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Preface

This book evolved from courses about elementary differential geometry which
I have taught in Freiburg, Hamburg and Potsdam. The word “elemen-
tary” should not be understood as “particularly easy”, but indicates that the
development of formalism, which would be necessary for a deeper study of dif-
ferential geometry, is avoided as much as possible. We will instead approach
geometrically interesting problems using tools from the standard fundamen-
tal courses in analysis and linear algebra. It is possible to raise interesting
questions even about objects as “simple” as plane curves. The proof of the
four-vertex theorem, for example, is anything but trivial.

The book is suitable for students from the second year of study onwards
and can be used in lectures, seminars, or for private study.

The first chapter is interesting mostly for historical reasons. The reader can
here find out how geometric results have been obtained from axioms for thou-
sands of years, since Euclid. In particular, the controversy about the parallel
axiom will be explained. In this chapter we will mostly follow Hilbert’s pre-
sentation of plane geometry, since it is rather close to Euclid’s formulation of
the axioms and yet meets today’s requirements for mathematical rigour. In
the mean time the axiomatic system has been simplified significantly [2]. A
presentation with only seven axioms can be found in [30].

Anyone who is only interested in differential geometry can begin with the
second chapter. The theory of curves is developed here, with particular focus
on curves in the plane and in three-dimensional space. Curvature, a central
notion in differential geometry, appears for the first time. Of particular interest
are global results, i.e. statements about the overall shape of closed curves. The
above-mentioned four-vertex theorem and the theorems of Fenchel and Fáry–
Milnor fall into this category. They tell us how much a space curve needs to
curve so that it can close up (Fenchel) and how much a curve needs to curve
to become knotted (Fáry–Milnor).

We begin to study surfaces in three-dimensional space in the third chapter.
The necessary concepts are introduced, e.g. different notions of curvature, and
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viii P R E F A C E

some important classes of surfaces are studied in more detail. One of them
is the class of minimal surfaces, which appear in nature as soap films. Some
examples are illustrated in colour as well.

In the fourth chapter we change our point of view and concentrate on
geometric quantities that can be obtained using measurements taken on the
surface itself only. We study the shortest connecting curves between two
points on a given surface, for example. This stance suggests the introduction
of general Riemannian metrics, which allows us to construct new important
geometries. The most prominent example is the hyperbolic plane, which, as
Hilbert showed, cannot be realised as a “classical” surface. One reason why
the hyperbolic plane is so important is that it ended the controversy about
the parallel axiom. It is therefore often referred to as a non-Euclidean geom-
etry. We devote ourselves to hyperbolic and spherical geometry and derive
the most important trigonometric laws. Spherical geometry is used to discuss
applications in cartography. We conclude the chapter with a comparison of
different models of hyperbolic geometry illustrated by a woodcut of Dutch
artist M. C. Escher.

In the fifth chapter we derive Gauss’s divergence theorem and deduce that
the total Gauss curvature of a closed surface does not depend on the Rie-
mannian metric. The total curvature is thus a “topological invariant” of the
surface.

The last chapter is dedicated to the topological interpretation of this quan-
tity. We show that every compact surface can be triangulated, i.e. that it can be
cut into triangles in a suitable way. The Gauss–Bonnet theorem then tells us
that the total curvature can be found by counting vertices, edges and triangles.
We conclude with the outlook and recommendations for further study.

Three appendices follow: first hints for solutions to the exercises, then a col-
lection of useful formulae concerned with the inner geometry of surfaces and
the most important trigonometric laws, and finally, the mathematical symbols
used in this book are listed, to make it easier to look them up. As is the custom,
the book ends with the references and the index.

The enumeration of theorems, lemmas, examples and so forth is done using
three numbers, where the first one denotes the chapter and the second one
the section. The numerous exercises are enumerated by two numbers, the first
one being the chapter. They are interspersed in the text and mainly discuss
examples, which can be used to practice the material treated so far. The fur-
ther logical arguments do not build on most exercises, but reading and doing
the exercises is recommended to establish the necessary familiarity with the
introduced concepts.

At this point it is my pleasure to thank all those that made this book
a success, e.g. by pointing out mistakes and making suggestions, including
B. Ammann, M. Aubel, F. Auer, L. Außenhofer, P. Ghanaat, H. Karcher,
A. Kreuzer, D. Lengeler, F. Pfäffle, C. Pries, W. Reichel, E. Schröder,



P R E F A C E ix

C. Schulz, T. Seidel, U. Semmelmann, H. Wendland, U. Witting, and
U. Wöske. I am of course solely responsible for any mistakes in this book,
which it will inevitably contain. I would be very grateful for a note telling me
about them which can be sent to baer@math.uni-potsdam.de. Sincere thanks
also go to Cambridge University Press, in particular C. Dennison, for her
always pleasant and trusting collaboration.

This book has been typeset using LATEX with the PSTricks package to pro-
duce the drawings. The coloured illustrations have been created with povray,
the maps in the section on cartography with the Generic Mapping Tools for
Unix. The transformations of Escher’s woodcut to the Klein model of hyper-
bolic geometry on page 220 and to the half-plane mode on page 222 have
been carried out with gimp using the mathmap plugin. I am very grateful
to the developers of all this great open source software. The illustrations on
pages 142, 206, and 256 have been created with Maple.

At last, a special thank you to A. Hornecker who contributed the coloured
illustrations and many of the drawings and to P. Meerkamp who wrote a first
translation of the German edition into English.





Notation

We here introduce some terms and conventions that will appear in this book
again and again.

The cardinality of a set A is denoted using absolute value bars:

|A| = number of elements of A.

For the difference of two sets we write

A− B = {x ∈ A | x �∈ B}.

R
n denotes the vector space of all column vectors with n real entries:

⎛⎜⎝x1

...
xn

⎞⎟⎠ = (x1, . . . , xn)� ∈ R
n.

The individual entries usually have their indices at the top. For a subset A⊂R
n

the expression Ā denotes the closure, ∂A the boundary and
◦
A the interior.

The Euclidean standard scalar product on R
n is written using angle

brackets: 〈
(x1, . . . , xn)�, (y1, . . . , yn)�

〉
=

n∑
j=1

x jy j.

For a subspace V ⊂ R
n

V⊥ = {x ∈ R
n | 〈x, y〉 = 0 for all y ∈ V}

is the orthogonal complement.
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xii N O T A T I O N

The vector product on R
3 is given by⎛⎝ x1

x2

x3

⎞⎠×
⎛⎝ y1

y2

y3

⎞⎠ =
⎛⎝ x2y3 − x3y2

−x1y3 + x3y1

x1y2 − x2y1

⎞⎠ .

For the real part of a complex number z we write �(z) and for the natural
logarithm of a positive real number x we write ln(x).

A smooth map denotes one that is infinitely often differentiable. For the
differential or its Jacobian matrix at a point p we write

DpF =

⎛⎜⎜⎜⎜⎜⎝
∂F1

∂x1
(p) · · · ∂F1

∂xn (p)

...
...

∂Fm

∂x1
(p) · · · ∂Fm

∂xn (p)

⎞⎟⎟⎟⎟⎟⎠ ,

where F = (F1, . . . , Fm)� : R
n → R

m. For functions f : R
n → R specifically

grad f = Df =
(

∂f
∂x1

, . . . ,
∂f
∂xn

)�

denotes the gradient.
The group of invertible real n × n matrices is denoted by GL(n), the

subgroup of orthogonal matrices by O(n):

O(n) = {A ∈ GL(n) | A�A = Id},

and the subgroup of special orthogonal matrices by SO(n):

SO(n) = {A ∈ O(n) | det(A) = 1}.

Here A� denotes the transpose of A.



1 Euclidean geometry

We familiarise ourselves with the axioms of Euclidean geometry in the plane
and derive some geometric implications, among them the existence of the paral-
lel line. We briefly discuss the historical importance of the parallel axiom. The
existence of the Cartesian model shows the consistency of the Euclidean axioms.
The Cartesian model is used to investigate Euclidean trigonometry.

1.1 The axiomatic approach

Geometry is one of the oldest of all sciences. Remarkable geometric knowl-
edge was already present in the advanced oriental cultures of the fifth–third
centuries BCE. Practical problems from metrology, architecture, astronomy
and navigation were considered on an abstract level and led to geometric laws.
For instance, the Egyptians used the formula for the area of a triangle

area = length of base line× height
2

and the approximate formula for the area of a circle

area =
(

diameter − diameter
9

)2

.

The latter corresponds to an approximation of π by 256
81 ≈ 3.1605. No dif-

ference was made between exact and approximate formulae in principle.
Mathematical knowledge was there in the form of laws, justifications or proofs
were not given.

This changed in Greece between 350 and 200 BCE. Aspects of usefulness
were then superseded by the desire for understanding. Mathematicians not
only wanted to know certain laws, but also why they hold. This was the starting
point of the axiomatisation of geometry. At first only a few intuitively evident
axioms were laid down, from which it was thought that everything else could
be derived logically in a rigorous manner. In what follows we will become

1



2 E U C L I D E A N G E O M E T R Y

acquainted with the axioms of Euclidean plane geometry and go through
some rather simple implications as illustrations of the axiomatic proof. We
will mainly follow the formulation of the axioms presented by Hilbert in [13].

The axioms can be classified into five groups. We begin with the incidence
axioms. To formulate these, we need two sets P and G , whose elements we
call points and straight lines respectively. Further assume that for every point
p ∈ P and every straight line L ∈ G the statement “p is contained in L”, in
symbols “p ∈ L”, is either true or false. Note that the symbol “∈” does not
denote a set-theoretic inclusion in this case, since the straight lines L are for
now not sets, but abstract elements of G . We nevertheless want to use this
suggestive notation. Let us now move on to the first axioms.

Incidence axioms These axioms make some statements about the con-
tainedness of points in straight lines.

Axiom I1 For any two points there exists a straight line that goes through both
of them,

∀p, q ∈P ∃L ∈ G : p ∈ L and q ∈ L.

p

q
L

Axiom I2 There is at most one straight line through any two distinct points,

∀p, q ∈P , p �= q, ∀L, M ∈ G , p ∈ L, q ∈ L, p ∈M, q ∈M : L =M.

For any two distinct points p and q, there is by those first two axioms exactly
one straight line that goes through both of them, we will from now on denote
it by L( p, q).

Axiom I3 Every straight line contains at least two distinct points,

∀L ∈ G ∃ p, q ∈P , p �= q : p ∈ L and q ∈ L.

Axiom I4 There exist three points that do not lie on a straight line,

∃ p, q, r ∈P : � ∃L ∈ G with p ∈ L, q ∈ L, r ∈ L.

p q

r

Axiom I4 expresses that our geometry has at least two dimensions.
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Axioms of order For the formulation of these axioms we need, in addition to
the notions of P , G and ∈, that for every triple ( p, q, r) of points the statement
“q lies between p and r” must be either true or false. The following axioms
must be satisfied.

Axiom A1 If q lies between p and r, then p, q and r are three pairwise distinct
points on a straight line.

p

r
q

Axiom A2 If q lies between p and r, then q lies between r and p.

For two points p and q we call the set of all points that lie between p and q the
line segment from p to q and write pq. Axiom A2 therefore implies pr = rp.

Axiom A3 For any two distinct points p and q there exists a point r, such that
q lies between p and r.

Attention This axiom does not say that for any two given points, there exists
another point between them. We will first have to prove this, see theorem 1.1.1.

Axiom A4 Given three points, at most one of them lies between the two others.

If two straight lines L and M have a point p in common, p ∈ L and p ∈ M,
then we sometimes say that L and M intersect, in symbols L ∩M �= ∅. We say
that a line segment pr and a straight line L intersect if there exists a point q
with q ∈ L between p and r.

Axiom A5 Let p, q and r be three points that do not lie on a straight line, let L
be a straight line that does not contain any of these three points. If L intersects
the line segment pq, then L intersects precisely one of the other two line segments
pr or qr.

p q

rL

This means that a straight line which enters a triangle must leave it through
one of the other two sides. It also illustrates that our geometry does not have
more than two dimensions. In three dimensions axiom A5 would not be valid:

p q

rL

Let us now prove a first theorem, using the axioms stated so far.
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Theorem 1.1.1 For any two distinct points p and q there exists a point r which
lies between p and q, i.e. the line segment pq is not empty.

Proof Let p and q be two points. By axiom I4 there exists a point s that
does not lie on the straight line L( p, q). By axiom A3 there is a point t such
that s lies between p and t. Another application of axiom A3 gives a point u
such that q lies between t and u. The straight line L := L(s, u) intersects the
line segment pt at s.

The point t does not lie on the straight line L( p, q), since otherwise s would by
axiom A1 also lie on that straight line, contradicting the choice of s. We can
therefore apply axiom A5 to the straight line L and the three points p, q and
t. As L intersects the line segment pt, L must by axiom A5 also intersect one
of the two line segments pq or tq, unless it contains one of the three points
p, q or t.

First case L contains p or t.

Then L agrees with the straight line L( p, t) by axiom I2. Hence u lies on L( p, t)
and axiom A1 implies that q lies on L( p, t) as well. Hence p, q and t do lie on
a straight line, a contradiction.

Second case L contains q.

Several applications of axiom I2 show that the points s, u, q, t and p lie on a
straight line, a contradiction.

Third case L intersects the line segment tq at a point v.

p q

t

u

s v
L

Then L and L(t, q) have the two points u and v in common. If u = v, then
u would lie between t and q while q lies between t and u, a contradiction to
axiom A4. Thus L and L(t, q) have two distinct points in common, and axiom
I2 implies that L = L(t, q). But then both s and p lie on L, i.e. p, q and t lie on
a straight line, a contradiction.

p
q

t

u

s

r

L

Thus L and pq must intersect at a point r. In particular, pq cannot be empty.
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Exercise 1.1 Let p, q, r and s be points on a straight line. Show that if q lies
between p and s and if additionally r lies between q and s, then r lies between
p and s as well.

Using this exercise and theorem 1.1.1, it is now easy to solve the following
exercise.

Exercise 1.2 Show the following: there is an infinite number of distinct
points between two points.

Definition 1.1.2 Let L be a straight line, p ∈ L. Let q and r be two points on
L, neither of which is p. We say that q and r lie on the same side of the point
p if p does not lie between q and r.

Exercise 1.3 Let L be a straight line and let p ∈ L be a point on L. Show
that the relation “q1 lies on the same side of p as q2” defines an equivalence
relation on the set {q ∈ L | q �= p}.
An equivalence class of points on L that do not equal p can then be referred
to as a side of p on L.

Exercise 1.4 Show that there are exactly two sides of p on L.

Definition 1.1.3 Let L be a straight line and let p and q be two points that
do not lie on L. We say that p and q lie on the same side of a straight line L if
the line segment pq does not intersect the straight line L.

Exercise 1.5 Let L be a straight line. Show that the relation “q1 lies on the
same side of L as q2” defines an equivalence relation on the set {q | q �∈ L}.
Again we can call an equivalence class of points not on L a side of L.

Exercise 1.6 Show that there are exactly two sides of L.

Congruence axioms To formulate the third group of axioms, the congru-
ence axioms, we need in addition to the previous notions that for every pair
(pq, p1q1) of line segments the formal statement “pq is congruent to p1q1” is
either true or false.

Axiom K1 (reproduction of lengths) Let pq be a line segment, let L1 be a
straight line, let p1, r1 ∈ L1, r1 �= p1. Then there is a point q1 ∈ L1 on the same
side of p1 as r1 such that pq is congruent to p1q1.

p q

p1

q1
r1

L1
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In this axiom only the existence of a congruent line segment is required. Its
uniqueness needs to be proved later with the aid of other axioms.

Axiom K2 If the line segments p1q1 and p2q2 are both congruent to the line
segment pq, then p1q1 is congruent to p2q2 as well.

Four more congruence axioms will follow. We can nevertheless already prove
a first implication.

Lemma 1.1.4 The congruence of line segments defines an equivalence relation
on the set of line segments.

Proof (a) Let pq be a line segment. We show that pq is congruent to itself.
Let L be a straight line that contains p, p ∈ L. By axiom K1 there exists a
point r on L such that pq and pr are congruent. Then p1q1 := p2q2 := pq is
congruent to pr and hence pq is by axiom K2 congruent to itself.

(b) (symmetry) Let pq be congruent to p1q1. We show that then p1q1 is con-
gruent to pq. It follows from (a) that p1q1 is congruent to p1q1. Axiom K2 now
gives that p1q1 is congruent to pq.

(c) (transitivity) If p1q1 is congruent to p2q2 and p2q2 is congruent to p3q3,
then we need to show that p1q1 is congruent to p3q3. This follows directly
from axiom K2 together with (b).

We will from now on sometimes denote “p1q1 is congruent to p2q2” by
“p1q1 ≡ p2q2”.

Axiom K3 (additivity of line segments) Let L and L1 be straight lines, let
p, q, r ∈ L be three pairwise distinct points on L and p1, q1, r1 ∈ L1 likewise on
L1. Assume that the line segments pq and qr do not have any common points,
pq ∩ qr = ∅. Analogously let p1q1 ∩ q1r1 = ∅.
If now pq ≡ p1q1 and qr ≡ q1r1, then pr ≡ p1r1.

p
q

r

L

p1

r1
q1

L1

We need the concept of the angle for the formulation of the three other
congruence axioms.

Definition 1.1.5 An angle is an equivalence class of triples of points p, q and
r that do not lie on a straight line, where two triples ( p, q, r) and ( p1, q1, r1) are
equivalent if
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(i) q = q1,
(ii) L( p, q) = L( p1, q) and p and p1 lie on the same side of q,

(iii) L(r, q) = L(r1, q) and r and r1 lie on the same side of q,

or if

(i) q = q1,
(ii) L( p, q) = L(r1, q) and p and r1 lie on the same side of q,

(iii) L(r, q) = L( p1, q) and r and p1 lie on the same side of q.

For the equivalence class of ( p, q, r) we write ∠( p, q, r). The point q is then
called the vertex of the angle ∠( p, q, r).

q = q1

p p1

r1 r

We now additionally require that for any two angles ∠( p, q, r) and
∠( p1, q1, r1) the formal statement “∠( p, q, r) is congruent to ∠( p1, q1, r1)” is
either true or false. Again, we write “∠( p, q, r) ≡ ∠( p1, q1, r1)” if ∠( p, q, r) is
congruent to ∠( p1, q1, r1).

Axiom K4 The congruence of angles induces an equivalence relation on the
set of angles.

Axiom K5 (reproduction of angles) Let p, q, r be points that do not lie on a
straight line, and let p1, q1, s1 be another set of points that do not lie on a straight
line. Then there exists a point r1 on the same side of L( p1, q1) as s1 such that the
angle ∠( p1, q1, r1) is congruent to the angle ∠( p, q, r).

If r2 is another point with the same properties as r1, i.e. r2 also lies on the same
side of L( p1, q1) as s1 and if ∠( p1, q1, r2) ≡ ∠( p, q, r), then ∠( p1, q1, r1) =
∠( p1, q1, r2).

q
p

r

q1

p1

r1

r2s1

Axiom K5 says that we can reproduce a given angle in a unique way if we
are given the vertex, one line adjacent to the angle and the side of the other
line next to the angle.
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The last congruence axiom relates the congruence of line segments to
that of angles. Until now the two notions of congruence existed entirely
separately.

Axiom K6 Let ( p, q, r) be a triple of points that do not lie on a straight line
and ( p1, q1, r1) likewise. If pq ≡ p1q1, pr ≡ p1r1 and ∠(q, p, r) ≡ ∠(q1, p1, r1),
then

∠( p, q, r) ≡ ∠( p1, q1, r1).

q
p

r

q1

p1

r1

Let us make some inferences using the axioms introduced so far. We will first
extend the statement of the last axiom.

Theorem 1.1.6 Let ( p, q, r) be a triple of points that do not lie on a straight
line, ( p1, q1, r1) likewise. If pq ≡ p1q1, pr ≡ p1r1 and ∠(q, p, r) ≡ ∠(q1, p1, r1),
then

∠( p, q, r) ≡ ∠( p1, q1, r1), ∠( p, r, q) ≡ ∠( p1, r1, q1), qr ≡ q1r1.

Proof The angle congruences follow directly from axiom K6, in the second
case after renaming the variables. It remains to show that qr ≡ q1r1. By axiom
K1 we can find a point s1 on the straight line L(q1, r1) which is on the same
side as r1 and satisfies qr ≡ q1s1.

q
p

r
q1

p1

r1

s1

We apply axiom K6 to ( p, q, r) and ( p1, q1, s1) and conclude that

∠(q, p, r) ≡ ∠(q1, p1, s1).

On the other hand we have ∠(q, p, r) ≡ ∠(q1, p1, r1), and by the uniqueness
from axiom1 K5

1 For an application of the uniqueness statement from axiom K5 it must be ensured that r1 and
s1 lie on the same side of L( p1, q1). This is left as an exercise for the reader.
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∠(q1, p1, s1) = ∠(q1, p1, r1).

If we now had r1 �= s1, then we would conclude that p1 and q1 both lie on
the straight line L(r1, s1), i.e. p1, q1 and r1 would lie on a straight line, which
contradicts the assumption.

Thus r1 = s1 and hence qr ≡ q1r1.

Theorem 1.1.7 (Congruence of adjacent angles) Suppose that the pairwise dis-
tinct points p, q and s lie on a straight line L, while r �∈L. Analogously, let
p1, q1, s1 ∈L1 be pairwise distinct, r1 �∈L1. If ∠( p, q, r) and ∠( p1, q1, r1) are
congruent, then the same is true for ∠(s, q, r) and ∠(s1, q1, r1).

p
q

r

sL p1 q1

r1

s1L1

The angle ∠(s, q, r) is sometimes called the adjacent angle of ∠( p, q, r). The
theorem thus says that adjacent angles of congruent angles are congruent as
well.

Proof The points p1, r1 and s1 can by axiom K1 be assumed to have been
chosen in such a way that pq ≡ p1q1, rq ≡ r1q1 and sq ≡ s1q1.

p
q

r

sL p1 q1

r1

s1L1

From theorem 1.1.6, applied to ( p, q, r) and ( p1, q1, r1), it follows that pr ≡
p1r1. By axiom K3 we then have ps ≡ p1s1. Applying theorem 1.1.6 once
again, this time to (r, p, s) and (r1, p1, s1), we obtain rs ≡ r1s1 and ∠(q, s, r) ≡
∠(q1, s1, r1). Axiom K6 then says for (q, s, r) and (q1, s1, r1) that ∠(s, q, r) ≡
∠(s1, q1, r1).

Theorem 1.1.8 (Congruence of vertical angles) Let L and M be two distinct
straight lines that intersect at p. Let r, q∈L lie on two distinct sides of p and
let s, t ∈M lie on two distinct sides of p as well. Then

∠(q, p, s) ≡ ∠(r, p, t).
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pq r

s

t

M

L

Proof Both ∠(q, p, s) and ∠(r, p, t), are adjacent angles of ∠(q, p, t). The
angle ∠(q, p, t) is congruent to itself by axiom K4. The claim therefore follows
by theorem 1.1.7.

After these preparations we now come to the first truly interesting geometric
theorem.

Theorem 1.1.9 (Existence of a parallel) Let L be a straight line, p a point, p �∈ L.
There then exists a straight line M that contains p and that does not intersect L.

L

Mp

We then say that M is a parallel to L through p. The theorem says that such
parallels always exist.

Proof Let L be a straight line and p a point that does not lie on L. We will
first construct the line M and then show that it has the desired properties.

For the construction we choose a point q ∈ L and add the straight line N :=
L( p, q). We choose another point r ∈ L, r �= q. Then r �∈ N, since otherwise
p ∈ L( p, q) = L(q, r) = L. We reproduce angle ∠(r, q, p) as in axiom K5 on the
straight line N at the point p, i.e. we find points s ∈ N and t �∈ N on the same
side of N as r, such that the angle ∠(t, p, s) is congruent to the angle ∠(r, q, p).
We now set M := L( p, t).

L

M

N

p

qr

t

s

It remains to show that L and M do not intersect. Suppose that L and M did
intersect at a point u. We restrict ourselves to the case that u lies on the same
side of N as r and t. The other case is dealt with in a similar way.
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We reproduce the line segment uq on the straight line M as in axiom K1,
beginning at the point p, and we do not do this on the same side as u. This
means that uq ≡ pv, with a point v ∈M such that p lies between u and v.

The angles ∠(u, p, s) and ∠(q, p, v) are congruent by theorem 1.1.8. Hence
the angles ∠(u, q, p) and ∠(q, p, v) are congruent as well. We apply axiom K6
to (u, q, p) and (v, p, q), and see that ∠(q, p, u) ≡ ∠( p, q, v).

L

M

N

s

p

qu

v

But ∠(q, p, u) is an adjacent angle of ∠(u, p, s), so by theorem 1.1.7 and by
the uniqueness of the reproduction of angles ∠( p, q, v) must be an adjacent
angle of ∠(u, q, p). Hence v lies on the straight line L, and thus the same is
true for p, which contradicts the assumption.

Parallel axiom We have seen that the existence of parallels can be proved
using the axioms introduced so far. What about their uniqueness? This is the
subject of the parallel axiom.

Axiom P ( parallel axiom) Let L be a straight line, p a point, p �∈ L. Then
there is at most one straight line that contains p and does not intersect L.

There has been controversy about the necessity of this axiom for thousands
of years. Many mathematicians believed that uniqueness could, as existence,
be deduced from the other axioms. There were many proof attempts. Carl
Friedrich Gauss (1777–1855) was probably the first person to truly believe
in the independence of the parallel axiom. However, he never published his
views about it. The debate was ended by the Russian Nikolai Iwanowitsch
Lobatschewski (1792–1856) and by the Hungarian Janos Bolyai (1802–1860),
who, independently of each other, found a geometry that satisfies all axioms
except for the parallel axiom. Hence the parallel axiom cannot be derived
from the other axioms. Bolyai’s father, a teacher of mathematics himself, was
so worried about his son’s result that he wrote a letter to Gauss, asking him
for his opinion. In his answer Gauss was enthusiastic about the work of the
younger Bolyai, but added the remark that he could not praise him, since this
would be self-praise as he, Gauss, had known this for many years. Janos Bolyai
never again published work on mathematics.

The afore-mentioned geometry is hyperbolic geometry, also known as non-
Euclidean geometry. We will cover it in more detail later.
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Completeness axioms When real numbers are introduced in analysis, one
becomes acquainted with the completeness axioms, which distinguish the
real numbers from the rational numbers and other ordered number fields.
To determine the Euclidean geometry completely, we need the appropriate
axioms.

Axiom V1 (Archimedes’s axiom) Let pq and rs be two line segments. Then
there exists a natural number n such that the line segment r1sn, which results
from the n-fold reproduction of the line segment rs on the straight line L( p, q),
starting at p in direction q, contains the line segment pq.

r

s

p = r1 q
s1 = r2

s2 = r3
rn sn

Before formulating the last axiom, we summarise those notions that we need
for the axiomatic formulation of Euclidean geometry. We have

• a set P , whose elements are called points,
• a set G , whose elements we call straight lines,
• a relation ∈ between P and G ,
• a three-figure relation “between” on P ,
• a relation ≡1 on the set of straight lines,
• a relation ≡2 on the set of angles.

One could now formally define a Euclidean geometry as a 6-tuple (P , G ,∈,
between,≡1,≡2) that consists of such notions, and that satisfies axioms I1–I4,
A1–A5, K1–K6, P, V1 as well as V2, which still is to be formulated.

An extension of our geometry is a second 6-tuple (P ′, G ′,∈′, between′,≡′1,
≡′2) such that P ⊂ P ′, G ⊂ G ′ and the relations ∈′, between′, ≡′1 as
well as ≡′2 agree with the corresponding relations ∈, . . . after a restriction to
P and G .

Axiom V2 (maximality) Let (P ′, G ′,∈′, between′,≡′1,≡′2) be an extension of
our geometry. Then P ′ =P and G ′ = G .

Our geometry is therefore assumed to be non-extensible, i.e. maximal.
For a further discussion of axiomatic geometry the reader is referred to

Hilbert’s book [13]. Proofs of numerous geometric theorems, a discussion of
the uniqueness of Euclidean geometry and of the necessity of Archimedes’s
axiom, straightedge-and-compass constructions and spatial Euclidean geome-
try can be found there. On a final note, some axioms can be weakened slightly,
e.g. axioms K4 and V2.
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1.2 The Cartesian model

While the axiomatic method ensures logical clarity in the structural layout
of geometry, it is also annoyingly clumsy. The proofs of even relatively simple
geometric facts can easily become quite laborious. In addition, dealing with
geometric objects that are not composed of line segments, circular lines, and
so forth is relatively involved.

We therefore now follow the ideas of the Frenchman René Descartes
(1596–1650) and characterise points by coordinates, which give the posi-
tions of the points in the plane. This allows us to use methods from algebra
and infinitesimal calculus in geometry, extending our mathematical toolkit
considerably.

We hence make the definition

P := R
2.

Straight lines are defined as sets of points of the form

L = Lp,v := {x ∈ R
2 | x = p+ t · v, t ∈ R},

where p, v ∈ R
2, v �= 0, are fixed. The set of straight lines is then

G := {Lp,v | p, v ∈ R
2, v �= 0}.

We say that a point p is contained in a straight line L if p ∈ L in the set-
theoretic sense.

Exercise 1.7 Verify the validity of axioms I1–I4.

A point q ∈ R
2 lies between p and r ∈ R

2, p �= r, if there exists a t ∈ (0, 1) such
that q = t · p+ (1− t) · r.

Exercise 1.8 Show that axioms A1–A4 are valid.

It remains to define the congruence relations. This is done using a suitable
group of maps, which acts on the set of points.

Definition 1.2.1 Let A∈ O(n) be an orthogonal matrix, i.e. it satisfies
A ·A� = Id, where A� is the transpose of A. Let b ∈ R

n.

Then the map

FA,b : R
n → R

n, FA,b(x) = Ax+ b,
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is called a Euclidean motion. The vector b is sometimes called the trans-
lational part. For a fixed dimension n, we call the set of all Euclidean
motions,

E(n) := {FA,b | A ∈ O(n), b ∈ R
n},

the Euclidean motion group.

Exercise 1.9 Show the following: composition of maps turns E(n) into a
group with neutral element Id. Products and inverses are given by FA,b◦FB,c =
FAB,Ac+b and F−1

A,b = FA−1,−A−1b respectively.

Exercise 1.10 Show that axiom A5 is valid.

Hint An application of a Euclidean motion maps the straight line L to the
x-axis L′ = {(x, 0)� | x ∈ R}. Then argue that two points (x, y)� and (x′, y′)�
from R

2 −L′ lie on the same side of L′ if and only if y and y′ are both positive
or both negative.

Definition 1.2.2 Two line segments pq and rs are said to be congruent if
there exists a Euclidean motion F ∈ E(2) such that

F( p)F(q) = rs.

Analogously, the angle ∠( p, q, r) is congruent to ∠( p1, q1, r1) if there is an
F ∈ E(2) such that

∠(F( p), F(q), F(r)) = ∠( p1, q1, r1).

Exercise 1.11 Show the validity of axioms K1–K6.

Exercise 1.12 Show the validity of the parallel axiom P.

Exercise 1.13 Show the validity of Archimedes’s axiom V1.

The proof of the maximality axiom V2 requires more thought than those of
the other axioms. We therefore want to show it here.

Theorem 1.2.3 With the definitions made above the maximality axiom V2 is
valid.

Proof Let P ′ ⊃P and G ′ ⊃ G be respectively the set of points and the set
of straight lines of an extension of our Cartesian model of Euclidean geometry.
We will call the points from P old points, and those from P ′ −P new points.
We use analogous notation when dealing with straight lines. It needs to be
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shown that there cannot be new points and straight lines at all, P = P ′ and
G = G ′.

The proof is accomplished in three steps. We first show that the old straight
lines do not contain new points, then that there are no new points, and finally
that there are no new straight lines.

(a) Old straight lines do not contain new points, i.e. for L ∈ G and p ∈P ′ with
p ∈′ L we have p ∈P .

One must not become confused at this point. According to our definition,
old straight lines are sets of old points. In the set-theoretic sense old straight
lines only contain old points anyway. Nevertheless, it is a priori possible
that new points are contained in old straight lines for the extension ∈′ of the
set-theoretic inclusion ∈. It now needs to be shown that this is not the case.

For this purpose let L ∈ G be an old straight line. Suppose that L contains
a new point n. We choose an old point p1 ∈ L. As L is of the form L = Lp,v,
we can write p1 = p + t1v =: c(t1), t1 ∈ R. If we reproduce the line seg-
ment (0, 0)�(0, 1)� sufficiently often on L, starting at p1 in direction n, then we
obtain by Archimedes’s axiom a second point q1 ∈ L such that n lies between
p1 and q1. Reproducing the line segment (0, 0)�(0, 1)� on an old straight line
starting at an old point always gives another old point. Thus q1 is an old point.
We write q1 = c(s1), s1 ∈ R. Without loss of generality let t1 < s1.

We now decompose the real numbers into two disjoint subsets, R = T � S,
where T = {t ∈ R | c(t) lies on the same side of n as c(t1)} and S = {t ∈
R | c(t) lies on the same side of n as c(s1)}. This decomposition of the real
numbers constitutes a Dedekind cut. By the completeness of R either the sub-
set T must have a maximum or S a minimum. We deal with the case that T has
a maximum t2. The other case can be treated analogously.

We set p2 := c(t2). As t2 ∈ T, the points p1 and p2 must lie on the same
side of n. By Archimedes’s axiom, there is a natural number k such that k-fold
reproduction of the line segment p2n on L from p2 in direction q1 contains
the line segment p2q1. We set p3 := c(t3) with t3 = t2 + (s1 − t2)/k. Then the
line segment p2p3 has the property that its k-fold reproduction on L from p2
in direction q1 gives the line segment p2q1.

np1 p2 p3 q1

L

As the line segment p2q1 is contained in the k-fold reproduced line segment
p2n, the line segment p2p3 must be contained in p2n. Thus p3 lies between p2
and n. It follows that t3 ∈ T and t3 > t2. This contradicts the maximality of t2.

(b) There are no new points, i.e. P =P ′.

Let p ∈P ′ be a point. We choose an old point q ∈P and consider the straight
line L through p and q. We now choose three old points r, s, t ∈P that do not
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lie on a straight line and none of which lies on L, such that L and the line
segment rs intersect at q.

r s

t

L
q

u

p

It follows from axiom A5 that L intersects the line segment rt or ts at a point
u. As the two old straight lines L(r, t) and L(s, t) do not contain any new points
by (a), u must be a new point. Thus L = L(u, q) is an old straight line and
contains, again by (a), no new points. Hence p is an old point, p ∈P .

(c) There are no new straight lines, i.e. G = G ′.

Let L ∈ G ′ be a straight line. It follows from axiom I3 that L contains two
distinct points p and q. They must be old points by (b). Hence L = L( p, q) is
an old straight line, L ∈ G .

Exercise 1.14 Give another proof for part (a) of theorem 1.2.3 by consider-
ing Cauchy sequences instead of Dedekind cuts.

The axioms of Euclidean plane geometry are thus valid for the Cartesian
model. In particular, we see that the axioms are consistent.

Doing geometry in the Cartesian model has the advantage that we now
have the whole mathematical machinery of differential and integral calcu-
lus to hand. This makes the treatment of Euclidean trigonometry relatively
easy.

We will as of now use angle brackets to denote the standard scalar product
on Rn:

〈x, y〉 =
n∑

i=1

xiyi

for x = (x1, . . . , xn)�, y = (y1, . . . , yn)� ∈ R
n.

If x, y and z are three points in R
2 which do not lie on a straight line, then

| 〈y− x, z− x〉 | ≤ ‖y− x‖ · ‖z− x‖ by the Cauchy–Schwarz inequality. Hence
|〈y− x, z− x〉/(‖y− x‖ · ‖z− x‖)| ≤ 1. Since cos : [0, π ] → [−1, 1] is bijective
we can define their interior angle as the unique number γ ∈ [0, π ] such that
cos(γ ) = 〈y− x, z− x〉/(‖y− x‖ · ‖z− x‖).

Exercise 1.15 Show that if x, y, z, and x′, y′, z′ represent the same angle in
the sense of definition 1.1.5, ∠(y, x, z) = ∠(y′, x′, z′), then they have the same
interior angle, γ = γ ′.
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Exercise 1.16 Show that two angles are congruent if and only if they have
the same interior angle.

This is analogous to the fact that two line segments are congruent if and only
if they have equal length.

Theorem 1.2.4 (cosine rule for Euclidean geometry) Let p, q, r ∈ R
2. Let a =

‖p− q‖, b = ‖p− r‖ and c = ‖q− r‖ be the sides of a triangle with vertices p, q
and r. Let γ be the interior angle at the vertex p. Then

c2 = a2 + b2 − 2ab cos(γ ).

Proof Euclidean motions do not change the side and angle ratios. We can
therefore after the application of a suitable Euclidean motion assume that
p= (0, 0)�, q = (a, 0)� and r = (x, y)�.

p = (0, 0)� q = (a, 0)�

r = (x, y)�

a

b c

γ

Hence

c2 = (x− a)2 + y2 = a2 − 2ax+ x2 + y2 = a2 + b2 − 2ax.

Further

cos(γ ) = 〈q, r〉
ab

= xa+ y · 0
ab

= ax
ab

and thus ax = ab cos(γ ). The claim follows.

Corollary 1.2.5 (Pythagoras’s theorem) Using the notation from theorem 1.2.4
and letting the angle be a right angle, γ = π/2, the following equality holds:

a2 + b2 = c2.

Theorem 1.2.6 (sine rule for Euclidean geometry) If β denotes the interior angle
at vertex q and α the one at vertex r, then the following equality holds:

a
b
= sin(α)

sin(β)
.



18 E U C L I D E A N G E O M E T R Y

p q

r

a

b c

γ β

α

Proof By the cosine rule the angle at vertex r satisfies

−2bc cos(α) = a2 − (b2 + c2)

and hence

4b2c2 cos2(α) =
(
−a2 + b2 + c2

)2
.

Analogously,

4a2c2 cos2(β) =
(

a2 − b2 + c2
)2

.

We therefore obtain

sin2(α)

sin2(β)
= 4a2b2c2 (1− cos2(α)

)
4a2b2c2

(
1− cos2(β)

)
= 4a2b2c2 − a2 (−a2 + b2 + c2)2

4a2b2c2 − b2
(
a2 − b2 + c2

)2

= a2

b2
· 4b2c2 − (

a4 + b4 + c4 − 2a2b2 − 2a2c2 + 2b2c2)
4a2c2 − (

a4 + b4 + c4 − 2a2b2 + 2a2c2 − 2b2c2
)

= a2

b2
.

Theorem 1.2.7 (angle sum in the Euclidean triangle) The sum of the interior
angles in the Euclidean triangle satisfies

α + β + γ = π .

Proof (a) We first prove the statement for right-angle triangles. Let γ =
π/2. Then

sin(α + β + π/2) = cos(α + β) = cos(α) cos(β)− sin(α) sin(β). (1.1)
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Using the cosine rule 1.2.4 and Pythagoras’s theorem we obtain

cos(α) cos(β) = −a2 + b2 + c2

2bc
· a2 − b2 + c2

2ac

= 2b2 · 2a2

4abc2
(1.2)

= ab
c2

.

The sine rule 1.2.6 together with the cosine rule and Pythagoras’s theorem
gives

sin(α) sin(β) = b
a

sin2(α)

= b
a
·
(

1− cos2(α)
)

= b
a
·
(

1−
(−a2 + b2 + c2)2

4b2c2

)
(1.3)

= b
a
·
(

1− 4b4

4b2c2

)

= b
a
· c2 − b2

c2

= ab
c2

.

Substituting (1.2) and (1.3) into (1.1), we obtain sin(α + β + π/2) = 0, i.e.
α + β + π/2 is an integral multiple of π ,

α + β + π/2 = k · π ,

k ∈ Z. As all angles in a right-angle triangle are > 0 and ≤ π/2, we have
π/2 < α + β + π/2 < 3π/2 and thus k = 1. It follows that α + β + π/2 = π ,
which proves the claim for right-angle triangles.

(b) In a general triangle let a be the longest side and r the vertex opposite to
it. We drop a perpendicular from r to a and thus divide the triangle into two
right-angle triangles.

p q

r

a

b c

γ β

α1 α2

· ·
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We know from part (a) of this proof that in right-angle triangles α1 + γ +
π/2 = π and α2+β+π/2 = π . Addition of those two equations gives α+β +
γ = π .

Exercise 1.17 Prove the half-angle theorem of Euclidean geometry:

tan2
(α

2

)
= (a− b+ c)(a+ b− c)

(a+ b+ c)(−a+ b+ c)
.

Hint Check and use the formula tan2(t) = (1− cos(2t))/(1+ cos(2t)).

For comparison, we conclude this section by looking at another important clas-
sical geometry, i.e. spherical geometry. The points of this geometry are not in
the plane, but on the surface of a sphere. We set

P := S2 := {(x, y, z)� ∈ R
3 | x2 + y2 + z2 = 1}.

We call S2 the two-dimensional sphere.
This raises the question of what the “straight lines” are in this geometry.

The straight lines in the plane can be characterised by the fact that each of
them is the shortest curve connecting any two of its points. On the sphere the
great circles have this property. A great circle is the subset of S2 in which
a two-dimensional vector subspace of R

3, i.e. a plane that passes through 0,
intersects the surface of the sphere.

We therefore set

G := {S2 ∩ E | E is a two-dimensional vector subspace of R
3}.

The incidence relation ∈ must here be interpreted in the set-theoretic sense
again.

O

a great circle

O

not a great circle

Exercise 1.18 Which of the axioms I1–I4 are valid?

Given three points on a great circle, it is not possible to say in a meaningful
way which of them lies between the two others. Let us try with the following
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definition: if p, q, r ∈ S2, then q lies between p and r if and only if p, q and r are
three pairwise distinct points on a great circle.

Exercise 1.19 What is a line segment? Which of the axioms A1–A5 are
valid?

The congruence relations on the other hand can easily be defined in a geomet-
rically meaningful way. We simply exchange the Euclidean motion group E(2)

for the orthogonal group O(3). One needs to pay attention to the fact that for
an orthogonal matrix A ∈ O(3) and p ∈ S2 the point Ap should lie on S2 again,
i.e. A indeed maps S2 to itself only.

Exercise 1.20 Show that axioms K1–K6 are valid.

There are no parallels since any two great circles intersect. Theorem 1.1.9
therefore does not hold. This is one of the ways to see that not all incidence
and ordering axioms can hold.

Because of its importance in navigation, amony other things, spherical
geometry has been studied for a very long time. We will investigate it in more
detail in sections 4.9 and 4.10.



2 Curve theory

We analyse curves in n-dimensional space with a special focus on plane curves
and space curves. Length, curvature and torsion are introduced. We prove
Hopf’s Umlaufsatz for simple closed curves, characterise convex curves and
derive the four-vertex theorem. The isoperimetric inequality, which compares
the length of a simple closed plane curve with the enclosed area, is proved using
the Fourier series. We show that for a given curvature and torsion the resulting
space curve is unique up to a Euclidean motion. We investigate how much a
space curve needs to curve if it is closed and make the result even stronger in the
case that the space curve is knotted.

2.1 Curves in R
n

We now want to use the tools of differentiation and integration to describe
curves in n-dimensional space. We usually graphically imagine a curve as a
bent line in space. Mathematically we express this as follows:

Definition 2.1.1 Let I ⊂ R be an interval. A parametrised curve is a map
c : I → R

n that can be differentiated infinitely often. A parametrised curve is
said to be regular if its velocity vector does not vanish anywhere; ċ(t) �= 0 for
all t ∈ I.

The interval I from the definition may be open, closed or half-open; further-
more, I can be bounded or unbounded. The condition ċ(t) �= 0 ensures that
the point c(t) on the curve moves at t ∈ I. In particular, this excludes the con-
stant map c(t) = c0. This certainly makes sense, as the image of this map only
consists of the point c0; not exactly what we have in mind when thinking of a
curve. Let us look at some examples.

Example 2.1.2 A straight line can be described as a regular parametrised
curve:

c : R→ R
n,

c(t) = c0 + t · v,

22
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where c0 ∈ R
n and v ∈ R

n − {0}. This obviously satisfies the condition ċ(t) =
v �= 0.

c0

v

Example 2.1.3 A circular curve in the plane around the origin (0, 0) with
radius r > 0 looks as follows:

c : R→ R
2,

c(t) =
(

r · cos(t)
r · sin(t)

)
.

(0
0

)
cr

The arrow in the sketch shows the direction in which the curve traverses the
image. This example shows that a regular parametrised curve is not necessarily
injective. Because of the periodicity c(t + 2π) = c(t) the curve runs infinitely
often through every point that is in the image. We could, of course, restrict
the domain of c to an interval with a length of exactly one period, but we shall
discuss this later.

Example 2.1.4 A helix in three-dimensional space can be parametrised as
follows:

c : R→ R
3,

c(t) =
⎛⎝ r · sin(t)

r · cos(t)
h · t

⎞⎠ ,

where r > 0 and h > 0.
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Example 2.1.5 The following regular parametrised curve is called a tractrix:

c : (0, π/2)→ R
2,

c(t) =
(

sin(t)
cos(t)+ ln tan(t/2)

)
.

c
(π

2

)
=

(
1
0

)
c(t), t ∈

(π

2
, π

)

c(t), t ∈
(

0,
π

2

)

With the given rule for the computation of c(t) from t one could define c on
all of (0, π). But for t = π/2 one obtains ċ (π/2) = (0, 0)�. Then c would no
longer be regular on the whole of (0, π). It can be seen in the illustration that c
has a cusp for c (π/2) = (1, 0)�. This is excluded by our definition of a regular
parametrised curve.

Exercise 2.1 Show that the tractrix has the following property: for each
point on the curve the line segment of the tangent line from the curve point to
the y-axis has length 1.

This allows the following interpretation: if you walk along the y-axis while
dragging a stone (or tired dog) on a rope of length 1, then the stone (or
unhappy dog) will follow the tractrix.
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Example 2.1.6 The logarithmic spiral is given by

c : R→ R
2,

c(t) =
(

et/10 · cos(t)
et/10 · sin(t)

)
.

A parametrised curve is more than just the set of points on the curve in R
n,

i.e. more than just the image c(I) of c. It is also specified in which direction
the curve traverses the image. One often wants to change this parametrisation
while leaving the image as it is. For this we use the following:

Definition 2.1.7 Let c : I → R
n be a parametrised curve. A parameter trans-

formation of c is a bijective map ϕ : J → I, where J ⊂ R is another interval
such that both ϕ and ϕ−1 : I → J can be differentiated infinitely often. The
parametrised curve c̃ = c ◦ ϕ : J → R

n is called a reparametrisation of c.

J I
ϕ

c̃ c

Since c = c̃ ◦ ϕ−1 one can get c back from c̃. One should note here that
the derivative of a parameter transformation ϕ cannot vanish anywhere, since
according to the chain rule(

ϕ−1
)·

(ϕ(t)) · ϕ̇(t) =
(
ϕ−1 ◦ ϕ

)·
(t) = 1.

This also ensures that a reparametrisation of a regular parametrised curve
is again regular:

˙̃c(t) = ċ(ϕ(t)) · ϕ̇(t) �= 0.

A parameter transformation can either reverse or preserve the direction in
which the curve traverses the image. The trivial parameter transformation
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ϕ(t)= t, for example, does not change the parametrised curve, while the
parameter transformation ψ(t) = −t reverses the orientation.

−b −a a b

ψ(t) = −t

c̃ = c ◦ ψ c

Definition 2.1.8 A parameter transformation ϕ is called orientation-
preserving if ϕ̇(t) > 0 for all t. The parameter transformation ϕ is said to be
orientation-reversing if ϕ̇(t) < 0 for all t.

Every parameter transformation is either orientation-preserving or orientation-
reversing. This can easily be seen as follows: suppose that there exists a t1 ∈ I
with ϕ̇(t1) < 0 and a t2 ∈ I with ϕ̇(t2) > 0, then by the intermediate value
theorem there would also exist a t3 between t1 and t2 with ϕ̇(t3) = 0. But this
is impossible, as we have seen before.

We imagine a curve as a parametrised curve, while the actual choice of
parametrisation is regarded as irrelevant. This is made more precise through
the following:

Definition 2.1.9 A curve is an equivalence class of regular parametrised
curves, where those curves that are reparametrisations of each other are
regarded as equivalent.

The regular parametrised curves from examples 2.1.2–2.1.6 are different
curves since they have distinct images in R

n and hence cannot be obtained
from each other by reparametrisations.

The regular parametrised curves

c1 : R→ R
2, c1(t) = (t, t)

and

c2 : (0,∞)→ R
2, c2(t) = (ln t, ln t),

however, are equivalent, since c1 = c2 ◦ ϕ with ϕ(t) = e t, and hence represent
the same curve.

If a curve is represented by a regular parametrised curve c : I → R
n, then

the image c(I) is said to be the trace of the curve.
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Curves do not have an intrinsic orientation, since it can be reversed by a
parameter transformation. To be able to define an orientation we make use of
the following definition:

Definition 2.1.10 An oriented curve is an equivalence class of parametrised
curves, where those that originate from each other through orientation-
preserving reparametrisations are regarded as equivalent.

Every oriented curve determines exactly one curve. Every curve has exactly
two orientations, i.e. there are exactly two oriented curves that determine a
given curve.

Definition 2.1.11 A unit speed curve or curve parametrised by arc-length is
a regular parametrised curve c : I → R

n with ‖ċ(t)‖ = 1 for all t ∈ I.

Curves parametrised by arc-length are exactly those that traverse their image
in R

n with constant velocity 1. Slightly more generally we also say:

Definition 2.1.12 A curve parametrised proportional to arc-length is a
regular parametrised curve c : I→R

n, for which ‖ċ‖ is constant (but not
necessarily equal to 1).

Curves parametrised by arc-length are for many purposes particularly conve-
nient. But do they exist?

Proposition 2.1.13 For every regular parametrised curve c there exists an
orientation-preserving parameter transformation ϕ such that the reparametri-
sation c ◦ ϕ is parametrised by arc-length.

Proof Let c : I → R
n be a regular parametrised curve. We choose t0 ∈ I

and set

ψ(s) :=
∫ s

t0
‖ċ(t)‖dt.

Since ψ
′
(s) = ‖ċ(s)‖ > 0 the map ψ is strictly monotonically increasing and

hence injective. Thus
ψ : I → J := ψ(I)

is an orientation-preserving parameter transformation. We denote the inverse
map by ϕ := ψ−1 : J → I. Then ϕ and ψ can be differentiated infinitely often,
and for the first derivative of ϕ we have the formula

ϕ̇(t) = 1
ψ
′
(ϕ(t))

= 1
‖ċ(ϕ(t))‖ .
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It follows by the chain rule that

∥∥(c ◦ ϕ)·(t)
∥∥ = ‖ċ(ϕ(t)) · ϕ̇(t)‖ =

∥∥∥∥ ċ(ϕ(t))
‖ċ(ϕ(t))‖

∥∥∥∥ = 1.

Hence c ◦ ϕ is a curve parametrised by arc-length.

So curves can be reparametrised by arc-length. To what extent are these
reparametrisations unique?

Lemma 2.1.14 Let c1 : I1 → R
n and c2 : I2 → R

n be different parametri-
sations by arc-length of the same curve, then the corresponding parameter
transformation ϕ : I1 → I2 with c1 = c2 ◦ ϕ is of the form

ϕ(t) = t + t0

for a t0 ∈ R if c1 and c2 have the same orientation. If c1 and c2 have opposite
orientations, then it is of the form

ϕ(t) = −t + t0.

Proof We have

1 = ‖ċ1(t)‖ = ‖ċ2(ϕ(t)) · ϕ̇(t)‖ = ‖ċ2(ϕ(t))‖ · |ϕ̇(t)| = |ϕ̇(t)|.

Hence ϕ(t) = ±t + t0.

Exercise 2.2 Let c : I → R
n be a parametrised curve and let F ∈ E(n)

be a Euclidean motion. Show that if c is a curve parametrised by arc-length,
then F ◦ c is also a curve parametrised by arc-length. Also show that if c is
parametrised proportional to arc-length, then so is F ◦ c.

To see what parametrisations by arc-length have to do with lengths, we first
have to define the length of curves.

Definition 2.1.15 Let c : [a, b] → R
n be a parametrised curve. Then

L[c] :=
∫ b

a
‖ċ(t)‖ dt

is called the length of c.

Lemma 2.1.16 The length of a parametrised curve is not changed by
reparametrisation.
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Proof This can be deduced using the substitution rule. If c̃ = c ◦ ϕ is a
reparametrisation of c, ϕ : [a′, b′] → [a, b], then we have

L[c̃] = ∫ b′
a′

∥∥(c ◦ ϕ)·(t)∥∥dt

= ∫ b′
a′ ‖ċ(ϕ(t))‖ · |ϕ̇(t)| dt

= ∫ b
a ‖ċ(s)‖ds

fs=L[c].

Lemma 2.1.16 says that we can talk about the length of curves, not only of the
length of parametrised curves. The length does not depend on the particular
parametrisation. Indeed, the length of a road does not depend on the speed at
which you have driven along it.

Now we also understand why parametrisations by arc-length are so useful,
since if c : [a, b] → R

n is a curve parametrised by arc-length, then

L[c|[a,s]] =
∫ s

a
1 dt = s− a

for every s ∈ [a, b]. A curve parametrised by arc-length is exactly as long as
the parameter interval.

The definition of length in terms of an integral may at first seem a bit
arbitrary. A different approach looks as follows:

Definition 2.1.17 A polygon in R
n is a tuple P = (a0, . . . , ak) of vectors ai ∈

R
n such that ai+1 �= ai for all i = 0, . . . , k− 1.

We first imagine the vectors ai as the vertices of the polygon and two successive
vertices ai and ai+1 to be connected by the corresponding segment of a straight
line.

�

�

�

��

�
a0

a1 a2

a3

a4

a5

The condition ai+1 �= ai that two successive vertices must be distinct could
have been omitted in this section, in which we only considered the lengths
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of curves and polygons. We only make it in order not to encounter problems
when defining the angle at vertex ai later, cf. definition 2.3.10.

Since they have vertices, polygons are not (regular parametrised) curves
according to our definition. But it is clear what the length of such a polygon is,
namely the sum of the lengths of the line segments:

L[P] :=
k−1∑
i=0

∥∥ai+1 − ai
∥∥ .

To define the length of a parametrised curve one could also approximate the
curve by polygons and describe its length as the limit of the lengths of the
polygons, if it exists. The following proposition says that this approach leads
to the same concept of length.

�

�
�

�

�

�
�

�

c(t0)
c(t1)

c(tk)

Proposition 2.1.18 (Approximation of length with polygons) Let c : [a, b] → R
n be

a parametrised curve. Then for every (however small) ε > 0 there exists a δ > 0
such that for every partition a = t0 < t1 < · · · < tk = b of the interval making
up the domain with mesh smaller than δ (i.e. ti+1 − ti < δ for all i) the following
holds:

|L[c] − L[P]| < ε,

where1 P = (c(t0), c(t1), . . . , c(tk)).

Proof Let ε > 0 be given. We choose an ε′ ∈ (
0, ε/(1+√n(b− a))

)
.

According to the theorem about Riemann sums [18, p. 106, theorem 2.7]
applied to the integral

L[c] =
∫ b

a
‖ċ(t)‖dt,

1 Should, inconsistent with our definition of polygons, two or more successive vertices of P
be the same, c(ti+1) = c(ti), then we simply omit the repeated vertices in P. Identical successive
vertices would not contribute to the length of a polygon anyway.
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there exists for ε′ a δ0 > 0 such that for every partition a = t0 < t1 < · · · <

tk = b with mesh smaller than δ0∣∣∣∣∣L[c] −
k−1∑
i=0

‖ċ (ti+1
) ‖ · (ti+1 − ti

)∣∣∣∣∣ < ε′. (2.1)

The components ċ j : [a, b] → R of the derivative ċ of c are continuous func-
tions on the compact interval [a, b], hence even uniformly continuous on [a, b].
Thus there exists δj > 0 such that∣∣∣ċ j(t)− ċ j(s)

∣∣∣ < ε′,

whenever |t − s| < δj, t, s ∈ [a, b].
We set δ := min {δ0, δ1, . . . , δn}. Now let there be a partition a = t0 <

t1 < · · · < tk = b with mesh smaller than δ. According to the mean value
theorem there exist τi,j ∈ (ti, ti+1) such that

c j(ti+1)− c j(ti) = ċ j(τi,j) · (ti+1 − ti).

Further ∣∣‖c(ti+1)− c(ti)‖ − ‖ċ(ti+1)‖(ti+1 − ti)
∣∣

=

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
⎛⎜⎝ ċ1(τi,1)

...
ċn(τi,n)

⎞⎟⎠
∥∥∥∥∥∥∥ (ti+1 − ti)−

∥∥ċ(ti+1)
∥∥ (ti+1 − ti)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
⎛⎜⎝ ċ1(τi,1)

...
ċn(τi,n)

⎞⎟⎠
∥∥∥∥∥∥∥−

∥∥∥∥∥∥∥
⎛⎜⎝ ċ1(ti+1)

...
ċn(ti+1)

⎞⎟⎠
∥∥∥∥∥∥∥
∣∣∣∣∣∣∣ · (ti+1 − ti)

≤

∥∥∥∥∥∥∥
⎛⎜⎝ ċ1(τi,1)− ċ1(ti+1)

...
ċn(τi,n)− ċn(ti+1)

⎞⎟⎠
∥∥∥∥∥∥∥ · (ti+1 − ti)

=
√√√√ n∑

j=1

(ċ j(τi,j)− ċ j(ti+1))
2 · (ti+1 − ti)

≤ √n · ε′ · (ti+1 − ti).

The first inequality above holds because of the inverse “triangle inequality”
|‖x‖ − ‖y‖| ≤ ‖x− y‖. Summation over i gives
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∣∣∣∣∣L[P] −
k−1∑
i=0

‖ċ(ti+1)‖(ti+1 − ti)

∣∣∣∣∣
=

∣∣∣∣∣
k−1∑
i=0

‖c(ti+1)− c(ti)‖ −
k−1∑
i=0

‖ċ(ti+1)‖(ti+1 − ti)

∣∣∣∣∣
≤ √n · ε′ · (b− a). (2.2)

The claim follows, since

|L[P] − L[c]| ≤
∣∣∣∣∣L[P] −

k−1∑
i=0

‖ċ(ti+1)‖(ti+1 − ti)

∣∣∣∣∣
+

∣∣∣∣∣
k−1∑
i=0

‖ċ(ti+1)‖(ti+1 − ti)− L[c]
∣∣∣∣∣

(2.1)(2.2)≤ √
n · ε′ · (b− a)+ ε′

< ε.

Exercise 2.3 Let c : [a, b] → R
n be a parametrised curve. Let P be a polygon

inscribed in c as in proposition 2.1.18. Show that

L[P] ≤ L[c].

Further show that
L[c] = sup

P
L[P],

where the supremum is taken over all inscribed polygons P.

Hint When an inscribed polygon P′ results from P by refining the partition,
then the triangle inequality gives

L[P] ≤ L[P′].

Definition 2.1.19 A parametrised curve c : R → R
n is called periodic with

period L if for all t ∈ R we have c(t + L) = c(t), L > 0, and there is no
0 < L′ < L such that c(t + L′) = c(t) for all t ∈ R as well. A curve is called
closed if it has a periodic regular parametrisation.

The circular line from example 2.1.3 is a periodic parametrised curve with
period L = 2π . Hence the curve represented by this parametrisation is closed.

Not every parametrisation of a closed curve is periodic. One can, for exam-
ple, reparametrise a periodic parametrised curve in such a way that it becomes
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slower during each traverse of the curve. Then the time interval needed for
the traverse will increase. This reparametrisation is then no longer periodic.
However, the statement in the following exercise holds.

Exercise 2.4 Show that if c : R → R
n is a parametrisation by arc-length of

a closed curve, then c is periodic.

Definition 2.1.20 A closed curve is a simple closed curve if it has a periodic
regular parametrisation c with period L such that c|[0,L) is injective.

a simple closed curve a closed curve, but
not simple closed

This condition says that the curve does not have any self-intersections, apart
from the point where it “closes itself”. As parameter transformations are bijec-
tive, the injectivity condition holds not only for one periodic parametrisation
of the closed curve, but automatically for all of its periodic parametrisations.
The choice of the periodic parametrisation of the closed curve does not play a
role in determining whether it is a simple closed curve or not.

Exercise 2.5 We let a disc of radius 1 roll on the x-axis in the x–y plane. Con-
sider a second disc of radius r > 0 with the same centre and rigidly connected
with the first.

y

x

1

r
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(a) Describe the path on which a point on the rim of the second disc moves by a
parametrised curve.
This curve is called cycloid.

(b) Sketch the curve for r < 1, r = 1 and r > 1.
(c) In which cases is the parametrised curve regular?
(d) Calculate the length of the curve for one turn of the disc for the case r = 1.

Exercise 2.6 Let x, y∈R
n. Show that the unique shortest curve that con-

nects x with y is the corresponding segment of a straight line:

(a) using proposition 2.1.18;
(b) without using polygons.

Exercise 2.7 Show that the two regular parametrised curves c1 and c2 have
the same trace, but are nevertheless not equivalent, where

c1 : [0, 2π ] → R
2, c1(t) =

(
cos(t)
sin(t)

)
,

c2 : [0, 2π ] → R
2, c2(t) =

(
cos(2t)
sin(2t)

)
.

Remark This example shows that in general curves are not fully deter-
mined by their trace. The following exercise shows that this is different for
curves without self-intersections.

Exercise 2.8 Let c1 and c2 be regular parametrised curves with the same
trace and with compact parameter intervals. Show that c1 and c2 are equivalent
if c1 and c2 are injective.

2.2 Plane curves

In this section we will focus on those curves that lie in the plane, i.e. take values
in R

2.

Definition 2.2.1 A parametrised curve c : I → R
2 is called a parametrised

plane curve. Analogously we define plane regular parametrised curves, plane
curves and oriented plane curves.

A specific feature of a plane curve is the possibility of defining its normal field.
For this purpose let c : I → R

2 be a unit speed curve. We define the normal
field by

n(t) :=
(

0 −1
1 0

)
· ċ(t).
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ċ(t)n(t)

c(t)

c

This definition is made in such a way that (ċ(t), n(t)) always form a positively
oriented orthonormal basis of R

2. In other words, we rotate the velocity vector
by 90 degrees anti-clockwise.

Since c is a unit speed curve we have

〈ċ, ċ〉 ≡ 1.

Differentiating this equation gives

0 ≡ 〈c̈, ċ〉 + 〈ċ, c̈〉 = 2 〈c̈, ċ〉 .

Thus ċ(t) and c̈(t) are perpendicular to each other. Hence c̈(t) is a multiple of
the normal vector n(t):

c̈(t) = κ(t) · n(t).

Definition 2.2.2 The function κ : I → R is called the curvature of c.

The curvature is a measure of how much a curve deviates from a straight line.
If c is a unit speed curve, then c is exactly a straight line when c̈ ≡ 0, i.e. when
κ ≡ 0. Curvature is positive if the curve bends in the direction of its normal
vector, i.e. in the direction in which the image is traversed to the left, and
negative when it bends to the right.

ċ(t1)

n(t1)

c̈(t1)

κ(t1) < 0

ċ(t2)

n(t2)

κ(t2) = 0

ċ(t3)

n(t3)

c̈(t3)

κ(t3) > 0

c

Example 2.2.3 Let us consider the circular line c : R → R
2 of radius

r > 0, parametrised by arc-length c(t)= (r · cos(t/r), r · sin(t/r))�. Then ċ(t) =
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(−sin(t/r), cos(t/r))� and c̈(t)= (1/r)(−cos(t/r),−sin(t/r))� = (1/r)n(t). Hence
κ ≡ 1/r.

Exercise 2.9 Let c be a unit speed curve. Let F ∈ E(2) be an orientation-
preserving Euclidean motion, F(x) = Ax + b with A ∈ SO(2) and b ∈ R

2.
Show that F ◦ c has the same curvature as c.

How does a Euclidean motion F that is not orientation-preserving affect the
curvature of c?

Exercise 2.10 Let c be a plane regular parametrised curve (not necessarily a
unit speed curve). Show that the curvature of the curve is given by the formula

κ(t) = det (ċ(t), c̈(t))

‖ċ(t)‖3
.

More precisely this means the following: if c̃ = c◦ϕ is an orientation-preserving
reparametrisation by arc-length with curvature κ̃ , then κ̃ = κ ◦ ϕ.

Exercise 2.11 Let c : I → R
2 be a unit speed curve. The curve lies on a disc

of radius R, i.e. ‖c(t)‖≤R for all t ∈ I. Suppose that the curve touches the
boundary of the disc at t0 ∈ I, i.e. ‖c(t0)‖ = R. Show that

|κ(t0)| ≥ 1
R

.

Hint Consider (d/dt)
∣∣
t=t0
‖c(t)‖2 and (d2/dt2)

∣∣
t=t0
‖c(t)‖2.

Proposition 2.2.4 (Frenet formulae) Let c : I → R
2 be a plane unit speed curve.

We set v := ċ. Let κ be the curvature of c and let n be the normal vector. Then

(v̇(t), ṅ(t)) = (v(t), n(t))
(

0 −κ(t)
κ(t) 0

)
.

Proof The equation v̇ = κ · n is exactly the definition of the curvature.
By differentiating the equation 〈n, n〉 ≡ 1 we conclude as above that ṅ(t) is
perpendicular to n(t) and hence must be a multiple of v(t), ṅ(t) = α(t) · v(t).
We differentiate 〈n, v〉 ≡ 0 and obtain

0 = 〈ṅ, v〉 + 〈n, v̇〉
= 〈α · v, v〉 + 〈n, κ · n〉
= α + κ .

Thus α = −κ and hence ṅ = −κ · v.



2.2 P L A N E C U R V E S 37

Lemma 2.2.5 Let c : [a, b] → R
2 be a unit speed curve. Then there exists a

C∞-function ϑ : [a, b] → R such that

ċ(t) =
(

cos(ϑ(t))
sin(ϑ(t))

)
.

If ϑ1 and ϑ2 are two such functions, then they differ only by an integer multiple
of 2π , ϑ1 = ϑ2+ 2kπ with k ∈ Z constant. In particular ϑ(b)− ϑ(a) is uniquely
determined by c.

c

ċ(t)

ϑ(t)

The number ϑ(t) measures the angle between the velocity vector ċ(t) and the
x-axis. However, this angle is unique only up to integer multiples of 2π . Every
unit vector can be written in the form (cos(ϑ), sin(ϑ))�. The important state-
ment of this lemma is that the angle ϑ can be chosen as a continuous and even
smooth function of t. Of course, one could uniquely determine the angle by
requiring that it is in the interval [0, 2π). But then the function ϑ would have
jump discontinuities at those points where the velocity vector has completed
one turn.

Proof (a) We first consider the case that the image ċ([a, b]) is fully
contained in one of the following four semicircles:

SR := {(x, y)� ∈ S1 ⊂ R
2| x > 0}, SL := {(x, y)� ∈ S1 ⊂ R

2| x < 0},
SO := {(x, y)� ∈ S1 ⊂ R

2| y > 0}, SU := {(x, y)� ∈ S1 ⊂ R
2| y < 0}.

Here SR stands for the right semicircle, SL for the left one, SO for the top
semicircle and SU for the lower one. For instance, suppose the image is in SR.
This means the condition ċ1 > 0 holds for the first coordinate of ċ. Hence our
function ϑ satisfies

ċ2(t)
ċ1(t)

= sin(ϑ(t))
cos(ϑ(t))

= tan(ϑ(t)).
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Thus

ϑ(t) = arctan

(
ċ2(t)
ċ1(t)

)
+ 2kπ

with k ∈ Z. Here k is constant, since ϑ would otherwise not be continuous.
From the formula it is obvious that ϑ is even smooth. If the initial value ϑ(a) is
given, then k and thus also ϑ are uniquely determined. The other three cases
are handled similarly.

(b) We now drop the condition that the image ċ([a, b]) needs to be fully con-
tained in a semicircle. We divide the compact interval [a, b], a = t0 < t1 <

· · · < tm = b such that every ċ([ti, ti+1]) is contained in one of the four semi-
circles. We can choose ϑ(a) and, according to (a), obtain a unique smooth
ϑ : [a, t1] → R with the desired properties. Hence ϑ(t1) is determined and we
obtain, again according to (a), a unique smooth continuation ϑ : [a, t2] → R.
We continue inductively and finally obtain a smooth ϑ : [a, b] → R.

The only choice that we made was the initial value ϑ(a). It is unique only
up to integer multiples of 2π . Hence ϑ is also unique up to integer multiples
of 2π .

Definition 2.2.6 Let c : R → R
2 be a plane unit speed curve, periodic with

period L. Let ϑ : R→ R be as in Lemma 2.2.5. Then

nc := 1
2π

(ϑ(L)− ϑ(0))

is called the winding number of c.

nc = 0

nc = 2

nc = 1

nc = −3

That the trigonometric function from lemma 2.2.5 is unique only up to a con-
stant summand 2kπ does not matter for the definition of the winding number
since this summand cancels in the difference ϑ(L)− ϑ(0).



2.2 P L A N E C U R V E S 39

Example 2.2.7 The circle of radius r > 0 has the parametrisation by arc-
length c(t) = (r · cos(t/r), r · sin(t/r))� with period L = 2πr. For the velocity
vector we obtain

ċ(t)=
(−sin(t/r)

cos(t/r)

)

=
(

cos(t/r+ π/2)

sin(t/r+ π/2)

)
.

Hence we obtain the trigonometric function ϑ(t)= t/r + π/2 and thus the
winding number

nc = 1
2π

(ϑ(2πr)− ϑ(0)) = 1.

Lemma 2.2.8 Let c1, c2 : R→R
2 be two plane curves parametrised by arc-

length, both periodic with period L. If c2 results from c1 in an orientation-
preserving reparametrisation, then

nc1 = nc2 .

If c2 results from c1 in a reparametrisation that is not orientation-preserving,
then

nc1 = −nc2 .

Proof According to lemma 2.1.14 the following holds for the parameter
transformation ϕ with c1 = c2 ◦ ϕ:

ϕ(t) = ±t + t0,

where the sign depends on whether the parameter transformation preserves
or reverses the orientation. If ϑ2 is a trigonometric function for c2 as in lemma
2.2.5, then, in the orientation-preserving case, ϑ1 := ϑ2 ◦ ϕ is a such function
for c1, since

ċ1(t) = ċ2(t + t0)

= (cos(ϑ2(t + t0)), sin(ϑ2(t + t0)))
� .

But if ϑ1 is a trigonometric function for c1, then the same holds for ϑ̃1, where
ϑ̃1(t) := ϑ1(t + L) and L is the period of c1. It follows that
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2π(nc2 − nc1) = (ϑ2(L)− ϑ2(0))− (ϑ1(L)− ϑ1(0))

= ϑ1(L− t0)− ϑ1(−t0)− ϑ1(L)+ ϑ1(0)

=
(
ϑ̃1(−t0)− ϑ̃1(0)

)
− (ϑ1(−t0)− ϑ1(0))

= 0,

thus nc1 = nc2 .
In the orientation-reversing case one observes that for a trigonometric func-

tion ϑ2 for c2 the function ϑ1(t) := ϑ2(−t + t0)+ π is a trigonometric function
for c1, since then ϕ(t) = −t + t0 and hence

ċ1(t) = −ċ2(−t + t0)

= −(cos(ϑ2(−t + t0)), sin(ϑ2(−t + t0)))
�

= (cos(ϑ2(−t + t0)+ π), sin(ϑ2(−t + t0)+ π))� .

We conclude that

2π(nc2 + nc1) = (ϑ2(L)− ϑ2(0))+ (ϑ1(L)− ϑ1(0))

= ϑ1(−L+ t0)− ϑ1(t0)+ ϑ1(L)− ϑ1(0)

= (ϑ1(−L+ t0)− ϑ1(0))−
(
ϑ̃1(−L+ t0)− ϑ̃1(0)

)
= 0,

hence nc1 = −nc2 .

The lemma shows that the winding number of an oriented closed plane curve is
well defined. When the orientation is reversed the sign of the winding number
is changed.

Further we can establish that the winding number is always a whole number.
From cos(ϑ(L)) = cos(ϑ(0)) and sin(ϑ(L)) = sin(ϑ(0)), it follows that eiϑ(L) =
eiϑ(0) and hence ϑ(L)− ϑ(0) ∈ 2πZ.

The reader may already expect there to be a connection between winding
number and curvature. If a curve curves long enough to the left (κ > 0), then
it should at some point complete a winding and should make a positive contri-
bution to the winding number. Correspondingly curvature to the right (κ < 0)
should make a negative contribution to the winding number. This is formalised
in the following theorem.

Theorem 2.2.9 Let c : R → R
2 be a plane unit speed curve with period L.

Let κ : R→ R be the curvature of c. Then

nc = 1
2π

∫ L

0
κ(t)dt.
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Proof We write as in lemma 2.2.5 ċ(t) = (cos(ϑ(t)), sin(ϑ(t)))�. Differ-
entiation gives c̈(t)= (−sin(ϑ(t)) · ϑ̇(t), cos(ϑ(t)) · ϑ̇(t))�. On the other hand
c̈(t) = κ(t) · n(t) = κ(t) · (−sin(ϑ(t)), cos(ϑ(t)))�. Thus

ϑ̇(t) = κ(t). (2.3)

So the curvature gives exactly the change in the angle of the velocity vec-
tor ċ with a fixed axis. The fundamental theorem of calculus gives as
desired

nc = 1
2π

(ϑ(L)− ϑ(0)) = 1
2π

∫ L

0
ϑ̇(t)dt = 1

2π

∫ L

0
κ(t)dt.

We expect that a closed plane curve whose winding number has an absolute
value of at least 2 must intersect itself. If a curve performs two or more turns
before it closes, then it must intersect itself. This impression is correct, as the
following theorem says.

Theorem 2.2.10 (Hopf ’s Umlaufsatz)2 A simple closed plane curve has winding
number 1 or −1.

To prove Hopf’s Umlaufsatz we first need a generalisation of lemma 2.2.5.

Definition 2.2.11 Let X ⊂ R
n and x0 ∈ X. Then X is called star-shaped with

respect to x0 if for every point x ∈ X the whole straight line segment between x
and x0 is fully contained in X, i.e. for every t ∈ [0, 1] we have tx+ (1− t)x0 ∈ X.

x0

star-shaped w.r.t. x0

x0

not star-shaped w.r.t. x0

Lemma 2.2.12 (lifting lemma) Let X ⊂ R
n be star-shaped with respect to x0.

Let e : X → S1 ⊂ R
2 be a continuous map. Then there exists a continuous map

ϑ : X → R such that

e(x) =
(

cos(ϑ(x))

sin(ϑ(x))

)
for all x ∈ X. The map ϑ is uniquely determined if ϑ(x0) = ϑ0 is given.

2 “Hopf’s winding theorem”.
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Proof of the lifting lemma (a) Let us first consider the case

n = 1, X = [0, 1] and x0 = 0.

This is essentially lemma 2.2.5, except that ċ is replaced by e. Since in this case
e is only assumed to be continuous, ϑ is, of course, also only continuous and
generally not C∞. Let us quickly remind ourselves of the proof:

we divide the interval [0, 1] into smaller intervals which are each mapped by e into
one of the four semicircles. There the function ϑ can be written down explicitly
using the inverse tangent or the inverse cotangent. It is uniquely determined by
the initial value ϑ(0) and the continuity condition.

(b) Now let X ⊂ R
n be a general star-shaped set, x0 ∈ X. Let x ∈ X. Because

X is star-shaped, the straight line segment from x0 to x is fully contained in X
and we can define the map

ex : [0, 1] → S1, ex(t) := e(tx+ (1− t)x0).

According to (a) there is exactly one continuous ϑx : [0, 1]→R with ϑx(0) = ϑ0
and ex(t) = (cos(ϑx(t)), sin(ϑx(t)))�. If there exists a map ϑ as in the claim of
lemma 2.2.12, then the uniqueness of ϑx gives

ϑx(t) = ϑ(tx+ (1− t)x0).

In particular ϑ(x) = ϑx(1). This proves the uniqueness of ϑ .

(c) To prove existence we set ϑ(x) := ϑx(1). Then

(
cos(ϑ(x))

sin(ϑ(x))

)
=

(
cos(ϑx(1))

sin(ϑx(1))

)
= ex(1) = e(x)

and ϑ(x0) = ϑ0. It remains to check that ϑ : X → R is continuous.
For this purpose let x ∈ X and ε > 0. Let 0 = t0 < t1 < · · · < tN = 1 be a

partition of the interval [0, 1] such that ex, restricted to the subinterval [ti, ti+1],
always lies in one of the four open semicircles. Because of the continuity of e
we have that for all y ∈ X close enough to x

‖ex(t)− ey(t)‖ < ε

for all t∈ [0, 1]. If ε is small enough, then ey, restricted to an subinterval
[ti, ti+1], is always fully contained in the same one of the four open semicir-
cles as ex. This also means that we can take the same partition of [0, 1] for ey
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as for ex. By induction over the number N of the necessary subintervals it can
easily be shown that in the case of the left or the right semicircle

ϑx(t) = arctan

(
e2

x(t)
e1

x(t)

)
+ 2kπ

and

ϑy(t) = arctan

(
e2

y(t)

e1
y(t)

)
+ 2kπ ,

where k ∈ Z is the same for x and y. We write e = (e1, e2)�. For the upper and
lower semicircles we have the corresponding formulae:

ϑx(t) = arccot

(
e1

x(t)
e2

x(t)

)
+ 2kπ

and

ϑy(t) = arccot

(
e1

y(t)

e2
y(t)

)
+ 2kπ .

In particular we have, depending on the semicircle,

ϑ(x)− ϑ( y) = arctan

(
e2(x)

e1(x)

)
− arctan

(
e2( y)

e1( y)

)

and

ϑ(x)− ϑ( y) = arccot

(
e1(x)

e2(x)

)
− arccot

(
e1( y)

e2( y)

)
respectively. The continuity of e, arctan and arccot gives continuity of ϑ .

Remark If the map e : X → S1 is not surjective, then the map ϑ : X → R

can be obtained much more easily. For example, suppose that (cos(ϕ), sin(ϕ))�
is not in the image of e. For every k ∈ Z the map

�k : (ϕ+ 2π(k−1), ϕ+ 2πk)→ S1− (cos(ϕ), sin(ϕ))�, �k(t)= (cos(t), sin(t))�,

is a homeomorphism. Then ϑ := �−1
k ◦ e : X → (ϕ + 2π(k− 1), ϕ + 2πk) ⊂ R

is continuous and satisfies

e(x) =
(

cos(ϑ(x))

sin(ϑ(x))

)
.

The k is then uniquely determined by the condition ϑ(x0) = ϑ0. In particular,
all x1, x2 ∈ X satisfy that |ϑ(x1)− ϑ(x2)| < 2π .

After these technical preparations we can now prove Hopf’s Umlaufsatz.
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Proof of Hopf ’s Umlaufsatz (a) Let c be a periodic parametrisation with period
L. Let x0 := max{c1(t) | t∈R}. Since the trace of c is compact, the maximum
will actually be attained. The straight line {(x, y)� ∈ R

2 | x = x0} intersects the
trace of c at a point p. With a parameter transformation of the form t �→ t+ t0
we can achieve that c(0) = p.

Let G be the straight line that is parametrised by s �→ p+s·(1, 0)�. On the half-
line for s > 0 there are now no points of c left. If necessary, we reparametrise
with the map t �→−t in order to achieve that ċ(0) = (0, 1)�. This transfor-
mation reverses the orientation and hence changes the sign of the winding
number, but this is not relevant for the claim.

p

ċ(0)
c

G

(b) We set X := {(t1, t2)� ∈ R
2 | 0 ≤ t1 ≤ t2 ≤ L}. Then X is a star-shaped set

w.r.t. (0, 0)�.

L

L
t1

t2

(0, 0)�

X

We consider the continuous map

e : X → S1,

e(t1, t2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(t2)− c(t1)
‖c(t2)− c(t1)‖ , t2 > t1 and (t1, t2) �= (0, L),

ċ(t), t2 = t1 = t,

−ċ(0), (t1, t2) = (0, L).

Note that e is only well defined because c was assumed to be a simple closed
curve. Otherwise c(t1) = c(t2) could have appeared in the expression for the
first case in the above definition.

We now choose a function ϑ : X → R for e as in the lifting lemma 2.2.12.
t �→ ϑ(t, t) is a trigonometric function as in lemma 2.2.5 since e(t, t) = ċ(t). For
the winding number one obtains

2πnc = ϑ(L, L)− ϑ(0, 0) = ϑ(L, L)− ϑ(0, L)+ ϑ(0, L)− ϑ(0, 0). (2.4)
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(c) If a t∈ (0, L) satisfied e(0, t)= (1, 0)�, then c(t) would be on the right half-
line of G, contradicting (a). In addition, (1, 0)� is perpendicular to ċ(0) =
e(0, 0)=−e(0, L). Hence (1, 0)� is not in the image of the map t �→ e(0, t).
Because of the remark after lemma 2.2.12, the image of t �→ ϑ(0, t) will be in an
interval of the form (2πk, 2π(k+ 1)), k ∈ Z. From e(0, L) = −ċ(0) = (0,−1)�
it follows that ϑ(0, L) = 3π/2 + 2πk and since e(0, 0) = ċ(0) = (0, 1) we have
shown that ϑ(0, 0) = π/2+ 2πk. Hence

ϑ(0, L)− ϑ(0, 0) = π .

Analogously (−1, 0)� is not in the image of the map t �→ e(t, L) and we obtain

ϑ(L, L)− ϑ(0, L) = π .

From (2.4) follows that
2πnc = π + π = 2π .

Definition 2.2.13 A plane curve is called convex if each of its points is such
that the curve lies entirely on one side of the tangent through this point.

convex not convex

If c is a plane curve parametrised by arc-length and n the normal field along c,
then the convexity condition states for the point c(t0) that

〈c(t)− c(t0), n(t0)〉 ≥ 0 (2.5)

for all t or

〈c(t)− c(t0), n(t0)〉 ≤ 0 (2.6)

for all t.

c(t0)

n(t0)

c(t)

ċ(t0)

〈c(t)− c(t0), n(t0)〉≥ 0

c(t0)

ċ(t0)
n(t0)c(t)

〈c(t)− c(t0), n(t0)〉≤ 0
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A priori one could for a given curve need condition (2.5) for some t0 and
(2.6) for other t0. In reality this does not occur. This is because if a convex
curve satisfies 〈c(t)− c(t1), n(t1)〉 ≥ 0 for all t and 〈c(t)− c(t2), n(t2)〉 ≤ 0 for
all t, then continuity implies that there exists a t3 between t1 and t2 such that
〈c(t)− c(t3), n(t3)〉 = 0 for all t. This implies that c is a straight line and thus
both (2.5) and (2.6) are satisfied for all t0. We have proved:

Lemma 2.2.14 Let c : I → R
2 be a plane curve parametrised by arc-length

with normal field n. Then c is convex if and only if for all t, t0 ∈ I

〈c(t)− c(t0), n(t0)〉 ≥ 0

or for all t, t0 ∈ I
〈c(t)− c(t0), n(t0)〉 ≤ 0.

Intuitively it seems clear that a convex curve always curves in the same sense,
i.e. always to the left or always to the right. This is formalised in the following
theorem.

Theorem 2.2.15 Let c : R→ R
2 be a simple closed plane curve parametrised

by arc-length. Let κ : R→ R be its curvature. The curve is convex if and only if
κ(t) ≥ 0 for all t ∈ R or κ(t) ≤ 0 for all t ∈ R.

Proof Let ϑ : R → R be a trigonometric function as in lemma 2.2.5. We
already know by (2.3) that ϑ̇ = κ .

(a) Now let c be convex. We have to show that κ does not change sign.
According to lemma 2.2.14 we can assume that

〈c(t)− c(t0), n(t0)〉 ≥ 0

for all t, t0 ∈ R. The case 〈c(t)− c(t0), n(t0)〉 ≤ 0 is handled analogously and
leads to the opposite sign of κ . In our case we show that κ(t0) ≥ 0 for all t0.
The Taylor series of c is

c(t) = c(t0)+ ċ(t0)(t − t0)+ 1
2 c̈(t0)(t − t0)

2 +O(|t − t0|3).
But 〈ċ(t0), n(t0)〉 = 0, so scalar multiplication by n(t0) gives

0 ≤ 〈c(t)− c(t0), n(t0)〉 = 1
2 〈c̈(t0), n(t0)〉 (t − t0)

2 +O(|t − t0|3).

We divide by the positive (t − t0)2 and obtain

0 ≤ 1
2 〈c̈(t0), n(t0)〉 +O(|t − t0|) = 1

2κ(t0)+O(|t − t0|).
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Letting t→ t0 we see that
κ(t0) ≥ 0.

(b) Now let κ ≥ 0. We show that the curve is convex. If the curve were not
convex then there would be a t0 such that the function

ϕ : R→ R, ϕ(t) = 〈c(t)− c(t0), n(t0)〉 ,
has both negative and positive values. The periodicity of c implies that ϕ

attains its minimum at a point t1 and its maximum at t2. It follows that

ϕ(t1) < 0 = ϕ(t0) < ϕ(t2). (2.7)

c(t1)

c(t2)

ċ(t0)

n(t0)

ϕ(t1) ϕ(t2)

From ϕ̇(t1) = 0 it follows that 〈ċ(t1), n(t0)〉 = 0. Further ċ(t1) = ±ċ(t0). Anal-
ogously we obtain ċ(t2) = ±ċ(t0). At least two of the three unit vectors ċ(t0),
ċ(t1) and ċ(t2) must coincide. We choose s1, s2 ∈ {t0, t1, t2} with s1 < s2 such that

ċ(s1) = ċ(s2).

We therefore have ϑ(s2)− ϑ(s1) = 2πk with k ∈ Z. From ϑ̇ = κ ≥ 0 it follows
that ϑ is monotonically increasing and thus ϑ(s2) − ϑ(s1) ≥ 0. Hence k ∈ N0.
Analogously ϑ(s1 + L) − ϑ(s2) = 2π l with l ∈ N0. For the winding number
it follows that nc = k + l (≥0). By Hopf’s Umlaufsatz nc = 1. Thus k = 0 or
l = 0. Suppose that k = 0. Then κ = ϑ̇ = 0 on [s1, s2]. Hence c parametrises a
straight line on [s1, s2]. We thus have that

c(s) = c(s1)+ (s− s1) · ċ(s1) = c(s1)± (s− s1) · ċ(t0)
for all s ∈ [s1, s2]. We can now compute the function ϕ for s ∈ [s1, s2]:

ϕ(s) = 〈c(s)− c(t0), n(t0)〉
= 〈c(s1)± (s− s1) · ċ(t0)− c(t0), n(t0)〉
= 〈c(s1)− c(t0), n(t0)〉 ,

i.e. ϕ is constant on [s1, s2]. But this contradicts (2.7) since at least two of the
three values t0, t1 and t2 lie in the interval [s1, s2].
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Remark The following example shows that it is indeed important for the
validity of this theorem that the curve is assumed to be simple closed.

κ > 0, but not convex

However, the condition that the curve is simple closed was only used for one
direction of the proof. We used Hopf’s Umlaufsatz and nc= 1 when we showed
that convexity follows from κ ≥ 0. We do not need to make this assumption
for the other direction. We summarise:

For a parametrisation by arc-length of a convex (but not necessarily closed) curve
we have κ(t) ≥ 0 for all t or κ(t) ≤ 0 for all t.

Definition 2.2.16 Let c : I → R
2 be a plane curve parametrised by arc-

length. We say that c has a vertex at t0 ∈ I if κ̇(t0) = 0.

Example 2.2.17 Let us consider the ellipse, parametrised by

c : R→ R
2, c(t) =

(
a cos(t)
b sin(t)

)
,

with 0 < a < b.

a
b

This is unfortunately not a parametrisation by arc-length. Instead of trying to
reparametrise the ellipse by arc-length, we use the formula for curvature from
exercise 2.10:

κ(t)= det(ċ(t), c̈(t))

‖ċ(t)‖3

=
det

((−a sin(t)
b cos(t)

)
,
(−a cos(t)
−b sin(t)

))
∥∥∥∥(−a sin(t)

b cos(t)

)∥∥∥∥3

= ab(
a2 sin(t)2 + b2 cos(t)2

)3/2
.
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Differentiating gives

κ̇(t) = −3ab
2

(
a2 sin(t)2 + b2 cos(t)2

)−5/2 (
2a2 sin(t) cos(t)− 2b2 cos(t) sin(t)

)
,

i.e. κ̇(t) = 0 if and only if

a2 sin(t) cos(t) = b2 cos(t) sin(t).

But a2 �= b2, so this is exactly the case when

sin(t) cos(t) = 0,

i.e. when t ∈ Z ·π/2. In one traverse of [0, 2π) the ellipse therefore has exactly
four vertices, at points t = 0, π/2, π and 3π/2.

Indeed, a closed curve always has at least four vertices. More precisely,

Theorem 2.2.18 (Four-vertex theorem) If c : R→ R
2 is a convex periodic plane

curve parametrised by arc-length and with period L, then c has at least four
vertices in [0, L).

To prove the above theorem we need the following lemmas.

Lemma 2.2.19 If a simple closed convex plane curve intersects a straight line
in more than two points, then a whole segment of this straight line is part of the
curve and there are thus infinitely many points of intersection.

two points
of intersection

more than two
points of intersection

three points of intersection,
but not convex

Proof of the lemma Let c : R → R
2 be a parametrisation of the curve

by arc-length with period L. With a parameter transformation of the form
t �→ t + t0 we can achieve that c(0) is one of the three points of inter-
section with the straight line. According to theorem 2.2.15 we can, possibly
after applying the parameter transformation t �→−t, assume that the curva-
ture satisfies κ ≥ 0. The trigonometric function from lemma 2.2.5 also satisfies
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ϑ̇ ≥ 0, i.e. it is monotonically increasing. According to Hopf’s Umlaufsatz
ϑ(L)− ϑ(0) = 2πnc = 2π . Hence

ϑ : [0, L] → [ϑ0, ϑ0 + 2π ]
is a smooth surjective monotonically increasing function, ϑ0 = ϑ(0).

Let the curve c intersect the straight line G at the points t0 = 0 < t1 < t2 < L.

Let G be parametrised by t �→ p0 + t · v. Let n =
(

0 −1
1 0

)
· v be the normal

vector of G.
Now let I be one of the three intervals [0, t1], [t1, t2] and [t2, L]. The curve

c lies on the straight line G at the end-points of I. If c(t) lies on G for all
t ∈ I, then a whole segment of G is part of c and the lemma is proved. Let us
therefore suppose that there exist points t ∈ I such that c(t) does not lie on
G. We now consider the straight lines Gs parallel to G that are parametrised
by t �→ p + s · n + t · v. Set s1 := sup{s > 0 | Gs intersects c|I}. Should there
not be any points of c|I on the side of G to which n points, then we consider
s1 := inf{s < 0 | Gs intersects c|I} instead.

c(τ )

ċ(τ )c(ti)

c(ti+1)

G
Gs

Gs1v

n

In any case Gs1 tangentially intersects the segment c|I at a point τ from the
interior of I, i.e. ċ(τ )=±v. Applying this to all three intervals I=[0, t1], I =
[t1, t2] and I = [t2, t3] we obtain the three points τ1, τ2 and τ3, 0 < τ1 < t1 <

τ2 < t2 < τ3 < L, with ċ(τj) = ±v.

c(τ1)

ċ(τ2)

ċ(τ3)

Let ϑ1 denote the unique point from [ϑ0, ϑ0 + 2π) for which v= (cos(ϑ1),
sin(ϑ1))

� and ϑ2 = ϑ1 ± π the point satisfying −v = (cos(ϑ2), sin(ϑ2))
�. We

can assume without loss of generality that ϑ2 = ϑ1 + π , otherwise interchange
the roles of ϑ1 and ϑ2.
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First case Let ϑ1 (and therefore also ϑ2) be strictly greater than ϑ0. Then ϑ

must take one of the two values ϑ1 or ϑ2 at each of the three points τ1, τ2 and
τ3. In particular, ϑ must be the same at no less than two of the three points.
Since ϑ is monotonically increasing, ϑ must be constant on one of the two
intervals [τ1, τ2] or [τ2, τ3]. But then ċ ≡ ±v is in this interval, i.e. this part
of the curve is a segment of a straight line parallel to G. As both of the two
intervals in question contain a point in which c intersects the straight line G,
namely t1 and t2 respectively, c must contain a segment of G.

Second case Now there is still the possibility that ϑ(τ1) = ϑ1 = ϑ0, ϑ(τ2) = ϑ2
and ϑ(τ3) = ϑ0+2π . But then, because of monotonicity, ϑ must be constant on
the interval [0, τ1], and it follows as above that c|[0,τ1] coincides with a segment
of the straight line G.

Lemma 2.2.20 If a simple closed convex plane curve intersects a straight line
at more than one point tangentially, then the curve contains a segment of some
straight line.

Proof of the lemma If the curve has more than two points of intersection
with the straight line G, then the claim follows from lemma 2.2.19. Hence we
can assume that the curve intersects the straight line G at exactly two points.
Because of the convexity of the curve it must lie entirely on one side of the
straight line. We shift the straight line by a sufficiently small distance towards
the curve and obtain a parallel straight line G′. Continuity implies that G′ must
intersect the curve in at least two points in the vicinity of each of the two points
of intersection with G.

G
G′

Hence G′ has at least four points of intersection with the curve and because of
lemma 2.2.19 the curve contains a segment of the straight line G′.

In lemma 2.2.20 it is not claimed that the curve contains a segment of the tan-
gentially intersecting straight line (although this is also true), but the segment
contained in the curve may by all means be part of another straight line. How-
ever, for our application of the lemma in the proof of the four-vertex theorem
this does not play a role.

Proof of the four-vertex theorem The curvature κ of c attains maxima and min-
ima because of the periodicity of c, which already yields two vertices. Without
loss of generality we can assume that the minimum is attained at t = 0 and
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the maximum at t = t0 ∈ (0, L). Let G be the straight line through the two
points c(0) and c(t0). If G has another point of intersection with the curve
parametrised by c, then c contains by lemma 2.2.19 an entire straight line
segment. But then the curvature is constantly 0 on an interval and we obtain
infinitely many vertices.

Let us therefore consider the case that G does not have another point in
common with the curve. After applying a Euclidean motion we can assume
that G is the x-axis. Suppose that the curve does not have further vertices.
Then κ̇ does not vanish anywhere on the two intervals (0, t0) and (t0, L). Since∫ L

0 κ̇(t)dt = κ(L) − κ(0) = 0, we have that κ̇ is positive on one of the two
intervals and negative on the other. For instance, let κ̇(t) > 0 for t ∈ (0, t0) and
κ̇(t) < 0 for t ∈ (t0, L).

If c lay on one side of G, then c would intersect the straight line G tangen-
tially in t = 0 and t = t0. Then c would by lemma 2.2.20 contain a straight line
segment and, in particular, would have infinitely many vertices. We can there-
fore suppose that, for instance, c|(0,t0) lies above of G while c|(t0,L) lies below.
This means that we have for the y-component of c that c2(t) > 0 for t ∈ (0, t0)
and c2(t) < 0 for t ∈ (t0, L).

G
c(t0)c(0)

κ̇ > 0

κ̇ < 0

It follows that κ̇(t)c2(t) > 0 for all t ∈ (0, t0) ∪ (t0, L) and, in particular,

∫ L

0
κ̇(t)c2(t)dt > 0. (2.8)

Integration by parts and the Frenet formulae from proposition 2.2.4 give that

∫ L

0
κ̇(t)c(t)dt = −

∫ L

0
κ(t)ċ(t)dt =

∫ L

0
ṅ(t)dt = n(L)− n(0) =

(
0
0

)
.

We form the scalar product with the unit vector e2 and obtain

∫ L

0
κ̇(t)c2(t)dt = 0,

contradicting (2.8).
Hence there must be a third vertex, e.g. in t1 ∈ (t0, L). Suppose that there

were no fourth vertex. Then we have divided our curve in four arcs on which
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the derivative of the curvature does not vanish, corresponding to the intervals
(0, t0), (t0, t1) and (t1, L). We see as above that the sign of κ̇ cannot be the same
for all three arcs. We now consider the two arcs on which κ̇ has the same sign
as one arc. In this way we obtain a division of the closed curve into two arcs on
which κ̇ has opposite signs, apart from a single zero of κ̇ in one of the two arcs.
Despite this zero, the corresponding integral remains positive and the same
argument as above provides a contradiction.

To conclude this section about plane curves we consider the following opti-
mization problem, whose agricultural formulation could read as follows:
suppose a farmer has a given length of fence, e.g. 10 km. What would the
largest paddock that the farmer could fence look like?

The following theorem gives us the answer: the paddock would be
circular.

Theorem 2.2.21 (isoperimetric inequality) Let G ⊂ R
2 be a bounded region with

the simple closed plain curve c as boundary. Let A[G] be the area of the surface.
Then

4πA[G] ≤ L[c]2.

We have equality if and only if c is a circle.

To prove the isoperimetric inequality we first need a lemma which tells us how
to find the surface area of G using the boundary curve c.

Lemma 2.2.22 Let G⊂R
2 be a bounded region, bounded by the simple

closed plane curve c. Let c(t)= (x(t), y(t))� be a periodic parametrisation of
c with period L, which winds in a mathematically positive sense around the
surface, i.e. with winding number +1. Then

A[G] = −
∫ L

0
ẋ(t)y(t)dt =

∫ L

0
x(t)ẏ(t)dt = 1

2

∫ L

0
(x(t)ẏ(t)− ẋ(t)y(t)) dt.

Proof of the lemma We can assume without loss of generality that c is
parametrised by arc-length, since the substitution rule shows that the values
of the integrals do not change under an orientation-preserving reparametrisa-
tion.

To prove this lemma we will make an exception and refer to a theorem which
is only proved later in this book, namely the divergence theorem, see theorem
5.1.7. It states in our case that for every smooth map V = (v1, v2) : Ḡ→ R

2

∫
G

(
∂v1

∂x
+ ∂v2

∂y

)
dx dy = −

∫ L

0
〈V(c(t)), n(t)〉 dt. (2.9)
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The negative sign comes from the fact that the curve is traversed in a mathe-
matically positive sense and hence n(t) points into the surface. Applying this
to the map V = Id we obtain on the one hand

∫
G

(
∂v1

∂x
+ ∂v2

∂y

)
dx dy =

∫
G

(
∂x
∂x
+ ∂y

∂y

)
dx dy = 2

∫
G

dx dy = 2A[G] (2.10)

and on the other hand∫ L

0
〈V(c(t)), n(t)〉 dt=

∫ L

0

〈(
x(t)
y(t)

)
,
(−ẏ(t)

ẋ(t)

)〉
dt

=
∫ L

0
(−x(t)ẏ(t)+ ẋ(t)y(t)) dt.

(2.11)

From (2.9), (2.10) and (2.11) it follows that

2A[G] =
∫ L

0
(x(t)ẏ(t)− ẋ(t)y(t)) dt.

The other two equations of the lemma follow by integration by parts.

Proof of the isoperimetric inequality (a) Let c(t)= (x(t), y(t))� be a parametrisa-
tion of c by arc-length. Then c has period L=L[c]. After possibly reversing the
orientation of c we can assume that c traverses the surface in a mathematically
positive sense. We consider the complex-valued function

z : R→ C, z(t) = x
(

L
2π

t
)
+ i · y

(
L
2π

t
)

.

Apart from the parameter transformation t �→ (L/2π)t the map z simply
parametrises the curve c, if one identifies R

2 with the complex plane C. In
any case z is a periodic function with period 2π . We expand z as a Fourier
series, see [18, Ch. XII]:

z(t) =
∞∑

k=−∞
ckeikt,

with Fourier coefficients ck ∈ C. We can express the length of c in terms of the
Fourier coefficients, since on the one hand

∫ 2π

0
|ż(t)|2dt =

∫ 2π

0

(
L
2π

)2 ∥∥∥∥ċ
(

Lt
2π

)∥∥∥∥2

︸ ︷︷ ︸
=1

dt = L2

2π
.
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On the other hand

ż(t) =
∞∑

k=−∞
ckikeikt

and hence∫ 2π

0
|ż(t)|2dt =

∫ 2π

0
ż(t) ¯̇z(t)dt =

∫ 2π

0

∞∑
k,�=−∞

ckc̄�k�ei(k−�)tdt

=
∞∑

k=−∞
|ck|2 · k2 · 2π .

It follows that

L[c]2 = (2π)2
∞∑

k=−∞
k2|ck|2. (2.12)

(b) We now express the area of G in terms of the Fourier coefficients. We
denote the real part of a complex number w as �(w). By lemma 2.2.22 we have
that

2A[G] =
∫ L

0
(x(t)ẏ(t)− ẋ(t)y(t)) dt

=
∫ L

0
�
(

z(2π t/L) · 2π

L
· i · ¯̇z(2π t/L)

)
dt

=
∫ 2π

0
� (

z(s) · i · ¯̇z(s)
)

ds

=
∫ 2π

0
�
( ∞∑

k=−∞
ckeiks · i ·

∞∑
�=−∞

c̄�(−i)�e−i�s
)

ds

= �
∫ 2π

0

∞∑
k,�=−∞

�ckc̄�ei(k−�)sds

=
∞∑

k=−∞
k|ck|22π . (2.13)

(c) From (2.12) and (2.13) we conclude that

A[G]
π
=

∞∑
k=−∞

k|ck|2 ≤
∞∑

k=−∞
k2|ck|2 = L[c]2

(2π)2

and thus
4πA[G] ≤ L[c]2.



56 C U R V E T H E O R Y

We have equality exactly when

∞∑
k=−∞

k|ck|2 =
∞∑

k=−∞
k2|ck|2,

i.e. exactly when all ck = 0 for k �= 0, 1. This means precisely that

z(t) = c0 + c1 · eit,

i.e. c describes a circle.

There are numerous other proofs of the isoperimetric inequality. The inter-
ested reader can find a collection in [4, §29].

Exercise 2.12 The set P = {(x, y)� ∈ R
2 | y2 = x3, y > 0} describes the upper

branch of Neil’s parabola. Find a regular parametrisation and show that the
length of the segment of the curve from the origin to the point (x, y)� ∈P is
given by

1
27

(
(9x+ 4)3/2 − 8

)
.

Further show that the curvature takes (for the right choice of orientation) all
values from (0,∞).

Hint Use exercise 2.10.

Exercise 2.13 The clothoid is given by the regular parametrisation

c(t) =

⎛⎜⎜⎜⎜⎜⎝
√

π

∫ t

0
cos

(
πτ 2

2

)
dτ

√
π

∫ t

0
sin

(
πτ 2

2

)
dτ

⎞⎟⎟⎟⎟⎟⎠ .

Show that the curvature at each point on the curve coincides, up to the sign
of the curvature, with the length of the segment of curve from the point under
consideration to the origin. Sketch the curve.

Exercise 2.14 Let c : I → R
2 be a plane curve parametrised by arc-length.

Let t0 ∈ I with κ(t0) �= 0. The osculating circle to c at t0 is the circle with centre
c(t0)+ (1/κ(t0))n(t0) and radius 1/|κ(t0)|.

Show that if the circle is parametrised by arc-length and the orientation is cho-
sen correctly, then the osculating circle touches the curve c at the point c(t0) to
second order, i.e. the first and second derivatives coincide.
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Exercise 2.15 The set of all centres of osculating circles of a curve c is called
the evolute of c. Show that the evolute of the parabola {(x, y)� ∈ R

2 | y = x2}
is given by {(

X
Y

)
∈ R

2

∣∣∣∣∣
(

Y − 1
2

)3

= 27
16

X2

}
.

2.3 Space curves

We will now consider those curves that run through three-dimensional space,
i.e. take values in R

3.

Definition 2.3.1 A parametrised curve c : I → R
3 is called a parametrised

space curve. Regular parametrised space curves, space curves and oriented
space curves are defined analogously.

Unlike for plane curves it is now not straightforward to define a normal field.
If c : I → R

3 is a space curve parametrised by arc-length, then the vec-
tors perpendicular to the velocity vector ċ(t) form a plane, the unit vectors
perpendicular to the velocity vector form a circle.

ċ(t)

c

In the case of plane curves there were two perpendicular unit vectors. We
used this fact to define the normal vector. Which normal vector should we
choose in the case of space curves? The definition of curvature is a priori also
a problem, since it required the normal vector. Let us recall that the sign of
the curvature described whether a particular curve curves to the left or to the
right. What should it mean in the context of space curves?

However, there is a way to avoid this problem. Let us recall that for plane
curves

c̈(t) = κ(t) · n(t). (2.14)

It follows that

|κ(t)| = ‖c̈(t)‖.
If we give up the sign of the curvature, then we can define it without reference
to the normal field. We will therefore define the curvature of a space curve as
follows.
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Definition 2.3.2 Let c : I → R
3 be a space curve parametrised by arc-length.

The function κ : I → R, κ(t) := ‖c̈(t)‖, is called the curvature of c.

Again curvature is a measure of how much a curve deviates from a straight
line. Concretely, if c is a space curve parametrised by arc-length, then c is a
straight line if and only if c̈ ≡ 0, i.e. if κ ≡ 0. But now the curvature is always
≥ 0. It no longer makes sense to talk about a curve curving to the left or to the
right.

Attention We can also regard plane curves as space curves, since the plane is
contained in three-dimensional space, e.g. as the x–y plane. We therefore now
have two different definitions for the curvature of plane curves. If c̃ : I → R2

is a plane curve parametrised by arc-length and with curvature κ̃ : I → R and
c = (c̃, 0) : I → R

3 is the same parametrised curve, considered as a space curve
with curvature κ : I → R, then

κ(t) = ‖c̈(t)‖ = ‖(¨̃c(t), 0)‖ = ‖¨̃c(t)‖ = |κ̃(t)|.

Knowing what the curvature of a space curve is, we can now define the normal
field using (2.14). However, this will only work if the curvature does not vanish.

Definition 2.3.3 Let c : I → R
3 be a space curve parametrised by arc-length.

Let t0 ∈ I and κ(t0) �= 0. Then

n(t0) := c̈(t0)
κ(t0)

= c̈(t0)
‖c̈(t0)‖

is called the normal vector of c at t0.

The same argument as for the planar case shows us that n(t0) is indeed always
perpendicular to ċ(t0):

0 = d
dt
〈ċ, ċ〉 = 2 〈c̈, ċ〉 .

As we now have the normal vector we can define the “binormal” vector to
obtain a complete orthonormal basis of R

3.

Definition 2.3.4 Let c : I → R
3 be a space curve parametrised by arc-length.

Let t0 ∈ I and κ(t0) �= 0. Then

b(t0) := ċ(t0)× n(t0)

is called the binormal vector of c at t0.

Here × denotes the cross product in R
3. The vector product x × y of two

vectors x, y ∈ R
3 has the property that x × y is perpendicular to x and y, and
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that x, y, x × y form a positively oriented basis of R
3 if x and y are linearly

independent. If x and y are orthogonal and of length 1, then x, y, x × y form a
positively oriented orthonormal basis.

Definition 2.3.5 The orthonormal basis (ċ(t0), n(t0), b(t0)) is called the
Frenet dreibein or Frenet trihedron of c at t0.

ċ(t)

c
n(t)

b(t)

Attention The Frenet dreibein is only defined for those t for which κ(t) �= 0.
The curvature of a plane curve says how much the velocity vector turns in
the direction of the normal vector. We can introduce a similar notion for a
space curve. It will measure how much the normal vector turns out of the
plane spanned by itself and the velocity vector, i.e. how much it moves in the
direction of the binormal vector.

Definition 2.3.6 Let c : I → R
3 be a space curve parametrised by arc-length.

Let t0 ∈ I with κ(t0) �= 0, let (ċ(t0), n(t0), b(t0)) be the Frenet dreibein of c at t0.
Then

τ(t0) := 〈ṅ(t0), b(t0)〉
is called the torsion of c at t0.

Proposition 2.3.7 (Frenet formulae) Let c : I→R
3 be a space curve

parametrised by arc-length with positive curvature, κ(t) > 0 for all t ∈ I. Let
(v, n, b) be the Frenet dreibein of c, and let τ be the torsion. Then

(v̇(t), ṅ(t), ḃ(t)) = (v(t), n(t), b(t))

⎛⎝ 0 −κ(t) 0
κ(t) 0 −τ(t)

0 τ(t) 0

⎞⎠ .

Proof The equation v̇ = κ · n is exactly the definition of the normal vector.
Thus the first column of the 3×3-matrix is correct.

The second column follows from 〈ṅ, v〉 = (d/dt) 〈n, v〉 − 〈n, v̇〉 = 0 − κ = −κ ,
from 〈ṅ, n〉 = 1

2 (d/dt) 〈n, n〉 = 0 and from the definition of τ .
The third column follows because 〈ḃ, v〉 = (d/dt) 〈b, v〉 − 〈b, v̇〉 = 0 −

κ 〈b, n〉 = 0, because 〈ḃ, n〉 = (d/dt) 〈b, n〉 − 〈b, ṅ〉 = 0 − τ = −τ and because
〈ḃ, b〉 = 1

2 (d/dt) 〈b, b〉 = 0.
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Example 2.3.8 Let us consider the helix as an example. We choose a
parametrisation similar to the one from example 2.1.4:

c : R→ R
3, c(t) =

⎛⎝cos(t/
√

2)

sin(t/
√

2)

t/
√

2

⎞⎠ .

We calculate ċ(t) = 1√
2

(
−sin(t/

√
2), cos(t/

√
2), 1

)�
. In particular,

‖ċ(t)‖2 = 1
2 (1+ 1) = 1,

i.e. c is parametrised by arc-length. Further, we find

c̈(t) = 1
2

(
−cos(t/

√
2),−sin(t/

√
2), 0

)�
and thus

κ(t) = ‖c̈(t)‖ = 1
2 .

As the curvature does not vanish anywhere, we can find the normal vector for
all t. We obtain

n(t) = c̈(t)
κ(t)

=
(
−cos(t/

√
2),−sin(t/

√
2), 0

)�
.

For the binormal vector we find

b(t) = ċ(t)× n(t)

= 1√
2

⎛⎝−sin(t/
√

2)

cos(t/
√

2)

1

⎞⎠×
⎛⎝−cos(t/

√
2)

−sin(t/
√

2)

0

⎞⎠

= 1√
2

⎛⎝ sin(t/
√

2)

−cos(t/
√

2)

1

⎞⎠ .

We can now calculate the torsion as

τ(t) = 〈ṅ(t), b(t)〉

=
〈⎛⎜⎜⎝

1√
2

sin(t/
√

2)

− 1√
2

cos(t/
√

2)

0

⎞⎟⎟⎠ ,
1√
2

⎛⎝ sin(t/
√

2)

−cos(t/
√

2)

1

⎞⎠〉

= 1
2

.
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Exercise 2.16 Show that the curvature and the torsion of a space curve are
invariant under orientation-preserving Euclidean motions. More precisely, if
c : I → R

3 is a space curve parametrised by arc-length with curvature κ > 0
and if F ∈ E(3) is an orientation-preserving Euclidean motion, i.e. F(x) =
Ax + p, A ∈ SO(3), p ∈ R

3, then the curvature and the torsion of the curve
c̃ := F ◦ c satisfy

κ̃ = κ , τ̃ = τ .

What happens if the Euclidean motion is orientation-reversing?

We will now see that one can find a space curve if curvature and torsion are
given. According to exercise 2.16 this space curve can at most be unique up to
Euclidean motions. Indeed, this is the only ambiguity.

Theorem 2.3.9 (fundamental theorem of space curve theory) Let I ⊂ R be an inter-
val, let κ , τ : I → R be smooth functions, κ > 0. Then there exists a space curve
c : I → R

3 parametrised by arc-length and with curvature κ and torsion τ .
This space curve is unique up to post-composition with orientation-preserving
Euclidean motions.

Proof (a) We consider the system of first-order linear ordinary differential
equations

d
dt

(c, v, n, b) = (c, v, n, b) ·

⎛⎜⎜⎝
0 0 0 0
1 0 −κ 0
0 κ 0 −τ

0 0 τ 0

⎞⎟⎟⎠ , (2.15)

where c, v, n, b : I → R
3 are functions to be found.

Let t0 ∈ I. The existence and uniqueness theorem for such systems of differ-
ential equations [18, Ch. XIX] states that we can find exactly one solution that
satisfies the initial conditions

c(t0) = 0,

v(t0) = e1,

n(t0) = e2,

b(t0) = e3.

The linearity of the system ensures that the solution is defined on the whole
interval I.

We have chosen the initial values in such a way that v, n and b at t = t0 form
an orthonormal basis of R

3. Let us first show that this remains true for all t ∈ I.
From the system of equations it follows that
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d
dt
〈v, v〉 = 2 〈v̇, v〉 = 2κ · 〈n, v〉

and
d
dt
〈n, v〉 = 〈ṅ, v〉 + 〈n, v̇〉 = −κ 〈v, v〉 + τ 〈b, v〉 + κ 〈n, n〉 .

Using (2.15), one analogously calculates the derivatives of 〈n, n〉, 〈b, b〉, 〈b, v〉
and 〈b, n〉 and obtains the following system of differential equations

d
dt

⎛⎜⎜⎜⎜⎜⎜⎝

〈v, v〉
〈n, n〉
〈b, b〉
〈b, v〉
〈b, n〉
〈n, v〉

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 2κ

0 0 0 0 2τ −2κ

0 0 0 0 −2τ 0
0 0 0 0 κ −τ

0 −τ τ −κ 0 0
−κ κ 0 τ 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ·
⎛⎜⎜⎜⎜⎜⎜⎝

〈v, v〉
〈n, n〉
〈b, b〉
〈b, v〉
〈b, n〉
〈n, v〉

⎞⎟⎟⎟⎟⎟⎟⎠ (2.16)

with the initial conditions ⎛⎜⎜⎜⎜⎜⎜⎝

〈v, v〉
〈n, n〉
〈b, b〉
〈b, v〉
〈b, n〉
〈n, v〉

⎞⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
t=t0

=

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ .

But it is obvious that the constant function

t �→

⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠
also satisfies the system of differential equations (2.16) with the same initial
conditions. From the uniqueness theorem for ordinary differential equations
we obtain that ⎛⎜⎜⎜⎜⎜⎜⎝

〈v, v〉
〈n, n〉
〈b, b〉
〈b, v〉
〈b, n〉
〈n, v〉

⎞⎟⎟⎟⎟⎟⎟⎠ ≡
⎛⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ .

This means that v(t), n(t), b(t) form an orthonormal basis of R
3 for all t ∈ I,

not only for t = t0.
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The orientation of this orthonormal basis remains positive for all t ∈ I, since
for reasons of continuity the determinant of the matrix

(
v(t), n(t), b(t)

)
cannot

jump from +1 to −1.
Furthermore, it follows from the system of equations (2.15), that ċ = v, i.e. c

is a space curve parametrised by arc-length. The Frenet formulae state exactly
that (v, n, b) is the Frenet dreibein with curvature κ and torsion τ . This proves
the existence of a space curve as specified in the claim.

(b) For the uniqueness let c̃ be another space curve with curvature κ and tor-
sion τ . We set A := ( ˙̃c(t0), ñ(t0), b̃(t0)

)−1 and p := −A · c̃(t0), where
( ˙̃c, ñ, b̃

)
is the Frenet dreibein of c̃. But the moving dreibein always forms a positively
oriented orthonormal basis of R

3, so A ∈ SO(3). We consider the orientation-
preserving Euclidean motion F, defined by F(x) := Ax + p. By exercise 2.16,
the space curve ĉ := F ◦ c̃ also has curvature κ and torsion τ . Further, by the
definition of F we have

ĉ(t0) = 0,
( ˙̂c(t0), n̂(t0), b̂(t0)

)
= (e1, e2, e3).

Thus (c, v, n, b) and (ĉ, ˙̂c, n̂, b̂) both satisfy the system of differential equa-
tions (2.15) with the same initial conditions and are therefore the equal. In
particular, c = ĉ = F ◦ c̃.

Exercise 2.17 Prove the analogous fundamental theorem of plane curve the-
ory: Let I ⊂ R be an interval, let κ : I → R be a smooth function. Then there
exists a plane curve c : I → R

2 parametrised by arc-length and with curvature κ .
This plane curve is unique up to post-composition with orientation-preserving
Euclidean motions.

Let us recall definition 2.1.17, in which we called a tuple P = (a1, . . . , am)

of points in R
n a polygon, where the ai are interpreted as the vertices of the

polygon and imagine two successive vertices ai and ai+1 to be connected by a
line segment.

In the following we will say that a polygon P = (a1, . . . , am) is a closed
polygon if in addition to the condition ai �= ai−1 for all i = 2, . . . , m it also
satisfies that a1 �= am.

In this case we can also connect am with a1 and use the convention
ai+m = ai.

a1 = a5 a3

a2

a4

We use αi to denote the unoriented angle at the vertex ai, i.e. the number
αi ∈ [0, π ], given by

cos(αi) =
〈
ai − ai−1, ai+1 − ai

〉
‖ai − ai−1‖ · ‖ai+1 − ai‖ . (2.17)
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ai−1

ai
ai+1

αi

We see that the condition ai �= ai−1 is now necessary to ensure that we do not
divide by 0 in (2.17).

Obviously the angle at the vertex ai vanishes exactly when ai−1, ai, ai+1
lie on a straight line in this order. This angle is therefore, like curvature for
smooth curves, a measure for the deviation of the polygon from a straight line.
We will now investigate the exact connection between curvature and angles.

Definition 2.3.10 Let P = (a1, . . . , am) be a closed polygon with angles αi.
Then

κ(P) :=
m∑

i=1

αi

is called the total curvature of P.

Example 2.3.11 Let us consider a triangle P = (a1, a2, a3). The exterior angle
αi and the interior angle βi at a vertex ai always add up to π , i.e. αi + βi = π .
According to theorem 1.2.7 the sum of the interior angles is β1 + β2 + β3 = π .
It follows that

κ(P) = α1 + α2 + α3

= α1 + β1 + α2 + β2 + α3 + β3 − (β1 + β2 + β3)

= 3π − π = 2π .

Lemma 2.3.12 Let P1 and P2 be closed polygons in R
3. Suppose that the

polygon P2 is the result of adding a vertex to P1. Then

κ(P1) ≤ κ(P2).

Suppose that the additional vertex a was added to P1 between ai and ai+1. If we
have equality κ(P1) = κ(P2), then one of the following is the case:
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(1) the points ai, a, ai+1 lie on a straight line, or
(2) the points ai−1, ai, a, ai+1, ai+2 lie in a plane.

a

ai

ai+1

or

a
ai ai+1

ai−1 ai+2

Proof (a) We denote the angles of P1 as usual by αk. For the angles of P2 at
the vertex ak we write βk, for the one at the vertex a we write β. Then αk = βk,
unless k = i or k = i+ 1.

Let us now consider the triangle (ai, a, ai+1) and denote its interior angles at
the vertices ak by γk, k = i, i+ 1.

a β

γi

γi+1

ai

γi

ai+1
γi+1

γi+1

Then

β = γi + γi+1.

The angle between two unit vectors X and Y is precisely the spherical distance
between X and Y, regarded as points on the two-dimensional sphere, i.e. the
length of the shortest connecting great circle. Let us therefore consider the
spherical triangle with vertices

ai − ai−1

‖ai − ai−1‖ ,
a− ai

‖a− ai‖ and
ai+1 − ai

‖ai+1 − ai‖ .

The spherical side lengths are αi, βi and γi.
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γi

βi
αi

a− ai

‖a− ai‖

ai − ai−1

‖ai − ai−1‖

ai+1 − ai

‖ai+1 − ai‖

The triangle inequality gives that

αi ≤ βi + γi. (2.18)

Using the spherical triangle with the vertices

ai+1 − ai

‖ai+1 − ai‖ ,
ai+1 − a
‖ai+1 − a‖ and

ai+2 − ai+1

‖ai+2 − ai+1‖

we obtain analogously:
αi+1 ≤ βi+1 + γi+1. (2.19)

We summarise:

κ(P2)− κ(P1) = βi + β + βi+1 −
(
αi + αi+1

)
= (βi − αi)+ β + (

βi+1 − αi+1
)

≥ −γi + β − γi+1

= 0,

and hence
κ(P2) ≥ κ(P1).

(b) Let us now assume that we are dealing with the equality case:

κ(P2) = κ(P1).

Then we must have equality in the triangle inequality (2.18),

αi = βi + γi.
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Thus the vertices of the spherical triangle lie on a great circle, i.e. ai − ai−1,
a − ai and ai+1 − ai lie in a two-dimensional subspace V1 ⊂ R

3. For suitable
λ1, λ2 ∈ R we have that

ai − ai−1 = λ1 · (a− ai)+ λ2 ·
(
ai+1 − ai

)
and thus

ai−1 = −λ1 · a− λ2 · ai+1 + (1+ λ1 + λ2) · ai. (2.20)

We now suppose that ai, a and ai+1 are not collinear, else we would be dealing
with case (1). Hence those three points span an affine plane E ⊂ R

3. Because
of (2.20) we also have ai−1 ∈ E. It can be shown analogously that ai+2 ∈ E.
This proves (2).

Definition 2.3.13 For a periodic space curve c parametrised by arc-length
and with period L we can, analogously to the total curvature of a polygon,
define the total curvature of a closed space curve by

κ(c) :=
∫ L

0
κ(t)dt.

Remark The parametrisation by arc-length of a closed space curve is peri-
odic and unique up to parameter transformations of the form t �→ ±t+ t0. Such
parameter transformations do not change the value of the total curvature. We
can therefore not only talk about the total curvature of a parametrised closed
space curve, but also about the total curvature of a closed space curve.

If c is a periodic space curve parametrised by arc-length and with period L,
then we say that the polygon P = (a0, . . . , am−1) is inscribed in c, if there exists
a partition 0 ≤ t1 < t2 < · · · < tm < L with ai = c(ti).

We have already met inscribed polygons in the context of lengths of curves
in proposition 2.1.18. Like there we see that the total curvature of inscribed
polygons approximates the total curvature of a closed space curve.

Proposition 2.3.14 (approximation of curvature by means of polygons) Let c be a
closed space curve. Then

κ(c) = sup
P

κ(P),

where the supremum is taken over all polygons P inscribed in c.

Before proving the proposition we derive the following lemma.

Lemma 2.3.15 Let c : [t0, t1] → R
3 be a segment of a curve parametrised by

arc-length with ‖c̈(u)− c̈(v)‖ < ε for all u, v ∈ [t0, t1]. Let τ := 1
2 (t1 + t0). Then∥∥∥∥c(t1)− c(t0)

t1 − t0
− ċ(τ )

∥∥∥∥ <
ε

4
(t1 − t0).
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Proof We compute∫ t1

τ

(∫ v

τ

(c̈(u)− c̈(τ ))du
)

dv

=
∫ t1

τ

(ċ(v)− ċ(τ )− (v− τ)c̈(τ )) dv

= (t1 − τ)(−ċ(τ )+ τ c̈(τ ))+ c(t1)− c(τ )− 1
2

(
t21 − τ 2

)
c̈(τ )

= c(t1)− c(τ )− (t1 − τ)ċ(τ )− 1
2 (t1 − τ)2c̈(τ ). (2.21)

We obtain analogously that∫ τ

t0

(∫ τ

v
(c̈(τ )− c̈(u))du

)
dv = c(τ )− c(t0)− (τ − t0)ċ(τ )

+ 1
2 (τ − t0)

2c̈(τ ). (2.22)

As t1 − τ = τ − t0, addition of (2.21) and (2.22) gives that∫ t1

τ

(∫ v

τ

(c̈(u)− c̈(τ ))du
)

dv+
∫ τ

t0

(∫ τ

v
(c̈(τ )− c̈(u))du

)
dv =

c(t1)− c(t0)− (t1 − t0)ċ(τ ). (2.23)

Moreover,∥∥∥∥∫ t1

τ

(∫ v

τ

(c̈(u)− c̈(τ ))du
)

dv

∥∥∥∥ ≤ ∫ t1

τ

∫ v

τ

εdu dv = ε

2
(t1 − τ)2 (2.24)

and analogously ∥∥∥∥∫ τ

t0

(∫ τ

v
(c̈(τ )− c̈(u))du

)
dv

∥∥∥∥ ≤ ε

2
(τ − t0)

2. (2.25)

Substituting (2.24) and (2.25) into (2.23) yields

‖c(t1)− c(t0)− (t1 − t0)ċ(τ )‖ ≤ ε(t1 − τ)2 = ε

4
(t1 − t0)

2.

Division by t1 − t0 completes the proof.

We now prove the proposition.

Proof of proposition 2.3.14 We parametrise c by arc-length and show that for
every ε > 0 there exists a δ > 0 such that for every partition 0 ≤ t1 <
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t2 < · · · < tm < L with mesh < δ we have

|κ(c)− κ(P)| < ε,

where P = (c(t1), . . . , c(tm)). The claim follows by lemma 2.3.12.
Let ε > 0. We compute the Taylor expansions

2 sin

(
β

2

)
= β + r1(β)

and
sin(γ ) = γ + r2(γ ),

where the remainder terms satisfy |rj(x)| ≤ K ·x3 for a suitable constant K. We
choose ε1 > 0 so small that

ε1 +K · ε2
1 · κ(c)+ ε1 · L/2

1−K · ε2
1

< ε

and

ε2
1 <

1
K

.

We observe that the total curvature of a space curve can be interpreted as a
length, namely as the length of the spherical curve ċ:

κ(c) =
∫ L

0
κ(t)dt =

∫ L

0
‖c̈(t)‖dt = L[ċ].

We can already approximate lengths by means of inscribed polygons. Accord-
ing to proposition 2.1.18 there exists a δ1 > 0 such that for every partition
0 ≤ t0 < t1 < · · · < tm−1 < L with mesh < δ1 we have

∣∣∣κ(c)−
m∑

j=1

‖ċ(tj)− ċ(tj−1)‖
∣∣∣ < ε1.

We again used the convention ċ(t0) = ċ(tm). We now set τj := 1
2 (tj+1 − tj) and

consider the angles

αj := ∠(c(tj+1 − c(tj), c(tj)− c(tj−1),

βj := ∠(ċ(τj), ċ(τj−1)),

γj := ∠(ċ(τj), c(tj+1 − c(tj)).

Then

‖ċ(tj)− ċ(tj−1)‖ = 2 sin

(
βj

2

)
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βj/2 βj

ċ(tj)

ċ(tj−1)

‖ċ(tj)− ċ(tj−1)‖

and

sin(γj) ≤
∥∥∥∥ċ(τj)− c(tj+1)− c(tj)

tj+1 − tj

∥∥∥∥ . (2.26)

γj

c(tj+1)− c(tj)

tj+1 − tj

ċ(τj)

sin(γj)

As ċ is uniformly continuous on the compact interval [0, L], there exists a δ2 >

0 such that

∠(ċ(s), ċ(t)) < ε1,

whenever |t−s| < δ2. Analogously the uniform continuity of c̈ on [0, L] implies
that there exists a δ3 > 0 such that

‖c̈(s)− c̈(t)‖ < ε1,

whenever |t − s| < δ3. This allows us to apply lemma 2.3.15. Finally we find a
δ4 > 0 such that γj ≤ ε1 if the mesh of the partition is < δ4.

We set δ := min{δ1, δ2, δ3, δ4}. For partitions with mesh < δ we then have

|κ(c)− κ(P)| =
∣∣∣κ(c)−

∑
j

αj

∣∣∣
≤

∣∣∣κ(c)−
∑

j

‖ċ(tj)− ċ(tj−1)‖
∣∣∣

+
∣∣∣∑

j

‖ċ(tj)− ċ(tj−1)‖ −
∑

j

βj

∣∣∣+∑
j

|βj − αj|.

(2.27)
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We already know that the first term is smaller than ε1. For the second we
obtain

∣∣∣∑
j

‖ċ(tj)− ċ(tj−1)‖ −
∑

j

βj

∣∣∣
≤

∑
j

∣∣r1(βj)
∣∣

≤ K ·
∑

j

β3
j

|βj|≤ε1≤ K · ε2
1

∑
j

βj

≤ K · ε2
1 ·

{
κ(c)+

∣∣∣κ(c)−
∑

j

‖ċ(tj)− ċ(tj−1)‖
∣∣∣

+
∣∣∣∑

j

‖ċ(tj)− ċ(tj−1)‖ −
∑

j

βj

∣∣∣}

≤ K · ε2
1 · κ(c)+K · ε3

1 +K · ε2
1 ·

∣∣∣∑
j

‖ċ(tj)− ċ(tj−1)‖ −
∑

j

βj

∣∣∣.

It follows that

(
1−K · ε2

1

)
·
∣∣∣∑

j

‖ċ(tj)− ċ(tj−1)‖ −
∑

j

βj

∣∣∣ ≤ K · ε2
1 · κ(c)+K · ε3

1

and thus

∣∣∣∑
j

‖ċ(tj)− ċ(tj−1)‖ −
∑

j

βj

∣∣∣ ≤ K · ε2
1 · κ(c)+K · ε3

1

1−K · ε2
1

. (2.28)

To estimate the third term of (2.27) we observe that the triangle inequality for
the spherical distances gives the inequality

|αj − βj| ≤ γj−1 + γj. (2.29)
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By (2.26) and lemma 2.3.15 we have

γj ≤
∥∥∥∥ċ(τj)− c(tj+1)− c(tj)

tj+1 − tj

∥∥∥∥− r2(γj)

≤ ε1

4
(tj+1 − tj)+K · γ 3

j

≤ ε1

4
(tj+1 − tj)+Kε2

1 · γj

and thus

γj ≤ ε1

4
(
1−Kε2

1

) (tj+1 − tj). (2.30)

From (2.29) and (2.30) it follows that

∑
j

|αj − βj| ≤ ε1

2
(
1−Kε2

1

)L. (2.31)

We substitute (2.28) and (2.31) into (2.27) and obtain

|κ(c)− κ(P)| ≤ ε1 +
K · ε2

1 · κ(c)+K · ε3
1

1−K · ε2
1

+ ε1

2
(
1−Kε2

1

)L

= ε1 +K · ε2
1 · κ(c)+ ε1 · L/2

1−K · ε2
1

< ε.

Let c : R → R
3 be a periodic parametrised space curve with period L.

Let e ∈ R
3 be a unit vector, i.e. e ∈ S2. We count the local maxima of c in

direction e,

μ(c, e) := |{local maxima of the function R→ R, t �→ 〈c(t), e〉 in [0, L)}|
∈ N ∪ {∞}.

e

μ(c, e) = ∞

e

μ(c, e) = 1
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Exercise 2.18 Show that μ(c, e) = μ(c,−e).

Definition 2.3.16 We call

μ(c) := min
e∈S2

μ(c, e)

the bridge number 3 of the curve c.

A reparametrisation of c does not change μ(c, e) and μ(c). Thus the bridge
number of a closed space curve is also defined.

For the definition of μ(c, e) and μ(c) the parametrised curve c does not
even need to be regular. In particular, we can talk about the bridge number of
closed polygons. For this purpose we can, for example, consider a piecewise
linear parametrisation c of the polygon P = (a0, . . . , am−1), which is given by

c(t) = t − tj
tj+1 − tj

· aj+1 + tj+1 − t

tj+1 − tj
· aj

for t ∈ [tj, tj+1]. This parametrisation satisfies c(tj) = aj and connects the suc-
cessive vertices aj and aj+1 by the corresponding line segment. The · · · < tj−1 <

tj < tj+1 < · · · may be given arbitrarily.
We now show that the mean of μ(c, e) over all directions e essentially gives

the total curvature of c.

Proposition 2.3.17 Let c be a closed space curve. Then

1
A[S2]

∫
S2

μ(c, e)dA(e) = κ(c)
2π

.

Here A[S2] = 4π denotes the surface area of the two-dimensional sphere.
We will at this point naively integrate the function e �→ μ(c, e) over the two-
dimensional sphere and use the usual properties of the Lebesgue integral, as
we know them for integration over subsets of Rn. The formal justification will
follow in section 3.7, where an introduction to integration of functions over
surfaces, such as S2, can be found.

Proof (a) We prove the claim first for polygons. Let P = (a1, . . . , am) be a
closed polygon. We set bj := (aj − aj−1)/‖aj − aj−1‖ ∈ S2. For e ∈ S2 we define
a circular line S1

e := {x ∈ S2 | x ⊥ e }.
3 Called crookedness in [21].
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bj+1

bj

αj

S1
e

The great circle from bj to bj+1 intersects S1
e if and only if

〈
bj, e

〉
and

〈
bj+1, e

〉
have different signs, i.e. when

〈
aj − aj−1, e

〉
and

〈
aj+1 − aj, e

〉
have different

signs. This is the case exactly when for the piecewise linear parametrisation c
of P with c(tj) = aj the function t �→ 〈c(t), e〉 has a local maximum or minimum
in tj .

aj−1

aj

aj+1

e

Consider the set of all e ∈ S2 whose circular line S1
e intersects a part of

length α of a given great circle. This set consists of two spherical segments
of width α and therefore makes up the (2α/2π = α/π)th fraction of the total
surface area of the sphere.

α

It follows that

A
[
{e ∈ S2 | t �→ 〈c(t), e〉 has a local maximum or minimum at tj}

]
= A

[
{e ∈ S2 | S1

e intersects the great circle from bj+1 to bj}
]

= αj

π
·A[S2].

Summation over j gives∫
S2

(μ(P, e)+ μ(P,−e)) dA(e) = A[S2]
π

∑
j

αj = A[S2]
π

κ(P)
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and thus as desired ∫
S2

μ(P, e)dA(e) = A[S2]
2π

κ(P).

(b) Now let c be a periodic space curve parametrised by arc-length and with
period L. We choose a sequence of partitions Uk of the interval [0, L) such
that their mesh converges to 0. Further, we suppose that the partition Uk+1 is
always obtained by a refinement of Uk. Let Pk be the corresponding polygons
inscribed in c. By proposition 2.3.14 we have

lim
k→∞

κ(Pk) = κ(c).

It remains to be shown that

lim
k→∞

∫
S2

μ(Pk, e)dA(e) =
∫

S2
μ(c, e)dA(e). (2.32)

For this purpose we show that the sequence of functions μ(Pk, ·) is
monotonically increasing and converges to μ(c, ·) as k→∞ everywhere but
on a zero set. Equation (2.32) follows by the theorem about monotone
convergence.

Let ck be a piecewise linear parametrisation of Pk. The function t �→
〈ck(t), e〉 has an infinite number of local maxima if it is constant along one
of the line segments ajaj+1, i.e. if aj+1 − aj ⊥ e. The aj are the vertices of
Pk. Apart from that, local maxima can only be found at vertices and are thus
automatically isolated. The set Nk := {e ∈ S2 | e ⊥ aj+1 − aj for some j} is a
union of finitely many circular lines and thus a zero set in S2. Countable unions
of zero sets are zero sets themselves, thus

N :=
⋃

k

Nk

is again a zero set.
We have shown that for e ∈ S2 −N all functions t �→ 〈ck(t), e〉 only have

finitely many local maxima, i.e. μ(Pk, e) < ∞ for all k. Further, every subse-
quent partition Uk+1 is a partition of Uk and the addition of vertices can at
most increase the number of local maxima. Thus

μ(Pk+1, e) ≥ μ(Pk, e).

We have established that the sequence of functions μ(Pk, ·) is monotonically
increasing on S2 −N . If the function t �→ 〈ck(t), e〉 in t = tj has a local max-
imum, then the function t �→ 〈c(t), e〉 in (tj−1, tj+1) must thus also have a local
maximum.
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It follows that for all e ∈ S2 −N

μ(Pk, e) ≤ μ(c, e).

Finally, let ν ∈ N, ν ≤ μ(c, e). Then the function t �→ 〈c(t), e〉 has at least ν

local maxima s1, . . . , sν . We choose δ > 0 so small that every one of those local
maxima is a global maximum in the δ-neighbourhood (sj − δ, sj + δ).

First case The function t �→ 〈c(t), e〉 is constant on one of the intervals (sj− δ,
sj], [sj, sj + δ), j = 1, . . . , ν.

For a sufficiently large k the partition Uk has mesh <δ/2. Then there are at
least two of the points partitioning the interval in each of those subintervals.
It follows that e ∈ Nk. Thus this cannot be the case for e ∈ S2 −N .

Second case The function t �→ 〈c(t), e〉 is not constant on any of the intervals
(sj − δ, sj], [sj, sj + δ), j = 1, . . . , ν.

Then there exist u−j ∈ (sj − δ, sj) and u+j ∈ (sj, sj + δ) with
〈
c
(
u±j

)
, e
〉
<

〈
c(sj), e

〉
.

We choose η > 0 so small that
(
u±j − η, u±j + η

) ⊂ (sj− δ, sj+ δ) and 〈c(u), e〉 <

〈c(s), e〉 for all u ∈ (
u±j − η, u±j + η

)
and s ∈ (sj − η, sj + η).

If k is sufficiently large, then the mesh of Uk is smaller than η. Hence
there is one of the points partitioning the interval in each of the intervals(
u±j − η, u±j + η

)
and (sj − η, sj + η). Then the function t �→ 〈ck(t), e〉 has a

local maximum in (sj − δ, sj + δ) as well. Thus μ(Pk, e) ≥ ν.
We have shown that for e ∈ S2 −N :

μ(Pk, e) ↗
k→∞

μ(c, e).

Corollary 2.3.18 Let c be a closed space curve. Then

κ(c) ≥ 2πμ(c).

Proof κ(c)/2π is the mean of the function μ(c, ·) by proposition 2.3.17,
while μ(c) is the minimum.

As a very pleasing application of the concept of the bridge number of space
curves we obtain Fenchel’s theorem, which states how much a space curve
needs to curve in order to become a closed curve.
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Theorem 2.3.19 (Fenchel’s theorem) Let c be a simple closed space curve. Then

κ(c) ≥ 2π .

We have the equality κ(c) = 2π exactly if c is a convex plane curve.

Proof (a) For every e ∈ S2 the function t �→ 〈c(t), e〉 has at least one
maximum and one minimum. Thus μ(c) ≥ 1. By corollary 2.3.18 it follows
that

κ(c) ≥ 2πμ(c) ≥ 2π .

(b) Now let c be a convex plane curve. We denote by κ̃ the curvature of c
considered as a plane curve. κ̃ does not change sign according to theorem
2.2.15. It therefore follows that κ(t) = κ̃(t) for all t or κ(t) = −κ̃(t) for all t. By
Hopf’s Umlaufsatz the winding number is nc = ±1. Using theorem 2.2.9 we
find that

±2π = 2πnc =
∫ L

0
κ̃(t)dt = ±

∫ L

0
κ(t)dt = ±κ(c).

As κ(t) ≥ 0, it follows that κ(c) = 2π .

(c) Now let κ(c) = 2π . We want to show that c lies in a plane and is convex. Let
P1 be a polygon that is inscribed in c and consists of three different points of c.
We denote the plane spanned by the triangle P1 by E. We have to show that
c is fully contained in E. For this purpose let p be another point on c. We add
the vertex p to P1 and obtain the polygon P2. Triangles have total curvature
2π . Lemma 2.3.12 and proposition 2.3.14 imply that

2π = κ(P1) ≤ κ(P2) ≤ κ(c) = 2π .

In particular, it follows that κ(P1) = κ(P2) and, again by lemma 2.3.12, p must
also lie on E.

It remains to prove the convexity of c. Again let κ̃ be the curvature (with
sign) of c as a plane curve. By Hopf’s Umlaufsatz nc = ±1 and hence

2π = |2πnc| =
∣∣∣ ∫ L

0
κ̃(t)dt

∣∣∣
≤

∫ L

0
|κ̃(t)|dt =

∫ L

0
κ(t)dt = 2π .

Thus κ̃ has a constant sign and by theorem 2.2.15 curve c is convex.
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We will conclude this chapter with a treatment of the concept of knotted
curves and an investigation into how much a space curve needs to curve so
that it can be knotted.

Definition 2.3.20 An isotopy of R
3 is a continuous map � : [0, 1]×R

3 → R
3

such that for every fixed t ∈ [0, 1] the map �(t, ·) : R
3 → R

3 is a homeo-
morphism. Two simple closed space curves c0 and c1 are called ambient
isotopic, if there exists an isotopy � of R

3 with �(0, x) = x for all x ∈ R
3

and �(1, Trace(c0)) = Trace(c1).

We graphically interpret t ∈ [0, 1] as a deformation parameter. � bends the
curve c0 into the curve c1. The word “ambient” in the definition suggests that
not only the curves are deformed: the homeomorphism �(t, ·) always deforms
the entire surrounding R

3.

Exercise 2.19 Show that ambient isotopy defines an equivalence relation on
the set of simple closed space curves.

Definition 2.3.21 An ambient isotopy class of simple closed space curves is
a knot. A simple closed space curve is said to be unknotted if it is ambient
isotopic to a simple closed plane curve. Otherwise it is called knotted.

So a simple closed space curve is unknotted if it can be bent into a sim-
ple closed plane curve without the curve intersecting itself in the process of
deformation. The following curve for instance is unknotted:

The so-called trefoil is knotted. Readers can convince themselves of this using
a piece of rope (at this point the mathematical proof for this would be too
involved).

For a curve to be knotted it probably needs to curve even more than in
Fenchel’s theorem. Indeed the following holds:

Theorem 2.3.22 (Fáry–Milnor theorem) Let c be a knotted, simple closed space
curve. Then

κ(c) ≥ 4π .
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Proof Let c be a simple closed space curve with κ(c) < 4π . We need to
unknot c, i.e. find an isotopy of R

3 which maps the trace of c to a simple closed
plane curve. By the assumption and by corollary 2.3.18 it follows that

2πμ(c) ≤ κ(c) < 4π ,

hence μ(c) < 2 and therefore

μ(c) = 1.

There therefore exists a unit vector e ∈ R
3 with μ(c, e) = 1. If t �→ 〈c(t), e〉 is

parametrised by arc-length, then it will have exactly one local maximum (and
therefore global maximum) h+ and exactly one local minimum h− in the one-
period interval [0, L), since one would otherwise find another local maximum
between two distinct local minima. The corresponding points pmax and pmin

from the trace of c divide the closed space curve into two parts cL and cR. As
there are no additional local maxima or minima, the functions t �→ 〈cL(t), e〉
and t �→ 〈cR(t), e〉 are strictly monotonic.

Let E0 be the orthogonal complement of e in R
3. For h ∈ R let Eh be

the affine plane parallel to E0, translated in direction e by an amount h: i.e.
Eh = {x ∈ R

3 | 〈x− he, e〉 = 0}. Thus the trace of c intersects the plane Eh

• not at all, if h < h− or h > h+,
• at exactly one point, the maximal point pmax, if h = h+,
• at exactly one point, the minimal point pmin, if h = h−,
• at exactly two points pL(h) on cL and pR(h) on cR, if h− < h < h+.

Eh, h < h−

Eh−

Eh, h− < h < h+

Pmax

PR(h)

Pmin

Using a first isotopy we centre the line segments pL(h)pR(h) on the e-axis. For
this purpose, let � : R

3 → E0 be the orthogonal projection. We set
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�1(t, x) :=

⎧⎪⎪⎨⎪⎪⎩
x− t ·� (pmin) , 〈x, e〉 ≤ h−,

x− t ·�
(

pL(〈x, e〉)+ pR(〈x, e〉)
2

)
, h− < 〈x, e〉 < h+,

x− t ·� (pmax) , 〈x, e〉 ≥ h+.

�1

Generally, c may also be twisted around the e-axis. We avoid this by means of
a second isotopy. We define the continuous map ζ : R→ E0 by

ζ(h) :=

⎧⎪⎪⎨⎪⎪⎩
�

(
pR(h)− pL(h)

‖pR(h)− pL(h)‖
)

, h− < h < h+,

� (ċ(tmax)) , h ≥ h+,
� (−ċ(tmin)) , h ≤ h−.

We have that c(tmax) = pmax and c(tmin) = pmin. We choose an orthonormal
basis e1, e2 of E0. By the lifting lemma 2.2.12 we can find a continuous map
ϑ : R→ R that satisfies

ζ(h) = cos(ϑ(h)) · e1 + sin(ϑ(h)) · e2.

We now undrill c using the isotopy

�3(t, x) := 〈x, e〉 e+
(

cos(tϑ(〈x, e〉)) sin(tϑ(〈x, e〉))
−sin(tϑ(〈x, e〉)) cos(tϑ(〈x, e〉))

)
�(x).

The matrix represents a rotation in the plane E0 by an angle of −tϑ(〈x, e〉),
with respect to the basis e1, e2.

We have �3(0, x) = 〈x, e〉 e+�(x) = x, and �3(1, ·) rotates in the plane Eh
by the angle−ϑ(h). The result is a simple closed curve in the (e–e1)-plane. We
have therefore unknotted c.

John Milnor and István Fáry discovered this theorem at roughly the same
time independently of each other, see [11] and [21]. As a young student
John Milnor attended a course on differential geometry taught by Al Tucker
in 1948 in Princeton. Milnor managed to solve a conjecture of Karol Borsuk
from a collection of open problems presented in class. This problem was noth-
ing other than our theorem 2.3.22. According to an anecdote Milnor came
late to a lecture and mistook the problems for (unusually difficult) homework
exercises.



3 Classical surface theory

We introduce regular surfaces and their tangent planes. We investigate what
normal fields have to do with orientability of surfaces. We discover that the
geometry of regular surfaces is largely determined by the first and second funda-
mental forms, which also give rise to different types of curvature. We learn how
to integrate over regular surfaces and, in particular, how their surface area is
defined. Finally we examine some special classes of surfaces more closely: ruled
surfaces, minimal surfaces, surfaces of revolution and tubular surfaces.

3.1 Regular surfaces

Surfaces in three-dimensional space are two-dimensional objects, i.e. the
points on a surface can be described by two independent parameters. The
definition which follows is local. Unlike with curves, which we always
parametrised as a whole, we only require that small parts of the surface can
be described by a parametrisation.

Definition 3.1.1 Let S⊂R
3 be a subset. We call S a regular surface if there

exists for every point p∈ S an open neighbourhood V of p in R
3, and if, in

addition, there exists an open subset U⊂R
2 and a smooth map F : U→R

3

such that

(i) F(U) = S ∩ V and F : U → S ∩ V is a homeomorphism and
(ii) the Jacobian DuF has rank 2 for every point u ∈ U.

u

F(u) p

U

F
R

2

V

S

81
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Condition (i) says that the points on the surface S that are close to p, namely
those that are also in V, are through the map F given by two parameters,
namely the coordinates of the points of U ⊂ R

2. Condition (ii) ensures that
the two parameters are really independent of each other.

u e1

e2

U

F(u) DuF(e1)

DuF(e2)

S ∩ V

S
F

DuF(e1) and DuF(e2) are linearly independent

Definition 3.1.2 The map F : U→ S ∩ V from definition 3.1.1 and also the
triple (U, F, V) is called a local parametrisation of S at p. The set S∩V is called
the coordinate neighbourhood of p. The components u1 and u2 of u= (u1, u2)�
are also called coordinates of the point F(u)∈ S (w.r.t. the parametrisation F).

Example 3.1.3 (affine planes) The simplest examples of regular surfaces are
affine planes. The affine plane through a point p ∈ R

3, spanned by the linearly
independent vectors X, Y ∈ R

3, is the set

S =
{

p+ u1 ·X + u2 · Y
∣∣∣ u1, u2 ∈ R

}
.

We can use a single parametrisation. We set V :=R
3, U :=R

2 and F : U→R
3,

F(u1, u2) := p+ u1 ·X + u2 · Y.

Example 3.1.4 (graph of a function) Let U ⊂ R
2 be open, f : U → R a smooth

function. We consider the graph of f ,

S =
{
(x, y, z)� ∈ R

3
∣∣∣ (x, y)� ∈ U, z = f (x, y)

}
.

In this case we can also use a single coordinate neighbourhood. Again we set
V := R

3 and
F : U → R

3, F(x, y) := (x, y, f (x, y))�.

Then obviously F(U) = S = S ∩ V. Further, F is smooth and the inverse map
G : S→ U, G(x, y, z) = (x, y)�, is continuous as well. In particular, F : U → S
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is a homeomorphism. Condition (i) from the definition of a surface is therefore
satisfied.

We check condition (ii): the matrix

D(x,y)F =

⎛⎜⎜⎝
1 0
0 1

∂f
∂x

(x, y)
∂f
∂y

(x, y)

⎞⎟⎟⎠
has full rank for every (x, y)� ∈ U.

Example 3.1.5 (the sphere) We consider

S = S2 =
{
(x, y, z)� ∈ R

3
∣∣∣ x2 + y2 + z2 = 1

}
.

Let us first set V := V+3 := {
(x, y, z)� ∈ R

3 | z > 0
}
. Then S2 ∩V+3 is the graph

of the function f (x, y) = √
1− (x2 + y2) for x2+y2 < 1. Then, according to the

discussion in example 3.1.4

U :=
{
(x, y)� ∈ R

2
∣∣∣ x2 + y2 < 1

}
and

F+3 : U → R
3,

F+3 (x, y) =
(

x, y,
√

1− (x2 + y2)

)�
,

is a local parametrisation. The points from S2 ∩ V−3 , V−3 := {
(x, y, z)� ∈ R

3 |
z < 0} are obtained analogously through the parametrisation

F−3 : U → R
3,

F−3 (x, y) =
(

x, y,−
√

1− (x2 + y2)

)�
.

The points p ∈ S2 with z-coordinate 0 remain to be considered. These points
can be obtained by interchanging the role of the z-coordinate with that of
the x-coordinate or the y-coordinate, depending on the position of p. For this
purpose we set
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V+1 :=
{
(x, y, z)� ∈ R

3
∣∣∣ x > 0

}
,

V−1 :=
{
(x, y, z)� ∈ R

3
∣∣∣ x < 0

}
,

V+2 :=
{
(x, y, z)� ∈ R

3
∣∣∣ y > 0

}
,

V−2 :=
{
(x, y, z)� ∈ R

3
∣∣∣ y < 0

}
,

F±1 : U → R
3, F±1 ( y, z) =

(
±
√

1− ( y2 + z2), y, z
)�

,

F±2 : U → R
3, F±2 (x, z) =

(
x,±

√
1− (x2 + z2), z

)�
.

Then F±i (U)= S2 ∩V±i , i= 1, 2, 3, and all F±i are local parametrisations. Every
point p ∈ S2 appears in at least one of the sets V±i , hence S2 is a regular surface.

Exercise 3.1 We have covered the sphere S2 with six coordinate neigh-
bourhoods. In fact, two coordinate neighbourhoods would have sufficed using
different local parametrisations. Find such local parametrisations.

Finding local parametrisations for a given surface can at times be tedious. It is
thus often useful to also have other criteria to decide whether a subset S ⊂ R3

is a regular surface or not.
The set S is in many cases given by an equation of the form, S :={

(x, y, z)� ∈ R
3 | f (x, y, z) = 0

}
. The following criterion says that when the

gradient of f does not vanish anywhere along S, then the set S is a regular
surface.

Proposition 3.1.6 Let V0 ⊂ R
3 be open, let f : V0 → R be a smooth function.

We set S := {
(x, y, z)� ∈ V | f (x, y, z) = 0

}
. If

grad f ( p) �= (0, 0, 0)�

for all p ∈ S, then S is a regular surface.

Proof Let p := (x0, y0, z0)
� ∈ S. Since

grad f ( p) =
(

∂f
∂x

( p),
∂f
∂y

( p),
∂f
∂z

( p)

)�
�= (0, 0, 0)�
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we can assume without loss of generality that

∂f
∂z

( p) �= 0.

By the implicit mapping theorem [18, p. 529, theorem 5.4] there exist an open
neighbourhood V ⊂ V0 of p, an open neighbourhood U ⊂ R

2 of (x0, y0) and a
smooth function g : U → R, such that

S ∩ V =
{
(x, y, g(x, y))�

∣∣∣ (x, y)� ∈ U
}

.

If we set F : U→V, F(x, y) := (x, y, g(x, y))�, then it follows by the same
argument as in example 3.1.4 that F is a local parametrisation.

Example 3.1.7 (Ellipsoid) Let us consider

S :=
{

(x, y, z)� ∈ R
3

∣∣∣∣∣ x2

a2
+ y2

b2
+ z2

c2
= 1

}

for non-vanishing constants a, b, c ∈ R.

c

a

b

ellipsoid

If we set

V0 := R
3, f : R

3 → R, f (x, y, z) := x2

a2
+ y2

b2
+ z2

c2
− 1,

then

S =
{
(x, y, z)� ∈ R

3
∣∣∣ f (x, y, z) = 0

}
.

In order to apply proposition 3.1.6, we need to check that the gradient of f
does not vanish for any p ∈ S. The expression
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grad f (x, y, z) =
(

2x
a2

,
2y
b2

,
2z
c2

)�
vanishes only for p0 = (0, 0, 0)�. But p0 /∈ S, hence S is a regular surface.

Attention If S is given in the form

S =
{
(x, y, z)� ∈ R

3
∣∣∣ f (x, y, z) = 0

}
,

then the fact that grad f does not vanish along S is sufficient for S to be a regular
surface, but not necessary. We can, for example, describe the sphere S = S2 as
follows:

S2 =
{
(x, y, z)� ∈ R

3
∣∣∣ (x2 + y2 + z2 − 1)2 = 0

}
,

i.e. the set of zeros of the function

f (x, y, z) = (x2 + y2 + z2 − 1)2.

For the gradient of f we obtain

grad f (x, y, z) = 2(x2 + y2 + z2 − 1) · (2x, 2y, 2z)�.

We observe that grad f (x, y, z) even vanishes for all p∈ S2. Nevertheless S = S2

is a regular surface, the describing function f was simply chosen very clumsily.

Exercise 3.2 Let S⊂R
3 be a regular surface, W⊂R

3 open. Show that W∩S
is also a regular surface.

Exercise 3.3 Show that the property of being a regular surface is a local
property. More precisely, let S ⊂ R

3 be a subset. For every point p ∈ S there
exists an open neighbourhood V of p in R

3, such that V∩S is a regular surface.
Then S itself is a regular surface as well.

Example 3.1.8 We now want to think about whether the double cone

S =
{
(x, y, z)� ∈ R

3
∣∣∣ x2 + y2 = z2

}
is a regular surface or not. S is defined as the set of zeros of the function
f : R3 → R, f (x, y, z) = x2 + y2 − z2. The gradient

grad f (x, y, z) = (2x, 2y,−2z)�

vanishes only in (x, y, z)� = (0, 0, 0)�. If we restrict f to the open subset V0 :=
R

3 − {
(0, 0, 0)�

}
, then we can apply proposition 3.1.6 and observe that
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S ∩ V0 = S−
{
(0, 0, 0)�

}
is a regular surface. The question of whether S is also a regular surface
at (0, 0, 0)� remains. Proposition 3.1.6 does not make any statement about
this; function f may have been chosen in a clumsy way for the point
(0, 0, 0)�.

Suppose that S were a regular surface. Then a local parametrisation around
p = (0, 0, 0)� would exist, i.e. there would exist open subsets V ⊂ R

3, U ⊂ R
2

and a smooth map F : U → V, such that F(U) = S ∩ V and F : U → S ∩ V
would be a homeomorphism.

Set u0 :=F−1 ((0, 0, 0)�
) ∈U. Since U is an open neighbourhood of u0, we

can find an open disc U′ ⊂U with centre u0. As F : U→ S ∩ V is a homeo-
morphism it follows that F(U′) is open in S ∩ V. This means that there exists
a V′ open in V (and hence also open in R

3), such that F(U′)= S ∩ V′. As
V′ ⊂R

3 is an open neighbourhood of (0, 0, 0)�, all vectors (x, y, z)� ∈R
3 of

sufficiently small length are contained in V′. In particular, there are points
p1 = (x1, y1, z1)

� with z1 > 0 and p2 = (x2, y2, z2)
� with z2 < 0 in S ∩ V′.

Let ui := F−1( pi), i = 1, 2. In the disc U′ we join u1 with u2 by a continuous
path c that does not run through the centre u0. The path given by the image
F ◦ c, which joins p1 and p2, must run through (0, 0, 0)� =F(u0) because of the
intermediate value theorem. This is a contradiction.

S is therefore not a regular surface, but has a so-called singularity at
(0, 0, 0)�.

u0

u2
u1

U′

U

c

S

p

p2

p1

F ◦ c

S ∩ V

S ∩ V′

F
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In the following we investigate the differentiability of maps whose domain
or target is a regular surface. In this discussion “smooth” always means
“infinitely often differentiable”.

Proposition 3.1.9 Let S ⊂ R
3 be a regular surface. Let (U, F, V) be a local

parametrisation of S. Let W ⊂ R
n be an open set, and ϕ : W → R

3 a map with
ϕ(W) ⊂ S ∩ V. Then ϕ, considered as a map from W to R

3, is smooth if and
only if F−1 ◦ ϕ : W → U ⊂ R

2 is smooth.

If we investigate differentiability of a map that takes values in a regular surface
S, then it is therefore irrelevant if we consider this map as a map with values
in R

3 or, using coordinates, as a map with values R
2.

Proof One direction is trivial, since if ψ := F−1 ◦ ϕ is a smooth map, then
ϕ = F ◦ ψ is also smooth, being the composition of two smooth maps.

Now suppose that ϕ : W → R
3 is smooth. Let p ∈W. We set q := ϕ( p) ∈ S∩V

and u0 := F−1(q) ∈ U.

ψ

ϕ F

S ∩ V

S ⊂ R
3

W ⊂ R
n U ⊂ R

2

p u0

q

We write F(u1, u2) := (
x(u1, u2), y(u1, u2), z(u1, u2)

)�
. Since the differential

Du0F has full rank we can assume without loss of generality that the 2 × 2
matrix

((
∂(x, y)/∂(u1, u2)

)
(u0)

)
is invertible. If it is not, then we can simply

exchange the x-coordinate or y-coordinate by the z-coordinate.
We define the map

G : U × R→ R
3,

G(u1, u2, t) =
(

x(u1, u2), y(u1, u2), z(u1, u2)+ t
)�
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and find its differential at the point
(
u1, u2, t

) = (
u1

0, u2
0, 0

)
:

D(
u1

0,u2
0,0

)G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂u1 (u0)

∂x
∂u2 (u0) 0

∂y
∂u1 (u0)

∂y
∂u2 (u0) 0

∂z
∂u1 (u0)

∂z
∂u2 (u0) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

An expansion of the determinant about the last column gives:

det D(
u1

0,u2
0,0

)G = det

(
∂(x, y)

∂(u1, u2)
(u0)

)
�= 0.

Hence D(
u1

0,u2
0,0

)G is invertible and we can, according to the inverse mapping

theorem [18, p. 515, theorem 3.1], find an open neighbourhood U1 ⊂ U×R of(
u1

0, u2
0, 0

)
and an open neighbourhood V1 ⊂ V of q, such that

G|U1 : U1 → V1

is a diffeomorphism. We set W1 := ϕ−1(V1). Then W1 is an open neighbour-
hood of p. For p′ ∈W1 we have

G−1 ◦ ϕ( p′) = (F−1 ◦ ϕ( p′), 0),

because F(u1, u2)=G(u1, u2, 0). As G−1 ◦ ϕ is smooth, being the composi-
tion of two smooth maps, we have smoothness for F−1 ◦ ϕ on W1. Now W1
is an open neighbourhood of an arbitrary given point p, and the claim is
proved.

We easily obtain that parameter transformations are diffeomorphisms. More
precisely, we obtain:

Corollary 3.1.10 Let S be a regular surface with local parametrisations
(U1, F1, V1) and (U2, F2, V2). Then

F−1
2 ◦ F1 : F−1

1 (V1 ∩ V2)→ F−1
2 (V1 ∩ V2)

is smooth.

Proof This follows from the application of proposition 3.1.9 to

W = F−1
1 (V1 ∩ V2), ϕ = F1 and (U, F, V) = (U2, F2, V2).
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F−1
2 ◦ F1

F−1
1 (V1 ∩ V2) F−1

2 (V1 ∩ V2)

U1 U2

F1
F2

V2 ∩ S

V1 ∩ S

V1 ∩ V2 ∩ S
S

To illustrate the situation from the above proposition we calculate a parameter
transformation for the sphere S = S2. For this purpose let F1 = F+1 and F2 =
F−2 be as in example 3.1.5. Then

V1 ∩ V2 = V+1 ∩ V−2 =
{
(x, y, z)� ∈ R

3
∣∣∣ x > 0 and y < 0

}
and hence

F−1
1 (V1 ∩ V2) =

{
( y, z)� ∈ R

2
∣∣∣ y2 + z2 < 1 and y < 0

}
as well as

F−1
2 (V1 ∩ V2) =

{
(x, z)� ∈ R

2
∣∣∣ x2 + z2 < 1 and x > 0

}
.

For F−1
2 ◦ F1 this gives

F−1
2 (F1( y, z))= F−1

2

(√
1− y2 − z2, y, z

)
=

(√
1− y2 − z2

z

)
.

Indeed, F−1
2 ◦ F1 is a smooth map.

We now investigate the differentiability of maps whose domain is on a
surface, and obtain several equivalent statements:
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Proposition 3.1.11 Let S ⊂ R
3 be a regular surface, p ∈ S, and f : S → R

n a
continuous map. Then the following are equivalent:

(1) There is an open neighbourhood V of p in R
3 and an extension f̃ of f |S∩V to V,

which is smooth around p.
(2) There exists a local parametrisation (U, F, V) with p ∈ V, such that f ◦ F : U →

R
n is smooth around F−1( p).

(3) For all local parametrisations (U, F, V) with p ∈ V the map f ◦ F : U → R
n is

smooth around F−1( p).

Proof

(a) (1) implies (3): F is smooth and f̃ is smooth around p, hence

f ◦ F = f̃ ◦ F

is also a smooth map on a neighbourhood of F−1( p).
(b) (3) implies (2) trivially.
(c) (2) implies (1): we consider the local diffeomorphism

G(u1, u2, t) =
(

x(u1, u2), y(u1, u2, ), z(u1, u2)+ t
)

from the proof of proposition 3.1.9 once again. We set

g(u1, u2, t) := f ◦ F(u1, u2) = f ◦G
(

u1, u2, 0
)

.

Now g is smooth near (F−1( p), 0) and we can take

f̃ := g ◦G−1

as an extension.

Definition 3.1.12 If the equivalent conditions (1) to (3) from proposition
3.1.11 hold, then we call f smooth near p.

To conclude this section we consider maps where both the domain and the
target are surfaces.

Definition 3.1.13 Let S1, S2⊂R
3 be regular surfaces. Let p∈ S1 and f :

S1→ S2 be a continuous map. We call f smooth near p, if there exists a
local parametrisation (U1, F1, V1) of S1 around p and a local parametrisation
(U2, F2, V2) of S2 around f ( p) in such a way that F−1

2 ◦ f ◦ F1: F−1
1 ( f−1(V2) ∩

V1)→ U2 is smooth near p.
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f

F−1
2 ◦ f ◦ F1

F−1
1 (f−1(V2) ∩ V1)

U1 U2

F1 F2

S1 S2V2 ∩ S2V1 ∩ S1

f−1(V2) ∩ V1

A map f between two surfaces is therefore called smooth if it is smooth when
expressed in suitable coordinates. Could it now happen that a such map,
expressed in other coordinates, is not smooth? This cannot happen since, as
we have seen as an implication of proposition 3.1.9, parameter transforma-
tions are always C∞: if, in addition to (Ui, Fi, Vi), (Ũi, F̃i, Ṽi, ) is also a local
parametrisation of Si, then smoothness of F−1

2 ◦ f ◦ F1 implies that

F̃−1
2 ◦ f ◦ F̃1 = F̃−1

2 ◦ F2︸ ︷︷ ︸
C∞

◦F−1
2 ◦ f ◦ F1︸ ︷︷ ︸

C∞

◦F−1
1 ◦ F̃1︸ ︷︷ ︸

C∞

is a smooth map as well. This is a very useful remark, since it means that one
can check the differentiability of a map f in cleverly chosen coordinates.

Exercise 3.4 Let V ⊂ R
3 be open, let S1, S2 ⊂ R

3 be regular surfaces with
S1 ⊂ V. Let f : V → R

3 be a smooth map with f (S1) ⊂ S2. Show that

f |S1 : S1 → S2

is smooth in the sense defined above.

Example 3.1.14 Let A be an orthogonal 3 × 3 matrix. Being a linear map
A : R

3 → R
3 is certainly C∞. Because of the orthogonality, A maps the unit

sphere to itself. By exercise 3.4,

f = A|S2 : S2 → S2

is a smooth map.
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Suggestion Check this in the coordinates for S2 from the beginning of this
section.

Definition 3.1.15 Let S1, S2⊂R
3 be regular surfaces. A map f : S1→ S2 is

called a diffeomorphism, if f is bijective and both f and f−1 are smooth.
If such a diffeomorphism f : S1→ S2 exists, then the surfaces S1 and S2 are
diffeomorphic.

Example 3.1.16 Let

S1 =
{

(x, y, z)� ∈ R
3
∣∣∣∣ x2

a2
+ y2

b2
+ t2

c2
= 1

}
, a, b, c > 0,

an ellipsoid. Let S2 = S2 be the sphere. Then S1 and S2 are diffeomorphic. We
may take

f : S1 → S2,

f (x, y, z) =
(x

a
,

y
b

,
z
c

)�
,

as the diffeomorphism, for example.

Example 3.1.17 Let S1=
{
(x, y, ϕ(x, y))� | (x, y)� ∈ U

}
be the graph of a

C∞-function ϕ : U→R. Let S2=U × {0}⊂R
3 be U interpreted as a sur-

face in R
3. Then S1 and S2 are diffeomorphic by virtue of the following

diffeomorphism:

f : S1 → S2, f (x, y, z) = (x, y, 0)�,

f−1 : S2 → S1, f (x, y, 0) = (x, y, ϕ(x, y))�.

3.2 The tangent plane

The simplest regular surfaces are certainly planes, just as straight lines are the
simplest curves. We would therefore now like to approximate possibly very
complicated surfaces by planes. This concept is very similar to the differential
of a smooth map. For a smooth map F : U → R

m, U ⊂ R
n open and p ∈ U,

the map R
n → R

m, x �→ F( p) + DpF(x − p) is the first (the affine linear)
approximation at the point p. What is now the geometric equivalent to DpF
for a regular surface?

Definition 3.2.1 Let S ⊂ R
3 be a regular surface, let p ∈ S. Then

TpS = {X ∈ R
3 | there exists an ε > 0 and a smooth parametrised

curve c : (−ε, ε)→ S with c(0) = p and ċ(0) = X}

is called the tangent plane of S in p. The elements of the tangent plane are
called tangent vectors.
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To illustrate the tangent plane one often draws the affine plane TpS + p
obtained by a translation of TpS to the root point p.

0
X

TpS

TpS+ p

c

p S

It is not immediately clear from the definition itself that TpS is indeed a
plane. However, we can also describe the tangent plane using local parametri-
sations as follows.

Proposition 3.2.2 Let S⊂R
3 be a regular surface, let p∈ S. Further, let

(U, F, V) be a local parametrisation of S around p. We set u0 := F−1( p) ∈ U.

Then
TpS = Image (Du0F) = Du0 F(R2).

Proof (a) We show the inclusion “⊃”. Let X ∈ Image (Du0F), i.e. there
exists a Y ∈ R

2 with

X = Du0F(Y).

We set c(t) := F(u0 + tY). For a sufficiently small ε > 0 we have u0 + tY ∈ U
if |t| < ε. Hence c is well defined on (−ε, ε). It follows that

c(0) = F(u0) = p

and
ċ(0) = d

dt
F(u0 + tY)

∣∣∣
t=0
= Du0 F(Y) = X.

Thus X ∈ TpS.

(b) Now we show the inclusion “⊂”. Let X ∈ TpS, i.e. there exists a smooth
curve c : (−ε, ε)→ S with c(0)= p and ċ(0)=X. After possibly reducing
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the size of ε we can assume that c is fully contained in V. According to
proposition 3.1.9

u := F−1 ◦ c : (−ε, ε)→ U

is a smooth (plane) parametrised curve. We set Y := u̇(0) ∈ R
2. Then

Du0F(Y) = d
dt

(F ◦ u)

∣∣∣
t=0
= d

dt
c
∣∣∣
t=0
= X.

Hence X ∈ Image (Du0 F).

Corollary 3.2.3 TpS ⊂ R
3 is a two-dimensional vector subspace since Du0 F

has full rank 2.

We are often given a regular surface as the set of zeros of a function as
in proposition 3.1.6. Then we can find the tangent plane using this function
as well.

Proposition 3.2.4 Let V ⊂ R
3 be open, let f : V → R be a smooth function

and let S = f−1(0) ⊂ R
3. Suppose that grad f ( p) �= 0 for all p∈ S. Then for

p ∈ S the gradient of f is perpendicular to the tangent plane:

TpS = grad f ( p)⊥.

Proof Let X ∈TpS. We choose a smooth parametrised curve c : (−ε, ε)→ S
with c(0)= p and ċ(0)=X. As c is completely contained in S we have
( f ◦ c)(t) = 0 for all t ∈ (−ε, ε). Differentiating gives

0 = d
dt

f ◦ c
∣∣∣
t=0
= 〈grad f (c(0)), ċ(0)〉 = 〈grad f (p), X〉.

Hence X is perpendicular to grad f (p). We have thus shown that TpS⊂
grad f ( p)⊥. As both subspaces TpS and grad f ( p)⊥ of R

3 have dimension 2
it follows that TpS = grad f ( p)⊥.

Example 3.2.5 The sphere is described by

S2 = f−1(0),

where f (x, y, z) = x2 + y2 + z2 − 1. We calculate

grad f (x, y, z) = 2(x, y, z).

The tangent plane TpS2 is hence exactly the orthogonal complement of the
root point vector p.
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TpS2 + p

S2

p

We know the concept of linear approximations from smooth maps (differ-
ential) which are defined on open subsets of R

n, and the concept of linear
approximations of regular surfaces (tangent plane). Combined these lead
to the concept of linear approximations of smooth maps defined on regular
surfaces, again called differentials.

Definition 3.2.6 Let S1, S2⊂R
3 be regular surfaces, let f : S1→ S2 be a

smooth map and let p ∈ S1. The differential of f at p is the map

dpf : TpS1 → Tf ( p)S2,

which is given by the rule: for X ∈ TpS1 choose a smooth parametrised curve
c : (−ε, ε)→ S1 with c(0) = p and ċ(0) = X and set

dpf (X) := d
dt

( f ◦ c)
∣∣∣
t=0
∈ Tf ( p)S2.

Proposition 3.2.7 This definition makes dpf well-defined, i.e. dpf (X) depends
only on X, not on the particular choice of the curve c. Further dpf is linear.

Proof We express dpf using local parametrisations. Let (U1, F1, V1) be a
local parametrisation of S1 around p and let (U2, F2, V2) be a local parametri-
sation of S2 around f ( p). After possibly reducing the size of U1 and V1 we can
assume that f (S ∩ V1) ⊂ V2. We set

f̃ := F−1
2 ◦ f ◦ F1 : U1 → U2

and u0 :=F−1
1 ( p)∈U1. For the curve c : (−ε, ε)→ S1 with c(0)= p and

ċ(0) = X we set

u := F−1
1 ◦ c : (−ε, ε)→ U1.

Again we may need to choose a smaller ε to ensure that c is fully contained in
V1. Then we have, as in the proof of proposition 3.2.2, that Du0 F1(u̇(0)) = X
and we find
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dpf (X) = d
dt

( f ◦ c)
∣∣∣
t=0

= d
dt

( f ◦ F1 ◦ u)

∣∣∣
t=0

= d
dt

(F2 ◦ f̃ ◦ u)

∣∣∣
t=0

= Du0(F2 ◦ f̃ )(u̇(0))

= Du0(F2 ◦ f̃ ) ◦ (Du0 F1
)−1

(X).

The last expression is no longer a function of c, but only of X. Hence the
definition is independent of the particular choice of c.

Further the map dpf can be written as the composition of the linear maps

Du0(F2 ◦ f̃ ) and
(
Du0 F1

)−1 and is thus linear itself.

Remark The proof showed that by virtue of the local parametrisation
(U1, F1, V1) and (U2, F2, V2) the differential dpf is given by the Jacobian matrix
Du0 f̃ . More precisely, the following diagram commutes:

TpS1
dpf−−−−→ Tf ( p)S2

Du0 F1

5⏐⏐∼= ∼=
5⏐⏐Df̃ (u0)

F2

R
2

Du0 f̃−−−−→ R
2

Example 3.2.8 Let A : R
3 → R

3 be an orthogonal map, i.e. A ∈ O(3). We
set f : S2 → S2, f := A|S2 . Let p ∈ S2. We find the differential of f at p. For
this purpose let c : (−ε, ε)→ S2 be a smooth parametrised curve with c(0) = p
and ċ(0) = X ∈ TpS2. Because of the linearity of A we have

d
dt

( f ◦ c)
∣∣∣
t=0
= d

dt
(A ◦ c)

∣∣∣
t=0

= A ◦ d
dt

c
∣∣∣
t=0

= A(X).

Thus dpf = A|TpS2 : TpS2 → TApS2.

Analogously one can define the differential

dpf : TpS→ R
n
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for smooth maps f : S→ R
n that are defined on a regular surface. Suppose that

c : (−ε, ε) → S is a smooth parametrised curve with c(0) = p and ċ(0) = X.
Then we set dpf (X) := (d/dt)( f ◦ c)|t=0.

If the domain is an open subset U ⊂ R
n and f : U → S takes the values of

a regular surface S, then we simply set

dpf : R
n → Tf ( p)S ⊂ R

3,

dpf (X) := Dpf (X),

for p ∈ U. It is easy to see that Dpf (X) indeed lies in the subspace Tf ( p)S. In
any case one obtains a well-defined linear map dpf .

3.3 The first fundamental form

In order to do geometry on a regular surface S ⊂ R
3, we need to be able

to measure, for example, lengths of curves that lie in S or the angle between
two tangent vectors to the surface. Since the tangent plane at each point p∈ S
is a two-dimensional subspace of R

3, we can restrict the conventional scalar
product 〈·, ·〉 of R

3 to TpS, and obtain a Euclidean scalar product on TpS. The
map, which assigns each point p ∈ S this restriction gp := 〈·, ·〉|TpS×TpS, is called
first fundamental form of S. We often write the first fundamental form as

Ip(X, Y) = gp(X, Y) = 〈X, Y〉 ,

where X, Y ∈ TpS.
As learnt in linear algebra, every Euclidean scalar product on a vector

space, here gp on TpS, can be represented as a positive definite symmetric
matrix after a choice of basis. A basis of TpS is usually obtained by a local
parametrisation (U, F, V) of S at p. If e1, e2 are the standard basis vectors of
R

2, then DuF(e1)= (∂F/∂u1)(u) and DuF(e2)= (∂F/∂u2)(u), u=F−1( p), form
a basis of TpS. With respect to this basis, the matrix representation of gp is then
given by

gij(u) := gp(DuF(ei), DuF(ej)) =
〈
∂F
∂ui

(u),
∂F
∂u j

(u)

〉
.

The 2×2 matrix (gij(u))i,j=1,2 is therefore symmetric and positive definite. Fur-
ther, the above formula shows immediately that the matrix entries gij depend
smoothly on u, i.e. gij : U → R is a smooth function for every i and j.

Example 3.3.1 Let S ⊂ R
3 be a plane. Then S can be described by an affine-

linear parametrisation as in example 3.1.3,

F : R
2 → R

3,
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F(u1, u2) = p0 + u1 ·X + u2 · Y, p0, X, Y ∈ R
3.

Hence S is here the plane spanned by the vectors X and Y through the point
p0. We find the first fundamental form w.r.t. the parametrisation

g11(u1, u2) =
〈

∂F
∂u1

(u1, u2),
∂F
∂u1

(u1, u2)

〉
= 〈X, X〉,

g12(u1, u2) = g21(u1, u2) =
〈

∂F
∂u1

(u1, u2),
∂F
∂u2

(u1, u2)

〉
= 〈X, Y〉 = 〈Y, X〉,

g22(u1, u2) =
〈

∂F
∂u2

(u1, u2),
∂F
∂u2

(u1, u2)

〉
= 〈Y, Y〉.

For example, if S is the x–y plane and if (u1, u2) are Cartesian coordinates, i.e.
p0 = 0, X = e1 and Y = e2, then the first fundamental form is given by the
matrix (

gij(u)
)

ij =
(

1 0
0 1

)
.

The functions gij : R2→R from our example are therefore constant. If one uses
another local parametrisation for the same surface, then this will in general no
longer be the case.

Let us consider polar coordinates as an example. We still assume that
S is the x–y plane in R3. Polar coordinates (ũ1, ũ2)= (r, ϕ) give the local
parametrisation

F̃ : (0,∞)× (0, 2π)→ R
3,

F̃(r, ϕ) = (r · cos ϕ, r · sin ϕ, 0)�.

The first fundamental form is now

g̃11(r, ϕ)=
〈

∂F̃
∂r

(r, ϕ),
∂F̃
∂r

(r, ϕ)

〉

=
〈⎛⎜⎝cos(ϕ)

sin(ϕ)

0

⎞⎟⎠ ,

⎛⎜⎝cos(ϕ)

sin(ϕ)

0

⎞⎟⎠〉

= cos2(ϕ)+ sin2(ϕ)

= 1,
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g̃12(r, ϕ)= g̃21(r, ϕ) =
〈

∂F̃
∂ϕ

(r, ϕ),
∂F̃
∂r

(r, ϕ)

〉

=
〈⎛⎜⎝−r sin(ϕ)

r cos(ϕ)

0

⎞⎟⎠ ,

⎛⎜⎝cos(ϕ)

sin(ϕ)

0

⎞⎟⎠〉
= r · (−sin(ϕ) · cos(ϕ)+ cos(ϕ) · sin(ϕ))

= 0,

g̃22(r, ϕ)=
〈⎛⎝−r sin(ϕ)

r cos(ϕ)

0

⎞⎠ ,

⎛⎝−r sin(ϕ)

r cos(ϕ)

0

⎞⎠〉
= r2 sin2(ϕ)+ r2 cos2(ϕ)

= r2.

The first fundamental form of the x–y plane with respect to polar coordinates
is therefore given by the matrix

(
g̃ij(r, ϕ)

)
ij =

(
1 0
0 r2

)
. (3.1)

At least the g̃22-component is not constant this time.
This example already shows that the formulae for the first fundamental

form depend strongly on the choice of the local parametrisation. The more
clumsily the parametrisation is chosen, the more complicated the formulae
will be.

Example 3.3.2 Let us consider the cylindrical surface

S = {(x, y, z)� ∈ R
3| x2 + y2 = 1}.

We use the local parametrisation

F : (0, 2π)× R→ R
3,

F(ϕ, h) =
⎛⎝cos(ϕ)

sin(ϕ)

h

⎞⎠ .

For the first fundamental form we obtain, with respect to the coordinates
(u1, u2) = (ϕ, h),
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g11(ϕ, h)=
〈
∂F
∂ϕ

(ϕ, h),
∂F
∂ϕ

(ϕ, h)

〉

=
〈⎛⎜⎝−sin(ϕ)

cos(ϕ)

0

⎞⎟⎠ ,

⎛⎜⎝−sin(ϕ)

cos(ϕ)

0

⎞⎟⎠〉

= sin2(ϕ)+ cos2(ϕ)

= 1,

g12(ϕ, h)= g21(ϕ, h) =
〈
∂F
∂ϕ

(ϕ, h),
∂F
∂h

(ϕ, h)

〉

=
〈⎛⎜⎝−sin(ϕ)

cos(ϕ)

0

⎞⎟⎠ ,

⎛⎜⎝0

0

1

⎞⎟⎠〉
= 0,

g22(ϕ, h)=
〈
∂F
∂h

(ϕ, h),
∂F
∂h

(ϕ, h)

〉

=
〈⎛⎜⎝0

0

1

⎞⎟⎠ ,

⎛⎜⎝0

0

1

⎞⎟⎠〉
= 1.

We (astonishingly?) discover that the first fundamental form of the cylindrical
surface with respect to the chosen coordinates has the same form as that of

the plane with respect to Cartesian coordinates, i.e.
(
gij

)
ij =

(
1 0
0 1

)
. This sug-

gests that the two surfaces have certain things in common. We will investigate
these later.

Example 3.3.3 We find the first fundamental form of the sphere

S2 =
{
(x, y, z)� ∈ R

3
∣∣∣ x2 + y2 + z2 = 1

}
in polar coordinates (u1, u2) = (θ , ϕ):

F :
(
−π

2
,
π

2

)
× (0, 2π)→ R

3,

F(θ , ϕ) =
⎛⎝cos(θ) · cos(ϕ)

cos(θ) · sin(ϕ)

sin(θ)

⎞⎠
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From

∂F
∂θ

(θ , ϕ) =
⎛⎝−sin(θ) · cos(ϕ)

−sin(θ) · sin(ϕ)

cos(θ)

⎞⎠ ,
∂F
∂ϕ

(θ , ϕ) =
⎛⎝−cos(θ) · sin(ϕ)

cos(θ) · cos(ϕ)

0

⎞⎠
we obtain (

gij(θ , ϕ)
)

ij =
(

1 0

0 cos2(θ)

)
.

We finally investigate what happens if we change the local parametrisation.
Suppose that (U, F, V) and (Ũ, F̃, Ṽ) are two local parametrisations. Let (g̃ij)ij
be the corresponding matrix that describes the first fundamental form. Let us
now denote the parameter transformation by ϕ := F̃−1 ◦ F, then using the
chain rule we obtain

gij(u) = I
( ∂F

∂ui
(u),

∂F
∂u j

(u)
)

= I
(∂(F̃ ◦ ϕ)

∂ui
(u),

∂(F̃ ◦ ϕ)

∂u j
(u)

)
= I

(∑
k

∂F̃
∂ũk

(ϕ(u)) · ∂ϕk

∂ui
(u),

∑
�

∂F̃
∂ũ�

(ϕ(u)) · ∂ϕ�

∂u j
(u)

)

=
∑
k�

∂ϕk

∂ui
(u)

∂ϕ�

∂u j
(u) · I

( ∂F̃
∂ũk

(ϕ(u)),
∂F̃
∂ũ�

(ϕ(u))
)

=
∑
k�

∂ϕk

∂ui
(u)

∂ϕ�

∂u j
(u)g̃k�(ϕ(u)).

In matrix notation this equation is(
gij(u)

)
ij = (Duϕ)� · (g̃k�(ϕ(u))

)
k�
·Duϕ. (3.2)

Exercise 3.5 Calculate the first fundamental form of the sphere w.r.t. the
local parametrisation

(
U, F+3 , V+3

)
from example 3.1.5.

Exercise 3.6 Find the first fundamental form of a graph of a function w.r.t.
the parametrisation from example 3.1.4.

Exercise 3.7 Calculate the first fundamental form of the cone

S = {(x, y, z)� ∈ R
3 | x2 + y2 = z2, z > 0}
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w.r.t. the parametrisation

F : (0, 2π)× (0,∞)→ R
3,

F(ϕ, r) = r(cos(ϕ), sin(ϕ), 1)�.

3.4 Normal fields and orientability

Definition 3.4.1 Let S ⊂ R
3 be a regular surface. A normal field on S is a

map
N : S→ R

3,

such that N( p)⊥TpS for all p∈ S. A normal field on S is said to be a unit
normal field, if in addition ‖N( p)‖ = 1 for all p ∈ S.

Remark Note that if N is a (unit) normal field on S, then the same is true
for −N. Continuous unit normal fields may, but do not necessarily, exist on
regular surfaces.

Example 3.4.2 Let S = {(x, y, 0)� | x, y ∈ R} be the x–y plane in R
3. Then

N(x, y, 0) = (0, 0, 1)� is a constant unit normal field on S.

N

S

Example 3.4.3 Let S = S2. Then we obtain a unit normal field by setting
N = Id.

p

N(p) = p

Example 3.4.4 Let S = S1 × R be the cylindrical surface. Then N(x, y, z) =
(x, y, 0)� defines a unit normal field.
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S

Example 3.4.5 Let S be the Möbius strip. It is obtained by gluing together
a strip of paper at its left and its right end, but, in order not to obtain the
cylindrical surface, twisting it once.

The Möbius strip does not have a continuous unit normal field.

?

This also means that the Möbius strip only has one side, there is no “inside” or
“outside”. If one starts colouring the Möbius strip at one point, then one will
find after a while that the strip is coloured everywhere on both sides.

Definition 3.4.6 A regular surface S⊂R
3 is orientable if there exists a

smooth unit normal field on S.

Remark Hence the plane, the sphere and the cylinder are orientable, while
the Möbius strip is not. The main condition in the definition is that the
unit normal field is smooth. It is always possible to find some unit normal
field by choosing for each point p∈ S one of the two unit normal vectors to
TpS ⊂ R

3 and calling it N( p). But this N will usually not be continuous, let
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alone smooth. Indeed, one could change smooth to continuous in the definition
without changing the concept of orientability at all, as the following exercise
shows.

Exercise 3.8 Let S⊂R
3 be a regular surface, N : S→ S2⊂R

3 a unit normal
field. Show that N is continuous if and only if N is smooth.

We now want to observe that regular surfaces S are always locally orientable.
For this purpose let (U, F, V) be a local parametrisation of S. Using the vector
product we obtain a normal field Ñ on S ∩ V via

Ñ( p) = DF−1( p)F(e1)×DF−1( p)F(e2).

As DF−1( p)F has full rank, the vectors DF−1( p)F(e1) and DF−1( p)F(e2) are

linearly independent and hence Ñ( p) �= (0, 0, 0)�.

F−1(p) e1

e2

U

p

N( p)

DF−1(p)F(e1)

DF−1(p)F(e2)

V ∩ S

S

F

A smooth unit normal field on S ∩ V is then obtained via

N( p) := Ñ( p)

‖Ñ( p)‖ .

Of course there is a certain arbitrariness in this choice. We could have taken
−N : S ∩ V → S2 ⊂ R

3 instead of N : S ∩ V → S2 ⊂ R
3. If this construction

is carried out for two local parametrisations (U1, F1, V1) and (U2, F2, V2), then
the two corresponding unit normal vectors at points from S ∩ V1 ∩ V2 can
either agree or be negatives of each other. We express this by a condition on
the parameter transformation ϕ := F−1

2 ◦ F1.
For this purpose let p∈ S∩V1∩V2, ui :=F−1

i ( p). Let Ni( p) the unit normal
vector of (Ui, Fi, Vi) at p, i= 1, 2. By construction (DuiFi(e1), DuiFi(e2), Ni( p))

form a positively oriented basis of R
3. Hence N1( p) and N2( p) agree if and

only if (Du1 F1(e1), Du1 F1(e2)) and (Du2 F2(e1), Du2 F2(e2)) have the same ori-
entation in TpS, otherwise N1( p) = −N2( p). Hence N1( p) = N2( p) if and
only if ϕ is orientation-preserving at u1, i.e. if det(Du1ϕ) > 0.
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Conclusion

N1( p) = N2( p) ⇔ det(Du1ϕ) > 0

N1( p) = −N2( p) ⇔ det(Du1ϕ) < 0.

The following theorem follows immediately.

Theorem 3.4.7 A regular surface S ⊂ R
3 is orientable if and only if S can be

covered by local parametrisations such that for all parameter transformations ϕ

det(Dϕ) > 0.

3.5 The second fundamental form

Let S ⊂ R
3 be an orientable regular surface with smooth unit normal field N.

Regarded as a map between surfaces, i.e. N : S→ S2, the map N is also called
the Gauss map.

Let p ∈ S. We consider the differential of N at p:

dpN : TpS→ TN( p)S
2.

Now TN( p)S2 = N( p)⊥ = TpS. Hence dpN is an endomorphism on TpS.

Definition 3.5.1 Let S ⊂ R
3 be a regular surface with orientation given by

the unit normal field N. The endomorphism

Wp : TpS→ TpS,

Wp(X) = −dpN(X),

is called the Weingarten map.

The negative sign appears for historic reasons. If orientation is reversed, i.e.
if −N is substituted for N, then W also changes its sign.

Example 3.5.2 Let S= S2, and let N be the outer unit normal field,
N( p)= p. Then

Wp = − Id : TpS2 → TpS2.

Example 3.5.3 Let S = {(x, y, 0)� | x, y ∈ R} be the x–y plane, N(x, y, z) =
(0, 0, 1)�. Then N is constant and thus Wp = 0 for all p ∈ S.

Example 3.5.4 Let S = S1 × R be the cylinder, N(x, y, z) = (x, y, 0)�.

At a point p = (x, y, z)� ∈ S the tangent plane TpS is spanned by the basis
vectors (−y, x, 0)� and (0, 0, 1)�. We calculate
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Wp

⎛⎝0
0
1

⎞⎠=−dpN

⎛⎝0
0
1

⎞⎠ = − d
dt

N

⎛⎝ x
y

z+ t

⎞⎠∣∣∣∣∣∣
t=0

=− d
dt

⎛⎝x
y
0

⎞⎠∣∣∣∣∣∣
t=0

=
⎛⎝0

0
0

⎞⎠ .

To find the image of (−y, x, 0) under Wp, we choose t0 ∈R, such that
(cos(t0), sin(t0)) = (x, y). Then for c(t) := (cos(t + t0), sin(t + t0), z)� we have
that c(0) = (x, y, z)� = p and ċ(0) = (−sin(t0), cos(t0), 0)� = (−y, x, 0)�. It
follows that

Wp

⎛⎝−y
x
0

⎞⎠=−dpN

⎛⎝−y
x
0

⎞⎠ = − d
dt

N

⎛⎜⎝cos(t + t0)

sin(t + t0)

z

⎞⎟⎠
∣∣∣∣∣∣∣
t=0

=− d
dt

⎛⎜⎝cos(t + t0)

sin(t + t0)

0

⎞⎟⎠
∣∣∣∣∣∣∣
t=0

=
⎛⎜⎝ sin(t0)

−cos(t0)

0

⎞⎟⎠ = −
⎛⎜⎝−y

x

0

⎞⎟⎠ .

With respect to the basis vectors (−y, x, 0)� and (0, 0, 1)�, the map Wp

therefore has the matrix representation(−1 0
0 0

)
.

Proposition 3.5.5 Let S ⊂ R
3 be an orientable regular surface with Wein-

garten map Wp : TpS→ TpS, p ∈ S. Then Wp is self-adjoint with respect to the
first fundamental form.

Proof Let N be the unit normal field of S that induces the Weingarten
map, Wp = −dpN. We choose a local parametrisation (U, F, V) at p and set
u :=F−1( p).

Let

X1 := DuF(e1) = ∂F
∂u1

(u)

and

X2 := DuF(e2) = ∂F
∂u2

(u)
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be the corresponding basis vectors of TpS. As N is perpendicular to S
everywhere, we have 〈

∂F
∂ui

(u+ tej), N(F(u+ tej))

〉
≡ 0.

Differentiating this equation with respect to t gives

0 = d
dt

〈
∂F
∂ui

(u+ tej), N(F(u+ tej))

〉∣∣∣∣
t=0

=
〈

d
dt

∂F
∂ui

(u+ tej)

∣∣∣∣
t=0

, N( p)

〉
+

〈
∂F
∂ui

(u), dpN ◦DuF(ej)

〉

=
〈

∂2F
∂u j∂ui

(u), N( p)

〉
+ 〈

Xi,−Wp(Xj)
〉
.

Thus

Ip(Xi, Wp(Xj)) =
〈
Xi, Wp(Xj)

〉 = 〈
∂2F

∂u j∂ui
(u), N( p)

〉
. (3.3)

By the theorem of Schwarz [18, p. 372, theorem 1.1] the two partial derivatives
of F can be exchanged and we obtain

Ip(Xi, Wp(Xj)) =
〈

∂2F
∂u j∂ui

(u), N( p)

〉

=
〈

∂2F
∂ui∂u j

(u), N( p)

〉
= Ip(Xj, Wp(Xi)).

We now know for our basis vectors X1 and X2 of TpS that

Ip(Xi, Wp(Xj)) = Ip(Xj, Wp(Xi)) = Ip(Wp(Xi), Xj).

Since any two vectors X, Y ∈ TpS can be written as a linear combination of X1
and X2, it immediately follows from the bilinearity of I and the linearity of Wp

that
Ip(X, Wp(Y)) = Ip(Wp(X), Y),

i.e. Wp is self-adjoint with respect to I.

Let us recall from linear algebra that if V is a finite-dimensional real vector
space with Euclidean scalar product 〈·, ·〉, then the self-adjoint endomorphisms
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W on V are uniquely associated with the symmetric bilinear forms β on V. The
relation between W and β is

β(X, Y) = 〈W(X), Y〉 , X, Y ∈ V.

Definition 3.5.6 The bilinear form that corresponds to the Weingarten map
Wp is called the second fundamental form (of the surface S at the point p):

IIp(X, Y) = Ip(Wp(X), Y), X, Y ∈ TpS.

For simplicity the root point vector p is often omitted in the notation, and we
write II instead of IIp, and W instead of Wp.

Expression in local coordinates Let S ⊂ R
3 be a regular surface, p ∈ S. Let

(U, F, V) be a local parametrisation of S at p. We set u := F−1( p). We have
already learnt how to express the first fundamental form locally. For the basis
DuF(e1)= (∂F/∂u1)(u) and DuF(e2)= (∂F/∂u2)(u) the first fundamental form
is given by the symmetric matrix (gij(u))i,j=1,2, where

gij(u) =
〈
∂F
∂ui

(u),
∂F
∂u j

(u)

〉
= Ip

(
DuF(ei), DuF(ej)

)
.

We now define

hij(u) := IIp(DuF(ei), DuF(ej))

= Ip
(
Wp(DuF(ei)), DuF(ej)

)
(3.3)=

〈
∂2F

∂u j∂ui
(u), N( p)

〉
, i, j = 1, 2. (3.4)

Then (hij(u))i,j=1,2 is the symmetric matrix which gives the second fundamental
form w.r.t. the basis given above. The entries of the matrix representing the
Weingarten map are denoted as w j

i , i.e. we define

Wp(DuF(ei)) =:
2∑

j=1

w j
i (u)DuF(ej).

As the Weingarten map is closely related to the second fundamental form,
we expect that the matrices (hij(u))i,j and

(
w j

i (u)
)

i,j can be determined from



110 C L A S S I C A L S U R F A C E T H E O R Y

each other. This works as follows:

hij(u) = II(DuF(ei), DuF(ej))

= I(W(DuF(ei)), DuF(ej))

= I
( 2∑

k=1

wk
i (u)DuF(ek), DuF(ej)

)

=
2∑

k=1

wk
i (u)I

(
DuF(ek), DuF(ej)

)

=
2∑

k=1

wk
i (u)gkj(u).

The matrix (hij(u))i,j therefore results from the matrix multiplication of the
matrices

(
wk

i (u)
)

i,k and (gkj(u))k,j. As the matrix (gkj(u))k,j is positive definite,

and thus in particular is invertible, the equation can be solved for
(
wk

i (u)
)

i,k.

For this purpose let (g ij(u))i,j be the inverse matrix of (gij(u))i,j, i.e.

(
g ij(u)

)
ij
= 1

g11(u)g22(u)− g12(u)2

(
g22(u)−g12(u)

−g21(u) g11(u)

)
.

It then follows that
2∑

k=1

hik(u)g kj(u) = w j
i (u). (3.5)

3.6 Curvature

We now come to a central notion of surface theory and of differential geome-
try: curvature. We will meet several concepts of curvature, and we begin with
normal curvature.

For this purpose let S⊂R3 be an orientable regular surface with smooth
unit normal field N, p∈ S. Let c : (−ε, ε)→ S be a curve parametrised by arc-
length with c(0) = p. Regarded as a space curve in R

3, the curve c has at point
0 curvature κ(0), which in the case κ(0) �= 0 is given by

c̈(0) = κ(0) · n(0),

where n is the normal vector of c. We now want to split this curvature into a
part which results from the fact that c curves within S, and a part which reflects
the curvature of S in R3. For this purpose we decompose n(0) into a part that
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is tangential to S and one that is perpendicular to S:

n(0) = n(0)tang + n(0)perp,

where n(0)perp = 〈n(0), N( p)〉N( p). We therefore have

c̈(0) = κ(0) · n(0) = κ(0) · n(0)tang + κ(0) · 〈n(0), N( p)〉N( p).

The tangential part, which gives the extent to which c curves within S, leads to
the geodesic curvature of c in S, to which we will come back in section 4.5. For
now we are interested in the curvature of S in R

3, and for this reason make the
definition

κnor := 〈c̈(0), N( p)〉 =
{

κ(0) · 〈n(0), N( p)〉, if κ(0) �= 0,
0, if κ(0) = 0.

We call κnor the normal curvature of S at the point p in direction ċ(0). If, in
the case of κ(0) �= 0, θ denotes the angle between N( p) and n(0), then we
therefore have

κnor = κ(0) · cos(θ).

N(p)

p
c

n(0)

θ

In particular, we always have

|κnor| ≤ κ(0).

The following theorem tells us how to find the normal curvature from the
second fundamental form.

Theorem 3.6.1 (Meusnier’s theorem) Let S⊂R
3 be an orientable regular

surface with unit normal field N and second fundamental form II. Let p∈ S.
Let c : (−ε, ε) → S be a curve parametrised by arc-length with c(0) = p. Then
we have for the normal curvature κnor of c:

κnor = II(ċ(0), ċ(0)).

In particular, all curves parametrised by arc-length in S through p with the same
tangent vector have the same normal curvature.
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This also justifies that we refer to κnor as the normal curvature of S at the point
p in direction ċ(0), since κnor depends, apart from on S and p, only on ċ(0), but
not on the particular choice of the curve c.

Proof As c lies on S, we have

〈N(c(t)), ċ(t)〉 = 0

for all t ∈ (−ε, ε). Differentiating this equation gives

0= d
dt
〈N(c(t)), ċ(t)〉

∣∣∣
t=0

=
〈

d
dt

N(c(t))

∣∣∣∣
t=0

, ċ(0)

〉
+ 〈N( p), c̈(0)〉

= 〈dpN(ċ(0)), ċ(0)〉 + κnor

=〈−Wp(ċ(0)), ċ(0)〉 + κnor

=−II(ċ(0), ċ(0))+ κnor.

Remark A change of orientation of the curve c does not change the value
of the normal curvature κnor, since

II(−ċ(0),−ċ(0)) = II(ċ(0), ċ(0)).

However, if the orientation of the surface S is reversed with N( p) being
replaced by −N( p), curvature κnor changes sign:

〈c̈(0),−N( p)〉 = −〈c̈(0), N( p)〉.

Let S ⊂ R
3 be an orientable regular surface with unit normal field N, let p ∈ S.

Let X ∈ TpS be a tangent vector of length 1.

Exercise 3.9 Let E be the plane spanned by N( p) and X. Use the implicit
mapping theorem to show that for a neighbourhood V of p in R

3 the set
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S ∩ (E + p) ∩ V can be parametrised by a regular curve. Here E + p denotes
the plane E translated to the point p.

N(p)

Xp
S ∩ (E+ p)

According to theorem 3.6.1 the normal curvature II(X, X) can be found
from the unit speed curve c which describes S ∩ (E + p) ∩ V. If we consider c
as a plane curve in the plane E+ p ∼= R

2, then the normal vector of the curve
n(0) = ±N( p) and hence the normal curvature is

II(X, X) = ±κ(0),

where κ is the curvature of c considered as a plane curve. This explains the
term normal curvature. The normal curvature is the curvature of the plane
curve S ∩ (E+ p) ∩ V in the plane E spanned by X and the normal vector.

Example 3.6.2 Let S = S1 × R be the cylinder. Let p ∈ S. The intersection
of S with the normal plane at the point p is a circle, an ellipse or a straight
line. The normal curvature therefore varies between 1 and 0, depending on
the direction.

κnor = 1

0 < κnor < 1

κnor = 0

p

By proposition 3.5.5 the Weingarten map Wp : TpS → TpS is always self-
adjoint. We can therefore find an orthonormal basis X1, X2 of TpS, which
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consists of eigenvectors of Wp only,

Wp(Xi) = κi ·Xi, i = 1, 2.

Definition 3.6.3 The eigenvalues κ1 and κ2 are called the principal curva-
tures of S at the point p. The corresponding eigenvectors ±X1 and ±X2 are
called principal curvature directions.

Unless stated otherwise, we use the convention κ1≤ κ2. An arbitrary unit
vector X ∈ TpS can be expressed in terms of the basis X1, X2 by

X = cos(ϕ) ·X1 + sin(ϕ) ·X2

for a suitable ϕ ∈ R. Substitution into the second fundamental form gives the
Euler formula for the normal curvature in direction X:

II(X, X) = cos2(ϕ) · κ1 + sin2(ϕ) · κ2.

In particular, we observe that κ1 and κ2 are the minimum and maximum of all
normal curvatures of S at p, if X runs through all directions, i.e. for all unit
vectors X ∈ TpS.

Example 3.6.4 Let S = R
2 × {0} be the x–y plane in R

3. As W = 0, we have
that κ1 = κ2 = 0 and thus every direction is a principal curvature direction.

Example 3.6.5 Let S = S2 be the sphere. Then for the inner unit normal
field the Weingarten map is W = Id. Hence κ1 = κ2 = 1 and every direction is
a principal curvature direction.

Example 3.6.6 Let S = S1 × R be the cylinder, p = (x, y, z)�. As we have
seen, the Weingarten map Wp with respect to the inner unit normal field and
the basis X1 = (−y, x, 0)� and X2 = (0, 0, 1)� has the matrix representation(

1 0
0 0

)
.

This means precisely that X1 and X2 are principal curvature directions for the
principal curvatures κ1 = 1 and κ2 = 0.

Definition 3.6.7 Let S ⊂ R
3 be a regular surface, let c : I → S be a curve

parametrised by arc-length. If ċ(t) is a principal curvature direction for all t ∈ I,
then c is called the curvature line.

Example 3.6.8 On the cylinder S= S1×R the curvature lines are horizontal
circular lines or vertical straight lines (or parts of them).
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On the plane or the sphere all curves parametrised by arc-length are curvature
lines.

Remark If one reverses orientation on an orientable regular surface,
i.e. substitutes −N( p) for N( p), then Wp becomes −Wp. Hence κ1 and κ2
become −κ1 and −κ2. The unit vectors of Wp and hence the principal curva-
ture directions on the other hand remain unchanged. For this reason principal
curvature directions and curvature lines are defined on non-orientable sur-
faces as well. However, the principal curvatures are only defined up to the
sign on non-orientable surfaces.

Exercise 3.10 Prove Rodriguez’s theorem:

Let S ⊂ R
3 be an orientable regular surface, let N : S → S2 be the Gauss map. Let

c : I → S be a curve parametrised by arc-length. Then c is a curvature line on S if
and only if there exists a function λ : I → R with

d
dt

N(c(t)) = λ(t) · ċ(t), t ∈ I.

In this case −λ(t) is the corresponding principal curvature.

Definition 3.6.9 Let S ⊂ R
3 be an oriented regular surface, let p ∈ S be a

point. Let κ1 and κ2 be the principal curvatures of S at p. Then

K( p) := κ1 · κ2 = det(Wp)

is the Gauss curvature of S at p. Further,

H( p) := κ1 + κ2

2
= 1

2
trace(Wp)

is called the mean curvature of S at p.

Both concepts of curvature represent an average of the two principal curva-
tures: the mean curvature is the arithmetic mean, the Gauss curvature is the
square of the geometric mean. We will investigate the geometric meaning of
these notions of curvature later.
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Reversing the orientation of an oriented regular surface changes the signs of
the principal curvatures. Hence H( p) changes to −H( p), while K( p) remains
unchanged. Hence the Gauss curvature is also defined for non-orientable sur-
faces, while the mean curvature is only defined up to the sign. In order to
obtain a version of the mean curvature that does not vary with orientation
and that is defined even on non-orientable surfaces, we often consider not the
real-valued function H but the mean curvature field H , which is defined by

H := H ·N. (3.6)

Unlike the mean curvature H, H is not a function, but a normal field on the
surface.

Now some more terminology.

Definition 3.6.10 Let S ⊂ R
3 be an orientable regular surface, let p ∈ S. We

call the point p

(i) elliptic, if K( p) > 0,
(ii) hyperbolic, if K( p) < 0,

(iii) parabolic, if K( p) = 0, but Wp �= 0, i.e. if one of the two principal curvatures
vanishes while the other does not,

(iv) planar, if Wp = 0, i.e. κ1 = κ2 = 0.

Remark The notions of elliptic, hyperbolic, parabolic and planar points
also make sense on non-orientable surfaces, although in this case Wp is only
defined up to a change of sign.

Let us look at some examples.

Example 3.6.11 For the plane S = R
2 × {0} we have Wp = 0 for all p ∈ S.

Hence all points are planar. We have K ≡ 0 and H ≡ 0.

Example 3.6.12 For the sphere S = S2 with the orientation given by the
inner unit normal field we have Wp = Id for all p ∈ S, thus K ≡ 1. It follows
that all points are elliptic. For the mean curvature we have H ≡ 1 and for the
mean curvature field H ( p) = −p.

Example 3.6.13 For the cylinder S : S1×R with the orientation given by the
inner unit normal field we have calculated: κ1 = 0 and κ2 = 1. It follows that
K ≡ 0 (as for the plane!) and H ≡ 1

2 . All points are parabolic.

Example 3.6.14 The hyperbolic paraboloid

S =
{
(x, y, z)� ∈ R

3
∣∣∣ z = y2 − x2

}
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is the graph of the function ϕ : R
2 → R, ϕ(x, y) = y2 − x2, and hence a regular

surface.

N(0, 0, 0)

z

y

x

To find a normal field, we write S as a set of zeros S = f−1(0), where f : R
3 →

R, f (x, y, z) = z− y2 + x2. The gradient is then

grad f (x, y, z) =
⎛⎝ 2x
−2y

1

⎞⎠ .

As the gradient of f is everywhere perpendicular to S, we obtain a unit normal
field, and hence an orientation, via

N(x, y, z) = grad f (x, y, z)

‖ grad f (x, y, z)‖ =
(2x,−2y, 1)�√
4x2 + 4y2 + 1

.

At the point (x, y, z)� = (0, 0, 0)� =: p we get N( p) = (0, 0, 1)�. We now
find the Weingarten map Wp for this point p. The tangent plane TpS has the
orthonormal basis X1 = (1, 0, 0)� and X2 = (0, 1, 0)�. The curve c : R → S,
c(t) = (t, 0,−t2)�, satisfies c(0) = p and ċ(0) = X1. Hence

dpN(X1) = d
dt

N(c(t))

∣∣∣∣
t=0

= d
dt

(2t, 0, 1)�√
4t2 + 1

∣∣∣∣∣
t=0

= (2, 0, 0)�

= 2 ·X1.

Thus Wp(X1) = −2 · X1 and κ1 = −2. Analogously the curve c̃(t) = (0, t, t2)�
is used to find that

Wp(X2) = 2X2 and κ2 = 2.

It follows that p = (0, 0, 0)� is a hyperbolic point and K( p) = −4, H( p) = 0.
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We now want to look at special local parametrisations of regular surfaces
that show us that the second fundamental form approximately tells us how
the surface moves in the proximity of a point away from the tangent plane. In
particular, we will see that every surface can be given locally as a graph on the
tangent plane. We will then investigate what curvatures tell us about the local
geometric behaviour of the surface.

Theorem 3.6.15 Let S ⊂ R
3 be a regular surface, let p ∈ S and let X1, X2 be

an orthonormal basis of TpS. Let N be a smooth unit normal field on S, defined
on a neighbourhood of the point p, such that (X1, X2, N( p)) form a positively
oriented orthonormal basis of R

3.

There then exists a local parametrisation (U, F, V) of S around p, such that:

(i) (0, 0)� ∈ U and F(0, 0) = p.
(ii) gij(0, 0) = δij, i, j = 1, 2.

(iii) (∂gij/∂uk)(0, 0) = 0, i, j, k = 1, 2.
(iv) F(u)− p = u1 ·X1 + u2 ·X2 + 1

2
∑2

i,j=1 hij(0, 0)uiu j ·N( p)+O(‖u‖3).

Here (gij) and (hij) denote the local representations of the first and the sec-
ond fundamental form with respect to the local parametrisation (U, F, V). The
symbol O(‖u‖k) denotes (as is conventional in analysis) a function ϕ with the
property that ϕ(u)/‖u‖k is bounded in a neighbourhood of (0, 0)�.

Proof Let us for now begin with an arbitrary local parametrisation
(U1, F1, V1) of S around p. We will repeatedly transform this parametrisation,
and step by step establish the desired properties.

(a) Let x0 ∈ U1 be the point for which F1(x0) = p. Set V2 := V1, U2 := U1−x0
and

F2 : U2 → V2 ∩ S,
F2(x) = F1(x+ x0).

Then (U2, F2, V2) is a local parametrisation of S around p with F2(0, 0) = p.
Satisfying condition (i) was easy.

(b) Now let Y1, Y2 ∈ R
2 such that

D(0,0)F2(Yj) = Xj, j = 1, 2.

Let A be the 2× 2 matrix with the columns Y1 and Y2, A = (Y1, Y2). Consid-
ering A as a linear map A : R

2 → R
2, we see that A is exactly the isomorphism

that maps the standard basis to the basis Y1, Y2, A(ej) = Yj.
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Set V3 := V2, U3 := A−1(U2) and F3 := F2 ◦A. Then (U3, F3, V3) is a local
parametrisation of S around p with F3(0) = p and

∂F3

∂ui
(0, 0) = D(0,0)F3(ei) = D(0,0)(F2 ◦A)(ei)

= (D(0,0)F2 ◦A)(ei) = D(0,0)F2(Yi) = Xi.

It follows that with condition (i) condition (ii) is also already satisfied, since

g(F3)

ij (0, 0) =
〈
∂F3

∂ui
(0, 0),

∂F3

∂u j
(0, 0)

〉
= 〈Xi, Xj〉 = δij.

(c) We consider the Taylor expansion of F3 around (0, 0) with a third-order
error term, denote the coordinates as (v1, v2) and obtain

F3(v
1, v2)− p = ∂F3

∂v1
(0, 0) · v1 + ∂F3

∂v2
(0, 0) · v2

+ 1
2

2∑
i,j=1

∂2F3

∂vi∂v j
(0, 0) · vi · v j +O(‖v‖3)

= v1 ·X1 + v2 ·X2 + 1
2

2∑
i,j=1

viv j
〈

∂2F3

∂vi∂v j
(0, 0), N( p)

〉
N( p)

+ 1
2

2∑
i,j,k=1

viv j
〈

∂2F3

∂vi∂v j
(0, 0), Xk

〉
Xk +O(‖v‖3).

We now want to reparametrise (one last time) in order to make the term∑2
i,j,k=1 viv j

〈
(∂2F/∂vi∂v j)(0, 0), Xk

〉
Xk vanish. For this purpose we consider

the map

ψ : U3 → R
2,

ψ(v1, v2) =

⎛⎜⎜⎜⎜⎝
v1 + 1

2
·

2∑
i,j=1

viv j
〈

∂2F3

∂vi∂v j
(0, 0), X1

〉
v2 + 1

2
·

2∑
i,j=1

viv j
〈

∂2F3

∂vi∂v j
(0, 0), X2

〉
⎞⎟⎟⎟⎟⎠ .

For this map we have that

ψ(0, 0)= (0, 0)�,

D(0,0)ψ =
(

1 0
0 1

)
.
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By the inverse function theorem there exist neighbourhoods U′3 and U of
(0, 0)�, U′3 ⊂ U3, such that ψ : U′3 → U is a diffeomorphism. By reducing
the size of V′3 ⊂ V3 and restricting F ′3 = F3|U′3 , we obtain another local

parametrisation
(
U′3, F ′3, V′3

)
of S around p. We set F := F ′3 ◦ ψ−1, V := V′3.

We can now show that (U, F, V) has properties (i)–(iv).
For (i), F(0, 0) = F ′3(ψ

−1(0, 0)) = F ′3(0, 0) = F3(0, 0) = p.
For (iv), with the abbreviation

uk := vk + 1
2

2∑
i,j=1

viv j
〈

∂2F3

∂vi∂v j
(0, 0), Xk

〉
,

we obtain

F(u1, u2)− p = F(ψ(v1, v2))− p

= F3(v
1, v2)− p

=
2∑

k=1

⎧⎨⎩vk + 1
2

2∑
i,j=1

viv j
〈

∂2F3

∂vi∂v j
(0, 0), Xk

〉⎫⎬⎭Xk

+ 1
2

2∑
i,j=1

viv j
〈

∂2F3

∂vi∂v j
(0, 0), N( p)

〉
N( p)+O(‖v‖3)

=
2∑

k=1

ukXk + 1
2

2∑
i,j=1

viv jh(F3)

ij (0, 0) ·N( p)+O(‖v‖3).

Here h(F3)

ij = 〈
(∂2F3/∂vi∂v j)N ◦ F3

〉
denotes the components of the second fun-

damental form with respect to the local parametrisation (U3, F3, V3). Because

of ψ(0, 0)= (0, 0)� and D(0,0)�ψ =
(

1 0
0 1

)
we also have that ψ−1(0, 0)= (0, 0)�

and that D(0,0)�(ψ−1) =
(

1 0
0 1

)
and hence

v j = u j +O(‖u‖2)

as well as

O(‖v‖3) = O(‖u‖3).
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It therefore follows that

F(u1, u2)− p =
2∑

k=1

ukXk+ 1
2

2∑
i,j=1

(uiu j+O(‖u‖3)) · h(F3)

ij (0, 0) ·N( p)+O(‖u‖3)

=
2∑

k=1

ukXk + 1
2

2∑
i,j=1

uiu jh(F3)

ij (0, 0) ·N( p)+O(‖u‖3). (3.7)

Differentiating (3.7) gives

hF
ij (0, 0) =

〈
∂2F

∂ui∂u j
(0, 0), N( p)

〉
=

〈
hF3

ij (0, 0) ·N( p), N( p)
〉
= h(F3)

ij (0, 0).

(3.8)

Substituting (3.8) into (3.7) gives (iv).
For (ii) and (iii), because of (iv) we have that

∂F
∂ui

(u) = Xi +
2∑

k=1

hik(0, 0)uk ·N( p)+O(‖u‖2).

Multiplying out gives

gij(u) =
〈

Xi +
2∑

k=1

hik(0, 0)uk ·N( p)+O(‖u‖2),

Xj +
2∑

l=1

hjl(0, 0)ul ·N( p)+O(‖u‖2)

〉

= 〈Xi, Xj〉 +
2∑

k=1

hik(0, 0)uk〈N( p), Xj〉

+
2∑

l=1

hjl(0, 0)ul〈Xi, N( p)〉 +O(‖u‖2)

= δij +O(‖u‖2),

as
〈
N( p), Xj

〉 = 〈Xi, N( p)〉 = 0. This proves (ii) and (iii).

Corollary 3.6.16 Every regular surface S can locally be given as a graph on
its affine tangent plane TpS+ p.
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Proof Let S ⊂ R
3 be a regular surface, p ∈ S. For simplicity we rotate and

translate the surface in R
3 in such a way that p = (0, 0, 0)� and that the tangent

plane TpS is spanned precisely by the first two unit vectors e1 and e2. By the
preceding theorem there exists a local parametrisation (U, F, V) of S and p of
the form

F(u1, u2) =
⎛⎝u1, u2,

1
2

2∑
i,j=1

hij(0, 0)uiu j

⎞⎠� +O(‖u‖3).

Let π : R
3 → TpS = R

2 × {0} ∼= R
2 be the orthogonal projection onto the

tangent plane.
As π ◦ F(u1, u2) = (u1, u2)� +O(‖u‖3) we have that

D(0,0)(π ◦ F) =
(

1 0
0 1

)
.

It follows that by the inverse function theorem the map π ◦ F can be inverted
on a possibly smaller neighbourhood of p, i.e. there exists a smooth map

ϕ : Ũ ⊂ TpS→ R
2

with
π ◦ F ◦ ϕ = Id.

Then F(ϕ(v1, v2)) = (
v1, v2, (F ◦ ϕ)3(v1, v2)

)�
, i.e. near p S is precisely the

graph of the third component of the function of F ◦ ϕ.

We can now begin to interpret the Gauss curvature geometrically. Disre-
garding terms of order 3, we can approximately present the regular surface S
near a point p ∈ S above the tangent plane TpS as the graph of the function
(u1, u2)� �→ 1

2
∑2

i,j=1 hij(0, 0)uiu j.

First case Let K( p) > 0. Then (hij(0, 0))ij is positive or negative definite and
hence S is approximated by a paraboloid.

p TpS+ p
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Second case Let K( p) < 0. Then (hij(0, 0))ij indefinite, but not degenerate.
Hence S is approximated by a hyperbolic paraboloid (or saddle surface)
near p.

p

TpS+ p

Third case p is parabolic. Then (hij(0, 0))ij is degenerate, but not 0. Near p
the surface S looks like the cylindrical surface over a parabola.

p

TpS+ p

Fourth case p is a planar point. Then (hij(0, 0)) = 0 for all i, j = 1, 2 and
hence the surface S agrees with its tangent plane up to terms of order 3.

Exercise 3.11 Let S ⊂ R
3 be a regular surface, p ∈ S. Show the following:

(a) If K( p) > 0, then a neighbourhood of p in S lies entirely on one side of the
affine tangent plane TpS+ p.

(b) If K( p) < 0, then every neighbourhood of p in S meets both sides of the affine
tangent plane.

What can be said in the case K( p) = 0?

We already know compact surfaces with positive Gauss curvature, e.g. S =
S2. The following theorem says that a regular surface S ⊂ R

3 with K≤ 0 cannot
be compact.
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Theorem 3.6.17 Let S ⊂ R
3 be a compact non-empty regular surface. Then

there is a point p ∈ S with K( p) > 0.

Proof As S is compact, we have that S is bounded and hence there exists
R > 0 such that

S ⊂ B(0, R) =
{

x ∈ R
3
∣∣∣ ‖x‖ ≤ R

}
.

We choose the minimal radius R0 which satisfies this, i.e.

R0 := inf
{

R
∣∣∣ S ⊂ B(0, R)

}
.

We have that S ⊂ B(0, R0). We first see that S ∩ S2(R0) �= ∅, where

S2(R0) = ∂B(0, R0) =
{

x ∈ R
3
∣∣∣‖x‖ = R0

}
.

If S and S2(R0) had no point in common, then by compactness of S and S2(R0)

ε := dist(S, S2(R0)) = min
{
‖x− y‖

∣∣∣ x ∈ S, y ∈ S2(R0)
}

would be strictly positive. But then S⊂B(0, R0− ε) would contradict minimal-
ity of R0.

S

S2(R0 − ε)
S2(R0)

Hence there exists p ∈ S ∩ S2(R0); S2(R0) also is a regular surface, being the
surface of the sphere of radius R0. We now argue that S and S2(R0) have the
same tangent plane at p:

TpS = TpS2(R0).

The tangent plane of S2(R0) at p is exactly the orthogonal complement of the
vector p. If the tangent planes were not the same, then TpS would not be the
orthogonal complement of p and there would be an X ∈ TpS with 〈X, p〉 �=
0. After possibly having exchanged X for −X, we can now assume that
〈X, p〉> 0.
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Let c : (−ε, ε) → S be a curve with c(0) = p and ċ(0) = X. The Taylor
expansion of c gives

c(t) = p+X · t +O(t2).

Hence ‖c(t)‖2=‖p‖2 + 2〈p, X〉t +O(t2)

=R2
0 + 2〈p, X〉t +O(t2).

Because of 〈p, X〉 > 0 we have that

‖c(t)‖2 − R2
0

t
= 2〈p, X〉 +O(t)

is positive for small t > 0. But this contradicts ‖c(t)‖ ≤ R0, which must be true
because of S ⊂ B(0, R0). We have therefore shown that TpS = TpS2(R0).

S

S2(R0)
p

TpS

We now look at normal sections of S and S2(R0) at the point p. Let E be a
plane spanned by N( p) and by a tangent vector from TpS = TpS2(R0). We see
that S ∩ E always lies within the circular line S2(R0) ∩ E and that it touches
the circular line at p. Hence the normal curvature in this direction satisfies
|κnor| ≥ 1/R0, see exercise 2.11.

p

E

S ∩ E
S2(R0) ∩ E

In particular, no normal curvature vanishes at the point p, hence the second
fundamental form at p is definite and K( p) > 0.

For the point p with positive Gauss curvature we took a point on S with max-
imal distance to the origin. In particular, we have shown that the difference
vector from the origin, i.e. the vector p itself, is perpendicular to TpS. This
part of the proof would also have worked for points with minimal distance.
Let us put this down as a corollary of the proof for later use.
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Corollary 3.6.18 Let S be a compact regular surface, let q ∈ R
3, let p ∈ S be a

point on S with minimal distance from q. Then q− p is perpendicular to TpS.

We will later generalise the concept of the first fundamental form and move
on to surfaces with Riemannian metrics. Those surfaces also have a Gauss
curvature. It will then be possible to find compact surfaces with K ≤ 0, even
K ≡ −1 is possible. Theorem 3.6.17 should be understood as follows: com-
pact surfaces with K≤ 0 do exist in an abstract sense that remains to be made
precise, but they cannot be embedded in R

3 without bending it somewhere to
such an extent that Gauss curvature becomes positive.

Exercise 3.12 Let S ⊂ R
3 be a compact non-empty regular surface.

(a) Show that the Gauss map S→ S2 is onto.
(b) Show that if the Gauss map is injective, then K ≥ 0.
(c) Improve (a) and show that the Gauss map restricted to S+ := {x ∈ S |K(x)≥ 0}

is onto.

3.7 Surface area and integration on surfaces

Before having a closer look at some special classes of surfaces, we want to
prepare ourselves by studying the integration of functions on surfaces and the
area of a surface in particular.

For this purpose let S⊂R
3 be a regular surface and (U, F, V) a local

parametrisation of S. We first only consider functions f : S → R that van-
ish everywhere outside V, i.e. f |S−V ≡ 0. Denoting the coordinates in U as
u1, u2 and the components of the first fundamental form as usual as gij, we
make the following definition.

Definition 3.7.1 A function f : S → R with f |S−V ≡ 0 is called (Lebesgue-)
integrable if the function

U→R,

(u1, u2)� �→ f (F(u1, u2)) ·
√

det(gij(u1, u2)),

is (Lebesgue-)integrable. The value of the integral is∫
S

f dA :=
∫

U
f (F(u1, u2))

√
det(gij(u1, u2)) du1du2.

We call the formal expression

dA =
√

det(gij) du1du2

the surface element.



3.7 S U R F A C E A R E A A N D I N T E G R A T I O N O N S U R F A C E S 127

We do not simply integrate the function f or f ◦ F, but multiply by the
factor

√
det(gij), which accounts for the distortion of the surface that is caused

by the parametrisation F. This makes the definition independent of the choice
of parametrisation.

Lemma 3.7.2 Let S ⊂ R
3 be a regular surface, let (U, F, V) and (Ũ, F̃, Ṽ) be

local parametrisations of S. Let f : S→ R be a function satisfying f |S−(V∩Ṽ)
≡ 0.

( f ◦ F) ·
√

det(gij) : U → R

is integrable if and only if

( f ◦ F̃) ·
√

det(g̃ij) : Ũ → R

is integrable, and in this case∫
U

( f ◦ F) ·
√

det(gij) du1du2 =
∫

Ũ
( f ◦ F̃) ·

√
det(g̃ij) dũ1dũ2.

Proof Let ϕ := F̃−1 ◦F be the parameter transformation. By (3.2) we have

(gij) = (Dϕ)� · (g̃ij ◦ ϕ) ·Dϕ,

hence

det(gij) = det(g̃ij ◦ ϕ) · (det(Dϕ))2 ,

and thus √
det(gij) =

√
det(g̃ij ◦ ϕ) · | det(Dϕ)|.

Let ( f ◦ F̃ )
√

det(g̃ij) be integrable. By the change of variable formula [18,
p. 593, theorem 4.7]

( f ◦ F̃ ◦ ϕ) ·
√

det(g̃ij ◦ ϕ) · | det(Dϕ)| = ( f ◦ F) ·
√

det(gij)

is integrable as well, and∫
Ũ

f (F̃(ũ1, ũ2))

√
det

(
g̃ij(ũ1, ũ2)

)
dũ1dũ2

=
∫

U
f (F(u1, u2))

√
det

(
gij(u1, u2)

)
du1du2.
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Example 3.7.3 If S = R
2 × {0} ⊂ R

3 is the x–y plane, then we choose the
Cartesian coordinates U = R

2, V = R
3, F(x, y) = (x, y, 0)�. Then (gij(x, y)) =(

1 0
0 1

)
and hence

dA = dx dy.

We obtain the original integral over R
2:

∫
S

f dA =
∫ ∞
−∞

∫ ∞
−∞

f (x, y) dx dy.

If one wants to integrate the function in polar coordinates r and ϕ, given by
the local parametrisation

F̃ : (0,∞)× (0, 2π)→ R
3,

F̃(r, ϕ) = (r · cos ϕ, r · sin ϕ, 0)�,

then by (3.1)

dA = rdrdϕ

and therefore ∫
S

f dA =
∫ ∞

0

∫ 2π

0
f (F̃(r, ϕ))dϕrdr.

It remains to think about what to do if the function to be integrated does not
have its support on one coordinate chart.

Definition 3.7.4 Let S ⊂ R
3 be a regular surface. A function f : S → R is

called integrable if f can be written as a finite sum

f = f1 + · · · + fk, (3.9)

where the fi : S→ R are integrable functions that vanish outside a coordinate
chart (which depends on i). In this case we set

∫
S

f dA :=
k∑

i=1

∫
S

fi dA.
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How do we know whether a function f can be written in the form (3.9)? Simply
writing the function as a finite sum f = f1 + · · · + fk, where each fi vanishes
outside a coordinate chart, and then checking whether the fi are integrable in
the sense of definition 3.7.1, is not sufficient, since the sum of non-integrable
functions may be integrable.

If, for example, S is the x–y plane, then we can take the parametrisation
via Cartesian coordinates, which has the pleasing property that it parametrises
the whole plane. So in this case V = R3, and the condition that fi must vanish
on S− V is satisfied trivially. We could write the zero function f ≡ 0, which is
certainly integrable, in a clumsy way as a sum f = f1 + f2, where f1 ≡ 1 and
f2 ≡ −1. Then f1 and f2 are not integrable, but f is.

To find a decomposition of the form (3.9) in which every fi is integrable
and vanishes outside of a coordinate chart for an integrable function f , one
can proceed as follows. Cover the entire surface with finitely many coor-
dinate charts (U1, F1, V1), . . . , (Uk, Fk, Vk), i.e. S⊂ ⋃k

i=1 Vk. This is always
possible; indeed, we will sketch an argument in chapter 6 which shows that
every regular surface can even be covered by only three coordinate charts, see
corollary 6.2.18.

For a subset A ⊂ R
3 let χA : R

3 → R be the characteristic function, i.e.

χA(x) =
{

1, if x ∈ A,
0, otherwise.

We now define

f1 := χV1 · f ,

f2 := χV2−V1 · f ,

...

fk := χVk−(V1∪···∪Vk−1) · f .

Then f = f1 + · · · + fk, and every fi vanishes outside of Vi.

Exercise 3.13 Show that all fi are integrable in the sense of definition 3.7.1,
if f is integrable in the sense of definition 3.7.4.

Exercise 3.14 Show that the value of the integral
∫

S f dA in definition 3.7.4
is independent of the choice of the decomposition f = f1 + · · · + fk.

The usual properties of the integral translate directly to the integral of
functions over surfaces, for example
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(1) if f , g : S→ R are integrable and α, β ∈ R, then αf + βg : S→ R is integrable
as well, and ∫

S
(αf + βg) dA = α

∫
S

f dA+ β

∫
S

g dA;

(2) if f , g : S→ R are integrable and f ≤ g, then∫
S

f dA ≤
∫

S
g dA.

Definition 3.7.5 A subset N ⊂ S of a regular surface is called a zero set if for
every local parametrisation (U, F, V) of S the set

F−1(V ∩N)

is a zero set in U ⊂ R
2.

Exercise 3.15 Let S ⊂ R
3 be a regular surface, let (Ui, Fi, Vi)i=1,...,∞ be local

parametrisations that cover S, i.e. S ⊂ ⋃∞
i=1 Vi. Show that a subset N ⊂ S is

already a zero set if the F−1
i (N) ⊂ Ui are zero sets.

Hint To show that for every other local parametrisation (U, F, V) the set
F−1(N) is a zero set in U ⊂ R

2, use that countable unions of zero sets are
again zero sets and that smooth maps map zero sets to zero sets.

Remark Suppose that S ⊂ R
3 is a regular surface, N ⊂ S a zero set and

f , g : S → R
3 are functions that agree on S − N. If f is integrable, then the

same is true for g and ∫
S

f dA =
∫

S
g dA.

Definition 3.7.6 Let S ⊂ R
3 be a regular surface. If the constant function

f ≡ 1 is integrable, then we call

A[S] :=
∫

S
dA

the area of S.

Example 3.7.7 On the x–y plane S = R
2 × {0} the integral∫

S
dA =

∫ ∞
−∞

∫ ∞
−∞

dx dy

diverges, i.e. the function f ≡ 1 is not integrable. Hence S does not have a
(finite) area.
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Example 3.7.8 Let I ⊂ R be an open interval, and c : I → R
2 a plane

parametrised regular curve. Let h > 0. We consider the generalised cylinder
over c:

S = {c(t)+ se3 | t ∈ I, 0 < s < h} .
We can cover S with a single parametrisation (U, F, V), where

U = I × (0, h) ⊂ R
2, V = R

3, F(t, s) = c(t)+ se3.

c

h

x–y plane

For the differential of F we have

D(t,s)F = (ċ(t), e3) .

It follows that
g11(t, s)=〈ċ(t), ċ(t)〉,
g12(t, s)= g21(t, s) = 〈ċ(t), e3〉 = 0,
g22(t, s)=〈e3, e3〉 = 1

and thus
dA = √

g11 · g22 − g12 · g21 dt ds = ‖ċ(t)‖dt ds.

It might be necessary to reduce the size of the interval I in order to make S
a regular surface, since c could, for example, intersect itself. For the area we
obtain

A[S] =
∫

I

∫ h

0
‖ċ(t)‖ds dt = h · L[c].

Example 3.7.9 We calculate the area of the sphere S = S2. We use polar
coordinates

U = (0, 2π)×
(
−π

2
,
π

2

)
, V = R

3 − {
(x, y, z)� | x ≥ 0, y = 0

}
,

F(ϕ, ϑ) = (cos(ϕ) cos(ϑ), sin(ϕ) cos(ϑ), sin(ϑ))�.

The part of S2 which is not covered by this parametrisation, which is N=S2 ∩
{(x, 0, z)�|x≥ 0}, is a zero set in S2 and can therefore be ignored for the
calculation of the area.
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We have

D(ϕ,ϑ)F =
⎛⎜⎝ −sin(ϕ) cos(ϑ) −cos(ϕ) sin(ϑ)

cos(ϕ) cos(ϑ) −sin(ϕ) sin(ϑ)

0 cos(ϑ)

⎞⎟⎠
and thus

g11 = cos2(ϑ), g12 = g21 = 0, g22 = 1.

The surface element is then

dA = √
g11g22 − g12g21 dϕdϑ = cos(ϑ) dϕdϑ .

For the area we obtain

A[S] = A[S−N]

=
∫ 2π

0

∫ π/2

−π/2
cos(ϑ) dϑ dϕ

= 2π

∫ π/2

−π/2
cos(ϑ) dϑ

= 4π .

Exercise 3.16 Let S ⊂ R
3 be a compact non-empty regular surface. Put

S+ := {x ∈ S |K(x) ≥ 0}. Prove that

∫
S+

K dA≥ 4π .

Hint Use exercise 3.12(c).

3.8 Some classes of surfaces

We now want to study some special classes of surfaces. These are the ruled
surfaces, which consist of straight lines, surfaces of revolution, which result
from a rotation of a plane curve around an axis, tubular surfaces, which are
defined by space curves, as well as minimal surfaces, which are important in
the theory of soap films.

3.8.1 Ruled
surfaces

Let I ⊂ R be an open interval and let c : I → R
3 be a parametrised space

curve. We now want to attach a straight line to each point of this curve, which
will give us a surface. For this purpose let v : I → R

3 be a smooth map with
v(t) �= (0, 0, 0)� for all t ∈ I. Let J ⊂ R be another open interval. We set
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F : I × J → R
3, F(t, s) = c(t)+ sv(t). (3.10)

c(t)

v(t)

To check whether this gives us a regular surface we find the differential of F:

D(t,s)F = (ċ(t)+ sv̇(t), v(t)).

If we require that v(t) and ċ(t) are linearly independent, then the matrix D(t,0)F
has full rank for a fixed t. Hence there exists an open neighbourhood of
(t, 0) in I × J such that (U, F, S) is a parametrisation of the regular surface
S = F(U).

Definition 3.8.1 A regular surface S⊂R
3 which can be covered by para-

metrisations of the form (3.10) is called a ruled surface.

Example 3.8.2 If c : I → R
3 is a plane parametrised curve that does not

intersect itself, c(t) = (c1(t), c2(t), 0) and v(t) = (0, 0, 1), then the corresponding
ruled surface

F(t, s) =
⎛⎜⎝ c1(t)

c2(t)

s

⎞⎟⎠
is the generalised cylinder over c. We can take U = I × R as the domain.
Compare example 3.7.8.

Example 3.8.3 Let us consider a plane parametrised curve c : I → R
3 that

does not intersect itself, c(t) = (c1(t), c2(t), 0). For a fixed point p ∈ R
3− (R2×

{0}) we set v(t) = p− c(t). Then

F : I × (−∞, 1)→ R
3, F(t, s) = (1− s)c(t)+ sp

is the generalised cone over c with apex p.

Example 3.8.4 The Möbius strip is a ruled surface as well. We consider

F : R× (−1, 1)→ R
3,
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F(t, s) =
⎛⎜⎝ cos(t)+ s · cos(t) cos(t/2)

sin(t)+ s · sin(t) cos(t/2)

s · sin(t/2)

⎞⎟⎠ .

The vector field v(t) = (cos(t) cos(t/2), sin(t) cos(t/2), sin(t/2))� rotates with
half the speed from (1, 0, 0)� to (−1, 0, 0)� while t runs through one period
of c(t) = (cos(t), sin(t), 0)�, e.g. [0, 2π ]. Of course, (1, 0, 0)� and (−1, 0, 0)�
generate the same straight line, thus the surface closes up.

Example 3.8.5 It may be surprising that the hyperboloid of revolution, also
called the one-sheeted hyperboloid or hyperboloid of one sheet,

S =
{
(x, y, z)� ∈ R

3
∣∣∣ 1+ z2 = x2 + y2

}
,

is a ruled surface.

However, it is easy to check that the ruled surface given by

c(t) = (cos(t), sin(t), 0)�,

v(t) = ċ(t)+ e3 = (−sin(t), cos(t), 1)�,

agrees with S. Alternatively, one could take ṽ(t) = ċ(t)− e3 instead of v(t), see
plate 1.

Example 3.8.6 The hyperbolic paraboloid or saddle surface

S =
{
(x, y, z)� ∈ R

3
∣∣∣ z = xy

}
is a ruled surface as well. This is the case since

c(t) = (t, 0, 0)�,

v(t) = 1√
1+ t2

(0, 1, t)�.

See plate 2.

We have seen that the property of being a ruled surface is not always obvious
for a given surface. How can we now show that a given surface is not a ruled
surface?

Here is a condition.

Theorem 3.8.7 Let S ⊂ R
3 be a ruled surface. Then the Gauss curvature

satisfies
K ≤ 0.
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Proof Let us remember that the Gauss curvature can be given in terms of
the determinants of the first and second fundamental forms,

K = det(hij)

det(gij)
.

As the first fundamental form is (gij) positive definite, we have in particular
that det(gij) > 0. We now need to show that det(hij) ≤ 0.

For this purpose let us consider a parametrisation of the form (3.10)

F(t, s) = c(t)+ sv(t).

In particular, it follows that

∂2F
(∂s)2

= 0.

For the component h22 of the second fundamental form we therefore obtain

h22 =
〈

∂2F
(∂s)2

, N
〉
= 0,

where N is the normal to the surface. It follows that

det(hij) = h11h22 − h12h21 = h11 · 0− h2
12 ≤ 0,

where we used the symmetry of the second fundamental form, h12 = h21.

Exercise 3.17 Let F(t, s) = c(t) + sv(t) be a parametrisation of a ruled
surface. Show that

K(F(t, s)) < 0

if and only if ċ(t), v(t) and v̇(t) are linearly independent.

Exercise 3.18 Show that for the generalised cylinder and the generalised
cone (examples 3.8.2 and 3.8.3) we have that

K ≡ 0.

Exercise 3.19 Show that for the Möbius strip, the hyperboloid of revolution
and the hyperbolic paraboloid (examples 3.8.4, 3.8.5 and 3.8.6) we have that

K < 0.
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3.8.2
Minimal
surfaces

Minimal surfaces are, as the name suggests, related to minimal areas. To
understand this better, we first need to investigate how area changes under
the deformation of a surface.

Theorem 3.8.8 (variation of area) Let S be a regular surface with finite area. Let
H be the mean curvature field. Let � : S → R

3 be a smooth normal field on S
with compact support.

Then for a sufficiently small |t| the set St := {p + t�( p)| p ∈ S} is a regular
surface with finite area and

d
dt

A[St]|t=0 = −2
∫

S
〈�, H 〉dA.

Proof Let us first consider the case that the support of � is fully contained
in a coordinate neighbourhood, i.e. for a local parametrisation (U, F, V) we
have that supp(�) ⊂ S ∩ V. The corresponding parametrisation for St is then
given by (U, Ft, V), where

Ft(u1, u2) = F(u1, u2)+ t ·�(F(u1, u2)).

As before the differential of Ft has maximal rank and is for reasons of
continuity injective for |t| sufficiently small. Hence Ft : U→R

3 is a local
parametrisation of the regular surface St.

Let N be the unit normal field on S ∩V given by the parametrisation. Then
� may be written as

� = f ·N
with a smooth function f : S→ R with support in S ∩ V. We calculate

∂Ft

∂ui
= ∂F

∂ui
+ t · ∂( f ◦ F)

∂ui
· (N ◦ F)+ t · ( f ◦ F) · ∂(N ◦ F)

∂ui
.

It follows for the first fundamental form of St that

gt,ij =
〈
∂Ft

∂ui
,
∂Ft

∂u j

〉

= gij + t
∂( f ◦ F)

∂u j

=0︷ ︸︸ ︷〈
∂F
∂ui

, N ◦ F
〉
+ t( f ◦ F)

=−hij︷ ︸︸ ︷〈
∂F
∂ui

,
∂(N ◦ F)

∂u j

〉

+ t
∂( f ◦ F)

∂ui

=0︷ ︸︸ ︷〈
N ◦ F,

∂F
∂u j

〉
+ t( f ◦ F)

=−hji︷ ︸︸ ︷〈
∂(N ◦ F)

∂ui
,

∂F
∂u j

〉
+O(t2)

= gij − 2t( f ◦ F)hij +O(t 2).
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Multiplying this matrix equation by the inverse matrix (g ij) of (gij), we obtain
after using the formula wk

i =
∑

j hijg jk for the coefficients of the Weingarten
map that

gt,ij =
∑

k

(δk
i − 2t( f ◦ F)wk

i +O(t2))gkj.

Equating the determinants of both sides of the equation and using the Taylor
expansion of the determinant det(Id + X) = 1 + Trace(X) + O(‖X‖2), see
lemma 5.1.6, we obtain

det(gt,ij) = det(gij) · det(Id− 2t( f ◦ F) · (wk
i )+O(t2))

= det(gij) · (1+ Trace(−2t( f ◦ F)(wk
i )+O(t2))+O(t2))

= det(gij) · (1− 4t( f ◦ F)(H ◦ F)+O(t2)).

Taking the square root and using the Taylor expansion of the root-function√
1+ x = 1+ 1

2 x+O(x2), we get

√
det(gt,ij) =

√
det(gij) ·

√
1− 4t( f ◦ F)(H ◦ F)+O(t2)

=
√

det(gij) · (1− 2t( f ◦ F)(H ◦ F)+O(t2)).

Integrating over S gives that

A[St] =
∫

S
(1− 2t fH +O(t2))dA

= A[S] − 2t
∫

S
〈�, H 〉dA+O(t2).

This proves the theorem for the case that the support of � is fully contained in
a coordinate neighbourhood. Let us now consider the general case. As the
support is compact by assumption, it can be covered by finitely many sys-
tems of local coordinates (U1, F1, V1), . . . , (Uk, Fk, Vk), supp(�) ⊂ ⋃k

j=1 Vj.
We choose smooth functions ρj : R

3 → R with 0 ≤ ρj ≤ 1, supp ρj ⊂ Vj

and
∑k

j=1 ρj ≡ 1 in a neighbourhood of supp(�). We set �j := ρj · �. Then∑k
j=1 �j = � and supp(�j) ⊂ Vj.
We now obtain a k-parameter family of surfaces

S(t1,...,tk) =
{

p+
k∑

j=1

tj�j( p)

∣∣∣ p ∈ S
}

.



138 C L A S S I C A L S U R F A C E T H E O R Y

By the statement proved above we know that

∂

∂tj
A[S(t1,...,tk)]

∣∣∣
(t1,...,tk)=(0,...,0)

= −2
∫

S

〈
�j, H

〉
dA.

By the chain rule it follows that

d
dt

A[St]|t=0 =
k∑

j=1

∂

∂tj
A[S(t1,...,tk)]

∣∣∣
(t1,...,tk)=(0,...,0)

= −2
k∑

j=1

∫
S

〈
�j, H

〉
dA

= −2
∫

S
〈�, H 〉 dA.

Corollary 3.8.9 Let S⊂R
3 be a regular surface with compact closure S̄. We

assume that S has minimal area among all regular surfaces S̃ with the same
boundary ∂S̃ = ∂S. Then the mean curvature field of S satisfies

H ≡ (0, 0, 0)�.

Proof Suppose that H ( p) �= (0, 0, 0)� for a point p∈ S. In a neighbourhood
of p we consider the smooth unit normal field N, for which 〈H ( p), N( p)〉 > 0.
For reasons of continuity 〈H , N〉 > 0 also in a neighbourhood V of p in S. We
choose a smooth function f : S→R with compact support supp f ⊂ V, f ≥ 0
and f ( p) > 0. Then

�(q) :=
{

f (q)N(q), q ∈ S ∩ V,
(0, 0, 0)�, q ∈ S− V

defines a smooth normal field on S with compact support. Hence∫
S
〈H , �〉 dA > 0.

On the other hand, the deformed surfaces St have the same boundary as S. As
S has minimal area among all such surfaces, we have

d
dt

A[St]
∣∣∣
t=0
= 0.

This contradicts the variation formula for area.
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If we want to find a surface S that is enclosed by a closed space curve c, ∂S = c,
and has minimal surface area, then this surface necessarily needs to satisfy
H ≡ (0, 0, 0)�. This leads to the following definition.

Definition 3.8.10 A regular surface S ⊂ R
3 is called a minimal surface if

H ≡ (0, 0, 0)�.

Note that minimal surfaces do not necessarily minimise area. H ≡ (0, 0, 0)� is
only a necessary condition.

The question of whether we can, for a given closed space curve c, find a sur-
face of minimum area with boundary c is known as the Plateau’s problem. The
answer is “yes” for a very general class of boundary curves, see, for example,
[1] for a discussion of this problem. We can physically create minimal surfaces
by dipping a closed wire (our closed space curve) into a soap solution. The
soap film created is then a minimal surface.

Remark If the surface S is orientable, then there exists a smooth unit nor-
mal field N on S and we can write the mean normal curvature field in the form
H = H ·N. The minimum area condition is then

H ≡ 0.

It is now time for some examples.

Example 3.8.11 The simplest and most uninteresting example is certainly
the affine plane S ⊂ R

3. For this surface we obviously have

K ≡ H ≡ 0.

Example 3.8.12 Enneper’s surface can be given by one single parametrisa-
tion:

F : R
2 → R

3,

F(u1, u2) =

⎛⎜⎜⎜⎜⎜⎝
u1 − (u1)3

3
+ u1(u2)2

u2 − (u2)3

3
+ u2(u1)2

(u1)2 − (u2)2

⎞⎟⎟⎟⎟⎟⎠ .

Plate 3 shows that Enneper’s surface intersects itself. To obtain a regular
surface, we need to restrict the domain of F in a suitable way.

Exercise 3.20 Show that Enneper’s surface is a minimal surface.
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Example 3.8.13 The catenoid is given by the parametrisation

F(u1, u2) =
⎛⎜⎝cosh(u1) cos(u2)

cosh(u1) sin(u2)

u1

⎞⎟⎠ .

The catenoid is an example of a surface of revolution, a class of surfaces that
we will consider after the minimal surfaces. Indeed, the catenoid is essentially
a single surface of revolution, which is at the same time a minimal surface, see
exercise 3.30.

Exercise 3.21 Show that the catenoid is a minimal surface.

Example 3.8.14 The helicoid is given by the parametrisation

F(u1, u2) =
⎛⎜⎝ u1 sin(u2)

−u1 cos(u2)

u2

⎞⎟⎠ .

Exercise 3.22 Show that the helicoid is a minimal surface and at the same
time a ruled surface.

Theorem 3.8.15 For every regular surface we have

K ≤ H2.

In particular, the Gauss curvature of minimal surfaces satisfies

K ≤ 0.

Proof Expressing the mean curvature and the Gauss curvature in terms of
the principal curvatures, H = (κ1 + κ2)/2, K = κ1κ2, we observe that

4 · (H2 −K) = (κ1 + κ2)
2 − 4 · κ1κ2 = (κ1 − κ2)

2 ≥ 0.

The claim follows.

Corollary 3.8.16 Compact minimal surfaces do not exist.

Proof By theorem 3.6.17 every compact surface S ⊂ R
3 has a point with

positive Gauss curvature. By theorem 3.8.15 it follows that S cannot be a
minimal surface.
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Exercise 3.23 Show that the mean curvature H, the Gauss curvature K and
the two principal curvatures κ = κ1 and κ = κ2 of a regular surface satisfy

κ2 − 2Hκ +K = 0

and thus

κ = H ±
√

H2 −K.

Exercise 3.24 Let S be the graph of the function ϕ : U → R, U ⊂ R
2

open. Show that S is minimal if and only if ϕ satisfies the following differential
equation:(

1+
(

∂ϕ

∂y

)2
)

∂2ϕ

∂x2
− 2

∂ϕ

∂x
∂ϕ

∂y
∂2ϕ

∂x∂y
+

(
1+

(
∂ϕ

∂x

)2
)

∂2ϕ

∂y2
= 0.

Exercise 3.25 Let S be the graph of the function ϕ : U → R, U ⊂ R
2 open.

Derive a formula for the Gauss curvature of S and show that the Gauss curva-
ture is positive if and only if the Hessian of ϕ is definite while K is negative if
and only if the Hessian is indefinite and non-degenerate.

Exercise 3.26 Show that the graph of the function ϕ : (−π/2, π/2) ×
(−π/2, π/2) → R, ϕ(x, y) = ln(cos( y)) − ln(cos(x)), called Scherk’s minimal
surface, is a minimal surface. See plate 4.

Exercise 3.27 The rescaled catenoid is given by the parametrisation

F(u1, u2) =
⎛⎜⎝R · cosh(u1/R) cos(u2)

R · cosh(u1/R) sin(u2)

u1

⎞⎟⎠ .

(a) Show that the rescaled catenoid is a minimal surface for all R > 0.

Hint Use the results of exercise 3.21 instead of computing the mean curva-
ture from scratch.

(b) Calculate the height h for 0 < R < 1, at which the (x–y) plane translated up by
h along the z-axis intersects the rescaled catenoid such that the resulting circle
has radius 1.

(c) Show that this height is bounded above.

Statement (c) can be illustrated experimentally. If we hold two wire circles of
radius 1 parallel to the x–y plane, one at a height h above, the other one at a
height−h below, such that the centre of one circle lies above that of the other,
then we can, if h is not too large, fit a rescaled catenoid as a soap film to those
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wires. If we now carefully pull the two circles away from each other, i.e. if we
increase h, then the soap film will burst at the latest when the above postulated
maximal height is reached.

Exercise 3.28 Let Sα be given by

Fα(u1, u2) =
⎛⎜⎝sin(α) cosh(u1) cos(u2)+ cos(α) sinh(u1) sin(u2)

sin(α) cosh(u1) sin(u2)− cos(α) sinh(u1) cos(u2)

sin(α)u1 + cos(α)u2

⎞⎟⎠ .

Show that Sα is a minimal surface for all α ∈ R, and that Sπ/2 is the catenoid
while S0 is the helicoid.

The surfaces Sα are therefore deformations of the helicoid into the catenoid.
This is illustrated in plate 5.

We will conclude this subsection about minimal surfaces with a slightly
more involved exercise.

Exercise 3.29 Let c : I → R
3 be a space curve parametrised by arc-length,

let v : I → R
3 be smooth with ‖v‖ ≡ 1. We assume that v(t) is perpendicular to

ċ(t) for all t ∈ I. Show that the ruled surface generated by c and v is a minimal
surface if and only if

(a) it is contained in a plane, or
(b) there exist ω > 0 and A ∈ [−1, 1], such that after an application of a Euclidean

motion

c(t) = A
ω

⎛⎜⎝ sin(ωt)

−cos(ωt)

0

⎞⎟⎠+√
1−A2

⎛⎝0
0
t

⎞⎠ ,

v(t)=
⎛⎜⎝ sin(ωt)

−cos(ωt)

0

⎞⎟⎠ .
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If A= 0, then c is a straight line and we are dealing with the helicoid. If
|A| = 1, then c is a circular line, and the surface is the x–y plane. For other
A, curve c is a helix. As A increases from 0 to 1, the helix is deformed into
the plane, and it remains a minimal ruled surface in the whole process of the
deformation.

3.8.3
Surfaces of
revolution

Surfaces of revolution are the result of rotating a plane curve that lies, in
the x–z plane, say, around the z-axis. We can imagine the x–y plane as a
“potter’s wheel”. If the afore-mentioned plane curve is given by the parametri-
sation t �→ (r(t), t)�, t ∈ I, then we obtain a local parametrisation of the
corresponding surface of revolution by

F(t, ϕ) =
⎛⎜⎝ r(t) cos(ϕ)

r(t) sin(ϕ)

t

⎞⎟⎠ , t ∈ I, ϕ ∈ (ϕ0, ϕ0 + 2π).

Choosing two values of ϕ0, e.g. ϕ0= 0 and ϕ0=π , we obtain two local
parametrisations that cover the entire surface of revolution.

We calculate the first fundamental form:

∂F
∂t

(t, ϕ) =
⎛⎜⎝ ṙ(t) cos(ϕ)

ṙ(t) sin(ϕ)

1

⎞⎟⎠ ,
∂F
∂ϕ

(t, ϕ) =
⎛⎜⎝ −r(t) sin(ϕ)

r(t) cos(ϕ)

0

⎞⎟⎠ ,

hence

g11 = 1+ ṙ(t)2,

g12 = g21 = 0,

g22 = r(t)2.

For the surface element we obtain

dA = r(t)
√

1+ ṙ(t)2 dt dϕ.

For the calculation of the second fundamental form we need a unit normal
field. We choose the inner unit normal field

N(F(t, ϕ)) = 1√
1+ ṙ(t)2

⎛⎜⎝ cos(ϕ)

sin(ϕ)

−ṙ(t)

⎞⎟⎠ .

Further,

∂2F
∂t2

(t, ϕ) =
⎛⎜⎝ r̈(t) cos(ϕ)

r̈(t) sin(ϕ)

0

⎞⎟⎠ ,
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∂2F
∂t∂ϕ

(t, ϕ) =
⎛⎜⎝ −ṙ(t) sin(ϕ)

ṙ(t) cos(ϕ)

0

⎞⎟⎠ ,

∂2F
∂ϕ2

(t, ϕ) =
⎛⎜⎝ −r(t) cos(ϕ)

−r(t) sin(ϕ)

0

⎞⎟⎠ .

The second fundamental form is therefore

h11 = r̈(t)√
1+ ṙ(t)2

,

h12 = h21 = 0,

h22 = −r(t)√
1+ ṙ(t)2

.

From the first and second fundamental form we obtain the Weingarten map

W = 1√
1+ ṙ(t)2

⎛⎜⎜⎝
r̈(t)

1+ ṙ(t)2
0

0 − 1
r(t)

⎞⎟⎟⎠ .

Conveniently the Weingarten map w.r.t. the coordinates t and ϕ is in diagonal
form already, so we can therefore read off the principal curvatures directly:

κ1 = r̈(t)
(1+ ṙ(t)2)3/2

, κ2 = − 1

r(t)
√

1+ ṙ(t)2
.

We also obtain Gauss curvature and mean curvature immediately:

K = − r̈(t)
r(t)(1+ ṙ(t)2)2

,

H = 1
2

r(t)r̈(t)− 1− ṙ(t)2

r(t)(1+ ṙ(t)2)3/2
.

Example 3.8.17 The hyperboloid of revolution S = {(x, y, z)� ∈ R
3| z =

x2 + y2} is a surface of revolution with function r(t) = √t, t > 0. Application
of the formulae derived above gives:

K = 4
(1+ 4t)2

, H = 2+ 4t
(1+ 4t)3/2

.
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We will come back to surfaces of revolution in the next chapter in the context
of geodesics, see theorem 4.5.13.

Exercise 3.30 A surface of revolution with r(t) = c1 cosh((t + c2)/c1),
c1 > 0, c2 ∈ R, is a catenoid, see example 3.8.13 and exercise 3.27. Show that a
surface of revolution is a minimal surface if and only if it is a catenoid.

Exercise 3.31 Let S be the surface of revolution of the tractrix, see example
2.1.5. A parametrisation is given by

F : (0, π/2)× (ϕ0, ϕ0 + 2π)→ R
3,

F(t, ϕ) =
⎛⎜⎝ sin(t) sin(ϕ)

sin(t) cos(ϕ)

cos(t)+ ln(tan(t/2))

⎞⎟⎠ .

Show that the surface has constant Gauss curvature K ≡ −1. Because of this
property it is somewhat analogous to the sphere, which has constant Gauss
curvature K ≡ 1, and is therefore called a pseudo-sphere. See plate 6.

3.8.4
Tubular
surfaces

We have so far always considered curves as one-dimensional objects. If we
model a curve in three-dimensional space, e.g. using wire, then this wire has
positive thickness 2r > 0. The surface of this wire forms a tubular surface.
We will now analyse the geometry of this tubular surface.

Let c : I → R
3 be a curve parametrised by arc-length that has non-vanishing

curvature, κ(t) �= 0 for all t ∈ I. Then the torsion τ and the Frenet dreibein
(ċ, n, b) are defined. Let r > 0. We consider

F : I × R→ R
3,

F(t, ϕ) = c(t)+ r · (cos(ϕ) · n(t)+ sin(ϕ) · b(t)).

To check whether this gives us a parametrisation of a regular surface, we cal-
culate the partial derivatives of F:

∂F
∂t

(t, ϕ) = ċ(t)+ r · (cos(ϕ) · ṅ(t)+ sin(ϕ) · ḃ(t))

= ċ(t)+ r(cos(ϕ)(−κ(t)ċ(t)+ τ(t)b(t))+ sin(ϕ)(−τ(t)n(t)))

= (1− r cos(ϕ)κ(t))ċ(t)− r sin(ϕ)τ (t)n(t)+ r cos(ϕ)τ (t)b(t),

∂F
∂ϕ

(t, ϕ) = r(−sin(ϕ)n(t)+ cos(ϕ)b(t)).
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We used the Frenet formulae (proposition 2.3.7). For the first fundamental
form we obtain

g11(t, ϕ) = (1− r cos(ϕ)κ(t))2 + r2τ(t)2,

g12(t, ϕ) = g21(t, ϕ) = r2τ(t),

g22(t, ϕ) = r2.

The determinant of the matrix gij is therefore r2(1 − r cos(ϕ)κ(t))2. If r is so
small that we have r < 1/κ(t) for all t ∈ I, then this determinant is never equal
to 0, and F is a parametrisation of a regular surface after a restriction of the
domain. For the surface element we obtain

dA = r(1− r cos(ϕ)κ(t))dt dϕ

and for the inverse matrix of the first fundamental form

(
g ij(t, ϕ)

)
ij
=

⎛⎜⎜⎜⎝
1

(1− r cos(ϕ)κ(t))2
− τ(t)

(1− r cos(ϕ)κ(t))2

− τ(t)
(1− r cos(ϕ)κ(t))2

1
r2
+ τ(t)2

(1− r cos(ϕ)κ(t))2

⎞⎟⎟⎟⎠ .

The unit normal field of F is then

N = −cos(ϕ) · n(t)− sin(ϕ) · b(t).

To find the second fundamental form, we find the second partial derivatives
of F, again using the Frenet formulae:

∂2F
∂t2

(t, ϕ) = −r cos(ϕ)κ̇(t)ċ(t)+ (1− r cos(ϕ)κ(t))c̈(t)− r sin(ϕ)τ̇ (t)n(t)

− r sin(ϕ)τ (t)ṅ(t)+ r cos(ϕ)τ̇ (t)b(t)+ r cos(ϕ)τ (t)ḃ(t)

= r(−cos(ϕ)κ̇(t)+ sin(ϕ)τ (t)κ(t))ċ(t)

+ [κ(t)(1− r cos(ϕ)κ(t))− r sin(ϕ)τ̇ (t)− r cos(ϕ)τ (t)2]n(t)

+ r(−sin(ϕ)τ (t)2 + cos(ϕ)τ̇ (t))b(t),

∂2F
∂t∂ϕ

(t, ϕ) = r sin(ϕ)κ(t)ċ(t)− r cos(ϕ)τ (t)n(t)− r sin(ϕ)τ (t)b(t),

∂2F
∂ϕ2

(t, ϕ) = −r(cos(ϕ)n(t)+ sin(ϕ)b(t)).
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By (3.4) the second fundamental form is

h11(t, ϕ) =
〈∂2F

∂t2
(t, ϕ), N(t, ϕ)

〉
=

(
κ(t)(1− r cos(ϕ)κ(t))− r sin(ϕ)τ̇ (t)− r cos(ϕ)τ (t)2

)
(−cos(ϕ))

+ (−sin(ϕ)τ (t)2 + cos(ϕ)τ̇ (t))(−sin(ϕ))

= rτ(t)2 − cos(ϕ)κ(t)+ r cos(ϕ)2κ(t)2,

h12(t, ϕ) = r cos(ϕ)2τ(t)+ r sin(ϕ)2τ(t)

= rτ(t),

h22(t, ϕ) = r.

From (3.5) it follows that the matrix of the Weingarten map is

(
w j

i (t, ϕ)
)

ij
= (hik(t, ϕ)))(g kj(t, ϕ)))

=
(

rτ(t)2 − cos(ϕ)κ(t)+ r cos(ϕ)2κ(t)2 rτ(t)

rτ(t) r

)
•

•

⎛⎜⎜⎝
1

(1− r cos(ϕ)κ(t))2
− τ(t)

(1− r cos(ϕ)κ(t))2

− τ(t)
(1− r cos(ϕ)κ(t))2

1
r2
+ τ(t)2

(1− r cos(ϕ)κ(t))2

⎞⎟⎟⎠

=

⎛⎜⎜⎝−
κ(t) cos(ϕ)

1− r cos(ϕ)κ(t)
∗

0
1
r

⎞⎟⎟⎠ .

As this matrix is triangular, we can read off the eigenvalues and obtain the
principal curvatures:

κ1 = −κ(t) cos(ϕ)

1− r cos(ϕ)κ(t)
,

κ2 = 1
r

.

It follows that the Gauss curvature is

K = −1
r

κ(t) cos(ϕ)

1− r cos(ϕ)κ(t)
,
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and the mean curvature is

H = 1− 2r cos(ϕ)κ(t)
2r(1− r cos(ϕ)κ(t))

.

Example 3.8.18 We consider the torus, which is defined as the tubular
surface around a circular line

c(t) = (cos(t), sin(t), 0)�

with thickness 2r < 2 (plate 7). We then have

κ(t) ≡ 1, τ(t) ≡ 0

and thus

K(t, ϕ) = −1
r

cos(ϕ)

1− r cos(ϕ)
, H(t, ϕ) = cos(ϕ)− r/2

1− r cos(ϕ)
.

Exercise 3.32 Let c be a closed space curve parametrised by arc-length.
Show that for every tubular surface S around c we have∫

S
K dA = 0.

We will understand this fact better against the background of the Gauss–
Bonnet theorem.

Exercise 3.33 Let c : I → R
3 be a closed space curve. Using the results of

this section and exercise 3.16 give a new simple proof of the total curvature
estimate in Fenchel’s theorem 2.3.19:

κ(c) ≥ 2π .



Plate 1. Hyperboloid of revolution

Plate 2. Hyperbolic paraboloid



Plate 3. Enneper’s surface

Plate 4. Scherk’s surface



Plate 5. Deformation of helicoid into catenoid



Plate 6. Pseudo-sphere

Plate 7. Torus of revolution



4 The inner geometry of surfaces

We use the notion of an isometry to make the concept of inner geometry of sur-
faces more precise. Vector fields and their first and second covariant derivatives
are introduced. The Theorema Egregrium (‘remarkable theorem’) expresses the
Gauss curvature in terms of the curvature tensor and shows the Gauss curva-
ture belongs to the inner geometry of the surface. General Riemann metrics
generalise the first fundamental form. The problem of the shortest way from
one point to another leads to the concept of the geodesic and the Riemann
exponential mapping. In this way it is particularly straightforward to obtain
coordinates that are convenient in geometry, like Riemann normal coordinates,
geodesic polar coordinates and Fermi coordinates. Jacobi fields illustrate the
inner geometric importance of the Gauss curvature. Spherical and hyperbolic
geometry are investigated in more detail. Their trigonometry is derived and
applications to cartography are discussed. The hyperbolic plane satisfies all
axioms of Euclidean geometry except for the parallel axiom.

4.1 Isometries

When we consider surfaces in R
3 we tend to pay special attention to their rel-

ative geometries, i.e. to how the surface is embedded into the surrounding
space. We quasi look at them from outside. One could also try to imagine
oneself in the position of a (two-dimensional) inhabitant of the surface, and
examine those properties of the surface that can be observed by a being who
cannot peek out of the surface. For instance, viewed from outside, the cylin-
drical surface and the plane seem very different. But we will see that it would
not be easy for our two-dimensional being to decide whether it lives on a cylin-
drical surface or on a plane. If we took small pieces of plane and cylinder, it
would be impossible to make a decision by means of measurements within the
surface. By contrast, it would be relatively easy to distinguish between a piece
of a sphere and a piece of a plane.

We will now start to say more precisely which quantities can be observed
by an inhabitant of the plane.

149
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Definition 4.1.1 Let S1 and S2 be regular surfaces in R
3. A smooth map

f : S1 → S2 is a local isometry, if for every point p ∈ S1 the differential

dpf : TpS1 → Tf ( p)S2

is a linear isometry regarding the first fundamental form, i.e.〈
dpf (X), dpf (Y)

〉 = 〈X, Y〉

for all X, Y ∈ TpS1.

Exercise 4.1 Let S1 = R
2 × {0} be the x–y plane, and S2 = S1 × R the

cylindrical surface. Show that the map

f : S1 → S2, f (x, y, 0) = (cos(x), sin(x), y)�

is a local isometry.

Exercise 4.2 Let S1 = R
2 × {0} be the x–y plane, and S2 = {(ξ , η, ζ )� | ξ2 +

η2 = 1
3ζ 2, ζ > 0} the conical surface. Show that the map

f : S1 → S2, f (x, y, 0) = 1

2
√

x2 + y2

(
x2 − y2, 2xy,

√
3(x2 + y2)

)�
is a local isometry.

Everything which can be “measured” within the surface, e.g. the lengths of
curves which lie on the surface or the angle between two tangent vectors,
depends on the first fundamental form. Thus, if such a local isometry f exists,
then the angle between the two vectors in the image is the same as the one
between the two original tangent vectors, for example. “Small” open subsets
U ⊂ S1 cannot be distinguished from their isometric images f (U) ⊂ S2 by
means of such measurements. Because of this we call geometric quantities
which do not change under local isometries quantities of the inner geometry.

What it exactly means when a geometric quantity does not change under
local isometries depends on the type of the mathematical object. If the geo-
metric quantity is a function FS : S→ R in the plane, e.g. the Gauss curvature
or the mean curvature, then this means that every local isometry f : S1 → S2
satisfies

FS1 = FS2 ◦ f .

Example 4.1.2 The mean curvature H is not a quantity of the inner
geometry, since in the plane Hplane≡ 0, whereas in the cylindrical
surface Hcylinder≡ 1

2 . Since plane and cylinder are locally isometric,
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Hcylinder=Hplane ◦ f would have to apply if the mean curvature was a quantity
of the inner geometry.

Since the mean curvature is not a quantity of the inner geometry, the principal
curvatures, from which the mean curvature is calculated, cannot be quantities
of the inner geometry either. We will see later that the Gauss curvature by
contrast is a quantity of the inner geometry, although it is also calculated from
the principal curvatures.

Remark Since the differential of a local isometry in particular always has
full rank, a local isometry is always a local diffeomorphism by the inverse map-
ping theorem. However, in general it is not a global diffeomorphism, i.e. not
bijective, as the example of the plane and cylinder has already shown.

Exercise 4.3 Let f : S1 → S2 be a local isometry. Let (U, F, V) be a local
parametrisation of S1. Without loss of generality assume that V ∩ S1 ⊂ S1 is
so small that f |V∩S1 : V ∩ S1 → f (V ∩ S1) is a diffeomorphism. Then f ◦ F is a
local parametrisation of S2.

Show that the coefficient functions of the matrix representations gij : U →
R of S1 with respect to F and of S2 with respect to f ◦ F agree.

Definition 4.1.3 A local isometry f : S1 → S2 which is in addition bijective,
is called an isometry. If there exists such an isometry f : S1 → S2, then the
surfaces S1 and S2 are said to be isometric. The surfaces S1 and S2 are called
locally isometric if for every point p ∈ S1 there exists an open neighbourhood
U1 ⊂ S1 of p, an open subset U2 ⊂ S2 and an isometry f : U1 → U2 and
conversely for every point q ∈ S2 an open neighbourhood U2 ⊂ S2 of q, an
open subset U1 ⊂ S1 and an isometry f : U2 → U1.

Exercise 4.4 Show that if f : S1 → S2 is an isometry, then f−1 : S2 → S1 is
also an isometry.

Exercise 4.5 Show that if there exists a surjective local isometry f : S1 →
S2, then S1 and S2 are locally isometric. Is this also true if f is not surjective?

For example the cylinder and the plane are locally isometric. But they are
not isometric, since they are not even diffeomorphic. The relations “isomet-
ric” and “locally isometric” are obviously equivalence relations on the set of
regular surfaces.

Exercise 4.6 Let F : R
3 → R

3 be a Euclidean motion, i.e. F(x) = Ax + b,
where A ∈ O(3) is an orthogonal map and b ∈ R

3 the translational component.
Let S ⊂ R

3 be a regular surface. Show that f := F|S : S→ F(S) is an isometry.
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Exercise 4.7 Let E1 and E2 ⊂ R
3 be affine planes. Show that E1 and E2 are

isometric.

4.2 Vector fields and the covariant derivative

Definition 4.2.1 Let S ⊂ R
3 be a regular surface. A vector field on S is a map

v : S→ R
3, such that v( p) ∈ TpS for all p ∈ S.

A vector field assigns each point on the surface a vector, which at that point
is tangential to the surface. We also talk about continuous, differentiable,
smooth, . . . vector fields, if map v has the corresponding property.

Example 4.2.2 Let f : S → R be a smooth function. Since the first funda-
mental form is non-degenerate, there exists, for a fixed point p, exactly one
vector v( p) ∈ TpS with the property

dpf (X) = I(v( p), X)

for all X ∈ TpS. In this way the gradient vector field v =: grad f is defined. We
will see soon that the gradient vector field is a smooth vector field.

The differentiability of a vector field is best verified using a local parametri-
sation. Let (U, F, V) be a local parametrisation of the regular surface S. Then
for every point p ∈ V the vectors (∂F/∂u1)(F−1( p)) and (∂F/∂u2)(F−1( p))

form a basis of TpS. Hence, a vector field v over S is for all p ∈ V uniquely
representable in the following form:

v( p) =
2∑

j=1

ξ j( p)
∂F
∂u j

(F−1( p))

Since the basis fields (∂F/∂u j)(F−1( p)) are smooth, we have that v on V ⊂ S is
continuous, differentiable, smooth, etc., if and only if the coefficient functions

ξ j : V → R

have the corresponding properties.

Example 4.2.3 Let us check that the gradient vector field of a smooth
function f : S → R is smooth. For this purpose let (U, F, V) be a local
parametrisation. Then f̃ := f ◦ F : U → R is also a smooth function. We need
to find the coefficient functions of the gradient vector field with respect to the
basis given by the parametrisation, i.e. the functions ξ j in the representation
grad f =∑

j=1 ξ j( p)(∂F/∂u1). We calculate
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∂ f̃
∂uk

(
F−1( p)

)
= dpf

(
∂F
∂uk

(
F−1( p)

))
= I

(
grad f ( p),

∂F
∂uk

(
F−1( p)

))

= I
( 2∑

j=1

ξ j( p)
∂F
∂u j

(
F−1( p)

)
,

∂F
∂uk

(
F−1( p)

))

=
2∑

j=1

ξ j( p)gjk

(
F−1( p)

)
.

It follows that

ξ j ◦ F =
2∑

k=1

g jk ∂ f̃
∂uk

.

Thus the functions ξ j are smooth, i.e. grad f is a smooth vector field.
The gradient of a smooth map is closely connected to the directional

derivatives of the map.

Definition 4.2.4 Let S be a regular surface, p ∈ S a point, Xp ∈ TpS a tangent
vector and f : S→ R a smooth map. Then

∂Xpf := dpf (Xp) = I(grad f ( p), Xp) ∈ R

is called the directional derivative of f in the direction Xp. If X is a vector
field on S, then the function

∂Xf : S→ R, ∂Xf ( p) := ∂X( p)f

is the directional derivative of f in direction of the vector field X.

Exercise 4.8 Let S = S1 × R ⊂ R
3 be the cylindrical surface with the

vector fields X(x, y, z) = (−y, x, 0)� and Y(x, y, z) = (0, 0, 1)�. Find the direc-
tional derivatives in the directions X and Y for the functions f1(x, y, z) = x,
f2(x, y, z) = y and f3(x, y, z) = z on S.

Exercise 4.9 Let S be a regular surface and X and Y two smooth vector
fields on S. Show that there exists exactly one vector field Z on S that satisfies

∂X(∂Yf )− ∂Y(∂Xf ) = ∂Zf

for all smooth maps f : S→ R .
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Further show that if X and Y are, with respect to a local parametrisation
(U, F, V), given by

X =
2∑

i=1

ξi
∂F
∂ui

,

Y =
2∑

i=1

ηi
∂F
∂ui

,

then the following relation holds:

Z =
2∑

i,j=1

(
ξi

∂ηj

∂ui
− ηi

∂ξj

∂ui

)
∂F
∂u j

.

Definition 4.2.5 The vector field

Z =: [X, Y]

is called Lie bracket of X and Y.

The vector field [X, Y] is therefore characterised by

∂X(∂Yf )− ∂Y(∂Xf ) = ∂[X,Y] f

for all f .
The formula for [X, Y] w.r.t. a local parametrisation from the above exer-

cise also shows that if X and Y are coordinate fields, i.e. X = ∂F/∂ui and
Y = ∂F/∂u j, then the Lie bracket vanishes:[

∂F
∂ui

,
∂F
∂u j

]
= 0.

This is nothing other than Schwarz’s theorem from analysis [18, p. 372,
theorem 1.1].

For instance, if one wants to study the velocity field of a curve which lies
on a plane, then the concept of vector fields used up to now is not suitable
for the following two reasons. Firstly, the velocity field is not defined on the
whole surface, but only along the curve. Secondly, the curve may intersect
itself, leading to the problem that the velocity vector has two different values
at this point of intersection. Considered as a vector field on the surface it would
not be uniquely determined at such points. Hence we introduce the following
definition.
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Definition 4.2.6 Let S ⊂ R
3 be a regular surface, and let c : I→ S be a

parametrised curve. A vector field on S along c is a map v : I → R
3, such

that v(t) ∈ Tc(t)S for all t ∈ I.

Example 4.2.7 The velocity field v(t) = ċ(t) is such a vector field along c.

Example 4.2.8 Let S be a ruled surface given by the parametrisation
F(t, s) = c(t)+ sv(t) as in (3.10). Then v is a vector field on S along the curve c.

Now we need a useful concept of the derivative of such vector fields. If one
naively differentiates a differentiable vector field v on S along c, then one
obtains a map v̇ : I → R

3. The problem now is that v̇ is generally not tangential
to the surface. As often in mathematics, we solve the problem by imposing the
desired property. We replace v̇ by the projection of v̇ on the tangential plane
at the corresponding point of the curve.

Definition 4.2.9 Let S⊂R
3 be a regular surface, let c : I→ S be a

parametrised curve, and let v : I→R
3 be a differentiable vector field on S

along c. For every point p ∈ S, let �p : R3→TpS be the orthogonal projection,
i.e. if N( p) is one of the two unit normal vectors on S at the point p, then

�p(X) = X − 〈X, N( p)〉N( p).

Then
∇
dt

v(t) := �c(t) (v̇(t)) ,

t ∈ I, is called the covariant derivative of v.

Hence, (∇/dt)v is also a vector field on S along c.

Example 4.2.10 Let S = R
2 × {0} be the x–y plane and c a parametrised

plane curve, c(t) = (c1(t), c2(t), 0)�. A vector field v on S along c is then of the
form v(t) = (v1(t), v2(t), 0)�. It follows that

∇
dt

v(t) = �c(t) (v̇(t))

= �c(t)

(
(v̇1(t), v̇2(t), 0)�

)
= (v̇1(t), v̇2(t), 0)�

= v̇(t).

Thus the usual derivative and the covariant derivative agree in the plane.
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Example 4.2.11 Let S= S2 be the sphere. We calculate the covariant deriva-
tive of the velocity field of the curve

c : R→ S2,

c(t) = (cos(t), sin(t), 0)�.

The curve c passes through the equator of S2, i.e. the intersection of S2 with
the x–y plane. The usual derivative of c is ċ(t) = (−sin(t), cos(t), 0)� and

c̈(t) = (−cos(t),−sin(t), 0)� = −c(t).

We observe that for every t ∈ R the vector c̈(t) is perpendicular to Tc(t)S2. It
follows that ∇

dt
ċ(t) ≡ 0.

Exercise 4.10 Let S = S2 be the sphere and

c : R→ S, c(t) = (cos(t) cos(θ), sin(t) cos(θ), sin(θ))�,

with θ ∈ (−π/2, π/2) fixed. The curve c describes a circle of latitude. Show
that the covariant derivative of ċ vanishes if and only if θ = 0.

The following calculation rules for covariant derivatives result directly from
the definition.

Lemma 4.2.12 Let S be a regular surface, let c : I → S be a parametrised
curve, let f : I → R be a differentiable function and let ϕ : J → I be a change
of parametrisation of c. Further let v and w be differentiable vector fields on S
along c. Then v+ w and fv are also differentiable vector fields on S along c and
we have:

(a) additivity:
∇
dt

(v+ w)(t) = ∇
dt

v(t)+ ∇
dt

w(t);

(b) product rule I:
∇
dt

(fv)(t) = ḟ (t)v(t)+ f (t)
∇
dt

v(t);

(c) product rule II:

d
dt

I(v(t), w(t)) = I
(∇

dt
v(t), w(t)

)
+ I

(
v(t),

∇
dt

w(t)
)

;
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(d) change of parametrisation:

∇
dt

(v◦ϕ) = ϕ̇ ·
((∇

dt
v
)
◦ ϕ

)
.

One can also find the covariant derivative using local parametrisations. For
this purpose we express for a local parametrisation (U, F, V) of S the vec-
tors (∂2F/∂ui∂u j)(u) ∈ R

3 in terms of the basis (∂F/∂u1)(u), (∂F/∂u2)(u) and
N(F(u)):

∂2F
∂ui∂u j

(u) = �1
ij(u)

∂F
∂u1

(u)+ �2
ij(u)

∂F
∂u2

(u)+ hij(u)N(F(u)). (4.1)

Definition 4.2.13 The coefficient functions

�k
ij : U → R,

1 ≤ i, j, k ≤ 2, are called Christoffel symbols.

From (∂2F/∂ui∂u j) = (∂2F/∂u j∂ui) it follows directly that the Christoffel
symbols are symmetric in the lower indices:

�k
ij = �k

ji .

Let us now consider the local formula for the covariant derivative. Let
(U, F, V) be a local parametrisation of the regular surface S. Let c : I → S be
a parametrised curve. Of course, with the coordinates given by the parametri-
sation we can only deal with the part of the curve c that lies in V. After
possibly reducing the size of I we assume that c(I) ⊂ V. We can now set
c̃ := F−1 ◦ c : I → U. Let v : I → R

3 be a smooth vector field on S along c. We
express v in terms of the basis given by the parametrisation,

v(t) = ξ1(t)
∂F
∂u1

(c̃(t))+ ξ2(t)
∂F
∂u2

(c̃(t)).

We calculate

∇
dt

v(t) = �c(t) (v̇(t))

= �c(t)

( 2∑
i=1

(
ξ̇ i(t)

∂F
∂ui

(c̃(t))+ ξ i(t)
2∑

j=1

∂2F
∂ui∂u j

(c̃(t)) ˙̃c j(t)
))



158 T H E I N N E R G E O M E T R Y O F S U R F A C E S

=
2∑

i=1

ξ̇ i(t)
∂F
∂ui

(c̃(t))+
2∑

i,j,k=1

�k
ij(c̃(t))ξ

i(t) ˙̃c j(t)
∂F
∂uk

(c̃(t))

=
2∑

k=1

(
ξ̇k(t)+

2∑
i,j=1

�k
ij(c̃(t))ξ

i(t) ˙̃c j(t)
) ∂F

∂uk
(c̃(t)). (4.2)

Expressed in the coefficient functions ξ1 and ξ2, the covariant derivative
corresponds to the map

(
ξ1

ξ2

)
�→

(
ξ̇1 +∑2

i,j=1 �1
ij(c̃)ξ

i ˙̃c j

ξ̇2 +∑2
i,j=1 �2

ij(c̃)ξ
i ˙̃c j

)
.

The Christoffel symbols determine exactly those correction terms that make
the difference between the usual derivative (ξ1, ξ2)� �→ (ξ̇1, ξ̇2)� of the coef-
ficient functions and the covariant derivative. Next we want to see that the
Christoffel symbols can be determined from the first fundamental form and
thus that the covariant derivative is a quantity of the inner geometry.

Lemma 4.2.14 The Christoffel symbols satisfy the following:

�k
ij =

1
2

2∑
m=1

(
∂gjm

∂ui
+ ∂gim

∂u j
− ∂gij

∂um

)
g mk

Proof We calculate

∂gjm

∂ui
= ∂

∂ui

〈
∂F
∂u j

,
∂F
∂um

〉

=
〈

∂2F
∂ui∂u j

,
∂F
∂um

〉
+

〈
∂F
∂u j

,
∂2F

∂ui∂um

〉

=
〈 2∑

k=1

�k
ij

∂F
∂uk

,
∂F
∂um

〉
+

〈
∂F
∂u j

,
2∑

k=1

�k
im

∂F
∂uk

〉

=
2∑

k=1

(
�k

ijgkm + �k
imgkj

)
. (4.3)

Analogously we obtain

∂gim

∂u j
=

2∑
k=1

(
�k

jigkm + �k
jmgki

)
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and

∂gij

∂um =
2∑

k=1

(
�k

migkj + �k
mjgki

)
.

It follows that

∂gjm

∂ui
+ ∂gim

∂u j
− ∂gij

∂um = 2
2∑

k=1

�k
ijgkm.

By multiplying with the inverse matrix (g km) one solves for �k
ij and obtains the

equation of the lemma.

Now we know how to work with vector fields along curves in a covariant
way. How can we now differentiate traditional vector fields on a surface? For
this we also need to fix the direction in which we want to differentiate.

Definition 4.2.15 Let S be a regular surface, v a differentiable vector field on
S and wp ∈ TpS a tangent vector. Then the covariant derivative ∇wp v ∈ TpS
of v in direction wp is defined as follows:

choose a parametrised curve c : (−ε, ε)→ S with ċ(0) = wp and set

∇wp v := ∇
dt

(v ◦ c)(0).

Exercise 4.11 Show that the definition does not depend on the choice of the
parametrised curve c with ċ(0) = wp.

Hint Show that the covariant derivative in direction wp =∑
k ηk(∂F/∂uk)(u),

expressed in a local parametrisation (U, F, V), corresponds to the map

(
ξ1

ξ2

)
�→

(
dξ1 · (η1, η2)� +∑2

i,j=1 �1
ijξ

iη j

dξ2 · (η1, η2)� +∑2
i,j=1 �2

ijξ
iη j

)
,

where the parametrisation maps u to p. More precisely,

∇wp

(∑
k

ξk ∂F
∂uk

)
=

∑
k

(∑
�

∂ξk

∂u�
(u)η� +

2∑
i,j=1

�k
ij(u)ξ i(u)η j

) ∂F
∂uk

(u).

Definition 4.2.16 If v and w are two vector fields on S, then we define a new
vector field ∇wv by

(∇wv)( p) := ∇w( p)v.
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Lemma 4.2.17 Let S be a regular surface, let c1, c2 ∈ R, v, v1, v2, w, w1 and
w2 be differentiable vector fields on S, and let f : S → R be a differentiable
function.

Then the following hold:

(a) linearity in the vector field that is differentiated:

∇w(c1v1 + c2v2) = c1∇wv1 + c2∇wv2;

(b) product rule I:
∇w(fv) = df (w)v+ f∇wv;

(c) product rule II:

∂w(I(v1, v2)) = I(∇wv1, v2)+ I(v1,∇wv2);

(d) linearity in the vector field w.r.t. which we differentiate:

∇(c1w1+c2w2)v = c1∇w1 v+ c2∇w2 v;

(e) linearity w.r.t. functions on the vector field w.r.t. which we differentiate:

∇fwv = f∇wv.

Proof Properties (a), (b) and (c) follow directly from the corresponding
properties of the covariant derivatives of vector fields along curves in lemma
4.2.12. Points (d) and (e) are most easily deduced from the formula in terms of
a local parametrisation, given in the above exercise.

4.3 Riemann curvature tensor and Theorema Egregium

In chapter 3 we met several notions of curvature, such as the principal cur-
vatures, the mean curvature and the Gauss curvature. In this section we will
introduce a new quantity, the Riemann curvature tensor. We will begin by
looking at the second covariant derivative. The value of the second covariant
derivative depends on the order in which we differentiate, i.e. the theorem of
Schwarz about the interchangeability of directional derivatives does not hold
for the covariant derivative! The Riemann curvature tensor measures exactly
this error that arises when interchanging the derivatives.

To begin with, we will examine how the second covariant derivative should
be defined correctly. If v, w and z are vector fields on a regular surface S, then
one can of course differentiate the vector field∇wz once more with respect to v
in a covariant way. But this will introduce derivatives of w with respect to v.
Hence, if we are only interested in the second derivative of z in direction
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v and w, then we have to compensate for this effect and make the following
definition.

Definition 4.3.1 The second covariant derivative of z with respect to v and
w is defined via

∇2
v,wz := ∇v(∇wz)−∇∇vwz.

Let us now look at the second covariant derivative in a local parametrisation.

Lemma 4.3.2 Let S be a regular surface and v, w and z be vector fields on
S. Let (U, F, V) be a local parametrisation of S. As usual we express v in the
basis given by the parametrisation, v = ∑2

i=1 vi(∂F/∂ui), and analogously for
all other vector fields.

Then, w.r.t. the basis ∂F/∂um, ∇2
v,wz is given by the coefficients

⎛⎝∑
i,j

∂2zm

∂ui∂u j
viw j +

∑
i,j,k

�m
ij

∂zi

∂uk
(v jwk + vkw j)−

∑
i,j,k

�k
ij
∂zm

∂uk
viw j

+
∑
i,j,k

(
∂�m

kj

∂ui
+

∑
�

(
�m

�i �
�
kj − �m

k��
�
ij

)
viw jzk

)⎞⎠
m=1,2

.

The first sum contains exactly the usual second covariant derivative in direc-
tions (v1, v2)� and (w1, w2)�. The other sums are correction terms involving
lower-order derivatives of (z1, z2)�. We also observe that there are indeed no
derivatives of (v1, v2)� and (w1, w2)�. Thus

Corollary 4.3.3 The value of the second covariant derivative ∇2
v,wz at a point

p ∈ S depends only on v( p), w( p) and the derivatives of z at p up to order 2.

For a vector field z on S we can therefore define the second covariant differential
of z as

∇2z : TpS× TpS→ TpS,

(vp, wp) �→
(
∇2

v,wz
)

( p),

where v and w are arbitrary vector fields on S with v( p) = vp and w( p) = wp.

Proof of lemma 4.3.2 The proof consists of thorough calculations, in which
it is most important to keep a level head. The vector field ∇wz has the
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components

(∑
�

∂zk

∂u�
w� +

∑
ij

�k
ijz

iw j
)

k=1,2
=:

(
νk

)
k=1,2

.

For ∇v(∇wz) we obtain

(∑
m

∂να

∂um vm +
∑
βγ

�α
βγ νβvγ

)
α=1,2

=
(∑

m�

(
∂2zα

∂u�∂um w�vm + ∂zα

∂u�

∂w�

∂um vm

)

+
∑
ijm

(
∂�α

ij

∂um ziw jvm + �α
ij

∂zi

∂um w jvm + �α
ij z

i ∂w j

∂um vm

)

+
∑
�βγ

∂zβ

∂u�
w��α

βγ vγ +
∑
ijβγ

�
β

ij �
α
βγ ziw jvγ

)
α=1,2

. (4.4)

For ∇vw we write

(∑
�

∂wk

∂u�
v� +

∑
ij

�k
ijv

iw j
)

k=1,2
=:

(
μk

)
k=1,2

and for ∇∇vwz we obtain

(∑
m

∂zα

∂um μm +
∑
βγ

�α
βγ zβμγ

)
α=1,2

=
(∑

m�

∂zα

∂um

∂wm

∂u�
v� +

∑
mij

∂zα

∂um �m
ij viw j

+
∑
�βγ

∂wγ

∂u�
v��α

βγ zβ +
∑
ijβγ

�
γ

ij �
α
βγ viw jzβ

)
α=1,2

. (4.5)

Subtraction of (4.4) and (4.5) cancels terms involving derivatives of v and w,
and we obtain the claim.

As the first covariant derivative is a concept that depends only on the inner
geometry, the same is true for the second covariant derivative.
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As announced before we will now define the curvature tensor as the error
term that measures the non-interchangeability of the two arguments in the
second covariant derivative.

Definition 4.3.4 Let S be a regular surface, p ∈ S a point, vp, wp ∈ TpS tan-
gent vectors, and z a vector field on S. Then the Riemann (curvature) tensor
R, also called just the curvature tensor, is defined by

R(vp, wp)z := ∇2
vp,wp

z− ∇2
wp,vp

z.

We can express the Riemann curvature tensor in terms of a local parametri-
sation as well. For this purpose let (U, F, V) be a local parametrisation of
our regular surface, p = F(u0). We express vp, wp and z in terms of a local
parametrisation:

vp =
∑

i

vi ∂F
∂ui

(u0),

wp =
∑

j

w j ∂F
∂u j

(u0),

z =
∑

k

zk ∂F
∂uk

.

Lemma 4.3.5 The Riemann curvature tensor w.r.t. a local parametrisation
has the form

R(vp, wp)z =
2∑

ijk�=1

R�
ijk(u0)v

iw jzk ∂F
∂u�

(u0),

where

R�
ijk =

∂��
kj

∂ui
− ∂��

ki

∂u j
+

∑
m

(
��

mi�
m
kj − ��

mj�
m
ki

)
.

Proof All terms from lemma 4.3.2 that involve derivatives of z are symmet-
ric in vp and wp and therefore cancel. Considering further that the Christoffel
symbols �k

ij are symmetric in the lower indices i and j proves the claim.

As a direct implication we have the following corollary.

Corollary 4.3.6 (a) The tangent vector R(vp, wp)z at p ∈ S depends only on
z( p), not on the values of the vector field z on S− {p}. Then the map

Rp : TpS× TpS× TpS→ TpS,



164 T H E I N N E R G E O M E T R Y O F S U R F A C E S

Rp(vp, wp)zp := R(vp, wp)z,

is well defined, where z is an arbitrary vector field on S with z( p) = zp.

(b) Rp is linear in each argument.

(c) Rp is skew-symmetric in the first two arguments,

Rp(vp, wp)zp = −Rp(wp, vp)zp.

It can at times be quite involved to calculate the curvature tensor using the
Christoffel symbols. It is therefore useful to know that this can also be done
using the second fundamental form and the Weingarten map.

Theorem 4.3.7 (Gauss’s equation) Let S ⊂ R
3 be an oriented regular surface,

p ∈ S. Then any v, w, z ∈ TpS satisfy the following:

R(v, w)z = II(w, z) ·W(v)− II(v, z) ·W(w).

With respect to a local parametrisation this is given by

R�
ijk = hjkw�

i − hikw�
j .

Proof We prove the local version. Let (U, F, V) be a local parametrisation.
We recall (4.1):

∂2F
∂ui∂u j

=
∑

k

�k
ij

∂F
∂uk
+ hij · (N ◦ F).

Differentiating this equation with respect to u� we obtain

∂3F
∂u�∂ui∂u j

=
∑

k

(
∂�k

ij

∂u�

∂F
∂uk
+ �k

ij
∂2F

∂u�∂uk

)

+ ∂hij

∂u�
· (N ◦ F)+ hij · ∂(N ◦ F)

∂u�

=
∑

k

(
∂�k

ij

∂u�

∂F
∂uk
+ �k

ij

∑
m

�m
�k

∂F
∂um + normal component

)

+ normal component + hij ·
(
−W

(
∂F
∂u�

))

=
∑

m

(
∂�m

ij

∂u�
+

∑
k

�k
ij�

m
�k − hijw

m
�

)
∂F
∂um

+ normal component. (4.6)
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By the theorem of Schwarz we can interchange the derivations with respect to
ui and u� and obtain by (4.6) that

0 = ∂3F
∂u�∂ui∂u j

− ∂3F
∂ui∂u�∂u j

=
∑

m

(
∂�m

ij

∂u�
− ∂�m

�j

∂ui
+

∑
k

(
�k

ij�
m
�k − �k

�j�
m
ik

)
− hijw

m
� + h�jw

m
i

)
∂F
∂um

+ normal component

=
∑

m

(
Rm

�ij − hijw
m
� + h�jw

m
i

) ∂F
∂um + normal component.

It follows that
Rm

�ij − hijw
m
� + h�jw

m
i = 0.

This is the claim up to renaming of the indices.

A remarkable feature of Gauss’s equation is that the left hand side, i.e. the
Riemann curvature tensor, is a quantity of the inner geometry, while the quan-
tities on the right hand side of the equation, i.e. the second fundamental form
and the Weingarten map, are quantities that do not only depend on the inner
geometry of the surface. This now allows us to prove that Gauss curvature,
unlike mean curvature, is a quantity of the inner geometry of the surface.

Theorem 4.3.8 (Theorema Egregium) Gauss curvature can be calculated form
the Riemann curvature tensor as follows: let p ∈ S be a point. Choose an
orthonormal basis v, w of TpS. Then

K( p) = I(Rp(v, w)w, v).

In particular, Gauss curvature depends on the inner geometry of the surface
only.

Proof According to the Gauss equation we have

I(R(v, w)w, v) = I(II(w, w) ·W(v)− II(v, w) ·W(w), v)

= II(w, w)II(v, v)− II(v, w)II(w, v)

= det(W)

= K.

Example 4.3.9 The two regular surfaces S1 = {(x, y, 0)�| x2+y2 < 1} (circu-
lar disc) and S2 = {(x, y, z)�| x2 + y2 < 1, z = √

1− x2 − y2} (hemisphere) are
diffeomorphic. The projection (x, y, z)� �→ (x, y, 0)� gives a diffeomorphism
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from S2 to S1. However, there cannot be an isometry between those two
surfaces, since S1 has Gauss curvature KS1 ≡ 0, while for S2 we have KS2 ≡ 1.
Since, as we now know, Gauss curvature is preserved under isometries, such an
isometry from S1 to S2 cannot exist. Our “inhabitant of the surface” from the
beginning of this chapter can therefore use the Gauss curvature of the surface
in order to determine whether he lives on a circular disc or on a sphere.

This example is of practical significance, since it shows that in principle it is
impossible to draw absolutely correct maps. Such a map would have to transfer
ratios of lengths of a part of the sphere to scale to a part of the plane. But
this would be (up to a scaling) an isometry between two surfaces of different
curvatures. For this reason every map will distort some lengths. The larger
the area of the earth represented by the map, the larger the distortion. See
section 4.10 for more on this.

Lemma 4.3.10 Let S be a regular surface, let p ∈ S, let v, w, x, y ∈ TpS. The
curvature tensor has the following symmetries:

(a) R(v, w)x = −R(w, v)x;
(b) I(R(v, w)x, y) = −I(R(v, w)y, x);
(c) I(R(v, w)x, y) = I(R(x, y)v, w);
(d) Bianchi identity:

R(v, w)x+ R(x, v)w+ R(w, x)v = 0.

Proof Part (a) is trivial. Statement (c) follows from Gauss’s equation:

I(R(v, w)x, y) = I(II(w, x) ·W(v)− II(v, x) ·W(w), y)

= II(w, x) · II(v, y)− II(v, x) · II(w, y),

since this expression does not change when interchanging the pairs (v, w) and
(x, y). Part (b) follows directly from (a) and (c). Statement (d) can also be
derived from Gauss’s equation:

R(v, w)x+ R(x, v)w+ R(w, x)v

= II(w, x)W(v)− II(v, x)W(w)+ II(v, w)W(x)

− II(x, w)W(v)+ II(x, v)W(w)− II(w, v)W(x)

= 0.

Exercise 4.12 Prove that Gauss curvature with respect to a local parametri-
sation is given by

K = 1
2

∑
ijk

g jkRi
ijk.



4.3 R I E M A N N C U R V A T U R E T E N S O R A N D T H E O R E M A E G R E G I U M 167

The Theorema Egregium and the last statement tell us how to calculate
Gauss curvature from the curvature tensor. Conversely, the curvature tensor
can be obtained from the Gauss curvature.

Lemma 4.3.11 Let S be a regular surface, let p ∈ S. For all v, w, x ∈ TpS
we have

R(v, w)x = K( p) · (I(w, x)v− I(v, x)w).

In local coordinates,
R�

ijk = K ·
(

gjkδ�
i − gikδ�

j

)
.

Proof (a) Let V be a two-dimensional real vector space. We first show that
the vector space of all multi-linear maps

R : V × V × V × V → R

that satisfy the symmetries

R(v, w, x, y) = −R(w, v, x, y) and R(v, w, x, y) = −R(v, w, y, x)

is one-dimensional. We choose a basis e1, e2 of V and write v = v1e1 + v2e2,
w = w1e1 + w2e2, x = x1e1 + x2e2 and y = y1e1 + y2e2. It follows that

R(v, w, x, y) = (v1w2 − v2w1)R(e1, e2, x, y)

= (v1w2 − v2w1)(x1y2 − x2y1)R(e1, e2, e1, e2).

Hence R is determined by the coefficient R(e1, e2, e1, e2).

(b) By lemma 4.3.10

R1(v, w, x, y) := I(R(v, w)x, y)

satisfies those symmetries. One sees directly that this is also true for

R2(v, w, x, y) := K( p) · (I(w, x)I(v, y)− I(v, x)I(w, y)).

R1 and R2 are linearly dependent by (a). By the Theorema Egregium, an
orthonormal basis e1, e2 of TpS satisfies

R1(e1, e2, e1, e2) = −K( p) = R2(e1, e2, e1, e2).

Hence R1 and R2 agree. The claim follows.

We see that Gauss curvature and curvature tensor can be calculated from each
other and hence contain the same information about the surface.
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Table 4.1 Quantities that depend on the inner geometry only

geometric quantity symbol expression w.r.t. local param.

first fundamental form I gij

surface element dA dA =
√

g11g22 − (g12)2du1du2

covariant derivative ∇ �k
ij =

1
2

∑
m

(
∂gjm

∂ui
+ ∂gim

∂u j
− ∂gij

∂um

)
g mk

Riemann curvature tensor R R�
ijk =

∂��
kj

∂ui
− ∂��

ki

∂u j

+∑
m

(
��

mi�
m
kj − ��

mj�
m
ki

)
Gauss curvature K K = 1

2

∑
ijk

g jkRi
ijk

Table 4.2 Quantities that are not invariant under local isometries

geometric quantity symbol expression w.r.t. local param.

second fundamental form II hij

Weingarten map W w j
i =

∑
k hikg kj

principal curvatures κi

mean curvature H H = κ1 + κ2
2

= w1
1 + w2

2
2

The most important geometric quantities of a regular surface are sum-
marised in tables 4.1 and 4.2.

4.4 Riemannian metrics

Since we will as of now just look at quantities that depend on the inner geom-
etry only, we will at this point generalise the concept of the first fundamental
form. What actually is the first fundamental form? It assigns a Euclidean scalar
product to each tangent plane. That this scalar product is the restriction of the
standard scalar product on R

3 is of no importance for quantities that depend
on the inner geometry only. We therefore make the following definition.

Definition 4.4.1 Let S ⊂ R
3 be a regular surface. A Riemannian metric g on

S assigns a Euclidean scalar product gp on the tangent plane TpS to each point
p ∈ S, such that for every local parametrisation (U, F, V) of S the functions

gij : U → R,

gij(u) := gF(u)

(
∂F
∂ui

(u),
∂F
∂u j

(u)

)
are smooth.
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The first fundamental form is, of course, an example of a Riemannian metric.
But there are important examples of Riemannian metrics that are not the first
fundamental form, as we will see later. One of them is the hyperbolic plane.
The condition that the functions gij must be smooth ensures the scalar product
gp does not “wildly” depend on p, but is differentiable w.r.t. p. In the case of
the first fundamental form this holds automatically.

All quantities that depend on the inner geometry only, such as the surface
element, the covariant derivative, the Gauss curvature and the Riemann cur-
vature tensor, are also defined for regular surfaces with a Riemannian metric
that is not the first fundamental form.

We therefore define, for example, the Christoffel symbols via the formula
from lemma 4.2.14 as

�k
ij := 1

2

2∑
m=1

(
∂gjm

∂ui
+ ∂gim

∂u j
− ∂gij

∂um

)
g mk (4.7)

and then the covariant derivative for vector fields

v =
∑

i

vi ∂F
∂ui

, w =
∑

j

w j ∂F
∂u j

via

∇wv(F(u)) :=
∑

k

(
duvk

(
w1(u)

w2(u)

)
+

∑
ij

�k
ij(u)vi(u)w j(u)

) ∂F
∂uk

(u).

Of course, it needs to be checked that this definition does not depend on the
local parametrisation chosen; this is left as an exercise for the reader. In the
case of the first fundamental form this formula holds automatically. We can
analogously translate the other quantities that depend on the inner geometry,
such as the Riemann curvature tensor and the Gauss curvature. We see that it
was good to have required the smoothness of the gij. For the definition of the
covariant derivative we need the first derivatives of the gij, for the curvature
we also need the second derivatives.

Exercise 4.13 Show that lemma 4.2.12 and lemma 4.2.17 also hold for
general Riemannian metrics.

Exercise 4.14 Show that for any two smooth vector fields v and w on a
regular surface equipped with a Riemannian metric one has

∇vw−∇wv = [v, w].
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Exercise 4.15 Show that lemma 4.3.10 and lemma 4.3.11 also hold for
general Riemannian metrics.

Example 4.4.2 We consider the torus S from example 3.8.18 with the
parametrisation

F(t, ϕ) =
⎛⎝(1− r cos(ϕ)) cos(t)

(1− r cos(ϕ)) sin(t)
r sin(ϕ)

⎞⎠ .

The vector fields ∂F/∂t and ∂F/∂ϕ are defined on the whole of S. The
two vectors (∂F/∂t)(t, ϕ) and (∂F/∂ϕ)(t, ϕ) are a basis of the tangent plane
TF(t,ϕ)S, but they are generally not orthonormal with respect to the first fun-
damental form. We now define a new Riemannian metric, determining the
Euclidean scalar product gF(t,ϕ) on TF(t,ϕ)S by requiring that (∂F/∂t)(t, ϕ) and
(∂F/∂ϕ)(t, ϕ) must be orthonormal. For p ∈ S this uniquely determines a
Euclidean scalar product on TpS, since although p=F(t, ϕ)=F(t′, ϕ′) may be
possible for different parameter values, the corresponding tangent vectors will
agree, (∂F/∂t)(t, ϕ) = (∂F/∂t)(t′, ϕ′) and (∂F/∂ϕ)(t, ϕ) = (∂F/∂ϕ)(t′, ϕ′).

In this way we obtain a well-defined Riemannian metric on the torus. What
is the Gauss curvature for this Riemannian metric? Well, the definition is for-
mulated such that with the parametrisation from above the Riemannian metric
has components

(gij)ij =
(

1 0
0 1

)
.

The fact that all the gij are constant causes the Christoffel symbols to vanish,
and hence

K ≡ 0.

Note that this is not possible for the first fundamental form on a compact reg-
ular surface, since because of theorem 3.6.17 the Gauss curvature would then
have to be positive somewhere.

This construction of a Riemannian metric with K ≡ 0 can be done on all reg-
ular surfaces on which there are two smooth vector fields that, at each point,
form a basis of the corresponding tangent plane.

A very different approach for the construction of Riemannian metrics con-
sists of pulling back a metric that is defined on a different, diffeomorphic
surface.

Definition 4.4.3 Let S1 and S2 be regular surfaces, let � : S1 → S2 be a dif-
feomorphism. Let g be a Riemannian metric on S2. The pullback Riemannian
metric �∗g on S1 is defined by

(�∗g)p(X, Y) := g�( p)(dp�(X), dp�(Y))

for all p ∈ S1, X, Y ∈ TpS1.
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One easily sees that �∗g is a Riemannian metric on S1. Indeed, �∗g is the
unique Riemannian metric on S1 for which � : S1 → S2 is an isometry. If F is
a local parametrisation of S1, then � ◦F is a local parametrisation of S2. From
the definition of �∗g it follows immediately that �∗g in the coordinates given
by F looks exactly like g with respect to � ◦ F:

(�∗g)ij = gij.

Accordingly, all quantities that only depend on the inner geometry agree, e.g.
for the Gauss curvature we have

K�∗g = Kg ◦�.

Example 4.4.4 As we have seen in example 3.1.16, there is a diffeomor-
phism � : S2 → S, where S is an ellipsoid. We can then pull back the first
fundamental form of the ellipsoid to the sphere. This gives a Riemannian
metric on S2 that does not agree with the first fundamental form of S2, since
the Gauss curvature of the ellipsoid is not constant, and hence the one of the
pulled-back metric is not constant either.

Exercise 4.16 Let κ ∈ R be a constant. In the case κ ≥ 0 let S = R
2 × {0} be

the x–y plane; in the case κ < 0; on the other hand, let S = {(x, y, 0)�| x2+y2 <

−4/κ}. On S let the Riemannian metric g in Cartesian coordinates be given by

(gij(x, y))ij = 1(
1+ κ(x2 + y2)/4

)2
·
(

1 0
0 1

)
.

Show that S with this Riemannian metric has constant Gauss curvature K ≡ κ .

4.5 Geodesics

We now want to investigate the following problem. In the plane the short-
est connecting curve between two points is the corresponding segment of
a straight line. What do shortest connecting curves look like on a regular
surface?

Definition 4.5.1 Let S be a regular surface with Riemannian metric g. Let c :
I → S be a parametrised curve. Then the length of c (w.r.t. (S, g)) is defined by

L[c] :=
∫

I

√
gc(t)(ċ(t), ċ(t))dt.

If g is the first fundamental form, then this notion of length agrees with the one
that we defined for c : I → S ⊂ R

3 as a space curve in chapter 2. Otherwise
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there is no connection. It is beneficial to look not only at the length, but also
at the energy of curves.

Definition 4.5.2 Let S be a regular surface with Riemannian metric g. Let c :
I → S be a parametrised curve. Then the energy of c (w.r.t. (S, g)) is defined by

E[c] := 1
2

∫
I

gc(t)(ċ(t), ċ(t))dt.

Exercise 4.17 Show that the length of a parametrised curve does not change
under parameter transformations, while the energy of a curve does.

We can compare those two concepts as follows.

Lemma 4.5.3 Let S be a regular surface with Riemannian metric g. Let c :
[a, b] → S be a parametrised curve. Then

L[c]2 ≤ 2(b− a)E[c]

where the equality applies if and only if c is parametrised proportional to arc-
length, i.e. if

gc(t)(ċ(t), ċ(t)) ≡ const.

Proof We set f : [a, b] → R, f (t) := √
gc(t)(ċ(t), ċ(t)). By the Cauchy–

Schwarz inequality we have

L[c]2 =
( ∫ b

a
f (t) · 1dt

)2

≤
∫ b

a
f (t)2dt ·

∫ b

a
12dt

= 2 · E[c] · (b− a).

We have equality precisely if f and 1 are linearly dependent, i.e. if f is constant.
This means exactly that c is parametrised proportional to arc-length.

In conclusion we can note that a connecting curve has minimal energy if and
only if it has minimal length and is parametrised proportional to arc-length.
It is for this reason that cyclists like to jump red traffic lights. Although the
distance covered would not be increased by stopping, the energy needed would
be higher.

We will in the following work with energy instead of with length. When
studying minimal surfaces, we derived a variation formula for surface area
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(theorem 3.8.8). We will now derive a similar variation formula for the energy
of curves. Let us first prove a lemma.

Lemma 4.5.4 Let S be a regular surface with Riemannian metric g. Let c :
I × J → S, (s, t) �→ c(s, t), be a smooth map. Then

∇
∂s

∂c
∂t
= ∇

∂t
∂c
∂s

.

Proof From the formula

�k
ij =

1
2

2∑
m=1

(
∂gjm

∂ui
+ ∂gim

∂uj
− ∂gij

∂um

)
g mk

we see that in the case of general Riemannian metrics the Christoffel sym-
bols are also symmetric in the lower indices i and j. Let (U, F, V) be a local
parametrisation. We set

u : c−1(V) ⊂ I × J → U, u := F−1 ◦ c.

We have
c = F ◦ u

and hence
∂c
∂t
=

∑
k

∂uk

∂t
∂F
∂uk

.

It follows that

∇
∂s

∂c
∂t
=

∑
k

∂2uk

∂t∂s
∂F
∂uk
+

∑
ijk

�k
ij
∂ui

∂t
∂u j

∂s
∂F
∂uk

.

This expression is symmetric in s and t because of the symmetry of the
Christoffel symbols in the lower indices i and j.

We can now move on to the variation formula.

Theorem 4.5.5 (Variation of energy) Let S be a regular surface with Riemannian
metric g. Let p, q ∈ S. Let c : (−ε, ε)×[a, b] → S be a smooth map such that for
cs : [a, b] → S, cs(t) := c(s, t) we have

cs(a) = p, cs(b) = q.
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Let V(t) := (∂c/∂s)(0, t) be the so-called variation vector field. Then:

d
ds

E[cs]
∣∣∣∣
s=0
= −

∫ b

a
gc0(t)

(
V(t),

∇
dt

ċ0(t)
)

dt.

Proof We differentiate inside the integral and use lemma 4.5.4:

d
ds

E[cs]
∣∣∣∣
s=0

= 1
2

∫ b

a

d
ds

gcs(t)(ċs(t), ċs(t))
∣∣
s=0 dt

= 1
2

∫ b

a

(
gc0(t)

( ∇
∂s

ċs(t)

∣∣∣∣
s=0

, ċ0(t)
)
+ gc0(t)

(
ċ0(t),

∇
∂s

ċs(t)

∣∣∣∣
s=0

))
dt

=
∫ b

a
gc0(t)

(∇
∂s

∂c
∂t

(0, t), ċ0(t)
)

dt

=
∫ b

a
gc0(t)

(∇
∂t

∂c
∂s

(0, t), ċ0(t)
)

dt

=
∫ b

a
gc0(t)

(∇
dt

V(t), ċ0(t)
)

dt. (4.8)

Because V(a) = V(b) = (0, 0, 0)�, the fundamental theorem of calculus gives
that

0 = gq(V(b), ċ0(b))− gp(V(a), ċ0(a))

=
∫ b

a

d
dt

gc0(t) (V(t), ċ0(t)) dt

=
∫ b

a

(
gc0(t)

(∇
dt

V(t), ċ0(t)
)
+ gc0(t)

(
V(t),

∇
dt

ċ0(t)
))

dt, (4.9)

thus ∫ b

a
gc0(t)

(∇
dt

V(t), ċ0(t)
)

dt = −
∫ b

a
gc0(t)

(
V(t),

∇
dt

ċ0(t)
)

dt. (4.10)

Substitution of (4.10) in (4.8) gives the claim.

Corollary 4.5.6 Let S be a regular surface with Riemannian metric g. Let
p, q ∈ S. If c : [a, b] → S is a connecting curve from p to q with minimal energy,
then ∇

dt
ċ0(t) = 0

for all t ∈ [a, b].
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Proof For reasons of continuity it suffices to prove the claim for all t ∈
(a, b). Suppose that we had (∇/dt)ċ0(t0) �= 0 for some t0 ∈ (a, b).

We choose a local parametrisation (U, F, V), such that c(t0) ∈ V. We further
choose a δ > 0 with

• [t0 − δ, t0 + δ] ⊂ (a, b),
• c(t) ∈ V for all t ∈ [t0 − δ, t0 + δ].

We define

u : [t0 − δ, t0 + δ] → U u(t) := F−1(c(t))

and

X : [t0 − δ, t0 + δ] → R
2,

X(t) := (Du(t)F)−1
(∇

dt
ċ0(t)

)
.

Then
∇
dt

ċ(t) = Du(t)F(X(t)).

We choose a smooth function ϕ : [t0 − δ, t0 + δ] → R with

• ϕ ≥ 0,
• ϕ(t0) > 0,
• supp(ϕ) ⊂ [t0 − δ, t0 + δ].

For a sufficiently small ε > 0 we have that u(t) + s · ϕ(t) · X(t) ⊂ U for all
t ∈ [t0 − δ, t0 + δ] and all s ∈ (−ε, ε). We can therefore define

cs(t) := F(u(t)+ s · ϕ(t) ·X(t)) ⊂ V ⊂ S

for all t ∈ [t0−δ, t0+δ] and all s ∈ (−ε, ε). For s ∈ (−ε, ε) and t ∈ [a, b]−[t0− δ,
t0 + δ] we set

cs(t) := c(t).

Then cs(t) is smooth at (s, t) ∈ (−ε, ε)×[a, b]. We now find the variation vector
field. For t ∈ [a, b] − [t0 − δ, t0 + δ] we obviously have

V(t) = ∂

∂s

∣∣∣∣
s=0

cs(t) = 0,
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while for t ∈ [t0 − δ, t0 + δ] we have

V(t) = ∂

∂s

∣∣∣∣
s=0

cs(t)

= ∂

∂s

∣∣∣∣
s=0

F(u(t)+ s · ϕ(t) ·X(t))

= Du(t)F(ϕ(t) ·X(t))

= ϕ(t) · ∇
dt

ċ(t).

We substitute this into the variation formula for energy and obtain

d
ds

E[cs]
∣∣∣∣
s=0
= −

∫ b

a
gc(t)

(
V(t),

∇
dt

ċ(t)
)

dt

= −
∫ t0+δ

t0−δ

gc(t)

(
ϕ(t) · ∇

dt
ċ(t),

∇
dt

ċ(t)
)

dt

= −
∫ t0+δ

t0−δ

ϕ(t) · gc(t)

(∇
dt

ċ(t),
∇
dt

ċ(t)
)

dt

< 0.

Since the curve c = c0 minimises energy we have

d
ds

E[cs]
∣∣∣∣
s=0
= 0,

a contradiction.

Definition 4.5.7 Let S be a regular surface and I an interval. A parametrised
curve c : I → S is a geodesic if

∇
dt

ċ(t) = 0

for all t ∈ I.

Example 4.5.8 Let S ⊂ R
3 be the x–y plane with the first fundamental form

as Riemannian metric. As we already know, the covariant derivative agrees
with the usual derivative in this case:

∇
dt

ċ(t) = c̈(t).

The geodesics are therefore precisely those straight lines that have a constant
speed:
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c(t) = p+ t · v.

Example 4.5.9 Let S = S2 ⊂ R
3 be the sphere. We have already seen that

among the lines of latitude

c(t) =
⎛⎝ cos(t) cos(θ)

sin(t) cos(θ)

sin(θ)

⎞⎠ ,

θ fixed, only the equator θ = 0 satisfies the geodesic equation.

Exercise 4.18 Let S1 and S2 be regular surfaces and let f : S1 → S2 be a
local isometry. Show that if c : I → S1 is a geodesic, then the same is true for
f ◦ c : I → S2.

Exercise 4.19 Let S be a regular surface and let c : I → S be a geodesic.
Further let α, β ∈ R. Show that c̃(t) := c(αt + β) is a geodesic as well. A linear
reparametrisation of a geodesic is thus again a geodesic.

Exercise 4.20 Use the last two exercises to show that on the sphere S = S2

all great circles with constant speed are geodesics.

Lemma 4.5.10 Geodesics are parametrised proportional to arc-length.

Proof Let c be a geodesic. We differentiate and use the product rule II
from lemma 4.2.17:

d
dt

gc(t)(ċ(t), ċ(t)) = gc(t)

(∇
dt

ċ(t), ċ(t)
)
+ gc(t)

(
ċ(t),

∇
dt

ċ(t)
)
= 0.

Thus gc(t)(ċ(t), ċ(t)) is constant.

So for we know the following about geodesics

energy-minimising

%
length-minimising and

parametrised proportional to arc-length

⇓
geodesics

⇓
parametrised proportional to arc-length
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In general, the converses of the lower two arrows are not true. In the above
example with the sphere S = S2 the lines of latitude are parametrised pro-
portional to arc-length for all θ , yet only the equator is a geodesic. Thus the
converse of the lower arrow is not true. Further, the equator, traversed once,
c(t) = (cos(t), sin(t), 0)�, t ∈ [0, 2π ], is a geodesic. However, the length- and
energy-minimising connecting curve of p = (1, 0, 0)� with itself is, of course,
the constant curve, c̃(t) = (1, 0, 0)�. Hence, in general, the converse of the
middle arrow is also not true.

To find out how many geodesics there are on a regular surface, we look at
the geodesic equation w.r.t. a local parametrisation. For a local parametrisa-
tion (U, F, V) and a curve c we write, where defined, u := F−1 ◦c, i.e. c = F ◦u.
The geodesic equation is then

0 = ∇
dt

ċ(t)

=
∑

k

(
ük(t)+

∑
ij

�k
ij(u(t))u̇i(t)u̇ j(t)

) ∂F
∂uk

(u(t)).

The geodesic equation is hence equivalent to a system of (non-linear) ordinary
differential equations in u(t) = (u1(t), u2(t)):

ük(t)+
∑

ij

�k
ij(u(t))u̇i(t)u̇ j(t) = 0, (4.11)

k = 1, 2. Existence and uniqueness theorems for ordinary differential equa-
tions [18, Ch. XIX] now give corresponding statements for geodesics.

Theorem 4.5.11 (Existence of geodesics) Let S ⊂ R
3 be a regular surface with

Riemannian metric g. Let p ∈ S, v ∈ TpS and t0 ∈ R.

Then there is an interval I ⊂ R with t0 ∈ I and a geodesic c : I → S with the
“initial conditions”

c(t0) = p and ċ(t0) = v.

Proof We choose a local parametrisation (U, F, V) such that p ∈ V. We set
u0 := F−1( p) ∈ U and X := (Du0 F)−1(v) ∈ R

2. By the existence theorem for
ordinary differential equations we can now solve (4.11) with the initial condi-
tions u(t0) = u0 and u̇(t0) = X. With c := F ◦ u we have found a geodesic with
the desired properties.

Remark It is in some cases possible to solve the geodesic equation com-
pletely in R, i.e. we can choose I = R. In the case that S is the x–y plane or
the sphere, the geodesics (straight line and great circle, respectively) indeed
have a maximal domain I = R. If we consider, for example, the unit disc
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S = {(x, y, 0)� | x2+ y2 < 1} in the x–y plane, then the geodesic equation is the
same as for the x–y plane itself, i.e. the geodesics are the straight lines that are
traversed at constant speed, but those leave the unit disc at a certain point. The
maximal domain I of a geodesic is therefore bounded on both sides, unless the
geodesic is a constant curve.

Theorem 4.5.12 (Uniqueness of geodesics) Let S ⊂ R
3 be a regular surface with

Riemannian metric g. Let I be an interval, t0 ∈ I. Let c : I → S be a geodesic.
Then c is uniquely determined by c(t0) ∈ S and ċ(t0) ∈ Tc(t0)S.

Proof If we knew that the trace of c lay entirely in one open neighbourhood
of the local parametrisation, then we could argue in a way similar to that used
for theorem 4.5.11. We would simply cite the uniqueness statement instead of
the existence statement from the theory of ordinary differential equations.

But since we cannot assume this, we need to argue a bit more carefully. Let c1
and c2 be geodesics with the same initial conditions c1(t0) = c2(t0) and ċ1(t0) =
ċ2(t0). Suppose that there exists a t ∈ I, t > t0, with c1(t) �= c2(t). We set

t1 := sup{t ∈ I | t > t0, such that c1(τ ) = c2(τ ) for all τ ∈ [t0, t]}.

In words, t1 is exactly the point at which c1 and c2 cease to agree. We now
choose a local parametrisation (U, F, V) with c1(t1) ∈ V. Since c1(t) = c2(t) for
all t < t1 (and t ≥ t0) we have that

c1(t1) = c2(t1) as well as ċ1(t1) = ċ2(t1).

The uniqueness theorem for ordinary differential equations now tells us that
c1(t) = c2(t) as long as c1(t) ∈ V and c2(t) ∈ V. For a sufficiently small ε > 0
this is the case for all t ∈ (t1 − ε, t1 + ε). This contradicts the maximality of t1.

It follows that c1(t) = c2(t) for all t ≥ t0. The proof for t ≤ t0 is analogous.

Exercise 4.21 Let S ⊂ R
3 be a regular surface with Riemannian metric g,

let p ∈ S and v ∈ TpS. Let c be the geodesic with initial conditions c(0) = p
and ċ(0) = v. Let δ ∈ R be a constant. Show that the curve c̃(t) := c(δt) is the
geodesic with the initial conditions c̃(0) = p and ˙̃c(0) = δv.

The following theorem allows us to get a qualitative idea about the course of
geodesics on surfaces of revolution.

Theorem 4.5.13 (Clairaut’s theorem) Let S be a surface of revolution, given
by the parametrisation F(t, ϕ) = (r(t) cos(ϕ), r(t) sin(ϕ), t)�. We take the first
fundamental form as the Riemannian metric. Let c : I → S be a geodesic,
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c(t) = F(r(t), ϕ(t)). Let θ(t) be the angle between ċ(t) and the line of latitude
through c(t).

Then
r(t) cos(θ(t)) = const.

If r(t) becomes bigger, for example, then cos(θ(t)) must become smaller, and
hence θ(t) bigger.

r(t1)

r(t2)

θ(t1)

θ(t2)

c

S

Proof The first fundamental form was calculated in section 3.8.3. The
result is (

gij(t, ϕ)
)

ij =
(

1+ ṙ(t)2 0
0 r(t)2

)
.

We set

v := ∂F
∂t

and w := ∂F
∂ϕ

.

The vector fields v and w form an orthogonal basis of the tangent plane at
every point of the surface. The vector field w is always tangential to the lines of
latitude, while v is tangential to the lines of longitude. As g22 does not depend
on ϕ, we have that〈

∂2F
∂ϕ2

, w

〉
= 1

2
∂

∂ϕ

〈
∂F
∂ϕ

,
∂F
∂ϕ

〉
= 1

2
∂g22

∂ϕ
= 0.
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Hence the tangential part of ∂2F/∂ϕ2 is proportional to v,

∇ww = αv,

for a suitable function α. We similarly argue that

〈
∂2F
∂ϕ∂t

, v

〉
= 1

2
∂

∂ϕ

〈
∂F
∂t

,
∂F
∂t

〉
= 1

2
∂g11

∂ϕ
= 0

and hence

∇vw = ∇wv = βw

for a suitable function β. We further have

0 = ∂g12

∂ϕ

= ∂

∂ϕ

〈
∂F
∂t

,
∂F
∂ϕ

〉
= 〈∇wv, w〉 + 〈v,∇ww〉
= 〈βw, w〉 + 〈v, αv〉 .

Hence

α · |v|2 = −β · |w|2.

For an arbitrary tangent vector z = γ · v+ δ · w we have that

〈∇zw, z〉 = γ 2 〈∇vw, v〉︸ ︷︷ ︸
=0

+γ δ〈∇ww︸︷︷︸
=αv

, v〉 + γ δ〈∇vw︸︷︷︸
=βw

, w〉 + δ2 〈∇ww, w〉︸ ︷︷ ︸
=0

= γ δ
(
α|v|2 + β|w|2

)
= 0.

Hence a geodesic c satisfies

d
dt
〈w(c(t)), ċ(t)〉 = 〈∇ċ(t)w, ċ(t)

〉︸ ︷︷ ︸
=0

+〈w(c(t)),∇ċ(t)ċ(t)︸ ︷︷ ︸
=0

〉 = 0.

Thus

〈w(c(t)), ċ(t)〉 = const · r(t) · cos(θ(t))

is constant.
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Exercise 4.22 (a) Show that on surfaces of revolution the lines of longitude
t �→ F(t, ϕ0) are length-minimising connecting curves of their end-points (and
hence in particular geodesics after a reparametrisation by arc-length).

(b) What is the condition for a line of latitude ϕ �→ F(t0, ϕ) to be a geodesic?

Let us now return from surfaces of revolution to general regular surfaces
with Riemannian metrics. We have seen that geodesics generalise the straight
lines from plane geometry. Let us recall that the curvature of plane curves is
defined as the deviation from a straight line. We can generalise this definition
to curves in general (oriented) surfaces. We define them as the deviation from
a geodesic.

Let S be an oriented regular surface with Riemannian metric g. Let c :
I → S be a curve parametrised by arc-length. Let n : I → R3 be the unit
normal field along c that complements ċ to positively oriented orthonormal
bases, i.e. for every t ∈ I the pair (ċ(t), n(t)) is a positively oriented orthonor-
mal basis of Tc(t)S. Just like with plane curves differentiating the function
t �→ gc(t)(ċ(t), ċ(t)) shows that (∇/dt)ċ(t) is perpendicular to ċ(t). There is
therefore a unique function κg : I → R such that

∇
dt

ċ(t) = κg(t) · n(t).

Definition 4.5.14 The function κg is called the geodesic curvature of c in S
w.r.t. g.

It is clear from the definition that c is a geodesic if and only if κg ≡ 0. The
geodesic curvature generalises the curvature of plane curves. If S is the x–
y plane with the first fundamental form as a Riemannian metric, then κg is
exactly the curvature of c, considered as a plane curve.

If we change the direction in which the curve is traversed, i.e. if we change
c to c̃(t) := c(−t), then κg changes its sign, κ̃g(t) = −κg(−t). Leaving curve c
as it is and reversing the orientation of the surface S we change n to −n, and
κg changes its sign, κ̃g(t) = −κg(t). It follows that for non-oriented surfaces at
least the absolute value of the geodesic curvature is |κg| is still well defined.

Exercise 4.23 Let S be an oriented regular surface with Riemannian metric
g. Let c : I → S be a regular parametrised curve (not necessarily parametrised
by arc-length). Let n : I → R

3 be the unit normal field along c that com-
plements ċ to positively oriented orthogonal bases. Show that the geodesic
curvature of c is given by

κg = g ((∇/dt)ċ, n)

g(ċ, ċ)
.

See also exercise 2.10.
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Exercise 4.24 Let S be an oriented regular surface with Riemannian metric
g and let c : I → S be a curve parametrised by arc-length, n as above. Derive
the Frenet formulae, which in matrix notation are given by(∇

dt
ċ,
∇
dt

n
)
= (ċ, n)

(
0 −κg

κg 0

)
.

4.6 The exponential map

We now want to use geodesics to construct local parametrisations of surfaces
that are particularly well suited to the geometry. Among other things this is
important to make calculations easier to carry out; we have already seen in
examples that the complexity of formulae can depend heavily on the coordi-
nates used. As surfaces on the small scale are approximated by their tangent
plane, we will try to translate the coordinates most commonly used on planes,
i.e. Cartesian and polar coordinates, from the tangent plane to the surface
itself. For this purpose we construct, using geodesics, geometrically natural
maps from the tangent planes to the surface.

Let S be a regular surface with Riemannian metric g. Let p ∈ S be a point.
For a tangent vector v ∈ TpS we consider the (unique) geodesic c : I → S with
c(0) = p, ċ(0) = v and maximal domain interval I. If c is still defined at time
t = 1, i.e. if 1 ∈ I, then we set

expp(v) := c(1).

If expp is defined for v ∈ TpS and if δ ∈ [0, 1], then expp is also defined for
δv ∈ TpS. If cv is the geodesic with cv(0) = p and ċ(0) = v, cδv is analogously
the geodesic with cδv(0) = p and ċ(0) = δv, then cδv(t) = cv(δt), see exercise
4.21. Hence cδv is defined at t = 1, since cv(0) = p is determined on the whole
of [0, 1]. This argument shows that the domain Dp ⊂ TpS of expp is a star-
shaped subset of TpS with respect to 0. The argument also shows that

cv(t) = expp(tv). (4.12)

The domain is certainly not empty, since the constant geodesic c(t) ≡ p is
defined on the whole of R, in particular for t = 1, and hence 0 ∈ Dp. The
theorem about the dependence of solutions of ordinary differential equations
on the initial values further ensures that Dp is an open subset of TpS and that

expp : Dp → S

is a smooth map.

Definition 4.6.1 The map expp : Dp → S is called the exponential map.
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Example 4.6.2 Let S = R
2 × {0} be the x–y plane with the first fundamental

form as Riemannian metric. Let p ∈ S and v ∈ TpS = R
2 × {0}. The geodesic

c in S with c(0) = p and ċ(0) = v is the straight line c(t) = p + tv. Hence
Dp = TpS = R

2 × {0} and
expp(v) = p+ v.

Example 4.6.3 Now let S = {(x, y, 0)� ∈ R
3 | x2 + y2 < 1} be the unit disc

in the x–y plane with the first fundamental form as a Riemannian metric, as
above. The geodesics are again segments of straight lines, but as they leave the
disc after a finite amount of time, the domain of the (non-constant) geodesic
is always a finite interval. For the exponential map we have the same formula
as above:

expp(v) = p+ v,

but the domain of the exponential map is now

Dp = {v ∈ R
3 | p+ v ∈ S} = S− p.

Example 4.6.4 Let S = S2 be the sphere, again with the first fundamental
form as a Riemannian metric. Let p ∈ S and v ∈ TpS = p⊥. We write v = δw,
where w ∈ TpS is a unit vector, ‖w‖ = 1 and δ = ‖v‖ ≥ 0. The geodesic c in
S with c(0) = p and ċ(0) = v is given by the great circle c(t) = cos(δt) · p +
sin(δt) · w. Hence Dp = TpS and

expp(v) =
{

cos(‖v‖) · p+ sin(‖v‖) · v/‖v‖, v �= 0,
p, v = 0.

We want to use the exponential map to translate coordinates from the tan-
gent plane to the surface. However, the example of the sphere shows that the
exponential map need not be bijective. We therefore have to restrict it. The
inverse function theorem will then tell us that the exponential map, restricted
to a neighbourhood of 0, is a diffeomorphism. To be able to use the inverse
function theorem, we calculate the differential of the exponential map at the
point 0 ∈ Dp. We observe that T0Dp = T0TpS = TpS.

Lemma 4.6.5 The differential of the exponential map at the point 0 is the
identity,

d0 expp = Id : TpS→ TpS.

Proof Let v ∈ TpS. We know from (4.12) that the geodesic c with initial
conditions c(0) = p and ċ(0) = v is given by

c(t) = expp(tv).
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Further, c̃(t) = tv is a curve in TpS with c̃(0) = 0 and ˙̃c(0) = v. Hence

d0 expp(v) = d
dt

expp(c̃(t))
∣∣∣
t=0

= d
dt

expp(tv)

∣∣∣
t=0

= ċ(0) = v.

By the inverse function theorem there exists a neighbourhood W of 0 ∈ Dp

such that expp |W : W → expp(W) ⊂ S is a diffeomorphism. For a local
parametrisation (U1, F1, V1) of the tangent plane TpS we obtain with the
choices U := F−1

1 (W), F := expp ◦F1|U and V ⊂ R
3 open with V∩S = expp(W)

a local parametrisation (U, F, V) of S.

Example 4.6.6 Let S be an arbitrary regular surface with a Riemannian met-
ric. Let p ∈ S and let X1, X2 be an orthonormal basis of the tangent plane TpS.
We take the parametrisation in Cartesian coordinates for TpS, i.e. U1 = R

2

and F1(u1, u2) =∑
i uiXi. The corresponding local parametrisation of S,

F(u1, u2) = expp

(∑
i

uiXi

)
,

is called parametrisation in Riemann normal coordinates (at the point p).

Riemann normal coordinates have properties similar to those of the normal
coordinates, as we constructed in theorem 3.6.15 for the first fundamental
form.

Theorem 4.6.7 Let S be a regular surface, let p ∈ S and let F be a local
parametrisation in Riemann normal coordinates at the point p. Then the corre-
sponding component functions of the metric and the Christoffel symbols satisfy
the following:

(i) F(0, 0) = p.
(ii) gij(0, 0) = δij, i, j = 1, 2.

(iii) (∂gij/∂uk)(0, 0) = 0 and �k
ij(0, 0) = 0, i, j, k = 1, 2.

Proof Statement (i) is clear and statement (ii) means precisely that d0 expp
is a linear isometry. To prove statement (iii), we recall that the exponential
map maps the straight lines through the origin to the geodesics through p. The
map t �→ tx describes a geodesic in Riemann normal coordinates for arbitrary
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x ∈ R
2. The geodesic equation (4.11) then becomes∑

ij

�k
ij(tx)xix j = 0, k = 1, 2.

For t = 0 in particular we therefore have∑
ij

�k
ij(0, 0)xix j = 0, k = 1, 2,

for all x. As �k
ij(0, 0) is symmetric in i and j for fixed k, we can polarise and

obtain
�k

ij(0, 0) = 0

for all i, j, k. From (4.3)

∂gjm

∂ui
=

∑
k

(
�k

ijgkm + �k
imgkj

)
,

it follows that
∂gij

∂uk
(0, 0) = 0

for all i, j, k.

Example 4.6.8 As above, let S be an arbitrary regular surface with a
Riemannian metric, let p ∈ S and let X1, X2 be an orthonormal basis of
TpS. This time we take polar coordinates for TpS, F1(r, ϕ)= r · (cos(ϕ)X1+
sin(ϕ)X2). The corresponding local parametrisation of S,

F(r, ϕ) = expp (r · (cos(ϕ)X1 + sin(ϕ)X2)) ,

is the parametrisation in geodesic polar coordinates (at the point p).

Theorem 4.6.9 (Gauss’s lemma) Let S be a regular surface with Riemannian
metric g. Let p ∈ S and let F be a local parametrisation in geodesic coordinates
(r, ϕ).

Then the Riemannian metric has the following form with respect to the local
parametrisation:

(gij(r, ϕ))ij =
(

1 0
0 f (r, ϕ)2

)
,

with a positive function f that satisfies

lim
r→0

f (r, ϕ) = 0, lim
r→0

∂f
∂r

(r, ϕ) = 1.
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Proof Let X1, X2 be the orthonormal basis of TpS that we have used for
the definition of the geodesic polar coordinates, F(r, ϕ) = expp(F̃(r, ϕ)), where

F̃(r, ϕ) = r·(cos(ϕ)X1 + sin(ϕ)X2). The curve c(r) = F(r, ϕ0) is for fixed ϕ = ϕ0
by the definition of the exponential map the geodesic with ċ(0) = cos(ϕ0)X1 +
sin(ϕ0)X2. Geodesics are parametrised proportional to arc-length and ċ(0) is a
unit vector, hence

g11(r, ϕ0) = g(ċ(r), ċ(r)) = 1.

Further

∂g12

∂r
(r, ϕ0) = ∂

∂r
g
(

∂F
∂r

,
∂F
∂ϕ

)∣∣∣∣
(r,ϕ0)

= g
(∇

∂r
∂F
∂r

(r, ϕ0),
∂F
∂ϕ

(r, ϕ0)

)
+ g

(
∂F
∂r

(r, ϕ0),
∇
∂r

∂F
∂ϕ

(r, ϕ0)

)
= g

( ∇
dr

ċ(r),
∂F
∂ϕ

(r, ϕ0)

)
+ g

(
∂F
∂r

(r, ϕ0),
∇
∂r

∂F
∂ϕ

(r, ϕ0)

)
= 0+ g

(
∂F
∂r

(r, ϕ0),
∇
∂ϕ

∂F
∂r

(r, ϕ0)

)

= 1
2

∂

∂ϕ
g
(

∂F
∂r

,
∂F
∂r

)
︸ ︷︷ ︸

≡1

∣∣∣∣∣∣∣∣∣
(r,ϕ0)

= 0. (4.13)

Hence the function g12 is constant in r for fixed ϕ = ϕ0. As an abbreviation
we set Y1 := cos(ϕ0)X1 + sin(ϕ0)X2 and Y2 := −sin(ϕ0)X1 + cos(ϕ0)X2. This
is the orthonormal basis of TpS that results from X1, X2 in a rotation through
the angle ϕ0. We have

∂F̃
∂r

(r, ϕ0) = Y1,
∂F̃
∂ϕ

(r, ϕ0) = r · Y2.

We calculate

lim
r→0

g12(r, ϕ0) = lim
r→0

g
(

∂F
∂r

(r, ϕ0),
∂F
∂ϕ

(r, ϕ0)

)

= lim
r→0

g

(
dF̃(r,ϕ0)

expp

(∂F̃
∂r

(r, ϕ0)
)

, dF̃(r,ϕ0)
expp

(∂F̃
∂ϕ

(r, ϕ0)
))
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= lim
r→0

g
(

dF̃(r,ϕ0)
expp(Y1), dF̃(r,ϕ0)

expp(r · Y2)
)

= g
(

d0 expp(Y1), d0 expp(0)
)

= 0. (4.14)

From (4.13) and (4.14) it follows that

g12 = g21 = 0.

Hence

(gij)ij =
(

1 0
0 g22

)
.

As the Riemannian metric is positive definite, we have g22 > 0 and we can
write g22 = f 2. In a way similar to that used in (4.14) we calculate

lim
r→0

g22(r, ϕ0) = lim
r→0

g

(
dF̃(r,ϕ0)

expp

(∂F̃
∂ϕ

(r, ϕ0)
)

, dF̃(r,ϕ0)
expp

(∂F̃
∂ϕ

(r, ϕ0)
))

= lim
r→0

g
(

dF̃(r,ϕ0)
expp(r · Y2), dF̃(r,ϕ0)

expp(r · Y2)
)

= g
(

d0 expp(0), d0 expp(0)
)

= 0.

This proves that
lim
r→0

f (r, ϕ0) = 0.

Further,

lim
r→0

∂f
∂r

(r, ϕ0) = lim
r→0

f (r, ϕ0)

r

= lim
r→0

√
g22(r, ϕ0)

r2

=
√

lim
r→0

g22(r, ϕ0)

r2

=
√

lim
r→0

g
(

dF̃(r,ϕ0)
expp(Y2), dF̃(r,ϕ0)

expp(Y2)
)

=
√

g
(

d0 expp(Y2), d0 expp(Y2)
)

= √
g (Y2, Y2)

= 1.
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Observe that polar coordinates are not defined for r = 0. The differential of
the parametrisation F does not have full rank. The point p itself cannot be
given in terms of geodesic coordinates at the point p. We cannot therefore
evaluate the function f at r = 0, though we can consider the limit as r tends to
0. However, we can give p in terms of Riemann normal coordinates at p.

Lemma 4.6.10 Keep the notation from theorem 4.6.9. Then the Gauss
curvature satisfies

K(F(r, ϕ)) = − 1
f (r, ϕ)

∂2f
∂r2

(r, ϕ).

Proof Theorem 4.6.9 tells us that in geodesic coordinates the Riemannian
metric has the form

(gij(r, ϕ))ij =
(

1 0
0 f (r, ϕ)2

)
.

The inverse matrix is then

(g ij(r, ϕ))ij =
(

1 0
0 f (r, ϕ)−2

)
.

Using the formula

�k
ij =

1
2

2∑
m=1

(
∂gjm

∂ui
+ ∂gim

∂u j
− ∂gij

∂um

)
g mk

from lemma 4.2.14, we easily calculate

�1
11 = �2

11 = �1
12 = �1

21 = 0,

�2
12 = �2

21 =
1
f

∂f
∂r

,

�1
22 = −f · ∂f

∂r
,

�2
22 =

1
f

∂f
∂ϕ

.

The vectors ∂F/∂r and (1/f )(∂F/∂ϕ) form an orthonormal basis of the tan-
gent plane. According to the Theorema Egregium (theorem 4.3.8) the Gauss
curvature is given by
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K = g
(

R
(

∂F
∂r

,
1
f

∂F
∂ϕ

)
1
f

∂F
∂ϕ

,
∂F
∂r

)
= 1

f 2
R1

122

= 1
f 2

(
∂�1

22

∂r
− ∂�1

21

∂ϕ
+ �1

11�
1
22 − �1

12�
1
21 + �1

21�
2
22 − �1

22�
2
21

)

= 1
f 2

(
−

(
∂f
∂r

)2

− f · ∂
2f

∂r2
− 0+ 0− 0+ 0+ f · ∂f

∂r
· 1

f
· ∂f

∂r

)

= −1
f

∂2f
∂r2

.

Remark In geodesic coordinates the function f carries the complete infor-
mation about the Riemannian metric. We have seen that Gauss curvature
can easily be calculated from f . Let us investigate which requirements on f
correspond to the condition of constant Gauss curvature K ≡ κ . The condition

κ = − 1
f (r, ϕ)

∂2f
∂r2

(r, ϕ)

is equivalent to
∂2f
∂r2

(r, ϕ) = −κ · f (r, ϕ).

This is an ordinary differential equation in r �→ f (r, ϕ) if we keep ϕ fixed. This,
together with the initial conditions f (0, ϕ) = 0 and (∂f/∂r)(0, ϕ) = 1, uniquely
determines the solution, which is

f (r, ϕ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1√
κ

sin(
√

κ · r), κ > 0,

r, κ = 0,
1√−κ

sinh(
√−κ · r), κ < 0.

This shows, in particular, that κ uniquely determines the metric in the
coordinate neighbourhood.

Corollary 4.6.11 If S1 and S2 are two regular surfaces with the same constant
Gauss curvature κ , then S1 and S2 are locally isometric.

We now see that the inhabitants of the surface from the introduction of this
chapter about the inner geometry of surfaces cannot distinguish different
surfaces with the same constant Gauss curvature if they can only take mea-
surements in the close neighbourhood of a point. In particular, they cannot
distinguish the plane, the cylinder and the cone.
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For the proof of the Gauss–Bonnet formula in the last chapter we will need
the following formula, which expresses the integral of Gauss curvature in the
neighbourhood of a point. For a regular surface S with Riemannian metric g,
a point p ∈ S and r > 0 let

D̄( p, r) := {q ∈ S | ∃ geodesic c : [0, 1] → S with c(0) = p, c(1) = q, L[c] ≤ r}.

Lemma 4.6.12 Keep the notation from theorem 4.6.9. Let r > 0 be such that
D̄( p, r) is (up to a zero set) covered by the geodesic polar coordinate system.
Then ∫

D̄( p,r)
K dA = 2π −

∫ ϕ0+2π

ϕ0

∂f
∂r

(r, ϕ) dϕ.

Proof By the formula for the Riemannian metric from Gauss’s lemma the
surface element is given in geodesic polar coordinates by

dA =
√

1 · f 2 dr dϕ = f dr dϕ.

For the geodesic coordinate system to cover D̄( p, r) up to a zero set, the
domain of the local parametrisation must be of the form U = (0, R)× (ϕ0, ϕ0+
2π) with R ≥ r. We substitute the formula for Gauss curvature from lemma
4.6.10 and obtain∫

D̄( p,r)
K dA = −

∫ ϕ0+2π

ϕ0

∫ r

0

1
f (r, ϕ)

∂2f
∂r2

(r, ϕ)f (r, ϕ) dr dϕ

= −
∫ ϕ0+2π

ϕ0

∫ r

0

∂2f
∂r2

(r, ϕ) dr dϕ

= −
∫ ϕ0+2π

ϕ0

(
∂f
∂r

(r, ϕ)− 1
)

dϕ.

The last equality holds since limr→0 (∂f/∂r)(r, ϕ) = 1.

Having looked at Riemann normal coordinates and geodesic polar coordi-
nates, we now introduce coordinates that are particularly tailored to a given
curve on the surface.

Lemma 4.6.13 Let S be a regular surface with Riemannian metric g. Let
c : I→ S be a curve parametrised by arc-length, defined on an open interval I.
Let n : I → R

3 be a vector field on S along c that has constant length 1 and
〈ċ, n〉 ≡ 0. Then there is for t0 ∈ I an ε > 0, such that

F : (t0 − ε, t0 + ε)× (−ε, ε)→ S, F(t, s) := expc(t)(sn(t)),
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is a local parametrisation of S. Along c the Riemannian metric w.r.t. this
parametrisation has the form

(
gij(t, 0)

)
ij =

(
1 0
0 1

)
.

Proof The partial derivatives of F at the point (t, 0) are given by

∂F
∂t

(t, 0) = d
dt

expc(t)(0) = ċ(t)

and
∂F
∂s

(t, 0) = n(t)

and hence form an orthonormal basis of Tc(t)S. By the inverse function theo-
rem, F is then after a suitable restriction a local parametrisation. Because of
the orthonormality the statement about the gij(t, 0) is clear as well.

Definition 4.6.14 The coordinates corresponding to such a parametrisation
are called Fermi coordinates.

Fermi coordinates will be useful in the proof of the divergence theorem
(theorem 5.1.7).

Exercise 4.25 Show that we have for the Christoffel symbols in Fermi
coordinates

�1
11(t, 0) = �2

12(t, 0) = �2
21(t, 0) = 0, �1

22(t, s) = �2
22(t, s) = 0,

�2
11(t, 0) = κg(t), �1

12(t, 0) = �1
21(t, 0) = −κg(t),

where κg is the geodesic curvature of c (w.r.t. the orientation of S making (ċ, n)

positively oriented).

4.7 Parallel transport

If we have two points p and q in a plane E ⊂ R
3, then we can identify tangent

vectors from TpE with those from TqE, since TpE = TqE = E. If we now
replace E by a general regular surface S ⊂ R

3, then this is no longer straight-
forward, since in general TpS �= TqS. In order still to be able to relate tangent
planes at different points even on general surfaces we analyse the concept of
“parallel” vectors in the plane a bit more carefully.

We can translate a vector v0 ∈ TpE into the corresponding (the same)
vector from TqE in the following way: we choose a connecting smooth curve
c : [a, b] → E, c(a) = p, c(b) = q, and consider along c the constant vector
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field v(t) ≡ v0 or, put differently, the vector field along c that satisfies v̇ ≡ 0.
Then v(b) ∈ TqE is the vector translated to q. This approach can be used with-
out complications on general regular surfaces by simply replacing the usual
derivative of v by the covariant derivative.

Definition 4.7.1 Let S be a regular surface with Riemannian metric g. Let
c : I → S be a smooth curve and v : I → R

3 be a vector field along c. Then v is
parallel if

∇
dt

v ≡ 0.

Remark Hence a smooth curve c is a geodesic if and only if its velocity field
ċ is parallel.

We now investigate the property of parallelism w.r.t. a local parametrisation.
For this purpose let (U, F, V) be a local parametrisation that contains the trace
of the curve c, c(I) ⊂ V. Write v(t) =∑

k ξk(t)(∂F/∂uk)(u(t)), where F ◦u = c.
By (4.2)

∇
dt

v ≡ 0

is equivalent to

ξ̇k(t)+
2∑

i,j=1

�k
ij(c̃(t))ξ

i(t) ˙̃cj(t) ≡ 0 (4.15)

for k = 1, 2. This is a system of linear ordinary differential equations of first
order in the coefficients ξk. Because of the linearity of the system of equations
we are in a situation which is better than the one we were in when we were
dealing with the geodesic equations. Now solutions do exist not only locally,
but on the whole interval I. Taking this into account, together with the fact
that we are dealing with a system of first-order differential equations, so that it
suffices to give an initial value (an initial derivative is not needed), we obtain
through a reasoning similar to that in the proofs of theorems 4.5.11 and 4.5.12
the following theorem.

Theorem 4.7.2 (Existence and uniqueness of the parallel vector field) Let S be a
regular surface with Riemannian metric g. Let c : I → S be a smooth curve,
t0 ∈ I, v0 ∈ Tc(t0)S. Then there exists exactly one parallel vector field v along c
with v(t0) = v0.

Definition 4.7.3 Let S be a regular surface with Riemannian metric g. Let
c : [t0, t1] → S be a smooth curve. The map Pc : Tc(t0)S→ Tc(t1)S that maps v0
to v(t1), where v is the unique parallel vector field along c with v(t0) = v0, is
called parallel transport along c.
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Proposition 4.7.4 Let S be a regular surface with Riemannian metric g. Let
c : [t0, t1] → S be a smooth curve. Then the following hold:

(i) If v0 ∈ Tc(t0)S, then the parallel vector field v along c with v(t0) = v0 is given by
v(t) = Pc|[t0,t](v0).

(ii) The parallel transport Pc : Tc(t0)S→ Tc(t1)S is a linear isometry.
(iii) Parallel transport is compatible with the reparametrisation of curve, i.e. if v is

parallel along c and ϕ : J → [t0, t] is a reparametrisation of c, then v ◦ ϕ is
parallel along c ◦ ϕ.

Proof Statement (i) follows directly from the uniqueness of parallel trans-
port. We have linearity of parallel transport because of the following: let v0
and w0 be from Tc(t0)S, and let v and w be the parallel vector fields along
c with v(t0)= v0 and w(t0)=w0. Let α, β ∈R. Then the vector field z(t) :=
α · v(t)+ β · w(t) is parallel to c, since

∇
dt

z = α · ∇
dt

v+ β · ∇
dt

w = 0.

The field z satisfies the initial condition z(t0) = α · v0 + β · w0. Hence

Pc(α · v0 + β · w0) = z(t1) = α · v(t1)+ β · w(t1) = α · Pc(v0)+ β · Pc(w0).

This proves the linearity of Pc. For two parallel fields v and w along c we have

d
dt

g(v, w) = g
(∇

dt
v, w

)
+ g

(
v,
∇
dt

w
)

= g (0, w)+ g (v, 0)

= 0.

Thus gc(t0)(v(t0), w(t0)) = gc(t1)(v(t1), w(t1)), i.e.

gc(t0)(v0, w0) = gc(t1)(Pc(v0), Pc(w0)).

This means precisely that Pc is a linear isometry. Statement (ii) has therefore
been proved.

Point (iii) follows from lemma 4.2.12:

∇
dt

(v◦ϕ) = ϕ̇ ·
(∇

dt
v ◦ ϕ

)
= 0.

Exercise 4.26 Show that parallel transport is a concept of the inner geome-
try of the surface. More precisely, if c : I → S1 is a smooth curve, v a smooth
vector field along c and f : S1 → S2 a local isometry, then v is parallel along c
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if and only if df ◦ v is parallel along f ◦ c. Further conclude that the following
diagram commutes for I = [t0, t1], c(t0) = p, c(t1) = q:

TpS1
Pc−−−−→ TqS1⏐⏐@dpf

⏐⏐@dqf

Tf ( p)S2
Pf◦c−−−−→ Tf (q)S2

As the covariant and the usual derivative agree on the affine plane E ⊂ S, a
vector field is parallel along a curve if and only if it is constant. In particular,
the parallel transport Pc : TpE → TqE is independent of the curve c that
connects the points p and q when we are dealing with the plane. This is not the
case on general regular surfaces.

Example 4.7.5 Let S be the conical surface,

S =
{
(ξ , η, ζ )�

∣∣∣ ξ2 + η2 = 1
3ζ 2, ζ > 0

}
.

To investigate parallel vector fields along the curve c : [0, π ] → S, c(t) =
1
2 (sin(2t), cos(2t),

√
3)� in S, we consider the x–y plane S̃ = R

2 × {0}. The map

f : S̃→ S, f (x, y, 0) = 1

2
√

x2 + y2

(
x2 − y2, 2xy,

√
3(x2 + y2)

)�
is a local isometry, see exercise 4.2. The curve c̃ : [0, π ] → S̃, c̃(t) =
(cos(t), sin(t), 0)�, satisfies that c = f ◦ c̃. In the plane the parallel vector fields
are exactly the constant vector fields. The vector field ṽ(t) = (1, 0, 0)�, for
example, is parallel along c̃. It follows that v := df ◦ ṽ is parallel along c in S.
Using

∂f
∂x
= 1√

x2 + y2

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x− 1

2

(
x2 − y2) x

x2 + y2

y− x2y
x2 + y2√

3
2

x

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

we calculate

v(t)= dc̃(t)f (ṽ(t))

= dc̃(t)f

⎛⎝1
0
0

⎞⎠
= ∂f

∂x
(c̃(t))
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=
⎛⎜⎝cos(t)− 1

2

(
cos(t)2 − sin(t)2) cos(t)

sin(t)− cos(t)2 sin(t)√
3

2 cos(t)

⎞⎟⎠
=

⎛⎜⎝cos(t)
(

1− 1
2 cos(2t)

)
sin(t)3
√

3
2 cos(t)

⎞⎟⎠ .

In particular, v(0) = (1/2, 0,
√

3/2)� and v(π) = (−1/2, 0,−√3/2)� = −v(0).
The parallel transport changes the tangent vector v0 = (1/2, 0,

√
3/2)� into its

negative in one revolution around c. More generally, v0 is mapped to itself for
an even number k of revolutions, i.e. c, parametrised on [0, k · π ], is mapped
to itself by parallel translation, while it is mapped to −v0 for uneven k.

Exercise 4.27 Illustrate this by drawing a constant vector field along half of
a circular line on a sheet of paper, and then making a cone out of the half of
the disc.

This example shows that parallel transport generally depends on the connect-
ing curve on regular surfaces.

Exercise 4.28 Let S be a regular surface with Riemannian metric g. Let
c : I → S be a constant curve, c ≡ p. A vector field along c is therefore a map
v : I → TpS. Show that v is parallel if and only if v is constant.

4.8 Jacobi fields

We discussed the geometric meaning of Gauss curvature in section 3.6. Theo-
rem 3.6.15 told us how the surface behaves near a point relative to the tangent
plane at that point, in terms of the of the sign of the Gauss curvature at that
point. But those investigations are only valid for the first fundamental form. In
the case of a general Riemannian metric we want to understand what Gauss
curvature tells us about the inner geometry of a surface. Jacobi fields are an
important tool for this; they, as we will see below, contain information about
the behaviour of neighbouring geodesics.

Definition 4.8.1 Let S be a regular surface with Riemannian metric g. Let
c be a geodesic on S. A smooth vector field J on S along c is called a Jacobi
field if

∇
dt
∇
dt

J = −R(J, ċ)ċ.

This Jacobi equation is a linear ordinary differential equation of second order
in J. We can therefore take arbitrary initial values J(t0) and (∇/dt)J(t0) in
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Tc(t0)S for t0 from the interval I on which c is defined, and obtain a unique solu-
tion of the equation, defined on the whole of I. As Tc(t0)S is two-dimensional
the set of all Jacobi fields forms a four-dimensional vector space.

To what extent do Jacobi fields tell us something about the behaviour of
neighbouring geodesics?

Definition 4.8.2 Let S be a regular surface with Riemannian metric g. Let
c0 : I → S be a geodesic on S. A geodesic variation of c0 is a smooth map
c : (−ε, ε) × I → S, ε > 0 such that c(0, t) = c0(t) and every curve cs : I → S,
cs(t) := c(s, t) is a geodesic, s ∈ (−ε, ε).

Proposition 4.8.3 If c is a geodesic variation on S, then the corresponding
variation field J(t) := (∂c/∂s)(0, t) is a Jacobi field.

Conversely, if J is a Jacobi field along a geodesic c0, and if c0 has a compact
domain, then there exists a geodesic variation of c0 with variation field J.

Proof (a) Let J be a variation field to a geodesic variation c. That every
curve cs is a geodesic means that

∇
∂t

∂c
∂t
= 0.

We differentiate this equation with respect to s and obtain, using lemma 4.5.4,
that

0 = ∇
∂s
∇
∂t

∂c
∂t

= ∇
∂t
∇
∂s

∂c
∂t
+ R

(
∂c
∂s

,
∂c
∂t

)
∂c
∂t

= ∇
∂t
∇
∂t

∂c
∂s
+ R

(
∂c
∂s

,
∂c
∂t

)
∂c
∂t

.

In particular, setting s = 0 gives

0 = ∇
dt
∇
dt

J + R(J, ċ0)ċ0,

the Jacobi equation.

(b) Conversely, let J be a Jacobi field along a geodesic c0. Let t0 be in the
domain of c0. We choose a curve s �→ ϕ(s) with ϕ(0) = c0(t0) and ϕ′(0) =
J(t0), e.g.

ϕ(s) := expc0(t0)(s · J(t0)).
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Let s �→ X(s) be the parallel vector field along ϕ with X(0) = (∇/dt)J(t0) and
s �→ Y(s) be the one with Y(0) = ċ0(t0). We define

c(s, t) := expϕ(s) ((t − t0)(sX(s)+ Y(s))) .

Then

c(0, t) = expc0(t0)((t − t0)ċ0(t0)) = c0(t)

and t �→ c(s, t) is a geodesic for every s. Since the t-interval is compact, c(s, t) is
defined for all sufficiently small |s| independent of t.

We have constructed a geodesic variation c of c0. The variation field J̃ of c
is again a Jacobi field by (a), and we have

J̃(t0) = ∂c
∂s

(0, t0) = d
ds

∣∣∣
s=0

expϕ(s)(0) = ϕ′(0) = J(t0)

and

∇
dt

J̃(t0) = ∇
∂t

∂c
∂s

(0, t0) = ∇
∂s

∂c
∂t

(0, t0) = ∇ds
(sX(s)+ Y(s))

= X(0)+ ∇Y
ds

(0) = ∇
dt

J(t0)+ 0 = ∇
dt

J(t0).

Thus the Jacobi fields J and J̃ have the same initial values at t = t0 and hence
agree. It follows that J is the variation field of the geodesic variation c.

Not all Jacobi fields are equally interesting. Jacobi fields are uninteresting if
the corresponding geodesic variation originates from a simple reparametrisa-
tion of the geodesic c0. As c0 is a geodesic, the same is true for t �→ c0(αt + β)

with α, β ∈ R arbitrary, see exercise 4.19. We can therefore define a geodesic
variation of c0 for a, b ∈ R via

c(s, t) := c0(ast + t + bs).

Then the corresponding Jacobi field J has initial values

J(t0) = ∂c
∂s

(0, t0) = d
ds

∣∣∣
s=0

c0(s(at0 + b)+ t0) = (at0 + b) · ċ0(t0)

and
∇
dt

J(t0) = ∇dt

∣∣∣
t=t0

((at + b) · ċ0(t)) = a · ċ0(t0).
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We observe that for uninteresting Jacobi fields both J(t0) and (∇/dt)J(t0)
are multiples of ċ0(t0), i.e. tangential to c0. Indeed, we can give these Jacobi
fields explicitly. Constraints due to the Jacobi equation and the initial values
give that

J(t) = (at + b)ċ0(t).

These uninteresting Jacobi fields therefore form a two-dimensional subspace
of the four-dimensional space of all Jacobi fields along c0.

These Jacobi fields have not given us any information about the geometry
of the surface. Let us now move on to the interesting Jacobi fields. Let n(t0) ∈
Tc0(t0)S be one of the two unit tangent vectors that are perpendicular to ċ0(t0).
Parallel transport along c0 then gives a unit normal field n(t) along c0. As c0 is a
geodesic, we know that n(t) is perpendicular to ċ0(t) for every t, not only for t =
t0. Now those Jacobi fields are interesting for which both J(t0) and (∇/dt)J(t0)
are multiples of n(t0). We thus obtain another two-dimensional subspace of the
vector space of Jacobi fields, complementary to the one of the uninteresting
Jacobi fields. An arbitrary Jacobi field along c0 can then be written uniquely
as the sum of an interesting Jacobi field and an uninteresting one.

Let us now show that such an interesting Jacobi field is perpendicular to
ċ0(t) for all t, not only for t = t0.

(
d
dt

)2

g(J(t), ċ0(t)) = g

((∇
dt

)2

J(t), ċ0(t)

)
= −g(R(J(t), ċ0(t))ċ0(t), ċ0(t))

= 0

because of lemma 4.3.10 (b). Hence the function t �→ g(J(t), ċ0(t)) is of the
form g(J(t), ċ0(t)) = αt + β for certain α, β ∈ R. If this function and its first
derivative vanish for t = t0, then it must vanish for all t. The interesting Jacobi
fields can therefore be written in the form

J(t) = χ(t) · n(t).

The Jacobi equation then translates to an ordinary differential equation in the
coefficient function χ :

χ̈(t) · n(t) = ∇
dt
∇
dt

J(t) = −R(J(t), ċ(t))ċ(t) = −χ(t)R(n(t), ċ(t))ċ(t),

and hence

χ̈ (t) = −χ(t)g(R(n(t), ċ(t))ċ(t), n(t)) = −χ(t)K(c0(t)).
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We see that for the interesting Jacobi fields the Jacobi equation is equivalent
to the following ordinary differential equation:

χ̈ = −χ · (K ◦ c0), (4.16)

in which the Gauss curvature K plays a significant role. The solution to this
differential equation cannot generally be found explicitly very easily. The
interesting Jacobi fields give us actual information about the surface that tells
us approximately how much neighbouring geodesics (from our geodesic varia-
tion) diverge from each other. Let us illustrate this with a simple but important
example.

Example 4.8.4 If the Gauss curvature of a surface is constant, K ≡ κ , then
(4.16) can be solved explicitly. Setting

sκ(t) :=
⎧⎨⎩

sin(
√

κt)/
√

κ , κ > 0,
t, κ = 0

sinh(
√|κ|t)/√|κ|, κ < 0,

, cκ(t) :=
⎧⎨⎩

cos(
√

κt), κ > 0,
1, κ = 0

cosh(
√|κ|t), κ < 0,

,

we have

cκ(t)2 + κsκ(t)2 = 1, (4.17)

ṡκ = cκ , (4.18)

ċκ = −κsκ . (4.19)

In particular, the functions sκ and cκ solve the differential equation

χ̈ = −κ · χ

and are linearly independent. Hence every solution of this differential equa-
tion can be written as a linear combination of sκ and cκ . The interesting Jacobi
fields are thus of the form

J(t) = (αsκ(t)+ βcκ (t))n(t).

They behave very differently depending on the sign of κ . If κ > 0, then the
length of J is periodic with period 2π/κ . In particular, J is 0 again and again.
For geodesics that diverge at a point this means that they will approach each
other again after some time.

If κ = 0, then the length increases linearly. This is the familiar situation that
we know from straight lines in the Euclidean plane.
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In the case κ < 0 the length increases even more quickly, in fact exponen-
tially. Summarising we can say that the more negative the curvature, the more
the geodesics diverge.

κ > 0 κ = 0 κ < 0

Exercise 4.29 Show that on the surface of revolution with parametrisation
F(t, ϕ) = (r(t) cos(ϕ), r(t) sin(ϕ), t)� the vector field ∂F/∂ϕ is a Jacobi field
along the lines of longitude.

4.9 Spherical and hyperbolic geometry

We now want to investigate spherical geometry in more detail, in particular
with regard to trigonometric rules analogous to those of Euclidean geome-
try, which we treated in the first chapter. At the same time we introduce a
surface which is in a way the negatively curved analogue of the sphere, the
hyperbolic plane. We can investigate its trigonometry simultaneously. The
hyperbolic plane has great historic importance, since it satisfies all axioms of
Euclidean geometry except for the parallel axiom. It also shows that the efforts
to derive the parallel axiom from the other axioms, which had been going on
for thousands of years, were inevitably in vain.

Let us construct the hyperbolic plane. For κ ∈ R we set

M̂κ :=
{
(x, y, z)� ∈ R

3
∣∣∣ κ(x2 + y2)+ z2 = 1

}
.

In the case κ = 1 this is simply the sphere M̂1= S2. In the case κ = 0, on the
other hand, we obtain the union of two parallel planes through the points
(0, 0, 1) and (0, 0,−1). We are now mostly interested in the case κ = −1. The
surface M̂−1 is the two-sheeted hyperboloid, consisting of two sheets that are
graphs of the functions z = ±√1+ x2 + y2. Being graphs, they are, in partic-
ular, regular surfaces. Since we do not want to work with several sheets, we
additionally define

Mκ :=
{

M̂κ , κ > 0,

{(x, y, z)� ∈ M̂κ | z > 0}, κ ≤ 0.
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M−1

M0

M1

So we take only the upper plane or sheet. We already know that M1 has con-
stant Gauss curvature K ≡ 1, while the plane has K ≡ 0, in each case with
the first fundamental form as Riemannian metric. If we now take the first fun-
damental form on M−1, then it does not have curvature −1, which we would
have liked.

Exercise 4.30 Show that M−1 with the first fundamental form as Rieman-
nian metric has positive Gauss curvature.

Let us therefore take another Riemannian metric on M−1. Indeed, this exam-
ple is so important that we have already introduced general Riemannian
metrics because of this. For the construction of the Riemannian metric we
define the following symmetric bilinear form on R

3:

〈⎛⎝x
y
z

⎞⎠ ,

⎛⎝x′
y′
z′

⎞⎠〉
κ

:= xx′ + yy′ + zz′

κ
.

In the case κ = 1, this is the usual Euclidean scalar product. If κ = −1, then
the symmetric bilinear form is not degenerate, but indefinite. We call 〈·, ·〉−1
the Minkowski scalar product on R

3. It plays an important role in Einstein’s
special relativity theory. We call the set of all vectors of “vanishing length” the
light cone{

X ∈ R
3
∣∣∣ 〈X, X〉−1 = 0

}
=

{
(x, y, z)� ∈ R

3
∣∣∣ z2 = x2 + y2

}
.

We now define the Riemannian metric on Mκ by restricting the symmetric
bilinear form 〈·, ·〉κ for every point p ∈ Mκ to TpMκ . The construction is thus
similar to that of the first fundamental form, except that we have replaced the
usual Euclidean scalar product on R

3 by 〈·, ·〉κ .
In the case κ = 0, one could complain that we need to divide by 0 in the def-

inition of 〈·, ·〉0, and that the definition is therefore not reasonable. But every
tangent plane of M0 equals R

2 × {0}, i.e. the coefficient of the zz′-term does
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not play a role anyway. We could therefore without worry replace 〈·, ·〉0 by
the usual Euclidean scalar product without changing the Riemannian metric
induced on M0. It is simply the usual Euclidean metric on the plane.

Since for κ < 0 the bilinear form 〈·, ·〉κ is no longer positive definite, it is a
priori not clear that the restrictions to the tangent planes of Mκ are positive
definite. They need to have this property if we want to obtain a Riemannian
metric. To check that at least the restrictions of 〈·, ·〉κ to the tangent planes are
positive definite, we parametrise Mκ as follows:

Fκ : R× R→ R
3, Fκ(r, ϕ) :=

⎛⎝sκ(r) cos(ϕ)

sκ(r) sin(ϕ)

cκ(r)

⎞⎠ .

Here cκ and sκ are the generalised sine and cosine functions defined in exam-
ple 4.8.4. Using (4.17) it is easily seen that the image of Fκ is exactly Mκ , more
precisely

Fκ(R× R) = Fκ([0, π/
√

κ] × [0, 2π)) =Mκ

in the case κ > 0 and

Fκ(R× R) = Fκ([0,∞)× [0, 2π)) =Mκ

in the case κ ≤ 0. Using (4.18) and (4.19) we immediately get the partial
derivatives of Fκ :

∂Fκ

∂r
(r, ϕ) =

⎛⎝cκ(r) cos(ϕ)

cκ(r) sin(ϕ)

−κsκ(r)

⎞⎠ ,
∂Fκ

∂ϕ
(r, ϕ) =

⎛⎝−sκ(r) sin(ϕ)

sκ(r) cos(ϕ)

0

⎞⎠ .

The two partial derivatives are linearly independent for r∈ (0, π/
√

κ) and
r∈ (0,∞). Restriction of Fκ to suitable domains therefore gives us local
parametrisations cf. the Mκ except for the points (0, 0, 1)� and, in the case
κ > 0, (0, 0,−1)�. At those two special points the tangent plane is exactly the
x–y plane and a restriction of 〈·, ·〉κ gives the usual Euclidean scalar product,
and is thus positive definite. For the other points we calculate the coefficients
gij of our restriction with respect to the local parametrisation Fκ , e.g.〈

∂Fκ

∂r
(r, ϕ),

∂Fκ

∂r
(r, ϕ)

〉
κ

= cκ(r)2 cos(ϕ)2 + cκ(r)2 sin(ϕ)2 + 1
κ

κ2sκ(r)2

= cκ(r)2 + κsκ(r)2 = 1.

The other components are obtained in a similar way:

(
gij(r, ϕ)

)
ij =

(
1 0
0 sκ(r)2

)
. (4.20)
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This matrix is positive definite for r ∈ (0, π/
√

κ) and r ∈ (0,∞). Therefore we
really have a Riemannian metric on Mκ .

Definition 4.9.1 The regular surface M−1 together with the Riemannian
metric defined via the restriction of 〈·, ·〉−1, is called the hyperbolic plane.

The special form of the metric in (4.20) shows that Fκ gave us a parametrisa-
tion in geodesic polar coordinates at the point (0, 0, 1)�. By lemma 4.6.10 the
Gauss curvature is now given by

K = − s̈κ(r)
sκ(r)

= κ .

In particular, the hyperbolic plane has constant Gauss curvature −1. Further,
the curves r �→ Fκ(r, ϕ) are the geodesics parametrised by arc-length that begin
at (0, 0, 1)�. The traces of these geodesics have a particularly simple geometric
characterisation. They are exactly the intersection of the surface Mκ with the
plane through the origin, through (0, 0, 1)� and through (cos(ϕ), sin(ϕ), 0)�. In
the case of the sphere M1 this gives the great circles through the “north pole”
(0, 0, 1)�. In the case of the plane we get the straight lines through this point.
In the case of the hyperbolic plane we obtain hyperbolas. What do the other
geodesics look like, those that do not pass through (0, 0, 1)�?

To understand this, we will use isometries to map the geodesics through
(0, 0, 1)� to other geodesics. To do so we need to obtain enough isometries.
We investigate which linear maps on R

3 become isometries after a restriction
to Mκ . For this purpose let L ∈ GL(3). Let us first consider the case κ �= 0. If
L preserves the symmetric bilinear form 〈·, ·〉κ , i.e.

〈LX, LY〉κ = 〈X, Y〉κ

for all X, Y ∈ R
3, then, in particular, M̂κ is mapped to itself and for every p ∈

M̂κ the map dpL = L|TpM̂κ
: TpM̂κ → TLpM̂κ is a linear isometry. However,

in the case κ < 0 it can happen that the two sheets of the hyperboloid are
interchanged. To prevent this we additionally require that (0, 0, 1)� is mapped
back to the upper sheet, i.e. the third component of the image vector must be
positive. Writing

L =
⎛⎝L11 L12 L13

L21 L22 L23
L31 L32 L33

⎞⎠ ,

we see that L33 > 0. The other points of the upper sheet will for reasons of
continuity be mapped to the upper sheet as well:

L(Mκ ) =Mκ .
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In the case κ = 0, the vectors of the form (x, y, 1)� must be mapped to vectors
whose third component is also equal to 1. This means precisely that L31 =
L32 = 0 and L33 = 1. Further, the Euclidean map must be preserved in the
x–y plane for the maps to be isometries. This means that(

L11 L12
L21 L22

)
∈ O(2).

Summarising, we can say that we have already found rather large groups of
isometries on Mκ , i.e.

Gκ :=
⎧⎨⎩

{L ∈ GL(3)| 〈LX, LY〉κ = 〈X, Y〉κ and L33 > 0}, κ < 0,
{L ∈ GL(3)| L31 = L32 = 0, L33 = 1, (Lij)i,j=1,2 ∈ O(2)}, κ = 0,

{L ∈ GL(3)| 〈LX, LY〉κ = 〈X, Y〉κ }, κ > 0.

For κ = 1 we have G1=O(3). In the case κ = 0, the group G0 is isomorphic
to the Euclidean group E(2), see definition 1.2.1. Indeed, L ∈ G0 maps
the vector (x, y, 1)� to (L11x + L12y + L13, L21x + L22y + L23, 1)�, i.e. L
acts like a Euclidean motion FA,b with A = (Lij)i,j=1,2 and translational part
b = (L13, L23)

�.
The elements of the group G−1 are called the time-preserving Lorentz

transformations or orthochronous Lorentz transformations, a terminology
that comes from relativity theory.

For every κ , the group Gκ contains the rotations around the z-axis:⎛⎝cos(ϕ) −sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

⎞⎠ ∈ Gκ .

Hence every point from Mκ can be moved into the x–z plane by an isometry,
i.e. to a point of the form (sκ(r), 0, cκ(r))�, without moving the point (0, 0, 1)�
in this process.

For such a point (sκ(r), 0, cκ(r))� we consider the linear map

L :=
⎛⎝−cκ(r) 0 sκ(r)

0 1 0
κsκ(r) 0 cκ(r)

⎞⎠ ∈ Gκ . (4.21)

This L interchanges the two points (sκ(r), 0, cκ(r))� and (0, 0, 1)�. Altogether
we see that every point from Mκ can be mapped to the point (0, 0, 1)� by a suit-
able isometry. We say that the isometry group acts transitively on Mκ . Loosely
one could say that Mκ with the Riemannian metric that we constructed is a
surface with a very high symmetry.

To come back to our discussion of geodesics, for an arbitrary geodesic
through a point p ∈ Mκ we can find an isometry L ∈ Gκ which maps p to
(0, 0, 1)� and the geodesic to the intersection of Mκ with a two-dimensional
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subspace E of R
3. As L is a linear map on R

3, we know that L−1(E) is a two-
dimensional subspace of R

3 as well. Generally it no longer contains the point
(0, 0, 1)�, but instead contains the point p. This is summarised in the following
theorem:

Theorem 4.9.2 The traces of geodesics of Mκ with the Riemannian metric
defined by the restriction of 〈·, ·〉κ are exactly the (non-empty) intersections of
Mκ with the two-dimensional subspaces of R

3.

In the case κ = 1 these are the great circles on S2, in the case κ = 0 they are
the straight lines in the plane and in the case κ = −1 we obtain hyperbolas.

Exercise 4.31 Show that Gκ already contains all isometries of Mκ .

Hint First use the exponential map to show that for p ∈ Mκ an isometry
f : Mκ → Mκ is already uniquely determined by the image point f ( p) and the
differential dpf : TpMκ → Tf ( p)Mκ .

We now begin to derive the trigonometric theorems for Mκ . For this pur-
pose we consider a geodesic triangle on Mκ , i.e. three points A, B, C ∈ Mκ ,
which are connected by geodesics of length a, b, c. We will denote the inte-
rior angles at the vertices by α, β, γ . We will in the following always assume
that the geodesic triangles are not degenerate, i.e. the lengths of the sides are
positive and in the case κ > 0 smaller than π/

√
κ and the angles are in (0, π).

A B

C

c

b a

α β

γ
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We want to find relations between the angles and the lengths of sides. As
isometries do not change angles or the lengths of sides, we can first use an
isometry to map the point A to (0, 0, 1)� and then rotate B into the x–z plane.
Without loss of generality we therefore have

A =
⎛⎝0

0
1

⎞⎠ , B =
⎛⎝sκ(c)

0
cκ(c)

⎞⎠ , C =
⎛⎝sκ(b) cos(α)

sκ(b) sin(α)

cκ(b)

⎞⎠ .

We apply isometry L from (4.21), which interchanges points A and B, with
r = c to the entire triangle.

A = LB B = LA

LC

c

a b

β α

γ

As the side from LC to LB has length a and the angle at A is β, we have

LC =
⎛⎝sκ(a) cos(β)

sκ(a) sin(β)

cκ(a)

⎞⎠ . (4.22)

On the other hand, we calculate

LC =
⎛⎝−cκ(c) 0 sκ(c)

0 1 0
κsκ(c) 0 cκ(c)

⎞⎠ ·
⎛⎝sκ(b) cos(α)

sκ(b) sin(α)

cκ(b)

⎞⎠

=
⎛⎝−cκ(c)sκ(b) cos(α)+ sκ(c)cκ(b)

sκ(b) sin(α)

κsκ(c)sκ(b) cos(α)+ cκ(c)cκ(b)

⎞⎠ .

(4.23)

We compare the components in (4.22) and (4.23) and obtain

sκ(a) cos(β) = −cκ (c)sκ(b) cos(α)+ sκ(c)cκ(b), (4.24)

sκ(a) sin(β) = sκ(b) sin(α), (4.25)

cκ(a) = κsκ(c)sκ(b) cos(α)+ cκ(b)cκ(c). (4.26)

Equation 4.25 gives the sine rule

sκ(a)

sin(α)
= sκ(b)

sin(β)
,
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and (4.26) is called the cosine rule for sides. Multiplying (4.24) by cos(α) and
(4.25) by sin(α) and subtracting the resulting equations one from the other
gives

sκ(a) (cos(α) cos(β)− sin(α) sin(β))

= −cκ(c)sκ(b) cos(α)2 + sκ(c)cκ(b) cos(α)− sκ(b) sin(α)2. (4.27)

Interchanging the roles of b and c in (4.24) (i.e. considering triangle ABC
instead of ACB) we obtain

sκ(a) cos(γ ) = −cκ(b)sκ(c) cos(α)+ sκ(b)cκ(c). (4.28)

We substitute (4.28) into (4.27) and finally use the sine rule:

sκ(a) (cos(α) cos(β)− sin(α) sin(β))

= −cκ(c)sκ(b) cos(α)2 − sκ(a) cos(γ )+ sκ(b)cκ(c)− sκ(b) sin(α)2

= sκ(b)cκ(c) sin(α)2 − sκ(a) cos(γ )− sκ(b) sin(α)2

= sκ(a)cκ(c) sin(α) sin(β)− sκ(a) cos(γ )− sκ(a) sin(α) sin(β).

We divide this equation by sκ(a), add sin(α) sin(β) on both sides and obtain

cos(α) cos(β) = cκ(c) sin(α) sin(β)− cos(γ ).

This is the cosine rule for angles. We summarise these rules in the following
theorem:

Theorem 4.9.3 (Spherical and hyperbolic trigonometry) Let ABC be a geodesic
triangle with side-lengths a, b, c and interior angles α, β, γ on Mκ . Then the
following hold:

(i) the sine rule:
sκ(a)

sin(α)
= sκ(b)

sin(β)
= sκ(c)

sin(γ )
;

(ii) the cosine rule for sides:

cκ(a) = cκ(b)cκ(c)+ κsκ(b)sκ(c) cos(α),

cκ(b) = cκ(a)cκ(c)+ κsκ(a)sκ(c) cos(β),

cκ(c) = cκ(a)cκ(b)+ κsκ(a)sκ(b) cos(γ );
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(iii) the cosine rule for angles:

cos(α) = cκ(a) sin(β) sin(γ )− cos(β) cos(γ ),

cos(β) = cκ(b) sin(α) sin(γ )− cos(α) cos(γ ),

cos(γ ) = cκ(c) sin(α) sin(β)− cos(α) cos(β).

This theorem contains three trigonometric rules for both spherical (κ = 1) and
hyperbolic geometry (κ = −1). The theorem holds for all κ ∈ R, in particu-
lar for κ = 0. Indeed, the sine rule of Euclidean geometry (theorem 1.2.6) is
included in theorem 4.9.3. The cosine rule for sides on the other hand is trivial
in the Euclidean case. The cosine rule for angles says that in the case κ = 0

cos(γ ) = sin(α) sin(β)− cos(α) cos(β) = −cos(α + β) = cos(π − α − β),

i.e. we obtain theorem 1.2.7 about the sum of interior angles in a Euclidean
triangle. In the hyperbolic case κ = −1 or more generally if κ < 0, we have for
c > 0 that cκ(c) > 1, hence

cos(γ ) > sin(α) sin(β)− cos(α) cos(β) = −cos(α + β) = cos(π − α − β)

and thus
α + β + γ < π .

Hyperbolic triangles are therefore “narrow” compared to Euclidean ones.
Analogously we see that in the spherical case (κ > 0)

α + β + γ > π .

Spherical triangles are “fat”.

κ = 0κ < 0 κ > 0

Exercise 4.32 Use the sine rule for geodesic triangles on Mκ to derive the
height formula

sκ(hc) = sκ(b) sin(α) = sκ(a) sin(β).

hc is the height of the triangle with over side AB.

Exercise 4.33 Derive the cosine rule (theorem 1.2.4) in the Euclidean case
κ = 0 from the sine rule and the cosine rule for angles.



210 T H E I N N E R G E O M E T R Y O F S U R F A C E S

4.10 Cartography

Cartography is the science of geographical maps. Mathematically speaking,
we want to study charts of S2. For simplicity, we will ignore all complications
arising from the fact that the earth is better described by a certain rotational
ellipsoid than by a sphere. Ideally, one would like to find charts which preserve
lengths, angles, and areas up to a scale factor. However, this is not possible
since such a chart would be an isometry between a portion of S2 and a portion
of R

2. By Gauss’s Theorema Egregium no such isometry exists because S2 has
Gauss curvature K ≡ 1 while the Euclidean plane has K ≡ 0. In the literature
on cartography one nevertheless finds statements of the extent that certain
maps are length-preserving. This is rather misleading because it means that
some lengths are preserved, not all.

As we will see it is possible to construct charts that are angle-preserving or
area-preserving. A chart is area-preserving if the area element of the sphere
expressed in the coordinates u1, u2 coincides with the area element of the
Euclidean metric of the plane, dA = du1 du2. How can we see whether or
not a chart is angle-preserving?

Lemma 4.10.1 Let g and g′ be two Euclidean metrics on R
n, n ≥ 2. Then g

and g′ define the same angles if and only if there exists a number c > 0 such that

g′ = c · g.

Proof If g′ = c · g, then for any non-zero vectors X, Y ∈ R
n we have

g(X, Y)√
g(X, X)

√
g(Y, Y)

= g′(X, Y)√
g′(X, X)

√
g′(Y, Y)

,

because the factor c cancels. Thus the angles between X and Y are the same
for g and for g′.

Conversely, let g and g′ define the same angles. Fix a non-zero vector Y ∈ R
n.

For any X ∈ R
n, not a multiple of Y, consider the triangle with vertices 0, Y

and X. Denote the angle at the corner X by η and the one at the corner Y by
ξ . It is important that the angles are the same for g and for g′. By the sine rule
we have

‖X‖g

‖Y‖g
= sin(ξ)

sin(η)
= ‖X‖g′

‖Y‖g′
,

hence

g′(X, X) = c · g(X, X)
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with c = g′(Y, Y)/g(Y, Y). Since the set of vectors X which are not a multiple
of Y is dense in R

n this relation holds for all X ∈ R
n by continuity. Polarisation

implies

g′(X, Z) = c · g(X, Z)

for all X, Z ∈ R
n.

This justifies the following.

Definition 4.10.2 Let S and S′ be regular surfaces equipped with Rieman-
nian metrics g and g′ respectively. A local diffeomorphism � : S→ S′ is called
angle-preserving or conformal if there exists a positive function c : S → R

such that
�∗g′ = c · g.

By the previous lemma this means that the angle between X, Y ∈ TpS is the
same as the angle between dp�(X), dp�(Y) ∈ T�( p)S. Note that the confor-
mal factor c will, in general, depend on p ∈ S. Since g and �∗g′ are smooth, c
is a smooth function on S.

A local parametrisation (U, F, V) of a regular surface S with Riemannian
metric g will be called conformal if it is conformal as a map F : U → V, where
U carries the Euclidean metric. In other words, there exists a positive function
c : U → R such that

(gij(u
1, u2)) = c(u1, u2) ·

(
1 0
0 1

)
.

The most common way to specify a location on the surface of the earth is to
give its longitude λ and latitude ϕ. For example, Greenwich (England) has
longitude λ = 0 and latitude ϕ = 51◦28′44′′ ≈ 0.286 · π . Mathematically, this
means that we use the parametrisation introduced in example 3.3.3:

F :
(
−π

2
,
π

2

)
× (0, 2π)→ R

3,

F(ϕ, λ) =
⎛⎝cos(ϕ) · cos(λ)

cos(ϕ) · sin(λ)

sin(ϕ)

⎞⎠ .

The computation of the first fundamental form gave us

(
gij(ϕ, λ)

)
ij =

(
1 0
0 cos2(ϕ)

)
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and hence
dA = cos(ϕ) dϕ dλ.

Thus longitude and latitude do not give rise to an area- or angle-preserving
map.

Let us instead look at so-called azimuthal charts of the sphere. They are
obtained by projecting the sphere onto one of its tangent planes. For simplic-
ity, we will always use the tangent plane to the “north pole” e3 = (0, 0, 1)�,
but any other point would do equally well. The simplest such chart is the
orthographic projection or parallel projection.

Here we have U = {
(x, y)� | x2 + y2 < 1

}
, V = {

(x, y, z)� ∈ R
3 | z > 0

}
and F(x, y) = (x, y,

√
1− x2 − y2)�, cf. example 3.1.5. Note that the local

parametrisation F is the inverse of the projection. One computes

(gij(x, y)) = 1
1− x2 − y2

(
1− y2 xy

xy 1− x2

)
and hence

dA =
√

det(gij(x, y)) dx dy = (1− x2 − y2)−1/2 dx dy.

Thus the orthographic projection is neither area- nor angle-preserving. It
shows the earth as it is seen from outer space.

The next azimuthal chart is the gnomonic projection or central projection.

Here we have U = R
2, V = {(x, y, z)� ∈ R

3 | z > 0}, and F(x, y) =
(1/

√
1+ x2 + y2)(x, y, 1)�. One computes

(gij(x, y)) = 1
(1+ x2 + y2)2

(
1+ y2 −xy
−xy 1+ x2

)
and

dA = (1+ x2 + y2)−3/2 dx dy.
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orthographic
projection

gnomonic
projection

stereographic
projection
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Hence this chart is also neither area- nor angle-preserving but it has the
pleasing property that the geodesics on the sphere, the great circles, are
represented in the chart by straight lines. This is because a great circle is the
intersection of S2 with a plane E through the origin which is projected to the
intersection of E with the tangent plane, a straight line. Thus this type of map
is well suited for finding the shortest route from one point to another.

If we change the projection point from the centre of the sphere to the south
pole we obtain the stereographic projection.

In this case

U = R
2, V = R

3 \
{
(0, 0,−1)�

}
, F(x, y) = 1

4+ x2 + y2
(4x, 4y, 4− x2 − y2)�,

(gij(x, y)) = 16
(4+ x2 + y2)2

(
1 0
0 1

)
and

dA = 16
(4+ x2 + y2)2

dx dy.

Thus the stereographic projection is conformal but not area-preserving.

All three projections considered so far satisfy (gij(0, 0)) =
(

1 0
0 1

)
. Thus the

differential of the local parametrisation is an isometry at (0, 0, )�. The distor-
tion of the map is small near the north pole (or whatever point has been chosen
as the projection centre).

To get a map with small distortion in a whole neighbourhood of the equator
(or any other great circle) one wraps a cylinder around the equator, projects
the sphere onto the cylinder and then unwraps it.

We then have U = (0, 2π)× (−1, 1), V = R
3 \ {(x, 0, z)� | x > 0

}
, and

F(ϕ, h) =
⎛⎜⎝cos(ϕ) ·

√
1− h2

sin(ϕ) ·
√

1− h2

h

⎞⎟⎠ .
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One computes

(gij(ϕ, h)) =
⎛⎝1− h2 0

0
1

1− h2

⎞⎠ .

Thus this map is not conformal but dA = dϕ dh, hence it is area-preserving.
Let us modify this example. We introduce a new parameter x and let the

height h be a function of x yet to be determined, i.e.

F(ϕ, x) =
⎛⎜⎝cos(ϕ) ·

√
1− h(x)2

sin(ϕ) ·
√

1− h(x)2

h(x)

⎞⎟⎠ .

Then we get

(gij(ϕ, x)) =
⎛⎝1− h(x)2 0

0
h′(x)2

1− h(x)2

⎞⎠ .

We see that we need h′ �= 0. We may and will assume that h′ > 0 because
otherwise we may simply replace h(x) by h(−x). In order to get a conformal
chart we need

1− h(x)2 = h′(x)2

1− h(x)2
,

i.e.

h′(x) = 1− h(x)2.

The solution to this ordinary differential equation with initial condition
h(0) = 0 is

h(x) = tanh(x).

The resulting geographical map is known as Mercator’s projection named after
the Flemish geographer Gheert Cremer (1512–1594), who latinised his name
to Gerardus Mercator.

Exercise 4.34 What can you say about the solutions to this ordinary
differential equation with other initial values h(0)?

There are many more geographical maps. For example, in order to get a good
map representation of a neighbourhood of a circle of latitude other than the
equator, one can wrap a cone around the sphere along a small circle and then
unwrap it. The interested reader should consult a book on cartography such
as [28].
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Exercise 4.35 Show that there are no geographical maps that are at the same
time conformal and area-preserving.

cylindrical equal-area projection

Mercator’s projection
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4.11 Further models of hyperbolic geometry

We now study charts of the hyperbolic plane. In contrast to the spherical case it
is possible to find charts covering the whole hyperbolic plane at once. We will
call such charts models of hyperbolic geometry. If (U, F, V) is such a chart with
M−1 ⊂ V, then F is a diffeomorphism from U to M−1 and all investigations of
hyperbolic geometry can be performed on U using the functions gij : U → R

describing the hyperbolic Riemannian metric in this chart. Since the hyper-
bolic metric was obtained by restricting the Minkowski scalar product of R

3

instead of the Euclidean scalar product, we have

gij

(
u1, u2

)
=

〈
∂F
∂ui

(
u1, u2

)
,

∂F
∂u j

(
u1, u2

)〉
−1

.

The first chart is obtained by central projection with respect to the origin of
the unit disc in Te1M−1 to M−1.

e1

(1, x, y)�

F(x, y)

M−1

�

�

Expressed as formulae, this becomes, U = {
(x, y)� ∈ R

2 | x2 + y2 < 1
}

and

F(x, y) = 1√
1− x2 − y2

⎛⎝1
x
y

⎞⎠ . (4.29)

This chart is known as the Klein model, as the Cayley–Klein model, as the pro-
jective model, and also as the Beltrami–Klein model of hyperbolic geometry.
We compute

∂F
∂x
=

(
1− x2 − y2

)−3/2

⎛⎝ x
1− y2

xy

⎞⎠ ,
∂F
∂y
=

(
1− x2 − y2

)−3/2

⎛⎝ y
xy

1− x2

⎞⎠
and hence

g11(x, y) =
〈
∂F
∂x

,
∂F
∂x

〉
−1
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=
(

1− x2 − y2
)−3 ·

(
−x2 +

(
1− y2

)2 + (xy)2
)

= 1− y2(
1− x2 − y2

)2

and similarly for the other coefficients for the metric. We obtain

(gij(x, y)) = 1(
1− x2 − y2

)2

(
1− y2 xy

xy 1− x2

)
.

Exercise 4.36 Show that the hyperbolic plane has infinite area.

The metric does not look particularly simple in the Klein model but this
model has one very pleasing feature: geodesics in M−1 correspond to straight
line segments in U. This is clear from the construction of F. The geodesics
in M−1 are the intersections of M−1 with planes E containing the origin.
Under the central projection this is mapped to the intersection of E with the
unit disc in Te1M−1. The intersection of the two planes E and Te1M−1 is a
straight line.

This allows a simple discussion of the parallel axiom. Keeping the terminol-
ogy and the notation from the first chapter we now take the hyperbolic plane
M−1 as the set of points, the set of “straight lines” will be the set of traces of
all geodesics,

P :=M−1,

G := {M−1 ∩ E| E ⊂ R
3 is a two-dimensional subspace} − {∅}.

The incidence relation is the usual set-theoretical inclusion. We immediately
see that the incidence axioms I1–I4 are satisfied. Unlike in spherical geome-
try, in which geodesics are great circles, there is an obvious useful definition
for when one point lies between two others on the hyperbolas in hyperbolic
geometry. The validity of the ordering axioms A1–A5 is then easy to see. For
the definition of congruence of lengths and angles we use isometries as in the
discussion of the Cartesian model of Euclidean geometry. This time we use
the group G−1 of isometries on M−1 instead of the Euclidean group. It is then
not difficult to show the validity of the congruence axioms. By theorem 1.1.9
we already know that parallels therefore exist. The completeness axioms can
be derived in a way similar to the one used for the Cartesian model.

Only the parallel axiom is not valid, since parallels are not unique. This is
easily seen in the Klein model. Given a line segment L in U there is an infinity
of line segments not intersecting L but having one point in common.
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�

L

Hyperbolic geometry shows that the parallel axiom does not follow from the
other axioms of Euclidean geometry.

Note that the Klein model is the hyperbolic analogue of the gnomonic chart
of the sphere. Also compare their metric coefficients. Now we move on to the
hyperbolic analogue of the stereographic projection in spherical geometry. In
principle, we only have to change the projection point from the origin to −e1
as in spherical geometry. To get slightly simpler formulae we do not project to
Te1M−1 but to the parallel plane spanned by e2 and e3. The difference is only
a stretching by a factor of 2.

−e1

�

�

(0, ξ , η)�

F(ξ , η)

M−1

Set up in this way U is the unit disc as for the Klein model and one easily
computes that

F(ξ , η) = 1
1− ξ2 − η2

⎛⎝1+ ξ2 + η2

2ξ

2η

⎞⎠ .

A calculation similar to the one for the Klein model yields

(gij(ξ , η)) = 4
(1− ξ2 − η2)2

(
1 0
0 1

)
.

Thus this model of hyperbolic geometry is conformal just like the stereo-
graphic projection. So it comes at no surprise that this model is known as
the conformal disc model and also as the Poincaré disc model. It was popu-
larised by the Dutch artist Maurits Cornelis Escher (1898–1972) in his famous
woodcuts such as “Circle Limit I” from 1958.1

1 M. C. Escher’s “Circle Limit I” c© 2009 The M. C. Escher Company – Holland. All rights
reserved. www.mcescher.com

www.mcescher.com
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The straight line segments through the centre of the disc correspond to the
geodesics of M−1 given by intersections with those planes that contain both the
origin and e1. The other geodesics correspond to circular arcs in the disc meet-
ing its boundary perpendicularly. Escher’s woodcut displays some of them.
The black fish are all congruent with respect to the hyperbolic metric. In par-
ticular, their hyperbolic areas are all the same and similarly for the white fish.

One may wonder what this picture would look like in the Klein model.
The circular arcs must be replaced by straight line segments. Indeed, Escher’s
Circle Limit I transformed to the Klein model looks like this:
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There is another interesting and important model. We construct it as fol-
lows. We start with the Klein model and do a parallel projection to the upper
hemisphere, i.e. the point (x, y)� is mapped to (

√
1− x2 − y2, x, y)�. This is

the transformation that gave rise to the orthographic chart in cartography.
The straight line segments in the disc are mapped to circular arcs meeting the
equator of the hemisphere at a right angle.

�

� (x, y)�

(
√

1− x2 − y2, x, y)�

Now we choose a point on the equator of the hemisphere, say e2, and per-
form a stereographic projection with respect to e2 onto the tangent plane of
the sphere at the antipodal point −e2. This maps the upper hemisphere onto
the upper half-plane. The spherical arcs are mapped to spherical arcs in the
half-plane except for those arcs in the hemisphere that contain e2. These are
projected onto straight lines. Both the spherical arcs and the straight lines meet
the boundary of the half-plane at a right angle.

e2

(u, v)�

�

� �
�

�

�

�

v

u

The image of (
√

1− x2 − y2, x, y)� under this stereographic projection is
easily computed to be (

u
v

)
= 1

1− x

(
2
√

1− x2 − y2

2y

)
.

Solving for (x, y)� yields(
x
y

)
= 1

u2 + v2 + 4

(
u2 + v2 − 4

4v

)
.
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Plugging this into the parametrisation (4.29) of the Klein model gives us the
Poincaré half-plane model

F(u, v) = 1
4u

⎛⎝u2 + v2 + 4
u2 + v2 − 4

4v

⎞⎠
with U = {(u, v)� | u > 0}. As before one computes

(gij(u, v)) = 1
u2

(
1 0
0 1

)
.

Hence the Poincaré half-plane model is also conformal. Escher’s woodcut
transformed to this model now looks like this:

Exercise 4.37 The grey region � in the Poincaré half-plane model shown in
the figure below is a geodesic triangle with vertices at infinity. Compute its area.

�

2



5 Geometry and analysis

Surfaces with boundary are introduced. The divergence theorem of Gauss is
derived and used to show that the total Gauss curvature of a compact regular
surface does not depend on the Riemannian metric.

5.1 The divergence theorem

In this section we want to derive a two-dimensional analogue of the funda-
mental theorem of calculus. In this theorem the integral of a derivative over a
one-dimensional interval is identified with the difference of the values at the
end-points. This term in the values at the end-points can be considered as the
integral of the function over the (zero-dimensional) boundary of the interval.
The divergence theorem expresses the integral of a derivative of a vector field
as a one-dimensional line integral. To make all this precise we first need the
notion of a surface with boundary.

Definition 5.1.1 A surface with boundary is a closed subset S of a reg-
ular surface Sreg⊂R

3 such that for every point p∈ S there exists a local
parametrisation F : U → Sreg of Sreg with p ∈ F(U), such that either

• F(U) ⊂ S (then p is called an interior point of S) or
• F−1( p) = (x, 0)� for an x ∈ R and F−1(S) = {(x, y)� ∈ U| y ≥ 0} (then p is

called a boundary point of S).

The set of all interior points is the interior of S, the set of all boundary points
is the boundary ∂S.

Example 5.1.2 The closed circular disc S = {(x, y, 0)�| x2 + y2 ≤ 1} is a
surface with boundary. We can take the x–y plane as the regular surface Sreg =
R

2 × {0}. The points (x, y, 0)� with x2 + y2 < 1 are interior points, since for
r := √

1− (x2 + y2) > 0 the set U := {(ξ , η)� ∈ R
2| (ξ − x)2 + (η − y)2 < r2}

223



224 G E O M E T R Y A N D A N A L Y S I S

with the function F(ξ , η) = (ξ , η, 0)� is a local parametrisation of Sreg, whose
image is fully contained in S.

The points (x, y, 0)� with x2 + y2 = 1, on the other hand, are boundary points.
For example, a local parametrisation of Sreg for the point (0,−1, 0)� is given by

F :
(
−1

2
,

1
2

)
× (−∞, 1)→ R

3, F(ξ , η) =
(

ξ , η −
√

1− ξ2, 0
)�

,

with F(0, 0) = (0,−1, 0)� and F(ξ , η) ∈ S if and only if η ≥ 0. For the other
points (x, y, 0)� with x2 + y2 = 1 we can obtain such a parametrisation by
composing F with a suitable rotation.

Exercise 5.1 Show that the upper hemisphere S = {(x, y, z)� ∈ R
3| x2+y2+

z2 = 1, z ≥ 0} is a surface with boundary.

Exercise 5.2 Let c : R→ R
3 be a simple closed space curve with period L.

Let Sreg be the ruled surface given by the parametrisation F(t, s) = c(t)+ sv(t),
v(t + L) = ±v(t), s ∈ (−1, 1).

(a) Show that S := F
(
R×

[
− 1

2 , 1
2

])
is a surface with boundary.

(b) Show that the following statements are equivalent:
(i) Sreg is orientable;

(ii) v(t + L) = +v(t) for all t;
(iii) the boundary of S is the disjoint union of two space curves.

(c) What is the boundary of S in the non-orientable case, e.g. for the Möbius strip,
see example 3.8.4?

Regular surfaces S are also surfaces with boundaries; they are exactly those
surfaces with boundary whose boundary is empty, ∂S = ∅.

If p is a boundary point of a surface with boundary, then the boundary near
p can be parametrised by a regular curve. If F is a neighbourhood of the local
parametrisation of Sreg at p as in definition 5.1.1, then c(t) := F(t, 0) is the
afore-mentioned regular curve. For c(t0) = p we have ċ(t0) ∈ TpSreg. There
are therefore exactly two unit vectors ±ν( p) ∈ TpSreg that are perpendicular
to ċ(t0). They are called unit normal vectors to the boundary of S. We have
(duF)−1(ċ(t0)) = (1, 0)� for u = F−1( p) and therefore (duF)−1(±ν( p)) cannot
have a vanishing y-component as well:

〈
(duF)−1(±ν( p)), (0, 1)�

〉 �= 0. If we
choose ν( p) such that

〈
(duF)−1(ν( p)), (0, 1)�

〉
< 0, then ν( p) is called the outer

unit normal vector to the boundary at the point p, while −ν( p) is the inner
unit normal vector.

Exercise 5.3 Let S be surface with boundary, p ∈ ∂S. Show that there is a
regular curve c : [0, ε)→ S ⊂ R

3 with ċ(0) = −ν( p) for the inner unit normal



5.1 T H E D I V E R G E N C E T H E O R E M 225

vector −ν( p), while the analogue for the outer unit normal vector does not
exist.

We will also have to integrate functions over the boundary of a surface with
boundary, and hence make the following definition.

Definition 5.1.3 Let S be a surface with boundary, let f : ∂S → R be a
smooth function with compact support. We write ∂S∩ supp f = C1 ∪̇ · · · ∪̇ Cn

as a disjoint union, where every Cj is a part of the boundary that can be
parametrised by a regular curve. We choose parametrisations by arc-length
cj : Ij → R

3 with cj(Ij) = Cj and define the line integral as

∫
∂S

f ds :=
n∑

j=1

∫
Ij

f ◦ cj(t)dt.

Using lemma 2.1.14 it is easy to see that the definition is independent of the
choices made.

Exercise 5.4 Show that if cj : Ij → Cj are regular parametrisations of Cj
(not necessarily by arc-length), then

∫
∂S

f ds =
n∑

j=1

∫
Ij

f (cj(t)) · ‖ċj(t)‖dt.

We have seen in example 4.2.2 that differentiation of a function f on a regu-
lar surface yields a vector field grad f , the gradient of f , on the surface. The
statements from examples 4.2.2 and 4.2.3 remain valid if we endow the regular
surface with an arbitrary Riemannian metric instead of the first fundamental
form. However, for a given f the gradient also depends on the choice of the
Riemannian metric; this is not the case for the differential dpf .

We will now see how we can obtain a function from a vector field by differ-
entiating. For this purpose let S be a regular surface with Riemannian metric
g. Let X be a differentiable vector field on S. For p ∈ S we can regard the
covariant derivative of X as an endomorphism on TpS,

∇·X : TpS→ TpS, Yp �→ ∇Yp X.

Definition 5.1.4 The trace of the above-mentioned endomorphism is called
the divergence of X at the point p,

div X( p) := Trace(Yp �→ ∇Yp X).

Lemma 5.1.5 If we write the vector field X with respect to a local parametri-
sation F as X =∑

i ξ
i∂F/∂ui, then the divergence is given by
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div X =
∑

j

( ∂ξ j

∂u j
+

∑
i

�
j
ijξ

i
)
= 1√

det(gk�)

∑
j

∂

∂u j

(√
det(gk�)ξ

j
)

.

Proof We find the matrix representation of the endomorphism Yp �→
∇Yp X with respect to the basis ∂F/∂u1, ∂F/∂u2.

∇ ∂F
∂u j

X = ∇ ∂F
∂u j

(∑
i

ξ i ∂F
∂ui

)

=
∑

i

( ∂ξ i

∂u j

∂F
∂ui
+ ξ i

∑
k

�k
ij

∂F
∂uk

)

=
∑

k

(∂ξk

∂u j
+

∑
i

ξ i�k
ij

) ∂F
∂uk

.

The endomorphism Yp �→ ∇Yp X therefore has the following matrix represen-
tation w.r.t. this basis: (∂ξk

∂u j
+

∑
i

ξ i�k
ij

)
jk

.

The trace is then

div X =
∑

j

( ∂ξ j

∂u j
+

∑
i

�
j
ijξ

i
)

.

This proves the first part of the claim.
As

1√
det(gk�)

∑
j

∂

∂u j

(√
det(gk�)ξ

j
)

= 1√
det(gk�)

∑
j

∂
√

det(gk�)

∂u j
· ξ j + 1√

det(gk�)

∑
j

√
det(gk�) · ∂ξ j

∂u j

=
∑

j

∂ξ j

∂u j
+

∑
j

∂

∂u j

(
ln

(√
det(gk�)

))
ξ j

=
∑

j

∂ξ j

∂u j
+ 1

2

∑
j

∂

∂u j (ln (det(gk�))) ξ j,

the second part follows from the first if we can show that

1
2

∂

∂u j (ln (det(gk�))) =
∑

i

�i
ji. (5.1)
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Using lemma 4.2.14 we calculate

∑
i

�i
ji =

1
2

∑
ik

(
∂gjk

∂ui
+ ∂gik

∂uj
− ∂gji

∂uk

)
g ik (5.2)

= 1
2

∑
ik

(
∂gik

∂uj

)
g ik, (5.3)

since the first and the third sum in (5.2) cancel. Writing g for the matrix (gij)ij
we can write (5.3) in a more compact way as

∑
i

�i
ji =

1
2

Trace
(

g−1 ∂g
∂u j

)
.

Equation (5.1) follows by lemma 5.1.6.

Lemma 5.1.6 (Derivative of the determinant) Let t �→ g(t) be a differentiable
curve of invertible real n× n matrices. Then

d
dt

ln det g = Trace
(

g−1 d
dt

g
)

.

Proof We first prove the equation for t = t0 if g(t0) = Id. Then the claim is
simply

d
dt

det g(t0) = Trace
(

dg
dt

(t0)
)

. (5.4)

As commonly known (see [17, p. 171, theorem 7.2]), the determinant is
given by

det g =
∑
σ

sign(σ )g1σ(1) · · · gnσ(n),

where the sum is taken over all permutations σ : {1, . . . , n} → {1, . . . , n}. It
follows that

d
dt

det g(t0)

=
∑
σ

sign(σ )

(
dg1σ(1)

dt
(t0) · · · gnσ(n)(t0)+ · · · + g1σ(1)(t0) · · · dgnσ(n)

dt
(t0)

)
.

As gij(t0)= 0 for i �= j, the only permutation that can contribute a non-
vanishing summand is the trivial permutation σ = Id:
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d
dt

det g(t0) = dg11

dt
(t0) · · · gnn(t0)+ · · · + g11(t0) · · · dgnn

dt
(t0)

= dg11

dt
(t0) · 1 · · · 1+ · · · + 1 · · · 1 · dgnn

dt
(t0)

= Trace
(

dg
dt

(t0)
)

.

In the case g(t0)= Id, we set h(t) := g(t0)−1g(t). Then h(t0)= Id and an
application to h of the part already proved gives

det(g(t0))
−1 d

dt
det g(t0) = d

dt
det h(t0) = Trace

(
dh
dt

(t0)
)

= Trace
(

g(t0))
−1 dg

dt
(t0)

)
,

which proves the lemma.

Let us now move on to the main result of this section.

Theorem 5.1.7 (Gauss’s divergence theorem) Let Sreg be a regular surface with
Riemannian metric g. Let X be a continuously differentiable vector field with
compact support on Sreg. Let S ⊂ Sreg be a surface with boundary. Let ν be the
outer unit normal field of S. Then∫

S
divX dA =

∫
∂S

g(X, ν) ds.

Proof For every point in supp X ∩ S there is a local parametrisation of Sreg
as in definition 5.1.1. As supp X ∩ S is compact, we can cover supp X ∩ S with
finitely many neighbourhoods from such parametrisations. In a way similar
to the one used in the proof of theorem 3.8.8 we choose smooth functions
ρj : R

3 → R with 0 ≤ ρj ≤ 1 and
∑

j ρj ≡ 1 in a neighbourhood of supp X ∩ S,
such that every support supp ρj is contained in a neighbourhood as described
above. If we now write Xj := ρj · X, then X = ∑

j Xj on S and every Xj has
its support in a neighbourhood as in definition 5.1.1. By the linearity of the
integral and of the divergence it suffices to prove the claim for the Xj. There is
thus no loss of generality if we assume that supp X ∩ S is contained in such a
neighbourhood.

Let us therefore suppose that supp X ∩ S is contained in such a neighbourhood.
We first consider the case that the neighbourhood meets the boundary of S,
i.e. that it is of the second type in definition 5.1.1. The local parametrisation
F : U → R

3 therefore has the property F−1(S) = {(u1, u2)� ∈ U| u2 ≥ 0} and
supp X ∩ S ⊂ F(U). Without loss of generality we further assume that
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F : U = (−a, a)× (−a, a)→ S

are Fermi coordinates along c, cf. lemma 4.6.13, where c is a parametrisation
by arc-length of ∂S ∩ F(U). Along the boundary of S we then have

(
gij(u

1, 0)
)

ij
=

(
1 0
0 1

)
(5.5)

and

ν(F(u1, 0)) = − ∂F
∂u2

(u1, 0). (5.6)

In particular
√

det(gk�)(u1, 0) = 1. We now find the formula of the divergence
theorem w.r.t. this parametrisation, using lemma 5.1.5. For X = ∑

j ξ
j∂F/∂u j

we obtain∫
S

divX dA

=
∫ a

0

∫ a

−a

1√
det(gk�)

∑
j

∂

∂u j

(√
det(gk�)ξ

j
)√

det(gk�)du1du2

=
∑

j

∫ a

0

∫ a

−a

∂

∂u j

(√
det(gk�)ξ

j
)

du1du2. (5.7)

The summands with j = 1 are first integrated over u1 and we obtain∫ a

−a

∂

∂u1

(√
det(gk�)ξ

1
)

du1

=
√

det(gk�)(a, u2)ξ1(−a, u2)−
√

det(gk�)(−a, u2)ξ1(−a, u2)

= 0,

since ξ1(−a, u2) = ξ1(a, u2) = 0 by the assumption about the support of X.
The summands with j = 2 are first integrated over u2 and we obtain∫ a

0

∂

∂u2

(√
det(gk�)ξ

2
)

du2

=
√

det(gk�)(u1, a)ξ2(u1, a)−
√

det(gk�)(u1, 0)ξ2(u1, 0)

= −ξ2(u1, 0).

Equation (5.7) then simplifies to∫
S

divX dA = −
∫ a

−a
ξ2(u1, 0)du1.
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Evaluation of the line integral gives∫
∂S

g(X, ν)ds =
∫ a

−a
(−ξ2(u1, 0))du1

by (5.5) and (5.6).
If the neighbourhood does not meet the boundary, then the above argu-

ments show that ∫
S

divX dA = 0.

This proves the divergence theorem.

The boundary term in the divergence theorem measures the proportion of the
vector field that points out of the surface with boundary S. If we imagine the
vector field X as the current density of a liquid that flows on the regular surface
Sreg, then the boundary term gives the net amount of liquid that flows out of
S. In particular, if the field is divergence-free, i.e. divX ≡ 0, then the amount
of liquid in S remains unchanged. Arguments of this type are important in the
derivations of many conservation laws in physics.

The divergence theorem now also gives us a graphic interpretation of the
divergence of a vector field. If p is a point on the regular surface, then we take
the circular disc D̄( p, r) with centre p and radius r as the regular surface with
boundary, see lemma 4.6.12. The mean of the divergence on this disc is by the
divergence theorem ∫

D̄( p,r) divX dA

A[D̄( p, r)] =
∫
∂D̄( p,r) g(X, ν)ds

A[D̄( p, r)] .

Passing to the limit r↘ 0 gives

divX( p) = lim
r↘0

∫
∂D̄( p,r) g(X, ν)ds

A[D̄( p, r)] .

The divergence at p therefore tells us how far the vector field at the point p
points out of the disc. If the divergence at p is positive, then we can imagine p
as a source for the vector field, if it is negative then p is a sink.

Exercise 5.5 Sketch the following vector fields in the x–y plane near the
origin and calculate their divergence (w.r.t. the usual Euclidean metric) at the
origin:

(a) X(x, y) = (x, y, 0)�;
(b) X(x, y) = (−x,−y, 0)�;
(c) X(x, y) = (1, 0, 0)�;
(d) X(x, y) = (−y, x, 0)�.
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Let S be a regular surface with Riemannian metric g. For a twice continuously
differentiable function f : S→ R we set

�f : S→ R, �f := div grad f .

Definition 5.1.8 We call � the Laplace operator. A function that satisfies

�f ≡ 0

is called harmonic.

Example 5.1.9 Let S ⊂ R
3 be a minimal surface with the first fundamental

form as Riemannian metric. Let � : R
3 → R be a linear function, e.g. one of

the three Cartesian coordinate functions. We then argue that

f := �|S : S→ R

is harmonic. As � is linear, there exists a vector Z ∈ R
3 such that

�(X) = 〈X, Z〉

for all X ∈ R
3. The gradient of f at the point p is given by the projection of Z

on TpS:
grad f ( p) = Z− 〈Z, N( p)〉N( p),

where N is one of the two unit normal fields on S that are defined at least near
p. This formula for the gradient follows from the fact that the gradient at p is
the unique tangent vector which satisfies that〈

grad f ( p), X
〉 = ∂Xf = 〈X, Z〉

for all X ∈ TpS. The covariant derivative of grad f is therefore given by

∇X grad f = d grad f (X)− 〈
d grad f (X), N

〉
N

= −〈Z, dN(X)〉N − 〈Z, N〉 dN(X)

+ 〈〈Z, dN(X)〉N, N〉N + 〈〈Z, N(X)〉 dN(X), N〉N
= 〈Z, W(X)〉N + 〈Z, N〉W(X)− 〈Z, W(X)〉N + 0

= 〈Z, N〉W(X).

We equate the traces of the left and the right hand sides of the equation to
obtain

�f = div grad f = 〈Z, N〉Trace W = 2 〈Z, N〉H = 0.
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We can, of course, apply the divergence theorem in the special case ∂S = ∅.
The boundary integral then vanishes and we obtain the following corollary.

Corollary 5.1.10 Let S be a compact regular surface with Riemannian met-
ric g. Then every continuously differentiable vector field X and every twice
continuously differentiable function f on S satisfy∫

S
divX dA = 0 =

∫
S

�f dA.

Exercise 5.6 Show that differentiable functions f and differentiable vector
fields X satisfy

div( fX) = f divX + g(grad f , X).

Exercise 5.7 Let S be a compact surface with boundary and let f1, f2 : S →
R be functions which are sufficiently often differentiable. Prove the Green
formulae:

(a) ∫
S

�f1 · f2 dA = −
∫

S
g(grad f1, grad f2) dA+

∫
∂S

∂νf1 · f2 ds;

(b) if ∂S = ∅: ∫
S

�f1 · f2 dA =
∫

S
f1 ·�f2 dA.

Exercise 5.8 Let S be a compact regular surface (without boundary). Let
S be connected in the sense that any two points of S can be connected by a
smooth curve in S. Show that the constant functions are the only harmonic
functions on S.

Definition 5.1.11 Let S be a regular surface. A symmetric (2, 0) tensor field
on S is a map that assigns to every point p ∈ S a symmetric bilinear form bp on
TpS, so that w.r.t. local parametrisations F : U → S the functions

bij : U → R, bij(u) := bF(u)

(
∂F
∂ui

(u),
∂F
∂u j

(u)

)
,

are always smooth.

Riemannian metrics are exactly those symmetric (2, 0) tensor fields that are
positive definite at every point p ∈ S.

Now let S be a regular surface with a Riemannian metric g and another
symmetric bilinear (2, 0) tensor field b.
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Definition 5.1.12 The trace of b is the function Trace b : S→ R, which, w.r.t.
a local parametrisation F, is given by

(Trace b) ◦ F =
∑

ij

g ijbij.

The divergence of b is the vector field div b on S, which, w.r.t. a local
parametrisation, is given by

(div b)� =
∑
ijk

g k�g ij

(
∂bjk

∂ui
−

∑
α

(
�α

ij bαk + �α
ikbαj

))
.

Remark The trace and the divergence of symmetric (2, 0) tensor fields can,
of course, also be characterised without the use of local parametrisations. If we
fix p ∈ S, then there is for the symmetric bilinear form bp on TpS exactly one
endomorphism Bp : TpS → TpS with bp(X, Y) = gp(Bp(X), Y) for all X, Y ∈
TpS that is self-adjoint w.r.t. gp. In local coordinates this endomorphism has
the matrix coefficients Bi

j =
∑

k g ikbkj and we have

(Trace b)( p) = Trace(Bp).

The divergence of symmetric (2, 0) tensor fields, like the divergence of vector
fields, can be defined as a trace of a suitably chosen covariant derivative of
such tensor fields. However, as we do not need this, we will omit the details.

5.2 Variation of the metric

We will spend the rest of the chapter discussing how geometric quantities,
e.g. the surface element or the Gauss curvature, change if we distort the
Riemannian metric.

Definition 5.2.1 Let S be a regular surface and let I ⊂ R be an interval. A
one-parameter family of Riemannian metrics on S is a map that assigns every
t ∈ I and every p ∈ S a Euclidean scalar product gt,p on TpS, such that for
every local parametrisation (U, F, V) of S the maps

I ×U → R, (t, u1, u2) �→ gij(t, u1, u2) := gt,F(u)

(
∂F
∂ui

(u),
∂F
∂u j

(u)

)
are smooth.

Put briefly, for every fixed t ∈ I there is a Riemannian metric p �→ gt,p such
that everything depends smoothly on t.



234 G E O M E T R Y A N D A N A L Y S I S

Example 5.2.2 If there are two metrics g0 and g1 defined on a regular surface
S, then

gt,p := (1− t)g0,p + tg1,p, t ∈ [0, 1]
defines a one-parameter family of Riemannian metrics, which represents a
transition from g0 to g1.

Example 5.2.3 If g is a Riemannian metric on S, then

gt,p := tgp, t ∈ (0,∞)

defines a one-parameter family of Riemannian metrics, which are simply
scalings of the original metric.

Given a one-parameter family of Riemannian metrics with t0 ∈ I we can find
its Taylor expansion w.r.t. t about t = t0 and write

gij(t, u1, u2) = gij(u
1, u2)+ (t − t0) · ġij(u

1, u2)+O((t − t0)
2).

Analogously we define ġ ij, �̇k
ij , Ṙ�

ijk, K̇, ˙dA, and so forth. This definition of ġij

determines a (2, 0) tensor field ġ, the derivative of this one-parameter family
w.r.t. t at the point t = t0. The derivatives of all quantities that only depend
on the inner geometry of the surface can be found using the derivative of the
metric. We will now investigate this in more detail.

Lemma 5.2.4 The following are implications of the definitions made above:

(a)
ġ jk = −

∑
i�

g ijġi�g �k.

(b)

�̇k
ij =

1
2

∑
α

g kα

(
∂ ġjα

∂ui
+ ∂ ġiα

∂u j
− ∂ ġij

∂uα

)
−

∑
β,�

�
β

ij g
�kġβ�.

Proof In the proof we will use the abbreviation ∂i := ∂/∂ui and the Einstein
summation, which allows a more compact notation and is popular in literature
in physics. The convention consists of omitting the sigma and regarding an
expression as a sum if an index appears twice, once at the top and once at
the bottom. The formula from lemma 4.2.14 for the Christoffel symbols then
becomes

�k
ij = 1

2 g kα(∂igjα + ∂jgiα − ∂αgij). (5.8)

Note that the summation indices, here α, can be renamed at any time. We will
make extensive use of this.
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For the proof of (a) we differentiate the (constant) Kronecker symbol and
obtain

0 = δ̇k
i = (gijg

jk)· = ġijg
jk + gijġ

jk.

It follows that

gijġ
jk = −ġijg

jk

and hence claim (a).
Differentiating (5.8) with respect to parameter t gives

�̇k
ij = 1

2 ġ kα(∂igjα + ∂jgiα − ∂αgij)+ 1
2 g kα(∂iġjα + ∂jġiα − ∂α ġij)

= − 1
2 g βα ġβ�g �k(∂igjα + ∂jgiα − ∂αgij)+ 1

2 g kα(∂iġjα + ∂jġiα − ∂α ġij)

= −�
β

ij g �kġβ� + 1
2 g kα(∂iġjα + ∂jġiα − ∂α ġij).

The last equality is obtained by substituting (5.8) again.

Lemma 5.2.5 The variation of the surface element is given by

˙dA = 1
2 Trace(ġ)dA.

Proof The claim essentially follows from lemma 5.1.6:

√
det(gij)

·
= det(gij)

·

2
√

det(gij)

= g k�ġk� det(gij)

2
√

det(gij)

= 1
2

Trace(ġ)

√
det(gij).

We therefore already know how the area changes if the Riemannian metric on
a compact regular surface is deformed:

d
dt

∣∣∣
t=t0

A[S, gt] = 1
2

∫
S

Trace(ġ)dA.

Exercise 5.9 Use this formula to derive theorem 3.8.8 again.

Hint Write the normal field � (locally) in the form � = f · N, where N is
a unit normal field, and show for the resulting one-parameter family of first
fundamental forms that

ġ = −2f · II.
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Lemma 5.2.6 The variation of the Gauss curvature is given by

2K̇ = div(div(ġ))−�(Trace(ġ))−K · Trace(ġ).

Proof To prove the claim for a given point p ∈ S, we choose Riemann
normal coordinates (w.r.t gt0 ) at p. This has the advantage that the first
derivatives of the metric coefficients and the Christoffel symbols vanish at
the point under consideration, which simplifies the calculation significantly.
Lemma 4.3.5 and lemma 5.2.4 applied at point p give

Ṙ�
ijk = ∂i�̇

�
kj − ∂j�̇

�
ki + �̇�

αi�
α
kj + ��

αi�̇
α
kj − �̇�

αj�
α
ki − ��

αj�̇
α
ki

= ∂i�̇
�
kj − ∂j�̇

�
ki

= 1
2 g α�∂i

(
∂kġjα + ∂jġkα − ∂α ġkj

)− ∂i�
β

kjg
α�ġαβ

− 1
2 g α�∂j (∂kġiα + ∂iġkα − ∂α ġki)+ ∂j�

β

kig
α�ġαβ

= 1
2 g α�

(
∂i∂kġjα − ∂i∂α ġkj − ∂j∂kġiα + ∂j∂α ġki

)− Rβ

ijkg α�ġαβ .

We substitute this and lemma 4.3.11 into the derivative of the formula

K = 1
2 g jkRi

ijk

and obtain

2K̇ = g jkṘi
ijk + ġ jkRi

ijk

= 1
2 g jkg αi (∂i∂kġjα − ∂i∂α ġkj − ∂j∂kġiα + ∂j∂α ġki

)
− g jkRβ

ijkg αiġαβ − g αjġα�g �kRi
ijk

= g jkg αi (∂i∂kġjα − ∂i∂α ġkj
)

− g jkK
(

gjkδ
β

i − gikδ
β

j

)
g αiġαβ − g αjġα�g �kK

(
gjkδi

i − gikδi
j

)
= −2K · Trace(ġ)+ g jkg αi (∂i∂kġjα − ∂i∂α ġkj

)
, (5.9)

where we used δi
i = 2 = g jkgjk and renamed parameters, e.g. g jkg αi∂j∂α ġki =

g jkg αi∂k∂iġjα . Lemma 5.1.5 and the definition of the divergence of a (2, 0)
tensor field give

div(div(ġ)) = ∂�(div(ġ))�

= ∂�

(
g k�g ij

(
∂iġjk − �α

ij ġαk − �α
ikġjα

))
= g k�g ij

(
∂�∂iġjk − ∂��

α
ij ġαk − ∂��

α
ikġjα

)
. (5.10)
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Equation (4.3) implies that

g ij∂i∂jg
k� = −g ijg kα∂i�

�
αj − g ijg �α∂i�

k
αj

and hence

�(Trace(ġ)) = g ij∂i∂j(g
k�ġk�)

= g ij(∂i∂jg
k�)ġk� + g ijg k�∂i∂jġk�

= −
(

g ijg kα∂i�
�
αj + g ijg �α∂i�

k
αj

)
ġk�

+ g ijg k�∂i∂jġk�. (5.11)

Subtracting (5.11) from (5.10) yields

div(div(ġ))−�(Trace(ġ)) = g k�g ij
(
∂�∂iġjk − ∂i∂jġk� − ∂��

α
ij ġαk

−∂��
α
ikġjα + ∂i�

α
�jġkα + ∂i�

α
kjġα�

)
= g k�g ij

(
∂�∂iġjk − ∂i∂jġk� − ∂��

α
ij ġαk + ∂i�

α
�jġkα

)
= g k�g ij

(
∂�∂iġjk − ∂i∂jġk� + Rα

i�jġkα

)
= g k�g ij(∂�∂iġjk − ∂i∂jġk�)−K · Trace(ġ).

Comparing this to (5.9) concludes the proof.

The variation formulae proved up to now imply a remarkable theorem.

Theorem 5.2.7 Let S be a compact regular surface. Then the number∫
S

K dA

is independent of the Riemannian metric.

This theorem is remarkable because the Gauss curvature K as a function on
S depends significantly on the choice of the Riemannian metric. For example,
we studied two very different Riemannian metrics on the torus. On the one
hand, we know the torus as a tubular surface from example 3.8.18 with its first
fundamental form as the Riemannian metric. In this case the Gauss curvature
is not constant. On the other hand, we met a Riemannian metric with Gauss
curvature K ≡ 0 in example 4.4.2. Theorem 5.2.7 tells us without any calcula-
tion that also the tubular surface must satisfy

∫
S K dA = 0. Compare this with

exercise 3.32.
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Proof We see from lemma 5.2.5 and lemma 5.2.6 that every one-parameter
family of Riemannian metrics gt with Gauss curvature Kt and surface element
dAt satisfies

d
dt

∫
S

Kt dAt =
∫

S
(K̇t dAt +Kt ˙dAt)

=
∫

S

(
1
2

div(div(ġ))− 1
2
�(Trace(ġ))

)
dAt = 0

by corollary 5.1.10. If only two Riemannian metrics g0 and g1 on S are given,
then as in example 5.2.2 we consider the one-parameter family gt := (1− t)g0+
tg1 and observe that∫

S
K1 dA1 −

∫
S

K0 dA0 =
∫ 1

0

d
dt

∫
S

Kt dAt dt = 0.

Corollary 5.2.8 Let S1 and S2 be compact regular surfaces with Riemannian
metrics. If S1 and S2 are diffeomorphic, then∫

S1

K dA =
∫

S2

K dA.

Proof The equation certainly holds if the metric on S1 is the pulled-back
metric of S2, since the two metrics would then be isomorphic. Otherwise the-
orem 5.2.7 tells us that

∫
S1

K dA w.r.t. the pulled-back metric and w.r.t. given
metric agree.

Example 5.2.9 The sphere and the torus cannot be diffeomorphic, since∫
torus K dA = 0, while

∫
S2 K dA = 4π .

If one wants to show that two given surfaces, e.g. the sphere and the ellipsoid,
are diffeomorphic, then one will try to construct a diffeomorphism. But how
can one show that two surfaces are not diffeomorphic? The number

∫
S K dA

gives us the possibility to distinguish surfaces that are not diffeomorphic, e.g.
the sphere and the torus. In the next chapter we will learn to understand this
number better by showing how we can find it by cutting the surface into trian-
gles and then counting vertices, edges and triangles. This will be the subject of
the Gauss–Bonnet theorem.



6 Geometry and topology

Differential geometry is a fine, quantitative geometry, in which relationships
between lengths and angles are important. Topology, by contrast, is of a much
coarser and more qualitative nature. Here only those quantities that are pre-
served under distortions are studied. In order to obtain a topological description
of the total Gauss curvature, we triangulate the surfaces, i.e. we cut them into tri-
angles. The theorem of Gauss–Bonnet now tells us that we can determine the
total curvature by counting vertices, edges and triangles.

6.1 Polyhedra

In the last sections of this book we want to study global properties of sur-
faces. For example, we want be able to decide whether two given surfaces are
homeomorphic or not. For this purpose we will cut the surfaces into triangles,
which will then allow us to use combinatorial methods. We make the following
definition.

Definition 6.1.1 A polyhedron X is a finite set of triangles �j ⊂ R
n,

X = {�1, . . . , �k},

with the following property: any two of those triangles intersect

• not at all, or
• exactly at one vertex, or
• exactly at one edge.

The union of those triangles,

|X| := ∪k
j=1�j,

is called the geometric realisation of X.

239
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a polyhedron not polyhedra

We use the following notation:

e(X) = number of vertices of X,

k(X) = number of edges of X,

f (X) = number of triangles X.

Definition 6.1.2 The number

χ(X) := e(X)− k(X)+ f (X)

is called the Euler–Poincaré characteristic of X.

Example 6.1.3 Let us take a tetrahedron in R
3 as X:

Counting gives

e(X) = 4,

k(X) = 6,

f (X) = 4

and hence

χ(X) = 2.

Exercise 6.1 Show that the geometric realisation of the tetrahedron is
homeomorphic to S2.
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Remark If we refine the polyhedron X by adding a vertex inside a triangle
and obtain a new polyhedron X ′, then we see that

e(X ′) = e(X)+ 1,

k(X ′) = k(X)+ 3,

f (X ′) = f (X)+ 2.

Hence the Euler–Poincaré characteristic is not changed at all by such refine-
ments:

χ(X ′) = χ(X).

The polyhedra X and X ′ obviously have the same geometric realisation:
|X| = |X ′|. Thus, if we look for quantities that only depend on the geometric
realisation of a polyhedron, then e(X), k(X) and f (X) are unsuitable, but the
Euler–Poincaré characteristic χ(X) is a good candidate.

Definition 6.1.4 Let X be a polyhedron and let v be a vertex of X. Let
α1, . . . , α� be the interior angles at vertex v in all triangles of X of which v
is a vertex. Then

def(v) := 2π −
�∑

j=1

αj

is called the angle defect of X at v.

v

α2α1

α3

The angle defect at v vanishes precisely when the interior angles at v add up
to 2π , i.e. to 360 degrees.
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Theorem 6.1.5 (the Gauss–Bonnet theorem for polyhedra) Let X be a polyhedron
such that exactly two triangles meet at every edge. Then∑

v

def(v) = 2πχ(X),

where the sum is taken over all vertices v of X.

The total angle defect therefore agrees with the Euler–Poincaré characteristic
up to a factor of 2π .

Proof Since exactly two triangles meet at every edge by assumption and
every triangle has exactly three edges, we have

2k(X) = 3f (X).

It follows that

χ(X) = f (X)− k(X)+ e(X)

= f (X)− 3
2 f (X)+ e(X)

= − 1
2 f (X)+ e(X). (6.1)

If �1, . . . , �f (X) are the triangles of X, then we obtain

∑
v

def(v) = 2π · e(X)−
f (X)∑
j=1

∑
v vertex

of �j

interior angles of �j at v

= 2π · e(X)−
f (X)∑
j=1

π

= 2π · e(X)− π · f (X). (6.2)

In the second line we used that the sum of the interior angles of a Euclidean
triangle is exactly π . The claim follows from (6.1) and (6.2).

Exercise 6.2 Verify the Gauss–Bonnet theorem for polyhedra in the exam-
ple of a tetrahedron with equilateral triangles.

6.2 Triangulations

We want to decompose surfaces into triangles to then investigate them with
combinatorial tools. Such a decomposition is called a triangulation.
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Definition 6.2.1 Let S ⊂ R
3 be a compact regular surface. A triangulation

of S is a pair (X, �) consisting of a polyhedron X and a homeomorphism

� : |X| → S,

such that for every triangle � of X the restriction �|� : � → �(�) is a
diffeomorphism. More precisely,

for every triangle � of X, there exists an open neighbourhood U of � in the
plane spanned by �, and there is an open neighbourhood V of �(�) in S and
a diffeomorphism ϕ : U → V such that ϕ|� = �|�.

The diffeomorphic images �(�) of the triangles of X decompose the surface
S into “curved triangles”.

Remark A polyhedron X that belongs to a triangulation of a compact reg-
ular surface always has the property required in theorem 6.1.5, which states
that exactly two triangles meet at every edge. This is the case because a regular
surface is locally divided into exactly two parts by a regular curve.

Definition 6.2.2 Let S be a compact regular surface and let (X, �) be a
triangulation of S. Then

χ(S) := χ(X)

is called the Euler–Poincaré characteristic of S.
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Exercise 6.3 Give a triangulation of S2 and calculate the Euler–Poincaré
characteristic of S2.

Definition 6.2.2 still needs some justification. It is a priori possible that dif-
ferent triangulations of the same surface lead to different Euler–Poincaré
characteristics. However, a corollary of the Gauss–Bonnet theorem will tell
us that this is not the case, see corollary 6.3.3.

It also needs to be shown that a compact regular surface can always be tri-
angulated, i.e. has a triangulation. We will prove this using a series of lemmas.
The reader willing to believe in the existence of triangulations may continue
reading with theorem 6.2.17 on page 257.

For a compact subset S ⊂ Rn and a point q∈R
n we define the distance from

q to S by

dist(q, S) := min{‖q− p‖ | p ∈ S}.
By the compactness of S the minimum is attained. We have dist(q, S) = 0 if
and only if q ∈ S. We further define the ρ-neighbourhood of S by

Uρ(S) := {q ∈ R
n| dist(q, S) < ρ}.

Lemma 6.2.3 Let S be a compact orientable regular surface with unit normal
field N. Then there exists a ρ > 0 such that for every point q ∈ Uρ(S) there is
exactly one point P(q) ∈ S with

dist(q, S) = ‖P(q)− q‖.
Furthermore, the map

Uρ(S)→ S× (−ρ, ρ), q �→ (P(q),±dist(q, S)),

is a diffeomorphism, where the sign in front of dist(q, S) depends on whether q
lies on the side of S to which N points or on the other side. The inverse map is
given by

E : S× (−ρ, ρ)→ Uρ(S), E (p, t) = p+ t ·N(p).

Proof Let us first find the differential of E . If F is a local parametrisation
of S, then

∂

∂u j
E (F(u), t) = ∂F

∂u j
(u)+ t

∂N
∂u j

(u) = (Id−tW)

(
∂F
∂u j

)
∈ TF(u)S

and
∂

∂t
E (F(u), t) = N(F(u)).
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As S is compact, the absolute values of the eigenvalues of W, the principal
curvatures, are bounded by a constant C > 0. The map Id−tW is therefore
invertible for |t|< ρ1 := 1/C and hence (∂/∂u1)E (F(u), t), (∂/∂u2)E (F(u), t)
and (∂/∂t)E (F(u), t) are linearly independent. We see that E defined on
S× (−ρ1, ρ1) is a local diffeomorphism.

E : S × (−ρ, ρ)→Uρ(S) is surjective for every ρ ∈ (0, ρ1), since if p∈ S is
the point nearest to q∈Uρ(S), then by corollary 3.6.18 the vector p − q is
perpendicular to TpS and hence q = E (p,±‖p− q‖ ·N(p)).

It remains to show that for sufficiently small ρ ∈ (0, ρ1) the map E : S ×
(−ρ, ρ) → Uρ(S) is also injective. If this were not the case, then there would
be sequences (pi, ti) and

(
p′i, t′i

)
with E (pi, ti) = E

(
p′i, t′i

)
, ti, t′i → 0 and pi �= p′i.

By the compactness of S we can after passing to a subsequence assume that
the two sequences of points converge, pi → p and p′i → p′ for i→∞. By

∥∥pi − p′i
∥∥ ≤ ∥∥pi − E (pi, ti)

∥∥+ ∥∥p′i − E
(
p′i, ti

)∥∥ ≤ |ti| + ∣∣t′i∣∣ −→ 0

we have p = p′. But as E is a diffeomorphism in a neighbourhood of (p, 0),
and thus in particular injective, it follows from E (pi, ti) = E

(
p′i, t′i

)
that pi = p′i

for a sufficiently large i, which contradicts the assumption.

Example 6.2.4 In the case of the sphere S=S2 the value ρ=1 is the maximal
ρ that satisfies the condition in lemma 6.2.3, since the origin has the same
distance from all points on S.

To obtain a triangulation of a regular surface S, we will construct the corre-
sponding polyhedron in such a way that all vertices lie on the surface. The
triangles, and hence the entire geometric realisation |X| of the polyhedron,
will still be contained in Uρ(S). In particular, P : |X| → S is a continuous map,
restricted to each triangle even a smooth one. Nevertheless, we must proceed
very carefully positioning the triangles, since otherwise even the restriction of
P to a single triangle might not be injective. Very narrow triangles might be
aligned perpendicularly to the surface.

This effect can occur with arbitrarily small triangles, although one might
naively expect that a sufficiently fine partition into triangles will provide a
triangulation. We must therefore also ensure that the triangles are not too
narrow.
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Definition 6.2.5 Let S⊂R
3 and let ε > 0. A subset A⊂ S is called

ε-separated if for any two distinct points p, q ∈ A

‖p− q‖ ≥ ε.

An ε-separated subset A ⊂ S is called an ε-configuration on S if it is a maximal
ε-separated subset of S, i.e. if we have equality A = A′ for every ε-separated
subset A′ ⊂ S with A ⊂ A′.

The condition ‖p− q‖ ≥ ε is equivalent to the condition that the open balls
of radius ε/2 with centres p and q are disjoint. We can therefore imagine an
ε-separated subset of S as a collection of pairwise disjoint open ε/2-balls with
centres on S.

Lemma 6.2.6 If S is contained in a ball of radius R, then every ε-separated
subset of A ⊂ S has at most (

2R+ ε

ε

)3

many elements. In particular, S has an ε-configuration with finitely many
elements.

Proof Let S ⊂ B(q, R). As the balls of radius ε/2 around the points from A
are pairwise disjoint and since⋃

p∈A

B(p, ε/2) ⊂ Uε/2(S) ⊂ B(q, R+ ε/2),

the volumes satisfy ∑
p∈A

4π

3
(ε/2)3 ≤ 4π

3
(R+ ε/2)3

and hence

|A| ≤
(

2R+ ε

ε

)3

. (6.3)

An arbitrary ε-separated subset is extended by adding points and making sure
that the new set of points is still ε-separated, until no more points can be added
in this way. This process stops after finitely many steps by (6.3). We have then
obtained an ε-configuration.

Lemma 6.2.7 Let S ⊂ R
3, let ε > 0, let A be an ε-configuration on S. Then

the ε-balls with centres in A cover S entirely:

S ⊂
⋃
p∈A

B(p, ε).
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Proof Suppose that there is a q ∈ S with q �∈⋃
p∈A B(p, ε). Then ‖q− p‖ ≥

ε for all p ∈ A and A′ := A ∪ {q} is ε-separated as well. This contradicts the
maximality of A.

Definition 6.2.8 Let A ⊂ S ⊂ R
3 be an ε-configuration. The star of p ∈ A is

given by

St(p) := {x ∈ R
3| ‖x− p‖ ≤ ‖x− q‖ for all q ∈ A}.

Points p1, . . . , pk ∈ A are called common neighbours if

S ∩
k⋂

j=1

St(pj) �= ∅.

If the ε-configuration consists of two points p1 and p2 only, then St(p1) and
St(p2) are the closed half-spaces in which R

3 is divided by the plane that is
perpendicular to p1 − p2 and goes through the midpoint 1

2 (p1 + p2). In the
general case, St(p) is the intersection of finitely many closed half-spaces.

Lemma 6.2.9 Let S ⊂ R
3, let ε > 0 and let A be an ε-configuration on S. Then

all p ∈ A satisfy
St(p) ∩ S ⊂ B(p, ε).

For any two distinct neighbouring points p, p′ ∈ A we have

ε ≤ ‖p− p′‖ ≤ 2ε.

Proof Let q ∈ S with ‖q− p‖ ≥ ε. As the ε-balls with centres in A cover S
entirely by lemma 6.2.7, there is a p′ ∈ A with ‖q− p′‖ < ε. Hence ‖q− p′‖ <

‖q− p‖ and thus q �∈ St(p). This proves St(p) ∩ S ⊂ B(p, ε).

The lower bound for ‖p− p′‖ holds for all distinct points from A. As p and p′
are neighbours, the set

B(p, ε) ∩ B(p′, ε) ⊃ St(p) ∩ St(p′) ∩ S

cannot be empty. It follows that ‖p− p′‖ ≤ 2ε.

Exercise 6.4 Compare volumes as in the proof of lemma 6.2.6 to show that
there can never be more than 27 common neighbours.

We now use the following notation: for three non-collinear points p1, p2, p3 ∈
R

3, let E(p1, p2, p3)⊂R
3 be the plane spanned by those points and let

�(p1, p2, p3) ⊂ E(p1, p2, p3) be the triangle with those vertices.
From now on S ⊂ R

3 denotes a compact regular surface. Let ε > 0 and let
A be an ε-configuration on S. The polyhedron we construct will only contain
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triangles �(p1, p2, p3) for which the points p1, p2 and p3 are common neigh-
bours. We therefore investigate such triangles in a little more detail. To show
that such triangles cannot become arbitrarily narrow, we consider their height
h(p1, p2, p3) over the side connecting p1 and p3.

p1 p3

p2

h

p1 p3

p2

h

height h = h(p1, p2, p3)

Lemma 6.2.10 There is a universal constant CH > 0 such that we have

h(p1, p2, p3) ≥ CH · ‖p1 − p3‖

for every set S ⊂ R
3, for every ε > 0, for every ε-configuration and for every

triangle �(p1, p2, p3) whose vertices are common neighbours. In particular,

h(p1, p2, p3) ≥ CH · ε.

Proof As p1, p2 and p3 are common neighbours, there exists q∈ S ∩
St(p1) ∩ St(p2) ∩ St(p3). In particular, lemma 6.2.9 implies that

‖p1 − q‖ = ‖p2 − q‖ = ‖p3 − q‖ =: r ≤ ε.

Likewise, because of lemma 6.2.9 it follows for i �= j that

‖pi − pj‖ ≥ ε ≥ r.

There is no loss of generality if we suppose that q = (0, 0, 0)�. Further, the
ratio h(p1, p2, p3)/‖p1 − p3‖ remains unchanged if all points p1, p2, p3 are
stretched by a factor of r. Hence

CH := min

{
h(p1, p2, p3)

‖p1 − p3‖
∣∣∣∣ p1, p2, p3 ∈ S2, ‖pi − pj‖ ≥ 1

}
> 0

is the desired constant. The minimum is attained and is positive, since the
function

(p1, p2, p3) �→ h(p1, p2, p3)

‖p1 − p3‖
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is continuous and positive on the compact set

{
(p1, p2, p3) ∈ S2 × S2 × S2

∣∣∣ ‖pi − pj‖ ≥ 1
}

.

Lemma 6.2.11 Let S⊂R
3 be a compact orientable regular surface. Then

there exists a positive ρ1, smaller than the ρ from lemma 6.2.3, such that
for every ε-configuration A on S with ε ∈ (0, ρ1] and for every triangle � =
�(p1, p2, p3) whose vertices are common neighbours the restriction of P to a
small neighbourhood U(�) of � in the plane E(p1, p2, p3) is a diffeomorphism

P|U(�) : U(�)→P(U(�)) ⊂ S.

Proof (a) We first show that for a sufficiently small ε the restriction of P
to a neighbourhood of � in E := E(p1, p2, p3) is injective. If this were not
the case, then there would be a sequence of εi-configurations Ai on S with
εi ↘ 0 and common neighbours p1,i, p2,i, p3,i w.r.t. Ai, such that P is not
injective on the εi-neighbourhood of �(p1,i, p2,i, p3,i) in E(p1,i, p2,i, p3,i). Let
xi �= yi ∈ E(p1,i, p2,i, p3,i) be in this εi-neighbourhood, with P(xi) = P(yi) =:
qi ∈ S. Then both xi and yi lie on the straight line through qi that is parallel
to N(qi). Hence xi − yi is parallel to N(qi). Parallel transport and possibly re-
enumerating the vertices gives a point ri on the side connecting p1,i and p3,i
such that p2,i − ri is parallel to N(qi).

p1,i

p2,i

p3,i

qi

N(qi)

xi

yi

ri

The following sequences converge by the compactness of S after passing to a
subsequence:

p1,i → p1, p2,i → p2, p3,i → p3, qi → q.

From ‖pj,i − pk,i‖ ≤ 2εi → 0 and ‖yi − qi‖ → 0 it follows that

p1 = p2 = p3 = q.
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By lemma 6.2.9 and lemma 6.2.10 we have that

CH · εi ≤ h(p1,i, p2,i, p3,i) ≤ ‖p2,i − ri‖ ≤ 2εi

and thus

CH ≤ ‖p2,i − ri‖
εi

≤ 2.

By the compactness of the set of all vectors X with CH ≤ ‖X‖ ≤ 2, passing to
a subsequence gives convergence

p2,i − ri

εi
→ Z

with CH ≤‖Z‖ ≤ 2. As p2,i − ri is parallel to N(qi) and N(qi)→N(q) con-
verges, Z must be a non-trivial multiple of N(q). On the other hand the vectors
(p1,i − p2,i)/εi and (p3,i − p2,i)/εi converge to the vectors X, Y ∈ TqS after
passing to a subsequence, for similar reasons. Those vectors X and Y form
a basis of TqS, since the triangle �(X, 0, Y) in TqS has height ≥CH and is
therefore non-degenerate. As p2,i − ri lies in the linear hull of p1,i − p2,i and
p3,i−p2,i, Z must be a linear combination of X and Y and hence lies in TqS. But
the vector S cannot lie in TqS and at the same time be a non-trivial multiple of
N(q), contradiction.

(b) We now know that for a sufficiently small ε the restriction of P to a small
neighbourhood U(�) is a smooth and bijective map U(�) → P(U(�)). To
show that it is a diffeomorphism, we still need to verify that the differential

dxP : E(p1, p2, p3)→ TP(x)S

is invertible for all x ∈ U(�). Suppose that this were not the case for very small
ε > 0. Then we obtain in a way similar to the proof of (a) a subsequence of
εi-configurations Ai on S with εi ↘ 0, common neighbours p1,i, p2,i, p3,i w.r.t.
Ai, further Xi ∈E(p1,i, p2,i, p3,i) with ‖Xi‖= 1 and dxiP(Xi)= (0, 0, 0)�, where
xi lies in the εi-neighbourhood of �(p1,i, p2,i, p3,i) in E(p1,i, p2,i, p3,i). We set
qi :=P(xi). As in (a) we can assume that

p1,i, p2,i, p3,i, xi, qi → q ∈ S

and
Xi → X ∈ TqS

converge, ‖X‖= 1. The condition dxiP(Xi)= (0, 0, 0)� is by lemma 6.2.3
equivalent to

Xi = tiN(qi)

for a suitable ti. But N(qi)→N(q), so X must be perpendicular to TqS,
contradiction.
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We now know that for every ε-configuration with ε sufficiently small and every
triangle whose vertices are common neighbours the restriction of P to this
triangle is a diffeomorphism. We want to piece our triangulation together from
such triangles. However, we must proceed carefully, since we cannot simply
take all those triangles, as the example with four common neighbours already
shows.

like this or like this but not like this

We therefore need to think about which triangles of this type we want to use
for the construction of a triangulation.

Lemma 6.2.12 Let S ⊂ R
3 be a compact orientable regular surface. Then

there exists a positive ρ2 such that for every ε-configuration A on S with ε ∈
(0, ρ2] and for any three common neighbours p1, p2, p3 the set

St(p1) ∩ St(p2) ∩ St(p3) ∩ S

has exactly one element.

Proof The condition that p1, p2 and p3 are common neighbours says pre-
cisely that the set St(p1) ∩ St(p2) ∩ St(p3) ∩ S is not empty. We therefore need
to show that if ε is sufficiently small, then the set St(p1) ∩ St(p2) ∩ St(p3) ∩ S
does not have two distinct elements.

Suppose that there were a sequence of εi-configurations Ai on S with εi ↘ 0,
common neighbours p1,i, p2,i, p3,i w.r.t Ai and for each i two distinct points
xi, yi ∈ St(p1) ∩ St(p2) ∩ St(p3) ∩ S. Then xi − yi would be perpendicular to
E(p1,i, p2,i, p3,i).

As in the preceding proofs, we can again assume that

p1,i, p2,i, p3,i, xi, yi → q ∈ S,

p1,i − p2,i

εi
→ X,

p3,i − p2,i

εi
→ Y,

where X and Y form a basis of TqS, and

xi − yi

‖xi − yi‖ → Z
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for i → ∞. The vector Z is a unit normal vector on TqS since xi − yi is per-
pendicular to E(p1,i, p2,i, p3,i). On the other hand, Z must be a tangent vector
because xi, yi ∈ S, contradiction.

Corollary 6.2.13 Let S ⊂ R
3 be a compact orientable regular surface with an

ε-configuration A with ε ∈ (0, ρ2] and ρ2 as in lemma 6.2.12. Let M1, M2 ⊂ A
be two sets, each consisting of common neighbours.

If M1 and M2 have more than two points in common, then M1 ∪M2 consists of
common neighbours as well.

Proof Let p1, p2, p3 be three common points of M1 and M2. Because of

1 = |St(p1) ∩ St(p2) ∩ St(p3) ∩ S| ≥
∣∣∣ ⋂

p∈M1

St(p) ∩ S
∣∣∣ > 0

we have
St(p1) ∩ St(p2) ∩ St(p3) ∩ S =

⋂
p∈M1

St(p) ∩ S.

Analogously,

St(p1) ∩ St(p2) ∩ St(p3) ∩ S =
⋂

p∈M2

St(p) ∩ S.

Hence⋂
p∈M1∪M2

St(p) ∩ S =
⋂

p∈M1

St(p) ∩
⋂

p∈M2

St(p) ∩ S = St(p1) ∩ St(p2) ∩ St(p3) ∩ S

is not empty. Thus M1 ∪M2 also consists of common neighbours.

Lemma 6.2.14 Let D ⊂ R
2 be an open disc. Let f : D → R be a smooth

function.

Let η > 0. Further suppose that ‖ grad f‖≤ η on the whole of D. Then p =
(p̄, f (p̄)) and q = (q̄, f (q̄)) from the graph of f satisfy the estimate

1√
1+ η2

‖p− q‖ ≤ ‖p̄− q̄‖ ≤ ‖p− q‖.

Proof The inequality
‖p̄− q̄‖ ≤ ‖p− q‖
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is clear. From the estimate

|f (p̄)− f (q̄)| =
∣∣∣∣∣
∫ 1

0

d
dt

f (tp̄+ (1− t)q̄)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

〈
grad f (tp̄+ (1− t)q̄), p̄− q̄

〉
dt

∣∣∣∣∣
≤

∫ 1

0

∣∣〈grad f (tp̄+ (1− t)q̄), p̄− q̄
〉∣∣dt

≤
∫ 1

0
‖ grad f (tp̄+ (1− t)q̄)‖ · ‖p̄− q̄‖dt

≤ η · ‖p̄− q̄‖,

it follows that

‖p− q‖2 = ‖p̄− q̄‖2 + ( f (p̄)− f (q̄))2 ≤ (1+ η2)‖p̄− q̄‖2

and hence
1

1+ η2
‖p− q‖2 ≤ ‖p̄− q̄‖2.

If q ∈ S is a point on the surface S, then (after an application of a Euclidean
motion) we can write S near q as the graph of a function f : DR → R by corol-
lary 3.6.16, where DR is the disc of radius R with centre (0, 0)�, and f (0, 0) = 0
as well as grad f (0, 0) = (0, 0)�. For fixed η satisfying

0 < η ≤
√

5
2

,

say, by reducing R we can achieve that

‖ grad f‖ ≤ η

on the whole of DR. This radius R depends on q, but if S is compact, then
we can in a way similar to that used in the preceding lemmas argue that there
exists an R > 0 that works for all q ∈ S. For p̄, q̄ ∈ DR we then have

2
3
‖p− q‖ ≤

√
1

1+ η2
‖p− q‖ ≤ ‖p̄− q̄‖ ≤ ‖p− q‖ (6.4)

by lemma 6.2.14.
We now begin to think about which triangles we want to use for the trian-

gulation. Let A be an ε-configuration on a compact regular surface S, with ε
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so small that we can apply all of the above lemmas. Further, let ε be so small
that for every point q ∈ S the part S∩B(q, ε) of the surface is contained in the
graph over Dε ⊂ TqS, so that (6.4) applies.

Let M ⊂ A be a maximal subset of common neighbours. Maximality means
in this case that M is not contained in a proper superset that also consists of
common neighbours. By lemma 6.2.12 the set

⋂
p∈M St(p)∩S consists of exactly

one element: ⋂
p∈M

St(p) ∩ S = {q}.

The points p ∈ M all have the same distance r := ‖p − q‖ from q, which by
lemma 6.2.7 satisfies r ≤ ε. By (6.4), the orthogonal projections on TqS then
satisfy

2r
3
≤ ‖p̄− q̄‖ ≤ r.

The points p̄ therefore lie in one ring-shaped area with inner radius 2r/3, outer
radius r and centre q̄. By lemma 6.2.9, distinct points p, p′ ∈M satisfy

‖p− p′‖ ≥ ε ≥ r

and thus, again by (6.4),

‖p̄− p̄′‖ ≥ 2r
3

.

Hence the point p̄′ − p̄ cannot lie on the segment between (2r/3‖p̃− q̃‖)(p̄− q̄)

and (r/‖p̃− q̃‖)(p̄− q̄), since this only has length r/3.

q̄r

2r
3

p̄

p̄′

Hence the angle ∠(p̄, q̄, p̄′) is positive, i.e. the unit vectors (p̄− q̄)/(‖p̄− q̄‖)
and (p̄′ − q̄)/(‖p̄′ − q̄‖) do not agree. We now order the points p∈M by
traversing the unit circle once and enumerating the vectors (p̄− q̄)/(‖p̄− q̄‖)
as we pass them. At which point we begin and in which direction we traverse
the unit circle does not matter.
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p̄1 − q̄
‖p̄1 − q̄‖

p̄2 − q̄
‖p̄2 − q̄‖

p̄3 − q̄
‖p̄3 − q̄‖
p̄4 − q̄
‖p̄4 − q̄‖

p̄5 − q̄
‖p̄5 − q̄‖

Using the order M = {p1, . . . , pk} we can now state which triangles we use for
the triangulation: �(p1, p2, p3), �(p1, p3, p4), . . . , �(p1, pk−1, pk).

p1

p2

p3

p4

p5

Now the triangulation is constructed as follows. Partition the ε-configuration
A into maximal subsets of common neighbours. By corollary 6.2.13, any two
different such maximal subsets have at most two points in common. For each
maximal subset of common neighbours with at least three points perform the
above construction.

Lemma 6.2.15 Let S⊂R
3 be a compact orientable regular surface. Then there

exists a positive ρ3 such that for every ε-configuration A on S with ε ∈ (0, ρ3] the
resulting set of triangles forms a polyhedron.

Proof Choose ρ3 > 0 so small that all previous lemmas apply. Let � and
�′ be two triangles obtained by the above construction. We have to show that
they intersect at exactly one edge, or at exactly one vertex, or not at all. If all
their vertices belong to one maximal subset of common neighbours, then this
is clear by construction. Suppose that the vertices p1, p2 and p3 of � belong to
one maximal subset M of common neighbours and let q be the point such that
St(p1)∩ St(p2)∩ St(p2)∩ S = {q}, see lemma 6.2.12. Then all points in M have
equal distance from q, hence lie on a sphere about q. If at least one vertex of
�′ does not belong to M, then it lies outside this sphere. At most two vertices
of �′ then lie on the sphere, therefore the triangles must be disjoint or have
one or two vertices in common.

p1

p2

p3

p1

p2

p3

p1

p2

p3
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The lemma follows.

If we write the surface locally as a graph of a function f with ‖ grad f‖ ≤ 1 say,
then for not too large ε the polyhedron |X| is the graph of a piecewise linear
function. If p, p′ and p′′ are the vertices of a triangle of X, then this function is
affine linear over the triangle with the projected vertices p̄, p̄′ and p̄′′.

In particular, each point in |X| has a neighbourhood in |X| which is homeo-
morphic to an open disc.

Lemma 6.2.16 Let S be a compact orientable regular surface. Then there
exists a ρ4 > 0 such that for every ε-configuration A with ε ∈ (0, ρ4] there is a
polyhedron X whose vertices are points in A, such that

� :=P||X| : |X| → S

is bijective.

Proof (a) We first show injectivity. If there were a sequence of εi-
configurations Ai, εi ↘ 0, and points xi �= yi in the corresponding polyhedra
with �(xi) = �(yi) = q, then we would have ‖xi − yi‖ → 0 as i → ∞. Hence
we may assume that xi and yi both lie in a part of the surface which we may
write as a graph of a function f with f (p) = 0 and ‖ grad f‖ ≤ 1 for some p ∈ S.
Since the normal vector N(p) is projected to 0, N(p) = 0, we may furthermore
assume that ‖N‖ ≤ 1

4 .

Now we write xi = q + t · N(q) and yi = q + t′ · N(q). Using lemma 6.2.14 we
see that
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|t − t′| = ‖xi − yi‖ ≤
√

2 ‖x̄i − ȳi‖ =
√

2 ‖(t − t′)N(q)‖ ≤
√

2
4
|t − t′|,

hence t = t′ and xi = yi.

(b) Now we show surjectivity. Since |X| is compact, so is �(|X|). Hence
�(|X|) is a closed subset of S. Since bijective continuous maps between
compact Hausdorff spaces are homeomorphisms we know that � maps |X|
homeomorphically onto its image. Since each point of |X| has a neighbour-
hood homeomorphic to an open disc, the same holds for the image �(|X|).
Therefore �(|X|) is also an open subset of S. Assuming without loss of gen-
erality that S is connected (otherwise apply the argument to each connected
component seperately) we conclude �(|X|) = S.

We summarise:

Theorem 6.2.17 Let S be a compact orientable regular surface. Then there
exists a ρ0 > 0 such that for every ε-configuration A with ε ∈ (0, ρ0] there is a
polyhedron X whose vertices are points in A, such that

� :=P||X| : |X| → S

defines a triangulation. In particular, S has triangulations.

Remark The assumption that the surface is orientable is, in fact, unnec-
essary. Compact regular surfaces in R

3 are actually automatically orientable.
This is the case because such surfaces divide R

3 into two parts, the inside and
the outside of the surface. At every point of the surface one of the two unit
normal vectors points inside and the other points outside. The outer and the
inner unit normal field are both smooth, and the surface is thus orientable.

Can we triangulate surfaces that are not compact? As our definitions imply
that the geometric realisation of a polyhedron is always a finite union of com-
pact triangles, it is itself compact. It can therefore only be homeomorphic to a
compact surface. However, one could instead of finitely many triangles allow
countably many. Then a more careful discussion than the one from the proof of
theorem 6.2.17 will show that non-compact surfaces can also be triangulated.
The details are left to the (ambitious) reader.

As a corollary of the fact that compact regular surfaces have triangulations,
we can now come back to a remark about integration theory on surfaces, which
we made in section 3.7.

Corollary 6.2.18 Let S be a compact orientable regular surface. Then there
exist three local parametrisations (Ui, Fi, Vi) of S, which cover S entirely:

S ⊂ V1 ∪ V2 ∪ V3.
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Proof Let � : |X| → S be a triangulation, X = {�1, . . . , �k}. For every
triangle we choose a congruence to a triangle in the plane:

Lj : �j
∼=→ �′j ⊂ R

2.

Composing Lj with a translation if necessary, we can assume that the trian-
gles �′j are pairwise disjoint. The first local parametrisation is defined on the
union of the interiors of the plane triangles U1 :=⋃k

j=1
◦
�′j and on every open

triangle it is given by F1| ◦
�′j
= �◦L−1

j . This first parametrisation already covers

the entire surface except for the vertices and edges.
For every edge v1, . . . , v� we choose a local parametrisation Gn : Dn → S

with Gn(0, n) = vn. The domain Dn must be contained in the unit disc in R
2

at the point (0, n)�. This can be achieved for an arbitrary local parametrisa-
tion at vn by first translating the pre-image of vn to the point (0, n)� and then
restricting the parametrisation to a small disc centred at that point. The second
local parametrisation is defined on U2 := ⋃�

n=1 Dn and is for each Dn given
by Gn. This second parametrisation contains all vertices of the triangulation in
its image.

Fermi coordinates along the edges (except for little neighbourhoods of the
edges) give local parametrisations that can be made disjoint for different edges
by restriction and translation. These local parametrisations are then pieced
together to a third one, which covers the rest of S.

U1

U2

U3

As mentioned above, we can drop the conditions of orientability and com-
pactness. It is crucial that the surface can be triangulated. Countably many
bounded subsets of the plane (e.g. the �′j) can be made disjoint by translations
as well. Corollary 6.2.18 therefore holds for all regular surfaces.
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6.3 The Gauss–Bonnet theorem

In this section we will reach the climax of this book, the Gauss–Bonnet theo-
rem, which relates the Euler–Poincaré characteristic to the Gauss curvature.
Before arriving there, we need to go through some technical matters.

Definition 6.3.1 A triangulation � : |X| → S is called smooth along the
edges if any two triangles �1, �2 ∈ X with a common edge satisfy the follow-
ing: if � : �1 ∪ �2 → �′1 ∪ �′2 ⊂ R

2 is a homeomorphism which maps �1
congruently to the triangle �′1, analogously �2 congruently to �′2, then the
restriction of

� ◦�−1 : �′1 ∪�′2 → S

to the interior of �′1 ∪�′2 is a diffeomorphism onto its image.

By definition, � ◦�−1 is automatically a diffeomorphism on the interior of �′1
or of �′2. It is only on the common edge of �′1 and �′2 that � ◦�−1 might not
be smooth.

Exercise 6.5 Let � : |X| → S be a triangulation of the compact regular
surface S. Show that � can be turned into a triangulation �̂ : |X| → S that is
based on the same polyhedron and that is smooth along the edges.

After all these preparations we now reach the climax of this last chapter.

Theorem 6.3.2 (Gauss–Bonnet theorem) Let S be a compact regular surface with
Riemannian metric. Let K : S → R be the Gauss curvature and dA the surface
element. Let � : |X| → S be a triangulation. Then∫

S
K dA = 2πχ(X).

Proof We know by theorem 5.2.7 that the number
∫

S K dA does not
depend on the Riemannian metric. We therefore forget about the given
Riemannian metric and construct a new one, which is tailored to the trian-
gulation. We prove the Gauss–Bonnet theorem for this Riemannian metric.
We assume that the triangulation is smooth along the edges.

� is a diffeomorphism onto its image on the interior of each triangle � ∈ X.

We can therefore pull back the Euclidean metric on
◦
� to �(

◦
�) ⊂ S using �−1.

We thus obtain a Riemannian metric on S without the edges and vertices. As
the triangulation is smooth along the edges, the metric extends smoothly to S
minus the vertices. It follows by the definition 4.4.3 of the pulled-back met-
ric that � is an isometry on the interiors of the triangles. Hence the Gauss
curvature of this Riemannian metric vanishes. We have therefore found a
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Riemannian metric on S−⋃
e �(e) with K ≡ 0, where the union is taken over

all edges e of X. If we could extend this metric smoothly to the vertices, then
the Gauss curvature of this extension would for reasons of continuity vanish
as well, and we would have a Riemannian metric on S with K ≡ 0. But this
will in general not be possible, since, for example, on the sphere S = S2, we
already know

∫
S 2 K dA = 4π .

Let us therefore investigate more closely where the extension to the ver-
tices goes wrong. For this purpose let e be a vertex of X and let � ∈ X be a
triangle which has e as a vertex. If X1, X2 form an orthonormal basis of the
plane E spanned by �, more precisely E = {e+ u1X1 + u2X2| u1, u2 ∈ R},
then (r, ϕ)� �→ e + r cos(ϕ)X1 + r sin(ϕ)X2 defines polar coordinates at e for
this plane. The part of a small r0-disc around e that lies in the interior of the
triangle � is parametrised by the parameters 0 < r < r0 and ϕ0 < ϕ < ϕ0 + α,
where α is the interior angle of � at the vertex e. If the orthonormal basis
X1, X2 is rotated, then only ϕ0 changes. Composing with � gives coordinates
of the image of this set in S. Let us fix e and parametrise, choosing suitable
orthonormal bases, all triangles �1, . . . , �k that have e as a vertex, proceeding
vertex by vertex. Then 0 < r < r0 and ϕ0 < ϕ < ϕ0+α1+· · ·+αk parametrise
a neighbourhood of e minus an edge beginning at e (that corresponds to the
value ϕ = ϕ0). Here αj is always the interior angle of �j at the vertex e. As
the metric on S−⋃

e �(e) was defined in such a way that � is an isometry, the
metric has in these coordinates the form

(
gij

)
ij =

(
1 0
0 r2

)
.

If we now had α1+· · ·+αk = 2π , then we would be dealing with polar coordi-
nates of the plane with Euclidean metric, which would extend smoothly to the
centre. It is generally not possible to extend the metric in such a way because
the angle defect def(e) = 2π −∑k

j=1 αj might be non-trivial.
To remove this defect, we first change the coordinates slightly by modifying

the angle coordinate. We use the abbreviation α :=∑k
j=1 αj and define

ϕ := 2π

α
(ϕ − ϕ0).

Then ϕ is still from (0, 2π) and r from (0, r0). In the coordinates (r, ϕ) the metric
has the form ⎛⎝1 0

0
( α

2π
r
)2

⎞⎠ .

After this small alteration of the coordinates we are using, we now modify the
metric near e. We choose r1 between 0 and r0 and a smooth function ρ : R→ R

with the properties ρ(r) = 1 for r ≤ r1, ρ(r) = 0 for r ≥ r0 and 0 ≤ ρ ≤ 1 on
[r1, r0]. We define the modified metric in the coordinates (r, ϕ) by
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(
g̃ij

)
ij :=

⎛⎝1 0

0
(
ρ(r) · r+ (1− ρ(r))

α

2π
r
)2

⎞⎠ .

This new Riemannian metric agrees with the old one for r ≥ r0. The metric
has therefore only changed near �(e). For r < r1 on the other hand the metric
now has the form of the Euclidean metric in polar coordinates. We can there-
fore extend it smoothly to �(e). The Gauss curvature vanishes on the r1-disc
around �(e) as well. Only in the area r1 ≤ r ≤ r0 might we have accidentally
introduced a non-vanishing curvature. We can easily calculate the integral of
the curvature using lemma 4.6.12:

∫
{r≤r0}

K dA = 2π −
∫ 2π

0

d
dr

∣∣∣
r=r0

(
ρ(r) · r+ (1− ρ(r))

α

2π
r
)

dϕ

= 2π
(

1− ρ̇(r0)r0 − ρ(r0)+ ρ̇(r0)
α

2π
r0 − (1− ρ(r0))

α

2π

)
= 2π

(
1− 0 · r0 − 0+ 0 · α

2π
r0 − (1− 0)

α

2π

)
= 2π − α = def(e).

The deformation of the metric that was necessary to extend it smoothly to
the vertex e gave us a curvature in the ring-shaped area r1 ≤ r ≤ r0, and the
integral of this curvature is exactly the angle defect.

K ≡ 0 e

∫
K dA = def(e)

The statement of the theorem now follows by the Gauss–Bonnet formula for
polyhedra (theorem 6.1.5) by summing over all vertices.∫

S
K dA =

∑
e

def(e) = 2πχ(X).

Corollary 6.3.3 Let S be a compact regular surface. Then the Euler–
Poincaré characteristic of S does not depend on the choice of the triangulation.
Definition 6.2.2 therefore makes sense.
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Exercise 6.6 The Euler–Poincaré characteristic of a torus is by the Gauss–
Bonnet theorem equal to 0, since the torus has a Riemannian metric with
vanishing Gauss curvature. Verify this using a triangulation.

6.4 Outlook

Having reached the end of this book, we have only got to know the elements
of differential geometry. The reader may want to consult other textbooks on
curves and surfaces such as [6, 9, 14, 23]. Differential geometry has devel-
oped enormously and has countless interconnections to other areas, not only
in mathematics. We want to conclude this book with some notes about such
developments and applications.

Knot theory We have seen in section 2.3 that knots must curve quite a lot.
Knot theory, which mainly deals with the question of when two curves are
ambient isotopic, has now developed into its own branch of topology, with
some amazing connections to physics and other areas. Introductions can be
found in, for example, [15, 20, 27].

Immersions The reader may have noticed that regular surfaces and regular
curves were defined in very different ways. Curves are equivalence classes of
parametrised curves, i.e. of certain maps. Regular surfaces on the other hand
are subsets of R3 with certain properties. A notion of surfaces that is closer to
our concept of curves is the one of an immersed surface. Such an immersion is
a map F : S → R

3, where S is a regular surface and dpF has full rank for all
p∈ S. Two immersions F1 and F2 are equivalent if there exists a diffeomor-
phism � : S→ S with F2=F1 ◦ �. An immersed surface is then an equiva-
lence class of immersions. As we do not require immersions to be injective,
immersed surfaces can have self-intersections, just like curves.

We have already met some immersed surfaces, e.g. Enneper’s surface from
example 3.8.12, which we then turned into regular surfaces by restricting the
domain of the immersion. A large part of the surface theory discussed can
easily be extended to immersed surfaces.

We can construct interesting non-orientable immersed surfaces that cannot
be realised in R3 without self-intersections. Examples for this are the projec-
tive plane (or crosscap) and the Klein bottle [12, 1.89]. In the first example the
domain of the immersion is a sphere, in the second one a torus.

Classification of compact surfaces We have seen that the sphere and the
ellipsoid are diffeomorphic, while the sphere and the torus are not. We say
a bit loosely that the sphere and the ellipsoid are topologically equivalent, the
sphere and the torus, on the other hand, are topologically different. But how
many topologically different compact surfaces are there?
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The answer to this question is remarkably simple. The Euler–Poincaré charac-
teristic tells us whether two given compact surfaces are topologically equiva-
lent or not. More precisely, let S1 and S2 be two connected compact orientable
surfaces. Then the following are equivalent:

• S1 and S2 are diffeomorphic.
• S1 and S2 are homeomorphic.
• χ(S1) = χ(S2).

Possible values for the Euler–Poincaré characteristic are the numbers
2, 0,−2,−4, . . . [6].

χ = 2 χ = 0 χ = −2

There is a similar classification for non-orientable compact surfaces. We have
seen that the sphere and the torus have Riemannian metrics with constant
Gauss curvature. This is also the case for the other compact surfaces. By the
Gauss–Bonnet theorem a negative Euler–Poincaré characteristic implies that
the Gauss curvature is also negative. Theorem 3.6.17 tells us that such a metric
can never be the first fundamental form.

Minimal surfaces We have spent a considerable amount of time studying
minimal surfaces, but an investigation of minimal surfaces would, done prop-
erly, require an entire course. In particular, conformal parametrisations could
not be considered due to lack of space. See [1, 19, 26] for more.

Abstract manifolds Having passed from the first fundamental form to gen-
eral Riemannian metrics, we have in a way taken the regular surfaces out of
R

3. They are still subsets of R
3, but the relative position of the surface in space

is no longer reflected by the Riemannian metric in any way. It is therefore
in this context more natural to define surfaces with Riemannian metrics in a
more abstract way, not as subsets of Euclidean space, but as abstract topo-
logical spaces with certain properties and additional structures. We have here
refrained from taking this approach in order to keep the formal effort as small
as possible, and because certain constructions, such as the tangent plane, are
less intuitive.

Those concepts are nevertheless indispensable for a more detailed study
of differential geometry [5, 16, 35]. The object of study is not only the
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two-dimensional case, but also the higher-dimensional “manifolds”, some-
times even infinite-dimensional ones. A beautiful book on three-dimensional
geometry is [32].

Riemannian geometry Further developments in the theory of the inner
geometry of abstract manifolds lead to Riemannian geometry. A part of our
discussion translates without any changes, e.g. the theory of geodesics. But
there are very new phenomena as well. Recall that for surfaces it was possible
to calculate the Gauss curvature from the Riemann curvature tensor and vice
versa. This is no longer possible in higher dimensions for the corresponding
generalisations. The curvature tensor carries more information than the scalar
curvature (one of the generalisations of the Gauss curvature). There is addi-
tionally the concept of the Ricci curvature, which lies between the two others.
See, for example, [10, 12, 29] for an introduction.

Lorentzian geometry and general relativity Einstein used Riemannian geome-
try in his gravitation theory, the theory of general relativity. But a modification
needs to be made here. Instead of positive-definite scalar products we consider
non-degenerate bilinear forms of index 1 on the tangent spaces. This is because
we are not modelling curved space, but curved space-time. This variant of
Riemannian geometry is called Lorentzian geometry [3, 25]. Einstein’s field
equation relates the geometric quantities, in particular the above-mentioned
Ricci curvature, to physical quantities. Very good textbooks are [31, 34], see
also [22] for an extensive introduction.

Ricci flow Fix a compact regular surface S and a Riemannian metric g0 on
S. Now look at the equation

∂

∂t
g(t) = 2(k−K(t))g(t), (6.5)

subject to the initial condition

g(0) = g0.

Here g(t) denotes a family of Riemannian metrics on S depending on a param-
eter t∈ [0,∞), K(t) is the Gauss curvature with respect to g(t) and k is its mean,
k= ∫

S K(t) dA(t)/area(S, g(t)). Equation (6.5) is known as the normalized
Ricci flow equation.

It turns out that for any g0 there is a unique solution and it is defined for all
t ∈ [0,∞). Observe that if g0 has constant Gauss curvature, then the right hand
side of (6.5) vanishes, so the solution is constant in t, g(t) ≡ g0. In general, it
turns out that there is a limit metric g∞ = limt→∞ g(t) and g∞ has constant
Gauss curvature. Moreover, g∞ is conformally equivalent to g0, i.e. there is a
positive function f : S → R such that g∞ = f · g0. See [8] together with [7].
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This shows that for any Riemannian metric g0 on S there is a conformally
equivalent metric with constant Gauss curvature. This is the geometric version
of a classical theorem, the uniformatisation theorem.

A lot of research has been done and is still being done on Ricci flow on
higher-dimensional manifolds. The term “Ricci flow” comes from the fact that
a formulation of (6.5) in higher dimensions requires the notion of Ricci cur-
vature mentioned above. By far the most spectacular result was obtained in
dimension 3. After many failed attempts by others, Grisha Perelman was able
to prove the Poincaré conjecture which had been open for more than a hun-
dred years. It says that any compact connected three-dimensional manifold in
which every closed curve can be shrunk to a point must be homeomorphic to
the three-dimensional sphere S3. The corresponding statement in dimension
2 is an easy consequence of the classification of compact surfaces mentioned
earlier. In fact, Perelman even proved a stronger conjecture due to William
Thurston. See, for example, [24] for an introduction to these deep results.



Appendix A Hints for solutions to (most)
exercises

1.1 Let L be the straight line containing p, q, r and s. Choose a point t not
contained in L (I4). Let u be a point with t ∈ qu (A3). Then u is not contained
in L. Put L′ := L(r, t).

� � �

�

�

�

�

p q r s

t

u

v

L

L′

L′ does not contain any of the points p, q, s since otherwise L = L′ and hence
t ∈ L. Moreover, L′ does not contain u since otherwise L′ = L(t, u) and hence
q ∈ L′. Now L′ enters the triangle qsu at r and leaves it at t. By axiom A5 L′
does not intersect us. Moreover, L′ enters the triangle pqu at t and does not
intersect the side pq. By axiom A5 it intersects pu at a point v. Now L′ enters
the triangle pus at v and does not intersect us. By axiom A5 it intersects ps
at r since r is the only point on L′ also contained in L. This proves that r lies
between p and s.

1.3 Reflexivity follows from axiom A1 and symmetry is axiom A2. Transitiv-
ity: let q1, q2, q3 ∈ L, qi �= p, such that p �∈ q1q2 and p �∈ q2q3. We have to
show p �∈ q1q3.

Suppose p ∈ q1q3. Choose r �∈ L. By theorem 1.1.1 we can find s ∈ rq1. The
straight line L′ := L( p, s) intersects L at p only since otherwise L′ = L, hence
s ∈ L, hence r ∈ L, a contradiction.

266
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� � �

�

�

�

q2 q3 p q1

r

s

L

L′

Moreover, r �∈ L′ since otherwise L′ = L(s, r), thus q1 ∈ L′, hence L′ =L. Now
L′ enters the triangle q1q2r at s and intersects L only at p. Since by assumption
p �∈ q1q2 axiom A5 tells us that L′ intersects rq2. Therefore, L′ enters the tri-
angle rq2q3 through rq2 and does not intersect q2q3. By axiom A5 L′ intersects
rq3. Thus L′ intersects all three sides of the triangle q1q3r, a contradiction to
axiom A5.

1.4 By axiom A3, there are at least two sides. The assumption that there are
at least three sides will lead to a contradiction. Let q1, q2, q3 ∈ L be pairwise
distinct points such that p ∈ qiqj for all i �= j. Choose r �∈ L and let s ∈ q1r.
The straight line L′ := L( p, s) does not contain r and no point of L other than
p. Since L′ intersects the sides q1q2 and q1r of the triangle q1q2r it does not
intersect q2r. Similarly, it does not intersect q3r. Thus L′ intersects the triangle
q2q3r only at the side q2q3, namely at p, a contradiction.

1.5 Reflexivity follows from axiom A1 and symmetry is axiom A2. Transitiv-
ity: suppose q1q2 and q2q3 do not intersect L. We have to show that q1q3 does
not intersect L either. In the case q1, q2, and q3 do not lie on one line this
follows from axiom A5. If they lie on one line, then the problem reduces to
that of exercise 1.3.

1.6 Let L be a straight line. Choose q �∈ L and p ∈ L. Choose a point r so
that p ∈ rq. Then r �∈ L, since otherwise q ∈ L. Hence r and q represent two
different sides.

Now we derive a contradiction from the assumption that q1, q2 and q3 repre-
sent three pairwise different sides. If the three points do not lie on one line,
then L intersects the triangle q1q2q3 in all three sides contradicting axiom A5.
If they lie on one line, then the problem reduces to that of exercise 1.4.

1.9

FA,b(FB,c(x)) = FA,b(Bx+ c) = A(Bx+ c)+ b

= ABx+ (Ac+ b) = FAB, Ac+b(x).
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Moreover,

FA,b ◦ FA−1,−A−1b = FAA−1, A(−A−1b)+b = FId,0 = Id

and similarly FA−1,−A−1b ◦ FA,b = Id.

1.10 We assume without loss of generality that L = L′ = {(x, 0)� | x ∈ R}.
It is easy to see that two points (x, y)�, (x′, y′)� ∈ R − L lie on the same side
of L if and only if y and y′ have the same sign. Now consider the three points
p = (x, y), q = (x′, y′) and r = (x′′, y′′) ∈ R−L. If L intersects the line segment
pq, i.e. if p and q lie on different sides of L, then y and y′ have opposite signs.
Hence the sign of y′′ must coincide with the sign of either y or y′. If y′′ and y
have the same sign, i.e. if y′′ and y′ have opposite signs, then L intersects the
line segment qr. In the other case it intersects pr.

1.11 Axiom K1: Choose A ∈ SO(2) such that A(q− p) = λ · (r1 − p1), λ > 0.
Put F(x) := Ax+ ( p1 −Ap). Then F ∈ E(2), F( p) = p1, and

F(q)− p1 = Aq+ p1 −Ap− p1 = A(q− p) = λ · (r1 − p1).

Hence q1 := F(q) lies on the line through p1 and q1 on the same side as r1
(because λ > 0).

Axiom K2: This follows from the fact that E(2) is a group.

Axiom K3: One shows that two line segments pq and p′q′ in the Cartesian
plane are congruent if and only if they have equal lengths, i.e. ‖p − q‖ =
‖p′ − q′‖. Then axiom K3 is clear.

Axiom K4: This follows from the fact that E(2) is a group.

Axiom K5: There is a unique A∈O(2) such that A( p − q)= λ · ( p1 − q1),
λ > 0, and the determinants of the 2 × 2 matrices (A( p − q), A(r − q)) and
( p1 − q1, s1 − q1) have equal sign. Put b := q1 −Aq and F(x) := Ax+ b. Then
F ∈ E(2) and r1 := F(r) does the job.

Axiom K6: Since ∠(q, p, r) ≡ ∠(q1, p1, r1), there exists F ∈ E(2) such that
F( p) = p1, F(q) − F( p) = λ · (q1 − p1) and F(r) − F( p) = μ · (r1 − p1),
λ, μ > 0. From pq = p1q1 we conclude λ = 1 and similarly from pr = p1r1
we derive μ = 1. Thus F( p) = p1, F(q) = q1, and F(r) = r1. This implies all
congruences.

1.14 Choose the old points p1 and q1 as in the proof of theorem 1.2.3. Now
let q2 be the midpoint of the line segment p1q1. Observe that q2 is again an
old point. Let q3 be the midpoint of the line segment p1q2 or q2q1 which
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contains n. Proceed inductively to define a Cauchy sequence (qk)k. By com-
pleteness of R

2, this Cauchy sequence has a limit p2. Now continue as in the
proof of theorem 1.2.3.

1.15 If ∠( y, x, z) = ∠( y′, x′, z′), then x = x′, y− x = λ · ( y′ − x), and z− x =
μ · (z′ − x) (or y− x = λ · (z′ − x) and z− x = μ · ( y′ − x), which one can treat
similarly) with λ, μ > 0. It follows that

〈y− x, z− x〉
‖y− x‖ · ‖z− x‖ =

〈
λ( y′ − x), μ(z′ − x)

〉
‖λ( y′ − x′)‖ · ‖μ(z′ − x′)‖ =

〈
y′ − x′, z′ − x′

〉
‖y′ − x′‖ · ‖z′ − x′‖ .

1.16 If F ∈ E(2), F(x) = Ax+ b, then

〈F( y)− F(x), F(z)− F(x)〉
‖F( y)−F(x)‖ · ‖F(z)−F(x)‖ =

〈A( y− x), A(z− x)〉
‖A( y− x)‖ · ‖A(z− x)‖ =

〈y− x, z− x〉
‖y− x‖ · ‖z− x‖ .

Hence congruent angles have the same interior angle. For the converse
observe (using axiom K5) that each angle with interior angle γ is congruent to
the angle ∠((1, 0)�, (0, 0)�, (cos(γ ), sin(γ ))�). Hence two angles with the same
interior angle are congruent to the same angle, thus congruent to each other.

1.17 We first compute

1−cos(2t)
1+ cos(2t)

= 1− (cos2(t)−sin2(t))

1+ (cos2(t)−sin2(t))
= 2 sin2(t)

2 cos2(t)
= tan2(t).

Now the cosine rule yields

tan2
(α

2

)
= 1−cos(α)

1+ cos(α)
=

1− −a2 + b2 + c2

2bc

1+ −a2 + b2 + c2

2bc

= (a+ b− c)(a− b+ c)
(−a+ b+ c)(a+ b+ c)

.

1.18 Axioms I1, I3 and I4 are valid. Axiom I2 fails because pairs of antipodal
points p and −p are contained in infinitely many great circles.

1.19 Let p, q ∈ S2 be two distinct points on the sphere. If they are not
antipodal, p �= −q, then the line segment pq would be the unique great cir-
cle containing p and q with these two points removed. If they are antipodal,
p = −q, then the line segment would be pq = S2 − {p, q}. Axioms A1, A2 and
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A3 are obviously valid while axiom A4 certainly fails. Axiom A5 fails because
L will intersect all three sides of a triangle.

2.1 For c(t) =
(

sin(t)

cos(t)+ ln tan(t/2)

)
one easily computes

ċ(t) =
(

cos(t)

−sin(t)+ 1/ sin(t)

)
.

Now fix t. The tangent of c at c(t) is the straight line parametrised by

s �→ c(t)+ s · ċ(t) =
(

sin(t)

cos(t)+ ln tan(t/2)

)
+ s ·

(
cos(t)

−sin(t)+ 1/sin t

)
.

One sees that this line intersects the y-axis for s0 = −tan(t). Now

s0 · ċ(t) =
(
−sin(t)

−cos(t)

)

indeed has lenght 1 for each t.

2.2 For F(x) = Ax+ b with A ∈ O(2) one has

(F ◦ c)·(t) = Aċ(t).

Matrices in O(2) preserve the length of vectors.

2.4 Let c : R → R
n be a periodic parametrisation with period L. Let ψ

and ϕ = ψ−1 be the parameter transformations constructed in the proof of
proposition 2.1.13. By lemma 2.1.14 it is sufficient to show that c̃ := c ◦ ϕ is
periodic. Let � := L[c|[0,L]] be the length of the curve when restricted to one
period interval. Then we have for all s ∈ R

ψ(s+ L)− ψ(s) =
∫ s+L

s
‖ċ(t)‖dt = �

and therefore (substituting t = ψ(s))

ϕ(t +�)− ϕ(t) = ϕ(ψ(s)+�)− ϕ(ψ(s)) = s+ L− s = L

for all t ∈ R. Hence

c̃(t +�) = c(ϕ(t +�)) = c(ϕ(t)+ L) = c(ϕ(t)) = c̃(t).
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2.5 (a) We parametrise the curve such that the centre at time t is located
at (t, 1)�. Hence t is the length of the segment of the x-axis which has been
touched by the circle of radius 1. The arc-length parametrisation of the unit
circle starting at (0,−1)� at t = 0 is given by t �→ −(sin(t), cos(t))�. Thus

c(t) =
(

t
1

)
− r ·

(
sin(t)

cos(t)

)
=

(
t − r sin(t)

1− r cos(t)

)
.

(b)

r = 1/2
r = 1

r = 2

(c) From ċ(t) =
(

1− r cos(t)
r sin(t)

)
we see that ċ(t) = (0, 0)� if and only if t ∈ Z · π

and 0 = 1∓ r. Thus c is regular if and only if r �= 1.

(d) One computes using the substitution t = 2u

∫ 2π

0
‖ċ(t)‖dt =

∫ 2π

0

∥∥∥∥∥
(

1− cos(t)

sin(t)

)∥∥∥∥∥ dt =
∫ 2π

0

√
2− 2 cos(t) dt

= 2
√

2
∫ π

0

√
1− cos(2u) du

= 2
√

2
∫ π

0

√
1− cos2(u)+ sin2(u) du

= 2
√

2
∫ π

0

√
2 sin2(u) du = 4

∫ π

0
sin(u) du = 8.

2.6 (a) Let c be a curve connecting x and y which contains a point z that
does not lie on the line segment xy. Then the triangle inequality shows that
any polygon P having x, z and y as vertices must have length L[P] ≥ ‖x −
z‖ + ‖z − y‖ > ‖x − y‖. Now choose a sequence of polygons approximating
c which contain x, z, and y as vertices. Proposition 2.1.18 then says L[c] ≥
‖x− z‖ + ‖z− y‖ > ‖x− y‖.
(b) Without loss of generality assume x = (0, 0, . . . , 0)� and y = ( y1, 0, . . . , 0)�.
Let c : [a, b] → R

n be a parametrised curve connecting x and y. Then



272 A P P E N D I X A H I N T S F O R S O L U T I O N S

L[c] =
∫ b

a
‖ċ(t)‖dt ≥

∫ b

a
|ċ1(t)| dt ≥

∫ b

a
ċ1(t) dt

= c1(b)− c1(a) = y1 = ‖x− y‖.

Thus there is no curve connecting x and y which is shorter than the line seg-
ment. If we have equality, then we must have ‖ċ(t)‖ = |ċ1(t)| for all t, thus
ċ2 = · · · = ċn = 0. Hence c2 = · · · = cn = 0 and c is a parametrisation of the
line segment.

2.7 When restricted to (0, 2π) the first parametrised curve is injective while
the second is not.

2.8 Let I be the parameter interval of c1 and J that of c2. Let C := c1(I) =
c2(J) be the trace of the curves. By assumption c1 : I→C and c2 : J→C are
bijective so that ϕ := (c2)

−1 ◦ c1 is defined. It remains to prove smoothness
of ϕ (interchanging the roles of c1 and c2 will then also show smoothness of
ϕ−1). Let t0 ∈ I and put s0 := ϕ(t0) ∈ J. Since c2 is regular, ċ2(s0) does not
vanish. Without loss of generality ċ1

2(s0) �= 0. Thus the function c1
2 has a smooth

inverse (c1
2)
−1 near s0. Then ϕ = (c1

2)
−1 ◦ c1

1 is smooth near t0 as well.

2.9 For c̃ := F ◦ c we have ˙̃c = A · ċ and ¨̃c = A · c̈. Hence

ñ =
(

0 −1
1 0

)
·A · ċ = A ·

(
0 −1
1 0

)
· ċ = An

and therefore
¨̃c = A · c̈ = Aκn = κAn = κñ.

This shows κ̃ = κ .

If F reverses the orientation, then A anticommutes with
(

0 −1
1 0

)
so that

κ̃ = −κ .

2.10 It is easy to see that the function κ defined in this exercise coincides with
the curvature if the curve is parametrised by arc-length. Let c̃ = c ◦ ϕ be an
orientation-preserving reparametrisation. Then ˙̃c = ϕ̇ · (ċ ◦ ϕ) and ¨̃c= ϕ̈ · (ċ ◦
ϕ)+ ϕ̇2 · (c̈ ◦ ϕ). Thus

det( ˙̃c, ¨̃c) = det(ϕ̇ · (ċ ◦ ϕ), ϕ̈ · (ċ ◦ ϕ)+ ϕ̇2 · (c̈ ◦ ϕ) = ϕ̇3 det(ċ ◦ ϕ, c̈ ◦ ϕ)

and
‖˙̃c‖3 = ϕ̇3‖ċ ◦ ϕ‖3.

This shows κ̃ = κ ◦ ϕ.
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2.11 The function t �→ ‖c(t)‖2 has a maximum at t= t0. Hence (d/dt)|t=t0
‖c(t)‖2= 0 and (d2/dt2)|t=t0‖c(t)‖2 ≤ 0. The first condition implies c̈(t0) =
α ·c(t0) and the second α ≤ −1/R2. Therefore |κ(t0)| = ‖c̈(t0)‖ = |α| ·‖c(t0)‖ ≥
1/R2 · R = 1/R.

2.12 A regular parametrisation is given by c : (0,∞) → R, c(t) = (t2, t3)�.
It extends to a non-regular parametrisation on [0,∞). We compute the length
using the substitution u = 4+ 9t2:

L[c|[0,T]] =
∫ T

0

√
(2t)2 + (3t2)2 dt =

∫ T

0
t
√

4+ 9t2

=
∫ 4+9T2

4

√
u

du
18
= 1

18

[
2
3

u3/2
]4+9T2

u=4

= 1
27

(
(4+ 9T2)3/2 − 8

)
= 1

27

(
(4+ 9x)3/2 − 8

)
,

where c(T) = (x, y). We compute the curvature using exercise 2.10:

κ(t) = 1(
(2t)2 + (3t2)2

)3/2
det

(
2t 2

3t2 6t

)
= 12t2 − 6t2

t3(4+ 9t2)3/2

= 6
t(4+ 9t2)3/2

.

This shows that
lim
t↘0

κ(t) = ∞ and lim
t→∞ κ(t) = 0,

hence κ takes all values from (0,∞).

2.13 For the length we have

L[c|[0,T]] =
√

π

∫ T

0

√
cos(π t2/2)2 + sin(π t2/2)2 dt = √πT.

The curve is parametrised proportional to arc-length with ‖ċ‖ = √π . Hence
we get for the curvature

|κ(t)| = 1
π
‖c̈(t)‖ = 1√

π

√(−sin(π t2/2) · tπ)2 + (
cos(π t2/2) · tπ)2

= 1√
π

√
t2π2 = √π t.

2.14 The osculating circle c̃ is constructed in such a way that it contains c(t0).
Without loss of generality c̃(t0) = c(t0) and c̃ is parametrised by arc-length.
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Since both ċ(t0) and ˙̃c(t0) are perpendicular to n(t0) we have ċ(t0) = ±˙̃c(t0).
With the right choice of orientation of c̃ we have ċ(t0) = ˙̃c(t0). Denote the
centre of c̃ by M := c(t0) + (1/κ(t0))n(t0). Since the radius of c̃ is r = 1/|κ(t0)|
we have

¨̃c(t0) = 1
r

M − c̃(t0)
‖M − c̃(t0)‖ = |κ(t0)| · (1/κ(t0))n(t0)

‖(1/κ(t0))n(t0)‖ = κ(t0)n(t0) = c̈(t0).

2.15 We parametrise the parabola by c(x) = (x, x2)�. Using exercise 2.10 one
easily computes κ(x)= 2/(1+ 4x2)3/2 and n(x)= (1/

√
1+ 4x2)(−2x, 1)�. Thus

the centre of the osculating circle is given by

M(x) = c(x)+ 1
κ(x)

n(x) =
( −4x3

1
2 + 3x2

)
.

We conclude

{M(x) | x ∈ R} =
{(

X
Y

)
∈ R

2
∣∣∣∣ (Y − 1

2

)3

= 27
(

X
4

)2
}

.

2.16 We compute

ṽ(t) = d
dt

F(c(t)) = d
dt

(A · c(t)+ p) = A · ċ(t) = Av(t)

and
¨̃c(t) = v̇(t) = Av̇(t) = Ac̈(t).

Hence

κ̃(t) = ‖¨̃c(t)‖ = ‖Ac̈(t)‖ = ‖c̈(t)‖ = κ(t),

because A is orthogonal and thus preserves lengths of vectors. This also shows
ñ(t) = An(t). Since A is orthogonal and orientation-preserving the unique
vector completing Av(t) and An(t) as a positively oriented orthonormal basis
is given by Ab(t). Thus b̃(t) = Ab(t). For the torsion we get, using once more
that A is orthogonal,

τ̃ (t) =
〈 ˙̃n(t), b̃(t)

〉
= 〈Aṅ(t), Ab(t)〉 = 〈ṅ(t), b(t)〉 = τ(t).

If F and hence A is orientation-reversing, then similar reasoning yields
b̃(t)= −Ab(t) and therefore τ̃ (t) = −τ(t) while still κ̃(t) = κ(t).
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2.17 The proof is analogous to that of theorem 2.3.9 where one replaces
(2.15) by

d
dt

(c, v, n) = (c, v, n) ·
⎛⎜⎝0 0 0

1 0 −κ

0 κ 0

⎞⎟⎠
and (2.16) by

d
dt

⎛⎜⎝〈v, v〉
〈n, n〉
〈n, v〉

⎞⎟⎠ =
⎛⎜⎝ 0 0 2κ

0 0 −2κ

−κ κ 0

⎞⎟⎠ ·
⎛⎜⎝〈v, v〉
〈n, n〉
〈n, v〉

⎞⎟⎠.

2.18 First observe that

μ(c,−e) = |{local minima of the function R→ R, t �→ 〈c(t), e〉 in [0, L)}|.

The assertion follows because between any two local maxima there is a local
minimum and vice versa.

2.19 Any simple closed space curve is ambient isotopic to itself: Put �(t, x) :=
x for all x ∈ R

3 and all t ∈ [0, 1].
If c1 is ambient isotopic to c2, then c2 is ambient isotopic to c1: Let � be
an ambient isotopy deforming c1 into c2. Then � deforms c2 into c1 where
�(t, ·) = �(t, ·)−1.

If c1 is ambient isotopic to c2 and c2 is ambient isotopic to c3, then c1 is ambient
isotopic to c3: If �1 deforms c1 into c2 and �2 deforms c2 into c3, then �

deforms c1 into c3 where

�(t, x) =
{

�1(2t, x), if t ∈ [0, 1/2],
�2(2t − 1, �1(1, x)), if t ∈ [1/2, 1].

3.1 There are many ways to cover S2 by two coordinate neighbourhoods.
We use the stereographic projection. Put V1 := R

3 \ {(0, 0, 1)�}, U1 = R
2,

and F1(u, v) := (1/(1+ u2 + v2))(2u, 2v, u2 + v2 − 1)�. One easily checks that
F1(U1) = S2 \ {(0, 0, 1)�} with inverse map

F−1
1 : S2 \ {(0, 0, 1)�} → R

2, F−1
1 (x, y, z) = 1

1− z
(x, y)�.

In particular, both F1 and F−1
1 are continuous which verifies condition (i) in

definition 3.1.1. Condition (ii) is also easily checked.
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This local parametrisation covers all of S2 except one single point, namely
(0, 0, 1). So we need a second local parametrisation. For example, we may take
V2 := R

3 \ {(0, 0,−1)�}, U2 = R
2, and F2(u, v) := (1/1+ u2 + v2)(2u, 2v, 1 −

u2 − v2)�.

3.2 Any local parametrisation (U, F, V) of S gives rise to a local parametrisa-
tion (F−1(W), F|F−1(W), V ∩W) of S ∩W. These local parametrisations cover
S ∩W.

3.3 For any point of p ∈ S there is an open neighbourhood V of p such that
S ∩ V is a regular surface. Hence there is a local parametrisation (U, F, V′) of
S ∩ V with p ∈ V′. Now (U, F, V′) is also a local parametrisation of S, thus S
can be covered by local parametrisations.

3.4 Let f : V → R
3 be smooth. Proposition 3.1.9 tells us that F−1

2 ◦f is smooth
for any local parametrisation (U2, F2, V2) of S2. Proposition 3.1.11 now implies
that F−1

2 ◦ f ◦ F1 is smooth for any local parametrisation (U1, F1, V1) of S1.

3.5

∂F+3
∂x
=

⎛⎜⎜⎜⎝
1
0

− x√
1− x2 − y2

⎞⎟⎟⎟⎠ ,
∂F+3
∂y
=

⎛⎜⎜⎜⎝
0
1

− y√
1− x2 − y2

⎞⎟⎟⎟⎠ ,

(gij)ij =

⎛⎜⎜⎜⎝
1− y2

1− x2 − y2

xy
1− x2 − y2

xy
1− x2 − y2

1− x2

1− x2 − y2

⎞⎟⎟⎟⎠
3.6 For F(x, y) = (x, y, f (x, y)) we get

∂F
∂x
=

⎛⎜⎜⎜⎝
1
0

∂f
∂x

⎞⎟⎟⎟⎠ ,
∂F
∂y
=

⎛⎜⎜⎜⎝
0
1

∂f
∂y

⎞⎟⎟⎟⎠ ,

(gij)ij =

⎛⎜⎜⎜⎝
1+

(
∂f
∂x

)2
∂f
∂x

∂f
∂y

∂f
∂x

∂f
∂y

1+
(

∂f
∂y

)2

⎞⎟⎟⎟⎠ .
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3.7

∂F
∂ϕ
=

⎛⎜⎝−r sin(ϕ)

r cos(ϕ)

0

⎞⎟⎠ ,
∂F
∂r
=

⎛⎜⎝cos(ϕ)

sin(ϕ)

1

⎞⎟⎠ ,

(gij)ij =
(

r2 0
0 2

)
.

3.8 Let (U, F, V) be a local parametrisation of S. Now

Ñ :=
∂F
∂x
× ∂F

∂y∥∥∥∥∂F
∂x
× ∂F

∂y

∥∥∥∥
is a smooth unit normal field on S∩V. Hence we have N = f ·Ñ with a function
f : S ∩ V → {−1, 1}. Such an f is continuous if and only if it is locally constant
if and only if it is smooth.

3.9 Near p write S locally as S={x∈R
3 | f1(x)= 0}, where f1 has

non-vanishing gradient. Put Y :=N( p)×X ∈TpS. Then E+ p={q∈R
3 |

〈q− p, Y〉 = 0}. Put f2(q) := 〈q− p, Y〉. Then, near p, S∩ (E+p)= {x ∈
R

3 | f1(x) = f2(x) = 0
}
. Since grad f1( p) and Y are orthogonal and non-zero,

D( f1, f2)( p) has maximal rank 2. Without loss of generality, let the second and
the third row of this 3×2 matrix be linearly independent. Then, by the implicit
function theorem, there exist smooth functions g1 and g2 such that

S ∩ (E+ p) =
{
(t, g1(t), g2(t))

� | t ∈ (−ε, ε)
}

near p.

3.10 (d/dt)N(c(t)) = dN(ċ(t)) = −Wc(t)(ċ(t)).

3.11 According to corollary 3.6.16 near p S is the graph of a function f on the
tangent plane. Translating p to (0, 0, 0)� and rotating S such that TpS becomes
the plane spanned by e1 and e2 this function is of the form

f (u1, u2) = 1
2

∑
ij

hij(0, 0)uiu j + ϕ(u),

where ϕ(u) = O(‖u‖3), i.e. |ϕ(u)| ≤ C · ‖u‖3 for some constant C and all
u in a neighbourhood of (0, 0). Now rotate TpS about the origin such that
e1 and e2 become an eigenbasis of the Weingarten map at p = (0, 0, 0)�.
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Table A.1 Graphs with vanishing Gauss curvature at the origin

f ≡ 0 S = TpS

f (x, y) = y2 S lies on one side of TpS and intersects TpS in a line
f (x, y) = x4 + y4 S lies on one side of TpS and S ∩ TpS = { p}
f (x, y) = x4 − y4 S intersects both sides of TpS

Then we have

f (u1, u2) = 1
2

(
κ1(0, 0)(u1)2 + κ2(0, 0)(u2)2

)
+ ϕ(u).

(a) Let K( p) > 0. Then κ1(0, 0) and κ2(0, 0) are both positive or both negative.
Without loss of generality, assume that they are both positive, the other case
being similar. Put k := min{κ1(0, 0), κ2(0, 0)} > 0. Now we have for all u �=
(0, 0)� in the domain of f with ‖u‖ ≤ k/4C

f (u) ≥ k
2
‖u‖2 + ϕ(u) ≥ k

2
‖u‖2 − C‖u‖3 ≥ k

4
‖u‖2 > 0.

Hence this part of S lies on one side of TpS.

(b) Let K( p) < 0. Then the two principal curvatures have opposite sign, say
κ1(0, 0) < 0 and κ2(0, 0) > 0. An argument similar to the one in (a) shows that
near p the function f is negative along the e1-axis and positive along the e2-
axis. Hence each neighbourhood of p in S meets both sides of the tangent
plane.

(c) Nothing general can be said in the case K( p) = 0 as can be seen by the
following examples. Let S be the graph of the function f : R2 → R. Then
at p = (0, 0, 0)� the Gauss curvature vanishes; curves with vanishing Gauss
curvature are listed in table A.1.

3.12 (a) Let N ∈ S2. Let E be the orthogonal complement of N. Since S is
compact the affine plane Et := E+ t ·N will not intersect S provided t is large
enough. Now decrease t until the affine plane Et touches S for the first time.
Then E is the tangent plane of S at this intersection point p, hence N is the
exterior unit normal vector to S at p.

(b) Suppose there is a point p ∈ S such that K( p) < 0. By exercise 3.11(b)
there are points of S on both sides of the affine tangent plane TpS + p. The
construction in (a) above yields a point q ∈ S such that N(q) = N( p). By
construction S lies entirely on one side of the affine tangent plane TqS + q.
Therefore q �= p and the Gauss map is not injective.
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(c) For the pre-image p of N constructed in (a) the surface S lies entirely on
one side of its tangent plane. Hence the Gauss curvature at this point cannot
be negative.

3.13 Since f is integrable in the sense of definition 3.7.4 we can write f in the
form f = f̃ 1+· · ·+ f̃ l, where each f̃ j is integrable in the sense of definition 3.7.1.
Since χ = χVj−(V1∪···∪Vj−1) is integrable and bounded, the function fi = χ · f̃ 1

+ · · · + χ · f̃ l is integrable as well.

3.14 The problem is that the familiar linearity of the integral of functions
defined on R

n gives us linearity for the integral of functions on a surface a
priori only if they are supported in a common range of a local parametrisa-
tion. Now let f = f1 + · · · + fk be a decomposition as in definition 3.7.4. Let
χj = χVj−(V1∪···∪Vj−1), f̃ j = χj · f and f = f̃ 1 + · · · + f̃ l as in the remark after
definition 3.7.4. It suffices to show

k∑
i=1

∫
S

fi dA =
l∑

j=1

∫
S

f̃ j dA .

Using
∑

j χj = 1 and the linearity of the integral for functions supported in a
common range of a local parametrisation we get

k∑
i=1

∫
S

fi dA =
k∑

i=1

∫
S

l∑
j=1

χjfi dA =
∑

i,j

∫
S

χjfi dA

=
l∑

j=1

∫
S

k∑
i=1

χjfi dA =
l∑

j=1

∫
S

χjf dA .

3.16 At a point p ∈ S, where K( p) > 0, the determinant of the differential
of the Gauss map is non-zero. By the inverse function theorem there exist
neighbourhoods U of p in S and V of N( p) in S2 such that the Gauss map is
a diffeomorphism from U to V. The transformation formula for the integral
implies ∫

U
K dA =

∫
V

dA = A[V].

By exercise 3.12 (c) we know that the Gauss map S+ → S2 is onto. By Sard’s
theorem the set S0 := {x ∈ S |K(x) = 0} is mapped to a zero set in S2. Choose
(countably many) open subsets Uj ⊂ S+ \ S0 and Vj ⊂ S2 such that

• the Gauss map is a diffeomorphism from Uj to Vj,
• the Vj are pairwise disjoint,
• the Vj cover S2 up to a zero set.
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Since the Vj are pairwise disjoint, so are the Uj. We conclude

∫
S+

K dA ≥
∑

j

∫
Uj

K dA =
∑

j

A[Vj] = A[S2] = 4π .

3.17 From K = det(hij)/ det(gij) = −h2
12/ det(gij), we see that K(F(t, s)) = 0 if

and only if

0 = h12(t, s) =
〈

∂2F
∂s∂t

(t, s), N(F(t, s))

〉
= 〈v̇(t), N(F(t, s))〉 ,

i.e. if and only if v̇(t) ∈ TF(t,s)S. Since TF(t,s)S is spanned by (∂F/∂t)(t, s) =
ċ(t)+ sv̇(t) and (∂F/∂s)(t, s) = v(t), the claim follows.

3.18 For the cylinder v̇(t) = 0 and for the cone v̇(t) = −ċ(t). In both cases
ċ(t), v(t) and v̇(t) are linearly dependent and exercise 3.17 applies.

3.19 For the hyperboloid of revolution we have

ċ(t) =
⎛⎜⎝−sin(t)

cos(t)

0

⎞⎟⎠ , v(t) =
⎛⎜⎝−sin(t)

cos(t)

1

⎞⎟⎠ , v̇(t) =
⎛⎜⎝−cos(t)

−sin(t)

0

⎞⎟⎠ .

Thus

det(ċ(t), v(t), v̇(t)) = det

⎛⎜⎝−sin(t) −sin(t) −cos(t)

cos(t) cos(t) −sin(t)

0 1 0

⎞⎟⎠ = −1 �= 0,

hence ċ(t), v(t) and v̇(t) are linearly independent and exercise 3.17 applies.
For the hyperbolic paraboloid the corresponding computation yields

det(ċ(t), v(t), v̇(t)) = 1
1+ t2

�= 0,

while we get for the Möbius strip

det(ċ(t), v(t), v̇(t)) = − 1
2 �= 0.
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3.20 First partial derivatives of F:

∂F
∂u1

(
u1, u2

)
=

⎛⎜⎜⎝
1− (u1)2 + (u2)2

2 u2 u1

2 u1

⎞⎟⎟⎠ ,
∂F
∂u2

(
u1, u2

)
=

⎛⎜⎜⎝
2 u2 u1

1− (u2)2 + (u1)2

−2 u2

⎞⎟⎟⎠.

First fundamental form:

(gij) = (1+ (u1)2 + (u2)2)2
(

1 0
0 1

)
.

Its inverse:

(g ij) = (1+ (u1)2 + (u2)2)−2
(

1 0
0 1

)
.

Unit normal field:

N = 1
1+ (u1)2 + (u2)2

·
⎛⎜⎝ −2u1

2u2

1− (u1)2 − (u2)2

⎞⎟⎠ .

Second partial derivatives of F:

∂2F
∂(u1)2

=

⎛⎜⎜⎜⎝
−2 u1

2 u2

2

⎞⎟⎟⎟⎠ ,
∂2F

∂u2∂u1
=

⎛⎜⎜⎜⎝
2 u2

2 u1

0

⎞⎟⎟⎟⎠ ,
∂2F

∂(u2)2
=

⎛⎜⎜⎜⎝
2 u1

−2 u2

−2

⎞⎟⎟⎟⎠ .

Second fundamental form:

(hij) =
(

2 0

0 −2

)
.

Weingarten map:

(
w j

i

)
= (1+ (u1)2 + (u2)2)−2

(
2 0

0 −2

)
.

Mean curvature:

H = 1
2 Trace(W) = 0.
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3.21 First partial derivatives of F:

∂F
∂u1

(
u1, u2

)
=

⎛⎜⎜⎜⎝
sinh(u1) cos(u2)

sinh(u1) sin(u2)

1

⎞⎟⎟⎟⎠ ,
∂F
∂u2

(
u1, u2

)
=

⎛⎜⎜⎜⎝
−cosh(u1) sin(u2)

cosh(u1) cos(u2)

0

⎞⎟⎟⎟⎠ .

First fundamental form:

(gij) =
(

cosh2(u1) 0

0 cosh2(u1)

)
.

Its inverse:

(g ij) =
(

cosh−2(u1) 0

0 cosh−2(u1)

)
.

Unit normal field:

N = 1
cosh(u1)

⎛⎝ −cos(u2)

−sin(u2)

sinh(u1)

⎞⎠ .

Second partial derivatives of F:

∂2F
∂(u1)2

(
u1, u2

)
=

⎛⎜⎜⎝
cosh(u1) cos(u2)

cosh(u1) sin(u2)

0

⎞⎟⎟⎠ ,

∂2F
∂u2∂u1

(
u1, u2

)
=

⎛⎜⎜⎝
−sinh(u1) sin(u2)

sinh(u1) cos(u2)

0

⎞⎟⎟⎠ ,

∂2F
∂(u2)2

(
u1, u2

)
=

⎛⎜⎜⎝
−cosh(u1) cos(u2)

−cosh(u1) sin(u2)

0

⎞⎟⎟⎠ .

Second fundamental form:

(hij) =
( −1 0

0 1

)
.
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Weingarten map:

(
w j

i

)
=

( −cosh−2(u1) 0

0 cosh−2(u1)

)
.

Mean curvature:

H = 1
2 Trace(W) = 0.

3.22 First partial derivatives of F:

∂F
∂u1

(
u1, u2

)
=

⎛⎜⎜⎝
sin

(
u2)

−cos
(
u2)

0

⎞⎟⎟⎠ ,
∂F
∂u2

(
u1, u2

)
=

⎛⎜⎜⎝
u1 cos

(
u2)

u1 sin
(
u2)

1

⎞⎟⎟⎠ .

First fundamental form:

(gij) =
(

1 0

0 1+ (u1)2

)
.

Its inverse:

(g ij) =
⎛⎝ 1 0

0
(
1+ (u1)2)−1

⎞⎠ .

Unit normal field:

N = 1√
1+ (u1)2

⎛⎜⎝ −cos(u2)

−sin(u2)

u1

⎞⎟⎠ .

Second partial derivatives of F:

∂2F
∂(u1)2

(
u1, u2

)
=

⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ ,
∂2F

∂u2∂u1

(
u1, u2

)
=

⎛⎜⎜⎝
cos

(
u2)

sin
(
u2)

0

⎞⎟⎟⎠ ,

∂2F
∂(u2)2

(
u1, u2

)
=

⎛⎜⎜⎝
−u1 sin

(
u2)

u1 cos
(
u2)

0

⎞⎟⎟⎠ .
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Second fundamental form:

(hij) = 1√
1+ (u1)2

(
0 −1
−1 0

)
.

Weingarten map:

(
w j

i

)
=

⎛⎜⎜⎝ 0 − (
1+ (u1)2)−3/2

− 1√
1+ (u1)2

0

⎞⎟⎟⎠ .

Mean curvature:

H = 1
2 Trace(W) = 0.

The helicoid is a ruled surface because F(u1, u2) = c(u2) + u1 · v(u2), where
c(u2)= (0, 0, u2)� and v(u2)= (sin(u2),−cos(u2), 0)�. Clearly, ċ(u2)= (0, 0, 1)�
and v(u2) are linearly independent.

3.23 The principal curvatures are the eigenvalues of the the Weingarten
map and hence the zeros of its characteristic polynomial. The characteristic
polynomial of any 2× 2 matrix A is given by

χA(λ) = λ2 − λ · Trace(A)+ det(A).

3.24 The graph of ϕ has the following parametrisation:

F(x, y) =

⎛⎜⎜⎝
x

y

ϕ(x, y)

⎞⎟⎟⎠ .

Its partial derivatives:

∂F
∂x
=

⎛⎜⎜⎜⎝
1

0

∂ϕ

∂x

⎞⎟⎟⎟⎠ ,
∂F
∂y
=

⎛⎜⎜⎜⎜⎝
0

1

∂ϕ

∂y

⎞⎟⎟⎟⎟⎠ .
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First fundamental form:

(gij) =

⎛⎜⎜⎜⎜⎝
1+

(
∂ϕ

∂x

)2
∂ϕ

∂x
∂ϕ

∂y

∂ϕ

∂x
∂ϕ

∂y
1+

(
∂ϕ

∂y

)2

⎞⎟⎟⎟⎟⎠ .

Its inverse:

(g ij) = 1
1+ ‖ grad ϕ‖2

⎛⎜⎜⎜⎜⎝
1+

(
∂ϕ

∂y

)2

−∂ϕ

∂x
∂ϕ

∂y

−∂ϕ

∂x
∂ϕ

∂y
1+

(
∂ϕ

∂x

)2

⎞⎟⎟⎟⎟⎠ .

Unit normal field:

N = 1√
1+ ‖ grad ϕ‖2

⎛⎜⎜⎜⎜⎜⎝
−∂ϕ

∂x

−∂ϕ

∂y

1

⎞⎟⎟⎟⎟⎟⎠ .

Second partial derivatives of the parametrisation:

∂2F
∂x2
=

⎛⎜⎜⎜⎝
0
0

∂2ϕ

∂x2

⎞⎟⎟⎟⎠ ,
∂2F
∂y∂x

=

⎛⎜⎜⎜⎜⎝
0
0

∂2ϕ

∂x∂y

⎞⎟⎟⎟⎟⎠ ,
∂2F
∂y2
=

⎛⎜⎜⎜⎜⎝
0
0

∂2ϕ

∂y2

⎞⎟⎟⎟⎟⎠ .

Second fundamental form:

(hij) = 1√
1+ ‖ grad ϕ‖2

⎛⎜⎜⎜⎝
∂2ϕ

∂x2

∂2ϕ

∂x∂y

∂2ϕ

∂x∂y
∂2ϕ

∂y2

⎞⎟⎟⎟⎠ .
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Weingarten map:(
1+ ‖ grad ϕ‖2

)3/2 ·
(

w j
i

)
=⎛⎜⎜⎜⎜⎝

∂2ϕ

∂x2
·
(

1+
(

∂ϕ

∂y

)2
)
− ∂2ϕ

∂x∂y
· ∂ϕ

∂x
· ∂ϕ

∂y
− ∂2ϕ

∂x2
· ∂ϕ

∂x
· ∂ϕ

∂y
+ ∂2ϕ

∂x∂y
·
(

1+
(

∂ϕ

∂x

)2
)

∂2ϕ

∂x∂y
·
(

1+
(

∂ϕ

∂y

)2
)
− ∂2ϕ

∂y2
· ∂ϕ

∂x
· ∂ϕ

∂y
− ∂2ϕ

∂x∂y
· ∂ϕ

∂x
· ∂ϕ

∂y
+ ∂2ϕ

∂y2
·
(

1+
(

∂ϕ

∂x

)2
)
⎞⎟⎟⎟⎟⎠ .

The claim follows.

3.25 From the above computation of the Weingarten map we see

K =

∂2ϕ

∂x2
· ∂

2ϕ

∂y2
−

(
∂2ϕ

∂x∂y

)2

(
1+

(
∂ϕ

∂y

)2

+
(

∂ϕ

∂x

)2
)2
= det(Hess ϕ)(

1+ ‖ grad ϕ‖2
)2

.

Now any symmetric real 2×2 matrix has positive determinant if and only if it is
(positive or negative) definite (both eigenvalues positive or both eigenvalues
negative) while it has negative determinant if and only if it is indefinite and
non-degenerate (one eigenvalue positive and one negative).

3.26 Use exercise 3.24.

3.27 (a) After the parameter transformation v1= u1/R, v2= u2, the rescaled
catenoid is given by the parametrisation G(R)(v1, v2)=R · (cosh(v1) cos(v2),
cosh(v1) sin(v2), v1)� = R ·G(1)(v1, v2). By exercise 3.21 we know that G(1)

parametrises a minimal surface. One easily sees that we have for the first fun-
damental form g(R)ij=R2 · g(1)ij, for its inverse g ij

(R)
=R−2 · g ij

(1)
, for the normal

field N(R) = N(1), for the second fundamental form h(R)ij = R ·h(1)ij, and hence

for the Weingarten map w(R)
j
i = R−1·w(1)

j
i. Thus H(R) = R−1·H(1) = (0, 0, 0)�.

(b) At height h the rescaled catenoid describes a circle of radius R · cosh(h/R).
Hence h = R arcosh(1/R).

(c) There is an upper bound for h because

lim
R↘0

R arcosh(1/R) = lim
R↗1

R arcosh(1/R) = 0.

3.28 First partial derivatives of the parametrisation:

∂F
∂u1

(u1, u2) =
⎛⎜⎝ sin(α) sinh(u1) cos(u2)+ cos(α) cosh(u1) sin(u2)

sin(α) sinh(u1) sin(u2)− cos(α) cosh(u1) cos(u2)

sin(α)

⎞⎟⎠ ,
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∂F
∂u2

(u1, u2) =

⎛⎜⎜⎝
−sin(α) cosh(u1) sin(u2)+ cos(α) sinh(u1) cos(u2)

sin(α) cosh(u1) cos(u2)+ cos(α) sinh(u1) sin(u2)

cos(α)

⎞⎟⎟⎠ .

First fundamental form:

(gij) =
(

cosh2(u1) 0

0 cosh2(u1)

)
.

Its inverse:

(g ij) =
(

cosh−2(u1) 0

0 cosh−2(u1)

)
.

Unit normal field:

N = 1
cosh(u1)

⎛⎜⎜⎝
−cos(u2)

−sin(u2)

sinh(u1)

⎞⎟⎟⎠ .

Second partial derivatives of the parametrisation:

∂2F
∂(u1)2

(u1, u2) =

⎛⎜⎜⎝
sin(α) cosh(u1) cos(u2)+ cos(α) sinh(u1) sin(u2)

sin(α) cosh(u1) sin(u2)− cos(α) sinh(u1) cos(u2)

0

⎞⎟⎟⎠ .

∂2F
∂u2∂u1

(u1, u2) =

⎛⎜⎜⎝
−sin(α) sinh(u1) sin

(
u2)+ cos(α) cosh(u1) cos(u2)

sin(α) sinh(u1) cos(u2)+ cos(α) cosh(u1) sin(u2)

0

⎞⎟⎟⎠ ,

∂2F
∂(u2)2

(u1, u2) =

⎛⎜⎜⎝
−sin(α) cosh(u1) cos(u2)− cos(α) sinh(u1) sin(u2)

−sin(α) cosh(u1) sin(u2)+ cos(α) sinh(u1) cos(u2)

0

⎞⎟⎟⎠ .

Second fundamental form:

(hij) =
( −sin(α) −cos(α)

−cos(α) sin(α)

)
.

Weingarten map:

(
w j

i

)
= cosh−2(u1)

( −sin(α) −cos(α)

−cos(α) sin(α)

)
.
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We conclude H= 0 for all α. For α=π/2 we get the parametrisation of the
catenoid as in example 3.8.13. For α = 0 we get the parametrisation of the
helicoid as in example 3.8.14 after the parameter transformation v1 = sinh(u1),
v2 = u2.

3.29 One can easily check that in both (a) and (b) the ruled surface is a mini-
mal surface. Conversely, suppose that it is minimal. From the parametrisation
F(t, s) = c(t)+ sv(t) we see that

∂F
∂t

(t, s) = ċ(t)+ sv̇(t),
∂F
∂s

(t, s) = v(t).

Hence we have for the first and second fundamental forms

(gij) =
(

g11 0
0 1

)
, (hij) =

(
h11 h12
h21 0

)
.

Thus (
w j

i

)
=

(
h11/g11 0

0 0

)
and therefore minimality means that h11 = 0, in other words N ⊥ ∂2F/∂t2, i.e.

0 = 〈c̈+ sv̈, ċ× v+ sv̇× v〉
= 〈c̈, ċ× v〉 + s (〈v̈, ċ× v〉 + 〈c̈, v̇× v〉)+ s2 〈v̈, v̇× v〉 .

Thus

(i) 〈c̈, ċ× v〉 = 0,
(ii) 〈v̈, ċ× v〉 + 〈c̈, v̇× v〉 = 0,

(iii) 〈v̈, v̇× v〉 = 0.

If v is constant, then (ii) and (iii) hold automatically while (i) implies c̈(t) =
α(t) · v because both v and c̈ are perpendicular to ċ. Integrating twice yields
ċ(t) = β(t) · v + w and c(t) = γ (t) · v + tw + u. Thus c parametrises a straight
line and the surface is part of a plane.

Let us now look at those values of t for which v̇(t) �= (0, 0, 0)�. From (iii) we
conclude that v̈(t) = α(t)v(t)+ β(t)v̇(t) and thus

d
dt

(v̇× v) = v̈× v+ v̇× v̇ = βv̇× v.
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The unique solution to this ordinary differential equation for v̇× v with initial
value v̇(t0)× v(t0) at t = t0 can be written down explicitly:

v̇(t)× v(t) = exp

(∫ t

t0
β(s)ds

)
· v̇(t0)× v(t0).

Hence v̇(t)×v(t) are linearly dependent for all t, i.e. v(t) and v̇(t) are contained
in a fixed plane. After applying a Euclidean motion we may assume that this
is the x–y plane. Since ‖v‖ = 1, the curve v parametrises part of the unit circle
in the plane, i.e. we can write

v(t) =
⎛⎜⎝ sin(�(t))

−cos(�(t))

0

⎞⎟⎠
for some smooth function �. Now (i) yields c̈(t) = α(t)v(t), while (ii) gives
v̈(t) = β(t)ċ(t)+ γ (t)v(t). On the other hand,

v̈(t) = �̈(t)

⎛⎜⎝cos(�(t))

sin(�(t))

0

⎞⎟⎠− �̇2(t) · v(t).

Comparing we find

β(t)ċ(t) = �̈(t)

⎛⎜⎝cos(�(t))

sin(�(t))

0

⎞⎟⎠ .

If �̈(t) �= 0, then ċ(t) = ±(cos(�(t)), sin(�(t)), 0)�, thus c lies in an affine plane
parallel to the x–y plane. Then the ruled surface is contained in this affine
plane. Let therefore �̈ ≡ 0. Then �(t) = ωt + t0. After applying a rotation we
may assume t0 = 0. Since ċ is perpendicular to v, we can write

ċ(t) = β(t)

⎛⎜⎝cos(ωt)

sin(ωt)

0

⎞⎟⎠+ γ (t)

⎛⎜⎝0
0
1

⎞⎟⎠ (A.1)

with β2 + γ 2 = 1. Thus

c̈(t) = β̇(t)

⎛⎜⎝cos(ωt)

sin(ωt)

0

⎞⎟⎠+ β(t)ω

⎛⎜⎝−sin(ωt)

cos(ωt)

0

⎞⎟⎠+ γ̇ (t)

⎛⎝0
0
1

⎞⎠ .
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Comparing this to c̈(t)=α(t)v(t), we find β̇ = γ̇ = 0 and β =−α. Putting
β =: A, integrating (A.1), and a last translation concludes the proof.

3.30 From the formula for the minimal curvature we see that a surface of
revolution is minimal if and only if

r̈ = 1+ ṙ2

r

holds. Now r(t)= c1 cosh(t + c2)/c1 solves this differential equation and
for suitable choices of c1 > 0 and c2 realises all initial values r(t0)=
c1 cosh(t0 + c2)/c1 > 0 and ṙ(t0)= sinh(t0 + c2)/c1.

3.31 We observe that for the third component u(t) = cos(t) + ln(tan(t/2)) of
F we have

du
dt
= cos2(t)

sin(t)
> 0,

so that it is strictly monotonically increasing. Denote the inverse function by
t(u). Then

r = sin(t(u)),

dr
du
= cos(t(u)) · dt

du
= sin(t(u))

cos(t(u))
= tan(t(u)),

d2r
du2
= 1

cos2(t(u))
· dt

du
= sin(t(u))

cos4(t(u))
.

Hence

K = − r̈(t)
r(t)(1+ ṙ(t)2)2

= − sin(t)/cos4(t)
sin(t)(1+ tan2(t))2

= −1.

3.32 Let c be parametrised on the interval I. Then

∫
S

K dA = −
∫

I

∫ 2π

0

1
r

κ(t) cos(ϕ)

1− r cos(ϕ)κ(t)
r(1− r cos(ϕ)κ(t)) dϕdt

= −
∫

I

∫ 2π

0
κ(t) cos(ϕ) dϕdt = 0.

3.33 Choose r > 0 so small that r < 1/κ(t) for all t ∈ I. Let S be the tubular
surface around c. We only need to consider t for which κ(t) �= 0, i.e. κ(t) > 0.
From

K = −1
r

κ(t) cos(ϕ)

1− r cos(ϕ)κ(t)
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we see that K > 0 if and only if cos(ϕ) < 0, i.e. ϕ ∈ (π/2, 3π/2). Using exer-
cise 3.16 we find

4π ≤
∫
{K≥0}

K dA =
∫

I

∫ 3π/2

π/2
κ(t) cos(ϕ) dϕ dt = 2κ(c).

This proof of Fenchel’s estimate is due to Konrad Voss [33].

4.1 The standard vectors e1 and e2 form an orthonormal basis of TpS1 for any
p = (x, y, 0)�. We compute

dpf (e1) = d
dt

∣∣∣∣
t=0

f ( p+ te1)

= d
dt

∣∣∣∣
t=0

f (x+ t, y, 0)

= ∂f
∂x

(x, y, 0)

= (−sin(x), cos(x), 0)�

and similarly

dpf (e2) = ∂f
∂y

(x, y, 0) = (0, 0, 1)�.

Since dpf (e1) and dpf (e2) are again orthonormal, dpf is a linear isometry.

4.2 At p = (x, y, 0)� we compute

dpf (e1)= ∂f
∂x

(x, y, 0) = 1
2(x2 + y2)3/2

⎛⎜⎝ x(x2 + 3y2)

2y3
√

3x(x2 + y2)

⎞⎟⎠ ,

dpf (e2)= ∂f
∂y

(x, y, 0) = 1
2(x2 + y2)3/2

⎛⎜⎝−y(3x2 + y2)

2x3
√

3y(x2 + y2)

⎞⎟⎠ .

One can easily check that dpf (e1) and dpf (e2) are again orthonormal.

4.3 If we denote the coefficient function of the first fundamental form of F
by gij and the ones of f ◦ F by g̃ij, then, using the chain rule and the fact that
df is a linear isometry, we get

g̃ij =
〈
∂( f ◦ F)

∂ui
,
∂( f ◦ F)

∂u j

〉
= 〈

D( f ◦ F)(ei), D( f ◦ F)(ej)
〉

= 〈
df (DF(ei)), df (DF(ej))

〉 = 〈
DF(ei), DF(ej)

〉 = gij.
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4.4 This follows from dq( f−1) = (dpf )−1, where f ( p) = q and the fact that
the inverse of a linear isometry is again a linear isometry.

4.5 Given a local isometry f : S1→ S2 we can restrict it to an isometry of a
neighbourhood U of any given point p ∈ S1 onto its image V = f (U). By
exercise 4.4 ( f |U)−1 : V → U is also an isometry. Since f is onto we can find
such a neighbourhood V for any given point q ∈ S2.

This last argument fails if f is not assumed surjective. For example, let S2 be
a surface having elliptic points and hyperbolic points (such as the torus). Let
S1 ⊂ S2 be the open subset of elliptic points. Then the embedding f : S1 ↪→ S2
is a local isometry. But no hyperbolic point in S2 can have a neighbourhood
which is isometric to an open subset of S1 because isometries preserve Gauss
curvature as we shall see (see Theorem 4.3.8).

4.6 dpf = DpF|TpS = A|TpS is a linear isometry.

4.7 Take a Euclidean motion F : R
3 → R

3 such that F(E1) = E2. Now
exercise 4.6 applies.

4.8 Look at the curve c : R→ S, c(t) = (cos(t+ t0), sin(t+ t0), z)�, where t0 is
chosen such that c(0) = (x, y, z)�. Then ċ(0) = X(x, y, z) and hence

∂X(x,y,z)f1 = d(x,y,z)f1(X(x, y, z)) = d
dt

∣∣∣∣
t=0

f1(c(t)) = d
dt

∣∣∣∣
t=0

cos(t + t0)

= −sin(t0) = −y

and similarly
∂X(x,y,z)f2 = x, ∂X(x,y,z)f3 = 0.

For Y we can take the curve c(t) = (x, y, z+ t)�. Then one gets

∂Y(x,y,z)f1 = ∂Y(x,y,z)f2 = 0, ∂Y(x,y,z)f2 = 1.

4.9 Compute

∂X(∂Yf ) = ∂X

⎛⎝∑
j

ηj
∂( f ◦ F)

∂u j

⎞⎠
=

∑
ij

ξi
∂

∂ui

(
ηj

∂( f ◦ F)

∂u j

)

=
∑

ij

ξi

(
∂ηj

∂ui

∂( f ◦ F)

∂u j
+ ηj

∂2( f ◦ F)

∂uiu j

)
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and similarly

∂Y(∂Xf ) =
∑

ij

ηj

(
∂ξi

∂u j

∂( f ◦ F)

∂ui
+ ξi

∂2( f ◦ F)

∂u jui

)
.

By Schwarz’s theorem,

∂2( f ◦ F)

∂uiu j
= ∂2( f ◦ F)

∂u jui

and hence

∂X(∂Yf )− ∂Y(∂Xf ) =
∑

ij

(
ξi

∂ηj

∂ui

∂( f ◦ F)

∂u j
− ηj

∂ξi

∂u j

∂( f ◦ F)

∂ui

)

=
∑

ij

(
ξi

∂ηj

∂ui

∂( f ◦ F)

∂u j
− ηi

∂ξj

∂ui

∂( f ◦ F)

∂u j

)

=
∑

ij

(
ξi

∂ηj

∂ui
− ηi

∂ξj

∂ui

)
∂( f ◦ F)

∂u j

= ∂Zf .

4.10 From c̈(t) = (−cos(t) cos(θ),−sin(t) cos(θ), 0)� and N(c(t)) = −c(t) =
(−cos(t) cos(θ),−sin(t) cos(θ),−sin(θ))� we get

∇
dt

ċ(t)= c̈(t)− 〈c̈(t), N(c(t))〉N(c(t))

=
⎛⎜⎝−cos(t) cos(θ)

−sin(t) cos(θ)

0

⎞⎟⎠− cos2(θ)

⎛⎜⎝−cos(t) cos(θ)

−sin(t) cos(θ)

−sin(θ)

⎞⎟⎠

=
⎛⎜⎝−cos(t) cos(θ) sin2(θ)

−sin(t) cos(θ) sin2(θ)

−sin(θ) cos2(θ)

⎞⎟⎠ ,

which vanishes if and only if θ = 0.

4.12 The Gauss equation implies

∑
ijk

g jkRi
ijk =

∑
ijk

g jk
(

hjkw i
i − hikw i

j

)
=

∑
ij

(
w j

j w i
i − w j

i w i
j

)
= Trace(W)2 − Trace(W2)
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= (κ1 + κ2)
2 −

(
κ2

1 + κ2
2

)
= 2κ1κ2

= 2K.

4.13 Covariant differentiation of vector fields along curves is now defined by
(4.2):

∇
dt

v =
2∑

k=1

(
ξ̇k +

2∑
i,j=1

�k
ij(c̃)ξ

i ˙̃c j
)

∂F
∂uk

(c̃),

where v(t)= ξ1(t)(∂F/∂u1)(c̃(t))+ ξ2(t)(∂F/∂u2)(c̃(t)) and c̃=F−1 ◦ c. State-
ments (a) and (b) of lemma 4.2.12 follow immediately. For (c), writing w(t) =
η1(t)(∂F/∂u1)(c̃(t))+ η2(t)(∂F/∂u2)(c̃(t)), we compute

d
dt

I(v, w) = d
dt

(∑
ij

gijξ
iη j

)

=
∑

ij

(∑
k

∂gij

∂uk
˙̃c kξ iη j + gijξ̇

iη j + gijξ
iη̇ j

)

and

g
(∇

dt
v, w

)
= g

(∑
i

ξ̇ i ∂F
∂ui
+

∑
ikm

�m
ikξ i ˙̃c k ∂F

∂um ,
∑

j

η j ∂F
∂u j

)

=
∑

ij

(
ξ̇ iη jgij +

∑
km

�m
ikξ i ˙̃c kη jgmj

)

and similarly

g
(

v,
∇
dt

w
)
=

∑
ij

(
ξ iη̇ jgij +

∑
km

�m
jkξ i ˙̃c kη jgmi

)
.

Hence, by (4.3),

g
(∇

dt
v, w

)
+ g

(
v,
∇
dt

w
)

=
∑

ij

(
ξ̇ iη jgij + ξ iη̇ jgij +

∑
km

(
�m

ikgmj + �m
jkgmi

)
ξ i ˙̃c kη j

)

=
∑

ij

(
ξ̇ iη jgij + ξ iη̇ jgij +

∑
k

∂gij

∂uk
ξ i ˙̃c kη j

)
.
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Note that (4.3) follows directly from (4.7) and therefore holds for general
Riemannian metrics. This proves (c). Assertion (d) is again easily checked.
Checking lemma 4.2.17 is similar.

4.14 Computing the left hand side of the equation in local coordinates one
sees that the terms containing Christoffel symbols cancel due to their sym-
metry in the lower indices. What remains is the local expression for the Lie
bracket.

4.15 The proof of lemma 4.3.10 no longer applies because it uses the Gauss
equation and hence the second fundamental form and Weingarten map, which
we do not have for general Riemannian metrics. Assertion (a), however, is a
direct consequence of the definition of R:

R(v, w)x = ∇2
v,wx−∇2

w,vx.

For (b), using exercise 4.13, we compute

g
(
∇2

v,wx, y
)
= g(∇v∇wx, y)− g(∇∇vwx, y)

= ∂vg(∇wx, y)− g(∇wx,∇vy)− ∂∇vwg(x, y)+ g(x,∇∇vwy)

= ∂v∂wg(x, y)− ∂vg(x,∇wy)− ∂wg(x,∇vy)+ g(x,∇w∇vy)

− ∂∇vwg(x, y)+ g(x,∇∇vwy)

and similarly

g
(
∇2

w,vx, y
)
= ∂w∂vg(x, y)− ∂wg(x,∇vy)− ∂vg(x,∇wy)+ g(x,∇v∇wy)

− ∂∇wvg(x, y)+ g(x,∇∇wvy).

Thus, by exercise 4.14,

g(R(v, w)x, y) = g
(
∇2

v,wx, y
)
− g

(
∇2

w,vx, y
)

= ∂[v,w]g(x, y)+ g(x,∇w∇vy)− g(x,∇v∇wy)− ∂∇vw−∇wvg(x, y)

+ g(x,∇∇vwy)− g(x,∇∇wvy)

= −g(x, R(v, w)y)

= −g(R(v, w)y, x).

This shows (b). Before we continue with the proof of lemma 4.3.10 we observe
that the proof of lemma 4.3.11 remains valid for general Riemannian metrics
without change. As in the proof of lemma 4.3.11 one sees that (a) and (b) of
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lemma 4.3.10 imply that

g(R(v, w)x, y) = (v1w2 − v2w1)(x1y2 − x2y1)g(R(e1, e2)e1, e2),

where e1, e2 are a fixed basis of TpS and v = v1e1 + v2e2 and similarly of the
other tangent vectors. This directly implies (c). For (d), we calculate

g(R(v, w)x+ R(x, v)w+ R(w, x)v, y)

= (
(v1w2 − v2w1)(x1y2 − x2y1)+ (x1v2 − x2v1)(w1y2 − w2y1)

+ (w1x2 − w2x1)(v1y2 − v2y1)
)
g(R(e1, e2)e1, e2)

= 0.

4.16 Straightforward computation using the formulae from lemma 4.2.14
(for �k

ij), lemma 4.3.5 (for R�
ijk) and exercise 4.12.

4.17 Invariance of the length under reparametrisations can be shown exactly
as in lemma 2.1.16 (replacing the Euclidean norm by the Riemannian norm).
For the energy, we see that even a simple rescaling of the parametrisation does
indeed change it. Put c̃(t) = c(αt). Then

E[c̃] = 1
2

∫ b

a
g( ˙̃c(t), c̃(t)) dt = α2

2

∫ b

a
g(ċ(αt), ċ(αt)) dt

= α2

2

∫ αb

αa
g(ċ(s), ċ(s))

ds
α
= αE[c].

4.18 If F : U → S1 is a local parametrisation of S1, then f ◦ F : U → S2 is
one of S2 and the components of the Riemannian metrics gij : U → R are the
same for both. Hence the Christoffel symbols are also the same and the claim
follows.

4.19 From ˙̃c(t) = αċ(αt + β) we get

∇
dt
˙̃c(t) = α

∇
dt

(ċ(αt + β)) = α2
(∇

dt
ċ
)

(αt + β) = 0.

4.20 We know from example 4.5.9 that the equator is a geodesic when
parametrised by arc-length. By exercise 4.19, this is also true if the equator
is parametrised proportional to arc-length. Any other great circle is the iso-
metric image of the equator and hence, by exercise 4.18, also a geodesic when
parametrised proportional to arc-length. Simply choose A ∈ O(3) such that it
maps the x–y plane to the plane E whose intersection with S2 is the given great
circle.
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4.21 From exercise 4.19 we know that c̃ is a geodesic. Since clearly c̃(0)=
c(0)= p and ˙̃c(0)= δċ(0)= δv, it is the unique geodesic with these initial values.

4.22 (a) Let c : [a, b] → S be a curve, c(s) = F(t(s), ϕ(s)). We compare its
length to that of a line of longitude, c̃(t) = F(t, ϕ0), t ∈ [t(a), t(b)]. Here we
assume without loss of generality that t(a) < t(b). Since ∂F/∂t and ∂F/∂ϕ are
perpendicular, we get

L[c] =
∫ b

a

∥∥∥∥ d
ds

F(t(s), ϕ(s))

∥∥∥∥ ds

=
∫ b

a

∥∥∥∥∂F
∂t

(t(s), ϕ(s))t′(s)+ ∂F
∂ϕ

(t(s), ϕ(s))ϕ′(s)
∥∥∥∥ ds

≥
∫ b

a

∥∥∥∥∂F
∂t

(t(s), ϕ(s))t′(s)
∥∥∥∥ ds

=
∫ b

a

∥∥∥∥∂F
∂t

(t(s), ϕ0)

∥∥∥∥ · |t′(s)| ds

≥
∫ b

a

∥∥∥∥∂F
∂t

(t(s), ϕ0)

∥∥∥∥ · t′(s) ds

=
∫ b

a

∥∥∥∥∂F
∂t

(t, ϕ0)

∥∥∥∥ dt

= L[c̃].

(b) The line of latitude ϕ �→ F(t0, ϕ) is a geodesic if and only if∇ww = 0, where
w = ∂F/∂ϕ. From the proof of theorem 4.5.13 we know that ∇ww = αv, v =
∂F/∂t. Hence the line of latitude is a geodesic if and only if

〈
∂2F/∂ϕ2, v

〉 = 0.
We calculate

〈
∂2F
∂ϕ2

,
∂F
∂t

〉
= ∂

∂ϕ

〈
∂F
∂ϕ

,
∂F
∂t

〉
︸ ︷︷ ︸

=0

−
〈

∂F
∂ϕ

,
∂2F
∂ϕ∂t

〉

= −1
2

∂

∂t

〈
∂F
∂ϕ

,
∂F
∂ϕ

〉
= −1

2
∂

∂t
(r(t)2)

= −r(t0)ṙ(t0).

Thus the line of latitude is a geodesic if and only if ṙ(t0) = 0.
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4.23 Choose an orientation-preserving parameter transformation ϕ such that
ĉ(s)= c(ϕ(s)) is parametrised by arc-length. Then 1=‖ĉ′(s)‖g=‖ċ(ϕ(s))ϕ′(s)‖g,
hence ϕ′(s) = ‖ċ(ϕ(s))‖−1

g . Thus

κg = g
(∇

ds
ĉ′, n

)
= g

(∇
ds

(ċ · ϕ′), n
)

= g
((∇

dt
ċ
)
· (ϕ′)2 + ċ · ϕ′′, n

)
= g

(∇
dt

ċ, n
)
· (ϕ′)2 = g

(∇
dt ċ, n

)
g(ċ, ċ)

.

4.24 The first column in the matrix corresponds to the definition of κg. For
the second we first observe that

0 = d
dt
〈n, n〉 = 2

〈∇
dt

n, n
〉

and hence (∇/dt)n(t) = α(t)ċ(t). From

0 = d
dt
〈n, ċ〉 =

〈∇
dt

n, ċ
〉
+

〈
n,
∇
dt

ċ
〉
= α + κg.

we conclude that α = −κg and the claim follows.

4.25 Since the curves s �→ F(t, s) = expc(t)(sn(t)) are geodesics we have

0 = ∇ ∂F
∂s

∂F
∂s
= �1

22(t, s)
∂F
∂t
+ �2

22(t, s)
∂F
∂s

,

hence �1
22(t, s) = �2

22(t, s) = 0. From

κg(t) · n(t) = ∇
dt

ċ(t) = ∇ ∂F
∂t

∂F
∂t

= �1
11(t, 0)

∂F
∂t
+ �2

11(t, 0)
∂F
∂s
= �1

11(t, 0)ċ(t)+ �2
11(t, 0)n(t),

we conclude �1
11(t, 0)= 0 and �2

11(t, 0)= κg(t). Similarly, using the Frenet equa-
tion (∇/dt)n=− κgċ (see exercise 4.24) we get �1

12(t, 0) = 0 and �2
12(t, 0) =

−κg(t). The remaining Christoffel symbols are determined because of symme-
try in the lower indices.

4.26 If F : U → S is a local parametrisation of S1, then f ◦F : U → S2 is local
parametrisation of S2. With respect to these parametrisations both surfaces
have the same Christoffel symbols. This shows that v is parallel if and only if
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f ◦ v is parallel. For given v0 ∈ TpS1, let v be the unique parallel vector field
on S1 along c with v(t0) = v0. Then

dqf (Pc(v0)) = dqf (v(t1)) = (df ◦ v)(t1) = Pf◦c((df ◦ v)(t0)) = Pf◦c(dpf (v0)).

4.28 In the case of a constant curve the local differential equations (4.15) for
a parallel vector field reduce to ξ̇k = 0. Hence the vector field is parallel if and
only if it is constant.

4.29 By exercise 4.22 the lines of longitude are geodesics, hence ∂F/∂ϕ is the
variation vector field of a geodesic variation.

4.30 For each p ∈M−1 the surface M−1 lies on one side of the affine tangent
plane TpM−1+p. By exercise 3.11(b) it cannot have negative curvature, hence
K ≥ 0. To see that K > 0 one can apply exercise 3.25. The surface M−1 is the
graph of the function ϕ(x, y) = √

1+ x2 + y2 whose Hessian

Hess ϕ(x, y) =
(

1+ x2 + y2
)−3/2

(
1+ y2 −xy

−xy 1+ x2

)

is positive definite.

4.31 Let f : Mκ→Mκ be an isometry and let c(t)= expp(tX) be the geodesic
in Mκ with initial values c(0)= p and ċ(0)=X. Since isometries map geodesics
to geodesics, f ◦ c is the geodesic with initial values f ( p) and dpf (X).
Hence f (c(t))= expf ( p)(tdpf (X)). In particular, for t= 1 we get f (expp(X)) =
expf ( p)(dpf (X)). On Mκ any two points p and q can be joined by a geodesic;
just intersect Mκ with the plane containing p, q and 0. Thus expp : TpMκ→Mκ

is surjective. Hence for any q∈Mκ we can find an X ∈TpMκ with expp(X)= q.
Then f (q)= expf ( p)(dpf (X)). This shows that f is uniquely detemined by the
point f ( p) and the linear map dpf : TpMκ → Tf ( p)Mκ .

Now fix p= (0, 0, 1)� ∈Mκ . For any q∈Mκ we can find an f ∈Gκ with f ( p)= q.
Moreover, for any linear isometry A : TpMκ→TqMκ we can modify f ∈Gκ in
such a way that dpf =A (by composing with a suitable f̃ ∈ Gκ with f̃ ( p) = p).
Since the isometry f is determined by f ( p) and dpf , the group Gκ contains all
isometries.

4.32 Let HC be the point where the perpendicular from C intersects the
side c. Applying the sine rule to the triangle (A, C, HC) yields sκ(hc)/sin(α) =
sκ(b)/sin(π/2) = sκ(b) and similarly for the triangle (B, C, HC).
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4.33 By the sine rule we get

a2 + b2 − 2ab cos(γ ) = sin2(α)

sin2(γ )
c2 + sin2(β)

sin2(γ )
c2 − 2

sin(α)

sin(γ )

sin(β)

sin(γ )
c2 cos(γ )

= c2 · sin2(α)+ sin2(β)− 2 sin(α) sin(β) cos(γ )

sin2(γ )
.

(A.2)

From the cosine rule for angles, which is equivalent to α + β + γ = π as we
have seen, we obtain

sin2(α)+ sin2(β)− 2 sin(α) sin(β) cos(γ )

= sin2(α)+ sin2(β)+ 2 sin(α) sin(β)(cos(α) cos(β)−sin(α) sin(β))

= sin2(α)(1−sin2(β))+ sin2(β)(1−sin2(α))+ 2 sin(α) sin(β) cos(α) cos(β)

= sin2(α) cos2(β)+ sin2(β) cos2(α)+ 2 sin(α) sin(β) cos(α) cos(β)

= (sin(α) cos(β)+ sin(β) cos(α))2

= sin2(α + β)

= sin2(π − α − β)

= sin2(γ ).

Plugging this into (A.2) yields theorem 1.2.4.

4.34 For our construction h must take values in (−1, 1). In fact, if |h(0)| ≥ 1,
then h remains outside (−1, 1) on its maximal interval of definition. Now for
h(0) ∈ (−1, 1) the solution is of the form h(x) = tanh(x + x0). Thus the chart
differs from Mercator’s projection only by a shift in the x-variable.

4.35 Suppose we have a local parametrisation of S2 which is conformal and
area-preserving. Then

(gij(u
1, u2)) = c(u1, u2) ·

(
1 0
0 1

)
.

This implies dA = c(u1, u2) du1 du2 and since the chart is area-preserving we
have c = 1, i.e.

(gij(u
1, u2)) =

(
1 0
0 1

)
.

This means that the local parametrisation is an isometry, which is impossible.
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4.36 We compute the area in the Klein model. Using the formulae for the
Riemannian metric coefficients, one easily computes the area element,

dA = (1− x2 − y2)−3/2 dx dy.

We integrate over U by passing to polar coordinates.∫
U

(1− x2 − y2)−3/2 dx dy =
∫ 2π

0

∫ 1

0
(1− r2)−3/2 r dr dθ

= 2π

∫ 1

0
(1− r2)−3/2 r dr

= 2π
[
(1− r2)−1/2

]1

r=0
= ∞.

4.37 From the metric coefficient matrix we deduce directly that the area
element is given by

dA = du dv
u2

.

Integrating, ∫
�

du dv
u2

=
∫ 1

−1

∫ ∞
√

1−v2
u−2 du dv

=
∫ 1

−1

[
−u−1

]∞
u=
√

1−v2
dv

=
∫ 1

−1

dv√
1− v2

= [arcsin(v)]1
v=−1

= π .

5.1 We choose Sreg = S2 and use the local parametrisation

F(ϕ, θ) =
⎛⎜⎝cos θ · cos ϕ

cos θ · sin ϕ

sin θ

⎞⎟⎠
with domain U = (0, 2π) × (−π/2, π/2). Then F(ϕ, θ) lies in the upper
hemisphere if and only if θ ≥ 0. Similarly, we can take this parametrisation
with domain U′ = (−π , π)× (−π/2, π/2). These two local parametrisations
cover all points of S except for (0, 0, 1)�. This point is an interior point and
can be covered by the local parametrisation F̃ : Ũ→ S⊂ S2, F̃(x, y)= (x, y,√

1− x2 − y2)�, U = {(x, y)� ∈ R
2 | x2 + y2 < 1}.
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5.2 (a) Use local parametrisations of the form F̃(t, s) = c(t)+
(

s− 1
2

)
v(t) and

F̂(t, s) = c(t)+
(

1
2 − s

)
v(t), (t, s) ∈ (t0, t0 + L)×

(
− 1

2 , 1
2

)
.

(b) The equivalence of (i) and (ii) is seen by looking at the normal field
N(t, s)= (ċ(t)+ sv̇(t))× v(t) which closes up if and only if v(t+L)=+v(t). The

boundary is given by
{

c(t)+ 1
2 v(t) | t ∈ R

}
∪
{

c(t)− 1
2 v(t) | t ∈ R

}
. If v(t+L) =

+v(t), then this defines the disjoint union of two closed space curves. If
v(t + L) = −v(t), then this is one space curve. This shows the equivalence
of (iii) and answers (c).

5.3 For the inner unit normal vector we have (duF)−1(ν( p))= (x, y)� with
y > 0. Then t �→ F(u+ t(x, y)) = F((u1, 0)+ t(x, y)) = F(u1 + tx, ty), t ∈ [0, ε),
yields the required curve because ty ≥ 0 and hence F(u1 + tx, ty) ∈ S.

For the outer unit normal vector there is no such curve because any curve
c : [0, ε) → S starting at p can be written as c(t) = F(x(t), y(t)) with y(t) ≥ 0
and y(0) = 0. Thus ẏ(0) ≥ 0.

5.4 Reparametrise cj by arc-length and use substitution in the integral.

5.5

divX = 2

(a)

divX = −2

(b)

divX = 0

(c)

divX = 0

(d)

5.6 From ∇Y( fX) = f∇YX + df (Y)X we have ∇·( fX) = f∇·X + df (·)X.
Taking traces yields the claim.
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5.7 (a) Apply the divergence theorem to the vector field f2 · grad f1 and use
exercise 5.6.

(b) This follows from (a).

5.8 Let S be compact and let f : S→ R be harmonic. By exercise 5.7 we have

∫
S

g(grad f , grad f ) dA = −
∫

S
f�f dA = 0.

Since the integrand g(grad f , grad f ) is non-negative this implies g(grad f ,
grad f )≡ 0. Thus grad f ≡ (0, 0, 0)�. Now let p, q∈ S be any two points. Choose
a smooth curve c : [0, 1] → S with c(0) = p and c(1) = q. Then

f (q)− f ( p) =
∫ 1

0

d
dt

f (c(t)) dt =
∫ 1

0
df (ċ(t)) dt =

∫ 1

0
g(grad f (c(t), ċ(t)) dt = 0.

Hence f is constant.

Note that this is no longer true if S is not connected because then f can take
different values on the different connected components of S.

5.9 If F is a local parametrisation of S, then Ft=F + tfN is a local parametri-
sation of the deformed surface. We get for the first fundamental form

gt,ij =
〈
∂Ft

∂ui
,
∂Ft

∂u j

〉
= gij + t ·

{〈
∂F
∂ui

, f
∂N
∂u j

〉
+

〈
f
∂N
∂ui

,
∂F
∂u j

〉}
+O(t2)

= gij − 2tfIIij +O(t2)

and hence

ġ = −2fII.

Thus

d
dt

∣∣∣∣
t=0

A[St] = 1
2

∫
S

Trace(−2fII) dA = −2
∫

S
fH dA = −2

∫
S
〈�, H 〉 dA.

6.1 Let p be a point in the interior of the tetrahedron. Then each straight
half-line emanating from p will intersect the tetrahedron at exactly one point.
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Thus the central projection with centre p will give a homeomorphism between
the tetrahedron and the sphere with centre p.

6.2 Since all triangles are equilateral, all interior angles are equal to π/3.
Thus for each vertex def(v) = 2π − 3π/3 = π and since the tetrahedron has
four vertices

∑
v def(v) = 4π = 2π · 2 = 2π · χ(X).

6.3 Using exercise 6.1 we see that S2 can be triangulated by the tetrahedron.
Hence its Euler–Poincaré characteristic is 2, see example 6.1.3.

6.4 Let p1, . . . , pk be common neighbours. Hence there exists q∈ S∩⋂k
j=1 St( pj). From q ∈ S ∩ St( pj) ⊂ B( pj, ε), we conclude pj ∈ B(q, ε) and

hence B( pj, ε/2) ⊂ B(q, 3ε/2). Since the ε/2-balls about the points pj are
pairwise disjoint we have

k · 4π

3
·
(ε

2

)3 =
k∑

j=1

vol(B( pj, ε/2)) ≤ vol(B(q, 3ε/2)) = 4π

3
·
(

3ε

2

)3

.

This shows k ≤ 33 = 27.

6.5 Along each edge deform � in the interior of the dashed region (e.g. using
Fermi coordinates) such that it becomes smooth along the edge.

� �̂

6.6 A torus can be obtained by identifying the opposite sides of a square.
Thus a triangulation can be obtained as follows:

Making sure that we count each vertex and each edge which is identi-
fied only once we obtain 18 triangles, 27 edges, and 9 vertices. Hence the
Euler–Poincaré characteristic is 0.



Appendix B Formulary

First fundamental form:

gij =
〈
∂F
∂ui

,
∂F
∂u j

〉
.

Inverse of the first fundamental form:

(
g ij

)
ij
= 1

g11g22 − g2
12

(
g22 −g12
−g21 g11

)
.

Second fundamental form:

hij =
〈

∂2F
∂u j∂ui

, N

〉
.

Weingarten map:

W
(

∂F
∂ui

)
=

∑
j

w j
i

∂F
∂u j

,

hij =
∑

k

wk
i gkj,

∑
k

hikg kj = w j
i .

Christoffel symbols:

�k
ij =

1
2

∑
m

(
∂gjm

∂ui
+ ∂gim

∂u j
− ∂gij

∂um

)
g mk.

Covariant derivative:

∇
dt

v = �c (v̇) = v̇+
∑
ijk

�k
ijv

iċ j ∂F
∂uk

.

305
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Riemann curvature tensor:

R(v, w)z = ∇2
v,wz−∇2

w,vz = ∇v∇wz−∇w∇vz− ∇[v,w]z

=
∑
ijk�

R�
ijkviw jzk ∂F

∂u�
,

R�
ijk =

∂��
kj

∂ui
− ∂��

ki

∂u j
+

∑
m

(
��

mi�
m
kj − ��

mj�
m
ki

)
= hjkw�

i − hikw�
j

= K ·
(

gjkδ�
i − gikδ�

j

)
.

Gauss curvature:

K = det(hij)

det(gij)
= 1

2

∑
ijk

g jkRi
ijk.

Mean curvature:

H = κ1 + κ2

2
= w1

1 + w2
2

2
= 1

2

∑
ij

g ijhij.

Divergence of a vector field:

divX(p) = Trace(Yp �→ ∇Yp X)

= lim
r↘0

∫
∂D̄(p,r) g(X, ν)ds

A[D̄(p, r)]

=
∑

j

(
∂ξ j

∂u j
+

∑
i

�
j
ijξ

i

)

= 1√
det(gk�)

∑
j

∂

∂u j

(√
det(gk�)ξ

j
)

.

Divergence of a symmetric (2, 0) tensor field:

(div b)� =
∑
ijk

g k�g ij

(
∂bjk

∂ui
−

∑
α

(
�α

ij bαk + �α
ikbαj

))
.

Euclidean trigonometry

Sine rule:
a

sin(α)
= b

sin(β)
= c

sin(γ )
.



A P P E N D I X B F O R M U L A R Y 307

Cosine rule:

c2 = a2 + b2 − 2ab cos(γ ).

Height formula:

hc = b sin(α) = a sin(β).

Sum of angles in a triangle:

α + β + γ = π .

Spherical trigonometry

Sine rule:
sin(a)

sin(α)
= sin(b)

sin(β)
= sin(c)

sin(γ )
.

Cosine rule for sides:

cos(a) = cos(b) cos(c)+ sin(b) sin(c) cos(α),

cos(b) = cos(a) cos(c)+ sin(a) sin(c) cos(β),

cos(c) = cos(a) cos(b)+ sin(a) sin(b) cos(γ ).

Cosine rule for angles:

cos(α) = cos(a) sin(β) sin(γ )− cos(β) cos(γ ),

cos(β) = cos(b) sin(α) sin(γ )− cos(α) cos(γ ),

cos(γ ) = cos(c) sin(α) sin(β)− cos(α) cos(β).

Height formula:

sin(hc) = sin(b) sin(α) = sin(a) sin(β).

Sum of angles in a triangle:

α + β + γ > π .

Hyperbolic trigonometry

Sine rule:
sinh(a)

sin(α)
= sinh(b)

sin(β)
= sinh(c)

sin(γ )
.
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Cosine rule for sides:

cosh(a) = cosh(b) cosh(c)− sinh(b) sinh(c) cos(α),

cosh(b) = cosh(a) cosh(c)− sinh(a) sinh(c) cos(β),

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ ).

Cosine rule for angles:

cos(α) = cosh(a) sin(β) sin(γ )− cos(β) cos(γ ),

cos(β) = cosh(b) sin(α) sin(γ )− cos(α) cos(γ ),

cos(γ ) = cosh(c) sin(α) sin(β)− cos(α) cos(β).

Height formula:

sinh(hc) = sinh(b) sin(α) = sinh(a) sin(β).

Sum of angles in a triangle:

α + β + γ < π .



Appendix C List of symbols

〈·, ·〉, xi E , 244
〈·, ·〉κ , 202 E[c], 172
[·, ·], 154 E(n), 14
∈, 2 E( p1, p2, p3), 247
∠( p, q, r), 7 e(X), 240
∠( p, q, r) ≡ ∠( p1, q1, r1), 7 expp, 183
×, xii FA,b, 13
∇/dt, 155 f (X), 240
∇wv, 159 gij, 98
∇2

v,wz, 161 g ij, 110, 168
∇2z, 161 �k

i,j, 157
Ā, xi GL(n), xii
◦
A, xi Gκ , 205
A[G], 53 gp, 98, 168
A[S], 130 grad f , xii, 152
B, 124 H, 115
b(t), 58 H , 116
cκ , 200 hij, 109
dA, 126 h( p1, p2, p3), 248
dist(q, S), 244

∫
S f dA, 126

div b, 233
∫
∂S fds, 225

divX, 225 Ip, 98, 128
dpf , 96, 98 IIp, 109
DpF, xii κ(c), 67
∂A, xi κ(P), 64
∂S, 223 κ(t), 35, 58
∂Xf , 153 κg(t), 182
�f , 231 κnor, 111
�( p1, p2, p3), 247 κ1, κ2, 114
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K, 115 Pc, 193
k(X), 240 �(z), xii
L[c], 28, 171 R, 163
L[P], 30 R�

ijk, 163
L( p, q), 2 S2, 20
Lp,v, 13 sκ , 200
μ(c), 73 SO(n), xii
Mκ , 201 Trace b, 233
M̂κ , 201 St( p), 247
N, 103 τ(t), 59
nc, 38 TpS, 93
n(t), 34, 58 Uρ(S), 244
O(n), xii V⊥, xi
pq, 3 Wp, 106
p1q1 ≡ p2q2, 6 w j

i , 109
�∗g, 170 χ(S), 243
�p, 155 χ(X), 240
P , 244 |X|, 239
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