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PREFACE

Differential geometry has a long history as a field of mathematics
and yet its rigorous foundation in the realm of contemporary
mathematics is relatively new. We have written this book, the
first of the two volumes of the Foundations of Differential Geometry,
with the intention of providing a systematic introduction to
differential geometry which will also serve as a reference book.

Our primary concern was to make it self-contained as much as
possible and to give complete proofs of all standard results in the
foundation. We hope that this purpose has been achieved with
the following arrangements. In Chapter I we have given a brief
survey of differentiable manifolds, Lie groups and fibre bundles.
The readers who are unfamiliar with them may learn the subjects
from the books of Chevalley, Montgomery-Zippin, Pontrjagin,
and Steenrod, listed in the Bibliography, which are our standard
references in Chapter I. We have also included a concise account
of tensor algebras and tensor fields, the central theme of which
is the notion of derivation of the algebra of tensor fields. In the
Appendices, we have given some results from topology, Lie group
theory and others which we need in the main text. With these
preparations, the main text of the book is self-contained.

Chapter II contains the connection theory of Ehresmann and
its later development. Results in this chapter are applied to
linear and affine connections in Chapter III and to Riemannian
connections in Chapter IV. Many basic results on normal
coordinates, convex neighborhoods, distance, completeness and
holonomy groups are proved here completely, including the de
Rham decomposition theorem for Riemannian manifolds.

In Chapter V, we introduce the sectional curvature of a
Riemannian manifold and the spaces of constant curvature. A
more complete treatment of properties of Riemannian manifolds
involving sectional curvature depends on calculus of variations
and will be given in Volume II. We discuss flat affine and
Riemannian connections in detail.

In Chapter VI, we first discuss transformations and infinitesimal
transformations which preserve a given linear connection or a
Riemannian metric. We include here various results concerning
Ricci tensor, holonomy and infinitesimal isometries. We then
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treat the extension of local transformations and the so-called
equivalence problem for affine and Riemannian connections.
The results in this chapter are closely related to differential
geometry of homogeneous spaces (in particular, symmetric
spaces) which are planned for Volume II.

In all the chapters, we have tried te familiarize the readers
with various techniques of computations which are currently in
use in differential geometry. These are: (1) classical tensor
calculus with indices; (2) exterior differential calculus of E. Cartan;
and (3) formalism of covariant differentiation VY, which is the
newest among the three. We have also illustrated, as we see fit,
the methods of using a suitable bundle or working directly in
the base space.

The Notes include some historical facts and supplementary
results pertinent to the main content of the present volume. The
Bibliography at the end contains only those books and papers
which we quote throughout the book.

Theorems, propositions and corollaries are numbered for each
section. For example, in each chapter, say, Chapter II, Theorem
3.1isin Section 3. In the rest of the same chapter, it will be referred
to simply as Theorem 3.1. For quotation in subsequent chapters,
it is referred to as Theorem 3.1 of Chapter II.

We originally planned to write one volume which would include
the content of the present volume as well as the following topics:
submanifolds; variations of the length integral; differential
geometry of complex and Kéhler manifolds; differential geometry
of homogeneous spaces; symmetric spaces; characteristic classes.
The considerations of time and space have made it desirable to
divide the book in two volumes. The topics mentioned above will
therefore be included in Volume II.

In concluding the preface, we should like to thank Professor
L. Bers, who invited us to undertake this project, and Inter-
science Publishers, a division of John Wiley and Sons, for their
patience and kind cooperation. We are greatly indebted to Dr.
A.J. Lohwater, Dr. H. Ozeki, Messrs. A. Howard and E. Ruh for
their kind help which resulted in many improvements of both the
content and the presentation. We also acknowledge the grants of
the National Science Foundation which supported part of the work
included in this book.

SHosHIcHI KOBAYASHI
Karsumi Nowmizu
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CHAPTER 1

Differentiable Manifolds

l. Differentiable manifolds

A pseudogroup of transformations on a topological space §'is a set
I' of transformations satisfying the following axioms:

(1) Each feI' is a homeomorphism of an open set (called the
domain of f) of §' onto another open set (called the range of /) of
S5

(2) If fe I', then the restriction of f to an arbitrary open subset
of the domain of fis in I';

(3) Let U = UU, where each U, is an open set of S. A homeo-

morphism f of U onto an open set of § belongs to I' if the restric-
tion of fto U, is in I for every ¢;

(4) For every open set U of .S, the identity transformation of U
isin I';

(5) If feI', then f1eI';

(6) If feI' is a homeomorphism of U onto V and f'eI'is a
homeomorphism of U’ onto V' and if V N U’ is non-empty,
then the homeomorphism f’° f of f~1(V n U’) onto f'(V N U’)
is in I'.

We give a few examples of pseudogroups which are used in this
book. Let R™ be the space of n-tuples of real numbers (x1, x2, . . ., ")
with the usual topology. A mapping f of an open set of R" into
R™ 1s said to be of class C",r =1,2,..., oo, if f is con-
tinuously 7 times differentiable. By class C° we mean that f is
continuous. By class C® we mean that f is real analytic. The
pseudogroup T'"(R™) of transformations of class C™ of R™ is the set of
homeomorphisms f of an open set of R" onto an open set of R
such that both f and f~! are of class C”. Obviously I''(R") is a
pseudogroup of transformations of R™. If r < s, then I'*(R") is a
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2 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

subpseudogroup of I'"(R"). If we consider only those fe I'"(R")
whose Jacobians are positive everywhere, we obtain a sub-
pseudogroup of I"(R"). This subpseudogroup, denoted by
I'7(R"), is called the pseudogroup of orientation-preserving transforma-
tions of class C™ of R™. Let C" be the space of n-tuples of complex
numbers with the usual topology. The pseudogroup of holomorphic
(i.e., complex analytic) transformations of C" can be similarly
defined and will be denoted by I'(C*). We shall identify C* with
R?*", when necessary, by mapping (z%, ..., z") e G* into («1, ...,
x®, ..., ") e R® where z/ = x/ + 1p/. Under this identifi-
cation, I'IC") is a subpseudogroup of I'7(R2"*) for any r.

An atlas of a topological space M compatible with a pseudo-
group I' is a family of pairs (U,, ¢,), called charts, such that

(a) Each U, is an open set of M and YU, = M;

(b) Each ¢, is a homeomorphism of U, onto an open set of S;

(c) Whenever U; N U, is non-empty, the mapping ¢, o ¢; * of
@; (U, 0 U,;) onto ¢,;(U; N U,) is an element of I'.

A complete atlas of M compatible with I' is an atlas of M com-
patible with I' which is not contained in any other atlas of M
compatible with I'. Every atlas of M compatible with I' is con-
tained in a unique complete atlas of M compatible with I'. In
fact, given an atlas 4 = {(U,, ¢,)} of M compatible with T, let
A be the family of all pairs (U, ¢) such that ¢ is a homeomorphism
of an open set U of M onto an open set of § and that

o9 (U NU) —o(UNU)
is an element of I' whenever U N U, is non-empty. Then A4 is the
complete atlas containing 4.

If IV is a subpseudogroup of I', then an atlas of M compatible
with I is compatible with I'.

A differentiable manifold of class C™ is a Hausdorff space with a
fixed complete atlas compatible with I'"(R"). The integer 7 is
called the dimension of the manifold. Any atlas of a Hausdorff
space compatible with I'"(R"), enlarged to a complete atlas,
defines a differentiable structure of class C". Since I'"(R") > I'¥(R")
for r < s, a differentiable structure of class C* defines uniquely a
differentiable structure of class C”. A differentiable manifold of
class C* is also called a real analytic manifold. (Throughout the book
we shall mostly consider differentiable manifolds of class C*. By




I. DIFFERENTIABLE MANIFOLDS 3

a differentiable manifold or, simply, manifold, we shall mean a
differentiable manifold of class C*.) A complex (analytic) manifold of
complex dimension 7 is a Hausdorff space with a fixed complete
atlas compatible with I'(CG"). An oriented differentiable manifold
of class C" is a Hausdorff space with a fixed complete atlas com-
patible with I'J(R"). An oriented differentiable structure of class
(" gives rise to a differentiable structure of class C” uniquely.
Not every differentiable structure of class C” 1s thus obtained; if
it 1s obtained from an oriented one, it is called orientable. An
orientable manifold of class C” admits exactly two orientations
if it 1s connected. Leaving the proof of this fact to the reader,
we shall only indicate how to reverse the orientation of an oriented
manifold. If a family of charts (U,, ¢,) defines an oriented manifold,
then the family of charts (U,, y,) defines the manifold with the
reversed orientation where y, is the composition of ¢, with the
transformation (x!, x%, ..., x") — (—x%, 2%, ..., 2™) of R". Since
['(C*) <= I';(R?*), every complex manifold is oriented as a mani-
fold of class C”.

For any structure under consideration (e.g., differentiable
structure of class C"), an allowable chart is a chart which belongs
to the fixed complete atlas defining the structure. From now on,
by a chart we shall mean an allowable chart. Given an allowable
chart (U,, ¢,) of an n-dimensional manifold M of class C”, the
system of functions x'o @,, ..., 2" o @, defined on U, is called a
local coordinate system in U,. We say then that U, 1s a coordinate neigh-
borhood. For every point p of M, it is possible to find a chart (U, ¢,)
such that ¢,(p) is the origin of R"” and ¢, is 2 homeomorphism of
U, onto an open set of R” defined by |x!| < a, ..., |x¥"| < afor
some positive number a. U, is then called a cubic neighborhood of p.

In a natural manner R" is an oriented manifold of class C” for
any r; a chart consists of an element f of I'7(R") and the domain
of f. Similarly, C” is a complex manifold. Any open subset N of a
manifold M of class (" is a manifold of class C"in a natural manner;
a chart of N is given by (U, N N, y,) where (U,, ¢,) is a chart of
M and v, is the restriction of ¢, to U; N N. Similarly, for complex
manifolds.

Given two manifolds M and M’ of class €7, a mapping
fi+ M — M’ is said to be differentiable of class C*, k£ < r, if, for
every chart (U,, ¢,) of M and every chart (V,, ;) of M’ such that




4 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

SU,) = V,, the mapping y,ofo@; " of ¢ (U;) into y,(V;) is
differentiable of class C*. If !, ..., u™ is a local coordinate system:-
in U; and ', ...,2™ is a local coordinate system in V;, then f
may be expressed by a set of differentiable functions of class C*:

o=t . ut), 0™ =, L ).

By a differentiable mapping or simply, a mapping, we shall mean a
mapping of class C*. A differentiable function of class C* on M is
a mapping of class C* of M into R. The definition of a kolomorphic
(or complex analytic) mapping or function is similar.

By a dijferentiable curve of class C* in M, we shall mean a differenti-
able mapping of class C* of a closed interval [a, 4] of R into M,
namely, the restriction of a differentiable mapping of class C* of
an open interval containing [a, 5] into M. We shall now define a
tangent vector (or simply a vector) at a point p of M. Let &(p) be the
algebra of differentiable functions of class (* defined in a neighbor-
hood of p. Let x(¢) be a curve of class C, a < ¢t < b, such that
x(t,) = p. The vector tangent to the curve x(¢) at p is a mapping
X: (p) — R defined by

Xf = (df(x(1))[dt),-

In other words, Xf is the derivative of f in the direction of the
curve x(¢) at ¢ = t,. The vector X satisfies the following conditions:

(1) X is a linear mapping of §(p) into R;

(2) X(fg) = (Xf)s(p) +f(p)(Xg)  forfrge F(p).

The set of mappings X of §(p) into R satisfying the preceding
two conditions forms a real vector space. We shall show that the
set of vectors at p 15 a vector subspace of dimension n, where 7 is
the dimension of M. Let «!, ..., 4" be a local coordinate system
in a coordinate neighborhood U of p. For each j, (9/duw’), is a
mapping of F(p) into R which satisfies conditions (1) and (2)
above. We shall show that the set of vectors at p is the vector
space with basis (9/du?),, ..., (d/ou"),. Given any curve x(t)
with p = x(t,), let &’ = x7(t), y = 1,...,n, be its equations in
terms of the local coordinate system u!, ..., «". Then

(df(x(2))[dt),, = 2; (Of] o), - (dx’()[dH),, ¥,

* For the summation notation, see Summary of Basic Notations.
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which proves that every vector at p is a linear combination of
(0/oul),, ..., (d/ou"),. Conversely, given a linear combination
% £9(d/ou?),, consider the curve defined by

w =uw(p) + &t g=1,...,n

Then the vector tangent to this curve at ¢ = 0 is X &7(0/0uw?),.
To prove the linear independence of (9/du?),, ..., (d/ou"),,
assume % &7(d/ou’), = 0. Then

0 = X &§/(ou*/ou?), = & fork=1,...,n.

This completes the proof of our assertion. The set of tangent
vectors at p, denoted by 7,(M) or T,, is called the fangent space of
M at p. The n-tuple of numbers &%, . . ., & will be called the com-~
ponents of the vector % &7(0/du’), with respect to the local coordi-
nate system ul, ..., u".

Remark. It is known that if a manifold M is of class C®, then
T,(M) coincides with the space of X: §(p) — R satisfying condi-
tions (1) and (2) above, where §(p) now denotes the algebra of all
C* functions around p. From now on we shall consider mainly
manifolds of class C* and mappings of class C°.__.

A vector field X on a manifold M is an assignment of a vector X,
to each point p of M. If fis a differentiable function on M, then
Xf 1s a function on M defined by (Xf)(p) = X, f. A vector field X
1s called differentiable if Xf is differentiable for every differentiable
function f. In terms of a local coordinate system u!,...,u", a
vector field X may be expressed by X = X &7(d/du’), where &’ are
functions defined in the coordinate neighborhood, called the
components of X with respect to ul, ..., u" X is differentiable if
and only if its components &’ are differentiable.

Let X(M) be the set of all differentiable vector fields on M. It
1S a real vector space under the natural addition and scalar
multiplication. If X and Y are in X(M), define the bracket
[X, Y] as a mapping from the ring of functions on M into itself

by
[X, Y1f = X(Xf) — Y(Xf).

We shall show that [X, Y] is a vector field. In terms of a local
coordinate system ul, ..., u™, we write

X =3 &(9/oud), Y =3 n(0/ouw).
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Then
[X, Y]/ = 2, (&5(on’[ ou*) — n*(9&[0u*))(0f] ou?).

This means that [X, Y] is a vector field whose components with
respect to ul, . .., u™ are given by X, (&¥(0n'/du*) — n*(0&/ou")),
J =1,...,n With respect to this bracket operation, X(M) is a
Lie algebra over the real number field (of infinite dimensions).
In particular, we have Jacobi’s identity:

[LX, Y1, Z] + [[Y, Z], X] + [[£, X], Y] =0
for X, Y, Z e X(M).

We may also regard X(M) as a module over the algebra (M) of
differentiable functions on M as follows. If fis a function and X
1s a vector field on M, then f X is a vector field on M defined by
(fX), =f(p)X, for p e M. Then

[FX, g¥] = felX, Y] +f(Xa) Y — g(YX
fEeHM), XY X(M).

For a point p of M, the dual vector space T3 (M) of the tangent
space 7,(M) is called the space of covectors at p. An assignment of
a covector at each point p is called a 1-form (differential form of
degree 1). For each function f on M, the total differential (df), of f
at p is defined by

<(df):m X) =Xf for X e T:D(M)>

where (,) denotes the value of the first entry on the second
entry as a linear functional on 7T,(M). If u!,..., u" is a local
coordinate system in a neighborhood of p, then the total differen-
tials (dul),, ..., (du™), form a basis for 7,7(M). In fact, they
form the dual basis of the basis (d/du'),, ..., (d/ou™), for T,(M).
In a neighborhood of p, every 1-form w can be uniquely written as

w =2, f;du,

where f; are functions defined in the neighborhood of p and are
called the components of w with respect to u!, ..., «" The l-form
w is called differentiable if f; are differentiable (this condition is
independent of the choice of a local coordinate system). We shall
only consider differentiable 1-forms.
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A 1-form o can be defined also as an §(M)-linear mapping of
the F(M)-module X(M) into F(M). The two definitions are
related by (cf. Proposition 3.1)

(0(X), = (@, X,), X< E(M), pel.

Let AT}(M) be the exterior algebra over T3 (M). An r-form o
is an assignment of an element of degree r in AT*(M) to each
point p of M. In terms of a local coordinate system ul, ..., u",
can be expressed uniquely as

= A ... i
w = Zi1<i2<---<i,ﬁ1...z',du1/\ A du'r.

The rform o 1s called differentiable if the components f ...
are all differentiable. By an r-form we shall mean a differentiable
r-form. An r-form w can be defined also as a skew-symmetric
r-linear mapping over F(M) of X(M) x X¥(M) x -+ x X(M)
(r times) into F(AM). The two definitions are related as follows.
If w,...,w, are l-forms and X, ..., X, are vector fields, then
(wy A Aw,)(Xy, ..., &) 1s 1/r! times the determinant of the
matrix (w;(X},));%=1...., of degree 7.

We denote by D" = D7(M) the totality of (differentiable) r-
forms on M for each »r =0, 1,...,n Then D°(M) = F(M).
Each D7(M) is a real vector space and can be also considered as
an F(M)-module: for fe F(M) and w e D (M), fo is an r-form
defined by (fw), =f(p)w,, peM. We set D = DM) =
X D" (M). With respect to the exterior product, D(M) forms an
algebra over the real number field. Exterior differentiation d can
be characterized as follows:

(1) d is an R-linear mapping of D(M) into itself such that
d(DT) - Dr+1;

(2) For a function fe D dfis the total differential;
(3) If we D and = e D°, then

dlwoAn) =doAm + (—1)"w A dr;

(4) 42 = 0.
In terms of a local coordinate system, if 0 = 2, ... f; . i du' A
ce-Adut, thendow = X%, ... _; df; ..o ANdun - - A du
1 r 1 r

It will be later necessary to consider differential forms with
values in an arbitrary vector space. Let V be an m-dimensional
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real vector space. A V-valued r-form w on M is an assignment to
each point peM a skew-symmetric r-linear mapping of
T,(M) x -+ x T,(M) (r times) into V. If we take a basise,, . . .,
¢, for V, we can write @ uniquely as o = 27" w0’ - ¢;, where
w’ are usual r-forms on M. w is differentiable, by definition, if
w’ are all differentiable. The exterior derivative dw is defined to
be X7, dw’ - ¢;, which is a V-valued (r + 1)-form.

Given a mapping f of a manifold M into another manifold M’,
the differential at p of f 1s the linear mapping f, of T,(M) into
T, (M') defined as follows. For each X € T,(M), choose a curve
x(t) in M such that X is the vector tangent to x(¢) at p = x(¢,).
Then f,(X) is the vector tangent to the curve f(x(f)) at f(p) =
Sf(x(%)). Itfollows immediately that if g is a function differentiable
in a neighborhood of f(p), then (f,(X))g = X(g-f). When it is
necessary to specify the point p, we write (fy),. When there is no
danger of confusion, we may simply write f instead of f,. The
transpose of ( f,), is a linear mapping of T7,,(M’) into T7%(M).
For any r-form o’ on M’, we define an r-form f*w’ on M by

(f*wl) (Xh RIS Xr) = wl(f*Xh R >f*Xr)>
Xy oo, X,e T (M).

The exterior differentiation d commutes with f*: d(f*w') =
S*(dw').

A mapping fof M into M’ is said to be of rank r at p € M if the
dimension of f(7T,(M)) is r. If the rank of f at p is equal to
n = dim M, (f,), is injective and dim M = dim M. If the rank
of fat pisequal ton’ = dim M’, (f,), is surjective and dim M =
dim M’. By the implicit function theorem, we have

Prorosition 1.1.  Let f be a mapping of M into M’ and p a point

of M.
(1) If (f) , is injective, there exist a local coordinate system ul, . . . u"
in a neighborhood U of p and a local coordinate system v, ..., 0" in a

netghborhood of f(p) such that
v ( f(g)) = u(q) forqgeU and 1 =1,...,n.

In particular, fis a homeomorphism of U onto f(U).
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(2) If (f,) , is surjective, there exist a local coordinate system u', . . . , u™
in a neighborhood U of p and a local coordinate system v', . .., o™ of

Sf(p) suck that
v ( f(q)) = u*(q) forqeU and i=1,...,n.

In particular, the mapping f U — M’ is open.

(3) If (f4)» is a lLinear isomorphism of T,(M) onto Ty, (M),
then f defines a homeomorphism of a neighborhood U of p onto a neighbor-
hood V of f(p) and its inverse f~1: V — U is also differentiable.

For the proof, see Chevalley [1, pp. 79-80].

A mapping f of M into M’ is called an immersion if (f,), 1s
injective for every point p of M. We say then that M is immersed
in M’ by f or that M is an immersed submanifold of M’. When
an immersion f is injective, it is called an imbedding of M into M’.
We say then that M (or the image f(M)) is an imbedded submanifold
(or, simply, a submanifold) of M’. A submanifold may or may not
be a closed subset of M’. The topology of a submanifold is in
general finer than the relative topology induced from M’. An
open subset M of a manifold M’, considered as a submanifold of
M’ in a natural manner, is called an open submanifold of M’.

Example 1.1. Let f be a function defined on a manifold M’.
Let M be the set of points p € M’ such that f(p) = 0. If (df), # 0
at every point p of M, then it is possible to introduce the structure
of a manifold in M so that M is a closed submanifold of M’,
called the hypersurface defined by the equation f = 0. More generally,
let M be the set of common zeros of functions f;, . .., f, defined
on M’. If the dimension, say £, of the subspace of T¥(M’) spanned
by (df1),, - - -, (df,), is independent of p e M, then M is a closed
submanifold of M’ of dimension dim M’ — £.

A diffeomorphism of a manifold M onto another manifold M’ is a
homeomorphism ¢ such that both ¢ and ¢! are differentiable. A
diffeomorphism of M onto itself is called a differentiable trans-
formation (or, simply, a transformation) of M. A transformation ¢
of M induces an automorphism ¢* of the algebra D(M) of
differential forms on M and, in particular, an automorphism of
the algebra (M) of functions on M:

(%) (0) =He(p)), SeFWM), peM.
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I't induces also an automorphism ¢, of the Lie algebra X(M) of

vector fields by
((p*X)p = ((p*)q(Xq)b

eg) =p  XeX(M).

where

They are related by
p*((pxX)f) = X(¢*f)  for Xe X(M) and fe FM).

Although any mapping ¢ of M into M’ carries a differential form
w’ on M’ into a differential form ¢*(w’) on M, ¢ does not send a
vector field on M into a vector field on M’ in general. We say that
a vector field X on M is g-related to a vector field X' on M’ if
(@)X, = Xy forall p e M. If X and Y are p-related to X' and Y~
respectively, then [X, Y] is ¢-related to [X', Y'].

A distribution S of dimension 7 on a manifold M is an assign-
ment to each point p of M an r-dimensional subspace S, of 7),(M).
It is called differentiable if every point p has a neighborhood U
and r differentiable vector fields on U, say, X, ..., X,, which
form a basis of §, at every g e U. The set X;,..., X, is called a
local basis for the distribution S in U. A vector field X is said to
belong to S if X, € .S, for all p € M. Finally, S is called involutive if
[X, Y] belongs to S whenever two vector fields X and Y belong to
S. By a distribution we shall always mean a differentiable dis-
tribution.

A connected submanifold N of M is called an integral manifold of
the distribution S if f.(T,(N)) = S, for all p € N, where fis the
imbedding of N into M. If there is no other integral manifold of
S which contains N, N is called a maximal integral manifold of S.
The classical theorem of Frobenius can be formulated as follows.

ProposiTION 1.2.  Let S be an involutive distribution on a manifold
M. Through every point p € M, there passes a unique maximal integral
manifold N(p) of S. Any integral manifold through p is an open sub-
manifold of N(p).

For the proof, see Chevalley [1, p. 94]. We also state

Provostrion 1.3.  Let S be an involutive distribution on a manifold
M. Let W be a submanifold of M whose connected components are all
integral manifolds of S. Let f be a differentiable mapping of a manifold N
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into M such that f(N) < W. If W satisfies the second axiom of count-
ability, then f is differentiable as a mapping of N into W.

For the proof, see Chevalley [1, p. 95, Proposition 1]. Re-
place analyticity there by differentiability throughout and
observe that W need not be connected since the differentiability
of fis a local matter.

We now define the product of two manifolds M and N of
dimension m and n, respectively. If M is defined by an atlas 4 =
{(U,, ,)} and N is defined by an atlas B = {(V,, y,)}, then the
natural differentiable structure on the topological space M x N
is defined by an atlas {(U; x V,, ¢, X ,)}, where ¢, X p,: U, X
V; —>Rmm —=R™ x R"” is defined in a natural manner. Note
that this atlas is not complete even if 4 and B are complete. For
every point (p, q) of M x N, the tangent space 7(,,(M X N)
can be identified with the direct sum 7,(M) + T,N) in a
natural manner. Namely, for X e T (M) and Y € T,(N), choose
curves x(¢) and y(¢) such that X is tangent to x(¢) at p = x(¢,) and
Y is tangent to y(¢t) at ¢ = y(¢4,). Then (X, Y) e T,(M) + T (N)
is identified with the vector Ze T, ,(M x N) which is tangent
to the curve z(t) — (x(0),3(1)) at (b, q) = (x(ty),»(tp). Let
Xe T, (M x N) be the vector tangent to the curve (x(¢), ¢) in
M x N at (p, q). Similarly, let ¥ e T, (M x N) be the vector
tangent to the curve (p, y(¢)) in M X N at (p, q). In other words,
X is the image of X by the mapping M — M x N which sends
p €M into (p’,q) and Y is the image of ¥ by the mapping
N — M x N which sends ¢’ ¢ N into (p, ¢'). Then Z =X 4 ¥,
because, for any function f on M X N, Zf = (df(x(¢), »(¢)) [d¢t),_,
is, by the chain rule, equal to

(df(x(8), 2(t)) fdt) 1=y + (df(x(ko), 2(1)) d8); =iy = X f + Y f.
More generally:

ProrositioN 1.4 (Leibniz’s formula). Let ¢ be a mapping of the
product manifold M X N into another manifold V. The differential @,
at (p, q) e M X N can be expressed as follows. If Z e T, ,(M X N)
corresponds to (X, Y) e T (M) 4+ T,N), then

Px(Z) = p1£(X) + as(Y),
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where p: M—V and @,: N— V are defined by

e1(t') =@t ) Sor peM and @,(q") = @(p,q") Sfor q'eN.

Proof. From the definitions of X, ¥, ¢,, and ¢,, it follows that
Px(X) = @14(X) and @, (¥) = ¢4 (Y). Hence, ¢4 (Z) = @4 (X) +

Px(Y) = @r4(X) + @4 (¥). QED.

Note that if ¥ = M x N and ¢ is the identity transformation,
then the preceding proposition reduces to the formula Z = X + Y.

Let X be a vector field on a manifold M. A curve x(¢) in M is
called an integral curve of X if, for every parameter value ¢, the
vector X, , is tangent to the curve x(¢) at x{4,). For any point p,
of M, there is a unique integral curve x(¢) of X, defined for
|¢| < & for some ¢ > 0, such that p, = x(0). In fact, let «, ..., u"
be a local coordinate system in a neighborhood U of g, and let
X = X &(d/ow?) in U. Then an integral curve of X is a solution of
the following system of ordinary differential equations:

duildt = Eul(t), ..., u"(t)), j=1,...,n

Our assertion follows from the fundamental theorem for systems of
ordinary differential equations (see Appendix 1).

A 1-parameter group of (differentiable) transformations of M is a
mapping of R x M into M, (¢, p) e R X M — ¢,(p) ¢ M, which
satisfies the following conditions:

(1) For each t e R, @,: p — ¢,(p) is a transformation of M

(2) For all ;s ¢ R and p e M, ¢r,(5) = 9(@:(8)).

Each l-parameter group of transformations ¢, induces a vector
field X as follows. For every point p € M, X, is the vector tangent
to the curve x(¢) = @,(p), called the orbit of p, at p = @o(p). The
orbit ¢,(p) is an integral curve of X starting at p. A local 1-parameter
group of local transformations can be defined in the same way,
except that ¢,(p) is defined only for ¢ in a neighborhood of 0 and
p in an open set of M. More precisely, let I, be an open interval
(—e, ¢) and U an open set of M. A local 1-parameter group of
local transformations defined on I, x U is a mapping of I, x U
into M which satisfies the following conditions:

(1) Foreach te I, ¢,: p — ¢,(p) 1s a diffeomorphism of U onto
the open set ¢,(U) of M;
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(2) If t,5,t + s e l, and if p, ¢ (p) € U, then

Pris(0) = @u(@s(P)).

As in the case of a l-parameter group of transformations, ¢,
induces a vector field X defined on U. We now prove the converse.

ProprosiTION 1.5.  Let X be a vector field on a manifold M. For each
point py of M, there exist a neighborhood U of po, a positive number €
and a local 1-parameter group of local transformations ¢,: U — M,
t € 1., which induces the given X.

We shall say that X generates a local l-parameter group of
local transformations ¢, in a neighborhood of p,. If there exists
a (global) l-parameter group of transformations of M which
induces X, then we say that X is complete. If ¢,(p) 1s defined on
I, x M for some ¢, then X is complete.

Proof. Let u',...,u" be a local coordinate system in a
neighborhood W of p, such that ul(p,) =--- = u"(p, = 0.
Let X =X &(u,...,u")(d/ou*) in W. Consider the following
system of ordinary linear differential equations:

dfildt = E(fE), ..., f"0), i=1...,n

with unknown functions f1(¢),...,f"(t). By the fundamental
theorem for systems of ordinary differential equations (see
Appendix 1), there exists a unique set of functions f1(¢;u), ...,
Sf™(t; u), defined for u = (u,...,u") with || <, and for
|!| < &;, which form a solution of the differential equation for
each fixed « and satisfy the initial conditions:

Fi(050) = o

Set o, (u) = (fYt; u),...,[f"(t;u)) for |t] <& and u in U, =
{u; |u’] < d,}. If |t|, |s| and |¢ + s| are all less than ¢; and both
u and ¢,(u) are in U,, then the functions g*(¢) = f*(t + s; u) are
easily seen to be a solution of the differential equation for the
initial conditions g%(0) = f*(s; ). By the uniqueness of the
solution, we have g*(¢) = f*(¢; ¢,(u)). This proves that ¢,(¢,(u)) =
@us(#). Since ¢, is the identity transformation of U,, there exist
6 > 0 and ¢ > 0 such that, for U = {u; |[4‘| < d}, ¢,(U) = U, if
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|t <e. Hence, ¢_,(¢,(4)) = @.(p_.(4)) = @o(u) = u for every
ue U and |¢| < &. This proves that ¢, is a diffeomorphism of U

for |t| < e. Thus, ¢, is a local 1-parameter group of local trans-
formations defined on I, X U. From the construction of ¢,, it is
obvious that ¢, induces the given vector field X in U. QED.

Remark. In the course of the preceding proof, we showed also
that if two local 1-parameter groups of local transformations ¢,
and y, defined on I, X U induce the same vector field on U, they
coincide on U.

ProrosrtioN 1.6.  On a compact manifold M, every vector field X is
complete.

Proof. For each point p € M, let U(p) be a neighborhood of p
and ¢(p) a positive number such that the vector field X generates
a local l-parameter group of local transformations ¢, on
I x U(p).Since M is compact, the open covering {U(p); p € M}

has a finite subcovering {U(p); ¢ =1, , k}. Let & =
min {¢(p,), . .., e(p;)}. It is clear that @ (p) is deﬁned onl, x M
and, hence, on R X M. QED.

In what follows, we shall not give explicitly the domain of
definition for a given vector field X and the corresponding local
l-parameter group of local transformations ¢,. Each formula is
valid whenever it makes sense, and it is easy to specify, if necessary,
the domain of definition for vector fields or transformations
involved.

ProrositioN 1.7. Let ¢ be a transformation of M. If a vector field
X generates a local 1-parameter group of local transformations @,, then the
vector field @ X generates o o g, o ¢!

Proof. Itisclear that ¢ o ¢, o ¢~'is a local 1-parameter group
of local transformations. To show that it induces the vector
field ¢, X, let p be an arbitrary point of M and ¢ = ¢71(p).
Since ¢, induces X, the vector X, ¢ T,(M) is tangent to the curve
x(t) = p,(q) at ¢ = x(0). It follows that the vector

(P2 X)), = ¢x(Xy) € T,(M)
is tangent to the curve y(t) = @ o ,(q) = po @, o p71(p). QED.

CoroLLARY 1.8. A4 vector field X is invariant by ¢, that is,
¢ X = X, if and only if ¢ commutes with ..
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We now give a geometric interpretation of the bracket [X, Y]
of two vector fields.

ProrosiTioN 1.9. Let X and Y be vector fields on M. If X generates’
a local 1-parameter group of local tmnsformations @y, then

[X, Y] —ltgg [¥ — ()71,

More precisely,
[X, Y], = hm [Y, — ((pe)aY)sl,  peM.

The limit on the right hand side is taken with respect to the
natural topology of the tangent vector space 7,(M). We first
prove two lemmas.

Lemma 1. If f(t, p) is a function on I, X M, where I, 1s an open
interval (—e, &), such that f(0, p) = 0 for all p € M, then there exists a
Sunction g(t, p) on I, X M such that f(t, p) =t - g(t, p). Moreover,

2(0, £) = (0, 4), where f' — 0f]0t, for p € M.
Proof. 1t is sufficient to define

s0) = [ fes9) s QED.

LEMMA 2. Let X generate @,. For any function f on M, there exists a
Sunction g, (p) = g(¢, p) suchthat fo o, = f +t- g,and gy = Xf on M.

The function g(¢, p) is defined, for each fixed pe M, in |¢| < ¢
for some e.

Proof. Consider f(t, p) = f(p.(p)) — f(p) and apply Lemma
1. Thenfo ¢, =f+ t- g, We have

lim © - Lf (@) — S (P) hm S p) = lim g,(p) = £(p)-

t—»O t—»O t—0

QED.

Proof of Proposition 1.9. Given a function f on M, take a
function g, such that fo ¢, = f 4+ t- g, and g, = Xf (Lemma 2).

Set p(f) = ¢, '(p). Then
(9 X)nf = (XY (S @)y = (Xf)pwy + - (Y80 oo
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and

i 7 [ — (p)aT1,f = lim 3 [(7f), — (0)yia] — lim (¥

t—0
= X,(¥f) — Y8 = [XY].1,
proving our assertion. QED.

CoroLrLaryY 1.10.  With the same notations as in Proposition 1.9,
we have more generally

(P4l Y] = hm ~ [(0) Y — (@) 4 7]

for any value of s.

Proof. For a fixed value of s, consider the vector field (¢,)4Y
and apply Proposition 1.9. Then we have

X, (90 Y] = im S (047 — (p)a > (7471

—1im 2 (927 — (perda Y]

t—0

since @, © ¢, = @, Ontheother hand, (¢,),X = X by Corollary
1.8. Since (¢,) 4 preserves the bracket, we obtain

(@s) [ X, Y] = [X, (95) 4 Y]
QED.

Remark. The conclusion of Corollary 1.10 can be written as

([d((@e)x)[dt)ies = —(ps)£[X, T].

CoroLrary 1.11. Suppose X and Y generate local l-parameter
groups @, and vy, respectively. Then @, o v, = vy, ° @, for everysand t
if and only if [X, Y] = O.

Proof. If ¢,° vy, = y,° @, for every s and ¢, Y is invariant by
every ¢, by Corollary 1.8. By Proposition 1.9, [X, Y] = 0.
Conversely, if [X, Y] = 0, then d((¢,) +Y)/dt = 0 for every ¢t by
Corollary 1.10 (see Remark, above). Therefore, (¢,),Y 1s a con-
stantvector at each point p so that Y is invariant by every ¢,. By
Corollary 1.8, every y, commutes with every ,. QED.
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2. Tensor algebras

We fix a ground field F which will be the real number field R
or the complex number field C in our applications. All vector
spaces we consider are finite dimensional over F unless otherwise
stated. We define the tensor product U R V of two vector spaces U
and V as follows. Let M(U, V) be the vector space which has the
set U X V as a basis, i.e., the free vector space generated by the
pairs (#, v) where u e U and v e V. Let N be the vector subspace of
M(U, V) spanned by elements of the form

(u+u',v) — (u,v) — (¥, v), (wyv +v") — (4, v) — (4, V'),

)

(ru, v) — r(u, v), (u, rv) — r(u, v),

where u,u’' e U, v,o' e Vand re F. Weset U V = M(U, V)/N.
For every pair (u,v) considered as an element of M(U, V), its
image by the matural projection M(U, V) —> U ® V will be
denoted by u ® v. Define the canonical bilinear mapping @ of U x V
imto U ® V by

plu,v) =u@v for(u,v)eUXV:

Let W be a vector space and y: U x V— W a bilinear
mapping. We say that the couple (W, y) has the unwversal factoriza-
tion property for U x V if for every vector space S and every bilinear
mapping f: U X V— § there exists a unique linear mapping
g: W — Ssuch that f = g o p.

ProrositioN 2.1.  The couple (U Q V, ¢) has the uniwversal
Sfactorization property for U X V. If a couple (W, y) has the universal
Jfactorization property for U X V, then (U® V, ¢) and (W, y) are
1somorphic in the sense that there exists a linear isomorphism o: U @ V —
W such that v = o ° ¢.

Proof. Let S be any vector space and f: U X V—S any
bilinear mapping. Since U X V 1s a basis for M(U, V), we can
extend f to a unique linear mapping f': M(U, V) — S. Since f
1s bilinear, f’vanishes on N. Therefore, /' induces a linear mapping
g: U® V—S§. Obviously, f = g ¢. The uniqueness of such a
mapping g follows from the fact that (U X V) spans U @ V. Let
(W, y) be a couple having the universal factorization property
for U x V. By the universal factorization property of (U ® V, ¢)
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(resp. of (W, v)), there exists a unique linear mapping o: U ® V —
W (resp. v: W— U ® V) such that y = oo ¢ (resp. ¢ =70 ¢@).
Hence, ¢ = 7o 00 ¢ and p = ¢ o 7 o p. Using the uniqueness of g
in the definition of the universal factorization property, we
conclude that 7 ¢ and o ° 7 are the identity transformations of
U x V and W respectively. QED.

Prorosition 2.2.  There is a unique isomorphism of U ® V onto
V® U which sends u @ v into v Q u forallue Uandve V.

Proof. Let f: U X V—>V ® U be the bilinear mapping
defined by f(u, v) = v ® u. By Proposition 2.1, there is a unique
linear mapping g: U® V— V ® U such that glu ® v) = v ® u.
Similarly, there is a unique linear mapping g: VR U—->U® V
such that g'(v ® ) = u ® v. Evidently, g’ o g and go g’ are the
identity transformations of U® V and V ® U respectively.
Hence, g is the desired 1somorphism. QED.

The proofs of the following two propositions are similar and
hence omitted.

PropositioN 2.3.  If we regard the ground field F as a 1-dimensional
vector space over ¥, there 15 a unique 1somorphism of F ® U onto U which
sends r Q w into ru_for all r € F and u € U. Similarly, for U ® F and U.

ProposiTioN 2.4.  There is a unique isomorphism of (U@ V) @ W
onto U R (VR W) which sends (u ® v) ® w wnto u @ (v Q w) for
aluelU,veV, and we W.

Therefore, it is meaningful to write U ® V ® W. Given vector
spaces U,, ..., U, the tensor product U; ® - -+ ® U, can be
defined inductively. Let ¢: U; X -+ - X U, > U, ® - ® U,
be the multilinear mapping which sends (u,,...,%,) into
u; ® -+ - ®u,. Then, as in Proposition 2.1, the couple (U; ®
-+ ® U, ¢) can be characterized by the universal factorization
property for U; X - -+ X U,.

Proposition 2.2 can be also generalized. For any permutation
wof (1,...,k), thereis a unique isomorphism of U; @ * * + ® U,
onto U,;,® --® U, which sends u; ®: ' ®u, into

U.1) XX Ur(k)-

PropositioN 2.4.1.  Given linear mappings f;: U;— V5 =1, 2,
there is a unique linear mapping f- U, @ Uy —>V, ® V, such that

Sy @ uy) = f1(uy) @ foluy) for all uy e Uy and uy € U,
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Proof. Consider the bilinear mapping U; X U,—> V; ® V,
which sends (u,, %,) into f;(u;) ® f5(u,) and apply Proposition 2.1.
QED.

The generalization of Proposition 2.4.1 to the case with more
than two mappings is obvious. The mapping f just given will be

denoted by f; ® f,.

Prorosrtion 2.5.  If U, + U, denotes the direct sum of U, and U,,
then
(U1+U2) ®V:U1®V+ U2®V.
Simzilarly,
U@V, + V) =URV, +URV,

Proof. Let z;: Uy —> U, + U, and i,: U, - U; + U, be the
injections. Let p,: U, + U, — U, and p,: U, + U, — U, be the
projections. Then p,  7; and p, ° 7, are the identity transformations
of U, and U, respectively. Both p, i, and p, o i, are the zero
mappings. By Proposition 2.4.1, ¢; and the identity transformation
of V induce a linear mapping #,: U, ® V> (U; + U,) ® V.
Similarly, i,, p;, and p, are defined. It follows that p, o 7; and
ps o i, are the identity transformations of U; ® V and U, ® V
respectively and p, ° 7; and p, o i, are the zero mappings. This
proves the first isomorphism. The proof for the second is similar.

QED.

By the induction, we obtain

(U1+"’+Uk)®V2U1®V+"’+Uk®V-

Proposrrion 2.6.  Ifuy, ..., u,isabasisforUandv,, ..., v,1s
a basis for V, then {u;, @ v;; 1 =1,...,m;j=1,...,n}is a basis
Jor U ® V. In particular, dim U Q@ V = dim U dim V.

Proof. Let U, be the 1-dimensional subspace of U spanned by
u; and V; the 1-dimensional subspace of V spanned by v,. By
Proposition 2.5,

URV=2%2,;U,QV,

By Proposition 2.3, each U, ® V, is a 1-dimensional vector space
spanned by u; & v;. QED.

For a vector space U, we denote by U* the dual vector space of
U. For ue U and u* € U*, (u, u*) denotes the value of the linear
functional u* on u.




20 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

Proposrrion 2.7.  Let L(U*, V) be the space of linear mappings of
U* wnto V. Then there 1s a unique isomorphism g of U X V onto
L(U*, V) such that

(glu ®v))u* = (w,u*w  forallue U, veVandu* e U*.

Proof. Consider the bilinear mapping f: U x V — L(U*, V)
defined by (f(4,v))u* = (u, u*)v and apply Proposition 2.1.
Then there is a unique linear mapping g: U ® V — L(U*, V)
such that (g(u ® v))u* = (u, u*). To prove that g is an iso-
morphism, let u,,...,u, be a basis for U, uf,...,u’ the
dual basis for U* and v, . . . , v, a basis for V. We shall show that
{g(u; ®v;)5e=1,...,m;y =1,...,n}is linearly independent.
If ¥ a,;8(u; ®v;) = 0 where q;; € F, then

0 = (% a,8(u; ®0,))uf = X agp;

and, hence, all a,; vanish. Since dim U ® V = dim L(U*, V),
g 1s an isomorphism of U x V onto L(U*, V). QED.

ProrositionN 2.8.  Given two vector spaces U and V, there is a
unique 1somorphism g of U* @ V* onto (U @ V)* such that

(8(w* @ v¥))(u @ v) = {u, w*)v, %)
forallue U, u* € U*, Ue V, v* € V'*.

Proof. Apply Proposition 2.1 to the bilinear mapping
U xV* > (UQV)* defined by (f(u* v¥)(u @v) =
(u, u*)v, v*). To prove that g is an isomorphism, take bases for
U, V, U*, and V* and proceed as in the proof of Proposition 2.7.
QED.
We now define various tensor spaces over a fixed vector space
V. For a positive integer 7, we shall call T" =V ® --- ® V (r
times tensor product) the contravariant tensor space of degree r. An
element of T” will be called a contravariant tensor of degree r. If
r = 1, T! is nothing but V. By convention, we agree that T? is
the ground field F itself. Similarly, T, = V* @ - - - @ V* (s times
tensor product) is called the covariant tensor space of degree s and its
elements covariant tensors of degree s. Then T, = V* and, by
convention, T, = F.
We shall give the expressions for these tensors with respect to a
basis of V. Let ey, . .., ¢, be a basis for V and €, . . ., ¢" the dual
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basis for V*. By Proposition 2.6, {¢, @ - ®@e; ;1 = 14,...,
1, = n}is a basis for T,. Every contravariant tensor K of degree r

r

can be expressed uniquely as a linear combination
K=2%;, K+ "e ® ® e,

where K- are the components of K with respect to the basis

ey, - - - 5 6, of V. Similarly, every covariant tensor L of degree s
can be expressed uniquely as a linear combination
— J ces J
L - ].1 ,,,,, ].rle..o]rel ® @gr,

where L;  ; are the components of L.

For a change of basis of V, the components of tensors are subject
to the following transformations. Lete,, ..., ¢, and é,, ..., ¢, be
two bases of V related by a linear transformation

e-z:ZJAzej, i:].,...,n.

The corresponding change of the dual bases in V'* is given by

- 3 i .
et = X;Be, t=1,...,n,

where B = (BY) is the inverse matrix of the matrix 4 = (4}) so
that
X, AB] = 6%,

If K is a contravariant tensor of degree r, its components K%
and K" ' with respect to {¢;} and {¢;} respectively are related
by

Riveevie = 3y, 5, dis- - ki

Similarly, the components of a covariant tensor L of degree s are
related by

Ly .., =% . ;B Bt ;.
The verification of these formulas 1s left to the reader.

We define the (mixed) tensor space of type (r, 5), or tensor space of
contravariant degree r and covariant degree s, as the tensor product
T,=TTKT,=VR - --QVRVIM* - ---@V* (V:r times,
V*: s times). In particular, T) = T7, T? = T, and T) = F. An
element of T} is called a tensor of type (r, s), or tensor of contravariant
degree r and covariant degree s. In terms of a basisey, . . ., ¢, of V and
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the dual basis ¢l, . .., ¢" of V*, every tensor K of type (r, s) can
be expressed uniquely as

K=3 i iKi7re®  ®Qeg®®NR: - ® s,

where Kj::% are called the components of K with respect to the

basis ¢4, . . ., ¢,. For a change of basis ¢, = X; Ale,, we have the
following transformations of components:
(2.1) Kiote =S Ap -+ Air B~ - - BloKl ook

Set T=227_ OT’, so that an element of T is of the form

rs—=0Ks where Kj e T; are zero except for a finite number of
them. We shall now make T into an associative algebra over F by
defining the product of two tensors K e T; and L ¢ T? as follows.
From the universal factorization property of the tehsor prod-
uct, it follows that there exists a unique bilinear mapping of T} x
T? into T;1? which sends (v; ® ' ®v, ®vf ® - @ v},
wy X PQuw, Quwf @+ Quwi)eT; xT) into v; ¥+ Q
0, W, @ QW, QR QU QuF ® - ® w e T/,
The image of (K, L) ¢ T; x T} by this bilinear mapping will be
denoted by K ® L. In terms of components, if K is given by
K- and L is given by L% , then

(.K ® L) ’&r+p — K’&l ?”'sz+1 iy )

.7 8+¢q <Jg Js41 e Js4q

We now define the notion of contraction. Let r,s = 1. To each
ordered pair of integers (,7) such that ]l £ <rand1 <j <5,
we associate a linear mapping, called the contraction and denoted
by C, of T% into T?=} which mapsv, ® - - ® v, Qvf ® -+ - @ v¥
into

<vz) ]>vl ®. v ®vz'—1 ®vz’+1 ®.. ) ®U

X ® - @ L & oF 0¥ ® - © Q@ oy,

where v, ...,0, ¢V and v}, ..., v} e V*. The uniqueness and
the existence of C follow from the universal factorization property
of the tensor product. In terms of components, the contraction ¢
maps a tensor K ¢ T, with components K ;i into a tensor
CK ¢ T~} whose components are given by

(CK)j g = T Kook
where the superscript £ appears at the i-th position and the sub-
script k appears at the j-th position.
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We shall now interpret tensors as multilinear mappings.

ProrosrtioN 2.9. T, is isomorphic, in a natural way, to the vector
space of all r-linear mappings of VX - -+ X Vnto F.

ProrosrrionN 2.10. T is isomorphic, in a natural way, to the vector
space of all r-linear mappings of V* X - -+ X V* into F.

Proof. We prove only Proposition 2.9. By generalizing
Proposition 2.8, we see that T, = V* ® - -+ ® V* is the dual
vector space of T =V ®--- ® V. On the other hand, it
follows from the universal factorization property of the tensor
product that the space of linear mappings of T" =V ® - -- Q V
into F is isomorphic to the space of r-linear mappings of V' x - - -

x V into F. QED.

Following the interpretation in Proposition 2.9, we consider a
tensor KeT, as an r-linear mapping V x -+ x V—F and
write K(vy,...,v,) eFforov,,..., v eV.

ProposirioN 2.11. T} is isomorphic, in a natural way, to the vector
space of all r-linear mappings of V. .x +++ X Vinto V.

Proof. T} is, by definition, V' ® T, which is canonically iso-
morphic with T, ® V by Proposition 2.2. By Proposition 2.7,
T, ® V is isomorphic to the space of linear mappings of the dual
space of T,, that is T", into V. Again, by the universal factorization
property of the tensor product, the space of linear mappings of T"

into V can be identified with the space of r-linear mappings of
Vx---x Vinto V. QED.

With this interpretation, any tensor K of type (1, 7) is an r-linear
mapping of V' X -+ X V into V which maps (v, ..., 7,) Into
Ky, 0)eV. If e5,...,¢, is a basis for V, then K =
TK; .. ;e ®e®- - ® e corresponds to an r-linear mapping
of V"X -+ x Vinto V such that K(¢;,...,e¢;) = 2, K} ;e

Similar interpretation can be made for tensors of type (r, 5s) in
general, but we shall not go into it.

Example 2.1. If ve V and v* € VV*, then v ® v* is a tensor of
type (1, 1). The contraction C: T} — F maps v ® v* into (v, v*).
In general, a tensor K of type (1, 1) can be regarded as a linear
endomorphism of V and the contraction CK of K is then the trace

of the corresponding endomorphism. In fact, if ¢;,...,¢, 1s a
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basis for ¥ and K has components K} with respect to this basis,
then the endomorphism corresponding to K sends ¢; into X; Kle,.
Clearly, the trace of K and the contraction CK of K are both
equal to X, K.

Example 2.2.  An inner product g on a real vector space V is a
covariant tensor of degree 2 which satisfies (1) g(v,2) = 0 and
g(v,v) =0 if and only if v =0 (positive definite) and (2)
g(v, v') = g(v', v) (symmetric).

Let T(U) and T(V) be the tensor algebras over vector spaces
U and V. If 4 is a linear isomorphism of U onto V, then its
transpose 4* is a linear isomorphism of V* onto U* and A*-'is a
linear isomorphism of U* onto V*. By Proposition 2.4, we obtain
a linear isomorphism 4 ® A*-1: U ® U* — V ® V*. In general,
we obtain a linear isomorphism of T(U) onto T(V) which maps
T;(U) onto T;(V). This isomorphism, called the extension of A and
denoted by the same letter A, is the unique algebra isomorphism
T(U) — T(V) which extends 4: U — V; the uniqueness follows
from the fact that T(U) is generated by F, U and U*. It is also
easy to see that the extension of 4 commutes with every contrac-
tion C.

ProrostrioN 2.12.  There is a natural 1: 1 correspondence between
the linear 1somorphisms of a vector space U onto another vector space V and
the algebra isomorphisms of T(U) onto T(V) which preserve type and
commute with contractions.

In particular, the group of automorphisms of V is isomorphic, in a natural
way, with the group of automorphisms of the tensor algebra T(V) which
presserve type and commute with contractions.

Proof. The only thing which has to be proved now is that
every algebra isomorphism, say f, of T(U) onto T(V) is induced
from an isomorphism A4 of U onto V, provided that f preserves
type and commutes with contractions. Since f is type-preserving,
it maps TH(U) = U isomorphically onto T{(V) = V. Denote the
restriction of fto U by A. Since f maps every element of the field
F = T} into itself and commutes with every contraction C, we
have, for all u € U and u* ¢ U¥*,

(Au, fu*)y = (fu, fu*) = C(fu ® fu*) = C(f(u ® u*))
= f(CG(u @ u*)) = f({u, u*)) = (u, u*).
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Hence, fu* = A*-lu*. The extension of 4 and f agrees on F, U
and U*. Since the tensor algebra T(U) is generated by F, U and
U*, f coincides with the extension of A. QED.

Let T be the tensor algebra over a vector space V. A linear
endomorphism D of T is called a derivation if it satisfies the following
conditions:

(a) D is type-preserving, i.e., D maps T} into itself;

(b) D(IK @ L) = DK @ L + K ® DL for all tensors K and L;

(c) D commutes with every contraction C.

The set of derivations of T forms a vector space. It forms a Lie
algebra if we set [D, D'] = DD’ — D’D for derivations D and D’.
Similarly, the set of linear endomorphisms of V forms a Lie
algebra. Since a derivation D maps T§ = V into itself by (a), it
induces an endomorphism, say B, of V.

ProposiTION 2.13.  The Lie algebra of derivations of T(V) is iso-
morphic with the Lie algebra of endomorphisms of V. The isomorphism is
given by assigning to each derivation its restriction to V.

Proof. Itisclear that D — B is a Lie algebra homomorphism.
From (b) it follows easily that D maps every element of F into 0.
Hence, for v € V and v* € I'*, we have

0 = D((v, v*)) = D(C(v ® v*)) = C(D @ v*))
=C(Dv ® v* + v ® Dv*) = (Duv, v*) + (v, Dv*).

Since Dv = Bv, Dv* = —B*v* where B* is the transpose of B.
Since T is generated by F, V and V'*, D is uniquely determined its
restriction to F, ¥ and V*. It follows that D — B is injective.
Conversely, given an endomorphism B of V, we define Da = 0
for a e F, Dv = Bv for ve V and Dv* = —B*v* for v* ¢ VV* and,
then, extend D to a derivation of T by (b). The existence of D
follows from the universal factorization property of the tensor

product. QED.

Example 2.3. Let K be a tensor of type (1, 1) and consider it
as an endomorphism of V. Then the automorphism of T(V)
induced by an automorphism 4 of ¥ maps the tensor K into the
tensor AKA=1. On the other hand, the derivation of T(V) induced
by an endomorphism B of V maps K into [B, K] = BK — KB.
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-

3. Tensor fields

Let T, = T,(M) be the tangent space to a manifold A at a
point x and T(x) the tensor algebra over 7T,: T(x) = ZTi(x),
where T?(x) is the tensor space of type (7, s) over T,. A tensor field
of type (r,s) on a subset N of M is an assignment of a tensor
K, € T;(x) to each point x of N. In a coordinate neighborhood U
with a local coordinate system x, ..., x", we take X, = 0/0x’,
t:=1,...,n, as a basis for each tangent space 7, x ¢ U, and
w? =dx', i =1,...,n, as the dual basis of 7}*. A tensor field K
of type (7, s) defined on U is then expressed by

K:EK@I-"TZrX,@...@X_®wj1®...®w'is

where Kjt::-% are functions on U, called the components of K with
respect to the local coordinate system «%, . .., x". We say that K
is of class C* if its components Kj1::: are functlons of class C*; of
course, it has to be verified that th1s notion is independent of a
local coordinate system. This is easily done by means of the
formula (2.1) where the matrix (4% is to be replaced by the
Jacobian matrix between two local coordinate systems. From now
on, we shall mean by a tensor field that of class C* unless otherwise
stated.

In section 5, we shall interpret a tensor field as a differentiable
cross section of a certain fibre bundle over M. We shall give here
another interpretation of tensor fields of type (0,7) and (1, 7)
from the viewpoint of Propositions 2.9 and 2.11. Let & be the
algebra of functions (of class C°) on M and X the F-module of
vector fields on M.

ProrositioN 3.1. A tensor field K of type (0, r)(resp. type (1, 1))
on M can be considered as an r-linear mapping of X X -+ X X 1into
& (resp. X) such that

K(fi&y, oo LX) =fi KXy, .0, X))
for f,e& and X, eX.

Conversely, any such mapping can be considered as a tensor field of type
(0, 7) (resp. type (1, 7)).

Proof. Given a tensor field K of type (0, r) (resp. type (1, 7)),
K, is an r-linear mapping of 7, X -+ X T, into R (resp. T)
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by Proposition 2.9 (resp. Proposition 2.11) and hence (X,, ..., X,)
— (K(Xy, ..., X)) = K (XD s - - -5 (X,),) 1s an r-linear map-
ping of X X - -+ x X into § (resp. X) satisfying the preceding
condition. Conversely, let K: X X - -+ X X — § (resp. X) be an
r-linear mapping over §. The essential point of the proof is to
show that the value of the function (resp. the vector field)
K(X,, ..., X,) at a point x depends only on the values of X,
at x. This will imply that K induces an r-linear mapping of
T,(M) x -+ x T,(M) into R (resp. T,(M)) for each x. We
first observe that the mapping K can be localized. Namely, we
have

Lemvma. If X, = Y, in a neighborhood U of x for 1 =1,...,7,
then we have

KX, ...,X)=K(Y,...,Y) inU.

Proof of Lemma. It is sufficient to show that if X; = 0 in U,
then K(X,, ..., X,) = 0in U. For any y € U, let f be a differenti-
able function on M such that f(y) =0 and f = 1 outside U.
Then X; = fX; and K(X,,...,X,) =f K(X,, ..., X,), which
vanishes at y. This proves the lemma.

To complete the proof of Proposition 3.1, it is sufficient to
show that if X; vanishes at a point x, so does K(X,, ..., X,).
Let x1,...,x" be a coordinate system around x so that X; =
%; /% (d/0x"). We may take vector fields Y, and differentiable func-
tions g? on M such that g = ffand ¥, = (d/ox*)fori =1,...,n
in some neighborhood U of x. Then X; = X, g'Y, in U. By the
lemma, K(X;, ..., X,) =2%,¢'- K(¥,;, X,,...,X,) in U. Since
gi(x) =f(x) =0for: =1,...,n K(X,,...,X,) vanishes at x.

QED.

Example 3.1. A (positive definite) Riemannian metric on M is a
covariant tensor field g of degree 2 which satisfies (1) g(X, X) = 0
for all XeX, and g(X,X) =0 if and only if X =0 and (2)
g¥Y,X) =g(X,Y) for all X, Y e X. In other words, g assigns an
inner product in each tangent space 71,(M), x € M (cf. Example
2.2). In terms of a local coordinate system x!, ..., x", the com-
ponents of g are given by g,, = g(9/dx*, d/dx’). It has been
customary to write ds? = X g, dx* dx’ for g.
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Example 3.2. A differential form w of degree r is nothing but a
covariant tensor field of degree r which is skew-symmetric:

C()(‘var(l)’ RN er(?‘)) = S(W)w(Xla c .o Xr):

where 7 is an arbitrary permutation of (1,2,...,7) and &(m) is
its sign. For any covariant tensor K at x or any covariant tensor
field K on M, we define the aliernation A as follows:

|
(AK)(X,, ..., X,) = m Z.e(m) - K(Xoy - o5 Xoty)s

where the summation is taken over all permutations wof (1, 2, .. .,
r). It is easy to verify that 4K is skew-symmetric for any K and that
K is skew-symmetric if and only if AK = K. If w and o’ are
differential forms of degree r and s respectively, then o & o’ is
a covariant tensor field of degree 7 + s and w A 0’ = A(w ® w’).

Example 3.3. The symmetrization S can be defined as follows. If
K is a covariant tensor or tensor field of degree 7, then

1
(SK) (X, -+, X)) = = 2 KXy - -, Xog).

For any K, SK is symmetric and SK = K if and only if K is
symmetric.

We now proceed to define the notion of Lie differentiation.
Let T;(M) be the set of tensor fields of type (r, s) defined on M
and set T(M) = Z,_oIT(M). Then T(M) is an algebra over
the real number field R, the multiplication & being defined
pointwise, i.e., if K,Le T(M) then (K ® L), = K, ® L, for all
x e M. If ¢ is a transformation of M, its differential ¢, gives a
linear isomorphism of the tangent space 7, ; (M) onto the
tangent space 7,(M). By Proposition 2.12, this linear isomorphism
can be extended to an isomorphism of the tensor algebra T(¢~1(x))
onto the tensor algebra T(x), which we denote by &. Given a

tensor field K, we define a tensor field ¢K by
(¢K)m - ¢(K¢‘1(m))’ xe M.

In this way, every transformation ¢ of M induces an algebra
automorphism of T(M) which preserves type and commutes with
contractions.

Let X be a vector field on M and ¢, a local 1-parameter group
of local transformations generated by X (cf. Proposition 1.5). We
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shall define the Lie derivative Ly K of a tensor field K with respect to a
vector ;i-ld X as follows. For the sake of simplicity, we assume that
@, is 2 global l-parameter group of transformations of M; the
reader will have no difficulty in modifying the definition when X

is not romplete. For each ¢, &, is an automorphism of the algebra
T(M). For any tensor field K on M, we set

(LxK). — lim - > 1Ko — (@K),]-

t—0

The niapping Ly of T(M) into itself which sends K into L ¢ K is
called the Lie differentiation with respect to X. We have

ProrosiTioN 3.2.  Lie differentiation Ly with respect to a vector
Sield X satisfies the following conditions :

(a) L ¢ is a derivation of T(M), that s, it is Linear and satisfies
Ly(K®K') = (LxK) @ K' + K ® (LxX')
Sorall K, K' e T(M);
(b) Ly is type-preserving : L x(TH(M)) < THM);
(c) L x commutes with every contraction of a tensor field;
(d)
(e

Xf Xf for every function f;
e) L = [X, Y] for every vector field Y.

Proof. It is clear that Ly is linear. Let ¢, be a local 1-param-
eter group of local transformations generated by X. Then

L¢(K®K") = 11m [K QK — ¢,(K ® K]

t—0

= hm [K ® K — (¢.K) ® (¢.K)]

t—0

— lim+ K QK — (8K) @ K]

t—0

-+ 11m [( K) ® K" — (¢,K) ® (¢.K')]

t—0

— (tim (K — (2] @ &

t—0
: 1
+lim (5 ® (7 K~ (5K7))
— (LK) @K' + K ® (LxK).
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Since ¢, preserves type and commutes with contractions, so does
L. If fis a function on M, then

.1 _ .1 _
(Lxf)x) =lim = [flx) —flo )] = —lim = [flg) — fl0)].
If we observe that ;! = ¢_,1s a local 1-parameter group of local
transformations generated by — X, weseethat Ly f = —(—X)f =
Xf. Finally (e) is a restatement of Proposition 1.9. QED.

By a derivation of T (M), we shall mean a mapping of I (M) into
itself which satisfies conditions (a), (b) and (c) of Proposition 3.2.

Let S be a tensor field of type (1, 1). For each x e M, §, is a
linear endomorphism of the tangent space 7,(M). By Proposition
2.13, §, can be uniquely extended to a derivation of the tensor
algebra T (x) over T,(M). For every tensor field K, define SK by
(SK), = S,K,, x e M. Then § is a derivation of T(M). We have

r-rx

Prorosition 3.3.  Every derivation D of T(M) can be decomposed

uniquely as follows :
D=Ly + 3§,

where X is a vector field and S is a tensor field of type (1, 1).

Proof. Since D is type-preserving, it maps & (M) into itself and
satisfies D(fg) = Df-g 4+ f - Dg for f,ge F(M). It follows that
there is a vector field X such that Df = Xf for every fe &(M).
Clearly, D — Ly is a derivation of T (M) which is zero on §(M).
We shall show that any derivation D which is zero on (M) is
induced by a tensor field of type (1, 1). For any vector field 7,
DY is a vector field and, for any function f, D(fY) = Df- Y +
f+ DY = f- DY since Df = 0 by assumption. By Proposition 3.1,
there is a unique tensor field § of type (1, 1) such that DY = SY
for every vector field Y. To show that D coincides with the deriva-
tion induced by S, it is sufficient to prove the following

LEmMA.  Two derivations D, and D, of T(M) coincide if they
coincide on F(M) and X(M).

Proof. We first observe that a derivation D can be localized,
that is, if a tensor field K vanishes on an open set U, then DK
vanishes on U. In fact, for each x € U, let f be a function such that
f(x) =0 and f =1 outside U. Then K = f-K and hence
DK = Df- K + f- DK. Since K and f vanish at x, so does DK.
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It follows that if two tensor fields K and K’ coincide on an open
set U, then DK and DK’ coincide on U.

Set D = D; — D,. Our problem is now to prove that if a
derivation D is zero on (M) and X(AM), then it is zero on T(M).
Let K be a tensor field of type (7, s) and x an arbitrary point of M.
To show that DK vanishes at x, let V" be a coordinate neighborhood
of x with a local coordinate system %!, ..., 2" and let

K=ZK7X, ® - ®X, o"® - Qo
where X; = 9/0x* and o’ = dx’. We may extend K}*::'r, X, and
w’ to M and assume that the equality holds in a smaller neighbor-
hood U of x. Since D can be localized, it suffices to show that

D(K;l"'i’X Q- ®Xir Rt ®--- ®a)j3) — 0.

1-0-75" %

But this will follow at once if we show that Dw = 0 for every
l-form w on M. Let Y be any vector field and C: T}(M) — F(M)
the obvious contraction so that C(Y ® w) = w(Y) is a function
(cf. Example 2.1). Then we have

0 =D(C(Y @ ) =C(D(Y ®w))
=C0DY ®w) +C(Y ® Do) =C(Y ® Dw) = (Dw)(Y).
Since this holds for every vector field Y, we have Do = 0. QED.

The set of all derivations of T (M) forms a Lie algebra over R
(of infinite dimensions) with respect to the natural addition and
multiplication and the bracket operation defined by [D, D']K =
D(D'K) — D'(DK). From Proposition 2.13, it follows that the
set of all tensor fields S of type (1, 1) forms a subalgebra of the Lie
algebra of derivations of T(Af). In the proof of Proposition 3.3,
we showed that a derivation of T(M) is induced by a tensor field
oftype (1, 1) ifand onlyifitis zero on §(AM). It follows immediately
that if D is a derivation of T(AM) and S is a tensor field of type
(1, 1), then [D, §] is zero on (M) and, hence, is induced by a
tensor field of type (1, 1). In other words, the set of tensor fields of
type (1, 1) 15 an ideal of the Lie algebra of derivations of T(M). On the
other hand, the set of Lie differentiations Ly, X e X(M), forms a
subalgebra of the Lie algebra of derivations of T(M). This follows from
the following
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ProrposirioN 3.4.  For any vector fields X and Y, , we have
Lix,y) = [Lx, Ly]-

Proof. By virtue of Lemma above, it is sufficient to show that
[Lx, Ly] has the same effect as Ly y; on (M) and X(M). For
fe &M), we have

[(Lx, Lylf = XYf = YXf = [X, Y] f = Lix, v/
For Z ¢ ¥(M), we have
by the Jacobi identity. QED.

ProrostrioN 3.5. Let K be a tensor field of type (1, 1) which we
interpret as in Proposition 3.1. For any vector field X, we have then

(LyK)(Yy, ..., Y,) =[X, K(Yy, ..., Y,)]
— 2 K(Y,..., [ Y],..., Y.
Proof. We have
KY,...,Y)=0C,---CY,® - ®Y, ®K),

where Cy, . . ., C, are obvious contractions. Using conditions (a)
and (c) of Proposition 3.2, we have, for any derivation D of
M),

DK(Yy, ..., Y.)) = (DK)(Yy, ..., Y,
+ 3, Ky, ..., DY, ..., 7).

If D = L, then (e) of Proposition 3.2 implies Proposition 3.5.
QED.

Generalizing Corollary 1.10, we obtain

ProposirioN 3.6.  Let ¢, be a local 1-parameter group of local trans-
formations generated by a vector field X. For any tensor field K, we have

gEs(LXK) — _(d<¢tK)/dt)t=s'
Proof. By definition,

1
LxK = lim - [K — 3,K].

{—0
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Replacing K by ¢,K, we obtain

Ly(@K) = lim [5.K — 5oK] = —(d(5K) db)
Our problem is therefore to prove that ¢,(LxK) = L (& .K),
ie., LyK=¢;1oLyop(K) for all tensor fields K. It is a
straightforward verification to see that g, ! o L x o &, is a derivation
of T(M). By Lemma in the proof of Proposition 3.3, it is sufficient
to prove that Ly and ¢; ' o Ly ° ¢, coincide on (M) and X(M).
We already noted in the proof of Corollary 1.10 that they coincide
on X(M). The fact that they coincide on (M) follows from the
following formulas (cf. §1, Chapter I):

p*((p X)) = X(9*f),
oY = ¢*/,

which hold for any transformation ¢ of M and from (¢,) X = X
(ct. Corollary 1.8). QED.

CoroLLARY 3.7. A tensor field K s invariant by @, for every t if and
only if LK = 0.

Let D7(M) be the space of differential forms of degree r defined
on M, i.e., skew-symmetric covariant tensor fields of degree r.
With respect to the exterior product, D(M) = ZI'_, D"(M)
forms an algebra over R. A derwation (resp. skew-derivation) of
D(M) is a linear mapping D of D(M) into itself which satisfies

DiwAw) =DoAow + oA Do for w, 0" € D(M)
(resp. = Do Aw + (—1)'w A Do’ for w e D"(M), 0’ € D(M)).

A derivation or a skew-derivation D of D(M) is said to be of
degree £ if it maps D"(M) into D"*(M) for every r. The exterior
differentiation 4 is a skew-derivation of degree 1. As a general
result on derivations and skew-derivations of D(AM), we have

ProrositioN 3.8. (a) If D and D’ are derivations of degree k and
k' respectively, then [ D, D'] is a derivation of degree k + k'.

(b) If D is a derivation of degree k and D’ is a skew-derivation of
degree k', then [D, D'] is a skew-derivation of degree k + k'.
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(c) If D and D' are skew-derivations of degree k and k' respectively,
then DD' + D’'D 1s a derivation of degree k + k'.

(d) A derivation or a skew-derivation is completely determined by its
effect on D°(M) = F(M) and DY (M).

Proof. The verification of (a), (b), and (c) is straightforward.

The proof of (d) is similar to that of Lemma for Proposition 3.3.
QED.

ProrostrionN 3.9.  For every vector field X, Ly is a derivation of
degree O of D(M) which commutes with the extericr differentiation d.
Conversely, every derivation of degree 0 of D(M) which commutes with d
is equal to L for some vector field X.

Proof. Observe first that L y commutes with the alternation 4
defined in Example 3.2. This follows immediately from the
following formula:

(LXw)(Yla ces X)) = X(w(yla s Y)
S (.. L [X Y, ..., T,

whose proof is the same as that of Proposition 3.5. Hence,
Lx(D(M)) = D(M) and, for any w, o’ € D(M), we have

Lx(oA o) = Ly(d(o ® o)) = A(Lx(0 ® o))
= AL x0o ® o) + Ao ® Lxo')
=Lxo Ao + owALxo'.

To prove that Ly commutes with d, we first observe that, for any
transformation ¢ of M, ¢w = (¢1)*w and, hence, $ commutes
with d. Let ¢, be a local 1-parameter group of local transformations
generated by X. From ¢,(dw) = d(¢,w) and the definition of
Lxw it follows that Ly(dw) = d(Lyw) for every we D(M).
Conversely, let D be a derivation of degree 0 of D(M) which
commutes with 4. Since D maps D°(M) = F(M) into itself, D is
a derivation of F(M) and there is a vector field X such that
Df = Xf for every fe F(M). Set D' =D — Ly. Then D' is a
derivation of (M) such that D’f = 0 for every fe F(M). By
virtue of (d) of Proposition 3.8, in order to prove D" = 0, it is
sufficient to prove D'w = 0 for every 1-form w. Just as in Lemma
for Proposition 3.3, D’ can be localized and it is sufficient to show
that D’w = 0 when o is of the form fdg where f,g € F(M) (because
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w is locally of the form X f; dx* with respect to a local coordinate
system x%, ..., x"). Let w = fdg. From D'f =0 and D'(dg) =
d(D’g) = 0, we obtain

D'(w) = (Df) dg +f- D'(dg) = 0.
QED.

For each vector field X, we define a skew-derivation ¢y, called
the interior product with respect to X, of degree —1 of D(M) such
that

(a) tx f = 0 for every fe DY(M);

(b) txw = w(X) for every w e DY(M).

By (d) of Proposition 3.8, such a skew-derivation is unique if it
exists. To prove its existence, we consider, for each r, the con-
traction C: I}(M) — I?_;(M) associated with the pair (1, 1).
Consider every r-form o as an element of IY(M) and define
txw = C(X ® w). In other words,

(exo)( Yy, oo, Y,_) =7 0X,Y,..., Y,_) for Y, e X(M).
The verification that ¢ 4 thus defined is a skew-derivation of D (M)
is left to the reader; ix(wA W) =ity Ao + (—1)'w A x0,
where w € D7(M) and o’ € D5(M), follows easily from the following

formula:
(Ao ) (Y Yoyoo o, Y,ty)
B 1
o (r + 5)!
where the summation is taken over all possible partitions of
(I,...,7+s)into (j,...,J,) and (ky, . .., k;) and &(7; k) stands
for the sign of the permutation (1,...,7 +5) — (.- ->Jm
ks« ooy k).
Since (L%(w)(yb et Yr—z) =7’(7’ _ 1) ) OO(X, X> Y1> AR Yr—z) =
0, we have

S e(j; k) (Y LY, )0 (Tas -5 Vi)

7'1,... A

& = 0.
As relations among d, Ly, and ¢y, we have

Prorostrion 3.10. (a) Ly = dovx + tx o d for every vector field
X. (b) [Lx, ty] = yx, vy for any vector fields X and Y.
Proof. By (c) of Proposition 3.8, d o tx + ¢x o d is a derivation
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of degree 0. It commutes with 4 because % = 0. By Proposition
3.9, it is equal to the Lie differentiation with respect to some
vector field. To prove that it is actually equal to L 5, we have only
to show that Ly f = (dotx + tx o d)f for every function f. But
this is obvioussince Ly f = Xfand (deotx + tx o d)f = tx(df) =
(df)(X) = Xf. To prove the second assertion (b), observe first
that [Ly, ty] is a skew-derivation of degree —1 and that both
[Lx, ty] and y, y; are zero on F(M). By (d) of Proposition 3.8,
it is sufficient to show that they have the same effect on every
l-form w. As we noted in the proof of Proposition 3.9, we have
(Lxw)(Y) = X(w(Y)) — o([X, Y]) which can be proved in the

same way as Proposition 3.5. Hence,
[Lx; ty]o = Lx(w(Y)) — p(Lyw) = X(o(Y)) — (Lxo)(Y)
= w([X, Y]) = L[X, yi.

QED.
As an application of Proposition 3.10 we shall prove
Propostrion 3.11.  If w is an r-form, then
(dw)(Xy, X1y -« .5 X,)
= r—_l_iT > o (=X (0(X,, ..., X, ..., X))
+ Jlr 1 Socicier( —1)iHo([Xy X}, Koo v oy Xiyevoy Xy ooy X0,

where the symbol ~ means that the term ts omitted. (The cases r = 1 and 2
are particularly useful.) If w is a 1-form, then

(do)(X,Y) = H{X((Y)) — Y(o(X)) — o([4X, Y])},
X,Y < X(M).
If o s a 2-form, then

(do) (X, ¥, Z) = HX(o(Y, Z)) + Y(0(Z, X)) + Z(a(X, Y))
~ o([X, Y], 2) — ([T, Z], X) — ([Z, X], V)},
X,Y,Z ¢ X(M).

Proof. The proof is by induction on 7. If r = 0, then w is a
function and dw(X,) = X,w, which shows that the formula above
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is true for r = 0. Assume that the formula is true for » — 1.
Let w be an r-form and, to simplify the notation, set X = X,. By
(a) of Proposition 3.10,

(r + 1) do(X, Xy, ..., X)) = (tx o dw)(Xy, ..., X,)
= (Lxo)( Xy, ..., X,) — (doxo)(Xy, ..., X,).
As we noted in the proof of Proposition 3.9,
(Lyxw)( Xy, ..., X,) = XXy, ..., X))
— 20Xy, .. X XD, X))
Since ¢ yw 1s an (r — 1)-form, we have, by induction assumption,

1 .
(doixw)(Xy, ..., X,) :r_z};=1(_1)z—1

X Xi(l’Xw(Xlz LR Xi: s o0y Xr))

1 L . .,
+;Zlgz’<j§r(_I)H_](I’Xw)([Xi: X:i]: Xl: ¢« Xz‘: ) X:i: s ey Xr)
=12]§=1(—1)""1Xi(w(X, X,.o..,X,..., X,))

r

1

— ;Zléi<]'§7' (_1)i+j
X o([Xp X1, X, X0y ooy Xy, Xy, X)),

Our Proposition follows immediately from these three formulas.

QED.

Remark. Formulas in Proposition 3.11 are valid also for
vector-space valued forms.

Various derivations allow us to construct new tensor fields from
a given tensor field. We shall conclude this section by giving
another way of constructing new tensor fields.

Prorosition 3.12.  Let A and B tensor fields of type (1, 1). Set
S(X,Y) =[AX, BY] + [BX, AY] + AB[X, Y] + BA[X, Y]

—A[X, BY] — A[BX, Y] — B[X, AY] — B[A4X, Y],
X,Y € X(M).
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Then the mapping S: X(M) X X(M) — X(M) is a tensor field of type
(1,2) and S(X, Y) = —S(¥, X).

Proof. By a straightforward calculation, we see that § is a
bilinear mapping of the §(M)-module X(M) x X(M) into the
F(M)-module X(M). By Proposition 3.1, § is a tensor field of
type (1, 2). The verification of S(X, ¥) = —8(Y, X) is easy.

QED.

We call § the torsion of A and B. The construction of .S was
discovered by Nijenhuis [1].

4. Lie groups

A Lie group G is a group which is at the same time a differentiable
manifold such that the group operation (g, ) e G X G —ab1e G
is a differentiable mapping of G X G into G. Since G is locally
connected, the connected component of the identity, denoted by
G, is an open subgroup of G. G is generated by any neighborhood
of the identity e. In particular, it is the sum of at most countably
many compact sets and satisfies the second axiom of countability.
It follows that G satisfies the second axiom of countability if and
only if the factor group G/G° consists of at most countably many
elements.

We denote by L, (resp. R,) the left (resp. right) translation of
G by an element a e G: L,x = ax (resp. R,x = xa) for every x € G.
For ae G, ad a is the inner automorphism of G defined by
(ad a)x = axa=! for every x € G.

A vector field X on G is called left invariant (resp. right invariant)
if 1t is invariant by all left translations L, (resp. right translations
R,), a € G. A left or right invariant vector field is always differenti-
able. We define the Lie algebra g of G to be the set of all left
invariant vector fields on G with the usual addition, scalar multi-
plication and bracket operation. As a vector space, g is isomorphic
with the tangent space 7,(G) at the identity, the isomorphism
being given by the mapping which sends X € g into X,, the value
of X at e. Thus g is a Lie subalgebra of dimension z (n = dim G)
of the Lie algebra of vector fields X(G).

Every A e g generates a (global) l-parameter group of trans-
formations of G. Indeed, if ¢, is a local 1-parameter group of local
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transformations generated by 4 and ¢, is defined for || < e,
then @,a can be defined for |¢| < ¢ for every a € G and is equal to
L,(pe) as p, commutes with every L, by Corollary 1.8. Since ¢,a
is defined for |¢| < ¢ for every a € G, @,a is defined for |¢{| < oo for
every a € G. Set a, = g,e. Then a,,, = a,a, for all t,s e R. We call
a, the 1-parameter subgroup of G generated by A. Another characteriza-
tion of g, is that it is a unique curve in G such that its tangent
vector 4, at a,is equal to L, A, and that g, = ¢. In other words, it is
a unique solution of the differential equation 4; 'a, = 4, with
initial condition a, = ¢. Denote a;, = ¢,¢ by exp 4. It follows that
exp t4d = a, for all ¢. The mapping 4 —exp 4 of g into G is
called the exponential mapping.

Example 4.1. GL(n; R) and gl(n; R). Let GL(n; R) be the
group of allreal n X n non-singular matrices 4 = (4f) (the matrix
whose i-th row and j-th column entry is a}); the multiplication is
given by

(AB)} = 2¢_, aib¥  for A = (a) and B = (§)).

7

GL(n; R) can be considered as an open subset and, hence, as an
open submanifold of R™. With respect to this differentiable
structure, GL(n; R) is a Lie group. Its identity component
consists of matrices of positive determinant. The set gl(n; R) of
all n X n real matrices forms an n2-dimensional Lie algebra with
bracket operation defined by [4, B] = AB — BA. It is known
that the Lie algebra of GL(n; R) can be identified with gl(n; R)
and the exponential mapping gl(n; R) — GL(n; R) coincides
with the usual exponential mapping exp 4 = ;2 , A*/k!

Example 4.2. O(n) and o(n). The group O(n) of all n X n
orthogonal matrices is a compact Lie group. Its identity com-
ponent, consisting of elements of determinant 1, is denoted by
SO(n). The Lie algebra o(n) of all skew-symmetric n X n matrices
can be identified with the Lie algebra of O(n) and the exponential
mapping o(n) — O(n) is the usual one. The dimension of O(n) is
equal to n(n — 1)/2.

By a Lie subgroup of a Lie group G, we shall mean a subgroup
which is at the same time a submanifold of G such that H itself is
a Lie group with respect to this differentiable structure. A left
invariant vector field on H is determined by its value at ¢ and this
tangent vector at ¢ of /{ determines a left invariant vector field on
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G. It follows that the Lie algebra § of H can be identified with a
subalgebra of g. Conversely, every subalgebra § of g is the Lie
algebra of a unique connected Lie subgroup H of G. This is
proved roughly as follows. To each point x of G, we assign the
space of all 4,, 4 €}. Then this is an involutive distribution and
the maximal integral submanifold through e of this distribution is
the desired group H (cf. Chevalley [1; p. 109, Theorem 1]).

Thus there is a 1:1 correspondence between connected Lie
subgroups of G and Lie subalgebras of the Lie algebra g. We
make a few remarks about nonconnected Lie subgroups. Let H
be an arbitrary subgroup of a Lie group G. By providing H with
the discrete topology, we may regard H as a 0-dimensional Lie
subgroup of G. This also means that a subgroup H of G can be
regarded as a Lie subgroup of G possibly in many different ways
(that is, with respect to different differentiable structures). To
remedy this situation, we impose the condition that H/H®, where H® is
the identity component of H with respect to its own topology, is countable, or in
other words, H satisfies the second axiom of countability. (A subgroup, with
a discrete topology, of G is a Lie subgroup only if it is countable.)
Under this condition, we have the uniqueness of Lie subgroup
structure in the following sense. Let A be a subgroup of a Lie
group G. Assume that A has two differentiable structures, denoted
by H, and H,, so that it is a Lie subgroup of G. If both H, and H,
satisfy the second axiom of countability, the identity mapping of
H onto itself is a diffecomorphism of H; onto H,. Consider the
identity mapping f: H; — H,. Since the identity component of
H, is a maximal integral submanifold of the distribution defined
by the Lie algebra of H,, f/: H, — H, is differentiable by Proposi-
tion 1.3. Similary /~': H, — H, is differentiable.

Every automorphism ¢ of a Lie group G induces an auto-
morphism ¢, of its Lie algebra g; in fact, if 4 € g, g4 is again a
left invariant vector field and ¢u[4, B] = [p4d, pxB] for
A,B € g. In particular, for every a € G, ad a which maps x into
axa~! induces an automorphism of g, denoted also by ad a. The
representation ¢ — ad a of G is called the adjoint representation of G
in g. For every ae G and 4 € g, we have (ad a)4d = (R,-1) 44,
because axa~! = L R, wx = R, 1L,x and A is left invariant. Let
A,Beg and ¢, the l-parameter group of transformations of G
generated by 4. Set a, = exp t4 = ¢,(¢). Then ¢,(x) = xa, for




I. DIFFERENTIABLE MANIFOLDS 41

x € G. By Proposition 1.9, we have

(B, 4] = lim 3 [(p) B — B) = lim ; [(Re) o8 — B]

t—0 ¢

= liml [ad (¢; 1B — B].
t—0 ¢
It follows that if H is an invariant Lie subgroup of G, its Lie
algebra b is an ideal of g, thatis, 4 € g and B € ) imply [B, A] € b.
Conversely, the connected Lie subgroup H generated by an ideal
b of g is an invariant subgroup of G.

A differential form w on G is called left invariant if (L,)*w = o
for every a € G. The vector space g* formed by all left invariant
]-forms is the dual space of the Lie algebra g: if 4 € g and w € g*,
then the function w(4) is constant on G. If w is a left invariant
form, then so is dw, because the exterior differentiation commutes
with ¢*. From Proposition 3.11 we obtain the equation of Maurer-
Cartan:

do(4, B) = —iw([4, B]) for we g* and A,Beg.

The canonical 1-form 6 on G is the left invariant g-valued 1-form
uniquely determined by

6(4) =4 for 4 € g.
Let £, ..., E, be a basis for g and set
6 =2XI_, 0°F,.

Then 61, ..., 6" form a basis for the space of left invariant real

l-forms on G. We set _
[E;, E,] = Zf_; C}kEu

where the ¢%’s are called the structure constants of g with respect
to the basis £, . . ., E,. It can be easily verified that the equation
of Maurer-Cartan is given by

= 3T, GOAG, =1,

We now consider Lie transformation groups. We say that a Lie
group G is a Lie transformation group on a manifold M or that G acts
(differentiably) on M if the following conditions are satisfied:

(1) Every element a of G induces a transformation of M,
denoted by x — xa where x € M
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(2) (a,%) e G X M — xa e M is a differentiable mapping;

(3) x(ab) = (xa)b for all a,b € G and x € M.

We also write R x for xa and say that G acts on M on the right. If
we write ax and assume (ab)x = a(bx) instead of (3), we say that
G acts on M on the left and we use the notation L x for ax also.
Note that R, = R, R, and L,, = L,~ L,. From (3) and from
the fact that each R, or L, is one-to-one on M, it follows that R,
and L, are the identity transformation of M.

We say that G acts effectively (resp. freely) on M if R x = x for
all x € M (resp. for some x € M) implies that a = e.

If G acts on M on the right, we assign to each element 4 € g a
vector field A* on M as follows. The action of the l-parameter
subgroup a, = exp t4 on M induces a vector field on M, which
will be denoted by A* (cf. §1).

Prorposition 4.1.  Let a Lie group G act on M on the right. The
mapping o: g — X(M) which sends A into A* is a Lie algebra homo-
morphism. If G acts effectively on M, then o 1s an 1somorphism of g nto
X(M). If G acts freely on M, then, for each non-zero A € g, o(A) never
vanishes on M.

Proof. First we observe that ¢ can be defined also in the

following manner. For every xe M, let o, be the mapping
ae G—xae M. Then (0,),4, = (64), It follows that ¢ is a
linear mapping of g into ¥(M). To prove that ¢ commutes with
the bracket, let 4,B e g, A* = 04, B* = 0B and a, = exp t4.
By Proposition 1.9, we have
[A*, B*] = 1im% [B* — R, B*].
t—0

From the fact that R, ° o,,1(c) = xa; 'ca, for ¢ e G, we obtain
(denoting the differential of a mapping by the same letter)

(RatB*)m — Ra, ° O-xat_lBe - Gm(ad (at_l)Be)

and hence

[4*, B*] = Tim ~ [0,B, — o,(ad (&) B,)]

t—o0 ¢

— g, (liml [B, — ad (at‘l)Be])

t—0

— Ux([A» B]() — (G[Aa B])wa -
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by virtue of the formula for [4, B] in g in terms of ad G. We have
thus proved that ¢ is a homomorphism of the Lie algebra g into
the Lie algebra X(M). Suppose that 64 = 0 everywhere on M.
This means that the l-parameter group of transformations R,
is trivial, that is, R, is the identity transformation of M for every
t. If G is effective on M, this implies that a, = ¢ for every ¢ and
hence 4 = 0. To prove the last assertion of our proposition,
assume ¢4 vanishes at some point x of M. Then R, leaves x fixed
for every ¢. If G acts freely on M, this implies that a, = ¢ for every
¢t and hence 4 = 0. QED.

Although we defined a Lie group as a group which is a differenti-
able manifold such that the group operation (a, §) — ab=1 1s
differentiable, we may replace differentiability by real analyticity
without loss of generality for the following reason. The exponen-
tial mapping is one-to-one near the origin of g, that is, there is an
open neighborhood N of 0 in g such that exp is a diffeomorphism
of N onto an open neighborhood U of ¢ in G (cf. Chevalley [1;
p. 118] or Pontrjagin [1; §39]). Consider the atlas of G which
consists of charts (Ua, ¢,), a € G, where ¢,: Ua — N is the inverse
mapping of R, o exp: N — Ua. (Here, Ua means R,(U) and N is
considered as an open set of R" by an identification of g with R".)
With respect to this atlas, G is a real analytic manifold and the
group operation (a, ) — ab™! is real analytic (cf. Pontrjagin
[1; p- 257]). We shall need later the following

Provposition 4.2.  Let G be a Lie group and H a closed subgroup of
G. Then the quotient space G| H admits a structure of real analytic manifold
in such a way that the action of G on G|H 1is real analytic, that is, the
mapping G x G/H — G/H which maps (a, bH) into abH 1is real
analytic. In particular, the projection G — G[H is real analytic.

For the proof, see Chevalley [1; pp. 109-111].

There is another important class of quotient spaces. Let G be an
abstract group acting on a topological space M on the right as a
group of homeomorphisms. The action of G is called properly dis-
continuous if it satisfies the following conditions:

(1) If two points x and x’ of M are not congruent modulo G
(i.e., Rx # x' for every a € GG), then x and x’ have neighborhoods
U and U’ respectively such that R,(U) N U’ is empty for all
aeG;
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(2) For each x € G, the isotropy group G, = {a e G; R,x = x} is
finite;

(3) Each x € M has a neighborhood U, stable by G,, such that
U N R,(U) is empty for every a € G not contained in G,.

Condition (1) implies that the quotient space M/G is Hausdorft.
If the action of G is free, then condition (2) is automatically
satisfied.

Prorosition 4.3. “Let G be a properly discontinuous group of
differentiable (resp. real analytic) transformations acting freely on a
differentiable (resp. real analytic) manifold M. Then the quotient space
MG has a structure of differentiable (resp. real analytic) manifold such
that the projection w: M — M|G is differentiable (resp. real analytic).

Proof. Condition (3) implies that every point of M/G has a
neighborhood V'such that = is a homeomorphism of each connected
component of #—1(V) onto V. Let U be a connected component
of #=1(V). Choosing V sufficiently small, we may assume that there
is an admissible chart (U, ¢), where ¢: U — R", for the manifold
M. Introduce a differentiable (resp. real analytic) structure in
M|G by taking (V, y), where  is the composite of n=1: V — U
and ¢, as an admissible chart. The verification of details is left to
the reader. QED.

Remark. A complex analytic analogue of Proposition 4.3 can
be proved in the same way.

To give useful criteria for properly discontinuous groups, we
define a weaker notion of discontinuous groups. The action of an
abstract group G on a topological space M is called discontinuous if,
for every x ¢ M and every sequence of elements {a,} of G (where
a, are all mutually distinct), the sequence {R, x} does not con-
verge to a point in M.

ProrosiTioN 4.4.  Every discontinuous group G of isometries of a
metric space M 1s properly discontinuous.

Proof. Observe first that, for each x e M, the orbit xG =
{R,x; a € G} is closed in M. Given a point »” outside the orbit xG,
let r be a positive number such that 2r is less than the distance
between x” and the orbit xG. Let U and U’ be the open spheres of
radius r and centers x and x" respectively. Then R (U) N U’ is
empty for all a € G, thus proving condition (l). Condition (2)
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is always satisfied by a discontinuous action. To prove (3), for
each x € M, let r be a positive number such that 27 is less than the
distance between x and the closed set xG — {x}. It suffices to take
the open sphere of radius r and center x as U. QED.

Let G be a topological group and H a closed subgroup of G.
Then G, hence, any subgroup of G acts on the quotient space G/H
on the left.

ProposiTioN 4.5.  Let G be a topological group and H a compact
subgroup of G. Then the action of every discrete subgroup D of G on G/H
(on the left) is discontinuous.

Proof. Assuming that the action of D is not discontinuous,
let x and y be points of G/H and {d,} a sequence of distinct elements
of'D such that d,x converges to y. Let p: G — G/H be the projection
and write x = p(a) and y = p(b) where a,b e G. Let V be a
neighborhood of the identity ¢ of G such that dVVV-1)-15-1
contains no element of D other than e¢. Since p(bV) is a neighbor-
hood of y, there is an integer N such that d,x € p(bV) for alln > N.
Hence, d,aH = p~*(dx) < p~(p(bV)) = bVH for n > N. For
each n > N, there exist v, € V and £, € H such that d,a = bv,h,,.
Since H is compact, we may assume (by taking a subsequence if
necessary) that £, converges to an element 42e H and hence
h, = u,h for n > N, where u, e V. We have therefore d, =
bvu,hat for n > N. Consequently, d,d; ' is in bVVV1/-1h1 if
2,7 > N. This means d, = d, if 7,5 > N, contradicting our assump-
tion. QED.

In applying the theory of Lie transformation groups to differen-
tial geometry, it is important to show that a certain given group
of differentiable transformations of a manifold can be made into
a Lie transformation group by introducing a suitable differentiable
structure in it. For the proof of the following theorem, we refer the
reader to Montgomery-Zippin [1; p. 208 and p. 212].

THEOREM 4.6 Let G be a locally compact effective transformation
group of a connected manifold M of class C*, 1 < k < w, and let each
transformation of G be of class Ct. Then G is a Lie group and the mapping
G X M — M is of class C*.

We shall prove the following result, essentially due to van
Dantzig and van der Waerden [1].
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TureoOREM 4.7.  The group G of isometries of a connected, locally com-
pact metric space M 1s locally compact with respect to the compact-open
topology.

Proof. We recall that the compact-open topology of G is
defined as follows. For any finite number of pairs (K, U,) of
compact subsets K, and open subsets U, of M, let W = W(K,, .. .,
K;Up,...,U) ={peG;p(K,) =« U, for i =1,...,s}. Then
the sets W of this form are taken as a base for the open sets of G.
Since M is regular and locally compact, the group multiplication
G x G — G and the group action G X M — M are continuous
(cf. Steenrod [1; p. 19]). The continuity of the mapping G — G
which sends ¢ into ¢=' will be proved using the assumption
in Theorem 4.7, although it follows from a weaker assumption
(cf. Arens [1]).

Every connected, locally compact metric space satisfies the
second axiom of countability (see Appendix 2). Since M is locally
compact and satisfies the second axiom of countability, G satisfies
the second axiom of countability. This justifies the use of sequences
in proving the local compactness of G (cf. Kelley [1; p. 138]).
The proof is divided into several lemmas.

LEmmA 1. Let ae M and let ¢ > 0 be such that Ula;e) =
{x e M; d(a, x) < e} has compact closure (where d is the distance).
Denote by V, the open neighborhood Ul(a; e/4) of a. Let @, be a sequence
of isometries such that ¢,(b) converges for some point b e V,. Then there
exist a compact set K and an integer N such that ¢,(V,) < K for every
n > N.

Proof. Choose N such that n > N implies d(p,(8), ¢,.(8)) <
e[4. If x € V, and n > N, then we have

d(@a(x), pn(a)) = d(@n(x), Pa(b)) + d(@n(8), px(b))
+ d(pn(b), px(a))
= d(x, 0) + d(p.(b), px(b)) -+ d(b, a) <,

using the fact that ¢, and ¢, are isometries. This means that
®,(V,) 1s contained in U(px(a); &). But U(py(a); &) = pn(U(a; €))
since g, is an isometry. Thus the closure K of U(py(a);e) =
pn(U(a; €)) is compact and ¢,(V,) < K for n > N.

Lemma 2. In the notation of Lemma 1, assume again that ¢,(b)
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converges for some b € V,. Then there is a subsequence ¢, of ¢, such that
@, (%) converges for each x € V.

Proof. Let {6,} be a countable set which is dense in V,. (Such
a{b,} exists since M is separable.) By Lemma 1, there is an N
such that ¢,(V,) is in K for n > N. In particular, ¢,(6,) is in K.
Choose a subsequence ¢, , such that ¢, ,(6,) converges. From
this subsequence, we choose a subsequence g, , such that ¢, ,(b,)
converges, and so on. The diagonal sequence ¢, ,(b,) converges

for every n =1,2,.... To prove that ¢, ,(x) converges for
every x € V,, we change the notation and may assume that ¢, (5,)
converges for each 1t =1,2,.... Let xe V, and § > 0. Choose

b, such that d(x, b;) << 8/4. There is an N; such that d(¢,(5,),
®m(0;)) < 6/4 for n,m > N,. Then we have

d(@n(%); Pu(¥)) = d(@a(x), 9,(0:)) + d(@a(bs), Pu(bs))
+ d(@m(b:), Pm())
= 2d(x, b;) + d(@,(b:), Pwm(bs)) < 0.

Thus ¢,(x) is a Cauchy sequence. On the other hand, Lemma 1
says that ¢,(x) is in a compact set K for all » > N. Thus ¢, (%)
converges.

LEmMA 3.  Let ¢, be a sequence of isometries such that ¢,(a) con-
verges for some point a € M. Then there is a subsequence ¢, such that
@, (%) converges for each x ¢ M. (The connectedness of M is essentially
used here.)

Proof. For each xe M, let V, = U(x; ¢/4) such that U(x; &)
has compact closure (this ¢ may vary from point to point, but we
choose one such ¢ for each x). We define a chain as a finite sequence
of open sets V, such that (1) each V, is of the form V, for some
x; (2) V, contains a; (3) V, and V,,,; have a common point. We
assert that every point y of M 1s in the last term of some chain. In
fact, it is easy to see that the set of such points y is open and
closed. M being connected, the set coincides with M.

This being said, choose a countable set {5,} which is dense in M.
For by, let V1, V,, ..., V, be a chain with b, € V. By assumption
®,(a) converges. By Lemma 2, we may choose a subsequence
(which we may still denote by ¢, by changing the notation) such
that ¢, (x) converges for each x € V,. Since V; N V, is non-empty,
Lemma 2 allows us to choose a subsequence which converges for
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each x € V,, and so on. Thus the original sequence ¢, has a sub-
sequence @, , such that ¢, ,(b,) converges. From this subsequence,
we may further choose a subsequence ¢, , such that ¢, (,)
converges. As in the proof of Lemma 2, we obtain the diagonal
subsequence ¢, , such that ¢, ,(4,) converges for each n. Denote
this diagonal subsequence by ¢,, by changing the notation. Thus
®.(b;) converges for each 5,.

We now want to show that ¢,(x) converges for each x ¢ M. In
V,, there is some &, so that there exist an N and a compact set K
such that ¢,(V,) < K for n > N by Lemma 1. Proceeding as in
the second half of the proof for Lemma 2, we can prove that ¢,,(x)
is a Cauchy sequence. Since ¢,(x) € K for n > N, we conclude
that ¢,(x) converges.

LEMMA 4.  Assume that ¢, is a sequence of i1sometries such that ¢, (x)
converges for each x € M. Define p(x) = lim ¢,(x) for each x. Then
@ is an isometry. A

Proof. Clearly, d(¢(x), ¢(»)) = d(x, ) for any x,ye M. For
any a e M, let @' = g(a). From d(p; > p(a), a) = d(p(a), 9.(a)),
it follows that ¢, '(a’) converges to a. By Lemma 3, there is a
subsequence ¢, such that ¢, !(y) converges for every ye M.
Define a mapping y by »(y) = klino% ¢ (7). Then y preserves

distance, that is, d(y(x), w(»)) = d(x, ») for any x,y € M. From
d(yp(p(x)), x) = d(lim ¢, (e(x)), x) = lim d(g,  (p(x)), %)
= lim d(p(x), ¢, (%)) = d(@(x), ¢(x)) =0,

it follows that ¢(¢(x)) = x for each x € M. This means that ¢ maps
M onto M. Since p preserves distance and maps M onto M, p!
exists and is obviously equal to ¢. Thus ¢ is an isometry.

LeEmMA 5. Let ¢, be a sequence of isometries and @ an isometry. If
@, (%) converges to @(x) for every x € M, then the convergence is uniform
on every compact subset K of M.

Proof. Let é > 0 be given. For each point a € K, choose an
integer N, such that n > N, implies d(¢,(a), p(a)) < d/4. Let
W, = U(a; 6/4). Then for any x ¢ W, and n > N,, we have

A(9n(%), @(x)) = d(@a(x), @u(a)) + d(ga(a), ¢(a)) + d(p(a), p(x))
< 2d(x,a) + 8/4 < 4.
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Now K can be covered by a finite number of W s, say W, =
W,,i=1,...,s. It follows that if n > max, {N, }, then

d(@,(x), p(x)) <0 for each x € K.

LEmMmA 6. If @,(x) converges to ¢(x) as in Lemma 5, then ¢, '(x)
converges to ¢~1(x) for every x € M.
Proof. For any x € M, let y = ¢71(x). Then

d(@y ' (x), p7'(x)) = d(, (9(1)),0) = d(9()), 9a(2)) 0.

We shall now complete the proof of Theorem 4.7. First, observe
that ¢, — @ with respect to the compact-open topology is equiva-
lent to the uniform convergence of ¢, to ¢ on every compact sub-
set of M. If ¢, > ¢ In G (with respect to the compact-open
topology), then Lemma 6 implies that ¢, *(x) — ¢~1(x) for every
x € M, and the convergence is uniform on every compact subset
by Lemma 5. Thus ¢, ! — ¢~1in G. This means that the mapping
G — G which maps ¢ into ¢! is continuous.

To prove that G is locally compact, let a ¢ M and U an open
neighborhood of ¢ with compact closure. We shall show that the
neighborhood W = W(a; U) = {p € G; ¢(a) € U} of the identity
of G has compact closure. Let ¢, be a sequence of elements in .
Since ¢,(a) is contained in the compact set U, closure of U, we
can choose, by Lemma 3, a subsequence ¢, such that ¢, (x)
converges for every x e M. The mapping ¢ defined by ¢(x) =
lim ¢, (x) is an isometry of M by Lemma 4. By Lemma 5,
®n, — @ uniformly on every compact subset of M, that is, ¢, — ¢
in G, proving that W has compact closure. QED.

CoRrROLLARY 4.8.  Under the assumption of Theorem 4.7, the iso-
tropy subgroup G, = {p € G; p(a) = a} of G at a is compact for every
aeM.

Proof. Let ¢, be a sequence of elements of G,. Since ¢,(a) = a

for every n, there is a subsequence ®n, Which converges to an
element ¢ of G, by Lemmas 3, 4, and 5. QED.

CoRroLLARY 4.9. If M is a locally compact metric space with a
finite number of connected components, the group G of isometries of M 1is
locally compact with respect to the compact-open topology.

Proof. Decompose M into its connected components AM,,
M = Uiy M,. Choose a point a, in each M, and an open
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neighborhood U,; of a, in M, with compact closure. Then
Wy, ...,a5 Uy, ..., U) ={peG;pla)eUfori =1,...,s}
is a neighborhood of the identity of G with compact closure.

QED.

CoroLLARY 4.10. If M s compact in addition to the assumption of
Corollary 4.9, then G is compact.

Proof. LetG* = {peG; ¢(M;) = M, fori =1,...,s}. Then
G* is a subgroup of G of finite index. In the proof of Corollary

4.9, let U, = M,. Then G* is compact. Hence, G is compact.
QED.

5. Fibre bundles

Let M be a manifold and G a Lie group. A (differentiable)
principal fibre bundle over M with group G consists of a manifold P
and an action of G on P satisfying the following conditions:

(1) G acts freely on P on the right: (u,a) e P X G —ua =
RueP;

(2) M is the quotient space of P by the equivalence relation
induced by G, M = P/G, and the canonical projection =: P — M
1s differentiable;

(3) Pislocally trivial, that is, every point x of M has a neighbor-
hood U such that »~1(U) is isomorphic with U X G in the sense
that there is a diffecomorphism y: #~1(U) — U X G such that
p(u) = (n(u), p(u)) where ¢ is a mapping of =—1(U) into G
satisfying @(ua) = (p(u))a for all u e #71(U) and a € G.

A principal fibre bundle will be denoted by P(M, G, =),
P(M, G) or simply P. We call P the fotal space or the bundle space,
M the base space, G the structure group and = the projection. For each
x e M, 771(x) is a closed submanifold of P, called the fibre over x.
If u is a point of n~1(x), then »~1(x) 1s the set of points ua, a € G,
and is called the fibre through u. Every fibre is diffeomorphic
to G.

Given a Lie group G and a manifold M, G acts freely on
P =M x G on the right as follows. For each b ¢ G, R, maps
(x,a) e M X G into (x, ab) e M X G. The principal fibre bundle
P(M, G) thus obtained is called ¢rivial.

From local triviality of P(M, G) we see that if W is a sub-
manifold of M then ==}(W)(W, G) is a principal fibre bundle.
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We call it the portion of P over W or the restriction of P to W and
denote it by P| W.

Given a principal fibre bundle P(M, G), the action of G on P
induces 2 homomorphism ¢ of the Lie algebra g of G into the Lie
algebra X(P) of vector fields on P by Proposition 4.1. For each
Aeg, A* = o(A) is called the fundamental vector field corresponding
to A. Since the action of G sends each fibre into itself, 4, * is
tangent to the fibre at each ue P. As G acts freely on P, 4*
never vanishes on P (if 4 7= 0) by Proposition 4.1. The dimension
of each fibre being equal to that of g, the mapping 4 — (4*), of
g into 7T, (P) is a linear isomorphism of g onto the tangent space
at u of the fibre through u. We prove

PropostTiON 5.1.  Let A* be the fundamental vector field corre-
sponding to A € g. For each a € G, (R,)A* is the fundamental vector
field corresponding to (ad (a=1))4 e g.

Proof. Since A* is induced by the l-parameter group of
transformations R, where a, = exp ¢4, the vector field (R,),4*
is induced by the Il-parameter group of transformations
R.R,R,-» = R;,, by Proposition 1.7. Our assertion follows
from the fact that a~lg,a is the l-parameter group generated
by (ad (a71))4 € g. QED.

The concept of fundamental vector fields will prove to be
useful in the theory of connections.

In order to relate our intrinsic definition of a principal fibre
bundle to the definition and the construction by means of an
open covering, we need the concept of transition functions. By
(3) for a principal fibre bundle P(M, G), it is possible to choose
an open covering {U,} of M, each »—1(U,) provided with a dif-
feomorphism u — (7(u), @,(u)) of #~1(U,) onto U, x G such that
pu(ua) = (gu(u))a. If uen (U, 0 Up), then gp(ua)(p,(ua))™ =
@(u) (@, (1)), which shows that ¢g(u)(@,(x)) ! depends only on
7(u) not on u. We can define a mapping yg,: U, N Uy — G by
Yeu(m(1)) = @g(u) (p,(u)) 2. The family of mappings vy, are called
transition functions of the bundle P(M, G) corresponding to the
open covering {U,} of M. It is easy to verify that

(*) Vyu(®) = P,5(%) - Ppo() forxe U, " Us 0 U,

Conversely, we have
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ProrosrrioN 5.2.  Let M be a manifold, {U,} an open covering of M
and G a Lie group. Given a mapping vye,: U, N Uz — G for every non-
empty U, N Uy, in such a way that the relations (*) are satisfied, we
can construct a (differentiable) principal fibre bundle P(M, G) with
transition functions vg,.

Proof. We first observe that the relations (*) imply y,,(x) = ¢
for every x € U, and y,5(x)ys(x) = ¢ for every x e U, N U,. Let
X, = U, x G for each index « and let X = |J,X, be the topo-
logical sum of X, ; each element of X is a triple («, x, a) where « 1is
some index, x € U, and a ¢ G. Since each X, is a differentiable
manifold and X is a disjoint union of X,, X is a differentiable
manifold in a natural way. We introduce an equivalence relation
p In X as follows. We say that (a, #, a) € {a} X X, is equivalent to
(B,2,0) e{f} x Xz if and only if x =ye U, N U; and b =
Vse(%)a. We remark that («, x, a) and (a, », &) are equivalent if
and only if ¥ = y and a = b. Let P be the quotient space of X by
this equivalence relation p. We first show that G acts freely on P
on the right and that P/G = M. By definition, each ¢ ¢ G maps
the p-equivalence class of (a, #, a) into the p-equivalence class of
(e, x, ac). It is easy to see that this definition is independent of the
choice of representative (a, x, a) and that G acts freely on P on
the right. The projection =: P — M maps, by definition, the
p-equivalence class of («, x, a) into x; the definition of = is inde-
pendent of the choice of representative («, x, a). For wu,ve P,
w(u) = w(v) if and only if v = uc for some ¢ e G. In fact, let
(e, x, a) and (B, y, b) be representatives for u and v respectively.
If v = uc for some c¢eG, then »y = x and hence =(v) = 7(u).
Conversely, if #(u) =x=p =n(v) e U, N U, then v =uc
where ¢ = a7ly,,(x)71b € G. In order to make P into a differenti-
able manifold, we first note that, by the natural mapping
X —-P = X/p, each X, = U, x G is mapped 1:1 onto =71(U,).
We introduce a differentiable structure in P by requiring that
7 1(U,) is an open submanifold of P and that the mapping
X — P induces a diffeomorphism of X, = U, x G onto =~ 1(U,).
This is possible since every point of P is contained in »~1(U,,) for
some o and the identification of (a, x, @) with (B, x, yg.(x)a) is
made by means of differentiable mappings. It is easy to check that
the action of G on P is differentiable and P(M, G, =) is a differenti-
able principal fibre bundle. Finally, the transition functions of P
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corresponding to the covering {U,} are precisely the given g, if
we define y,: #YU,) - U, x G by v, (u) = (x, a), where
u e m1(U) is the p-equivalence class of («, x, a). QED.

A homomorphism f of a principal fibre bundle P'(M’, G') into
another principal fibre bundle P(M, G) consists of a mapping
f'+ P’ — P and a homomorphism f”: G — G such that f'(u'a’) =
f'(@')f"(a) for all ¥’ € P’" and a’ € G’. For the sake of simplicity, we
shall denote /" and f” by the same letter /. Every homomorphism
f: P > P maps each fibre of P’ into a fibre of P and hence
induces a mapping of M’ into M, which will be also denoted by f.
A homomorphism f: P'(M’, G') — P(M, G) 1s called an imbedding
or imjection if f: P’ — P is an imbedding and if f/: ¢’ - G is a
monomorphism. If f: P* — P is an imbedding, then the induced
mapping f: M’ — M is also an imbedding. By identifying P’ with
f(P"), G" with f(G') and M’ with f(M’), we say that P'(M’, G') is
a subbundle of P(M, G). If, moreover, M’ = M and the induced
mapping f: M’ — M is the identity transformation of M,
f:P(M',G) —>P(M,G) 1s called a reduction of the structure
group G of P(M, G) to G'. The subbundle P’'(M, G’) is called a
reduced bundle. Given P(M, G) and a Lie subgroup G’ of G, we say
that the structure group G is reducible to G’ if there is a reduced
bundle P'(M, G'). Note that we do not require in general that
G’ is a closed subgroup of G. This generality is needed in the
theory of connections.

ProrosiTioN 5.3.  The structure group G of a principal fibre bundle
P(M, G) s reducible to a Lie subgroup G’ if and only if there 1s an open
covering {U,} of M with a set of transition functions s, which take their
values in G'. :

Proof. Suppose first that the structure group G is reducible to
G’ and let P'(M, G') be a reduced bundle. Consider P’ as a
submanifold of P. Let {U,} be an open covering of M such that
each ='-1(U,) (#': the projection of P’ onto M) is provided with
an isomorphism u — («'(u), ¢, (v)) of ='~Y(U,) onto U, x G .
The corresponding transition functions take their values in G’
Now, for the same covering {U,}, we define an isomorphism of
7=1(U,) (=: the projection of P onto M) onto U, X G by extending
@, as follows. Every v e #~1(U,) may be represented in the form
v = ua for some u e 7'~ (U,) and a € G and we set ¢, (v) = @, (u)a.
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It is easy to see that ¢, (v) is independent of the choice of represen-
tationv = ua. We see then thatv — (7(v), ¢,(v)) is an isomorphism
of #=1(U,) onto U, x G. The corresponding transition functions
Ve (¥) = @5(0) (9x(v)) " = @5(u) (pa(u)) ! take their values in G'.

Conversely, assume that there is a covering {U,} of M with a
set of transition functions yg, all taking values in a Lie subgroup
G' of G. For U, N Ug # ¢, v, is a differentiable mapping of
U, N U, into a~Lie group G such that y,, (U, N Uz) < G'. The
crucial point is that yy, is a differentiable mapping of U, N Uy into
G’ with respect to the differentiable structure of G’. This follows
from Proposition 1.3; note that a Lie subgroup satisfies the
second axiom of countability by definition, cf. §4. By Proposition
5.2, we can construct a principal fibre bundle P'(M, G’) from
{U,} and {ys,}. Finally, we imbed P’ into P as follows. Let
Jor YU, — = (U,) be the composite of the following three
mappings:

Y U) — U, x G — U, x G—a(U,).

It is easy to see that f, = fzon#'1(U, N U;) and that the mapping
f: P’ — P thus defined by { f,} is an injection. QED.

Let P(M, G) be a principal fibre bundle and F a manifold on
which G acts on the left: (a, &) e G X F— aéeF. We shall
construct a fibre bundle E(M, F, G, P) associated with P with
standard fibre F. On the product manifold P x F, we let G act on
the right as follows: an element a e G maps (u, &) e P X F into
(ua, a=1&) e P x F. The quotient space of P x F by this group
action is denoted by E = P x4 F. A differentiable structure will
be introduced in £ later and at this moment £ is only a set. The
mapping P x F — M which maps (u, &) into =(x) induces a
mapping g, called the projection, of £ onto M. For each x ¢ M,
the set w5 (x) is called the fibre of E over x. Every point x of M
has a neighborhood U such that #=1(U) is isomorphic to U X G.
Identifying #»—1(U) with U x G, we see that the action of G on
7~ 1(U) X F on the right is given by

(%, a, &) — (x, ab, b1&) for(x,a,&) e U Xx G X F and beG.

It follows that the isomorphism »~}(U) ~ U x G induces an
isomorphism 7z'(U) ~ U x F. We can therefore introduce a
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differentiable structure in E by the requirement that =z*(U) is
an open submanifold of £ which is diffeomorphic with U x F
under the isomorphism #5'(U) ~ U x F. The projection 7y is
then a differentiable mapping of £ onto M. We call £ or more
precisely E(M, F,\G, P) the fibre bundle over the base M, with (standard)
Sfibre F and (structure) group G, which is associated with the principal
fibre bundle P.

ProrosiTioN 5.4.  Let P(M, G) be a principal fibre bundle and F a
manifold on which G acts on the left. Let E(M, F, G, P) be the fibre
bundle associated with P. For each u € P and each & € F, denote by u& the
image of (u, &) € P X F by the natural projection P X F — E. Then
each u € P is a mapping of F onto F, = wg'(x) where x = w(u) and

(ua)é = u(aé) forueP,aeG, &€F.

The proof is trivial and is left to the reader.

By an isomorphism of a fibre F, = =5 (x), x € M, onto another
fibre F,, y e M, we mean a diffeomorphism which can be repre-
sented in the form v o u~1, where u en 1(x) and ven=1(y) are
considered as mappings of F onto F, and F, respectively. In
particular, an automorphism of the fibre F, is a mapping of the
form v o u=! with u,v e 771(x). In this case, v = ua for somea e G
so that any automorphism of F, can be expressed in the form
uoaoul where u is an arbitrarily fixed point of #»—1(x). The
group of automorphisms of F, is hence isomorphic with the
structure group G.

Example 5.1. G(G/H, H): Let G be a Lie group and H a
closed subgroup of G. We let H act on G on the right as follows.
Every a ¢ H maps u € G into ua. We then obtain a differentiable
principal fibre bundle G(G/H, H) over the base manifold G/H
with structure group H; the local triviality follows from the
existence of a local cross section. It is proved in Chevalley [1;
p. 110] that if 7 is the projection of G onto G/H and ¢ is the
identity of G, then there is a mapping o of a neighborhood of
w(¢) in G/H into G such that = o ¢ is the identity transformation
of the neighborhood. See also Steenrod [1; pp. 28-33].

Example 5.2.  Bundle of linear frames: Let M be a manifold of
dimension n. A linear frame u at a point x e M is an ordered basis
Xy, ..., X, of the tangent space T,(M). Let L(M) be the set of
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all linear frames u at all points of M and let = be the mapping of
L(M) onto M which maps a linear frame « at x into x. The general
linear group GL(n; R) acts on L(M) on the right as follows. If
a = (a) e GL(n; R) and 4 = (X;, ..., X,) is a linear frame at x,
then ua is, by definition, the linear frame (Y, ..., ¥,) at x defined
by Y, = X, alX;. It is clear that GL(n; R) acts freely on L(M)
and 7 (u) = =(v) if and only if v = ua for some a € GL(n; R). Now
in order to introduce a differentiable structure in L(M), let
(%%, . .., x™) be alocal coordinate system in a coordinate neighbor-
hood U in M. Every frame u at x ¢ U can be expressed uniquely
in the form u = (X;,..., X,) with X, =X, X*(9/0x*), where
(X*) is a non-singular matrix. This shows that #~1(U) is in 1:1
correspondence with U X GL(n; R). We can make L(M) into a
differentiable manifold by taking (x’) and (X¥) as a local coordi-
nate system in = 1(U). It is now easy to verify that L(M)(M,
GL(n; R)) is a principal fibre bundle. We call L(M) the bundle of
linear frames over M. In view of Proposition 5.4, a linear frame u
at x e M can be defined as a non-singular linear mapping of
R" onto 7,(M). The two definitions are related to each other as
follows. Lete,, . . ., ¢, be the natural basis for R": ¢; = (1,0, ...,
0),...,¢,=1(0,...,0,1). A linear frame 4 = (X, ..., X,) at
x can be given as a linear mapping u: R* — T (M) such that
ue; = X; for7 =1,...,n The action of GL(n; R) on L(M) can
be accordingly interpreted as follows. Consider a = (a}) € GL(n; R)
as a linear transformation of R” which maps ¢, into X, a¢,. Then
ua: R" — T (M) is the composite of the following two mappings:
R* >R > T,(M).

&

Example 5.3. Tangent bundle: Let GL(n; R) act on R” as above.
The tangent bundle T (M) over M is the bundle associated with L(M)
with standard fibre R™. It can be easily shown that the fibre of
T(M) over x ¢ M may be considered as 7,(M).

Example 5.4.  Tensor bundles: Let T} be the tensor space of type
(r, s) over the vector space R" as defined in §2. The group
GL(n: R) can be regarded as a group of linear transformations of
the space T7 by Proposition 2.12. With this standard fibre Tj, we
obtain the tensor bundle T7(M) of type (r, s) over M which is associated
with L(M). It is easy to see that the fibre of T5(M) over x e M
may be considered as the tensor space over 7,(M) of type (r, s).
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Returning to the general case, let P(M, G) be a principal fibre
bundle and H a closed subgroup of G. In a natural way, G acts on
the quotient space G/H on the left. Let E(M, G/H, G, P) be the
associated bundle with standard fibre G/H. On the other hand,
being a subgroup of G, H acts on P on the right. Let P/H be the
quotient space of P by this action of H. Then we have

ProposiTION 5.5.  The bundle E = P X o (G/H) associated with P
with standard fibre G/H can be identified with P|H as follows. An
element of E represented by (u, a&,) € P x G[H is mapped into the element
of P/H represented by ua € P, where a € G and &, is the origin of G/H, 1.e.,
the coset H.

Consequently, P(E, H) ts a principal fibre bundle over the base E = P/H
with structure group H. The projection P — E maps u € P into ué, e E,
where u is considered as a mapping of the standard fibre G|H into a fibre of
E.

Proof. The proof is straightforward, except the local triviality
of the bundle P(E, H). This follows from local triviality of
EM, G/H, G, P) and G(G/H, H) as follows. Let U be an open
set of M such that 7z (U) ~ U x G/H and let V be an open set
of G/H such that p~1(V) ~ V x H, where p: G — G/H is the
projection. Let W be the open set of #5'(U) < E which corre-
sponds to U x V under the identification =z (U) ~ U x G/H.
If u: P—E = P/H is the projection, then u=}(W)~ W x H.

QED.

A cross section of a bundle E(M, F, G, P) is a mapping o: M — E
such that 75 o ¢ is the identity transformation of M. For P(M, G)
itself, a cross section o: M — P exists if and only if P is the trivial
bundle M x G (cf. Steenrod [1; p. 36]). More generally, we have

ProrosiTion 5.6.  The structure group G of P(M, G) is reducible to
a closed subgroup H if and only if the associated bundle E(M, G/H, G, P)
admits a cross section o: M — E = P[H.

Proof. Suppose G is reducible to a closed subgroup H and let
Q(M, H) be a reduced bundle with injection f: @ — P. Let
p: P—E = P[/H be the projection. If # and v are in the same
fibre of @, then v = ua for some a e H and hence u(f(v)) =
pu(f(w)a) = u( f(u)). This means that u o f is constant on each
fibre of @ and induces a mapping ¢: M — E, o(x) = u(f(u))




58 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

where x = = ( f(«)). It is clear that o is a section of E. Conversely,
given a cross section o: M — E, let @ be the set of points u € P
such that u(4) = o(m(«)). In other words, @ is the inverse image
of ¢(M) by the projection u: P — E = P/H. For every xe M,
there is # € @ such that #(x) = x because u~!(o(x)) is non-empty.
Given u and v in the same fibre of P, if u € @ then v ¢  when and
only when v = ua for some a € H. This follows from the fact that
p(u) = u(v) if and only if v = ua for some a € H. It is now easy
to verify that @ is a closed submanifold of P and that @ is a
principal fibre bundle Q@ (M, H) imbedded in P(M, G). QED.

Remark. The correspondence between the sections o: M —
E = P/H and the submanifolds @ is 1:1.

We shall now consider the question of extending a cross section
defined on a subset of the base manifold. A mapping f of a subset
A of a manifold M into another manifold is called differentiable on
A if for each point x € 4, there is a differentiable mapping f, of an
open neighborhood U, of x in M into M’ such that f, = f on
U, N A. If f is the restriction of a differentiable mapping of an
open set W containing A into M’, then fis clearly differentiable
on A. Given a fibre bundle E(M, F, G, P) and a subset 4 of M, by
a cross section on 4 we mean a differentiable mapping ¢ of 4 into
E such that 7y o o is the 1dentity transformation of 4.

TueOREM 5.7. Let E(M, F, G, P) be a fibre bundle such that the
base manifold M 1s paracompact and the fibre I is diffeomorphic with a
Euclidean space R™. Let A be a closed subset (possibly empty) of M.
Then every cross section o: A — E defined on A can be extended to a cross
section defined on M. In the particular case where A is empty, there exists a
cross section of E defined on M.

Proof. By the very definition of a paracompact space, every
open covering of M has a locally finite open refinement. Since M
is normal, every locally finite open covering {U,} of M has an open
refinement {V,} such that ¥, = U, for all i (see Appendix 3).

LemmA 1. A differentiable function defined on a closed set of R™ can
be extended to a differentiable function on R™ (cf. Appendix 3).

LEMMA 2. Every point of M has a neighborhood U such that every
section of E defined on a closed subset contained in U can be extended to U.
Proof. Given a point of M, it suffices to take a coordinate
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neighborhood U such that #z'(U) is trivial: #5z(U) ~ U X F.
Since F is diffeomorphic with R™, a section on U can be identified
with a set of m functions £, ..., f, defined on U. By Lemma 1,
these functions can be extended to U.

Using Lemma 2, we shall prove Theorem 5.7. Let {U,};.; be
a locally finite open covering of M such that each U, has the
property stated in Lemma 2. Let {V;} be an open refinement of
{U,} such that V; = U, for all i € I. For each subset J of the index

1

set I, set S; = U V,. Let T be the set of pairs (7, J) where J = [
ieJ
and 7 is a section of £ defined on §; such that 7 = ocond N S,.
The set T is non-empty; take U; which meets 4 and extend the
restriction of o to A N V, to a section on V,, which is possible by
the property possessed by U,. Introduce an order in 7" as follows:
(«,J) < (=", JJ") ifJ'=J" and 7" = 7" on §,. Let (7, J) be
a maximal element (by using Zorn’s Lemma). Assume J # J
and let i e I — J. On the closed set (4 U S;) N 7, contained in
U;, we have a well defined section o,: 6; =0 on 4 NV, and
o; =7 on S, NV, Extend o, to a section 7, on V,, which is
possible by the property possessed by U,. Let J' = J U {i} and

7’ be the section on §;. defined by v = 7 on §; and v = =, on
V.. Then (7,J) < (¢, J’), which contradicts the maximality of
(r,J). Hence, I = J and 7 is the desired section. QED.

The proof given here was taken from Godement [1, p. 151].

Example 5.5. Let L(M) be the bundle of linear frames over an
n-dimensional manifold M. The homogeneous space GL(n; R)/
O(n) is known to be diffeomorphic with a Euclidean space of
dimension 4n(n 4+ 1) by an argument similar to Chevalley
[, p.16]. The fibre bundle E = L(M)/O(n) with fibre
GL(n; R)/O(n), associated with L(AM), admits a cross section if M
is paracompact (by Theorem 5.7). By Proposition 5.6, we see that
the structure group of L(M) can be reduced to the orthogonal
group O(n), provided that M is paracompact.

Example 5.6. More generally, let P(M, G) be a principal fibre
bundle over a paracompact manifold M with group G which is a
connected Lie group. It is known that G is diffeomorphic with a
direct product of any of its maximal compact subgroups H and a
Euclidean space (cf. Iwasawa [l1]). By the same reasoning as
above, the structure group G can be reduced to H.
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Example 5.7. Let L(M) be the bundle of linear frames over a
manifold M of dimension 7. Let (, ) be the natural inner product
in R* for which ¢, = (1,0,...,0),...,¢,=(0,...,0,1) are
orthonormal and which is invariant by O(n) by the very definition
of O(n). We shall show that each reduction of the structure
group GL(n; R) to O(n) gives rise to a Riemannian metric g on M.
Let Q(M, O(n)) be a reduced subbundle of L(M). When we
regard each u € L(M) as a linear isomorphism of R” onto 7,(M)
where ¥ = m(u), each u €  defines an inner product g in T,(M)
by

g(X,Y) = (u X, u1Y) for X, Ye T, (M).

The invariance of ( , ) by O(n) implies that g(X, Y) is independent
of the choice of u € Q. Conversely, if M is given a Riemannian
metric g, let @ be the subset of L(A) consisting of linear frames
u = (Xy, ..., X,) which are orthonormal with respect to g. If we
regard u € L(M) as a linear isomorphism of R"” onto 7,(M), then
u belongs to @ if and only if (&, &') = g(u§, ug&’) for all £, ¢ R™.
It is easy to verify that @ forms a reduced subbundle of L(A) over
M with structure group O(n). The bundle @ will be called the
bundle of orthonormal frames over M and will be denoted by O(M).
An element of O(M) is an orthonormal frame. The result here
combined with Example 5.5 implies that every paracompact manifold
M admits a Riemannian metric. We shall see later that every
Riemannian manifold is a metric space and hence paracompact.
To introduce the notion of induced bundle, we prove

Prorosition 5.8.  Given a principal fibre bundle P(M, G) and a
mapping f of a manifold N into M, there is a unique (of course, unique up
to an isomorphism) principal fibre bundle Q(N, G) with a homomorphism
f: Q — P which induces - N — M and which corresponds to the identity
automorphism of G.

The bundle Q(N, G) is called the bundle induced by f from P(M, G)
or simply the induced bundle; it is sometimes denoted by f~1P.

Proof. In the direct product N x P, consider the subset @
\Consisting of ( »,u) e N X P such that f( ) = =(u). The group G
acts on Q by (9, u) — (9, u)a = (, ua) for (y,u) e Q and a € G.
It is easy to see that G acts freely on @ and that @ is a principal
fibre bundle over N with group G and with projection =, given
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by 7o(», u) =_y. Let Q" be another principal fibre bundle over ¥
with group G and f': @' — P a homomorphism which induces
f+ N — M and which corresponds to the identity automorphism of
G. Then it is easy to show that the mapping of @' onto ¢ defined
by ' — (g (u'), f'(¥)), u' € @', is an isomorphism of the bundle
Q" onto @ which induces the identity transformation of N and
which corresponds to the identity automorphism of G. QED.

We recall here some results on covering spaces which will be
used later. Given a connected, locally arcwise connected topo-
logical space M, a connected space E is called a covering space over
M with projection p: E — M if every point x of M has a connected
open neighborhood U such that each connected component of
p71(U) is open in E and is mapped homeomorphically onto U
by p. Two covering spaces p: £ —> M and p': E' — M are
wsomorphic if there exists a homeomorphism f: £ — E’ such that
p' o f = p. A covering space p: £ — M is a universal covering space
if E is simply connected. If M is a manifold, every covering space
has a (unique) structure of manifold such that p is differentiable.
From now on we shall only consider covering manifolds.

PropositionN 5.9. (1) Given a connected manifold M, there is a
unique (unique up to an isomorphism) universal covering manifold, which
will be denoted by M.

(2) The universal covering manifold M is a principal fibre bundle over M
with group m(M) and projection p: M — M, where (M) is the first
homotopy group of M.

(3) The 1somorphism classes of the covering spaces over M are in a 1:1
correspondence with the conjugate classes of the subgroups of w{(M). The
correspondence is given as follows. To each subgroup H of = (M), we
associate E = M|H. Then the covering manifold E corresponding to H is
a fibre bundle over M with fibre = (M)[H associated with the principal
fibre bundle M(M, = (M)). If H is a normal subgroup of w (M),
E = M|H is a principal fibre bundle with group =,(M)[H and is called
a regular covering manifold of M.

For the proof, see Steenrod [1, pp. 67-71] or Hu [1, pp. 89-97].

The action of 7;(M)/H on a regular covering manifold £ =
M/H is properly discontinuous. Conversely, if £ is a connected
manifold and G is a properly discontinuous group of transforma-
tions acting freely on E, then E is a regular covering manifold of
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M = E/G as follows immediately from the condition (3) in the
definition of properly discontinuous action in §4.

Example 5.8. Consider R" as an n-dimensional vector space
and let &,,..., &, be any basis of R". Let G be the subgroup of
R" generated by &,,...,¢&,: G ={Zm,; &;; m, integers}. The
action of G on R" is properly discontinuous and R” is the universal
covering manifold of R*/G. The quotient manifold R*/G is called
an n-dimensional Zforus.

Example 5.9. Let S$™ be the unit sphere in R"+! with center at
the origin: S" = {(x%, ..., x™) e R*+1; X (x")2 = 1}. Let G be
the group consisting of the identity transformation of S and the
transformation of $” which maps (x%, ..., %) into (—x1, ...,
—x™+1), Then S"n = 2, is the universal covering manifold of
$"/G. The quotient manifold $”/G is called the n-dimensional real
projective space.




CHAPTER 1I

Theory of Connections

l. Connections in a principal fibre bundle

Let P(M, G) be a principal fibre bundle over a manifold M
with group G. For each u ¢ P, let T (P) be the tangent space of P
at # and G, the subspace of 7°,(P) consisting of vectors tangent to
the fibre through u. A connection I' in P is an assignment of a
subspace @, of 7,(P) to each u € P such that

(a) T,(P) =G, + @, (direct sum);

(b) Q.. = (R,) 4@, for every u e P and a € G, where R, is the
transformation of P induced by a € G, Rju = ua;

(c) @, depends differentiably on u.

Condition (b) means that the distribution u — @, is invariant
by G. We call G, the vertical subspace and @, the horizontal subspace
of T,(P). A vector X € T,(P) is called vertical (resp. horizontal) if it
lies in G, (resp. @,). By (a), every vector Xe T,(P) can be
uniquely written as

X=Y+ Z where Ye G, and Ze@,.

We call Y (resp. Z) the vertical (resp. horizontal) component of X and
denote it by vX (resp. £2X). Condition (c) means, by definition,
that if X is a differentiable vector field on P so are vX and AX.
(It can be easily verified that this is equivalent to saying that the
distribution © — @, is differentiable.)

Given a connection I' in P, we define a l-form w on P with
values in the Lie algebra g of G as follows. In §5 of Chapter I, we
showed that every 4 € g induces a vector field 4* on P, called the
fundamental vector field corresponding to 4, and that 4 — (4*),
is a linear isomorphism of g onto G, for each u e P. For éach
XeT,(P), we define w(X) to be the unique 4 eg such that

u
63
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(A*), is equal to the vertical component of X. It is clear that
w(X) = 0 if and only if X is horizontal. The form w is called the
connection _form of the given connection I

ProrosiTioN 1.1.  The connection form w of a connection satisfies the
Sollowing conditions :

(a") w(d*) =A  forevery Aeg;

(b") (R)*w = ad (a7 Y w, that is, o((R,)x+X) = ad (@) - w(X)
Sfor every a € G and every vector field X on P, where ad denotes the adjoint
representation of G in g.

Conversely, given a g-valued 1-form w on P satisfying conditions (a')
and (b’), there is a unique connection T" in P whose connection form is w.

Proof. Let w be the connection form of a connection. The
condition (a’) follows immediately from the definition of w. Since
every vector field of P can be decomposed into a horizontal vector
field and a vertical vector field, it is sufficient to verify (b’) in the
following two special cases: (1) X is horizontal and (2) X is
vertical. If X is horizontal, so is (R,).X for every a e G by the
condition (b) for a connection. Thus, both w((R,)sX) and
ad (a71) - w(X) vanish. In the case when X is vertical, we may
further assume that X is a fundamental vector field 4*. Then
(R,) 4+ X is the fundamental vector field corresponding to ad (a=1)4
by Proposition 5.1 of Chapter I. Thus we have

(RIw)u(X) = 04.((Ro)xX) = ad (¢7) 4 = ad (¢7) (0, (X))
Conversely, given a form w satisfying (a’) and (b’), we define
Qu = {X e T(P); 0(X) = O}

The verification that # — ), defines a connection whose con-
nection form is w is easy and is left to the reader. QED.

The projection =: P — M induces a linear mapping =: T,(P)
— T',(M) for each u € P, where x = =(u). When a connection is
given, = maps the horizontal subspace @, isomorphically onto
T, (M).

The horizontal lift (or simply, the [ift) of a vector field X
on M is a unique vector field X* on P which is horizontal and

which projects onto X, that is, #(X}) = X, for every u e P.

ki
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Prorosition 1.2.  Given a connection in P and a vector field X on M,
there is a unique horizontal lift X* of X. The lift X* is invariant by R,
for every a € G. Conversely, every horizontal vector field X* on P invariant
by G s the lift of a vector field X on M:

Proof. The existence and uniqueness of X* is clear from the
fact that = gives a linear isomorphism of @, onto 7, ,,(M). To
prove that X* is differentiable if X is differentiable, we take a
neighborhood U «of any given point x of M such that »—}(U) ~
U x G. Using this isomorphism, we first obtain a differentiable
vector field ¥ on #~1(U) such that #Y = X. Then X* is the hori-
zontal component of ¥ and hence is differentiable. The invariance
of X* by G 1s clear from the invariance of the horizontal sub-
spaces by G. Finally, let X* be a horizontal vector field on P
invariant by G. For every x e M, take a point u e P such that
() = x and define X, = #»(X}). The vector X, is independent
of the choice of u such that =(u) = %, since if ¥’ = wua, then
m(X}F) = 7(R, - XJF) = #»(XJF). It is obvious that X* is then the
lift of the vector field X. QED.

Prorposition 1.3.  Let X* and Y* be the horizontal lifts of X and Y
respectively. Then
(1) X* + Y* s the horizontal lift of X + Y ;
(2) For every function fon M, f* - X* is the horizontal lift of fX where
[* is the function on P defined by f* = fo
(3) The horizontal component of [X*, Y*] is the horizontal lift of
[X, Y].
Proof. The first two assertions are trivial. As for the third, we
have
w(H[X*, Y*]) — ([ X*, T*]) — [X, Y],
QED.

Let x1,...,x" be a local coordinate system in a coordinate
neighborhood U in M. Let X} be the horizontal lift in #~1(U) of
the vector field X; = 0/0x*in Ufor each 7. Then X¥,..., X% form
a local basis for the distribution ¥ — @, in == 1(U).

We shall now express a connection form w on P by a family of
forms each defined in an open subset of the base manifold A.
Let {U,} be an open covering of M with a family of isomorphisms
. 7 YU, — U, x G and the corresponding family of transition
functions y.4: U, N Uy — G. For each «, let ¢,: U, — P be the
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cross section on U, defined by o,(x) = vy, (x, ¢), x € U,, where ¢
is the identity of G. Let 6 be the (left invariant g-valued) canonical
l-form on G defined in §4 of Chapter I (p. 41).
For each non-empty U, N U;, define a g-valued l-form
0.5 on U, N Ug by
Oup = 1/’:;39-

For each «, define a g-valued 1-form w, on U, by

__ %
W, = Oy .

ProrosiTiON 1.4.  The forms 0,5 and w, are subject to the conditions :
wg = ad (') w, + O, on U, N U,.

Conversely, for every family of g-valued 1-forms {w,} each defined on U,
and satisfying the preceding conditions, there is a unique connection form
on P which gives rise to {w,} in the described manner.

Proof. If U, N Ug is non-empty, o5(x) = 0,(x)p,s(x) for all
x € U, 0 Uz Denote the differentials of o,, 05, and y,s by the
same letters. Then for every vector X e T,(U, N Uj), the vector
0s(X) € T, (P), where u = o4(x), 1s the image of (0,(X), pus(X)) €
T,(P)+ T,G), where v’ = 0,(x) and a = y,(x), under the
mapping P X G — P. By Proposition 1.4 (Leibniz’s formula)
of Chapter I, we have

Gﬂ<X) — Ua<X)/l/)aﬂ(x) + Ga(‘x)/l/)aﬁ(X))

where ¢,(X)y,4(x) means R,(c,(X)) and o,(x)y,s(X) 1s the image
of y,s(X) by the differential of ¢,(x), o,(x) being considered as a
mapping of G into P which maps & € G into ¢,(x)b. Taking the
values of @ on both sides of the equality, we obtain

wg(X) = ad (pa(%) ") 0, (X) | Ops(X).

Indeed, if A € g is the left invariant vector field on G which is
equal to y,,(X) at a = y,(x) so that 6(y,(X)) = 4, then
0,(%)p.s(X) is the value of the fundamental vector field 4* at
u = 0,(%)y,s(x) and hence w(o,(x)p,(X)) = 4.

The converse can be verified by following back the process of
obtaining {w,} from w. QED.
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2. Existence and extension of connections

Let P(M, G) be a principal fibre bundle and 4 a subset of M.
We say that a connection is defined over 4 if, at every point u € P
with w(u) € A, a subspace @, of T',(P) is given in such a way that
conditions (a) and (b) for connection (see §l) are satisfied and @,
depends differentiably on « in the following sense. For every point
x € 4, there exist an open neighborhood U and a connection in
P|U =xY(U) such that the horizontal subspace at every
u € m1(A) is the given space @ ,,.

TueorReMm 2.1.  Let P(M, G) be a principal fibre bundle and A a
closed subset of M (A may be empty). If M is paracompact, every connec-
tion defined over A can be extended to a connection in P. In particular, P
admits a connection if M is paracompact.

Proof. The proof is a replica of that of Theorem 5.7 in Chap-
ter 1.

Lemma 1. A4 differentiable function defined on a closed subset of R™
can be always extended to a differentiable function on R* (cf. Appendix 3).

LEmMA 2.  Every point of M has a neighborhood U such that every
connection defined on a closed subset contained in U can be extended to a
connection defined over U.

Proof. Given a point of M, it suffices to take a coordinate
neighborhood U such that » (U) is trivial: »=Y(U) ~ U X G.
On the trivial bundle U x G, a connection form o 1s completely
determined by its behavior at the points of U X {¢} (e: the
identity of G) because of the property R}¥(w) = ad (a71)o.
Furthermore, if 6: U — U x G is the natural cross section, that
is, o(x) = (%, ¢) for x € U, then w is completely determined by the
g-valued 1-form ¢*w on U. Indeed, every vector X € T, (U x G)
can be written uniquely in the form

X=Y+ Z,
where Y is tangent to U x {¢} and Z is vertical so that ¥ =
o4 (74 X). Hence we have
0(X) = (04 (14X)) + 0(2) = (0*0) (myX) + 4,

where 4 is a unique element of g such that the corresponding
fundamental vector field A* is equal to Z at o(x). Since 4 depends
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only on Z, not on the connection, w is completely determined by
c*w. The equation above shows that, conversely, every g-
valued 1l-form on U determines uniquely a connection form on
U x G. Thus Lemma 2 is reduced to the extension problem for
g-valued 1-forms on U. If {4,} is a basis for g, then w = X 0’4,
where each o’ is a usual 1-form. Thus it is sufficient to consider
the extension problem of usual 1-forms on U. Let x%, ..., x” be a
local coordinate system in U. Then every l-form on U is of the
form X £, dx* where each f; is a function on U. Thus our problem
is reduced to the extension problem of functions on U. Lemma 2
now follows from Lemma 1.

By means of Lemma 2, Theorem 2.1 can be proved exactly in
the same way as Theorem 5.7 of Chapter I. Let {U,};.; be a
locally finite open covering of M such that each U, has the
property stated in Lemma 2. Let {V,} be an open refinement of
{U;} such that V, = U,. For each subset J of I, set S; = U V,.

teJ
Let T be the set of pairs (v, J) where J < I and 7 is a connection
defined over §; which coincides with the given connection over
4 NS, Introduce an order in T as follows: (7', J") < (7", J")
ifJ' « J"and 7" = 7" on S;. Let (7, J) be a maximal element of
T. Then J = I as in the proof of Theorem 5.7 of Chapter I and

7 1s a desired connection. QED.

Remark. 1t is possible to prove Theorem 2.1 using Lemma 2
and a partition of unity { f,} subordinate to {V,} (cf. Appendix 3).
Let w,; be a connection form on »~1(U,) which extends the given
connection over 4 N V,. Then w = X, g0, is a desired con-
nection form on P, where each g, is the function on P defined by

g =Jiom
3. Parallelism

Given a connection I' in a principal fibre bundle P(M, G), we
shall define the concept of parallel displacement of fibres along any
given curve 7 in the base manifold M.

Let 1 =x, a <t < b, be a piecewise differentiable curve of
class C' in M. A horizontal lift or simply a [ift of = is a horizontal
curve 7* = u,,a < t £ b, in Psuch that »(u,) = x,fora <t < b.
Here a horizontal curve in P means a piecewise differentiable
curve of class C' whose tangent vectors are all horizontal.
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The notion of lift of a curve corresponds to the notion of lift of a
vector field. Indeed, if X* is the lift of a vector field X on M, then
the integral curve of X* through a point u, € P is a lift of the
integral curve of X through the point x, = =(y,) ¢ M. We now
prove

Prorosttion 3.1. Let + = x,, 0 < ¢t < 1, be a curve of class C*
in M. For an arbitrary point uy of P wzt/z w(uy) = %, there exists a
unique lift ™ = u, of T whick starts from u,.

Proof. By local triviality of the bundle, there is a curve v, of
class C' in P such that vy = yy and #(v,) = x,for 0 = ¢t < 1. A
lift of , if it exists, must be of the form u, = v,a,, where a, is a
curve in the structure group G such that a;, = e. We shall now look
for a curve a, in G which makes u, = v,a, a horizontal curve. Just
as in the proof of Proposition 1.4, we apply Leibniz’s formula
(Proposition 1.4 of Chapter I) to the mapping P x G — P which
maps (v, a) into va and obtain

U, = v,a; + v,dy,

where each dotted italic letter denotes the tangent vector at that
point (e.g., #, is the vector tangent to the curve 7% = u, at the
point u,). Let w be the connection form of I'. Then, as in the proof
of Proposition 1.4, we have

(i) = ad(a; (@) + 4 'd,

where a; 14, is now a curve in the Lie algebra g = T7,(G) of G.
The curve u, is horizontal if and only if 4,4, = —w(7,) for every ¢.

The construction of «, is thus reduced to the following

LEMMA. Let G be a Lie group and g its Lie algebra identified with
T,G). Let Y,, 0 £ t £ 1, be a continuous curve in T,(G). Then there

e e

exists in G a unique curve a, of class G such that ay = ¢ and d,a;7* = Y,
SJor0 <t < 1.

Remark. 1In the case where Y, = A4 for all ¢, the curve a, is
nothing but the 1-parameter subgroup of G generated by 4. Our
differential equation d,q; ' = Y, is hence a generalization of the
differential equation for l1-parameter subgroups.

Proof of Lemma. We may assume that Y, is defined and
continuous for all {, —o0 < ¢ < . We define a vector field X on
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G x R as follows. The value of X at (a,¢) e G x R is, by defini-
tion, equal to (Y.q, (d/dz),) e T,(G) x T,(R), where z is the
natural coordinate system in R. It is clear that the integral curve
of X starting from (e, 0) is of the form (a,, ¢) and a, is the desired
curve in G. The only thing we have to verify is that a, is defined
for all ¢, 0 < ¢t < 1. Let ¢, = exp¢X be a local l-parameter
group of local transformations of G X R generated by X. For
each (¢,5) e G X R, there is a positive number §, such that
@.(¢, 7) 1s defined for |r — s| < d, and |{| < &, (Proposition 1.5 of
Chapter I). Since the subset {¢} x [0, 1] of G x R is compact,
we may choose é > 0 such that, for each r¢[0, 1], ¢,(e, ) is
defined for |{| < d (cf. Proof of Proposition 1.6 of Chapter I).
Choose sy, $1, .. .,5,such that 0 =55 <sy <--+ <5, =1 and
s; — $;_1 < 0 for every i. Then ¢,(e, 0) = (a,, t) is defined for
0= ¢t=sy59.068) = (b, u + 5p)isdefinedfor0 < u < 5, — 5y,
where 0,6, = Y, , and we define a, = b,_, a, fors; < ¢ < s,;

@l s_q) = (Cys S3—1 + u) isdefined for 0 < u < 5, — $3_1,
where ¢,6,' =Y, , , and we define a, =¢, , a thus

Sp—1 Sk—1?

completing the construction of q,, 0 < ¢ < 1. QED.

Now using Proposition 3.1, we define the parallel displacement
of fibres as follows. Let 7 = x,, 0 < ¢ < 1, be a differentiable
curve of class (! on M. Let 4, be an arbitrary point of P with
w(uy) = %o. The unique lift 7* of 7 through u, has the end point
u, such that =(u;) = »,. By varying u, in the fibre =—1(x,), we
obtain a mapping of the fibre »—1(x,) onto the fibre »—1(x,) which
maps %, into ;. We denote this mapping by the same letter 7 and
call it the parallel displacement along the curve . The fact that
7: 7 1(%y) — 7w 1(x,) 1s actually an isomorphism comes from the
following

ProrosrtioN 3.2.  The parallel displacement along any curve =
commutes with the action of G on P: 7o R, = R, o 7 _for every a € G.

Proof. This follows from the fact that every horizontal curve
is mapped into a horizontal curve by R,. QED.

The parallel displacement along any piecewise differentiable
curve of class C* can be defined in an obvious manner. It should
be remarked that the parallel displacement along a curve = is
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independent of a specific parametrization x, used in the following
sense. Consider two parametrized curves x,, a < ¢ < b, and y,,
¢ <5 = d, in M. The parallel displacement along x, and the one
along y, coincide if there is a homeomorphism ¢ of the interval
[a, 6] onto [c, d] such that (1) ¢(a) = ¢ and ¢(b) = 4, (2) both
@ and ¢! are differentiable of class C? except at a finite number
of parameter values, and (3) y, = ¥, for all ¢, a < ¢t < b.

If 7 is the curve x,, a < ¢t < b, we denote by 77! the curve y,,
a £t < b, defined by y, = x,,,_,. The following proposition is
evident.

Prorosrrion 3.3.  (a) If 1 is a precewise differentiable curve of class
C' in M, then the parallel displacement along 7= is the inverse of the
parallel displacement along .

(b) If 7 is a curve from x to y in M and p 1s a curve from y to z in M,
the parallel displacement along the composite curve y - T is the composite of
the parallel displacements v and u.

4. Holonomy groups

Using the notion of parallel displacement, we now define the
holonomy group of a given connection I' in a principal fibre
bundle P(M, G). For the sake of simplicity we shall mean by a
curve a piecewise differentiable curve of class C*, 1 < k £ o
(k will be fixed throughout §4).

For each point x of M we denote by C(x) the loop space at x,
that is, the set of all closed curves starting and ending at x. If 7
and u are elements of C(x), the composite curve u - 7 (= followed
by u) is also an element of C(x). As we proved in §3, for each
7 € C(x), the parallel displacement along 7 is an isomorphism of
the fibre #—1(x) onto itself. The set of all such isomorphisms of
7~1(x) onto itself forms a group by virtue of Proposition 3.3. This
group is called the holonomy group of I" with reference point x. Let
(°(x) be the subset of C(x) consisting of loops which are homotopic
to zero. The subgroup of the holonomy group consisting of the
parallel displacements arising from all 7e(C?%x) is called the
restricted holonomy group of T' with reference point x. The holonomy
group and the restricted holonomy group of I' with reference
point x will be denoted by ®(x) and ®°(x) respectively.
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It is convenient to realize these groups as subgroups of the
structure group G in the following way. Let « be an arbitrarily
fixed point of the fibre #—1(x). Each r € C(x) determines an element,
say, a, of G such that v(u) = ua. If a loop u e C(x) determines
b € G, then the composite u - 7 determines ba because (u - 7)(u) =
u(ua) = (u(u))a = uba by virtue of Proposition 3.2. The set of
elements a € G determined by all 7 € C(x) forms a subgroup of G
by Proposition 3.3. This subgroup, denoted by ® (), is called the
holonomy group of 1" with reference point u € P. The restricied holonomy
group ®%(u) of T' with reference point u can be defined accordingly.
Note that ®(x) is a group of isomorphisms of the fibre 7#—1(x) onto
itself and ®(u) is a subgroup of G. It is clear that there is a unique
isomorphism of ®(x) onto ®(x) which makes the following
diagram commutative:

C(x)
¥ N
O(x) — D(u).

Another way of defining ®(u) is the following: When two points
u and v of P can be joined by a horizontal curve, we write u ~ v.
This is clearly an equivalence relation. Then ®(u) is equal to the set
of a € G such thatu ~ ua. Using the fact thatu ~ vimplies ua ~ va
for any u, v € P and a € G, it 1s easy to verify once more that this
subset of G forms a subgroup of G.

ProrosiTioN 4.1. (a) If v = ua, a e G, then ®(v) = ad (a™1) (D (u)),
that is, the holonomy groups ®(v) and ®(u) are conjugate in G. Similarly,
D0(y) = ad (a71)(DO(u)).

(b) If two points u and v of P can be joined by a horizontal curve, then
O(u) = O(v) and P°(u) = D(v).

Proof. (a) Let b € ®(u) so thatu ~ ub. Then ua ~ (ub)a so that
v~ (vaY)ba = valba. Thus ad (a71)(d) € ®(v). It follows easily
that ®(v) = ad (a=1)(P(«)). The proof for ®°(v) = ad (a=) (D°(u))
is similar.

(b) The relation u ~ v implies ub ~ vb for every b € G. Since the
relation ~ is transitive, u ~ ub if and only if v ~ vb, that is,
b e ®(u) if and only if b € ®(v). To prove ®%(u) = D(v), let u* be
a horizontal curve in P from u to v. If b € ®°(u), then there is a
horizontal curve 7* in P from u to ub such that the curve #(7*) in
M is a loop at w(x) homotopic to zero. Then the composite
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(Ryu*) - 7% - u*~1 is a horizontal curve in P from v to vb and its

projection into M is a loop at w(v) homotopic to zero. Thus
b € ®°(v). Similarly, if b € ®°(v), then b e PO(u). QED.

If M is connected, then for every pair of points # and » of P,
there is an element a € G such that v ~ ua. It follows from Propo-
sition 4.1 that if M is connected, the holonomy groups ®(u), u € P,
are all conjugate to each other in G and hence isomorphic with
each other.

The rest of this section is devoted to the proof of the fact that
the holonomy group is a Lie group.

TaeoreM 4.2.  Let P(M, G) be a principal fibre bundle whose base
manifold M is connected and paracompact. Let ®(u)and ®°(u), u € P, be
the holonomy group and the restricted holonomy group of a connection T with
reference point u. Then

(a) @O(u) is a connected Lie subgroup of G;

(b) ®°(u) is a normal subgroup of ®(u) and ®(u)/D°(u) is countable.

By virtue of this theorem, ®(u) is a Lie subgroup of G whose
identity component is ®°(u).

Proof. We shall show that every element of ®°(x) can be
joined to the identity element by a piecewise differentiable curve
of class C* in G which lies in ®°(x). By the theorem in Appendix 4,
it follows then that ®°(x) is a connected Lie subgroup of G.

Let a € ®°(u) be obtained by the parallel displacement along a
piecewise differentiable loop 7 of class C* which is homotopic to 0.
By the factorization lemma (Appendix 7), 7 is (equivalent to) a
product of small lassos of the form =y'- u- 7, where =, is a
piecewise differentiable curve of class C* from x = #(u) to a point,
say, », and u is a differentiable loop at y which lies in a coordinate
neighborhood of y. It is sufficient to show that the element of
®(u) defined by each lasso 7! - u - 7, can be joined to the identity
element. This element is obviously equal to the element of ®(v)
defined by the loop u, where v is the point obtained by the parallel
displacement of # along 7,. It is therefore sufficient to show that
the element b € ®°(v) defined by the differentiable loop u can be
joined to the identity element in ®°(») by a differentiable curve
of G which lies in ®%().

Let #', ..., x™ be a local coordinate system with origin at y
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and let 4 be defined by x* = x%(¢),7 =1, ..., n. Setfi(t,s) =5 +
(I —s)x*(¢) for e =1,...,nand 0 < ¢, s < 1. Then f(¢,5) =
(fYt, $), ..., /™, 5)) is a differentiable mapping of class C* of
I x Iinto M (where I = [0, 1]) such that f (¢, 0) is the curve u
and f (¢, 1) is the trivial curve y. For each fixed s, let &(s) be the
element of ®°(») obtained from the loop f (4, s5), 0 < ¢ < 1, so
that $(0) = & and 4(1) = identity. The fact that &(s) is of class C*
in s (as a mapping of I into G) follows from the following

LemMA. Let f: I X I — M be a differentiable mapping of class C*
and uy(s), 0 < s < 1, a differentiable curve of class C* in P such that
w(ug(s)) = f (0, s). For each fixed s, let u,(s) be the point of P obtained
by the parallel displacement of uy(s) along the curve f(i,s), where
0 £ ¢ = 1| and sis fixed. Then the curve u,(s), 0 < s < 1, is different:-
able of class C*.

Proof of Lemma. Let F:I xI—P be a differentiable
mapping of class C* such that = (F(t, s)) = f (¢, ) forall (¢,5) e I x
I and that F (0, s) = u4(s). The existence of such an F follows
from local triviality of the bundle P. Set v,(s) = F (¢, 5). In the
proof of Proposition 3.1, we saw that, for each fixed s, there is a
curve a,(s), 0 £ ¢t = 1, in G such that gy(s) = ¢ and that the
curve v,(s)a,(s), 0 < ¢t < 1, is horizontal. Set u,(s) = v,(s)a,(s). To
prove that u;(s), 0 < s < 1, is a differentiable curve of class
C*, it is sufficient to show that a,(s), 0 < s < 1, is a differentiable
curve of class C* in G. Let w be the connection form of T'. Set
Y.(s) = —w(d,(s)), where 4,(s) is the vector tangent to the curve
described by v,(s), 0 < ¢ < 1, when s is fixed. Then as in the
proof of Proposition 3.1, a,(s) is a solution of the equation
dy(s)a,(s)7 = Y,(s). As in the proof of the lemma for Proposition
3.1, we define, for each fixed s, a vector field X(s) on G x R so that
(a,(s), t) 1s the integral curve of the vector field X(s) through the
point (¢, 0) e G x R. The differentiability of a,(s) in s follows from
the fact that each solution of an ordinary linear differential
equation with parameter s is differentiable in s as many times as the
equation 1s (cf. Appendix 1). This completes the proof of the
lemma and hence the proof of (a) of Theorem 4.2.

We now prove (b). If = and u are two loops at x and if u is
homotopic to zero, the composite curve 7 - u - 71 is homotopic
to zero. This implies that ®°(x) is a normal subgroup of ®(u).
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Let 77,(M) be the first homotopy group of M with reference point
x. We define a homomorphism f: 7{(M) — ®(u)/®%(u) as follows.
For each element « of 7,(M), let = be a continuous loop at ¥ which
represents «. We may cover 7 by a finite number of coordinate
neighborhoods, modify = within each neighborhood and obtain a
piecewise differentiable loop 7, of class C* at x which is homotopic
to 7. If 7, and 7, are two such loops, then 7, - 75! is homotopic to
zero and defines an element of ®°(x). Thus, 7, and =, define the
same element of ®(u)/®°(x), which is denoted by f («). Clearly, f
is a homomorphism of #,(M) onto ®(u)/®°(x). Since M is con-
nected and paracompact, it satisfies the second axiom of count-
ability (Appendix 3). It follows easily that =,(M) is countable.
Hence, @ (u)/®°(x) is also countable. QED.

Remark. In §3, we defined the parallel displacement along any
piecewise differentiable curve of class C. In this section, we
defined the holonomy group ®(u) using piecewise differentiable
curves of class C*, If we denote by ®@,(x) the holonomy group thus
obtained from piecewise differentiable curves of class C*, then we
have obviously ®,(u) © ®,(u) > - -+ > ®_(u). We shall prove
later in §7 that these holonomy groups coincide.

5. Curvature form and structure equation

Let P(M, G) be a principal fibre bundle and p a representation
of G on a finite dimensional vector space V; p(a) is a linear
transformation of V for each aeG and p(ab) = p(a)p(b) for
a,b € G. A pseudotensorial form of degree r on P of type (p, V) is a V-
valued r-form ¢ on P such that

Rf¢ = p(a™) - ¢ for a € G.

Such a form ¢ is called a fensorial form if it is horizontal in the sense
that (X, ..., X,) =0 whenever at least one of the tangent
vectors X; of P is vertical, i.e., tangent to a fibre.

Example 5.1.  If pg is the trivial representation of G on V, that
is, po(a) 1s the identity transformation of V for each a € G, then a
tensorial form of degree 7 of type (py, V) is nothing but a form ¢
on P which can be expressed as ¢ = #*@,, where ¢,, is a V-valued

r-form on the base M.
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Example 5.2. Let p be a representation of G on V and E the
bundle associated with P with standard fibre IV on which G acts
through p. A tensorial form ¢ of degree r of type (p, V) can be
regarded as an assignment to each x ¢ M a multilinear skew-
symmetric mapping &, of T,(M) x --- x T,( M) (r times)
into the vector space w5 '(x) which is the fibre of E over x. Namely,
we define
Go(Xy, oo, X)) =u(p(XF, ..., XF), X, eT

@

(M),

where u 1s any point of P with 7(u) = x and X} is any vector at u
such that #»(X¥) = X, for each 7. ¢(X¥,..., X}) is then an
element of the standard fibre ¥ and « is a linear mapping of V
onto wg '(x) so that u(p(X¥, - - -, X¥)) is an element of =z (x). It
can be easily verified that this element is independent of the
choice of ¥ and X¥. Conversely, given a skew-symmetric multi-
linear mapping &,: T,(M) x -+ x T, (M) — =g*(x) for each
x € M, a tensorial form ¢ of degree r of type (p, V) on P can be
defined by

p(XE, ., XE) = u @y (m(XD), ..., w(XD), XfeT

T u

(P),

where x = =(u). In particular, a tensorial O-form of type (p, V),
that is, a function f: P — V such that f (ua) = p(a=')f (u), can be
identified with a cross section M — E.
A few special cases of Example 5.2 will be used in Chapter III.
Let I' be a connection in P(M, G). Let G, and @, be the
vertical and the horizontal subspaces of T,(P), respectively. Let
h: T, ,(P) — @, be the projection.

Prorosition 5.1. If ¢ is a pseudotensorial r-form on P of type
(p, V), then

(a) The form gk defined by (gh) (X, - . ., X,) = g(hX,, .. ., kX)),
X, e T ,(P), is a tensorial form of type (p, V) ;

(b) do is a pseudotensorial (r 4 1)-form of type (p, V) ;

(c) The (r + 1)-form Do defined by Do = (do)h s a tensorial form of
type (p, V).

Proof. From R,oh =hoR, aeG, it follows that ph is a
pseudotensorial form of type (p, V), It is evident that

((ph) (Xla LIS Xr) - 0;
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if one of X,’s is vertical. (b) follows from R¥ cd = d o R}, a e G.
(c) follows from (a) and (b). QED.

The form Dy = (dp)k 1s called the exterior covariant derivative of
@ and D is called exterior covariant differentiation.

If p is the adjoint representation of G in the Lie algebra g, a
(pseudo) tensorial form of type (p, g) is said to be of type ad G. The
connection form o 1s a pseudotensorial 1-form of type ad G. By
Proposition 5.1, Dw is a tensorial 2-form of type ad G and is
called the curvature form of w.

THEOREM 5.2 (Structure equation). Let w be a connection form and
Q its curvature form. Then

do(X, ¥) = —Ho(X), o(¥)] + Q(X, ¥)
Sfor X,Y e T, (P), ucelP.

Proof. Every vector of P is a sum of a vertical vector and a
horizontal vector. Since both sides of the above equality are
bilinear and skew-symmetric in X and ¥, it is sufficient to verify
the equality in the following three special cases.

(1) X and Y are horizontal. In this case, w(X) = w(Y) = 0 and
the equality reduces to the definition of €.

(2) X and Y are vertical. Let X = A* and ¥ = B* at u, where
A,B € g. Here A* and B* are the fundamental vector fields corre-
sponding to A and B respectively. By Proposition 3.11 of Chapter
I, we have

2dw (4%, B*) = A*(w(B*)) — B*(w(4¥)) — w([4*, B*])
= —[4, B] = —[ow(4*), o(B*)],
since w(4*) = 4, w(B*) = B and [4*, B*] = [4, B]*. On the
other hand, Q(4*, B*) = 0.
(3) Xishorizontal and Y is vertical. We extend X to a horizontal
vector field on P, which will be also denoted by X. Let ¥ = A4*
at u, where 4 e g. Since the right hand side of the equality vanishes,

it is sufficient to show that dw(X, 4*) = 0. By Proposition 3.11 of
Chapter I, we have

2dw(X, A4*) = X(w(4*)) — A*(o(X)) — o([X, 4*])
= —o([X, 4*]).

Now it 1s sufficient to prove the following
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LeEMMA. If A* is the fundamental vector field corresponding to an
element A € g and X is a horizontal vector field, then [ X, A*] is horizontal.

Proof of Lemma. The fundamental vector field 4* is induced
by R,, where a, is the 1-parameter subgroup of G generated by
4 € g. By Proposition 1.9 of Chapter I, we have

[X, A*] = lim-i-[Rat(X) — X].

10
If X is horizontal, so is R, (X). Thus [ X, A*] is horizontal. QED.

CorOLLARY 5.3. If both X and Y are horizontal vector fields on P,

then
o([X,Y]) = —2Q(4X, Y).

Proof. Apply Proposition 1.9 of Chapter I to the left hand side
of the structure equation just proved. QED.

The structure equation (often called “the structure equation of
E. Gartan’) is sometimes written, for the sake of simplicity, as

follows:
dow = —i|ow, o] + Q.

Let ¢4, ..., ¢, be a basis for the Lie algebra g and ¢, ¢, j, £ =
1, ..., r the structure constants of g with respect to ¢;, ..., e,
that is,

[e;, €] = X2, clyes, Lk=1,...,m
Let o = X, w%; and Q = %, Q%,. Then the structure equation
can be expressed as follows:

do* = _% J',kc]z'kwj/\wk + Qia 1 = ... > T

THEOREM 5.4 (Bianchi’s identity). DQ = 0.

Proof. By the definition of D, it suffices to prove that
dQ(X, Y, Z) = 0 whenever X, Y, and Z are all horizontal vectors.
We apply the exterior differentiation d to the structure equation.
Then

0 = ddw' = —$3 ¢y dw? A @* + 32 o' A do* + dQ'.
Since w*(X) = 0 whenever X is horizontal, we have
dQY (X, Y, Z) =0
whenever X, ¥, and Z are all horizontal. QED.
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ProrosiTion 5.5. Let w be a connection form and ¢ a tensorial 1-
Jorm of type ad G. Then

Dp(X, Y) = dp(X, Y) + 3[p(X), o(Y)] + $lo(X), ¢(¥)]
for X,YeT,(P), uecP.

Proof. As in the proof of Theorem 5.2, it suffices to consider
the three special cases. The only non-trivial case is the case where
X 1s vertical and Y is horizontal. Let X = A* at u, where 4 € g.
We extend Y to a horizontal vector field on P, denoted also by ¥,
which is invariant by R,, a € G. (We first extend the vector 7Y to
a vector field on M and then lift it to a horizontal vector field on
P.) Then [A*, Y] =0. As A* is vertical, Dp(4*, Y) = 0. We
shall show that the right hand side of the equality vanishes. By
Proposition 3.11 of Chapter I, we have

dop(4*, Y) = 3(A*(p(Y)) — Y(p(4*)) — o([4*, Y]) = 34%(p(Y)),
so that it suffices to show A*(¢(Y)) + [w(4*), p(Y)] =0 or
A*(p(Y)) = —[4, ¢(Y)]. If a, denotes the 1-parameter subgroup
of G generated by 4, then

A1) =1im 3 [0 (1) — pu(1)] =lim 5 [(Rig) (1) — p.(Y)]
= lim ; [ad (67 (pu(7)) — pu(T)] = —[4, 9 (V)]
since Y is invariant by R, . QED.

6. Mappings of connections

In §5 of Chapter I, we considered certain mappings of one
principal fibre bundle into another such as a homomorphism, an
injection, and a bundle map. We now study the effects of these
mappings on connections.

Proposrrion 6.1. Let f: P(M',G"Y - P (M, G) be a homo-
morphism with the corresponding homomorphism f. G' — G such that the
induced mapping f: M' — M is a diffeomorphism of M’ onto M. Let
I be a connection in P’, w’ the connection form and Q' the curvature form
of I''. Then

(a) There s a unique connection T' in P such that the horizontal sub-
spaces of 1" are mapped into horizontal subspaces of T by f.
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(b) If w and Q are the connection form and the curvature form of T’
respectively, then f*w = f- o' and f¥*Q = f-Q', where f-o' or
S+ Q' means the g’-valued form on P’ defined by ( f - ') (X') =f (' (X"))
or (f-QNVX,Y) =f(Q(X',Y"), where f on the right hand side is
the homomorphism g’ — g induced by f: G' — G.

(c) If ' e P" and u = f (&) € P, then f: G’ — G maps ®(u') onto
O (u) and OO(u') onto DO(u), where ©(u) and ®°(u) (resp. O(u') and
@O(u")) are the holonomy group and the restricted holonomy group of T’
(resp. I'') with reference point u (resp. u’).

Proof. (a) Given a point u € P, choose u" ¢ P’ and a € G such
that « = f (u")a. We define the horizontal subspace @, of T ,(P)
by @, =R,°f(Q,), where @, 1s the horizontal subspace of
T,.(P") with respect to I''. We shall show that @, is independent
of the choice of ' and a. If u = f(v')b, where v € P’ and b ¢ G,
then v = u'c’ for some ¢ e G'. If we set ¢ = f ('), then u =
F@W)b =f(u'c)b =f(u)cbandhencea = cb. Wehave R, f (Q,) =
Rb Of(Qu’(:’) - Rb Ofo Rc’(Qu’) - Rb ° Rc of(Qu') - Ra of(Qu’))
which proves our assertion. We shall show that the distribution
u — @, 1s a connection in P. Ifu = f (u')a, then ub = f (u')ab and
Qu =R, o f(Q,) =R, R, f(Q,) = R,(Q,), thus proving the
invariance of the distribution by G. We shall now prove 7,(P) =
Q. + G,, where G, is the tangent space to the fibre at u. By local
triviality of P, it is sufficient to prove that the projection 7: P — M
induces a linear isomorphism =: @, — 7T,(M), where x = = (u).
We may assume that ¥ = f («’) since the distribution ¥ — @, is
invariant by G. In the commutative diagram

Qu’ _f—)' Qu
o
T, (M) — T, (M),

the mappings »': @, — T, (M’) and f: T, (M) - T, (M) are
linear isomorphisms and hence the remaining two mappings
must be also linear isomorphisms. The uniqueness of I" is evident
from its construction.

(b) The equality f*w = f- o’ can be rewritten as follows:

o(fX') =flo' (X))  for X'e T,(P), u' P
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I't is sufficient to verify the above equality in the two special cases:
(1) X' is horizontal, and (2) X' is vertical. Since f: P’ — P maps
every horizontal vector into a horizontal vector, both sides of the
equality vanish if X" is horizontal. If X" is vertical, X’ = A'* at «’,
where 4" e g'. Set A = f(A4') e g. Since f (u'a’) = f (u')f (a’) for
every a' € G', we have f (X') = A* at f (¢'). Thus

o(fX') = o(d*) =4 =f(4) =[f(o'(47F)) =f(o'(X).

From f*w = f- o', we obtain d( f*w) = d(f+ ') and f*dw =
S+ do'. By the structure equation (Theorem 5.2):

—3/*([w, 0]) +/*Q = —3 f([0, &]) + /- Q,
we have
— 3w, fFo] +/*Q = —3[f o, [0 + /- Q.

This implies that f*Q = f- Q'

(c) Let = be a loop at x = w(u). Set v = f~1(7) so that 7’ is a
loop at " = #'(u’). Let 7'* be the horizontal lift of +’ starting
from «'. Then f (='*) is the horizontal lift of 7 starting from u. The
statement (c) is now evident. QED.

In the situation as in Proposition 6.1, we say that f maps the
connection I into the connection I'. In particular, in the case
where P'(M’, G') is a reduced subbundle of P(M, G) with in-
jection f so that M’ = M and f: M’ — M is the identity trans-
formation, we say that the connection I' in P is reductble to the
connection IV in P’. An automorphism f of the bundle P(M, G) is
called an automorphism of a connection I" in P if it maps I' into I', and
in this case, I' is said to be wnvariant by f.

ProrosiTiON 6.2. Let f: P'(M', G") — P(M,G) be a homo-
morphism such that the corresponding homomorphism f: G' — G maps G’
isomorphically onto G. Let T' be a connection in P, w the connection form
and Q the curvature form of I'. Then

(a) There 15 a unique connection I in P’ such that the horizontal sub-
spaces of T are mapped into horizontal subspaces of T by f.

(b) If " and Q' are the connection form and the curvature form of 1"
respectively, then f*w = f- o' and f*Q = f- Q.

(¢) If ' e P and u = f (u') € P, then the isomorplism f: G' — G
maps O (u') into ©(u) and ®°(u’) nto DO(u).
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Proof. We define I by defining its connection form w’. Set
' = f1- f*w, where f~1: g — g’ is the inverse of the isomorphism
f: ¢ — g induced from f: G' - G. Let X' € T,.(P’') and a' € G’
and set X = fX" and a = f (a’). Then we have

o' (R X') = fH0(f(R X)) = fHo(R,X))
— f(ad (a ) (@(X))) = ad (@) (f (X))
— ad (') (0(X")).

Let A" € ¢’ and set 4 = f(A’). Let A* and A’* denote the funda-
mental vector fields corresponding to 4 and A’ respectively. Then

we have o' (A'*) = fYw(4*) = F14) = 4.

This proves that the form o’ defines a connection (Proposition 1.1).
The verification of other statements is similar to the proof of
Proposition 6.1 and is left to the reader. QED.

In the situation as in Proposition 6.2, we say that I" is induced
by ffrom I'. If fis a bundle map, thatis, G' = Gand f: G' — G is
the identity automorphism, then o’ = f*w. In particular, given a
bundle P(M, G) and a mapping f: M’ — M, every connection
in P induces a connection in the induced bundle f~1P.

For any principal fibre bundles P (M, G) and Q (M, H),
P x Qisa principal fibre bundle over M x M with group G x H.
Let P 4+ @ be the restriction of P x @ to the diagonal AM of
M x M. Since AM and M are diffeomorphic with each other in
a natural way, we consider P + @ as a principal fibre bundle
over M with group G x H. The restriction of the projection P X
Q — P to P + @, denoted by fp, is a homomorphism with the
corresponding natural homomorphism f;: G x H — G. Simi-
larly, for f: P 4+ Q — Q and f: G x H— H.

ProrositioN 6.3.  Let I'p and I' g be connections in P(M, G) and
Q(M, H) respectively. Then

(a) There 1s a umque connection I' in P + @ such that the homo-
morphisms fp: P + Q — P and fo: P 4+ Q@ — Q maps I into I'p and
' respectively.

(b) If w, wp and w g are the connection forms and Q, Qp, and Q 4 are
the curvature forms of T, T p, and T g respectively, then

w =f§§wp "|‘f3wQs Q :f?DQP "|‘f39Q-
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(c) Let ue P, ve Q, and (u,v) e P + Q. Then the holonomy group
D(u, v) of ' (resp. the restricted holonomy group ®°(u,v) of T') is a
subgroup of ®(u) x D®(v) (resp. P°(u) x D®°(v)). The homomorphism
Jo: G X H—>G (resp. fp: G x H—~ H) maps ®(u,v) onto O(u)
(resp. onto @ (v)) and DO(u, v) onto ®°(u) (resp. onto D°(v)), where
O(u)and DO(u) (resp. @ (v) and ®(v))are the holonomy group and the
restricted holonomy group of T p (resp. T'y).

The proof is similar to those of Propositions 6.1 and 6.2 and is
left to the reader.

ProrosrTiON 6.4. Let Q(M, H) be a subbundle of P(M,G),
where H is a Lie subgroup of G. Assume that the Lie algebra g of G admits
a subspace m such that ¢ = m + b (direct sum) and ad (H)(m) = m,
where Y 15 the Lie algebra of H. For every connection form w in P, the b-
component o’ of w restricted to Q is a connection form in Q.

Proof. Let A ¢ h and A* the fundamental vector field corre-
sponding to A. Then w’(4*) is the h-component of w(4*) = A.
Hence, w’'(A*) = A. Let ¢ be the m-component of o restricted to
Q. Let Xe 7,(Q) and a € H. Then

(R X) = o' (RX) + p(R,X),
ad (a7!)(0(X)) = ad (¢71)(0’(X)) + ad (a7)(p(X)).
The left-hand sides of the preceding two equalities coincide.
Comparing the h-components of the right hand sides, we obtain
o' (R,X) = ad (a!) (w’(X)). Observe that we used the fact that
ad (a71) (¢(X)) is in m. QED.
Remark. The connection defined by w in P is reducible to a

connection in the subbundle @ if and only if the restriction of w
to @ is h-valued. Under the assumption in Proposition 6.4, this

means o = o on Q.

7. Reduction theorem

Unless otherwise stated, a curve will mean a piecewise differ-
entiable curve of class C°. The holonomy group @ ,(u,) will be
denoted by ®(x,).

We first establish

THEOREM 7.1 (Reduction theorem). Let P(M, G) be a principal
fibre bundle with a connection I, where M 1is connected and paracompact.
Let uy be an arbitrary point of P. Denote by P(ug,) the set of points in P
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which can be joined to uy by a horizontal curve. Then
(1) P(ug) ts a reduced bundle with structure group ®(u,).
(2) The connection I" is reductble to a connection in P(u,).
Proof. (1) We first prove

LemMA 1. Let Q be a subset of P(M, G) and H a Lie subgroup of
G. Assume: (1) the projection w: P — M maps Q onto M; (2) Q is
stable by H, 1.e., R,(Q) = Q for each a e H, ()zfuveQandw(u):
7w (v), then there is an element a € H such that v = ua; and (4) every point
x of M has a neighborhood U and a cross section o: U — P such that
o(U) = Q. Then Q(M, H) s a reduced subbundle of P(M, G).

Proof of Lemma 1. For each ue#n=1(U), let x = #»(4) and
a € G the element determined by « = o(x)a. Define an isomorphism
p: 7Y (U) - U X G bysetting y(u) = (x, a). It is easy to see that
p maps @ N7 1(U) 1:1 onto U x H. Introduce a differentiable
structure in @ in such a way that p: Q N7 (U) - U x H
becomes a diffeomorphism; using Proposition 1.3 of Chapter I
as in the proof of Proposition 5.3 of Chapter I, we see that @
becomes a differentiable manifold. It is now evident that @ is a
principal fibre bundle over M with group H and that @ is a
subbundle of P.

Going back to the proof of the first assertion of Theorem 7.1, we
see that, M being paracompact, the holonomy group ®(u,) is a Lie
subgroup of G (Theorem 4.2) and that the subset P(y,) and the
group ®(u,) satisfy conditions (1), (2), and (3) of Lemma 1 (cf.
the second definition of ®(u,) given before Proposition 4.1 and
also Proposition 4.1(b)). To verify condition (4) of Lemma 1, let
x1,...,x" be a local coordinate system around x such that x is
the origin (0, ..., 0) with respect to this coordinate system. Let
U be a cubical neighborhood of x defined by |xf| < §. Given any
point y € U, let 7, be the segment from x to_» with respect to the
coordinate system x1, . . ., 2™ Fix a point u € @ such that #(u) = x.
Let o( ») be the point of P obtained by the parallel displacement
of u along 7,. Then o: U — P1is a cross section such that o(U) < Q.
Now (1) of Theorem 7.1 follows from Lemma 1.

(2) This is an immediate consequence of the following

LemMmA 2. Let Q(M, H) be a subbundle of P(M, G) and T’ a
connection in P. If, for every u € Q, the horizontal subspace of T,(P) is
tangent to Q, then I’ is reducible to a connection in Q.




II. THEORY OF CONNECTIONS 85

Proof of Lemma 2. We define a connection IV in @ as follows.
The horizontal subspace of 7,(Q), u € @, with respect to IV is by
definition the horizontal subspace of 7T, (P) with respect to I'. Itis
obvious that I' is reducible to I'. QED.

We shall call P(u) the holonomy bundle through u. It is evident
that P(u) = P(v) if and only if # and v can be joined by a hori-
zontal curve. Since the relation ~ introduced in §4 (¢« ~ vif u and
v can be joined by a horizontal curve) is an equivalence relation,
we have, for every pair of points  and v of P, either P(u) = P(v)
or P(u) N P(v) = empty. In other words, P is decomposed into
the disjoint union of the holonomy bundles. Since every a € G maps
each horizontal curve into a horizontal curve, R,(P(u)) = P(ua)
and R,: P(u) — P(ua) is an isomorphism with the corresponding
isomorphism ad (a71): ®(u) — ®(ua) of the structure groups. Itis
easy to see that, given any « and v, there is an element a € G such
that P(v) = P(ua). Thus the holonomy bundles P(u), u € P, are
all isomorphic with each other.

Using Theorem 7.1, we prove that the holonomy groups @, (u),
]l <k £ oo, coincide as was pointed out in Remark of § 4.
This result is due to Nomizu and Ozeki [2].

THEOREM 7.2.  All the holonomy groups @,(u), 1 <k
coincide.

Proof. It is sufficient to show that ®;(x) = ® (u). We
denote @ (x) by ®(x) and the holonomy bundle through u by
P(u). We know by Theorem 7.1 that P(«) is a subbundle of P with
®(u) as its structure group. Define a distribution § on P by setting

S, = T, (P(u)) for u € P.
Since the holonomy bundles have the same dimension, say £, S is

a k-dimensional distribution. We first prove

Lemma 1. (1) S is differentiable and involutive.
(2) For each ueP, P(u) is the maximal integral manifold of S

through u.
Proof of Lemma 1. (1) We set

w = S0 + S5, uelP,

where §,, is horizontal and S, is vertical. The distribution §” is
differentiable by the very definition of a connection. To prove the

IA

0,
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differentiability of S, it suffices to show that of §”. For each u € P,
let U be a neighborhood of x = «(u) with a cross section ¢: U —
P(u) such that ¢(x) = u. (Such a cross section was constructed in
the proof of Theorem 7.1.) Let 4,, ..., A, be a.basis of the Lie
algebra g(u) of ®(x). We shall define vector fields 4, . .., 4, on
7~1(U) which form a basis of $” at every point of »—1(U). Let
v € 7~1(U). Then there is a unique a € G such that v = o(#(v))a.
Since ad (a71): ®(u) — P(v) is an isomorphism, ad (¢71)(4,),1 =
l,...,r, are elements of g(v) and form a basis for g(v). We set

(4,), = (ad (@ 1) (4,)) ¥, i=1,...,r,

where (ad (a71)(4;))* 1s the fundamental vector field on P corre-
sponding to ad (a71)(4,) eg(v) =g, : =1,...,r. Itis easy to
see that 4, ..., A are differentiable and form a basis of S” on
= U).

For each point u, P(u) is an integral manifold of S, since for
every v € P(u), we have T, (P(u)) = T,(P(v)) =S, This implies
that §'is involutive.

(2) Let W(u) be the maximal integral manifold of S through «
(cf. Proposition 1.2 of Chapter I). Then P(u) is an open submani-
fold of W(u). We prove that P(u) = W(u). Let v be an arbitrary
point of W(u) and let u(¢t), 0 < ¢ =<1, be a curve in W(u)
such that #(0) =« and u(l) =v. Let ¢; be the supremum
of ¢y such that 0 < ¢ < ¢, implies u(¢) € P(u). Since P(u) is open in
W(u), t, is positive. We show that u(¢,) lies in P(u); since P(u) is
open in W(u), this will imply that ¢; = 1, proving that u(1) = v
lies in P(u). The point u(¢,) is in P(u(¢,)) and P(u(¢,)) is open in
W(u(t,)). There exists ¢ > 0 such that ¢, —e <t <? + ¢
implies u(¢) € P(u(t;)). Let ¢ be any value such that ¢, — e <t < ¢;.
By definition of ¢,, we have u(f) e P(x). On the other hand,
u(t) € P(u(ty)). This implies that P(u) = P(u(t,)) so thatu(¢,) € P(u)
as we wanted to show. We have thereby proved that P(u) is
actually the maximal integral manifold of § through wu.

LEMMA 2. Let S be an involutive, C®-distribution on a C*-manifold.
Suppose x,, 0 < t < 1, is a piecewrse C'-curve whose tangent vectors %,
belong to S. Then the entire curve x, lies in the maximal integral manifold
W of S through the point x,.

Proof of Lemma 2. We may assume that x, 1s a (*-curve. Take
a local coordinate system x1, . . . , ™ around the point x, such that
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0/0xt, ..., 0/0x*, k =dimS, form a local basis for § (cf.
Chevalley [1, p. 92]). For small values of ¢, say, 0 < ¢t < ¢, x,
can be expressed by x* = x%(¢), 1 < 1 < n, and its tangent vectors
are given by X, (dx*/dt) (9/0x*). By assumption, we have dx’/dt = 0
fork + 1 <1 < n Thus, x(¢) = 2*(0) for k 4+ 1 < 7 < n so that
¥, 0 <t <e lies in the slice through x, and hence in W.
The standard continuation argument concludes the proof of
Lemma 2.

We are now in position to complete the proof of Theorem 7.2.
Let a be any element of ®,(x). This means that ¥ and ua can be
joined by a piecewise ('-horizontal curve u, 0 < ¢ < 1, in P.
The tangent vector i, at each point obviously lies in §,. By
Lemma 2, the entire curve u, lies in the maximal integral manifold
W (u) of S through u. By Lemma 1, the entire curve u, lies in P(u).
In particular, ua is a point of P(u). Since P(u) is a subbundle with
structure group @ (u), a belongs to ®(u). QED.

CoROLLARY 7.3.  The restricted holonomy groups ®Y(u), 1 < k <
0o, coincide.

Proof. ®j(u) is the connected component of the identity of
®,(u) for every k (cf. Theorem 4.2 and its proof). Now, Corollary
7.3 follows from Theorem 7.2. QED.

Remark. 1In the case where P(M, G) is a real analytic principal
bundle with an analytic connection, we can still define the ho-
lonomy group ®,(«) by using only piecewise analytic horizontal
curves. The argument used in proving Theorem 7.2 and Corollary
7.3 shows that ®,(x) = ®,(x) and O (x) = DY (u).

Given a connection I' in a principal fibre bundle P(M, G),
we shall define the notion of parallel displacement in the associated
fibre bundle E(M, F, G, P) with standard fibre F. For each
w € E, the horizontal subspace Q, and the vertical subspace F, of
T,(E) are defined as follows. The vertical subspace F, is by
definition the tangent space to the fibre of £ at w. To define @,
we recall that we have the natural projection P X F — E =
P x o F. Choose a point (u, &) € P X F which is mapped into w. We
fix this & € F and consider the mapping P — E which maps v € P
into v& € E. Then the horizontal subspace @, 1s, by definition, the
image of the horizontal subspace @, < 7,(P) by this mapping
P — E. We see easily that @, is independent of the choice of
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(u, &) e P x F. We leave to the reader the proof that 7,(E) =
F, + @, (direct sum). A curve in E is horizontal if its tangent
vector 1s horizontal at each point. Given a curve = in M, a (hori-
zontal) [ift 7* of 7 is a horizontal curve in E such that 74(7*) = 7.
Given a curve 7 =%, 0 =<¢ <1, and a point w, such that
mg(w,) = %,, there is a unique lift 7* = w, starting from w,. To
prove the existence of 7%, we choose a point (uy, &) in P x F such
that u,é = w,. Let u, be the lift of + = x, starting from u,. Then
w, = u,£ 1s a lift of = starting from w, The uniqueness of 7*
reduces to the uniqueness of a solution of a system of ordinary
linear differential equations satisfying a given initial condition
just as in the case of a lift in a principal fibre bundle. A cross
section ¢ of E defined on an open subset U of M is called
parallel if the image of T',(M) by o is horizontal for each x € U, that
is, for any curve 7 = x,, 0 = ¢t < 1, the parallel displacement of
o(x,) along T gives o(x,).

ProrositioN 7.4. Let P(M, G) be a principal fibre bundle and
E(M, G/H, G, P) the associated bundle with standard fibre G|H, where
H 1s a closed subgroup of G. Let 0: M — E be a cross section and Q(M, H)
the reduced subbundle of P(M, G) corresponding to o (cf. Proposition
5.6 of Chapter I). Then a connection I in P is reducible to a connection T
in Q if and only if o is parallel with respect to T.

Proof. If we identify £ with P/H (cf. Proposition 5.5 of
Chapter I), then ¢(M) coincides with the image of @ by the
natural projection u: P — E = P[H; in other words, if u € ¢ and
x = w(u), then o(x) = u(u) (cf. Proposition 5.6 of Chapter I).
Suppose I' is reducible to a connection I'' in ¢. We note that if
& is the origin (i.e., the coset H) of G/H, then ué = u(u) for every
u € Pand henceifu,, 0 < ¢t < 1, is horizontal in P, so is u(u,) in E.
Given a curve x,, 0 < ¢ < 1, in M, choose u, € @ with =(u,) = x,
so that o(x,) = u(u,). Let u, be the lift to P of x, starting from u,
(with respect to I'), so that u(u,) is the lift of x, to £ starting from
o(x,). Since T' is reducible to I, we have u,e @ and hence
u(u,) = o(x,) for all t. Conversely, assume that o is parallel (with
respect to I'). Given any curve x,, 0 < ¢ < 1, in M and any point
u, of @ with 7(u,) = x,, let u, be the lift of x, to P starting from
u,- Since o is parallel, u(u,) = o(x,) and hence u, € @ for all ¢. This
shows that every horizontal vector at u, € @ (with respect to I') is
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tangent to ¢. By Proposition 7.2, I' is reducible to a connection
in Q. QED.

8. Holonomy theorem

We first prove the following result of Ambrose and Singer [1] by
applying Theorem 7.1.

TueOREM 8.1.  Let P(M, G) be a principal fibre bundle, where M
is connected and paracompact. Let T" be a connection in P, Q the curvature
form, ®(u) the holonomy group with reference point u € P and P(u) the
holonomy bundle through w of I'. Then the Lie algebra of ®(u) is equal to
the subspace of g, Lie algebra of G, spanned by all elements of the form
Q,(X, YY), where v e P(u) and X and Y are arbitrary horizontal vectors at
.

Proof. By virtue of Theorem 7.1, we may assume that P(u) =
P, ie.,, ®(u) = G. Let g’ be the subspace of g spanned by all
elements of the form Q,(X, Y), where v e P(u) = P and X and Y
are arbitrary horizontal vectors at v. The subspace g’ is actually
an ideal of g, because ) is a tensorial form of type ad G (cf. §5)
and hence g’ is invariant by ad G. We shall prove that g = g.

At each point v € P, let §, be the subspace of 7',(P) spanned by
the horizontal subspace ¢, and by the subspace g, = {d¥; 4 € ¢},
where A* is the fundamental vector field on P corresponding to 4.
The distribution .S has dimension n + r, where n = dim M and
r = dim g’. We shall prove that § is differentiable and involutive.
Let v be an arbitrary point of P and U a coordinate neighborhood
of y = w(v) € M such that »~1(U) is isomorphic with U x G. Let
Xy, ..., X, be differentiable vector fields on U which are
linearly independent everywhere on U and X¥,..., X} the
horizontal lifts of X3, ..., X,. Let 4,, ..., 4, be a basis for g’ and
A¥, ..., 4F the corresponding fundamental vector fields. It is
clear that X§,..., X¥, A}, ..., A* form a local basis for S.
To prove that S is involutive, it suffices to verify that the bracket
of any two of these vector fields belongs to S. This is clear for
[4F, A¥], since [4,, A;] e " and [4,, 4,]* = [4}, Af]. By the
lemma for Theorem 5.2, [A4f, X¥] is horizontal; actually,
[A¥, X¥] = 0 as X} is invariant by R, for each a € G. Finally, set
A = o([XF, X¥]) € g, where o is the connection form of I'. By
Corollary 5.3, 4 = o([X}, X}]) = —28(X}, X}) € g'. Since the
vertical component of [X¥, X*] at ve P is equal to AfeS,,




90 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

[XF, X¥] belongs to §. This proves our assertion that § isin-
volutive.
Let P, be the maximal integral manifold of .S through «. By

Lemma 2 in the proof of Theorem 7.2, we have P, = P. There-

fOI‘C, dimg=dimP—n:dimPO—n:dimg’.

This implies g = ¢'. QED.
Next we prove

THEOREM 8.2. Let P(M, G) be a principal fibre bundle, where P
is connected and M is paracompact. If dim M = 2, there exists a con-
nection in P such that all the holonomy bundles P(u), u € P, coincide with P.

Proof. Letu, be an arbitrary point of P and %, . .., 2™ a local
coordinate system with origin x, = =(u,). Let U and V be neigh-
borhoods of x, defined by |x*| <« and |x?| < f§ respectively,
where 0 < f < «. Taking o« sufficiently small, we may assume
that P| U = #»~(U) is isomorphic with the trivial bundle U x G.
We shall construct a connection I in P | U such that the ho-
lonomy group of the bundle P |V coincides with the identity
component of G. We shall then extend I'V to a connection I' in P

in such a way that T coincides with IV on P | V (cf. Theorem 2.1).

Let 44, ..., 4, be a basis for the Lie algebra g of G. Choose real
numbers oy, ..., a, sSuch that 0 < a; < oy < - -+ < a, < f and
let £,(¢),t =1, ..., r, be differentiable functionsin —a — & < ¢ <
o -+ esuch that f,(0) = Oforevery:and f,(«,) = d,; (Kronecker’s
symbol). On #=1(U) = U X G, we can define a connection form
w by requiring that

Wz (0] 0x) g
and that
W 0(0/0x%) =0 for: =2,3,...,n

(Note that, by virtue of the property RYw = ad (a7!)(w), the
preceding conditions determine the values of w at every point
(x,a) of U x G.)

Fixing ¢, 0 <t <, and «,, 1 < £k <7, for the moment,
consider the rectangle on the x'x%-plane in V formed by the line
segments 7, from (0, 0) to (0, «,), 7, from (0, ;) to (¢, &), 73 from
(¢, ;) to (¢, 0) and 7, from (¢, 0) to (0,0). (Here and in the
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following argument, the x3 to x"-coordinates of all the points remain
0 and are hence omitted.) In #—1(V) = ¥V x G, we determine the
horizontal lift of 7 = 74 74+ 75+ 7, starting from the point
(0, 0; ¢). The lift 7§ of 7, starting from (0, 0; ¢) is clearly (0, s; ),
0 = 5 < ay, since its tangent vectors d/0dx? are horizontal. The
lift 7§ of =, starting from the end point (0, «,; ¢) of 7§ is of the
form (s, ay;¢,), 0 < s < £, where ¢, is a suitable curve with ¢, =
e in G. Its tangent vector is of the form (9/0x'),, + ¢, By a
similar computation to that for Proposition 3.1, we have

(33 + ) = ad (6710 (3)28)) g + 6571 - 4
—ad () 3 filmdd) + 676y = ad ()4, + 67
i=1

Therefore we have ¢, - ¢;1 = —A,, thatis, ¢, = exp (—s4,). The
end point of 7% is hence (¢, ay; exp (—id,)). The lift +¥ of 74
starting from (£, a,; exp (—td,)) is (¢, o — 53 exp (—td,)), 0 =
5 = ay. Finally, the lift 7§ of 7, starting from the end point (¢, O;
exp (—td,)) of =¥ is (¢ —s5,0;exp (—t4,)), 0 =5 = ¢, since
0d/0x! is horizontal at the points with ¥2 = 0. This shows that the
end point of the lift 7* of 7= is (0, 0; exp (—t4,)), proving that
exp (—tA4,) is an element of the holonomy group of #~1(V) with
reference point (0, 0; ¢). Since this is the case for every ¢, we see
that 4, is in the Lie algebra of the holonomy group. The result
being valid for any A4,, we see that the holonomy group of the
connection in #~1(V) coincides with the identity component of G.

Let I" be a connection in P which coincides with I on #=1( V).
Since the holonomy group ®(u,) of I' obviously contains the
identity component of G, the holonomy bundle P(x,) of I" has the
same dimension as P and hence is open in P. Since P is a disjoint
union of holonomy bundles each of which is open, the connected-
ness of P implies that P = P(u,). QED.

CoroLLARY 8.3.  Any connected Lie group G can be realized as the
holonomy group of a certain connection in a triwval bundle P = M x G,
where M is an arbitrary differentiable manifold with dim M = 2.

Theorem 8.2 was proved for linear connections by Hano and
Ozeki [1] and then in the general case by Nomizu [5], both by
making use of Theorem 8.1. The above proof which is more
direct is due to E. Ruh (unpublished).
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9. Flat connections

Let P = M x G be a trivial principal fibre bundle. For each
aeG, the set M X {a} i1s a submanifold of P. In particular,
M x {e} is a subbundle of P, where ¢ is the identity of G. The
canonical flat connection in P is defined by taking the tangent space
to M X {a} at u = (x,a) e M X G as the horizontal subspace at
u. In other words, a connection in P is the canonical flat connection
if and only if it is reducible to a unique connection in M X {e}.
Let 6 be the canonical 1-form on G (cf. §4 of Chapter I). Let
S+ M x G — G be the natural projection and set

o =_f*0.

It is easy to verify that w is the connection form of the canonical
flat connection in P. The Maurer-Cartan equation of 6 implies
that the canonical flat connection has zero curvature:

do = d(f*0) = f*(d0) =/*(—3[0, 0])
- —%[f*@,f*0]= —%[wa w]'

A connection in any principal fibre bundle P(M, G) is called
flat if every point ¥ of M has a neighborhood U such that the
induced connection in P|U = #~Y(U) is isomorphic with the
canonical flat connection in U X G. More precisely, there is an
isomorphism y: #~3(U) - U X G which maps the horizontal

subspace at each u € #7}(U) upon the horizontal subspace at y(u)
of the canonical flat connection in U X G.

THEOREM 9.1. A connection in P(M, G) is flat if and only if the
curvature form vanishes identically.

Proof. The necessity is obvious. Assume that the curvature
form vanishes identically. For each point x of M, let U be a
simply connected open neighborhood of x and consider the induced
connection in P | U = #»~}(U). By Theorems 4.2 and 8.1, the
holonomy group of the induced connection in P | U consists of
the identity only. Applying the Reduttion Theorem (Theorem
7.1), we see that the induced connection in P | U is isomorphic
with the canonical flat connection in U X G. QED.

CoROLLARY 9.2,  Let I' be a connection in P(M, G) such that the
curvature vanishes identically. If M s paracompact and simply connected,




II. THEORY OF CONNECTIONS 93

then P s isomorphic with the trivial bundle M x G and 1" is 1somorphic
with the canonical flat connection in M x G.

We shall study the case where M is not necessarily simply
connected. Let I' be a flat connection in P(M, G), where M is
connected and paracompact. Let u,e P and M* = P(u,), the
holonomy bundle through u,; M* is a principal fibre bundle over
M whose structure group is the holonomy group ®(u,). Since
®(u,) is discrete by Theorems 4.2 and 8.1 and since M* is con-
nected, M* is a covering space of M. Set x, = m(u,), %, € M.
Every closed curve of M starting from x, defines, by means of the
parallel displacement along it, an element of ®(u,). Since the
restricted holonomy group is trivial by Theorems 4.2 and 8.1, any
two closed curves dt x, representing the same element of the first
homotopy group =, (M, x,) give rise to the same element of ®(u,).
Thus we obtain a homomorphism of =, (M, x,) onto ®(u,). Let N
be a normal subgroup of ®(u,) and set M’ = M*/N. Then M’ is
a principal fibre bundle over M with structure group ®(u,)/N.
In particular, M’ is a covering space of M. Let P'(M’, G) be the
principal fibre bundle induced from P(M, G) by the covering
projection M’ — M. Let f: P’ — P be the natural homomorphism
(cf. Proposition 5.8 of Chapter I).

ProrositioN 9.3.  There exists a unique connection I'' in P'(M', G)
which is mapped into T' by the homomorphism f: P’ — P. The connection
I s flat. If uyis a point of P’ such that f (uy) = u,, then the holonomy
group D (ug) of IV with reference point ug is isomorphically mapped onto
Nbyf.

Proof. The first statement is contained in Proposition 6.2. By
the same proposition, the curvature form of I'' vanishes identically
and I" is flat. We recall that P’ is the subset of M’ x P defined as
follows (cf. Proposition 5.8 of Chapter I):

P ={(x,u) e M' X P; p(x') = m(u)},

where u: M’ — M is the covering projection. The projection
7' P > M’ i1s given by #'(x’, u) = x’ and the homomorphism
f:P"— P is given by f(x’,u) =u so that the corresponding
homomorphism f: G — G of the structure groups is the identity
automorphism. To prove that f maps ®(«;) isomorphically onto
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N, it is therefore sufficient to prove ®(u,) = N. Write
uy = (xg, uy) e P = M’ x P,
Since u(x;) = m(u,), there exists an element a € ®(u,) such that
xo = v(toa),

where v: M* = P(u,) — M’ = P(u,)/Nis the covering projection.
Let 1 =u,, 0 <¢ <1, be a horizontal curve in P’ such that
7' (uy) = ='(u}). For each ¢, we set

u, = (x;,u,) e P’ = M’ x P.

Then the curve u,, 0 < ¢ < 1, is horizontal in P and hence is
contained in M* = P(u,). Since u(x;) = m(u,) = pov(u, and
xy = v(uga), we have x, = »(u,a) for 0 < ¢ < 1. We have

v(ua) = 21 = 7' (u1) = 7' (ug) = %o = v(oa)

and, consequently,
v(ug) = v(up),

which means that u; = b for some b e N. This shows that
®(uy) = N. Conversely, let b be any element of N. Letu,, 0 < ¢ <
1, be a horizontal curve in Psuch that u; = uyb. Define a horizontal
curve 4;, 0 £ ¢t < 1,in P’ by

u? - (x;, ut):

where x; = v(u,a). Then u] = uib, showing that b € ®(uy). QED.

10. Local and infinitesimal holonomy groups

Let I' be a connection in a principal fibre bundle P(M, G),
where M is connected and paracompact. For every connected
open subset U of M, let I, be the connection in P | U = »~(U)
induced from I'. For each u € #=1(U), we denote by ®°(u, U) and
P(u, U) the restricted holonomy group with reference point # and
the holonomy bundle through « of the connection I', respectively.
P(u, U) consists of points v of #=}(U) which can be joined to u by
a horizontal curve in »—1(U).

The local holonomy group ®*(u) with reference point u of I' is
defined to be the intersection (®°(u, U), where U runs through
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all connected open neighborhoods of the point x = =(u). If {U,}
is a sequence of connected open neighborhoods of x such that

U,> U,,, and ﬁ U, = {x}, then we have obviously ®°(u, U;) =
k=1

Oy, Uy) > -+ > @y, U,) > ---. Since, for every open
neighborhood U of x, there exists an integer £ such that U, < U,

we have ®*(u) = M ®%u, U,). Since each group ®°%u, U,) is a
k=1

connected Lie subgroup of G (Theorem 4.2), it follows that
dim ®°(u, U,) is constant for sufficiently large £ and hence that
®O*(u) = ®u, U,) for such k. The following proposition is now
obvious.

ProrosrrioN 10.1.  The local holonomy groups have the following
properties:

(1) ®*(u) is a connected Lie subgroup of G which is contained in the
restricted holonomy group ®°(u) ;

(2) Every point x = w(u) has a connected open nerghborhood U such that
O*(u) = ®%u, V) for any connected open nerghborhood V of x contained
wn U;

(3) If U 1s such a neighborhood of x = m(u), then ©* (u) 2 O*(v)
Sfor every ve P(u, U) ;

(4) For every a € G, we have ®*(ua) = ad (a™1)(DP*(u)) ;

(5) For every integer m, the set {m(u) e M;dim ®*(u) < m} s
open.

As to (5), we remark that dim ®* () is constant on each fibre of
P by (4) and thus can be considered as an integer valued function
on M. Then (5) means that this integer valued function is upper
semicontinuous.

THEOREM 10.2. Let g(u) and g*(u) be the Lie algebras of ®°(u)
and O*(u) respectively. Then ®°(u) is generated by all ®*(v), v e P(u),
and g(u) 15 spanned by all g*(v), v € P(u).

Proof. If ve P(u), then ®%u) = ®%v) > O*(v) and g(u) =
g(v) @ g*(v). By Theorem 8.1, g(«) is spanned by all elements of
the form Q, (X*, Y*) where v € P(u) and X* and Y* are horizontal
vectors at v. Since ,(X*, Y*) is contained in the Lie algebra of
®O(y, V) for every connected open neighborhood V of =(v), it is
contained in g*(v). Consequently, g(x) is spanned by all g*(v)
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where v € P(u). The first assertion now follows from the following
lemma.

LEMMA. If the Lie algebra g of a connected Lie group G is generated
by a family of subspaces {m;}, then every element of G can be written as a
product exp X, -exp X, - -- -exp X, where each X, is contained
in some m;.

Proof of Lemma. The set H of all elements of G of the above
form is clearly a subgroup which is arcwise connected; indeed,
every element of /1 can be joined to the identity by a differentiable
curve which lies in H. By the theorem of Freudenthal-Kuranishi-
Yamabe (proved in Appendix 4), H is a connected Lie subgroup
of G. Its Lie algebra contains all m,; and thus coincides with g.
Hence, H = G. QED.

THeorREM 10.3. If dim ®*(u) is constant on P, then ®°(u) =
O* (u) for every u in P.

Proor. By (3) of Proposition 10.1, ¥ = =(x) has an open
neighborhood U such that ®*(u) > ®*(v) for each v in P(u, U).
Since dim ®*(u) = dim ®*(v), we have O*(u) = O*(v). By the
standard continuation argument, we see that, if v e P(u), then
O*(u) = ®*(v). By Theorem 10.2, we have ®%u) = O*(u).

QED.

We now define the infinitesimal holonomy group at each point
u of P by means of the curvature form and study its relationship
to the local holonomy group. We first define a series of subspaces
m,(«) of g by induction on k. Let my(u) be the subspace of g
spanned by all elements of the form Q,(X, ¥Y), where X and Y are
horizontal vectors at u. We consider a g-valued function fon P of
the form

(L) S="Vi - T(Q, 1)),

where X, Y, V,, ..., V, are arbitrary horizontal vector fields on
P. Let m,(u) be the subspace of g spanned by m,_,(x) and by
the values at # of all functions f of the form (7,). We then set g'(u)
to be the union of all m,(x), £ =0,1,2,....

Proposrrion 10.4.  The subspace o' (u) of g is a subalgebra of g* (u).
The connected Lie subgroup ®’(u) of G generated by g'(u) is
called the nfinitesimal holonomy group at u.
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Proof. We show that m,(4) = g*(«j by induction on k. The
case £ = 0 is obvious. Assume that m,_,(x) < g*(u) for every
point u. It is sufficient to show that, for every horizontal vector
field X and for every function f of the form (/,_;), we have
X,.Jfeg*(u). Let u,, |t] < ¢ for some ¢ > 0, be the integral curve
of X with u, = u. Since u, is horizontal, we have g*(u,) < g*(u)
by (3) of Proposition 10.1. Therefore, f (u;) € m;_4(u,) = g*(u,) <

g*(u). On the other hand, X, f = lim% [ f(u,) — f ()] so that
t—0

X, fis in g*(u). Consequently, g'(x) is contained in g*(u).
To prove that g’'(u) is a subalgebra of g, we need the following
two lemmas.

Lemma 1. Let f be a g-valued function of type ad G on P. Then

(1) For any vector field X on P, we have v(X), - f = —[w, (X), f ()],
where v(X) denotes the vertical component of X.

(2) For any horizontal vector fields X and Y on P, we have

o([X, Y1) f = 2[Q(4X, ¥), f (4)].
(3) If X and Y are vector fields on P whick are invariant by all R,,
a e G, then Q(X, Y) and Xf are functions of type ad G.
Proof of Lemma 1. (1) Let A = w,(X) e g and a, = exp ¢4.
Then

o(X), - f = ALf =i [f(ua) — f(0)]

— lim > [ad (a7 ") (f (W) — f(¥)]

t—0 !

= —[4,f ()] = —[w.(X),f ()]
(2) By virtue of the structure equation (Theorem 5.2), we have
2Q,(X,Y) = 2(dw) (X, Y)
= X, (o(Y)) — Y (0(X)) — o,([X, Y])
= —o,([X, Y]).
Replacing X by [X, Y] in (1), we obtain (2).
(3) Since Q is of type ad G (cf. §5 of Chapter 1I), we have

Quo(RX, R, Y) = ad (a7)(Qu.(4, 1)),
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P

which shows that Q(X, Y) is of type ad G, if X = R, X and ¥ =
R,Y. We have also

(X Vua = Xuof = (BN = X (fo R,)
= ad (a)(X,f) = ad (a™)(Xf).,

if f'is of type ad G and X is invariant by R,. This completes the
proof of Lemma 1.

Let X, = 0/0x?, where x%, . . ., 2™ is a local coordinate system in
a neighborhood U of ¥ = = (u). Let X* be the horizontal lift of X,.
Consider a g-valued function f of the form

(1) S=X3 - XHQXE, XT)),
where 4, [, j;, . . . , J, are taken freely from 1, ..., n.

LEmMA 2. For each k, m,(u) is spanned by wm,_,(u) and by the
values at u of all functions f of the form (II,).

Proof of Lemma 2. The proof is by induction on £. The case
k = 01is obvious. Every horizontal vector field in #=1(U) is a linear
combination of X¥,..., X* with real valued functions as
coefficients. It follows that every function f of the form ([,) is a
linear combination of functions of the form (II), s < k, with
real valued functions as coefficients, in a neighborhood of u. It is
now clear that, if the assertion holds for £ — 1, it holds for .

We now prove that g'(u) is a subalgebra of g by establishing the
relation [m,(u), m,(4)] € m, .o(%) for all pairs of integers £ and
5. In view of Lemma 2, it is sufficient to prove that, for every func-
tion f of the form (I;) and every function g of the form (I7}), the
function [f,g](¥) = [f(u), g(u)] is a linear combination of
functions of the form (/,), r < £ -+ s + 2, with real valued func-
tions as coefficients. The proofis by induction on s.

Let s =0 and let f(x) = Q, (X, ¥), where X and Y are hori-
zontal vector fields. Since g is of type ad G, we have, by (2) of
Lemma 1,

2Q,(X, ¥), gw)] = o([X, Y1), - &
On the other hand, we have
o([X, Y])w g =X, Y]y g — A([X, T]), - g
= X, (Yg) — Y, (Xg) — A([X, Y]), - g,
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where A[X, Y] denotes the horizontal component of [X, Y]. The
functions X(Yg) and Y(Xg) are of the form (/,,,) and the function
h([X, Y])gis of the form ([, ;). This proves our assertion for s = 0
and for an arbitrary £.

Suppose now that our assertion holds for s — 1 and every &.
Every function of the form (/,) can be written as Xf, where fis a
function of the form (/,_;) and X is a horizontal vector field. Let
g be an arbitrary function of the form (/7). Then

The function [ f, Xg] is a linear combination of functions of the
form (I), r <k + s+ 1, by the inductive assumption. The
function X[ f, g] is a linear combination of functions of the form
(1), r < s+ k + 2, also by the inductive assumption. Thus, the

function [Xf, g] is a linear combination of functions of the form

(L), r=s+k+ 2. QED.
PropositioN 10.5.  The wnfinitesimal holonomy groups have the
Jfollowing properties :

(1) @'(u) s a connected Lie subgroup of the local holonomy group
O* (u) ,

(2) @'(ua) = ad (a%) (@' () and ¢'(ua) — ad (a2)(g'(4)) ;

(3) For each integer m, the set {m(u) ¢ M; dim ®'(u) = m} is open;

(4) If @' (u) = ©*(u) at a point u, then there exists a connected open
neighborhood U of x = mw(u) such that @' (v) = O*(v) = O’ (u) =
O* (u) for every v e P(u, U).

Proof. (1) is evident from Proposition 10.4. (2) follows from

LemmA 1. For each k, we have m(ua) = ad (a=1) (m,()).

Proof of Lemma 1. The proof is by induction on £. The case
k = 01s a consequence of the fact that Q is of type ad G. Suppose
the assertion holds for £ — 1. By (3) of Lemma 1 for Proposition
10.4, every function of the form (II,) is of type ad G. Our lemma
now follows from Lemma 2 for Proposition 10.4.

(2) means that ®'(¥) can be considered as a function on M. (3)
is a consequence of the fact that, if the values of a finite number
of functions of the form (/,) are linearly independent at a point «,
then they are linearly independent at every point of a neighbor-
hood of u. Note that (3) means that dim ®'(x), considered as a
function on M, is lower semicontinuous. To prove (4), assume
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®'(u) = ®*(u) at a point u. Since dim ®'(u) is lower semicon-
tinuous and dim ®*(x) is upper semicontinuous [cf. (5) of
Proposition 10.1], the point ¥ = =(u) has a neighborhood U such
that

dim ®'(v) = dim ®'(z) and dim ®*(v) < dim O* ()
for v e n71(U).
On the other hand, ®*(v) > ®'(v) for every v e #~1(U). Hence,
dim ®*(v) = dim @' (v) = dim ®*(x) = dim @' ()

and, consequently, ®*(v) = ®'(v) for every v e v~ 1(U). Applying
Theorem 10.3 to P|U, we see that ®(u, U) = ®*(u) and
OOy, U) = ©*(v). If ve Plu, U), then ®u, U) = @0, U) so
that ®*(u) = ®*(v). QED.

Tueorem 10.6. Ifdim @' (v) s constant in a neighborhood of u in P,
then @' (u) = O*(u).

Proof. We first prove the existence of an open neighborhood
U of x = =(u) such that g'(u) = g'(v) for every ve P(u, U). Let
f1, - - -, f, be a finite number of functions of the form (II,) such
that f,(u), ..., f,(x) form a basis of g'(x). At every point v of a
small neighborhood of u, f,(v), . . ., f,(v) are linearly independent
and, by the assumption, they form a basis of g'(v). Since f3, . . . , f;
are of type ad G, fi(va), ..., fi(va) form a basis of g'(va) =
ad (a1)(g'(v)). This means that there exists a neighborhood U of
x = w(u) such that f,(v), . . ., f,(v) form a basis of g’(v) for every
point v e #~1(U). Now, let v be an arbitrary point of P(u, U) and
let u,, 0 < ¢t < 1, be a horizontal curve from % to v in = 1(U) so
that u = u, and v = u»;. We may assume that u, is differentiable;
the case where u, is piecewise differentiable follows easily. Set
g:(t) = fi(u), 1 =1,...,s, and X = u,. Since X is horizontal,
we have

(g fde), = (XF)(u) e g'(u), i=T,...,5
Since g,(¢), . . ., g,(¢) form a basis for g'(u,), dg;/dt can be expressed
by
(dgifdt), = Zj_y A;;(8)g4(2),

where 4,,(!) are continuous functions of ¢. By the lemma for
Proposition 3.1, there exists a unique curve (a,;(¢));;—, in
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GL(s; R) such that

dayfdt = 2%y Aipaz; and  a;,(0) = 6,.
(Note that (4,,(¢)) e gl(s; R) corresponds to Y,e T,(G) in the
lemma for Proposition 3.1.) Let (b,,(¢)) be the inverse matrix of
(a:5(t)) so that dby;ldt = —Zi_y by
Then

4 s o (9by . dg
Zi (ijl bz‘a‘gj) - 2j=1(%)g3~ -+ Zkzl bzk(d_tk)

db,, ]
= Z;?:l(—dT + g bikAzu')ga' = 0.

Since b,,(0) = 4,;, we have
251 b4s()g5(t) = 2:(0).

This means that g'(x,) = g’(%) and, in particular, g'(v) = g'(«).
Taking U sufficiently small, we may assume that
g*(u) @ g*(v) @ g'(v) @ my(v) for every v e P(u, U).
By Theorem 8.1, the Lie algebra of ®°u, U) is spanned by all
my(v), vePlu, U). A fortiors, g*(«) is spanned by all ¢'(v),
v e P(u, U). Since g'(v) = g'(u) for every v e P(u, U) as we have
just shown, we may conclude that g*(u) = ¢'(v) and ®*(u) =

' (u). QED.
CoroLrLary 10.7. If dim ®’'(u) is constant on P, then ®°(u) =
O*(u) = @' (u).

Proof. 'This follows from Theorems 10.3 and 10.6. QED.

TueoreM 10.8. For a real analytic connection in a real analytic
principal fibre bundle P, we have ®°(u) = O*(u) = @' (u) for every
uelP.

Proof. We may assume that P = P(u) and, in particular, P
is connected. It suffices to show that dim @’ () is locally constant;
it then follows that dim ®’(«) is constant on P and, by Corollary
10.8, that ®%(u) = ®*(u) = ®'(u) for every u e P. Let x1, ..., x"
be a real analytic local coordinate system with origin ¥ = m(u).
Let U be a coordinate neighborhood of x given by Z, (%2 < a2
for some a > 0. We want to show that dim ®’(«) is constant on
7 1(U). Let X, = d/0x* and let X} be the horizontal lift of X,.
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For any set of numbers (al, ..., a") with X, (a%)2 = 1, consider
the vector field X = X, a’X; on U. Let x, be the ray given by
x%(t) = a’t and let u, be the horizontal lift of x, such that u = u,.
We prove that g'(4) = g'(u,) for every ¢ with [¢| < a.
Consider all the functions f of the form (/I,), £ = 0,
S= X5 X (QXE, X))

?

defined on #»71(U). We set k(¢) = f(u,). Then the functions £(f)
are analytic functions of ¢. For each ¢, with |{)| < a, there exists
é > Osuch that all the functions £(¢) can be expanded in a common
neighborhood |t — ¢,| < ¢ in the Taylor series:

Bt) = S0 — (¢ — 1)"ho™ (1)

—0
m!

1
h(te) = Zymo — (lg — )"A™ (7).

If X* is the horizontal lift of X, then we can write A'(f) = X} f,
R'(t) = X5 (X*f) and so on. The fact that there exists such a
d common to all £(¢) follows from the lemma we prove below.
Now, if [t — ¢)| < 6, then all ™ (¢) belong to g'(y, ). The first
power series shows that g'(u,) is contained in g'(u, ). Similarly,
the second power series shows that g'(u, ) is contained in g'(u,).
This means that g¢'(u,) = g'(u,,) for |t — ¢,| < 6. The standard
continuation argument shows that g’(u,) = ¢'(u) for every ¢ with
|t| < a, proving our theorem.

LeEMMA. In a real analytic manifold, let x, be the integral curve of a
real analytic vector field X such that x, = x, where X, = 0. For any real
analytic function g and for a finite number of real analytic vector fields
Xy, - .., X,, consider all the functions of the form

S(x) = (X, - X;8)(x)
Il(t) =f(xt)>

where j,, . .., J, are taken freely from 1,2, ...,s. Then there exists

0 > 0 such that the functions h(t) can be expanded into power series in a
tm

common netghborhood |t| << & as follows: h(t) = Zy'_o— A™(0).
m!
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Proof. Since X, # 0, we may take a local coordinate system
xl, ..., x" such that X = d/dx! and », = (¢4,0,...,0) In a
neighborhood of x. The preceding expansions of 4(¢) are nothing
but the expansions of f (x) into power series of x1. Each X is of
the form X, = X, f;, - d/0x’. Since f and f,; are all real analytic,
they can be expanded into power series of (xl,...,x") in a
common neighborhood |x*| < a for some ¢ > 0. Our lemma then
follows from the fact that if f; and f, are real analytic functions
which can be expanded into power series of x!, ..., %" in a
neighborhood x| < a, then the functions f, f, and ¢f,/dx’ can be
expanded into power series in the same neighborhood. QED.

The results in this section are due to Ozeki [1].

11. Invariant connections

Before we treat general invariant connections, we present an
important special case.

THEOREM 11.1.  Let G be a connected Lie group and H a closed sub-
group of G. Let g and Yy be the Lie algebras of G and H respectively.

(1) If there exists a subspace m of g such that g = § + m (direct sum)
and ad (H)m = m, then the H-component w of the canonical l-form 0
of G (¢f. §4 of Chapter 1) with respect to the decomposition g = b + m
defines a connection in the bundle G(G|H, H) which is invariant by the left
translations of G;

(2) Conversely, any connection in G(G[/H, H) invariant by the left
translations of G (if it exists) determines such a decompositiong = § + m
and is obtainable in the manner described in (1) ;

(8) The curvature form Q of the invariant connection defined by w in (1)
15 gien by

Q(X, Y) — —3[X, Y]y (b-component of —}[X, Y] € g),
where X and Y are arbitrary left invariant vector fields on G belonging to
m;

(4) Let g(e) be the Lie algebra of the holonomy group ®(e) with
reference point e (identity element) of the invariant connection defined in (1).
Then g(e) 15 spanned by all elements of the form [X, Y]y, X, ¥ € m.

Proof. (1) The proofis straightforward and is similar to that of
Proposition 6.4. Under the identification g ~ 7,(G), the sub-
space m corresponds to the horizontal subspace at e.
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(2) Let w be a connection form on G(G/H, H) invariant by the
left translations of G. Let m be the set of left invariant vector fields
on G such that w(X) = 0. It is easy to verify that ¢ = § 4+ m is
a desired decomposition.

(3) A left invariant vector field is horizontal if and only if it is
an element of m. Now, (3) follows from Corollary 5.3.

(4) Let g, be the subspace of g spanned by the set {Q,(X, ¥);
X, Y em}. Let g, be the subspace of g spanned by the set
{Q(X,Y); X, Yem and ueG}. By Theorem 8.1, we have
g; < g(¢) = g,- On the other hand, we have g; = g,asQ, (X, ¥) =
Q,(X, Y) for any X, Y ¢ m and u ¢ G. Now, (4) follows from (3).

QED.

Remark. (1) can be considered as a particular case of Proposi-
tion 6.4. Let P = (G/H) x G be the trivial bundle over G/H with
group G. We imbed the bundle G(G/H, H) into P by the mapping

f defined by
Sw) = (w(u),uw), ueG,

where 7: G — G/H is the natural projection. Let ¢ be the form
defining the canonical flat connection (cf. §9) of P. Its h-com-
ponent, restricted to the subbundle G(G/H, H), defines a connec-
tion (Proposition 6.4) and agrees with the form w in (1).

Going back to the general case, we first prove the following
proposition which is basic in many applications.

ProrosiTioN 11.2.  Let @, be a 1-parameter group of automorphisms
of a principal fibre bundle P(M, G) and X the vector field on P induced by
@, Let I' be a connection in P invariant by ¢,. For an arbitrary point u,
of P, we define curves u,, x,, v, and a, as follows :

Uy = @y(U), %y = (),
v, = the horizontal lift of x, such that vy, = uy,
Uy = Uy,

Then a, 15 the 1-parameter subgroup of G generated by A = v, (X),
where w is the connection form of I.
Proof. As in the proof of Proposition 3.1, we have

w(d,) = (ad (¢ 1)) w(d,) + a7 'd;.

Since v, is horizontal, we have w(i,) = 4, 'd,. On the other hand,
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we have 4, = ¢, (X, ) and hence w(#,) = 0(X,) = 4, since
the connection form w is invariant by ¢,. Thus we obtain a; 'd, =

A QED

Let K be a Lie group acting on a principal fibre bundle
P(M, G) as a group of automorphisms. Let %, be an arbitrary
point of P which we choose as a reference point. Every element of
K induces a transformation of M in a natural manner. The set J
of all elements of K which fix the point x, = 7 (x,) of M forms a
closed subgroup of K, called the isotropy subgroup of K at x,. We
define a homomorphism 2: J — G as follows. For each jeJ,
]uo is a point in the same fibre as u, and hence is of the form
Juy = uga with some a € G. We define 1(j) = a. If j, ;' € J, then

uh(17") = (11")uo = J(eA(5")) = (J4e)2(J)

= (uoA(1))H(J") = uo(2(1)2(J"))-

Hence, A(jj') = A(j)A(j'), which shows that : J — Gis a homo-
morphism. It is also easy to check that 1 is differentiable. The
induced Lie algebra homomorphism { — g will be also denoted by
the same 4. Note that 1 depends on the choice of «,; the reference
point #, is chosen once for all and is fixed throughout this section.

Proposition 11.3.  Let K be a group of automorphisms of P(M, G)
and I' a connection in P invariant by K. We define a linear mapping

Ait—>gly AX) = w0, (R), X,
where X is the vector field on P induced by X. Then

(1) A(X) = 2(X)  for Xej;

(2) Aad (j)(X)) = ad (A(J))(A(X))  forjeJ and X €,
where ad (7) s the adjoint representation of J in t and ad (A(J)) is that
of G in g.

Note that the geometric meaning of A(X) is given by Proposition
11.2.

Proof. (1) We apply Proposition 11.2 to the l-parameter
subgroup ¢, of K generated by X. If X ¢, then the curve x, =
w(@p,(uy)) reduces to a single point x, = =(u,). Hence we have
@:(tty) = upA(p,). Comparing the tangent vectors of the orbits
®.(ty) and uyh(p,) at uy, we obtain A(X) = A(X).
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(2) Let X etand j e J. Weset Y = ad () (X). Then Y generates
the 1-parameter subgroup jp, ;=" which maps u, into jo, 7~ *(u,) =

‘].(pt(uoﬂ.(j_l)) =‘].(R,1(j—1)(ptuo). It fOIIOWS that Yuo :j(R}_(j—l)Xuo).
Since the connection form o is invariant by 7, we have

wuo(Y ) = wuo(f(RA(j-l)Xuo)) = wj‘luo(Rl(j—l)Xuo)
= ad (A())) (wy,(X,,)) = ad (A()))(A(X)).
QED.
Prorosrrion 11.4.  With the notation of Proposition 11.3, the
curvature form Q of I' satisfies the following condition :
2Q, (X, 7) = [AX), A(Y)] — A([X,Y]) for X,¥ et

Proof. From the structure equation (Theorem 5.2) and
Proposition 3.11 of Chapter I, we obtain

20(X, V) = 2dw(X, ¥) + [o(X), o(T)]
= X(o(7)) — T(0(X)) — o([X, T]) + [o(X), o(F)].

Since w is invariant by K, we have by (c) of Proposition 3.2 of
Chapter I (cf. also Proposition 3.5 of Chapter I)

X(o(D)) — o([X, 71) = (Lgw) () =0,
P(o(X)) — o7, X]) = (Lyw)(X) = 0.

On the other hand, X — X being a Lie algebra homomorphism,
we have o

0, ([X; Y]) = A([4, Y]).
Thus we obtain

2Q,,(X, 7) = [w,,(X), 0,,(7)] — A([X, Y])
= [A(X), A(Y)] — A([X, Y]).
QED.

We say that K acts fibre-transitively on P if, for any two fibres of P,
there is an element of K which maps one fibre into the other,
that is, if the action of K on the base M is transitive. If J is the
1sotropy subgroup of K at x, = m(u,) as above, then M is the
homogeneous space K/J.

The following result is due to Wang [1].

THEOREM 11.5. If a connected Lie group K is a fibre-transitive auto-
morphism group of a bundle P(M, G) and if J s the isotropy subgroup of
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K at xy = 7(uy), then there is @ 1:1 correspondence between the set of K-
invariant connections in P and the set of linear mappings A: T — g
which satisfies the two conditions in Proposition 11.3; the correspondence
15 given by ~

A(X) = o, (X) Sor X ef,

where X is the vector field on P induced by X.

Proof. In view of Proposition 11.3, it is sufficient to show that,
for every A:f — g satisfying (1) and (2) of Proposition 11.3,
there is a K-invariant connection form w on P such that A(X) =
wuo(f ) for X ef. Let X* e T,(P). Since K is fibre-transitive, we
can write

Uy = kua = ko Ru
ko RX* = X’uo + A3,

where ke K, a e G, X e k and A* is the fundamental vector field
corresponding to 4 € g. We then set

o(X*) = ad (a)(A(X) 4 4).
We first prove that o(X*) is independent of the choice of X and
4. Let
X' —{—A;"ozf +B* where Yef and Beg,

so that X — Yu = B} — A* From the definition of 2: | — g,
it follows that A(X Y ) = B A. By condition (1) of Proposi-
tion 11.3, we have A(X —7Y) = AX —7) = AX) — A(Y).
Hence, A(X) + 4 = A(Y) + B.

We next prove that w(X*) is independent of the choice of £
and a. Let

Uy = kua = kqua, (kye K and a;€¢G),

so that kk~'wy, = uya; 'a and kk~' e J. We set j = kik~L. Then
A(j) = a;'a. We have

kl © RalX* :jk © Ra}.(j"l)X*
=] Rl(j-l)(k © RaX*) :j ° Rl(j—l)(Xuo + Azﬂ:o) .
By Proposition 1.7 of Chapter I, we have

o~ ~

Jo Rigny(Xy,) = j(Xopsv) = Z,,,  where Z = ad (j)(X).
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-

By Proposition 5.1 of Chapter I, we have
J. ° Rz(j—l)(Afzo) - Rl(j‘1)<jA::0) = Rl(j‘l)A;:Lo — Rl(j—l)A::oA(j) = C{fo,
where C = ad (4(y))(4). Hence we have

kyoR, X* = Z, + Cx,
ad (a:)(A(Z) + C€) = ad (a,)(A(ad (5)(X)) + ad (2(5))4)
= ad (ay)[ad (A(7))(A(X) + 4)]
= ad (a) (A(X) + 4).
This proves our assertion that w(X*) depends only on X*.

We now prove that w is a connection form. Let X* ¢ 7, (P) and
uy, = kua as above. Let b be an arbitrary element of G. We set

Y*¥* = R X*e T, (P), where v = ub,
so that u, = kub(b~'a) = kv(b~1a). We then have
koRy1,Y* =ko R 1,RX* =FkoRX* = (Xuo + A3)
and hence
(R, X*) = w(7*) = ad (b71a)(A(X) + 4) — ad (5 (w(X*)),

which shows that o satisfies condition (b’) of Proposition 1.1.
Now, let A be any element of g and let #, = Aua. Then

koR,(Af) = R, k(4}) = R,(A4},) = B, where B =ad (a)(4).

Hence we have

w(43) = ad (a)(B) = 4,

which shows that w satisfies condition (a’) of Proposition 1.1.

To prove that w is differentiable, let u; be an arbitrary point of
P and let u, = k,u,a,. Consider the fibre bundle K(M, J), where
M = K|J. Let 0: U — K be a local cross section of this bundle
defined in a neighborhood U of #(u,) such that ¢(7 (%)) = ;. For
each u e w~1(U), we define £ € K and a € G by

k= o(n(u) and wu, = kua.

‘Then both £ and a depend differentiably on u. We decompose the
vector space f into a direct sum of subspaces: f = | + m. For an
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arbitrary X* ¢ T, (P), we set
ko R, (X*) = Xuo + Az, where X € m.

Then both X and A are uniquely determined and depend dif-
ferentiably on X*. Thus o(X*) = ad (a)(A(X) + 4) depends
differentiably on X*.

Finally, we prove that w is invariant by K. Let X* ¢ T,(P) and
g = kua. Let k; be an arbitrary element of K. Then £, X* ¢ T}, ,(P)
and u, = kk{'(ku)a. Hence,

kkilo R,(k,X*) = ko R (X*).

From the construction of w, we see immediately that w(k,X*) =

o(X*). QED.

In the case where K is fibre-transitive on P, the curvature form
Q, which is a tensorial form of type ad G (cf. §5) and is invariant
by K, 1s completely determined by the values Quo(f, 1), X,Y et
Proposition 11.4 expresses Q, (X, ¥) in terms of A. As a con-

sequence of Proposition 11.4 and Theorem 11.5, we obtain

CoroLLARY 11.6. The K-invariant connection in P defined by A is
Sflat if and only if A: ¥ — g is a Lie algebra homomorphism.

Proof. A connection is flat if and only if its curvature form
vanishes identically (Theorem 9.1). QED.

THEOREM 11.7.  Assume in Theorem 11.5 that ¥ admits a subspace
m such that T =i -+ m (direct sum) and ad (J)(m) = m, where
ad (J) is the adjoint representation of J in . Then

(1) There 15 a 1:1 correspondence between the set of K-invariant
connections in P and the set of linear mappings A..: m — g such that

Ay(ad (7)(X)) = ad (A(7))(An(X))  for Xem and jeJ;
the correspondence is given via Theorem 11.5 by

AMX if X e,
AX) — (X) ¢ Xej
A(X) if Xem.
(2) The curvature form Q of the K-invariant connection defined by A,
satisfies the following condition :
QQuo(Xa Y) — [Am(X)a Am(Y)] — Am([Xa Y]m) - j'([‘Xa Y]])
for X, Y e m,
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where [X, Y], (resp. [X, Y];) denotes the m-component (resp. j-com-
ponent) of [X, Y] et.

Proof. Let A: f — g be a linear mapping satisfying (1) and (2)
of Proposition 11.3. Let A,, be the restriction of A to m. It is easy
to see that A — A, gives a desired correspondence. The statement
(2) is a consequence of Proposition 11.4. QED.

In Theorem 11.7, the K-invariant connection in P defined by
A, =0 is called the canonical connection (with respect to the
decomposition f = j -+ m).

Remark. (1) and (3) of Theorem 11.1 follow from Theorem
11.7 if we set P(M, G) = G(G/H, H) and K = G; the invariant
connection in Theorem 11.1 is the canonical connection just
defined.

Finally, we determine the Lie algebra of the holonomy group
of a K-invariant connection.

TueoreM 11.8.  With the same assumptions and notation as in
Theorem 11.5, the Lie algebra g(u,) of the holonomy group ®(uy) of
the K-invariant connection defined by A: ¥ — g is given by

my + [A(E), mo] + [A(E), [A(F), me]] + - - -,
where my is the subspace qf g spanned by
{[AX), A(Y)] — A([X, Y]); &, Y et}

Proof. Since K is fibre-transitive on P, the restricted holonomy
group ®°(y,) coincides with the infinitesimal holonomy group
®’(u,) by virtue of Corollary 10.7. We define a series of sub-
spaces m,, £k =0,1,2, ..., of g as follows:

my = m, -+ [A(E), mo],
my = my + [A(E), m,] + [A(F), [A(E), mo]]

and so on. We defined in §10 an increasing sequence of subspaces
m,(u,), £ =0,1,2,...,0f g. Since.the union of these subspaces
m,(u,) is the Lie algebra g'(x,) of the infinitesimal holonomy
group ®'(u,), it is sufficient to prove that m, = m,(u,) for
k=0,1,2,.

By Proposmon 11.4, the subspace mmy is spanned by {Q, X, ¥);
X, Y et} Since Q, (X Y) = (hX LY), where hX and Y

A o
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denote the horizontal components of X and ¥ respectively, m,
coincides with my(%,).
We need the following lemmas.

Lemma 1. If Y is a horizontal vector field on P and X is the vector
field on P induced by an element X of ¥, then [ X, Y] is horizontal.
Proof of Lemma 1. By (c) of Proposition 3.2 of Chapter I
(cf. also Proposition 3.5 of Chapter I), we have
X(o(Y)) = (Lgw)(Y) + o([X, Y]).
Since w(Y) = 0 and Lyw = 0, we have o([X, ¥]) = 0.

LemmA 2. Let V, W, Y,, ..., Y, be arbitrary horizontal vector
fields on P and let X be the vector field on P induced by an element X of E.
Hhen 2 (T, Vy(QUF, W) € m,(ug).
Proof of Lemma 2. We have
X (Y, Ty (QV, W)
= (V) (RY,_y - Y, (QV, W) mod m,(u,),

since [X, Y,] is horizontal by Lemma 1 and [X, Y u (Yoo
Y (Q(V, W))) is in m,(u,). Repeating this process, we obtain

£, Y0, W)
= (1) (Y- HEQZ, W) mod m, ().
By the same argument as in the proof of Lemma 1, we have
2QV, W) = (LeQ)(V, W) + QX, V], W) + QU [ZW]).
Since L = 0, we have
(V)4 (Fra -+ TLEQT, W)
= (Yo (Yra - T(QX, V], W)
+ (¥, (Yeoy - T(QV, [X, W))).

The two terms on the right hand side belong to m,(x,) as [X, V]
and [X, W] are horizontal by Lemma 1. This completes the
proof of Lemma 2.

Let X, = 0/0x%, where x, ..., x" is a local coordinate system
in a neighborhood of x, = 7 (u,). Let X} be the horizontal lift of




112 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

I

X;. Let
S =45 XR(QUXT, XF))

be a function of the form (I/,) as defined in §10. If /in and v.X
denote the horizontal and the vertical components of X respec-
tively, then Lemma 1 for Proposition 10.4 implies

(hE)uof = —(X)uof + Xopf = [04,(X), f ()] + X, f-
Since XuofG m,(u,) by Lemma 2 and since wuo(X) = A(X), we

have ~
(hX)u S = [A(X), [ (u)]  mod m,(u,).

Assuming that m, = m,(y,) for all r < s, we shall show that
m, =m (uo) Since K is fibre-transitive on P, every horizontal
vector at u, is of the form (AX )u, for some X e f. Hence, m,(u,) is
spanned by m,_,(%,) and the set of all (hX), ,J> where Xe fand f
is a function of the form (/I,_,). On the other hand, m, 1s spanned
bY ms , = ms—1<u0) and by [A(f), ms—l] — [A<f)> ms—l(”O)]' In
other words, m, is spanned by m,_; = m,_;(%,) and the set of all
[A(X),f (uy)], where X € f and fis a function of the form (II,_,).
Our assertion m, = m,(u,) follows from the congruence (£X) ug] =

[A(X), f ()] mod m,_,(tg): QED.

Remark. (4) of Theorem 11.1 is a corollary to Theorem 11.8
(cf. Remark made after the proof of Theorem 11.7).




CHAPTER III

Linear and Afline Connections

1. Connections in a vector bundle

Let F be either the real number field R or the complex number
field C, F™ the vector space of all m-tuples of elements of F and
GL(m; F) the group of all m X m non-singular matrices with entries
from F. The group GL(m; F) acts on F™” on the left in a natural
manner; if a = (a}) e GL(m; F) and ¢ = (&,..., &) e Fm,
then aé = (Z; /&, ..., 2, a"&) e F™

Let P(M, G) be a principal fibre bundle and p a representation
of G into GL(m; F). Let E(M, F™, G, P) be the associated bundle
with standard fibre F™ on which G acts through p. We call E a real
or complex vector bundle over M according as F =R or F = C.
Each fibre 75'(x), x € M, of E has the structure of a vector space
such that every u € P with n(x) = x, considered as a mapping of
F™ onto wg'(x), is a linear isomorphism of F™ onto #5(x). Let
S be the set of cross sections ¢: M — E; it forms a vector space
over F (of infinite dimensions if m = 1) with addition and scalar
multiplication defined by

(p +9)(x) = @(x) +9(x), @pes, xeM,
(Ap) (%) = Ae(x)), peS,AeF, xeM.

We may also consider .S as a module over the algebra of F-valued
functions; if 1 is an F-valued function on M, then

(39)(x) = A(x) - px), @eS, xeM.

Let I" be a connection in P. We recall how I' defined the notion
of parallel displacement of fibres of £ in §7 of Chapter II. If
T=x,a=1t=<b,is acurve in M and v* = u, is a horizontal

113
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lift of 7 to P, then, for each fixed & € F™, the curve 7" = u,§ is, by
definition, a horizontal lift of = to E.

Let ¢ be a section of £ defined on v = x, so that ng o p(x,) = x,
for all ¢. Let %, be the vector tangent to = at x,. Then, for each
fixed ¢, the covariant derwative V, @ of @ in the direction of (or with
respect to) %, 1s defined by

V (p = hm /Z [Tt+h( (xt+h)) T (p(xt)]a

where 7% 75(x,.,) — 75l(x,) denotes the parallel displace-
ment of the fibre =z '(x,,,) along 7 from x,,, to x;,. Thus, V, ¢ e
g (x,) for every ¢ and defines a cross section of E along 7. The
cross section ¢ is parallel, that is, the curve ¢(x,) in Eis horizontal,
ifand only if V, ¢ = 0 for all ¢. The following formulas are evident.
If ¢ and y are cross sections of £ defined on 7 = x,, then

Vzt(‘P + ) = Va';t‘P -+ Va';t‘/)-
If 2 is an F-valued function defined on 7, then

Vzt(l‘l’) = M) - Vzt‘P + (#.4) - (xy).

The last formula follows immediately from

T M A(Fegn)  @(Fan)) = MEega) - M (@(%000).

Let X e T,(M) and ¢ a cross section of £ defined in a neighbor-
hood of x. Then the covariant derwative V x @ of @ in the direction of X
is defined as follows. Let 7 = x,, —e < ¢t < ¢, be a curve such that
X = %,. Then set

Vxp =V, 9.
It is easy to see that V x¢ is independent of the choice of 7. A

cross section ¢ of E defined on an open subset U of M is parallel
ifand only if Vyp = O for all Xe T (U), x e U.

Prorosrrion 1.1.  Let X,Y € T,(M) and let ¢ and v be cross sections
of E defined in a neighborhdod of x. Then
(1 VX+Y‘P = Vx¢ + Vyo;

)
(2) Vx(g +9) = Vxp + Vxy;
(3) V,xp = A+ Vxop, where A ¢ F;

(4) Vx(Ap) = A(x) - Vxo + (XA) - p(x), where A is an F-valued
Sfunction defined in a neighborhood of x.
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Proof. We proved (2) and (4). (3) is obvious. Finally, (1) will
follow immediately from the following alternative definition of
covariant differentiation.

Suppose that a cross section ¢ of E is defined on an open subset
U of M. As in Example 5.2 of Chapter 1I, we associate with ¢ an
Fm-valued function f on #=—1(U) as follows:

S@) = v Ho(r(v)),  ven (V).

Given X € T,(M), let X* € T,(P) be a horizontal lift of X. Since f
is an F™-valued function, X*fis an element of F™ and u(X* f) is
an element of the fibre 7z !(x). We have

LemMMA. Vixp = u(X*f).

Proof of Lemma. Let 7 =x, —& < t < ¢, be a curve such
that X = %,. Let 7* = u, be a horizontal lift of 7 such that
u, = u so that X* = g,. Then we have

Xof = lim 2 [flw) — )] = lim 7 (™ (p()) — u(p(x)]

h—0
and

W) = lim + [ i (p(m) — p()].

h—0

In order to prove the lemma, it is sufficient to prove

Tg(‘P("h)) = uouy (@(x)

Set & = u; Y(p(x,)). Then «,£ is a horizontal curve in E. Since
u, & = @(x;), p(x,) is the element of E obtained by the parallel
displacement of uy& = u o u; Y(p(x,)) along 7 from x, to x,. This
implies 7h(@(x;)) = uo u;(p(x,)), thus completing the proof of
the lemma.

Now, (1) of Proposition 1.1 follows from the lemma and the
fact that, if X,Y € T,(M) and X*,Y* ¢ T,(P) are horizontal lifts of
X and Y respectively, then X* -+ Y* is a horizontal lift of X - Y.

QED.

If ¢ is a cross section of £ defined on M and X is a vector field
on M, then the covariant derivative V x¢ of ¢ in the direction of (or
with respect to) X is defined by

(Vxo)(x) = VXx(P-
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-

Then, as an immediate consequence of Proposition 1.1, we have

ProrositioN 1.2.  Let X and Y be vector fields on M, ¢ and v cross
sections of E on M and A an F-valued function on M. Then

(1) Vxip® = Vxp + Vyp;

(2) Vx(¢ +v) = Vxo + Vxy;

(3) Vaixp =1 Vxo;

(4) Vx(dp) =2~ Vxp + (X2)o.

Let X be a vector field on M and X* the horizontal lift of X to
P. Then covariant differentiation V yx corresponds to Lie differ-
entiation Ly, in the following sense. In Example 5.2 of Chapter
IT, we saw that there is a 1:1 correspondence between the set of
cross sections ¢: M — E and the set of F-valued functions fon P
such that f(ua) = a=1( f(4)), a € G (a~! means p(a™t) e GL (m; F)).
The correspondence is given by f(#) = u Y (p(7(«))), ue P. We
then have

ProposiTioN 1.3.  If ¢: M — E is a cross section and f: P — F™
is the corresponding function, then X*f is the function corresponding to the
cross section V xo.

Proof. This is an immediate consequence of the lemma for
Proposition 1.1. QED.

A fibre metric g in a vector bundle £ is an assignment, to each
x € M, of an inner product g, in the fibre wz'(x), which is differ-
entiable in x in the sense that, if ¢ and v are differentiable cross
sections of E, then g (¢(x), w(x)) depends differentiably on x.
When E is a complex vector bundle, the inner product is under-
stood to be hermitian:

gm(Ela Ez) - gm(EZD El) fOI‘ EIDEZ € 77'E_l(x)'

PropositioN 1.4.  If M is paracompact, every vector bundle E over
M admats a fibre metric.

Proof. This follows from Theorem 5.7 of Chapter I just as the
existence of a Riemannian metric on a paracompact manifold.
We shall give here another proof using a partition of unity. Let
{U.}: .1 be a locally finite open covering of M such that »5*(U,)
is isomorphic with U; x F™ for each ¢. Let {s;} be a partition of
unity subordinate to {U,} (cf. Appendix 3). Let 4% be a fibre
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metric in E | U; = ng'(U,). Set g = X, 54", that is,
g(‘E'l: Ez) = Zz Sz(x)hi(E'la E‘z) for ElaEz € 7719:1(96)9 xeM.

Since {U,} is locally finite and s; vanishes outside U,, g is a well
defined fibre metric. QED.

Given a fibre metric g in a vector bundle E(M, F™, G, P), we
construct a reduced subbundle Q(M, H) of P(M, G) as follows.
In the standard fibre F™ of E, we consider the canonical inner
product ( , ) defined by

(&, n) =2, &% for €= (&...,&),p=(n,...,n") e R™,
(& m) =2, &8 for &= (&,...,&),n=(n,...,9") «C™,

Let @ be the set of u e P such that g(u(&), u(n)) = (&, n) for
&,n e F™. Then @ is a closed submanifold of P. It is easy to verify
that @ is a reduced subbundle of P whose structure group H is
given by

H={aeG; pa) e O(m)} if F =R,

H ={aeG; pla) e Uim)} if F = C,

where p is the representation of G in GL(m; F).

Given a fibre metric g in E, a connection in P is called a metric
connection if the parallel displacement of fibres of £ preserves the
fibre metric g. More precisely, for every curve 7 = x,, 0 < ¢t < 1,
of M, the parallel displacement =z'(x,) — wz'(x,) along 7 is
isometric.

ProrosrrioN 1.5. Let g be a fibre metric in a vector bundle
EM,F~ G, P) and Q(M, H) the reduced subbundle of P(M, G)
defined by g. A connection 1" in P is reducible to a connection I in Q if and
only if ' is a metric connection.

Proof. Let 7 =1x, 0 <t <1, be a curve in M. Let &,n e F™
and u, € Q with 7(u,) = %, Let v* = u, be the horizontal lift of +
to P starting from u, so that both 7" = u,(&) and +" = u,(#n) are
horizontal lifts of = to E. If I" is reducible to a connection I'" in ),
then u, € @ for all . Hence,

8(uo(£), uo(m)) = (& 1) = g(u,(&), ui(n)),

proving that I' is a metric connection. Conversely, if I' is a metric
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connection, then (

~

g(uy(&), uy(n)) = glug(8), uo(n)) = (& n).

Hence, u, € . This means that I" is reducible to a connection in
@ by Proposition 7.2 of Chapter II. QED.

Proposition 1.5, together with Theorem 2.1 of Chapter II,
implies that, given a fibre metric g in a vector bundle £ over a
paracompact manifold K, there is a metric connection in P.

Let E(M,F™ G,P) be a vector bundle such that G =
GL(m; F). Let Elegl(m;F), Lie algebra of GL(m;F), be the
m X m matrix such that the entry at the g-th column and the

i y-th row is | and other entries are all zero. Then {El; 1,7 =1, ...,
m} form a basis of the Lie algebra gl(m; F). Let w and Q be the
connection form and the curvature form of a connection I' in P.

Set o o

W == me;EZ, Q - Zi,j Q;E',Z.
It is easy to verify that the structure equation of the connection
I' (cf. §5 of Chapter II) can be expressed by

- - k - e
do; = —2Z, wp A wf -8, 1,7=1,...,m.

Let g be a fibre metric in £ and @ the reduced subbundle of P
defined by g. If I" is a metric connection, then the restriction of w
to @ defines a connection in ¢ by Proposition 6.1 of Chapter IT
and Proposition 1.5. In particular, both w and Q, restricted to @,
take their values in the Lie algebra o(m) or u(m) according as
F = RorF = C. Inother words, both (w!) and (), restricted to
@, are skew-symmetric or skew-hermitian according as F = R or

F = C.

2. Linear connections

Throughout this section, we shall denote the bundle of linear
frames L(M) by P and the general linear group GL(n;R),
n = dim M, by G.

The canonical form 6 of P is the R"-valued 1-form on P defined
by

0(X) = u1(w(X)) for Xe T,(P),
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where u is considered as a linear mapping of R" onto T,,(M)
(ct. Example 5.2 of Chapter I).

Prorosition 2.1.  The canonical form 6 of P is a tensorial 1-form of
type (GL(n; R), R™). It corresponds to the identity transformation of the
tangent space T, (M) at each x € M in the sense of Example 5.2 of
Chapter I1.

Proof. If X is a vertical vector at u € P, then #(X) = 0 and
hence 6(X) = 0. If Xis any vector at « € P and a is any element of
G = GL(n; R), then R, X is a vector at ua € P. Hence,

(R¥O)(X) = O(R,X) = (ua) Y (nw(RX))
— ¢~ Y (w(X)) = a~1(6(X)),

thus proving our first assertion. The second assertion is clear.

QED.

A connection in the bundle of linear frames P over M is called
a linear connection of M. Given a linear connection I' of M, we
associate with each & ¢ R* a horizontal vector field B(§) on P as
follows. For each u € P, (B(&)), 1s the unique horizontal vector at
u such that =((B(§)),) = u(&). We call B(&) the standard horizontal
vector field corresponding to &. Unlike the fundamental vector fields,
the standard horizontal vector fields depend on the choice of
connections.

Prorosition 2.2,  The standard horizontal vector fields have the
Sfollowing properties :

(1) If 0 is the canonical form of P, then 6(B(§)) = & for £ e R";

(2) R, (B(&)) = B(a™&) foraeG and & e R™;

(3) If & £ O, then B(&) never vanishes.

Proof. (1) is obvious. (2) follows from the fact that if X'is a
horizontal vector at u, then R,(X) is a horizontal vector at ua and
m(R,(X)) = w(X). To prove (3), assume that (B(&)), = 0 at some
point u € P. Then u(§) = »((B(%)),) = 0.Sinceu: R* — T, (M)
is a linear isomorphism, & = 0. QED.

Remark. 'The conditions 6(B(&)) = & and w(B(&)) = 0 (where
w 1s the connection form) completely determine B(&) for each
& e R”,

ProposiTioN 2.3.  If A* is the fundamental vector field corresponding
to A e g and if B(&) is the standard horizontal vector field corresponding
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to & e R", then
[4%, B(§)] = B(48),

where AE denotes the image of & by A € g = gl(n; R) (Lie algebra of all
n X n matrices) which acts on R™.

Proof. Let a, be the l-parameter subgroup of G generated by
A, a, = expt4. By Proposition 1.9 of Chapter I and (2) of
Proposition 2.2,

[4%, B(&)] = lim - [B(§) — B, (B())] =lim~ [B(8) — B(e;"8)]

t—0 t—>0 !

Since & — (B(&)), 1s a linear isomorphism of R" onto the horizontal
subspace @, (cf. (3) of Proposition 2.2), we have

lim + [B(&) — Bl )] = B(limzl- (£ — at_IS)) — B(AE).

—0 ¢ t—0
QED.
We define the torsion form ® of a linear connection I' by

® = DO (exterior covariant differential of 0).

By Proposition 5.1 of Chapter IT and Proposition 2.1, © is a
tensorial 2-form on P of type (GL(n; R), R").

‘THEOREM 2.4 (Structure equations). Let w, ©, and Q be the
connection form, the torsion form and the curvature form of a linear
connection I' of M. Then

Ist structure equation :
(X, ¥) = —}(o(X) - 6(Y) — oY) - 6(X)) + O(X, Y),
2nd structure equation :
do(X, ¥) = —3[o(X), o(Y)] + Q(X, 7),

where X,Y € T,(P) and u € P.

Proof. The second structure equation was proved in Theorem
5.2 of Chapter IT (see also §1). The proof of the first structure
equation is similar to that of Theorem 5.2 of Chapter II. There
are three cases which have to be verified and the only non-
trivial case is the one where X is vertical and Y is horizontal.

Choose 4 eg and £eR" such that X = 4* and Y = B(%),.
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Then O(X, Y) =0, o(Y) - 6(X) =0 and o(X) - 6(Y) =
w(A*) - 0(B(&)) = A&, since w(4*) = A and 6(B(&)) = & Onthe
other hand, 246(X, Y) = A*(0(B(&))) — B(&)(0(A*)) — 0([4*,
B(&]) = —0([4*, B(&)]) = —0(B(AE)) = —AE by Proposition
2.3. This proves the first structure equation. QED.

With respect to the natural basis ¢, . . ., ¢, of R*, we write
0 =3, 0%, =23 0%,.
As in §1, with respect to the basis £7 of gl(n; R), we write
w = I, wiE, Q=22 QF.

Then the structure equations can be written as

(1) dof = —Z, wiA 67 4 OF 1 =1,...,n,

(2) dwi = —3, 0} A 0f + Qf ,7]=1,...,n.
Considering 0 as a vector valued form and w as a matrix valued
form, we also write the structure equations in the following

simplified form:
(1) do = —wAl+ 0
(2) do = —w Ao + Q.

In the next section, we shall give an interpretation of the
torsion form and the first structure equation from the viewpoint
of affine connections.

THEOREM 2.5 (Bianchi’s identities). For a linear connection, we have
Ist identity: DO = Q A 0, that s,
3DO(X,Y,Z) =Q(X,Y) 60(Z) + Q(Y, Z) 6(X) + Q(Z,X) 6(Y),
where X,Y,Z ¢ T, (P).
2nd wdentity : DQ = O.

Proof. The second identity was proved in Theorem 5.4 of
Chapter II. The proof of the first identity is similar to that of
Theorem 5.4. If we apply the exterior differentiation 4 to the first
structure equation df = —w A 6 + ©, then we obtain

0= —do A0 +wAdl + dO,




122 FOUNDATIONS OF DIFFERENTIAL GEOMETRY
Denote by £X the horizontal component of X. Then w(hX) = 0,
0(hX) = 0(X) and dw(kX, kY) = Q(X, Y). Hence,

DO(X, Y, Z) = dO(kX, hY, hZ)

— (dw A 0)(RX, kY, kZ) = (Q A 0)(X, Y, Z).
QED.

Let By, ..., B, be the standard horizontal vector fields corre-
sponding to the natural basis ¢, . . . , ¢, of R* and {E/*} the funda-
mental vector fields corresponding to the basis {£7} of gl(z; R). It
is easy to verify that {B;, E*} and {0°, »!} are dual to each other
in the sense that

OB = o, OF(EM) =0,

wf(B;) =0, wf(EP*) = ot
ProrosiTioN 2.6. The n® + n vector fields {B,, Ei*; i, j, k =

1, ..., n} define an absolute parallelism in P, that is, the n* + n vectors
{(B)w (EI*),} form a basis of T, (P) for every u e P.

Proof. Since the dimension of P is n? + n, it is sufficient to
prove that the above 7?2 4 n vectors are linearly independent.
Since A — A¥ is a linear isomorphism of g onto the vertical sub-
space of T, (P) (cf. §5 of Chapter I), {E!*} are linearly independent
at every point of P. By (3) of Proposition 2.2, {B,} are linearly
independent at every point of P. Since {B,} are horizontal and {£/*}

are vertical, {B,, EI*} are linearly independent at every point of P.

QED.

Let T7(M) be the tensor bundle over M of type (r,s) (cf.
Example 5.4 of Chapter I). It is a vector bundle with standard
fiber T} (tensor space over R"™ of type (7, 5s)) associated with the
bundle P of linear frames. A tensor field K of type (7, s) is a cross
section of the tensor bundle 77%(M). In §1, we defined covariant
derivatives of a cross section in a vector bundle in general. As in
§1, we can define covariant derivatives of K in the following three
cases:

(1) V,; K, when K is defined along a curve = = x, of M;

(2) VK, when Xe T,(M) and K is defined in a neighborhood
of x;

(3) V xK, when X is a vector field on M and K is a tensor field
on M.
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For the sake of simplicity, we state the following proposition in
case (3) only, although it is valid in cases (1) and (2) with obvious
changes.

ProposiTion 2.7.  Let T(M) be the algebra of tensor fields on M.
Let X and Y be vector fields on M. Then the covariant differentiation has
the following properties :

(1) Vx: (M) — IT(M) s a type preserving deriwation ;

(2) V x commutes with every contraction

(3) Vxf = Xf for every function fon M,

(4) Vxyp = Vx + Vy;

(5) V,xK = f- V xK for every function fon M and K € T(M).

Proof. Let 7 =1x, 0 < ¢ < 1, be a curve in M. Let T(x,) be
the tensor algebra over 7, (M), T(x,) = ET(x,) (cf. §3 of
Chapter I). The parallel displacement along = gives an iso-
morphism of the algebra T(x,) onto the algebra T(x,) which
preserves type and commutes with every contraction. From the
definition of covariant differentiation given in §l, we obtain
(1) and (2) by an argument similar to the proof of Proposition 3.2

of Chapter I. (3), (4) and (5) were proved in Proposition 1.2.
QED.

By the lemma for Proposition 3.3 of Chapter I, the operation of
Vx on T(M) is completely determined by its operation on the
algebra of functions (M) and the module of vector fields
X(M). Since V x f = Xffor every f e (M), the operation of V x on
T (M) is determined by its operation on X(M). As an immediate
corollary to Proposition 1.2, we have

ProvrositioN 2.8. If X, Y and Z are vector fields on M, then

(1) Vx(Y + Z) = VxY + VxZ;

(2) Vx4pl = VxZ + VyZ;

(3) Vix¥ =f- VY for ewery fe (M) ;

(4) Vx(fY) =/ VxY + (X)Y for every f e F(M).

We shall prove later in §7 that any mapping X(M) x ¥(M) —
X(M), denoted by (X, Y) — Vx7, satisfying the four conditions
above is actually the covariant derivative with respect to a certain
linear connection.

The proof of the following proposition, due to Kostant [1], is
similar to that of Proposition 3.3 of Chapter I and hence is left to
the reader.
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ProposiTiON 2.9.  Let M be a manifold with a Ilinear connection.
Every derwation D (preserving type and commuting with contractions) of
the algebra T(M) of tensor fields into the tensor algebra T(x) at x e M
can be uniquely decomposed as follows :

_D:VX +S,
where Xe T

(M) and S is a linear endomorphism of T ,(M).

Observe that, in contrast to Lie differentiation Ly with
respect to a vector field, covariant differentiation V y makes sense
when X is a vector at a point of M.

Given a tensor field K of type (r, s), the covariant differential VK
of K is a tensor field of type (r, s 4+ 1) defined as follows. As in
Proposition 2.11 of Chapter I, we consider a tensor of type (, 5)
at a point x ¢ M as a multilinear mapping of 7, (M) X -+ - X
T,(M) (s times product) into Tf(x) (space of contravariant tensors

T

of degree r at x). We set
(VK)<X1: MR Xs; X) — (VXK)(XI: v :Xs): XaXie Tw(M)
Proposrrion 2.10.  If K is a tensor field of type (7, s), then

(VK)( Xy, ..., X X) = Vi(K(Xy, ..., X))

T ZS=1 K<X13 ce VXXz': e Xs):

where X, X, e X(M).
Proof. This follows from the fact that Vy is a derivation
commuting with every contraction. The proof is similar to that
of Proposition 3.5 of Chapter I and is left to the reader. QED.

A tensor field K on M, considered as a cross section of a tensor
bundle, is parallel if and only if V4K = 0 for all X e 7,,(M) and
x e M (cf. §1). Hence we have

Prorosrrion 2.11. A tensor field K on M is parallel if and only if
VK = 0.

The second covariant differential V2K of a tensor field K of
type (7, s) is defined to be V(VK), which is a tensor field of type
(r, s + 2). We set

(V2K)(3X; ¥) = (Vy(VK))(GX), where X,V e T,(M),
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that is, if we regard K as a multilinear mapping of 7T,(M) x - - -
X T,(M) (s times product) into Tj(x), then

(VZK)(XD AR Xs: X: Y) — (VY(VK))(XD AR Xs: X)
Similarly to Proposition 2.10, we have

ProrosiTioN 2.12.  For any tensor field K and for any vector fields
X and Y, we have

(V2K) (X5 ¥) = Vy(VxK) — Vg xK.

In general, the m-th covariant differential V™K is defined
inductively to be V(V™~1K). We use the notation (V"K)(;X;;...;
X135 Xp) for (Vx (VPIK)) (GXp5 .00 5 X y).

m

3. Affine connections

A linear connection of a manifold M defines, for each curve
T =1x,0=1t =1, of M, the parallel displacement of the tangent
space 7, (M) onto the tangent space 7, (M); these tangent
spaces are regarded as vector spaces and the parallel displacement
is a linear isomorphism between them. We shall now consider each
tangent space 1,(M) as an affine space, called the tangent
affine space at x. From the viewpoint of fibre bundles, this means
that we enlarge the bundle of linear frames to the bundle of
affine frames, as we shall now explain.

Let R" be the vector space of n-tuples of real numbers as before.
When we regard R” as an affine space, we denote it by A"
Similarly, the tangent space of M at x, regarded as an affine
space, will be denoted by A,(M) and will be called the tangent
affine space. The group A(n; R) of affine transformations of A" is
represented by the group of all matrices of the form

ad = ,
0 1

where a = (a}) e GL(n; R) and & = (&), £eR" is a column
vector. The element @ maps a point 5 of A" into an + &. We have

the following sequence:

0— R* —» A(n; R) L GL(n; R) — 1,
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o

where « 1s an isomorphism of the vector group R" into A(n; R)
which maps & e R" into (6" f) e A(n; R) (I, = identity of
GL(n; R)) and 8 is a homomorphism of A(n; R) onto GL(n; R)
which maps (g f) e A(n; R) into a e GL(n; R). The sequence is
exact in the sense that the kernel of each homomorphism is equal
to the image of the preceding one. It is a splitting exact sequence
in the sense that there isa homomorphismy: GL(n; R) — A(n; R)
such that § o y is the identity automorphism of GL(zn; R); indeed,
we define y by y(a) = (g (1)) e A(n; R), a e GL(n; R). The group
A(n; R) is a semidirect product of R* and GL(n; R), that is, for
every @ € A(n; R), there is a unique pair (a, &) € GL(n; R) x R”
such that @ = «(¢&) - y(a).

An affine frame of a manifold M at x consists of a point p € A, (M)
and a linear frame (X,,...,X,) at x; it will be denoted by
(p; Xy, ..., X,). Let o be the origin of R* and (¢y,...,e¢,) the
natural basis for R*. We shall call (0;e;,...,e¢,) the canonical
frame of A". Every affine frame (p; X;,..., X,) at x can be
identified with an affine transformation @: A® — 4,(M) which
maps (0; ey, ...,¢, into (p; Xy, ..., X,), because (p; Xy, ...,
X,) <> gives a 1:1 correspondence between the set of affine
frames at x and the set of affine transformations of 4™ onto 4,(M).
We denote by A(M) the set of all affine frames of M and define
the projection #: A(M) — M by setting #(d) = x for every
affine frame @ at x. We shall show that A(M) is a principal fibre
bundle over M with group A4(n; R) and shall call A(M) the
bundle of affine frames over M. We define an action of A(n; R) on
A(M) by (@, @) —aa, de A(M) and ad e A(n; R), where 44 is the
composite of the affine transformations 4: A® — A" and @: A™ —
A4,(M). It can be proved easily (cf. Example 5.2 of Chapter I)
that A(n; R) acts freely on A(M) on the right and that A(M) is
a principal fibre bundle over M with group A(n; R).

Let L(M) be the bundle of linear frames over M. Corre-
sponding to the homomorphisms g: A(n; R) — GL(n; R) and
y: GL(n; R) — A4 (n; R), we have homomorphisms f: A(M ) —
L(M) and y: L(M) — A(M). Namely, g: A(M) — L(M) maps
(p; X3y ..., X,) into (Xq,..., X,) and y: L(M) — A(M) maps
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(Xy, ..., X,) Into (0,; X3, . . .,&X,), where o, € A,(M) is the point
corresponding to the origin of T,(M). In particular, L(M) can be
considered as a subbundle of A(AM). Evidently, oy 1s the
identity transformation of L(M).

A generalized affine connection of M is a connection in the bundle
A(M) of affine frames over M. We shall study the relationship
between generalized affine connections and linear connections.
We denote by R” the Lie algebra of the vector group R”. Corre-
sponding to the splitting exact sequence 0 -~ R*» -4 (n; R) —
GL(n; R) — 1 of groups, we have the following splitting exact
sequence of Lie algebras:

0 - R"® - a(n; R) — gl(n; R) — 0.
Therefore,

a(n; R) = gl(n; R) + R* (semidirect sum).

Let & be the connection form of a generalized affine connection of
M. Then y*@ is an a(n; R)-valued 1-form on L(M). Let

7¥6 = o + ¢

be the decomposition corresponding to a(n; R) = gl(z; R) + R",
so that w is a gl(n; R)-valued 1-form on L(M) and ¢ is an R"-
valued l-form on L(M). By Proposition 6.4 of Chapter II, o
defines a connection in L(M). On the other hand, we see easily
that ¢ is a tensorial l-form on L(M) of type (GL(n;R), R?)
(cf. 8§56 of Chapter IT) and hence corresponds to a tensor field of
type (1, 1) of M as explained in Example 5.2 of Chapter II.

ProrosrTioN 3.1. Let & be the connection form of a generalized
affine connection 1" of M and let

y*@=w+<p,

where w is gl(n; R)-valued and ¢ is R"™valued. Let T' be the linear
connection of M defined by w and let K be the tensor field of type (1, 1) of
M defined by ¢. Then

(1) The correspondence between the set of generalized affine connections
of M and the set of pairs consisting of a linear connection of M and a
tensor field of type (1, 1) of M given by T' — (T, K) is 1: 1.

(2) The homomorphism B: A(M) — L(M) maps T into T (cf.
§6 of Chapter II).
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Proof. (1) It is sufficient to prove that, given a pair (I, K),
there is I which gives rise to (', K). Let w be the connection form
of I' and ¢ the tensorial 1-form on L(M) of type (GL(n; R), R")
corresponding to K. Given a vector X e T;(A(M)), choose
XeT,(L(M)) and 4 e A(n; R) such that # = ud and X — R;(X)
is vertical. There is an element 4 € a(n; R) such that

X = Ry(X) + 43,

where A* is the fundamental vector corresponding to A. We define
@ by
B(X) = ad (@7)(w(X) + (X)) + 4.

It is straightforward to verify that @ defines the desired connection
I'.

(2) Let X e T,(A(M)). We set u = B(@) and X = B(X) so that
XeT,(L(M)). Since B: A(M) — L(M) is the homomorphism
associated with the homomorphism fg: A(n; R) — GL(n; R) =
A(n; R)/[R* L(M) can be identified with A(M)/R*® and
B: A(M) — L(M) can be considered as the natural projection
AM) - AM)/R". Since X = B(X) = p(X), there exist
deR"< A(n; R) and 4 ¢R" < a(n; R) such that # = ua and
X = R,(X) + A*. Assume that X is horizontal with respect to I’
so that 0 = w(X) = &(R;(X)) + (A*) = ad (V) (w(X)) + 4.
Hence, &(X) = ad (@)(4) and w(X) + ¢(X) = ad (@) (4). Since
both ¢(X) and ad (@) (4) arein R* and w(X) isin gl(n; R), we have
w(X) = 0. This proves that if X is horizontal with respect to T,
then B(X) is horizontal with respect to I'. QED.

ProrosiTiON 3.2, In Proposition 3.1, let Q and Q be the curvature
Sorms of 1" and T" respectively. Then

where D is the exterior covariant differentiation with respect to T'.

Proof. Let X,Ye T,(L(M)). To prove that (y*Q)(X, Y) =
Q(X,Y) + Dp(X, Y), it is sufficient to consider the following
two cases: (1) at least one of X and Y is vertical, (2) both X and ¥
are horizontal with respect to I'. In the case (1), both sides
vanish. In the case (2), w(X) = w(¥Y) = 0 and hence &(X) =
@(X) and @(Y) = @(¥). From the structure equation of I', we
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have

= —3[p(X), p(¥)] + Q(X, 7).

(Here, considering L(M) as a subbundle of A(AM), we identified
y(X) with X.) On the other hand, y* d&® = dw + dp and hence
do(X, Y) = do(X, Y) 4 dp(X, Y). Since R" is abelian, [¢(X),
¢(Y)] = 0. Hence, do(X,Y) + dp(X,Y) = Q(X, ¥). Since
both X and Y are horizontal, Dw(X, Y) + De(X, ¥Y) = Q(X, Y).

QED.

Consider again the structure equation of a generalized affine

connection I':
do = —1i[o, o] + Q.

By restricting both sides of the equation to L(M) and by com-
paring the gl(n; R)-components and the R"-components we
obtain

dp(X, Y) = —§([w(X), 9(Y)] — [(Y), (X)]) + Dg(&X, ¥),
do(X,Y) = —}o(X), o(Y)] + Q(X, Y), X,YeT,(L(M).
Just as in §2, we write
dp = —w A ¢ + Dy
do = —w A 0 + Q.

A generalized affine connection I' is called an affine connection if,
with the notation of Proposition 3.1, the R"-valued l-form ¢ is
the canonical form 6 defined in §2. In other words, I' is an
affine connection if the tensor field K corresponding to ¢ is the
field of identity transformations of tangent spaces of M. As an
immediate consequence of Proposition 3.1, we have

THEOREM 3.3.  The homomorphism f: A(M) — L(M) maps
every affine connection T of M into a linear connection T of M. Moreover,
[' — T gives a 1:1 correspondence between the set of affine connections T°
of M and the set of linear connections I" of M.

Traditionally, the words ‘‘linear connection’ and ‘‘affine
Y,

connection” have been used interchangeably. This is justified by
Theorem 3.3. Although we shall not break with this tradition, we
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shall make a logical distinction between a linear connection and
an affine connection whenever necessary; a linear connection of
M is a connection in L(M) and an affine connection is a con-
nection in A(M).

From Proposition 3.2, we obtain

ProrosiTion 3.4.  Let © and Q be the torsion form and the curvature
form of a linear connection I of M. Let Q be the curvature form of the
corresponding affine connection. Then

y*Q =0 4 Q,
where y: L(M) — A(M) is the natural injection.

Replacing ¢ by the canonical form 6 in the formulas:
dp = —w A + Do, do = —wAw + Q,

we rediscover the structure equations of a linear connection proved
in Theorem 2.4.

Let ® (i) be the holonomy group of an affine connection I' of M
with reference point @ € A(M). Let ¥'(u) be the holonomy group
of the corresponding linear connection I' of M with reference
point u = f(i) e L(M). We shall call ®(@) the affine holonomy
group of T or T and W(u) the linear holonomy group (or homogeneous
holonomy group) of T or T'. The restricted affine and linear holonomy
groups D°(%) and ¥°(u) are defined accordingly. From Proposition
6.1 of Chapter 11, we obtain

ProrosrrioN 3.5.  The homomorphism f: A(n; R) — GL(n; R)
maps ©(d) onto Y (u) and () onto WO (u).

4. Developments

We shall study in this section the parallel displacement arising
from an affine connection of a manifold M. Letr = x,,0 < ¢ < 1,
be a curve in M. The afline parallel displacement along = is an
affine transformation of the affine tangent space at x, onto the
afline tangent space at x; defined by the given connection in
A(M). It is a special case of the parallelism in an associated
bundle which is, in our case, the affine tangent bundle whose fibres
are A, (M), x e M. We shall denote this affine parallelism by 7.
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The total space (i.e., the bundle space) of the affine.tangent
bundle over M is naturally homeomorphic with that of the tangent
(vector) bundle over M; the distinction between the two is that
the affine tangent bundle is associated with A(M) whereas the
tangent (vector) bundle is associated with L(M). A cross section
of the affine tangent bundle is called a point field. There is a natural
1:1 correspondence between the set of point fields and the set of
vector fields.

Let # be the affine parallel displacement along the curve =
from x, to x,. In particular, 7, is the parallel displacement
Ay (M) — A4, (M) along 7 (in the reversed direction) from x, to
xo. Let p be a point field defined along 7 so that p, is an element
of A, (M) for each ¢. Then #,(p,,) describes a curve in 4, (M).
We identify the curve = = x, with the trivial point field along =,
that is, the point field corresponding to the zero vector field
along 7. Then the development of the curve 7 in M into the affine
tangent space 4, (M) is the curve #(x,) in A, (M).

The following proposition allows us to obtain the development
of a curve by means of the linear parallel displacement, that is,
the parallel displacement defined by the corresponding linear
connection.

ProrosiTioN 4.1. Given a curve 7 = x,, 0 <t < 1, in M, set
Y, = 74(%,), where 7% is the linear parallel displacement along + from x,
to x, and %, is the vector tangent to 7 at x,. Let C,, 0 < t < 1, be the
curve in A, (M) starting from the origin (that is, Cy = x,) such that C,
1s parallel (in the affine space A, (M) in the usual sense) to Y, for every ¢.
Then G, is the development of 7 into A, (M).

Proof. Let 4, be any point in L(M) such that =(%,) = x, and
u, the horizontal lift of x, in L(M) with respect to the linear
connection. Let @, be the horizontal lift of x, in A(M) with
respect to the affine connection such that #, = u, Since the
homomorphism fg: A(M) — L(M) = A(M)/R* (cf. §3) maps
4, into u,, there is a curve 4, in R* © A(n; R) such that 4, = u,4,
and that 4, is the identity. As in the proof of Proposition 3.1 of
Chapter II, we shall find a necessary and sufficient condition for
d, in order that &, be horizontal with respect to the affine connec-
tion. From _

i, = u,d, + u,d,
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which follows from Leibniz’s formula as in the proof of Proposition
3.1 of Chapter II, we obtain

& (i) = ad (4,7) (@ (%)) + dt_lét . ‘
— ad (&71) (o (i) +03)) + a6, = ad (&%) (0(a)) + 48,

where @ and w are the connection forms of the affine and the
linear connections respectively. Thus #, is horizontal if and only

if 6(z,) = —a,a'. Hence,
Y, = T%(xt) = ”0(”1:_1(’275)) = ”o(o(dt))

— —up(ag ) = —ug(da,/dr).
On the other hand, we have

Cp = 75(x;) = w7 (%)) = (@ (w (1)) = ue(a7(0)).
Hence,
dC,[dt = —uy(da,/dt) = Y,
QED.

CoroLLARY 4.2.  The development of a curve 7 = x,, 0 < ¢t < 1,
into A, (M) is a line segment if and only if the vector fields %, along 7 = x,
is parallel.

Proof. In Proposition 4.1, C, is a line segment if and only if ¥,
is independent of {. On the other hand, Y, is independent of ¢ if
and only if %, is a parallel vector field along . QED.

5. Curvature and torsion tensors

We have already defined the torsion form ® and the curvature
form Q of a linear connection. We now define the torsion tensor field
(or simply, torsion) T and the curvature tensor field (or simply,
curvature) R. We set

T (X,Y) = u(20(X*, Y*))  for X,Y e T,(M),

where u is any point of L(M) with =(u) = x and X* and Y* are
vectors of L(M) at u with »(X*) = X and »(Y*) =Y. We
already know that 7'(X, Y) is independent of the choice of u, X*,
and Y* (cf. Example 5.2 of Chapter II); this fact can be easily
verified directly also. Thus, at every point x of M, T defines a skew
symmetric bilinear mapping 7T,(M) x T ,(M) — T, (M). In

&
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other words, 7'is a tensor field of type (1, 2) such that 7(X, Y)
—T(Y, X). Weshall call T(X, Y) the torsion translation in T (M)
determined by X and Y. Similarly, we set

R(X, Y)Z = u((2Q(X*, Y*))(w1Z)  for X,Y,Z e T, (M),

&

where u, X* and Y* are chosen as above. Then R(X, Y)Z
depends only on X, Y and Z, not on u, X* and Y*. In the above
definition, (2Q(X*, Y*))(u=1Z) denotes the image of u=1Z ¢ R"
by the linear endomorphism 2Q(X*, Y*) e gl(n; R) of R~
Thus, R(X, Y) is an endomorphism of 7' (M) and is called the
curvature transformation of T ,(M) determined by X and Y. It follows
that R is a tensor field of type (1, 3) such that R (X, Y) =
—R(Y, X).

THEOREM J.1. In terms of covariant differentiation, the torsion T
and the curvature R can be expressed as follows :

T(X,Y) =VxY —V, X —[X, 7]
and
R(X,Y)Z = [Vx, Vy]Z — V[X,Y]Z>

where X, Y and Z are vector fields on M.
Proof. Let X*, Y* and Z* be the horizontal lifts of X, ¥ and
Z, respectively. We first prove

Lemma. (VyY), = u(X}(0(Y*))), where w(u) = x.

Proof of Lemma. In the lemma for Proposition 1.1, we proved
that (Vx7Y), = u(X}f), where fis an R"-valued function defined
by f(u) =u(Y,). Hence, f(u) = 0(Y}) for ue L(M). This
completes the proof of the lemma.

We have therefore
T(X,, Y,) — u(20(X%, ¥2))
= u(Xx(0(Y*)) — YX(0(X*)) — 6([X*, Y*],)
= (Vx¥), — (VydX), —[&, Y],
since 7([X*, Y*]) = [X, Y ].

To prove the second equality, we set f = 0(Z*) so that f1s an
R"-valued function on L(M) of type (GL(n; R), R*). We have
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then
([Vx, Vy]Z — Vizv14)s

= u(XG(YHf) — Y (X)) — (RLX*, Y*])o f) = u((o[X*, Y*])S),
where £ (resp. v) denotes the horizontal (resp. vertical) component.
Let A be an element of gl(z; R) such that A¥ = (v[X*, Y*]),,

where A* is the fundamental vector field corresponding to A.
Then by Corollary 5.3 of Chapter II, we have

On the other hand, if 4, is the 1-parameter subgroup of GL(n; R)
generated by 4, then
!
Ap f = lim - [f(ua) — f()]

t—0

—lim 47 (f () — /(4]

t—0

= —A(f (W),

where A( f(u)) denotes the result of the linear transformation
A: R* — R" applied to f («) € R*. Therefore, we have

([Vx, V¥lZ — Vig Z), = u(([X*, Y*]),f) = u(—A(f (v)))

= u(2Q(X3, Y3)(f (u)) = u(2Q(X3, Y3)(u'2)) = R(X, Y¥)Z.
QED.

Prorosrtion 5.2. Let XY, Z W e T, (M) and ue L(M) with
w(u) = x. Let X*, Y*, Z*% and W* be the standard horizontal vector
Sfields on L(M) corresponding to u='X, u='Y, u=Z and u='W respec-
twely, so that w(X¥) = X, w(Y¥) =Y, n(Z¥) = Z and «(W}) =
W. Then

(VxT)(¥, Z) = u(X}(20(Y*, Z*)))
and

(VxR)(Y, Z))W = u((X3(2Q(T*, 2%))) (= W)).

Proof. We shall prove only the first formula. The proof of the
second formula is similar to that of the first. We consider the
torsion 7" as a cross section of the tensor bundle 7%(M) whose
standard fibre is the tensor space T} of type (1, 2) over R Let
f be the Tj}-valued function on L(M) corresponding to the
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torsion 7" as in Example 5.2 of Chapter Il so that, if we set
n =u1Y and { = u='Z, then

Sl ©) = w{(T(X, 2)) ="0(Y%, Z3).
By Proposition 1.3, X¥ f corresponds to V x 7. Hence,
w((VxT)(Y, 2)) = (X3 f)(, §)
= Xi(f (m, §)) = X3(20(T*, Z%))
thus proving our assertion. QED.

Using Proposition 5.2, we shall express the Bianchi’s identities
(Theorem 2.5) in terms of 7, R and their covariant derivatives.

THEOREM 5.3, Let T and R be the torsion and the curvature of a
linear connection of M. Then, for X,Y,Z e T,(M), we have
Bianch?’s Ist identity :

6{R<X> Y)Z} — 6{T<T(X: Y): Z) + (VXT)<Y: Z)};
Bianchi’s 2nd identity :
6{(VXR)<Y> Z) + R(T(X> Y): Z)} = 0,

where S denotes the cyclic sum with respect to X, Y and Z.

In particular, if T = 0, then

Bianchi’s Ist identity: S{R(X, Y)Z} = 0;

Bianchy’s 2nd dentity:  S{(VxR)(Y, Z)} = 0.

Proof. Let u be any point of L(M ) such that =(u) = x. We
lift X to a horizontal vector at # and then extend 1t to a standard
horizontal vector field X* on L(M) as in Proposition 5.2.
Similarly, we define Y* and Z*. We shall derive the first identity

from
D® = QA0 (Theorem 2.5).

We have
6(Q A 6)(X3, Y3, Z8) = 6{2Q(X3, Y3)0(Z;)}
= S{u I (R(X, Y)Z)}.
On the other hand, by Proposition 3.11 of Chapter I, we have
6DO(XE, Y Z¥) = 6dO(Xk, Y Z¥)
= S{XZ(20(Y*, Z%)) —20([X*, Y*],, Z7)}.
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By Proposition 5.2, X}¥(20(Y*, Z*)) = uY((VxT)(Y, Z)). It is
therefore sufficient to prove that

We observe first that -

m([X¥, Y*].) = u(0[X*, Y*].)) = —u(2d0(X3, Y7))
= —u(20(Xx, YE) = —T (X, Y).

Hence we have
—20([X*, Y*1,, Z§) = —u(T(x[X*, Y*],, Z))
=u Y T(T(X, Y), Z2)).
We shall derive the second identity from

DQ =20 (Theorem 2.5).
We have
0 = 3DQ(XE, Y, Z3)

= S{XG(Q(Y*, Z2%)) — Q([X*, Y*],, Z7)}.
On the other hand, by Proposition 5.2, we have
Xa(Q(Y*, 2%)) = 5 ' ((VaR)(Y, Z)).
As in the proof of the first identity, we have
—Q([X*, Y], Z3) = qu (R (T (X, ¥), Z)).
The second identity follows from these three formulas. QED.

Remark. 'Theorem 5.3 can be proved from the formulas in
Theorem 5.1 (see, for instance, Nomizu [7, p. 611]).

ProrositioN 5.4. Let B and B’ be arbitrary standard horizontal
vector fields on L(M ). Then we have

(1) If T = 0, then [B, B'] is vertical ;

(2) If R = 0, then [B, B'] is horizontal.

Proof. (1) 6([B, B']) = —240(B, B') = —20(B, B') = 0.
Hence, [B, B'] is vertical. (2) o([B,B’]) = —2dw(B,B’) =
—2Q(B, B') = 0. Hence, [B, B'] is horizontal. QED.

Let P(u,) be the holonomy subbundle of L(A) through a
point u,e L(M) and ¥(u,) the linear holonomy group with
reference point u,. Let 4,, ..., 4, be a basis of the Lie algebra of
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Y(u,) and A4F, ..., A¥ the corresponding fundamental vector
fields. Let B,, ..., B, be the standard horizontal vector fields
corresponding to the basis ¢;, . .., ¢, of R" These vector fields

Af, ..., A%, By, ..., B, (originally defined on L(M)), restricted
to P(u,), define vector fields on P(u,). Just as in Proposition 2.6,
they define an absolute parallelism on P(u,). We know that
[A¥, A¥] is the fundamental vector field corresponding to [4;, 4,]
and hence is a linear combination of 4§, ..., A¥ with constant
coeflicients. By Proposition 2.3, [A¥, B,] is the standard horizontal
vector field corresponding to 4,¢; € R®. The following proposition
gives some information about [B;, B,].

Proposition 5.5.  Let P(u,) be the holonomy subbundle of L(M)
through uy,. Let B and B’ be arbitrary standard horizontal vector fields.
Then we have

(1) If VT = 0, then the horizontal component of [B, B'] coincides
with a standard horizontal vector field on P(u,).

(2) If VR = 0, then the vertical component of [B, B'] coincides with
the fundamental vector field A* on P(u,), which corresponds to an element
A of the Lie algebra of the linear holonomy group ¥ (u,).

Proof. (1) Let X* be any horizontal vector at u € L(M ). Set
X =n(X*), Y =x(B,) and Z = =(B,). By Proposition 5.2, we
have

Uu

X*(20(B, B')) = uL((VxT)(Y, Z)) = 0.

This means that ®(B, B’) is a constant function (with values in
R") on P(u,). Since 0([B, B']) = —20(B, B’), the horizontal
component of [B, B'] coincides on P(u,) with the standard
horizontal vector field corresponding to the element —20(B, B’)
of R".
(2) Again, by Proposition 5.2, VR = 0 implies
X*(Q(B, B")) = 0.

This means that Q(B, B’) is a constant function on P(y,) (with
values in the Lie algebra of Y(u,)). Since w([B, B']) =
—2Q(B, B'), the vertical component of [B, B’] coincides on

P (u,) with the fundamental vector field corresponding to the
element —2Q(B, B’) of the Lie algebra of W (x,). QED.

It follows that, if VI' = 0 and VR = 0, then the restriction of
[B;, B;] to P(4,) coincides with a linear combination of 4F, .. .,
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.

A%, B,, ..., B,with constant coeflicients on P(u,). Hence we have

COROLLARY 5.6. Let g be the set of all vector fields X on the
holonomy bundle P(uy) such that 6(X) and w(X) are constant functions
on P(uy) (with values in R* and in the Lie algebra of ¥ (u,), respectively).
If VI' =0 and VR = 0, then g forms a Lie algebra and dim g =
dim P (u,).

The vector fields 4%, . .., A*, By, ..., B, defined above form
a basis for g.

6. Geodesics

A curve 1 = x,,a <t < b, where —o0 < a < b < o0, of class
(! in a manifold M with a linear connection is called a geodesic if
the vector field X = %, defined along 7 is parallel along =, that is,
if VX exists and equals 0 for all ¢, where %, denotes the vector
tangent to 7 at x,. In this definition of geodesics, the parametri-
zation of the curve in question is important.

ProrosiTiON 6.1.  Let 7 be a curve of class G in M. A parametri za-
tion which makes = into a geodesic, if any, is determined up to an affine
transformation t — s = at ++ B, where o 7+ 0 and f are constants.

Proof. Let x, and y, be two parametrizations of a curve 7
which make 7 into a geodesic. Then s is a function of ¢, s = s(t),

dt :
and y,, = x,. The vector p, is equal to 7 %,. Since the parallel

displacement along 7 is independent of parametrization (cf. §3

dt :
of Chapter II), 7 must be a constant different from zero. Hence,

s = at + pB, where o 7 0. QED.

If 7 is a geodesic, any parameter ¢ which makes 7 into a geodesic
is called an gffine parameter. In particular, let x be a point of a
geodesic 7 and X e T,(M ) a vector in the direction of . Then
there is a unique affine parameter ¢ for =, 7 = x,, such that x;, = x
and #, = X. The parameter ¢ is called the affine parameter for

7 determined by (x, X).

ProposiTioN 6.2. A curve v of class C* through x € M is a geodesic
if and only if its development into T,(M) s (an open interval of ) a
straight line.
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Proof. This is an immediate consequence of Corollary 4.2.
QED.

Another useful interpretation of geodesics is given in terms of
the bundle of linear frames L(AM).

ProrositioN 6.3.  The projection onto M of any integral curve of a
standard horizontal vector field of L(M) is a geodesic and, conversely,
every geodesic is obtained in this way.

Proof. Let B be the standard horizontal vector field on L(M)
which corresponds to an element & ¢ R". Let 5, be an integral
curve of B. We set x, = w(b,). Then %, = n(b,) = w(B;) = b;&,
where 4,& denotes the image of & by the linear mapping 4,: R* —
T, (M). Since b, is a horizontal lift of x, and £ is independent of
t, b,& is parallel along the curve x, (see §7, Chapter II, in particu-
lar, before Proposition 7.4).

Conversely, let x, be a geodesic in M defined in some open
interval containing 0. Let u, be any point of L(M) such that
w(uy) = xo. We set £ = u; %, e R™. Let u, be the horizontal lift of
x, through u,. Since x, is a geodesic, we have %, = u,&. Since u, is
horizontal and since 6(i,) = & (= (a,)) = u; '%, = & u, is an
integral curve of the standard horizontal vector field B correspond-
ing to &. QED.

As an application of Proposition 6.3, we obtain the following

THEOREM 6.4. For any point x € M and for any vector X ¢ T,(M),
there is a umque geodesic with the imitial condition (x, X), that is, a
unique geodesic x, such that x, = x and %, = X.

Another consequence of Proposition 6.3 is that a geodesic, which
15 a curve of class C', is automatically of class C* (provided that the
linear connection is of class C*). In fact, every standard horizontal
vector field is of class C® and hence its integral curves are all of
class C®. The projection onto M of a curve of class C* in L(M) is
a curve of class ¢ in M.

A linear connection of M is said to be complete if every geodesic
can be extended to a geodesic 7 = x, defined for — o0 < ¢ < o0,
where ¢ is an affine parameter. In other words, for any x ¢ M and
XeT,(M), the geodesic 7 = x, in Theorem 6.4 with the initial
condition (x, X) is defined for all values of {, —o0 < < c0.




140 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

-~

Immediate from Proposition 6.3 is the following

ProrosiTioN 6.5. A linear connection is complete if and only if
every standard horizontal vector field on L(M) is complete.

We recall that a vector field on a manifold is said to be complete
if it generates a global 1-parameter group of transformations of the
manifold.

When the linear connection is complete, we can define the
exponential map at each point x e M as follows. For each X € T,,(M),
let =+ = x, be the geodesic with the initial condition (x, X) as in
Theorem 6.4. We set

exp X = x,.

Thus we have a mapping of 7,(M) into M for each x. We shall
later (in §8) define the exponential map in the case where the
linear connection is not necessarily complete and discuss its
differentiability and other properties.

7. Expressions in local coordinate systems

In this section, we shall express a linear connection and related
concepts in terms of local coordinate systems.

Let M be a manifold and U a coordinate neighborhood in M
with a local coordinate system x%, ..., x". We denote by X, the
vector field 0/0x%, : =1, ..., n, defined in U. Every linear frame
at a point x of U can be uniquely expressed by

where det (X7) # 0. We take (x% Xj) as a local coordinate
system in 7w }(U) < L(M). (cf. Example 5.2 of Chapter I). Let
(¥%) be the inverse matrix of (X3) so that X, X2Y* = 3, VIX¥ = ¢F,
We shall express first the canonical form 6 in terms of the local
coordinate system (x%, X%). Let ey, ..., ¢, be the natural basis for
R” and set
6 = X, O,

ProrositioN 7.1.  In terms of the local coordinate system (x!, X%),
the canonical form 0 = X, 0%, can be expressed as follows :

0: = %, Y d.
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Proof. Let u be a point of L(M) with coordinates (x¢, X%) so
that u maps ¢, into X; X4(X,),, where x = #(u). If X* ¢ T, (L(M))

and if
0 0 )
X* —_— 3
2; l(ax) + 2 (aXJ

so that #(X*) = X, (X)), then
O(X*) = u(Z; ¥(X,),) = Z;(Y; 4) e,

QED.

Let w be the connection form of a linear connection I' of M.

With respect to the basis {£7} of gl(n; R), we write
w = Ei,j w:; E'Z.
Let o be the cross section of L(M) over U which assigns to each
x € U the linear frame ((X),, . . -, (X,)o). We set
wU e G*w.
Then wy is a gl(n; R)-valued 1-form defined on U. We define n®
functions I'y, 7,7,k = 1,...,n,on U by
wU - 2'&,],70(ij dxj)E,{c.

These functions I'Y, are called the components (or Christoffel’s
symbols) of the linear connection I' with respect to the local
coordinate system x1, . . . , ™. It should be noted that they are not
the components of a tensor field. In fact, these components are
subject to the following transformation rule.

ProposiTioN 7.2.  Let I" be a linear connection of M. Let Ty, and
T be the components of T with respect to local coordinate systems

XL, oo, x% and X', ., X", respectively. In the intersection of the two
coordinate neig/zbor/zoods, we have
ox’ ox* dx* 0% 0x*
I3~ 3 T TRy
0x° 0% ox* 0x°0%” Ox

Proof. We derive the above formula from Proposition 1.4 of
Chapter II. Let V be the coordinate neighborhood where the
coordinate system &1, . .., £ is valid. Let & be the cross section of
L(M) over V which assigns to each xeV the linear frame
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((0/0%Y),, . . ., (9] 0&™),). We define a mapping yyp: U NV —
GL(n; R) by

d(x) = o(x) - pyyp(x) forxe UNV.
Let ¢ be the (left invariant gl(n; R)-valued) canonical 1-form on
GL(n; R) defined in §4 of Chapter I; this form was denoted by

0 in §4 of Chapter I and in §1 of Chapter II. If (s}) is the natural
coordinate system in GL(n; R) and if (#) denotes the inverse

matrix of (s%), then
¢ = Zi i dsi B,

the proof being similar to that of Proposition 7.1. It is easy to
verify that
youy = (0x7/0%7)
and hence
0x* (6xi)) ( 0x* 0%  _ )

% — - — . v| EB.
Vove = e (Zl 52 N\ am) | Bx = Zas\Zir 5 50w 4% ) B
With our notation, the formula in Proposition 1.4 of Chapter II

can be expressed as follows:

wy = (ad (ygp)) oy + vEpe.

By a simple calculation, we see that this formula is equivalent to
the transformation rule of our proposition. QED.

From the components I'}, we can reconstruct the connection
form w.

ProrposiTioN 7.3.  Assume that, for each local coordinate system
x1, ..., x", there is given a set of functions Iy, i, 7,k =1,..., n, in
such a way that they satisfy the transformation rule of Proposition 7.2.
Then there is a unique linear connection 1" whose components with respect
toxt, ..., x" are precisely the given functions I'y,. Moreover, the connection
Jorm o =3, ; o} El is given in terms of the local coordinate system
(%%, X§) by

wi =2, Yi(dXt + %, Tk X} dxm), Li=1...,n

Proof. It is easy to verify that the form w defined by the

above formula defines a connection in L(M), that is, o satisfies

the conditions (a’) and (b’) of Proposition 1.1 of Chapter II. The
fact that o is independent of the local coordinate system used
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follows from the transformation rule of T'%; this can be proved by
reversing the process in the proof of Proposition 7.2. The cross
section o: U — L(M) used above to define w; is given in terms
of the local coordinate systems (x?) and (x%, X%) by (x¥) — (%, 8},).
Hence, o*w! = X, I';.dx™ This shows that the components of
the connection I' defined by w are exactly the functions I'j. QED.

The components of a linear connection can be expressed also
in terms of covariant derivatives.

Prorosrrion 7.4.  Let x, . . ., x™ be a local coordinate system in M
with a linear connection I'. Set X, = 0/ox%, 1 = 1,...,n. Then the
components T, of T' with respect to %, . . ., x™ are given by

Proof. Let X} be the horizontal lift of X;. From Proposition
7.3, it follows that, in terms of the coordinate system (x%, X7%), X*
is given by . '

X¥ = (0/0x%) — 2, ., T4 X¥(0/0X)).

To apply Proposition 1.3, let f be the R"valued function on
7 Y(U) < L(M) which corresponds to X;. Then

f =2, Yk,
A simple calculation shows that
X]*f — Zk,lrjtylkek.

By Proposition 1.3, X#f is the function corresponding to V x X,
and hence
Vi X, = 2, T} X,
QED.

Prorosrrion 7.5.  Assume that a mapping X(M) X X¥(M) —
X(M), denoted by (X, Y) — V Y, is given so as to satisfy the conditions
(1), (2), (8) and (4) of Proposition 2.8. Then there 1s a unique linear
connection ' of M such that V Y is the covariant derivative of Y in the
direction of X with respect to T'.

Proof. Leaving the detail to the reader, we shall give here an
outline of the proof. Let x e M. If X, X', Y and Y’ are vector fields
on M and if X = X’ and Y = Y’ in a neighborhood of x, then
(VxY), = (VxY'),. This implies that the given mapping
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X(M) x X(M) — X(M) induces a mapping X(U) x X(U) —
X(U) satistying the same conditions of Proposition 2.8 (where U
is any open set of M ). In particular, if U is a coordinate neighbor-
hood with a local coordinate system x,...,x" we define n®
functions I'y, on U by the formula given in Proposition 7.4. Then
these functions satisfy the transformation rule of Proposition 7.2.
By Proposition 7.3, they define a linear connection, say, I'. It is
clear that V 4 Y is the covariant derivative of Y in the direction of

X with respect to I'. QED.
Let #* be the components of a Vector field Y with respect to a
local coordinate system x, . Y = X, #'(0]0x"). Let #*, be

the components of the covarlant dlfferentlal VY so that V4 YV =
nt;X;, where X; = 0d/dx*. From Propositions 7.4 and 2. 8, we

%o

obta1n the follow1ng formula:
my = 0n'[0x + Xy Tin'.

If X is a vector field with components &% then the components of
V xY are given by X, n’&’.

More generally, if K is a tensor field of type (7, s) with com-
ponents Kji - ¥, then the components of VK are given by

Ku k — aKzl ;:/axk + X, (E Fi“Kil"‘lj;"if)
- Eﬁ 1(2 ij K’l Js)

where / takes the place of ¢, and m takes the place of.]ﬁ. The proof
of this formula is the same as the one for a vector field, except that
Proposition 2.7 has to be used in place of Proposition 2.8. If X
is a vector field with components &¢ then the components of
V xK are given by

S, Ko ie £5,

The covariant derivatives of higher order can be defined
similarly. For a tensor field K with components Kj:::%, V™K
has components K‘l 3 ks e s

The components T? ;3 of the torsion T and the components R,
of the curvature R are defined by

T(Xa': Xk) - Zi T;:an R(Xla XZ)XJ' = Zi R;‘;lei'

Then they can be expressed in terms of the components I'y, of the
linear connection I' as follows.
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ProrosiTioN 7.6. We have
T;jk = ij — F;;:j 5
Rl = (0T 0x* — 0T},/0xY) 4+ X, (T3, — TETh).

Proof. These formulas follow immediately from Theorem 5.1
and Proposition 7.4. QED.

The proof of the following proposition is a straightforward
calculation.

Prorosrrion 7.7. (1) If fis a function defined on M, then
Si =g = 2 T;cjfz
(2) If X is a vector field on M with components &%, then
‘ffz;k — ‘Sflc;l = 2, R;:szj + 2, T{k‘sfj'

Since n2 +n l-forms 6%, i, 1,7,k =1,...,n, define an
absolute parallelism (Proposition 2.6), every differential form on
L(M) can be expressed in terms of these 1-forms and functions.
Since the torsion form ® and the curvature form Q are tensorial
forms, they can be expressed in terms of n 1-forms 6¢ and functions.

We define a set of functions 7% and Ejkl on L(M) by
O =X, %T;:kej A 0%, T;k = _T;;j:

~

i _ 1Pt gk l 5T 7
Qf = 2 §R0" A 0°, Ry = — Ry,

These functions are related to the components of the torsion 7°
and the curvature R as follows. Let o: U — L(M) be the cross
section over U defined at the beginning of this section. Then

~

TN ) £DT _ i
o*Th = T, o*Ry = Ry,

These formulas follow immediately from Proposition 7.6 and

from
o* dft = —X,; o*w; A 0*07 4 ¢*0Y,

- : . :
o* dw; = —X; o*w}, A o*w§ 4 o* (1,
o*0' = dx' and o*w; = X, T dx*.

ProposiTiON 7.8. Let x* = x%(t) be the equations of a curve
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~

T = x, of class C2. Then 7 is a geodesic if and only if
d%x . dx? dx*

g g gy

Proof. The components of the vector field %, along 7 are

given by dxi/dt. From the formula for the components of VY

given above, we see that, if we set X = %,, then VxX =0 is

equivalent to the above equations. QED.

0, 1=1,...;n.

We shall compare two or more linear connections by their
components.

Proposition 7.9. Let I' be a linear connection of M with com-
ponents . For each fixed {, 0 < t < 1, the set of functions *, =
tly, + (1 — )1, defines a linear connection T'* which has the same
geodesics as I'. In particulflr, ¥ = ¥(Ty + TL) define a linear
connection with vanishing torsion.

Proof. Our proposition follows immediately from Propositions

7.3, 7.6 and 7.8. QED.

In general, given two linear connections I' with components
I, and I with components I}, the set of functions (I}, -
(1 — )", define a linear connection for each ¢, 0 < ¢ < 1.
Proposition 7.8 implies that I' and I have the same geodesics if
Ly + Ty = I + Ty

The following proposition follows from Proposition 7.2.

ProrositioN 7.10. If Ty and T, are the components of linear
connections T' and TV respectively, then S% = Iy, — I'y are the com-
ponents of a tenor field of type (1, 2). Conversely, if Iy, are the components
of a linear connection I" and S}, are the components of a tensor field S of
type (1, 2), then Iy = T + SY define a linear connection I". In terms
of covariant derivatives, they are related to each other as follows :

VY = VY + 8(X, Y) for any vector fields X and Y on M,

where V and V' are the covariant differentiations with respect to I' and 1"
respectively.
8. Normal coordinates

In this section we shall prove the existence of normal coordinate
systems and convex coordinate neighborhoods as well as the
differentiability of the exponential map.
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Let M be a manifold with a linear connection I'. Given
XeT, (M), let 7 = x, be the geodesic with the initial condition
(x, X) (cf. Theorem 6.3). We set

exp tX = x,.
As we have seen already in §6, exp ¢tX is defined in some open
interval —e; <t < &, where &; and &, are positive. If the
connection is complete, the exponential map exp is defined on
the whole of 7T,(M) for each x e M. In general, exp is defined
only on a subset of 7,(M) for each x € M.

Prorostrion 8.1.  Identifying each x € M with the zero vector at x,
we consider M as a submanifold of T(M) = U T,(M). Then there

reM

is a neighborhood N of M 1n T(M) such that the exponential map is
defined on N. The exponential map N — M 1s differentiable of class C*,
provided that the connection is of class C*.

Proof. Let x, be any point of M and u, a point of L(M) such
that 7(u,) = x,. For each £ e R", we denote by B(£) the corre-
sponding standard horizontal vector field on L(M) (cf. §2). By
Proposition 1.5 of Chapter I, there exist a neighborhood U* of
u, and a positive number d such that the local I-parameter group
of local transformations exp tB(&): U*¥ — L(M) is defined for
|t| < 4. Given a compact set K of R* we can choose U* and §
for all & € K simultaneously, because B(&) depends differentiably
on ¢&. Therefore, there exist a neighborhood U* of u, and a
neighborhood V of 0 in R” such that exp tB(§): U* — L(M)
is defined for & ¢ V and |t| < 1. Let U be a neighborhood of x, in
M and o a cross section of L(M) over U such that o(x,) = u, and
o(U) < U*. Given x € U, let N, be the set of Xe T,(M) such
that o(x)7'X eV and set N(x)) = U N,. Given Xe N,, set

zelU
& = o(x)71X. Then =((exp tB(&)) - o(x)) 1s the geodesic with the
initial condition (x, X) and hence
exp X = w((exp B(§)) - o(x)).
It is now clear that exp: N(x,) — M is differentiable of class C*.
Finally, we set N = |J N(x,). QED.

TgeM
ProposrTioN 8.2.  For every point x € M, there is a neighborhood N,
of x (more precisely, the zero vector at x) in T,(M) which is mapped
diffeomorphically onto a neighborhood U, of x in M by the exponential map.
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Proof. From the definition of the exponential map, it is
evident that the differential of the exponential map at x is non-
singular. By the implicit function theorem, there is a neighbor-
hood N, of x in T,(M) which has the property stated above.

QED.

Given a linear frame u = (X, ..., X,) at x, the linear iso-
morphism u: R* — T, (M) defines a coordinate system in 7, (M)
in a natural manner. Therefore, the diffeomorphism exp: N, —
U, defines a local coordinate system in U, in a natural manner,
We call it the normal coordinate system determined by the frame u.

ProposiTioN 8.3. Let x%, ..., x™ be the normal coordinate system
determined by a linear frame u = (XY, ..., X") at x e M. Then the
geodesic T = x, with the initial condition (x, X), where X = X, a*'X,, is
expressed by

x=a't, 1=1,...,n.
Conversely, a local coordinate system xY, . . . , x™ with the above property is
necessarily the normal coordinate system determined byu = (X1, ..., X™).

Proof. The first assertion is an immediate consequence of the
definition of a normal coordinate system. The second assertion
follows from the fact that a geodesic is uniquely determined by the

initial condition (x, X). QED.

Remark. In the above definition of a normal coordinate
system, we did not specify the neighborhood in which the co-
ordinate system is valid. This is because if x1, . . . , 2® is the normal
coordinate system valid in a neighborhood U of x and »*, ..., )"
is the normal coordinate system valid in a neighborhood-J of x
and if the both are determined by the frame v = (X, ..., X,),
then they coincide in a neighborhood of x.

ProrositioN 8.4.  Given a linear connection T on M, let T, be its
components with respect to a normal coordinate system with origin x,. Then

I + T =0 at x,.

Consequently, if the torsion of T vanishes, then T% = 0 at x,.

Proof. Let x',...,x™ be a normal coordinate system with
origin x,. For any (al, . . ., a®) € R", the curve defined by x¢ = 4%,
t=1,...,n, 1s a geodesic and, hence, by Proposition 7.8,
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T 5 Dila't, . .., a"t)a’a® = 0. In particular,

%55 T (x0)@a® = 0.
Since this holds for every (a!,...,a"), [ + I =0 at x,. If
the torsion vanishes, then I}, = 0 at x, by Proposition 7.6. QED.

CorOLLARY 8.5. Let K be a tensor field on M with components
K’l % with respect to a normal coordinate system x, ..., x" witlz
orzgm xo. If the torsion vanishes, then the covariant derwatwe Kzl ok
coincides with the partzal a’erwatwe 0K;1:: -/ Ox* at x,,.

Proof. This is immediate from Proposmon 8.4 and the

formula for the covariant differential of K in terms of I'} given

in §7. QED.
CoroLLARY 8.6. Let w be any differential form on M. If the
torsion vanishes, then (o7
do ="A(Vw),

where Vo is the covariant differential of w and A is the alternation defined
in Example 3.2 of Chapter 1.
Proof. Let x, be an arbitrary point of A and #1,...," a

normal coordinate system with origin x,. By Corollary 8.5,
do = A(Vw) at x,. QED.

THEOREM 8.7. Let xY, ..., x" be a normal coordinate system with
origin x. Let U(xy; p) be the neighborhood of x4 defined by X, (x%)% < p2.
Then there is a positive number a such that if 0 < p << a, then

(1) U(xy; p) is convex in the sense that any two points of U(xy; p)
can be joined by a geodesic which lies in U(xy; p).

(2) Each point of U(xg; p) has a normal coordinate neighborhood
contarming U(xy; p).

Proof. By Proposition 7.9, we may assume that the linear
connection has no torsion.

LEmMA 1. Let S(x4; p) denote the sphere defined by %, (x%)% = p2.
Then there exists a positive number ¢ such that, if 0 << p < c, then any
geodesic which is tangent to S(xy; p) at a point, say y, of S(xy; p) lies
outside S(xy; p) in a neighborhood of y.

Proof of Lemma 1. Since the torsion vanishes by our assump-
tion, the components F’k of the linear connection vanish at x, by
Proposition 8.4. Let x* = x%(¢) be the equations of a geodesic
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~

which is tangent to S(x,; p) at a point y = (x1(0), ..., x"(0))
(p will be restricted later). Set

Then

dF L (dt
(E)t=0= 221 g (0) (E)t=0= 0,

d2F dei\e
7~ =) + <0 )

Because of the equations of a geodesic given in Proposition 7.8,
we have

sz) ( . dx? a’x")
dinlll R Y e )
(dt2 t=0 Zije| (95 — 2 L) dt dt fi=o

Since I}, vanish at x,, there exists a positive number ¢ such that
the quadratic form with coefficients (d,, — 2; I'zx?) is positive
definite in U(xy;¢). If 0 < p < ¢, then (d%F/dt?),_, > 0 and
hence F(¢) > p® when ¢ % 0 is in a neighborhood of 0. This
completes the proof of the lemma.

LeEmMA 2. Choose a positive number ¢ as in Lemma 1. Then there
exists a positive number a << ¢ such that

(1) Any two points of U(xy; a) can be joined by a geodesic which lies
in U(xO; C) 5

(2) Each point of U(xy; a) has a normal coordinate neighborhood
containing U(x,; a).

Proof of Lemma 2. We consider M as a submanifold of 7(M)
in a natural manner. Set

p(X) = (x, exp X) for Xe T,(M).

If the connection is complete, ¢ is a mapping of T(AM) into
M x M. In general, ¢ is defined only in a neighborhood of M in
T(M). Since the differential of ¢ at x, is nonsingular, there exist
a neighborhood V of x; in T(M) and a positive number a < ¢
such that ¢: V — U(xy; a) X U(x,; a) is a diffeomorphism. Taking V
and « small, we may assume that exp tX € U(xy;¢) forall X e V
and |¢| = 1. To verify condition (1), let x and _y be points of U(x,; a).
Let X = ¢71(x, ), Xe V. Then the geodesic with the initial
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condition (x, X) joins x and » in U(xy; ¢). To verify (2), let
V,=VnT,(M). Since exp: V,— U(xy;a) 1s a diffeomor-
phism, condition (2) is satisfied.

To complete the proof of Theorem 8.7, let 0 < p < a. Let x
and y be any points of U(x,; p). Let x* = x%(¢), 0 < ¢ < 1, be the
equations of a geodesic from x to » in U(x,; ¢) (see Lemma 2).
We shall show that this geodesic lies in U(xy; p). Set

F(t) ==, (#(t)): for0=<t=<1.

Assume that F(f) = p? for some ¢ (that is, x*(f) lies outside
U(x,; p) for some ¢). Let ¢, 0 < {5 < 1, be the value for which
F(¢) attains the maximum. Then

dF . dx?
0= (G)= e (),

This means that the geodesic x%(¢) is tangent to the sphere
S(x4; po), wWhere pi = F(t,), at the point x*(¢,). By the choice of
to, the geodesic x*(¢) lies inside the sphere S(x4; po), contradicting
Lemma 1. This proves (1). (2) follows from (2) of Lemma 2.

QED.

The existence of convex neighborhoods is due to J. H. C.
Whitehead [1].

9. Linear infinitesimal holonomy groups

Let I" be a linear connection on a manifold M. For each point
u of L(M), the holonomy group ¥(u), the local holonomy
group ¥*(u) and the infinitesimal holonomy group ¥’ (u) are
defined as in §10 of Chapter II. These groups can be realized as
groups of linear transformations of 7,(M), x = =(u), denoted by
¥(x), ¥*(x) and ¥ (x) respectively (cf. §4 of Chapter II).

TueoREM 9.1.  The Lie algebra g(x) of the holonomy group W (x)
is equal to the subspace of linear endomorphisms of T,(M) spanned by all
elements of the form (vR)(X,Y) = 71e R(7X,7Y) o7, where
X,Y € T, (M) and 7 is the parallel displacement along an arbitrary piece-
wise differentiable curve T starting from x.
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Proof. This follows immediately from Theorem 8.1 of Chapter
IT and from the relationship between the curvature form Q on

L(M) and the curvature tensor field R (cf. §5 of Chapter III).
QED.

It is easy to reformulate Proposition 10.1, Theorems 10.2 and
10.3 of Chapter II in terms of ¥'(x) and ¥'*(x). We shall therefore
proceed to the determination of the Lie algebra of W' (x).

THEOREM 9.2. The Lie algebra g’ (x) of the infinitesimal holonomy
group Y'(x) is spanned by all linear endomorphisms of T,(M) of the
Jorm (VERY(X,Y; Vyi;...; Vi), where X, Y, Vi, ..., Vie T, (M)
and 0 < k < o0.

Proof. The proofis achieved by the following two lemmas.

LemMma 1. By a tensor field of type A, (resp. B,), we mean a tensor
Jield of type (1, 1) of the form Vy - - - Vy (R(X, Y)) (resp. (V*R)
(X, Y; Vi ooo 3 V), where X, Y, Vi, ..., V, are arbitrary vector

b

Sields on M. Then every tensor field of type A, (resp. B,) is a linear
combination (with differentiable functions as coefficients) of a finite number
of tensor fields of type B, (resp. 4;),0 < 5 < k.

Proof of Lemma 1. The proof is by induction on £. The case
k =0 is trivial. Assume that V, ---V, (R(X,7Y)) is a sum
of terms like

SIVR) (U, Vi Wys...5 W), 0=j=k—1,
where fis a function. Then we have
Vvk(f(VjR YU, ViWy, oo s W))
= f) - (VR)(U, V; Wys ... s W)

+ (VIR U, V; Wy oo s Wi V)

+ (VIR)(Vy, U, Vs Wys oo 5 W)

+ (VIR)(U, Vy V, W, ooy W)

+ X (VRY(U, Vs Wy oo s Vy Wi oo W),

This shows that every tensor field of type 4, is a linear combina-
tion of tensor fields of type B,, 0 < j = £.
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Assume now that every tensor field of type B,_; is a linear
combination of tensor fields of type 4,, 0 <7 < £ — 1. We have

(VIR)(X, Y; Vs oo 5 Vi) = Vi (VTIR) (X, Y5 Voo 5 V)
C(VER)(Vp X, Y3 Vs Vi)
— (VEIR) (X, Vi Y5 Vis oo 5 Vily)
S (VIRY(X, Y Vs Ve Ve Vi)

The first term on the right hand side is a linear combination of
tensor fields of type 4,, 0 < j < k. The remaining terms on the
right hand side are linear combinations of tensor fields of type 4,,
0 <j =< k — 1. This completes the proof of Lemma 1.

By definition, g'(«) is spanned by the values at « of all gl(z; R)-
valued functions of the form (7,), £k =0, 1, 2,... (cf. §10 of
Chapter II). Theorem 9.2 will follow from Lemma 1 and the
following lemma.

Lemma 2. If X, Y, Vy,...,V, are vector fields on M and if
X* Y* V¥, ..., V} are thewr horizontal lifts to L(M), then we have

(Vy, = Vi (R(X, 1)) 2
=ue (Vi VEQRQX*, T¥))), cut (Z)
for Ze T, (M).
Proof of Lemma 2. This follows immediately from Proposition

1.3 of Chapter III; we take R(X, ¥Y) and 2Q(X*, Y*) as ¢ and f
in Proposition 1.3 of Chapter 111. QED.

By Theorem 10.8 of Chapter 1I and Theorem 9.2, the restricted
holonomy group W°(x) of a real analytic linear connection is
completely determined by the values of all successive covariant
differentials VER, k = 0, 1, 2, .. ., at the point x.

The results in this section were obtained by Nijenhuis [2].




CHAPTER IV

Riemannian Connections

1. Riemannian metrics

Let M be an n-dimensional paracompact manifold. We know
(cf. Examples 5.5, 5.7 of Chapter I and Proposition 1.4 of
Chapter I1I) that M admits a Riemannian metric and that there
is a 1:1 correspondence between the set of Riemannian metrics
on M and the set of reductions of the bundle L(M) of linear
frames to a bundle O(M) of orthonormal frames. Every Rie-
mannian metric g defines a positive definite inner product in each
tangent space T,(M); we write g, (X, Y) or, simply, g(X, Y)
for X,Y e T,(M) (cf. Example 3.1 of Chapter I).

Example 1.1. 'The Euclidean metric ¢ on R® with the natural
coordinate system x1, ..., 2™ is defined by

g(0d/oxi; 9/0x’) = d,; (Kronecker’s symbol).
Example 1.2. Let f: N —> M be an immersion of a manifold
N into a Riemannian manifold M with metric g. The induced
Riemannian metric k on N is defined by A(X, ¥Y) = g( fouX, foY),
X,Y e T, (N).
Example 1.3. A homogeneous space G/H, where G is a Lie
group and H is a compact subgroup, admits an nvariant metric.

Let A be the linear isotropy group at the origin o (i.e., the point
represented by the coset H) of G/H; H is a group of linear trans-
formations of the tangent space 7,(G/H), each induced by an
element of H which leaves the point o fixed. Since H is compact,
so is H and there is a positive definite inner product, say g,, in
T,(G/H) which is invariant by H. For each x ¢ G/H, we take an
element a € G such that a(0) = x and define an inner product g,
in T,(G/H) by g,(X,Y) =g, (a1X,a'Y), X,Y e T,(G/H). It

154
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is easy to verify that g, is independent of the choice of @ € G such
that a(0) = x and that the Riemannian metric g thus obtained is
invariant by G. The homogeneous space G/H provided with an
invariant Riemannian metric is called a Riemannian homogeneous
space.

Example 1.4. Every compact Lie group G admits a Riemannian
metric which is invariant by both right and left translations. In
fact, the group G X G acts transitively on G by (q, ) - x = axb™1,
for (a,b) e G X G and x € G. The isotropy subgroup of G x G
at the identity ¢ of G is the diagonal D = {(a, a); a € G}, so that
G = (G x G)[D. By Example 1.3, G admits a Riemannian
metric invariant by G x G, thus proving our assertion. If G is
compact and semisimple, then G admits the following canonical
invariant Riemannian metric. In the Lie algebra g, identified with
the tangent space 7,(G), we have the Killing-Cartan form
(X, Y) = trace (ad X o ad ¥), where X,Yeg = T7,(G). The
form ¢ is bilinear, symmetric and invariant by ad G. When G is
compact and semisimple, ¢ is negative definite. We define a
positive definite inner product g, in 7,(G) by g(X,Y) =
—@(4X, Y). Since ¢ is invariant by ad G, g, is invariant by the
diagonal D. By Example 1.3, we obtain a Riemannian metric on
G invariant by G x G. We discuss this metric in detail in
Volume II.

By a Riemannian metric, we shall always mean a positive
definite symmetric covariant tensor field of degree 2. By an
indefinite Riemannian metric, we shall mean a symmetric covariant
tensor field g of degree 2 which is nondegenerate at each x e M,
that is, g(X, Y) = 0 for all Y e T,(M) implies X = 0.

Example 1.5. An indefinite Riemannian metric on R" with the
coordinate system x1, ..., x® can be given by

2Py (dx)® — Z_;'z=p+1 (dx?)?,

where 0 < p < n — 1. Another example of an indefinite Rie-
mannian metric is the canonical metric on a noncompact, semisimple
Lie group G defined as follows. It is known that for such a group
the Killing-Cartan form ¢ is indefinite and nondegenerate. The
construction in Example 1.4 gives an indefinite Riemannian metric
on G invariant by both right and left translations.
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Let M be a manifold with a Riemannian metric or an in-
definite Riemannian metric g. For each x, the inner product g,
defines a linear isomorphism g of 7,(M) onto its dual T3 (M)
(space of covectors at x) as follows: To each Xe T,(M), we
assign the covector « € 7¥(M) defined by

Y, 0) = g, (X,Y) forall ¥YeT,(M).

The inner product g, in 7,(M) defines an inner product, denoted
also by g, in the dual space T} (M) by means of the isomorphism

P
8ol B) = &(y7 (), v7H(B))  for e, fe TZ(M).
Let x!, ..., 2™ be a local coordinate system in M. The com-
ponents g, of g with respect to x, ..., x™ are given by

g;; = g(d/ox, 9/ox7), 5,7 =1,...,n.
The contravariant components g%’ of g are defined by

g9 = g(dxt, dx?), 5,7 =1,...,n
We have then
288" = 550.

In fact, define y,;; by 9(9/0x%) = X,vp,,; dx’. Then we have
g:; = £(0/9x, 0/9x%) = (0] 0x’, p(0/0x")) = ;.
On the other hand, we have
0f = (0/0x%, dx*) = g(dx*, p(0/0x)) = g(dx*, Z;y;;dx’) = Z; ;8%

thus proving our assertion.

If & are the components of a vector or a vector field X with
respect to x1,...,x" that is, X = X, £'(d/0dx*), then the com-
ponents &, of the corresponding covector or the corresponding
l-form « = w(X) are related to &° by.

£ =2, 898, & =X, 4,8

The inner product gin T,(M) and in T¥(M) can be extended
to an inner product, denoted also by g, in the tensor space Tj(x)
at x for each type (r,s). If K and L are tensors at x of type (r, s)
with components Kj1:::% and Lz:::% (with respect to &%, . .., x™),




IV. RIEMANNIAN CONNECTIONS 157

then ' o
8K, L) =2 g, .. Gia g g K
The isomorphism y: T,(M) — T¥(M) can be extended to

tensors. Given a tensor K e T;(x) with components Ki:::¥r, we
obtain a tensor K’ e T;7{(x) with components

18y eeeipy kiy...d
K e Zkgale 1o tr1

-73+1 -73+1 ?

or K” e T:T1(x) with components

Kllzl clriy — Ekgzlezz z,.+1

= Js—1 e jg-1"

Example 1.6. Let 4 and B be skew-symmetric endomorphisms
of the tangent space T,(M), that is, tensors at ¥ of type (1, 1)
such that

g(dX,Y) = —g(dY, X) and g(BX,Y) = —g(BY, X)
for X, Y e T,(M).

Then the inner product g(d, B) is equal to —trace (4B). In
fact, take a local coordinate system «1, . .., 2™ such that g,;, = §,;
at x and let a¢ and 4; be the components of A and B respectively.
Then

g(4, B) = X g.,g"albt = T aib: = —3 alb] = —trace (4B),

since B is skew-symmetric, i.e., b} = —bl.
On a Riemannian manifold M, the arc length of a differentiable
curve T = x,, a = t < b, of class (! is defined by

b
L | gt 2t

: L w7
y ooy X"
In terms of a local coordinate system x x", L is given by

b dx* dxi\t
L( ’L,JgZJ dt dt) t

This definition can be generalized to a piecewise differentiable
curve of class C! in an obvious manner.

Given a Riemannian metric g on a connected manifold M, we
define the distance function d(x,y) on M as follows. The distance
d(x, y) between two points ¥ and y is, by definition, the infinimum
of the lengths of all piecewise differentiable curves of class C?
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joining x and y. Then we have

d(x,9) 2 0, d(x,9) = d(»,%), dx) +d(yz)= dx,z).

We shall see later (in §3) that d(x, ») = 0 only when ¥ =y and
that the topology defined by the distance function (metric) 4 is
the same as the manifold topology of M.

2. Riemannian connections

Although the results in this section are valid for manifolds with
indefinite Riemannian metrics, we shall consider (positive
definite) Riemannian metrics only for the sake of simplicity.

Let M be an n-dimensional Riemannian manifold with metric
g and O(M) the bundle of orthonormal frames over M. Every
connection in O (M) determines a connection in the bundle L(M)
of linear frames, that is, a linear connection of M by virtue of
Proposition 6.1 of Chapter II. A linear connection of M is called
a metric connection if it is thus determined by a connection in O(M).

ProrositioN 2.1. A linear connection ' of a Riemannian manifold
M with metric g 1s a meiric connection if and only if g is parallel with
respect to I'.

Proof. Since g is a fibre metric (cf. §1 of Chapter I1II) in the
tangent bundle 7(M), our proposition follows immediately from
Proposition 1.5 of Chapter III. QED.

Among all possible metric connections, the most important is
the Riemannian connection (sometimes called the Levi-Civita connection)
which is given by the following theorem.

THEOREM 2.2. Every Riemannian manifold admits a unique metric
connection with vanishing torsion.

We shall present here two proofs, one using the bundle O(AM)
and the other using the formalism of covariant differentiation.

Proof (A). Uniqueness. Let 0 be the canonical form of L(M)
restricted to O(M). Let o be the connection form on O(M)
definining a metric connection of M. With respect to the basis
¢y, - - ., €, of R and the basis £/, i < j,1,7 = 1, ..., n, of the Lie
algebra o(n), we represent 6 and w by n forms 6%, = 1,...,n,
and a skew-symmetric matrix of differential forms o’ respectively.
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The proof of the following lemma is similar to that of Proposition
2.6 of Chapter III and hence is left to the reader.

LEMMA. The n forms 6%, ¢ = 1,...,n, and the 3n(n — 1) forms
wi, | <7<k = n, define an absolute parallelism on O(M).

Let ¢ be the connection form defining another metric connection
of M. Then ¢ — w can be expressed in terms of 6¢ and wj by the
lemma. Since ¢ — w annihilates the vertical vectors, we have

2 i T Ak
(pj_wj_ZijkO:

where the F}’s are functions on O(M). Assume that the connec-
tions defined by w and ¢ have no torsion. Then, from the first
structure equation of Theorem 2.4 of Chapter III, we obtain

0 =3, (¢f — @) A0 =3, , Fiy 0% A 07,
This implies that F%, = Fi.. On the other hand, F, = —F, since

(]

(w!) and (¢%) are skew-symmetric. It follows that Fj =0,

proving the uniqueness.

Existence. Let @ be an arbitrary metric connection form on
O(M) and 0 its torsion form on O(M). We write

0 = 3%, , ~;:k0j A 6%, ~;:Ic = — T;cj
and set ' _ . _
=3, 3(Th + T} + Tk) 0*
and

W = ¢ + 7.

We shall show that o = (w!) defines the desired connection. Since
both (T% + Ti;) and T% are skew-symmetric in 7 and j, so is
75. Hence w is o(n)-valued. Since 6 annihilates the vertical
vectors, so does 7 = (7%). It is easy to show that R¥r = ad (a7%) ()
for every a e O(n). Hence, w is a connection form. Finally, we
verify that the metric connection defined by w has zero torsion.
Since (7% -+ T4,) is symmetric in j and £, we have

Zj ’T;:/\ 0 = —@i,
and hence
dof = —Z, @A 0 4+ OF = —X; wlA 0,

proving our assertion.
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Proof (B). Existence. Given vector fields X and Y on M, we
define V xY by the following equation:

2¢6(VxY,Z) =X-g(Y,Z) + Y -g(X,Z) —Z-¢(X,Y)
+ &([X, Y], Z) + ¢([4, X], ¥) + ¢(X, [Z, T]),

which should hold for every vector field Z on M. It is a straight-
forward verification that the mapping (X, Y) — VY, satisfies
the four conditions of Proposition 2.8 of Chapter III and hence
determines a linear connection I' of M by Proposition 7.5 of
Chapter III. The fact that I' has no torsion follows from the
above definition of VY and the formula 7(X, ¥Y) = V3V —
VyX — [X, Y] given in Theorem 5.1 of Chapter III. To show
that I' is a metric connection, thatis, Vg = 0 (cf. Proposition 2.1),
it is sufficient to prove

for all vector fields X, Y and Z,

by virtue of Proposition 2.10 of Chapter III. But this follows
immediately from the definition of V1Y,

Uniqueness. It is a straightforward verification that if VY
satisfies Vyxg =0 and VY — V,X —[X,Y] =0, then it
satisfies the equation which defined V7. QED.

In the course of the proof, we obtained the following
ProrosiTioN 2.3.  With respect to the Riemannian connection, we have
2(Vx¥, Z) = X-g(V,Z) + Y- g(X, Z) — Z- g(X, )
+ gl[X, Y1, Z) + ¢([Z, X1, V) + ¢(X, [Z, Y))
Sor all vector fields X, Y and Z of M.

CoRrROLLARY 2.4. In terms of a local coordinate system x1, . .., x",
the components '}y, of the Riemannian connection are given by

1(0gs  Ogn Oy
Eigu I = §(aikf e aijk) ’

Proof. Let X = 0/0x’, Y = 0/0dx* and Z = 9/0x* in Proposi-
tion 2.3 and use Proposition 7.4 of Chapter III. QED.
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Let M and M’ be Riemannian manifolds with Riemannian
metrics g and g’ respectively. A mapping f: M — M’ is called
wsometric at a point x of M if g(X,Y) = g'( foX, fsY) for all
X,Y e T,(M). In this case, f, is injective at x, because f,X = 0
implies that g(X, ¥) = 0 for all ¥ and hence X = 0. A mapping
f which is isometric at every point of M is thus an immersion,
which we call an isometric immersion. If, moreover, fis 1:1, then
it is called an isometric imbedding of M into M’. If f maps M 1:1
onto M’, then fis called an isometry of M onto M.

ProrositioN 2.5.  If fis an isometry of a Riemannian manifold M
onto another Riemannian manifold M’, then the differential of f commutes
with the parallel displacement. More precisely, if = is a curve from x to y
in M, then the following diagram is commutative :

T,(M) —> T,(M)

f*l | f*l

T, (M') —> T, (M),
where x' = f(x), ' = f(y) and v = f(=).

Proof. This is a consequence of the uniqueness of the
Riemannian connection in Theorem 2.2. Being a diffeomorphism
between M and M’, f defines a 1:1 correspondence between the
set of vector fields on M and the set of vector fields on M’. From
the Riemannian connection IV on AM’, we obtain a linear connec-
tion I'on M by VY = f~1(V(fY)), where X and Y are vector
fields on M. It is easy to verify that I" has no torsion and is metric
with respect to g. Thus, I' is the Riemannian connection of M.
This means that f(V xY) = V. (fY) with respect to the Rieman-
nian connections of M and AM’. This implies immediately our
proposition. QED.

ProposiTiON 2.6.  If f is an isometric immersion of a Riemannian
manifold M into another Riemannian manifold M’ and if f(M) is open
in M, then the differential of f commutes with the parallel displacement.

Proof. Since f(M) is open in M’, dim M = dim M’. Since f
is an immersion, every point x of M has an open neighborhood U
such that f(U) is open in M’ and f: U — f(U) is a diffeo-
morphism. Thus, fis an isometry of U onto f(U). By Proposition
2.5, the differential of f commutes with the parallel displacement




162 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

along any curve in U. Given an arbitrary curve 7 from x to y in
M, we can find a finite number of open neighborhoods in M with
the above property which cover . It follows that the differential
of f commutes with the parallel displacement along . QED.

Remark. It follows immediately that, under the assumption of
Proposition 2.6, every geodesic of M is mapped by f into a
geodesic of M".

Example 2.1. Let M be a Riemannian manifold with metric g.
Let M* be a covering manifold of M with projection . We can
introduce a Riemannian metric g*¥ on M* in such a way that
p: M* — M is an isometric immersion. Every geodesic of M*
projects on a geodesic of M. Conversely, given a geodesic 7 from
x to y in M and a point x* of M* with p(x*) = x, there is a
unique curve 7* in M* starting from x* such that p(7*) = 7.
Since p is a local isometry, 7% is a geodesic of M*. A similar
argument, together with Proposition 2.6, shows that if p(x*) = x,
then the restricted linear holonomy group of M* with reference
point x* is isomorphic by p to the restricted linear holonomy group
of M with reference point x.

Proposition 2.5 and 2.6 were stated with respect to Riemannian
connections which are special linear connections. Similar state-
ments hold with respect to the corresponding affine connections.
The statement concerning linear holonomy groups in Example
2.1 holds also for affine holonomy groups.

3. Normal coordinates and convex neighborhoods

Let M be a Riemannian manifold with metric g. The length of
a vector X, i.e., g(X, X)}, will be denoted by | X].

Let = = x, be a geodesic in M. Since the tangent vectors %, are
parallel along = and since the parallel displacement is isometric,
the length of %, is constant along 7. If || %, = 1, then ¢ is called the
canonical parameter of the geodesic .

By a normal coordinate system at x of a Riemannian manifold M, we
always mean a normal coordinate system x!,...,x" at x such
that d/0x%, ..., 0/0x" form an orthonormal frame at x. However,
d/oxY, . .., 0/0x" may not be orthonormal at other points.

Let U be a normal coordinate neighborhood of x with a normal
coordinate system x1, ..., x™ at x. We define a cross section ¢ of
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O(M) over U as follows: Let u be the orthonormal frame at x
given by (d/ox'),, ..., (9/0x™),. By the parallel displacement of
u along the geodesics through x, we attach an orthonormal frame
to every point of U. For the study of Riemannian manifolds, the
cross section o: U — O(M) thus defined is more useful than the
cross section U — L(M) given by 9/0dx', ..., d/dx". Let § = (69
and w = (wj) be the canonical form and the Riemannian connec-
tion form on O(M) respectively. We set

0 = o*0 = (5’) and @ = o*w = (®}),

where 6° and ®] are l-forms on U. To compute these forms

explicitly, we introduce the polar coordinate system (g1, . .., p; ¢)
by wo—pit, i=1,...,n; Z,(p9? =L

Then, 6 and @] are linear combinations of dp', . .., dp™ and dt
with functions of pt, . . ., p", ¢ as coeflicients.

ProrosrrioN 3.1. (1) 6F = pi dt -+ ¢F, where ¢', i =1,...,n,
do not involve dt ;

(2) @ do not involve dt ;

(3) ¢* =0 and @] = 0 at ¢ = 0 (i.e., at the origin x) ;

(4) do' = —(dp* + Z,; oL p°) Adt + - -+,
dot = —Z, , Rigp*ot ndt + - - -,

where the dots - - - indicate terms not involving dt and Ry, are the com-
ponents of the curvature tensor field with respect to the frame field o.
Proof. (1) For a fixed direction (g%, ..., p"),let 7 = x, be the
geodesic defined by x* =p%, 1 = 1,...,n Set u, = o(x,). To
prove that 8 — p? dt do not involve dt, it is sufficient to prove that
6i(%,) = p’. From the definition of the canonical form 6, we have

0(x,) = 0_<xt) = u; ().

Since both u, and %, are parallel along =, 6(%,) is independent of ¢.
On the other hand, we have 6i(%,) = p* and hence 6i(%,) = p°
for all ¢.

(2) Since u, is horizontal by the construction of ¢, we have

o (%,) = wi(@,) = 0.

This means that @] do not involve dt.
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(3) Given any unit vector X at x (i.e., the point where ¢ = 0),
let = = x, be the geodesic with the initial condition (x, X) so
that X = %,. By (1) and (2), we have ¢*(%,) = 0 and ®}(#,) = O.

(4) From the structure equations, we obtain

diptdt + ¢*) = —Z; @t A (p? dt + ¢)
dovi = —X, o} A o +
where
Q = 2, 2Rk19k/\ bt = =2 % ]kl(pk dt + ") A (Pt di + ¢F)

(cf. §7 of Chapter III)
and hence (4). QED.

In terms of dt and ¢°, we can express the metric tensor g as
follows (cf. the classical expression ds*> = X g;; dx* dx’ for g as
explained in Example 3.1 of Chapter I).

ProrositioN 3.2.  The metric tensor g can be expressed by
&5 — (d1)? + 3, (¢")".

Proof. Since 6(X) = (o(y)) Y (X) for every Xe T,(M),
y e U, and since ¢( ) is an isometric mapping of R" onto T,(M),
we have

2(X,Y) =3I, 61(X)6(Y) for X,Ye T,(M) and yeU.

In other words, B
ds2 = 2, (0%)2

By Proposition 3.1, we have
ds? = (df)? + 2, (¢9)? + 2 Z; ple’ dt.

Since ¢' =0 at £ =0 by Proposition 3.1, we shall prove that
Z; p'¢' =0 by showing that X, p'¢* is 1ndependent of ¢. Since
T, p'p* does not involve dt by Proposition 3.1, it is suflicient to
show that d(X, p'p?) does not involve dt. We have by Proposition
3.1,

d(Z, pig?) = —Z,; pi(dp* + Z; &jp’) Adt + -+ -,

where the dots - - - indicate terms not involving dt.
From X, (p )2 = 1, we obtain
0 =d(Z; (p)?) =2Z;p" "
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On the other hand, 3, ; piaipt =0,

because (&%) is skew-symmetric. This proves that d(Z; pie?) does

not involve dt. QED.

From Proposition 3.2, we obtain

Prorosrrion 3.3.  Let xY, ..., x™ be a normal coordinate system at x.
Then every geodesic 7 = x,, x* =a%t (1 = 1,...,n), through x s
perpendicular to the sphere S(x; r) defined by 2, (x%)% = r2.

For each small positive number 7, we set
N(x; r) = the neighborhood of 0 in 7,(M) defined by || X| < 7,
U(x; r) = the neighborhood of x in M defined by X, ()2 < 2

By the very definition of a normal coordinate system, the expo-
nential map is a diffeomorphism of N(x; r) onto U(x;r).

ProrositioN 3.4.  Let r be a positive number such that
exp: N(x;7) — U(x;7)

is a diffeomorphism. Then we have

(1) Every point y in U(x; 1) can be joined to x (origin of the coordinate
system) by a geodesic lying in U(x; r) and such a geodesic 1s unique;

(2) The length of the geodesic in (1) is equal to the distance d(x, ) ;

(3) Ulx; 1) is the set of points y € M such that d(x, y) << r.

Proof. Every line in N(x; r) through the origin 0 is mapped
into a geodesic in U(x; r) through x by the exponential map and
vice versa. Now, (1) follows from the fact that exp: N(x; r) —
U(x; r) is a diffeomorphism. To prove (2), let (at, ..., a®; b) be
the coordinates of » with respect to the polar coordinate system
(pty ..., p"; t) introduced at the beginning of the section. Let
T =%, o =5 = f, be any piecewise differential curve from x to

9. We shall show that the length of 7 is greater than or equal to 5.
HU =t =), t= U0, w =5 p

be the equation of the curve 7. If we denote by L(7) the length of 7,
then Proposition 3.2 implies the following inequalities:

Loz

o

b
ﬂ dsgf dt = b.
d’S 0
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We shall now prove (3). If yisin U(x; 7), then, clearly, d(x, y) < r.
Conversely, let d(x, y) < r and let = be a curve from x to y such
that L(7) < r. Suppose 7 does not lie in U(x; r). Let y' be the
first point on = which belongs to the closure of U(x; r) but not to
U(x; 7). Then, d(x,»") = r by (1) and (2). The length of = from
x to y' is at least r. Hence, L(7) = r, which is a contradiction.
Thus 7 lies entirely in U(x; r) and hence yisin U(x; 7). QED.

ProrositioN 3.5. d(x, ) is a distance function (i.e., metric) on M
and defines the same topology as the manifold topology of M.
Proof. As we remarked earlier (cf. the end of §1), we have

d(x,0) 2 0, dx)) =d(9x), dxr) +d0,2) = d, 2).

From Proposition 3.4, it follows that if x 5 y, then d(x,y) > 0.
Thus 4 i1s a metric. The second assertion follows from (3) of
Proposition 3.4. QED.

A geodesic joining two points x and y of a Riemannian manifold
M is called minimizing if its length 1s equal to the distance d(x, ).
We now proceed to prove the existence of a convex neighborhood
around each point of a Riemannian manifold in the following
form.

THEOREM 3.6. Let x', ..., x" be a normal coordinate system at x
of a Riemannian manifold M. There exists a positive number a such that,
if 0 < p < a, then

(1) Any two points of U(x; p) can be joined by a unique minimizing
geodesic; and it is the unique geodesic joining the two points and lying in
Ux; p) 5

(2) In U(x; p), the square of the distance d( y, z) is a differentiable
function of y and z.

Proof. (1) Let a be the positive number given in Theorem 8.7
of Chapter IIT and let0 < p < a. Ify and z are points of U(x; p),
they can be joined by a geodesic 7 lying in U(x; p) by the same
theorem. Since U(x; p) is contained in a normal coordinate
neighborhood of » (cf. Theorem 8.7 of Chapter 11I), we see from
Proposition 3.4 that = is a unique geodesic joining » and z and
lying in U(x; p) and that the length of 7 is equal to the distance,
that is, 7 is minimizing. It is clear that = is the unique minimizing
geodesic joining y and z in M.
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(2) Identifying every point y of M with the zero vector at y, we
consider y as a point of 7(M). For each y in U(x; p), let N, be
the neighborhood of y in T, (M) such that exp: N, — U(x; p)
is a diffeomorphism (cf. (2) of Theorem 8.7 of Chapter III). Set
V= U N, Then the mapping V — Ulx;p) x U(x; p)

veU(z;p)

which sends Ye N, into (y,exp Y) is a diffeomorphism (cf.
Proposition 8.1 of Chapter III). If z = exp Y, then d(y, z) =
|Y]. In other words, [ Y] is the function on ¥ which corresponds
to the distance function d( y, z) under the diffeomorphism V —
U(x; p) X U(x; p). Since |[Y|? is a differentiable function on
V, d(y, z)? 1s a differentiable function on U(x; p) x U(x; p).

QED.

As an application of Theorem 3.6, we obtain the following

THEOREM 3.7. Let M be a paracompact differentiable manifold.
Then every open covering {U,} of M has an open refinement {V,} such that

(1) each V, has compact closure ;

(2) {V;} 15 locally finite in the sense that every point of M has a neighbor-
hood which meets only a finite number of V,'s ;

(3) any nonempty finite intersection of V,’s is diffeomorphic with an open
cell of R™.

Proof. By taking an open refinement if necessary, we may
assume that {U,} is locally finite and that each U, has compact
closure. Let {U,} be an open refinement of {U,} (with the same
index set) such that U, < U, for all « (cf. Appendix 3). Take any
Riemannian metric on M. For each x € M, let W, be a convex
neighborhood of x (in the sense of Theorem 3.6) which is contained
in some U,. For each «, let

W, = {W,; W, n U, is non-empty}.
Since U, is compact, there is a finite subfamily B, of I, which
covers U,. Then the family 8 = U B, is a desired open refine-

ment of {U,}. In fact, it 1s clear from the construction that B
satisfies (1) and (2). If V4, ..., V, are members of 8 and if x and
y are points of the intersection V; N --- N V,, then there is a
unique minimizing geodesic joining x and y» in M. Since the
geodesic lies in each V,, i = 1, ..., £, it lies in the intersection
Vin---n V,. It follows that the intersection is diffeomorphic
with an open cell of R”. QED.
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Remark. A covering {V} satisfying (1), (2) and (3) is called

a sumple covering. Its usefulness lies in the fact that the Cech
cohomology of M can be computed by means of a simple covering
of M (cf. Weil [1]).

In any metric space M, a segment is defined to be a continuous
image x(f) of a closed interval ¢ < ¢ < b such that

d(x(t1), x(t)) + d(x(kp), 2(k5)) = d(x(t), x(25))
fora =t <t =t; <0,

where d is the distance function. As an application of Theorem
3.6, we have

ProposiTioN 3.8. Let M be a Riemanman manifold with metric
g and d the distance function defined by g. Then every segment is a geodesic
(as a point set).

The parametrization of a segment may not be affine.

Proof. Let x(f), a < ¢ < b, be a segment in M. We first show
that x(¢) is a geodesic for a < ¢ < a + ¢ for some positive ¢. Let
U be a convex neighborhood of x(z) in the sense of Theorem 3.6.
There exists ¢ > 0 such that x(¢) e Ufora <t < a + &. Let = be
the minimizing geodesic from x(a) to x(a + ¢). We shall show
that =~ and x(¢), a < ¢ < a + ¢, coincide as a point sct. Suppose
there is a number ¢, ¢ < ¢ < a + ¢, such that x(¢) is not on ~.
Then

d(x(a), x(a + ¢€)) < d(x(a), x(¢)) + d(x(c), x(a + ¢)),

contradicting the fact that x(¢), a < ¢ < a + &, is a segment. This
shows that x(¢) i1s a geodesic for ¢ < ¢ < a + ¢. By continuing
this argument, we see that x(¢) is a geodesicfora < ¢t £ 5. QED.

Remark. 1f x, 1s a continuous curve such that d(x,, x,) =
£, — t,| for all ¢; and ¢,, then x, is a geodesic with arc length ¢ as
parameter.

CoroLLARY 3.9. Let 7 = x,, a <t < b, be a precewise differen-
tiable curve of class C* from x to y such that its length L(7) 15 equal to
d(x, y). Then 7 is a geodesic as a point set. If, moreover, || %,|| is constant
along =, then T 15 a geodesic including the parametrization.

Proof. It suffices to show that 7 is a segment. Let a < ¢; <
ty £ t3 = b. Denoting the points x, by x,, ¢t = 1, 2, 3, and the
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arcs into which = is divided by these points by 7, 75, 73 and 7,
respectively, we have

d(x, x1) £ L(71), d(x1, %5) < L(7y), d(xy, x3) = L(73),
d(x3,9) = L(7y).

If we did not have the equality everywhere, we would have
d(x, xy) + d(xy, x5) + d(xs, x3) + d(x3, )
< L(7qy) + L(7s) + L(73) + L(7g) = L(71) = d(x, ),
which is a contradiction. Thus we have
d(x1, x9) = L(73), d(x9, x3) = L(73).
Similarly, we see that

d(xy, x3) = L(7y + 73).

Finally, we obtain

d(xla xz) + d(xZ: x3) — d(xla x3)'
QED.

Using Proposition 3.8, we shall show that the distance function
determines the Riemannian metric.

TueEOREM 3.10. Let M and M’ be Riemanmian manifolds with
Riemannian metrics g and g', respectively. Let d and d' be the distance
Sfunctions of M and M’ respectively. If f 1s a mapping (which s not
assumed to be continuous or differentiable) of M onto M’ such that
d(x, y) = d'(f(x), f( ) for all x,y e M, then f 15 a diffeomorphism of
M onto M’ which maps the tensor field g into the tensor field g'.

In particular, every mapping f of M onto itself which preserves d is an
1sometry, that is, preserves g.

Proof. Clearly, fis a homeomorphism. Let x be an arbitrary
point of M and set ¥ = f(x). For a normal coordinate neighbor-
hood U’ of %’ let U be a normal coordinate neighborhood of x
such that f(U) < U’. For any unit tangent vector X at x, let 7 be
a geodesic in U with the initial condition (x, X). Since 7 is a
segment with respect to d, f(7) is a segment with respect to 4’ and
hence is a geodesic in U’ with origin x’. Since 7 = x, is param-
etrized by the arc length s and since d'( f(x,), f(x,)) =
d(xs, %5) = |s5 — 511, f(7) = f(»,) is parametrized by the arc
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length s also. Let F(X) be the unit vector tangent to f(r) at x'.
Thus, I 1s a mapping of the set of unit tangent vectors at x into
the set of unit tangent vectors at x'. It can be extended to a
mapping, denoted by the same F, of 7T,(M) into T,(M’) by
proportion. Since f has an inverse which also preserves the distance
functions, it is clear that /' is a 1:1 mapping of 7T, (M) onto
T,(M'"). It is also clear that

foexp, =exp ,oF and |F(X)| = |X| for Xe T

&

(M),

where exp, (resp. exp, ) is the exponential map of a neighborhood
of 0 in 7,,(M) (resp. T,(M")) onto U (resp. U’). Both exp, and
exp, are diffeomorphisms. To prove that fis a diffeomorphism of
M onto M’ which maps g into g’, it is therefore sufficient to show
that F 1s a linear isometric mapping of 7,(M ) onto T, (M’).
We first prove that g(X,7Y) =g (F (X),F(Y)) for all
X,YeT, (M). Since F(cX) = c¢F(X) for any X ¢ T,(M) and

any constant ¢, we may assume that both X and Y are unit
vectors. Then both F(X) and F(Y) are unit vectors at x’. Set

cosa = g(X,Y) and cosa’ = g'(F(X),F(Y)).

Let x, and y, be the geodesics with the initial conditions (x, X) and
(x, Y) respectively, both parametrized by their arc length from

x. Set x, = f(x,) and y; = f(,)-

Then x, and y, are the geodesics with the initial conditions
(x', F(X)) and («, F(Y)), respectively.

1
LEMMA. sin o = lim — d(x,, »,) and sin o’ = lim — d(x}, ;).
B s—0 QS §—0 25
We shall give the proof of the lemma shortly. Assuming the
lemma for the moment, we shall complete the proofofour theorem.

Since f preserves distance, the lemma implies that
sin $o = sin 4o’
and hence
g(X,Y) =cosa =1 — 2sin? L«
=1—2sin% 1o’ = cos &' = g'(F(X), F(Y)).
We shall now prove that I is linear. We already observed that
F(cX) = ¢F(X) for any Xe T,(M) and for any constant c.

&
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Let X;,...,X, be an orthonormal basis for 7T,(M). Then
X:=F(X,),:=1,...,n,form an orthonormal basis for 7,.(M")
as we have just proved. Given X and Y in 7,(M), we have
FFEX+7Y),X) =gX+ 7Y, X) =X X)) + g7, X))
= g'(F(X), Xj) + g (F(Y), X;) = g (F(X) + F(Y), X3)
for every ¢, and hence
F(X +7Y)=FX) + F®Y).

Proof of Lemma. It is sufficient to prove the first formula.
Let U be a coordinate neighborhood with a normal coordinate
system x1, . . ., x™ at x. Let £ be the Riemannian metric in U given
by %, (dx%)? and let 4( y, z) be the distance between y and z with
respect to k. Supposing that

H_IE 9. d(xs:.ys) > sin %“:
s—0 2S

we shall obtain a contradiction. (The case where the inequality
1s reversed can be treated in a similar manner.) Choose ¢ > 1
such that

lim — d(x,, y,) > c¢sin a.
s—0

1 :
Taking U small, we may assume that -k < g < ¢k on U in the
sense that ‘.

1 {
“WZ,Z) < g(Z,Z) <ch(Z,Z) for Ze T,(M) and zeU.
A

From the definition of the distances 4 and §, we obtain

-i—é(_y, z) <d(y, z) <cd(y, z).

Hence we have

¢ 1
_ _ inl
o5 d(x,, 9,) > % d(x,, ¥,) > ¢sin 1« for small s.

On the other hand, % is a Euclidean metric and hence

1 :
5 0(x,, ) = sin o
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This i1s a contradiction. Hence,

— 1
lim —d = sin 1q.
sl_rf;)l 25 (xsa_ys) SH1 go
Similarly, we obtain
1 .
E_I;Ig 9% d(x9s) = sin jo.

QED.

Theorem 3.10 is due to Myers and Steenrod [1]; the proof is
adopted from Palais [2].

4. Completeness

A Riemannian manifold M or a Riemannian metric ¢ on M
is said to be complete if the Riemannian connection is complete,
that is, if every geodesic of M can be extended for arbitrarily
large values of its canonical parameter (cf. §6 of Chapter I1I).
We shall prove the following two important theorems.

THEOREM 4.1. For a connected Riemannian manifold M, the follow-
ing conditions are mutually equivalent :

(1) M is a complete Riemannian manifold ;

(2) M 15 a complete metric space with respect to the distance function d ;

(3) Every bounded subset of M (with respect to d) is relatively compact ;

(4) For an arbitrary point x of M and for an arbitrary curve C in the
tangent space T (M) (or more precisely, the affine tangent space A, (M))

starting from the origin, there is a curve T in M starting from x whick is
developed upon the given curve C.

THEOREM 4.2. If M s a connected complete Riemannian manifold,
then any two points x and y of M can be joined by a minimizing geodesic.

Proof. We divide the proofs of these theorems into several
steps.

(i) The implication (2) — (1). Let x,,0 < 5 < L, be a geodesic,
where s is the canonical parameter. We show that this geodesic
can be extended beyond L. Let {s,} be an infinite sequence such
that s, 1 L. Then d(x, %) =< l5p — i,
so that {x, } is a Gauchy sequence in M with respect to d and
hence converges to a point, say x. The limit point x is independent
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of the choice of a sequence {s,} converging to L. We set x; = x.
By using a normal coordinate system at x, we can extend the
geodesic for the values of s such that L < s < L + ¢ for some
e > 0.

(i1) Proof of Theorem 4.2. Let x be any point of M. For each
r > 0, we set

S(r) ={reM;d(x,y) =1}

and

E(r) ={yeS(r);y can be joined to x by a minimizing geodesic}.

We are going to prove that E (r) is compact and coincides with
S(r) for every r > 0. To prove the compactness of E(r), let y,,
t =1,2,..., be a sequence of points of £(r) and, for each 1, let
7, be a minimizing geodesic from x to y,. Let X, be the unit vector
tangent to 7, at x. By taking a subsequence if necessary, we may
assume that {X,} converges to a unit vector X, in 7T,(M). Since
d(x, y;) < rfor all i, we may assume, again by taking a subsequence
if necessary, that d(x, y;,) converges to a non-negative number 7,.
Since 7, is minimizing, we have

;= exp (d(x, ;) X;).

Since M is a complete Riemannian manifold, exp 7,X, is defined.

We set
Yo = €XP TpX,.

It follows that {»,} converges to y, and hence that d(x, y,) = 7,.
This implies that the geodesic exp sXy, 0 < s < 7y, 1s minimizing
and that y, is in E(r). This proves the compactness of E(r).
Now we shall prove that E(r) = S(r) for all » > 0. By the
existence of a normal coordinate system and a convex neighbor-
hood around x (cf. Theorem 3.6), we know that E(r) = S(r) for
0 <r < e for some ¢ > 0. Let r* be the supremum of 7, > 0
such that E(r) = S(r) for r < r,. To show that r* = oo, assume
that r* < co. We first prove that E(r*) = §(r*). Let y be a
point of S(r*) and let { »,} be a sequence of points with d(x, ;) < r*
which converges to y. (The existence of such a sequence {y,}
follows from the fact that x and y can be joined by a curve whose
length is as close to d(x, y) as we wish.) Then each y; belongs to
some E(r), where r < r*, and hence each y; belongs to E(r*).
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Since E(r*) is compact, y belongs to E(r*). Hence S(r*) =
E(r*). Next we shall show that S(r) = E(r) for r < r* 4 ¢ for
some d > 0, which contradicts the definition of r*. We need the
following

LemMA. On a Riemanmian manifold M, there exists a positive
continuous function 1(z), z € M, such that any two points of S,(r(z)) =
{yeM;d(z,y) < r(2)}can be joined by a minimizing geodesic.

Proof of Lemma. For each z € M, let r(z) be the supremum of
r > 0 such that any two points y and » with d(z,y) < r and
d(z,%') < rcan be joined by a minimizing geodesic. The existence
of a convex neighborhood (cf. Theorem 3.6) implies that r(z) > 0.
If r(z) = oo for some point z, then r(y) = oo for every point y
of M and any positive continuous function on M satisfies the
condition of the lemma. Assume that 7(z) < oo for every z ¢ M.
We shall prove the continuity of 7(z) by showing that |7(z) — 7()|
< d(z,y). Without any loss of generality, we may assume that
r(z) >r(y). If d(z,y) = r(z), then obviously |r(z) — r(y)| <
d(z,5). T d(z,5) < 1(2), then 8,(r') = {¥'; d(3,)) = r} is con-
tained in S, (r(z)), where 7’ =r(z) — d(z, ). Hencer(y) = r(z) —
d(z, ), thatis, |r(z) — r(»)| = d(z,), completing the proof of the
lemma.

Going back to the proof of Theorem 4.2, let r(z) be the con-
tinuous function given in the lemma and let § be the minimum of
r(z) on the compact set £(r*). To complete the proof of Theorem
4.2, we shall show that S(r* + ) = E(r* + §). Let y € S(r* + 9)
but ¢ S(r*). We show first that there exists a point ' in S(r*)
such that d(x, y') = r* and that d(x,y) = d(x,»") + d(»,»). To
this end, for every positive integer k, choose a curve 7, from x to
y such that L(r,) < d(x, ) + %, where L(7,) is the length of 7.
Let y, be the last point on 7, which belongs to E(r*) = S(r*).

1
Then d(x, y,) = r* and d(x, y;) + d( V) = L(7,) < d(x,3) + z

Since E(r*) is compact, we may assume, by taking a subsequence
if necessary, that { y,} converges to a point, say ), of E(r*). We
have d(x, y') = r* and d(x,y') + d(',») = d(x,»). Let 7" be a
minimizing geodesic from x to »’. Since d(y’, y) < 6 < r()’), there
is a minimizing geodesic 7” from ' to y. Let 7 be the join of 7’ and
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7", Then L(7) = L(7") + L(+") =d(x, ') + d(',») = d(x, »). By
Corollary 3.9, 7is a geodesic, in fact, a minimizing geodesic from
x to y. Hence y € E(r* + §), completing the proof of Theorem 4.2.

Remark. To prove that E(r) = §(r) is compact for every 7, it is
sufficient to assume that every geodesic issuing from the particular
point x can be extended infinitely.

(iii) The implication (1) — (3) in Theorem 4.1. In (i) we
proved that (1) implies that E(r) = S(r) is compact for every r.
Every bounded subset of A is contained in S§(r) for some r,
regardless of the point ¥ we choose in the proof of (ii).

(iv) The implication (3) — (2) is evident.

(v) The implication (4) — (1). Since a geodesic is a curve in
M which is developed upon a straight line (or a segment) in the
tangent space, it is obvious that every geodesic can be extended
infinitely.

(vi) The implication (1) — (4). Let C,, 0 =t < a, be an
arbitrary curve in 7,(M) starting from the origin. We know that
there is ¢ > 0 such that C;,, 0 £ ¢t < ¢, is the development of a
curve x,, 0 < ¢t < ¢, in M. Let b be the supremum of such ¢ > 0.
We want to show that & = 4. Assume that b < a. First we show

that lim x, exists in M. Let ¢, 4 4. Since the development pre-
t—b

serves the arc length, the length of x,, £, < ¢ < ¢, is equal to the
length of C,, ¢, =t <¢,. On the other hand, the distance
d(x; , x; ) 1s less than or equal to the length of x;, ¢, < ¢ < ¢,.
This implies that {x, } is a Cauchy sequence in M. Since we know
the implication (1) — (3) by (iii) and (iv), we see that {x, }

converges to a point, say y. It is easy to see that lim x, = y. Let
t—b

C/ be the curve in 7,(M) (or more precisely, in 4,(M)) obtained
by the affine (not linear!) parallel displacement of the curve C,
along the curve x,, 0 < ¢ < 5. Then (} is the origin of 7T,(M).
There exist 6 > 0 and a curve x,, 6 <¢ < b 4 6, which is
developed upon C}, b < ¢t < b + 6. Then the curve x,, 0 < ¢ <
b 4+ 4, is developed upon C,, 0 < ¢t < b 4 . This contradicts the
definition of &. QED.

CorovrLArY 4.3. If all geodesics starting from any particular point
x of a connected Riemannian manifold M are infinitely extendable, then M

is complete.
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Proof. As we remarked at the end of (ii) in the proof of
Theorem 4.2, E(r) = S(r) is compact for every r. Every bounded
subset of M is contained in S(r) for some r and hence is relatively
compact. QED.

CoROLLARY 4.4. Every compact Riemannian manifold is complete.
Proof. This follows from the implication (3) — (1) in Theorem
4.1. QED.

A Riemannian manifold M is said to be homogeneous if the group
of isometries, i.e., transformations preserving the metric tensor g,
of M is transitive on M. (Cf. Example 1.3 and Theorem 3.4,
Chapter VI.)

THEOREM 4.5. Every homogeneous Riemannian manifold is complete.

Proof. Let x be a point of a homogeneous Riemannian mani-
fold M. There exists r > 0 such that, for every unit vector X at x,
the geodesic exp sX is defined for |s| < r (cf. Proposition 8.1 of
Chapter III). Let 7 =%, 0 < s < a, be any geodesic with
canonical parameter s in M. We shall show that = = x, can be
extended to a geodesic defined for 0 < s = a + r. Let ¢ be an
isometry of M which maps x into x,. Then ¢~! maps the unit
vector %, at x, into a unit vector X at x: X = ¢~1(%,). Since
exp sX 1s a geodesic through x, ¢(exp sX) is a geodesic through
x,- We set

X, = @(exp sX) for0 <s5s <7

Then r = x,, 0 <5 < a + r, is a geodesic. QED.

Theorem 4.5 follows also from the general fact that every
locally compact homogeneous metric space is complete.

THEOREM 4.6. Let M and M* be connected Riemannian manifolds
of the same dimension. Let p: M* — M be an 1sometric immersion.

(1) If M* s complete, then M* is a covering space of M with pro-
Jection p and M is also complete.

(2) Conversely, iof p: M* — M 1s a covering projection and 1f M 1is
complete, then M* is complete.

Proof. The proof is divided into several steps.

(i) If M* is complete so is M. Let x* ¢ M* and set x = p(x*).
Let X be any unit vector of M at x and choose a unit vector X* at x*
such that p(X*) = X. Then exp sX = p(exp sX*) is the geodesic
in M with the initial condition (x, X). Since exp sX* is defined
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for all 5, —o0 <5 < o, so is exp sX. By Corollary 4.3, M is
complete.

(i) If M* is complete, p maps M* onto M. Let x* ¢ M* and
x = p(x*). Given a point y of M, let exp sX, 0 < 5 < 4, be a
geodesic from x to y, where X is a unit vector at x. Such a geodesic
exists by Theorem 4.2 since M is complete by (i). Let X* be the
unit vector of M* at x* such that p(X*) = X. Set y* = exp aX*.
Then p(y*) = exp aX =y.

(iii) If M* is complete, then p: M* — M is a covering pro-
jection. For a given x € M and for each positive number 7, we set

Ux;r) ={yeM;dx,y) <r}, Nx;r) ={X e T ,(M);|X| <1}
Similarly, we set, for x* ¢ M*,

U(x*;7) = {* e M*; d(x*, y*) <71},

N(x*;r) = {X* e T (M*); | X| <1}

Choose r > 0 such that exp: N(x;2r) — U(x; 2r) is a diffeo-
morphism. Let {x§, x¥, . . . } be the set p~1(x). For each x¥, we have
the following commutative diagram:

exp

N(xf; 2r) — U(xf; 2r)

’ I
N(x; 2r) 2> Ulx; 20).
It is sufficient to prove the following three statements:
(@) p: U(x¥; r) — U(x; r) is a diffeomorphism for every ¢;

(b) p7H{Ux; 7)) = U Ul 7);

(c) U(x¥;r) N U(x¥; r) is empty if xF # xF.
Now, (a) follows from the fact that both p: N(x¥; 2r) — N(x; 2r)
and exp: N(x; 2r) — U(x; 2r) are diffeomorphisms in the above
diagram. To prove (b), let y* € p=1(U(x; r)) and set y = p(y*).
Let exp sY, 0 < s < a, be a minimizing geodesic from y to x,
where Y is a unit vector at y. Let Y* be the unit vector at y* such
that p(¥Y*) = Y. Then exp s¥*, 0 < s =< g, is a geodesic in M*
starting from y* such that p(exp sY*) = exp sY. In particular,
plexp a¥*) = x and hence exp a¥* = x} for some x¥. Evi-
dently, y* € U(x}; r), proving that p=1(U(x; r)) < U U(xf; r). On
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the other hand, it is obvious that p(U(x}; r)) = U(x; r) for every
¢ and hence p~(U(x; 7)) > U U(xf; 7). To prove (c), suppose

Y¥eU(xf;r) O Uxf;r). Then xf e U(xfF; 27). Using the above
diagram, we have shown that p: U(x}¥; 2r) > U(x;2r) is a
diffeomorphism. Since p(x¥) = p(xf), we must have x} = x}.

(iv) Proof of (2). Assume that p: M* — M is a covering pro-
jection and that M is complete. Observe first that, given a curve
%, 0 =t < a,in M and given a point x§ in M* such that p(x}) =
X9, there 1s a unique curve xf, 0 < ¢ < a, in M* such that
p(xfF) = x,for 0 =t < a. Let x* e M* and let X* be any unit
vector at X*. Set X = p(X*). Since M is complete, the geodesic
exp sX is defined for —oo < 5 < 0. From the above observation,
we see that there is a unique curve x¥, —o0 <s < o0, in M*
such that x¥ = x* and that p(x¥) = exp sX. Evidently, x} =
exp sX*. This shows that M* is complete. QED.

CoroLLARY 4.7. Let M and M* be connected manifolds of the
same dimension and let p: M* — M be an immersion. If M* is compact,
so is M, and p is a covering projection.

Proof. Take any Riemannian metric g on M. It is easy to see
that there is a unique Riemannian metric g* on M* such that p
is an isometric immersion. Since M* is complete by Corollary 4.4,

p 1s a covering projection by Theorem 4.6 and hence M is
compact. QED.

Example 4.1. A Riemannian manifold is said to be non-pro-
longeable if it cannot be isometrically imbedded into another
Riemannian manifold as a proper open submanifold. Theorem
5.6 shows that every complete Riemannian manifold is non-
prolongeable. The converse is not true. For example, let M be the
Euclidean plane with origin removed and M®* the universal
covering space of M. As an open submanifold of the Euclidean
plane, M has a natural Riemannian metric which is obviously not
complete. With respect to the natural Riemannian metric on M*
(cf. Example 2.1), M* is not complete by Theorem 4.6. It can be
shown that M* is non-prolongeable.

CoroLLARY 4.8. Let G be a group of isometries of a connected
Riemannian manifold M. If the orbit G(x) of a point x of M contains an
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open set of M, then the orbit G(x) coincides with M, that is, M 1is
homogeneous.

Proof. It is easy to see that G(x) is open in M. Let M* be a
connected component of G(x). For any two points x* and y* of
M*, there is an element f of G such that f (x*) = y*. Since f maps
every connected component of G(x) onto a connected component
of G(x), f(M*) = M*. Hence M* is a homogeneous Rieman-
nian manifold isometrically imbedded into M as an open sub-
manifold. Hence, M* = M. QED.

Prorosrrion 4.9.  Let M be a Riemannian manifold and M* a
submanifold of M whick is locally closed in the sense that every point x of
M has a neighborhood U such that every connected component of U N M*
(with respect to the topology of M*) 1is closed in U. If M s complete, so
1s M* with respect to the induced metric.

Proof. Let 4 be the distance function defined by the Rieman-
nian metric of M and 4* the distance function defined by the
induced Riemannian metric of M*. Let x, be a geodesic in M*
and let a be the supremum of s such that x, is defined. To show
that a = oo, assume a < . Let 5,1 a. Since d(x,,x, ) =
d*(x, , %5 ) < Is, — Sul, {#;} is a Cauchy sequence in M and

hence converges to a point, say x, of M. Then x = lim x,. Let U
§—a

be a neighborhood of x in M with the property stated in Proposi-
tion. Then x,, 8 < 5 < q, lies in U for some . Since the connected
component of M* N U containing x,, 6 < 5 < a, is closed in U,
the point x belongs to M*. Set x, = x. Then x,, 0 £ s < g, 15 a
geodesic in M*. Using a normal coordinate system at x,, we see
that this geodesic can be extended to a geodesicx,, 0 < s < a -+ 9,
for some § > 0. QED.

5. Holonomy groups

Throughout this section, let M be a connected Riemannian
manifold with metric g and W(x) the linear or homogeneous
holonomy group of the Riemannian connection with reference
point x € M (cf. §4 of Chapter II and §3 of Chapter 11I). Then
M is said to be reducible or irreducible according as ¥(x) is reducible
or irreducible as a linear group acting on 7,(AM). In this section,
we shall study ¥'(x) and local structures of a reducible Riemannian
manifold.
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Assuming that M is reducible, let 7, be a non-trivial subspace of
T, (M) which is invariant by ¥'(x). Given a point y € M, let 7 be a
curve from x to y and T, the image of T, by the (linear) parallel
displacement along 7. The subspace T, of T,(M) is independent
of the choice of 7. In fact, if u is any other curve from x to », then
p~t- 71is a closed curve at x and the subspace 7, is invariant by
the parallel displacement along u=! - 7, thatis, u='- 7(7,) = T,,
and hence 7(7T},) = u(T,). We thus obtain a distribution 7" which
assigns to each point y of M the subspace T, of T,(M).

A submanifold N of a Riemannian manifold (or more generally,
a manifold with a linear connection) M is said to be totally
geodesic at a point x of N if, for every X e T,(N), the geodesic
7 = x, of M determined by (x, X) lies in N for small values of
the parameter ¢ If N is totally geodesic at every point of ¥, it is
called a totally geodesic submanifold of M.

Proposrtion 5.1. (1) The distribution T’ s differentiable and
involutive

(2) Let M’ be the maximal integral manifold of T' through a point of
M. Then M’ is a totally geodesic submanifold of M. If M is complete,
s0 15 M'" with respect to the induced metric.

Proof. (1) To prove that 7" is differentiable, let » be any
point of M and #!,...,x" a normal coordinate system at )y,
valid in a neighborhood U of y. Let X, . . ., X, be a basis for T,.
For each 7, 1 <1 < £, we define a vector field X* in U by

(X¥), = 17X, for ze U,

where 7 is the geodesic from y» to z given by x’ = a’t, j =
l,...,n, (d, ..., a") being the coordinates of z. Since the parallel
displacement 7 depends differentiably on (4%, ..., a"™), we obtain
a differentiable vector field X¥ in U. It is clear that X, ..., X}
form a basis of 7, for every point z of U.

To prove that 7" is involutive, it is sufficient to prove that if X
and Y are vector fields belonging to 77, so are VY and VX,
because the Riemannian connection has no torsion and [X, ¥ | =
VxY — VyX (cf. Theorem 5.1 of Chapter III). Let x, be the
integral curve of X starting from an arbitrary point y. Let =4 be
the parallel displacement along this curve from the point x; to
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the point y = x,. Since Y, and Y, belong to 7" for every ¢,
1
(VxY) = lim Z (76Y,, — Y,) belongs to T,.
10

(2) Let M’ be a maximal integral manifold of 7". Let v = x,
be a geodesic of M with the initial condition (y, X ), where
yeM and Xe T,(M’) = T,. Since the tangent vectors %, are
parallel along 7, we see that %, belongs to T', for every ¢ and hence
7 lies in M’ (cf. Lemma 2 for Theorem 7. 2 of Chapter II). This
proves that M’ is a totally geodesic submanifold of M. From the

following lemma, we may conclude that, if M is complete, so is
M.

LEmMMA. Let N be a totally geodesic submanifold of a Riemannian
manifold M. Every geodesic of N with respect to the induced Riemannian
metric of N is a geodesic in M.

Proof of Lemma. Let xe N and Xe T,(N). Let v =x,,
0 < ¢t < a, be the geodesic of M with the initial condition (x, X ).
Since N is totally geodesic, = lies in N. It now suffices to show that
7 1s a geodesic of N with respect to the induced Riemannian
metric of N. Let 4 and 4’ be the distance functions of M and N
respectively. Considering only small values of ¢, we may assume
that 7 is 2 minimizing geodesic from x = x, to x, so that d(x, x,) =
L(7), where L(7) is the arc length of 7. The arc length of =
measured by the metric of M is the same as the one measured with
respect to the induced metric of N. From the definition of the
distance functions d and 4’, we obtain

d'(x, x,) = d(x, x,) = L(7).

Hence, d’(x, x,) = L(7). By Corollary 3.9, = is a geodesic with
respect to the induced metric of N. QED.

Remark. The lemma is a consequence of the following two
facts which will be proved in Volume II. (1) If M is a manifold
with a linear connection whose torsion vanishes and if N is a
totally geodesic submanifold of M, then N has a naturally
induced linear connection such that every geodesic of N is a
geodesic of M; (2) If N is a totally geodesic submanifold of a
Riemannian manifold M, then the naturally induced linear
connection of N is the Riemannian connection with respect to
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the induced metric of N. Note that Proposition 5.1 holds under
the weaker assumption that A is a manifold with a linear connec-
tion whose torsion vanishes.

Let 7" be a distribution defined as before. We now use the fact
that the- homogeneous holonomy group consists of orthogonal
transformations of 7,(M ). Let T, be the orthogonal complement
of 7T, in T,(M). Then T,(M) is the direct sum of two subspaces
T, and T which are invariant by ¥'(x). From the subspace 7,
we obtain a distribution 7" just as we obtained 7" from 7',. The
distributions 77 and 7" are complementary and orthogonal to
each other at every point of M.

ProposrTionN 5.2.  Let y be any point of M. Let M’ and M" be
the maximal integral manifolds of the distributions T' and T" defined
above. Then y has an open neighborkood V such that V. =V' x V",
where V' (resp. V") is an open neighborhood of y in M’ (resp. M"), and
that the Riemannian metric in V 1s the direct product of the Riemannian
metrics in V' and V.

Proof. We first prove the following

LemMmA. If T' and T are two involutive distributions on a manifold
M whick are complementary at every point of M, then, for each point y of
M, there exists a local coordinate system x1, . . . , x™ with origin at y such
that (0]ox%, . .., 0]0x") and (0] 0x*+2, ..., d]dx™) form local bases for
T’ and T respectively. In other words, for any set of constants (c*, . . .,
c*, UL, c™), the equations x* = ¢, 1 <1 < k, (resp. x7 = ¢,
k + 1 <j £ n) define an integral mamfold of T" (resp. T).

Proof of Lemma. Since 7" is involutive, there exists a local
coordinate system y, ..., 9% x**1 ... x" with origin y such that
(d/dy, ..., 0/]dy¥) form a local basis for 7. In other words, the
equations x’ = ¢/, £ + 1 < j < n, define an integral manifold of
T'’. Similarly, there exists a local coordinate system x%, ..., &%
ZFH .., z" with origin y such that (d/dz*", ..., d/0z") form
a local basis for 7”. In other words, the equations x* = ¢,
1 £ 1 < £, define an integral manifold of 77", It is easy to see that

xl Lo, xF x*T L . x™ 1s a local coordinate system with the
desired property.
Making use of the local coordinate system x%,...,x" thus

obtained, we shall prove Proposition 5.2. Let V' be the neighbor-
hood of y defined by |x°| < ¢, | < ¢ < n, where ¢ is a sufficiently
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small positive number so that the coordinate system x1, ... x™
gives a homeomorphism of 7 onto the cube |x‘] < ¢in R™. Let V'
(resp. V") be the set of points in V defined by |x| < ¢, 1 = ¢ < &,
and =0, k+1=7=<n (resp. *=0, 1 =:=<4%, and
x| <¢, k+1 <75 =<mn). It is clear that V' (resp. V") is an
integral manifold of 7" (resp. 7'”) through y and is a neighbor-
hood of y in M’ (resp. M”") and that V=T1" x V". We set
X, = 0/0x*, | £1¢ = n. To prove that the Riemannian metric of
V is the direct product of those in V' and V", we show that
g:;, = g(X,, X;) are independent of x*+1, ... x"for 1 < ¢, 5 < £,
that g,;, = g(X,, X,) are independent of x1, ... x*for £ + 1 <
,J = nandthatg,, = g(X,, X;) =0forl =:<kandk 4+ 1 <
J = n. The last assertion is obvious since X;, 1 < ¢ =< £, belong
to 77 and X,, £ + 1 < < n, belong to 7" and since 7" and
T" are orthogonal to each other at every point. We now prove
the first assertion, and the proof of the second assertion is similar.
Let ]l <7k and £ 4+ 1 < m < n. As in the proof of (1) of
Proposition 5.1, we see that Vx X; belongs to 7' and that

Vx X, belongs to T". Since the torsion is zero and since
[X,, X,.] =0, we have

VX,Xm - VXsz‘ - VX,Xm — VXsz‘ — [X;, X,,] = 0.
Hence, Vx X,, = Vx X, = 0. Since g is parallel, we have

X (8:5) = VXm(g(Xz‘a X))
=g(Vx X, X)) + g(X,, Vx, X)) =0, 1 =45 =k,

)

thus proving our assertion. QED.

ProrosttioN 5.3.  Let T and T be the distributions on M used in
Proposition 5.2. If M is simply connected, then the homogeneous holonomy
group V' (x) is decomposed into the direct product of two normal subgroups
Y (x) and Y’ (x) such that ¥’ (x) s trivial on T, and that ¥ (x) is
trivial on T,

Proof. Given an element a e ¥(x), let a; (resp. a,) be the
restriction of a to 7, (resp. T ). Let a’ (resp. a”) be the orthogonal
transformation of 7,(M ) which coincides with a, on 7, (resp. with
ay, on 77,) and which is trivial on 7, (resp. 7,). If we take an
orthonormal basis for 7,(M) such that the first £ vectors lie in
T, and the remaining n — k vectors lie in 7}/, then these linear
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e

transformations can be expressed by matrices as follows:

(al 0 , a; 0 . 1 0
a = , a = , a' = .
0 a, 0 1 0 a,

We shall show that both a’ and a” are elements of W(x). Let r be a
closed curve at x such that the parallel displacement along 7 is the
given element a € ¥ (x). First we consider the special case where =
is a small lasso in the following sense. A closed curve 7 at x is
called a small lasso if it can be decomposed into three curves as
follows: 7 = u=1 -0 - u, where u is a curve from x to a point y
(so that g~ 1s a curve from y to x going backward) and ¢ is a
closed curve at y which 1s small enough to be contained in a
neighborhood V = V' x V" of y given in Proposition 5.2. In this
special case, we denote by ¢’ (resp. ¢”) the image of o by the
natural projection V — V' (resp. V — V"). We set

”

o :Iu_l°o"°,u, T”=,u_1'o’ * M.

The parallel displacement along +' (resp. 7”) is trivial on T
(resp. T,). The parallel displacement along o is the product of
those along o’ and o”. Hence the parallel displacement along -
is the product of those along 7" and 7”. On the other hand, =’
(resp. 7") is trivial on T, (resp. 7). It follows that a’ (resp. a”) is
the parallel displacement along 7' (resp. "), thus proving our
assertion in the case where 7 is a small lasso.

In the general case, we decompose 7 into a product of small

lassos as follows.

Lemma. If M is simply connected, then the parallel displacement
along T 1s the product of the parallel displacements along a finite number of
small lassos at x.

Proof of Lemma. This follows from the factorization lemma

(cf. Appendix 7).
It is now clear that both ¢’ and 4" belong to ¥(x) in the

general case. We set
V'(x) ={a'; ae¥(x)}, ‘F”(x) = {a";a e ¥ (x)}.
Then ¥'(x) = ¥'(x) x ¥"(x). QED.

We now proceed to define a most natural decomposition of

T, (M) and derive its consequences. Let 7 be the set of

&
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elements in T,(M) which are left fixed by ¥'(x). It is the maximal
linear subspace of T,(M) on which ¥(x) acts trivially. Let T,
be the orthogonal complement of 7” in 7,(M). It is invariant
by ¥(x) and can be decomposed into a direct sum 77, = Zf_, T
of mutually orthogonal, invariant and irreducible subspaces. We
shall call T,(M) = Zf_, T a canonical decomposition (or de Rham
decomposition) of T, (M).

TueoreM 5.4. Let M be a Riemanman manifold, T,(M) =
Xk_ T a canonical decomposition of T,(M) and T the involutive
distribution on M obtained by parallel displacement of T for each
1 =0,1,...,k. Letybeapoint of M and let, foreach: = 0,1, ..., k,
M, be the maximal integral manifold of T'? through y. Then

(1) The point y has an open neighborhood V such that V = V; X
Vi X =+ X V, where each V, 1s an open neighborhood of y in M, and
that the Riemannian metric in V is the direct product of the Riemannian
metrics wn the V,'s;

(2) The maximal integral manifold M, is locally Euclidean in the
sense that every point of M, has a neighborhood which is isometric with an
open set of an ny-dimensional Euclidean space, where ny = dim M, ;

(3) If M s simply connected, then the homogeneous holonomy group
W(x) us the direct product Wo(x) X ¥i(x) X -+ X Wy(x) of normal
subgroups, where V' ,(x) s trivial on TS if 1 + j and is irreducible on
TS foreach 1 = 1, ..., k, and Wo(x) consists of the identity only;

(4) If M 1s simply connected, then a canonical decomposition T (M) =
XE_o T is unique up to an order.

Proof. (1) This is a generalization of Proposition 5.2.

(2) Since y is an arbitrary point of M, it is sufficient to prove
that V, is isometric to an open subset of an ny-dimensional
Euclidean space. Since the homogeneous holonomy group of ¥V,
consists of the identity only, T is the direct sum of 7, 1-dimen-
sional subspaces. From the proof of Proposition 5.2, it follows that
V, 1s a direct product of 1-dimensional submanifolds and that the
Riemannian metric on V, is the direct product of the Riemannian
metrics on these 1-dimensional submanifolds. On the other hand,
on any l-dimensional manifold with a local coordinate system x1,
every Riemannian metric is of the form g,, dx'dxl. If x' is a
normal coordinate system, then the metric is of the form dx! dx'.
Hence V, is isometric to an open set of a Euclidean space.
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(3) This is clear from the definition of a canonical decomposition
of T,(M) and from the proof of Proposition 5.3.

(4) First we prove

LEmMmA. Let S, be any subspace of T,(M) invariant by ¥(x).
Then, for each 1 = 1, ..., k, either S, is orthogonal to T® or S,
contains T,

Proof of Lemma. (i) Assume that all vectors of S, are left
fixed by ¥,(x). Then S, is orthogonal to 7. In fact, let X =
Xk_o X, be any element of S,, where X; e 7. For an arbitrary

element a, of ¥',(x), we have
a;(X) = Xy + Xy + - +a(Xy) +-- -+ X,

since a; acts trivially on T¢ for j # i If a;(X) = X, then
a;(X;) = X,;. Since this holds for every q; ¢ ¥,(x) and since ¥,(x)
is irreducible in 7%, we must have X, = 0. This shows that X is
orthogonal to T%.

(ii) Assume that a,(X) 7% X for some a, ¢ ¥,(x) and for some
XeS, Let X =2%F_ X, where X, e T. Since each X, j # 1,
is left fixed by every element of W,(x), X — q;(X) =X, —
a,(X;,) #0 is a vector in T as well as in §,. The subset
{b;(X — a,;(X)); by e ¥;(x)} is in T® N S, and spans T, since
Y. (x) is irreducible in 7. This implies that 7 is contained in
S,, thus proving the lemma.

Going back to the proof of (4), let T,(M) = Xi_, SP be any
other canonical decomposition. First it is clear that T = S,
It is therefore sufficient to prove that each §9, 1 < </
coincides with some 7. Consider, for example, S, By the lemma,
either it is orthogonal to T for every ¢ = 1 or it contains 7%
for some 7 = 1. In the first case, it must be contained in the
orthogonal complement 7 of ¥, T® in T,(M). This is
obviously a contradiction. In the second case, the irreducibility of

S® implies that S actually coincides with T, QED.
‘The following result is due to Borel and Lichnerowicz [1].

THEOREM 3.5. The restricted homogeneous holonomy group of a
Riemannian manifold M is a closed subgroup of SO (n), where n = dim M.
Proof. Since the homogeneous holonomy group of the universal
covering space of M is isomorphic with the restricted homo-
geneous holonomy group of M (cf. Example 2.1), we may assume,
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without loss of generality, that A is simply connected. In view of
(3) of Theorem 5.4, our assertion follows from the following
result in the theory of Lie groups:

Let G be a connected Lie subgroup of SO(n) which acts wrreducibly on
the n-dimensional vector space R"™. Then G s closed in SO(n).

The proof of this result is given in Appendix 5.

6. The decomposition theorem of de Rham

Let M be a connected, simply connected and complete
Riemannian manifold. Assuming that M is reducible, let 7,,(M) =
T, -+ T, be a decomposition into subspaces invariant by the
linear holonomy group ¥'(x) and let 7’ and 7" be the parallel
distributions defined by 7", and 7', respectively, as in the beginning
of §5. We fix a point 0 € M and let M’ and M” be the maximal
integral manifolds of 7” and 7" through o, respectively. By
Proposition 5.1, both M’ and M” are complete, totally geodesic
submanifolds of M.

The purpose of this section is to prove

THEOREM 6.1. M s wsometric to the direct product M’ x M".

Proof. For any curve z,, 0 < ¢ < 1, in M with z, = 0, we
shall define its projection on M’ to be the curve x,, 0 < ¢ < 1,
with x, = o which is obtained as follows. Let C, be the develop-
ment of z, in the affine tangent space 7,(M). (For the sake of
simplicity we identify the afline tangent space with the tangent
(vector) space.) Since 7,(M) is the direct product of the two
Euclidean spaces 7, and 77, C; may be represented by a pair
(4,, B,), where A, and B, are curves in 7, and 7', respectively.
By applying (4) of Theorem 4.1 to M’, we see that there exists a
unique curve x, in M ’ which is developed upon the curve 4,. In
view of Proposition 4.1 of Chapter III we may define the curve
x, as follows. For each ¢, let X, be the result of the parallel dis-
placement of the 7"-component of Z, from z, to 0 = z, (along the
curve z,). The curve x, is a curve in M’ with x, = o such that the
result of the parallel displacement of %, along itself to o is equal
to X, for each ¢.

Before proceeding further, we shall indicate the main idea of the
proof. We show that the end point x, of the projection x, depends
only on the end point z; of the curve z, if M is simply connected.
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Thus we obtain a projection p’': M — M’ and, similarly, a pro-
jection p”: M — M". The mapping p = (p’, p”) of M into M’ X
M" will be shown to be isometric at every point. Theorem 4.6 then
implies that p is a covering projection of M onto M’" x M". If his
a homotopy in M from a curve of M’ to another curve of M’, then
p’ (k) is a homotopy between the two curves in M’. Thus, M’ is
simply connected. Similarly, M” is simply connected. Thus p is an
isometry of M onto M’ x M". The detail now follows.

Lemma 1. Let 7 =2, 0 <t £ 1, be a curve in M with zy = o
and let a be any number with 0 < a < 1. Let 7, be the curve z,,
0 <t <a,andlet v, be the curve z,, a < t < 1. Let 7, be the pro-
Jection of T4 in the maximal integral manifold M'(z,) of T' through z,.
Then the projection of T = 74 - 71 in M’ coincides with the projection of
T =15 Ty

Proof of Lemma 1. This is obvious from the second definition
of the projection by means of the (linear) parallel displacement of
tangent vectors.

LEmMmA 2. Letze Mandlet V.=V’ x V" be an open neighborhood
of z in M, where V' and V" are open neighborhoods of z in M'(z) and
M"(z) respectively. For any curve z, with zy = z in V, the projection of
z, in M'(z) is given by the natural projection of V onto V.

Proof of Lemma 2. For the existence of a neighborhood
V="V x V" see Proposition 5.2. Let z, be given by the pair
(%4, 9,) where x, (resp. »,) is a curve in V' (resp. V") with x, = z
(resp. yo = z). Since V = V' x V", the parallel displacement of
the 7”-component of Z, from z, to z, = z along the curve z, is
the same as the parallel displacement of %, from x, to x, = z
along the curve x,. Thus x, is the projection of the curve z, in
M'(z).

We introduce the following terminologies. A (piecewise
differentiable) curve z, is called a 7"-curve (resp. 7"-curve) if
Z, belongs to T, (resp. T,) for every t. Given a (piecewise
differentiable) homotopy z: [0, 1] x [0, s,] — M which is de-
noted by z(t,5) = zj, we shall denote by z{® (resp. z{,) the
curve with parameter ¢ for the fixed value of s (resp. the curve
with parameter s for the fixed value of ¢). Their tangent vectors
will be denoted by Z® and Zf,, respectively. For any point
z e M, letd’ (resp. d”) denote the distance function on the maximal
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integral manifold M’'(z) of 7" (resp. M"(z) of T") through z.
Let U'(z;r) (resp. U"(z;r)) denote the set of points w e M’'(z)
(resp. w e M"(z)) such that d'(z, w) < r (resp. d"(z, w) <r).

Lemma 3. Let 7" =x, 0=t <1, be a T'-curve. Then there
exist a number v > 0 and a family of isometries f,, 0 <t < 1, of
U"(xy; 1) onto U"(x,; 1) with the following properties :

(1) The differential of f, at x, concides with the parallel displacement
along the curve 7' from x, to x,;

(2) For any curve " = 9°, 0 = 5 < 5o, tn U" (x5 7) with )° = x,,
set z; = f(9%). Then

(@) For any 0 < t; < 1 and 0 < s, < 5, the parallel displacement
along the ‘‘parallelogram’ formed by the curve x,, 0 < t < ¢,, the
curve zyy, 0 = 5 < 5y, the inverse of the curve Z¥, 0 <t < ¢y, and
the inverse of the curve y*, 0 < s < sq, 15 trimal ;

(b) For any s and ¢, 2 is parallel to %, along the curve z§,,;

(c) For any s and t, Z§,, is parallel to 3° along the curve z{>.

Proof of Lemma 3. Let V' be a neighborhood of x, of the form
V=V x V" as in Proposition 5.2. Choose a number r > 0
sufficiently small so that x,e¢ V' and U"(x,;7) = {x,} x V" for
0 < ¢t < r. We define f, by f,(%y, ) = (x,, ) for y e U"(x4; 7). It
is clear that the family of isometries f,, 0 < ¢ < r, has all the
properties (1) and (2). The family f, can be extended easily for
0 <t < 1 and for a suitable r > 0 by covering the curve 7" = ¥,
by a finite number of neighborhoods of the form V =V’ x V”
and using the above argument for each neighborhood.

LEmMA 4. Let v = x,0 < ¢t < 1, be a T'-curve and let 7" = )?,
0 <5 =5y, be a T"-geodesic with y° = x,, where s is the arc length.
Then there exists a homotopy z;, 0 <t <1, 0 < 5 < 5,, with the
Sfollowing propertes :

(1) 29 = x, and 28, = 3

(2) z] has properties (a), (b) and (c) of Lemma 3.

The homotopy zj is uniquely determined. In fact, if Y, is the result of
parallel  displacement of the initial tangent vector Y, = y° of the
geodesic " along the curve ', then z; = exp sY,.

Proof of Lemma 4. We first prove the uniqueness. By (a) and
(c) and by the fact that 7" is a geodesic, it follows that Zj, is
parallel to Y, along the curve zj,. This means that z, is a




190 FOUNDATIONS OF DIFFERENTIAL GEOMETRY
geodesic with initial tangent vector Y,. Thus, z{ = exp sY,,
proving the uniqueness.

It remains therefore to prove that z; = exp sY, actually
satisfies conditions (1) and (2). Condition (1) is obvious. To
prove (2), we may assume that 7’ is a differentiable curve so
that z; is differentiable in (¢, 5). Let f, be the family of isometries
as in Lemma 3. It is obvious that there exists a number é > 0
such that z; = f,()®) for 0 < ¢ <1 and 0 s £ 4. Thus, z
satisfies condition (2) for 0 < ¢t <1 and 0 < s < 4. Let a be the
supremum of such 4. In order to prove a = s, assume a < s,.
First we show that z] satisfies (2) for 0 < ¢ <1l and 0 <5 < a.
Since z; is differentiable in (¢, 5), the parallel displacement along
the curve z® is the limit of the parallel displacement along the
curve z» as 54 a (cf. Lemma for Theorem 4.2 of Chapter II).
Thus condition (a) is satisfied. We have also zf, = liTm Z{, and

slia
29 = liTm 2, Combined with the above limit argument, this
sla
gives conditions (b) and (c) for 0 < ¢ < | and s = a.

In order to show that z has property (2) beyond the value a,
we apply Lemma 3 to the 7"-curve 7 = z{* and the 7"-geodesic
% where u = 5 — a. We see then that there exist a number r > 0
and a homotopy v}, 0 < ¢t = 1, —r < u < r, satisfying a condi-
tion similar to (2),such that w(” = z® and w¥% = )*. Since "
is parallel to y* along the curve w{® = z® it follows that z{ =
wi®for0 <¢t<1anda—7r =<5 =<a-+r. This proves that z
satisfies condition (2) for 0 < ¢ =1 and 0 < s < a 4 r, contra-
dicting the assumption that a < s,.

LeMMA 5. Keeping the notation of Lemma 4, the projection of the
curve v+ 7"~ in M'( y*) coincides with v = %) 0 < ¢ < 1.

Proof of Lemma 5. Since 7”~1'is a 7"-curve, its projection in
M’ ( y*) is trivial, that is, reduces to the point y®. Conditions (a)
and (b) imply that, for each ¢, the parallel displacement of %,

along 7”7 - 7'~1 to y% is the same as the parallel displacement of
2% along z{* to y*. This means that 7” - 7'~ projects on 7%,

We now come to the main step for the proof of Theorem 6.1.

LEMMA 6. If two curves v, and T, from o to a point z in M are
homotopic to each other, then their projections in M’ = M’ (o) have the
same end point.
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Proof of Lemma 6. We first remark that 7, is obtained from
7, by a finite succession of small deformations. Here a small
deformation of a curve z, means that, for a certain small neighbor-
hood V, we replace a portion z,, t; < ¢t < ¢,, of the curve lying in
Vby acurve w,, t; <t < t,, with w, =z, and w, = z,, lying
in V. As a neighborhood V, we shall always take a neighborhood
of the form V' X V” as in Lemma 2.

It suffices therefore to prove the following assertion. Let = be
a curve from o to z;, u a curve from z, to z, which lies in a
small neighborhood V' = V' x V" and « a curve from z, to z.
Let » be another curve from z; to z, which lies in V. Then the
projections of «+ u-7 and k-»+7 in M’ have the same end
point.

To prove this, we may first replace the curve « by its projection
in M'(z,) by Lemma 1. Thus we shall assume that « is a 7"-
curve. Let u be represented by the pair (u', ") in V=V x V.
By Lemma 2, the projection of u in M'(z,) is u’. Let u* be a
T"-geodesic in V joining z, and the end point of u’. The parallel
displacement of 7”-vectors at z, along u~! is the same as the
parallel displacement along u'~1: u*, because u” and u* give
the same parallel displacement for 7”-vectors. By Lemma 5, we
see that the projection of « - u in M’(z,) is the curve u’ followed
by the curve « obtained by using the homotopy z; constructed
from the 7"-geodesic u* and the 7'-curve . The homotopy z;
depends only on u* and « and not on u. Thus if we replace u by
v in the above argument, we see that the projection of « - » is
equal to »’ followed by «’, where v = (v, »") in V =V" x V".

We now divide 7 into a finite number of arcs, say, 74, 7o, - - + 5 Tgs
such that each 7, lies in a small neighborhood V,; of the form
V. x VI. We show that the projections of the curves «" - u’ - 7
and «' - »' - 7, have the same end point in the maximal integral
manifold of 7" through the initial point of 7,. Again, let v, =
(74 ) In V,, = V; x V3 and let 7} be the geodesic in V;, joining
the end point of 7, to the end point of ;. As before, the projection
of «" - u' - 7, 1s the curve 7, followed by the curve obtained by the
homotopy which is constructed from the 7"-geodesic 7§ and the
T’-curve «' - u'. Similarly for the projection of «’ - 4" - 7,. Each
homotopy was constructed by the parallel displacement of the
initial tangent vector of the geodesic 7§ along «' - 4’ or along
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k' +v'. Since »'~! - 4’ is a curve in V', the parallel displacement
along »'~1 - 4’ is trivial for T"-vectors. This means that the parallel
displacements of the initial tangent vector of 7§ along u’ and »’
are the same so that the two homotopies produce the curves u;
and v, starting at the end point of 7, and ending at the same point,
where a curve «k, starts in such a way that «, - u,- 7, and
K * Vi T are the projections of «’ + ' - 7, and «’ - »' - 7, respec-
tively. We also remark that the parallel displacements of every
T"-vector along u, and », are the same; this indeed follows from
property (a) of the homotopy in Lemma 4.

We continue to the next stage of projecting the curves
Ki* U Tp " Te—y and k- v, - 7, 7, by the same method. As
a result of the above remark, we have two curves ending at the
same point. Now it is obvious that this process can be continued,
thus completing the proof of Lemma 6.

Now we are in position to complete the proof of Theorem 6.1.

Lemma 6 allows us to define a mapping p’ of M into M'.
Similarly, we define a mapping p” of M into M”. These mappings
are differentiable. As we indicated before Lemma 1, we have only
to show that the mapping p = (¢, p") of M into M’ x M" is
isometric at each point. Let z be any point of M and let 7 be a
curve from o to z. For any tangent vector Ze T,(M), let Z =
X + Y, where Xe T, and Y € T,. By definition of the projection,
it is clear that p'(Z) is the same as the vector obtained by the
parallel displacement of X from z to o along 7 and then from o to
p'(2) along p’(7). Therefore, p'(Z) and X have the same length.
Similarly, p”(Z) and Y have the same length. It follows that Z and
p(Z) = (p'(2), p"(Z)) have the same length, proving that p is
isometric at z. QED.

Combining Theorem 5.4 and Theorem 6.1, we obtain the
decomposition theorem of de Rham..

THEOREM 6.2. A connected, simply connected and complete Rieman-
nian manifold M is isometric to the direct product My X M, X « - X
M, where M, is a Euclidean space (possibly of dimension 0) and
M,, ..., M, are all simply connected, complete, irreducible Riemannian
manifolds. Such a decomposition is unique up to an order.




Theorems 6.1 and 6.2 are due to de Rham [1]. The proof of
Theorem 6.1 is new; it was inspired by the work of Reinhart [1].

7. Affine holonomy groups

Let M be a connected Riemannian manifold. Fixing a point x
of M, we denote the affine holonomy group ®(x) and the linear
holonomy group ¥ (x) simply by ® and W, respectively. We know
(cf. Theorem 5.5) that the restricted linear holonomy group ¥?
is a closed subgroup of $O(n), where n = dim M. ® is a group of
Euclidean motions of the affine (or rather Euclidean) tangent space
T, (M).

We first prove the following result.

TuEOREM 7.1. If WO is wrreducible, then either

(1) @O contains all translations of T,(M),
or

(2) DO fixes a point of T, (M).

Proof. Let K be the kernel of the homomorphism of ®° onto
WO (cf. Proposition 3.5 of Chapter III). Since K is a normal
subgroup of ®° and since every element a of ®° is of the form
a = &+ d where d e ¥ and ¢ is a pure translation, ¥° normalizes
K, that is, a1Kd@ = K for every d e W°. Consider first the case
where K is not discrete. Since W is connected, it normalizes the
identity component K® of K. Let V be the orbit of the origin of
T,M) by K° It is a non-trivial linear subspace of T,(M)
invariant by W?; the invariance by ¥ is a consequence of the fact
that Y% normalizes K° Since ¥ is irreducible by assumption, we
have V = T,(M). This means that ®° contains all translations of
T,(M). Consider next the case where K is discrete. Since W is
connected, ¥'° commutes with K elementwise. Hence, for every
e K, £(0) is invariant by ¥ (where O denotes the origin of
T,(M)). Since ¥?° is irreducible, £(0) = O for every & e K. This
means that K consists of the identity element only and hence that
@0 is isomorphicto ¥ in a natural manner. In particular, ®°
is compact. On the other hand, any compact group of affine
transformations of 7,(M) has a fixed point. Although we shall
prove a more general statement in Volume II, we shall give here
a direct proof of this fact. Let f be the mapping from @° into
T, (M) defined by

f(a) = a(0) for a € ®°.
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Let da be a bi-invariant Haar measure on ®° and define

X, = f F(a) da.

It is easy to verify that X, is a fixed point of ®°. QED.

We now investigate the second case of Theorem 7.1 (without
assuming the irreducibility of M).

THEOREM 7.2.  Let M be a connected, simply connected and complete
Riemannian manifold. If the (restricted) affine holonomy group ®° at a
pownt x fixes a point of the Euclidean tangent space T,(M), then M s
isometric to a Euclidean space.

Proof. Assuming that X, e 7,(M ) is a point fixed by @9, let
7 be the geodesic from x to a point y which is developed upon the
line segment tX,, 0 < ¢ < 1. We observe that the affine holonomy
group ®°( y) at y fixes the origin of 7T,(M ). In fact, for any closed
curve u at p, the affine parallel displacement along =1 y- 7
maps X, into itself, that is, (+7!- u-7)X, = X, Hence the
origin of 7,(M) given by 7(X,) is left fixed by p. This shows that
we may assume that ®° fixes the origin of 7,(M). Since M is
complete, the exponential mapping 7,(M) — M is surjective.
We show that it is 1:1. Assume that two geodesics = and u
issuing from x meet at a point y 7 x. The affine parallel displace-
ment u~' - 7 maps the origin 0, of 7,(M) into itself and hence

we have
m1(0,) = u7(0,),

where 0, denotes the origin of 7,(M). Since +—(0,) and x~1(0,)
are the end points of the developments of + and u in T,(M)
respectively, these developments which are line segments coincide
with each other. Thus 7 = u, contradicting the assumption that
x # y. This proves that the exponential mapping 7T,(M) — M
is 1:1.

Assume that exp, is a diffeomorphism of N(x;7) = {Xe T,(M);
| X|| < rtonto U(x;r) ={yeM;d(x,y) <r},andletx!, ..., x"be
a normal coordinate system on U(x; r).

We set X = —X? | x* (0/0x?) and let p be the corresponding
point field (cf. §4 of Chapter III). We show that p is a parallel
point field. Since ®° fixes the origin of T,(M), it is sufficient to
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prove that p is parallel along each geodesic through x. Our
assertion follows therefore from

LemMma 1. Let 7 =%, 0 <t <1, be a curve in a Riemannian
manifold M and let 7 (resp. %) denote the affine (resp. lLinear) parallel
displacement along T from x, to x,. Then

Tf)(Y) - 7-O( ) +Ct> Ve Tm (M)a

where Gy, 0 < t < 1, is the development of T = x, into T, (M).

Proof of Lemma 1. Given Ye T, (M), let p (resp g) be the
point field along r defined by the afﬁne parallel displacement of
Y (resp. the origin of T}, (M)) and let Y* be the vector field along
7 defined by the linear parallel displacement of Y. Then p = ¢
Y* at each point of 7, that is, Y'* is the vector with initial point ¢
and end point p at each point of 7. At the point x,, this means
precisely #(Y) = #4(Y) + C,.

Going back to the proof of Theorem 7.2, we assert that

Vo X + V=0 for any vector field V.

This follows from

LEMMA 2. Let p be a point field along a curve 7 = x,, 0 < ¢t < 1,
in a Riemannian manifold M and let X be the corresponding vector field
along . Then p is a parallel point field if and only if

Vo, X + 4, =0 jfor 0=t=<1l
Proof of Lemma 2. From Lemma 1, we obtain

~t+h(4ba:t h) _ Tt+h( mt+h) + Ct h>

where C, , (for a fixed ¢ and with parameter k) is the development
of 7 into T, (M). Since #1*(p,, h) is independent of %2 (and
depends only on ¢) if and only if p is parallel, we have

_ t+h( X
0= %12(1) 7 [t (Xe,,,) — Xa] + 1}L1~rf(1) 7
= V, X + #,

for 0 < ¢t < 1 if and only if p is parallel, completing the proof of
Lemma 2.

Cth
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Let Y and Z be arbitrary vector fields on M. From V,X + ¥ =
0and VX + Z = 0, we obtain (cf. Theorem 5.1 of Chapter III)

Vy¥ = Vo X + [X, Y] = —Y + [X, 7]
and

VxZ =V, X+ [X, 2] =—-2Z + [X, Z].
Hence,

X(g(Y, Z)) = g(VxY, Z) 4 g(¥, VxZ)
Let Y = d/dx’ and Z = 0/0x* for any fixed j and £. Then we have

X-gin= 28+ gix +8ix =0.

This means that the functions g;, are invariant by the local 1-
parameter group of transformations ¢, generated by X. But g, is
of the form

(Y, oL, x") = (et ..., e "),

Thus the functions g, are constant along each geodesic through x.

Hence,
gir = 8in(x) = 0, atevery point of U(x; 7).

This shows that exp, is an isometric mapping of N(x;r) with
Euclidean metric onto U(x; 7). Let ry be the supremum of r > 0
such that exp, is a diffeomorphism of N(x; r) onto U(x; r). Since
the differential (exp,), is non-singular at every point of N(x; r,),
exp,is a diffeomorphism, hence an isometry, by the argument above,
of N(x;r1,) onto U(x;r,). If ry < oo, it follows that (exp,), is
isometric at every point y of the boundary of N(x; r,) and hence
nonsingular in a neighborhood of such y. Since the boundary of
N(x; ry) is compact, we see that there exists ¢ > 0 such thatexp,isa
diffeomorphism of N(x; 7, + ¢€) onto U(x;r, + ¢), contradicting the
definition of r,. This shows that exp, is a diffeomorphism of 7 (M)

onto M. By choosing a normal coordinate system x1,..., x™ on
the whole M, we conclude that g;, = d,, at every point of M,
that is, M is a Euclidean space. QED.

As a consequence we obtain the following corollary due to Goto
and Sasaki [1].
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CoroLLARY 7.3. Let M be a connected and complete Riemannian
manijfold. If the restricted affine holonomy group ®°(x) fixes a point of the
Euclidean tangent space T,(M) for some x € M, then M 1is locally
Euclidean (that is, every point of M has a neighborhood which is isometric
to an open subset of a Euclidean space).

Proof. Apply Theorem 7.2 to the universal covering space of
M. QED.

CoroLLARY 7.4. If M is a complete Riemannian manifold of
dimension > 1 and if the restricted linear holonomy group W°(x) is
irreducible, then the restricted affine holonomy group ®°(x) contains all
translations of T,(M).

Proof. Since W(x) is irreducible, M is not locally Euclidean.
Our assertion now follows from Theorem 7.1 and Corollary 7.3.

QED.




CHAPTER V

Curvature and Space Forms

1. Algebraic preliminaries

Let V be an n-dimensional real vector space and R: V x V Xx

V x V—R a quadrilinear mapping with the following three
properties:

(a) R(vlﬁ 02) 03) 7)4) - _R(UZ) vl) 03) 7)4)
(b) R(vy, vy, v3, v4) = —R(vq, v, 0y, V)
() R(vy, vy, 03, 1) + R(01, V3, Vs ¥3) + R(vy, 0y, 05, 03) = 0.

Prorosition 1.1.  If R possesses the above three properties, then it
possesses also the following fourth property:

(d) R(vla Uss Us; 7)4) — R(U3, Ugs V15 02)'

Proof. We denote by S(v,, v,, v3, v,) the left hand side of (c).
By a straightforward computation, we obtain

0 = S(vy, vy, V3, Ug) — S(vs, V3, Vg, 1) — S(vg, vy, 01, Us)
_l_ S(U4, U1, Vg, 7)3)
— R(vla Ugs Us,s 7)4) T R(UZ: U1, Uss 7)4) T R(v3> Ug Uy, 02)

-+ R(v4> Uss U1, 02)‘
By applying (a) and (b), we see that

2-R(vla Vg, Usg, 7)4) — 2‘R(v3> Ugy Uy, 02) = 0.
QED.

Prorosition 1.2. Let R and T be two quadrilinear mappings with
the above properties (a), (b) and (c). If
R(vla Uss U1, 02) = T(vla Uss V15 02) jb?’ all U1, Ug € Va

then R = T.
198
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Proof. We may assume that 7" = 0; consider R — 7 and 0
instead of R and 7. We assume therefore that R(v,, vy, v, v,) = 0
for all v;, v, € V. We have

0 = R(vy, vy + vy, V1, V5 + 0y)
= R(vy, Uy, Uy, ) + R(v1, 0, 01, V)

= 2R(vy, Uy, Uy, Uy).
Hence,

(1) R(vy, vg, 04,0, = 0 for all vy, vy, vy € V.
From (1) we obtain
0 = R(vy + vy, vy, v; + V3, 0y)
= R(vy, vy, U3, Uy) + R(vg, 04, v1, 1,).
Now, by applying (d) and then (b), we obtain
0 = R(vy, 03, U3, vg) + R(vq, vy, U3, Uy)
= R(vy, 05, v3, 1)) — R(vq, 04, Uy, U3).
Hence,
(2)  R(vy, vy, 03, vy) = R(vq, vy, Vs, V3) for all v, vy, v3, vy € V.
Replacing v,, vg, v4 by vg, v, v,, respectively, we obtain
(3)  R(vq, vy, v3, Uy) = R(vy, U3, 4, U5) for all vy, vy, v5, 04 € V.
From (2) and (3), we obtain
3R(vy, vy, V3, 1) = R(vq, Vs, U3, vg) + R(vq, v, U, V)
+ R(vq, vy, vy, U3),
where the right hand side vanishes by (c). Hence,

R(vq, vy, v3,04) =0 for all v,, vy, v, v, € V.

QED.

Besides a quadrilinear mapping R, we consider an inner
product (i.e., a positive definite symmetric bilinear form) on V,
which will be denoted by (,). Let p be a plane, that is, a 2-
dimensional subspace, in V and let ; and v, be an orthonormal
basis for . We set

K(p) = R(vy, 03, 03, ).
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As the notation suggests, K(p) is independent of the choice of an
orthonormal basis for p. In fact, if w; and w, form another
orthonormal basis of p, then

w, = av; + bvy, wy, = —bv, + av, (or by, — av,),

where a and b are real numbers such that a® + 42 = 1. Using (a)
and (b), we easily obtain R(v,, vs, 4, v5) = R(w,, w,, wy, \wz).

Prorosrtion 1.3, If vy, v, is a basis (not necessarily orthonormal)
of a plane p in V, then

K(p) =

R(vy, vy, 01, 0g)
(v, v1) (02: vy) — (01, 0,)?

Proof. We obtain the formula making use of the following
orthonormal basis for p:

(vlavzl)% ’ a [(21, 91)v5 — (1, 25)01]
where a = [(o1, 22) (02, 22) (02, 22) — (23, 20)*)) QED.

We set
R (vy, va, U3, 0a) = (04, 03) Vs, U4) — (025 03) (U, 0y)
for vy, vy, vs, v, € V.
It is a trivial matter to verify that R, is a quadrilinear mapping
having the properties (a), (b) and (c) and that, for any plane p

in V, we have
Kl(ﬁ) - R1<Z)1, 029 U1s 02) — 1:

where v,, v, is an orthonormal basis for p.

ProrosiTion 1.4.  Let R be a quadrilinear mapping with properties
(a), (b) and (c). If K(p) = c for all planes p, then R = cR,.
Proof. By Proposition 1.3, we have
R<vla Ugs Uy, vz) — CR1<Z)1: Uss U1s 02) for all Uy, Ug € V.

Applying Proposition 1.2 to R and ¢R,, we conclude R = ¢R;.
QED.

Let ¢y, ..., e, be an orthonormal basis for V with respect to the
inner product (,). To each quadrilinear mapping R having




V. CURVATURE AND SPACE FORMS 201

properties (a), (b) and (c), we associate a symmetric bilinear
form § on V as follows:

S(Ula vy) = R(ey, vq, €4, 05) + R(ey, vy, €5, 05) 4 - -
+ R(e,, vy, €4, Vs), Uy, Uq€ V.

It can be easily verified that § is independent of the choice of an
orthonormal basis ¢, . . ., ¢,. From the definition of .S, we obtain

ProrositioN 1.5.  Let v € V be a unit vector and let v, e, . . . , e, be
an orthonormal basis for V. Then

S(U, Z)) = K<p2) + e + K(ﬁn);
where p, 1s the plane spanned by v and e,.

2. Sectional curvature

Let M be an n-dimensional Riemannian manifold with metric
tensor g. Let R(X, Y) denote the curvature transformation of
T,(M) determined by X, Y e T,(M) (cf. § of Chapter III).
The Riemannian curvature tensor ( field) of M, denoted also by R, is
the tensor field of covariant degree 4 defined by

R(Xla Xz: X3> X4) — g(R<X3> X4)X2> Xl);
X, e T,(M),i=1,...,4

Prorosition 2.1.  The Riemannian curvature tensor, considered as a
quadrilinear mapping T, (M) X T,(M) X T, (M) x T, (M) —-R
at each x € M, possesses properties (a), (b), (c) and hence (d) of §l.

Proof. Let u be any point of the bundle O(M) of orthonormal
frames such that 7(u) = x. Let X¥, X§ € T4(O(M)) with »(X¥) =
X; and #(X}) = X,. From the definition of the curvature
transformation R(Xj, X,) given in §5 of Chapter ITI, we obtain

g(R(X;, X)X, X1) = g(u[2Q(XF, XT)(w1X,)], Xy)
= ((2Q(XF, X7)) (u1X,), u1X,),
where (,) is the natural inner product in R*. Now we see that
property (a) is a consequence of the fact that Q(X¥, X¥) € o(n)
is a skew-symmetric matrix. (b) follows from R(X;, X,) =

—R(X,, X;). Finally, (c) is a consequence of Bianchi’s first
identity given in Theorem 5.3 of Chapter III. QED.
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For each plane p in the tangent space T,(M), the sectional
curvature K(p) for p is defined by

K(p) = R(Xla X,y Xy, Xy) = g(R(Xla X,)X,, X)),

where X;, X, is an orthonormal basis for . As we saw in §l,
K(p) is independent of the choice of an orthonormal basis
X, X,. Proposition 1.2 implies that the set of values of K(p) for all
planes p in 7T,(M) determines the Riemannian curvature tensor

at «.

If K(p) is a constant for all planes p in T,(M) and for all
points x € M, then M is called a space of constant curvature. The
following theorem is due to F. Schur [1].

TueorReEM 2.2. Let M be a connected Riemannian manifold of
dimension = 3. If the sectional curvature K(p), where p is a plane n
T,(M), depends only on x, then M is a space of constant curvature.

wProof. We define a covariant tensor field R; of degree 4 as

follows:
R(W,Z, X, Y) =g(W,X)g(4,Y) —g(Z,X)g(Y, W),

W,z X,YeT,(M).
By Proposition 1.4, we have
R - le,

where £ is a function on M. Since g is parallel, so is R;. Hence,
(VUR)(W: Z: X; Y) - (VUk)Rl(W> Z: X: Y)
for any U e T,(M).
This means that, for any X, ¥, Z, U e T,(M), we have
[(VuR)(X, Y)]Z = (Uk)(g(Z, Y)X — ¢(Z, X)Y).

Consider the cyclic sum of the above identity with respect to
(U, X, Y). The left hand side vanishes by Bianchi’s second identity
(Theorem 5.3 of Chapter III). Thus we have

0 = (Uk)(g(Z, )X —¢g(Z, X)T)
+ (Xk)(4(2, U)Y —¢(Z, Y)U)
+ (Yk)(¢(2Z, X)U — g(Z, U) X).
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For an arbitrary X, we choose ¥, Z and U in such a way that
X, Y and Z are mutually orthogonal and that U = Z with
g(Z, Z) = 1. This is possible since dim M = 3. Then we obtain

(XK)Y — (YB)X = 0.

Since X and Y are linearly independent, we have Xk = Yk = O.
'This shows that £ is a constant. QED.

CoroLLARY 2.3.  For a space of constant curvature k, we have

RX,Y)Z = k(s(Z, V)X — 8(Z, X)Y).

This was established in the course of proof for Theorem 2.2.

If k is a positive (resp. negative) constant, M is called a space
of constant positive (resp. negative) curvature.

If R}, and g,; are the components of the curvature tensor and
the metric tensor with respect to a local coordinate system (cf.
§7 of Chapter III), then the components R,;;, of the Riemannian
curvature tensor are given by

—_ m
Rt = 2 8im 8178

If M is a space of constant curvature with K(p) = £, then

Rijiy = k(gikg:il — gikgli)a R;’kz = k(é};gﬂ — gn’kag)'

Asin §7 of Chapter ITT, we define a set of functions Ri; on L(M)
by N

; 1 3 1
= Xy 3R, 0% A 0,

where Q = () is the curvature form of the Riemannian connec-
tion. For an arbitrary point u of O(M), we choose a local co-
ordinate system x1, . .., x” with origin x = #(x) such that u is the
frame given by (9/dxY),, ..., (d/0x"),. With respect to this
coordinate system, we have

g.; = 0, atux,
and hence ’
;kl — Ri:)‘kl — k(aika_ﬂ — 651‘,6”) at x.

Let o be the local cross section of L(M) given by the field of
linear frames o/ox!, ..., d/ox". As we have shown in §7 of
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Chapter III, we have o*i%jkl = R},,. Hence,
~;:kz = k(0051 — 0;x00) atuy,
Q! =kO'AG atu.
Since u is an arbitrary point of O(M), we have

ProrosiTion 2.4. If M 15 a space of constant curvature with
sectional curvature k, then the curvature form Q = (L) is given by

Qf = kA on O(M),
where 0 = (0%) s the canonical form on O(M).

3. Spaces of constant curvature

In this section, we shall construct, for each constant £, a simply
connected, complete space of constant curvature with sectional
curvature £. Namely, we prove

THEOREM 3.1. Let (x,...,x™ t) be the coordinate system of
R™1 and M the hypersurface of R*+1 defined by

(x1)2 + -+« + (x™)?2 + rt2 =71 (r: a nonzero constant).

Let g be the Riemannian metric of M obtained by restricting the following
form to M :

(dxV)2 + « - - + (dx™)2 + r dt.
Then

(1) M s a space of constant curvature with sectional curvature 1/r.

(2) The group G of linear transformations of R**+1 leaving the quadratic
Sorm (x1)2 + - - - 4+ (x™)2 4 rt® invarant acts transitwely on M as a
group of isometries of M.

(3) If r > 0, then M is isometric to a sphere of a radius r*. If r < 0,
then M consists of two mutually isometric connected manifolds each of
which 1is diffeomorphic with R™.

Proof. First we observe that M is a closed submanifold of
R"+1 (cf. Example 1.1 of Chapter I); we leave the verification to
the reader.

We begin with the proof of (3). If r > 0, then we set x™*1 = r#s,
Then M is given by

(x1)2 4 - - - 4 (am1)2 =,
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and the metric g is the restriction of (dx1)? + - -+ 4 (dx"+1)2 to
M. This means that M is isometric with a sphere of radius r*. If
r < 0, then 2 = 1 at every point of M. Let M’ (resp. M") be the

set of points of M with ¢ =1 (resp. { £ —1). The mapping
(x1, ..., x" 1) — (9L, ..., ") defined by

yt = xt, i=1,...,n,

is a diffeomorphism of M’ (and M") onto the open subset of R”

given by
i, () +r <O

In fact, the inverse mapping is given by
xt = y't, 1 =1,...,mn,
r ]
r+ 2; (") 2) .

A straightforward computation shows that the metric g is expressed
in terms of yL, . .., »" as follows:
[(r + 2,03 (@97 — (20" DY)
(r +%; (")?)? .

To prove (2), we first consider G as a group acting on R"+1,
Since G is a linear group leaving (x1)2 4 .- 4 (x™)% 4 r2
invariant, it leaves the form (dx%)% + -+ + (dx™)% + r df? in-
variant. Thus, considered as a group acting on M, G is a group of
isometries of the Riemannian manifold M. The transitivity of G
on M is a consequence of Witt’s theorem, which may be stated as
follows.

Let @ be a nondegenerate quadratic form on a vector space V.
If fis a linear mapping of a subspace U of V into V such that
Q(f(x)) = Q(x) for all x € U, then f can be extended to a linear
isomorphism of V onto itself such that Q(f(x)) = Q(x) for all
x € V. In particular, if x, and x, are elements of V with Q(x,) =
Q(x,), there is a linear isomorphism f of V onto itself which
leaves @ invariant and which maps x, into x;.

For the proof of Witt’s theorem, see, for example, Artin
[1, p. 121].

Finally, we shall prove (1). Let H be the subgroup of G which
consists of transformations leaving the point o with coordinates

.
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(0,...,0,1) fixed. We define a mapping f: G — O(M) as
follows. Let uy € O(M) be the frame at the pointo = (0,...,0, 1)
e M given by (d/oxY),, ..., (0/0x"),. Every element a € G, being
an isometric transformation of M, maps each orthonormal frame
of M into an orthonormal frame. In particular, a(%,) is an ortho-
normal frame of M at the point a(0). We define

f(d) — a(uO')p aeG.

LemMma 1. The mapping f: G — O(M) is an isomorphism of the
principal fibre bundle G(G[/H, H) onto the bundle O(M)(M, O(n)).
Proof of Lemma 1. If we consider G as a group of (n + 1) X
(n 4+ 1)-matrices in a natural manner, then H is naturally

isomorphic with O(n):
O(n) O
" ( (n) )

0 1

It is easy to verify that f: G — O(M) commutes with the right
translation R, for every a e H = O(n):

f(ba) =f(b) - a for b e G and a e H = O(n).

The transitivity of G on M implies that the induced mapping
f: GIH — M is a diffeomorphism and hence that f: G — O(M)
is a bundle isomorphism.

The quadratic form defining M is given by the following

(n + 1) x (n 4+ 1)-matrix:

(L0
o=, )

An (n 4+ 1) X (n 4 1)-matrix a is an element of G if and only if
‘aQQa = @, where ’a is the transpose of a. Let

X
a = ,
'z w
where X is an n X n-matrix, y and z are elements of R® and w is
a real number. Then the condition for a to be in G is expressed by

XX +r-ztz=1, 'Xy4+r-zw=0, Yy +r -w?=r.
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It follows that the Lie algebra of G is formed by the matrices of

the form
A b)
e 0)

where A4 i1s an n X n-matrix with ‘4 + 4 = 0 and b and ¢ are
elements of R” satisfying & 4 r¢ = 0. Let

1 1 1
al o o o an ﬂ
n n
% Xp ﬁn
y 1 ¢ o o yn O

be the (left invariant) canonical I-form on G (cf. §4 of Chapter I).
We have
o +al =0, B +ry; =0, L,j=1,...,n.

The Maurer-Cartan equation of G is expressed by
d‘Bz = -—Zk O(;; A ;Bk:

doj = —Zp g Ao — BEAy;, hj=1...,n

LemMA 2. Let 0 = (0%) and w = (w}) be the canonical form and
the connection form on O(M). Then

F*0=F and froi=of, ij=1,...,n

Proof of Lemma 2. As we remarked earlier, every element
a € G induces a transformation of O(M); this transformation
corresponds to the left translation by @ in G under the isomorphism
f+ G —- O(M). From the definition of 0, we see easily that
60 = (0%) 1s invariant by the transformation induced by each
a € G. On the other hand, (#?) is invariant by the left translation
by each a e G. To prove f*0! = g% it is therefore sufficient to
show that ( f*0%)(X*) = (X *) for all X*e T,(G). Set X; =
(0/0x%), so that the frame u, is given by (X,;,..., X,). The
composite mapping 7 o f: G - O(M) — M maps an element of
T,(G) (identified with the Lie algebra of G) of the form

[« o
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into the vector X, 60X, e T,(M), where b, ...,06" are the
components of 5. Therefore, if X* e 7,(G), then = o f(X*) =
%; BH(X *)X, and hence

(f*OHX*), ..o, fHOM(X¥) = ug (7o f (X*))
= (BHX*), ..., BM(X)),

which proves the first assertion of the lemma. Let g and § be the
Lie algebras of G and H, respectively. Let m be the linear sub-
space of g consisting of matrices of the form

o of

It is easy to verify that m is stable under ad H, that is, ad (a)(m) =
m for every a e H. Applying Theorem 11.1 of Chapter II, we
see that («f) defines a connection in the bundle G(G/H, H). Now,
the second assertion of Lemma 2 follows from the following three
facts: (1) (B?) corresponds to (6%) under the isomorphism f: G —
O(M); (2) the Riemannian connection form (w!) is characterized
by the property that the torsion is zero (Theorem 2.2 of Chapter
IV), that is, d6 = —3, ol A 6%; (3) the connection form (o)
satisfies the equality: df* = —X, af A B".

We shall now complete the proof of Theorem 3.1. Lemma 2,
together with

dot = —Z 0l Ao — BEAY;

and

481. _I_ryz :03

implies
. : |
dof = —Spal Aok + - AP,
r
showing that the curvature form of the Riemannian connection is
. | ol :
given by — 6% A 67. By Proposition 2.4, M is a space of constant
r
curvature with sectional curvature 1/r. QED.

Remark. 'The group G is actually the group of all isometries of
M. To see this, let I(M) be the group of isometries of M and
define a mapping f: J(M) — O(M) in the same way as we
defined f: G — O(M). Then G = I(M) and f: J(M ) — O(M)
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is an extension of f: G — O(M). Since f maps J(M) 1:1 into
O(M) and since f(G) = O(M), we must have G = J(M).
In the course of the proof of Theorem 3.1, we obtained

THEOREM 3.2. (1) Let M be the sphere in R™+1 defined by
(xl)z L = (xn+1)2 — a2,
Let g be the restriction of (dxV)% + - - - + (dx™1)2 to M. Then, with
respect to this Riemannian metric g, M is a space of constant curvature with
sectional curvature 1/a2.
(2) Let M be the open set in R™ defined by
(x1)2 4 - o 4 (22 < a2
Then, with respect to the Riemannian metric given by
a?[(a® — %, (V))& (§9)?) — (20" )]
(a* — %, ())?)* ’

M 15 a space of constant curvature with sectional curvature —1/a?.

The spaces M constructed in Theorem 3.2 are all simply
connected, homogeneous and hence complete by Theorem 4.5
of Chapter I'V. The space R™ with the Euclidean metric (dx1)? -+
+++ 4 (dx™? gives a simply connected, complete space of
Zero curvature.

A Riemannian -manifold of constant curvature is said to be
elliptic, hyperbolic or flat (or locally Euclidean) according as the sec-
tional curvature is positive, negative or zero. These spaces are
also called space forms (cf. Theorem 7.10 of Chapter VI).

4. Flat affine and Riemannian connections

Throughout this section, M will be a connected, paracompact
manifold of dimension =.

Let A(M) be the bundle of affine frames over AM; it is a
principal fibre bundle with structure group G = A(n; R) (cf. §3
of Chapter ITI). An affine connection of M is said to be flat if
every point of M has an open neighborhood U and an isomorphism
p: A(M) - U x G which maps the horizontal space at each
u € A(U) into the horizontal space at y(u) of the canonical flat
connection of U X G. A manifold with a flat affine connection is
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said to be locally affine. A Riemannian manifold is flat (or locally
Euclidean) if the Riemannian connection is a flat affine connection.

THEOREM 4.1. For an affine connection of M, the following con-
ditions are mutually equivalent :

(1) It is flat;

(2) The torsion and the curvature of the corresponding linear connection
vanish identically :

(3) The affine holonomy group is discrete.

Proof. By Theorem 9.1 of Chapter II, an affine connection is
flat if and only if its curvature form Q on A(M) vanishes identi-
cally. The equivalence of (1) and (2) follows from Proposition 3.4
of Chapter ITI. The equivalence of (2) and (3) follows from
Theorems 4.2 and 8.1 of Chapter II. QED.

Remark. Similarly, for a linear connection of M, the following
conditions are mutually equivalent:

(1) It is flat, i.e., the connection in L(M) is flat; (2) Its
curvature vanishes identically; (3) The linear (or homogeneous)
holonomy group is discrete.

When we say that the affine holonomy group and the linear
holonomy group are discrete, we mean that they are 0-dimen-
sional Lie groups. Later (cf. Theorem 4.2) we shall see that the
affine holonomy group of a complete flat affine connection is
discrete in the affine group A(n; R). But the linear holonomy group
need not be discrete in GL(n; R) (cf. Example 4.3). It will be shown
that the linear holonomy group of a compact flat Riemannian
manifold is discrete in O(n) (cf. the proofof (4) of Theorem 4.2 and
the remark following Theorem 4.2).

Example 4.1. Let &, ..., &, belinearly independent elements
of R", k < n. Let G be the subgroup of R” generated by &,, . . ., &;:

G = {Z m;&,;; m, integers}.

The action of G on R” is properly discontinuous, and R" is the
universal covering manifold of R"/G. The Euclidean metric
(dx1)2 4 - - - 4 (dx™)? of R™ is invariant by G and hence induces a
flat Riemannian metric on R”/G. The manifold R”/G with the
Riemannian metric thus defined will be called a Euclidean cylinder.
It is called a Euclidean torus if &, . .., &, form a basis of R?, i.e.,

= n. Every connected abelian Lie group with an invariant
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Riemannian metric is a Euclidean cylinder, and if it is, moreover,
compact, then it is a Euclidean torus. In fact, the universal
covering group of such a Lie group is isomorphic with a vector
group R” and its invariant Riemannian metric is given by
(dx1)2 4+ « - - 4 (dx™)? by a proper choice of basis in R". Our
assertion is now clear.

The following example shows that a torus can admit a flat affine
connection which is not Riemannian. This was taken from
Kuiper [1].

Example 4.2. The set G of transformations

(%) = (* + n + m, y + n),
nom =0, +1, +2, ...,

of R? with coordinate sytem (x, y) forms a discrete subgroup of
the group of affine transformations; it acts properly discontin-
uously on R? and the quotient space R?/G is diffeomorphic with a
torus. The flat affine connection of R2 induces a flat afline con-
nection on R2%/G. This flat affine connection of R2%/G is not
Riemannian. In fact, if it is Riemannian, the induced Riemannian
metric on the universal covering space R2 must be of the form
adx dx + 2bdx dy + ¢ dydy, where a, b and ¢ are constants,
since the metric must be parallel. On the other hand, G is not a
group of isometries of R? with respect to this metric, thus prov-
ing our assertion.

Let M be locally afline and choose a linear frame u, ¢ L(M) <
A(M). Let M* be the holonomy bundle through u, of the flat affine
connection and M’ the holonomy bundle through u, of the cor-
responding flat linear connection. Then M* (resp. M’) is a prin-
cipal fibre bundle over M whose structure group is the affine
holonomy group ®(u,) (resp. the linear holonomy group ¥(x,)).
Since ®(u,) and ¥ (u,) are discrete, both M* and M’ are covering
manifolds of M. The homomorphism f: A(M) —L(M) defined
in §3 of Chapter IIT maps M* onto M’ (cf. Proposition 3.5 of
Chapter ITT). Hence M* is a covering manifold of AM’.

THEOREM 4.2. Let M be a manifold with a complete, flat affine
connection. Let uge L(M) < A(M). Let M* be the holonomy bundle
through uy of the flat affine connection and M’ the holonomy bundle through
Uy of the corresponding flat linear connection. Then
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(1) M* is the universal covering space of M and, with respect to the
flat affine connection induced on M*, it is isomorphic to the ordinary
affine space A"

(2) With respect to the flat affine connection induced on M', M' is a
Euclidean cylinder, and the first homotopy group of M’ is isomorphic to
the kernel of the homomorphism ®(uy) — ¥(u,).

(3) If M" is a Euclidean cylinder and is a covering space of M, then it
is a covering space of M'.

(4) M’ is a Euclidean torus if and only if M is a compact flat Rieman-
nian manifold.

Proof. Let

do? = —Z; i A 07, doj = —Z,0iAef, L7=1...,n,

be the structure equations on L(M') of the flat affine connection
of M'. Let N be the kernel of the homomorphism ®(u,) — ¥ ().
Since M’ = M*|N, the affine holonomy group of the flat affine
connection on M’ is naturally isomorphic with N (cf. Proposition
9.3 of Chapter II). The group N consists of pure translations only
and the linear holonomy group of M’ is trivial. Let o: M’ —
L(M’) be a globally defined parallel field of linear frames. Set
0f = o*6°, v} = o*wl, Lj=1,...,n
Since o is horizontal, that is, ¢(M’) is horizontal, we have &} = 0.
The structure equations imply that d6* = 0. We assert that, for
an arbitrarily chosen point o of M’, there exists a unique abelian
group structure on A’ such that the point o is the identity
element and that the forms ¢ are invariant. Our assertion follows
from the following three facts:

(a) 61, ..., 0" form a basis for the space of covectors at every
point of M’;

(b)a’@’—Oforz_l ;

(c) Let X be a vector ﬁeld on M’ such that 6i(X) = ¢t (¢
constant) for : = 1, ..., n. Then X is complete in the sense that
it generates a l-parameter group of global transformations of A",

The completeness of the connection implies (c) as follows. Let
X* be the horizontal vector field on L(M’) defined by 6'(X*) =
¢, 1 =1,...,n Under the diffeomorphism o: M’ — o(M’), X
corresponds to X*. Since X* is complete (cf. Proposition 6.5 of
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Chapter III), so is X. Note that (b) implies that the group is
abelian.

It is clear that 616 + - - - -+ 070" is an invariant Riemannian
metric on the abelian Lie group M’. As we have seen in Example
4.1, M’ is a Euclidean cylinder.

LemMma 1. Let R*G, G = {Z¥_, m,&;; m, integers}, be a Fuclidean
cylinder as defined in Example 4.1. Then the affine holonomy group of
R*|G is a group of translations isomorphic with G.

Proof of Lemma 1. We identify the tangent space 7,(R") at
each point a e R” with R” by the following correspondence:

T, (R") > 32, 21(9/ax%) <> (AL, ..., ") « R™.

‘The linear parallel displacement from 0 e R" to a € R” sends

(A4 ..., A") € To(R") into the vector with the same components
(A4 ..., A" € T,(R"). The affine parallel displacement from 0 to
a = (al,...,a") sends (A, ..., A"), considered as an element of

the tangent affine space 4,(R"), into (A1 a4l ..., A" 4 a") €
A, R"). Let 7* = x¥* 0 < ¢t < 1, be a line from 0 to X*_; m;&, ¢ G
and let 7 = x,, 0 < ¢t < 1, be the image of v* by the projection
R" —~ R"/G. Then 7 is a closed curve in R"/G. Let

Sk mé, = (d,...,a") eR",
Then the affine parallel displacement along 7 yields the translation
(A, ..., A") > (A +aly ..., A+ an).
This completes the proof of Lemma 1.

Being a covering space of M’, M *is also a Euclidean cylinder.
By Proposition 9.3 of Chapter II, the affine holonomy group of
M* is trivial. By Lemma 1, M * must be the ordinary affine space
A", proving (1).

Since M’ = M*[N, the first homotopy group of M’ is iso-
morphic with N. This completes the proof of (2).

Let M” be a covering space of M. Since M* is the universal
covering space of M, we can write M" = M*/H, where H is a
subgroup of ®(u,). The affine holonomy group of M"” is H by
Proposition 9.3 of Chapter II. If M” 1s a Euclidean cylinder, the
affine holonomy group H consists of translations only (cf. Lemmal)
and hence is contained in the kernel N of the homomorphism
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®(uy) — ¥ (u,). Since M’ = M*|N, we may conclude that M" is a
covering space of M’, thus proving (3).

Suppose M’ is a Euclidean torus. It follows that M is compact
and the linear holonomy group ®(u,) of M is a finite group. This
implies that the flat affine connection of M is Riemannian. In
fact, we choose an inner productin 7, (M), x, = 7 (u,), invariant
by the linear holonomy group with reference point x,, and then we
extend it to a Riemannian metric by parallel displacement. The
flat affine connection of M is the Riemannian connection with
respect to the Riemannian metric thus constructed.

Conversely, suppose M is a compact, connected, flat Rieman-
nian manifold. By virtue of (1), identifying M* with R®, we may
write M = R"/G, where G is a discrete subgroup of the group of
Euclidean motions acting on R”™. Let N be the subgroup of G
consisting of pure translations. In view of (2) and (3) our problem
is to prove that R*/N is a Euclidean torus. We first prove several
lemmas.

LEmMMA 2. Let A and B be unitary matrices of degree n such that A
commutes with ABA=XB=1. If the characteristic roots of B have positive
real parts, then A commutes with B.

Proof of Lemma 2. Since AABA-B-1 = ABA-1B-14, we
have ABA-1B~1 = BA-'B-14. Without loss of generality, we may
assume that B is diagonal with diagonal elements 4, = cos 8, +

J—1sinB, k=1,...,n Since A =*4 and B-! =B = B,
we have _ _

AB*AB — ABA-'B~! — BA-'B—A — B*ABA.
Comparing the (7,7)-th entries, we have

no ip oAF _ Swm p F i _ (i
ZP_y dibaib, = X%y b;@bal, where A = (df).

Comparing the imaginary parts, we obtain
iy (1a® + |a2?) - sin (B, — B,) =0 fori=1,...,n

We may also assume that §; = ‘8? g ‘3101 < P41 =" =
Bo,4p, <" = B <Py -+ 7 Since all the b;’s have positive
real parts, we have

sin (8, — ;) >0 for: < p; and j > p,.
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Hence we must have

a =al =0 fori < p, and j > p;.

Similarly, we have
a; =al =0 for: < p, +p, and J > p; + po.

Continuing this argument we have

A, 0 B, 0
4 — 4, B-— B, ,
0 . 0
B, =b1,, By=20b, 115 ...,
where 4,, 4,, . . . are unitary matrices of degree p,, p,, . . . , and
I,,1,,... are the identity matrices of degree p,, py,.... This

shows clearly that 4 and B commute.
For any matrix A4 = (aj) of type (r, 5) we set

p(4) = (Z;; 1415

In other words, ¢(4) is the length of A when 4 is considered as a
vector with rs components. We have

(4 + B) = o(4) + ¢(B),
¢(4B) = ¢(4) - ¢(B).

The latter follows from the inequality of Schwarz. If 4 is an
orthogonal matrix, we have

¢(4B) = ¢(B), ¢(CA4) = ¢(C).
Every Euclidean motion of R” is given by
x — Ax + p, x e R",

where 4 is an orthogonal matrix (called the rotation part of the
motion) and p is an element of R” (called the translation part of
the motion). This motion will be denoted by (4, p).

LemMa 3.  Guven any two Euclidean motions (A, p) and (B, q), set
(41, £1) = (4, p)(B, q)(4, p)7(B, ¢) .
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Let I be the identity matrix of degree n. If (A — 1) < a and
p(B — 1) < b, then we have
(1) p(dy — 1) < 2ab;

(2) p(p1) <b-9(p) +a-o(g).
Proof of Lemma 3. We have

A, — 1 =ABA*B' — ] = (AB — BA)A'B1
=(d4d-0HB -1 —(B—-1H{4d—1)41B,
Since 4-1B~!1is an orthogonal matrix, we have
pldy = 1) = p(d = 1) - 9B —1) + ¢(B —1) - ¢4 — 1) < 2ab.
By a simple calculation, we obtain
p1=AI — B)A™p + AB(I — A~1)B1y.
By the same reasoning as above, we obtain

p(p) = o — B) - o(p) + oI —*4) - 9(q9) < bp(p) + ap(q).

LEMMA 4. With the same notation as in Lemma 3, set

(Alu pk) — (Aa ,b) (Ak—lubk—l) (Aub) _1<Ak—19 pk—l)_la - 29 3: e
Then, for k =1,2,3,..., we have

(1) (4, — 1) < 2%a*b;

(2) 9(x) < (26 — 1)a*6 - g(p) + 2 p(g).

Proof of Lemma 4. A simple induction using Lemma 3
establishes the inequalities.

LeMMA 5. Let G be a discrete subgroup of the group of Euclidean
motions of R". Let a < % and

Gla) ={(4,p) eG; (4 — I) < a}.
Then any two elements (A, p) and (B, q) of G(a) commute.

Proof of Lemma 5. By Lemma 4, ¢(d, — 1) and ¢(p,)
approach zero as £ tends to infinity. Since G is discrete in A(n, R),
there exists an integer £ such that 4, = Iand p,, = 0. We show that
the characteristic roots a,, . . . , a, of an orthogonal matrix 4 with
p(4 — I) < 1 have positive real parts. If U is a unitary matrix
such that UAU! is diagonal, then

p(d —1) = (U4 — HU™) = p(UAUT =1
= (lay =12+ -+ + |2, — 13} < 4,
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which proves our assertion. By applying Lemma 2 to 4, =
A4, A4, ,, we see that 4, ; = 1. Continuing this argument,
we obtain A, = I. Thus A and B commute.

Hence,

pr=U—-B)p—U—A)g, p=(4d—1D)p,,
by = (A — D)py = (4 — D)%,

pr=A —Dpp_y = (4 — I)*p,.

Since p,, = 0, we have

(4 — Iy=1p, = 0.
Changing the roles of (4, p) and (B, ¢) and noting that
(Ba q) (Aa p) (Ba q)_l(A> p)—l — (19 _pl)p

(B—ID)m1p, =0 for some integer m.

we obtain

Since A and B commute, there exists a unitary matrix U such that
UAU! and UBU! are both diagonal. Set

a, 0O b, O
UAU = | y , UBU™! = | . )
0 a, 0o b,
71 51
Up = , Ug =
r s

Then, from (A4 — I)*~1p, = (4 — I)*(I — B)p — (I — A)q) =

0, we obtain
(az' — l)k_l{(l - bz)rz — (1 - az’)si} - 0: 1 = 1: I (P
Similarly, from

(B —D)mpy =B - = B)p — (I —A)g} =0,
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we obtain
(b, — D)1 —b)r;, — (1 —a)s;} =0, i=1,...,n.
Hence we have
(1 —b)r, — (1 —a)s; =0, 1=1,...,n
In other words, we have
pr=( —B)p — (I — A)g =0,

which completes the proof of Lemma 5.
If (4, ) < G(a) and (B, q) < G, then (B, g)(4, ) (B, 9) < G(a).
Indeed,

@(BAB —I) = p(B(d —D)BY) = p(d — 1) < a.

This shows that the group generated by G(a) is an invariant sub-
group of G. By Lemma 3, it is moreover abelian if a < 1.

A subset V of R” is called a Euclidean subspace if there exist an
element x, ¢ R® and a vector subspace S of R” such that V =
{x + xo; ¥ € S}. We say that a group G of Euclidean motions of R"
is zrreducible if R™ is the only Euclidean subspace invariant by G.

LeEmMma 6. If H s an abelian normal subgroup of an irreducible
group G of Euclidean motions of R", then H contains pure translations only.
Proof of LLemma 6. Since /A is abelian, we may assume, by
applying an orthogonal change of basis of R” if necessary, that the
elements (4, p) of H are simultaneously reduced to the following

form:
/Al 0 /[’1\

. . cos o; Sin o
4 = . , P = . > Ai — ( )’

5 —sin o; COS o
4
\ ¢ 1 oG=1,...,k

VR S, *

where I,_,, 1s the identity matrix of degree n — 2k, each p, is a
vector with 2 components and p* is a vector with n — 24 com-
ponents. Moreover, for each 7, there exists an element (4, p) of H
such that A, is different from the identity matrix 7/, so that
A4; — I, is non-singular.
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Our task is now to prove that £ = 0,1.e., 4 = I, forall (4, p) €
H. Assuming £ = 1, we shall derive a contradiction.

For each iz, choose (4, p) € H such that A, — I, is non-singular
and define a vector ¢, with 2 components by

(Ai — lz)ti = pi-
We shall show that

(B, — 1,)t; = q, for all (B, ¢q) € H.
Since (4, p) and (B, ¢) commute, we have
Aq; + p; = Bip; + ¢,

(A; — 1,)q; = (Bz‘ — L,)p;.

or

Hence we have

(Bi — lz)ti — (Bi - ]2)(Az' - ]2)_1Pi — (Az‘ - ]2)_1(Bi — ]2)1bi
= (4; — L)(4; — 1,)q; = g,

thus proving our assertion. We define a vector ¢ ¢ R* by

We have now

(Lo ) (4, p) Ly, )7 = (L, 1) (4, p) (Ln, —1)
= (Aub — (A _]n)t)a (Aalb) € H,

AN

p—a-rp={.]-|.]=

SRR

where

L m—




220 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

-

By translating the origin of R" to {, we may now assume that the
elements (A, p) of H are of the form

4, 0 0

4= . ’ p -
A, 0
0 In—2lc p*

Let V be the vector subspace of R" consisting of all vectors
whose first 2k components are zero. Then V is invariant by all
elements (4, p) of H. We shall show that V is also invariant by G.
First we observe that V is precisely the set of all vectors which are
left fixed by all 4 where (4, p) e H. Let (C,7) € G. Since H is a
normal subgroup of G, for each (4, p) € H, there exists an element

(B, q) € H such that
(4, ) (G, 7) = (G, 7)(B, g).

If v e V, then ACv = CBv = Cv. Since Cv 1s left fixed by all 4, it
lies in V. Hence C is of the form

¢'" 0
C =
0 Cll
where ¢’ and C” are of degree 2k and n — 2k, respectively. To

prove that the first 2k components of r are zero, write

71

"%

7'*
For each i, let (4, p) be an element of H such that A; — /, is non-
singular. Applying the equality (4, p)(C, r) = (C, r)(B, ¢) to the
zero vector of R” and comparing the (2: — 1)-th and 2:-th compo-
nents of the both sides, we have
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Since (A, — I,) is non-singular, we obtain 7, = 0. Thus every
element (C, r) of G is of the form

¢’ 0
C = , r=
b e

This shows that V is invariant by G, thus contradicting the irre-
ducibility of G. This completes the proof of Lemma 6.

LemMmAa 7. A group G of Euclidean motions of R™ is irreducible if
R"*/G is compact.

Proof of Lemma 7. Assuming that G is not irreducible, let V
be a proper Euclidean subspace of R* which is invariant by G.
Let x, be any point of V and let L be a line through x, perpendic-
ular to V. Let x4, %5, ..., %, ... be a sequence of points on L
such that the distance between x, and x,, is equal to m. Let G(x,)
denote the orbit of G through x,. Since G(x,) is in V, the distance
between G(x,) and x,, is at least m and, hence, is equal to m.
Therefore the distance between the images of x, and x,, in R*/G
by the projection R* — R"*/G is equal to m. This means that
R"/G is not compact.

We are now in position to complete the proof of (4). Let G and
G(a) be as in Lemma 5 and assume a < {. Let H be the group
generated by G(a); it is an abelian normal subgroup of G. Assume
that R"/G is compact. Lemmas 6 and 7 imply that H contains
nothing but pure translations. On the other hand, since G is
discrete, G/H is finite by construction of G(a). Hence R*/H is also
compact and hence is a Euclidean torus. Let N be the subgroup
of G consisting of all pure translations of G. Since G(a) contains

N, we have N = H. This proves that R*/N is a Euclidean torus.
QED.

0

0

T*

Remark. (4) means that the linear holonomy group of a
compact flat Riemannian manifold M = R*/G is isomorphic to

G/N and hence is finite.
Although (1), (2) and (3) are essentially in Auslander-Markus

[1], we laid emphasis on affine holonomy groups. (4) was originally
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proved by Bieberbach [1]. The proof given here was taken from
Frobenius [1] and Zassenhaus [1].

Example 4.3. 'The linear holonomy group of a non-compact flat
Riemannian manifold may not be finite. Indeed, fix an arbitrary
irrational real number 1. For each integer m, we set

cos Amm  sin Ammw 0 0
A(m) = —sin imm cosAmx 0], p(m) =10
0 0 1 m

Then we set G = {(d(m), p(m)); m =0, £1, £2,...}. It is easy
to see that G is a discrete subgroup of the group of Euclidean
motions of R3 and acts freely on R3. The linear holonomy group
of R3/G is isomorphic to the group {A(m); m = 0, +1, +2, ...}

CoroLLARY 4.3. A4 manifold M with a flat affine connection admits
a Euclidean torus as a covering space if and only if M s a compact flat
Riemannian manifold.

Proof. Let M"” be a Euclidean torus which is a covering space
of M. By (3) of Theorem 4.2, M" is a covering space of M'. Thus,
M’ is a compact, Euclidean cylinder and hence is a Euclidean
torus. By (3) of Theorem 4.2, M is a compact flat Riemannian
manifold. The converse is contained in (4) of Theorem 4.2. QED.

Example 4.4. In Example 4.2, set M = R2?/G. Let N be the
subgroup of G consisting of translations:

(x:.y)_>(x+m:.y): m=0,+1,4+2,....

Then the covering space M’ defined in Theorem 4.2 is given by
R?/N in this case. Clearly, M’ is an ordinary cylinder, that is, the
direct product of a circle with a line.

The determination of the 2-dimensional complete flat Rieman-
nian manifolds is due to Killing [1,2], Klein [1,2] and H. Hopf
[1]. We shall present here their results with an indication of the
proof.

There are four types of two-dimensional complete flat Rieman-
nian manifolds other than the Euclidean plane. We give the
fundamental group (the first homotopy group) for each type,
describing its action on the universal covering space R2in terms of
the Cartesian coordinate system (x, ).
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(1) Ordinary cylinder (orientable)
(%,9) — (x +n,),
n=0,+1, +£2,....
(2) Ordinary torus (orientable)
(x, y) — (x + ma + n, y + mb)
m,n=0,+1, +2,...,
a, b: real numbers, & # 0.
(3) Mibius band with infinite width or twisted ¢cylinder (non-orientable)
(x,_y) — (x T, (_1)@)))
n=20,4+1,4+2,....
(4) Klein bottle or twisted torus (non-orientable)
(5,3) — (& + n, (—1)" + bm),
n,m=0,+1, +£2,...,
b: non-zero real number.

Any two-dimensional complete flat Riemannian manifold M 1s
isometric, up to a constant factor, to one of the above four types
of surfaces.

The proof goes roughly as follows. By Theorem 4.2, the
problem reduces to the determination of the discrete groups of
motions acting freely on R2 Let G be such a discrete group. We
first prove that every element of G which preserves the orientation
of R? is necessarily a translation. Set z = x 4 ¢». Then every
orientation preserving motion of R? is of the form

zZ —>¢ez + w,

where ¢ is a complex number of absolute value 1 and w is a
complex number. If we iterate the transformation z — ez + w 7
times, then we obtain the transformation

z—>ez+ (424 4+ Do

We see easily that, if ¢ 7= 1, then the point w/(l — &) is left fixed
by the transformation z — ez + w, in contradiction to the
assumption that G acts freely on R2 Hence ¢ = 1, which proves
our assertion. If fis an element of G which reverses the orientation
of R% then f2? is an orientation preserving transformation and
hence is a translation. We thus proved that every element of G'is a
transformation of the type
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-

zZ—>zZ-+w Oor z-—2Z-4 w,

where Z is the complex conjugate of z. It is now easy to conclude
that M must be one of the above four types of surfaces. The
detail is left to the reader.




CHAPTER VI

Transformations

1. Affine mappings and affine transformations

Let M and M’ be manifolds provided with linear connections
I' and I respectively. Throughout this section, we denote by
P(M, G) and P'(M’, G’) the bundles of linear frames L(M) and
L(M’) of M and M’, respectively, so that G = GL(n; R) and
G' = GL(n'; R), where n = dim M and »’ = dim M.

A differentiable mapping f: M — M’ of class (' induces a
continuous mapping f: T(M) — T(M’), where T(M) and T(M")
are the tangent bundles of M and M’ respectively. We call
S+ M — M’ an affine mapping if the induced mapping f: T(M) —
T(M’) maps every horizontal curve into a horizontal curve,
that is, if f maps each parallel vector field along each curve 7 of M
into a parallel vector field along the curve f(7).

ProrositioN 1.1. An affine mapping f: M — M’ maps every
geodesic of M into a geodesic of M’ (together with its affine parameter).
Consequently, f commutes with the exponential mappings, that is,

foexp X =expof(X), XeT,(M).

Proof. This is obvious from the definition of an affine mapping.
QED.

Proposition 1.1 implies that an affine mapping is necessarily of

class C° provided that the connections I' and I are of class C*.
We recall that a vector field X of M is f-related to a vector field X’
of M' if f(X,) = X/, for all x e M (cf. §1 of Chapter I).

ProrosiTioN 1.2. Let f: M — M’ be an affine mapping. Let X, Y
and Z be vector fields on M which are f-related to vector fields X', Y’ and
Z' on M, respectively. Then

225
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(1) V xY is f-related to V x,Y’, where V denotes covariant differentia-
tion both in M and M’';

(2) T(X, Y) is f-related to T' (X', Y'), where T and T’ are the
torsion tensor fields of M and M, respectively;

(3) R(X, Y)Z is f-related to R' (X', Y')Z', where R and R’ are the
curvature tensor fields of M and M', respectively.

Proof. (1) Let x, be an integral curve of X such that x = x,and
let 7% be the parallel displacement along this curve from x, to

x = x,. Then (cf. §1 of Chapter III)

1
(VXY)Q: = lim — (Tf)ymt T Ym)'
{—0 l
Set x, = f(x,) and let 7 be the parallel displacement along this
image curve from x, to " = x;,. Since f commutes with parallel
displacement, we have

FUVT),) = lim L [f(4Y.) — £(¥.)]

t—0 ¢

1
— lim't' ('T(,)t Ya,:’t - Y(;?’) - (VX'Y,)Q}"
{—0
(2) and (3) follow from (1) and Theorem 5.1 of Chapter III.
QED.

A diffeomorphism f of M onto itself is called an affine transforma-
tion of M if it is an affine mapping. Any transformation f of M

induces in a natural manner an automorphism f of the bundle
P(M,G); f maps a frame u = (X, ..., X,) at x ¢ M into the

frame f(u) = (fXy, ..., fX,) at f(x) € M. Since f is an auto-
morphism of the bundle P, it leaves every fundamental vector

field of P invariant.

ProrositioN 1.3. (1) For every transformation f of M, the induced

automorphism f of the bundle P of linear frames leaves the canonical form
0 invariant. Conversely, every fibre-preserving transformation of P leaving
0 invariant 1s induced by a transformation of M.

(2) If f is an affine transformation of M, then the induced automorphism

~

fof P leaves both the canonical form 6 and the connection form w invariant.
Conversely, every fibre-preserving transformation of P leaving both 6 and w
tnvariant is induced by an affine transformation of M.
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Proof. (1) Let X*e T,(P) andset X == (X*)sothat Xe T,(M),
where ¥ = 7(u). Then (cf. §2 of Chapter III)
6(X*) =u}(X) and O(fX*) =f(u)"}(fX),

~

where the frames « and f(x) are considered as linear mappings of
R" onto 71,(M) and T, (M), respectively. It follows from the

definition of f that the following diagram is commutative:
R~

2N

T.(M) —> Ty (M).

Hence, u~1(X) = f(4)~'(fX), thus proving that 0 isinvariant by f.

Conversely, let /¥ be a fibre-preserving transformation of P
leaving 6 invariant. Let f be the transformation of the base M
induced by F. We prove that f = F. We set J = f~1o F. Then J
is a fibre-preserving transformation of P leaving 6 invariant.

Moreover, J induces the identity transformation on the base M.
Therefore, we have

u (X)) = 0(X*) = 0(JX*) = J(u)1(X) for X* ¢ T,(P).
This implies that J(u) = u, that is, f(u) = F(x).
(2) Let f be an affine transformation of M. The automorphism

fof P maps the connection I' into a connection, say, f(I"), and the

form f*w is the connection form of AT (cf. Proposition 6.1 of
Chapter IT). From the definition of an affine transformation, we

see that / maps, for each u e P, the horizontal subspace of T,,(P)
onto the horizontal subspace of T%,,(P). This means that AT =
I" and hence f*0 = o.

Conversely, let I be a fibre-preserving transformation of P
leaving 6 and w invariant. By (1), there exists a transformation f
of M such that F = f. Since f maps every horizontal curve of P
into a horizontal curve of P, the transformation f: T(M) —
T(M) maps every horizontal curve of 7T(M) into a horizontal
curve of 7(M). This means that f: M — M 1s an affine mapping,
thus completing the proof. QED.

Remark. Assume that M is orientable. Then the bundle P
consists of two principal fibre bundles, say P+(M, G°) and
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P-(M, G°, where G° is the connected component of the identity
of G = GL(n;R). Then any transformation F of P+ or P-
leaving 0 invariant is fibre-preserving and hence is induced by a
transformation f of the base M. In fact, every vertical vector X*
of P+ or P~ is mapped into a vertical vector by F'since §(FX*) =
6(X*) = 0. Any curve in any fibre of P+ or P~ is therefore
mapped into a curve in a fibre by F. Since the fibres of P+ or P-
are connected, I is fibre-preserving.

ProrpositioN 1.4. Let T' be a linear connection on M. For a trans-
Sformation f of M, the following conditions are mutually equivalent :

(1) fis an affine transformation of M ;

(2) f*w = w, where w is the connection form of T' and f is the trans-
Sformation of P induced by f;

(3) f leaves every standard horizontal vector field B(&) invariant ;

(4) f(Vy2Z) = V.p(fZ) for any vector fields Y and Z on M.

Proof. (i) The equivalence of (1) and (2) is contained in
Proposition 1.3.

(i1) (2) — (3). By Proposition 1.3, we have

&= 0(B() = (F*0)(B(§)) = 6(/B(&))-
Since w(B(£)) = 0, (2) implies

0 = &(B(&)) = (f*w)(B()) = o(f7- B(&).

This means that f~! - B(&) = B(&).

(ii1) (3) — (2). The horizontal subspace at « is given by the set
of B(&),. Hence (3) implies that # maps every horizontal subspace
into a horizontal subspace. This means that /(') = I' and hence
f *o = w.

(iv) (1) — (4). This follows from Proposition 1.2.

(v) (4) — (1). Let Z be a parallel vector field along a curve
7 = x,. Let Y be the vector field along 7 tangent to 7, that is,
Y, = %,. Weextend Y and Z to vector fields defined on M, which
will be denoted by the same letters ¥ and Z respectively. (4)
implies that fZ is parallel along /(7). This means that f is an affine
transformation. QED.

The set of affine transformations of M, denoted by A(M) or
A(I"), forms a group. The set of all fibre-preserving transformations
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of P leaving 6 and w invariant, denoted by UA(P), forms a group
which is canonically isomorphic with W(AM). We prove that
A(M) is a Lie group by establishing that (P) is a Lie group with
respect to the compact-open topology in P.

‘THEOREM 1.5. Let I" be a linear connection on a manifold M with a
Sfinite number of connected components. Then the group W(M) of affine
transformations of M 1is a Lie transformation group with respect to the
compact-open topology in P.

Proof. Let § = (6*) and w = (w]) be the canonical form and
the connection form on P. We set

gX*, Y¥) =X, 07(X*)0(Y*) + 24 o (X*) wf(Y*),
X+ Y*e T, (P).

Since the n2 + n l-forms 6%, w}, 7, j, k = 1, ..., n, form a basis of
the space of covectors at every point u of P (cf. Proposition 2.6 of
Chapter 1II), g is 2 Riemannian metric on P which is invariant
by A(P) by Proposition 1.3. The group of isometries of P is a Lie
transformation group of P with respect to the compact-open
topology by Theorem 4.6 and Corollary 4.9 of Chapter I
(cf. also Theorem 3.10 of Chapter IV). Since A(P) is clearly a
closed subgroup of the group of isometries of P, A(P) is also a Lie
transformation group of P. QED.

2. Infinitesimal affine transformations

Throughout this section, P(M, G) denotes the bundle of linear
frames over a manifold M so that G = GL(n; R), where n =
dim M.

Every transformation ¢ of M induces a transformation of P in
a natural manner. Correspondingly, every vector field X on M
induces a vector field X on P in a natural manner. More precisely,
we prove

ProrositioN 2.1.  For each vector field X on M, there exists a
unique vector field X on P such that

(1) X is invariant by R, for every a € G;

(2) Lz =0,

(3) X is m-related to X, that is, m(X,) = X, for every u e P.
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Conversely, given a vector field X on P satisfying (1) and (2), there exists
a unique vector field X on M satisfying (3).

We shall call X the natural lift of X.

Proof. Given a vector field X on M and a point x € M, let ¢,
be a local 1-parameter group of local transformations generated
by X in a neighborhood U of x. For each ¢, ¢, induces a trans-
formation &, of #=1(U) onto = !(¢,(U)) in a natural manner.
Thus we obtain a local 1-parameter group of local transformations
@;: m1(U) — P and hence the induced vector field on P, which
will be denoted by X. Since @, commutes with R, for every a € G,
X satisfies (1) (cf. Corollary 1.8 of Chapter 1). Since @, preserves
the form 6, X satisfies (2). Finally, 7 o ¢, = @, o 7 implies (3).

To prove the uniqueness of X, let X, be another vector field on
P satisfying (1), (2) and (3). Let ¢, be a local l-parameter group
of local transformations generated by X,. Then ¢, commutes with
every R,, a € G, and preserves the canonical form 6. By (1) of
Proposition 1.3, it follows that ¢, is induced by a local 1-parameter
group of local transformations y, of M. Because of (3), y, induces
the vector field X on M. Thus y, = ¢, and hence ¥, = &,, which
implies that X = X .

Conversely, let X be a vector field on P satisfying (1) and (2).
For each x € M, choose a point u € P such that #(x¥) = x. We then
set X, = n(X,). Since X satisfies (1), X, is independent of the
choice of # and thus we obtain a vector field X which satisfies (3).
The uniqueness of X is evident. QED.

Let I" be a linear connection on M. A vector field X on M 1s
called an infinitesimal affine transformation of M if, for each x € M, a
local 1-parameter group of local transformations ¢, of a neighbor-
hood U of x into M preserves the connection I', more precisely, if
each ¢,: U — M 1s an affine mapping, where U is provided with
the affine connection I' | U which is the restriction of I' to U.

ProrostrionN 2.2.  Let I' be a linear connection on M. For a vector
field X on M, the following conditions are mutually equivalent :

(1) X ts an infinitesimal affine transformation of M ;

(2) Lgw = 0, where w is the connection form of T and X is the
natural lift of X;

(3) [X, B(§)] = 0 for every & e R™, where B(&) is the standard
horizontal vector field corresponding to & ;
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(4) Lx o Vy — Vy o Ly = V|x y for every vector field ¥ on M.

Proof. Let ¢, be alocal 1-parameter group of local transforma-
tions of M generated by X and let, for each ¢, $, be a local trans-
formation of P induced by ¢,.

(i) (1) — (2). By Proposition 1.4, @, preserves w. Hence we
have (2).

(ii) (2) — (3). For every vector field X, we have (Proposition
2.1)

0 = X(0(B(£))) = (Lg0)(B(&)) + 6([X, B(£)]) = 6([X, B(8)]),
which means that [X, B(£)] is vertical. If Lyw = 0, then
0 = X(w(B(£))) = (Lzw)(B(£)) + o([X, B(£)]) = o([X, B(£)]),

which means that [X, B(£)] is horizontal. Hence, [X, B(&)] = 0.

(iii) (3) — (1). If [X, B(&)] = 0, then ¢, leaves B(&) invariant
and thus maps the horizontal subspace at « into thejhorizontal
subspace at @,(u), whenever ,(u) is defined. Therefore @, preserves

the connection I' and X is an infinitesimal affine transformation
of M.
(iv) (1) — (4). By Proposition 1.4, we have

9(VyZ) = V, y(9.Z) for any vector fields ¥ and Z on M.

From the definition of Lie differentiation given in §3 of Chapter I,
we obtain

1
LyeVyZ=lim>[VyZ — ¢,(Vy2)]

—0

.1 .1
= lim 7 [VyZ — Vo Z] + lim = [VyrZ — Vor(9:2)]

t—0
- VLXYZ + VY 0 LXZ = V[X,Y]Z + VY © LXZ.
We thus verified the formula:
LX o VyK — VY o LXK - V[X,Y]K9

when K is a vector field. If K is a function, the above formula is
evidently true. By the lemma for Proposition 3.3 of Chapter I, the
formula holds for any tensor field K.

(v) (4) — (1). We fix a point x ¢ M. We set

V(t) = (9(VrZ)), and W() = (Vor(9:2)),-
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o

For each ¢, both V(¢) and W(t) are elements of 7,(M). Inview of
Proposition 1.4, it is sufficient to prove that V(¢) = W(¢). As in
(iv), we obtain

dV(t)jdt = @.((Lx ° VL)1),
dW<t)/dt = ‘Pt((V[X,Y]Z + Vyo LXZ)wjlm)-

From our assumption we obtain dV(t)/dt = dW(¢)/dt. On the other
hand, we have evidently V(0) = W(0). Hence, V(¢) = W(¢).
QED.

Let a(M) be the set of infinitesimal affine transformations of
M. Then a(M) forms a subalgebra of the Lie algebra X(AM) of
all vector fields on M. In fact, the correspondence X — X defined
in Proposition 2.1 is an isomorphism of the Lie algebra ¥(M) of
vector fields on M into the Lie algebra X(P) of vector fields on P.
Let a(P) be the set of vector fields X on P satisfying (1) and (2) of
Proposition 2.1 and also (2) of Proposition 2.2. Since Ly y =
LxoLyx — Ly oLx (cf. Proposition 3.4 of Chapter I), a(P)
forms a subalgebra of the Lie algebra X(P). It follows that a(M)
is a subalgebra of X(M) isomorphic with a(P) under the corre-
spondence X — X defined in Proposition 2.1.

THEOREM 2.3. If M is a connected manifold with an affine connection
', the Lie algebra a(M) of infinitesimal affine transformations of M is of
dimension at most n* + n, where n = dim M. If dima(M) = n® 4 n,
then T' is flat, that is, both the torsion and the curvature of T' vanish
identically.

Proof. To prove the first statement it is sufficient to show that
a(P) is of dimension at most n2 + n, since a(M) is isomorphic with
a(P). Let u be an arbitrary point of P. The following lemma
implies that the linear mapping f: a(P) — 7T,(P) defined by
f(X) = X, is injective so that dim a(P) < dim T,(P) = n® + n.

LeEmMA. If an element X of a(P) vanishes at some point of P, then it
vanishes identically on P.

Proof of Lemma. IfX, = 0, then X, — Oforeveryae Gas X
is invariant by R, (cf. Proposition 2.1). Let F be the set of points
x = m(u) € M such that X, = 0. Then F is closed in M. Since M
is connected, it suffices to show that F is open. Assume X, = 0.
Let b, be a local l-parameter group of local transformations
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generated by a standard horizontal vector field B(&) in a neighbor-
hood of u. Since [X, B(£)] = 0 by Proposition 2.2, X is invariant
by b, and hence thu = 0. In the definition of a normal coordinate
system (cf. §8 of Chapter III), we saw that the points of the form
m(bu) cover a neighborhood of x = #(u) when & and ¢ vary. This
proves that F is open.

To prove the second statement, we assume that dim a(M) =
dim a(P) = n® + n. Let u be an arbitrary point of P. Then the
linear mapping f: f(X) = X,, maps a(P) onto T,(P). In partic-
ular, given any element 4 e g, there exists a (unique) element
X € a(P) such that X, = A* where 4* denotes the fundamental
vector field corresponding to 4. Let B = B(&) and B’ = B(&’) be
the standard horizontal vector fields corresponding to & and &/,
respectively. Then

X,(0(B, B')) = A*(®(B, B')).

We compute both sides of the equality separately. From
Lx® =Lx(d0 + wA0) =0 and from (3) of Proposition 2.2,
we obtain

X(8(B, B)) = (Lx0)(B, B') +O([X, B], B)) +O(B, [X, B']) —0.

'To compute the right hand side, we first observe that the exterior
differentiation d applied to the first structure equation yields

0= —QA0+ owoAO | d6.

Hence we have

LA*@ — (dOLA* +LA*0d)@
= t40°d0 = 1, (QANO — WA B) = —w(d*) -0

and

(Lyu®)(B,B) = —4-0(B, B).
Therefore,
A*(O(B, B)) = —A-O(B, B) + O([4*, B], B') + O(B, [4%, B']).

If we take as A the identity matrix of g = gl(n; R), then, by
Proposition 2.3 of Chapter 111, we have

[A*, B] = B and [4* Bl =F.
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Thus we have
0 =2X,(0(B, B)) = 4;(0(8, B'))
= —®u(B9 B/) _l_ ®u(B9 B/) _l_ ®u<B9 B/) - ®u<B9 Bl)’

showing that the torsion form vanishes.
Similarly, comparing the both sides of the equality:

X.(Q(B, B')) = 43(Q(B, B'))

and letting 4 equal the identity matrix of g = gl(n; R), we see
that the curvature form vanishes identically. QED.

We now prove the following result due to Kobayashi [2].

THEOREM 2.4. Let T be a complete linear connection on M. Then
every infinitesimal affine transformation X of M is complete, that is,
generates a global 1-parameter group of affine transformations of M.

Proof. It suffices to show that every element X of a(P) is
complete under the assumption that M is connected. Let %, be an
arbitrary point of P and let @,: U — P, |¢{| < J, be a local 1-
parameter group of local transformations generated by X (cf.
Proposition 1.5 of Chapter I). We shall prove that ¢,(u) is defined
for every u ¢ P and |t| < 6. Then it follows that X is complete.

By Proposition 6.5 of Chapter III, every standard horizontal
vector field B(&) is complete since the connection is complete.
Given any point u of P, there exist standard horizontal vector
fields B(&,), ..., B(&,) and an element a € G such that

(Bl o B2 oo BE
u = (bs o by o o byuy)a,

where each 4 is the l-parameter group of transformations of P
generated by B(&,). In fact, the existence of normal coordinate
neighborhoods (cf. Proposition 8.2 of Chapter III) and the
connectedness of M imply that the point x = 7(4) can be joined
to the point x, = 7(u,) by a finite succession of geodesics. By
Proposition 6.3 of Chapter 111, every geodesic is the projection
of an integral curve of a certain standard horizontal vector field.
This means that by taking suitable B(¢,), . .., B(&,), we obtain a
pointy = b}, o b7 o - - - o bfuy which lies in the same fibre as u. Then
u = va for a suitable a € G, thus proving our assertion. We then
define &,(u) by

Bu(u) = (b o 0o+ -+ o 6 (Ba(uo)))a, 18 < 8.
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The fact that g,(u) is independent of the choice of 4}, ..., b, a
and that &, is generated by X follows from (1) of Proposition 2.1
and (3) of Proposition 2.2; note that (3) of Proposition 2.2
implies that b, o &,(u) = &, o b,(x) whenever they are both defined.

QED.

In general, every element of the Lie algebra of the group (M)
of affine transformations of M gives rise to an element of a(M)
which is complete, and conversely. In other words, the Lie
algebra of A(M) can be identified with the subalgebra of a(M)
consisting of complete vector fields. Theorem 2.4 means that if the
connection i1s complete, then a(M ) can be considered as the Lie
algebra of A(M).

For any vector field X on M, the derivation 4y = Ly — V y is
induced by a tensor field of type (1, 1) because it is zero on the
function algebra §(M) (cf. the proof of Proposition 3.3 of
Chapter I). This fact may be derived also from the following

ProrositioN 2.5.  For any vector fields X and Y on M, we have

where T is the torsion.
Proof. By Theorem 5.1 of Chapter I1I, we have

AxY =LxY — Vx¥V =[X, Y] — (Vo X + [X, Y] + T(X, Y))
— V. X — T(X, Y).
QED.

We conclude this section by

Prorosrtion 2.6. (1) A vector field X on M is an infinitesimal
affine transformation if and only if

Vy(dy) = R(X, Y) Sfor every vector field Y on M.
(2) If both X and Y are infinitesimal affine transformations of M, then
Az vy = [Ax, Ay] ;I?R(X: Y),

where R denotes the curvature.
Proof. (1) By Theorem 5.1 of Chapter III, we have

R(X: Y) - [VX> VY] — V[X,Y] - [LX — AX: VY] — V[X,Y]
— [LX> VY] — V[X,Y] —_ [AX: VY]'
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By Proposition 2.2, X is an infinitesimal affine transformation if
and only if R(X, Y) = —[dx, V] for every Y, that is, if and
only if
R(X,Y)Z = Vy(dxZ) — Ax(VyZ) = (Vy(dx))Z
for all ¥ and Z.

(2) By Theorem 5.1 of Chapter III and Proposition 2.2, we
have

[AX: AY] '— A[X,Y] - [LX - VX: LY - VY] - (L[X,Y] - V[X,Y])
- [LX: LY] — [VX: LY] — [LX: VY]

+ [VX9 VY] - L[X,Y] + V[X,Y] - R(X: Y)-
QED.

3. Isometries and infinitesimal isometries

Let M be a manifold with a Riemannian metric g and the
corresponding Riemannian connection I'. An isometry of M is a
transformation of M which leaves the metric g invariant. We
know from Proposition 2.5 of Chapter IV that an isometry of M
is necessarily an affine transformation of M with respect to I

Consider the bundle O(M) of orthonormal frames over M
which is a subbundle of the bundle L(M) of linear frames over
M. We have

Proposition 3.1. (1) A4 transformation f of M is an isometry if
and only if the induced transformation | of L(M) maps O(M) into
itself ;

(2) A fibre-preserving transformation F' of O(M) which leaves the
canonical form 0 on O(M) invariant is induced by an tsometry of M.

Proof. (1) This follows from the fact that a transformation f
of M is an isometry if and only if it maps each orthonormal frame
at an arbitrary point x into an orthonormal frame at f(x).

(2) Let f be the transformation of the base M induced by F. We

set J = f~1oF. Then J is a fibre-preserving mapping of O(M)
into L (M) which preserves 8. Moreover, J induces the identity
transformation on the base M, Therefore we have
wL(X) = 0(X*) = 6(JX*) — J@)1(X),
X*eT,(OM)), X =x(X*).
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~

This implies that J(u) = u, that is, f(u) = F(u). By (1), f is an
isometry of M. QED.

A vector field X on M is called an infinitesimal isometry (or, a
Killing vector field) if the local 1-parameter group of local trans-
formations generated by X in a neighborhood of each point of M
consists of local isometries. An infinitesimal isometry is necessarily
an infinitesimal affine transformation.

ProrosrtioN 3.2.  For a vector field X on a Riemannian manifold M,
the following conditions are mutually equivalent:

(1) X is an infinitesimal isometry;

(2) The natural lift X of X to L(M) is tangent to O(M) at every
point of O(M) ;

(3) Lxg = 0, where g is the metric tensor field of M ;

(4) The tensor field A v = Ly — V xof type (1, 1) is skew-symmetric
with respect to g everywhere on M, that is, g(A <Y, Z) = —g(AxZ,Y)
for arbitrary vector fields Y and Z.

Proof. (i) To prove the equivalence of (1) and (2), let ¢, and
@, be the local l-parameter groups of local transformations
generated by X and X respectively. If X is an infinitesimal
isometry, then ¢, are local isometries and hence ¢, map O(M)
into itself. Thus X is tangent to O(M) at every point of O(M).
Conversely, if X is tangent to O(M) at every point of O(M),
the integral curve of X through each point of O(M) is contained
in O(M) and hence each @, maps O(M) into itself. This means,
by Proposition 3.1, that each ¢, is a local isometry and hence X
is an infinitesimal isometry.

(i1) The equivalence of (1) and (3) follows from Corollary 3.7
of Chapter I.

(ii1) Since V xg = 0 for any vector field X, L yg = 01s equiva-
lent to A xg = 0. Since A4 x is a derivation of the algebra of tensor
fields, we have

for Y,Z e X(M).
Since 4y maps every function into zero, 4x(g(¥, Z)) = O.

Hence Axg =0 if and only if g(4xY, Z) + g(¥,AxZ) = 0 for
all Y and Z, thus proving the equivalence of (3) and (4). QZED.
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The set of all infinitesimal isometries of M, denoted by i(M),

forms a Lie algebra. In fact, if X and Y are infinitesimal isometries
of M, then

Lxyg=LxoLlyg—LyoLyxg=0

by Proposition 3.2. By the same proposition, [X, Y] is an infini-
tesimal isometry of M.

THEOREM 3.3. The Lie algebra i(M) of infinitesimal isometries
of a connected Riemannian manifold M s of dimension at most n(n -+ 1),
where n = dim M. If dim i(M) = $n(n + 1), then M 1is a space of
constant curvature.

Proof. 'To prove the first assertion, it is sufficient to show that,
for any point u of O(M), the linear mapping X — X, maps i(M)
1:1 into T,(O(M)). By Proposition 3.2, X, is certainly an
element of 7T,(O(M)). If X, = 0, then the proof of Theorem 2.3
shows that X = 0. We now prove the second assertion.

Let X, X’ be an orthonormal basis of a plane p in 7,(M) and
let 4 be a point of O(M) such that =(u) = x. We set & = u=1(X),
¢ =ul(X"), B=DB() and B = B(¢'), where B(§{) and
B(&’) are the restrictions to O(M) of the standard horizontal
vector fields corresponding to & and &', respectively. From the
definition of the curvature transformation given in §5 of Chapter
ITI we see that the sectional curvature K(p) (cf. §2 of Chapter V)
1s given by

K(p) = (2Q(B., B,))&' &),

where ( , ) denotes the natural inner product in R”. To prove that

K(p) is independent of p, let Y, ¥’ be an orthonormal basis of

another plane ¢in 7,(M) and set = «~(Y) and " = «~1(Y").

Let a be an element of SO(n) such that a§ = 5 and a§’ = #'. By

Proposition 2.2 of Chapter III, we have

Q(B(n)u, B(n')u) = Q(B(at),, B(at'),) = Q(Ry1(Bua)s By1(Bua))
= ad (a)(Q(Byo, Bu)) = @ QB B) - a7

Hence the sectional curvature K(g) is given by

K(q) = ((2QB()wB(m)u)n’s )
= ((a-2Q(B,,, By,): a74)al’, af)
= ((2Q(B.,, Bui))E', ).

uas’
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To prove that K(p) = K(gq), it is sufficient to show that
Q(B,. B,,) = Q(B,, B,). Given any vertical vector X*e
T,(O(M)) with =(v) = x, there exists an element X € i(M) such
that X, = X* if dimi(M) = in(n + 1), since the mapping
X —»X , maps i(M) onto T,(0O(M)). We have

X(Q(B, B)) = (LgQ)(B, B') + Q([X, B], B') + Q(B, [X, B]) = 0.
This implies that Q(B,, B,) = Q(B,,, B,,) for egvery a e SO(n).

uar

We thus proved that K(p) depends only on the point x. We
prove that K(p) does not depend even on x. Given any vector

Y*e T,(O(M)),let Y be an element of i(M) such that ¥, = ¥*.
We have again Y(Q(B, B’)) = 0. Hence, for fixed & and &, the
function ((2Q(B, B'))&’, &) is constant in a neighborhood of u.
'This means that K(p), considered as a function on M, is locally
constant. Since it is continuous and M is connected, it must be
constant on M. (If dim M = 3, the fact that K(p) is independent
of x follows also from Theorem 2.2 of Chapter V.) QED.

THEOREM 3.4. (1) For a Riemannian manifold M with a finite
number of connected components, the group I(M) of isometries of M is a
Lie transformation group with respect to the compact-open topology in M ;

(2) The Lie algebra of I(M) is naturally isomorphic with the Lie
algebra of all complete infinitesimal isometries ;

(3) The isotropy subgroup I, (M) of I(M) at an arbitrary point x is
compact ;

(4) If M s complete, the Lie algebra of I(M) is naturally isomorphic
with the Lie algebra i(M) of all infinitesimal isometries of M ;

(5) If M 1s compact, then the group I(M) is compact.

Proof. (1) As we indicated in the proof of Theorem 1.5, this
follows from Theorem 4.6 and Corollary 4.9 of Chapter I and
Theorem 3.10 of Chapter IV.

(2) Every 1-parameter subgroup of J(M) induces an infinitesi-
mal isometry X which is complete on M and, conversely, every
complete infinitesimal isometry X generates a l-parameter sub-
group of J(M).

(3) This follows from Corollary 4.8 of Chapter I.

(4) This follows from (2) and Theorem 2.4.

(5) This follows from Corollary 4.10 of Chapter I. QED.

Clearly, J(M) is a closed subgroup of A(M ). We shall see that,
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in many instances, the identity component J°(M) of J(M)
coincides with the identity component A°(M) of A(M). We
first prove a result by Hano [1].

THEOREM 3.5. If M = My x M, X -+ X M, is the de Rham
decomposition of a complete, simply connected Riemannian manifold M,
then

W(M) ~ A(Mo) x (M) X -+ X W(M,),

M) ~ J°(M,) X I(M,) x -+ X I(M,).
Proof. We need the following two lemmas.

Lemma 1. Let T, (M) = Zf_, T be the canonical decomposition.
(1) If o e A(M), then (TY) = TR, and for each i, 1 <1 < k,
(T = TG, for somej, 1 < j < k;
2) If ¢ e AAM), then (T) = TS for every ¢, 0 <i = k.
Proof of Lemma 1. Let 7 be any loop at x and set 7 = ¢(7)
so that 7’ is a loop at ¢(x). If we denote by the same letter + and 7’

the parallel displacements along = and 7’ respectively, then
pot(X) =7 °p(X) for Xe T,(M).

It follows easily that ¢(7TY) is invariant elementwise and every
(T, 1 <1 < k, is irreducible by the linear holonomy group
W(p(x)). Hence, o(TY) = T, and, their dimensions being the
same, ¢(7T3)) = TG). Thus we obtain the canonical decomposi-
tion T, = Zf_, ¢(T¥) which should coincide with the canoni-
cal decomposition T, = Zf_y T%, up to an order by (4) of
Theorem 5.4 of Chapter IV. This means precisely the statement
(1). Let ¢, be a l-parameter subgroup of A°(M) and let X be a
non-zero element of 7. Let 7 = x, = ¢,(x). Since g(p,(X), X) =
g(X, X) #0, we have g(p,(X), 7 X) # 0 for |{| < § for some
d > 0, where 70 denotes the parallel displacement from x,
to x, along 7. This means that ¢,(T{) = T%), for |t| < ¢’ for
some positive number ¢’; in fact, if X,, ..., X is a basis for T,
then g(@,(X;), 7X;) #0 for 1 <7 <r and |{| <4’ for some
positive number ¢’ and hence ¢,(X,) € T$), for |t| < ¢’, which
implies ¢,(TY) = T, for |{] < ¢’ because of the linearity of
@, This concludes the proof of the statement (2), since A°(M) is
generated by l-parameter subgroups.

Lemma 1 1s due to Nomizu [3].
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LemMA 2. Let @, be an arbitrary transformation of M, for every 1,
0 <1 =< k. Let ¢ be the transformation of M = My x M; x ++- X
M, defined by

@(x) = (Po(%0), P1(¥1)s « « «» Pr(xr)) for x = (29, 21, .. ., %) € M.

Then

(1) @ 15 an affine transformation of M if and only if every @, is an
affine transformation of M.

(2) @ s an isometry of M if and only if every g, is an isometry of M.

'The proof is trivial.

The correspondence (@, @1, * * *, ¢,) — ¢ defined in Lemma
2 maps (M, x U(M,;) x - x A(M,) isomorphically into
AW(M). To complete the proof of Theorem 3.5, it suffices to
show that, for every ¢ e A'(M), there exist transformations
p;s M, —> M, 0 <1 < k, such that

(]

p(x) = (po(x0), Pa(x1)s - - ., @rulxr)) for x = (%0, %y, . . ., X3) € M.

We prove that, if p,: M — M, denotes the natural projection, then
pi(p(x)) depends only on x;, = p,(x). Given any point y =
(Dos « « + s Vic1s s Vir1s - - s V%), let, foreach j =0,1,...,7 — 1,
i+ 1,00,k 7, =x,(),0 =t <1, be a curve from x; to y, in
M, so that x,(0) = «x,and x,(1) =y, Let7 =x(¢),0 =t < 1, be
the curve from x to y in M defined by

x(2) = (%(8), %1(8), - - o5 %5 1(8), Xy i1 (8), . o oy x(0), 0= ¢ = 1.

For each ¢, the tangent vector %(¢) to = at x(¢) is in the distribution
T'0) + e T (1) + T (i+1) + - b T"”.By’ Lemma 1’ (p(.’t(t))
lies also in the same distribution. Hence p,(¢(x(¢))) is independent
of ¢ (cf. Lemma 2 for Theorem 7.2 of Chapter II). In particular,
p:(p(x)) = p,(¢(»)), thus proving our assertion. We then define a
transformation ¢,: M, — M, by

@i(x;) = pi(p(x)).

Clearly, we have

p(x) = (po(%0)> P1(¥1)5 - - - » Prlxz))-
QED.

It 1s therefore important to study (M) when M is irreducible.
The following result is due to Kobayashi [4].
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‘THEOREM 3.6. If M is a complete, irreductble Riemannian manifold,
then W(M) = J(M) except when M is a 1-dimensional Fuclidean
space.

Proof. A transformation ¢ of a Riemannian manifold is said
to be homothetic if there is a positive constant ¢ such that g(gp(X),
p(Y)) =c%g(X,Y) for all X, Y e T, (M) and x € M. Consider the
Riemannian metric g* defined by g*(X,Y) = g(¢(X), ¢(Y)).
From the proof (B) of Theorem 2.2 of Chapter 111, we see that
the Riemannian connection defined by g* coincides with the one
defined by g. This means that every homothetic transformation of
a Riemannian manifold M is an affine transformation of M.

Lemma 1. If M s an irreducible Riemannian manifold, then every
affine transformation ¢ of M is homothetic.

Proofof Lemma 1. Since ¢ is an affine transformation, the two
Riemannian metrics g and g* (defined above) determine the same
Riemannian connection, say I'. Let ¥ (x) be the linear holonomy
group of I with reference point x. Since it is irreducible and leaves
both g and g* invariant, there exists a positive constant ¢, such that
g¥(X,Y)=c2-g(X,Y) forall X, Ye T,(M), thatis, g¥ =¢2-g,
(cf. Theorem 1 of Appendix 5). Since both g* and g are parallel
tensor fields with respect to T, ¢, 1s constant.

LemmA 2. If M 15 a complete Riemannian manifold which is not
locally Euclidean, then every homothetic transformation ¢ of M is an
1sometry.

Proofof Lemma 2. Assume that ¢is a non-isometric homothetic
transformation of M. Considering the inverse transformation if
necessary, we may assume that the constant ¢ associated with ¢ is
less than 1. Take an arbitrary point x of M. If the distance
between x and ¢(x) is less than ¢, then the distance between
e™(x) and ¢™*1(x) is less than ¢™d. It follows that {p™(x);m =
1,2,...} 1s a Gauchy sequence and hence converges to some
point, say x*, since M is complete. It is easy to see that the point
x* is left fixed by ¢.

Let U be a neighborhood of x* such that U is compact. Let K*
be a positive number such that |g(R(Y,, Y,)Y,, ¥,)| < K* for
any unit vectors Y; and Y, at ye U, where R denotes the
curvature tensor field. Let ze M and ¢ any plane in 7T,(M).
Let X,Y be an orthonormal basis for ¢. Since ¢ 1s an affine
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transformation, (3) of Proposition 1.2 implies that
R(gmX, mY)(pmY) = om(R(X, Y)TY).
Hence we have
g(R(gmX, oY) (9mY), pmX) = g(p™(R(X, Y)T), o™ X))
= >g(R(X, Y)Y, X) = 2"K(q).

On the other hand, the distance between x* = ¢™(x*) and ¢™(z)
approaches 0 as m tends to infinity. In other words, there exists
an integer m, such that ¢™(z) € U for every m = m,. Since the
lengths of the vectors ¢™X and ¢™Y are equal to ¢™, we have

AmK* = |g(R(gmX, Y )(emY), gnX)|  for m = my.

Thus we obtain
2mK* = |K(q)| for m = ms,,.

Letting m tend to infinity, we have K(g) = 0. This shows that M is
locally Euclidean. QED.

Let X be an infinitesimal affine transformation on a complete
Riemannian manifold M. Using Theorems 3.5 and 3.6, we shall
find a number of sufficient conditions for X to be an infinitesimal
isometry. Assuming that A is connected, let M be the universal
covering manifold with the naturally induced Riemannian metric
g = p*(g), where p: M — M is the natural projection. Let X be
the vector field on M induced by X; X is p-related to X. Then X is
an infinitesimal affine transformation of M. Clearly, X is an infini-
tesimal isometry of M if and only if X is an infinitesimal isometry
of M. Let M = M, x M, x -+ x M, be the de Rham decom-
position of the complete simply connected Riemannian manifold
M. By Theorem 3.5, the Lie algebra a(47) is isomorphic with
a(My) + a(M,) + -+ 4+ a(M,). Let (X, Xy, ..., X,) be the
element of a(M,) + a(M,) + -+ + a(M,) corresponding to
X ea(d). Since X,, ..., X, are all infinitesimal isometries by
Theorem 3.6, X is an infinitesimal isometry if and only if Xj is.

CorOLLARY 3.7. If M is a connected, complete Riemannian manifold
whose restricted linear holonomy group ¥'°(x) leaves no non-zero vector at x
Jixed, then WO(M) = I°(M).

Proof. The linear holonomy group of M isnaturally isomorphic
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with the restricted linear holonomy group ¥°(x) of M (cf. Example
2.1 of Chapter IV). This means that M, reduces to a point and
hence X, = 0 in the above notations. QED.

CoroLrAryY 3.8. If X is an infinitesimal affine transformation of a
complete Riemannian manifold and if the length of X is bounded, then X
is an infinitesimal isometry.

Proof. We may assume M to be connected. If the length of X
is bounded on M, the length of X is also bounded on M,. Let

x1, . .., x" be the Euclidean coordinate system in M, and set
Xy = 25, _,8%(0/0x%).

Applying the formula (Lx o Vy — Vy oLy )Z = Vg yZ (cf.
Proposition 2.2) to ¥ = 9/0x” and Z = 9/0x”, we see that

02&*
ox? ox”
This means that X, is of the form
Xy (Shoy a o+ 5%)(9)0x).

= 0.

It is easy to see that length of X, is bounded on M, if and only if
af = 0for o, 8 =1, ..., r. Thusif X,is of bounded length, then
X, 1s an infinitesimal isometry of M,,. QED.

Corollary 3.8, obtained by Hano [1], implies the following
result of Yano [1] which was originally proved by a completely
different method.

CoroLrLARY 3.9. On a compact Riemannian manifold M, we have
W(M) = I(M).

Proof. On a compact manifold M, every vector field is of
bounded length. By Corollary 3.8, every infinitesimal affine
transformation X is an infinitesimal isometry. QED.

4. Holonomy and infinitestaml isometries

Let M be a differentiable manifold with a linear connection
I'. For an infinitesimal affine transformation X of M, we give a
geometric interpretation of the tensor field 4y =Ly — Vx
introduced in §2.
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Let x be an arbitrary point of M and let ¢, be a local 1-pa-
rameter group of affine transformations generated by X in a
neighborhood of x. Let = be the orbit x, = ¢,(x) of x. We denote
by 7; the parallel displacement along the curve 7 from x, to x,.

For each ¢, we consider a linear transformation C, = 74 o (¢,)4 of
T,(M).

Prorosition 4.1.  C, is a local 1-parameter group of linear trans-
Jormations of T,(M): C,p, = C,0C,, and C, = exp (—t(Az),).
* Proof. Since ¢, maps the portion of 7 from x, to x, into the
portion of 7 from x, to x,,, and since ¢, is compatible with parallel
displacement, we have

@ioTH = T, 0oy
Hence

— S . / +5 — l+s —
Ct°Cs—T€)°‘Pt°To°‘Ps—7'o°T§ °CP°Ps = T °“Pt+s—ct+s-

This proves the first assertion. Thus there is a linear endomor-
phism, say, 4 of T,(M) such that C, = exp t4. The second

assertion says that A = —(4 x),. To prove this, we show that
1
lim- (C,Y, —Y,) = —(4d%).Y, for Y, e T,(M).
t—0

First, consider the case where X, # 0. Then x has a coordinate
neighborhood with local coordinate system x1, ..., x® such that
the curve 7 = x, is given by x! = ¢, 2 = - - - = " = 0 for small
values of £. We may therefore extend Y, to a vector field Y on M in
such a way that ¢,(Y,) = Y, for small values of ¢. Evidently,
(LxY), = 0. We have

_(AX)ach — (VXY)w — (LXY):c — (VXY)w

.1 .1

:hm_(Tz)Yw _Yw) =llm—(7'6°(ptYw—Yw)
o1

— lim - (C,Y, — Y,).

t—0

Second, consider the case where X, = 0. In this case, ¢, 1s a local
l-parameter group of local transformations leaving x fixed and the
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parallel displacement 7% reduces to the identity transformation of
T,(M). Thus (VxY), = 0. We have

: 1 1
= —lim- (Y, — ¢,Y,) =lim- (C,Y, — Y,).
t—0 1 t—0 &
This completes the proof of the second assertion. QED.

Remark. Proposition 4.1 is indeed a special case of Proposition
11.2 of Chapter II and can be derived from it.

ProposttioN 4.2.  Let N(W(x)) and N (¥°(x)) be the normalizors
of the linear holonomy group ¥ (x) and the restricted linear holonomy group
WO(x) in the group of linear transformations of T,(M). Then C, 15 con-
taned in N(W'(x)) as well as in N(W°(x)).

Proof. Let ¢, and 7} be as before. For any loop u at x, we set
us = @,(u) so that u, is a loop at x, = ¢,(x). We denote by u and
u, the parallel displacements along x4 and u,, respectively. Then
@io k= py © 9. We have
CropoGit =rhopopog tor) =rgopopop tory =150 o).
This shows that C, o u o C; ' is an element of W' (x). Itis in WO(x) if
w is in ¥0(x). (Note that N(¥'(x)) < N(¥°(x)) since ¥(x) is the
identity component of &((‘P’(x) ) QED.

CoroLLARY 4.3. If X is an infinitesimal affine transformation of M,
then, at each point x e M, (A x), belongs to the normalizor N(g(x)) of
the Lie algebra g(x) of W(x) in the Lie algebra of endomorphisms of
T,(M).

(14

We recall that N(g(x)) is by definition the set of linear endo-
morphisms A4 of 7,(M) such that [4, B] e g(x) for every
Beg(x).

If X is an infinitesimal isometry of a Riemannian manifold M,
then A4 ¢ is skew-symmetric (cf. Proposition 3.2) and, for each ¢,
C, is an orthogonal transformation of 7T,(M). We have then

THEOREM 4.4. Let M be a Riemannian manifold and g(x) the Lie
algebra of W (x). If X s an infinitesimal isometry of M, then, for each
xeM, (Ax), is in the normalizor N (g(x)) of g(x) in the Lie algebra
E(x) of skew-symmetric linear endomorphisms of T,(M).
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The following theorem is due to Kostant [1].

TueOREM 4.5. If X 1is an infinttessmal isometry of a compact
Riemannian manifold M, then, for each x € M, (4 x), belongs to the Lie
algebra g(x) of the linear holonomy group V' (x).

Proof. In the Lie algebra E(x) of skew-symmetric endomor-
phisms of 7,(M), we introduce a positive definite inner product
(,) by setting

(4, B) = —trace (4B).
Let B(x) be the orthogonal complement of g(x) in E(x) with

respect this inner product. For the given infinitesimal isometry X
of M, we set

fiX :SX —I_BX’
where Sy e g(x), BxeB(x), xeM.

LEMMA.  The tensor field B x of type (1, 1) is parallel.

Proof of Lemma. Let 7 be an arbitrary curve from a point x
to another point y. The parallel displacement = gives an isomor-
phism of E(x) onto E£(») which maps g(x) onto g( ). Since the
inner products in E(x) and in £(y) are preserved by =, 7 maps
B(x) onto B( ). This means that, for any vector field ¥ on M,
Vi, (Sx) isin g(x) whereas V(B x) is in B(x) at each point x € M.
On the other hand, the formula V(4 ) = R(X, ¥) (cf. Propo-
sition 2.6) implies that V(4 x) belongs to g(x) at each x € M (cf.
Theorem 9.1 of Chapter I1I). By comparing the g(x)-component
and the B(x)-component of the equality Vy(4dx) = Vy(Bx) +
Vy(Sx), we see that V5 (Bx) belongs to g(x) also. Hence
V3 (Bx) = 0, concluding the proof of the lemma.

We shall show that By = 0. We set ¥ = ByX. By Green’s
theorem (cf. Appendix 6), we have (assuming that M is orientable
for the moment)

f div Ydv =0 (dv: the volume element).
M

Since div Y is equal to the trace of the linear mapping V — V.Y
at each point x, we have (Lemma and Proposition 2.5)
div ¥ = trace (V — V,(BxX)) = trace (V — Bx(VyX))
= —trace (Byxd x) = —trace (BxBx) — trace (BxSx)
= —trace (BxBx) = 0.
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Thus
f trace (BxBx) dv = 0,
M

which implies trace B yxB x = 0 and hence By = 0. If M is not
orientable, we lift X to an infinitesimal isometry X* of the two-
fold orientable covering space M* of M. Then B x. = 0 implies
By =0. QED.

As an application of Theorem 4.5, we prove a result of H. C.
Wang [1].

THEOREM 4.6. If M s a compact Riemannian manifold, then

(1) Every parallel tensor field K on M s invariant by the identity
component I°(M) of the group of isometries of M

(2) At each point x, the linear isotropy group of I°(M) is contained in
the linear holonomy group W (x).

Proof. (1) Let X be an arbitrary infinitesimal isometry of A.
By Proposition 4.1 and Theorem 4.5, the 1-parameter group C,
of linear transformations of 7,(M) is contained in W¥(x). When
C, is extended to a l-parameter group of automorphisms of the
tensor algebra over T,(M), it leaves K invariant. Thus ¢,(K,) =
K, = K, for every ¢, where ¢, is the l-parameter group of
isometries generated by X. Since J°(M) is connected, it leaves K
invariant.

(2) Let ¢ be any element of J°(M) such that ¢(x) = . Since
J°(M) is a compact connected Lie group, there exists a 1-param-
eter subgroup ¢, such that ¢ = ¢, for some ¢, In the proof of
(1), we saw that C, (obtained from g¢,) is in ¥'(x). On the other
hand, since ¢, (x) = %, 7, is also in ¥(x). Hence ¢, = 7, - C,

belongs to W(x). QED.

5. Ricci tensor and infinitesimal isometries

Let M be a manifold with a linear connection I'. The Ricc
tensor field S is the covariant tensor field of degree 2 defined as
follows:

S(X, Y) = trace of the map V — R(V, X)Y of T (M),
2
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where X,Y,Ve T,(M). If M is a Riemannian manifold and if
V..., V,1is an orthonormal basis of 7,(M), then

:Z?=1R(Vi> Y) Vz’) X)) X>Y€ Tm(M)>
where R in the last equation denotes the Riemannian curvature
tensor (cf. §2 of Chapter V). Property (d) of the Riemannian

curvature tensor (cf. §l of Chapter V) implies S(X,7Y) =
S(Y, X), that is, S is symmetric.

Provposrrion 5.1.  If X s an infinitesimal affine transformation of a
Riemannian manifold M, then

div (4xY) = —S(X, Y) — trace (4 x4dy)
for every vector field Y on M. In particular,
div (4xX) = —S(X, X) — trace (Ax4 ).

Proof. By Proposition 2.6, we have R(V, X) = —R(X, V) =
— V(4 %) for any vector field V on M. Hence

RV, X)Y = —(Vp(dx))Y = —V(4xY) + A x(V}Y)
=V, (AyY) — AgA, V.

Our proposition follows from the fact that S(X, Y) is the trace of
V— R(V, X)Y and that div (4 4xY) is the traceof V — V(4 1Y).
QED.

Prorosition 5.2.  For an infinitesimal isometry X of a Riemannian
manifold M, consider the function f = 3g(X, X) on M. Then
(1) Vf = g(V, AxX) for every tangent vector V;
(2) V2f = g(V, Vi, (A X)) for every vector field V such that
Vi,V =0;
(3) div (A xX) = 0 at any point where | attains a relative minimum ;
div (4 xX) < 0 at any point where f attains a relative maximum.
Proof. Since g is parallel, we have

Z(g(X, ¥)) = Vz(g(X, V) = g(Vz4X, ¥) + g(X, V,T)

for arbitrary vector fields X, Y and Z on M. Applying this formula
to the case where X = Y and Z = V, we obtain

Vi=g(VpX, X) = —g(AxV, X) = g(V, AxX)
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-

by virtue of Proposition 2.5 and the skew-symmetry of 4y (cf.
Proposition 3.2). This proves (1). If V is a vector field such that
Vi,V = 0, then

Vif = VeV, AxX)) = g(Vi'V, AxX) + g(V, Vy(4xX))
= g(V, Vp(dx4X)),

proving (2). To prove (3), let V,, . . ., V, be an orthonormal basis
for T,(M). For each i, let 7, = x,(t) be the geodesic with the
initial condition (x, V) so that V; = %, (0). We extend each V, to
a vector field which coincides with %,(¢) at x,(¢) for small values of
t. Then we have

df(x;(2)]dt2 = VEf = g(Vp, Vi, AxX) + gV, Vy (4 xX))
) = g(Vi, Vp. (dxX)).

Since div (4 xX) is the trace of the linear mapping V — V(4 x X),
we have

div (4 xX), = 2i_q (V7 f)o-

Now (3) follows from the fact that, if f attains a relative minimum
(resp. maximum) at x, then (V2 f), = 0 (resp. <0). QED.

As an application of these two propositions, we prove the
following result of Bochner [1].

THEOREM 5.3. Let M be a connected Riemannian manifold whose
Riccr tensor field S is negative definite everywhere on M. If the length of an
infinitesimal 1sometry X attains a relative maximum at some point of M,
then X vanishes identically on M.

Proof. Assume the length of X attains a relative maximum at
x. By Proposition 5.2, we have div (4 xX) < 0 at x. By Proposition
5.1, we obtain —S8(X, X) — trace (dxdx) < 0. ButS(X, X) <0
by assumption,-and trace (4 x4 x) < Osince 4 x is skew-symmetric.
Thus we have S(X, X) = 0 and 4y = 0 at x. Since § is negative
definite, X = 0 at x. Since the length of X attains a relative
maximum at x, X vanishes in a neighborhood x. If # is any point
of O(M) such that 7(x) = x, then the natural lift X of X vanishes
in a neighborhood of u. As we have seen in the proof of Theorem
'3.3, X vanishes identically on M. QED.
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CoroOLLARY 5.4. If M s a compact Riemannian manifold with
negative definite Ricct tensor field, then the group I(M) of isometries of M
is finite.

Proof. By Theorem 5.3, 3°(M) reduces to the identity. Since
J(M) is compact (cf. Theorem 3.4), it is finite. QED.

Remark. Corollary 5.4 can be derived from Proposition 5.1 by
means of Green’s theorem in the following way.

We may assume that M is orientable; otherwise, we have only
to consider the orientable twofold covering space of M. From
Proposition 5.1 and Green’s theorem, we obtain

f [S(X, X) + trace (AxAx)] dv = 0.

Since S(X,X) <0 and trace (Axdy) = 0, we must have
S(X, X) = 0 and trace (4 x4 x) = 0 everywhere on M. Since § is
negative definite, we have X = 0 everywhere on M. This proof
gives also

CoroLLARY 5.5. If M is a compact Riemannian manifold with
vanishing Ricci tensor field, then every infinitesimal isometry of M is a
parallel vector field.

Proof. By Proposition 2.5, we have 0 = 4V = —V, X for
every vector field V on M. QED.

From Corollary 5.5, we obtain the following result of Lich-
nerowicz [1].

CoroOLLARY 5.6. If a connected compact homogeneous Riemannian
manifold M has zero Ricct tensor, then M is a Euclidean torus.

Proof. By Theorem 5.1 of Chapter III and Corollary 5.5, we
have

for any infinitesimal isometries X,Y. Thus J°(M) is a compact
abelian group. Since J°(M) acts effectively on M, the isotropy
subgroup of J°(M) at every point M reduces to the identity
element. As we have seen in Example 4.1 of Chapter V, M is a
Euclidean torus. QED.

As another application of Proposition 5.2, we prove
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ProrposiTioN 5.7. Let ¢, be the l-parameter group of isometries
generated by an infimtesimal isometry X of a Riemannian manifold M.
If x is a critical point of the length function g(X, X)?, then the orbit
@, (x) 15 a geodesic.

Proof. Ifxisa critical point of g(X, X)? itis a critical point of
the function f = 1g(X, X) also. By (1) of Proposition 5.2, we
have g(V, 4 v X) = 0 for every vector V at x. Hence 4 xX = 0 at
x, thatis, VxX = 0 at x. Since ¢,(X,) = X, by (1) of Proposi-
tion 1.2, we have V 3 X = 0 along the orbit ¢,(x). This shows that
the orbit ¢,(x) is a geodesic. QED.

6. Extension of local isomorphisms

Let M be a real analytic manifold with an analytic linear
connection I'. The bundle L(M) of linear frames is an analytic
manifold and the connection form w is analytic. The distribution
@ which assigns the horizontal subspace @, to each pointu e L(M)
is analytic in the sense that each point « has a neighborhood and a
local basis for the distribution ¢ consisting of analytic vector
fields. The same is true for the distribution on the tangent bundle
T(M) which defines the notion of parallel displacement in the
bundle 7(M) (for the notion of horizontal subspaces in an
associated fibre bundle, see §7 of Chapter II).

The main object of this section is to prove the following
theorem.

THEOREM 6.1. Let M be a connected, simply connected analytic
manifold with an analytic linear connection. Let M’ be an analytic
manifold with a complete analytic linear connection. Then every affine
mapping frr of a connected open subset U of M into M’ can be uniquely
extended to an affine mapping f of M into M'.

The proof is preceded by several lemmas.

LemmA 1. Let f and g be analytic mappings of a connected analytic
manifold M into an analytic manifold M'. If f and g coincide on a non-empty
open subset of M, then they coincide on M.

Proof of Lemma 1. Let x be any point of M and let x1, ..., x®
be an analytic local coordinate system in a neighborhood of x. Let
Y ... ,y™ be an analytic local coordinate system in a neighbor-
hood of the point f(x). The mapping f can be expressed by
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a set of analytic functions

ot =f ., xm), i=1,...,m.

These functions can be expanded at x into convergent power
series of x1, . . ., ™. Similarly for the mapping g. Let N be the set
of points ¥ € M such that f(x) = g(x) and that the power series
expansions of f and g at x coincide. Then N is clearly a closed sub-
set of M. From the well known properties of power series, it
follows that N 1s open in M. Since M is connected, N = M.

LemMma 2. Let S and S’ be analytic distributions on analytic manifolds
M and M'. Let f be an analytic mapping of M into M’ such that

(*) f(Sm) < S]:(’l:)

or every point x of an open subset of M. If M 1is connected, then (*) s
satisfied at every point x of M.

Proof of Lemma 2. Let N be the set of all points x € M such
that (*) is satisfied in a neighborhood of x. Then N is clearly a
non-empty open subset of M. Since M is connected, it suffices to
show that Nis closed. Let x,, ¢ N and x,, — x,. Let »!, . .., y" be an
analytic local coordinate system in a neighborhood V of f(x,).
Let Z,, ..., Z, be a local basis for the distribution §’ in V. From
0/9y\, ..., 0/dy™, choose m — k vector fields, say, Z,,,, ..., Z,
such that Z,, ..., Z,, Z,,1, . . ., Z,, are linearly independent at
f(x,) and hence in a neighborhood V'’ of f(x,). Let U be a con-
nected neighborhood of x, with an analytic local coordinate
system x1, ..., x™ such that f(U) < V' and that .S has a local
basis X, . . . , X, consisting of analytic vector fields defined on U.
Since fis analytic, we have

S( Xy = Z]"‘Zlf{(x) - Z, t=1,...,k

where fi(x) are analytic functions of &1, . . ., x™. Since x, ¢ N and
x, — Xy, there exists a neighborhood U; of some x, such that
U, < U and that (*) is satisfied at every point x of U,. In other
words, fi(x) =0 on U, for l £:<kand A+ 1 =<7 <m It
follows that /7 = 0 on U for the same 7 and j. This proves that (*)
is satisfied at every point x of U.

LemMA 3. Let M and M’ be analytic manifolds with analytic
linear connections and f an analytic mapping of M into M'. If the
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restriction of f to an open subset U of M 1is an affine mapping and if M is
connected, then f is an affine mapping of M into M'.

Proof of Lemma 3. Let F be the analytic mapping of the
tangent bundle 7(M) into 7T(M’) induced by f. By assumption,
F maps the horizontal subspace at each point of #=1(U) into a
horizontal subspace in 7(M’) (here, = denotes the projection of
T(M) onto M). Applying Lemma 2 to the mapping F, we see that
fis an affine mapping of M into M.

LemMA 4. Let M and M’ be differentiable manifolds with linear
connections and let f and g be affine mappings of M into M'. If f(X) =
g(X) for every X € T,(M) at some point x € M and if M is connected,
then f and g coincide on M.

Proof of Lemma 4. Let N be the set of all points x € M such
that f(X) = g(X) for X e T,(M). Then N is clearly a non-empty
closed subset of M. Since f and g commute with the exponential
mappings (Proposition 1.1), x e N implies that a normal co-
ordinate neighborhood of x is in N. Thus N is open. Since M is
connected, we have N = M.

We are now in position to prove Theorem 6.1. Under the
assumptions in Theorem 6.1, let x(¢), 0 < ¢ < 1, be a curve in M
such that x(0) € U. An analytic continuation of fr; along the curve x(¢)
is, by definition, a family of affine mappings f,, 0 = ¢t < 1,
satistying the following conditions:

(1) For each ¢, f, is an affine mapping of a neighborhood U, of
the point x(¢) into M’;

(2) For each ¢, there exists a positive number § such that if
|s — t| < 6, then x(s) e U, and f; coincides with f, in a neighbor-
hood of x(s);

(3) fo =Ju-

It follows easily from Lemma 4 that an analytic continuation of
fu along the curve x(¢) is unique if it exists. We now show that it
exists. Let £, be the supremum of {; > 0 such that an analytic
continuation f, exists for 0 < ¢ < ¢;. Let W be a convex neighbor-
hood of the point x(¢,) as in Theorem 8.7 of Chapter III such that
every point of W has a normal coordinate neighborhood con-
taining W. Take ¢ such that ¢; < ¢, and that x(¢,) e W. Let V be
a normal coordinate neighborhood of x(¢;) which contains W.
Since there exists an analytic continuation f, of fi; for 0 < ¢ < ¢,
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we have the afline mapping f, of a neighborhood x(¢,) into M’.
We extend f, to an analytic mapping, say g, of V into M’ as
follows. Since the exponential mapping gives a diffeomorphism
of an open neighborhood V* of the origin in T, ,(M) onto V, each
point y € V determines a unique element X ¢ V* < T, ,(M) such
that y = exp X. Set X’ = f, (X) so that X" is a vector at f, (x(¢,))-
Since M’ is complete, exp X' is well defined and we set g(y) =
exp X'. The extension g of f; thus defined commutes with the
exponential mappings. Since the exponential mappings are
analytic, g is also analytic. By Lemma 3, g is an affine mapping of
Vinto M’'. We can easily define the continuation f; beyond ¢, by
using this affine mapping g. We have thus proved the existence of
an analytic continuation f, along the whole curve x(¢), 0 < ¢ < 1.

To complete theproofof Theorem 6.1,let x beanarbitrarily fixed
point of U. For each point y of M, let x(¢), 0 < ¢t < 1, be a curve
from x to y. The affine mapping f;; can be analytically continued
along the curve x(f) and gives rise to an afline mapping g of a
neighborhood of y into M’. We show that g(y) is independent of
the choice of a curve from x to y. For this, it is suflicient to observe
that if x(¢) is a closed curve, then the analytic continuation f, of
fu along x(¢) gives rise to the affine mapping f; which coincides
with f; in a neighborhood x. Since M is simply connected, the
curve x(¢) is homotopic to zero and our assertion follows readily
from the factorization lemma (cf. Appendix 7) and from the
uniqueness of an analytic continuation we have already proved.
It follows that the given mapping f,; can be extended to an
affine mapping f of M into M’. The uniqueness of f follows from
Lemma 4. QED.

CoROLLARY 6.2. Let M and M’ be connected and simply connected
analytic manifolds with complete analytic linear connections. Then every
affine isomorphism between connected open subsets of M and M’ can be
uniquely extended to an affine isomorphism between M and M'.

We have the corresponding results for analytic Riemannian
manifolds. The Riemannian connection of an analytic Rieman-
nian metric is analytic; this follows from Corollary 2.4 of Chapter

IV.

‘TreoRrReMm 6.3. Let M and M’ be analytic Riemannian manifolds.
If M is connected and simply connected and if M’ is complete, then every
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isometric immersion fy; of a connected open subset U of M into M’ can be
uniquely extended to an isometric immersion f of M into M'.

Proof. The proof is quite similar to that of Theorem 6.1.
We indicate only the necessary changes. Lemma 1 can be used
without any change. Lemma 2 was necessary only to derive
Lemma 3. In the present case, we prove the following Lemma 3’
directly.

Lemma 3. Let M and M’ be analytic manifolds with analytic
Riemannian metrics g and g’, respectively, and let f be an analytic mapping
of M into M'. If the restriction of f to an open subset U of M is an
isometric immersion and if M is connected, then [ is an isometric
immersion of M into M'.

Proofof Lemma 3. Compare g and f*(g’). Since they coincide
on U, the argument similar to the one used in the proof of Lemma
1 shows that they coincide on the whole of M.

In Lemma 4, we replace ‘“‘affine mappings” by “isometric
immersions.”” Since an isometric immersion maps every geodesic
into a geodesic and hence commutes with the exponential
mappings, the proof of Lemma 4 is still valid.

In the rest of the proof of Theorem 6.1, we replace ‘“‘affine
mapping” by ‘“isometric immersion.” Then the proof goes
through without any other change. QED.

Remark. Since an isometric immersion f: M — M’ is not
necessarily an affine mapping, Theorem 6.3 does not follow from
Theorem 6.1. If dim M = dim M’, then every isometric immersion
f: M — M’ is an affine mapping (cf. Proposition 2.6 of Chapter
IV). Hence the following corollary follows from Corollary 6.2 as
well as from Theorem 6.3.

CoROLLARY 6.4. Let M and M’ be connected and simply connected,
complete analytic Riemannian manifolds. Then every isometry between
connected open subsets of M and M’ can be uniquely extended to an
isometry between M and M'.

7. Equivalence problem

Let M be a manifold with a linear connection. Let x1, ..., x®
be a normal coordinate system at a point x, and let U be a neigh-
borhood of x, given by |xf| < 4,7 = 1, ..., n. Let 4, be the linear
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frame at the origin x, given by (9/84%, . . ., 9/0x"). We define a
cross section o: U — L(M) as follows. If x is a point of U with
coordinates (al, ..., a"), then o(x) is the frame obtained by the
parallel displacement of %, along the geodesic given by x? = ta’,

0 < ¢t < 1. We call ¢ the cross section adapted to the normal coordinate
system x1, ..., x™

The first objective of this section is to prove the following
theorem.

TuEOREM 7.1.  Let M and M’ be manifolds with linear connections.
Let U (resp. V) be a normal coordinate neighborhood of a point x, € M
(resp. yo € M') with a normal coordinate system x',...,x™ (resp.
v o, ) and let o2 U — L(M) (resp. o' V — L(M')) be the cross
section adapted to x1, ..., x™ (resp. Y1, ..., y"). A diffeomorphism f of
U onto V is an affine isomorphism if it satisfies the following two conditions:

(1) f maps the frame o(x) into the frame o’ ( f (x)) for each point x € U ;

(2) f preserves the torsion and curvature tensor fields.

Proof. Let 6 = (0%) and w = (w}) be the canonical form and
the connection form on L(M) respectively. We set

(1) 6 = o*0? = X, Al dx?, i=1,...,n,
(2) @) = o*w! = X, By, dx*, 5,7 =1,...,n.

LemMa 1. For any (dl,...,a") # (0,...,0) with |a’| <4,

we have
(3) Z, di(ta)a’ = a, 0<¢t< :
(4) Z, By(ta)a* = 0=¢t=<1, Li=1,...

- b/

A
[a—
~,
|
[a—
\.3

where ta stands for (ta', . . ., ta").

Proof of Lemma 1. For a fixed a = (a*), consider the geodesic
x, given by »* =taf, 0 <t <1, 7i=1,...,n Let u, = o(x,),
which is the horizontal lift of x, starting from u,. Since the frames
u, are parallel along x,, we have

0i(x,) = 0(z,) = a.
On the other hand, we have
i, =X,a’ (0/ox") and 6(%,) = Z,; Ai(ta)d.
This proves (3). Similarly, (4) follows from the fact that w(z,) = 0.
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We set (cf. §7 of Chapter III)
(5) @ = o*0' = %, T3 00 A O (T}, = o*T}),
(6) Q; - G*Q;- - Zk,l %‘R}kle_k A 6_1 (R;kl — G*Rjz}cl).
LEMMA 2. For an arbitrarily fixed (a, . . ., a®), we set
Ai(t) = tdj(ta), B4(8) = tBy(ta),
T5(t) = Th(ta), Riy(t) = Rjy(ta).
Then the functions Ai(t) and Bi(t) satisfy the following system of
ordinary linear differential equations :
(7) dAj(0)[dt = 6} + 2, Bij()a + Ty T () AP (1) dl,
(8) dBj(¢)[dt = X, Riga(t) AR (t)a’.
with the initial conditions:
(9) 4i(0) = 0, Bi,(0) = 0.

Proof of Lemma 2. We consider the open set @ of R"+!
defined by @ = {(¢, 4%, ...,a"); |ta’ | <dfor: =1,...,n}. Let
p be the mapping of @ into U defined by

p(t,al,...,a" = (ta', ..., ta").
We set
0 = p*0', i = p*al, O = p*0i, Qi = p*Qi.
From Lemma 1, we obtain
(10) 6 = X, tdi(ta) da’ + a° dt,
(11) wi = 2, tBy(ta) da*.

where the dots denote the terms not involving df.
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From (10), (11), (12) and (13), we obtain
(16) —%, i A 67 + OF
= —X; [2, B} (ta)a* + 2, T}, (ta) (tAT(ta))a'] da’ A dt + - - -,
(17) —3, &k A &% + O
= —3, [Z,, R}im(ta) (t4AP(ta))a'] da* A dt + - - -,

where the dots denote the terms not involving df. Now (7)
follows from (14), (16) and the first structure equation. Similarly,
(8) follows from (15), (17) and the second structure equation.

Finally, (9) is obvious from the definition of /I;(t) and é}k(t) This
proves Lemma 2.

From Lemma 2 and from the uniqueness theorem on systems
of ordinary linear differential equations (cf. Appendix 1), it

follows that the functions AA; (¢) and ﬁ;k (¢) are uniquely determined
by T%.() and Ri,(t). On the other hand, the functions 7%,(f) and

ﬁ}kl(t) are uniquely determined by the torsion tensor fields 7T
and the curvature tensor fields R and also by the cross section (for
each fixed (a%,...,a")). From (1) we see that the connection

form o is uniquely determined by 7, R and o. QED.

In the case of a real analytic linear connection, the torsion and
curvature tensor fields and their successive covariant derivatives
at a point determine the connection uniquely. More precisely, we
have

Tueorem 7.2. Let M and M’ be analytic manifolds with analytic
linear connections. Let T, R and V (resp. T', R’ and V') be the torsion,
the curvature and the covariant differentiation of M (resp. M'). If a linear
isomorphism F: T, (M) — T, (M') maps the tensors (V"T), and
(VmR),, into the tensors (V'™T"), and (V'™R'), , respectively, for
m=0,1,2,..., then there is an affine isomorphism f of a neighborhood
U of x, onto a neighborhood V of y, such that f(x,) = y, and that the
differential of f at xy 15 F.

Proof. Let x%,...,x" |5 <d, be a normal coordinate
system in a neighborhood U of x,. Let y1,..., " |5 < 4, be a
normal coordinate system in a neighborhood ¥V of y, such that
(0/9y%),, = F((9/0x%),,), t = 1,....n; such a normal coordinate
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-

system exists and is unique. Let f be the analytic homeomorphism
of U onto V defined by

Yo f = xt, i=1,...,n.
Clearly the differential of f at x, coincides with F. We shall show
that fis an afline isomorphism of U onto V.

We use the same notation as in the proof of Theorem 7.1. It
suffices to prove the following five statements. If the normal
coordinate system x%, ..., " is fixed, then

(i) The tensors (V*T),,m =0, 1,2,..., determine the func-
tions A}'k(t), 0<:t=1;

(i1) The tensors (V™R),, m =0, 1,2, ..., determine the func-
tions Riy(1), 0 < ¢ = 1;

(iii) The functions A;fk(t) and I?;kl(t) determine the forms 6°
and @;

(iv) The forms 0° determine the cross section o;

(v) The cross section ¢ and the forms ! determine the connec-
tion form w.

To prove (1) and (ii) we need the following lemma.

LEmMA 1. Let u,, 0 <t < 1, be a horizontal Lift of a curve x,,
0 <t =1, to LIM). Let T be the tensor space of type (r, s) over R".
Given a tensor field K of type (r,s) along x,, let K be the Ti-valued
Sunction defined along u, by

K(u,) = u Y (K,), 0<t<l,

where u, is considered as a linear mapping of T, onto the tensor space

T, (x,) at x, of type (r, s). Then we have
dK (u,)
dt

Proof of Lemma 1. This is a special case of Proposition 1.3 of

Chapter III. The tensor field X and the function K here corre-
spond to the cross section ¢ and the function f there. Although ¢
in Proposition 1.3 of Chapter III is defined on the whole of M,
the proof goes through when ¢ is defined on a curve in M (cf.
the lemma for Proposition 1.1 of Chapter III).

To prove (i), we apply Lemma 1 to the torsion 7, the geodesic
x, given by x* = ta’, 1 = 1, ..., n, and the horizontal lift u, of x,

— ut_l(VitK), O § t é 1.
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with uy = ((9/9x%),,, . . ., (9/0x"),,). Then Lemma 1 (applied m
times) implies that, for each ¢, u,” 1(( +,)™T’) 1s the element of the

tensor space T} with components 4™ Tz (t) [dtm. In partlcular setting
t = 0, we see that, once the coordlnate system x1, ..., x" and
(a%, ..., a") are fixed, (dmff}k/dtm)t:o, m=20,1,2,..., are all
determined by (V»T),,. (Actually, it is not hard to see that

Ty?k;ll;... ;l,,,("’o)al1 e dl"‘;

e I

where T}, ., are the components of VT with respect to

x%, ..., x") Since each T;k() is an analytic function of ¢, it is
determlned by (V*T),, m =0,1,2,.... This proves (i). The
proof of (ii) is similar.

Lemma 2 for Theorem 7.1 implies that the functions 7 *.(¢) and

ﬂd(t) determine the functions AA’( t) and B’k(t) Now (111) follows
from the formula (1) and (2) in the proof of Theorem 7.1.
(iv) follows from the following lemma.

LeMMA 2. Let o and 6’ be two cross sections of L(M) over an open
subset U of M. If 6%0 = o'*0 on U, then ¢ = ¢’.

Proof of Lemma 2. For each Xe 7T,(M), where x e U, we
have

(*0)(X) = 0(0X) = o(x)~H(m(oX)) = a(x)7X,

where o(x) € L(M) is considered as a linear isomorphism of R"
onto T,(M). Using the same equation for ¢’, we obtain

o(x)71X = o'(x)~1X.

Since this holds for every X in T,(M), we obtain ¢(x) = o' (x).
Finally, (v) is evident from the definition of &} QED.

CoroLLARY 7.3. In Theorem 7.2, if M and M’ are, moreover,
connected, simply connected analytic manifolds with complete analytic
linear connections, then there exists a unique affine isomorphism f of M onto
M’ whose differential at x, coincides with F.

Proof. This is an immediate consequence of Corollary 6.2 and
Theorem 7.2. QED.

TueoreM 7.4. Let M and M’ be differentiable manifolds with linear
connections. Let T, R and V (resp. T', R' and V') be the torsion, the
curvature and the covariant differentiation of M (resp. M'). Assume
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VI=0, VR=0, VVT" =0 and V'R' =0. If F is a [linear
wsomorphism of T, (M) onto T, (M’) and maps the tensors T, and R,
at x, into the tensors T, and R, at y, respectively, then there is an affine
isomorphism f of a neighborhood U of x, onto a neighborhood V of y, such
that f(x,) = y, and that the differential of f at x, coincides with F.
Proof. We follow the notation and the argument in the proof
of Theorem 7.2. By Lemma 1 in the proof of Theorem 7.2, the
functions T;k(t) and Ri,(f) are constant functions and hence are

determined by T;, and R, (and the coordinate system «%, . . . , ).
Our theorem now follows from (iii), (iv) and (v) in the proof of
Theorem 7.2. : QED.

CoroLLARY 7.5. Let M be a differentiable manifold with a linear
connection such that VT = 0 and VR = 0. Then, for any two points x
and y of M, there exists an affine isomorphism of a neighborhood of x onto
a neighborhood of .

Proof. Let 7 be an arbitrary curve from x to y. Since VI = 0
and VR = 0, the parallel displacement 7: T, (M) — T,(M) maps
the tensors 7, and R, at x into the tensors 7, and R, at y. By
Theorem 7.4, there exists a local affine isomorphism f such that
f(x) = y and that the differential of f at x coincides with 7. QED.

Let M be a manifold with a linear connection I'. The connection
T is said to be invariant by parallelism if, for arbitrary points x and y
of M and for an arbitrary curve 7 from x to y, there exists a
(unique) local affine isomorphism f such that f(x) = » and that
the differential of f at x coincides with the parallel displacement
7: T, (M) - T,(M). In the proof of Corollary 7.5, we saw that
if VI' =0 and VR = 0, then the connection is invariant by
parallelism. The converse is also true. Namely, we have

COROLLARY 7.6. A linear connection is invariant by parallelism if
and only if VI = 0 and VR = 0.

Proof. Assuming that the connection is invariant by parallel-
ism, let 7 be an arbitrary curve from x to ». Let f be a local affine
isomorphism such that f(x) = y and that the differential of f at x
coincides with the parallel displacement =. Then f maps 7, and
R, into T, and R, respectively. Hence the parallel displacement
7 maps 71, and R, into 7, and R,, respectively. This means that 7°
and R are parallel tensor fields. QED.
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THEOREM 7.7. Let M be a differentiable manifold with a linear
connection such that VT = 0 and VR = 0. With respect to the atlas
consisting of normal coordinate systems, M is an analytic manifold and the
connection is analytic.

Proof. Let %1, ..., %" be a normal coordinate system in an
open set U. We introduce a coordinate system (%%, X%); ;-1
in 7~Y(U) < L(M) in a natural way as in §7 of Chapter I1I (cf.
Example 5.2 of Chapter I). If we denote by (Uj) the inverse
matrix of (X%), then the canonical form and the connection form

can be expressed as follows (cf. Propositions 7.1 and 7.2 of Chapter
I1T):

(18) 0 =, Ulde!, i=1,...,n;
(19) 0! = X, Ui(dX} + Z,,, T'¥ dexm), i, =1,...,n

Lm * ml

The forms 6 are analytic with respect to (x%, X{). We show that
the forms ! are also analytic with respect to (x%, X{). Clearly it
is sufficient to show that the components I'}; of the connection are
analytic in x1, ..., . We use the same notation as in the proof

of Theorem 7.1. Since the functions T;k(t) and l%;kl(t) are constants
which do not depend on (4%, .. ., a®) by virtue of the assumption
that VI' = 0 and VR = 0, Lemma 2 in the proof of Theorem 7.1

implies (Cf Appendix 1) that the functions 1:1\"() and é}kl(t) are
analytic in ¢ and depend analytically on (a4, ..., a®). Hence the

functions A and B"k are analytic in x1, ..., From (1) in the
proof of Theorem 7.1, we see that the cross section o: U— L(M)
is given by

(20) Ui = A, 5,7 =1, .
Let (C;) be the inverse matrix of (4%). From (19) and (20), we
obtain

(21) o*w;

= & =
By comparing (21) with (2) in the proof of Theorem 7.1, we
obtain

(92) B, = %, 4L(3CHax™ + T, T,C).
Transforming (22) we obtain

(23) It,= %, (2, CEB:, — 0Ck|oxm) A},

7 Jm

S, Ai(dCP + %, T%,C! dam).

Im * ml
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which shows that the components I'}, are analytic functions of
xl, L, x™

Since the n2 4+ n 1-forms 6° and w} are analytic with respect to
(x', X}) and define an absolute parallelism (Proposition 2.5 of
Chapter III), the following lemma implies that L(M) is an
analytic manifold with respect to the atlas consisting of the
coordinate system (x%, X?) induced from the normal coordinate
systems (x1, ..., x") of M.

LEmMMmA. Let wly ..., o™ be l-forms defining an absolute parallelism
on a manifold P of dimension m. Let ul, ..., u™ (resp. v', ..., v™) be
a local coordinate system valid in an open set U (resp. V). If the forms
wl, ..., o™ are analytic with respect to bothu®, . . ., u™andvl, ..., o™
then the functions

K K

vt = frut, ..., u™), 1=1,...,m,

which define the coordinate change are analytic.
Proof of Lemma. We write

w' =2, d(u) de’ = 3, bi(v) dv’,

where the functions a{(u) (resp. bi(v)) are analytic in «', ..., u™
(resp. v, ..., v™). Let (ci(v)) be the inverse matrix of (b}(v)).
Then the system of functions v* = fi(ul, ..., um™), 1 =1,...,m,is

a solution of the following system of linear partial differential
equations:

0vt/ow! = X, ci(v)ak(u), ,j=1,...,n.

Since the functions ¢k(2) and a¥(u) are analytic in 2%, . .., ™ and
ul, ..., u™ respectively, the functions f*(x«, ..., u™) are analytic
in «l, ..., u™ (cf. Appendix 1). This proves the lemma.

Let x%,...,x" and »!,...,»" be two normal coordinate
systems in M. Let (x%, Xj) and (%, Y) be the local coordinate
systems in L(M) induced by these normal coordinate systems. By

the lemma just proved, »!, . .., »" are analytic functions of x¢ and
Xi. Since »',...,y" are clearly independent of Xj, they are
analytic functions of #%, . .., ™ This proves the first assertion of

Theorem 7.7. Since we have already proved that the forms w! are
analytic with respect to (x%, Xj), the connection is analytic. QED.

As an application of Theorem 7.7 we have
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THEOREM 7.8. In Theorem 7.4, 1f M and M’ are, moreover,
connected, simply connected and complete then there exists a unique
affine 1somorphism f of M onto M’ such that f(x,) = y, and that the
differential of f at x, coincides with F.

Proof. This i1s an immediate consequence of Corollary 6.2,
Theorem 7.4, and Theorem 7.7. QED.

CoroLLARY 7.9. Let M be a connected, simply connected manifold
with a complete Linear connection such that VI' = 0 and VR = 0. If F
is a linear isomorphism of T, (M) onto T', (M) which maps the tensors
T, and R, wnto T, and R, , respectively, then there 1s a unique affine
transformation f of M such that f(x,) = y, and that the differential of
fatxy s F.

In particular, the group W(M) of affine transformations of M 1is
transitive on M.

Proof. The first assertion is clear. The second assertion
follows from Corollary 7.5 and Theorem 7.8. QED.

In §3 of Chapter V, we constructed, for each real number £, a
connected, simply connected complete Riemannian manifold of
constant curvature £. Any connected, simply connected complete
space of constant curvature £ is isometric to the model we con-
structed. Namely, we have

TueoreM 7.10. Any two connected, simply connected complete
Riemannian manifolds of constant curvature k are 1sometric to each other.

Proof. By Corollary 2.3 of Chapter V, for a space of constant
curvature, we have VR = 0. Our assertion now follows from
Theorem 7.8 and from the fact that, if both M and M’ have the
same sectional curvature 4, then any linear isomorphism
F: T, (M) - T, (M’) mapping the metric tensor g, at x, into
the metric tensor gy, at yo necessarily maps the curvature tensor
R, at x, into the curvature tensor R, at y, (cf. Proposition 1.2 of
Chapter V). QED.







APPENDIX 1

Ordinary linear differential equations

The purpose of this appendix is to state the fundamental
theorem on ordinary linear differential equations in the form
needed in the text. The proof will be found in various text books

on differential equations.
For the sake of simplicity, we use the following abbreviated

notation:
.y:(.yla"').yn)a n (7719"'977”‘)9 f:<f1>"'>fn))
= (¢4 ..., 9", s=(4...,5™), x=(x,...,xm).

Then we have

THEOREM. Let f(t, 9, 5) be a family of n functions defined in |t| < o
and ( 9, 5) € D, where D 1s an open set in R**™. If f(¢, p, 5) is continuous
in t and differentiable of class C in y, then there exists a unique family
@(t,m, s) of n functions defined n |t| < ' and (n,s) e D', where
0 < 8" < 6 and D' is an open subset of D, such that

(1) @(t, n, 5) is differentiable of class C* in t and n;

(2) 9p(t, m, s)[0t = f(t, @(t, 1, 5), 5) 5

(3) 90,7, 5) =n.

If f(t, », s) is differentiable of class C?, 0 < p < w, in ¢ and of class
Cy 1 < g =< w,inyands, then o(t, n, s) is differentiable of class CP+1
in t and of class C* in v and s.

Consider the system of differential equations:

a.ly/dt =f<t,_)), 5)

which depend on the parameters s. Then y = ¢(¢, 5, s) is called
the solution satisfying the initial condition:

y» =mn whent =0.
267
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Consider now a system of partial differential equations:

oyi[ox’ = fi(x, ), i=1,...,n;7=1,...,m.

It follows from the theorem that if the functions f}(x,y) are
differentiable of class €7, 0 <r < w, then every solution
9 = yp(x) is differentiable of class C"+1. This fact is used in the proof
of Theorem 7.7 of Chapter VI.




APPENDIX 2

A connected, locally compact metric space
is separable

We recall that a topological space M is separable if there exists a
dense subset D which contains at most countably many points. It
is called locally separable if every point of M has a neighborhood
which is separable. Note that, for a metric space, the separability
is equivalent to the second axiom of countability (cf. Kelley
[1, p. 120]). The proof of the statement in the title is divided
into the following three lemmas.

LemMmA 1. A4 compact metric space is separable.

For the proof, see Kelley [1, p. 138].
LEmMA 2. A locally compact metric space is locally separable.

This is a trivial consequence of Lemma 1.
The following lemma is due to Sierpinski [1].

LemMA 3. A connected, locally separable metric space is separable.

Proof of Lemma 3. Let 4 be the metric of a connected, locally
separable metric space M. For every point xe M and every
positive number 7, let U(x;r) be the interior of the sphere of
center x and radius 7, that is, U(x;r) = {y e M; d(x,y) < r}. We
say that two points x and » of M are R-related and write xRy,
if there exist a separable U(x;r) containing » and a separable
U( y; r') containing x. Evidently, xRx for every x e M. We have
also xRy if and only if yRx.

For every subset A of M, we denote by $4 the set of points which
are R-related to a point of A: SA = {y € M; yRx for some x ¢ A}.
Set §74 = S§" 14, n =2, 3,.... If {x} is the set consisting of a
single point x, we write Sx for S{x}. We see easily that y e $"x if

269
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and only if x € $”y. We prove the following three statements:

(a) Sx is open for every x e M;
(b) If 4 is separable, so is S4;

(c) Set U(x) = U S™x for each x € M. Then, for any x, y e M,
n=1

either U(x) N U(y) is empty or U(x) = U( ).

Proof of (a). Let » be a point of Sx. Since xRy, there exist
positive numbers 7 and 7’ such that U(x;r) and U(y;r') are
separable and that y e U(x; r) and x € U( p; 7). Since d(x, y) </,
there is a positive number 7, such that

d(x,y) <ry <r'.
Let 7, be any positive number such that
fo <1 — 1y, 1o <7t —dx,9), 1, <<rs — d(x,).

It suffices to show that U(y, r,) is contained in Sx. If z € U( p; 1),
then
d(x, z) < d(x,9) + d(, z) <d(x,y) + ry <min{r, r}.

Hence z 1s in U(x; r) which is separable and x is in U(z; r;). To
prove that U(z;r;) is separable, we shall show that U(z;r,) is
contained in U(y; r’) which is separable. Let w € U(z; r;) so that
d(z, w) < r,. Then

Ay, w) = d(y, 2) +d(z,w) <d(y,2) + 11 <710 + 11 <7

Hence w e U(y; r'). This proves that zRx for every ze U(y; r,),
that is, U( p; 1) < Sx.

Proof of (b). Let A be a separable subset of M and D a
countable dense subset of A. It suffices to prove that every
x € 5S4 is contained in a separable sphere whose center is a point of
D and whose radius is a rational number, because there are only
countably many such spheres and the union of these spheres is
separable. Let x € S4. Then there is y € 4 such that xRy and there
is a separable sphere U(y;r) containing x. Let 7, be a positive
rational number such that d(x, y) < r, < r. Since D is dense in 4,
there is z € D such that

d(‘z).y) < min {7’0 T d(xa.y)a r — 7’0}.
It suffices to show that U(z; r,) contains x and is separable. From
d(x, 2) = d(x,0) +d(, 2) <r,
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it follows that x € U(z; r,). To prove that U(z; r,) is separable, we
show that U(z; ry) is contained in U( y; r) which is separable. If
we U(z; 1), then

dw, ) = dw, z) +d(z,9) <7, + d(z,9) <,

and hence we U( p; 7).

Proof of (c). Assume that U(x) N U(y) is non-empty and let
ze U(x) " U(y). Then zeS™ and zeS™ for some m and .
From ze S™x, we obtain x € §”z. Hence x € §™"z < $™*t"y, This
implies S*x < S*m+7y for every £ and hence U(x) < U(y).
Similarly, we have U(y) < U(x), thus proving (c).

By (a), §4 = U Sx is open for any subset 4 of M. Hence U(x)

zed
is open for every x € M. By (b), S"x is separable for every n. Hence

U(x) is separable. Since M is connected and since each U(x) is
open, (c) implies M = U(x) for every x ¢ M. Hence M is separable,
thus completing the proof of the statement in the title.

We are now in position to prove

THEOREM. For a connected differentiable manifold M, the following
conditions are mutually equivalent :

(1) There exists a Riemannian metric on M ;

(2) M 1is metrizable,

(3) M satisfies the second axtom of countability ;

(4) M s paracompact.

Proof. The implication (1) — (2) was proved in Proposition
3.5 of Chapter IV. As we stated at the beginning, for a metric
space, the second axiom of countability is equivalent to the
separability. The implication (2) — (3) is therefore a consequence
of the statement in the title. If (3) holds, then M is metrizable by
Urysohn’s metrization theorem (cf. Kelley [1, p. 125]) and,
hence, M is paracompact (cf. Kelley [1, p. 156]). This shows
that (3) implies (4). The implication (4) — (1) follows from
Proposition 1.4 of Chapter III. QED.
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Partition of unity

Let {U,},.; be a locally finite open covering of a differentiable
manifold M, i.e., every point of M has a neighborhood which
intersects only finitely many U;’s. A family of differentiable
functions { f;} on M is called a partition of unity subordinate to the
covering {U}, if the following conditions are satisfied:

(Hh0 = f, =1 on M for every ¢ € I;

(2) The support of each f;, i.e., the closure of the set
{x e M; f,(x) # 0}, is contained in the corresponding U,;

(3) Z, filx) = 1.

Note that in (3), for each point x € M, f,(x) = 0 except for a
finite number of ’s so that %, f;(x) is a finite sum for each x.

We first prove

TueoREM 1.  Let {U,;} be a locally finite open covering of a para-
compact manifold M such that each U, has compact closure U;. Then there
exists a partition of unity { f;} subordinate to {U}.

Proof. We first prove the following three lemmas. The first
two are valid without the assumption that M is paracompact
whereas the third holds for any paracompact topological space.

LemmA 1.  For each point x € M and for each neighborhood U of x,
there exists a differentiable function f (of class C°) on M such that (1)
O0=f=<lonM; (2 flx) =1, and (3) f = 0 outside U.

Proof of Lemma 1. This can be easily reduced to the case where
M =R x=0and U = {(x, ..., x"); |x*| < a}. Then, for each
J,7 =1,...,n,welet f;(x?) be a differentiable function such that
f3;(0) =1 and that f,(x’) = Ofor [x’| = a. Weset f(x1, ..., x") =
S1(xt) - - - f.(x™). This proves Lemma 1.

LeEmMA 2. For every compact subset K of M and for every neighbor-
hood U of K, there exists a differentiable function f on M such that (1)
f=z0o0mm M; (2) f>0o0nK; and (3) f = 0 outside U.

272
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Proof of Lemma 2. For each point x of K| let f, be a different-
iable function on M with the property of fin Lemma 1. Let V,
be the neighborhood of x defined by f, > 1. Since K is compact,

there exist a finite number of points x,,..., x, of K such that
Ve, U UV, > K. Then we set
Fefut Lo

This completes the proof of Lemma 2.

LemMmA 3. Let {U,} be a locally finite open covering of M. Then there
exists a locally finite open refinement {V;} (with the same index set) of {U,}
such that V, < U, for every 1.

Proof of Lemma 3. For each point x ¢ M, let W, be an open

neighborhood of x such that W, is contained in some U,. Let
{W.} be a locally finite refinement of {W,; x ¢ M}. For each 1, let
V, be the union of all W, whose closures are contained in U,.

Since {W} is locally finite, we have 7, = UW, where the union is
taken over all « such that W, < U,. We thus obtained an open
covering {V,} with the required property.

We are now in position to complete the proof of Theorem 1.
Let {V;} be as in Lemma 3. For each ¢, let W, be an open set such

that V, « W, < W, < U,. By Lemma 2, there exists, for each i,
a differentiable function g, on M such that (1) g, = 0 on M,
(2) g, > 0on V,; and (3) g, = 0 outside W,. Since the support of
each g, contains V, and is contained in U, and since {U,} is locally
finite, the sum g = Z, g, is defined and differentiable on M. Since

{V.} is an open covering of M, ¢ > 0 on M. We set, for each ¢,

Ji = &ilg-
Then { f;} is a partition of unity subordinate to {U,}. QED.

Let f be a function defined on a subset F of a manifold M. We
say that fis differentiable on F if, for each point x € F, there exists
a differentiable function f, on an open neighborhood V, of x such

that f = f,on F NV,

TurOREM 2. Let F be a closed subset of a paracompact manifold M.
Then every differentiable function f defined on F can be extended to a
differentiable function on M.
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Proof. For each x € F, let f, be a differentiable function on an
open neighborhood ¥V, of x such that f, = fon F N V,. Let U, be
a locally finite open refinement of the covering of M consisting of
M —F and V, xeF. For each i, we define a differentiable
function g, on U, as follows. If U, is contained in some V,, we
choose such a ¥V, and set

g; = restriction of f, to U,.
If there is no V, which contains U,, then we set
g; = 0.
Let { f;} be a partition of unity subordinate to {U,}. We define
&= 2ifig:
Since {U,} is locally finite, every point of M has a neighborhood in

which X, f,g, is really a finite sum. Thus g is differentiable on M.
It is easy to see that g is an extension of f. QED.

In the terminologies of the sheaf theory, Theorem 2 means that
the sheaf of germs of differentiable functions on a paracompact
manifold M is soft (““mou” in Godement [1]).
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On arcwise connected subgroups of a Lie group

Kuranishi and Yamabe proved that every arcwise connected
subgroup of a Lie group is a Lie subgroup (see Yamabe [1]). We
shall prove here the following weaker theorem, which is sufficient
for our purpose (cf. Theorem 4.2 of Chapter II). This result is
essentially due to Freudenthal [1].

THEOREM. Let G be a Lie group and H a subgroup of G such that
every element of H can be joined to the identity ¢ by a piecewise differentiable
curve of class C* which is contained in H. Then H 1s a Lie subgroup of G.

Proof. Let S be the set of vectors X € 7,(G) which are tangent

e

to differentiable curves of class C! contained in H. We identify
T,(G) with the Lie algebra g of G. Then

LEmMMA. S is a subalgebra of g.

Proof of Lemma. Given a curve x, in G, we denote by #, the
vector tangent to the curve at the point x,. Let r be any real
number and set z, = x,,. Then 2z, = r %,. This shows that if
X €S, then 7X € S. Let x, and y, be curves in G such that x, =
90 =e. If we set v, = x,y,, then 3, = %, + J, (cf. Chevalley
[1, pp. 120-122]). This shows that if X, ¥ €S, then X + YeS.
There exists a curve w, such that w,. = x, 74,79, and we have
wy = [%¢, 7o) (cf. Chevalley [1, pp. 120-122] or Pontrjagin [1,
p. 238]). This shows that if X, Y ¢S, then [X, Y] €S, thus com-
pleting the proof of the lemma.

Since § < T,(G) = g is a subalgebra of g, the distribution
x — LS, x € G, is involutive (where L, is the left translation by x)
and its maximal integral manifold through ¢, denoted by K, is
the Lie subgroup of G corresponding to the subalgebra S. We
shall show that H = K.

We first prove that K > H. Let a be any point of H and = = x,,
0 < ¢ < 1,acurve frometo asothate = x,and a = x;. We claim
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that the vector %, is in L, for all ¢ In fact, for each fixed ¢,
L, '(#;) is the vector tangent to the curve L_'(r) at ¢ and hence
lies in S, thus proving our assertion. Since #, ¢ L, S for all ¢ and
x, = ¢, the curve x, lies in the maximal integral manifold K of the
distribution ¥ — L,S (cf. Lemma 2 for Theorem 7.2 of Chapter
II). Hence a € K, showing that K > H.

To prove that H> K, let ¢;,...,¢, be a basis for § and
xt---xf 0<t<1, be curves in H such that 2 =¢ and
%) =e¢;,for it = 1,..., k. Consider the mapping f of a neighbor-
hood U of the origin in R* into K defined by f(¢,,...,¢) =
X xp, (.5 by) € Ul Since 4G, . .., % form a basis for S,
the differential of /: U — K at the origin is non-singular. Taking
U sufficiently small, we may assume that fis a diffeomorphism of
U onto an open subset f(U) of K. From the definition of f, we
have f(U) < H. This shows that a neighborhood of ¢ in K is
contained in H. Since K is connected, K < H. QED.
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Irreducible subgroups of O(n)

We prove the following two theorems.

THEOREM 1. Let G be a subgroup of O(n) which acts irreducibly on
the n-dimensional real vector space R™. Then every symmetric bilinear form
on R"™ which 1s nvariant by G is a multiple of the standard inner product

(%,0) = 2 x".

THEOREM 2. Let G be a connected Lie subgroup of SO(n) which acts
irreducibly on R™. Then G is closed in SO(n).

We begin with the following lemmas.

LemMma 1. Let G be a subgroup of GL(n; R) which acts irreducibly
on R™. Let A be a linear transformation of R™ which commutes with every
element of G. Then

(1) If A is nilpotent, then A = 0.

(2) The minimal polynomial of A is irreducible over R.

(3) Either A = al, (a: real number, I,,: the identity transformation of
R"), or A = al, + bJ, where a and b are real numbers, b +# 0, J is a
linear transformation such that J? = —1I,, and n is even.

Proof. (1) Let £ be the smallest integer such that A4* = 0.
Assuming that £ = 2, we derive a contradiction. Let W =
{x e R"*; Ax = 0}. Since W is invariant by G, we have either W =
R" or W = (0). In the first case, 4 = 0. In the second case, 4
is non-singular and 4*! = 4-1- 4* = 0.

(2) If the minimal polynomial f(x) of 4 is a product f;(x) - fa(x)
with (f1,/f,) =1, then R* =W, + W, (direct sum), where
W, ={xeR"; f,(d)x = 0}. Since every element of G commutes
with 4 and hence with f,(4), it follows that W, are both invariant
by G, contradicting the assumption of irreducibility. Thus
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f(x) = g(x)*, where g(x) is irreducible. Applying (1) to g(4), we
see that f(A) = g(4)* = 0 implies g(4) = 0. Thus f = g.

(3) By (2), the minimal polynomial f(x) of A4 is either (x — a)
or (x — a)? + b with b £ 0. In the first case, 4 = al,. In the
second case, let J = (4 — al,)/b. Then J?2 = —I,and 4 = al, -
bJ. We have (—1)" = det J2 = (det J)2 > 0 so that n is even.

LemMa 2. Let G be a subgroup of O(n) which acts irreductbly on R™.
Let A, B, . .. be linear transformations of R™ which commute with G.

(1) If A is symmetric, 1.e., (Ax, y) = (x, Ay), then A = al,.

(2) If A 15 skew-symmetric, 1.e., (Ax, y) + (x, Ay) =0, then A = 0
or A = bJ, where J* = —I, and n = 2m.

(3 If A #£0 and B are skew-symmetric and AB = BA, then
B = cA.

Proof. (1) By (3) of Lemma 1, 4 = al, -+ bJ, possibly with
b = 0. If 4 is symmetric, so is bJ. If & # 0, J is symmetric so that
(Jx, Jx) = (x, J2x) = —(x, x), which is a contradiction for x # 0.

(2) Since the eigenvalues of skew-symmetric 4 are 0 or purely
imaginary, the minimal polynomial of 4 is either x or x% - 42,
b # 0. In the first case, A = 0. In the second case, 4 = —bJ
with J2 = —1,.

(3) Let A =bJ and B = b’'K, where J2 = K2 = —I,. We
have JK = KJ. We show that R* = W, + W, (direct sum),
where W, = {x e R"; Jx = Kx} and W, = {x ¢ R"; Jx = —Kx}.
Clearly, W, n W, = (0). Every x ¢ R" is of the form y + z with
ye W, and ze W,, as we see by setting y = (x — JKx)/2 and
z = (x + JKx)[2. W, and W, are invariant by G, because J and
K commute with every element of G. Since G is irreducible, we
have either W, = R" or W, = R", that is, either K =J or
K = —J. This means that B = ¢4 for some c.

Proof of Theorem 1. For any symmetric bilinear form f(x, »),
there is a symmetric linear transformation 4 such that f(x, y) =
(Ax, »). If fis invariant by G, then 4 commutes with every element
of G. By (1) of Lemma 2, 4 = al, and hence f(x, ») = a(x, ).

Proof of Theorem 2. We first show that the center 3 of the Lie
algebra g of G is at most 1-dimensional. Let A ## 0 and B €3. Since
A, B are skew-symmetric linear transformations which commute
with every element of G, (3) of Lemma 2 implies that B = ¢4 for
some ¢. Thus dim 3 < 1. If dim 3 = 1, then 3 = {¢J; ¢ real}, where
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Jis a certain skew-symmetric linear transformation with J2 = —1 .
Now J is representable by a matrix which is a block form, each
0

1
of R*. The 1-parameter subgroup exp ¢J consists of matrices of a
(cos t —sint

—1
block being ( ), with respect to a certain orthonormal basis

block form, each block being

morphic with the circle group.

Since g is the subalgebra of the Lie algebra of all skew-sym-
metric matrices, g has a positive definite inner product (4, B) =
—trace (AB) whichisinvariant by ad (G). It follows that the orthog-
onal complement s of the center 3 in g with respect to this inner
product is an ideal of g and g =3 + s is the direct sum. If s
contains a proper ideal, say, s;, then the orthogonal complement
s’ of 5; in s is an ideal of s (in fact of g) and s = s, + s’. Thus we
see that s is a direct sum of simple ideals: s =s; + - - + 5,. We
have already seen that the connected Lie subgroup generated by
3 1s closed in SO(n). We now show that the connected Lie subgroup
generated by s is closed in SO(n). This will finish the proof of
Theorem 2.

We first remark that Yosida [1] proved the following result.
Every connected semisimple Lie subgroup G of GL(n; Q) is closed
in GL(n; C). His proof, based on a theorem of Weyl that any
representation of a semisimple Lie algebra is completely reducible,
also works when we replace GL(n; G) by GL(n; R). In the case of
a subgroup G of SO(n), we need not use the Weyl theorem. We
now prove the following result by the same method as Yosida’s.

A connected semisimple Lie subgroup G of SO(n) s closed in SO(n).

Proof. Since g is a direct sum of simple ideals g4, . .., g; of
dimension > 1 and since g, = [g;, g;] for each ¢, it follows that
g = [g, g]. Now consider SO(n) and hence its subgroup G as acting
on the complex vector space G" with standard hermitian inner
product which is left invariant by SO(n). Then C* is the direct sum
of complex subspaces V,,...,V, which are invariant and
irreducible by G. Assuming that G is not closed in SO(n), let G
be its closure. Since G is a connected closed subgroup of SO(n),
it i3 a Lie subgroup. Let g be its Lie algebra. Obviously, g < g.

Since ad (G)g < g, we have ad (G)g < g, which implies that g is

. , and hence is iso-
sin ¢ cos ¢
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an ideal of g. Since the Lie algebra of SO(rn) has a positive definite
inner product invariant by ad (SO(n)) as we already noted, it
follows that g is the direct sum of g and the orthogonal comple-
ment u of g in g. Each summand V,; of C™ is also invariant by
G and hence by § acting on C”. For any 4 ¢ g, denote by A4, its
action on V, for each :. For any 4, B e g, we have obviously
trace [4,, B;] = 0. Since 4 — 4, is a representation of g on ¥, and
since ¢ = [g, g], we have trace 4, = 0 for every 4 € g. Thus the
restriction of ¢ € G on each V, has determinant 1 (cf. Corollary 1
of Chevalley [1; p. 6]). By continuity, the restriction of a e @
on each V,; has determinant 1. This means that trace 4, =0
for every 4 € g and for each :. Now let B e u. Its action B, on
V; commutes with the actions of {4,; 4 € g}. By Schur’s Lemma
(which is an obvious consequence of Lemma 1, (2), which is
valid for any field instead of R), we have B, = 4,1, where [ is
the identity transformation of V,. Since trace B, = 0, it follows
that b, = 0, that is, B, = 0. This being the case for each 7, we
have B = 0. This means that u = (0) and § = g. This proves
that G = G, that is, G is closed in SO(n).




APPENDIX 6

Green’s theorem

Let M be an oriented n-dimensional differentiable manifold.
An n-form o on M is called a volume element, if w(0d/0xY, ...,
d/0x™) > 0 for each oriented local coordinate system x1,..., x™
With a fixed volume element w (which will be also denoted by a

more intuitive notation dv), the integralf f dv of any continuous
M

function f with compact support can be defined (cf. Chevalley

[1, pp. 161-167]).
For each vector field X on M with a fixed volume element w,
the divergence of X, denoted by div X, is a function on M defined by

(div X) o = Lyw,
where Ly is the Lie differentiation in the direction of X.

GREEN’s THEOREM. Let M be an oriented compact manifold with a
Sfixed volume element w = dv. For every vector field X on M, we have

fdidez):o.
M

Proof. Let ¢, be the l-parameter group of transformations
generated by X (cf. Proposition 1.6 of Chapter I). Since we have
(cf. Chevalley [1, p. 163])

f (pt_l*w ZJ‘ w,
M M

f ®; "*w, considered as a function of ¢, is a constant. By definition
M
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d
of Ly, we have [E (gvt_l*w):l = —L . Hence
=0

] Ll
0 _[EdMgpt “lico T Ju dt(% 2 10

rl
— | Lyo = —fdidev.
M

JM

QED.

Remark 1. The above formula is valid for a non-compact
manifold M as long as X has a compact support.

Remark 2. The above formula follows also from Stokes’ formula.
Infact,sincedw = 0,wehave Lyw =dotxw + tx o dw =d o txw.

We then have
f Lyw =f txw = 0.
M oM

ProposiTioN. Let M be an oriented manifold with a fixed volume
element o = dv. If T' is an affine connection with no torsion on M such that
w s parallel with respect to T', then, for every vector field X on M, we have

(div X)), = trace of the endomorphism V — V, X, Ve T,(M).

Proof. Let Ay be the tensor field of type (1, 1) defined by
Ay =Ly — Vx as in §2 of Chapter VI. Let X,,..., X, be a
basis of T,(M). Since Vyw = 0 and since 4y, as a derivation,
maps every function into zero, we have

(Lxw)(Xy o ooy X,) = (Axw)( Xy, o o0y X))
=Ax(w(Xy, ..., X)) — 20Xy, .., Ax X, o0 0,
= -2, 0(Xy,...,AxX, ..., X,)
= —(trace A x),0(X,, ..., X,).
This shows that

Xn)

div X = —trace Ax.

Our assertion follows from the formula (cf. Proposition 2.5 of
Chapter VI):
AxY = -V, X - T X, Y)

and from the assumption that 7" = 0. QED.
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Remark 3. Theformula div X = —trace 4y holds without the
assumption 7" = 0.

Let M be an oriented Riemannian manifold. We define a
natural volume element dv on M. At an arbitrary point x of M,
let X,,...,X, be an orthonormal basis of 7,(M) compatible
with the orientation of M. We define an n-form dv by

(X, ..., X,) =1

It is easy to verify that dv is defined independently of the frame
Xy ..., X, chosen. In terms of an allowable local coordinate
system x1, ..., 2 and the components g;; of the metric tensor g,
we have

dv =VGdi' Adx® A -+ Adx", where G = det (g:5)-

In fact, let (9/0x%), = X, C*X, so that g;; = X, C*CF and G =
det (C*)2 at x. Since 9/0x%, ..., 9/9x" and X,, ..., X, have the
same orientation, we have det (C¥) = V/G > 0. Hence, at x, we
have

dv(0/0xY, ..., 0/0x") =%, . ; eCpr---Crdo(X,,...,X,)
— det (CH) = VG,

where ¢ 1s 1 or —1 according as (¢y,...,1%,) 1s an even or odd
permutation of (1, ..., n).

Since the parallel displacement along any curve 7 of M maps
every orthonormal frame into an orthonormal frame and preserves
the orientation, the volume element dv is parallel. Thus the
proposition as well as Green’s theorem is valid for the volume
element dv of a Riemannian manifold.
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Factorization lemma

Let M be a differentiable manifold. Two continuous curves
x(¢) and y(¢) defined on the unit interval I = [0, 1] with x(0) =
2(0) and x(1) = »(1) are said to be homotopic to each other if
there exists a continuous mapping f: ({,s) el X I —f(t,s) e M
such that (¢, 0) = x(¢), f(¢, 1) =»(¢), f(0,s5) = x(0) = »(0) and
f(1,5) = x(1) = (1) for every ¢ and s in I. When x(¢) and y(¢) are
piecewise differentiable curves of class C* (briefly, piecewise C*-
curves), they are piecewise C*-homotopic, if the mapping f can be
chosen in such a way that it is piecewise C* on I x I, that is, for a

certain subdivision I = Z »J 18 a differentiable mapping of class

C* of I, x I, into Mfor each (2,7)-

LEMMA. If two piecewise C*-curves x(t) and y(t) are homotopic to each
other, then they are piecewise C*-homotopic.

Proof. We can take a suitable subdivision [ = Z I; so that
1=1

f(I; x I,) is contained in some coordinate neighborhood for each

pair (7,7). By modifying the mapping f in the small squares
I, x I, we can obtain a piecewise (*-homotopy between x(¢) and

().

Now let U be an arbitrary open covering. We shall say that a
closed curve T at a point x is a U-lasso if it can be decomposed into
three curves 7 = u~!- ¢ - u, where u is a curve from x to a point
yand ¢ is a closed curve at y which is contained in an open set of
U. Two curves 7 and 7’ are said to be equivalent, if 7' can be
obtained from 7 by replacing a finite number of times a portion of
the curve of the form u=!- u by a trivial curve consisting of a
single point or vice versa. With these definitions, we prove
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FACTORIZATION LEMMA. Let U be an arbitrary open covering of M.

(@) Any closed curve which is homotopic to zero is equivalent to a product
of a finite number of U-lassos.

(b) If the curve is moreover precewise C*, then each U-lasso in the
product can be chosen to be of the form u= - o - u, where u is a precewise
C*-curve and o 1is a C*-curve.

Proof. (a) Let = = x(¢), 0 < ¢t < 1, so that x = x(0) = x(1).
Let f be a homotopy I x I— M such that f(¢, 0) = x(2), f(¢, 1)
= x, f(0,s) =f(1,s5) = x for every ¢ and s in I. We divide the
square I x [into m? equal squares so that the image of each small
square by flies in some open set of the covering U. For each pair
of integers (z,7), 1 < 1,7 < m, let 4(¢,) be the closed curve in the
square I x I consisting of line segments joining lattice points in
the following order:

(0,0) — (0, j/m) — ((z — 1)/m, j/m) —
(@ = Dfm, (j — 1)[m) — (sm, (j — 1)[m) — (i[m, j|m) —

Geometrically, A(z,7) looks like a lasso. Let 7(z,7) be the image
of A(z,7) by the mapping f. Then = is equivalent to the product of
U-lassos

r(mym) - (l,m) - er(m, 2) - 1(1,2) - 2(my 1) - - (1, 1).

(b) By the preceding lemma, we may assume that the homo-
topy mapping f is piecewise C*. By choosing m larger if necessary,
we may also assume that f is C* on each of the m? small squares.
Then each lasso 7(z,7) has the required property. QED.

The factorization lemma is taken from Lichnerowicz [2, p. 51].







NOTES

Note 1. Connections and holonomy groups

1. Although differential geometry of surfaces in the 3-dimen-
sional Euclidean space goes back to Gauss, the notion of a Rieman-
nian space originates with Riemann’s Habilitationsschrift [1] in
1854. The Christoffel symbols were introduced by Christoffel [1]
in 1869. Tensor calculus, founded and developed in a series of
papers by Ricci, was given a systematic account in Levi-Civita and
Ricci [1] in 1901. Covariant differentiation.which was formally
introduced in this tensor calculus was given a geometric inter-
pretation by Levi-Civita [1] who introduced in 1917 the notion of
parallel displacement for the surfaces. This discovery led Weyl
[1, 2] and E. Cartan [1, 2, 4, 5, 8, 9] to the introduction of affine,
projective and conformal connections. Although the approach of
Cartan 1s the most natural one and reveals best the geometric
nature of the connections, it was not until 1950 that Ehresmann [2]
clarified the general notion of connections from the point of view
of contemporary mathematics. His paper was followed by
Chern [1, 2], Ambrose-Singer [1], Kobayashi [6], Nomizu [7],
Lichnerowicz [2] and others.

Ehresmann [2] defined, for the first time, a connection in an
arbitrary fibre bundle as a field of horizontal subspaces and
proved the existence of connections in any bundle. He introduced
also a connection form w and defined the curvature form Q by
means of the structure equation. The definition of Q given in this
book is due to Ambrose and Singer [1] who proved also the
structure equation (Theorem 5.2 of Chapter II). Chern [1, 2]
defined a connection by means of a set of differential forms w, on
U, with values in the Lie algebra of the structure group, where
{U,} is an open covering of the base manifold (see Proposition 1.4
of Chapter II).

Ehresmann [2] also defined the notion of a Cartan connec-
tion, whose examples include affine, projective and conformal
connections. See also Kobayashi [6] and Takizawa [1]. We have
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given in the text a detailed account of the relationship between
linear and affine connections.

2. The notion of holonomy group is due to E. Cartan [1, 6].
The fact that the holonomy group is a Lie group was taken for
granted even for a Riemannian connection until Borel and
Lichnerowicz [1] proved it explicitly. The holonomy theorem
(Theorem 8.1 of Chapter II) of E. Cartan was rigorously proved
first by Ambrose-Singer [1]. The proof was simplified by Nomizu
[7] and Kobayashi [6] by first proving the reduction theorem
(Theorem 7.1 of Chapter II), which is essentially due to Cartan
and Ehresmann. Kobayashi [6] showed that Theorem 8.1 is
essentially equivalent to the following fact. For a principal fibre
bundle P(M, G), consider the principal fibre bundle 7(P) over
T (M) with group 7T(G), where 7T( ) denotes the tangent bundle.
For any connection I' in P, there is a naturally induced connection
T(I') in T(P) whose holonomy group i1s 7(®), where @ is the
holonomy group of I'.

The result of Hano and Ozeki [1] and Nomizu [5] (Theorem
8.2 of Chapter II) to the effect that the structure group G of P(M,
() can be reduced to a subgroup H if and only if there exists a
connection in P whose holonomy group is exactly // means that
the holonomy group by itself does not give any information other
than those obtainable by topological methods. However, combined
with other conditions (such as a ““forsion-free linear connection’),
the holonomy group is of considerable interest.

3. Chern [3] defined the notion of a G-structure on a differenti-
able manifold M, where G is a certain Lie subgroup of GL(n; R)
with n = dim M. In our terminologies, a G-structure on M is a
reduction of the bundle of linear frames L(M) to the subgroup G.
For G = O(n), a G-structure is nothing but a Riemannian metric
given on M (see Example 5.7 of Chapter I). For a general theory
of G-structures, see Chern [3], Bernard [1] and Fujimoto [1]. We
mention some other special cases.

Weyl [3] and E. Cartan [3] proved the following. For a closed
subgroup G of GL(n;R), n = 3, the following two conditions are
equivalent :

(1) G s the group of all matrices which preserve a certain non-degenerate
quadratic form of any signature:
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(2) For every n-dimensional manifold M and for every reduced subbundle
P of L(M) with group G, there is a unique torsion-free connection in P.

The implication (1) — (2) is clear from Theorem 2.2 of
Chapter IV (in which g can be an indefinite Riemannian metric);
in fact, if G is such a group, any G-structure on M corresponds to
an indefinite Riemannian metric on M in a similar way to
Example 5.7 of Chapter I. The implication (2) — (1) is non-
trivial. See also Klingenberg [1].

Let G be the subgroup of GL(n; R) consisting of all matrices
which leave the 7-dimensional subspace R” of R" invariant. A G-
structure on an n-dimensional manifold M 1s nothing but an r-
dimensional distribution. Walker [3] proved that an r-dimensional
distribution is parallel with respect to a certain torsion-free linear
connection if and only if the distribution is integrable. See also
Willmore [1, 2].

Let G be GL(n; C) regarded as a subgroup of GL(2z; R) in a
natural manner. A G-structure on a 2z-dimensional manifold M
is nothing but an almost complex structure on M. This structure
will be treated in Volume II.

4. The notions of local and infinitesimal holonomy groups were
introduced systematically by Nijenhuis [2]. The results in §10 of
Chapter II were obtained by him in the case of a linear connection
(§9 of Chapter III). Nijenhuis’ results were generalized by Ozeki
[1] to the general case as presented in §10 of Chapter II. See also
Nijenhuis [3]. Chevalley also obtained Corollary 10.7 of Chapter
IT in the case of a linear connection (unpublished) and his result
was used by Nomizu [2] who discussed invariant linear connec-
tions on homogeneous spaces. His results were generalized by
Wang [1] as in §11 of Chapter II.

5. By making use of a connection, one can define characteristic
classes of any principal fibre bundle. This will be treated in
Volume II. See Chern [2], H. Gartan [2, 3]. We shall here state
a result of Narasimhan and Ramanan [1] which is closely related
to the notion of a universal bundle (cf. Steenrod [1, p. 101]).

THEOREM. Given a compact Lie group G and a positive integer n,
there exists a principal bundle E(N, G) and a connection Iy on E such that
any connection I' in any principal bundle P(M, G), dim M < n, can be
obtained as the inverse image of 'y by a certain homomorphism of P into E
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(that is, = f*w,, where w and w, are the connection forms of I' and T,
respectively, see Proposition 6.2 of Chapter 1I).

The connection I'; is therefore called a universal connection for G
(and 7). For example, the canonical connection in a Stiefel mani-
fold with structure group O(k) is universal for O(k). For the
canonical connections in the Stiefel manifolds, see also Kobayashi
[5] who gave an interpretation of the Riemannian connections of
manifolds imbedded in Euclidean spaces (see Volume II).

6. The holonomy groups of linear and Riemannian connections
were studied in detail by Berger [1]. By a careful examination of the
curvature tensor, he obtained a list of groups which can be
restricted linear holonomy groups of irreducible Riemannian
manifolds with non-parallel curvature tensor. His list coincides
with the list of connected orthogonal groups acting transitively on
spheres. Simons [1] proved directly that the linear holonomy
group of an irreducible Riemannian manifold with non-parallel
curvature tensor is transitive on the unit sphere in the tangent
space. See Note 7 (symmetric spaces).

7. The local decomposition of a Riemannian manifold (Proposi-
tion 5.2 of Chapter IV) has been treated by a number of authors.
The global decomposition (Theorem 6.2 of Chapter IV) was
proved by de Rham [1]; the same problem was also treated by
Walker [2]. A more general situation than the direct product has
been studied by Reinhart [1], Nagano [2] and Hermann [1].

It is worthwhile noting that even the local decomposition is a
strongly metric property. Ozeki gave an example of a torsion-free
linear connection with the following property. The linear holo-
nomy group is completely reducible (that is, the tangent space is
the direct sum of invariant irreducible subspaces) but the linear
connection is not a direct product even locally. His example is as
follows: On R? with coordinates (x!, x2), take the linear connec-
tion given by the Christoffel symbols I'};(x%, ¥2) = %2 and other

I, — 0. The holonomy group is {(8 ?) 0> 0}.

8. The restricted linear holonomy group of an arbitrary
Riemannian manifold is a closed subgroup of the orthogonal
group. Hano and Ozeki [1] gave an example of a torsion-free
linear connection whose restricted linear holonomy group is not
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closed in the general linear group. The linear holonomy group
of an arbitrary Riemannian manifold is not in general compact,
as Example 4.3 of Chapter V shows. For a compact flat Rieman-
nian manifold, it is compact (Theorem 4.2 of Chapter V).
Recently, Wolf [6] proved that this is also the case for a compact
locally symmetric Riemannian manifold.

Note 2. Complete affine and Riemannian
connections

Hopf and Rinow [1] proved Theorem 4.1 (the equivalence of
(1), (2) and (3)), Theorem 4.2 and Theorem 4.4 of Chapter IV.
Theorem 4.2 goes back to Hilbert [1]; his proof can be also found
in E. Cartan’s book [8]. In §4 of Chapter IV, we followed the
appendix of de Rham [1]. Condition (4) of Theorem 4.1 of
Chapter IV was given as the definition of completeness by
Ehresmann [1, 2].

For a complete affine connection, it does not hold in general
that every pair of points can be joined by a geodesic. To construct
counterexamples, consider an affine connection on a connected
Lie group G such that the geodesics emanating from the identity
are precisely the 1-parameter groups of G. Such connections will
be studied in Volume II. For our present purpose, it suffices to
consider the affine connection which makes every left invariant
vector field parallel; the existence and the uniqueness of such a
connection is easy to see. Then the question is whether every
element of G is on a 1-parameter subgroup. The answer is yes, if G
is compact (well known) or if G is nilpotent (cf. Matsushima [1]).
For a solvable group G, this is no longer true in general; Saito [1]
gave a necessary and sufficient condition in terms of the Lie
algebra of G for the answer to be affirmative when G is a simply
connected solvable group. For some linear real algebraic groups,
this question was studied by Sibuya [1]. Even for a simple group,
the answer is not affirmative in general. For instance, a direct
computation shows that an element

b d —bc =1
(cd) (ad = be =1)

of SL(2; R) lies on some l-parameter subgroup if and only if
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either a +d > —2ora =d = —1 and 4 = ¢ = 0. This means
that, for every element 4 of SL(2; R), either 4 or —A4 (possibly
both) lies on a l-parameter subgroup. Thus the answer to our
question is negative for SL(2; R) and is affirmative for SL(2; R)
modulo its center. Smith [1] also constructed a Lorentz metric,
i.e., an indefinite Riemannian metric, on a 2-dimensional mani-
fold such that the (Riemannian) connection is complete and that
not every pair of points can be connected by a geodesic. It is not
known whether every pair of points of a compact, connected mani-
fold with a complete affine connection can be joined by a geodesic.

An affine connection on a compact manifold is not necessarily
complete as the following example of Auslander and Markus [1]
shows. Consider the Riemannian connection on the real line R!
defined by the metric ds2 = ¢” dx2, where x is the natural coordinate
system in R?!; it is flat. It is not complete as the length of the
geodesic from x = 0 to ¥ = — o0 is equal to 2. The translation
x —x -1 1s an affine transformation as it sends the metric
¢® dx? into e ¢® dx2. Thus the real line modulo 1, i.e., a circle, has a
non-complete flat affine connection. This furnishes anon-complete,
compact, homogeneous aflinely connected manifold. An example
of anon-complete affine connection on a simply connected compact
manifold is obtained by defining the above affine connection on
the equator of a sphere and extending it on the whole sphere so
that the equator is a geodesic.

It is known that every metrizable space admits a complete
uniform structure (compatible with the topology) (Dieudonné [1]).
Nomizu and Ozeki [1] proved that, given a Riemannian metric g
on a manifold M, there exists a positive function f on M such that
f-g1is a complete Riemannian metric.

Note 3. Ricci tensor and scalar curvature

Analogous to the theorem of Schur (Theorem 2.2 of Chapter
V), we have the following classical result.

THEOREM 1. Let M be a connected Riemannian manifold with metric
tensor g and Ricci tensor S. If S = Ag, where A is a function on M, then A
is necessarily a constant provided that n = dim M = 3.

Proof. The simplest proof is probably by means of the
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classical tensor calculus. Let g,;, R;;x, and R;; be the components of
the metric tensor g, the Riemannian curvature tensor R and the
Ricci tensor S, respectively, with respect to a local coordinate
system x1, . . ., ™. Then Bianchi’s second identity (Theorem 5.3 of
Chapter I1I) is expressed by

Rijptm + Rijlm;k + Rijmk;l = 0.
Multiplying by g and gt, summing with respect to 7, 7,k and [
and finally using the following formulas
Ryy = —Ryy = —Ryp, X1 & Ryy = Ry = gy,

we obtain

(n —2) 2, =0.
Hence 4 is a constant. QED.

A Riemannian manifold is called an Einstein manifold if S = g,
where 4 is a constant.
The following proposition is due to Schouten and Struik [1].

PropositioN 2. If M is a 3-dimensional Einstein manifold, then
15 a space of constant curvature.

Proof. Let p be any plane in 7,(M) and let X,, X,, X3 be an
orthonormal basis for 7,(M) such that p is spanned by X,, X,.
Let p,; be the plane spanned by X, and X, (: # ) so thatp,; = p;,.
Then

S(X1, X)) = K(py2) + K(ﬁls)

S( Xy, Xy) = K(p21) + K(pas)
S(X3> Xs) — K(ﬁsl) + K<P32)>

where K(p;;) denotes the sectional curvature determined by the
plane p,;. Hence we have

S(Xy, Xy) + S(Xy, Xy) — S(X, Xg) = 2K(p12) = 2K(p).
Since S(X;, X;) = 4, we have K(p) = }A. QED.

Remark. 'The above formula implies also that, if 0 < ¢ <
S(X, X) < 2¢ for all unit vectors X € T,(M), then K(p) > O for
all planes p in T,(M). Similarly, if 2¢ < S(X, X) < ¢ < 0 for all
unit vectors X € 7,(M), then K(p) < O for all planes pin T,(M).
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Going back to the general case where n = dim M is arbitrary,
let X;,...,X, be an orthonormal basis for 7,(M). Then
S(Xy, Xy) + -+ - + S(X,, X,) is independent of the choice of
orthonormal basis and is called the scalar curvature at x. In terms of
the components R;; and g,;, of S and g, respectively, the scalar
curvature is given by %, ; g*’R,,.

Note 4. Spaces of constant positive curvature

Let M be an n-dimensional, connected, complete Riemannian
manifold of constant curvature 1/a2. Then, by Theorem 3.2 of
Chapter V and Theorem 7.10 of Chapter VI, the universal
covering manifold of M is isometric to the sphere $* of radius a
in R"*! given by (¥1)2 4- - - - 4 (x"+1)2 = @2, that is, M = §"/G,
where G is a finite subgroup of O(n 4 1) which acts freely on S™.

In the case where 7 is even, the determination of these groups G
is extremely simple. Let y(M) denote the Euler number of M. Then
we have (cf. Hu [1; p. 277])

2 = 4(8") = (M) x order of G (if n is even).

Hence, G consists of either the identity / only or / and another
element 4 of O(n + 1) such that 4% = [. Clearly, the eigen-values
of 4 are +1. Since 4 can not have any fixed point on $%, the eigen-
values of A are all equal to —1. Hence, 4 = —1. We thus
obtained

THEOREM 1.  Every connected, complete Riemannian manifold M of
even dimension n with constant curvature 1[a® is isometric either to the

sphere S™ of radius a or to the real projective space S™[{+17}.

The case where n is odd has not been solved completely. The
most general result in this direction is due to Zassenhaus [2].

THEOREM 2. Let G be a finite subgroup of O(n + 1) which acts
freely on S™. Then, any subgroup of G of order pq (where p and g are
prime numbers, not necessarily distinct) s ¢yclic.

Proof. It suffices to prove that if G is order pg, then G is cyclic.
First, consider the case G is of order p2. Then, G is either cyclic or a
direct product of two cyclic groups G; and G, of order p (cf. Hall
[1, p. 49]). Assuming the latter, let 4 and B be generators of
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G, and G,, respectively. Since every element 7" 54 I of G is of order
p, we have T(XP_} Tiy) = 2221 Tt for each y e R**1, Since T
has no fixed point on $”, we have

221 Ty =0 for y e R"+1,

By setting 7' = A*B and y = x, we obtain

2Py (AB)ix =0 forxeR**1 and :1=0,1,...p — 1,
and hence

0 = X220 X224 (A*B)ix = 03 XP-5 AYBx for x ¢ R*+1,
On the other hand, by setting 7' = A’ and y = B’x, we obtain

3P At Bix = 0 forxe R"*1 and ;=1,2,...,p — 1.
Hence, we have

0 = XP-§ XP_5 A%Bix = XP_§ A°B% = px for x e R**1,

which is obviously a contradiction. Thus, G must be cyclic.
Second, consider the case where p < ¢. Then G is either cyclic

or non-abelian. Assuming that G is non-abelian, let § and 4 be

elements of order p and ¢, respectively. Then, we have (cf. Hall

[1, p. 51])
SAS1 — A,

where 1 < ¢ < g and ¢* = 1 mod ¢, and every element of G can
be written uniquely as A%S*, where 0 <71 < ¢ —1land 0 £k <
p — 1. For each integer k, define an integer f(k) by f(k) =
1 +¢4+¢2 4+ .-+ 4 t*1, We then have

(a) f(p) =0 mod g;

(b) f(k) =1 modg,if k=1 mod p;

(C) (Az'S)k = A TRk
Indeed, (a) follows from ¢? =1 mod ¢, and (c) follows from
SAS = At. For each 7, 0 <1 =< ¢ — 1, let G, be the cyclic sub-
group of G generated by A%S. Since (4iS)? = A*/?§? = I, G, is
of order p. Hence we have either G, N G, = {I} or G, = G, for
0= j<q—1. We prove that G, NG, ={I} if ¢ £ If
G; = G,, there exists an integer k£ such that (4%S)* = 44S. By (c),
we have A" /®g*% — 43§ and, hence, $* = S. This implies £ = 1
mod p and f(k) = 1 mod ¢. Hence, we have 4:5* = 47§, which
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implies : = j. Let N be the normal subgroup of G generated by A.
Since N is of order ¢ and since G, is of order p, we have G, " N =
{I} for each 7, 0 < i < ¢ — 1. By counting the orders of N, G,,
Gy, ..., G, 4, we see that G is a disjoint union of N, G, — {I},
G, —{I},..., G,y — {I}. Therefore we have

Zpew I% + Zpeg, Tx 4+ + Zpeq,, Tx = Zpeg Ix + gx
for x e R"*1,
On the other hand, for every 7, ¢ N, we have

To(Zp .y ITx) =25, 8 ToTx =25,y Tx for x e R™H,

Since G acts freely on $", we have X, 5 Tx = 0. By the same

reasoning, we have %7 o, Tx =0 for : =0,1,...,¢ — 1 and
Yre.q ITx = 0. Hence, we have gx = 0 for each x ¢ R"*!, which
is obviously a contradiction. QED.

Recently, Wolf [1] classified the homogeneous Riemannian
manifolds of constant curvature 1/a2. His result may be stated as
follows.

‘THEOREM 3. Let M = §™/G be a homogeneous Riemannian manifold
of constant curvature 1/a®.

(1) If n 4+ 1 = 2m (but not divisible by 4), then
St ={(z4 ..., 2z") e C™; |2} + - -+ + |2™|2 = a?,

and G s a finite group of matrices of the form Al,, where A € C with
|A| = 1 and I, is the m X m identity matrix;
(2) If n + 1 = 4m, then

S ={(g% -5 g™ Q5 |G + - - - + |gm* = a¥}
(where Q is the field of quaternions), and G 1is a finite group of matrices of
the form pl,,, where p € Q with |p| = 1.

Conversely, if G is a finite group of the type described in (1) or (2), then
M = 8"|G is homogeneous.

In view of Theorem 1, we do not have to consider the case
where 7 is even.

The reader interested in the classification problem of elliptic
spaces, 1.e., spaces of constant positive curvature, is referred to the
following papers: Vincent [1], Wolf [5]; for » = 3, H. Hopf [1]
and Seifert and Threlfall [1]. Milnor [1] partially generalized
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Theorem 2 to the case where G is a group of homeomorphisms
acting freely on $”. Calabi and Markus [1] and Wolf [3, 4] studied
Lorentz manifolds of constant positive curvature. See also Hel-
gason [1l]. For the study of spaces covered by a homogeneous
Riemanman manifold, see Wolf [2].

Note 5. Flat Riemannian manifolds

Let M = R"/G be a compact flat Riemannian manifold, where
G is a discrete subgroup of the group of Euclidean motions of R™.
Let N be the subgroup of G consisting of pure translations. Then

(1) N is an abelian normal subgroup of G and is free on =
generators;

(2) N is a maximal abelian subgroup of G;

(8) G/N is finite;

(4) G has no finite subgroup.

Indeed, (1) and (8) have been proved in (4) of Theorem 4.2 of
Chapter V. To prove (2), let K be any abelian subgroup of G
containing N. Since G/K is also finite by (2), R"/K is a compact
flat Riemannian manifold. Since K is an abelian normal subgroup
of K, K contains nothing but translations by Lemma 6 for
Theorem 4.2 of Chapter V. Hence K = N. Finally, (4) follows
from the fact that G acts freely on R”. In fact, any finite group of
Euclidean motions has a fixed point (cf. the proof of Theorem 7.1
of Chapter I'V) and hence G has no finite subgroup.

Auslander and Kuranishi [1] proved the converse:

Let G be a group with a subgroup N satisfying the above conditions (1),
(2), (3) and (4). Then G can be realized as a group of Euclidean motions
of R™ such that R"|G 15 a compact flat Riemannian manifold.

Let R*/G and R*/G’ be two compact flat Riemannian manifolds.
We say that theyare equivalent, if there exists an affine transforma-
tion ¢ such that pGep~! = G, that is, if G and G’ are conjugate in
the group of affine transformations of R”. In addition to (4) of
Theorem 4.2 of Chapter V, Bieberbach [1] obtained the following
results:

(a) If G and G’ are isomorphic as abstract group, then R"|G and R"/G’
are equivalent.

(b) For each n, there are only a finite number of equivalence classes of
compact flat Riemannian manifolds R"/G.
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We shall sketch here an outline of the proof. We denote by
(4, p) an affine transformation of R" with linear part 4 and
translation part p. Let N be the subgroup of G consisting of pure
translations and let (7, ¢,),..., (I, t,) be a basis of N, where I is
the identity matrix and ¢, e R™ Since (4, p)(Z, ¢,)(4, p) 1 =
(I, At)) e N for any (4,p) e G, we can write At;, = X7, alt,,
where each 4/ is an integer. Let 7 be an (n X n)-matrix whose
i-th column 1is given by ¢, thatis, 7= (¢; ... t,). Then (a}) =
T-1AT is unimodular. (A matrix is called unimodular if it is non-
singular and integral together with its inverse.)

To prove (a), let (4', p’) € G’ be the element corresponding to
(4, p) € G by the isomorphism G’ ~ G. Let N’ be the subgroup of
G’ corresponding to N by the isomorphism G’ ~ G. Then N’ is
normal and maximal abelian in G’. Hence N’ is the subgroup of
G’ consisting of pure translations. Let (I, ;) correspond to (Z, ¢;).
Since (A',p")(1, t;)(A', p")71 = (I, A’t}), (I, A’t;) corresponds to
(1, At;). Hence we have A't] = X, alt]. In other words, if we set
T = (#...t), then T"1A'T" = T-1 AT, Set

G* = {((T-AT, T-p — T'-Y%'); (4,p) <G,

Then G* is a group which contains no pure translations and hence
is finite. Let u ¢ R™ be a point left fixed by G*. Then we have

(T, Tu) (4, p)(T, Tu) = (T", 0)(4', 4')(T, 0)
for all (4, p) € G.
This completes the proof of (a).
To prove (b), it suffices to show that there are only a finite
number of mutually non-isomorphic groups G such that R"/G are
compact flat Riemannian manifolds. Each G determines a group

extension
0 >N-—->G—->K-—>1,

where the finite group K = G/N acts linearly on N when N is
considered as a subgroup of R™ Given such a finite group K, the
set of group extensions 0 — N — G — K — 1 isgiven by H2(K, N).
Since K is finite and N is finitely generated, H2(K, N) is finite. As
we have seen in the proof of (a), if we identify N with the integral
lattice points of R™, then K = G/N is given by unimodular
matrices. Let K and K’ be two finite groups of unimodular matrices
of degree n which are conjugate in the group GL(n;Z) of all
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unimodular matrices so that SKS-! = K’ for some § ¢ GL(n; Z).
The mapping which sends ¢ € N into St € N is an automorphism of
N. Hence S induces an isomorphism H2(K, N) ~ H%*(K', N), and
if0 > N -G — K' — 1 1s the element of H2(K', N) correspond-
ing to an element 0 -~ N -~ G — K — 1 of H%(K, N), then G and
G’ are isomorphic. Thus our problem is reduced to the following
theorem of Jordan:

There are only a finite number of conjugate classes of finite subgroups of
GL(n; Z).

This theorem of Jordan follows from the theory of Minkowski-
Siegel. Let H, be the space of all real symmetric positive definite
matrices of degree n. Then GL(n; Z) acts properly discontinuously
on H, as follows:

X — t8XS for Xe H, and SeGL(n;Z).

Let R be the subset of H, consisting of reduced matrices in the
sense of Minkowski. Denote *SXS by S[X]. Then

1) USR] =H,;

SeGL{n; Z

(i) Th(e se)t F defined by FF = {§ e GL(n; Z); S[R] " R = non-
empty} is a finite set.

The first property of R implies that any finite subgroup K of
GL(n; Z) is conjugate to a subgroup of GL(n; Z) contained in F.
Indeed, let X, € H, be a fixed point of K (for instance, set X, =
Yycx ‘AA). Let SeGL(n;Z) be such that S[X;] eR. Then
S—1KS < F. Since F is finite, there are only a finite number of
conjugate classes of finite subgroups of GL(n; Z). QED.

As references we mention Minkowski [1], Bieberbach [2],
Bieberbach and Schur [1] and Siegel [1].

Note that (a) implies that two compact flat Riemannian
manifolds are equivalent if and only if they are homeomorphic
to each other. Although (b) does not hold for non-compact flat
Riemannian manifolds, there are only a finite number of homeo-
morphism classes of complete flat Riemannian manifolds for each
dimension (Bieberbach [3]).

For the classification of 3-dimensional complete flat Riemannian
manifolds, see Hantzche and Wendt [1] and Nowacki [1].

Most of the results for flat Riemannian manifolds cannot
be generalized to flat affine connections, see, for example,

Auslander [1].
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Note 6. Parallel displacement of curvature

Let M and M’ be Riemannian manifolds and ¢: M — M’ a
diffeomorphism which preserves the curvature tensor fields. In
general, this does not imply the existence of an isometry of M
onto M’'. For instance, let M be a compact Riemannian manifold
obtained by attaching a unit hemisphere to each end of the right
circular cylinder $* x [0, 1], where $§? is the unit circle, and then
smoothing out the corners. Similarly, let M’ be a compact
Riemannian manifold obtained by attaching a unit hemisphere
to each end of the right circular cylinder S x [0, 2] and then
smoothing out the corners in the same way. Let ¢: M — M’ be a
diffecomorphism which induces an isometry on the attached
hemispheres and their neighborhoods. Since the cylinder parts of
M and M’ are flat, ¢ preserves the curvature tensor fields. How-
ever, M and M’ cannot be isometric with each other.

Ambrose [1] obtained the following result, which generalizes
Theorem 7.4 of Chapter VI in the Riemannian case.

Let M and M’ be complete, simply connected Riemannian
manifolds, x an arbitrarily fixed point of M and %" an arbitrarily
fixed point of M’. Let f: T,(M) — T,(M’) be a fixed orthogonal
transformation. Let = be a simply broken geodesic of M from x
to a point y and 7’ the corresponding simply broken geodesic of
M' from x’ to a point )’, the correspondence being given by f
through parallel displacement. Let p (resp. p’) be a plane in 7,(M)
(resp. T,,(M')) and ¢ (resp. ¢') the plane in T, (M) (resp. T,.(M"))
obtained from p (resp. p’) by parallel displacement along + (resp.
7'). Assume that p’ corresponds to p by f. If the sectional curvature
K(g) is equal to the sectional curvature K’(¢’) for all simply
broken geodesics 7 and all planes p in T,(M), then there exists
a unique isometry F: M — M’ whose differential at x coincides
with f.

Hicks [1] obtained a similar result in the case of affine
connection; his result generalizes Theorem 7.4 of Chapter VI.

Note 7. Symmetric spaces

Although the theory of symmetric spaces, in particular,
Riemannian symmetric spaces, will be taken up in detail in
Volume II, we shall give here its definition and basic properties.
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Let G be a connected Lie group with an involutive auto-
morphism ¢ (62 = 1, ¢ # 1). Let H be a closed subgroup which
lies between the (closed) subgroup of all fixed points of ¢ and its
identity component. We shall then say that G/H is a symmetric
homogeneous space (defined by o). Denoting by the same letter
o the involutive automorphism of the Lie algebra g induced
by o, we have g = m + ) (direct sum), where ) = {X € g;
X° = X} coincides with the subalgebra corresponding to A and
m ={Xeg; X° = —X}. We have obviously [h, m] © m and
[m, m| < b.

The automorphism ¢ of G also induces an involutive diffeo-
morphism o, of G/H such that ¢,(mx) = w(x°) for every x ¢ G,
where = is the canonical projection of G onto G/H. The origin
o = m(e) of G/H is then an isolated fixed point of ¢,. We call ¢,
the symmetry around o.

By Theorem 11.1 of Chapter II, the bundle G(G/H, H) admits
an invariant connection I' determined by the subspace m. We
call this connection the canonical connection in G(G/H, H).

'THEOREM 1. For a symmetric space G|H, the canonical connection
I’ in G(G[H, H) has the following properties :

(1) T' is invariant by the automorphism o of G (which is a bundle
automorphism of G(G[H, H)) ;

(2) The curvature form is given by Q(X, Y) = —(1/2)[X, Y] € b,
where X and Y are arbitrary left invariant vector fields belonging
o m;

(3) For any X e m, let a, = exp tX and let x, = w(a,) = a,(o0).
The parallel displacement of the fibre H along the curve x, coincides with
the left translation h — ah, h € H.

Proof. (1) follows easily from m® = m. (2) is contained in Theo-
rem 11.1 of Chapter II. (3) follows from the fact that g,k for any
fixed & € H is the horizontal lift through % of the curve x,. Q ED.

The projection = gives a linear isomorphism of the horizontal
subspace m at ¢ of I" onto the tangent space 7,(G/H) at the origin
0. If h € H, then ad (%) on m corresponds by this isomorphism to the
linear isotropy A, i.e., the linear transformation of 7,(G/H)
induced by the transformation % of G/H which fixes o.

Now, denoting G/H by M, we define a mapping f of G into the
bundle of frames L(M) over M as follows. Let u, be an arbitrarily
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fixed frame X,, ..., X, at o, which can be identified with a
certain basis of m. For any a € G, f(a) is the frame at a(o) con-
sisting of the images of X, by the differential of 4. In particular,
for he H, f(h) = h-uy = uy- p(h), where (k) e GL(n; R) is the
matrix which represents the linear transformation of T,(M)
induced by % with respect to the basis u,. It is easy to see that fis a
bundle homomorphism of G into L(M) corresponding to the
homomorphism ¢ of Hinto GL(n; R). If G is effective on G/H (or
equivalently, if /A contains no non-trivial invariant subgroup of
G), then f and @ are isomorphisms.

By Proposition 6.1, of Chapter II, the canonical connection I
in G(M, H) induces a connection in L(M), which we shall call
the canonical linear connection on G/H and denote still by TI'.

TueEOREM 2. The canonical linear connection on a symmetric space
G/H has the following properties :

(1) T is invariant by G as well as the symmetry o, around o;

(2) The restricted homogeneous holonomy group of 1" at o is contained in

the linear isotropy group H ;

(3) For any X e m, let a, = exp tX and x, = w(a,) = a,(0). The
parallel displacement of vectors along x, is the same as the transformation
by a,. In particular, x, is a geodesic ;

(4) The torsion tensor field is O ;

(5) Every G-invariant tensor field on G|H is parallel with respect to T
In particular, the curvature tensor field R s parallel, i.e., VR = 0.

Proof. (1), (2) and (3) follow from the corresponding prop-
erties in Theorem 1. (4) follows from (1); since the torsion tensor
field 7T is invariant by o,, we have T(X, Y) = (T(X%, Y%))% =
—T(—X, —Y) = —T(X,Y) and hence T(X,Y) =0 for any
Xand Yin T,(M). Thus T = 0 at o and hence everywhere. (9)
follows from (3). In fact, if K is a G-invariant tensor field, then
Vx K =0 for any X, ¢ T,(M), since there exists X e m such that
x, in (3) has the initial tangent vector X,,. QED.

Remark. T is the unique linear connection on G/H which has
property (1). This justifies the name of canonical linear connection.
Let G/H be a symmetric space with compact H. There exists a
G-invariant Riemannian metric on G/H. For any such metric g,
the Riemannian connection coincides with I'. In fact, the metric
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tensor field g is parallel with respect to I' by (5). Since I' has zero

torsion, it is the Riemannian connection by the uniqueness
(Theorem 2.2, Chapter 1I).

Example. In G = SO(n + 1), let ¢ be the involutive auto-
morphism A4 e S0(n + 1) - S451 e S0O(n + 1) where § is the

—1
matrix of the form ( 0 7 ) with identity matrix I, of degree n.
The identity component H° of the subgroup H of fixed points of

1

0
shall write SO(n) for H® with this understanding. The symmetric
homogeneous space SO(n + 1)/SO(n) is naturally diffeomorphic
with the unit sphere $™ in R**1, In fact, let ¢y, ¢4, ..., ¢, be the
standard orthonormal basis in R"+1. The mapping 4 e SO(n + 1) —
Aey € S™ induces a diffeomorphism of SO(n -+ 1)/S0(n) onto $”. The
set of vectors Ae,, ..., Ae, can be considered as an orthonormal
frame at the point Ae, of $”. This gives an isomorphism of the
bundle SO(n + 1) over SO(rn + 1)/SO(n) onto the bundle of
orthonormal frames over S”. The canonical linear connection on
SO(n + 1)/S0(n) coincides with the Riemannian connection of $*

with respect to the Riemannian metric of $” as imbedded
submanifold ol R™*1,

0
o consists of all matrices of the form ( B), where B € SO(n). We

4 linear connection I' on a differentiable manifold A is said
to be locally symmetric at x € M, if there exists an involutive affine
transformation of an open neighborhood U of ¥ which has x as an
isolated fixed point. This local symmetry at x, if it exists, must be
of the form (x%) — (—x%) with respect to any normal coordinate
system with origin x, since it induces the linear transformation
X —> —Xin T,(M). We say that T is locally symmeiric, if it is locally
symmetric at every point x of M.

THEOREM 3. A linear connection I on M is locally symmetric if and
onlyif T =0 and VR = 0.

Proof. If I'is locally symmetric, then any tensor field of type
(r, s) with odd r 4 s which is invariant by the local symmetry at
x1s 0 at x. Hence T = 0 and VR = 0 on M. The converse follows
from Theorem 7.4 of Chapter VI. QED.
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THEOREM 4. Let T be a locally symmetric linear connection on M. If
M is connected, simply connected and complete, then the group W(M) of all
affine transformations is transitive on M. Let G = A°(M). Then M =
G/H is a symmetric space for which T is the canonical linear connection.

Proof. The first assertion follows from Corollary 7.9 of Chapter
VI. Let o, be the local symmetry at a point o of M. By Corollary
6.2, o, can be extended to an affine transformation of M onto itself
which is involutive. Define an involutive automorphism of G by
a’ = o,°a-0, Then H lies between the subgroup of all fixed
elements of ¢ and its identity component. QED.

The Riemannian versions of Theorems 3 and 4 are obvious.

The Riemannian symmetric spaces were introduced and studied
extensively by Cartan [7]. For the canonical linear connection on
symmetric G/H, see Nomizu [2] and Kobayashi [3]. Nomizu [4, 6]
proved the converse of (2) of Theorem 2 that if the restricted linear
holonomy group of a complete Riemannian manifold M is
contained in the linear isotropy group at every point, then M is
locally symmetric. Simons [1] has a similar theorem.

Nomizu and Ozeki [3] proved that, for any complete Riemannian
manifold M, the condition V™R = 0 for some m > 1 implies
VR = 0. (This was known by Lichnerowicz [3, p. 4] when M
is compact.) They remarked later that the assumption of com-
pleteness is not necessary.

Note 8. Linear connections with recurrent
curvature

Let M be an n-dimensional manifold with a linear connection
I'. A non-zero tensor field K of type (r,s) on M is said to be
recurrent if there exists a l-form « such that VK = K ® «. The
following result is due to Wong [1].

THEOREM 1.  In the notation of §5 of Chapter 111, let f: L(M) —
T?(R™) be the mapping which corresponds to a given tensor field K of type
(r, 5). Then K is recurrent if and only if, for the holonomy bundle P(u,)
through any uy € L(M), there exists a differentiable function ¢(u) with no
zero on P(ug) such that

SW) = @) flw)  for uePluy).
As a special case, K is parallel if and only if f(u) is constant on
P(u,).




Using this result and the holonomy theorem (Theorem 8.1 of
Chapter 1I), Wong obtained

THEOREM 2. Let ' be a linear comnection on M with recurrent
curvature tensor R. Then the Lie algebra of its linear holonomy group W (u,)
1s spanned by all elements of the form Q, (X, Y), where Q is the curvature
form and X and Y are horizontal vectors at uy. In particular, we have

dim W' (u,) < 4n(n — 1).

As an application of Theorem 1, we shall sketch the proof of the
following

THEOREM 3. For a Riemannian manifold M with recurrent curvature
tensor whose restricted linear holonomy group is vrreductble, the curvature
tensor is necessarily parallel provided that dim M = 3.

Proof. Let R, be the components of the Ti(R")-valued
function on O(M) which corresponds to the curvature tensor field
R. We apply Theorem 1 to R. Since X, ; ;. , (R%,;)? is constant on
each fibre of O(M), ¢? is constant on each fibre of P(u,). Since ¢
never vanishes on P(uo) it 1s either always positive or always
negative. Hence ¢ itself is constant on each fibre of P(u,). Let A
be the function on M defined by A(x) = l/p(u), where x =

w(u) € M. Then AR is a parallel tensor ﬁeld If we denote by S the
Ricci tensor field, then AS is also parallel. The irreducibility of
M implies that AS' = ¢ - g, where ¢ is a constant and g is the metric
tensor (cf. Theorem 1 of Appendix 5). If dim M = 3 and if the
Ricci tensor S is non-trivial, then 1 is a constant function by
Theorem 1 of Note 3. Since AR is parallel and since 1 is a constant,
R is parallel.

Next we shall consider the case where the Ricci tensor §
vanishes identically. Let VR = R ® « and let R}, and «,, be the
components of R and « with respect to a local coordlnate system
x1, ..., x". By Bianchi’s second identity (Theorem 5.3 of Chapter
IIT; see also Note 3), we have

i i i _
Rjkl(xm + lem“k + ijk“l = 0.

Multiply by g™ and sum with respect to j and m. Since the Ricci
tensor vanishes identically, we have X, , ¢/"R}, = X, ™Rl = = 0.
Hence,

TRyl =0, where of =2, ¢"a,.
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This equation has the following geometric implication. Let x be an
arbitrarily fixed point of M and let X and Y be any vectors at x. If
we denote by V the vector at x with components «/(x), then the
linear transformation R(X, Y): T,(M) — T,(M) maps V into the
zero vector. On the other hand, by the Holonomy Theorem
(Theorem 8.1 of Chapter II) and Theorem 1 of this Note (see also
Wong [1]), the Lie algebra of the linear holonomy group W(x)
is spanned by the set of all endomorphisms of 7,(M) given by
R(X, Y) with X, Y € T,(M). It follows that V is invariant by ¥ (x)
and hence is zero by the irreducibility of ¥ (x). Consequently, VR
vanishes at x. Since x is an arbitrary point of M, R is parallel.

QED.

On the other hand, every non-flat 2-dimensional Riemannian
manifold is of recurrent curvature if the sectional curvature does
not vanish anywhere.

CoroLLARY. If M is a complete Riemannian manifold with recurrent
curvature tensor, then the universal covering manifold M of M is either a
symmetric space or a direct product of the FEuclidean space R*~2 and a 2-
dimensional Riemannian manifold.

Proof. Use the decomposition theorem of de Rham (Theorem
6.2 of Chapter IV) and Theorem 3 above together with the
following fact which can be verified easily. Let M and M’ be
manifolds with linear connections and let R and R’ be their curva-
ture tensors, respectively. If the curvature tensor of M x M’ is
recurrent, then there are only three possibilities: (1) VR = 0 and
VR =0; (2) R=0and VR #0; (3) VR #0 and R’ = 0.
(See also Walker [1].) QED.

Note 9. The automorphism group of

a geometric structure

Given a differentiable manifold M, the group of all differentiable
transformations of M is a very large group. However, the group of
differentiable transformations of M leaving a certain geometric
structure is often a Lie group. The first result of this nature was
given by H. Cartan [1] who proved that the group of all complex
analytic transformations of a bounded domainin G”is a Lie group.
Myers and Steenrod [1] proved that the group of all isometries of a
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Riemannian manifold is a Lie group. Bochner and Mont-
gomery [ 1, 2] proved that the group of all complex analytic trans-
formations of a compact complex manifold is a complex Lie group;
they made use of a general theorem concerning a locally compact
group of differentiable transformations which is now known to be
valid in the form of Theorem 4.6, Chapter I. The theorem that the
group of all affine transformations of an affinely connected manifold
is a Lie group was first proved by Nomizu [ 1] under the assumption
of completeness; this assumption was later removed by Hano and
Morimoto [1]. Kobayashi [1, 6] proved that the group of all
automorphisms of an absolute parallelism is a Lie group by
imbedding it into the manifold. This method can be applied to the
absolute parallelism of the bundle of frames L(A) of an affinely
connected manifold M (cf. Proposition 2.6 of Chapter III and
Theorem 1.5 of Chapter VI).

Automorphisms of a complex structure and a Kihlerian
structure will be discussed in Volume II.

A global theory of Lie transformation groups was studied in
Palais [1]. We shall here state one theorem which has a direct
bearing on us. Let G be a certain group of differentiable trans-
formations acting on a differentiable manifold M. Let g’ be the set
of all vector fields X on M which generate a global 1-parameter
group of transformations which belong to the given group G. Let
g be the Lie subalgebra of the Lie algebra X(Af) generated by g’.

THEOREM. If g is finite-dimensional, then G admits a Lie group
structure (such that the mapping G x M — M 1is differentiable) and
g = g’. The Lie algebra of G is naturally isomorphic with g.

We have the following applications of this result. If G is the
group of all affine transformations (resp. isometries) of an affinely
connected (resp. Riemannian) manifold M, then g’ is the set of all
infinitesimal affine transformations (resp. infinitesimal isometries)
which are globally integrable (note that if M is complete, these
infinitesimal transformations are always globally integrable by
Theorem 2.4 of Chapter VI). By virtue of Theorem 2.3 (resp.
Theorem 3.3) of Chapter VI, it follows that g is finite-dimensional.
By the theorem above, G is a Lie group.

The Lie algebra i(M) of all infinitesimal isometries of a Rieman-
nian manifold M was studied in detail by Nomizu [8, 9]. At each
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point x of M, a certain Lie algebra i(x) is constructed by using the
curvature tensor field and its covariant differentials. If M is
simply connected and analytic together with the metric, then i(M)
is naturally isomorphic with i(x), where x is an arbitrary point.

Note 10. Groups of isometries and affine trans-
formations with maximum dimensions

In Theorem 3.3 of Chapter VI, we proved that the group I(M)
of isometries of a connected, n-dimensional Riemannian manifold
M is of dimension at most 3n(n 4+ 1) and that if dim J(M) =
in(n + 1), then M is a space of constant curvature. We shall
outline the proof of the following theorem.

TuEOREM 1. Let M be a connected, n-dimensional Riemannian
manifold. If dim I(M) = in(n + 1), then M is isometric to one of
the following spaces of constant curvature :

(a) An n-dimensional Euclidean space R";

(b) An n-dimensional sphere S™;

(c) An n-dimensional real projective space S™[{--1};

(d) An n-dimensional, simply connected hyperbolic space.

Proof. From the proof of Theorem 3.3 of Chapter VI, we see
that M is homogeneous and hence is complete. The universal
covering space M of M is isometric to one of (a), (b) and (d)
above (cf. Theorem 7.10 of Chapter VI). Every infinitesimal
isometry X of M induces an infinitesimal isometry X of M. Hence,
in(n + 1) = dim J(M) =< dim J(M) < %n(n 1), which implies
that every infinitesimal isometry X of M is induced by an infini-
tesimal isometry X of M. If M is isometric to (a) or (d), then
there exists an infinitesimal isometry X of M which vanishes only
at a single point of M. Hence, M is simply connected in case the
curvature is nonpositive. If M is isometric to a sphere S for
any antipodal points x and ', there exists an infinitesimal isometry
X of M = $* which Vamshes only at x and x’. This implies that

= S"or M = §*/{ 4 I}. We see easily that if M is isometric to
the projective space S*/{ + I}, then J(M) is isomorphic to
O(rn 4+ 1) modulo its center and hence of dimension 3n(n 4 1).

QED.
In Theorem 2.3 of Chapter VI, we proved that the group
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A(M) of affine transformations of a connected, n-dimensional
manifold M with an affine connection is of dimension at most
n? 4+ n and that if dim A(M) = n% + n, then the connection is
flat. We prove

TueoreM 2. If dim A(M) = n? + n, then M is an ordinary affine
space with the natural flat affine connection.

Proof. Every element of (M) induces a transformation of
L(M) leaving the canonical form and the connection form
invariant (cf. §1 of Chapter VI). From the fact that A(M) acts
freely on L(M) and from the assumption that dim UA(M) =
n? + n = dim L(M), it follows that A°(M) is transitive on each
connected component of L(M). This implies that every standard
horizontal vector field on L(AM) is complete; the proof is similar
to that of Theorem 2.4 of Chapter VI. In other words, the
connection is complete. By Theorem 4.2 of Chapter V or by
Theorem 7.8 of Chapter VI, the universal covering space A of
M is an ordinary affine space. Finally, the fact that M = M can
be proved in the same way as Theorem 1 above. QED.

Theorems 2.3 and 3.3 are classical (see, for instance,
Eisenhart [1]).

Riemannian manifolds and affine connections admitting very
large groups of automorphisms have been studied by Egorov,
Wang, Yano and others. The reader will find references on the
subject in the book of Yano [2].

Note 11. Conformal transformations of
a Riemannian manifold

Let M be a Riemannian manifold with metric tensor g. A
transformation ¢ of M is said to be conformal if p*g = pg, where p
is a positive function on M. If p is a constant function, ¢ is a homo-
thetic transformation. If p is identically equal to 1, ¢ is nothing but
an isometry. An infinitesimal transformation X of M is said to be
conformal if L yg = og, where o is a function on M. It is homothetic
if ¢ 1s a constant function, and it is isometric if ¢ = 0. The local
l-parameter group of local transformations generated by an
infinitesimal transformation X is conformal if and only if X is
conformal.
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THEOREM 1.  The group of conformal transformations of a connected,
n-dimensional Riemanman manifold M 1s a Lie transformation group of
dimension at most 3(n + 1)(n 4+ 2), provided n = 3.

This can be proved along the following line. The integrability
conditions of Lyg = og imply that the Lie algebra of infini-
tesimal conformal transformation X is of dimension at most
1(n + )(n 4+ 2) (cf. for instance, Eisenhart [1, p. 285]). By the
theorem of Palais cited in Note 9, the group of conformal trans-
formations is a Lie transformation group.

In §3 of Chapter VI we showed that, for almost all Riemannian
manifolds M, the largest connected group UA°(M) of affine trans-
formations of M coincides with the largest connected group J,(M)
of isometries of M. For the largest connected group €°(M) of
conformal transformations of A4, we have the following several
results in the same direction.

THEOREM 2. Let M be a connected n-dimensional Riemannian
manifold for which €°(M) # I°(M). Then,

(1) If M s compact, there 1s no harmonic p-form of constant length for
1 < p < n (Goldberg and Kobayashi [1]);

(2) If M is compact and homogeneous, then M s isometric to a sphere
provided n > 3 (Goldberg and Kobayashi [2]);

(3) If M is a complete Riemannian manifold of dimension n = 3 with
parallel Ricct tensor, then M is isometric to a sphere (Nagano [1]);

(4) M cannot be a compact Riemannian manifold with constant non-
positive scalar curvature (Yano [2; p.279] and Lichnerowicz [3;
p. 134]).

(3) is an improvement of the result of Nagano and Yano [1] to
the effect that if M is a complete Einstein space of dimension
> 3 for which (M) # JI°(M), then M is isometric to a sphere.
Nagano [1] made use of a result of Tanaka [1].

On the other hand, it is easy to construct Riemannian manifolds
(other than spheres) for which C°(AM) # 3I°(M). Indeed, let M
be a Riemannian manifold with metric tensor g which admits a
l-parameter group of isometries. Let p be a positive function on
M which is not invariant by this 1-parameter group of isometries.
Then, with respect to the new metric pg, this group is a I-parameter
group of non-isometric, conformal transformations.

To show that dim €°(M) = i(n + 1)(n + 2) for a sphere M of
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dimension 7, we imbed M into the real projective space of di-
mension n -+ 1. Let 2%, 1, . . ., "+ be a homogeneous coordinate
system of the real projective space P, ; of dimension n - 1. Let
M be the n-dimensional sphere in R"*1 defined by (»')2 +

-+ ("2 =1. We imbed M into P,., by means of
the mapping defined by

1
X — (1 1), 21 =L, ..., x" =", x"H1 =— (1 — ynt1),
0 \/( o) Wy b \/2( Nk

The image of M in P, is given by
(xl)z __I_ S (xn)z _ 2x0xn+1 — 0.
Let # be the Riemannian metric on P, , given by

2t (1)) (X729 (dx')?) — (Eiig »° dx?)?
(X720 (x9)%) ’

where p is the natural projection from R**+2 — {0} onto P, ;. Then
the imbedding M — P, _, isisometric. Let G be the group of linear
transformations of R"+2 leaving the quadratic form (x')2 4 - - -
+ (x™)2 — 2x%"+! invariant. Then G maps the image of M in
P, onto itself. It is easy to verify that, considered as a transforma-
tion group acting on M, G is a group of conformal transformations
of dimension 1(n + 1)(n + 2).

The case n = 2 is exceptional in most of the problems concer-
ning conformal transformations for the following reason. Let M bea
complex manifold of complex dimension 1 with a local coordinate

system z = x 4 2. Let g be a Riemannian metric on M which is
of the form

p*lz=2(

Fld 4 ) = fdz dz,

where fis a positive function on M. Then every complex analytic
transformation of M is conformal.







SUMMARY OF BASIC NOTATIONS

We summarize only those basic notations which are used most
frequently throughout the book.

1. %, %;; ..., etc., stand for the summation taken over ¢ or
Z,J, ..., where the range of indices is generally clear from the
context.

2. R and C denote the real and complex number fields, respec-
tively.
R": vector space of n-tuples of real numbers (x1, ..., x™)
C": vector space of n-tuples of complex numbers (21, ..., z")
(x, ): standard inner product X, x’»* in R" (X, #%* in C")
GL(n; R): general linear group acting on R”
gl(n; R): Lie algebra of GL(n; R)
GL(n; C): general linear group acting on C”
gl(n; C): Lie algebra of GL(n; C)
O(n): orthogonal group
o(n): Lie algebra of O(n)
U(n): unitary group
u(n): Lie algebra of U(n)
T7(V): tensor space of type (7, s) over a vector space V
T(V): tensor algebra over V
A": space R" regarded as an affine space
A(n; R): group of affine transformations of A"
a(n; R): Lie algebra of A(n; R)

3. M denotes an n-dimensional differentiable manifold.
T,(M): tangent space of M at x
&(M): algebra of differentiable functions on M
X(M): Lie algebra of vector fields on M
T (M): algebra of tensor fields on M
D(M): algebra of differential forms on M
T(M): tangent bundle of M
L(M): bundle of linear frames of M
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O(M): bundle of orthonormal frames of M (with respect to
a given Riemannian metric)
6 = (6%): canonical 1-form on L(M) or O(M)
A(M): bundle of affine frames of M
T%(M): tensor bundle of type (r, s) of M
S+ : differential of a differentiable mapping f
Sf*w: the transform of a differential form w by f
%,: tangent vector of a curve x,, 0 < ¢ < 1, at the point x,
L : Lie differentiation with respect to a vector field X

4. For a Lie group G, G° denotes the identity component and g
the Lie algebra of G.
L, : left translation by a ¢ G
R,: right translation by a ¢ G
ad a: inner automorphism by a € G; also adjoint representa-
tion in g
P(M, G): principal fibre bundle over M with structure group
G
A*: fundamental vector field corresponding to 4 € g
w = (w!): connection form
Q = (Q}): curvature form
E(M, F, G, P): bundle associated to P(M, G) with fibre F

5. For an affine (linear) connection I' on M,
® = (0)): torsion form
I'%,: Christoffel’s symbols
¥ (x): linear holonomy group at x e M
®(x): affine holonomy group at x e M
V x: covariant differentiation with respect to a vector (field)
X
R: curvature tensor field (with components R?,))
T': torsion tensor field (with components 7T7;)
S: Ricci tensor field (with components R,))
A(M): group of all affine transformations
a(M): Lie algebra of all infinitesimal affine transformations
J(M): group of all isometries
i(M): Lie algebra of all infinitesimal isometries
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Alternation, 28
Analytic continuation, 254
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Atlas, 2
complete, 2
Automorphism
of a connection, 81
of a Lie algebra, 40
of a Lie group, 40

Bianchi’s identities, 78, 121, 135
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associated, 55
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homomorphism of, 53
induced, 60
of affine frames, 126
of linear frames, 56
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tensor, 56
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flat connection, 92
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invariant connection, 110, 301
invariant Riemannian
metric, 155
linear connection, 302
metric, 155
1-form on a group, 41
parameter of a geodesic, 162
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Christoffel’s symbols (F;-,c), 141
Compact-open topology, 46
Complete,
linear connection, 139
Riemannian manifold, 172
Riemannian metric, 172
vector field, 13
Components
of a linear connection, 141
of a 1-form, 6
of a tensor (field), 21, 26
of a vector (field), 5
Conformal transformation, 309
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Connection, 63
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canonical linear, 302
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flat affine, 209
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induced, 82
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by parallelism, 262
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linear, 119
metric, 117, 158
Riemannian, 158
universal, 290
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Contraction, 22
Contravariant tensor (space), 20
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Covariant
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differential, 124
differentiation, 115, 116, 123
tensor (space), 20
Covector, 6
Covering space, 61
Cross section, 57
adapted to a normal coordinate
system, 257
Cubic neighborhood, 3
Curvature, 132
constant, 202
form, 77
recurrent, 305
scalar, 294
sectional, 202
tensor (field), 132, 145
Riemannian, 201
transformation, 133
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Euclidean, 210
twisted, 223

Derivation

of D(M), 33

of T (M), 30

of the tensor algebra, 25
Development, 131
Diffeomorphism, 9
Differential

covariant, 124

of a function, 8

of a mapping, 8
Discontinuous group, 44

properly, 43
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Distribution, 10
involutive, 10

Divergence, 281

Effective action of a group, 42
Einstein manifold, 294
Elliptic, 209
Euclidean
cylinder, 210
locally, 197, 209, 210
metric, 154
motion, 215
subspace, 218
tangent space, 193
torus, 210
Exponential mapping, 39, 140, 147
Exterior
covariant derivative, 77
covariant differentiation, 77
derivative, 7, 36
differentiation, 7, 36

Fibre, 55
bundle, principal, 50
metric, 116
transitive, 106
Flat
affine connection, 209
connection, 92
canonical, 92
linear connection, 210
Riemannian manifold, 209, 210
Form
curvature, 77
1-form, 6
r-form, 7
tensorial, 75
pseudo-, 75
torsion, 120
Frame
affine, 126
linear, 55
orthonormal, 60
Free action of a group, 42
Frobenius, theorem of, 10
Fundamental vector field, 51
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minimizing, 166
totally, 180

Green’s theorem, 281

G-structure, 288

Holomorphic, 2
Holonomy bundle, 85
Holonomy group, 71, 72
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homogeneous, 130
infinitesimal, 96, 151
linear, 130
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restricted, 71, 72
Holonomy theorem, 89
Homogeneous
Riemannian manifold, 155, 176
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symmetric, 301
Homomorphism of fibre bundles, 53
Homothetic transformation,
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Homotopic, 284
C*-, 284
Horizontal
component, 63
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lift, 64, 68, 88
subspace, 63, 87
vector, 63
Hyperbolic, 209
Hypersurface, 9

Imbedding, 9, 53
isometric, 161
Immersion, 9
isometric, 161
Indefinite Riemannian metric, 155
Induced
bundle, 60
connection, 82
Riemannian metric, 154
Inner product, 24
Integral
curve, 12
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Integral
manifold, 10
Interior product, 35
Invariant
by parallelism, 262
connection, 81, 103
Riemannian metric, 154
Involutive distribution, 10
Irreducible
group of Euclidean
motions, 218
Riemannian manifold, 179
Isometric, 161
imbedding, 161
immersion, 161
Isometry, 46, 161, 236
infinitesimal, 237
Isotropy
group, linear, 154
subgroup, 49

Killing-Cartan form, 155
Killing vector field, 237
Klein bottle, 223
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Leibniz’s formula, 11
Levi-Civita connection, 158
Lie
algebra, 38
derivative, 29
differentiation, 29
group, 38
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transformation group, 41
Lift, 64, 68, 88
horizontal, 64, 68, 88
natural, 230
Linear
connection, 119
frame, 55
holonomy group, 130
isotropy group, 154
Local
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Lorentz manifold (metric), 292, 297

Manifold, 2, 3
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real analytic, 2
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Maurer-Cartan, equations of, 41
Metric connection, 117, 158
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Natural lift of a vector field, 230
Non-prolongable, 178
Normal coordinate system, 148, 162

1-parameter
group of transformations, 12
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Orbit, 12

Orientation, 3

Orthonormal frame, 60

Paracompact, 58
Parallel

cross section, 88

displacement, 70, 87, 88

affine, 130

tensor field, 124
Partition of unity, 272
Point field, 131
Projection, covering, 50
Properly discontinuous, 43
Pseudogroup of transformations, 1, 2
Pseudotensorial form, 75

Quotient space, 43, 44

Rank of a mapping, 8
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Recurrent
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tensor, 304
Reduced bundle, 53
Reducible
connection, 81, 83
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Reduction
of connection, 81, 83
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Reduction theorem, 83
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Riemannian
connection, 158
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manifold, 60, 154
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induced, 154
invariant, 154

Scalar curvature, 294
Schur, theorem of, 202
Sectional curvature, 202
Segment, 168
Simple covering, 168
Skew-derivation, 33
Space form, 209
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Structure
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group, 50
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Submanifold, 9
Symmetric
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locally, 303
Riemannian, 302
Symmetrization, 28
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vector, 4
Tensor
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Vector, 4
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