
tent Eaq was set to a value below its lower bound Eaq

min. This prevented the use of the heat pump; the 
greenhouse was heated by the boiler. The difference between the bound and the initial value was 
chosen small enough to see that when the energy content was between the bounds again, the heat 
exchanger c.q. heat pump were used again. This indicates that the penalty is working correctly.

8.7.2 R eceding Horizon Optimal Control

The knowledge about the greenhouse and crop has been incorporated in a dynamic model which has 
been described in Sections 8.4 and 8.5. Optimal control uses this model and furthermore requires 
that the control objectives—such as maximizing crop growth and minimizing gas use—are quanti-
fied and made explicit in the cost function. For maximizing crop growth the biomass increase must 
be maximized, while the temperature, the temperature integral, and the relative humidity are kept 
within bounds to obtain good development conditions and to decrease the risk for diseases and 
fungi. These bounds are translated to penalties, which are used as soft constraints.

The receding horizon optimal control (RHOC) concept is used to compute the control inputs u 
(actuator trajectories) (see Section 4.3.1). A conjugate gradient method in combination with a line 
search method is used to improve the search direction (see Section 3.3.1).

In the weather three time scales can be distinguished: the fast variation of the weather on a min-
ute scale, the slow variation of the weather on a daily scale, and the seasonal variation on a monthly 
scale. Also in the crop growth process different time scales are found: the crop has a day–night 
rhythm in which the assimilates that have been formed during the day are converted to biomass 
during the night. Furthermore, it has several development stages, from initial growth from a seed 
to the formation of leaves, buds, flowers, and fruit up until fruit maturity.

The crop dry weight is a slow state, which depends heavily on the greenhouse temperature, 
which is a fast state. As the temperature in the solar greenhouse is expected to fluctuate a lot due to 
the aims of the optimal control, it does not make sense to incorporate the time scale decomposition 
for the crop dry weight. The same holds for the temperature integral and the loading and unloading 
of the aquifer heat and cold content, which also strongly depend on the greenhouse temperature.

The time-scale decomposition described in Section 5.2.5 is therefore not used in this research. 
It is assumed that the increase of crop biomass is instantaneous. We want to make maximum use 
of all small momentary variations in the weather to maximize the solar radiation absorbed by the 
crop (thus producing biomass) and to optimize the temperature in the greenhouse with minimum 
use of heating input (gas). The offline computation of the slow dynamics, which would be based on 
averaged weather, is therefore omitted.

A feasibility study of the optimal control of the solar greenhouse is performed in this section. 
Unfortunately the solar greenhouse only exists on paper, so the results of the feasibility study are 
entirely based on simulations. In these simulations, we tried to mimic reality as closely as possible. 
Year-round simulations have been performed with a receding horizon optimal controller to control 
the greenhouse, where the actual weather is different from the forecasted weather that is used for the 
on line optimal control computations (as in reality). This long period will provide insight concern-
ing the use of the heat pump, boiler, and heat exchanger in the different seasons of the year.

The initial guess of the optimal control input u(t) is a very important step. If the guess of the 
optimal control is poor the algorithm needs more iterations (computation time) to find the solution 
or it may not find a solution at all. Also depending on the control guess the algorithm may find a 
local solution. To make sure that the optimal control starts with a good initial guess a grid search 
method is used to find good control input trajectories (see Section 8.7.3.1).

General conclusions with discussion on the optimal control are given in Section 8.7.8.
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Time Intervals RHOC
The receding horizon optimal controller uses a number of time intervals, which are defined as

t•	 f = 86400 s (one day) control horizon: the time interval over which the optimal control 
input trajectories are computed
t•	 s,u = 1800 s (30 min) time interval u*: the time interval over which the computed optimal 
control inputs u* are kept piecewise constant
t•	 s = 1800 s (30 min) sampling interval RHOC: the time interval between the RHOC com-
putations (time shift)
t•	 s,RK = 60 s (1 min) integration time interval Runge-Kutta: the time interval for the Runge-
Kutta integration

This means that t
t

f

s,u
= 48 values are determined for each control input at each receding horizon 

time step. For the sampling interval ts a relatively large value is chosen, because the values of the 
weather conditions in our case are hourly values (SELyear). In a setup where the actual weather 
conditions are measured, the sampling interval ts should be as small as the sampling interval of 
the weather observations (e.g., 2 min) (Van Willigenburg et al., 2000). The small integration time 
interval used in the Runge-Kutta integration ensures that faster dynamics are correctly incorporated 
in the computed results. Smaller time intervals (ts, ts,u) or a longer control horizon (tf) will result in 
a longer computation time.

8.7.3 C ontrol Inputs

In the first tests of the optimal control all control inputs were optimized by the optimal control. In 
a number of computations, the optimal control results would yield control inputs where heating and 
cooling were used at the same time. In view of the cost function, as it has been defined, this was 
unexpected. Evaluation of these results led to the conclusion that the optimal control got stuck in 
a local minimum. The same would hold for the window aperture: opening the lee- or windward-
side windows makes no difference in the results (but it does require extra computations). Therefore 
these control inputs are coupled into a combined control input, which is optimized by the optimal 
control.

A number of control inputs are computed by the optimal control, while other control inputs are 
determined directly from other control inputs, external inputs or states:

Computed by the optimal control (see Figure 8.18a): the valve positions for heating and •	
cooling with the boiler (vpl, vpu), heat pump (vphp

* ), and heat exchanger (vphe
* ), the window 

apertures (Aplsd, Apwsd) and the option ventilation with heat recovery (opvhr)
Determined directly from other control inputs, external inputs, or states (see Figure 8.18b): •	
the valve position for CO2 supply (vpCO2

) and the thermal screen closure (Clsc)

In Figure 8.2 this difference is denoted by dotted boxes (set by optimal control) and dash-dotted 
boxes (directly derived from other inputs).

Control Inputs Set by Optimal Control
The control inputs computed by the optimal control are combined into two control inputs:

The combined heating valve position •	 vph [–1,2], which determines the valve positions vpl, 
vpu, vphp

* , and vphe
* , as well as the option ventilation with heat recovery opvhr

The combined window aperture •	 Apcsd [0,2], which determines the window apertures Aplsd 
and Apwsd
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These combined optimal control inputs (vph, Apcsd) are computed by the receding horizon optimal 
controller.

The relations between the combined control inputs computed by the optimal control and the 
control inputs used by the model are shown in Figure 8.18a. The actual control inputs vphp and vphe 
used by the model are derived from the computed control inputs vphp

*  and vphe
*  with Equations 8.88 

and 8.97.
For heating/cooling, the combined heating valve position vph [–1,2] is used. It is subdivided into 

the valve positions for heat exchanger vphe
* , heat pump vphp

* , lower net vpl, and upper net vpu (see 
Figure 8.19). The idea of this subdivision is that heating and cooling at the same time makes no 
sense, so this should be ruled out. When heating is needed, it should preferably be done at the lowest 
cost. Therefore the first choice is heating with the heat pump and the second choice is heating with 
the boiler if the heat pump cannot supply enough heat.

When ventilation is needed to decrease humidity, but not to decrease temperature (as at times of 
heat demand), ventilation with heat recovery should be used. This is determined by the use of heat 
pump or boiler (vph > 0). When ventilation with heat recovery is used, 90% of the sensible heat is 
recovered. Its value is either 0 (false) or 1 (true).

For ventilation the combined window aperture Apcsd [0,2] is used. It is subdivided into the lee-
side Aplsd and windward-side Apwsd window aperture (see Figure 8.20). To prevent the wind from 
blowing through the greenhouse first the lee-side windows are opened, and if more ventilation is 
needed, the windward-side windows are opened.

Control Inputs Directly Derived from Other Inputs
The control inputs for CO2 supply (vpCO2

) and thermal screen closure Clsc are determined directly 
from other control inputs, external inputs, or states. The relations are shown in Figure 8.18b.

In the solar greenhouse CO2 supply is independent from boiler operation. The valve position for 
CO2 supply vpCO2

 is controlled with a proportional controller. The idea is that CO2 supply is only 
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FIGURE 8.18  Relations control inputs.
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FIGURE 8.19  Combined heating valve position vph, with vphe
*  (– ·· –), vphp

*  (– –), and {vpl, vpu} (–·–).
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needed during daytime, when there is radiation, because then it is needed for photosynthesis. If the 
windows are opened, CO2 is ventilated out, so it makes sense to restrict the CO2 supply depending 
on the window aperture. CO2 supply is only needed when the CO2 concentration in the greenhouse 
is below its maximum value. The CO2 setpoint CCO ,a

ppm,sp

2
 (μmol[CO2] mol−1[air]) is determined directly 

based on the combined window aperture Apcsd and the incoming short-wave radiation Io

C t
C

Ap
C

CO ,a
ppm sp CO ,a

ppm csd
CO ,a
ppm

2
2 2,

,max

( )
(

=
− ⋅

4
,,max ,min )− >

=









C I

I

CO ,a
ppm

2 0

0

0

0 0
	

(μmol[CO2] mol–1[air])  (8.167)
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in which CCO ,a
ppm

2

,min = 320 and CCO ,a
ppm

2

,max = 1000 (μmol[CO2] mol−1[air]) as given in Table 8.12. This 
valve position is constrained to the range [0,1]. The valve position for CO2 supply vpCO2

 is still partly 
set by the optimal control, because it depends on Apcsd.

With this controller a setpoint CCO ,a
ppm,sp

2
 of 1000 μmol[CO2] mol−1[air] is used when the windows 

are fully closed (Apcsd = 0), and a setpoint of 660 μmol[CO2] mol−1[air] when the windows are fully 
opened (Apcsd = 2). This setting was chosen because according to Nederhoff (1994) a setpoint of 
twofold the outdoor concentration (of about 320 μmol[CO2] mol−1[air]) already has a large positive 
effect on the photosynthesis rate.

The thermal screen is used to decrease heat loss during cold periods with little solar radiation. 
The screen is opened and closed in about 3 min, which is much smaller than the time interval ts,u 
for the control inputs of 30 min. The “rules” for the control are quite straightforward (see Section 
8.4.4.1), similar to those used in greenhouse horticulture. The thermal screen closure Clsc is deter-
mined directly from the screen condition csc ∈ {0,1}. This screen condition is a discrete switch, 
which can be seen as an external input d, which only depends on the outdoor shortwave solar radia-
tion Io and the temperature To of the outdoor air. The value of the screen closure Clsc in the optimal 
control is 0 (open) or 0.97 (closed, with a 3% crack opening to carry off moisture).

8.7.3.1 I nitial Guess Control Inputs
Control input trajectories u* (Equation 8.152) that minimize the cost function value J have to be 
found. Only two control inputs are set by the optimal control (Section 8.7.3). Each control input 
consists of 48 values (Section 8.7.2), so at each receding horizon time step 96 values have to be com-
puted. This can be done with several optimization methods. In this research, a conjugate gradient 
algorithm is used. This is the first algorithm for the indirect method described in Section 4.3.1. The 
optimization is repeated with the sampling interval ts. The optimization starts with initial values u0 
for the control input trajectories and changes these values until the minimum cost function value J 
is found. By default, the optimization for the next interval is started with the values for the control 

Ap lsd

Apwsd

Apcsd

0 21

1

0

FIGURE 8.20  Combined window aperture Apcsd, with Aplsd (−−) and Apwsd (− · −).
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inputs found in the previous optimization, from which the first value is omitted, and the last value 
is equal to the last but one.

Because the model used is highly nonlinear, the search procedure is likely to find a local min-
imum instead of the global minimum when the search is started from ill-chosen initial values. 
Therefore a good initial guess for the control input trajectories u0 is needed. The procedure sug-
gested here is partly based on a priori knowledge of the system, and partly on common sense. It is 
called the grid search method, and was first described in Van Ooteghem et al. (2003). An example 
of the procedure is given in Section 8.7.3.3.

At first the initial values for the control input trajectories vph [−1,2] and Apcsd [0,2] are kept 
constant. This means that during the whole control horizon tf (one day), the same values are used 
for each control input. With two (constant) control inputs, it is easy to imagine a grid spanned over 
all possible control input values. The control space is discretized by restricting the possible values 
of the control inputs vph and Apcsd to {–1 –0.5 0 0.5 1 1.5 2} and {0 0.5 1 1.5 2}, respectively. With 
weather predictions for the next day (external inputs d), the influence of the control (control inputs 
u) on the greenhouse climate (states x) and the cost function value J can be simulated. If the cost 
function values J(u) are plotted against the control values vph and Apcsd, a surface is formed. The 
control input combination u0 with the lowest cost function value Jmin is chosen. This is a good first 
guess for the control input values.

Because the control horizon tf is one day, it may not always be desirable that the initial guesses 
for the control values are constant during this whole day. Therefore, so-called state dependent con-
trol input bounds are introduced, to rule out control values that make no sense based on knowledge 
of the system.

8.7.3.2  State-Dependent Control Input Bounds
Based on a priori knowledge of the system, bounds are set on the initial guess for the control inputs 
to push the optimal control solutions into the correct direction. These bounds are based on the 
initial states x for the time interval ts,u (30 min) for the control inputs. From these states, the values 
of the indoor air temperature Ta and the relative humidity of the indoor air RHa (based on the H2O 
concentration of the indoor air CH2O,a) are used to determine the input bounds. The minimum and 
maximum values for Ta and RHa are the boundary values given in Table 8.12. For the combined 
window aperture Apcsd also the screen condition csc is used, which depends solely on the external 
inputs d (Equation 8.48).

The control input bounds on the combined heating valve position vph [−1,2] are defined by

	

vp t T T

vp t T T

h a a

h a
ref

min min

max

( )

( )

= <

= <

0

1 aa a

h a a

≤

= <

T

vp t T T

max

max max( ) 0
	

(8.169)

This can be interpreted as

No cooling with the heat exchanger if temperature •	 Ta is below its lower bound Ta
min

No heating with the boiler if temperature •	 Ta is above the reference temperature Ta
ref

No heating with the heat pump or the boiler if temperature •	 Ta is above its upper bound Ta
max

The control input bound on the combined window aperture Apcsd [0,2] is defined by

	

Ap t T T RH RH

Ap

csd
max

a a
ref

a a

csd
ma

and( ) . max= < <1 0 9
xx

sc( ) .t c= =0 1 1 	
(8.170)
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This can be interpreted as:

Less ventilation if temperature •	 Ta is below the reference temperature Ta
ref for the tempera-

ture integral and relative humidity RHa is below its upper bound. A 10% safety margin is 
used for the upper bound of the relative humidity, because it can increase very fast and the 
time interval ts,u for the control inputs is relatively large (30 min).
Much less ventilation when the screen is closed (as is done in greenhouse horticulture •	
practice). The influence of the climate above the screen on the climate below the screen is 
small if the screen is closed (only 3% crack opening; see Section 8.4.4.1). Furthermore, this 
prevents a sudden drop in temperature or humidity when the screen is opened.

8.7.3.3 E xample Grid Search
The control inputs ugrid

*  are determined with the grid search method with state-dependent control 
input bounds (see Sections 8.7.3.1 and 8.7.3.2). In Figure 8.21, the resulting cost function values are 
given for an open loop computation for a winter and a summer day, where the best control input 
combinations found are denoted with a star (★):

	

winter: and

summer: and
h csd

h c

vp Ap

vp Ap

= =
= −

1 5 0 5

0 5

. .

. ssd = 2 0.
	

which yields the cost function values Jgrid = 10.26 for the winter day and Jgrid = −20.79 for the sum-
mer day.

The following can be observed for the winter day:

The combined heating valve position •	 vph = 1.5 corresponds to the valve positions vphp
*  = 1, 

vpl = vpu = 0.5 and vphe
*  = 0. This means that the greenhouse is heated with the heat pump, 

and additional heat is supplied by the boiler. The heat exchanger is off.
The combined window aperture •	 Apcsd = 0.5 corresponds to the window apertures Aplsd = 
0.5 and Apwsd = 0. This means that the lee-side window is partly opened. Ventilation with 
heat recovery is used (opvhr = 1), because the greenhouse is heated (vph > 0), which means 
there is less heat loss due to this ventilation compared to normal ventilation.
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FIGURE 8.21  Cost function values Jgrid (grid of 5 × 7 values).
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From the responses (not shown here), it is found that the boiler is only used when the temperature of 
the indoor air is below its reference temperature ( )T Ta a

ref≤ . Because the screens are closed (csc = 1) 
until 9:30 and from 16:30, the lee-side window aperture is limited to Aplsd = 0.1 for most of the time. 
This is the result of the state-dependent control input bounds.

For the summer day we find:

The combined heating valve position •	 vph = −0.5 corresponds to the valve positions vphp
*  = 

0, vpl = vpu = 0 and vphe
*  = 0.5. This means that the greenhouse is cooled with the heat 

exchanger. The heat pump and the boiler are off.
The combined window aperture •	 Apcsd = 2 corresponds to the window apertures Aplsd = 1 
and Apwsd = 1. This means that the windows are fully opened on both sides. Ventilation 
with heat recovery is not used (opvhr = 0), because the greenhouse is cooled (vph ≤ 0).

From the responses (not shown here), it is found that the heat exchanger is only used when the 
temperature of the indoor air is above its minimum value ( )T Ta a

min≥ . This is the result of the state, 
dependent control input bounds.

8.7.4 E xternal Inputs: The Weather Predictions

For the current weather conditions and the weather predictions, the SELyear weather data is used 
(Breuer and Van de Braak, 1989). The SELyear data consists of Dutch climate data on selected 
months (Jan. 1971, Feb. 1973, etc.) that are fairly representative for the Dutch climate. The SELyear 
weather data contains hourly values for Io, vo, To, To

wb, and Tsk. The relative humidity RHo of the out-
door air is determined from the temperatures of the outdoor air To (dry bulb) and To

wb (wet bulb) (see 
Appendix B). For the CO2 concentration of the outdoor air no value is given in the SELyear data, so 
it is assumed that CCO ,o

ppm

2
= 320 μmol[CO2] mol−1[air] (CCO2,o = 585.6 × 10−6 kg[CO2] m−3[air]). This 

data is shown in Figure 8.22.
For the weather prediction a so-called lazy-man weather prediction is used. Tap et al. (1996) used 

this method to predict the weather conditions during the next hour. They assumed that the weather 
conditions during the next hour were the same as the weather conditions during the past hour.
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Now a weather prediction for one day is needed, because our control horizon tf is one day. 
Assuming that the predicted weather conditions d( , )t τ  on the current day at time t are equal to the 
weather conditions d(t, t − tf + τ) of the previous day would be too crude an assumption, therefore a 
small correction is made. The weather conditions d(t, t − tf + τ) of the previous day are adjusted to 
match the current weather conditions d(t, t0), where τ ∈ [t0, tf].

	
d d d d( , ) ( , ) ( ( , ) ( , ))t t t t t t t t t tτ τ= − + + − − + ∀f f0 0 ττ ∈[ , ]t t0 f 	 (8.171)

i.e., if the current outdoor temperature T t to
C C( , )0 15= °  and the temperature at the same time one 

day earlier was T t t t to
C

f C( , )− + = °0 10 , then the correction (offset) for the whole temperature trajec-
tory of the previous day T t t to

C
f( , )− + τ  is 5°C.

Equation 8.171 is used for the weather conditions: vo, To, To
wb, Tsk, and CCO2,o. The wind speed vo is 

set to zero if Equation 8.171 gives a negative value. For the outdoor shortwave solar radiation Io, the 
value of the previous day is used without correction, because the correction would lead to incorrect 
radiation profiles.

In the receding horizon concept, this adjustment is made at every sampling interval ts = 30 min 
for the receding horizon controller to obtain a correction for the weather prediction. The weather 
conditions (hourly values) are therefore interpolated by linear interpolation.

Unless it is otherwise stated, the weather d is not equal to the weather prediction d in the year-
round computations.

8.7.5  Initial Values States

In the closed loop computation with receding horizon optimal control (RHOC), the control input 
trajectories are determined again for every sampling interval ts for the receding horizon controller 
based on the initial state values x0 and the expected external inputs d (the weather prediction, see 
Section 8.7.4). The initial state values x0 for the next time interval are determined with the green-
house-with-crop model, where instead of the weather prediction d, the actual weather d is used. 
Because these external inputs are different from the ones on which the computation was first based 
( )d d≠  , this will cause the state values x to deviate from the expected state values.

8.7.6 O ptimization Method: Gradient Search

The initial guess for the control inputs is found with the grid search method as described in Section 
8.7.3.1 with the state-dependent control input bounds given in Section 8.7.3.2. This results in dis-
crete values for the control inputs vph and Apcsd ({–1 –0.5 0 0.5 1 1.5 2} and {0 0.5 1 1.5 2}, respec-
tively). Each control input trajectory consists of t

t
f

s,u
= 48 values, so a total of 96 values has to be 

determined by the optimal control. This method is used for the computation of the control input val-
ues at every full hour. The optimal control input trajectories ugrid

*  correspond to the minimum cost 
function value Jgrid found with the grid search method. This grid search method is a (rather rough) 
global minimization method. The gradient search method uses the conjugate gradient algorithm as 
described by Pagurek and Woodside (1968). The optimal control input trajectories ugrad

*  correspond 
to the minimum cost function value Jgrad found with the gradient search method. Because the model 
used in this research is highly nonlinear, this nonlinear iterative conjugate gradient method cannot 
guarantee that the global minimum is found. A wisely chosen starting point for the control input 
values u* increases the probability that the global minimum for the cost function value J is found. 
The results ugrid

*  of the grid search method are therefore used as an initial guess for the control input 
values. Resetting the algorithm from time to time will further increase this probability. By default 
the control input results of the previous optimization (shifted over the sampling time ts) are used as 
the initial guess for the next time interval. At every full hour, the control inputs ugrid

*  are determined 
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again, and whenever the cost function value Jgrid is lower than Jgrad, these control inputs are used as 
the new initial guess, thus reinitializing the gradient search. This gradient search method is a local 
minimization method. The combination of the gradient search method with the grid search method 
(reset) is meant to give less local minima results.

The year-round RHOC computation has first been performed with the grid search method (Van 
Ooteghem et al., 2004, 2005). This was done to get an idea of the year-round values with a fast com-
putation (about 8 hours). These results were also used to determine the aquifer energy content curve 
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(Section 8.7.1.1). Then the gradient search method was applied (Section 8.7.7; Van Ooteghem et al., 
2006), which was more time consuming (about 8 days).

It was found that the grid search method with state-dependent input bounds already gives good 
results. The gradient search method further improves these results, as it has more freedom in the 
control input values.

8.7.7 R esults RHOC with Gradient Search

Instead of the grid search method, the “real” optimal control is now used. Starting from the initial 
guess for the control input values with state-dependent control input bounds (the results of the 
grid search), the control input trajectories are computed by solving the optimal control problem in 
Equation 8.152. The receding horizon control principle is explained in Section 4.3.1. The weather 
prediction d  that is used to compute the state predictions is not equal to the actual weather d that is 
used to compute the actual state values.

The optimization is done with a conjugate gradient method, searching for the best possible con-
trol inputs minimizing the cost function. This method has proven to be effective for conventional 
greenhouse control and several other applications (Van Willigenburg et al., 2000). In Figures 8.23 
and 8.24, the results for one week are shown. In Figure 8.23, the external inputs (weather data) d 
and the optimal control inputs u* are shown. Figure 8.24 shows the resulting greenhouse conditions, 
energy use, crop growth, and costs. There are some warmer and some colder days in this week. The 
relative humidity outdoors is average to high (above 50%) and the temperature outdoors varies from 
10°C at night to 27°C during daytime. On the colder days more heating is needed and less ventila-
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tion (with heat recovery) is used. On the warm days the greenhouse is cooled and there is more ven-
tilation (without heat recovery). During the cold nights (days 4 and 5) the screens are closed.

In the year-round simulations with the receding horizon optimal controller, the actual weather 
is different from the forecasted weather that is used for the online optimal control computations. 
From these year-round computations the use of the heat pump, boiler, and heat exchanger are evalu-
ated in the different seasons of the year. The year-round results are therefore split up per season:

Winter	 (Dec. 21–Mar. 19)•	
Spring	 (Mar. 20–Jun. 20)•	
Summer	 (Jun. 21–Sep. 22)•	
Fall	 (Sep. 23–Dec. 20)•	

The results of the RHOC computations with gradient search for fall, winter, spring, and summer 
are given in the Figures 8.25, 8.26, 8.27, and 8.28. These figures show control inputs and the cor-
responding outputs.

Because it is difficult to compare the numerical values for the control inputs and the outputs from 
the figures, average values and ranges are given in Tables 8.13a and 8.13b. In Table 8.13c, the actual 
obtained resource use and yield are given. All values are all taken over the whole season.

The heat pump (vphp) is used year-round, either to increase temperature or to decrease humidity. 
In fall and winter, the boiler (vpl, vpu) is used to supply additional heat to the greenhouse, because 
the capacity of the heat pump is limited, while in spring and summer it is used less often. The ther-
mal screen (Clsc) is closed depending on the outdoor temperature and radiation. In fall and winter, 
the thermal screen (Clsc) is closed almost every night, and sometimes stays closed during daytime if 
outdoor temperature and radiation are low. In the second half of spring and in summer, the thermal 
screen rarely closes because outdoor temperature and radiation increase. The heat exchanger (vphe) 
is frequently used to decrease the temperature in spring and summer but seldom in fall and winter. 
The windows (Aplsd, Apwsd) are mainly opened to decrease humidity, because the temperature can be 
decreased with the heat exchanger. When ventilation is used in fall and winter, it is mainly ventila-
tion with heat recovery (opvhr, indicated by dashed lines for Aplsd and Apwsd). Normal ventilation is 
only used at times of heat surplus, so when the heat exchanger is used. In spring and summer, ven-
tilation with heat recovery (opvhr) is used less often, so more normal ventilation is used. In summer, 
the windows are also used to decrease temperature. The CO2 supply (vpCO2

) is used whenever there 
is radiation. When the windows are opened, the CO2 supply is limited. In the second half of spring 
and in summer, the uptake by the crop of CO2 leads to low CO2 concentrations in the greenhouse. 
The temperature Ta seldom exceeds its bounds. At times of high radiation, temperature is allowed 
to rise, because this yields a higher biomass increase. The average temperature deviation ∆Ta

TI over 
six days is small. It never reaches its bounds of ±6°C; the maximum deviation is 2°C. The reference 
temperature Ta

C,ref of 19°C is well met in all seasons. The average temperatures are 19.22°C (fall), 
19.11°C (winter), 19.10°C (spring), and 19.29°C (summer). The relative humidity RHa exceeds its 
bound quite frequently, although the optimal control is doing everything it can (heating, ventilat-
ing) to decrease it. The main biomass increase ΔB is found in spring and summer, which is obvious 
due to higher radiation in these seasons. The main gas use is found in fall and winter due to the low 
outdoor radiation and temperature.

8.7.7.1	A  Priori versus A Posteriori Results
The costs of the year-round computation with RHOC for the solar greenhouse are evaluated from 
Table 8.14. Tables 8.14a and 8.14b present the running costs, penalties, terminal costs, and cost 
function values.

The values reported in Table 8.14 are the averages over the whole season of the costs integrated 
over a day (tf) evaluated at each half-hour (ts). There are two ways of presenting the costs, such 
as running costs, penalties, terminal costs, and cost function values. The so-called a priori costs 
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FIGURE 8.25  Computation RHOC with gradient search, fall.
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FIGURE 8.26  Computation RHOC with gradient search, winter.
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FIGURE 8.27  Computation RHOC with gradient search, spring.
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FIGURE 8.28  Computation RHOC with gradient search, summer.
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(Table 8.14a) are the values obtained during the optimization using the predicted weather d. Once 
the controls u* are computed, they are applied to the greenhouse using the actual weather d, which 
in this case was the SELyear weather data. Because the actual weather deviates from the predicted 
weather, the actually attained temperatures, humidities, and other states deviate from what was 
expected. From these actually attained state values the costs are computed afterward, which gives 
the a posteriori costs (Table 8.14b).

The reason for doing this is to see in what respect the realized costs deviate from the ones 
expected during the optimization. This is important if the a priori results are going to be used as a 
prediction of the costs for a presentation tool for the grower.

The deviation between the a priori values (Table 8.14a) and the a posteriori values (Table 8.14b) 
is partly due to the fact that the a priori results are open-loop results whereas the a posteriori results 
are closed-loop (feedback) results, and partly due to the difference between the actual weather d 
and the weather predictions d. The main deviations are found in the running cost ∫LQ and in the 
terminal cost ΦTI, while for the other costs the deviations are smaller. The a posteriori running costs 
∫LQ for energy use are much higher in fall and winter, which indicates that more energy is used than 

TABLE 8.13
RHOC Solar Greenhouse with Gradient Search, Averages, and Ranges

(a) Averages of Control Input Values

Aplsd Apwsd opvhr
† Clsc vpCO2

vpl, vpu vphp vphe

Winter 0.56 0.20 92% 0.72 0.09 0.35 0.89 0.02

Spring 0.74 0.27 69% 0.25 0.11 0.09 0.62 0.15

Summer 0.87 0.50 61% 0.05 0.12 0.07 0.54 0.28

Fall 0.62 0.23 92% 0.51 0.09 0.29 0.88 0.01

Year-round 0.70 0.30 78% 0.37 0.10 0.20 0.73 0.12

†	 opvhr is given as the percentage of the cases where ventilation with heat recovery is used when there is ventilation (Apcsd ≠ 0).

(b) Ranges of Output Values

Ta RHa CCO ,a
ppm

2
Qused ΔB

min max min max min max max max

Winter 5.7 35.9 36.3 96.6 320.0 1001.0 165.9 3.8

Spring 10.2 38.4 37.4 94.4 320.5 1000.8 150.4 28.9

Summer 11.4 30.3 49.1 96.7 320.6 1024.1 148.6 27.5

Fall 4.9 32.6 39.4 93.3 320.5 1000.7 158.4 5.9

(c) Results, A Posteriori Values

Fgas 
(m3 m−2)

ΔB 
(kg m−2)

ΦΦCO2

max  
(kg m−2)

Fas_o 
(m3 m−2)

Qas_o 
(W m−2)

Winter 12.1 = 11.3 + 0.8 3.2 32.9 9.6 × 104 12.8 × 107

Spring 3.4 = 2.9 + 0.5 28.8 42.8 9.3 × 104 15.4 × 107

Summer 2.6 = 2.1 + 0.5 27.5 50.3 13.5 × 104 9.4 × 107

Fall 9.8 = 9.0 + 0.8 5.6 34.2 8.2 × 104 9.9 × 107

Year-round 27.9 = 25.3 + 2.6 65.1 160.2 40.6 × 104 47.5 × 107

Note:	 Fgas is given as total gas use = gas use by boiler + gas use by heat pump.
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initially expected. The a posteriori terminal cost ΦTI for the temperature integral is much higher in 
all seasons, which indicates that the realized average temperature over a period of 6 days is different 
from what was initially expected. This was likely to happen, because ΦTI is a soft terminal con-
straint: any deviation of the average temperature from the target value Ta

C,ref C= °19  at time tf (the 
end of the receding horizon) is penalized. When the horizon is shifted, this terminal constraint is no 
longer imposed in the cost function, because it is shifted in time along with the receding horizon. It 
is therefore unlikely that it will be maintained in the receding horizon approach. These deviations 
in ΦTI strongly affect the cost function value J, which is higher in all seasons.

It is, of course, of interest to know the consequences of these deviations. First, it should be stated 
that in general ΦTI will never be equal to zero. To maintain ΦTI = 0 at all times would mean either 
to keep the temperature constant, or to have a fixed periodic symmetrical pattern. Because the tem-
perature integral is meant as a primitive means to ensure proper crop development and crop quality, 
deviations might result in less development or quality, but the extent of this is unknown. This holds 
for any control with temperature integration.

From the a posteriori costs it can be seen that

The temperature penalty is always low, which indicates that the temperature bounds are •	
seldom exceeded.
The relative humidity bound is exceeded more frequently in summer.•	
The running cost for energy (and thus the energy use) is much higher in fall and winter •	
than in spring and summer, because in these seasons the greenhouse needs to be heated.
The terminal cost for the biomass increase is low in fall and winter and high in spring and •	
summer. This shows that the main crop growth is found in the seasons with high radiation, 
irrespective of temperature and humidity conditions in the greenhouse.
The terminal cost for the temperature integral—indicating how well the average tempera-•	
ture equals the reference temperature Ta

C,ref (19°C) over a period of 6 days—is higher in 

TABLE 8.14
Costs RHOC Solar Greenhouse with Gradient Search

(a) Average Costs, A Priori Values

∫PTa ∫PRHa ∫LQ ΦB ΦTI J

Winter 0.01 3.20 5.90 −3.25 0.83 6.69

Spring 0.00 2.04 1.79 −24.26 2.71 −17.72

Summer 0.00 2.64 1.32 −22.65 7.69 −10.99

Fall 0.00 2.84 4.58 −5.49 0.83 2.76

Year-round 0.00 2.67 3.35 −14.14 3.08 −5.04

Note:	 ∫PTI = 0 and ∫Paq = 0.

(b) Average Costs, A Posteriori Values

∫PTa ∫PRHa ∫LQ ΦB ΦTI J

Winter 0.01 2.72 8.36 −2.52 7.65 16.23

Spring 0.01 3.45 2.21 −23.60 7.28 −10.65

Summer 0.00 5.73 1.69 −22.23 10.44 −4.37

Fall 0.05 3.21 6.76 −4.81 7.44 12.65

Year-round 0.02 3.80 4.69 −13.52 8.22 3.21

Note:	 ∫PTI = 0 and ∫Paq = 0.
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summer compared with the other seasons. The average temperature over the whole season 
is, however, close to the reference temperature Ta

ref.
The aquifer energy content •	 Eaq stays within its bounds all year.
The resulting cost function value •	 J is lower in spring and summer than in fall and winter. 
This is mainly due to the lower energy use and the higher biomass increase.

To investigate the influence of the weather prediction on the a priori and a posteriori results, a year-
round computation is performed where the weather prediction d is equal to the actual weather d. 
These results are indicated with “gradient*” in Table 8.15.

The deviation between the a priori and a posteriori costs for the gradient* search are entirely 
due to the fact that the a priori costs are open-loop results, and the a posteriori costs are closed-loop 
(feedback) results. Although the gradient* version uses the actual weather for both the prediction 
and the actual results, the a priori and a posteriori costs differ. In the receding horizon principle, the 
actual states will be equal to the predicted states when there is no disturbance for the open-loop (a 
priori) results. However, when the horizon is shifted, new weather information becomes available, 
which may cause the optimal control to change the control inputs, leading to different closed-loop 
(a posteriori) results.

Comparing the a posteriori and the a priori costs in Table 8.15, it is found that:

The influence of the weather prediction is the highest on the relative humidity penalty •	
∫PRHa and the terminal cost ΦTI for the temperature integral.
The a posteriori terminal cost •	 ΦTI for the temperature integral is much higher in all sea-
sons. This is because it is a soft terminal constraint, which will always deviate from the 
target value ( )Ta

C,ref C= °19  when the receding horizon is shifted. As expected, the devia-
tions with actual weather (gradient*) are smaller than with predicted weather (gradient).

TABLE 8.15
Differences between A Priori and A Posteriori Results

∫PRHa ∫LQ ΦB ΦTI J

Winter
Gradient 3.20 2.72 5.90 8.36 −3.25 −2.52 0.83 7.65 6.69 16.23

Gradient* 3.20 1.95 5.33 8.25 −3.57 −2.76 1.33 6.47 6.31 13.93

Spring
Gradient 2.04 3.45 1.79 2.21 −24.26 −23.60 2.71 7.28 −17.72 −10.65

Gradient* 2.71 2.10 1.15 1.63 −24.46 −24.31 1.35 3.58 −19.25 −17.01

Summer
Gradient 2.64 5.73 1.32 1.69 −22.65 −22.23 7.69 10.44 −10.99 −4.37

Gradient* 2.66 2.54 0.86 1.22 −22.56 −22.57 5.41 6.64 −13.63 −12.18

Fall
Gradient 2.84 3.21 4.58 6.76 −5.49 −4.81 0.83 7.44 2.76 12.65

Gradient* 2.57 1.72 4.35 6.29 −5.34 −4.88 1.19 5.28 2.77 8.41

Year-Round
Gradient 2.67 3.80 3.35 4.69 −14.14 −13.52 3.08 8.22 −5.04 3.21

Gradient* 2.78 2.08 2.88 4.28 −14.21 −13.87 2.35 5.49 −6.20 −2.02

Note:	 Black = a priori values; gray = a posteriori values; gradient* = gradient search, in which d d= ; ∫  PTI = 0, ∫  PTa, and 
∫  Paq are very small.
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All a posteriori costs are higher, except for the relative humidity penalty •	 ∫PRHa. The rela-
tive humidity penalty is much higher a posteriori than a priori in summer for the gradient 
search, while it is smaller for the gradient* search.
For the gradient search with and without weather prediction, the a posteriori running costs •	
for energy use ∫LQ are much higher in winter and fall, causing a higher year-round energy 
use than initially anticipated.

The weather prediction is found to influence all results. Little deviation is seen in the terminal 
cost ΦB for biomass increase, because the biomass increase ΔB mainly responds to solar radia-
tion Io. In the weather prediction (in this study), the solar radiation is merely shifted over a day, 
so that the prediction and the actual weather have practically the same radiation sum year-round. 
Nevertheless, with a perfect weather prediction ( )d d=  the results are better. A real weather fore-
cast will probably lead to larger deviations in the biomass increase than the weather prediction 
used here.

The difference between the a priori costs of the version with and without weather prediction (J = 
−5.04 vs. −6.20) is due to the difference between the weather prediction and the actual weather. This 
difference is found to be quite small compared with the influence of the terminal constraint on the 
temperature integral.

The difference between the a priori and the a posteriori costs of the gradient* search (J = −6.20 
vs. −2.02) is entirely due to the receding horizon concept, because ( )d d= . The only cost that can 
change much when the horizon is shifted is the soft terminal constraint of the temperature integral. 
The optimal control inputs are adjusted when the horizon is shifted to minimize the terminal cost 
of the temperature integral.

8.7.7.2 I nfluence of the Separate Solar Greenhouse Elements
The solar greenhouse has the following enhancements compared with a nonsolar greenhouse:

Heat pump, heat exchanger, and aquifer•	
Ventilation with heat recovery•	
CO•	 2 separate from boiler operation
Zigzag cover•	
Thermal screen•	

The extra devices that are evaluated here are the heat pump, heat exchanger and aquifer, ventila-
tion with heat recovery, and CO2 supply independent of boiler operation. These are called the solar 
greenhouse elements.

The closest to a real comparison between the solar greenhouse and a nonsolar greenhouse can 
be seen when comparing the solar greenhouse with all solar greenhouse elements with a green-
house without all these features. The nonsolar greenhouse does have a zigzag cover and a thermal 
screen. Both the solar and the nonsolar greenhouse are controlled by optimal control to obtain a 
fair comparison.

We found that the gas use Fgas is decreased by 52%, the biomass increase ΔB is higher (139%), 
the CO2 use ΦCO

max
2
 is much higher (352%), and more ventilation is used Fas_o (118%) with much less 

energy loss Qas_o (32%). This shows that it is possible to obtain a higher biomass increase (39% 
more) with a much lower gas use (52% less). These benefits compensate for the higher use of CO2 
(252% more).

The solar greenhouse uses 27.9 m3 m−2 gas, 160.2 kg m−2 CO2, and it produces 65.1 kg m−2 bio-
mass per year. The nonsolar greenhouse with CO2 from the boiler uses 57.9 m3 m−2 gas, 45.5 kg m−2 
CO2, and it produces 46.7 kg m−2 biomass per year.
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Additional computations were done to distinguish the influence of the separate solar greenhouse 
elements (Van Ooteghem, 2007). It was found that

The use of the heat pump, heat exchanger, and aquifer decreases the gas use by 23%. This •	
is due to the use of the heat pump which uses less gas (COP ≈ 5).
Ventilation with heat recovery decreases the gas use by 26%. This is due to the decrease of •	
the energy loss through ventilation by 59%.
The use of CO•	 2 supply independent of boiler operation leads to a much higher CO2 use 
ΦCO

max
2
 (289%), which leads to a higher biomass increase ΔB (137%).

From this we can conclude that the main gas use reduction is due to the ventilation with heat 
recovery.

8.7.8 C onclusions and Discussion

It is found that receding horizon optimal control of the solar greenhouse can be used, even with a 
nonlinear, complex model.

The Solar Greenhouse: Does It Use Less Gas?
Yes, it does! A gas use reduction of 52% can be accomplished. Furthermore the total biomass weight 
is increased by 39%, which is partly due to the possibility to use (252% more) free CO2. It is found 
that the main gas use reduction is due to the ventilation with heat recovery.

These values are based on a comparison between a nonsolar greenhouse where the CO2 supply 
depends on boiler operation with the solar greenhouse, including all its enhancements. It should be 
noted that, unlike common practice, this nonsolar greenhouse is controlled by optimal control as 
well. Because the same requirements were put on maintaining humidity and temperature integral, 
it is likely that this greenhouse uses more gas and gives a better yield than greenhouses in practice, 
which are controlled by classical controllers. This means that the yield improvement expected from 
the solar greenhouse with respect to common practice is even higher than presented here, at the 
expense of somewhat less gas use reduction. In all cases, the constraints for crop development and 
crop quality are maintained far better than in current practice.

A Priori versus A Posteriori Results
The a priori results are open-loop results, and the a posteriori results are closed-loop (feedback) 
results. The open-loop results will always differ from the closed-loop results. The results in Section 
8.7.7.1 indicate that part of the open-loop (a priori) results are not achieved in the actual closed-loop 
(a posteriori) results, even when the actual weather is equal to the predicted weather ( )d d= . When 
the a priori results are used in a presentation tool for the grower, these results should be carefully 
interpreted because they may be delusive.

The deviations between the a priori and a posteriori results of the costs ∫L are mainly due to the 
difference between the predicted weather d and the actual weather d, which stresses the importance 
of accurate weather predictions. It must be noted that the “lazy man weather prediction” as used in 
this chapter is not a very accurate weather prediction. The deviations between the forecasted and 
the actual weather are probably smaller in practice, which will lead to smaller differences between 
the a priori and a posteriori results. Better weather predictions are available from meteorological 
institutes. These should be used in a real implementation of this optimal control.

The deviations in the terminal costs Φ are mainly the result of the open loop results not being 
achieved due to shift of the horizon. This is clearly found in the terminal cost ΦTI, which is a soft 
terminal constraint: any deviation from the target value at the end of the receding horizon is penal-
ized. The terminal constraint will no longer be maintained when the receding horizon is shifted. 
Because the difference in the costs is quite large, it is important to further investigate this effect. 
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The same principle holds for the terminal cost ΦB, but because the biomass increase ΔB mainly 
responds to solar radiation Io, which is shifted over a day in the weather prediction d, the deviation 
is small.

Toward a Presentation Tool
A good quality of optimal control is that it allows freedom to individual growers to make their own 
judgment, and to adjust the weights in the cost function according to their entrepreneurship and 
experience. An important advantage over classical greenhouse climate control is that these weight 
factors have a clear and evident meaning. Balancing the weight factors in the cost function, however, 
is a delicate matter. In the end, the choice of the weight factors depends on what the grower thinks 
is important. If the grower has to set these weight factors it is important that a presentation tool is 
available that shows the results of these settings in the long run. With the optimal control approach it 
is possible to show such results. It would be possible to advise the grower on these settings based on 
weather predictions and a reference temperature for the temperature integral. This is an interesting 
subject for further research.
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Appendices

A. S olar Radiation Parameters

Often the measured data only holds the outdoor shortwave solar radiation Io (W m–2[gh]). The frac-
tions PAR fpar and diffuse PAR fdifpar (–) in the outdoor shortwave solar radiation, and other terms 
like the transmittance τdirR of the roof for direct radiation have to be computed. These parameters 
depend on the position of the sun in relation to the location of the greenhouse (Goudriaan and Van 
Laar, 1994) and on time.

The location of our greenhouse is given by its latitude λgh = 52° and longitude φgh = 4.2°. With 
the day number dayNR [1365] and the hour of the day hour [0,23], the solar parameters, such as the 
position of the sun (azimuth αsun and elevation βsun), the sine of the solar elevation sin β and the solar 
constant solarC can be determined.

A.1  Solar Parameters
The declination of the sun δsun with respect to the equator is given by
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where dayNR [1365] is the day number. The angle of 23.45° is the tilt of the Earth axis with regard 
to the plane in which the Earth moves around the sun.

The elevation of sun βsun is the angle between the direction of the sun and the horizon described by

	 βsun = arcsin(sin β)	 (rad)  (8.173)

in which the sine of solar elevation sin β is given by
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the time of day (solar time) SOLhr with time correction for Middle European Time (MET) is
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
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(h)  (8.175)

and hour is the hour of the day [0,23]. The Earth rotates 360° every 24 hours, which gives the term 
15° h–1.
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The azimuth of the sun αsun is the angle between the direction of the sun and the south (in which 
east is negative and west is positive) described by
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in which the cosine of the azimuth cos α is given by
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The solar constant solarC is the solar radiation received at the outer layer of the Earth’s atmosphere. 
It is described by

	

solar
day

C
NR= + ⋅













1367 1 0 033 2

365
. cos π

	

(W m–2)  (8.178)

which gives the atmospheric transmission τatm
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A parameter sunup is defined, to verify if the sun is up or down, where 1 denotes true and 0 denotes 
false. The sine of solar elevation sin β is used to indicate if the sun is up: if sin β > 0, then the sun is 
up. A small margin (10−3) is used to prevent numerical problems in the computation.
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With the solar parameters azimuth αsun, elevation βsun, sine of elevation sin β and atmospheric 
transmission τatm, the following parameters can be computed: the fraction diffuse radiation fdif in 
the outdoor shortwave solar radiation, the fraction PAR radiation fpar in the outdoor shortwave solar 
radiation, the fraction diffuse radiation fdifpar in the PAR radiation, and the transmittances τdifR and 
τdirR of the roof for diffuse and direct PAR radiation.

A.2 R adiation Parameters
The solar radiation parameters fdif, fdifpar, and fpar are determined according to Gijzen (1994).

The fraction diffuse radiation fdif in outdoor shortwave solar radiation is given by
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in which
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in which the parameter values are: pda = 6.4, pdb = 0.22, pdc = 0.35, and pdd = 0.15 (parameters for 
De Bilt, The Netherlands).

The fraction diffuse fdifpar in PAR radiation is given by

	

f
f f sun

difpar
dif clear upif = 1

=
⋅ +min( ( . ), )1 0 35 1

1 if upsun == 0





 	

(–)  (8.184)

in which the apparent fraction clear fclear is given by
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The fraction PAR fpar in outdoor shortwave solar radiation is given by
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in which the parameter values are ppa = 2.9, ppb = 4.9, ppc = 0.51, ppe = 0.84, and ppf = 0.033 
(parameters for Wageningen and Assen, The Netherlands) and the conversion factor ζ = 4.59 
μmol[photons] J−1.

The transmittance τdifR of the roof for diffuse PAR radiation is equal to
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The transmittance τdirR of the roof for direct PAR radiation is determined from transmissivity tables 
by De Zwart (1996) for single glass, double glass, and hortiplus glass. The tables contain values for 
the transmittance depending on the azimuth αsun and the elevation βsun of the sun. The azimuth and 
elevation both range from 0 to π

2  (0° to 90°).
Because interpolation in these tables—depending on the current position of the sun—is time 

consuming, in this research the values from the tables have been approximated by functions. They 
have been determined by fitting an equation for tdirR as a function of αsun and βsun on the values from 
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the table. In the functions found, the azimuth was found to have little influence on the correctness of 
the fit. The transmittance tdirR of the roof for direct PAR radiation is then given by
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For the zigzag roof used in this research, it is assumed that the transmittance of the roof for direct 
PAR radiation τdirR is as high as with a single glass roof.

B. H umidity Parameters

The humidity of the air is related to the saturation water vapor pressure, which depends on tempera-
ture. The relations between humidity, saturation deficit, and relative humidity and temperature are 
given in the next sections.

B.1  Saturation Pressure and Concentration
The saturation deficit between object x and air is computed by

	
∆p p pH O,x H O,x

sat
H O,a2 2 2

= − 	 (N m–2)  (8.189)

where pH O,x
sat

2
N m( )−2  is the saturation water vapor pressure at object temperature Tx and pH O,a2

N m( )−2  
is the water vapor pressure at the temperature Ta of the indoor air.

The saturation vapor pressure pH O,x
sat

2
N m( )−2  at a specific temperature Tx (K) is computed with 

the Magnus-Tetens equation (Defant and Defant, 1958)
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in which the correction factor from temperature in Kelvin (K) to Celsius (°C) T0 = 273.15 K, where 
cs1, cs2, and cs3 are the saturation pressure coefficients. For the pressure in (mbar), divide the pressure 
in (N m−2) by 100.

The values of the saturation pressure coefficients (Smithsonian Meteorological Tables, 1966) 
depend on the temperature Tx of object x, which determines the phase condition of the water vapor 
(water (Tx ≥ T0) or ice (Tx < T0))
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The saturation concentration of water vapor CH O,x
sat

2
 at a specific temperature Tx (K) is computed from 

the saturation vapor pressure pH O,x
sat

2
 at temperature Tx using the law for ideal gas
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in which MH2O = 18 × 10−3 kg mol−1 is the molar mass of water and Rg = 8.314 J mol−1 K−1 is the gas 
constant.

The water vapor pressure pH2O,x at temperature Tx is computed by
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where pH O,x
sat

2
N m( )−2  is the saturation water vapor pressure at temperature T Cx, H O,x

sat kg H O] m
2

( [ )2
3−  

is the saturation concentration water vapor at temperature Tx, and CH2O,x(kg[H2O] m−3) is the water 
concentration of object x.

B.2 R elative Humidity
If the dry bulb temperature Tx and the wet bulb temperature Tx

wb are known, the relative humidity 
RHx can be computed from these temperatures
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where pH2O,x (N m−2) is the water vapor pressure at dry bulb temperature Tx and pH O,x
sat N m

2

2( )−  is the 
saturation water vapor pressure at dry bulb temperature Tx.

The water vapor pressure pH2O,x at dry bulb temperature Tx is given by the psychrometric 
equation

	
p p p A T TH O,x H O,x

sat,wb
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2 2

= − ⋅ ⋅ −( )
	

(N m–2)  (8.195)

in which the atmospheric pressure pbar = 101325 N m−2, where pH O,x
sat,wb N m

2

2( )−  is the saturation water 
vapor pressure at wet bulb temperature Tx

wb. The psychrometric coefficient Apsy (Ferrel, 1885) is 
given by

	
A T Tpsy x

wb= + −( )( )0 00066 1 0 00115 0. .
	

(K–1)  (8.196)

in which the correction factor from temperature in Kelvin (K) to Celsius (°C) T0 = 273.15 K.
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B.3 D ewpoint Temperature
The dewpoint temperature indicates the crop temperature at which water would condense on the 
crop surface. The difference between the crop temperature Tc and the dewpoint temperature Td can 
therefore be used to indicate crop wetness. The dewpoint temperature is given by
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where pH2O,a (N m−2) is the water vapor pressure at indoor air temperature Ta and the saturation pres-
sure coefficients are given in Equation 8.191.
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9 Developments, Open Issues, 
and Perspectives

9.1 �I ntroduction

The purpose of this last chapter is to discuss developments, open issues, and perspectives for green-
house cultivation control. The development of control methodology cannot be detached from the 
developments in the industry as a whole. Therefore, we start with a brief overview of some recent 
developments in the greenhouse industry, without having the pretension to be complete. We then try 
to abstract the requirements that most likely will be posed to the control systems to come. Control 
system designers will face a number of challenges to meet the demands of future greenhouse sys-
tems. We argue that the framework of optimal control theory as elucidated in this book is versatile 
and generic enough to meet these challenges. However, despite its favorable features, real applica-
tion is still very limited. We try to explore possible reasons why this might be the case. We distin-
guish between issues regarding the methodology itself and the human factor as elements of reluctant 
acceptance in the market. We then discuss for both categories remedies and potential solutions. This 
is a fantastic playing field for researchers and practitioners alike, and we hope to offer a stimulus to 
the scientific community and the industry for continued work and progress in this exciting field.

9.2 �D evelopments in the Greenhouse Industry 
and Consequences for Control

9.2.1 �R ecent Advances in the Greenhouse Industry

Except in Chapter 8, the greenhouse systems we studied had a structure that is relatively simple. 
In practice, there are many enhancements to the basic structure, depending on local factors. For 
instance, in the past few decades in The Netherlands, which is home to the world’s leading green-
house industry for temperate climate zones, the greenhouse equipment has become more and more 
involved in response to, on the one hand, the favorable natural conditions such as the availability of 
cheap natural gas and, on the other hand, the need to suppress the costs and to reduce environmental 
impact such as the use of natural gas and the emission of CO2. The development of the technology 
that has occurred and its implication for control can be sketched as follows:

	 1.	Use of flue gas as CO2 source. This means that there is a coupling between heat generation 
and CO2 availability, thus reducing the degrees of freedom for control.

	 2.	Use of a short-term heat buffer. This step restores the number of degrees of freedom 
because it allows the decoupling of heat generation from CO2 generation. In this concept, 
natural gas is burned to produce CO2, and the heat is stored for use in periods when there 
is heat demand. The control system needs to provide strategies for filling and emptying the 
buffer.

	 3.	Screening. Greenhouses get energy screens, which, however, take away light during the 
day. A screen, on the other hand, increases the degrees of freedom for energy savings. 
The screen is yet another control variable, and its operation needs to be incorporated in 
the control. 
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	 4.	Artificial lighting. To prolong day length and to control the production, artificial light 
is widely used. This again increases the number of degrees of freedom for control but 
requires the incorporation in the control system. There are side effects such as heat genera-
tion and hindrance to the public that need to be dealt with as well.

	 5.	Cogeneration of power and heat. Power units are used to generate electricity while burn-
ing gas for CO2 and heat generation. The heat is stored in a short-term buffer for later use, 
part of the electricity is used for artificial lighting, and the remainder is sold to the market. 
In this way, the grower becomes an electricity producer, and with the current fluid energy 
market, the management of the cogeneration unit constitutes a new control problem. 

	 6.	Closed greenhouse with long-term heat storage. Although still in its infancy, some sys-
tems have been realized where the greenhouse is kept closed. Heat surplus in summer is 
harvested by heat exchangers and is stored in aquifers under the greenhouse, whereas in 
winter the heat is recovered using a heat pump. This is similar to the solar greenhouse 
described in Chapter 8. The heat exchanger also removes surplus moisture from the air 
by condensation. The number of degrees of freedom for control is larger in such systems 
because the heat exchanger can be viewed as an air conditioner, thus giving more free 
control over moisture content. On the other hand, the interactions between the various 
components of the system increase and the abundance of equipment now introduces the 
additional problem of what device to use in the most economical way to meet the climate 
demands.

Although the examples above are typical for the Dutch situation, one can see similar adjustments 
of greenhouse design in other regions. For instance, in semiarid regions, more emphasis is put on 
cooling, using evaporator systems or air conditioners, and on water preservation.

The advances in greenhouse structure designs as sketched earlier are accompanied by develop-
ments in sensors and the use of information. For example, many growers have installed weighing 
gullets to keep track of crop evapotranspiration. Also, leaf photosynthesis sensors can be found 
occasionally. However, the proper incorporation of such sensor information in monitoring and con-
trol is still a challenge. The use of weather forecasts retrieved from Internet services is also wide-
spread and is currently used in energy management overlays of the standard greenhouse control 
computer.

Apart from these technical innovations, there are also developments in the area of economy and 
marketing that affect greenhouse operations. In The Netherlands, a clear tendency can be observed 
that nurseries become bigger. Greenhouses from 5 to 30 ha are a reality today. This poses questions 
of risk. If a control system fails, the damage may be horrendous. Another trend is branding of prod-
ucts, which implies strict requirements to the constancy of the produce. Thus, in view of the variable 
outside conditions, reproducibility and being in control at all times are important issues.

The developments sketched earlier are the daily practice at the time of writing this book, some 
of them already for years. It is certain that increasing demands for energy savings, CO2 emission 
reduction, water and nutrient recovery, and market evolutions will act as drivers for further inno-
vations that will become reality in the (near) future. The next section gives a number of examples 
of the ongoing new greenhouse design work, which will pose additional challenges to the control 
community.

9.2.2 � Future Developments in the Greenhouse Industry

There is no doubt that the greenhouse industry will show further innovative progress. To outline the 
motivation for these developments, we quote Giacomelli et al. (2008): “Innovations in greenhouse 
engineering are technical developments which help evolve the state-of-the-art in CEA (Controlled 
Environment Agriculture). They occur in response to the operational demands on the system, and 
to strategic changes in expectations of the production system. Influential operational factors include 
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availability of labor, cost for energy, logistics of transport, etc. Influential strategic factors result 
from broader, regional issues such as environmental impact, product safety and consistency, and 
consumer demand. These are industry-wide concerns that have the effect of changing the produc-
tion system in the long term. Global issues are becoming more influential on greenhouse production 
sustainability, and include less tangible issues such as social acceptance, political stability, quality 
of life benefits, and environmental stewardship. These offer much more complex challenges and are 
generally beyond the realm of engineering. However global issues do affect greenhouse engineering 
innovation.” This quote clearly indicates both the role of technology and the other factors that play 
a part. Each new solution will also constitute a challenge to the operational control, and although it 
is tempting to apply proven methods to these new concepts—it is likely that this is going to be the 
first choice in practice—we must realize that this is most likely not the best solution. As illustrated 
by the difficulties encountered in current complex greenhouses, such as the problem of choosing the 
best deployment of available alternative devices, as mentioned before, new control solutions may be 
needed from scratch.

Let us dwell a little on a number of interesting new developments that are emerging today. This 
is certainly not a complete list but serves the purpose of illustrating the options.

9.2.2.1 �I nnovations Motivated by Sustainability: Energy and CO2

For long, cutting down on energy consumption has been a motivation for better designs. Bakker 
et  al. (2008) summarized a number of innovative technologies for energy saving, both from a 
North-Western European perspective and from a Mediterranean perspective. Novel cover materials, 
energy screens, and energy conserving heat exchange solutions are mentioned for cooler climates 
and heat-repellent cover materials, shading screens, and direct evaporative cooling methods for 
hotter climates. They point to the significant role of humidity control on energy use and summarize 
new control concepts that explicitly take energy savings into account, such as temperature inte-
gration and, indeed, optimal control. Energy savings can be obtained with a thermal screen, but 
dehumidification is required to prevent risk of fungal diseases. Campen, Kempkes, and Bot (2009) 
described a novel system to inject cold dry outdoor air instead of the usual dehumidification by 
transport of above screen dryer air to below via the crack usually left open for this purpose. The lat-
ter has disadvantages because it tends to cause horizontal temperature gradients with negative crop 
production effects. They also describe a control strategy for the air injection, illustrating once again 
the role of control in interaction with innovative designs.

In regions with a suitable underground, the use of aquifers to store thermal energy will become 
more important. The solar greenhouse concept discussed in Chapter 8 is an example of this and 
was at the same time an illustration on how optimal control can help operate such complex sys-
tems. Other accounts on thermal control with aquifer water are given in an experiment of a chili 
(Capsicum)-producing greenhouse by Sethi and Sharma (2007). The performance is expressed in 
terms of the ability to maintain, on average, higher temperatures than ambient in winter and lower 
than ambient in summer, while reducing the amplitude of daily temperature fluctuations. Sethi 
and Sharma (2008) provided a comprehensive survey and evaluation of a wide variety of heating 
technologies for worldwide agricultural greenhouse applications. Seen from a control point of view, 
some of these methods, such as north wall storage as practiced intensively in China (Figure 9.1), are 
increasing the heat capacity of the system, with a profound effect on the dynamics of the system. 
Others, like storage in phase change material, will introduce an additional piece of equipment. This 
not only increases the number of degrees of freedom for control but also introduces an additional 
decision problem. 

The concept of a completely closed greenhouse is another innovation that was triggered by the 
need for energy conservation. Because higher CO2 concentrations can be maintained, the expec-
tation is that the higher investment costs can be earned back from higher crop yield. Completely 
closed greenhouses could also reduce the use of pesticides, meaning a minimization of effects on 
the environment and a better product safety. De Zwart (2008) presented an overall energy analysis 
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of (semi)closed greenhouses. Heuvelink et al. (2008) reported experimental studies showing that 
yield increase can indeed be realized. Similar experimental studies are under way (e.g., see Hoes 
et al., 2008). Experience with the application of traditional greenhouse climate controllers to the 
closed greenhouse has taught that the control task is not straightforward.

The closed greenhouse even has the potential to produce energy, albeit in the form of low-valued 
hot water. The thought that a greenhouse is after all a solar collector has provoked other ideas to 
produce energy. One such innovation under study is to reduce the heat load by a special coating and 
a curved roof, such that the near-infrared component of the light is shielded off from entering the 
greenhouse and is reflected and concentrated at photovoltaic cells to produce electricity (Figure 9.2) 
(Sonneveld et al., 2010). Apart from the obvious control problem of maintaining the best orientation 
toward the sun during the day, there is a host of other problems to be solved in relation to the trade- 
off between the best crop value and the production of electricity.

A somewhat different way of energy savings is obtained by replacing conventional assimila-
tion lighting by LED lighting (Morrow, 2008). Because LEDs have the potential to influence crop 
morphology and plant composition via the light spectrum and are easy to dim, their deployment 
will introduce issues of controlling the light color and intensity and of balancing assimilation light 
against marginal value. In addition, there may be side effects, such as the effects on the humidity 
balance and its control, which are still waiting to be evaluated.

9.2.2.2 �I nnovations Motivated by Sustainability: Water
Greenhouse operation in hot climates is not possible without cooling. The most used method for 
cooling of greenhouses is evaporative cooling. Such methods require water, which is often scarce 

FIGURE 9.1  North wall heat buffering of typical Chinese greenhouses. (Courtesy of Prof. Luo Weihong, 
Nanjing University.)
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in those regions. The desire for water savings is therefore an important driver for innovations, in 
addition to desires to levy disadvantages of common systems. For instance, in standard pad and fan 
technology, there are undesirable horizontal temperature gradients. These can be avoided by using 
fogging. As an example, Perdigones et al. (2008) described the research of cooling by fogging in 
combination with a screen and showed that fogging above the screen gives similar temperature 
effects as below, but with better humidity conditions in the crop compartment. In contrast to stan-
dard fixed on–off control, a temperature-dependent control using pulse width modulation contrib-
uted to substantial water savings.

Because the greenhouse is in fact a solar collector, it could potentially be used for desalination. 
In fact, greenhouses have been advocated as suitable methods to alleviate water shortage problems 
(Van Kooten, Heuvelink, and Stanghellini, 2008). Novel greenhouse designs have been proposed 
and tested to combine cooling needs, water savings, and desalination or treatment of gray water, for 
example, the Watergy greenhouse (Zaragoza and Buchholz, 2008; Zaragoza et al., 2007) (Figure 9.3) 
and the Seawater greenhouse (Davies and Paton, 2005). The main challenge in these approaches is 
to find suitable solutions for condensation of evaporated water (e.g., see Dawoud et al., 2006). The 
degree of integration of such systems, combining water recovery and plant production, poses new 
challenges to control. An attempt to use the integrative power of optimal control for integration 
of functions in the Watergy greenhouse has been described by Speetjens, Stigter, and Van Straten 
(2009) and Speetjens (2008). 

FIGURE 9.2  Electricity-producing greenhouse. (Courtesy of the Business Unit Glass, Plant Research 
International.)
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9.2.2.3 �I nnovations Motivated Mainly by Consumer Demands
Some of the innovations discussed above also lead to better control over crop quality, as in the 
closed greenhouse, or better service to local markets by prolonged production periods enabled by 
suitable cooling. In addition, innovations have been invoked by problems encountered with product 
quality.

An important factor in product quality is homogeneity. In standard greenhouses, usually con-
siderable spatial gradients exist, leading to heterogeneity of product and loss of economic value. 
Therefore, novel concepts have been developed aiming at reducing the spatial gradients. This begins 
with computational fluid dynamics (CFD) studies and with monitoring. A trend is to install wireless 
sensor networks in greenhouses, sometimes in conjunction with the GPRS and the Internet (e.g., see 
Sun et al., 2006). The development of hardware and protocols has been described in a number of 
studies, particularly in China (e.g., see Yu et al., 2009). The new technology allows more measure-
ments at the crop level to gather information from a large number of subsystems (Park et al., 2009; 
Van Tuijl, Van Os, and Van Henten 2008). This poses a new challenge to control system design 
because it is not clear how the multiple sensor information should be used, let alone how the control 
system should be enhanced to avoid or exploit spatial gradients.

Other developments in sensors and monitoring also have an effect on the control design. Some 
growers have installed sensors for photosynthesis, leaf temperature, and stem thickness of individual 
plants, but it is an issue of research how such information can be used to control the crop as a whole 
(Ehret et al., 2001). Evapotranspiration sensors, such as measurement gullets, give data on local 
evapotranspiration, but they too need to be interpreted and integrated into the control system.

FIGURE 9.3  Watergy greenhouse under construction (Almería, Spain). In the middle, the heat exchanger 
tower, harvesting heat during the day and releasing heat during the night. (Courtesy of Gerrit van Straten.)
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To conclude this section, it can be said that the consequences of the exciting new developments 
in the greenhouse industry, as described above, for control system design and development can be 
summarized as changes in degrees of freedom, fusion of data and information, and shifts in control 
goal paradigms. Unthoughtful application of common standard methods will not bring the expected 
results and might easily lead to disappointments. In many cases, a fundamental rethinking of the 
control system is mandatory.

9.3 �P rerequisites for Future Control Systems

It is likely that the development of control systems for greenhouses will follow two major lines. On 
the one hand, one will see a further development along the lines of setpoint controllers. This will 
start from “quick and dirty” implementation of simple on–off or PI-like controllers in areas where 
the greenhouse industry is coming up toward more elaborate systems, including expert system over-
lays, in more mature markets. Although PI control does not require high skills on the part of the 
developer, this is not true for the more elaborate solutions. On the user side, there is a learning curve 
to know how to choose the settings to achieve a decent result. These solutions will be suboptimal, 
and adopting them means that suboptimality is accepted in exchange for perceived implementation 
advantages and believed ease of use. Experience in the last decades of the twentieth century has 
taught that wishes by users expanding over time create systems that are the opposite of easy-to-use 
systems and will require considerable operator training, without ever providing true optimality. 
Nevertheless, we expect that these systems will continue to exist.

The other path is optimal control in one form or another. If one really wishes to go for the best 
possible economic result, there is no other way. The implementation of these systems requires con-
siderable skills of the developer and system designer. On the other hand, for the user, the use of the 
system is relatively easy and will probably require only a short training period. In the sequel, we 
will explore with which requirements an optimal control system has to comply.

9.3.1 �D emands of the Future

In view of the discussion above, it can be envisaged that a successful control system

	 1.	Provides economic optimality based on scientific knowledge while backing off from risks 
with high sequential damage

	 2.	Enables a user-defined trade-off between acceptance of suboptimality in exchange for a 
larger risk margin

	 3.	 Is robust against unexpected changes and avoids risk of complete harvest loss
	 4.	 Is able to deal with the increased interaction of system components; in particular, it pro-

vides optimal selection among available alternative utilities at all times
	 5.	Creates trust with the grower by providing transparency for the reasons for its actions and 

by allowing the grower to assess the effect of decisions he might take to overrule the rec-
ommendations of the system in case of unexpected or unacceptable behavior

	 6.	 Is able to communicate with the outside world for exchange and updates of models and 
procedures and to retrieve important data on the production process for economic analysis 
and to allow production tracing

	 7.	 Is able to adapt flexibly to new economic conditions
	 8.	Has flexibility to adapt to changes invoked by the user, such as different crop types, modi-

fications in configuration, and installation of equipment and utilities
	 9.	 Is able to handle and integrate data and information from different sensors and others 

sources
	 10.	Has a modular software structure so that tasks and responsibilities in designing parts of the 

system can be distributed over a team of designers
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	 11.	Has the capability to integrate component vendors’ local control intelligence (e.g., boiler, 
heat pump, irrigation, and fertigation) with the overall system without jeopardizing the 
optimality of the system performance as a whole

	 12.	 Is easy to install and maintain

Items 1–4 provide the base top level functionality. Items 5–7 are additional user functionalities, 
whereas items 10–12 represent implementation functionalities that are important for the developer 
and vendor of the control system. Items 8 and 9 are important for the end user as well as for the 
supplier.

9.3.2 �H ow Does Optimal Control Fit In?

The prerequisites for optimal control are as follows: (1) the availability of relevant and adequate 
models; (2) as much information about future external inputs as possible; (3) the proper formulation 
of a goal function, including constraints; (4) a solution method to solve the open-loop problem over a 
prolonged time horizon; and (5) a methodology to provide feedback in response to deviations while 
accepting information from the open-loop solution. The theory outlined in this book is generic and 
can therefore, in principle, be applied to any new design and to any expansion of the demands and 
requirements set to the system. 

In view of the requirements set out in Section 9.3.1, it is clear that the very nature of optimal 
control is to offer the functionalities in items 1 and 2. Other system solutions can, at best, provide 
only approximate solutions. Additional work is needed to provide suboptimal solutions in exchange 
for robustness and risk avoidance, but the optimal control framework offers an excellent starting 
point for this. 

The work needed regarding safeguarding to complete production loss (item 3), that is, alarms and 
abnormal situation handling, is not different from what has to be done in current traditional climate 
computers. 

Because optimal control is a multivariable control solution, it provides an automatic solution to 
the problems related to interaction and the optimal deployment of utilities (item 4). This is a very 
large advantage of optimal control. To provide trust to growers (item 5), work has to be done in 
the form of presentation tools, but as optimal control is inherently based on models, forecasting 
and simulation features are offered without difficulty, which is not the case in traditional control 
solutions. 

Connectivity (item 6) is already a fact nowadays and does not have more problems than in con-
ventional systems. Moreover, connection to the Internet offers superb chances to keep user systems 
up to date with the latest scientific findings.

On the issue of adaptability to new economic conditions (item 7), optimal control as developed 
here is at its best. Any change in market prices or utility costs can be accommodated immediately, 
thus leading immediately and automatically to adapted control strategies, which is far from what 
is possible with traditional control solutions. Moreover, new demands can be expressed as expan-
sions of the goal function, without any need to adjust the control algorithms themselves. We believe 
that this versatility of optimal control makes it preeminently suitable to meet the challenges of the 
future.

Regarding flexibility (item 8), the requirements for the optimal controller are not different from 
those of more traditional controllers. Obviously, in view of flexibility to structural change, automa-
tion of this task would be beneficial to all control solutions and therefore also to optimal control. 
New designs require the development of models for the new elements in the system in a suitable 
form. However, this has to be done only for the first nursery that adopts a new cultivation system, 
as due to the property that models are the best way to condense existing knowledge, the solutions 
obtained can be used over and over again. In traditional systems changes in crop type will neces-
sitate the use of another cultivation blueprint, in optimal control it will entail downloading of the 
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appropriate cultivation model. A bank of suitable models is needed, but one can start with only three 
or four fundamentally different models that cover the majority of crop types, for example, single-
harvest vegetable crop, continuous fruit crops, flowers, and pot plants. Changes in crop are reflected 
by the choice of the model and the loading of a crop-specific parameter file.

In the area of sensor fusion (item 9), the systems theory underlying optimal control is providing 
a very natural framework for this, lacking in more traditional approaches. This pertains to model-
based state and parameter estimators, where the optimal control framework provides clear guide-
lines on what is needed.

On the implementation side, responding to configuration changes (second part of item 8) is not 
really different from today’s situation. Configuration changes usually need the help of the vendor 
or extension service and are facilitated by a modular setup (item 10). As the optimal control system 
consists of the components listed (prerequisites 1–5) in the beginning of this section, this frame-
work offers a natural way to break down the various tasks, whereas the methodology gives a clear 
indication of what is the information that goes into each system component and what needs to come 
out, as shown in the schemes presented in Chapters 2–5. Hence, in principle, the interconnection is 
reduced to a technical software design problem.

The point of integration of vendor components (item 11) is similar to the situation in conventional 
systems. If local loops can be considered as fast enough, there is no problem in the optimal control 
framework of handling setpoints for local controllers as control inputs of the system as a whole 
to be provided by the optimal control system. Some pieces of equipment have so-called built-in 
intelligence. Examples are the filtering of sensor data or the implementation of low-level intelligent 
controllers. Although this is useful in many applications, it is not always desirable in the frame of 
optimal control. Therefore, equipment vendors should be encouraged to make provisions that allow 
direct access to the raw sensor data or, in the case of local controllers, to allow direct steering of the 
actuators. Such provisions are particularly important in a research environment, but also in com-
mercial applications, because they will enable the optimal control system to take over in case such 
action serves overall economy. The costs for such provisions, when envisaged right from the begin-
ning, are usually very low and hence can hardly be a reason not to do it.

If the system is set up in a modular way, it will greatly simplify installation and maintenance (item 
12), although work must be done to design test beds and diagnosis tools. Perhaps the way this has 
been done in the car industry today, with plug-in diagnosis tools, can serve as an inspiring example.

The discussion above shows that optimal control can meet the requirements of the future. 
Although we strongly believe in the power of the methodology, it would not be justified to say that 
there are no more problems to be addressed. These are the challenges to scientists and engineers 
working in the field. The issues and potential solutions will be analyzed to some degree in the sec-
tions below.

9.4 �C hallenges for Science and Technology

In this section, we discuss the major themes, improvement ideas, and open issues that deserve fur-
ther research or development. We follow more or less the same modular line as before.

9.4.1 �S ensors and Monitoring

9.4.1.1 �E xternal Input Information
The incorporation of weather data collected locally is already common practice in most green-
house areas. Interaction with the control system is commonplace, for instance, to close the windows 
when it rains, to irrigate based on solar radiation, and to interfere with the ventilation controllers. 
Increasingly, weather forecasts are being used, in particular, to serve as input to daily heat storage–
buffering strategies. In the context of optimal control, more intensive use is made of knowledge 
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of current and expected external signals. There are opportunities to further improve on this. To 
compute the uncertainty in slow costates, more work is needed to use a collection of real weather 
sets rather than just one single nominal set. In view of the weather uncertainty, the expected annual 
profit is a stochastic variable. This aspect has been studied to investigate yield variation (e.g., see 
Cooman and Schrevens, 2007; Schrevens, Bojacá, and Cooman, 2006) but has not yet been fully 
explored in the context of optimal control. Online, the use of ensemble forecasts to compute the 
extremes of actual control actions is another interesting area. It has been shown that local forecasts 
can be improved considerably by incorporating weather sensor data from neighboring nurseries 
(Doeswijk and Keesman, 2005) The implementation work required to incorporate weather and 
weather forecasts into optimal control systems is mainly a matter of information and communica-
tion technology.

9.4.1.2 � Feedback from the Crop
From the point of view of the crop, the optimal control as developed in this book is still open loop; 
that is, it completely relies on the correctness of the predictions of crop models. Hence, what is 
urgently needed is feedback from the crop. An obvious improvement would be if the marginal total 
biomass increase could be measured. In principle, this could be accomplished with load cells, but 
the water household of plants considerably complicates the matter (e.g., see Helmer, Ehret, and 
Bittman, 2005). On a somewhat faster timescale, monitoring of photosynthesis rate might also be 
used as an indirect measure of crop biomass increase. 

Instead of focusing on the rate of change of biomass, it is another avenue to estimate the current 
biomass states from sensor information from individual plants. At the plant level, monitoring of 
sap flow, leaf thickness, leaf photosynthesis, and leaf evapotranspiration can be done (Ehret et al., 
2001). Also, there has been some experimentation going on with electrical signals produced by 
plants (Huang et al., 2010; Wang et al., 2009). Information from several plants can be collected on 
the basis of sensor networks (e.g., see Van Tuijl, Van Os, and Van Henten, 2008). A different avenue 
is to approach the crop status at the gene level. An example is the search for quantitative trait loci 
(QTLs) that link to crop “vigor,” as indicated by characteristics such as shoot length and biomass, 
leaf area, number of roots, root biomass, partitioning coefficients, and growth rates (Cairns et al., 
2009; Yan et al., 2007). So far, these applications are mainly directed to selection of species, but it 
is conceivable that such methods will eventually be useful on the operational level as well, although 
online application is still a long way to go.

9.4.1.3 � Sensor Fusion; Soft Sensors
All this monitor information in itself is not enough to provide appropriate crop feedback to the 
grower or to the optimal control system. There are two additional challenges: sensor fusion and 
translating individual plant information to information at the canopy level. Sensor fusion deals with 
the problem of how to merge data from various sources with varying reliability, measurement fre-
quency, and so forth into useful information. The optimal controller, in the end, will need reliable 
crop state information. In the optimal control context, both the fusion and the interpretation prob-
lem can be tackled by model-based observers or state estimators. Such model-based reconstruction 
of rates or states is often denoted as “soft sensor” technology. As crop models are needed anyway 
in the optimal control approach, this avenue is attractive and feasible. Plant sensors must, however, 
become more reliable and robust before this will find widespread application, and much more work 
is needed to develop these soft sensors for use in practice. 

9.4.2 � Physical Modeling

9.4.2.1 �L umped Physical Models
Lumped models for greenhouse physics have reached a mature state. These models are in state–
space form by nature and can easily be accommodated in optimal control. 
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9.4.2.2 � Moisture and Condensation Prediction
The proper modeling of humidity in the greenhouse in the presence of varying crop evapotrans-
piration and the possibility of condensation has made great progress but is still a challenge, espe-
cially in hot climates. A way to circumvent the problem is to make model parameters adaptive (see 
Section 9.4.4.3). 

9.4.2.3 � Spatial Distribution
Lumped models are not able to deal with issues of spatial heterogeneity, which nevertheless is 
important in greenhouses. The major approach to deal with spatial distributions is based on CFD 
methods, but this approach is not suitable in direct form for optimal control. There is a clear need, in 
general, for control methods that can be applied to spatially distributed systems and flow-dominated 
systems. An intermediate way can be to use the CFD outcome to build a coarse compartmental 
model in state–space form for use in optimal control. It is likely that better spatial control will 
also require a wider spectrum of actuators or at least a distributed control of the actuators present 
(window sections, separate CO2 and air circulation hoses, and separate controllable heating sec-
tions). Although most approaches focus on creating larger homogeneity, another avenue would be 
to exploit the spatial distribution. In the vertical direction, gradients are not necessarily bad and can 
be exploited, under circumstances, for energy savings. Horizontal gradients may be exploited in the 
overall logistics of greenhouse operations, that is, by moving pot plants around on automatic racks. 
This is a whole new area of research.

9.4.3 �C rop Models

9.4.3.1 � State–Space Form, Hybrid Models, and Time–Variable Structure
On the crop side, the situation is less favorable than on the physical modeling side. Fairly detailed 
crop models exist for major crops, such as tomato (TOMGRO, for references to various versions 
of this model, see Cooman and Schrevens, 2007; or TOMSIM, Heuvelink, 1999), sweet pepper 
(Marcelis et al., 2006), and lettuce. Several agronomic crop models contain constructs with vary-
ing timescales, where the photosynthetic production is collected over a day and then is distributed 
over the various organs only once a day. This does not comply with the state–space form required, 
although it can relatively easily be remedied at the expense of more computation time. In addition, 
agronomic models that describe various development stages are hybrid models, where the structure 
changes when new organs are formed. These are not in the general state–space form, although the 
various stages can be described by state–space models. The remaining issue is then to handle the 
switching moments or, in more elaborate models, the age distributions of the various organs. It 
should be noted that there are no fundamental barriers against using variable structure models in an 
optimal control framework, as was demonstrated in an experiment on the control of sweet pepper 
fruit set (Buwalda et al., 2006; Van Henten et al., 2006).

9.4.3.2 �C rop Model Process Details
In optimal control, regions of temperature are found where crop yield is favorable as compared 
with energy costs. To obtain trustworthy results, it is important that the temperature dependen-
cies in the model are as accurate as possible. Let us analyze this point a bit further. Suppose that 
a linear relationship is used for crop growth with a positive slope. In moderate climate zones, the 
optimal control will on the one hand try to increase the temperature as much as possible to boost 
yield but on the other hand try to decrease the temperature to save energy. The exact position of the 
resulting temperature depends on the price ratios, but the counteracting forces will reduce chances 
that temperature reaches a range where the linear relationship will no longer hold. However, in hot 
climates, where costs are associated with cooling, it is beneficial to the optimal control to increase 
the temperature as much as possible, thus making it almost sure that the model will be stretched out 

© 2011 by Taylor and Francis Group, LLC



278	 Optimal Control of Greenhouse Cultivation

of its linear validity range, almost surely leading to erroneous control. This underlines the need to 
include as accurate relationships as possible. Mathematical simplicity must not be used as an excuse 
to avoid a little more elaborate expressions. 

In chemical engineering, it is usual to model the dependency of a reaction rate by an Arrhenius 
relation. As Thornley and France (2007) pointed out, this is hardly a proper way of modeling in 
aggregated biological models. In general, there is a temperature range where crop growth and devel-
opment proceed at maximum rate, and deviation below or above leads to diminishing returns. One 
would think that, in principle, such emerging behavior should be the result of underlying reactions 
that all follow the exponential laws of chemistry, where some processes act as propagators and oth-
ers as inhibitors, such that it results in the overall bell-shaped temperature dependency as observed 
in practice. The emerging behavior can be viewed as the outcome of millions of years of evolution, 
where plants have been adapted to the natural temperature variations. In current crop modeling, 
the degree of detail on the cellular level is not large enough to “explain” these emerging properties. 
This is not really a problem for optimal control because a smooth empirical relationship can be used 
without difficulty. The price that has to be paid is that calibration per cultivar is necessary. If, for a 
specific crop, temperature relations in the extreme ranges are not known, it is time to start compre-
hensive experiments to elucidate these.

An element in crop modeling that requires more attention for use in optimal control is the issue 
of how growth and maintenance respiration need to be modeled. The basic equations for build-up 
of assimilates (nonstructural biomass WB) and structural biomass (WV) in the case where the assimi-
late buffer is always plenty are given by

	

d
d
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P G R= − + −( )1 θ

	
(9.1)

and
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so that for the sake of the analysis here, the total biomass is expressed as
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The rates P, θG, and R are the photosynthesis, growth respiration, and maintenance respiration 
rates, respectively, with θ expressing the surplus amount of assimilates needed to produce one unit 
of structural biomass. Further detailing this with constitutive relations gives
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where f{CCO2
,IPAR} represents the attenuation of the maximum growth rate Pmax as a function of CO2 

and PAR, and fm{W} is some “maturity” function, expressing the changing interception of light by 
the canopy when the crop matures. Whatever the exact form of fm{W}, it has the property that fm{W} 
∝ W when W is small, whereas lim { }

W
f W

→∞
=m 1.
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In Chapters 6 and 7, respiration terms were set proportional to the biomass, that is,

	 G, R ∝ W	 (9.5)

Hence, when the crop is young, in view of the properties of fm{W}, the rate of change of the biomass 
is proportional to the biomass, and we have exponential growth. With the closure of the canopy, the 
term fm{W} approaches 1 so that photosynthesis per unit area reaches its maximum, whereas the 
respiration terms increase with biomass and hence with age. Therefore, this model leads to the level-
ing off of biomass with plant age as expressed by, for instance, logistic growth curves and similar 
empirical descriptions of biomass evolution over time.

However, in his development of models for a lettuce crop, Seginer (2003) argued that it is more 
appropriate to set the maintenance and also the growth rate terms proportional to fm{W}, with pro-
portionality factors that may depend on environmental variables, but not on crop biomass, that is,

	 G, R ∝ fm{W}	 (9.6)

This conjecture is supported by reasoning and some experimental results that the growing parts 
take more part in the cell processes than the mature parts of the leaves. With this assumption, 
there is again exponential growth when the leaves are young, but now the biomass evolution moves 
asymptotically to linear growth later on so that overall an expolinear curve results. This model does 
not encapsulate the leveling off during senescence but is perhaps more realistic in the mid range of 
crop age.

The relevance for optimal control is that, with Equation 9.6, a model results, where the relative 
net growth can be approximated by a product of two terms, both not depending on the greenhouse 
climate conditions and the crop state (see Equation 5.45). This construct allows for interesting anal-
yses of crop behavior (e.g., see Seginer, 2004). More importantly from the point of view of optimal 
control, it was shown to lead to considerable simplification of the optimal control problem because 
it allows for a transformed costate that is roughly constant throughout the season (Seginer and 
Ioslovich, 1998). Moreover, only one slow costate is enough.

In view of the desire to make optimal crop cultivation as widely applicable as possible, it is desir-
able to have a description that combines the elements of both approaches. Clearly, the simplification 
that allows the development of analytical control strategies will then only hold over a particular crop 
range. The problem of knowing when the model is valid can be overcome by using a more compre-
hensive model in conjunction with numerical procedures.

Another matter of uncertainty in crop models refers to the temperature dependency of terms 
that determine the partitioning over leaves and fruits in generative crops. The parameters of the 
temperature functions can be chosen in such a way that high temperatures favor more fruit growth 
or the other way around. It is clear that for the optimal control, it is of paramount importance to 
have the correct relationships for the crop at hand, and the same is true for model calculations, for 
instance, the computations made by Heuvelink et al. (2008), to evaluate the potential benefits of a 
closed greenhouse.

9.4.3.3 �C rop Development
The relatively simple models used in this book are not able to encapsulate development issues, such 
as internodal length, leaf thickness, fruit set and fruit number, and flower abortion. There are two 
fundamentally different approaches to tackle this.

The first is to use more elaborate models, like TOMGRO or TOMSIM. If these models can be 
cast in state–space form, there is no fundamental problem in using these models in an optimal con-
trol setting. Gradient methods can be used if nondifferentiable functions, like growth rate–temper-
ature tables, are smoothed. Also, special attention is needed when there is a transition in structure, 
for instance, going from the stage with leaves only to a stage with fruits. In methods that do not use 
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gradients, there is no real problem when the number of states varies. It will, however, not be easy to 
obtain and use costate information, and it may be worthwhile to investigate simplified approaches 
such as direct use of observations by the grower.

The second approach is to circumvent the problem by formulating constraints, as discussed later. 

9.4.3.4 �E xpansion of the Operational Range
As discussed above, in the details of crop modeling, still quite a number of issues must be solved. 
Moreover, models developed for current circumstances may not hold in the more extreme circum-
stances that can be expected in novel greenhouses with optimal control. It should be noted that it 
will probably be very hard to distinguish between various alternate models on the basis of collected 
biomass samples over time in view of the large variance of biomass measurements in comparative 
tests. Once more, it will be necessary to experiment over wider operational ranges than currently 
customary and to support experiments by model computations right from the start, for instance, to 
mitigate the unavoidable effects of spatial heterogeneity (e.g., see Bojacá, Gil, and Cooman, 2009). 
Accurate models are crucial to prevent the optimal control from dwelling in regions that are optimal 
only on paper.

Although further development of crop modeling is in fact the “royal” way, it is not necessary 
to wait until all issues have been resolved. In the meantime, operational constraints can be used to 
limit the playground for optimal control. This is discussed further in Section 9.4.5.

9.4.3.5 � Stress and Vulnerability Models
In the frame of optimal control, not much has been done so far to attempt to incorporate stress 
modeling, although this would not be essentially different. Examples are the models and the optimal 
control strategies developed to describe nitrate shortage effects on lettuce and nitrate in lettuce (De 
Graaf, 2006; Linker, Seginer, and Buwalda, 2004; Seginer, 2003).

Conceptually more difficult is the prediction of diseases and pests as a function of climate vari-
ables because there is a stochastic aspect here. Even if the circumstances are favorable for crop health 
attacks, this does not mean that the attack is actually occurring. One could make efforts to predict 
unfavorable conditions, such as condensation on fruits or leaves, and then set constraints to back off 
from these regions. This would be an improvement over fixed conservative bounds for humidity.

9.4.3.6 �C rop Quality
Product quality in terms of morphology (pot plants, cut flowers), taste (tomato), or composition (e.g., 
nitrate in lettuce) is another issue of considerable interest. When it becomes possible to express 
the effect of environmental conditions on quality attributes in the form of models, quality and its 
economic value can be incorporated in the goal function. A review on the use of NIR to detect ripe-
ness has been given by Nicolaï et al. (2007). A start has been made to link agronomic crop models 
to models that describe morphology (L-system models). An entrance to this so-called functional–
structural  plant modeling field was studied by Hanan and Prusinkiewicz (2008). Other current 
developments go in the direction of relating measurable crop genetic properties to the phenotype 
(for gene expression in iris flowers during flowering, see Van Doorn et al., 2003), although much 
work is still needed to clarify how the greenhouse climate enters the game. There is no doubt that 
we will see significant developments in the genetic and “omics” arena, which eventually can be 
incorporated in control.

9.4.4 � Modeling Methodology

9.4.4.1 � Model Identification, Calibration, and Sensitivity
Modeling has two components: incorporating accumulated knowledge from the past and confront-
ing the model with current data. The first takes the form of established relations and handbook sets 
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of parameters. The second involves calibration or, in a wider sense, model system identification 
from data, which ideally can reveal alternate model structures as well, thus serving as hypothesis 
testing. However, it is well known from systems theory that a particular input–output behavior 
might be represented by alternative state–space representations. The biophysical models that arise 
from collecting past knowledge, in general, do not represent minimal representations and can be 
assumed to be overparameterized. As long as reliable parameter information is available from sepa-
rate experiments, this is not a problem. It can even be seen as an advantage because the model may 
have predictive power over a wider range than covered by current input–output data, as long as the 
conditions under which the original parameters have been collected remain equally valid. Where 
input–output models lose their meaning when stretched beyond the validity range, physics-based 
state–space models have the potential to remain valid over a wider range. Nevertheless, the simplifi-
cations made when deriving the model may jeopardize the results in a different setting. It is remark-
able that there are few really convincing validation and cross-validation studies in greenhouses, 
with proper analysis of residual error, and a clear indication of estimated parameter uncertainty. 
It seems that this is generally considered as a past station, but the truth is that calibrations that are 
valid in a particular season fail in other seasons, and when a model like TOMGRO, for instance, is 
transferred to another region, it has to be recalibrated for reasons that are still unclear.

Sensitivity analysis is a first step to elucidate the role of various parameters (e.g., see Cooman 
and Schrevens, 2007; Linker, Seginer, and Buwalda, 2004; Schrevens, Bojacá, and Cooman, 2006; 
Van Henten and Van Straten, 1994; Van Straten et al., 1999). In the optimal control context, it is not 
so much the sensitivity of the model that counts, but rather the effect of model parameter sensitivity 
and uncertainty on the ultimate control solution, as pointed out by Van Henten (2003). In this area, 
more work can be rewarding because it may indicate which aspects of model inaccuracy are most 
important to tackle. 

Calibration methodology is another issue of considerable interest. Because there are many 
parameters to calibrate in a combined physics and crop model, an immediate question to the model 
developer is which parameters to select for calibration. In Chapters 7 and 8, methodologies on the 
basis of the Fisher information matrix were indicated. A more in-depth treatment in the frame of 
greenhouse optimal control has been presented by Ioslovich, Gutman, and Seginer (2004). The 
methodology can also be used for the design of informative experiments (Ioslovich and Gutman, 
2007).

9.4.4.2 � Model Reduction
Increased computational power has allowed the admittance of more and more complex models. 
However, comprehensive models will tend to be relatively slow, which in the context of dynamic 
optimization is undesirable. Hence, there is a case for model reduction, with the purpose to catch 
only the essentials and to increase the confidence in the remaining parameters. The tomato model 
case in Chapter 7 was already an example of model reduction, albeit on the basis of heuristic argu-
ments. More formal methods are available on the basis of local linearization and singular value 
decomposition. In a study on tomato, Ioslovich and Gutman (2008) presented a stage-oriented pro-
cess, where the optimal control problem associated with a reduced model of similar type as in 
Equations 9.1 through 9.4 and Equation 9.6 is solved and a corresponding set of costate variables are 
used for the optimization of the TOMGRO trajectory. The reduced model had two state variables 
and five parameters in contrast to seventy-one state variables and fifty parameters in the TOMGRO 
model. It was shown that the parameters for the simplified model could successfully be identified 
from the TOMGRO data. In the study of Seginer (1997), successful work has been quoted to mimic 
the TOMGRO behavior by an artificial neural net. In addition, there also seems room to reduce the 
space of relevant external inputs. The article also discusses the possibility to mimic the optimal 
control itself with an artificial neural net.

Common to these solutions is the use of an elaborate model as a kind of virtual reality against 
which reduced models are calibrated. Obviously, calibration on the basis of real data instead of 
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virtual data would be more direct. However, the advantage of using detailed models over data is that 
they allow “virtual” experiments with different excitations, which in a real greenhouse would be 
time consuming and expensive. Care should be taken to make sure that the validity domain of the 
original as well as the reduced version match each other and is wide enough to capture the operation 
range of the optimally operated greenhouse. In fact, as pointed out by Seginer (1997), the success 
of, for instance, an artificial neural net to describe the observed system’s behavior can be viewed as 
a benchmark for the quality of the physical model.

9.4.4.3 �P arameter Variability and Adaptation
As models are simplifications by design, model parameters can be seen as expressions for under-
lying unmodeled subprocesses. The basic assumption is that the variability in these subprocesses 
can be ignored with respect to the overall dynamics. Experience with greenhouse and crop models 
shows that in elaborate physical models this assumption holds more than for crop models. However, 
even then, there is carryover from crop uncertainty to the physics because the latter is strongly 
influenced by biophysical processes like evapotranspiration and photosynthesis. Moreover, there are 
variations due to gradual as well as sudden structural changes in the system dynamics, such as crop 
development, pollution of the cover, whitening, and partial failure of equipment. Hence, overall, it 
can be expected that model parameters will vary over time and that information to predict changes 
automatically is not available. This calls for online parameter adaptation, such as, for instance, the 
study of Speetjens, Stigter, and Van Straten (2009), where evapotranspiration and water balance 
parameters were estimated in an adaptive way. Issues related to application of adaptive models in 
control are discussed in Section 9.4.7.2.

9.4.5 �G oal Function

9.4.5.1 � Formulation of Goal Function
Proper formulation of an economic goal function is not trivial. Fluctuating market prices, contract-
ing, and energy policies all need to be incorporated. In the evaluation of optimal control solutions, 
models and assumptions for these aspects are needed, and so far, little is known about the effects of 
uncertainties in economic model parameters on the results of optimal control or the control policy 
itself. Despite these, the fact that optimal control requires the explicit formulation of a goal function 
is a definite advantage. Moreover, it allows rapid and automatic adaptation of the control actions 
to new economic parameters. Market prices are known to vary over a season; see, for instance, the 
analysis by Van Henten (1994) for lettuce. In any case, the grower is the entrepreneur and should 
make the final decisions regarding his expectations of the market. It should be noted that the frame-
work also offers a method to make a choice out of possible indifferent alternate solutions arising 
from multiple-objective optimization because, in the end, there are reasons for a grower to prefer 
one solution above another. Once known, this kind of decision making can be incorporated within 
a single goal function, with parameters that express the grower’s preferences.

9.4.5.2 �C onstraints and Penalties
In fact, setting environmental constraints can be seen as a poor man’s answer to the lack of adequate 
models. Environmental constraints on the system states should ideally not be necessary if the mod-
els would be able to predict detrimental effects of extremes. Researchers have attempted to relax the 
restrictive effect of fixed constraints by replacing them by time variant versions or by the tempera-
ture integral concept. The developmental aspects of the temperature integral and temperature and 
humidity regimes in the context of optimal control have been investigated among others by Körner 
(2003). Apart from having predefined constraints, the grower may like to overrule them when the 
visually observed development is not as expected, but it is clear that this limits the room for optimi-
zation. Constraints will also be used to back off from regions that are considered to be a risk.
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9.4.5.3 �R isk
An issue that definitely requires more research efforts is the question of how risk could be included 
in the goal function. Currently, risk is avoided by setting bounds on the states and by handling 
constraint violation by penalties. Improvements can be expected if better stress and vulnerability 
models become available, as discussed before. The degree to which backing off from constraints is 
selected will still be somewhat arbitrary.

9.4.5.4 � Stochastic Variability
In the design and evaluation stages of optimal controllers, the fact that the weather is a stochastic 
variable makes the ultimate goal function value a stochastic variable itself. Although uncertainty 
propagation has been investigated in models, much less information is available on the expected 
distribution of the goal function and, in addition, on the slow costates that in fact also become sto-
chastic variables. The uncertainty in goal function can be viewed as the normal agricultural vari-
ability that cannot be avoided, but the costate uncertainty will have an effect in the online receding 
horizon controller. It is therefore essential to asses these uncertainties. Results presented by Van 
Henten (1994) suggest that the variability of the slow costate with weather is not large. Seginer and 
Ioslovich (1998) performed a transformation such that the costate remains constant over the season, 
although the analysis is limited because it is based on stationary periodic weather. Nevertheless, 
there is good hope that nominal slow costates are good stand-ins for the actual values. In any case, 
it would always be possible to solve the slow subproblem from time to time on the basis of the 
currently available historical weather information to improve the estimates. More research in this 
direction would be welcome.

9.4.6 �O ffline: Dynamic Optimization Methods

Although dynamic optimization is a well-matured field in science (see Chapter 3), still attention 
is required for implementation in online controllers. In particular, it is necessary to have tests on 
whether the computed optimum is not a local optimum. Another solution is to use optimization 
methods directed at maximizing chances to find a global optimum, such as genetic algorithms (e.g., 
see López Cruz, 2002). It also occurs that there are nondecisive patterns that may lead to unduly 
long searches. For instance, imagine that heat loss and other temperature effects were purely linear 
with temperature, then all temperature trajectories with the same integral over time would yield the 
same goal function value. However, in the setup proposed in this book, this problem is less severe, 
as the major outcome of the dynamic optimization is the trajectory of the slow-state variables. 
Therefore, techniques to check the reasonability of the trajectories found would suffice.

In the examples worked out in this book, aquifer storage buffers have not been associated yet 
with slow costates. This is an issue for further research, although we do not foresee fundamental 
difficulties.

Computationally, dynamic optimization methods have difficulty with high-frequency compo-
nents of the external signals. Because of the timescale decomposition, smoothing is required, and 
as the computation is done with the smooth nominal trajectory, this is not a real problem at the start 
of a season. To keep the slow costates up to date, the computation is repeated from time to time with 
actual external signal trajectories that are known until then. In that case, a choice must be made of 
what the smoothing filter for the real data should be. There is no experience with this yet.

Reduction of computation time is always welcome, but as the dynamic optimization has to be 
done at the start of the cultivation only and perhaps a few times during the cultivation, it is no 
problem to spend, for instance, a day to achieve the optimal slow costates. It is even conceivable in 
standard greenhouses with standard equipment to have them available for a specific climate zone in 
advance via the Internet or dedicated for each individual grower on the basis of his equipment and 
his goal function. However, speed of computation might be an issue in investigating the stochastic 
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nature of the slow costates discussed earlier because this requires many repetitions of the optimiza-
tion. Model reduction (e.g., see Ioslovich and Gutman, 2008) and approximate error propagation 
methods could be a solution here.

9.4.7 �O nline Control

9.4.7.1 �R eceding Horizon Optimal Control
9.4.7.1.1 � MPC Issues in General
As receding horizon optimal control (Chapter 4) is, in fact, a special form of MPC, some of the 
issues related to MPC are also playing a part in RHOC. In a review on a number of architectures 
for control of large-scale systems with MPC, Scattolini (2009) presented the following points, listed 
here with our comments pertaining to the greenhouse cultivation problem.

Need for new algorithms with guaranteed properties. Empirical experience needs to be •	
supported by theoretical analysis. In the case of greenhouse cultivation, stability is prob-
ably not a big issue. However, theoretical support for the question on how to increase per-
formance in the presence of structural and external uncertainties is much needed.
Selection of the control structure. Which disturbances can be handled at the local level, •	
under what circumstances is it feasible to use pseudostatic approximations, and what infor-
mation needs to be transferred between components? In this book, we have offered a struc-
ture via the transmission of slow costates to the online control, but there is still the issue of 
multiple timescales and time variability of the slow costates themselves, which may have 
an effect on the hierarchical decompositions that are possible and which could reduce the 
system interconnectivity and complexity.
Reconfigurable control structures and hybrid systems. The need for more insight on this •	
point was already discussed in the previous sections. It is also related to temporal unavail-
ability of sensors or actuators due to maintenance and to component failures.
Optimization algorithms. Important criteria are computational speed and the avoidance of •	
local minima.
(Distributed) State estimators. The presence of reliable sensors for most physical variables •	
of interest has diverted the interest in state estimators for greenhouses. However, the ten-
dency to cope with spatial distributions puts state estimators back on the agenda. In addi-
tion, there is an urgent need for estimators for the crop states.
System partitioning. Although the theory of optimal control as developed in this book may •	
seem to make partitioning less urgent, the modern greenhouses have several subsystems, 
such as the boiler/power generator unit, the heat exchangers and heat pumps, the cool-
ing systems, and the short- and long-term buffering. The solution of the optimal control 
problem becomes simpler if dynamic couplings can be reduced. Moreover, model reduc-
tion would be beneficial to simplifying the optimization task. Scattolini (2009) suggested 
pathways, some of which might be relevant to the greenhouse industry as well, such as, for 
instance, relative gain array methods.
Synchronization and communication protocols. With the arrival of “intelligent” sensors •	
and sensor networks, the distribution of multiple actuators and pieces of equipment, and 
field bus concepts, the standard assumption of synchronous communication cannot be 
made anymore. Although the processes in greenhouses seem to be slow enough not to 
bother too much, the issue has to be investigated carefully because performance and stabil-
ity can deteriorate considerably under delayed communication. Solutions have been offered 
in the general literature (e.g., see Van Willigenburg and De Koning, 1995). In addition, in 
any practical application, decisions must be made on sampling intervals, control intervals, 
handling of events, and so on (e.g., see Van Henten and Bontsema, 2008).
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9.4.7.1.2 � Implementation Aspects
The pragmatic approach to have the receding horizon controller as a front end that computes the 
setpoints for the existing classical controllers is a solution that, although suboptimal, can help sys-
tem vendors to step over the doorstep toward more advanced control. A successful implementation 
of a receding horizon controller used this way for cold storage of potatoes was discussed by Lukasse 
et al. (2009). The authors gave an interesting discussion on issues that are encountered when imple-
menting receding horizon optimal control. In particular, they point to the shortsightedness of the 
RHOC if the prediction horizon is chosen too short. Paraphrasing the observation of the authors, 
we state that in general the prediction horizon should be larger than the longest time constant of the 
system. This time constant can be evaluated as the reciprocal of the eigenvalues of the linearized 
system. In contrast to the cold storage application, in greenhouses the longest timescale is associ-
ated to the crop, and for this very reason, the timescale decomposition as explained in Chapter 5 has 
been developed. If, however, one would be prepared to assume blueprint temperatures and humidity 
settings, then the relevant timescale is related to the greenhouse dynamics. The assessment of the 
most appropriate horizon can then be based on this timescale and tested for the nonlinear model by 
simulation, in the same way as done by Lukasse et al. (2009).

9.4.7.1.3 � Computational Speed
In real implementations in greenhouses, performing the online optimization during the control 
interval of, typically, five minutes is not a big issue, but if the controller has to be tested in simula-
tion, the computation time of a single optimization must be short. The total time needed for a year-
round receding horizon simulation with computation time θc seconds per optimization and control 
interval Ts (s) becomes θc(365 × 24 × 3600)/Ts, meaning that, for instance, with θc = 60 s and Ts = 
300 s, a year-round simulation will take over two months. Thus, repeated online optimization can 
be time consuming, as was experienced by Tap (2000), who was not able to perform a year-round 
computation at the time (see also Chapter 7). To be feasible, it is therefore imperative that θc/Ts is 
as small as possible, preferably <1/10000, to have results within an hour. With the advent of faster 
computers and more efficient search methods, such simulations, however, become increasingly fea-
sible, as shown by Van Ooteghem (2007) (Chapter 8).

Tackling of the computational burden can be done in various ways. One is to use model reduc-
tion, as discussed before. The other is to use approximate optimization methods, such as subspace 
optimization, to approach the true solution more rapidly. 

The appearance of fast parallel computing devices on the market, such as field programmable 
gate arrays (FPGA) (e.g., see Castañeda-Miranda et al., 2006), might bring about a complete change 
of online optimization possibilities, of which the exploration is yet to begin.

9.4.7.1.4 � Stability, Robustness, and Reliability
Experience with receding horizon control in greenhouses thus far suggests that the procedure is robust. 
Instability because of modeling errors has not been observed. The worst that can happen is that the 
control solutions are not optimal when the model predictions are wrong. The possibility to adapt the 
model when persistent bias is observed has, however, not yet been explored (see Section 9.4.7.2).

An issue that needs to be investigated further is what will happen in case of failure of a sensor or 
other components in the system. This requires, on one hand, automatic fault detection for trigger-
ing alarms, but this is not different from standard control. The analysis on how to act is somewhat 
more involved in the optimal control framework. One possibility is to use fallback mechanisms that 
keep the system within constraints at all times because this becomes a more important target during 
failure than optimization.

9.4.7.2 �A daptive Receding Horizon Optimal Control
Several attempts have been reported to develop adaptive controllers for greenhouses (Arvanitis, 
Paraskevopoulos, and Vernardos, 2000; Rodríguez et al., 2008; Speetjens, 2008; Young et al., 1987). 
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However, the development of an adaptive optimal control scheme directed to achieve an economic 
optimal control strategy and online control scheme in the spirit of this book with learning or self-
tuning properties is a challenge for the future.

Parameter adaptation could also be used to gradually improve on the models and to move gradu-
ally from robust traditional but conservative control toward optimal control. By actively probing the 
system to provide sufficient excitation, the model parameters are updated to yield more and more 
accurate predictions. It is known that identification in the loop can lead to instability, so the investi-
gation of stability will need to be part of such research. In contrast to more or less steady industrial 
applications, the natural excitation already offered by the sun and wind conditions may already be 
sufficient, but this needs to be investigated. A self-learning optimal active adaptive controller would 
be a big advantage for implementation and maintenance.

9.4.7.3 �T racking Necessary Conditions for Optimality
An alternative to RHOC for online control is tracking the necessary conditions for optimality 
(Srinivasan et al., 2003), also denoted by the abbreviation NCO. This is based on the idea that 
whenever the control is not on a constraint, the condition,

	 ∂ ∂ =H u 0	 (9.7)

must be fulfilled.
The Hamiltonian for the fast subproblem follows from Equation 5.44 and is given by

	
H L( ) , , , , , , , ,* * *u x x u d p f x x u d p f= ( ) + ( ) +s f s T s s f f fT

λλ λλ xx x u d ps f*, , , ,( ) 	 (9.8)

The use of Equation 9.8 to derive the control u directly from Equation 9.7 in closed form is not pos-
sible as the fast costate λf must be known, which requires the solution of a two-point boundary value 
problem (see Chapters 3 and 4). In a study on nitrate in lettuce, De Graaf (2006) tried to circumvent 
the problem in the following way. He starts with a physical model that in the terms of Chapter 7 has 
a form similar to
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where Tm is the temperature (K) of a virtual material component consisting of greenhouse materials, 
plant containers, subsoil, and crop; Ta is the air temperature (K); CH O2

 is the water vapor concentra-
tion (kg[H2O] m–3); and CCO2

 is the CO2 concentration (kg[CO2] m–3). Km is the heat capacity of the 
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virtual material components (J m–2[gh] K–1), Ka = ρaVacpa is the heat capacity of the air (J m–2[gh] 
K–1), and Va/As is the air volume per unit greenhouse projected soil area (m). The right-hand side 
terms  consist of flows per unit greenhouse area. The meaning of the remaining symbols is as 
follows:

qo_m
rad 	 Solar radiation absorbed by the virtual materials	 (W m–2[gh])

qm_a
cond	 Sensible heat transfer from material to air	 (W m–2[gh])

qm_a
trans	 Latent heat associated with evapotranspiration	 (W m–2[gh])

qa_o
vent	 Sensible heat exchange with outside by ventilation	 (W m–2[gh])

qa_o
cond	 Sensible heat exchange with outside by conduction	 (W m–2[gh])

uq	 Sensible heat input from the heating pipe system	 (W m–2[gh])
E qc m_a

trans /= Λ	 Evapotranspiration rate of the canopy	 (kg[H2O] m–2[gh] s–1) 
Λ	 Heat of evaporation of water 	 (J kg–1)
ϕH O,a_o

vent
2

	 Loss rate of water due to ventilation 	 (kg[H2O] m–2[gh] s–1)
P, R	 Photosynthesis and respiration rate, respectively 	 (kg[dw] m–2[gh] s–1)
ηCO /dw2

	 Ratio CO2 per kg dry weight	 (kg[CO2] kg–1[dw])
ϕCO ,a_o

vent
2

	 Loss rate of CO2 due to ventilation 	 (kg[CO2] m–2[gh] s–1)
uCO2

	 Supply rate of CO2 	 (kg[CO2] m–2[gh] s–1)

Next, the problem of needing to know the fast costates is avoided by assuming that the air tempera-
ture, humidity, and CO2 are in pseudo-steady state at all times and by including the costate for the 
virtual material component in the list of slow costates, similar to how it is done for the crop biomass. 
In doing so, the optimal slow states and costates can be computed for nominal smooth external 
inputs in advance by dynamic optimization as usual (see Chapter 3). Once available, the online 
control problem can be solved without optimization by applying the necessary condition Equation 
9.7. This is possible as Equations 9.10 through 9.12 degenerate to 
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which constitutes an algebraic relation between u, d, xs*, and xf, whereas the λf in Equation 9.8 is 
disappearing as f f = 0 by virtue of Equations 9.13 through 9.15.

The main remaining problem with this approach is that Equation 9.7 does not hold when the 
control is on a constraint. It is therefore necessary to find out when that is the case. The author devel-
oped a rather complicated decision tree that is based on the analysis of a number of optimal control 
patterns to decide on periods when the control is at a constraint. For instance, during the night in 
spring, summer, and autumn, the ventilation is always at its lower bound, whereas it is between 
bounds in autumn, and so forth. In addition, the quality of the approach depends on the effects on 
the optimal result of the assumptions in Equations 9.13 through 9.15. Unfortunately, these have not 
been investigated. Another issue is whether the greenhouse air temperature is really a slow vari-
able. Some difficulties were encountered in finding the true optimum for the offline optimization 
problem. This may be associated with the rather high frequencies that need to be maintained in the 
external input sequence to obtain realistic daily patterns of the air temperature. Despite all this, the 
idea to obtain a closed control law is certainly appealing.
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9.4.7.4 � Self-Optimizing Control
In the decomposition of the control problem proposed in this book, the linking pin variables are 
the slow costates. Online, a receding horizon control problem must be solved with these costates 
as inputs. In Section 9.4.7.3, a solution was discussed that tried to avoid the online optimization. 
Another interesting idea originating from control of chemical plants was described by Skogestad 
(2000a, 2000b, 2004). This approach is coined “self-optimizing” control. The basic idea is as fol-
lows. After the computation of the nominal optimal solution by dynamic optimization (our “slow 
problem”), one looks for combinations of variables with the following properties: (1) they are 
weakly dependent on the external disturbances, (2) they are easily deducible from measurements, 
and (3) they are sensitive to the controls. If these conditions are fulfilled, one could implement a 
feedback controller to keep these variables near their nominally optimal path, thus ensuring that 
the online solution responds to the external disturbances and nevertheless remains close to the 
optimum. In greenhouse cultivation, the straightforward approach of using the nominal state trajec-
tories as set points clearly does not fulfill requirement item 1. 

On the other hand, the slow costates were identified as relatively insensitive to the disturbances, 
so they do comply with condition item 1. It has been proposed by Seginer (2008) to give the grower 
direct access to the slow costates. As these represent the marginal values of biomass components, 
retardation or boosting of growth or development processes may be achieved by changing the pre-
calculated costate variable for the variable of interest. This could also be the mechanism to correct 
visually observed deviations from the envisaged cultivation path. This requires user intervention 
but it may be a step toward truly self-optimizing control. For the latter, the slow costates are not 
directly suitable because they cannot be measured and controlled directly. Nevertheless, there may 
be combinations of measurable variables, reliably computable variables, and measured external 
disturbances that, when controlled, keep the system near its optimum. It would therefore be an 
interesting project to investigate whether such variables exist in the greenhouse cultivation systems. 
In view of the relatively large disturbances, perhaps a combination of the ideas of self-optimizing 
control and NCO is an option to go for.

9.4.8 �U ser Interaction

A black box without explanation of why a certain control action is taken is not likely to be accepted 
by growers. Hence, there is a need to have one or more of the following features:

A knowledge base attached to the controller that explains its actions to the user (cf. •	
SERRISTE, Tchamitchian et al. 2006; albeit not in optimal control framework).
A simulation tool to show the grower the effects of user adjustable parameters, such as •	
constraint conditions and market prices.
A method to translate optimal control results into transparent rules that finally are imple-•	
mented using the existing infrastructure. In this case, the optimal controller is used only 
offline to design such a system. It will be suboptimal because the control is hindered by the 
dynamics of existing devices, but it can be acceptable in practice.

Especially a simulation tool that can tell growers how much backing off from constraints costs 
and what the consequences will be of changing economic parameters is of paramount importance 
to allow the grower to play his role as entrepreneur. Such a presentation tool can be developed 
relatively easily because all ingredients are already available. It is also conceivable to use offline 
models—perhaps offered via the Internet—for this purpose. Internet tools for design simulations 
are available (Fitz-Rodríguez et al., 2010), guidance of online operation is just beginning (e.g., see 
Buwalda et al., 2008), but, as far as we know, remote tools to support online optimal control are 
not yet available.
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9.4.9 � Information and Communication Technology

Software and information and communication technology offer increasing opportunities to solve, 
to circumvent, or to alleviate some of the methodological and technical issues listed in the previous 
section. Table 9.1 summarizes the potential role of new information and communication technolo-
gies in bringing the goal of optimal greenhouse cultivation control closer.

9.5 � Showstoppers for Optimal Control

Despite the need for additional work as listed in Section 9.4, it was argued and demonstrated in this 
book that optimal control is already possible today. Yet, if optimal control is so fabulous, why do we 
not see it applied in current practice? This is the topic addressed in this section.

The issue was addressed before by Challa and Van Straten (1991) and Van Straten (1999). To 
our knowledge, no research has been done regarding factors that prevent radical innovations in the 
greenhouse controller industry. Hence, the discussion below is somewhat speculative. The analysis 
is partly based on discussions with climate computer vendors and growers and partly on intuition 
and experience.

The discussion is split into hard factors related to the methodology itself and soft factors regard-
ing the psychology of acceptance of new technology.

9.5.1 �L imitations in State of the Art

Although there are definitely a number of points regarding the methodology that need further sci-
entific attention (Section 9.4), we do not believe that the limitations in current state of the art are the 
real showstoppers for the introduction of optimal control. However, what is frequently put forward 
in discussions on optimal control is what will be the benefit gained in the end. Although typically 
savings in energy of 10–20% have been reported, lack of clear indications on the benefits that can be 
obtained under various economic and climatological conditions may have been a factor in preclud-
ing penetration of optimal systems in the market. Hence, the “what do I gain” question is definitely 
an important question to address. Yet, this must be placed in perspective: if it were true that more 
time needs to be invested in optimal control, then the extra investment could be balanced against 
the gained benefit. We suspect, however, that there is hardly a big difference in time investment 

TABLE 9.1
Role of New Information and Communication Technologies and Challenges for Control

Aspect or Issue Technology Control Challenges

Feedback from the crop Individual crop sensors Data interpretation to canopy level

Spatial heterogeneity Wireless sensor networks Data fusion
Spatial models
Distributed actuation

Model maintenance Web-based models Automatic model update

Computational burden Model reduction Approximate suboptimal control; 
near-optimal control

Downward compatibility (old computer 
hardware)

Model and control reduction Approximate suboptimal control; near 
optimal control

Parallel hardware Vectorizing control solutions

User support Web-based model-based advice Policies to be translated to goal or costate

Effect of user settings and goal choices Online simulation Model-based forecast presentation tool

Control system maintenance Web-based control Asynchronous control

Economic uncertainty Web-based price forecast Price forecast models
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between developing advanced traditional control systems and optimal control systems, but there 
is no objective information on whether this conjecture is true or not. If the difference is marginal, 
then the investment argument is no reason not to go for optimal control. However, there can be other 
factors, which we analyze next.

9.5.2 �T he Human Factor: The Grower

Over time, growers got used to the current way of operation and have learned how to use the com-
puter settings to accommodate their needs. Although a method that would allow them to directly 
convey their needs to the system would be much easier to use, they are so much used to the current 
systems that it will not be easy to make a change. It is even conceivable that many of them do not 
even perceive the need for change.

Yet, it is a fact that growers with the same crop and the same climate computer have large differ-
ences in yield. It is only possible to speculate on possible reasons. We cannot say that the handling 
of the control system is the one and only reason. In the ideal case, the differences are caused by 
factors that reflect the entrepreneurship of a grower: (1) ability to organize and execute appropriate 
cultivation methods, such as watering, pruning, and leaf picking; (2) skills in handling abnormal 
situations; and (3) thoughtful economics-based selection of settings of the climate computer. Of 
these, the first two have no relation to the climate computer. Thoughtful computer settings can be 
different among growers because growers may differ in their willingness to accept risk in exchange 
for potential higher income.

In practice, the situation is less ideal. There are various paradigms among growers on how to 
choose climate computer settings. Two growers can have remarkable differences in physical knowl-
edge and insight, depending on their level of education, their beliefs on how the system works, and 
their experience. For instance, it is not common knowledge that moisture control is more important 
than temperature control to achieve the lowest energy costs. In addition, there are differences among 
growers regarding their attitude toward computer technology and their willingness and interest to 
spend time behind the computer screen.

In view of these differences in skills and background, it would be very valuable to have a system 
that assists the grower in making the correct decisions on the basis of the ultimate goal. This is 
precisely what model-based optimal control can do. Should such a system be on the market, it will 
require an adjustment period, but if the grower still has the feel to be provided by information on 
the state of his crop and that he is the person in control, the benefits will soon become apparent, and 
rapid adoption can be expected. This is somewhat comparable with the original resistance of pilots 
against the fly-by-wire technology or, to be closer to the agro sector, of farmers against the milking 
robot, but once pioneers saw the benefit, others followed quickly.

The current dilemma is that growers will only have the opportunity to start using optimal con-
trol methodology if this solution is offered on the market, whereas, on the other hand, vendors are 
hesitating to adopt the methodology if they believe that growers will not buy it. Therefore, in this 
way, there is a deadlock and a transition problem. In addition, it has to be said that early attempts to 
introduce model-based control in The Netherlands failed and caused an aversion against anything 
related to models for a long time.

9.5.3 �H uman Factor: The Control Engineer

The realization of the optimal methodology in commercial greenhouse automation equipment requires 
a fairly high level of expertise. In practice, this solution—if it is considered at all—will be judged 
against the efforts needed for the design of other more traditional control solutions that are perhaps 
more familiar to control engineers. By education, control engineers are trained to think in desired 
response speeds and disturbance rejection sensitivity. In addition, the natural tendency is to think 
of solutions in “sequence” of required complexity. The first choice is classical PI and PID feedback 
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control, which is appropriate if simple transfer function models are easily obtained. Gain scheduling 
is used as a practical way to handle the major nonlinearities. Next, when parameters appear uncertain 
and time varying, either adaptive control or robust control comes into the picture. Large external 
measurable inputs and state and controller gains are more easily handled by model-predictive control 
methods. Quadratic optimal output feedback designs together with state observers are less customary, 
probably because of the relatively poor robustness properties. In any case, what is common in all these 
solutions is the thinking in terms of response speeds, disturbance rejection, and stability arguments. 
Optimality in resource use or costs is considered to be a matter of the higher level.

Another perhaps more important factor is that in the greenhouse industry the lead in design of 
control and automation is not with control engineers but with people with a background in physics. 
It is tempting and indeed interesting to base the design on quasi-steady state balance equations, 
where the greenhouse’s actual state is characterized by notions like heat demand, CO2 demand, and 
(de)humidification demand or ventilation demand. In itself, there is nothing wrong with this kind 
of thinking because it is a first step to provide control on the basis of feed-forward compensation. 
However, closure of the balance is possible only if one is prepared to assume an ideal setpoint level 
for temperature, CO2, and moisture content. When designers implemented these strategies together 
with low-level controllers to compensate for small disturbances, it soon became clear that fixed 
setpoints were not what users needed. One responded to this by introducing night–day patterns and 
by allowing deviations under high solar radiation input. Next it was found that these are not enough 
to meet the needs for energy savings. The temperature integral concept came into play, and the 
industry’s answer was to create yet another layer on top of the existing feed-forward/feedback layer. 
With every new demand, new layers were created. In this way, in many modern climate computers, 
one can see stacks of solutions, for instance, (1) for temperature integration; (2) energy management 
to decide on the best deployment of utilities for CO2, heat, and electricity supply based on demand 
for CO2, electric energy, and heat computed from balances; and (3) control of electricity production 
for the public net by cogeneration on the basis of an agreed power delivery profile provided for the 
next day by the power company on the basis of current electricity prices.

This approach, while leading to the commercial solutions on the market today, leads to ever 
more complex systems, with increasing demands to the user who may easily lose track of the many 
options offered. And perhaps more importantly, the layered approach creates internal conflicts 
regarding priorities, and we suspect that the final solution is much less optimal than suggested in 
the glossy selling brochures.

It is interesting to observe that often objections are made against economic optimal control as 
described in this book on the arguments that (1) much knowledge needs to be available about the 
process and (2) it requires a high level of expertise. If we compare this with the efforts needed with 
the control solutions listed above, it can hardly be maintained that these are disadvantages of the 
optimal control methodology. If a control engineer is able to design an MPC, he would, in principle, 
have the intellectual capacity to design an economic optimizing integrating controller as well.

Yet, a factor that may well be precluding the adoption of optimal control as a method is that an 
individual engineer may not have received his boss’s support to rethink the complete system. Much 
effort has been put into components that already exist, and it is understandable that a company 
requires upward compatibility. There may be a belief that optimal controllers are more difficult to 
design in teamwork. In modern design, teamwork between developers and software and hardware 
engineers is necessary. The ability to split a task into several subtasks is necessary on the company 
level because it makes it easier to hold someone accountable for specific components and allows 
step-by-step expansion and development of the control system. There might be a perception that 
optimal controllers are less easy to set up in modular form because, after all, all parts are compo-
nents of the solution. However, the breakdown in models, optimization, weather input, goal presen-
tation, and online control as outlined earlier, shows that a modular setup is equally possible with 
optimal controllers. Yet, it must not be denied that there may be a transition problem in the process 
of rethinking the design strategy.
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9.5.4 �L eveling the Barriers

The barriers for truly optimal control discussed above can be categorized in three major themes. 
The first is education, training, and sharing of experience. We hope that this book will contribute 
to lowering the threshold. The second is the opinion that control is playing a marginal role in the 
economy of the nursery. If one reckons that a commercial tomato grower in The Netherlands has 
an annual turnover of about 100 €/m2 and that roughly 20% of this is for energy, savings of 10% in 
energy—which are easy to achieve with advanced control—will increase the margin by 2 €. With an 
original margin in the same order of magnitude, the profit doubles, and this will make the difference 
between being in business or not. The third limiting factor is the problem of transition from cur-
rent practice to desired practice. It is clear that the deadlock between suppliers and growers needs 
to be broken. Will we see the challenge being taken up by the well-established greenhouse climate 
computer suppliers, or will innovation be brought about by new players who can start from scratch? 
There is a growing awareness of the need for a new direction, as testified by the following address 
to an International Society for Horticultural Science meeting by a representative of the greenhouse 
climate computer industry: 

“A new generation of climate, irrigation and nutrition control will employ crop sensors and models. 
Feed-forward controllers anticipate the effects of disturbances on the greenhouse climate and take cor-
rective action before they are allowed to occur. Greenhouse models can be used to predict the effects 
of disturbances. By using a crop model to estimate the benefits to the crop and a greenhouse model to 
estimate the costs, optimum setpoints can be generated. The reliability of model-based control is signif-
icantly enhanced when feedback on the crop’s status and growth rate are added. For this purpose, crop 
sensors need to be developed. Sensor data combined with intelligent algorithms, collectively called 
‘soft sensors’, represent a promising way of obtaining additional information on the growth process. 
Crop monitoring can also be used as an early warning system (by comparing sensor measurements with 
reference data) and so help limit the consequences of human error or technical failure. Optimal control-
lers use a model-based economic assessment to determine the optimum values for various processes 
and resource input levels. Optimal control will first be introduced as decision support systems at crop 
process level” (De Koning, 2006). 

This quote may perhaps be seen as an indication that the barriers are indeed gradually being 
leveled.

9.6 �C onclusions and Perspectives

In view of the many advantages of greenhouse cultivation over open air cultivation, it can be 
expected that the greenhouse industry will show substantial growth, especially in upcoming econo-
mies. At the same time, the greenhouse industry in its current form is criticized for its excessive 
use of energy and water. Therefore, it is clear that sustainability will be imperative to be acceptable 
to society. Innovative solutions will be found that exploit the fact that the greenhouse is, after all, 
a solar collector. All this will lead to more complex designs. It is very obvious that the associated 
control problem cannot be solved in a satisfactory manner with a collection of single-loop control-
lers. The problems that require solutions are

The proper handling of interactions, complexity, and nonlinear behavior•	
A high degree of automation•	
Transparency of the automated systems to the user (not hundreds of settings)•	
Proper balancing of multiple objectives (energy, crop yield, water)•	
Optimality of the result to ensure maximum sustainability and profit•	

The optimal control framework described and developed in this book offers an elegant, science-
based, and feasible solution to these issues. Beyond the greenhouse as entity, there are a number of 

© 2011 by Taylor and Francis Group, LLC



Developments, Open Issues, and Perspectives	 293

other interesting perspectives that deserve to be mentioned. In view of the need for sustainability, 
solutions will be sought beyond the boundaries of the traditional greenhouse industry. For instance, 
integrating greenhouse production with other farming activities, such as animal breeding, is likely 
to be developed further. These innovations once again lead to more interaction and interdependency 
between system components, and the complexity of proper control will grow. The optimal control 
framework will be attractive to study control policies for the operation of such integrated facilities. 
It has not generally been noticed that the optimal control framework can also be beneficial to the 
design stage of greenhouse systems. This is because in the framework, the sensitivity of the pre-
dicted economic operation to design parameters is easily investigated. Because economics is part of 
the game right from the beginning, return on investments under various scenarios is easily evalu-
ated. In this frame, dynamics becomes part of the design, and the problems invoked by the classical 
separation between the system design stage and the control design stage will be remedied.

Another perspective is that the integrated design and control solutions offered by the meth-
odology of optimal control for greenhouse cultivation may have a spin-off to other sectors. The 
application to cold storage warehouses has already been mentioned (Lukasse et al., 2009). Other 
challenging areas are developments toward bioproduction in urban environments (e.g., see Nelkin 
and Caplow, 2008) or for manned space missions (Albright et al., 2001). The foreseeable end of the 
fossil fuel and the global warming problem have triggered interest in producing biomaterials and 
biofuels from algae. Because algae are microscopic plants, production with solar radiation as input 
has a number of similarities with greenhouse production, and we expect that it will be a rewarding 
area of research to apply and adapt the methodology to this new, exciting field.

Central to the control solutions offered in this book are the incorporation of crop dynamics and 
the exploitation of the opportunities offered by the weather and in particular the sun. Only science-
based optimal control can achieve this. Despite scientific and technological challenges, there is suf-
ficient basis to start implementing these methodologies in daily practice and to gain experience on 
the fly. In this way will the control system become not only a instrument to the grower but also an 
instrument to reach sustainability, which is a conditio sine qua non for the vitality of crop produc-
tion in protected environments.
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