
Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

A First Course in Differential Geometry

Surfaces in Euclidean Space

Differential geometry is the study of curved spaces using the techniques of calculus. It is a mainstay
of undergraduate mathematics education and a cornerstone of modern geometry. It is also the lan-
guage used by Einstein to express general relativity, and so is an essential tool for astronomers and
theoretical physicists.

This introductory textbook originates from a popular course given to third-year students at Durham
University for over 20 years, first by the late Lyndon Woodward and then by John Bolton (and others).
It provides a thorough introduction by focussing on the beginnings of the subject as studied by
Gauss: curves and surfaces in Euclidean space. While the main topics are the classics of differential
geometry – the definition and geometric meaning of Gaussian curvature, the Theorema Egregium of
Gauss, geodesics, and the Gauss–Bonnet Theorem – the treatment is modern and student-friendly,
taking direct routes to explain, prove, and apply the main results. It includes many exercises to test
students’ understanding of the material, and ends with a supplementary chapter on minimal surfaces
that could be used as an extension towards advanced courses or as a source of student projects.

John Bolton earned his Ph.D. at the University of Liverpool and joined Durham University in 1970,

where he was joined in 1971 by Lyndon Woodward, who obtained his D.Phil. from the University of

Oxford. They embarked on a long and fruitful collaboration, co-authoring over 30 research papers

in differential geometry, particularly on generalisations of “soap film” surfaces. Between them, they

have over 70 years’ teaching experience, being well regarded as enthusiastic, clear, and popular

lecturers. Lyndon Woodward passed away in 2000.

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

A First Course in Differential
Geometry

Surfaces in Euclidean Space

L . M . WOODWARD
University of Durham

J . BOLTON
University of Durham

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India

79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108424936

DOI: 10.1017/9781108348072

c© L. M. Woodward and John Bolton 2019

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2019

Printed in the United Kingdom by TJ International Ltd. Padstow, Cornwall 2019

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Bolton, John (Mathematics professor), author. | Woodward, L. M.
(Lyndon M.), author.

Title: A first course in differential geometry surfaces in Euclidean space /
John Bolton (University of Durham), L.M. Woodward.

Description: Cambridge ; New York, NY : Cambridge University Press,
2019. | Includes index.

Identifiers: LCCN 2018037033 | ISBN 9781108424936
Subjects: LCSH: Geometry, Differential – Textbooks.

Classification: LCC QA641 .B625925 2019 | DDC 516.3/6–dc23
LC record available at https://lccn.loc.gov/2018037033

ISBN 978-1-108-42493-6 Hardback
ISBN 978-1-108-44102-5 Paperback

Additional resources for this publication at www.cambridge.org/Woodward&Bolton

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party internet websites referred to in this publication

and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Brief Contents

Preface page ix

1 Curves inR
n 1

2 Surfaces inR
n 27

3 Tangent planes and the first fundamental form 50

4 Smoothmaps 82

5 Measuring how surfaces curve 109

6 The Theorema Egregium 143

7 Geodesic curvature and geodesics 159

8 The Gauss–Bonnet Theorem 193

9 Minimal and CMC surfaces 213

10 Hints or answers to some exercises 248

Index 260

v

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Sections marked with † denote optional sections

Preface page ix

1 Curves inR
n 1

1.1 Basic definitions 2
1.2 Arc length 5
1.3 The local theory of plane curves 8
1.4 Involutes and evolutes of plane curves † 13
1.5 The local theory of space curves 17
Exercises 22

2 Surfaces inR
n 27

2.1 Definition of a surface 27
2.2 Graphs of functions 32
2.3 Surfaces of revolution 33
2.4 Surfaces defined by equations 38
2.5 Coordinate recognition 40
2.6 Appendix: Proof of three theorems † 42
Exercises 46

3 Tangent planes and the first fundamental form 50
3.1 The tangent plane 50
3.2 The first fundamental form 54
3.3 Arc length and angle 56
3.4 Isothermal parametrisations 59
3.5 Families of curves 63
3.6 Ruled surfaces 65
3.7 Area 68
3.8 Change of variables † 71
3.9 Coordinate independence † 73
Exercises 75

4 Smoothmaps 82
4.1 Smooth maps between surfaces 83
4.2 The derivative of a smooth map 86

vi

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

vii Contents

4.3 Local isometries 90
4.4 Conformal maps 93
4.5 Conformal maps and local parametrisations 95
4.6 Appendix 1: Some substantial examples † 97
4.7 Appendix 2: Conformal and isometry groups † 102
Exercises 104

5 Measuring how surfaces curve 109
5.1 The Weingarten map 109
5.2 Second fundamental form 112
5.3 Matrix of the Weingarten map 113
5.4 Gaussian and mean curvature 115
5.5 Principal curvatures and directions 117
5.6 Examples: surfaces of revolution 119
5.7 Normal curvature 122
5.8 Umbilics 126
5.9 Special families of curves 127
5.10 Elliptic, hyperbolic, parabolic and planar points 131
5.11 Approximating a surface by a quadric † 134
5.12 Gaussian curvature and the area of the image of the Gauss map † 135
Exercises 137

6 The Theorema Egregium 143
6.1 The Christoffel symbols 144
6.2 Proof of the theorem 146
6.3 The Codazzi–Mainardi equations 148
6.4 Surfaces of constant Gaussian curvature † 150
6.5 A generalisation of Gaussian curvature † 154
Exercises 155

7 Geodesic curvature and geodesics 159
7.1 Geodesic curvature 160
7.2 Geodesics 162
7.3 Differential equations for geodesics 164
7.4 Geodesics as curves of stationary length 170
7.5 Geodesic curvature is intrinsic 172
7.6 Geodesics on surfaces of revolution † 174
7.7 Geodesic coordinates † 178
7.8 Metric behaviour of geodesics † 182
7.9 Rolling without slipping or twisting † 185
Exercises 186

8 The Gauss–Bonnet Theorem 193
8.1 Preliminary examples 193
8.2 Regular regions, interior angles 195

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

8.3 Gauss–Bonnet Theorem for a triangle 197
8.4 Classification of surfaces 201
8.5 The Gauss–Bonnet Theorem 205
8.6 Consequences of Gauss–Bonnet 207
Exercises 210

9 Minimal and CMC surfaces 213
9.1 Normal variations 214
9.2 Examples and first properties 217
9.3 Bernstein’s Theorem 219
9.4 Minimal surfaces and harmonic functions 221
9.5 Associated families 223
9.6 Holomorphic isotropic functions 225
9.7 Finding minimal surfaces 227
9.8 The Weierstrass–Enneper representation 229
9.9 Finding I , I I , N and K 233
9.10 Surfaces of constant mean curvature 237
9.11 CMC surfaces of revolution 237
9.12 CMC surfaces and complex analysis 239
9.13 Link with Liouville and sinh-Gordon equations 241
9.14 CMC spheres 243
Exercises 244

10 Hints or answers to some exercises 248

Index 260

www.cambridge.org/9781108424936
www.cambridge.org


Cambridge University Press
978-1-108-42493-6 — A First Course in Differential Geometry
Lyndon Woodward , John Bolton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

We believe that the differential geometry of surfaces in Euclidean space is an ideal topic
to present at advanced undergraduate level. It allows a mix of calculational work (both
routine and advanced) with more theoretical material. Moreover, one may draw pictures
of surfaces in Euclidean 3-space, so that the results can actually be visualised. This helps
to develop geometrical intuition, and at the same time builds confidence in mathematical
methods. One of our aims is to convey our enthusiasm for, and enjoyment of, this subject.

The book covers material presented for many years to advanced undergraduate Mathe-
matics and Natural Sciences students at Durham University in a module entitled “Differ-
ential Geometry”. This module constitutes one sixth of the academic content of their third
year. The two main prerequisites are basic linear algebra and many-variable calculus.

We have three main targets.

(i) Gaussian curvature: we seek to explain this important function, and illustrate the
geometrical information it carries. We further demonstrate its importance when we
discuss the Theorema Egregium of Gauss.

(ii) Geodesics: these are the most important and interesting curves on a surface. They are
the analogues for surfaces of straight lines in a plane.

(iii) The Gauss–Bonnet Theorem: among other things, this theorem shows that Gaussian
curvature (which is defined using local properties of a surface) influences the global
overall properties of that surface.

The Theorema Egregium and the Gauss–Bonnet Theorem are both very surprising, but
readily understood and appreciated. They are also very important and influential from a
historical perspective, having had a profound effect on the development of differential
geometry as a whole.

We have tried to present the material needed to attain these targets using the minimum
amount of theory, and have, for the most part, resisted the temptation to include extra
material (but this resistance has crumbled spectacularly in Chapter 9!). This means that we
have been rather selective in our choice of applications and results. However, each chap-
ter contains some optional material, clearly signposted by a dagger symbol †, to provide
flexibility in the module and to add interest and mental stimulation to the more commit-
ted student. The optional material also provides opportunities for additional reading as the
module progresses.

There should be time to cover at least some of the optional material, and choices may
be made between the technical, the slightly more advanced, and some interesting topics
which are not specifically needed to attain our three targets mentioned above. There is
also some optional material on surfaces in higher dimensional Euclidean spaces (and on

ix
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x Preface

general abstract surfaces), which is designed to whet the appetite of the students, and help
the transition to more advanced topics.

In a forty lecture module, we would suggest that the material in the first four chapters
should be covered in the first half of the module (and perhaps a start made on Chapter 5),
with between four and six lectures on each of the first three chapters, and perhaps four
lectures on the material in Chapter 4.

The pace picks up in the second half of the module. We suggest seven lectures for Chap-
ter 5 and three for Chapter 6. Five lectures could be allowed for Chapter 7, and four
for Chapter 8. However, this may only be achievable if students are asked to read for
themselves the proofs of some of the results.

This may leave a couple of lectures to briefly discuss the contents of the optional Chap-
ter 9 (on minimal and CMC surfaces). Although the material in this chapter is more
advanced, it is included because the mathematics is so beautiful, and is suitable for self-
study by an interested student. It could also form the starting point of a student project at
senior undergraduate or beginning postgraduate level.

Our aim throughout is to make the material appealing and understandable, while at
the same time building up confidence and geometrical intuition. Topics are presented
in bite-sized sections, and concrete criteria or formulae are clearly stated for the vari-
ous objects under discussion. We give as many worked examples as possible, given the
time constraints imposed by the module, and have also included many exercises at the
end of each of the chapters (and provided brief hints or solutions to some of them).
On-line solutions to all the exercises are available to instructors on application to the
publishers.

We have been heavily influenced by the excellent text Differential Geometry of Curves

and Surfaces by Manfredo Do Carmo (Dover Books on Mathematics). However, we have
omitted many of the more advanced topics found in that book, and at the same time
have further elucidated, where we thought appropriate, the material we believe may be
reasonably covered in our forty lecture module.

Finally, our sincere thanks to Roger Astley and his team at Cambridge University Press,
who have been encouraging and patient throughout the rather long gestation period of the
book.

Please enjoy the book.

Internal referencing

There are inevitably very many definitions which have to be included in a book of this
nature. Rather than numbering these and referring back to them each time they are used,
we thought it best to italicise the terms being defined and then include all these terms in
the index.

Results and Examples are numbered in a single sequence within each section. A typical
internal reference might be, for instance, Theorem 3 of §2.5. If no section reference is
given, the result or example is in the current section. Equations to be referred to later in
the book are numbered consecutively within each chapter (so, for instance, equation (3.7)
is the seventh numbered equation in Chapter 3).

www.cambridge.org/9781108424936
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1 Curves inR
n

This book provides an account of the differential geometry of surfaces, principally (but
not exclusively) in Euclidean 3-space. We shall be studying their metric geometry; both
internal, or intrinsic geometry, and their external, or extrinsic geometry.

As a preliminary, in this chapter we study curves in the vector space R
n with its standard

inner product. For the most part n will be 2 or 3 since we wish to emphasize the geometrical
aspects in a way which can be easily visualized. The crucial properties of the curves we
study are that they are 1-dimensional and may be approximated up to first order near any
point by a straight line, the tangent line at that point. The intrinsic geometry of these curves
is somewhat simple, consisting of the arc length along the curve between any two points
on the curve, while the most important measure of the extrinsic geometry is the curvature,
the rate at which the curve bends away from its tangent line.

The ideas in this chapter are important for what follows in the rest of the book for several
reasons. Firstly, many of the ideas extend in a natural way to surfaces (and to the more
general study of n-dimensional objects called differentiable manifolds), and so a number
of important concepts are introduced here in the simplest possible situation. Secondly, the
intrinsic and extrinsic geometry of a surface are most easily and intuitively studied by using
curves on the surface. For instance, the geometry of a surface may be studied by means of
its geodesics, which are the analogues for surfaces of straight lines in the plane. Finally,
curves on a surface may often be regarded in a natural way as curves in the plane where
this latter is now endowed with a non-standard metric, and many of the ideas we develop
in this chapter may be extended to study this new situation.

There is a large and interesting body of work concerned with the local and global theory
of curves in Euclidean space, but we have been rather ruthless in our selection of material.
Other than the material on involutes and evolutes in §1.4 (some or all of which may be
omitted if desired, since the material is not used directly in the rest of the book), we have
restricted ourselves to those aspects of the theory that have most relevance to our study of
surfaces.

The layout of the chapter is as follows. After some preliminary definitions and examples
we consider the local theory of plane curves, where the notion of curvature is introduced.
We then seek to give some familiarity with the ideas in the optional section on involutes
and evolutes. Finally, we consider the local theory of space curves, where the behaviour is
governed by two invariants, namely the curvature and the torsion.

1



2 1 Curves inR
n

1.1 Basic definitions

For each positive integer n, let R
n denote the n-dimensional vector space of n-tuples of real

numbers, with vector addition and multiplication by a scalar λ carried out component-wise.
Specifically,

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

and

λ(x1, . . . , xn) = (λx1, . . . , λxn) .

A smooth parametrised curve (henceforth called a smooth curve) in R
n is a smooth map

α : I → R
n , where I is a possibly infinite open interval of real numbers. Thus α(u) =

(x1(u), . . . , xn(u)), where x1, . . . , xn : I → R, are infinitely differentiable functions of u.
The variable u is called the parameter and the image α(I ) ⊂ R

n is called the trace of α.
Intuitively, we are thinking of a curve as the path traced out by a point moving in R

n .
The metric properties of such a curve (or indeed a surface) are derived from the metric

properties of the containing Euclidean space R
n . These are determined by the inner product

(also called the scalar or dot product) on R
n which assigns to each pair of vectors v =

(v1, . . . , vn), w = (w1, . . . ,wn) the scalar v.w given by

v.w = v1w1 + · · · + vnwn .

The length |v| of a vector v in R
n is defined by |v| = √

v.v, and the angle θ between two
non-zero vectors v, w is given by

v.w = |v| |w| cos θ , 0 ≤ θ ≤ π .

We let x ′(u) denote the derivative of a function x(u). Then the tangent vector to a smooth
curve α at u is given by α′(u) = (x ′

1(u), . . . , x ′
n(u)
)
. As mentioned at the start of the chapter,

the crucial property of the curves we wish to study is that they may be approximated up
to first order near any point by a straight line, the tangent line. For this reason, we shall
for the most part consider regular curves; these are smooth curves for which α′(u) is never
zero. The tangent line is then the line though α(u) in direction α′(u), and the unit tangent
vector t to α (Figure 1.1) is given by

t = α′

|α′| .

In the above, and elsewhere when no confusion should arise, we omit specific reference
to the parameter u.

t

t

t

�Figure 1.1 The trace of a regular curve



3 1.1 Basic definitions

We shall often think of u as a time parameter, in which case |α′| gives the speed, and t
the direction of travel along α.

Example 1 (Ellipse) Let α : R → R
2 be defined by

α(u) = (a cos u, b sin u) , u ∈ R ,

where a and b are distinct positive real numbers. Then

α′ = (−a sin u, b cos u) 	= 0 ,

so that

t = (−a sin u, b cos u)

(a2 sin2 u + b2 cos2 u)1/2
,

and we see that α is a regular curve whose trace is the ellipse defined by the equation

x2

a2
+ y2

b2
= 1 .

A point at which a smooth curve has vanishing derivative will be called a singular point.

Example 2 (Cusp point) Let α : R :→ R
2 be defined by

α(u) = (u3, u2) , u ∈ R .

�Figure 1.2 Cusp atα(0)

Then α is smooth but not regular since α′(0) = 0. The trace of α (Figure 1.2) is the curve
y3 = x2 which has a cusp at α(0). This is an example of the type of behaviour we exclude
when we consider regular curves.

Of course, the restriction of the curve α in Example 2 to (0, ∞) and to (−∞, 0) are both
regular curves, as is the restriction of any regular curve to an open subinterval of its domain
of definition.

Example 3 (Helix) Let α : R :→ R
3 be defined by

α(u) = (a cos u, a sin u, bu) , u ∈ R ,

where a > 0 and b 	= 0. Then

α′ = (−a sin u, a cos u, b) 	= 0 ,

so that

t = (−a sin u, a cos u, b)

(a2 + b2)1/2
,



4 1 Curves inR
n

�Figure 1.3 Helix on a cylinder

and we see that α is a regular curve, called a helix (Figure 1.3); its trace lies on the cylinder
x2 + y2 = a2 in R

3.
The pitch of the helix is 2πb; this is the vertical distance between the points α(u) and

α(u + 2π ), one point being obtained from the other after one complete revolution of the
helix round the cylinder. We note that |α′| is constant, so with this parametrisation we travel
along the curve with constant speed.

Example 4 (Graph of a function) Let g : I → R be a smooth function defined on an open
interval I of real numbers. The graph �(g) of g is the trace of the regular curve in R

2

given by

α(u) = (u, g(u)) , u ∈ I .

For example, the graph of g(u) = u2 gives the parabola y = x2.

The trace of the graph of a function g has equation y −g(x) = 0. It may be expected that
a wealth of other examples may be written down using equations of the form f (x , y) = c,
where c is constant and f (x , y) is a smooth function of x and y. In fact, an equation of this
type does not always give the trace of a regular curve (for instance x2 + y2 = 0, or, as we
have seen, y3 = x2), and even when it does, we do not have a natural associated parameter.
For these reasons, we discuss sets of points satisfying equations in the next chapter in the
context of surfaces in R

3.

We conclude this section with a slight extension of our treatment of curves. A smooth
(resp. regular) curve on a closed interval [a, b] is one which may be extended to a smooth
(resp. regular) curve on an open interval containing [a, b]. A closed curve α : [a, b] → R

n

is a regular curve such that α and all its derivatives agree at the end points of the interval;
that is,

α(a) = α(b) , α′(a) = α′(b) , α′′(a) = α′′(b), . . . .

For example, the restriction to [−π ,π ] of the curve α in Example 1 is a closed curve –
it travels once round the ellipse, starting and ending at (−a, 0).



5 1.2 Arc length

1.2 Arc length

It is important to note that, as far as geometry is concerned, it is the trace (or image) of
a smooth curve which is of interest; the parametrisation is just a convenient device for
describing and studying this. A good choice of parametrisation is often helpful, however,
as this can lead to a great simplification of a given problem. In this section we describe an
intrinsic parametrisation for any regular curve; it is defined by taking the arc length in the
direction of travel measured from some given point on the curve. This parametrisation is
of fundamental importance in the general theory of regular curves but, as we shall indicate,
finding such a parametrisation is impracticable for most examples and so is usually best
avoided in explicit calculations.

Let α : (a, b) → R
n be a smooth curve and let u0 ∈ (a, b). We define s : (a, b) → R by

integrating the speed of travel between α(u0) and α(u). Thus

s(u) =
∫ u

u0

|α′(v)|dv (1.1)

is the arc length along α measured from α(u0). Note that s(u) is positive for u > u0, and
negative for u < u0.

Example 1 (Ellipse) Let a and b be distinct positive real numbers and let α : R → R
2 be

the ellipse

α(u) = (a cos u, b sin u) , u ∈ R .

Then

α′ = (−a sin u, b cos u) ,

and so, if s(u) denotes arc length measured from α(0), then

s(u) =
∫ u

0

√
a2 sin2 v + b2 cos2 v dv .

This integral cannot be expressed in terms of elementary functions such as trigonometric
functions, and serves to define a special class of functions called elliptic functions.

As the above example indicates, it may be difficult to write down explicit expressions
in closed form (that is to say, in terms of standard functions) for functions describing the
geometry, even in quite simple cases. In the following example, however, the calculations
are all fairly straightforward.

Example 2 (Cycloid) This is the curve in the plane traced out by a point on a circle which
rolls without slipping along a line (Figure 1.4).

Assuming that the radius of the circle is 1 and the circle rolls on the x-axis in R
2, the

curve may be parametrised by α : R → R
2 where

α(u) = (u − sin u, 1 − cos u) .
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n

�Figure 1.4 Cycloid

Then

α′ = (1 − cos u, sin u)

=
(

2 sin2 u

2
, 2 sin

u

2
cos

u

2

)
= 2 sin

u

2

(
sin

u

2
, cos

u

2

)
,

so that α has singular points when u = 2nπ , where n is an integer. These singular points
correspond to the points where the cycloid touches the x-axis; at these points the cycloid
has the characteristic cusp shape pointed out in Example 2 of §1.1.

Furthermore,

|α′| =
∣∣∣2 sin

u

2

∣∣∣
= 2 sin

u

2
, for 0 ≤ u ≤ 2π .

Thus, for 0 ≤ u ≤ 2π , if s(u) denotes arc length measured from α(0), then

s(u) =
∫ u

0
2 sin

v

2
dv

= 4(1 − cos
u

2
) .

In particular, the length of a single arch of the cycloid is 8.

We now show that we may use arc length s to parametrise a regular curve, and describe
some consequences of doing so. The most useful results we obtain are equation (1.4) and
its immediate consequence that when we parametrise a regular curve by arc length we
travel along it at unit speed.

We begin by noting that the arc length s(u) along a regular curve α(u) in R
n is a smooth

function and, from (1.1),
ds

du
= |α′| > 0 . (1.2)

Hence s is an increasing function of u, and we may use arc length to parametrise the trace
of the curve in the same direction of travel. The chain rule for differentiation then tells us
that

d

du
= ds

du

d

ds
. (1.3)

We now give a brief explanation of why (1.3) holds; this paragraph may be omitted by
those who are happy with the chain rule as stated in (1.3). Let α(u) be a regular curve, and
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parametrise it by arc length by letting α̃(s) be the point on the trace of α having arc length s
from a chosen base point α(u0). Then α(u) = α̃(s(u)). More generally, given a function
f̃ (s), we let f (u) = f̃ (s(u)). Then, since the derivative of a composite is the product of
the derivatives,

d f
du

∣∣∣
u

= d f̃
ds

∣∣∣
s(u)

ds

du

∣∣∣
u

.

Following commonly used convention, we do not usually mention the points at which the
differentiation takes place, and also, when there is no danger of confusion, we omit the ˜
and simply write

d f
du

= d f
ds

ds

du
,

which gives the operator equation (1.3). This completes the optional paragraph of
explanation of (1.3).

Returning to our account of the parametrisation of a regular curve using its arc length s,
the chain rule (1.3), together with (1.2), shows that

d

ds
= 1

|α′|
d

du
, (1.4)

and, in particular,
dα

ds
= 1

|α′|α
′ = t , (1.5)

so that when we parametrise a regular curve by arc length we travel along it at unit speed.
With such a parametrisation, the arc length along α from α(s0) to α(s1) is equal to s1 − s0.

Note that when, as above, we are considering two different parametrisations with the
same trace, the notation ′ for derivative must be used with care in order to avoid confusion
between d/du and d/ds. We shall always use ′ to denote d/du, the derivative with respect
to the given parameter u of the curve, and we shall use d/ds to denote differentiation with
respect to the arc length parameter.

We summarise the content of this section in the following theorem.

Theorem 3 Let α(u) be a regular curve in R
n. Then we may parametrise the trace of α

using arc length s from a point α(u0) on α. If we do this, then dα/ds is the unit tangent
vector t to α in the direction of travel. In particular, t is smoothly defined along α, and,
when using arc length as parameter, we travel along α at unit speed. The arc length along
α from α(s0) to α(s1) is equal to s1 − s0.

It is important to note that if a curve is not regular then it cannot usually be parametrised
by arc length past a singular point. For instance, the unit tangent vector in the direction
of travel of the cycloid has discontinuities (and so is not smooth) at the singular points. A
similar comment holds for the cusp curve in Example 2 of §1.1.

As mentioned at the start of this section, and as we shall see later, the existence of the
arc length parameter is very important for theoretical work. However, arc length is not
usually a good choice of parameter to use in calculations since in general it is difficult to
find explicitly, as illustrated by Example 1.
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1.3 The local theory of plane curves

In this section we introduce the signed curvature κ of a regular curve in the plane R
2,

which describes the way in which the curve is bending in the plane. We then discuss the
fundamental theorem of the local theory of plane curves, which shows that a regular plane
curve is determined essentially uniquely by its curvature as a function of arc length. In
Chapter 6, we shall discuss Bonnet’s Theorem, which is the analogous result for surfaces
in R

3.
The main goals of the first half of this section are to explain the moving frame equations

(1.6) and (1.7), and to give examples of their use.
Let α : I → R

2 be a regular curve defined on an open interval I , and, as usual, let
d/ds denote differentiation with respect to arc length along α. As we have seen, the unit
tangent vector is given by t = dα/ds, and we let n be the unit vector obtained by rotating t
anticlockwise through π/2. Thus, if t = (a, b) then n = (−b, a). Then {t , n} is an adapted
orthonormal moving frame along α (Figure 1.5).

Since t .t = 1, we may use the product rule for differentiation to deduce that
d t
ds

. t = 0.

Hence
d t
ds

= κn (1.6)

for a uniquely determined smooth function κ called the signed curvature (or simply the

curvature) of α. Similarly,
dn
ds

. n = 0, so that
dn
ds

is a scalar multiple of t . Differentiating

the expression t .n = 0 and applying (1.6) we see that

dn
ds

= −κ t . (1.7)

As we shall see, κ measures the rate of rotation of t (and n) in an anticlockwise direction
as we travel along the curve at unit speed.

Curvature is a measure of acceleration, and hence plays a big part in all our lives. For
instance, it shows itself as the sideways force we, and our coffee cups(!), feel as we go
round a bend on a railway train. When travelling at a given speed, the more the track
bends, the quicker the coffee cup slides (or falls over, if the curvature is really big). When
we are facing the direction of travel, the cup slides to our right if the curvature is positive,
and to our left if it is negative.

Equations (1.6) and (1.7), which give the rate of change of each element of the moving
frame {t , n} in terms of the frame itself, are called the moving frame equations.

t

t

n

n

�Figure 1.5 Amoving frame
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Example 1 (Circle of radius r) The circle with centre a and radius r > 0 traversed in an
anticlockwise direction has constant curvature κ = 1/r . For, parametrising the circle by
arc length, we have

α(s) = a + r
(

cos
s

r
, sin

s

r

)
,

so that

t = dα

ds
=
(
− sin

s

r
, cos

s

r

)
,

and

n = −
(

cos
s

r
, sin

s

r

)
.

Then
d t
ds

= −1

r

(
cos

s

r
, sin

s

r
u
)

= 1

r
n ,

so that α has curvature 1/r . If the circle is traversed in a clockwise direction then it has
curvature −1/r .

We now give an example to show how we may find the curvature of a regular curve α
which is not parametrised by arc length. In this, and much of the following, we repeatedly
use equation (1.4). This equation will also be very useful in the following sections.

Example 2 (Cycloid) Recall from Example 2 in §1.2 that the cycloid may be parametrised
as

α(u) = (u − sin u, 1 − cos u) ,

and that, using ′ for d/du as usual,

α′ = 2 sin
u

2

(
sin

u

2
, cos

u

2

)
.

Hence, for 0 < u < 2π ,

t =
(

sin
u

2
, cos

u

2

)
,

n =
(
− cos

u

2
, sin

u

2

)
,

|α′| = 2 sin
u

2
.

Thus, using (1.4),

d t
ds

= 1

|α′| t ′

= 1

2 sin(u/2)

1

2

(
cos

u

2
, − sin

u

2

)

= − 1

4 sin(u/2)
n .
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The curvature, for 0 < u < 2π , is therefore given by

κ = − 1

4 sin(u/2)
, 0 < u < 2π .

In fact, for all values of the parameter u,

κ = − 1

4| sin(u/2)| .

Notice that the minimum of the absolute value |κ| of the curvature for 0 < u < 2π is
1/4 at u = π , and that the curvature approaches −∞ as u approaches 0 and 2π . Indeed,
the absolute value of the curvature decreases from ∞ to 1/4 as u increases from 0 to π
and then increases from 1/4 to ∞ as u increases from π to 2π . This can be seen in the
diagram of the curve in Figure 1.4, as can the clockwise direction of rotation of the unit
tangent vector t (which is why the curvature is negative).

Now that we have obtained the moving frame equations and given examples of their use,
in the remainder of this section we give a geometrical interpretation of the curvature κ , and
then state and prove a basic existence and uniqueness theorem for regular curves in the
plane.

As may be seen from (1.6), the curvature κ is a measure of how quickly the trace of the
curve is bending away from its tangent line when the trace is traversed at unit speed. This
is reflected in the following result.

Lemma 3 The curvature κ of a regular plane curve α is identically zero if and only if α is
a straight line.

Proof If κ = 0 at each point of α then (1.6) shows that t = c, a constant unit vector.
In this case, dα/ds = c, so α(s) = b + sc, for some constant vector b. Thus α is the
straight line through b in direction c. Conversely, a line may be parametrised by arc length
as α(s) = b + sc, where b is a point on the line and c is a unit vector in the direction of the
line. That κ = 0 at each point of α is now easily checked.

As mentioned earlier, we may interpret κ as the rate of rotation in the anticlockwise
direction of the unit tangent vector t , or equivalently of the unit normal vector n, as we
travel along the curve at unit speed. Here is the proof.

Lemma 4 Let e1, e2 denote the standard basis vectors (1, 0), (0, 1) respectively in R
2. If θ

is the angle from e1 to t measured in an anticlockwise direction (or equivalently, the angle
from e2 to n), then

κ = dθ

ds
.

Proof The unit tangent vector t is given by (Figure 1.6)

t = (cos θ , sin θ ) , s ∈ I ,
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t

e1
θ

�Figure 1.6 For the proof of Lemma 4

and so, using the chain rule,

d t
ds

= (− sin θ , cos θ )
dθ

ds
.

Since n = (− sin θ , cos θ ), we see that

κ = dθ

ds
,

which completes the proof.

Remark 5 Using ′ for d/du as usual, we may use (1.4) and (1.5) to show that

n′ = |α′|dn
ds

= −κ|α′|t = −κα′ ,

so that |κ| may be interpreted as the ratio of the speed of travel along the curve n to the
speed of travel along α. In Section 5.12 we shall see a similar interpretation of the Gaussian
curvature of a surface in R

3.

Remark 6 For a regular plane curve α(u), not necessarily parametrised by arc length,

d t
ds

= 1

|α′|
(

1

|α′|α
′
)′

,

and, using this, one can show (see Exercise 1.8) that if α(u) = (x(u), y(u)) then

κ = x ′y′′ − x ′′y′

(x ′2 + y′2)3/2
. (1.8)

For example, it is now straightforward to use the parametrisation of the cycloid given in
Example 2 to confirm that the curvature of the cycloid is (−4| sin(u/2)|)−1, but we prefer
to use the calculation of the curvature along the lines indicated in Example 2 rather than
using formula (1.8), since the calculations given there illustrate the theory (and similar
calculations will be needed later on).

We now show that a regular plane curve is determined up to rigid motions of R
2 by its

curvature as a function of arc length. We can see this intuitively if we think of taking a
straight piece of wire which is to be bent in order to fit a given curve in the plane. In order
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to do this it suffices to specify the amount by which the wire has to be bent at each point;
that is to say to specify the signed curvature.

Theorem 7 (The Fundamental Theorem of the Local Theory of Plane Curves) Let κ : I → R be a
smooth function defined on an open interval I . Then there is a regular curve α : I → R

2

parametrised by arc length s with curvature κ . Moreover, α is unique up to rigid motions
of R

2.

Proof We use the ideas introduced in the statement and proof of Lemma 4.
We first prove existence. Let θ : I → R be an indefinite integral of κ (so that θ

is a smooth function with θ ′ = κ), and let x1, x2 be indefinite integrals of cos θ , sin θ
respectively. If we let

α(s) = (x1(s), x2(s)) , s ∈ I ,

then α is a smooth curve, and

α′ = (cos θ , sin θ ) .

Hence

α′′ = θ ′(− sin θ , cos θ ) ,

so that α is parametrised by arc length and has curvature θ ′ = κ .
We now prove the statement concerning uniqueness. So, let α1(s) and α2(s) be

parametrised by arc length, both having the same curvature κ . We let t1 = (cos θ1, sin θ1)
and t2 = (cos θ2, sin θ2) be the unit tangent vectors to α1 and α2 respectively. Picking a
base-point s0 ∈ I we may assume, by applying a suitable rigid motion of R

2, that

α1(s0) = α2(s0) , t1(s0) = t2(s0) .

Using Lemma 4, we see that dθ1/ds = dθ2/ds, so that θ1 − θ2 is constant and hence,
since θ1(s0) = θ2(s0) by assumption, we see that θ1 = θ2, so that t1 = t2. But then,
dα1/ds = dα2/ds, so a similar argument shows that α1 = α2, and the uniqueness
statement is proved.

We illustrate the existence part of the above proof by constructing directly all plane
curves with constant non-zero curvature.

Example 8 (Curves of constant curvature) If κ is a positive constant, we set r = 1/κ . Then, in
the notation of the previous proof, dθ/ds = 1/r so that

θ (s) = s

r
+ c , c constant.

Thus

α(s) =
(∫

cos
( s

r
+ c
)

ds,
∫

sin
( s

r
+ c
)

ds

)

=
(

r sin
( s

r
+ c
)

, −r cos
( s

r
+ c
))

+ b , b constant,
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and α(s) is the circle with centre b and radius r parametrised by arc length in an anti-
clockwise direction. If we assume that κ is a negative constant, then the circle will be
parametrised in a clockwise direction.

Unfortunately, for a given non-constant κ it is usually very difficult to determine α
explicitly, as you will find if you try the case where κ(s) = s. In fact, this seemingly
simple example leads to a so-called Fresnel integral. Such integrals can’t be evaluated in
terms of standard functions.

1.4 Involutes and evolutes of plane curves †

As indicated by the † symbol, the material in this section is not needed for the rest of
the book. However, it is included because of its historical and intrinsic interest, and to
provide practice at the type of local calculations which are useful in the study of differential
geometry. It should also help to build geometrical intuition, and we would recommend
covering at least the material up to and including Example 1, the calculation of the involute
of the cycloid.

We shall be considering two curves α and β in this section. To avoid confusion, we
denote objects corresponding to each curve by the appropriate suffix.

Let α : I → R
2 be a regular curve and let β : I → R

2 be defined by

β(u) = α(u) − sα(u)tα(u) , (1.9)

where sα denotes arc length along α measured from some point α(u0). Then (Figure 1.7)
β is a smooth curve, and, if the curvature κα of α is never zero, the only singular point of
β is at u = u0 (see Exercise 1.10). The curve β is called an involute of α. One physical
interpretation of β is that β is the path described by the end of a piece of string as it is
“unwound” from α starting at α(u0).

Example 1 (Cycloid) We shall consider the reflection in the x-axis of the cycloid considered
in Example 2 of §1.2. We parametrise this by

α(u) = (u − sin u, cos u − 1) ,

and we shall find the involute which starts at the lowest point (π , −2) (corresponding to
u = π ) of the cycloid.

In terms of our physical interpretation of the involute; if we imagine a pendulum made
of a bob at the end of a piece of string of length 4 whose top end is supported at (2π , 0)

α(u)
α

β(u)

α(u0)

β

�Figure 1.7 Involute ofα
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(0, 0) (2p, 0)

�Figure 1.8 Cycloidal pendulum

and which is wound around the cycloid so that the bob is at the lowest point (π , −2), then
we are finding the path traced out by the bob as the pendulum is left to swing under gravity
(Figure 1.8).

The calculation is as follows. Since

α′ = 2 sin
u

2

(
sin

u

2
, − cos

u

2

)
,

it follows that for u ∈ (π , 2π ),

tα =
(

sin
u

2
, − cos

u

2

)
and

sα =
∫ u

π

2 sin
v

2
dv

= −4 cos
u

2
.

Hence

β(u) = α(u) + 4 cos
u

2

(
sin

u

2
, − cos

u

2

)
= (u − sin u, cos u − 1) + (2 sin u, −2 cos u − 2)

= (u + sin u, −3 − cos u)

=
(

(u − π ) − sin(u − π ), cos(u − π ) − 1
)

+ (π , −2) .

Thus β is also a cycloid, obtained by translating the original one.
This example is of historical importance since it enabled Huyghens in the seventeenth

century to construct a pendulum, called the cycloidal pendulum, whose bob traces out a
cycloid. It is known that (neglecting friction) a particle moving under gravity on a cycloid
performs simple harmonic motion, so the period of a cycloidal pendulum is independent
of the amplitude of swing. Examples of clocks with this type of pendulum may be seen in
the British Museum.

This concludes the minimum amount of material that we suggested you cover from this
section. If you would like to continue, we shall now use the techniques given earlier to
find the relation between the geometrical quantities tβ , nβ , κβ of an involute β of a regular
curve α and the geometrical quantities tα , nα , κα of α. In these calculations, which are
quite intricate, we often make use of equations (1.2) to (1.7).
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Lemma 2 Let ε = sακα/|sακα| (so that ε = 1 if sακα > 0 and ε = −1 if sακα < 0). Then

tβ = −ε nα , (1.10)

nβ = ε tα , (1.11)

κβ = ε

sα
. (1.12)

Proof Following the method explained in Example 2 of §1.3, we first differentiate (1.9)
with respect to the given parameter u and obtain

β ′ = α′ − sα
′ tα − sα tα ′

= α′ − |α′|tα − sα tα ′

= −sα tα ′

= −sα|α′|d tα
dsα

= −sακα|α′| nα , (1.13)

so that (1.10) and (1.11) now follow.
To find κβ , we continue to follow our method for finding curvature. We first note from

(1.13) that

|β ′| = |sακα| |α′| , (1.14)

so, differentiating (1.10) with respect to sβ , and using (1.11), we find that

d tβ
dsβ

= − ε2

sακα|α′|nα ′

= − 1

sακα

dnα
dsα

= 1

sα
tα

= ε

sα
nβ ,

which gives our required expression (1.12) for κβ .

The definition of involute given in (1.9) defines β in terms of geometrical quantities
associated with α. We now obtain an expression for α in terms of geometrical quantities
associated with β.

Lemma 3

α = β + 1

κβ
nβ . (1.15)

Proof The definition (1.9) of β in terms of α gives that

α = β + sα tα . (1.16)
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However, (1.11) and (1.12) show that

sα tα = 1

κβ
nβ ,

and the result follows.

For each parameter value u, the quantity 1/|κβ (u)| is called the radius of curvature of β

at u, and β(u) + 1

κβ
nβ (u) is the centre of curvature of β at u. The circle with centre at the

centre of curvature of β at u and with radius 1/|κβ (u)| has second order contact with β at
β(u).

The locus of the centres of curvature of a regular plane curve is called the evolute of
that curve. So, the evolute of a regular curve β(u) is the curve α given in Lemma 3. If we
imagine the curve β to be a light filament, then its evolute would be the curve in the plane
of maximum illumination. The evolute is often called the caustic.

Since the evolute of a curve is an important object associated with the curve, we restate
Lemma 3 as a proposition.

Proposition 4 Let β be an involute of a regular curve α in R
2. Then α is the evolute of β.

Example 5 (Cycloid) Example 1 would lead us to expect that the evolute of a cycloid is a
translate of that cycloid, and we shall verify this directly. As in Example 1, we parametrise
the cycloid as

α(u) = (u − sin u, cos u − 1) ,

and, as we have seen, for 0 < u < 2π ,

|α′| = 2 sin
u

2
, tα =

(
sin

u

2
, − cos

u

2

)
.

Hence

nα =
(

cos
u

2
, sin

u

2

)
,

and it quickly follows that

κα = 1

4 sin u
2

.

The evolute β of α is thus given by

β = α + 1

κα
nα

= (u − sin u, cos u − 1) + 4 sin
u

2

(
cos

u

2
, sin

u

2

)
= (u − sin u, cos u − 1) + (2 sin u, 2 − 2 cos u)

= (u + sin u, 1 − cos u)

= ((u − π ) − sin(u − π ), cos(u − π ) − 1)+ (π , 2) ,

so that, as we anticipated, the evolute of the cycloid is another cycloid which is a translate
of the first (Figure 1.9).
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(0, 0) (2p, 0)

�Figure 1.9 Evolute of a cycloid

Returning to our physical interpretation of the involute and the unwinding string, equa-
tion (1.10) shows that the direction of travel of the involute is everywhere orthogonal to the
direction of the unwinding string; put another way, the involute is an orthogonal trajectory
of the pencil of lines formed by the tangents to the original curve. We shall have more to
say about orthogonal trajectories in §3.5.

1.5 The local theory of space curves

In §1.3, we showed that a plane curve is essentially uniquely determined by one scalar
invariant, the curvature κ . We did this by constructing an adapted orthonormal moving
frame {t , n} along the curve, and using the moving frame equations (1.6) and (1.7).

In this section, we carry out a similar process for a regular curve α in R
3. This time, we

need two scalar invariants, the curvature and the torsion, to describe the curve. The main
results of this section are the Serret–Frenet formulae (1.20), and the basic existence and
uniqueness theorem for regular curves in Euclidean 3-space given in Theorem 4.

Let α : I → R
3 be a regular curve defined on an open interval I , and, as usual, let d/ds

denote differentiation with respect to arc length along α. Then the unit tangent vector is

given by t = dα/ds. Since t .t = 1 we have
d t
ds

.t = 0, so that
d t
ds

is orthogonal to t . We

define the curvature κ of α by

κ =
∣∣∣∣d t
ds

∣∣∣∣ .

Note that, in contrast with the case of plane curves, the definition of curvature κ of a
space curve implies that κ ≥ 0. This is because the notions of “clockwise” and “anticlock-
wise” rotations (which we used to define the signed curvature of a plane curve) do not
apply in R

3.
At points where κ 	= 0 we define the principal normal n of α by setting

d t
ds

= κn , (1.17)

and the binormal b of α by

b = t × n , (1.18)

where we have used the vector cross product in R
3 on the right hand side. Then {t , n, b}

is the adapted orthonormal moving frame along α. Note that there is no natural choice of
principal normal or binormal to α at those points where the curvature is zero.
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t
n

b

�Figure 1.10 The moving frame along a helix

Figure 1.10 shows this frame at a typical point of a helix. As will be clear from Exam-
ple 2, the principal normal n is a horizontal unit vector pointing towards the z-axis. Hence
(anticipating some material from Chapter 3, but clear from intuition), n is orthogonal to
the cylinder on which the helix lies, so that t and b are both tangential to the cylinder.

We now find the moving frame equations, of which (1.17) is the first, which describe the
rate of change of each element of the moving frame {t , n, b} in terms of the frame itself.

We first differentiate (1.18) and use (1.17) to find that

db
ds

=
(

d t
ds

× n
)

+
(

t × dn
ds

)
= t × dn

ds
,

and in particular
db
ds

. t = 0 .

Also

b. b = 1 so that
db
ds

. b = 0 .

Thus
db
ds

= τn (1.19)

for some function τ called the torsion of α. (Please be aware that some authors use −τ in
place of τ .) Since

n = b × t = −t × b ,

we have, using (1.17) and (1.19),

dn
ds

= −
(

d t
ds

× b
)

−
(

t × db
ds

)
= −κ t − τ b .

Thus we have our required moving frame equations, called the Serret–Frenet formulae. We
write them down grouped together for convenience.
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d t
ds

= κn ,

dn
ds

= −κ t − τ b ,

db
ds

= τn . (1.20)

We now discuss the geometry of these equations. The line through α(u) in direction t(u)
is the tangent line to α at α(u). As mentioned earlier, this is the line having first order
contact with α, and κ measures the rate at which the trace of the curve is bending away
from this line when the trace is traversed at unit speed. The plane through α(u) spanned by
t(u), n(u) is called the osculating plane (from ‘osculans’, Latin for ‘kissing’) to α at α(u).
As is clear from the first Serret–Frenet formula, this is the plane with which α has second
order contact at α(u), in the sense that the curve touches the plane there, and α′ and α′′ are
both tangential to the plane (Figure 1.11).

Since b is the unit normal to the osculating plane, db/ds measures the rate of change
of the osculating plane. The third Serret–Frenet formula shows that the osculating plane is
rotating about the tangent vector t at each point, and τ measures this rate of rotation. This
is the rate at which the curve is twisting away from its osculating plane. Finally, the normal
plane at α(u) is the plane spanned by n(u), b(u); as we move along the curve, the normal
plane rotates about the binormal, the rate of rotation being measured by κ .

The above comments on the osculating plane and its rate of change would lead us to sup-
pose that a curve should have everywhere zero torsion if and only if the curve is contained
in a plane, and we now demonstrate this.

Lemma 1 The torsion τ of a regular space curve α is identically zero if and only if α is
contained in a plane.

Proof First suppose that α lies in a plane with unit normal b0, say. Then, for some real
constant c,

α. b0 = c .

b
t

n n

�Figure 1.11 Osculating plane and normal plane
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Differentiating with respect to arc length s along α, we find that

dα

ds
. b0 = 0 and

d2α

ds2
. b0 = 0 .

Thus, if α has nowhere vanishing curvature,

t . b0 = 0 and n.b0 = 0 ,

so that b = ±b0 and τ = 0. All the osculating planes of α coincide with the plane in which
α lies.

Conversely, if α has nowhere vanishing curvature and if b is constant, say b = b0, then

dα

ds
. b0 = t . b0 = 0 ,

so that α.b0 = c and α lies in a plane.

We now give an example to illustrate a method of finding the curvature and torsion of
a regular space curve which is not parametrised by arc length. As with the corresponding
method for plane curves, it is not usually a good idea to attempt to re-parametrise the curve
by arc length (although, in this example it is rather easy). Rather, one should exploit the
chain rule by using equation (1.4).

Example 2 (Helix) Recall from Example 3 of §1.1 that this space curve may be parametrised
by

α(u) = (a cos u, a sin u, bu) , u ∈ R ,

where a > 0 and b 	= 0. Then

α′ = (−a sin u, a cos u, b) ,

so that

|α′| = (a2 + b2)1/2

and

t = (−a sin u, a cos u, b)

(a2 + b2)1/2
.

Also, using (1.4), we have

d

ds
= 1

(a2 + b2)1/2

d

du
.

Hence

κn = d t
ds

= 1

a2 + b2
(−a cos u, −a sin u, 0) ,

so that

κ = a

a2 + b2
and n = (− cos u, − sin u, 0) .
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But then

b = t × n = 1

(a2 + b2)1/2
(b sin u, −b cos u, a) ,

so that
db
ds

= b

a2 + b2
(cos u, sin u, 0) .

Hence

τ = − b

a2 + b2
.

The helix thus has constant curvature and constant torsion. If τ < 0 then the helix is
right-handed; if τ > 0 it is left-handed.

Remark 3 For a regular space curve α(u), not necessarily parametrised by arc length, we
may find expressions for κ and τ directly in terms of α′, α′′ and α′′′. In fact, in Exercise
1.15 you are asked to show that

κ = |α′ × α′′|
|α′|3 , τ = − (α′ × α′′) .α′′′

|α′ × α′′|2 ,

where, as usual, × is vector cross product in R
3. However, for the reasons given in Remark

6 of §1.3, we prefer to use the calculation of the curvature and torsion along the lines
indicated in Example 2 rather than using the above formulae.

The importance of the curvature and torsion of a space curve is that they determine the
curve up to rigid motions of R

3. As with the case of plane curves we can see this intuitively
if we think of taking a straight piece of wire which is to be manipulated in order to fit a
given curve in R

3. In order to do this it suffices to specify the amount by which the wire
has to be bent and twisted at each point; that is to say to specify the curvature and torsion
of the given curve.

Theorem 4 (The Fundamental Theorem of the Local Theory of Space Curves) Let κ : I → R,
τ : I → R be smooth functions defined on an open interval I , and assume that κ > 0.
Then there is a regular curve α : I → R

3 parametrised by arc length s with curvature κ
and torsion τ . Moreover, α is unique up to rigid motions of R

3.

Proof The proof depends on the existence and uniqueness theorem for linear systems of
ordinary differential equations. We shall refer to this as the ODE theorem.

For a given κ and τ , the Serret–Frenet formulae form a linear system of three first order
ordinary differential equations for the R

3-valued functions t , n and b, and the ODE the-
orem tells us that such a system has a unique solution {t , n, b} on I for any set of initial
conditions {t(s0), n(s0), b(s0)}. Then the six quantities t . t , n. n, b. b, t . n, t . b, n. b satisfy
a linear system of six first order ordinary differential equations (one of which, for instance,
is d

ds (t . b) = κn. b + τ t . n) for which t . t = n. n = b. b = 1, t . n = t . b = n. b = 0 is
easily seen to be a solution. Thus, using the ODE theorem again, we see that any solution
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of the Serret–Frenet formulae with initial trihedron being right-handed orthonormal will
stay right-handed orthonormal.

We now prove the existence part of the theorem. For given functions κ and τ , let {t , n, b}
be a right-handed orthonormal solution of the Serret–Frenet formulae, and let α : I → R

3

be an indefinite integral of t . Then α is a smooth curve with dα/ds = t and d2α/ds2 =
d t/ds = κn. It follows that α is parametrised by arc length, that t is the unit tangent vector,
that n is the principal normal vector and κ is the curvature. Thus b is the binormal, from
which it follows that α has torsion τ .

This completes the proof of existence, and we now prove uniqueness. Let α1 and α2 be
smooth curves parametrised by arc length, both having the same curvature κ and torsion τ ,
and let {t1, n1, b1}, {t2, n2, b2} be the corresponding unit tangent vectors, principal normals
and binormals. Picking a base point s0 ∈ I we may assume, by applying a suitable rigid
motion of R

3, that

α1(s0) = α2(s0) , t1(s0) = t2(s0) , n1(s0) = n2(s0) , b1(s0) = b2(s0) ,

and the uniqueness part of the ODE theorem now shows that {t1, n1, b1} = {t2, n2, b2}. In
particular, t1 = t2 so that dα1/ds = dα2/ds, and it follows that α1 −α2 is constant. Since
we applied a rigid motion so that α1(s0) = α2(s0) we see that α1 = α2, and uniqueness is
proved.

It follows from Theorem 4 that helices may be characterised as those curves having
non-zero constant curvature and non-zero constant torsion. However, it is not hard to give
a direct proof of this (see Exercise 1.16).

This concludes our treatment of the local theory of plane and space curves.

Exercises

1.1 The subset of the plane satisfying x2/3 + y2/3 = 1 is called the astroid. Show that
α(u) = (cos3 u, sin3 u) , u ∈ R, is a parametrisation of the astroid. Show that the
parametrisation is regular except when u is an integer multiple of π/2. Sketch the
astroid and mark the singular points of the parametrisation. Find the length of the
astroid between parameter values u = 0 and u = π/2.

1.2 For each positive constant r , the smooth curve given by

α(u) = (2r sin u − r sin 2u, 2r cos u − r cos 2u) , u ∈ R ,

is called an epicycloid. It is the curve traced out by a point on the circumference
of a circle of radius r which rolls without slipping on a circle of the same radius.
Sketch the trace of the curve, and find the length of α between the singular points
corresponding to u = 0 and u = 2π .

1.3 For each positive constant r , the smooth curve given by

α(u) = r

cosh u
(u cosh u − sinh u, 1) ,

is called a tractrix.
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Taking r = 1, show that, for u > 0, α(u) is the curve traced out by a stone
starting at (0,1) on the end of a piece of rope of length 1 when the tractor on the other
end of the piece of rope drives along the positive x-axis starting at (0, 0). In more
mathematical terms, show that α(u) + t(u) is on the positive x-axis for u > 0 (and
that α(0) = (0, 1)). Sketch the trace of the curve for all real values of u.

1.4 Let g : I → R be a smooth function, and parametrise its graph by α(u) = (u, g(u)).
Use the method of Example 2 of §1.3 to show that the curvature κ of α is given by

κ = g′′ (1 + (g′)2
)−3/2

.

Now check this by using the formula given in Remark 6 of §1.3 (and also given in
Exercise 1.8).

1.5 Show that, for u > 0, the curvature of the tractrix parametrised as in Exercise 1.3
(taking r = 1 for simplicity) is given by κ = cosech u.

1.6 For each positive constant k, the smooth curve given by

α(u) =
(

u, k cosh
u

k

)
is called a catenary. The trace of a catenary is the shape taken by a uniform chain
hanging under the action of gravity. Use the same set of axes to sketch the catenary
given by various values of k. Find the curvature of the catenary α(u) = (u, cosh u).

1.7 Let α be a regular plane curve, and let 	 be a real number. The corresponding parallel
curve to α is given by α	 = α + 	n. Show that the curvature κ	 of α	 is given by

κ	 = κ

|1 − κ	| .

1.8 Show that if α(u) = (x(u), y(u)) is a regular plane curve, then its curvature κ is given
by

κ = x ′y′′ − x ′′y′

(x ′2 + y′2)3/2
.

1.9 (This exercise uses material in the optional §1.4.) Let α(u) = (u, cosh u) be the
parametrisation of a catenary discussed in Exercise 1.6. Show that:

(i) the involute of α starting from (0, 1) is the tractrix given in Exercise 1.3 (with
r = 1);

(ii) the evolute of α is the curve given by

β(u) = (u − sinh u cosh u, 2 cosh u) .

Find the singular points of β and sketch its trace.

1.10 (This exercise uses material in the optional §1.4.) Let α(u) be a regular plane curve
with nowhere vanishing curvature. Show that the involute of α starting from α(u0) is
a smooth curve whose only singular point is at u = u0.
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1.11 (This exercise uses material in the optional §1.4.) For ease of calculation, in this
exercise you might prefer to consider the special case in which u0 < u1 < u and α
has positive curvature.

Let α(u) be a regular plane curve with nowhere vanishing curvature, and let u0,
u1 be real numbers in the domain of α. Let β0 and β1 be the involutes of α starting
at α(u0) and α(u1) respectively. Use equation (1.12) to write down the curvature κ0

of β0 and κ1 of β1 in terms of arc length s0, s1 along α measured from α(u0), α(u1),
respectively.

Show that β1 is a parallel curve to β0 (as in Exercise 1.7), and check that the
expressions for κ0 and κ1 you have just written down satisfy the formula for the
curvature of parallel curves given in Exercise 1.7.

1.12 Let α(u) be the curve in R
3 parametrised by

α(u) = eu(cos u, sin u, 1) , u ∈ R .

Sketch the trace of the curve.
If 0 < λ0 < λ1, find the length of the segment of α which lies between the planes

z = λ0 and z = λ1. Show also that the curvature and torsion of α are both inversely
proportional to eu .

1.13 Let α(u) be the curve in R
3 parametrised by

α(u) = (cosh u, sinh u, u) , u ∈ R .

Show that the curvature and torsion of α are given by

κ = 1

2 cosh2 u
, τ = − 1

2 cosh2 u
.

1.14 Find all regular curves in R
3 with everywhere zero curvature.

1.15 Let α(u) be a regular curve in R
3. Show that the curvature κ and the torsion τ of α

are given by

κ = |α′ × α′′|
|α′|3 , τ = − (α′ × α′′) .α′′′

|α′ × α′′|2 ,

where, as usual, ′ denotes differentiation with respect to u, and × is vector cross
product in R

3.

1.16 The cylinder with centre-line 	 and radius a > 0 consists of those points in R
3

at perpendicular distance a from the line 	. The generating lines or rulings on the
cylinder are those lines on the cylinder parallel to the centre-line. A helix on the
cylinder is a regular curve with non-zero torsion whose trace lies on the cylinder and
whose unit tangent vector t makes a constant angle with the generating lines.

(i) Let α be a regular curve on the cylinder x2 + y2 = a2 (a > 0) which has a
parametrisation of the form

α(v) = (a cos θ (v), a sin θ (v), v + c) , v ∈ R ,
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where θ (v) is a smooth function of v and c is a constant (a parametrisation of
this form exists on any open interval for which α is nowhere perpendicular to
the generating lines of the cylinder). If α(0) = (a, 0, 0) show that the trace of α
is a helix if and only if α may be parametrised as in Example 3 of §1.1; that is
to say, in the form

α(u) = (a cos u, a sin u, bu) , u ∈ R ,

for some non-zero constant b.
(ii) We saw in Example 2 of §1.5 that a helix has constant non-zero curvature and

constant non-zero torsion. Conversely, without using the Fundamental Theorem
of the Local Theory of Space Curves, show that if α is a regular curve in R

3

with constant non-zero curvature κ and constant non-zero torsion τ , then α is a
helix on a cylinder of radius a = κ/(κ2 +τ 2). To simplify calculations, you may
assume, without loss of generality, that α is parametrised by arc length s. (Hint:
first show that τ t −κb is a constant vector, X0, say, and then show that the curve
α + an is a straight line in direction X0.)

1.17 Let α be a regular curve in R
3 with non-zero curvature and torsion. Prove that the

tangent lines to α make a constant angle with a fixed direction in R
3 if and only if

κ/τ is constant. Such a curve is called a generalised helix. (Hint: if κ/τ = k for
some constant k, consider the vector t − kb.)

1.18 Let α(u) be a regular curve in R
3 and assume that there is a point p ∈ R

3 such that,
for each parameter value u, the line through α(u) in direction n(u) passes through
p. Prove that α is (part of) a circle. (In this exercise you could assume, without loss
of generality, that α is parametrised by arc length. However, it doesn’t make much
difference in the solution.)

1.19 Regular curves α(u), β(u) in R
3 are said to be Bertrand mates if, for each parameter

value u, the line through α(u) in direction nα(u) is equal to the line through β(u) in
direction nβ (u). Prove that, if α(u) and β(u) are Bertrand mates then:

(i) the angle between tα(u) and tβ (u) is independent of u; and
(ii) β(u) = α(u) + rnα(u) for some constant real number r .

1.20 In this exercise, we extend the idea of involutes to space curves. Let α(u) be a regular
curve in R

3, and let sα denote arc length along α measured from some point α(u0).
Then the curve β(u) defined by

β(u) = α(u) − sα(u)tα(u)

is the involute of α starting from α(u0). Let α be the helix parametrised in the usual
way as

α(u) = (a cos u, a sin u, bu) , a > 0 , b 	= 0 ,

and let β be the involute of α starting from α(0). Show that β lies in the plane z = 0
and is the involute starting from (a, 0, 0) of the circle of intersection of the plane
z = 0 with the cylinder x2 + y2 = a2.
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1.21 Let α(s) be a regular curve in R
3 parametrised by arc length with nowhere vanishing

curvature κ and torsion τ . Show that α lies on a sphere if and only if

τ

κ
= d

ds

(
1

τκ2

dκ

ds

)
.
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In this chapter we introduce the main objects of study in the book, namely surfaces in
R

n . The most easily visualised situation is that in which n = 3, so we give emphasis to
this. Indeed, if preferred, the reader may take n = 3 throughout this chapter, in which
case the second half of §2.4 should be omitted. However, many interesting and challenging
ideas emerge in the study of surfaces in higher dimensional Euclidean spaces, so we have
included material on this for those who are interested.

For us, surfaces are subsets of R
n which, locally at least, can be smoothly identified

with open subsets of the plane R
2. The crucial properties of the surfaces we study are that

they are 2-dimensional and may be approximated up to first order near any point by a flat
plane, the tangent plane at that point. In this book we shall study the metric intrinsic and
extrinsic geometry of surfaces, and the inter-relation between them. The intrinsic properties
we study include the lengths of curves on surfaces, their angles of intersection, and the area
of suitable regions. For the extrinsic geometry, we shall study various measures of the way
in which a surface is bending away from its tangent plane. As one would expect, and as
we shall see, these two aspects of the geometry of a surface are related in many interesting
ways.

We first give our definition of a surface in R
n , and then spend most of the rest of the

chapter discussing methods of constructing and recognising surfaces. This will enable us
to build up a large number of examples. Although we postpone the formal definition of
tangent plane until the next chapter, the existence of these planes at all points of a surface
should be intuitively clear in the examples.

2.1 Definition of a surface

As mentioned above, a surface in R
n is a subset of R

n which locally looks like an open
subset of R

2 which has been smoothly deformed. Globally, however, a surface can be very
different from an open subset of R

2.
We begin with the basic definitions. Let U be an open subset of R

m and let

f = ( f1, . . . , fn) : U → R
n

be a map. The real-valued functions f1, . . . , fn are the coordinate functions of f , and
f is smooth if all partial derivatives of all orders of each fi exist at each point and are
continuous. The image f (U ) of U under f is given by

f (U ) = { f (u) ∈ R
n : u ∈ U } .

27
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Example 1 Let

x(u, v) = (cos v cos u, cos v sin u, sin v) .

Then x is a smooth map from R
2 to R

3, and, denoting partial derivatives by the
appropriate subscript,

xu = (− cos v sin u, cos v cos u, 0)

and

xv = (− sin v cos u, − sin v sin u, cos v) .

The image of x is the unit sphere S2(1) = {(x , y, z) ∈ R
3 : x2 + y2 + z2 = 1}.

We now define the basic objects we study. For the purposes of this book, a non-empty
subset S of R

n is a surface if for every point p ∈ S there is an open subset U of R
2 and a

smooth map x : U → R
n such that p ∈ x(U ) and (Figure 2.1)

(S1) x(U ) ⊆ S,
(S2) there is an open subset W of R

n with W ∩S = x(U ) and a smooth map F : W → R
2

such that

Fx(u, v) = (u, v) , ∀(u, v) ∈ U .

The above definition has been chosen to accord with our intuition of something which
is “2-dimensional”. Intuitively speaking, although the image of a smooth map may have
dimension less than that of the domain (for example, (x , y) �→ (x , 0, 0)), the image cannot
have higher dimension. Thus, the image of x has dimension at most two, but (S2) ensures
that it can’t be 1-dimensional since F must map the image of x back on to the whole of
the 2-dimensional set U . Thus (S1) and (S2) ensure that surfaces do look “2-dimensional”
at all points. The idea is that x takes the open subset U of R

2 and moulds it smoothly onto
part of S in a way that may be smoothly reversed (this being the role of F). For example,
as we shall see, the sphere S2(r ) of radius r > 0 in R

3 is a surface, but neither the cone
nor the “folded sheet” (Figure 2.2) are surfaces (although they are surfaces if the vertex is
removed from the cone and the fold line is removed from the folded sheet).

The condition W ∩S = x(U ) in (S2) implies that, in our definition, a surface cannot have
self-intersections. In fact, we could include the latter situation (Figure 2.3), but it leads to
technicalities which we prefer to avoid.

x

FU

S

p

W

�Figure 2.1 For the definition of surface
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ConeSphere S2(r) Folded Sheet

�Figure 2.2 The cone and the folded sheet are not surfaces

�Figure 2.3 A Klein bottle: a “surface” with self-intersections

Example 2 (Hyperboloid) Let

S = {(x , y, z) ∈ R
3 : x2 + y2 = z2 − 1, z > 0} ,

so that S is the upper sheet of a hyperboloid of two sheets (Figure 2.4).

F
x

�Figure 2.4 Upper sheet of a hyperboloid of two sheets

If we let U be the whole of R
2, and define x : U → R

3 by

x(u, v) =
(

u, v,
√

u2 + v2 + 1
)

, u, v ∈ R ,

then x may be thought of as pushing the (horizontal) (x , y)-plane vertically upwards onto
S. The way to reverse this process is to squash things flat again, so we take W = R

3

and F : R
3 → R

2 to be given by F(x , y, z) = (x , y). It is now very easy to check that
(S1) and (S2) both hold, and since every point of S is in the image of x, this shows that
S is a surface in R

3. In fact, this surface is the graph of the function g : R
2 → R given

by g(u, v) = √
u2 + v2 + 1, and we shall see in §2.2 that this example may be easily

generalised to show that the graph of any smooth real-valued function defined on an open
set of R

2 is a surface in R
3.

A smooth map x : U → S ⊆ R
n with the properties described in (S1) and (S2) is called

a local parametrisation of S.

Lemma3 A local parametrisation x of a surface S is injective. That is to say, if x(u1, v1) =
x(u2, v2) then (u1, v1) = (u2, v2).
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Proof Taking notation from (S1) and (S2), if x(u1, v1) = x(u2, v2) then, applying F, we
see that (u1, v1) = (u2, v2).

The image x(U ) of a local parametrisation x, which may be regarded as being differen-
tiably equivalent to the open subset U of the plane, is called a coordinate neighbourhood
on S. Thus a surface is a subset of R

n which may be covered by (possibly overlapping)
coordinate neighbourhoods. However, it is important to note that, as far as geometry is
concerned, it is the surface S as a subset of R

n which is of interest; the role of the local
parametrisations is to help to describe and study the surface. (You may recall a similar
remark being made in Chapter 1 for regular curves.)

Example 2 is rather simple since the whole of S may be covered using just one coordinate
neighbourhood.

Example 4 (Sphere) We shall show that the sphere

S2(r ) = {(x , y, z) ∈ R
3 : x2 + y2 + z2 = r2}

with radius r > 0 and centre at the origin of R
3 is a surface. We begin by finding a

local parametrisation whose image covers the northern hemisphere, which consists of those
points of S2(r ) with z > 0. To do this, we may proceed in a similar way to Example 2 and
regard the northern hemisphere as the graph of the function g : U → R defined on the
open disc U = {(u, v) ∈ R

2 : u2 + v2 < r2} given by g(u, v) = √
r2 − u2 − v2.

Specifically, we take

x(u, v) =
(

u, v,
√

r2 − u2 − v2
)

, u2 + v2 < r2 .

Then, taking

W = {(x , y, z) ∈ R
3 : z > 0} ,

so that W ∩ S2(r ) is the northern hemisphere, and defining F : W → R
2 by

F(x , y, z) = (x , y) ,

Another two caps
front and back

�Figure 2.5 Covering a sphere with six coordinate neighbourhoods
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we see that x and F are both smooth, x(U ) = W ∩ S2(r ) and Fx(u, v) = (u, v) for all
(u, v) ∈ U . Thus conditions (S1) and (S2) hold for all points of the northern hemisphere.

To show by this line of argument that S2(r ) is a surface, we have to show that every
point of S2(r ) is in some coordinate neighbourhood. This may be done by using six local
parametrisations of the above type, each of which covers a hemisphere (Figure 2.5).

A surface may be covered by coordinate neighbourhoods in many different ways. For
instance, we shall see later that the sphere S2(r ) may be covered using just two coordinate
neighbourhoods, namely S2(r )\{(0, 0, r )} and S2(r )\{(0, 0, −r )}. In fact, it is often possible
to choose particularly nice local parametrisations for a surface, and this is an important
skill to acquire for both theoretical and calculational work. The interesting question of the
minimum number of coordinate neighbourhoods needed to cover a surface is related to a
topological invariant called the Lusternik–Schnirelmann category.

As mentioned in the introduction to this chapter, one crucial property of a surface is that
it may be approximated up to first order near any point by a flat plane, the tangent plane.
We shall see that this is the plane spanned by the partial derivatives xu and xv of a local
parametrisation x. For this to work, we first need to know that xu and xv do indeed span a
plane.

Proposition 5 Let x be a local parametrisation of a surface S. Then xu and xv are linearly
independent at each point, and so span a plane.

Proof We first recall that two vectors are linearly independent if they are both non-zero,
and one is not a scalar multiple of the other. We shall prove the proposition for surfaces in
R

3, since the generalisation to surfaces in R
n is clear but the notation in the latter case is

more cumbersome.
So, taking our notation from the definition of surface, and letting x(u, v) =

(x(u, v), y(u, v), z(u, v)), we have from (S2) that

F (x(u, v), y(u, v), z(u, v)) = (u, v) .

Differentiating with respect to u and using the chain rule, we find

xu Fx + yu Fy + zu Fz = (1, 0) ,

while differentiating with respect to v gives

xvFx + yvFy + zvFz = (0, 1) .

It follows that both xu = (xu , yu , zu) and xv = (xv , yv , zv) are never zero, and, for instance,
(xu , yu , zu) = λ(xv , yv , zv) would give the contradiction that (1, 0) = (0, λ).

We conclude this section by noting that a suitable piece of a surface is itself a surface. A
subset X of a surface S in R

n is said to be an open subset of S if X is the intersection of S
with an open subset of R

n . In Exercise 2.2 you are asked to prove the following lemma.

Lemma 6 A non-empty open subset of a surface in R
n is itself a surface in R

n.



32 2 Surfaces inR
n

In each of the next three sections we discuss a particular method of constructing surfaces.
This will enable us to build up a large collection of interesting examples.

2.2 Graphs of functions

We begin by recalling that if g : U → R is a smooth function defined on a subset U of R
2

then the graph �(g) of g is the subset of R
3 given by

�(g) =
{
(u, v, g(u, v)) ∈ R

3 : (u, v) ∈ U
}

.

Proposition 1 Let U be an open subset of R
2, and let g : U → R be a smooth function.

Then the graph �(g) of g is a surface in R
3.

Proof We generalise the method of Example 2 in §2.1 as follows. Take W = R
3, and let

x : U → R
3, F : R

3 → R
2 be the smooth maps defined by

x(u, v) = (u, v, g(u, v)) , F(x , y, z) = (x , y) . (2.1)

Then x(U ) = W ∩�(g) = �(g), and Fx(u, v) = (u, v) for all (u, v) ∈ U . Since every point
of �(g) lies in the image of x, it follows from the definition that �(g) is a surface in R

3.

Graphs provide quite simple examples of surfaces since they may be covered by a single
coordinate neighbourhood; this is not the case for the examples in the next section.

As an illustration of Proposition 5 of §2.1, we note that if x is as in (2.1) then

xu = (1, 0, gu) , xv = (0, 1, gv) ,

which are clearly linearly independent at all points.

Example 2 (Elliptic paraboloid) Let a, b be positive real numbers and let g : R
2 → R be

given by

g(u, v) = u2

a2
+ v2

b2
, u, v ∈ R .

x
y

z

�Figure 2.6 Elliptic paraboloid
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The graph �(g) of g is an elliptic paraboloid (Figure 2.6),

�(g) =
{(

u, v,
u2

a2
+ v2

b2

)
: u, v ∈ R

}
.

Example 3 (Hyperbolic paraboloid) Let a, b be positive real numbers and let g : R
2 → R be

given by

g(u, v) = u2

a2
− v2

b2
, u, v ∈ R .

The graph of g is a hyperbolic paraboloid, which is a saddle-shaped surface (Figure 2.7).

y

z

x

�Figure 2.7 Hyperbolic paraboloid

2.3 Surfaces of revolution

A surface of revolution in R
3 is a surface S which is setwise invariant under rotations of

R
3 about a line – the axis of rotation of S.
Let I be an open interval and let α(v) = ( f (v), 0, g(v)) , v ∈ I , be a regular curve

without self-intersections in the plane y = 0 in R
3. We assume that f (v) > 0 for all v ∈ I ,

so, in particular, α does not meet the z-axis (when f (v) would be zero). The subset S of
R

3 swept out as we rotate α about the z-axis is given by (Figure 2.8)

z

y
x

Trace αTrace β

�Figure 2.8 Surface of revolution
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S = {( f (v) cos u, f (v) sin u, g(v)) : u ∈ R, v ∈ I } , (2.2)

which is clearly setwise invariant under rotations about the z-axis. We shall show in Propo-
sition 5 that S is a surface by covering S using just two coordinate neighbourhoods, namely
S \ trace α and S \ trace β, where β is the reflection of α in the z-axis. Before doing this,
however, we give some examples.

Example 1 (Catenoid) This is obtained by rotating the catenary

α(v) =
(

k cosh
v

k
, 0, v
)

, v ∈ R,

about the z-axis (Figure 2.9). Here, k is any positive constant.

x

y

z

�Figure 2.9 A catenoid

Example 2 (Pseudosphere) This is obtained by rotating the tractrix

α(v) = (sech v, 0, v − tanh v) , v > 0 ,

about the z-axis (Figure 2.10). Motivation for the name “pseudosphere” will be given when
we study Gaussian curvature in Chapter 5.

y

x

z

�Figure 2.10 The pseudosphere
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If we rotate a regular curve in the xz-plane which intersects the z-axis, then we may
get singular points there; for instance, if we rotate the line z = x then we obtain a cone.
However, sometimes we do obtain a surface, as we see in the following example.

Example 3 (Sphere) The sphere S2(r ) of radius r > 0 and centre the origin is obtained by
rotating the semicircle

α(v) = (r cos v, 0, r sin v) , −π
2

≤ v ≤ π

2
,

about the z-axis (Figure 2.11).

z

y

x

x(u,v)

u
v

S2(r)

�Figure 2.11 Sphere parametrised as a surface of revolution

Note that, in this example, we have rotated a curve defined on a closed interval whose
end points are on the axis of rotation. Points at which a surface of revolution intersects its
axis are called poles. We shall see in Chapter 4 that, in order for the surface to be smooth
at these points, the curve must intersect the axis orthogonally.

Example 4 (Torus of revolution) Let a, b be positive real numbers with a > b. Then the torus
of revolution Ta,b is obtained by rotating, about the z-axis, the circle of radius b and centre
(a, 0, 0) in the xz-plane (Figure 2.12).

y

z

x

�Figure 2.12 A torus of revolution

Note that this example is also slightly different from the preceeding ones in that we have
rotated a closed curve rather than one defined on an open interval.

We now show that surfaces of revolution are indeed surfaces according to our definition.
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Proposition 5 Let I be an open interval of real numbers and let α(v) = ( f (v), 0, g(v)) ,
v ∈ I , be a regular curve in the xz-plane without self-intersections and with f (v) > 0 for
all v ∈ I . Then the set

S = {( f (v) cos u, f (v) sin u, g(v)) : u ∈ R, v ∈ I }
is a surface in R

3.

Proof In the course of the proof, and elsewhere in the book, we shall use the notation
A × B for the cartesian product of two sets A and B; specifically,

A × B = {(a, b) : a ∈ A, b ∈ B} .

Our first guess at a local parametrisation of S might be to define x : R × I → R
3 by

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , u ∈ R , v ∈ I .

The image of this map certainly covers S, but Lemma 3 of §2.1 shows that x can’t be a local
parametrisation since x(u + 2π , v) = x(u, v). We overcome this difficulty by restricting
the domain of x; we let U = (−π ,π ) × I and define x : U → R

3 by

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , −π < u < π , v ∈ I . (2.3)

We now show how to find an open subset W of R
3 and a smooth map F : W → R

2 as
in condition (S2) for a surface. We take W = R

3 \
, where 
 is the half-plane on which
y = 0 and x ≤ 0, and, in order to simplify the rest of the proof, we shall restrict ourselves
to finding a map F : W → R

2 as in condition (S2) for a surface in the following two
special cases:

Case 1: α(v) = ( f (v), 0, v),
Case 2: α(v) = (v, 0, g(v)) (so, in particular, we assume v > 0).

The finding of F in these special cases contains the essential ideas, but avoids a technical
difficulty (which may be overcome by use of an important result, the Inverse Function
Theorem, taken from the theory of differential calculus of functions between Euclidean
spaces – more about this later).

Case 1: Here we let F : W → R
2 be given by

F(x , y, z) = (Arg (x + iy), z) ,

where −π < Arg < π denotes the principal argument of a complex number. Then x and F
are smooth, and, since we assume that f (v) > 0 for all v ∈ I , it follows that W ∩S = x(U ).
Also,

Fx(u, v) = F ( f (v) cos u, f (v) sin u, v) = (u, v) , (u, v) ∈ U .

It now follows that (S2) holds, so that x is a local parametrisation of S.

Case 2: This time we take F : W → R
2 to be

F(x , y, z) =
(

Arg (x + iy),
√

x2 + y2

)
,

and a similar argument shows that (S2) holds, so that x is again a local parametrisation
of S.
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The price we pay for restricting the domain of x to (−π ,π ) × I is that the image no
longer covers the whole of S (the trace of the reflection β of α in the z-axis is omitted).
In order to cover S with coordinate neighbourhoods we use another local parametrisation
which is given by the same formula as x but has a different domain of definition, namely
y : (0, 2π ) × I → R

3 given by

y(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , 0 < u < 2π , v ∈ I . (2.4)

The image of y omits the trace of α, but the two local parametrisations x and y given in
(2.3) and (2.4) cover the whole of S, which shows that S is indeed a surface.

For x(u, v) as in (2.3), we note that

xu = (− f (v) sin u, f (v) cos u, 0) ,

xv = ( f ′(v) cos u, f ′(v) sin u, g′(v)
)

,

which, in accordance with Proposition 5 of §2.1, are easily seen to be linearly independent
at each point.

As already mentioned, the sphere discussed in Example 3 and the torus of revolution
discussed in Example 4 are slightly different from the surfaces of revolution considered in
Proposition 5. For the sphere, if we restrict the domain of definition of the curve α given in
Example 3 to −π/2 < v < π/2 then the standard local parametrisations discussed above
cover the whole of S2(r ) except for the the two poles.

The torus of revolution discussed in Example 4 is obtained by rotating a closed curve,
namely, a circle. This circle (with one point omitted) may be parametrised by

α(v) = (a + b cos v, 0, b sin v) , −π < v < π ,

and the torus may be covered using four coordinate neighbourhoods corresponding to the
local parametrisations

x(u, v) = ((a + b cos v) cos u, (a + b cos v) sin u, b sin v) , (u, v) ∈ U ,

where U is taken in turn to be

(0, 2π ) × (0, 2π ) , (0, 2π ) × (−π ,π ) ,

(−π ,π ) × (0, 2π ) , (−π ,π ) × (−π ,π ) .

Returning to the general situation of a surface of revolution, the curve α(v) =
( f (v), 0, g(v)) is the generating curve of the corresponding surface of revolution. The cir-
cle swept out by a point of α is called a parallel, and the curve on S obtained by rotating α
through a fixed angle is called a meridian. Each parallel is the intersection of S with a hor-
izontal plane z = constant, while each meridian is the intersection of S with a half-plane
with boundary the z-axis. In particular, the parallels and meridians of the sphere S2(r )
described in Example 3 are the curves of latitude and longitude used in discussions of the
geography of the Earth.
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2.4 Surfaces defined by equations

Many surfaces in R
3 can be defined by an equation. For example, the unit sphere has

equation x2 + y2 + z2 = 1, the ellipsoid has equation (x/a)2 + (y/b)2 + (z/c)2 = 1, and
the hyperboloid of two sheets has equation (x/a)2 + (y/b)2 = (z/c)2 − 1.

However, not every equation defines a surface. For instance, the equation xy = 0 gives
the union of two of the coordinate planes while x2 + y2 = 0 gives the z-axis.

In this section we look at conditions under which an equation defines a surface in R
3

(and at the more general situation of surfaces in R
n).

We first recall that, if f : W → R is a smooth function defined on an open subset
W of R

3, then the gradient grad f of f is the vector-valued function given by grad f =
( fx , fy , fz), where, as usual, partial differentiation is denoted by the appropriate suffix.

Theorem 1 Let W be an open subset of R
3 and let f : W → R be a smooth function. Let

k be a real number and let S be the subset of R
3 defined by the equation f (x , y, z) = k. If

S is non-empty and if grad f is never zero on S, then S is a surface in R
3.

The idea of the proof of the theorem is to show that (maybe after re-labelling the axes
of R

3) each sufficiently small piece of S is the graph of a function. The theorem (and its
generalisation below) is the first of several results in this section and the next whose proofs
use the Inverse Function Theorem. These proofs are not necessary for an appreciation of
the material in the book, and they are also quite technical. For this reason, we present the
proofs in an appendix of optional reading at the end of this chapter.

We note that if grad f does vanish at one or more points of the subset of R
3 defined by

the equation f (x , y, z) = k then we cannot conclude that this subset is not a surface; the
theorem simply gives us no information in that case (see, for example, Exercise 2.5).

Example 2 (Hyperboloids) Let a, b and c be positive real numbers and let f (x , y, z) =
x2

a2
+ y2

b2
− z2

c2
. Then grad f =

(
2x

a2
,

2y

b2
, −2z

c2

)
, which is zero if and only if x = y = z = 0.

f (x, y, z) = k > 0

f (x, y, z) = k < 0

f (x, y, z) = 0

�Figure 2.13 Hyperboloids and an elliptical cone
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Since f (0, 0, 0) = 0 and since f takes all real values, we see that the equation f (x , y, z) =
k defines a surface S for all real k 	= 0. If k > 0 then S is a hyperboloid of one sheet, while
if k < 0 then S is a hyperboloid of two sheets (Figure 2.13).

However f (x , y, z) = 0 is the equation of the elliptical cone formed by the lines passing
through (0, 0, 0) and the points on the ellipse in the plane z = c given by

E = {(x , y, z) ∈ R
3 :

x2

a2
+ y2

b2
= 1, z = c} .

This fails to be a surface at (0, 0, 0), the point at which grad f is zero.

There is a standard notation which applies in this situation. Those points of the domain
W of f at which grad f is zero are called critical points of f , and all other points of W
are regular points. The inverse image of a real number k is the set of points p ∈ W such
that f (p) = k, and k is a regular value of f if its inverse image is non-empty and consists
entirely of regular points. All other values of f are called critical values. Theorem 1 says
that the inverse image of a regular value is a surface.

Many surfaces are examples of more than one of the three types of surface we have
discussed in §2.2 to §2.4. For instance, if S is the graph of the smooth function g : U → R,
where U is an open subset of R

2, then S is also defined by the equation z = g(x , y).
Another example is provided by surfaces of revolution obtained by rotating a regular

curve of the form

α(v) = ( f (v), 0, v) , f (v) > 0 ∀v,

about the z-axis. Such a surface is defined by the equation

x2 + y2 = ( f (z))2 .

The methods in this section may be generalised to give a criterion for a system of equa-
tions to define a surface in R

n . We now give a brief description of this, but this material
will not be used in an essential way in the book, so the rest of this section may be
omitted if desired.

In general, to describe a surface in R
n we need a suitable system of n − 2 equations.

Theorem 3† Let W be an open subset of R
n and let f = ( f1, . . . , fn−2) : W → R

n−2 be
a smooth map. Let (k1, . . . , kn−2) ∈ R

n−2 and let S be the subset of R
n defined by the

equations

fi (x1, . . . , xn) = ki , i = 1, . . . , n − 2 .

If S is non-empty and if grad f1, . . . , grad fn−2 are linearly independent everywhere on S,
then S is a surface in R

n.

It should be clear how to define critical point, regular point, regular value and criti-
cal value of a function f : W → R

n−2 in such a way that Theorem 3 may be restated
in a similar way to Theorem 1, namely that the inverse image of a regular value is a
surface.
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Example 4†(A torus inR
4) Let r1, r2 be positive real numbers and let S be the subset of R

4

defined by the equations

x1
2 + x2

2 = r1
2 , x3

2 + x4
2 = r2

2 .

Then a straightforward application of Theorem 3 shows that S is a surface in R
4. In fact,

intuitively speaking, S is a product of two circles S = S1(r1) × S1(r2) ⊂ R
2 × R

2 and is,
in a natural way, differentiably equivalent to the torus of revolution discussed in Example
4 of §2.3. However, as we shall see, the local intrinsic metric properties of the two surfaces
are very different; the intrinsic geometry of the torus in R

4 described here is locally like
that of the plane (and so this surface is often called a flat torus), whereas that of the surface
in Example 4 of §2.3 is not. To convince yourself of this try moulding a flat piece of paper
onto a doughnut without crinkling the paper!

Example 5†(Graphs of maps to R
n−2) Let U be an open subset of R

2 and let g =
(g1, . . . , gn−2) : U → R

n−2 be a smooth map. Then the graph �(g) of g is the subset
of R

n given by

�(g) = {(u, v, g(u, v)) ∈ R
n : (u, v) ∈ U

}
.

It is quick to generalise the method used in §2.2 to show directly that �(g) is a surface, but
this may also be proved using Theorem 3 by noting that �(g) is defined by the system of
equations

xi+2 − gi (x1, x2) = 0 , i = 1, . . . , n − 2 .

2.5 Coordinate recognition

The surfaces discussed in §2.2 and §2.3 come equipped with natural local parametrisa-
tions but those of §2.4 do not. It is sometimes rather difficult to check criterion (S2) for
local parametrisations because of problems associated with finding a function F with the
properties required by that criterion, so we now describe three useful (but rather technical)
results which help us to recognise local parametrisations without the need to verify that
(S2) holds.

In order to provide some motivation and intuition, we first recall that one of the reasons
for condition (S2) in the definition of surface is to ensure that the image x(U ) of a local
parametrisation is 2-dimensional. In particular, we saw in Lemma 3 of §2.1 that x is injec-
tive, while Proposition 5 of §2.1 showed that xu and xv are linearly independent at each
point.

As we illustrate with some examples, it is often much easier to check the injectivity of
x and the linear independence of xu and xv than to construct a map F satisfying condition
(S2), and the motivation for the theorems we discuss in this section is that they will help
us decide to what extent one or both of these easier conditions enable us to conclude that x
is a local parametrisation of a surface. We shall be mostly interested in the case of surfaces
in R

3, and here the vector cross product often provides a convenient way of proving linear
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independence since the vector product of two vectors in R
3 is zero if and only if they are

linearly dependent.
The proofs of Theorems 1 and 3 in this section use the Inverse Function Theorem, and

may be found in the appendix to this chapter. As already mentioned, it is a matter of time
and taste as to whether the material in the appendix is included in a course of study.

Before stating the first theorem, we note that an open neighbourhood of a point q ∈ R
m

is simply an open set in R
m containing q.

Theorem 1 Let x : U → R
n be a smooth map defined on an open subset U of R

2, and
assume that q ∈ U is such that the vectors xu(q), xv(q) are linearly independent (or,
equivalently for a surface in R

3, (xu × xv)(q) 	= 0). Then U contains an open neigh-
bourhood U0 of q such that x(U0) is a surface S in R

n and the restriction of x to U0 is a
parametrisation of the whole of S.

Example 2 (Enneper’s surface) This is an example of a minimal surface (the shape taken up
by a soap film); these surfaces are studied in Chapter 9. Enneper’s surface (for a picture,
see Figure 9.2) is defined to be the image of

x(u, v) =
(

u − u3

3
+ uv2, −v + v3

3
− u2v, u2 − v2

)
, u, v ∈ R. (2.5)

Here,

xu = (1 − u2 + v2, −2uv, 2u) , xv = (2uv, −1 − u2 + v2, −2v) ,

and a short calculation shows that

xu × xv =
(

2u(1 + u2 + v2), 2v(1 + u2 + v2), (u2 + v2)2 − 1
)

.

This is clearly never zero, so that xu and xv are linearly independent at each point. Using
Theorem 1, we see that sufficiently small pieces of Enneper’s surface are indeed surfaces
according to our definition. However, the finding of the corresponding map F would be
daunting. We remark that the map x(u, v) given in (2.5) isn’t injective (although it is injec-
tive when restricted to sufficiently small open sets in the plane); Enneper’s surface has
self-intersections and so is not a surface according to our definition.

We now discuss two further criteria for recognising local parametrisations. These are
rather different from the one discussed above, since we need to know that we have a surface
before we can apply the criteria. Once again, we leave the proof of the first of these results
to the appendix to this chapter; the second result may be proved from the first by using
topological arguments involving paracompactness.

Theorem 3 Let S be a surface in R
n and let x : U → R

n be a smooth map defined on
an open subset U of R

2. If x(U ) ⊆ S and if q ∈ U is such that the vectors xu(q), xv(q)
are linearly independent (or, equivalently for a surface in R

3, (xu × xv)(q) 	= 0), then
U contains an open neighbourhood U0 of q such that the restriction of x to U0 is a local
parametrisation of S.
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Theorem 4 (Parametrisation Recognition Theorem) Let S be a surface in R
n. A smooth map

x : U → R
n defined on an open subset U of R

2 is a local parametrisation of S if all of the
following conditions hold:

(1) x(U ) ⊆ S,
(2) x is injective,
(3) xu and xv are linearly independent at all points (or, equivalently for a surface in R

3,
xu × xv is never zero).

As mentioned earlier in this section, the converse to Theorem 4 is also true; if x(u, v) is
a local parametrisation of a surface, then conditions (1), (2) and (3) all hold.

Example 5 (Hyperboloid of one sheet) We saw in Example 2 of §2.4 that if f : R
3 → R is

given by

f (x , y, z) = x2

a2
+ y2

b2
− z2

c2
,

then f (x , y, z) = 1 is the equation of a surface S (a hyperboloid of one sheet). This is not
a surface of revolution (unless a = b), but our experience with these latter surfaces would
encourage us to believe that the smooth map x : (−π ,π ) × R → R

3 given by

x(u, v) = (a cosh v cos u, b cosh v sin u, c sinh v) , −π < u < π , v ∈ R ,

would be a local parametrisation. The construction of a map F as in (S2) is not hard in
this case, but we wish to illustrate the use of Theorem 4 by checking the three conditions
required to apply that theorem.

First note that f (x(u, v)) = 1 for all (u, v) ∈ U , so that the first condition of Theorem 4
holds. Also, x is injective since cos u, sin u determine u ∈ (−π ,π ) uniquely while sinh v
determines v uniquely. Finally,

xu = (−a cosh v sin u, b cosh v cos u, 0) ,

xv = (a sinh v cos u, b sinh v sin u, c cosh v) ,

and the vector product

xu × xv = cosh v (bc cosh v cos u, ca cosh v sin u, −ab sinh v)

is clearly never zero.
The Parametrisation Recognition Theorem now shows that x is a local parametrisation of

S. In order to cover S with coordinate neighbourhoods we could take, in addition to x, the
local parametrisation which is given by the same formula as x but has domain (0, 2π ) ×R.

2.6 Appendix: Proof of three theorems †

In this appendix we give a brief account of the Inverse Function Theorem, and show how
it may be used to prove Theorem 1 of §2.4 and Theorems 1 and 3 of §2.5. As mentioned
previously, this material is rather technical and could be omitted if desired.
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We begin by recalling the theory of differentiation of functions between Euclidean
spaces. So, let f (u1, . . . , um) be a smooth R

n-valued map defined on an open subset U
of R

m , and, as usual, write

f = ( f1, . . . , fn) ,

where f1, . . . , fn are smooth real-valued functions defined on U . The derivative of f at
p ∈ U is the linear map d f p : R

m → R
n given by matrix multiplication by the Jacobian

matrix J f p of f at p. Specifically, using matrix multiplication on the right hand side of the
equation,

d f p

⎛
⎜⎝

h1
...

hm

⎞
⎟⎠ = J f p

⎛
⎜⎝

h1
...

hm

⎞
⎟⎠ ,

where

J f p =

⎛
⎜⎜⎝

∂ f1
∂u1

(p) · · · ∂ f1
∂um

(p)
...

...
∂ fn
∂u1

(p) . . .
∂ fn
∂um

(p)

⎞
⎟⎟⎠ . (2.6)

The derivative of f at p ∈ U is very useful because it gives us a good linear approxima-
tion to f on an open neighbourhood of p in the following sense. If h = (h1, . . . , hm) ∈ R

m

and if R(h) is the difference between f (p + h) and f (p) + d f p(h), that is to say, if

R(h) = f (p + h) − f (p) − d f p(h) ,

then limh→0 R(h)/|h| = 0.
Linear maps are usually easy to analyse, and the hope is that the behaviour of the linear

map d f p will reflect the behaviour of f near p. The Inverse Function Theorem (Theorem 2)
is a prime example of this hope being realised.

We now recall the chain rule, which says that the derivative of a composite is the
composite of the derivatives.

Theorem 1 (Chain rule) Let V be an open subset of R
q and U an open subset of R

m. If
f : V → R

m, g : U → R
n are smooth maps then the composite map g f is smooth on

f −1(U ) = {p ∈ V : f (p) ∈ U } ,

and if p ∈ f −1(U ) then

d(g f )p = dg f (p)d f p .

Equivalently, in terms of Jacobian matrices and using matrix multiplication, J (g f )p =
Jg f (p) J f p .

Let f : U → R
n be a smooth map defined on an open subset U of R

m . If f (U ) is an
open subset of R

n and if there is a smooth map g : f (U ) → U such that g f is the identity
map on U and f g is the identity map on f (U ), then f is said to have a smooth inverse, and
g is called the inverse map. It is often important to know when f has a smooth inverse g
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because, if it has, then, in some sense, no information is lost when f is applied since this
action can always be reversed by applying g.

However, the problem of deciding whether f has a smooth inverse is often very diffi-
cult. For instance, it is clear that if f has a smooth inverse then f is necessarily injective
(not always easy to check), but this is not sufficient. The Inverse Function Theorem is
a very powerful theorem because it shows that, if p ∈ U , then, on sufficiently small
open neighbourhoods of p, the difficult problem of existence of a smooth inverse may
be reduced to the easier problem of deciding whether the derivative d f p is a linear isomor-
phism, or, equivalently, whether the Jacobian matrix J f p is a square matrix with non-zero
determinant.

Theorem 2 (Inverse Function Theorem) Let U be an open subset of R
m and let f : U → R

n

be a smooth map. Suppose p ∈ U and that d f p is a linear isomorphism (or, equivalently,
m = n and the Jacobian matrix J f p has non-zero determinant). Then U contains an open
neighbourhood U0 of p such that f (U0) is open in R

m and the restriction of f to U0 has a
smooth inverse map g : f (U0) → U0.

Using this theorem, we can now prove Theorem 1 of §2.4 and Theorems 1 and 3 of §2.5.
In each case we take our notation from the statement of the relevant theorem.

Proof of Theorem 1 of §2.4 As already mentioned, the basic idea is to show that (maybe
after re-labelling the axes of R

3) each sufficiently small piece of S is the graph of a func-
tion. If p ∈ S then the determinant of the Jacobian matrix at p of the map f̃ defined
by f̃ (x , y, z) = (x , y, f (x , y, z)) is equal to (∂ f/∂z)(p), which, by re-labelling the axes if
necessary, we may assume is non-zero. The Inverse Function Theorem applied to f̃ now
shows that W contains an open neighbourhood W̃ of p in R

3 such that f̃ (W̃ ) is open in R
3

and f̃ : W̃ → f̃ (W̃ ) has a smooth inverse g̃ : f̃ (W̃ ) → W̃ , which in this case is neces-
sarily of the form g̃(u, v,w) = (u, v, g(u, v,w)) for some smooth function g(u, v,w). By
taking W̃ smaller if necessary, we may assume that f̃ (W̃ ) is of the form U × (k − ε, k + ε)
for some open subset U of R

2 and some ε > 0 (Figure 2.14). We now show that S ∩ W̃ is
the graph of the function (u, v) �→ g(u, v, k).

To do this, we define x : U → R
3 by

x(u, v) = g̃(u, v, k) = (u, v, g(u, v, k)) . (2.7)

Then f̃ x(u, v) = f̃ g̃(u, v, k) = (u, v, k), so that f (x(u, v)) = k from which it is clear that
x satisfies (S1), and it follows immediately from (2.7) that (S2) is satisfied with F : W̃ →
R

2 defined by F(x , y, z) = (x , y).

f (W)
~ ~

W
~S

U × {k}
f
~

g~

�Figure 2.14 For the proof of Theorem 1 of §2.4
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The above proof may be easily generalised to give a proof of Theorem 3 of §2.4.

Proof of Theorem 1 of §2.5 For simplicity we give the proof for the case n = 3, the general
case being proved in an entirely similar manner. We also assume, without loss of generality,
that the normal vector xu(q)×xv(q) to the plane spanned by xu(q) and xv(q) is not parallel
to the xy-plane. Thus if

x(u, v) = (x(u, v), y(u, v), z(u, v)) ,

we are assuming that (xu yv − xv yu)(q) 	= 0. Now let π : R
3 → R

2 be defined
by π (x , y, z) = (x , y). Then the determinant of the Jacobian matrix of πx at q is
(xu yv − xv yu)(q), which is non-zero. So, by the Inverse Function Theorem, U contains
an open neighbourhood U0 of q such that U1 = πx(U0) is open in R

2 and πx : U0 → U1

has a smooth inverse g : U1 → U0 (Figure 2.15). Let W = π−1(U1) and let F = gπ :
W → U0. Then F is smooth and Fx(u, v) = gπx(u, v) = (u, v) for all (u, v) ∈ U0. The
proof of the theorem now follows directly from the definition of a surface.

Proof of Theorem 3 of §2.5 For each q ∈ U , we show that U contains an open neighbour-
hood U0 of q such that there is a smooth map F : W → R

2 defined on some open subset
W of R

n with (S1) and (S2) holding for x|U0.
So, let q ∈ U , and, by taking U smaller if necessary, assume that x(U ) = W̃ ∩ S, where

W̃ and F̃ denote the set and map associated with a local parametrisation x̃ : Ũ → S
(Figure 2.16). Then, for each r ∈ U , there is a corresponding point r̃ ∈ Ũ such that
x̃(r̃) = x(r ). Then x̃ F̃x(r ) = x̃ F̃ x̃(r̃ ) = x̃(r̃ ) = x(r ), so that

x̃ F̃x = x . (2.8)

x

F

U0

U1

g
π

q

�Figure 2.15 For the proof of Theorem 1 of §2.5

x

xF
S

U0
U
~ g q

q~

~

~

�Figure 2.16 For the proof of Theorem 3 of §2.5
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Using the chain rule (Theorem 1) and equation (2.8), we see that if F̃x(q) = q̃ then

J x̃q̃ J (F̃x)q = J xq .

By assumption, the columns xu and xv of J xq are linearly independent at q, so J xq has
rank two. It follows that J (F̃x)q also has rank two, and hence has non-zero determinant.
The Inverse Function Theorem now shows that U contains an open neighbourhood U0 of q
such that F̃x|U0 has a smooth inverse g, say. Then g F̃x is the identity map on U0 so that
(S2) holds for x|U0 with F = g F̃. Thus x|U0 is a local parametrisation as required.

Exercises

None of these exercises require material in the Appendix.

2.1 Let S2(1) denote the unit sphere in R
3, and, for (u, v) ∈ R

2, let x(u, v) be the point
of intersection with S2(1) \ {(0, 0, 1)} of the line in R

3 through (u, v, 0) and (0, 0, 1).
Show that

x(u, v) = (2u, 2v, u2 + v2 − 1)

u2 + v2 + 1
.

Let P be the plane in R
3 with equation z = 1, and for each (x , y, z) ∈ R

3 \ P , let
F(x , y, z) be such that (F(x , y, z), 0) is the intersection with the xy-plane of the line
through (0, 0, 1) and (x , y, z). Show that

F(x , y, z) = 1

1 − z
(x , y) .

Prove that Fx(u, v) = (u, v) for all (u, v) ∈ R
2, and deduce that x is a local

parametrisation of S2(1) which covers S2(1) \ {(0, 0, 1)}.
2.2 A subset X of a surface S in R

n is said to be an open subset of S if X is the intersec-
tion of S with an open subset of R

n . Prove that a non-empty open subset of a surface
is itself a surface.

2.3 Consider the following two subsets of R
3:

(a) the cylinder x2 + y2 = 1;
(b) the hyperboloid of two sheets x2 + y2 = z2 − 1.

(i) Show directly from the definition that each subset is a surface.
(ii) Show that each subset is a surface of revolution.

(iii) Show that each subset is a surface S defined by an equation of the form
f (x , y, z) = 0, where grad f does not vanish on S.

Sketch each surface, indicating the coordinate neighbourhoods you have used to
parametrise the surface in your answers to (i). Indicate also the coordinate neighbour-
hoods arising from the standard parametrisations (as in (2.3) and (2.4)) as surfaces
of revolution.
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2.4 Let a be a positive real number, and let f (x , y, z) = z2 +
(√

x2 + y2 − a
)2

. Find

all points of R
3 at which grad f vanishes. Show that if 0 < b < a then the equation

f (x , y, z) = b2 defines a torus of revolution. What happens if 0 < a < b? Draw a
picture of the set f (x , y, z) = b2 in this case.

2.5 (a) Let f (x , y, z) = (x + y + z − 1)2.
(i) Find all points at which grad f vanishes.

(ii) For which values of k does f (x , y, z) = k define a surface?
(iii) Show that the set defined by f (x , y, z) = 0 is a surface.

(b) Repeat (i) and (ii) using the function f (x , y, z) = xyz2. Is the set xyz2 = 0 a
surface?

2.6 (The tangent surface of a curve) Let α(u) be a regular curve in R
3 with curvature

κ , and consider the map

x(u, v) = α(u) + vα′(u) .

The image of x (Figure 2.17) is called the tangent surface of α (although, as we shall
see, it isn’t actually a surface!). Show that xu and xv are linearly dependent at (u, v)
if and only if either κ(u) = 0 or v = 0. Use Theorem 1 of §2.5 to deduce that at all
other points each sufficiently small piece of the image of x is a surface. In fact, if κ
is non-zero then the image of x gives two surfaces (possibly with self-intersections)
with common boundary along the trace of α (which corresponds to v = 0).

2.7 If a, b, c > 0 show that the ellipsoid S in R
3 defined by

x2

a2
+ y2

b2
+ z2

c2
= 1

is a surface. Show also that

x(u, v) = (a cos v cos u, b cos v sin u, c sin v) , −π < u < π , −π/2 < v < π/2 ,

is a local parametrisation of S using each of the following methods.

(i) Find a suitable map F as in (S2) of the definition of surface.
(ii) Use Theorem 4 of §2.5.

�Figure 2.17 Tangent surface
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2.8 (i) Show that the equation z = x2 − y2 defines a surface S in R
3 (a hyperbolic

paraboloid, see Figure 2.7). If we take

x(u, v) = (v + cosh u, v + sinh u, 1 + 2v(cosh u − sinh u)) , u, v ∈ R,

show that x is a local parametrisation of S.
(ii) Show that the equation xz + y2 = 1 defines a surface S in R

3 (a hyperboloid of
one sheet, see Figure 2.13). If we take

x(u, v) = (cos u + v(1 + sin u), sin u − v cos u,

cos u −v(1 − sin u)) , 0 < u < 2π , v ∈ R,

show that x is a local parametrisation of S.
(The local parametrisations in (i) and (ii) may be written in the form x(u, v) =

α(u) + vβ(u) with α(u) being a regular curve and β(u) never equal to zero. This
displays each surface as ruled surface, a surface swept out as a line is moved around
in R

3. There is more on ruled surfaces in §3.6.)

2.9 Show that the equation x sin z = y cos z defines a surface S in R
3. If

x(u, v) = (v cos u, v sin u, u) , u, v ∈ R ,

show that the image of x is the whole of S. Show also that x is a parametrisation of
S using each of the following two methods:

(i) use the Parametrisation Recognition Theorem (Theorem 4 of §2.5);
(ii) find a map F : R

3 → R
2 such that x and F satisfy conditions (S1) and (S2) for

a surface.

The surface S is a helicoid, a picture of which may be found in §3.6. Like the two
surfaces in the previous question (and the surface in Exercise 2.6), the helicoid is a
ruled surface.

2.10 (Möbius band) If we take a rectangle of rubber sheet which, for definiteness, we
take to measure 4π by 2, and join the two ends of length 2 together after performing
one twist, then (Figure 2.18) we have a model of a Möbius band. A mathematical
model may be given as follows.

Let α be the parametrisation of the unit circle in the (x , y)-plane given by

α(u) = (sin u, cos u, 0) ,

and let S be the image of the map f : R × (−1, 1) → R
3 defined by

f (u, v) = 2α(u) + vβ(u),

�Figure 2.18 Möbius band
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where

β(u) = cos
u

2
α(u) + sin

u

2
(0, 0, 1) .

Assuming that S is a surface in R
3, use the Parametrisation Recognition Theorem

(Theorem 4 of §2.5) to show that S may be covered by two coordinate neighbour-
hoods. (It may help to first show that |β| = 1 and that β is orthogonal to α′, which
enables you to deduce that f u is orthogonal to f v). Note that S is a ruled surface
(see the previous two exercises); the rulings are indicated in Figure 2.18.

2.11 (This exercise uses material in the optional second half of §2.4.) For positive real
numbers r1 and r2, let S be the flat torus in R

4 (described in Example 4 of §2.4)
defined by the equations

x2
1 + x2

2 = r1
2 , x2

3 + x2
4 = r2

2 .

If x(u, v) = (r1 cos u, r1 sin u, r2 cos v, r2 sin v), −π < u, v < π , use the
Parametrisation Recognition Theorem (Theorem 4 of §2.5) to show that x is a local
parametrisation of S. Find a system of local parametrisations covering S.



3 Tangent planes and the first fundamental form

In the first section of this chapter we show that, at each point p of a surface S in R
n , the set

of vectors tangential to smooth curves on S through p form a 2-plane, the tangent plane of
S at p. As already mentioned, the existence of this plane is crucial in the development of
the geometry of surfaces.

We then discuss the measurement of length, angle and area on a surface in R
n . These

fundamental intrinsic properties are derived from the restriction of the inner product on R
n

to the tangent planes of S. However, the ideas presented here extend readily to the more
general study of abstract surfaces (which are not considered as subsets of R

n) or even the
study of length, angle and area on smooth manifolds of arbitrarily large dimension. (Mani-
folds are the generalisation of abstract surfaces to objects of higher dimension.) These
metric properties are the defining features of a branch of mathematics called Riemannian
geometry, named after B. Riemann (1826–1866), who may be regarded as the instigator of
this study via the work in his doctoral thesis.

As in Chapter 2, the reader may continue to take n = 3 throughout this chapter.

3.1 The tangent plane

Let p be a point of a surface S in R
n . A tangent vector (Figure 3.1) to S at p is a vector

X such that X = α′(0) for some smooth curve α(t) in R
n whose image lies on S and has

α(0) = p. The main result in this section is Proposition 2, which says that the set of tangent
vectors to S at p form a 2-plane. We then go on to show how to find this plane for each of
the three types of surface discussed in Chapter 2, namely graphs of functions, surfaces of
revolution and surfaces defined by equations.

We begin with a lemma which will be useful in many situations. If x : U → R
n is a

local parametrisation of S, then the image under x of a smooth curve γ (t) = (u(t), v(t)) in
U is the smooth curve α(t) = x (u(t), v(t)) lying on S. We show that every smooth curve
in R

n whose image lies on x(U ) is of this form. This is an important result, because it
shows that if α(t) is a smooth curve whose image lies on S then sufficiently small pieces
of α may be described using local parametrisations.

Lemma 1 Let x : U → R
n be a local parametrisation of S and let α(t) be a smooth curve

in R
n whose image lies on x(U ). Then α(t) is the image under x of a smooth curve in U,

and hence may be written in the form

α(t) = x (u(t), v(t))

for smooth functions u(t), v(t).

50
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S
p

Y

X

�Figure 3.1 X andY are tangent vectors to S at p

Proof We have seen (in Lemma 3 of §2.1) that a local parametrisation x is a bijective map
onto x(U ). Hence, for each t , there exists a unique point γ (t) = (u(t), v(t)) ∈ U such that

x (γ (t)) = α(t) . (3.1)

It remains to show that γ (t) = (u(t), v(t)) is a smooth function of t . To do this, let F :
W → R

2 be a map as in (S2) of the definition of surface. If we apply F to both sides
of (3.1), we obtain γ as the composite Fα of two smooth maps between open subsets of
Euclidean spaces. It follows that γ is itself smooth.

From now on, by a curve on a surface S we shall mean a smooth curve in R
n whose

image lies on S. If α(t) is such a curve and if α(t0) is in the image of a local parametrisation
x(u, v) of S then continuity of α implies that there exists ε > 0 such that the image of the
restriction of α to (t0 − ε, t0 + ε) is contained in the image of x. We shall often encounter
this sort of situation, and paraphrase by saying that if α(t0) lies in the image of a local
parametrisation x(u, v) then, locally at least, the image of α is contained in the image
of x.

The usefulness of Lemma 1 will be apparent in the proof of the following proposition,
which, as already mentioned, is crucial in the study of the geometry of surfaces.

Proposition 2 Let x(u, v) be a local parametrisation of S and assume that x(q) = p. The
set of tangent vectors to S at p is the plane spanned by xu(q) and xv(q).

Proof We have already seen in Proposition 5 of §2.1 that xu(q) and xv(q) are linearly
independent and hence do indeed span a plane. Now let α(t) be a curve on S through p.
Then, locally at least, we may write α(t) = x (u(t), v(t)) as in Lemma 1. Thus, by the
chain rule, α′ = u′xu + v′xv , so that α′ is a linear combination of xu and xv (Figure 3.2).

Conversely, if λ and μ are real numbers, we let α(t) = x (γ (t)), where γ (t) = q +
t(λ,μ). Then, using the chain rule again,

α′ = λxu + μxv ,

so that, by definition, λxu + μxv is a tangent vector.

If x is a local parametrisation of S with x(q) = p then the vectors xu(q) and xv(q) are
called the coordinate vectors at p, and Proposition 2 shows that we could have defined the
set of tangent vectors to S at p to be the plane spanned by the coordinate vectors xu(q)
and xv(q). However, as mentioned earlier, the surfaces are the objects of interest; the role
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S

x
q

p
TpSxu

xv

U Ì 2

�Figure 3.2 A tangent plane

of the local parametrisations is to help describe and study them. So, if we had defined the
set of tangent vectors to S at p to be the plane spanned by xu(q) and xv(q), we would then
have had to prove that this plane is independent of the choice of local parametrisation x
(and we would still have to prove Lemma 1 in order to show that the tangent vector to any
curve on S lies in the tangent plane). We have avoided this difficulty by choosing to define
the set of tangent vectors without using a specific local parametrisation.

The set of tangent vectors to S at p is called the tangent plane of S at p, and denoted
Tp S. Proposition 2 shows that Tp S is indeed a plane, and it is spanned by xu(q) and xv(q).

Example 3 (Tangent planes of graphs of functions) Let g : U → R
n−2 be a smooth function

defined on an open subset U of R
2. We saw in §2.2 that the graph

S = {(u, v, g(u, v)) : (u, v) ∈ U }
is a surface in R

n which may be parametrised by x(u, v) = (u, v, g(u, v)). Thus the tangent
plane of S at (u, v, g(u, v)) is the plane spanned by (1, 0, gu) and (0, 1, gv).

As a specific example, if U = {(u, v) ∈ R
2 : u2 + v2 < 1} and if g : U → R is

given by g(u, v) = √
1 − u2 − v2, then S is the upper hemisphere x2 + y2 + z2 = 1,

z > 0, of the unit sphere. If p = (u, v, g(u, v)) then p = x(u, v) so that Tp S is spanned by(
1, 0, − u√

1 − u2 − v2

)
and

(
0, 1, − v√

1 − u2 − v2

)
. In particular, if p = (0, 0, 1) is the

north pole, then Tp S is spanned by (1, 0, 0) and (0, 1, 0), and so is horizontal, in agreement
with intuition (Figure 3.3).

�Figure 3.3 Tangent plane to S2(1) at the north pole

The tangent plane of a surface at a point p, being a vector subspace of R
n , passes through

the origin of R
n . However (as in Figures 3.2 and 3.3), it is often helpful to visualise this

plane moved parallel to itself so that the tangent vectors are all based at p. This is the plane
which best approximates S near p in the sense that any smooth curve on S through p has
first order contact with this plane; the curve touches the plane there and its tangent vector
lies in the plane.
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Example 4 (Cone) We mentioned in §2.1 that the cone z2 = x2 + y2 isn’t a surface because
it doesn’t look locally like an open subset of the plane around the vertex (0, 0, 0). This
is not hard to prove using a connectivity argument (removing the vertex disconnects the
cone, but an open subset of the plane cannot be disconnected by removing a point), but
we may also prove it using Proposition 2 by writing down three curves through (0, 0, 0)
which lie on the cone but whose tangent vectors do not all lie in a plane. Specifically, if we
take α(t) = (t , 0, t), β(t) = (t , 0, −t), and γ (t) = (0, t , t), then α′(0), β ′(0) and γ ′(0) are
linearly independent.

As we have seen in Example 3, it is easy to find the tangent plane at a point
of a surface which is the graph of a function because such a surface has a natu-
ral parametrisation. A similar comment holds for surfaces of revolution, which may
be parametrised as described in §2.3, but does not apply to surfaces defined by equa-
tions (as discussed in §2.4). However, a rather different method works nicely in this
case.

Proposition 5 Let f : W → R be a smooth function defined on an open subset W of R
3,

and let k be a real number in the image of f . Assume that grad f is never zero on the
subset S of R

3 defined by the equation f (x , y, z) = k (so that, by Theorem 1 of §2.4, S is
a surface in R

3). If p ∈ S, then Tp S is the plane of vectors orthogonal to (grad f )(p).

Proof Let α(t) = (x(t), y(t), z(t)) be a smooth curve on S with α(0) = p. Then
f (x(t), y(t), z(t)) = k, so, differentiating, we obtain

fx x ′ + fy y′ + fz z′ = 0 . (3.2)

However, grad f = ( fx , fy , fz), and α′(t) = (x ′(t), y′(t), z′(t)
)
, so, using the inner product

in R
3, we see that (3.2) is equivalent to

α′.grad f = 0 ,

that is to say, α′ is orthogonal to grad f (Figure 3.4).
Since, by definition, every element of Tp S is equal to α′(0) for some smooth curve α on

S with α(0) = p, we now see that every element of Tp S is orthogonal to (grad f )(p). The
result now follows since Tp S is a 2-dimensional vector space and hence is the whole of the
orthogonal complement of (grad f )(p).

p

S

(grad f )(p)

�Figure 3.4 grad f is orthogonal to S
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Example 6 (Sphere) Let S2(r ) be the sphere of radius r > 0 with equation

x2 + y2 + z2 = r2 .

If p = (x , y, z) ∈ S2(r ), then Tp S2(r ) consists of those vectors orthogonal to (the position
vector of) p.

Example 7 (Ellipsoid) Let S be the ellipsoid with equation

x2

a2
+ y2

b2
+ z2

c2
= 1 .

Then the tangent plane at (x0, y0, z0) ∈ S consists of those vectors orthogonal to
(2x0/a2, 2y0/b2, 2z0/c2) and hence has equation

x0

a2
x + y0

b2
y + z0

c2
z = 0 .

The parallel translate of this plane to the plane of vectors based at (x0, y0, z0) has equation

x0

a2
x + y0

b2
y + z0

c2
z = 1 , (3.3)

and this is the plane with which the smooth curves on S through (x0, y0, z0) have first order
contact. As a particular example, we see from (3.3) that the tangent plane based at (0, 0, c)
is the horizontal plane z = c, in agreement with intuition.

3.2 The first fundamental form

Let p be a point on a surface S in R
n . The restriction to the tangent plane Tp S of the inner

product on R
n gives an inner product on Tp S (that is to say, a symmetric positive-definite

bilinear form on Tp S). Thus, if X and Y are in Tp S then X .X > 0 if X is non-zero,
X .Y = Y .X , and X .Y is linear in both X and Y . The corresponding quadratic form given
by

I (X) = X .X = |X|2

is called the first fundamental form or metric of S.
The intrinsic properties of S are determined by the first fundamental form, and we now

obtain expressions for the inner product and the first fundamental form in terms of a local
parametrisation x(u, v) of S. As we saw in Proposition 2 of §3.1, if X , Y are tangent vectors
to S at some point then, for some uniquely determined scalars λ1, λ2, μ1, μ2,

X = λ1xu + λ2xv ,

Y = μ1xu + μ2xv .

Thus,

X .Y = (λ1xu + λ2xv).(μ1xu + μ2xv)

= λ1μ1 E + (λ1μ2 + λ2μ1)F + λ2μ2G ,
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where

E = xu .xu , F = xu .xv , G = xv .xv .

In particular, the first fundamental form I is given by

I (X) = |X|2 = λ1
2 E + 2λ1λ2 F + λ2

2G . (3.4)

The functions E , F and G are determined by x and are called the coefficients of the first
fundamental form with respect to x. Since xu and xv are smooth, it follows that E , F and
G are smooth functions of u and v.

Example 1 (Graph of a function) Let S = �(g) be the graph of the smooth function g : U →
R, and let x(u, v) be the (standard) parametrisation of S given by

x(u, v) = (u, v, g(u, v)) .

Then

xu = (1, 0, gu) , xv = (0, 1, gv) ,

so that

E = 1 + gu
2 , F = gu gv , G = 1 + gv

2 .

So, for instance, the square of the length of 3xu +4xv is 9(1+gu
2)+24gu gv+16(1+gv2),

while the angle θ betweeen xu and xv is given by

cos θ = xu .xv
|xu ||xv| = F√

EG
= gu gv√

(1 + gu
2)(1 + gv2)

.

Example 2 (Surface of revolution) Let S be the surface of revolution generated by the reg-
ular curve α(v) = ( f (v), 0, g(v)), f (v) > 0 ∀v, and let x(u, v) be the standard local
parametrisation given by

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) .

Then

xu = (− f (v) sin u, f (v) cos u, 0) , xv = ( f ′(v) cos u, f ′(v) sin u, g′(v)
)

,

so that

E = ( f (v))2, F = 0 , G = ( f ′(v)
)2 + (g′(v)

)2 = |α′(v)|2 .

Note that in this example the coefficients of the first fundamental form depend on only v,
and are particularly simple if the generating curve α is parametrised by arc length.

As already noted, the inner product on each tangent space is positive definite. This leads
to the following lemma.

Lemma 3 Let E, F and G be the coefficients of the first fundamental form of a surface S
with respect to some local parametrisation x. Then E, G and EG − F2 are all positive.
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Proof It is clear that E > 0 and G > 0 since each is the square of the length of a non-zero
vector. Also, if θ is the angle between xu and xv , then

EG − F2 = |xu |2|xv|2(1 − cos2 θ ) = |xu |2|xv|2 sin2 θ > 0 .

3.3 Arc length and angle

As already mentioned, the intrinsic properties of a surface S are those that depend on
only the inner product on the tangent planes of the surface; or, equivalently once a local
parametrisation has been chosen, depend on only the coefficients E , F and G of the
first fundamental form. The intrinsic properties we study in this chapter are the length of
curves on S, the angle of intersection of two curves on S, and the area of suitable regions
of S.

The crucial point is that, once you know the coefficients of the first fundamental form,
you can carry out intrinsic metric geometry on the corresponding coordinate neighbour-
hood of S without needing to know the actual shape of the surface itself. Indeed, two
surfaces having local parametrisations with the same coefficients E , F and G of the first
fundamental form have the same (local) intrinsic geometry. So, for instance, you cannot
tell whether you are on a plane or (a sufficiently small part of) a cylinder solely by compar-
ing lengths of curves and angles of intersection of curves on these two surfaces. Physically
speaking, you can mould a piece of paper round a cylinder without wrinkles or folds, but,
for instance, you can not do this round a sphere; the intrinsic geometry of the sphere is
different from that of the plane.

In this section we illustrate the use of the coefficients of the first fundamental form in
determining the intrinsic geometry of a surface S by describing how to use them to find
the length of a curve given in terms of a local parametrisation on S. We then show how to
determine the angle of intersection of two curves on S.

Let x : U → R
n be a local parametrisation of a surface S in R

n , and let α(t) =
x (u(t), v(t)) be a smooth curve on S lying on the coordinate neighbourhood x(U ). Then

α′ = u′xu + v′xv ,

so that

|α′|2 = α′.α′ = (u′xu + v′xv).(u′xu + v′xv)

= Eu′2 + 2Fu′v′ + Gv′2 . (3.5)

Hence, using the definition given in equation (1.1) of the arc length function s measured
from some point α(t0) on α, we have

s(t1) =
∫ t1

t0
|α′(t)|dt

=
∫ t1

t0
(Eu′2 + 2Fu′v′ + Gv′2)1/2dt . (3.6)
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The following example illustrates the remark at the beginning of this section in that, if
we know E , F and G, we can find arc length along a curve on a surface without knowing
the shape of either the surface or the curve.

Example 1 Let x(u, v) be a local parametrisation of a surface S in R
n , with coefficients of

the first fundamental form given by

E = 1 + 4u2 , F = −4uv , G = 1 + 4v2 , (3.7)

and let α(t) be the curve on S given by

α(t) = x (u(t), v(t)) , t ∈ [−1, 1] , (3.8)

where

u(t) = t , v(t) = t . (3.9)

On the curve α, we then have

u′ = v′ = 1 , E = 1 + 4t2 , F = −4t2, G = 1 + 4t2 ,

so that, using (3.6), the length of α is given by∫ 1

−1

(
1 + 4t2 + 2(−4t2) + 1 + 4t2

)1/2
dt

= √
2
∫ 1

−1
dt = 2

√
2 .

In fact, the above calculation may be verified by taking a specific surface with the above
E , F and G as follows.

Example 2 (Hyperbolic paraboloid) Let S be the hyperbolic paraboloid with equation z =
x2 − y2, and parametrise it as a graph in the usual way by taking

x(u, v) = (u, v, u2 − v2) .

Then

xu = (1, 0, 2u) , xv = (0, 1, −2v) ,

so that E , F and G are given by (3.7). The line segment joining (−1, −1, 0) to (1, 1, 0) lies
on the surface, and is parametrised by (3.8) and (3.9). The length of the line segment is (by
Pythagoras’ Theorem) equal to 2

√
2, which agrees with the answer obtained in Example 1.

We now illustrate how a knowledge of E , F and G enables us to find the angle of
intersection of two regular curves on a surface S. We use the fact that, if α(t) and β(r ) are
regular curves on S with α(t1) = β(r1) = p, then the angle θ at which they intersect at p
is given by

α′(t1).β ′(r1) = |α′(t1)| |β ′(r1)| cos θ , (3.10)

where, as usual, we use ′ to denote differentiation with respect to the appropriate variable.
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Example 3 Let x(u, v) be a local parametrisation of a surface S with coefficients of the
first fundamental form given, as in Example 1, by

E = 1 + 4u2 , F = −4uv , G = 1 + 4v2 . (3.11)

We shall find the angle θ of intersection of the curves

α(t) = x(2t , t3) , β(r ) = x(r , 1) .

We start by noting that since x is a local parametrisation it is also injective, so that the
two curves intersect at the single point α(1) = β(2) = x(2, 1). At this point

E = 17 , F = −8 , G = 5 .

Also

α′(1) = 2xu + 3xv , β ′(2) = xu ,

so that

α′(1).β ′(2) = 2E + 3F = 10 ,

and

|α′(1)|2 = 4E + 12F + 9G = 17 , |β ′(2)|2 = E = 17 .

It now follows from (3.10) that

cos θ = 10√
17.17

= 10

17
, (3.12)

so the curves α and β intersect at an angle of 0.94 radians (to two significant figures) or
54◦.

The above calculation holds for any surface with a parametrisation having coefficients of
the first fundamental form given by (3.11). In particular, if we take S to be the hyperbolic
paraboloid z = x2 − y2 with parametrisation as in Example 2, then the curves α and β are
given by α(t) = (2t , t3, 4t2 − t6) and β(r ) = (r , 1, r2 − 1) from which the expression for
their angle of intersection in R

3 may be calculated directly and seen to agree with (3.12).

We finish the section with a slight digression in order to explain some notation used by
many authors for the first fundamental form. This material can be safely omitted since it
will not be used elsewhere in the book.

It follows from equation (3.6) that, along a smooth curve α(t) = x (u(t), v(t)),

(
ds

dt

)2

= E

(
du

dt

)2

+ 2F

(
du

dt

)(
dv

dt

)
+ G

(
dv

dt

)2

.

This is sometimes written in the form

ds2 = Edu2 + 2Fdudv + Gdv2 , (3.13)
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and ds2 is then referred to as the first fundamental form. We can make sense of this equa-
tion of ‘infinitesimals’ if we consider du and dv as the linear functions defined on the
tangent plane of S by

du(xu) = 1 , du(xv) = 0 ,

dv(xu) = 0 , dv(xv) = 1 .

The right hand side of (3.13) is then precisely the first fundamental form I as given in (3.4).

3.4 Isothermal parametrisations

We begin this section by stressing, once again, that the geometry of a surface (and the
curves on it) are the important considerations. A local parametrisation x(u, v) is just a
convenient device for investigating these.

However, it is clearly desirable to choose a local parametrisation whose coefficients
of the first fundamental form are as simple as possible, so it is an interesting ques-
tion as to how simple E , F and G can be made for a given surface by choosing a
suitable local parametrisation. For instance, can we prove that any surface may be cov-
ered using local parametrisations for which E = G = 1, F = 0 ? The answer, not
surprisingly, is “no”! In fact, since E , F and G determine the local intrinsic proper-
ties of a surface the existence of a local parametrisation with E = G = 1, F = 0
would imply that the surface was (locally at least) metrically indistinguishable from a flat
plane.

We often aim, wherever practicable, to choose local parametrisations with F = 0 (as
described in Example 2 in §3.2 for surfaces of revolution, for instance). Such parametri-
sations are called orthogonal parametrisations because at each point the vectors xu and
xv are orthogonal. Even better are isothermal parametrisations, which have E = G and
F = 0; that is to say, at each point the coordinate vectors xu and xv are orthogonal and
have the same length.

Example 1 (Catenoid) We consider the catenoid S which may be parametrised as a surface
of revolution by taking

x(u, v) = (cosh v cos u, cosh v sin u, v) , −π < u < π , v ∈ R .

It follows quickly from Example 2 of §3.2 that

E = G = cosh2 v , F = 0 ,

so that x is an isothermal parametrisation of S.

Example 2 (Sphere) Let S2(1) denote the unit sphere in R
3, and, for (u, v) ∈ R

2, let x(u, v)
be the point of intersection with S2(1) \ {(0, 0, 1)} of the line in R

3 through (u, v, 0) and
(0, 0, 1) (Figure 3.5).
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(0,0,1)

x(u,v)

(u,v,0)

�Figure 3.5 An isothermal parametrisation of the sphere S2(1)

In Exercise 2.1 you were invited to prove that x(u, v) is given by

x(u, v) = (2u, 2v, u2 + v2 − 1)

u2 + v2 + 1
,

and that x is a local parametrisation of S2(1) which covers S2(1) \ {(0, 0, 1)}.
A routine computation shows that, for this local parametrisation x,

E = G = 4

(u2 + v2 + 1)2
, F = 0 , (3.14)

so that x is an isothermal parametrisation of S2(1) \ {(0, 0, 1)}. We may carry out a similar
process but considering lines from (0, 0, −1), thus covering S2(1) with two isothermal
parametrisations.

We shall not prove the following proposition (since the proof is rather delicate; ulti-
mately using the theory of existence of solutions of elliptic partial differential equations).

Proposition 3 Let S be a surface in R
n and let p ∈ S. Then there exists an isothermal local

parametrisation of S whose image contains p.

In some ways, Examples 1 and 2 are rather misleading, since finding an explicit isother-
mal local parametrisation is impracticable for most examples (you may remember a similar
remark in Chapter 1 concerning arc length parametrisations for regular curves). However,
the existence of isothermal local parametrisations is often useful for theoretical work.

The following lemma gives the main geometrical property of isothermal parametrisa-
tions.

Lemma 4 Let x(u, v) be an isothermal local parametrisation (so that E = G and F = 0).
Then x preserves angles in the sense that if β1(t) and β2(r ) are regular curves in R

2 in
the domain of x intersecting at an angle φ then α1 = xβ1 and α2 = xβ2 intersect on the
surface at the same angle φ.

Proof In the following proof, xu , xv , α′
1, α′

2 and E are all evaluated at the point of
intersection of the curves. Assume that, at their point of intersection, β ′

1 = (λ1,μ1) and
β ′

2 = (λ2,μ2). Then α′
1 = λ1xu +μ1xv , and α′

2 = λ2xu +μ2xv . The angle of intersection
θ of α1 and α2 is given by (Figure 3.6)
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xφ
θ

S

U Ì 2

�Figure 3.6 An isothermal parametrisation preserves angle

cos θ = (λ1xu + μ1xv).(λ2xu + μ2xv)

|λ1xu + μ1xv||λ2xu + μ2xv| = E(λ1λ2 + μ1μ2)√
E(λ1

2 + μ1
2)
√

E(λ2
2 + μ2

2)

= λ1λ2 + μ1μ2√
(λ1

2 + μ1
2)
√

(λ2
2 + μ2

2)
= cosφ .

We shall see other examples of angle preserving maps in Chapter 4.

We now give a more substantial example of computing lengths and angles on a surface
using only the coefficients E , F and G of the first fundamental form. This example may be
omitted by those who are only interested in surfaces in R

3 (although this would be a pity
because the example is interesting and historically important!).

Example 5†(Hyperbolic plane) Let S be a surface in R
n covered by the image of a single

parametrisation x : U → S, where U = {(u, v) ∈ R
2 : v > 0}, and assume that the

coefficients of the first fundamental form are given by

E = 1

v2
, F = 0 , G = 1

v2
, (3.15)

(so that x is an isothermal parametrisation). Then, by Lemma 4, the angle of intersection
of any two curves on S is equal to the angle of intersection of the corresponding curves in
the upper half-plane U .

We now consider the lengths of two particular curves. For any positive real number v0,
we consider the curves on S given by

α(t) = x(0, t) , t ≥ v0 ,

and

β(r ) = x(r , v0) , −π ≤ r ≤ π .

These curves are the images under x of the lines in the upper half-plane illustrated in
Figure 3.7.

α

β

–π π0

v0

�Figure 3.7 Hyperbolic plane
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Since x preserves angles, the curves α and β intersect orthogonally on S at x(0, v0),
but arc length measured along α and β is different from arc length measured along the
corresponding curves in the plane.

On the curve α, we have

u′ = 0 , v′ = 1 , E = G = 1/t2 , F = 0 ,

so that, for a real number v1 with v1 > v0, the arc length of α between parameter values
v0 and v1 is ∫ v1

v0

(1/t)dt = [log t]v1
v0

= log(v1/v0) .

Note that, as v0 → 0 or as v1 → ∞ the arc length of the restriction of α to [v0, v1] tends
to ∞.

Similar calculations for β show that the length of this curve is given by 2π/v0, so that
as v0 → ∞ the length tends to 0, while as v0 → 0, the length of β tends to ∞.

Finally, we shall consider curves on S which are images under x of arcs of concentric
semicircles in the upper half-plane which intersect the u-axis orthogonally (Figure 3.8).
Specifically, for r0 > 0, let γ (t) = x(r0 cos t , r0 sin t). If 0 < θ0 < θ1 < π , then the length
of γ from t = θ0 to t = θ1 is∫ θ1

θ0

1

sin t
dt =

[
log tan

t

2

]θ1

θ0

= log

(
tan θ1

2

tan θ0
2

)
.

Note that this length is independent of the radius r0 of the circular arc in the (u, v)-plane.

0

θ0
π-θ1

�Figure 3.8 The circular arcs have the same hyperbolic length

In all the above calculations, we do not need a formula for the parametrisation x. The
actual shape of the surface in R

n is completely irrelevant for the calculations, what matters
is the metric. Changing our viewpoint by suppressing x, we may regard this whole example
as simply the upper half-plane {(u, v) ∈ R

2 : v > 0} but with a non-standard metric
(that is to say, not coming from the standard inner product on the plane). This is called
the hyperbolic plane and is usually denoted by the letter H . The hyperbolic length of α
between parameter values v0 and v1 is then log(v1/v0), with similar comments for the
other curves β and γ . However, as mentioned earlier, since E = G and F = 0, angles are
the same in both the hyperbolic and standard metrics.

It turns out that the circular arcs γ (t), θ0 ≤ t ≤ θ1, are curves on H of shortest hyperbolic
length between their endpoints (there is more on this in Example 10 of §7.3), so their length
gives the hyperbolic distance apart of these endpoints. As noted earlier, each of these arcs
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has the same hyperbolic length, so if the defining property of a railway track is that the
rails stay a constant distance apart, then for angles θ0 and θ1, the lines y = x tan θ0 and
y = x tan θ1 are the two rails of a hyperbolic railway track!

Although not the standard metric, the hyperbolic metric on the upper half-plane may be
given a practical interpretation. For instance, if you are in a field bounded by a straight
impenetrable hedge and if the field gets more and more muddy the nearer you get to the
hedge in such a way that the effort required to make progress is inversely proportional to
the distance from the hedge, then the hyperbolic length of a path in the field will measure
the effort required to traverse that path. In particular, the path of least effort between two
points in the field will be the appropriate circular arc γ as described above.

A deep result of Hilbert says that the whole of the hyperbolic plane cannot be realised as
a surface in R

3. However, the part corresponding to {(u, v) ∈ R
2 : −π < u < π , v > 1}

may be put in R
3 as the pseudosphere (see Figure 2.10), which, as we saw in Example 2 of

§2.3, is the surface of revolution obtained by rotating a suitable tractrix around the z-axis.
This tractrix may be parametrised by

γ (v) =
(

1

v
, 0 , arccosh v − (v2 − 1)1/2

v

)
, v > 1 , (3.16)

where arccosh v is taken to be the positive number w with coshw = v. A calculation using
the expressions for E , F and G of a surface of revolution found in Example 2 of §3.2 soon
shows that E , F and G for the resulting parametrisation of the pseudosphere as a surface
of revolution are given by (3.15). If we take the start point of α to be v0 = 1, then α gives
the generating curve (3.16) of the pseudosphere, while, for each v0 > 1, β gives a parallel
(Figure 3.9).

π–π

�Figure 3.9 Correspondence with pseudosphere

Although Hilbert’s Theorem says that the hyperbolic plane cannot be realised as a sur-
face in R

3, it follows from a theorem of Nash (known as the Nash Embedding Theorem)
that the hyperbolic plane can be realised as a surface in R

n for some sufficiently large value
of n.

3.5 Families of curves

Let x : U → R
n be a local parametrisation of a surface S in R

n , and let φ(u, v) be a smooth
real-valued function defined on U with gradφ never zero. The level curves φ(u, v) =



64 3 Tangent planes and the first fundamental form

constant give a family of curves in U and hence, by applying x, a family of curves on
x(U ) ⊆ S.

Example 1 (Coordinate curves) If φ(u, v) = u, then gradφ =
(
∂φ

∂u
,
∂φ

∂v

)
= (1, 0) is never

zero and the family of curves in U consists of the lines u = constant. The image of this
family under x is the corresponding family of coordinate curves (Figure 3.10). There are
two such families, the other family being given by taking v = constant. The coordinate
curve u = u0, where u0 is a constant, has parametrisation of the form α(t) = x (u0, v(t)),
so the vectors tangential to this family are scalar multiples of the coordinate vector xv . The
members of the family v = constant may be parametrised in a similar way, so their tangent
vectors are scalar multiples of xu .

x

U

S

u = const

�Figure 3.10 Families of coordinate curves

In particular, the angle of intersection θ of the two families of coordinate curves is given
by

xu .xv = |xu | |xv| cos θ ,

so that

cos θ = F√
EG

. (3.17)

Example 2 We consider a surface S which admits a local parametrisation with coefficients
of the first fundamental form given by

E = 1 + 4u2 , F = −4uv , G = 1 + 4v2 ,

(see, for instance, Examples 1 and 2 of §3.3).
Let F be the family of curves on S determined by u2 − v2 = constant. We shall find

the family of curves on S everywhere orthogonal to the curves in F . These are called the
orthogonal trajectories of F .

We begin by finding the tangent vectors to the family F . If α(t) = x(u(t), v(t)) is a
member of F , then u2(t) − v2(t) = constant so that

α′(t) = u′xu + v′xv

with uu′ − vv′ = 0. Hence u′/v′ = v/u so that tangent vectors to the family F at x(u, v)
are the scalar multiples of vxu + uxv .
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Let β(r ) be a curve on S everywhere orthogonal to the curves of F . We now write the
coordinates u and v as functions of r (which will be different from the functions u(t), v(t)
used above for α) such that β(r ) = x (u(r ), v(r )). Then β(r ) is an orthogonal trajectory of
F if and only if (

du

dr
xu + dv

dr
xv

)
· (vxu + uxv) = 0 .

Using the expressions for E , F and G given above, this equation simplifies to give

du

dr
v + u

dv

dr
= 0 ,

so, integrating up, the orthogonal trajectories of F are given by uv = constant.
This example may be given geometrical meaning if we note from Example 2 of §3.3 that

the above coefficients of the first fundamental form are those of the standard parametrisa-
tion of the hyperbolic paraboloid z = x2 − y2 as a graph. In this case, the family F of
curves u2 −v2 = constant consists of the contour lines on the surface, and the family uv =
constant consists of the paths of steepest descent (or ascent).

A more general version of the above example is outlined in Exercise 3.22.

3.6 Ruled surfaces

A ruled surface is a surface S in R
n which may be covered by a family of line segments;

that is to say, through each point of S there passes a line segment which stays on the
surface. Intuitively, a ruled surface in R

n is the surface in R
n swept out as a straight line

is moved around. A cylinder in R
3 is an obvious example, and other examples appeared in

Exercises 2.6, 2.8, 2.9 and 2.10. In this section, we consider two of these examples in more
detail.

We first give a mathematical description of a ruled surface. Let I be an open interval and
let α : I → R

n be a regular curve without self-intersections. Also, let β : I → R
n be a

smooth map which is nowhere zero. If J is also an open interval, we define x : I × J → R
n

by

x(u, v) = α(u) + vβ(u) , u ∈ I , v ∈ J . (3.18)

For each fixed u,

α(u) + vβ(u) , v ∈ J ,

is the line segment through α(u) in the direction β(u). As u varies, this line segment sweeps
out a subset of R

n which, in many cases, is a surface (Figure 3.11).

Example 1 (Helicoid) Let b be a non-zero real number and let S be the surface in R
3 with

equation

x sin
z

b
= y cos

z

b
.
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α

�Figure 3.11 A ruled surface

Let

α(u) = (0, 0, bu) , β(u) = (cos u, sin u, 0) ,

and let x(u, v) = α(u) + vβ(u). Then

x(u, v) = (v cos u, v sin u, bu) , (u, v) ∈ R
2 ,

and an easy check shows that the image of x is contained in S (Figure 3.12).

�Figure 3.12 Helicoid as a ruled surface

We now show that x is a parametrisation of S. We could do this using the Parametrisation
Recognition Theorem (Theorem 4 of §2.5), but we choose to use the original definition of
local parametrisation given near the beginning of Chapter 2. To do this we define a smooth
map F : R

3 → R
2 by

F(x , y, z) =
( z

b
, x cos

z

b
+ y sin

z

b

)
,

and note that, for all (u, v) ∈ R
2, Fx(u, v) = (u, v). Hence x is a local parametrisation of

S, and if (x , y, z) ∈ S then

x
( z

b
, x cos

z

b
+ y sin

z

b

)
= (x , y, z) ,

so that the image of x is the whole of S.
It follows from the description of S as a ruled surface that S is shaped like a “spiral”

staircase of infinite width and height. The surface S is a helicoid.
Note that, for all parametrisations of the form given in (3.18), the coordinate curves u =

constant are just the lines of the ruling. In the case of the helicoid, the coordinate curves
u = constant are the “treads” of the staircase, and the coordinate curves v = constant are
helices except for v = 0 which is the z-axis.
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In fact, we may define a rather nicer parametrisation of the helicoid by taking

x̃(u, v) = (b sinh v cos u, b sinh v sin u, bu) , (u, v) ∈ R
2 , (3.19)

which has coefficients of the first fundamental form given by

Ẽ = G̃ = b2 cosh2 v , F̃ = 0 .

Hence x̃ is an isothermal parametrisation, and so gives an angle-preserving correspondence
between R

2 and the whole of the helicoid.

Incidentally, if we take b = 1 in the above example, the corresponding helicoid has the
same coefficients of the first fundamental form as the catenoid (found in Example 1 of
§3.4). This shows that, locally, the two surfaces have the same intrinsic geometry. It also
shows that the property of being a ruled surface is not intrinsic; you cannot tell by looking
solely at the first fundamental form whether or not a surface in R

n is ruled.

Example 2 (Hyperboloid of one sheet) Let a, b, c be non-zero real numbers, and let S be the
surface in R

3 with equation

x2

a2
+ y2

b2
− z2

c2
= 1 .

We let

α(u) = (a cos u, b sin u, 0) ,

and seek to find a smooth map β(u) such that α(u) + vβ(u) lies on S for all (u, v) ∈ R
2

(Figure 3.13). To make the equations simpler, it makes sense in this case to write β(u) =
(aλ1(u), bλ2(u), cλ3(u)) for smooth functions λ1(u), λ2(u) and λ3(u). Then α(u) + vβ(u)
lies on S for all (u, v) ∈ R

2 if and only if

(vλ1 + cos u)2 + (vλ2 + sin u)2 − (vλ3)2 = 1 , ∀(u, v) ∈ R
2 .

�Figure 3.13 Hyperboloid of one sheet as a ruled surface
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This holds if and only if the coefficients of v and of v2 in the above equation are both zero,
which gives

λ1 cos u + λ2 sin u = 0 and λ1
2 + λ2

2 − λ3
2 = 0 .

Since the vectors β(u) are determined only up to a scalar multiple, we may take λ3 = 1, in
which case the above equations give that λ1 = ± sin u and λ2 = ∓ cos u. It now follows
that if we define two smooth maps β+, β− by

β±(u) = (a sin u, −b cos u, ±c) ,

then α(u) + vβ±(u) lies on S for all (u, v) ∈ R
2.

We now define two maps x± by putting

x±(u, v) = α(u) + vβ±(u) = (a(cos u + v sin u), b(sin u − v cos u), ±cv) ,

and show that, if we restrict u to lie in an open interval of length 2π , then x± are both
local parametrisations of S whose images are the whole of S with just one line omitted
(and, of course, we can cover the omitted line by simply altering the domain of definition
of x±(u, v)).

We use the Parametrisation Recognition Theorem to do this. First note that, as shown
above, x±(u, v) lies on S for all (u, v) ∈ R. The injectivity of both of x± is not hard to
check, as is the linear independence of x±

u and x±
v . Finally, it is an interesting exercise to

check that any point (x , y, z) on S lies on a line of both the family of lines determined by
x+ and the family determined by x−. Thus S is a doubly ruled surface.

In Exercise 3.24, you are asked to show that the hyperbolic paraboloid z = xy is also a
doubly ruled surface (that this is a ruled surface was first mentioned in Exercise 2.8).

There are some cases where x(I × J ) is not a surface (see, for example, Exercise 3.23).
However, as long as the intervals I and J are not too large, then we do obtain a surface
when we move a line segment in a direction tranverse to itself (so that α′ is never a scalar
multiple of β). In fact,

xu = α′ + vβ ′ , xv = β ,

so Theorem 1 of §2.5 may be used to show that S is a surface near to any point at which
α′ + vβ ′ isn’t a scalar multiple of β. In particular, if α′ is not a scalar multiple of β then S
is a surface in the vicinity of any point of the base curve α (this is the curve on S given by
taking v = 0).

3.7 Area

We use local parametrisations and integration of functions over suitable subsets of the
plane to define the concept of area for (and, more generally, integration of real-valued
functions on) surfaces. Like length and angle of intersection of curves on a surface, area
and integration are intrinsic properties.

Let x : U → R
n be a local parametrisation of a surface S in R

n , and let Q be a subset of
U over which we can integrate continuous real-valued functions (so, for instance, Q could
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be a closed disc, the interior of a polygon together with the polygon that bounds it, or, more
generally, the closure of a bounded open set). We let R denote the image x(Q) of Q under
x and define the area A(R) of R by

A(R) =
∫∫

Q

√
EG − F2 du dv .

Our initial motivation for this definition is twofold. Firstly, when taking the standard
parametrisation of the plane, the above integral reduces to the standard expression for the
area of a region in the plane, and, secondly, as we show in Lemma 2 of §3.9, the above
expression for area is independent of choice of local parametrisation x.

The expression
√

EG − F2 du dv is often called the element of area and denoted d A.
The above equation is then written

A(R) =
∫∫

R
d A =

∫∫
Q

√
EG − F2 du dv . (3.20)

We may use the above procedure to define area for more general subsets of S; all we
need is that the subset may be broken up into (a finite number of) the type of pieces we
have considered above. We do not need to worry if curves are omitted (as in Example 2,
where we find the area of a torus of revolution) or if curves are covered twice, since these
will not contribute to the area.

Example 1 (Area of a graph) Consider a suitable region R of the graph of a smooth real-
valued function g(u, v) (Figure 3.14). If we parametrise this in the usual way by

x(u, v) = (u, v, g(u, v)) ,

R

Q

�Figure 3.14 Area of a graph

then a short calculation using the expressions for E , F and G found in Example 1 of §3.2
shows that EG − F2 = 1 + gu

2 + gv2. Hence, if Q is the image of R under orthogonal
projection onto the xy-plane, then

A(R) =
∫∫

Q

√
1 + gu

2 + gv2 du dv ,

in accordance with the usual formula for the area of a graph.

We now give a geometrical motivation for the definition of area. Consider a rectangle B
in Q (Figure 3.15) with opposite vertices at (u, v) and (u + δu, v+ δv). The parallelogram
C in R

n with adjacent sides xuδu and xvδv is tangential to S at x(u, v) and is, in some
sense, the best approximating parallelogram to x(B). The area δA of C is given by

δA = |xuδu||xvδv| sin θ ,
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S
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Q

B

x xv δv
θ

xu δu

�Figure 3.15 Geometrical motivation for area

where θ is the angle between xu and xv . However, using (3.17), we see that sin2 θ =
1 − (F2/EG) = (EG − F2)/EG from which it follows that

δA =
√

EG − F2 δuδv .

The usual procedure of taking the limit as we consider ever smaller partitions and add
the areas of each of the rectangles δA leads to the expression (3.20) for area.

Example 2 (Torus of revolution) We find the area of the torus of revolution Ta,b described in
Example 4 of §2.3. To do this we use the local parametrisation x : (0, 2π )×(0, 2π ) → Ta,b

given by

x(u, v) = ((a + b cos v) cos u, (a + b cos v) sin u, b sin v) .

Then

E = (a + b cos v)2 , F = 0 , G = b2 ,

so that the element of area is given by

d A = b(a + b cos v) du dv .

The image of x is the whole of the torus with just two circles omitted, so

A(Ta,b) =
∫ 2π

0

∫ 2π

0
b(a + b cos v) du dv

= 4π2ab .

More generally than just finding areas, we may integrate a real-valued function f defined
on a suitable region R of a surface S. This time we define∫∫

R
f d A =

∫∫
Q

( f x)
√

EG − F2 du dv , (3.21)

where, as usual, f x denotes the composite of x and f .

Example 3 (Moment of inertia of rotating sphere) The moment of inertia of an object about a
given axis gives a measure of the difficulty of changing the angular motion of the object
about that axis. For an object of unit density, it is obtained by integrating the square of the
perpendicular distance of each point of the object from the axis. We calculate the moment
of inertia for the unit sphere about the z-axis. If we parametrise the unit sphere S2(1) as a
surface of revolution in the usual way via

x(u, v) = (cos v cos u, cos v sin u, sin v) , −π < u < π , −π/2 < v < π/2 ,
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then we quickly compute that E = cos2 v, F = 0, G = 1, so that
√

EG − F2 = cos v
(since −π/2 < v < π/2). The perpendicular distance of x(u, v) from the z-axis is cos v,
so the required moment of inertia is given by∫ π/2

−π/2

∫ π

−π
cos3 v dudv ,

which evaluates to give 8π/3 for the required moment of inertia.

If S is a surface in R
3, then we may use the vector cross product to determine the element

of area. In fact, using the vector algebra identity

(a × b).(c × d) = (a.c)(b.d) − (a.d)(b.c) ,

we quickly see that √
EG − F2 = |xu × xv| , (3.22)

so that, for a surface in R
3,

d A = |xu × xv| du dv . (3.23)

This gives a proof of the following proposition.

Proposition 4 Let x(u, v) be a local parametrisation of a surface S in R
3, and let Q be a

region in the domain of x over which we can integrate continuous real-valued functions. If
R = x(Q), then

A(R) =
∫∫

R
d A =

∫∫
Q

|xu × xv| du dv , (3.24)

while ∫∫
R

f d A =
∫∫

Q
( f x)|xu × xv| du dv . (3.25)

As remarked earlier, we much prefer to define geometrical notions on a surface without
using local parametrisations. However, we have not done this in our treatment of integra-
tion on surfaces, so we should show that the definition of integration as given above is
independent of the particular local parametrisation chosen. We do this in §3.9, but, since
this material is not needed in an essential way for the rest of the book, §3.9 may be omitted
if desired.

3.8 Change of variables †

As mentioned earlier, a good choice of local parametrisation can often lead to a simplifica-
tion of a particular problem. In this section we discuss how to obtain a new parametrisation
from a given one by a change of variables on the domain of the given local parametrisation.
As with the next section, the material in this section is not essential for understanding the
rest of the book, and so may be omitted if desired.
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h

�Figure 3.16 For the proof of Proposition 1

We first recall that a smooth map h : U → Ũ between open subsets U , Ũ of R
2 is called

a diffeomorphism if there is a smooth map g : Ũ → U such that gh = Id : U → U and
hg = Id : Ũ → Ũ . In this case we call g the inverse map of h, and denote it by h−1. It
follows from the Inverse Function Theorem that h is a diffeomorphism onto its image if
and only if h is injective and the partial derivatives hu , hv are linearly independent at each
point.

The setup in the following proposition is illustrated in Figure 3.16.

Proposition 1 Let x(u, v) be a local parametrisation of a surface S in R
n, and let x̃(ũ, ṽ)

be a smooth map into R
n. If

x(u, v) = x̃ (ũ(u, v), ṽ(u, v)) , (3.26)

where h(u, v) = (ũ(u, v), ṽ(u, v)) is a diffeomorphism from the domain of x onto the
domain of x̃, then x̃(ũ, ṽ) is a local parametrisation of S with the same image as x.

Proof It is clear from (3.26) that the image of x̃ is equal to that of x. We now produce a
map F̃ for x̃ as in condition (S2) of the definition of a local parametrisation of a surface.
So, let F be such a map for x and let F̃ = h F. Then, noting from (3.26) that x = x̃h, we
have

F̃ x̃ = h Fx̃ = h Fxh−1 = hh−1 = Id .

If (3.26) holds, we say that x̃ is obtained from x by the change of variables from (u, v)
to (ũ, ṽ).

Example 2 (Hyperbolic paraboloid) The map x(u, v) = (u +v, u −v, u2 −v2) is a parametri-
sation of the hyperbolic paraboloid S with equation z = xy. If we make the change of
variables from (u, v) to (ũ, ṽ), where ũ = u + v, ṽ = u − v, then the corresponding local
parametrisation x̃(ũ, ṽ) satisfying (3.26) is given by x̃(ũ, ṽ) = (ũ, ṽ, ũṽ).

Returning to the general case, if x(u, v) and x̃(ũ, ṽ) are related as in (3.26), then the
chain rule shows that

xu = x̃ũ ũu + x̃ṽ ṽu , xv = x̃ũ ũv + x̃ṽ ṽv , (3.27)

as may be easily checked for Example 2.



73 3.9 Coordinate independence †

Example 3 (Tchebycheff parametrisation) Assume that x(u, v) is a local parametrisation of a
surface S with coefficients of the first fundamental form given by

E = sech2v , F = 0 , G = tanh2 v . (3.28)

Consider the change of variables given by taking

ũ = 1

2
(u + v) , ṽ = 1

2
(u − v) ,

and let x̃(ũ, ṽ) be the corresponding local parametrisation satisfying (3.26).
It follows from the chain rule that

2xu = x̃ũ + x̃ṽ and 2xv = x̃ũ − x̃ṽ ,

so that

x̃ũ = xu + xv and x̃ṽ = xu − xv .

Hence Ẽ = E + 2F + G = 1, and G̃ = E − 2F + G = 1.

A local parametrisation x(u, v) with coefficients of the first fundamental form satisfying
E = G = 1 is called a Tchebycheff parametrisation. In this case, if u0 and v0 are constants
then the coordinate curves u �→ x(u, v0) and v �→ x(u0, v) are parametrised by arc length.
We also have that F = cos θ , where θ is the angle of intersection of the coordinate curves.
Intuitively, a Tchebycheff parametrisation may be thought of as moulding a piece of fabric
over the surface without stretching the fibres but changing the angle θ at which the two sets
of fibres (the weft and the warp) meet.

Example 4 (Pseudosphere) We may obtain the pseudosphere by rotating the curve v �→
(sech v, 0, v− tanh v), v > 0, about the z-axis as in Example 2 of §2.3. A short calculation
using, for instance, Example 2 of §3.2 shows that the coefficients of the first fundamental
form of the corresponding parametrisation of the pseudosphere as a surface of revolution
are given by (3.28). Hence, Example 3 shows that the pseudosphere may be covered using
Tchebycheff parametrisations.

3.9 Coordinate independence †

We finish the chapter by showing that the definition of integration we gave in §3.7 is inde-
pendent of the particular local parametrisation chosen. As already mentioned, this material
is not needed in an essential way for the rest of the book and so may be omitted if desired.

The set-up for the following lemma is illustrated in Figure 3.17. The lemma is, in some
sense, a converse to Proposition 1 of §3.8. Its proof has similarities with that of Lemma 1
of §3.1.
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�Figure 3.17 For the proof of Lemma 1

Lemma 1 Let x : U → R
n, x̃ : Ũ → R

n be two local parametrisations of the same
surface S. If p ∈ x(U ) ∩ x̃(Ũ ) and if p = x(u0, v0), then there is a diffeomorphism
h(u, v) = (ũ(u, v), ṽ(u, v)), defined on an open neighbourhood of (u0, v0) in U such that

x(u, v) = x̃ (ũ(u, v), ṽ(u, v)) . (3.29)

Proof Let F : W → R
2 be a map for x as in condition (S2) for a surface, and let

F̃ : W̃ → R
2 be such a map for x̃. If we set

V = {(u, v) ∈ U : x(u, v) ∈ W ∩ W̃ } ,

then continuity of x implies that V is an open subset of R
2, and injectivity of x̃ allows us

to define a map h : V → R
2 by setting

x(u, v) = x̃ (h(u, v)) . (3.30)

If we apply F̃ to both sides of (3.30), we obtain h as the composite F̃x of two smooth
maps. Hence h is smooth, and its image is the open set

Ṽ = {(ũ, ṽ) ∈ Ũ : x̃(ũ, ṽ) ∈ W ∩ W̃ } .

We now show that h : V → Ṽ is a diffeomorphism. To do this we use injectivity of x to
define h̃ : Ṽ → V by setting

x̃(ũ, ṽ) = x
(

h̃(ũ, ṽ)
)

.

Then h̃ is smooth, and, on V ,

x = x̃h = xh̃h .

Injectivity of x now shows that h̃h is the identity map on V , and similar reasoning
shows that hh̃ is the identity map on Ṽ . Hence h is a diffeomorphism, and the lemma is
proved.

The diffeomorphism h in Lemma 1 is called the transition function from x to x̃. As in
the previous section, we have

xu = x̃ũ ũu + x̃ṽ ṽu , xv = x̃ũ ũv + x̃ṽ ṽv , (3.31)
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so, if E , F , G and Ẽ , F̃ , G̃ are the coefficients of the first fundamental form of S with
respect to the two local parametrisations x and x̃ respectively, then

E = Ẽ ũu
2 + 2F̃ ũu ṽu + G̃ṽu

2 ,

F = Ẽ ũu ũv + F̃(ũu ṽv + ũvṽu) + G̃ṽu ṽv ,

G = Ẽ ũv
2 + 2F̃ ũvṽv + G̃ṽv

2 ,

which we may write in matrix notation as follows(
E F
F G

)
=
(

ũu ṽu

ũv ṽv

)(
Ẽ F̃
F̃ G̃

)(
ũu ũv
ṽu ṽv

)
. (3.32)

Lemma 2 The expression (3.20) for area and (3.21) for integration of a function are
independent of choice of local parametrisation x.

Proof Taking determinants in (3.32), we find that

EG − F2 = (Ẽ G̃ − F̃2)

∣∣∣∣∂(ũ, ṽ)

∂(u, v)

∣∣∣∣
2

, (3.33)

where
∣∣∣ ∂(ũ,ṽ)
∂(u,v)

∣∣∣ is the modulus of the determinant of the Jacobian matrix

(
ũu ũv
ṽu ṽv

)
.

We now recall the formula for the change of variables in integration, namely, if Q̃ =
h(Q), then for a function f̃ (ũ, ṽ),∫∫

Q̃
f̃ (ũ, ṽ) dũ d ṽ =

∫∫
Q

f̃ (ũ(u, v), ṽ(u, v))

∣∣∣∣
(
∂(ũ, ṽ)

∂(u, v)

)∣∣∣∣ du dv ,

from which we see, using (3.33) for the second equality, that∫∫
Q̃

√
Ẽ G̃ − F̃2 dũ d ṽ =

∫∫
Q

√
Ẽ G̃ − F̃2

∣∣∣∣
(
∂(ũ, ṽ)

∂(u, v)

)∣∣∣∣ du dv (3.34)

=
∫∫

Q

√
EG − F2 du dv . (3.35)

This shows that the definition of area we gave in §3.7 is independent of the choice of local
parametrisation. A similar method may be used to show that our definition of integration
of functions is also independent of choice of local parametrisation.

Remark 3 If we had chosen to define the tangent plane at a point p to be the 2-plane
spanned by xu and xv at that point, then (3.31) would show that this definition was
independent of the choice of local parametrisation.

Exercises

3.1 Assume that x(u, v) = (u, v, u2 + v3) is a parametrisation of a surface S in R
3. Is

there a point on S at which the tangent plane to S is perpendicular to (−1, 1, 0)?
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3.2 Let x(u, v) and S be as in Exercise 3.1. Show that (2, −1, 3) ∈ S and that (1, −1, 1) ∈
T(2,−1,3)S. Find a vector (a, b, c) in T(2,−1,3)S which is orthogonal to (1, −1, 1).

3.3 Assuming that the equation 2x2 − xy + 4y2 = 1 defines a surface S in R
3, find a

unit normal vector and a basis for the tangent plane at the point p = (0, 1/2, 2).

3.4 Find those points on the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1

at which the tangent plane is orthogonal to (1, 1, 1).

3.5 Let S be the surface with equation x2 + y2 − z2 = 1. Is there a point of S at which
the tangent plane is orthogonal to (1, 0, −1)? Find all points of S at which the tangent
plane is orthogonal to (1, 1, 1).

3.6 Let a, b, c, be non-zero real numbers. Show that each of the equations

x2 + y2 + z2 = ax ,

x2 + y2 + z2 = by ,

x2 + y2 + z2 = cz ,

defines a surface and that each pair of surfaces intersects orthogonally at all points
of intersection. (Note, incidentally, that each of these surfaces is a sphere.)

3.7 Find the equation of the tangent plane based at the point (a/2, b/2, c/
√

2) of the
ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1 .

3.8 Let S be a surface parametrised by

x(u, v) = (u cos v, u sin v, log cos v + u) , −π
2
< v <

π

2
, u ∈ R .

Find the coefficients E , F and G of the first fundamental form.

3.9 (This exercise uses the optional material in the second half of §2.4.) Let f : R
4 →

R
2 be given by

f (x1, x2, x3, x4) = (x1
2 + x2

2, x3
2 + x4

2) .

For each pair of positive real numbers r1, r2 show that (r1
2, r2

2) ∈ R
2 is a regular

value of f . Let S be the surface in R
4 determined by the equations x1

2 + x2
2 = r1

2,
x3

2 + x4
2 = r2

2, and let

x(u, v) = (r1 cos u, r1 sin u, r2 cos v, r2 sin v) , 0 < u, v < 2π .

Use the Parametrisation Recognition Theorem (Theorem 4 in §2.5) to show that
x(u, v) is a local parametrisation of S, and compute the coefficients of the first
fundamental form.
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3.10 Assume that

x(u, v) = (sinh v sin u, − sinh v cos u, u) , −π < u < π , v ∈ R ,

is a local parametrisation of (part of) the surface S in R
3 with equation x cos z +

y sin z = 0 (which is easily checked using the Parametrisation Recognition
Theorem), and let x̃(u, v) be the local parametrisation of a catenoid given by

x̃(u, v) = (cosh v cos u, cosh v sin u, v) , −π < u < π , v ∈ R .

Show that

xu = x̃v , xv = −x̃u ,

and, for each θ ∈ R, find the coefficients of the first fundamental form of the surface
Sθ parametrised by

xθ (u, v) = cos θ x(u, v) + sin θ x̃(u, v) , −π < u < π , v ∈ R .

In particular, show that the coefficients of the first fundamental form of Sθ are inde-
pendent of θ , and show also that the tangent planes to each of the surfaces Sθ at the
point determined by (u, v) are parallel.

(The surface S is an example of a helicoid or spiral staircase surface, as discussed
in Example 1 of §3.6. It turns out that both the helicoid and the catenoid are minimal
surfaces, and, as we discuss in Chapter 9, this exercise illustrates a general property
of such surfaces.)

3.11 Let x(u, v) and S be as in Exercise 3.8, and, for v ∈ (−π
2 , π2 ), let αv(t) = x(t , v).

Show that the length of αv from t = u0 to t = u1 is independent of v.

3.12 Let x(u, v) be a local parametrisation of a surface S with coefficients of the first
fundamental form given by

E = 2 + sinh2 u , F = sinh u sinh v , G = 2 + sinh2 v .

(i) If α(t) = x(t , t), find the length of α between t = 0 and t = 1.
(ii) If β(r ) = x(r , −r ), show that α and β intersect orthogonally.

3.13 Let x(u, v) be a local parametrisation of a surface S with coefficients of the first
fundamental form given by

E = 1 + 4u2 , F = 4

3
uv , G = 1 + 4

9
v2 .

If θ is the angle of intersection of the curves

α(t) = x(cos t , sin t) , 0 < t < 2π ,

and

β(r ) = x(r ,
√

3 r ) , 0 < r ,

show that cos θ = − 1

2
√

2
.
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3.14 Let x(u, v) be the local parametrisation of the ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1

given by

x(u, v) = (a cos v cos u, b cos v sin u, c sin v), −3π

4
< u <

5π

4
, −π/2 < v < π/2.

If L(u) is the length of the curve αu(t) = x(u, t), −π/2 < t < π/2, show that L has
stationary values at u = −π/2, 0, π/2 and π , and interpret this result geometrically.
It may help to use the result (often called ‘differentiating under the integral
sign’) which says that if f (u, v) is smooth then

d

du

(∫ b

a
f (u, v) dv

)
=
∫ b

a

∂ f

∂u
dv .

3.15 Let x : R
2 → R

3 be the local parametrisation of the unit sphere S2(1) obtained in
Example 2 of §3.4. Verify that the coefficients of the first fundamental form of S2(1)
with respect to this local parametrisation are as given in that example.

3.16 Let x : R
2 → R

3 be the local parametrisation of the unit sphere S2(1) obtained in
Example 2 of §3.4. By performing calculations as described in §3.3, and using the
expressions for E , F and G given in (3.14), find the length of the image under x of
the coordinate axis v = 0. (In fact, this image is a unit circle on S2(1) (with one point
omitted), so you should get 2π for your answer!)

3.17 Let f (z) be a holomorphic function of the complex variable z. If C
2 is identified

with R
4 in the usual way then the graph of f is a surface in R

4 which may be
parametrised by x(z) = (z, f (z)). Use the Cauchy–Riemann equations to show that
x is an isothermal parametrisation.

3.18 Let

x(u, v) = (v cos u, v sin u, u + v) , u, v ∈ R ,

be a parametrisation of a surface S in R
3, and let F be the family of curves obtained

by intersecting S with the planes z = constant.
Show that the angle of intersection θ of the coordinate curve v = constant with

the curve in the family F at

(
π

2
√

3
,
π

6
,
π

2

)
satisfies cos θ = ± π2

π2 + 9
.

Find the orthogonal trajectories of F in S, and decide whether the orthogonal
trajectory through (1, 0, 1) passes through the point (0 , −π/2 , 0).

3.19 Let S be the surface in R
3 defined by the equation x2 + (y − 1)2 = 1, and let x(u, v)

be the local parametrisation of S given by

x(u, v) = (sin u, 1 − cos u, v) , 0 < u < 2π , v ∈ R .

Let F be the family of curves on S, each member of which is obtained by intersecting
S with the paraboloid xz = λy, where λ is a constant.
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Find a function ψ(u, v) such that the family of curves given by ψ(u, v) = con-
stant gives the orthogonal trajectories of F . Show that each curve in this family of
orthogonal trajectories lies on a sphere with centre the origin in R

3.

3.20 Let x(u, v) be a local parametrisation of a surface S. Show that, in the usual notation,
the vector αxu + βxv bisects the angle between the coordinate curves if and only if

√
G(αE + βF) = ±√

E(αF + βG) .

If

x(u, v) = (u, v, u2 − v2) ,

find a vector tangential to S which bisects the angle between the coordinate curves
at the point (1, 1, 0).

3.21 Let

x(u, v) = (v cos u, v sin u, u)

be a local parametrisation of a helicoid. Find two families of curves on the helicoid
which, at each point, bisect the angles between the coordinate curves.

3.22 This exercise provides a generalisation of Example 2 of §3.5. Let x(u, v) be a local
parametrisation of a surface S and let F be the family of curves on S determined by
φ(u, v) = constant. Show that the tangent vectors to the members of F are scalar
multiples of φvxu − φu xv . Hence show that if x(u, v) = (u, v,φ(u, v)) is the stan-
dard parametrisation of the graph S of the smooth function φ(u, v) then the paths
x (u(r ), v(r )) of steepest descent on S satisfy the equation

du

dr
φv − dv

dr
φu = 0 .

As a particular example, find a smooth function ψ(u, v) so that the paths of
steepest descent on the graph of φ(u, v) = u3 + v3 are given by ψ(u, v) = constant.

3.23 Let α(u) = (cos u, sin u, −1) and β(u) = (− cos u, − sin u, 1). Sketch the shape
swept out by the lines through α(u) in direction β(u) as described in §3.6 on ruled
surfaces. This shape is the image of the map

x(u, v) = α(u) + vβ(u) , u, v ∈ R .

Prove that xu and xv are linearly dependent if and only if v = 1. Mark the
corresponding points on your sketch of the image of x.

3.24 Let S be the hyperbolic paraboloid with equation z = xy. If p = (p1, p2, p3) ∈ S,
find conditions on the vector v = (v1, v2, v3) so that the line in R

3 through p in
direction v should lie on S. Hence show that S is a doubly ruled surface. Show that
the two rulings through a point p of S are mutually orthogonal if and only if p lies
on the intersection of S with the coordinate axes of R

3.

3.25 Let I be an open interval in R and let α : I → R
3 be a regular curve parametrised

by arc length. Let β : I → R
3 be a smooth map with |β(u)| = 1 and β ′(u) never

zero.



80 3 Tangent planes and the first fundamental form

Consider the ruled surface S which is the image of the map x : I ×R → R
3 given

by

x(u, v) = α(u) + vβ(u) .

(We recall from §3.6 that S is a surface near to any point at which xu and xv are
linearly independent.)

(i) Show that xu and xv are linearly dependent at (u0, v0) if and only if

α′(u0) × β(u0) + v0β
′(u0) × β(u0) = 0 .

(ii) Using the hypotheses on β, show that there exists a curve γ : I → R
3, with

γ (u) ∈ S for all u ∈ I , such that

γ ′(u) · β ′(u) = 0 , ∀u ∈ I .

The curve γ is called the striction curve of the ruled surface S. (Hint: you may
assume γ (u) = α(u) + λ(u)β(u) for some smooth function λ(u).)

(iii) Consider the map into S given by

y(u, v) = γ (u) + vβ(u) ,

where γ is the striction curve found in (ii). Show that β ′(u) is parallel to γ ′(u)×
β(u) for all u ∈ I , and use this fact to show that the points where yu and yv are
linearly dependent are all located on the striction curve γ .

3.26 Determine all surfaces of revolution which are also ruled surfaces.

3.27 Compute the area of the southern hemisphere of the unit sphere S2(1) by parametris-
ing S2(1) as a surface of revolution.

3.28 Let U = {(u, v) ∈ R
2 : 0 < u < 1, 0 < v < 1

}
be the open unit square. Let x :

U → R
n be a local parametrisation of a surface S with coefficients of the first

fundamental form given by

E = 1

u + v
+ 1

(1 − u)(1 − v)
, F = 1

u + v
, G = 1

u + v
− 1

(1 + u)(1 + v)
.

Find the area of the image of U under x.

3.29 Let S̃ be the cylinder in R
3 with equation x2 + y2 = 1, and let f be the map obtained

by restricting to S2(1) (minus the poles) horizontal projection onto S̃ radially away
from the z-axis (Figure 3.18).

z

p

S
~

f(p)

�Figure 3.18 For Exercise 3.29
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Use the standard parametrisation of S2(1) as a surface of revolution to show that
f is area preserving in the sense that f maps any region in S2(1) (minus the poles)
to a region in S̃ of the same area. This is a theorem due to Archimedes, who liked it
so much that he had it engraved on his tombstone.

3.30 (This exercise uses the optional material in the second half of §2.4.) Let r1, r2 be
positive real numbers and let S be the surface in R

4 determined by the equations
x1

2 + x2
2 = r1

2 and x3
2 + x4

2 = r2
2. Then S is the flat torus described in Example

4 of §2.4. Assuming that

x(u, v) = (r1 cos u, r1 sin u, r2 cos v, r2 sin v) , 0 < u < 2π , 0 < v < 2π ,

is a local parametrisation of the whole of S with two circles removed, show that the
area of the flat torus is 4π2r1r2.

3.31 (This exercise uses material in the optional §3.8.) The coordinate curves of a local
parametrisation x(u, v) of a surface S form a Tchebycheff net if the lengths of the
opposite sides of any quadrilateral formed by these curves are equal.

(i) Show that a necessary and sufficient condition for the coordinate curves to form
a Tchebycheff net is

∂E

∂v
= ∂G

∂u
= 0 .

To do this you may need to ‘differentiate under the integral sign’ as
described in Exercise 3.14.

(ii) Suppose that the coordinate curves of a local parametrisation x(u, v) form a
Tchebycheff net and consider the change of variables from (u, v) to (ũ, ṽ) given
by

ũ(u, v) =
∫ u

u0

√
E(t , v)dt , ṽ(u, v) =

∫ v

v0

√
G(u, t)dt ,

where (u0, v0) is a fixed base point. If x̃(ũ, ṽ) is the corresponding local
parametrisation satisfying x(u, v) = x̃ (ũ(u, v), ṽ(u, v)), show that the two fami-
lies of coordinate curves of x̃(ũ, ṽ) are the same as the two families of coordinate
curves of x(u, v). Show also that if Ẽ , F̃ , G̃ are the coefficients of the first
fundamental form with respect to x̃(ũ, ṽ) then

Ẽ = 1 , F̃ = cos θ , G̃ = 1 ,

where θ is the angle between the coordinate curves.



4 Smooth maps

In this chapter we consider smooth maps defined on surfaces. There are two major reasons
for doing so. Firstly, the fundamental importance and interest of isometries (which are
smooth bijective maps between surfaces which preserve arc length of curves and area of
regions) and of conformal maps (which preserve angles at which curves intersect); and
secondly, the way in which a surface S curves in R

3 may be studied using the Gauss map
N : S → S2(1) ⊂ R

3, which is obtained by taking the unit normal to S.
In Chapter 5 we show how the rate of change of the Gauss map may be used to describe

the curvature of a surface in R
3, and the importance of isometries will become clear when

we discuss the Theorema Egregium in Chapter 6 and undertake the study of geodesics in
Chapter 7.

Every isometry is a conformal map but the converse is false. Isometries are the analogues
for surfaces of rigid motions of the plane, while conformal maps are the analogues of
complex differentiable functions on the plane, since (away from points where the derivative
vanishes) these maps are angle-preserving.

The idea in much of what we do in this chapter (and beyond) is to use local parametrisa-
tions to transfer the (local) study of maps defined on surfaces to the more familiar situation
of smooth R

n-valued maps defined on open subsets of Euclidean space. In this spirit, we
begin the chapter by using local parametrisations to define smoothness for R

n-valued maps
defined on surfaces.

However, as we have prevously remarked, it is the surface S that is important; the
role of the local parametrisations is to help describe and study S. So, it is impor-
tant to check that any notions we define on S using a local parametrisation should be
independent of the choice of local parametrisation. For instance, having used a local
parametrisation to define the notion of a smooth map on a surface, we then obtain a geo-
metrical characterisation which shows that our definition is independent of choice of local
parametrisation.

We then define the derivative of a smooth map at a point, which, as will be expected,
gives a linear approximation to the map near that point. Isometries and conformal maps
are discussed next, with the role of local parametrisations again highlighted. Finally, in
two appendices, we give some more substantial examples which may be omitted if time is
short, since they are not needed in an essential way for the rest of the book.

Throughout the chapter we endeavour to find criteria, in terms of partial derivatives of
maps defined on open subsets of Euclidean space, for the various sorts of maps on surfaces
we consider.

82
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4.1 Smoothmaps between surfaces

Our first task is to define the notion of smoothness for a map f : S → R
m , where S

is a surface in R
n . For ease of application, we shall do this using a local parametrisation

x : U → S, and then give a characterisation of smoothness which will show that our
definition is independent of the choice of local parametrisation.

So, we say that a map f : S → R
m is smooth at x(u, v) ∈ S if the composite f x is

smooth at (u, v), and we say that f is smooth if it is smooth at each point of S (Figure
4.1). The important point here is that the concept of smoothness is fine for f x (in terms of
partial derivatives as given in §2.1), since f x is an R

m-valued function defined on an open
subset (namely U ) of a Euclidean space (namely R

2). We are then using this to define the
concept of smoothness for maps defined on a surface.

The first smooth map we consider is the Gauss map of a surface S in R
3, which we now

describe. The unit normal at a point p ∈ S ⊂ R
3 is unique up to sign (Figure 4.2), and a

smooth choice of unit normal N gives the Gauss map of the surface (again, unique up to
sign). As already indicated, this is one of the most important smooth maps we consider,
since its rate of change may be used to describe how S is curving in R

3.
A smooth choice of N can always be made on a coordinate neighbourhood in S. Indeed,

if x : U → S is a local parametrisation of S, we may take

N x = xu × xv
|xu × xv| , (4.1)

and, since xu × xv 	= 0, the right hand side of (4.1) is smooth on U . It now follows from
our definition that N is smooth at each point of x(U ).

f

x

fx

x(u,v)

(u,v)

m

S

U Ì 2

�Figure 4.1 Smooth maps

S

p

N(p)

�Figure 4.2 Gauss map
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Example 1 (Gaussmap of catenoid) As we saw in Example 1 of §2.3, the catenoid x2 + y2 =
cosh2 z may be parametrised as a surface of revolution by

x(u, v) = (cosh v cos u, cosh v sin u, v) , −π < u < π , v ∈ R ,

and a straightforward calculation shows that

xu × xv = (cosh v cos u, cosh v sin u, − cosh v sinh v) .

Thus

N x = xu × xv
|xu × xv| = (cos u, sin u, − sinh v)

cosh v
.

This example may be easily generalised.

Example 2 (Surface of revolution) If we parametrise a surface of revolution in the usual way,
namely

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , −π < u < π , f (v) > 0 ∀v ,

then a short calculation on the lines given in Example 1 shows that

N x = (g′ cos u, g′ sin u, − f ′)
( f ′2 + g′2)1/2

.

In Exercise 4.2 you are invited to prove that the Gauss map of a surface S of revolution
maps parallels of S onto parallels of the unit sphere S2(1) and meridians to meridians.

It is often possible to define the Gauss map smoothly over the whole of a surface S in
R

3. For instance, for the sphere we can pick the outward unit normal, and, more generally,
if a surface S in R

3 is defined by an equation of the form f (x , y, z) = constant where
grad f is never zero on S, then N = grad f/|grad f | gives a smooth unit normal defined
on the whole of S. However, if we form a Möbius band by taking a rectangular strip of
paper, twisting it once and glueing the ends together (see Exercise 2.10 for a picture and
an explicit example), then we cannot define a unit normal smoothly over the whole band.
Such a surface is said to be non-orientable, while the sphere is an example of an orientable
surface. A particular choice N of one of the two Gauss maps defined on the whole of an
orientable surface S is called an orientation of S. We shall return to this topic (for surfaces
in R

n) towards the end of §7.1.

We now consider another useful type of smooth map defined on surfaces. Before giving
the example, we note that if x : U → S ⊂ R

n is a local parametrisation of a surface S,
then the coordinate neighbourhood x(U ) is itself a surface (which may be covered by just
one local parametrisation, namely x).

Example 3 (Inverse of a local parametrisation) Since a local parametrisation x : U → S ⊂ R
n

is a bijection onto its image x(U ), there is an inverse map x−1 : x(U ) → U which assigns
to each point p ∈ x(U ) the unique point q ∈ U such that x(q) = p. Then xx−1(p) = p for
all p ∈ x(U ) and x−1x(q) = q for all q ∈ U (Figure 4.3). This latter condition, together
with our definition of smoothness, implies that x−1 is a smooth map from the surface x(U )
to U .
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S
x

x–1

U

x(U)

�Figure 4.3 x−1 is smooth

Before we check that our definition of smoothness for maps defined on a surface S in
R

n is independent of choice of local parametrisation, it will be convenient to recall (from
§2.1) that an open subset of a surface S is defined to be the intersection of S with an open
subset of R

n . For example, the upper hemisphere of the unit sphere S2(1) is an open subset
of S2(1), being the intersection of S2(1) with the open set z > 0 of R

3. All coordinate
neighbourhoods are open subsets of S, and any surface is an open subset of itself. We noted
in Lemma 6 of §2.1 that a non-empty open subset of a surface is itself a surface. Finally,
an open neighbourhood of a point p in S is simply an open subset of S containing p.

We now check that our definition of smoothness for maps defined on a surface S in
R

n is independent of the choice of local parametrisation by showing that, locally at least,
f : S → R

m is smooth if and only if f is the restriction to S of a smooth map on R
n .

Rather more formally we show the following.

Proposition 4 A map f : S → R
m is smooth on an open neighbourhood of a point p ∈ S

if and only if there exists an open set W in R
n which contains p, and a smooth map

g : W → R
m such that f (q) = g(q) for all q ∈ S ∩ W .

Proof Once again, it is important to note that we are investigating a new concept, namely
smoothness of maps defined on a surface, and we are doing this by using the familiar idea
of smoothness for maps defined on open subsets of Euclidean space.

Assume first, then, that a map g exists as in the statement of the proposition. Let x be a
local parametrisation of S whose image contains p and assume, without loss of generality,
that the image of x lies in S ∩ W . Then f x = gx, so that f x is equal to the composite of
two smooth maps defined on open subsets of Euclidean spaces, and so is smooth. Hence,
by our definition of smoothness for maps on S, the map f is smooth on the image of x.

Conversely, assume that f is smooth on an open neighbourhood of a point p ∈ S. Then
there is a local parametrisation x of S whose image contains p and is such that f x is
smooth. Let F : W → R

2 be a smooth map for x as in condition (S2) of §2.1, and let
g = f x F. Then g : W → R

n is the composite of smooth maps f x and F defined on open
subsets of Euclidean spaces and hence is smooth. Also, if q = x(u, v) then

g(q) = gx(u, v) = f x Fx(u, v) = f x(u, v) = f (q) ,

so that f (q) = g(q) for all q ∈ S ∩ W .
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This characterisation of a smooth map on S is often useful (and is independent of any
choice of local parametrisation).

If a smooth map f : S → R
m has its image on a surface S̃ in R

m , then we say that
f is a smooth map from S to S̃. For instance, if S is a surface in R

3, then the Gauss map
discussed earlier in this section is a smooth map from S to the unit sphere S2(1). As a
particular example, if the outward unit normal is chosen, the Gauss map of the unit sphere
is simply the identity map.

The next result follows quickly from the above geometrical characterisation of smooth-
ness (and the corresponding result for smooth maps between Euclidean spaces).

Lemma 5 Let f : S1 → S2, g : S2 → S3 be smooth maps between surfaces. Then the
composite g f : S1 → S3 is also smooth.

4.2 The derivative of a smoothmap

We begin by recalling the motivation behind the theory of differentiation of a smooth map
f : W → R

m defined on an open set W of R
n . The idea is that, near any given point

p ∈ W , the derivative d f p : R
n → R

m provides a linear approximation to f near p;
the hope being that a study of the linear map d f p (linear maps are usually relatively easy
to analyse) will yield information concerning the behaviour of the non-linear map f near
p (which is usually more difficult to study directly). The Inverse Function Theorem is a
classic example of this.

We wish to carry out the same procedure for a smooth map f : S → R
m , where S is a

surface in R
n . Again, perhaps the easiest (but maybe not the most satisfying) way of doing

this is to use a local parametrisation x(u, v) of S to define the derivative, and then prove
that the definition is independent of the local parametrisation used. So, if x(q) = p ∈ S
then the derivative d f p : Tp S → R

m of f at p is defined to be the linear map which has
the following effect on the basis vectors xu , xv of Tp S:

d f p(xu) = ∂( f x)

∂u

∣∣∣∣
q

, d f p(xv) = ∂( f x)

∂v

∣∣∣∣
q

.

We often omit to mention the point at which we are differentiating; we simply write

d f (xu) = ( f x)u , d f (xv) = ( f x)v , (4.2)

thus enabling us to find the derivative of a smooth map f defined on a surface by using the
partial derivatives of a smooth map, namely f x, defined on open subset of the plane.

When a parametrisation x has been chosen it is usual to omit mention of x, and write
f (u, v) rather than f x(u, v), thus regarding f as a function of u and v. In a similar spirit,
we write fu and fv rather than ( f x)u and ( f x)v .

For instance, using this convention, we would write (4.1) as

N = xu × xv
|xu × xv| . (4.3)
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Example 1 (Gauss map of catenoid) This continues Example 1 of §4.1, where we found that

N = (cos u, sin u, − sinh v)

cosh v
.

Thus

Nu = ∂

∂u

(
(cos u, sin u, − sinh v)

cosh v

)
= (− sin u, cos u, 0)

cosh v
,

while a short calculation shows that

Nv = (− cos u sinh v, − sin u sinh v, −1)

cosh2 v
.

As we shall see in §4.4, the Gauss map of the catenoid is very special in that it is an
angle-preserving map.

Returning to the general situation, the conventions described above lead us to write (4.2)
as

d f (xu) = fu , d f (xv) = fv , (4.4)

which gives us the following explicit formula for the derivative of the map f applied to a
general tangent vector axu + bxv:

d f (axu + bxv) = a fu + b fv . (4.5)

Unless stated otherwise, we shall use the above conventions from now on.

We now show that, as we would hope, the tangent vector of a smooth curve α on S is
mapped by d f to the tangent vector of the image curve f α (Figure 4.4).

Proposition 2 Let f : S → R
m be a smooth map defined on a surface S in R

n, and let α
be a smooth curve on S. Then

d f (α′) = ( f α)′ . (4.6)

Proof Let x(u, v) be a local parametrisation of S and let α(t) = x (u(t), v(t)). Then

d f (α′) = d f (u′xu + v′xv) .

f

df (α ¢) = ( fα)¢S

α ¢

α

fα

�Figure 4.4 d f maps tangent vectors to tangent vectors
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Also, f α(t) = f x (u(t), v(t)), so, using the chain rule and the notation mentioned in the
paragraph preceding Example 1,

( f α)′ = u′ fu + v′ fv .

Equation (4.6) now follows immediately from (4.5).

In a similar spirit to earlier notational conventions, when a regular curve α(t) has been
chosen, it is usual to write f ′ (or d f/dt) rather than ( f α)′ for the rate of change of f
along α. Thus (4.6) will become

d f (α′) = f ′ . (4.7)

The geometrical characterisation of derivative given in Proposition 2 shows that our
definition of derivative as the linear map defined using (4.2) is independent of choice of
local parametrisation. It may also be used to prove the following two propositions.

Proposition 3 Let S be a surface in R
n and let f be the restriction to S of a smooth map

g : W → R
m, where W is an open subset of R

n. Then the derivative d f p of f at a point
p ∈ W ∩ S is the restriction to Tp S of the derivative of g at p.

The above proposition sometimes gives a quick way of finding the derivative of a smooth
map f defined on S, and may also be useful if we have no convenient local parametrisations
of S.

Proposition 4 Let f : S → R
m be smooth. If the image of f is contained in a surface S̃ in

R
m, then, for each p ∈ S, the image of d f p lies in T f (p) S̃. Hence the derivative of f at p

is a linear map d f p : Tp S → T f (p) S̃.

Proof Let p ∈ S and X ∈ Tp S. Then X = α′(0) for some smooth curve α(t) in S with
α(0) = p. It follows from (4.6) that d f p(X) is tangential to the smooth curve f α in S̃
through f (p). The definition of tangent vectors given at the start of §3.1 now shows that
d f p(X) ∈ T f (p) S̃.

Example 5 (Sphere and ellipsoid) Let S2(1) denote the unit sphere in R
3, and, for positive real

numbers a, b, c, let S̃ be the ellipsoid with equation
x2

a2
+ y2

b2
+ z2

c2
= 1. Let f : S2(1) → R

3

be given by f (x , y, z) = (ax , by, cz). Then f is smooth since it is the restriction to S2(1)
of the smooth map g : R

3 → R
3 given by the same formula, and it is clear that f gives

a bijective correspondence between the points of S2(1) and S̃. Since g is a linear map, the
derivative of g at any point is simply g itself (the best linear approximation to a linear map
is the linear map), so the derivative d f p of f at p ∈ S2(1) is just the restriction to Tp S2(1)
of g. If p = (x , y, z) ∈ S2(1) then, as noted in Example 6 of §3.1, Tp S2(1) is the plane
of vectors orthogonal to p, while, from Example 7 of §3.1, T f (p) S̃ is the plane of vectors
orthogonal to (x/a, y/b, z/c). It is a nice exercise (see Exercise 4.8) to check directly that
d f p maps Tp S2(1) to T f (p) S̃.



89 4.2 The derivative of a smooth map

�Figure 4.5 Poles of a surface of revolution

Example 6 (Surface of revolution) Recall from Example 3 of §2.3 that a pole of a surface of
revolution S in R

3 is a point p at which S intersects its axis of rotation, which, as usual,
we assume to be the z-axis. Since the pole lies on the z-axis, it is fixed under rotations
about the z-axis, and, since these rotations are linear maps and hence are equal to their
derivatives, it follows that, if p is not a singular point of the surface, then Tp S is also
(setwise) fixed by (the derivatives of) these rotations. Hence the tangent space Tp S at p is
orthogonal to the axis of rotation (Figure 4.5). Examples of surfaces of revolution whose
poles are not singular points are provided by the spheres, or, more generally, ellipsoids of
revolution with equation

1

a2
(x2 + y2) + z2

c2
= 1 ,

where a and c are positive real numbers.

We saw in Lemma 5 of §4.1 that the composite of smooth maps between surfaces is
smooth. We conclude this section by noting that the geometrical characterisation of deriva-
tive given in Proposition 2 shows that the usual chain rule holds for smooth maps, that is to
say the derivative of the composite is the composite of the derivatives. For future use, we
state this formally as a theorem.

Theorem 7 (Chain rule) Let f : S1 → S2, g : S2 → S3 be smooth maps between surfaces.
Then the composite g f : S1 → S3 is smooth, and if p ∈ S1 then d(g f )p = dg f (p)d f p.

We end with a summary of §4.1 and §4.2. We used a local parametrisation to trans-
fer the notion of a smooth map and its derivative from the familiar one for maps between
Euclidean spaces to the new one for maps defined on surfaces. We then obtained (in Propo-
sition 4 of §4.1 and Proposition 2 of this section) characterisations of these new concepts.
In particular, we showed that, locally at least, a smooth map f on a surface is the restriction
to the surface of a smooth map g defined on the containing Euclidean space. The derivative
of f is then the restriction to the tangent space of the surface of the derivative of g. The
characterisations show that our original definition of smooth map and its derivative on a
surface is independent of choice of local parametrisation, and also enabled us to deduce
several important properties of smooth maps on surfaces and the derivatives of these maps.
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4.3 Local isometries

In the next three sections we study two geometrically interesting and important types of
map between surfaces. However, for convenience, we begin with a few basic definitions.
We first recall from set theory that a bijective map f : A → B between sets A and B has
an inverse map f −1 : B → A which assigns to each point q ∈ B the unique point p ∈ A
such that f (p) = q. Then

f f −1(q) = q , ∀q ∈ B , and f −1 f (p) = p , ∀p ∈ A .

In particular, a smooth bijective map f : S → S̃ between surfaces S and S̃ has an
inverse map f −1 : S̃ → S, and if f −1 is also smooth then f is called a diffeomorphism.
The Inverse Function Theorem may be used to show that a smooth bijective map f is a
diffeomorphism if and only if the derivative d f of f is a linear isomorphism at each point
of S, or, equivalently once a local parametrisation x(u, v) has been chosen, if and only if
fu and fv are linearly independent at each point.

The chain rule shows that if f : S → S̃ is a diffeomorphism and if p ∈ S then

d( f −1)| f (p) = (d f |p)−1 . (4.8)

If there exists a diffeomorphism f : S → S̃, then the surfaces S and S̃ are said to be
diffeomorphic. As far as properties concerning differentiability are concerned, the surfaces
are essentially indistinguishable.

We now consider smooth maps between surfaces which preserve the length of curves on
the surfaces. A smooth map f : S → S̃ is a local isometry if whenever α is a smooth curve
of finite length on S then f α is a curve on S̃ of the same length. We now find conditions on
the derivative of f which enable us to decide whether a given map f is a local isometry.

It follows from (4.6) that f is a local isometry if and only if d f preserves the length of
tangent vectors, in that

|d f (X)| = |X| , for all vectors X tangential to S , (4.9)

and if we apply (the square of) (4.9) to tangent vectors X1, X2 and X1 + X2, we obtain
the following proposition. Here, as usual, “.” denotes the inner product.

Proposition 1 A smooth map f : S → S̃ is a local isometry if and only if, for all vectors
X1, X2 tangential to S at any point p ∈ S,

d f (X1).d f (X2) = X1.X2 . (4.10)

For each p ∈ S, d f p : Tp S → T f (p) S̃ is linear, so, in order to check condition (4.10),
it suffices to take a basis of Tp S and check that (4.10) holds whenever X1, X2 are vectors
in that basis. Such a basis is provided by {xu , xv}, where x(u, v) is a local parametrisation
of S, so the following proposition is immediate from (4.4). This proposition provides a
very useful criterion in terms of partial derivatives for deciding whether or not a given map
is a local isometry.
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Proposition 2 Let x : U → S be a local parametrisation of S. A map f : S → S̃ is a local
isometry on x(U ) if and only if

fu . fu = E , fu . fv = F , fv . fv = G , (4.11)

where E, F and G are the coefficients of the first fundamental form of S.

Example 3 (Plane and cylinder) Let S be the xz-plane in R
3 and let S̃ be the cylinder in R

3

with equation x2 + y2 = 1. Let f : S → S̃ be the map defined by

f (x , 0, z) = (cos x , sin x , z) .

Then f wraps the xz-plane round the cylinder an infinite number of times (Figure 4.6). In
terms of the parametrisation of S given by x(u, v) = (u, 0, v), we find that

f (u, v) = (cos u, sin u, v) ,

and condition (4.11) is easy to check.

f

f(p)p = (x,0 ,z)

(0,0,0)

S S
~

�Figure 4.6 Wrapping a plane round a cylinder

Example 4† (Flat torus) This example concerns a surface in R
4, and may be omitted if it

is wished to concentrate on the geometry of surfaces in R
3. Let S̃ be the surface in R

4

discussed in Example 4 of §2.4. This is the product of two plane circles, and is defined by
the equations x1

2 + x2
2 = r1

2, x3
2 + x4

2 = r2
2, where r1 and r2 are positive real numbers.

As mentioned in Example 4 of §2.4, this surface is differentiably equivalent to a torus of
revolution in R

3. Let S be the xy-plane in R
3, and let f : S → S̃ be given by

f (x , y, 0) =
(

r1 cos
x

r1
, r1 sin

x

r1
, r2 cos

y

r2
, r2 sin

y

r2

)
.

Using the local parametrisation of S given by x(u, v) = (u, v, 0), we quickly see that
fu . fu = fv . fv = 1, while fu . fv = 0, from which it follows that f is a local isometry
from the whole of the plane onto the flat torus. This has the effect of wrapping the plane
round the flat torus (a “doubly infinite” number of times) in such a way that lengths of
curves are preserved.

A bijective local isometry f : S → S̃ is called an isometry; such a map provides a dif-
feomorphism between S and S̃ such that corresponding curves have the same lengths, and,
as we shall see, corresponding regions have the same area. The inverse of an isometry
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is also an isometry and, in this situation, the surfaces S and S̃ are said to be isomet-
ric. As far as intrinsic metric properties are concerned, isometric surfaces are essentially
indistinguishable.

Example 5 Let S denote the xz-plane in R
3 and let f be the map on S defined by

f (x , 0, z) = (α(x),β(x), z) , z ∈ R ,

where x �→ (α(x),β(x)) is a regular curve in R
2 parametrised by arc length (Figure 4.7).

f
S
~

S

�Figure 4.7 Isometric surfaces

If the curve has no self-intersections then the image of f is a surface S̃ in R
3 and f :

S → S̃ is an isometry. (Actually, as a small technicality, for S̃ to be a surface, we need the
curve x �→ (α(x),β(x)) to be what is called a proper map.)

We now seek to justify the terminology “local isometry”. In a natural sense, an isometry
f : S → S̃ preserves distances apart of pairs of points on the two surfaces. However, a
local isometry from S to S̃ gives an isometry only between sufficiently small open subsets
of S and S̃, and, as can be seen from Example 3, only preserves the distance apart of points
locally. Similarly, if you have read Example 4 you will see that the local metric geometry
of the flat torus in that example is the same as that of the plane (which is the reason for
the name “flat” torus), but globally the metric geometry is very different. As an example
of this (see Exercise 4.12), any two points of S̃ may be joined by a curve on S̃ of length at
most π

√
r1

2 + r2
2.

We remark that the rigidity of surfaces in R
3 is an interesting question with a long history

and an extensive associated literature. A surface S in R
3 is rigid if, whenever there is an

isometry f between S and a surface S̃ in R
3, then this isometry is the restriction to S of

a rigid motion of R
3 (possibly followed by a reflection). It is clear from Example 5 that a

plane is not rigid; however, ellipsoids are rigid, which helps explain why an egg is strong
but a piece of paper is very floppy!

We finish this section by showing that isometries are area-preserving maps.

Proposition 6 Let f : S → S̃ be an isometry between surfaces S and S̃. Then, for a region
R of S, the area of the image f (R) is equal to the area of R.

Proof Let x : U → S be a local parametrisation of S, and let q ∈ U. It follows from
Proposition 2, and from Theorem 3 of §2.5, that there is an open neighbourhood U0 of q in
U such that the restriction x̃ of f x to U0 is a local parametrisation of S̃ whose coefficients
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of the first fundamental form are the same as those of x. The proposition now follows from
the discussion of area in §3.7.

The converse of Proposition 6 is not true; Exercise 3.29 gives an example of an area-
preserving map which is not an isometry.

4.4 Conformal maps

We begin by defining the main objects of study in this section. Let f : S → S̃ be a smooth
map between surfaces S and S̃ such that d f (X) is non-zero whenever X is a non-zero
tangent vector to S, and let α, β be regular curves on S intersecting at an angle θ . Then
f α, f β are regular curves on S̃, but their angle of intersection will usually be different
from θ . If f is such that the angle of intersection of f α, f β is the same as the angle of
intersection of α and β for all intersecting regular curves α and β on S (Figure 4.8), then
we say that f is a conformal map. Informally, conformal maps are angle-preserving. In
this section, we find conditions on the derivative of f which enable us to decide whether
f is conformal.

We have already seen many examples of conformal maps; if we identify R
2 with the

xy-plane in R
3 in the usual way via (u, v) ≡ (u, v, 0), then Lemma 4 of §3.4 shows that an

isothermal local parametrisation is conformal. It is an isometry onto its image if and only
if E = G = 1 (and F = 0).

We now find conditions on the derivative of f which enable us to decide whether a given
map f is conformal. It turns out that all local isometries are conformal, but the converse
is not true. It is clear from (4.6) that a smooth map f is conformal if and only if, for all
p ∈ S, the derivative d f p : Tp S → T f (p) S̃ is angle preserving in that if X1, X2 are
non-zero tangent vectors to S at p then d f p(X1), d f p(X2) are also non-zero and the angle
between them is equal to the angle between X1 and X2.

Proposition 1 A smooth map f : S → S̃ is a conformal map if and only if there exists a
strictly positive function λ : S → R such that, for all vectors X1, X2, tangential to S at
any point p ∈ S, we have

d f (X1).d f (X2) = λ2 X1.X2 . (4.12)

Proof This is an exercise in linear algebra, which we include here for those interested. We
begin by assuming that (4.12) holds at each p ∈ S, and, for brevity, we let 	 denote the

f
α β

θ

θ

fα fβ

S
~

S

�Figure 4.8 Conformal maps preserve angle of intersection
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linear map d f p. We let θ (resp.φ) be the angle between non-zero vectors X1, X2 ∈ Tp S
(resp. 	(X1), 	(X2) ∈ T f (p) S̃). Then

cosφ = 	(X1).	(X2)

|	(X1)| |	(X2)| = λ2 X1.X2

λ2|X1| |X2| = cos θ ,

so that θ = φ and f is conformal.
Conversely, assume that f is conformal and let {Y1, Y 2} be an orthonormal basis of

Tp S. Then any non-zero tangent vector X at p may be written as

X = |X|(cos θY1 ± sin θY 2) ,

where θ is the angle between X and Y 1. Conformality implies that the angle between 	(X)
and 	(Y 1) is also θ , and that 	(Y1) and 	(Y2) are orthogonal. Hence, using linearity of 	,

cos θ = 	(X).	(Y1)

|	(X)| |	(Y1)| = cos θ |X| |	(Y1)|2
|	(X)| |	(Y1)| = cos θ |X| |	(Y1)|

|	(X)| .

Hence, if we put |	(Y1)| = λ, we see that, for all tangent vectors X ,

|	(X)| = λ|X| .

The proof of the proposition may now be completed as for Proposition 1 in §4.3 by
applying the (square of the) above equation to tangent vectors X1, X2 and X1 + X2.

The function λ is called the conformal factor of the conformal map f . The following
corollary is immediate from Proposition 1 in this section and Proposition 1 in §4.3.

Corollary 2 A map f : S → S̃ is a local isometry if and only if f is a conformal map with
conformal factor equal to 1.

The next proposition follows from Proposition 1 for the same reason that Proposition 2
in §4.3 follows from Proposition 1 of that section. It provides a useful criterion in terms of
partial derivatives for determining whether a given map is conformal.

Proposition 3 Let x : U → S be a local parametrisation of S. A map f : S → S̃ is
conformal on x(U ) if and only if there is a strictly positive function λ : U → R such that

fu . fu = λ2 E , fu . fv = λ2 F , fv . fv = λ2G . (4.13)

Moreover, f is a local isometry on x(U ) if and only if λ = 1.

Example 4 (Gaussmap of catenoid) We have seen (in Example 1 of §3.4) that the coefficients
of the first fundamental form of the catenoid with the standard parametrisation given in
Example 1 of §4.1 are

E = G = cosh2 v , F = 0 .

Easy calculations using the expressions for Nu and Nv obtained in Example 1 of §4.2
show that Nu .Nu = Nv .Nv = cosh−2 v, while Nu .Nv = 0. It now follows from
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Proposition 3 that N is a conformal map from the catenoid to the unit sphere S2(1) with
conformal factor cosh−2 v. In fact, as you are asked to prove in Exercise 4.4, N provides a
conformal diffeomorphism from the catenoid to the 2-sphere minus the two poles.

Example 5 (The plane) We identify C with the xy-plane in R
3 in the usual way. Recall from

the theory of complex analysis that a complex differentiable function f (z) is conformal at
those points where the complex derivative f ′(z) is non-zero, and, in this case, the conformal
factor is | f ′(z)|. The conformal diffeomorphisms of C consist of complex functions of the
form z �→ az + b, where a ∈ C \ {0} and b ∈ C, together with the conjugates of such
functions. The conformal factor λ in this case is just |a|, so it follows that the isometries
of the plane form the Euclidean group, which is generated by rotations about the origin,
translations, and reflection in the real axis.

It is clear from the definitions that the composite of two conformal maps is conformal,
and the composite of two (local) isometries is a (local) isometry. It follows from Propo-
sition 1 that the conformal factor of the composite of two conformal maps is equal to the
product of the conformal factors of the two maps at the appropriate points.

4.5 Conformal maps and local parametrisations

Local parametrisations sometimes provide a useful way of constructing conformal diffeo-
morphisms and isometries between (open subsets of) surfaces. The process described in
the following proposition is illustrated in Figure 4.9.

Proposition 1 Suppose x : U → S, x̃ : U → S̃ are local parametrisations of surfaces S, S̃
and that E , F , G and Ẽ , F̃ , G̃ are the corresponding coefficients of the first fundamental
forms. Then the bijective correspondence f from x(U ) to x̃(U ) given by

f (x(u, v)) = x̃(u, v) , (u, v) ∈ U , (4.14)

is a conformal diffeomorphism if and only if there exists a strictly positive function λ(u, v)
such that

Ẽ = λ2 E , F̃ = λ2 F , G̃ = λ2G .

Moreover, f is an isometry if and only if λ = 1.

f

x x~

S
~

S

U

�Figure 4.9 Using local parametrisations to construct a conformal map
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Proof We first note that f is smooth since f = x̃x−1 is the composite of two smooth
maps. Since we are dealing with two parametrisations here, we do not use our usual abuse
of notation; for instance, we do not write fu since this could mean either ( f x)u or ( f x̃)u .

It follows from Proposition 3 of §4.4 that f is conformal if and only if, for some positive
function λ(u, v), we have

( f x)u .( f x)u = λ2 E , ( f x)u .( f x)v = λ2 F , ( f x)v .( f x)v = λ2G , (4.15)

and, by Proposition 2 of §4.3, f is a local isometry if (4.15) holds with λ = 1. But f x = x̃
so that ( f x)u .( f x)u = x̃u .x̃u = Ẽ , ( f x)u .( f x)v = F̃ , and ( f x)v .( f x)v = G̃. Since f is
clearly a bijective map, the proof of the proposition now follows.

We note that the local parametrisations x and x̃ map a given curve in their common
domain U to curves in S and S̃ which correspond under the bijective correspondence f . In
particular, f maps the coordinate curves of x to those of x̃.

Example 2 (Helicoid and catenoid) Let S be the helicoid in R
3 defined by the equation

x sin z = y cos z, and let S̃ be the catenoid with equation x2 + y2 = cosh2 z. Let
x : R

2 → S and x̃ : U → S̃, U = (−π ,π ) × R, be the local parametrisations of S,
S̃ respectively given by

x(u, v) = (sinh v cos u, sinh v sin u, u) , (u, v) ∈ R
2 ,

and

x̃(u, v) = (cosh v cos u, cosh v sin u, v) , (u, v) ∈ U .

Then, as we found in Example 1 of §3.4 and Example 1 of §3.6,

E = G = cosh2 v , F = 0 ; Ẽ = G̃ = cosh2 v , F̃ = 0 ,

and hence the map illustrated in Figure 4.10 and given by

f (sinh v cos u, sinh v sin u, u) = (cosh v cos u, cosh v sin u, v) , (u, v) ∈ U , (4.16)

x

f = xx–1

x~

~

U

�Figure 4.10 Isometry from one twist of a helicoid to a catenoid

is an isometry from one complete twist of the helicoid to the catenoid (with one meridian
omitted). The coordinate curves u = constant on the helicoid give the rulings of S, and
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these map to the meridians u = constant on the catenoid. In a similar way, the helices v =
constant on S map to the parallels on S̃.

In Exercise 4.15, you are asked to investigate a 1-parameter family of isometries which
deforms one twist of a helicoid to give a catenoid (with one meridian omitted). The Gauss
map stays constant throughout the deformation. This behaviour is characteristic of sur-
faces of a certain type, namely minimal surfaces; these form the main topic of Chapter 9.
Animations of the deformation described here may be found on the internet.

We note that the formula given in (4.16) may be extended to the whole of R
2 to give a

local isometry from S onto S̃ that wraps the helicoid round the catenoid an infinite number
of times.

We recall a remark made near the start of §3.3 to the effect that two surfaces having
local parametrisations with the same coefficients of the first fundamental form have the
same intrinsic metric geometry on the corresponding coordinate neighbourhoods. Propo-
sition 1 shows that in this situation there is an isometry between the two coordinate
neighbourhoods, and we will often say that the two surfaces are metrically equivalent on
these coordinate neighbourhoods. So, Example 2 shows that, locally, the helicoid and the
catenoid are metrically equivalent, although globally they are very different.

4.6 Appendix 1: Some substantial examples †

In the following two appendices, we shall present some rather more advanced examples of
conformal maps and local isometries. These examples will not be needed in an essential
way for the rest of the book, and so may be omitted if desired. The most accessible material,
finding the conformal group and isometry group of the helicoid, may be covered by reading
Appendix 2 up to the end of Example 2. This material does not depend on Appendix 1.

Example 1 (Conformal maps of the sphere) In Example 5 of §4.4, we mentioned the relation
between complex differentiability and conformality for complex functions. In this example
we use this, together with some particularly nice isothermal local parametrisations of the
sphere S2(1) to construct smooth maps from S2(1) to itself which are conformal except
perhaps at a finite number of points (where the derivative vanishes).

Let x : R
2 → S2(1) be the local parametrisation discussed in Example 2 of §3.4.

Specifically, x is a local parametrisation covering S2 \ {(0, 0, 1)}, and, identifying R
2 with

C in the usual way,

x(u + iv) = (2u, 2v, u2 + v2 − 1)

u2 + v2 + 1
, u + iv ∈ C .

It is clear from the geometry of x as explained in Example 2 of §3.4 that the inverse
map x−1 of x is given by stereographic projection πN from the north pole (0, 0, 1) of
S2(1) onto the xy-plane. This latter map sends a point (x , y, z) of S2(1) \ {(0, 0, 1)} to the
point of intersection of the line through (x , y, z) and (0, 0, 1) with the xy-plane, and a short
calculation shows that πN (and hence x−1) is given by
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x−1(x , y, z) = πN (x , y, z) = x + iy

1 − z
, (x , y, z) ∈ S2(1) \ {(0, 0, 1)} .

If f : C → C is given by

f (w) = a0 + · · · + anw
n , a0, . . . , an ∈ C , an 	= 0 ,

we define f̃ : S2(1) → S2(1) (Figure 4.11) by

f̃ (p) =
{

x f x−1(p) , p 	= (0, 0, 1) ,

p , p = (0, 0, 1) .
(4.17)

f

f
~

x–1

S2(1) S2(1)

x

�Figure 4.11 Definition of f̃

It is clear that f̃ is smooth on S2(1) \ {(0, 0, 1)}, since its composite f̃ x with x is a
smooth map from the plane. We now show that f̃ is smooth at (0, 0, 1) by considering a
local parametrisation of S2(1) whose image contains (0, 0, 1).

Specifically, let πS denote stereographic projection from the south pole (0, 0, −1) of
S2(1) onto the xy-plane. Then

πS(x , y, z) = x + iy

1 + z
, (x , y, z) ∈ S2(1) \ {(0, 0, −1)} ,

and a short calculation shows that if y : C → S2(1) \ {(0, 0, −1)} is the smooth map
given by

y(u + iv) = (2u, −2v, −u2 − v2 + 1)

u2 + v2 + 1
,

then πS y is complex conjugation on C.
It follows that y is a local parametrisation of S2(1) (whose image omits (0, 0, −1)), and

y−1 is given by πS followed by complex conjugation. Another short calculation now shows
that y−1x : C \ {0} → C \ {0} is given by

y−1x(w) = 1

w
, w ∈ C \ {0} . (4.18)

This is the transition function between the two local parametrisations x and y.
Equation (4.18) indicates the reason we didn’t take y to be the inverse of stereographic

projection from the south pole; without complex conjugation, the transition function would
have been w �→ 1/w̄, which is not as nice as (4.18) since it is not complex differentiable.
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Notice that y(0) = (0, 0, 1), so if we show that f̃ y is smooth at 0 it will follow from
our definition of smoothness that f̃ is smooth at (0, 0, 1). To do this, we first note that, for
w 	= 0, we have, using (4.18),

y−1 f̃ y(w) = y−1x f ( y−1x)−1(w)

= 1

f ( 1
w

)

= 1

a0 + · · · + an( 1
w

)n

= wn

a0wn + · · · + an
. (4.19)

However, y−1 f̃ y(0) = 0, so even when w = 0, y−1 f̃ y(w) is given by (4.19). It follows
that y−1 f̃ y is smooth, indeed complex differentiable, atw = 0, so that f̃ y is the composite
of the smooth maps y and y−1 f̃ y and hence is smooth at 0. We may now conclude from
our definition of smoothness that f̃ is smooth at (0, 0, 1) and hence smooth on the whole
of S2(1).

We now discuss conformality. As noted in Example 2 of §3.4, x is an isothermal local
parametrisation, and hence is conformal. Since f : C → C is complex differentiable, f is
also conformal except at the finite number of points where the complex derivative vanishes.
It follows that f̃ is a conformal map of the sphere except at the corresponding points on
the sphere and possibly at the north pole. In fact, the complex derivative of y−1 f̃ y is zero
at w = 0 if and only if n ≥ 2, so that f̃ is conformal at the north pole if and only if n = 1.

As a specific example, if f (w) = w2 then the corresponding map f̃ may be described
geometrically as follows. A point p ∈ S2(1) with z-coordinate z0 may be written as
(
√

1 − z0
2 eiθ , z0) and, when f (w) = w2,

f̃ (
√

1 − z0
2 eiθ , z0) =

(
1 − z0

2

1 + z0
2

e2iθ ,
2z0

1 + z0
2

)
.

Thus, points of S2(1) are moved around the sphere and towards to the poles by f̃ .
We may extend the above ideas by considering rational functions rather than just poly-

nomials on the complex plane. So, if f (w) = g(w)/h(w), where g(w) and h(w) are
polynomials with no common factors, we may use the above ideas to define a correspond-
ing map f̃ : S2(1) → S2(1). So, for instance, f̃ (x(w)) = (0, 0, 1) whenever h(w) = 0. In
fact, in complex analysis it is often convenient to consider complex functions as functions
defined on the extended complex plane C ∪ {∞}. We may use the parametrisation x to
identify C ∪ {∞} with S2(1) (in this situation usually called the Riemann sphere) with ∞
being identified with the north pole. Under this identification, f and f̃ also become identi-
fied. The formula (4.18) for the transition function y−1x is the reason why the behaviour of
complex functions at ∞ is studied by replacing w with 1/w and then seeing what happens
when w = 0. For instance, if

f (w) = anw
n + · · · + a0

bnwn + · · · + b0
,

with at least one of an , bn being non-zero, and the numerator and denominator having no
common factors, then
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f (1/w) = an + · · · + a0w
n

bn + · · · + b0wn
,

so that f (∞) = an/bn (interpreted as ∞ if bn = 0). We shall say a little more about
the special case of Möbius transformations (for which n = 1) in Example 3 of the next
appendix.

All the above examples are orientation preserving maps of S2(1) (except where the
derivative vanishes) in the following sense. If N is a choice of orientation on an orientable
surface S ⊂ R

3 then a basis {X , Y} of the tangent space Tp S at p ∈ S is said to be positively
oriented if X × Y is a positive scalar multiple of N(p). A smooth map f : S → S is
orientation preserving if the derivative d f maps one (and hence every) positively oriented
basis at each point p ∈ S to a positively oriented basis at f (p). We note that this concept
is independent of choice of orientation.

Orientation reversing conformal maps of S2(1) are obtained by considering rational
functions of the complex conjugate z̄.

Example 2 (Veronese surface) Let f : S2(1) → R
5 be the map defined by

f (x , y, z) =
(

yz, zx , xy,
1

2
(x2 − y2),

1

2
√

3
(x2 + y2 − 2z2)

)
, x2 + y2 + z2 = 1 .

(4.20)
It follows easily that f (p) = f (q) if and only if p = ±q, so that if we define the

real projective plane RP2 to be the set of lines through the origin of R
3 then f defines a

bijective map from RP2 to R
5. The image of f is a surface S in R

5, and we now show that
f is a local isometry from S2(1) onto S. The surface S is called the Veronese surface, and
it has many interesting geometrical properties.

So, let α1(t) = (x1(t), y1(t), z1(t)), and α2(t) = (x2(t), y2(t), z2(t)) be curves on S2(1)
with α1(0) = α2(0) = (x , y, z) ∈ S2(1).

Then, for each i = 1, 2, we have that xi
2 + yi

2 + zi
2 = 1, so that

xi xi
′ + yi yi

′ + zi zi
′ = 0 , i = 1, 2 . (4.21)

We now note that

d f (α1
′) = ( f α1)′

=
(

y1
′z1 + y1z1

′, z1
′x1 + z1x1

′,

x1
′y1 + x1 y1

′, x1x1
′ − y1 y1

′, 1√
3

(x1x1
′ + y1 y1

′ − 2z1z1
′)
)

.

Using the similar expression for d f (α2
′), it follows that, evaluating all derivatives at t = 0,

d f
(
αi

′(0)
)

.d f
(
α j

′(0)
) = (yi

′z + yzi
′)(y j

′z + yz j
′) + (zi

′x + zxi
′)(z j

′x + zx j
′)

+ (xi
′y + x yi

′)(x j
′y + x y j

′) + (xxi
′ − yyi

′)(xx j
′ − yy j

′)

+ 1

3
(xxi

′ + yyi
′ − 2zzi

′)(xx j
′ + yy j

′ − 2zz j
′)

= (xi
′x j

′ + yi
′y j

′ + zi
′z j

′)(x2 + y2 + z2)

+ 1

3
(xxi

′ + yyi
′ + zzi

′)(xx j
′ + yy j

′ + zz j
′) .
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Hence, using (4.21) and again evaluating all derivatives at t = 0,

d f
(
αi

′(0)
)

.d f
(
α j

′(0)
) = xi

′x j
′ + yi

′y j
′ + zi

′z j
′ = αi

′(0).α j
′(0) .

It follows that, as claimed, f is a local isometry of S2(1) onto the Veronese surface. In a
natural sense, the Veronese surface is obtained by identifying antipodal points of S2(1), so
it follows that the Veronese surface has area 2π .

Example 3 (Models of the hyperbolic plane) The hyperbolic plane H was discussed in the
optional Example 5 of §3.4. In that example, we described how to regard the hyperbolic
plane as the upper half-plane {(u, v) ∈ R

2 : v > 0} which is equipped with a metric, the
hyperbolic metric, which differs from the Euclidean metric by the conformal factor 1/v.
So, at a point (u, v) ∈ H , we take the inner product g given by

g ((λ1,μ1), (λ2,μ2)) = 1

v2
(λ1λ2 + μ1μ2) .

In the hyperbolic metric, the length of a curve is not its Euclidean length, but the angle
of intersection of two curves is the same in both the Euclidean and hyperbolic metrics.

The coefficients of the first fundamental form of the hyperbolic metric are easy to work
out; for instance, E = g ((1, 0), (1, 0)) = 1/v2. We find that

E = 1

v2
, F = 0 , G = 1

v2
.

We now describe another way of putting a non-standard metric on a subset of the plane,
and then show that this is isometric to H . We identify C with R

2 in the usual way, and let
H̃ denote the open unit disc {w ∈ C : |w| < 1}, equipped with metric g̃ (again conformally
equivalent to the standard Euclidean metric) having Ẽ = G̃ = 4/(1 − |w|2)2, F̃ = 0. We
shall show that the Möbius transformation

f (z) = z − i

z + i

is an isometry from H onto H̃ . To see this, we first note that f maps the upper half-plane
onto the open unit disc. Then, differentiating with respect to z, we find that

f ′(z) = 2i

(z + i)2
.

We now recall that the Cauchy–Riemann equations from complex analysis give that

fu = −i fv = f ′(z) ,

so, if f ′(z) = a + ib (which we identify with (a, b) ∈ R
2), where a and b are real numbers,

then

g̃( fu , fu) = g̃( fv , fv) = 4
a2 + b2

(1 − | f (z)|2)2
= 4

| f ′(z)|2
(1 − | f (z)|2)2

= 4

∣∣∣∣ 2i

(z + i)2

∣∣∣∣
2 1

(1 − | z−i
z+i |2)2
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= 16

(|z + i |2 − |z − i |2)2

= 1

(Im z)2

= E = G .

Also, g̃( fu , fv) = 4(−ab +ab)/(1−| f (z)|2)2 = 0 = F , so Proposition 2 of §4.3 shows
that f (z) is an isometry.

For obvious reasons, H is often referred to as the upper half-plane model of the
hyperbolic plane, while H̃ is the disc model.

4.7 Appendix 2: Conformal and isometry groups †

As mentioned in the final paragraph of §4.4, the composite of two conformal maps is
conformal, and the composite of two (local) isometries is a (local) isometry. It is clear that
the conformal diffeomorphisms from a surface S to itself form a group under composition,
the conformal group of S, and that the isometries form a subgroup of this.

In Example 5 of §4.4, we found these groups for the plane. In this optional appendix,
we discuss the conformal group and the isometry group of a helicoid, the unit sphere, and
the hyperbolic plane.

Example 1 (Conformal group of helicoid) As we saw in Example 1 of §3.6, the parametrisation

x(u, v) = (sinh v cos u, sinh v sin u, u) , (u, v) ∈ R
2 ,

gives an isothermal parametrisation of the whole of a helicoid S. Thus (Figure 4.12) the
map f �→ x f x−1 gives a group isomorphism from the conformal group CR2 of R

2 to the
conformal group CS of S. (This is a similar idea to that used in Example 1 of Appendix 1,
in that we have used an isothermal parametrisation to relate the conformal structure of the
helicoid to that of the plane.)

We saw in Example 5 of §4.4 that CR2 is made up of the (orientation preserving) maps

z �→ az + b , a, b ∈ C , a 	= 0 ,

f

f
~

x–1

SS

x

�Figure 4.12 Conformal diffeomorphisms of the helicoid
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and the (orientation reversing) maps

z �→ az̄ + b , a, b ∈ C , a 	= 0 ,

where ¯ denotes complex conjugation. If f (z) = az + b with a = a1 + ia2, b = b1 + ib2,
then

f (u + iv) = a1u − a2v + b1 + i(a2u + a1v + b2) ,

so that the corresponding orientation-preserving conformal diffeomorphism f̃ = x f x−1

of the helicoid is given by

f̃ (x(u, v)) = (sinh ṽ cos ũ, sinh ṽ sin ũ, ũ) ,

where

ũ = a1u − a2v + b1 , ṽ = a2u + a1v + b2 .

Since |a| is the conformal factor λ of f at each point of C, and cosh v is the conformal
factor of x at (u, v), it follows that the conformal factor λ̃ of f̃ at x(u, v) is given by

λ̃ = 1

cosh v
|a| cosh(a2u + a1v + b2) . (4.22)

Example 2 (Isometry group of helicoid) We already know many isometries of the helicoid S,
namely the restriction to the helicoid of suitable screw motions of R

3 about the z-axis.
However, we may wonder if there are any more.

Since the previous example gives us the conformal group of the helicoid, we need only
check which of these are isometries. To do this we must find those conformal maps f of
the complex plane for which the corresponding map f̃ has conformal factor λ̃ = 1. It thus
follows from (4.22) that f̃ is an isometry if and only if

a2 = b2 = 0 , a1 = ±1 .

The orientation preserving isometries therefore come from the maps of the plane given by

(u, v) �→ (u + b1, v) and (u, v) �→ (−u + b1, −v),

where b1 ∈ R is arbitrary. Notice that the second of these is the map (u, v) �→ (−u, −v)
followed by the first. Thus, the orientation preserving isometries of the helicoid are either
of the form

(sinh v cos u, sinh v sin u, u) �→ (sinh v cos(u + b1), sinh v sin(u + b1), u + b1) , (4.23)

or the composite of a map of this type with the map

(sinh v cos u, sinh v sin u, u) �→ (− sinh v cos u, sinh v sin u, −u) . (4.24)

We note that a map of the helicoid S of the form of (4.23) is the restriction to S of the
screw motion of R

3 given by⎛
⎝x

y
z

⎞
⎠ �→ R(b1)

⎛
⎝x

y
z

⎞
⎠+
⎛
⎝ 0

0
b1

⎞
⎠ ,
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where

R(θ ) =
⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠

is rotation of R
3 about the z-axis through an angle θ . Similarly, the map (4.24) is the

restriction to S of rotation of R
3 about the y-axis through an angle π . This shows that each

orientation preserving isometry of the helicoid is the restriction of a Euclidean motion of
R

3.
The case of orientation reversing isometries of the helicoid is left as an exercise.

Example 3 (Conformal and isometry groups of S2(1)) This example follows on from Exam-
ple 1 of the previous appendix, and uses the notation developed there. A Möbius
transformation is a rational function of the form

f (w) = aw + b

cw + d
, a, b, c, d ∈ C , ad − bc 	= 0 ,

and in Exercise 4.19 you are asked to prove that the corresponding maps f̃ are conformal
diffeomorphisms of S2(1). If we assume without loss of generality that ad − bc = 1, then
Exercise 4.19 also asks you to show that f̃ is an orientation preserving isometry (that is to
say, a rotation) of S2(1) if and only if d = ā and c = −b̄. Although we shall not prove it,
a standard result in complex analysis says that all orientation preserving conformal diffeo-
morphisms of S2(1) are induced by Möbius transformations as described in this example.
The orientation reversing conformal diffeomorphisms are obtained by considering maps as
above followed by reflection in, say, the xy-plane.

Example 4 (The hyperbolic plane) Let H denote the upper half-plane model of the hyperbolic
plane discussed in Example 3 of Appendix 1. Identifying R

2 with C as usual, the conformal
diffeomorphisms of H are those Möbius transformations that map the upper half plane to
itself, namely, f : H → H given by

f (z) = az + b

cz + d
, a, b, c, d ∈ R , ad − bc > 0 .

Rather surprisingly, it may be shown (see Exercise 4.20) that every conformal diffeo-
morphism of the hyperbolic plane is actually an isometry.

Exercises

4.1 Using the parametrisation of the helicoid x sin z = y cos z given by

x(u, v) = (sinh v cos u, sinh v sin u, u) , u, v ∈ R ,

find the Gauss map N(u, v) of the helicoid, and show that it is not injective.

4.2 Show that the Gauss map of a surface of revolution S maps the parallels of S to the
parallels of S2(1) and the meridians of S to the meridians of S2(1) (where S2(1) is
considered as a surface of revolution with axis of rotation parallel to that of S).
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4.3 Find the image of the Gauss map of the surface with equation f (x , y, z) = 0, where:

(i) f (x , y, z) = x2 + y2 − z (paraboloid of revolution);
(ii) f (x , y, z) = x2 + y2 − z2 − 1 (hyperboloid of 1 sheet);

(iii) f (x , y, z) = x2 + y2 − z2 + 1 (hyperboloid of 2 sheets).

In each case use the orientation determined by grad f . (Note that the image of the
Gauss map is a subset of S2(1). So, for example, the answer to (ii) is {(x , y, z) ∈
S2(1) : |z| < 1/

√
2}.)

4.4 Show that the Gauss map of the catenoid x2 + y2 = cosh2 z is an injective map onto
S2(1) \ {(0, 0, ±1)}.

4.5 (Height functions) Let S be a surface in R
n , and let v be a unit vector in R

n . Let
h : S → R be given by h(p) = p.v. Show that h is a smooth function on S and that
the derivative dh p is zero if and only if v is orthogonal to S at p (Figure 4.13).

v

v
v

v

S

�Figure 4.13 Height function

4.6 (Distance squared functions) Let S be a surface in R
n and let q be a point in R

n . Let
f : S → R assign to each point p ∈ S the square of the distance from p to q. Show
that f is a smooth function on S and that the derivative d f p is zero if and only if
either p = q or q − p is orthogonal to S at p (Figure 4.14).

S

q

�Figure 4.14 Square of the distance function

4.7 Let S be a connected surface in R
3. If all the lines in R

3 having orthogonal intersec-
tion with S pass through some fixed point of R

3, show that S is an open subset of a
sphere. (A surface S is connected if any two points of S may be joined by a smooth
curve on S. You may use the fact that if the derivative of a differentiable function f
on such a surface is everywhere zero, then f is constant.)

4.8 Complete Example 5 of §4.2 by showing directly that d f p maps Tp S2(1) to T f (p) S̃.
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4.9 For each positive real number a, find a local isometry from the xy-plane in R
3 onto

the cylinder in R
3 with equation x2 + y2 = a2.

4.10 Let b be a positive real number, and let S̃ be that part of the cone z2 = b2(x2 + y2)
for which z > 0. If S denotes the xy-plane in R

3, and if n is a positive integer, show
that the formula f : S \ {(0, 0, 0)} → S̃ given by

f (r cos θ , r sin θ , 0) = 1

n
(r cos nθ , r sin nθ , br ) , r > 0 ,

gives a well-defined map onto S̃. Show also that if b = √
n2 − 1 then f is a local

isometry. How would you model the effect of the map f by using a sheet of paper?

4.11 (This exercise uses material in the optional Example 4 of §4.3.) Let S̃ be the flat
torus discussed in Example 4 of §4.3, and let S be the cylinder in R

3 with equation
x2 + y2 = r1

2.

If f : R
3 → R

4 is given by

f (x , y, z) = (x , y, r2 cos(z/r2), r2 sin(z/r2)) ,

show that the restriction of f to S defines a surjective local isometry from S to S̃.

4.12 (This exercise uses material in the optional Example 4 of §4.3.) Show that any two
points of the flat torus S̃ discussed in Example 4 of §4.3 may be joined by a curve in
S̃ of length at most π

√
r1

2 + r2
2.

4.13 Show that the Gauss map of the helicoid x sin z = y cos z is conformal.

4.14 (This exercise uses material in the optional Example 4 of §4.3.) Let S be the flat torus
discussed in Example 4 of §4.3, and assume that r1

2 + r2
2 = 1. Let Ta,b be the torus

of revolution in R
3 obtained by rotating the circle

(x − a)2 + z2 = b2 , y = 0 ,

about the z-axis, where a = 1/r1 and b = r2/r1.

Let X = {(x1, x2, x3, x4) : x4 	= 1} denote R
4 with the plane x4 = 1 omitted, and

let f : X → R
3 be stereographic projection from (0, 0, 0, 1) onto the plane x4 = 0

(so that, if p ∈ X , then f (p) is the point of intersection with the plane x4 = 0 of the
line through p and (0, 0, 0, 1)). Show (or assume that) f is given by

f (x1, x2, x3, x4) =
(

x1

1 − x4
,

x2

1 − x4
,

x3

1 − x4

)
.

Show that f defines a conformal diffeomorphism of the flat torus S onto the torus of
revolution Ta,b.

4.15 Let x and x̃ be the local parametrisations of (one twist of) the helicoid S and the
catenoid S̃ given in Exercise 3.10, namely

x(u, v) = (sinh v sin u, − sinh v cos u, u) , −π < u < π , v ∈ R ,

x̃(u, v) = (cosh v cos u, cosh v sin u, v) , −π < u < π , v ∈ R .
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In Exercise 3.10 we found that xu = x̃v and xv = −x̃u and, for each θ ∈ R,
we showed that the coefficients of the first fundamental form of the surface Sθ
parametrised by

xθ (u, v) = cos θ x(u, v) + sin θ x̃(u, v) , −π < u < π , v ∈ R ,

are independent of θ . Use this to show that the correspondence fθ (x(u, v)) =
xθ (u, v) is an isometry from one twist of the helicoid S onto Sθ . Show also that the
corresponding Gauss maps Nθ are independent of θ . This provides a 1-parameter
family of isometries which deforms one twist of the helicoid to form the catenoid
(with one meridian removed) in such a way that the Gauss map remains constant
throughout the deformation. As mentioned in §4.5, this behaviour is characteristic
of surfaces of a certain type, namely minimal surfaces; these form the main topic of
Chapter 9. Animations of the deformation described in this exercise may be found
on the internet.

The following exercises use material in the optional appendices.

4.16 Let f̃ : S2(1) → S2(1) be the map defined as in Example 1 of Appendix 1, with
f (w) = w + 1. Draw sketches of S2(1) showing the curves of intersection of S2(1)
with the coordinate planes, and their images under f̃ . Provide justification for your
sketches.

4.17 (The hyperbolic plane for relativity theorists!) Let B be the symmetric bilinear form
defined on R

3 × R
3 by

B ((x1, x2, x3), (y1, y2, y3)) = x1 y1 + x2 y2 − x3 y3

(this is an example of an indefinite metric on R
3), and let S be the upper sheet of the

hyperboloid of two sheets given by

S = {(x1, x2, x3) ∈ R
3 : B ((x1, x2, x3), (x1, x2, x3)) = −1, x3 > 0} ,

(so that S is a “ sphere of radius
√−1” in terms of the indefinite metric).

(i) Show that, if p ∈ S, then B(X , p) = 0 for all X ∈ Tp S. (It now follows from a
result in linear algebra called Sylvester’s law of inertia that the restriction of B
to the tangent spaces of S defines a positive definite inner product 〈 , 〉 on each
tangent space of S.)

(ii) Let (H̃ , g̃) denote the disc model of the hyperbolic plane (see Example 3 of
Appendix 1) equipped with the metric g̃ described in that example. For each
(u, v) ∈ H̃ , show that the line through (0, 0, −1) and (u, v, 0) intersects S at the
unique point

f (u, v) = (2u, 2v, 1 + u2 + v2)

1 − u2 − v2
.

(iii) Show that f maps (H̃ , g̃) isometrically onto (S, 〈 , 〉). (This gives an alternative
way of showing that, as noted above, 〈 , 〉 is positive definite on each tangent
space of S.)
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4.18 Let H = {(u, v) ∈ R
2 : v > 0} be the upper half-plane model of the hyperbolic

plane discussed in Example 5 of §3.4 and in Example 3 of Appendix 1. Let S be the
pseudosphere obtained by rotating the tractrix

α(v) =
(

1

v
, 0 , arccosh v − (v2 − 1)1/2

v

)
, v > 1 ,

around the z-axis, where arccosh v is taken to be the positive number w with
coshw = v. Show that the map

f (u, v) =
(

1

v
cos u,

1

v
sin u, arccosh v − (v2 − 1)1/2

v

)
, v > 1 ,

is a local isometry of the open subset H̃ = {(u, v) ∈ H : v > 1} of H onto S. This
local isometry wraps H̃ round the pseudosphere an infinite number of times, rather
like the local isometry considered in Example 3 of §4.3 wraps the plane round the
cylinder an infinite number of times.

4.19 This exercise follows on from Example 1 of Appendix 1 and Example 3 of Appendix
2, and uses the notation developed there.

(i) Using the fact that the conformal factor of x at w is 2/(1 + |w|2), show that,
if f (w) is a complex differentiable function with non-zero derivative at w, then
the conformal factor of f̃ at x(w) is

(1 + |w|2)| f ′(w)|
1 + | f (w)|2 .

(ii) If f (w) is the Möbius transformation given by

f (w) = aw + b

cw + d
,

show that the conformal factor of the corresponding map f̃ at x(w) is equal to

(1 + |w|2) |ad − bc|
|cw + d|2 + |aw + b|2 .

(iii) Assuming that f̃ is smooth at (0, 0, 1), show that f̃ is conformal at (0, 0, 1) and
hence is a conformal diffeomorphism of S2(1).

(iv) Assuming without loss of generality that ad−bc = 1, show that f̃ is an isometry
of S2(1) if and only if d = ā and c = −b̄.

4.20 Use the upper half-plane model of the hyperbolic plane H described in Exam-
ple 3 of Appendix 1, and the description of the conformal diffeomorphisms of the
hyperbolic plane given in Example 4 of Appendix 2, to show that every conformal
diffeomorphism of the hyperbolic plane is actually an isometry.



5 Measuring how surfaces curve

In Chapters 3 and 4 we studied intrinsic properties of surfaces; those which depend on only
the inner product on each tangent space. In this chapter we study extrinsic properties of a
surface in R

3. These consider the measurement and consequences of the curvature of the
surface in the containing Euclidean space.

We saw in Chapter 1 that the bending of a regular curve α in R
2 is measured by the rate

of change of its unit normal vector n. In a similar manner, the way in which a surface S
is curving in R

3 at a point p ∈ S may be measured by the rate of change at p of its unit
normal vector N . This is quite complicated, since it is given by the derivative d N p which is
a linear map from the tangent space Tp S to R

3. However, we shall see that this linear map
may be used to define scalar quantities, the Gaussian curvature K and the mean curvature
H , which turn out to be of fundamental importance in describing the geometry of S.

In this chapter, we begin the study of these two measures of curvature, and relate them
to other quantities determined by the rate of change of N . This involves a discussion of
the second fundamental form I I of S, and its role in determining the normal curvature κn

of a regular curve α on S; this latter quantity may be thought of as a measure of the rate
at which S is curving in R

3 as we travel along α, or, as an alternative interpretation, the
minimum amount of bending α must do in order to stay on S.

The situation for surfaces in higher dimensional Euclidean spaces is rather more com-
plicated than for surfaces in R

3, since here the normal space at a point is more than
1-dimensional so it is more difficult to measure the rate of change. However, although
beyond the scope of this book, much can be done and many of the results in this chapter
may be generalised.

In §5.2 to §5.6 we define various quantities determined by the rate of change of N ,
and give several examples of how to calculate them. We then begin an investigation of the
geometric information carried by these quantities.

5.1 TheWeingartenmap

Let S be a surface in R
3 and let N : S → S2(1) be the corresponding Gauss map, which

gives a smooth choice of unit normal vector on S (and so is locally defined up to sign) as
described in §4.1, where some examples were given.

The rate of change of N at a point p ∈ S is measured by the derivative

d N p : Tp S → TN(p)S
2(1) ,

and it is this map which captures the way in which S is curving at p.
In this section, we give some examples and first properties of d N p.

109
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Example 1 (Plane) Let f (x , y, z) = ax + by + cz, where at least one of a, b, c is non-zero.
Then, for each real number k, the equation f (x , y, z) = k gives a plane in R

3 and, as
proved in Proposition 5 of §3.1,

N = grad f

|grad f | = (a, b, c)√
a2 + b2 + c2

.

Thus N is constant and its rate of change is the zero map at each point p of S, reflecting
the fact that the plane doesn’t curve at all.

Example 2 (Unit sphere) The outward unit normal to S2(1) at a point p on S2(1) is equal to
the position vector of p (Figure 5.1); the corresponding Gauss map of S2(1) is simply the
identity map. Since this is the restriction to S2(1) of a linear map of R

3, namely the identity
map, the derivative d N p is the inclusion map Tp S2(1) ↪→ R

3. In this book we shall always
use the orientation of S2(1) given by the outward unit normal.

We note that, for a general surface S in R
3, both Tp S and TN(p)S2(1) have the same

unit normal, namely N(p). It follows that, as illustrated in Figure 5.2, TN(p)S2(1) = Tp S.
Hence d N p is actually a linear map from Tp S to itself. This may also be seen by using a
local parametrisation x(u, v); since N .N = 1 we have that Nu .N = 0 = Nv .N , so that
Nu and Nv , which span the image of d N , are both in Tp S.

For each p ∈ S the map

−d N p : Tp S → Tp S

is called the Weingarten map of S at p. The reason for the minus sign will become apparent
when we discuss normal curvature in §5.7.

A linear map is determined by its effect on a basis of tangent vectors, and, in terms of a
local parametrisation x(u, v), equation (4.4) shows that

− d N(xu) = −Nu , −d N(xv) = −Nv . (5.1)

p

S2(1)

N(p)

�Figure 5.1 Gauss map of sphere

N

S

p

S2(1)

�Figure 5.2 Gauss map of general surface
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Example 3 (Surface of revolution) Let S be the surface generated by rotating the curve
( f (v), 0, g(v)), f (v) > 0 ∀v, about the z-axis. Then S has a local parametrisation

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , u ∈ (−π ,π ),

and we saw in Example 2 of §4.1 that

N = xu × xv
|xu × xv| = (g′ cos u, g′ sin u, − f ′)

( f ′2 + g′2)1/2
.

If the generating curve is parametrised by arc length then

f ′2 + g′2 = 1 (5.2)

and

−d N(xu) = −Nu = (g′ sin u, −g′ cos u, 0) ,

−d N(xv) = −Nv = (−g′′ cos u, −g′′ sin u, f ′′) .

Differentiating (5.2), we obtain

f ′ f ′′ + g′g′′ = 0 , (5.3)

from which it follows that, when the generating curve is parametrised by arc length,

− d N(xu) = −g′

f
xu , −d N(xv) = −g′′

f ′ xv = f ′′

g′ xv . (5.4)

(We give two expressions for −d N(xv), so we can evaluate this at points where either f ′
or g′ is zero.)

As already noted, the Gauss map of a surface in R
3 is only defined up to sign. When, as

in the previous example, a local parametrisation has been chosen, we shall always take N
to be a positive scalar multiple of xu × xv .

We now discuss a very important property of the Weingarten map −d N p; it is self-
adjoint at each point p ∈ S, or, in symbols,

d N p(X).Y = X .d N p(Y ) , ∀ X , Y ∈ Tp S . (5.5)

Theorem 4 For each point p on a surface S in R
3, the Weingarten map −d N p : Tp S →

Tp S is a self-adjoint linear map.

Proof It suffices to check (5.5) in the case in which {X , Y} is a basis of Tp S. So, if x(u, v)
is a local parametrisation whose image contains p, we need to show that

d N(xu).xv = xu .d N(xv) .

To do this, we note that N .xu = 0 and N .xv = 0, so by differentiation,

Nv .xu + N .xuv = 0 , Nu .xv + N .xvu = 0 . (5.6)

Subtracting and using the fact that xuv = xvu , we find that

Nv .xu − Nu .xv = 0 , (5.7)

and the result follows from (5.1).
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It will be recalled from a first course in linear algebra that if V is an n-dimensional
vector space equipped with an inner product, and if 	 is a self-adjoint linear map from V
to V , then it is always possible to find an orthonormal basis {w1, . . . ,wn} of V consisting
of eigenvectors of 	, that is to say, there are real numbers λ1, . . . , λn , the corresponding
eigenvalues, such that 	(wi ) = λiwi for each i = 1, . . . , n. This is often very useful;
for instance it is the key fact which leads to the classification of conics in R

2 and, more
generally, quadrics in R

n . In our situation, for each p ∈ S the self-adjoint map −d N p

maps Tp S to itself, and so Tp S admits an orthonormal basis {e1, e2} of eigenvectors.

Example 5 (Surface of revolution) If we consider the standard parametrisation of a surface
of revolution when the generating curve is parametrised by arc length, then (5.4) shows
that {xu/ f , xv} is an orthonormal basis of eigenvectors of −d N , and the corresponding
eigenvalues are −g′/ f and −g′′/ f ′.

It is clear that the eigenvectors and eigenvalues of the Weingarten map are going to be
important in describing how S curves in R

3; we discuss these, and related quantities, later
in this chapter.

5.2 Second fundamental form

As was mentioned at the beginning of the chapter, the Weingarten map −d N p is crucial
in describing the way in which a surface S in R

3 is curving at a point p ∈ S. Since the
Weingarten map is self-adjoint it may be studied by using the associated quadratic form,
the second fundamental form, which is defined for vectors X tangential to S using the inner
product by

I I (X) = −X .d N(X) . (5.8)

In a similar way as for the first fundamental form, when a local parametrisation x(u, v)
has been chosen, the coefficients of the second fundamental form are given by

L = −xu .Nu , M = −xu .Nv = −xv .Nu , N = −xv .Nv , (5.9)

so that

I I (axu + bxv) = −(axu + bxv).d N(axu + bxv)

= a2L + 2abM + b2 N . (5.10)

We obtain alternative expressions for the coefficients of the second fundamental form
by differentiating xu .N = 0 and xv .N = 0. We find that

L = xuu .N , M = xuv .N , N = xvv .N . (5.11)

Example 1 (Surface of revolution) Let x(u, v) be the standard parametrisation of a surface
of revolution as considered, for example, in Example 3 of §5.1. Then, as stated in that
example,
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N(u, v) = (g′ cos u, g′ sin u, − f ′)
( f ′2 + g′2)1/2

.

We also have that

xuu = (− f (v) cos u, − f (v) sin u, 0) ,

xuv = (− f ′(v) sin u, f ′(v) cos u, 0
)

,

xvv = ( f ′′(v) cos u, f ′′(v) sin u, g′′(v)
)

.

Hence

L = xuu .N = − f g′

( f ′2 + g′2)1/2
,

and in a similar way,

M = 0 , N = f ′′g′ − f ′g′′

( f ′2 + g′2)1/2
.

5.3 Matrix of theWeingartenmap

A linear map is often studied by considering its matrix with respect to some suitable basis.
A local parametrisation x(u, v) of a surface S in R

3 provides us with a basis {xu , xv} of
each tangent space, and in this section we show how to use the coefficients E , F , G of
the first fundamental form and L , M , N of the second fundamental form to calculate the
matrix of the Weingarten map with respect to this basis. To aid the use of matrix notation
we shall write u1, u2 in place of u, v; x1, x2 in place of xu , xv; and N1, N2 in place of
Nu , Nv . In a similar spirit we replace E , F , G by g11, g12, g22, so that gi j = xi .x j for
i , j = 1, 2. We also replace L , M , N by h11, h12, h22, so that, using (5.9) and (5.11),

hi j = xi j .N = −x j .N i = −xi .N j , i , j = 1, 2 .

The matrix

(ai j ) =
(

a11 a12

a21 a22

)

of the Weingarten map −d N with respect to the basis {x1, x2} of the tangent space of S is
defined by setting

−N1 = −d N(x1) = a11x1 + a21x2, (5.12)

−N2 = −d N(x2) = a12x1 + a22x2, (5.13)

or, more compactly,

− Nk = −d N(xk) =
2∑

j=1

a jk x j , k = 1, 2 . (5.14)
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Example 1 (Surface of revolution) We see from (5.4) that the matrix of the Weingarten map
for the standard parametrisation of a surface of revolution when the generating curve is
parametrised by arc length is given by( −g′/ f 0

0 −g′′/ f ′
)

.

The above example is rather simple. If the matrix of the Weingarten map is not diagonal
then the entries are more difficult to find directly. To help with this, we obtain an expression
for the matrix (ai j ) in terms of the coefficients E , F , G and L , M , N of the first and second
fundamental forms.

We first note that, using (5.14),

hik = −xi .Nk =
2∑

j=1

gi j a jk ,

which gives the matrix equation(
h11 h12

h21 h22

)
=
(

g11 g12

g21 g22

)(
a11 a12

a21 a22

)
.

The first matrix on the right hand side of the above equation is non-singular since it has
determinant EG − F2, which, by Lemma 3 of §3.2, is non-zero. Hence(

a11 a12

a21 a22

)
=
(

g11 g12

g21 g22

)−1 (
h11 h12

h21 h22

)
.

If we now replace the gi j and the hi j by the coefficients of the first and second funda-
mental forms, the above equation gives the matrix (ai j ) of the Weingarten map −d N in
terms of these coefficients as(

a11 a12

a21 a22

)
=
(

E F
F G

)−1 (
L M
M N

)
, (5.15)

which leads to the following expression for the matrix of the Weingarten map.

Proposition 2 Let x(u, v) be a local parametrisation of a surface S in R
3. Then the matrix

(ai j ) of the Weingarten map is given in terms of the coefficients of the first and second
fundamental forms of x by(

a11 a12

a21 a22

)
= 1

EG − F2

(
GL − F M G M − F N

−F L + E M −F M + E N

)
. (5.16)

Example 3 (Hyperbolic paraboloid) We consider the hyperbolic paraboloid (Figure 5.3) with
equation z = xy, and parametrise it as a graph,

x(u, v) = (u, v, uv) , u, v ∈ R .



115 5.4 Gaussian and mean curvature

z

�Figure 5.3 Hyperbolic paraboloid

Routine calculations then show that the coefficients of the first fundamental form are
given by

E = 1 + v2 , F = uv , G = 1 + u2 .

We may calculate the coefficients of the second fundamental form by showing that

N(u, v) = xu × xv
|xu × xv| = (−v, −u, 1)

D1/2
,

where

D = 1 + u2 + v2 ,

while

xuu = (0, 0, 0) , xuv = (0, 0, 1) , xvv = (0, 0, 0) ,

so that

L = xuu .N = 0 ,

M = xuv .N = D−1/2 ,

N = xvv .N = 0 .

A straightforward substitution now shows that the matrix of the Weingarten map is given
by (

a11 a12

a21 a22

)
= D−3/2

( −uv 1 + u2

1 + v2 −uv

)
.

5.4 Gaussian andmean curvature

The individual entries ai j of the matrix of the Weingarten map are not, in themselves,
of geometrical significance since they depend on the choice of local parametrisation x.
However, the trace and determinant of this matrix are geometrically important quantities
because, as for any linear transformation of a finite dimensional vector space, they do not
depend on the choice of basis; they are quantities which depend on only the map itself.
The determinant has a geometrical interpretation as the scale factor by which area in the
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tangent space is multiplied under the Weingarten map; its sign indicates whether Nu × Nv

is a positive or a negative scalar multiple of xu × xv .
The determinant of the Weingarten map −d N p at a point p ∈ S is called the Gaussian

curvature K (p) of S at p, while the mean curvature H (p) is defined to be half the trace.
So, if (ai j ) is the matrix of the Weingarten map with respect to any basis of the tangent
space, then

K = a11a22 − a12a21, H = 1

2
(a11 + a22) . (5.17)

Just to reiterate, since it is so important; K and H are functions defined on the surface
S, and are independent of choice of local parametrisation. However, as for all functions on a
surface, once a local parametrisation x(u, v) has been chosen, K and H may be considered
as functions of u and v, and we now obtain expressions for these functions in terms of the
coefficients of the fundamental forms of x.

Since the determinant of the product of two matrices is the product of the determinants,
equation (5.15) shows that the Gaussian curvature K is given in terms of the coefficients
of the fundamental forms of a local parametrisation by

K = det (−d N) = L N − M2

EG − F2
, (5.18)

while (5.16) shows that the mean curvature H is given by

H = 1

2
tr (−d N) = 1

2

E N − 2F M + GL

EG − F2
. (5.19)

Example 1 (Hyperbolic paraboloid) Following on from Example 3 of §5.3, the hyperbolic
paraboloid in that example has Gaussian curvature K and mean curvature H given by

K = det (−d N) = L N − M2

EG − F2
= −1/D2 ,

H = 1

2
tr (−d N) = 1

2

E N − 2F M + GL

EG − F2
= −uv/D3/2 .

In particular, we note that the hyperbolic paraboloid has negative Gaussian curvature at all
points. The geometrical significance of this will be explored later in the chapter.

We note that, for an isothermal parametrisation, the expression for H takes a particularly
simple form.

Lemma2 If x is an isothermal local parametrisation of S, with E = G = λ2 (and F = 0),
then the mean curvature H is given by

H = L + N

2λ2
.

Note that, for a general surface in R
3, if N is replaced by −N then K remains

unchanged, but H changes sign. However the mean curvature vector H given by H = H N
does not change. For example, the mean curvature vector H for the sphere S2(r ) is the
inward normal of length 1/r .
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Much of the rest of this book describes some of the geometry associated with the
Gaussian curvature K and the mean curvature H . For instance, we shall see that:

(i) S is a “soap film” if H ≡ 0, and is a “soap bubble” if H is a non-zero constant (these
surfaces are discussed in Chapter 9);

(ii) the sign of K at a point p ∈ S determines whether a sufficiently small open neigh-
bourhood of p in S lies on one side of its tangent plane (think of a sphere, where the
answer is “yes”, and a hyperbolic paraboloid where the answer is “no”).

In fact, we shall see in the next chapter that K is much more important than you may
currently think; so important, indeed, that its study instigated and motivated a major branch
of modern mathematics, called Riemannian geometry.

5.5 Principal curvatures and directions

We saw in §5.1 that at each point p of a surface S in R
3, the Weingarten map −d N p

is self-adjoint, so that the tangent space Tp S has an orthonormal basis of eigenvectors.
The eigenvalues of −d N p are called the principal curvatures κ1, κ2, of S at p, and the
eigenvectors of −d N p are called the principal vectors. The directions determined by the
principal vectors are the principal directions. The following lemma is a direct consequence
of the definitions.

Lemma 1 A non-zero tangent vector X to a surface S in R
3 is in a principal direction if

and only if

d N(X) = λX

for some real number λ. In this case, −λ is the corresponding principal curvature. In
particular, if x is a local parametrisation of S, then xu is in a principal direction if and
only if

Nu = λxu ,

where −λ is the corresponding principal curvature (with a similar result, of course, for
xv).

In this section we investigate the relation between the principal curvatures and the
Gaussian and mean curvatures.

Since we already have the expressions (5.18) and (5.19) for K and H in terms of the
coefficients of the fundamental forms of a local parametrisation, we begin by finding the
principal curvatures κ1 and κ2 in terms of K and H . If A is the matrix of the Weingarten
map with respect to some basis of the tangent space, and if I denotes the identity matrix,
then the principal curvatures are the roots of the characteristic equation det(A−κ I ) = 0 of
the Weingarten map, which, using the fact that K and H are, respectively, the determinant
and half the trace of the Weingarten map, may be written as

κ2 − 2Hκ + K = 0 . (5.20)
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Since the Weingarten map is self-adjoint, this quadratic equation has two real roots
(allowing the possibility of one repeated root), namely the principal curvatures. The result
of the next lemma follows from the well-known formula for the roots of a quadratic
equation.

Lemma 2 H2 − K ≥ 0 and the principal curvatures are given by H ± √
H2 − K .

As is the case for K and H , the principal curvatures and directions are properties of
the surface itself. However, once a local parametrisation x(u, v) has been chosen, we may
regard them as functions of u and v.

Example 3 (Hyperbolic paraboloid) Using the expressions for K and H found in Exam-
ple 1 in §5.4, we quickly find that the principal curvatures of the hyperbolic paraboloid
parametrised by

x(u, v) = (u, v, uv) , u, v ∈ R ,

are given by

κ1, κ2 = H ±
√

H2 − K = −uv ±√(1 + u2)(1 + v2)

D3/2
,

where D = 1 + u2 + v2 .

We have just seen how the principal curvatures κ1 and κ2 may be found in terms of K
and H . Conversely, since the left hand side of the characteristic equation (5.20) is equal to
(κ − κ1)(κ − κ2), we find the following.

Lemma 4 The mean curvature H is the average of the two principal curvatures, and the
Gaussian curvature K is their product. In symbols,

H = 1

2
(κ1 + κ2), K = κ1κ2 .

We note that Lemma 4 also follows immediately from the fact that the matrix of the
Weingarten map with respect to a basis of eigenvectors is diagonal, and the corresponding
eigenvalues κ1 and κ2 are the entries down the diagonal.

The following result is now immediate from (5.4).

Corollary 5 Let S be a surface of revolution whose generating curve ( f (v), 0, g(v)),
f (v) > 0 ∀v, is parametrised by arc length. Then the principal directions are given by
the coordinate vectors, the principal curvatures are given by

κ1 = −g′/ f , κ2 = −g′′/ f ′ = f ′′/g′,

and the mean and Gaussian curvatures are given by

H = −1

2

(
g′

f
+ g′′

f ′

)
, K = − f ′′

f
.

In the next section, we generalise much of Corollary 5 to the case of a surface of
revolution whose generating curve is not necessarily parametrised by arc length.
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5.6 Examples: surfaces of revolution

In this section we give several examples of explicit calculations of the principal curvatures
and directions for a surface S in R

3 using a particular type of local parametrisation x(u, v).
As previously mentioned, we take the Gauss map N to be in the direction of xu × xv .

As we have seen, we may use the coefficients of the first and second fundamental forms
to find K and H , and then use Lemma 2 of §5.5 (or factorise the characteristic equation)
to find the principal curvatures κ1 and κ2. If we have a local parametrisation for which the
coordinate vectors xu and xv are both in principal directions at each point, then κ1 and κ2

may be found more directly. For one of the statements of the following lemma, we have
to assume that we are not at an umbilic of S, that is to say, not at a point of S where the
characteristic equation has just one (repeated) root. We consider umbilics in §5.8.

Lemma 1 If a local parametrisation x(u, v) of a surface S in R
3 has F = M = 0, then

the coordinate vectors xu and xv are in principal directions. Conversely, at a non-umbilic
point, if xu and xv are in principal directions then F = M = 0.

If F = M = 0 then the principal curvatures are L/E and N/G, and the matrix of the
Weingarten map with respect to xu and xv is given by(

L/E 0
0 N/G

)
.

Proof A proof may be easily given using the expression (5.16) for the matrix of the Wein-
garten map in terms of the coefficients of the fundamental forms of x(u, v). However,
we prefer to present an alternative proof which reinforces several of the ideas we have
discussed.

First assume that F = M = 0. Then xv .Nu = −M = 0, so that Nu is orthogonal to xv ,
and hence, since F = 0, is a scalar multiple of xu . A similar argument shows that Nv is a
scalar multiple of xv . Hence xu and xv are in principal directions, and, if κ1 and κ2 are the
principal curvatures, then

− Nu = κ1xu , −Nv = κ2xv . (5.21)

Conversely, if the coordinate vectors xu and xv are in principal directions at a non-
umbilic point then, being eigenvectors corresponding to different eigenvalues of a self-
adjoint operator, they are orthogonal. Also, if κ1 and κ2 are the principal curvatures, then

M = −Nu .xv = κ1xu .xv = 0 .

Assume now that F = M = 0. Then, using (5.21),

L = −Nu .xu = κ1xu .xu = κ1 E ,

so that κ1 = L/E . The expression for κ2 follows in a similar manner, and the lemma is
proved.
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Example 2 (Surface of revolution) We found in Example 2 of §3.2 and Example 1 of §5.2
that, for the standard parametrisation of a surface of revolution

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , u ∈ (−π ,π ), f (v) > 0 ∀v ,

the coefficients of the first and second fundamental forms are given by

E = f 2 , F = 0 , G = f ′2 + g′2 ,

L = − f g′

( f ′2 + g′2)1/2
, M = 0 , N = f ′′g′ − f ′g′′

( f ′2 + g′2)1/2
. (5.22)

Hence, by Lemma 1, the coordinate vectors are in principal directions and the principal
curvatures are given by

κ1 = − g′

f ( f ′2 + g′2)1/2
, κ2 = f ′′g′ − f ′g′′

( f ′2 + g′2)3/2
. (5.23)

It may be easily checked that if g′(v) > 0 then the following give alternative ways of
writing the formulae in (5.23) for κ1 and κ2:

κ1 = − 1

f (1 + ( f ′/g′)2)1/2
, κ2 =

(
f ′

g′

)′ 1

g′(1 + ( f ′/g′)2)3/2
. (5.24)

If g′(v) < 0 then the formulae for κ1 and κ2 are the negative of those given in (5.24).

We now obtain an expression for the Gaussian curvature of a surface of revolution. This
generalises the formula obtained in Corollary 5 in §5.5 for the case in which the generating
curve is parametrised by arc length. The proposition may be proved by expanding formula
(5.25) in the statement of the proposition to obtain the product of κ1 and κ2 as given in
(5.23).

Proposition 3 Let S be the surface of revolution parametrised by

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , f (v) > 0 ∀v .

Then the Gaussian curvature K is given by

K = 1

2 f f ′

{
g′2

f ′2 + g′2

}′
. (5.25)

The following proposition is easily proved using Lemma 4 of §5.5, and taking g(v) = v

in formulae (5.23) for the principal curvatures κ1 and κ2.

Proposition 4 Let S be the surface of revolution parametrised by

x(u, v) = ( f (v) cos u, f (v) sin u, v) , f (v) > 0 ∀v .
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Then the mean curvature H and the Gaussian curvature K are given by

H = f f ′′ − f ′2 − 1

2 f (1 + f ′2)3/2
, K = − f ′′

f (1 + f ′2)2
.

We now consider some particular examples of surfaces of revolution.

Example 5 (Catenoid) We consider the catenoid obtained by rotating the catenary (cosh v,
0, v) about the z-axis. It follows quickly from Proposition 4 that this catenoid has constant
mean curvature H = 0 (as, indeed, do all the other catenoids – see Exercise 5.10). This has
great geometrical significance; it means that catenoids are minimal or soap-film surfaces.
Each catenoid is the shape taken up by a soap film suspended between two circular loops
of wire. The mathematics associated with minimal surfaces is very elegant, and involves
complex analysis in a crucial way. We discuss minimal surfaces in Chapter 9.

Example 6 (Torus of revolution) This is generated by rotating the curve given by

f (v) = a + b cos v , g(v) = b sin v , u, v ∈ (−π ,π ) , a > b > 0 ,

about the z-axis.
A short calculation using (5.23) shows that

κ1 = − cos v

a + b cos v
, κ2 = −1

b
.

Example 7 (Pseudosphere) This is generated by rotating the tractrix, which may be
parametrised by taking

f (v) = sech v , g(v) = v − tanh v , v > 0 ,

about the z-axis (see Figure 2.10 for a picture of the pseudosphere).
In this case,

f ′ = −sech v tanh v , g′ = tanh2v ,

so that
f ′

g′ = − sech v

tanh v
= − 1

sinh v
.

Hence, using (5.24),

κ1 = − cosh v

(1 + sinh−2v)1/2
= −sinh v ,

while

κ2 = −
(

1

sinh v

)′ 1

tanh2v coth3v
= 1

sinh v
.

In contrast to the unit sphere, which has constant Gaussian curvature K = 1, we see that
the pseudosphere has constant Gaussian curvature K = −1. This provides the motivation
for the name of this surface.
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You may recall that we discussed the pseudosphere in (the optional) Example 5 of §3.4,
where we considered the hyperbolic plane. We described an isometry from part of the
hyperbolic plane to the pseudosphere, and we shall indicate the significance of this in the
next chapter, where we concentrate on the geometric information carried by the Gaussian
curvature.

5.7 Normal curvature

We now begin our investigation of the geometrical information which is contained in the
quantities we have defined.

In this section we define the normal curvature κn of a regular curve α on a surface S in
R

3, and show how it may be measured using the second fundamental form of S. As usual,
we let d/ds denote differentiation with respect to an arc-length parameter s along α.

We first consider the orthonormal moving frame {t , N× t , N} along α, where t = dα/ds
is the unit tangent vector to α, and, as usual, N is the unit normal to S. This moving
frame, shown in Figure 5.4, reflects both the geometry of the curve and the geometry of the
surface on which it lies, whereas the orthonormal moving frame {t , n, b} along α described
in Chapter 1 depends on only the geometry of the curve itself.

Since d t/ds is orthogonal to t , we have the decomposition

d t
ds

= κg N × t + κn N (5.26)

of d t/ds into components, the first of which is tangential to S and the second is orthogonal
to S. Then κg is called the geodesic curvature of α, while κn is the normal curvature of α.
We note that both κg and κn change sign when N is replaced by −N .

In this chapter we shall consider normal curvature κn , and we begin by showing that κn

gives a measure of how the surface S curves in R
3 as we travel along α.

Proposition 1 Let α be a regular curve on a surface S in R
3 and let t = dα/ds be the unit

tangent vector to α. Then the normal curvature κn of α is given by

κn = I I (t) . (5.27)

Proof Since t .N = 0, we have

κn = d t
ds

.N = −t .
d N
ds

. (5.28)

N

t

S

α

N × t

�Figure 5.4 An orthonormal frame
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However, from (4.7), d N/ds = d N(t), so the result follows from the definition of the
second fundamental form.

Proposition 1 is perhaps rather surprising; d t/ds is the rate of change of the unit tangent
vector of α as we travel along α at unit speed, but (5.27) shows that the normal component
of this rate of change at a point p ∈ S depends only on the tangent vector to α at the point
p itself. This gives a theorem due to Meusnier.

Theorem 2 (Meusnier) All regular curves on a surface S in R
3 through a point p on S

having the same tangent line at p have the same normal curvature at p.

We now see one reason why the Weingarten map is traditionally defined to be minus the
derivative of the Gauss map. Without this sign, the right hand side of (5.27) would have a
minus sign in it.

We recall that if κ is the curvature of α as a regular curve in R
3, then κ = |d t/ds|, so it

follows from (5.26) that

κ2 = κ2
g + κ2

n . (5.29)

This leads to another interpretation of the normal curvature; it gives a measure of the mini-
mum amount of bending a curve α on a surface S must do in order to stay on S. We shall
see in Chapter 7 that geodesic curvature κg may be interpreted as a measure of the extra
bending that α does within S.

Finding the normal curvature of a curve α not necessarily parametrised by arc length is
straightforward since, in this case,

κn = 1

|α′|2α
′′. N , (5.30)

or, in terms of the second fundamental form,

κn = I I (α′/|α′|)
= I I (α′)

|α′|2 . (5.31)

If we have a local parametrisation x(u, v) of our surface S, we may use the coefficients
of the first and second fundamental forms to find the normal curvature κn of a curve α(t) =
x (u(t), v(t)). In fact, using (5.10),

I I (α′) = u′2L + 2u′v′M + v′2 N , (5.32)

so that

κn = u′2L + 2u′v′M + v′2 N

u′2 E + 2u′v′F + v′2G
. (5.33)

Hence, in some sense, κn gives the ratio of the second and first fundamental forms.
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Example 3 (Hyperbolic paraboloid) Continuing with Example 3 of §5.3; for each fixed θ , we
shall find the normal curvature at t = 0 of the curve α(t) = x(t cos θ , t sin θ ). This curve
is the image under x of the line through the origin in the uv-plane making an angle θ with
the u-axis (Figure 5.5).

�Figure 5.5 Curves through (0, 0, 0) on a hyperbolic paraboloid

We first note that, at α(0),

E = G = 1 , F = 0 ; L = N = 0 , M = 1 ,

so the normal curvature of α(t) at t = 0 is given by

κn = cos2 θ L + 2 cos θ sin θ M + sin2 θ N

cos2 θ E + 2 cos θ sin θ F + sin2 θ G

= 2 cos θ sin θ = sin 2θ .

If we have a surface S defined by an equation, then we do not necessarily have a conve-
nient local parametrisation. However, it follows from (5.30) that if grad f is never zero on
the surface with equation f (x , y, z) = c, then the normal curvature κn of a regular curve
α(t) on S is given by

κn = α′′

|α′|2 .
grad f

|grad f | . (5.34)

Returning to the general situation, if p ∈ S and X ∈ Tp S is a non-zero vector, then,
as we saw in Meusnier’s Theorem, all curves on S through p in direction X have the
same normal curvature, namely I I (X/|X|). For this reason, we say that I I (X/|X|)) is the
normal curvature κn(X) of S at p in direction X .

The following proposition illustrates the geometrical significance of the principal
curvatures and principal directions (which we defined in §5.5).

Proposition 4 The principal curvatures of S at a point p ∈ S give the extremal values of
the normal curvatures of S at p; these values being taken in the principal directions.

Proof This is an exercise in linear algebra, which we include for completeness. Since
−d N p is self-adjoint, we may choose an orthonormal basis {e1, e2} of Tp S consisting of
eigenvectors of −d N p. We let κ1, κ2 be the corresponding eigenvalues. Then, for any unit
vector e(θ ) = cos θ e1 + sin θ e2, we have
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− d N p(e) = κ1 cos θ e1 + κ2 sin θ e2 . (5.35)

Hence

I I (e) = (κ1 cos θ e1 + κ2 sin θ e2).(cos θ e1 + sin θ e2)
= κ1 cos2 θ + κ2 sin2 θ

= (κ1 − κ2) cos2 θ + κ2 . (5.36)

If κ1 	= κ2, then the extremal values of I I (e) are κ1 and κ2, and they occur when
cos2 θ = 1 and 0 respectively, which correspond to e = ±e1 and e = ±e2 respectively. If
κ1 = κ2 then (5.35) shows that every non-zero vector is an eigenvector of the Weingarten
map, and (5.36) shows that the normal curvatures are the same in all directions. A point at
which κ1 = κ2 is called an umbilic, and these will be discussed in the next section.

Example 5 (Hyperbolic paraboloid) Referring back to Example 3, T(0,0,0)S is the xy-plane,
and the normal curvature of S at (0, 0, 0) in direction (cos θ , sin θ , 0) is sin 2θ . This attains
its extremal values, namely ±1, when θ = ±π/4.

This is in accord with Proposition 4, since, from Example 3 of §5.3, the matrix of the

Weingarten map at (0, 0) is

(
0 1
1 0

)
, which has unit eigenvectors (1/

√
2, ±1/

√
2) with

corresponding eigenvalues ±1.
In this example, the directions for the extremal values of the normal curvature are also

clear geometrically from Figure 5.5; travelling from the saddle point at the origin, the
direction of maximal upward curvature is along the ridge while the direction of minimal
upward curvature (that is to say, maximal downward curvature) is down the valley floor.
We note these two directions are mutually orthogonal, as must be the case since they are
eigenvectors corresponding to different eigenvalues of a self-adjoint linear map.

Returning to the general situation, formula (5.36) for the normal curvature in the direc-
tion of a unit vector e enables us to give further justification to the term mean curvature.
We have already seen that H is the average of the eigenvalues of the Weingarten map, and
we now show it is the average normal curvature over all directions on the surface at the
point in question.

Proposition 6 Let p ∈ S and for 0 ≤ θ < 2π , let e(θ ) be the unit vector in Tp S making an
angle θ with some fixed direction in Tp S. Then

H = 1

2π

∫ 2π

0
I I (e(θ )) dθ .

Proof Choose the fixed direction to be a principal direction. Then from (5.36),∫ 2π

0
I I (e(θ )) dθ = (κ1 − κ2)

∫ 2π

0
cos2 θ dθ + 2πκ2

= π (κ1 − κ2) + 2πκ2

= π (κ1 + κ2) = 2πH .
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�Figure 5.6 Umbilics on a rugby ball

5.8 Umbilics

An umbilic on a surface S in R
3 is a point at which the characteristic equation (5.20) of

the Weingarten map has just one (repeated) root, or, alternatively, where H2 = K . At an
umbilic we have that −d N p = κ Id, where κ = κ1 = κ2 and Id : Tp S → Tp S is the
identity map (which follows, for instance from (5.35)). Hence every direction is a principal
direction and all normal curvatures are equal. This explains the name; umbilic comes from
the Latin umbilicus (which means navel), since the surface curves equally in all directions
at such points. For instance, every point of a sphere is an umbilic, whereas on an American
football or a rugby ball there are just two umbilics, namely the points where the axis of
rotation cuts the ball (Figure 5.6).

The question of the existence of umbilics on surfaces is a very interesting one. It is also
very important since, for instance, at such points the principal directions do not provide
two distinguished directions on the surface. It follows quickly from Example 6 in §5.6 that
the standard torus of revolution has no umbilics, whereas a consequence of the Hairy Ball
Theorem is that any surface in R

3 that is diffeomorphic to a 2-sphere must have at least one
umbilic. So, what can we say if every point on a surface in R

3 is an umbilic?
For the next theorem, we need to assume that our surface S is connected, that is to say

any two points on S can be joined by a smooth curve on S. It may be shown that any
surface in R

n is a disjoint union of connected surfaces, so the condition is not particularly
restrictive, but it is clearly necessary for Theorem 1.

Here is how we use the connectedness assumption in the proof of Theorem 1. Firstly,
it follows easily from the chain rule (and the Mean Value Theorem) that a smooth func-
tion with everywhere zero derivative on a connected surface is constant. Secondly, some
elementary topology shows that if S is connected then S is not the disjoint union of two
non-empty open subsets.

Theorem 1 If every point of a connected surface S in R
3 is an umbilic then S is an open

subset of a plane or a sphere.

Proof It is clear that the image of a connected set under a smooth map is connected, so,
in particular, every point of any surface is contained in a connected coordinate neighbour-
hood. So, let x(u, v) be a local parametrisation of S whose image V is connected, and let
N = xu × xv/|xu × xv|. The hypothesis that every point of S is an umbilic implies that
there is a smooth real-valued function λ(u, v) such that

d N = λ Id , (5.37)
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where Id is the identity map of the appropriate tangent space. We show that λ is constant
by showing that the derivative of λ is everywhere zero. In fact, (5.37) is equivalent to

Nu = d N(xu) = λxu , Nv = d N(xv) = λxv , (5.38)

and, by differentiating, we find that

Nuv = λvxu + λxuv , Nvu = λu xv + λxvu .

Subtracting these equations, we obtain

λvxu = λu xv ,

so, since xu and xv are linearly independent, we see that λu = λv = 0. Hence λ has
everywhere zero derivative and so is constant.

Suppose first that λ = 0. Then d N = 0 at all points in the image V of x. Hence N is
constant and V is contained in a plane (see Exercise 5.14).

Now consider the case in which λ is not zero, and consider the map from V to R
3 given

by p �→ p − λ−1 N . The derivative of this is given by Id − λ−1λ Id, and, since this is zero,
p − λ−1 N is constant, equal to a, say. Then V is an open subset of the sphere centre a
radius 1/λ.

The above shows that every point of S has an open neighbourhood which is a subset of
either a plane or a sphere. We now use the connectivity of S to show that all points of S
lie on the same plane or sphere. So, let P denote either a plane or a sphere in R

3, and let
SP be the subset of S consisting of those points having an open neighbourhood which is a
subset of P . It is clear that SP is open, and that if Q is a plane or sphere different from P
then SP and SQ are disjoint. Since S is assumed connected, it follows that SP is non-empty
for exactly one plane or sphere, and the result follows.

The above proof is just what a proof in differential geometry should be! We wrote
the assumption in the form of an equation, then we differentiated the equation, then we
deduced a local conclusion, and then we globalised it.

Remark 2 In Example 4 of §4.4, we proved that the Gauss map of the catenoid is con-
formal. In fact, using an orthonormal basis of principal vectors, it follows quickly from
condition (4.12) (which need only be checked when X1, X2 are members of that basis)
that the Gauss map of a surface S in R

3 is conformal if and only if the principal curvatures
satisfy κ1 = ±κ2 	= 0. If κ1 = −κ2 then (as is the case for the catenoid) the mean curvature
H = 0, while if κ1 = κ2 then every point of S is an umbilic, so that if S is connected then
S is an open subset of a sphere.

5.9 Special families of curves

A regular curve α(t) on a surface S in R
3 is a line of curvature if its tangent vector α′(t)

is always in a principal direction. It follows from Proposition 4 of §5.7 that, at each point,
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a line of curvature has maximal (or minimal) normal curvature of all curves on S through
that point.

There are two families of lines of curvature; they form an orthogonal net at all non-
umbilic points of S. For instance, the discussion in Example 2 of §5.6 shows that the the
parallels and meridians on a surface of revolution are also the lines of curvature.

The following theorem follows directly from our definitions and from (4.7), which says
that d N(α′) is the rate of change N ′ of N along α.

Theorem 1 (Rodrigues) A regular curve α(t) on a surface S in R
3 is a line of curvature if

and only if

N ′(t) = λ(t)α′(t) (5.39)

for some real-valued function λ(t). In this case, −λ(t) is the principal curvature of S in the
principal direction α′(t).

We now show how the lines of curvature on a surface S may be investigated using a local
parametrisation x(u, v) of S. The condition (5.39) that a regular curve α(t) = x (u(t), v(t))
be a line of curvature becomes

d N(u′xu + v′xv) = λ(u′xu + v′xv) , (5.40)

and, using the formula (5.16) for the matrix of the Weingarten map −d N in terms of the
coefficients of the first and second fundamental forms, we may write condition (5.40) as

− 1

EG − F2

(
GL − F M G M − F N

−F L + E M −F M + E N

)(
u′
v′
)

= λ

(
u′
v′
)

,

or, equivalently,

(GL − F M)u′ + (G M − F N )v′

(−F L + E M)u′ + (−F M + E N )v′ = u′

v′ .

Cross-multiplying and simplifying, we obtain

(E M − F L)u′2 + (E N − GL)u′v′ + (F N − G M)v′2 = 0 ,

from which we obtain the following lemma.

Lemma 2 The regular curve α(t) = x (u(t), v(t)) is a line of curvature on S if and only if∣∣∣∣∣∣
v′2 −u′v′ u′2

E F G
L M N

∣∣∣∣∣∣ = 0 . (5.41)

Example 3 (Hyperbolic paraboloid) We shall again consider the hyperbolic paraboloid S with
equation z = xy, parametrised by x(u, v) = (u, v, uv).

As we saw in Example 3 of §5.3,

E = 1 + v2 , F = uv , G = 1 + u2 ,

L = 0 , M = (1 + u2 + v2)−1/2 , N = 0 ,
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so x (u(t), v(t)) is a line of curvature if and only if

u′2

1 + u2
− v′2

1 + v2
= 0 .

Taking square roots and integrating, we obtain∫
1

(1 + u2)1/2

du

dt
dt = ±

∫
1

(1 + v2)1/2

dv

dt
dt ,

or, using the substitution rule for integration,∫
du

(1 + u2)1/2
= ±
∫

dv

(1 + v2)1/2
. (5.42)

We saw in §3.5 how to describe, in the form φ(u, v) = constant, families of curves on a
surface, and it follows from (5.42) that the two families of lines of curvature on S are given
by

arcsinh u ± arcsinh v = const.

So, for instance, if we wish to find the two lines of curvature through (0, 0, 0), we should
take u = v = 0, so that the lines of curvature are given by

arcsinh u ± arcsinh v = 0,

which immediately simplifies to give u = ±v. Thus the lines of curvature through (0, 0, 0)
are α(t) = x(t , t) = (t , t , t2) and β(t) = x(t , −t) = (t , −t , −t2). One of these curves
travels up the ridge of the hyperbolic paraboloid, and the other travels down the valley.

We now consider other geometrically significant families of curves. A regular curve α(t)
on a surface S in R

3 is called an asymptotic curve on S if its normal curvature is identically
zero. The following proposition is immediate from (5.31).

Proposition 4 A regular curve α(t) on a surface S in R
3 is an asymptotic curve if and

only if

I I
(
α′(t)
) = 0 ∀t .

Asymptotic curves may be found using a local parametrisation in a similar way to the
lines of curvature. The following lemma is immediate from (5.32).

Lemma 5 The regular curve α(t) = x (u(t), v(t)) is an asymptotic curve on S if and only if

u′2L + 2u′v′M + v′2 N = 0 . (5.43)

Example 6 (Catenoid) We consider the catenoid parametrised as a surface of revolution by

x(u, v) = (cosh v cos u, cosh v sin u, v) .

It is easy to check that L = −1, M = 0 and N = 1, so it follows from (5.43) that the
asymptotic curves are given by α(t) = x (u(t), v(t)) where

−u′2 + v′2 = 0 .
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Therefore

(v′ − u′)(v′ + u′) = 0,

so that

u′ ± v′ = 0 .

Integrating, we see that the asymptotic curves are given by

u ± v = constant,

and so may be parametrised by taking α(t) = x(t , c ± t).
For instance, we might wonder if one or both of the asymptotic curves through (1, 0, 0)

intersect the xz-plane again, and, if so, at what height above the equatorial circle. To decide
this, we note that the asymptotic curves through (1, 0, 0) satisfy u ± v = 0, and so may be
parametrised by

t �→ (cosh t cos t , ± cosh t sin t , t) .

After t = 0, these curves next intersect the xz-plane when t = π , which is at height π
above the equatorial circle.

As we saw in Rodrigues’ Theorem, a regular curve α(t) on a surface S is a line of
curvature if and only if N ′ is a scalar multiple of α′. In contrast, we may use (5.28) to
obtain the following characterisation of asymptotic curves.

Proposition 7 A regular curve α(t) is an asymptotic curve on S if and only if, for all t ,
N ′(t) is orthogonal α′(t).

Remark 8 In Exercise 5.23 you are invited to obtain a characterisation of asymptotic
curves in terms of the geometry of the curves as space curves in R

3.

Returning to the general situation, we note that there are no asymptotic curves through
a point where K > 0. This follows from Proposition 4 of §5.7, but may also be seen using
the fact that, at such points, L N −M2 > 0 so that (5.43) has only u′ = v′ = 0 as a solution.
For similar reasons, there are exactly two asymptotic curves through a point where K < 0,
and, in this case (see Exercise 5.22), the lines of curvature through the point bisect the
angles between the asymptotic curves.

In summary, in this section we have investigated curves on a surface S in R
3 whose

tangent vectors are in geometrically significant directions at each point, namely those direc-
tions which maximise and minimise normal curvature, and those directions in which the
normal curvature is zero (these last directions are called asymptotic directions; they exist
at those points where the Gaussian curvature is non-positive).

In §5.11 we illustrate the significance of the asymptotic directions in terms of the
intersection of a surface with its tangent plane.
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5.10 Elliptic, hyperbolic, parabolic and planar points

We now begin our investigation of the geometry associated with the Gaussian curvature
K of a surface S in R

3. Of course, since K is determined by the rate of change of the
unit normal, its value at a point will only reflect the behaviour of a surface S in R

3 in a
sufficiently small open neighbourhood of that point (and a similar comment holds for the
mean curvature H ).

A point p ∈ S is said to be an elliptic point if K (p) > 0, a hyperbolic point if K (p) < 0,
a parabolic point if K (p) = 0 but d N p 	= 0, and a planar point if d N p = 0. Since K
is the product of the principal curvatures, at an elliptic point the principal curvatures κ1,
κ2 have the same sign, while at a hyperbolic point the principal curvatures have opposite
signs. Exactly one principal curvature is zero at a parabolic point, while both are zero at a
planar point.

Example 1 (Hyperbolic paraboloid) We saw in Example 1 of §5.4 that each point of the
hyperbolic paraboloid S with equation z = xy is a hyperbolic point.

Example 2 (Torus of revolution) In terms of the parametrisation

x(u, v) = ((a + b cos v) cos u, (a + b cos v) sin u, b sin v) , u, v ∈ (−π ,π ), a > b > 0 ,

we found in Example 6 of §5.6 that the principal curvatures are given by

κ1 = − cos v

a + b cos v
, κ2 = −1

b
.

Hence (Figure 5.7), the elliptic points correspond to −π
2
< v <

π

2
, the parabolic points

to v = ±π
2

, with the remaining points being hyperbolic points.

K < 0
K = 0 on highest
and lowest parallel

K > 0

�Figure 5.7 Torus of revolution

In terms of the coefficients of the second fundamental form, it follows from (5.18) that
L N − M2 is greater than zero at an elliptic point, is less than zero at a hyperbolic point,
and equal to zero at a planar or parabolic point.
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N
N N

κ1, κ2 < 0 κ1>0, κ2< 0κ1, κ2 > 0

�Figure 5.8 Elliptic and hyperbolic points

We saw in Proposition 4 of §5.7 that the principal curvatures at a point p on S are the
extremal values of the normal curvatures of the curves in S through p. Hence, at a hyper-
bolic point the normal curvatures take both positive and negative values, while at an elliptic
point they all have the same (non-zero) sign. Since κn N is the component orthogonal to S
of the acceleration vector of a curve parametrised by arc length on S, at an elliptic point
these acceleration vectors all point to the same side of S. It would seem reasonable, there-
fore, that the points of S sufficiently close to an elliptic point should all be on one side of
the tangent plane at that point. Similar reasoning would indicate that, in any open neigh-
bourhood of a hyperbolic point there would be points of S on both sides of the tangent
plane.

Figures 5.3 and 5.7 add weight to these conjectures, and we now state and prove the
theorem which has been suggested by the above discussions.

Theorem 3 Let S be a surface in R
3 and let p ∈ S.

(i) If p is an elliptic point then there is an open neighbourhood of p in S which lies
entirely on one side of the tangent plane Tp S.

(ii) If p is a hyperbolic point then every open neighbourhood of p in S contains points on
both sides of Tp S.

Proof We shall need Taylor’s Theorem for functions of two variables, which gives

x(u, v) = x(0, 0) + uxu(0, 0) + vxv(0, 0)

+ 1

2

(
u2xuu(0, 0) + 2uvxuv(0, 0) + v2xvv(0, 0)

)
+ o(u2 + v2) , (5.44)

where o(u2 + v2) stands for a remainder term R(u, v) with the property that

lim
(u,v)→(0,0)

R(u, v)

u2 + v2
= 0 .

For ease of discussion and notation, we translate S if necessary so that p = (0, 0, 0). We
also choose (without loss of generality) a local parametrisation x(u, v) such that x(0, 0) =
p, and such that {xu(0, 0), xv(0, 0)} is an orthonormal basis of principal vectors of Tp S.
This assumption implies that

xuu(0, 0).N(p) = κ1, xuv(0, 0).N(p) = 0, xvv(0, 0).N(p) = κ2 , (5.45)

where κ1 and κ2 are the corresponding principal curvatures at (0, 0).
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The sign of the inner product x(u, v).N(p) tells us which side of Tp S the point x(u, v)
lies, and, with the above assumptions on x, (5.44) and (5.45) imply that

x(u, v).N(p) = 1

2
(κ1u2 + κ2v

2) + o(u2 + v2) . (5.46)

At an elliptic point, the principal curvatures κ1 and κ2 have the same sign, and, in this
case, an elementary limiting argument may now be used to prove that x(u, v).N(p) always
has the same sign on some open neighbourhood of p in S. On the other hand, if κ1 and κ2

have opposite signs, then x(u, v).N(p) takes both positive and negative values on any open
neighbourhood of p in S. The theorem now follows.

We now discuss a very nice theorem which will have important consequences in later
chapters. We need a little notation before stating it. A closed surface is a surface that is a
closed subset of its containing Euclidean space. So, for instance, ellipsoids, tori, catenoids
and helicoids are all closed surfaces, but the disc D = {(x , y, 0) : x2 + y2 < 1} is not.
Intuitively speaking, a closed surface has no edges to fall off. Also, a subset W of R

n is
said to be compact if it is both closed and bounded. So, ellipsoids and tori are compact
surfaces, but catenoids and helicoids are not.

The crucial property of compact sets for the proof of the following theorem is that if
f : W → R is a continuous function defined on a compact subset W of R

n then there
are points p0, p1 ∈ W such that f (p0) ≤ f (p) ≤ f (p1) for all p ∈ W . This result,
Weierstrass’s Extremal Value Theorem, is usually stated as: any real-valued continuous
function on a compact set is bounded and attains its bounds.

Theorem 4 Every compact surface S in R
3 has at least one elliptic point.

Proof We first describe the geometrical idea of the proof, which is illustrated in Figure 5.9.
Since S is compact, it is, in particular, bounded. This means that there is a sphere centred
on the origin of R

3 which has S inside it. If we shrink this sphere until it first touches S
at the point p1, say, then S and the sphere are tangential at p1 and S is completely on one
side of their common tangent plane. This would lead us to hope that p1 would be an elliptic
point.

The details of the proof are as follows. Let f : R
3 → R be given by f (x) = |x |2. Then

f is continuous (in fact, differentiable), so, since S is compact, there is some point p1 ∈ S
with the property that, for all p ∈ S, f (p) ≤ f (p1). Let α : (−ε, ε) → S be a curve on S,
parametrised by arc length, with α(0) = p1. Then f α(s) = α(s).α(s) has a maximum at
s = 0 so that

α(0).α′(0) = 0 , α(0).α′′(0) + α′(0).α′(0) ≤ 0 .

S

p1

�Figure 5.9 Sphere tangential to S at p1
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Since these equations hold for all curves on S through p1, the first equation shows
that, as suggested by Figure 5.9, N(p1) = p1/|p1|. The second equation now implies
that α′′(0).N(p1) ≤ −1/|p1|. However, from (5.26), α′′(0).N(p1) is the normal curvature
κn(α′(0)), from which it follows that all the normal curvatures of S at p1 are strictly nega-
tive. In particular, the extremal values are both negative, so that their product, the Gaussian
curvature, is positive.

5.11 Approximating a surface by a quadric †

In this section, we extend Theorem 3 of §5.10 by giving rather more quantitative informa-
tion about the way the principal curvatures influence the local behaviour of a surface. This
material is optional and could be omitted if time is short.

We begin by showing that any surface S in R
3 may be locally parametrised near a point

p ∈ S as the graph of a function.

Proposition 1 Let S be a surface in R
3 and assume that the unit normal N(p) at a point

p ∈ S is not parallel to the xy-plane. Then there is a local parametrisation of an open
neighbourhood of p in S of the form

x(u, v) = (u, v, g(u, v)) ,

for some smooth function g(u, v).

Proof Let y : U → S be a local parametrisation of an open neighbourhood of p in S,
and let π : R

3 → R
2 be given by π (x , y, z) = (x , y). The derivative d(π y) is non-singular

at p, so the Inverse Function Theorem shows that, by taking U smaller if necessary, there
exists a smooth map h such that π yh is the identity map. It then follows that x = yh is a
local parametrisation of the required form.

The following proposition gives a good description of a surface near any point p since it
shows that, after applying a suitable rigid motion of R

3, the surface may be approximated
up to second order near p by the quadric with equation 2z = κ1x2 + κ2 y2. Here, as
before, κ1 and κ2 are the principal curvatures at p, and, in the statement of the proposition,
o(u2 + v2) stands for a remainder term R(u, v) with the property that

lim
(u,v)→(0,0)

R(u, v)

u2 + v2
= 0.

Proposition 2 Let S be a surface in R
3 and let κ1 and κ2 be the principal curvatures at

p ∈ S. By applying a suitable rigid motion of R
3 we may assume that p = (0, 0, 0), that

N(p) = (0, 0, 1) and that (1, 0, 0), (0, 1, 0) are principal directions at p.
In this case, if κ1 and κ2 are the principal curvatures at p, then there is a local

parametrisation of an open neighbourhood of p in S such that

x(u, v) = (u, v, g(u, v)) ,



135 5.12 Gaussian curvature and the area of the image of the Gauss map †

S

�Figure 5.10 Intersection of a surface and its tangent plane

where

g(u, v) = 1

2
(κ1u2 + κ2v

2) + o(u2 + v2) . (5.47)

Proof Proposition 1 shows that if p = (0, 0, 0) and N(p) = (0, 0, 1), then S has a local
parametrisation of the form

x(u, v) = (u, v, g(u, v)) (5.48)

for some smooth function g(u, v) defined on an open neighbourhood of (0, 0) with
g(0, 0) = gu(0, 0) = gv(0, 0) = 0. Under the remaining assumptions of the proposition,
equation (5.46) reduces to (5.47), and the proposition is proved.

Remark 3 In Exercise 5.27, you are invited to prove that if a surface S is parametrised as
a graph x(u, v) = (u, v, g(u, v)) with g(0, 0) = gu(0, 0) = gv(0, 0) = 0, then the second
fundamental form of S at (0, 0, 0) is equal to the Hessian H of g at (0, 0). Here, the Hessian
of g is the quadratic form used in the calculus of functions of two variables given by

H(u, v) = u2guu(0, 0) + 2uvguv(0, 0) + v2gvv(0, 0) .

We end this section by giving an illustration of the significance of the asymptotic direc-
tions in terms of the intersection of a surface with its tangent plane. It is intuitively clear
(and may be proved using Proposition 2) that if p is a hyperbolic point on S then, in an
open neighbourhood of p, the intersection of S and its tangent plane Tp S is the union of
two regular curves through p. We now show (Figure 5.10) that the tangent vectors at p of
these curves give the asymptotic directions at p.

So, let α(t) be a regular curve lying on the intersection of S and Tp S and having α(0) =
p. Then, for all t , α′(t).N(t) = 0 and α′(t).N(0) = 0. Differentiating these two equations,
we find that

α′′(t).N(t) + α′(t).N ′(t) = 0 and α′′(t).N(0) = 0 .

Hence I I
(
α′(0)
) = −α′(0).N ′(0) = 0, and α′(0) is in an asymptotic direction as claimed.

5.12 Gaussian curvature and the area of the image of the Gauss
map †

In this section, we investigate further the geometrical information carried by the Gaus-
sian curvature. Although geometrically interesting, this section may be omitted since the
material is not used elsewhere in the book.
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We remarked at the beginning of §5.4 that, since the Gaussian curvature is the deter-
minant of the Weingarten map, then |K | is the scale factor by which area in the tangent
space is multiplied under the Weingarten map. In this section we justify this comment (see
equation (5.50)), and then “integrate it up” to obtain expression (5.51) for the area of the
image of a region R of a surface S in R

3 under the Gauss map. We then indicate that, in
a sense made a little more precise below, |K (p)| gives the ratio of the area of the image
under the Gauss map N of a region R of S compared to the area of R itself, as the region
contracts down towards p (see equation (5.52)).

Remark 1 We recall that in Remark 5 of §1.3, we interpreted the modulus of the curvature
κ of a plane curve α as the ratio of |n′| and |α′|. Formula (5.50) is the analogue for surfaces.

Area and integration on a surface were discussed in §3.7, and we use the notation of that
section. Let R be the image under a local parametrisation x(u, v) of a suitable region Q in
the (u, v)-plane. Then, quoting (3.24), the area A(R) of R is given by

A(R) =
∫∫

R
d A =

∫∫
Q

|xu × xv| du dv . (5.49)

In a similar way, the image N(R) of R under N , being the image of Q under N x, has area

A (N(R)) =
∫∫

Q
|Nu × Nv| du dv

(areas being counted with multiplicity, that is to say the number of times they are covered
by N(R)). However, from (5.12) and (5.13),

|Nu × Nv| = |(a11xu + a21xv) × (a12xu + a22xv)|
= |a11a22 − a12a21| |xu × xv|
= |K | |xu × xv| , (5.50)

where we have used (5.17) for the last equality.
Hence, using (3.25),

A (N(R)) =
∫∫

Q
|K | |xu × xv| du dv =

∫∫
R

|K | d A . (5.51)

As mentioned in §3.7 (where integration on surfaces is discussed), we may extend (5.51)
to more general subsets of S; all we need is that the subset may be broken up into the types
of piece we have considered above. In particular, we may integrate |K | over the whole of
the surface (although the result is not necessarily finite if S is not compact).

The following proposition may be proved using (5.49) and (5.51), together with some
standard analysis involving double integrals.

Proposition 2 If we consider a sequence of contracting regions R of S containing a point
p ∈ S then, subject to suitable mathematical assumptions on the way the contraction is
made,

|K (p)| = lim
A(R)→0

A (N(R))

A(R)
. (5.52)
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In order to prove the final theorem of this chapter, we must first quote a deep result con-
cerning compact surfaces (without self-intersections) in R

3. The result is a 2-dimensional
analogue of (part of) a famous theorem concerning simple closed curves in the plane called
the Jordan Curve Theorem (a statement of which may be found in §8.6).

Theorem 3 Let S be a compact connected surface (without self-intersections) in R
3. Then

the complement R
3 \ S of S in R

3 is the disjoint union of two connected sets; one of these
(the outside) is unbounded, while the other one (the inside) is bounded. Such a surface is
orientable, since a unit normal may be assigned smoothly over the whole of the surface
(either the outward unit normal or the inward unit normal).

Using this theorem, we may now prove the following.

Theorem 4 Let S be a compact surface without self-intersections in R
3. Then∫∫

S
|K |d A ≥ 4π .

Proof The proof is similar to the first part of the proof of Theorem 4 of §5.10. We show
that every point of the unit sphere is in the image of the Gauss map N of S so that the area
of the image (counted with multiplicity) is at least 4π . To do this, let q0 ∈ S2(1), and let
h : S → R be given by h(p) = p.q0. (This map was considered in Exercise 4.5.) Since
S is compact, h has a maximum value on S taken at p0, say. Then, arguing as in the proof
of Theorem 4 of §5.10, it follows that, if we take N to be the outward unit normal, then
N(p0) is equal to q0. Thus the image of N covers every point of S2(1) at least once, and
the theorem now follows.

Exercises

5.1 Find the coefficients L , M and N of the second fundamental form of the graph of a
smooth function g(u, v), when the graph is parametrised in the usual way by

x(u, v) = (u, v, g(u, v)) .

Hence show that the graph of the function g(u, v) = u2 + v2 has everywhere
positive Gaussian curvature.

5.2 Enneper’s surface is the image of the map x : R
2 → R

3 given by

x(u, v) =
(

u − u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
.

Show that the coefficients of the first and second fundamental forms are given by

E = G = (1 + u2 + v2)2 , F = 0 , and L = 2 , M = 0 , N = −2 ,

and deduce that Enneper’s surface has constant mean curvature H = 0. (In fact,
although sufficiently small pieces of Enneper’s surface really are surfaces, the whole
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of the image of x is not actually a surface as discussed in this book. This is because
x is not injective, so that Enneper’s surface, which is illustrated in Figure 9.2, has
self-intersections.)

5.3 Find the coefficients L , M and N of the second fundamental form of the helicoid
parametrised by

x(u, v) = (sinh v cos u, sinh v sin u, u), (u, v) ∈ R
2.

Hence find the mean and Gaussian curvatures, and the principal curvatures.

5.4 Find the Gaussian curvature K and the mean curvature H for a graph as parametrised
in Exercise 5.1.

5.5 (Developable surfaces) Show that each of the following types of ruled surface in
R

3 has the property that the unit normal N is constant along each line of the ruling.
Such ruled surfaces are called developable surfaces.

(a) (Tangent surfaces) Let α(u) be a regular curve in R
3 with nowhere zero

curvature κ , and let S be the image of the map

x(u, v) = α(u) + vα′(u), v > 0 .

(See Figure 2.17 for a picture of a tangent surface.)
(b) (Generalised cones) Let α(u) be a regular curve in R

3 not passing through the
origin 0 of R

3, and assume that α′(u) is never a scalar multiple of α(u). Let S be
the image of the map

x(u, v) = vα(u) , v > 0 .

(c) (Generalised cylinders) Let α(u) be a regular curve in R
3 and let e be a non-

zero vector such that α′(u) is never a scalar multiple of e. Let S be the image of
the map

x(u, v) = α(u) + ve, v ∈ R .

5.6 Let S be a ruled surface. Show that the Gaussian curvature of S is identically zero if
and only if the unit normal N is constant along each line of the ruling. (So that S is
a developable surface, as defined in the previous exercise.) In Exercise 5.16 we see
that, conversely, every surface (not even assuming it is ruled) with K = 0 is locally
a developable surface away from the umbilics.

5.7 (Parallel surfaces) Let S be a surface in R
3 with Gauss map N , and for each real

number λ let f λ : S → R
3 be given by

f λ(p) = p + λN .

The image Sλ of f λ is a parallel surface of S. At those points where Sλ is a surface,
show that:

(i) Nλ f λ = N , where Nλ is the Gauss map of Sλ;
(ii) if X is a principal vector of S with corresponding principal curvature κ , then

X is also a principal vector of Sλ, but with corresponding principal curvature
κ/(1 − λκ);



139 Exercises

(iii) the Gaussian curvature K λ and the mean curvature Hλ of Sλ are given by

K λ = K

1 − 2λH + λ2 K
, Hλ = H − λK

1 − 2λH + λ2 K
;

(iv) if S has constant non-zero mean curvature H , then the parallel surface obtained
by taking λ = 1/(2H ) has constant Gaussian curvature 4H2.

5.8 (Surfaces of revolution with constant Gaussian curvature) In this exercise we
find all surfaces of revolution S in R

3 with constant Gaussian curvature K . If K 	= 0
we may assume by re-scaling that K = ±1. We also assume that S is generated by
rotating the curve α(v) = ( f (v), 0, g(v)), f (v) > 0 ∀v, about the z-axis, with α
being parametrised by arc length.

(i) If K = 1 show that α may be parametrised by arc length in such a way
that f (v) = A cos v, for some positive constant A. By noting that | f ′(v)| <
|α′(v)| = 1, show that the domain of α is (−π/2,π/2) ∩ (−v0, v0), where
0 < v0 ≤ π/2 and A sin v0 = 1 (this condition giving no restriction if
0 < A ≤ 1).
On the same set of axes, sketch the generating curve α(v) for A = 1/2, A = 1,
and A = 3/2.

(ii) If K = 0 show that S is an open subset of a cylinder, a cone or a plane.
(iii) If K = −1 show that α may be parametrised by arc length in such a way that

one of the following three cases occurs:

(a) f (v) = A cosh v, with A > 0 and −v0 < v < v0 for some v0 > 0;
(b) f (v) = e−v , v > 0;
(c) f (v) = B sinh v, with 0 < B < 1 and 0 < v < v0 for some v0 > 0.

In each of cases (a) and (c), determine the value of v0.
On the same set of axes, sketch the generating curve for A = 1 in Case (a), the

generating curve in Case (b), and the generating curve for B = √
3/2 in Case (c). In

each case assume that 0 is the infimum of the values taken by g.

5.9 Let S be a surface of revolution with a parametrisation of the form

x(u, v) = (v cos u, v sin u, g(v)) , v > 0.

Show that the Gaussian curvature K is given by

K = g′g′′

v(1 + g′2)2
.

Hence find the regions of the surface

z = 1

1 + x2 + y2

where K > 0 and where K < 0. Indicate these regions on a sketch of the surface.

5.10 Up to rigid motions of R
3, all catenoids are obtained by rotating a catenary

α(v) =
(

a cosh
v

a
, 0, v
)

, v ∈ R , a > 0,

about the z-axis. Show that all catenoids have constant mean curvature H = 0.
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5.11 Find conditions on real numbers a > b > 0 such that the torus of revolution defined
in Example 6 of §5.6 has points where the mean curvature H is equal to zero.

5.12 Let a, b be positive real numbers, and let f (z) be a positive function of z. Show that
the surface S in R

3 with equation

x2

a2
+ y2

b2
= ( f (z))2

has Gaussian curvature K > 0, K = 0, K < 0 respectively, at those points of S with
f ′′ < 0, f ′′ = 0, f ′′ > 0 respectively.

5.13 Let α(t) be the curve on the cone x2 + y2 = z2, z > 0, given by

α(t) = et (cos t , sin t , 1), t ∈ R .

Show that the normal curvature of α is inversely proportional to et by either or both
of the following methods.

(i) Parametrise the cone as a surface of revolution and use formula (5.33).
(ii) Use the definition of κn , namely (in the usual notation),

κn = d t
ds

. N .

5.14 Let V be a connected coordinate neighbourhood on a surface S in R
3, and assume

that the unit normal N is constant on V . Show that V is contained in a plane. (This
is used in the proof of Theorem 1 of §5.8.)

5.15 Use the parametrisation given in Exercise 5.1 of the surface S with equation z =
x2 + y2 to show that the curve

α(t) =
(

u(t), v(t), u2(t) + v2(t)
)

is a line of curvature on S if and only if

(uu′ + vv′)(u′v − uv′) = 0.

Hence find functions φ(u, v), ψ(u, v) so that the two families of lines of curvature
on S are given by φ(u, v) = constant and ψ(u, v) = constant. Give a sketch of S
illustrating the lines of curvature, and then say why you knew before you started that
these were indeed the lines of curvature.

5.16 Let S be a surface in R
3 with zero Gaussian curvature. Show that every non-umbilic

point of S has an open neighbourhood which is a developable surface; that is to say,
is a ruled surface with the property that the unit normal N is constant along each line
of the ruling. (See Exercises 5.5 and 5.6.) You may assume (correctly) that there is
a local parametrisation around any non-umbilic point of a surface S in R

3 such
that the coordinate curves are lines of curvature.

5.17 Show that, for Enneper’s surface as defined in Exercise 5.2:

(i) the principal curvatures are given by

κ1 = 2

(1 + u2 + v2)2
, κ2 = − 2

(1 + u2 + v2)2
;
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(ii) the lines of curvature are the coordinate curves;
(iii) the asymptotic curves are given by u ± v = const.

Prove that any pair of asymptotic curves, one from each family, have non-empty
intersection.

5.18 Use the parametrisation of the helicoid given in Exercise 5.3 to find the asymptotic
curves on the helicoid. Sketch the helicoid, indicating the asymptotic curves.

5.19 Use the parametrisation

x(u, v) = (sech v cos u, sech v sin u, v − tanh v), −π < u < π , v > 0,

of the pseudosphere S as a surface of revolution to show that the asymptotic curves
on S are given by u ± v = constant. Hence show that the angle of intersection θ of
the two asymptotic curves through x(u, v) is given by

cos θ = 2 sech2v − 1.

5.20 Show that any straight line lying on a surface is an asymptotic curve on the surface.
Deduce that the Gaussian curvature of a ruled surface in R

3 is everywhere non-
positive.

5.21 (Theorem of Beltrami–Enneper) Let S be a surface in R
3 and let K denote its

Gaussian curvature. If α is an asymptotic curve on S whose curvature is never zero,
prove that the modulus |τ | of the torsion τ of α is given by

|τ | = √−K .

5.22 Let p be a point on a surface S in R
3 with K (p) < 0. Show that the lines of curvature

through p bisect the angles between the asymptotic curves through p. Show also that
the following three conditions are equivalent:

(i) the asymptotic curves through p bisect the angle between the lines of curvature
through p;

(ii) the asymptotic curves intersect orthogonally at p;
(iii) H (p) = 0.

5.23 Let α be a regular curve on a surface S in R
3, and let n be the principal normal of

α as a space curve (as described in Chapter 1). Show that α is an asymptotic curve
on S if and only if n is everywhere tangential to S. (An equivalent condition is that
the osculating planes of an asymptotic curve on S coincide with the tangent planes
of S.)

5.24 (Theorem of Joachimsthal) Let S1 and S2 be two surfaces in R
3 which intersect

along a regular curve C in such a way that, for each point p ∈ C , the angle θ (p)
between their normals at p is never zero or π (S1 and S2 are then said to intersect
transversally). If C is a line of curvature on S1, prove that θ is constant if and only if
C is also a line of curvature on S2.

5.25 (Monkey saddle) The graph of g(u, v) = u3−3uv2 is called a monkey saddle (Figure
5.11). Show that the origin is a planar point, and every other point is hyperbolic.
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�Figure 5.11 Amonkey saddle

5.26 If S is the surface in R
3 with equation x4 + y4 + z4 = 1, use (5.34) to show that each

of the six points (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) is a planar point. Show also that all
other points of intersection of S with the coordinate planes x = 0, y = 0, z = 0 are
parabolic points, and all other points of S are elliptic points.

5.27 (This exercise uses material in the optional §5.11) Let S be a surface in R
3 which is

parametrised as a graph

x(u, v) = (u, v, g(u, v)) ,

with g(0, 0) = gu(0, 0) = gv(0, 0) = 0.
Show that the second fundamental form of S at (0, 0, 0) is equal to the Hessian H

of g at (0, 0). Here, the Hessian of g is the quadratic form used in the calculus of
functions of two variables given by

H(u, v) = u2guu(0, 0) + 2uvguv(0, 0) + v2gvv(0, 0).

5.28 (This exercise uses material in the optional §5.12) Find the image of the Gauss map
of the paraboloid of revolution S with equation z = x2+y2. Show that, in accordance
with (5.51), ∫∫

S
|K |d A = area of the image of the Gauss map.

5.29 (This exercise uses material in the optional §5.12) Let S be a compact surface with-
out self-intersections in R

3. Show that the Gauss map N of S maps the union of the
elliptic, parabolic and planar points of S surjectively onto the unit sphere.
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In this chapter we consider one of the most important theorems in differential geome-
try, the Theorema Egregium of Gauss. Gauss’s name for the theorem is well chosen; the
word “egregium” comes from the Latin for “remarkable” (literally, “standing out from
the flock”), and the theorem has had a profound effect on the development of not only
geometry but other areas of mathematics, particularly relativity theory. There is no doubt
that Gaussian curvature is the most important and interesting notion, both historically and
mathematically, discussed in this book.

We recall from §5.4 that the Gaussian curvature K of a surface S in R
3 is defined to be

the determinant of −d N , where N is the Gauss map of S; in terms of the coefficients of
the first and second fundamental forms of a local parametrisation of S,

K = L N − M2

EG − F2
.

It would appear that K is an extrinsic property of the surface, in that it seems to depend
on the coefficients of both the first and the second fundamental forms. However, the Theo-
rema Egregium states that K is actually intrinsic; two surfaces with local parametrisations
having the same E , F and G must have the same Gaussian curvature at corresponding
points. The theorem is proved by finding an explicit formula, the Gauss formula, for K
solely in terms of the coefficients of the first fundamental form and their derivatives. For
the case of an isothermal parametrisation, for example, we shall see that K is given by

K = − 1

2E

(
∂2

∂u2
+ ∂2

∂v2

)
log E .

It is clear that the functions E , F and G do not determine L , M and N ; consider the
standard parametrisations of the plane and the cylinder, which have the same coefficients
of the first fundamental form but different coefficients of the second fundamental form.
However, as we shall see, the expression L N − M2 is determined by E , F and G, which
gives the proof of Gauss’s Theorem.

This shows that the coefficients E , F , G of the first fundamental form and the coeffi-
cients L , M , N of the second fundamental form of a local parametrisation of a surface
in R

3 are related in a rather subtle way. Relations between the coefficients of the two
fundamental forms are explored in §6.2 and §6.3.

We have already investigated some of the geometrical information carried by the Gaus-
sian curvature, and the fact that K is intrinsic makes it an even more important function on
a surface. It is therefore interesting to find as much information as we can about surfaces
of constant Gaussian curvature, and we consider this in (optional) §6.4.

143
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The Theorema Egregium is very important historically since it suggests (correctly!) that
Gaussian curvature can be defined for surfaces in R

n and, more generally, abstract sur-
faces with metric with no reference to any containing Euclidean space. This observation
instigated and motivated the study of a major branch of modern mathematics, Riemannian
geometry. In (optional) §6.5, we indicate how to generalise the notion of Gaussian curva-
ture to surfaces in R

n for n > 3, and show that all the results in §6.1 and §6.2, and all the
formulae except (6.1)–(6.3) and (6.6) (each of which has to be slightly modified) hold in
this more general setting. This implies that

the Theorema Egregium and its corollaries also hold for surfaces S in R
n and S̃ in R

m .

Readers whose primary interest is surfaces in R
3 may choose to omit §6.5.

In its simplest form, the Theorema Egregium may be stated as follows.

Theorem1 (Theorema Egregiumof Gauss) The Gaussian curvature K at a point p of a surface
S in R

3 may be expressed solely in terms of the coefficients of the first fundamental form
(and their derivatives) of any local parametrisation of S whose image contains p.

The following corollary is an immediate consequence of the Theorema Egregium.

Corollary 2 Assume that x : U → S, x̃ : U → S̃ are local parametrisations of surfaces S,
S̃ in R

3 with coefficients of the first fundamental form satisfying E = Ẽ , F = F̃ , G = G̃.
Then, for each q ∈ U, the Gaussian curvature of S̃ at x̃(q) is equal to that of S at x(q).

For instance, the corollary implies that the helicoid and the catenoid have the same
Gaussian curvature at points which correspond under the local parametrisations x and x̃
described in Example 2 of §4.5; this is not at all obvious from the actual shapes of the two
surfaces.

The next corollary is also important and useful.

Corollary 3 Let S and S̃ be surfaces in R
3. If there is a local isometry f from an open

neighbourhood of a point p ∈ S to S̃, then the Gaussian curvature of S̃ at f (p) is equal to
that of S at p.

Proof of Corollary 3 Let x(u, v) be a local parametrisation of an open neighbourhood U of
p in S. It follows from Theorem 3 of §2.5 that, choosing U smaller if necessary, x̃ = f x
is a local parametrisation of an open neighbourhood of f (p) in S̃. Proposition 3 of §4.4
shows that the coefficients of the first fundamental form of x̃ are equal to those of x, and
the result follows from Corollary 2. �

6.1 The Christoffel symbols

In this section we define the Christoffel symbols determined by a local parametrisation of
a surface in R

3, and show that they can be expressed in terms of the coefficents of the
first fundamental form and their derivatives. The Christoffel symbols are of fundamental
importance in their own right, as well as helping us to prove the Theorema Egregium.

Let x(u, v) be a local parametrisation of a surface S in R
3. Then any vector may be

written as a linear combination of xu , xv and N so, in particular, we may write
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xuu = �1
11xu + �2

11xv + L N , (6.1)

xuv = �1
12xu + �2

12xv + M N , (6.2)

xvu = �1
21xu + �2

21xv + M N ,

xvv = �1
22xu + �2

22xv + N N , (6.3)

for suitable functions {�k
i j }. These functions are called the Christoffel symbols of S with

respect to the parametrisation x. Since xuv = xvu , it is clear that �i
12 = �i

21 for i = 1, 2.
We shall be taking the inner product of the above equations with xu and xv , and it will

be useful to note that

xuu .xu = 1

2

∂

∂u
(xu .xu) = 1

2
Eu ,

xuu .xv = ∂

∂u
(xu .xv) − xu .xuv = Fu − 1

2
Ev ,

with similar expressions for the other inner products that occur. So, taking the inner product
of each of equations (6.1), (6.2), (6.3) with xu and xv , we obtain the following three pairs
of linear equations.

E�1
11 + F�2

11 = 1

2
Eu ,

F�1
11 + G�2

11 = Fu − 1

2
Ev ;

E�1
12 + F�2

12 = 1

2
Ev ,

F�1
12 + G�2

12 = 1

2
Gu ;

E�1
22 + F�2

22 = Fv − 1

2
Gu ,

F�1
22 + G�2

22 = 1

2
Gv . (6.4)

The determinant of each of the three pairs of linear equations for the �k
i j is EG − F2

which, being non-zero, gives the following lemma.

Lemma 1 The Christoffel symbols {�k
i j } are determined by the coefficients of the first

fundamental form and their derivatives.

This lemma is very important, and is not immediately clear from the definition of the
Christoffel symbols given at the start of this section.

Example 2 (Orthogonal parametrisations) For a local parametrisation with F = 0, the
Christoffel symbols are given by:

�1
11 = 1

2

Eu

E
, �1

12 = �1
21 = 1

2

Ev
E

, �1
22 = −1

2

Gu

E
,

�2
11 = −1

2

Ev
G

, �2
12 = �2

21 = 1

2

Gu

G
, �2

22 = 1

2

Gv

G
.
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Example 3 (Tchebycheff parametrisations) A local parametrisation x(u, v) with coefficients
of the first fundamental form satisfying E = G = 1 is called a Tchebycheff parametri-
sation. In this case, the coordinate curves are parametrised by arc length, and F = cos θ
where θ is the angle of intersection of the coordinate curves. Intuitively, a Tchebycheff
parametrisation may be thought of as moulding a piece of fabric over the surface without
stretching the fibres but changing the angle θ at which the two sets of fibres (the weft and
the warp) meet.

When using a Tchebycheff parametrisation, equations (6.4) for the �i
jk reduce to

�1
11 + �2

11 cos θ = 0 ,

�1
11 cos θ + �2

11 = −θu sin θ ;

�1
12 + �2

12 cos θ = 0 ,

�1
12 cos θ + �2

12 = 0 ;

�1
22 + �2

22 cos θ = −θv sin θ ,

�1
22 cos θ + �2

22 = 0. (6.5)

These three pairs of equations are easily solved. In particular, the second pair of
equations imply that, for a Tchebycheff parametrisation,

�1
12 = �2

12 = 0.

6.2 Proof of the theorem

We prove the Theorema Egregium by showing that, having chosen a local parametrisation
x of a surface S in R

3, then L N − M2 is expressible in terms of the Christoffel symbols
{�i

jk} and the coefficients E , F , G of the first fundamental form and their derivatives.

This, together with Lemma 1 of §6.1, will show that we may write L N − M2, and hence
the Gaussian curvature K , in terms of E , F , G and their derivatives.

Using (6.1), (6.2) and (6.3) we have

L N − M2 = L N .N N − M N .M N (6.6)

= (xuu − �1
11xu − �2

11xv).(xvv − �1
22xu − �2

22xv)

− (xuv − �1
12xu − �2

12xv).(xuv − �1
12xu − �2

12xv) , (6.7)

so that

L N − M2 = xuu .xvv − xuv .xuv

+ terms involving the �k
i j , E , F , G and their derivatives.
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However,

xuu .xvv − xuv .xuv = ∂

∂u
(xu .xvv) − ∂

∂v
(xu .xuv)

= ∂

∂u

(
Fv − 1

2
Gu

)
− ∂

∂v

(
1

2
Ev

)

= −1

2
(Evv − 2Fuv + Guu), (6.8)

which completes the proof of the theorem.

An explicit formula for K may be deduced quite quickly from (6.7) if one remembers
that, for instance, �1

11xu + �2
11xv is the component of xuu tangential to S, whereas xvv −

�1
22xu − �2

22xv is orthogonal to S. Hence,

(xuu − �1
11xu − �2

11xv).(xvv − �1
22xu − �2

22xv)

= xuu .(xvv − �1
22xu − �2

22xv)

= xuu .xvv − xuu .(�1
22xu + �2

22xv)

= xuu .xvv − (�1
11xu + �2

11xv).(�1
22xu + �2

22xv)

= xuu .xvv − E�1
11�

1
22 − F(�1

11�
2
22 + �2

11�
1
22) − G�2

11�
2
22.

A similar expression may be obtained for (xuv−�1
12xu −�2

12xv).(xuv−�1
12xu −�2

12xv),
and, putting these together, we find that K is given by

(EG − F2)K = − 1

2
(Evv − 2Fuv + Guu)− E

(
�1

11�
1
22 − (�1

12)2
)

− F
(
�1

11�
2
22 − 2�1

12�
2
12 + �1

22�
2
11

)
− G
(
�2

11�
2
22 − (�2

12)2
)

. (6.9)

This is the Gauss formula for K .
Since the right hand side of (6.9) is determined by the coefficients of the first fundamen-

tal form, while the left hand side is equal to L N − M2, the Gauss formula gives a relation
between the coefficients of the two fundamental forms. We investigate further relations of
this type in §6.3.

The Gauss formula is perhaps a little complicated in the general case, but for some types
of local parametrisation the formula for K takes a simpler form.

Example 1 (Orthogonal parametrisations) For an orthogonal local parametrisation, the
expressions for the Christoffel symbols given in Example 2 of §6.1 may be used to show
that the Gaussian curvature is given by

K = − 1

2
√

EG

{(
Ev√
EG

)
v

+
(

Gu√
EG

)
u

}
. (6.10)

In particular, if the local parametrisation is isothermal, so that E = G = λ2, F = 0, then

K = − 1

λ2
� log λ, (6.11)
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where � = ∂2

∂u2
+ ∂2

∂v2
is the Laplacian. We note that the surface has constant Gaussian

curvature if and only if λ satisfies Liouville’s equation,

1

λ2
� log λ = constant.

Formula (6.10) for K in terms of an orthogonal parametrisation is rather nice, in that the
Christoffel symbols do not occur explicitly.

Example 2 (Tchebycheffparametrisations) This continues Example 3 of §6.1, where we wrote
down the equations satisfied by the Christoffel symbols when E = G = 1 and F = cos θ .
As already noted, the second pair of equations in (6.5) give that �1

12 = �2
12 = 0, and, using

this, we find that

(EG − F2)K = Fuv − �1
11�

1
22 − (�1

11�
2
22 + �1

22�
2
11) cos θ − �2

11�
2
22

= Fuv − �1
22(�1

11 + �2
11 cos θ ) − �2

22(�1
11 cos θ + �2

11).

Hence, using the first pair of equations in (6.5),

(EG − F2)K = Fuv + �2
22θu sin θ .

However, the third pair of equations in (6.5) shows that �2
22 sin θ = θv cos θ , so it follows

that

(EG − F2)K = −θuv sin θ , (6.12)

so that, for a local parametrisation with E = G = 1, F = cos θ ,

K = −θuv sin θ

sin2 θ
= − θuv

sin θ
.

In particular, we note that K = −1 if and only if θ satisfies the sine-Gordon equation,

θuv = sin θ . (6.13)

Equation (6.13), which may be thought of as a non-linear wave equation, is one of the basic
partial differential equations of soliton theory.

6.3 The Codazzi–Mainardi equations

As we have already noted (several times!), the main thrust of the proof of the Theorema
Egregium is to show that L N − M2 is determined by E , F , G and the derivatives of E , F
and G. In this section, we consider the natural question of whether there are any other
relations between the coefficients of the two fundamental forms, other than that provided
by noting that L N − M2 is equal to the expression on the right hand side of the Gauss
formula (6.9). This will lead us to a discussion of Bonnet’s Theorem, part of which says that
a surface in R

3 is essentially completely determined up to rigid motions of R
3 by its first

and second fundamental forms. This is the analogue for surfaces in R
3 of the Fundamental

Theorem of the Local Theory of Plane Curves.
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Equations (6.1), (6.2) and (6.3) imply certain consistency conditions determined by the
fact that mixed partial derivatives commute. For instance, since (xuu)v = (xuv)u we have
that

(xuu)v .N = (xuv)u .N ,

so, using (6.1) and (6.2) we find that

0 = (�1
11xu + �2

11xv + L N)v .N − (�1
12xu + �2

12xv + M N)u .N

= �1
11xuv .N + �2

11xvv .N + Lv − �1
12xuu .N − �2

12xuv .N − Mu

= M�1
11 + N�2

11 + Lv − L�1
12 − M�2

12 − Mu ,

so that

Lv − Mu = L�1
12 − M

(
�1

11 − �2
12

)
− N�2

11. (6.14)

Similarly, by considering the inner product of (xvv)u − (xuv)v with N , we obtain

Mv − Nu = L�1
22 − M

(
�1

12 − �2
22

)
− N�2

12. (6.15)

Equations (6.14) and (6.15) are called the Codazzi–Mainardi equations.

In the case of an orthogonal local parametrisation these may be written relatively simply
in terms of the coefficients of the first and second fundamental forms,

Lv − Mu = Ev
2

(
L

E
+ N

G

)
− M

2

(
Eu

E
− Gu

G

)
, (6.16)

Mv − Nu = −Gu

2

(
L

E
+ N

G

)
− M

2

(
Ev
E

− Gv

G

)
. (6.17)

In the case of an isothermal local parametrisation with E = G = λ2 and F = 0, we saw
in Lemma 2 of §5.4 that the mean curvature H is given by 2H = (L + N )/λ2, from which
it follows that the Codazzi–Mainardi equations become

Lv − Mu = 2Hλλv , Nu − Mv = 2Hλλu . (6.18)

Returning to the general situation, the above working shows that the Gauss formula (6.9)
and Codazzi–Mainardi equations (6.14) and (6.15) are necessarily satisfied by a surface in
R

3. The following theorem, which, as mentioned earlier, is analogous to the Fundamental
Theorem of the Local Theory of Plane Curves discussed in Chapter 1, shows that they are
also sufficient.

Theorem 1 (Bonnet) Let U be an open subset of R
2 and let E , F , G; L , M , N be smooth

real-valued functions defined on U with E > 0, G > 0 and EG − F2 > 0. Assume
that E , F , G; L , M , N satisfy the Gauss formula (6.9) and Codazzi–Mainardi equations
(6.14) and (6.15), where K = (L N − M2)/(EG − F2) and the {�i

jk} are defined to be
the solutions to (6.4). Then, if p ∈ U, there is an open neighbourhood V of p in U, and a
smooth map x : V → R

3 such that

(i) x(V ) is a surface S in R
3,
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(ii) x is a parametrisation of S such that E , F , G and L , M , N are the coefficients of the
first and second fundamental forms of S, where L , M , N are determined using the unit
normal N in the direction of xu × xv .

Moreover, if V is connected, x (and hence S) is uniquely determined by E , F , G;
L , M , N up to rigid motions of R

3.

We shall not prove Bonnet’s Theorem, since this would carry us into the realms of
existence and uniqueness theorems for solutions of certain partial differential equations.

Example 2 (Tchebycheff parametrisations) We saw in Example 2 of §6.2 that a Tchebycheff
parametrisation of a surface with constant Gaussian curvature K = −1 gave a solution
θ of the sine-Gordon equation (6.13). Conversely, in Exercise 6.10 you are asked to use
Bonnet’s Theorem to show that if θ (u, v) is a solution of the sine-Gordon equation, then
there exists a surface S with K = −1 which is covered by a Tchebycheff parametrisation
x(u, v) such that

(a) F = cos θ ,

(b) the coordinate curves of x are the asymptotic curves of S.

Moreover, the local parametrisation x, and hence the surface S, is determined uniquely
by θ up to rigid motions (and possibly a reflection) of R

3.

6.4 Surfaces of constant Gaussian curvature †

Gaussian curvature is an important function on a surface S, so, as remarked in the introduc-
tion to this chapter, it is natural to try to find as much information as possible concerning
surfaces for which this function is constant. In this optional section we give a brief review
of the area, but have (rather reluctantly) restricted ourselves to the proof of just one of the
results, a theorem due to Liebmann. However, a proof of Minding’s Theorem (Theorem 6)
is given in §7.7.

Theorem1 (Liebmann) Let S be a compact connected surface in R
3 with constant Gaussian

curvature K . Then K > 0 and S is a sphere.

Proof We first recall Theorem 4 of §5.10, which says that every compact surface in R
3

has an elliptic point. Hence, if K is constant then K > 0.
We next recall that if κ1 and κ2 are the principal curvatures, then K = κ1κ2 and the

mean curvature H = (κ1 + κ2)/2. Hence H2 − K = (κ1 − κ2)2/4 is non-negative and is
equal to zero only at umbilics. If H2 − K is everywhere zero, then every point of S is an
umbilic, and, by Theorem 1 of §5.8, S is an open subset of a sphere. However, since S is
compact, it is also closed, and since the sphere is connected, S is the whole of the sphere.

We now assume that H2 − K is not identically zero. Since S is compact, the continuous
function H2 − K attains a maximum value at some point p of S, and we shall show that
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the assumption that (H2 − K )(p) > 0, or, equivalently, that p is not an umbilic, implies
that K (p) ≤ 0. This contradicts the first paragraph of the proof.

In order to proceed with our proof, we use the fact (which we shall not prove) that
there exists a local parametrisation x(u, v) around any non-umbilic point of a surface in
R

3 whose coordinate curves are lines of curvature. It follows immediately from Lemma
1 of §5.6 that such a parametrisation is characterised by having F = M = 0, and, using
Exercise 6.8, the Codazzi–Mainardi equations may be written as

(κ1 − κ2)Ev = −2E(κ1)v , (κ1 − κ2)Gu = 2G(κ2)u , (6.19)

where κ1, κ2 are the eigenvalues corresponding to principal directions xu , xv respectively.
We also assume, by interchanging u and v, and reversing the direction of the unit normal
N , if necessary, that κ1 > κ2 > 0 on some open neighbourhood U of p in S.

In the following, we shall be differentiating the principal curvature functions κ1 and κ2

several times, so to avoid confusion with suffices, we shall write λ and μ rather than κ1

and κ2 for the two principal curvatures. Then λ > μ > 0 on U , and, since (λ − μ)2 takes
its maximum value at p, so does λ− μ.

However, since K is constant,

(λ− μ)u =
(
λ− K

λ

)
u

= λu

(
1 + K

λ2

)
,

so, in particular, λu(p) = 0.
Differentiating again we find that, at p,

(λ− μ)uu(p) = λuu(p)

(
1 + K

λ2

)
(p),

so, since λ − μ takes its maximum value at p, we see that λuu(p) ≤ 0. Similar methods
show that λv(p) = μu(p) = μv(p) = 0, λvv(p) ≤ 0, and μuu(p) ≥ 0.

It now follows from (6.19) that Ev(p) = 0 and Gu(p) = 0, so formula (6.10) for the
Gaussian curvature in the case of an orthogonal parametrisation gives that

K (p) = − 1

2EG
(Evv + Guu) (p). (6.20)

However, differentiating (6.19) at p, we obtain

(λ− μ)Evv(p) = −2Eλvv(p) , (λ− μ)Guu(p) = 2Gμuu(p),

so that Evv(p) and Guu(p) are both non-negative. It now follows from (6.20) that
K (p) ≤ 0, and we have established the contradiction needed to complete the proof of
the theorem.

We now consider non-compact surfaces with constant Gaussian curvature, and begin by
considering the case K = 0. We have seen in Exercise 5.8 that a connected surface of
revolution has K = 0 if and only if it is an open subset of a plane, a cone or a cylinder.
As a generalisation of this, we saw in Exercise 5.16 that if p is a non-umbilic point on
a surface S with K = 0 then there exists an open neighbourhood of p which is a ruled
surface with the property that the unit normal is constant along each line of the ruling.
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Such a surface is called a developable surface. Conversely, if S is a developable surface
then 0 is an eigenvalue of d N , so that K = 0 for such a surface.

In Exercise 5.5, several types of example of developable surfaces are given; namely,
tangent developables of regular curves in R

3, generalised cones, and generalised cylinders.
We recall, in particular, that a generalised cylinder is the image of the map into R

3 given
by

x(u, v) = α(u) + ve , v ∈ R,

where α(u) is a regular curve in R
3 whose tangent vector α′(u) is never parallel to the

non-zero vector e.
The following theorem of Massey classifies all closed surfaces in R

3 with K = 0. We
recall (from §5.10) that a closed surface is a surface that is a closed subset of its containing
Euclidean space. Intuitively speaking, a closed surface has no edges to fall off. All compact
surfaces are closed, as are, for instance, cylinders, catenoids and helicoids. We note that
the tangent developable of a regular curve α is not closed (all points of α are omitted, since
these are singular points), and nor is a generalised cone (the vertex is a singular point).

Theorem 2 (Massey) Let S be a closed connected surface in R
3 whose Gaussian curvature

is identically zero. Then S is a generalised cylinder.

We choose to omit the proof, but would like to remark that it is accessible, and uses the
Codazzi–Mainardi equations.

We next consider surfaces in R
3 with constant negative Gaussian curvature. Exercise 5.8

gave a method of finding all surfaces of revolution with constant negative Gaussian curva-
ture, and these include the pseudosphere (see Example 7 of §5.6). However, none of these
examples are closed; for instance, the pseudosphere is not closed since it does not include
the unit circle x2 + y2 = 1, z = 0. In fact, we have the following.

Theorem 3 (Hilbert) There is no closed surface in R
3 with constant negative Gaussian

curvature.

A crucial step in the proof of Hilbert’s Theorem is to show that any surface in R
3 with

K = −1 may be covered by a system of Tchebycheff parametrisations whose coordinate
curves are asymptotic curves. In the following example we outline a method of constructing
such a parametrisation of the pseudosphere, which, as we saw in Example 7 of §5.6, has
constant Gaussian curvature K = −1.

Example 4 (Pseudosphere) Let x(u, v) be the usual parametrisation of the pseudosphere S
as a surface of revolution given by

x(u, v) = (sech v cos u, sech v sin u, v − tanh v), −π < u < π , v > 0.

Exercise 5.19 invited you to prove that the asymptotic curves are given by u±v = constant,
and that the angle of intersection θ of the two asymptotic curves through x(u, v) is given
by cos θ = 2 sech2v − 1. So, if we define a new parametrisation of S by taking

x̃(ũ, ṽ) = x(ũ + ṽ, ũ − ṽ) , −π < ũ + ṽ < π , ũ > ṽ,
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(this is a change of variables as described in the optional §3.8), it follows that the coor-
dinate curves of x̃ are the asymptotic curves of S and the angle of intersection of the two
asymptotic curves through x̃(ũ, ṽ) is given by

cos θ̃ (ũ, ṽ) = 2 sech2(ũ − ṽ) − 1. (6.21)

A routine calculation shows that the coefficients of the first fundamental form with
respect to x(u, v) are given by

E = sech2v , F = 0 , G = tanh2 v,

and, since

x̃ũ = xu + xv , x̃ṽ = xu − xv , (6.22)

another routine calculation shows that Ẽ = G̃ = 1, so that x̃ is a Tchebycheff
parametrisation of the pseudosphere whose coordinate curves are the asymptotic curves
of S.

The theory given in Example 2 of §6.2 now predicts that θ̃ (ũ, ṽ) should satisfy the sine-
Gordon equation

θ̃ũṽ = sin θ̃ , (6.23)

and this may be checked from (6.21) by direct calculation.

We now consider closed connected surfaces of constant positive Gaussian curvature. It
turns out (although we do not develop the tools to prove it) that such surfaces are nec-
essarily compact, so the following theorem is an immediate consequence of Liebmann’s
Theorem.

Theorem 5 Let S be a closed connected surface in R
3 with constant positive Gaussian

curvature. Then S is a sphere.

Finally, we state Minding’s Theorem. Unlike the other theorems in this section, Mind-
ing’s Theorem is a local theorem; it doesn’t depend on any global assumptions such as
“closed” or “compact”. It says that if two surfaces S, S̃ have the same constant Gaussian
curvature then, locally at least, they are isometric.

Theorem 6 (Minding) Let S and S̃ be surfaces in R
3 having the same constant Gaussian

curvature. If p ∈ S and p̃ ∈ S̃ then there is an isometry from an open neighbourhood of p
in S onto an open neighbourhood of p̃ in S̃.

In particular, then, a developable surface is locally isometric to a flat plane. This means
that a sufficiently small piece of any developable surface may be formed from a flat piece
of metal without stretching or compressing the sheet.

We need some material on geodesics (to be found in Chapter 7) before we can construct
the isometry needed to prove Minding’s Theorem, so we postpone the proof until §7.7.
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6.5 A generalisation of Gaussian curvature †

The Theorema Egregium tells us that the Gaussian curvature K of a surface in R
3 depends

on only the intrinsic metric properties of the surface. This suggests the possibility of defin-
ing a notion of Gaussian curvature for a surface in R

n rather than just for a surface in R
3,

and in this section we indicate a way of achieving this. As mentioned in the introduction
to this chapter, those wishing to concentrate on surfaces in R

3 may choose to omit this
section.

Let x(u, v) be a local parametrisation of a surface S in R
n , and let N (xuu), N (xuv),

N (xvv) denote the components of xuu , xuv , xvv , respectively, orthogonal to S. It may
be checked using the methods employed in §3.9 that the expression N (xuu). N (xvv) −
N (xuv). N (xuv) involving the inner products of these vectors transforms under a change
of local parametrisation in the same way as does EG − F2. It follows that if we set

K = N (xuu). N (xvv) − N (xuv). N (xuv)

EG − F2
, (6.24)

then K is independent of choice of local parametrisation and hence defines a function on S.
This is the Gaussian curvature of a surface in R

n ; when n = 3, it clearly reduces to our
original definition of Gaussian curvature of a surface in R

3.
If we modify the material in §6.1 and §6.2 by replacing L N , M N , and N N by

N (xuu), N (xuv), N (xvv), respectively, and replacing L N − M2 by N (xuu). N (xvv) −
N (xuv). N (xuv), then §6.1 and §6.2 hold in this more general situation. In particular, the
Gauss formula (6.9) is true, and it then follows that:

the Theorema Egregium and its corollaries all hold if we assume that S is a surface in
R

n and S̃ is a surface in R
m .

This is a highly significant and non-trivial fact which lies at the heart of differential
geometry.

Example 1 (Veronese surface) Recall from Example 2 of §4.6 that the image in R
5 of the

map f : S2(1) → R
5 given by

f (x , y, z) =
(

yz, zx , xy,
1

2
(x2 − y2),

1

2
√

3
(x2 + y2 − 2z2)

)
, x2 + y2 + z2 = 1,

is a surface S in R
5 called the Veronese surface. We showed in that example that f is a local

isometry onto S and that f gives a bijective correspondence between the real projective
plane RP2 of lines through the origin of R

3 and S. The generalisation of Corollary 3 of
the Theorema Egregium shows that the Veronese surface is a surface in R

5 of constant
Gaussian curvature 1.

Example 2 (Flat torus) Recall from Example 4 of §4.3 that for each pair r1, r2 of positive
real numbers, the subset of R

4 defined by

S1(r1) × S1(r2) = {(x1, x2, x3, x4) ∈ R4 : x1
2 + x2

2 = r1
2, x3

2 + x4
2 = r2

2}
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is a surface in R
4. We called this a flat torus, and showed that the map f : R

2 → S1(r1) ×
S1(r2) defined by

f (u, v) =
(

r1 cos
u

r1
, r1 sin

u

r1
, r2 cos

v

r2
, r2 sin

v

r2

)
is a local isometry. Thus the Gaussian curvature of the flat torus is zero, which provides
the motivation for its name.

In Exercise 4.14 we saw that there is a conformal diffeomorphism of this flat torus onto
a torus of revolution in R

3. However, the generalisation of Corollary 3 of the Theorema
Egregium implies that there can be no isometry of S1(r1) × S1(r2) onto any surface in R

3,
for any such surface would be compact and thus by Theorem 4 of §5.10 would have an
elliptic point. This means that, as a surface with metric, S1(r1) × S1(r2) is an object that
can only be encountered once we consider surfaces in R

n for n > 3.

Examples 1 and 2 show that neither Liebmann’s Theorem nor Massey’s Theorem gener-
alise to the case of surfaces in higher dimensional Euclidean spaces. However, Minding’s
Theorem does hold in this more general situation. Indeed, it holds in the even more general
setting outlined in the next example.

Example 3 (Hyperbolic plane) In Example 5 of §3.4, we put a metric on the upper half-plane,

H = {(u, v) ∈ R
2 : v > 0}

with E = G = 1/v2, F = 0. This gives us the hyperbolic plane H , which is an abstract sur-
face with metric with no reference to any containing R

n . However, we may use equations
(6.4) to define the Christoffel symbols {�k

i j }, and then use the Gauss curvature equation
(6.9) to define a notion of Gaussian curvature K for surfaces with metric. If we do this,
a short calculation using (6.11) shows that the hyperbolic plane has constant Gaussian
curvature K = −1.

Although we shall not justify any of the following, it turns out that the corollaries of
the Theorema Egregium still hold in the more general situation of surfaces with metric. It
now comes as no surprise that the hyperbolic plane H has constant Gaussian curvature,
since it follows from Example 4 of §4.7 that the isometry group of H is transitive. That
this constant is equal to −1 is also to be expected since we saw in Exercise 4.18 that
there is a local isometry from part of the hyperbolic plane to the pseudosphere, which, as
we saw in Example 7 in §5.6, has constant Gaussian curvature K = −1. Although the
Nash Embedding Theorem implies that there is an isometry from H to a surface in some
sufficiently high dimensional Euclidean space, Hilbert’s Theorem says that there is no local
isometry from the whole of H to a surface in R

3.

Exercises

6.1 The Theorema Egregium says that surfaces in R
n which are locally isometric have

the same Gaussian curvature at corresponding points. Is the same thing true for the
mean curvature of surfaces in R

3? Give a proof or a counterexample.



156 6 The Theorema Egregium

Note that Exercises 6.2 to 6.5 hold with exactly the same proof for surfaces in R
n .

6.2 Let x(u, v) be a local parametrisation of a surface S in R
3 such that E = 1 and

F = 0. Show that �2
12 = �2

21 = Gu

2G
, �1

22 = −1

2
Gu , �2

22 = Gv

2G
, and that all

the other Christoffel symbols are zero. Hence show that the Gaussian curvature K of
S is given by

K = − (
√

G)uu√
G

.

6.3 If the coefficients of the first fundamental form of a surface S in R
3 are given by

E = 2 + v2 , F = 1 , G = 1,

show that the Gaussian curvature K of S is given by

K = − 1

(1 + v2)2
.

6.4 Let x(u, v) be a Tchebycheff parametrisation of a surface S in R
3 with E = G = 1

and F = cos uv. Show that the Gaussian curvature K of S is given by

K = − 1

sin uv
.

6.5 Let x(u, v) be a Tchebycheff parametrisation of a surface S in R
3. Show that the

Gaussian curvature K of S is given by

K = Fuv(1 − F2) + F Fu Fv
(1 − F2)2

.

6.6 It is natural to ask whether Corollary 3 to the Theorema Egregium has a converse.
That is to say, if f : S → S̃ is a smooth map with the property that, for all p ∈ S,
K̃ ( f (p)) = K (p), is it true that f is a local isometry? In fact, this is clearly not true;
simply consider any smooth map from the plane to itself or from the unit sphere to
itself. However, these could perhaps be rather special examples since K is constant
here. We now investigate a rather more substantial counterexample.

Let S be the helicoid x sin z = y cos z, and let S̃ be the surface of revolution
obtained by rotating the curve

α(v) = (v, 0, log v) , v > 0,

around the z-axis. Let

U = {(u, v) ∈ R
2 : −π < u < π , v > 0},

and let x : U → S, x̃ : U → S̃ be the local parametrisations defined by

x(u, v) = (v cos u, v sin u, u) , (u, v) ∈ U ,

x̃(u, v) = (v cos u, v sin u, log v) , (u, v) ∈ U .



157 Exercises

Show that the correspondence x(u, v) ↔ x̃(u, v) is not an isometry, but does have
the property that, for all (u, v) ∈ U , K̃

(
x̃(u, v)

) = K (x(u, v)).

6.7 Let S be a connected surface in R
3 covered by a single parametrisation x(u, v) whose

coefficients E , F , G, L , M , N of the first and second fundamental forms are all con-
stant. If L = M = N = 0 show that S is an open subset of a plane. Otherwise,
follow the route indicated below to show that E N − 2F M + GL 	= 0 and S is (an
open subset of) a cylinder of radius |c|, where

c = EG − F2

E N − 2F M + GL
.

(i) Show that K = 0.
(ii) Show that if not all of L , M , N are zero, then we may assume, by interchanging

u and v if necesary, that L 	= 0.
From now on, we assume that L 	= 0.

(iii) Show that a = M xu − Lxv is a non-zero constant.
(iv) Show that |a|2 = L(E N−2F M+GL), so, in particular, E N−2F M+GL 	= 0.
(v) Show that

b = x − x.a
a.a

a + cN

is constant, where c = (EG − F2)/(E N − 2F M + GL).
(vi) Show that a is orthogonal to b.

(vii) Without loss of generality, assume that a = (0, 0, a3) and b = (b1, b2, 0), and
show that, writing x = (x1, x2, x3), S is an open subset of the cylinder

(x1 − b1)2 + (x2 − b2)2 = c2.

6.8 Let x(u, v) be a local parametrisation of a surface S in R
3 whose image contains

no umbilic points. If the coordinate curves are also lines of curvature show that the
Codazzi–Mainardi equations may be written as

(κ1 − κ2)Ev = −2E(κ1)v ,

(κ1 − κ2)Gu = 2G(κ2)u ,

where κ1, κ2 are the principal curvatures corresponding to principal directions xu ,
xv respectively. These equations are used in the proof of Liebmann’s Theorem
(Theorem 1 of §6.4).

6.9 Let S be a surface in R
3 with constant mean curvature H , and suppose that S admits

an isothermal local parametrisation whose coordinate curves are also lines of cur-
vature. Use the equations obtained in Exercise 6.8 to show that if the image of the
local parametrisation is connected then the Codazzi–Mainardi equations reduce to
L − N = constant. (We shall see in §9.13 that if a surface has constant mean cur-
vature then such a local parametrisation exists on some open neighbourhood of any
non-umbilic point.)
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6.10 Let θ (u, v) be a solution of the sine-Gordon equation θuv = sin θ . Show that there
exists a surface S with constant Gaussian curvature K = −1 which is covered by a
Tchebycheff parametrisation x(u, v) such that

(a) F = cos θ ,
(b) the coordinate curves of x are the asymptotic curves of S.

Show also that x, and hence S, is determined uniquely by θ up to rigid motions
(and possibly a reflection) of R

3.

The following two exercises use material in the optional §6.4.

6.11 Show that the sphere is the only compact connected surface in R
3 with constant

mean curvature and everywhere positive Gaussian curvature. (Hint: use techniques
employed in the proof of Liebmann’s Theorem.)

6.12 Let S be a closed connected surface in R
3. If S has constant Gaussian and mean

curvatures show that S is either a sphere, a plane, or a (round) cylinder.



7 Geodesic curvature and geodesics

In §5.7 we defined the geodesic and normal curvatures of a regular curve α on a surface
S in R

3. The normal curvature κn is defined using the component of the acceleration of
α orthogonal to S, and was studied in Chapter 5. The geodesic curvature κg , on the other
hand, is determined by the component of the acceleration of α tangential to S, and we shall
see that, unlike κn , geodesic curvature is an intrinsic property.

In fact, although we shall not justify this remark, geodesic curvature may be defined for
curves on higher dimensional analogues of surfaces (which are modelled on open subsets
of R

m rather than R
2); we do not even need a containing Euclidean space R

n ; all we need
is a metric. Spaces modelled on open subsets of R

m are called manifolds, and if they have a
metric they are known as Riemannian manifolds. These are named in honour of Bernhard
Riemann, a student of Gauss, whose thesis laid the foundations for the major branch of
modern mathematics known as Riemannian geometry.

Curvature for curves in the plane, as discussed in Chapter 1, is a special case of geodesic
curvature for curves on a surface. When suitably parametrised, curves on a surface with
zero geodesic curvature are called geodesics; they are the analogues of straight lines in the
plane and as we shall show, the analogies are quite strong. For instance, a line segment in
a plane is the path in the plane of shortest length between its end points, and a (sufficiently
short) geodesic on a surface is the path of shortest length on the surface between its end
points.

There is also a close relationship with mechanics. In particular, Newton’s second law of
motion states that the acceleration of a body is directly proportional to, and in the same
direction as, the net force acting on the body. In the absence of an external force there
is no acceleration and the corresponding motion is in a straight line. For surfaces in R

3,
Newton’s second law gives a characterisation of geodesics as the paths followed by smooth
particles moving freely on the surface, for if there is no tangential force there is no tangen-
tial acceleration and conversely. Furthermore, the equations of motion in the Lagrangian
formulation of mechanics are just the geodesic equations (see §7.3), and conservation of
energy corresponds to the fact that every geodesic is parametrised so that the speed of travel
along the curve is constant (see §7.2).

§7.1 to §7.5 contain basic material, and are needed for the final two chapters of the book.
§7.6 to §7.9 are optional, and a selection of some or all of them could be made, depending
on time and taste; they are independent of each other, except that §7.8 uses the material in
§7.7.

159
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7.1 Geodesic curvature

Recall that for a regular curve α(t) on a surface S in R
3 the geodesic curvature κg and the

normal curvature κn are defined by

d t
ds

= κg N × t + κn N ,

where s is an arc length parameter along α, t = dα/ds is the unit tangent vector to α,
and N is the unit normal to S (defined, as usual, up to sign). It follows that, denoting inner
product in R

n by a dot as usual,

κg = d t
ds

.(N × t) . (7.1)

Note that replacing N by −N changes the sign of both the geodesic and nomal curvatures.
We saw in §5.7 that the normal curvature κn at a point of a regular curve α on S is equal

to the second fundamental form acting on the unit tangent vector to α at that point. In
particular, rather surprisingly, κn depends on only the tangent vector to α at the point in
question and may be interpreted as the minimum amount of bending that a regular curve
must do in order to stay on S. There is no similar restriction on κg; the geodesic curvature
may be regarded as a measure of the extra bending that α does within S.

A short calculation using (7.1) and techniques discussed in Chapter 1 shows the
following.

Lemma 1 The geodesic curvature of a regular curve α(t) on S is given by

κg = α′′.(N × α′)/|α′|3 , (7.2)

where, as usual, ′ denotes differentiation with respect to t .

Example 2 (Circles on a sphere) Each circle on a sphere in R
3 is obtained as the intersection

of the sphere with a plane. For ease, we consider the circle C of intersection of the unit
sphere S2(1) with the plane z = sin v0 for some constant v0 with −π/2 < v0 < π/2. Then
C may be parametrised as

α(t) = (cos v0 cos t , cos v0 sin t , sin v0) ,

in which case

α′(t) = (− cos v0 sin t , cos v0 cos t , 0) ,

so that |α′(t)| = cos v0. Also,

α′′(t) = (− cos v0 cos t , − cos v0 sin t , 0) ,

while N (α(t)) = α(t).
A short calculation using (7.2) now shows that the circle C in S2(1) has constant

geodesic curvature κg = tan v0. In particular, the equator has zero geodesic curvature.
More generally, a circle on S2(1) which is the intersection of S2(1) with a plane

at perpendicular distance sin v0 from the origin has constant geodesic curvature tan v0.
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Conversely, as you are invited to prove in Exercise 7.2, every curve of constant geodesic
curvature on a sphere is (part of) a circle. In particular, the curves of zero geodesic curvature
on a sphere are those curves which are the intersection of the sphere with a plane through
the centre of the sphere. These are the great circles on the sphere.

The next result is immediate, since if two surfaces in R
3 touch tangentially at some

point, then the normals to the surfaces coincide at that point.

Proposition 3 Let S, S̃ be two surfaces in R
3 which touch tangentially along the trace of a

regular curve α. Then the geodesic curvature of α as a curve on S is equal to the geodesic
curvature of α as a curve on S̃.

Example 4 (Torus of revolution) For positive real numbers a > b, let Ta,b be the torus of
revolution obtained by rotating the circle (x − a)2 + z2 = b2 about the z-axis. A sphere
with centre on the z-axis and suitable radius R will touch the torus tangentially along the
trace C of a regular curve α. If the sphere has centre at the origin, then taking R = a − b
or R = a + b gives such a sphere; it touches the torus along the equator of the sphere
and along the innermost or outermost parallel of the torus. Hence these particular parallels
have zero geodesic curvature on the torus.

For a sphere as illustrated in Figure 7.1 with centre on the z-axis but not at the origin,
there are two spheres which touch Ta,b tangentially, and the curves C are again circles. It
follows from Example 2 that the geodesic curvature is again constant but this time non-
zero.

z

�Figure 7.1 A sphere touching Ta,b tangentially

Finally, consider the case of a sphere with radius b and centre on the core circle x2+y2 =
a2, z = 0. Such a sphere touches the torus along a great circle of the sphere and a meridian
of the torus. Again, the geodesic curvature is zero.

Similar examples can be given for all surfaces of revolution; this is explored in
Exercise 7.5.
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The notion of geodesic curvature may be readily extended to regular curves on a surface
S in R

n . First, however, we have to generalise the concept of orientation, which we have
defined as a smooth choice of unit normal N to a surface S in R

3. This leads to a specific
choice for the positive direction of rotation in each tangent space which varies smoothly
over S; namely the rotation X �→ N × X should be rotation through π/2 (rather than
3π/2). For instance, the unit normal (0, 0, 1) to the xy-plane in R

3 leads to anticlockwise
as being the positive direction of rotation for tangent vectors at each point of the plane. We
generalise this to a surface S in R

n by defining an orientation of S to be a choice for the
positive direction of rotation in the tangent spaces of S which varies smoothly over S.

We note that a local parametrisation of S determines an orientation of the corresponding
coordinate neighbourhood; the positive direction of rotation being chosen so that rotation
from xu to xv is less than π . For a surface in R

3, the orientation determined by a local
parametrisation x(u, v) is the same as that determined by the unit normal N in the direction
of xu × xv . Following the terminology we have used for surfaces in R

3, a surface in R
n

which admits an orientation is said to be orientable, and when a choice of orientation has
been made then S is said to be oriented.

We define geodesic curvature κg for a regular curve α on an oriented surface S in R
n by

setting

κg = d2α

ds2
. X ,

where s is an arc length parameter along α, and X is the unit tangent vector obtained by
rotating dα/ds through π/2 in the direction determined by the orientation. We note that
κg X is the component of d2α/ds2 tangential to S, and if we choose the opposite orientation
on S then κg changes sign.

The following lemma gives a generalisation of formula (7.2), and is proved in a similar
way.

Lemma 5 Let α(t) be a regular curve on an oriented surface S in R
n, and let X be the unit

tangent vector obtained by rotating α′/|α′| through π/2 in the direction determined by the
orientation of S. Then

κg = 1

|α′|2α
′′. X . (7.3)

7.2 Geodesics

In this section we consider certain curves, namely geodesics, on a surface in R
n , and give

some examples. We also give a characterisation in terms of geodesic curvature and the
parametrisation of the curve. In subsequent sections we provide a much fuller description
of geodesics and their properties.

A smooth curve α(t) on a surface S in R
n is called a geodesic on S if its acceleration

vector α′′ is orthogonal to S at each point of α.



163 7.2 Geodesics

Example 1 (Plane) Let α(t) be a regular curve in a plane P in R
n . Then α′ and α′′ are

tangential to P so that α is a geodesic on P if and only if α′′ = 0, that is if and only if α is
a straight line parametrised so that |α′| is constant.

As may be seen from the above example, in deciding whether a curve is a geodesic the
actual parametrisation of the curve, as well as its trace, is important. Indeed, if α(t) is a
geodesic on S then α′′ is orthogonal to S, so, in particular, α′′.α′ = 0, or, equivalently, |α′|
is constant.

If s(t) denotes arc length along any smooth curve α(t) then, quoting equation (1.2),
ds/dt = |α′|, so it follows that |α′| is constant, λ, say, if and only if s(t) = λt +c, for some
constant c. For this reason, if |α′| is constant we say that α is parametrised proportional to
arc length; we have just seen that this is a necessary condition for a smooth curve α(t) to
be a geodesic.

Example 2 (Unit sphere) Let N be the outward unit normal to the unit sphere S2(1) in R
3,

so that if p ∈ S2(1) then N(p) = p. A curve α on S2(1) is a geodesic if and only if

α′′ = μα ,

for some function μ. But then

(α × α′)′ = α′ × α′ + α × α′′ = 0 ,

so that

α × α′ = c ,

where c is a constant vector which is non-zero unless α is itself constant (Figure 7.2). In
particular, |α′| = |c|, so that α is parametrised proportional to arc length, and

α.c = 0 ,

so that α is part of the great circle obtained by intersecting S2(1) with the plane through
the origin in R

3 orthogonal to c.

c

�Figure 7.2 Great circles are geodesics

Conversely, a great circle on S2(1) which is parametrised proportional to arc length may
be written in the form

α(t) = X cos(λt) + Y sin(λt) ,
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where λ is a non-zero constant and X and Y are a suitable pair of orthonormal vectors
in R

3. Then α′′ = −λ2α, which is orthogonal to S2(1) at each point of α, so that α is a
geodesic on S2(1).

This example shows that a non-constant curve on S2(1) is a geodesic if and only if it is
a great circle parametrised proportional to arc length. This accords with our interpretation
of a geodesic on a surface as the path followed by a smooth particle moving freely on the
surface; if we attach a particle to the origin of R

3 by a massless rod of unit length (so as
to constrain the particle to travel on the unit sphere) then an impulse applied to the particle
will set it going round and round a great circle at constant speed.

Example 3 (Surface of revolution) A meridian α(t) of a surface S of revolution lies on a plane
P containing the axis of rotation. Hence α′ and α′′ also lie on P . However, P intersects
S orthogonally, so that P is spanned by α′ and N . Thus if α is parametrised proportional
to arc length then α′′ is a scalar multiple of N . Hence all meridians, when parametrised
proportional to arc length, are geodesics.

Example 4 (Cylinder) Let S be the cylinder in R
3 with equation x2 + y2 = r2 and let

α : R → S be the curve defined by

α(t) = (r cos t , r sin t , λt + μ) , t ∈ R ,

where λ,μ are constant. Then α is a helix if λ 	= 0 and a circle if λ = 0. Also

α′′(t) = (−r cos t , −r sin t , 0) ,

which is normal to S at α(t). Thus α is a geodesic.

It is clear that any constant curve on a surface is a geodesic. The following proposition
provides a characterisation of all other geodesics.

Proposition 5 A regular curve α(t) on a surface S in R
n is a geodesic if and only if it is

parametrised proportional to arc length and has zero geodesic curvature.

Proof For surfaces in R
3 this follows from (7.2) since α′′ is orthogonal to S if and only if

α′′ is orthogonal to both α′ and N × α′. For surfaces in R
n we may use (7.3) rather than

(7.2).

This result is illustrated by Example 2 of §7.1 and Example 2 in this section; in the
former we saw that great circles are the curves of zero geodesic curvature on S2(1), while
the latter showed that the geodesics on S2(1) are the great circles parametrised proportional
to arc length.

7.3 Differential equations for geodesics

In this section we will obtain two equivalent sets of differential equations for geodesics in
a coordinate neighourhood on a surface S in R

n . We will then use these to obtain existence
and uniqueness results for geodesics.
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Proposition 1 Let x(u, v) be a local parametrisation of S and let α(t) = x (u(t), v(t)) be
a smooth curve. Then α is a geodesic on S if and only if both the following equations are
satisfied:

u′′E + 1

2
u′2 Eu + u′v′Ev + v′′F + v′2(Fv − 1

2
Gu) = 0 , (7.4)

v′′G + 1

2
v′2Gv + u′v′Gu + u′′F + u′2(Fu − 1

2
Ev) = 0 . (7.5)

Proof We have that

α′ = u′xu + v′xv ,

so that

α′′ = u′′xu + u′(u′xuu + v′xuv) + v′′xv + v′(u′xuv + v′xvv) . (7.6)

Thus, using the expressions discussed in §6.1 for xuu .xu and other similar quantities in
terms of the coefficients of the first fundamental form and their derivatives, we find that

α′′.xu = u′′E + 1

2
u′2 Eu + u′v′Ev + v′′F + v′2(Fv − 1

2
Gu) . (7.7)

A similar calculation shows that α′′.xv is equal to the left hand side of (7.5) and, since α is
a geodesic if and only if α′′.xu = α′′.xv = 0, it follows that α is a geodesic if and only if
equations (7.4) and (7.5) are both satisfied.

The two equations given in the statement of Proposition 1 form a system of second order
ordinary differential equations for u(t), v(t). They are not linear and cannot usually be
explicitly solved. However, the existence and uniqueness theorem for solutions of systems
of this type enables us to prove the following result.

Theorem 2 Let p ∈ S and let X ∈ Tp S.

(i) There is a unique geodesic α : (a, b) → S with initial point α(0) = p and initial vector
α′(0) = X which is maximal in the sense that the domain of the geodesic cannot be
further extended. Here, a is either −∞ or a negative real number, while b is either ∞
or a positive real number.

(ii) Any geodesic β with initial point p and initial vector X is the restriction of α to some
subinterval of (a, b).

This accords with our physical interpretation of geodesics as the paths followed by
smooth particles moving freely on a surface; in the absence of external forces, a trajec-
tory is determined by the initial position and velocity. It might not be possible to follow the
trajectory for all time, however; for instance, if S is the open unit disc then a freely moving
particle will soon fall off the edge!

Example 3 (Paraboloid of revolution) Let S be the paraboloid of revolution with equation
z = x2 + y2. We saw in Example 3 of §7.2 that, when parametrised proportional to arc
length, all meridians are geodesics. Clearly, at p = (0, 0, 0) there is exactly one such
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meridian with a given non-zero tangent vector as initial vector. The uniqueness part of
Theorem 2 shows that all geodesics through (0, 0, 0) are of this form.

We now discuss some consequences of Theorem 2. It is clear from the definition (and
also follows from (7.4) and (7.5)) that if α(t) is a geodesic then, for any real constant λ,
so is the curve α̃(t) = α(λt). The following lemma is now immediate from the uniqueness
part of Theorem 2.

Lemma 4 If X is a tangent vector at a point p of a surface S in R
n, let αX (t) be the unique

maximal geodesic with initial point p and initial vector X. Then, for any real number λ,

αλX (t) = αX (λt) .

Again, this agrees with intuition. If a particle leaves a particular point in a given direc-
tion with a given initial speed, then a particle setting off from the same point in the same
direction but with, say, twice the initial speed travels along the same path but travels along
it twice as fast.

Proposition 1 also shows that, although we defined geodesics extrinsically, that is to say
we used the containing Euclidean space, geodesics are actually determined by intrinsic
quantities. This is rather surprising, and, as in the case of Gaussian curvature, points to
the fundamental importance of the concept of geodesic in the study of general Rieman-
nian manifolds. It also leads to the following result, which is similar to Corollary 3 of the
Theorema Egregium.

Proposition 5 Let f : S → S̃ be a local isometry of surfaces. Then f maps geodesics on
S to geodesics on S̃, that is to say if α(t) is a geodesic on S then f α(t) is a geodesic on S̃.

Example 6 (Cylinder) Let S be the cylinder in R
3 with equation x2 + y2 = r2, and let

f : R
2 → S be the local isometry defined by

f (x , y) =
(

r cos
x

r
, r sin

x

r
, y
)

.

Then the geodesics of S, being the images under f of the geodesics in R
2, are of the

following type:

(a) the meridians of S (which are the images of the lines x = constant in R
2);

(b) the parallels of S (which are the images of the lines y = constant in R
2);

(c) helices (which are the images of lines in R
2 of the form ax + by = c, where a, b, c are

constant with a, b 	= 0). These can be parametrised proportional to arc length as:

β(t) = (r cos t , r sin t , λt + μ) ,

where λ,μ are constants with λ 	= 0.

Geodesics of types (b) and (c) have already been discussed in Example 4 of §7.2.

We note that, in contrast with the case of a plane, there are infinitely many geodesics
joining any two points of a cylinder (Figure 7.3). This is an example of the way in which
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�Figure 7.3 Three geodesics with the same start point and the same end point

the topology of a surface is reflected in the behaviour of its geodesics. Indeed, consid-
eration of geodesic behaviour is often very useful in the investigation of the topology of
Riemannian manifolds.

A surface for which every maximal geodesic has domain the whole of R is said to be
complete. The cylinder of Example 6 is complete, but the surface obtained by considering
that part of the cylinder lying between the planes z = 1 and z = −1 is not complete. It
is not hard to prove that all compact surfaces are complete; in fact, all surfaces which are
closed subsets of R

n are complete.

Example 7 (Cone) An acetate sheet can be bent, but not stretched or compressed, and the
action of rolling up such a sheet to make a cylinder (which is modelled mathematically
in Example 6) gives a local isometry from the plane to the cylinder. Proposition 5 shows
that lines drawn on the sheet become geodesics on the cylinder, which enables us to “see”
the geodesics on the cylinder described in Example 6. In a similar way, by rolling up our
acetate sheet to make a cone, we may “see” the geodesics on a cone, which typically look
as illustrated in Figure 7.4.

�Figure 7.4 A geodesic on a cone

It is interesting to investigate how the self-intersection properties of the geodesics on a
cone depend on the angle at the base of the cone. This and other properties of geodesics on
a cone are explored in Exercises 7.15 and 7.20.

Example 8† (Veronese surface and real projective plane) This example uses material in the
optional §4.6, and may be omitted if desired. Let f : S2(1) → S be the local isometry
of S2(1) onto the Veronese surface S in R

5 defined in Example 2 of §4.6. We recall that the
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real projective plane RP2 is the set of lines through the origin of R
3, and that f enables us

to identify the real projective plane with the Veronese surface. Each plane P through the
origin of R

3 intersects S2(1) in a great circle, and the image under f of this great circle is a
geodesic on S, covered twice. This geodesic corresponds in RP2 to the set of lines through
the origin in the plane P . It is clear that any two geodesics on S meet in a unique point
(since any two planes through the origin intersect in a unique line), and, through any two
points there is a unique geodesic. The resulting geometry, called projective geometry, is of
great historical importance.

The geodesic equations (7.4) and (7.5) of Proposition 1 may be written in an alternative
form using the Christoffel symbols {�i

jk} introduced in §6.1 (where, for surfaces in R
n ,

the quantities LN, MN, NN are replaced by the components of xuu , xuv , xvv , respectively,
orthogonal to S).

Proposition 9 Let x(u, v) be a local parametrisation of S and let α(t) = x (u(t), v(t)) be a
smooth curve. Then α is a geodesic on S if and only if both of the following equations are
satisfied:

u′′ + �1
11u′2 + 2�1

12u′v′ + �1
22v

′2 = 0 , (7.8)

v′′ + �2
11u′2 + 2�2

12u′v′ + �2
22v

′2 = 0 . (7.9)

Proof Writing u1, u2 in place of u, v for the local parametrisation, we let

α(t) = x (u1(t), u2(t)) .

Then, writing xi , xi j for the first and second partial derivatives of x, equation (7.6)
becomes

α′′ =
2∑

k=1

u′′
k xk +

2∑
i , j=1

u′
i u

′
j xi j ,

so that the component (α′′)tan of α′′ tangential to S is given in terms of the Christoffel
symbols {�k

i j } by

(α′′)tan =
2∑

k=1

⎛
⎝u′′

k +
2∑

i , j=1

�k
i j u

′
i u

′
j

⎞
⎠ xk .

Thus (α′′)tan = 0 if and only if

u′′
k +

2∑
i , j=1

�k
i j u

′
i u

′
j = 0 , k = 1, 2 , (7.10)

which gives an alternative form of the geodesic equations. If we write these in the more
familiar x(u, v) notation, we obtain equations (7.8) and (7.9).

Example 10†(Hyperbolic plane) This example uses material in the optional Example 5 of
§3.4, and may be omitted if desired. Let H be the upper half-plane model of the hyperbolic
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plane as first discussed in Example 5 of §3.4. The coefficients of the first fundamental form
are given by

E = G = 1

v2
, F = 0 ,

and the non-zero Christoffel symbols are given by

�1
12 = �1

21 = −�2
11 = �2

22 = −1

v
.

The geodesic equations (7.8) and (7.9) become

u′′ − 2
u′v′

v
= 0 , (7.11)

v′′ + u′2 − v′2

v
= 0 , (7.12)

as may also be obtained directly from (7.4) and (7.5).
We now show that, when parametrised proportional to arc length, the lines u = constant

are geodesics on H . In fact, for such curves v′ = ±kv for some constant k so that v′′ = k2v

and equations (7.11) and (7.12) are satisfied.
For any real number u0, the semicircles illustrated in Figure 7.5 centred on (u0, 0) traced

out by

(u(t), v(t)) = (u0 + r cos θ (t), r sin θ (t)) , 0 < θ (t) < π , r > 0 ,

are also geodesics when parametrised proportional to arc length. Indeed, in this case,

θ ′2 = k2 sin2 θ ,

for some constant k. Hence θ ′ = ±k sin θ and

θ ′′ = k2 sin θ cos θ .

But then an easy calculation shows that equations (7.11) and (7.12) are both satisfied so
that all these curves are geodesics. Moreover, through any given point of H in any given
direction there is one of these curves, so that by the existence and uniqueness theorem
(Theorem 2), we have now found every geodesic on H .

The above assumes, of course, that we already knew the traces of the geodesics on H .
In Exercise 7.16 you are invited to find the geodesics without having this prior knowledge.

u

v

�Figure 7.5 Some geodesics on the hyperbolic plane
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7.4 Geodesics as curves of stationary length

Let α : [a, b] → S be a regular curve which minimises the length of all regular curves
on S from p0 = α(a) to p1 = α(b) (hereafter called a length minimising curve on S). We
shall show that, when parametrised proportional to arc length, a length-minimising curve
α is a geodesic on S. In fact, we shall characterise geodesics on S as curves parametrised
proportional to arc length which, in a sense made precise below, are stationary points of
the length functional applied to the space of all regular curves on S with given end points.

It turns out that any sufficiently short piece of geodesic is a length minimising curve on
S (see Proposition 1 of the optional §7.8); however, the examples of great circles on S2(1)
and helices on the cylinder show that long geodesics do not necessarily have this length
minimising property.

We begin by considering how the length of a smooth curve α on S changes as we deform
the curve while staying on S. We do this by considering suitable 1-parameter families
of curves on S with α as initial curve. Specifically, a 1-parameter family {αr }−ε<r<ε of
smooth curves from a closed interval [a, b] to S is called a smooth variation of α through
curves on S if α0 = α and the map H(r , t) defined by

H(r , t) = αr (t) , −ε < r < ε , a ≤ t ≤ b ,

is a smooth map whose image lies on S. If L(r ) is the length of αr , then L is a smooth
function of r , and we now obtain an expression for the derivative L ′(0) in terms of the
variation vector field X (Figure 7.6), which is defined by setting X(t) = ∂H/∂r |(0,t). In
the course of the proof it will be useful to note that, when r = 0,

∂H/∂r = X , ∂H/∂t = α′ , ∂2 H/∂t2 = α′′ . (7.13)

Lemma 1 Let α : [a, b] → S be a regular curve parametrised proportional to arc length,
and let |α′(t)| = c. If X is the variation vector field of a smooth variation {αr } of α through
curves on S, then

L ′(0) = 1

c

{
X(b).α′(b) − X(a).α′(a) −

∫ b

a
X .α′′ dt

}
.

Proof We shall use the result (often called “differentiating under the integral sign”) which
says that if f (r , t) is smooth then

d

dr

(∫ b

a
f dt

)
=
∫ b

a

∂ f

∂r
dt .

α r

X

α0

�Figure 7.6 Variation vector field of a smooth variation
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In particular, since

L(r ) =
∫ b

a

(
∂H
∂t

.
∂H
∂t

)1/2

dt ,

we have that

L ′(0) = 1

c

∫ b

a

∂

∂r

(
∂H
∂t

)
.
∂H
∂t

dt ,

where here, and in what follows, the integrand on the right hand side of the equation is
evaluated at r = 0.

Interchanging the order of differentiation, we now find that

L ′(0) = 1

c

∫ b

a

∂

∂t

(
∂H
∂r

)
.
∂H
∂t

dt

= 1

c

{∫ b

a

∂

∂t

(
∂H
∂r

.
∂H
∂t

)
dt −

∫ b

a

∂H
∂r

.
∂2 H
∂t2

dt

}
,

and the result now follows from (7.13).

Since the image of H lies on S, X(t) ∈ Tα(t)S for each t ∈ [a, b]. Conversely, we have
the following.

Lemma 2 Let X : [a, b] → R
n be a smooth map with X(t) ∈ Tα(t)S for all t ∈ [a, b].

Then there is a smooth variation {αr } of α through curves on S which has X as its variation
vector field.

Proof We save ourselves some technical difficulties by assuming that α lies in the image
of a local parametrisation x(u, v). In this case, there are smooth functions u(t), v(t), X1(t),
X2(t), such that α(t) = x (u(t), v(t)) and X = X1xu + X2xv . Then

H(r , t) = x (u(t) + r X1(t), v(t) + r X2(t))

provides the required smooth variation of α.

A smooth variation {αr } of α is said to have fixed end points if, as illustrated in Figure
7.7, αr (a) = α(a) and αr (b) = α(b) for all r . We now state and prove the main result
of this section. In this theorem, when we say that α is a stationary point of the length
functional applied to the space of all regular curves on S joining α(a) to α(b), we mean
that L ′(0) = 0 for every smooth variation of α with fixed end points through curves on S.

α r

α(a)
α(b)

α

�Figure 7.7 Variation with fixed end points
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Theorem 3 Let α : [a, b] → S be a regular curve on S parametrised proportional to arc
length. Then α is a geodesic if and only if α is a stationary point of the length functional
applied to the space of all regular curves on S joining α(a) to α(b).

Proof Assume α is a geodesic, and let X be the variation vector field of a smooth variation
of α with fixed end points through curves on S. Then X(a) = X(b) = 0, and α′′ is
orthogonal to S, so it follows from Lemma 1 that L ′(0) = 0.

Conversely, assume that α is not a geodesic and let Y (t) be the orthogonal projection
of α′′(t) onto the tangent space of S at α(t). Then Y .α′′ is a non-negative function which
is not identically zero. Now let λ = π/(b − a), and let X(t) = sin (λ(t − a))Y (t). Then
X(a) = X(b) = 0 and X .α′′ is also a non-negative function which is not identically zero.
The smooth variation given in Lemma 2 with variation vector field X has fixed end points,
and it follows from Lemma 1 that L ′(0) is non-zero (in fact it is negative).

Remark 4 Similar techniques show that a curve α, parametrised proportional to arc length,
is a geodesic if and only if L ′(0) = 0 for all smooth variations of α through curves on S
(not necessarily with fixed end-points) whose variation vector field X is orthogonal to α.

As mentioned at the beginning of this section, it may be shown that any sufficiently
short piece of a geodesic on a surface S is a length minimising curve on S, whereas long
geodesics do not necessarily have this property. An important and useful theorem of Hopf
and Rinow says that any two points of a complete connected surface S may be joined by a
length minimising curve. The example of the annulus {(x , y, 0) : 1 < x2 + y2 < 3} shows
that this is not always the case without the assumption of completeness – the idea is that,
for example, no matter how close to the central hole you take a curve in the annulus joining
(−√

2, 0, 0) to
√

2, 0, 0), you can always take a curve that goes a little closer (Figure 7.8).

7.5 Geodesic curvature is intrinsic

We noted in §7.3 that geodesics are determined by intrinsic quantities, and in this section
we generalise this by showing that geodesic curvature of a regular curve is intrinsic.

Let x(u, v) be a local parametrisation of a surface S in R
n and let α(t) = x (u(t), v(t))

be a regular curve. Equation (7.7), and a similar one for α′′.xv , show that the component
(α′′)tan of α′′ tangential to S depends on only the coefficients of the first fundamental form
and their derivatives. The intrinsic nature of κg now follows from (7.2) (or (7.3) for surfaces
in R

n). This leads to the following generalisation of Proposition 5 of §7.3.

(–Ö2,0,0) (Ö2,0,0)

�Figure 7.8 There are always shorter curves
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Proposition 1 Let f : S → S̃ be a local isometry of surfaces, and let α(t) be a regular
curve on S. Then (up to sign) the geodesic curvature of f α as a curve on S̃ is equal to the
geodesic curvature of α.

The following proposition gives an alternative proof of the intrinsic nature of geodesic
curvature, in that it produces a formula for κg which depends only on angles and the
coefficients of the first fundamental form. This proposition is used in the the proof of the
Gauss–Bonnet Theorem for a triangle in Chapter 8.

Proposition 2 Let x(u, v) be an orthogonal local parametrisation of a surface S in R
n, and

let α(t) = x (u(t), v(t)) be a curve lying in the image of x. Then the geodesic curvature κg

of α (using the orientation determined by x) is given by

κg = 1

2
√

EG

(
Gu

dv

ds
− Ev

du

ds

)
+ dφ

ds
, (7.14)

where d/ds denotes differentiation with respect to an arc length parameter s along α,
and φ is the angle from xu to α′ measured in the direction determined by the local
parametrisation.

Proof We give the proof for surfaces in R
3; the generalisation to surfaces in R

n is
straightforward.

Let e1 = xu/
√

E , and e2 = xv/
√

G. Then {e1, e2} is an orthonormal basis of the tangent
space of S, and, if t = dα/ds is the unit tangent vector to α then t = cosφ e1 + sinφ e2.
Hence

d t
ds

= (− sinφ e1 + cosφ e2)
dφ

ds
+ cosφ

de1

ds
+ sinφ

de2

ds
.

Taking N = xu × xv/|xu × xv|, we have N × t = − sinφ e1 + cosφ e2, and a short
calculation using (7.1) shows that

κg = dφ

ds
+ de1

ds
.e2 . (7.15)

However,

de1

ds
.e2 =

(
∂e1

∂u

du

ds
+ ∂e1

∂v

dv

ds

)
. e2

=
(
∂

∂u

(
xu√

E

)
du

ds
+ ∂

∂v

(
xu√

E

)
dv

ds

)
.

xv√
G

= 1√
EG

(
(xuu .xv)

du

ds
+ (xuv .xv)

dv

ds

)
.

We now recall that xuu .xv = Fu − Ev/2 and xuv .xv = Gu/2, so, since F = 0, we have
that

de1

ds
.e2 = 1

2
√

EG

(
Gu

dv

ds
− Ev

du

ds

)
.

The result now follows from (7.15).
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7.6 Geodesics on surfaces of revolution †

The symmetry properties of surfaces of revolution make the study of their geodesics more
tractible than is the case for more general surfaces in R

3. Although it is usually still not
possible to solve the geodesic equations explicitly, some interesting information may be
obtained.

The material in this section is interesting in its own right, and should also help you to
get a feel for the behaviour of geodesics on surfaces. However, it is not necessary for an
understanding of the rest of the book, so may be omitted if necessary.

Recall that if we parametrise a surface of revolution in R
3 using a local parametrisation

in the standard form, namely

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , −π < u < π , f (v) > 0 ∀v ,

then the coefficients of the first fundamental form are given by

E = f 2 , F = 0 , G = fv
2 + gv

2 .

Note that we have used the suffix v to denote differentiation with respect to v, since we
reserve ′ for the derivative with respect to t along a curve α(t) = x (u(t), v(t)). Since E
and G are functions of v only, the geodesic equations (7.4) and (7.5) become

u′′E + u′v′Ev = 0

and

v′′G + 1

2
v′2Gv − 1

2
u′2 Ev = 0 . (7.16)

The first equation integrates up to give

u′E = constant. (7.17)

We have already seen in Example 3 of §7.2 that all meridians are geodesics when
parametrised proportional to arc length, and another proof of this may be given by not-
ing that, along such a curve, both u and v′2G are constant so that (7.16) and (7.17) both
hold.

We now characterise those parallels which are also geodesics (Figure 7.9).

S

axis of
rotation

�Figure 7.9 These parallels are geodesics
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Lemma 1 The parallel through p0 = ( f (v0), 0, g(v0)), when parametrised proportional
to arc length, is a geodesic if and only if fv(v0) = 0, that is to say if and only if the tangent
vector ( fv(v0), 0, gv(v0)) to the generating curve at p0 is parallel to the axis of rotation of
the surface.

Proof The parallel α(t) = x (u(t), v0) is parametrised proportional to arc length if and
only if u′2 E is constant. Since E is constant along α, (7.16) and (7.17) show that α is
a geodesic if and only if Ev(v0) = 0. However, E = f 2, so this holds if and only if
fv(v0) = 0.

If we think of S as being made from a smooth material and the parallels of S obtained
by stretching an elastic band around S, then it is intuitively clear (Figure 7.9) that the
equilibrium positions of the band are exactly the parallels discussed in the above lemma.
This is in agreement with the interpretation given in Remark 4 of §7.4; geodesics are curves
α of stationary length for all smooth variations of α through curves on S whose variation
vector field is orthogonal to α.

As can be seen from Figure 7.9, some geodesic parallels are in stable equilibrium, while
some are unstable. The parallel corresponding to v = v0 is an unstable geodesic if f has
a non-degenerate local maximum at v0 (simply push the parallel up or down slightly to
obtain shorter curves), and (a little more difficult to prove) is a stable geodesic if f has
a non-degenerate local minimum at v0. The global minimising properties of geodesics on
Riemannian manifolds form part of an active area of current research.

We now illustrate a method of obtaining information concerning those geodesics on a
surface of revolution which are neither parallels nor meridians. We make use of Clairaut’s
relation which, for a curve parametrised proportional to arc length, is equivalent to one of
the geodesic equations, namely (7.17).

Proposition 2 (Clairaut’s relation) Let α(t) be a geodesic on the surface of revolution S
obtained by rotating ( f (v), 0, g(v)), f (v) > 0 ∀v, about the z-axis, and let θ (t) be the
angle at which α intersects the parallel through α(t). Then, along α,

f cos θ = c ,

for some constant c.

Proof We write α(t) = x (u(t), v(t)), where x(u, v) is the standard local parametrisation
of S as a surface of revolution. Then

cos θ = xu .(u′xu + v′xv)

|xu ||α′| = u′√E

|α′| ,

so that

f cos θ = u′E
|α′| ,

which is constant by (7.17) and Proposition 5 of §7.2.

Note that if α(t) = x (u(t), v(t)), then f (v(t)) is the distance of α(t) from the axis of
rotation of S. It follows from Clairaut’s relation that as a geodesic α gets closer to the axis
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θ

θ

�Figure 7.10 Clairaut’s relation

of rotation of S then α′ becomes closer to, and may indeed become, horizontal (Figure
7.10).

Corollary 3 With notation as in the statement of Clairaut’s relation, if t0 is such that α
is tangential to the parallel at α(t0) then α attains its minimum distance from the axis of
rotation at α(t0).

Proof The hypothesis implies that cos θ (t0) = ±1. Hence, if α(t) = x (u(t), v(t)),
Clairaut’s relation shows that

f (v(t)) cos θ = ± f (v(t0)) .

Since f (v) > 0 for all v, the result follows by taking the modulus of both sides of the
above equation.

We now give some examples of the use of Clairaut’s relation.

Example 4 (Torus of revolution) We investigate the behaviour of geodesics on the torus Ta,b,
which is obtained as usual by rotating the curve ( f (v), 0, g(v)) about the z-axis, where

f (v) = a + b cos v , g(v) = b sin v , a > b > 0 .

We first consider a geodesic on Ta,b which intersects the outermost parallel (the parallel
through the point (a+b, 0, 0)) at angle θ0. Clairaut’s relation gives that, along the geodesic,

f cos θ = (a + b) cos θ0 .

If θ0 = 0, then the geodesic is simply the outermost parallel. More generally, if θ0 is
sufficiently small, specifically, if

cos θ0 ≥ a

a + b
,

then f cos θ ≥ a so that, along the geodesic,

f ≥ a

cos θ
≥ a .

Hence, as illustrated in Figure 7.11, the geodesic lies entirely in the region in which f ≥ a

or, equivalently, the region −π
2

≤ v ≤ π

2
. These geodesics don’t cut through either the

top or bottom parallels (those through (a, 0, ±b)).
A similar argument (or use Corollary 3) shows that a geodesic which is initially tan-

gential to the top (or bottom) parallel stays in the region with −π
2

≤ v ≤ π

2
. Notice,
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θ0

�Figure 7.11 Geodesics on a torus of revolution

however, that without some further argument we cannot conclude that this geodesic cuts
the outermost parallel, nor that a geodesic starting on the outermost parallel for which θ0

satisfies

cos θ0 = a

a + b

meets the top and bottom parallels tangentially, although both of these statements are true.
Further properties of geodesics on Ta,b are explored in Exercise 7.25.

For the next example, we recall that a closed curve in R
n is a regular curve α : [a, b] →

R
n such that α and all its derivatives agree at the end points of the interval; that is,

α(a) = α(b) , α′(a) = α′(b) , α′′(a) = α′′(b), . . . .

Example 5 We show that there are no closed geodesics on the surface of revolution S with
equation z2 = 1/(x2 + y2), z > 0. This is the surface illustrated in Figure 7.12 obtained
by rotating the curve z = 1/x , x > 0, y = 0 about the z-axis.

We parametrise the generating curve by v �→ ( f (v), 0, g(v)), with f (v) = v, g(v) =
1/v, v > 0, and let x(u, v) be the corresponding parametrisation of S as a surface of
revolution. Suppose, then, that there is a closed geodesic α : [a, b] → S. Since [a, b]
is compact, Weierstrass’s Extremal Value Theorem shows there is some point t0 ∈ [a, b]

S

parallel v = v(t0)α(t)

�Figure 7.12 There are no closed geodesics on S
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at which α attains its maximum distance from the z-axis. This implies that, if we write
α(t) = x (u(t), v(t)), then f (v(t)) attains its maximum value at t = t0. However, in this
example f (v) = v, so v(t) attains its maximum value at t = t0.

It follows that v′(t0) = 0, so that α is tangential to the parallel at α(t0). Hence, from
Corollary 3, v(t) also attains its minimum at t0, so that v(t) is constant. Thus α is a parallel,
which is impossible by Lemma 1, since the tangent vector to the generating curve of S is
never parallel to the z-axis.

In Exercises 7.21 and 7.22 you are asked to find all the closed geodesics on the catenoid
and on the hyperboloid of revolution of one sheet.

7.7 Geodesic coordinates †

In this optional section we use geodesics to define two very useful local parametrisations
centred on a point p of a surface S. For ease of discussion, we assume that S is a surface
in R

n , although the constructions we describe, and the results we obtain, are valid more
generally. We are then able to prove Minding’s Theorem.

We first describe geodesic cartesian coordinates. Let {e1, e2} be an orthonormal basis of
Tp S, and let

x̃(u, v) = αue1+ve2 (1) , (7.18)

where, as usual, αX is the maximal geodesic on S with initial point p and initial vector
X ∈ Tp S. Then x̃(u, v) is defined whenever 1 is in the domain of definition of αue1+ve2 ,
and it may be proved using (a slight extension of) Theorem 2 of §7.3 that x̃ is smooth on
its domain of definition U , and there exists r0 > 0 such that U contains the open disc
Dr0 = {(u, v) ∈ R

2 : u2 + v2 < r0
2}.

We may work out the derivative of x̃ at (0, 0) by using Lemma 4 of §7.3 to note that
x̃(u, 0) = αe1 (u) and x̃(0, v) = αe2 (v). Hence

x̃u(0, 0) = e1 , x̃v(0, 0) = e2 . (7.19)

It now follows from Theorem 3 of §2.5 that, taking r0 smaller if necessary, x̃ : Dr0 → S
is a local parametrisation of an open neighbourhood, Dr0 , of p in S. We call Dr0 the normal
neighbourhood of radius r0 centred on p, and note that, letting Ẽ , F̃ and G̃ denote the
coefficients of the first fundamental form of x̃, we have

Ẽ(0, 0) = 1 , F̃(0, 0) = 0 , G̃(0, 0) = 1 . (7.20)

It follows from Lemma 4 of §7.3 that

x̃(r cos θ , r sin θ ) = αcos θe1+sin θe2 (r ) , 0 < r < r0 , θ ∈ R , (7.21)

so the images under x̃ of lines through the origin give the geodesics on S radiating
from p. The images under x̃ of circles in Dr0 with centre at the origin are the geodesic
circles centred on p; the rate at which their circumference increases with r measures
the rate of divergence of the geodesics radiating from p. In the next section we obtain
a characterisation of the Gaussian curvature of S in terms of this rate of divergence;
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S

p r = constant
θ = constant

�Figure 7.13 Coordinate curves for geodesic polar coordinates

this illustrates once again the intrinsic nature and geometrical significance of Gaussian
curvature.

Polar coordinates (r , θ ) are often useful in the plane, and, for similar reasons, we shall
consider geodesic polar coordinates, x(r , θ ), defined on a surface S. They are constructed
from geodesic cartesian coordinates x̃(u, v) by taking

x(r , θ ) = x̃(r cos θ , r sin θ ) , 0 < r < r0 , −π < θ < π . (7.22)

Then x is also a local parametrisation of Dr0 (except that, as usual with polar coordinates,
x̃(u, 0), u ≤ 0, is omitted). As illustrated in Figure 7.13, the two sets of coordinate curves
of x(r , θ ) give the geodesics radiating from p and the geodesic circles centred on p.

Example 1 (Surface of revolution) Let S be a surface of revolution with a pole p which is not
a singular point (see Example 6 of §4.2). The sphere S2(r ) and the paraboloid of revolution
z = x2 + y2 give two examples of this. The geodesics radiating from p give the meridians,
and the geodesic circles centred on p are the parallels. In fact (see Exercise 7.26), geodesic
polar coordinates (centred on the pole) coincide with the standard parametrisation of S as
a surface of revolution when the generating curve is parametrised by arc length starting
from the pole. For the paraboloid of revolution, a normal neighbourhood centred on the
pole may be chosen to have any positive radius, while for the sphere S2(r ), the maximum
radius is πr .

For us, the main advantage of geodesic cartesian coordinates is that the coefficients Ẽ ,
F̃ , G̃ of the first fundamental form are smooth functions describing the metric on the whole
of Dr0 . In contrast, the coefficients E , F , G of the first fundamental form of x(r , θ ) give us
only the metric on Dr0 \ {x̃(u, 0) : u ≤ 0}. However, as we show in the next proposition,
E , F and G have some very nice properties which more than make up for this.

In order to state the proposition, it is convenient to introduce a function g(r , θ ) defined
using the coefficients of the first fundamental form of x̃, namely

g(r , θ ) = r

√
Ẽ G̃ − F̃2 , −r0 < r < r0 , θ ∈ R , (7.23)

where the square root on the right hand side is evaluated at (r cos θ , r sin θ ). Since Ẽ G̃ −
F̃2 > 0 on Dr0 , the function g is smooth. The first equality below is immediate, and the
second follows from (7.20).

g(0, θ ) = 0 , gr (0, θ ) = 1 . (7.24)
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Proposition 2 Let Dro be a normal neighbourhood centred on a point p ∈ S and let E, F,
G be the coefficients of the first fundamental form of the corresponding system x(r , θ ) of
geodesic polar coordinates. Then, for r > 0,

E = 1 , F = 0 ,
√

G = g . (7.25)

Proof It follows from (7.22) and (7.21) that, for r > 0,

xr = α′
cos θe1+sin θe2

(r ) , (7.26)

and

xrr = α′′
cos θe1+sin θe2

(r ) , (7.27)

while, by the chain rule,

xθ = r (− sin θ x̃u + cos θ x̃v) . (7.28)

We see from (7.26) that xr is the tangent vector of a geodesic parametrised by arc length,
so we have that E = 1. Also, the type of working we have seen several times shows that

Fr = ∂

∂r
(xr .xθ ) = xrr .xθ + 1

2
Eθ .

However, we have seen that E is constant, while (7.27) shows that xrr is the acceleration
vector of a geodesic, and hence is orthogonal to all tangent vectors of S. It follows that
Fr = 0, so that F is independent of r . On the other hand, (7.28) implies that limr→0+ xθ =
0, so that limr→0+ F = 0. This shows that F = 0, or, in other words, the family of geodesic
circles centred on p is orthogonal to the family of geodesics radiating from p. This result
is known as the Gauss Lemma.

We now consider G, and deal first with the case that S is a surface in R
3, which enables

us to use the vector product to simplify our calculations. In fact, it follows from (7.22) that,
for r > 0,

xr = cos θ x̃u + sin θ x̃v ,

so that, using (3.22) and (7.28),

EG − F2 = |xr × xθ |2
= |(cos θ x̃u + sin θ x̃v) × (−r sin θ x̃u + r cos θ x̃v)|2
= r2|x̃u × x̃v|2
= r2(Ẽ G̃ − F̃2) . (7.29)

It now follows that G = g2, and, since g(r , θ ) > 0 for r > 0 we see that
√

G = g as
claimed.

We may obtain (7.29) for surfaces in R
n by using equation (3.33) (from the optional

§3.9), which tells us how EG − F2 changes under a change of variables.

Corollary 3 With notation as in the statement of the previous proposition, we have that for
r > 0,

grr + K g = 0 , (7.30)

where, as usual, K denotes the Gaussian curvature.
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�Figure 7.14 The correspondence f

Proof Since E = 1 and F = 0, Exercise 6.2 (or use equation (6.10)) gives that K =
−(

√
G)rr/

√
G. Equation (7.30) now follows from Proposition 2.

We are now going to prove Minding’s Theorem, which we stated in §6.4, and we re-
state below (with a slight change of notation) for surfaces in Euclidean spaces of arbitrary
dimension.

To help us prove the theorem, we first show how to use geodesic cartesian coordinates
to define a diffeomorphism between normal neighbourhoods of surfaces. Let p be a point
on a surface S1 in R

m and let x̃(u, v) be a system of geodesic cartesian coordinates for a
normal neighbourhood D1 of p. Similarly, let q be a point on a surface S2 in R

n and let
ỹ(u, v) be a system of geodesic cartesian coordinates for a normal neighbourhood D2 of q.
By taking smaller normal neighbourhoods if necessary, we may assume that D1 and D2

both have the same radius. Then the correspondence f : D1 → D2 (first discussed in §4.5)
given by

f
(
x̃(u, v)

) = ỹ(u, v) (7.31)

provides a diffeomorphism (illustrated in Figure 7.14) from D1 to D2.
It is clear from the definition of geodesic cartesian coordinates that f maps geodesics

radiating from p to geodesics radiating from q, and also maps each geodesic circle cen-
tred on p to the geodesic circle of the same radius centred on q. It also follows from the
definition (7.22) of geodesic polar coordinates that if x(r , θ ), y(r , θ ) are the corresponding
systems of geodesic polar coordinates centred on p and q then

f (x(r , θ )) = y(r , θ ) . (7.32)

We now use the above to prove Minding’s Theorem.

Theorem 4 (Minding) Let S1 be a surface in R
m and S2 a surface in R

n, and assume that S1

and S2 have the same constant Gaussian curvature. If p ∈ S1 and q ∈ S2 then there is an
isometry from an open neighbourhood of p in S1 onto an open neighbourhood of q in S2.

Proof We shall show that if K is constant then the coefficients of the first fundamental
form of a geodesic polar coordinate system are uniquely determined by K . Hence, if S1

and S2 are surfaces with the same constant Gaussian curvature K and if x(r , θ ) and y(r , θ )
are geodesic polar coordinates centred on p ∈ S1 and q ∈ S2, then x and y will have the
same coefficients of the first fundamental form. Hence, using (7.32) and Proposition 1 of
§4.5, the map f defined in (7.31) will be an isometry.
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So, let x(r , θ ) be a geodesic polar coordinate system centred on p. We have seen that
E = 1 and F = 0, and we shall show that, if K is constant, then conditions (7.24) on g
determine a unique solution of (7.30). The result will then follow from Proposition 2.

Case 1: K = 0. The general solution of grr = 0 is g(r , θ ) = rh1(θ ) + h2(θ ). Conditions
(7.24) then imply that g(r , θ ) = r , so that G = r2.

Case 2: K = k2 > 0. The general solution of grr + k2g = 0 is g(r , θ ) =
h1(θ ) sin kr + h2(θ ) cos kr . Conditions (7.24) then imply that g(r , θ ) = (1/k) sin kr , so
that G = (1/K ) sin2

√
Kr .

Case 3: K = −k2 < 0. The general solution of grr −k2g = 0 is g(r , θ ) = h1(θ ) sinh kr +
h2(θ ) cosh kr . Conditions (7.24) then imply that g(r , θ ) = (1/k) sinh kr , so that G =
−(1/K ) sinh2 √−Kr .

This shows that if K is constant, then E , F and G are uniquely determined by K , and
so Minding’s Theorem now follows.

Remark 5 In fact, we have shown rather more than claimed. The proof of Minding’s The-
orem shows the following. Let S1 and S2 be surfaces having the same constant Gaussian
curvature. Let {v1, v2} be an orthonormal basis of the tangent space of S1 at a point p ∈ S1,
and let {w1,w2} be an orthonormal basis of the tangent space of S2 at a point q ∈ S2. Then
(7.19) shows that the derivative d f p of f at p maps vi to wi , i = 1, 2.

In particular, if we take S1 = S2 and p = q, we see that there is an isometry from an
open neighbourhood of p to itself whose derivative is any desired rotation of the tangent
space at p. This isometry will permute the radial geodesics, and map each geodesic circle
centred on p to itself (setwise). It follows from Proposition 1 of §7.5 that geodesic cir-
cles on a surface of constant Gaussian curvature have constant geodesic curvature (and in
Exercise 7.29 you are asked to find an explicit expression for this).

In the next section we give some more examples of the use of geodesic polar coordinates.

7.8 Metric behaviour of geodesics †

In this optional section we use geodesic polar coordinates to further investigate the metric
properties of geodesics. We first prove a basic property of geodesics, namely that a suffi-
ciently short geodesic segment on a surface S minimises the length of all smooth curves on
S between the end points of the geodesic segment. We then discuss how the Gaussian cur-
vature gives information about the rate of divergence of geodesics radiating from a given
point.

Proposition 1 Let α be a geodesic segment joining two points p and q of a surface S in
R

n, and assume that α is contained in a normal neighbourhood centred on p. If γ is any
smooth curve on S joining p to q then the length Lγ of γ is greater than or equal to the
length Lα of α. Moreover, if Lγ = Lα then the trace of γ coincides with that of α.
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�Figure 7.15 Range of values of θ (t)

Proof Assume that α is contained in the normal neighbourhood Dr0 of radius r0 centred
on p, and let x(r , θ ) be a corresponding system of geodesic polar coordinates. If α is a
segment of the geodesic θ = θ0, and if we parametrise α by arc length starting at α(0) = p,
then α(t) = x(t , θ0), 0 < t ≤ t0, where t0 = Lα < r0.

Let γ : [0, b] → S be a smooth curve on S with γ (0) = p and γ (b) = α(t0) = q. We
may assume that γ doesn’t return to p, since, if it does, we simply discard the first part of
γ . If we also assume that the trace of γ is contained in Dr0 , then we may find Lγ by using
the usual limiting argument required when dealing with polar coordinates.

Specifically, for each ε > 0, we set γ (t) = x (r (t), θ (t)) for ε ≤ t ≤ b. Here, as is usual
with polar coordinates, we define the function θ (t) smoothly on [ε, b] without restricting
the range of values taken by θ (t) to be less than 2π (technically: we can do this because
the map θ �→ eiθ is a covering map from R to the unit circle). In Figure 7.15, the range of
values taken by θ (t) will approach 3π as ε → 0.

Since the end point of γ is equal to that of α we have that

r (b) = t0 , θ (b) − θ0 = 2πn for some n ∈ Z .

Hence,

Lγ |[ε,b] =
∫ b

ε

√
r ′2 + θ ′2G dt

≥
∫ b

ε

r ′(t) dt = r (b) − r (ε) = t0 − r (ε) = Lα − r (ε) .

Since γ (0) = p, we have that limε→0 r (ε) = 0, and so, if we let ε → 0, we find
that Lγ ≥ Lα and equality occurs if and only if θ (t) is constant and hence is equal to
θ0 + 2πn for some n ∈ Z.

If the trace of γ is not contained in Dr0 then an argument similar to the one above shows
that the arc length along γ from p to the point where γ first leaves Dr0 is greater than or
equal to r0, and hence the length of γ is greater than the length of α.

We now discuss the relation between Gaussian curvature and the rate of divergence of
geodesics radiating from a given point p of S. We consider a normal neighbourhood Dr0

centred on p, and let x(r , θ ) be a corresponding system of geodesic polar coordinates. If
g(r , θ ) is the function defined in (7.23) and if θ0 < θ1, then the length of the arc of the
geodesic circle of radius r > 0 between geodesics θ = θ0 and θ = θ1 is given by
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S

�Figure 7.16 Geodesic circles when K < 0

L(r ) =
∫ θ1

θ0

g(r , θ ) dθ , (7.33)

since, for r > 0,
√

G = g. Differentiating under the integral sign, we find that

L ′(r ) =
∫ θ1

θ0

gr dθ , L ′′(r ) =
∫ θ1

θ0

grr dθ , (7.34)

and it follows from (7.24) and the first equation of (7.34) that limr→0+ L ′(r ) = θ1 − θ0.
If we assume that K < 0 (but not necessarily constant) on Dr0 , then (7.30) shows that

grr is positive for 0 < r < r0 so that L ′′(r ) > 0 for all 0 < r < r0. Hence geodesics
radiating from p diverge faster than they do in Euclidean space (where L(r ) = r (θ1 − θ0)).
In particular (Figure 7.16), the circumference of geodesic circles centred on p grows faster
with r than that of the corresponding circles in the plane.

If we assume that K > 0 on Dr0 then L ′′(r ) < 0 for all 0 < r < r0, so that geodesics
radiating from p diverge slower than they do in Euclidean space. Indeed, after some time,
these geodesics could start to converge again. For example, the geodesics radiating from
the pole of a paraboloid of revolution are the meridians, and these continue to diverge but
more slowly than do straight lines radiating from a point in the plane. On the other hand,
the geodesics of the sphere radiating from the south pole are great circles, which start to
converge again after they get past the equator.

We now obtain another intrinsic characterisation of Gaussian curvature K .

Theorem2 Let L(r ) be the circumference of the geodesic circle with centre p and radius r .
Then

π

3
K (p) = lim

r→0+
2πr − L(r )

r3
. (7.35)

Proof In terms of geodesic polar coordinates centred on p, we have that

L(r ) =
∫ π

−π

√
G dθ =

∫ π

−π
g(r , θ ) dθ ,

so we begin by writing down the first few terms in the Taylor series in r for g(r , θ ) about
r = 0, keeping θ fixed. We already know that g(0, θ ) = 0 and gr (0, θ ) = 1. Also, using
(7.30), grr (0, θ ) = 0 and grrr (0, θ ) = −K (p).

So, for each fixed θ , the Taylor series for g(r , θ ) about r = 0 is now seen to be

g(r , θ ) = r − r3

3!
K (p) + R0(r , θ ) ,
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where R0(r , θ ) is the remainder term. If we choose a real number M such that
|grrrr (ξ , θ )| ≤ M for all 0 ≤ ξ ≤ r , 0 ≤ θ ≤ 2π , then the Lagrange form of the
remainder for Taylor series shows that |R0(r , θ )| ≤ Mr4 for all r > 0 and all θ .

Hence

L(r ) =
∫ π

−π
g(r , θ ) dθ = 2π

(
r − r3

3!
K (p)

)
+ R1(r ) ,

where |R1(r )| ≤ 2πMr4. It now follows that

L(r ) − 2πr

r3
= −π

3
K (p) + R2(r )

where limr→0+ R2(r ) = 0, and the result follows.

The geodesic disc Dr with centre p and radius r is the image under x̃ of the disc Dr in
the plane. By integrating (7.35), we may show that if A(r ) is the area of Dr then

π

12
K (p) = lim

r→0+
πr2 − A(r )

r4
.

7.9 Rolling without slipping or twisting †

In this optional section, we consider the notion of rolling one surface on another without
slipping. Although we present the ideas here only for the case of surfaces in R

3, much of
the discussion may be considerably generalised.

Suppose that α(s) and α̃(s) are curves parametrised by arc length on surfaces S and S̃
in R

3. Denoting d/ds by ′, and setting t = α′, t̃ = α̃′, we note that for each s there is a
unique rotation A(s) such that

t̃ = At and Ñ = AN ,

where N(s) and Ñ(s) are unit normals to S at α(s) and S̃ at α̃(s) respectively.
If, for each s, we define v(s) ∈ R

3 by setting

v = α̃ − Aα ,

then the family B(s) of rigid motions of R
3 given by

B(s)(p) = A(s)(p) + v(s) , p ∈ R
3 ,

is uniquely determined by S, S̃, α and α̃. Then Bα = α̃, and the family B(s) of rigid
motions is said to roll S without slipping on S̃, the curves of contact being α and α̃.

The rate at which S is twisting relative to S̃ as it rolls along S̃ is given by

A
(
(N × t)′

)− (Ñ × t̃)′ ,

and if we define the derivative A′ of A as the matrix obtained by taking the derivative of
each entry of A, then the product rule for differentiation shows that this rate of twisting is
given by

A
(
(N × t)′

)− (A(N × t))′ = −A′(N × t) .
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We say that the rolling of S along S̃ takes place without twisting if and only if

A′(N × t) = 0 ∀s . (7.36)

Proposition 1 Let S and S̃ be surfaces in R
3 and assume that S is rolled without slipping

along S̃ with curves of contact α(s) on S and α̃(s) on S̃, both parametrised by arc length.
If the rolling takes place without twisting then α and α̃ have the same geodesic curvature,
that is to say,

κg(s) = κ̃g(s) ∀s ,

where κg is the geodesic curvature of α and κ̃g is the geodesic curvature of α̃. In particular,
α is a geodesic on S if and only if α̃ is a geodesic on S̃.

Proof Let

B(s) = A(s) + v(s)

be the family of rigid motions performing the rolling without slipping. We first note that, for
any pair of fixed vectors u and w, we have Au.Aw = u.w, and hence, by differentiating,

A′u.Aw + Au.A′w = 0 . (7.37)

We now recall from (7.1) that the geodesic curvature κg(s) of α is given by κg = t ′. (N×
t). Thus, using (7.37) for the fifth equality,

κ̃g = t̃ ′.(Ñ × t̃)
= (At)′.(AN × At)
= (A′ t + At ′).A(N × t)
= A′ t .A(N × t) + t ′.(N × t)
= −At .A′(N × t) + κg

= κg ,

where we have used (7.36), the condition that the rolling should take place without twisting,
for the final equality.

The condition κ̃g(s) = κg(s) is not sufficient to ensure that when S is rolled without
slipping on S̃ with curves of contact α(s) on S and α̃(s) on S̃, then the rolling takes place
without twisting. For example, in Exercise 7.31 you are invited to prove that if a surface
S is rolled without slipping along a straight line on a plane then, if there is no twisting,
the curve of contact α on S is not only a geodesic but also a line of curvature. It then
follows (from Exercise 7.11) that α is the curve of intersection of S with a plane which is
perpendicular to S at each point of intersection.

Exercises

7.1 Prove equation (7.2), which says that the geodesic curvature of a regular curve α(t)
on a surface S in R

3 is given by

κg = 1

|α′|3α
′′.(N × α′) .
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7.2 Show that a curve of constant geodesic curvature c on the unit sphere S2(1) in R
3 is

the intersection of S2(1) with a plane whose perpendicular distance from the origin
is |c|/√1 + c2. (Hint: if α is a curve of constant geodesic curvature c show that the
vector v = α × α′ + cα is constant, where ′ denotes differentiation with respect to
arc length.)

7.3 Let C be the circle on the sphere S2(r ) obtained as the intersection of S2(r ) with
the plane z = r sin v0 for some constant v0 with −π/2 < v0 < π/2. Show that,
when C is parametrised as α(t) = r (cos v0 cos t , cos v0 sin t , sin v0) and S2(r ) is
oriented using the outward unit normal, then C has constant geodesic curvature
κg = (1/r ) tan v0.

7.4 Let ( f (v), 0, g(v)), f (v) > 0 ∀v, be the generating curve of a surface of revolu-
tion S. Show that, for any parameter value v, the geodesic curvature of the parallel
Cv through ( f (v), 0, g(v)) is constant and given by

κg = − f ′

f
√

f ′2 + g′2
,

when the orientation on S is that induced by the standard local parametrisation
x(u, v) of a surface of revolution, and we travel around Cv in the direction of
increasing u.

7.5 This exercise is designed to illustrate Proposition 3 of §7.1.
Let ( f (v), 0, g(v)), f (v) > 0 ∀v, be the generating curve of a surface of revo-

lution S. At a point where g′(v) 	= 0, let (0, 0, h(v)) be the point at which the line
normal to S at ( f (v), 0, g(v)) meets the z-axis.

(a) Show that h − g = f f ′/g′.
Define a function r (v) > 0 by setting r (v)2 = f (v)2 + (g(v) − h(v))2.

(b) Show that the sphere S̃ centre (0, 0, h(v)), radius r (v), is tangential to S along
the parallel Cv through ( f (v), 0, g(v)).

(c) Use Exercise 7.3, suitably adjusted for a sphere centre (0, 0, h(v)), to show that,
when Cv is parametrised as α(t) = ( f (v) cos t , f (v) sin t , g(v)) and S̃ is oriented
using the outward unit normal, the geodesic curvature of Cv as a curve on S̃ is
given by

κ̃g = −ε f ′(v)

f (v)
√

f ′(v)2 + g′(v)2
,

where ε = 1 if g′(v) > 0 and ε = −1 if g′(v) < 0.
(d) Use Exercise 7.4 to show that, when the same unit normal to S, S̃ is chosen along

Cv , the geodesic curvature of Cv is the same when it is considered as a curve on
S or as a curve on S̃ (in accordance with Proposition 3 of §7.1).

7.6 Show that the curve

α(t) = et (cos t , sin t , 1) , t ∈ R ,

lies on the cone x2 + y2 = z2, and show that the geodesic curvature of α is inversely
proportional to et .
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7.7 Let S be the surface in R
4 covered by the single (isothermal) parametrisation

x(u, v) = (u, v, u2 − v2, 2uv) , u, v ∈ R .

Find the geodesic curvature of the coordinate curves v = constant.

7.8 Let x(u, v) be an orthogonal local parametrisation of a surface S in R
3 (or, more

generally, in R
n).

(a) Show that the geodesic curvature of the coordinate curve v = constant is given
by

κg = − 1

2
√

G
(log E)v .

Here, we travel along the coordinate curve v = constant in the direction of
increasing u, and use the orientation of the surface determined by the local
parametrisation.

(b) Obtain the formula of Exercise 7.4 as a special case.
(c) If, in addition to assuming F = 0, we also assume that Gu = 0, show that,

when parametrised proportional to arc length, each of the coordinate curves u =
constant is a geodesic.

(d) Obtain the result given in Example 3 of §7.2 (namely, that, when parametrised
proportional to arc length, every meridian of a surface of revolution is a geodesic)
as a special case of (c).

7.9 Let α : I → R3 be a curve parametrised by arc length with everywhere non-zero
curvature, and let b be the binormal of α. Assume that for some ε > 0 the map

x(s, v) = α(s) + vb(s) , s ∈ I , v ∈ (−ε, ε) ,

is a parametrisation of a surface S (so that S is the ruled surface swept out by the
binormals of α). Prove that α is a geodesic on S.

7.10 (a) Let S be a surface in R
3 and suppose that P is a plane which intersects S orthog-

onally along the trace of a regular curve α(t). If α is parametrised proportional
to arc length, show that α is a geodesic on S.

(b) Show that, when parametrised proportional to arc length, the curves of intersec-
tion of the coordinate planes in R

3 with the surface S defined by the equation
x4 + y6 + z8 = 1 are geodesics.

7.11 Let S be a surface in R
3.

(a) Let α be a geodesic on S which is also a line of curvature on S. Show that α
lies on the intersection of S and a plane P which intersects S orthogonally at all
points on the trace of α. (Hint: show that N × α′ is constant along α.)

(b) Let α be a geodesic on S with nowhere vanishing curvature κ which also lies on
a plane P . Show that α is a line of curvature on S (so that, by (a), P intersects S
orthogonally at all points on the trace of α.)

7.12 Assume that

x(u, v) = 1

2
(u − sin u cosh v , 1 − cos u cosh v , 4 sin(u/2) sinh(v/2))

is a parametrisation of a surface S in R
3.
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(i) Show that the coordinate curve u = π is a parabola.
(ii) Show that the coordinate curve v = 0 is a cycloid.

(iii) Show that both the above curves, when parametrised proportional to arc length,
are geodesics on S. (Hint: it may help to prove that xu is orthogonal to xv .)

This is Catalan’s surface (pictured in Figure 9.1). It is a minimal surface with
self-intersections, and with singular points at (2nπ , 0), n ∈ Z.

7.13 Show that if all the geodesics on a connected surface S in R
3 are plane curves, then

the surface is an open subset of a plane or a sphere. (Hint: use Exercise 7.11 to show
that every point of S is an umbilic, and then use Theorem 1 of §5.8.)

7.14 Use the existence and uniqueness theorem for geodesics (Theorem 2 of §7.3) to show
that there are no closed geodesics on a helicoid in R

3.

7.15 Let S be the cone obtained by rotating the line z = βx , z > 0, about the z-axis, where
β is a positive constant. Use the ideas discussed in Example 7 of §7.3 to show that:

(a) if S is obtained from a sector (with vertex at the origin) of the plane using the
process described in Example 7 of §7.3 in such a way that the edges of the sector
join up to form a meridian of the cone, then (Figure 7.17)√

1 + β2

2
= π

φ
,

where φ is the angle between the bounding lines of the sector;

0

φ

�Figure 7.17 Cone

(b) if
√

1 + β2 ≤ 2, then no geodesics on S have self-intersections;
(c) if 2 <

√
1 + β2 ≤ 4, then every geodesic which is not a meridian has exactly

one point of self-intersection;
(d) in general, if n is the positive integer such that

2n <
√

1 + β2 ≤ 2(n + 1) ,

then every geodesic which is not a meridian has exactly n self-intersections.

In particular, we note that, for a given cone, every geodesic which is not a meridian
has exactly the same number of self-intersections.

7.16 (Geodesics on the hyperbolic plane) (This exercise uses material in the optional
Example 10 of §7.3.) In this exercise, we use equations (7.11) and (7.12) to show
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directly that the geodesics on the hyperbolic plane H are as found in Example 10 of
§7.3.

(a) Show that (7.11) integrates up to give u′ = cv2 for some constant c.
(b) Show that, in this case, (7.12) implies that

u′2 + v′2 = kv2 for some constant k ,

(or, equivalently, (u(t), v(t)) is parametrised proportional to hyperbolic arc
length).

(c) Deduce that, when parametrised proportional to hyperbolic arc length, the
curve (u(t), v(t)) is a geodesic on H if and only if either u = constant or
(u − u0)2 + v2 = r2, where u0 and r are constants with r > 0.

7.17 (This exercise uses material in the optional Example 10 of §7.3.) Determine the
curves on the hyperbolic plane H of constant geodesic curvature.

7.18 (This exercise uses material in the optional Example 4 of §4.3.) Find all the geodesics
on the flat torus S1(1) × S1(1) obtained by taking r1 = r2 = 1 in Example 4 of §4.3.
Prove that, through the point (1, 0, 1, 0) ∈ S1(1) × S1(1) there are an infinite number
of geodesics which are not closed and an infinite number which are closed.

7.19 (Liouville’s formula) Let x(u, v) be an orthogonal local parametrisation of a sur-
face S in R

3 (or, more generally, in R
n), and let α(s) = x (u(s), v(s)) be a curve,

parametrised by arc length, lying in the image of x. Let μg and νg be the geodesic
curvatures of the coordinate curves u = constant and v = constant respectively.
Prove that the geodesic curvature κg of α(s) (using the orientation determined by the
local parametrisation) is given by

κg = νg cosφ + μg sinφ + dφ

ds
,

where φ is the angle from xu to α′ measured in the direction determined by the local
parametrisation.

Exercises 7.20 to 7.25 use material in the optional §7.6.

7.20 Let S be the cone obtained by rotating the line z = βx , z > 0, about the z-axis, where
β is a positive constant. If α(t) = (x(t), y(t), z(t)) is a geodesic on S which cuts the
parallel z = 1 at an angle θ0, 0 ≤ θ0 ≤ π/2, show that α stays entirely in the region
where z ≥ cos θ0 (note: this is independent of the slope β of the generating line).

7.21 Find all the closed geodesics on the catenoid x2 + y2 = cosh2 z.

7.22 Find all the closed geodesics on the hyperboloid of revolution of one sheet with
equation x2 + y2 − z2 = 1.

7.23 Find all the closed geodesics on the surface of revolution in R
3 obtained by rotating

the curve z = 1/x2, x > 0, y = 0, about the z-axis.

7.24 Let α(t) be a geodesic on a surface of revolution S, and assume there is a value t0 of
the parameter at which α(t) attains its maximum distance from the axis of rotation
of S. Show that, when parametrised proportional to arc length, the parallel through
α(t0) is itself a geodesic.
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Does this result hold if “maximum” is replaced by “minimum”? Give either a
proof or a counterexample.

7.25 Let Ta,b denote the torus of revolution discussed in Example 4 of §7.6, and let α(t)
be a geodesic on Ta,b which intersects the outermost parallel v = 0 at an angle θ0

(where 0 < θ0 < π/2). If α(t) also intersects the innermost parallel v = π , show that

cos θ0 <
a − b

a + b
. (7.38)

Conversely (a little more difficult), show that if (7.38) holds then a geodesic on Ta,b

which intersects the outermost parallel at an angle θ0 also intersects the innermost
parallel.

Exercises 7.26 to 7.30 use material in the optional §7.7 and §7.8.

7.26 Let S be a surface of revolution generated by rotating a curve in the xz-plane about
the z-axis. Justify a statement made in Example 1 of §7.7 by showing that if p is a
pole of S which is not a singular point of S then geodesic polar coordinates defined
by taking e1 = (1, 0, 0) centred on p coincide with the standard parametrisation of
S as a surface of revolution when the generating curve is parametrised by arc length
starting from p.

7.27 (Fermi coordinates) Let p be a point on a surface S in R
n and let α(v) be a geodesic

on S parametrised by arc length with α(0) = p. For |v| sufficiently small, let βv(u)
be the geodesic on S parametrised by arc length with βv(0) = α(v) and βv

′(0)
orthogonal to α′(v) (Figure 7.18). Let x(u, v) = βv(u), and assume that x is smooth
on its domain of definition.

βv(u) = x(u,v)

α(v) = βv(0)

βv

α
p

�Figure 7.18 Fermi coordinates

(a) Show that there is an open neighbourhood U of (0, 0) in the plane such that the
restriction of x to U is a local parametrisation of an open neighbourhood of p in
S (giving a system of Fermi coordinates). Prove also that the coefficients of the
first fundamental form of x satisfy

E = 1 , F = 0 , G(0, v) = 1 , Gu(0, v) = 0 .

(b) Find the system of Fermi coordinates on the unit sphere S2(1) determined by
taking p = (1, 0, 0) and α(v) the equator. Find explicitly the coefficients of the
first fundamental form in this case.

(c) Show that if the Gaussian curvature K of a surface S is constant, then K deter-
mines E , F and G uniquely, thus giving an alternative proof of Minding’s
Theorem (Theorem 4 of §7.7) using Fermi coordinates.
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7.28 Let S1 be a surface in R
n and let S2 be a surface in R

m . If f : S1 → S2 is a local
isometry and if p ∈ S1, show that f maps geodesics on S1 radiating from p to
geodesics on S2 radiating from f (p). Show also that f maps geodesic circles of S1

centred on p to geodesics circles of S2 centred on f (p).

7.29 Let S be a surface in R
n with constant Gaussian curvature K .

(i) Find an expression in terms of K for the length 	(r ) of a geodesic circle of
radius r .

(ii) Find an expression in terms of K for the geodesic curvature κg(r ) at each
point of a geodesic circle of radius r (Hint: you could use, for instance, the
result of Exercise 7.8 to show that, when using geodesic polar coordinates,
2κg(r ) = ±(log G)r ).

(iii) Find an expression in terms of K for the area A(r ) of the geodesic disc of
radius r .

Show that, when κg(r ) is given an appropriate sign, 	(r )κg(r ) + K A(r ) = 2π .

Remark 1 You might be surprised that 	κg + K A is independent of r (and even
more surprised that it is equal to 2π ). However, the reason will become clear after
you have looked at the Gauss–Bonnet Theorem in the next chapter.

7.30 Verify the intrinsic characterisation of Gaussian curvature given in Theorem 2 of
§7.8 when p is a point of the unit sphere S2(1).

7.31 (This exercise uses material in the optional §7.9.) Let S and S̃ be surfaces in R
3 with

unit normals N , Ñ , respectively, and suppose that S is rolled without slipping on S̃
with curves of contact α(s) on S and α̃(s) on S̃, both parametrised by arc length.
Show that the rolling takes place without twisting if and only if α and α̃ have the
same geodesic curvature and

Ñ
′
.(Ñ × t̃) = N ′. (N × t) .

In particular, show that if a surface S is rolled without slipping along a straight
line on a plane, then the rolling takes place without twisting if and only if the curve
of contact on S is both a geodesic and a line of curvature. Deduce that, in this case,
the curve of contact α on S is the intersection of S with a plane which is orthogonal
to S at all points on the trace of α (see Exercise 7.11).
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The Gauss–Bonnet Theorem is a deep theorem which lies at the heart of differential geom-
etry and its many related areas. Here are three of the many reasons for its importance:
firstly, it shows how curvature affects the geometry of surfaces in Euclidian space, pro-
viding further insight into the meaning of Gaussian curvature; secondly, it exhibits the
interrelationship between curvature and topology which is at the heart of global differen-
tial geometry, providing, for instance, an example of the use of geometric quantities to
calculate topological invariants; and thirdly, it may be regarded as a special case in the
important modern mathematical theory of characteristic classes.

The theorem describes the relation between the topology of a surface S in R
n and the

geometrical quantities of Gaussian curvature K of S and geodesic curvature κg of curves
on S. If you have been reading the sections on surfaces in higher dimensional Euclidean
spaces, and, in particular, have looked at §6.5, you will be aware that Gaussian curvature K
may be defined for surfaces in R

n for all n ≥ 3. In this chapter we shall consider surfaces in
Euclidean spaces of any dimension, since the methods used and the results proved are valid
in this situation; all we need is that formulae (6.10) for Gaussian curvature, and (7.14) for
geodesic curvature, are valid for an orthogonal parametrisation of a surface in a Euclidean
space of any dimension. If you have been concentrating on surfaces in R

3, then simply take
n = 3 throughout this chapter.

We begin by indicating how Gaussian curvature is related to the sum of the interior
angles of triangles with geodesic sides on a surface S, and we then prove the Gauss–
Bonnet Theorem for a (not necessarily geodesic) triangle on S. In order to extend this to
the general case and to understand the relationship with topology, we gather together some
topological preliminaries in §8.4 and then, in §8.5, use the Gauss–Bonnet Theorem for a
triangle to prove the general Gauss–Bonnet Theorem. In some ways the approach is very
similar to the proof of Cauchy’s Theorem in complex analysis, which may be achieved
by deducing the general theorem from the theorem for a triangle. Indeed, there are other
similarities between the ideas used to prove the two theorems.

Finally, in §8.6, we indicate some of the many consequences and applications of the
Gauss–Bonnet Theorem.

8.1 Preliminary examples

In this section we discuss the sum of the interior angles α, β and γ of a triangle
with geodesic sides (which we call geodesic triangles) on the cylinder, the sphere, the
hyperbolic plane and the pseudosphere.

193
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Example 1 (Plane and cylinder) For a geodesic triangle in the plane we have that

α + β + γ = π .

The same result holds if we take a geodesic triangle on the cylinder (Figure 8.1), for this
will be the image of a geodesic triangle in the plane under the local isometry which wraps
the plane round the cylinder an infinite number of times.

�Figure 8.1 Geodesic triangles on the plane and cylinder

Example 2 (Sphere) The sides of a geodesic triangle on the sphere are segments of great
circles (Figure 8.2), and some spherical geometry may be used to show that

α + β + γ > π .

�Figure 8.2 A geodesic triangle on the sphere

Example 3†(Hyperbolic plane and pseudosphere) (This example should be omitted if the
optional Examples 5 of §3.4 and 10 of §7.3 were omitted.) As we saw in Example 10
of §7.3, the sides of a geodesic triangle in the upper half-plane model H of the hyperbolic
plane are segments of lines or arcs of semicircles, where the lines and semicircles intersect
the x-axis orthogonally (Figure 7.5). Since angles in the upper half-plane model of the
hyperbolic plane are the same as the angles in the standard flat plane, it may be shown that
for the hyperbolic plane we have

α + β + γ < π .

The same holds for the pseudosphere since, as we saw in Example 5 of §3.4, the pseu-
dosphere (minus a meridian) may be covered by a parametrisation having the same E , F
and G as the open subset {(u, v) : −π < u < π , v > 1} of H . Indeed (see Exer-
cise 4.18) there is a local isometry which wraps the subset {(u, v) : v > 1} of H round the
pseudosphere an infinite number of times.
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Since K = 0 in Example 1, K = 1 in Example 2 and K = −1 in Example 3, it would
appear that, for a geodesic triangle, there is a relationship between α + β + γ − π and the
Gaussian curvature K on the interior of the triangle.

8.2 Regular regions, interior angles

The Gauss–Bonnet Theorem entails the integral of the Gaussian curvature K over a par-
ticular type of region, a regular region, of a surface. In this section, we describe what we
mean by a regular region, but first we describe the type of boundary such a region should
have.

A piecewise regular curve is (the trace of) a continuous map α : [a, b] → R
n for which

there is a partition a = t1 < · · · < tn = b such that, for each i = 1, . . . , n − 1, α|[ti , ti+1]
is regular; such a curve is simple and closed if it has no self-intersections other than that
its start point α(t1) is equal to its end point α(tn). The points α(t1), . . . ,α(tn−1) are called
the vertices of α. Figure 8.3 illustrates some piecewise regular curves.

We also need some topological definitions. If R is a subset of a surface S, then a point
p ∈ S is on the boundary ∂R of R if every open neighbourhood of p in S contains at least
one point in R and one point not in R. The closure of R is the union of R and its boundary.

We may now describe those subsets of a surface S which we shall be considering in this
chapter. A compact connected subset R of a surface S will be called a regular region if R is
the closure of a bounded open subset R̆ of S (R̆ is called the interior of R), and if the bound-
ary ∂R is a disjoint union of a finite number of piecewise regular simple closed curves. This
covers a very wide class of compact subsets of surfaces; in particular, a compact connected
surface is itself a regular region (with empty boundary).

If R is a regular region, the edges of R are the images of those intervals on which
the boundary curves are regular, while the set of vertices of R is the union of the sets of
vertices of the boundary curves. Figure 8.4 illustrates some regions which are not regular,
while Figure 8.5 shows a regular region whose boundary has ten vertices and edges.

not simple not closed simple & closed

�Figure 8.3 Piecewise regular curves

�Figure 8.4 These are not regular regions
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nin

�Figure 8.5 A regular region whose boundary has ten vertices and edges
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�Figure 8.6 Interior angles

If p ∈ ∂R is not a vertex, then ∂R has a well-defined tangent line at p. We let nin(p) ∈
Tp S be the unit vector which is orthogonal to ∂R and points into R. Here, if p ∈ ∂R then
a vector X ∈ Tp S points into R if X = β ′(0) for some curve β(t) on S with β(0) = p and
β(t) being in R for sufficiently small positive values of t .

The unit tangent vector to ∂R varies smoothly along each edge, but has discontinuities at
the vertices. We now describe how to measure these discontinuities. The boundary ∂R near
a vertex p is made up of two edges starting at p, and we let Y , Ỹ ∈ Tp S be the initial unit
vectors of these edges. The two half-lines in Tp S consisting of positive scalar multiples of
Y and Ỹ bound two sectors of Tp S, one of which consists of vectors pointing into R.

The angle α subtended at the origin by the sector of vectors pointing into R is the interior
angle of R at p (Figure 8.6). We assume that none of our vertices are cusp points; that is to
say, we assume that Y 	= Ỹ , so the value of α is uniquely specified by taking 0 < α < 2π .

By analogy with notation used in elementary geometry, we define the exterior angle θ
at p to be given by

θ = π − α ,

so, in particular, −π < θ < π .

We now consider the geometrical information carried by the exterior angle at a vertex p.
We recall from §7.1 that an orientation of a surface S is a specific choice for the positive
direction of rotation in each tangent space of S which varies smoothly over S; for a surface
in R

3, this is equivalent to making a smooth choice of unit normal to the surface. The
(directed) angle from a non-zero vector X to a non-zero vector Y is then defined to be the
angle of rotation, measured in the positive direction, from X to Y (so that, as usual, angle
is defined up to addition of integer multiples of 2π ).

An orientation defined on an open neighbourhood of a vertex p on ∂R allows us to
specify a direction of travel along the two edges through p. We travel in the direction
given by the unit tangent vectors to the edges which, when rotated through the angle π/2
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p
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�Figure 8.7 Exterior angles

(measured in the positive direction of rotation) give the inward pointing vector nin (Figure
8.7). By relabelling if necessary, we may assume that Y is the outgoing unit vector at p, so
that −Ỹ is the incoming unit vector.

If we rotate −Ỹ through angle π (measured in the positive direction of rotation) we
obtain Ỹ , and if we rotate Y through the interior angle α we also obtain Ỹ . Since the exterior
angle θ = π − α, we have the following lemma, which gives a geometrical interpretation
of the exterior angle at a vertex.

Lemma 1 If we choose an orientation on an open neighbourhood of a vertex p then the
exterior angle θ at p is the angle of rotation (measured in the positive direction of rotation)
from the incoming to the outgoing tangent vectors to the boundary at p.

In Figure 8.7 we have redrawn Figure 8.6, marking on it the exterior angles at the
two vertices for the indicated choice of orientation. The exterior angle at p is positive,
but at q it is negative (the rotation is in the opposite direction to that determined by the
orientation).

8.3 Gauss–Bonnet Theorem for a triangle

A triangle T on a surface S in R
n is a regular region of S whose boundary ∂T is made

up of three edges, and which is homeomorphic to a closed disc (that is to say, there is a
continuous bijection, whose inverse is also continuous, from T to a closed disc). Then T is
connected, and, intuitively speaking, the interior of T has no holes and no points omitted
(Figure 8.8).

The Gauss–Bonnet Theorem for a triangle gives a relationship between the sum of the
interior angles of a triangle on a surface S in R

n , the geodesic curvature of the sides of
the triangle, and the Gaussian curvature on the interior of the triangle. In order to prove
the theorem, we need to discuss the Theorem of Turning Tangents for a triangle, and to do
this, we must first consider questions of orientation.

It may be shown that any triangle on S is the image under a local parametrisation x :
D → S of a triangle contained in the open unit disc D ⊂ R

2, so we may use x(u, v) to give
T an orientation; the positive direction of rotation being chosen so that rotation from xu to
xv is less than π (or, for a surface in R

3, take N = (xu × xv)/|xu × xv|). As described
in §8.2, this enables us to specify a positive direction of travel around ∂T ; we travel in the
direction given by the unit tangent vectors to the edges which, when rotated through the
angle π/2 (measured in the positive direction) give the inward pointing vector nin (so, for
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�Figure 8.8 These regions are not triangles

v = const

θ

θ

θ

θ

�Figure 8.9 The angle θ

instance, for a triangle in the plane z = 0, taking N = (0, 0, 1) gives anticlockwise as the
positive direction of travel).

Let T be a triangle on S and assume that x(u, v) is a local parametrisation as described
above. Let θ be a function, differentiable on each of the three edges, which gives the angle
from the coordinate vector field xu to the unit tangent vector to the boundary ∂T when the
boundary is traversed in the positive direction (Figure 8.9).

Then dθ/ds measures the rate of rotation of the unit tangent vector to the edge relative to
xu as we travel along each edge at unit speed, and, as noted in Lemma 1 of §8.2, the exterior
angles θ1, θ2, θ3 at the vertices measure the angle at the vertex from the incoming to the
outgoing tangent vectors to the boundary. It would seem reasonable that the total rotation
of the tangent vector as we traverse the whole of ∂T should be through one complete
revolution, namely 2π (try following the tangent vector with your pen as you travel once
round the boundary of the triangle), which would mean that∫

∂T

dθ

ds
ds + θ1 + θ2 + θ3 = 2π , (8.1)

where
∫
∂T

dθ
ds ds denotes the sum of these integrals along each of the regular curves making

up ∂T . We shall use a similar convention concerning integrals round the boundary of a
regular region in several of the following results.

It turns out that (8.1) is true. This is the Theorem of Turning Tangents, which we state
in terms of interior angles.

Theorem 1 (Turning Tangents) Let T be a triangle contained in the image of a local
parametrisation x : D → S of a surface S in R

n, and let θ be the angle from the coor-
dinate vector field xu to the unit tangent vector to the boundary ∂T when the boundary
is traversed in the positive direction as determined by the local parametrisation. If s is an
arc length parameter in the positive direction for each of the edges, and if α, β, γ are the
interior angles of the triangle, then
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∫
∂T

dθ

ds
ds = α + β + γ − π .

The Theorem of Turning Tangents is due to Heinz Hopf. It is essentially a theorem in
topology and, unfortunately, the proof is outside the scope of this book.

We now return to our discussion of the Gauss–Bonnet Theorem for a triangle. This
theorem involves the integral round ∂T of the geodesic curvature κg of the regular curves
making up the boundary ∂T of a triangle T . We recall that κg is defined only up to sign,
but we can decide on the sign of κg by using the unit vector nin pointing into the triangle
described in §8.2. We define κg so that, if α is a parametrisation of an edge of T , and if s
is an arc length parameter along α, then the component of the acceleration vector d2α/ds2

tangential to S is equal to κgnin, or, in symbols,

κg = d2α

ds2
.nin . (8.2)

This uniquely defines the sign of κg since the acceleration vector at a point of an edge is
independent of the direction in which we traverse the edge. If α(t) parametrises an edge of
T not necessarily by arc length then

κg = 1

|α′|2α
′′.nin . (8.3)

We now state and prove the main result of this section.

Theorem 2 (Gauss–Bonnet Theorem for a triangle) Let T be a triangle on a surface S in R
n,

and let α,β, γ be the interior angles of T . Then∫
∂T
κgds +

∫∫
T

K d A = α + β + γ − π , (8.4)

where the sign of κg along ∂R is determined as described above by the unit vectors nin

pointing into the triangle.

Proof In order to simplify the calculations in the proof, we shall assume that T is the
image under an orthogonal local parametrisation x : D → S of a triangle � contained in
the open unit disc D ⊂ R

2. It may be shown that such a local parametrisation exists for
any triangle. We use the orientation determined by x and travel round ∂T in the direction
determined by this orientation (so that, if X is the unit tangent vector in the direction of
travel, then rotating X through π/2 gives nin) and let θ be the angle from the coordinate
vector field xu to X .

Then, with the choice of sign of κg determined using nin as described above, Proposi-
tion 2 of §7.5 states that the geodesic curvature of each edge is given by

κg = dθ

ds
+ 1

2
√

EG

(
Gu

dv

ds
− Ev

du

ds

)
.

Thus, integrating round ∂T ,∫
∂T
κgds =

∫
∂T

dθ

ds
ds +

∫
∂T

1

2
√

EG

(
Gu

dv

ds
− Ev

du

ds

)
ds .
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We now apply Green’s Theorem in the plane, which states that if P(u, v), Q(u, v) are
smooth functions defined on D then∫

∂�

(
P

du

ds
+ Q

dv

ds

)
ds =

∫∫
�

(
∂Q

∂u
− ∂P

∂v

)
du dv .

Hence, using the expression for K in orthogonal coordinates obtained in Example 1 of
§6.2 for the second equality, we obtain∫

∂T

1

2
√

EG

(
Gu

dv

ds
− Ev

du

ds

)
ds

=
∫∫

�

1

2
√

EG

{
∂

∂u

(
Gu√
EG

)
+ ∂

∂v

(
Ev√
EG

)}√
EG dudv

= −
∫∫

T
K d A ,

and the result follows from the Theorem of Turning Tangents.

The following three corollaries are pertinent to the examples in §8.1.

Corollary 3 If T is a geodesic triangle with interior angles α, β and γ , then∫∫
T

K d A = α + β + γ − π .

The difference α+β + γ −π between the sum of the interior angles and π is called the
angular excess of the geodesic triangle T (or, if negative, the angular defect).

As a second corollary, we have the following characterisation of surfaces with zero
Gaussian curvature.

Corollary 4 The Gaussian curvature of a surface is identically zero if and only if the sum
of the interior angles of every geodesic triangle is equal to π .

Proof Suppose for some point p ∈ S that K (p) > 0. Then there is an open neighbourhood
U of p in S such that K > 0 on U . But then for a geodesic triangle T contained in U with
interior angles α,β, γ we have α+β+γ > π which is a contradiction. A similar argument
holds if there is a point p ∈ S such that K (p) < 0.

Corollary 5 If T is a geodesic triangle with interior angles α, β and γ on a surface S of
constant curvature K = K0 	= 0, then

Area(T ) = 1

K0
(α + β + γ − π ) .

In particular, if K = ±1 then Area(T ) = ±(α + β + γ − π ) .

The assumption that a triangle should be a region on the surface which is homeomorphic
to a closed disc is very important; without it the Gauss–Bonnet Theorem for a triangle
would be false. The following example (which may be omitted if preferred) illustrates
some of the issues involved.
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Example 6†(Cone) Although a cone has zero Gaussian curvature, if the interior of a geodesic
triangle on the cone contains the vertex of the cone then α+β+γ > π . Indeed, if the cone
is formed as described in Example 7 of §7.3 and Exercise 7.15 by identifying the edges of
a sector with angle φ = 2π − θ0 then (Figure 8.10)

α + β + γ = π + θ0 .

θ0

�Figure 8.10 Maps to a geodesic triangle containing the vertex of a cone

This does not contradict the Gauss–Bonnet Theorem for a triangle because the interior
of the geodesic triangle contains the vertex of the cone, and, as we saw in Example 4 of
§3.1, if the vertex is included then the cone fails to be a surface. If we remove the vertex
then T has a point omitted and so isn’t homeomorphic to a disc, but we could get over
this problem by modifying the cone to make it into a surface by removing a portion near
the vertex and putting on a smooth cap as illustrated in Figure 8.11. Then T would once
again be a geodesic triangle on the resulting surface, but we would pick up some positive
Gaussian curvature from the cap. Indeed, the Gauss–Bonnet Theorem for a triangle shows
that the total curvature of the cap (i.e. the integral of K over the cap) must be equal to
α + β + γ − π = θ0.

�Figure 8.11 Smoothing the vertex with a smooth cap

The above example illustrates how important it is that none of the points in the triangle
should be singular points of the surface, and that the triangle must be homeomorphic to a
closed disc.

8.4 Classification of surfaces

In this section we describe how a regular region of a surface may be partitioned into tri-
angles, and then use this to define an integer, the Euler characteristic of the region, which
turns out to be independent of the way the region is partitioned. This will enable us in the
next section to use the Gauss–Bonnet Theorem for a triangle to prove the Gauss–Bonnet
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�Figure 8.12 These are not triangulations

Theorem for a regular region of a surface. The treatment of the topology in this chapter is,
of necessity, not as detailed as in a specialist topology textbook. Rather, we seek to give an
intuitive idea of the concepts involved.

So, let R be a subset of a surface S which can be triangulated; that is to say, R can be
decomposed as a union of a finite number of triangles any two of which are disjoint, or
meet in a common edge, or meet in a common vertex. Such a decomposition is called a
triangulation; Figure 8.12 illustrates some decompositions which are not triangulations.

Example 1 (Closed disc) This may be triangulated as in Figure 8.13.

�Figure 8.13 Triangulation of a closed disc

Example 2 (Sphere) This may be triangulated as in Figure 8.14.

�Figure 8.14 Triangulation of a sphere

Example 3 (Annulus and cylinder of finite length) The annulus may be triangulated as in Figure
8.15. Also, by putting this example into perspective, we obtain a triangulation of that part

�Figure 8.15 Triangulation of an annulus
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of the cylinder x2 + y2 = r2 between the planes z = a and z = b. Here, a, b and r > 0
are real constants.

We quote the following topological theorem.

Theorem 4 Every regular region of a surface can be triangulated, although, of course,
in many different ways. However, if we denote by F the number of triangles (often called
faces), by E the number of edges, and by V the number of vertices, then V − E + F is
independent of the triangulation.

The integer V − E + F is called the Euler characteristic χ (R) of the regular region R.
The above theorem assures us that this is independent of the way we triangulate R.

We see from the triangulations given earlier that

χ (disc) = 5 − 8 + 4 = 1 ,

χ (sphere) = 6 − 12 + 8 = 2 ,

χ (annulus) = χ (finite cylinder) = 6 − 12 + 6 = 0 .

We have now covered the topology required to understand the Gauss–Bonnet Theorem
and its proof. We need a little more, however, to appreciate the consequences of the Gauss–
Bonnet Theorem discussed in §8.6.

We first recall from §4.3 that if S and S̃ are surfaces, then a smooth bijective map f :
S → S̃ is called a diffeomorphism if its inverse map is also smooth. If such a map f exists,
then S and S̃ are said to be diffeomorphic. As far as properties concerning differentiability
are concerned, diffeomorphic surfaces are essentially indistinguishable.

It is a remarkable fact that, up to diffeomorphism, a compact connected surface in R
n is

determined by just two pieces of information, namely its Euler characteristic and whether
or not it is orientable. This is known as the Classification Theorem for compact surfaces,
and we state it without proof.

Theorem 5 (Classification Theorem for compact surfaces)

(i) A compact connected surface S may be triangulated, and χ (S) ≤ 2.

(ii) Two compact connected surfaces are diffeomorphic if and only if they have the same
Euler characteristic and are either both orientable or both non-orientable.

(iii) A compact connected orientable surface has Euler characteristic 2, 0 or a negative
even integer.

We can say rather more for surfaces in R
3 by using a deep result (quoted as Theorem 3

of §5.12) on compact connected surfaces in R
3 which have no self-intersections; namely

that such a surface S divides R
3 into two connected components, an unbounded piece (the

outside) and a bounded piece (the inside). It follows that S is orientable, since a unit normal
may be assigned smoothly over the whole of the surface (either the outward unit normal or
the inward unit normal). Thus, using the Classification Theorem for compact surfaces, we
have the following.
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Theorem6 A compact connected surface S (without self-intersections) in R
3 is orientable.

In particular:

(i) its Euler characteristic is 2, 0 or a negative even integer;
(ii) two such surfaces are diffeomorphic if and only if they have the same Euler character-

istic.

In the final part of this section, we attempt to give some insight into the structure of
compact connected orientable surfaces by describing how to construct such a surface for
every possible Euler characteristic χ (S) = 2, 0, −2, . . .. This material is optional, since it is
not necessary for an understanding of the Gauss–Bonnet Theorem nor for the applications
we cover.

We first describe a process for constructing a new surface from a given one by “adding a
handle”. To do this, we cut two discs from a surface S and attach a cylinder of finite length
as illustrated in Figure 8.16. For instance, if we add a handle to a sphere then we obtain a
torus, and adding a further handle gives a double torus. Adding a third handle gives us a
pretzel (Figure 8.17).

We now describe how the process of adding a handle to a compact surface S changes
the Euler characteristic. If we triangulate a cylinder of finite length as in Example 3, and
triangulate S so that each of the removed discs is the face of a triangle (with all interior
angles equal to π ), then the number of faces of the resulting triangulation is two fewer than
the number of the faces of the triangulation of S added to the number of the faces of the
triangulation of the cylinder of finite length, while the number of edges (resp. vertices) is
six fewer than the number of edges (resp. vertices) of the triangulation of S added to the
number of the edges (resp. vertices) of the triangulation of the cylinder of finite length.

We obtain the following lemma by recalling that the Euler characteristic of a cylinder of
finite length is zero.

Lemma 7 Let S̃ be the surface obtained by adding a handle to a compact surface S. Then

χ (S̃) = χ (S) − 2 .

S

�Figure 8.16 Adding a handle

�Figure 8.17 A pretzel
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We have seen that the Euler characteristic of the sphere is equal to two, so, for any posi-
tive integer g, we may construct a compact surface of Euler characteristic 2−2g by adding
g handles to the sphere. We now see, for instance, that the torus has Euler characteristic 0,
the double torus has Euler characteristic −2, while the pretzel has Euler characteristic −4.
These results may, with some difficulty, be checked by producing suitable triangulations
of the various surfaces.

It follows from the Classification Theorem for compact surfaces that every compact
connected orientable surface S (and so, in particular, every compact connected surface in
R

3) is diffeomorphic to a sphere with a certain number of handles attached. This number
is called the genus of the surface. So, if S has genus g then

χ (S) = 2 − 2g .

For example, a torus has genus one, and a pretzel has genus three.

8.5 The Gauss–Bonnet Theorem

In this section we use the Gauss–Bonnet Theorem for a triangle to prove the Gauss–Bonnet
Theorem for a regular region. We give some consequences of the theorem in the next
section.

Let R be a regular region of a surface S in R
n whose boundary ∂R is made up of m

edges, meeting at vertices {v1, . . . , vm}, say, on ∂R. For each vertex v j , j = 1, . . . , m, we
may define the exterior angle θ j at v j using the process described in §8.2. As before, we
assume that ∂R has no cusps, so that −π < θ j < π .

Theorem 1 (Gauss–Bonnet Theorem) Let R be a regular region of a surface S in R
n. If

θ1, . . . , θm are the exterior angles at the vertices of ∂R then

∫
∂R
κgds +

∫∫
R

K d A +
m∑

j=1

θ j = 2πχ (R) ,

where the sign of κg along ∂R is determined by the unit vectors nin pointing into the region.
In particular, if S is a compact surface then∫∫

S
K d A = 2πχ (S) .

Before we prove the theorem, we would like to point out what an amazing theorem it
is. For instance, consider the final statement. The Gaussian curvature K is a geometric
quantity, very sensitive to deformations of the surface, while the Euler characteristic is a
topological property so doesn’t change as the surface is deformed. So, for example, how-
ever we may pull or stretch a sphere (thought of as being made of a rubber membrane) to
form a surface S then the total Gaussian curvature of the deformed sphere (ie

∫∫
S K d A)

will stay fixed at 4π .
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Proof Let V , E and F be the numbers of vertices, edges and triangles respectively of a
triangulation of R, and label the triangles as �1, . . . ,�F . For i = 1, . . . , F , let αi , βi and
γi denote the interior angles of the triangle �i .

Those edges and vertices of the triangulation on the boundary of R will be called external
edges and external vertices, the other edges and vertices will be called internal. Every
vertex of ∂R is an external vertex of the triangulation, and we shall regard every other
external vertex of the triangulation as a vertex of ∂R with exterior angle equal to 0. The
sum of the exterior angles at the external vertices of the triangulation is then equal to∑m

j=1 θ j , the sum of the exterior angles at the vertices of ∂R.
We apply the Gauss–Bonnet Theorem for a triangle to each of the triangles �i in the

triangulation, and add the results. We note that each internal edge is traversed twice, but
the two integrals of κg along each internal edge cancel each other since the inward pointing
normals are in opposite directions (Figure 8.18), so the corresponding geodesic curvatures
have opposite signs.

Hence, we find that∫
∂R
κgds +

∫∫
R

K d A =
F∑

i=1

(αi + βi + γi ) − Fπ . (8.5)

Suppose that the triangulation has M external edges and hence M external vertices. If
vi is an external vertex of the triangulation, the sum of the interior angles at vi of those
triangles with a vertex at vi gives the interior angle of the boundary at vi . Hence, this sum,
when added to the exterior angle of the boundary at vi , gives π .

Since the interior angles at each internal vertex add up to 2π , we have

F∑
i=1

(αi + βi + γi ) +
m∑

j=1

θ j = 2π (V − M) + πM ,

so that

2πV =
F∑

i=1

(αi + βi + γi ) +
m∑

j=1

θ j + πM .

T ninnin

T~

~

�Figure 8.18 Integrals along internal edges cancel

�Figure 8.19 Interior angles at external vertex
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Thus, using (8.5),∫
∂R
κgds +

∫∫
R

K d A +
m∑

j=1

θ j = 2πV − π (F + M) . (8.6)

We next note that each triangle has three edges, each internal edge belongs to exactly
two triangles, and each external edge belongs to exactly one triangle. Thus

3F = 2(E − M) + M = 2E − M ,

so that

F + M = 2(E − F) ,

and the result follows from (8.6) and the definition of Euler characteristic.

8.6 Consequences of Gauss–Bonnet

We now give some examples of the way in which the Gauss–Bonnet Theorem may be used
to establish other results in differential geometry. Most of these results indicate how the
Gaussian curvature of a surface affects the topology and the behaviour of the geodesics.
A notable exception is the remarkable theorem of Jacobi (Theorem 7) on closed curves
in R

3.
The first result is specifically for surfaces in R

3; the flat torus in R
4 shows that the result

doesn’t hold for general compact connected orientable surfaces. The other results hold
more generally for surfaces in R

n .

Theorem 1 Let S be a compact connected surface in R
3. If K ≥ 0 everywhere on S, then

S is diffeomorphic to the sphere S2(1).

Proof Since S is compact, Theorem 4 of §5.10 tells us that S must have an elliptic point
(i.e. a point where K > 0), so, since K is continuous, it follows that if K ≥ 0 everywhere
on S then

∫∫
S K d A > 0. Hence, by the Gauss–Bonnet Theorem, χ (S) > 0. It now follows

from Theorem 6 of §8.4 that S is diffeomorphic to S2(1).

The next theorem is easily proved using some of the ideas used in the proof of the
previous theorem. Just use Theorem 5 (rather than Theorem 6) of §8.4.

Theorem 2 Let S be a compact connected orientable surface in R
n.

(i) If K > 0 everywhere on S then S is diffeomorphic to S2(1).
(ii) If K = 0 everywhere on S then S is diffeomorphic to a torus.

(iii) If K < 0 everywhere on S then the Euler characteristic χ (S) of S is a negative even
integer.

We note that surfaces satisfying either (i i) or (i i i) above cannot be surfaces in R
3.
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Theorem 3 Let S be a surface in R
n with K ≤ 0 everywhere. Then any two geodesics

γ1, γ2 through a point p ∈ S cannot meet at a point q 	= p in such a way that the traces
of γ1, γ2 between p and q form the boundary of a regular region of S homeomorphic to
a closed disc. In particular there does not exist a closed geodesic on S which bounds a
regular region of S homeomorphic to a closed disc.

Proof We assume that the traces of γ1, γ2 bound a regular region R of S homeomorphic
to a closed disc. The uniqueness theorem for geodesics (Theorem 2 of §7.3) shows that
neither of the two vertices of R are cusps, so that the exterior angles θ1 and θ2 of R at p
and q satisfy −π < θ j < π , j = 1, 2. However, if R is homeomorphic to a closed disc,
then the Gauss–Bonnet Theorem would imply∫∫

R
K d A + θ1 + θ2 = 2πχ (R) = 2π ,

so that
∫∫

R K d A > 0. But this contradicts K ≤ 0, and establishes the theorem.

In order to prove our next three theorems we shall need the Jordan Curve Theorem, the
statement of which is illustrated in Figure 8.20.

Theorem 4 (Jordan Curve Theorem) Let � be the trace of a piecewise regular simple closed
curve in R

2. Then R
2 \ � is the disjoint union of two connected sets, one of which, the

inside R̆, is bounded. Moreover, � is the boundary of R̆, and R = R̆ ∪� is a regular region
homeomorphic to a closed disc.

Theorem 5 Let S be a compact connected orientable surface in R
n with K > 0

everywhere. Then any two simple closed geodesics on S intersect.

Proof By Theorem 2, S is diffeomorphic to S2(1). Suppose the traces of the geodesics are
�1 and �2. If they do not intersect, then the Jordan Curve Theorem shows that �1 and �2

form the boundary of a regular region R which is homeomorphic to an annulus. But then∫∫
R

K d A = 2πχ (R) = 0 ,

which contradicts K > 0.

Theorem 6 Let S be a surface in R
n with K < 0 everywhere which is diffeomorphic to a

cylinder. Then S has at most one simple closed geodesic.

�Figure 8.20 The inside of a simple closed curve
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Proof Suppose that there exists a simple closed geodesic with trace �. Since S is diffeo-
morphic to a cylinder there exists a diffeomorphism f : S → R

2 \ {(0, 0)} and, by the
Jordan Curve Theorem, f (�) is the boundary of a regular region Q of R

2 homeomorphic
to a closed disc. We note that, by Theorem 3, Q must contain (0, 0).

If there is a second simple closed geodesic with trace �′, say, then f (�′) is also the
boundary of a regular region Q′ of R

2 containing (0, 0) which is homeomorphic to a disc.
If � and �′ intersect then they must do so in at least two points since � and �′ cannot meet
tangentially.

Thus there exist points p1, p2 ∈ � ∩ �′ with the property that traversing f (�) in an
anticlockwise direction from f (p1), the next point in f (�)∩ f (�′) is f (p2). But then (Fig-
ure 8.21) suitable arcs of f (�), f (�′) joining f (p1) to f (p2) form the trace of a piecewise
regular simple closed curve bounding a regular region not containing (0, 0) homeomorphic
to a disc. However, this is impossible by Theorem 3.

Thus � and �′ do not intersect. But then one of Q, Q′ is contained in the inside of the
other, so there exists an annular region P in the plane having boundary components f (�)
and f (�′). But then, since K < 0, the Gauss–Bonnet Theorem implies that

0 = 2πχ (P) = 2πχ ( f −1(P)) =
∫∫

f −1(P)
K d A < 0 ,

a contradiction.

The example of the round cylinder shows that Theorem 6 is false if we only assume
that K ≤ 0 everywhere. Also note that a surface diffeomorphic to a cylinder with K < 0
everywhere might have no simple closed geodesics (for example, the surface of revolution
in R

3 obtained by rotating the curve v �→ (v, 0, 1/v), v > 0 around the z-axis), or one
simple closed geodesic (for example, the catenoid).

We now discuss the final theorem of the chapter.

Theorem 7 (Jacobi) Let α : [a, b] → R
3 be a closed curve with nowhere vanishing curva-

ture κ , and suppose that the curve n : [a, b] → S2(1) defined by the principal normal to α
is simple. Then the trace of n divides S2(1) into two regular regions of equal area.

Proof Assume that α is parametrised by arc length s, and let t = dα/ds, b = t × n. Let
κ and τ denote the curvature and torsion of α.

f (Γ ¢)

f (Γ )

(0,0)

f (p1)

f (p2)

�Figure 8.21 The image of intersecting closed geodesics
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Then, letting s̃ be the arc length parameter of n, we find that

dn
ds̃

= dn
ds

ds

ds̃
= (−κ t − τ b)

ds

ds̃
,

from which it follows that (
ds

ds̃

)2

= 1

κ2 + τ 2
.

If we let ′ denote differentiation with respect to arc length s along α, then it follows
from formula (7.2) for geodesic curvature that the geodesic curvature κ̃g of n on S2(1) is
given by

κ̃g =
(

ds

ds̃

)3

n′′.
(
n × n′)

=
(

ds

ds̃

)3

(−κ ′ t − τ ′b). (n × (−κ t − τ b))

= κ ′τ − κτ ′

κ2 + τ 2

ds

ds̃

= − d

ds̃
arctan

(τ
κ

)
.

Thus, since n is a closed curve, we have∫ b

a
κ̃g(s̃)ds̃ = 0 .

We next note that, by the Jordan Curve Theorem, the trace of n divides S2(1) into two
regular regions, each homeomorphic to a disc. Hence, applying the Gauss–Bonnet Theo-
rem to one of the regions R into which S2(1) is divided by the trace of n, we see that the
area A(R) of R is given by

A(R) =
∫∫

R
d A =

∫∫
R

K d A = 2π = 1

2
A
(

S2(1)
)

.

Exercises

8.1 Explain why each of the sets illustrated in Figure 8.4 is not a regular region.

8.2 The boundary of the shaded region of the plane illustrated in Figure 8.22 is made
up of line segments meeting orthogonally. What are the values of the interior and
exterior angles at each of the vertices v1, v2, v3 and v4? For one of the two possible
orientations of the region, indicate the exterior angles from the incoming vector to
the outgoing vector at each of v1, v2, v3 and v4.

8.3 Using the Theorem of Turning Tangents (Theorem 1 of §8.3), formulate and prove a
similar theorem for the image under a local parametrisation of an n-gon in the plane.

8.4 Let b be a positive real number, and let

v �→ ( f (v), 0, g(v)) , f (0) = 0 , f (v) > 0 ∀v ∈ (0, b),
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v1

v2

v3

v4

�Figure 8.22 The region for Exercise 8.2

T

(0,0,g(0))

�Figure 8.23 The triangle T in Exercise 8.4

be a regular curve parametrised by arc length. Let S be the surface of revolution
obtained by rotating this curve about the z-axis (Figure 8.23) (note that S has a pole
at p = (0, 0, g(0))), and let

x(u, v) = ( f (v) cos u, f (v) sin u, g(v)) , u ∈ (−π ,π ),

be the standard local parametrisation of S. Finally, if u0, u1 ∈ (−π ,π ), with u0 < u1

and if v1 ∈ (0, b), let T denote the triangle which is the image under x of the set

{(u, v) : u0 ≤ u ≤ u1, 0 ≤ v ≤ v1}
(you should remove the pole from T if this is a singular point of S).

(i) Show that ∫
∂T
κgds = (u1 − u0) f ′(v1) .

(ii) If the pole is not a singular point of S, show that∫∫
T

K d A = (u1 − u0)
(
1 − f ′(v1)

)
.

(iii) Verify that if the pole is not a singular point of S then the Gauss–Bonnet
Theorem for a triangle holds for T .

8.5 Let S be a compact connected surface in R
3 which is not diffeomorphic to a sphere.

Show that S has points where the Gaussian curvature is positive, points where it is
negative, and points where it is zero.

8.6 Find the Gaussian curvature K at all points on the surface S with equation x2 + y2 =
z. If a is a positive real number, evaluate

∫∫
R K d A, where R is the region of S
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between the planes z = 0 and z = a2. Find also
∫
∂R κgds and hence verify the

Gauss–Bonnet Theorem directly for the region R.

8.7 Let S be the surface of revolution obtained by rotating the curve ( f (v), 0, g(v)),
f (v) > 0 ∀v, about the z-axis, and let R be the region of S corresponding to taking
v0 ≤ v ≤ v1. Evaluate

∫∫
R K d A and

∫
∂R κgds, and hence verify the Gauss–Bonnet

Theorem directly for the region R. (The formulae are easier if you assume that the
generating curve is parametrised by arc length.)

8.8 Find all the simple closed geodesics on the surface S in R
3 defined by the equation

x2

a2
+ y2

b2
= cosh2 z.

8.9 Show that any two simple closed geodesics on the surface S in R
3 defined by the

equation

x4 + y4 + z4 = 1 (8.7)

intersect. (Hint: this is similar to the case of a compact surface in R
3 with K > 0,

except that, as noted in Exercise 5.26, the surface given by (8.7) has points where
K = 0.)



9 Minimal and CMC surfaces

We have now achieved our main aims in writing this book as described in the Preface.
However, there are many other attractive and visual areas of the geometry of surfaces in
R

3 which we have not covered, and in this final chapter we explore our nomination for the
best of these areas.

When a wire frame is dipped into soapy water and removed, the surface formed by the
soap film which spans the frame minimises the area of all nearby surfaces which span the
frame. These are examples of minimal surfaces, and, as our first example, it is clear from
the physical description that (any bounded open subset of) a plane is a minimal surface.

For ease of study, minimal surfaces are defined to be surfaces which are stationary
points of the area functional, not necessarily local minima. Loosely speaking, a minimal
surface is one for which every bounded subset U is a stationary point of the area functional
applied to all surfaces with the same boundary as U . In this regard, minimal surfaces are
the 2-dimensional analogues of geodesics, since Theorem 3 of §7.4 characterises geodesics
on a surface S as curves on S for which every bounded piece is a stationary point of the
length functional applied to all curves on S with the same start point and end point as the
piece. The question of whether a given minimal surface is actually area minimising is a
difficult one, and is part of an active area of current research.

As well as occurring naturally as soap film surfaces, minimal surfaces also have several
practical applications. For instance, they have been utilised in architecture; roofs made up
of pieces modelled on soap films have been used to provide lightweight but very strong
coverings over large areas.

The plane is an example of a minimal surface, and, as we shall see, so are catenoids
and helicoids. However, a soap bubble (that is to say, a sphere) is not a minimal surface;
although it minimises area, it does so subject to the constraint that it encloses a fixed vol-
ume of air. This constrained minimising problem leads to the study of surfaces of constant
mean curvature, or CMC surfaces.

Minimal and CMC surfaces in R
3 are often very beautiful, and there is an extensive

visual library of these surfaces on the internet. The illustrations in this chapter are taken
from images obtained by Katrin Leschke, using jReality, for her surface visualisation
programme. We are grateful to Katrin for allowing us to use her images.

In this chapter we study the mathematics of minimal and CMC surfaces in R
3. Sur-

prisingly and excitingly, these surfaces may be studied using one of the most powerful
and interesting areas of mathematics, namely complex analysis. A balanced course on
the differential geometry of surfaces at the level we have aimed for could perhaps con-
tain the material in the first five sections of this chapter; up to and including the material

213
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�Figure 9.1 Two views from opposite sides of Catalan’s surface

�Figure 9.2 Two views of Enneper’s surface

on associated families. In addition to the usual time constraints, it might be difficult to
include the topics in the subsequent sections since they are rather more advanced and math-
ematically sophisticated than those previously considered in this book. These sections are
intended to give an indication of the mathematical beauty that may be achieved with fur-
ther study, and would be suitable for self-study by an interested student or could form the
basis of a follow-on project for senior undergraduates or first year postgraduates.

In this chapter we shall encounter surfaces with self-intersections. Figures 9.1 and
9.2 show (finite parts of) two such minimal surfaces. One way that surfaces with self-
intersections arise is as the image S = x(U ) of an R

3-valued smooth, but not necessarily
injective, map x(u, v) defined on an open subset U of R

2 with the property that xu and xv
are linearly independent at each point of U . Theorem 1 of §2.5 on coordinate recognition
shows that each point (u, v) ∈ U has an open neighbourhood V in U such that x(V ) is
a surface parametrised by x|V . This situation is the analogue of our study in Chapter 1
of regular (parametrised) curves in the plane, since these may also have self-intersections.
In particular, for each (u, v) ∈ U , we have the corresponding tangent plane to S spanned
by xu(u, v) and xv(u, v), and the corresponding unit normal N = xu × xv/|xu × xv|.
This means that we can discuss the first and second fundamental forms of S, and related
concepts like area, Gaussian and mean curvatures, geodesics, and so on.

9.1 Normal variations

We wish to characterise surfaces which minimise area among all nearby surfaces (although,
as mentioned above, we actually characterise those surfaces which are stationary points of
the area functional, but not necessarily local minimisers of area). We do this by considering
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�Figure 9.3 Normal variations

how the area of a piece of surface changes as we carry out appropriate deformations. This
section may be regarded as a 2-dimensional analogue of §7.4, in which we considered
variations of geodesics.

We begin by giving a mathematical description of the process of deforming a surface.
To simplify the exposition while retaining the essential ideas, we restrict ourselves to con-
sidering certain deformations of the surface which may be described easily using local
parametrisations.

Let x : U → R
3 be a local parametrisation of a surface S in R

3, and let D ⊂ U ⊆
R

2 be a bounded open subset whose closure D̄ is contained in U . If h : D̄ → R is a
smooth function, then the normal variation of x(D̄) determined by h is the family of maps
xr : D̄ → R

3 given by (Figure 9.3)

xr (u, v) = x(u, v) + rh(u, v)N(u, v), (u, v) ∈ D̄, r ∈ R. (9.1)

Here, as usual, N is the unit normal in the direction of xu × xv .
We note that

(xr )u = xu + r (h Nu + hu N),

(xr )v = xv + r (h Nv + hvN), (9.2)

so that

(xr )u × (xr )v = xu × xv + R,

where limr→0 R = 0 for each u and v. It follows that there exists a sufficiently small ε > 0
such that the vectors (xr )u and (xr )v are linearly independent for each r ∈ (−ε, ε) and
each (u, v) ∈ D, so, as discussed at the end of the introduction to this chapter, it makes
sense to discuss the area A(r ) of xr (D̄).

We say that S is a minimal surface if A′(0) = 0 for all normal variations of the surface
determined by all local parametrisations of S.

The restriction that we consider only normal variations of the form given in (9.1) may be
justified, at least intuitively, by noting that, firstly, any tangential variation of x(D̄) merely
slides x(D̄) along itself, so if the boundary is fixed then the area doesn’t change, and,
secondly, any variation of x(D̄) in an orthogonal direction may, to first order, be written as
in (9.1).

The following theorem gives a very satisfying mathematical characterisation of minimal
surfaces in terms of the mean curvature H . We recall that mean curvature was defined in
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§5.4, where we found that, in terms of the coefficients of the first and second fundamental
forms,

H = 1

2

E N − 2F M + GL

EG − F2
. (9.3)

Theorem 1 A surface S in R
3 is a minimal surface if and only if the mean curvature H of

S is everywhere zero.

Proof Integration on surfaces, and, in particular, area of surfaces, was discussed in §3.7.
For the main part of the proof of the theorem, we shall use equation (3.20) to compute
the area A(r ), and hence find A′(0) for the normal variation xr (u, v) determined by a
function h.

Let Er , Fr and Gr be the coefficients of the first fundamental form of xr |D̄. It follows
from (9.2) that

Er = E + 2rh xu .Nu + o(r ),

Fr = F + rh(xu .Nv + xv .Nu) + o(r ),

Gr = G + 2rh xv .Nv + o(r ),

where, in these and all the following equations in this proof, o(r ) stands for a remainder
term R with the property that

lim
r→0

R

r
= 0,

or, equivalently, both R and ∂R/∂r are zero when r = 0.
It now follows from the definitions (5.9) of L , M and N that

Er = E − 2rhL + o(r ),

Fr = F − 2rhM + o(r ),

Gr = G − 2rhN + o(r ),

so that, using (9.3) for the second equality,

Er Gr − (Fr )2 = EG − F2 − 2rh(E N − 2F M + GL) + o(r )

= (1 − 4rh H + o(r )) (EG − F2).

We therefore have√
Er Gr − (Fr )2 = (1 − 2rh H + o(r ))

√
EG − F2,

so, using equation (3.20), the area A(r ) of xr (D̄) is given by

A(r ) =
∫∫

D̄

√
Er Gr − (Fr )2 dudv

=
∫∫

D̄
(1 − 2rh H + o(r ))

√
EG − F2 dudv.
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We now use the result (often called ‘differentiating under the integral sign’) which says
that if f (r , u, v) is smooth then

∂

∂r

(∫∫
f dudv

)
=
∫∫

∂ f

∂r
dudv.

Applying this result, we find that

A′(0) = −
∫∫

D̄
2h H
√

EG − F2 dudv. (9.4)

Our calculation of A′(0) enables us to complete the proof of Theorem 1 quite easily.
Indeed, if H = 0 then, from above, A′(0) = 0 for all normal variations, so that S is mini-
mal. On the other hand, if A′(0) = 0 for all normal variations, consider the variation arising
from taking h(u, v) = H (u, v). Then the integrand in (9.4) becomes 2H2

√
EG − F2,

which must be identically zero, for otherwise A′(0) < 0. Hence H = 0.

It follows from Theorem 1 that a minimal surface S is one for which the principal cur-
vatures κ1 and κ2 satisfy κ1 + κ2 = 0. This means that the maximum and minimum values
of the normal curvatures of curves on S through a point p ∈ S are equal in magnitude
but have opposite signs, and, in particular, the Gaussian curvature K is non-positive at all
points. The saddle shape of a minimal surface around any of its points is apparent in the
illustrations of minimal surfaces given in this chapter.

If we want to see whether a bounded piece of a minimal surface is actually locally area
minimising, we would now need to compute A′′(0) (which is not too hard), and then work
out conditions under which we could deduce that A′′(0) < 0 for every local variation
of the surface (and, if A′′(0) = 0, look at higher derivatives). Even if we could do this,
the question of whether the surface was globally (as opposed to locally) area minimising
would still not be resolved. We mentioned in Chapter 7 that any sufficiently short piece of
a geodesic on a surface S is a length minimising curve on S between its end points, and a
similar result holds for minimal surfaces; it can be shown that a sufficiently small piece of
a minimal surface is the surface of minimum area spanning its boundary.

The problem of existence of a surface of minimum area (or, more generally, a minimal
surface) spanning any simple closed curve in R

3 is known as Plateau’s problem, named
after a Belgian physicist who carried out experiments with soap films in the mid-nineteenth
century. Jesse Douglas and Tibor Radó (independently, in the 1930s) were the first two peo-
ple to obtain significant existence results for a large class of bounding curves. For instance,
they proved that there exists a connected surface of minimum area spanning any given
simple closed curve in R

3.

9.2 Examples and first properties

Theorem 1 of §9.1 confirms that every plane is a minimal surface, while Example 5 of §5.6
shows that catenoids are also minimal. Similar calculations show that helicoids are mini-
mal, so we now have three types of examples of minimal surfaces without self-intersections
in R

3. These surfaces are all closed unbounded subsets of R
3.
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Soap films provide our physical model and intuition for minimal surfaces, and it is inter-
esting to explore whether intuition leads us in the right direction. Unlike soap bubbles, soap
films must always be supported on wire frames, so we might expect that “free-standing”
bounded minimal surfaces don’t exist. This is indeed the case; the following proposition
may be interpreted as saying that any bounded minimal surface must have a “supporting
boundary”.

Proposition 1 There are no compact minimal surfaces in R
3.

Proof In Theorem 4 of §5.10, we showed that every compact surface in R
3 has an elliptic

point. At such a point the principal curvatures are both non-zero and have the same sign.
The mean curvature, being the average of the principal curvatures, cannot be zero at an
elliptic point.

Catenoids and helicoids were found to be minimal by Euler and by Meusnier in the
eighteenth century, but it proved very hard to find other examples of closed minimal sur-
faces without self-intersections in R

3. In fact, the next ones were not found until 1835,
when Scherk discovered a 1-parameter family of such surfaces. However, none of these
surfaces have finite topology; that is to say, none of them are homeomorphic to a compact
surface with a finite number of points removed (for instance, the plane is homeomorphic
to a sphere with one point removed, while the catenoid is homeomorphic to a sphere with
two points removed).

It was widely conjectured that planes, catenoids, and helicoids are the only closed min-
imal surfaces with no self-intersections and finite topology in R

3. However, in 1982 a
new closed minimal surface with finite topology was described mathematically by Celso
Costa, and, helped by the then new science of computer visualisation, it was subsequently
shown by David Hoffman, Jim Hoffman and Bill Meeks that Costa’s minimal surface has
no self-intersections. Of course, they could not tell this by simply looking at pictures on
a computer screen; apart from inaccuracies of calculations, a computer can only display a
bounded part of any surface, and hence, by Proposition 1, can never display the whole of
a closed minimal surface. However, the pictures they obtained gave Hoffman and his col-
leagues the crucial clues they needed (concerning the symmetry of the surface) to enable
them to provide a mathematical proof that Costa’s surface had no self-intersections. See
Figure 9.8.

The discovery of Costa’s minimal surface and its properties proved to be a real break-
through, and the impetus provided by these discoveries led to rapid and continuing progress
in the global theory of minimal surfaces. In §9.8, we describe the Weierstrass–Enneper
representation, which was used by Costa and Hoffman and co-workers, and is still used in
current research to construct and investigate minimal surfaces.

We now give a characterisation of minimal surfaces in terms of the Gauss map N . We
begin by noting that N is conformal if and only if the principal curvatures κ1 and κ2 satisfy
κ1 = ±κ2 	= 0. If κ1 = κ2 	= 0 then the derivative d N preserves the orientation induced
on S by N , while if κ1 = −κ2 	= 0 then d N reverses orientation.
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A smooth map f between oriented surfaces is said to be weakly conformal if it preserves
angles and orientation at those points where its derivative d f is non-zero. Similarly, f is
weakly anti-conformal if it preserves angles but reverses orientation at those points where
its derivative is non-zero.

Proposition 2 (i) A surface S is minimal if and only if the Gauss map N is weakly anti-
conformal (when, as usual, the sphere is given the orientation determined by the
outward-pointing unit normal).

(ii) A connected surface S is an open subset of a sphere or a plane if and only if the Gauss
map N is weakly conformal.

We note that (as is clear from the corresponding conditions on the principal curvatures)
N is weakly anti-conformal (using the orientation on S determined by N) if and only if −N
is weakly anti-conformal (using the orientation on S determined by −N), so the criteria
given in the proposition are independent of the (local) orientation chosen on S. Indeed, S
doesn’t need to be an orientable surface in order to apply Proposition 2.

We conclude this section by giving another characterisation of minimal surfaces. This
follows immediately from Exercise 5.22.

Proposition 3 A surface S with K < 0 is minimal if and only if the asymptotic curves
intersect orthogonally at all points.

9.3 Bernstein’s Theorem

The characterisation of minimal surfaces in R
3 as those surfaces with zero mean curvature

enables us to write down a differential equation which must be satisfied by a function
f (x , y) in order that its graph be a minimal surface. This equation, which we give in
Lemma 1, is obtained by putting E N − 2F M + GL = 0 when we use the expressions
obtained in Example 1 of §3.2 and Exercise 5.1 for E , F , G and L , M , N for the standard
parametrisation of a graph. You are asked to prove this lemma in Exercise 9.4.

Lemma 1 The graph �( f ) of a real-valued function f (x , y) is a minimal surface if and
only if

(1 + fy
2) fxx − 2 fx fy fxy + (1 + fx

2) fyy = 0. (9.5)

This is a highly non-linear elliptic partial differential equation, which indicates that,
without some clever ideas, it is likely to be difficult to find solutions to the equation H = 0.
Fortunately, as we shall see, there are some very clever ideas at hand.

Bernstein’s Theorem, which he proved in 1917, concerns itself with looking for solutions
of (9.5) defined over the whole of the xy-plane. It is clear that a function of the form
f (x , y) = ax + by + c, with a, b, c being constant, is such a solution of (9.5), and, of
course, the corresponding graph is a plane. Bernstein’s Theorem states that these are the
only solutions defined on the whole of the plane.
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Theorem 2 (Bernstein) let �( f ) be the graph of a function f (x , y) defined on the whole of
the xy-plane. If �( f ) is a minimal surface then �( f ) is a plane in R

3.

In Exercise 9.4, you are invited to find all solutions of (9.5) of the form f (x , y) =
g(x) + h(y). You will find that, modulo translations and rescaling, there are only two
non-linear solutions, namely

f (x , y) = ± log

(
cos x

cos y

)
. (9.6)

The graph of each function is a non-planar minimal surface, but this does not contradict
Bernstein’s Theorem; the logarithm function is only defined for positive real numbers, so
the function f is only defined over the “white squares” of an infinite square chess-board
pattern on the plane. When completed by adding vertical lines over the corners of the
squares of the chess-board (and taking the + sign in (9.6) for definiteness), the resulting
surface is Scherk’s first surface (Figure 9.4), which has equation ez cos y = cos x . This is a
member of the 1-parameter family of closed minimal surfaces discovered by Scherk which
we referred to in §9.2. It is clear that Scherk’s first surface is doubly periodic; the left hand
side of Figure 9.4 shows a basic piece, and the right hand side shows how the pieces fit
together.

We give a proof of Bernstein’s Theorem, but, for simplicity, we make the (correct!)
assumption that if f is a function defined on the whole of the plane then its graph may be
covered by a single isothermal parametrisation x(u, v) whose domain of definition is also
the whole of the plane.

So, let N be the unit normal to �( f ) which has negative z-coordinate. Then the image
of the Gauss map N lies in the lower hemisphere of S2(1), and, assuming that �( f ) is
minimal, Proposition 2 of §9.2 shows that N is weakly anti-conformal. It follows from
Example 2 of §3.4 that stereographic projection π from the north pole of S2(1) onto the
equatorial plane is anti-conformal (when the sphere and the plane are given their standard
orientations), so that πN is a weakly conformal map from �( f ) into the unit disc. It follows
that πN x is a weakly conformal map from the whole of R

2 to the interior of the unit disc.
We now recall from complex analysis that, if we identify R

2 with C in the usual way,
then a smooth map of the plane is weakly conformal if and only if it is complex differen-
tiable, and, by Liouville’s Theorem, the only bounded complex differentiable maps defined

�Figure 9.4 Two views of Scherk’s first surface
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on the whole of the complex plane are the constant maps. This implies that N is constant,
and hence �( f ) is a plane.

Bernstein’s Theorem has been improved by Osserman; he has shown that if the Gauss
map of any closed minimal surface in R

3 omits an open subset of the sphere then the
surface must be a plane.

This use of the theory of complex differentiable functions leads us nicely to the next
section.

9.4 Minimal surfaces and harmonic functions

The first indications of the crucial role played by complex variable theory in the study of
minimal surfaces appeared at the end of §9.3. We push this idea further in this section when
we investigate properties of isothermal parametrisations of minimal surfaces.

Isothermal parametrisations will prove to be of considerable importance in this chapter.
As we have already remarked, any surface may be covered by a system of isothermal
parametrisations, although actually doing this explicitly can be quite difficult or even
impossible. However, if we do have an isothermal parametrisation of a surface S, comput-
ing the mean curvature H of S is surprisingly simple, as we now explain. For an isothermal
parametrisation with E = G = λ2, formula (9.3) for H simplifes to give

H = L + N

2λ2
, (9.7)

but, in order to apply this, we would expect to have to find xuu + xvv and the normal vector
N in order to calculate L + N . However, as we now show, when we have an isothermal
parametrisation there is no need to find N explicitly.

Lemma 1 If x : U → S is an isothermal local parametrisation of a surface S in R
3, then

xuu + xvv is orthogonal to S.

Proof Since x is isothermal, we have that

xu .xu = xv .xv , xu .xv = 0.

Differentiating these expressions gives

xuu .xu = xuv .xv , xuu .xv + xu .xuv = 0,
xuv .xu = xvv .xv , xuv .xv + xu .xvv = 0.

It follows that (xuu + xvv).xu = 0 = (xuu + xvv).xv , so that (xuu + xvv) is orthogonal to
S as required.

The following proposition is now immediate.

Proposition 2 If x : U → S is an isothermal local parametrisation of a surface S in R
3

with E = G = λ2, then the mean curvature H satisfies

|H | = 1

2λ2
|xuu + xvv| .
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Example 3 (Catenoid) Up to rigid motions of R
3, every catenoid has a parametrisation as a

surface of revolution of the form

x(u, v) = (a cosh v cos u, a cosh v sin u, av), −π < u < π ,

where a is any positive real number. Then E = G = a2 cosh2 v, F = 0, so the
parametrisation is isothermal. A short calculation shows that

xuu + xvv = 0,

so that all catenoids are minimal.
It is a straightforward exercise to show that, apart from the plane, every connected

minimal surface of revolution is (an open subset of) a catenoid (see Exercise 9.3).

Example 4 (Helicoid) For later convenience, we consider the helicoid parametrised by

x(u, v) = (a sinh v sin u, −a sinh v cos u, au),

where a is any positive real number. Up to rigid motions (and possibly a reflection) of R
3,

all helicoids may be parametrised in this way. Again we have E = G = a2 cosh2 v, F = 0,
and

xuu + xvv = 0,

so that all helicoids are minimal.
Apart from the plane, every connected ruled minimal surface is (an open subset of) a

helicoid. This is a theorem due to Catalan, and it is a rather tricky thing to show.

In order to exploit Proposition 2, we recall some material from complex analysis. Here,
and for the rest of the chapter, we shall identify R

2 with C in the usual way; (u, v) ∈ R
2

being identified with z = u + iv ∈ C.
Let ψ(z) = x(u, v) + iy(u, v) be a complex valued function with real and imaginary

parts x(u, v) and y(u, v) respectively. Then, by definition, ψ(z) is complex differentiable at
a point z0 if

ψ ′ = dψ

dz
= lim

z→z0

ψ(z) − ψ(z0)

z − z0

exists, and so, in particular, is independent of the way that z approaches z0. If we consider
lines of approach parallel to the real axis and then parallel to the imaginary axis and equate
the limits, we obtain

ψ ′ = xu + iyu = yv − i xv , (9.8)

and comparing the real and imaginary parts we obtain the Cauchy–Riemann equations

xu = yv , xv = −yu . (9.9)

This shows that complex differentiability implies the Cauchy–Riemann equations, but,
rather surprisingly, the converse is largely true. Specifically, a standard result in complex
analysis says that if x(u, v) and y(u, v) are smooth functions then ψ(z) = x(u, v)+ iy(u, v)
is complex differentiable at z0 ∈ C if and only if the Cauchy–Riemann equations hold at z0.
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A complex valued function ψ(z) is holomorphic on a subset D of C if it is complex
differentiable on some open set containing D, and we recall that one of the most impor-
tant properties (which has many applications) of holomorphic functions comes from the
fact that their real and imaginary parts are both harmonic; that is to say they satisfy the
2-dimensional Laplace equation,

xuu + xvv = 0.

For example, we note that sin z = sin(u + iv) = sin u cosh v + i cos u sinh v, and a quick
check shows that the real part x(u, v) = sin u cosh v and the imaginary part y(u, v) =
cos u sinh v of sin z are both harmonic.

That the real part of a holomorphic function is harmonic is quite easy to see; we simply
differentiate the first Cauchy–Riemann equation with respect to u, the second with respect
to v, and then use the fact that yuv = yvu . That the imaginary part is also harmonic may be
proved in a similar way.

The following result, which will be very useful for us, is an immediate consequence of
Proposition 2.

Corollary 5 Let x = (x1, x2, x3) be an isothermal local parametrisation of a surface S in
R

3. Then that part of S covered by the image of x is minimal if and only if the coordinate
functions x1, x2, x3 of x are all harmonic.

For convenience, we say that a C
3-valued function is holomorphic if each of its coordi-

nate functions is holomorphic. Similarly, an R
3-valued function is said to be harmonic if

each of its coordinate functions is harmonic.

9.5 Associated families

In this section we describe a remarkable feature of minimal surfaces; in a sense we make
precise below, they come in 1-parameter families, each member of which has the same
metric and the same Gauss map.

We begin with some topology. A simple domain is an open subset of R
2 which is home-

omorphic to the open unit disc. The idea is that a simple domain U is connected and has
“no holes”. This means that any two points p and q in U may be joined by a curve in U ,
and if γ1 and γ2 are curves in U joining p and q then γ1 may be continuously deformed
to γ2 through curves in U joining p and q. It is clear that every point of an open subset V
of the plane has an open neighbourhood in V which is a simple domain. In Figure 9.5 we
give examples of sets which are not simple domains.

We have seen that the real part of a holomorphic function is harmonic, and we now recall
that the converse holds on any simple domain. Specifically, we have the following result.

�Figure 9.5 These are not simple domains
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Proposition 1 Let x(u, v) be a smooth function defined on a simple domain U of C. Then
x(u, v) is the real part of a holomorphic function ψ(z) = x(u, v) + iy(u, v) defined on U if
and only if x is harmonic.

Given a harmonic function x(u, v), the corresponding function y(u, v), which is deter-
mined up to addition of a real constant, is called the harmonic conjugate of x(u, v); it may
be obtained by substituting for xu and xv in the Cauchy–Riemann equations (9.9) and then
integrating.

Let U be a simple domain, and assume that x = (x1, x2, x3) : U → R
3 is an isothermal

parametrisation of a minimal surface S = x(U ). Then each of x1, x2 and x3 is harmonic,
and we let y = (y1, y2, y3) be the harmonic conjugate of x (that is to say; y j is the harmonic
conjugate of x j for j = 1, 2, 3) on U , so that (each coordinate function of) ψ = x + i y is
holomorphic, and x and y satisfy the Cauchy–Riemann equations

xu = yv , xv = − yu . (9.10)

For each θ , let xθ = cos θ x + sin θ y. Then xθ is the real part of e−iθψ , and hence
is harmonic (or just use the fact that the Laplace equation is linear). It follows from the
Cauchy–Riemann equations that {(xθ )u , (xθ )v} is obtained by rotating {xu , xv} through
angle −θ (using the orientation determined by the local parametrisation x), so, in par-
ticular, (xθ )u × (xθ )v = xu × xv . Hence xθ is a local parametrisation of a surface Sθ
(possibly with self-intersections), and each surface Sθ has the same Gauss map (or, more
accurately, N xθ doesn’t change with θ ). It also follows that the coefficients of the first
fundamental forms Eθ , Fθ and Gθ are independent of θ , so that each Sθ has the same
metric. In particular, each xθ is an isothermal parametrisation, so, since each coordinate
function of xθ is harmonic, it follows from Corollary 5 of §9.4 that each surface Sθ is
minimal.

The family {Sθ } of minimal surfaces is the associated family of S, and the minimal
surface obtained for θ = π/2 (that is to say, the surface parametrised by the harmonic con-
jugate y), is often called the conjugate minimal surface – it is uniquely determined up to
translation. It follows from the above working that the correspondences fθ (x(u, v)) =
xθ (u, v) give a 1-parameter family of isometries which deforms S through the associ-
ated family {Sθ } to the conjugate minimal surface Sπ/2 in such a way that the Gauss map
remains constant throughout the deformation.

Example 2 (Helicoid and catenoid) We consider

x(u, v) = (a sinh v sin u, −a sinh v cos u, au),

which is the isothermal parametrisation of the helicoid given in Example 4 of §9.4. The
conjugate minimal surface is

y(u, v) = (a cosh v cos u, a cosh v sin u, av),

which (apart from its domain of definition) is the isothermal parametrisation of the catenoid
given in Example 3 of §9.4. The map x(u, v) → y(u, v), which wraps the helicoid round
the catenoid an infinite number of times, is essentially the same as that already discussed
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in Example 2 of §4.5 and illustrated in Figure 4.10. Animations of the corresponding
1-parameter family { fθ } of deformations of the helicoid to the catenoid may be found
on the internet.

The above example illustrates the proviso we mentioned earlier in the section; the sur-
faces Sθ may have self-intersections (or, as in the case of the catenoid, the surface may be
covered more than once).

We recall that Scherk’s first surface (which we discussed in §9.3) has equation ez cos y =
cos x . This minimal surface is clearly doubly periodic, and it turns out that the conjugate
surface of a basic piece gives a basic piece of a complete singly periodic minimal surface,
Scherk’s second surface. Like his first surface, Scherk’s second surface (Figure 9.6) has no
self-intersections and has infinite topology. From afar, Scherk’s second surface looks like
two slightly deformed planes which intersect orthogonally in a series of holes.

You may wonder which metrics can occur as isothermal metrics of minimal surfaces.
It is clear that not all isothermal metrics can occur; we have seen that minimal surfaces
cannot have positive Gaussian curvature, and the Theorema Egregium states that the metric
determines the Gaussian curvature. In particular, if E = G = λ2, formula (6.11) for the
Gaussian curvature in isothermal coordinates implies that, for a minimal surface, we must
have that � log λ ≥ 0, that is to say log λ is a subharmonic function. However, this is by
no means the only restriction, as we shall see when we return to this question in §9.13.

It is also of interest to know, up to rigid motions, how many different minimal surfaces
can have the same metric. We have seen in this section that all members of an associated
family have the same metric, but, as we shall see at the end of §9.9, this is the only possi-
bility; it turns out that any two minimal surfaces with the same metric are members of the
same associated family (see Theorem 8 of §9.9).

9.6 Holomorphic isotropic functions

In the following sections we shall use some powerful theorems from complex analysis to
study minimal surfaces. As mentioned at the beginning of the chapter, some of the material
in the rest of the chapter is rather more advanced than the topics we have previously
covered.

�Figure 9.6 Scherk’s second surface
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In the next several sections we shall show how to construct (isothermal parametrisa-
tions of) minimal surfaces in R

3 using holomorphic functions. This is achieved using the
Weierstrass–Enneper representation, which is described in §9.8. Although this is a beauti-
ful and remarkable aspect of the theory of minimal surfaces, it still leaves many interesting
unanswered questions which belong to a vibrant area of current research.

Although it is easy to write down harmonic functions, the criterion for a minimal sur-
face supplied by Corollary 5 of §9.4 is not straightforward to apply; a parametrisation
x = (x1, x2, x3) constructed from three arbitrary harmonic functions x1, x2, x3 will not
usually be isothermal, so that the resulting surface will not be minimal. In the next few sec-
tions we describe a method for dealing with this; rather than trying to construct x directly,
it turns out to be easier to construct the partial derivatives of x and then integrate up to
construct x itself.

We begin by extending the inner product of R
3 to a symmetric complex-bilinear

complex-valued form defined on C
3 × C

3; specifically, if z = (z1, z2, z3) and
w = (w1,w2,w3) then we let

z.w = z1w1 + z2w2 + z3w3. (9.11)

In particular,

z.z = z1
2 + z2

2 + z3
2,

and we say that z is isotropic if

z.z = 0.

Lemma 1 Let z ∈ C
3. Then z is isotropic if and only if the real and imaginary parts are

orthogonal and have the same length.

Proof Let z = a + i b, where a, b are the real and imaginary parts of z. Then, using
complex bilinearity,

z.z = (a + i b).(a + i b) = |a|2 − |b|2 + 2i a.b,

and the lemma follows.

We extend the definition of isotropic to cover functions also. A C
3-valued function φ is

said to be isotropic if φ(z) is isotropic for all z in the domain of φ.

Let U be a simple domain in R
2, and let x : U → S be an isothermal local parametri-

sation of a minimal surface S in R
3. As we have seen, x is harmonic, and hence is the real

part of a holomorphic function ψ : U → C
3. Then, using (9.8) and the Cauchy–Riemann

equations, we may write the derivative ψ ′ of ψ solely in terms of the partial derivatives of
its real part, namely

ψ ′ = xu − i xv . (9.12)

That ψ ′ may be found from the real part x, without having to know the corresponding
imaginary part y, will be very useful. Similarly, ψ ′ may also be written in terms of the
partial derivatives of its imaginary part, namely

ψ ′ = yv + i yu . (9.13)
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Lemma 2 Let ψ be the holomorphic C
3-valued function arising as above from an isother-

mal local parametrisation x(u, v) of a minimal surface, and let φ = ψ ′ be the derivative
of ψ . Then φ is holomorphic and isotropic.

Proof That φ is holomorphic follows from a standard result in complex analysis, but the
proof is easy so we give it. It follows from (9.12) that the Cauchy–Riemann equations for
φ are

xuu = −xvv , xuv = xvu .

The first of these equations follows from the fact that x is harmonic, and the second from
the commutativity of partial derivatives. Hence φ is holomorphic, and Lemma 1, together
with (9.12), shows that φ is also isotropic.

Example 3 (Helicoid) Let x(u, v) be the parametrisation of the helicoid given in Example 4
of §9.4. Then, taking a = 1 for simplicity,

φ = ψ ′ = xu − i xv

= (sinh v cos u, sinh v sin u, 1) − i(cosh v sin u, − cosh v cos u, 0)

= (−i sin(iv) cos u − i cos(iv) sin u, −i sin(iv) sin u + i cos(iv) cos u, 1)

= (−i sin(u + iv), i cos(u + iv), 1).

Hence, writing z = u + iv, we see that φ(z) = (−i sin z, i cos z, 1), which is clearly
holomorphic, and is also isotropic since φ.φ = − sin2 z − cos2 z + 1 = 0.

9.7 Findingminimal surfaces

We saw in §9.6 that we could associate a holomorphic isotropic C
3-valued function φ with

any isothermal local parametrisation x of a minimal surface (as long as the domain of x is
simple). This may well be interesting, but our main goal is to go in the opposite direction
and construct minimal surfaces from suitable holomorphic data. In fact, even better, we
shall construct isothermal parametrisations of minimal surfaces.

In this section we make progress towards this goal by reversing the process of the previ-
ous section and showing that, given a holomorphic isotropic C

3-valued function φ defined
on a simple domain U , we may construct (an isothermal parametrisation of) a minimal
surface. This will become particularly useful when we show in the next section how all
such functions φ may be constructed using suitable pairs of complex-valued holomorphic
functions f and g.

In §9.6, we started with an isothermal parametrisation of a minimal surface. We then
saw that this was the real part of a holomorphic C

3-valued function ψ which we differen-
tiated to give our holomorphic isotropic function φ. To reverse this process, we start with
a holomorphic isotropic C

3-valued function φ defined on a simple domain U . We then use
the theory of complex analysis to show that φ has a primitive ψ defined on U (that is to



228 9 Minimal and CMC surfaces

say, a holomorphic function ψ with ψ ′ = φ). Then, in Proposition 1, we show that the real
part of ψ gives us an isothermal parametrisation of a minimal surface.

Using the usual notation of indefinite integrals, we let
∫
φ(z)dz denote any primitive

ψ of φ; this is well defined up to translations in C
3. If φ = (φ1,φ2,φ3) then

∫
φ(z)dz is

obtained by taking a primitive of each component, or, in symbols,∫
φ(z)dz =

(∫
φ1(z)dz,

∫
φ2(z)dz,

∫
φ3(z)dz

)
.

That φ has a primitive ψ defined on U is proved using the theory of contour integration.
The idea is to pick a base point z0 ∈ U and note that, by Cauchy’s Theorem, if z ∈ U then
the contour integral

∫
γ
φ(t)dt along any contour γ (t) in U joining z0 to z is independent

of the contour chosen. If we then define ψ(z) to be the common value of
∫
γ
φ(t)dt , the

Converse of the Fundamental Theorem of Contour Integration says that ψ is a primitive
of φ.

This is all very well, but, as we shall see, the primitive of a holomorphic function is
usually found by applying the well-known process of ‘anti-differentiation’ (see Example
2, for instance).

Proposition 1 Let φ = (φ1,φ2,φ3) be a holomorphic isotropic C
3-valued function defined

on a simple domain U, and let ψ(z) = ∫ φ(z)dz. If

x(u, v) = Re ψ(u + iv) = Re
∫
φ(z)dz (9.14)

is the real part of ψ(u + iv), then the partial derivatives of x are given by

xu − i xv = φ, (9.15)

and, away from the zeros of φ, the map x is an isothermal parametrisation of a minimal
surface S (possibly with self-intersections).

Proof Equation (9.15) follows immediately from (9.12), and it now follows from
Lemma 1 of §9.6 that xu and xv are orthogonal and have the same length. It follows
that, at those points where φ is non-zero, xu and xv are also non-zero, and hence lin-
early independent, so that x is an isothermal parametrisation of a surface S (possibly
with self-intersections). Finally, we note that x is harmonic, since it is the real part of
the holomorphic function ψ , so minimality of S follows from Corollary 5 of §9.4.

Example 2 (Helicoid) We reverse the process carried out for the helicoid in Example 3 of
§9.6. Let φ : C → C

3 be defined by

φ(z) = (−i sin z, i cos z, 1) .

We have seen that φ is isotropic, and it is clear that

ψ(z) = (i cos z, i sin z, z)



229 9.8 The Weierstrass–Enneper representation

is a primitive of φ. Hence,

x(u, v) = Re
∫
φ(z)dz = Re (ψ(u + iv))

= Re (i cos(u + iv), i sin(u + iv), u + iv)

= (sinh v sin u, − sinh v cos u, u),

which gives the parametrisation of the helicoid used in Example 3 of §9.6.

Returning to our general discussion, we note that if we replace φ by e−iθφ then ψ
may be replaced by e−iθψ and we obtain the 1-parameter family Sθ of the corresponding
associated minimal surface S (as discussed in §9.5). In particular, if we take θ = π/2 then
we obtain the conjugate minimal surface.

For instance, continuing with Example 2, in this case we find that

Re
∫

−iφ(z)dz = Re{−iψ(z)} = Re (cos(u + iv), sin(u + iv), −i(u + iv))

= (cosh v cos u, cosh v sin u, v),

which is the parametrisation of the conjugate minimal surface, the catenoid, as discussed
in Example 2 of §9.5.

9.8 TheWeierstrass–Enneper representation

The construction described in the proof of Proposition 1 of §9.7 is potentially very useful
because it shows how all minimal surfaces in R

3 may (locally at least) be constructed from
holomorphic isotropic C

3-valued functions. However, we still have the question of how to
actually find all such functions φ. We complete our description of the Weierstrass–Enneper
representation by showing how to do this using a suitable pair of complex-valued functions.

Proposition 1 Let f , g be complex-valued functions defined on an open set U in the com-
plex plane. Assume that f is holomorphic on U, g is holomorphic on U except for poles,
and the singularities of f g2 are removable. Then the function φ : U → C

3 defined by

φ = 1

2

(
f (1 − g2), i f (1 + g2), 2 f g

)
(9.16)

is holomorphic and isotropic in U. Conversely if φ : U → C
3 is holomorphic and isotropic

then there exist unique functions f , g as above such that φ is given by (9.16). In fact if
φ = (φ1,φ2,φ3) then

f = φ1 − iφ2, g = φ3

φ1 − iφ2
. (9.17)

Finally, φ is zero at some point if and only if f is zero at that point.

Remark 2 If g has a pole of order r at z0, then f g2 has a removable singularity at z0 if and
only if f has a zero of order at least 2r at z0.
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Proof of Proposition 1 If we are given functions f and g as in the first two sentences of the
statement of the proposition, then some easy algebra shows that the holomorphic function
φ defined by (9.16) satisfies φ1

2 + φ2
2 + φ3

2 = 0.
Conversely, given a holomorphic isotropic C

3-valued function φ, it is clear that (9.17)
gives necessary conditions for (9.16) to hold, and more algebra shows that these conditions
are also sufficient. Moreover, the singularities of f g2 are removable since

f g2 = φ3
2

φ1 − iφ2
= −φ1

2 + φ2
2

φ1 − iφ2
= −(φ1 + iφ2).

Finally, it is clear from (9.16) that φ is zero if and only if f is zero. �

The formula (9.16) for φ in terms of f and g is called the Weierstrass–Enneper formula.

The following important theorem is the culmination of our description of the
Weierstrass–Enneper representation; a method of constucting minimal surfaces using
suitable pairs of complex functions.

Theorem 3 (The Weierstrass–Enneper representation) Let f (z), g(z) be complex-valued func-
tions defined on a simple domain U. Assume that:

(i) f is holomorphic on U,

(ii) g is holomorphic on U except for poles, and

(iii) if g has a pole of order r at z0, then f has a zero of order at least 2r at z0.

Let x be defined by

x(u, v) = Re

{∫
1

2

(
f (1 − g2), i f (1 + g2), 2 f g

)
dz

}
. (9.18)

Then, away from the zeros of f , x is an isothermal parametrisation of a minimal surface
(possibly with self-intersections) in R

3.
Conversely, if U is a simple domain, and if x : U → S is an isothermal local parametri-

sation of a minimal surface S in R
3, then there exist functions f , g with properties (i), (ii)

and (iii) such that (9.18) holds.
Finally, if (9.18) holds, then the partial derivatives xu, xv are related to f and g by

xu − i xv = φ,

where φ is the integrand in (9.18).

Remark 4 The important direction in the above theorem is that, from a suitable choice of
f and g, we may use (9.18) to construct a corresponding minimal surface. For this to work,
we need that the integrand φ in (9.18) should have an indefinite integral ψ . This is assured
by our assumption that U is a simple domain, but if we drop this latter assumption then the
integrand in (9.18) given by a particular choice of f and g may well still have an indefinite
integral ψ in which case (9.18) still defines an isothermal parametrisation x = Re ψ of
a minimal surface. As an example of this, if we take f (z) = z2 and g(z) = 1/z2 then f
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�Figure 9.7 Two views of Richmond’s surface

and g have the required properties on U = C \ {0}. The corresponding function φ (see
Exercise 9.9) is given by

φ(z) = 1

2

(
z2 − 1

z2
, i z2 + i

z2
, 2

)
,

which clearly has an indefinite integral ψ on U . Hence x : U → R
3 given by taking

x = Re ψ gives an isothermal parametrisation of a minimal surface. This is Richmond’s
surface (Figure 9.7). You are asked to find an explicit formula for x(u, v) in Exercise 9.9.

Proof of Theorem 3 Assume that functions f , g satisfy (i), (ii) and (iii). Then Proposition
1 shows that the function φ given by (9.16) is holomorphic and isotropic. Proposition 1
of §9.7 now shows that, if x is defined by (9.18) then, away from the zeros of f , x is an
isothermal parametrisation of a minimal surface (possibly with self-intersections).

Conversely, assume that x is an isothermal local parametrisation of a minimal surface
S. Then x is harmonic and hence is the real part of a holomorphic function ψ . If we put
ψ ′ = φ as usual, then Lemma 2 of §9.6 shows that φ is holomorphic and isotropic, so, by
Proposition 1 there exist functions f and g satisfying (i), (ii) and (iii) such that φ is given
by (9.16). Since x = Re

∫
φ(z)dz we see that x is given in terms of f and g by (9.18).

The final statement of the theorem follows immediately from Proposition 1 of §9.7. �

Example 5 (Helicoid) Taking U = C and φ = (−i sin z, i cos z, 1) as in Example 2 of §9.7,
we may use (9.17) to see that, in order to obtain the helicoid (as parametrised in Example
2 of §9.5), we should take

f (z) = −i sin z + cos z = e−i z , g(z) = eiz .

Remark 6 As remarked earlier, if the holomorphic isotropic function φ determines the
minimal surface S, then e−iθφ determines the surface Sθ in the associated family. Hence,
we may obtain Sθ by replacing f by e−iθ f and leaving g fixed. In particular, to obtain the
conjugate minimal surface, we replace f by −i f . So, for example, the catenoid is obtained
by taking f (z) = −ie−i z , g(z) = eiz .

We now give some more examples of how to use the Weierstrass–Enneper representation
to construct minimal surfaces. We wish only to give a flavour of this vast area; much more
information, often with excellent graphics, may be found on the internet.
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Example 7 (Enneper’s surface) Let f (z) = 1, g(z) = z. Then

φ(z) = 1

2

(
1 − z2, i(1 + z2), 2z

)
, (9.19)

so, integrating, we see that

ψ(z) = 1

2

(
z − z3

3
, i(z + z3

3
), z2
)

(9.20)

is a primitive of φ. The resulting isothermal parametrisation of a minimal surface is

x(u, v) = 1

2

(
u − u3

3
+ uv2, −v + v3

3
− u2v, u2 − v2

)
,

which is a parametrisation of Enneper’s surface (Figure 9.2).
The associated family of Enneper’s surface are simply rotations of that surface; no new

minimal surfaces are produced. We now use properties of the function φ given in (9.19)
to prove this. In Exercise 9.10 you are invited to use similar ideas to give a slightly more
computational proof using the formula (9.20) for ψ .

If we rotate Enneper’s surface about the vertical axis through angle μ, both xu and
xv are also rotated about the vertical axis through angle μ, and it follows that the holo-
morphic isotropic function φ̃ for the rotated surface is obtained by extending this rotation
to a complex linear map from C

3 to itself. Specifically,

2φ̃(z) =
(

(1 − z2) cosμ− i(1 + z2) sinμ, (1 − z2) sinμ+ i(1 + z2) cosμ, 2z
)

. (9.21)

We note that the map ψ̃ for the rotated surface is obtained from ψ in the same way.
A short calculation using (9.21) shows that

2φ̃(z) =
(

e−iμ − eiμz2, i
(
e−iμ + eiμz2), 2z

)
= e−iμ

(
1 − e2iμz2, i

(
1 + e2iμz2), 2eiμz

)
,

so that

φ̃(e−iμz) = e−iμφ(z).

Hence φ̃ is obtained from e−iμφ by the change of variable w = e−iμz. Then

ψ̃(w) =
∫
φ̃(w) dw = e−iμ

∫
φ(z)

dw

dz
dz

= e−2iμ
∫
φ(z) dz = e−2iμψ(z), (9.22)

so, if x̃(w) = Re ψ̃(w), then x̃(w) is obtained from Re {e−2iμψ(z)} by the change of
variable w = e−iμz. Hence, for each θ , the surface obtained by rotating Enneper’s surface
about the vertical axis through angle μ = θ/2 is obtained from the member Sθ of the
associated family of Enneper’s surface by a change of variable w = e−iθ/2z. In particular,
the conjugate surface is obtained by rotation through π/4. You are asked to give a direct
proof of this in Exercise 9.5.
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Although Enneper’s surface is closed and has finite topology, it also has self-
intersections.

Example 8 (Scherk’s second surface) Let f (z) = 4/(1 − z4), g(z) = i z, and let U be the open
unit disc. The resulting minimal surface is a basic piece of Scherk’s second surface (Figure
9.6); the singly periodic closed minimal surface which, as we mentioned in §9.5, may be
obtained by considering the conjugate surface to a basic piece of the (doubly periodic)
first surface of Scherk. This surface, although having no self-intersections, has infinite
topology.

The Weierstrass–Enneper representation has played and continues to play a crucial role
in research into the local and global properties of minimal surfaces in R

3. The usefulness of
the Weierstrass–Enneper representation is clear – it allows us to construct many examples
of minimal surfaces in R

3. The drawbacks are also clear; the shape and properties of the
minimal surfaces (9.18) described by the representation are not at all apparent – do they
have self-intersections, for instance?

The rapid advances in computer graphics have enabled mathematicians to see on their
screens models of finite pieces of the minimal surfaces which they construct using the
Weierstrass–Enneper representation. This sometimes gives them insights into essential
properties of the surfaces (for instance, possible symmetries) which they have then been
able to establish mathematically. This, in turn, has enabled them to decide some of the
difficult global properties such as the existence or otherwise of self-intersections. This
type of investigation was carried out by Hoffman, Hoffman and Meeks in their pioneering
work (establishing the properties of Costa’s minimal surface (Figure 9.8), for example)
mentioned in §9.2.

9.9 Finding I , I I , N and K

Let S be the minimal surface resulting from applying the Weierstrass–Enneper representa-
tion to suitable functions f and g. Although the actual shape of the surface may not be at
all clear (without using computer graphics), many of the geometrical quantities of S may
be determined directly from f and g. In this section we obtain expressions in terms of f
and g for the first fundamental form, the Gauss map, the second fundamental form, and the
Gaussian curvature of S.

�Figure 9.8 Costa’s minimal surface
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Proposition 1 Let x(u, v) be the isothermal parametrisation of a minimal surface con-
structed from functions f and g via the Weierstrass–Enneper representation (9.18). Then
the coefficients E, F and G of the first fundamental form are given by

E = G = 1

4
| f |2(1 + |g|2)2, F = 0. (9.23)

Proof That E = G and F = 0 follows since x is an isothermal parametrisation.
Since φ = xu − i xv , if we put E = G = λ2 then, denoting complex conjugation as

usual by ¯ ,

φ.φ̄ = (xu − i xv).(xu + i xv) = 2λ2,

so that, using (9.16),

2λ2 = φ.φ̄ = 1

4
| f |2(|1 − g2|2 + |1 + g2|2 + 4|g|2)

= 1

2
| f |2(1 + |g|2)2,

and the result follows.

Continuing our theme of capturing the geometry of the minimal surface obtained from
f and g in the Weierstrass–Enneper representation, we now show that the map g is essen-
tially the Gauss map N of the corresponding minimal surface. To do this we shall use
stereographic projection of S2(1) from the north pole (0, 0, 1) onto the xy-plane (identi-
fied with C as usual). This is the map π : S2(1) \ {(0, 0, 1)} → C which maps a point
(x , y, z) ∈ S2(1) \ {(0, 0, 1)} to the intersection with the xy-plane of the line in R

3 through
(0, 0, 1) and (x , y, z). A short calculation (see, for instance, Exercise 2.1) shows that

π (x , y, z) = x + iy

1 − z
. (9.24)

Theorem 2 Let S be the minimal surface constructed from functions f and g via the
Weierstrass–Enneper representation (9.18). Then

πN = g,

where N is the Gauss map of S and π is stereographic projection from the north pole of
the unit sphere.

Proof Let x(u, v) be the isothermal parametrisation of S constructed from f and g. Then

xu × xv = 1

2i
(xu − i xv) × (xu + i xv)

= 1

2i
φ × φ̄,

so that

N = xu × xv
|xu × xv| = −i

φ × φ̄

|φ × φ̄| . (9.25)
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However, a little calculation using (9.16) shows that

φ × φ̄ = f f̄ (1 + gḡ)

2
(i(g + ḡ), g − ḡ, i(gḡ − 1)) , (9.26)

so that, from (9.25),

N = (g + ḡ, −i(g − ḡ), gḡ − 1)

|g|2 + 1

= (2 Re g, 2 Im g, |g|2 − 1)

|g|2 + 1
. (9.27)

The result now follows from the formula (9.24) for stereographic projection.

Example 3 (Catenoid) Using the standard parametrisation of the catenoid, we saw in
Example 1 of §4.1 that

N = (cos u, sin u, − sinh v)

cosh v
,

so that

πN = cos u + i sin u

cosh v

1

1 + tanh v
= cos u + i sin u

ev
= e−v+iu ,

which is the expression for g we found in Remark 6 of §9.8 for the standard parametrisation
of the catenoid using the Weierstrass–Enneper representation.

Theorem 2 fits in nicely with some of our earlier results. We showed in Proposition 2 of
§9.2 that the Gauss map N of a minimal surface is weakly anti-conformal, while, as noted
in §9.3, stereographic projection from the north pole of S2(1) is anti-conformal at all points
of S2(1) (except the north pole, where it is not defined). Thus we obtain the map g (which
is holomorphic, and hence weakly conformal, away from its poles) as the composite of two
weakly anti-conformal maps.

Having obtained an expression for the Gauss map N in terms of g, we may differentiate
this to obtain the coefficients L , M and N of the second fundamental form in terms of f
and g.

Proposition 4 Let L, M and N be the coefficients of the second fundamental form of the
minimal surface constructed from f and g via the Weierstrass–Enneper representation.
Then L = −N, and

L − i M = − f g′.

In particular, the function L − i M is holomorphic and

L = −N = −Re ( f g′), M = Im ( f g′).

Proof Since we are dealing with an isothermal local parametrisation of a minimal surface,
(9.7) gives that L + N = 0, so that, using the definition of L , M and N , and recalling that
we have extended the inner product to a complex-valued bilinear form on C

3 × C
3,
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(
∂

∂u
− i

∂

∂v

)
N .φ = (Nu − i Nv).(xu − i xv)

= 2(−L + i M). (9.28)

We now use the expression (9.27) for N obtained in the proof of Theorem 2 to find an
expression for the left hand side of the above equation in terms of f and g.

We first note that (9.12) and (9.13) applied to g give that(
∂

∂u
− i

∂

∂v

)
Re g = i

(
∂

∂u
− i

∂

∂v

)
Im g = g′,

so, using the fact that N .φ = N .(xu − i xv) = 0, we may use (9.27) to find that(
∂

∂u
− i

∂

∂v

)
N .φ = 2

1 + |g|2 (g′, −ig′, g′ḡ).φ

= f g′

1 + |g|2 (1 − g2 + 1 + g2 + 2gḡ)

= 2 f g′,

and the required expressions for L , M and N follow from (9.28).

Example 5 (Catenoid) As noted in Remark 6 of §9.8, if we take f (z) = −ie−i z and g(z) =
eiz then the Weierstrass–Enneper representation gives the standard parametrisation of the
catenoid. Since f g′ = 1, we see immediately that L = −N = −1 and M = 0.

We may use the expressions for L , M and N obtained in Proposition 4 to find a formula
for the Gaussian curvature K in terms of f and g.

Theorem 6 The Gaussian curvature K of the minimal surface constructed from f and g
via the Weierstrass–Enneper representation (9.18) is given by

K = − 16|g′|2
| f |2(1 + |g|2)4

. (9.29)

Proof From Proposition 4,

L N − M2 = − (Re ( f g′)
)2 − (Im ( f g′)

)2 = −| f |2|g′|2,

so, using Proposition 1 and Proposition 4,

K = L N − M2

EG − F2
= −|L − i M |2

EG − F2
= − 16| f |2|g′|2

| f |4(1 + |g|2)4
= − 16|g′|2

| f |2(1 + |g|2)4
,

as required.

The above result confirms the fact that, for a minimal surface, K ≤ 0.

Example 7 For the standard parametrisation of the catenoid, we have K = − cosh−4 v. A
quick check shows that we obtain the same expression for K if we take f (z) = −ie−i z ,
g(z) = eiz in (9.29).
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We have seen that all members of the associated family of a minimal surface have the
same metric. We now show that, conversely, if two minimal surfaces have the same metric
then, up to rigid motions of R

3, the two surfaces are in the same associated family.

Theorem 8 Let x(u, v), x̃(u, v) be isothermal parametrisations (with connected domain)
of minimal surfaces S, S̃ with E = Ẽ . Then x and x̃ are in the same associated family.

Proof It follows from the Theorema Egregium that K = K̃ , and so L N−M2 = L̃ Ñ−M̃2.
However, L + N = 0 = L̃ + Ñ so that

L2 + M2 = L̃2 + M̃2,

which means that the functions L − i M and L̃ − i M̃ have the same modulus. Proposition 4
says that both these functions are holomorphic, which implies that L − i M = eiθ (L̃ − i M̃)
for some constant θ . We may now use Proposition 4 again, together with Remark 6 of
§9.8, to show that S̃ has the same coefficients of first and second fundamental forms as
the element Sθ of the associated family of S. Hence, by Bonnet’s Theorem (Theorem 1 of
§6.3), S̃ may be obtained by applying a rigid motion of R

3 to Sθ .

9.10 Surfaces of constant mean curvature

We conclude this chapter by briefly considering surfaces of constant mean curvature or
CMC surfaces in R

3. As would be expected, they are somewhat more difficult to deal with
than the special case of minimal surfaces, but they have some beautiful properties.

As mentioned earlier, CMC surfaces arise from the variational problem of finding com-
pact surfaces of stationary area bounding a given volume. Simple examples of non-minimal
CMC surfaces are given by the sphere and the cylinder, each of which has constant prin-
cipal curvatures. The sphere is the shape assumed by a soap bubble, and is the solution
to the problem of finding a surface of minimal area which encloses a given volume or,
equivalently, maximising the volume enclosed by a surface of a given area. In other words
it is the solution of the 2-dimensional version of the isoperimetric problem for curves in
the plane (which says that the circle is the closed plane curve of shortest length enclosing
a given area).

9.11 CMC surfaces of revolution

In this section we give an account of the description due to Delaunay of all CMC surfaces of
revolution. As usual with such problems, we seek to reduce the problem to that of solving
an ordinary differential equation for the generating curve.

To save on calculation, we consider that part of the surface of revolution S for which
the generating curve is not orthogonal to the axis of rotation. We may thus assume a
parametrisation of the form

x(u, v) = ( f (v) cos u, f (v) sin u, v), f (v) > 0 ∀v, (9.30)
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and we have seen in Proposition 4 of §5.6 that the mean curvature of S is given by

H = f f ′′ − f ′2 − 1

2 f (1 + f ′2)3/2
.

It follows from this that

d

dv

(
f

(1 + f ′2)1/2

)
= −2 f f ′H ,

so that

d

dv

(
H f 2 + f

(1 + f ′2)1/2

)
= d H

dv
f 2 + 2 f f ′H − 2 f f ′ H = d H

dv
f 2.

Hence S has constant mean curvature H if and only if f (v) satisfies

H f 2 + f

(1 + f ′2)1/2
= c, (9.31)

for some constant c.
If H = 0, that is to say, S is minimal, then (9.31) integrates up to give the equation of

a catenary, the generating curve of the catenoid (which confirms our earlier remark that
the catenoid is the only minimal surface of revolution). If H 	= 0 but c = 0, then H < 0
and the solutions of (9.31) are f (v) = (H−2 − v2)1/2, so that the corresponding surface is
a sphere of radius 1/|H |. If neither H nor c are zero then it turns out that the generating
curve is the locus of the focus of a conic, as the conic is rolled along a straight line. If H
and c have the same sign, the conic is an ellipse; if they have opposite signs, the conic is a
hyperbola. These roulettes (Figure 9.9) are called undularies (for the ellipse) and nodaries
(for the hyperbola); the corresponding surfaces of revolution are unduloids and nodoids.
The roulette of a parabola is a catenary, so the corresponding surface of revolution is the
(minimal) catenoid.

In all the above cases, the axis of rotation is the line along which the conic is rolled
(which we call the axis of the roulette) The corresponding surfaces of revolution are the
Delaunay surfaces (Figure 9.10); these (together with planes and spheres, of course) are
the only CMC surfaces of revolution.

�Figure 9.9 Roulettes of ellipse and hyperbola

�Figure 9.10 Delaunay CMC surfaces of revolution
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Theorem 1 (Delaunay’s Theorem) Other than planes and spheres, the connected surfaces of
revolution in R

3 with constant mean curvature are precisely those obtained by rotating
about their axes the roulettes of the conic sections.

9.12 CMC surfaces and complex analysis

As in the case of minimal surfaces, the theory of holomorphic functions plays a key role in
the description and analysis of CMC surfaces in R

3. As we did for minimal surfaces, we
shall consider isothermal local parametrisations of our surfaces, and in this section it will
again be convenient to put E = G = λ2.

The following lemma, involving the coefficients L , M and N of the second fundamental
form, is a crucial first step. It is a generalisation of part of Proposition 4 of §9.9.

Lemma 1 Let S be a connected surface in R
3. Then S has constant mean curvature if and

only if, for every isothermal local parametrisation x(u, v), the complex valued function
L − N − 2i M is a holomorphic function of u + iv.

Proof We have seen that, for an isothermal local parametrisation, equation (9.3) for the
mean curvature may be written as

2Hλ2 = L + N , (9.32)

and that the Codazzi–Mainardi equations obtained in Chapter 6 simplify to give

Lv − Mu = 2Hλλv , Nu − Mv = 2Hλλu . (9.33)

Differentiating (9.32), we obtain

2Hλλu = Lu + Nu − 2λ2 Hu , 2Hλλv = Lv + Nv − 2λ2 Hv ,

and, substituting for Hλλu and Hλλv in (9.33), the Codazzi–Mainardi equations (9.33)
may be written as

(L − N )v − 2Mu = −2E Hv ,

(L − N )u + 2Mv = 2E Hu .

Hence Hu = Hv = 0 if and only if (L − N )u = −2Mv and (L − N )v = 2Mu . But these
last two equations are the Cauchy–Riemann equations for the complex-valued function
L − N − 2i M .

We note that, when using an isothermal local parametrisation, L = N and M = 0 if and
only if xu and xv are eigenvectors of the Weingarten map with equal eigenvalues, that is
to say, if and only if we are at an umbilic. Using this, we can prove the following corollary
of Lemma 1; it follows from the fact the zeros of a non-zero holomorphic function are
isolated.

Corollary 2 Let S be a connected CMC surface which is not part of a sphere or a plane.
Then the umbilics of S occur at isolated points.
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We now generalise results we have already obtained for minimal surfaces by showing
that CMC surfaces having the same metric occur in 1-parameter families. More precisely,
we show the following.

Theorem 3 Let x(u, v) be an isothermal local parametrisation (with connected domain) of
a surface S in R

3 with constant mean curvature c.

(i) There is a 1-parameter family {xθ (u, v)} of isothermal local parametrisations of sur-
faces {Sθ } in R

3 which have the same metric and the same constant mean curvature c
as S.

(ii) Let x̃(u, v) be an isothermal local parametrisation of a surface S̃ in R
3 having the

same metric and same constant mean curvature c as S. Then, up to rigid motions of
R

3, x̃ is a member of the family {xθ }.
Proof (i) Let L , M and N be the coefficients of the second fundamental form of x. For a

real number θ , define functions L̃ , M̃ and Ñ in terms of L , M and N by the following
two equations:

L̃ + Ñ = L + N , (9.34)

and

L̃ − Ñ − 2i M̃ = eiθ (L − N − 2i M). (9.35)

We show that the Gauss formula and the Codazzi–Mainardi equations hold for L̃ ,
M̃ and Ñ (keeping the metric fixed), and the result will then follow from (9.34) and
Bonnet’s Theorem (Theorem 1 of §6.3).

To check that the Gauss formula holds, we need only check that L̃ Ñ − M̃2 =
L N − M2. To do this we note that

|L̃ − Ñ − 2i M̃ |2 = (L̃ − Ñ )2 + 4M̃2 = (L̃ + Ñ )2 − 4(L̃ Ñ − M̃2), (9.36)

with a similar expression for |L − N − 2i M |2. Equations (9.34) and (9.35) now imply
that the Gauss formula holds.

We now check that the Codazzi–Mainardi equations in the form of (6.16) and (6.17)
hold for L̃ , M̃ and Ñ . Using (9.34), this is equivalent to showing that

L̃v − M̃u = Lv − Mu and M̃v − Ñu = Mv − Nu .

However, (9.35) implies that L̃ − Ñ − 2i M̃ is holomorphic, so using the Cauchy–
Riemann equations we find

2(L̃v − M̃u) = 2L̃v − (L̃v − Ñv) = L̃v + Ñv = Lv + Nv = 2(Lv − Mu).

The second equation is proved in a similar manner.
(ii) We show that the coefficients of the second fundamental form of x̃(u, v) satisfy (9.34)

and (9.35) for some real number θ . The result will then follow from Bonnet’s Theorem.
That (9.34) holds is immediate from the assumptions. For (9.35), we note that

similar working to that employed in the proof of (i) shows that since K = K̃ ,

|L̃ − Ñ − 2i M̃ |2 = |L − N − 2i M |2, (9.37)

so Lemma 1 now implies that (9.35) holds for some real number θ .
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Remark 4 In Theorem 3, if S is a minimal surface then the corresponding 1-parameter
family {Sθ } is the associated family of S.

9.13 Link with Liouville and sinh-Gordon equations

In this section we pick up on a comment made in §9.5 and discuss the question of which
isothermal metrics can occur as the metric of a minimal, or, more generally CMC, surface
in R

3. In doing so, we discover an interesting and useful relationship between CMC sur-
faces and two very important equations, namely Liouville’s equation and the sinh-Gordon
equation.

We first show, in Proposition 2, that we may pick a particularly useful isothermal local
parametrisation of a CMC surface, namely one for which M = 0 and L − N is constant.
For convenience later in this section, we take this constant to be −2. As we have seen in
Example 5 of §9.9, the standard parametrisation of the catenoid has this property, as has
the parametrisation of Enneper’s surface given in Example 7 of §9.8.

We begin by noting that if we extend the second fundamental form to a complex
quadratic form (we did similar in §9.6 for the inner product) then the function L −N −2i M
can be written as

L − N − 2i M = I I (xu − i xv). (9.38)

We use this to show how the complex function L − N − 2i M transforms under change of
isothermal local parametrisations. This will be useful in the next two sections, but we shall
require Lemma 1 from the optional §3.9 for the proof.

Lemma 1 Let x(u, v) and x̃(ũ, ṽ) be two isothermal local parametrisations of a surface
S in R

3 with transition function h(u, v) = (ũ(u, v), ṽ(u, v)) (so that x̃h = x). If x and
x̃ induce the same orientation on the overlap of their images, then h is a non-singular
holomorphic function and the components L , M , N and L̃ , M̃ , Ñ of the second fundamental
form with respect to the parametrisations x(u, v) and x̃(ũ, ṽ) are related by

(L̃ − Ñ − 2i M̃)h′2 = L − N − 2i M . (9.39)

Proof We note that h = x̃−1x, so that h is a conformal orientation-preserving dif-
feomorphism between open sets of the Euclidean plane. Hence h is non-singular and
holomorphic.

A short calculation using the change of variable formula (3.31), and (9.12) and (9.13),
shows that

xu − i xv = (x̃ũ − i x̃ ṽ)h′,

and the result now follows from (9.38).

Proposition 2 Let p be a non-umbilic point on a CMC surface S in R
3. Then there exists

an isothermal local parametrisation of an open neighbourhood of p such that

L − N = −2, M = 0. (9.40)
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Proof Let x(u, v) be an isothermal local parametrisation of an open neighbourhood of p
in S which contains no umbilics. It follows from Lemma 1 of §9.12 that L − N − 2i M
is a nowhere zero holomorphic function of z = u + iv, so, by restricting to a sufficiently
small open neighbourhood of p, we may write L − N − 2i M = μ2 for some nowhere zero
holomorphic function μ. Equation (9.39) then shows that the required change of variables
may be found on a suitable open neighbourhood of p by taking h to be a primitive of
iμ/

√
2 (constructed as described in §9.7).

We note from (9.39) that the isothermal parametrisation for which (9.40) holds is
unique up to translations and change of sign. The geometrical significance of this local
parametrisation is that (see Lemma 1 of §5.6) the coordinate curves are also lines of
curvature.

In the following theorems, � denotes the Laplacian ∂2/∂2u + ∂2/∂2v. Also, to get the
equations in a nice form, we take E = G = eω.

Theorem 3 (i) Each non-umbilic point on a minimal surface S determines a solution ω
of the Liouville equation

�ω − 2e−ω = 0.

(ii) For each solution ω of the Liouville equation, there is a 1-parameter family {xθ } of
isothermal parametrisations of minimal surfaces {Sθ } which have E = G = eω,
F = 0.

Proof (i) Let x(u, v) be an isothermal parametrisation of an open neighbourhood of p in
S as in Proposition 2. Then L = −1, M = 0 and N = 1, so the expression (6.11) for
K in terms of an isothermal parametrisation with E = G = eω gives

−e−2ω = −(1/2)e−ω�ω,

which leads directly to the Liouville equation.
(ii) Conversely, if ω is a solution of the Liouville equation, then for each θ the functions

E = G = eω, F = 0, Lθ = − cos θ , Mθ = sin θ , Nθ = cos θ , satisfy the conditions
of Bonnet’s Theorem, so there exists a corresponding parametrisation xθ of a surface,
which is clearly minimal.

We now consider the corresponding result for CMC surfaces which are not minimal. We
note that, by rescaling and changing the direction of the unit normal if necessary, we may
assume that such a surface has constant mean curvature c = 1.

The proof of the following theorem is similar to that of Theorem 3. In this case, though,
we take Lθ = − cos θ + eω, Mθ = sin θ , Nθ = cos θ + eω.

Theorem 4 (i) Each non-umbilic point on a surface S of constant mean curvature c = 1
determines a solution ω of the sinh-Gordon equation

�ω + 4 sinhω = 0. (9.41)
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(ii) For each solution ω of the sinh-Gordon equation, there is a 1-parameter family {xθ } of
isothermal parametrisation of surfaces {Sθ } of constant mean curvature c = 1 which
have E = G = eω, F = 0,

The Liouville equation and the sinh-Gordon equation are both elliptic partial differential
equations, for which there is a well-developed theory of existence and uniqueness of solu-
tions. For instance, it is easily checked that ω = 2 log(cosh v) is a solution of Liouville’s
equation, and, from Example 5 of §9.9, the corresponding 1-parameter family of minimal
surfaces is the associated family of the catenoid.

The above ideas have been of crucial importance in many of the strides which have been
taken in the understanding of CMC surfaces. An example of this is given towards the end
of §9.14, when we give a very brief description of some work of Wente.

9.14 CMC spheres

We begin this section by explaining the section heading. In this section, by a “sphere” we
shall mean a surface which is diffeomorphic to the sphere S2(1). We shall distinguish our
standard model by referring to S2(r ) as a round sphere.

The round spheres are our first, and so far our only, examples of compact CMC surfaces
in R

3. As we shall see in this section, there are very good reasons for this lack of compact
examples. In order to prove Theorem 2, we need a deep result in complex analysis called
the Uniformization Theorem. The proof of this is beyond the scope of this book, so we
content ourself with a statement in the following form.

Theorem 1 (Uniformization Theorem) If there is a diffeomorphism from a surface S onto the
round sphere S2(1), then there is a conformal diffeomorphism from S onto S2(1).

Using this, we can now prove the following.

Theorem 2 (Hopf) Let S be a CMC sphere in R
3 (possibly with self-intersections). Then S

is a round sphere.

Proof We shall show that every point of S is an umbilic and hence, by Theorem 1 of §5.8,
S is a round sphere.

Using the Uniformization Theorem, we let f : S2(1) → S be a conformal diffeomor-
phism. We use this to define two isothermal local parametrisations whose images cover S.
Specifically, we let x : C → S2(1) be the inverse of stereographic projection from the
north pole, and let x̃ : C → S2(1) be complex conjugation followed by the inverse of
stereographic projection from the south pole. If we now let y = f x and ỹ = f x̃, then y
and ỹ are our required isothermal parametrisations of S. Moreover, equation (4.18) gives
that

ỹ(z̃) = y(z) where z̃ = h(z) = 1/z, (9.42)
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�Figure 9.11 Wente torus

so, from (9.39), we now have that

(L̃ − Ñ − 2i M̃)

(
− 1

z2

)2

= L − N − 2i M . (9.43)

Lemma 1 of §9.12 says that L − N − 2i M is a holomorphic function on the whole of C,
so we may write this as a Taylor series in z,

L − N − 2i M =
∞∑

k=0

ak zk ,

for suitable constants ak , k = 0, 1, . . .. Similarly,

L̃ − Ñ − 2i M̃ =
∞∑

k=0

ãk z̃k ,

for suitable constants ãk , k = 0, 1, . . ., so that (9.43) gives
∞∑

k=0

ãk

(
1

z

)k

= z4
∞∑

k=0

ak zk ,

which is possible if and only if ak = ãk = 0 for all k. This means that L = N and M = 0,
so that every point is an umbilic, as required.

A related result, due to Alexandrov, states that round spheres are the only compact con-
nected CMC surfaces without self-intersections in R

3. Indeed, Alexandrov proved a higher
dimensional version of this result. As a result of his own theorem and that of Alexandrov,
Hopf conjectured that, even if we allow the possibility of self-intersections, spheres are
the only compact connected CMC surfaces in R

3. However, a counterexample to this con-
jecture was found by Wente in 1984. He constructed an example (Figure 9.11) of a CMC
torus, necessarily with self-intersections, in R

3 using the method described at the end of
§9.13. Specifically, he found certain solutions ω of the sinh-Gordon equation (9.41) which
are doubly periodic, and showed that, for a suitable choice of the parameters involved,
a member of the corresponding family {xθ } found in Theorem 4 of §9.13 is also doubly
periodic, and hence the corresponding surface Sθ is a CMC torus.

Exercises

9.1 Show that, by applying a suitable re-scaling of Euclidean space, and by changing
the direction of the unit normal if necessary, we may always assume that any CMC
surface in R

3 is either minimal or has constant mean curvature H = 1.
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9.2 As noted in Chapter 5, although the mean curvature H of a surface S in R
3 changes

sign when N is replaced by −N , the mean curvature vector H = H N is independent
of choice of sign of N . Show that

xr = x + r H

defines a normal variation of the whole of S which reduces the area of every open
neighbourhood of any point of S at which H 	= 0.

9.3 In this exercise we give a method of showing that the catenoid is the only connected
minimal surface of revolution. To save on calculation, we will consider the (slightly
special) case of a minimal surface of revolution which may be parametrised in the
form

x(u, v) = ( f (v) cos u, f (v) sin u, v), v ∈ I , 0 < u < 2π .

(i) Use Proposition 4 of §5.6 to show that f f ′′ − f ′2 − 1 = 0.
(ii) By re-writing the above equation in the form

2 f ′ f ′′

f ′2 + 1
= 2 f ′

f
,

show that f ′2 + 1 = (k f )2 for some positive constant k.
(iii) Show that the graph of f is a catenary.

9.4 Let f (x , y) be a smooth real-valued function defined on an open subset U of R
2.

Show that:

(i) the graph S of f (x , y) is a minimal surface in R
3 if and only if f (x , y) satisfies

the minimal graph equation (9.5)

(1 + fy
2) fxx − 2 fx fy fxy + (1 + fx

2) fyy = 0 ;

(ii) if f (x , y) is a function of x only, then S is minimal if and only if S is a plane
whose normal vector is orthogonal to the y-axis and not parallel to the x-axis;

(iii) if f (x , y) = g(x) + h(y), for smooth non-zero functions g(x) and h(y), then S
is minimal if and only if either S is a plane or f has the form

f (x , y) = c log

⎛
⎝ cos ((x − k)/c)

cos
(

(y − k̃)/c
)
⎞
⎠+ d,

where c, k, k̃, d are constants with c 	= 0.

Deduce that, modulo translations and re-scaling of R
3, there are only two non-

linear solutions of the minimal graph equation of the form f (x , y) = g(x) + h(y),
namely

f (x , y) = ± log

(
cos x

cos y

)
.

Taking the + sign gives Scherk’s first minimal surface, as described in §9.3.
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9.5 (The conjugate to Enneper’s surface) Let

x(u, v) = 1

2

(
u − u3

3
+ uv2, −v + v3

3
− u2v, u2 − v2

)

be the parametrisation of Enneper’s surface given in Example 7 of §9.8. Find the
conjugate minimal surface y(u, v) by finding the harmonic conjugates to each of the
coordinate functions of x. Let x̃ be the composite of x followed by a rotation through
angle π/4 about the vertical axis. Show that, if

ũ = (u + v)/
√

2, ṽ = (−u + v)/
√

2,

then

x̃(ũ, ṽ) = y(u, v),

so that x̃ is obtained from y by the change of variable given above.

9.6 Let x be an isothermal local parametrisation of a minimal surface S in R
3, and let

{xθ } be the family of local parametrisations of the associated family {Sθ } of minimal
surfaces of S as described in §9.5. Show that the coefficients Lθ , Mθ , Nθ of the
second fundamental form of Sθ are given by

Lθ = −Nθ = L cos θ − M sin θ , Mθ = L sin θ + M cos θ .

The following exercises use material in §9.6 to §9.14.

9.7 Let x(u, v) be a local parametrisation of a (not necessarily minimal) surface S in R
3,

and define a nowhere zero C
3-valued function φ(u + iv) by setting

φ = xu − i xv . (9.44)

Show that:

(i) x is isothermal if and only if φ is isotropic, in which case if E = G = λ2 then
φ.φ = 2λ2;

(ii) x is harmonic if and only if φ is holomorphic, in which case if ψ is a
holomorphic C

3-valued function whose real part is x, then φ = ψ ′.

9.8 Let x(u, v) be the isothermal parametrisation of a minimal surface obtained from the
Weierstrass–Enneper representation by taking f (z) = (1−eiz)/2 and g(z) = e−i z/2.

Show that x(u, v) may be written as

x(u, v) = 1

2
(u − sin u cosh v, 1 − cos u cosh v, 4 sin(u/2) sinh(v/2)) ,

which is the isothermal parametrisation of Catalan’s surface (Figure 9.1) that we
investigated in Exercise 7.12.

9.9 Find the isothermal parametrisation x(u, v) of a minimal surface obtained from the
Weierstrass–Enneper representation by taking f (z) = z2 and g(z) = 1/z2. This
is Richmond’s surface, which is illustrated in Figure 9.7. (In fact, the function φ
constructed from this choice of f and g has a singularity at z = 0, but as you will
see, φ still has a primitive ψ on C \ {0}.)
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9.10 (The associated family of Enneper’s surface) This question generalises the result
of Exercise 9.5, and gives an alternative treatment of some of the material in
Example 7 of §9.8. Let ψ be as in (9.20), namely

ψ(z) = 1

2

(
z − z3

3
, i(z + z3

3
), z2
)

,

and let x be the real part of ψ . Show that if x̃ is the composite of x followed by a
rotation through angle μ about the vertical axis then x̃ is the real part of ψ̃ , where

2ψ̃(z) =
(

e−iμz − eiμ z3

3
, i
(
e−iμz + eiμ z3

3

)
, z2
)

.

Now make the change of variable w = e−iμz, and show that

ψ̃(w) = e−2iμψ(z),

which gives a slightly different way of deriving the relation between ψ̃(w) and ψ(z)
obtained in equation (9.22), thus showing that the members of the associated family
of Enneper’s surface are (re-parametrisations of) rotations of the surface about the
vertical axis.

9.11 We saw in Example 7 of §9.8 that the parametrisation of Enneper’s surface given in
Exercise 9.5 arises from the Weierstrass–Enneper representation by taking f (z) = 1
and g(z) = z. By performing a calculation similar to that outlined in Example 3 of
§9.9, verify Theorem 2 of §9.9 for Enneper’s surface by showing that, in standard
notation, πN = g in this case.

9.12 Find the solution of the Liouville equation (as discussed in the proof of Theorem
3(i) of §9.13) which corresponds to the parametrisation of Enneper’s surface given
in Example 7 of §9.8.

9.13 Use the parametrisation

x(u, v) = (sinh v sin u, − sinh v cos u, u)

of the helicoid given in Example 3 of §9.6 to find an isothermal parametrisation of the
helicoid with L̃ = −1, M̃ = 0 and Ñ = 1. Which solution of the Liouville equation
does this correspond to under the correspondence given in the proof of Theorem 3(i)
of §9.13?

9.14 Let ω be a solution of the Liouville equation, and let x(u, v) be the corresponding
isothermal parametrisation of a minimal surface with L = −1, M = 0 and N = 1.
If xθ is a member of the associated family of x, find the corresponding solution of
Liouville’s equation as described in the proof of Theorem 3(i) of §9.13.



10 Hints or answers to some exercises

Chapter 1

1.1 It is clear that all points in the image of α satisfy the equation of the astroid. Con-
versely, if x2/3 + y2/3 = 1, then there exists u ∈ R such that (x1/3, y1/3) =
(cos u, sin u). Thus every point of the astroid is in the image of α.

Trigonometric identities may be used to show that α′ = (3/2) sin 2u(− cos u, sin u),
which is zero only when u is an integer multiple of π/2. The corresponding points of
the astroid are the cusps in Figure 10.1.

α(π /2)

α(0)

�Figure 10.1 Astroid (Exercise 1.1)

The required length is

3

2

∫ π/2

0
sin 2u du = 3

2
.

1.3 When r = 1, a calculation shows that α′ = tanh u sech u(sinh u, −1), so that, for
u ≥ 0, t = sech u(sinh u, −1). It follows that α+ t = (u, 0). A tractrix is sketched in
Figure 10.2(a).

1.5 For u ≥ 0, |α′| = tanh u and t = (tanh u, −sech u). It follows that d t/ds =
(|α′|)−1 t ′ = n/ sinh u. Hence κ = cosech u.

1.6 Either: use Exercise 1.4 to show that the curvature of the catenary α(u) = (u, cosh u)
is given by κ = sech2u,
or: proceed as follows:
α′ = (1, sinh u), so that |α′| = cosh u and t = (sech u, tanh u). Hence n =
(−tanh u, sech u), and

d t
ds

= 1

|α′| t ′ = 1

cosh2 u
(−tanh u, sech u) = 1

cosh2 u
n .

Hence κ = sech2u. Three catenaries are sketched in Figure 10.2(b).

248
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(a) (b)

�Figure 10.2 (a) A tractrix (Exercise 1.3); (b) Three catenaries (Exercise 1.6)

1.9 (i) Let sα be arc length along α measured from u = 0. Since α′ = (1, sinh u) we see
that dsα/du = |α′| = cosh u. Hence sα(u) = sinh u and tα = (sech u, tanh u).
The result follows from formula (1.9) for the involute.

(ii) The evolute of α is given by

β = α + 1

κα
nα .

Here, we have (from Exercise 1.6) that κα = sech2u and nα = (−tanh u, sech u). A
direct substitution gives the result.

A short calculation shows that β ′ = 0 if and only if u = 0, so this gives the only
singular point of β (where the curve β has a cusp). A catenary and its evolute are
sketched in Figure 10.3.

�Figure 10.3 A catenary and its evolute (Exercise 1.9)

1.13 Calculations similar to those of Example 2 of §1.5 show that |α′| = √
2 cosh u,

t = (tanh u, 1, sech u)/
√

2, κ = (1/2)sech2u, n = (sech u, 0, −tanh u), and b =
(−tanh u, 1, −sech u)/

√
2. Differentiating one more time, we find that db/ds =

(1/2)sech2u(−sech u, 0, tanh u), so that τ = −(1/2)sech2u.

1.17 Assume there is a unit vector X0 such that t .X0 = c, a constant. Then n.X0 = 0, so
that X0 = ct + c1b for some constant c1. Then 0 = X0

′ = |α′|(cκ + c1τ )n, so that
κ/τ = −c1/c which is constant.

Conversely, if κ/τ = k, a constant, the Serret–Frenet formulae may be used to
show that t − kb is constant. The result follows since t .(t − kb) = 1.

1.18 The assumption on α implies the existence of a smooth function r (u) such that α +
rn = p. Now differentiate and use Serret–Frenet to find r , κ and τ .

1.19 The given information implies that nα = ±nβ .

(i) Differentiating tα .tβ (with respect to u), and using Serret–Frenet, gives that tα .tβ
is constant.

(ii) The given information implies the existence of a smooth function r (u) such that
β = α + rnα . Now differentiate and use Serret–Frenet.
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Chapter 2

2.1 The line through (u, v, 0) and (0, 0, 1) may be parametrised by α(t) = t(u, v, 0) +
(1 − t)(0, 0, 1). This line intersects S2(1) when |(tu, tv, (1 − t))|2 = 1, and a short
calculation gives that t = 0 or t = 2/(u2 + v2 + 1). Since t = 0 corresponds to
(0, 0, 1), we quickly see that x(u, v) is as claimed.

The formula for F follows from consideration of similar triangles, and that
Fx(u, v) = (u, v) is a routine calculation. That x is a local parametrisation as
claimed follows quickly by checking conditions (S1) and (S2).

2.3(a) (i) There are many ways. The one which perhaps is closest to that given in Exam-
ple 4 of §2.1 is to cover the cylinder by four local parametrisations as follows.
Firstly, let U = {(u, v) ∈ R

2 : −1 < u < 1, v ∈ R} and let x : U → R
3 be

given by x(u, v) = (u,
√

1 − u2, v). Then find W and F such that conditions
(S1) and (S2) are satisfied. Now cover the cylinder using three other similar
local parametrisations.

(ii) Use the fact that the image of (x , y, z) under rotation about the z-axis through
angle u is (x cos u − y sin u, x sin u + y cos u, z).

(iii) Use f (x , y, z) = x2 + y2 − 1.
2.5(a) It is clear that grad f = 0 exactly when x + y + z = 1, and these are the points of

R
3 which are mapped to zero under f . It follows that the equation f (x , y, z) = k

defines a surface for any k > 0, while f (x , y, z) = k is the empty set (and so not
a surface) if k < 0. Note that, although grad f vanishes at every point satisfying
f (x , y, z) = 0, this set is still a surface, namely the plane x + y + z = 1.

This example shows that Theorem 1 of §2.4 is not an “if and only if” theorem.
2.7 A routine check shows that if f (x , y, z) = (x2/a2) + (y2/b2) + (z2/c2) then grad f

is never zero on S. Hence S is a surface.

(i) One suitable choice of F : W → R
2 is obtained by taking

W = {(x , y, z) ∈ R
3 : |z| < c, and if y = 0 then x > 0},

and

F(x , y, z) =
(

Arg
( x

a
+ i

y

b

)
, arcsin

( z

c

))
.

(ii) We check conditions (1), (2) and (3) of that theorem. Firstly, f x(u, v) =
cos2 v + sin2 v = 1, so (1) holds. Secondly, if x(u1, v1) = x(u2, v2) then com-
paring the third component gives that v1 = v2. The first two components then
show that u1 = u2. Finally, it is clear that xu and xv are linearly independent
unless cos v = 0, which never happens for the given range of values of v.

2.9 Show S is a surface by applying Theorem 1 of §2.4 to the function f (x , y, z) =
x sin z − y cos z. It is clear that f x(u, v) = 0 for all (u, v) ∈ R

2, so that the image
of x is a subset in S. To show that the image of x is the whole of S, we note that if
(x , y, z) ∈ S then x(z, x cos z + y sin z) = (x , y, z).

Part (i) is straightforward, and the working above shows that, for (ii), we can take
F(x , y, z) = (z, x cos z + y sin z).
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Chapter 3

3.1 Here, xu = (1, 0, 2u) and xv = (0, 1, 3v2). Since these vectors span the tangent plane,
we would need both (1, 0, 2u).(−1, 1, 0) and (0, 1, 3v2).(−1, 1, 0) to be zero. Clearly,
neither expression can be zero!

3.3 Let f (x , y, z) = 2x2 − xy + 4y2. Then (grad f )(0, 1/2, 2) = (−1/2, 4, 0), so the
unit normal there is (−1, 8, 0)/

√
65. A basis for the tangent plane at (0, 1/2, 2) is

provided by any pair of linearly independent vectors orthogonal to the normal, for
instance (0, 0, 1) and (8, 1, 0).

3.7 Let f (x , y, z) = (x2/a2) + (y2/b2) + (z2/c2). Then grad f = 2(x/a2, y/b2, z/c2),
and it follows that the equation of the tangent plane based at (a/2, b/2, c/

√
2) is

x/a + y/b + √
2z/c = 2.

3.8 Here, xu = (cos v, sin v, 1) and xv = (−u sin v, u cos v, − tan v). Hence E =
xu .xu = 2, and, similarly, F = − tan v, and G = u2 + tan2 v.

3.10 Routine calculations show that the surface S has E = G = cosh2 v, F = 0. That
xu = x̃v and xv = −x̃u is straightforward, and the rest of the solution is now quick.

3.12 (i) A short calculation shows that the required length is 2
∫ 1

0 cosh t dt = 2 sinh 1.
(ii) The two given curves intersect when t = r = 0, which gives u = v = 0. The

result follows since α′(0).β ′(0) = (xu +xv).(xu −xv)(0, 0) = (E −G)(0, 0) = 0.
3.15 Here

xu = 2

(u2 + v2 + 1)2
(−u2 + v2 + 1, −2uv, 2u),

from which it follows that

E = 4

(u2 + v2 + 1)2
.

That F = 0 and G = 4(u2 + v2 + 1)−2 may be shown in a similar manner.
3.17 Let f (u+iv) = x(u, v)+iy(u, v), where x(u, v) and y(u, v) are the real and imaginary

parts of f . Then x(u, v) = (u, v, x(u, v), y(u, v)) so that xu = (1, 0, xu , yu) and
xv = (0, 1, xv , yv). That E = G and F = 0 follows from the Cauchy–Riemann
equations, xu = yv and xv = −yu .

3.19 Here, E = G = 1 and F = 0. The family F is given by φ(u, v) = constant, where
φ(u, v) = v sin u/(1 − cos u), and it follows that the tangent vectors to the family F
are scalar multiples of u′xu +v′xv , where u′v = v′ sin u. This shows that the tangent
vectors to F are scalar multiples of sin uxu + vxv , so that β(r ) = x (u(r ), v(r )) is an
orthogonal trajectory of F if and only if

du

dr
sin u = −v dv

dr
.

Integrating, we see that the orthogonal trajectories of F are given by 2 cos u−v2 =
constant. Now check that |x(u, v)|2 is constant on each of these trajectories.

3.24 The given line lies on S if and only if, for all λ ∈ R,

(p1 + λv1)(p2 + λv2) = (p3 + λv3) .

Since (p1, p2, p3) ∈ S, we see that the above holds if and only if v1 p2 + p1v2 = v3

and v1v2 = 0. This implies that (v1, v2, v3) is a scalar multiple of either (0, 1, p1) or
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(1, 0, p2). Hence S is a doubly ruled surface, and the rulings intersect orthogonally if
and only if p1 p2 = 0.

3.26 Let S be a ruled surface of revolution. Let 	 be a line of the ruling, let a ≥ 0 be the
perpendicular distance of 	 from the axis of rotation, and let θ be the angle between
	 and the axis of rotation.

By applying a rigid motion of R
3, we may assume that the axis of rotation is the

z-axis, and that 	 is the line parametrised by α(t) = (a, 0, 0) + t(0, sin θ , cos θ ).
If a = 0 we have a cone or a plane, so we now assume a > 0. When the point

α(t) is rotated about the z-axis to be in the half-plane y = 0, x > 0, we obtain the

point β(t) = (√a2 + t2 sin2 θ , 0, t cos θ
)
, so that β is a parametrisation of the curve

with equation x2 − z2 tan2 θ = a2. Considering the various values of θ gives that the
ruled surfaces of revolution are planes, cones, cylinders, and those hyperboloids of
one sheet discussed in Example 2 of §3.6 for which a = b.

3.27 If we parametrise S2(1) by rotating (cos v, 0, sin v) about the z-axis, then E = cos2 v,
F = 0 and G = 1. Hence the area of the southern hemisphere is (as expected!)∫ 0

−π/2

∫ π

−π
cos v du dv = 2π .

3.29 We parametrise S2(1) as in the solution to Exercise 3.27, and let E , F and G be the
coefficients of the first fundamental form.

If we define a local parametrisation of the cylinder by letting x̃(u, v) = f x(u, v) =
(cos u, sin u, sin v), then routine calculations show that Ẽ G̃ − F̃2 = EG − F2, and
the result follows from (3.20).

Chapter 4

4.3 (i) Grad f = (2x , 2y, −1), from which it follows that N = (2x , 2y, −1)/
√

4z + 1.
Hence the image of N is contained in the lower hemisphere of S2(1). However, if
X2 + Y 2 + Z2 = 1 with −1 ≤ Z < 0, then

N
(

− X

2Z
, − Y

2Z
,

1

4Z2
(1 − Z2)

)
= (X , Y , Z ),

so it follows that the image of N is the lower hemisphere (excluding the equator).
Alternatively: since S is a surface of revolution, the image of N will be obtained

by rotating the image under N of the generating curve (v, 0, v2), v ≥ 0 of S. If
(X , Z ) = (cos θ , sin θ ) for −π/2 ≤ θ < 0, then, when v = (−1/2) cot θ ≥ 0,
N(v, 0, v2) = (X , 0, Z ). The result follows.

4.5 Here, h is the restriction to S of the map g : R
3 → R given by the same formula.

Since g is linear, it is smooth and is equal to its own derivative at each point. It
follows that h : S → R is smooth and if X ∈ Tp S then dh p(X) = X .v. This map is
identically zero if and only if v is orthogonal to S at p.

4.7 The hypotheses imply the existence of a point q0 ∈ R
3 and a function f : S →

R, smooth (except at q0 if this latter point is in S) such that, if p ∈ S, then
p + f (p)N(p) = q0. Now differentiate this.
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4.8 Let (X , Y , Z ) ∈ T(x ,y,z)S2(1). Then x X + yY + zZ = 0, and d f(x ,y,z)(X , Y , Z ) =
(aX , bY , cZ ). The vector (x/a, y/b, z/c) is orthogonal to S̃ at (ax , by, cz), and the
inner product of (x/a, y/b, z/c) with (aX , bY , cZ ) is zero.

4.10 We first note that f is well-defined since, if (r cos θ , r sin θ ) = (r̃ cosφ, r̃ sinφ) then
r = r̃ and φ and θ differ by an integer multiple of 2π , so that (r cos nθ , r sin nθ ) =
(r̃ cos nφ, r̃ sin nφ). It is clear that the image of f is on S̃, while f is surjective
since every point of S̃ may be written in the form (r cosμ, r sinμ, br ), r > 0.
We parametrise the plane S (minus the non-positive real axis) by using polar coor-
dinates; x(r , θ ) = (r cos θ , r sin θ , 0), r > 0, −π < θ < π . Then f (r , θ ) =
(1/n)(r cos nθ , r sin nθ , br ), and it follows that if b = √

n2 − 1 then fr . fr =
(1 + b2)/n2 = 1 = E , fr . fθ = 0 = F , and fθ . fθ = r2 = G. The result follows
from Proposition 2 of §4.3.

To see the geometry of f , note that f (r̃ ei θ̃ ) = f (reiθ ) if and only if r̃ = r and
θ̃ = θ + (2k/n)π for some integer k. So, to model the map, cut a line from the edge
of the paper to the centre, then make a cone with vertex at the centre of the paper by
sliding the edges of the cut past each other until they line up again after n −1 circuits.

4.13 If we parametrise the helicoid as in Example 2 of §4.5, then E = G = cosh2 v,
F = 0. A calculation gives that Nu .Nu = Nv .Nv = cosh−2 v and Nu .Nv = 0, so
Proposition 3 of §4.4 shows that N is conformal with conformal factor λ = cosh−2 v.

4.16 Figure 10.4 shows the curves of intersection of S2(1) with (i) x = 0, (ii) z = 0, and
also shows their images under f̃ . The circle x2 + z2 = 1, y = 0, is left setwise fixed.

z

x x

(i) (ii)

z

�Figure 10.4 For the solution to Exercise 4.16

4.18 First show that α′(v) = (−v−2, 0, v−2
√
v2 − 1).

It is clear that the image of f is equal to S, and calculations similar to those used to
compute the coefficients of the first fundamental form of a surface of revolution show
that fu . fu = fv . fv = 1/v2, and fu . fv = 0. The result now follows from Proposition
3 of §4.4.

4.20 We compute the conformal factor of the map f given in Example 4 of Appendix 2.
We have that

g( fu , fu) = (ad − bc)2

(cz + d)2(cz̄ + d)2(im f (z))2
.

A short calculation shows that if z = u + iv then the imaginary part of f (z) is
equal to (ad − bc)v(cz + d)−1(cz̄ + d)−1. It then follows that g( fu , fu) = 1/v2, so
that the conformal factor of f is equal to 1.
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Chapter 5

5.3 Here, N = (− sin u, cos u, − sinh v)/ cosh v. Also,

xuu = (− sinh v cos u, − sinh v sin u, 0),

xuv = (− cosh v sin u, − cosh v cos u, 0),

xvv = (sinh v cos u, sinh v sin u, 0).

Hence L = xuu .N = 0, and similarly M = 1 and N = 0. Hence K = (L N −
M2)/(EG − F2) = − cosh−4 v, and H = 0. It follows that the principal curvatures
are ± cosh−2 v.

5.5 (a) Here, xu = α′ + vα′′, xv = α′, so that N is the unit vector in direction α′′ × α′.
This is independent of v.

5.8 Corollary 5 of §5.5 says that K = − f ′′/ f .

(i) Here, f ′′ + f = 0, so, replacing v by v+c for a suitable constant c, we can take
f (v) = A cos v for a positive constant A and −π/2 < v < π/2. However, since
|α′| = 1 we need | f ′(v)| < 1 (since K = 0 if g′(v) = 0). Hence the domain of
the generating curve is as stated in the exercise.

Having determined f (v) then g(v) is given by the indefinite integral

g(v) =
∫ √

1 − ( f ′(v))2 dv.

Figure 10.5 gives sketches of the requested generating curves. Note that the case
A = 1 gives the unit sphere.

�Figure 10.5 For the solution to Exercise 5.8(i)

(ii) Here f ′′ = 0, so that f (v) = Av + B for suitable constants A and B, and we
need −1 ≤ A ≤ 1. Considering various values of A and B gives the result.

(iii) Here, f ′′ − f = 0, so that f (v) = λev + μe−v .

If λ and μ are both non-zero and have the same sign (which must be positive),
then, replacing v by v + c for a suitable constant c, we may write f (v) = A cosh v
for some positive constant A. Then the domain of the generating curve is (−v0, v0),
where A sinh v0 = 1.

If one of λ and μ is zero, we may assume that f (v) = e−v , v > 0. The
corresponding surface is the pseudosphere.
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If λ and μ are both non-zero and have opposite signs, then, replacing v by ±v + c
for a suitable constant c, we may write f (v) = B sinh v, v > 0, for some positive con-
stant B. This time the domain of the generating curve is (0, v0), where B cosh v0 = 1.
In particular, 0 < B < 1.

Figure 10.6 gives sketches of the requested generating curves.

tractrix
A = 1

B = 3ö
2

211
2

ö

�Figure 10.6 For the solution to Exercise 5.8(iii)

5.11 It follows from the formulae in Example 6 of §5.6 that the torus of revolution has
points where H = 0 if and only if we can find a value of v such that 2b cos v = −a.
Such a v exists if and only if a ≤ 2b.

5.13 (i) If we parametrise the (upper half of the) cone as usual by taking

x(u, v) = (v cos u, v sin u, v), v > 0,

then calculations give that E = v2, F = 0, G = 2, while L = −v/√2, M =
N = 0. At α(t) we have u = t and v = et , so that, at α(t), we have E = e2t ,
F = 0 and G = 2, while L = −et/

√
2, M = N = 0. Formula (5.33) now shows

that κn = −(3
√

2et )−1.
5.14 Let x(u, v) be a local parametrisation whose image is V . It follows that x.N is

constant, so that V is contained in a plane.
5.19 Routine calculations show that E = sech2v, F = 0 and G = tanh2v. We may use

(5.22) to show that L = −N = −sech v tanh v, and M = 0. It now follows from
(5.43) that the asymptotic curves are u ± v = constant. The tangent vectors to the
asymptotic curves are xu ∓ xv , and the angle θ between these is given by

cos θ = (xu + xv).(xu − xv)

|xu + xv| |xu − xv| .

The answer now follows from a short calculation.
5.21 Let α be an asymptotic curve on a surface S, and assume that α is parametrised by

arc length. Then α′′.N = 0, so that the principal normal n of α is also orthogonal
to N . Hence, if b is the binormal of α then (by choosing the correct sign for N),
we have that b = N . Hence b′ = N ′ = τn, so, if θ is the angle between α′ and
the principal direction with principal curvature κ1, then, by (5.35), τ 2 = |N ′|2 =
κ1

2 cos2 θ + κ2
2 sin2 θ . Now use the fact that α is an asymptotic curve to obtain the

given formula.
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5.25 We may use Exercise 5.1 to show that, if D = 1 + gu
2 + gv2, then L = 6u/

√
D,

M = −6v/
√

D, and N = −6u/
√

D. Hence L N − M2 < 0 except at u = v = 0, in
which case L N − M2 = 0.

5.29 We use the argument and notation of the proof of Theorem 4 of §5.12. If α(t) is a
curve on S with α(0) = p0 we have that α′(0).q0 = 0 and α′′(0).q0 ≤ 0. It follows
that N(p0) = q0, and all the normal curvatures of S at p0 are non-positive. Hence p0

isn’t a hyperbolic point.

Chapter 6

6.2 The expressions for the Christoffel symbols follow immediately from equations (6.4).
The Gauss formula (6.9) now shows that G K = −Guu/2 + Gu

2/4G, from which
the result follows. The formula for the Gaussian curvature may also be obtained using
equation (6.10) for K in orthogonal coordinates.

6.6 The given parametrisation x of the helicoid has E = 1 + v2, F = 0, G = 1,
L = N = 0, M = 1/

√
1 + v2. Hence K = −(1 + v2)−2. The formula given in

Exercise 5.9 may be used to show that if K̃ is the Gaussian curvature of S̃ then K̃ =
−(1+v2)−2 also. However, the given map isn’t an isometry since Ẽ = v2 +v−2 	= E .

6.8 The coordinate curves are lines of curvature if and only if F = M = 0, and, in this
case, κ1 = L/E and κ2 = N/G. The first Codazzi–Mainardi equation (6.16) becomes
2Lv = Ev(κ1 +κ2), which holds if and only if 2Lv−2Evκ1 + (κ1 −κ2)Ev = 0, which
holds if and only if

2
LvE − L Ev

E2
+ Ev

E
(κ1 − κ2) = 0 ,

which quickly leads to the first of the given equations. The equivalence of the second
pair of equations is proved similarly (or simply interchange u and v).

6.9 Using the equations from the previous question,

(L − N )v = {E(κ1 − κ2)}v = Ev(κ1 − κ2) + E(κ1 − κ2)v

= −2E(κ1)v + E(κ1 − κ2)v = −E(κ1 + κ2)v .

Hence, if κ1 + κ2 is constant then (L − N )v = 0. Interchanging u and v shows that
(L − N )u = 0 also, so that L − N is constant.

Chapter 7

7.1 We note that dα/ds = α′/|α′|, so that

d2α

ds2
= α′′

|α′|2 + 1

|α′|
d

dt

(
1

|α′|
)
α′ .

It follows from (7.1) that κg = (d2α/ds2).(N × dα/ds), and the desired formula
follows if we substitute the expressions obtained above for dα/ds and d2α/ds2.
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7.6 That α lies on the given cone is easy to check. Also,

α′ = et (cos t − sin t , sin t + cos t , 1) , so |α′| = √
3et ,

while

α′′ = et (−2 sin t , 2 cos t , 1) and N = 1√
2

(cos t , sin t , −1) .

A calculation using formula (7.2) for geodesic curvature now shows that
κg = (1/

√
6)e−t .

7.8 (a) Let α(s) = x(u(s), v0) be a parametrisation of v = v0 by arc length. Then
du/ds = 1/

√
E , and, since xu and xv are orthogonal, N × dα/ds = xv/|xv|.

Hence,

κg = d2α

ds2
.

xv
|xv| = 1√

E

d

du

(
1√
E

xu

)
.

xv√
G

= − Ev

2E
√

G
,

which leads to the given answer.
(b) Substitute the expressions for E , F and G in terms of f and g.
(c) Using (a), we see that the geodesic curvature of the coordinate curve u = constant

is (1/2
√

E)(log G)u , and the result follows.
(d) Clear.

7.11 (a) Using the standard notation, the assumptions imply that N ′ = λα′ and α′′ = μN
for some scalar functions λ and μ. It follows that (N × α′)′ = 0 so that N × α′ is
constant. It now follows that α.(N × α′) is also constant, so that α lies on a plane
with normal N × α′ and the result follows.

7.15 (a) The segment of the unit circle which lies in the sector has length φ, and when we
bend the sector to form the cone, this segment maps to the parallel on the cone which
is a circle of radius r where r2 + β2r2 = 1 (Figure 10.7). Hence r = 1/

√
1 + β2 so

that φ = 2π/
√

1 + β2, and the result follows.

(r, 0, βr)

�Figure 10.7 For the solution to Exercise 7.15(a)

(b), (c) and (d) Cut the plane along a half-line to the origin, and then form a cone
by sliding the edges of the cut past each other until the line segments forming an
angle φ at the origin line up to give a generator of the cone. A line 	 in the plane not
intersecting the cut gives a maximal geodesic on the cone, and two points p1 and p2

on 	 give the same point on the geodesic if and only if they are equidistant from the
origin 0 and the angle ∠p10p2 is an integer multiple of φ.

If φ ≥ π , then no geodesic has self-intersections. If π > φ ≥ π/2 then every
geodesic which is not a meridian has exactly one self-intersection. If π/n > φ ≥
π/(n + 1) for some integer n then every geodesic which is not a meridian has exactly
n self-intersections. Figure 10.8 illustrates this for n = 2. In this figure, the rays from
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the origin drawn in a solid line map to the same meridian of the cone, and those
drawn in a dashed line map to the opposite meridian. The points p1 and p2 (resp. q1

and q2) give a point where the geodesic has a self-intersection.
The result now follows from (a).

q1 q2

φ/2
φ/2

φ/2
φ/2

φ

p1 p2

�Figure 10.8 The horizontal line gives a geodesic on the cone (Exercise 7.15)

7.22 We may obtain this surface by rotating (cosh v, 0, sinh v) about the z-axis. Let x(u, v)
be the standard parametrisation of the surface, and let α(t) = x (u(t), v(t)) be a
closed geodesic. If cosh v(t) attains its maximum at t = t0, then |v(t)| also attains
its maximum at t = t0. Hence v′(t0) = 0 so that α is tangential to the parallel at
α(t0). Hence from Corollary 3 of §7.6, cosh v(t) also attains its minimum at t0, so
that cosh v(t), and hence v(t), is constant and α is a parallel. However, for a parallel
to be a geodesic, we need sinh v = 0, so that the only closed geodesic is the parallel
v = 0 (when parametrised proportional to arc length).

Chapter 8

8.2 The interior angles at v1, v2, v3 and v4 are π/2, 3π/2, π/2 and 3π/2 respectively.
The exterior angles are π/2, −π/2, π/2 and −π/2 respectively. Figure 10.9 shows
the exterior angles at v1, v2 and v4 for the indicated orientation.

8.6 Parametrise the surface S as a surface of revolution,

x(u, v) = (v cos u, v sin u, v2) , −π < u < π , v > 0.

Routine calculations show that K = (L N − M2)/(EG − F2) = 4(1 + 4v2)−2 (or
use (5.25)), from which it follows that∫∫

R
K d A = 2π

(
1 − 1√

1 + 4a2

)
.

v1

v2

v3

v4

�Figure 10.9 For the solution to Exercise 8.2
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The boundary ∂R is the parallel v = a, and nin = −xv/|xv|. A calculation using
(8.3) now shows that

κg = 1

a
√

1 + 4a2
.

The length of the parallel is 2πa so that
∫
∂R κgds = 2π/

√
1 + 4a2. Since χ (R) = 1,

we now see that the Gauss–Bonnet Theorem holds for R.
8.8 This surface is diffeomorphic to a cylinder, and routine calculations show that K < 0

everywhere on S. It now follows from Theorem 6 of §8.6 that S has at most one simple
closed geodesic. The surface intersects the plane z = 0 orthogonally (with the curve
of intersection being an ellipse) so it follows from Exercise 7.10 that this ellipse is a
geodesic on S.
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Alexandrov’s Theorem, 244
angle between vectors, 2
angular defect, 200
angular excess, 200
area, 69

of a graph, 69
of a torus of revolution, 70

astroid, 22
asymptotic curves, 129

on catenoid, 129
on pseudosphere, 152

asymptotic directions, 130

Bernstein’s Theorem, 220
Bertrand mate, 25
Bonnet’s Theorem, 149

cartesian product of sets, 36
Catalan’s surface, 189
Catalan’s Theorem, 222
catenary, 23
catenoid, 34

Gauss map of, 105
mean curvature of, 121

Cauchy–Riemann equations, 222
caustic, 16
chain rule, 6, 43, 89
Christoffel symbols, 145

are intrinsic, 145
for orthogonal parametrisation, 145

circle, 9
curvature of, 9

Clairaut’s relation, 175
Classification Theorem for compact surfaces, 203
Codazzi–Mainardi equations, 149

for isothermal parametrisation, 149
compact set, 133
cone, 53

geodesics on, 167, 190
conformal group, 102

of helicoid, 102
of sphere, 104

conformal map, 93
conformal factor of, 94
of plane, 95

of sphere, 97
connected surface, 105, 126
coordinate curves, 64
coordinate functions, 27
coordinate neighbourhood, 30
coordinate vectors, 51
curvature

of plane curve, 8
of space curve, 17

curve, 2
arc length along, 5
cusp point on, 3
direction of travel along, 3
on a surface, 51
parameter, 2
piecewise regular, 195

simple and closed, 195
regular (see also regular curve), 2
singular point on, 3
smooth, 2
speed of travel along, 3
tangent vector to, 2
trace of, 2

cycloid, 5
curvature of, 9
evolute of, 16
involute of, 13

cylinder, 24
generating lines of, 24
geodesics on, 164, 166

Delaunay’s Theorem, 239
developable surface, 152
diffeomorphism, 72, 90

eigenvalues, 112
eigenvectors, 112
element of area, 69
ellipse, 3

arc length along, 5
ellipsoid, 47
elliptic paraboloid, 32
elliptic point, 131
Enneper’s surface, 41, 137, 140

associated family of, 232

260
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epicycloid, 22
Euler characteristic, 203

of annulus, 203
of disc, 203
of sphere, 203

extrinsic, 1, 27, 109

Fermi coordinates, 191
first fundamental form, 54

coefficients of, 55
of a graph, 55
of a surface of revolution, 55

flat torus, 154
function

critical points of, 39
critical values of, 39
gradient of, 38
graph of, 32
regular points of, 39
regular values of, 39

Gauss formula, 147
Gauss Lemma, 180
Gauss map, 83

of catenoid, 84, 87, 94
of surface of revolution, 84

Gauss–Bonnet Theorem
for a regular region, 205
for a triangle, 199

Gaussian curvature, 116
and area of Gauss map, 136
for isothermal parametrisation, 147
for orthogonal parametrisation, 147
for surfaces in R

n , 154
for Tchebycheff parametrisation, 148, 156
is preserved by local isometries, 144
of surface of revolution, 118, 120

genus, 205
geodesic cartesian coordinates, 178
geodesic circle, 178
geodesic curvature, 160, 162

for orthogonal parametrisation, 173
is intrinsic, 172
is preserved by local isometries, 173

geodesic disc, 185
geodesic polar coordinates, 179
geodesic triangle, 193
geodesics, 162

are preserved by local isometries, 166
differential equations for, 165, 168
existence and uniqueness of, 165
maximal, 165
metric properties of, 172, 182
on cone, 167, 190
on cylinder, 164, 166
on hyperbolic plane, 168

on real projective plane, 167
on sphere, 163
on surface of revolution, 174
on Veronese surface, 167

graph of a function, 32
great circle, 161

harmonic conjugate, 224
harmonic function, 223
helicoid, 48, 77

as a ruled surface, 65
conformal group of, 102
isometry group of, 103

helix, 3, 24
curvature and torsion of, 20
generalised, 25
pitch of, 4

Hilbert’s Theorem, 63, 152, 155
holomorphic function, 223
homeomorphism, 197
Hopf’s Theorem on CMC 2-spheres, 243
Hopf–Rinow Theorem, 172
hyperbolic paraboloid, 33, 57
hyperbolic plane, 61, 101, 155

conformal group of, 104
geodesics on, 168
isometry group of, 104

hyperbolic point, 131
hyperboloid of one sheet, 38, 42

as a ruled surface, 67
hyperboloid of two sheets, 29, 38

inner product, 2
intrinsic, 1, 27, 50, 56
Inverse Function Theorem, 44
inverse map, 43, 72, 90
isometry, 91
isometry group, 102

of helicoid, 103
of sphere, 104

isothermal parametrisation, 59
existence of, 60
of catenoid, 59
of hyperbolic plane, 61
of sphere, 59

isotropic in C
3, 226

Jacobi’s Theorem, 209
Jacobian matrix, 43
Jordan Curve Theorem, 208

Laplace’s equation, 223
Laplacian, 148
length of a vector, 2
Liebmann’s Theorem, 150
linearly independent vectors, 31
lines of curvature, 127
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Liouville equation, 145, 242
Liouville’s formula, 190
local isometry

from cylinder to flat torus, 106
from helicoid to catenoid, 96
from plane to cylinder, 91
from plane to flat torus, 91
preserves Gaussian curvature, 144
preserves geodesic curvature, 173

local parametrisation, 29
local properties, 51

Möbius band, 48, 84
Massey’s Theorem, 152
mean curvature, 116

for isothermal parametrisation, 116, 222
of surface of revolution, 118, 121

mean curvature vector, 116, 245
metrically equivalent surfaces, 97
Meusnier’s Theorem, 123
Minding’s Theorem, 153

proof of, 181
minimal surface, 215

associated family of, 224
Catalan’s, 246
catenoid, 222, 229
conjugate surface of, 224
Costa’s, 218
helicoid, 222, 227, 228
Richmond’s, 231, 246
Scherk’s examples, 220
Scherk’s first, 220
Scherk’s second, 225, 233

monkey saddle, 141
moving frame

along a regular curve, 8, 17
equations of, 8, 18

non-orientable surface, 84
normal curvature

in a given direction, 124
normal neighbourhood, 178
normal variation, 215

open neighbourhood, 41, 85
orientable surface, 84
orientation, 84

of surface in R
n , 162

orthogonal parametrisation, 59
orthogonal trajectories, 64

parabolic point, 131
parameter

by arc length, 7
proportional to arc length, 163

planar point, 131
Plateau’s problem, 217

principal curvatures, 117
of surface of revolution, 118, 120

principal directions, 117
on surface of revolution, 118, 120

principal vectors, 117
pseudosphere, 34, 63

Gaussian curvature of, 121

real projective plane, 100
region

tangent vectors pointing into, 196
regular curve, 2

arc length as parameter, 6
as graph of a function, 4
binormal of, 17
centre of curvature of, 16
closed, 4
curvature of, 8, 11, 17
evolute of, 16
involute of, 13
normal plane of, 19
of constant curvature, 12
osculating plane of, 19
parallel curve to, 23
principal normal of, 17
radius of curvature of, 16
tangent line to, 2
tangent surface of, 47
torsion of, 18
unit tangent vector to, 2

regular region, 195
boundary of, 195

direction of travel along, 197
edges of, 195
exterior angle at vertex of, 196
interior angle at vertex of, 196
interior of, 195
inward pointing normal, 196
vertex of, 195

Riemannian manifold, 159
Rodrigues’ Theorem, 128
ruled surface, 48, 65

second fundamental form, 112
coefficients of, 112

for a surface of revolution, 112
Serret–Frenet formulae, 18
simple closed curve, 195
simple domain, 223
sine-Gordon equation, 148
sinh-Gordon equation, 242
smooth map, 27, 83

between surfaces, 86
derivative of, 43, 86
image of, 27
orientation preserving, 100
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sphere, 30
as a surface of revolution, 35
conformal group of, 104
isometry group of, 104

stereographic projection, 97
surface, 28

area of, 69
as graph of a function, 40
closed, 133, 152
complete, 167
defined by an equation, 38, 39
integration on, 70
metric on, 54
normal variations of, 215
open subset of, 31, 46, 85
parallel surface to, 138
triangulation of, 202
with constant mean curvature, 237
with finite topology, 218
with self-intersections, 214

surface of revolution, 33
axis of rotation of, 33
Gaussian curvature of, 118, 120
generating curve of, 37
geodesics on, 174
mean curvature of, 118, 121
meridian, 37
parallel, 37
pole of, 35, 89
principal curvatures of, 120
principal directions on, 120
with constant Gaussian curvature, 139

tangent plane, 31, 52
of graph of a function, 52
of surface defined by an equation, 53
of ellipsoid, 54

of sphere, 54
tangent vector, 50
Tchebycheff net, 81
Tchebycheff parametrisation, 73, 146
Theorema Egregium, 144
torus

flat, 40, 49, 91
of revolution, 35, 70

geodesics on, 176
tractrix, 22
transition function, 74
triangle on a surface, 197
Turning Tangents Theorem, 198

umbilic, 126

variation vector field, 170
Veronese surface, 100, 154

weakly anti-conformal map, 219
weakly conformal map, 219
Weierstrass’s Extremal Value Theorem, 133
Weierstrass–Enneper formula, 230
Weierstrass–Enneper representation, 230

first fundamental form of, 234
Gauss map of, 234
Gaussian curvature of, 236
of Catalan’s surface, 246
of Enneper’s surface, 232
of helicoid, 231
of Richmond’s surface, 231
second fundamental form of, 235

Weingarten map, 110
is self-adjoint, 111
matrix of, 113
of surface of revolution, 111

Wente’s CMC torus, 244
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