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Introduction

This book is the first of two volumes on differential geometry and mathematical
physics. It is the result of our teaching these subjects at the University of Leipzig
over the last few decades to students of physics and of mathematics. The present
volume is devoted to manifolds, Lie groups and the theory of Hamiltonian systems.
The second volume will deal with fibre bundles, topology and gauge field theory,
including aspects of the theory of gravity.

While the aim and scope of differential geometry are somewhat well defined, it
is, perhaps, less clear what we possibly mean by mathematical physics. Historically,
this term was rather imprecise and so is still nowadays. Indeed, its interpretation de-
pends on culture and context. In our understanding, mathematical physics is the area
where theoretical physics and pure mathematics meet, stimulate and fertilize each
other. On the one hand, this interplay leads to a deeper structural understanding of
theoretical physics and to new results obtained with new mathematical methods. On
the other hand, it stimulates the development of old and new branches in mathemat-
ics. Thus, in our understanding, it is impossible to draw a precise borderline between
theoretical physics and pure mathematics. Over the last decades it sometimes hap-
pened that the solution of a problem posed by physicists had an even larger impact
on the development of mathematics than on the field of physics from where it arose.
There is a number of texts where the status and the role of mathematical physics is
discussed, see e.g. the papers of Greenberg [112], Faddeev [87] and Jaffe and Quinn
[151],1 as well as the classical contributions of Poincaré [241] and Hilbert [128].

There is no doubt that, over the last few centuries, the interrelation between
physics and geometry has been especially tight and fruitful. In particular, this in-
teraction has stimulated the development of modern differential geometry. In this
complex process, which we cannot describe here,2 the development of the notion
of manifold was of great importance. The conceptual definition of this notion was

1This very interesting and somewhat provocative article stimulated a lot of responses by leading
scientists, see [27].
2See [264–266] and [281, 282] for a detailed discussion of these historical aspects.
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vi Introduction

presented by Riemann in his famous Habilitationsvortrag in Göttingen in the year
1854, see [251].3 Riemann developed a general geometry (nowadays called Rie-
mannian geometry), which included Euclidean as well as non-Euclidean geometry
as originated by Bolyai, Gauß and Lobachevsky. From Riemann’s presentation it is
clear that a deeper understanding of the nature of physical space was one of the main
motivations for his studies. In his understanding, space works on bodies and bodies
have an influence on space. This idea made Riemann depart from the metaphysical
attitude towards space as a given unchangeable entity and pass to a modern field the-
oretical point of view. He even suggested that the metric might be determined by the
physical masses. Thus, on a rather philosophical level, he made a step towards the
conceptual foundations of Einstein’s theory of gravity, which came 60 years later.
At the same time, he created the mathematical framework for this theory.

In the following years, a number of great mathematicians contributed to the field,
but it was Poincaré who brought the concept of manifold to its modern form.4 As he
said himself, he was led to this concept by his previous investigations on the theory
of differential equations and its applications to dynamics, in particular, of the n-body
problem. On the one hand, on the basis of this abstract manifold concept, he laid
the foundations of modern algebraic topology. On the other hand, he continued his
studies on dynamical systems with emphasis on their global, qualitative behaviour,
on the way creating a lot of tools which nowadays still play an important role. At the
same time, he provided a geometrization of the formalism of analytical mechanics
as developed by Lagrange,5 Hamilton,6 Jacobi, Liouville and Poisson. Instead of
formulating dynamics in terms of local coordinates in Euclidean space, he viewed
it as a global system described by a Hamiltonian vector field on the phase space
manifold. Thus, modern symplectic geometry was born.7

In the twentieth century, the interaction between physics and geometry continued
to be strong and successful. Of course, first of all, we should mention Einstein’s the-
ory of gravity, which is based on the discovery that gravity is a geometric property of
spacetime and that spacetime is curved by matter. Starting from the nineteen-fifties,
all other fundamental forces were geometrized in a similar spirit leading to modern
gauge theory. The necessary mathematical foundations, including the general theory

3There were, of course, precursors. In particular, Cauchy and Gauß should be mentioned. Gauß
even used the term manifold, but in his understanding it was restricted to affine subspaces of an
n-dimensional vector space.
4See the famous Analysis situs [239] from the year 1895, together with five subsequent comple-
ments within the following nine years. Actually, Poincaré gave two definitions of a manifold: a
manifold as a level set and a manifold as given by an atlas of local charts.
5The origin of symplectic geometry dates back to Lagrange’s early work on celestial mechanics,
see [177] and [308] for a detailed discussion by Weinstein.
6See [120–122]. Hamilton was led to the formulation of dynamics in terms of a system of first
order differential equations for a general mechanical system through his studies in optics.
7The word symplectic was invented by Weyl [312] to give a name to the group of linear trans-
formations, preserving a non-degenerate, skew-symmetric bilinear form, and the term symplectic
geometry was proposed by Siegel, see [272].
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of fibre bundles and connections, were developed by É. Cartan, Koszul, Ehresmann
and Chern. Once these geometrical formulations of the fundamental forces had been
found, another fascinating interaction of geometry and physics took place. In the
mid-seventies physicists insisted on classifying the solutions (of a certain type) of
the Yang-Mills field equations of classical gauge theory. This problem was finally
solved by leading mathematicians and the techniques developed on the way, in turn,
led to fundamentally new and deep insights in topology. In particular, exotic topo-
logical structures on Euclidean four-space were found. We should also add that,
starting from the work of Kaluza, Klein, Einstein and Weyl in the nineteen-twenties
up until the present, there has been much effort devoted to searching for an ultimate
geometrical model unifying all fundamental forces. This gave another strong impe-
tus to the development of modern differential geometry and related fields. Some of
the aspects just mentioned will be discussed in volume 2 of this book.

To finish this brief historical introduction, we should make two further remarks.
Firstly, it should be mentioned that in the process described above the concept of
symmetry played a fundamental role. The creation of the mathematical foundations
of this concept dates back to Lie, who in the eighteen-seventies developed a general
theory of transformations.8 Lie was influenced by the work of Galois on symmetries
of polynomial equations, by the work of Jacobi on partial differential equations, and
by Klein, whose aim was to unify geometry and group theory. The theory was es-
sentially pushed forward by Killing and É. Cartan, who classified semisimple Lie
algebras and developed their representation theory. The early period closes with
the contributions by Weyl, who created the representation theory of semisimple Lie
groups. It was also Weyl who first applied concepts of group theory to quantum
mechanics. It goes without saying that the general theory of fibre bundles and con-
nections and, consequently, also the theory of gauge fields, heavily rests on Lie
group theory.

Secondly, over the last few decades, it has become more and more clear that sym-
plectic geometry plays a special role. This is not only due to the fact that there is
merely a lot of applications of symplectic techniques in many areas of mathemat-
ics and in physics. There is something more: a phenomenon which Arnold called
symplectization, see [22], [111] and also [308]. Indeed, there seems to be growing
evidence that many concepts, constructions and results from different branches of
mathematics and mathematical physics (like the theory of partial differential equa-
tions, the calculus of variations or the theory of group representations) can be recast
in symplectic terms, finding in this way their ultimate ground. The theory of Hamil-
tonian systems in its modern form is of course still one of the most prominent exam-
ples. Via Hamilton-Jacobi theory there is a close link to the theory of linear partial
differential equations. Here, representing a differential operator on a manifold by
its symbol on the cotangent bundle and seeking solutions in terms of Lagrangian
immersions and geometrical objects living on them, one arrives at a symplectized

8See [182–184]. For a historical overview on Lie group theory we refer to [50] and [126].
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theory of first order partial differential equations.9 In a similar spirit and in close
relation, large parts of the theory of singularities have been symplectized. Another
beautiful example is provided by the orbit method of Kirillov, Kostant and Souriau,
which constitutes one of the cornerstones of geometric quantization. For a large
class of Lie groups, this method yields a bijective correspondence between irre-
ducible unitary representations of a Lie group and transitive symplectic actions of
this group.

We conclude with a few remarks on the structure and the contents of this vol-
ume. It contains three building blocks, each consisting of four chapters. In the first
four chapters, we present the calculus on manifolds. The next four chapters are de-
voted to the theory of Lie groups and Lie group actions and to an introduction to
linear symplectic algebra and symplectic geometry. These chapters constitute the
link between the abstract calculus and the theory of finite-dimensional Hamiltonian
systems, which we develop in the final four chapters. There, we had to make a rea-
sonable selection of the topics to be presented. It is probably fair to say that our
choice of material was made more from a physicist’s point of view,10 thus, putting
emphasis on the concepts of symmetry and integrability and on Hamilton-Jacobi
theory. At the same time, this means that we had to exclude a lot of interesting
topics like, for instance, equivariant Hamiltonian dynamics or variational methods.
Since each chapter has its own introduction, here we omit a detailed description of
the contents.

We assume that the reader is familiar with elementary algebra and calculus, as
well as with the basics of classical mechanics. Some knowledge in classical elec-
trodynamics and in thermodynamics as well as in elementary set topology will be
helpful. The book is self-contained, that is, starting with the theory of differentiable
manifolds, it guides the reader to a number of advanced topics in the theory of
Hamiltonian systems. At some points, we touch on current research. It is our strong
belief that without detailed case studies a deep understanding of the abstract mate-
rial can be hardly achieved. Thus, we have included many worked examples, some
of them are taken up repeatedly. Moreover, at the end of almost every section the
reader will find a number of exercises.

9This is due to Maslov [197] and Hörmander [141], see Chap. 12 of this volume. In this context,
the symplectization of Morse theory plays a basic role, see Sects. 8.9 and 12.4.
10In particular, this means that we do not go into advanced topics related to symplectic topology.
However, at some points we touch on it. For a thorough presentation of symplectic topology we
refer to the textbooks of Hofer and Zehnder [139] and of McDuff and Salamon [206].
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Chapter 1
Differentiable Manifolds

In this chapter, we introduce the basic notions of the theory of manifolds. We start
with the very notion of a manifold, illustrate it by a number of examples and discuss
the class of examples provided by level sets in some detail. Next, we carry over the
notions of differentiability, the concept of tangent space and the notion of deriva-
tive of a mapping from classical calculus to the theory of manifolds. In this context,
we also generalize the basic theorems of classical calculus to the case of mani-
folds. Finally, we discuss some more advanced topics needed later on: the notion
of submanifold and the concept of transversality. Since the notion of a submanifold
is quite subtle, we treat this subject in detail. In our terminology, a submanifold is
defined by an injective immersion. There are two important special classes of sub-
manifolds showing up in various applications. They are called embedded and initial,
respectively. Throughout the text, the reader will find a large number of illustrative
examples.

1.1 Basic Notions and Examples

Manifolds are topological spaces which locally look like R
n. Therefore, they allow

for an extension of the notions of classical calculus. For the topological notions used
in this section we refer the reader to the standard literature, e.g., [53], [55], [199] or
[267].

In the sequel, we will use the following notation. An element x ∈ R
n is an n-tuple

written as x = (x1, . . . , xn). The Euclidean scalar product on R
n is denoted by

x · y =
n∑

i=1

xiyi

and the corresponding norm is denoted by ‖ · ‖. For the standard basis in R
n we

write {e1, . . . , en}. The dual basis {e∗1, . . . , e∗n} in R
n∗ is defined by e∗i (ej ) = δi

j .
For x ∈ R

n, its coefficients in the standard basis are given by

xi = e∗i (x).

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-5345-7_1, © Springer Science+Business Media Dordrecht 2013
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2 1 Differentiable Manifolds

Thus, we have x = ∑n
i=1 xiei . Of course, numerically, the numbers xi and xi coin-

cide. If there is no danger of confusion, we will use the Einstein summation conven-
tion, that is, we will also write x = xiei .

Definition 1.1.1 (Topological manifold) A topological space M is called a topo-
logical manifold if it is Hausdorff, second countable and locally homeomorphic to
R

n for some fixed n ∈ N. This means that for every m ∈ M , there exists an open
neighbourhood U of m in M and a mapping κ : U → R

n such that κ(U) is open in
R

n and κ is a homeomorphism onto its image. The pair (U,κ) is called a local chart
for M . A family A = {(Uα, κα) : α ∈ A} of local charts satisfying

⋃
α∈A Uα = M

is called an atlas for M . The number n is called the dimension of M .

Let (U,κ) be a local chart on M . If m ∈ U , we say that (U,κ) is a chart at m.
The functions

κi := e∗i ◦ κ : U → R, 1 ≤ i ≤ n,

define a system of local coordinates on U . The numbers κi(m) are called the local
coordinates of m in the chart (U,κ). In particular, (Rn, idRn) is a global chart for
R

n, that is, the identical mapping endows R
n with the structure of a topological

manifold. The corresponding coordinates are κi(x) = xi .

Remark 1.1.2

1. Since R
n is not homeomorphic to R

m for n �= m, the dimension of a topological
manifold is unique.

2. As a consequence of being second countable, topological manifolds can have at
most countably many connected components. Moreover, every point possesses a
countable neighbourhood basis, so that one can use sequences to test topological
properties like continuity of mappings or closedness of subsets.

3. As a consequence of being locally homeomorphic to R
n, topological manifolds

inherit all the local properties of R
n. That is, they are locally compact (every

point has a compact neighbourhood), locally connected (every point admits a
neighbourhood basis of connected open sets), etc.

Let (U1, κ1) and (U2, κ2) be local charts on M . If U1 ∩ U2 �= ∅, the mapping

κ2 ◦ κ−1
1 :Rn ⊃ κ1(U1 ∩ U2) → κ2(U1 ∩ U2) ⊂ R

n,

pictured in Fig. 1.1, and its inverse κ1 ◦ κ−1
2 are called the transition mappings

of (U1, κ1) and (U2, κ2). The transition mappings are homeomorphisms. Since
κ1(U1 ∩ U2) and κ2(U1 ∩ U2) are open subsets of Rn it makes sense to ask whether
the transition mappings are differentiable.

Definition 1.1.3 Let M be a topological manifold and let k be a nonnegative integer
or ∞.
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Fig. 1.1 Two local charts and one of their transition mappings

1. Two local charts (U1, κ1) and (U2, κ2) are compatible of class Ck if either
U1 ∩ U2 is empty or their transition mappings κ1 ◦ κ−1

2 and κ2 ◦ κ−1
1 are of

class Ck .
2. An atlas A for M is of class Ck if any two charts are compatible of class Ck .
3. Two atlases A1 and A2 of class Ck are equivalent, if any chart of A1 is compat-

ible of class Ck with any chart of A2; equivalently, if their union is an atlas of
class Ck .

Point 3 defines an equivalence relation on the class of all Ck-atlases for M .

Definition 1.1.4 (Differentiable manifold) An equivalence class of atlases of class
Ck for a topological manifold M is called a differentiable structure of class Ck ,
or just a Ck-structure, on M . A topological manifold together with a differentiable
structure of class Ck is called a differentiable manifold of class Ck , or just a Ck-
manifold.

By definition, a C0-manifold is just a topological manifold. The property to be
of class C∞ will be referred to as smooth. While in Chaps. 1 and 2 the general
Ck-case is treated, starting from Chap. 3, everything will be assumed to be smooth,
with occasional exceptions if necessary.

Remark 1.1.5

1. Let l < k. It is obvious that if two local charts are compatible of class Ck , they
are also compatible of class Cl . Consequently, an atlas of class Ck is also an atlas
of class Cl . The reader may convince himself that a Ck-manifold can be viewed
as a Cl-manifold if necessary.

2. By analogy, one defines the notion of real and complex analytic structure and
manifold. For a real analytic structure, the transition mappings are required to
be real analytic. For a complex analytic structure, the local charts are assumed
to take values in C

n for some n and the transition mappings are assumed to be
holomorphic.
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To define a differentiable structure it suffices to construct an atlas. Since the union
of arbitrarily many equivalent Ck-atlases is a Ck-atlas, in each equivalence class
there is a unique maximal atlas. Since for any chart (U,κ) and any open subset
V ⊂ U , (V , κ�V ) is a local chart and since all these induced local charts are com-
patible of class Ck with one another, all of them are contained in the maximal atlas.

Example 1.1.6 (Linear spaces) For Rn itself, the single chart (Rn, idRn) provides
an atlas of class C∞. The differentiable structure defined by this atlas is called the
standard smooth structure of Rn and the corresponding coordinates are called the
standard coordinates on R

n. Similarly, for an arbitrary open subset U ⊂ R
n, the

natural inclusion mapping ιU : U → R
n provides a single chart and hence defines a

smooth structure. It is clear that all of this carries over to arbitrary finite-dimensional
real vector spaces.

Example 1.1.7 (Chart domains) Let M be a manifold of class Ck and let (U,κ) be a
local chart on M . Then (U,κ) is a global chart on U , thus providing a smooth atlas
on U . Hence, independently of the differentiability class of M , U together with the
atlas {(U,κ)} is a smooth manifold. It has the same dimension as M .

Example 1.1.8 (Open subsets) Let M be a manifold of class Ck with atlas A and
let W ⊂ M be an open subset. If (U,κ) is a local chart on M with U ∩W �= ∅, then
U ∩ W is open in W , κ(U ∩ W) is open in R

n and κ�U∩W : U ∩ W → κ(U ∩ W) is
a homeomorphism. Therefore,

AW := {
(U ∩ W,κ�U∩W) : (U,κ) ∈ A ,U ∩ W �= ∅

}

is an atlas for W . Since the transition mappings of this atlas are obtained from those
of A by restriction to open subsets, they are of class Ck again. Thus, the atlas AW

defines a differentiable structure of class Ck on W and hence W is a differentiable
manifold of the same class and the same dimension as M .

Example 1.1.9 (Spheres) The sphere Sn is the set of solutions of the equation
‖x‖2 = 1 in the variable x ∈ R

n+1. In the relative topology induced from R
n+1,

Sn is Hausdorff and second countable. We construct an atlas by means of stereo-
graphic projection. Fix an arbitrary point e0 ∈ Sn, put U± := Sn \ {±e0} and define
mappings κ± : U± → R

n by

κ±(x) := x − (x · e0)e0

1 ∓ x · e0
, x ∈ U±,

where we have identified R
n with the hyperplane of R

n+1 orthogonal to e0, see
Fig. 1.2. The mappings κ± are obviously bijective, continuous and open, hence
homeomorphisms. Since U+ ∪ U− = Sn, the sphere Sn is a topological manifold.
The transition mapping κ− ◦κ−1+ maps κ+(U+ ∩U−) = R

n \ {0} to κ−(U+ ∩U−) =
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Fig. 1.2 Stereographic
projection

R
n \ {0}. There holds

κ−(x) = κ+(x)
1 − x · e0

1 + x · e0
= κ+(x)

‖κ+(x)‖2
,

and hence

κ− ◦ κ−1+ (y) = y
‖y‖2

.

This mapping is of class C∞. Since κ+ ◦ κ−1− = κ− ◦ κ−1+ , the local charts (U+, κ+)

and (U−, κ−) define a smooth structure on Sn.

Remark 1.1.10 (Differentiable structure induced by a family of mappings) For the
topology of Sn one may also choose the initial topology1 induced by the mappings
κ± : Sn → R

n. This has the advantage that κ+ and κ− are automatically homeo-
morphisms then, because the transition mappings κ+ ◦ κ−1− and κ− ◦ κ−1+ are of
class C∞ and hence in particular continuous. It is not hard to show that the initial
topology induced by κ± coincides with the relative topology2 induced from R

n+1

(Exercise 1.1.1).
More generally, let M be a set and let n ∈ N. Assume that we are given a count-

able covering {Uα} of M such that for every α there exists an injective mapping
κα : Uα →R

n whose image is open. Assume further that the transition mappings are
differentiable of class Ck . (This makes sense, because the assumptions imply that
their domains are open subsets of Rn.) Equip M with the initial topology defined by
the family of mappings {(Uα, κα)}. This topology is second countable, because so
is Rn and the family is countable. This topology is also Hausdorff: let ma,mb ∈ M ,
ma �= mb . If there is an α such that ma,mb ∈ Uα , the assertion is obvious. Other-
wise, let ma ∈ Uα and mb ∈ Uβ . Since Uα is open, there exists a neighbourhood Va

of ma in M whose closure Va in M is contained in Uα . Since mb /∈ Uα , Uβ \ Va is
a neighbourhood of mb , and it does not intersect Va . This yields the assertion.

1The coarsest topology such that both κ+ and κ− are continuous.
2The coarsest topology such that the natural inclusion mapping Sn →R

n+1 is continuous.
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Continuity of the transition mappings ensures that the (Uα, κα) are local charts
on M . Since the Uα cover M and since the transition mappings are of class Ck ,
these charts establish a Ck-atlas on M . The corresponding Ck-structure is said to be
induced by the family of mappings {(Uα, κα)}.

Example 1.1.11 (Polar and spherical coordinates) The polar coordinates r,φ in the
plane and the spherical coordinates r,ϑ,φ in R

3 are curvilinear coordinates which
are often used in physical problems with rotational symmetry in order to simplify
calculations. The polar coordinate chart is defined as the inverse of the mapping

R+ × (−π,π) →R
2, (r,φ) �→ (r cosφ, r sinφ).

Hence, the chart domain is U = R
2 \ {λe1 : λ ≤ 0}. This chart is smoothly com-

patible with the standard smooth structure on R
2. By restriction to S1 ⊂ R

2, the
coordinate function φ yields a local chart which is smoothly compatible with the
smooth structure discussed in Example 1.1.9. The spherical coordinate chart is de-
fined as the inverse of the mapping

R+ ×(0,π)×(−π,π) →R
2, (r,ϑ,φ) �→ (r sinϑ cosφ, r sinϑ sinφ, r cosϑ).

Hence, the chart domain is U = R
3 \ {λe1 + μe3 : λ ≤ 0,μ ∈ R}. This chart is

smoothly compatible with the standard smooth structure on R
3. By restriction to

S2 ⊂ R
3, the two coordinate functions φ and ϑ yield a local chart on the sphere S2

which is smoothly compatible with the smooth structure discussed in Example 1.1.9.

Example 1.1.12 (Möbius strip) Let M be the topological quotient of the open subset
R× (−1,1) ⊂ R

2 by the equivalence relation

(s1, t1) ∼ (s2, t2) iff (s2, t2) = (
s1 + 2πk, (−1)kt1

)
for some k ∈ Z.

M is called the Möbius strip. Let p :R×(−1,1) → M denote the natural projection.
As the quotient of a second countable space, M is second countable. It is Hausdorff:
for m1,m2 ∈ M , define

d(m1,m2) = inf
{√

(s2 − s1)2 + (t2 − t1)2 : (si , ti ) ∈ p−1(mi), i = 1,2
}

(1.1.1)

and show that d is a metric on M , compatible with the quotient topology (Exer-
cise 1.1.3). To construct an atlas, we show that p is open. For every k ∈ Z, the
mapping

ϕk :R× (−1,1) → R× (−1,1), ϕk(s, t) := (
s + 2πk, (−1)kt

)
,

is a homeomorphism. If O ⊂ R× (−1,1) is open, then ϕk(O) and hence

p−1(p(O)
) =

⋃

k∈Z
ϕk(O)
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is open. Therefore, p(O) is open. In particular, the open subsets

V1 := (−π,π) × (−1,1), V2 := (0,2π) × (−1,1)

of R × (−1,1) project to open subsets Ui := p(Vi) of M . Since the restrictions of
p to V1 and V2 are injective, the mappings p�Vi

: Vi → Ui are homeomorphisms.
Then, (Ui, κi) with κi := (p�Vi

)−1 are local charts on M . Due to M = U1 ∪U2, they
form an atlas, thus turning M into a topological manifold.

Finally, we check differentiability of the transition mapping κ2 ◦ κ−1
1 . It maps

a point (s, t) in κ1(U1 ∩ U2) = {(s, t) ∈ V1 : s �= 0} to the unique representative of
the class of (s, t) in κ2(U1 ∩ U2) = {(s, t) ∈ V2 : s �= π}. Thus, on the connected
component s < 0 of κ1(U1 ∩ U2), the transition mapping κ2 ◦ κ−1

1 maps (s, t) to
(s + 2π,−t), whereas on the connected component s > 0 it is given by the identical
mapping. On both components it is of class C∞. Therefore, the atlas just constructed
turns M into a smooth manifold.

In the course of this book, the Möbius strip will turn up again at several places,
notably as an example of a vector bundle (Chap. 2) and as an example of the quotient
of a group action (Chap. 6).

Remark 1.1.13 (Quaternions) As a preparation for the examples to follow, let us
recall the definition of quaternions. Let H be the real vector space spanned by the
basis elements 1, i, j and k. H carries an associative multiplication which is defined
by the relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

This way, H becomes a real associative unital algebra with unit element 1. As such,
it is generated by any two out of the three quaternionic units i, j and k. Since any
nonzero element has an inverse, H is a division algebra (or, when viewed as a ring,
a division ring or skew field). The assignment

1 �→
[

1 0
0 1

]
, i �→

[
i 0
0 −i

]
, j �→

[
0 1

−1 0

]
, k �→

[
0 i
i 0

]
(1.1.2)

extends to an injective homomorphism of real algebras from H to M2(C), the alge-
bra of complex 2 × 2-matrices. The mapping

x = x01 + x1i + x2j + x3k �→ x := x01 − x1i − x2j − x3k,

where the xi are real, is an algebra involution of H, called quaternionic conjugation.

Example 1.1.14 (General linear group) Let Mn(K) denote the algebra of n × n-
matrices with entries from K = R,C or H and let GL(n,K) denote the subset of
invertible matrices. GL(n,K) is a group and Mn(K) is a real vector space of di-
mension n2 for K = R, 2n2 for K = C and 4n2 for K = H. Using the fact that the
operator norm on Mn(K) satisfies ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ Mn(K), one can
show that GL(n,K) is open in Mn(K), see Exercise 1.1.5. In case K = R or C,
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openness also follows from the fact that, here, GL(n,K) is the preimage of the open
subset K \ {0} ⊂ K under the determinant mapping

det : Mn(K) → K,

because the determinant is n-linear and hence continuous. As a consequence of
Examples 1.1.6 and 1.1.8, GL(n,K) is a differentiable manifold of dimension
n2 · dimRK. According to Example 1.1.8, global charts are given by the mappings

GL(n,R) → R
n2

, a �→ (
ai

j

)

GL(n,C) → R
2n2

, a1 + ia2 �→ (
(a1)

i
j , (a2)

i
j

)

GL(n,H) → R
4n2

, a11 + a2i + a3j + a4k �→ (
(a1)

i
j , (a2)

i
j , (a3)

i
j , (a4)

i
j

)
,

where al ∈ GL(n,R) and ai
j are the matrix entries of a.3 The mapping

GL(n,K) × GL(n,K) → GL(n,K), (a, b) �→ ab−1, (1.1.3)

is smooth, because with respect to the above global chart, it is given by a system of
rational functions with nonvanishing denominators. This means that GL(n,K) is a
Lie group, cf. Chap. 5.

Let us finish this example with a remark on the topological structure of GL(n,R).
Since det : GL(n,R) →R is continuous and R \ {0} consists of the connected com-
ponents x > 0 and x < 0, GL(n,R) decomposes into the open subsets

GL(n,R)± = {
a ∈ GL(n,R) : ±det(a) > 0

}
. (1.1.4)

Both are manifolds of dimension n2. Due to

GL(n,R)− =
[−1 0

0 1n−1

]
· GL(n,R)+,

they are homeomorphic. One can show that GL(n,R)+, and hence also GL(n,R)−,
is connected. Thus, GL(n,R)+ and GL(n,R)− are the connected components of
GL(n,R). In contrast to that, GL(n,C) is connected. For proofs, see Exercise 5.1.9
in Chap. 5 or, for example, [129].

Example 1.1.15 (Projective space) Let K= R,C or H. We use the notation

K
n∗ = {

x ∈K
n : x �= 0

}
, K

n
1 := {

x ∈K
n : ‖x‖ = 1

}
,

where ‖ · ‖ denotes the norm of the natural scalar product x†y = ∑n
i=1 xiyi . Here xi

denotes the natural involution of K, that is, the identical mapping for K = R, com-
plex conjugation for K =C and quaternionic conjugation for K =H. The projective

3Usually, we will denote elements of an algebra by capital A,B,C, . . . and elements of a group by
small a, b, c, . . . .
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space KPn is defined as the topological quotient of Kn+1∗ by the equivalence rela-
tion x ∼ y iff y = xλ for some λ ∈ K∗.4 Its elements correspond to one-dimensional
K-subspaces of Kn+1. Let p : Kn+1∗ → KPn denote the natural projection to equiv-
alence classes. First, we show that KPn is Hausdorff. Let m1 �= m2 be elements of
KPn. Choose representatives x,y ∈ K

n+1∗ with ‖x‖ = 1 = ‖y‖, denote

l(x,y) := min
λ∈K1

‖xλ − y‖

and consider the subsets

Kx :=
{

z ∈ K
n+1∗ : max

λ∈K1

∥∥∥∥
z

‖z‖λ − x

∥∥∥∥ <
1

2
l(x,y)

}
⊂K

n+1∗

and Ky, defined analogously. Since K1 is compact, the maxima and the minimum
exist. Due to m1 �= m2, the minimum is nonzero. The subsets Kx and Ky are disjoint
and open unions of equivalence classes. Therefore, p(Kx) and p(Ky) are disjoint
neighbourhoods of m1 and m2 in KPn, respectively. Next, we construct local charts.
To this end, we observe that if an equivalence class possesses a representative with
xi �= 0 for a given i, then it possesses a representative with xi = 1 and the latter is
unique. Hence, if we put

Vi := {
x ∈ K

n+1∗ : xi = 1
}
, Ui := p(Vi),

then each element of Ui has a unique representative in Vi and, by restriction, p

induces bijections Vi → Ui . By inverting these mappings and by identifying Vi in
the obvious way with K

n, we obtain bijective mappings κi : Ui → K
n. We show

that (Ui, κi) are local charts. Since their inverses are given by p and hence are
continuous, we only have to show that Ui is open and that κi is continuous. To this
end we put Wi := {x ∈K

n+1∗ : xi �= 0} and consider the mapping

χi : Wi → K
n ×K∗, χi(x) := ((

x1 x−1
i , . . . , x̂i , . . . , xn+1 x−1

i

)
, xi

)
.

Let A ⊂ K
n be open. There holds p−1(κ−1

i (A)) = χ−1
i (A × K∗). Since χi is con-

tinuous, p−1(κ−1
i (A)) is open in Wi and hence open in K

n+1∗ . Then, κ−1
i (A) is open

in KPn. This implies, first, that Ui is open and, second, that κi is continuous. Thus,
for each i, (Ui, κi) is a local chart on KPn, indeed. The corresponding coordinates
are called homogeneous. Since the Ui cover KPn, the local charts (Ui, κi) provide
an atlas of KPn and thus equip KPn with the structure of a topological manifold.
We leave it to the reader to check that the transition mappings are smooth (Exer-
cise 1.1.6).

Remark 1.1.16 The groups GL(n,K) are examples of Lie groups. The projective
spaces KPn are examples of homogeneous spaces. Both Lie groups and homoge-
neous spaces will be treated in detail in Chap. 5.

4We adopt the convention that scalars multiply from the right; this is of course relevant for K =H

only.
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To conclude this section, we discuss the operations of direct product and di-
rect sum. Let M1 and M2 be differentiable manifolds of class Ck and dimen-
sions n1 and n2. Let Ai be atlases for Mi . The direct product of topological spaces
M1 ×M2 is Hausdorff and second countable. Any pair of local charts (U1, κ1) ∈ A1
and (U2, κ2) ∈ A2 defines a local chart on M1 × M2 by (U1 × U2, κ1 × κ2), where

κ1 × κ2 : U1 × U2 →R
n1+n2 , (κ1 × κ2)(m1,m2) := (

κ1(m1), κ2(m2)
)
.

This way, the direct product of atlases A1 × A2 provides an atlas for M1 × M2.
Since for the transition mappings there holds

(κ1 × κ2) ◦ (ρ1 × ρ2)
−1 = (

κ1 ◦ ρ−1
1

) × (
κ2 ◦ ρ−1

2

)
,

the local charts are compatible of class Ck . Hence, M1 ×M2, together with the atlas
A1 ×A2, is a differentiable manifold of class Ck and dimension n1 +n2. It is called
the direct product of M1 and M2.

Now let n1 = n2 = n. The direct sum of topological spaces M1 �M2 is Hausdorff
and second countable. The disjoint union of atlases A1 � A2 yields an atlas for
M1 � M2. Since the domains of charts from A1 do not intersect the domains of
charts from A2, this atlas is of class Ck . Hence, M1 � M2 together with the atlas
A1 � A2 is a differentiable manifold of class Ck and dimension n. It is called the
direct sum of M1 and M2.

Example 1.1.17

1. The n-torus Tn = S1 × n· · · × S1 is a smooth manifold of dimension n. The cylin-
der S1 ×R is a smooth manifold of dimension 2.

2. As a manifold, the general linear group GL(n,R) is the direct sum of the mani-
folds GL(n,R)+ and GL(n,R)−, see Example 1.1.14.

Exercises
1.1.1 Show that the initial topology of Sn induced by stereographic projection with

respect to an arbitrary point and its antipode coincides with the relative topol-
ogy induced from R

n+1.
1.1.2 Prove the statements of Example 1.1.11.
1.1.3 Show that (1.1.1) defines a metric on the Möbius strip which is compatible

with the quotient topology, see Example 1.1.12.
1.1.4 A model of a Möbius strip can be produced by gluing the ends of a long

narrow paper strip, with one end twisted by an angle of 180 degrees. Consider
the strip one obtains when one end is twisted by 360 degrees instead. A strip
with this twisting is also obtained by cutting a Möbius strip along the middle
line. Show that this strip is homeomorphic to the untwisted strip. Why can’t
the strip be untwisted though?

1.1.5 Prove that GL(n,K) is open in Mn(K), see Example 1.1.14.
Hint. For A ∈ GL(n,K) define UA := {B ∈ Mn(K) : ‖A − B‖ <

‖A−1‖−1}. Show that UA is a neighbourhood of A in Mn(K) and that for
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Fig. 1.3 Level Set Theorem

every B ∈ UA, the series
∑∞

k=0(1 − A−1B)kA−1 converges absolutely and
the limit is inverse to B .

1.1.6 Verify that the local charts of Example 1.1.15 are smoothly compatible.
1.1.7 Show the following.

(a) KP1 is homeomorphic to SdimR K.
(b) RP2 is homeomorphic to the space obtained by contracting the boundary

of a Möbius strip to a point.
Hint. Study how the points of the subset {x ∈ R

3∗ : x2
1 + x2

2 = 1, |x3| < a}
of R3∗ get identified via the defining equivalence relation of RP2. Then,
let a → ∞.

1.2 Level Sets

Level sets at regular values of differentiable mappings of Rn provide a great variety
of examples for manifolds. Let us start this section with recalling some terminology.
Let f :Rn → R

m be a differentiable mapping of class Ck , k ≥ 1. An element x ∈R
n

is called a regular point of f if f ′(x) has rank m; otherwise x is called a critical
or singular point. An element c ∈ R

m is called a regular value of f if all points
x ∈ f −1(c) are regular; otherwise c is called a critical or singular value. If c is a
regular value, then necessarily n ≥ m.

Theorem 1.2.1 (Level Set Theorem) Let U ⊂ R
n be open, let f : U → R

m be a
differentiable mapping of class Ck and let c ∈R

m be a regular value of f such that
the level set M := f −1(c) is nonempty. Then, M is a differentiable manifold of class
Ck and dimension n − m.

Proof Let x0 ∈ M . We define

X0 := kerf ′(x0) ≡ {
x ∈R

n : f ′(x0)(x) = 0
} ⊂ R

n.
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Since f ′(x0) has rank m, X0 is an (n − m)-dimensional subspace of Rn. Let X⊥
0

denote the orthogonal complement of X0 with respect to the Euclidean metric and
let p0 : Rn → X0 be the orthogonal projection to X0, see Fig. 1.3. We show that p0
defines a local chart on M . The mapping

h : X0 × X⊥
0 → R

m, h(y, z) := f (x0 + y + z) − c,

is of class Ck and satisfies h(0,0) = 0. Since for any w ∈ X⊥
0 ,

h′(0,0)(0,w) = f ′(x0)(w),

the equality h′(0,0)(0,w) = 0 implies w ∈ X0 and hence w = 0. According to the
Implicit Function Theorem, there exists an open neighbourhood V of 0 in X0 and
a mapping F : V → X⊥

0 of class Ck such that h(y,F (y)) = 0 for all y ∈ V . Then,
x0 + y + F(y) ∈ M for all y ∈ V , so that we obtain a continuous mapping

λ : V → M, λ(y) := x0 + y + F(y),

see Fig. 1.3. Let U := λ(V ) and define the mapping

κ : U → V, κ(x) := p0(x − x0).

Check that U = M ∩ (x0 + p−1
0 (V )), κ ◦ λ = idV and λ ◦ κ = idU . It follows that

U is open in M and κ is a homeomorphism, that is, (U,κ) is a local chart on M .
Application of this construction to each x ∈ M yields an atlas for M . We check that
the local charts are compatible of class Ck : let (Ũ , κ̃) be the chart associated with
x̃0 ∈ M and assume U ∩ Ũ �= ∅. The transition mapping is given by

X0 ⊃ κ(U ∩ Ũ )
κ̃◦κ−1−→ κ̃(U ∩ Ũ ) ⊂ X̃0, y �→ p̃0

(
x0 + y + F(y) − x̃0

)
.

As a composition of F with affine mappings it is of class Ck . �

Remark 1.2.2

1. The subspace X0 = kerf ′(x0) is spanned by the tangent vectors of differentiable
curves in M passing through x0. It is, therefore, called the tangent space of M

at x0. By shifting this subspace to x0 one obtains an affine subspace, the tangent
hyperplane, which is tangent to M in x0 and whose vector space of translations
is given by the tangent space X0, see Fig. 1.3.

2. In the case m = 1, f : U → R is a Ck-function and f ′(x) is the gradient of f

at x. Since the rank can be at most 1, a point x ∈ U is regular iff f ′(x) �= 0. Thus,
c ∈R is a regular value of f and hence the level set f −1(c) is a Ck-manifold iff
the gradient does not vanish on f −1(c).

3. Theorem 1.2.1 and the above remarks generalize in an obvious way to the situa-
tion where U is an open subset of a finite-dimensional real vector space W and
f takes values in a finite-dimensional real vector space V . We also note that, as
a consequence of the proof, there exists an atlas of the level set M ⊂ W whose
local charts (U,κ) fulfil the following conditions:
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Fig. 1.4 The level sets of Example 1.2.4

(a) κ is the restriction to U of a linear mapping W → R
dimM ,

(b) the mapping ι ◦ κ−1 : κ(U) → W , where ι : M → W is the natural inclusion
mapping, is of class Ck .

It follows that, given level sets Mi ⊂ Wi , i = 1,2, of Ck-mappings at regular
values and a Ck-mapping Φ : W1 → W2 satisfying Φ(M1) ⊂ M2, the induced
mapping M1 → M2 is of class Ck (Exercise 1.2.1).

Example 1.2.3 (Spheres) The sphere Sn is the level set of the function

f : Rn+1 → R, f (x) := ‖x‖2

at the value c = 1, cf. Example 1.1.9. Since x = 0 is the only singular point of f ,
the assumptions of Theorem 1.2.1 are satisfied. Therefore, this theorem yields a
smooth structure on Sn. One can show that this structure coincides with the one
constructed by means of stereographic projection in Example 1.1.9 (Exercise 1.2.4).
For x ∈ Sn, the subspace kerf ′(x) consists of those vectors which are orthogonal
to x. By shifting this subspace to x, one obtains the tangent plane of the sphere at
this point, indeed.

Example 1.2.4 (Hyperboloid) We consider the function

f :R3 → R, f (x) := x2
1 + x2

2 − x2
3 .

The only singular point of f is x = 0. Hence, the only singular value of f is c =
f (0) = 0; all c �= 0 are regular. We determine the level sets M = f −1(c). Since f

is invariant under rotations about the x3-axis, M is the surface of revolution of the
curve x2

1 − x2
3 = c in the x1–x3-plane. This is a hyperboloid which is one-sheeted

for c > 0 and two-sheeted for c < 0, see Fig. 1.4. In both cases, Theorem 1.2.1
yields a smooth structure. As a link between these two cases, for the singular value
c = 0, M is a double cone. In this case, Theorem 1.2.1 does not apply. In fact, the
double cone is not a topological manifold (Exercise 1.2.2). In the case c < 0, using
x0 = (0,±√

c,0), one obtains a global chart for each sheet. Since the domains of
these two charts do not intersect, this atlas is automatically smooth. In the case
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c > 0, one needs at least three charts of the type used in the proof of the Level Set
Theorem. We leave this case to the reader (Exercise 1.2.3).

Remark 1.2.5 In contrast to the double cone {x ∈ R
3 : x2

1 + x2
2 − x2

3 = 0} of Ex-
ample 1.2.4, the single cone {x ∈ R

3 : x2
1 + x2

2 − x2
3 = 0, x3 ≥ 0} is a topological

manifold, and even a manifold of class C∞. Indeed, orthogonal projection to the
x1–x2-plane yields a global chart.

Example 1.2.6 (Classical groups) Let K= R,C,H. For n,m = 0,1,2, . . . , define

1n,m :=
[
1n 0
0 −1m

]
, Jn =

[
0 1n

−1n 0

]

and recall the following inner products on K
n:

xTy =
n∑

i=1

xi yi, x†y =
n∑

i=1

xi yi, xi, yi ∈K.

As before, xi denotes the natural involution on K. By a classical group one means
the general linear group GL(n,K) or one of the following subgroups.

1. The unimodular group SL(n,K), K = R,C, is the group of linear mappings of
unit determinant,

SL(n,K) = {
a ∈ GL(n,K) : det(a) = 1

}
.

2. The real orthogonal group O(n,m) ⊂ GL(n + m,R) is the group of isometries
of the symmetric bilinear form xT1n,my on R

n+m,

O(n,m) = {
a ∈ GL(n + m,R) : aT1n,ma = 1n,m

}
.

In case m = 0 one writes O(n) = O(n,0); this is the group of isometries of the
Euclidean scalar product.

3. The special real orthogonal group SO(n,m) is the subgroup of O(n,m) of
isometries with unit determinant,

SO(n,m) = O(n,m) ∩ SL(n + m,R).

In case m = 0, one writes SO(n).
4. The complex orthogonal group O(n,C) ⊂ GL(n,C) is the group of isometries

of the symmetric bilinear form xTy on C
n,

O(n,C) = {
a ∈ GL(n,C) : aTa = 1

}
.

5. The special complex orthogonal group is the subgroup of O(n,C) of isometries
of unit determinant,

SO(n,C) = O(n,C) ∩ SL(n,C).
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6. The unitary group U(n,m) ⊂ GL(n + m,C) is the group of isometries of the
Hermitian form x†1n,my on C

n+m,

U(n,m) = {
a ∈ GL(n + m,C) : a†1n,ma = 1n,m

}
.

In case m = 0 one writes U(n) = U(n,0); this is the subgroup of isometries of
the natural scalar product on C

n.
7. The special unitary group SU(n,m) is the subgroup of U(n,m) of isometries of

unit determinant,

SU(n,m) = U(n,m) ∩ SL(n + m,C).

In case m = 0 one writes SU(n) = SU(n,0).
8. The symplectic group Sp(n,K) ⊂ GL(2n,K), K = R,C, is the group of isome-

tries of the antisymmetric bilinear form ω(x,y) = xTJny on K
2n,

Sp(n,K) = {
a ∈ GL(2n,K) : aTJna = Jn

}
.

9. The quaternionic symplectic group Sp(n,m) ⊂ GL(n + m,H) is the group of
isometries of the Hermitian form x†1n,my on H

n+m,

Sp(n,m) = {
a ∈ GL(n + m,H) : a†1n,ma = 1n,m

}
.

In case m = 0 one writes Sp(n) = Sp(n,0); this is the group of isometries of the
natural scalar product on H

n.

By writing down defining relations and applying the Level Set Theorem one
can show that all the classical groups are smooth manifolds (Exercise 1.2.6). As an
example, we carry out the proof for the groups O(n) and SO(n).

Let Sn(R) denote the linear subspace of Mn(R) of symmetric matrices. O(n) is
the level set at the value c = 1 of the mapping f : Mn(R) → Sn(R), f (a) := aTa.
Hence, for O(n) it suffices to show that 1 is a regular value of f . To do so, we
calculate the derivative f ′ of f in a ∈ Mn(R):

f ′(a)(X) = aTX + XTa, X ∈ Mn(R).

If f (a) = 1, then for any B ∈ Sn(R) there holds f ′(a)(aB) = 2B . This shows that
f ′(a) is surjective for all a ∈ f −1(1), that is, 1 is a regular value of f , indeed. Then,
for SO(n) it suffices to show that it is open in O(n). Since for any a ∈ O(n) there
holds det(a2) = det(aTa) = 1, we have det(a) = ±1. Hence,

SO(n) = O(n) ∩ GL(n,R)+,

cf. Example 1.1.14. Now, the assertion follows from the fact that GL(n,R)+ is open
in Mn(R).

Finally, the Level Set Theorem also yields the dimensions of the classical groups.
For example, since Sn(R) has dimension 1

2n(n + 1), O(n) has dimension

n2 − 1

2
n(n + 1) = 1

2
n(n − 1).
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The same is true for the open subset SO(n). It turns out that the groups O(n,m)

and SO(n,m) have the same dimension as O(n + m). The dimensions of the other
classical groups are

SL(n,R) : n2 − 1, SL(n,C) : 2n2 − 2,

O(n,C),SO(n,C) : n(n − 1), U(n,m) : (n + m)2,

SU(n,m) : (n + m)2 − 1, Sp(n,R) : n(2n + 1),

Sp(n,C) : 2n(2n + 1), Sp(n,m) : (n + m)
(
2(n + m) + 1

)
.

Remark 1.2.7

1. Let G ⊂ GL(n,K) denote one of the above classical groups. With respect to the
smooth structures provided by the Level Set Theorem, the mapping G×G → G,
given by (a, b) �→ ab−1, is smooth. This follows from Remark 1.2.2/3 and from
the smoothness of the mapping (1.1.3). We conclude that the classical groups are
Lie groups and, in addition, Lie subgroups of GL(n,K), cf. Chap. 5.

2. One has O(n)\SO(n) = O(n)∩GL(n,R)−, and this subset is also open in O(n).
Hence, SO(n) is closed in O(n). One can show that SO(n) is connected; this is in
fact part of the proof of the connectedness of GL(n,R)+, see the corresponding
remark in Example 1.1.14. Thus, O(n) consists of the connected components
SO(n) and O(n) \ SO(n).

3. Being level sets, the classical groups are closed subsets of GL(n,K). As isome-
try groups of scalar products, the groups O(n), U(n) and Sp(n) are compact, see
Exercise 1.2.7. Since SO(n) and SU(n) are closed subsets of O(n) and U(n), re-
spectively, they are compact, too. None of the other classical groups is compact.

Exercises

1.2.1 Show that the restriction of a Ck-mapping between vector spaces to level sets
is of class Ck , cf. Remark 1.2.2/3.

1.2.2 Show that the double cone {x ∈ R
3 : x2

1 + x2
2 − x2

3 = 0} is not a topological
manifold, cf. Example 1.2.4.

1.2.3 Using the method of the proof of the Level Set Theorem, construct an atlas
for the one-sheeted hyperboloid of Example 1.2.4.

1.2.4 Show that the smooth structure on Sn provided by the Level Set Theorem
coincides with the smooth structure constructed by means of stereographic
projection in Example 1.1.9.

1.2.5 Show that the following level sets are smooth manifolds and construct at-
lases:
(a) the paraboloid M = {x ∈R

3 : x3 = x2
1 + x2

2},
(b) the ellipsoid M = {x ∈ R

3 : x2
1

a2
1

+ x2
2

a2
2

+ x2
3

a2
3

= 1},
(c) the rotational torus M = {x ∈ R

3 : (

√
x2

1 + x2
2 − a)2 + x2

3 = b2}, where
0 < b < a.
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Fig. 1.5 Local representative of a continuous mapping between manifolds. Here,
Ũ = U ∩ Φ−1(V )

1.2.6 Use the Level Set Theorem 1.2.1 for showing that the classical groups listed
in Example 1.2.6 are smooth manifolds.

1.2.7 Show that the isometry group of the natural scalar product on K
n is compact.

Hint. Choose an appropriate norm on Mn(K), K = R,C,H, and show that the
subset of isometries is bounded.

1.3 Differentiable Mappings

In this section, we carry over the notion of differentiability from classical calculus
to the theory of manifolds. Let M and N be Ck-manifolds and let Φ : M → N be
a continuous mapping.5 As usual, we will refer to M , to N , to the elements of N

and to Φ(M) as, respectively, the domain, the range, the values and the image of
Φ . Let (U,κ) be a local chart on M and let (V ,ρ) be a local chart on N such that
U ∩ Φ−1(V ) �= ∅. The mapping

Φκ,ρ : κ(
U ∩ Φ−1(V )

) → ρ(V ), Φκ,ρ(x) := ρ ◦ Φ ◦ κ−1(x),

pictured in Fig. 1.5, is called the local representative or the local representation of
Φ with respect to the charts (U,κ) and (V ,ρ). Since by continuity of Φ , Φ−1(V )

is open, the local representatives are mappings between open subsets of RdimM and
R

dimN . Hence, it makes sense to ask whether they are differentiable.

Definition 1.3.1 (Differentiable mapping) Let M and N be Ck-manifolds. A map-
ping Φ : M → N is called differentiable of class Ck , or just a Ck-mapping, if it is
continuous and if for any pair of local charts (U,κ) on M and (V ,ρ) on N such that
U ∩ Φ−1(V ) �= ∅, the local representative Φκ,ρ is of class Ck . The set of all such
mappings is denoted by Ck(M,N).

5In this book, mappings between manifolds are usually denoted by capital Greek letters like
Φ,Ψ, . . . or small Greek letters like ϕ,ψ,χ, . . . .
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This definition yields the notion of Ck-mapping of Cl-manifolds for any l ≥ k by
viewing the Cl-manifolds as Ck-manifolds according to Remark 1.1.5/1. By anal-
ogy, one defines the notions of real analytic mapping between real analytic mani-
folds and of complex analytic mapping between complex analytic manifolds by re-
quiring the local representatives to be real or complex analytic, respectively. Contin-
uing previous terminology, C∞-mappings will be referred to as smooth mappings.

Remark 1.3.2

1. An equivalent definition of differentiability is the following. A mapping Φ :
M → N is differentiable of class Ck iff there exist atlases {(Ui, κi) : i ∈ I } on
M and {(Vj , ρj ) : j ∈ J } on N such that for every i ∈ I there is j ∈ J such that
Φ(Ui) ⊂ Vj and the local representative Φκi,ρj

: κ(Ui) → ρ(Vj ) is of class Ck .
Note that, here, continuity of f need not be required. Indeed, for every pair of
charts (Ui, κi), (Vj , ρj ) such that Φ(Ui) ⊂ Vj we have Φ�Ui

= ρ−1
j ◦Φκi,ρj

◦κi ,
which is continuous as a composition of continuous mappings.

2. A mapping between open subsets of finite-dimensional vector spaces, endowed
with the standard smooth structure (Example 1.1.6), is of class Ck in the sense of
Definition 1.3.1 iff it is of class Ck in the sense of classical calculus. To see this,
choose global charts corresponding to two chosen bases. In particular, multilinear
mappings between finite-dimensional real vector spaces are smooth.

3. Let (Ui, κi) and (Vi, ρi), i = 1,2, be local charts on M and N , respectively, such
that

W := U1 ∩ U2 ∩ Φ−1(V1 ∩ V2) �= ∅.

Then, for any m ∈ W ,

Φκ2,ρ2(m) = (
ρ2 ◦ ρ−1

1

) ◦ Φκ1,ρ1 ◦ (
κ1 ◦ κ−1

2

)
(m).

This shows that the local representatives with respect to two different pairs of
charts are related via the transition mappings between these charts. In particular,
in order to decide whether a continuous mapping Φ : M → N is differentiable it
suffices to test the local representatives with respect to arbitrary but fixed atlases.

4. Consider the case N = R with the standard smooth structure. A Ck-mapping
f : M → R is called a Ck-function. The space of Ck-functions is denoted by
Ck(M). It carries the structure of a real associative algebra with operations

(αf + g)(m) := αf (m) + g(m), (f · g)(m) := f (m)g(m),

where f,g ∈ Ck(M), α ∈ R, and m ∈ M .
5. Consider the case where M = I ⊂ R is an open interval with the standard smooth

structure. A Ck-mapping γ : I → N is called a Ck-curve. We say that γ is a
curve through p ∈ N if 0 ∈ I and γ (0) = p.

6. Let (U,κ) be a local chart on the Ck-manifold M . Consider the smooth mani-
fold U with global chart (U,κ). Viewed as a mapping from U to R

n (with its
standard smooth structure), κ is smooth. Similarly, viewed as functions on U ,
the coordinate functions κi are smooth.
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Definition 1.3.3 (Diffeomorphism) Let M and N be differentiable manifolds of
class Ck . A differentiable mapping Φ : M → N of class Ck is called a diffeomor-
phism of class Ck , or just a Ck-diffeomorphism, if it is bijective and the inverse
mapping is of class Ck , too. If a diffeomorphism of class Ck exists, one says that M

and N are diffeomorphic of class Ck , or just Ck-diffeomorphic.

As in the case of Ck-mappings in Definition 1.3.1, Definition 1.3.3 yields the
notion of Ck-diffeomorphism of Cl-manifolds for all l ≥ k as well. If the differen-
tiability class of M and N is fixed, we will usually just speak of diffeomorphisms. In
addition, we will use the following terminology. By a local diffeomorphism from M

to N we mean a diffeomorphism from an open subset of M onto an open subset of
N . By saying that a Ck-mapping Φ : M → N is locally a diffeomorphism we mean
that for every point of M there exists an open neighbourhood U such that Φ(U) is
open in N and the mapping U → Φ(U) induced by Φ is a diffeomorphism.

Example 1.3.4 (Diffeomorphic differentiable structures) Define mappings κi : R →
R, i = 1,2,3, by

κ1(x) := x, κ2(x) :=
{

2x|x ≥ 0

x|x < 0,
κ3(x) := x3.

Each κi is a homeomorphism and hence a global chart on R. Therefore, each κi

defines a smooth atlas Ai and hence a smooth structure on R. However, no two of the
charts κi are compatible, because none of the mappings κ2 ◦κ−1

1 , κ2 ◦κ−1
3 or κ1 ◦κ−1

3
is differentiable at the origin. Hence, the atlases Ai are pairwise incompatible. The
corresponding smooth structures are diffeomorphic though: consider the mappings
Φi : (R,Ai ) → (R,A1), Φi := κi , i = 2,3. Since they are homeomorphisms, they
are bijective and continuous and their inverses are also continuous. The (global)
representative of Φi with respect to the charts κ1 and κi is

(Φi)κi ,κ1 = κ1 ◦ Φi ◦ κ−1
i = idR.

Analogously, (Φ−1
i )κ1,κi

= idR. Hence, Φi is a diffeomorphism. In contrast,
the identical mapping Φ = idR is not a diffeomorphism. Indeed, as a mapping
(R,A1) → (R,A2), idR has the global representative (idR)κ1,κ2 = κ2 and is thus not
differentiable at the origin. As a mapping (R,A1) → (R,A3), idR has the global
representative (idR)κ1,κ3 = κ3 and is, therefore, of class C∞. Its inverse, however, is
not differentiable at the origin. Finally, as a mapping (R,A2) → (R,A3), idR has
the global representative

(idR)κ2,κ3 =
{

( 1
2 x)3|x ≥ 0

x3|x < 0

and is, therefore, of class C2. Again, the inverse mapping is not differentiable at the
origin.
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Remark 1.3.5 (Differentiable structures on R
n) One can show that on the topolog-

ical space R, all smooth structures are diffeomorphic to the standard smooth struc-
ture. This is also true for Rn except for n = 4. On R

4, besides the standard smooth
structure, there exist so-called exotic smooth structures [98]. A further example of
a topological manifold which possesses non-diffeomorphic smooth structures is the
sphere S7 [159].

Next, we discuss partitions of unity, a tool which will be used for example for
integration of differential forms on manifolds. Recall that a family of subsets {Vi :
i ∈ I } of M is called locally finite if for any m ∈ M there is a neighbourhood Um

such that Um ∩ Vi =∅ for all but a finite number of i ∈ I .

Definition 1.3.6 (Partition of unity) Let M be a Ck-manifold. A partition of unity
of M is a family {gi : i ∈ I } of Ck-functions on M such that

1. the family of supports {supp(gi) : i ∈ I } is locally finite,
2. gi ≥ 0 for all i ∈ I ,
3.

∑
i∈I gi(m) = 1 for all m ∈ M .

As a consequence of property 3, the family of supports of a partition of unity
forms a covering of M . Recall that a covering {Vα : α ∈ A} of M is subordinate to
a covering {Wβ : β ∈ B} of M if for any α ∈ A there is an element β ∈ B such that
Vα ⊂ Wβ . One says that a partition of unity is subordinate to a given covering of M

if the family of supports of the partition is subordinate to that covering.

Proposition 1.3.7 (Existence) For any open covering {Uα : α ∈ A} of a Ck-
manifold there exists a partition of unity {gi : i ∈ I } with the following properties:

1. I is countable,
2. supp(gi) is compact for all i ∈ I ,
3. {gi : i ∈ I } is subordinate to {Uα : α ∈ A}.

Proof See, for instance, [73, §16.4] or [180, §II.3]. �

Remark 1.3.8 Let us conclude this section with a remark on the relation between
the differentiability classes Ck for different k. Let M be a topological manifold
and let k ≥ 1. One can show that every Ck-structure on M is Ck-diffeomorphic to
a C∞-structure and that this C∞-structure is unique up to C∞-diffeomorphisms
[130, Ch. 3]. One may even replace C∞ by real analytic here. Another question
is how many diffeomorphism classes of differentiable structures (hence of smooth
structures) exist on a given topological manifold. On the one hand, according to
Remark 1.3.5, there are topological manifolds admitting more than one diffeo-
morphism class. On the other hand, there exist topological manifolds which are
non-smoothable, that is, which do not admit a Ck-structure with k ≥ 1 at all, see
[158, 276].
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Exercises

1.3.1 Show that Rn \ {0} is diffeomorphic to the cylinder Sn−1 ×R over the sphere
Sn−1. For n = 2 and n = 3, how is this fact related to the definition of polar
and spherical coordinates?

1.3.2 Show that the mapping Φ : R3 → R
3, defined by

Φ(x) := (
x1 sin(x3) + x2 cos(x3), x1 cos(x3) − x2 sin(x3), x3

)
,

maps the unit sphere S2 ⊂ R
3 diffeomorphically onto itself.

1.3.3 Consider the ellipsoid M = {x ∈ R
3 : x2

1
a2

1
+ x2

2
a2

2
+ x2

3
a2

3
= 1} of Exercise 1.2.5/(b).

Define mappings Φ,Ψ : (−π
2 , π

2 ) × (0,2π) →R
3 by

Φ(α,β) := (a1 cosα cosβ,a2 cosα sinβ,a3 sinα),

Ψ (α,β) := (−a1 cosα cosβ,a2 sinα,a3 cosα sinβ).

Show that
(a) the images of Φ and Ψ are open subsets of M and hence smooth mani-

folds,
(b) Φ and Ψ are diffeomorphisms onto their images.

1.3.4 Consider the rotational torus M = {x ∈ R
3 : (

√
x2

1 + x2
2 − a)2 + x2

3 = b2},
0 < b < a, of Exercise 1.2.5/(c). Show that
(a) M is diffeomorphic to the direct product T2 = S1 × S1,
(b) the mapping Φ : M → S2 ⊂ R

3, defined by Φ(x) := x
‖x‖ , is differen-

tiable. What is the image of Φ?
1.3.5 Identify S1 with the unit circle in C and define an equivalence relation on

S1 × (−1,1) by (α, t) ∼ (β, s) if β = α, s = t or β = −α, s = −t . By analogy
with Example 1.1.12, construct a differentiable structure on the corresponding
topological quotient. Show that the manifold so obtained is diffeomorphic to
the Möbius strip.

1.4 Tangent Space

In this section, we generalize the notion of tangent space, defined in Remark 1.2.2/1
for level sets of Ck-mappings Rn → R

m at regular values, to arbitrary differentiable
manifolds. Let k ≥ 1.

In case M is a level set, the elements of the tangent space at m may be viewed as
the tangent vectors of Ck-curves γ in M with γ (0) = m. To determine the tangent
vector of γ one makes use of the fact that γ is also a curve in the ambient linear
space Rn, where the derivative d

dt �0
γ (t) is well defined. Since this model of tangent

space is not intrinsic for M , i.e., since it requires more than just the differentiable
structure of M , it cannot be carried over to abstract manifolds. The notion of a curve,
however, is intrinsic, see Remark 1.3.2/5. Let Km(M) denote the collection of all
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Ck-curves through m. In the situation where M is a level set, two curves through
m define the same tangent vector in m if their derivatives at t = 0 coincide. In this
case, they should be viewed as being equivalent. By means of local charts, this
equivalence relation will be carried over to abstract manifolds. For that purpose, we
have to make sure that it does not depend on the choice of chart.

Lemma 1.4.1 Let M be a Ck-manifold, let m ∈ M and let γ1, γ2 be curves of class
Ck through m. If d

dt �0
(κ ◦ γ1)(t) = d

dt �0
(κ ◦ γ2)(t) for some local chart (U,κ) at m,

then this holds for every such chart.

Proof The proof is an exercise in applying the chain rule and is, therefore, left to
the reader (Exercise 1.4.1). �

Thus, we can define two curves γ1, γ2 in Km(M) to be equivalent if for some
(and hence any) local chart (U,κ) at m there holds

d

dt �0

(κ ◦ γ1)(t) = d

dt �0

(κ ◦ γ2)(t). (1.4.1)

Let TmM denote the set of equivalence classes. On TmM , a linear structure can
be defined as follows. Let (U,κ) be a local chart at m. Due to Lemma 1.4.1, the
mapping

Fκ
m : TmM → R

n, [γ ] �→ Fκ
m

([γ ]) := d

dt �0

(κ ◦ γ )(t), (1.4.2)

is well defined and injective. Since x ∈ R
n is the image under Fκ

m of the equivalence
class of the curve

γ x(t) := κ−1(κ(m) + tx
)
, (1.4.3)

Fκ
m is also surjective. The inverse mapping is given by

(
Fκ

m

)−1
(x) = [

γ x]. (1.4.4)

By means of Fκ
m, we transport the linear structure of Rn to TmM , that is, we define

α [γ1] + β [γ2] := (
Fκ

m

)−1(
αFκ

m

([γ1]
) + βFκ

m

([γ2]
))

.

This definition does not depend on the choice of chart, because for a second chart
(V ,ρ) one has

Fρ
m

([γ ]) = (
ρ ◦ κ−1)′(

κ(m)
) · Fκ

m

([γ ]) (1.4.5)

(Exercise 1.4.2). As a result, TmM is a real linear space of the same dimension as
M and the mappings Fκ

m are vector space isomorphisms.

Definition 1.4.2 (Tangent space) The real linear space TmM is called the tangent
space of M at m. Its elements are called tangent vectors at m.
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Tangent vectors will usually be denoted by Xm,Ym etc. The local representative
of a tangent vector Xm ∈ TmM with respect to the chart (U,κ) is defined to be

Xκ
m = Fκ

m(Xm). (1.4.6)

The relation between Xκ
m and the local representative Xρ

m with respect to another
chart (V ,ρ) can be read off from (1.4.5):

Xρ
m = [(

ρ ◦ κ−1)′(
κ(m)

)] · Xκ
m. (1.4.7)

The coefficients of the local representative Xκ
m with respect to the standard basis of

R
n are6

Xκ,i
m = d

dt �0

(
κi ◦ γ

)
(t). (1.4.8)

For these coefficients, (1.4.7) yields the transformation law (summation convention)

Xρ,i
m = [(

ρ ◦ κ−1)′(
κ(m)

)]
i
jX

κ,j
m , (1.4.9)

that is, the transformation is given by the Jacobi matrix of the coordinate transfor-
mation.

Example 1.4.3

1. Let M be an open subset of a finite-dimensional real vector space V . For every
v ∈ M , the assignment of the velocity vector d

dt �0
γ (t) ∈ V to the class [γ ] ∈

TvM defines an isomorphism of the tangent space TvM with the ambient vector
space V . The inverse of this isomorphism is obtained by assigning to u ∈ V the
class of the curve t �→ v + tu. This isomorphism will be referred to as the natural
identification of TvM with V .

2. Let V and W be finite-dimensional real vector spaces and let M ⊂ V be the
level set of a regular value of a Ck-mapping f : V → W . For every v ∈ M , the
assignment of the velocity vector d

dt �0
γ (t) ∈ V to the class [γ ] ∈ TvM defines a

natural isomorphism of the tangent space TvM with the subspace kerf ′(v) of V .
The proof is left to the reader (Exercise 1.4.4). This shows that Definition 1.4.2
formalizes the idea of the tangent space at a point of a level set, indeed.

Next, we discuss an equivalent, more algebraic view on tangent vectors. Consider
the algebra Ck(M) of Ck-functions on M . Let Xm ∈ TmM and let γ ∈ Km(M)

be a curve representing Xm. By analogy with the directional derivative of analy-
sis in R

n we define the directional derivative of f ∈ Ck(M) along the curve γ by
d
dt �0

(f ◦ γ )(t). Due to

d

dt �0

(f ◦ γ )(t) = [(
f ◦ κ−1)′(

κ(m)
)] · d

dt �0

(κ ◦ γ )(t)

6If there is no danger of confusion, we will usually omit the chart label and just write Xi
m.
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and (1.4.1), for another curve γ̃ representing Xm there holds

d

dt �0

(f ◦ γ )(t) = d

dt �0

(f ◦ γ̃ )(t).

That is, the directional derivative depends on Xm only. Therefore, Xm defines a
linear mapping, denoted by the same symbol,

Xm : Ck(M) →R, Xm(f ) := d

dt �0

(f ◦ γ )(t), (1.4.10)

where γ is some curve representing Xm. For f,g ∈ Ck(M), the product rule yields

Xm(f · g) = Xm(f )g(m) + f (m)Xm(g), (1.4.11)

that means, Xm is a derivation at m.

Definition 1.4.4 (Derivation at a point) Let M be a Ck-manifold and let m ∈ M .
A derivation at m is a linear mapping Dm : Ck(M) → R satisfying

Dm(f · g) = Dm(f )g(m) + f (m)Dm(g) for all f,g ∈ Ck(M). (1.4.12)

The set of all derivations at m will be denoted by DmM . It carries the structure of
a real linear space. Assigning to a tangent vector its directional derivative (1.4.10)
defines an injection of TmM into DmM , which preserves the linear structure,

(Xm + Ym)(f ) = Xm(f ) + Ym(f ) (1.4.13)

(Exercise 1.4.7). Thus, TmM may be identified with a linear subspace of DmM . Via
the isomorphism Fκ

m, the standard basis {ei} of R
n induces a basis in TmM . We

determine the derivations which correspond to the elements of this basis. Due to
(1.4.3) and (1.4.4), for f ∈ Ck(M),

((
Fκ

m

)−1
(ei )

)
(f ) = d

dt �0

(
f ◦ κ−1 ◦ (

κ(m) + tei

)) = ∂(f ◦ κ−1)

∂xi

(
κ(m)

)
.

Thus, the derivations7

∂κ
i,m : Ck(M) → R, ∂κ

i,m(f ) := ∂(f ◦ κ−1)

∂xi

(
κ(m)

)
, i = 1, . . . , n, (1.4.14)

form a basis in TmM . By construction, the coefficients of a tangent vector Xm with
respect to this basis are given by the components of the local representative Xκ

m,

Xm = Xκ,i
m ∂κ

i,m. (1.4.15)

7As for the local representative of a tangent vector, we will usually omit the chart label and just
write ∂i,m.
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Moreover, (1.4.8) implies

Xκ,i
m = Xm

(
κi

)
. (1.4.16)

If (V ,ρ) is another local chart at m, the two bases {∂κ
i,m} and {∂ρ

i,m} of TmM are
related by (Exercise 1.4.3)

∂
ρ
j,m = [(

κ ◦ ρ−1)′(
ρ(m)

)]
i
j ∂

κ
i,m. (1.4.17)

Proposition 1.4.5 Let M be a Ck-manifold, let m ∈ M and let Dm be a derivation
at m. For arbitrary f,g ∈ Ck(M), the following holds.

1. If f is constant, then Dm(f ) = 0.
2. If f�U = g�U for some neighbourhood U of m, then Dm(f ) = Dm(g).

Proof 1. Write f = λ1, where λ = f (m) and 1 denotes the constant function with
value 1. Then,

Dm(f ) = λDm(1) = λDm(1 · 1) = λ
(
Dm(1) · 1 + 1 · Dm(1)

)

= 2λDm(1) = 2Dm(f ).

2. By assumption, (f − g)�U = 0. There exists a Ck-function h on M such that
h(m) = 1 and h�M\U = 0. For example, choose a smooth function on R

n which
has the value 1 at the origin and vanishes outside some ε-ball, transport it by an
appropriate local chart to U and extend it by 0 to a function on M . Then, (f −g)h =
0 and hence

0 = Dm

(
(f − g)h

) = Dm(f − g)h(m) + (
f (m) − g(m)

)
Dm(h) = Dm(f − g).

�

Remark 1.4.6 The notion of derivation at a point is related to the notion of derivation
in the theory of modules over algebras as follows. Let A be an algebra and let M be
a bimodule over A. A linear mapping D : A→ M is called a derivation if it satisfies

D(ab) = D(a)b + aD(b), a, b ∈A.

Definition 1.4.4 is obtained from this more general definition by choosing Ck(M)

for A and R for M, with the bimodule structure being defined by f · x := f (m)x

and x · f := xf (m), where f ∈ Ck(M), x ∈ R.

We now show that in the case k = ∞, every derivation at m comes from a tangent
vector. That is, for smooth manifolds, the subspace TmM in fact coincides with
DmM and the linear spaces TmM and DmM may be viewed as different realizations
of the same object.

Proposition 1.4.7 For every point m of a C∞-manifold M there holds TmM =
DmM .
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Proof Let (U,κ) be a local chart at a chosen point m0. It suffices to show that
every Dm0 ∈ Dm0M can be written as a linear combination of ∂κ

1,m0
, . . . , ∂κ

n,m0
. Let

f ∈ C∞(M). According to Taylor’s Theorem, in a neighbourhood V of x0 = κ(m0),
the local representative f̃ := f ◦ κ−1 can be written in the form

f̃ (x) = f̃ (x0) + ∂f̃

∂xi
(x0)

(
xi − xi

0

) + f̃ij (x)
(
xi − xi

0

)(
xj − x

j

0

)
, (1.4.18)

where f̃ij are smooth functions on V , given by

f̃ij (x) =
∫ 1

0
ds(1 − s)

∂2f̃

∂xi∂xj

(
(1 − s)x0 + sx

)
.

Since

∂f̃

∂xi
(x0) = ∂(f ◦ κ−1)

∂xi

(
κ(m0)

) = ∂κ
i,m0

(f ),

Formula (1.4.18) yields the following decomposition on κ−1(V ) ⊂ U :

f (m) =f (m0) + ∂κ
i,m0

(f )
(
κi(m) − xi

0

)

+ (
f̃ij ◦ κ(m)

)(
κi(m) − xi

0

)(
κj (m) − x

j

0

)
. (1.4.19)

There exist open neighbourhoods W1, W2 of m0 and a smooth function h on M

such that W 1 ⊂ W2, W 2 ⊂ κ−1(V ), h�W1 = 1 and h�M\W2 = 0. Multiply κi and
f̃ij ◦ κ on W2 by h and extend the resulting functions by 0 to M . With κi and
f̃ij ◦ κ modified in this way, (1.4.19) holds on W1 and all the functions involved
are from C∞(M). The latter ensures that we can apply Dm0 to both sides of this
equation. The second assertion of Proposition 1.4.5 ensures that after application
of Dm0 , both sides are still equal. Then, a brief calculation using the first assertion
of this proposition yields Dm0(f ) = Dm0(κ

i)∂κ
i,m0

(f ). Since this holds for all f ∈
C∞(M), the assertion follows. �

Remark 1.4.8

1. Let M be a smooth manifold, let m ∈ M and let (U,κ) be a local chart at m. As
a by-product of the proof of Proposition 1.4.7 we note that for a given derivation
Dm ∈ DmM , the tangent vector corresponding to Dm can be represented by the
smooth curve t �→ κ−1(κ(m) + tDm(κi)ei ).

2. The proof of Proposition 1.4.7 does not work in the case of finite k. Indeed, for
k = 1 there is no decomposition of f like (1.4.19) and for k ≥ 2, the functions
f̃ij ◦ κ are of class Ck−2, hence one cannot apply a derivation of Ck-functions
to them. As it turns out, this failure cannot be repaired. In fact, for finite k there
is a big difference between TmM and DmM , because DmM can be shown to
be infinite-dimensional in this case [229]. To summarize, in the case of finite k,
TmM is identified with a proper subspace of DmM . This subspace consists of
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the directional derivatives defined by Ck-curves through m and is spanned by
the derivations ∂κ

i,m, i = 1, . . . , n, associated with an arbitrary local chart (U,κ)

at m.

To conclude this section, we briefly discuss the dual vector space of TmM . Recall
that the dual vector space V ∗ of a vector space V over a field K consists of all K-
linear mappings ξ : V → K. With respect to the operations

(kξ1 + ξ2)(v) := kξ1(v) + ξ2(v), k ∈K, v ∈ V,

V ∗ is a vector space over K of the same dimension as V .

Definition 1.4.9 (Cotangent space) Let M be a Ck-manifold and let m ∈ M . The
dual vector space of TmM is called the cotangent space of M at m and is denoted
by T∗

mM . Its elements are called cotangent vectors or covectors in m.

Covectors will be denoted by αm,βm etc. Evaluation of covectors on tangent
vectors will often be written in the form of a pairing: αm(Xm) ≡ 〈αm,Xm〉. Every
f ∈ Ck(M) defines a covector

(df )m(Xm) := Xm(f ), (1.4.20)

which is called the differential of f at m. For example, for the coordinate functions
κi of a local chart (U,κ) at m we obtain

(
dκi

)
m
(Xm) = Xm

(
κi

) = Xκ,i
m . (1.4.21)

As a consequence, the set of differentials {(dκ1)m, . . . , (dκn)m} yields the basis in
T∗

mM which is dual to the basis {∂κ
1,m, . . . ∂κ

n,m} in TmM . In particular, every covector
can be written in the form

αm = ακ
i,m

(
dκi

)
m
, ακ

i,m = αm

(
∂κ
i,m

)
, (1.4.22)

and the system of real numbers (ακ
1,m, . . . , ακ

n,m), viewed as an element of Rn∗, is
called the local representative of αm with respect to the local chart (U,κ). As for
tangent vectors, we will usually omit the chart label and just write αi,m.

Let (V ,ρ) be a second local chart at m. In view of (1.4.21) and (1.4.22), we can
read off the transformation laws for the basis and for the coefficients from (1.4.9)
and (1.4.17), respectively:

dρi = [(
ρ ◦ κ−1)′(

κ(m)
)]i

j
dκj , α

ρ
i,m = [(

κ ◦ ρ−1)′(
ρ(m)

)]j
i
ακ

j,m. (1.4.23)

Exercises
1.4.1 Prove Lemma 1.4.1.
1.4.2 Prove Formula (1.4.5).
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1.4.3 Prove Formula (1.4.17).
1.4.4 Prove the assertion of Example 1.4.3/2.
1.4.5 For every point of one of the level sets of Exercise 1.2.5, determine the tangent

space as an affine subspace of R3.
1.4.6 For each of the classical groups of Example 1.2.6, determine the tangent space

at the unit element as a subspace of the corresponding matrix algebra Mn(K).
Show that all the subspaces so obtained are closed under the operation of tak-
ing the commutator of matrices. (Later on, we will see that these subspaces,
together with this operation, are realizations of the Lie algebras of the classi-
cal groups.)

1.4.7 Prove Formula (1.4.13).
1.4.8 Prove Remark 1.4.8/1.

1.5 Tangent Mapping

In this section, we generalize the notion of the derivative of a mapping from classical
calculus to the theory of manifolds. Thereafter, we extend the basic theorems of
classical calculus to manifolds.

In the sequel, assume k ≥ 1. Let M and N be Ck-manifolds and let Φ : M → N

be a Ck-mapping. Φ maps a Ck-curve γ in M to the curve Φ ◦ γ in N , which
is of class Ck again. If γ ∈ Km(M), then Φ ◦ γ ∈ KΦ(m)(N). If γ1 ∼ γ2, then
Φ ◦ γ1 ∼ Φ ◦ γ2, because for local charts (U,κ) on M at m and (V ,ρ) on N at
Φ(m) there holds

d

dt �0

(ρ ◦ Φ ◦ γ1)(t) = (
ρ ◦ Φ ◦ κ−1)′(

κ(m)
) · d

dt �0

(κ ◦ γ1)(t)

= (
ρ ◦ Φ ◦ κ−1)′(

κ(m)
) · d

dt �0

(κ ◦ γ2)(t)

= d

dt �0

(ρ ◦ Φ ◦ γ2)(t).

Thus, Φ induces a mapping of the tangent spaces.

Definition 1.5.1 (Tangent mapping at a point) Let M and N be Ck-manifolds, let
Φ ∈ Ck(M,N) and let m ∈ M . The mapping Φ ′

m : TmM → TΦ(m)N , defined by

Φ ′
m(Xm) := [Φ ◦ γ ],

where γ is some curve representing Xm, is called the tangent mapping of Φ at m.

The tangent mapping has the following properties.

Proposition 1.5.2 Let M and N be Ck-manifolds, let Φ ∈ Ck(M,N) and let
m ∈ M .
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1. Φ ′
m is linear.

2. (idM)′m = idTmM .
3. If P is another Ck-manifold and Ψ ∈ Ck(N,P ), then (Ψ ◦ Φ)′m = Ψ ′

Φ(m) ◦ Φ ′
m.

4. If Φ is a diffeomorphism, then Φ ′
m is bijective and one has (Φ ′

m)−1 = (Φ−1)′Φ(m).

Assertion 3 is referred to as the chain rule.

Proof 1. Choose local charts (U,κ) on M at m and (V ,ρ) on N at Φ(m) and con-
sider the isomorphisms Fκ

m : TmM → R
dimM and F

ρ
m : TΦ(m)N → R

dimN , defined
by (1.4.2). It suffices to show that the composition

Fρ
m ◦ Φ ′

m ◦ (
Fκ

m

)−1 :RdimM → R
dimN

is linear. To see this, let X ∈ R
dimM and let γ̃ denote the curve t �→ κ(m) + tX.

Then,

Fρ
m ◦ Φ ′

m ◦ (
Fκ

m

)−1
(X) = d

dt �0

(
ρ ◦ Φ ◦ κ−1 ◦ γ̃

)
(t) = (

ρ ◦ Φ ◦ κ−1)′(
κ(m)

)
X,

that is, F
ρ
m ◦ Φ ′

m ◦ (F κ
m)−1 is given by the derivative of the local representative of Φ

at κ(m).
2. This follows immediately from the definition.
3. Let Xm ∈ TmM be represented by γ ∈ Km(M). Then,

(Ψ ◦ Φ)′m(Xm) = [Ψ ◦ Φ ◦ γ ] = Ψ ′
Φ(m)

([Φ ◦ γ ]) = Ψ ′
Φ(m) ◦ Φ ′

m(Xm).

4. Assertions 2 and 3 imply (Φ−1)′Φ(m) ◦ Φ ′
m = (Φ−1 ◦ Φ)′m = (idM)′m = idTmM

and, analogously, Φ ′
m ◦ (Φ−1)′Φ(m) = idTΦ(m)N . �

The tangent mapping can be expressed on the level of derivations, too. Let Xm ∈
TmM be represented by γ ∈ Km(M). Then Φ ′

mXm is the derivation at Φ(m) on N

which is given by the directional derivative along the curve Φ ◦ γ :

(
Φ ′

mXm

)
(f ) = d

dt �0

(f ◦ Φ ◦ γ )(t) = Xm(f ◦ Φ), f ∈ Ck(N). (1.5.1)

The assignment of f ◦ Φ to f defines a mapping

Φ∗ : Ck(N) → Ck(M), Φ∗f := f ◦ Φ. (1.5.2)

In this notation, we have

Φ ′
mXm = Xm ◦ Φ∗. (1.5.3)
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Remark 1.5.3

1. The mapping Φ∗ is called the pull-back (of functions) by Φ . Later on, it will be
generalized to differential forms. Φ∗ is a homomorphism of algebras and satisfies

id∗
M = idCk(M), (Ψ ◦ Φ)∗ = Φ∗ ◦ Ψ ∗

for all Φ ∈ Ck(M,N) and Ψ ∈ Ck(N,P ). In the case of finite k, where TmM

is a proper subspace of DmM according to Remark 1.4.8/2, the right hand side
of (1.5.3) may be taken as the extension of the tangent mapping from TmM to
DmM .

2. From the proof of point 1 of Proposition 1.5.2 we conclude that for local charts
(U,κ) on M at m and (V ,ρ) on N at Φ(m) one has

(
Φ ′

mXm

)ρ,i

φ(m)
= (

ρ ◦ Φ ◦ κ−1)′(
κ(m)

)i

j
X

κ,j
m . (1.5.4)

That is, locally the tangent mapping of Φ is given by the derivative (matrix of
partial derivatives) of the local representative Φκ,ρ = ρ ◦ Φ ◦ κ−1 at κ(m).

Example 1.5.4 Let M and N be open subsets of the finite-dimensional real vector
spaces V and W , respectively. Let Φ ∈ Ck(M,N) and v ∈ M . We determine the
tangent mapping Φ ′

v using the natural identifications of TvM with V and of TΦ(v)N

with W , cf. Example 1.4.3/1. Since u ∈ V corresponds to the tangent vector Xv ∈
TmM , represented by the curve t �→ γ (t) := v + tu, it is mapped by Φ ′

v as follows:

u �→ Φ ′
v[γ ] = [Φ ◦ γ ] = d

dt �0

Φ(v + tu) = Φ ′(v) · u,

where Φ ′(v) denotes the ordinary derivative of mappings between open subsets of
finite-dimensional real vector spaces. This shows that the notion of tangent mapping
generalizes the notion of derivative of calculus in R

n.

Example 1.5.5 Let M be a Ck-manifold, let m ∈ M and let f ∈ Ck(M). We calcu-
late the tangent mapping f ′

m : TmM → Tf (m)R under the natural identification of
Tf (m)R with R, see Example 1.4.3/1. Let Xm ∈ TmM be represented by the curve
γ . Then,

f ′
m(Xm) = [f ◦ γ ] = d

dt �0

(f ◦ γ )(t) = Xm(f ) = (df )m(Xm),

see (1.4.20). Hence, the tangent mapping f ′
m is given by the differential (df )m.

Example 1.5.6 This example explains the concept of a tangent vector of a curve.
Let M be a Ck-manifold, let I ⊂ R be an open interval, let γ : I → M be a Ck-
curve and let t ∈ I . The tangent vector of I at t represented by the curve s �→ t + s
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corresponds to the derivation f �→ d
dt �t

f (t). Therefore, it will be denoted by d
dt �t

.
The tangent vector γ̇ (t) of the curve γ at t is defined by

γ̇ (t) := γ ′
t

(
d

dt �t

)
.

It is represented by the curve s �→ γ (t + s). On the level of derivations, γ̇ (t) corre-
sponds to

γ̇ (t)(f ) = d

dt �t

(f ◦ γ ).

Let us determine the local representative of γ̇ (t) with respect to the identical chart
on I and a local chart (U,κ) on M . Since the local representative of the unit tangent
vector at t is given by 1, (1.5.4) yields

(
γ̇ (t)

)κ

γ (t)
= (κ ◦ γ )′(t) · 1 = d

ds �t

(κ ◦ γ )(s). (1.5.5)

Thus, the local representative of γ̇ (t) is given by the tangent vector of the curve
κ ◦ γ in R

n.

We now carry over the Inverse Function Theorem, the Implicit Function Theorem
and the Constant Rank Theorem of calculus in R

n to manifolds.

Theorem 1.5.7 (Inverse Mapping Theorem) Let M and N be Ck-manifolds, let
Φ ∈ Ck(M,N) and let m ∈ M . If the tangent mapping Φ ′

m : TmM → TΦ(m)N is
bijective, there exist open neighbourhoods U of m in M and V of Φ(m) in N such
that Φ restricts to a diffeomorphism of class Ck from U onto V .

Proof Choose local charts (U,κ) on M at m and (V ,ρ) on N at Φ(m). Consider
the local representative Φρ,κ = ρ ◦ Φ ◦ κ−1. By the chain rule,

(Φρ,κ)′κ(m) = ρ′
Φ(m) ◦ Φ ′

m ◦ (
κ−1)′

κ(m)
.

By assertion 4 of Proposition 1.5.2, ρ′
Φ(m) and (κ−1)′κ(m) are bijective. Hence, due

to the assumption, (Φρ,κ )′κ(m) is bijective. Then, the Inverse Function Theorem of
classical calculus implies that U and V can be shrunk so that Φρ,κ restricts to a
diffeomorphism from κ(U) onto ρ(V ). Then, Φ(U) = V and the restricted mapping
Φ̃ : U → V is a diffeomorphism. �

Corollary 1.5.8 Let M and N be Ck-manifolds and let Φ ∈ Ck(M,N). If Φ is
bijective and Φ ′

m is bijective for all m ∈ M , then Φ is a diffeomorphism of class Ck .

Proof Since Φ is bijective, it has an inverse Φ−1 : N → M . Since Φ ′
m is bijective

for all m ∈ M , Theorem 1.5.7 says, in particular, that every point of N has a neigh-
bourhood on which Φ−1 is differentiable of class Ck . This yields the assertion. �
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Remark 1.5.9 In Corollary 1.5.8 it suffices to assume that Φ ′
m is injective for all

m ∈ M . This is due to the fact that bijectivity and differentiability of Φ , together
with the property of manifolds to be second countable, imply that M and N have
the same dimension, see Exercise 6 of Chap. 1 in [302] for instructions on a proof.

Theorem 1.5.10 (Implicit Mapping Theorem) Let M1, M2 and N be Ck-manifolds
and let Φ ∈ Ck(M1 ×M2,N). Let (m01,m02) ∈ M1 ×M2 and p = Φ(m01,m02). If
the tangent mapping at m02 of the induced mapping

Φm01 : M2 → N, Φm01(m2) := Φ(m01,m2)

is bijective, there exist open neighbourhoods Ui of m0i in Mi and a Ck-mapping
Ψ : U1 → U2 such that for all (m1,m2) ∈ U1 × U2 there holds Φ(m1,m2) = p iff
m2 = Ψ (m1).

Proof Choose local charts at m01, m02 and p and apply the Implicit Function The-
orem of calculus in R

n to the corresponding local representative of Φ . The details
are left to the reader (Exercise 1.5.2). �

Theorem 1.5.11 (Constant Rank Theorem) Let M and N be Ck-manifolds, let
Φ ∈ Ck(M,N) and let m0 ∈ M . If the linear mapping Φ ′

m : TmM → TΦ(m)N has
constant rank r for all m in a neighbourhood of m0 ∈ M , there exist local charts
(U,κ) on M at m0 and (V ,ρ) on N at Φ(m0) such that the local representative
Φρ,κ coincides with the restriction to U ∩ Φ−1(V ) of the mapping

R
r ×R

dimM−r � (x,y) �→ (x,0) ∈R
r ×R

dimN−r .

Proof Choose local charts (U,κ) on M at m0 and (V ,ρ) on N at Φ(m0), apply
the ordinary Constant Rank Theorem of calculus in R

n to the local representative
Φρ,κ and redefine (U,κ) and (V ,ρ) accordingly. The details are left to the reader
(Exercise 1.5.2). �

According to the Inverse Mapping Theorem, bijectivity of the tangent mapping
has important consequences for the local behaviour of the mapping itself. By weak-
ening the requirement of bijectivity to injectivity or surjectivity, one arrives at the
notions of immersion and submersion.

Definition 1.5.12 (Immersion and submersion) Let M and N be Ck-manifolds, let
Φ ∈ Ck(M,N) and let m ∈ M . Φ is called an immersion at m if Φ ′

m is injective. It is
called a submersion at m if Φ ′

m is surjective. It is called an immersion (submersion)
if it is an immersion (submersion) at every m ∈ M .

Equivalent characterizations are

Φ is an immersion at m iff rankΦ ′
m = dimM iff kerΦ ′

m = 0,

Φ is a submersion at m iff rankΦ ′
m = dimN iff imΦ ′

m = TΦ(m)N,
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where rankΦ ′
m denotes the rank of the linear mapping Φ ′

m. To be an immersion or
a submersion is a local property, whereas to be injective or surjective is a global
property. Therefore, an immersion need not be injective and a submersion need not
be surjective. Conversely, if Φ is injective it need not be an immersion and if it is
surjective it need not be a submersion.

Example 1.5.13 In the examples to follow, the tangent mapping is given by the
ordinary derivative of mappings of Rn, see Example 1.5.4.

1. Let Φ : R → R
2, Φ(x) := (cos(x), sin(x)). Since Φ ′

x = (− sin(x), cos(x)) �= 0
for all x ∈R, Φ is an immersion. It is not injective though.

2. Let Φ :R → R, Φ(x) := ex . Since Φ ′
x = ex �= 0 for all x ∈R, Φ is a submersion.

It is not surjective though.
3. The mapping Φ : R → R, defined by Φ(x) := x3, is injective and surjective. The

tangent mapping is Φ ′
x = 3x2. Since it is neither injective nor surjective at x = 0,

Φ is neither an immersion nor a submersion.

Remark 1.5.14 Let M , N and P be Ck-manifolds and let Φ ∈ Ck(M,N) and
Ψ ∈ Ck(N,P ). By means of the chain rule one can show the following.

1. If Φ and Ψ are immersions (submersions), Ψ ◦Φ is an immersion (submersion).
2. If Ψ ◦ Φ is an immersion, so is Φ . If it is a submersion, so is Ψ .

These assertions hold also pointwise.

Proposition 1.5.15 Let M and N be Ck-manifolds and let Φ ∈ Ck(M,N). The set
of points of M at which Φ is an immersion (submersion) is open in M .

Proof For a natural number r , define Mr := {m ∈ M : rankΦ ′
m ≥ r}. Since for all

m ∈ M there holds rankΦ ′
m ≤ dimM , the set of points at which Φ is an immersion

coincides with MdimM . Analogously, since for all m ∈ M one has rankΦ ′
m ≤ dimN ,

the set of points at which Φ is a submersion coincides with MdimN . Therefore, it suf-
fices to show that Mr is open in M for all natural numbers r . Let m0 ∈ Mr . Choose
local charts (U,κ) on M at m0 and (V ,ρ) on N at Φ(m0) such that Φ(U) ⊂ V .
Then, rankΦ ′

m = rank(ρ ◦ Φ ◦ κ−1)′(κ(m)) for all m ∈ U . Now,

rank
(
ρ ◦ Φ ◦ κ−1)′(

κ(m0)
) ≥ r

is equivalent to the existence of a minor Dr : L(RdimM,RdimN) → R of rank r

satisfying Dr((ρ ◦ Φ ◦ κ−1)′(κ(m0))) �= 0. Since the mapping

x �→ Dr

((
ρ ◦ Φ ◦ κ−1)′

(x)
)

is continuous, there exists a neighbourhood Ũ of κ(m0) such that

Dr

((
ρ ◦ Φ ◦ κ−1)′

(x)
) �= 0
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for all x ∈ Ũ . Then, κ−1(Ũ ) is a neighbourhood of m0 in M and rankΦ ′
m ≥ r for

all m ∈ κ−1(Ũ). �

Remark 1.5.16 (Basic properties of submersions) In the following, proofs are left
to the reader (Exercise 1.5.4). According to the Constant Rank Theorem 1.5.11,
locally, submersions look like the natural projection to a factor of a direct product.
This has the following consequences.

1. Submersions are open mappings.
2. Submersions admit local sections. This means the following. Let Φ : M → N be

a submersion of class Ck . For every p ∈ N , there exists an open neighbourhood
U and a Ck-mapping s : U → M such that Φ ◦ s = idU . The mapping s is called
a local section of Φ at p.

The existence of local sections implies, in turn, the following.

3. Let Φ : M → N be a surjective submersion of class Ck and let Ψ : M → P a
Ck-mapping. If there exists a mapping Ψ̃ : N → P such that Ψ̃ ◦ Φ = Ψ , then
this mapping is unique and of class Ck .

4. Let M be a Ck-manifold, N a set and Φ : M → N a surjective mapping. If N

admits a Ck-structure such that Φ is a submersion, this structure is unique.

Next, we generalize the notions of regular and critical point and regular and crit-
ical value to differentiable mappings between manifolds and state Sard’s Theorem.

Definition 1.5.17 Let M and N be Ck-manifolds and let Φ ∈ Ck(M,N). A point
m ∈ M is called regular if Φ is a submersion at m. Otherwise, m is called singular
or critical for Φ . A point p ∈ N is called a regular value of Φ if Φ−1(p) = ∅ or if
all points m ∈ Φ−1(p) are regular. Otherwise, p is called a singular or critical value
of Φ .

To state Sard’s Theorem for manifolds, one needs the notion of Lebesgue mea-
sure on a manifold. Such measures8 are constructed by using an atlas and a subor-
dinate partition of unity, see [73, §16.22.2].

Theorem 1.5.18 (Sard) Let M and N be Ck-manifolds where k > dimM − dimN

and let Φ ∈ Ck(M,N). The set of critical values of Φ has measure zero with respect
to the Lebesgue measures on N . The set of regular values is dense in N .

Proof See [130, Thm. 3.1.3], or [73, §16.23.1] for the C∞-case. �

Corollary 1.5.19 Let M and N be Ck-manifolds and let Φ : M → N be of class
Ck . If dimM < dimN , then Φ(M) is a set of measure zero in N and N \ Φ(M) is
dense.

8All such measures are equivalent, that is, they have the same sets of measure zero.
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Proof Due to dimM < dimN , Sard’s Theorem can be applied. For the same reason,
all elements of M are critical points for Φ and hence all elements of Φ(M) are
critical values of Φ . This yields the assertion. �

Exercises

1.5.1 Let M and N be Ck-manifolds and let Φ ∈ Ck(M,N). Show that if M is
connected and if Φ ′

m = 0 for all m ∈ M , Φ is constant.
1.5.2 Provide the details for the proofs of the Implicit Mapping Theorem 1.5.10 and

the Constant Rank Theorem 1.5.11.
1.5.3 Prove the statements of Remark 1.5.14.
1.5.4 Prove the properties of submersions stated in Remark 1.5.16.
1.5.5 Let M , N and P be Ck-manifolds and let Φ ∈ Ck(M,N) and Ψ ∈ Ck(N,P ).

Show the following.
(a) If Φ is a submersion and Ψ is an immersion, then Ψ ◦ Φ : M → P has

locally constant rank. (Ψ ◦ Φ is referred to as a subimmersion.)
(b) If, on the contrary, Φ is an immersion and Ψ is a submersion, then Ψ ◦Φ

need not have locally constant rank.
Hint. Consider the mappings Φ : R → R

3, Φ(t) := (t, t3, t3) and
Ψ : R3 →R

2, Ψ (x, y, z) := (y, z).

1.6 Submanifolds

Let k ≥ 1 and let N be a Ck-manifold.

Definition 1.6.1 (Submanifold) A Ck-submanifold of N is a pair (M,ϕ), where M

is a Ck-manifold and ϕ : M → N is an injective immersion of class Ck . Subman-
ifolds (M1, ϕ1) and (M2, ϕ2) are said to be equivalent if there exists a diffeomor-
phism ψ : M1 → M2 such that ϕ2 ◦ ψ = ϕ1.

Remark 1.6.2

1. Let (M,ϕ) be a Ck-submanifold of N and let ϕ̃ : M → ϕ(M) denote the in-
duced mapping. Since ϕ̃ is bijective, one can use it to carry over the topological
and differentiable structure from M to ϕ(M), thus making ϕ̃ into a diffeomor-
phism. Therefore, (ϕ(M), i) with the natural inclusion mapping i : ϕ(M) → N

is a submanifold of N equivalent to (M,ϕ). This shows that, up to equivalence,
every submanifold of N may be assumed to be given by a subset and the corre-
sponding natural inclusion mapping. We stress that the topology of this subset
(coming with its manifold structure) need not coincide with the relative topology
induced from N . Consequences of this fact will be discussed below.

2. The concept of equivalence carries over in an obvious way from submanifolds
to immersions. Two immersions ϕ1 : M1 → M and ϕ2 : M2 → M are said to be
equivalent if there exists a diffeomorphism ψ : M1 → M2 such that ϕ2 ◦ψ = ϕ1.



36 1 Differentiable Manifolds

Fig. 1.6 The figure eight submanifolds γ+ (left) and γ− (middle) and the figure eight immersion
(right) of Example 1.6.6/2. The arrows mean that the curves approach themselves without touching

Let us start with a couple of examples.

Example 1.6.3 (Open subsets) Let N be a Ck-manifold, let M be an open subset
of N with the induced smooth structure and let ϕ : M → N be the natural inclusion
mapping. For all m ∈ M , TmM = TmN and ϕ′

m is the identical mapping. Hence, ϕ

is an immersion and (M,ϕ) is a Ck-submanifold.

Example 1.6.4 (Level sets) Let V and W be finite-dimensional real vector spaces
and let M be the level set of a regular value of a function f : V → W of class Ck . Let
ι : M → V denote the natural inclusion mapping. Then, (M, ι) is a Ck-submanifold
of V . Indeed, according to the Level Set Theorem 1.2.1, M is a Ck-manifold. To
see that ι is of class Ck , choose a basis in V to identify V with R

n and recall the
construction of local charts on M in the proof of this theorem. The local represen-
tative of ι with respect to such a chart is given by the mapping which in this proof
is denoted by λ. By the Implicit Function Theorem, this mapping is of class Ck . Fi-
nally, for every v ∈ M , under the natural identifications of TvM with kerf ′(v) and
of TvV with V , see Example 1.4.3/1, ι′v is given by the natural inclusion mapping
of the subspace kerf ′(v) of V and is thus injective.

Example 1.6.5 (Graphs) Let M = R, N = R
2 and let f : R → R be a function

of class Ck . Define ϕ(x) := (x, f (x)), x ∈ R. The image of ϕ is the graph of the
function f . By construction, ϕ is of class Ck and injective. The tangent mapping is
ϕ′

x = (1, f ′(x)); it is injective for all x ∈R. Hence, (R, ϕ) is a submanifold of class
Ck of R2.

Example 1.6.6 (Curves) More generally, let M = I ⊂ R be an open interval and let
γ : I → N be a curve of class Ck . If γ̇ (t) �= 0 for all t ∈ I , γ is an immersion. If
γ is also injective, that is, if the curve γ does not intersect itself, then (I, γ ) is a
submanifold of class Ck of N . This holds, in particular, for curves in N = R

2 of the
form γ (t) = (t, f (t)), where f : R → R is a Ck-function (Example 1.6.5). We list
three typical examples of curves which are submanifolds.



1.6 Submanifolds 37

Fig. 1.7 The curves 4–6 of Example 1.6.6. The arrows in 4 mean that the curve approaches the
vertical axis without touching

1. Let I =R, N =R
2 and γ (t) = (t,0). The image of γ is the x-axis.

2. Let I = (0,1), N = R
2 and γ±(t) = (± sin(4πt), sin(2πt)). Both curves have

the same image as the corresponding curves with I = R, which are just immer-
sions and not submanifolds. The image is a closed subset of R2 known as the
figure eight, see Fig. 1.6. Correspondingly, submanifolds or immersions with
that image will be referred to as a figure eight submanifold or immersion, re-
spectively.

3. Let I = R, N = T2 = S1 × S1, realized as the subset {(z,w) ∈ C
2 : |z|2 =

|w|2 = 1}. For (z,w) ∈ T2 and ϑ ∈R, let

γ(z,w),ϑ (t) = (
ze2π it ,we2π iϑt

)
.

This is an immersion. It is injective and hence defines a submanifold iff ϑ is irra-
tional. In this case, it is known that the image γ (R) is dense in T2. Let us remark
that the curves γ(z,w),ϑ with ϑ irrational are usually referred to as the orbits of
the irrational torus flow. The notion of flow will be introduced in Chap. 3.

For illustration, we also list three curves which are not submanifolds, see Fig. 1.7.
Let N =R

2 and I = (−1,1).

4. The curve γ (t) = (sin(2π(t + 1)), cos(π(t + 1))) is an immersion but intersects
itself, hence it is not injective.9

5. The curve γ (t) = (t, |t |) is not differentiable at 0.
6. The curve γ (t) = (t3, t2) is not an immersion at 0.

Next, we prove that every submanifold admits an atlas whose charts are induced
from charts of the ambient manifold.

Proposition 1.6.7 (Charts adapted to a submanifold) Let (M,ϕ) be a Ck-submani-
fold of N . For every m ∈ M there exists an open neighbourhood U of m in M and a
local chart (V ,ρ) on N such that

9The image of this curve is not a figure eight, because it is missing the point (0,1).
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1. ϕ(U) ⊂ V ,
2. ρ(ϕ(U)) is an open subset of (RdimM × {0}) ⊂ R

dimN ,
3. the chart (U,ρ ◦ ϕ�U) induced on M is compatible with the Ck-structure of M .

Proof Let r = dimM and n = dimN . The Constant Rank Theorem 1.5.11 yields
local charts (U,κ) on M at m and (V ,ρ) on N at ϕ(m) such that

ρ ◦ ϕ ◦ κ−1(x1, . . . , xn) = (x1, . . . , xr ,0, . . . ,0), (x1, . . . , xn) ∈ κ(U).

Since ρ(ϕ(U)) is an open subset of the subspace R
r and ρ ◦ ϕ�U is a homeomor-

phism onto its image, (U,ρ ◦ϕ�U) is a local chart on M . Let (W,σ) be a local chart
of the Ck-structure on M . Since the transition mapping between (U,ρ ◦ ϕ�U) and
(W,σ) is given by the local representative of ϕ with respect to the charts (W,σ)

and (V ,ρ), the charts (U,ρ ◦ ϕ�U) and (W,σ) are compatible. �

Motivated by the observations made in Remark 1.6.2/1, we continue with in-
troducing two special classes of submanifolds. Let (M,ϕ) be a submanifold of N .
Since ϕ is continuous, the topology induced on ϕ(M) by means of the induced bi-
jection ϕ̃ : M → ϕ(M) is at least as fine as the relative topology induced from N .
It may be finer, though, see Examples 1.6.12/3 and 1.6.12/5 below. The first class
of submanifolds to be introduced is characterized by the property that these two
topologies coincide. A necessary and sufficient condition for this is that ϕ be open
onto its image.10

Definition 1.6.8 (Embedded submanifold) A Ck-submanifold (M,ϕ) of N is called
embedded if ϕ is open onto its image.

The second class of submanifolds is characterized by a property related to map-
pings. Let (M,ϕ) be a submanifold of N and let P be another manifold. For a
Ck-mapping χ : N → P , we define χ�M : M → P by

χ�M := χ ◦ ϕ,

and for a Ck-mapping ψ : P → N with ψ(P ) ⊂ ϕ(M), we define ψ�M : P → M

by

ϕ ◦ ψ�M := ψ.

By a slight abuse of terminology, we refer to χ�M as the restriction of χ in do-
main to M and to ψ�M as the restriction of ψ in range to M . Obviously, χ�M is a
Ck-mapping again. For ψ�M this need not hold, because if the topology on ϕ(M)

induced from M is finer than the relative topology induced from N , ψ�M need not
be continuous; see Example 1.6.12/5.

10By definition, this means that the induced mapping ϕ̃ is open with respect to the relative topology.
In this case, ϕ is called an embedding.
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Definition 1.6.9 (Initial submanifold) A Ck-submanifold (M,ϕ) of N is called ini-
tial11 if for any Ck-manifold P and any Ck-mapping ψ : P → N which satisfies
ψ(P ) ⊂ ϕ(M), the restriction in range ψ�M : P → M is continuous.

Since for a mapping between topological spaces, the property of being contin-
uous is preserved under arbitrary restrictions to subsets with the relative topology,
every embedded submanifold is initial.

Proposition 1.6.10 (Restriction in range) Let N , P be Ck-manifolds, let (M,ϕ) be
a Ck-submanifold of N and let ψ : P → N be a Ck-mapping with ψ(P ) ⊂ ϕ(M).
The restriction in range ψ�M : P → M is of class Ck iff it is continuous.

Proof Denote dimM = k and dimN = l. Continuity of ψ�M is of course necessary
for differentiability. To see that it is also sufficient, it is enough to show that it implies
that ψ�M is of class Ck in a neighbourhood of an arbitrary point p ∈ P . According
to Proposition 1.6.7, there exists an open neighbourhood U of ψ�M(p) in M and a
local chart (V ,ρ) on N at ϕ(ψ�M(p)) = ψ(p) such that ρ ◦ ϕ�U takes values in the
subspace R

k × {0} of Rl and thus induces a chart (U,ρ ◦ ϕ�U) on M at ψ�M(p).
Since ψ�M is continuous, (ψ�M)−1(U) is open in P . Hence, there exists a local
chart (W,σ) on P at p such that ψ�M(W) ⊂ U . Due to ρ ◦ ϕ ◦ ψ�M ◦ σ−1 =
ρ ◦ ψ ◦ σ−1, the local representative of ψ�M with respect to the charts (W,σ) and
(U,ρ ◦ ϕ�U) coincides, up to the embedding R

k → R
l which is suppressed here,

with the local representative of ψ with respect to the charts (W,σ) and (V ,ρ). This
shows that ψ�M is of class Ck . �

Corollary 1.6.11 The restriction of a Ck-mapping in range to an initial Ck-
submanifold is of class Ck .

Example 1.6.12

1. Open subsets (Example 1.6.3), level sets of Ck-functions at regular values (Ex-
ample 1.6.4) and graphs of Ck-functions on R (Example 1.6.5) are embedded
submanifolds. In the first case, ϕ itself is open. In the second case, M is a subset
of Rn and is equipped with the relative topology, so that the natural inclusion
mapping is open onto its image by construction. In the third case, the image of
an open interval (a, b) under ϕ can be written as

ϕ
(
(a, b)

) = (
(a, b) ×R

) ∩ ϕ(M)

and is hence open in ϕ(M).
2. The statement about the graph of a Ck-function on R generalizes to arbitrary

Ck-mappings. Let M and N be Ck-manifolds and let ψ ∈ Ck(M,N). Define
ϕ : M → M × N by ϕ(m) := (m,ψ(m)). Then, (M,ϕ) is an embedded Ck-
submanifold of M × N . The proof is left to the reader (Exercise 1.6.1).

11Or, alternatively, weakly embedded.
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3. Let M =R, N = T2 and let ϕ = γ(z,w),ϑ be one of the curves of Example 1.6.6/3,
with ϑ irrational. The submanifold (M,ϕ) is initial but not embedded. That it
is not embedded is due to the fact that ϕ(M) is dense in N , because this im-
plies that the preimage under ϕ of the intersection of ϕ(M) with an arbitrary
open subset of N cannot be bounded. To see that these submanifolds are ini-
tial, let ψ : P → N be a Ck-mapping with ψ(P ) ⊂ ϕ(M) and let p ∈ P , t ∈ M

such that ψ(p) = ϕ(t). There exist an open interval I containing t and an open
subset U ⊂ N such that ϕ(I) is an arcwise connected component of the sub-
set ϕ(M) ∩ U of N with respect to the relative topology; and ϕ restricts to a
homeomorphism from I onto ϕ(I). Let Wp ⊂ P denote the arcwise connected
component of ψ−1(U) containing p. As a mapping to ϕ(M) with respect to
the relative topology, ψ is continuous and thus preserves arcwise connectedness.
Hence, ψ(Wp) ⊂ ϕ(I). Now let {pn} be a sequence in P converging to p. Since
Wp is an open neighbourhood of p in P , we may assume pn ∈ W for all n. Then,
ψ(pn) ∈ ϕ(I) for all n and

ϕ
(
ψ�M(pn)

) = ψ(pn) → ψ(p) = ϕ(t),

hence ψ�M(pn) → t . Since p was arbitrary, this shows that ψ�M is continuous.
4. More generally, every orbit of a Lie group action is an initial submanifold. It is

embedded if the action is proper, see Chap. 6.
5. Let (M,ϕ) be the figure eight submanifold of N = R

2 given by the curve γ+
of Example 1.6.6/2. (M,ϕ) is not initial, because for P = R and ψ = γ−, the
restriction in range ψ�M maps the convergent sequence { 1

n
} in P to a divergent

sequence in M .

Remark 1.6.13

1. Let (M,ϕ) be a Ck-submanifold of N . Proposition 1.6.7 shows that for any m ∈
M there exists an open neighbourhood U of m in M such that (U,ϕ�U) is an
embedded Ck-submanifold of N . That is, every submanifold (M,ϕ) is locally
embedded, where locally refers to the topology of M . More generally, one can
show that for every compact subset A of M there exists an open neighbourhood
U of A in M such that (U,ϕ�U) is an embedded Ck-submanifold of N ; see
Exercise 1.6.2 for instructions on a proof.

2. A compact Ck-submanifold is always embedded. To see this, consider the in-
duced mapping ϕ̃ : M → ϕ(M), where ϕ(M) carries the relative topology in-
duced from N . Since ϕ̃ is a bijection, it is open iff it is closed. We show the
latter. Let A ⊂ M be closed. Since closed subsets of compact spaces are com-
pact, A is compact. Since compactness is preserved under continuous mappings,
ϕ(A) is compact. Since compact subsets of Hausdorff spaces are closed, ϕ(A) is
closed in ϕ(M).

3. The following criterion is simple yet useful. Let M be a Ck-manifold and
let ϕ ∈ Ck(M,N). (M,ϕ) is an embedded Ck-submanifold of N iff for ev-
ery m ∈ M there exists an open neighbourhood V of ϕ(m) in N such that
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(ϕ−1(V ),ϕ�ϕ−1(V )) is an embedded Ck-submanifold of V or of N . The state-
ment remains true if embedded is replaced by initial. The proof is left to the
reader (Exercise 1.6.3).

4. The property of being initial or embedded is stable with respect to taking preim-
ages of submanifolds under so-called transversal mappings, see Sect. 1.8.

5. Initial Ck-submanifolds (M1, ϕ1) and (M2, ϕ2) of N are equivalent iff ϕ1(M1) =
ϕ2(M2) as subsets of N . In particular, if a subset of N admits a differentiable
structure which makes it into an initial submanifold, this structure is unique.
To see this, it suffices to show that ϕ1(M1) = ϕ2(M2) implies equivalence. Let
ψ : M1 → M2 be the restriction in range of ϕ1 to the submanifold (M2, ϕ2).
Then, ϕ1 = ϕ2 ◦ ψ . The restriction in range of ϕ2 to the submanifold (M1, ϕ1)

yields ψ−1. Since both (M1, ϕ1) and (M2, ϕ2) are initial, ψ is a diffeomorphism.
6. In contrast to the case of initial submanifolds, in the general case, one and the

same subset may be the image of non-equivalent submanifolds. For example,
let N = R

2 and let M be given by the figure eight, see Example 1.6.6/2. By
viewing M as the image of R under the curves γ+ or γ−, we obtain two smooth
structures on M , denoted by M±. Let j : M → N denote the natural inclusion
mapping. Both (M+, j) and (M−, j) are smooth submanifolds of R2. While the
manifolds M+ and M− are diffeomorphic, because they are both diffeomorphic
to R, the submanifolds (M+, j) and (M−, j) of R2 are not equivalent, because
the only mapping ψ : M+ → M− satisfying j = j ◦ ψ is the identical mapping
M+ → M− which however is not continuous.

Proposition 1.6.14 Let M , N and P be Ck-manifolds.

1. Let (M,ϕ) be a Ck-submanifold of N and let (N,ψ) be a Ck-submanifold of
P . Then, (M,ψ�M) is a Ck-submanifold of P . If (M,ϕ) and (N,ψ) are initial
(embedded), so is (M,ψ�M).

2. Let (M,ϕ) and (P,ψ) be Ck-submanifolds of N such that ψ(P ) ⊂ ϕ(M) and
assume that (M,ϕ) is initial. Then, (P,ψ�M) is a Ck-submanifold of M . If
(P,ψ) is initial (embedded), so is (P,ψ�M).

Proof 1. A composition of injective mappings is injective. A composition of immer-
sions is an immersion, see Remark 1.5.14. By definition of being initial, (M,ψ�M)

is initial if so are (M,ϕ) and (N,ψ). Due to the fact that a composition of mappings
which are open onto their images is open onto its image (Exercise 1.6.4), (M,ψ�M)

is embedded if so are (M,ϕ) and (N,ψ).
2. The restriction in range ψ�M is differentiable by definition of initial subman-

ifold. It is injective, because so is ψ . It is an immersion, because so is ψ ; see
Remark 1.5.14. Hence, (P,ψ�M) is a Ck-submanifold of M , indeed. Next, as-
sume that (P,ψ) is initial. Let Y be a Ck-manifold and let χ ∈ Ck(Y,M) such
that χ(Y ) ⊂ ψ�M(P ). For the restriction χ�P of χ in range to P there holds
ϕ ◦ χ = ψ ◦ χ�P . Since ϕ ◦ χ is of class Ck and since (P,ψ) is initial, χ�P is
of class Ck . Hence, (P,ψ�M) is initial. Finally, assume that (P,ψ) is embedded.
Then, ψ is open onto its image and we have to show that the same holds for ψ�M .
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Let A ⊂ P be open. Then, ψ(A) is open in ψ(P ), that is, ψ(A) = ψ(P ) ∩ B for
some open B ⊂ N . Thus,

ϕ−1(ψ(A)
) = ϕ−1(ψ(P ) ∩ B

) = ϕ−1(ψ(P )
) ∩ ϕ−1(B).

By definition of ψ�M , ϕ−1(ψ(A)) = ψ�M(A) and ϕ−1(ψ(P )) = ψ�M(P ). Since
ϕ−1(B) is open in M by continuity of ϕ, the above equality shows that ψ�M(A) is
open in ψ�M(P ). Hence, ψ�M is open onto its image, as asserted. �

Exercises

1.6.1 Show that the graph of a Ck-mapping ϕ : M → N is an embedded submani-
fold of M × N , cf. Example 1.6.12/2.

1.6.2 Prove the statement made in Remark 1.6.13/1 that for every compact subset
A of a Ck-submanifold (M,ϕ) of N there exists an open neighbourhood U

of A in M such that (U,ϕ�U) is an embedded Ck-submanifold of N .
Hint. Use local charts to show that A possesses an open neighbourhood U

of A in M with compact closure. By means of the argument which was used
in Remark 1.6.13/2 to prove that a compact submanifold is necessarily em-
bedded, show that the restriction of ϕ to the closure of U is open onto its
image.

1.6.3 Prove the criterion for the embedding property of Remark 1.6.13/3.
Hint. Show that a continuous mapping f : X → Y of topological spaces X,
Y is open onto its image if and only if for every y ∈ f (X) there exists a
neighbourhood V of y in Y such that the induced mapping f −1(V ) → V is
open onto its image.

1.6.4 Complete the proof of Proposition 1.6.14 by showing that the composition of
mappings which are open onto their images is open onto its image.

1.7 Subsets Admitting a Submanifold Structure

In this section we discuss the question how to characterize those subsets M of N

which are images of submanifolds, cf. Remark 1.6.2/1. This will be needed for the
Transversal Mapping Theorem in the next section and for the discussion of distribu-
tions and foliations in Sect. 3.5. The question under consideration may be rephrased
as follows. Let M ⊂ N and let ι : M → N denote the natural inclusion mapping.
Under which conditions does there exist a Ck-structure on M such that (M, ι) is
a submanifold (initial submanifold, embedded submanifold) of N? Here, by a Ck-
structure on M we mean both a topology on M and a maximal atlas whose charts are
local homeomorphisms with respect to this topology. Of course, if (M, ι) is embed-
ded, the underlying topology coincides with the relative topology induced from N .
Below we will derive existence criteria in terms of local charts on N , starting with
the general case and then turning to the initial and embedded cases.
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Proposition 1.7.1 Let N be a Ck-manifold and let M ⊂ N be a subset. Consider
the following condition.

(S) There exists l ∈ N and a countable covering {Mi} of M such that, for every i,
one can find a local chart (Vi, ρi) on N satisfying
(S1) Mi ⊂ Vi and ρi(Mi) is an open subset of the subspace Rl ×{0} of RdimN ,
(S2) for all i �= j , ρi(Mi ∩ Mj) is an open subset of Rl × {0}.

If condition (S) holds for some l ∈ N, the family of bijections {(Mi,ρi�Mi
)} induces

a Ck-structure of dimension l on M . With respect to this structure, (M, ι) is a Ck-
submanifold of N . Conversely, if there exists a Ck-structure of dimension l on M

such that (M, ι) is a Ck-submanifold of N , then (S) holds for this l and the family
{Mi} can be chosen so that the Ck-structure so induced on M coincides with the
original one.

Condition (S2) is necessary, because otherwise one could, for example, cover
the figure eight in R

2 by subsets M1 and M2 forming a figure S and a reversed S,
respectively. Then, there exist local charts on R

2 such that condition (S1) holds.
However, since M1 ∩M2 contains an isolated point (the origin), it cannot be mapped
to an open subset of R by any of these charts. Hence, the figure eight cannot become
a topological manifold this way.

Proof Assume that (S) holds. According to Remark 1.1.10, the family of bijections
{(Mi,ρi�Mi

)} defines a topology on M which is Hausdorff and second countable and
with respect to which the (Mi,ρi�Mi

) are local charts of dimension l on M . Here, by
abuse of notation, we view ρi�Mi

as a mapping to R
l ×{0}. The transition mappings

between two such local charts on M are obtained by restriction of the transition
mappings between the original local charts on N to subsets of the subspace Rl ×{0}
of R

dimN which are open by condition (S2). Hence, the transition mappings are
of class Ck and thus the charts (Mi,ρi�Mi

) define a Ck-structure of dimension l

on M . Since for every i, the local representative of ι with respect to the local charts
(Mi,ρi�Mi

) and (Vi, ρi) is given by restriction of the natural embedding R
l ×{0} →

R
dimN to an open subset of Rl × {0}, ι is a Ck-immersion. Thus, (M, ι) is a Ck-

submanifold.
The converse assertion is due to Proposition 1.6.7 and the fact that M contains a

countable dense set (because it is second countable). �

For initial submanifolds, following [211] we introduce the following notion. Let
N be a Ck-manifold. A piecewise Ck-curve in N is a continuous mapping [a, b] →
N for which there exist a < t1 < · · · < tr < b such that the restriction to (ti , ti+1) is
of class Ck for all i = 0, . . . , r , where t0 = a and tr+1 = b. A subset A ⊂ N is said
to be Ck-arcwise connected relative to N if any two points of A can be joined by a
piecewise Ck-curve in N which is contained in A. For points of A, the property of
being joinable by such a curve defines an equivalence relation in A. The equivalence
classes are called the Ck-arcwise connected components of A relative to N . Below
we will need the following evident facts.



44 1 Differentiable Manifolds

(a) Any subset of A that is Ck-arcwise connected relative to N is contained in a
Ck-arcwise connected component of A relative to N .

(b) If A is open in N , its Ck-arcwise connected components relative to N are open
in N .12

(c) If A ⊂ V for some local chart (V ,ρ) on N , then A is Ck-arcwise connected
relative to N iff ρ(A) is Ck-arcwise connected relative to R

dimN .

Proposition 1.7.2 Let N be a Ck-manifold and let M ⊂ N be a subset. Consider
the following condition.

(I) There exists l ∈ N and a countable covering {Mi} of M such that, for every i,
one can find a local chart (Vi, ρi) on N such that
(I1) Mi ⊂ Vi and ρi(Mi) is an open subset of the subspace R

l × {0} ⊂ R
dimN ,

(I2) Mi is a Ck-arcwise connected component of Vi ∩ M relative to N .

If condition (I) holds for some l ∈N, the family of bijections {(Mi,ρi�Mi
)} induces a

Ck-structure of dimension l on M . With respect to this structure, (M, ι) is an initial
Ck-submanifold of N . Conversely, if there exists a Ck-structure of dimension l on
M such that (M, ι) is an initial Ck-submanifold of N , then (I) holds for this l and
the Ck-structure so induced on M coincides with the original one.

Proof First, assume that (I) holds. The proof that (M, ι) is a submanifold of N is
analogous to that of Proposition 1.7.1, except for the fact that, here, we have to give
an argument that the domains ρi(Mi ∩ Mj) of the transition mappings between the
charts induced on M are open subsets of Rl ×{0}. The case where Mi ∩Mj is empty
is trivial. Thus, assume Mi ∩ Mj �= ∅. Let m0 ∈ Mi ∩ Mj . Let A denote the Ck-
arcwise connected component of Mi ∩Vj relative to N which contains m0. It is easy
to see that A ⊂ Mi ∩ Mj . Then, ρi(m0) ∈ ρi(A) ⊂ ρi(Mi ∩ Mj). Moreover, ρi(A)

is a Ck-arcwise connected component of the open subset ρi(Mi ∩ Vj ) of Rl × {0}
relative to R

dimN , hence relative to R
l ×{0}. Hence, ρi(A) itself is open in R

l ×{0}.
This shows that ρi(Mi ∩ Mj) is open in R

l × {0}, as asserted.
It remains to show that (M, ι) is initial. Let P be a Ck-manifold and let ψ ∈

Ck(P,N) be such that ψ(P ) ⊂ M . For every p ∈ P , there exists an i such that
ψ(p) ∈ Mi . Since ψ−1(Vi) is open, there exists a local chart (W,σ) on P at p

such that ψ(W) ⊂ Vi . Then, ψ(W) ⊂ Vi ∩ M . W can be chosen to be Ck-arcwise
connected relative to P (e.g. by choosing it so that σ(W) is convex). Then, ψ(W)

is Ck-arcwise connected relative to N , so that ψ(W) ⊂ Mi . It follows that the lo-
cal representative (ψ�M)σ,ρi�Mi

is given by the restriction in range of ψσ,ρi
to the

subspace R
l × {0}, hence it is of class Ck . Since the domain σ(W) of (ψ�M)σ,ρi�Mi

contains σ(p) and since p was arbitrary, it follows that ψ�M is of class Ck .
Now, assume that there exists a Ck-structure on M such that (M, ι) is an ini-

tial submanifold of N . Since M is second countable, there exists a countable dense

12In fact, they coincide with the connected components of A.
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family of points {mi} in M . For each i, Proposition 1.6.7 yields an open neigh-
bourhood Ui of mi in M and a local chart (Ṽi , ρ̃i) on N at m such that ρ̃i (Ui)

is an open subset of the subspace R
l × {0} ⊂ R

dimN . For ε > 0, let Bi,ε de-
note the open ε-ball in R

dimN about ρ̃i (mi). Choose εi so that Bi,εi
⊂ ρ̃i (Ṽi ) and

(Bi,εi
∩ (Rl × {0})) ⊂ ρ̃i (Ui). Define

Vi := ρ̃−1(Bi,εi
), ρi := ρ̃i�Vi

, Mi := ρ̃−1
i

(
Bi,εi

∩ (
R

l × {0})).

Since the subsets Mi are open in M and since the family of points {mi} is dense,
the family {Mi} covers M . By construction, it satisfies condition (I1). It remains to
check condition (I2). Since Mi is Ck-arcwise connected relative to N by construc-
tion, it remains to show that Mi contains all m ∈ Vi ∩ M for which there exists
a piecewise Ck-curve γ : [0,1] → N such that γ ([0,1]) ⊂ Vi ∩ M , γ (0) = mi

and γ (1) = m. Let such m and γ be given. Let 0 < t1 < · · · < tr < 1 be such
that γ�(ti ,ti+1) is of class Ck for all i = 0, . . . , r , where t0 = 0 and tr+1 = 1. Since
(M, ι) is initial, (γ�(ti ,ti+1))

�M is continuous for all i, hence γ �M is continuous.
Thus, if m /∈ Mi , since Mi is open in M , there must exist t ∈ [0,1] such that
γ (t) ∈ Mi \Mi , where Mi denotes the closure of Mi in M . Since ρ̃i maps Ui home-
omorphically onto ρ̃i (Ui), there holds ρ̃i (Mi) = Bi,εi

∩ (Rl × {0}). This implies
ρ̃i (γ (t)) ∈ (Rl ×{0}) \Bi,εi

and hence γ (t) /∈ Vi (contradiction). Thus, m ∈ Mi and
condition (I2) holds, indeed. Now, since the family of subsets Mi so constructed
satisfies (I1) and (I2), it induces a Ck-structure on M with respect to which (M, ι)

is an initial submanifold of M . According to Remark 1.6.13/5, this Ck-structure
coincides with the original one. �

In the case of an embedded submanifold, M already carries a topology, namely,
the relative topology induced from N .

Proposition 1.7.3 Let N be a Ck-manifold and let M ⊂ N be a subset. Assume that
M is equipped with the relative topology induced from N . Consider the following
condition.

(E) There exists l ∈N and a family of local charts {(Vi, ρi)} on N such that
(E1) M ⊂ ⋃

i Vi ,
(E2) for every i, ρi(Vi ∩ M) = ρi(Vi) ∩ (Rl × {0}).

If condition (E) holds for some l ∈ N, the local charts (Vi, ρi) induce local charts
(Vi ∩ M,ρi�Vi∩M) of dimension l on M . These charts establish a Ck-atlas and
hence a Ck-structure on M . With respect to this structure, (M, ι) is an embedded
Ck-submanifold of N . Conversely, if there exists a Ck-structure on M such that
(M, ι) is an embedded Ck-submanifold of N of dimension l, then (E) holds for this
l and the Ck-structure so induced on M coincides with the original one.
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Proof Assume that (E) holds. As a topological subspace of N , M is Haus-
dorff and second countable.13 For every i, the subset Vi ∩ M of M is open in
the relative topology. Being the restriction of a homeomorphism onto its image,
ρi�Vi∩M is a homeomorphism onto its image. Since by assumption the image is
ρi(Vi) ∩ (Rl × {0}) and is hence open in R

l × {0}, the pair (Vi ∩ M,ρi�Vi∩M) is a
local chart on M . By the same arguments as in the proof of Proposition 1.7.1, the
transition mappings are of class Ck and (M, ι) is a Ck-submanifold of N . Since,
by definition of the relative topology, ι is open onto its image. Thus, (M, ι) is an
embedded Ck-submanifold, as asserted.

For the converse assertion, let {Ui} be the family of open subsets of M and let
{(Vi, ρi)} be the family of local charts on N provided by Proposition 1.6.7. Since M

carries the relative topology, for every i, there exists an open subset Wi in N such
that Ui = M ∩Wi . By replacing Vi by Vi ∩Wi we obtain the desired family of local
charts of N . Since embedded submanifolds are initial, Remark 1.6.13/5 yields that
the Ck-structure on M induced by this family coincides with the original one. �

Remark 1.7.4 Conditions (S), (I) and (E) of Propositions 1.7.1, 1.7.2 and 1.7.3 can
be reformulated in terms of submanifolds rather than charts in various ways. The
following are particularly convenient. Since the proofs are straightforward, they are
left to the reader (Exercise 1.7.3).

Condition (S) of Proposition 1.7.1 can be replaced by

(S) There exists l ∈ N and a countable covering {Mi} of M such that, for every i,
the subset Mi carries a Ck-structure satisfying
(S1) (Mi, ι�Mi

) is an embedded Ck-submanifold of N of dimension l,
(S2) for all i, j , the intersection Mi ∩ Mj is open in Mi and Mj .

Condition (I) of Proposition 1.7.2 can be replaced by

(I) There exists l ∈ N and a countable family of open subsets {Vi} of N such that
(I1) M ⊂ ⋃

i Vi ,
(I2) for every i, Vi ∩ M admits a Ck-structure of dimension l with respect to

which it is an initial Ck-submanifold of N .

Condition (E) of Proposition 1.7.3 can be replaced by

(E) There exists l ∈N and a family of open subsets {Vi} of N such that
(E1) M ⊂ ⋃

i Vi ,
(E2) for every i, Vi ∩ M admits a Ck-structure of dimension l with respect to

which it is an embedded Ck-submanifold of N .

For later use, from Proposition 1.7.3 we extract

Corollary 1.7.5 Let N be a Ck-manifold and let M ⊂ N be an embedded Ck-
submanifold. For every m ∈ M there exists a local chart (V ,ρ) on N such that

13Since M already carries a topology, there is no need to require the family {(Vi , ρi)} to be count-
able.
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M ∩ V is the set of solutions of the equations ρi = 0, i = dimM + 1, . . . ,dimN ,
and (V ∩ M,(ρ1, . . . , ρdimM)�V ∩M) is a local chart on M at m. �

As an application of Proposition 1.7.3, one can prove (Exercise 1.7.4)

Proposition 1.7.6 (Level Set Theorem for mappings of locally constant rank) Let
N and P be Ck-manifolds, let ϕ ∈ Ck(N,P ) and let p ∈ P such that M := ϕ−1(p)

is nonempty. Assume that every m0 ∈ M has a neighbourhood in N where rankϕ′
m

is constant.14 Then, every connected component15 M0 of M is an embedded Ck-
submanifold of N of dimension dimN − rankϕ′

m0
, where m0 ∈ M0.

Finally, we note that the terminology concerning submanifolds used here is con-
sistent with e.g. [166] and [302]. It is common as well to take condition (E) of
Proposition 1.7.3 as the definition of submanifold (which hence corresponds to our
embedded submanifold) and to refer to our submanifolds as immersed or virtual
submanifolds, as is done for example in [73], [130], [180] and [232].

Exercises

1.7.1 Use Proposition 1.7.2 to show that the submanifold of T2 given by the curve
γ(z,w),ϑ of Example 1.6.6/3, with ϑ irrational, is initial.

1.7.2 Use Proposition 1.7.2 to show that the figure eight submanifolds of Exam-
ple 1.6.6/2 are not initial.

1.7.3 Prove that conditions (S), (I) and (E) of Propositions 1.7.1, 1.7.2 and 1.7.3
can be reformulated as given in Remark 1.7.4.

1.7.4 Use Proposition 1.7.3 to prove Proposition 1.7.6.

1.8 Transversality

The Level Set Theorem 1.2.1 states that the preimage of a regular value of a differ-
entiable mapping from an open subset of Rn to R

m is an embedded submanifold of
R

n. This has a generalization to differentiable mappings between manifolds and to
preimages of submanifolds rather than just points. In this context, the condition of
regularity is replaced by the condition of transversality.

Definition 1.8.1 (Transversality) Let N , P and Q be Ck-manifolds.

1. Ck-mappings ϕ : N → P and ψ : Q → P are transversal if for all y ∈ N and
q ∈ Q such that ϕ(y) = ψ(q) ≡ p there holds ϕ′

y(TyN)+ψ ′
q(TqQ) = TpP (the

sum need not be direct).

14In other words, ϕ is a subimmersion at every m0 ∈ M , cf. Exercise 1.5.5/(a).
15Since the connected components of M may have different dimensions, M as a whole may not be
a manifold. We leave it to the reader to provide examples.
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2. A Ck-mapping ϕ : N → P is transversal to a Ck-submanifold (Q,ψ) of P if ϕ

and ψ are transversal.
3. Ck-submanifolds (N,ϕ) and (Q,ψ) of P are transversal if ϕ and ψ are transver-

sal.

If the submanifolds (N,ϕ) and (Q,ψ) are given by subsets, the condition of
transversality is usually written in the form

TpN + TpQ = TpP, p ∈ N ∩ Q.

Theorem 1.8.2 (Transversal Mapping Theorem) Let N and P be Ck-manifolds, let
(Q,ϕ) be a Ck-submanifold of P and let ψ ∈ Ck(N,P ) be transversal to (Q,ϕ).
Assume that M := ψ−1(ϕ(Q)) is nonempty and let ι : M → N denote the inclusion
mapping.

1. There exists a Ck-structure on M such that (M, ι) is a Ck-submanifold of N of
dimension dimN − dimP + dimQ.16 For every m ∈ M ,

ι′m(TmM) = {
Xm ∈ TmN : ψ ′

m(Xm) ∈ ϕ′
q(TqQ)

}
,

where q ∈ Q such that ϕ(q) = ψ(m).
2. If (Q,ϕ) is initial, so is (M, ι).
3. If (Q,ϕ) is embedded, so is (M, ι).

Proof First, we use transversality to reduce the problem locally to the Level Set The-
orem 1.2.1. Then, in order to prove the assertions 1–3, we apply Propositions 1.7.1–
1.7.3. Denote n = dimN , r = dimP and s = dimQ. Write R

r = R
s × R

r−s and
let pr2 : Rr → R

r−s denote the projection onto the second factor. Choose a count-
able subset {mi : i ∈ I } of M which is dense with respect to the relative topology
induced from N . According to Proposition 1.6.7, for every i, there exists an open
subset Qi of Q and a local chart (Wi, σi) on P such that ψ(mi) ∈ ϕ(Qi) ⊂ Wi , the
image σi(ϕ(Qi)) is an open subset of the subspace Rs ×{0} ⊂ R

r and the local chart
(Qi, σi ◦ ϕ�Qi

) is compatible with the Ck-structure on Q. Given (Wi, σi), choose a
local chart (Vi, ρi) on N at mi such that ψ(Vi) ⊂ Wi and define

Mi := ψ−1(ϕ(Qi)
) ∩ Vi, ψi := pr2 ◦ ψσi,ρi

: ρi(Vi) → R
r−s .

Then, mi ∈ Mi and ρi(Mi) = ψ−1
i (0). We check that ψi is a submersion at x for

all x ∈ ρi(Mi): denote m := ρ−1
i (x) and let q ∈ Q be such that ϕ(q) = ψ(m). By

transversality,

R
s × {0} + (σi)

′
ψ(m) ◦ ψ ′

m(TmN) = (σi)
′
ψ(m)

(
ϕ′

q(TqQ) + ψ ′
m(TmN)

) = R
r

16That is, the codimension of M in N equals the codimension of Q in P .
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and hence

(ψi)
′
x
(
R

n
) = pr2

(
(σi)

′
ψ(m) ◦ ψ ′

m(TmN)
) = R

r−s ,

as asserted. Thus, the Level Set Theorem 1.2.1 implies that ρi(Mi) is an embedded
Ck-submanifold of ρi(Vi) of dimension n − r + s. Then, Mi is an embedded sub-
manifold of N of the same dimension and we can modify (Vi, ρi) (and hence Mi )
in such a way that

ρi(Mi) = ρi(Vi) ∩ (
R

n−r+s × {0}). (1.8.1)

1. In order that we can apply Proposition 1.7.1, it remains to check that for all
i1 �= i2, ρi1(Mi1 ∩Mi2) is open in R

n−r+s ×{0}. For that purpose, it suffices to show
that Mi1 ∩ Mi2 is open in Mi1 with respect to the relative topology induced from N .
Since ϕ is injective,

Mi1 ∩ Mi2 = ψ−1(ϕ(Qi1 ∩ Qi2)
) ∩ Vi1 ∩ Vi2 .

Since Qi1 ∩ Qi2 is open in Qi1 and since ϕ�Qi1
is an embedding, ϕ(Qi1 ∩ Qi2)

is open in ϕ(Qi1) with respect to the relative topology induced from P . Thus,
ϕ(Qi1 ∩ Qi2) = ϕ(Qi1) ∩ W for some open W ⊂ P and we obtain

Mi1 ∩ Mi2 = ψ−1(ϕ(Qi1)
) ∩ ψ−1(W) ∩ Vi1 ∩ Vi2 = Mi1 ∩ ψ−1(W) ∩ Vi2 ,

which is an open subset of Mi1 , indeed. Now, Proposition 1.7.1 yields the desired
Ck-structure on M . To determine the tangent spaces, let m ∈ Mi and x = ρi(m).
According to the Level Set Theorem 1.2.1, Tx(ρi(Mi)) = ker(ψi)

′
x. Hence,

TmMi = ker(pr2 ◦ σi ◦ ψ�Vi
)′m.

Since ker(pr2 ◦ σi)
′
ψ(m) = ϕ′

qTqQ, the assertion follows.
2. If (Q,ϕ) is initial, according to Proposition 1.7.2, the subsets Qi and Wi

can be chosen so that ϕ(Qi) is a Ck-arcwise connected component of Wi ∩ ϕ(Q)

relative to P . We show that, then, Mi is a Ck-arcwise connected component of
Vi ∩M relative to N . In view of Proposition 1.7.2, this yields the assertion. Thus, let
m ∈ Vi ∩M be such that there exists a piecewise Ck-curve γ in N which is contained
in Vi ∩ M and joins m to a point of Mi . We have to show that m ∈ Mi . Now, ψ ◦ γ

is a piecewise Ck-curve in P which is contained in ψ(Vi ∩ M) ⊂ Wi ∩ ϕ(Q) and
joins ψ(m) to a point in ψ(Mi) ⊂ ϕ(Qi). Since ϕ(Qi) is a Ck-arcwise connected
component of Wi ∩ϕ(Q) relative to P , it follows that ψ ◦γ lies in ϕ(Qi) and hence
γ lies in Vi ∩ ψ−1(ϕ(Qi)) = Mi . Thus, m ∈ Mi , as asserted.

3. If ϕ is an embedding, the subsets Qi and Wi can be chosen so that ϕ(Qi) =
ϕ(Q) ∩ Wi . This implies Mi = M ∩ Vi . Then, (1.8.1) and Proposition 1.7.3 yield
the assertion. �

Since single points are embedded submanifolds of dimension zero and a mapping
N → P is transversal to a point of P if and only if this point is a regular value,
Theorem 1.8.2 implies
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Corollary 1.8.3 (Level Set Theorem for manifolds) Let N and P be Ck-manifolds,
let ψ ∈ Ck(N,P ) and let c ∈ P be a regular value of ψ such that M := ψ−1(c) is
nonempty. Let ι : M → N denote the inclusion mapping. Then (M, ι) is an embed-
ded Ck-submanifold of N of dimension dimN − dimP and for every m ∈ M there
holds ι′m(TmM) = kerψ ′

m. �

Corollary 1.8.3 can also be proved directly by means of the Level Set Theo-
rem 1.2.1 for Rn and Proposition 1.7.3 in the formulation of Remark 1.7.4 (Exer-
cise 1.8.1).

Remark 1.8.4 Given a Ck-manifold N of dimension n and an embedded Ck-
submanifold (M,ϕ) of N of dimension l, there exists a Ck-mapping f : N →R

n−l

such that ϕ(M) = f −1(0). For the proof, without loss of generality, one may as-
sume that M ⊂ N and that ϕ is the natural inclusion mapping. According to Propo-
sition 1.7.3, there exists a family of local charts {(Vi, ρi) : i ∈ I } on N such that
the Vi cover M and ρi(M ∩ Vi) = ρi(Vi) ∩ R

r × {0}. Complement this family to
an atlas on N by adding local charts whose domains do not intersect M and whose
image does not intersect the subspace {0} × R

n−l . According to Proposition 1.3.7,
there exists a partition of unity {gj : j ∈ J } of class Ck subordinate to the open cov-
ering {Vi : i ∈ I } of N . Then, for each j , there is an i such that supp(gj ) ⊂ Vi . By
choosing one such i for each j and dropping all the other local charts we obtain a
new atlas whose local charts we denote by (Vj , ρj ). Define

fj : Vj →R
n−l , fj := ((

ρl+1
j

)2
, . . . ,

(
ρn

j

)2)
.

By extending fjgj by 0 to N one obtains a family of Ck-mappings f̃j : N →R
n−l .

Then, f := ∑
j∈J f̃j has the desired properties.

Corollary 1.8.5 (Intersection of transversal submanifolds) Let N be a Ck-manifold
and let (M1, ϕ1) and (M2, ϕ2) be transversal Ck-submanifolds of N . Let M :=
ϕ1(M1) ∩ ϕ2(M2) be nonempty and let ι : M → N denote the natural inclusion
mapping.

1. There exists a Ck-structure on M such that (M, ι) is a Ck-submanifold of N of
dimension dimM1 + dimM2 − dimN . For every m ∈ M ,

TmM = (
(ϕ1)

′
m1

(Tm1M1)
) ∩ (

(ϕ2)
′
m2

(Tm2M2)
)
,

where mi ∈ Mi such that m = ϕi(mi), i = 1,2.
2. If both (M1, ϕ1) and (M2, ϕ2) are initial, so is (M, ι).
3. If both (M1, ϕ1) and (M2, ϕ2) are embedded, so is (M, ι).

If (M1, ϕ1) and (M2, ϕ2) are given by subsets, one may write

M = M1 ∩ M2 and TmM = TmM1 ∩ TmM2,m ∈ M,
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where TmMi , i = 1,2, is viewed as a subspace of TmN , defined by the Ck-structure
on Mi .

Proof 1. Application of Theorem 1.8.2/1 to the mapping ϕ1 : M1 → N and the
submanifold (M2, ϕ2) of N yields a Ck-structure on M̃ := ϕ−1

1 (ϕ2(M2)) such that
M̃ , together with the natural inclusion mapping ι̃ : M̃ → M1, is a Ck-submanifold
of M1 of dimension dimM1 − dimN + dimM2. According to Proposition 1.6.14/1,
then (M̃,ϕ1 ◦ ι̃) is a Ck-submanifold of N . Since ϕ1 ◦ ι̃(M̃) = M , ϕ1 ◦ ι̃ induces
a bijection ϕ : M̃ → M . We use this bijection to transport the Ck-structure of M̃

to M . Then, ι = ϕ1 ◦ ι̃ ◦ ϕ−1 and ϕ−1 is a diffeomorphism, hence (M, ι) is a Ck-
submanifold of N of the same dimension as M̃ . To determine the tangent spaces, let
m ∈ M and mi ∈ Mi such that ϕi(mi) = m. Theorem 1.8.2/1 yields

ι̃ ′
m1

(Tm1M̃) = {
Xm1 ∈ Tm1M̃ : (ϕ1)

′
m1

(Xm1) ∈ (ϕ2)
′
m2

(Tm2M2)
}
.

Apply (ϕ1)
′
m to both sides of this equality and use ϕ′

m1
(Tm1M̃) = TmM to obtain

the assertion.
2. and 3. According to Theorem 1.8.2/2, since (M2, ϕ2) is initial, so is (M̃, ι̃).

Since (M1, ϕ1) is initial, Proposition 1.6.14/1 yields that (M̃,ϕ1 ◦ ι̃) is initial. Then,
so is (M, ι). A similar argument proves assertion 3. �

Exercises
1.8.1 Prove the Level Set Theorem for manifolds (Theorem 1.8.3) directly by

means of the Level Set Theorem for Rn (Theorem 1.2.1) and Proposition 1.7.3
in the formulation of Remark 1.7.4.





Chapter 2
Vector Bundles

Vector bundles constitute a special class of manifolds, which is of great importance
in physics. In particular, all sorts of tensor fields occurring in physical models may
be viewed in a coordinate-free manner as sections of certain vector bundles. We start
with the observation that the tangent spaces of a manifold combine in a natural way
into a bundle, which is called tangent bundle. Next, by taking its typical properties as
axioms, we arrive at the general notion of vector bundle. In Sect. 2.2, we discuss el-
ementary aspects of this notion, including the proof that—up to isomorphy—vector
bundles are completely determined by families of transition functions. In Sect. 2.3
we discuss sections and frames,1 and in Sect. 2.4 we present the tool kit for vec-
tor bundle operations. We will see that, given some vector bundles over the same
base manifold, by applying fibrewise the standard algebraic operations of taking the
dual vector space, of building the direct sum and of taking the tensor product, we
obtain a universal construction recipe for building new vector bundles. In Sect. 2.5,
by applying these operations to the tangent bundle of a manifold, we get the whole
variety of tensor bundles over this manifold. The remaining two sections contain fur-
ther operations, which will be frequently used in this book. In Sect. 2.6, we discuss
the notion of induced bundle and Sect. 2.7 is devoted to subbundles and quotient
bundles. There is a variety of special cases occurring in applications: regular distri-
butions, kernel and image bundles, annihilators, normal and conormal bundles.

2.1 The Tangent Bundle

Let M be a Ck-manifold, let I ⊂ R be an open interval and let γ : I → M be a
Ck-curve. According to Example 1.5.6, for every t ∈ I , the tangent vector γ̇ (t) of γ

at t is an element of the tangent space Tγ (t)M . Hence, while t runs through I , γ̇ (t)

runs through the tangent spaces along γ , see Fig. 2.1.

1Here, as well as in Sect. 2.5, in order to keep in touch with the physics literature, the local de-
scription is presented in some detail. In particular, we discuss transformation properties. This way,
we make contact with classical tensor analysis.
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Fig. 2.1 Tangent vectors along a curve γ in M

To follow the tangent vectors along γ it is convenient to consider the totality of
all tangent spaces of M . This leads to the notion of tangent bundle of a manifold M ,
denoted by TM . As a set, TM is given by the disjoint union of the tangent spaces at
all points of M , that is,

TM :=
⊔

m∈M

TmM. (2.1.1)

Let π : TM → M be the canonical projection which assigns to an element of TmM

the point m for every m ∈ M . TM can be equipped with a manifold structure as
follows. Denote n = dimM . Choose a countable atlas {(Uα, κα) : α ∈ A} on M and
define the mappings

κT
α : π−1(Uα) → R

n ×R
n, κT

α (Xm) := (
κα(m),Xκα

m

)
. (2.1.2)

The image of κT
α is given by κα(Uα) × R

n and is hence open in R
n × R

n. Using
(1.4.9), for the transition mappings we obtain

κT
β ◦ (

κT
α

)−1
(x,X) = (

κβ ◦ κ−1
α (x),

(
κβ ◦ κ−1

α

)′
(x) · X

)
, (2.1.3)

where (x,X) ∈ κα(Uα ∩ Uβ) × R
n. Since κα ◦ κ−1

β is of class Ck , the transition

mappings are of class Ck−1. Finally, it is obvious that the subsets π−1(Uα) cover
TM . Thus, according to Remark 1.1.10, the family of bijections {(π−1(Uα), κT

α ) :
α ∈ A} defines a differentiable structure of class Ck−1 and dimension 2n on TM ,
which has the following properties. First, due to (2.1.3), it is independent of the
choice of an atlas on M used to construct it. Second, the local representative of the
projection π : TM → M with respect to the charts κT

α and κα is given by the natural
projection pr1 to the first factor in κα(Uα) ×R

n. Hence, π is a submersion of class
Ck−1. Third, the charts κT

α identify the open submanifolds π−1(Uα) of TM with
direct products of an open subset of M with a copy of Rn. Under this identification,
both the natural projection and the vector space structure on every tangent space
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TmM , m ∈ Uα , is preserved. To formalize this, for every α ∈ A, define a mapping

χα : π−1(Uα) → Uα ×R
n, χα(Xm) := (

m,Xκα
m

)
. (2.1.4)

Then κT
α = (κα × idRn)◦χα . In particular, the local representative of χα with respect

to the global charts κT
α on π−1(Uα) and κα × idRn on Uα × R

n is given by the
identical mapping of Rn × R

n, restricted to the open subset κα(Uα) × R
n. Hence,

χα is a Ck−1-diffeomorphism. Moreover, pr1 ◦ χα = π�π−1(Uα) and the restrictions
χα�TmM are vector space isomorphisms for all m ∈ Uα . Let us summarize.

Proposition 2.1.1 Let M be a Ck-manifold of dimension n and let TM be defined
by (2.1.1). There exists a unique Ck−1-structure on TM such that for every local
chart (U,κ) on M , the mapping κT : π−1(U) → R

n × R
n, defined by (2.1.2), is a

local chart on TM . With respect to this structure, TM has dimension 2n and the
following holds.

1. The natural projection π : TM → M is a surjective submersion.
2. There exists an open covering {Uα} of M and an associated family of diffeomor-

phisms χα : π−1(Uα) → Uα ×R
n such that

(a) the following diagram commutes,

π−1(Uα)
χα

π

Uα ×R
n

pr1

Uα

(b) for every m ∈ Uα , the induced mapping pr2 ◦ χα�TmM : TmM → R
n is a

vector space isomorphism.

Definition 2.1.2 The triple (TM,M,π) is called the tangent bundle of M . TM is
called the total space or the bundle manifold, M the base manifold and π the natural
projection. For m ∈ M , π−1(m) ≡ TmM is called the fibre over m. The vector space
R

n is called the typical fibre and the pairs (Uα,χα) are called local trivializations of
TM over Uα .

By an abuse of notation, the tangent bundle will usually be denoted by TM .

Example 2.1.3 Let M = S1 be realized as the unit circle in R
2. For every x ∈ S1, the

tangent space TxS1 can be identified with the subspace of vectors orthogonal to x.
This yields a bijection Φ from TS1 onto the subset

T = {
(x,X) ∈ S1 ×R

2 : x ⊥ X
}

of R4. This is the level set of the smooth mapping

F :R4 → R
2, F (x,X) := (‖x‖2,x · X

)
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at the regular value c = (1,0). Hence, it carries a smooth structure. One can
check that Φ is a diffeomorphism with respect to this structure. (To see this, let
prk : R2 → R denote the natural projection to the k-th component and choose the
charts on S1 and T to be restrictions of prk and prk × prk , respectively, k = 1,2.)
Thus, TS1 can naturally be identified with T . The construction carries over to
higher-dimensional spheres: as a manifold, the tangent bundle TSn can be identified
with the subset {(x,X) ∈ Sn × R

n+1 : x ⊥ X} of R2(n+1) which is the level set of a
function similar to F at the regular value c = (1,0), see also Remark 2.1.4/2 below.

Remark 2.1.4

1. Let V be a finite-dimensional real vector space and let M be an open subset of V .
The natural identifications of the tangent spaces TvM with V for all v ∈ M , cf.
Example 1.4.3/1, combine to a smooth diffeomorphism χ : TM → M ×V which
is fibrewise linear. We will refer to χ as the natural identification of TM with
M × V . After choosing a basis in V , this bijection coincides with the (global)
trivialization induced via (2.1.4) by the corresponding global chart on M .

2. The construction of Example 2.1.3 generalizes to arbitrary level sets. Let V ,
W be finite-dimensional real vector spaces and let M be the level set of a Ck-
mapping f : V → W at a regular value c ∈ W . Identifying the tangent space
TvM with kerf ′(v) for all v ∈ M , see Remark 1.2.2/1, we obtain a bijection Φ

from TM onto the subset

T = {
(v,X) ∈ M × V : f ′(v)X = 0

}

of V × V . This is the level set of the Ck−1-mapping

F : V × V → W × W, F(v,X) := (
f (v), f ′(v)X

)

at the value (c,0), whose regularity follows from that of c with respect to f .
It follows that T is an embedded Ck−1-submanifold of V × V and that Φ is a
Ck−1-diffeomorphism (Exercise 2.1.1). Thus, the tangent bundle of a level set in
V can be naturally identified with a level set in V × V .

Just as the tangent spaces of a manifold combine to the tangent bundle, the tan-
gent mappings of a differentiable mapping combine to a mapping of the tangent
bundles.

Definition 2.1.5 (Tangent mapping) Let M , N be Ck-manifolds and let Φ : M → N

be a Ck-mapping. The tangent mapping of Φ is defined by

Φ ′ : TM → TN, Φ ′(Xm) := Φ ′
m(Xm).

The tangent mapping is of class Ck−1 (Exercise 2.1.6). The basic properties of
the tangent mapping are stated in the next section (Proposition 2.2.9).
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Exercises
2.1.1 Prove that the mapping Φ of Remark 2.1.4/2 is a diffeomorphism.

Hint. As local charts on M , use those constructed in the proof of the Level
Set Theorem 1.2.1.

2.1.2 Determine the tangent bundle in the form of the level set T of Remark 2.1.4/2
for
(a) the spheres Sn, see Example 1.2.3,
(b) the hyperboloid of Example 1.2.4,
(c) the paraboloid, the ellipsoid and the rotational torus of Exercise 1.2.5,
(d) the classical groups, see Example 1.2.6.
Compare your result for the spheres Sn with Example 2.1.3.

2.1.3 Let M be the level set of a differentiable mapping f : Rn → R
m at a regular

value c ∈R
m. Identify TM with the level set T of Remark 2.1.4/2. The bundle

of unit tangent vectors of M is defined to be EM := {(x,X) ∈ TM : ‖X‖ = 1}.
Show that EM is an embedded submanifold of TM . What does one get for
ES1 and ES2?

2.1.4 Let (U,κ) be a local chart on M and let κT be the local chart induced by κ on
the tangent bundle TM via (2.1.2). Determine the local trivialization (2.1.4)
of the tangent bundle T(TM) of TM induced by κT.

2.1.5 Iterate the construction of Remark 2.1.4/2 by determining the level set T for
the tangent bundle T(TM) of the tangent bundle TM of a level set M . Write
down the defining equations explicitly for M = Sn.

2.1.6 Let Φ : M → N be of class Ck . Show that Φ ′ is of class Ck−1.

2.2 Vector Bundles

The notion of vector bundle arises from the notion of tangent bundle of a manifold
by allowing the fibres to be arbitrary finite-dimensional vector spaces, rather than
the tangent spaces of that manifold.

Definition 2.2.1 (Vector bundle) Let K =R or C and let k ≥ 0. A K-vector bundle
of class Ck is a triple (E,M,π), where E and M are Ck-manifolds and π : E → M

is a surjective Ck-mapping satisfying the following conditions.

1. For every m ∈ M , Em := π−1(m) carries the structure of a vector space over K.
2. There exists a finite-dimensional vector space F over K, an open covering {Uα}

of M and an associated family of Ck-diffeomorphisms χα : π−1(Uα) → Uα ×F

such that, for all α,
(a) the following diagram commutes,

π−1(Uα)
χα

π

Uα × F

pr1

Uα

(2.2.1)
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(b) for every m ∈ Uα , the induced mapping χα,m := pr2 ◦ χα�Em
: Em → F is

linear.

Like in the case of the tangent bundle, by an abuse of notation, a vector bundle
(E,M,π) will usually be denoted by E alone. Like for the tangent bundle, E is
called the total space or the bundle manifold, M the base manifold, π the bundle
projection and F the typical fibre. For m ∈ M , Em is called the fibre over m and
m is called the base point. The pairs (Uα,χα) are called local trivializations. A lo-
cal trivialization (U,χ) with U = M is called a global trivialization. If a global
trivialization exists, the vector bundle is called (globally) trivial.

Remark 2.2.2

1. By condition 2a, since the χα are diffeomorphisms, the bundle projection π is
a submersion (because so is the projection to a factor of a direct product) and
the fibres Em are embedded submanifolds (because by χα they are mapped onto
the subsets {m} × F of Uα × F ). Being bijective and linear, the mappings χα,m

are vector space isomorphisms. Hence, all fibres have the same dimension as
F ; this number is called the dimension or the rank of the vector bundle. Thus,
dimE = dimM + dimF for K = R, and dimE = dimM + 2 dimF for K = C.
For a K-vector bundle of dimension n, one can always choose F = K

n.
2. Let A denote the index set of a family of local trivializations {(Uα,χα)}. The

mappings

χβ ◦ χ−1
α : Uα ∩ Uβ × F → Uα ∩ Uβ × F, (α,β) ∈ A × A, (2.2.2)

which are of class Ck , are called the transition mappings of the system of lo-
cal trivializations {(Uα,χα) : α ∈ A}. Since for every (α,β) ∈ A × A, χβ ◦ χ−1

α

maps the subsets {m} × F , where m ∈ Uα ∩ Uβ , linearly and bijectively onto
themselves, there exists a mapping ρβα : Uα ∩ Uβ → GL(F ) such that

χβ ◦ χ−1
α (m,u) = (

m,ρβα(m)u
)

(2.2.3)

for all m ∈ Uα ∩ Uβ and u ∈ F . The mappings ρβα are called the transition
functions of the system of local trivializations {(Uα,χα) : α ∈ A}. To see that
they are of class Ck it suffices to check that for every (α,β) ∈ A × A and u ∈ F ,
the mapping Uα ∩ Uβ → F defined by m �→ (m,ρβα(m)u) is of class Ck . This
follows at once from the differentiability of the transition mappings χβ ◦ χ−1

α .
One can check that the transition functions satisfy

ργβ(m)ρβα(m) = ργα(m) (2.2.4)

for all α,β, γ ∈ A and m ∈ Uα ∩ Uβ ∩ Uγ .
3. A vector bundle is said to be orientable if there exists a family of local trivializa-

tions whose transition mappings have positive determinant.
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Example 2.2.3

1. Let M be a Ck-manifold, let F be a vector space of dimension r over K and let
prM : M × F → M denote the natural projection to the first component. Then,
(M × F,M,prM) is a K-vector bundle of class Ck and dimension r . It is called
the product vector bundle of M and F . A product vector bundle is obviously
trivial.

2. According to Proposition 2.1.1, the tangent bundle of an n-dimensional Ck-
manifold is an n-dimensional real vector bundle of class Ck−1.

3. Let (E,M,π) be a vector bundle of class Ck and let U ⊂ M be open. Define
EU := π−1(U). This is an open subset of E and hence a Ck-manifold. By re-
striction, π induces a surjective Ck-mapping πU : EU → U , and a system of
local trivializations {(Uα,χα)} of E induces the system of local trivializations
{(Uα ∩ U,χα�Uα∩U)} of EU . Thus, (EU ,U,πU) is a K-vector bundle of class
Ck . It has the same dimension as E.

Example 2.2.4 (Möbius strip) Let M = S1 be realized as the unit circle in C and let
E be the Möbius strip of Example 1.1.12 with the open interval (−1,1) replaced by
the whole of R. That is, E := R

2/∼, where (s1, t1) ∼ (s2, t2) iff there exists k ∈ Z

such that s2 = s1 + 2πk and t2 = (−1)kt1. Define the projection by

π : E → S1, π
([

(s, t)
]) := eis .

Using the local charts on E constructed in Example 1.1.12 one can easily check that
π is smooth. The fibres are Eeis = π−1(eis) = {[(s, t)] : t ∈ R}. For every s ∈ R,
define

λ
[
(s, t1)

] + [
(s, t2)

] := [
(s, λt1 + t2)

]
, λ, t1, t2 ∈R.

This way, the fibres become real vector spaces of dimension one. To construct local
trivializations, we choose U± := S1 \ {±1} and define mappings

χ± : π−1(U±) → U± ×R, χ±
([

(s, t)
]) := (

eis , t
)
,

where in case of χ+ and χ− the representative (s, t) of [(s, t)] used to compute the
right hand side is chosen from ]0,2π [ ×R and from ]−π,π[ ×R, respectively. We
leave it to the reader to check that the χ± are diffeomorphisms and satisfy condi-
tions 2a and 2b of Definition 2.2.1. Thus, (E,M,π) is a smooth real vector bundle
of dimension 1. Figure 2.2 shows E together with the product vector bundle S1 ×R.
It is quite obvious that E is not trivial. We will be able to give a precise argument
for that in the next section.

Remark 2.2.5 Let M be a Ck-manifold, let E be a set and let π : E → M be
a surjective mapping such that conditions 1 and 2 of Definition 2.2.1 are satis-
fied, however, with the following difference. Instead of assuming the χα to be Ck-
diffeomorphisms, assume that they are bijective and that their transition mappings
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Fig. 2.2 The product vector
bundle S1 ×R and the
Möbius strip as a vector
bundle over S1

(2.2.2) are of class Ck . Since M is second countable, the open covering {Uα} con-
tains a countable subcovering. According to Remark 1.1.10, the corresponding sub-
family of the family {χα} defines a Ck-structure on E. With respect to this structure,
(E,M,π) is a K-vector bundle of class Ck and the (Uα,χα) are local trivializations.
Conversely, if (E,M,π) is a vector bundle of class Ck , then the Ck-structure on E

induced in this way coincides with the original one (Exercise 2.2.1).

Next, we consider mappings of vector bundles.

Definition 2.2.6 (Vector bundle morphism) Let (E1,M1,π1) and (E2,M2,π2) be
K-vector bundles of class Ck . A Ck-mapping Φ : E1 → E2 is called a morphism if
for every m1 ∈ M1 there exists m2 ∈ M2 such that

1. Φ(E1,m1) ⊂ E2,m2 ,
2. the induced mapping Φm1 := Φ�E1,m1

: E1,m1 → E2,m2 is linear.

The rank of Φ is defined to be the integer-valued function which assigns to m1 ∈
M1 the rank of the linear mapping Φm1 . In case M1 = M2 = M , Φ is called a vertical
morphism or a morphism over M if conditions 1 and 2 hold with m1 = m2 = m.

As usual, together with the notion of morphism there comes the notion of iso-
morphism (a bijective morphism whose inverse is also a morphism), endomorphism
(a morphism of a vector bundle to itself), automorphism (an isomorphism of a vec-
tor bundle onto itself). For a vector bundle morphism Φ to be an isomorphism it is
obviously sufficient for Φ to be a diffeomorphism. If Φ is vertical, it is sufficient
for Φ to be bijective, because then the tangent mapping Φ ′ is bijective at any point
and Theorem 1.5.7 yields that the inverse mapping is of class Ck .

Remark 2.2.7

1. Since Φ is a mapping, condition 1 implies that the point m2 is uniquely de-
termined by m1. Thus, every morphism Φ induces a mapping ϕ : M1 → M2,
defined by

ϕ ◦ π1 = π2 ◦ Φ.

One says that Φ covers ϕ and calls ϕ the projection of Φ . If Φ is of class Ck ,
so is ϕ. Indeed, if (U1, χ1) is a local trivialization of E1, ϕ�U1 coincides with
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the composition of the embedding U1 → U1 × {0} ⊂ U1 × F1 with the mapping
π2 ◦ Φ ◦ χ−1

1 . In case M1 = M2 = M , Φ is a vertical morphism iff ϕ = idM .
2. Let (Ui,χi) be local trivializations of Ei , i = 1,2. The mapping

χ2 ◦ Φ ◦ χ−1
1 : (U1 ∩ ϕ−1(U2)

) × F1 → U2 × F2 (2.2.5)

is called the local representative of Φ with respect to (U1, χ1) and (U2, χ2).
A fibre-preserving and fibrewise linear mapping Φ : E1 → E2 is a morphism iff
all of its local representatives are of class Ck .

3. Let E1, E2 be K-vector bundles over M of class Ck . For λ ∈ K and vertical
morphisms Φ,Ψ : E1 → E2 we can define

(λΦ + Ψ )(x) := λΦ(x) + Ψ (x), x ∈ E1,

because for all x ∈ E1, Φ(x) and Ψ (x) belong to the same fibre of E2. This
provides a K-vector space structure on the set of vertical morphisms from E1

to E2.

Example 2.2.8 A local trivialization (U,χ) of a K-vector bundle (E,M,π) with
typical fibre F is a vertical isomorphism from the vector bundle EU , see Exam-
ple 2.2.3/3, onto the product vector bundle U × F . Accordingly, a global trivializa-
tion is a vertical isomorphism from E onto M × F . Thus, a vector bundle is trivial
iff it is isomorphic to a product vector bundle.

Probably the most important example of a vector bundle morphism is the tan-
gent mapping. The reader may convince himself that Proposition 1.5.2 implies the
following (Exercise 2.2.4).

Proposition 2.2.9 (Properties of the tangent mapping) Let M and N be Ck-
manifolds and let ϕ ∈ Ck(M,N). The tangent mapping ϕ′ : TM → TN has the
following properties.

1. ϕ′ is a vector bundle morphism of class Ck−1 with projection ϕ.
2. (idM)′ = idTM .
3. If P is another Ck-manifold and ψ ∈ Ck(N,P ), then (ψ ◦ ϕ)′ = ψ ′ ◦ ϕ′.
4. If ϕ is a diffeomorphism, then ϕ′ is an isomorphism and (ϕ′)−1 = (ϕ−1)′.

Remark 2.2.10 (Partial derivatives and product rule) Let M1,M2,N be Ck-
manifolds and let ϕ ∈ Ck(M1 × M2,N). We discuss the properties of the tangent
mapping ϕ′ which are related to the direct product structure of its domain. Proofs
are left to the reader (Exercise 2.2.5). The induced partial mappings

ϕm2 : M1 → N, ϕm2(m1) := ϕ(m1,m2), m2 ∈ M2,

ϕm1 : M2 → N, ϕm1(m2) := ϕ(m1,m2), m1 ∈ M1,
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are of class Ck . Their tangent mappings combine to Ck−1-mappings

TM1 × M2 → TN, (X1,m2) �→ (ϕm2)
′(X1),

M1 × TM2 → TN, (m1,X2) �→ (ϕm1)
′(X2),

called the partial derivatives of ϕ. They fulfil the product rule,

ϕ′
(m1,m2)

(X1,X2) = (ϕm2)
′(X1) + (ϕm1)

′(X2), mi ∈ Mi, Xi ∈ Tmi
Mi. (2.2.6)

If M1 = M2 = M and if ϕ is composed with the diagonal mapping
Δ : M → M × M , then

(ϕ ◦ Δ)′m(X) = (ϕ1,m)′(X) + (ϕ2,m)′(X), m ∈ M, X ∈ TmM. (2.2.7)

In particular, if M = I is some open interval, then ϕ ◦ Δ, ϕt1 and ϕt2 are Ck-curves
in N . For the corresponding tangent vectors at t ∈ I there holds

d

ds �t

ϕ(s, s) = d

ds �t

ϕ(s, t) + d

ds �t

ϕ(t, s), t ∈ I. (2.2.8)

To conclude this section, we show that—up to isomorphy—vector bundles are
completely determined by the family of transition functions associated with a sys-
tem of local trivializations.

Theorem 2.2.11 (Reconstruction theorem) Let M be a Ck-manifold. Assume that
the following data are given:

1. a finite-dimensional vector space F over K,
2. an open covering {Uα : α ∈ A} of M ,
3. a family of Ck-mappings ρβα : Uα ∩ Uβ → GL(F ), (α,β) ∈ A × A, satisfying

(2.2.4).

Then, there exists a K-vector bundle E over M of class Ck and a family of local
trivializations {(Uα,χα) : α ∈ A} of E whose transition functions are given by the
functions ρβα . E is uniquely determined up to vertical isomorphisms.

In particular, the last assertion implies that if the ραβ are the transition functions
of a vector bundle, then the vector bundle provided by Theorem 2.2.11 is isomorphic
over M to the original one.

Proof First, we prove existence. Since M is second countable, the covering {Uα :
α ∈ A} contains a countable subcovering. Hence, for the following construction
we may assume that A is countable. Moreover, we notice that (2.2.4) implies that
ραα = 1 for all α ∈ A. Take the topological direct sum

X :=
⊔

α∈A

Uα × F,
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denote its elements by (α,m,u), where α ∈ A, m ∈ Uα and u ∈ F , and define a
relation on X by (α1,m1, u1) ∼ (α2,m2, u2) iff m1 = m2 and u2 = ρα2α1(m1)u1.
Due to ραα = 1 and (2.2.4), this is an equivalence relation. Let E denote the set
of equivalence classes. The mapping π : E → M , given by π[(α,m,u)] := m, is
well-defined and surjective. To construct a vector space structure on π−1(m) for
every m ∈ M , choose α such that m ∈ Uα . Every class in π−1(m) has a unique
representative of the form (α,m,u) with u ∈ F . Using this, we transport the linear
structure from F to π−1(m),

λ
[
(α,m,u1)

] + [
(α,m,u2)

] := [
(α,m,λu1 + u2)

]
, u1, u2 ∈ F, λ ∈K.

By linearity of the mappings ρβα(m) : F → F , this definition does not depend on
the choice of α. The natural injections Uα × F → X induce mappings Uα × F →
E. Due to ραα = 1, these mappings are injective and hence induce bijective map-
pings χα : π−1(Uα) → Uα × F . A brief computation shows that the transition
mappings of the family of bijections {χα : α ∈ A} are given by (2.2.3). Therefore,
they are of class Ck and hence define a Ck-structure on E with respect to which
(E,M,π) is a K-vector bundle of class Ck and the χα are local trivializations,
see Remark 2.2.5. To prove uniqueness up to vertical isomorphisms, let Ẽ be a K-
vector bundle over M of class Ck with projection π̃ and let χ̃α : π̃−1(Uα) → Uα ×F

be local trivializations whose transition functions coincide with the ρβα . Then, on
π−1(Uα ∩Uβ) ⊂ E we have χ̃−1

α ◦χα = χ̃−1
β ◦χβ and on π̃−1(Uα ∩Uβ) ⊂ Ẽ there

holds χ−1
α ◦ χ̃α = χ−1

β ◦ χ̃β . Hence, the mappings χ̃−1
α ◦ χα and χ−1

α ◦ χ̃α , α ∈ A,

combine to mappings E → Ẽ and Ẽ → E, respectively, which are morphisms and
inverse to one another. �

Remark 2.2.12

1. Given two finite-dimensional vector spaces F1, F2 and two open coverings
{Ui,αi

: αi ∈ Ai}, i = 1,2, of M with associated systems of Ck-mappings

ρi,βiαi
: Ui,αi

∩ Ui,βi
→ GL(F ), (αi, βi) ∈ Ai × Ai,

there arises the question under which conditions the vector bundles E1 and E2,
defined by these data according to Theorem 2.2.11, are isomorphic over M . The
answer is as follows. First, F1 and F2 have to be isomorphic so that they can
be replaced by K

r for some r ∈ N. Second, there exists a common refinement
{Uα : α ∈ A} of the open coverings {Ui,αi

: αi ∈ Ai}, i = 1,2. By restriction, the
ρi,βiαi

induce mappings

ρi,βα : Uα ∩ Uβ → GL(r,K), (α,β) ∈ A × A, i = 1,2.

Now, E1 and E2 are isomorphic iff there exists a system of Ck-mappings ρα :
Uα → GL(r,K), α ∈ A, such that

ρ2,βα(m) = ρ−1
β (m) · ρ1,βα(m) · ρα(m), m ∈ Uα ∩ Uβ. (2.2.9)

The proof is left to the reader (Exercise 2.2.6).
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2. An open covering {Uα : α ∈ A} together with an associated family of Ck-
mappings ρβα : Uα ∩ Uβ → GL(r,K), (α,β) ∈ A × A, with the property (2.2.4)
is called a 1-cocycle on M with values in the structure group GL(r,K). Two
1-cocycles are called cohomologous if there exists a system of Ck-mappings
ρα : Uα → GL(r,K), α ∈ A, such that (2.2.9) holds. To be cohomologous is an
equivalence relation in the set of 1-cocycles. Passage to equivalence classes, that
is, cohomology classes of 1-cocycles, yields a cohomology theory on M which
is called the first Čech cohomology of M with values in the structure group
GL(r,K). According to point 1, the cohomology classes correspond bijectively
to the isomorphism classes of K-vector bundles over M of class Ck and dimen-
sion r .

3. One can show that the first Čech cohomology of M and, correspondingly, the set
of isomorphism classes of vector bundles over M do not depend on the degree of
differentiability k, see [130, Ch. 4, Thm. 3.5].

Exercises

2.2.1 Let (E,M,π) be a Ck-vector bundle. Consider the Ck-structure on E induced
by a system of local trivializations via the method of Remark 2.2.5. Show that
this structure coincides with the original Ck-structure.

2.2.2 Let M be a Ck-manifold. Use the system of bijections (2.1.4) associated
with an atlas on M to construct a Ck-structure on TM via the method of
Remark 2.2.5.

2.2.3 Construct a smooth structure on the Möbius strip by means of the method
of Remark 2.2.5, using the local trivializations (U±, χ±) of Example 2.2.4.
Show that this structure coincides with the one constructed in Example 1.1.12.

2.2.4 Prove Proposition 2.2.9.
2.2.5 Prove the assertions about partial derivatives stated in Remark 2.2.10.
2.2.6 Prove the criterion for the isomorphy of two vector bundles over M stated in

Remark 2.2.12/1.
2.2.7 Let (E1,π1,M1) and (E2,π2,M2) be K-vector bundles of class Ck and of di-

mensions r1 and r2. Define E := E1 ×E2, M := M1 ×M2 and π := π1 ×π2 :
E1 ×E2 → M1 ×M2. For (m1,m2) ∈ M1 ×M2, equip E(m1,m2) := π−1(m) ≡
E1,m1 ×E2,m2 with the linear structure of the direct sum E1,m1 ⊕E2,m2 . Show
that (E,M,π) is a K-vector bundle of class Ck and dimension r1 + r2. It is
called the direct product of (E1,π1,M1) and (E2,π2,M2).

2.2.8 Let M1 and M2 be Ck-manifolds. Let pri : M1 ×M2 → Mi denote the natural
projections to the factors. Show that the following mapping is a vertical vector
bundle isomorphism:

Φ : T(M1 × M2) → TM1 × TM2, Φ(X) := (
pr′1(X),pr′2(X)

)
.



2.3 Sections and Frames 65

2.3 Sections and Frames

The notion of section generalizes the concept of a function on a manifold with values
in a finite-dimensional vector space.

Definition 2.3.1 (Section) Let (E,M,π) be a K-vector bundle of class Ck . A sec-
tion (or cross section) of (E,M,π) is a Ck-mapping s : M → E such that π ◦ s =
idM .

A local section of (E,M,π) over an open subset U ⊂ M is a section of the
vector bundle (EU ,U,πU).

Remark 2.3.2

1. Let s be a section and let (U,χ) be a local trivialization of the K-vector bundle
(E,M,π) of class Ck . The mapping

prF ◦ χ ◦ s�U : U → F (2.3.1)

is called the local representative of s with respect to (U,χ). Since local trivial-
izations are diffeomorphisms, a mapping s : M → E satisfying π ◦ s = idM is of
class Ck (and hence a section) iff so are all local representatives of s with respect
to a system of local trivializations.

2. Every vector bundle admits a distinguished section m �→ 0m, called the zero
section.

3. The set of all sections of a K-vector bundle (E,M,π) of class Ck is denoted by
Γ (E). It carries the structure of a real vector space and of a bimodule over the
algebra C∞(M), with all operations defined pointwise (Exercise 2.3.1).

4. A local section need not be extendable to a global section, as is shown by the
example of M = R, E = M ×R, U = R+ and s(x) = (x, 1

x
). There holds, how-

ever, the following weaker extension property. For every m ∈ U , there exists an
open neighbourhood V of m in U and a section s̃ of E such that s�V = s̃�V
(Exercise 2.3.2).

Example 2.3.3

1. (Local) sections of the tangent bundle TM of a Ck-manifold M are called (lo-
cal) vector fields on M . They will usually be denoted by X,Y, . . . and the vector
space Γ (TM) will be denoted by X(M). To be consistent with the previous no-
tation Xm for a tangent vector at m ∈ M , for the value of the vector field X at
the point m we will often write Xm instead of X(m). Note that since TM is
of class Ck−1, so are vector fields. If (U,κ) is a local chart on M , for every
i = 1, . . . ,dimM , the mapping

∂κ
i : U → (TM)U, ∂κ

i (m) := ∂κ
i,m,

is a section of (TM)U = TU . Since the representative of this section with respect
to the global trivialization of TU induced by κ is given by the constant mapping
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whose value is the i-th standard basis vector in R
dimM , ∂κ

i is of class Ck−1.
Hence, ∂κ

i is a local vector field on M .
2. If the vector bundle E over M is given in terms of a K-vector space F , an open

covering {Uα} of M and a family of Ck-mappings ρβα : Uα ∩ Uβ → GL(F )

satisfying (2.2.4), then its sections of class Ck correspond bijectively to fami-
lies {sα} of Ck-mappings sα : Uα → F satisfying sα(m) = ραβ(m)sβ(m) for all
α,β ∈ A and m ∈ Uα ∩ Uβ .

Remark 2.3.4

1. Let V be a finite-dimensional real vector space and let M ⊂ V be an open subset.
Via the natural identification of TM with M ×V of Remark 2.1.4/1, vector fields
X on M correspond bijectively to smooth mappings2 X : M → V . By construc-
tion, for all v ∈ M and f ∈ C∞(M), we have

Xv(f ) = d

dt �0

f
(
v + tX(v)

)
. (2.3.2)

2. Let V and W be finite-dimensional real vector spaces and let M ⊂ V be the level
set of a Ck-mapping f : V → W at a regular value. Via the natural identification
of TM with the embedded Ck−1-submanifold {(v,X) ∈ M×V : X ∈ ker(f ′(v))}
of V × V , see Remark 2.1.4/2, vector fields X on M correspond bijectively to
Ck−1-mappings X : M → V satisfying X(v) ∈ kerf ′(v).

By means of a local trivialization, sections are identified locally with the graphs
of their local representatives. This implies

Proposition 2.3.5 Let (E,M,π) be a K-vector bundle of class Ck and let
s ∈ Γ (E). Then, (M, s) is an embedded Ck-submanifold of E.

Proof Let m ∈ M . According to Remark 1.6.13/3, we have to show that there exists
an open neighbourhood V of s(m) in E such that (s−1(V ), s�s−1(V )) is an embed-
ded Ck-submanifold of E. Choose a local trivialization (U,χ) of E at m and let
V = π−1(U). Then, s−1(V ) = U and hence we have to show that (U, s�U ) is an em-
bedded Ck-submanifold of π−1(U). Since χ is a diffeomorphism and (U,χ ◦ s�U)

is the graph of the local representative of s with respect to the local trivialization
(U,χ), the latter follows from Example 1.6.12/2. �

Now let (E1,M1,π1) and (E2,M2,π2) be K-vector bundles of class Ck , let
Φ : E1 → E2 be a morphism and let ϕ : M1 → M2 be the projection of Φ .

2Denoted by the same symbol.
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Definition 2.3.6 (Φ-relation and transport operator)

1. Sections s1 ∈ Γ (E1) and s2 ∈ Γ (E2) are said to be Φ-related if they satisfy

Φ ◦ s1 = s2 ◦ ϕ.

2. If ϕ is a Ck-diffeomorphism, the following mapping is called the transport oper-
ator of Φ:

Φ∗ : Γ (E1) → Γ (E2), Φ∗s := Φ ◦ s ◦ ϕ−1. (2.3.3)

The following proposition lists the properties of the transport operator (Exer-
cise 2.3.3).

Proposition 2.3.7 Let (E1,M1,π1) and (E2,M2,π2) be K-vector bundles of class
Ck and let Φ : E1 → E2 be a morphism whose projection ϕ : M1 → M2 is a diffeo-
morphism. The transport operator Φ∗ has the following properties.

1. Φ∗ is linear. If Φ is an isomorphism of vector bundles, Φ∗ is an isomorphism of
vector spaces and there holds (Φ−1)∗ = (Φ∗)−1.

2. For every s ∈ Γ (E1), s is Φ-related to Φ∗s.
3. For every s ∈ Γ (E1) and f ∈ Ck(M1), there holds Φ∗(f s) = ((ϕ−1)∗f )Φ∗s.
4. If Ψ : E2 → E3 is another morphism whose projection is a diffeomorphism, then

(Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗.

Remark 2.3.8 In the case of vector fields, it is common to speak of ϕ-relation rather
than ϕ′-relation. Thus, Xi ∈X(Mi), i = 1,2, are ϕ-related iff

ϕ′ ◦ X1 = X2 ◦ ϕ. (2.3.4)

Next, we turn to the discussion of (local) frames.

Definition 2.3.9 (Local frame) Let (E,M,π) be a K-vector bundle of class Ck

and dimension l, let U ⊂ M be open and let B = {s1, . . . , sr } be a system of local
sections of E over U . B is said to be pointwise linearly independent if the system
{s1(m), . . . , sr (m)} is linearly independent in Em for all m ∈ U . In this case, B is
called a local r-frame (frame if r = l) in E over U . If U = M , B is called a global
r-frame (global frame if r = l).

Local frames provide bases in the fibres over their domain and hence allow for
the expansion of local sections.

Proposition 2.3.10 Let (E,M,π) be a K-vector bundle of class Ck , let U ⊂ M

be open and let {s1, . . . , sl} be a local frame in E over U . The assignment of f isi
(summation convention) to an l-tuple (f 1, . . . , f l) of K-valued Ck-functions on U

defines a bijection from
∏l

i=1 Ck(U,K) onto Γ (EU).
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Proof Obviously, for every (f 1, . . . , f l) ∈ ∏l
i=1 Ck(U,K), the sum f isi is a Ck-

section of EU . Conversely, let s ∈ Γ (EU). By expanding s(m) with respect to the
basis {s1(m), . . . , sl(m)} of Em for all m ∈ U , we obtain functions f i : U → K

satisfying s�U = f isi . For every m ∈ U , (f 1(m), . . . , f l(m)) is the unique solution
of a system of linear equations whose coefficients depend differentiably of class Ck

on m. Hence, f i ∈ Ck(U). �

Example 2.3.11

1. Let M be a Ck-manifold of dimension n and let (U,κ) be a local chart on M .
Since {∂κ

1,m, . . . , ∂κ
n,m} is a basis in TmM for all m ∈ U , the system {∂κ

1 , . . . , ∂κ
n }

is a local frame in TM over U . Thus, over U , vector fields X ∈X(M) can be rep-
resented as X�U = Xi∂κ

i with Xi ∈ Ck−1(U). According to (1.4.15) and (1.4.16),
the coefficient functions Xi are given by Xi(m) = Xm(κi), where i = 1, . . . , n.

2. Let (E,M,π) be a K-vector bundle of class Ck with typical fibre F , let (U,χ)

be a local trivialization and let {e1, . . . , er} be a linearly independent system in F .
Define local sections si of E over U by

si(m) := χ−1(m, ei), i = 1, . . . , r. (2.3.5)

These sections are of class Ck , because their local representatives with respect
to (U,χ) are the constant mappings m �→ ei . Hence, the system {s1, . . . , sr} is a
local r-frame in E over U .

As the second example suggests, local frames are closely related to local trivial-
izations.

Proposition 2.3.12 Let (E,M,π) be a K-vector bundle of class Ck with typical
fibre F and let U ⊂ M be open. By virtue of (2.3.5), every basis of F defines a
bijection between local trivializations χ : π−1(U) → U × F and local frames in E

over U . In particular,

1. there exists a local trivialization of E over U iff there exists a local frame in E

over U .
2. E is trivial iff there exists a global frame.

Proof Let {e1, . . . , el} be a basis of F . That a local trivialization over U defines a
local frame over U has been shown in Example 2.3.11/2. Conversely, for a given
local frame {s1, . . . , sl} in E over U , expand x ∈ EU as x = xisi(π(x)) and define
a mapping χ : π−1(U) → U × F by χ(x) := (π(x), xiei), x ∈ EU . The mapping
χ is a bijection and satisfies conditions 2a and 2b of Definition 2.2.1. Thus, to show
that χ is a local trivialization, it remains to check that χ and χ−1 are of class Ck

(Exercise 2.3.4). Finally, assertions 1 and 2 are obvious. �
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Example 2.3.13

1. Let M be a Ck-manifold of dimension n, let (U,κ) be a local chart on M and
let (U,χ) be the local trivialization of TM induced by this chart via (2.1.4).
The bijection between local frames over U and local trivializations over U , de-
fined by the standard basis of Rn via (2.3.5), assigns to (U,χ) the local frame
{∂κ

1 , . . . , ∂κ
n }.

2. Consider the smooth real vector bundle E given by the Möbius strip, cf. Ex-
ample 2.2.4. Since E has dimension 1, a global frame in E is just a nowhere
vanishing section. Since the base manifold is S1, sections of E correspond to
closed smooth curves in E winding around exactly once.3 Since any such curve
must cross the zero section, E does not admit a global frame and is hence not
globally trivial, cf. Proposition 2.3.12.

Remark 2.3.14 Using the description of vector bundles in terms of coverings and
transition functions as explained in Remark 2.2.12, one can show that, up to iso-
morphy over S1, the Möbius strip and the product vector bundle S1 ×R are the only
real vector bundles of dimension 1 over S1.

The following proposition collects useful extension results. The proof is left to
the reader (Exercise 2.3.5).

Proposition 2.3.15 Let (E,M,π) be a K-vector bundle of class Ck and dimension
l and let m ∈ M .

1. Let {e1, . . . , el} be a basis of Em. There exists an open neighbourhood U of m

and a local frame {s1, . . . , sl} over U such that si(m) = ei , i = 1, . . . , l.
2. Let s1, . . . , sr be local sections over neighbourhoods U1, . . .Ur of m such that

the system {s1(m), . . . , sr (m)} is linearly independent in Em. Then, there ex-
ists an open neighbourhood U ⊂ U1 ∩ · · · ∩ Ur of m such that the system
{s1�U , . . . , sr�U } is a local r-frame in E over U .

3. Let {s1, . . . , sr} be a local r-frame over a neighbourhood U of m. Then, there
exist local sections sr+1, . . . , sl over V ⊂ U such that the system {s1�V , . . . , sr�V ,

sr+1, . . . , sl} is a local frame over V .

As an application, we briefly discuss manifolds whose tangent bundle is trivial.

Definition 2.3.16 A Ck-manifold is called parallelizable if its tangent bundle is
trivial.

According to Proposition 2.3.12, a differentiable manifold M of dimension n is
parallelizable iff there exist n pointwise linearly independent vector fields on M .

3And with tangent vectors being nowhere parallel to the fibres, but this is not relevant for the
argument.
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Proposition 2.3.17 The spheres S1, S3 and S7 are parallelizable.

Proof Since Sn is a level set of the smooth function f : Rn+1 → R, f (x) = ‖x‖2,
we can use the natural representation of smooth vector fields on Sn by smooth map-
pings X : Sn →R

n+1 satisfying x ·X(x) = 0, cf. Example 2.1.3 and Remark 2.3.4/2.
In the case of S1 we identify R

2 with C via x = (x1, x2) �→ x̂ := x1 + ix2. Then,
x ·y = Re(x̂ŷ) and vector fields on S1 are represented by mappings X : S1 ⊂C→C

satisfying Re(zX(z)) = 0. This condition holds for example for X(z) := zi. Since
this function is nowhere vanishing, the corresponding vector field is nowhere van-
ishing and hence forms a frame in TS1. In the case of S3, we identify R

4 with the
quaternions H via x �→ x̂ := x11 + x2i + x3j + x4k. Then, x · y = Re(x̂ŷ), where
x̂ now denotes quaternionic conjugation, and vector fields on S3 are represented
by mappings X : S3 ⊂ H → H satisfying Re(qX(q)) = 0. For l = 1,2,3, define
Xl : H →H by

X1(q) = qi, X2(q) = qj, X3(q) = qk.

Then, Re(qXl(q)) = 0 and Re(Xl(q)Xj (q)) = δlj . Hence, the Xl restrict to vector
fields on S3 and these vector fields are pointwise linearly independent. In the case
of S7, the proof is analogous, with quaternions replaced by octonions.4 �

Remark 2.3.18

1. Since TS1 is isomorphic to the product vector bundle S1 × R, one can rephrase
Remark 2.3.14 as follows. Up to isomorphy over S1, the tangent bundle of S1

and the Möbius strip are the only real vector bundles of dimension 1 over S1.
2. The construction of pointwise linearly independent vector fields on the spheres

S1, S3 and S7 presented in the proof of Proposition 2.3.17 carries over to the
unit spheres of Ck , Hk and O

k , where O denotes the octonions. Thus, for r =
2,4,8 and k = 1,2, . . . there exist r − 1 pointwise linearly independent vector
fields on the sphere Srk−1. In case k = 1, these vector fields constitute a global
frame, whereas in the other cases they constitute just a global (r − 1)-frame.
While there may exist more than r − 1 pointwise linearly independent vector
fields, there does not exist a global frame for any odd-dimensional sphere except
for S1, S3 and S7. More precisely, Adams showed that the maximum number
of pointwise linearly independent vector fields on an odd-dimensional sphere is
given by the corresponding Radon-Hurwitz number [4]. On the other hand, on
an even-dimensional sphere, every vector field has a zero. This is known as the
Hairy Ball Theorem. For a proof, see for example [6]. As a consequence, S1, S3

and S7 are the only spheres which are parallelizable.

Exercises
2.3.1 Show that Γ (E) carries the structure of a real vector space and of a bimodule

over the algebra C∞(M), cf. Remark 2.3.2/3.

4For a guide to octonions, see [29].
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2.3.2 Prove the statement of Remark 2.3.2/4.
2.3.3 Prove Proposition 2.3.7.
2.3.4 Complete the proof of Proposition 2.3.12 by showing that the mapping χ

defined there as well as its inverse are of class Ck .
2.3.5 Prove Proposition 2.3.15.

2.4 Vector Bundle Operations

Every operation with vector spaces defines an operation with vector bundles by
fibrewise application. Below, we will discuss the most important of these operations
in the form of examples. The construction uses the method of Remark 2.2.5. It will
be explained in some detail for the dual vector bundle and the direct sum of vector
bundles. The other operations are then given without further explanations.

Throughout this section, let E, E1 and E2 be K-vector bundles over M of class
Ck . Let, respectively, π , π1 and π2 be their projections and l, l1 and l2 their di-
mensions. Choose, respectively, typical fibres F , F1 and F2 and local trivializations
(Uα,χα), (Uα,χ1α) and (Uα,χ2α) over an appropriate open covering {Uα : α ∈ A}
of M .

Example 2.4.1 (Dual vector bundle) Take the dual vector space E∗
m of each fibre

Em of E and define the set E∗ as the disjoint union

E∗ =
⊔

m∈M

E∗
m.

Let πE∗ : E∗ → M be the natural projection to the index set. Define mappings

χE∗
α : (πE∗)−1

(Uα) → Uα × F ∗, χE∗
α (ξ) = (

m,
(
χT

α,m

)−1
(ξ)

)
, (2.4.1)

where m = πE∗
(ξ) and χT

α,m : F ∗ → E∗
m denotes the dual linear mapping of χα,m :

Em → F . The corresponding transition mappings are given by

χE∗
β ◦ (

χE∗
α

)−1
(m,μ) = (

m,
((

χα ◦ χ−1
β

)
�{m}×F

)T
μ

)

with m ∈ Uα ∩ Uβ and μ ∈ F ∗. They are of class Ck , because so are the transition
mappings χα ◦χ−1

β of E. Thus, according to Remark 2.2.5, if we equip E∗ with the

Ck-structure induced by the family of mappings {χE∗
α ,α ∈ A}, then (E∗,M,πE∗

)

is a K-vector bundle of class Ck , called the dual vector bundle of E. It has the
same dimension as E, typical fibre F ∗, and {(Uα,χE∗

α ) : α ∈ A} is a system of local
trivializations.

Let {s1, . . . , sl} be a local frame in E over U ⊂ M . For m ∈ U , let s(m)∗1,

. . . , s(m)∗l denote the elements of the basis of E∗
m which is dual to the basis

{s1(m), . . . , sl(m)} of Em. Define local sections s∗i in E∗ by

s∗i (m) := s(m)∗i , i = 1, . . . , l. (2.4.2)
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Using Proposition 2.3.12 it is easy to see that these local sections are of class Ck

and form a local frame of E∗, called the dual local frame or coframe.
The pointwise evaluation mappings E∗

m × Em → K combine to a natural pairing

Γ
(
E∗

U

) × Γ (EU) → Ck(U,K), (σ, s) �→ 〈σ, s〉,
also denoted by σ(s) or s(σ ). In terms of this pairing, sections of E∗ can be ex-
panded over U as

σ = σ(si)s
∗i ≡ 〈σ, si〉s∗i . (2.4.3)

Let Ea and Eb be K-vector bundles of class Ck over Ma and Mb , respectively, and
let Φ : Ea → Eb be a morphism projecting to a diffeomorphism ϕ : Ma → Mb . For
every m ∈ Mb, the linear mappings Φϕ−1(m) : Ea,ϕ−1(m) → Eb,m induce dual linear
mappings which combine to a fibre-preserving and fibrewise linear mapping

ΦT : E∗
b → E∗

a ,
〈
ΦT(ξ), x

〉 := 〈
ξ,Φϕ−1(m)(x)

〉
, (2.4.4)

where m ∈ Mb, ξ ∈ E∗
b,m and x ∈ Ea,ϕ−1(m), which is a morphism projecting to

the Ck-diffeomorphism ϕ−1 (Exercise 2.4.1). It is called the dual morphism of Φ .
Via (2.3.3), the dual morphism induces a transport operator ΦT∗ of sections. More
generally, by duality, every morphism Φ : Ea → Eb induces the following operation
on sections, called the pull-back,

Φ∗ : Γ (
E∗

b

) → Γ
(
E∗

a

)
,

〈(
Φ∗σ

)
(m), x

〉 := 〈
σ ◦ ϕ(m),Φ(x)

〉
, (2.4.5)

where m ∈ Ma and x ∈ Ea,m. Indeed, if Φ projects to a diffeomorphism, then the
pull-back is given by

Φ∗σ = ΦT ◦ σ ◦ ϕ = ΦT∗ σ, (2.4.6)

that is, it coincides with the transport operator of the dual morphism.5

Example 2.4.2 (Direct sum) Take the direct sum E1,m ⊕E2,m of the fibres over each
point m ∈ M and define

E1 ⊕ E2 =
⊔

m∈M

E1,m ⊕ E2,m.

Let π⊕ : E1 ⊕ E2 → M be the natural projection. Define mappings

χ⊕
α : (π⊕)−1

(Uα) → Uα × (F1 ⊕ F2)

by

χ⊕
α (x1, x2) := (

m,
(
χ1α,m(x1),χ2α,m(x2)

))
,

5Taking into account that ΦT projects to ϕ−1.
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where m = π⊕((x1, x2)). By similar arguments as for the dual vector bundle, one
can check that (E1 ⊕ E2,M,π⊕) is a K-vector bundle of class Ck and that the
mappings χ⊕

α provide a system of local trivializations. E1 ⊕ E2 is called the direct
sum of E1 and E2. It has dimension l1 + l2 and typical fibre F1 ⊕ F2. Next, note
that every local section si of Ei over U can be viewed as a local section of E1 ⊕ E2
in an obvious way. Thus, given local frames {si,1, . . . , si,li } in Ei , the collection

{s1,1, . . . , s1,l1 , s2,1, . . . , s2,l2}
constitutes a local frame in E1 ⊕E2. Finally, let Ea1, Ea2 and Eb1, Eb2 be K-vector
bundles of class Ck over Ma and Mb, respectively, and let Φi : Eai → Ebi , i = 1,2,
be morphisms projecting to the same mapping ϕ : Ma → Mb . The linear mappings
Φi,m : Eai,m → Ebi,ϕ(m) induce linear mappings

Φ1,m ⊕ Φ2,m : Ea1,m ⊕ Ea2,m → Eb1,ϕ(m) ⊕ Eb2,ϕ(m),

which combine to a morphism projecting to ϕ,

Φ1 ⊕ Φ2 : Ea1 ⊕ Ea2 → Eb1 ⊕ Eb2, (Φ1 ⊕ Φ2)m := Φ1,m ⊕ Φ2,m, (2.4.7)

where m ∈ Ma . It is called the direct sum of Φ1 and Φ2.

Example 2.4.3 (Tensor product) Define

E1 ⊗ E2 =
⊔

m∈M

E1,m ⊗ E2,m,

denote the canonical projection by π⊗ : E1 ⊗ E2 → M and take the system of in-
duced local trivializations χ⊗

α : (π⊗)−1(Uα) → Uα × (F1 ⊗ F2) defined by

χ⊗
α (x1 ⊗ x2) = (

m,χ1α,m(x1) ⊗ χ2α,m(x2)
)
,

where m = π⊗(x1 ⊗ x2). Then, (E1 ⊗E2,M,π⊗) is a Ck-vector bundle, called the
tensor product of E1 and E2. Its typical fibre is F1 ⊗ F2 and its dimension is l1l2.
Every pair of local sections si of Ei over U , i = 1,2, defines a local section s1 ⊗ s2
of E1 ⊗ E2 by

(s1 ⊗ s2)(m) := s1(m) ⊗ s2(m), m ∈ U, (2.4.8)

which is called the tensor product of s1 and s2. If {si,1, . . . , si,li } are local frames in
Ei , i = 1,2, then

{s1,i ⊗ s2,j : i = 1, . . . , l1, j = 1, . . . , l2}
is a local frame in E1 ⊗ E2. For K-vector bundle morphisms Φj : Eaj → Ebj ,
j = 1,2, projecting to the same mapping ϕ : Ma → Mb , the tensor product is the
morphism Φ1 ⊗ Φ2 : Ea1 ⊗ Ea2 → Eb1 ⊗ Eb2 defined by

(Φ1 ⊗ Φ2)m(x1 ⊗ x2) := Φ1,m(x1) ⊗ Φ2,m(x2). (2.4.9)
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It projects to ϕ as well.

Example 2.4.4 (Tensor bundles) The tensor bundle of E of type (p, q) is defined to
be

T
q
pE := E∗⊗ p· · · ⊗E∗ ⊗ E⊗ q· · · ⊗E.

Its fibres are the p-fold covariant and q-fold contravariant tensor products T
q
pEm.

Hence, the dimension is lp+q and the elements of Tq
pEm are linear combinations of

ξ1 ⊗· · ·⊗ ξp ⊗x1 ⊗· · ·⊗xq , where xi ∈ Em and ξi ∈ E∗
m. The projection is denoted

by π⊗ : Tq
pE → M and the typical fibre is T

q
pF . We will view elements of Tq

pEm

as (p + q)-linear mappings

u : Em× p· · · ×Em × E∗
m× q· · · ×E∗

m → R,

thus using the natural isomorphism which assigns to ξ1 ⊗ · · · ⊗ ξp ⊗ x1 ⊗ · · · ⊗ xq

the mapping

u(y1, . . . , yp, η1, . . . , ηq) = ξ1(y1) · · · ξp(yp)η1(x1) · · ·ηq(xq).

Then, the tensor product of ui ∈ T
qi
pi

Em, i = 1,2, is given by

u1 ⊗ u2(x1, . . . , xp1+p2 , ξ1, . . . , ξq1+q2)

:= u1(x1, . . . , xp1 , ξ1, . . . , ξq1)u2(xp1+1, . . . , xp1+p2 , ξq1+1, . . . , ξq1+q2)

(2.4.10)

for all xj ∈ Em and ξj ∈ E∗
m. Accordingly, local sections τ of Tq

pE over U can be
viewed as mappings

τ : Γ (EU)× p· · · ×Γ (EU) × Γ
(
E∗

U

)× q· · · ×Γ
(
E∗

U

) → Ck(U) (2.4.11)

which are Ck(U)-linear in every argument. Every pair of local sections τi of Tqi
pi

E,
i = 1,2, defines a local section τ1 ⊗ τ2 in T

q1+q2
p1+p2

E by

(τ1 ⊗ τ2)(m) := τ1(m) ⊗ τ2(m).

On the level of the mappings (2.4.11), τ1 ⊗ τ2 is given by (2.4.10), with ui replaced
by τi and xj and ξj replaced by local sections in E and E∗, respectively. In partic-
ular, if {s1, . . . , sl} is a local frame in E over U , then

{
s∗i1 ⊗ · · · ⊗ s∗ip ⊗ sj1 ⊗ · · · ⊗ sjq : i1, . . . , ip, j1, . . . , jq = 1, . . . , l

}

is a local frame in T
q
pE. Every τ ∈ Γ (T

q
pE) can be decomposed over U as

τ�U = τ
j1...jq

i1...ip
s∗i1 ⊗ · · · ⊗ s∗ip ⊗ sj1 ⊗ · · · ⊗ sjq



2.4 Vector Bundle Operations 75

with

τ
j1...jq

i1...ip
(m) = τ(m)

(
si1(m), . . . , sip (m), s∗j1(m), . . . , s∗jq (m)

)
(2.4.12)

(Exercise 2.4.2). Finally, according to (2.4.9), every isomorphism Φ : Ea → Eb of
K-vector bundles of class Ck induces isomorphisms

Φ⊗ : Tq
pEa → T

q
pEb, Φ⊗ := (

Φ−1)T⊗ p· · · ⊗(
Φ−1)T ⊗ Φ⊗ q· · · ⊗Φ,

(2.4.13)
with the same projection. On the level of (p + q)-linear mappings, Φ⊗ takes the
form

(
Φ⊗u

)
(x1, . . . , xp, ξ1, . . . , ξq)

= u
(
Φ−1(x1), . . . ,Φ

−1(xp),ΦT(ξ1), . . . ,Φ
T(ξq)

)
(2.4.14)

for all u ∈ T
q
pEa,m, xi ∈ Eb,ϕ(m) and ξi ∈ E∗

b,ϕ(m). The corresponding transport
operators Φ⊗∗ satisfy

Φ⊗∗ (τ1 ⊗ τ2) = (
Φ⊗∗ τ1

) ⊗ (
Φ⊗∗ τ2

)
(2.4.15)

for all τi ∈ Γ (T
qi
pi

Ea), and

(
Φ⊗∗ τ

)
(s1, . . . , sp, σ1, . . . , σq)

= τ
(
Φ−1∗ s1, . . . ,Φ

−1∗ sp,Φ∗σ1, . . . ,Φ
∗σq

) ◦ ϕ−1 (2.4.16)

for all τ ∈ Γ (T
q
pEa), si ∈ Γ (Eb) and σi ∈ Γ (E∗

b ). Here, ϕ : Ma → Mb is the pro-
jection of Φ .

Example 2.4.5 (Exterior powers) The r-fold exterior power
∧r

E∗ has the vector
spaces

∧r
E∗

m of antisymmetric r-linear forms on Em as its fibres. Hence, the di-
mension is

(
l
r

)
. In particular,

∧0
E∗ = M ×K,

∧1
E∗ = E∗ and

∧r
E∗ = M × {0}

(the zero-dimensional vector bundle over M) for r > l. The projection is denoted
by π∧ : ∧r

E∗ → M and the typical fibre is
∧r

F ∗. The exterior product of
ηi ∈ ∧ri E∗

m is defined to be the (r1 + r2)-linear form on Em given by6

(η1 ∧ η2)(x1, . . . , xr1+r2)

:= 1

r1!r2!
∑

π∈Sr1+r2

sign(π)η1(xπ(1), . . . , xπ(r1))η2(xπ(r1+1), . . . , xπ(r1+r2)),

(2.4.17)

6Beware that there exist different conventions concerning the choice of the factor in For-
mula (2.4.17).
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for all xi ∈ Em. A local section σ in
∧r

E∗ over U can be viewed as an antisym-
metric mapping

σ : Γ (EU)× r· · · ×Γ (EU) → Ck(U) (2.4.18)

which is Ck(U)-linear in every argument. Every pair of local sections σi of
∧ri E∗,

i = 1,2, defines a local section σ1 ∧ σ2 of
∧r1+r2 E∗ by

(σ1 ∧ σ2)(m) := σ1(m) ∧ σ2(m), m ∈ U. (2.4.19)

If we view σ1 ∧ σ2 as a mapping (2.4.18), it is given by (2.4.17) with ξi replaced by
σi and xi replaced by local sections in E. If {s1, . . . , sl} is a local frame in E, then

{
s∗i1 ∧ · · · ∧ s∗ir : 1 ≤ i1 < · · · < ir ≤ l

}
(2.4.20)

is a local frame in
∧r

E∗. Every σ ∈ Γ (
∧r

E∗) can be decomposed over U as

σ�U =
∑

i1<···<ir

σi1...ir s
∗i1 ∧ · · · ∧ s∗ir (2.4.21)

with σi1...ir (m) = σ(m)(si1(m), . . . , sir (m)) (Exercise 2.4.2). Next, every K-vector
bundle morphism Φ : Ea → Eb projecting to a diffeomorphism ϕ : Ma → Mb in-
duces a morphism ΦT∧ : ∧r

E∗
b → ∧r

E∗
a projecting to ϕ−1, defined by

(
ΦT∧

m (η)
)
(x1, . . . , xr ) := η

(
Φϕ−1(m)(x1), . . . ,Φϕ−1(m)(xr )

)
. (2.4.22)

This generalizes Formula (2.4.4). Via (2.3.3), ΦT∧ induces a transport operator
(ΦT∧)∗ of sections. Moreover, the pull-back operation (2.4.5) generalizes in an ob-
vious way to a mapping Φ∗ : Γ (

∧r
E∗

b ) → Γ (
∧r

E∗
a ), given by

((
Φ∗σ

)
(m)

)
(x1, . . . , xr ) := (

σ ◦ ϕ(m)
)(

Φ(x1), . . . ,Φ(xr)
)
. (2.4.23)

Again, if Φ projects to a diffeomorphism, then Φ∗ = (ΦT∧)∗.

Example 2.4.6 (Exterior algebra bundle) By composing the operations of exterior
power and direct sum one obtains the exterior algebra bundle

∧
E∗ = ⊕l

i=0
∧i

E∗,
which has dimension 2l . We retain the notations π∧ : ∧E → M for the projection
and ΦT∧ : ∧E∗

b → ∧
E∗

a for the morphism induced by a morphism Φ : Ea → Eb .
The local frame in

∧
E∗ associated with a local frame {s1, . . . , sl} in E consists of

the constant mapping U → K given by m �→ 1 and the local sections (2.4.20) with
r = 1, . . . , l. In addition to being a vector bundle,

∧
E∗ is an associative K-algebra

bundle7 of class Ck over M . The exterior product of local sections (2.4.19) induces

7In the definition of vector bundle, replace “K-vector space” by “K-algebra” and “linear mapping”
by “algebra homomorphism”.
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a bilinear mapping

Γ

( r1∧
E∗

)
× Γ

( r2∧
E∗

)
→ Γ

(r1+r2∧
E∗

)

and hence defines on Γ (
∧

E∗) the structure of an associative K-algebra. By (2.4.17)
and (2.4.23), the pull-back is a homomorphism with respect to this algebra structure,

Φ∗(σ1 ∧ σ2) = (
Φ∗σ1

) ∧ (
Φ∗σ2

)
, σ1, σ2 ∈ Γ

(∧
E∗

b

)
. (2.4.24)

Remark 2.4.7 (Homomorphism and endomorphism bundles) Analogously, one can
construct the homomorphism bundle Hom(E1,E2) of E1 and E2, which has the
fibres Hom(E1,m,E2,m), and the endomorphism bundle End(E) of E, which has
the fibres End(Em). For every m, the vector space Hom(E1,m,E2,m) is naturally
isomorphic to the vector space E∗

1,m ⊗ E2,m and all these isomorphisms combine
to a natural isomorphism of Hom(E1,E2) with the tensor product E∗

1 ⊗ E2 (Exer-
cise 2.4.4). Therefore, we may always identify Hom(E1,E2) with E∗

1 ⊗E2. Accord-
ingly, we may identify End(E) with the tensor bundle E∗ ⊗ E ≡ T

1
1E of E. Then,

since vertical Ck-morphisms E1 → E2 correspond to Ck-sections of Hom(E1,E2),
the vector space of these morphisms is naturally isomorphic to Γ (E∗

1 ⊗ E2). Ac-
cordingly, since vertical endomorphisms of E correspond to sections of End(E), the
vector space of these endomorphisms is naturally isomorphic to Γ (T1

1E). The proof
is left to the reader (Exercise 2.4.5).

Exercises

2.4.1 Show that the mapping ΦT defined by (2.4.4) is a morphism of vector bundles.
2.4.2 Verify Formulae (2.4.12) and (2.4.21).
2.4.3 Let (E,M,π) be a smooth K-vector bundle. Consider the tangent mapping

π ′ : TE → TM .
(a) Show that (TE,TM,π ′) is a K-vector bundle by determining the linear

structure of the fibres and constructing a system of local trivializations.
(b) Show that in the cases E = TM and E = T∗M , local charts on M induce

local trivializations of (TE,TM,π ′).
(c) If E = TM , then (TE,TM,π ′) has the same base manifold as the tangent

bundle of E. Are these two vector bundles isomorphic?
2.4.4 Let E, E1 and E2 be K-vector bundles over M of class Ck . Construct the ho-

momorphism bundle Hom(E1,E2) and the endomorphism bundle End(E) as
explained in Remark 2.4.7. Show that Hom(E1,E2) and End(E) are naturally
isomorphic to E∗

1 ⊗ E2 and T
1
1E, respectively.

2.4.5 Show that the natural isomorphisms of Exercise 2.4.4 induce natural iso-
morphisms between the vector space of vertical Ck-morphisms E1 → E2

and Γ (E∗
1 ⊗ E2), as well as between the vector space of vertical Ck-

endomorphisms of E and Γ (T1
1E), cf. Remark 2.4.7.
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2.4.6 The image of the identical mapping idE under the isomorphism from the vec-
tor space of Ck-endomorphisms of E to Γ (T1

1E) of Exercise 2.4.5 is called
the Kronecker tensor field of E and is denoted by δ. Determine the coefficient
functions δi

j of δ with respect to the local frame in T
1
1E induced by a local

frame in E.
2.4.7 Show that if E is one-dimensional, the tensor bundles T

2
0E, T0

2E and T
1
1E

are trivial.

2.5 Tensor Bundles and Tensor Fields

Let M be a Ck-manifold of dimension n. By tensor bundles over M one means the
various vector bundles arising from the tangent bundle TM by applying the vector
bundle operations of Sect. 2.4. These are

(a) the cotangent bundle T∗M := (TM)∗. Its fibres are the cotangent spaces8 T∗
mM

introduced in Sect. 1.4. (Local) sections of T∗M are called (local) covector fields
or (local) differential 1-forms.

(b) The bundle of alternating r-vectors
∧r TM , the bundle of alternating r-forms∧r T∗M and the bundles of exterior algebras

∧
TM =

n⊕

r=0

r∧
TM,

∧
T∗M =

n⊕

r=0

r∧
T∗M.

Their (local) sections are called (local) multivector fields and (local) differential
forms, respectively. The number r is called the degree. We denote

X
r (M) := Γ

( r∧
TM

)
, Ωr(M) := Γ

( r∧
T∗M

)
, Ω∗(M) := Γ

(∧
T∗M

)

and, as before, X(M) ≡X1(M). One has X0(M) = Ω0(M) = Ck(M).
(c) The tensor bundles Tq

pM := T
q
p(TM), p,q = 0,1,2, . . . . Their (local) sections

are called (local) tensor fields of type (p, q). The algebraic operations of sym-
metrization, antisymmetrization and contraction of tensors over a vector space
carry over to tensor fields in an obvious way.

Since TM is of class Ck−1, so are all the tensor bundles over M . Recall from Ex-
ample 2.4.1 that pointwise evaluation T∗

mM × TmM → R defines a natural pairing

Ω1(M) ×X(M) → Ck−1(M), (α,X) �→ 〈α,X〉, (2.5.1)

which depending on the context can also be written as α(X) or X(α).

8Like for the tangent bundle we will stick to this notation (instead of writing (T∗M)m).
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Example 2.5.1 Let f : U → R, with U ⊂ M open, be a real-valued local Ck-
function. Then, the differentials (df )m of f at m ∈ U , defined by (1.4.20), combine
to a local Ck−1-covector field df on U , called the differential of f .

Now, let (U,κ) be a local chart on M . The differentials of the coordinate func-
tions κi form a local frame {dκ1, . . . ,dκn} in T∗M which is dual to {∂1, . . . , ∂n}, cf.
Examples 2.3.11/1 and 2.4.1 and Formula (1.4.21). The induced local frame in the
tensor bundle T

q
pM consists of the local sections

dκi1 ⊗ · · · ⊗ dκip ⊗ ∂j1 ⊗ · · · ⊗ ∂jq : i1, . . . , ip, j1, . . . , jq = 1, . . . , n,

see Example 2.4.4. Using these local frames, a tensor field T of type (p, q) can be
represented locally as follows:

T�U = (
T κ

)j1...jq

i1...ip
dκi1 ⊗ · · · ⊗ dκip ⊗ ∂j1 ⊗ · · · ⊗ ∂jq , (2.5.2)

where, according to (2.4.12), pointwise we have

(
T κ

)j1...jq

i1...ip
= T

(
∂i1 , . . . , ∂ip ,dκj1, . . . ,dκjq

)
. (2.5.3)

Remark 2.5.2 We determine the transformation laws for the local frames and for the
corresponding coefficient functions of tensor fields under a change of local chart.
Thus, let (V ,ρ) be another local chart on M . The following formulae hold over
U ∩ V . From (1.4.17) and (1.4.23) we read off

∂
ρ
i = Ã

j
i ∂

κ
j , dρi = Ai

j dκj

where

Ai
j := [(

ρ ◦ κ−1)′ ◦ κ
]i
j
, Ãi

j := [(
κ ◦ ρ−1)′ ◦ ρ

]i
j
,

and an according formula for the induced local frames in T
q
pM . Then, (2.5.3) im-

plies
(
T ρ

)j1...jq

i1...ip
= Ã

k1
i1

· · · Ãkp

ip
A

j1
l1

· · ·Ajq

lq

(
T κ

)l1...lq
k1...kp

. (2.5.4)

To pass to coefficient functions which depend on the coordinates, denote the ele-
ments of κ(U ∩ V ) by x and the elements of ρ(U ∩ V ) by y and write

yi(x) := ρi ◦ κ−1(x), xi(y) := κ ◦ ρ−1(y).

Then, from (2.5.4) we read off

(
T ρ

)j1...jq

i1...ip
◦ ρ−1 = ∂xk1

∂yi1
· · · ∂xkp

∂yip

∂yj1

∂xl1
· · · ∂yjq

∂xlq

(
T κ

)l1...lq
k1...kp

◦ κ−1. (2.5.5)
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This formula is well-known from classical tensor analysis. The argument in (2.5.5)

can be either x, in which case ∂xia

∂yka
and (T ρ)

j1...jq

i1...ip
◦ρ−1 have to be evaluated at y(x),

or y, in which case ∂yla

∂xja
and (T κ)

l1...lq
k1...kp

◦ κ−1 have to be evaluated at x(y).

Next, let M and N be Ck-manifolds and let ϕ : M → N be a Ck-mapping. Ac-
cording to Proposition 2.2.9, ϕ′ : TM → TN is a vector bundle morphism of class
Ck−1 projecting to ϕ. The corresponding pull-back operation (2.4.23) applies to dif-
ferential r-forms of class Ck−1. It will be denoted by ϕ∗ : Ωr(N) → Ωr(M). Ac-
cording to Examples 2.4.1–2.4.5, if ϕ is a diffeomorphism, ϕ′ induces isomorphisms
of tensor bundles. The corresponding transport operator (2.3.3) will be denoted by
ϕ∗ in case the induced isomorphism projects to ϕ and by ϕ∗ in case it projects to
ϕ−1. Then, for T ∈ Γ (T

q
pM), we have

ϕ∗T ≡ ((
ϕ′)⊗)

∗T = (
ϕ′)⊗ ◦ T ◦ ϕ−1, (2.5.6)

with (ϕ′)⊗ given by (2.4.13), and Formula (2.4.16) takes the form

(ϕ∗T )(X1, . . . ,Xp,α1, . . . , αq)

= T
(
ϕ−1∗ X1, . . . , ϕ

−1∗ Xp,ϕ∗α1, . . . , ϕ
∗αq

) ◦ ϕ−1 (2.5.7)

with Xi ∈ X(M) and αi ∈ Ω1(M). Moreover, Eq. (2.4.15) reads

ϕ∗(T1 ⊗ T2) = (ϕ∗T1) ⊗ (ϕ∗T2). (2.5.8)

Recall from Example 2.4.5 that for differential forms, the transport operation ϕ∗
coincides with the pull-back under ϕ.

Remark 2.5.3

1. Let T ∈ Γ (T
q
pM) and let ϕ : M → N be a diffeomorphism. Given local charts

(U,κ) and (V ,ρ) on M and N , respectively, the local formula for the transport
(2.5.6) of T is given by (2.5.4), with T replaced by ϕ∗T on the left hand side and
by T ◦ ϕ−1 on the right hand side, and with A and Ã given by

Ai
j = [(

ρ ◦ ϕ ◦ κ−1)′ ◦ κ ◦ ϕ−1]i
k
, Ãi

j = [(
κ ◦ ϕ−1 ◦ ρ−1)′ ◦ ρ

]i
j
.

The proof of this fact is left to the reader (Exercise 2.5.3).
2. Let (U,κ) be a local chart on M . We compare the corresponding local represen-

tative κ∗(T�U) of a tensor field T ∈ Γ (T
q
pM) with the local representative of the

mapping T : M → T
q
pM with respect to the induced chart ((π⊗)−1(U), κ⊗) on

T
q
pM , given by

κ⊗ ◦ T�U ◦ κ−1 : κ(U) → κ(U) ×T
q
pR

n.
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Proofs are left to the reader (Exercise 2.5.4). Since

κ∗∂i = ∂

∂xi
, κ∗dxi = dκi, (2.5.9)

we have

κ∗(T�U) = ((
T κ

)j1...jq

i1...ip
◦ κ−1)dxi1 ⊗ · · · ⊗ ∂

∂xjq
. (2.5.10)

On the other hand,

(
κ⊗ ◦ T�U ◦ κ−1)(x) = (

x,
((

T κ
)j1...jq

i1...ip
◦ κ−1(x)

)
e∗i1 ⊗ · · · ⊗ ejq

)
,

where, as before, ei denote the elements of the standard basis of Rn and e∗i the
elements of the dual basis. The relation to κ∗(T�U) is as follows. The natural iden-
tifications of the tangent spaces Tx(κ(U)) with R

n and of the cotangent spaces
T∗

x(κ(U)) with R
n∗ induce a natural identification of tensor fields on κ(U) with

Ck−1-mappings κ(U) → T
q
pR

n. Since the latter identifies the elements of the
global frames { ∂

∂xi } in T(κ(U)) and {dxi} in T∗(κ(U)) with the constant map-

pings x �→ ei and x �→ e∗i , respectively, it identifies κ∗(T�U) with κ⊗ ◦T�U ◦κ−1.
Note that for M = R

n and κ = id, (2.5.9) yields ∂i = ∂
∂xi .

Exercises

2.5.1 Let M1 = R+ × S1, with S1 realized as the unit sphere in R
2, and M2 =

R
2 \ {0}. Consider the mapping ϕ : M1 → M2, ϕ(r, (a, b)) := (ra, rb). Let r

denote the standard coordinate on R+ and let φ denote the angle coordinate
of S1. Determine the coefficient functions of ϕ∗ ∂

∂r
and ϕ∗ ∂

∂φ
with respect to

the global frame { ∂
∂x

, ∂
∂y

} in T(R2 \ {0}).
2.5.2 Let M1 = R+ × S2, with S2 realized as the unit sphere in R

3, and M2 =
R

3 \ {0}. Consider the mapping ϕ : M1 → M2, ϕ(r, (a, b, c)) = (ra, rb, rc).
Let r denote the natural coordinate on R+ and let the angle coordinates ϑ , φ

on S2 be defined by a = cosφ sinϑ , b = sinφ sinϑ , c = cosϑ . Determine the
coefficient functions of ϕ∗ ∂

∂r
, ϕ∗ ∂

∂φ
and ϕ∗ ∂

∂θ
with respect to the global frame

{ ∂
∂x

, ∂
∂y

, ∂
∂z

} in T(R3 \ {0}).
2.5.3 Prove the transformation formula for the transport of tensor fields under dif-

feomorphisms given in Remark 2.5.3/1.
2.5.4 Prove the assertions of Remark 2.5.3/2.

2.6 Induced Bundles

Let (E,N,π) be a K-vector bundle of class Ck , let M be a Ck-manifold and let
ϕ ∈ Ck(M,N). Using ϕ, one can construct from E a vector bundle ϕ∗E over M by
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attaching to m ∈ M the fibre Eϕ(m) as follows. Define

ϕ∗E := {
(m,x) ∈ M × E : ϕ(m) = π(x)

}

and consider the surjective mapping πϕ∗ : ϕ∗E → M defined by πϕ∗
(m,x) := m.

The fibres are
(
ϕ∗E

)
m

≡ (
πϕ∗)−1

(m) = {m} × Eϕ(m).

They inherit a natural K-vector space structure from E.

Proposition 2.6.1 Under the above assumptions, ϕ∗E admits a Ck-structure such
that it is an embedded submanifold of M × E. Then,

1. (ϕ∗E,M,πϕ∗
) is a K-vector bundle of class Ck ,

2. the natural projection M × E → E restricts to a Ck-morphism ϕ∗E → E cov-
ering ϕ,

3. every local section s of E induces a local section of ϕ∗E defined by
(
ϕ∗s

)
(m) := (

m,s ◦ ϕ(m)
)
.

Proof We apply Proposition 1.7.3 in the formulation of Remark 1.7.4. Choose a
typical fibre F and a system of local trivializations {(Uα,χα) : α ∈ A} for E. For
every α ∈ A, consider the open subset Vα := ϕ−1(Uα) of M and the mapping

ψα : Vα × F → M × E, ψα(m,u) := (
m,χ−1

α

(
ϕ(m),u

))
.

Since ψα is obtained by composing the diffeomorphism χ−1
α with the natural in-

clusion mapping of the graph of ϕ�Vα
: Vα → Uα , by Example 1.6.12/2, it is a Ck-

embedding. Hence, the image ψα(Vα ×F) inherits a Ck-structure from Vα ×F and
with respect to this structure it is an embedded Ck-submanifold of M × E. Since
the image is ϕ∗E ∩ (Vα × π−1(Uα)) and since the Vα × π−1(Uα) are open subsets
of M × E covering ϕ∗E, we conclude that ϕ∗E is an embedded submanifold. It
remains to prove assertion 1; assertions 2 and 3 are then obvious. Since πϕ∗

is the
restriction of the natural projection M × E → M to the Ck-submanifold ϕ∗E, it
is of class Ck . Since, by construction, the ψα restrict to Ck-diffeomorphisms from
Vα × F to ϕ∗E ∩ (Vα × π−1(Uα)) = (πϕ∗

)−1(Vα), by inverting them we obtain
Ck-diffeomorphisms

χϕ∗
α : (πϕ∗)−1

(Vα) → Vα × F, χϕ∗
α (m,x) = (

m,χα,ϕ(m)(x)
)
. (2.6.1)

The latter satisfy conditions 2a and 2b of Definition 2.2.1. Thus, (ϕ∗E,M,πϕ∗
) is

a K-vector bundle of class Ck . �

Definition 2.6.2 (Induced vector bundle) The K-vector bundle (ϕ∗E,M,πϕ∗
) is

called the vector bundle induced from E by ϕ or the pull-back of E by ϕ. For a
local section s of E, the local section ϕ∗s of ϕ∗E is said to be induced from s by ϕ

or to be the pull-back of s by ϕ.
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Another common notation for the induced vector bundle is ϕ∗E ≡ M ×N E.

Remark 2.6.3

1. From the proof of Proposition 2.6.1 we note that via (2.6.1), every local triv-
ialization (U,χ) of E induces a local trivialization (ϕ−1(U),χϕ∗

) of ϕ∗E.
In particular, the pull-back of a trivial vector bundle is trivial. Moreover, if
ραβ : Uα ∩ Uβ → GL(F ) are the transition functions of a system of local trivi-
alizations of E, then ϕ∗ραβ : ϕ−1(Uα) ∩ ϕ−1(Uβ) → GL(F ) are the transition
functions of the induced system of local trivializations of ϕ∗E.

2. Let (Ei,Mi,πi), i = 1,2, be K-vector bundles of class Ck and let Φ : E1 → E2
be a morphism with projection ϕ : M1 → M2. Φ naturally decomposes as

E1
Φver−→ ϕ∗E2

Φhor−→ E2, (2.6.2)

where Φver is given by Φver(x) = (π1(x),Φ(x)), x ∈ E1, and Φhor denotes the
induced vector bundle morphism of Proposition 2.6.1/2. One can check that Φver
is a vertical morphism, with differentiability of class Ck following from Propo-
sition 1.6.10 and the fact that ϕ∗E is an embedded submanifold of M × E.
Using this decomposition, one can derive the following characterization of iso-
morphisms in terms of their projections and fibre mappings (Exercise 2.6.1): a
morphism is an isomorphism iff its projection is a diffeomorphism and its fibre
mappings are bijective.

Example 2.6.4

1. If ϕ : M → N is constant with ϕ(m) = p, then ϕ∗E coincides with the product
vector bundle M × Ep .

2. If M ⊂ N is an open subset and j : M → N is the natural inclusion mapping,
j∗E can be identified with the restriction E�M , see Example 2.2.3/3.

3. Let M = N = S1 and let E be the Möbius strip of Example 2.2.4. Realize S1

as the unit circle in C and consider the n-fold covering ϕn : S1 → S1, ϕn(z) =
zn. Since ϕ∗

nE is a differentiable real vector bundle over S1 of dimension 1,
according to Remark 2.3.14, it must be isomorphic to either E or the product
vector bundle S1 ×R. Indeed, one finds (Exercise 2.6.2)

ϕ∗
nE ∼=

{
E | n odd,

S1 ×R | n even.

4. Let E1 and E2 be K-vector bundles of class Ck over M , let E1 × E2 denote the
product vector bundle over M ×M , see Exercise 2.2.7, and let Δ : M → M ×M

denote the diagonal mapping, Δ(m) = (m,m). The pull-back Δ∗(E1 × E2) is
naturally isomorphic to the direct sum E1 ⊕ E2 (Exercise 2.6.3).

5. If E is a K-vector bundle of class Ck over N and (M,ϕ) is a Ck-submanifold of
N , the induced vector bundle ϕ∗E is referred to as the restriction of E to M and
is usually denoted by E�M . This applies in particular to E = TN , where ϕ∗TN

is a real vector bundle over M of class Ck−1 and dimension dimN .
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Exercises
2.6.1 Use the natural decomposition (2.6.2) of vector bundle morphisms to show

that a morphism is an isomorphism iff its projection is a diffeomorphism and
the fibre mappings are bijective, cf. Remark 2.6.3/2.

2.6.2 Prove the statement of Example 2.6.4/3 about the pull-back of the Möbius
strip by means of a covering of S1.

2.6.3 Show that Δ∗(E1 × E2) ∼= E1 ⊕ E2, see Example 2.6.4/4.

2.7 Subbundles and Quotient Bundles

Definition 2.7.1 (Vector subbundle) Let (Ei,Mi,πi), i = 1,2, be K-vector bundles
of class Ck and let Φ : E1 → E2 be a morphism. The pair (E1,Φ) is called a sub-
bundle, an initial subbundle or an embedded subbundle of E2 if it is, respectively, a
submanifold, an initial submanifold or an embedded submanifold. If M1 = M2 = M

and Φ is vertical, (E1,Φ) is called a vertical subbundle or a subbundle over M .

At the very beginning, we observe that Propositions 1.6.10 and 1.6.14 remain true
if the term submanifold is replaced by subbundle and Ck-mapping by morphism.
The following two specific types of subbundles are the building blocks for arbitrary
subbundles.

Example 2.7.2 (Vertical subbundle) If E1 and E2 are K-vector bundles of class Ck

over M and Φ : E1 → E2 is an injective vertical morphism, then (E1,Φ) is a ver-
tical subbundle of E2. Vertical subbundles are embedded. To see this, it suffices to
show that (E1,Φ) is an embedded submanifold of E2. Let li denote the dimensions
of Ei . Necessarily, l1 ≤ l2. Let x ∈ E1 and m := π1(x). Choose a local frame in
E1 at m. By injectivity, the image under Φ is a local l1-frame in E2. According to
Proposition 2.3.15/3, the latter can be complemented, over a possibly smaller do-
main U , to a local frame in E2 at m. The local representative of Φ with respect to
the local trivializations associated with these local frames in E1 and E2 is given by

U ×K
l1 → U ×K

l2 , (m,x) �→ (
m,(x,0)

)
.

Hence, it is an embedding. Since π−1
1 (U) = Φ−1(π−1

2 (U)), this implies that the
restriction Φ�Φ−1(π−1

2 (U))
is an embedding. Since π−1

2 (U) is an open neighbourhood

of Φ(x) and x was arbitrary, Remark 1.6.13/3 yields the assertion.

Example 2.7.3 (Restriction of the base manifold) Let (E,N,π) be a K-vector bun-
dle of class Ck and let (M,ϕ) be a Ck-submanifold of N . Let Φ : ϕ∗E → E de-
note the induced vector bundle morphism of Proposition 2.6.1/2. Recall from Ex-
ample 2.6.4/5 that ϕ∗E is referred to as the restriction of E to M and is alternatively
denoted by E�M . We show that (ϕ∗E,Φ) is a Ck-subbundle of E. If (M,ϕ) is initial
or embedded, so is (ϕ∗E,Φ). Indeed, the local representatives of Φ with respect to
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a system of local trivializations {(Uα,χα) : α ∈ A} of E and the induced system of
local trivializations of ϕ∗E are given by

χα ◦ Φ�(πϕ∗
)−1(ϕ−1(Uα)) ◦ (

χϕ∗
α

)−1 : ϕ−1(Uα) × F → Uα × F,

(m,u) �→ (
ϕ(m),u

)
.

First, this implies that Φ is an immersion. Second, since χα and χ
ϕ∗
α are diffeomor-

phisms and since

(
πϕ∗)−1(

ϕ−1(Uα)
) = Φ−1(π−1(Uα)

)
,

this implies that the submanifolds (Φ−1(π−1(Uα)),Φ�Φ−1(π−1(Uα))) inherit the
property of being initial or embedded from (M,ϕ). Then, Remark 1.6.13/3 yields
the assertion.

The following proposition states criteria for a morphism to define a subbundle.

Proposition 2.7.4 Let (Ei,Mi,πi), i = 1,2, be K-vector bundles of class Ck , let
Φ : E1 → E2 be a morphism and let ϕ : M1 → M2 be the projection. The following
statements are equivalent.

1. (E1,Φ) is, respectively, a subbundle, initial subbundle or embedded subbundle
of E2.

2. (M1, ϕ) is, respectively, a submanifold, initial submanifold or embedded sub-
manifold of M2 and the fibre mappings Φm : E1,m → E2,ϕ(m) are injective for all
m ∈ M1.

3. In the decomposition (2.6.2), (E1,Φver) is a vertical subbundle of ϕ∗E2 and
(ϕ∗E2,Φhor) is, respectively, a subbundle, initial subbundle or embedded sub-
bundle of E2.

Item 3 gives a precise meaning to the statement made above that vertical subbun-
dles (Example 2.7.2) and restrictions of the base manifold (Example 2.7.3) provide
the building blocks for arbitrary subbundles.

Proof 1 ⇒ 2: The fibre mappings Φm are obviously injective. Since they are linear,
one has the commutative diagram

M1

Φ◦s0,1

ϕ

E2

M2

s0,2
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where s0,i denotes the zero sections of Ei . According to Proposition 2.3.5, s0,1 and
s0,2 are embeddings. Hence, the assertion follows by applying Proposition 1.6.14.
(We encourage the reader to work out the argument for each case.)

2 ⇒ 3: Since the mappings Φm are injective, Φver is injective, hence the asser-
tion on (E1,Φver) holds due to Example 2.7.2. The assertion on (ϕ∗E2,Φhor) was
proved in Example 2.7.3.

3 ⇒ 1: Since vertical subbundles are embedded, this follows from Proposi-
tion 1.6.14/1. �

In the following proposition we give criteria for a family of fibre subspaces of a
vector bundle to define a vertical subbundle. The proof is left to the reader (Exer-
cise 2.7.1).

Proposition 2.7.5 (Families of fibre subspaces) Let (E2,M,π) be a K-vector bun-
dle of class Ck . For every m ∈ M , let E1,m ⊂ E2,m be a linear subspace. Define
E1 := ⋃

m∈M E1,m. The following statements are equivalent.

1. E1 admits a Ck-structure such that it is a vertical subbundle of E2 of dimen-
sion r .

2. There exists a covering of M by local r-frames in E2 which span E1.
3. There exists a covering of M by local frames in E2 whose first r elements

span E1.
4. There exists a system of local trivializations {(Uα,χα) : α ∈ A} of E2 and a

subspace F1 of dimension r of the typical fibre F2 such that the restrictions of
the χα to E1 take values in Uα × F1.

Example 2.7.6 (Regular distribution) Let M be a Ck-manifold. A vertical subbun-
dle (D,Φ) of TM is called a regular distribution (in the geometrical sense) on M .
According to Proposition 2.7.5, a family of r-dimensional subspaces Dm ⊂ TmM ,
m ∈ M , defines a distribution iff for every m0 ∈ M there exists an open neighbour-
hood U and pointwise linearly independent local vector fields X1, . . . ,Xr on U

such that Dm is spanned by X1,m, . . . ,Xr,m for all m ∈ U . There is a more general
notion of distribution on M which will be defined and studied in Sect. 3.5.

Example 2.7.7 (Kernel and image) Let Ei be K-vector bundles over M of class Ck

and dimension li , i = 1,2, and let Φ : E1 → E2 be a vertical morphism of constant
rank r . Define the image and the kernel of Φ to be

imΦ :=
⋃

m∈M

imΦm, kerΦ :=
⋃

m∈M

kerΦm,

respectively. We show that imΦ is a vertical subbundle of E2 of dimension r and
that kerΦ is a vertical subbundle of E1 of dimension l1 − r .

Let m0 ∈ M . Choose a basis {e1, . . . , el1} of E1,m0 such that er+1, . . . , el1 span
kerΦm0 . Extend this basis to a local frame {s1, . . . , sl1} in E1, cf. Proposition 2.3.15.
By construction, the vectors Φm0(e1), . . . ,Φm0(er ) form a basis of the subspace



2.7 Subbundles and Quotient Bundles 87

imΦm0 ⊂ E2,m0 . In particular, the local sections Φ ◦s1, . . . ,Φ ◦sr of E2 are linearly
independent at m0 so that, by possibly shrinking the domain of definition of the si ,
we may assume that they form a local r-frame in E2. Since Φ has rank r , this local
r-frame spans imΦm for all m belonging to the domain of definition. First, in view
of Proposition 2.7.5, this yields the assertion for imΦ . Second, this implies that there
exist local Ck-functions aij , i = r + 1, . . . , l1, j = 1, . . . , r , on M such that

Φ ◦ si =
r∑

j=1

aijΦ ◦ sj , r + 1 ≤ i ≤ l1.

Then the local sections s̃r+1, . . . , s̃l1 given by

s̃i := si −
r∑

j=1

aij sj , r + 1 ≤ i ≤ l1,

form a local (l1 − r)-frame in E1 spanning kerΦm. Applying Proposition 2.7.5 once
again, we obtain the assertion for kerΦ .

Example 2.7.8 (Annihilator) Let V be a vector space. The annihilator of a subspace
W ⊂ V is the subspace

W 0 := {
ν ∈ V ∗ : ν�W = 0

}

of the dual vector space V ∗. Let E2 be a K-vector bundle over M of class Ck and
dimension l2 and let (E1,Φ) be a vertical subbundle of dimension l1. Then,

E0
1 :=

⋃

m∈M

(
Φ(E1,m)

)0

is a vertical subbundle of dimension l2 − l1 of the dual vector bundle E∗
2 , called

the annihilator of E1 in E2. In view of Proposition 2.7.5/3, this follows from the
obvious fact that for every local frame in E2 whose first l1 elements span (E1,Φ),
the last l2 − l1 elements of the corresponding dual local frame in E∗

2 span E0
1 . The

annihilator of a general vector subbundle (E1,Φ) is defined to be (E0
1 , (Φhor)�E0

1
),

where E0
1 is the annihilator of the vertical subbundle (E1,Φver) of ϕ∗E2 and ϕ is

the projection of Φ . It has the same base manifold as E1.

Remark 2.7.9

1. For every vertical subbundle (E1,Φ) of E2 there exists a complement in E2, that
is, a vertical subbundle (Ẽ1, Φ̃) of E2 such that E2 = E1 ⊕ Ẽ1. The proof is in
two steps.
(a) Show that for every K-vector bundle (E,M,π) of class Ck there exists a

Ck-function h : E ⊗ E → K such that hm := h�Em⊗Em
is a scalar product on

Em for all m ∈ M (Exercise 2.7.2).9

9(E,h) is called a Euclidean vector bundle if K = R and a Hermitian vector bundle if K = C.
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(b) Show that the family of hm-orthogonal complements of the subspaces
E1,m ⊂ E2,m defines a vertical subbundle of E2 (Exercise 2.7.3).

2. Let M be a compact smooth manifold. The statement of 1 provides part of the
proof that for every smooth vector bundle E over M there exists a smooth vec-
tor bundle Ẽ over M such that E ⊕ Ẽ is trivial. For the remaining part, see
for example [125, Prop. 1.4].10 This is known as the cancellation property and
is an important ingredient in what is called the K-theory of M . Let us have a
glimpse at the reduced version of the latter. Two smooth K-vector bundles E and
Ẽ over M are said to be stably equivalent if E ⊕ (M × K

r ) is isomorphic to
Ẽ ⊕ (M ×K

s) for some r, s. The set of stable equivalence classes is an Abelian
semigroup with respect to the operation of direct sum, where the unit element is
given by the class of trivial bundles. Now, the cancellation property yields that
every element of this semigroup has an inverse, hence the semigroup is in fact
a group, called the reduced real (for K = R) or complex (for K = C) K-group
of M . Together with the operation of tensor product, it is an Abelian ring.

Next, we discuss quotient vector bundles. Let (E2,M,π2) be a K-vector bundle
of class Ck and let (E1,Φ) be a vertical subbundle of E2 of rank r with projec-
tion π1. Since vertical subbundles are embedded, we may assume that E1 ⊂ E2
and Φ is the natural inclusion mapping. E1,m is a vector subspace of E2,m for all
m ∈ M , and we can form the quotient spaces E2,m/E1,m. Let

E2/E1 :=
⊔

m∈M

E2,m/E1,m

and let π : E2/E1 → M denote the natural projection to the index set. By construc-
tion, the fibres π−1(m) are vector spaces. According to Proposition 2.7.5, there ex-
ists a family of local trivializations {(Uα,χ2α) : α ∈ A} of E2 and an r-dimensional
subspace F1 of the typical fibre F2 of E2 such that the restrictions of χ2α to E1 take
values in Uα × F1. For any such χ2α , we define a mapping

χα : π−1(Uα) → Uα × F2/F1, χα

([x]) := (
m,

[
χ2α,m(x)

])
,

where m = π2(x). To check differentiability of the corresponding transition map-
pings, choose a complement F̃1 of F1 in F2 and let λ : F2/F1 → F2 denote the
linear mapping which assigns to each class its unique representative in F̃1. More-
over, let pr : F2 → F2/F1 be the natural projection. Since χβ ◦ χ−1

α decomposes
as

χβ ◦ χ−1
α = (id × pr) ◦ (

χ2β ◦ χ−1
2α

) ◦ (id × λ),

it is of class Ck . Then, Remark 2.2.5 yields that the family {(Uα,χα) : α ∈ A} de-
fines a Ck-structure on E2/E1 such that (E2/E1,M,π) is a K-vector bundle of
class Ck over M . This Ck-structure obviously does not depend on the choice of the
subspace F1.

10Compactness of M is necessary here, see Example 3.6 in [125].
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Definition 2.7.10 (Quotient vector bundle) The vector bundle (E2/E1,M,π) con-
structed above is called the quotient vector bundle of E2 by E1.

Remark 2.7.11

1. The fibrewise natural projections E2,m → E2,m/E1,m to classes combine to a
natural projection E2 → E2/E1. The latter is a vertical morphism, because its
local representative with respect to a local trivialization (Uα,χ2α) of E2 whose
restriction to E1 takes values in Uα × F1, and the induced local trivialization of
E2/E1 is given by the natural projection F2 → F2/F1. By composing a local
section s of E2 with the natural projection E2 → E2/E1 one obtains a local
section of E2/E1, denoted by [s].

2. Let li denote the dimension of Ei , i = 1,2. For any local frame {s1, . . . , sl2} in E2
with the property11 that s1, . . . , sl1 span E1, {[sl1+1], . . . , [sl2 ]} is a local frame
in E2/E1.

3. According to Remark 2.7.9/1, E1 admits a complement Ẽ1 in E2. For any such
complement, the natural projection E2 → E2/E1 restricts to a vertical isomor-
phism Ẽ1 → E2/E1. This follows at once by observing that the induced mapping
is a bijective vertical morphism. Thus, every complement defines a vector bundle
isomorphism

E2 ∼= E1 ⊕ (E2/E1).

4. By a coorientation, or transversal orientation, of E1 in E2 one means an orien-
tation of the quotient vector bundle E2/E1. Accordingly, E1 is said to be coori-
entable, or transversally orientable, in E2 if E2/E1 is orientable.

Example 2.7.12 (Homomorphism theorem) Let E1 and E2 be K-vector bundles of
class Ck over M and let Φ : E1 → E2 be a vertical morphism of constant rank.
Then, the induced mapping

Φ̃ : E1/kerΦ → imΦ

is an isomorphism. Indeed, Φ̃ is obviously bijective and fibrewise linear. To see that
it is of class Ck , one may choose a complement E0 of kerΦ in E1 and write Φ̃

as the composition of the isomorphism E1/kerΦ → E0 and the restriction of Φ̃ in
domain to E0. Thus, Φ̃ is a bijective vertical morphism and hence an isomorphism.

Example 2.7.13 (Dual quotient vector bundle) Let E2 be a K-vector bundle of class
Ck over M and let E1 be a vertical subbundle. The dual vector bundle (E2/E1)

∗
is called the dual quotient vector bundle. It is naturally isomorphic over M to the
annihilator E0

1 . Indeed, the mapping

Φ : E0
1 → (E2/E1)

∗,
(
Φm(ξ)

)([x]) := ξ(x), ξ ∈ E∗
2,m, x ∈ E2,m,

11Such local frames exist by Proposition 2.7.5.
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is well-defined, bijective and fibrewise linear. Hence, it remains to show that Φ is of
class Ck . To see this, choose a local frame {s1, . . . , sl2}, whose first l1 elements span
E1 over U . Then, the elements s∗i , i = l1 +1, . . . , l2, of the dual local frame span E0

1
over U and, according to Remark 2.7.11/2, the dual local frame {[sl1+1]∗, . . . , [sl2 ]∗}
spans (E2/E1)

∗ over U . By construction, the local representative of Φ with respect
to the local trivializations defined by these local frames does not depend on m and
is hence of class Ck , as asserted.

To conclude this section, we discuss vector bundle structures induced by sub-
manifolds. Thus, let N be a Ck-manifold and let (M,ϕ) be a Ck-submanifold of N .

Proposition 2.7.14 (TM,ϕ′) is a vector subbundle of TN . It is initial or embedded
iff so is (M,ϕ).

Proof Recall from Example 2.6.4/5 that the restriction of TN to the submanifold
(M,ϕ) is defined to be the induced vector bundle (TN)�M := ϕ∗TN . Since ϕ is an
immersion, the vertical morphism (ϕ′)ver : TM → (TN)�M in the natural decom-
position (2.6.2) of ϕ′ is injective. Hence, (TM,(ϕ′)ver) is a vertical subbundle of
(TN)�M . Then, Proposition 2.7.4/3 yields that (TM,ϕ′) is a subbundle of TN and
that it is initial or embedded if so is (M,ϕ). The converse direction follows from
Proposition 1.6.14 and the fact that the zero sections of the tangent bundles of M

and N are embeddings. The details are left to the reader (Exercise 2.7.4). �

Remark 2.7.15 Let V be a finite-dimensional real vector space and let M ⊂ V be an
embedded Ck-submanifold. For every v ∈ M , the natural identification of TvV with
V of Example 1.4.3/2 identifies TvM with a subspace of V , which we denote by the
same symbol. In particular, in case M is open in V , one has TvM = V ; and in case
M is a level set of a Ck-mapping f , one has TvM = kerf ′(v). In the general case,
TvM is just the tangent plane of M at v, shifted by −v to the origin. Thus, together
with the induced natural identification of TV with V ×V , Proposition 2.7.14 yields
a natural identification of TM with the embedded Ck−1-submanifold

{
(v,X) ∈ M × V : X ∈ TvM

}

of M × V and a natural representation of vector fields on M by Ck−1-mappings
X : M → V satisfying X(v) ∈ TvM for all v ∈ M . This generalizes Remarks 2.1.4/2
and 2.3.4/2.

A further consequence of the observation that (TM,(ϕ′)ver) is a vertical subbun-
dle of (TN)�M is the following. A vector field X on N is said to be tangent to the
submanifold (M,ϕ) if Xϕ(m) ∈ ϕ′(TmM) for all m ∈ M .

Proposition 2.7.16 Let N be a manifold and let (M,ϕ) be a submanifold of N . For
every vector field X on N which is tangent to (M,ϕ), there exists a unique vector
field X̃ on M such that ϕ′ ◦ X̃ = X ◦ ϕ, that is, X̃ and X are ϕ-related.



2.7 Subbundles and Quotient Bundles 91

We will say that X̃ is induced from X and call it the restriction of X to (M,ϕ).

Proof Due to the assumption, the equation ϕ′ ◦ X̃ = X ◦ ϕ defines a mapping X̃ :
M → TM . X̃ is the restriction in range to TM of the section of (TN)�M = ϕ∗TN

induced from X by ϕ. Since vertical subbundles are embedded, Proposition 1.6.10
yields that X̃ is differentiable,12 that is, of class Ck−1. �

Finally, we introduce

Definition 2.7.17 (Normal and conormal bundle) Let N be a manifold and let
(M,ϕ) be a submanifold of N .

1. The quotient vector bundle NM := (TN)�M/TM is called the normal bundle of
(M,ϕ). Its fibres are called the normal spaces of M at m ∈ M . They are denoted
by NmM .

2. The dual vector bundle N∗M := (NM)∗ is called the conormal bundle of (M,ϕ).
Its fibres are called the conormal spaces of M at m ∈ M . They are denoted by
N∗

mM .

Remark 2.7.18

1. The normal and the conormal bundle of (M,ϕ) are real vector bundles over M

of class Ck−1 and dimension dimN − dimM . According to Remark 2.7.11/3,
NM is isomorphic to an arbitrary complement of TM in (TN)�M , and it is of-
ten realized in this way. For an example, see Exercise 2.7.6. According to Ex-
ample 2.7.13, N∗M is naturally isomorphic to the annihilator (TM)0 of TM in
(TN)�M .

2. By a coorientation, or a transversal orientation, of (M,ϕ) one means an orienta-
tion of NM . Accordingly, (M,ϕ) is said to be coorientable, or transversally ori-
entable, if the normal bundle NM of (M,ϕ) is orientable. This is consistent with
the terminology for vector subbundles introduced in Remark 2.7.11/4: a coorien-
tation of (M,ϕ) is the same as a coorientation of TM in (TN)�M .

3. We discuss local frames in NM and N∗M induced by local charts on N adapted
to M . Denote r := dimM and s := dimN . For simplicity, we consider the case of
M being a subset of N . We leave it to the reader to write down the respective local
frames for the general situation. According to Proposition 1.6.7, for every m ∈
M , there exists an open neighbourhood U of m in M and a local chart (V ,ρ) on
N at m such that U ⊂ V and (U,ρ�U) is a local chart on M , taking values in the
subspace R

r × {0} ⊂ R
s . Then, {∂i�U : i = 1, . . . , s} is a local frame in (TN)�M

whose first r elements span TM over U . According to Remark 2.7.11/2, then
{[∂i�U ] : i = r + 1, . . . , s} is a local frame in NM . This, in turn, induces a dual
local frame {[∂i�U ]∗ : i = r + 1, . . . , s} in N∗M , see Example 2.4.1. According

12By construction, X̃ is also the restriction of X in domain to the submanifold (M,ϕ) and in range
to the subbundle (TM,ϕ′). This does not help for the argument though, because the latter need not
be embedded, so that Proposition 1.6.10 does not apply here.
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to Example 2.7.13, the natural isomorphism N∗M → (TM)0 maps the latter to
the local frame in (TM)0 consisting of the last s − r elements of the local frame
{(dρi)�U : i = 1, . . . , s} in ((TN)�M)∗ ≡ (T∗N)�M .

4. Assume that (M,ϕ) is embedded. The subset

Ck
M(N) = {

f ∈ Ck(N) : ϕ∗f = 0
}

(2.7.1)

is an ideal of the associative algebra Ck(N), called the vanishing ideal of M .
By means of this ideal, for m ∈ M , the subspaces TmM of Tϕ(m)N and N∗

mM ∼=
(TmM)0 of T∗

ϕ(m)(N) can be characterized as follows:

ϕ′(TmM) = {
X ∈ Tϕ(m)N : X(f ) = 0 for all f ∈ Ck

M(N)
}
, (2.7.2)

N∗
mM = {

ξ ∈ T∗
ϕ(m)N : ξ = df

(
ϕ(m)

)
for some f ∈ Ck

M(N)
}
. (2.7.3)

The proof is left to the reader (Exercise 2.7.5). Beware that (2.7.2) or (2.7.3) need
not hold if M is not embedded. A counterexample is provided by the figure eight
submanifold (R, γ±) of Example 1.6.6/2. At the crossing point, the derivative of
any element of C∞

M (N) vanishes. Hence, for the right hand side of (2.7.2) one
obtains Tϕ(m)N .

Exercises
2.7.1 Prove Proposition 2.7.5 by means of Proposition 2.3.15.
2.7.2 Let (E,M,π) be a K-vector bundle of class Ck . Use a system of local trivial-

izations and a subordinate partition of unity of M to construct a Ck-function
h : E ⊗ E → K such that hm := h�Em⊗Em

is a scalar product on Em for all
m ∈ M .

2.7.3 Show that every vertical subbundle admits a complement.
2.7.4 Complete the proof of Proposition 2.7.14.
2.7.5 Prove Eqs. (2.7.2) and (2.7.3) of Remark 2.7.18, characterizing the tangent

and the conormal spaces of an embedded submanifold.
2.7.6 Using the Euclidean metric, construct the normal bundle of the submanifold

Sn of Rn+1 as a complement of TSn in (TRn+1)�Sn . Is this bundle trivial?



Chapter 3
Vector Fields

In the first four sections, we discuss elementary aspects of the theory of vector fields.
In Sect. 3.1 we show that it is fruitful to view vector fields as derivations of the alge-
bra of functions on the manifold. Next, in Sect. 3.2, we discuss in detail the notions
of integral curve and flow and, in Sect. 3.3 we introduce the Lie derivative of a
tensor field with respect to a given vector field. Finally, in Sect. 3.4, we extend the
notion of an ordinary vector field to that of a time-dependent vector field. Next,
we pass to more advanced topics. In Sect. 3.5, we give an introduction to the the-
ory of (geometric) distributions, a notion which generalizes that of a vector field: a
distribution is a subset of the tangent bundle consisting of linear subspaces of the
tangent spaces. Following the theory developed by Stefan and Sussmann, we dis-
cuss the concept of integrability in some detail. The special case of a distribution
of constant rank is built in here and the classical Frobenius Theorem occurs as a
special case of a general theorem yielding integrability criteria. In the remaining
four sections, we give an introduction to the study of the qualitative behaviour of
the flows of vector fields.1 In Sect. 3.6 we collect the basic notions related to crit-
ical integral curves.2 In Sect. 3.7, we introduce the concept of a Poincaré mapping
and in Sect. 3.8 we pass to the study of elementary aspects of stability. This notion
comprises a variety of concepts characterizing, in effect, two aspects of the long-
time behaviour of a flow, namely, returning properties and attraction properties of
integral curves or, more generally, of invariant subsets. Here, we limit our atten-
tion to the concept of so-called orbital stability, to which for simplicity we refer
to merely as stability. At the end of this section we briefly discuss the relation to
Lyapunov stability, a notion physicists are probably more familiar with. Finally, in
Sect. 3.9, we present the concept of invariant manifolds which plays a basic role
in the analysis of the qualitative behaviour of flows near critical integral curves.
In all of the four final sections, the reader will find a number of illustrative exam-
ples.

1That is, to the theory of dynamical systems.
2Equilibrium points or periodic integral curves.

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
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From now on, we restrict attention to smooth manifolds and smooth mappings.
Let M be a smooth manifold of dimension n. Recall from Chap. 2 that a vector field
on M is a section of the tangent bundle TM and that the space of vector fields is
denoted by X(M). Recall, furthermore, that for every local chart (U,κ), the local
sections ∂i form a local frame in TM .

3.1 Vector Fields as Derivations

In this section, we will relate vector fields to derivations of the associative alge-
bra C∞(M) and use this to define their commutator. Let X ∈ X(M). Recall from
Sect. 1.4 that the tangent vectors Xm, m ∈ M , define directional derivatives of func-
tions and hence mappings Xm : C∞(M) → R. Thus, for f ∈ C∞(M), we can define
a function X(f ) on M by

X(f )(m) := Xm(f ), m ∈ M.

This function is smooth, because its local representative with respect to a chart
(U,κ) is

X(f ) ◦ κ−1 = (Xi ◦ κ−1)∂(f ◦ κ−1)

∂xi
,

where Xi ∈ C∞(U) are the coefficient functions of X with respect to the local frame
{∂i}. By assigning to f the function X(f ) we obtain a linear mapping

X : C∞(M) → C∞(M),

denoted by the same symbol. According to (1.4.11), it satisfies

X(fg) = X(f )g + f X(g), f, g ∈ C∞(M),

hence it is a derivation of the algebra C∞(M).3

Proposition 3.1.1 Vector fields on M correspond bijectively to derivations of the
algebra C∞(M).

Proof It remains to show that every derivation of C∞(M) is generated by a vector
field. Thus, for a given derivation δ define a mapping Xm:C∞(M) → R by

Xm(f ) := (δ(f )
)
(m)

for every m ∈ M . Xm is linear and satisfies

Xm(fg) = (δ(fg)
)
(m) = (δ(f )g + f δ(g)

)
(m) = Xm(f )g(m) + f (m)Xm(g),

hence it is a derivation of C∞(M) at m. Then, according to Proposition 1.4.7,
Xm ∈ TmM , and so the assignment m �→ Xm defines a mapping X : M → TM

3The derivations of C∞(M) are frequently referred to as the first order differential operators on M .
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with π ◦ X = idM . By construction, X(f ) = δ(f ) ∈ C∞(M) for any f ∈ C∞(M).
We show that this implies that X is smooth. In view of Proposition 2.3.10, it suf-
fices to show that for every m ∈ M there exists a local chart (U,κ) at m such that
the coefficient functions Xi of X with respect to the induced local frame {∂i} are
smooth. According to Remark 2.3.2/4, by possibly shrinking U we may assume
that κi = κ̃ i

�U for some κ̃ i ∈ C∞(M), i = 1, . . . , n. Then, Example 2.3.11/1 and
Proposition 1.4.5/2 imply

Xi = X�U
(
κi
)= X�U

(
κ̃ i
�U
)= (X(κ̃ i

))
�U = (δ(κ̃ i

))
�U ,

thus showing that Xi is smooth, indeed. �

For what follows, let us recall the notion of Lie algebra.

Definition 3.1.2 A Lie algebra over K = R or C is a vector space g over K to-
gether with a bilinear mapping [·,·] : g×g→ g, called multiplication, satisfying the
following axioms.

1. Anticommutativity: [A,A] = 0 for all A ∈ g.
2. Jacobi identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 for all A,B,C ∈ g.

A homomorphism of Lie algebras g and h is a mapping ϕ : g → h which is linear
and satisfies ϕ([A,B]) = [ϕ(A),ϕ(B)] for all A,B ∈ g.

One can check that the commutator [δ1, δ2] = δ1 ◦ δ2 − δ2 ◦ δ1 of derivations δ1,
δ2 of an associative algebra A is a derivation of A and that the commutator defines a
Lie algebra structure on the space of all derivations of A (Exercise 3.1.1). Therefore,
Proposition 3.1.1 allows for

Definition 3.1.3 (Commutator of vector fields) The commutator of the vector fields
X, Y on M is the vector field [X,Y ] on M corresponding to the derivation [X,Y ] =
X ◦ Y − Y ◦ X.

Thus, X(M) with the commutator as a product is a real Lie algebra.

Remark 3.1.4

1. Recall that X(M), as a space of sections in a vector bundle over M , is naturally
a C∞(M)-module. The commutator and the module structure are related by

[f X,gY ] = fg[X,Y ] + f X(g)Y − gY (f )X, (3.1.1)

with X,Y ∈ X(M) and f,g ∈ C∞(M). The proof is left to the reader (Exer-
cise 3.1.2).

2. Let (U,κ) be a local chart on M and let X,Y ∈X(M). The coefficient functions
of [X,Y ] with respect to the local frame {∂i} are given by (Exercise 3.1.4)

[X,Y ]i = Xj∂jY
i − Y j ∂jX

i. (3.1.2)
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3. Let V be a finite-dimensional real vector space, let M ⊂ V be an open subset
and let X,Y ∈ X(M), viewed as mappings M → V , cf. Remark 2.3.4/1. Using
(2.3.2), we find that the mapping representing [X,Y ] is given by

[X,Y ](v) = d

dt �0

Y
(
v + tX(v)

)− d

dt �0

X
(
v + tY (v)

)
, v ∈ M. (3.1.3)

By writing down this equation in terms of the global chart on M associated with
a basis in V one recovers (3.1.2) in this particular situation.

4. For the more general situation of M ⊂ V being an embedded submanifold, For-
mula (3.1.3) generalizes to

[X,Y ](v) = d

dt �0

Ỹ
(
v + tX(v)

)− d

dt �0

X̃
(
v + tY (v)

)
, v ∈ M, (3.1.4)

where X̃ and Ỹ are arbitrary smooth extensions of X and Y to an open neigh-
bourhood of M in V .

There are two further ways to view a vector field X as a mapping, namely, as a
smooth function,

X : T∗M →R, X(η) := η(Xm), (3.1.5)

where η ∈ T∗
mM , and as the morphism of C∞(M)-modules induced by the natural

pairing (2.5.1),

X : Ω1(M) → C∞(M), X(α) := 〈α,X〉. (3.1.6)

In calculations involving vector fields one often switches forth and back between
these viewpoints, as for example in the proof of the next proposition.

Proposition 3.1.5 Let M and N be manifolds and let ϕ ∈ C∞(M,N). Let X, X1,
X2 be vector fields on M and let Y , Y1, Y2 be vector fields on N .

1. X is ϕ-related to Y iff the corresponding derivations satisfy X ◦ ϕ∗ = ϕ∗ ◦ Y .
2. If Xi is ϕ-related to Yi , i = 1,2, then [X1,X2] is ϕ-related to [Y1, Y2].

If ϕ is a diffeomorphism, then, in addition, for the transport operator ϕ∗ the
following holds.

3. As a derivation of C∞(N), ϕ∗X is given by ϕ∗X = (ϕ−1)∗ ◦ X ◦ ϕ∗.
4. [ϕ∗X1, ϕ∗X2] = ϕ∗[X1,X2].

Recall that if ϕ is a diffeomorphism, ϕ∗X is the unique vector field on N which
is ϕ-related to X. Hence, assertions 1 and 2 hold in particular for X and Y = ϕ∗X.

Proof 1. X is ϕ-related to Y iff ϕ′ ◦X = Y ◦ϕ, hence iff (ϕ′Xm)(f ) = Yϕ(m)(f ) for
all m ∈ M and f ∈ C∞(N). According to (1.5.3), the left hand side can be rewritten
as (X ◦ ϕ∗(f ))(m), whereas the right hand side yields (ϕ∗ ◦ Y(f ))(m).
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2. On the level of derivations, one has

[X1,X2] ◦ ϕ∗ = X1 ◦ X2 ◦ ϕ∗ − X2 ◦ X1 ◦ ϕ∗

= ϕ∗ ◦ Y1 ◦ Y2 − ϕ∗ ◦ Y2 ◦ Y1

= ϕ∗ ◦ [Y1, Y2].
Points 3 and 4 follow from points 1 and 2 by putting Y = ϕ∗X and Yi = ϕ∗Xi ,

respectively. �

Corollary 3.1.6 Let (N,ϕ) be a submanifold of M . Let X,Y ∈ X(M) be tangent
to N and let X̃, Ỹ ∈ X(N) be the restrictions to N , see Proposition 2.7.16. Then,
[X,Y ] is tangent to N and [X̃, Ỹ ] is its restriction.

Proof By Proposition 2.7.16, X̃ and Ỹ are ϕ-related to X and Y , respectively. By
Proposition 3.1.5/2, the vector field [X̃, Ỹ ] on N is ϕ-related to [X,Y ]. This implies
that [X,Y ] is tangent to N and [X̃, Ỹ ] is its restriction. �

Corollary 3.1.6 reproduces the following direct consequence of Proposition 1.4.5:

[X,Y ]�U = [X�U ,Y�U ] for all X,Y ∈X(M), U ⊂ M open. (3.1.7)

Exercises
3.1.1 Let A be an associative K-algebra and let Der(A) denote the K-vector space

of derivations of A. Show that
(a) for D1,D2 ∈ Der(A), the commutator [D1,D2] := D1 ◦ D2 − D2 ◦ D1 is

in Der(A),
(b) Der(A) with the commutator as a product is a Lie algebra.

3.1.2 Prove Formula (3.1.1).
3.1.3 Compute the commutator of X1 = (x+y) ∂

∂x
− ∂

∂y
and X2 = (y2 +1) ∂

∂x
+x ∂

∂y

on R
2.

3.1.4 Verify Formula (3.1.2).
3.1.5 Use (2.3.2) to verify (3.1.3).

3.2 Integral Curves and Flows

Let M be a manifold and let X be a vector field on M . Consider a smooth curve
γ : I → M , where I ⊂ R is some open interval. According to Example 1.5.6, the
tangent vector γ̇ (t) of γ at t ∈ I is defined to be the tangent vector of M at γ (t)

given by the curve s �→ γ (t + s).

Definition 3.2.1 (Integral curve) Let X ∈ X(M). A smooth curve γ on M is an
integral curve of X if

γ̇ (t) = Xγ(t) for all t ∈ I. (3.2.1)
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Less formally, an integral curve of a vector field is a smooth curve whose tangent
vectors are given by the values of this vector field along the curve. In terms of
derivations, the defining condition is equivalent to

Xγ(t)(f ) = d

dt �t

(f ◦ γ ) for all f ∈ C∞(M).

By an extension of an integral curve γ of X we mean an integral curve γ̃ of X which
extends γ in the sense of mappings.

Definition 3.2.2 (Maximality and completeness) An integral curve of a vector field
on M is called maximal if there does not exist a proper extension. It is called com-
plete if it has domain I =R. A vector field is called complete if its maximal integral
curves are complete.

We analyse Eq. (3.2.1) in a local chart (U,κ) on M . According to (1.5.5), for
t ∈ I such that γ (t) ∈ U , (3.2.1) is equivalent to

d

ds �t

(κ ◦ γ )(s) = Xκ
γ (t). (3.2.2)

Using the notation x(t) := κ ◦ γ (t) and Xi(x) := X
κ,i

κ−1(x)
, one may rewrite (3.2.2)

as

ẋi (t) = Xi
(
x(t)
)
, i = 1, . . . , n. (3.2.3)

This is a system of ordinary first order differential equations with smooth coeffi-
cients on the open subset κ(U) of Rn. The fundamental existence and uniqueness
theorems for the solutions of such systems state the following.

(a) For every x0 ∈ κ(U) there exists a unique solution Ix0 � t �→ x(t;x0) ∈ κ(U)

which is maximal among all solutions defined on open intervals containing 0
and satisfying the initial condition x(0;x0) = x0.

(b) The set D =⋃x0∈κ(U) Ix0 × {x0} is open in R× κ(U).
(c) The mapping D → κ(U), (t,x0) �→ x(t;x0), is smooth.

Theorem 3.2.3 (Existence and uniqueness of maximal integral curves) Let M be
a manifold and let X ∈ X(M). For every m ∈ M there exists a unique maximal
integral curve γm : Im → M of X with γm(0) = m.

Proof Let m ∈ M be given. According to the points (a)–(c) above, the fundamental
existence and uniqueness theorems for solutions of (3.2.3) imply that

1. integral curves through m exist,
2. if two integral curves through m coincide at t , then they coincide on an open

interval containing t .

Uniqueness follows from 2. To prove existence, let Im be the union of the do-
mains of all integral curves through m. Due to 1 and since the domain of any in-
tegral curve through m is an open interval containing the common point 0, Im is a
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nonempty open interval. Thus, in order that all the integral curves through m com-
bine to a single maximal integral curve γm with domain Im, it remains to show that
any two of them, say γ1 : I1 → M and γ2 : I2 → M , coincide on their common
domain I1 ∩ I2. Let J ⊂ I1 ∩ I2 be the set of t such that γ1(t) = γ2(t). Since J con-
tains 0, it is nonempty. Due to 2, J is open in I1 ∩ I2. J is also closed: if a sequence
{tn} in J converges to a point t in I1 ∩ I2 then, by continuity of γi ,

γ1(t) = lim
n→∞γ1(tn) = lim

n→∞γ2(tn) = γ2(t).

Thus, J is a nonempty open and closed subset of the interval I1 ∩ I2. This implies
J = I1 ∩ I2 and hence the assertion. �

Corollary 3.2.4 For t ∈ Im, Iγm(t) = {s ∈R : s + t ∈ Im}. For s ∈ Iγm(t), one has

γγm(t)(s) = γm(t + s).

Proof Denote Im − t := {s ∈R : s + t ∈ Im}. The smooth curve γ : Im − t → M , de-
fined by γ (s) := γm(t + s), is an integral curve of X through γ (0) = γm(t). Hence,
Im − t ⊂ Iγm(t). Interchanging the roles of m and γm(t) and applying the same argu-
ment with t replaced by −t , one finds Iγm(t) + t ⊂ Im. It follows that Im − t = Iγm(t)

and that γγm(t)(s) = γ (s) = γm(t + s) for all s ∈ Im − t . �

The maximal integral curves combine to what is called a flow.4

Definition 3.2.5 (Flow) Let D be an open neighbourhood of {0}×M in R×M and
let Φ:D → M be a smooth mapping. For m ∈ M and t ∈R, denote

Dm := {t ∈R : (t,m) ∈ D
}
, Dt := {m ∈ M : (t,m) ∈ D

}

and let Φm : Dm → M and Φt : Dt → M denote the induced mappings given by

Φm(t) = Φt(m) = Φ(t,m).

The mapping Φ is called a (smooth) flow on M if the following holds:

1. Φt=0 = idM ,
2. if (s,m) ∈ D and (t,Φs(m)) ∈ D , then (s + t,m) ∈ D and Φt(Φs(m)) =

Φs+t (m),
3. Dm is connected and hence an open interval for all m ∈ M ,
4. Φt(Dt ) ⊂ D−t for all t ∈R.

A flow is called maximal if it does not admit an extension, in the sense of map-
pings, which itself is a flow. It is called complete if D = R× M .

4This name alludes to the intuitive picture of the points of M moving synchronously along their
individual maximal integral curves.
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Now, for a given vector field X, by analogy with the local system (3.2.3), we
form the subset

D :=
⋃

m∈M

Im × {m} (3.2.4)

of R× M and define the mapping

Φ : D → M, Φ(t,m) := γm(t), (3.2.5)

where γm : Im → M is the maximal integral curve of X through m provided by
Theorem 3.2.3.

Proposition 3.2.6 (Vector fields and flows) The assignment of Φ to X given by
(3.2.4) and (3.2.5) defines a bijection between vector fields and maximal flows on M .
Complete vector fields thereby correspond to complete flows.

We will refer to Φ given by (3.2.4) and (3.2.5) as the flow of the vector field X.
If we have to deal with the flows of several vector fields we will occasionally write
ΦX and DX . The notion of flow extends in an obvious way to local vector fields: by
definition, the flow of the local vector field X over U ⊂ M is the flow of the vector
field X on the manifold U .

Proof First, let X ∈ X(M). We must show that Φ is a flow. By Theorem 3.2.3,
we have {0} × M ⊂ D . Recall the consequences (a)–(c) of the fundamental exis-
tence and uniqueness theorems for solutions of the local system (3.2.3), listed be-
fore Theorem 3.2.3. Due to (b), D is open in R × M . Due to (c), Φ is smooth.
Properties 1, 3 and 4 of Definition 3.2.5 hold by construction and property 2 follows
from Corollary 3.2.4. To check the maximality property, let D̃ be an open subset
of R × M containing D and let Φ̃ : D → M be a smooth mapping possessing the
properties 1–4 and satisfying Φ̃�D = Φ . Let m ∈ M . Due to property 3, the mapping

Φ̃m : D̃m → M is a curve. Using property 2, for t ∈ D̃m one obtains

d

ds �t

Φ̃m(s) = d

ds �0

Φ̃s

(
Φ̃t (m)

)= d

ds �0

Φs

(
Φ̃t (m)

)= XΦ̃t (m).

This shows that Φ̃m is an integral curve of X through m. It follows that D̃m ⊂ Dm

for all m ∈ M . This implies D̃ = D and Φ̃ = Φ .
Conversely, let Φ̃ : D̃ → M be a maximal flow on M . For m ∈ M , Φ̃m : D̃m → M

is a smooth curve through m and hence defines a tangent vector

Xm := d

dt �0

Φ̃m(t).

The assignment of Xm to m defines a section X : M → TM . Its local representative
with respect to a chart (U,κ) on M and the induced chart on TM is given by

x �→
(

x,
d

dt �0

κ ◦ Φ̃
(
κ−1(x), t

))
.

Hence, it is smooth. Therefore, X is a smooth vector field on M .
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Fig. 3.1 Domain D of the
flow of the vector field
X(x) = x2∂x on M =R

Finally, we have to check that the above assignments between vector fields and
flows are inverse to one another. Given a vector field X, the vector field assigned to
the flow of X obviously coincides with X. Given a flow Φ̃ : D̃ → M , let Φ : D →
M be the flow of the vector field defined by Φ̃ . Then, Φ̃ and Φ coincide on D̃ ∩ D .
Since both Φ̃ and Φ are maximal, it follows that D̃ = D and Φ̃ = Φ . This proves
the proposition. �

Example 3.2.7

1. Let M = U ⊂ R
n be an open subset and let X = ∂i . The system (3.2.3) reads

ẋ = ei and the unique maximal solution with initial condition x(0) = x is given
by x(t) = x + tei , where t ∈R is such that x + sei ∈ U for all s ∈ [0, t]. Hence,

D = {(t,x) ∈R× U : x + sei ∈ U for all s ∈ [0, t]}, Φt (x) = x + tei .

2. Let M = R and X(x) = x2∂x . The system (3.2.3) consists of the single equation
ẋ = x2. Integration with initial condition x(0) = x yields

x(t) = x

1 − tx
.

This is defined for all t < 1/x. Hence, the flow is given by

D =
{
(t, x) ∈ R× M : t <

1

x

}
, Φt (x) = x

1 − tx
.

The domain D is shown in Fig. 3.1. In particular, X is not complete.

We use Example 3.2.7/2 to show that neither the sum nor the commutator of
complete vector fields need be complete. Let M =R

2 with coordinates x and y. For
f1, f2 ∈ C∞(R), the vector fields

X1(x, y) = f1(y)∂x, X2(x, y) = f2(x)∂y

are complete and have the flows

Φ
X1
t (x, y) = (x + tf1(y), y

)
, Φ

X2
t (x, y) = (x, y + tf2(x)

)
.

For f1(s) = f2(s) = 1
2 s2, the sum X1 +X2 is tangent to the diagonal Δ ⊂ M defined

by x = y. Hence, by Proposition 2.7.16, it induces a vector field X on Δ. Using the
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global coordinate x on Δ, one finds X = x2∂x , which was shown above to be not
complete. Hence, X1 + X2 is not complete. For f1(s) = s and f2(s) = s2, we have

[X1,X2](x) = −2xy∂x + y2∂y.

This vector field is tangent to the y-axis. Using y as a global coordinate on this
submanifold, for the induced vector field one finds again X = y2∂y . Hence, [X1,X2]
is not complete.

Example 3.2.8 (Linear vector fields) Let V be a finite-dimensional real vector space.
In terms of the natural representation of vector fields on V by smooth mappings
X : V → V , cf. Remark 2.3.4/1, the system (3.2.1) reads

v̇ = X
(
v(t)
)
. (3.2.6)

A vector field on V is called linear if the corresponding mapping is linear, that is,
X(v) = Av for some A ∈ End(V ). In this case, X is said to be generated by A. The
solution of (3.2.6) with initial condition v(0) = v0 is

v(t) = etAv0, etA =
∞∑

n=0

(tA)n

n! ,

where (tA)n means n-fold composition of the endomorphism tA with itself.5 Thus,
X is complete and its flow Φ is given by the one-parameter group of automorphisms
of V

Φt = etA, t ∈ R. (3.2.7)

Conversely, if Φ is a one-parameter group of automorphisms of V , the generating
vector field is given by Xv = d

dt �0
Φt(v) = ( d

dt �0
Φt)(v), that is, it is linear and cor-

responds to the endomorphism d
dt �0

Φt of V .

For later use, we determine the flow Φt = etA explicitly. The necessary calcula-
tions are left to the reader (Exercise 3.2.2). Choose a basis in V such that the matrix
associated with A has Jordan normal form with Jordan blocks B1, . . . ,Br . Let λi

denote the eigenvalue of A with nonnegative imaginary part corresponding to Bi

and let mi denote its multiplicity.6 Let Nk denote the (k × k)-matrix with entries 1
on the upper secondary diagonal and 0 elsewhere. For λ = α + iβ with α,β real,
define

R(λ) =
[

α −β

β α

]
.

5The exponential series
∑∞

n=0
An

n! is convergent for all A ∈ End(V ). This follows from the fact that
the operator norm on End(V ) induced by an arbitrary norm on V satisfies ‖An‖ ≤ ‖A‖n.
6I.e., the dimension of the corresponding Jordan block of the extension of A to the complexification
of V .
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For a complex (k × k)-matrix C, let R(C) be the real (2k × 2k)-matrix obtained by
replacing each entry Cij by the (2 × 2)-block R(Cij ). The Jordan normal form of
A is given by

diag(B1, . . . ,Br), Bi =
{

λi1mi
+ Nmi

λi ∈R,

R(λi1mi
+ Nmi

) λi /∈R.
(3.2.8)

Then, etA is represented by the matrix diag(etB1 , . . . , etBr ), where

etBi = eλi t

⎡

⎢⎢⎢⎢⎣

1 t · · · tmi−1

(mi−1)!
0

. . .
. . .

...
...

. . .
. . . t

0 · · · 0 1

⎤

⎥⎥⎥⎥⎦
(3.2.9)

for λi ∈R and

etBi = eαi t

⎡

⎢⎢⎢⎢⎣

Dβit t Dβi t · · · tmi−1

(mi−1)! Dβit

0
. . .

. . .
...

...
. . .

. . . t Dβi t

0 · · · 0 Dβit

⎤

⎥⎥⎥⎥⎦
, Dφ =

[
cosφ − sinφ

sinφ cosφ

]
,

(3.2.10)

for λi /∈ R. For a detailed discussion of the linear vector fields on R
2, see Exam-

ple 3.6.13.

Remark 3.2.9

1. Successive application of the vector fields X1, . . . ,Xr to a function f ∈ C∞(M)

yields

(
Xr ◦ · · · ◦ X1(f )

)
(m) = d

dt1 �0
· · · d

dtr �0
f
(
Φ

X1
t1

◦ · · · ◦ Φ
Xr
tr

(m)
)
. (3.2.11)

In particular, for X,Y ∈X(M),

[X,Y ]m(f ) = d

dt �0

d

ds �0

f
(
ΦY

s

(
ΦX

t (m)
))− d

dt �0

d

ds �0

f
(
ΦX

s

(
ΦY

t (m)
))

.

(3.2.12)

Furthermore, for X ∈ X(M), f ∈ C∞(M) and m ∈ M , Taylor expansion of the
smooth function t �→ f (ΦX

t (m)) at t = 0 and computation of the derivatives
using (3.2.11) yields the following Taylor formula for manifolds:

f
(
ΦX

t (m)
)=

n∑

k=1

tk

k!
(
Xk(f )

)
(m) + O

(
tn+1), t ∈ DX

m , (3.2.13)
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where O(tn+1) is a smooth function on DX
m such that O(tn+1)/tn+1 is bounded.

Repeated application of this formula yields the iterated Taylor formula for man-
ifolds

f
(
ΦX

t

(
ΦY

s (m)
))=

n∑

k,l=1

tksl

k!l! Y
l
(
Xk(f )

)
(m) + O

(
tn+1, sn+1) (3.2.14)

which can be easily generalized to an arbitrary number of vector fields.
2. Let (N,ϕ) be a submanifold of M , let X be a vector field on M which is tan-

gent to N and let X̃ be the restriction to N , see Proposition 2.7.16. The flow
Φ̃ : D̃ → N of X̃ is related to the flow Φ : D → M of X as follows. The domain
D̃ consists of the pairs (t,p) in R× N satisfying (t, ϕ(p)) ∈ D and Φs(ϕ(p)) ∈
ϕ(N) for all s between 0 and t . The mapping Φ̃ fulfils ϕ(Φ̃t (p)) = Φt(ϕ(p)).

In the remainder of this section, we derive the basic properties of flows.

Proposition 3.2.10 Let X be a vector field on M and let Φ : D → M be its flow.

1. For every t ∈ R such that Dt is nonempty, Φt is a diffeomorphism from Dt onto
D−t with inverse Φ−t .

2. For every t ∈ R and every s between 0 and t , one has Dt ⊂ Ds and Φs(Dt ) ⊂
Dt−s .

3. If Φ is complete, then Φt ◦ Φs = Φt+s for all t, s ∈R.
4. For s ∈ R, let ΦsX : D sX → M be the flow of the vector field sX. Then, for all

t ∈R,

D sX
t = Dst , ΦsX

t = Φst . (3.2.15)

Since every flow satisfies Φ0 = idM , point 3 states that a complete flow defines an
action of the additive group R on M .7 Complete flows are therefore also called one-
parameter groups of local diffeomorphisms. Generalizing this terminology, flows
are sometimes referred to as local one-parameter groups of diffeomorphisms.

Proof We prove assertion 1. By the defining property 4 of flows, we have Φt(Dt ) ⊂
D−t and Φ−t (D−t ) ⊂ Dt . Applying Φt to the second relation and using property 2,
we obtain D−t ⊂ Φt(Dt ). Thus, Φt(Dt ) = D−t and Φ−t (D−t ) = Dt . By the prop-
erties 1 and 2, for every m ∈ Dt , we have Φ−t (Φt (m)) = Φ0(m) = m. The proof of
assertions 2 and 4 is left to the reader (Exercise 3.2.3). Assertion 3 is obvious. �

Proposition 3.2.11 Let X be a vector field on M , let Φ : D → M be its flow and let
m ∈ M .

1. If Xm = 0, then Dm =R and Φm(t) = m for all t ∈R.
2. If Xm �= 0 and Φm is injective, (Dm,Φm) is a submanifold of M diffeomorphic

to R.

7Group actions on manifolds will be treated in detail in Chap. 6.
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3. If Xm �= 0 and Φm is not injective, Dm =R and the image of Φm is an embedded
submanifold of M diffeomorphic to S1.

In particular, the images of the maximal integral curves of X carry natural sub-
manifold structures. It will follow by a general argument in Section 3.5 that these
submanifold structures are initial and hence unique, cf. Remark 3.5.16. Of course,
this is relevant in the situation of point 2 only.

Proof 1. If Xm = 0, the curve γ : R → M , γ (t) := m, is a maximal integral curve
of X through m. Hence, by uniqueness, Dm =R and Dm = γ .

2. and 3. If Xm �= 0, then XΦm(t) �= 0 for all t ∈ Dm, because otherwise Φm would
be constant by point 1. It follows that Φm is an immersion. Now, if Φm is injective, it
is a submanifold diffeomorphic to the open interval Dm and hence to R. Otherwise,
there exists a minimal positive T ∈ Dm such that Φm(T ) = m. Then DΦT (m) = Dm,
hence 2T ∈ Dm and DΦ2T (m) = Dm. Iterating this argument one finds Dm = R. For
every t ∈R and k ∈ Z,

Φm(t + kT ) = Φt+kT (m) = Φt(m) = Φm(t). (3.2.16)

Consider the topological quotient R/ZT of R by the equivalence relation t ∼ s iff
(t − s) = kT for some k ∈ Z. By choosing representatives in the open intervals
(0, T ) or (−T

2 , T
2 ), respectively, one obtains two local charts which are smoothly

compatible and hence define a smooth structure on R/ZT . With respect to this
smooth structure, R/ZT is diffeomorphic to the sphere S1. Due to (3.2.16), Φm

descends to an immersion Φ̃m : R/ZT → M . Since T was chosen to be minimal,
Φ̃m is injective and hence defines a submanifold of M whose image coincides with
the image of Φm. By Remark 1.6.13/2, this submanifold is embedded. This yields
the assertion. �

Proposition 3.2.12 On a compact manifold, every vector field is complete.

Proof Let Φ : D → M be the flow of a given vector field and let m ∈ M . Assume
that Dm = (a, b) with b < ∞. Choose a sequence {tn} in Dm converging to b. By
compactness of M , the sequence {γ (tn)} has a cluster point m̃ ∈ M . Since D is an
open neighbourhood of {0} × M in R× M , there exists ε > 0 and a neighbourhood
U of m̃ in M such that (−ε, ε) × U ⊂ D . By construction of m̃, there exists t ∈ Dm

such that |b − t | < ε and Φm(t) ∈ U and hence (b − t,Φt (m)) ∈ D . Since also
(t,m) ∈ D , property 2 of Definition 3.2.5 yields (b − t) + t = b ∈ Dm (contradic-
tion). Hence, b = ∞ and, analogously, a = −∞. �

Proposition 3.2.13 (Flow and transport) Let M and N be manifolds. Let ϕ ∈
C∞(M,N), X ∈ X(M), Y ∈X(N) and t ∈ R.

1. If X and Y are ϕ-related, then ϕ(DX
t ) ⊂ DY

t and ΦY
t ◦ ϕ�DX

t
= ϕ ◦ ΦX

t .

2. If ϕ is a diffeomorphism, then Dϕ∗X
t = ϕ(DX

t ) and

Φ
ϕ∗X
t = ϕ ◦ ΦX

t ◦ (ϕ−1)
�Dϕ∗X

t
.
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3. If in addition M = N and ϕ∗X = X, then ϕ(DX
t ) = DX

t and

ϕ ◦ ΦX
t = ΦX

t ◦ ϕ�DX
t
.

Proof 1. Let m ∈ DX
t . By assumption, for any s ∈ DX

m ,
d
ds �s

ϕ ◦ ΦX
m(s) = ϕ′XΦX

m(s) = Yϕ◦ΦX
m(s),

hence ϕ ◦ ΦX
m is an integral curve of Y with initial condition ϕ ◦ ΦX

m(0) = ϕ(m).
Therefore,

ϕ ◦ ΦX
s (m) = ϕ ◦ ΦX

m(s) = ΦY
ϕ(m)(s) = ΦY

s ◦ ϕ(m), s ∈ DX
m .

Since t ∈ DX
m , this yields the assertion.

2. Apply point 1 to X and Y = ϕ∗X. Then, replace X by ϕ∗X and ϕ by ϕ−1.
3. This is an immediate consequence of point 2. �

Example 3.2.14 Let (U,κ) be a local chart on M . We determine the flow of the local
vector field ∂i on U . Using the diffeomorphism κ : U → κ(U), Proposition 3.2.13/2
and Example 3.2.7, we obtain

D∂i = {(t,m) ∈ R× M : κ(m) + sei ∈ κ(U) for all s ∈ [0, t]},
Φ

∂i
t (m) = κ−1(κ(m) + tei

)
.

That is, the maximal integral curve through m is given by the connected component
of m of the i-th coordinate line through m, parameterized by the coordinate itself
minus κi(m).

Proposition 3.2.15 (Flows of commuting vector fields) Let M be a manifold and
let X,Y ∈ X(M). We have [X,Y ] = 0 iff

ΦX
t ◦ ΦY

s (m) = ΦY
s ◦ ΦX

t (m) (3.2.17)

for all t = t0, s = s0 ∈ R and m ∈ M such that both sides are defined for all t

between 0 and t0 and s between 0 and s0.8

Proof First, assume that ΦX and ΦY commute. For every m ∈ M there exists
ε > 0 such that both sides of (3.2.17) are defined for t, s ∈ (−ε, ε). Thus, in view
of (3.2.12), Formula (3.2.17) implies [X,Y ]m(f ) = 0 for all f ∈ C∞(M), hence
[X,Y ]m = 0. Conversely, assume that [X,Y ] = 0 and let m ∈ M and t0, s0 ∈ R be
such that both sides of (3.2.17) are defined for all t between 0 and t0 and s be-
tween 0 and s0. In the following, t and s are assumed to satisfy these inequalities
without further notice. To prove (3.2.17) it suffices to show that, for all t , the curve
s �→ ΦX

t ◦ΦY
s (m) is an integral curve of Y through the point ΦX

t (m). This is equiv-
alent to

(
ΦX

t

)′
YΦY

s (m) = YΦX
t ◦ΦY

s (m) (3.2.18)

8One says that the flows of X and Y commute.
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for all t and s. Fix t and s and denote p := ΦX
t ◦ ΦY

s (m). Equation (3.2.18) is
equivalent to

(
ΦX

u

)′
YΦX−u(p) = Yp (3.2.19)

for all u between 0 and t . The left hand side of this equation is smooth in u, because
its coordinates with respect to the chart on TM induced by a chart (U,κ) on M are
given by κi(p) and

((
ΦX

u

)′
YΦX−u(p)

)(
κi
)= d

ds �0

(
κi ◦ ΦX

u ◦ ΦY
s ◦ ΦX−u(p)

)
.

Since the right hand side is a partial derivative of a smooth function of the two
variables u and s, it is smooth in u. Hence, we may differentiate the left hand side
of (3.2.19) with respect to u, and we can conclude that this equation holds if

d

dv �u
((

ΦX
v

)′
YΦX−v(p)

)= (ΦX
u

)′
pu

(
d

dv �0

(
ΦX

v

)′
YΦX−v(pu)

)
= 0,

where pu := ΦX−u(p). Since (ΦX
u )′pu

is a linear isomorphism from TpuM to TpM ,
the latter equation holds if

d

dv �0

((
ΦX

v

)′
YΦX−v(q)

)= 0, (3.2.20)

for all q ∈ M . Applying the left hand side to f ∈ C∞(M) and using that the evalu-
ation of a tangent vector at q on f is a linear mapping from TqM to R, as well as
the product rule (2.2.8) and Formula (3.2.12), one obtains

(
d

dv �0

((
ΦX

v

)′
YΦX−v(q)

))
(f ) = d

dv �0

((
ΦX

v

)′
YΦX−v(q)(f )

)= [Y,X]q(f ).

Since, by assumption, [X,Y ] = 0, this yields (3.2.20) and hence proves the propo-
sition. �

To formulate the last of the basic properties of flows to be discussed here, we
need

Definition 3.2.16 (Flow box chart) Let M be an n-dimensional manifold and let X

be a vector field on M . A flow box chart for X is a local chart (U,κ) on M such that
X�U = ∂1 and κ(U) = (−a, a) × V for some a > 0 and some open neighbourhood
V of the origin in R

n−1.

Proposition 3.2.17 (Straightening Lemma) Let M be a manifold of dimension n,
let X ∈X(M) and let Φ be its flow.

1. A local chart (U,κ) on M with κ(U) = (−a, a) × V ⊂ R×R
n−1 is a flow box

chart for X iff for all s ∈ (−a, a), y ∈ V and t ∈ R such that |s + t | < a we have
(
κ ◦ Φt ◦ κ−1)(s, y) = (s + t, y). (3.2.21)

2. For every m ∈ M such that Xm �= 0 there exists a flow box chart for X at m.
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Proof 1. Let κ be such that Eq. (3.2.21) holds. Differentiation at t = 0 yields X1 = 1
and Xi = 0 for i = 2, . . . , n, so that X�U = ∂1, indeed. Conversely, if κ is such
that X�U = ∂1, then the local system (3.2.3) associated with X by (U,κ) is that of
Example 3.2.14. This yields the assertion.

2. Since Xm �= 0, there is a local frame {X1, . . . ,Xn} in TM at m such that
X1 = X�V . There exists a > 0 such that the mapping

Ψ : (−a, a)n → M, Ψ (t) := Φ
X1
t1

◦ · · · ◦ Φ
Xn
tn

(m)

is well-defined. Since Ψ ′
(0,...,0) coincides with the vector space isomorphism R

n →
TmM induced by the basis {X1,m, . . . ,Xn,m}, according to the Inverse Mapping
Theorem, a can be chosen so that U := Ψ ((−a, a)n) is open in M and Ψ is a
diffeomorphism onto U . Then, (U,Ψ −1) is a local chart on M at m. Since X�U =
X1�U , for all s ∈ (−a, a), t ∈ (−a, a)n−1 and t ∈R such that |t + s| < a, we obtain

(
Ψ −1 ◦ Φt ◦ Ψ

)
(s, t) = Ψ −1(ΦX1

s+t ◦ Φ
X2
t1

◦ · · · ◦ Φ
Xn
tn−1

(m)
)= (s + t, t).

Hence, by point 1, (U,Ψ −1) is a flow box chart. �

Exercises
3.2.1 Along the lines of Example 3.2.8, determine the flow of the linear vector field

on R
2 given by the matrix

A =
[

0 1
μ

D 0

]
, μ,D > 0.

Find a mechanical system whose time evolution in phase space is given by
this flow.

3.2.2 Determine etA for a real n × n matrix A of Jordan normal form, see Exam-
ple 3.2.8.

3.2.3 Complete the proof of Proposition 3.2.10.
Hint. For proving assertion 2, use the defining property 2 of flows and the fact
that Dm is connected.

3.2.4 Determine the flow of the vector field X = xi∂i on R
n and give a geometric

interpretation.
3.2.5 Consider the vector fields X1 = −x2∂1 + x1∂2 and X2 = x1∂1 + x2∂2 on R

2.
Show that X1 and X2 commute. Check that X1 is invariant under the transport
by the flow of X2 and vice versa. Relate X1 and X2 to polar coordinates, see
Example 1.1.11.

3.2.6 Determine the flows of the vector fields

X1 = x2∂3 − x3∂2, X2 = x3∂1 − x1∂3, X3 = x1∂2 − x2∂1

on R
3 and find a geometric interpretation.

3.2.7 Construct flow box charts for the vector fields of the previous exercises.
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3.3 The Lie Derivative

The Lie derivative with respect to a vector field X on M extends the directional
derivative along the integral curves of X from functions to tensor fields T on M .
The idea behind is to compare the value of T ∈ Γ (T

q
pM) at a given point m with

its values along the integral curve through m, transported back to m by the flow
Φ : D → M of X and to pass to the differential quotient. More precisely, for every
(t,m) ∈ D , one can apply the transport operator associated with the diffeomorphism
Φ−t : D−t → Dt to the tensor field T�D−t

induced on the open subset D−t and
evaluate the tensor field on Dt so obtained at m. Thus, we obtain a mapping9

D → T
q
pM, (t,m) �→ (Φ−t∗T )m. (3.3.1)

This mapping is smooth: for the variable m, this is obvious. To show smoothness in
t , due to (2.5.7) and (2.5.8), it suffices to consider the cases where T is a function
or a vector field. The case of a function is obvious. The case of a vector field was
explained in the proof of Proposition 3.2.15, cf. Eq. (3.2.19). Thus, we can define a
mapping

LXT : M → T
q
pM, (LXT )m := d

dt �0

(Φ−t∗T )m. (3.3.2)

Since LXT is given by the partial derivative10 of (3.3.1) with respect to the first vari-
able, evaluated on the vector field ( d

dt
,0) and restricted to the submanifold {0}×M ,

it is smooth. Thus, LXT is a tensor field of the same type as T .

Definition 3.3.1 The tensor field LXT is called the Lie derivative of T with respect
to X.

According to (2.5.6),

(LXT )m = d

dt �0

((
(Φ−t )

′)⊗TΦt (m)

)= lim
t→0

((Φ−t )
′)⊗TΦt (m) − Tm

t
.

This justifies the intuitive picture given in the beginning. For further use, we note
that

d

dt �t

(
(Φ−t )∗T

)
m

= ((Φ−t )∗(LXT )
)
m
, (3.3.3)

see Exercise 3.3.1. For functions and vector fields, the Lie derivative can be ex-
pressed in terms of operations we know already.

Proposition 3.3.2 For a vector field X on M , one has

1. LXf = X(f ) for all f ∈ C∞(M),
2. LXY = [X,Y ] for all Y ∈X(M).

9We suppress the restriction of T to D−t .
10See Remark 2.2.10.
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Proof 1. This is obvious.
2. According to Proposition 3.1.1, it suffices to show that (LXY)(f ) =

[X,Y ](f ) for all smooth functions f on M . Using (2.5.6) and the fact that ap-
plication of tangent vectors at m to f is a linear mapping from TmM to R, we
calculate

(LXY)m(f ) = d

dt �0

(((
ΦX−t

)′
YΦX

t (m)

)
(f )
)= d

dt �0

d

ds �0

(
f ◦ ΦX−t ◦ ΦY

s ◦ ΦX
t (m)

)
.

By the product rule (2.2.8) and by (3.2.12), the right hand side equals11

d

ds �0

d

dt �0

f
(
ΦY

s

(
ΦX

t (m)
))− d

ds �0

d

dt �0

f
(
ΦX

t

(
ΦY

s (m)
))= [X,Y ]m(f ). �

The next proposition collects the basic properties of the Lie derivative.

Proposition 3.3.3 Let X be a vector field on M .

1. LX(T ⊗ S) = (LXT ) ⊗ S + T ⊗ (LXS) for all tensor fields T , S.
2. LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ) for all α,β ∈ Ω∗(M).
3. LX ◦ C = C ◦ LX for every contraction operator C of tensor fields.
4. [LX,LY ] = L[X,Y ] for all Y ∈ X(M).
5. ϕ∗ ◦ LX = Lϕ∗X ◦ ϕ∗ for every diffeomorphism ϕ : M → N .

The first two assertions state that the Lie derivative establishes a derivation of the
algebra of tensor fields and of the exterior algebra of differential forms, respectively.

Proof 1. By (2.5.8) and the product rule (2.2.6),

(
LX(T ⊗ S)

)
m

= d

dt �0

(
(Φ−t∗T )m ⊗ (Φ−t∗S)m

)

=
(

d

dt �0

(Φ−t∗T )m

)
⊗ Sm + Tm ⊗

(
d

dt �0

(Φ−t∗S)m

)

= ((LXT ) ⊗ S + T ⊗ (LXS)
)
m
.

A similar calculation yields point 2.
3. Since LX and C are linear and local operations, that is, (LXT )m and C(T )m

depend on the values of T in an arbitrarily small neighbourhood of m only, it suffices
to prove the assertion for T = α1 ⊗ · · · ⊗ αp ⊗ Y1 ⊗ · · · ⊗ Yq with αi ∈ Ω1(M) and
Yi ∈ X(M), cf. Remark 2.5.2. Then, in view of point 1, it suffices to show that
LX〈α,Y 〉 = 〈LXα,Y 〉 + 〈α,LXY 〉 for all Y ∈ X(M) and α ∈ Ω1(M). Indeed, by
(2.5.7) and the product rule,

LX〈α,Y 〉 = d

dt �0

(
Φ−t∗〈α,Y 〉)= d

dt �0

〈Φ−t∗α,Φ−t∗Y 〉 = 〈LXα,Y 〉 + 〈α,LXY 〉.

11This is the same calculation as in the last step of the proof of Proposition 3.2.15.
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4. Again, it suffices to prove the assertion for tensor fields of the form α1 ⊗
· · · ⊗ αp ⊗ Y1 ⊗ · · · ⊗ Yq with αi ∈ Ω1(M) and Yi ∈ X(M). First, we show that
if the assertion holds for T and S, then it holds for T ⊗ S. Since LX and LY are
derivations of the algebra of tensor fields and since the commutator of derivations is
a derivation, we have

[LX,LY ](T ⊗ S) = ([LX,LY ]T )⊗ S + T ⊗ ([LX,LY ]S).
Since by assumption the assertion holds for T and S individually, and since L[X,Y ]
is a derivation, the right hand side equals L[X,Y ](T ⊗ S), indeed. Thus, it suf-
fices to prove the assertion for vector fields and 1-forms. For vector fields it
follows from Proposition 3.3.2/2 and from the Jacobi identity for the commu-
tator. To prove the assertion for 1-forms, we first observe that, due to Proposi-
tion 3.3.2/1, it holds for functions. Hence, for α ∈ Ω1(M) and Z ∈ X(M), we
have [LX,LY ]〈α,Z〉 = L[X,Y ]〈α,Z〉. Using point 3, the right hand side can be
rewritten as 〈L[X,Y ]α,Z〉 + 〈α,L[X,Y ]Z〉 and the left hand side takes the form
〈[LX,LY ]α,Z〉+ 〈α, [LX,LY ]Z〉. Since the assertion holds for Z, it then follows
for α.

5. Using Proposition 3.2.13/2 and (2.5.6), for T ∈ Γ (Tr
sM) and p ∈ N one ob-

tains
(
Lϕ∗X(ϕ∗T )

)
p

= d

dt �0

(
ϕ∗
(
(Φ−t )∗T

))
p

= d

dt �0

((
ϕ′)⊗((Φ−t )∗T

)
ϕ−1(p)

)
.

Here, (ϕ′)⊗ stands for the linear mapping (Tr
s )ϕ−1(p)M → (Tr

s )pN . Hence, the right

hand side equals (ϕ′)⊗( d
dt �0

(Φ−t∗T )ϕ−1(p)) = (ϕ∗(LXT ))p . �

Exercises
3.3.1 Use (2.5.6) to prove Formula (3.3.3).

3.4 Time-Dependent Vector Fields

Let M be a manifold and let J ⊂R be an open interval.

Definition 3.4.1 (Time-dependent vector field) A time-dependent vector field on M

is a smooth mapping X:J × M → TM such that X(t,m) ∈ TmM for all (t,m) ∈
J × M . A smooth curve γ : I → M is an integral curve of X if I ⊂ J and

γ̇ (t) = X
(
t, γ (t)

)
for all t ∈ I. (3.4.1)

The properties of maximality and completeness of an integral curve and of com-
pleteness of a time-dependent vector field are defined analogously as for ordinary
vector fields. By definition, for every t ∈ J , the induced mapping Xt : M → TM ,
Xt(m) := X(t,m), is a vector field on M . It is, therefore, common to denote time-
dependent vector fields by Xt , with t ∈ J understood. Note that the parameter of an
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integral curve coincides with the parameter of the family. This means that while a
point moves along an integral curve, the vector field which this curve is tangent to
changes synchronously.

In the sequel, for simplicity we assume J = R. To determine the flow of X one
decouples the parameters of the curve and of the vector field by passing to the ordi-
nary vector field X̄ on R× M defined by

X̄(t,m) := ((t,1),X(t,m)
)
, t ∈ R, m ∈ M, (3.4.2)

where we have used the natural identification T(R× M) ∼= (R×R) × TM . Let Φ̄ :
D̄ →R×M denote the flow of X̄ and let prR :R×M → R and prM :R×M → M

denote the natural projections.

Proposition 3.4.2 For every m ∈ M and t0 ∈ R, there exists a unique maximal in-
tegral curve γ : I → M of X with initial condition γ (t0) = m. It is given by

I = D̄(t0,m) + t0, γ (t) = prM ◦Φ̄(t−t0)(t0,m). (3.4.3)

Proof For a smooth curve γ̄ : Ī → R× M , define γ̄R : Ī + t0 → R and γ̄ M : Ī + t0
→ M by

γ̄R(t) := prR ◦γ̄ (t − t0), γ̄ M(t) := prM ◦γ̄ (t − t0).

The curve γ̄ is an integral curve of X̄ through (t0,m) iff

˙̄γR
(t) = 1, ˙̄γ M

(t) = X
(
γ̄R(t), γ̄ M(t)

)

with initial conditions γ̄R(t0) = t0 and γ̄ M(t0) = m, respectively. The equations for
γ̄R are solved by γ̄R(t) = t for all t ∈ Ī + t0. The above system is then equivalent
to

˙̄γ M
(t) = X

(
t, γ̄ M(t)

)
, γ̄ M(t0) = m.

First, this shows that the curve γ defined by (3.4.3) is an integral curve of X with the
appropriate initial condition. Second, this shows that if γ1 : I1 → M is an integral
curve of X with initial condition γ1(t0) = m, the curve γ̄1 : I1 + t0 → R×M defined
by γ̄1(t) := (t + t0, γ (t + t0)) is an integral curve of X̄ through (t0,m). Therefore,
γ is maximal and unique. �

Like the maximal integral curves of an ordinary vector field combine to an ordi-
nary flow, the maximal integral curves of a time-dependent vector field will combine
to a time-dependent flow. For a set A, let ΔA ⊂ A × A denote the diagonal.

Definition 3.4.3 (Time-dependent flow) Let D be an open neighbourhood of
ΔR × M in R × R × M and let Φ:D → M be a smooth mapping. For m ∈ M

and t1, t2 ∈R, denote

Dt1,m := {t2 ∈ R : (t2, t1,m) ∈ D
}
, Dt2,t1 := {m ∈ M : (t2, t1,m) ∈ D

}

and let Φt2,t1 : Dt2,t1 → M denote the induced mapping, given by Φt2,t1(m) =
Φ(t2, t1,m). The mapping Φ is called a time-dependent flow on M if for all
t1, t2, t3 ∈R and m ∈ M the following holds:



3.4 Time-Dependent Vector Fields 113

1. Φt1,t1 = idM ,
2. if (t2, t1,m) and (t3, t2,Φt2,t1(m)) ∈ D , then (t3, t1,m) ∈ D and

Φt3,t2

(
Φt2,t1(m)

)= Φt3,t1(m),

3. Dt1,m is connected,
4. Φt2,t1(Dt2,t1) ⊂ Dt1,t2 .

A time-dependent flow is called maximal if it does not admit an extension, in the
sense of mappings, which itself is a time-dependent flow. A time-dependent flow is
called complete if D = R×R× M .

Now, for a time-dependent vector field X, define

D := {(t, t0,m) ∈ R×R× M : (t − t0, (t0,m)
) ∈ D̄

}
(3.4.4)

and

Φ : D → M, Φt,t0(m) := prM ◦ Φ̄t−t0

(
(t0,m)

)
. (3.4.5)

Using Proposition 3.4.2 and the fact that D̄ is an ordinary flow, one can prove the
following (Exercise 3.4.1).

Proposition 3.4.4 The assignment of Φ to X given by (3.4.4) and (3.4.5) defines a
bijection between time-dependent vector fields on M and maximal time-dependent
flows on M . Complete time-dependent vector fields thereby correspond to complete
time-dependent flows.

Remark 3.4.5

1. Let Φ : D → M be a time-dependent flow on M . Then, for all t1, t2 ∈ R such
that Dt2,t1 �= ∅, we have Φt2,t1(Dt2,t1) = Dt1,t2 and Φt2,t1 : Dt2,t1 → Dt1,t2 is a
diffeomorphism with inverse Φt1,t2 : Dt1,t2 → Dt2,t1 . Moreover, connectedness
of Dt1,m implies that for every t between t1 and t2 one has Dt2,t1 ⊂ Dt,t1 and
Φt,t1(Dt2,t1) ⊂ Dt2,t . The proof of these two statements is left to the reader (Ex-
ercise 3.4.2).

2. Time-dependent flows are in bijective correspondence with smooth 1-parameter
families {Φt } of local diffeomorphisms of M : given Φt2,t1 , one defines Φt := Φt,0.
Then, Φt2,t1 = Φt2,0 ◦ Φ0,t1 = Φt2,0 ◦ Φ−1

t1,0
and hence

Φt2,t1 = Φt2 ◦ Φ−1
t1

.

Conversely, given {Φt }, this equation defines local diffeomorphisms Φt2,t1 for all
t1 and t2. We leave it to the reader to show that this family forms a time-dependent
flow on M .

3. If a time-dependent flow Φ is complete, all the mappings Φt2,t1 are diffeomor-
phisms of M and Definition 3.4.3 reduces to the requirement that Φ is smooth
and satisfies

Φt3,t2 ◦ Φt2,t1 = Φt3,t1 for all t1, t2, t3 ∈R, Φt,t = idM for all t ∈R.
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These are the defining properties of an action on M of the groupoid R × R

with multiplication (a, b) · (b, d) = (a, d) and inverse (a, b)−1 = (b, a). There-
fore, a complete time-dependent flow may also be referred to as a two-parameter
groupoid of diffeomorphisms.

4. Ordinary flows embed into time-dependent flows as follows. If Φ◦ is an ordinary
flow on M with domain D◦, by defining

D := {(t2, t1,m) ∈ R×R× M : t2 − t1 ∈ D◦
m

}
, Φt2,t1 := Φ◦

t2−t1
,

we obtain a time-dependent flow on M . The latter has the property that Dt2,t1

and Φt2,t1 depend on the difference t2 − t1 only. Conversely, if Φ : D → M is a
time-dependent flow on M with this property, then

D◦ := {(t,m) ∈ R× M : (t,0,m) ∈ D
}
, Φ◦

t := Φt,0

yields an ordinary flow on M . The proof of both assertions is left to the reader
(Exercise 3.4.3).

To conclude this section, we briefly discuss the special case of periodically time-
dependent vector fields.

Definition 3.4.6 A time-dependent vector field X on M is said to be periodic if
there exists a minimal T > 0, called the period, such that for all t ∈ R and m ∈ M

one has

X(t + T ,m) = X(t,m).

Proposition 3.4.7 The flow Φ : D → M of a periodically time-dependent vector
field with period T satisfies

1. Dt2+T ,t1+T = Dt2,t1 and Φt2+T ,t1+T = Φt2,t1 for all t1, t2 ∈R,
2. DkT ,0 is nonempty and ΦkT,0 = Φk

T,0 for all k ∈ Z.

Point 2 includes the statement that the domain of Φk
T,0 coincides with DkT ,0.

Proof Let X̄ be the vector field on R×M defined by (3.4.2) and let Φ̄ : D̄ →R×M

be its flow. Then, D and D̄ are related by (3.4.4) and Φ and Φ̄ are related by (3.4.5).
1. Consider the diffeomorphism

ϕT : R× M → R× M, ϕT (t,m) := (t + T ,m).

A brief calculation shows that ϕT ∗X̄ = X̄. According to Proposition 3.2.13/3, then
ϕT (D̄t ) = D̄t and Φ̄t ◦ ϕT = ϕT ◦ Φ̄t . First, in view of (3.4.4), this implies Dt2,t1 =
Dt2+T ,t1+T . Second, for every m ∈ Dt2,t1 , (3.4.5) implies

Φt2+T ,t1+T (m) = prM ◦ Φ̄t2−t1 ◦ ϕT (t1,m) = prM ◦ϕT ◦ Φ̄t2−t1(t1,m) = Φt2,t1(m).

2. We prove this by induction on k. For k = 1, the assertion is obvious. Thus,
assume that it holds for k. According to Remark 3.4.5/1 and the first equality in
assertion 1,

Φk
T,0(D(k+1)T ,0) = ΦkT,0(D(k+1)T ,0) ⊂ D(k+1)T ,kT = DT ,0.
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It follows that ΦT,0 can be applied to Φk
T,0(D(k+1)T ,0), so that Φk+1

T ,0 is defined on

D(k+1)T ,0. Conversely, if m ∈ M belongs to the domain of Φk+1
T ,0 , then it belongs

to the domain of Φk
T,0 and Φk

T,0(m) belongs to D(k+1)T ,kT . Since by the induction

assumption, the domain of Φk
T,0 coincides with DkT ,0, it follows that m ∈ D(k+1)T ,0.

Finally, using the second equality in assertion 1, on D(k+1)T ,0 we calculate

Φk+1
T ,0 = ΦT,0 ◦ Φk

T,0 = Φ(k+1)T ,kT ◦ ΦkT,0 = Φ(k+1)T ,0. �

Exercises

3.4.1 Use Proposition 3.4.2 and the fact that D̄ is an ordinary flow to prove Propo-
sition 3.4.4.

3.4.2 Prove the assertions of Remark 3.4.5/1.
3.4.3 Show that ordinary flows may be viewed as time-dependent flows, cf. Re-

mark 3.4.5/4.
3.4.4 Let M = R. Determine the maximal integral curves and the time-dependent

flow of the time-dependent vector field X on M given by X(t, x) = (x, x
1−t

),
t ∈ (−1,1).

3.5 Distributions and Foliations

Let M be a manifold. For a subset D of TM , let XD(M) denote the set of vector
fields on M taking values in D. Correspondingly, let XD

loc(M) denote the set of local
vector fields on M taking values in D.

Definition 3.5.1 (Distribution) A distribution12 on M is a subset D of TM such
that for all m ∈ M the following holds.

1. Dm := D ∩ TmM is a linear subspace of TmM .
2. For every Y ∈ Dm, there exists X ∈XD(M) such that Xm = Y .

The function which assigns to m ∈ M the dimension of Dm is called the rank
of D. If the rank is constant, D is called regular. Otherwise, it is called singular.

Concerning distributions and regularity we follow the terminology used e.g. in
[181].13 Beware that it is quite common to include the constant rank requirement
into the definition of distribution and to reserve the notion of regularity for addi-
tional properties. Then, distributions which are not necessarily of constant rank are
referred to as generalized distributions.

12To distinguish this notion from a distribution in the sense of analysis one should speak, more
precisely, of a geometric distribution. However, it is common to omit the term geometric.
13According to [181], our distributions should be referred to, more precisely, as smooth distri-
butions. Since in this book we will meet only smooth distributions, we systematically omit the
adjective smooth.
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Remark 3.5.2

1. According to Remark 2.3.2/4, condition 2 of Definition 3.5.1 is equivalent to the
requirement that for every Y ∈ Dm there exists X ∈XD

loc(M) such that Xm = Y .
2. Let m ∈ M and r = dimDm. Condition 2 of Definition 3.5.1 implies that there

exists a local r-frame {X1, . . . ,Xr} in TM at m taking values in D, such that
X1,m, . . . ,Xr,m span Dm (choose a basis in Dm, apply property 2 and restrict the
domains of the vector fields so obtained appropriately). This shows that the rank
is locally non-decreasing, that is, every m ∈ M has a neighbourhood where the
rank is greater than or equal to the rank at m. Moreover, if the rank is constant,
then X1,m, . . . ,Xr,m also span Dm̃ for all m̃ ∈ U . Thus, Proposition 2.7.5/2 yields
that D is regular iff it is a vertical subbundle of TM . Hence, the definition of
regular distribution given in Example 2.7.6 is equivalent to the one given here.

Definition 3.5.3 (Integral manifold) Let D be a distribution on M . A connected
submanifold (N,ψ) of M is called an integral manifold14 of D through m ∈ M if
m ∈ ψ(N) and

ψ ′
p(TpN) = Dψ(p) (3.5.1)

for all p ∈ N . D is said to be integrable if for every m ∈ M there exists an integral
manifold of D through m.

Along an integral manifold, D has constant rank. If N is given by a subset, For-
mula (3.5.1) reads

TN = D�N. (3.5.2)

Example 3.5.4

1. Every vector field X on M generates a distribution D by Dm := RXm. The rank
of D at m is 0 if Xm = 0 and 1 otherwise. According to Proposition 3.2.11, the
images of the maximal integral curves of X are submanifolds of M . Obviously,
they are integral manifolds of D. Thus, D is integrable.

2. Every subset A ⊂ X(M) generates a distribution D, with Dm defined to be the
linear span of the set {Xm : X ∈ A}, and every distribution can be generated this
way. A sufficient, but by far not necessary, condition for D to be regular of rank
r is that A be an r-frame.

3. Let E be a vector bundle over a manifold M and let Φ:E → TM be a vertical
vector bundle morphism. The image of Φ is a distribution, because it is locally
spanned by Φ ◦ si , where {si} is a local frame in E.

4. Let π :M → P be a submersion. According to Example 2.7.7, kerπ ′ is a regular
distribution on M of rank dimM − dimP . According to the Level Set Theorem

14In part of the literature, for (N,ψ) to be an integral manifold, only ψ ′
p(TpN) ⊂ Dψ(p) is re-

quired. What we call integral manifold here is referred to there as an integral manifold which is
everywhere of maximal dimension.
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for manifolds (Corollary 1.8.3), the connected components of the level sets of
π are integral manifolds of kerπ ′. Since they make up M , kerπ ′ is integrable.
In fact, the connected components of the level sets of π are maximal integral
manifolds, because the composition of a curve in an integral manifold with π is
an integral curve of the zero vector field on P and is hence constant.

5. Let ε > 0 and 0 ≤ r ≤ n. Consider the open cube (−ε, ε)n ⊂ R
n. The vec-

tor fields ∂1, . . . , ∂r span a regular distribution D of rank r on this cube.
This distribution is integrable, with the integral manifolds given by the subsets
(−ε, ε)r × {(xr+1, . . . , xn)}, where (xr+1, . . . , xn) ∈ (−ε, ε)n−r is fixed. It will
be shown below that, locally, every integrable regular distribution of rank r on
an n-dimensional manifold is of this form.

6. The distribution on R
2 spanned by the vector fields ∂x and y∂y is singular, be-

cause it has rank 1 on the x-axis and rank 2 outside. Similarly, the distribution
spanned by the vector fields ∂x and x∂y is singular, because it has rank 1 on the
y-axis and rank 2 outside. The first of these distributions is integrable, with in-
tegral manifolds being the x-axis and the two open half-planes. In contrast, the
reader can easily see that the second one is not integrable.

Next, we are going to derive criteria for integrability. We need the following
notions.

Definition 3.5.5 A distribution D on M is called

1. involutive if XD(M) ⊂X(M) is a Lie subalgebra,
2. homogeneous15 if for all X ∈ XD

loc(M) and all (t,m) in the domain of ΦX , one
has

(
ΦX

t

)′
m
Dm = DΦX

t (m).

Note that homogeneity means invariance of D under the flow of an arbitrary local
vector field taking values in D.

Remark 3.5.6 Each of the following two conditions is equivalent to involutivity
(Exercise 3.5.1).

1. For all X,Y ∈ XD
loc(M) whose domains have nontrivial intersection, [X,Y ] ∈

XD
loc(M).

2. For all m0 ∈ M , there exists an open neighbourhood U of m0 in M and local
vector fields X1, . . . ,Xr on U such that
(a) X1,m, . . . ,Xr,m span Dm for all m ∈ U ,
(b) [Xi,Xj ] = ck

ijXk with smooth functions ck
ij : U → R.

15After Stefan [280].
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Example 3.5.7

1. The distribution D generated by a vector field X on M is involutive: let Y,Z ∈
XD(M). If dimDm = 1, there exists an open neighbourhood V of m such that
X�V does not have zeros. Hence, there exist unique f,g ∈ C∞(V ) such that
Y�V = f X�V and Z�V = gX�V . Then, (3.1.1) and (3.1.7) yield

[Y,Z]m = [f X�V , gX�V ]m = (f (m)Xm(g) − g(m)Xm(f )
)
Xm ∈ Dm.

If dimDm = 0, then Ym = Zm = 0 and hence

[Y,Z]m(f ) = Ym

(
Z(f )

)− Zm

(
Y(f )

)= 0

for all f ∈ C∞(M), so that [Y,Z]m = 0.
2. The distribution on R

3 spanned by the vector fields ∂x + y∂z and (x2 + 1)∂y is
regular, but not involutive (Exercise 3.5.2).

3. The (singular) distribution on R
2 spanned by the vector fields ∂x and y∂y is

involutive, whereas the distribution spanned by ∂x and x∂y is not.

Definition 3.5.8 (Adapted chart) Let D be a distribution on M , let m ∈ M , and let
r = dimDm, n = dimM . A local chart (U,κ) on M is said to be adapted to D at m

if

1. κ(m) = 0 and κ(U) = (−ε, ε)n for some ε > 0,
2. ∂1, . . . , ∂r ∈XD

loc(M),
3. for all c ∈ (−ε, ε)n−r , D has constant rank along Uc := κ−1((−ε, ε)r × {c}).

Remark 3.5.9

1. The subsets Uc, c ∈ (−ε, ε)n−r , are embedded submanifolds of M . They are
referred to as the slices of U . By condition 2, the rank of D at points of U

is greater than or equal to the rank at the central point m, i.e., r . If a slice Uc
contains a point where D has the minimal rank r then, by counting dimensions,
conditions 2 and 3 imply that Uc is an integral manifold of D. In particular, U0
is an integral manifold of D through m.

2. If D is regular, condition 3 is redundant. In this case, condition 2 means that
∂1, . . . , ∂r span D on U and that every slice Uc is an integral manifold. Thus, in
an adapted chart, the integral manifolds are given by the equations

xr+1 = c1, . . . , xn = cn−r .

3. In case D is generated by a vector field X and Xm �= 0, every flow box chart for
X at m is adapted to D at m.

Theorem 3.5.10 (Stefan and Sussmann) Let M be a manifold of dimension n and
let D be a distribution on M . The following statements are equivalent.

1. D is integrable.
2. D is involutive and has constant rank along integral curves of elements of

XD
loc(M).
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3. D is homogeneous.
4. For every m ∈ M , there exists a local chart adapted to D at m.

Proof See [280, 283] for the original sources. Our proof follows [181, App. 3].
1 ⇒ 2: Let X,Y ∈ XD(M). By integrability, every m ∈ M is contained in some

integral manifold (Nm,ψm) of D. Due to Corollary 3.1.6, since X and Y are tangent
to (Nm,ψm), so is their commutator. It follows [X,Y ]m ∈ Dm for all m ∈ M . Since
the integral curves through m of the elements of XD

loc(M) are contained in ψm(Nm)

and since the rank of D is constant along integral manifolds, the second assertion
follows, too.

2 ⇒ 3: Let X ∈ XD
loc(M) with domain U , let Φ : D → U be the flow of X and

let (t,m) ∈ D . Assume that we are given open neighbourhoods of Φm(s) for all
s ∈ [0, t]. Since the preimages under Φm of these neighbourhoods provide an open
covering of the compact interval [0, t], finitely many of them already cover the in-
tegral curve of X from m to Φt(m). This shows that it suffices to prove the asser-
tion for m being arbitrary but fixed, U being an arbitrarily small neighbourhood
of m, and all t ∈ Dm. Let r = dimDm. We choose U so that there exists a local
r-frame {Y1, . . . , Yr} taking values in D and spanning Dm. Define smooth curves
Zi : Dm → TmM by

Zi(t) := (Φ−t∗Yi)m, i = 1, . . . , r,

where by an abuse of notation we have omitted the restriction of Yi to D−t . By
construction,

(Φt )
′Zi(t) = (Yi)Φt (m), i = 1, . . . , r. (3.5.3)

In particular, the Zi(t) are linearly independent. It suffices to show that Zi(t) ∈ Dm

for all t ∈ Dm, because then (3.5.3) implies (Φt )
′Dm ⊂ DΦt(m) and by the assump-

tion on the rank of D there holds equality. According to Formula (3.3.3) and Propo-
sition 3.3.2/2,

Żi(t) = (Φ−t∗LXYi)m = (Φ−t∗[X,Yi]
)
m

= (Φ−t )
′([X,Yi]Φt (m)

)
. (3.5.4)

Since D is involutive, by Remark 3.5.6, [X,Yi]Φt (m) ∈ DΦt(m) for all t ∈ Dm.
Since the rank of D along the integral curve t �→ Φt(m) is constant, (Y1)Φt (m), . . . ,

(Yr)Φt (m) span DΦt(m) for all t ∈ Dm. Hence there exist unique smooth functions

λ
j
i : Dm → R such that [X,Yi]Φt (m) = λ

j
i (t)(Yj )Φt (m) (summation convention).

Then, (3.5.4) implies that the curves Zi(t) satisfy the ordinary differential equation

Żi(t) = λ
j
i (t)Zj (t)

so that, due to the initial condition Zi(0) ∈ Dm, they stay in Dm, as asserted.
3 ⇒ 4: The proof generalizes the construction of a flow box chart in the proof

of Proposition 3.2.17. Let m ∈ M and let r = dimDm. Choose a local r-frame
{X1, . . . ,Xr} at m taking values in D. By Proposition 2.3.15, in a neighbourhood
of m this local r-frame can be complemented to a local frame {X1, . . . ,Xn} in TM .
There exists ε > 0 such that the mapping

Ψ : (−ε, ε)n → M, Ψ (t) := Φ
X1
t1

◦ · · · ◦ Φ
Xn
tn

(m)
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is defined. Since Ψ ′
0 amounts to the natural vector space isomorphism R

n → TmM

induced by the basis {X1,m, . . . ,Xn,m}, according to the Inverse Mapping Theorem,
ε can be chosen so that U := Ψ ((−ε, ε)n) is open in M and Ψ is a diffeomorphism
onto U . Then (U,κ := Ψ −1) is a local chart on M at m. It remains to check that
(U,κ) satisfies conditions 1–3 of Definition 3.5.8. Condition 1 holds by construc-
tion. For condition 2, let i ∈ {1, . . . , r} and m̃ ∈ U . Then, denoting Φi ≡ Φ

Xi

κi(m̃)
, we

obtain

∂κ
i,m̃(f ) = (Φ ′

1 ◦ · · · ◦ Φ ′
i−1(Xi)Φi◦···◦Φn(m)

)
(f ).

By homogeneity, the vector on the right hand side belongs to Dm̃, and condition 2
holds, indeed. Condition 3 follows from homogeneity and the fact that, by construc-
tion, any element of the subset κ−1((−ε, ε)r × {x}) can be joined to Ψ (0,x) by a
composition of integral curves of X1, . . . ,Xr .

4 ⇒ 1: This follows from Remark 3.5.9/1. �

Remark 3.5.11

1. The proofs of the implications 2 ⇒ 3 and 3 ⇒ 4 show that it suffices that the
constant rank condition of point 2 or the homogeneity condition of point 3 hold
for a neighbourhood of every point and a family of local vector fields spanning
D over that neighbourhood.

2. Consider the proof of the implication 3 ⇒ 4. From the formula for ∂κ
i,m̃

it follows
that ∂1 = X1�U , that is, (U,κ) is a flow box chart for X1. For the remaining local
vector fields Xi , i = 2, . . . , r , this is not true in general. However, it is true in
the special case where the Xi commute, because then their flows commute, see
Proposition 3.2.15. For later use, let us formulate this observation as follows.
Let Dm be spanned by the values at m of a local r-frame {X1, . . . ,Xr} in TM

over V . If the Xi commute, there exists a local chart (U,κ) adapted to D at m

such that U ⊂ V and Xi�U = ∂i , i = 1, . . . , r .

Corollary 3.5.12 (Frobenius Theorem) Let M be a manifold and let D be a regular
distribution on M . If D is involutive, then for every m ∈ M , there exists a local chart
adapted to D at m. In particular, D is integrable iff it is involutive.

Example 3.5.13

1. The distributions discussed in points 1, 3 and 4 of Example 3.5.4 are involutive
and homogeneous, because they are integrable. The distribution on R

3 spanned
by the vector fields ∂x + y∂z and (x2 + 1)∂y is neither integrable nor homo-
geneous, because it is not involutive, see Example 3.5.7/2. For the first of the
distributions of Example 3.5.4/6, Theorem 3.5.10 yields homogeneity and con-
firms integrability. On the other hand, the second one is neither homogeneous
nor integrable.
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2. In view of Remark 3.5.11/1, point 2 of Theorem 3.5.10 yields that a distribution
D spanned by commuting vector fields X1, . . . ,Xr is always integrable. Indeed,
since the flows commute, Proposition 3.2.13/2 yields

Xi

(
Φ

Xj

t (m)
)= (ΦXj

t

)′(
Xi(m)

)

for all i and j , hence D has constant rank along the integral curves of the Xi .

Next, we prove that integral manifolds of integrable distributions are initial and
that there exist maximal integral manifolds. Without loss of generality, for con-
venience we may assume any integral manifold (N,ϕ) to be given by its image
ϕ(N) ⊂ M , endowed with the topology and differentiable structure induced from N

via ϕ.

Lemma 3.5.14 Let D be a distribution on M .

1. Let N1 ⊂ M and N2 ⊂ M be integral manifolds of D. If N1 ∩ N2 �= ∅, then
N1 ∩ N2 is open in N1 and N2 and the smooth structures on N1 ∩ N2 induced
from N1 and N2 coincide. There is a unique smooth structure on N1 ∪ N2 such
that N1 and N2 are open submanifolds. With respect to this structure, N1 ∪N2 is
an integral manifold of D.

2. Let N ⊂ M be an integral manifold of D, let m ∈ M such that dimDm = dimN

and let (U,κ) be a local chart adapted to D at m ∈ M . If a slice Uc of U inter-
sects N , then Uc is an integral manifold of D and N ∩ Uc is open and closed16

in N ∩ U with respect to the relative topology induced from N . In particular, the
number of slices of U which intersect N is at most countable.

The number of slices of U intersected by N in assertion 2 may happen to be
(countably) infinite, indeed: for M = S1 × S1 with angle coordinates φ1 and φ2 and
D generated by the vector field X = ∂φ1 + ω∂φ2 with ω irrational, the intersection
of any open subset with a maximal integral curve of X has infinitely many slices.

Proof 1. The assertion on N1 ∪ N2 follows from that on N1 ∩ N2, hence it suffices
to prove the latter. The dimensions of N1 and N2 coincide with the rank of D on
N1 ∩ N2 and hence are equal. Denote this number by r . For m ∈ N1 ∩ N2, choose a
local r-frame {X1, . . . ,Xr} in TM over some neighbourhood U of m taking values
in D. Since Xj is tangent to Ni , by restriction it induces a local vector field X

(i)
j

on U ∩ Ni , j = 1, . . . , r , i = 1,2. By the same argument as in the proof of the
implication 3 ⇒ 4 of Theorem 3.5.10, there exists ε > 0 such that the mappings

Ψ (i) : (−ε, ε)r → U ∩ Ni, Ψ (i)(t) := Φ
X

(i)
1

t1
◦ · · · ◦ Φ

X
(i)
r

tr
(m)

are diffeomorphisms onto open subsets Vi of Ni , i = 1,2. By construction,
Ψ (1)(t) = Ψ (2)(t) as elements of M for all t ∈ (−ε, ε)r , cf. Remark 3.2.9/2. First,

16It is in fact a connected component of N ∩ U . We do not need this though.
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this implies V1 = V2 =: V and hence V ⊂ N1 ∩ N2, where V is open in both N1

and N2. Second, this implies that with respect to the differentiable structure induced
from either Ni , V is diffeomorphic to (−ε, ε)r . Since the construction works for
every m ∈ N1 ∩ N2, the assertion follows.

2. Let r = dimN ≡ dimDm. If N intersects a slice Uc, then Uc contains a point
where D has rank r . By Remark 3.5.9/1, then Uc is an integral manifold of D.
Now, assertion 1 implies that N ∩ Uc is open in N and hence in N ∩ U , where the
topology of N ∩ U is assumed to be induced from N . Since this holds for all slices
which intersect N and since

N ∩ Uc = (N ∩ U)
∖(⋃

c̃�=c

N ∩ Uc̃

)
,

the intersection N ∩ Uc is also closed in N ∩ U . It follows that N ∩ Uc is a union
of connected components of N ∩ U . Since the slices are disjoint, this implies that
the number of slices which intersect N is at most as large as the number of con-
nected components of N ∩ U . Since the topology of N ∩ U is induced from the
manifold N , it is second countable, hence the number of connected components is
at most countable. �

Proposition 3.5.15 Integral manifolds of integrable distributions are initial sub-
manifolds.

Proof Let M be a manifold, let D be an integrable distribution and let N be an
integral manifold of D. To show that N is initial, we must prove that, for every
smooth manifold P and every smooth mapping ϕ : P → M such that ϕ(P ) ⊂ N , the
restriction in range ϕ�N : P → N is continuous. For that purpose, we will show that
for every p ∈ P and for every open neighbourhood V of ϕ(p) in N , the preimage
ϕ−1(V ) is an open neighbourhood of p in P .

Choose a local chart (U,κ) adapted to D at ϕ(p). Since the slice U0 is an in-
tegral manifold through ϕ(p) and since ϕ(p) ∈ N , Lemma 3.5.14/1 implies that
U0 ∩ N is an open submanifold of N and of U0. Hence, without loss of general-
ity we may restrict attention to open neighbourhoods V of ϕ(p) in U0 ∩ N . Since
U0 ∩ N is open in U0 and since U0 is embedded, there exists an open subset Ṽ of
U such that Ṽ ∩ U0 ∩ N = V . Now, let W be the connected component of p in
ϕ−1(Ṽ ). By construction, W is an open neighbourhood of p in P . It remains to
show that W ⊂ ϕ−1(V ), that is, ϕ(W) ⊂ V . Since W is a connected subset of P

and since ϕ is continuous as a mapping to M , ϕ(W) is a connected subset of M

which contains ϕ(p) and which is contained in N ∩ U . Hence, the image of ϕ(W)

under the mapping (κr+1, . . . , κn) is a connected subset of Rn−r which contains 0
and which is contained in the image of N ∩ U under this mapping. Since the lat-
ter image labels the slices of U intersecting N , it is countable by Lemma 3.5.14/2.
Since a nonempty countable connected subset of Rn−r consists of a single point, it
follows that κr+1(ϕ(W)) = · · · = κn(ϕ(W)) = 0 and hence ϕ(W) ⊂ N ∩ U0. Then,
ϕ(W) ⊂ Ṽ ∩ U0 ∩ N = V . This completes the proof. �
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Remark 3.5.16 It follows, in particular, that the images of the maximal integral
curves of a vector field on M are initial submanifolds of M , cf. the remark after
Proposition 3.2.11. This can also be proved directly by means of the Straightening
Lemma 3.2.17 and the above countability argument.

Theorem 3.5.17 Let M be a manifold and let D be an integrable distribution on M .
For every m ∈ M there exists a unique integral manifold (Nm,ψm) of D through m

which is maximal in the following sense. For every integral manifold (N,ψ) of D

such that ψ(N) ∩ ψm(Nm) �= ∅ there holds ψ(N) ⊂ ψm(Nm), and (N,ψ�Nm) is
an open submanifold of Nm.

Proof As mentioned above, for convenience, in the proof we assume all integral
manifolds to be given by subsets. Moreover, we will repeatedly use the statements of
Lemma 3.5.14, mostly without explicitly spelling that out. Let m ∈ M be given and
let r = dimDm. Every integral manifold of D through m has dimension r . Define
a subset Nm ⊂ M by taking the union over all integral manifolds of D through m.
Equip Nm with the topology generated by the open subsets of the integral mani-
folds through m. Then, the union over the maximal atlases of the integral manifolds
through m defines an atlas on Nm. By Lemma 3.5.14/1, this atlas is smooth. By
the same argument as in the case of a regular distribution, see e.g. [302], one can
show that Nm is second countable. Then, Nm is a manifold of dimension r . By
construction, the local representatives of the natural inclusion mapping Nm → M

are smooth, hence Nm is a smooth submanifold of M . Also by construction, every
m̃ ∈ Nm belongs to an integral manifold N through m and N is an open submanifold
of Nm. Hence, Tm̃Nm = Tm̃N = Dm̃, so that Nm is an integral manifold through m.
It has the maximality property stated in the theorem, because if some integral man-
ifold N of D intersects Nm, then N ∪ Nm is an integral manifold through m, hence
it is contained in Nm. There follows N ∩ Nm = N and hence N is an open subman-
ifold of Nm. To show uniqueness, let Ñm be an integral manifold through m which
has the above maximality property. Then, Ñm = Nm as sets and each of them is an
open submanifold of the other one, hence they are equal as manifolds. �

The properties of the family of maximal integral manifolds of an integrable dis-
tribution can be conveniently summarized in the notion of foliation. Our definition
follows [280].

Definition 3.5.18 (Foliation) Let M be a manifold of dimension n. A foliation of
M is a family N of connected submanifolds of M , called the leaves of the foliation,
such that

1. the leaves are pairwise disjoint and
⋃

N∈N N = M ,17

2. for every m ∈ M there exists a local chart (U,κ) of M satisfying

17That is, N is a partition of M .
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(a) κ(m) = 0 and κ(U) = (−ε, ε)n for some ε > 0,
(b) the leaves are invariant under the flows of the local vector fields ∂1, . . . , ∂r ,

where r denotes the dimension of the leaf containing m.

The function which assigns to m ∈ M the dimension of its leaf is called the rank
or the dimension of N at m. N is called regular if this function is constant, that is,
if all leaves have the same dimension. Otherwise, N is called singular.

Concerning terminology, the remark made after Definition 3.5.1 applies accord-
ingly to foliations. Local charts at m satisfying the two conditions of point 2 will be
called adapted to N .

Remark 3.5.19

1. If N is regular of dimension r , condition 2b is equivalent to the condition that
for every leaf N , the image κ(N ∩U) is a union of subsets (−ε, ε)r ×{c}, where
c ∈ (−ε, ε)n−r . This union is necessarily at most countable. Moreover, in this
case, if a leaf N is an embedded submanifold of M , it is closed in M . To see
this, let {mn} be a sequence in N converging to some m ∈ M . Let Nm denote the
leaf of m. For every local chart (U,κ) at m adapted to N , U intersects N . Since
N is embedded, (U,κ) can be chosen so that κ(N ∩ U) = (−ε, ε)r × {c} for
some c ∈ (−ε, ε)n−r . Since κ(mn) → κ(m) = 0, it follows that c = 0 and hence
m ∈ N .

2. By condition 2b, the dimension of leaves is locally non-decreasing, that is, for
every m ∈ M there exists a neighbourhood U such that the dimension of any leaf
intersecting U is equal to or greater than the dimension of the leaf containing m.

Example 3.5.20

1. The family of connected components of a manifold M is a regular foliation of
dimension n. The family of all one-point subsets is the only regular foliation of
dimension 0.

2. If π :M → P is a smooth submersion with the property that the preimage π−1(p)

is connected for all p ∈ P , the Constant Rank Theorem implies that the preim-
ages form a regular foliation of dimension dimM − dimP . A foliation of this
form is called simple. By Remark 1.5.16/4, for a given simple foliation of M ,
the manifold P is unique up to diffeomorphisms. It is referred to as the space
of leaves of the foliation. Let us add that Theorem 3.5.10/4 says that every inte-
grable regular foliation is locally simple.

3. According to Proposition 3.2.17, the images of the integral curves of a vector
field on M form a foliation. It is regular of dimension 1 if the vector field does
not have zeros.

4. The partition of R2 consisting of the single points of the x-axis and the two open
half-planes separated by the x-axis is a smooth foliation, whereas the partition
consisting of this axis and the single points outside is not.
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Proposition 3.5.21 The assignment of the family of maximal integral manifolds
to an integrable distribution defines a bijection between smooth integrable distri-
butions on M and smooth foliations on M . Regular distributions of dimension r

thereby correspond to regular foliations of dimension r .

Proof The family of maximal integral manifolds of an integrable distribution is a
foliation: Theorem 3.5.17 implies that condition 1 of Definition 3.5.18 is satisfied.
Theorem 3.5.10/4 and the invariance of maximal integral manifolds under the flows
of the elements of XD

loc(M) imply that condition 2 is satisfied. Conversely, let N
be a smooth foliation. For m ∈ M , let Dm be the tangent space at m of the leaf
containing m. This defines a subset D ⊂ TM . By condition 2(b) of Definition 3.5.18,
Dm is spanned by the values at m of elements of XD

loc(M). Hence, D is a distribution.
By construction, every leaf of N is an integral manifold of D. First, this implies that
D is integrable. Second, in view of Theorem 3.5.17, this implies that every leaf of
N is contained as an open subset in a maximal integral manifold N of D. Thus, N

is a union of leaves. Since the leaves are disjoint and since N is connected, N must
coincide with a single leaf. This shows that N is the family of maximal integral
manifolds of D, and the assignment is bijective, indeed. The assertion about regular
distributions and foliations then follows by observing that for every m ∈ M , the
dimension of the maximal integral manifold of an integrable distribution through m

is equal to the rank of this distribution at m. �

Exercises

3.5.1 Use Remark 2.3.2/4 and Formula (3.1.1) to prove that the conditions given in
Remark 3.5.6 are equivalent to involutivity.

3.5.2 Show that the vector fields X = ∂x + y∂z and Y = (x2 + 1)∂y generate a non-
involutive regular distribution of rank 2 on R

3.
3.5.3 Show that the distribution on R

3 \ {0}, generated by the vector fields

X1 = x2∂3 − x3∂2, X2 = x3∂1 − x1∂3, X3 = x1∂2 − x2∂1,

is regular of rank 2 and involutive. Find the maximal integral manifolds. How
are they related to the action of the rotation group SO(3) on R

3?
3.5.4 Show that the distribution on the unit sphere S3 ⊂R

4, generated by the vector
fields

X = (1 − x4 − x2
1

)
∂1 − x1x2∂2 − x1x3∂3 + x1(1 − x4)∂4,

Y = −x1x2∂1 + (1 − x4 − x2
2

)
∂2 − x2x3∂3 + x2(1 − x4)∂4,

is integrable. Find the maximal integral manifolds. Is this distribution regular?
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3.6 Critical Integral Curves

In the last four sections of this chapter, we discuss qualitative aspects of the flows of
vector fields. Usually, this is treated as a part of the theory of dynamical systems.18

Let M be a smooth manifold, let X be a vector field on M and let Φ : D → M be the
flow of X. Recall from Proposition 3.2.11 that the image of a maximal integral curve
of X is a submanifold of M which consists of a single point or is diffeomorphic
either to S1 or to R.

Definition 3.6.1 (Critical integral curve) A maximal integral curve γ of X is called
critical if its image is compact, that is, if the image consists of a single point or if it
is diffeomorphic to the sphere S1. In the first case, γ is called an equilibrium of X.
In the second case, it is called a periodic integral curve.

In what follows, by an abuse of terminology and notation, by an integral curve γ

of X we will mean the mapping itself or its image in M , depending on the context.
Let γ be a periodic integral curve of X and let m ∈ γ . The minimal positive real

number T ∈R satisfying ΦT (m) = m is called the period of γ and ΦT is called the
period mapping. Due to ΦT ◦ Φt(m) = Φt ◦ ΦT (m), the period does not depend on
the choice of m. Since a considerable part of the analysis of the flow near a peri-
odic integral curve is reduced to the study of fixed points of local diffeomorphisms,
parallely to periodic integral curves of flows we will discuss fixed points of local
diffeomorphisms.

A fundamental tool in the study of critical integral curves is the linearized flow.
Given a critical integral curve γ of X, we consider the normal bundle

Nγ = (TM)�γ /Tγ

of the submanifold γ of M . Recall that Nγ is a real vector bundle over γ of dimen-
sion dimM − dimγ . Since γ is invariant under the flow Φ , the tangent mappings
(Φt )

′, t ∈ R, induce vector bundle automorphisms

(Φt )
′γ : Nγ → Nγ, (3.6.1)

which project to the diffeomorphisms of γ induced by Φt . The family {(Φt )
′γ :

t ∈ R} is a one-parameter group of diffeomorphisms and hence defines a complete
flow on Nγ .

Definition 3.6.2 (Linearized flow) The flow on Nγ defined by {(Φt )
′γ : t ∈ R} is

called the linearization of Φ along γ .

We are going to determine the linearization explicitly. First, consider the case of
an equilibrium. Here, γ = {m} and Nγ = TmM . The linearized flow (Φt )

′γ is given
by the one-parameter group of vector space automorphisms (Φt )

′
m: TmM → TmM ,

18A (continuous time) dynamical system consists of a manifold M and a vector field on M . We do
not use this terminology here.



3.6 Critical Integral Curves 127

t ∈R. Hence, according to Example 3.2.8, this flow is generated by the linear vector
field on TmM which corresponds to the vector space endomorphism

Hessm(X) := d

dt �0

(Φt )
′
m (3.6.2)

of TmM and one has

(Φt )
′
m = etHessm(X), t ∈R. (3.6.3)

Definition 3.6.3 The mapping Hessm(X) : TmM → TmM is called the Hessian en-
domorphism of X at m.

Remark 3.6.4

1. Let (U,κ) be a local chart at m and let Xi denote the coefficient functions of
X with respect to the local frame of TM induced by κ . A brief computation
(Exercise 3.6.1) shows that with respect to the basis {∂1,m, . . . , ∂n,m} of TmM ,
the endomorphism Hessm(X) is represented by the (n × n)-matrix

[
κ ′
m ◦ Hessm(X) ◦ (κ ′

m

)−1]i
j

= ∂(Xi ◦ κ−1)

∂xj

(
κ(m)

)
. (3.6.4)

2. Hessm(X) can be characterized by X alone, without using the flow, as follows.
Let s0 be the zero section of TM . Its image s0(M) is an embedded submani-
fold of TM , diffeomorphic to M . Consider the tangent mapping X′

m : TmM →
Ts0(m)(TM). Since s0(M) and TmM intersect transversally in s0(m), one has

Ts0(m)(TM) = Ts0(m)s0(M) + Ts0(m)(TmM).

By counting dimensions one sees that the sum is direct, hence it defines a projec-
tion to Ts0(m)(TmM). Composing this projection with the natural identification
of Ts0(m)(TmM) with TmM , one obtains a linear mapping τm : Ts0(m)(TM) →
TmM . Using τm, one can express Hessm(X) as

Hessm(X) = τm ◦ X′
m. (3.6.5)

The easiest way to prove this is to use (3.6.4). This is left to the reader (Exer-
cise 3.6.2).

Next, consider the case of a periodic integral curve. In contrast to equilibria,
periodic integral curves come in a great variety of shapes. Hence, we cannot expect
to obtain an explicit formula for the linearized flow along γ like (3.6.3) for the case
of an equilibrium. Rather, we will construct a normal form for the linearized flow
along γ . This requires the following notion.

Definition 3.6.5 (Conjugacy) Let k ≥ 0.

1. Flows Φ(i) : D (i) → Mi , i = 1,2, as well as the corresponding vector fields, are
said to be conjugate of class Ck if there exists a diffeomorphism h:M1 → M2 of
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class Ck such that (idR ×h)(D (1)) = D (2) and, for all (t,m) ∈ D (1),

h
(
Φ

(1)
t (m)

)= Φ
(2)
t

(
h(m)

)
.

2. Local diffeomorphisms ϕ(i) : Ui → Mi , i = 1,2, are said to be conjugate of class
Ck if there exists a diffeomorphism h:M1 → M2 of class Ck such that U2 =
h(U1) and

h ◦ ϕ(1) = ϕ(2) ◦ h�U1 .

Recall that a diffeomorphism of class C0 is just a homeomorphism. In this case,
one speaks of topological conjugacy.

As a second input, we need the suspension of a vector space automorphism. Let
V be a finite-dimensional real vector space, let a ∈ GL(V ) and let T > 0. We de-
fine an equivalence relation on the direct product V × R by (v1, t1) ∼ (v2, t2) iff
there exists k ∈ Z such that (v2, t2) = (akv1, t1 − kT ). Let V a denote the set of
equivalence classes. By constructing local charts in an analogous way as for the
Möbius strip in Example 1.1.12, one can equip V a with a smooth structure (Ex-
ercise 3.6.4). With respect to this structure, the natural projection V × R → V a is
a local diffeomorphism. In particular, V a has the same dimension as V × R, i.e.,
dimV + 1. The flow on V ×R induced by the standard vector field (0, d

dt
) is given

by (t, (v, s)) �→ (v, s + t). Hence, it maps equivalence classes to equivalence classes
and thus induces a flow Σa on V a . By definition, the projected flow is given by

Σa
t

([
(v, s)

])= [(v, s + t)
]
, v ∈ V, s, t ∈R. (3.6.6)

Definition 3.6.6 (Suspension) V a is called the suspension with period T of V rel-
ative to a. The flow Σa on V a is called the suspension of a with period T . The
integral curve through [(0,0)] is referred to as the central integral curve of Σa .

The flow Σa is complete, that is, it is a one-parameter group of diffeomorphisms
of V a . It does not have fixed points. Due to

Σa
kT

([
(v, s)

])= [(v, s + kT )
]= [(akv, s

)]
, v ∈ V, s ∈ R, k ∈ Z,

an integral curve of Σa is periodic iff it passes through a point [(v, s)] satisfying
ak(v) = v for some k ∈ Z \ {0}. In this case, the integral curve has period kT . In
particular, the central integral curve is periodic with period T . Let us add that V a can
be viewed as a vector bundle over R/TZ ∼= S1 with typical fibre V and transition
functions with respect to a covering of S1 by two open intervals U1, U2 given by the
constant mappings x �→ idV for one of the connected components of U1 ∩ U2 and
x �→ a for the other one.

Example 3.6.7

1. For V = R and a being multiplication by −1, the suspension V a with period
T = 1 is diffeomorphic to the Möbius strip, cf. Examples 1.1.12 and 2.2.4. All
integral curves of Σa are periodic. The central integral curve has period 1 and
the other integral curves have period 2.
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2. For V = C and a being multiplication by eiα , the suspension with period T = 1
is diffeomorphic to C × S1. If α

2π
is rational, all integral curves are periodic,

where those apart from the central one have the same period (a certain inte-
ger). Otherwise, the central integral curve is the only one which is periodic. For
r > 0, the submanifold {[(z, t)] : |z| = r} is invariant under the suspended flow
and the induced flow is conjugate to the rational or irrational torus flow, cf. Ex-
ample 1.6.6/3.

Now, we can construct the desired normal form for the linearized flow along a
periodic integral curve γ . For that purpose, we observe that the mapping

P
γ
m := (ΦT )

′γ
m : Nmγ → Nmγ (3.6.7)

is a vector space automorphism. It is called the period automorphism of γ at m.

Proposition 3.6.8 Let γ be a periodic integral curve of X with period T . For every
m ∈ γ , the linearized flow is smoothly conjugate to the suspension with period T of
the period automorphism P

γ
m .

Proof Denote a = P
γ
m and define a mapping

h̃: Nmγ ×R → Nγ, h̃
([X], t) := (Φt )

′γ [X].
For simplicity, we write v ≡ [X]. Due to h̃(akv, t − kT ) = h̃(v, t) for all k ∈ Z, the
mapping h̃ is constant on equivalence classes and hence induces a mapping

h: (Nmγ )a → Nγ, h
([

(v, t)
]) := (Φt )

′γ v.

By construction,

h ◦ Σa
t = (Φt )

′γ ◦ h.

It remains to show that h is a diffeomorphism. Since the natural projection
Nmγ ×R→ (Nmγ )a is a local diffeomorphism, it suffices to show that h is bijective
and that h̃′

(v,t) is a bijection for all (v, s) ∈ Nmγ ×R. Surjectivity of h follows from
the fact that the integral curves of the linearized flow project to γ and hence each
of them passes through Nmγ . To prove injectivity, let (v1, t1), (v2, t2) ∈ Nmγ ×R

such that h̃(v1, t1) = h̃(v2, t2). Then, v2 = (Φt1−t2)
′γ v1. Since v1 and v2 are both in

Nmγ , there exists k ∈ Z such that t1 − t2 = kT . It follows that v2 = akv1 and hence
[(v2, t2)] = [(v1, t1)]. Finally, since Nmγ ×R and Nγ have the same dimension, bi-
jectivity of h̃′

(v,t) follows from surjectivity. The latter follows by observing that for

every t ∈ R, the mapping v �→ h̃(v, t) is a vector space isomorphism of fibres of Nγ ,
and that for every v ∈ Nmγ , the mapping t �→ h̃(v, t) is a curve in Nγ projecting to
γ and hence intersecting each fibre transversally. �

Remark 3.6.9 Differentiation of the obvious equality ΦT = Φt ◦ΦT ◦Φ−t at Φt(m)

yields

P
γ

Φt (m) = (Φt )
′γ
m ◦ P

γ
m ◦ (Φ−t )

′γ
Φt (m).

Hence, all period automorphisms are conjugate under the linearized flow.
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As a result of the previous discussion, the linearized flow along a critical inte-
gral curve γ is completely determined by a certain characteristic linear mapping.
In case γ is an equilibrium, this is the Hessian endomorphism. Its eigenvalues are
called the characteristic exponents of γ . In case γ is periodic this is the period au-
tomorphism at a chosen point m ∈ γ . Its eigenvalues are called the characteristic
multipliers of γ . Extending this terminology, by the characteristic linear mapping
associated with a fixed point m of a local diffeomorphism ϕ we mean the tangent
mapping ϕ′

m. Its eigenvalues are called the characteristic multipliers of m. Note that,
being eigenvalues of linear mappings, characteristic exponents and multipliers come
with geometric and algebraic multiplicities.19

Next, we recall the following terminology from linear algebra. An endomorphism
of a finite-dimensional real vector space V is called non-degenerate if all eigenval-
ues are nonzero. A non-degenerate endomorphism of V is called elliptic (hyper-
bolic) if every (no) eigenvalue lies on the imaginary axis. An automorphism of V is
called non-degenerate if all eigenvalues are distinct from 1. A non-degenerate au-
tomorphism of V is called elliptic (hyperbolic) if every (no) eigenvalue lies on the
unit circle. Via the characteristic linear mapping, this terminology carries over to
critical integral curves of vector fields and to fixed points of local diffeomorphisms.
Thereby, the characteristic linear mapping of an equilibrium has to be treated as an
endomorphism, because it is genuinely infinitesimal, whereas the characteristic lin-
ear mapping of a periodic integral curve or of a fixed point of a local diffeomorphism
has to be treated as an automorphism, because it is genuinely a transformation.

Definition 3.6.10 (Ellipticity and hyperbolicity) A critical integral curve of a vector
field or a fixed point of a local diffeomorphism is called non-degenerate, elliptic
or hyperbolic if the associated characteristic linear mapping is, respectively, non-
degenerate, elliptic or hyperbolic.

From the separate analysis of hyperbolic and elliptic critical integral curves, con-
clusions on the behaviour of the flow near an arbitrary critical integral curve can be
drawn.

Remark 3.6.11

1. Let γ be a periodic integral curve of X. According to Remark 3.6.9, the char-
acteristic multipliers of X at γ do not depend on the choice of the point m ∈ γ .
Moreover, due to

(ΦT )′mXm = d

dt �0

ΦT

(
Φt(m)

)= d

dt �0

Φt(m) = Xm,

Xm is an eigenvector of the automorphism (ΦT )′m of TmM with eigenvalue 1. It
follows that the characteristic multipliers of X at γ are given by the eigenvalues

19The geometric multiplicity of an eigenvalue is the number of linearly independent eigenvectors.
The algebraic multiplicity is defined as the multiplicity of the corresponding root of the character-
istic polynomial.
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of (ΦT )′m with the multiplicity of the eigenvalue 1 of (ΦT )′m reduced by one
(which may make this eigenvalue disappear). In particular, γ is non-degenerate
iff the eigenvalue 1 of (ΦT )′m has multiplicity one.

2. As a consequence of the Inverse Mapping Theorem, non-degenerate equilibria
of vector fields and non-degenerate fixed points of local diffeomorphisms are
isolated (Exercise 3.6.5). Moreover, since X is continuous and periodic integral
curves are compact, each of them possesses a neighbourhood which is free of
equilibria.

3. Let M be an open subset of a finite-dimensional real vector space V and let γ be
a periodic integral curve of a vector field X on M . According to Remark 2.3.4/1,
under the natural identification of TM with M × V ⊂ V × V , X is represented
by a smooth mapping X : M → V and the tangent mapping (Φt )

′ can be written
in the form (Φt )

′
v(v,u) = (Φt (v),Av(t)u) with v,u ∈ V and Av(t) ∈ GL(V ).

For every v ∈ γ , this defines a smooth curve Av : R → GL(V ). Differentiation
of this curve with respect to t yields the ordinary first order differential equation

Ȧv(t) = X′(Φt(v)
)
Av(t) (3.6.8)

with initial condition Av(0) = 1. The solution is known as the path-ordered ex-
ponential20,21 and is usually written in the form

Av(t) = T exp
∫ t

0
X′(Φs(v)

)
ds.

The linearized flow (Φt )
′γ : Nγ → Nγ along γ is thus represented by the family

of mappings

V/RX(v) → V/RX
(
Φt(v)

)
, v ∈ γ, t ∈ R,

given by

(Φt )
′γ
v

(
u +RX(v)

)= Av(t)u +RX
(
Φt(v)

)
, u ∈ V.

Hence, the characteristic multipliers of γ coincide with the eigenvalues of Av(T )

with the multiplicity of the eigenvalue 1 reduced by 1 (so that this eigenvalue may
disappear).

Example 3.6.12 The vector field X = 2y∂x + (4x − 4x3)∂y on R
2 has the equilib-

rium points m1 = (−1,0), m2 = (1,0) and m3 = (0,0). According to (3.6.4), with
respect to the standard chart, the Hessian endomorphism of X at mi is represented
by the matrix

∂Xi

∂xj
=
[

0 2
4 − 12x2 0

]
.

20For negative t ,
∫ t

0 X′(Φs(v))ds has to be replaced by − ∫ 0
t

X′(Φs(v))ds.
21Since (3.6.8) has T -periodic coefficients, by a theorem of Floquet, the solution Av(t) can be
written as Av(t) = Av,0(t)etBv with T -periodic smooth Av,0 : R → GL(V ) and constant Bv ∈
End(V ).
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The corresponding eigenvalues are λ1± = λ2± = ±4i and λ3± = ±2
√

2. Hence, m1
and m2 are elliptic, whereas m3 is hyperbolic. In particular, all equilibria are non-
degenerate. Consider the function f (x, y) = y2 − 2x2 + x4. Due to X(f ) = 0, the
level sets of f are invariant under the flow of X. A function with this property is
called a first integral or a constant of motion of X. Since we are in two dimensions,
it follows that the level set components of f coincide with the images of the integral
curves. We leave it to the reader (Exercise 3.6.7) to visualize the flow of X using
this observation.

Example 3.6.13 (Linear vector fields) Let V be a finite-dimensional real vector
space and let X be a linear vector field on V , defined by the endomorphism A.
Then, 0 is an equilibrium point of X. Under the natural identification of T0V with
V , the linearized flow on T0V coincides with the flow of X on V . According to
Example 3.2.8, the latter is given by Φt = etA. There follows Hess0(X) = A. Hence,

– the characteristic exponents of X at 0 are given by the eigenvalues of A,
– 0 is non-degenerate iff A is invertible; if so, it is the only equilibrium point,
– 0 is hyperbolic or elliptic iff so is A.

For illustration, we determine the flow in the neighbourhood of the equilibrium
point 0 for the case dimV = 2. We choose a basis such that the matrix representing
A has Jordan normal form and use the results of Example 3.2.8. Up to the choice of
basis, one can distinguish the following types.22

1. A has a zero eigenvalue.
(a) A = 0, etA = idV . Every point is an equilibrium point.

(b) A =
[

0 1
0 0

]
, etA =

[
1 t

0 1

]
.

The x1-axis consists of equilibria. The other maximal integral curves are par-
allel to the x2-axis. Their velocity is constant in time and given by the x2-
coordinate.

(c) A =
[

λ 0
0 0

]
, etA =

[
eλt 0
0 1

]
, λ �= 0.

The x2-axis consists of equilibria. The other maximal integral curves are par-
allel to the x1-axis. Their velocity grows exponentially in time.

2. A =
[

λ 0
0 μ

]
, etA =

[
eλt 0
0 eμt

]
, λ,μ ∈R, λ �= 0 �= μ.

The integral curves are given by the graphs of the functions

x2 = f (x1) = ±C|x1|μ/λ, x1 �= 0, C > 0, (3.6.9)

and the positive and negative coordinate semiaxes. Three cases can be distin-
guished.

22In the literature, linear vector fields X1, X2 defined by A1, A2 are said to be linearly equivalent if
A2 = aA1a

−1 for some a ∈ GL(V ). In this terminology, our choice of basis amounts to discussing
the linear vector fields on R

2 up to linear equivalence.
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(a) λ > μ > 0 or λ < μ < 0. The curves (3.6.9) are branches of parabolas. In
the first case, all integral curves run outwards, hence 0 is called an unstable
knot. In the second case, they run inwards, hence 0 is called a stable knot.

(b) λ = μ. The curves (3.6.9) are semi-infinite line segments. As in case 2(a),
the running direction is outwards for λ > 0 and inwards for λ < 0. Corre-
spondingly, 0 is called a degenerate unstable or stable knot.

(c) λ > 0 > μ. The curves (3.6.9) are branches of hyperbolas. The running di-
rections are shown in the figure below. The equilibrium point 0 is called a
saddle here.

3. A =
[

λ 1
0 λ

]
, etA = eλt

[
1 t

0 1

]
, λ ∈R, λ �= 0.

For λ < 0 (case 3(a)), the maximal integral curves run inwards, whereas for λ > 0
(case 3(b)) they run outwards. Correspondingly, 0 is called a stable or unstable
improper knot.

4. A =
[

α −β

β α

]
, etA = eαt

[
cos(βt) − sin(βt)

sin(βt) cos(βt)

]
, α,β ∈R, β > 0.

This is the case of complex eigenvalues λ± = α ± iβ . If α < 0 (case 4(a)),
the maximal integral curves are logarithmic spirals approaching 0. If α > 0
(case 4(b)), they are spirals running away from 0. If α = 0 (case 4(c)), they form
circles. Correspondingly, 0 is called a stable or an unstable spiral or a centre.
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In the cases 2, 3, 4(a) and 4(b), the endomorphism A and hence the equilibrium
{0} is hyperbolic. In the case 4(c), A and hence {0} is elliptic. Further critical integral
curves besides {0} are present in the cases 1(a)–1(c), where they form additional
equilibria, and 4(c), where they form periodic integral curves. The latter have the
common period T = 2π

β
. Due to eT A = 1 there holds (ΦT )′v = (eT A)′v = 1 for all

v �= 0. Hence, the single characteristic multiplier is 1, so that all periodic integral
curves are degenerate.

Examples for types 2(a), 2(b), 4(a) and 4(c) are provided by the harmonic oscil-
lator in one dimension with linear friction, see Exercise 3.6.9.

Example 3.6.14 (The planar pendulum) Let φ, β denote the coordinates induced on
TS1 ∼= S1 ×R by the standard angle coordinate φ on S1. The vector fields ∂φ and ∂β

provide a global frame in T(TS1). The planar pendulum with length l, gravitational
acceleration g, elongation φ and angular velocity β is modelled by the (nonlinear)
vector field23

X = β∂φ − ω2 sinφ∂β, ω2 = g

l
,

on TS1. The equilibrium points are given by ms = (0,0) and mu = (π,0). Accord-
ing to Remark 3.6.4/1, with respect to the basis {(∂φ)mi

, (∂β)mi
} in Tmi

M , i = s, u,
the Hessian endomorphisms are represented by the matrices

Hessms (X) =
[

0 1
−ω2 0

]
, Hessmu(X) =

[
0 1
ω2 0

]
.

The eigenvalues are ±iω for ms and ±ω for mu, hence ms is elliptic and mu is
hyperbolic. For the linearized flow on Tms M , the origin is a centre (type 4(c)),
whereas for the linearized flow on TmuM , it is a saddle (type 2(c)).24 The flow
of X is shown in Fig. 3.2(a), where the left and right boundaries of the picture must
be glued. There are contractible and non-contractible periodic integral curves. The
first ones correspond to motions where the pendulum swings forth and back. The
latter ones correspond to motions where the pendulum rotates. Altogether they form
three 1-parameter families, each of which is diffeomorphic to a cylinder S1 × R.25

Finally, there are two maximal integral curves which are not critical, represented
by the fat curves in the picture. They approach mu for t → ±∞ and correspond
to the two motions where the pendulum asymptotically approaches the upward po-
sition from the left or the right, respectively. Together with mu, these two integral
curves divide M into three domains each of which is filled with periodic integral
curves. Since periodic integral curves of different domains cannot be deformed into

23This is an example of a Hamiltonian system with one degree of freedom.
24We will see later that it is exactly these two types of equilibria that can occur in a Hamiltonian
system with one degree of freedom.
25In Chap. 9 we will learn that periodic integral curves of Hamiltonian systems typically come in
such “orbit cylinders”.
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Fig. 3.2 The flows of (a) the planar pendulum and (b) the modified harmonic oscillator

one another through periodic integral curves, the subset26 of M made up by the two
non-critical integral curves and mu is called the separatrix.

Example 3.6.15 (The modified harmonic oscillator) As a last example, consider the
vector field

X =
(

y + ωx

(
1 − x2 − y2

ω2

))
∂x +

(
−ω2x + ωy

(
1 − x2 − y2

ω2

))
∂y

on R
2. This system is usually referred to as the modified harmonic oscillator. In the

sequel we state results about the critical integral curves of this system and leave it
to the reader to provide arguments or to carry out calculations.

X possesses the single equilibrium {0}. The characteristic exponents are ω(1± i),
hence 0 is hyperbolic and the linearized flow about 0 is an unstable spiral (type 4(b)),
see Example 3.6.13. Outside the equilibrium, i.e., on R

2 \ {0}, one has the global
chart κ = (r,φ), defined by

x = r cosφ, y = ωr sinφ.

We use it to identify R
2 \ {0} with R+ × S1 and to move with our discussion to the

latter. This way, the equations for the integral curves of X separate,

ṙ = ωr
(
1 − r2), φ̇ = ω,

and for the flow we obtain

κ ◦ Φt ◦ κ−1(r,φ) = ((1 + (r−2 − 1
)
e−2ωt

)− 1
2 , φ + ωt

)
, t ∈ R, (3.6.10)

see Fig. 3.2(b). In particular, X is complete. From (3.6.10) one reads off that X

possesses the single periodic integral curve γ , given in the coordinates r , φ by

26In fact, this subset is a figure eight submanifold, see Example 1.6.6/2.



136 3 Vector Fields

t �→ γ (t) = (1,ωt). It has period T = 2π
ω

. The tangent mapping of the flow at the
point (1, φ) of γ is

(
κ ◦ Φt ◦ κ−1)′

(1,φ)
=
[

e−2ωt 0
0 1

]
.

In particular, the characteristic multiplier of γ is e−4π , hence γ is hyperbolic, too.
The normal bundle Nγ admits the global section (1, φ) �→ [(∂r )(1,φ)]. With respect
to the corresponding global trivialization χ : Nγ → γ ×R, the linearized flow along
γ is given by

χ ◦ (Φt )
′γ ◦ χ−1((1, φ), v

)= ((1, φ + ωt), e−2ωtv
)
. (3.6.11)

In particular, the period automorphism P
γ

(1,φ) amounts to multiplication by e−4π .

Identifying N(1,φ)γ with R via χ , for the suspension of N(1,φ)γ relative to P
γ

(1,φ)

one obtains

(N(1,φ)γ )e−4π = (R×R)/∼,

where (s1, v1) ∼ (s2, v2) iff s1 − s2 = kT and v1 = e4πkv2 for some k ∈ Z. The
mapping R×R → γ ×R defined by (s, v) �→ ((1,ωs), e−4πsv) descends to a dif-
feomorphism τ : (N(1,φ)γ )e−4π → γ ×R which satisfies

τ ◦ Σe−4π

t ◦ τ−1((1, φ), v
)= ((1, φ + ωt), e−4πtv

)
.

Thus, χ−1 ◦ τ conjugates the linearized flow along γ to the suspension of the period
automorphism. In fact, it yields the diffeomorphism h constructed in the proof of
Proposition 3.6.8.

Exercises
3.6.1 Prove Eq. (3.6.4).
3.6.2 Use (3.6.4) to prove Formula (3.6.5).
3.6.3 Let m be an equilibrium point of a vector field X on M and let (U,κ) be a

local chart at m. Convince yourself by an explicit calculation that the eigen-
values of the matrix ∂j (X

i ◦ κ−1)(κ(m)) are independent of the choice of κ .
3.6.4 Along the lines of Example 1.1.12, construct an atlas on the suspension V a

with period T of a finite-dimensional real vector space V relative to an au-
tomorphism a ∈ GL(V ), see Definition 3.6.6.

3.6.5 Show that non-degenerate equilibria of vector fields and non-degenerate
fixed points of local diffeomorphisms are isolated, cf. Remark 3.6.11.

3.6.6 Consider the Möbius strip as a real one-dimensional vector bundle over S1

and let φ denote the angle coordinate on S1. Show that every maximal inte-
gral curve of the vector field ∂φ is periodic and determine the characteristic
multiplier for each of them.

3.6.7 Draw a picture of the flow of the vector field of Example 3.6.12. Compare the
behaviour of the flow near the elliptic equilibria with that near the hyperbolic
equilibrium.

3.6.8 Prove Eq. (3.6.9).
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3.6.9 The harmonic oscillator in one dimension with frequency ω, linear friction
coefficient α ≥ 0, elongation x and velocity y is modelled in phase space by
the linear vector field

X = y∂x − (ω2x + 2αy
)
∂y (3.6.12)

on R
2. Determine the type of flow about the equilibrium point 0 according

to Example 3.6.13 for the cases α = 0, 0 < α < ω, α = ω and α > ω, and
discuss how the integral curves change with increasing α.

3.6.10 The index of a non-degenerate equilibrium {m} of a vector field X is de-
fined to be the sign of the determinant of Hessm(X). Determine the index of
the equilibrium {0} for the vector field X = −xi∂i (summation convention)
on R

n.

3.7 The Poincaré Mapping

Let M be a smooth manifold and let X be a vector field on M with flow Φ : D → M .
Let γ be a periodic integral curve of X with period T . As mentioned before, a
large part of the analysis of the flow of X near γ can be reduced to the study of a
certain local diffeomorphism. This will be constructed now. The idea is that instead
of continuously watching the flow along the integral curves near γ it suffices to
record where these integral curves hit a certain transversal submanifold. This leads
to the notion of Poincaré mapping.

Let m0 ∈ γ and let P be a submanifold of codimension 1 which is transversal27

to the integral curves of X and which satisfies P ∩ γ = {m0}. For dimensional
reasons, transversality implies

Xm /∈ TmP for all m ∈ P. (3.7.1)

The subset of points m ∈ P for which there exists t > 0 such that Φt(m) ∈ P will
be called the returning subset of P and will be denoted by Pret. Due to (3.7.1),
integral curves of X intersect P at isolated values of t . Thus, for every m ∈ Pret,
there exists a minimal flow parameter value τ(m) > 0 such that Φτ(m)(m) ∈ P . The
assignment m �→ τ(m) defines a function τ : Pret → R+, called the first return time
function. The corresponding mapping

Θ : Pret → P, Θ(m) := Φτ(m)(m), (3.7.2)

is called the first return mapping. Obviously, τ(m0) = T and Θ(m0) = m0. Neither
τ nor Θ need be continuous: for example, view the Möbius strip as the suspension
of the automorphism s �→ −s of R, cf. Example 3.6.7/1. Let γ be the central integral
curve of the corresponding flow and let P be given by the equivalence classes of
pairs (x,0) with b < x < a, where b < 0 and a > 0. Unless b = −a, the mappings
τ and Θ are not continuous.

27Recall that, in particular, P is transversal to all integral curves it does not intersect.
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Lemma 3.7.1

1. Pret is an open neighbourhood of m0 in P .
2. Θ is smooth iff τ is smooth. In this case, for all Y ∈ Tm0P ,

Θ ′(Y ) = τ ′(Y )Xm0 + (ΦT )′(Y ) ≡ (ΦT )′
(
τ ′(Y )Xm0 + Y

)
. (3.7.3)

Proof 1. Let m ∈ Pret. Due to (3.7.1), XΘ(m) �= 0. According to Proposition 3.2.17,
there exists a flow box chart (U,κ) for X at Θ(m). Since P is transversal to the
integral curves of X, κ(U ∩ P) is transversal to the maximal integral curves of
the local representative of X. Thus, by possibly shrinking U transversally to the
direction of the flow we can achieve that κ(U ∩ P) intersects all of these integral
curves. Then, prM(Φ−1(U ∩ P) \ ({0} × M)) = prM(Φ−1(U) \ ({0} × M)). Since
prM is an open mapping, this is an open subset of M . Hence, intersection with P
yields an open subset of P which contains m and which is contained in Pret.

2. Obviously, if τ is smooth then so is Θ . Conversely, assume that Θ is smooth
and let m ∈ Pret be arbitrary. As before, there exists a flow box chart (U,κ) for X

at Θ(m). By possibly shrinking U transversally to the direction of the flow we can
achieve that for every m̃ ∈ Θ−1(U ∩ P) one has τ(m) ∈ Dm̃ and Φτ(m)(m̃) ∈ U .
Let pr1 : Rn → R denote the projection to the first coordinate (the one which corre-
sponds to the flow parameter). Since Θ(m̃) = Φτ(m̃)(m̃) and Φτ(m)(m̃) are both in
U ∩ P , the difference τ(m̃) − τ(m) is given by

τ(m̃) − τ(m) = pr1 ◦κ
(
Θ(m̃)

)− pr1 ◦κ
(
Φτ(m)(m̃)

)
.

Since the right hand side is smooth in the variable m̃, τ is smooth on the open neigh-
bourhood Θ−1(U ∩ P) of m in Pret. Finally, (3.7.3) follows by a straightforward
calculation using the product rule. �

Definition 3.7.2 (Poincaré mapping) Let γ be a periodic integral curve and let
m0 ∈ γ . A Poincaré mapping for γ at m0 is a triple (P,W ,Θ), where

1. P is an embedded submanifold of M of codimension 1 which is transversal to
every integral curve of X and which satisfies P ∩ γ = {m0},

2. W is an open neighbourhood of m0 in Pret and Θ : W → P is the restriction28

to W of the first return mapping associated with P ,

such that Θ is a diffeomorphism onto its image.

Theorem 3.7.3 (Existence) For every periodic integral curve γ of a vector field and
for every m0 ∈ γ , there exists a Poincaré mapping at m0.

Proof As before, denote the manifold by M , the vector field under consideration
by X and let Φ : D → M be the flow of X. Since γ is periodic, Xm0 �= 0, hence
there exists f ∈ C∞(M) such that Xm0(f ) �= 0. Choose f such that f (m0) = 0.

28Denoted by the same letter.
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According to the Level Set Theorem, the subset N ⊂ f −1(0) of regular points is
an embedded submanifold of M of codimension 1 containing m0. There exists an
open neighbourhood P of m0 in N such that Xm(f ) �= 0 for all m ∈ P , that is,
P is transversal to the integral curves of X. Consequently, (3.7.1) holds and the
integral curves intersect P in isolated points. Thus, by possibly shrinking P we
can achieve that P ∩ γ = {m0}. Due to the existence of flow box charts at m0, we
may furthermore assume that there exists ε1 > 0 such that (−ε1, ε1) × P ⊂ D and
Φt(m) /∈ P for all m ∈ P and 0 < |t | < ε1. Since Dm0 = R, there exists an open
neighbourhood W of m0 in P and a > 0 such that (0, T + a) × W ⊂ D . Consider
the smooth function f ◦ Φ on (0, T + a) × W . We have

f ◦ Φ(T ,m0) = 0,
d

dt �T
f ◦ Φ(t,m0) = Xm0(f ) �= 0.

Hence, after possibly shrinking W , the Implicit Mapping Theorem 1.5.10 yields
0 < ε2 < a and a smooth function τ̃ : W → (T − ε2, T + ε2) such that for every
m ∈ W and t ∈ (T − ε2, T + ε2) there holds f ◦ Φ(t,m) = 0 iff t = τ̃ (m). Define29

Θ̃ : W → N, Θ̃(m) := Φτ̃(m)(m).

Since P is open in N and since Θ̃ is continuous, by possibly further shrinking W
we can achieve Θ̃(W ) ⊂ P . Then, Θ̃ is a smooth mapping from W to P satisfying
(3.7.3). Since Xm0 /∈ Tm0P and (ΦT )′m0

is injective, the latter implies that Θ̃ ′
m0

is injective and hence bijective. According to the Inverse Mapping Theorem, by
possibly shrinking W once more we can achieve that Θ̃ is a diffeomorphism onto
an open subset of P .

Finally, we show that P and W can be shrunk so that τ̃ becomes the first return
time mapping τ and Θ̃ becomes the restriction to W of the first return mapping
Θ associated with P . Assume, on the contrary, that this is impossible. Then, ev-
ery neighbourhood V of m0 in P contains a point m such that Φt(m) ∈ V for
some t ∈ (0, τ̃ (m)). By our choice of P and by the uniqueness property of τ̃ , then
ε ≤ t ≤ T − ε, where ε = min{ε1, ε2}. Thus, we can find sequences {mn} in P and
{tn} in [ε,T − ε] such that mn → m0 and Φtn(mn) → m0. On the other hand, the
sequence {tn} has a cluster point t0 in [ε,T − ε] and, by passing to a subsequence
converging to t0, we obtain Φtn(mn) → Φt0(m0). Since P is Hausdorff, the two
limits coincide, that is, there holds Φt0(m0) = m0 (contradiction). This completes
the proof. �

Remark 3.7.4 Let (P,W ,Θ) be a Poincaré mapping for γ at m0. One can show
that, by possibly shrinking P and W , one may always assume that there exists
ε > 0 such that

29Note that τ̃ need not be the first return time mapping and Θ̃ need not be the first return mapping
associated with P .
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1. (−ε,T + ε) × W ⊂ D ,
2. the first return time function τ takes values in (T − ε,T + ε),
3. if Φt(m) ∈ P for some (t,m) ∈ (−ε,T + ε) × W , then t = 0 or t = τ(m),
4. for any neighbourhood U of m0 in W , Φ((−ε,T + ε) × U) is a neighbourhood

of γ in M .

The proof is left to the reader (Exercise 3.7.1).

Next, we study the relation between Poincaré mappings at different points of γ .

Proposition 3.7.5 (Uniqueness) Any two Poincaré mappings (Pi ,Wi ,Θi) for γ at
mi ∈ γ , i = 1,2, are equivalent in the following sense.30 There exist open neigh-
bourhoods P̃i of mi in Pi and W̃i ⊂ Θ−1

i (P̃i ) of mi in Wi as well as a smooth

mapping λ : P̃1 →R such that the assignment m �→ Φλ(m)(m) defines a diffeomor-
phism ϕ : P̃1 → P̃2 satisfying ϕ(W̃1) = W̃2 and

Θ2 ◦ ϕ(m) = ϕ ◦ Θ1(m) for all m ∈ W̃1. (3.7.4)

Proof There exists a unique t1 ∈ [0, T ) such that Φt1(m1) = m2. According to Re-
mark 1.8.4, there exists f2 ∈ C∞(M) such that P2 = f −1

2 (0). Use f2 and the initial
solution (t1,m1) of the equation f2 ◦ Φ(t,m) = 0 to construct the smooth function
λ : P̃1 → R and the diffeomorphism ϕ : P̃1 → P̃2 in exactly the same way as τ

and Θ , respectively, in the proof of Theorem 3.7.3. The resulting open neighbour-
hoods P̃i of mi in Pi can be shrunk in a compatible way such that there exists ε > 0
satisfying (−ε, ε) × P̃2 ⊂ D and Φt(P̃2) ∩ P̃2 = ∅ for all 0 < |t | < ε, as well as
|λ(m) − t1| < ε

6 for all m ∈ P̃1. Then, choose W̃i so that mi ∈ W̃i ⊂ Θ−1
i (P̃i ),

ϕ(W̃1) = W̃2 and |τi(m) − T | < ε
3 for all m ∈ W̃i . After these adjustments, (3.7.4)

holds. Indeed, for any m ∈ W̃1, both Θ2 ◦ ϕ(m) and ϕ ◦ Θ1(m) are elements of P̃2
and Θ2 ◦ ϕ(m) = ΦΔ ◦ ϕ ◦ Θ1(m), where

Δ = λ(m) − λ
(
Θ1(m)

)+ τ2
(
ϕ(m)

)− τ1(m).

Due to

|Δ| ≤ ∣∣λ(m) − λ
(
Θ1(m)

)∣∣+ ∣∣τ2
(
ϕ(m)

)− T
∣∣+ ∣∣τ1(m) − T

∣∣< ε,

it follows Δ = 0 and hence (3.7.4). This proves the proposition. �

Finally, we examine the relation between Poincaré mappings and the period au-
tomorphisms.

Proposition 3.7.6 Let γ be a periodic integral curve of X and let m0 ∈ γ . Let
(P,W ,Θ) be a Poincaré mapping for γ at m0. By restriction, the natural projec-
tion pr: TmM → Nmγ induces an isomorphism χ : TmP → Nmγ which satisfies

χ ◦ Θ ′
m = P

γ
m ◦ χ. (3.7.5)

30Briefly, their germs at mi are conjugate in the sense of Definition 3.6.5.
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In particular, the eigenvalues of Θ ′
m coincide with the characteristic multipliers of

X at γ .

Proof For dimensional reasons, (3.7.1) implies that χ is bijective and hence an iso-
morphism. Since pr(Xm0) = 0, (3.7.5) follows from (3.7.3). �

Example 3.7.7

1. Consider the modified harmonic oscillator of Example 3.6.15. As a submanifold
transversal to the integral curves of X we may choose, in the coordinates x and y,
P = {(x,0) : x > 0}. Denote the points of P by x. From (3.6.10) we read off
the first return time function τ and the first return mapping Θ ,

τ(x) = T = 2π

ω
, Θ(x) = (1 + (x−2 − 1

)
e−4π

)− 1
2 .

Obviously, Θ is a diffeomorphism of P onto itself, hence, if we choose W = P ,
then (P,W ,Θ) is a Poincaré mapping for γ . Let us add that the iterates of Θ

are given by

Θk(x) = (1 + (x−2 − 1
)
e−4πk

)− 1
2 , (3.7.6)

which for large k is given asymptotically by Θk(x) ∼ 1 − 1
2 (x−2 − 1)e−4πk .

2. Let V be a finite-dimensional real vector space, let a ∈ GL(V ) and let T ∈ R+.
Consider the flow on the suspension V a of V relative to a with period T which is
given by the suspension Σa of a with period T . Let m0 := [(0,0)] ∈ V a and let
γ be the central integral curve of Σa (which passes through m0). Under the iden-
tification of V with the embedded submanifold {[(v,0)] : v ∈ V } of V a , the triple
(P,W ,Θ) = (V ,V, a) is a Poincaré mapping for γ at m0 (Exercise 3.7.4).

Exercises
3.7.1 Show that every Poincaré mapping can be shrunk so that it satisfies condi-

tions 1–4 of Remark 3.7.4.
3.7.2 Provide the details for the construction of the smooth function λ and the dif-

feomorphism ϕ in the proof of Proposition 3.7.5.
3.7.3 Verify Formula (3.7.6) of Example 3.7.7.
3.7.4 Prove that the mapping given in Example 3.7.7/2 is a Poincaré mapping for

the central integral curve of the suspension of a vector space automorphism.

3.8 Stability

As already mentioned in the introduction, in the study of stability of a dynamical
system one is concerned with the long-time behaviour of a flow, with emphasis
both on returning properties and on attraction properties of integral curves. In this
context a variety of concepts and a lot of subtle techniques exist. In our elementary



142 3 Vector Fields

introduction to this field, we limit our attention exclusively to orbital stability, which
we merely call stability here. Only at the end of this section we will make some
remarks on other concepts.

We give parallel definitions of stability for flows and for local diffeomorphisms.
First, let X be a vector field on M and let Φ : D → M be its flow. A subset A of M

is said to be invariant under Φ if Φt(m) ∈ A for all m ∈ A and t ∈ Dm. Of course,
critical integral curves provide important examples for invariant subsets.

Definition 3.8.1 (Stability for flows) A Φ-invariant subset A ⊂ M is called

1. stable under Φ if for every neighbourhood U of A in M there exists a neigh-
bourhood V of A in M such that R+ ×V ⊂ D and Φt(m) ∈ U for all m ∈ V and
t ∈R+,

2. asymptotically stable under Φ if it is stable under Φ and if there exists a neigh-
bourhood V of A in M with the following properties:
(a) R+ × V ⊂ D ,
(b) for every m ∈ V and every neighbourhood U of A there exists t0 ∈ R+ such

that Φt(m) ∈ U for all t ≥ t0.
In this case, V is called a basin of attraction31 for A under Φ .

Now, let ϕ be a local diffeomorphism of M . A subset A of M is said to be
invariant under ϕ if ϕ(m) ∈ A for all m ∈ A which are in the domain of ϕ. For a
point m in the domain of ϕ and k ∈ Z+ we say that ϕk(m) is defined if, successively,
ϕ1(m), . . . , ϕk−1(m) is in the domain of ϕ.

Definition 3.8.2 (Stability for local diffeomorphisms) A ϕ-invariant subset A ⊂ M

is called

1. stable under ϕ if for every neighbourhood U of A in M there exists a neighbour-
hood V of A in M such that for all m ∈ V and k ∈ Z+, ϕk(m) is defined and lies
in U ,

2. asymptotically stable under ϕ if it is stable under ϕ and if there exists a neigh-
bourhood V of A in M with the following properties:
(a) ϕk(m) is defined for all m ∈ V and all k ∈ Z+,
(b) for every m ∈ V and every neighbourhood U of A there exists k0 ∈ Z+ such

that ϕk(m) ∈ U for all k ≥ k0.
In this case, V is called a basin of attraction for A under ϕ.

Remark 3.8.3

1. Stability and asymptotic stability are local properties. They do not change if the
vector field or the local diffeomorphism is modified outside a neighbourhood
of A. As a consequence, if A is compact, without loss of generality one may
assume that X is complete. Similarly, in the case of a local diffeomorphism ϕ,

31Beware that in the literature it is common to use this name for the largest such set.
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if A is compact and contained in the domain of ϕ, without loss of generality one
may assume that ϕ is a global diffeomorphism (Exercise 3.8.1).

2. If A is compact, hence in particular if A is a critical integral curve, the definition
of (asymptotic) stability may be formulated in terms of a metric ρ compatible
with the topology of M . The proof is left to the reader (Exercise 3.8.3). For
B ⊂ M , define

ρ̃(x,B) := inf
{
ρ(x, y) : y ∈ B

}
.

A Φ-invariant subset A of M is
(a) stable if for every ε > 0 there is δ > 0 such that ρ̃(m,A) < δ implies R+ ⊂

Dm and ρ̃(Φt (m),A) < ε for all t ∈R+.
(b) asymptotically stable if there exists δ > 0 such that ρ̃(m,A) < δ implies

R+ ⊂ Dm and ρ̃(Φt (m),A) → 0 for t → ∞.

The primary aim of this section is to derive stability criteria for critical integral
curves. This includes

(a) stability criteria for periodic integral curves in terms of the period mapping ΦT

and a Poincaré mapping,
(b) stability criteria for the linearized flow and the discussion of how stability under

the linearized flow is related to stability under the flow itself,
(c) a stability criterion in terms of a Lyapunov function.

We start with deriving stability criteria for periodic integral curves in terms of
the period mapping and a Poincaré mapping. For that purpose we need

Lemma 3.8.4 Let A be a Φ-invariant subset and let t > 0 such that [0, t]×A ⊂ D .
For every neighbourhood U of A in M there exists a neighbourhood V of A in M

such that [0, t] × V ⊂ D and Φs(V ) ⊂ U for all s ∈ [0, t].

Proof Since D is open in R × M , for every m ∈ A, there exists an open neigh-
bourhood V0m of m in M such that {t} × V0m ⊂ D . Then, V0 =⋃m∈A V0m is an
open neighbourhood of A in M satisfying {t} × V0 ⊂ D and Proposition 3.2.10/2
implies [0, t] × V0 ⊂ D . By restriction, Φ induces a continuous mapping Φ̃ :
[0, t] × V0 → M . Let m ∈ A. Due to Φ̃([0, t] × {m}) ⊂ A ⊂ U , Φ̃−1(U) is a
neighbourhood of [0, t] × {m} in [0, t] × V0. Since [0, t] is compact, the Tube
Lemma of elementary topology yields a neighbourhood Vm of m in V0 such that
[0, t] × Vm ⊂ Φ̃−1(U). Then, Vm is a neighbourhood of m in M and for s ∈ [0, t]
there holds Φs(Vm) = Φ̃({s} × Vm) ⊂ U . Then, V :=⋃m∈A Vm has the desired
properties. �

Proposition 3.8.5 (Stability of periodic integral curves) Let γ be a periodic integral
curve with period T . Let m0 ∈ γ and let (P,W ,Θ) be a Poincaré mapping for γ

at m0. The following statements are equivalent.
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1. γ is stable under the flow of X.
2. γ is stable under the local diffeomorphism ΦT of M .
3. m0 is stable under the local diffeomorphism Θ of P .

The equivalence remains valid if stable is replaced by asymptotically stable.

Proof Since stability is a local concept, we may shrink P and W so that there
exists 0 < ε < T satisfying conditions 1–4 of Remark 3.7.4. For U ⊂ W , denote
Uε := Φ(−ε,T +ε)(U). Since for m ∈ W and k ∈ Z+ such that Θk(m) is defined
there holds Θ1(m), . . . ,Θk−1(m) ∈ W , one can put

τk(m) := τ(m) + τ
(
Θ(m)

)+ · · · + τ
(
Θk−1(m)

)
.

Then, Θk(m) = Φτk(m)(m) and τk(m) ≥ k(T − ε).
1 ⇒ 3: Let γ be stable under Φ . Let U be a neighbourhood of m0 in P . Define

U0 := W ∩ U and U1 := U0 ∩ Θ−1(U0). Condition 3 of Remark 3.7.4 implies

Uε
1 ∩ P ⊂ U0. (3.8.1)

According to condition 4 of this remark, Uε
1 is a neighbourhood of γ in M . Hence,

by assumption, there exists a neighbourhood V1 of γ such that R+ × V1 ⊂ D and
Φt(m) ∈ Uε

1 for all m ∈ V1 and t ∈ R+. Define V := W ∩ V1 and let m ∈ V . We
show by induction that for all k ∈ Z+, Θk(m) is defined and lies in U0. Due to
U0 ⊂ U , this implies that m0 is stable under Θ . For k = 1, the assertion holds due to
V ⊂ U1 and Θ(U1) ⊂ U0. Thus, assume that Θk(m) is defined and lies in U0. Due
to U0 ⊂ W , then Θk+1(m) is defined, hence so is τk+1(m). Since τk+1(m) ≥ 0, we
have Θk+1(m) ≡ Φτk+1(m)(m) ∈ Uε

1 , hence Θk+1(m) ∈ U0 by (3.8.1).
3 ⇒ 2: Assume that m0 is stable under Θ . Let U be a neighbourhood of γ in M .

According to Lemma 3.8.4, U contains a neighbourhood U0 of γ in M such that
Φs(U0) ⊂ U for all s ∈ [0, T + ε]. Then, U1 = U0 ∩ P is a neighbourhood of
m0 in P . By assumption, there exists a neighbourhood V1 of m0 in P such that
for all m ∈ V1 and l ∈ Z+, Θl(m) is defined and lies in U1. By condition 4 of
Remark 3.7.4, V := V ε

1 is a neighbourhood of γ in M . Since Θl is defined on V1 for
all l ∈ Z+, there holds R+ ×V1 ⊂ D and hence R+ ×V ⊂ D , so that Φk

T is defined
on V for all k ∈ Z+. Let m ∈ V and k ∈ Z+. Write m = Φt(m̃) with m̃ ∈ V1 and
t ∈ (−ε,T + ε). There exist l ∈ Z+ and s ∈ [0, T + ε] such that kT + t = τl(m̃)+ s.
Then, Φk

T (m) = Φs(Θ
l(m̃)) and hence Φk

T (m) ∈ U . Thus, γ is stable under ΦT .
2 ⇒ 1: Let γ be stable under ΦT . Let U be a neighbourhood of γ in M . Accord-

ing to Lemma 3.8.4, there is a neighbourhood U0 of γ in M such that Φs(U0) ⊂ U

for all s ∈ [0, T ]. By assumption, for U0 there exists a neighbourhood V of γ in M

such that for all m ∈ V and k ∈ Z+, Φk
T (m) is defined and lies in U0. That Φk

T is de-
fined on V for all k ∈ Z+ implies, in particular, R+×V ⊂ D . Let m ∈ V and t ∈ R+.
Write t = kT + s with k ∈ Z+ and s ∈ [0, T ]. Then, Φt(m) = Φs(Φ

k
T (m)) ∈ U .

Hence, γ is stable under Φ .
The proof for asymptotic stability is analogous and, therefore, left to the

reader. �

Next, we derive stability criteria for the linearized flow along a critical integral
curve.



3.8 Stability 145

Definition 3.8.6 (Linear stability)

1. A critical integral curve γ of a vector field X is called linearly stable or lin-
early asymptotically stable if the zero section32 of Nγ is stable or asymptotically
stable, respectively, under the linearized flow of X.

2. A fixed point m of a local diffeomorphism ϕ of M is called linearly stable or
linearly asymptotically stable if the origin of TmM is stable or asymptotically
stable, respectively, under ϕ′

m.

First, we study the stability of the origin of an abstract finite-dimensional real
vector space V under the flow of a linear vector field and under a vector space
automorphism. The key ingredient is an appropriate decomposition of the corre-
sponding spectrum. For a linear mapping L on V , let spec+

0 (L), spec−
0 (L) and

spec0(L) denote, respectively, the subsets of eigenvalues with positive, negative
and zero real part. Analogously, let spec+

1 (L), spec−
1 (L) and spec1(L) denote, re-

spectively, the subsets of eigenvalues with absolute value larger, smaller and equal
to 1. In addition, for i = 0,1, let specd

i (L) denote the subset of speci (L) of eigen-
values whose geometric and algebraic multiplicities coincide33 and let specn

i (L) =
speci (L) \ specd

i (L). For i = 0,1 and a = +,−, d, n, let Ea
i (L) and Ei(L) denote

the subspace of V spanned by the algebraic eigenspaces34 of the eigenvalues in
speca

i (L) and speci (L), respectively. Thus, one has the disjoint decompositions

spec(L) = spec−
0 (L) ∪ spec0(L) ∪ spec+

0 (L),

spec0(L) = specd
0(L) ∪ specn

0(L),
(3.8.2)

spec(L) = spec−
1 (L) ∪ spec1(L) ∪ spec+

1 (L),

spec1(L) = specd
1(L) ∪ specn

1(L),
(3.8.3)

and the corresponding direct sum decompositions

V = E−
0 (L) ⊕ E0(L) ⊕ E+

0 (L), E0(L) = Ed
0 (L) ⊕ En

0 (L), (3.8.4)

V = E−
1 (L) ⊕ E1(L) ⊕ E+

1 (L), E1(L) = Ed
1 (L) ⊕ En

1 (L), (3.8.5)

where all subspaces in (3.8.4) and (3.8.5) are invariant under L. We need the fol-
lowing two facts from Euclidean geometry.

Lemma 3.8.7 Let V be a finite-dimensional real vector space.

1. Let A ∈ End(V ) and let c, d ∈ R such that c < Re(λ) < d for all λ ∈ spec(A).
There exists a scalar product 〈·,·〉 on V such that c〈v, v〉 < 〈Av,v〉 < d〈v, v〉 for
all v ∈ V \ {0}.

32Recall that for an equilibrium γ = {m}, the zero section of Nγ reduces to the origin of TmM .
33This means that L is diagonalizable on the corresponding algebraic eigenspace.
34That is, L�Vi

− λ idVi
is nilpotent.
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2. Let a ∈ GL(V ) and let c, d > 0 such that c < |λ| < d for all λ ∈ spec(a). There
exists a scalar product on V whose norm satisfies c‖v‖ < ‖av‖ < d‖v‖ for all
v ∈ V \ {0}.

Proof 1. It suffices to show that each algebraic eigenspace of A admits a scalar
product with the desired property and to take the orthogonal direct sum of these
scalar products. Thus, we may assume that A has a single Jordan block with eigen-
value λ. Choose a basis in V such that the corresponding matrix of A has Jordan
normal form, cf. Example 3.2.8. Let 〈·, ·〉0 denote the scalar product on V making
this basis orthonormal. Let r = dimV in case λ is real and r = dimV

2 otherwise.
Choose 0 < ε < min{d − Re(λ),Re(λ) − c} and let T denote the upper triangular
(r × r)-matrix with entries Tkl := εr−l for k ≤ l. Then,

〈v,w〉 :=
{ 〈T v,T w〉0 λ ∈ R,

〈R(T )v,R(T )w〉0 λ /∈ R

defines a scalar product on V with the desired property (Exercise 3.8.4). Here, R(T )

denotes the realification of complex matrices defined in Example 3.2.8.
2. Let ρ(a) = max{|λ| : λ ∈ spec(a)} denote the spectral radius of a. Due to

ρ(a−1)−1 = min{|λ| : λ ∈ spec(a)}, there exist c0, d0 ∈ R such that c < c0 <

ρ(a−1)−1 and ρ(a) < d0 < d . Choose some scalar product 〈·,·〉0 on V and define

〈v,w〉 =
∞∑

k=1

〈
ck

0a
−kv, ck

0a
−kw

〉
0 +

∞∑

k=0

〈
d−k

0 akv, d−k
0 akw

〉
0.

To see that the series on the right hand side converge, choose c1, d1 ∈ R such that
c0 < c1 < ρ(a−1)−1 and ρ(a) < d1 < d0. Use the Cauchy-Schwarz inequality and
the fact that for the operator norm associated with the scalar product 〈·,·〉0 one has

ρ(a−1) = limk→∞ ‖a−k‖ 1
k to estimate these series by geometric series with ratios

qc = c0
c1

and qd = d1
d0

, respectively. Finally, renaming summation indices one finds

‖av‖2 = c2
0

∞∑

k=1

∥∥ck
0a

−kv
∥∥2

0 + c2
0‖v‖2

0 + d2
0

∞∑

k=1

∥∥d−k
0 akv

∥∥2
0.

Replacing d0 by c0 or c0 by d0, one obtains a lower estimate or an upper estimate,
respectively. Thus, ‖av‖2 ≥ c0‖v‖2 > c‖v‖2 and ‖av‖2 ≤ d0‖v‖2 < d‖v‖2. �

Lemma 3.8.8 Let V be a finite-dimensional real vector space.

1. For every A ∈ End(V ) there exists an adapted scalar product on E±
0 (A) whose

norm satisfies, for all v ∈ E±
0 (A) \ {0},

∥∥e∓tAv
∥∥± < ‖v‖±, t ∈R+,

lim
t→±∞

∥∥etAv
∥∥± = ∞, lim

t→∓∞
∥∥etAv

∥∥± = 0.
(3.8.6)

2. For every a ∈ GL(V ) there exists an adapted scalar product on E±
1 (a) whose

norm satisfies, for v ∈ E±
1 (a) \ {0},

∥∥a∓1v
∥∥± < ‖v‖±, lim

k→±∞
∥∥akv

∥∥± = ∞, lim
k→∓∞

∥∥akv
∥∥± = 0. (3.8.7)
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Proof 1. First, consider E−
0 (A). There is d < 0 such that Reλ < d for all λ ∈

spec−
0 (A). According to Lemma 3.8.7/1, there is a scalar product 〈·, ·〉 on E−

0 (A)

such that 〈Av,v〉 < d‖v‖2 for all v �= 0. Then,

d

dt

∥∥etAv
∥∥=

d
dt

‖etAv‖2

2‖etAv‖ = 〈AetAv, etAv〉
‖etAv‖ < d

∥∥etAv
∥∥.

There follows ‖etAv‖ < edt‖v‖ for all t > 0 and ‖etAv‖ > edt‖v‖ for all t < 0. Due
to d < 0, this yields (3.8.6) with the lower signs. The assertion for E+

0 (A) follows
by replacing A by −A.

2. First, consider E−
1 (a). There is d < 1 such that |λ| < d for all λ ∈ spec−

1 (a).
According to Lemma 3.8.7/2, there exists a scalar product on E−

1 (a) whose norm
satisfies ‖av‖ < d‖v‖ for all v �= 0. Then, ‖akv‖ < dk‖v‖ for all k ∈ Z+ and
‖akv‖ > dk‖v‖ for all k ∈ Z−. Since d < 1, this implies (3.8.7). The assertion for
E+

1 (a) follows by replacing a by a−1. �

Lemma 3.8.8 yields the following stability criterion for the origin under a linear
flow or a vector space automorphism.

Proposition 3.8.9 (Stability under linear mappings) Let V be a finite-dimensional
real vector space.

1. Let A ∈ End(V ). The origin of V is asymptotically stable under etA if and only if
spec(A) = spec−

0 (A). It is stable under etA iff spec(A) = spec−
0 (A) ∪ specd

0(A).
2. Let a ∈ GL(V ). The origin of V is asymptotically stable under a if and only if

spec(a) = spec−
1 (a). It is stable under a iff spec(a) = spec−

1 (a) ∪ specd
1(a).

Proof 1. Choose scalar products on E±
0 (A) according to Lemma 3.8.8. Choose a

basis in E0(A) such that the restriction of A to E0(A) has Jordan normal form and
define the scalar product on E0(A) such that this basis is orthonormal. Using (3.2.9)
and (3.2.10) one can check that

(a) etA acts isometrically on Ed
0 (A),

(b) if En
0 (A) �= 0, there exists a nonzero v ∈ V such that ‖etAv‖ = √

1 + t2‖v‖.

These two observations and (3.8.6) imply the following.

– For all v ∈ E−
0 (A), limt→∞ ‖etAv‖ = 0. Hence, if V = E−

0 (A), 0 is asymptoti-
cally stable.

– For all v ∈ E−
0 (A) ⊕ Ed

0 (A), ‖etAv‖ ≤ ‖v‖. Hence, if V = E−
0 (A) ⊕ Ed

0 (A), 0 is
stable.

– If V �= E−
0 (A), there is v ∈ V with ‖etAv‖ ≥ ‖v‖. Hence, 0 is not asymptotically

stable.
– If V �= E−

0 (A) ⊕ Ed
0 (A), there is v ∈ V with limt→∞ ‖etAv‖ = ∞. Hence, 0 is

not stable.

2. In the argument for point 1, replace the lower index 0 by 1, t ∈ R+ by k ∈ Z+,
etA by ak and the reference to (3.8.6) by that to (3.8.7). We have to check that (a)
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and (b) remain valid under these replacements. For (a), this is obvious. For (b), it
follows by observing that ak = diag(Bk

1 , . . . ,Bk
r ), where Bi are the Jordan blocks

of a, and by calculating the k-th power of a Jordan block of complex dimension
mi ≥ 2. If the corresponding eigenvalue λi is real, this yields

Bk
i =

⎡

⎢⎢⎢⎣

λk
i kλk−1

i · · · (
k

mi−1

)
λ

k−mi+1
i

0
. . .

. . .
...

...
. . .

. . . k λk−1
i

0 · · · 0 λk
i

⎤

⎥⎥⎥⎦ .

Otherwise, one has to replace the numbers 0 and λi by the 2 × 2-matrices 0 and
�(λi), respectively; see Example 3.2.8 for the notation. In either case, (b) holds
true. �

Corollary 3.8.10 (Linear stability)

1. An equilibrium of a vector field is linearly asymptotically stable if and only if all
characteristic exponents have negative real part. It is linearly stable if and only
if all characteristic exponents have nonpositive real part and for those with zero
real part, the geometric and algebraic multiplicities coincide.

2. A periodic integral curve of a vector field or a fixed point of a local diffeomor-
phism is linearly asymptotically stable if and only if all characteristic multipli-
ers lie in the open unit disk. It is linearly stable if and only if all characteristic
multipliers lie in the closed unit disk and for those lying on the unit circle, the
geometric and algebraic multiplicities coincide.

Proof For equilibria of vector fields and fixed points of local diffeomorphisms, the
assertion follows directly from Proposition 3.8.9. To prove it for a periodic inte-
gral curve γ of a vector field X, choose m ∈ γ and consider the suspension of
Nmγ relative to the period automorphism P

γ
m . According to Proposition 3.6.8, the

(asymptotic) stability of the zero section of Nγ under the linearized flow is equiv-
alent to that of the central integral curve of the suspension of P

γ
m . According to

Example 3.7.7/2 and Proposition 3.8.5, the latter is equivalent to the (asymptotic)
stability of the origin of Nmγ under P

γ
m . Hence, the assertion follows from Propo-

sition 3.8.9/2 by setting V = Nmγ and a = P
γ
m . �

Next, we discuss how linear stability is related to stability. A partial answer fol-
lows from the Grobman-Hartman Theorem. We cite versions for flows and for local
diffeomorphisms.

Theorem 3.8.11 (Grobman-Hartman)

1. Let X be a vector field on M and let m be an equilibrium point. There exist open
neighbourhoods U of m in M and V of the origin in TmM such that the flow
of X�U is topologically conjugate to the restriction of the linearized flow (Φt )

′
m

to V .
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2. Let ϕ be a local diffeomorphism of M and let m ∈ M be a hyperbolic fixed point
of ϕ. There exist open neighbourhoods U of m in M and V of the origin in TmM

such that the restrictions of ϕ to U and of ϕ′ to V are topologically conjugate.

Proof See [236] or [248]. Detailed proofs of assertion 1 can also be found in [123,
§IX.7] and [207, §3.6]. �

Let us add that under certain additional conditions on the characteristic exponents
or multipliers, respectively, the conjugacy is of class Cr for some r . See [257, §5.8]
for examples and further references. The Grobman-Hartman Theorem does not ex-
tend beyond hyperbolic critical integral curves, see Example 3.8.14 for a counterex-
ample. It has, however, a generalization to arbitrary critical integral curves, known
as the principle of reduction to the centre manifold, see Remark 3.9.13 in the next
section.

Corollary 3.8.12 (Stability in the hyperbolic case) A hyperbolic critical integral
curve of a vector field or a hyperbolic fixed point of a local diffeomorphism is stable
if and only if it is linearly stable. If it is stable, it is asymptotically stable.

Proof Since stability is a local property, for equilibria of vector fields and fixed
points of local diffeomorphisms, the assertion follows immediately from Theo-
rem 3.8.11. To prove it for a hyperbolic periodic integral curve γ of a vector field X,
let m ∈ γ and let us choose a Poincaré mapping (P,W ,Θ) for γ at m. Accord-
ing to Proposition 3.8.5, the stability and asymptotic stability of γ under the flow
of X is equivalent to the stability and asymptotic stability, respectively, of m un-
der Θ . According to Proposition 3.7.6, the critical multipliers of γ coincide with
the eigenvalues of Θ ′

m. In particular, m is a hyperbolic fixed point of Θ and the
Grobman-Hartman Theorem 3.8.11 implies that m is stable or asymptotically stable
under Θ iff so is the origin of TmP under Θ ′

m. Then, linear stability follows from
Proposition 3.8.9/2 and Corollary 3.8.10/2. �

Remark 3.8.13

1. The Grobman-Hartman Theorem holds for periodic integral curves as well, pro-
vided one generalizes the notion of conjugacy by allowing for a reparameteriza-
tion of the flow parameter.

2. Besides the study of the stability of hyperbolic critical integral curves, there are
many other important applications of the Grobman-Hartman Theorem, so that it
is actually not quite adequate to treat it in a section on stability. For example,
combining Theorem 3.8.11/1 with the classification of linear vector fields gener-
ated by a hyperbolic endomorphism up to topological conjugacy, one finds that
in the vicinity of a hyperbolic equilibrium point m, the flow of a vector field
X is topologically conjugate to the linear flow on R

n generated by the matrix
1n+,n− with n∓ = dimE∓

0 (Hessm(X)); see [21, §22]. Similarly, combining the
Grobman-Hartman Theorem for periodic integral curves with Proposition 3.6.8
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and the classification of hyperbolic linear automorphisms up to topological con-
jugacy, one finds that in the vicinity of a hyperbolic periodic integral curve γ

with period T , up to a rescaling of the time parameter, the flow Φ of a vector
field is topologically conjugate to the suspension with period 1 of the diago-
nal real (n − 1) × (n − 1)-matrix with n+ entries e and n− entries e−1, where
n± = dimE±

1 ((ΦT )′m), m ∈ γ , and where the first entry carries the sign of the
determinant of (ΦT )′m; see [148]. These results provide normal forms for the
flow near a hyperbolic critical integral curve.

As a consequence of Corollary 3.8.12, for a critical integral curve of a vector
field, linear asymptotic stability implies asymptotic stability, because it implies both
linear stability and hyperbolicity. However, neither does linear stability imply sta-
bility, nor does asymptotic stability imply linear asymptotic stability. Indeed, while
a critical integral curve which is linearly stable but not linearly asymptotically sta-
ble (and hence not hyperbolic) may be stable, as in the case of the equilibrium and
the periodic integral curves of the frictionless harmonic oscillator, it may as well be
asymptotically stable or unstable, as is shown by the following example.

Example 3.8.14 Let M =R
2 and

X = (−y + xf
(
x2 + y2))∂x + (x + yf

(
x2 + y2))∂y,

where f : R → R is a smooth function satisfying f (0) = f (1) = f ′(1) = 0 and
(s − 1)f (s2) �= 0 for s �= 0,1.35 The calculations necessary for the following are
left to the reader (Exercise 3.8.5).

There exists one equilibrium, the origin, and one periodic integral curve, given
by γ (t) = (cos(t), sin(t)). The origin has characteristic exponents ±i (hence it is
elliptic) and γ has characteristic multiplier 1. In case (s − 1)f (s2) < 0 for all
s �= 0,1, the origin is unstable and γ is asymptotically stable. Vice versa, in case
(s − 1)f (s2) > 0 for all s �= 0,1, the origin is asymptotically stable and γ is un-
stable. Let us add that in either case, according to the characteristic exponents, the
linearized flow on T0M is that of a centre (type 4(c) of Example 3.6.13) and hence
consists of periodic integral curves. Therefore, it cannot be topologically conjugate
to the flow itself.

This completes the discussion of linear stability criteria for critical integral
curves. Since these criteria are formulated in terms of characteristic exponents and
multipliers, that is, in terms of the spectrum of the associated characteristic linear
mapping, they are often referred to as spectral stability criteria. In contrast to that, in
the rest of this section, we discuss a functional stability criterion, that is, a criterion
which relates stability to the existence of certain functions. Let X be a vector field
on M , let Φ : D → M be its flow and let γ be a critical integral curve of X.

Definition 3.8.15 (Lyapunov function) A Lyapunov function for γ consists of an
open neighbourhood W of γ and a continuous function f :W →R such that

35To compare with Example 3.6.15, replace x by −x and set ω = 1 there.
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1. R+ × W ⊂ D ,
2. f (m) = 0 for all m ∈ γ and f (m) > 0 for all m ∈ W \ γ ,
3. f (Φt (m)) ≤ f (m) for all m ∈ W \ γ and all t ∈R+.

If the inequality in condition 3 holds strictly, (W,f ) is called a strong Lyapunov
function.

If f is differentiable, for condition 3 to hold it suffices that Xm(f ) ≤ 0 for a
Lyapunov function and that Xm(f ) < 0 for a strong Lyapunov function.

Theorem 3.8.16 (Lyapunov) Let γ be a critical integral curve of a vector field.
If there exists a Lyapunov function for γ , then γ is stable. If there exists a strong
Lyapunov function for γ , then γ is asymptotically stable.

In the case of an asymptotically stable critical integral curve, the converse holds,
too: if γ is asymptotically stable, then there exists a strong Lyapunov function, see
[44, Thm. V.2.2].

Proof Let f :W → R be a Lyapunov function. Let U be a neighbourhood of γ .
Since γ is compact, it possesses an open neighbourhood U0 whose closure U0 is
compact and satisfies U0 ⊂ W ∩ U . Let

β := min
{
f (m) : m ∈ U0 \ U0

}
, V := {m ∈ U0 : f (m) < β

}
.

Since U0 \ U0 is compact and since f does not vanish there, β is nonzero. There-
fore, γ ⊂ V , so that, by continuity of f , V is an open neighbourhood of γ . Since
V ⊂ W , by point 1 of Definition 3.8.15, R+ × V ⊂ D . Let m ∈ V and t ∈ R+. In
order to show that Φt(m) ∈ U , it suffices to show that Φt(m) ∈ V . Assume, on the
contrary, that Φt(m) /∈ V . Then, Φt(m) /∈ U0, because f (Φt (m)) < β by point 3
of the definition. Let t0 = inf{s ∈ R+ : Φs(m) /∈ U0}. Since U0 is open, there holds
t0 > 0 and Φt0(m) ∈ U0 \ U0. Then, f (Φt0(m)) ≥ β > f (m), in contradiction to
point 3. Hence, Φt(m) ∈ V and γ is stable.

Next, assume that f is a strong Lyapunov function. As was just shown, then γ is
stable. Construct U0, β and V as above, choosing U ≡ W . We show that V is a basin
of attraction for γ . As noted above, R+ × V ⊂ D . Let m ∈ V . Since Φt(m) ∈ V

for all t ∈ R+ and since V is compact, the sequence {Φn(m)}, n = 1,2, . . ., has
a cluster point m0 in V . Hence, there exists a strictly increasing sequence {nk},
k = 1,2, . . . , in N such that Φnk

(m) → m0 for k → ∞. By continuity of f , then
f (Φnk

(m)) → f (m0). Moreover, for t ∈ (0,1), Φt+nk
(m0) → Φt(m0) and, accord-

ingly, f (Φt+nk
(m)) → f (Φt (m0)). Since nk < t + nk < nk+1 for all k, property 3

implies

lim
k→∞f

(
Φnk

(m)
)≥ lim

k→∞f
(
Φt+nk

(m)
)≥ lim

k→∞f
(
Φnk

(m)
)

and hence f (m0) = f (Φt (m0)). By the strict inequality in property 3, this im-
plies m0 ∈ γ . Thus, for any neighbourhood U of γ , there exists t0 ∈ R+ such that
Φt(m) ∈ U for all t ≥ t0. �
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Further functional criteria for stability can be found in [44, Ch. V]. In a similar
way, functional criteria for instability can be formulated. Functions whose existence
implies instability are usually referred to as Chetaev functions.

Example 3.8.17

1. Consider the harmonic oscillator in one dimension with frequency ω, linear fric-
tion coefficient α ≥ 0, elongation x and velocity y, modelled by the vector field
(3.6.12) on R

2, see Exercise 3.6.9. Let

f (x, y) := 1

2

(
y2 + ω2x2).

This corresponds to the mechanical energy per unit mass of the oscillator. There
holds f (0,0) = 0 and f (x, y) > 0 for all (x, y) �= (0,0). Moreover,

X(x,y)(f ) = −2αy2.

Thus, in case α = 0, f is constant along the integral curves of X and hence a
Lyapunov function. In case α > 0, f is strictly decreasing and hence a strong
Lyapunov function. Hence, the origin is stable for α = 0 and asymptotically sta-
ble for α > 0.

2. Consider the flow given by the suspension with period T of an automorphism
a of a finite-dimensional real vector space V . Choose a scalar product on V

adapted to a as in the proof of Proposition 3.8.9 and let ‖ · ‖ denote the corre-
sponding norm. Define a function f : V ×R→ R by

f (v, t) := (T − (t − [t]))∥∥a[t](v)
∥∥+ (t − [t])∥∥a[t]+T (v)

∥∥,
where [t] denotes the largest integer multiple of T which is smaller than or equal
to t . One can show that f descends to a Lyapunov function for the central integral
curve γ of the suspension if spec(a) = spec−

1 (a)∪ specd
1(a) and to a strong Lya-

punov function if spec(a) = spec−
1 (a) (Exercise 3.8.6). Then, Theorem 3.8.16

implies that γ is stable in the first case and asymptotically stable in the second
case. This result was used in the proof of Corollary 3.8.10/2, where it was ob-
tained from Proposition 3.8.5 and Example 3.7.7/2.

Remark 3.8.18 Let us discuss the relation between the concept of orbital stability
presented here and the concept of pointwise stability which is usually referred to as
Lyapunov stability. Let X be a vector field on M with flow Φ : D → M and let ρ

be a metric on M compatible with the topology. A point m0 ∈ M is called

1. Lyapunov stable under Φ if for every ε > 0 there exists δ > 0 such that, for all
m ∈ M and t ∈R+, ρ(m,m0) < δ implies ρ(Φt (m),Φt (m0)) < ε,

2. asymptotically Lyapunov stable if there exists δ > 0 such that, for all m ∈ M ,
ρ(m,m0) < δ implies ρ(Φt (m),Φt (m0)) → 0 for t → ∞.

While orbital stability is a topological concept, Lyapunov stability, in general,
depends on the choice of the metric ρ. For the points of a critical integral curve,
however, it is independent of this choice (Exercise 3.8.8). Using the characterization
of stability in terms of ρ in Remark 3.8.3/2 one finds that
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1. an equilibrium is (asymptotically) stable iff the corresponding equilibrium point
is (asymptotically) Lyapunov stable,

2. a periodic integral curve γ is stable if all of its points are Lyapunov stable (Ex-
ercise 3.8.9).

The converse of the second statement does not hold in general. A counterexam-
ple is given by the planar pendulum, where every periodic integral curve has another
period, so that points which are arbitrarily close will separate under time evolution.
Moreover, the second statement does not carry over to asymptotic (Lyapunov) sta-
bility. In fact, a point of a periodic integral curve cannot be asymptotically Lyapunov
stable, because the distance to any other point of this curve is the same after one pe-
riod. However, here the following converse version of the second statement holds. If
a periodic integral curve γ is asymptotically stable and if V is a basin of attraction
for γ , then for every m ∈ V there exists m0 ∈ γ such that ρ(Φt (m),Φt (m0)) → 0
for t → ∞, see [9, §I.5.4].

Remark 3.8.19 The concept of stability of a subset of M under the flow of a vector
field should be clearly distinguished from the concept of structural stability. A vector
field X is said to be structurally stable within a family X of vector fields and relative
to a certain property (P ) if there is a neighbourhood36 of X in X whose members
have property (P ). The use of this concept is that property (P ) remains valid under
small perturbations of the vector field. Analogously, there is a concept of structural
stability for local diffeomorphisms.

Exercises
3.8.1 Prove the following.

(a) If X is a vector field on M with flow Φ : D → M and if A ⊂ M is a com-
pact subset, then R×A ⊂ D and there exists an open neighbourhood U

of A in M and a complete vector field X̃ on M such that X̃�U = X�U .
(b) If ϕ is a local diffeomorphism of M and if A is a compact subset of the

domain of ϕ, there exists an open neighbourhood U of A and a (global)
diffeomorphism ϕ̃ of M such that ϕ̃�U = ϕ�U .

3.8.2 Show that a subset A of M which is stable or asymptotically stable under
the flow of a vector field on M remains stable if the vector field is modi-
fied outside a neighbourhood of A. Prove the analogous assertion for local
diffeomorphisms.

3.8.3 Prove the stability criteria in terms of a metric stated in Remark 3.8.3/2.
3.8.4 Complete the proof of Lemma 3.8.7/1.
3.8.5 Carry out the necessary calculations for Example 3.8.14.

Hints. Use Remark 3.6.11/3 to determine the characteristic multipliers of the
periodic integral curve γ . Use polar coordinates to show that, for the initial
condition r(0) > 0, r(t) converges to the following limits when t → ∞.

36This requires to have a topology on X . Most often, the family X is defined by certain parame-
ters, and the topology is thus inherited from the space of parameters.
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(a) If (s − 1)f (s2) < 0 for all s �= 0,1, then r(t) → 1.
(b) If (s − 1)f (s2) > 0 for all s �= 0,1, then r(t) → 0 for r(0) < 1 and

r(t) → ∞ for r(0) > 1.
3.8.6 Show that the function f defined in Example 3.8.17/2 descends to a (strong)

Lyapunov function on the suspension.
3.8.7 Let M = R

2 and X = y∂x − x(1 + xy)∂y . Use the radius function f (x, y) =
x2 + y2 to show that the origin is asymptotically stable. In addition, deter-
mine the characteristic exponents. (This illustrates once more that asymp-
totic stability does not imply linear asymptotic stability, see also Exam-
ple 3.8.14.)

3.8.8 Show that for the points of a critical integral curve, due to compactness, the
definition of (asymptotic) Lyapunov stability does not depend on the choice
of metric.

3.8.9 Show that a periodic integral curve is stable provided all of its points are
Lyapunov stable.

3.8.10 Prove that linear vector fields on R
2 generated by endomorphisms with

purely imaginary eigenvalues are topologically conjugate if and only if the
eigenvalues coincide. Use this and Remark 3.8.13/2 to classify the linear
vector fields on R

2 by topological equivalence. As an application, assign to
each of the linear vector fields of Example 3.6.13 its topological equivalence
class.

3.9 Invariant Manifolds

In the preceding section we have studied the stability properties of a critical integral
curve γ with respect to the flow on a full neighbourhood U of γ . However, in the
case where γ is unstable, it is not quite satisfactory to merely know that there exist
points in U escaping from U under time evolution. There might as well be points
staying in U or approaching γ . Therefore, in this section, we are going to refine the
preceding analysis by constructing submanifolds about γ whose points behave in a
certain distinguished way under the flow. The starting point of the construction is
the decomposition of the tangent space at m ∈ γ , given by (3.8.4) and (3.8.5):

TmM = E−
0

(
Hessm(X)

)⊕ E0
(
Hessm(X)

)⊕ E+
0

(
Hessm(X)

)
(3.9.1)

if γ = {m} is an equilibrium and

TmM = E−
1

(
(ΦT )′m

)⊕ E1
(
(ΦT )′m

)⊕ E+
1

(
(ΦT )′m

)
(3.9.2)

if γ is periodic. One first establishes the corresponding submanifold structure lo-
cally around γ and then extends it globally by means of the flow. Since the local part
is intricate and would go beyond the scope of this book, we refer to the literature
here. In this section, submanifolds are viewed as subsets, irrespective of whether
they are embedded or not, and are allowed to be of class Ck with k = 1,2, . . . ,∞.

Let X be a vector field on M with flow Φ : D → M and let γ be a critical integral
curve of X. Recall that a submanifold S is said to be invariant under Φ if Φt(m) ∈ S

for all m ∈ S and t ∈ Dm.
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Definition 3.9.1 (Invariant and local invariant manifold) A Ck-submanifold of M

is called an invariant manifold for γ if it contains γ and if it is invariant under Φ .
It is called a local invariant manifold for γ if it is embedded, contains γ and if X is
tangent to it.

Remark 3.9.2 An invariant manifold need not be a local invariant manifold, as
it need not be embedded. However, every invariant manifold for γ possesses an
open submanifold which is a local invariant manifold for γ . This follows from Re-
mark 1.6.13/1.

Proposition 3.9.3 (Generating invariant manifolds) For every local invariant man-
ifold S0 of class Ck for γ , there exists a unique invariant manifold S of class Ck for
γ such that

1. S0 is an open submanifold of S,
2. for every m ∈ S there exists t ∈ Dm such that Φt(m) ∈ S0.

We say that the invariant manifold S is generated by the local invariant man-
ifold S0. Note that S need not be embedded; this is the price one has to pay for
achieving invariance under Φ .

Proof Define S := {m ∈ M : there exists t ∈ Dm such that Φt(m) ∈ S0}. By con-
struction, S is invariant under Φ and satisfies condition 2. To prove the existence
of a Ck-submanifold structure, we show that S satisfies condition (S) of Proposi-
tion 1.7.1. First, assume that X is complete. Since S0 satisfies condition (S), there
exists a countable family {S0,i} of subsets of S0 covering S0 and a corresponding
family of local Ck-charts {(Ui, κi)} on M such that conditions (S1) and (S2) of
Proposition 1.7.1 hold. For every i and every rational t , denote Si,t := Φt(S0,i ) and
Ui,t := Φt(Ui) and define the mapping

κi,t : Ui,t → R
n, κi,t (m) := κi ◦ Φ−t (m).

The family {Si,t } is countable. Since S0 ⊂ S and since S is invariant under Φ , there
holds Si,t ⊂ S. The subsets Si,t cover S: to see this, it suffices to check that for every
m ∈ S there exists a rational number t ∈ Dm such that Φt(m) ∈ S0. Now, since X

is tangent to S0, Remark 3.2.9/2 implies that if Φt(m) ∈ S0, then Φs(m) ∈ S0 for
s in some open interval containing t . This yields the assertion. Finally, every pair
(Ui,t , κi,t ) is a local Ck-chart on M , because Ui,t is open and, by restriction, Φ−t

induces a diffeomorphism Ui,t → Ui . It remains to check that conditions (S1) and
(S2) of Proposition 1.7.1 hold for the families Si,t and (Ui,t , κi,t ). Condition (S1)
carries over immediately. For condition (S2), let i, j and t , s be given. Then,

κi,t (Ui,t ∩ Uj,s) = κi

(
Ui ∩ Φs−t (Uj )

)
.

Since Φs−t (Uj ) is open in M and hence Ui ∩Φs−t (Uj ) is open in Ui , the right hand
side is open in κi(Ui). This implies condition (S2).

To remove the assumption that X be complete, first enlarge the original atlas of
S0 by choosing a countable basis of the topology for each chart domain and adding
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the local charts obtained by restricting the original chart mapping to the elements of
this basis. Then, combine each local chart (Uα, κα) of this new atlas with rational
t ∈ ⋂m∈Uα

Dm to define subsets Sα,t of S and local charts (Uα,t , κα,t ) of M as
before. We leave it to the reader to check that these data are well defined, cover S

and satisfy conditions (S1) and (S2) (Exercise 3.9.1). This completes the proof of
existence of the submanifold structure announced.

To prove uniqueness, let S(1), S(2) be submanifolds of M satisfying the con-
ditions 1 and 2. Due to condition 2, S(1) = S(2) as subsets of M . Thus, to prove
that S(1) and S(2) coincide as submanifolds, it suffices to show that the identical
mapping id : S(1) → S(2) is of class Ck . By Proposition 1.6.10, it suffices to prove
continuity, which is equivalent to showing that a neighbourhood in S(1) is also a
neighbourhood in S(2). Thus, let m ∈ S(1) and let W be a neighbourhood of m in
S(1). Since S(i) is invariant under Φ , Remark 3.2.9/2 implies that the restriction of
Φ to (R× S(i)) ∩ D is the flow of the vector field on S(i) induced by X. Hence, the
local diffeomorphisms Φt of M , t ∈ R, restrict to local diffeomorphisms of S(i). Us-
ing this and condition 1, we find that W may be shrunk so that there exists t ∈R with
Φt(W) ⊂ S0. Since, by condition 1, S0 carries the relative topology induced from
S(1), Φt(W) is a neighbourhood of Φt(m) in S0. Now, the same arguments, applied
in the converse order to S(2), yield that W = Φ−t (Φt (W)) is a neighbourhood of m

in S(2). �

The tangent space of a (local) invariant manifold at m ∈ γ is a subspace of TmM

which is invariant under the Hessian endomorphism Hessm(X) in case γ is an equi-
librium or under (ΦT )′m in case γ is periodic of period T . On the other hand, the
corresponding decomposition (3.9.1) or (3.9.2) is invariant. Thus, it is natural to dis-
tinguish (local) invariant manifolds for γ whose tangent spaces at m ∈ γ correspond
to a factor or a combination of factors in (3.9.1) or (3.9.2), respectively.

Definition 3.9.4 A (local) invariant manifold S for γ is called a (local) stable, un-
stable, centre, centre-stable or centre-unstable manifold for γ if the following holds.
In case γ = {m} is an equilibrium, TmS coincides with, respectively,

E−
0 (A), E+

0 (A), E0(A), E−
0 (A) ⊕ E0(A), E+

0 (A) ⊕ E0(A),

where A = Hessm(X). In case γ is periodic with period T , for all m ∈ γ , TmS

coincides with, respectively,37

E−
1 (a) + Tmγ, E+

1 (a) + Tmγ, E1(a), E−
1 (a) ⊕ E1(a), E+

1 (a) ⊕ E1(a),

where a = (ΦT )′m.

The critical integral curve γ of X is also a critical integral curve of the vector
field −X and a (local) invariant manifold for γ relative to the flow of X is also a
(local) invariant manifold for γ relative to the flow of −X. Since on the level of the

37Since in the periodic case, the subspaces E±
1 ((ΦT )′m) do not contain Tmγ , the latter has to be

added here.
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factors in (3.9.1) and (3.9.2), passing from X to −X amounts to interchanging the
subspaces E− and E+, a (local) stable or centre-stable manifold for γ relative to
the flow of X is a (local) unstable or centre-unstable manifold for γ relative to the
flow of −X, and vice versa. Thus, statements about (local) stable and centre-stable
manifolds for γ carry over to (local) unstable and centre-unstable manifolds for γ

by passing to the vector field −X.

Theorem 3.9.5 (Local existence) For every critical integral curve γ , there exist

1. smooth local stable and unstable manifolds; they are locally unique in the sense
that the intersection of any two local stable (unstable) manifolds is an open sub-
manifold of both,

2. local centre, centre-stable and centre-unstable manifolds of class Ck for every
finite k.

Proof A complete down-to-earth proof can be found in Appendix C of [2] by
A. Kelley. It uses a local normal form of X, referred to there as a local pseudochart,
which is constructed in §25 and §26 of this book. The standard reference nowadays
is [132], which treats invariant manifolds from a more general perspective though
and goes far beyond what is needed here. Detailed expositions for the cases of equi-
libria and hyperbolic periodic integral curves can be found, for example, in [123,
§IX.6] or [207, Ch. 4]. �

Let us add that from the proof of Theorem 3.9.5 there follow several intersection
properties of the local invariant manifolds, the most important of which is that the
local stable, the local unstable and the local centre manifold can be chosen so that
their mutual intersections coincide with γ .

Extending the local invariant manifolds of Theorem 3.9.5 by means of Propo-
sition 3.9.3, one obtains the following corollary. We say that m ∈ M converges to
γ under Φ if R+ ⊂ Dm and if for every neighbourhood U of γ in M there exists
t0 ∈R+ such that Φt(m) ∈ U for all t ≥ t0.

Corollary 3.9.6 (Existence) For every critical integral curve γ , there exists

1. a unique stable manifold S−(γ ) and a unique unstable manifold S+(γ ) of class
C∞ such that every point of S∓(γ ) converges to γ under the flow of ±X.

2. a centre, a centre-stable and a centre-unstable manifold of class Ck for every
finite k.

Proof The second assertion follows immediately from Proposition 3.9.3 and Theo-
rem 3.9.5. For the first one it suffices to consider the stable manifold. The assertion
about the unstable manifold follows by passing to −X. First, we prove existence.
By Theorem 3.9.5, there exists a smooth local stable manifold S0 for γ . Since X

is tangent to S0, by Proposition 2.7.16, it induces a vector field X0 on S0. Let
Φ0 : D0 → S0 denote the flow of X0. In case γ = {m} is an equilibrium of X, it is
an equilibrium of X0 and Hessm(X0) is given by the restriction of Hessm(X) to the
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invariant subspace E−
0 (Hessm(X)). In case γ is periodic of period T under Φ , it is

so under Φ0 and for every m ∈ γ , (Φ0
T )′m is given by the restriction of (ΦT )′m to the

invariant subspace E−
0 ((ΦT )′m). By definition of local stable manifold, this implies

that γ is a hyperbolic critical integral curve of X0 and that it is linearly asymptoti-
cally stable under Φ0, according to Corollary 3.8.10. Then, Corollary 3.8.12 yields
that γ is asymptotically stable under Φ0. This means that there exists an open neigh-
bourhood S̃0 of γ in S0 whose points converge to γ under Φ0. Since, then, they
converge to γ under Φ in M , S̃0 is a local stable manifold for γ . Define S−(γ )

to be the invariant manifold generated by S̃0 in the sense of Proposition 3.9.3. By
construction, every point of S−(γ ) converges to γ under Φ .

To prove uniqueness, let S− be a smooth stable manifold for γ whose points con-
verge to γ under Φ . According to Remark 3.9.2, S− contains an open submanifold
S̃− which is a local invariant manifold for γ . Since TmS̃− = TmS− for all m ∈ γ ,
S̃− is a local stable manifold for γ . The local uniqueness of local stable manifolds,
see Theorem 3.9.5/1, implies that S̃− ∩ S̃0 is a local stable manifold for γ and an
open submanifold of S̃− and S̃0. Then, it is an open submanifold of S− and S−(γ ).
In view of Proposition 3.9.3, this implies S− = S−(γ ) as submanifolds of M . �

The stable and unstable manifolds S∓(γ ) are minimal in the sense that every
stable manifold for γ contains S−(γ ) and every unstable manifold for γ contains
S+(γ ). As mentioned before, they need not be embedded and also not initial. This
is illustrated by Example 3.9.9. Moreover, it is clear from Proposition 3.9.3 that any
two centre manifolds for γ coincide if there exists a local centre manifold generating
both of them in the sense of that proposition. The same is true for centre-stable and
centre-unstable manifolds.

The convergence condition of Corollary 3.9.6/1 defines the subsets S∓(γ ) of
M only in combination with the property to be a stable or an unstable manifold
for γ . Points outside S∓(γ ) may converge to γ under the flow of ±X as well, as
is shown by Examples 3.9.10 and 3.9.12 below. If, however, γ is hyperbolic, the
subsets S∓(γ ) of M can be characterized by this property alone:

Proposition 3.9.7 If γ is hyperbolic, S∓(γ ) consists of the points of M converging
to γ under the flow of ±X.

The characterization given in this proposition is often taken as the definition of
the stable and unstable manifolds in the hyperbolic case. Beware that this character-
izes S∓(γ ) as subsets of M only, and not as submanifolds. To fix the submanifold
structure one still has to add the information about the tangent spaces at the points
of γ . This is again illustrated by Example 3.9.9, where S−(γ ) and S+(γ ) coincide
as subsets, so that it is only the differentiable structure which distinguishes between
them.

Proof As before, it suffices to give the proof for S−(γ ). Denote the set of points of
M which converge to γ under Φ by S−. According to Corollary 3.9.6/1, S−(γ ) ⊂
S−. To prove the converse inclusion, we first consider the case that γ = {m} is
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an equilibrium. Denote A = Hessm(X). According to the Grobman-Hartman Theo-
rem 3.8.11/1, there exist open neighbourhoods U of m in M and V of the origin in
TmM and a homeomorphism h : U → V such that the flow ΦU : DU → U of X�U
satisfies

(Φt )
′
m ◦ h(m̃) = h ◦ ΦU

t (m̃) (3.9.3)

for all (t, m̃) ∈ DU . Application of Corollary 3.9.6/1 and Remark 3.9.2 to the flow
ΦU implies that there exists a local stable manifold S−

U for γ relative to ΦU whose
points converge to m under ΦU . That is, they converge to m under Φ and their
integral curves stay in U for t ≥ 0. In particular, S−

U ⊂ S−(γ ).
We show that the subset h(S−

U ) of TmM is a neighbourhood of 0 in the subspace
E−

0 (A). Due to (3.9.3), the points of h(S−
U ) converge to 0 under (Φt )

′
m. Using the

scalar products on E∓
0 (A) provided by Lemma 3.8.8 and invariance of E∓

0 (A) under
(Φt )

′
m = etA one can check that, in the hyperbolic case, a nonzero element of TmM

converges to 0 under (Φt )
′
m iff it is contained in E−

0 (A). Hence, h(S−
U ) ⊂ E−

0 (A).
Since S−

U is an embedded submanifold of U , h induces a homeomorphism from
S−

U onto the subset h(S−
U ) of E−

0 (A), equipped with the relative topology. Since S−
U

and E−
0 (A) have the same dimension, the theorem on invariance of domain, in its

manifold form,38 implies that h(S−
U ) is open in E−

0 (A) and hence a neighbourhood
of 0 in E−

0 (A), as asserted.
Now, let m1 ∈ S−. There exists t1 such that Φt(m1) ∈ U for all t ≥ t1. That is,

m2 := Φt1(m1) converges to m under ΦU . Then, (3.9.3) implies that h(m2) con-
verges to 0 under (Φt )

′
m. As was just noticed, then h(m2) ∈ E−

0 (A). Hence, there
is t2 ∈ R+ such that (Φt2)

′
m(h(m2)) ∈ h(S−

U ). Then, by (3.9.3) again, ΦU
t2

(m2) =
Φt1+t2(m1) ∈ S−

U . Since S−
U ⊂ S−(γ ), it follows that m1 ∈ S−(γ ). Thus, S− ⊂

S−(γ ). This proves the proposition in the equilibrium case.
For the periodic case, we extend the terminology concerning convergence to local

diffeomorphisms. We say that m ∈ M converges to m0 under the local diffeomor-
phism ϕ of M if ϕk(m) is defined for all k ∈ Z+ and ϕk(m) → m0 for k → ∞. Now,
assume that γ is periodic of period T . Choose m ∈ γ . According to Theorem 3.7.3,
there exists a Poincaré mapping (P,W ,Θ) for γ at m. Since m is a fixed point
of the local diffeomorphism Θ of P which is hyperbolic by Proposition 3.7.6,
the Grobman-Hartman Theorem 3.8.11/2 yields a homeomorphism h from an open
neighbourhood of m in P onto an open neighbourhood V of the origin in TmP
which conjugates Θ to Θ ′

m. By possibly shrinking P and W one may assume that
the domain of h coincides with P and hence there holds

Θ ′
m ◦ h�W = h ◦ Θ. (3.9.4)

38Let M , N be smooth manifolds of the same dimension and let A ⊂ M and B ⊂ N be subsets
which are homeomorphic with respect to the relative topologies induced from M and N , respec-
tively. Then, if A is open in M , B is open in N . See e.g. [199], Chapter VIII, Theorem 6.6 and
Exercise 6.5. The reader is encouraged to work out that exercise.
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Next, choose a neighbourhood U of γ in M such that U ∩P ⊂ W . Let ΦU : DU →
U denote the flow of X�U . Let S−

U be constructed from U as in the equilibrium case
and denote S̃−

U := S−
U ∩ P ≡ S−

U ∩ W . We show that h(S̃−
U ) is a neighbourhood

of 0 in E−
1 (Θ ′

m). Due to the following two observations, the argument is completely
analogous to the equilibrium case.

1. Repeated application of (3.9.4) yields that the points of h(S̃−
U ) converge to 0

under Θ ′
m.

2. By the definition of Poincaré mapping, P is transversal to all integral curves
of X. Since X is tangent to S−

U , P and S−
U are transversal. According to Corol-

lary 1.8.5, then S̃−
U is a submanifold of M ; it is embedded, because so are

P and S−
U , and the dimension formula yields dim S̃−

U = dimE−
1 ((ΦT )′m) =

dimE−
1 (Θ ′

m).

Now let m1 ∈ S−. There is t1 ∈ R+ such that Φt(m1) ∈ U for all t ≥ t1. One
may choose t1 such that m2 := Φt1(m1) ∈ W . Then, m2 converges to m under the
local diffeomorphism Θ of P . Hence, by (3.9.4), h(m2) converges to 0 under Θ ′

m.
Then, h(m2) ∈ E−

1 (Θ ′
m) and there is k ∈ Z+ such that (Θ ′

m)k(h(m2)) ∈ h(S̃−
U ).

By (3.9.4), we obtain Θk(m2) ∈ S̃−
U . To k there corresponds t2 ∈ R+ such that

Θk(m2) = Φt2(m2) = Φt1+t2(m1). Since S̃−
U ⊂ S−

U ⊂ S−(γ ), we get m1 ∈ S−(γ ).
Thus, S− ⊂ S−(γ ) holds also in the periodic case. �

Next, we give examples and discuss some of the phenomena related to invariant
manifolds. We start with linear vector fields.

Example 3.9.8 (Linear vector fields) Let V be a finite-dimensional real vector space,
let A ∈ End(V ) and let X be the linear vector field on V generated by A. Then,
S∓({0}) = E∓

0 (A). The subspaces E0(A), E−
0 (A) ⊕ E0(A) and E+

0 (A) ⊕ E0(A)

yield, respectively, a centre, a centre-stable and a centre-unstable manifold for the
origin.

Let us continue with the hyperbolic case.

Example 3.9.9 (Planar pendulum) As an example of the stable and unstable mani-
folds of a hyperbolic equilibrium, consider the upper equilibrium γ = {mu} of the
planar pendulum of Example 3.6.14. Let γ� and γ� denote the two non-critical
integral curves, see Fig. 3.2(a). Both S+(γ ) and S−(γ ) consist of γ , γ� and γ�.
Hence, as subsets of M , they coincide with one another and with the separatrix,
which forms a figure eight. The submanifold structures, on the other hand, are dis-
tinct, because S∓(γ ) has tangent space E∓

0 (Hessmu(X)) at mu. Thus, S−(γ ) and
S+(γ ) are given by the separatrix, equipped with either one of the two inequivalent
figure eight submanifold structures, cf. Example 1.6.6/2. This illustrates that S∓(γ )

need neither be embedded nor initial and that their differentiable structure is quite
important, because it is the latter which distinguishes between S−(γ ) and S+(γ )

here.
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As Example 3.9.9 shows, the intersection S+(γ )∩S−(γ ) may contain more than
just γ . By invariance under Φ , if the complement (S+(γ )∩S−(γ ))\γ is nonempty,
it consists of maximal integral curves. These are called homoclinic. Thus, the in-
tegral curves γ� and γ� of Example 3.9.9 are homoclinic. Similarly, if γ1 and
γ2 are two distinct critical integral curves the intersections S+(γ1) ∩ S−(γ2) and
S−(γ1) ∩ S+(γ2) are invariant under Φ as well. If these intersections are nonempty,
the maximal integral curves contained are called heteroclinic. Examples for het-
eroclinic integral curves can be obtained from γ� and γ� of Example 3.9.9 by
replacing the angle variable of the planar pendulum by an ordinary Cartesian coor-
dinate, thus producing a 2π -periodic vector field in the plane. Physically, this can
be realized for example by adding a counter of rotations to the planar pendulum. To
summarize, homoclinic integral curves connect a critical integral curve with itself,
whereas heteroclinic integral curves connect different critical integral curves with
one another.

Example 3.9.10 (Modified harmonic oscillator) As an example of the stable and
unstable manifolds of a hyperbolic periodic integral curve, consider

X = (y + x
(
1 − x2 − y2))∂x + (−x + y

(
1 − x2 − y2))∂y + z∂z

on M = R
3. This is just the modified harmonic oscillator of Example 3.6.15 with

ω = 1 in the x–y-plane, combined with a one-dimensional linear vector field in
the z-direction. The equations for the integral curves separate into the equation of
the modified harmonic oscillator in the variables x and y and the equation ż = z.
Taking the solution of the first one from (3.6.10) we find that X is complete and
that, in cylindrical coordinates r , φ, z, its integral curves are given by

Φt(r,φ, z) = ((1 + (r−2 − 1
)
e−2t

)− 1
2 , φ + t, zet

)
. (3.9.5)

We read off that the critical integral curves are given by the origin 0 and by the single
periodic integral curve γ , given in coordinates by γ (t) = (1, t,0). Let E denote the
x–y-plane and let C<,C1,C> denote the subsets defined by r < 1, r = 1 and r > 1
(that is, the open cylinder of radius 1 centered around the z-axis, its boundary and
the rest). Analyzing the behaviour of (3.9.5) for t → ±∞ one finds

S−({0})= {0}, S+({0})= C<, S−(γ ) = E \ {0}, S+(γ ) = C1.

All four invariant manifolds are embedded. The whole of E is a stable manifold as
well, but it does not satisfy the convergence condition of Corollary 3.9.6/1. Since
S−({0}) ∩ S+({0}) = {0} and S−(γ ) ∩ S+(γ ) = γ , there are no homoclinic integral
curves. On the other hand, while S−({0}) ∩ S+(γ ) is empty, we get

S−(γ ) ∩ S+({0})= (E ∩ C<) \ {0},
that is, the open disk of radius 1 in E with the origin removed. Thus, there is a
continuum of heteroclinic integral curves joining the origin to the periodic integral
curve γ .

Next, we turn to non-hyperbolic examples and the discussion of centre manifolds.



162 3 Vector Fields

Example 3.9.11 Consider the vector field

X = y∂x − x∂y − z∂z

on M = R
3. This is the harmonic oscillator (3.6.12) with ω = 1 and α = 0 in the

x–y-plane, combined with a one-dimensional linear vector field in the z-direction.
The integral curves are given in cylindrical coordinates r , φ, z by

Φt(r,φ, z) = (r,φ + t, ze−t
)
.

The set of critical integral curves consists of the origin and of the periodic integral
curves γr , r > 0, given in coordinates by γr(t) = (r,ωt,0). Let Cr denote the sur-
face of the cylinder of radius r centered around the z-axis. The stable and unstable
manifolds are

S−({0})= z-axis, S+({0})= {0}, S−(γr ) = Cr, S+(γr) = γr .

There are neither homoclinic nor heteroclinic integral curves. The x–y-plane pro-
vides a centre manifold for all critical integral curves. Similarly, any open disk cen-
tered at the origin in this plane is a centre manifold for the origin and any open
annulus containing γr is a centre manifold for γr .

While Example 3.9.11 shows that a centre manifold cannot be made unique by
requiring convergence properties like for S∓(γ ), any two centre manifolds still in-
tersect in an open submanifold there, that is, they coincide locally. The next example
illustrates that it may happen as well that there exist centre manifolds which do not
coincide locally.

Example 3.9.12 Consider the vector field

X = x2∂x − y∂y

on M = R
2. This is Example 3.2.7/2, combined with a linear vector field in one

dimension. According to that example, X is not complete and the flow is given by

D =
{(

t, (x, y)
) ∈ R× M : t <

1

x

}
, Φt (x, y) =

(
x

1 − tx
, ye−t

)
, (3.9.6)

see Fig. 3.3. The only critical integral curve is the origin. The Hessian is

Hess0(X) =
[

0 0
0 −1

]
,

hence E−
0 (Hess0(X)) is given by the y-axis, E0(Hess0(X)) coincides with the

x-axis and E+
0 (Hess0(X)) = {0}. It follows that S−({0}) is given by the y-axis,

whereas S+({0}) = {0}. Since all the points of the closed half-plane x ≤ 0 converge
to the origin under Φ , this illustrates that Proposition 3.9.7 fails to hold in the non-
hyperbolic case. Next, let us look for centre manifolds. In the open half-plane x > 0,
any centre manifold must coincide with the positive x-axis. In the open half-plane
x < 0, by eliminating t either from the differential equations for the flow or from
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Fig. 3.3 The flow of
Example 3.9.12

(3.9.6) one finds that the images of integral curves coincide with the graphs of the
functions

y = fμ(x) = μe
1
x , μ ∈ R.

Since derivatives of fμ with respect to x to arbitrary order tend to zero as x → 0
from below, fμ can be extended to a smooth function on R by letting fμ(x) = 0
for x ≥ 0. According to Example 1.6.12/2, the graph of this function is a smooth
submanifold. Due to f ′

μ(0) = 0, the tangent space of this submanifold at x = 0
coincides with the x-axis and hence with E0(Hess0(X)). Thus, all of these subman-
ifolds are center manifolds, but neither two of them coincide locally, that is, the
equilibrium is not an inner point of the intersection.

While the centre manifolds of Examples 3.9.11 and 3.9.12 are all smooth, this
need not be so in general. For counter-examples, see e.g. [296] or [285]. Of course,
the above statements about non-uniqueness and non-smoothness of (local) centre
manifolds carry over to centre-stable and centre-unstable manifolds.

Let us, furthermore, mention that there exist approximation methods for a sys-
tematic construction of centre manifolds, see for example [59] or the second part of
Sect. 3.2 in [114].

Remark 3.9.13 (Reduction to the centre manifold) Using centre manifolds, the
Grobman-Hartman Theorem can be generalized to arbitrary equilibria as follows.
Let γ = {m} be an equilibrium of X. Let X∓ denote the linear vector fields in-
duced by Hessm(X) on E∓

0 (Hessm(X)). For every k = 1,2,3, . . . , there exists a
centre manifold S0 for γ of class Ck , as well as open neighbourhoods U of m in
M , V ∓ of the origin in E∓

0 (Hessm(X)) and V 0 of m in S0 such that the flow of
X�U is topologically conjugate to the flow of the vector field (X−

�V −,X0
�V 0 ,X

+
�V +)

on V − × V 0 × V +, where X0 denotes the vector field on S0 induced by restriction
of X. See [250, 271] or [17, §32] for a proof and [207, §4.2] for a more detailed
discussion. There holds an analogous statement for fixed points of local diffeomor-
phisms [131, Thm. 7.3] and for periodic integral curves [250].

Thus, for the qualitative analysis of a flow in the vicinity of a critical integral
curve it suffices to study the linearization of the flows induced on the minimal sta-
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ble and unstable manifolds S∓(γ ) and the flow induced on an appropriate centre
manifold. As already mentioned in Example 3.8.14, the latter flow is in general not
topologically conjugate to its linearization.

To conclude this section, let us mention that invariant manifolds for fixed points
of local diffeomorphisms can be treated in a completely analogous way. For general-
izations of the concept of stable, unstable and centre manifold from critical integral
curves to certain classes of submanifolds, see [132]. A well-organized guide to all
of this, with hints for further reading, is [257].

Exercises
3.9.1 Complete the proof of the existence of a smooth submanifold structure on

the subset generated by a local invariant manifold in Proposition 3.9.3 for the
case of a non-complete vector field.

3.9.2 Let γ be a periodic integral curve of period T of the flow Φ . Show that the
subspaces

E∓
0

(
(ΦT )′m

)
, E0

(
(ΦT )′m

)
, E∓

0

(
(ΦT )′m

)⊕ E0
(
(ΦT )′m

)
, m ∈ γ,

combine to smooth vector subbundles of Tγ which are invariant under the
linearized flow. Reformulate the definition of stable, unstable, centre, centre-
stable and centre-unstable manifold for γ in terms of these subbundles.

3.9.3 Determine the flow of the vector field X = −x∂x + (y + x2)∂y on R
2 and use

this to find the stable and unstable manifolds of the origin.
3.9.4 Consider the vector field X = y∂x + (x − x3)∂y on R

2. This models a one-
dimensional quartic oscillator (Mexican-hat potential). The associated second
order differential equation is a special version of the autonomous Duffing
equation.
(a) Find the equilibrium points and their characteristic exponents.
(b) Show that H(x,y) = 1

2y2 − 1
2x2 + 1

4x4 is a first integral of X, that is,
there holds X(H) = 0.

(c) Use H to determine the stable and unstable manifolds of the origin. Com-
pare the result with that for the upper equilibrium of the planar pendulum
in Example 3.9.9.

3.9.5 Carry out an analysis similar to Exercise 3.9.4 for

X = y∂x + x

(
2√

1 + x2
− 1

)
∂y, H(x, y) = 1

2
y2 + 1

2

(√
1 + x2 − 2

)2
.

This models a particle which moves without friction along a rod and is at-
tached to a fixed point outside the rod by a spring, whose equilibrium length
is twice the distance of the fixed point from the rod.



Chapter 4
Differential Forms

We first present the elementary calculus of differential forms, including the calculus
of integration and a discussion of integral invariants. Then, in Sect. 4.3, we give
an introduction to de Rham cohomology. Next, in Sects. 4.4 and 4.5, we present
some elements of Riemannian geometry, discuss Hodge duality in detail and show
how classical vector analysis can be understood in a coordinate-free way using the
language of differential forms. In Sect. 4.6, we apply this framework to classical
Maxwell electrodynamics. In Sect. 4.7, we give an introduction to the theory of
Pfaffian systems and differential ideals. In particular, we derive an equivalent for-
mulation of the classical Frobenius Theorem. Finally, we apply these notions to
classical mechanics with constraints.

4.1 Basics

Recall the following notions from Sect. 2.5. A differential k-form on a manifold
M is a section in the vector bundle ΛkT∗M . We write Ωk(M) for the space of
differential k-forms and

Ω∗(M) = Γ
(∧

T∗M
)

≡
∞⊕

k=0

Ωk(M)

for the exterior algebra. Obviously, Ω0(M) = C∞(M) and Ωk(M) = 0 for k >

dimM . The exterior product ∧: Ωk(M) × Ωl(M) → Ωk+l(M) is given by

(α ∧ β)(X1, . . . ,Xk+l)

= 1

k!l!
∑

π∈Sk+l

sign(π)α(Xπ(1), . . . ,Xπ(k))β(Xπ(k+1), . . . ,Xπ(k+l)),

where α ∈ Ωk(M), β ∈ Ωl(M) and Xi ∈ X(M), cf. (2.4.17). The natural pairing
of k-forms with k-vectors from multilinear algebra induces a C∞-valued pairing of
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k-differential forms with k-vector fields, given by

〈α1 ∧ · · · ∧ αk,X1 ∧ · · · ∧ Xk〉 = det
(
αi(Xj )

)
(4.1.1)

for all αi ∈ Ω1(M) and Xi ∈X(M). Then, by the definition of the exterior product,

α(X1, . . . ,Xk) = 〈α,X1 ∧ · · · ∧ Xk〉
for all α ∈ Ωk(M) and Xi ∈ X(M). For k ≥ r , we define the operation of inner
multiplication of an r-vector field X with a k-differential form α by

〈X�α,Y 〉 := 〈α,X ∧ Y 〉, Y ∈X
k−r (M). (4.1.2)

This operation is C∞(M)-linear in both arguments.

Let us describe the above structures in a local chart (U,κ) on M . (U,κ) induces
local frames {∂i} and {dκi} of TM and T∗M , respectively, and by Example 2.4.5,
the induced local frames in

∧r TM and
∧r T∗M consist, respectively, of the local

sections

∂i1 ∧ · · · ∧ ∂ir , dκi1 ∧ · · · ∧ dκir , 1 ≤ i1 < · · · < ir ≤ n.

It is common to use the following condensed notation. For a subset I ⊂ {1, . . . , n}
of r elements define

∂I := ∂i1 ∧ · · · ∧ ∂ir , dκI := dκi1 ∧ · · · ∧ dκir ,

where i1, . . . , ir denote the elements of I , ordered by magnitude, that is, I =
{i1, . . . , ir } and i1 < · · · < ir . Thus, the local frames under consideration consist,
respectively, of the local sections ∂I and dκI , where I runs through the subsets of
{1, . . . , n} of cardinality r . In particular, by an extension of the summation conven-
tion, pairs of capital indices I are summed over those subsets. We have

〈
dκI , ∂κ

J

〉 = δI
J , (4.1.3)

dκI ∧ dκJ = ρI,J dκI∪J δI∩J,∅, (4.1.4)

∂κ
J �dκI = ρJ,I\J dκI\J δI∪J,I , (4.1.5)

where δI
J = 1 if I = J and 0 otherwise, and ρI,J = (−1)q , where q is the number

of pairs (i, j) ∈ I × J with i > j (Exercise 4.1.1). Then, locally, α ∈ Ωr(M) is
represented by

α�U = αI dκI ≡
∑

i1<···<ir

αi1...ir dκi1 ∧· · ·∧dκir , αi1...ir = α(∂i1 , . . . , ∂ir ), (4.1.6)

cf. (2.4.21), and r-vector fields X are represented by

X�U =
∑

J

XJ ∂κ
J ≡

∑

i1<···<ir

Xi1...ir ∂i1 ∧ · · · ∧ ∂ir . (4.1.7)



4.1 Basics 167

As a consequence, the operations of exterior product and inner multiplication take
the local form

(α ∧ β)�U = α�U ∧ β�U =
∑

I

∑

J∩I=∅

αIβJ ρI,J dκI∪J . (4.1.8)

(X�α)�U = X�U�α�U =
∑

I

∑

J⊂I

αIX
J ρJ,I\J dκI\J . (4.1.9)

Remark 4.1.1

1. Equation (4.1.6) can be used to define functions αi1...ir for all sequences
i1, . . . , ir , and it is sometimes more convenient to sum over all these sequences
rather than just the increasing ones. Since both αi1...ir and dκi1 ∧ · · · ∧ dκir are
antisymmetric under a permutation of i1, . . . , ir , this produces a factor r!. Hence,

α�U = 1

r!αi1...ir dκi1 ∧ · · · ∧ dκir , (4.1.10)

(summation convention).1 Let m ∈ U . By an appropriate extension of the func-
tions αi1...ir and κi from a smaller neighbourhood Ũ ⊂ U of m to smooth func-
tions α̃i1...ir and κ̃ i on M which vanish outside U , we obtain

α�Ũ = 1

r!
(
α̃i1...ir dκ̃ i1 ∧ · · · ∧ dκ̃ ir

)
�Ũ . (4.1.11)

Thus, locally, every k-form is a sum of k-forms of the type f0 df1 ∧ · · · ∧ dfk

with fi ∈ C∞(M).
2. We determine the transformation laws for the local frames and for the corre-

sponding coefficient functions under a change of local chart. Thus, let (V ,ρ) be
another local chart on M and let us denote

Ai
j := [(ρ ◦ κ−1)′ ◦ κ

]i
j
, Ãi

j := [(κ ◦ ρ−1)′ ◦ ρ
]i
j

and

AI
J :=

∑

π∈Sr

sign(π)A
i1
jπ(1)

· · ·Air
jπ(r)

, ÃI
J :=

∑

π∈Sr

sign(π)Ã
iπ(1)

j1
· · · Ãiπ(r)

jr
,

for I = {i1, . . . , ir } and J = {j1, . . . , jr}. Then, over U ∩V the following formu-
lae hold (Exercise 4.1.2):2

∂
ρ
I = ÃJ

I ∂κ
J , dρI = AI

J dκJ , (4.1.12)

1We caution the reader that for r ≥ 2 this sum runs over a linearly dependent system of sections.
In particular, the left hand side does not determine the coefficient functions on the right hand side
uniquely. There is however a unique choice if we limit our attention to functions which are totally
antisymmetric in the indices i1, . . . , ir , and this choice is given by (4.1.6).
2One may also write, for example, dρi1 ∧ · · · ∧ dρir = A

i1
j1

· · ·Air
jr

dκj1 ∧ · · · ∧ dκjr , keeping in
mind that on the right hand side the sum runs over a linearly dependent system rather than a basis.
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and (4.1.6) and (4.1.7) imply

α
ρ
I = ÃJ

I ακ
J , Xρ,I = AI

J Xκ,J . (4.1.13)

Next, let M and N be manifolds and let ϕ : M → N be a smooth mapping.
According to Example 2.4.5, ϕ induces a linear mapping ϕ∗ : Ω∗(N) → Ω∗(M),
called the pull-back, by

(
ϕ∗α

)
m
(X1, . . . ,Xr) = αϕ(m)

(
ϕ′

m(X1), . . . , ϕ
′
m(Xr)

)
, (4.1.14)

where α ∈ Ωr(N) and Xi ∈ TmM . This mapping is an algebra homomorphism, that
is,

ϕ∗(α ∧ β) = (ϕ∗α
)∧ (ϕ∗β

)
(4.1.15)

for all α,β ∈ Ω∗(M). If ϕ is a diffeomorphism, (4.1.14) entails

(
ϕ∗α

)
(X1, . . . ,Xr) = ϕ∗(α(ϕ∗X1, . . . , ϕ∗Xr)

)
(4.1.16)

for all Xi ∈ X(M). In local charts (U,κ) on M and (V ,ρ) on N , the pull-back is
represented by

(
ϕ∗α

)
i1...ik

(m) = αj1...jk

(
ϕ(m)

)∂yj1

∂xi1

(
κ(m)

)
. . .

∂yjk

∂xik

(
κ(m)

)
, (4.1.17)

where yj = ρj ◦ ϕ ◦ κ−1 (Exercise 4.1.3).

After these introductory remarks, we turn to the discussion of the exterior deriva-
tive.

Definition 4.1.2 (Exterior derivative) A system of linear mappings

d : Ωk(M) → Ωk+1(M), k = 0,1, . . . ,

is called an exterior derivative on M if

1. d ◦ d = 0,
2. d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ for all α ∈ Ωk(M) and β ∈ Ω∗(M),
3. 〈df,X〉 = X(f ) for all f ∈ C∞(M) and X ∈ X(M).

A linear mapping of Ω∗(M) satisfying condition 2 is called an anti-derivation.
Condition 3 means that the exterior derivative of a function f coincides with the or-
dinary differential of f , defined in Example 2.5.1. This yields existence and unique-
ness for the exterior derivative of functions. Moreover, this implies that taking the
exterior derivative of a function is a local operation in the following sense:

(df )�U = d(f�U) (4.1.18)
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for all f ∈ C∞(M) and all open subsets U of M , where on the right hand side, d
stands for the exterior derivative of functions on the manifold U . Indeed, for ev-
ery X ∈ X(M) we have X�U ∈ X(U) and (X(f ))�U = X�U(f�U), and condition 3
implies

〈
(df )�U ,X�U

〉= 〈df,X〉�U = (X(f )
)
�U = X�U(f�U) = 〈d(f�U),X�U

〉
.

Lemma 4.1.3 An exterior derivative is a local operator, that is, if differential forms
α and β coincide on a neighbourhood of a point m ∈ M , then dα(m) = dβ(m).

Proof Let U be an open neighbourhood of m such that α�U = β�U . There exists
a smaller neighbourhood Ũ ⊂ U of m and a smooth function f on M such that
f�Ũ = 1 and f�M\U = 0. Then, f α = fβ on M and hence, by property 2,

df ∧ α + f dα = df ∧ β + f dβ. (4.1.19)

Since df (m) = 0 (by property 3) and f (m) = 1, (4.1.19) yields the assertion. �

Theorem 4.1.4 (Existence and uniqueness) On every manifold M there exists a
unique exterior derivative. It satisfies

(dα)�U =
∑

I,p

(
∂κ
pαI

)
dκp ∧ dκI (4.1.20)

for all α ∈ Ωk(M) and all local charts (U,κ) on M .

Proof First, we show existence. Let α ∈ Ωk(M). We choose a local chart (U,κ)

and define dα pointwise on U by (4.1.20). We must show that this definition does
not depend on the choice of the local chart. Thus, let (Ũ , κ̃) be another chart. We
may assume U = Ũ . A simple calculation using the transformation laws (4.1.12)
and (4.1.13) yield

∑

I,p

(
∂κ̃
pα̃I

)
dκ̃p ∧ dκ̃I =

∑

I,p

(
∂κ
pαI

)
dκp ∧ dκI . (4.1.21)

We leave it to the reader to check that the system of linear mappings d so defined
is an exterior derivative (Exercise 4.1.5). Next, we prove uniqueness. Let d and
d′ be two exterior derivatives on M and let α ∈ Ωk(M). We show that (dα)m =
(d′α)m for all m ∈ M . By Formula (4.1.11), there exists a neighbourhood of m

where α coincides with a sum of terms of the form f0df1 ∧ · · · ∧ dfk . Hence, by
Lemma 4.1.3, it suffices to show that

d(f0df1 ∧ · · · ∧ dfk)(m) = d′(f0df1 ∧ · · · ∧ dfk)(m).

This follows from the uniqueness of the exterior derivative on functions and from
the defining properties 1 and 2. �
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Remark 4.1.5 By Lemma 4.1.3 and by the uniqueness of d, for every open subset
U ⊂ M and every k-form α, we have

(dα)�U = d(α�U).

The exterior derivative can be characterized in a coordinate-free way as follows.

Proposition 4.1.6 For α ∈ Ωk(M) and X1, . . . ,Xk ∈ X(M),

dα(X0, . . . ,Xk) =
k∑

i=0

(−1)iXi

(
α(X0,

Xi�. . .,Xk)
)

+
∑

i<j

(−1)i+j α
([Xi,Xj ],X0,

Xi�
Xj
�. . . . . .,Xk

)
, (4.1.22)

where
Xi� means that Xi is omitted.

Proof First, we show that both sides of the above equation are f -linear with respect
to every Xj . For the left hand side, this is obvious. Denoting the two terms on the
right hand side by Ti(X0, . . . ,Xk), i = 1,2, and using the derivation property we
obtain

T1(X0, . . . , f Xl, . . . ,Xk) =
∑

i �=l

(−1)iXi

(
α(X0, . . . , f Xl,

Xi�. . .,Xk)
)

+ (−1)lf Xl

(
α(X0,

Xl�. . .,Xk)
)

=
∑

i �=l

[
(−1)iXi(f )α(X0, . . . ,Xl,

Xi�. . .,Xk)

+ (−1)if Xi

(
α(X0, . . . ,Xl,

Xi�. . .,Xk)
)]

+ (−1)lf Xl

(
α(X0,

Xl�. . .,Xk)
)

= f T1(X0, . . . ,Xk) +
∑

i �=l

(−1)iXi(f )α(X0,
Xi�. . .,Xk),

and, using (3.1.1),

T2(X0, . . . , f Xl, . . . ,Xk) =
∑

i<j
i,j �=l

(−1)i+jα
([Xi,Xj ],X0, . . . , f Xl,

Xi�
Xj
�. . . . . .,Xk

)
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+
∑

i<l

(−1)i+lα
([Xi,f Xl],X0,

Xi�
Xl�. . . . . .,Xk

)

+
∑

l<j

(−1)l+jα
([f Xl,Xj ],X0,

Xl�
Xj
�. . . . . .,Xk

)

= f
∑

i<j
i,j �=l

(−1)i+jα
([Xi,Xj ],X0, . . . ,Xl,

Xi�
Xj
�. . . . . .,Xk

)

+
∑

i<l

(−1)i+lf α
([Xi,Xl],X0,

Xi�
Xl�. . . . . .,Xk

)

+
∑

i<l

(−1)i+lXi(f )α(Xl,X0,
Xi�

Xl�. . . . . .,Xk)

+
∑

l<j

(−1)l+j f α
([Xl,Xj ],X0,

Xl�
Xj
�. . . . . .,Xk

)

−
∑

l<j

(−1)l+jXj (f )α(Xl,X0,
Xl�

Xj
�. . . . . .,Xk).

The first, the second and the fourth term on the right hand side give
f T2(X0, . . . ,Xk). In the remaining two terms we bring the vector fields Xl to their
original position. This yields a factor (−1)l−1 in the third term and a factor (−1)l

in the fifth term. Thus,

T2(X0, . . . , f Xl, . . . ,Xk) = f T2(X0, . . . ,Xk) −
∑

i �=l

(−1)iXi(f )α(X0,
Xi�. . .,Xk),

and the right hand side of (4.1.22) is f -linear in every vector field Xj , indeed.
Now, since d, the derivations Xi of C∞(M) and the commutator of vector fields

are local operations, it is enough to show that the assertion holds for the case Xi =
∂κ
ji

, where (U,κ) is an arbitrary local chart and j0 < · · · < jk . In this case, the right
hand side reads

k∑

i=0

(−1)i∂κ
ji

(
α
(
∂κ
j0

,

∂κ
ji�. . ., ∂κ

jk

))=
k∑

i=0

(−1)i∂κ
ji
αj0,...,ji−1,ji+1,...,jk

and for the left hand side we obtain, using (4.1.20),

dα
(
∂κ
j0

, . . . , ∂κ
jk

)=
(∑

p,I

∂κ
pαI dκp ∧ dκI

)(
∂κ
j0

, . . . , ∂κ
jk

)
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=
∑

p,I

∂κ
pαI

k∑

i=0

(−1)iδ
p
ji
δI{j0,...,ji−1,ji+1,...,jk}

=
k∑

i=0

(−1)i∂κ
ji
αj0,...,ji−1,ji+1,...,jk

.

This completes the proof. �

The next proposition shows that the exterior derivative commutes with the pull-
back operation.

Proposition 4.1.7 For a smooth mapping ϕ : M → N ,

d
(
ϕ∗α

)= ϕ∗(dα), α ∈ Ω∗(N). (4.1.23)

Proof Due to Remarks 4.1.1/1 and 4.1.5, and since ϕ∗(α�U) = (ϕ∗α)�ϕ−1(U) for all
open subsets U of N , it suffices to prove the assertion for α = f0df1 ∧ · · · ∧ dfk ,
where f0, . . . , fk are arbitrary smooth functions on M . Formula (4.1.23) holds for
functions, because

〈(
dϕ∗f

)
m
,Xm

〉= Xm

(
ϕ∗f

)= (ϕ′Xm

)
(f ) = 〈(df )ϕ(m), ϕ

′Xm

〉= 〈(ϕ∗df
)
m
,Xm

〉

for all m ∈ M and Xm ∈ TmM . Using this and (4.1.15), we obtain

d
(
ϕ∗(f0df1 ∧ · · · ∧ dfk)

)= ϕ∗(d(f0df1 ∧ · · · ∧ dfk)
)
. �

Finally, we derive relations for the Lie derivative of differential forms.

Proposition 4.1.8 For α ∈ Ωk(M), f ∈ C∞(M) and X ∈X(M),

LXα = X�dα + d(X�α), (4.1.24)

LX(dα) = d(LXα), (4.1.25)

LX(X�α) = X�(LXα), (4.1.26)

Lf Xα = f LXα + df ∧ (X�α). (4.1.27)

Using the notation X� ≡ iX , the identity (4.1.24) can be written in the form

LX = iX ◦ d + d ◦ iX.

Proof We evaluate both sides of (4.1.24) on a k-vector field Y1 ∧ · · · ∧ Yk . For the
two terms on the right hand side, Proposition 4.1.6 yields
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〈X�dα,Y1 ∧ · · · ∧ Yk〉 = 〈dα,X ∧ Y1 ∧ · · · ∧ Yk〉
= X

(〈α,Y1 ∧ · · · ∧ Yk〉
)

+
k∑

i=1

(−1)iYi

(〈α,X ∧ Yi�. . . ∧ Yk〉
)

+
k∑

l=1

(−1)l
〈
α, [X,Yl] ∧ Y1 ∧ Yl�. . . ∧ Yk

〉

+
∑

i<l

(−1)i+l
〈
α, [Yi, Yl] ∧ X ∧ Y1 ∧ Yi�

Yl�. . . ∧ Yk

〉
,

〈
d(X�α),Y1 ∧ · · · ∧ Yk

〉=
k∑

i=1

(−1)i+1Yi

(〈X�α,Y1 ∧ Yi�. . . ∧ Yk〉
)

+
∑

i<l

(−1)i+l
〈
X�α, [Yi, Yl] ∧ Y1 ∧ Yi�

Yl�. . . ∧ Yk

〉

=
k∑

i=1

(−1)i+1Yi

(〈α,X ∧ Y1 ∧ Yi�. . . ∧ Yk〉
)

+
∑

i<l

(−1)i+l
〈
α,X ∧ [Yi, Yl] ∧ Y1 ∧ Yi�

Yl�. . . ∧ Yk

〉
.

According to Propositions 3.3.2 and 3.3.3, the sum of these terms gives

X
(〈α,Y1 ∧ · · ·∧Yk〉

)−
k∑

l=1

〈
α,Y1 ∧ · · ·∧ [X,Yl]∧ · · ·∧Yk

〉= 〈LXα,Y1 ∧ · · ·∧Yk〉.

The proofs of (4.1.25)–(4.1.27) are left to the reader (Exercise 4.1.6). �

For later use, we note the following consequence of (4.1.25). Let X be a time-
dependent vector field on M with flow Φ : D → M . Then, for all α ∈ Ω∗(M) and
all (t, t0,m) ∈ D ,

d

dt

(
Φ∗

t,t0
α
)
m

= (Φ∗
t,t0

(LXt α)
)
m
, (4.1.28)

where LXt is the Lie derivative with respect to the ordinary vector field Xt with
fixed t . Indeed, in the case α = f ∈ C∞(M), we find

d

dt

(
Φ∗

t,t0
f
)
m

= d

dt
f
(
Φt,t0(m)

)= (Xt(f )
)(

Φt,t0(m)
)= (Φ∗

t,t0
◦ LXt f

)
(m).

Since both Φ∗
t,t0

and LXt commute with the exterior derivative on M and since both
sides of (4.1.28) are derivations with respect to the wedge product, the assertion
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follows. Note that (4.1.28) also holds for time-independent vector fields. In this
form, it is a special case of (3.3.3).

We conclude this section by two remarks.

Remark 4.1.9 (Structure of Ω∗(M))

1. By the defining properties 1 and 2 of the exterior derivative, (Ω∗(M),+,∧,d) is
an associative graded commutative differential algebra, called the Cartan algebra.

2. Since d2 = 0, the sequence of linear mappings

0 → Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωn(M)
d−→ 0 (4.1.29)

is a chain complex, called the de Rham complex of M . It contains important
information about the topological structure of M , see Sect. 4.3.

3. The following generalization of the de Rham complex is an important element
of noncommutative geometry. Let A be a unital associative ∗-algebra over C. An
involutive graded differential algebra over A is a tuple

{
Λ∗

A, ·,∗,d
}
,

where Λ∗
A

is an A-bimodule of the form Λ∗
A

=⊕∞
k=0 Λk

A
, with Λ0

A
≡ A, · is

an A-bilinear multiplication in Λ∗
A

fulfilling Λk
A

· Λl
A

⊂ Λk+l
A

and d : Λk
A

→
Λk+1

A
is a derivation fulfilling d(λ∗) = (−1)k(dλ)∗ for any λ ∈ Λk

A
. Moreover,

for given e ∈ EndA(Ap) with e2 = e, E := eAp is a right projective module
over A. In view of the Serre-Swan Theorem [156], finitely generated projective
modules naturally generalize vector bundles.

The second remark introduces smooth families of differential forms and differ-
ential forms with values in a vector space. Both concepts will occasionally be used
later on.

Remark 4.1.10

1. A one-parameter family of r-forms {αt : t ∈ [a, b]} on M is said to be smooth if
the mapping

[a, b] × M →
r∧

T∗M, (t,m) �→ αt (m),

is smooth. Given such a family, by pointwise integration
∫ b

a
αt (m)dt in T∗

mM ,
m ∈ M , we obtain an r-form on M , denoted by

∫
αtdt . Similarly, by pointwise

differentiation d
ds �t

αs(m) in T∗
mM , we obtain a smooth family of r-forms on M ,

denoted by d
dt

αt . In this sense, one may omit the point m in the Formulae (3.3.3)
and (4.1.28). Application of the operations of exterior derivative, pull-back, in-
ner product or Lie derivative to a smooth family of differential forms yields a
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smooth family again. Using Proposition 4.1.6, one can show that these opera-
tions commute with the operations of integration or differentiation with respect
to the parameter. That is,

d
∫

αtdt =
∫

dαtdt, d
d

dt
αt = d

dt
dαt (4.1.30)

and similar formulae with d replaced by ϕ∗ for any smooth mapping ϕ : N → M

or by X� or LX for any vector field X on M (Exercise 4.1.7).
2. Let V be a finite-dimensional K-vector space. A differential r-form on M with

values in V is a section in the vector bundle whose fibres are the r-forms on
TmM with values in V , that is, the antisymmetric r-linear mappings

TmM × · · · × TmM → V.

We denote the vector space of these forms by Ωr(M,V ) and we define
Ω∗(M,V ) :=⊕n

r=0 Ωr(M,V ). The bundle of r-forms on TmM with values
in V can be identified with the tensor product

∧r T∗M ⊗ (M × V ). Hence,
Ωr(M,V ) can be identified with the space of sections of this bundle, which
in turn can be identified with Ωr(M) ⊗ V . Accordingly, if {ea} is a basis in V ,
every differential r-form α with values in V can be written in the form

α = αa ⊗ ea

(summation convention), where αa are uniquely determined ordinary differential
r-forms and the ea can be interpreted either as elements of V , in which case α is
viewed as an element of Ωr(M) ⊗ V , or as global sections in M × V , in which
case α is viewed as a section of

∧r T∗M ⊗ (M × V ). As a consequence, with
respect to a local chart (U,κ) on M , α has the local representation

α�U = αa
i1,...,ik

dκi1 ∧ · · · ∧ dκik ⊗ ea (4.1.31)

with smooth functions αa
i1,...,ik

: U → R. The statements of this section about
ordinary differential forms carry over in an obvious way to differential forms
with values in V , except for those which have to do with the exterior product. An
exterior product exists on Ω∗(M,V ) only if V carries in addition the structure
of an algebra. If so, the exterior product is defined by (2.4.17).

Exercises
4.1.1 Prove Formulae (4.1.4) and (4.1.5).
4.1.2 Prove the transformation laws given in (4.1.12).
4.1.3 Prove the local Formula (4.1.17) for the pull-back of differential forms.
4.1.4 Prove that the operation of inner multiplication is f -linear.
4.1.5 Complete the proof of Theorem 4.1.4 by verifying that the system of linear

mappings d defined by (4.1.21) is an exterior derivative.
4.1.6 Prove Eqs. (4.1.25)–(4.1.27).
4.1.7 Use Proposition 4.1.6 to prove Formula (4.1.30) as well as analogous formu-

lae for the operations ϕ∗, X� and LX .
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4.2 Integration and Integral Invariants

The idea of integration of a differential n-form α on an n-dimensional manifold M

is as follows. We choose an atlas and take the pull-backs of α, weighted with the
elements of a subordinate partition of unity, by the local chart mappings. This yields
a family of differential n-forms on open subsets of Rn, which we integrate and sum
up.

Definition 4.2.1 (Orientation) Let M be a manifold. An atlas AM of M is called
oriented, or an orientation of M , if for every pair of charts (U1, κ1) and (U2, κ2)

belonging to AM and such that U1 ∩ U2 �= ∅ one has

det
(
κ1 ◦ κ−1

2

)′
> 0. (4.2.1)

A manifold is called orientable if it admits an orientation. It is called oriented if an
orientation has been chosen.

Let M be oriented by the atlas A . A local chart on M is said to be oriented if
A remains oriented when this chart is added to it. A local frame in TM is said to
be oriented if the matrix transforming this frame at some point to the frame {∂i} of
some chart in A has positive determinant.

Remark 4.2.2 The set of ordered bases of a vector space V decomposes into the
following two equivalence classes: (e1, . . . , en) and (e′

1, . . . , e
′
n) are equivalent iff

the transition matrix A, defined by e′
i = Ai

j ej , has positive determinant. Each of
these two equivalence classes defines an orientation of V . This definition immedi-
ately carries over to manifolds: choosing an orientation means choosing orientations
in each tangent space in a smooth way. Indeed, the local frame {∂κ

1 , . . . , ∂κ
n } induced

by the local chart (U,κ) provides an orientation of the open subset U and (4.2.1)
yields the consistency condition for the orientations of all charts belonging to the
chosen atlas.

Definition 4.2.3 (Volume form) A nowhere-vanishing n-form on an n-dimensional
manifold is called a volume form.

Proposition 4.2.4 A manifold is orientable iff it admits a volume form.

Proof First, assume that M is orientable. Let {(Ui, κi)} be a countable, locally finite,
oriented atlas and let {fi} be a subordinate partition of unity. We define the following
family of n-forms on M :

(vi )m :=
{

0 m /∈ Ui

fi(m)dκ1
i ∧ · · · ∧ dκn

i m ∈ Ui.
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Since {supp(fi)} is locally finite, v :=∑i vi is a well-defined smooth n-form on M .
It remains to show that vm �= 0 for all m ∈ M . Choose i0 such that m ∈ Ui0 . By the
transformation law (4.1.12) for local frames, in the chart (Ui0 , κi0) we have

vm =
(
fi0(m) +

∑
fi(m)det

(
κi ◦ κ−1

i0

)′(
κi0(m)

))
dκ1

i0
∧ · · · ∧ dκn

i0
,

where the sum runs over all i such that m ∈ Ui . Since fi ≥ 0 and fi0(m) +∑
fi(m) = 1, and since the determinants are positive, we conclude vm �= 0. Con-

versely, assume that there exists a volume form v. In a local chart (U,κ) the n-form
v is given by

v�U = hdκ1 ∧ · · · ∧ dκn.

Since vm �= 0 for all m ∈ U , we have either h > 0 or h < 0. If h > 0, we leave κ as
it is. If h < 0, we define a new chart by κ = (−κ1, κ2, . . . , κn). By this procedure,
we obtain an atlas with h > 0 in every chart. Then, for any two charts (U,κ) and
(Ũ , κ̃) of this atlas, we have h̃ = det(κ̃ ◦ κ−1)′h and thus det(κ̃ ◦ κ−1)′ > 0. �

Example 4.2.5

1. The vector space R
n is orientable. One possible orientation, called the standard

orientation, is given by the identity chart mapping. A volume form corresponding
to this orientation is dx1 ∧ · · · ∧ dxn with x1, . . . , xn being the standard coordi-
nates.

2. The Möbius strip is not orientable (Exercise 4.2.1).
3. The odd-dimensional real projective spaces are orientable, the even-dimensional

real projective spaces are not orientable (Exercise 4.2.1).
4. The level set of a regular value of a differentiable mapping f : Rn → R

m is
orientable (Exercise 4.2.1).

5. Every parallelizable manifold is orientable, because if {X1, . . . ,Xn} is a global
frame in TM and {ξ1, . . . , ξn} is the dual frame in T∗M , then ξ1 ∧ · · · ∧ ξn is a
volume form. In particular, Lie groups are orientable, see Chap. 5.

Let {xi} denote the standard coordinates on R
n and let there be chosen the vol-

ume form dx1 ∧· · ·∧dxn. Then, for every n-form α ∈ Ωn(Rn) there exists a unique
function f : Rn → R such that α = f dx1 ∧ · · · ∧ dxn. We define

∫

Rn

α :=
∫

Rn

f dnx, (4.2.2)

provided the integral on the right hand side exists. Here, dnx denotes the Lebesgue
measure3 on R

n.

3For our purposes, the Riemann integral would do as well.
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Definition 4.2.6 (Integral) Let M be an oriented manifold of dimension n. Let
{(Ui, κi)} be a countable, locally finite and oriented atlas and let {fi} be a sub-
ordinate partition of unity. A differential n-form α ∈ Ωn(M) is called integrable
if the integrals

∫
κi (Ui)

(κ−1
i )∗(fiα) exist and the family of their absolute values is

summable. If α is integrable, we define
∫

M

α :=
∑

i

∫

κi (Ui)

(
κ−1
i

)∗
(fiα). (4.2.3)

One easily shows that the right hand side of Eq. (4.2.3) neither depends on the
choice of the atlas nor on the choice of the partition of unity (Exercise 4.2.2). Obvi-
ously, the integral (4.2.3) always exists if M is compact or if α has compact support.
Sometimes, one wishes to integrate a differential k-form over a k-dimensional sub-
manifold:

Definition 4.2.7 (Integral over a submanifold) Let (N,ϕ) be a k-dimensional ori-
ented submanifold of M and let β ∈ Ωk(M). The integral of β over N is defined
by

∫

N

β :=
∫

N

ϕ∗β. (4.2.4)

Next, we extend the famous Stokes Theorem of classical calculus to the case
of manifolds. For that purpose, we need the notion of manifold with boundary.
Consider the closed half-space R

n− := {x ∈ R
n : x1 ≤ 0}, equipped with the rela-

tive topology induced from R
n. The boundary of R

n− is defined to be the closed
subset ∂Rn− = {0} × R

n−1. The boundary of an open subset U ⊂ R
n− is defined to

be ∂U := U ∩ ∂Rn−. This is an open subset of ∂Rn− ∼= R
n−1. Note that, in general,

∂U does not coincide with the topological boundary of U as a subset of Rn−.

Definition 4.2.8 Let U ⊂ R
n− be open and let x ∈ U . A mapping Φ : U → R

m

is smooth at x if there exists an open neighbourhood Ũ of x in R
n and a smooth

mapping Φ̃ : Ũ → R
m such that Φ�U∩Ũ

= Φ̃�U∩Ũ
. A diffeomorphism between two

open subsets of Rn− is a smooth bijective mapping whose inverse is also smooth.

Remark 4.2.9

1. If Φ : U → V is a diffeomorphism of open subsets of Rn−, then Φ(∂U) = ∂V and
the restriction Φ�∂U : ∂U → ∂V is a diffeomorphism of open subsets of Rn−1.
For x ∈ ∂U , the first derivative Φ ′(x) :Rn → R

n is of the form

Φ ′(x) =

⎛

⎜⎜⎜⎜⎜⎝

∂Φ1
∂x1

0 · · · 0
∂Φ2
∂x1

∂Φ2
∂x2

· · · ∂Φ2
∂xn

...
...

...
∂Φn

∂x1

∂Φn

∂x2
. . . ∂Φn

∂xn

⎞

⎟⎟⎟⎟⎟⎠
,

∂Φ1

∂x1
> 0. (4.2.5)
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Hence, Φ ′(x) maps the subspace {0} × R
n−1 and the half-spaces R

n± to them-
selves, respectively.

2. While a differentiable mapping Φ : U → R
m has many distinct extensions Φ̃ :

Ũ →R
m at a boundary point x ∈ U , its derivative Φ ′(x) at x is unique: since the

derivative exists, it suffices to check uniqueness of the directional derivatives.
The latter follows from the fact that for arbitrary h ∈R

n either h or −h (or both)
are in R

n−.

Now, we carry over the notions of Sect. 1.1 to the present situation by replacing
the linear space R

n in Definitions 1.1.1–1.1.4 by the half-space R
n−. This way, we

obtain the notions of

– topological manifold with boundary, including its dimension,
– local chart, compatibility of local charts and atlas for a topological manifold with

boundary,
– manifold with boundary and differentiable mapping,
– orientation for a manifold with boundary.

In addition, by replacing the term manifold by the term manifold with boundary in
the respective definition, we obtain the notion of partition of unity for a manifold
with boundary and the notion of vector bundle with boundary, including the notions
of morphism and section. Next, we construct the tangent space at a point m of a
manifold M with boundary in the same way as for ordinary manifolds, cf. Sect. 1.4,
with the following changes.

– Instead of curves through m and ordinary derivatives in (1.4.2), we take curves
γ : [0,1] → M starting at m and curves γ : [−1,0] → M ending at m and use
one-sided derivatives.

– For x ∈ R
n, we define the curve γ x in (1.4.3) as a curve starting at x (that is,

t ∈ [0,1]) if x ∈ R
n− and as a curve ending at x (that is, t ∈ [−1,0]) otherwise.

This way, the tangent spaces become linear spaces. The construction of the tangent
bundle and the tangent mapping carries over without change, rendering vector bun-
dles with boundary and morphisms thereof. The same is true for the various tensor
bundles. Based on this, the calculus on manifolds carries over to manifolds with
boundary in an obvious way, including the notions of vector field and flow, tensor
field, transport and Lie derivative, differential form, pull-back, exterior derivative
and integral, as well as immersion and submersion, submanifold and vector subbun-
dle.

Next, we define the interior and the boundary of a manifold with boundary. As
a consequence of Remark 4.2.9/1, the transition mappings of local charts of a topo-
logical manifold with boundary map points in ∂Rn− to points in ∂Rn−. That is, if for
m ∈ M there holds κ(m) ∈ ∂Rn− for some local chart κ at m, then this holds for any
local chart at m.

Definition 4.2.10 (Boundary and interior) Let M be a manifold with boundary.
A point m ∈ M is called a boundary point if there exists a local chart (U,κ) at m
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with κ(m) ∈ ∂Rn−. Otherwise, m is called an interior or inner point. The subset of
boundary points is denoted by ∂M and is called the boundary of M . The subset of
interior points is denoted by Int(M) and is called the interior of M .

Example 4.2.11 The closed unit disk Dn of Rn is a smooth manifold with bound-
ary. The interior is the open unit ball and the boundary coincides with the smooth
manifold Sn−1 (Exercise 4.2.4).4

Example 4.2.12 An ordinary manifold is a manifold with boundary. To see this,
replace the coordinate x1 by −ex1 in each local chart. For an ordinary manifold,
∂M = ∅ and Int(M) = M . Hence any statement for manifolds with boundary holds,
in particular, for ordinary manifolds.

Proposition 4.2.13 Let M be a manifold with boundary and let n = dimM .

1. Int(M) and ∂M are embedded submanifolds of M of dimension n and n − 1,
respectively.

2. Int(M) and ∂M are ordinary manifolds, that is, ∂ Int(M) = ∅ and ∂(∂M) = ∅.
3. Every orientation on M induces orientations on Int(M) and on ∂M .

Proof For the first assertion, we construct atlases on Int(M) and ∂M by restriction
of appropriate local charts of an atlas for M (Exercise 4.2.6). Then, the second
assertion is obvious. For Int(M), the third assertion is obvious as well. For ∂M , this
assertion follows from the fact that the derivative of the transition mapping of two
induced charts is given by the lower right block of the restriction of the original
transition mapping to boundary points, given in (4.2.5). �

Now we can extend Stokes’ Theorem of classical integral calculus to manifolds.

Theorem 4.2.14 (Stokes) Let M be an n-dimensional compact and oriented mani-
fold with boundary and let ∂M be endowed with the induced orientation. Then, for
every (n − 1)-form β on M ,

∫

M

dβ =
∫

∂M

β. (4.2.6)

We note that all the integral theorems of classical vector analysis follow from
Stokes’ Theorem, see Sect. 4.5.

Proof We choose a finite atlas {(Ui, κi)} and a subordinate partition of unity {fi}.
By finiteness, it is enough to show that

∫
M

d(fiβ) = ∫
∂M

fiβ for all i. Thus, we may
assume that β has support in one chart domain Uk and that, therefore, the partition

4Beware that the interior and the boundary of a manifold with boundary are defined by the manifold
alone, whereas the interior and the boundary of a subset of a topological space are defined with
respect to the ambient space. By chance, in this example, these two notions coincide.
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of unity {fi} can be chosen so that fk�supp(β) = 1 and fi�supp(β) = 0 for all i �= k.
Under these assumptions, the calculation of

∫
M

dβ reduces to

∫

M

dβ =
∫

κk(Uk)

(
κ−1
k

)∗dβ =
∫

κk(Uk)

d
((

κ−1
k

)∗
β
)
.

We expand

(
κ−1
k

)∗
β =

n∑

l=1

bldx1 ∧ · · · ∧ dxl−1 ∧ dxl+1 ∧ · · · ∧ dxn (4.2.7)

with smooth5 functions bl on κk(Uk). Then,

d
((

κ−1
k

)∗
β
)=

n∑

l=1

(−1)l−1 ∂bl

∂xl
dx1 ∧ · · · ∧ dxn

and hence by (4.2.2)

∫

M

dβ =
n∑

l=1

(−1)l−1
∫

κk(Uk)

∂bl

∂xl
dnx. (4.2.8)

Since supp(bl) ⊂ κk(supp(β)), the functions bl have compact support in κk(Uk).
First, this implies that we can extend them by zero to R

n−. Second, this implies that
there exists R > 0 such that supp(bl) is contained in the interior of the half-cube
[−R,0] × [−R,R]n−1, so that we can replace the range of integration on the right
hand side of (4.2.8) by this half-cube. Integration over xl in the l-th term yields

∫

M

dβ =
∫

[−R,R]n−1

(
b1
(
0, x2, . . . , xn

)− b1
(−R,x2, . . . , xn

))
dx2 . . .dxn

+
∑

l>1

(−1)l−1
∫

[−R,0]×[−R,R]n−2

(
bl

(
x1, . . . , xl−1,R, xl+1, . . . , xn

)

− bl

(
x1, . . . , xl−1,−R,xl+1, . . . , xn

))
dx1 . . .dxl−1dxl+1 . . .dxn

=
∫

[−R,R]n−1
b1
(
0, x2, . . . , xn

)
dx2 . . .dxn.

By extending the range of integration to R
n−1 we finally arrive at

∫

M

dβ =
∫

Rn−1
b1
(
0, x2, . . . , xn

)
dx2 . . .dxn. (4.2.9)

5In the sense of Definition 4.2.8.
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Next, we calculate
∫
∂M

β . For that purpose, we need the natural inclusion mapping
ι : ∂M → M and the mappings

p : Rn →R
n−1, p(x1, . . . , xn) := (x2, . . . , xn),

j : Rn−1 → R
n, j (x2, . . . , xn) := (0, x2, . . . , xn).

To evaluate the integral we use the induced atlas {(Ũi , κ̃i )} on ∂M , defined by Ũi :=
Ui ∩ ∂M and κ̃i := p ◦ κi ◦ ι, and the induced subordinate partition of unity {f̃i} of
∂M , defined by f̃i := fi ◦ ι. Since j ◦ κ̃i = κi ◦ ι, Formula (4.2.4) yields

∫

∂M

β ≡
∫

∂M

ι∗β =
∫

κ̃k(Ũk)

(
κ̃−1
k

)∗
ι∗β =

∫

κ̃k(Ũk)

j∗(κ−1
k

)∗
β.

Plugging in the expansion (4.2.7) for (κ−1
k )∗β and using that, due to j∗dx1 = 0,

only the contribution of l = 1 survives, we obtain
∫

∂M

β =
∫

κ̃k(Ũk)

b1
(
0, x2, . . . , xn

)
dx2 . . .dxn.

As before, b1 can be extended by zero to R
n−1 and the range of integration can be

replaced by R
n−1. Then, comparison with (4.2.9) yields the assertion. �

In the remaining part of this section we discuss integral invariants. They play a
role in symplectic geometry and in the theory of Hamiltonian systems, see Sect. 9.3.
For an exhaustive presentation we refer to [181], see also [60].

Definition 4.2.15 Let X ∈ X(M). A differential k-form α on M is called

1. invariant with respect to X if LXα = 0,
2. relatively invariant with respect to X if X�dα = 0,
3. absolutely invariant with respect to X if X�α = 0 and X�dα = 0.

Equivalently, α is invariant with respect to X iff the flow Φ of X fulfils Φ∗
t α = α

for all t . Due to

Lf Xα = f LXα + df ∧ (X�α),

α is absolutely invariant with respect to X iff it is invariant with respect to f X for
all f ∈ C∞(M). If α is relatively invariant with respect to X, then LXα is closed.

Proposition 4.2.16 (Poincaré-Cartan) Let X be a complete vector field on M with
flow Φ and let α ∈ Ωk(M). Then,

1. α is invariant with respect to X iff
∫

N

(Φt ◦ ϕ)∗α =
∫

N

ϕ∗α (4.2.10)
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for all oriented compact k-dimensional manifolds N with boundary, for all
smooth mappings ϕ : N → M and for all t ∈R,

2. α is relatively invariant with respect to X iff
∫

∂N

(Φt ◦ ϕ ◦ ι)∗α =
∫

∂N

(ϕ ◦ ι)∗α (4.2.11)

for all oriented compact (k + 1)-dimensional manifolds N with boundary ∂N ,
for all smooth mappings ϕ : N → M and for all t ∈R. Here, ι : ∂N → N denotes
the natural inclusion mapping,

3. α is absolutely invariant with respect to X iff (4.2.10) holds for the flows of f X

for all f ∈ C∞(M).

Accordingly, invariant forms are often called integral invariants.

Proof 1. If α is invariant, then Φ∗
t α = α and the statement follows trivially. Con-

versely, assume that (4.2.10) holds. Then, by assumption, for every embedding
ι : Dk → N of the closed unit ball Dk ⊂ R

k we have
∫

Dk

(Φt ◦ ϕ ◦ ι)∗α =
∫

Dk

(ϕ ◦ ι)∗α,

because Dk is compact. But the Lebesgue measurable sets A ⊂ N are generated by
balls, that is, for every such set we obtain

∫
A
(Φt ◦ ϕ)∗α = ∫

A
ϕ∗α and, therefore,

(Φt ◦ ϕ)∗α = ϕ∗α. If now N runs through all k-dimensional manifolds, we can
conclude Φ∗

t α = α.
2. Let α be relatively invariant. Then, LXdα = dLXα = 0, that is, dα is invari-

ant. Using Stokes’ Theorem and point 1, we obtain
∫

∂N

(Φt ◦ ϕ ◦ ι)∗α =
∫

N

(Φt ◦ ϕ)∗dα =
∫

N

ϕ∗dα =
∫

∂N

ι∗ ◦ ϕ∗α.

The proof of the converse direction is analogous to point 1.
3. This follows from the remark after Definition 4.2.15. �

Remark 4.2.17 Let α,β ∈ Ω∗(M) be invariant under X ∈ X(M). Since the opera-
tions iX and d commute with LX and since LX is a derivation of the tensor algebra,
iXα, dα and α ∧ β are invariant with respect to X, too. Thus, the set of X-invariant
differential forms on M forms a subalgebra of Ω∗(M) which is closed under iX
and d.

Besides the forms which are invariant with respect to a given vector field, it is
also interesting to study the vector fields leaving invariant a given form. The kernel
of an antisymmetric multilinear form η on a vector space V is defined as

kerη := {v ∈ V : v�η = 0}. (4.2.12)
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Definition 4.2.18 Let α ∈ Ωk(M).

1. The subspace Fα
m := kerαm ∩ ker(dα)m of TmM is called the characteristic sub-

space of α at m.
2. A local vector field X on M with domain U is called characteristic for α if

Xm ∈ Fα
m for all m ∈ U .

3. The distribution spanned by the characteristic local vector fields for α is called
the characteristic distribution of α and is denoted by Dα .

While the dimension of Fα
m is locally non-increasing, it may suddenly decrease.

Accordingly, the subset Fα :=⋃m∈M Fα
m of TM need not establish a distribution

in the sense of Definition 3.5.1.6 Rather, the characteristic distribution Dα is the
maximal distribution on M contained in Fα . If dimFα

m is constant on M , then Dα

and Fα coincide, and both are regular distributions. We also note that, by the above
definition, a vector field X is characteristic for α iff

X�α = 0, X�dα = 0, (4.2.13)

that is, iff α is absolutely invariant with respect to X.

Example 4.2.19 Let M = R
2 with standard coordinates x, y. For α = dx, all char-

acteristic subspaces Fα
(x,y)

coincide with the y-axis. Therefore, Fα = Dα and both
are regular distributions of rank 1. For α = xdx, Fα

(x,y) is given by the y-axis if

x �= 0 and by R
2 otherwise. In contrast, since the characteristic vector fields are

continuous, Dα
(x,y) coincides with the y-axis everywhere.

Proposition 4.2.20 For every α ∈ Ωk(M), the characteristic distribution Dα is in-
tegrable.

The corresponding foliation of M by the maximal integral manifolds of Dα is
called the characteristic foliation of α.

Proof We show that Dα is homogeneous and apply Theorem 3.5.10. Let
X ∈ XDα

loc (M). Since X is characteristic for α, α is invariant with respect to X.
Hence,

ΦX
t

∗α = α. (4.2.14)

Now, let (t,m) ∈ DX . For Ym ∈ Dα
m, choose a characteristic vector field Y taking

this value at m. Due to (4.2.14), ΦX
t∗Y is characteristic for α. Hence,

(
ΦX

t

)′
m
Ym = (ΦX

t∗Y
)
ΦX

t (m)
∈ Dα

ΦX
t (m)

.

6Nevertheless, in [181], Fα is referred to as the characteristic distribution of α, which is consistent
with the notion of distribution used there.
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It follows that (ΦX
t )′mDα

m ⊂ Dα

ΦX
t (m)

. The same argument yields

(
ΦX−t

)′
ΦX

t (m)
Dα

ΦX
t (m)

⊂ Dα
m,

and hence equality. Thus, Dα is homogeneous and hence integrable. �

Remark 4.2.21 If dimFα
m is constant on M and hence Dα = Fα is regular, it is

enough to prove involutivity:

[X,Y ]�α = (LXY)�α = LX(Y�α) − Y�LXα = 0,

[X,Y ]�dα = L[X,Y ]α = LXLY α − LY LXα = 0

for arbitrary characteristic vector fields X,Y of α.

Exercises
4.2.1 Show the following.

(a) The Möbius strip is not orientable.
(b) The real projective space RP n is orientable iff n is odd.
(c) Level sets of smooth mappings f : Rn → R

m at regular values are ori-
entable.

4.2.2 Show that the right hand side of Eq. (4.2.3) neither depends on the choice of
the atlas nor on the choice of the partition of unity.

4.2.3 Prove the statements of Remark 4.2.9/1.
4.2.4 Prove the statements in Example 4.2.11.
4.2.5 Show that the closed unit disk Dn = {x ∈ R

n : ‖x‖ ≤ 1} is a smooth manifold
with boundary and find the interior and the boundary.

4.2.6 Prove Proposition 4.2.13/1.

4.3 De Rham Cohomology

In this section we show that the Cartan algebra of differential forms on a manifold
contains important information about the topology of this manifold.

Definition 4.3.1 Let M be a manifold.

1. A k-form α is called closed if dα = 0. The set of closed k-forms is denoted by
Zk(M).

2. A k-form α is called exact if there exists a (k − 1)-form β such that α = dβ . In
this case, β is called a potential for α. The set of exact k-forms is denoted by
Bk(M).

Both Zk(M) and Bk(M) are vector spaces. Since d2 = 0, we have Bk(M) ⊂
Zk(M), that is, every exact form is closed.
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Definition 4.3.2 Let M be a manifold.

1. The additive Abelian group underlying the vector space Hk(M) :=
Zk(M)/Bk(M) is called the k-th de Rham cohomology group of M .

2. The numbers dimHi(M) are called the Betti numbers of M and the sum

χ(M) :=
n∑

i=0

(−1)i dimHi(M) (4.3.1)

is called the Euler characteristic of M .

Remark 4.3.3

1. For k > dimM we have Zk(M) = 0 and thus Hk(M) = 0.
2. Consider the direct sums

Z∗(M) :=
n⊕

k=0

Zk(M), B∗(M) :=
n⊕

k=0

Bk(M).

For α ∈ Zk(M) and β ∈ Zr(M) we have

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ) = 0,

that is, α ∧ β ∈ Zk+r (M). Thus, Z∗(M) is a subalgebra of Ω∗(M). For α ∈
Bk(M) with potential α̃ and for β ∈ Zr(M) we get

d(α̃ ∧ β) = (dα̃) ∧ β = α ∧ β,

that is, α∧β ∈ Bk+r (M). The same is true for α ∈ Zk(M) and β ∈ Br(M). Thus,
B∗(M) is a two-sided ideal in Z∗(M). We conclude that the exterior product
induces a multiplication in H ∗(M) := Z∗(M)/B∗(M),

[α] ∪ [β] := [α ∧ β],
called the cup product. This way, H ∗(M) becomes an associative, graded com-
mutative algebra with grading

H ∗(M) =
n⊕

k=0

Hk(M).

H ∗(M) is called the cohomology algebra of M and the underlying ring is called
the cohomology ring of M .

3. Let ϕ : M1 → M2 be a smooth mapping. Since the pull-back by ϕ commutes with
the operation of taking the exterior differential, it maps closed forms to closed
forms and exact forms to exact forms. Since it is linear, it induces a homomor-
phism of the cohomology groups, denoted by the same symbol:

ϕ∗ : Hk(M2) → Hk(M1), ϕ∗([α]) := [ϕ∗(α)
]
. (4.3.2)
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Equation (4.1.15) implies

ϕ∗([α] ∪ [β])= (ϕ∗[α])∪ (ϕ∗[β]),
that is, ϕ∗ is a homomorphism of algebras. Moreover,

(χ ◦ ϕ)∗ = ϕ∗ ◦ χ∗, id∗
M = idH ∗(M). (4.3.3)

Example 4.3.4

1. We compute H 0(M). From df = 0 we conclude that the function f must be
constant on each connected component of M . Thus, f is given by q real numbers,
where q denotes the number of connected components, and we obtain Z0(M) =
R

q . Since exact 0-forms do not exist, we have B0(M) = 0 and thus

H 0(M) = R
q .

2. Let M = R. By point 1, we have H 0(R) = R. Let us calculate H 1(R). Let α ∈
Ω1(R). Then, for dimensional reasons α is closed. Moreover, it is also exact.
Indeed, writing α(x) = a(x)dx and defining the function f (x) := ∫ x

0 a(y)dy, we
get

df (x) = df

dx
(x)dx = a(x)dx = α(x).

Thus, B1(R) = Z1(R) = Ω1(R) and we conclude H 1(R) = 0.
3. Let M = S1. By point 1, we have H 0(S1) = R. We show that H 1(S1) = R. In

the standard parameterization of S1 by x ∈ R, a 1-form α on S1 is given by
α = a(x)dx, with a(x) = a(x + 2πn). Since dim S1 = 1, α is closed. It is exact
iff there exists a function f , fulfilling f (x + 2πn) = f (x), such that α = df ,
that is, a(x) = df

dx
(x). Then, using x ∈ (0,2π) as a coordinate, we obtain

∫

S1
α =

∫ 2π

0
a(x)dx =

∫ 2π

0

df

dx
(x)dx = f (2π) − f (0) = 0.

This means that two forms α1 and α2 belong to the same cohomology class iff
∫

S1
α1 =

∫

S1
α2.

Thus, H 1(S1) is in one-to-one correspondence with the values of such integrals.
If we put α = (2π)−1rdx, r ∈ R, then we get

∫
S1 α = r . Thus, H 1(S1) = R.

4. For the Euler characteristics we obtain χ(R) = 1 and χ(S1) = 0. This shows, in
particular, that R and S1 are topologically distinct, cf. Corollary 4.3.10.

5. For the one-point space {∗} we get

Hk
({∗})=

{
R k = 0

0 k > 0.



188 4 Differential Forms

Definition 4.3.5 (Smooth homotopy) Let M and N be manifolds.

1. A smooth homotopy of a smooth mapping ϕ : M → N is a smooth mapping
F : M × [0,1] → N such that F(·,0) = ϕ. A smooth homotopy of two smooth
mapping ϕ0, ϕ1 : M → N is a smooth mapping F : M × [0,1] → N such that
F(·, i) = ϕi , i = 1,2. If a smooth homotopy exists, ϕ0 and ϕ1 are said to be
smoothly homotopic.

2. M and N are called smoothly homotopy-equivalent if there exist smooth map-
pings ϕ : M → N and χ : N → M such that the compositions χ ◦ ϕ : M → M

and ϕ ◦χ : N → N are smoothly homotopic to the respective identical mapping.
3. M is called contractible if for some m0 ∈ M the constant mapping M � m �→

m0 ∈ M and the identical mapping idM are smoothly homotopic.

Remark 4.3.6

1. There is an analogous notion of homotopy in the category of topological spaces
and continuous mappings. In the case of smooth manifolds and smooth map-
pings, the two notions of homotopy are related as follows. If two smooth map-
pings are continuously homotopic, they are smoothly homotopic. Every contin-
uous mapping between manifolds is continuously homotopic to a smooth map-
ping, see [130]. After having clarified this, in the sequel we may drop the adjec-
tive smooth and just speak of homotopies.

2. To be homotopic is an equivalence relation in the set of smooth mappings from N

to M . The set of homotopy classes of mappings Si → M , such that some chosen
point s0 ∈ Si is mapped to some chosen point x0 ∈ M , is called the i-th homo-
topy group7 of M and is denoted by πi(M,x0). If M is connected, πi(M,x0) is
naturally isomorphic to πi(M,x1) for all x0, x1 ∈ M . Hence, in this case, it is
common to suppress the base point x0 in the notation and to simply write πi(M).

3. To be homotopy-equivalent is an equivalence relation in the totality of smooth
manifolds. The equivalence class of a manifold M is called the homotopy type
of M . This terminology extends in an obvious way to topological spaces.

4. Let M and N be compact oriented manifolds with volume forms vM and vN ,
respectively, and let ϕ : M → N be a smooth mapping. The mapping degree
deg(ϕ) of ϕ is defined by

deg(ϕ)

∫

M

vM =
∫

M

ϕ∗vN.

One can show that deg(ϕ) is an integer, see for example [76]. There, the reader
can find an exhaustive discussion of this important topological concept. In the
special case M = N = S1, the mapping degree can be interpreted as the winding
number. It defines an isomorphism from π1(S1) to Z (Exercise 4.3.4).

7For i = 1, the group multiplication is induced from an appropriate composition of closed paths.
For i > 1 there is an analogous construction, see [76] for a detailed presentation. In contrast,
π0(M,x0), which is in bijective correspondence to the set of connected components of M , in
general does not carry a group structure.
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5. A manifold is contractible iff it is homotopy-equivalent to the one-point space
{∗}: for m0 ∈ M , let �m0 : M → M denote the constant mapping m �→ m0. Define

ϕ : M → {∗}, ϕ(m) := ∗, χ : {∗} → M, χ(∗) := m0.

By construction, we have ϕ ◦ χ = id{∗} and χ ◦ ϕ = �m0 . Hence, χ ◦ ϕ is homo-
topic to idM iff so is ρm0 .

Now, let M be a manifold and let I = [0,1]. Every Ω ∈ Ωk(M × I ) can be
uniquely decomposed into Ω = α1 +α2 ∧dt , where α1(·, t) ∈ Ωk(M) and α2(·, t) ∈
Ωk−1(M) for every t ∈ I . Consider the family of mappings

Dk : Ωk(M × I ) → Ωk−1(M), (DkΩ)(m) := (−1)k−1
∫ 1

0
α2(m, t)dt,

(4.3.4)
where the integral is to be understood as an integral of a function on the interval I

with values in the vector space
∧k−1 T∗

mM .

Lemma 4.3.7 We have

d(DkΩ) + Dk+1(dΩ) = Ω�t=1 − Ω�t=0. (4.3.5)

Proof Let m ∈ M and let (U,κ) be a local chart at m. Let

α2(m, t) = aI (m, t)dκI , α1(m, t) = bJ (m, t)dκJ

(summation convention) be the corresponding local formulae for the components of
Ω . Then,

(DkΩ)(m) = (−1)k−1
(∫ 1

0
aI (m, t)dt

)
dκI

and thus

(
d(DkΩ)

)
(m) = (−1)k−1

(∫ 1

0
∂κ
paI (m, t)dt

)
dκp ∧ dκI .

On the other hand,
(
Dk+1(dΩ)

)
(m)

= (Dk+1(dα1)
)
(m) + (Dk+1(dα2 ∧ dt)

)
(m)

= (Dk+1
(
∂κ
q bJ dκq ∧ dκJ + ∂tbJ dt ∧ dκJ

))
(m)

+ (Dk+1
(
∂κ
paI dκp ∧ dκI ∧ dt

))
(m)

= (−1)k(−1)k
(∫ 1

0
∂tbJ (m, t)dt

)
dκJ
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+ (−1)k
(∫ 1

0
∂κ
paI (m, t)dt

)
dκp ∧ dκI

= (bJ (m,1) − bJ (m,0)
)
dκJ − (d(DkΩ)

)
(m)

= Ω�t=1(m) − Ω�t=0(m) − (d(DkΩ)
)
(m).

This completes the proof. �

Proposition 4.3.8 Homotopic mappings induce the same homomorphism of the de
Rham cohomology groups.

Proof Let ϕ0, ϕ1 : M → N be smooth mappings and let F : M × I → N be a ho-
motopy fulfilling F(m,0) = ϕ0(m) and F(m,1) = ϕ1(m). Let α ∈ Ωk(N). If we
set Ω = F ∗α in (4.3.5), we get

dDkF
∗α + Dk+1dF ∗α = ϕ∗

1α − ϕ∗
0α.

If α is a representative of a cohomology class in Hk(N), then dDkF
∗α = ϕ∗

1α −
ϕ∗

0α. Thus, ϕ∗
1α and ϕ∗

0α differ by an exact form, that is, they define the same coho-
mology class. �

Remark 4.3.9 Given smooth mappings ϕ0, ϕ1 : M → N , a family of mappings Hk :
Ωk(N) → Ωk−1(M) fulfilling

Hk+1 ◦ d + d ◦ Hk = ϕ∗
1 − ϕ∗

0

is called a homotopy operator for ϕ0 and ϕ1. If F is a homotopy of ϕ0 and ϕ1, then
Hk = Dk ◦ F ∗ is a homotopy operator for ϕ0 and ϕ1.

Corollary 4.3.10 Homotopy-equivalent manifolds possess isomorphic de Rham co-
homology groups.

Proof Let M and N be homotopy-equivalent and let ϕ : M → N and χ : N → M

be smooth mappings yielding this equivalence. We consider the induced homomor-
phisms ϕ∗ : Hk(N) → Hk(M) and χ∗ : Hk(M) → Hk(N). Since χ ◦ ϕ ∼ idM and
ϕ ◦ χ ∼ idN , respectively, Proposition 4.3.8 and (4.3.3) imply

ϕ∗ ◦ χ∗ = (χ ◦ ϕ)∗ = id∗
M1

= idHk(M1)
,

and, in the same way, χ∗ ◦ϕ∗ = idHk(M2)
. Thus, ϕ∗ and χ∗ are isomorphisms, which

are inverse to each other. �

Corollary 4.3.11 (Lemma of Poincaré) If M is contractible, then

Hk(M) =
{
R | k = 0

0 | k > 0.
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Proof By Remark 4.3.6/5, M is homotopy-equivalent to the one-point space. Thus,
Corollary 4.3.10 implies Hk(M) ∼= Hk({∗}). �

Remark 4.3.12

1. The Lemma of Poincaré tells us, in particular, that on a contractible manifold
every closed form is exact.

2. The operator Dk , defined by (4.3.4), yields an explicit construction for potentials
of a closed form on a contractible manifold: let F : M × I → M be a homo-
topy of M to m0, that is, F(m,0) = m and F(m,1) = m0. By (4.3.5), we have
dDkF

∗α + Dk+1dF ∗α = −α for all α ∈ Ωk(M). If dα = 0, we read off the
following potential for α:

β = −DkF
∗α. (4.3.6)

Example 4.3.13 Let α ∈ Ω2(R3) be given by

α = xydx ∧ dy + 2xdy ∧ dz + 2ydx ∧ dz,

in standard coordinates x, y and z on R
3. Obviously, dα = 0. To construct a potential

we choose a homotopy to the origin:

F
(
(x, y, z), t

)= (tx, ty, tz), t ∈ [0,1].
Then,

F ∗α =(xy2t3 + 2yzt2)dx ∧ dt + (2xzt2 − x2yt3)dy ∧ dt − 4xyt2dz ∧ dt

+ xyt4dx ∧ dy + 2xt3dy ∧ dz + 2yt3dx ∧ dz.

Thus, we obtain the potential

β = − D2F
∗α

= (−1)2−1
[(∫ 1

0

(
xy2t3 + 2yzt2)dt

)
dx +

(∫ 1

0

(
2xzt2 − x2yt3)dt

)
dy

−
(∫ 1

0
4xyt2dt

)
dz

]

= −
(

1

4
xy2 + 2

3
yz

)
dx +

(
1

4
x2y − 2

3
xz

)
dy + 4

3
xydz.

The following generalization of the Poincaré Lemma will be useful later on. The
proof uses the Tubular Neighbourhood Theorem for embedded submanifolds, cf.
Remark 6.4.7, and the fact that the normal bundle of a submanifold N is homotopy
equivalent to N . We leave the latter as an advanced exercise to the reader (Exer-
cise 4.3.5).
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Proposition 4.3.14 (Generalized Poincaré Lemma) Let (N,ϕ) be an embedded
submanifold of M and let α be a closed k-form fulfilling ϕ∗α = 0. Then, there exists
a (k − 1)-form β on a neighbourhood of N in M fulfilling

α = dβ, β�N = 0.

If, in addition, α vanishes8 on N , then β can be chosen such that, in any local chart,
the first derivatives of the coefficients of β vanish on N .

Algebraic topology provides a lot of tools for calculating the de Rham cohomol-
ogy groups of a manifold, see [52], [96] and also [55]. Here, we only make some
elementary remarks. First, the cohomology groups of a direct product M × N can
be computed by means of the Künneth Formula:

Hr(M × N) =
⊕

p+q=r

Hp(M) ⊗ Hq(N). (4.3.7)

Thus,

H ∗(M × N) = H ∗(M) ⊗ H ∗(N), (4.3.8)

which is to be understood as a tensor product of associative algebras.

Example 4.3.15 Consider the 2-torus T2 = S1 × S1. We calculate its de Rham co-
homology groups:

H 0(T2)= H 0(S1)⊗ H 0(S1)=R⊗R=R

H 1(T2)= (H 1(S1)⊗ H 0(S1))⊕ (H 0(S1)⊗ H 1(S1))

= (R⊗R) ⊕ (R⊗R) =R
2

H 2(T2)= H 1(S1)⊗ H 1(S1)=R⊗R=R.

As a second tool, one has the following integral criterion for exact forms.

Proposition 4.3.16 A closed differential k-form α on a manifold M is exact iff∫
N

α = 0, for every compact k-dimensional submanifold N of M .

We give a sketch of the proof. Assume that α ∈ Ωk(M) is exact, α = dβ . Then,
using ∂N = ∅ and Stokes’ Theorem, we get

∫
N

α = ∫
∂N

β = 0. The converse
follows from the de Rham Theorem, which states that there exists a natural iso-
morphism between the de Rham cohomology algebra and the real-valued differen-
tiable singular cohomology algebra.9 The latter is dual to the differentiable singu-
lar homology. We provide the reader with a rough idea of these notions. Singular

8If α vanishes on N , then ϕ∗α vanishes, too. Note that the converse is, of course, not true in
general.
9For a proof see [302], Sects. 4.17, 5.36 and 5.45.
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homology theory is built from formal real linear combinations (called k-chains)
σ =∑i λiσi of differentiable mappings (called differentiable singular simplices)
σi : Δk → M , where

Δk = {x ∈ R
k : xi ≥ 0, x1 + · · · + xk ≤ 1

}

denotes the standard k-dimensional simplex. There is a natural boundary operator
defined by

∂σi =
k∑

j=0

(−1)j σi�Δk
j
,

where Δk
1, . . . ,Δ

k
k denote the faces of Δk , defined by xk = 0, and Δk

0 denotes the
remaining face. This operator is extended to arbitrary chains by linearity. One easily
shows that ∂ ◦ ∂ = 0. Now, the k-th differential singular homology group of M with
real coefficients is defined by ker ∂k/ im ∂k+1. Elements of ker ∂k and im ∂k+1 are
called differentiable k-cycles and differentiable k-boundaries, respectively. The cor-
responding differentiable singular cohomology is then built from linear functionals
(called singular cochains), which assign to each singular simplex a number. Now,
the link to de Rham cohomology is provided by defining how to evaluate a closed
k-form α on a k-cycle σ =∑i λiσi :

〈α,σ 〉 :=
∑

i

λi

∫

Δk

σ ∗
i α. (4.3.9)

This induces a linear mapping from the k-th de Rham cohomology into the real
differentiable singular cohomology, which turns out to be an isomorphism. It can
be easily seen that the integrals over all k-dimensional compact submanifolds of
a closed k-form α vanish iff α vanishes on every k-cycle. Then, injectivity of the
isomorphism defined by (4.3.9) implies that a closed form vanishing on all k-cycles
must be exact.

Example 4.3.17 As an application of Proposition 4.3.16, let us calculate the de
Rham cohomology groups of the spheres Sn, n ≥ 1:

Hk
(
Sn
)=
{
R | k = 0, n,

0 | otherwise.
(4.3.10)

The case k = 0 was dealt with in Example 4.3.4/1. Let 0 < k < n and let α ∈ Ωk(Sn)

be closed. Let N ⊂ Sn be an arbitrary compact k-dimensional submanifold of Sn.
Then, there exists a point x ∈ Sn such that N is contained in the open submanifold
Sn

x := Sn \ {x} ⊂ Sn. Since Sn
x is contractible, according to the Poincaré Lemma,

α�Sn
x is exact. Applying Proposition 4.3.16 to M = Sn

x we get
∫
N

α = 0. Since N

was arbitrary, the same proposition, applied to M = Sn, yields that α is exact on Sn.
We conclude Hk(Sn) = 0 for 0 < k < n. Consider the case k = n. By the theorem on
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invariance of domain, see Footnote 38 on page 159, the only compact n-dimensional
submanifold of Sn is Sn itself. Hence, Proposition 4.3.16 entails that Hn(Sn) is in
one-to-one correspondence with values of the integrals

∫
Sn α. Since Sn is orientable,

it admits a volume form v. By multiplying v by a real number, one can obtain any
real value for the above integral. Thus, Hn(Sn) = R. It also follows that χ(Sn) = 0
if n is odd and χ(Sn) = 2 if n is even.

Exercises
4.3.1 Check that the 1-form β constructed in Example 4.3.13 is a potential for the

2-form α, indeed.
4.3.2 Calculate the de Rham cohomology groups for the annulus

A = {x ∈R
2 : 1 <

(
x2 + y2) 1

2 < 2
}
.

4.3.3 Consider the following 1-form on R
2 \ {0}:

α = xdy − ydx

x2 + y2
.

(a) Prove that α is closed. Calculate the integral of the restriction of α to the
unit circle S1 ⊂R

2 \ {0} and explain why α is not exact.
(b) Show that the curves γn : [0,1] → R

2 \ {0}, γn(t) = (cos(2πnt),

sin(2πnt)) are not homotopic for different values of n ∈ Z.
Hint. Calculate the integrals of α over γn.

(c) Let β be another closed 1-form on R
2 \ {0}. Show that there exists a num-

ber c and a function f : R2 \ {0} → R such that β = cα + df . Conclude
that α generates the first de Rham cohomology of R2 \ {0}.

4.3.4 Prove that the mapping degree defines an isomorphism from π1(S1) to Z, cf.
Remark 4.3.6/4.

4.3.5 Show that every vector bundle is homotopy equivalent to its base man-
ifold. Use this and the Tubular Neighbourhood Theorem for embedded
submanifolds, stated in Remark 6.4.7, to prove the Generalized Poincaré
Lemma 4.3.14.

4.4 Riemannian Manifolds

In this section, we discuss some elements of Riemannian geometry needed in the
sequel. A systematic treatment will be contained in Part II of this book.

Definition 4.4.1 (Riemannian manifold) Let M be an n-dimensional manifold.
A metric on M is a covariant tensor field g ∈ Γ (T0

2(M)) such that for every m ∈ M

the bilinear form

gm : TmM × TmM → R
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is symmetric and non-degenerate. If gm is positive-definite for all m ∈ M , then g is
called a Riemannian metric and the pair (M,g) is called a Riemannian manifold.
Otherwise, g is called a pseudo-Riemannian metric and the pair (M,g) is called a
pseudo-Riemannian manifold.

Let m ∈ M . It is well-known from linear algebra that there exists an orthonormal
basis {ei} in TmM , that is,

gm(ei, ej ) =
(+1r 0

0 −1s

)
.

We denote ηij (m) = gm(ei, ej ). According to the Theorem of Sylvester, the integers
r and s do not depend on the choice of the basis. Using Proposition 2.3.15 and
an inductive orthonormalization procedure one can show that {ei} can be extended
to a local orthonormal frame10 at m0 (Exercise 4.4.1). Thus, g(ei, ej ) = ηij in a
neighbourhood of m0, and the numbers r and s are constant on each connected
component of M . The pair (r, s) is called the signature11 and s is called the index
of g.

Proposition 4.4.2 Every manifold admits a Riemannian metric.

Proof Choose a countable atlas {(Ui, κi) : i ∈ I } on M and a subordinate partition
of unity {fi}. Via κi , the standard scalar product on R

n induces a Riemannian metric
gi on Ui . For every i, the tensor field figi extends to a smooth tensor field g̃i on
M with supp(g̃i ) = supp(fi). Since the covering {supp(fi)} is locally finite, we can
define g :=∑i g̃i and this is a smooth covariant tensor field of second order on M .
Since on the interiors of their supports, the g̃i are Riemannian metrics, and since the
sum of Riemannian metrics is a Riemannian metric, g is a Riemannian metric. �

Since gm is a non-degenerate bilinear form, it can be viewed as an isomorphism
of vector spaces:

gm : TmM → T∗
mM, Xm �→ gm(Xm, ·). (4.4.1)

The isomorphisms gm combine to a vector bundle isomorphism g : TM → T∗M ,
which induces isomorphisms

g :
k∧

TM →
k∧

T∗M, g(X1 ∧ · · · ∧ Xk) = g(X1) ∧ · · · ∧ g(Xk). (4.4.2)

The metric g induces natural symmetric non-degenerate bilinear forms gm and g−1
m

on
∧k TmM and

∧k T∗
mM , respectively:

gm(X1 ∧ · · · ∧ Xk,Y1 ∧ · · · ∧ Yk) := det
(
gm(Xi,Yj )

)
, (4.4.3)

10Denoted by the same letter.
11Some authors prefer to call t = r − s the signature.
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g−1
m (α,β) := gm

(
g−1

m (α),g−1
m (β)

)
. (4.4.4)

Remark 4.4.3 Let us write down the isomorphisms (4.4.1) and (4.4.2) in a local
chart (U,κ). We denote

gij := g
(
∂κ
i , ∂κ

j

)
, gij := g−1(dκi,dκj

)
.

Then,

g = gij dκi
s⊗ dκj , g−1 = gij ∂κ

i

s⊗ ∂κ
j , (4.4.5)

with
s⊗ denoting the symmetric tensor product. Since, as mappings, g ◦ g−1 = id,

we have

gijgjk = δi
k. (4.4.6)

In these notations, the isomorphism (4.4.1) and its inverse take the form

g
(
Xi∂κ

i

)= Xigij dκj , g−1(αidκi
)= αig

ij ∂κ
j . (4.4.7)

In the physics literature, one usually writes Xj = Xigij and αj = αig
ij and one

says that by the help of the metric one raises or lowers indices. Similarly, we denote

gIJ := g
(
∂κ
I , ∂κ

J

)
, gIJ := g−1(dκI ,dκJ

)
.

We have

gIJ (m) = det
(
gir js (m)

)
, gIJ g

JK = δK
I ,

and we can use gIJ and gIJ to raise and lower indices:

XI = gIJ XJ , αI = gIJ αJ .

Then,

g−1(α) = αJ ∂κ
J , g−1(α,β) = αIβJ gIJ . (4.4.8)

If we assume M to be oriented, there exists a distinguished volume form: choose
an oriented orthonormal basis {ei} in TmM and define

(vg)m(X1, . . . ,Xn) := det
(
gm(Xi, ej )

)
, Xi ∈ TmM. (4.4.9)

This definition is independent of the choice of the basis, because for another ori-
ented orthonormal basis {e′

i} one has e′
i = Ai

j ej with detA = +1. Since {ei} can be
extended to an orthonormal local frame in TM , (vg)m depends smoothly on m.

Definition 4.4.4 The differential n-form vg defined by (4.4.9) is called the canoni-
cal volume form of (M,g).
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Let {ei} be an oriented orthonormal local frame in TM and let {ϑj } be the dual
frame in T∗M . Then,

g = ηijϑ
i

s⊗ ϑj (4.4.10)

and

g(ei) = ηijϑ
j , g−1(ϑi

)= ηij ej . (4.4.11)

Analogously,

g(eI ) = ηIJ ϑJ , g−1(ϑI
)= ηIJ eJ . (4.4.12)

Moreover,

vg(e1, . . . , en) = det(ηij ) = (−1)s, g−1(vg) = e1 ∧ · · · ∧ en. (4.4.13)

Thus, denoting In = {1, . . . , n}, we obtain

vg = (−1)sϑIn . (4.4.14)

Remark 4.4.5 We determine the representative of vg in a local chart (U,κ). There
exists a positive definite function f such that

vg = f dκ1 ∧ · · · ∧ dκn ≡ f dκIn . (4.4.15)

Writing ei = ei
j ∂κ

j and ϑi = ϑi
j dκj and using (4.4.14), we obtain

vg = (−1)sϑ1
i1 · · ·ϑn

indκi1 ∧ · · · ∧ dκin = (−1)s detϑdκIn .

Hence, f (m) = (−1)s · det(ϑ(m)) > 0. Moreover, from ei
kϑj

k = δi
j and

glmei
lej

m = ηij we conclude

det e · detϑ = 1, detg · (det e)2 = (−1)s, (4.4.16)

and thus

detϑ = 1

det e
= ±√|detg|. (4.4.17)

In order to have f > 0, we must choose detϑ = (−1)s
√|detg|. Then,

vg =√|detg|dκ1 ∧ · · · ∧ dκn = 1

n!
√|detg|εi1...indκi1 ∧ · · · ∧ dκin ,

with εi1...in denoting the completely antisymmetric tensor of rank n. In the physics
literature, one often uses the Levi-Civita tensor εLC

i1...in
:= √|detg|εi1...in . Then, the

volume form reads

vg = 1

n!ε
LC
i1...in

dκi1 ∧ · · · ∧ dκin . (4.4.18)
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Exercises
4.4.1 Let (M,g) be an oriented pseudo-Riemannian manifold and let m ∈ M . Show

that every oriented orthonormal basis in TmM can be extended to an oriented
orthonormal local frame in TM at m.

4.5 Hodge Duality

In this section, we discuss the Hodge star operator and the operator dual to the
exterior derivative in the sense of Hodge. Finally, we build the bridge to classical
vector analysis. Throughout this section, let (M,g) be an n-dimensional oriented
pseudo-Riemannian manifold with signature (r, s).

The isomorphism (4.4.2) and the canonical volume form vg induce the following
natural linear mapping.

Definition 4.5.1 (Hodge star operator) The linear mapping

∗: Ωk(M) → Ωn−k(M), ∗α := (−1)sg−1(α)�vg, (4.5.1)

is called the Hodge star operator of (M,g). The (n−k)-form ∗α is called the Hodge
dual of α.

Obviously,

∗1 = (−1)svg. (4.5.2)

Moreover, from (4.4.13) we read off

∗vg = 1. (4.5.3)

For I ⊂ In, let I c denote the complement. Formula (4.1.5) implies

eI�ϑIn = ρI,I cϑIc ≡ sign

(
In

II c

)
ϑIc

.

Using this, together with (4.4.12) and (4.4.14), we obtain

∗ϑI = (−1)sg−1(ϑI
)
�(−1)sϑIn = ηIJ eJ �ϑIn = sign

(
In

JJ c

)
ηIJ ϑJ c

. (4.5.4)

Let (U,κ) be an oriented local chart. Then,

∗α = (−1)sg−1(α)�vg

= (−1)s
(
αI ∂κ

I

)
�
√|detg|dκIn

= (−1)s
√|detg|αI sign

(
In

II c

)
dκIc

= (−1)sαI εLC
IIc dκIc

. (4.5.5)
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Remark 4.5.2 One can show that the Hodge dual ∗α of α ∈ Ωk(M) is the unique
(n − k)-form such that

g−1(∗α,β)vg = α ∧ β (4.5.6)

for all β ∈ Ωn−k(M) (Exercise 4.5.1). Hence, this formula can be taken as an alter-
native definition for the Hodge star operator.

Proposition 4.5.3 For α,β ∈ Ωk(M),

∗ ∗ α = (−1)k(n−k)+sα, (4.5.7)

g−1(∗α,∗β) = (−1)sg−1(α,β), (4.5.8)

α ∧ ∗β = (−1)sg−1(α,β)vg. (4.5.9)

Proof Since the ∗-operator is linear, it is enough to show (4.5.7) for α = ϑI . The
latter follows from (4.5.4) (Exercise 4.5.2). Then, using (4.5.6) and (4.5.7), we cal-
culate

g−1(∗α,∗β)vg = α ∧ ∗β

= (−1)k(n−k)(∗β) ∧ α

= (−1)k(n−k)g−1(∗ ∗ β,α)vg

= (−1)sg−1(α,β)vg.

This identity entails both Formulae (4.5.8) and (4.5.9). �

A k-form α on M is said to be square-integrable if the n-form α ∧ ∗α is inte-
grable. On the subspace of square-integrable k-forms we define an inner product
by

(α,β) :=
∫

M

α ∧ ∗β. (4.5.10)

This inner product is positive definite, and hence a scalar product, iff (M,g) is
Riemannian, that is, iff s = 0. It satisfies (Exercise 4.5.3)

(∗α,∗β) = (−1)s(α,β). (4.5.11)

Remark 4.5.4 For an oriented local chart (U,κ), Formulae (4.4.7) and (4.5.9) imply

α ∧ ∗β = (−1)s
√|detg|αIβJ gIJ dκIn . (4.5.12)
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Definition 4.5.5 Let (M,g) be an oriented pseudo-Riemannian manifold.

1. The operator d∗ : Ωk(M) → Ωk−1(M) defined by

(
d∗α,β

) := (α,dβ)

for all β ∈ Ωk−1(M) is called the Hodge dual of the exterior derivative d.
2. The operator � : Ωk(M) → Ωk(M) defined by

� := dd∗ + d∗d

is called the Hodge-Laplace operator of (M,g).

Proposition 4.5.6 For α ∈ Ωk(M),

d∗α = (−1)n(k−1)+s+1 ∗ d ∗ α. (4.5.13)

Proof Since M has no boundary, Stokes’ Theorem implies

(
β,d∗α

)=
∫

M

dβ ∧ ∗α =
∫

M

β ∧ (−1)kd ∗ α

=
∫

M

β ∧ ∗{(−1)n(k−1)+s+1 ∗ d ∗ α
}
. �

Remark 4.5.7 The Hodge dual d∗ satisfies (d∗)2 = 0, but in contrast to the exterior
derivative, it is not an anti-derivation on Ω∗(M).

Example 4.5.8 (Classical vector analysis) Let (M,g) be R
n with the Euclidean

metric. With respect to the standard orientation, the volume form is given by
vg = dx1 ∧ · · · ∧ dxn. The natural isomorphism

X(M) → Ω1(M), X �→ g ◦ X

relates classical vector analysis to the theory of differential forms. The classical
differential operators of gradient and divergence may be defined in a coordinate-
free manner as follows.

1. For f ∈ C∞(M), the gradient of f is the vector field

gradf = g−1 ◦ (df ). (4.5.14)

2. For X ∈X(M), the divergence of X is the function

divX = ∗d
(∗(g ◦ X)

)≡ −d∗(g ◦ X). (4.5.15)

In case n = 3, there is a third classical differential operator on vector fields, the
curl:
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3. For X ∈X(M), the curl of X is the vector field

curlX = g−1 ◦ (∗d(g ◦ X)
)≡ d∗(X�vg). (4.5.16)

Formulae (4.5.14)–(4.5.16) make sense on any oriented (pseudo-)Riemannian
manifold (M,g).12 Thus, they can be taken to define the operators of gradient, di-
vergence and, in three dimensions, of curl on M . In the case of three dimensions,
these operators fit into the following commutative diagram:

0 C∞(M)
d

Ω1(M)
d

Ω2(M)
d

Ω3(M) 0

0 C∞(M)
grad

=

X(M)
curl

g

X(M)
div

∗g

C∞(M)

∗

0.

This means that grad, curl and div establish a complex parallel to the de Rham
complex. In particular, curl◦grad = 0 and div◦ curl = 0.

Example 4.5.9 (Hodge-Laplace operator on Minkowski space) Let (M,η) be
Minkowski space, that is, M = R

4 with inner product

ηij =
(+1 0

0 −13

)
.

For f ∈ C∞(M), we find
(
dd∗ + d∗d

)
f = d∗df = (−1)4(1−1)+3+1 ∗ d ∗ df,

that is,

�f = ∗d ∗ df. (4.5.17)

In the standard coordinates ct, x1, x2, x3 on M ,

�f =
(

− 1

c2

∂2

∂t2
+ �

)
f, � = ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

.

That is, up to the sign,13 � coincides with the wave operator.

Exercises
4.5.1 Prove Remark 4.5.2.
4.5.2 Prove Formula (4.5.7) by showing that it holds for α = ϑI .
4.5.3 Prove Formula (4.5.11).

12A sign (−1)s has to be inserted on the right hand sides of Formulae (4.5.14) and (4.5.15).
13The proper sign would be obtained for the signature (− + + +).
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4.5.4 Consider M = R
n endowed with the Euclidean metric and let X = Xi∂i ∈

X(Rn). Prove the following formulae.
(a) g ◦ X = X1dx1 + · · · + Xndxn,
(b) gradf = ∂1f ∂1 + · · · + ∂nf ∂n,
(c) divX = ∂iX

i ,
(d) curlX = (∂2X

3 − ∂3X
2)∂1 + (∂3X

1 − ∂1X
3)∂2 + (∂1X

2 − ∂2X
1)∂3,

(n = 3).
4.5.5 Consider M = R

n, endowed with the Euclidean metric. Show that application
of � to a function f ∈ C∞(Rn) yields the Laplace operator, that is,

�f =
n∑

i=1

∂2f

∂(xi)2
≡ �f.

Moreover, show that �f = div◦gradf .
4.5.6 Let U be a contractible open subset of R3. Prove the following.

(a) If curlX = 0 on U , there exists f ∈ C∞(U) such that X = gradf .
(b) If divX = 0 on U , there exists Y ∈ X(R3) such that X = curlY .

4.5.7 Derive the integral theorems of classical vector analysis from Stokes’ Theo-
rem for differential forms.
(a) Theorem of Gauß: let X ∈ X(Rn). For any n-dimensional manifold M ⊂

R
n with boundary,

∫

M

(divX)vM =
∫

∂M

(X · n)v∂M.

Here, vM denotes the volume form on M , v∂M the induced volume form
on ∂M and n is the (normalized) normal vector field on the boundary,
pointing outwards.

(b) Classical Theorem of Stokes: let X ∈ X(R3). For any 2-dimensional ori-
ented surface,

∫

M

(
(curlX) · n)vM =

∫

∂M

(X · t)v∂M.

Here, n denotes the (normalized) normal vector field, compatible with the
orientation of the surface, and t denotes the (normalized) tangent vector
field of the boundary, compatible with the induced orientation.

4.5.8 Let (M,η) be Minkowski space, cf. Example 4.5.9. The Levi-Civita tensor
εLC
ijkl , written down in the standard basis, is defined as the signature of the

permutation (1234) �→ (ijkl). Show that εLC
ijkl fulfils

ε
ijkl
LC εLC

mnpl = −δ
ijk
mnp, ε

ijkl
LC εLC

mnkl = −2!δij
mn, ε

ijkl
LC εLC

mjkl = −3!δi
m,

where δ
i1...ir
j1...jr

= sign
(
i1...ir
j1...jr

)
if j1, . . . , jr is a permutation of i1, . . . , ir and

δ
i1...ir
j1...jr

= 0 otherwise.
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4.6 Maxwell’s Equations

We consider the classical Maxwell theory of electrodynamics. This is a relativistic
field theory on Minkowski space (M,η), with the metric η defined in Example 4.5.9.
We use a reduced system of units by setting c = 1 and μ0 = ε0 = 1. We limit our
attention to the vacuum case, that is, we set the magnetic permeability μ and the
relative permittivity ε equal to 1, but we allow for sources.

To start with, let us recall the standard relativistic formulation of Maxwell theory
in a chosen Lorentz14 system15 {xμ} in M . The electromagnetic field is described
by the field strength tensor

fμν =

⎛

⎜⎜⎝

0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0

⎞

⎟⎟⎠ , (4.6.1)

where E = (Ex,Ey,Ez) and B = (Bx,By,Bz) are the electric field and the mag-
netic induction, respectively. In the above system of units, in the vacuum we have
D = E and B = H. Thus, the electrodynamic displacement tensor, built from D and
H, coincides with fμν . The charge density ρ and the current density j constitute the
4-covector of the relativistic current density

jμ = (ρ,−j). (4.6.2)

In these notations, Maxwell’s equations take the form

∂μfνρ + ∂νfρμ + ∂ρfμν = 0, (4.6.3)

∂μf μν = jν. (4.6.4)

Equations (4.6.3) are equivalent to the homogeneous Maxwell equations

curl E + ∂

∂t
B = 0, div B = 0,

and Eqs. (4.6.4) correspond to

curl B − ∂

∂t
E = j, div E = ρ.

The transformation to another Lorentz frame {x′μ} is given by x′μ = Λμ
νx

ν , with
Λ denoting a proper orthochronous Lorentz transformation, that is,

ΛT ηΛ = η, detΛ = 1, Λ0
0 ≥ 1. (4.6.5)

14Named after the Dutch physicist Hendrik Lorentz (1853–1928).
15As usual in the physics literature we use Greek indices here.
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The corresponding transformation laws for the field strength tensor and the current
density are

f ′μν = Λμ
ρΛν

κf ρκ , j ′μ = Λμ
νj

ν.

The transformation law for fμν and jμ is obtained by lowering the indices by ημν .
Now, we pass to a coordinate-free description. For that purpose, we define the

following differential forms on M :

f := 1

2
fμνdxμ ∧ dxν, j := jμdxμ. (4.6.6)

In this notation, Maxwell’s equations (4.6.3) and (4.6.4) take the form

df = 0, (4.6.7)

d∗f = −j, (4.6.8)

with d∗ = ∗d∗ when acting on 2-forms (Exercise 4.6.1).

Remark 4.6.1

1. Applying the Hodge operator to (4.6.8) and using (4.5.7), we obtain d ∗ f =
− ∗ j . Application of the exterior derivative then yields d ∗ j = 0 or

d∗j = 0. (4.6.9)

This is the continuity equation for the current density. It reflects the charge
conservation law. In a Lorentz system, this equation reads ∂μjμ = 0, that is,
∂tρ + div j = 0.

2. Since Minkowski space is contractible, the Poincaré Lemma applies: due to df =
0, there exists a differential 1-form A, called the electromagnetic potential, such
that

f = dA. (4.6.10)

In view of (4.6.6), in a Lorentz system this reads fμν = ∂μAν − ∂νAμ. Since
d2 = 0, the potential A is determined by f up to the differential of a smooth
function, that is, for every λ ∈ C∞(M), the 1-form

A′ = A + dλ (4.6.11)

yield the same field strength f as A. The mapping A �→ A′ is called a gauge
transformation. To fix A, one may impose gauge conditions like the so-called
Lorenz16 gauge,

d∗A = 0, (4.6.12)

16Named after the Danish mathematician and physicist Ludvig Valentin Lorenz (1829–1891).
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which in a Lorentz system reads ∂μAμ = 0. This gauge fixing is not complete,
that is, it does not fix A uniquely. If charges and currents are absent, in addition
we may impose A0 = 0, which then yields the so-called Coulomb gauge:17

div A = 0, (4.6.13)

see Exercise 4.6.3.
3. Let us write down the Maxwell equations in terms of the potential in the Lorenz

gauge. Equation (4.6.7) is trivially fulfilled and (4.6.8) implies

−j = d∗f = d∗dA = (d∗d + dd∗)A = �A.

Thus, we obtain a homogeneous wave equation,

�A = −j. (4.6.14)

4. One can check that f ∧ ∗f and f ∧ f are Lorentz-invariant 4-forms on M . In a
Lorentz frame they read

f ∧ ∗f = 1

2
fμνf

μνdx0 ∧ · · · ∧ dx3 = −(B2 − E2)dx0 ∧ · · · ∧ dx3, (4.6.15)

f ∧ f = 1

2
fμν(∗f )μνdx0 ∧ · · · ∧ dx3 = −(E · B)dx0 ∧ · · · ∧ dx3 (4.6.16)

(Exercise 4.6.4). Since f ∧ f = d(A ∧ dA), the invariant f ∧ f is a total diver-
gence, hence its integral over M vanishes. Consequently, as a natural candidate
for the Lagrange density L of the electromagnetic field there remains f ∧ ∗f . In
the case where charges and currents are absent, we put

L = −1

2
f ∧ ∗f. (4.6.17)

Then, the physical action becomes

S = −1

2

∫

M

f ∧ ∗f = −1

2
(f,f ) (4.6.18)

and Hamilton’s variational principle yields the field equation18 d∗f = 0. Indeed,
denoting the variation by δ, we compute

0 = −δS = (δf,f ) = (δdA,f ) = (dδA,f ) = (δA,d∗f
)
. (4.6.19)

Since this equation must hold for any δA, we conclude d∗f = 0.

17More generally, the Coulomb gauge condition can also be imposed if charges and currents are
present, but A0 cannot be set equal to zero then. Instead, it is determined dynamically.
18The equation df = 0 is of geometric nature, it does not follow from a variational principle.
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5. An electromagnetic field which fulfils

f ∧ f = 0, f ∧ ∗f = 0 (4.6.20)

is called isotropic. Using the complex-valued 2-form F := f − i ∗ f , these two
conditions can be summarized in F ∧ F = 0. By (4.6.15) and (4.6.16), they are
equivalent to

E · B = 0 and E2 − B2 = 0. (4.6.21)

In particular, plane waves are isotropic. Since the conditions (4.6.20) are Lorentz-
invariant, a nonzero isotropic electromagnetic field has the following properties.

– There does not exist a Lorentz system such that E and B are parallel.
– There does not exist a Lorentz system such that E or B vanish separately.

6. The invariant form (4.6.7) and (4.6.8) of the Maxwell equations immediately
generalizes to an arbitrary oriented Lorentzian spacetime manifold, that is, with
a pseudo-Riemannian metric g of signature (+ − − −). Since it is only the
Hodge star operator which is modified, in local coordinates, Eq. (4.6.7) is still
given by (4.6.3). To analyse Eq. (4.6.8), we denote |g| ≡ |det(g)| and use the
identities

gαβgρχgσγ gικεβχγ κ = (det(g)
)−1

εαρσ ι, (4.6.22)

εμνρσ ειαρσ = 2
(
δι
μδα

ν − δα
μδι

ν

)
, (4.6.23)

together with det(g) = (−1)s |det(g)|, to calculate

d∗f = ∗d ∗
(

1

2
fμνdκμ ∧ dκν

)
= − 1√|g|∂μ

(
f μν

√|g|)gνλdκλ, (4.6.24)

(Exercise 4.6.6). Thus, in local coordinates, (4.6.8) reads

1√|g|∂μ

(
f μν

√|g|)= jν. (4.6.25)

7. The gauge transformation given by (4.6.11) exhibits an additional symmetry of
the Maxwell theory, which is obviously not related to a change of the Lorentz
system. Thus, the question arises whether one can give a geometric interpreta-
tion to gauge transformations. Indeed, it turns out that A may be interpreted as
the local representative of a connection form19 ω in a principal U(1)-bundle P

over spacetime. In this picture, the field strength f is the local representative
of the curvature form of ω and Eq. (4.6.7) coincides with the Bianchi identity.
A gauge transformation (4.6.11) may be interpreted either as a vertical automor-
phism of P (active transformation) or as a change of local bundle coordinates

19The mathematical tools needed for understanding the following interpretation will be presented
in detail in part II of this book.
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(passive transformation). In the latter interpretation, Eq. (4.6.11) describes the
change of a reference frame.

Exercises
4.6.1 Prove that the Maxwell equations (4.6.3) and (4.6.4) are equivalent to (4.6.7)

and (4.6.8).
4.6.2 Analyse Formula (4.6.9) in a Lorentz frame.
4.6.3 Prove that in the case where charges and currents are absent, the Coulomb

gauge is complete, cf. Remark 4.6.1/2. In detail, show that
(a) for every 2-form f , there exists a unique 1-form A satisfying A0 = 0,

(4.6.13) and (4.6.10),
(b) for every 1-form A, there exists a smooth function λ such that A′ = A +

dλ satisfies A′0 = 0 and (4.6.13).
4.6.4 Verify Eqs. (4.6.15) and (4.6.16).
4.6.5 Prove the statements of Remark 4.6.1/5.
4.6.6 Prove the identity (4.6.22) (the identity (4.6.23) was already proved in Exer-

cise 4.5.8) and confirm Formula (4.6.24). Write down the continuity equation
for an arbitrary Lorentzian spacetime manifold in local coordinates.

4.7 Pfaffian Systems and Differential Ideals

The notion of Pfaffian system is dual to the notion of distribution as developed in
Sect. 3.5. It plays an important role in the theory of first order partial differential
equations and in many physical applications, notably in thermodynamics and in
mechanical systems with constraints. For an exhaustive presentation of this topic
we refer to [64], Sect. IV.C.

For a subset Δ ⊂ T∗M , let Ω1
Δ(M) denote the set of 1-forms on M with values

in Δ.

Definition 4.7.1 (Pfaffian system) A Pfaffian system on M is a subset Δ of T∗M
such that for all m ∈ M the following holds.

1. Δm := Δ ∩ T∗
mM is a linear subspace.

2. For every β ∈ Δm, there exists α ∈ Ω1
Δ(M) such that αm = β .

The function which assigns to m ∈ M the dimension of Δm is called the rank of Δ.
If the rank is constant, Δ is called regular. Otherwise, it is called singular.

As we did with distributions in Sect. 3.5, we follow the terminology used e.g. in
[181]. Moreover, Remark 3.5.2 about distributions carries over to Pfaffian systems
in an obvious way. In particular, the rank is locally non-decreasing.
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Remark 4.7.2 A Pfaffian system Δ is regular of rank r iff it is an r-dimensional
vertical vector subbundle of T∗M . In this case, it admits local frames built from
local 1-forms on M . Let {ϑ1, . . . , ϑr} be such a local frame over U ⊂ M . If the
local r-form ϑ = ϑ1 ∧ · · · ∧ ϑr is closed, the restriction of Δ to U coincides with
the annihilator of the characteristic distribution of ϑ (Exercise 4.7.1).

Definition 4.7.3 (Integral manifold) Let Δ be a Pfaffian system on M . A connected
submanifold (N,ψ) of M is called an integral manifold of Δ through m ∈ M if
m ∈ ψ(N) and

ψ ′(TpN) = Δ0
ψ(p) (4.7.1)

for all p ∈ N , where Δ0
ψ(p) ⊂ Tψ(p)M denotes the annihilator of Δψ(p). The Pfaf-

fian system Δ is said to be integrable if for every m ∈ M there exists an integral
manifold of Δ through m.

Remark 4.7.4 Assume that Δ is regular, that is, it is a vertical subbundle of T∗M .
Then, its annihilator Δ0 ⊂ TM is a regular distribution and the ranks of Δ and Δ0

add up to the dimension of M . By (4.7.1), a regular Pfaffian system Δ is integrable
iff so is the distribution Δ0. In this case, the integral manifolds of Δ and Δ0 co-
incide. Similarly, if D ⊂ TM is a regular distribution, then the annihilator D0 is a
regular Pfaffian system.

Example 4.7.5

1. Every subset A ⊂ Ω1(M) generates a Pfaffian system Δ, with Δm being defined
as the linear span of the set {αm : α ∈ A}, and every Pfaffian system can be
generated this way.

2. The Pfaffian system on R
2 spanned by the 1-forms dx and xdy is singular, be-

cause it has rank 1 on the y-axis and rank 2 outside. Similarly, the Pfaffian system
spanned by dx and ydy is singular, because it has rank 1 on the x-axis and rank 2
outside. The first system is integrable, with integral manifolds being the y-axis
and the single points outside. In contrast, the second system is not integrable.

Pfaffian systems naturally arise in the theory of partial differential equations.
Consider the first order system

∂yj

∂xi
= f

j
i

(
x1, . . . , xp, y1, . . . , yn−p

)
, 1 ≤ i ≤ p, 1 ≤ j ≤ n − p, (4.7.2)

in the unknowns yj ∈ C∞(Rp), with f
j
i ∈ C∞(Rn). Since the graph of the com-

bined mapping y = (y1, . . . , yn−p) : Rp → R
n−p is a p-dimensional embedded
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submanifold in R
n and since y solves (4.7.2) iff

dyj −
p∑

i=1

f
j
i

(
x1, . . . , xp, y1, . . . , yn−p

)
dxi = 0, 1 ≤ j ≤ n − p, (4.7.3)

solutions of (4.7.2) can be interpreted geometrically as integral manifolds of the
Pfaffian system Δ on R

n, spanned by the 1-forms20

ϑj := dxp+j −
p∑

i=1

f
j
i

(
x1, . . . , xn

)
dxi, 1 ≤ j ≤ n − p.

If the ϑj are linearly independent, Δ is regular. Then, by Remark 4.7.4, Δ is in-
tegrable iff so is the annihilator Δ0 ≡ kerϑ1 ∩ · · · ∩ kerϑn−p . In the special case
p = n − 1, we obtain the following simple solvability criterion.

Proposition 4.7.6 A regular Pfaffian system Δ of rank 1, spanned by ϑ ∈ Ω1(M),
is integrable iff dϑ(X1,X2) = 0 for all X1,X2 ∈XΔ0

(M).

Proof Proposition 4.1.6 implies

dϑ(X1,X2) = −ϑ
([X1,X2]

)
.

Since Δ0 = kerϑ , the Frobenius Theorem 3.5.12 yields the assertion. �

Now, we are going to derive an integrability criterion for regular Pfaffian systems
in the general case. For a Pfaffian system Δ, let Ω∗

Δ(M) denote the subspace of
Ω∗(M) spanned by the forms α ∈ Ωr(M), r ≥ 1, which satisfy αm(X1, . . . ,Xr) = 0
for all X1, . . . ,Xr ∈ Δ0

m and m ∈ M . Ω∗
Δ(M) is a two-sided ideal in the associative

algebra Ω∗(M).

Definition 4.7.7 (Differential ideal) An ideal J ⊂ Ω∗(M) is called a differential
ideal if dJ ⊂ J .

Theorem 4.7.8 (Frobenius Theorem for Pfaffian systems) A regular Pfaffian system
Δ on M is integrable iff Ω∗

Δ(M) is a differential ideal.

Proof By Remark 4.7.4 and the Frobenius Theorem 3.5.12 for regular distributions,
we must show that dΩ∗

Δ(M) ⊂ Ω∗
Δ(M) is a necessary and sufficient condition for

the regular distribution Δ0 to be involutive. That it is necessary follows from Propo-
sition 4.1.6. To see that it is sufficient, let r denote the rank of Δ and let m ∈ M .

20It is common to refer to (4.7.2), rather than to Δ, as a Pfaffian system and to the 1-forms ϑj as
Pfaffian forms.
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Choose ϑ1, . . . , ϑr ∈ Ω1
Δ(M) such that {ϑ1

m, . . . , ϑr
m} is a basis in Δm. According

to Proposition 4.1.6, for X,Y ∈XΔ0
(M),

(
dϑi(X,Y )

)
(m) = −ϑi

m

([X,Y ]m
)
, 1 ≤ i ≤ r.

If dΩ∗
Δ(M) ⊂ Ω∗

Δ(M), the left hand side vanishes, hence [X,Y ]m ∈ Δ0
m. Since m

was arbitrary, it follows that Δ0 is involutive. �

Next, we derive local criteria for a regular Pfaffian system to be integrable. We
need

Lemma 4.7.9 Let Δ be a regular Pfaffian system of rank r on M , let m ∈ M and let
{ϑ1, . . . , ϑr } be a local frame in Δ at m. Then, m admits an open neighbourhood U

with the property that for every k-form α in Ω∗
Δ(M) there exist local (k − 1)-forms

β1, . . . , βr over U such that

α�U =
r∑

j=1

ϑj ∧ βj .

Proof On some neighbourhood U of m, the local frame {ϑ1, . . . , ϑr} in Δ can be
complemented by local 1-forms ϑr+1, . . . , ϑn to a local frame in T∗M at m. Let
{X1, . . . ,Xn} be the dual local frame in TM . Then, {Xr+1, . . . ,Xn} is a local frame
in Δ0. Expand

α�U =
∑

i1<···<ik

αi1...ikϑ
i1 ∧ · · · ∧ ϑik .

Since α ∈ Ω∗
Δ(M), we have that αi1...ik = α�U(Xi1 , . . . ,Xik ) = 0 whenever r < i1.

Hence, α�U =∑r
j=1 ϑj ∧ βj with βj :=∑j<i2<···<ik

αji2...ikϑ
i2 ∧ · · · ∧ ϑik . �

Proposition 4.7.10 Let Δ be a regular Pfaffian system of rank r on M . The follow-
ing statements are equivalent.

1. Δ is integrable.
2. For every m ∈ M , there exist a local frame {ϑ1, . . . , ϑr} in Δ at m and

local 1-forms γ i
j , i, j = 1, . . . , r , such that for all i = 1, . . . , r one has dϑi =

∑r
j=1 ϑj ∧ γ i

j .

3. For every m ∈ M , there exists a local frame {ϑ1, . . . , ϑr} in Δ at m such that for
all i = 1, . . . , r one has dϑi ∧ ϑ1 ∧ · · · ∧ ϑr = 0.

Proof 1 ⇒ 2: Choose a local frame {ϑ1, . . . , ϑr} in Δ over a neighbourhood U of
m. Since Δ is integrable, so is the Pfaffian system ΔU := Δ ∩ (T∗U) on U . Hence,
Theorem 4.7.8 implies dϑi ∈ Ω∗

ΔU
(U). Application of Lemma 4.7.9 to the manifold

U and the Pfaffian system ΔU yields the assertion.
2 ⇒ 1: According to Theorem 4.7.8, it suffices to show that Ω∗

Δ(M) is a differ-
ential ideal. Thus, let α ∈ Ω∗

Δ(M) be of degree k and let m ∈ M . Let {ϑ1, . . . , ϑr}
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be the local frame in Δ over a neighbourhood U of m and let γ i
j , i, j = 1, . . . , r ,

be the local 1-forms over U , existing by assumption. By Lemma 4.7.9, α�U =∑r
i=1 ϑi ∧ βi for appropriate local (k − 1)-forms βi on U . Then,

d(α�U) =
r∑

i,j=1

ϑj ∧ γ i
j ∧ βi −

r∑

i=1

ϑi ∧ dβi

and hence (dα)m(X1, . . . ,Xk) = 0 for all Xi ∈ Δ0
m. Since m was arbitrary, we get

dα ∈ Ω∗
Δ(M).

2 ⇒ 3: This is obvious.
3 ⇒ 2: We may complement the local frame {ϑ1, . . . , ϑr} in Δ by local 1-forms

ϑr+1, . . . , ϑn to a local frame in T∗M at m. Expanding dϑi =∑j<k αi
jkϑ

j ∧ ϑk ,
we obtain

0 =
∑

j<k

αi
jkϑ

j ∧ ϑk ∧ ϑ1 ∧ · · · ∧ ϑr .

It follows that αi
jk = 0 for all r < j . Hence, dϑi = ∑r

j=1 ϑj ∧ γ i
j with γ i

j =
∑

j<k αi
jkϑ

k . �

Example 4.7.11 Let M = R
3 and let Δ be the Pfaffian system spanned by a

nowhere-vanishing 1-form ϑ on M . According to Proposition 4.7.10/3, Δ is in-
tegrable iff dϑ ∧ ϑ = 0. Writing ϑ = ϑidxi , we have

dϑ = (∂1ϑ2 − ∂2ϑ1)dx1 ∧dx2 + (∂2ϑ3 − ∂3ϑ2)dx2 ∧dx3 + (∂3ϑ1 − ∂1ϑ3)dx3 ∧dx1

and dϑ ∧ ϑ = 0 is equivalent to

(∂2ϑ3 − ∂3ϑ2)ϑ1 + (∂3ϑ1 − ∂1ϑ3)ϑ2 + (∂1ϑ2 − ∂2ϑ1)ϑ3 = 0.

Thus, Δ is integrable iff the vector field
∑

i ϑi∂i is perpendicular to its curl.

To conclude this section, we derive an integrability criterion for regular Pfaffian
systems of rank one in terms of so-called integrating factors. Since integrability is a
local property, it is no loss of generality to assume the Pfaffian system to be spanned
by a nowhere-vanishing 1-form.

Definition 4.7.12 Let ϑ ∈ Ω1(M). A nowhere-vanishing function f ∈ C∞(M) is
called an integrating factor for ϑ if the 1-form f ϑ is exact.

Proposition 4.7.13 The Pfaffian system Δ spanned by a single nowhere-vanishing
1-form ϑ on M is integrable iff for every m ∈ M there exists an open neighbourhood
U and an integrating factor f ∈ C∞(U) for ϑ�U . For every g ∈ C∞(U) satisfying
f ϑ�U = dg, the level set components of g are integral manifolds of Δ.
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Proof First, assume that for every m ∈ M there exists an open neighbourhood U

and an integrating factor f ∈ C∞(U) for ϑ�U . Then,

0 = d(f ϑ�U) = df ∧ ϑ�U + f dϑ�U ,

hence dϑ�U = ϑ�U ∧ df
f

, and Proposition 4.7.10/2 yields that Δ is integrable. Con-

versely, if Δ is integrable, so is the regular distribution Δ0 of rank n − 1 on M .
Hence, according to Theorem 3.5.10/4, for every m ∈ M there exists a local chart
(U,κ) at m such that {∂κ

1 , . . . , ∂κ
n−1} is a local frame in Δ0 at m. Then, ϑ = hdκn for

some h ∈ C∞(U). Since ϑ is nowhere-vanishing, so is h. Thus, f := h−1 ∈ C∞(U)

is an integrating factor for ϑ�U .
Next, let g ∈ C∞(U) be such that f ϑ�U = dg and let Σ be a level set component

of g. Since dg = f ϑ�U is nowhere-vanishing, every point of U is regular for g.
Thus, Σ is an embedded submanifold of dimension n − 1 of U (and hence of M).
Let ι : Σ → M denote the natural inclusion mapping. Due to

ι∗ϑ�U = 1

f�Σ
ι∗(f ϑ�U) = 1

f�Σ
ι∗(dg) = 1

f�Σ
d(g�Σ) = 0,

one has TmΣ ⊂ Δ0
m for all m ∈ Σ . By counting dimensions we obtain equality.

Hence, Σ is an integral manifold of Δ. �

Example 4.7.14 (Ideal gas) The concept of integrating factors is important in ther-
modynamics. Let us consider one mol of an ideal gas, described by the variables
V (volume), T (temperature) and p (pressure) which fulfil the thermal equation of
state,

pV = RT . (4.7.4)

Note that (4.7.4) defines a 2-dimensional surface A ⊂R
3, which for example can be

parameterized by the variables (V ,T ) with V > 0 and T > 0. A change of state is
represented by a curve in A and the heat exchange δQ with the environment during
this process is obtained by integrating the 1-form

ϑ = cV dT + p(V,T )dV

along this curve. Thus, an adiabatic change of state, that is, a process for which there
is no heat exchange with the environment, corresponds to an integral manifold of
the Pfaffian system Δ on A defined by ϑ . By Proposition 4.7.10, Δ is integrable,
because dϑ ∧ ϑ = 0 holds trivially on a 2-dimensional manifold. Then, by Proposi-
tion 4.7.13, there exist local integrating factors f for ϑ . To find them, it suffices to
consider the condition d(f ϑ) = 0. This yields

0 = cV

∂f

∂V
dV ∧ dT + ∂f

∂T
pdT ∧ dV + f

∂p

∂T
dT ∧ dV



4.8 Constraints in Classical Mechanics 213

and with (4.7.4) we conclude

cV

∂f

∂V
− RT

V

∂f

∂T
= R

V
f.

Any nowhere-vanishing function f which fulfils this differential equation is an in-
tegrating factor. Let us consider the following examples:

1. f (T ,V ) = V R/cV : a potential g of f ϑ can be obtained by applying the proce-
dure described in Sect. 4.3:

g(T ,V ) = cV

(
T V R/cV − T0V

R/cV

0

)
.

The integral manifolds of the Pfaffian system Δ are given by the level set com-
ponents of g in A,

T V R/cV = const.

2. f (T ,V ) = T −1: the potential g coincides with the entropy

S(T ,V ) = cV ln
T

T0
+ R ln

V

V0
,

and the integral manifolds of Δ provided by this integrating factor correspond to
reversible processes. For the ideal gas, with dU = cV dT , we obtain

dS = cV

T
dT + R

V
dV = 1

T
dU + p

T
dV,

that is,

dU = T dS − pdV.

The integrability of the 1-form ϑ = cV dT + p dV is equivalent to the second
law of thermodynamics or, more precisely, it yields the mathematical foundation
of this law for the ideal gas.

Exercises
4.7.1 Prove the statements of Remark 4.7.2.

4.8 Constraints in Classical Mechanics

The motion of a system of N particles in the configuration space R
3N is often re-

stricted by constraints, that is, in addition to the external forces acting upon the
system there are constraining forces, which ensure that the system evolves in ac-
cordance with the constraints. For simplicity, let us restrict our attention to time-
independent constraints. Let rα denote the position of the α-th particle. There are
two qualitatively different cases.



214 4 Differential Forms

(a) The constraints are defined by a system of equations

f a(r1, . . . , rN) = 0, a = 1, . . . , s, (4.8.1)

where f a : R3N → R are smooth functions which are assumed to be function-
ally independent. Constraints of this type are called holonomic. The Level Set
Theorem 1.2.1 implies that

Q = {(r1, . . . , rN) ∈ R
3N : f a(r1, . . . , rN) = 0

}
(4.8.2)

is a (3N − s)-dimensional embedded submanifold of R3N , called the constraint
manifold or the reduced configuration space of the system. We have

⋂

a

ker
(
df a

)
(r1,...,rN)

= kerf ′
(r1,...,rN ),

where f = (f 1, . . . , f s). Thus, the Pfaffian system generated by the exact 1-
forms df a is integrable and the integral manifolds are the level set components
of f .

(b) The constraints are defined by a system of equations

f a(r1, . . . , rN, ṙ1, . . . , ṙN) = 0, a = 1, . . . , s, (4.8.3)

with f a being smooth functions which depend both on positions and veloci-
ties. Constraints of this type are called nonholonomic. While, in general, the
dependence on the velocities may be nonlinear, in practice one rather meets the
case where this dependence is linear. This is referred to as the case of linear
nonholonomic constraints. Let us confine ourselves to this situation. In general,
there will be both holonomic and genuinely nonholonomic constraints. Let Q

denote the constraint surface defined by the first ones and let q1, . . . , qf be local
coordinates on Q. The remaining constraints read μa

i q̇
i = 0, or

μa = μa
i dqi = 0, a = 1, . . . , s. (4.8.4)

The 1-forms μa generate a Pfaffian system Δ which is not integrable, because
otherwise the constraints would be holonomic. The corresponding distribution
Δ0 is called the constraint distribution. Allowed trajectories t → qi(t) have to
fulfil q̇(t) ∈ Δ0 for all t or, equivalently,

〈
μa
(
q(t)

)
, q̇(t)

〉= 0 (4.8.5)

for all t and a. We conclude that linear nonholonomic constraints are given by
a non-integrable Pfaffian system. This type of constraints does not lead to a
reduction of the configuration space.

Example 4.8.1 We consider a disk of radius R rolling in upright position on a hor-
izontal plane P̄ without gliding. Denote the Cartesian coordinates on P̄ by (x, y).
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At each time t , the disk is located in a plane P(t) which intersects P̄ along a line
l(t) and touches the plane P̄ at a point A(t). Let us denote the Cartesian coordi-
nates of this point by (xA, yA) and let φ be the angle between the line l(t) and the
x-coordinate axis. Then, the position of the disk is completely described by the co-
ordinates (xA, yA,φ,ψ), with ψ denoting the angle of rotation in the plane P(t).
Consequently, the configuration space of the system is Q = R×R× S1 × S1. The
non-gliding condition imposes the following constraints on the system: the infinites-
imal displacement of the touching point is Rdψ and its projections onto the x- and
y-axes are given by dxA = R cos(φ)dψ and dyA = R sin(φ)dψ , respectively. Thus,
we find the velocity-dependent constraints

ẋA = R cos(φ)ψ̇, ẏA = R sin(φ)ψ̇. (4.8.6)

They correspond to the Pfaffian forms

μ1 = dxA − R cos(φ)dψ, μ2 = dyA − R sin(φ)dψ.

According to point 3 of Proposition 4.7.10, this system is not integrable. Thus, we
deal with a genuinely nonholonomic system. This fact is in accordance with our
intuition, which tells us that at any touching point A(t) the intersection line l(t)

may have an arbitrary direction. For a detailed discussion of further examples we
refer to Benenti [39].

Now, let us come back to a system of N particles with masses mα and position
vectors rα which are acted upon by external forces Fα . Assume that this system
is subject to linear nonholonomic constraints defined by 1-forms μa and let Δ be
the Pfaffian system generated by these forms. Let us denote the corresponding con-
straining forces by Zα . Newton’s second law reads

mα r̈α = Fα + Zα, α = 1, . . . ,N. (4.8.7)

There is a fundamental principle, called d’Alembert’s principle, which in geometric
terms21 states that the constraining forces Zα , viewed as 1-forms,22 belong to the
annihilator (Δ0)0 = Δ of the constraint distribution Δ0. Thus, we have

Zα =
∑

a

λaμ
a
α

and the system of Eqs. (4.8.7) takes the form of the so-called Lagrange equations of
the first kind:

mα r̈α = Fα +
∑

a

λaμ
a
α, (4.8.8)

21In mechanics, this principle is usually spelled out by saying that the constraining forces do no
virtual work.
22We identify vectors and covectors on R

3N via the Euclidean metric.
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with the Lagrange multipliers λa to be determined from Eqs. (4.8.5). It sometimes
happens that the external forces are given by a single potential function V which
depends on both positions and velocities:

Fα = − ∂V

∂rα

+ d

dt

(
∂V

∂ ṙα

)
.

In this case, rewriting

mα r̈α = d

dt

(
∂T

∂ ṙα

)

with T (ṙα) = 1
2

∑
α mα ṙ2

α denoting the kinetic energy of the system and defining
the Lagrangian function

L : TR3N → R, L(rα, ṙα) := T (ṙα) − V (rα, ṙα), (4.8.9)

we arrive at the so-called Lagrange equations of the second kind:

d

dt

(
∂L

∂ ṙα

)
− ∂L

∂rα

=
∑

a

λaμ
a
α. (4.8.10)

As already noted, in the case of holonomic constraints, the dynamics reduces to the
constraint submanifold Q given by (4.8.2). Let us choose local coordinates qi with
i = 1, . . . ,3N − s on Q. If we assume that the so-called generalized forces

Fi =
∑

α

Fα · ∂xα

∂qi

possess a potential23 V , the Lagrangian equations of the second kind take the form

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (4.8.11)

where again L = T − V is the Lagrangian function of the system. One can cast the
Lagrangian equations (4.8.10) and (4.8.11) into a coordinate-free form by means of
the symplectic structure on TQ induced from the natural symplectic structure on
T∗Q, see Sect. 9.1.

Finally, we stress that, nowadays, nonholonomic constraints constitute a huge
field of research in mathematical physics. There are at least two important streams
to be mentioned:

(a) nonholonomic systems with symmetries, with the aim of understanding robotics,
trajectory tracking, dynamic stability, feedback stabilization and control. For
this line of research we refer to Koon and Marsden [170], where the reader will

23E.g. if the original external forces possess a potential.
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find a lot of further references. We also recommend the papers of Bates, Cush-
man, Kemppainen and Śniatycki, see [35] and [70], and a paper of Marle [193]
for an introduction to the subject,

(b) efforts to develop a general theory (which for the time being is still lacking)
with mathematical techniques like jets and algebroids. For this line of research
we refer to the paper [147] by Iglesias, Marrero, De Diego and Sosa, where the
reader can find a lot of further references. In this context, we also mention the
classical paper [298] by Vershik and Gershkovich.





Chapter 5
Lie Groups

In this chapter, we give an introduction to the theory of Lie groups. In Sect. 5.1,
we discuss the basic notions and provide the reader with a number of examples. In
particular, we take up the classical groups which have already been introduced in
Sect. 1.2. Next, in Sect. 5.2, we come to the notion of Lie algebra of a Lie group.
We consider a number of examples, again with some emphasis on the Lie algebras
of classical Lie groups. Section 5.3 is devoted to an important tool, the exponential
mapping. This mapping constitutes a link between the Lie group and its Lie algebra
which turns out to be useful both for the study of the local structure of Lie groups
and for the study of their representations. Next, in Sect. 5.4, we discuss a number
of important representations—the adjoint and the coadjoint representations of the
Lie group and the corresponding derived representations of its Lie algebra. Using
the adjoint representation of the Lie algebra, one can construct a natural symmetric
bilinear form on the Lie algebra, the Killing form, which is invariant under the
adjoint representation of the group. Next, in Sect. 5.5, we discuss the concept of
left-invariant forms which in particular yields a unique (up to multiplication by a
number) left-invariant volume form on every Lie group. The latter gives rise to the
so-called Haar measure. We discuss the relation with Ad-invariant scalar products
on the Lie algebra and conclude, in particular, that every compact Lie group admits
a bi-invariant Riemannian metric. The final two sections are devoted to the theory
of Lie subgroups and to homogeneous spaces. Concerning the latter, we discuss
three important examples in detail: Stiefel manifolds, Graßmann manifolds and flag
manifolds.

5.1 Basic Notions and Examples

The notion of Lie group arises naturally by combining the algebraic structure of a
group with the differentiable structure of a smooth manifold and requiring that the
two structures are compatible.

For a group G and elements a, b ∈ G, we denote the product by ab, the unit
element by 1 (or sometimes also be e) and the inverse of a by a−1. The assignment

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-5345-7_5, © Springer Science+Business Media Dordrecht 2013
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a �→ a−1 defines a bijective mapping inv : G → G, called the inversion mapping
of G.

Definition 5.1.1 (Lie group) A Lie group is a set which carries the algebraic struc-
ture of a group and the differentiable structure of a smooth manifold such that the
mapping

G × G → G, (a, b) �→ ab−1 (5.1.1)

is smooth. A homomorphism of Lie groups is a mapping which is both a group
homomorphism and smooth.

Remark 5.1.2

1. The inversion mapping g → g−1 is smooth, because it is the restriction of the
mapping (5.1.1) to the submanifold {1} × G. Moreover, the multiplication map-
ping is smooth, because it can be written as the composition of (5.1.1) with the
inversion mapping. Using the Inverse Mapping Theorem one can show that in
Definition 5.1.1, instead of (5.1.1), it suffices to require that the multiplication
mapping be smooth (Exercise 5.1.1).

2. Notions associated with manifolds, like dimension, compactness, connectedness,
tangent and cotangent bundles etc., carry over to Lie groups in an obvious way.
To some extent, this applies to notions associated with groups, too. For example,
a Lie group is Abelian if so is the underlying group, or the order of an element is
the order of this element of the underlying group. There are exceptions, however,
see Example 5.2.20.

3. Analogously to Definition 5.1.1 one defines the notion of real and complex an-
alytic Lie group by requiring the multiplication mapping to be real or complex
analytic, respectively. It turns out that every Lie group is in fact real analytic.
That is, the differentiable structure of an arbitrary Lie group G contains a unique
real analytic structure [243]. For this reason, it is common in the literature to
define Lie groups to be real analytic manifolds.

Example 5.1.3 (Lie groups)

1. Let K = R,C or H. Every K-vector space V is a Lie group with respect to its
additive structure and the manifold structure of the real vector space obtained
from V by field restriction. The dimension is dimR(K) · dim(V ). Lie groups of
this form are sometimes called vector Lie groups.

2. Every finite or countable group, equipped with the discrete topology and the triv-
ial zero-dimensional manifold structure, is a Lie group. In particular, the cyclic
groups of finite order and the group of integers are Lie groups.

3. Let G1, G2 be Lie groups. The direct product G1 × G2 carries the group struc-
ture of the direct product of the underlying groups, given by the multiplication
mapping (a1, a2)(b1, b2) = (a1b1, a2b2), and the differentiable structure of the
direct product of the underlying manifolds. These two structures combine to a
Lie group structure (Exercise 5.1.2).
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Example 5.1.4 (Classical Lie groups) Let A be a finite-dimensional associative al-
gebra over K = R,C. View A as a real algebra by restricting scalar multiplication
to R. Let G ⊂ A be an initial submanifold which forms a group under the multipli-
cation induced from A. Then, the multiplication mapping of G is the restriction in
domain and range of the multiplication in A. Since the latter is bilinear, it is smooth.
Hence, G is a Lie group. This argument implies that the following groups are Lie
groups.

1. K \ {0} for K =R,C,H, with multiplication induced from K.
2. The unit spheres in K = R,C,H with respect to the natural Hermitian inner

product defined by conjugation and multiplication. They are groups under the
multiplication induced from K and coincide with the classical groups O(1) for
K = R, U(1) for K = C and Sp(1) for K = H, cf. Example 1.2.6. Hence, as
manifolds, these classical groups are diffeomorphic to, respectively, S0, S1 and
S3.1

3. The general linear group GL(n,K), because according to Example 1.1.14 it is
open in Mn(K). The dimension of GL(n,K) is given by the dimension of Mn(K)

over the reals, that is, dimR(K) · n2. For n = 1, this reproduces point 1 above.
By the same argument, the automorphism group GL(V ) of a K-vector space V

with composition of mappings as multiplication is open in the associative algebra
End(V ) and hence a Lie group as well.

4. The classical groups of Example 1.2.6, because each of them can be represented
as a level set of a smooth function on some Mn(K) at a regular value and is hence
an embedded submanifold of the latter.

Example 5.1.5 (Lie group homomorphisms)

1. Let K = R or C. The determinant det : Mn(K) → K restricts to a group homo-
morphism

det : GL(n,K) →K \ {0}. (5.1.2)

The latter is obtained by restriction of an n-linear mapping

Mn(K)× n· · · ×Mn(K) → K

in domain to the submanifold (GL(n,K),Δn), where Δn(a) = (a, . . . , a), and in
range to the open submanifold K \ {0}. Hence, it is smooth and thus a Lie group
homomorphism.

2. Let V , W be vector spaces over K and let ϕ : V → W be an isomorphism. The
mapping GL(V ) → GL(W), defined by a �→ ϕ ◦ a ◦ ϕ−1, is a Lie group isomor-
phism. In particular, if dimV = n, W = K

n and ϕ assigns to v ∈ V its coeffi-
cients with respect to a chosen basis, the above mapping yields an isomorphism

1For the unit spheres of R and C there are simpler arguments ensuring smoothness of the multi-
plication mapping. In the first case, the group is finite and in the second case, in terms of the angle
coordinate, multiplication is given by addition.
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from GL(V ) onto GL(n,K), and this isomorphism assigns to an automorphism
of V its matrix with respect to this basis.

3. A Lie group homomorphism ϕ : R → G is called a one-parameter subgroup.
The image of a one-parameter subgroup is an Abelian subgroup of G. It turns
out that all one-parameter subgroups are integral curves of certain vector fields,
see Remark 5.3.2.

4. By definition of the group and manifold structures on the direct product of Lie
groups G1, G2, the natural projections G1 × G2 → Gi , i = 1,2 are group ho-
momorphisms and smooth. Hence, they are Lie group homomorphisms.

We continue with deriving some basic facts about Lie groups. For that purpose,
note that every a ∈ G induces the following mappings of G:

La(b) := ab, Ra(b) := ba, Ca(b) := La ◦ Ra−1(b) ≡ aba−1. (5.1.3)

They are called, respectively, left translation, right translation2 and conjugation by a.
For all a, b ∈ G we have

La ◦ Lb = Lab, Ra ◦ Rb = Rba, La ◦ Rb = Rb ◦ La. (5.1.4)

Thus, La and Ra are diffeomorphisms with inverse La−1 and Ra−1 , respectively. For
all a, b, c ∈ G, we have Ca(bc) = Ca(b)Ca(c) and Ca ◦ Cb = Cab , that is, Ca is
an automorphism of G for every a, and the assignment a �→ Ca defines a group
homomorphism from G to the group of automorphisms of G. Automorphisms of G

of the form Ca are called inner automorphisms.

Proposition 5.1.6 (Parallelizability) Let G be a Lie group. The mappings

χL, χR : G × T1G → TG, χL(a,X) := L′
aX, χR(a,X) := R′

aX, (5.1.5)

are vertical vector bundle isomorphisms and hence they define global trivializations
of TG. In particular, Lie groups are parallelizable.

Proof Let μ : G × G → G denote the multiplication mapping of G, s0 : G → TG

the zero section and j : T1G → TG the natural inclusion mapping. The mapping χL
is obtained by composing s0 × j : G × T1G → TG × TG with the natural isomor-
phism TG× TG → T(G×G) and the tangent mapping of μ. Hence, χL is smooth.
Since it preserves the fibres, and since it is fibrewise linear and projects to idG, it
is a vector bundle morphism. Since χL is obviously bijective, it is a vertical vector
bundle isomorphism. The argument for χR is completely analogous. �

According to Example 2.4.1, the vertical vector bundle isomorphisms χL and
χR yield dual isomorphisms χT

L , χT
R : T∗G → G × T∗

1G. A brief calculation

2Or left and right multiplication, respectively.
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(Exercise 5.1.3) shows that the inverse isomorphisms (χT
L )−1, (χT

R)−1 : G×T∗
1G →

T∗G are given by

(
χT

L

)−1
(a, η) = η ◦ (La−1)

′
a,

(
χT

R

)−1
(a, η) = η ◦ (Ra−1)

′
a. (5.1.6)

The isomorphisms χ−1
L , χ−1

R and χT
L , χT

R will be referred to as, respectively, the left
and the right trivialization of TG and T∗G.

Proposition 5.1.7 A connected Lie group is generated, as a group, by any neigh-
bourhood of the unit element.

Proof Let U be a neighbourhood of 1 in G. The group generated by U is G̃ :=⋃∞
n=1 Un and we have to show that G̃ = G. Without loss of generality, we may

assume that U is open. Then, G̃ is open, hence G \ G̃ is closed. On the other hand,
since La is a homeomorphism, aG̃ is open for all a ∈ G, hence

G \ G̃ =
⋃

a /∈G̃

aG̃

is open. Since G \ G̃ �= G and since G is connected, this implies G \ G̃ = ∅. This
yields the assertion. �

Remark 5.1.8 (Identity component) The connected component of G containing 1
will be denoted by G0 and will be referred to as the identity component of G. Let
a ∈ G0. Since La−1 is a homeomorphism of G, La−1(G0) is a connected component.
Since it contains 1, it coincides with G0. It follows that a−1b ∈ G0 for all a, b ∈ G0.
Hence, G0 is a subgroup. By a similar argument, one can show that G0 is normal.
Since it is an open submanifold of G, it is a normal Lie group.

Remark 5.1.9 Let G, H be Lie groups and let ϕ : G → H be a group homomor-
phism. Then, for all a ∈ G,

ϕ = Lϕ(a) ◦ ϕ ◦ La−1 . (5.1.7)

Since La−1 and Lϕ(a) are diffeomorphisms of G and H , respectively, we obtain the
following.

1. For a group homomorphism of Lie groups to be a Lie group homomorphism
it suffices to be smooth in some neighbourhood of 1. Indeed, if U is such a
neighbourhood, then (5.1.7) implies ϕ�aU = Lϕ(a) ◦ ϕ�U ◦ (La−1)�aU .

2. For a Lie group homomorphism to be an immersion or a submersion it suffices
to be an immersion or a submersion at 1. Indeed, differentiation of (5.1.7) at
a ∈ G yields ϕ′

a = (Lϕ(a))
′
1H

◦ ϕ′
1G

◦ (La−1)′a and the statement follows, because
(La−1)′a and (Lϕ(a))

′
1H

are bijective.

To conclude this section, we discuss a couple of specific homomorphisms of
some classical Lie groups which are of particular relevance for physics.
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Example 5.1.10 (Isomorphism of SU(2) and Sp(1)) From Example 1.2.6, we recall
that

SU(2) = {a ∈ GL(2,C) : a† = a−1,det(a) = 1
}
,

Sp(1) = {a ∈ H : ‖a‖ = 1
}
.

According to Remark 1.1.13, the mapping H → M2(C), given by

a = a01 + a1i + a2j + a3k �→
[

a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

]
, (5.1.8)

where a0, . . . , a3 are real numbers, is an injective homomorphism of real algebras
from H to M2(C). One can check that the image of Sp(1) under this homomorphism
coincides with SU(2) (Exercise 5.1.4). Hence, by restriction, (5.1.8) induces a group
isomorphism from Sp(1) onto SU(2) which by Proposition 1.6.10 is smooth in both
directions and hence a Lie group isomorphism. Since Sp(1) coincides with the unit
sphere in H, this shows in particular that SU(2) is diffeomorphic to the sphere S3.

Example 5.1.11 (Universal coverings of SO(3) and SO(4)) Consider the isometric
isomorphism of real vector spaces

λ :R4 → H, λ(x) := x01 + x1i + x2j + x3k. (5.1.9)

Every pair of quaternions (a,b) defines a real linear mapping H → H by q �→ aqb
and hence a linear mapping φ(a,b) of R4 by

φ(a,b)x := λ−1(aλ(x)b
)

for all x ∈ R
4. (5.1.10)

By assigning φ(a,b) to (a,b) one obtains a mapping φ : H ⊕ H → M4(R), where
H ⊕ H denotes the direct product of algebras with multiplication defined as usual
by (a1,b1)(a2,b2) := (a1a2,b1b2). The mapping φ is a homomorphism of real
algebras and, hence, it is in particular smooth.

First, consider φ(a,a) for a ∈ Sp(1). Due to ‖a‖2 = 1, φ(a,a) is orthogonal.
Since it leaves invariant the subspace R × {0} ⊂ R

4, it also leaves invariant the
subspace {0} × R

3 ⊂ R
4. Hence, restriction of φ in domain to the submanifold

{(a,a) : a ∈ Sp(1)} of H⊕H and in range to the embedded submanifold of M4(R)

consisting of the matrices
[

1 0
0 c

]
, c ∈ O(3),

yields a Lie group homomorphism (denoted by the same symbol) φ : Sp(1) → O(3).
The defining equation (5.1.10) reduces to

φ(a)x := λ−1(a(x1i + x2j + x3k)a
)

for all x ∈R
3. (5.1.11)

For a = a01 + a1i + a2j + a3k, an explicit calculation yields
[
φ(a)

]
ij

= (a2
0 − a2

1 − a2
2 − a2

3

)
δij + 2(aiaj − a0εijkak). (5.1.12)
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We determine the kernel and the image of φ. According to (5.1.11), a ∈ ker(φ)

iff a commutes with all quaternions. Then a = a1, a ∈ R, hence ker(φ) = {±1},
the centre of Sp(1). To find im(φ), one first shows that φ is an immersion (Exer-
cise 5.1.5). Then, since Sp(1) and SO(3) have the same dimension, φ is a submer-
sion and hence, by Remark 1.5.16, an open mapping. See Exercise 5.1.6 for an alter-
native argument proving openness. It follows that im(φ) contains a neighbourhood
of 1 in O(3). Since im(φ) is a subgroup, Proposition 5.1.7 implies that it contains
the identity component SO(3) of O(3). Since Sp(1) is connected, we finally obtain
im(φ) = SO(3).

Note that since Sp(1) coincides with the unit sphere in H and since ker(φ) =
{±1} implies that the preimage of an element of SO(3) under φ consists of antipodal
points, φ induces a bijection from the projective space RP3 onto SO(3). Since both
φ and the projection S3 → RP3 are submersions, Remark 1.5.16 yields that this
bijection is in fact a diffeomorphism.3

Next, consider φ(a,b) for a,b ∈ Sp(1). Due to ‖a‖2 = ‖b‖2 = 1, φ(a,b) is or-
thogonal. Hence, by restriction in domain and range, φ induces a Lie group ho-
momorphism (again denoted by the same symbol) φ : Sp(1) × Sp(1) → O(4) with
defining equation (5.1.10). Arguing as before one finds ker(φ) = {(1,1), (−1,−1)}
and im(φ) = SO(4) (Exercise 5.1.7).

Let us add that via the algebra homomorphism (5.1.8), all of the above has an
equivalent formulation in terms of two-dimensional complex matrices. This formu-
lation is obtained by replacing Sp(1) by SU(2), H by the real vector space spanned
by 12 and the traceless skew-Hermitian matrices, equipped with the scalar product
〈A,B〉 = 1

2 tr(A†B), and the subspace of H spanned by i, j and k by the subspace
of traceless skew-Hermitian matrices.

Remark 5.1.12 It remains to explain why this example runs under the name of
universal covering. Let G and G̃ denote either SO(3) and Sp(1) or SO(4) and
Sp(1) × Sp(1). Since φ : G̃ → G is both an immersion and a submersion, by the
Inverse Mapping Theorem, it is a local diffeomorphism. Since the preimages of
points of G consist of two points in G̃, φ is a two-fold covering of G. Since G̃, as
(a product of two copies of) a 3-sphere, is simply connected, it follows by covering
theory that φ is universal in the sense that for any covering ψ : H → G there exists
a covering ψ̃ : G̃ → H such that ψ ◦ ψ̃ = φ. If ψ is in addition a Lie group ho-
momorphism, then so is ψ̃ . Thus, φ is universal among the coverings of G by Lie
group homomorphisms. It is, therefore, referred to as the universal covering homo-
morphism of G, and G̃ as the universal covering group of G. The universal covering
plays a crucial role in the representation theory of Lie groups, one of the reasons be-
ing that the set of representations of G̃ contains the set of representations of G as a
subset, see Exercise 5.1.8.

3The relation between SO(3) and RP3 can be made still more explicit by characterizing rotations
by an axis and by an angle of rotation about this axis between 0 and π . We encourage the reader
to verify that this yields an identification of SO(3) with the closed ball of radius π in R

3 with
antipodal points on the boundary identified.
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Example 5.1.13 (Universal covering of SO(3,1)0) The construction is essentially
analogous to that for SO(3) and SO(4). Details are left to the reader as Exer-
cise 5.1.7. Let S2(C) denote the real vector space of two-dimensional complex Her-
mitian matrices. The mapping

λ : R4 → S2(C), λ(x) :=
[

x0 + x1 −ix2 + x3
ix2 + x3 x0 − x1

]
,

is an isomorphism of real vector spaces. It is isometric with respect to the quadratic
forms x �→ x2

0 − x2
1 − x2

2 − x2
3 on R

4 and A �→ det(A) on S2(C). For every a ∈
M2(C), the assignment A �→ aAa† defines a linear mapping of S2(C) and hence a
linear mapping φ(a) of R4 by

φ(a)x := λ−1(aλ(x)a†).

The assignment a �→ φ(a), in turn, defines a mapping φ : M2(C) → M4(R). This
mapping is real homogeneous of degree two, hence smooth, and satisfies φ(ab) =
φ(a)φ(b). Since for every a ∈ SL(2,C) we have det(aAa†) = det(A), φ restricts to
a Lie group homomorphism (denoted by the same symbol) φ : SL(2,C) → O(3,1).
By similar arguments as in Example 5.1.11 one finds ker(φ) = {±1} (the centre
of SL(2,C)), im(φ) = SO(3,1)0 (the identity component of SO(3,1))4 and that φ

is a covering homomorphism. To prove that it is universal one has to check that
SL(2,C) is simply connected. To see this, one may use that polar decomposition
yields a diffeomorphism U(2) × S2(C) → GL(2,C), given by (a,A) �→ aeA, see
Exercise 5.1.9. Restriction of this diffeomorphism to the submanifold SU(2) of U(2)

times the subspace of traceless elements of S2(C) induces a diffeomorphism S3 ×
R

3 → SL(2,C). Hence, φ is the universal covering homomorphism and SL(2,C) is
the universal covering group of SO(3,1)0.

Let us add that under the isomorphism between Hermitian matrices and skew-
Hermitian matrices given by multiplication by i, the restriction of φ to the subgroup
SU(2) ⊂ SL(2,C) reproduces the Lie group homomorphism Sp(1) → SO(3) of Ex-
ample 5.1.11, transported to M2(C) according to the remarks made there.

Exercises
5.1.1 Use the Inverse Mapping Theorem to show that in Definition 5.1.1 it suffices

to require that the multiplication mapping be smooth.
5.1.2 Prove that the direct product of Lie groups as defined in Example 5.1.3/3 is a

Lie group.
5.1.3 Verify that the mapping (5.1.6) is the inverse of the dual of the vector bundle

isomorphism (5.1.5).
5.1.4 Show that the image of Sp(1) under the mapping (5.1.8) coincides with

SU(2).

4In physics, the elements of SO(3,1)0 are referred to as proper orthochronous Lorentz transforma-
tions.
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5.1.5 Prove that the mapping φ of Example 5.1.11 is an immersion.
5.1.6 Show that {R ∈ SO(3) : tr(R) �= −1} is a dense subset whose elements fulfil

R = φ(a), with

a = (1 + tr(R))1 + (R23 − R32)i + (R31 − R13)j + (R12 − R21)k

2
√

1 + tr(R)
∈ Sp(1).

Use this to prove that the Lie group homomorphism φ : Sp(1) → O(3) of
Example 5.1.11 is an open mapping.
Hint. Write the defining equation for R = φ(a) in the form

∑3
l=1 Rklτl =

aτka, where τ1 = i, τ2 = j, and τ3 = k and use the relation
∑3

l=1 τlqτl =
q − 4q01 for all q ∈ H.

5.1.7 This exercise complements Examples 5.1.11 and 5.1.13.
(a) Prove (5.1.12). Use this formula to compute φ(cos α

2 1 + sin α
2 q) for q =

i, j,k.
(b) Fill in the details for the universal covering homomorphisms of Exam-

ples 5.1.11 and 5.1.13.
5.1.8 Let G, G̃ and H be Lie groups and let φ : G̃ → G be a covering homomor-

phism, see Remark 5.1.12. Show that Lie group homomorphisms ψ : G → H

correspond bijectively to Lie group homomorphisms ψ̃ : G̃ → H satisfying
ker(φ) ⊂ ker(ψ̃). (This applies in particular to representations, i.e., Lie group
homomorphisms G → GL(V ), where V is some K-vector space.)

5.1.9 Show that the mappings U(n) × Sn(C) → GL(n,C) and O(n) × Sn(R) →
GL(n,R), given by (a,A) �→ aeA, are diffeomorphisms. (The inverse map-
pings are referred to as polar decomposition of GL(n,C) and GL(n,R), re-
spectively.)
Hint. Show that a and A can be reconstructed from b = aeA by means of

the formulae A = ln
√

b†b and a = b
√

b†b
−1

. Moreover, prove that the as-
signment of (a,A) to b is smooth. The square root

√
b†b is defined by the

condition that it acts on the eigenspaces of b†b as multiplication by the posi-
tive square root of the corresponding eigenvalue of b†b.

5.2 The Lie Algebra of a Lie Group

In this section, we will construct the Lie algebra associated with a Lie group. For
the notion of Lie algebra and Lie algebra homomorphism, see Definition 3.1.2. Let
a Lie group G be given.

Definition 5.2.1 (Left-invariant vector fields) A vector field X on G is called left-
invariant if La∗X = X for all a ∈ G.

Written pointwise, the defining condition reads L′
aXb = Xab for all a, b ∈ G.

Due to (5.1.4), it is equivalent to

Xa = L′
aX1 for all a ∈ G. (5.2.1)
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Proposition 5.2.2 The left-invariant vector fields on G form a Lie subalgebra
of X(G).

Proof This follows from the linearity of the transport operator and Proposi-
tion 3.1.5/4. �

Definition 5.2.3 The Lie subalgebra of X(G) of left-invariant vector fields is called
the Lie algebra of G.

In the following, we will write g for the Lie algebra of G and X,Y, . . . for its
elements.5

Proposition 5.2.4 The mapping g → T1G, defined by X �→ X1, is an isomorphism
of real vector spaces.

Proof The mapping is linear. Due to (5.2.1), it is injective. To see that it is surjec-
tive, let X1 ∈ T1G and let χL denote the left trivialization of TG, see (5.1.5). The
mapping G → TG, defined by a �→ χL(a,X1), is a left-invariant vector field which
takes the value X1 at 1. �

Remark 5.2.5

1. Combining the natural isomorphism g → T1G with the identical mapping of G

and composing this with the left and right trivializations (5.1.5) of TG, one can
express these trivializations in terms of left-invariant vector fields:

χL, χR : G × g → TG, χL(a,X) = Xa, χR(a,X) = C′
a−1Xa. (5.2.2)

2. The proofs of the following statements are left to the reader (Exercise 5.2.1). Let
g be a Lie algebra over K and let {e1, . . . , en} be a basis of g. Expansion of the
commutators of the basis elements,

[ei, ej ] = ck
ij ek, i, j = 1, . . . , n,

(summation convention) yields n3 elements ck
ij of K, called the structure con-

stants of g relative to the given basis. In terms of the structure constants, the
defining properties of a Lie algebra, cf. Definition 3.1.2, read as follows.

Anticommutativity: ck
ij + ck

ji = 0 for all i, j, k = 1, . . . , n.

Jacobi identity: ck
ij c

m
kl + ck

jlc
m
ki + ck

lic
m
kj = 0 for all i, j, l,m = 1, . . . , n.

Conversely, every system ck
ij of elements of K with these properties defines a Lie

algebra. If g and h are Lie algebras over K and if one can find a basis in g and

5Starting from the next chapter, we will preferably write A,B, . . . for the elements of the Lie
algebra of a Lie group, because we will often deal with situations where further vector fields occur.
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a basis in h such that the structure constants of g and h relative to these bases
coincide, the assignment of the appropriate basis vectors to one another defines
a Lie algebra isomorphism between g and h.

Example 5.2.6 (Classical Lie groups) Let V be a finite-dimensional K-vector space
and let G ⊂ End(V ) be a classical Lie group. Let g be the Lie algebra of G. We de-
termine the smooth mappings X : G → End(V ) which correspond to the elements
of g under the natural representation of vector fields on G of Remark 2.7.15. Ac-
cording to Proposition 3.2.13/3, left-invariance implies

ΦX
t (a) = ΦX

t ◦ La(1) = La ◦ ΦX
t (1) = aΦX

t (1)

and hence

X(a) = d

dt �0

ΦX
t (a) = d

dt �0

aΦX
t (1) = aX(1).

Hence, the elements of g are represented by the mappings

XA : G → End(V ), XA(a) = aA (5.2.3)

with A ∈ T1G ⊂ End(V ). Via this representation of g, the assignment A �→ XA co-
incides with the inverse of the natural isomorphism of Proposition 5.2.4. We com-
pute the commutator in g in terms of the mappings XA. Since the equation for the
integral curves of XA is γ̇ (t) = γ (t)A, the flow of XA is given by

ΦXA

t (a) = aetA, a ∈ G. (5.2.4)

Using (3.1.4), for A,B ∈ T1G and a ∈ G we obtain

[
XA,XB

]
(a) = a[A,B].

This yields
[
XA,XB

]= X[A,B] for all A,B ∈ T1G. (5.2.5)

Evaluation of (5.2.5) at a = 1 shows that, in particular, T1G is closed under the
commutator of endomorphisms. Let gl(V ) denote the real vector space underly-
ing End(V ), equipped with the commutator of endomorphisms as a multiplication.
Then, gl(V ) is a real Lie algebra, T1G is a Lie subalgebra and (5.2.5) means that
the natural isomorphism T1G → g of Proposition 5.2.4 is an isomorphism of Lie
algebras. Henceforth, we will identify g with the Lie subalgebra T1G of gl(V ). To
conclude, we take V = K

n and list the subspaces T1G = ker(f ′
1) of gl(n,K) for

the classical groups of Example 1.2.6.6 Computations are left to the reader (Exer-

6Several of these Lie algebras are in addition, and more naturally, complex Lie algebras, notably
gl(n,C) itself and sl(n,C). This corresponds to the fact that the respective classical Lie groups are
in addition, and again more naturally, complex analytic Lie groups.
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cise 5.2.2). In the following, K =R or C.

sl(n,K) = {A ∈ Mn(K) : trA = 0
}
,

o(n,m) = so(n,m) = {A ∈ Mn+m(R) : 1n,mA + AT 1n,m = 0
}
,

o(n,C) = so(n,C) = {A ∈ Mn(C) : A + AT = 0
}
,

u(n,m) = {A ∈ Mn+m(C) : 1n,mA + A†1n,m = 0
}
,

su(n,m) = {A ∈ Mn+m(C) : 1n,mA + A†1n,m = 0, trA = 0
}
,

sp(n,K) = {A ∈ M2n(K) : AT Jn + JnA = 0
}
,

sp(n,m) = {A ∈ Mn+m(H) : 1n,mA + A†1n,m = 0
}
.

Remark 5.2.7 The vector field XA of Example 5.2.6 is the restriction to G of
the linear vector field on End(V ) which is generated by the linear mapping RA :
End(V ) → End(V ), RA(B) := BA. According to Example 3.2.8, the flow of this
vector field is given by the family of vector space automorphisms etRA of End(V ),
where t ∈ R. A brief computation shows etRA(B) = BetA for all B ∈ End(V ). For
B = a, this reproduces (5.2.4).

Example 5.2.8 From Example 5.2.6 we read off that the Lie algebras sp(1), su(2)

and so(3) are spanned, respectively, by the bases

IH1 = 1

2
i, IH2 = 1

2
j, IH3 = 1

2
k,

IC1 = 1

2

[
i 0
0 −i

]
, IC2 = 1

2

[
0 1

−1 0

]
, IC3 = 1

2

[
0 i
i 0

]
,

IR1 =
⎡

⎣
0 1 0

−1 0 0
0 0 0

⎤

⎦ , IR2 =
⎡

⎣
0 0 −1
0 0 0
1 0 0

⎤

⎦ , IR3 =
⎡

⎣
0 0 0
0 0 1
0 −1 0

⎤

⎦ .

Since these bases satisfy

[
IKi , IKj

]= εij
kIKk , K =R,C,H,

they define isomorphisms between these Lie algebras. In addition, since the vector
product in R

3 is given by

ei × ej = εij
kek,

these isomorphisms relate the respective Lie bracket to the vector product in R
3.

Thus, the Lie algebras sp(1), su(2) and so(3) are isomorphic to one another and to
the Lie algebra (R3,×). In particular, for further use we note the explicit form of
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this isomorphism for so(3),

ϕ : R3 → so(3), x �→ ϕ(x) :=
⎡

⎣
0 x1 −x2

−x1 0 x3

x2 −x3 0

⎤

⎦ . (5.2.6)

Then,

ϕ(x × y) = [ϕ(x), ϕ(y)
]
, x · y = − tr

(
ϕ(x)ϕ(y)

)
. (5.2.7)

Remark 5.2.9 We comment on the proof of the parallelizability of the spheres S1

and S3, cf. Proposition 2.3.17. Identifying S1 with U(1) and TU(1) with a submani-
fold of U(1) ×C, the Lie algebra u(1) ≡ T1U(1) corresponds to the imaginary axis
and the vector field used in the proof of the parallelizability of S1 is the left-invariant
vector field generated by the complex imaginary unit i. Similarly, S3 = Sp(1) and
the vector fields used in the proof of the parallelizability of S3 are the left-invariant
vector fields generated by the quaternionic imaginary units i, j and k.

Example 5.2.10 (Vector groups) Let V be a K-vector space, viewed as a Lie group.
A computation analogous to that for the general linear group of Example 5.2.6
yields that, via the natural representation of vector fields on V by smooth map-
pings V → V , left-invariant vector fields correspond to constant mappings and that
the commutator is trivial (Exercise 5.2.4). Hence, via this representation, the natural
isomorphism of Proposition 5.2.4 identifies the Lie algebra of V with the real Lie
algebra whose underlying vector space is obtained from V by field restriction and
whose multiplication is trivial.

Example 5.2.11 (Discrete groups) Let G be a discrete Lie group. Since the manifold
structure of G has dimension zero, the tangent bundle has dimension zero as well.
Hence, the only vector field is the zero section, which is obviously left-invariant.
Thus, the Lie algebra of G is given by {0} with the obvious multiplication.

Next, we show that every homomorphism of Lie groups induces a homomor-
phism of the associated Lie algebras. Let G and H be Lie groups with Lie algebras
g and h, respectively, and let ϕ : G → H be a Lie group homomorphism. Due to
ϕ(1) = 1, ϕ′ maps T1G to T1H . Hence, composition with the natural vector space
isomorphisms g → T1G and h → T1H of Proposition 5.2.4 yields a linear mapping
dϕ : g → h, given by

(
dϕ(X)

)
b
:= L′

b ◦ ϕ′(X1) for all b ∈ H. (5.2.8)

Remark 5.2.12 Since ϕ′Xa = ϕ′ ◦ L′
a(X1) = L′

ϕ(a) ◦ϕ′(X1) = (dϕ(X))ϕ(a), the im-
age dϕ(X) is the unique left-invariant vector field on H which is ϕ-related to X.

Proposition 5.2.13 The mapping dϕ is a homomorphism of Lie algebras.
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The mapping dϕ is called the homomorphism of Lie algebras induced by ϕ.

Proof Let X,Y ∈ g. Since dϕ(X) and dϕ(Y ) are ϕ-related to X and Y , respec-
tively, Proposition 3.1.5/2 yields that [dϕ(X),dϕ(Y )] is ϕ-related to [X,Y ]. Since
[dϕ(X),dϕ(Y )] is left-invariant, Remark 5.2.12 implies

[
dϕ(X),dϕ(Y )

]= dϕ
([X,Y ]). �

Remark 5.2.14

1. For Lie group homomorphisms ϕ : G → H and ψ : H → K we have

d(ψ ◦ ϕ) = dψ ◦ dϕ, d idG = idg. (5.2.9)

2. If ϕ is an isomorphism, dϕ is bijective and hence an isomorphism of Lie algebras.
Moreover, since dϕ(X) is ϕ-related to X, then dϕ(X) = ϕ∗X for all X ∈ g.

Example 5.2.15 (Classical Lie groups) Let G and H be classical Lie groups. Un-
der the natural identification of the Lie algebras of the classical Lie groups with
Lie subalgebras of gl(V ) for appropriate K-vector spaces V , see Example 5.2.6,
the induced homomorphism dϕ : g → h coincides with the tangent mapping ϕ′

1. In
particular, this implies that the latter respects the commutator of vector space endo-
morphisms. This way, for the Lie group homomorphisms of Sect. 5.1 one obtains
the following induced homomorphisms (Exercise 5.2.5).

1. For the natural inclusion mapping j : G → GL(V ), the induced homomorphism
dj is given by the natural inclusion mapping g → gl(V ).

2. For the matrix representation GL(V ) → GL(n,K) associated with a basis in V ,
the induced homomorphism gl(V ) → gl(n,K) is given by the corresponding
matrix representation of endomorphisms.

3. For the determinant homomorphism det : GL(n,K) →K \ {0}, where K =R,C,
the induced homomorphism d det : gl(n,K) → K is given by the trace,

d det = tr . (5.2.10)

4. The Lie algebra isomorphism sp(1) → su(2) induced by the Lie group isomor-
phism Sp(1) → SU(2) of Example 5.1.10 coincides with the isomorphism de-
fined in Example 5.2.8 in terms of bases.

5. For the covering homomorphisms Sp(1) → SO(3), Sp(1) × Sp(1) → SO(4) of
Example 5.1.11 and SL(2,C) → SO(3,1)0 of Example 5.1.13, the induced ho-
momorphisms are bijective and hence isomorphisms. For the first one, the in-
duced isomorphism coincides with the isomorphism of Example 5.2.8. For the
second one, under the identification R

4 ∼= H of Example 5.1.11, we find that the
induced isomorphism is given by

dϕ(A,B)q = Aq − qB, A,B ∈ sp(1), q ∈H. (5.2.11)
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Example 5.2.16 (Direct product) Let G1 and G2 be Lie groups with Lie alge-
bras g1 and g2, respectively. The Lie algebra of the direct product of Lie groups
G = G1 × G2 is isomorphic to the direct product of Lie algebras g1 ⊕ g2 with mul-
tiplication

[
(X1,X2), (Y1, Y2)

]= ([X1, Y1], [X2, Y2]
)
, Xi, Yi ∈ gi .

Under this identification, for a pair of Lie group homomorphisms ϕi : Gi → Hi ,
i = 1,2, we have

d(ϕ1 × ϕ2) = dϕ1 ⊕ dϕ2. (5.2.12)

Proofs are left to the reader (Exercise 5.2.7).

Example 5.2.17 (Vector groups) Let V and W be K-vector spaces, viewed as Lie
groups, and let ϕ : V → W be a Lie group homomorphism. Then, ϕ is continuous
and additive. Since every continuous additive mapping of real vector spaces is in
fact linear (Exercise 5.2.6), ϕ induces a linear mapping of the real vector spaces
underlying V and W . Under the identification of the Lie algebras of V and W with
these real vector spaces, dϕ coincides with ϕ.

Remark 5.2.18 There exist several isomorphisms between the classical Lie algebras
in low dimensions. The isomorphism between SU(2) and Sp(1) of Example 5.1.10
and the covering homomorphisms of Examples 5.1.11 and 5.1.13 yield

so(3) ∼= su(2) ∼= sp(1), so(4) ∼= su(2) ⊕ su(2), so(3,1) ∼= sl(2,C),

cf. Examples 5.2.15/4 and 5.2.15/5. Analogously to the first two isomorphisms one
constructs isomorphisms

so(3,C) ∼= sl(2,C), so(4,C) ∼= sl(2,C) ⊕ sl(2,C),

respectively. To prove the latter, for example, one uses the isomorphism

F : C4 → End
(
C

2), F (z) :=
[

z0 + iz1 z2 + iz3
−z2 + iz3 z0 − iz1

]
,

and considers the mapping

ϕ : SL(2,C) × SL(2,C) → M4(C), ϕ(a, b)z := F−1(aF(z)b−1).

Using that detF(z) is a non-degenerate quadratic form on C
4, one shows that ϕ

is the universal covering homomorphism of SO(4,C). Then, the induced Lie alge-
bra homomorphism yields the desired isomorphism. Alternatively, this isomorphism
follows by complexification of the isomorphism so(4) ∼= su(2) ⊕ su(2). By similar
arguments [291], one obtains
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so(2,1) ∼= su(1,1) ∼= sl(2,R),

so(2,2) ∼= sl(4,R) ∼= sl(2,R) ⊕ sl(2,R),

so(5) ∼= sp(2),

so(6) ∼= su(4),

so(6,C) ∼= sl(4,C),

so(2,4) ∼= su(2,2).

For occasional further use, we state the definitions of the following special types
of Lie algebras and Lie groups [127, 145, 149]. Recall that an ideal in a Lie algebra
g is a linear subspace i such that [i,g] ⊂ i.

Definition 5.2.19 A Lie algebra g is called

1. simple if it is not Abelian and if it does not contain a nontrivial ideal,
2. semisimple if it does not contain a nonzero Abelian ideal,
3. solvable if for some n, the subspace g(n), defined recursively by g(k+1) =

[g(k),g(k)] and g(0) = g, satisfies g(n) = {0},
4. nilpotent if for some n, the subspace g(n), defined recursively by g(k+1) =

[g,g(k)] and g(0) = g, satisfies g(n) = {0}.
A Lie group G is called, respectively, simple, semisimple, solvable or nilpotent if
its Lie algebra is simple, semisimple, solvable or nilpotent.

Since ideals of g are in particular Lie algebras, these notions apply to them as
well. Using the Jacobi identity, by induction on n one can show that the subspaces
g(n) and g(n) are ideals of g. It follows that every nonzero solvable or nilpotent ideal
contains a nonzero Abelian ideal. Hence, a Lie algebra is semisimple iff it does not
have nonzero solvable ideals, or iff it does not have nonzero nilpotent ideals.

Example 5.2.20 The classical Lie groups SL(n,K) for n ≥ 2, SU(n) for n ≥ 2,
SO(n) for n �= 1,2,4 and Sp(n) for n ≥ 1 are simple. Note that, except for SO(n)

with n odd, none of these groups is simple in the sense of ordinary group theory,
because each of them has a nontrivial centre and hence possesses a nontrivial normal
subgroup. According to Remark 5.2.18, SO(4) is semisimple but not simple. The
subgroup of GL(n,K) of upper triangular matrices is solvable. The subgroup of
GL(n,K) of strictly upper triangular matrices is nilpotent. Finally, for n ≥ 2, as Lie
algebras

gl(n,K) ∼=K⊕ sl(n,K), u(n) ∼= iR⊕ su(n),

where K and iR carry the trivial multiplication. Hence, GL(n,K) and U(n) are
neither semisimple nor solvable or nilpotent. Proofs are left to the reader (Exer-
cise 5.2.8).

We conclude this section with a remark on right-invariant vector fields.
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Remark 5.2.21 Similarly to left-invariant vector fields, by the condition Ra∗X = X,
one defines right-invariant vector fields on G and shows the following (Exer-
cise 5.2.9).

1. Equivalent conditions for a vector field X to be right-invariant are R′
aXb = Xba

for all a, b ∈ G and Xa = R′
aX1 for all a ∈ G.

2. The right-invariant vector fields on G form a Lie subalgebra of X(G). The as-
signment X �→ X1 defines an isomorphism of real vector spaces from this sub-
algebra onto T1G. Via this isomorphism, the left and right trivializations of TG

can be expressed in terms of right-invariant vector fields by

χL(a,X) = C′
aXa, χR(a,X) = Xa. (5.2.13)

3. Let inv : G → G be the inversion mapping. Since La ◦ inv = inv ◦Ra−1 and
inv′

1 = −idT1G, the negative of the transport operator inv∗ maps the left and
right-invariant vector fields which share the same value at 1 onto one another.
Thus, −inv∗ defines an anti-isomorphism between the Lie subalgebras of left-
invariant and right-invariant vector fields.

4. If G is a classical Lie group contained in End(V ), right-invariant vector fields on
G correspond to mappings a �→ AX(a) = Aa with A ∈ End(V ). One can check
that AX = − inv∗ XA. This implies [AX,BX] = [B,A].

Exercises
5.2.1 Prove the statements of Remark 5.2.5/2.
5.2.2 For the classical Lie groups H ⊂ Mn(K) of Example 1.2.6, determine the sub-

spaces T1H ⊂ Mn(K). By a direct computation, check that these subspaces
are Lie subalgebras. Compare your result with the list of classical Lie algebras
in Example 5.2.6.

5.2.3 Construct bases for the classical Lie algebras of Example 5.2.6 and determine
the corresponding structure constants.

5.2.4 Carry out the computations necessary for Example 5.2.10.
5.2.5 Complete Example 5.2.15 by computing the induced homomorphisms of Lie

algebras for the Lie group homomorphisms of Sect. 5.1 involving classical
Lie groups.

5.2.6 Show that every continuous additive mapping of real vector spaces is linear.
Hint. Use that additivity implies linearity over the rationals.

5.2.7 Prove the assertions of Example 5.2.16.
5.2.8 Prove the assertions of Example 5.2.20.
5.2.9 Verify the properties of right-invariant vector fields stated in Remark 5.2.21.

5.3 The Exponential Mapping

In this section, we will construct the exponential mapping associated with a Lie
group. Via this mapping, the algebraic structure of the Lie algebra encodes the local
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structure of the Lie group. This way, a considerable part of the theory of Lie groups
can be reduced to the study of Lie algebras. Let G be a Lie group and let g be the
Lie algebra of G.

Proposition 5.3.1 Every left-invariant vector field on a Lie group is complete.

Proof Let X ∈ g and let Φ : D → G be the flow of X. According to Proposi-
tion 3.2.13/3, left-invariance implies La(Dt ) = Dt for all a ∈ G and t ∈ R. Hence,
for every t , either Dt = G or Dt =∅. Since D is open in G ×R, there exist t+ > 0
and t− < 0 such that Dt± is nonempty and hence coincides with G. Then, Φt±(1)

is defined and, as an element of G, it belongs to Dt± , so that Φ2t±(1) is defined.
Iteration of this argument yields that Dt �=∅ and hence Dt = G for all t ∈ R. Thus,
X is complete. �

Remark 5.3.2 Let X ∈ g and let Φ denote the flow of X. By left-invariance, for all
t, s ∈R we have

Φt+s(1) = Φt ◦ Φs(1) = Φt ◦ LΦs(1)(1) = LΦs(1) ◦ Φt(1) = Φs(1)Φt (1).

Thus, the maximal integral curve through 1 defines a Lie group homomorphism
R → G, that is, a one-parameter subgroup of G. It is not hard to show that, con-
versely, every one-parameter subgroup of G is the maximal integral curve through
1 of a unique left-invariant vector field on G (Exercise 5.3.1). Thus, one-parameter
subgroups are in bijective correspondence with left-invariant vector fields.

Definition 5.3.3 (Exponential mapping) The exponential mapping of G is defined
by

exp : g → G, exp(X) = ΦX
1 (1),

where ΦX is the flow of X.

If necessary, we will write expG to distinguish between the exponential mappings
of different Lie groups.

Remark 5.3.4

1. Since the zero vector field has the trivial flow Φ0
t = idG for all t ∈ R,

exp(0) = 1. (5.3.1)

2. Let X ∈ g and let us consider the mapping t �→ exp(tX). Due to the scaling
property (3.2.15) of vector fields, for all t ∈R we have

exp(tX) = ΦX
t (1), (5.3.2)
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that is, the mapping t �→ exp(tX) yields the maximal integral curve of X

through 1. Since, according to Remark 5.3.2, the latter is a group homomor-
phism, for all t, s ∈R we obtain

exp
(
(t + s)X

)= exp(tX) exp(sX), exp(−tX) = (exp(tX)
)−1

. (5.3.3)

Furthermore, by left-invariance, (5.3.2) yields ΦX
t (a) = La ◦ ΦX

t (1) =
a exp(tX), hence

ΦX
t = Rexp(tX). (5.3.4)

Repeated application yields

ΦY
s ◦ ΦX

t (a) = Rexp(sY ) ◦ Rexp(tX)(a) = a exp(tX) exp(sY ). (5.3.5)

3. Let X be a right-invariant vector field on G and let inv : G → G denote the
inversion mapping. According to Remark 5.2.21, inv∗ X is left-invariant. Hence,
Proposition 3.2.13, together with (5.3.3) and (5.3.4), implies

ΦX
t (a) = inv◦Φ

inv∗ X
t ◦ inv(a) = exp(−t inv∗ X)a. (5.3.6)

That is, the flow of X is given by left translation by exp(−t inv∗ X). In particular,
X is complete.

We derive the basic properties of the exponential mapping.

Proposition 5.3.5 The exponential mapping of G is smooth. By restriction, it in-
duces a diffeomorphism from an open neighbourhood of 0 in g onto an open neigh-
bourhood of 1 in G.

Proof Consider the vector field Ỹ on G × g defined by Ỹ (a,X) := (Xa,0). Its flow
is given by Φ̃t (a,X) = (ΦX

t (a),X), where ΦX denotes the flow of X. Thus,

exp(X) = ΦX
1 (1) = prG ◦ Φ̃1(1,X),

where prG : G × g → G is the natural projection. Hence, exp is smooth. To see that
it restricts to a diffeomorphism between open neighbourhoods of 0 in g and 1 in G,
we compute the tangent mapping at 0 ∈ g. Using (5.3.2), we obtain

exp′
0 X = d

dt �0

exp(tX) = d

dt �0

ΦX
t (1) = X1, X ∈ g,

that is, exp′
0 coincides with the natural isomorphism g → T1G of Proposition 5.2.4.

Now, the assertion follows from the Inverse Mapping Theorem 1.5.7. �

Proposition 5.3.6 For a Lie group homomorphism ϕ : G → H , one has

ϕ ◦ expG = expH ◦dϕ.
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Proof Let X ∈ g. According to Remark 5.2.12, dϕ(X) is ϕ-related to X. According
to Proposition 3.2.13/1, for all t ∈R we get

Φ
dϕ(X)
t ◦ ϕ = ϕ ◦ ΦX

t .

Evaluation of both sides for t = 1 at 1G yields the assertion. �

Corollary 5.3.7 For a Lie group homomorphism ϕ : G → H , the following is equiv-
alent.

1. ϕ is an immersion (submersion).
2. ϕ has discrete kernel (is open).
3. dϕ is injective (surjective).

In particular, if a Lie group homomorphism is surjective and has discrete kernel,
it is a covering homomorphism, see Examples 5.1.11 and 5.1.13.

Proof 1 ⇒ 2: If ϕ is a submersion, this is due to Remark 1.5.16. If ϕ is an im-
mersion, the Constant Rank Theorem 1.5.11 implies that every point of G has a
neighbourhood on which ϕ is injective. In particular, every element of ker(ϕ) has a
neighbourhood containing no other element of ker(ϕ). Thus, ker(ϕ) is discrete.

2 ⇒ 3: First, assume that ϕ has discrete kernel. If dϕ was not injective, there
would exist a nonzero A ∈ g such that dϕ(A) = 0. Then, Proposition 5.3.6 would
imply that

1H = expH

(
dϕ(tA)

)= ϕ
(
expG(tA)

)

and hence expG(tA) ∈ ker(ϕ) for all t ∈ R. Since t �→ expG(tA) is a non-constant
curve through 1G and since expG is a local diffeomorphism, this would contradict
the assumption that ker(ϕ) be discrete.

Now, assume that ϕ is open. Since im(expG) is open, then ϕ(expG(g)) and hence
expH (dϕ(g)) is open in H . Since expH is a local diffeomorphism, dϕ(g) must con-
tain an open subset. Hence, dϕ is surjective.

3 ⇒ 1: By left-invariance, for a ∈ G and X ∈ g, we have ϕ′
aXa = (dϕ(X))ϕ(a).

Hence, if dϕ is injective (surjective), then ϕ is an immersion (submersion). �

Corollary 5.3.8 For a homomorphism of Lie groups to be an isomorphism it suffices
to be bijective.

Proof If ϕ is bijective, then Corollary 5.3.7 implies that it is an immersion and a
submersion. It follows that it is a diffeomorphism (by the Inverse Mapping Theo-
rem 1.5.7) and that its inverse is a group homomorphism (by elementary algebra). �

Finally, Propositions 5.1.7 and 5.3.6 imply

Corollary 5.3.9 Let ϕ,ψ : G → H be Lie group homomorphisms. If dϕ = dψ , then
ϕ and ψ coincide on the identity component of G.
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Proposition 5.3.10 For X,Y ∈ g such that [X,Y ] = 0 one has

exp(X) exp(Y ) = exp(Y ) exp(X) = exp(X + Y).

In particular, if g is Abelian, exp is a Lie group homomorphism from the vector
group underlying g to G.

Proof It suffices to show that the smooth curve γ : R → G, defined by γ (t) :=
exp(tX) exp(tY ), is an integral curve through 1 of the vector field X + Y . Indeed,
γ (0) = 1. By (5.3.5),

γ̇ (t) = d

dt

(
ΦY

t ◦ ΦX
t (1)

)
.

According to Proposition 3.2.15, the flows of X and Y commute. Using this and the
product rule (2.2.8), one obtains

γ̇ (t) = d

ds �0

ΦY
t+s ◦ ΦX

t (1) + d

ds �0

ΦX
t+s ◦ ΦY

t (1) = Yγ (t) + Xγ(t). �

If X and Y do not commute, one has the following approximate formula.

Proposition 5.3.11 For all X,Y ∈ g there exists ε > 0 such that for all |t | < ε,

exp(tX) exp(tY ) = exp

(
t (X + Y) + 1

2
t2[X,Y ] + O

(
t3)
)

, (5.3.7)

where O(t3) is the value of a smooth mapping (−ε, ε) → g such that O(t3)/t3 is
bounded.

Proof Let X,Y ∈ g. By Proposition 5.3.5 and by continuity of the multiplication
mapping, there exists ε > 0 and a unique smooth curve Z : (−ε, ε) → g such that
for all |t | < ε one has exp(Z(t)) = exp(tX) exp(tY ). Then, for all f ∈ C∞(G) and
for all |t | < ε, we have

f
(
exp
{
Z(t)

})= f
(
exp(tX) exp(tY )

)
. (5.3.8)

We consider the Taylor expansion of both sides up to second order. On the one hand,

Taylor expansion of Z(t) at t = 0 yields Z(t) = tZ1 + t2

2 Z2 +O(t3) with Z1 = Ż(0)

and Z2 = Z̈(0). Writing

f
(
exp
{
Z(t)

})= f

(
exp

{
t

(
Z1 + s

2
Z2 + O

(
s2)
)})∣∣∣∣

s=t

= f
(
Φ

Z1+ s
2 Z2+O(s2)

t (1)
)∣∣

s=t

and applying the Taylor formula (3.2.13) for manifolds, we obtain

f
(
exp
{
Z(t)

})= f (1) + t
(
Z1(f )

)
(1) + t2

2

((
Z2 + Z2

1

)
(f )
)
(1) + O

(
t3).
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On the other hand, by (5.3.5) and the iterated Taylor formula (3.2.14) for manifolds,

f
(
exp(tX) exp(tY )

)

= f (1) + t
{
(X + Y)(f )

}+ t2

2

{(
X2 + 2XY + Y 2)(f )

}
(1) + O

(
t3).

We read off Z1 = X + Y and Z2 + Z2
1 = X2 + 2XY + Y 2. Thus, Z2 = [X,Y ]. �

Remark 5.3.12

1. The Taylor formula (3.2.13) for manifolds and Formula (5.3.4) imply that for
every a ∈ G, f ∈ C∞(G) and t ∈R there holds

f
(
a exp(tX)

)=
n∑

k=0

tk

k!
(
Xk(f )

)
(a) + O

(
tn+1). (5.3.9)

The case n = 2 and a = 1 was used in the proof of Proposition 5.3.11. In addi-
tion, recall from Remark 5.1.2/3 that the smooth structure of G contains a real
analytic structure. Hence, it makes sense to speak of real analytic functions on G.
For such a function one can take the limit n → ∞ in (5.3.9), thus obtaining an
absolutely convergent series for small t and hence, by absorbing t in X, an abso-
lutely convergent series for small X:

f
(
a exp(X)

)=
∞∑

k=0

1

k!
(
Xk(f )

)
(a). (5.3.10)

This is the Taylor series for real analytic functions on G. Like for the Taylor for-
mula (3.2.13) for manifolds, by repeated application of (5.3.10) one may produce
iterated versions analogous to (3.2.14).

2. Similarly to the argument in the proof, Taylor expansion of (5.3.8) and com-
parison of coefficients allows to successively calculate the Taylor expansion of
Z(t) to arbitrary order. Absorbing the parameter t in X and Y , from this ex-
pansion one obtains a formal series Z(X,Y ), known as the Baker-Campbell-
Hausdorff series of g. Using the notation ad(X) for the mapping g → g given
by7 ad(X)Y = [X,Y ], this series can be written in the form

Z(X,Y ) = X +
∑

r,s≥0
ki+li>0

(−1)r
ad(X)k1 ad(Y )l1 . . . ad(X)kr ad(Y )lr ad(X)sY

(r + 1)(s + 1 +∑r
i=1 ki + li )k1!l1! . . . kr !lr !s!

(5.3.11)

= X + Y + 1

2
[X,Y ] + 1

12

([
X, [X,Y ]]+ [Y, [Y,X]])+ · · · (5.3.12)

7The notation ad will be explained in the next section.
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(Exercise 5.3.3). It can be shown that Z(X,Y ) converges on some neighbourhood
of the origin in g and that it satisfies

exp(X) exp(Y ) = exp
(
Z(X,Y )

)
,

see for example [297, §2.15] or [129, §I.4]. These references also contain an
alternative derivation of Formula (5.3.11).

Proposition 5.3.11 allows to express the sum and the commutator in g in terms
of the multiplication in G. Indeed, combining this proposition with repeated appli-
cation of (5.3.3), we get

Corollary 5.3.13 For all X,Y ∈ g,

exp(X + Y) = lim
n→∞

(
exp

(
1

n
X

)
exp

(
1

n
Y

))n

, (5.3.13)

exp
([X,Y ])= lim

n→∞

(
exp

(
−1

n
X

)
exp

(
−1

n
Y

)
exp

(
1

n
X

)
exp

(
1

n
Y

))n2

.

(5.3.14)

Example 5.3.14 (Classical Lie groups) Let V be a finite-dimensional K-vector
space and let G ⊂ End(V ) be a classical Lie group. Under the identification of
the Lie algebra g of G with the Lie subalgebra T1G of gl(V ) according to Exam-
ple 5.2.6, the flow of the left-invariant vector field corresponding to A ∈ g is given
by (5.2.4). Hence,

expG(A) = eA, A ∈ g. (5.3.15)

That is, for the classical groups, the exponential mapping is given by the restriction
of the exponential series on End(V ) to arguments from g. This explains the name.
For G = K \ {0}, where K = R or C, and G = U(1), this yields, in particular, the
ordinary exponential functions K →K \ {0} and iR → U(1) ⊂C, respectively.

Example 5.3.15 (Vector groups) Let V be a K-vector space, viewed as a Lie group.
Under the identification of the Lie algebra of V with the vector space V , cf. Ex-
ample 5.2.10, the equation for the integral curves of the left-invariant vector field
corresponding to X ∈ V is given by γ̇ (t) = X. The solution with initial condition
γ (0) = v ∈ V is γ (t) = v + tX. Hence, the exponential mapping of V coincides
with the identical mapping idV .

Example 5.3.16 (Direct product) Let G1 and G2 be Lie groups with Lie algebras g1

and g2, respectively. Consider the direct product Lie group G := G1 × G2 and let
pri : G → Gi denote the natural projections. Under the natural identification of the
Lie algebra of G with the direct product Lie algebra g1 ⊕ g2, cf. Example 5.2.16,
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left-invariant vector fields on G are given by pairs (X1,X2) with Xi ∈ gi and there
holds d pri (X1,X2) = Xi . Hence, Proposition 5.3.6 implies

expG(X1,X2) = (pr1 ◦ expG(X1,X2),pr2 ◦ expG(X1,X2)
)

= (expG1
(X1), expG2

(X2)
)
.

Example 5.3.17 (Determinant and trace) Let K = R,C and let us consider the de-
terminant homomorphism det : GL(n,K) → K \ {0}. According to Example 5.3.14,
for A ∈ gl(n,K) we have exp(A) = eA. Hence, (5.2.10) and Proposition 5.3.6 imply

det
(
eA
)= etrA. (5.3.16)

Let us mention that this equality can also be proved by more elementary arguments
which do not make use of the theory of Lie groups. One way consists in replacing
A by tA and showing by direct computation that both sides of (5.3.16) satisfy the
same ordinary differential equation and the same initial condition. Another way is to
use the Jordan normal form of A. We leave the details to the reader (Exercise 5.3.4).

Remark 5.3.18 Since exp(g) contains 1 and since it is connected,8 it is contained in
the identity connected component G0. For G =R\{0}, the exponential mapping is a
global diffeomorphism from R onto G0 =R+. For the vector groups, it is trivially a
diffeomorphism. In general, however, exp is neither injective nor surjective onto G0.
For example, in the case G = GL(n,C), it is surjective but not injective, whereas
in the case G = GL(n,R), n ≥ 2, it is neither injective nor surjective onto G0, see
Exercise 5.3.5. As a general fact, exp is surjective onto G0 if G0 is compact or
Abelian. In the latter case, this can be seen as follows. As a consequence of (3.2.12)
and (5.3.5), the Lie algebra of G is Abelian. According to Propositions 5.3.5 and
5.3.10, exp(g) is a subgroup of G0 which contains a neighbourhood of 1. According
to Proposition 5.1.7, this implies exp(g) = G0.

Exercises
5.3.1 Show that every one-parameter subgroup of a Lie group is the maximal inte-

gral curve through the unit element of a unique left-invariant vector field, cf.
Remark 5.3.2.

5.3.2 Repeated application of (5.3.7) yields

exp(−tX) exp(−tY ) exp(tX) exp(tY ) = exp
(
t2[X,Y ] + O

(
t3))

for all X,Y ∈ g.

Use this to give a geometric interpretation of the commutator of left-invariant
vector fields.

8As the image of a connected set under a continuous mapping.
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5.3.3 Calculate the first three terms of the Baker-Campbell-Hausdorff series given
in (5.3.12) by Taylor expanding (5.3.8) to third order and absorbing the pa-
rameter t in the vector fields X and Y . After this warm-up, prove the general
formula (5.3.11) by induction on n.

5.3.4 Carry out the proofs of the identity (5.3.16) indicated in Example 5.3.17.
5.3.5 Show that the matrix

a =
[−1 1

0 −1

]

is contained in the identity component of GL(2,R) but not in the image of the
exponential mapping.
Hint. Assume that a = eA for some A ∈ gl(2,R). Use (5.3.16) to show that
A has eigenvalues λ and −λ. Use the Jordan normal form of A to show that,
then, a has eigenvalues eλ and e−λ. Deduce from this that A and hence a is
diagonalizable (contradiction).

5.3.6 Show that the tangent mapping of exp at X ∈ g is given by

(Lexp(−X))
′
1 ◦ exp′

X =
∞∑

n=0

1

(n + 1)!
(
ad(−X)

)n

and that exp′
X is bijective if and only if no eigenvalue of ad(X) is an integer

multiple of 2π i.

5.4 Adjoint Representation and Killing Form

Let K = R,C,H and let V be a finite-dimensional K-vector space.

Definition 5.4.1 (Representation)

1. A representation of a Lie group G on V is a Lie group homomorphism ϕ : G →
GL(V ). A homomorphism of representations ϕi : G → GL(Vi), i = 1,2, is a
linear mapping λ : V1 → V2 such that λ ◦ ϕ1(a) = ϕ2(a) ◦ λ for all a ∈ G.

2. A representation of a Lie algebra g on V is a Lie algebra homomorphism ϕ :
g → gl(V ). A homomorphism of representations ϕi : g → gl(Vi), i = 1,2, is a
linear mapping λ : V1 → V2 such that λ ◦ ϕ1(A) = ϕ2(A) ◦ λ for all A ∈ g.

Homomorphisms of representations are also referred to as intertwining operators.
Every Lie group G possesses a natural representation on its Lie algebra g, con-

structed as follows. For every a ∈ G, the conjugation mapping Ca is a Lie group
automorphism of G. According to Remark 5.2.14/2, the induced homomorphism
dCa of g is an automorphism and hence, in particular, a vector space automorphism
of g. Thus, we obtain a mapping

Ad : G → GL(g), Ad(a) := dCa.
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According to (5.2.9), Ad is a group homomorphism. To see that it is smooth, con-
sider the chart on GL(g) given by the matrix representation induced by a basis in g.
For Ad to be smooth with respect to this chart it suffices that the mapping G → g

given by a �→ Ad(a)X be smooth for all X ∈ g. This mapping can be written as the
composition

G → T(G × G) → TG → G × g → g.

Here, the first mapping assigns to a ∈ G the tangent vector at (a,1) corresponding
to (0,X1) under the natural identification of T(G × G) with TG × TG, the second
mapping is the tangent mapping of (a, b) �→ Ca(b) and the last two mappings are
the left trivialization and the natural projection onto the second factor, respectively.
Thus, Ad is a Lie group homomorphism and hence a representation of G on g.

Next, we note that every Lie algebra possesses a natural representation on itself,
given by9

ad : g → gl(g), ad(X)Y := [X,Y ] for all Y ∈ g.

Indeed, the Jacobi identity implies

ad
([X,Y ])= [ad(X), ad(Y )

]
,

hence ad is a Lie algebra homomorphism. Since Ad(a) is a Lie algebra automor-
phism for all a ∈ G, we obtain

ad
(
Ad(a)X

)= Ad(a) ◦ ad(X) ◦ Ad
(
a−1) for all a ∈ G and X ∈ g. (5.4.1)

Definition 5.4.2 (Adjoint representations) The representations Ad and ad are called
the adjoint representations of G and g, respectively.

Every representation ϕ of G on V induces a representation of g on V , given by
the induced homomorphism dϕ. Under the natural identification of the Lie algebra
of GL(V ) with gl(V ),

dϕ(X) = ϕ′
1(X1) = d

dt �0

ϕ
(
exp(tX)

)
, X ∈ g. (5.4.2)

Proposition 5.4.3 The adjoint representations fulfil the relation

d Ad = ad.

Proof Let X,Y ∈ g. Due to Remark 5.2.14/2, left-invariance and (5.3.4), we get

Ad
(
exp(tX)

)
Y = Cexp(tX)∗Y = Rexp(−tX)∗ ◦ Lexp(tX)∗Y = ΦX−t∗Y.

Hence, (5.4.2) yields d Ad(X)Y = LXY = [X,Y ] = ad(X)Y . �

9The notation ad has already been used in Formula (5.3.11).
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Let ϕ be a representation of G on the finite-dimensional K-vector space V . Since
the mapping End(V ) → End(V ∗) which assigns to A the dual endomorphism AT is
linear and hence smooth, ϕ induces a representation

ϕ∗ : G → GL
(
V ∗), ϕ∗(a) := ϕ

(
a−1)T, (5.4.3)

called the dual representation of ϕ. The representation d(ϕ∗) : g → gl(V ∗), induced
on g, is called the dual representation of dϕ. A brief calculation shows

d
(
ϕ∗)(X) = −(dϕ(X)

)T for all X ∈ g. (5.4.4)

Definition 5.4.4 (Coadjoint representation) The duals of the adjoint representations
of G and g are called the coadjoint representations of G and g and are denoted by
Ad∗ and ad∗, respectively.

By definition,
〈
Ad∗(a)ξ,Y

〉= 〈ξ,Ad
(
a−1)Y

〉
for all a ∈ G, Y ∈ g and ξ ∈ g

∗. (5.4.5)

According to Proposition 5.4.3 and (5.4.4),
〈
ad∗(X)ξ,Y

〉= −〈ξ, [X,Y ]〉 for all X,Y ∈ g and ξ ∈ g
∗. (5.4.6)

Next, recall that the kernel of a group homomorphism is the preimage of the unit
element of the range and that the kernel of a linear mapping between vector spaces
is the preimage of the origin of the range. Recall further that

(a) the centralizer CG(H) of a subset H of a group G consists of those elements
of a ∈ G satisfying ah = ha for all h ∈ H , and that the centre of G is the
centralizer of H = G,

(b) the centralizer of a subset h of a Lie algebra g consists of those elements X ∈ g

satisfying [X,Y ] = 0 for all Y ∈ h, and that the centre of g is the centralizer of
h = g.

Proposition 5.4.5 The kernels of Ad and Ad∗ coincide with the centralizer CG(G0)

of the identity component G0 in G. The kernels of ad and ad∗ coincide with the
centre z of g.

Proof It is easy to see that ker(Ad∗) = ker(Ad) and ker(ad∗) = ker(ad). Moreover,
ker(ad) = z is obvious. Hence, it suffices to show ker(Ad) = CG(G0). Since for
a ∈ CG(G0) there holds Ca�G0 = idG0 and since d idG0 = idg, we obtain ker(Ad) ⊃
CG(G0). Conversely, if a ∈ G satisfies Ad(a) = idg, Proposition 5.3.6 implies

exp(X) = exp
(
Ad(a)X

)= Ca

(
exp(X)

)
for all X ∈ g.

That is, a commutes with all elements of exp(g). Since exp(g) contains a neigh-
bourhood of 1 in G0, Proposition 5.1.7 yields ker(Ad) ⊂ CG(G0). �
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Proposition 5.4.5 implies that if G is Abelian, then Ad(a) = idg for all a ∈ G

and ad(X) = 0 for all X ∈ g. This applies in particular to vector groups and to tori.

Example 5.4.6 (Classical Lie groups) Let V be a finite-dimensional K-vector space
and let G ⊂ End(V ) be a classical Lie group. Let a ∈ G. Under the identification
of the Lie algebra g with the Lie subalgebra T1G of gl(V ), Ad(a) ≡ dCa coincides
with the tangent mapping (Ca)

′
1. For A ∈ g,

(Ca)
′
1A = d

dt �0

Ca

(
etA
)= d

dt �0

(
aetAa−1)= aAa−1.

Hence,

Ad(a)A = aAa−1, a ∈ G, A ∈ g. (5.4.7)

Let us mention that in this example the proof of Proposition 5.4.3 reduces to the
following calculation:

d Ad(A)B ≡ Ad′
1(A)B = d

dt �0

Ad
(
etA
)
B = d

dt �0

(
etABe−tA

)= [A,B].

Example 5.4.7 Recall the Lie algebra isomorphism ϕ : R3 → so(3) from Exam-
ple 5.2.8. It satisfies

ϕ(ax) = aϕ(x)aT, a ∈ SO(3), x ∈ R
3, (5.4.8)

(Exercise 5.4.1). In view of (5.4.7) and aT = a−1, this implies that ϕ identifies the
adjoint representation of SO(3) with the identical representation on R

3. Similarly,
the Lie algebra isomorphism R

3 → sp(1) of this example, also denoted by ϕ, satis-
fies

ϕ
(
φ(a)x

)= aϕ(x)a, a ∈ Sp(1), x ∈ R
3,

where φ : Sp(1) → SO(3) is the covering homomorphism of Example 5.1.11. This
follows from (5.4.8), because φ(q) = φ(q)T. As a consequence, the adjoint repre-
sentation of Sp(1) can be identified with the representation of Sp(1) on R

3 induced
by φ. The same statement holds for SU(2). Finally, (5.2.11) implies that the Lie
algebra isomorphism sp(1) ⊕ sp(1) → so(4) induced by the covering homomor-
phism Sp(1) × Sp(1) → SO(4) of Example 5.1.11 identifies the representation of
Sp(1) × Sp(1) on so(4), induced via this covering homomorphism by the adjoint
representation of SO(4), with the adjoint representation of Sp(1) × Sp(1).

Example 5.4.8 (Direct product) Let G1 and G2 be Lie groups with Lie algebras g1
and g2, respectively, and let G = G1 ×G2. Under the natural identification of g with
g1 ⊕ g2 of Example 5.2.16, Eq. (5.2.12) implies

AdG

(
(a1, a2)

)
(Y1, Y2) = (AdG1(a1)Y1,AdG2(a2)Y2

)
, ai ∈ Gi, Yi ∈ gi .

An analogous formula holds for ad.
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Using the adjoint representation of g, one can construct a natural symmetric bi-
linear form on g which is invariant under the adjoint representation of G. Recall
from linear algebra that for an abstract K-vector space V , the trace of an endomor-
phism of V is defined to be the trace of the corresponding matrix with respect to
an arbitrary basis in V or, equivalently, to be the sum of eigenvalues, counted with
multiplicities. The trace is a linear functional on End(V ) satisfying

tr(AB) = tr(BA) for all A,B ∈ End(V ). (5.4.9)

Definition 5.4.9 (Killing form) The Killing form of a finite-dimensional Lie algebra
g is the bilinear form

k : g× g → R, k(X,Y ) := tr
(
ad(X)ad(Y )

)
.

Proposition 5.4.10 (Properties of the Killing form) Let G be a Lie group and let g
be the Lie algebra of G. The Killing form k of g is symmetric, Ad-invariant,

k
(
Ad(a)X,Ad(a)Y

)= k(X,Y ), (5.4.10)

and satisfies

k
(
ad(Z)X,Y

)+ k
(
X, ad(Z)Y

)= 0. (5.4.11)

It is non-degenerate iff g (and hence G) is semisimple.

Proof The symmetry property and Eq. (5.4.11) are due to (5.4.9). By the help of
(5.4.9), Eq. (5.4.10) follows from (5.4.1). To prove the last assertion, define g⊥ :=
{X ∈ g : k(X,g) = {0}}. Since every Abelian ideal of g is contained in g⊥, if k is
non-degenerate, g is semisimple. Conversely, assume that g is semisimple. As a
consequence of (5.4.11), g⊥ is an ideal in g. This implies that the Killing form of
the Lie algebra g⊥ is the restriction to g⊥ of the Killing form of g (Exercise 5.4.2)
and is hence trivial. Now, Cartan’s criterion10 yields that g⊥ is a solvable ideal in
g. Hence, if it was nonzero, it would contain a nonzero Abelian ideal. Therefore,
g⊥ = {0}. �

Remark 5.4.11

1. Computation of the trace by means of a pair of dual bases {ei} in g and {e∗i} in
g∗ yields

k(X,Y ) = 〈e∗i ,
[
X, [Y, ei]

]〉= XkY lcli
j ckj

i , (5.4.12)

where Xk and Y l are the expansion coefficients of X and Y , respectively, with
respect to the basis {ei} and ckj

i are the corresponding structure constants. The

10A Lie algebra g whose Killing form k satisfies k(X,Y ) = 0 for all X ∈ g, Y ∈ [g,g] is solvable
[145, §4.3].
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symmetric covariant tensor of order 2

gkl = cli
j ckj

i

is referred to as the Cartan-Killing tensor of G with respect to the basis {ei}.
2. According to Proposition 5.4.10, if G is semisimple, the Killing form is non-

degenerate and hence induces a linear isomorphism F : g → g∗ defined by
〈F(X),Y 〉 = k(X,Y ) for all X,Y ∈ g. Invariance under Ad implies

F ◦ Ad(a) = Ad∗(a) ◦ F (5.4.13)

for all a ∈ G. Thus, F is an isomorphism of the representations Ad and Ad∗
of G. As a consequence, for semisimple Lie groups, the adjoint and coadjoint
representations can be identified.

Example 5.4.12 For each of the semisimple classical Lie groups of Example 1.2.6,
there exists c > 0 such that

k(X,Y ) = c tr(XY) for all X,Y ∈ g.

For example, for sl(n,K) and su(n), n ≥ 2, the factor is c = 2n, for so(n), n ≥ 3, it
is c = n − 2 and for sp(n), n ≥ 1, it is c = 2(n + 1) (Exercise 5.4.3).

Exercises
5.4.1 Prove the two formulae stated in Example 5.4.7.
5.4.2 Let g be a Lie algebra, let i be an ideal in g and let kg and ki denote the

respective Killing forms. Show that for all X,Y ∈ i there holds ki(X,Y ) =
kg(X,Y ).

5.4.3 Determine the factor of proportionality between the Killing form and the
trace form of the identical representation for the classical groups listed in
Remark 5.4.12.

5.5 Left-Invariant Differential Forms

Definition 5.5.1 A differential form ξ on G is called left-invariant if L∗
aξ = ξ for

all a ∈ G.

The set of left-invariant differential forms on G will be denoted by Ω∗(G)G.
Written pointwise, for 1-forms, the defining condition reads ξab ◦ (La)

′
b = ξb for all

a, b ∈ G or, equivalently,

ξa = ξ1 ◦ (La−1)
′
a for all a ∈ G. (5.5.1)
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Proposition 5.5.2 Let G be a Lie group with Lie algebra g.

1. Ω∗(G)G is a differential subalgebra of Ω∗(G).
2. There exist natural algebra isomorphisms

Ω∗(G)G ∼=
∧

T∗
1G ∼=

∧
g
∗.

The first one is given by ξ �→ ξ1. The second one is induced by the isomorphism
g → T1G, given by X �→ X1.

3. For all ξ ∈ Ωr(G)G and X1, . . . ,Xr ∈ g, the function ξ(X1, . . . ,Xr) on G is
constant.

Proof 1. By (2.4.24), Ω∗(G)G is closed under exterior multiplication. By (4.1.23),
it is closed under taking exterior derivatives.

2. It suffices to consider the mapping Ω∗(G)G →∧
T∗

1G, defined by ξ �→ ξ1.
This mapping is a homomorphism of algebras, which is injective by (5.5.1). To
show that it is surjective, it is enough to prove that its image contains T∗

1G. Thus,
let η ∈ T∗

1G. By fixing the second argument of the inverse left trivialization of T∗G
to be η, cf. (5.1.6), one obtains a left-invariant 1-form ξ with ξ1 = η.

3. This is a consequence of (4.1.16). �

According to assertion 2 of Proposition 5.5.2, we will identify left-invariant dif-
ferential r-forms with elements of

∧r
g∗ without explicitly stating that. Depending

on the context, for ξ ∈∧r
g∗ and X1, . . . ,Xr ∈ g, the expression ξ(X1, . . . , ξr ) will

be interpreted as a function on G or as a number.

Remark 5.5.3

1. Propositions 4.1.6 and 5.5.2 imply that the exterior derivative of ξ ∈∧r
g∗ is

given by11

dξ(X0, . . . ,Xr) =
∑

i<j

(−1)i+j ξ
([Xi,Xj ],X0,

Xi�
Xj
�. . . ,Xr

)
, (5.5.2)

where X0, . . . ,Xr ∈ g. The right hand side may be taken as an intrinsic def-
inition of a differential on the exterior algebra

∧
g∗, thus turning the natural

isomorphism of algebras Ω∗(G)G ∼=∧
g∗ of Proposition 5.5.2 into an isomor-

phism of differential algebras. In particular, this yields a characterization of the
subcomplex Ω∗(G)G of the de Rham complex of G in terms of the Lie algebra
alone.

2. For ξ ∈ g∗, (5.5.2) yields

dξ(X,Y ) = −ξ
([X,Y ]), X,Y ∈ g. (5.5.3)

11Cf. Proposition 4.1.6 for the notation.
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Let {e1, . . . , en} be a basis in g, let ci
jk be the corresponding structure constants

and let {e∗1, . . . , e∗n} be the dual basis in g∗. Then, (5.5.3) is equivalent to

de∗i = −1

2
ci
jke

∗j ∧ e∗k, i = 1, . . . , n. (5.5.4)

This can be seen by evaluating both sides on the basis elements ei (Exercise
5.5.1). Equation (5.5.4) is known as the Maurer-Cartan equation associated with
the basis {e1, . . . , en} of g.

3. In terms of left-invariant 1-forms, the inverse left and right trivializations (χT
L )−1

and (χT
R)−1 of T∗G, given by (5.1.6), read

(
χT

L

)−1
(a, ξ) = ξa,

(
χT

R

)−1
(a, ξ) = (C∗

aξ
)
a

≡ ξa ◦ (Ca)
′
a.

Note that the 1-form C∗
aξ need not be left-invariant.

Proposition 5.5.2 yields in particular that the space of left-invariant n-forms cor-
responds to

∧n
g∗. Hence, it has dimension one and its elements are of the form

e∗1 ∧ · · · ∧ e∗n for some basis {e∗i} in g∗. By left-invariance, every nonzero element
of this space is a volume form. Hence, we obtain

Corollary 5.5.4 On every Lie group there exists a left-invariant volume form vG.
This form is unique up to multiplication by a nonzero real number.

It is common to write vG(a) = da. The Lebesgue measure associated with a left-
invariant volume form on G is called a Haar measure on G. Thus, Haar measures
on G are left-invariant and unique up to a constant.

Remark 5.5.5

1. Every scalar product 〈·,·〉 on g defines a Riemannian metric g on G by

ga(Xa,Ya) := 〈X,Y 〉, a ∈ G, X,Y ∈ g. (5.5.5)

By construction, g is left-invariant, that is, La∗g = g for all a ∈ G, and so is its
volume form vg. This way, the choice of a scalar product on g and an orientation
on G singles out a unique left-invariant volume form. Furthermore, every basis of
g which is orthonormal with respect to 〈·,·〉 provides a global frame of TG which
is orthonormal with respect to g. By (4.4.14), in terms of the corresponding dual
basis {e∗i} of g∗, the volume form vg is given by

vg = e∗1 ∧ e∗2 ∧ · · · ∧ e∗n.

2. If G is compact, another way to single out a unique left-invariant volume form
on G is to require that the volume of G be equal to 1.
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3. We determine the action of right translations on left-invariant volume forms. Re-
call from linear algebra that for an abstract K-vector space V , the determinant
of an endomorphism of V is defined to be the determinant of the correspond-
ing matrix with respect to an arbitrary basis in V or, equivalently, the product
of eigenvalues, counted with multiplicities. A brief computation (Exercise 5.5.2)
shows that for every left-invariant volume form vG there holds

R∗
avG = det

(
Ad
(
a−1))vG, a ∈ G. (5.5.6)

The smooth function

Δ : G →R, Δ(a) := det
(
Ad
(
a−1)),

is called the modular function of G. For every f ∈ C∞(G), integrable with re-
spect to vG, and for every a ∈ G, the function R∗

af is integrable as well and

∫

G

(
R∗

af
)
vG = Δ

(
a−1)

∫

G

f vG. (5.5.7)

For compact Lie groups, where every smooth function is integrable with respect
to any volume form, the existence of left-invariant volume forms provides the pow-
erful tool of averaging over the group. This concept can be used, for example, to
construct invariants of representations, e.g. an invariant scalar product.

Proposition 5.5.6 (Invariant scalar product) Let G be a compact Lie group, let V

be a finite-dimensional K-vector space and let ϕ be a representation of G on V . The
vector space V admits a scalar product 〈·,·〉 such that

〈
ϕ(a)v,ϕ(a)w

〉= 〈v,w〉 for all a ∈ G and v,w ∈ V.

For the induced representation dϕ of g, we have

〈
dϕ(X)v,w

〉+ 〈v,dϕ(X)w
〉= 0 for all X ∈ g and v,w ∈ V.

Thus, every finite-dimensional representation of a compact Lie group may be
assumed to be orthogonal (in case K = R) or unitary (in case K= C,H).

Proof Choose an arbitrary scalar product (·,·) on V . For v,w ∈ V , define a function
fv,w ∈ C∞(G) by fv,w(a) := (ϕ(a−1)v,ϕ(a−1)w). Choose a left-invariant volume
form vG on G and define

〈v,w〉 :=
∫

G

fv,wvG.

The integral exists, because G is compact. The defining properties of a scalar
product carry over from (·,·) to 〈·,·〉. Let a ∈ G. A brief computation shows
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fϕ(a)v,ϕ(a)w = L∗
a−1fv,w . Hence, by left-invariance of vG,

〈
ϕ(a)v,ϕ(a)w

〉=
∫

G

(
L∗

a−1fv,w

)
vG =

∫

G

fv,wvG = 〈v,w〉,

as asserted. In view of (5.4.2), the formula for dϕ follows by differentiation. �

For a vector space endomorphism A, let spec(A) denote the spectrum.

Corollary 5.5.7 For a finite-dimensional K-representation ϕ of a compact Lie
group G,

1. spec(ϕ(a)) ⊂ U(1) for all a ∈ G and spec(dϕ(X)) ⊂ iR for all X ∈ g,
2. in case K = C, ϕ(a) and dϕ(X) are diagonalizable for all a ∈ G and X ∈ g.

Proof 1. Without loss of generality, view the vector space V carrying the represen-
tation as a real vector space. Choose a basis in V which is orthonormal with respect
to some ϕ-invariant scalar product. With respect to this basis, ϕ(a) and dϕ(X) are
represented by an orthogonal and a skew-symmetric matrix, respectively. Hence, the
assertion follows from elementary linear algebra.

2. In case K = C, ϕ(a) is unitary and dϕ(X) is skew-Hermitian. Hence, this
assertion follows from elementary linear algebra, too. �

Application of Corollary 5.5.7 to the adjoint representations of G and g yields

Corollary 5.5.8 Let G be a compact Lie group.

1. The modular function of G is given by Δ(a) = ±1 for all a ∈ G. If G is con-
nected, Δ(a) = 1.

2. The Killing form k of g is negative semidefinite.
3. If G is in addition semisimple, −k is an Ad-invariant scalar product on g.

Proof 1. Let a ∈ G. On the one hand, Corollary 5.5.7/1 implies that Δ(a) =
det(Ad(a)) ∈ U(1). On the other hand, Ad(a) is an automorphism of the real vector
space g, hence det(Ad(a)) is real. It follows that Δ(a) = ±1. In particular, Δ is
locally constant. Hence, if G is connected, Δ(a) = Δ(1) = 1.

2. Let X ∈ g. By Corollary 5.5.7/1, the spectrum of ad(X)2 consists of the squares
of certain purely imaginary numbers. Hence, k(X,X) = tr(ad(X)2) ≤ 0.

3. This follows from point 2 and non-degeneracy, cf. Proposition 5.4.10. �

Recall from Remark 5.5.5/1 that every scalar product on g defines a left-invariant
Riemannian metric g on G via (5.5.5). If the scalar product is invariant under Ad, g
is in addition right-invariant and hence bi-invariant, that is

La∗g = Ra∗g = g for all a ∈ G

(Exercise 5.5.3). Thus, Corollary 5.5.8 implies
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Corollary 5.5.9 Every compact Lie group admits a bi-invariant Riemannian metric.
If the group is in addition semisimple, then the negative of the Killing form yields
such a Riemannian metric.

To conclude this section, we discuss left-invariant differential forms on G with
values in g, that is, differential forms ξ ∈ Ω∗(G,g) satisfying L∗

aξ = ξ . According
to Remark 4.1.10/2, given a basis {ei} in g, every ξ ∈ Ωr(G,g) can be written as

ξ = ξ i ⊗ ei (5.5.8)

with ordinary differential r-forms ξ i . The form ξ is left-invariant iff so are
the ξ i . Since g is an algebra, Ω∗(G,g) carries an exterior product Ωr1(G,g) ×
Ωr2(G,g) → Ωr1+r2(G,g), given by

[ξ1, ξ2](Y1, . . . , Yr1+r2)

:= 1

r1!r2!
∑

π∈Sr1+r2

[
ξ1(Yπ(1), . . . , Yπ(r1)), ξ2(Yπ(r1+1), . . . , Yπ(r1+r2))

]
.

There holds the following analogue of Proposition 5.5.2.

Proposition 5.5.10 Let G be a Lie group with Lie algebra g and let Ω∗(G,g)G

denote the set of left-invariant differential forms on G with values in g.

1. Ω∗(G,g)G is a differential subalgebra of Ω∗(G,g).
2. There exist natural algebra isomorphisms

Ω∗(G,g)G ∼=
(∧

T∗G
)

⊗ g ∼=
(∧

g
∗)⊗ g,

given by ξ �→ ξ1 and induced by the mapping X �→ X1, respectively.
3. For all ξ ∈ Ω∗(G,g)G and X1, . . . ,Xr ∈ g, the g-valued function ξ(X1, . . . ,Xr)

on G is constant.

Proof The arguments are completely analogous to those for ordinary left-invariant
differential forms in the proof of Proposition 5.5.2, except for the surjectivity of
the mapping ξ �→ ξ1, because Ω∗(G,g) need not be generated as an algebra by 1-
forms. Thus, let η ∈∧r T∗

1G⊗g. Choose a basis {ei} in g and write η = ηi ⊗ei with
ηi ∈∧r T∗

1G. According to Proposition 5.5.2/1, ηi = ξ i
1 for certain left-invariant

ξ i ∈ Ωr(G). Then, ξ := ξ i ⊗ ei is a left-invariant differential r-form with values in
g satisfying ξ1 = η. �

According to Proposition 5.5.10, left-invariant differential 1-forms with values
in g can be identified with linear endomorphisms of g.

Definition 5.5.11 (Maurer-Cartan form) The left-invariant differential 1-form on G

with values in g corresponding to idg is called the Maurer-Cartan form of G.
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We denote the Maurer-Cartan form by Θ . By definition,

〈Θ,X〉 = X for all X ∈ g. (5.5.9)

As a consequence, Θ assigns to a tangent vector Y at a the left-invariant vector field
X with Xa = Y . Moreover, the expansion (5.5.8) of Θ with respect to a basis {ei}
in g is given by

Θ = e∗i ⊗ ei .

Remark 5.5.12

1. Like for ordinary left-invariant 1-forms, and by the same argument, the exterior
derivative of left-invariant 1-forms with values in g is given by (5.5.2). For the
Maurer-Cartan form this yields

dΘ(X,Y ) = −〈Θ, [X,Y ]〉= −[X,Y ] = −[Θ(X),Θ(Y )
]

and hence

dΘ + 1

2
Θ ∧ Θ = 0. (5.5.10)

This is the Maurer-Cartan equation (5.5.4) in a basis-independent version.
2. For a classical Lie group G ⊂ End(V ), under the identification of the Lie algebra

of G with a subalgebra of gl(V ) and of the tangent spaces TaG with subspaces
of End(V ), cf. Example 5.2.6, there holds

Θa(Y ) = a−1Y, a ∈ G, Y ∈ TaG.

In the physics literature, it is common to write da for the tangent mapping12 of
idG at a. Using (idG)′a = idTaG, one obtains Θa = a−1da.

We conclude this section with a remark on right-invariant differential forms.

Remark 5.5.13 (Right-invariant differential forms) By analogy with left-invariant
differential forms one defines right-invariant differential forms on G by the condi-
tion R∗

aξ = ξ and shows the following (Exercise 5.5.7).

1. Equivalent conditions for a differential 1-form ξ to be right-invariant are ξba ◦
(Ra)

′
b = ξb for all a, b ∈ G and ξa = ξ1 ◦ (Ra−1)′a for all a ∈ G.

2. Proposition 5.5.2 remains true for right-invariant differential forms if g is re-
placed by the subalgebra of right-invariant vector fields. In terms of right-
invariant 1-forms, the inverse left and right trivializations (χT

L )−1 and (χT
R)−1

of T∗G, given by (5.1.6), read

(
χT

L

)−1
(a, ξ) = (C∗

a−1ξ
)
a

≡ ξa ◦ (Ca−1)
′
a,

(
χT

R

)−1
(a, ξ) = ξa.

12Like writing dx for the first derivative at x of the function f (x) = x on R; it must not be confused
with the notation vG(a) = da for an invariant volume form.
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3. Via − inv∗, the inversion mapping inv : G → G provides an isomorphism of dif-
ferential algebras between the subalgebras of left and right-invariant differential
forms. Under the natural isomorphisms with

∧
T∗

1G, − inv∗ corresponds to the
identical mapping.

Exercises
5.5.1 Show that Eqs. (5.5.3) and (5.5.4) are equivalent.
5.5.2 Show that the pull-back of a left-invariant volume form on G by Ra , a ∈ G,

is given by (5.5.6) and that integrable smooth functions satisfy (5.5.7).
5.5.3 Consider the Riemannian metric g on G defined via (5.5.5) by a scalar product

on g. Prove that if the scalar product is Ad-invariant, then g is bi-invariant.
5.5.4 (a) Show that the mapping

R : (−π,π) × (0,π) × (−π,π) → SO(3),

R(φ,ϑ,ψ) := Rz(φ)Ry(ϑ)Rz(ψ),

where

Rz(φ) =
⎡

⎣
cosφ − sinφ 0
sinφ cosφ 0

0 0 1

⎤

⎦ , Ry(φ) =
⎡

⎣
cosφ 0 − sinφ

0 1 0
sinφ 0 cosφ

⎤

⎦

(rotation by an angle φ about the z-axis and the y-axis, respectively),
induces a local chart on SO(3). What is the complement of the domain of
this chart?13

(b) Show that the left-invariant volume form with respect to which SO(3) has
unit volume is given in these coordinates by

vSO(3) = 1

8π2
sinϑdφ ∧ dϑ ∧ dψ.

5.5.5 Use the result of Exercise 5.1.7(a) to show that the mapping

U : (−π,π) × (0,π) × (−2π,2π) → SU(2),

given by

U(φ,ϑ,ψ) :=
[

e
i
2 (ψ+φ) cos ϑ

2 −e
i
2 (ψ−φ) sin ϑ

2

e− i
2 (ψ−φ) sin ϑ

2 e− i
2 (ψ+φ) cos ϑ

2

]
,

induces a local chart on SU(2). Compute the left-invariant volume form with
respect to which SU(2) has unit volume in these coordinates.

5.5.6 Find a left-invariant volume form on SL(2,C).
5.5.7 Verify the properties of right-invariant differential forms stated in Re-

mark 5.5.13.

13The angles φ, ϑ and ψ are called Euler angles.
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5.6 Lie Subgroups

Let G be a Lie group of dimension n and let g be the Lie algebra of G.

Definition 5.6.1 (Lie subgroup) A Lie subgroup of G is a pair (H,ϕ), where H is a
Lie group and ϕ : H → G is an injective and immersive Lie group homomorphism.
If ϕ is an embedding, (H,ϕ) is said to be embedded. Lie subgroups (H1, ϕ1) and
(H2, ϕ2) of G are said to be equivalent if there exists a Lie group isomorphism
ψ : H1 → H2 such that ϕ1 = ϕ2 ◦ ψ .

Example 5.6.2

1. The classical groups of Example 1.2.6 are embedded Lie subgroups of the ap-
propriate general linear group GL(n,K). Here, the Lie group homomorphism ϕ

is given by the natural inclusion mapping.
2. (GL(n,H), ϕ), with ϕ being induced from (1.1.2), is an embedded Lie subgroup

of GL(2n,C).
3. Let a, b ∈R \ {0} such that a

b
is irrational and let ϕ : R→ T2, ϕ(t) := (eiat , eibt ).

Then, (R, ϕ) is a Lie subgroup of T2. It is not embedded.
4. Let a, b ∈ Z \ {0} be relatively prime and let ϕ : U(1) → T2, ϕ(z) := (za, zb).

Then, (U(1), ϕ) is an embedded Lie subgroup of T2.
5. The identity component G0 of G is an embedded Lie subgroup of G.

Right from the start we observe that Propositions 1.6.10 and 1.6.14 remain true if
the terms submanifold and Ck-mapping are replaced by Lie subgroup and Lie group
homomorphism, respectively. The situation with Lie subgroups is yet simpler than
that with general submanifolds, see Proposition 5.6.4 below. We start with deriving
the basic properties of Lie subgroups. A distribution D on G is said to be left-
invariant if L′

aDb = Dab for all a, b ∈ G.

Lemma 5.6.3 The distribution on G spanned by a Lie subalgebra of g is left-
invariant, regular and integrable.

Proof Left-invariance holds by construction and implies regularity. The distribution
is involutive by Remark 3.5.6 and hence integrable by Corollary 3.5.12. �

Proposition 5.6.4 (Basic properties of Lie subgroups)

1. The connected components of a Lie subgroup (H,ϕ) of G are maximal integral
manifolds of the distribution on G spanned by the Lie subalgebra im(dϕ) of g.

2. Lie subgroups are initial submanifolds.
3. Lie subgroups are equivalent iff their images coincide as sets.

Assertion 2 implies that the figure eight submanifold cannot occur as the group
manifold of a Lie subgroup. Assertion 3 yields, in particular, that if a subgroup
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H ⊂ G admits a smooth manifold structure which makes it into a Lie subgroup of
G, then this structure is unique.

Proof Let h denote the Lie algebra of H and let D denote the distribution on G

spanned by im(dϕ) = dϕ(h). For a ∈ H and X ∈ h, a brief computation shows
ϕ′Xa = (dϕ(X))a . This implies ϕ′TaH = Dϕ(a) for all a ∈ H . Hence, for every
connected component Hi of H , (Hi,ϕ�Hi

) is an integral manifold of D. It is max-
imal, because the vector fields in h are complete. This proves assertion 1. Then,
assertion 2 follows by means of Proposition 3.5.15. In view of the fact that the
restriction of a group homomorphism in range to a subgroup remains a group ho-
momorphism, assertion 3 follows from assertion 2 by the same argument as for the
analogous assertion about initial submanifolds, see Remark 1.6.13/5. �

Next, we link Lie subgroups to Lie subalgebras.

Proposition 5.6.5 (Connected Lie subgroups and Lie subalgebras) The assignment
of im(dϕ) to (H,ϕ) defines a bijection between equivalence classes of connected
Lie subgroups of G and Lie subalgebras of g.

Proof We must show that for every Lie subalgebra h of g there exists a connected
Lie subgroup (H,ϕ) of G such that im(dϕ) = h and that (H,ϕ) is unique up to
equivalence.

Existence: let D be the distribution on G spanned by h. By Lemma 5.6.3,
D is left-invariant and integrable. Let H be the maximal integral manifold of D

through 1. By left-invariance of D, for every a ∈ H , La−1(H) is an integral man-
ifold of D. Since it contains 1, we get La−1(H) ⊂ H . Hence, a−1b ∈ H for all
a, b ∈ H , that is, H is a subgroup of G. Since the multiplication mapping of H is
the restriction of that of G in domain to H × H and in range to H , it is smooth by
Proposition 3.5.15. Hence, H is a Lie group. Since, by construction, the natural in-
clusion mapping ι : H → G is a Lie group homomorphism, (H, ι) is a Lie subgroup
of G. Since T1H = {X1 : X ∈ h}, the image of dϕ coincides with h. This proves
existence.

Uniqueness: let (H1, ϕ1) and (H2, ϕ2) be connected Lie subgroups of G sat-
isfying im(dϕ1) = im(dϕ2). By assertion 1 of Proposition 5.6.4, they are maxi-
mal integral manifolds through 1 of one and the same distribution on G. Hence,
ϕ1(H1) = ϕ2(H2). Then, assertion 3 of this proposition implies that (H1, ϕ1) and
(H2, ϕ2) are equivalent. �

Finally, we derive two sufficient conditions for a subgroup of G to be a Lie
subgroup. We suppress the natural inclusion mapping in the notation.

Proposition 5.6.6 (Subgroups which are submanifolds) Let H ⊂ G be a subgroup.
If H admits a smooth structure which makes it into a submanifold of G, then H is a
Lie group and a Lie subgroup of G with respect to this structure. The corresponding
Lie subalgebra is given by h = {X ∈ g : X1 ∈ T1H }.
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The smooth structure is then unique by Proposition 5.6.4/3.

Proof Define h := {X ∈ g : X1 ∈ T1H } and let D denote the distribution spanned
by h. It suffices to show that H is an integral manifold of D, because then La(H)

is an integral manifold of D through a for all a ∈ G, hence D is integrable and
Proposition 3.5.15 yields that the restriction of the multiplication mapping of G to
H is smooth. This yields the assertion.

Thus, let a ∈ H . Let k := dim(H). Since both D and H have dimension k, it
suffices to show that Da ⊂ TaH . Assume, on the contrary, that this is not the case.
For a smooth curve γ in H and b ∈ H , define γ b := Lb ◦ γ . Note that γ b is a curve
in H which is smooth in G, but we cannot assume that it is smooth in H , because
a priori we do not know whether Lb is a smooth mapping of H . Choose smooth
curves γ1, . . . , γk in H through a such that γ̇1(0), . . . , γ̇k(0) form a basis in TaH .
Since Da �⊂ TaH and since Da = L′

aT1H , there exists a smooth curve γk+1 in H

through 1 such that γ̇ a
k+1(0) /∈ TaH . Then, γ a−1

1 , . . . , γ a−1

k are curves in H through

1, smooth in G, such that {γ̇ a−1

1 (0), . . . , γ̇ a−1

k (0), γ̇k+1(0)} is a linearly independent
system in T1G. Choose smooth curves γk+2, . . . , γn in G through 1 whose tangent
vectors at t = 0 complement this system to a basis in T1G. Then, according to the
Inverse Mapping Theorem, there exist ε > 0 and an open neighbourhood U of 1 in
G such that the mapping

Φ : (−ε, ε)n → U ⊂ G, Φ(t) := γ a−1

1 (t1) · · ·γ a−1

k (tk)γk+1(tk+1) · · ·γn(tn),

is a diffeomorphism. Since H ∩ U is open in H , it is a submanifold of U , hence
(H ∩U,Φ−1

�H∩U
) is a submanifold of Rn of dimension k. On the other hand, by con-

struction, the image Φ−1(H ∩U) contains (−ε, ε)k+1 ×{0}. This is a contradiction,
because the image of a submanifold cannot contain the image of another submani-
fold of higher dimension. Hence, Da ⊂ TaH and the proposition is proved. �

To derive the other sufficient condition for a subgroup to be a Lie subgroup we
need

Lemma 5.6.7 If m1 and m2 are complementary vector subspaces of g, there exist
open neighbourhoods Ui of the origin in mi , i = 1,2, and V of 1 in G such that the
mapping

ϕ :m1 ×m2 → G, ϕ(X1,X2) := exp(X1) exp(X2),

restrics to a diffeomorphism from U1 × U2 onto V .

Proof The tangent mapping ϕ′
0 : m1 × m2 → g is given by (X1,X2) �→ X1 + X2.

Since m1 and m2 are complementary, it is bijective. Hence, the assertion follows
from the Inverse Mapping Theorem 1.5.7. �
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Theorem 5.6.8 (Closed subgroups) Let H ⊂ G be a subgroup. If H is closed in G,
then it admits a smooth structure which makes it into a Lie group and an embedded
Lie subgroup of G. The corresponding Lie subalgebra of g is h= {X ∈ g : exp(tX) ∈
H for all t ∈ R}.

Proof First, we show that h is a linear subspace of g. By construction, tX ∈ h for
all X ∈ h and t ∈R. For X,Y ∈ g, (5.3.13) implies

exp
(
t (X + Y)

)= lim
n→∞

(
exp

(
t

n
X

)
exp

(
t

n
Y

))n

.

Since exp( t
n
X) exp( t

n
Y ) ∈ H for all n and t and since H is closed, exp(t (X +Y)) ∈

H for all t ∈R, hence X +Y ∈ h. Next, equip H with the relative topology induced
from G. Choose a neighbourhood V of 1 in G such that ρ := exp−1 : V → g is
defined and smooth and hence a local chart on G. We claim that V can be adjusted
so that

ρ(V ∩ H) = ρ(V ) ∩ h. (5.6.1)

If so, then the family consisting of the local charts (La(V ), ρ ◦ La−1�La(V )), a ∈ H ,
satisfies conditions (E1) and (E2) of Proposition 1.7.3 and hence defines a smooth
structure on H which makes H into an embedded submanifold of G. Then, Proposi-
tion 1.6.10 implies that in this structure, H is a Lie group and hence a Lie subgroup
of G. The corresponding Lie subalgebra of g contains h and, by (5.6.1), it has the
same dimension as h, hence it coincides with h. In particular, h is a Lie subalgebra
of g.

To show (5.6.1), assume, on the contrary, that V cannot be chosen so that (5.6.1)
holds. Since exp(h) ⊂ H , this means that V ∩ exp(h) is properly contained in
V ∩ H , for arbitrarily small V . Thus, there is a sequence {an} in H converging
to 1 such that an /∈ exp(h) for all n. Choose a subspace m of g complementary
to h. According to Lemma 5.6.7, for large enough n, an defines unique sequences
{Xn} in h and {Yn} in m by an = exp(Xn) exp(Yn) and both of these sequences con-
verge to the respective origin. Since H is a subgroup, we obtain exp(Yn) ∈ H . Since
an /∈ exp(h), we conclude Yn �= 0. Now, choose a norm ‖ · ‖ on m. Since the cor-
responding unit sphere in m is compact, by possibly removing some members we
may assume that the sequence {Yn‖Yn‖−1} converges to some Y ∈m with ‖Y‖ = 1.
We show that exp(tY ) ∈ H for all t ∈ R and hence Y ∈ h (contradiction). Let t ∈ R

be given. Let {kn} denote the sequence of integer parts corresponding to {t‖Yn‖−1}.
Then, kn‖Yn‖ → t for n → ∞ and hence

exp(tY ) = lim
n→∞ exp

(
kn‖Yn‖ · Yn

‖Yn‖
)

= lim
n→∞

(
exp(Yn)

)kn ∈ H,

as H is closed. This completes the proof of the theorem. �

Remark 5.6.9 Instead of Proposition 1.7.3, one may use the following argument
to prove that H , equipped with the relative topology induced from G, admits a
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submanifold structure. The details are left to the reader (Exercise 5.6.1). By (5.3.14),
h is a Lie subalgebra. Let D be the distribution on G generated by h and let H̃ be
the connected Lie subgroup associated with h, that is, the maximal integral manifold
through 1 of D. Since the subset H of G is invariant under the flow of the vector
fields in h, for every a ∈ H there holds La(H̃ ) ⊂ H . Use the argument of the proof
of Theorem 5.6.8 to show that closedness of H implies the existence of an open
neighbourhood V of 1 in G such that H̃ ∩ V = H ∩ V . Construct from this an open
neighbourhood Ṽ of H̃ in G such that H̃ = Ṽ ∩ H . Conclude that the maximal
integral manifolds La(H̃ ) of D, a ∈ H , are the connected components of H . Since
the latter is second countable, there are at most countably many of them. This yields
the desired submanifold structure of H .

Corollary 5.6.10 A Lie subgroup is embedded iff its image is a closed subset.

Proof Denote the Lie subgroup by (H,ϕ). If ϕ(H) is closed, Theorem 5.6.8 pro-
vides a Lie subgroup structure on ϕ(H), where ϕ(H) carries the relative topol-
ogy induced from G. By Proposition 5.6.4/3, the Lie subgroups (H,ϕ) and ϕ(H)

are equivalent. This means that ϕ is a diffeomorphism (and hence a homeomor-
phism) onto its image. Conversely, if (H,ϕ) is embedded, Proposition 5.6.4/1 and
Remark 3.5.19/1 imply that ϕ(H) is closed. �

Example 5.6.11

1. The kernel of a Lie group homomorphism G → H is a subgroup (by the ho-
momorphism property) and closed (by continuity) and hence an embedded Lie
subgroup of G by Theorem 5.6.8. Using Proposition 5.3.6 it is easy to see that
the Lie algebra of ker(ϕ) is given by ker(dϕ) (Exercise 5.6.2).

2. In view of Theorem 5.6.8, for the classical groups of Example 1.2.6 to be Lie
groups it suffices that they are closed subsets of the appropriate general linear
group GL(n,K). Proposition 5.6.4/3 implies that the smooth structure so ob-
tained coincides with that provided by the Level Set Theorem 1.2.1.

Exercises
5.6.1 Work out the alternative proof of Theorem 5.6.8 sketched in Remark 5.6.9.
5.6.2 Use Proposition 5.3.6 to prove that the Lie algebra of the kernel of a Lie group

homomorphism is given by the kernel of the induced Lie algebra homomor-
phism, cf. Example 5.6.11/1.

5.7 Homogeneous Spaces

Let G be a Lie group. Recall from elementary algebra that every subgroup H ⊂ G

defines an equivalence relation on G by a ∼H b iff a−1b ∈ H . The equivalence
classes are given by the subsets aH of G, a ∈ G. They are called the left cosets of
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H in G. Let G/H denote the set of equivalence classes, equipped with the quotient
topology. This space will be referred to as the quotient of G by H . By definition of
the quotient topology, the natural projection

π : G → G/H, π(a) := aH,

is continuous. Every a ∈ G defines a mapping

L̂a : G/H → G/H, L̂a(bH) := abH,

fulfilling

L̂a ◦ π = π ◦ La for all a ∈ G. (5.7.1)

The topological structure of the quotient G/H may be quite strange, as for example
in the case G = T2 and H = {(eiat , eibt ) : t ∈R} with a

b
irrational. If, however, H is

closed, then the quotient G/H turns out to be a smooth manifold. To prove this, we
need

Lemma 5.7.1 Let G be a Lie group and let H ⊂ G be a subgroup.

1. The natural projection π : G → G/H is open.
2. The induced mappings L̂a are homeomorphisms of G/H .
3. If H is closed, then G/H is Hausdorff.

Proof 1. Let U ⊂ G be open. The subset π(U) is open in G/H iff π−1(π(U)) is
open in G. The latter holds, because π−1(π(U)) =⋃

a∈H Ra(U) and the Ra are
homeomorphisms of G.

2. Due to L̂a ◦ L̂a−1 = idG/H , it suffices to show that L̂a is open for all a ∈ G.
Thus, let Û ⊂ G/H be open. By (5.7.1), L̂a(Û) = π ◦ La(π

−1(Û)). Since π is
continuous and since La and π are open mappings, the assertion follows.

3. Consider the mapping ϕ : G × G → G, defined by ϕ(a1, a2) := a−1
1 a2. We

have π(a1) = π(a2) iff (a1, a2) ∈ ϕ−1(H). Since H is closed and since ϕ is con-
tinuous, ϕ−1(H) is a closed subset of G × G. Now, let â1, â2 ∈ G/H be such
that â1 �= â2. Choose ai ∈ G such that âi = π(ai). Then, (a1, a2) /∈ ϕ−1(H).
Since ϕ−1(H) is closed, there exist neighbourhoods Vi of ai in G such that
(V1 ×V2)∩ϕ−1(H) =∅. This implies π(V1)∩π(V2) =∅. Since π is open, π(Vi)

is a neighbourhood of âi , i = 1,2. This yields the assertion. �

Theorem 5.7.2 (Homogeneous space) Let G be a Lie group and let H ⊂ G be a
closed subgroup. There exists a unique smooth structure on the quotient G/H such
that the natural projection π : G → G/H is a smooth submersion.

Proof It suffices to prove existence, because uniqueness holds for any submersion,
see Remark 1.5.16. Choose a subspace m of g complementary to h. The manifold
structure on G/H will be modelled on this subspace.
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According to Lemma 5.6.7, there exist open neighbourhoods Wh and Wm of the
origins in h and m, respectively, and an open neighbourhood V of 1 in G such that
the mapping

ϕ : Wm × Wh → V, (X,Y ) �→ exp(X) exp(Y ),

is a diffeomorphism. Since H is closed and hence embedded, exp(Wh) is open with
respect to the relative topology on H induced from G. As a consequence, Wm may
be shrunk so that (exp(Wm)2 ∩ H) ⊂ exp(Wh). Consider the mapping π ◦ exp :
Wm → G/H . It is

(a) injective: if X,Y ∈ Wm satisfy exp(−X) exp(Y ) ∈ H , then exp(−X) exp(Y ) =
exp(Z) for some Z ∈ Wh, hence ϕ(Y,0) = ϕ(X,Z) and injectivity of ϕ implies
X = Y (and Z = 0);

(b) open: if U is open in Wm, then U × Wh is open in Wm × Wh. Since ϕ and π

are open, π ◦ exp(U) = π ◦ ϕ(U × Wh) is open in G/H .

Thus, π ◦ exp maps Wm homeomorphically onto the open subset

Û := π ◦ exp(Wm)

of G/H and hence induces a local chart κ̂ := (π ◦ exp)−1 : Û → m on G/H . Since
the mappings L̂a are homeomorphisms,

{(
L̂a(Û), κ̂ ◦ L̂a−1

) : a ∈ G
}

is an atlas on G/H . The transition mappings can be expressed in terms of exp,
exp−1, left translations and the projection g → m defined by the vector space de-
composition g = h ⊕ m. Details are left to the reader. It follows that the atlas
so constructed defines a smooth structure on G/H . To see that π is a smooth
submersion, due to π(La(V )) = L̂a(Û), it suffices to check that the restriction
π : La(V ) → L̂a(Û) is a smooth submersion for all a ∈ G. The latter follows from
the fact that the mapping κ̂ ◦ L̂a−1 ◦ π ◦ La ◦ ϕ : Wm × Wh → Wm coincides with
the natural projection of the direct product. �

Remark 5.7.3 According to Remark 1.5.16, being a submersion, π admits local
sections. That is, for every â ∈ G/H there exists an open neighbourhood Û and a
smooth mapping s : Û → M such that π ◦ s = id

Û
. In the present situation, as a by-

product of the construction of local charts on G/H in the proof of Theorem 5.7.2,
one has the following distinguished class of local sections. For every subspace m

complementary to h there exists an open neighbourhood W of the origin in m such
that exp(W) ⊂ G is an embedded submanifold, π�exp(W) is injective and Û := π ◦
exp(W) is open in G/H . Then s := π−1 : Û → exp(W) is a local section of π ,
and so is (L̂a(Û),La ◦ s ◦ L̂a−1) for all a ∈ G. This argument also shows that the
natural vector space isomorphism g → T1G, given by evaluation at 1, descends to
an isomorphism

g/h ∼= T[1](G/H). (5.7.2)
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The existence of local sections of π implies that the equality (5.7.1) can be re-
solved locally for L̂a . This entails

Corollary 5.7.4 The mapping L̂a is a diffeomorphism of G/H for all a ∈ G.

In Sect. 6.2 it will become clear that Corollary 5.7.4 provides the justification
of the term homogeneous space, referred to in the headlines of this section and of
Theorem 5.7.2 (see Remark 6.2.10/3). Furthermore, in Sect. 6.5 we will see that the
coset manifold G/H can be interpreted as the quotient of the action of the Lie group
H on the manifold G by right translation and, correspondingly, as the base manifold
of a principal bundle with structure group H . Finally, we note that the construction
of the coset manifold carries over in an obvious way to the space of right H -cosets
in G. In this case, right translation induces diffeomorphisms R̂a for all a ∈ G.

Example 5.7.5 (Stiefel manifolds) Let K = R,C or H. The Stiefel manifold
SK(k, n) is defined to be the set of k-frames in K

n which are orthonormal with
respect to the standard scalar product. The actual manifold structure is obtained by
identifying SK(k, n) with a certain homogeneous space as follows. Any orthonormal
k-frame in K

n can be obtained from the first k elements of the standard basis in K
n

by a linear isometric transformation. This transformation is determined by the given
frame only up to its action on the last n − k elements of the standard basis. That is,
two transformations produce the same k-frame iff they differ by prior application of
a block matrix

[
1k 0
0 a

]
, (5.7.3)

where a is an isometry of Kn−k . Hence, as sets,

SR(k, n) = O(n)/O(n − k),

SC(k, n) = U(n)/U(n − k),

SH(k, n) = Sp(n)/Sp(n − k),

where O(n − k), U(n − k) and Sp(n − k) refer to the corresponding subgroups
of matrices of the form (5.7.3), and these equalities define the smooth structure of
SK(k, n). For k < n, a possible sign (if K = R) or phase (if K = C) in the determi-
nant of the isometry producing the desired k-frame can be shifted to the irrelevant
part which acts on the last n − k standard basis vectors. Therefore,

SR(k, n) = SO(n)/SO(n − k), SC(k, n) = SU(n)/SU(n − k).

An orthonormal 1-frame is just a vector of length 1. Hence,

SK(1, n) = Sdn−1, d = dimR(K).

We leave it to the reader to check that this is a diffeomorphism, indeed (Exer-
cise 5.7.3).
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Example 5.7.6 (Graßmann manifolds) The Graßmann manifold GK(k, n) is de-
fined to be the set of k-dimensional subspaces of Kn. As for the Stiefel manifolds,
the manifold structure of GK(k, n) is obtained by identifying it with a homoge-
neous space. Any k-dimensional subspace of Kn can be obtained from the subspace
spanned by the first k elements of the standard basis in K

n by application of a lin-
ear isometry. This transformation is determined by the given subspace up to prior
application of a block matrix

[
a 0
0 b

]
, (5.7.4)

where a and b are isometries of Kk and K
n−k , respectively. Hence,

GR(k, n) = O(n)/
(
O(k) × O(n − k)

)
,

GC(k, n) = U(n)/
(
U(k) × U(n − k)

)
,

GH(k, n) = Sp(n)/
(
Sp(k) × Sp(n − k)

)
,

where the subgroups consist of matrices of the form (5.7.4) and the smooth structure
of GK(k, n) is defined by that of the corresponding homogeneous space. The case
k = 1 reproduces the projective spaces GK(1, n) = KPn−1 of Example 1.1.15. The
proof that both sides are in fact diffeomorphic is postponed until Sect. 6.5 (Exam-
ple 6.5.4/3).

Example 5.7.7 (Flag manifolds) Let 0 < k1 < · · · < kr−1 < n be integers. A flag of
type (k1, . . . , kr−1) in K

n is an ascending sequence of vector subspaces V1 ⊂ · · · ⊂
Vr−1 ⊂K

n where dim(Vi) = ki . By defining W1 to be V1 and Wi+1 to be the orthog-
onal complement of Vi in Vi+1, with every flag one can associate a decomposition
K

n = W1 ⊕ · · · ⊕ Wr into mutually orthogonal subspaces, and this defines a bijec-
tion from the set of flags of type (k1, . . . , kr−1) onto the set of orthogonal direct
sum decompositions of K

n into subspaces of the dimensions (n1, . . . , nr ), where
n1 = k1, nr = n− kr−1 and ni+1 = ki+1 − ki in between. Let FK(n1, . . . , nr) denote
either of these sets. A similar argument as for the Graßmann manifolds shows that

FR(n1, . . . , nr ) = O(n)/
(
O(n1) × · · · × O(nr)

)
,

FC(n1, . . . , nr ) = U(n)/
(
U(n1) × · · · × U(nr)

)
,

FH(n1, . . . , nr ) = Sp(n)/
(
Sp(n1) × · · · × Sp(nr)

)
,

where the subgroups consist of block diagonal matrices

⎡

⎢⎢⎢⎢⎣

a1 0 · · · 0

0 a2
. . .

...
...

. . .
. . . 0

0 · · · 0 ar

⎤

⎥⎥⎥⎥⎦
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with ai being an element of, respectively, O(ni), U(ni) or Sp(ni), i = 1, . . . , r . As
before, these equalities are used to define a smooth structure on FK(n1, . . . , nr ).
The case r = 1 and n1 = k reproduces the Graßmann manifolds: FK(k, n − k) =
GK(k, n).

Next, we investigate the special case where H is a normal subgroup. This
means that aH = Ha, or equivalently Ca(H) = H , for all a ∈ G. In this case,
G/H inherits a group structure, defined by the condition that the natural projection
π : G → G/H be a group homomorphism.

Proposition 5.7.8 (Quotient Lie group) Let G be a Lie group with Lie algebra g

and let H ⊂ G be a closed normal subgroup with associated Lie subalgebra h⊂ g.

1. G/H with the induced group structure is a Lie group.
2. The natural projection π : G → G/H is a Lie group homomorphism.
3. We have ker(dπ) = h and dπ induces an isomorphism from g/h onto the Lie

algebra of G/H .

The Lie group G/H will be referred to as the quotient Lie group of G by H

and the Lie algebra of G/H will be identified with g/h by means of the natural
isomorphism induced by dπ without further notice. Under this identification, dπ

corresponds to the natural projection g → g/h.

Proof 1. Since π is a group homomorphism, the multiplication mappings μ of G

and μ̂ of G/H satisfy μ̂ ◦ (π × π) = π ◦ μ. Using pairs of local sections of π , this
equality can be locally resolved for μ̂. Hence, μ̂ is smooth and G/H is a Lie group.

2. This holds by construction.
3. Due to ker(π) = H and Example 5.6.11/1, ker(dπ) = h and the assertion fol-

lows from the homomorphism theorem for algebras.14 �

Example 5.7.9

1. Let ϕ : G → H be a Lie group homomorphism. Then, ker(ϕ) is a closed normal
subgroup of G and hence G/ker(ϕ) is a Lie group with Lie algebra g/ker(dϕ).

2. The identity component G0 of G is a normal subgroup: for every a ∈ G, Ca is
a homeomorphism of G, hence Ca(G0) is a connected component of G. Since
Ca(1) = 1, it coincides with G0. As a connected component, G0 is also closed
and hence G/G0 is a Lie group. The cosets coincide with the connected compo-
nents of G. Hence, the quotient topology on G/G0 is discrete. Thus, the quotient
Lie group of G by G0 is given by the group-theoretical quotient of G by G0,
equipped with the discrete smooth structure.

14The kernel of an algebra homomorphism is an ideal of the domain and the mapping induced by
passing to the quotient is an algebra isomorphism onto its image.
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Proposition 5.7.10 (Quotient homomorphism) Let Gi be Lie groups with Lie alge-
bras gi and let Hi ⊂ Gi be closed normal subgroups with associated Lie subalge-
bras hi ⊂ gi , i = 1,2. Let ϕ : G1 → G2 be a Lie group homomorphism satisfying
ϕ(H1) ⊂ H2.

1. There exists a unique mapping ϕ̂ : G1/H1 → G2/H2 such that for the natural
projections πi : Gi → Gi/Hi , i = 1,2, there holds ϕ̂ ◦π1 = π2 ◦ϕ. This mapping
is a Lie group homomorphism.

2. There holds dϕ(h1) ⊂ h2 and dϕ̂ is given by the homomorphism g1/h1 → g2/h2
induced by dϕ on passing to the quotients.

Proof 1. Due to ϕ(H1) ⊂ H2, the mapping ϕ̂ is well-defined. It is obviously unique.
A brief calculation, using that π1, π2 and ϕ are group homomorphisms, shows that
ϕ̂ is a group homomorphism. Since π1 admits local sections, ϕ̂ is smooth.

2. By (5.2.9), there holds dϕ̂ ◦ dπ1 = dπ2 ◦ dϕ. Since under the identification of
the Lie algebras of Gi/Hi with the quotients gi/hi , dπi corresponds to the natural
projection gi → gi/hi , this implies the assertion. �

Propositions 5.7.8 and 5.7.10 provide a Lie group analogue of the homomor-
phism theorem of group theory which states that for a group homomorphism
ϕ : G → H , the image im(ϕ) is a subgroup of H and that the induced mapping
ϕ̂ : G/ker(ϕ) → im(ϕ) is a group isomorphism.

Proposition 5.7.11 (Homomorphism theorem) Let ϕ : G → H be a Lie group
homomorphism. Then, im(ϕ) is a Lie subgroup of H and the induced mapping
ϕ̂ : G/ker(ϕ) → im(ϕ) is a Lie group isomorphism.

The assertion may be rephrased by stating that (G/ker(ϕ), ϕ̂) is a Lie subgroup
of H .

Proof By Propositions 5.7.8 and 5.7.10, G/ker(ϕ) is a Lie group and the induced
mapping ϕ̂ : G/ker(ϕ) → H is a Lie group homomorphism. By construction, ϕ̂

is injective and hence an immersion by Corollary 5.3.7. Thus, (G/ker(ϕ), ϕ̂) is a
Lie subgroup of H and so is the image im(ϕ) with respect to the smooth structure
transported by ϕ̂. �

Example 5.7.12

1. The exponential function ϕ : R → C, defined by t �→ e2π it has kernel Z and
image U(1). The induced mapping yields a Lie group isomorphism from R/Z

onto U(1). This extends to an isomorphism from R
n/Zn onto Tn for every n.

2. The Lie group homomorphism SU(2) → SO(3) of Example 5.1.11 is surjective
and has the centre Z2 of SU(2) as its kernel, hence the induced mapping yields
a Lie group isomorphism from SU(2)/Z2 onto SO(3). Similarly, the Lie group
homomorphism SL(2,C) → SO(3,1) of Example 5.1.13 induces a Lie group
isomorphism from the quotient of SL(2,C) by its centre onto the identity com-
ponent of SO(3,1).
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Exercises
5.7.1 Prove Corollary 5.7.4.
5.7.2 Compute the dimensions of the Stiefel, Graßmann and flag manifolds, see

Examples 5.7.5–5.7.7.
5.7.3 Let K = R,C,H and let d = dimRK. Show that the Stiefel manifold SK(1, n)

is diffeomorphic to the sphere Sdn−1, cf. Example 5.7.5.





Chapter 6
Lie Group Actions

In Sect. 6.1, we define the notions of Lie group action and G-manifold and collect
some of their elementary properties. There is a variety of derived notions fitting to-
gether to a geometric structure which will be studied in this chapter. In particular,
a Lie group action gives rise to a special type of vector fields, so-called Killing vec-
tor fields,1 see Sect. 6.2. These vector fields span an integrable distribution whose
integral manifolds coincide with the orbits of the group action. This way, every orbit
is endowed with the structure of an initial submanifold. Starting from Sect. 6.3, we
limit our attention to the important special class of proper group actions. Under this
additional regularity assumption, one can prove the Tubular Neighbourhood Theo-
rem2 which constitutes one of the basic tools of the theory of Lie group actions, see
Sect. 6.4. It states that for every orbit there exists a G-invariant neighbourhood and a
diffeomorphism identifying this neighbourhood G-equivariantly with a G-invariant
neighbourhood of the zero section in the normal bundle of this orbit. In particular,
we study the case of a free proper action in some detail, because it gives rise to in-
teresting bundle structures. Next, in Sect. 6.6, we study elementary properties of the
orbit space of a given Lie group action, and in Sect. 6.7 we discuss invariant vec-
tor fields. The latter notion is of basic importance for the study of physical systems
with symmetries, see Chap. 10. In Sect. 6.8, we make some elementary remarks on
relative equilibria and relatively periodic integral curves.

6.1 Basics

Let M be a smooth manifold and let G be a Lie group. Let g be the Lie algebra of G.
Starting from this chapter, elements of g will be denoted by A,B, . . . . Depending
on the context, they will be viewed either as left-invariant vector fields on G or as
elements of the tangent space T1G.

1Or fundamental vector fields.
2Also known as the Slice Theorem.

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-5345-7_6, © Springer Science+Business Media Dordrecht 2013
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Definition 6.1.1 (Lie group action)

1. An action of G on M is a smooth mapping Ψ : G × M → M such that the
induced mappings

Ψa : M → M, Ψa(m) := Ψ (a,m),

satisfy Ψ1 = idM and either Ψa ◦ Ψb = Ψab or Ψa ◦ Ψb = Ψba for all a, b ∈ G.
In the first case, Ψ is called a left action and in the second case a right action.
The triple (M,G,Ψ ) is referred to as a Lie group action and the pair (M,Ψ ) as
a G-manifold.

2. A morphism of Lie group actions (M1,G1,Ψ
1) and (M2,G2,Ψ

2) (both left or
both right) consists of a smooth mapping ϕ : M1 → M2 and a Lie group homo-
morphism � : G1 → G2 such that

ϕ ◦ Ψ 1 = Ψ 2 ◦ (� × ϕ). (6.1.1)

One says that the mapping ϕ intertwines the actions Ψ 1 and Ψ 2. If G1 = G2
and � is the identical mapping, ϕ is also called equivariant or, equivalently, a
morphism of the G-manifolds (M1,Ψ

1) and (M2,Ψ
2).

Since Ψa ◦ Ψa−1 = idM , the induced mappings Ψa are diffeomorphisms of M .
Hence, the assignment a �→ Ψa defines a group homomorphism (in the case of a left
action) or a group anti-homomorphism (in the case of a right action) from G to the
group of diffeomorphisms of M . Condition (6.1.1) is equivalent to

Ψ 2
�(a) ◦ ϕ = ϕ ◦ Ψ 1

a for all a ∈ G. (6.1.2)

In particular, a mapping ϕ : M1 → M2 is equivariant with respect to the G-actions
Ψ i on Mi if and only if

Ψ 2
a ◦ ϕ = ϕ ◦ Ψ 1

a for all a ∈ G. (6.1.3)

Analogously to the notion of morphism one defines the notion of anti-morphism
from a left to a right Lie group action, or vice versa, by requiring that � be a Lie
group anti-homomorphism. If G1 = G2 = G and � is the inversion mapping, that
is, if

Ψ 2
a−1 ◦ ϕ = ϕ ◦ Ψ 1

a for all a ∈ G, (6.1.4)

then ϕ is called anti-equivariant or an anti-morphism of G-manifolds. If G is
Abelian, there is no difference between left and right actions. In the general case,
a left action can be turned into a right action, and vice versa, by composing it with
the mapping G × M → G × M given by (a,m) �→ (a−1,m). Then, idM is anti-
equivariant and hence an anti-morphism of G-manifolds.

Example 6.1.2 We encourage the reader to check the axioms of Lie group action for
each of the following examples (Exercise 6.1.1).

1. Every representation � : G → GL(V ) of G on a finite-dimensional K-vector
space V defines a left action of G on V by Ψ (a, v) := �(a)v for all a ∈ G, v ∈ V .
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Since the induced diffeomorphisms Ψa = �(a) are linear, one speaks of a linear
action. A homomorphism of representations of G is the same as a morphism of
the associated G-manifolds.

2. The operations of left translation, right translation and conjugation, defined
in (5.1.3), yield actions of a Lie group on itself. Each of them may be restricted
in the first argument to a Lie subgroup H ⊂ G, thus producing the actions of H

on G by left and right translation and conjugation, respectively.
3. For every closed subgroup H ⊂ G, the induced left translations L̂a : G/H →

G/H , where a ∈ G, define an action of G on the homogeneous space G/H of
left cosets. The natural projection G → G/H is equivariant and hence a mor-
phism of G-manifolds. A similar statement holds for the induced right transla-
tions R̂a on the homogeneous space of right cosets.

4. The flow of a complete vector field on M is an action of R on M . More generally,
according to Proposition 3.2.15, the flows of commuting complete vector fields
X1, . . . ,Xr on M define an action of the vector group R

r on M by

Ψt := Φ
X1
t1

◦ · · · ◦ Φ
Xr
tr

. (6.1.5)

By Proposition 3.2.13/2, every diffeomorphism ϕ of M intertwines Ψ with the
corresponding action defined by ϕ∗X1, . . . , ϕ∗Xr .

5. With every Lie group action (M,G,Ψ ) there come induced actions of G on TM

and T∗M , given by (a,X) �→ Ψ ′
aX for all X ∈ TM and

(a, ξm) �→ ξm ◦ (Ψa)
′
Ψ

a−1 (m)

for all ξm ∈ T∗
mM , respectively. Since the induced diffeomorphisms of TM and

T∗M are vector bundle automorphisms, these actions turn TM and T∗M into G-
vector bundles, see Remark 6.1.3 below. The natural projections TM → M and
T∗M → M are equivariant. All of this carries over in an obvious way to arbitrary
tensor bundles over M .

6. The direct product of Lie group actions (Mi,Gi,Ψ
i), i = 1,2, both left or both

right, is defined to be the action of G1 × G2 on M1 × M2 given by
(
(a1, a2), (m1,m2)

) �→ (
Ψ 1

a1
(m1),Ψ

2
a2

(m2)
)
.

For i = 1,2, the natural projections M1 × M2 → Mi and G1 × G2 → Gi yield
morphisms of Lie group actions. The direct product of G-manifolds (Mi,Ψ

i),
i = 1,2, both left or both right, is defined to be the action of G on M1 × M2
given by

(
a, (m1,m2)

) �→ (
Ψ 1

a (m1),Ψ
2
a (m2)

)
.

The natural projections M1 × M2 → Mi , i = 1,2, are equivariant.
7. Let (M,G,Ψ ) be a Lie group action, (H,�) a Lie subgroup of G and (N,ϕ)

a submanifold of M . One says that (N,ϕ) is invariant under (H,�) if

Ψ�(H)

(
ϕ(N)

) ⊂ ϕ(N).

In this case, and if additionally (N,ϕ) is initial, the restriction Ψ̃ of Ψ in domain
to the submanifold (H ×N,� ×ϕ) of G×M and in range to the initial subman-
ifold (N,ϕ) of M is an action of H on N , called the restriction of (M,G,Ψ ) to
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(H,�) and (N,ϕ). It is determined by the relation ϕ ◦ Ψ̃ = Ψ ◦ (� × ϕ), that is,
by the condition that (ϕ,�) be a morphism of Lie group actions from (N,H, Ψ̃ )

to (M,G,Ψ ).

Remark 6.1.3 If M is endowed with an additional structure, like a Riemannian met-
ric, one may require the diffeomorphisms Ψa to respect this structure. This way,
one obtains, for example, the notion of Riemannian Lie group action and Rieman-
nian G-manifold (with G acting by isometries), symplectic Lie group action and
symplectic G-manifold (with G acting by symplectomorphisms, cf. Chap. 8) and
G-vector bundle (with G acting by vector bundle automorphisms).

Next, we introduce the basic notions associated with a Lie group action
(M,G,Ψ ), collect some of their elementary properties and describe the geomet-
ric structure arising. Two points m1,m2 ∈ M are said to be conjugate under Ψ if
m2 = Ψa(m1) for some a ∈ G. Obviously, to be conjugate is an equivalence relation
on M .

Definition 6.1.4 Let (M,G,Ψ ) be a Lie group action.

1. The above equivalence classes are called the orbits of G under Ψ . The set of
equivalence classes, equipped with the quotient topology, is called the orbit space
of (M,G,Ψ ) and is denoted by M/G.

2. For m ∈ M , the induced mapping Ψm : G → M is called the orbit mapping of m.
3. For m ∈ M , the subgroup Gm := {a ∈ G : Ψa(m) = m} is called the stabilizer3

of m.
4. The kernel of Ψ is the subgroup ker(Ψ ) := {a ∈ G : Ψa = idM} of G.

The kernel of Ψ coincides with the kernel of the corresponding (anti-)homomor-
phism from G to the group of diffeomorphisms of M . By definition, ker(Ψ ) =⋂

m∈M Gm. The orbit through m ∈ M is denoted by G · m. It is given by

G · m = {
Ψa(m) ∈ M : a ∈ G

}
. (6.1.6)

More generally, for a subset N ⊂ M and a subgroup H ⊂ G we denote

H · N := {
Ψa(m) ∈ M : m ∈ N,a ∈ H

}
. (6.1.7)

Assume that Ψ is a left action. Since for a ∈ G, the orbit mapping Ψm satisfies
Ψm(ab) = Ψm(a) iff b ∈ Gm, it induces an injective mapping

Ψ̂m : G/Gm → M, Ψ̂m(aGm) := Ψm(a), (6.1.8)

where G/Gm denotes the homogeneous space of left cosets. Since the natural pro-
jection G → G/Gm is a surjective submersion, by Remark 1.5.16, Ψ̂m is smooth.

3Another common name is isotropy group of m.
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Moreover, it is equivariant with respect to the action of G on G/Gm by the induced
left translations L̂a and its image coincides with the orbit of m.4 Thus, for every m,
Ψ̂m yields an equivariant bijection between G/Gm and the orbit through m. In the
next section, this bijection will be used to induce a smooth structure on G · m.

Proposition 6.1.5 Let (M,G,Ψ ) be a Lie group action.

1. The action Ψ is an open mapping.
2. The natural projection π : M → M/G is an open mapping.
3. M/G is locally compact and second countable.
4. Gm is a closed subgroup of G for all m ∈ M . The mapping a �→ (Ψa)

′
m defines a

representation5 of Gm on TmM , called the isotropy representation at m.
5. The kernel of Ψ is a closed normal subgroup of G. The mapping

Ψ̂ : G/ker(Ψ ) × M → M, Ψ̂ ◦ (� × idM) = Ψ,

where � : G → G/ker(Ψ ) denotes the natural projection, is an action of
G/ker(Ψ ) on M and (idM,�) is a morphism of Lie group actions.

Proof 1. This follows from Ψ (V × U) = ⋃
a∈V Ψa(U) and the fact that the map-

pings Ψa are homeomorphisms.
2. Let U ⊂ M be open. Then, Ψa(U) is open for all a ∈ G and hence

π−1(π(U)) = ⋃
a∈G Ψa(U) is open. By construction of the quotient topology, then

π(U) is open.
3. Since M is locally compact, every m ∈ M possesses a compact neighbour-

hood U . Since π is open, π(U) is a neighbourhood of π(m) in M/G. Since the
image of a compact space under a continuous mapping is compact, π(U) is com-
pact. Hence, M/G is locally compact. Second countability holds by definition of
the quotient topology.

4. For every m ∈ M , the stabilizer Gm is the preimage of m under the orbit
mapping Ψm. The rest follows from points 5 and 7 of Example 6.1.2.

5. Being the kernel of a group (anti-)homomorphism, ker(Ψ ) is normal. Being
the intersection of the stabilizers of all points of M , it is also closed. Hence, by
Proposition 5.7.8, G/ker(Ψ ) is a Lie group. Since Ψa = idM for all a ∈ ker(Ψ ), Ψ̂

is well-defined. Since � is a submersion, Ψ̂ is smooth by Remark 1.5.16. The rest is
obvious. �

Next, we observe that for every a ∈ G,

GΨa(m) = aGma−1 (left action), GΨa(m) = a−1Gma (right action). (6.1.9)

4In the case of a right action, Ψm(ba) = Ψm(a) iff b ∈ Gm. Thus, Ψ̂m is defined on the homoge-

neous space of right cosets by Ψ̂m(Gma) := Ψm(a). It is equivariant with respect to the induced
right translations R̂a .
5More precisely, a left (right) representation in case Ψ is a left (right) action.
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That is, the stabilizers of any two points lying on the same orbit are conjugate.6

Definition 6.1.6 (Orbit type) Let (M,G,Ψ ) be a Lie group action. The type of
an orbit O is defined to be the conjugacy class of subgroups of G given by {Gm :
m ∈ O}. The set of conjugacy classes of subgroups of G which appear as types of
orbits under Ψ is called the set of orbit types of (M,G,Ψ ). For a given orbit type
[H ], the subset of M of orbit type [H ] will be denoted by M[H ].

We note that

M[H ] = {
m ∈ M:Gm = aHa−1 for some a ∈ G

}
. (6.1.10)

Definition 6.1.7 For a closed subgroup H ⊂ G, define

MH := {m ∈ M:H = Gm}, (6.1.11)

MH := {m ∈ M:H ⊂ Gm}. (6.1.12)

MH and MH are called the subset of isotropy type H and the subset of fixed points
under H , respectively.

By construction,

M[H ] = G · MH . (6.1.13)

Moreover, if H is compact, one has (Exercise 6.1.2)

MH = MH ∩ M[H ]. (6.1.14)

Finally, we introduce the following algebraic properties of Lie group actions.

Definition 6.1.8 A Lie group action is called

1. effective if the kernel is equal to {1},
2. free if all stabilizers are equal to {1},
3. transitive if it has a single orbit.

According to Proposition 6.1.5/5, by passing to the induced action of G/ker(Ψ ),
every action can be replaced by an effective action which has the same orbits. More-
over, it is obvious that free actions and transitive actions have just one single orbit
type.

Example 6.1.9 Proofs are left to the reader (Exercise 6.1.3).

6Subgroups H1 and H2 of G are said to be conjugate if H2 = aH1a
−1 for some a ∈ G. To be

conjugate is an equivalence relation on the set of subgroups of G. The equivalence classes are
called conjugacy classes. The conjugacy class of a subgroup H in G will be denoted by [H ].
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1. The kernel of the Lie group action associated with a representation coincides
with the kernel of the representation. Hence, the action is effective iff the repre-
sentation is faithful. The action is neither free nor transitive, because the origin
is invariant. As an example, for the fundamental representation7 of G = SO(3)

on R
3, the orbits are given by the spheres about the origin and the origin itself.

Therefore, the orbit space may be identified with the closed half-line [0,∞). The
stabilizer of a nonzero x ∈ R

3 consists of the rotations about x, hence it is iso-
morphic to SO(2). Since it does not depend on the norm of x, all stabilizers of
nonzero vectors belong to the same orbit type. The stabilizer of the origin is the
whole group.

2. The actions of G on itself by left and right translations are effective, free and tran-
sitive. The restrictions of these actions to a proper Lie subgroup H ⊂ G are still
effective and free but no longer transitive. The orbits are the right and left cosets
of H , respectively. According to Theorem 5.7.2, the orbit space G/H carries in
addition a smooth structure. The action of G on itself by inner automorphisms
is neither free nor transitive, because the unit element is invariant. The kernel
is given by the centre. Hence, the action is effective iff the centre is trivial. The
orbits are called the conjugacy classes of elements of G. The stabilizer of a ∈ G

is the centralizer of a in G. Therefore, the orbit types are given by the conjugacy
classes of those subgroups of G which are centralizers of elements of G. The
orbit space is usually referred to as the adjoint quotient of G.

3. The action of G on the homogeneous space G/H , where H ⊂ G is a nontrivial
closed subgroup, by the induced left translations L̂a is transitive but not free. The
stabilizer of a coset aH , a ∈ G, is given by GaH = aHa−1. Consequently, the
kernel of the action is given by

⋂
a∈G aHa−1. It lies between the intersection of

the centre of G with H and H itself, the latter being the case when H is normal.
4. For the action of G =R on M defined by the flow Φ of a complete vector field X,

the orbit mapping of a point m ∈ M is given by the maximal integral curve Φm.
The stabilizer is Gm = R in case Xm = 0, Gm = ZT in case the maximal in-
tegral curve Φm is periodic with period T , or Gm = {0} otherwise. Since G is
Abelian, the orbit types correspond bijectively to the subgroups which appear as
stabilizers.

Remark 6.1.10 Every Lie group action (M,G,Ψ ) induces a representation of
G on C∞(M) by the algebra automorphisms f �→ Ψ ∗

a−1f , a ∈ G. A function
f ∈ C∞(M) is called invariant under Ψ if it is a fixed point of this representa-
tion, that is, if Ψ ∗

a f = f for all a ∈ G. This means that f is equivariant with respect
to the trivial action of G on R. The invariant functions form a subalgebra which
will be denoted by C∞(M)G. Analogously, Ψ induces representations of G on the
various types of smooth tensor fields by T �→ Ψa∗T . T is said to be invariant if it
is invariant under this representation. This is equivalent to being equivariant as a
mapping from M to the corresponding tensor bundle, where the latter carries the in-
duced action of Example 6.1.2/5. More generally, a section of a G-vector bundle is

7Given by matrix multiplication of SO(3)-matrices with elements of R3.
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said to be invariant if it is invariant under the transport operators of the vector bundle
automorphisms provided by the G-action, and this is equivalent to being equivariant
with respect to the action of G on the bundle manifold and the induced action on
the base manifold.

Exercises
6.1.1 Verify the axioms of a Lie group action for the examples of 6.1.2.
6.1.2 Prove Formula (6.1.14). Try to find a counterexample for noncompact H .
6.1.3 Verify the statements of Example 6.1.9.

6.2 Killing Vector Fields

Throughout this section, let (M,G,Ψ ) be a Lie group action and let g be the Lie
algebra of G. For A ∈ g, we have

Ψexp(tA) ◦ Ψexp(sA) = Ψexp(tA) exp(sA) = Ψexp((t+s)A),

hence the assignment (m, t) �→ Ψexp(tA)(m) defines a one-parameter group of dif-
feomorphisms of M , that is, a complete flow.

Definition 6.2.1 (Killing vector field) The vector field on M defined by the flow
Ψexp(tA) is called the Killing vector field generated by A. It will be denoted by A∗.

The value of A∗ at m ∈ M may be expressed in several equivalent ways:

(A∗)m = d

dt �0

Ψexp(tA)(m) = d

dt �0

Ψm

(
exp(tA)

) = Ψ ′
m(A). (6.2.1)

Proposition 6.2.2 Let (M,G,Ψ ) be a Lie group action.

1. For every a ∈ G and A ∈ g, there holds Ψa∗A∗ = (Ad(a)A)∗ in case Ψ is a left
action and Ψa∗A∗ = (Ad(a−1)A)∗ in case Ψ is a right action.

2. The mapping g → X(M) given by A �→ A∗ is an anti-homomorphism of Lie al-
gebras if Ψ is a left action and a homomorphism if Ψ is a right action. The kernel
of this mapping coincides with the Lie algebra of ker(Ψ ) ⊂ G. In particular, if
Ψ is effective, the mapping A �→ A∗ is injective.

3. For m ∈ M , the Lie algebra of Gm is given by gm = {A ∈ g: (A∗)m = 0}. In
particular, if Ψ is free, then A∗ cannot have critical points.

Proof 1. Due to Proposition 3.2.13/2, the flow of Ψa∗A∗ is Ψa ◦ Ψexp(tA) ◦ Ψa−1 ,
which is equal to Ψexp(tAd(a)A) if Ψ is a left action and to Ψexp(tAd(a−1)A) if Ψ is a
right action.

2. We give the proof for the case where Ψ is a left action. Linearity is obvious
from (6.2.1). According to Proposition 3.3.2/2 and point 1, for A,B ∈ g, we have

[A∗,B∗]m = (LA∗B∗)m = d

dt �0

(Ψexp(−tA)∗B∗)m = Ψ ′
m

(
d

dt �0

(
Ad

{
exp(−tA)

}
B

))
.



6.2 Killing Vector Fields 277

Now, (5.4.2) and Proposition 5.4.3 yield [A∗,B∗] = −[A,B]∗. Furthermore, A be-
longs to the Lie algebra of ker(Ψ ) iff Ψexp(tA) = idM for all t . Since Ψexp(tA) is the
flow of A∗, this is equivalent to A∗ = 0.

3. Let A ∈ g. By Theorem 5.6.8, A belongs to the Lie algebra gm of Gm iff
Ψexp(tA)(m) = m for all t , that is, iff m is an equilibrium of A∗. �

Remark 6.2.3 According to point 3, m is an equilibrium of A∗ for all A ∈ gm. Thus,
by Formula (3.6.2), the representation of gm on TmM induced by the isotropy rep-
resentation of Gm is given by

gm → End(TmM), A �→ d

dt �0

(Ψexp(tA))
′
m = Hessm(A∗).

It is referred to as the isotropy representation of gm.

Proposition 6.2.4 (Transformation properties)

1. Let (Mi,Gi,Ψ
i), i = 1,2, be Lie group actions and let ϕ : M1 → M2, � : G1 →

G2 define a morphism. The Killing vector field on M1 generated by an element A

of the Lie algebra of G1 is ϕ-related to the Killing vector field on M2 generated
by d�(A).

2. Let (Mi,Ψ
i), i = 1,2, be G-manifolds and let ϕ : M1 → M2 be equivariant. For

every A ∈ g, the Killing vector fields A
Mi∗ on Mi generated by A are ϕ-related.

If ϕ is a diffeomorphism, points 1 and 2 yield, respectively,
(
d�(A)

)
∗ = ϕ∗A∗, AM2∗ = ϕ∗AM1∗ . (6.2.2)

Proof According to Proposition 5.3.6, for m ∈ M1, we have

(ϕ′ ◦ A∗)(m) = d

dt �0

ϕ ◦ Ψ 1
expG1

(tA)(m)

= d

dt �0

Ψ 2
�(expG1

(tA)) ◦ ϕ(m)

= d

dt �0

Ψ 2
expG2

(td�(A)) ◦ ϕ(m).

This yields the first assertion. The second one follows by letting G1 = G2 = G and
� = idG. �

Example 6.2.5 Proofs are left to the reader (Exercise 6.2.1).

1. For the left action of G associated with a representation � : G → GL(V ) on a
finite-dimensional K-vector space V , the Killing vector field A∗ is the linear
vector field on V corresponding to the endomorphism d�(A). In particular, for
the adjoint and the coadjoint actions we obtain

AAd∗ = ad(A), AAd∗
∗ = ad∗(A), A ∈ g, (6.2.3)

and for the identical representation of a classical group G ⊂ GL(V ), under the
natural identification of g with a Lie subalgebra of gl(V ), we have A∗ = A.
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2. For the action of G on itself by right translations we get A∗ = A. That is,
the homomorphism g → X(G) of Proposition 6.2.2/2 coincides with the natu-
ral inclusion mapping. For the action of G on itself by left translations, A∗ is
the right-invariant vector field on G generated by A ∈ T1G. According to Re-
mark 5.2.21/3, this means that the anti-homomorphism g → X(G) is given by
the natural inclusion mapping, composed with − inv∗. For the action of G on
itself by inner automorphisms, A∗ is the difference between the right and the
left invariant vector fields generated by A and hence the anti-homomorphism
g →X(G) is given by −(1 + inv∗).

3. Let H ⊂ G be a closed subgroup and let π : G → G/H denote the natural
projection. For the action of G on the homogeneous space G/H by induced
left translations, Proposition 6.2.4/2 and the previous result yield (A∗)π(a) =
π ′ ◦ R′

aA for all a ∈ G and A ∈ g.
4. For the action of G = R on M defined by the flow of a complete vector field X,

under the identification of the Lie algebra of R with R itself, the homomorphism
g →X(M) is given by s �→ s∗ = sX.

By analogy with Lie group actions and their morphisms one defines

Definition 6.2.6 (Lie algebra action)

1. An action of a Lie algebra g on a smooth manifold M is a mapping ψ : g →
X(M) which is either an anti-homomorphism or a homomorphism of Lie alge-
bras. In the first case, ψ is called a left action and in the second case a right
action. The triple (M,g,ψ) is referred to as a Lie algebra action and the pair
(M,ψ) as a g-manifold.

2. A morphism of Lie algebra actions (M1,g1,ψ1) and (M2,g2,ψ2) (both left or
both right) consists of a smooth mapping ϕ : M1 → M2 and a Lie algebra ho-
momorphism � : g1 → g2 such that the vector fields ψ1(A) and ψ2 ◦ �(A) are
ϕ-related for all A ∈ g1. If g1 = g2 = g and � = id, ϕ is called equivariant or,
equivalently, a morphism of g-manifolds.

Note that the induced mapping g× M → TM , (A,m) �→ (ψ(A))m, is automati-
cally smooth. Using the notion of Lie algebra action, Propositions 6.2.2/2 and 6.2.4
may be restated as follows (Exercise 6.2.3).

Corollary 6.2.7

1. The Killing vector fields of a left or right Lie group action (M,G,Ψ ) induce a
left or right action, respectively, of the Lie algebra g of G on M .

2. If (ϕ,�) is a morphism of Lie group actions, then (ϕ,d�) is a morphism of the
corresponding Lie algebra actions. If ϕ is a morphism of G-manifolds, then it is
also a morphism of the corresponding g-manifolds.

Next, consider the distribution Dg on M spanned by the Killing vector fields,
that is,

Dg
m = {

(A∗)m ∈ TmM : A ∈ g
}
.
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According to points 1 and 3 of Proposition 6.2.2, we have

D
g

Ψa(m) = Ψ ′
aD

g
m (6.2.4)

for all a ∈ G, and dim(D
g
m) = dim(G) − dim(Gm), respectively. In particular, Dg

need not be regular; this is so, however, if Ψ is free or transitive. We will show that
Dg is integrable and that the integral manifolds are given by the orbits. For that
purpose, recall the mapping Ψ̂m : G/Gm → M , defined by (6.1.8).

Theorem 6.2.8 (Orbit Theorem) Let (M,G,Ψ ) be a Lie group action. For every
m ∈ M , (G/Gm, Ψ̂m) is an initial submanifold of M whose connected components
are maximal integral manifolds of Dg. In particular, Dg is integrable.

Proof We give the proof for the case of a left action. Let m ∈ M and let πG : G →
G/Gm denote the natural projection. First, we show that Ψ̂m is an injective immer-
sion. Injectivity was already noted before. Since Ψ̂m ◦ πG = Ψm, for (Ψ̂m)′aGm

to be
injective for all aGm ∈ G/Gm it suffices to show that

ker(Ψm)′a ⊂ ker
(
πG

)′
a

for all a ∈ G. To see this, let A ∈ g be such that (Ψm)′Aa = 0. Due to

(Ψm)′Aa = (Ψm)′ ◦ (La)
′A1 = (Ψa)

′ ◦ (Ψm)′A1 = (Ψa)
′(A∗)m, (6.2.5)

and since (Ψa)
′ is bijective, we obtain (A∗)m = 0 and hence A ∈ gm by Proposi-

tion 6.2.2/3. Then, exp(tA) ∈ Gm for all t ∈R and hence
(
πG

)′
a
(Aa) = d

dt �0

πG
(
a exp(tA)

) = 0.

This proves that Ψ̂m is an injective immersion.
Second, we show that the connected components of (G/Gm, Ψ̂m) are maximal

integral manifolds of Dg. For simplicity, we may assume that G and hence G/Gm

are connected. Due to πG being a submersion, for (G/Gm, Ψ̂m) to be an integral
manifold of Dg it suffices that im((Ψm)′a) = D

g

Ψa(m) for all a ∈ G. The latter is true,
indeed, because using (6.2.5) and Proposition 6.2.2/1, for A ∈ g one finds

(Ψm)′Aa = (Ψa)
′(A∗)m = (Ψa∗A∗)Ψa(m) = ({

Ad(a)A
}
∗
)
Ψa(m)

and hence (A∗)Ψa(m) = (Ψm)′(Ad(a−1)A)m. Maximality follows from the fact that
the images of the connected components of the submanifolds (G/Gm, Ψ̂m), m ∈ M ,
establish a disjoint decomposition of M . Finally, since m was arbitrary, we can
conclude that Dg is integrable. Hence, Theorem 3.5.15 yields that (G/Gm, Ψ̂m) is
initial. �

As a consequence of Theorem 6.2.8, according to Remark 1.6.13/5, the smooth
structures induced on an orbit O by the submanifolds (G/Gm, Ψ̂m), m ∈ O , coin-
cide for all m, so that we can view O itself as a submanifold.8 Then, Theorem 6.2.8
implies

8There is also a direct argument proving this, see Exercise 6.2.4.
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Corollary 6.2.9 The orbits of Ψ are initial submanifolds of M whose connected
components are maximal integral manifolds of Dg.9

Remark 6.2.10

1. Let (M,G,Ψ ) be a Lie group action, let O be an orbit and let m ∈ O . Consider
the isotropy representation of Gm on TmM , cf. Proposition 6.1.5/4. By Proposi-
tion 6.2.2/1,

(Ψa)
′
m(A∗)m = (Ψa∗A∗)m = ((

Ad(a)A
)
∗
)
m
. (6.2.6)

Therefore, the subspace TmO of TmM is invariant and the isotropy representa-
tion descends to a representation on NmO , which for reasons that will become
clear later is called the slice representation at m. By construction, the natural
projection TmM → NmO intertwines the isotropy representation with the slice
representation.

On the other hand, the isotropy representation restricted to TmO can be
brought to the following normal form. By Theorem 6.2.8, the mapping (Ψm)′1 :
g → TmM has image TmO . By point 3 of Proposition 6.2.2 it has kernel gm.
Hence, this mapping induces a vector space isomorphism

TmO ∼= g/gm. (6.2.7)

In view of (6.2.1), Formula (6.2.6) implies that this isomorphism intertwines the
representation of Gm on g/gm induced by the adjoint representation with the
isotropy representation on TmO (Exercise 6.2.5).

2. Let (M,G,Ψ ) be a Lie group action and let O be an orbit. Since O is invariant
under Ψ and since it is an initial submanifold of M , Ψ restricts to a transitive
action of G on O . Since the connected components of O are integral manifolds
of Dg, (6.2.4) implies that the action of G on TM induced by Ψ leaves invariant
the submanifold TO .10 The restriction of this action to the invariant submanifold
(TM)�O induces an action Ψ N of G on the normal bundle NO = (TM)�O/TO

by the vector bundle automorphisms11

Ψ N
a

([X]) := [
Ψ ′

a(X)
]
, (6.2.8)

where a ∈ G and X ∈ TM . The natural projections (TM)�O → NO → O are
equivariant. Equivariance of the second projection implies that Ψ N restricts to
an action of Gm on NmO for every m ∈ O . This action coincides with the slice
representation at m.

3. A manifold carrying a transitive Lie group action is said to be homogeneous.
The Orbit Theorem 6.2.8 yields that every homogeneous manifold is diffeomor-
phic to G/H for some Lie group G and some closed subgroup H of G. The

9In particular, according to Proposition 3.5.21, they form the foliation associated with Dg.
10Both of these statements follow as well by viewing O as the image of the submanifold

(G/Gm, Ψ̂m) and using that Ψ̂m is G-equivariant.
11Smoothness follows from the existence of local sections of the submersion (TM)�O → NO .



6.3 Proper Actions 281

diffeomorphism provided by this theorem is obviously equivariant with respect
to the action of G on G/H by the induced translations L̂a (in the case of a left
action) or R̂a (in the case of a right action). Hence, it is an isomorphism of Lie
group actions. In this sense, all of the homogeneous spaces discussed in Sect. 5.7
constitute homogeneous manifolds. This explains their name. In the spirit of Re-
mark 6.1.3, the notion of homogeneous manifold may be further specialized, e.g.,
to that of homogeneous Riemannian manifold (a Riemannian manifold carrying
a transitive Lie group action by isometries).

Exercises
6.2.1 Provide proofs for the statements of Example 6.2.5.
6.2.2 Calculate the Killing vector fields for the natural action

(a) of SO(2) on R
2,

(b) of SO(3) on R
3,

(c) of SU(2) on C
2.

For SO(3) and SU(2), use the bases given in Example 5.2.8. Read off the
Killing vector fields on the corresponding unit spheres in R

3 and C
2, respec-

tively.
6.2.3 Verify the statements of Corollary 6.2.7.
6.2.4 Let (M,G,Ψ ) be a left Lie group action. Show that for every m ∈ M and

a ∈ G, Ra−1 descends to a diffeomorphism ϕ : G/Gm → G/GΨa(m) satisfy-
ing Ψ̂Ψa(m) ◦ϕ = Ψ̂m. Use this for showing that the smooth structures induced
on an orbit O by means of the submanifolds (G/Gm, Ψ̂m), m ∈ O , do not
depend on the choice of m. (This proof does not use the fact that orbits are
initial submanifolds.)

6.2.5 Use Proposition 6.2.2/1 and Formula (6.2.1) to show that the vector space
isomorphism g/gm

∼= TmO induced by the mapping (Ψm)′1 : g → TmM in-
tertwines the representation of Gm on g/gm induced by the adjoint represen-
tation with the isotropy representation on TmO , cf. Remark 6.2.10/1.

6.3 Proper Actions

Lie group actions possessing the following topological property behave particularly
well. For example, they allow for local models in terms of vector bundles. This has
important consequences for the structure of both the manifold carrying the action
and the orbit space.

Definition 6.3.1 (Proper action)

1. A continuous mapping of locally compact Hausdorff spaces (in particular, of
manifolds) is proper if the preimages of compact subsets are compact.12

12More generally, this definition applies when the domain is Hausdorff and the range is locally
compact Hausdorff [53]. Compactness of subsets is understood with respect to the relative topol-
ogy.
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2. A Lie group action (M,G,Ψ ) is called proper if the following mapping is proper:

Ψext : G × M → M × M, Ψext(a,m) := (
Ψa(m),m

)
. (6.3.1)

We give two equivalent characterizations of proper mappings. Note that since
manifolds are metrizable, one may use the criterion that a subset is compact iff
every sequence contains a subsequence converging in that subset.

Lemma 6.3.2 For a continuous mapping ϕ : M → N between manifolds, the fol-
lowing statements are equivalent.

1. The mapping ϕ is proper.
2. Any sequence in M whose image converges in N contains a convergent subse-

quence.
3. The mapping ϕ is closed and ϕ−1(p) is compact for all p ∈ N .

Proof 1 ⇒ 2: Let {mn} be a sequence in M such that {ϕ(mn)} converges in N .
Since N is locally compact, there exist n0 ∈ N and a compact subset K ⊂ N such
that ϕ(mn) ∈ K for all n ≥ n0. Then, mn ∈ ϕ−1(K) for all n ≥ n0. Since ϕ is proper,
ϕ−1(K) is compact, hence {mn} contains a convergent subsequence.

2 ⇒ 3: The mapping ϕ is closed: let K ⊂ M be closed. Let {pn} be a sequence in
ϕ(K) which converges to some p ∈ N . For every n there is mn ∈ K such that pn =
ϕ(mn). By point 2, {mn} contains a subsequence converging to some m ∈ M . Since
K is closed, m ∈ K . Then, p = ϕ(m) ∈ ϕ(K). Thus, ϕ(K) is closed. Compactness
of ϕ−1(p) for p ∈ N is obvious.

3 ⇒ 1: Let K ⊂ N be compact and let {Ui : i ∈ I } be an open covering of
ϕ−1(K). Let p ∈ K . Since {Ui : i ∈ I } is an open covering of ϕ−1(p) and since
the latter is compact, there is a finite subcovering {Ui : i ∈ Ip}. Let Vp denote the
complement in N of the image under ϕ of the complement of

⋃
i∈Ip

Ui in M . By
construction, p ∈ Vp . Since ϕ is closed, Vp is open. Hence, {Vp : p ∈ K} is an
open covering of K . Since K is compact, there is a finite subcovering labelled by
p1, . . . , pr . Then, {Ui : i ∈ Ip1 ∪ · · · ∪ Ipr } is a finite subcovering of {Ui : i ∈ I }. �

Lemma 6.3.2 implies the following equivalent characterizations of a proper ac-
tion.

Corollary 6.3.3 For a Lie group action (M,G,Ψ ), the following statements are
equivalent.

1. The action is proper.
2. If {an} is a sequence in G and {mn} is a sequence in M such that {mn} and

{Ψan(mn)} converge, then {an} contains a convergent subsequence.
3. The mapping Ψext is closed and all stabilizers of Ψ are compact.

Proper actions have the following elementary topological properties.

Proposition 6.3.4 Let (M,G,Ψ ) be a proper Lie group action.
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1. The restriction of Ψ to the product of a closed subgroup H ⊂ G with an H -
invariant initial13 submanifold is proper.

2. The orbit mapping Ψm is proper for every m ∈ M .
3. The orbit space M/G is Hausdorff.

Proof 1. We apply Corollary 6.3.3/2. Without loss of generality, we may assume
that the subgroup and the submanifold are given by subsets. Thus, let H ⊂ G be a
closed subgroup and let N ⊂ M be an H -invariant initial submanifold. Let {an} and
{mn} be sequences in H and N such that {mn} and {Ψan(mn)} converge in N . Since
N is a submanifold, the natural inclusion mapping N → M is smooth and hence
continuous. Therefore, {mn} and {Ψan(mn)} converge in M . Since Ψ is proper, {an}
contains a subsequence which converges in G. Since H is closed, the limit belongs
to H .

2. We apply Lemma 6.3.2/2. Let {an} be a sequence in G such that {Ψm(an)}
converges. Then, the sequences {an} and {mn = m} satisfy the assumption of Corol-
lary 6.3.3/2. Since Ψ is proper, it follows that {an} contains a convergent subse-
quence.

3. The argument is analogous to that for homogeneous spaces, cf. Lemma 5.7.1/3.
Denote the natural projection by π : M → M/G. Let m1,m2 ∈ M be such that
π(m1) �= π(m2). Then, (m1,m2) /∈ im(Ψext). Since im(Ψext) is closed in M × M ,
there exist open neighbourhoods Ui of mi in M such that (U1 ×U2)∩ im(Ψext) =∅.
Then, π(U1) ∩ π(U2) = ∅. Since, by Proposition 6.1.5/2, the mapping π is open,
π(Ui) is a neighbourhood of π(mi), i = 1,2. �

The Orbit Theorem 6.2.8 and point 2 of Proposition 6.3.4 imply

Corollary 6.3.5 The orbits of a proper Lie group action are closed embedded sub-
manifolds.

Proof Let m ∈ M . By Proposition 6.3.4/2 and Lemma 6.3.2/3, Ψm is closed. Hence,
the image Ψm(G) is closed and the induced mapping Ψ̂m : G/Gm → M is closed.
Since the latter is bijective onto Ψm(G), it is open onto Ψm(G) in the relative topol-
ogy induced from M . �

Remark 6.3.6 Let (M,G,Ψ ) be a proper Lie group action, let O be an orbit and let
m ∈ O . The fact that Gm is compact has the following immediate consequences for
the isotropy representation.

1. By Proposition 5.5.6, TmM admits a Gm-invariant scalar product.
2. The orthogonal complement (TmO)⊥ of TmO in TmM with respect to this scalar

product is invariant under the isotropy representation. Hence, the isotropy repre-
sentation decomposes into the direct sum

TmM ∼= TmO ⊕ (TmO)⊥.

13The assumption that the submanifold be initial is made to ensure that the restricted action is
smooth, cf. Example 6.1.2/7.
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3. The natural projection TmM → NmO restricts to an isomorphism (TmO)⊥ →
NmO which intertwines the isotropy representation induced on (TmO)⊥ with the
slice representation.

4. Points 2 and 3 imply that there exists a vector space isomorphism

TmM ∼= TmO ⊕ NmO (6.3.2)

intertwining the isotropy representation with the direct sum of the isotropy rep-
resentation on TmO and the slice representation.

Next, we discuss the tool of averaging. Depending on whether Ψ is a left or
a right action, choose a left or a right-invariant volume form da on G, cf. Corol-
lary 5.5.4. Let T be a smooth tensor field on M of type (p, q) with compact support.
Due to Proposition 6.3.4/2, for every m ∈ M , the smooth mapping G → (T

q
pM)m

given by a �→ (Ψa∗T )m has compact support (Ψ −1
m (supp(T )))−1 ⊂ G. Hence, one

can define a mapping T G : M → T
q
pM by

T G
m :=

∫

G

(Ψa∗T )m da,

where the integrand is a differential form on G of maximal degree with values in the
finite-dimensional real vector space (T

q
pM)m. The reader may convince himself that

the local representative of T G with respect to a chart (U,κ) on M and the induced
chart on T

q
pM is given by a system of real-valued functions on κ(U) each of which

is obtained by integrating a compactly supported smooth function on G × κ(U)

over the first variable. Thus, T G is a smooth tensor field of the same type as T . By
construction, T G is invariant and supp(T G) = G · supp(T ). We call T G the average
of T with respect to Ψ . Since the choice of da is unique up to a nonzero real factor,
so is the average. If G is compact, one may fix this factor by requiring that G have
unit volume. Note that taking the average is a linear operation but it is obviously not
compatible with the multiplication of tensor fields.

Proposition 6.3.7 Let (M,G,Ψ ) be a proper Lie group action.

1. The invariant smooth functions separate the points of M/G.14

2. Every covering of M by invariant open subsets admits a countable subordinate
partition of unity by invariant smooth functions.

3. There exists an invariant Riemannian metric on M .

Proof Let π : M → M/G denote the natural projection.
1. Let m1,m2 ∈ M be such that π(m1) �= π(m2). Since the orbit G ·m2 is closed,

using a local chart at m1 one can construct a smooth function f ≥ 0 on M with com-
pact support such that f (m1) = 1 and supp(f ) ∩ (G · m2) = ∅. Then, the average
satisfies f G(m1) > 0 and f G(m2) = 0.

14That is, for all m1,m2 ∈ M such that G · m1 �= G · m2, there is f ∈ C∞(M)G with f (m1) �=
f (m2).
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2. Let {Uj } be a covering of M by invariant open subsets. Then, {π(Uj )} is an
open covering of M/G. Since, by Propositions 6.1.5/3 and 6.3.4/3, M/G is locally
compact, second countable and Hausdorff, there exists a countable subordinate open
covering {Vi : i ∈ I ⊂N} which is locally finite, see for example [302, Lemma 1.9].
Then, {π−1(Vi) : i ∈ I } is a locally finite covering of M by invariant open subsets,
subordinate to {Uj }. According to Proposition 1.3.7, there exists a partition of unity
{fi,α : (i, α) ∈ A ⊂ I × N} with compact supports such that supp(fi,α) ⊂ π−1(Vi)

for all (i, α) ∈ A. By passing to the averages f G
i,α we obtain a family of invariant

smooth functions. However, these functions need no longer add up to 1 and the
family of their supports need no longer be locally finite. This can be remedied by
an appropriate summation as follows. For f ∈ C∞(M), let f (k)(m) denote the k-th
order tangent mapping at m, viewed as a k-linear mapping TmM ×· · ·×TmM →R,
and let ‖f (k)(m)‖ denote the operator norm of this mapping with respect to a chosen
Riemannian metric on M , cf. Proposition 4.4.2. Define

Ci,α := sup
{∥∥f

(k)
i,α (m)

∥∥ : 0 ≤ k ≤ α
}
, fi(m) :=

∞∑

α=0

2−αC−1
i,α f G

i,α(m).

The latter series converges absolutely for all m ∈ M , and so do all formal deriva-
tives, hence fi is well-defined and smooth.15 By construction, fi is invariant and
supp(fi) ⊂ π−1(Vi). In particular, the family {supp(fi) : i ∈ I } is a locally finite
covering of M . Hence,

∑
i∈I fi(m) is well-defined for all m and by dividing fi(m)

by this sum one finally obtains the desired partition of unity.
3. Choose a countable atlas {(Ui, κi) : i ∈ I } on M such that the closures of the Ui

are compact and carry out the construction of the symmetric second-order covariant
tensor fields gi , i ∈ I , as in the proof of Proposition 4.4.2. Averaging yields invariant
tensor fields gG

i . As noted in the proof of point 2, the open covering {π(supp(gi ))}
of M/G admits a subordinate countable, locally finite covering {Vj : j ∈ J }. For
each j , choose ij so that Vj ⊂ supp(gij ) and define g(m) := ∑

j∈J g
G
ij

(m). This is
an invariant smooth second-order covariant tensor field on M . Since on the interior
of their supports, the gi are Riemannian metrics, and since averaging does not affect
this property, g is a Riemannian metric.16 �

Example 6.3.8

1. Due to Corollary 6.3.3/2, for an action to be proper it suffices that G be compact.
If M is compact, then this condition is also necessary. In particular, the action
induced by the flow of a complete vector field on a compact manifold cannot be
proper.

2. The action associated with a representation of a Lie group G on a K-vector space
V is proper iff G is compact, because the stabilizer of the origin is G. This
applies, in particular, to the adjoint representation.

15In fact, the construction is designed so that the sequence of smooth functions, given by the partial
sums, converges in an appropriate topology on C∞(M). For the latter, see e.g. [211].
16For an alternative proof, see Exercise 6.3.1.
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3. The action of G on itself by left or right translation is proper: let {an} and {bn} be
sequences in G such that bn → b and anbn → b̃. Then, an = (anbn)b

−1
n → b̃b−1.

The action of G on itself by inner automorphisms is proper iff G is compact,
because the stabilizer of the unit element is G. By Proposition 6.3.4/1, these
statements carry over to the corresponding induced actions of a closed subgroup
on G.

Remark 6.3.9 Let (M1,Ψ
1) and (M2,Ψ

2) be G-manifolds and let ϕ : M1 → M2 be
equivariant. If Ψ 2 is proper, then Ψ 1 is proper, too: let {an} and {mn} be sequences
in G and M1, respectively, such that {mn} and {Ψ 1

an
(mn)} converge. Then, {ϕ(mn)}

and {Ψ 2
an

(ϕ(mn))} also converge and thus {an} contains a convergent subsequence.
This has the following consequences.

1. If an action is proper, so is the induced action on the tensor bundles.
2. The direct product of G-manifolds is proper if one of the factors is proper.

Exercises
6.3.1 Prove assertion 3 of Proposition 6.3.7, using the following ingredients: a Rie-

mannian metric on M , a partition of unity {fi : i ∈ I ⊂ N} such that supp(fi)

is compact and contained in the interior of supp(fi+1) for all i, and an in-
variant partition of unity subordinate to the covering of M by the interiors of
ΨG(supp(fi)).

6.3.2 Let (M,G,Ψ ) be a Lie group action with G compact and let m ∈ M be a
fixed point of Ψ , i.e., Gm = G. Show that every neighbourhood of m contains
an invariant open neighbourhood.

6.3.3 Let (M,G,Ψ ) be a proper Lie group action. Show that for every m ∈ M , the
isotropy representation at m admits an invariant scalar product.

6.4 The Tubular Neighbourhood Theorem

The Tubular Neighbourhood Theorem, or Slice Theorem, is one of the basic tools
in the theory of proper Lie group actions. It is due to Montgomery and Yang [215]
and Mostow [227] for compact Lie group actions and to Koszul [172] and Palais
[233, 234] for proper Lie group actions.17

Recall that a G-vector bundle is a vector bundle endowed with an action of G by
vector bundle automorphisms.

Definition 6.4.1 (Tubular Neighbourhood and Slice) Let (M,G,Ψ ) be a Lie group
action and let O ⊂ M be an orbit.

17The special case of a free compact Lie group action is due to Gleason [107].
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1. A tubular neighbourhood of O is an equivariant diffeomorphism χ : U → E

from an open invariant neighbourhood U of O in M onto an open neighbourhood
V of the zero section s0 in a G-vector bundle E over O such that χ�O = s0.

2. For m ∈ O , the Gm-invariant neighbourhood Vm := V ∩ Em of the origin in Em

is called the linear slice of χ at m and the Gm-invariant embedded submanifold
Um := χ−1(Vm) of M is called the slice of χ at m.

One says that the G-vector bundle E provides a local normal form for Ψ near O .

Remark 6.4.2

1. Recall from Remark 6.2.10/2 that Ψ induces an action Ψ N of G on the bundle
manifold of the normal bundle NO , turning NO into a G-vector bundle. We will
show below that one may always choose E = NO .

2. Let m ∈ O . Since the orbit mapping G/Gm → O induced by m is an equivari-
ant diffeomorphism, one might as well assume E to be a G-vector bundle over
G/Gm. In this case, the requirement χ�O = s0 reduces to χ(m) = s0([1]).

3. The slices Um, m ∈ M , of a tubular neighbourhood χ : U → E of O have the
following properties.
(a) G · Um = U and Um is closed in U .
(b) If a ∈ G satisfies Ψa(Um) ∩ Um �= ∅, then a ∈ Gm.
(c) Um intersects every orbit in U transversally.
The proof consists in showing that the fibres Em of the G-vector bundle E have
these properties. We leave the details to the reader (Exercise 6.4.1).

Theorem 6.4.3 (Tubular Neighbourhood Theorem) Every orbit of a proper Lie
group action admits a tubular neighbourhood.

Proof To be definite, we give the proof for a left action. As noted above, we will
construct a tubular neighbourhood by means of the normal bundle NO and the ac-
tion Ψ N. Choose a point m ∈ O . The plan of the proof can be summarized in the
following commutative diagram,

G × M

Ψ

G × Um
⊃ idG ×ϕ

ψ

G × NmO
⊂

ψN

G × NO

Ψ N

M U
⊃ χ

NO
= NO

(6.4.1)

whose ingredients will be constructed step by step and which will ultimately de-
fine the desired diffeomorphism χ . We start with constructing the mapping ϕ :
Um → NmO . According to Remark 6.3.6/1, we may choose a Gm-invariant scalar
product on TmM . Let (TmO)⊥ denote the corresponding orthogonal complement18

of TmO .

18Any Gm-invariant complement will do.
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Lemma 6.4.4 There exists a Gm-invariant embedded submanifold Um of M con-
taining m such that

TmUm = (TmO)⊥

and a Gm-equivariant diffeomorphism ϕ from Um onto a Gm-invariant open neigh-
bourhood of the origin in NmO such that ϕ(m) = 0.

Proof of Lemma 6.4.4 Clearly, there exists a diffeomorphism ϕ1 from an open
neighbourhood W1 of m in M onto an open neighbourhood of the origin in TmM

satisfying ϕ1(m) = 0 and

(ϕ1)
′
m = idTmM . (6.4.2)

According to Exercise 6.3.2, W1 may be chosen to be Gm-invariant. Using the
unique invariant volume form da of unit volume on Gm, cf. Corollary 5.5.9, we
take the average

ϕ
Gm

1 : W1 → TmM, ϕ
Gm

1 (p) :=
∫

Gm

(
(Ψa)

′
m ◦ ϕ1 ◦ Ψa−1(p)

)
da.

Using (6.4.2), for X ∈ TmM , we obtain

(
ϕ

Gm

1

)′
m
(X) =

∫

Gm

(
(Ψa)

′
m ◦ (ϕ1)

′
m ◦ (Ψa−1)

′
m(X)

)
da = X. (6.4.3)

Hence, by the Inverse Mapping Theorem 1.5.7, ϕ
Gm

1 restricts to a diffeomorphism
from an open neighbourhood W2 of m in M onto an open neighbourhood V2 of the
origin in NmO . According to Exercise 6.3.2 again, W2 and hence V2 can be chosen
to be Gm-invariant. We define

Um := (
ϕ

Gm

1

)−1(
V2 ∩ (TmO)⊥

)
, ϕ(m̃) := [

ϕ
Gm

1 (m̃)
]
, m̃ ∈ Um.

Obviously, Um is Gm-invariant and ϕ(m) = 0. Moreover, using (6.4.3), we calculate

TmUm = (
ϕ

Gm

1

)′
m
(TmUm) = T0

(
ϕ

Gm

1 (Um)
) = T0(TmO)⊥ = (TmO)⊥.

Finally, according to Remark 6.3.6/3, the natural projection TmM → NmO restricts
to a Gm-equivariant vector space isomorphism (TmO)⊥ → NmO . Hence, ϕ is a
Gm-equivariant diffeomorphism. This proves Lemma 6.4.4. �

Next, by restriction, the action Ψ induces the mapping

ψ : G × Um → M, ψ(a, m̃) := Ψa(m̃).

Lemma 6.4.5 Um can be shrunk so that

1. ψ is a submersion,
2. If a1, a2 ∈ G and m1,m2 ∈ Um satisfy ψ(a1,m1) = ψ(a2,m2), then a2a

−1
1 ∈ Gm

and m2 = Ψ
a−1

2 a1
(m1).
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Proof of Lemma 6.4.5 Since ψ(a, m̃) = Ψa(ψ(1, m̃)) for all a ∈ G and m̃ ∈ Um, to
prove point 1 it suffices to show that ψ is a submersion at (1,m). Since

imψ ′
(1,m) = TmO + TmUm,

this follows from TmUm = (TmO)⊥. For point 2, we first observe that ψ(a1,m1) =
ψ(a2,m2) implies m2 = Ψ

a−1
2 a1

(m1). Hence, the point to prove is that the latter

implies a−1
2 a1 ∈ Gm if only m1 and m2 are close enough to m. Assume, on the

contrary, that this is false. Then, there exists a sequence {mn} in Um converging to m

and a sequence {an} in G\Gm such that Ψan(mn) belongs to Um and converges to m.
We will show that this implies an ∈ Gm for large enough n, which is a contradiction.

By Corollary 6.3.3/2, {an} contains a subsequence converging to some a ∈ G. By
passing to this subsequence, we may assume that an → a. Then, Ψan(mn) converges
to Ψa(m), so that Ψa(m) = m and hence a ∈ Gm. Using a vector space complement
of gm in g and the exponential mapping of G, we construct a submanifold N of G

of dimension dimG − dimGm which intersects Gm transversally in 1. The Inverse
Mapping Theorem implies that the mapping N × Gm → G induced by the group
multiplication of G restricts to a diffeomorphism between open neighbourhoods
of (1,1) in N × Gm and of 1 in G, respectively. Thus, for large enough n, we can
decompose ana

−1 = bncn with bn ∈ N and cn ∈ Gm, where both the sequences {bn}
and {cn} converge to 1. On the other hand, Ψ restricts to a diffeomorphism from an
open neighbourhood of (1,m) in N × Um onto an open neighbourhood of m in M .
Indeed, since Um is Gm-invariant, we have

Ψ ′
(1,m)(T1N ⊕ TmUm) = Ψ ′

(1,m)(T1G ⊕ TmUm) = TmM.

Hence, the restriction of Ψ ′
(1,m) to the subspace T1N ⊕ TmUm of T1G ⊕ TmUm

is surjective. By counting dimensions one finds that it is also injective. Hence, the
assertion follows from the Inverse Mapping Theorem. Now, since the sequences
{bn} and {cn} both converge to 1, for large enough n, Ψana−1(mn) is the image of
(bn,Ψcn(mn)) under the diffeomorphism just discussed. Since Ψana−1(mn) ∈ Um,
we conclude bn = 1. It follows that ana

−1 ∈ Gm and hence an ∈ Gm, which is the
desired contradiction. This proves Lemma 6.4.5. �

Finally, by restriction, the action Ψ N induces the mapping

ψN : G × NmO → NO, ψN(
a, [X]) := Ψ N

a

([X]). (6.4.4)

Lemma 6.4.6

1. The mapping ψN is a surjective submersion.
2. If a1, a2 ∈ G and [X1], [X2] ∈ NmO satisfy the relation ψN(a1, [X1]) =

ψN(a2, [X2]), then [X2] = Ψ N
a−1

2 a1
([X1]) and a−1

2 a1 ∈ Gm.

Proof of Lemma 6.4.6 1. Surjectivity is due to the fact that Ψ N covers the action of
G on O , which is transitive. Since ψN(a, [X]) = Ψ N

a (ψN(1, [X])) and since ψN is
linear in the second variable, for proving that ψN is a submersion it suffices to show
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that it is a submersion at (1,0). The latter follows by observing that with respect to
the decomposition

TψN(1,0)NO = TmO ⊕ NmO,

provided by Remark 6.3.6/4, the tangent mapping is given by
(
ψN)′

(1,0)

(
A, [X]) = (

(A∗)m, [X]).
2. Since the projection NO → O is equivariant, ψN(a1, [X1]) = ψN(a2, [X2])

implies Ψa1(m) = Ψa2(m) and hence a−1
2 a1 ∈ Gm. The rest is obvious. �

Proof of Theorem 6.4.3 As a consequence of Lemmas 6.4.5/2 and 6.4.6/2 and the
Gm-equivariance of ϕ, there exists a unique injective mapping χ : U → NO such
that the central square in the diagram (6.4.1) commutes. Since ψ is a submersion, χ

is smooth. Since ψN is a submersion, χ has open image V and the inverse mapping
is smooth, too. Thus, χ is a diffeomorphism onto V . Since ψ intertwines the action
of G on G×Um by left translation on the first factor with Ψ and since an analogous
statement holds for ψN, χ is equivariant. This completes the proof of the theorem. �

Remark 6.4.7 (General Tubular Neighbourhood Theorem) The notion of tubular
neighbourhood extends to arbitrary submanifolds P ⊂ M : a tubular neighbour-
hood of P consists of an open neighbourhood U of P in M and a diffeomorphism
χ : U → NP onto an open subset, mapping P onto the zero section. There holds a
general Tubular Neighbourhood Theorem, stating the existence of a tubular neigh-
bourhood for every embedded submanifold. The main difference in the proof is that
in the general situation one does not have a group action to transport a diffeomor-
phism defined in a neighbourhood of some point of P to all of P . Instead, one
chooses some Riemannian metric g, identifies NP with the orthogonal complement
of TP in TM�P and uses the exponential mapping expg associated with g to con-
struct χ . The exponential mapping expg maps an open neighbourhood of the zero
section in TM to M . It is defined by expg(Xm) := γ (1), where γ is the solution
of the geodesic equation of g with initial conditions γ (0) = m and γ̇ (0) = Xm. For
a thorough discussion of the geodesic equation and the corresponding exponential
mapping, we refer to [166] or to volume 2 of this book. Let us add that if one has
already proved the general Tubular Neighbourhood Theorem, it is more natural to
prove Theorem 6.4.3 by the same method, but using a G-invariant Riemannian met-
ric. The latter exists due to Proposition 6.3.7/3.

Exercises
6.4.1 Verify the properties of the slices stated in Remark 6.4.2.

6.5 Free Proper Actions

In the case of a free proper Lie group action, Theorem 6.4.3 allows for constructing
an atlas on the orbit space by means of local slices. This yields
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Corollary 6.5.1 The orbit space M/G of a free proper Lie group action (M,G,Ψ )

admits a unique smooth structure such that the natural projection M → M/G is a
submersion.

Accordingly, if Ψ is free and proper, M/G will be referred to as the orbit mani-
fold of Ψ .

Proof Uniqueness follows from Remark 1.5.16/4. To prove existence, let π : M →
M/G denote the natural projection to equivalence classes. By Proposition 6.3.4/3,
the orbit space M/G is Hausdorff. By Proposition 6.1.5/3, it is second countable.
Let m ∈ M be arbitrary and let O denote the orbit of m. Since the action Ψ is
free, Lemma 6.4.6 implies that the mapping ψm : G × NmO → NO , defined by
Formula (6.4.4), is a diffeomorphism.19 Taking a tubular neighbourhood χ : U →
NO of O and composing χ with ψ−1

m , we obtain a G-equivariant diffeomorphism χ̃

from U onto an open G-invariant neighbourhood of G×{0}, which by G-invariance
must have the form G × Vm for some open neighbourhood Vm of the origin in
NmO . By embedding Vm as the subset {1} × Vm into G × Vm, we obtain a bijective
continuous mapping

Vm → G × Vm
χ̃−1

→ U
π→ Û ,

where Û := π(U) is an open neighbourhood of π(m) in M/G. This mapping is
open, and hence a homeomorphism, because it maps an open subset W of Vm to
the open subset π(χ̃−1(G × W)) of Û . Thus, the inverse of this mapping defines
a local chart (Û , κ̂) on M/G at π(m). The transition mapping between two such
local charts is given by

κ̂2 ◦ κ̂−1
1 : κ̂1(Û1 ∩ Û2) → κ̂2(Û1 ∩ Û2),

κ̂2 ◦ κ̂−1
1

([X]) = pr2 ◦χ̃2 ◦ χ̃−1
1

(
1, [X]).

Hence, it is smooth. Thus, we have constructed a smooth manifold structure on
M/G. In this structure, π is a submersion, because via χ and κ̂ , its restriction to U

corresponds to pr2. �

Remark 6.5.2 Let G be a Lie group and let H ⊂ G be a closed subgroup. The action
of H on G by left or right translation is free and proper, cf. Example 6.3.8/3. Thus,
in this case, Corollary 6.5.1 reproduces Theorem 5.7.2.

Corollary 6.5.1 implies (Exercise 6.5.1)

Corollary 6.5.3 Let (M,G,Ψ ) be a free proper Lie group action.

1. If H ⊂ G is a closed normal subgroup, then Ψ descends to a free proper action
of G/H on M/H and idM induces a diffeomorphism between (M/H)/(G/H)

and M/G.

19More precisely, ψm is an isomorphism of G-vector bundles; in particular, NO is globally trivial.
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2. If (N,ϕ) is a G-invariant embedded submanifold, then the induced action of G

on N is free and proper and (N/G, ϕ̂), with ϕ̂ : N/G → M/G being induced by
ϕ on passing to the quotients, is an embedded submanifold of M/G.

Example 6.5.4

1. The action of G = Z on M =R× (−1,1) defined by Ψk(x, t) := (x +k, (−1)kt)

is free. It is also proper:20 let {kn} and {(xn, tn)} be sequences in Z and R ×
(−1,1), respectively, such that {Ψkn(xn, tn)} and {(xn, tn)} converge. Since

|km − kn| ≤
∥∥(

xn + kn, (−1)kn tn
) − (

xn + km, (−1)kmtn
)∥∥

≤ ∥∥Ψkn(xn, tn) − Ψkm(xm, tm)
∥∥+∥∥(xm, tm) − (xn, tn)

∥∥,

there exists a number n0 > 0 such that kn = kn0 for all n ≥ n0. Hence, {kn} con-
verges, and Ψ is proper. The quotient manifold coincides with the Möbius strip
constructed in Example 1.1.12: the underlying topological spaces coincide by
construction, and the smooth structures coincide, because the natural projection
is a submersion with respect to both of them. Let us add that application of Corol-
lary 6.5.3 to the closed normal subgroup H = 2Z yields that the Möbius strip is
diffeomorphic to the quotient manifold of the free proper action of G/H = Z2
on

M/H =R/2Z× (−1,1) ∼= S1 × (−1,1),

where on S1 × (−1,1), the generator of Z2 maps (α, t) to (−α,−t).
2. Let K = R,C,H and let K1 denote the Lie group given by the unit sphere in K,

that is, R1 = O(1), C1 = U(1) and H1 = Sp(1). The action of G = K1 on M =
K

n is proper, because K1 is compact. Since this action is isometric with respect to
the natural scalar product, it restricts to an action of K1 on the unit sphere Sdn−1,
where d = dimRK. The latter action is in addition free. The quotient manifold
Sdn−1/K1 coincides with the projective space KPn−1, cf. Example 1.1.15; the
argument is the same as under point 1.

3. Let M = O(n). For k < n, application of Corollary 6.5.3 to G = O(n−k)×O(k)

and H = O(n − k) × {1} yields that O(k) acts freely and properly on the Stiefel
manifold SR(k, n), cf. Example 5.7.5, and that the quotient manifold of this ac-
tion is diffeomorphic to the Graßmann manifold GR(k, n), cf. Example 5.7.6.
Similar statements hold in the complex and in the quaternionic case. Combining
this with the diffeomorphism between SK(1, n) and Sdn−1, as well as point 2
above, one obtains that GK(1, n) is diffeomorphic to KPn−1. This has already
been asserted in Example 5.7.6, but the proof was postponed there.

Corollary 6.5.1 implies the following important bundle structures.

Definition 6.5.5 (Principal bundle) Let (P,G,Ψ ) be a free Lie group action, let M

be a manifold and let π : P → M be a smooth mapping. The tuple (P,G,M,Ψ,π)

20A proper action of a discrete group is called a properly discontinuous action.
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is called a principal bundle, if for every m ∈ M there exists a local trivialization
at m, that is, there exist an open neighbourhood W of m and a diffeomorphism
χ : π−1(W) → W × G such that

1. χ intertwines Ψ with the G-action on W × G by translations21 on the factor G,
2. prW ◦χ(p) = π(p) for all p ∈ π−1(W).

Denoting κ := pr2 ◦χ : π−1(W) → G, for a right action Ψ , property 1 can be
rewritten as

κ
(
Ψa(p)

) = κ(p)a, p ∈ π−1(W), a ∈ G.

The group G is called the structure group of P . If G is fixed, P is called a principal
G-bundle. The existence of local trivializations implies that π is a submersion.22

Hence the subsets π−1(m), m ∈ M , are submanifolds, called the fibres of P .
Now, let (P,G,Ψ ) be a free proper Lie group action. Let M be the orbit space,

equipped with the smooth structure provided by Corollary 6.5.1, and let π : P → M

be the natural projection to orbits. Every tubular neighbourhood of an orbit defines
a local trivialization over a neighbourhood of the corresponding point of M . Hence,
the Tubular Neighbourhood Theorem 6.4.3 implies that (P,G,M,Ψ,π) is a princi-
pal bundle. Conversely, if (P,G,M,Ψ,π) is a principal bundle, (P,G,Ψ ) is a free
proper Lie group action, M is diffeomorphic to the orbit space P/G and π corre-
sponds, via this diffeomorphism, to the natural projection to orbits (Exercise 6.5.2).

Now, in addition, let (F,Ξ) be a G-manifold. Without loss of generality, assume
both Ψ and Ξ to be left actions. The direct product action of G on P × F , given by

(
a, (p,f )

) �→ (
Ψa(p),Ξa(f )

)
, (6.5.1)

is obviously free. Due to Remark 6.3.9/2, it is also proper. Hence, by Corollary 6.5.1,
the orbit space

P ×G F := (P × F)/G

inherits a unique smooth structure.

Definition 6.5.6 (Twisted product) The manifold P ×G F is called the twisted prod-
uct of (P,Ψ ) with (F,Ξ).

There are two bundle structures inherent in the twisted product. First, P ×G F

is the base space of the principal bundle associated with the direct product action
(6.5.1) of G on P × F . Second, the natural projection P × F → P is equivariant
and hence induces a smooth mapping

πF : P ×G F → P/G = M.

21Left (right) translations if Ψ is a left (right) action.
22In general, the converse does not hold. A local trivialization is more than a local section, because
it is global along the fibre.
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If s : U → P is a local section of the natural projection P → M , the mapping

U × F → π−1
F (U), (m,f ) �→ [(

s(m),f
)]

, (6.5.2)

is a diffeomorphism projecting to the identical mapping of U (Exercise 6.5.3).
Hence, P ×G F is the total space of a locally trivial fibre bundle23 over M with
typical fibre F .

Definition 6.5.7 (Associated bundle) The locally trivial fibre bundle (P ×G F,

M,πF ) is said to be associated with the principal bundle (P,G,M,Ψ,π) and the
G-manifold (F,Ξ).

In the special case where F is a finite-dimensional K-vector space and Ξ is a
representation of G on F , the associated bundle is a K-vector bundle over M of
dimension dimF .

Remark 6.5.8 Let (M,G,Ψ ) be a proper Lie group action, without loss of general-
ity assumed to be a left action. Let O be an orbit and let m ∈ O . The action of Gm on
G by right translation defines a right principal bundle. After having turned this into
a left principal bundle, we can form the associated real vector bundle G ×Gm NmO ,
where Gm acts on NmO by the slice representation. The action of G on G × NmO

by left translation on the first factor induces a natural G-vector bundle structure on
G ×Gm NmO . As a consequence of Lemma 6.4.6, in this structure, G ×Gm NmO is
isomorphic to NO (Exercise 6.5.4). Thus, every orbit admits a tubular neighbour-
hood taking values in G ×Gm NmO .

More generally, one can prove the following. Let W be a real vector space car-
rying a representation of Gm and let λ : W → TmM be an equivariant injective lin-
ear mapping onto a subspace complementary to TmO . Then, there exists a tubular
neighbourhood χ : U → G ×Gm W of O such that, under the natural identification

T[(1,0)](G ×Gm W) = g/gm ⊕ W,

one has
(
χ−1)′

[(1,0)]
([A],w) = (A∗)m + λ(w), (6.5.3)

see Exercise 6.5.5. This will be used in Sect. 10.4.

Exercises
6.5.1 Prove Corollary 6.5.3.
6.5.2 Let (P,G,M,Ψ,π) be a principal bundle. Prove that (P,G,Ψ ) is a free

proper Lie group action, M is diffeomorphic to the orbit space P/G and π

corresponds, via this diffeomorphism, to the natural projection to orbits.
6.5.3 Show that the mapping (6.5.2) is a diffeomorphism.

23The definition of locally trivial fibre bundle is obtained from that of vector bundle by replacing
“vector space” by “manifold” and “linear mapping” by “smooth mapping”.
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6.5.4 Use Lemma 6.4.6 to show that the G-vector bundles G ×Gm NmO and NO

are isomorphic.
6.5.5 Prove the existence of a tubular neighbourhood χ : U → G×Gm W satisfying

(6.5.3), see Remark 6.5.8.
Hint. Choose Gm-invariant scalar products on TmO and λ(W) and define the
scalar product on TmM as their direct sum. Use this scalar product in the proof
of Theorem 6.4.3 to obtain a tubular neighbourhood χ0 : U → NO . Next,
show that λ extends to a G-vector bundle morphism G ×Gm W → (TM)�O
and that composition with the natural projection (TM)�O → NO yields a
G-vector bundle isomorphism χ1 : G ×Gm W → NO . Then, χ := χ−1

1 ◦ χ0
has the desired properties.

6.6 The Orbit Space

The Tubular Neighbourhood Theorem 6.4.3 implies that the orbit space admits a
disjoint decomposition into manifolds. Let (M,G,Ψ ) be a Lie group action and let
π : M → M̂ = M/G denote the natural projection. Without loss of generality, as-
sume that Ψ is a left action. Recall that M and M̂ decompose into orbit type subsets,
that is, subsets made up by the orbits of a fixed type. The connected components of
the orbit type subsets of M̂ will be referred to as the strata of M̂ . Let S denote the
set of strata. Elements σ ∈ S will be viewed as pairs consisting of a conjugacy class
of subgroups of G and a label for the connected component of the respective orbit
type subset. The actual stratum of M̂ corresponding to σ will be denoted by M̂σ .
For σ ∈ S and for a subgroup H ⊂ G representing24 σ , define

Mσ := π−1(M̂σ ), Mσ,H := Mσ ∩ MH .

The subsets Mσ and Mσ,H will be referred to as the orbit type strata of M and the
isotropy type strata of M , respectively. Unless G is connected, Mσ or Mσ,H need
not be connected. Obviously,

Mσ = G · Mσ,H , Mσ ⊂ M[H ], Mσ,H ⊂ MH .

By restriction, π induces mappings

πσ : Mσ → M̂σ , πσ,H : Mσ,H → M̂σ .

Next, recall that the normalizer of a subgroup H ⊂ G is defined to be

NG(H) := {
a ∈ G : aHa−1 = H

}
. (6.6.1)

This is the maximal subgroup of G containing H as a normal subgroup. If H is
closed, so is NG(H) (Exercise 6.6.1). Theorem 5.6.8 yields that NG(H) is an em-
bedded Lie subgroup of G. Hence, it is a Lie group and H ⊂ NG(H) is a closed
normal subgroup. Denote the quotient Lie group by

ΓH := NG(H)/H.

24That is, representing the conjugacy class of subgroups of G corresponding to σ .
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Due to Ha = aH for all a ∈ NG(H), ΓH acts naturally from the left on G/H :

ΓH × G/H → G/H, (aH,bH) �→ ba−1H.

Since the natural projection NG(H) × G → ΓH × G/H is a direct product of sub-
mersions, this action is smooth.

Proposition 6.6.1 (Structure of strata) Let (M,G,Ψ ) be a proper left Lie group
action. Let σ ∈ S and let H be a subgroup of G representing σ .

1. Mσ and Mσ,H are embedded submanifolds of M . For m ∈ Mσ,H , one has

TmMσ,H = (TmM)H , TmMσ = (TmM)H + Tm(G · m).

2. Ψ induces a free and proper left action of ΓH on Mσ,H .
3. The twisted product Mσ,H ×ΓH

G/H carries a left G-action, given by
(
a,

[
(m,bH)

]) �→ [
(m,abH)

]
,

and Ψ induces a G-equivariant diffeomorphism

ψ : Mσ,H ×ΓH
G/H → Mσ , ψ

([
(m,aH)

]) := Ψa(m).

4. There exists a unique smooth structure on M̂σ such that the natural projection
πσ is a submersion. With respect to this structure, the natural projection πσ,H is
a submersion, too, and the natural inclusion mapping Mσ,H → Mσ descends to
a diffeomorphism from Mσ,H /ΓH onto M̂σ .

Proof 1. According to Remark 1.6.13/3, it suffices to prove the assertion for the
intersections of the subsets Mσ,H and Mσ with a tubular neighbourhood of the orbit
of any of their points. Thus, according to the Tubular Neighbourhood Theorem 6.4.3
and Remark 6.5.8, it is enough to consider the case M = G ×H V , where V is a
finite-dimensional real vector space carrying a representation � of H . To determine
the stabilizers, let a ∈ G and v ∈ V . One has Ψb([(a, v)]) ≡ [(ba, v)] = [(a, v)] iff
ba = ac−1 and v = �(c)v for some c ∈ H . Hence, G[(a,v)] = aHva

−1, where Hv

denotes the stabilizer of v under �. This implies

Mσ = G ×H V H , Mσ,H = NG(H) ×H V H ,

where V H denotes the subspace of fixed points under �. That is, Mσ is a verti-
cal vector subbundle of the vector bundle M = G ×H V and Mσ,H is the restric-
tion of this vertical subbundle to the subset ΓH ⊂ G/H , which is easily seen to
be an embedded submanifold. Hence, the assertion follows from Examples 2.7.2
and 2.7.3. This argument yields in addition that the mapping G × Mσ,H → Mσ

defined by Ψ is a submersion. This will be needed in the proof of assertion 3. To
prove the formulae for the tangent spaces, we write tangent vectors of G ×H V

at [(a, v)] ∈ NG(H) ×H V H in the form pr′(L′
aA,u) with A ∈ g, u ∈ V and with

pr : G × V → G ×H V denoting the natural projection. One can show that such
a tangent vector is invariant under the isotropy representation of G[(a,v)] = H iff
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u ∈ V H and A belongs to the Lie algebra of NG(H) (Exercise 6.6.2). This yields
TmMσ,H = (TmM)H . The formula for TmMσ then follows.

2. Since Mσ,H is invariant under NG(H), Ψ induces an action of NG(H) on
Mσ,H . By Proposition 6.3.4/1, the latter is proper. Since it has kernel H , by Propo-
sition 6.1.5/5, it induces an action of ΓH on Mσ,H . Using Corollary 6.3.3/2, it is
easy to see that the latter remains proper. By construction, it is also free.

3. According to point 2, we can build the twisted product Mσ,H ×ΓH
G/H . Since

the action of G on Mσ,H ×G/H by left translations on the second factor commutes
with the action of ΓH , it descends to an action of G on Mσ,H ×ΓH

G/H , given by the
asserted formula. Now, consider the mapping ψ . It is well-defined: if [(m1, a1H)] =
[(m2, a2H)], then m2 = Ψb(m1) and a2 = a1b

−1 for some b ∈ NG(H), and hence
Ψa2(m2) = Ψa1(m1). Moreover, ψ is G-equivariant. By construction, we have the
commutative diagram

Mσ,H × G Mσ

Mσ,H ×ΓH
G/H

ψ

where the horizontal arrow is given by the action Ψ . Since the vertical arrow is a
submersion, ψ is smooth. Since, as noticed under point 1, the horizontal arrow is a
submersion, ψ is a submersion, too. For dimensional reasons, it is also an immersion
then. Hence, it remains to show that ψ is bijective. Surjectivity is obvious. To prove
injectivity, let m1,m2 ∈ Mσ,H and a1, a2 ∈ G be such that Ψa1(m1) = Ψa2(m2).
Then, b := a−1

2 a1 ∈ NG(H), because both m1 and Ψb(m1) = m2 have stabilizer H .
Thus, a2 = a1b

−1 and hence [(m1, a1H)] = [(m2, a2H)].
4. The natural inclusion mapping Mσ,H → Mσ descends to a mapping

ψ̂ : Mσ,H /ΓH → M̂σ .

Since two points of Mσ,H are conjugate under G iff they are conjugate un-
der NG(H), ψ̂ is a bijection. According to assertion 2 and Corollary 6.5.1,
Mσ,H /ΓH carries a unique smooth structure such that the natural projection
Mσ,H → Mσ,H /ΓH is a submersion. We have the commutative diagram

Mσ,H ×ΓH
G/H

ψ

πG/H

Mσ

πσ

Mσ,H /ΓH
ψ̂

M̂σ

where πG/H is the natural projection in the corresponding associated fibre bundle.
Thus, it is a submersion, and hence it is open. Since Mσ is an embedded subman-
ifold, πσ is open, too. Thus, since ψ is a homeomorphism, so is ψ̂ . We define a
smooth structure on M̂σ by requiring ψ̂ to be a diffeomorphism. In view of the
above diagram, with respect to this structure, πσ is a smooth submersion, and so is
πσ,H . Uniqueness is then obvious. �
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Remark 6.6.2

1. The finer decomposition of the orbit type subsets of M̂ into connected compo-
nents is necessary because the latter may have different dimensions, see [275]
for an example.

2. Since the smooth structure of M̂σ is unique, assertion 4 of Proposition 6.6.1
implies that different choices of the subgroup H ⊂ G representing σ lead to
diffeomorphic orbit manifolds Mσ,H /ΓH . This assertion also generalizes Corol-
lary 6.5.1 to the case where the action is not free, but has a single orbit type.

3. The diffeomorphism ψ̂ turns Mσ,H into a principal bundle over M̂σ with struc-
ture group ΓH and projection πσ,H . Similarly, the diffeomorphisms ψ and ψ̂

turn Mσ into a locally trivial fibre bundle over M̂σ with typical fibre G/H and
projection πσ , associated with that principal bundle.

4. Since πσ : Mσ → M̂σ is a submersion, it admits local sections. Tubular neigh-
bourhoods provide a distinguished class of local sections in the following way.
Let m ∈ Mσ , let χ : U → E be a tubular neighbourhood of the orbit G · m and
let Um be the corresponding slice at m. We have Mσ ∩ Um = Mσ,H ∩ Um, where
H = Gm. Since this subset is mapped under χ onto V H

m ≡ EH
m ∩ Vm, it is an

embedded submanifold of M .25 The standard properties of slices stated in Re-
mark 6.4.2/3 imply that any two distinct points in Mσ ∩ Um belong to different
orbits. It follows that the restriction of the surjective submersion πσ to Mσ ∩ Um

is injective and hence a diffeomorphism onto an open neighbourhood of π(m)

in M̂σ . Then, the inverse of this mapping yields a local section of πσ at πσ (m),
taking values in Um, and composition of this section with χ yields a local chart
on M̂σ at πσ (m), taking values in the open subset V H

m of the vector space EH
m .

5. The family {M̂σ : σ ∈ S} establishes a disjoint decomposition of M̂ into mani-
folds. This decomposition has several additional properties reflecting how these
manifolds fit together. In fact, it is a so-called Whitney stratification, see, for ex-
ample, [238]. A similar statement is true for M and the family {Mσ : σ ∈ S}.
If the orbit space M/G is connected, there exists an orbit type which is mini-
mal in the sense that one (and hence any) of its representatives is conjugate to
a subgroup of the stabilizer of an arbitrary point. The corresponding orbit type
subset of M/G is open and dense in M/G and connected [238, Thm. 4.3.2],
[150, Thm. 2.1], see also [54, Thm. IV.3.1]. It is therefore referred to as the prin-
cipal stratum of M/G. Correspondingly, all the other strata are referred to as the
secondary strata.

6. It is sometimes26 more convenient to work with the connected components of the
submanifolds Mσ and Mσ,H . For a chosen point m0 ∈ Mσ,H , let M

m0
σ and M

m0
σ,H

denote the connected component of Mσ or Mσ,H , respectively, containing m0.
One can show that

Gm0 := {
a ∈ G : Ψa(m0) ∈ Mm0

σ

}
(6.6.2)

25This follows also from the Transversal Mapping Theorem 1.8.2.
26E.g. in the theory of singular symplectic reduction.
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is a closed subgroup of G (Exercise 6.6.3). Since it contains H , we can form the
quotient Lie group

Γ
m0
H := NGm0 (H)/H.

Now, points 1–3 of Proposition 6.6.1 remain true if Mσ , Mσ,H , G and ΓH are
replaced by, respectively, M

m0
σ , M

m0
σ,H , Gm0 and Γ

m0
H . Point 4 can be replaced by

the statement that the natural inclusion mappings M
m0
σ → Mσ and M

m0
σ,H → Mσ

induce diffeomorphisms M
m0
σ /Gm0 → M̂σ and M

m0
σ,H /Γ

m0
H → M̂σ , respectively,

where the smooth structure of M̂σ is the one inherited from Mσ according to
point 4 of the original proposition.

Next, we discuss the concept of a smooth function on the orbit space. Let
(M,G,Ψ ) be a free proper Lie group action. Recall that, in this case, M̂ is a smooth
manifold and π : M → M̂ is a smooth mapping. Since π is surjective, the pull-
back π∗ : C∞(M̂) → C∞(M) is injective. Its image is contained in the subalgebra
C∞(M)G of C∞(M) of G-invariant functions. Conversely, every f ∈ C∞(M)G

defines a function f̂ on M̂ by π∗f̂ = f . Since π is a submersion, f̂ is smooth.
This shows that π∗ induces an algebra isomorphism from C∞(M̂) onto C∞(M)G.
If (M,G,Ψ ) is proper but not free, M̂ does not inherit a smooth structure from M ,
hence a priori we do not have the concept of a smooth function on M̂ . However, the
above observation and the fact that, due to Proposition 6.3.7/1, C∞(M)G separates
the points of M̂ , motivate the following generalization.

Definition 6.6.3 A continuous function f on M̂ is said to be smooth if the function
f ◦ π on M is smooth. The set of smooth functions on M̂ is denoted by C∞(M̂).

Obviously, C∞(M̂) is an associative algebra, with operations being defined
pointwise. By construction, the pull-back π∗ defines an algebra isomorphism from
C∞(M̂) onto C∞(M)G.

Proposition 6.6.4 For every f̂ ∈ C∞(M̂) and every σ ∈ S, f̂�M̂σ
∈ C∞(M̂σ ).

Proof Let H ⊂ G be a subgroup representing σ . By assumption, (π∗f̂ )�Mσ,H
=

π∗
σ,H (f̂�M̂σ

) is a smooth function on Mσ,H . Hence, the above argument for proper

free actions yields that f̂�M̂σ
is a smooth function on M̂σ . �

Example 6.6.5 (Adjoint representations of U(n) and SU(n)) Let G be a compact
Lie group, let M = g and let Ψ be given by the adjoint representation of G. For
subsets S ⊂ G and s ⊂ g, define the centralizers

Cg(S) := {
A ∈ g : Ad(a)A = A for all a ∈ S

}
,

CG(s) := {
a ∈ G : Ad(a)�s = ids

}
.

We will restrict attention to the cases G = U(n) and G = SU(n), starting with U(n).
For a positive integer r , let Sr denote the group of permutations of r elements.
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Let t denote the subspace of diagonal matrices in u(n). Being skew-Hermitian, the
elements of t have purely imaginary entries ix1, . . . , ixn. Let c ⊂ t denote the cone
defined by x1 ≤ · · · ≤ xn. By elementary linear algebra, every element of g = u(n)

is conjugate under Ψ to some A ∈ c. The stabilizer of A is given by CU(n)(A), that
is, by the subgroup

Hk := {
diag(a1, . . . , ar ) : ai ∈ U(ki)

}

of U(n), labelled by the sequence k = (k1, . . . , kr ) of the multiplicities of the
eigenvalues of A. Let K denote the set of all sequences arising this way, that is,
sequences k = (k1, . . . , kr ) of length r = 1,2, . . . of positive integers satisfying
k1 + · · · + kr = n. Subgroups Hk and Hl are conjugate in U(n) iff the sequences
k and l differ by a permutation. Hence, the orbit types of Ψ correspond bijectively
to partitions n = k1 + · · · + kr . Now, let k ∈ K. Obviously, MHk is given by the
subset

tk := {
diag(iy11k1 , . . . , iyr1kr ) : yi ∈R, pairwise distinct

} ⊂ t.

It follows that M[Hk] consists of the elements of u(n) having r distinct eigenvalues
with multiplicities k1, . . . , kr . Next, we determine NU(n)(Hk). For � ∈ Sr , define
�k ∈ Sn to be obtained by dividing (1, . . . , n) into the r subsequences (1, . . . , k1),
(k1 + 1, . . . , k1 + k2), . . . , (k1 + · · · + kr−1 + 1, . . . , n) and permuting these subse-
quences according to �. Since a ∈ NU(n)(Hk) iff Ad(a)MHk ⊂ MHk , the normalizer
NU(n)(Hk) is generated by Hk and the permutation matrices of �k for all � ∈ Sr sat-
isfying �(k) = k. It follows that ΓHk coincides with the stabilizer (Sr )k of k under
the action of Sr and that it acts on MHk via the corresponding permutations �k of
the entries. To determine the strata, for � ∈ Sr , denote

t
�

k := {
diag(iy11k1 , . . . , iyr1kr ) ∈ tk : y�(1) < · · · < y�(r)

}
.

These subsets are the connected components of tk and hence of MHk . Two con-
nected components t

�1
k and t

�2
k get identified under the action of ΓHk iff �1�

−1
2 ∈

(Sr )k. It follows that the strata correspond bijectively to the elements of K and that
the stratum M̂k, k ∈ K, is given by the image of tidk under the natural projection π

to the orbit space. Since π is obviously injective on tidk , it induces a diffeomorphism

t
id
k

∼= M̂k.

Moreover, Mk,Hk consists of the connected components t�k with � ∈ (Sr )k and Mk
consists of the elements of u(n) whose eigenvalues, in ascending order, have the
multiplicities k1, . . . , kr . Finally, the submanifolds tidk , k ∈ K, of t fit together to

form the cone c. By restriction, π yields a bijection from this cone onto M̂ . It is not
hard to see that this bijection is in fact a homeomorphism. Thus, via this homeomor-
phism, the stratum M̂(1,...,1) corresponds to the interior of c, given by x1 < · · · < xn,
and the other strata form the boundary of c, consisting of lower-dimensional cones.

For the case G = SU(n), we observe that restriction of the above action of
U(n) on u(n) to the subgroup SU(n) yields the same orbits. Since the subspace
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Fig. 6.1 The curves T 1, T 2,
T 3 and the central
elements 1, δ1 and δ21,
where δ = ei 2

3 π , in the
subgroup T ∼= U(1) × U(1)

of diagonal matrices in
SU(3), see Example 6.6.6

su(n) ⊂ u(n) is invariant under this action, the results for U(n) carry over to SU(n)

as follows. The orbit types are the same. They are represented by the stabilizers

SHk := SU(n) ∩ Hk, k ∈ K.

Since up to a phase factor, every permutation matrix may be chosen from SU(n),
the normalizers NSU(n)(SHk) and the quotient groups ΓSHk can be characterized
in the same way as for G = U(n). We have MSHk = tk ∩ su(n), with connected
components t�k ∩ su(n), � ∈ Sr . The strata correspond bijectively to the elements of
K and for every k ∈ K, π restricts to a diffeomorphism from tidk ∩ su(n) onto the

stratum M̂k. The strata fit together to form the cone c ∩ su(n) which is an (n − 1)-
dimensional simplex with one face moved to infinity.27 Note that intersection with
su(n) is achieved by imposing the additional condition x1 + · · ·+ xn = 0, which for
tk ∩su(n) reads k1y1 +· · ·+kryr = 0. For a description of the orbit space, including
the strata, in terms of discriminants we refer to [143].

Example 6.6.6 (Inner automorphisms of SU(3)) Consider the action of G = SU(3)

on the group manifold M = SU(3) by inner automorphisms. Let T denote the sub-
group of diagonal matrices. We have T ∼= U(1) × U(1). Since every element of
SU(3) can be diagonalized and since two elements of SU(3) are diagonal iff they
have the same eigenvalues, the orbit space M̂ of this action may be identified with
the orbit space of the action of S3 on T by permuting the matrix entries. The latter
can be described as follows, see Fig. 6.1. Each of the three equations a22 = a33,
a33 = a11 and a11 = a22 defines a closed curve in T , respectively denoted by T 1,
T 2 and T 3. These curves intersect in the centre Z of SU(3) and separate six open
subsets in T . The closures of these subsets form 2-simplices whose edges are given
by one piece of each T i and whose vertices correspond to the elements of Z. Let
T 0 be one of these open subsets. It is easy to see that the natural projection M → M̂

restricts to a bijection, and hence a homeomorphism, from T 0 onto M̂ . Thus, we
can read off the stratification of M̂ from T 0. The interior T 0 forms a single two-
dimensional stratum. It consists of the points whose stabilizer under the action of

27In the theory of semisimple Lie algebras, this cone is called a closed Weyl chamber.
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SU(3) is T or, equivalently, whose stabilizer under the action of S3 is trivial. There
are three one-dimensional strata given by (T i ∩ T 0) \ Z, i = 1,2,3. The stabilizers
under the action of SU(3) are isomorphic to U(2) and consist, respectively, of the
matrices

[det a 0 0
0 a11 a12
0 a21 a22

]
,

[
a11 0 a12
0 det a 0

a21 0 a22

]
,

[
a11 a12 0
a21 a22 0
0 0 det a

]
, (6.6.3)

where a ∈ U(2). The corresponding stabilizers under the action of S3 are generated,
respectively, by the transpositions (23), (31) and (12). Since these subgroups are
conjugate in SU(3) and S3, respectively, all one-dimensional strata belong to the
same orbit type. Finally, there are three point strata formed by the elements of Z.
Their stabilizers are SU(3) and S3, respectively. As a result, the stratification of M̂

coincides with the natural stratification of the 2-simplex by its open cells.

Remark 6.6.7 The result of Example 6.6.6 generalizes to SU(n) with arbitrary n

(Exercise 6.6.5). In lattice gauge theory, the orbit space of the diagonal action of
G on G × · · · × G by inner automorphisms is relevant. We refer to [61, 62] for a
detailed analysis including a description of the stratification in terms of invariants
for a specific example. Correspondingly, the unreduced phase space of such models
is given by T∗(G × · · · × G) with the induced diagonal action of G. Under the
identification of T∗G with G × g, G acts diagonally by inner automorphisms on
the factors G and by the adjoint representation on the factors g. It is possible to
work out the reduction with respect to this action explicitly. In lattice gauge theory,
however, the Gauß law yields a reduction to a level set of the momentum mapping,
see Sect. 10.7.

Exercises
6.6.1 Show that the normalizer of a closed subgroup of a Lie group is closed.
6.6.2 Complete the proof of Proposition 6.6.1/1 by showing that, in the no-

tation used there, a tangent vector π ′(L′
aA,u) of G ×H V at the point

[(a, v)] ∈ NG(H) ×H V H is invariant under the isotropy representation of H

iff u ∈ V H and A belongs to the Lie algebra of NG(H).
6.6.3 Show that the subset Gm0 defined by (6.6.2) is a closed subgroup of G.
6.6.4 Determine the structure of the orbit space and its strata for the action of SO(n)

on R
n.

6.6.5 Work out Example 6.6.6 for arbitrary SU(n).

6.7 Invariant Vector Fields

Throughout this section, let (M,G,Ψ ) be a proper left Lie group action and let π :
M → M̂ = M/G denote the natural projection. We will discuss the basic properties
of the following type of vector fields.
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Definition 6.7.1 A vector field X on M is called invariant if Ψa∗X = X for all
a ∈ G.

This is equivalent to the requirement that X be equivariant as a mapping M →
TM . Therefore, it is also common to refer to invariant vector fields as equivariant
vector fields. The invariant vector fields form a Lie subalgebra of X(M), denoted by
X(M)G.

Now, let X ∈ X(M)G and let Φ : D → M be the flow of X. By Proposi-
tion 3.2.13/2, for every a ∈ G, we have Ψa(Dt ) = Dt for all t ∈ R and

Φt ◦ Ψa(m) = Ψa ◦ Φt(m) (6.7.1)

for all (t,m) ∈ D . That is, Ψ restricts to an action of G on Dt for all t and the
diffeomorphism Φt : Dt → D−t is equivariant. This implies that Φ projects to a
continuous mapping Φ̂ : D̂ → M̂ , where D̂ := (idR ×π)(D), defined by

Φ̂
(
t, π(m)

) := π ◦ Φ(t,m). (6.7.2)

It will be shown below that Φ̂ is a flow28 on the topological space M̂ . It is, therefore,
referred to as the projected flow, or the projection of Φ . Next, by equivariance,

GΦt(m) = Gm (6.7.3)

for all (t,m) ∈ D , that is, the flow leaves invariant the stabilizers and hence the
orbit types. Thus, for every σ ∈ S and every subgroup H ⊂ G representing σ , the
submanifolds Mσ and Mσ,H of M are invariant under Φ . It follows that X is tangent
to Mσ , so that it restricts to a vector field Xσ on Mσ whose flow Φσ : Dσ → M is
given by the restriction of Φ ,

Dσ = D ∩ (R× Mσ ), Φσ = Φ�Dσ , (6.7.4)

cf. Proposition 2.7.16 and Remark 3.2.9/2. A similar statement holds for Mσ,H .
Since

π ′
σ

(
Xσ

Ψa(m)

) = π ′
σ

(
Xσ

m

)

for all a ∈ G, the vector field Xσ on Mσ induces a mapping X̂σ : M̂σ → TM̂σ by

X̂σ
πσ (m) = π ′

σ Xσ
m. (6.7.5)

Since πσ is a submersion, this mapping is smooth and hence a vector field on M̂σ .
Denote the corresponding flow by Φ̂σ : D̂σ → M̂σ . By construction, Xσ and X̂σ

are πσ -related.

Proposition 6.7.2 Let X be an invariant vector field on M . If γ : (a, b) → Mσ is an
integral curve of Xσ , then πσ ◦ γ : (a, b) → M̂σ is an integral curve of X̂σ . Every
integral curve of X̂σ is of this form.

28By an obvious modification of Definition 3.2.5, the notion of flow extends to the category of
topological spaces and continuous mappings.
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Proof That πσ ◦γ is an integral curve of X̂σ is obvious. Conversely, let γ̂ : (a, b) →
M̂σ be an integral curve of X̂σ . Choose a point m ∈ Mσ fulfilling πσ (m) = γ̂ (0) and
denote H = Gm. According to Remark 6.6.2/3, Mσ,H is a principal bundle over M̂σ

with structure group ΓH = NG(H)/H . By the help of local trivializations of this
bundle we construct a curve γ̃ : (a, b) → Mσ,H through m fulfilling π ◦ γ̃ = γ̂ . If
ΓH is discrete, γ̃ is uniquely determined by this condition. It is an integral curve
of X, because π is a local diffeomorphism in this case.

Now, consider the case where ΓH is not discrete. Here, it is enough to show that
there exists a curve α : (a, b) → ΓH such that

γ : (a, b) → Mσ,H , γ (t) = Ψα(t)

(
γ̃ (t)

)
,

is an integral curve of Xσ . Here, by an abuse of notation, we have written Ψ for the
action of ΓH on Mσ,H . Applying Ψ ′

α(t)−1 to the equation

Xσ
γ (t) = γ̇ (t) = Ψ ′

γ̃ (t)α̇(t) + Ψ ′
α(t)

˙̃γ (t)

and using the invariance of Xσ , together with Ψα(t)−1 ◦ Ψγ̃ (t) = Ψγ̃ (t) ◦ Lα(t)−1 , we
obtain

(Ψγ̃ (t))
′
1 ◦ L′

α(t)−1

(
α̇(t)

) = Xσ
γ̃ (t) − ˙̃γ (t). (6.7.6)

For every t , the right hand side is a tangent vector at γ̃ (t) which is annihilated by
π ′

σ,H and hence contained in Tγ̃ (t)(ΓH · γ̃ (t)). Since the action of ΓH on Mσ,H is
free, (Ψγ̃ (t))

′
1 is a bijection from T1ΓH onto Tγ̃ (t)(ΓH · γ̃ (t)). Thus, there exists a

unique curve Aγ̃ : (a, b) → T1ΓH such that

(Ψγ̃ (t))
′
1Aγ̃ (t) = Xσ

γ̃ (t) − ˙̃γ (t), t ∈ (a, b),

and (6.7.6) implies that α must satisfy the ordinary first-order differential equation

α̇(t) = L′
α(t)Aγ̃ (t), t ∈ (a, b).

For the initial condition α(0) = 1, the solution is given by the path-ordered exponen-
tial mapping, α(t) = T exp

∫ t

0 Aγ̃ (s)ds for t > 0 and α(t) = T exp(− ∫ 0
t

Aγ̃ (s)ds)

for t < 0. �

Proposition 6.7.2 is the main ingredient in proving (Exercise 6.7.1)

Corollary 6.7.3

1. The mapping Φ̂ : D̂ → M̂ is a flow on the topological space M̂ .
2. The flow Φ̂σ of X̂σ is given by the restriction of Φ̂ ,

D̂σ = D̂ ∩ (R× M̂σ ), Φ̂σ = Φ̂�D̂σ . (6.7.7)

As a further consequence of Proposition 6.7.2, we note

Corollary 6.7.4 Let X be an invariant vector field on M . For every integral curve
γ of X, the subset G · γ is a submanifold of M . It is embedded iff γ̂ = π(γ ) is an
embedded submanifold of the corresponding stratum of M̂ .
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Proof Let σ ∈ S be such that γ ⊂ Mσ . Since Mσ is an embedded submanifold
of M , it is enough to prove the assertion for Mσ . By Proposition 6.7.2, the pro-
jected integral curve πσ ◦ γ is the integral curve of a vector field on M̂σ and thus
its image γ̂ is a submanifold of M̂σ . By Remark 6.6.2/3, we can cover γ̂ by a
system of local trivializations {(Ui,χi)} of the fibre bundle πσ : Mσ → M̂σ , map-
ping π−1

σ (Ui) to Ui × G/H , where H ⊂ G is a subgroup representing σ . Then,
χi((G · γ ) ∩ π−1

σ (Ui)) = (γ̂ ∩ Ui) × G/H is a submanifold of Ui × G/H . Hence,
(G · γ ) ∩ π−1

σ (Ui) is a submanifold of the open subset π−1
σ (Ui) of Mσ . Since G · γ

is covered by the subsets π−1
σ (Ui), this shows that it is a submanifold of Mσ . By

Remark 1.6.13/3, γ̂ is embedded iff so is G · γ . �

Remark 6.7.5 Let us analyse how the projected flow Φ̂ of an invariant vector field
X can be characterized in terms of the algebra C∞(M̂) of smooth functions on M̂ .
Since, for every f ∈ C∞(M)G,

Ψ ∗
a

(
X(f )

) = ((
Ψ −1

a

)
∗X

)(
Ψ ∗

a f
) = X(f ),

X induces a derivation of the subalgebra C∞(M)G of C∞(M). By the algebra iso-
morphism π∗ : C∞(M̂) → C∞(M)G, this derivation is mapped to a derivation X̂

of C∞(M̂). By definition,

π∗(X̂(f̂ )
) = X

(
π∗f̂

)
(6.7.8)

for all f̂ ∈ C∞(M̂). Now, the projected flow satisfies

d

dt
f̂ ◦ Φ̂p(t) = (

X̂(f̂ ) ◦ Φ̂p

)
(t) (6.7.9)

for all (t,p) ∈ D̂ and f̂ ∈ C∞(M̂). Since according to Proposition 6.3.7/1, C∞(M̂)

separates the points of M̂ , the projected flow is uniquely determined by this equation
and thus by X̂.

In the remainder of this section, we show that every tubular neighbourhood of
an orbit allows for a decomposition of invariant vector fields adapted to the bundle
structure given by the slices. Let O be an orbit of Ψ , let χ : U → E be a tubu-
lar neighbourhood of O and let S denote the regular distribution on U spanned
by the tangent spaces of the slices Um, m ∈ O . Note that S is invariant, that is,
Ψ ′

aSm = SΨa(m) for all a ∈ G and m ∈ U . We are going to construct a complemen-
tary invariant distribution on U . Recall from Remark 2.2.10 that the tangent map-
pings Ψ ′

m : TG → TM combine to a smooth mapping TG × M → TM . Restriction
of the latter to g× U yields a smooth mapping

λ : U × g → TU, λ(m,A) = Ψ ′
m(A).

Equip U × g with the action of G on U × g by (a, (m,A)) �→ (Ψa(m),Ad(a)A)

(direct product of G-manifolds). It is easy to see that λ is equivariant with respect to
this action. Choose m0 ∈ O . Since Gm0 is compact, according to Proposition 5.5.6,
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g admits an Ad(Gm0)-invariant scalar product. Let m be the corresponding orthog-
onal complement of gm in g. By construction, m is Ad(Gm)-invariant. View U × g

as a trivial vector bundle and consider the invariant subset

M := {(
Ψa(m),Ad(a)A

) ∈ U × g : m ∈ Um0 , a ∈ G, A ∈ m
}
.

Lemma 6.7.6 (M, λ�M) is an invariant vertical subbundle of TU complementary
to S in TU .

Proof We start with proving that M is a vertical subbundle of U ×g. For m ∈ U , the
subset Mm = M ∩ ({m} × g) is given by the union of all subspaces Ad(a)m with
a ∈ G such that m ∈ Ψa(Um0). By Remark 6.4.2/3, any two such group elements
differ by right translation by an element of Gm0 . Since m is Ad(Gm0)-invariant,
all these subspaces coincide. Hence, Mm is a linear subspace of {m} × g, given
by Mm = Ad(a)m whenever m ∈ Ψa(Um0). By Proposition 2.7.5, it suffices to find
local r-frames, where r = dimm, in U ×g spanning M. By invariance, it suffices to
find such a local r-frame in a neighbourhood of the slice Um0 . Consider the mapping

m× Um0 → U, (A,m) �→ ΨexpA(m).

Since its tangent mapping at (0,m0) is bijective, it restricts to a diffeomorphism
from an open neighbourhood of (0,m0) in m × Um0 onto an open neighbourhood
Ũ of Um0 in U . The inverse of this diffeomorphism induces smooth mappings p1 :
Ũ → m and p2 : Ũ → Um0 such that

Ψexp◦p1(m)

(
p2(m)

) = m, m ∈ Ũ .

Now, every basis {e1, . . . , er} in m defines a local r-frame {s1, . . . , sr } in U ×g over
Ũ by

si(m) := Ψ ′
exp◦p1(m)(ei)

and this r-frame spans M over Ũ . Thus, M is a vertical subbundle of U × g.
Now, consider the mapping λ�M : M → TU . For every a ∈ G, Ad(a)m is a vec-

tor space complement of Ad(a)gm0 and the latter is the Lie algebra of the subgroup
GΨa(m0), which is the invariance group of the slice UΨa(m0). First, this implies that
λ�M is fibrewise injective and hence, by Proposition 2.7.4, (M, λ�M) is a vertical
subbundle. Secondly, since slices are transversal to orbits, this implies

λ(Mm) + Sm = TmM

for all m ∈ U . Finally, since λ(Mm0) ∩ Sm0 = 0, by counting dimensions we obtain
λ(Mm) ∩ Sm = 0 for all m ∈ U . �

Lemma 6.7.6 yields that the image λ(M) is a regular invariant distribution on U ,
contained in Dg and satisfying

λ(M) ⊕ S = TU. (6.7.10)

This implies the following natural decomposition of invariant vector fields.
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Proposition 6.7.7 For every invariant vector field X on M there exists an invariant
vector field Z ∈ Γ (S) and a smooth equivariant mapping A : U → g such that, for
all m ∈ U ,

Xm = Ψ ′
m

(
A(m)

) + Zm.

Proof According to (6.7.10), X decomposes as X = Y + Z with uniquely defined
Y ∈ Γ (λ(M)) and Z ∈ Γ (S). Since λ(M) and S are invariant, Y and Z are equiv-
ariant. Since vertical subbbundles are embedded, Y induces a section Ã of M by
Y = λ ◦ Ã. Since λ is equivariant, Ã is invariant. Writing Ã(m) = (m,A(m)) with a
smooth equivariant mapping A : U → g we obtain the assertion. �

The pair (A,Z) is called a slice decomposition of X on U and Z is called the
slice component of X. Let ΦZ denote the flow of Z. We show that ΦZ projects to
the restriction of Φ̂ to π(U). Let m ∈ U . We seek a curve t �→ α(t,m) such that

γ (t) = Ψα(t,m) ◦ ΦZ
t (m)

is an integral curve of X through m. As in the proof of Proposition 6.7.2, one can
show that this curve must satisfy

α̇(t,m) = L′
α(t,m)A

(
ΦZ

t (m)
)

(6.7.11)

(Exercise 6.7.2). Hence, it is given by the path-ordered exponential

α(t,m) = T exp

{∫ t

0
A

(
ΦZ

s (m)
)
ds

}

and we have

Φt(m) = Ψα(t,m) ◦ ΦZ
t (m). (6.7.12)

This shows that ΦZ projects to Φ̂ , indeed. The mapping (t,m) �→ α(t,m) is called
the phase mapping of the slice decomposition (A,Z).

Exercises

6.7.1 Prove Corollary 6.7.3. In particular, show that the mapping Φ̂ : D̂ → M̂ de-
fined by (6.7.2) fulfils the conditions of Definition 3.2.5, with C∞ replaced
by continuous.

6.7.2 Prove Formula (6.7.11).

6.8 On Relatively Critical Integral Curves

In the last section of this chapter we give a brief introduction to relative equilib-
ria and relatively periodic integral curves, as well as the corresponding stability
concepts. In parts, we will stay informal. Standard references for this material are
[65, 81, 90] and, more historically, [174].
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Let (M,G,Ψ ) be a proper Lie group action, let X be an invariant vector field on
M and let Φ : D → M be the flow of X. For an integral curve γ of X, let Gγ denote
the stabilizer of the points of γ , let gγ be its Lie algebra and let γ̂ = π ◦ γ denote
the projection to M̂ . Extending the terminology of Chap. 3, we say that an integral
curve of Φ̂ is critical if it is an equilibrium, that is, it consists of a point, or if it is
periodic.

Definition 6.8.1 An integral curve γ of X is called a relative equilibrium if its
projection γ̂ to M̂ is an equilibrium. It is called relatively periodic if γ̂ is periodic.

If γ is relatively periodic, the period of γ̂ is called the relative period of γ . Rel-
ative equilibria and relative periodic integral curves are subsumed under the notion
of relatively critical integral curve. According to Corollary 6.7.4, if γ is relatively
critical, then G · γ is an embedded submanifold of M . Moreover, it is clear that rel-
atively critical integral curves are defined for all times. We start with characterizing
relatively critical integral curves in terms of the group action.

Proposition 6.8.2 Let X be an invariant vector field on the G-manifold (M,Ψ ).

1. An integral curve γ of X is a relative equilibrium iff there exist m ∈ γ and A ∈ g

such that

(A∗)m = Xm. (6.8.1)

In this case, Φt(m) = Ψexp(tA)(m). The set of solutions A of (6.8.1) forms a coset
with respect to gγ in the normalizer Ng(gγ ). It does not depend on the choice of
m ∈ γ .

2. An integral curve γ of X is relatively periodic iff there exist T > 0, m ∈ γ and
a ∈ G such that Φt(m) /∈ G · m for all 0 < t < T and

ΦT (m) = Ψa(m). (6.8.2)

In this case, T is the relative period of γ . The set of solutions a of (6.8.2) forms a
Gγ -coset in the normalizer NG(Gγ ). It does not depend on the choice of m ∈ γ .

The solutions of (6.8.1) and (6.8.2) are called drift velocities and relative phases,
respectively.

Proof 1. First, let γ be an arbitrary integral curve of X. If γ is a relative equilibrium,
then γ̂ = π(m) and hence γ ⊂ G · m for all m ∈ γ . It follows that Xm ∈ Tm(G · m),
so that Xm = (A∗)m for some A ∈ g. If, conversely, Xm = (A∗)m with A ∈ g, invari-
ance implies that X is tangent to the orbit G · m and hence induces a vector field on
G · m whose integral curves coincide with those of X. We conclude that γ ⊂ G · m
and thus γ̂ = π(m), that is, γ is a relative equilibrium.

Now, let γ be a relative equilibrium. If A is a solution of (6.8.1), then for all
m ∈ γ and t ∈ R we have

d

dt

(
Ψexp(tA)(m)

) = Ψ ′
exp(tA)(A∗)m = Ψ ′

exp(tA)Xm = XΨexp(tA)(m)
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and hence Ψexp(tA)(m) = Φt(m). Moreover, (6.7.1) yields

(A∗)Φt (m) = (Φt )
′
m(A∗)m = (Φt )

′
mXm = Xφt (m),

that is, A is also a solution for Φt(m). We conclude that the set of solutions is
independent of the choice of m ∈ γ . Since the left hand side of (6.8.1) is linear
in the variable A, the solutions form a coset in g with respect to the linear sub-
space of solutions of the homogeneous equation (B∗)m = 0. By Proposition 6.2.2/3,
this subspace is given by gγ . It remains to show that the solutions A of (6.8.1) are
contained in Ng(gγ ), that is, that they satisfy [A,B] ∈ gγ for all B ∈ gγ . Using
Proposition 6.2.2/2, for f ∈ C∞(M) we find

([A,B]∗
)
m
(f ) = [B∗,A∗]m(f ) = −Xm

(
B∗(f )

)

= − d

dt �0

d

ds �0

f
(
Ψexp(sB) ◦ Φt(m)

) = 0,

because Ψexp(sB) ◦ Φt(m) = Φt(m). Thus, ([A,B]∗)m = 0 and hence [A,B] ∈ gγ .
2. The first assertion is obvious. Thus, let γ be relatively periodic and let m ∈ γ .

If a is a solution of (6.8.2) for m, it is also a solution for Φt(m), because

ΦT

(
Φt(m)

) = Φt ◦ ΦT (m) = Φt ◦ Ψa(m) = Ψa

(
Φt(m)

)
.

Hence, the set of solutions of (6.8.2) does not depend on m ∈ γ . It is contained in
NG(Gγ ), because

Gγ = GΦT (m) = GΨa(m) = aGma−1 = aGγ a−1.

Finally, the set of solutions is obviously a (left and right) coset with respect to Gγ . �

For an analysis of the global properties of relatively critical integral curves like
periodicity, quasi-periodicity or the escaping behaviour, the reader may consult Sec-
tions 7 and 8 in [81].

The concept of linearization extends in the following way from critical to rela-
tively critical integral curves. Let γ be relatively critical and let m ∈ γ .

(a) If γ is a relative equilibrium and A is a drift velocity, then m is an equilibrium of
the (not necessarily invariant) vector field X − A∗ and we can form the Hessian
endomorphism

Hessm(X − A∗).
It will be referred to as the Hessian endomorphism of X at m associated with A.

(b) If γ is relatively periodic with relative period T and if a is a relative phase, then

Ψa−1 ◦ ΦT (m) = m, (Ψa−1 ◦ ΦT )′mXm = Xm (6.8.3)

(Exercise 6.8.1). Hence, (Ψa−1 ◦ ΦT )′m descends to an automorphism P a
m of

Nmγ , called the period automorphism associated with a.

Thus, for relatively critical integral curves, instead of a single characteristic linear
mapping, one has a whole family of characteristic linear mappings, labelled by the
drift velocities or the relative phases. The algebraic structure of the latter, described
in Proposition 6.8.2, carries over to these families.
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Corollary 6.8.3 Let γ be a relatively critical integral curve of X and let m ∈ γ .

1. If γ is a relative equilibrium, the Hessian endomorphisms Hessm(X − A∗) form
a coset in End(TmM) with respect to the image of the isotropy representation.

2. If γ is relatively periodic, the period automorphisms P a
m form a coset29 in

Aut(Nmγ ) with respect to the image of the isotropy representation induced on
Nmγ .30

Proof 1. If A1, A2 are drift velocities, then A2 − A1 ∈ gγ and

Hessm(X − A1∗) − Hessm(X − A2∗) = Hessm

(
(A2 − A1)∗

)
(6.8.4)

(Exercise 6.8.2). Hence, the Hessian endomorphisms form a coset with respect to
the image of gγ under the mapping B �→ Hessm(B∗). By Remark 6.2.3, this is the
isotropy representation.

2. If a1, a2 are relative phases, then a−1
1 a2 ∈ Gγ and the automorphism P

a1
m ◦

(P
a2
m )−1 of Nmγ is induced by the automorphism (Ψ

a−1
1 a2

)′m of TmM on passing to

Nmγ . �

It remains to extract those properties of the spectra of the characteristic linear
mappings which do not depend on the particular choice of the latter. For point 2 of
the following proposition, we have to assume that G is a subgroup of GL(n,R) or
GL(n,C) defined by algebraic relations.

Proposition 6.8.4 Let X be an invariant vector field on the G-manifold (M,Ψ ).

1. For a relative equilibrium γ , the real parts and the multiplicities of the elements
of spec(Hessm(X − A∗)) are independent of the point m ∈ γ and of the drift
velocity A.

2. For a relatively periodic integral curve γ of X, the absolute values and the mul-
tiplicities of the elements of spec(P a

m) are independent of the point m ∈ γ and
the relative phase a.

Proof 1. Since the set of drift velocities is independent of m ∈ γ and since

HessΦt (m)(X − A∗) = (Φt )
′
m ◦ Hessm(X − A∗) ◦ (

(Φt )
′
m

)−1

for all t ∈ R, the spectrum of Hessm(X − A∗) is independent of m. To prove the
assertion we need the following standard relation, valid for compact subgroups (Ex-
ercise 6.8.3)

Ng(gγ ) = gγ + Cg(gγ ). (6.8.5)

Since, by Proposition 6.8.2/1, the drift velocities form an affine subspace of Ng(gγ )

with underlying vector subspace gγ , (6.8.5) implies that there exists a drift velocity

29Since the relative phases lie in NG(Gγ ), this is both a left and a right coset.
30Which exists due to (Ψa)

′
mXm = XΨa(m) = Xm for all a ∈ Gγ .
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B commuting with all elements of gγ . For given drift velocity A, denote C := B −A

and write HA ≡ Hessm(X − A∗) and HB ≡ Hessm(X − B∗). By (6.8.4), we have

HA = HB + Hessm(C∗). (6.8.6)

Since C ∈ gγ and hence [B,C] = 0, Proposition 6.2.2/2 implies [C∗,B∗] =
[B,C]∗ = 0. Moreover, by the invariance of X and by Proposition 3.2.15, [C∗,X] =
0. Hence, this proposition implies that the flows of C∗ and X − B∗ commute. Then,
Hessm(C∗) commutes with HB and hence, by (6.8.6), it also commutes with HA.
For the argument to follow, view HA, HB and Hessm(C∗) as endomorphisms of the
complexification of TmM . Then, since Gγ is compact, Proposition 5.5.7 yields that
Hessm(C∗) is diagonalizable and possesses purely imaginary eigenvalues. Since HB

and HA commute with Hessm(C∗), they map every eigenspace of Hessm(C∗) to it-
self. Thus, according to (6.8.6), on a given eigenspace, HB and HA differ by the
identical mapping, multiplied by the corresponding eigenvalue of Hessm(C∗). This
yields the assertion.

2. It suffices to prove the assertion for the automorphism (Ψa−1 ◦ ΦT )′ of TmM

which induces P a
m on passing to Nmγ . By an abuse of notation, we denote this auto-

morphism by the same symbol, P a
m. Since the set of relative phases is independent

of m ∈ γ and since

P a
Φt (m) = (Φt )

′
m ◦ P a

m ◦ (
(Φt )

′
m

)−1
,

the spectrum of P a
m does not depend on m. To prove the assertion, we need that there

exists an integer n > 0 fulfilling an = c h with c ∈ CG(Gγ ) and h ∈ Gγ . Under the
assumption made on G, this follows from Proposition 1.2 in [316]. Then, for every
relative phase b, we have b = ak0 for some k0 ∈ Gγ and hence

bn = (ak0)
n = ch

(
a−(n−1)k0a

n−1) · · · (a−1k0a
)
k0 ≡ ck

with k ∈ Gγ . Consider the automorphism τ := (Ψc−1 ◦ ΦnT )′m of TmM . Since it
commutes with (Ψh−1)′m and (Ψk−1)′m, it maps the eigenspaces of these automor-
phisms to themselves. According to Proposition 5.5.7, (Ψh−1)′m and (Ψk−1)′m are
diagonalisable and their eigenvalues lie on the unit circle. Since

(
P a

m

)n = (Ψh−1)
′
m ◦ τ,

(
P b

m

)n = (Ψk−1)
′
m ◦ τ,

the eigenvalues of (P a
m)n and of (P b

m)n differ from those of τ , and hence from one
another, by phase factors only. Since this carries over to the n-th roots, the assertion
follows. �

As a result of Proposition 6.8.4, the notions of characteristic exponent and
characteristic multiplier extend in the following way to relatively critical integral
curves.

(a) Let γ be a relative equilibrium of X. A real number λ is called a reduced
characteristic exponent of γ if there exists a point m ∈ γ , a drift velocity
A and an element λ̃ of spec(Hessm(X − A∗)) such that λ = Re(λ̃). In this
case, the multiplicity of λ is defined as the sum of the multiplicities of all
λ̃ ∈ spec(Hessm(X − A∗)) with λ = Re(λ̃).
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(b) Let γ be a relatively periodic integral curve of X. A positive number λ is called
a reduced characteristic multiplier of γ if there exists a point m ∈ γ , a relative
phase a and an element λ̃ of spec(P a

m) such that λ = |λ̃|. In this case, the mul-
tiplicity of λ is defined to be the sum of the multiplicities of all λ̃ ∈ spec(P a

m)

with λ = |λ̃|.

Remark 6.8.5

1. The existence and uniqueness results for Poincaré mappings along periodic inte-
gral curves have an analogue for relatively periodic integral curves, see e.g. [65],
providing equivariant Poincaré mappings. Using a tubular neighbourhood, the
corresponding slice decomposition of X and a relative phase, from an equivari-
ant Poincaré mapping one can construct a relative Poincaré mapping. The latter
can be interpreted as a Poincaré mapping along the periodic integral curve γ̂ with
respect to the projected flow Φ̂ . It can be used to analyse the flow Φ̂ near γ̂ .

2. The reduced characteristic exponents and the reduced characteristic multipli-
ers may be defined as the elements of the so-called reduced spectrum, see
[90]. The reduced spectrum of Hessm(X − A∗) is defined as the quotient of
spec(Hessm(X − A∗)) with respect to the action of the additive group iR. The
reduced spectrum of P a

m is defined as the quotient of spec(P a
m) with respect to

the action of U(1). In both cases, the multiplicity of an equivalence class is the
sum of the multiplicities of its elements.

3. The analysis of the characteristic linear mappings of a relatively critical integral
curve γ can be refined as follows. Choose m ∈ γ . Using a tubular neighbourhood
χ : U → E of the orbit G · m and a Gγ -invariant scalar product on TmM , one
can decompose

TmM = Tm(G · m) ⊕ TmU
Gγ
m ⊕ (

TmU
Gγ
m

)⊥
. (6.8.7)

Here, Um denotes the slice of the tubular neighbourhood χ through m, U
Gγ
m de-

notes the submanifold of Gγ -invariant points of Um and (TmU
Gγ
m )⊥ denotes the

orthogonal complement of TmU
Gγ
m in TmUm. Under π , U

Gγ
m projects to an open

neighbourhood of π(m) in its stratum. One can prove that, with respect to the
decomposition (6.8.7), the characteristic linear mappings are given by upper tri-
angular block matrices. Accordingly, their spectra decompose into a symmetry
part (corresponding to the subspace Tm(G · m)), an isotypic part (corresponding

to the subspace TmU
Gγ
m ) and an aliotypic (i.e. type-transversal) part (correspond-

ing to the subspace (TmU
Gγ
m )⊥). This partition does not depend on the choice of

E and χ nor on the scalar product on TmM . It turns out that the isotypic part
coincides with the spectrum of the ordinary characteristic linear mapping associ-
ated with the ordinary critical integral curve γ̂ inside the corresponding stratum.
In particular, this part of the spectrum does not depend on the particular charac-
teristic linear mapping chosen. The partition so constructed allows for an analysis
of how the flow near γ behaves in orbit direction (symmetry part), along the stra-
tum (isotypic part) and transversal to the stratum (aliotypic part). On the other
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hand, the latter two parts characterize the projected flow Φ̂ near γ̂ . Therefore,
the corresponding characteristic exponents or multipliers may be interpreted as
the characteristic exponents or multipliers of γ̂ with respect to the topological
flow Φ̂ .

4. The stability concept adapted to relatively critical integral curves is the following.
For a closed subgroup H of G, a Φ-invariant subset S of M is called H -stable if
for every H -invariant neighbourhood U of S in M there exists a neighbourhood
V of S in M such that Φt(m) is defined and contained in U for all m ∈ V and
t ≥ 0. It is called asymptotically H -stable if there exists a neighbourhood V of S

in M with V ×R+ ⊂ D such that for every m ∈ V and every H -invariant neigh-
bourhood U of S in M there exists t0 ∈ R fulfilling Φt(m) ∈ U for all t ≥ t0.
The special case H = G recovers the usual stability concepts of Definition 3.8.1
for the projected flow31 Φ̂: S is G-stable (asymptotically G-stable) iff π(S) is
stable (asymptotically stable) under the projected flow Φ̂ (Exercise 6.8.4). As a
consequence of this and of the observation that the proof of Proposition 3.8.5
carries over word by word to the topological flow Φ̂ and the periodic integral
curve γ̂ , one finds that a relatively periodic integral curve is G-stable iff one of
the following equivalent conditions holds:
(a) it is G-stable under the G-equivariant local diffeomorphism ΦT of M ,
(b) it is G-stable under an equivariant Poincaré mapping,
(c) it is stable under a relative Poincaré mapping.
A similar result holds for asymptotic G-stability. Finally, the concept of Lya-
punov function can be adapted to H -stability as follows. An H -Lyapunov func-
tion is a continuous H -invariant function f : U → R on an H -invariant neigh-
bourhood U of γ in M with the following properties:
(a) f (m) = 0 for all m ∈ γ and f (m) > 0 for all m ∈ U \ (H · γ ),
(b) f (Φt (m)) ≤ f (m) for all m ∈ U \ (H · γ ) and t ≥ 0 satisfying Φs(m) ∈ U

for all s ∈ [0, t].
If the second condition holds with f (Φt (m)) < f (m), the function f is called
an H -Lyapunov function in the strong sense. If f is differentiable, the second
condition is equivalent to Xm(f ) ≤ 0 or Xm(f ) < 0, respectively. Under the
assumption that the Lie algebra of H contains all the drift velocities of γ (in
case γ is a relative equilibrium) or that H contains all relative phases (in case γ

is relatively periodic), one can show the following. If there exists an H -Lyapunov
function for γ , then γ is H -stable. If there exists an H -Lyapunov function in the
strong sense, then γ is asymptotically H -stable, see Exercise 6.8.5.

Exercises
6.8.1 Prove the relations in (6.8.3).
6.8.2 Prove Formula (6.8.4).
6.8.3 Prove Formula (6.8.5).

31These concepts are of topological nature and thus carry over word by word to topological flows.
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Hint. Use an Ad(Gγ )-invariant scalar product on g to decompose Ng(gγ ) =
gγ ⊕ (g⊥

γ ∩ Ng(gγ )) and show that g⊥
γ ∩ Ng(gγ ) ⊂ Cg(gγ ).

6.8.4 Prove that a subset S of M is G-stable (asymptotically G-stable) under the
flow Φ of an invariant vector field iff π(S) is stable (asymptotically stable)
under the projected flow on the orbit space M̂ .
Hint. Use that the domain D̂ of Φ̂ is given by the orbit space of the action of G

on D and that, via π , G-invariant neighbourhoods of S ⊂ M in M bijectively
correspond to neighbourhoods of π(S) in M̂ .

6.8.5 Prove the criterion for H -stability in terms of an H -Lyapunov function stated
in Remark 6.8.5/4. Here is an outline: the assumptions imply that γ is rela-
tively critical with respect to the action of H . Hence, it is enough to prove the
statement for the case H = G. Since the G-stability of γ is equivalent to the
stability of γ̂ under Φ̂ , it suffices to observe that Definition 3.8.15 and Theo-
rem 3.8.16 carry over literally from differentiable to continuous flows and to
check that f̂ is a Lyapunov function for γ̂ in the topological sense.



Chapter 7
Linear Symplectic Algebra

In this chapter, we present linear symplectic algebra, starting with a discussion of
the elementary properties of subspaces of a symplectic vector space and of the sym-
plectic group. We also present linear symplectic reduction. In the second part of
this chapter, we come to some more advanced topics, all related to the study of the
space of Lagrangian subspaces of a given symplectic vector space. In particular, the
Maslov index and the Kashiwara index will be presented in some detail. These topo-
logical invariants will play an essential role in Chap. 12, in the context of geometric
asymptotics.

7.1 Symplectic Vector Spaces

Let V be a finite-dimensional vector space over R and let ω ∈ ∧2
V ∗. The bilinear

form ω induces a linear mapping

ω� : V → V ∗,
〈
ω�(v), u

〉 := ω(v,u), v,u ∈ V.

We define the kernel and the rank of ω to be the kernel and the rank of ω�, re-
spectively.1 The form ω is called non-degenerate if ω� is an isomorphism. This is
equivalent to rankω = dimV or kerω = 0, that is, vanishing of ω(u, v) for all v ∈ V

implies u = 0. If ω� is an isomorphism, we denote its inverse by ω�. If there is no
danger of confusion, we often write v� ≡ ω�(v) and ρ� ≡ ω�(ρ).

Remark 7.1.1 Let {ei} be a basis in V and let {e∗i} be the dual basis in V ∗. Then,

ω = 1

2
ωij e

∗i ∧ e∗j , ω�(ei) = ωij e
∗j , rank(ω) = rank(ωij ), (7.1.1)

1This is consistent with the definition of the kernel of a multilinear form given in (4.2.12).

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-5345-7_7, © Springer Science+Business Media Dordrecht 2013

315



316 7 Linear Symplectic Algebra

where ωij := ω(ei, ej ). Let Ṽ = V/kerω� and denote the induced bilinear form
Ṽ × Ṽ → R by ω̃. Obviously, ω̃ is antisymmetric and non-degenerate. Let
{ẽ1, . . . , ẽr} be a basis in Ṽ and let ω̃ij = ω̃(ẽi , ẽj ). Since

det(ω̃ij ) = det(−ω̃ji) = (−1)r det(ω̃ji) = (−1)r det(ω̃ij ),

we have (−1)r = 1, that is, r = dim Ṽ = rankω is even.

For a subspace W ⊂ V , the ω-orthogonal subspace is defined by

Wω := {
v ∈ V : ω(v,u) = 0 for all u ∈ W

}
. (7.1.2)

Proposition 7.1.2 For every antisymmetric bilinear form ω on a finite-dimensional
real vector space V , there exists an ordered basis {ei} in V such that

ω =
n∑

i=1

e∗i ∧ e∗(i+n), (7.1.3)

that is, ωij has the form

ωij =
[
Jn 0
0 0

]

with

Jn =
[

0 1n

−1n 0

]
. (7.1.4)

Proof We carry out the following iterative procedure, starting with V0 := V . If ω =
0 on V0, we can choose any basis in V0 and thus we are done. Otherwise, there
exist v1, u1 ∈ V0 such that ω(v1, u1) = 1. By bilinearity, v1 and u1 are nonzero. By
antisymmetry, they cannot be parallel. Hence, they are linearly independent. Let E1
be the subspace spanned by v1 and u1. We show

E1 ∩ Eω
1 = 0, E1 + Eω

1 = V0.

For the first equation, we decompose v ∈ E1 ∩ Eω
1 as v = αv1 + βu1 and calculate

β = −ω(v, v1) = 0 and α = ω(v,u1) = 0. For the second equation, let v ∈ V0.
Write

v = (
ω(v,u1)v1 − ω(v, v1)u1

) + (
v − ω(v,u1)v1 + ω(v, v1)u1

)

and check that the second term is contained in Eω
1 .

Next, we replace V0 by V1 := Eω
1 and iterate the argument until we arrive at a

subspace Vn (possibly trivial) on which ω vanishes. This yields 2n linearly indepen-
dent vectors ei := vi , en+i := ui , i = 1, . . . , n, satisfying

ω(ei, ej ) = ω(en+i , en+j ) = 0, ω(ei, en+j ) = δij .
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In case Vn 	= 0, we choose a basis {e2n+1, . . . , edimV } in Vn. Then, {e1, . . . , edimV }
is a basis in V with the desired properties. �

Definition 7.1.3 (Symplectic vector space)

1. A symplectic vector space is a pair (V ,ω) consisting of a real vector space V

and a non-degenerate bilinear form ω, called the symplectic form. A basis in V

for which ω has the canonical form (7.1.3) is called symplectic or canonical.
2. Let (V1,ω1) and (V2,ω2) be symplectic vector spaces. A linear mapping

f : V1 → V2 is called symplectic if f ∗ω2 = ω1. A bijective symplectic mapping
is called a symplectomorphism.

Note that the inverse of a symplectomorphism is symplectic. Hence, if one takes
the symplectic mappings as morphisms of symplectic vector spaces, the symplecto-
morphisms are the corresponding isomorphisms.

Example 7.1.4 Let V = R
2n. The bilinear form ω0(x,y) = xT Jny obviously de-

fines a symplectic vector space structure and the standard basis is symplectic. We
call Jn the standard symplectic matrix of R2n and the pair (R2n,ω0) the canonical
symplectic vector space structure in dimension 2n.

Proposition 7.1.2 yields

Corollary 7.1.5 Let (V ,ω) be a symplectic vector space of dimension 2n. Every
symplectic basis of V defines a symplectomorphism onto (R2n,ω0).

Example 7.1.6 Let W be a vector space and let W ∗ be its dual space. Then, V =
W ⊕ W ∗ endowed with the bilinear form

ωW⊕W ∗(v ⊕ ρ,u ⊕ σ) := ρ(u) − σ(v) (7.1.5)

is a symplectic vector space (Exercise 7.1.1). This form is referred to as the canoni-
cal symplectic form on W ⊕ W ∗.

The following proposition yields another criterion for the non-degeneracy of an-
tisymmetric bilinear forms.

Proposition 7.1.7 An antisymmetric bilinear form ω on a real vector space V is
non-degenerate iff dimV = 2n and ωn := ω ∧ · · · ∧ ω 	= 0.

Proof If ω is non-degenerate, by Proposition 7.1.2, there exists a basis {ek} in V

such that ω = ∑n
i=1 e∗i ∧ e∗(i+n). Then,

ωn = n! · (−1)
n(n−1)

2 · e∗1 ∧ e∗2 ∧ · · · ∧ e∗(2n−1) ∧ e∗2n 	= 0.
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Conversely, assume that dimV = 2n and ωn 	= 0 and let ω be degenerate. Then,
there exists a vector 0 	= e1 ∈ V with ω�(e1) = 0. If we extend e1 to a basis
{e1, . . . , e2n}, then ωn(e1, . . . , e2n) = 0, in contradiction to the first assumption. �

Definition 7.1.8 (Canonical volume form) Let (V ,ω) be a symplectic vector space.
The 2n-form

Ωω := 1

n! (−1)
n(n−1)

2 ωn (7.1.6)

is called induced canonical volume form on V .

In a symplectic basis {ei} of V , one has Ωω = e∗1 ∧ · · · ∧ e∗2n.

Exercises
7.1.1 Let W be a vector space and let W ∗ be its dual. Prove that the bilinear form

ωW⊕W ∗ defined by (7.1.5) is symplectic.

7.2 Subspaces of a Symplectic Vector Space

Let (V ,ω) be a symplectic vector space. To start with, we present a number of im-
portant relations characterizing subspaces of a symplectic vector space, their anni-
hilators and their symplectic orthogonal complements. For that purpose, recall that
the annihilator W 0 ⊂ V ∗ of a subspace W of V is defined by

W 0 := {
η ∈ V ∗ : 〈η,u〉 = 0 for all u ∈ W

}
.

From linear algebra we recall (Exercise 7.2.1)

dimW + dimW 0 = dimV,
(
W 0)0 = W, (V/W)∗ ∼= W 0. (7.2.1)

Proposition 7.2.1 For subspaces W,W1 and W2 of a symplectic vector space
(V ,ω), one has

1. (Wω)� = W 0,
2. dimW + dimWω = dimV ,
3. (Wω)ω = W ,
4. If W1 ⊂ W2, then Wω

2 ⊂ Wω
1 ,

5. Wω
1 ∩ Wω

2 = (W1 + W2)
ω and (W1 ∩ W2)

ω = Wω
1 + Wω

2 .

Proof 1. Obviously, (Wω)� ⊂ W 0 and (W 0)� ⊂ Wω.
2. This follows from point 1 and from (7.2.1).
3. The inclusion relation W ⊂ (Wω)ω is immediate. Since application of point 2

to both W and Wω yields dim(Wω)ω = dimW , the assertion follows.
4. This is obvious.
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5. It suffices to prove the first equation, because the second one follows by replac-
ing Wi by Wω

i and by using point 3. Due to Wi ⊂ W1 + W2 and Wω
i ⊂ Wω

1 + Wω
2 ,

point 4 implies

(W1 + W2)
ω ⊂ Wω

1 ∩ Wω
2 ,

(
Wω

1 + Wω
2

)ω ⊂ W1 ∩ W2.

Hence, to prove the assertion it suffices to show that

dim(W1 + W2)
ω + dim

(
Wω

1 + Wω
2

)ω = dim(W1 ∩ W2) + dim
(
Wω

1 ∩ Wω
2

)
.

Using point 2 and dim(W1 + W2) = dimW1 + dimW2 − dim(W1 ∩ W2), we can
write

dim(W1 + W2)
ω = dimV − dimW1 − dimW2 + dim(W1 ∩ W2),

dim
(
Wω

1 + Wω
2

)ω = dimV − dimWω
1 − dimWω

2 + dim
(
Wω

1 ∩ Wω
2

)
.

Addition of these two equations yields the desired equality. �

The following types of subspaces of a symplectic vector space are important.

Definition 7.2.2 Let (V ,ω) be a symplectic vector space and let W ⊂ V be a sub-
space. W is called

1. isotropic if W ⊂ Wω,
2. coisotropic if Wω ⊂ W ,
3. Lagrange if Wω = W ,
4. symplectic if W ∩ Wω = {0}.

Let W be a subspace of a symplectic vector space (V ,ω) and let ωW be the
bilinear form on W induced by restriction of ω. In terms of ωW , the several types of
subspaces can be characterized as follows.

Proposition 7.2.3 A subspace W of a symplectic vector space (V ,ω) is

1. isotropic iff ωW = 0,
2. coisotropic iff Wω is isotropic, that is, iff ωWω = 0,
3. Lagrangian iff ωW = ωWω = 0,
4. symplectic iff ωW or ωWω is a symplectic form.

The key for the analysis of the algebraic properties of W is the study of the rank
of ωW which is called the symplectic rank of W . By Proposition 7.1.2, this is an
even number. Since

kerωW ≡ ker(ωW )� = W ∩ Wω, (7.2.2)

we have

rankωW = dimW − dim kerωW = dimW − dim
(
W ∩ Wω

)
, (7.2.3)
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and a similar equation for ωWω . Subtracting these two equations, we get

rankωW − rankωWω = dimW − dimWω = 2 dimW − dimV. (7.2.4)

This implies

max(0,2 dimW − dimV ) ≤ rankωW ≤ dimW. (7.2.5)

From (7.2.5) and (7.2.4) we read off that W and Wω reach their minimal or maximal
rank always simultaneously. Moreover, Eq. (7.2.4) yields the following

Proposition 7.2.4 Let (V ,ω) be a symplectic vector space of dimension 2n.

1. The dimension of an isotropic (coisotropic) subspace is at most (at least) equal
to n. The dimension of a Lagrangian subspace is equal to n.

2. Every subspace of dimension 1 (of codimension 1) is isotropic (coisotropic).
3. A subspace of dimension m ≥ n is coisotropic iff its symplectic rank is 2(m− n).
4. Every subspace of an isotropic subspace is isotropic and every subspace which

contains a coisotropic subspace is coisotropic.

Example 7.2.5 Let V = R
2n, ω0(x,y) = xT Jny and let {ei}, i = 1, . . . ,2n, be the

canonical basis.

1. Subspaces which are spanned by vectors ei with i ≤ n or by vectors ei with i > n

are isotropic.
2. Subspaces which contain all vectors ei with i ≤ n or all vectors ei with i > n are

coisotropic.
3. The subspace spanned by e1, . . . , en and the subspace spanned by en+1, . . . , e2n

are Lagrangian.
4. Subspaces which are spanned by pairs ei , en+i with i ≤ n are symplectic.

The following two propositions characterize Lagrangian subspaces.

Proposition 7.2.6 Let W be a subspace of a symplectic vector space (V ,ω). The
following statements are equivalent.

1. W is a Lagrangian subspace.
2. W is isotropic and dimW = 1

2 dimV .
3. W is isotropic and possesses an isotropic complement in V .

Proof 1 ⇒ 3: Of course, W is isotropic. An isotropic complement can be con-
structed by the following procedure. Choose a nonzero v1 ∈ V \ W and let V1 :=
Rv1. We check

(a) V1 is isotropic: this follows from Proposition 7.2.4/2.
(b) W +V ω

1 = V : by Proposition 7.2.1/5, we have W +V ω
1 = (Wω ∩V1)

ω . Hence,
the assertion follows from Wω = W and W ∩ V1 = 0.
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If now W + V1 = V , we are done. Otherwise, by point (b), there exists a nonzero
v2 ∈ V ω

1 \ (W + V1). Let V2 := V1 + Rv2. We check that (a) and (b) hold for V2.
For (a), this follows from the isotropy of V1 and from the fact that v2 ∈ V ω

1 . The ar-
gument for (b) is the same as before. Now replace V1 by V2 and iterate the argument
to finally arrive at an isotropic subspace Vn satisfying W +Vn = V . By construction,
Vn is an isotropic complement of W in V .

3 ⇒ 2: This follows from Proposition 7.2.4/1.
2 ⇒ 1: Since W ⊂ Wω and dimWω = dimV − dimW = dimW , we conclude

W = Wω. �

Points 2 and 3 of Proposition 7.2.6 imply that every Lagrangian subspace has a
Lagrangian complement.

Remark 7.2.7 The above result can be generalized as follows (Exercise 7.2.3). For
every tuple (L1, . . . ,Lr) of Lagrangian subspaces there exists a Lagrangian sub-
space L0 which is transversal to all elements of the tuple, that is,

L0 ∩ Li = {0}, i = 1, . . . , r. (7.2.6)

Example 7.2.8 For the canonical symplectic vector space W ⊕ W ∗, the subspaces
W ⊕ {0} and {0} ⊕ W ∗ are obviously complementary Lagrangian subspaces.

Proposition 7.2.9 Let (V ,ω) be a symplectic vector space and let V = W ⊕ W ′
be a decomposition into complementary Lagrangian subspaces. Then, this decom-
position induces a symplectomorphism onto the canonical symplectic vector space
W ⊕ W ∗.

Proof Let χ : W ′ → W ∗ be the natural mapping induced by ω,
〈
χ(u), v

〉 := ω(u, v). (7.2.7)

Note that this is an isomorphism of vector spaces. Thus, 1W ⊕ χ : W ⊕ W ′ →
W ⊕ W ∗ is an isomorphism, too. Finally, for u,v ∈ W and u′, v′ ∈ W ′, we have

ω
(
u + u′, v + v′) = ω

(
u′, v

) − ω
(
v′, u

) = 〈
χ

(
u′), v

〉 − 〈
χ

(
v′), u

〉
,

that is, 1W ⊕ χ is symplectic. �

Exercises
7.2.1 Prove the relations stated in (7.2.1).
7.2.2 Let (V ,ω) be a symplectic vector space of dimension 2n. Prove the following

statements.
(a) Every basis of an isotropic subspace can be extended to a symplectic basis

of V .
(b) Every isotropic subspace is contained in a Lagrangian subspace. Corre-

spondingly, every coisotropic subspace contains a Lagrangian subspace.
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(c) If (W1,W2) and (U1,U2) are pairs of complementary Lagrangian sub-
spaces, there exists a symplectomorphism which transforms Wi into Ui .

7.2.3 Prove the statement of Remark 7.2.7.

7.3 Linear Symplectic Reduction

Let W be a subspace of the symplectic vector space (V ,ω). Since kerωW = W ∩Wω ,
the quotient

Ŵ := W/
(
W ∩ Wω

)
(7.3.1)

carries a natural symplectic structure ω̂ defined by

ω̂
([u], [v]) := ω(u, v)

for all u,v ∈ W . Let p : W → Ŵ be the canonical projection. Then,

ωW = p∗ω̂ (7.3.2)

and ωW and ω̂ have the same rank. If W is coisotropic, then

Ŵ = W/Wω. (7.3.3)

Proposition 7.3.1 Let (V ,ω) be a symplectic vector space. Let W ⊂ V be
coisotropic and let L ⊂ V be Lagrange. Then, the image of W ∩L under the canon-
ical projection p : W → Ŵ is a Lagrangian subspace of (Ŵ , ω̂).

Proof Since L is isotropic, so is W ∩ L. Hence, (7.3.2) implies that p(W ∩ L) is
isotropic, too. Let us calculate the dimension. Since Wω ⊂ W , we have p(W ∩L) ∼=
(W ∩ L)/(Wω ∩ L) as vector spaces. Using points 2 and 5 of Proposition 7.2.1, we
get

dim(W ∩L) = dimV − dim(W ∩L)ω = dimV − dimWω − dimL+ dim
(
Wω ∩L

)

and a similar equation for Wω ∩ L. Subtracting these equations and using (7.3.3),
we obtain

dim(W ∩ L) − dim
(
Wω ∩ L

) = 1

2

(
dimW − dimWω

) = 1

2
dim Ŵ .

Thus, Proposition 7.2.6 yields the assertion. �

Lemma 7.3.2 Let W be a subspace of the symplectic vector space (V ,ω). If E ⊂ W

is a subspace complementary to W ∩ Wω , that is, W = E ⊕ (W ∩ Wω), then E is
maximally symplectic in W .
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Proof Since p�E is injective and since ω̂ is non-degenerate, (7.3.2) implies that E

is symplectic. Suppose there exists a symplectic subspace E′ such that E ⊂ E′ ⊂ W

and dimE′ > dimE. Then, for dimensional reasons, E′ ∩ (W ∩Wω) 	= {0}. Choose
a nonzero v ∈ E′ ∩ (W ∩ Wω). Then, v ∈ Wω ⊂ E′ω and therefore ω(v, v′) = 0 for
all v′ ∈ E′. This contradicts the assumption on E′ to be symplectic. �

As an important conclusion we obtain that every subspace of a symplectic vec-
tor space (V ,ω) induces a decomposition of V into a direct sum of ω-orthogonal
symplectic subspaces.

Theorem 7.3.3 (Witt-Artin decomposition) Let (V ,ω) be a symplectic vector space
and let W be a subspace of V . Let E and F be subspaces such that

W = E ⊕ (
W ∩ Wω

)
and Wω = F ⊕ (

W ∩ Wω
)
.

Then, E, F and (E ⊕F)ω are symplectic and V decomposes into the ω-orthogonal
direct sum

V = E ⊕ F ⊕ (E ⊕ F)ω. (7.3.4)

Moreover, W ∩ Wω is a Lagrangian subspace of (E ⊕ F)ω .

We will see that the above decomposition plays an important role in symplectic
reduction of systems with symmetries, cf. Chap. 10.

Proof The subspaces E and F are symplectic due to Lemma 7.3.2. Since E ∩ F ⊂
W ∩ Wω and E ∩ (W ∩ Wω) = {0}, we obtain E ∩ F = {0}. Since F ⊂ Wω, we
have W ⊂ Fω and thus E ⊂ Fω . Consequently, F ⊂ Eω. Therefore, E and F are
ω-orthogonal.

Let us denote Z ≡ (E ⊕ F)ω . Since E ⊕ F is symplectic, Z is symplectic, too.
By Proposition 7.2.1/5, we have Z = Fω ∩ Eω ⊃ W ∩ Wω. Moreover, by Proposi-
tion 7.2.3/1, W ∩ Wω is isotropic. Finally, due to

dimV = dimW + dimWω = dimE + dimF + 2 dim
(
W ∩ Wω

)
,

we obtain dim(W ∩ Wω) = 1
2 dimZ. Therefore, W ∩ Wω is a Lagrangian subspace

in Z. �

Example 7.3.4 Consider R6 with the standard symplectic structure. Denote the stan-
dard basis elements by e1, e2, e3, f1 ≡ e4, f2 ≡ e5, f3 ≡ e6 and choose the subspace

W =Re1 ⊕Re2 ⊕Rf1.

Then,

Wω =Re2 ⊕Re3 ⊕Rf3, W ∩ Wω =Re2.

We choose E =Re1 ⊕Rf1 and F =Re3 ⊕Rf3. Then, (E ⊕ F)ω =Re2 ⊕Rf2 and
(7.3.4) holds, indeed.
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Remark 7.3.5

1. The Witt-Artin decomposition (7.3.4) induces the following decomposition of
the symplectic form:

ω = ωE + ωF + ω(E⊕F)ω . (7.3.5)

2. Applying Proposition 7.2.9 to the Lagrangian subspace W ∩ Wω of (E ⊕ F)ω ,
we obtain

(E ⊕ F)ω ∼= W ∩ Wω ⊕ (
W ∩ Wω

)∗
. (7.3.6)

3. In particular, let W be a Lagrangian subspace of the symplectic vector space
(V ,ω). Then, we have E = {0} = F and therefore (E ⊕ F)ω = V , thus, in this
case the Witt-Artin decomposition induced by W is trivial.

7.4 The Symplectic Group

In this section, we discuss symplectic mappings. The following proposition collects
their elementary properties.

Proposition 7.4.1 Let (V ,ω) and (W,ρ) be symplectic vector spaces and let
f : V → W be a symplectic mapping.

1. The mapping f is injective. If dimV = dimW , then f is a symplectomorphism.
2. The image of f is a symplectic subspace of W .
3. Every symplectomorphism preserves the canonical symplectic volume form.
4. If (V ,ω) = (W,ρ), then detf = 1.

Proof 1. Let v ∈ V such that f (v) = 0. Then,

ω(v,u) = f ∗ρ(v,u) = ρ
(
f (v), f (u)

) = 0

for all u ∈ V . Since ω is non-degenerate, we conclude v = 0.
2. Let w ∈ imf ∩ (imf )ρ and let v ∈ V such that w = f (v). Then,

ρ(f (v), f (u)) = ω(v,u) = 0 for all u ∈ V . It follows that v = 0 and hence w = 0.
3. By f ∗ρ = ω, we have

f ∗Ωρ = 1

n! (−1)
n(n−1)

2 f ∗ρ ∧ · · · ∧ f ∗ρ = Ωω.

4. By definition of the determinant, f ∗Ωω = (detf )Ωω . Hence, point 3 implies
detf = 1. �

Remark 7.4.2

1. As a generalization of point 4 of Proposition 7.4.1, let V and W be vector spaces
of the same dimension, dimV = dimW = k, with volume forms ΩV and ΩW .
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Let f ∈ L(V,W) be a linear mapping. Then, there exists a unique constant
det(f ) such that

f ∗ΩW = det(f ) · ΩV ,

because
∧k

V is one-dimensional. Thus, f is volume preserving iff det(f ) = 1.
2. Since on a 2-dimensional symplectic vector space the canonical volume form

coincides with the symplectic form, every volume preserving mapping is auto-
matically symplectic. However, in higher dimensions this is not the case as the
following examples shows. Let V = R

4, let {e1, e2, e3, e4} denote the canonical
basis and consider the canonical symplectic form ω = e∗1 ∧ e∗3 + e∗2 ∧ e∗4. The
linear mapping f : V → V defined by

(e1, e2, e3, e4) �→ (−e1,−e2, e3, e4)

preserves the volume Ωω = e∗1 ∧ e∗2 ∧ e∗3 ∧ e∗4, but since f ∗ω = −ω, it is not
symplectic.

The automorphisms of a symplectic vector space (V ,ω) form a closed subgroup
of GL(V ), called the symplectic group of (V ,ω) and denoted by Sp(V ,ω). Accord-
ing to Theorem 5.6.8, Sp(V ,ω) is a Lie group and a Lie subgroup of GL(V ). Let
sp(V ,ω) denote the Lie algebra of Sp(V ,ω). Recall that in a symplectic basis {ei}
of V we have ω = Jn, cf. Example 7.1.4. Let f ∈ Sp(V ,ω) and let a be the matrix
representing f in this basis, f (ei) = aj

iej . The condition f ∗ω = ω takes the form

aTJna = Jn. (7.4.1)

Thus, every symplectic basis induces an isomorphism of the Lie groups Sp(V ,ω)

and Sp(n,R), cf. Example 1.2.6.
For the analysis of the stability of equilibria or periodic integral curves of Hamil-

tonian systems, the properties of the spectrum of symplectomorphisms are relevant.
The following proposition puts strong limits on how eigenvalues of symplectomor-
phisms are located in the complex plane.

Proposition 7.4.3 (Symplectic Eigenvalue Theorem) Let (V ,ω) be a symplectic
vector space.

1. If λ is an eigenvalue of a ∈ Sp(V ,ω) with multiplicity k, then both the complex
conjugate λ and λ−1 are eigenvalues of a with multiplicity k.

2. If λ is an eigenvalue of A ∈ sp(V ,ω) with multiplicity k, then both λ and −λ are
eigenvalues of A with multiplicity k.

Proof It suffices to prove the assertion for V = R
2n with the canonical symplectic

structure. The assertions about λ are due to the fact that a and A are real matrices.
1. First, note that λ 	= 0, because a is invertible. Let χa(z) := det(a − z1) be the

characteristic polynomial of a. We rewrite (7.4.1) in the form (aT)−1 = JnaJ−1
n to
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obtain

χa(z) = det
(
Jn(a − z1)J−1

n

) = det
((

aT)−1 − z1
) = det

(
a−1 − z1

)
.

Writing a−1 − z1 = (−za−1)(a − z−11) and using det(a) = 1 we arrive at

χa(z) = z2nχa

(
z−1).

Thus, if λ is a zero of χa of multiplicity k, so is λ−1.
2. Similarly, due to J 2

n = −1, from (7.4.1) we conclude AT = JnAJn. Using this
and detJn = 1, we obtain

χA(−z) = det(A + z1) = det
(
Jn(A + z1)Jn

) = det
(
AT − z1

) = χA(z).

Thus, if λ is a zero of χA of multiplicity k, so is −λ.
�

Corollary 7.4.4 Let (V ,ω) be a symplectic vector space.

1. If ±1 is an eigenvalue of a ∈ Sp(V ,ω), it has even multiplicity.
2. If 0 is an eigenvalue of A ∈ sp(V ,ω), it has even multiplicity.

Proof Let a ∈ Sp(V ,ω). Unless λ = ±1, the sum of the multiplicities of the eigen-

values λ, λ, λ−1 and λ
−1

is even. It follows that the sum of the multiplicities of the
eigenvalues +1 and −1 (if present) is even, too. A similar argument for A yields
that, there, the eigenvalue 0 can occur with even multiplicity only. Moreover, un-

less λ = −1, the family of eigenvalues λ, λ, λ−1 and λ
−1

contributes a unit factor
to deta. Since deta = 1, the eigenvalue −1 can occur with even multiplicity only.
Hence, this holds for the eigenvalue +1, too. �

It follows that the eigenvalues of a symplectomorphism must be located symmet-
rically with respect to reflections about the unit circle and the real axis. For a given
λ, the following cases can occur.

1. If |λ| 	= 1 and Imλ 	= 0, then λ,λ,λ−1 and λ−1 are all distinct (4 different eigen-
values).

2. If |λ| 	= 1, Imλ = 0, then λ = λ and λ−1 = λ−1 (pairs of eigenvalues on the real
axis).

3. If |λ| = 1, Imλ 	= 0, then λ = λ−1 and λ = λ−1 (pairs of eigenvalues on the unit
circle).

4. If |λ| = 1, Imλ = 0, then λ = λ = λ−1 = λ−1 = ±1 (one eigenvalue, +1 or −1).

Figure 7.1 illustrates these statements for the case V = R
4 endowed with the

canonical symplectic structure.
It turns out that every linear symplectomorphism can be brought to a normal

form, see Sect. 3 in [225]. The following special case will be useful in the sequel.
The proof is left to the reader (Exercise 7.4.2).
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Fig. 7.1 Possible eigenvalue configurations for symplectomorphisms of R4

Proposition 7.4.5 Let f ∈ Sp(V ,ω), dimV = 2n. If the eigenvalues λk of f are all
distinct and lie on the unit circle, λk = eiαk , there exists a symplectic basis in V such
that f is given by the matrix e−JnA, where A = diag(α1, . . . , αn,α1, . . . , αn).

Finally, we prove that for a compact subgroup H ⊂ Sp(V ,ω), the subspace V H

of H -invariant elements is symplectic. Later on, this will be applied to the stabilizers
of proper Lie group actions.

Lemma 7.4.6 Let (V ,ω) be a symplectic vector space and let H ⊂ Sp(V ,ω) be a
compact subgroup. Then, V H is a symplectic subspace.

Proof We have to show that V H ∩ (V H )ω = 0. Since H is compact, Proposi-
tion 5.5.6 implies that V admits an H -invariant scalar product g. Clearly, it suffices
to show that

(
V H

)ω = (
V H

)⊥
, (7.4.2)

where (V H )⊥ denotes the g-orthogonal complement of V H in V . By Proposi-
tion 7.2.1/1, (V H )ω = ((V H )�)0. Note that H acts on V ∗ from the left via (h−1)T,
h ∈ H , and that H ⊂ Sp(V ,ω) implies that the mappings � and � intertwine this ac-
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tion with the original action of H on V . It follows that (V H )� = (V ∗)H and hence
(V H )ω = ((V ∗)H )0. On the other hand, since g is H -invariant, the induced isomor-
phism g : V → V ∗ maps V H onto (V ∗)H . This implies

((
V ∗)H )0 = (

g
(
V H

))0 = (
V H

)⊥

and thus (7.4.2). �

Exercises

7.4.1 Show that a = [
B C
D E

]
belongs to Sp(n,R) iff BTD and CTE are symmetric

and BT E − DT C = 1. Here, B,C,D,E are quadratic real matrices.
7.4.2 Prove Proposition 7.4.5.

7.5 Compatible Complex Structures

In symplectic algebra and geometry, complex structures play an important auxiliary
role.

Definition 7.5.1 A complex structure on a real vector space V is an endomorphism
J with the property J 2 = −id.

If a complex structure exists, V has even dimension and acquires the structure of
a complex vector space of dimension 1

2 dimV with scalar multiplication by complex
numbers defined by

(x + iy)v := xv + yJv, v ∈ V, x, y ∈ R.

In what follows, we do not distinguish in notation between the real and the complex
vector space structure on V . Note that a real linear mapping of V is complex linear
iff it commutes with J . Denote by EndC(V ) the vector space of complex linear
mappings and by GLC(V ) the group of complex linear automorphisms of V .

Now, let (V ,ω) be a symplectic vector space.

Definition 7.5.2 A complex structure J on V is said to be compatible with ω if the
bilinear form

gJ : V × V → R, gJ (u, v) = ω(u,Jv) (7.5.1)

is a (real) scalar product.

We will prove below that compatible complex structures exist on every sym-
plectic vector space. The isometry group of gJ will be denoted by O(V ,gJ ).
Furthermore, we denote the space of ω-compatible complex structures on (V ,ω)
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by J (V ,ω) and endow it with the topology induced from End(V ). If J is ω-
compatible, it is both symplectic and isometric with respect to gJ :

ω(Ju,Jv) = gJ (Ju, v) = gJ (v, Ju) = −ω(v,u) = ω(u, v),

gJ (Ju,Jv) = −ω(Ju, v) = ω(v,Ju) = gJ (v,u) = gJ (u, v).

Due to J 2 = −id, the first equation implies J (V ,ω) ⊂ sp(V ,ω). The proof of the
following proposition is left to the reader (Exercise 7.5.1).

Proposition 7.5.3 Let J ∈ J (V ,ω).

1. J defines a scalar product2 on the complex vector space V by

hJ (u, v) := gJ (u, v) + iω(u, v). (7.5.2)

For the corresponding isometry group U(V ,hJ ), one has

U(V ,hJ ) = Sp(V ,ω)∩GLC(V ) = O(V ,gJ )∩GLC(V ) = O(V ,gJ )∩Sp(V ,ω).

(7.5.3)
2. For every Lagrangian subspace L of (V ,ω), the image of L under J is a com-

plementary Lagrangian subspace, that is, V = L ⊕ JL. It coincides with the
gJ -orthogonal complement L⊥ of L in V .

3. Every endomorphism A of a Lagrangian subspace L extends uniquely to a com-
plex linear endomorphism of V by A(u + Jv) := Au + JAv, where u,v ∈ L.
Every complex linear endomorphism of V is uniquely determined by its values
on L.

4. Every gJ -orthonormal basis {ei} of a Lagrangian subspace L constitutes an hJ -
orthonormal basis in V , viewed as a complex vector space. Moreover, the ele-
ments ei and fi := Jei form a gJ -orthonormal symplectic basis in (V ,ω).

Remark 7.5.4

1. Point 2 of Proposition 7.5.3 has the following converse. Let L1 and L2 be com-
plementary Lagrangian subspaces. According to Proposition 7.2.9, ω induces an
isomorphism L∗

1 → L2. Using this isomorphism and a basis in L1, one can con-
struct an ω-compatible complex structure J such that L2 = JL1 (Exercise 7.5.2).

2. Due to J 2 = −1, the eigenvalues of J are ±i, both with multiplicity 1
2 dimV .

Hence, for any two complex structures J and J ′, there exists a ∈ GL(V ) such
that J ′ = aJa−1. If both J and J ′ are ω-compatible, a can be chosen from
Sp(V ,ω).

Example 7.5.5 The matrices ±Jn are complex structures on V = R
2n. The matrix

J = −Jn is compatible with the standard symplectic structure of R2n defined by Jn.
The corresponding scalar product gJ coincides with the standard scalar product on

2That is, a positive definite Hermitian form.
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R
2n. With respect to the complex vector space structure induced on R

2n by J , the
mapping R

2n ≡ R
n ⊕ R

n → C
n, given by (x,y) �→ x + iy, is an isomorphism of

complex vector spaces. Via this isomorphism, hJ corresponds to the standard scalar
product on C

n. The induced mapping Mn(C) → M2n(R), defined by

A + iB �→
[
A −B

B A

]
, A,B ∈ Mn(R), (7.5.4)

yields an isomorphism of real algebras from Mn(C) onto the subalgebra of M2n(R)

of elements commuting with −Jn. This isomorphism maps U(n) onto U(V ,hJ ).
Under the identification of Mn(C) with its image in M2n(R), the identities (7.5.3)
read

U(n) = Sp(n,R) ∩ GL(n,C) = O(2n) ∩ GL(n,C) = O(2n) ∩ Sp(n,R).

The Lagrangian subspace of R
2n defined by the first n standard basis vectors is

mapped under J to that spanned by the last n basis vectors. The counterparts of
these Lagrangian subspaces in C

n are given by the real subspaces R
n and iRn,

respectively.

Denote the space of symmetric bilinear forms on V by S2V ∗ and the convex
open subset of positive definite elements by S2+V ∗.

Proposition 7.5.6 Every symplectic vector space (V ,ω) admits a compatible com-
plex structure. More precisely, there exists a surjective and continuous mapping
F : S2+V ∗ → J (V ,ω) satisfying F(gJ ) = J .

Proof Since ω is non-degenerate, every g ∈ S2+V ∗ defines an endomorphism a of
V by

g(u, v) = ω(u,av).

Since g is non-degenerate, a is invertible. Let a∗ denote the adjoint of a relative to
g, defined by g(u, a∗v) = g(au, v) for all u,v ∈ V , and let a = J |a| be the polar
decomposition of a relative to g, that is, |a| = √

a∗a and J = a|a|−1. The anti-
symmetry of ω implies a = −a∗. It follows that J = a|a|−1 = |a|−1a and hence
J 2 = a2(|a|2)−1 = a2(−a2)−1 = −id. Consequently, J is a complex structure on
(V ,ω). Due to

ω(u,Jv) = ω
(
u,a|a|−1v

) = g
(
u, |a|−1v

) = g
(|a|− 1

2 u, |a|− 1
2 v

)
,

it is ω-compatible. Thus, J (V ,ω) 	= ∅ and we can define a mapping

F : S2+V ∗ → J (V ,ω), F (g) := J.

Since J 2 = −id, we have F(gJ ) = J . In particular, F is surjective.
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It remains to show that F is continuous. Since J = a|a|−1 and since multiplica-
tion and inversion in GL(V ), as well as the assignment g �→ a, are obviously con-
tinuous, it suffices to show that for arbitrary A ∈ End(V ), the assignment g �→ |A|
is continuous. To see this, fix a reference scalar product g0 ∈ S2+V ∗. By means of
orthonormal bases, one with respect to g and another one with respect to g0, one
can construct b ∈ GL(V ) such that g(u, v) = g0(bu, bv) for all u,v ∈ V . Consider
the algebra homomorphism

Cb : End(V ) → End(V ), Cb(A) := bAb−1.

It satisfies Cb(A
∗) = Cb(A)∗0 , where A∗0 denotes the adjoint of A with respect to

g0 (Exercise 7.5.3). This implies that Cb maps endomorphisms which are positive
relative to g to endomorphisms which are positive relative to g0. Thus, Cb(

√
A∗A)

is positive relative to g0. Since it satisfies Cb(
√

A∗A)2 = Cb(A)∗0 Cb(A), it is the
square root of Cb(A)∗0 Cb(A). Hence,

|A| = C−1
b

(√
Cb(A)∗0 Cb(A)

)
.

Since Cb(A) depends continuously on b and b can be chosen3 to depend continu-
ously on g, the assertion follows. �

Proposition 7.5.7 The space J (V ,ω) is contractible.

Proof By Corollary 7.1.5, we may assume that (V ,ω) = (R2n,ω0) with ω0(x,y) =
x · (Jny). According to Example 7.5.5, −Jn ∈ J (R2n,ω0). We are going to con-
struct a homotopy between the constant mapping J �→ −Jn and the identical map-
ping of J (R2n,ω0). By ω0-compatibility, for every J ∈ J (R2n,ω0), the matrix
aJ := JnJ is positive and symmetric. Hence, we can take as

J for every s ∈ R and
define a mapping

H : [0,1] × J
(
R

2n,ω0
) → M2n(R), H(s, J ) := −Jna

s
J .

Clearly, H is continuous and satisfies H(0, J ) = −Jn and H(1, J ) = J . Thus,
in order to prove that it yields the desired homotopy, we have to check that
H(s, J ) ∈ J (R2n,ω0) for all 0 < s < 1. Compatibility with ω0 follows from
ω0(x,H(s, J )y) = x ·(as

J y) and the fact that as
J is positive symmetric for all s. Since

H(s, J )2 = Jn(a
s
J )TJna

s
J , to see that H(s, J )2 = −1, it suffices to show that as

J is
symplectic. Since aJ is positive symmetric, it possesses a basis {ei} of eigenvectors
with eigenvalues αi > 0. Since −Jn and J are ω0-compatible, they are symplectic.
Hence, so is aJ . Therefore,

ω0(ei , ej ) = ω0(aJ ei , aJ ej ) = αiαjω0(ei , ej )

3By means of a local section of the submersion GL(V ) → GL(V )/O(V ,g0) (right cosets).
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for all i, j . It follows that αiαj = 1 or ω0(ei , ej ) = 0. Then,

ω0
(
as
J ei , a

s
J ej

) = (αiαj )
sω0(ei , ej ) = ω0(ei , ej ).

Thus, as
J is symplectic for all s. This proves the proposition. �

Exercises
7.5.1 Prove Proposition 7.5.3.
7.5.2 Prove the statement of Remark 7.5.4/1.
7.5.3 Let V be a real vector space. Let g1,g2 ∈ S2+V ∗ and let b ∈ GL(V ) such that

g1(u, v) = g2(bu, bv) for all u,v ∈ V . Show that for A ∈ End(V ), the adjoints
A∗i of A with respect to gi are related by b(A∗1)b−1 = (bAb−1)∗2 .

7.6 The Lagrange-Graßmann Manifold

Let (V ,ω) be a symplectic vector space of dimension 2n. In this section, we study
the structure of the space L (V ,ω) of Lagrangian subspaces of (V ,ω). For that pur-
pose, we choose an ω-compatible complex structure J on (V ,ω). For simplicity we
write U(V ) = U(V ,hJ ) and O(V ) = O(V ,gJ ). For L ∈ L (V ,ω), let O(L) denote
the isometry group of L with respect to the scalar product on L induced by gJ .
Proposition 7.5.3/3 implies that O(L) may be naturally viewed as a Lie subgroup of
U(V ) via the identification

O(L) = {
a ∈ U(V ) : aL = L

}
. (7.6.1)

Let G(k,V ) denote the Graßmann manifold of k-dimensional (real) linear subspaces
of V , cf. Example 5.7.6.

Proposition 7.6.1 L (V ,ω) is an embedded submanifold of G(n,V ) of dimension
n(n+1)

2 . Every L ∈ L (V ,ω) defines a diffeomorphism

U(V )/O(L) → L (V ,ω), [a] �→ aL. (7.6.2)

Proof Let L ∈ L (V ,ω) be given. It defines a diffeomorphism

ϕ : O(V )/
(
O(L) × O

(
L⊥)) → G(n,V ), [a] �→ aL,

where L⊥ denotes the gJ -orthogonal complement of L, which is Lagrange by
Proposition 7.5.3/2. For every a ∈ U(V ) ⊂ O(V ), the subspace aL is Lagrange, be-
cause, by (7.5.3), a is symplectic. Conversely, for every Lagrangian subspace L′ we
find a ∈ U(V ) such that L′ = aL: choose orthonormal bases in L and L′. Accord-
ing to Proposition 7.5.3/4, these bases induce orthonormal symplectic bases in V .
There exists a ∈ O(V ) transforming the latter bases into one another. Since these
bases are symplectic, so is a. Hence, (7.5.3) implies a ∈ U(V ). We conclude that
aL is Lagrange iff a ∈ U(V ).
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On the other hand, by (7.6.1), the stabilizer of L under U(V ) is given by the Lie
subgroup O(L) ⊂ U(V ). Thus, L (V ,ω) is the image of the homogeneous space
U(V )/O(L) under ϕ. According to Theorem 5.7.2, this endows L (V ,ω) with a
natural smooth structure. Applying points 1 and 2 of Corollary 6.5.3 to the mapping

U(V )/O(L) → O(V )/O(L) → O(V )/
(
O(L) × O

(
L⊥))

,

we obtain that L (V ,ω) is an embedded submanifold of G(n,V ). Finally, using
U(V ) ∼= U(n) and O(L) ∼= O(n), we find dimL (V ,ω) = n(n+1)

2 . �

Remark 7.6.2

1. Under the identification (7.6.1), with respect to the decomposition V = L ⊕ L⊥,
the subgroup O(L) consists of the block diagonal endomorphisms a ⊕ (−JaJ )

with a ∈ O(L).
2. By Proposition 7.6.1 and (7.5.3), Sp(V ,ω) acts transitively on L (V ,ω).

Definition 7.6.3 L (V ,ω) is called the Lagrange-Graßmann manifold of (V ,ω).

Example 7.6.4 Consider V =R
2n with the standard symplectic structure defined by

Jn. Take J = −Jn and L =R
n ×{0}. Then, under the identification of R2n with C

n,
cf. Example 7.5.5, O(L) corresponds to O(n) ⊂ U(n).

Later on, the intersection properties of Lagrangian subspaces will be relevant. To
study them, one exploits the partition of L (V ,ω) relative to a chosen Lagrangian
subspace L, given by the subsets

Lk(L) := {
L′ ∈ L (V ,ω) : dim

(
L′ ∩ L

) = k
}
, k = 0, . . . , n.

Definition 7.6.5 The subset

L̂ (L) = L (V ,ω) \ L0(L) ≡
n⋃

k=1

Lk(L) (7.6.3)

of L (V ,ω) is called the Maslov cycle of L.

First, we study L0(L). Let L′ ∈ L0(L) and let PL′ : V → L be the projection
relative to the decomposition V = L ⊕ L′. Then, 1 − PL′ yields a vector space
isomorphism between the Lagrangian subspaces L⊥ ⊂ V and L′, because the kernel
of 1 − PL′ is L. Moreover, by Proposition 7.5.3/2, we have L⊥ = JL. Thus, we
obtain

L′ = (1 − PL′)
(
L⊥) = (

(1 − PL′)J
)
(L). (7.6.4)

Next, we extend the endomorphism PL′J of L to a complex linear endomorphism
QL′ of V , cf. Proposition 7.5.3/3:

QL′(u + Jv) := PL′Ju + JPL′Jv, u, v ∈ L. (7.6.5)
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By construction,

QL′(L) = L, (J − QL′)(L) = L′, QL′J = JQL′ , (7.6.6)

and for any u,v ∈ L we have

hJ (QL′u,v) − hJ (u,QL′v)

= ω(QL′u,Jv) − ω(u,JQL′v) = −ω
(
(J − QL′)u, (J − QL′)v

)
, (7.6.7)

because L and L⊥ are Lagrange. Since L′ = (J − QL′)(L) is also Lagrange, QL′
is Hermitian with respect to hJ . Using this, together with QL′J = JQL′ , we obtain
the polar decomposition of J − QL′ with respect to hJ :

J − QL′ = J − QL′
√

1 + Q2
L′

√
1 + Q2

L′ .

Since QL′(L) = L, we have
√

1 + Q2
L′(L) = L. To summarize, the polar decompo-

sition yields a certain element a of U(V ) such that

L′ = aL, a = J − QL′
√

1 + Q2
L′

. (7.6.8)

Note that a is a square root of the Cayley transform of QL′ and that QL′ can be
reconstructed from a via

QL′ = J
1 + a2

1 − a2
(7.6.9)

(Exercise 7.6.1).

Proposition 7.6.6 Let L ∈ L (V ,ω).

1. L0(L) is open and dense in L (V ,ω).
2. There exists a natural diffeomorphism4 L0(L) → S2L∗, L′ �→ SL′ , defined by

SL′(u, v) := gJ (u,QL′v), u, v ∈ L. (7.6.10)

The kernel of SL′ is given by JL′ ∩ L.

As a consequence of point 2, L0(L) is contractible.

Proof 1. In view of Proposition 7.6.1 and the fact that the natural projection from
U(V ) to U(V )/O(L) is a submersion and hence open, it suffices to show that the

4Recall that S2L∗ denotes the vector space of symmetric bilinear forms on L.
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subset of U(V ) of elements a satisfying aL ∩ L = {0} is open and dense. The latter
follows from the fact that the condition aL ∩ L = {0} is equivalent to the condition
that, for some basis {ei} in L, the system {ei} ∪ {aei} is linearly independent.

2. Since L is Lagrange, the restrictions of gJ and hJ to L coincide. Thus, symme-
try of SL′ follows from hermiticity of QL′ . We prove bijectivity. To show injectivity,
assume that there are two Lagrangian subspaces L′ and L′′ such that SL′ = SL′′ . This
means

gJ

(
u, (QL′ − QL′′)v

) = 0

for all u,v ∈ L, that is, QL′ and QL′′ coincide on L. Now, the second relation in
(7.6.6) implies L′ = L′′. To prove surjectivity, let S ∈ S2L∗. Via (7.6.10), to S there
corresponds a gJ -symmetric endomorphism Q of L, which according to Propo-
sition 7.5.3/3 extends uniquely to a Hermitian endomorphism of V . Consider the
subspace L′ = (J − Q)(L). Since J (L) = L⊥, we have L′ ∩ L = {0} and since Q

is Hermitian, (7.6.7) implies that L′ is Lagrange. Hence, L′ ∈ L0(L). Using that Q

leaves L invariant and that

(PL′)�L = idL, (PL′)�L′ = 0,

we find

(QL′ − Q)�L = PL′ ◦ (J − Q)�L = 0.

This implies SL′ = S. Thus, the assignment L′ �→ SL′ is bijective, indeed. Dif-
ferentiability in both directions follows from the facts that the natural projection
U(V ) → L (V ,ω) is a submersion and that the assignments Q �→ a and a �→ Q

given by (7.6.8) and (7.6.9), respectively, are analytic. Finally, to determine the ker-
nel of SL′ , let u ∈ L such that QL′(u) = PL′J (u) = 0. Then, J (u) ∈ L′ and hence
u ∈ JL′ ∩ L. �

Remark 7.6.7

1. By definition, we have

SL′(u, v) = ω(u,JQL′v), u, v ∈ L.

2. Let {ei} be an orthonormal basis in L and let A be the matrix of −QL′ in this
basis. The relation L′ = (J − QL′)(L) reads

L′ =
{

n∑

i=1

(qifi + piei) : pi =
n∑

j=1

Aijqj

}
, (7.6.11)

where fi = Jei , and the diffeomorphism L0(L) → S2L∗ yields a diffeomor-
phism

ϕ : L0(L) → S2
R

n, L′ �→ ϕ
(
L′) = A. (7.6.12)
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With respect to the basis {ei} of the complex vector space V , the element a ∈
U(V ) transforming L to L′, found in (7.6.8), is represented by the matrix

a = i + A√
1 + A2

. (7.6.13)

A can be reconstructed from a via

A = −i
1 + a2

1 − a2
(7.6.14)

(Exercise 7.6.1).

Next, we study the Maslov cycle L̂ (L) of L. For that purpose, we choose an
orthonormal basis {ei} in L and take the diffeomorphism (7.6.12) as a local chart on
the open subset L0(L) of L (V ,ω). To construct local charts covering the remaining
part of L (V ,ω), that is, the Maslov cycle L̂ (L), for every subset K ⊂ {1, . . . , n},
we define

(a) LK to be the real subspace of V spanned by all fi with i ∈ K and all ej with
j /∈ K ,

(b) aK to be the linear mapping V → V defined by

aKei =
{

fi i ∈ K,

ei i /∈ K,
aKfi =

{
−ei i ∈ K,

fi i /∈ K.
(7.6.15)

Obviously, L∅ = L. One has LK = aKL and aK ∈ U(V ), because it is both orthog-
onal and symplectic. It follows that LK is Lagrange and that L0(LK) = aKL0(L).
Hence, for every K we can define a local chart ϕK on L0(LK) by transporting ϕ by
the help of aK :

ϕK : L0(LK) → S2
R

n, ϕK

(
L′) := ϕ

(
a−1
K L′). (7.6.16)

Proposition 7.6.8 For every L′ ∈ Lk(L), there exists a subset K of {1, . . . , n} with
k elements such that L′ ∈ L0(LK). In particular, the family

{(
L0(LK),ϕK

) : K ⊂ {1, . . . , n}}

yields an atlas on L (V ,ω).

Proof Let W1 := L′ ∩ L. If dimW1 ≡ k < n, there exists i1 ∈ {1, . . . , n} such that
ei1 /∈ W1. Now, let W2 be the subspace of L spanned by W1 and ei1 . Iterating the
argument, after n − k steps we arrive at a sequence i1, . . . , in−k with the property
that the subspace of L spanned by ei1, . . . , ein−k

is complementary to L′ ∩ L. Let

K := {1, . . . , n} \ {i1, . . . , in−k}.
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Then, L ∩ LK is spanned by ei1 , . . . , ein−k
, so that L = (L ∩ L′) ⊕ (L ∩ LK). Since

both L′ and LK are Lagrange, this implies ω(L′ ∩ LK,L) = 0 and hence, since L

is Lagrange, L′ ∩ LK ⊂ L. It follows that

L′ ∩ LK = L′ ∩ LK ∩ L = (
L ∩ L′) ∩ (L ∩ LK) = {0}

and hence L′ ∈ L0(LK). It is obvious that the family {L0(LK) : K ⊂ {1, . . . , n}}
defines a covering of L (V ,ω). The proof of the compatibility of the chart mappings
with the smooth structure provided by Proposition 7.6.1 is left to the reader. �

Remark 7.6.9 Let L′ ∈ L0(LK) and denote A = ϕK(L′). Then, ϕ−1(A) = a−1
K L′

and thus L′ = aKaL, where the matrix of a in the basis {ei} is given by (7.6.13).
Moreover, since A is the symmetric matrix assigned to a−1

K L′ by ϕ, (7.6.11) yields

a−1
K L′ =

{
n∑

i=1

(qifi + piei) : pi =
n∑

j=1

Aijqj

}
. (7.6.17)

Using (7.6.15), we conclude that L′ consists of the vectors
∑n

i=1(qifi +piei) which
satisfy the n equations

qk =
∑

j /∈K

Akjqj −
∑

l∈K

Aklpl, k ∈ K, (7.6.18)

pi =
∑

j /∈K

Aijqj −
∑

l∈K

Ailpl, i /∈ K. (7.6.19)

Proposition 7.6.10 For every k = 1, . . . , n, the local charts (L0(LK),ϕK) with K

consisting of k elements cover Lk(L). For every such K , the subset

Lk(L) ∩ L0(LK)

is mapped under ϕK onto the subspace of S2
R

n defined by the k(k+1)
2 relations

Aij = 0, i, j ∈ K.

Proof The first assertion is a direct consequence of Proposition 7.6.8. To prove the
second assertion, let K be given, let L′ ∈ Lk(L) ∩ L0(LK) and let A = ϕK(L′).
Then, a−1

K L′ is given by (7.6.17). By definition of aK , we have a−1
K L′ = aKL′ and

thus

a−1
K L′ ∩ LK = aKL′ ∩ LK = aK

(
L′ ∩ L

)
.

Hence the subspace a−1
K L′ ∩ LK has dimension k. Writing

LK =
{

n∑

i=1

(qifi + piei) : qi = 0 for all i /∈ K,pj = 0 for all j ∈ K

}



338 7 Linear Symplectic Algebra

we see that in the intersection a−1
K L′ ∩LK , pi is determined by qi for all i = 1, . . . , n

and qi can only be nonzero for i ∈ K . Since a−1
K L′ ∩ LK has dimension k, the

equations

0 = pi =
n∑

j=1

Aijqj ≡
∑

j∈K

Aijqj , i ∈ K,

must, therefore, be satisfied for all qi ∈ R. Hence, Aij = 0 for all i, j ∈ K . �

Combining Proposition 7.6.10 with Proposition 1.7.3, we obtain

Corollary 7.6.11 For every k = 0, . . . , n, the subset Lk(L) of L (V ,ω) is an em-
bedded submanifold of codimension k(k+1)

2 .

Remark 7.6.12 Corollary 7.6.11 implies that the Maslov cycle L̂ (L) is a stratified
subset of L (V ,ω), with the stratum L1(L) having codimension 1 in L (V ,ω) and
the other strata having codimension at least 3. This implies that L1(L) is open and
dense in L̂ (L).

Exercises
7.6.1 Prove the reconstruction formulae (7.6.9) and (7.6.14).

7.7 The Universal Maslov Class

In this section, we use some elementary facts from topology, see e.g. [55], [124] or
part III of [76]. Our presentation follows the line of reasoning of a classical paper
by Arnold [13], see also [79]. As in Sect. 7.6, let there be chosen an ω-compatible
complex structure J . Let us choose L ∈ L (V ,ω) and let us consider the mapping

det : U(V ) → S1 ⊂C, a �→ deta.

Since on the subgroup O(L) it takes the values ±1, via the isomorphism (7.6.2)
defined by L, it induces a well-defined mapping

det2L : L (V ,ω) → S1 ⊂C. (7.7.1)

For a ∈ U(V ), the mappings det2L and det2aL differ by a constant phase factor:

det2aL = det−2(a)det2L. (7.7.2)

Definition 7.7.1 (Maslov index) The Maslov index μ(γ ) of a closed curve γ : S1 =
R/2πZ → L (V ,ω) is defined to be the degree of the mapping5 det2L ◦γ : S1 → S1.

5Cf. Remark 4.3.6/4. Both S1 =R/2πZ and S1 ⊂C are endowed with the natural orientations.
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Proposition 7.7.2 The Maslov index is homotopy invariant, that is, it is constant on
homotopy classes of closed curves. It does not depend on the choice of L or J .

Proof Homotopy invariance follows from the continuity of the mapping (7.7.1) and
from the fact that the mapping degree is homotopy invariant. By (7.7.2), μ does
not depend on L. Using this, as well as homotopy invariance of μ and point 2 of
Remark 7.5.4, one obtains independence of J . �

According to Proposition 7.7.2, the Maslov index defines a homomorphism

μ : π1
(
L (V ,ω)

) → Z, (7.7.3)

denoted by the same symbol.

Proposition 7.7.3 The mapping (7.7.3) is an isomorphism.

Accordingly, π1(L (V ,ω)) is isomorphic to Z and μ is a generator of the Abelian
group Hom(π1(L (V ,ω)),Z) ∼= Z.

Proof Let L ∈ L (V ,ω). We choose an orthonormal basis in L and use the cor-
responding matrix representation to identify U(V ) with U(n). Then, O(L) = {a ∈
U(V ) : aL = L} is given by the subgroup O(n) ⊂ U(n). We have to show that the
homomorphism π1(U(n)/O(n)) → π1(S1) = Z induced by γ �→ det2L ◦γ , where γ

is a closed curve in U(n), is bijective. Thus, for every k ∈ Z, define a curve

γk : [0,1] → U(n), γk(t) := diag
(
eikπt ,1, . . . ,1

)
.

Since γk(0) and γk(1) lie in O(n), the curves γk project to closed curves γ̂k in
U(n)/O(n), starting and ending at [1]. Note that det2L ◦γk winds k times around
S1. This proves surjectivity. To prove that it is injective, we show that every closed
curve γ̂ in U(n)/O(n), starting and ending at [1], is homotopic to one of the curves
γ̂k . Since the projection U(n) → U(n)/O(n) admits local sections, γ̂ has a lift γ :
[0,1] → U(n) starting at 1 and ending at some a ∈ O(n). Depending on whether
det(γ (1)) equals +1 or −1, by composing γ with a curve in O(n), we can make
it end at 1 or at (−1,1, . . . ,1). In the first case, γ is a closed curve in U(n). It is
therefore homotopic to γk for some even k, see Exercise 7.7.1. Then, γ̂ is homotopic
to γ̂k . In the second case, we use that γ · γ−1 (pointwise multiplication in U(n)) is
closed in U(n) and hence is homotopic to γk for some even k. Then, γ is homotopic
to γk · γ1 = γk+1 and hence γ̂ is homotopic to γ̂k+1. �

Now, let φ denote the standard angle coordinate on S1 ⊂ C and consider the
1-form

μ := 1

2π

(
det2L

)∗dφ (7.7.4)
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on L (V ,ω). By (7.7.2), for a ∈ U(V ), we have

(
det2aL

)∗dφ = d
(
φ ◦ det2aL

) = d
(
φ ◦ det−2(a) + φ ◦ det2L

) = (
det2L

)∗dφ,

because φ ◦ det−2(a) is a constant. Hence, the 1-form μ does not depend on the
choice of L. The following observation justifies the notation μ.

Proposition 7.7.4 For every closed curve γ : S1 → L (V ,ω),

μ(γ ) =
∫

γ

μ.

Proof By definition of the integral over a submanifold,

∫

γ

μ =
∫

S1
γ ∗μ = 1

2π

∫

S1

(
det2L ◦ γ

)∗ dφ.

By definition of the mapping degree, cf. Remark 4.3.6/4, this equals

1

2π
deg

(
det2L ◦ γ

)∫

S1
dφ = μ(γ ). �

Definition 7.7.5 (Universal Maslov class) The 1-form (7.7.4) is called the universal
Maslov class of L (V ,ω).

Remark 7.7.6

1. Integration of 1-forms over closed curves yields a homomorphism from the de-
Rham cohomology group H 1(L (V ,ω)) to Hom(π1(L (V ,ω)),R). Using meth-
ods of algebraic topology, one can show that this homomorphism is in fact an
isomorphism.6 Since π1(L (V ,ω)) ∼= Z, we have Hom(π1(L (V ,ω)),R) ∼= R.
Hence, Proposition 7.7.4 states that under the above isomorphism, the 1-form
μ ∈ H 1(L (V ,ω)) defined by (7.7.4) corresponds to the homomorphism μ ∈
Hom(π1(L (V ,ω)),Z) ⊂ Hom(π1(L (V ,ω)),R) defined by (7.7.3). In particu-
lar, the first one spans H 1(L (V ,ω)). This explains the name universal class.

2. We express the mapping (7.7.1) in terms of the local charts ϕK on L (V ,ω), in-
duced by an orthonormal basis {ei} in L, cf. Proposition 7.6.8. Let L′ ∈ L0(LK)

and let A = ϕK(L′). Due to Remark 7.6.9, L′ = aKaL, where the matrix of a

6It decomposes into the isomorphisms

H 1(L (V ,ω)
) → H 1(L (V ,ω),R

) → Hom
(
H1

(
L (V ,ω)

)
,R

) → Hom
(
π1

(
L (V ,ω)

)
,R

)

provided by, respectively, the de Rham Theorem, the Universal Coefficient Theorem and the
Hurewicz Theorem. Here, H 1(·,R) and H1(·) denote the first integer-valued singular cohomol-
ogy group and the first singular homology group, respectively.
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with respect to the basis {ei} in the complex vector space V is given by i+A√
1+A2

.

Using that detaK = 1, cf. Proposition 7.4.1/4, we obtain

det2L
(
L′) = det

(
a2) = det

(
A + i

A − i

)
.

Next, we show that the Maslov index can be viewed as an intersection index. It
was this way this index occurred first in the work of Maslov [197]. For that purpose,
we consider the action of the center U(1) ⊂ U(V ) on L (V ,ω), given by

U(1) × L (V ,ω) → L (V ,ω),
(
eit ,L

) �→ eitL ∈ L (V ,ω).

This action is generated by the vector field7

(J∗)L = d

dt �0

(
eitL

)
.

Proposition 7.7.7 The vector field J∗ is transversal to L1(L) and thus defines a
coorientation8 on L1(L) for all L ∈ L (V ,ω). This coorientation does not depend
on J .

Proof Let L ∈ L (V ,ω) and consider the local charts (L0(LK),ϕK) defined by an
orthonormal basis in L. According to Proposition 7.6.10, L1(L) is covered by the
charts (L0(LK),ϕK) with K = {m}, m = 1, . . . , n, and the subset L1(L)∩L0(LK)

is mapped under ϕK to the subspace of S2
R

n defined by the single equation Amm =
0. Let L′ ∈ L1(L) ∩ L0(LK) and let A = ϕK(L′). According to Remark 7.6.9, we
have L′ = aKaL, where the matrix of a with respect to the basis {ei} is given by
(7.6.13). Hence, the local representative of (J∗)L′ in the chart ϕK is given by

d

dt �0

ϕK

(
eitL′) = d

dt �0

ϕK

(
eit aKaL

) = d

dt �0

ϕ
(
eit aL

)

see (7.6.16). For sufficiently small t , the matrix of e2it a2 does not have an eigenvalue
1, hence we can use (7.6.14) to calculate

d

dt �0

ϕ
(
eit aL

) = −i
d

dt �0

(
1 + e2it a2

1 − e2it a2

)
= 4a2(1 − a2)−2 = −(

1 + A2).

Thus, in the chart ϕK , (J∗)L′ is represented by −(1 + A2). Since A is symmetric,
A2 has nonnegative diagonal entries. This proves that J∗ is transversal to L1(L).
That the orientation of the normal bundle so defined does not depend on J follows

7This is the Killing vector field generated by J under the action of Sp(V ,ω) on L (V ,ω).
8That is, an orientation of the normal bundle of the submanifold L1(L), cf. Remark 2.7.18/2.
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from the fact that, according to Proposition 7.5.7, the subset J (V ,ω) of sp(V ,ω)

is arcwise connected. Indeed, since the mapping

sp(V ,ω) → TL′L (V ,ω) → NL′L1(L) ∼= R,

defined by the Killing vector fields of the action of Sp(V ,ω) on L (V ,ω), is smooth
and since the image of an element of J (V ,ω) under this mapping is nonzero, the
orientation cannot change along a curve in J (V ,ω). �

Remark 7.7.8 As a corollary of the proof, we note that the local representative of
the Killing vector field J∗ with respect to the local chart ϕ{m} points from the side
where Amm is positive to the side where Amm is negative.

Now let L ∈ L (V ,ω), let a, b ∈R and let γ : [a, b] → L (V ,ω) be a curve with
endpoints in L0(L). A number t ∈ (a, b) such that γ (t) ∈ L̂ (L) is called a cross-
ing of γ with L̂ (L). A crossing t is said to be simple if γ (t) ∈ L1(L). A simple
crossing is said to be transversal if γ̇ (t) /∈ Tγ (t)L1(L). Depending on whether γ̇ (t)

is positively or negatively oriented with respect to the canonical coorientation of
L1(L), a simple transversal crossing is said to be positive or negative. That is, a
simple transversal crossing is positive iff γ̇ (t) and (J∗)γ (t) point to the same side of
L1(L). In the following, when we say that two curves with the same end points are
homotopic with fixed end points we always mean that there is a homotopy preserv-
ing the endpoints.

Proposition 7.7.9

1. Every curve in L (V ,ω) with end points in L0(L) is homotopic with fixed end
points to a curve which has only simple transversal crossings with L̂ (L).

2. If two curves in L (V ,ω) which have the same end points in L0(L) and which
have only simple and transversal crossings with L̂ (L) are homotopic with fixed
end points, their differences between the numbers of positive and negative cross-
ings coincide.

Proof Below, by a homotopy we mean a homotopy with fixed end points. Denote
m = n(n+1)

2 .
1. Let γ : [a, b] → L (V ,ω) with γ (a), γ (b) ∈ L0(L) be given. Since the com-

plement L̂ (L) \ L1(L) is the closure of the embedded submanifold L2(L) which
has codimension 3, γ is obviously homotopic to a curve, denoted by the same sym-
bol, which has the same endpoints but only simple crossings, that is, it is contained
in L0(L) ∪ L1(L). Since L1(L) is an embedded submanifold and since [a, b] is
compact, there exist real numbers a = t0 < t1 < · · · < tr−1 < tr = b and local charts
(Ui, κi), i = 1, . . . , r , on L (V ,ω) mapping L1(L) to open subsets of hyperplanes
in R

m such that

γ
([ti−1, ti]

) ⊂ Ui, γ
(
(ti − 2ε, ti + 2ε)

) ⊂ Ui−1 ∩ Ui, i = 1, . . . , r.
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Using κ1, we can construct a smooth homotopy H1 from γ to a curve γ1 with
γ1(t1) ∈ L0(L), which has only transversal simple crossings between a and t1 and
which coincides with γ for t ≥ t1 + ε. Next, using κ2, in a similar way we can con-
struct a smooth homotopy H2 from γ1 to a curve γ2 with γ2(t1), γ2(t2) ∈ L0(L),
which has only transversal simple crossings between t1 − ε and t2 and which coin-
cides with γ1 outside (t1 − ε, t2 + ε). We iterate this procedure until we arrive at a
smooth homotopy Hr from γr−1 to a curve γr with γr(tr−1) ∈ L0(L), which has
only transversal simple crossings between tr−1 − ε and b, and which coincides with
γr−1 for t ≤ tr−1 − ε. Then, γr is homotopic to γ and has only transversal simple
crossings.

2. Denote the homotopy by H : [a, b] × [0,1] → L (V ,ω). For s ∈ [0,1], we
define t �→ γs(t) := H(t, s). By the codimension argument of point 1, H can be
chosen so that it stays in L0(L) ∪ L1(L). Choose an orthonormal basis in L and
consider the corresponding local charts (L0(LK),ϕK). Due to Proposition 7.6.10,
L0(L) ∪ L1(L) is covered by the charts ϕK with K being empty or having a sin-
gle element. Using this fact and compactness of [a, b] × [0,1], we find a = t0 <

t1 < · · · < tr = b and 0 = s0 < s1 < · · · < sp = 1 such that each of the squares
[ti , ti+1] × [sj , sj+1] is mapped under H to the domain of a single chart ϕKij

.
We may furthermore assume that the crossings of γ0 and γ1 are distinct from
t1, . . . , tr−1. For each j = 1, . . . , p − 1, by applying the procedure of point 1, the
family of charts {ϕK0j

, . . . , ϕKr−1j
} can be used to construct a homotopy from γsj to

some curve, still covered by these charts, whose crossings are simple and transver-
sal and are distinct from t1, . . . , tr−1. Thus, by plugging in such a homotopy forth
and back at s = sj if necessary, we may assume that the crossings of γsj are sim-
ple transversal and distinct from t1, . . . , tr−1. This shows that it suffices to prove
the assertion under the assumption that the homotopy H stays in the domain of a
single chart ϕK with K having at most one element. Now, if H stays in L0(L), the
assertion obviously holds. If not, then K has one element and ϕK maps the relevant
subset of L1(L) onto a whole subspace of Rm of codimension 1. Here, the assertion
is obvious as well. �

As a consequence of Proposition 7.7.9, we can define

Definition 7.7.10 (Maslov intersection index) The Maslov intersection index rela-
tive to L ∈ L (V ,ω) of a curve γ in L (V ,ω) with end points in L0(L) is defined
as

IndL(γ ) := ν+ − ν−,

where ν+ is the number of positive crossings and ν− is the number of negative
crossings with L̂ (L) of a curve which is homotopic with fixed end points to γ and
whose crossings are all simple and transversal.

According to Proposition 7.7.9, the Maslov intersection index is invariant under
homotopies with fixed end points. Moreover, by construction, it is additive with re-
spect to the composition of curves. We now show that, for closed curves, it coincides
with the Maslov index defined before.
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Theorem 7.7.11 Let γ : [0,1] → L (V ,ω) be a closed curve and let L ∈ L (V ,ω)

be transversal to the Lagrangian subspace γ (0) = γ (1). Then, IndL(γ ) = μ(γ ).

Proof Let us take L′ := γ (0) = γ (1) as the base point of π1(L (V ,ω)). By additiv-
ity, IndL defines a homomorphism π1(L (V ,ω)) → Z. Since, by Proposition 7.7.2,
π1(L (V ,ω)) ∼= Z and since two homomorphisms Z → Z coincide if there exists
k ∈ Z where they take the same nonzero value, it suffices to find a closed curve
γ1 : [0,1] → L (V ,ω) with IndL(γ1) = μ(γ1) 	= 0. Such a curve will be con-
structed now. Since L and L′ are complementary, according to Remark 7.5.4/1,
there exists J ∈ J (V ,ω) such that L′ = JL. Choose a gJ -orthonormal basis {ei}
in L and let fi := Jei . Define the curve γ1 by requiring γ1(t) to be the real sub-
space of V spanned by eπ it f1 = cos(πt)e1 − sin(πt)f1 and f2, . . . , fn. Obviously,
γ1(1) = γ1(0) = L′. Under the identification of L (V ,ω) with U(n)/O(n) induced
by L′, J and the orthonormal basis {fi} in L′, this curve corresponds to the curve
γk with k = 1 used in the proof of Proposition 7.7.3. Either by this observation or
by direct inspection, we find

det2
(
γ1(t)

) = det2 diag
(
eπ it ,1, . . . ,1

) = e2π it ,

hence μ(γ1) = 1. To determine IndL(γ1), we observe that γ1(t) ∩ L = {0} unless
s = 1

2 and that γ1(
1
2 ) ∩ L is spanned over R by e1. Hence, γ1 has a single crossing

with L̂ (L) and this crossing is simple and transversal. To find out whether it is
positive or negative, we use the local charts (L0(LK),ϕK) defined by the basis {ei}
in L. For t ∈ (0,1), γ1(t) ∈ L0(LK) with K = {1}, because L{1} is spanned by
f1, e2, . . . , en. Since a−1

{1} (γ1(t)) is spanned by f2, . . . , fn and the vector

a−1
{1}

(
eπ it f1

) = eπ it e1 = cos(πt)e1 + sin(πt)f1,

from (7.6.17) we read off ϕ{1}(γ1(t)) = diag(cot(πt),0, . . . ,0). Since cot(πt) is
positive for t < 1

2 and negative for t > 1
2 , according to Remark 7.7.8, the crossing is

positive. This proves the assertion. �

Corollary 7.7.12 If two curves γ0, γ1 : [0,1] → L (V ,ω) with the same end points
satisfy IndL(γ1) = IndL(γ2) for some L ∈ L (V ,ω) which is transversal to both end
points, they are homotopic with fixed end points.

Proof By additivity, the closed curve γ −1
1 · γ0 obtained by composing γ0 with γ1

running backwards has Maslov intersection index zero. By Proposition 7.7.3, it is,
therefore, homotopic to the constant curve t �→ γ0(0) = γ1(0). We can certainly
find a homotopy H : [0,1] × [0,1] → L (V ,ω) such that H(1, t) = γ0(2t) for
t ≤ 1

2 and H(1, t) = γ1(2 − 2t) for t ≥ 1
2 . It is enough to show that γ0 and γ1

are homotopic with fixed endpoints to the curve γ 1
2

: [0,1] → L (V ,ω) defined by
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γ 1
2
(t) := H(t, 1

2 t). For γ0, a homotopy is given by

H̃ : [0,1] × [0,1] → L (V ,ω), H̃ (s, t) :=
{

H(s, 1
2 t) t ≤ s

H(t, 1
2 t) t > s.

For γ1, there is an analogous formula. �

Remark 7.7.13 In [252], Robbin and Salamon have shown that the definition of the
Maslov index relative to a chosen Lagrangian subspace for non-closed curves can
be extended in a natural way to the case of arbitrary positions of the end points. We
add a few comments on that important paper. In the next section, we will present
a systematic treatment of this situation in terms of the Kashiwara index. The basic
tool of the analysis of Robbin and Salamon is the following quadratic form associ-
ated with a tangent vector of L (V ,ω). Let L′ ∈ L (V ,ω) and let X ∈ TL′L (V ,ω)

be represented by a curve γ . Without loss of generality, we may assume that γ stays
in L0(L

′⊥), where L′⊥ = J (L′) for some chosen J ∈ J (V ,ω). Then, Proposi-
tion 7.6.6/2 assigns to γ a curve Sγ in S2L′∗. Define QX ∈ S2L′∗ by

QX := −Ṡγ (0).

The assignment X �→ QX is a vertical vector bundle morphism from TL (V ,ω) to
the vector bundle over L (V ,ω) with the fiber over L′ being S2L′∗. The argument
of the proof of Theorem 1.1(1) in [252] shows that QX does not depend on J , which
entered the definition presented here through L′⊥. Now, let γ : [a, b] → L (V ,ω)

be a curve and let L ∈ L (V ,ω) be given. For every crossing t of γ with L̂ (L),
define a crossing form by

Γγ,L,t := (Qγ̇ (t))�γ (t)∩L. (7.7.5)

A crossing is said to be regular if Γγ,L,t is non-degenerate. This generalizes the
notion of transversality for crossings with L1(L) to arbitrary crossings. Regular
crossings are isolated. For curves γ which have only regular crossings, the Maslov
index relative to L is defined by

IndL(γ ) = 1

2
signΓγ,L,a +

∑

a<t<b

signΓγ,L,t + 1

2
signΓγ,L,b, (7.7.6)

where the sum runs over all inner crossings and sign denotes the signature.9 One
can show that every curve is homotopic with fixed end points to a curve with only
regular crossings and that IndL is invariant under homotopies with fixed end points.
Thus, IndL naturally extends to arbitrary curves. The Maslov index so defined has

9The number of positive minus the number of negative eigenvalues.
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a number of natural properties, listed in Theorem 2.3 of [252]. In particular, it is
additive with respect to the composition of curves and satisfies

IndL(γ ) = IndaL(aγ ), a ∈ Sp(V ,ω). (7.7.7)

The latter is a consequence of the invariance of the crossing form (7.7.5) under
symplectomorphisms (Exercise 7.7.3). Finally, to express Γγ,L,t for a crossing t

with γ (t) ∈ Lk(L) in local charts, choose an orthonormal basis {ei} in L. For an
appropriately chosen index set K consisting of k elements, let A(s) := ϕK(γ (t +s)).
Then,

Γγ,L,t (v,w) =
n∑

i,j=1

viȦij (0)wj , v,w ∈ γ (t) ∩ L, (7.7.8)

where vi and wj denote the coefficients with respect to the basis {ei} (Exer-
cise 7.7.4).

Exercises
7.7.1 Prove that the mapping

U(1) × SU(n) → U(n), (α, a) �→ diag(α,1, . . . ,1)a,

is a diffeomorphism. Use this and the fact that SU(n) is simply connected to
show that every closed curve in U(n) is homotopic to one of the closed curves

γk : [0,1] → U(n), γk(t) := diag
(
ei2πkt ,1, . . . ,1

)
.

This completes the proof of Proposition 7.7.3.
7.7.2 Determine L (V ,ω) for V = R

2 and analyze the Maslov indices in this ex-
ample.

7.7.3 Prove that the crossing form (7.7.5) is invariant under symplectic transforma-
tions, that is,

Γ (aΛ,aL, t) ◦ a = Γ (Λ,L, t), a ∈ Sp(n,R).

7.7.4 Verify Formula (7.7.8). Analyze this formula by bringing A(s) for small s to
an appropriate block form and showing that the corresponding (k × k)-block
of Ȧ spans the normal bundle of Lk(L).

7.8 The Kashiwara Index

In this section, we discuss another very useful index, which in the literature is usu-
ally called the Kashiwara index.10

10Some authors call it Wall-Kashiwara index, others Hörmander-Kashiwara index. We refer to
the textbooks by de Gosson [72], Libermann and Marle [181], as well as to the Lecture Notes of
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By Remark 7.6.2/2, the symplectic group acts transitively on the space of La-
grangian subspaces of the symplectic vector space (V ,ω), that is, any two La-
grangian subspaces can be transformed into one another via a symplectomorphism.
A pair (L1,L2) of Lagrangian subspaces can be transformed via a symplecto-
morphism into another pair (L′

1,L
′
2) of Lagrangian subspaces iff dim(L1 ∩ L2) =

dim(L′
1 ∩ L′

2) = k, because in this case there exists a symplectic basis {ei, fi}, such
that L1 and L2 are spanned by {e1, . . . , en} and {e1, . . . , ek, fk+1, . . . , fn}, respec-
tively (Exercise 7.8.1). That is, the action of Sp(V ,ω) on L (V ,ω) × L (V ,ω) has
n + 1 orbits, labeled by dim(L1 ∩ L2). It turns out that the symplectic group does
not act transitively on triples (L1,L2,L3) of Lagrangian subspaces with prescribed
dimensions of

L1 ∩ L2, L1 ∩ L3, L2 ∩ L3, L1 ∩ L2 ∩ L3.

This is related to the fact that for triples there is one further symplectic invariant.

Definition 7.8.1 (Kashiwara index) Let (V ,ω) be a symplectic vector space. The
Kashiwara index s(L1,L2,L3) of a triple (L1,L2,L3) of Lagrangian subspaces of
(V ,ω) is defined as the signature of the quadratic form

Q(L1,L2,L3)(v1, v2, v3) := ω(v1, v2) + ω(v2, v3) + ω(v3, v1) (7.8.1)

on the vector space L1 ⊕ L2 ⊕ L3.

Example 7.8.2 Let us consider the canonical symplectic vector space (R2,−J1), cf.
Example 7.1.4. We denote vi = (qi,pi), i = 1,2,3, and choose

L1 =R× {0}, L2 := {
(q2,p2) : p2 = aq2

}
, L3 = {0} ×R,

where a ∈R is fixed. This yields

Q(L1,L2,L3)(v1,v2,v3) = −vT
1 J1v2 − vT

2 J1v3 − vT
3 J1v1

= −aq1q2 − p3q2 + p3q1.

Diagonalizing this quadratic form in the variables q1, q2 and p3, one gets (Exer-
cise 7.8.2)

Q(L1,L2,L3) = x2 − y2 − sign(a)z2. (7.8.2)

From this formula we read off

s(L1,L2,L3) =
⎧
⎨

⎩

−1 for a > 0
0 for a = 0
1 for a < 0.

(7.8.3)

Meinrenken [208], where the reader can find an exhaustive treatment including historical remarks.
An axiomatic approach can be found in [58].
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We note that the index s measures the relative position of the three subspaces with
respect to a chosen orientation: if R2 is oriented clockwise, s vanishes if two of the
three subspaces coincide, its value is +1 if L2 is located between L1 and L3 (rel-
ative to the orientation) and it is equal to −1 otherwise. For the counter-clockwise
orientation, the signs are reverted. In the sequel, we will see that an analogous result
holds for any n.

Proposition 7.8.3 The Kashiwara index s has the following properties.

1. Symplectic invariance: s(aL1, aL2, aL3) = s(L1,L2,L3) for every a ∈
Sp(V ,ω).

2. Antisymmetry: s(Lπ(1),Lπ(2),Lπ(3)) = (−1)sign(π)s(L1,L2,L3) for every per-
mutation π .

3. Additivity: for all triples (L′
1,L

′
2,L

′
3) and (L′′

1,L
′′
2,L

′′
3) of Lagrangian subspaces

in (V ′,ω′) and (V ′′,ω′′), respectively, (L′
1 ⊕ L′′

1,L
′
2 ⊕ L′′

2,L
′
3 ⊕ L′′

3) is a triple
of Lagrangian subspaces in (V ′,ω′) ⊕ (V ′′,ω′′) and one has

s
(
L′

1 ⊕ L′′
1,L

′
2 ⊕ L′′

2,L
′
3 ⊕ L′′

3

) = s′(L′
1,L

′
2,L

′
3

) + s′′(L′′
1,L

′′
2,L

′′
3

)
.

4. Normalization: the triple (R, (1 + i)R, iR) in R
2 has Kashiwara index 1.

5. Cocycle property:

s(L1,L2,L3) = s(L2,L3,L4) − s(L1,L3,L4) + s(L1,L2,L4)

for arbitrary Lagrangian subspaces L1,L2,L3 and L4 in (V ,ω).

Proof Points 1–3 are obvious.
4. This is Example 7.8.2 with a = 1 and −J1 replaced by J1. Hence, sign(Q) =

+1.
5. According to Remark 7.2.7, there exists a Lagrangian subspace L which is

transversal to each Li . Choose an orthonormal basis {ej } in L, let ϕ : L0(L) →
S2
R

n be the diffeomorphism (7.6.12) and let Ai := ϕ(Li). Then, for each i,
the vectors fj + ∑n

l=1(Ai)jlel form a basis in Li . With respect to these bases,
Q(Li,Lj ,Lk) is given by the matrix

Q̂ =
⎡

⎣
0 Ai − Aj Ak − Ai

Ai − Aj 0 Aj − Ak

Ak − Ai Aj − Ak 0

⎤

⎦ . (7.8.4)

The reader easily checks that Q̂ is block-diagonalized by the help of

M =
⎡

⎣
0 1 1
1 0 1
1 1 0

⎤

⎦ .
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One obtains

1

2
MT Q̂M =

⎡

⎣
Aj − Ak 0 0

0 Ak − Ai 0
0 0 Ai − Aj

⎤

⎦ . (7.8.5)

Thus,

s(Li,Lj ,Lk) = sign(Ai − Aj) + sign(Aj − Ak) + sign(Ak − Ai).

This yields the assertion. �

Remark 7.8.4

1. One can show that properties 1–4 define the Kashiwara index uniquely, see [58].
Thus, these properties can be used for an axiomatic definition of s. If a system
s̃(L1,L2,L3) has only properties 1–3, it is proportional to the Kashiwara index s.

2. For the special case L1 ∩ L3 = 0 we obtain

s(L1,L2,L3) = sign(q), (7.8.6)

where q is a quadratic form on L2, given by q(v) := ω(v1, v3), where v1 and v3
denote the components of v ∈ L2 with respect to the decomposition V = L1 ⊕L3
(Exercise 7.8.2). This is the situation of Example 7.8.2. Thus, in this case, (7.8.6)
can be taken as the definition of s. If, in addition, L1 ∩ L2 = 0 and L3 = L⊥

1 ,
Formula (7.8.6) yields

s
(
L1,L2,L

⊥
1

) = sign(A), (7.8.7)

where A = ϕ(L2) and ϕ is the diffeomorphism (7.6.12) (Exercise 7.8.2). This
generalizes (7.8.3) to the case n > 1.

3. Point 5 of Proposition 7.8.3 means that the Kashiwara index defines a 2-cocycle
on L (V ,ω) with respect to the natural coboundary operator

∂ : Map
(
L (V ,ω)3,R

) → Map
(
L (V ,ω)4,R

)
,

given by

∂f (L1,L2,L3,L4) = f (L1,L2,L3) − f (L2,L3,L4) + f (L1,L3,L4)

− f (L1,L2,L4),

see [72, §1.4.2].

The Kashiwara index has a number of topological properties.

Proposition 7.8.5 Let Li : [a, b] → L (V ,ω) be curves, i = 1,2,3.

1. If the dimensions of L1(t)∩L2(t), L2(t)∩L3(t) and L3(t)∩L1(t) are constant
in t , so is the Kashiwara index s(L1(t),L2(t),L3(t)).



350 7 Linear Symplectic Algebra

2. Let L be a Lagrangian subspace transversal to both L1(t) and L2(t) for every t .
Then, the difference

s
(
L1(a),L2(a),L

) − s
(
L1(b),L2(b),L

)
(7.8.8)

does not depend on the choice of L.

Proof 1. It suffices to prove that s(L1(t),L2(t),L3(t)) is constant in a neigh-
bourhood of t0 for all a ≤ t0 ≤ b. Choose L ∈ L (V ,ω) transversal to Li(t0).
There exists ε > 0 such that L remains transversal to Li(t) for |t − t0| < ε. As
in the proof of Proposition 7.8.3/5, we use an orthonormal basis in L to represent
Q(L1(t),L2(t),L3(t)) for every such t by a matrix Q̂(t), given by (7.8.4). Since
Q̂(t) depends continuously on t , if the rank is constant, the signature must be con-
stant, too. Diagonalizing Q̂(t), we obtain (7.8.5) and hence

dim ker Q̂= dim
(
L1(t) ∩ L2(t)

) + dim
(
L2(t) ∩ L3(t)

) + dim
(
L1(t) ∩ L3(t)

)
.

Since rank Q̂(t) = 3n − dim ker Q̂(t), the assertion follows.
2. Let L and L′ be two different Lagrangian subspaces with the required property.

Then, the cocycle property implies

s
(
L1(a),L2(a),L

) − s
(
L1(a),L2(a),L′) = s

(
L2(a),L,L′) − s

(
L1(a),L,L′)

and analogously

s
(
L1(b),L2(b),L

) − s
(
L1(b),L2(b),L′) = s

(
L2(b),L,L′) − s

(
L1(b),L,L′).

By point 1, s(L1(t),L,L′) and s(L2(t),L,L′) are constant in t . This yields the
assertion. �

Remark 7.8.6

1. Point 1 of Proposition 7.8.5 implies the following. Let L1 and L2 be Lagrangian
subspaces and let t �→ L(t) be a curve of Lagrangian subspaces, such that for ev-
ery t , the subspace L(t) is transversal both to L1 and to L2. Then, the Kashiwara
index s(L1,L2,L(t)) is constant in t .

2. One can show that, up to a symplectomorphism, every triple of Lagrangian sub-
spaces is determined by the following five numbers [208]:

dim(L1 ∩ L2), dim(L1 ∩ L3), dim(L2 ∩ L3),

dim(L1 ∩ L2 ∩ L3), s(L1,L2,L3).

Now we can define the Maslov intersection index for an arbitrary pair of curves
of Lagrangian subspaces.
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Definition 7.8.7 (Maslov intersection index for pairs) For a given pair of curves
L1,L2 : [a, b] → L (V ,ω), choose a = t0 < t1 < · · · < tr = b such that for every
j = 1, . . . , r there exists a Lagrangian subspace Lj which is transversal to both
L1(t) and L2(t) for all t ∈ [tj−1, tj ]. Then, the Maslov intersection index of L1 and
L2 is defined by

[L1 : L2] := 1

2

r∑

j=1

(
s
(
L1(tj−1),L2(tj−1),L

j
) − s

(
L1(tj ),L2(tj ),L

j
))

. (7.8.9)

By Remark 7.2.7, a partition of the interval [a, b] having the desired properties
exists. By Proposition 7.8.5/2, [L1 : L2] neither depends on the chosen partition of
[a, b] nor on the choice of the Lagrangian subspaces Lj . Note that the curves L1
and L2 need not be transversal at the endpoints, cf. Remark 7.7.13. The intersection
index of a curve, introduced in Definition 7.7.10, is a special case of the Maslov
intersection index for pairs of curves.

Proposition 7.8.8 Let L ∈ L (V ,ω) and let γ be a curve in L (V ,ω) with end
points in L0(L). Then, [γ : L] = IndL(γ ), where L stands for the constant curve
t �→ L.

Proof Without loss of generality, we may assume that γ has only simple transversal
crossings with L̂ (L). Then, the partition of the domain of γ in (7.8.9) can be cho-
sen in such a way that L ∩ γ (tj ) = {0} for all j and every segment contains at most
one crossing. By Lemma 7.8.5/1, segments without crossings do not contribute to
[γ : L]. If the j -th segment contains a crossing, we write the corresponding sum-
mand in (7.8.9) in the form

1

2

(
s
(
γ (tj−1),L,Lj

) − s
(
γ (tj ),L,Lj

)) = −1

2

(
s
(
L,γ (tj−1),L

j
)

− s
(
L,γ (tj ),L

j
))

and apply Formula (7.8.6). To determine the quadratic form q , we choose an or-
thonormal basis {ei} in L and an appropriate chart ϕK , with K = {m}. Denote

A(t) := ϕK

(
γ (t)

) ≡ (
ϕ ◦ a−1

K

)(
γ (t)

)
,

cf. (7.6.16). Hence, according to Remark 7.6.7/2, γ (t) is spanned by the vectors
aK(fi + ∑n

j=1 Aij ej ), i = 1, . . . , n, where fi = Jei . A straightforward calculation
(Exercise 7.8.6) yields that q is given by

q(v) =
∑

i,j 	=m

Aij v
ivj − Ammvmvm, (7.8.10)

where v = ∑n
i=1 viaK(fi + ∑n

j=1 Aij ej ) ∈ γ (t). Thus, if the crossing is positive,
the signature of A(t) jumps by +2. Therefore, in this case, the j -th summand in
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(7.8.9) is

1

2

(
s
(
γ (tj−1),L,Lj

) − s
(
γ (tj ),L,Lj

)) = 1.

This yields the assertion. �

Remark 7.8.9

1. The Hörmander index for a 4-tuple (L1,L2;M1,M2) of Lagrangian subspaces
with the property that each Li is transversal to each Mi is defined by

σ(L1,L2;M1,M2) := 1

2

(
s(L1,L2,M2) − s(L1,L2,M1)

)
,

cf. [141]. By means of this index, the sum in (7.8.9) can be written in the form

[L1 : L2] :=1

2
s
(
L1(a),L2(a),L1) − 1

2
s
(
L1(b),L2(b),Lr

)

+
r−1∑

j=1

σ
(
L1(tj ),L2(tj );Lj ,Lj+1).

The Hörmander index has the following properties:

σ(L1,L2;M1,M2) = −σ(L2,L1;M1,M2) = −σ(M1,M2;L1,L2), (7.8.11)

σ(L1,L2;M1,M2) + σ(L1,L2;M2,M3) = σ(L1,L2;M1,M3). (7.8.12)

2. There is a number of generalizations of the concept of Maslov index. In partic-
ular, the Arnold-Leray-Maslov index is of importance. This index is defined on
the universal covering manifold11 of the Lagrange-Graßmann manifold, see [72].
There also exists a generalization to the case of arbitrary n-tuples, see [289].

Exercises
7.8.1 Determine the stabilizers and the orbits of the action of the symplectic group

Sp(V ,ω) on L (V ,ω) × L (V ,ω).
7.8.2 Prove Formulae (7.8.2), (7.8.6) and (7.8.7).
7.8.3 Let (R2,−J1) be the canonical symplectic vector space in two dimensions

and let {e,f } be the canonical basis. Calculate [L1 : L2] for L1(t) = Rf and
L2(t) =R(f + te) for all a ≤ t ≤ b.

7.8.4 Calculate the sum [L1 : L2] + [L2 : L3] + [L3 : L1] for arbitrary curves Li :
[a, b] → L (V ,ω).

7.8.5 Prove the following. If L1 = (L1 ∩ L2) + (L1 ∩ L3), then s(L1,L2,L3) = 0.
7.8.6 Prove Formula (7.8.10).

11This manifold is also called the universal Maslov bundle, see [72].



Chapter 8
Symplectic Geometry

Symplectic geometry plays a tremendous role both in pure mathematics and in
physics. As we will see, it provides the natural mathematical language for the study
of Hamiltonian systems. In this chapter, we present the basic notions of symplectic
geometry. The starting point will be the Theorem of Darboux, which states that, lo-
cally, all symplectic structures of a given dimension are equivalent to the standard
symplectic vector space structure on R

2n defined in the previous chapter. Thus, in
sharp contrast to the situation in Riemannian geometry, there are no local invariants.
Symplectic manifolds of the same dimension can at most differ globally.1 Accord-
ing to the above equivalence, many structures of local symplectic geometry have
their origin in symplectic algebra.

The second elementary, but very important observation is that on symplectic
manifolds the symplectic form provides a duality between smooth functions and cer-
tain vector fields, called Hamiltonian vector fields. As an immediate consequence of
this duality, we obtain the notion of Poisson structure. Given the great importance of
Poisson structures both in mathematics and in physics, we go beyond the symplectic
case and give a brief introduction to general Poisson manifolds.

There are two classes of symplectic manifolds which are especially important in
physical applications: cotangent bundles and orbits of the coadjoint representation
of a Lie group. We will see that the cotangent bundle serves as a mathematical
model of phase space and coadjoint orbits are relevant in the study of systems with
symmetries. Both classes of examples are discussed in detail.

Moreover, in this chapter we discuss elementary properties of coisotropic sub-
manifolds, present a number of natural generalizations of the Darboux Theorem and
give an introduction to general symplectic reduction. The important special case of
symplectic reduction for systems with symmetries will be dealt with in Chap. 10.
The more advanced theory of Lagrangian submanifolds (including topological as-

1There is a huge field of research called symplectic topology, which deals with the study of global
invariants of symplectic manifolds. For a nice intuitive introduction to this field we refer the reader
to an article of Arnold [22]. There is a number of detailed expositions of this subject, see e.g. [206].
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354 8 Symplectic Geometry

pects and the study of singularities) is contained in Chap. 12, where it finds one of
its natural applications.

Finally, the last section of this chapter is devoted to an elementary introduction
to Morse theory. As we will see, the basic notions of this theory can be naturally
formulated in the language of symplectic geometry. Moreover, concepts of Morse
theory are of special importance in the study of symplectic manifolds and Hamilto-
nian systems. This is related to the above-mentioned duality between Hamiltonian
vector fields and functions. This duality yields a relation between the critical points
of vector fields and the critical points of functions. Thus, qualitative dynamics of a
Hamiltonian vector field can be investigated using methods of Morse theory.

8.1 Basic Notions. The Darboux Theorem

Let M be a manifold. The notions of linear symplectic algebra have the following
counterparts on the level of M . Every differential 2-form ω ∈ Ω2(M) induces a
vertical vector bundle morphism ω� : TM → T∗M by

〈
ω�(X),Y

〉 := ωm(X,Y ), X,Y ∈ TmM. (8.1.1)

The kernel and the rank of ω are defined to be the kernel and the rank of ω�. The
2-form ω is called non-degenerate if ω� is an isomorphism. This is equivalent to
the requirement that ωm ∈ ∧2

(T∗M) be non-degenerate for all m ∈ M . If ω� is an
isomorphism, the inverse mapping is denoted by ω�. We often write X� ≡ ω�(X)

and α� ≡ ω�(α).

Definition 8.1.1 (Symplectic manifold and symplectic mapping)

1. A symplectic manifold is a pair (M,ω) consisting of a manifold M and a closed
non-degenerate 2-form ω, called the symplectic form or the symplectic structure.

2. A smooth mapping Φ : M → N of symplectic manifolds (M,ω) and (N,ρ) is
called symplectic, or canonical, if Φ∗ρ = ω. If Φ is in addition a (local) diffeo-
morphism, it is called a (local) symplectomorphism.

If (M,ω) is a symplectic manifold, then (TmM,ωm) is a symplectic vector space
for all m ∈ M . Therefore, a symplectic manifold must have even dimension. More-
over, the tangent bundle TM is a symplectic vector bundle.2 A smooth mapping
Φ : M → N is symplectic iff the linear mapping Φ ′

m : TmM → TΦ(m)N is sym-
plectic for all m ∈ M . This implies, in particular, that every symplectic mapping
is an immersion, see Proposition 7.4.1/1. As in the case of symplectic mappings of
symplectic vector spaces, the inverse of a symplectomorphism is symplectic. Hence,
if one takes the symplectic mappings as the morphisms of symplectic manifolds,

2A symplectic vector bundle is a real vector bundle E endowed with a section ω in
∧2

E∗ which
is fibrewise symplectic.
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the symplectomorphisms are the corresponding isomorphisms. Finally, we note that
Definition 8.1.1 extends in an obvious way to manifolds with boundary, thus yield-
ing the notions of symplectic manifold with boundary and symplectomorphism of
symplectic manifolds with boundary.

Example 8.1.2

1. Every symplectic vector space (V ,ω) is a symplectic manifold, where ω is
viewed as a differential 2-form by means of the identification of the tangent
spaces of V with V itself. This applies in particular to the canonical symplectic
vector space (R2n,ω0) discussed in Example 7.1.4.

2. Let M = C
n, viewed as a (real) manifold with the coordinates xi given by

zk = xk + ixn+k , k = 1, . . . , n. The form

ω = i

2

∑

k

dzk ∧ dz̄k

is symplectic. The coordinates xi define a symplectomorphism from (Cn,ω) onto
(R2n,ω0).

3. Every volume form on a 2-dimensional manifold is symplectic.
4. The cotangent bundle T∗Q of a manifold Q carries a natural symplectic struc-

ture, see Sect. 8.3. This fact is one of the cornerstones of the theory of Hamil-
tonian systems. In this context, Q plays the role of the configuration space and
T∗Q is the phase space of the system.

5. Every orbit of the coadjoint representation of a Lie group carries a natural sym-
plectic structure, see Sect. 8.4. This fact is of special importance for the theory
of Hamiltonian systems with symmetries, discussed in Chap. 10.

6. The product of two symplectic manifolds (M,ωM) and (N,ωN) is symplectic,
where the symplectic form may be taken as the sum or the difference of the
pullbacks of the symplectic forms of the factors under the natural projections,

ω±
M×N = pr∗M ωM ± pr∗N ωN. (8.1.2)

Let (M,ω) be a symplectic manifold of dimension 2n. By Proposition 7.1.7, the
2n-form ωn = ω ∧ · · · ∧ ω is a volume form. In particular, symplectic manifolds are
orientable. The form

Ωω = 1

n! (−1)
n(n−1)

2 ωn (8.1.3)

is called the canonical volume form, or the Liouville form, of (M,ω).

Proposition 8.1.3 Every symplectic mapping between symplectic manifolds of the
same dimension is a volume preserving local diffeomorphism.

Proof Obviously, a symplectic mapping Φ preserves the canonical volume. More-
over, as already observed, Proposition 7.4.1 implies that Φ ′ is fibrewise injective.
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For dimensional reasons, it is fibrewise bijective then and the Inverse Mapping The-
orem implies that Φ is a local diffeomorphism. �

Remark 8.1.4

1. By Proposition 8.1.3, the total volume of a symplectic manifold is a global sym-
plectic invariant.

2. Since dω = 0, in a neighbourhood U of every point there exists a local 1-form β

such that ω�U = dβ . Such a form is called a local symplectic potential. A sym-
plectic manifold is said to be exact if there exists a global symplectic potential.

Geometrically, the requirement dω = 0 means that the symplectic surface area
of any 3-dimensional ball is equal to zero. This yields an obstruction for (even-
dimensional) manifolds to admit a symplectic structure. In more detail, let us
consider the case of an orientable compact manifold. Being closed, ω defines an
element [ω] ∈ H 2(M,R), which must be nonzero, because its n-th power is the
class of a volume form on an orientable compact manifold and hence nonzero.
Thus, orientable compact manifolds fulfilling H 2(M,R) = 0 do not admit a sym-
plectic structure. This applies, in particular, to any sphere S2n with n > 1. The
study of the existence and uniqueness problem of symplectic structures for com-
pact manifolds is a field of active research in symplectic topology, see Chaps. 7
and 13 of [206]. In this context, a whole tool kit of operations for constructing
symplectic manifolds has been developed. On the other hand, for noncompact
manifolds (without boundary), Gromov has shown that a symplectic form exists
iff the manifold admits a non-degenerate 2-form [206, Thm. 7.34]. Concerning
the uniqueness aspect, it is worthwile to note that even on R

2n there exist exotic
symplectic structures, not symplectomorphic to the canonical one.

3. The symplectomorphisms of (M,ω) form a group with respect to composition,
denoted by Symp(M,ω). This group is at the heart of symplectic topology, see
[206], Chap. 10. We will briefly discuss it in Sect. 8.8.

The following theorem is fundamental for the theory of symplectic manifolds.
It tells us that, locally, all symplectic manifolds of the same dimension are isomor-
phic. This in accordance with the corresponding statement in symplectic algebra,
see Corollary 7.1.5.

Theorem 8.1.5 (Darboux) Let (M,ω) be a symplectic manifold of dimension 2n.
For every m ∈ M , there exists a symplectomorphism from an open neighbourhood
of m in M onto an open subset of the canonical symplectic vector space (R2n,ω0).

Proof The proof is based on a deformation method developed by Moser [218]. Since
the statement is local, without loss of generality we may assume that M = R

2n and
m = 0. According to Corollary 7.1.5, there exists a basis in R

2n such that ω(0)

coincides with the canonical symplectic form ω0. For t ∈ [0,1], let

ωt := ω0 + t · ω̃,
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where ω̃ := ω−ω0. Then, dωt = 0 and ωt(0) = ω(0) = ω0 is non-degenerate for all
t ∈ [0,1]. Since the function [0,1]×R

2n � (t,x) → detωt(x) ∈R is continuous, ωt

remains non-degenerate on an open neighbourhood W of [0,1] × {0} in R × R
2n.

Since the interval [0,1] is compact and R
2n is locally compact, the Tube Lemma

of elementary topology yields an open ball K about the origin of R2n and an open
interval I containing [0,1] such that I × K ⊂ W . On the other hand, since dω̃ = 0,
the Poincaré Lemma yields a 1-form α on K such that ω̃ = dα. By adding an exact
1-form if necessary, we can achieve that α(0) = 0. Since ωt is non-degenerate on K

for all t ∈ I , we can define a time-dependent vector field X on K by

Xt�ωt = −α, t ∈ I.

Let Φ be the flow of X and let D ⊂ I × I ×K be the domain3 of Φ . Since α(0) = 0,
we have Xt(0) = 0 for all t ∈ I , that is, 0 is a fixed point of Φ . Hence, [0,1] ×
[0,1] × {0} ⊂ D and by applying the Tube Lemma once again, we find an open
neighbourhood U ⊂ K of 0 such that [0,1] × [0,1] × U ⊂ D . Writing Φt,0 ≡ Φt

and using (4.1.28), as well as (4.1.30) with d replaced by Φ∗
t , we compute

d

dt

(
Φ∗

t ωt

) = Φ∗
t

(
LXt ωt + d

dt
ωt

)
= Φ∗

t

(
d(Xt�ωt) + ω̃

) = Φ∗
t (−dα + ω̃) = 0.

Taken pointwise on U , this implies that Φ∗
1 ω = Φ∗

1 ω1 = Φ∗
0 ω0 = ω0. Thus, Φ =

Φ−1
1 is the desired local symplectomorphism. �

Remark 8.1.6

1. By the Darboux Theorem and by Corollary 7.1.5, for every m ∈ M , there exists
a local chart (U,κ) at m such that

ω�U =
n∑

i=1

dκi ∧ dκn+i .

Moreover, by Proposition 7.2.9, the complementary Lagrangian subspaces Rn ×
{0} and {0} × R

n of R
2n define a symplectomorphism between the canonical

symplectic vector space (R2n,ω0) and the vector space R
n ⊕ (Rn)∗ endowed

with the natural symplectic form (7.1.5). By composing κ with this symplecto-
morphism, we obtain a chart taking values in R

n ⊕ (Rn)∗. Motivated by applica-
tions in physics, we denote the coordinates corresponding to the factors Rn and
(Rn)∗ by qi and pi , respectively. Then,

ω�U =
n∑

i=1

dpi ∧ dqi ≡ dpi ∧ dqi

3See Sect. 3.4 for the notation.
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(if there is no danger of confusion, we will use the summation convention). The
elements of the corresponding local frame in TM will be denoted by ∂qi and ∂pi

.
Both types of charts will be referred to as Darboux charts and the corresponding
coordinates as Darboux coordinates.

2. Let (M1,ω1) and (M2,ω2) be symplectic manifolds of the same dimension and
let Φ : M2 → M1 be a smooth mapping. In Darboux coordinates qi , pi on M1
and q̄i , p̄i on M2, the condition on Φ to be symplectic reads

Φ∗(dpi ∧ dqi
) = dp̄i ∧ dq̄i . (8.1.4)

Using the simplified notation
(
qi ◦ Φ ◦ κ−1) ≡ qi,

(
pi ◦ Φ ◦ κ−1) ≡ pi,

where κ denotes the chart defined by q̄i , p̄i , a straightforward calculation (Ex-
ercise 8.1.1) yields that Φ is symplectic, and hence a local symplectomorphism,
iff

∂pi

∂p̄j

∂qi

∂p̄k

− ∂pi

∂p̄k

∂qi

∂p̄j

= 0 = ∂pi

∂q̄j

∂qi

∂q̄k
− ∂pi

∂q̄k

∂qi

∂q̄j
,

∂pi

∂p̄j

∂qi

∂q̄k
− ∂pi

∂q̄k

∂qi

∂p̄j

= δ
j
k .

3. Let qi and pi be Darboux coordinates on U and let p̃i be functions on U such
that qi and p̃i are Darboux coordinates, too. Consider the functions fi := p̃i −pi

on U . Taking qi and pi as coordinates on U , we find

0 = dfi ∧ dqi = ∂fi

∂qj
dqj ∧ dqi + ∂fi

∂pj

dpj ∧ dqi.

Hence, ∂fi

∂pj
= 0 and ∂fi

∂qj − ∂fj

∂qi = 0 for all i, j . The general solution of this system

of equations is given by fi = αi ◦ q with smooth functions αi on q(U) ⊂ R
n

which combine to a closed 1-form α = αidxi on q(U), where xi denote the
standard coordinates on R

n.

The types of subspaces of a symplectic vector space given in Definition 7.2.2
carry over to submanifolds of a symplectic manifold:

Definition 8.1.7 Let (M,ω) be a symplectic manifold. An immersion ϕ : N → M

is called isotropic (coisotropic, Lagrangian or symplectic) at p ∈ N iff ϕ′TpN is an
isotropic (coisotropic, Lagrangian or symplectic) subspace of (Tϕ(p)M,ωϕ(p)). If
this is true for all points p ∈ N , the pair (N,ϕ) is called an isotropic (coisotropic,
Lagrangian or symplectic) immersion.

These notions apply, in particular, to the case when (N,ϕ) is a submanifold of M .
Since the pull-back ϕ∗ω of the symplectic form to the submanifold (N,ϕ) is the
counterpart of the restriction ωW to a subspace W of the symplectic vector space
(V ,ω), Proposition 7.2.3 yields: the submanifold (N,ϕ) is
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(a) isotropic iff ϕ∗ω = 0,
(b) Lagrange iff ϕ∗ω = 0 and 2 dimN = dimM ,
(c) symplectic iff ϕ∗ω is non-degenerate.

According to Remark 1.6.2/1, we may assume that N is given by a subset of M

and that ϕ is the natural inclusion mapping. In this case, from (7.2.2) and (7.2.5) we
obtain

ker
(
ϕ∗ω

)
p

= TpN ∩ (TpN)ω, (8.1.5)

max(0,2 dimN − dimM) ≤ rank
(
ϕ∗ω

)
p

≤ dimN, (8.1.6)

and the statements of Proposition 7.2.4 carry over pointwise. In particular, a sub-
manifold of dimension 1 (codimension 1) is always isotropic (coisotropic) and every
submanifold contained in an isotropic submanifold is isotropic. A submanifold con-
taining a coisotropic submanifold need not be coisotropic though, because Proposi-
tion 7.2.4/4 does not apply to points outside the latter.

Finally, consider a vector subbundle E ⊂ TM over a submanifold N ⊂ M .
The symplectic orthogonal of E is defined by Eω := ⋃

p∈N Eω
p . This is a sub-

bundle of TM over the submanifold N , because according to Proposition 7.2.1/1,
it is mapped to the annihilator E0 under the vertical vector bundle isomorphism
ω� : TM → T∗M . The vector subbundle E is called isotropic (coisotropic, La-
grangian or symplectic), if every fibre is isotropic (coisotropic, Lagrangian or sym-
plectic), that is, if, respectively, E ⊂ Eω, Eω ⊂ E, Eω = E or E ∩ Eω = s0(N),
where s0 denotes the zero section of TM . Thus, a submanifold N ⊂ M is isotropic,
coisotropic, Lagrangian or symplectic iff so is the vector subbundle TN ⊂ TM . In
this case, the symplectic orthogonal (TN)ω of TN in TM is referred to as the sym-
plectic normal bundle of the submanifold N .

Lemma 8.1.8 Let (M,ω) be a symplectic manifold. Every Lagrangian subbundle
E ⊂ TM over a submanifold N ⊂ M admits a Lagrangian complement, that is, a
Lagrangian subbundle Ẽ ⊂ TM over N such that E ⊕ Ẽ = TM�N .

Proof The proof follows [305], Lecture 2. Choose an auxiliary Riemannian metric g
on M . For every m ∈ M , the mapping Fm : S2+(T∗

mM) → J (TmM,ωm) of Propo-
sition 7.5.6 assigns to gm an ωm-compatible complex structure Jm on TmM . Since
the endomorphism associated with ωm via gm is bijective, its absolute square with
respect to gm is strictly positive. Therefore, the square root and hence Jm depend
smoothly on m. As a consequence, the Jm combine to a vertical vector bundle mor-
phism J of TM satisfying J 2 = − idTM .4 It follows that J (E) is a vector subbundle
of TM over N . By Proposition 7.5.3/2, it is Lagrange and complementary to E. �

4A vertical vector bundle morphism of TM with this property is called an almost complex structure
on M .
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Exercises
8.1.1 Prove point 2 of Remark 8.1.6.
8.1.2 Do T2, S3 × S1 or CP2 admit a symplectic structure?
8.1.3 Show that on a symplectic manifold (M,ω) of dimension greater than 2,

a function multiple f ω of ω is symplectic iff f is nonzero and locally con-
stant.

8.2 Hamiltonian Vector Fields and Poisson Structures

Via the exterior derivative and the natural isomorphism ω� = (ω�)−1 : T∗M → TM ,
one can assign a vector field to every smooth function on M . This assignment is
basic for the theory of Hamiltonian systems, see Chap. 9.

Definition 8.2.1 (Hamiltonian vector field) Let (M,ω) be a symplectic manifold
and let f ∈ C∞(M). The vector field

Xf := −(df )�

is called the Hamiltonian vector field generated by f .

The flow of Xf is referred to as the Hamiltonian flow generated by f . The defi-
nition of Xf is equivalent to

Xf �ω = −df. (8.2.1)

In particular, the 1-form (Xf )� is exact.

Remark 8.2.2 Let us write down Xf in local Darboux coordinates qi and pi . For
that purpose, we decompose Xf = Ai∂pi

+Bi∂qi with respect to the corresponding
local frame (∂qi , ∂pi

) and determine the coefficients Ai , Bi from (8.2.1), which in
coordinates reads

(
Ai∂pi

+ Bi∂qi

)
�
(
dpj ∧ dqj

) = Aidqi − Bidpi = −∂qi f dqi − ∂pi
f dpi.

Thus,

Xf = (∂pi
f )∂qi − (∂qi f )∂pi

. (8.2.2)

Besides the Hamiltonian vector fields, the infinitesimal symmetries of the sym-
plectic structure are important:

Definition 8.2.3 (Symplectic vector field) A vector field X on (M,ω) is called sym-
plectic if ω is invariant under the flow of X.

Proposition 8.2.4 Let (M,ω) be a symplectic manifold and let X be a vector field
on M . The following statements are equivalent:
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1. X is symplectic.
2. LXω = 0.
3. X� is closed.
4. X is locally Hamiltonian, that is, for every m ∈ M there exists a function f on a

neighbourhood U of m such that X�U = Xf .

Proof The equivalence of points 2 and 3 follows from

LXω = X�dω + d(X�ω) = dX�.

To see that point 2 implies point 1, we apply (4.1.28) to obtain

d

ds

(
Φ∗

s ω
)
m

= (
Φ∗

s (LXω)
)
m

for all s between 0 and t and all m in the domain of Φt . Due to Φ∗
0 = id, integration

from 0 to t yields the assertion. The remaining statements are obvious.
�

Remark 8.2.5

1. According to (8.2.1) and Proposition 8.2.4/3, every Hamiltonian vector field is
symplectic.

2. Definition 8.2.3 carries over to time-dependent vector fields by requiring that
Φ∗

t1,t2
ω = ω for all pairs (t1, t2). Then, Proposition 8.2.4 holds with X replaced

by Xt .

We denote the set of Hamiltonian vector fields on (M,ω) by XH(M,ω) and the
set of symplectic vector fields by XLH(M,ω).5

Proposition 8.2.6 Let (M,ω) be a symplectic manifold.

1. XLH(M,ω) is a Lie subalgebra of X(M).
2. For Y,Z ∈ XLH(M,ω), we have

[Y,Z] = Xω(Y,Z). (8.2.3)

In particular, XH(M,ω) is an ideal in XLH(M,ω).

Proof 1. According to Proposition 3.3.3, we have L[X,Y ]ω = [LX,LY ]ω.
2. Using LY ω = 0 and d(Z�ω) = 0, we find

[Y,Z]�ω = LY (Z�ω) − Z�LY ω = Y�d(Z�ω) + d
(
Y�(Z�ω)

) = −d
(
ω(Y,Z)

)
.

�

5With the index LH standing for locally Hamiltonian.
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Remark 8.2.7 Viewing ω� as a mapping from X(M) to Ω1(M), we obtain vector
space isomorphisms

XH(M,ω) ∼= B1(M), XLH(M,ω) ∼= Z1(M)

and hence

H 1(M) ∼= XLH(M,ω)/XH(M,ω).

Thus, XH(M,ω) = XLH(M,ω) iff the first de Rham cohomology of M is trivial.

Example 8.2.8 Consider the torus T2 with the angle coordinates x and y and sym-
plectic form ω = dx ∧ dy. Let

X = a∂x + b∂y

be a vector field with constant coefficients a, b �= 0. Since X� = ady − bdx, we
have dX� = 0 and, therefore, X ∈ XLH(T2,ω). However, as a nowhere vanishing
vector field on a compact manifold, X cannot be Hamiltonian, because every smooth
function on M has a maximum and a minimum and hence critical points.

Symplectic mappings can be characterized in terms of Hamiltonian vector fields:

Proposition 8.2.9 A smooth mapping Φ : M → N of symplectic manifolds (M,ω)

and (N,ρ) is symplectic iff it is an immersion and the Hamiltonian vector fields
XΦ∗f on M and Xf on N are Φ-related for all f ∈ C∞(N). In particular, a dif-
feomorphism Φ : M → N is a symplectomorphism iff

Φ∗Xh = Xh◦Φ−1 (8.2.4)

for all h ∈ C∞(M).

Proof Since every symplectic mapping is an immersion, we have to show that for
an immersion Φ , Φ∗ρ = ω is equivalent to the condition that

Φ ′ ◦ XΦ∗f = Xf ◦ Φ

for all f ∈ C∞(N). By taking the interior product of this equation with ρ and eval-
uating both sides on Φ ′(Y ), where Y ∈ TmM , we find

(
Φ∗ρ

)
m
(XΦ∗f ,Y ) = (Xf �ρ)Φ(m)

(
Φ ′(Y )

)
.

Hence, we have to show that Φ∗ρ = ω is equivalent to

XΦ∗f �
(
Φ∗ρ

) = −d
(
Φ∗f

)
(8.2.5)

for all f ∈ C∞(N). If Φ∗ρ = ω, then (8.2.5) holds by definition of XΦ∗f . Con-
versely, if (8.2.5) holds, then XΦ∗f �(Φ∗ρ) = XΦ∗f �ω for all f ∈ C∞(N). Since
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Φ is an immersion, the mapping (Φ ′
m)T : T∗

Φ(m)N → T∗
mM is surjective for every

m ∈ M , hence every covector at m is of the form d(Φ∗f ) for some f ∈ C∞(N).
Accordingly, every tangent vector at m is of the form XΦ∗f for some f ∈ C∞(N).
Hence, (8.2.5) implies Φ∗ρ = ω. Finally, if Φ is a diffeomorphism, by setting
h = f ◦ Φ−1 in the defining equation of Φ-relation we obtain (8.2.4). �

Since for a symplectic vector field X with flow Φ , the mappings

(Φt )
′
m : TmM → TΦt (m)M

are linear symplectomorphisms, the Symplectic Eigenvalue Theorem 7.4.3 yields

Proposition 8.2.10 Let (M,ω) be a symplectic manifold and let X ∈XLH(M).

1. If m is an equilibrium of X and if μ is a characteristic exponent of m with
multiplicity k, then μ and −μ are also characteristic exponents of m with multi-
plicity k. The multiplicity of the characteristic exponent 0 is even.

2. If γ is a periodic integral curve of X and if λ is a characteristic multiplier of
γ with multiplicity k, then λ and λ−1 are also characteristic multipliers of γ

with multiplicity k. The multiplicity of the characteristic multiplier 1 is odd and
nonzero.

Proof 1. The characteristic exponents of m are given by the eigenvalues of the Hes-
sian endomorphism Hessm(X) = d

dt �0
(Φt )

′
m. Since Hessm(X) is an element of the

symplectic Lie algebra sp(TmM,ωm), the assertion follows from point 2 of the
Symplectic Eigenvalue Theorem 7.4.3 and from Corollary 7.4.4/2.

2. Let T be the period of γ and let m ∈ γ . By Remark 3.6.11/1, the character-
istic multipliers of γ are given by the eigenvalues of (ΦT )′m, with the eigenvalue
1 corresponding to the eigenspace Tmγ omitted. Since (ΦT )′m is an element of the
symplectic group Sp(TmM,ωm), the assertion follows from point 1 of the Symplec-
tic Eigenvalue Theorem 7.4.3 and from Corollary 7.4.4/1. �

Remark 8.2.11

1. The characteristic multipliers of γ , with the multiplicity of the characteristic
multiplier 1 reduced by 1, are called the Floquet multipliers of γ . It will be
shown in Sect. 9.5 that the Floquet multipliers coincide with the eigenvalues of
the tangent mapping of an isoenergetic Poincaré mapping, see Remark 9.5.2/2.

2. A subset of the set of characteristic exponents of an equilibrium m (of the set
of Floquet multipliers of a periodic integral curve γ ), counted with multiplici-
ties, is called a basis set for m (for γ ) if it contains one member of each of the
pairs (μ,μ) (the pairs (λ,λ)). By construction, a basis set has n elements (n − 1
elements), where 2n = dimM .

Next, let us study the surjective mapping

C∞(M) � f �→ Xf ∈ XH(M,ω).
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Since XH(M,ω) carries a natural Lie algebra structure, it is reasonable to ask
whether there is a Lie algebra structure on C∞(M) which makes this mapping into
a homomorphism. Such a structure exists, indeed:

Definition 8.2.12 (Poisson bracket) Let (M,ω) be a symplectic manifold and let
f,h ∈ C∞(M). The function

{f,h} := ω(Xf ,Xh)

is called the Poisson bracket of f and h.

Using ω(Xf ,Xg) = −Xf �(Xg�ω) = Xf �(dg) = Xf (g), the Poisson bracket
can be rewritten as

{f,g} = Xf (g) = −Xg(f ). (8.2.6)

Proposition 8.2.13 Let (M,ω) be a symplectic manifold.

1. The Poisson bracket defines on C∞(M) the structure of a Lie algebra. With re-
spect to this structure, the mapping f �→ Xf is a Lie algebra homomorphism.

2. The Poisson bracket satisfies the Leibniz rule, that is, for all f,g,h ∈ C∞(M),

{f,gh} = {f,g}h + {f,h}g.

Proof 1. Obviously, the Poisson bracket is bilinear and antisymmetric and the as-
signment f �→ Xf is linear. Thus, it is enough to show that the Poisson bracket
fulfils the Jacobi identity and that [Xf ,Xg] = X{f,g} holds for all f,g ∈ C∞(M).
The latter follows from (8.2.3). Using this and (8.2.6), we verify the Jacobi identity:

{
f, {g,h}} + {

g, {h,f }} + {
h, {f,g}}

= Xf

(
Xg(h)

) − Xg

(
Xf (h)

) − X{f,g}(h) = 0.

2. This follows from the fact that vector fields are derivations of C∞(M). �

Remark 8.2.14

1. Due to Proposition 3.2.15 and the fact that the mapping f �→ Xf is a Lie alge-
bra homomorphism, two functions on M Poisson-commute iff the flows of their
Hamiltonian vector fields commute.

2. Let us write down the Poisson bracket in a Darboux chart κ with coordinates qi

and pi . Using (8.2.6) and (8.2.2), we find

{f,g} = Xf (g) = (∂pi
f )(∂qi g) − (∂qi f )(∂pi

g).

Using the simplified notation f ≡ f ◦ κ−1, we arrive at the standard formula

{f,g} = ∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

. (8.2.7)
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In particular, the Poisson brackets of the coordinate functions are

{
qi, qj

} = 0, {pi,pj } = 0,
{
pi, q

j
} = δi

j .

Symplectic mappings can be characterized in terms of the Poisson bracket as
well:

Proposition 8.2.15 A smooth mapping Φ : M → N of symplectic manifolds (M,ω)

and (N,ρ) is symplectic iff it is an immersion and for all f,g ∈ C∞(N) one has

{
Φ∗f,Φ∗g

} = Φ∗{f,g}. (8.2.8)

Proof Due to

{
Φ∗f,Φ∗g

}
(m) = (

Φ ′(XΦ∗f )m
)
(g),

(
Φ∗{f,g})(m) = (Xf )Φ(m)(g),

the condition that {Φ∗f,Φ∗g} = Φ∗{f,g} for all f,g ∈ C∞(N) is equivalent to the
condition that the vector fields XΦ∗f and Xf are Φ-related for all f ∈ C∞(N).
Hence, the assertion follows from Proposition 8.2.9. �

In the remaining part of this section we digress from symplectic manifolds to
give a brief introduction to the more general notion of Poisson structure. For an ex-
haustive treatment of Poisson manifolds, we refer to the books of Vaisman [295] and
Waldmann [301], where the reader can find a lot of further references. Pioneering
work on this subject goes back to Sophus Lie [182–184].

Definition 8.2.16 (Poisson manifold)

1. A Poisson structure on a manifold M is a Lie algebra structure {, } on C∞(M)

fulfilling the Leibniz rule {f,gh} = g{f,h} + {f,g}h for all f,g,h ∈ C∞(M).
The pair (M, {, }) is called a Poisson manifold.

2. A smooth mapping Φ : M → N of Poisson manifolds is called Poisson, or a
Poisson morphism, if Φ∗{f,g} = {Φ∗f,Φ∗g} for all f,g ∈ C∞(N).

According to Propositions 8.2.13 and 8.2.15, every symplectic manifold is Pois-
son and a smooth mapping of symplectic manifolds is symplectic iff it is Poisson
and an immersion. The Leibniz rule implies that for every f ∈ C∞(M), the map-
ping {f, ·} : C∞(M) → C∞(M) is a derivation and hence defines a vector field Xf ,
called the Hamiltonian vector field of f . Thus,

Xf (g) = {f,g} = −Xg(f ) (8.2.9)

for all f,g ∈ C∞(M). The Jacobi identity implies

[Xf ,Xg] = X{f,g}, (8.2.10)
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hence the mapping f �→ Xf is a Lie algebra homomorphism. Moreover, from

{f,g}(m) = 〈
(Xf )m, (dg)m

〉 = −〈
(Xg)m, (df )m

〉

we read off that the value of {f,g} at m depends on (df )m and (dg)m only and
that this dependence is linear. Since every element of T∗

mM can be written as
df (m) for some f ∈ C∞(M), it follows that there exists a unique bivector field
Π ∈ Γ (

∧2
T M) such that

{f,g} = Π(df,dg) (8.2.11)

for all f,g ∈ C∞(M). Π is called the Poisson tensor of (M, {, }). The Jacobi identity
implies

LXf
Π = 0 (8.2.12)

for all f ∈ C∞(M). The Poisson tensor Π defines a vertical vector bundle mor-
phism

Π� : T∗M → TM,
〈
β,Π�(α)

〉 := Π(α,β), (8.2.13)

fulfilling

Π� ◦ df = Xf (8.2.14)

for all f ∈ C∞(M). The rank of (M, {, }) at m is defined to be the rank of Π
�
m. Since

Π is antisymmetric, this is an even number. For a symplectic manifold, Π� = ω� and
Π is the image of ω under the isomorphism ω� ∧ ω� : Ω2(M) → Γ (

∧2 TM).
Poisson morphisms can be characterized in terms of the Poisson tensor as fol-

lows. From (8.2.11) we read off that a diffeomorphism Φ : M → M is Poisson iff
Φ∗Π = Π . More generally, for a smooth mapping Φ : M → N of Poisson mani-
folds one finds that it is Poisson iff the corresponding Poisson tensors are Φ-related6

(Exercise 8.2.1).

Remark 8.2.17

1. In a local chart (U,κ) on M we have

Π = 1

2
Πij∂i ∧ ∂j , {f,g} = Πij ∂if ∂jg. (8.2.15)

In particular,

Πij = {
κi, κj

}
, {f,g} = {

κi, κj
}
∂if ∂jg.

6The notion of Φ-relation extends in an obvious way from vector fields to multivector fields, cf.
Definition 2.3.6/1.
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2. By Formula (8.2.11), every bivector field Π on M defines a bilinear antisymmet-
ric mapping {, } : C∞(M) × C∞(M) → C∞(M) which fulfils the Leibniz rule.
It satisfies the Jacobi identity, and hence yields a Poisson structure, iff

Π
(
df,d

(
Π(dg,dh)

)) + Π
(
dg,d

(
Π(dh,df )

)) + Π
(
dh,d

(
Π(df,dg)

)) = 0
(8.2.16)

for all f,g,h ∈ C∞(M). In local coordinates, this condition reads

Πin∂nΠ
jk + Πjn∂nΠ

ki + Πkn∂nΠ
ij = 0

(Exercise 8.2.2). Thus, a Poisson manifold may as well be viewed as a pair
(M,Π), where Π is a bivector field fulfilling (8.2.16).

Example 8.2.18

1. Every manifold M can be equipped with the trivial Poisson structure {f,g} = 0
for all f,g ∈ C∞(M). In this case, Π = 0.

2. Let V be a real vector space. Every element Π ∈ ∧2
(V ) defines a constant bivec-

tor field on V . This bivector field satisfies (8.2.16) and thus defines a Poisson
structure (Exercise 8.2.3).

3. Consider the dual space V ∗ of a real vector space V . Recall that under the natural
identification of the tangent spaces of V ∗ with V ∗ itself, every bivector field Π

on V ∗ corresponds to a smooth mapping V ∗ → ∧2
V ∗. Π is called linear if this

mapping is linear. In this case, for every v,w ∈ V , the function ξ �→ Πξ(v,w)

is linear and hence corresponds to an element of V . By assigning this element to
the pair (v,w) we obtain an antisymmetric bilinear mapping [, ] : V × V → V .
Thus, [v,w] is defined by

〈
ξ, [v,w]〉 = Πξ(v,w) (8.2.17)

for all ξ ∈ V ∗. Conversely, if an antisymmetric bilinear mapping [, ] : V × V →
V is given, (8.2.17) defines a linear bivector field Π on V ∗. Let us analyze the
condition (8.2.16) on Π in terms of [, ]. First, we observe that (8.2.16) holds
iff it holds for all linear functions f,g,h on V ∗. For linear functions, we have
df = f , and the linearity of Π implies d(Π(df,dg)) = Π(f,g), where f and g

are viewed as elements of V . It follows that Π satisfies (8.2.16) iff [, ] satisfies the
Jacobi identity. In this case, the corresponding Poisson bracket of f,g ∈ C∞(V ∗)
is given by

{f,g}(μ) = 〈
μ,

[
df (μ),dg(μ)

]〉
, (8.2.18)

where df (μ) and dg(μ) are interpreted as elements of (V ∗)∗ = V .
Thus, the Poisson structures on V ∗ whose Poisson tensor is linear are in bi-

jective correspondence with Lie algebra structures on V . In particular, (8.2.17)
defines a natural Poisson structure on the dual space g∗ of a Lie algebra g. This
structure is usually referred to as the Lie-Poisson structure on g∗. In the coordi-
nates ξi defined by a basis in g∗, the Poisson tensor and the Poisson bracket of
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this structure are given by

Π(ξ) = 1

2
ξkc

k
ij

∂

∂ξi

∧ ∂

∂ξj

, {f,g}(ξ) = ξkc
k
ij

∂f

∂ξi

(ξ)
∂g

∂ξj

(ξ), (8.2.19)

where ck
ij are the structure constants of g with respect to the dual basis in g.

4. We know that every volume form ω on a two-dimensional manifold M is sym-
plectic. Let Πω be the corresponding Poisson tensor. Then, every bivector field
is of the form f Πω for some f ∈ C∞(M) and f Πω defines a Poisson structure
(Exercise 8.2.4). In contrast, f ω is symplectic only if f is nowhere vanishing.

Definition 8.2.19 (Poisson vector field) A vector field X on a Poisson manifold is
called Poisson iff the Poisson structure is invariant under the flow of X.

Equivalently, X is Poisson iff LXΠ = 0. This follows by the same argument as
the corresponding assertion about symplectic vector fields in Proposition 8.2.4. As a
consequence, (8.2.12) implies that every Hamiltonian vector field is Poisson. In the
special case of a symplectic manifold, a vector field is Poisson iff it is symplectic.
In contrast to Proposition 8.2.4/4, however, on a Poisson manifold a Poisson vector
field need not be locally Hamiltonian. For example, for the trivial Poisson structure,
every vector field is Poisson, but only the zero vector field is Hamiltonian.

We conclude this section by showing that every Poisson manifold is foliated by
symplectic manifolds. For that purpose, consider the characteristic distribution

DΠ := Π�
(
T∗M

) ⊂ TM

of (M, {, }). By (8.2.14), this distribution is spanned by the Hamiltonian vector
fields. For every m ∈ M , the Poisson tensor Π induces an antisymmetric 2-form
ωm on DΠ

m by

ωm(X,Y ) := Πm(α,β), (8.2.20)

where α,β ∈ T∗M such that X = Π�(α) and Y = Π�(β). The reader easily con-
vinces himself that ω is well-defined and non-degenerate (Exercise 8.2.5). Thus, at
each point m we obtain a symplectic vector space (DΠ

m ,ωm).

Theorem 8.2.20 (Symplectic Foliation Theorem) The characteristic distribution of
a Poisson manifold (M,Π) is integrable. On every integral manifold N , there exists
a unique symplectic form ωN such that the natural inclusion mapping is Poisson.
This form is given by

(ωN)m(Xf ,Xg) = {f,g}(m), m ∈ N, f,g ∈ C∞(M). (8.2.21)

The resulting foliation by maximal integral manifolds is called the symplectic
foliation of (M, {, }) and the maximal integral manifolds are called the symplectic
leaves of (M, {, }). By construction, the Hamiltonian vector fields are tangent to the
symplectic leaves.
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Proof According to (8.2.10), the set of Hamiltonian vector fields is involutive. Since
every Hamiltonian vector field Xf is Poisson, its flow preserves Π . It follows that
the rank of Π and hence the dimension of DΠ is constant along the integral curves
of Xf . Thus, Theorem 3.5.10 implies integrability. Let N be an integral manifold.
For every m ∈ N , the form (ωN)m coincides with the form defined in (8.2.20).
Hence, it is well-defined and non-degenerate. It remains to prove that ω is closed.
Since Xf is tangent to N , it induces a vector field X̃f on N . Using Proposition 4.1.6,
together with Proposition 3.1.5/1 and Corollary 3.1.6, and the Jacobi identity for
{, }, one finds dωN(X̃f , X̃g, X̃h) = 0 for all f,g,h ∈ C∞(M) (Exercise 8.2.6). This
yields the assertion. �

Example 8.2.21

1. For the trivial Poisson structure {f,g} = 0 on M , the symplectic foliation is given
by the points of M .

2. In Sect. 8.4 it will be shown that the symplectic leaves N of the Poisson structure
on the dual space g∗ of a Lie algebra g, discussed in Example 8.2.18/3, coincide
with the connected components of the coadjoint orbits and that the symplectic
form ωN is given by the Kirillov form.

Theorem 8.2.20 can be used to prove the following generalization of the Darboux
Theorem to Poisson manifolds.

Theorem 8.2.22 (Splitting Theorem) Let (M,Π) be a Poisson manifold of dimen-
sion k, let m ∈ M and assume that Π has rank 2r at m. Then, there exists a local
chart (U,κ) at m with coordinates q1, . . . , qr , p1, . . . , pr , z1, . . . , zk−2r such that

Π�U = ∂qi ∧ ∂pi
+ 1

2
πij (z)∂zi ∧ ∂zj , πij (0) = 0. (8.2.22)

In these coordinates, the symplectic leaf through m is described by the equations
z1 = z2 = · · · = zk−2r = 0 and qi , pi provide Darboux coordinates on this leaf.

Proof See [181], Theorem III.11.5, or [310]. �

Remark 8.2.23

1. The Splitting Theorem contains the following local decomposition property: let
(M,Π) be a Poisson manifold of dimension k and rank 2r at the point m. Then,
there exists a neighbourhood U of m which can be identified with the Cartesian
product of a symplectic manifold V of dimension 2r and a Poisson manifold W

of dimension k − 2r whose rank vanishes at m. It was shown by Weinstein [310]
that up to an isomorphism the Poisson structure on W does not depend on the
chosen local coordinates.

2. A smooth function f on M is called a Casimir function for {, } if Xf = 0. The
set of Casimir functions is called the Poisson centre of (M, {, }). Indeed, this is
the centre of the Lie algebra (C∞(M), {, }). One can show that in the case of
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a symplectic manifold, every Casimir function is constant (Exercise 8.2.7) and
that, in the general case, the restriction of a Casimir function to a symplectic leaf
is constant.

Exercises
8.2.1 Show that a smooth mapping Φ : M → N is Poisson iff the Poisson tensors

of M and N are Φ-related.
8.2.2 Prove the statements of Remark 8.2.17/2.
8.2.3 Prove that every constant bivector field on a real vector space defines a Pois-

son structure.
8.2.4 Prove the statement of Example 8.2.18/4.
8.2.5 Show that the 2-form defined by (8.2.20) is well-defined and non-degenerate.
8.2.6 Complete the proof of Theorem 8.2.20 by showing that the 2-form ωN is

closed.
8.2.7 Prove that on a symplectic manifold, every Casimir function is constant.

8.3 The Cotangent Bundle

The cotangent bundle T∗Q of a manifold Q provides the basic model of a symplec-
tic manifold. It has the following special properties.

(a) It carries a canonical symplectic potential.
(b) Every diffeomorphism of Q lifts to a symplectomorphism of T∗Q.
(c) It contains a variety of Lagrangian submanifolds related to the bundle structure.
(d) Since its fibres carry a natural affine structure, every 1-form on Q induces a

vertical vector field on T∗Q.

In what follows, let π : T∗Q → Q be the canonical projection. As already men-
tioned, in Hamiltonian mechanics, T∗Q is the phase space of a system with configu-
ration space Q. Consequently, for the local description, we use the standard notation
taken from physics: the coordinates of a local chart (U,κ) on Q are denoted by qi .
For the local frame {∂κ

i } in TQ we write {∂qi } and for the local coframe {dκi} in
T∗Q we write {dqi}. The chart κ induces a local chart κT∗ on T∗U by

κT∗(ξ) = (
q1(π(ξ)

)
, . . . , qn

(
π(ξ)

)
,p1(ξ), . . . , pn(ξ)

)
,

where the coordinate functions pi are defined as the components of ξ ∈ T∗U with
respect to the coframe {dqi}:

ξ = pi(ξ)dqi.

Points of κT∗(T∗U) will be written as pairs (q,p).
First, we show that T∗Q carries a natural exact symplectic structure.
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Definition 8.3.1 (Canonical 1-form) The canonical 1-form θ , or Liouville form, on
T∗Q is defined by

〈θξ ,X〉 := 〈
ξ,π ′

ξ (X)
〉
,

where ξ ∈ T∗Q and X ∈ Tξ (T∗Q).

We show that the 2-form ω := dθ is a symplectic form on T∗Q. Obviously,
dω = 0. To show that ω is non-degenerate, we calculate θ and ω in bundle coor-
dinates qi and pi . The ansatz θ = αidqi + βidpi and X = Ai∂qi + Bi∂pi

yields the
defining equation

αiA
i + βiBi = piA

i

for all Ai,Bi ∈R, which is solved by αi = pi and βi = 0. Thus, we obtain

θ = pidqi and ω = dpi ∧ dqi. (8.3.1)

In particular, ω is non-degenerate, indeed.

Definition 8.3.2 The form ω = dθ is called the canonical symplectic form of T∗Q.

According to (8.3.1), for every chart on Q, the induced chart on T∗Q is a Dar-
boux chart for the canonical symplectic structure.

Remark 8.3.3

1. The canonical 1-form θ is the unique 1-form on T∗Q with the property that

α∗θ = α (8.3.2)

for all 1-forms α on Q (Exercise 8.3.1). As a consequence,

α∗ω = dα. (8.3.3)

2. Since the covectors dqi form a basis in T∗
xQ and the vectors ∂qi form a basis in

TxQ, the assignment ∂qi �→ ∂qi , ∂pi
�→ dqi defines a vector space isomorphism

Tξ (T∗Q) → TxQ⊕ T∗
xQ. Since ω� maps ∂qi to −dpi , this isomorphism is sym-

plectic with respect to the canonical symplectic structure (7.1.5) on TxQ⊕T∗
xQ.

3. The isomorphism ω� assigns to θ a vector field θ� on T∗Q, called the canonical
vertical vector field or Liouville vector field. By definition,

θ��ω = θ. (8.3.4)

In bundle coordinates, θ� reads θ� = pi∂pi
, which shows that it is vertical, in-

deed. Thus, θ��θ = 0, so that (4.1.24) implies

Lθ�θ = θ, Lθ�ω = ω. (8.3.5)
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Example 8.3.4 The special case of the cotangent bundle T∗G of a Lie group G is
of particular interest. According to Proposition 5.1.6, both TG and T∗G are trivial.
We use the (inverse) trivialization

χL : G × g
∗ → T∗G, χL(a,μ) := μ ◦ (La−1)

′
a (8.3.6)

and write tangent vectors of G × g∗ at (a,μ) in the form (L′
aA,ρ) with A ∈ g and

ρ ∈ g∗. Then,
(
χ∗

Lθ
)
(a,μ)

(
L′

aA,ρ
) = θχL(a,μ)

(
χ ′

L

(
L′

aA,ρ
)) = (

μ ◦ (La−1)
′
a

)(
π ′ ◦ χ ′

L

(
L′

aA,ρ
))

.

Since π ◦ χL is the projection to the first component, we obtain
(
χ∗

Lθ
)
(a,μ)

(
L′

aA,ρ
) = 〈μ,A〉. (8.3.7)

Then, using Proposition 4.1.6 with left-invariant vector fields A,B on G and con-
stant vector fields ρ,σ on g∗, we calculate (Exercise 8.3.2)

ω(a,μ)

((
L′

aA,ρ
)
,
(
L′

aB,σ
)) = 〈ρ,B〉 − 〈σ,A〉 − 〈

μ, [A,B]〉. (8.3.8)

Next, we show that the canonical 1-form is invariant under the lift of diffeo-
morphisms from Q to T∗Q. This yields a special class of canonical transforma-
tions, called point transformations. Recall from Sect. 2.4 that every diffeomorphism
ϕ : Q → Q induces a vector bundle isomorphism ϕ′T : T∗Q → T∗Q projecting to
ϕ−1. Let Φ be the inverse of this isomorphism. Φ is determined by the conditions
π ◦ Φ = ϕ ◦ π and

〈
Φ(ξ),ϕ′X

〉 = 〈ξ,X〉 (8.3.9)

for all ξ ∈ T∗
xQ, X ∈ TxQ and x ∈ Q. On the level of 1-forms α on Q, (8.3.9) can

be rewritten as

Φ ◦ (
ϕ∗α

) = α ◦ ϕ. (8.3.10)

Definition 8.3.5 (Point transformation) The vector bundle isomorphism Φ =
(ϕ′T)−1 is called the point transformation induced by ϕ.

It turns out that point transformations can be characterized by the property that
they leave the canonical 1-form θ invariant:

Proposition 8.3.6 A fibre-preserving diffeomorphism Φ : T∗Q → T∗Q is a point
transformation iff Φ∗θ = θ . In particular, every point transformation is a symplec-
tomorphism.

Proof Since Φ preserves the fibres, there is a unique diffeomorphism ϕ : Q → Q

such that π ◦ Φ = ϕ ◦ π . For ξ ∈ T∗Q and X ∈ Tξ (T∗Q) we compute
(
Φ∗θ

)
ξ
(X) = 〈

Φ(ξ),
(
π ′ ◦ Φ ′)(X)

〉
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= 〈
Φ(ξ),

(
ϕ′ ◦ π ′)(X)

〉

= 〈
ϕ′T(

Φ(ξ)
)
,π ′(X)

〉
.

Since θξ (X) = 〈ξ,π ′(X)〉 and since π ′ is surjective, this implies that Φ∗θ = θ iff
ϕ′T ◦ Φ = idT∗Q, that is, iff Φ is the point transformation induced by ϕ. �

Remark 8.3.7 Let ϕ be a diffeomorphism of a manifold Q and let Φ be the induced
point transformation. We compute the local representative of Φ with respect to local
charts (U,κ) and (V ,ρ) on Q with induced bundle coordinates qi , pi and q̄i , p̄i ,
respectively. The diffeomorphism ϕ is locally given by the functions

q̄i ◦ ϕ ◦ κ−1.

Moreover, for ξ ∈ T∗Q, the natural fibre coordinates pi(ξ) and p̄i(Φ(ξ)) are deter-
mined by the equations ξ = pi(ξ)dqi and Φ(ξ) = p̄i (Φ(ξ))dq̄i , respectively. Using
(8.3.9), we obtain

Φ(ξ) = pi(ξ)
∂(qi ◦ ϕ−1 ◦ ρ−1)

∂q̄j

(
(ρ ◦ ϕ)

(
π(ξ)

))
dq̄j .

Using the simplified notation

q̄i ◦ ϕ ◦ κ−1 ≡ q̄i , qi ◦ ϕ−1 ◦ ρ−1 ≡ qi,

we obtain the following local formula for Φ:

(q,p) �→
(

q̄(q),pj

∂qj

∂q̄

(
q̄(q)

))
.

This formula can be interpreted both actively (a point transformation induced by
a diffeomorphism) and passively (the change of bundle coordinates induced by a
change of coordinates on Q).

Now, we turn to the discussion of Lagrangian submanifolds of cotangent bundles.

Example 8.3.8 The cotangent bundle T∗Q contains the following classes of La-
grangian submanifolds:

1. The fibres of T∗Q: let x ∈ Q and let i : T∗
xQ → T∗Q be the natural inclu-

sion mapping. Since T∗
xQ has half the dimension of T∗Q, it is enough to show

isotropy. For ξ ∈ T∗
xQ and X ∈ Tξ (T∗

xQ), we find

(
i∗θ

)
ξ
(X) = θi(ξ)

(
i′X

) = 〈
i(ξ),π ′ ◦ i′(X)

〉 = 0.

Thus, i∗θ = 0 and hence i∗ω = 0. In bundle coordinates the proof is even sim-
pler: since qi is constant along T∗

xQ, we obtain i∗(dpi ∧ dqi) = 0.
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2. The image of a closed 1-form: let α ∈ Ω1(Q). Since α(Q) has half the dimension
of T∗Q, formula (8.3.3) implies that α(Q) is Lagrange iff dα = 0. In particular,
the zero section and the image of an exact 1-form α = dS is Lagrange. In the lat-
ter case, S is called a generating function for the Lagrangian submanifold α(Q).
In bundle coordinates qi and pi , we have dS = ∂S

∂qi dqi . Hence, in coordinates,

α(Q) consists of the points (q,p = ∂S
∂q (q)).

3. The conormal bundle of a submanifold: let N be a submanifold of Q and let
(TN)0 ⊂ T∗Q be the conormal bundle, cf. Remark 2.7.18/1. Obviously, (TN)0

has half the dimension of T∗Q. Moreover, the canonical 1-form θ vanishes on
(TN)0, because π ′ maps vectors tangent to (TN)0 to vectors tangent to N . Thus,
(TN)0 is Lagrange. Following Tulczyjew, we call it the canonical lift of N to
T∗Q and denote it by N̂ .

4. The canonical lift of the pair (N,S), where N ⊂ Q is a submanifold and S :
N → R is a smooth function: define

(N̂, S) := {
ξ ∈ (

T∗Q
)
�N : 〈ξ,X〉 = 〈dS,X〉 for all X ∈ Tπ(ξ)N

}
.

One can check that j∗θ = π∗
N dS, with j being the natural inclusion mapping of

(N̂, S) and πN : (N̂, S) → N denoting the restriction of the canonical projection
(Exercise 8.3.3). This implies that (N̂, S) is Lagrange. Note that an obvious gen-
eralization is obtained by replacing dS by an arbitrary closed 1-form. Also note
that the special cases N = {x}, N = Q and S = const exhaust the Lagrangian
submanifolds of points 1–3.

From point 1 of Example 8.3.8 we get the following

Proposition 8.3.9 The restriction (T∗Q)�N of T∗Q to a submanifold N of Q is a
coisotropic submanifold of T∗Q.

Proof For every ξ ∈ (T∗Q)�N , the tangent space Tξ ((T∗Q)�N) contains the sub-
space Tξ (T∗

π(ξ)Q), which is Lagrange by Example 8.3.8/1. Hence, the assertion
follows from Proposition 7.2.4/4. �

The following Proposition shows that point 2 of Example 8.3.8 (locally) exhausts
the set of Lagrangian submanifolds in T∗Q which are transversal to the fibres.

Proposition 8.3.10 Let L ⊂ T∗Q be a Lagrangian submanifold which is transver-
sal to the fibres and which intersects every fibre at most once. Then, U := π(L) is
open in Q and there exists a closed 1-form α on U such that L = α(U). If L is in ad-
dition contractible, there exists a smooth function S : U → R such that L = dS(U).

In accordance with the terminology of Example 8.3.8/2, S is called a generating
function for L. For Lagrangian submanifolds which are not transversal one has to
use the more general concept of generating Morse family, see Sect. 12.4.
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Proof By transversality, the restriction π�L : L → M is an immersion. Since L in-
tersects every fibre at most once, π�L is injective. Hence, U is a submanifold of Q.
Since it has the same dimension as Q, it is open and π�L is a diffeomorphism
onto U . Thus, α := iL ◦ (π�L)−1, with iL denoting the natural inclusion mapping
of L, is a local 1-form over U satisfying L = α(U). Since L is Lagrange, by Exam-
ple 8.3.8/2, α is closed. If L is contractible, so is U . Thus, in this case, there exists
a function S : U →R such that α = dS and hence L = dS(U). �

Finally, let us discuss the consequences of the fact that the fibres of T∗Q carry
a natural affine structure. For given x ∈ Q, under the natural identification of the
tangent spaces of the fibre T∗

xQ with T∗
xQ itself, every η ∈ T∗

xQ defines a constant
vector field on T∗

xQ, denoted by η̂. Accordingly, every α ∈ Ω1(Q) defines a vertical
vector field α̂ on T∗Q by

α̂�T∗
xQ = α̂x . (8.3.11)

This vector field is complete and its flow is given by

Φα :R× T∗Q → T∗Q, Φα(t, ξ) := ξ + tα
(
π(ξ)

)
.

The flow induces a vertical affine transformation of T∗Q (fibre translation) by

Φα := Φα
1 : T∗Q → T∗Q, Φα(ξ) = ξ + α

(
π(ξ)

)
.

Since fibrewise addition is commutative, for arbitrary 1-forms α and β one has

[α̂, β̂] = 0, Φα ◦ Φβ = Φβ ◦ Φα = Φβ+α.

One says that T∗Q acts on itself fibrewise transitively.

Proposition 8.3.11 For every α ∈ Ω1(M),

Φ∗
αθ = θ + π∗α, Lα̂θ = π∗α, α̂�ω = π∗α. (8.3.12)

Proof We have

(
Φ∗

αθ
)
ξ
(X) = θΦα(ξ)

(
Φ ′

αX
) = 〈

ξ + α
(
π(ξ)

)
,π ′X

〉 = (
θ + π∗α

)
ξ
(X)

and hence

Lα̂θ = d

dt �t=0
Φ∗

tαθ = d

dt �t=0

(
θ + π∗(tα)

) = π∗α.

Finally, since α̂ is vertical, π∗α = Lα̂θ = α̂�dθ + d(α̂�θ) = α̂�ω. �

Now, let α be closed. Then, the first equation in (8.3.12) implies that Φα is a
symplectomorphism. Moreover, by Example 8.3.8/2, the image of α is a Lagrangian
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submanifold of T∗Q. Along this submanifold, the tangent spaces of T∗Q decom-
pose as

Tα(x)

(
T∗Q

) = Tα(x)

(
T∗

xQ
) ⊕ α′(TxQ) (8.3.13)

into complementary Lagrangian subspaces. In applications, the special case of the
zero 1-form is important. Its image is the zero section in T∗Q, that is, in this case
(8.3.13) is a decomposition of the tangent bundle into complementary Lagrangian
subspaces along the zero section. The decomposition (8.3.13) induces an identifi-
cation of the canonical symplectic structure on T∗Q with the canonical symplectic
structure on TxQ ⊕ T∗

xQ, given by (7.1.5).

Proposition 8.3.12 For every x ∈ Q, the mapping

TxQ ⊕ T∗
xQ → Tα(x)

(
T∗Q

)
, (X,η) �→ α′(X) + η̂α(x), (8.3.14)

is a symplectomorphism.

Proof Clearly, the mapping (8.3.14) is a vector space isomorphism. Thus, it is
enough to show that it is symplectic: by the last relation in (8.3.12), for σ ∈ Ω1(Q)

we find

ωα(x)

(
α′(X), σ̂α(x)

) = −(σ̂�ω)α(x)

(
α′(X)

) = −(
π∗σ

)
α(x)

(
α′(X)

) = −σx(X).

Thus, since the subspaces in the decomposition (8.3.13) are Lagrangian, we obtain

ω
(
α′(X) + τ̂α(x), α

′(Y ) + σ̂α(x)

) = τx(Y ) − σx(X) = ωW⊕W ∗
(
(X, τx), (Y,σx)

)
,

with W = TxQ. �

Remark 8.3.13 To see how Proposition 8.3.12 is related to Proposition 7.2.9, we
identify Tα(x)(T∗

xQ) with T∗
xQ and set W = T∗

xQ and W ′ = α′(TxQ). Then, the
isomorphism χ : W ′ → W ∗ defined by (7.2.7) is given by

χ
(
α′(X)

) = −X.

This can be read off immediately from the above proof, using σ̂α(x) = σ̂x . Note that
the roles of W and W ∗ have been interchanged here.

Exercises
8.3.1 Prove Remark 8.3.3/1.
8.3.2 Verify Formulae (8.3.7) and (8.3.8).
8.3.3 In Example 8.3.8/4, verify the formula j∗θ = π∗

N dS.
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8.4 Coadjoint Orbits

Let G be a Lie group, let g be its Lie algebra and let Ad∗ denote the coadjoint repre-
sentation of G on the dual space g∗. By a coadjoint orbit of G one means an orbit of
this representation, viewed as an action of G on g∗. According to Corollary 6.2.9,
coadjoint orbits are initial submanifolds of g∗. If G is compact, Corollary 6.3.5 im-
plies that they are also closed and embedded.

In this section, we will show that every coadjoint orbit O of G carries a natural
symplectic structure and that this structure makes it into a symplectic leaf of the
natural Lie-Poisson structure of g∗. Since G acts transitively on O , it is enough to
define the desired symplectic form on the Killing vector fields of Ad∗. According to
(6.2.3), the value at μ ∈ O of the Killing vector field generated by A ∈ g is given by

A∗(μ) = d

dt �0

Ad∗(exp(tA)
)
μ = ad∗(A)μ. (8.4.1)

We read off that A∗(μ) = 0 iff 〈μ, [A,B]〉 = 0 for all B ∈ g. Thus, the following
2-forms on O are well-defined:

ω±
μ (A∗,B∗) := ±〈

μ, [A,B]〉, A,B ∈ g, μ ∈ O. (8.4.2)

These forms will be called the positive and the negative Kirillov form, respectively.

Theorem 8.4.1 (Kirillov) The 2-forms ω± are symplectic and G-invariant.

This means that (O,ω±,Ad∗) are symplectic G-manifolds, cf. Remark 6.1.3 and
Definition 8.6.2.

Proof We give the proof for ω = ω+. First, we prove G-invariance. Using Proposi-
tion 6.2.2/1, for μ ∈ O and A,B ∈ g we compute

((
Ad∗(a)

)∗
ω

)
μ
(A∗,B∗) = ωAd∗(a)μ

((
Ad∗(a)

)
∗A∗,

(
Ad∗(a)

)
∗B∗

)

= ωAd∗(a)μ

((
Ad(a)A

)
∗,

(
Ad(a)B

)
∗
)

= 〈
Ad∗(a)μ,

[
Ad(a)A,Ad(a)B

]〉

= 〈
μ, [A,B]〉

= ωμ(A∗,B∗).

Next, we show that ω is closed: According to Proposition 4.1.6,

dω(A∗,B∗,C∗) =A∗
(
ω(B∗,C∗)

) − B∗
(
ω(A∗,C∗)

) + C∗
(
ω(A∗,B∗)

)

− ω
([A∗,B∗],C∗

) + ω
([A∗,C∗],B∗

) − ω
([B∗,C∗],A∗

)
.
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By G-invariance, LA∗ω = LB∗ω = LC∗ω = 0. Hence, Propositions 3.3.2 and 3.3.3/3
yield

A∗
(
ω(B∗,C∗)

) = LA∗
(
ω(B∗,C∗)

) = ω
([A∗,B∗],C∗

) + ω
(
B∗, [A∗,C∗]

)
,

and analogous formulae for B∗(ω(A∗,C∗)) and C∗(ω(A∗,B∗)). Using this, Propo-
sition 6.2.2/2 and the Jacobi identity, we obtain

(dω)μ(A∗,B∗,C∗) = ωμ

(
B∗, [A∗,C∗]

) − ωμ

(
A∗, [B∗,C∗]

) + ωμ

(
C∗, [B∗,A∗]

)

= 〈
μ,

[
B, [C,A]]〉 + 〈

μ,
[
A, [B,C]]〉 + 〈

μ,
[
C, [A,B]]〉

= 0.

Thus, ω is closed, indeed. It remains to show that it is non-degenerate. Let μ ∈ O
and A ∈ g such that ωμ(A∗,B∗) = 0 for all B ∈ g. Since

ωμ(A∗,B∗) = 〈
μ, [A,B]〉 = 〈

ad∗(A)μ,B
〉
,

this implies ad∗(A)μ = 0 and hence, by (8.4.1), A∗(μ) = 0. �

Now, recall from Example 8.2.18/3 that g∗ carries a natural linear Poisson struc-
ture, namely the Lie-Poisson structure, whose Poisson tensor and Poisson bracket
are given by

Πμ(A,B) = 〈
μ, [A,B]〉, {f,g}(μ) = 〈

μ,
[
df (μ),dg(μ)

]〉
, (8.4.3)

respectively. Here, via the identifications T∗
μg

∗ ∼= g∗∗ ∼= g, the differential df (μ) is
viewed as an element of g. We will show that the symplectic leaves of this Pois-
son structure coincide with the connected components of the coadjoint orbits of
G and that the symplectic structure induced on a leaf coincides with the Kirillov
symplectic structure (8.4.2). For that purpose, for every A ∈ g we define a function
fA ∈ C∞(g∗) by

fA(μ) := −〈μ,A〉.

Lemma 8.4.2 Let A ∈ g.

1. The differential of fA is given by dfA = −A.
2. The Hamiltonian vector field generated by fA is given by XfA

= A∗.

Proof To determine dfA(μ) for μ ∈ g∗, we choose a tangent vector σ ∈ Tμg
∗ ∼= g∗,

represent it by the curve t �→ μ + tσ and compute

〈
σ,dfA(μ)

〉 = d

dt �0

fA(μ + tσ ) = − d

dt �0

〈μ + tσ,A〉 = −〈σ,A〉.

This yields point 1. Using this, for h ∈ C∞(g∗) we obtain

(XfA
)μ(h) = {fA,h}(μ) = 〈

μ,
[
dfA(μ),dh(μ)

]〉 = −〈
μ,

[
A,dh(μ)

]〉
.
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By (8.4.1), the right hand side equals (A∗)μ(h). This yields point 2. �

Proposition 8.4.3 The symplectic leaves of the Poisson structure (8.4.3) coincide
with the connected components of the coadjoint orbits and the symplectic form in-
duced on each leaf coincides with the positive Kirillov form (8.4.2).

Proof Since the value of the Hamiltonian vector field Xf at μ ∈ g∗ depends on
df (μ) only, the characteristic distribution of the Poisson structure Π is spanned by
the Hamiltonian vector fields XfA

, A ∈ g. Thus, by Lemma 8.4.2, this distribution
coincides with the distribution spanned by the Killing vector fields of Ad∗, so that
Theorems 6.2.8 and 8.2.20 yield that the symplectic leaves coincide with the con-
nected components of the coadjoint orbits. To prove the second statement, let O be
a connected component of a coadjoint orbit and let ωO denote the symplectic form
induced on O by the Poisson structure, cf. (8.2.20). Using this, Lemma 8.4.2/2 and
(8.4.3), for μ ∈ O and A,B ∈ g, we obtain

ωO (A∗,B∗)(μ) = ωO (XfA
,XfB

)(μ) = {fA,fB}(μ) = 〈
μ,

[
dfA(μ),dfB(μ)

]〉
.

By Lemma 8.4.2/1, the right hand side equals 〈μ, [A,B]〉 = ω+
μ (A∗,B∗). �

Remark 8.4.4 Recall from Remark 5.4.11/2 that in the special case when G is
semisimple, the Killing form k defines an equivariant isomorphism F : g → g∗ by

〈
F(A),B

〉 = k(A,B), A,B ∈ g. (8.4.4)

By equivariance, F maps adjoint orbits Õ onto coadjoint orbits O . Since Õ and O
are initial submanifolds, the restriction F : Õ → O , denoted by the same letter, is a
diffeomorphism. Then,

ω̃± := F ∗ω±

are Ad-invariant symplectic forms on Õ . To compute them, let A,B,C ∈ g and let
B̃∗, C̃∗ denote the Killing vector fields generated by B and C under the adjoint
representation. By (6.2.2), we have F∗B̃∗ = B∗. Using this, we find

ω̃±
A(B̃∗, C̃∗) = (

F ∗ω±)
A
(B̃∗, C̃∗) = ω±

F(A)(B∗,C∗) = ±〈
F(A), [B,C]〉

and hence

ω̃±
A(B̃∗, C̃∗) = ±k

(
A, [B,C]). (8.4.5)

If G is in addition linear and simple, then

ω̃±
A(B̃∗, C̃∗) = ±c tr

(
A[B,C]), (8.4.6)

where the factor c is given in Example 5.4.12.

We conclude this section with a bunch of examples. In all of them, G is semisim-
ple, so that it is enough to consider the orbits of the adjoint action.
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Example 8.4.5

1. G = SU(2): Since every element of su(2) can be diagonalized by means of an
SU(2)-matrix, every orbit of the adjoint action of SU(2) contains a diagonal
element. Since tr(A) = 0, the eigenvalues are of the form iλ and −iλ with λ ∈R.
Since the set of eigenvalues is invariant under Ad, the orbits are labelled by λ ≥ 0
and the orbit corresponding to λ is given by

{
a diag(iλ,−iλ)a† : a ∈ SU(2)

}
.

According to the Orbit Theorem 6.2.8, it is diffeomorphic to the homogeneous
space of the right cosets in SU(2) of the stabilizer of diag(iλ,−iλ) under Ad.
There are two distinct types of orbits. If λ > 0, the stabilizer consists of the
diagonal matrices a = diag(α,α) with α ∈ U(1). Hence, in this case, the orbit is
diffeomorphic to the homogeneous space SU(2)/U(1) ≡ U(2)/(U(1) × U(1)),
which according to Example 5.7.6 is diffeomorphic to CP1 = S2. In case λ = 0,
the stabilizer is SU(2) and the orbit consists of the origin alone.

That the nonzero adjoint orbits are 2-spheres can be seen alternatively by
the following more explicit argument. Recall from Example 5.4.7 that the basis
{IC1 , IC2 , IC3 } in su(2), given in Example 5.2.8, defines a vector space isomorphism
onto R

3 which is equivariant with respect to the representation of SU(2) on R
3

induced by the covering homomorphism SU(2) → SO(3) of Example 5.1.11.
Thus, this isomorphism maps the nonzero adjoint orbits to the spheres S2

r of
radius r > 0 in R

3, indeed. We calculate the symplectic form for the nonzero ad-
joint orbits: since [ICi , ICj ] = εij

kICk , for A,B,C ∈ su(2), Formula (8.4.5) yields

ω̃±
A(B̃∗, C̃∗) = ±AiBjCnk

(
ICi ,

[
ICj , ICn

]) = ±AiBjCnεjn
lk

(
ICi , ICl

)

and with k(ICi , ICl ) = 4 tr(ICi ICl ) = −2δil we obtain

ω̃±
A(B̃∗, C̃∗) = ∓2AiBjCkεijk.

Since the tangent vector y of S2
r at x ∈ S2

r is the value at x of the Killing vector
field generated by the Lie algebra element x×y

r2 , we read off that via the isomor-

phism so(3) ∼= R
3, the Kirillov form ω̃+ gets identified with the scaled natural

volume (or area) form on S2
r :

ωx(y, z) = −2
x · (y × z)

r2
, x ∈ S2

r , y, z ⊥ x. (8.4.7)

2. G = SU(3): SU(3) is dealt with analogously to SU(2). The eigenvalues are
iλ1, iλ2, iλ3 with λk ∈ R and λ1 + λ2 + λ3 = 0. The orbits are given by

{
a diag(iλ1, iλ2, iλ3)a

† : a ∈ SU(3)
}
.

There are three types of orbits. If the λk are pairwise distinct, the stabilizer con-
sists of the diagonal matrices a = diag(α,β,αβ) with α,β ∈ U(1). Hence, the
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orbit is diffeomorphic to the homogeneous space

SU(3)/
(
U(1) × U(1)

) ≡ U(3)/
(
U(1) × U(1) × U(1)

)
.

This is a flag manifold of dimension 6, cf. Example 5.7.7. If λ1 = λ2 �= λ3, the
stabilizer consists of matrices of the form

⎡

⎣ b
0
0

00 detb

⎤

⎦ , b ∈ U(2),

and the orbit is thus diffeomorphic to the Graßmann manifold

SU(3)/U(2) ≡ U(3)/
(
U(1) × U(2)

)
,

which, in turn, is diffeomorphic to the complex projective space CP2, cf. Exam-
ple 5.7.6. Finally, if the eigenvalues λk are all equal, they must vanish. Then, the
stabilizer is SU(3) and the orbit consists of just the origin. The computation of
the Kirillov symplectic form is left to the reader (Exercise 8.4.1).

3. G = SO(3): As for SU(2), according to Example 5.4.7, the basis {IR1 , IR2 , IR3 } in
so(3) given there defines an isomorphism between the adjoint representation and
the identical representation of SO(3). This isomorphism identifies the nonzero
adjoint orbits of SO(3) with the spheres S2

r of radius r > 0 in R
3. A calculation

similar to that of point 1 shows that the Kirillov form ω̃ on an adjoint orbit
coincides via this isomorphism with the 2-form (8.4.7).

4. G = SO(4): This Lie group is semisimple but not simple. Recall from Exam-
ple 5.4.7 that the Lie algebra isomorphism dφ : su(2) ⊕ su(2) → so(4) induced
by the covering homomorphism φ : SU(2)× SU(2) → SO(4) of Example 5.1.11
is an isomorphism of representations of SU(2) × SU(2), where the representa-
tion on so(4) is induced via φ by the adjoint representation of SO(4). Thus, dφ

identifies the adjoint orbits of SO(4) with those of SU(2)× SU(2). According to
point 1, the following types of orbits occur:

O(A,B)
∼= S2 × S2, O(A,0)

∼= O(0,A)
∼= S2, O(0,0) = {

(0,0)
}

(8.4.8)

with A,B ∈ su(2), A �= 0,B �= 0. As explained there, under the Lie algebra iso-
morphism su(2) ∼= R

3 of Example 5.2.8, orbits of the second type are identified
with spheres of fixed radius in R

3 with the symplectic form given by (8.4.7) and
orbits of the first type are identified with products thereof.

Exercises
8.4.1 Determine the Kirillov symplectic form for the coadjoint orbits of SU(3), cf.

Example 8.4.5/2.
8.4.2 The Euclidean group E(3) in three dimensions is defined as the semidirect

product of SO(3) with the group of translations, that is, E(3) := SO(3)�R
3

with multiplication

(a1,b1)(a2,b2) := (a1a2,b1 + a1b2).
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Determine the Lie algebra of E(3) and show that under the isomorphism
so(3) ∼=R

3 of Example 5.2.8, the coadjoint orbits are given by

O(c,d) = {
(x,y) ∈R

3 ×R
3 : y2 = c2,x · y = cd

}
, c ≥ 0, d ∈R.

8.4.3 For the Lie group G of real upper triangular (n × n)-matrices with unit deter-
minant, prove the following.
(a) The Lie algebra g of G consists of the real upper triangular matrices with

trace 0.
(b) By means of the Ad-invariant scalar product 〈A,B〉 = tr(AB), g∗ can be

identified with the space of real lower triangular matrices with trace 0.
(c) Under this identification, the coadjoint action takes the form

Ad∗(g)A = (
gAg−1)

−,

with the minus sign meaning that all entries above the main diagonal are
set to zero. Find the explicit matrix representation for elements of the
orbit through

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 0

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

8.5 Coisotropic Submanifolds and Contact Structures

Coisotropic submanifolds play an important role in symplectic reduction, in the
theory of integrable systems and especially in Hamilton-Jacobi theory. The results
to be derived in this section apply in particular to Lagrangian submanifolds.

Let (M,ω) be a symplectic manifold and let (N,ϕ) be a coisotropic submani-
fold of M . For simplicity, we assume that N is given by a subset of M and that ϕ is
the natural inclusion mapping, cf. Remark 1.6.2/1. By definition of coisotropy, we
have (TN)ω ⊂ TN . This implies that (TpN)ω coincides with the characteristic sub-
space F

ωN
p of the 2-form ωN = ϕ∗ω, see Definition 4.2.18: indeed, since dωN = 0,

Formula (8.1.5) yields

ker(ωN)p = TpN ∩ (TpN)ω = (TpN)ω. (8.5.1)

Moreover, by point 2 of Proposition 7.2.1, the dimension of (TpN)ω is equal to the
codimension of N and hence independent of p. This shows that the characteristic
distribution DωN of ωN is regular and that (TN)ω coincides with this distribution.



8.5 Coisotropic Submanifolds and Contact Structures 383

Definition 8.5.1 The distribution DωN = (TN)ω is called the characteristic distri-
bution of N . Sections of DωN are called characteristic vector fields.

Note that DωN is isotropic as a vector subbundle of TM and that (DωN )ω = TN .
Moreover, Proposition 4.2.20 yields

Corollary 8.5.2 The characteristic distribution DωN of a coisotropic submanifold
is integrable.

Integral submanifolds of DωN are called characteristics of N .

Proposition 8.5.3 Let N be an initial coisotropic submanifold of the symplectic
manifold (M,ω) and let L be a Lagrangian submanifold of M contained in N .
Then, L is a union of characteristics of N .7

Proof By Proposition 1.6.14, L is a submanifold of N . Hence, TL ⊂ (TN)�L and
thus

(
DωN

)
�L = (

(TN)�L
)ω ⊂ (TL)ω = TL.

It follows that, through every point of L, there exists a characteristic of N which is
contained in L. �

Lemma 8.5.4 Let (M,ω) be a symplectic manifold and let N ⊂ M be a coisotropic
submanifold. A Hamiltonian vector field Xf on M restricts to

1. a vector field on N iff f is constant on the characteristics of N ,
2. a characteristic vector field on N iff f is locally constant on N .

Proof For all m ∈ N and Y ∈ TmN , we have

ωm

(
(Xf )m,Y

) = −Y(f ).

First, this implies that (Xf )�N takes values in TN = (DωN )ω iff Y(f ) = 0 for all
Y ∈ DωN , that is, iff f is constant along the characteristics of N . Second, this im-
plies that (Xf )�N takes values in DωN = (TN)ω iff Y(f ) = 0 for all Y ∈ TN , that
is, iff f is locally constant on N . �

We recall that in Sect. 2.7 we had characterized the tangent bundle of an em-
bedded submanifold N ⊂ M and its annihilator by means of the ideal C∞

N (M) of
smooth functions on M , vanishing on N :

TpN = {
X ∈ TpM : X(f ) = 0 for all f ∈ C∞

N (M)
}
, (8.5.2)

7Note that the statement of the proposition is not about the maximal integral manifolds of DωN .
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(TpN)0 = {
α ∈ T∗

pM : α = df (p) for some f ∈ C∞
N (M)

}
. (8.5.3)

According to Proposition 7.2.1/1, the isomorphism ω� : TM → T∗M yields an iden-
tification of the symplectic normal bundle (TN)ω ⊂ TM�N with the annihilator
(TN)0 of TN in T∗M�N . Since this isomorphism identifies Xf with −df , we get
the following characterization of the normal bundle:

(TpN)ω = {
X ∈ TpM : X = Xf (p) for some f ∈ C∞

N (M)
}
. (8.5.4)

These observations yield the following criteria for coisotropy [311]:

Proposition 8.5.5 For an embedded submanifold N of a symplectic manifold
(M,ω), the following statements are equivalent:

1. N is coisotropic.
2. For every f ∈ C∞

N (M), the Hamiltonian vector field Xf is tangent to N .
3. C∞

N (M) is a Poisson subalgebra of C∞(M).

Proof The submanifold N is coisotropic iff (TN)ω ⊂ TN , that is, according to
(8.5.4), iff Xf is tangent to N for all f ∈ C∞

N (M). Thus, points 1 and 2 are
equivalent. By (8.5.2), point 2 is equivalent to the requirement that Xf (g)�N =
{f,g}�N = 0 for all f,g ∈ C∞

N (M). This is equivalent to point 3. �

Now, let F : M → R
r be a smooth mapping for which 0 is a regular value and let

N = F−1(0). In this context, one has the following criterion for coisotropy. Let Fa

denote the components of F and recall from the Level Set Theorem that for every
m ∈ N , one has

TmN = kerF ′
m. (8.5.5)

Proposition 8.5.6 N = F−1(0) is coisotropic iff the functions Fa are in involution
on N , that is,

{Fa,Fb}�N = 0.

Proof By Proposition 8.5.5/3, if N is coisotropic, then {Fa,Fb}�N = 0. Conversely,
if {Fa,Fb}�N = 0, then 〈dFb,XFa 〉(m) = 0 for all m ∈ N . In view of (8.5.5), this
yields that the vector fields XFa are tangent to N . On the other hand, (8.5.5) implies
that the differentials dFa span the annihilator (TN)0 and, consequently, that the
Hamiltonian vector fields XFa span (TN)ω . Thus, (TN)ω ⊂ TN . �

Remark 8.5.7

1. If we assume that F : M → R
r is a submersion and that {Fa,Fb} = 0 holds

on the whole of M , we obtain a foliation of M by coisotropic submanifolds
(level sets) of codimension r . The special case r = 1

2 dimM yields a foliation by
Lagrangian submanifolds. This is the situation of an integrable system. Chap. 11
is devoted to the study of such systems.
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2. It is easy to show that all coisotropic submanifolds can be described locally as
level sets in the sense of Proposition 8.5.6. More precisely, let N ⊂ M be a
coisotropic submanifold. Then, for every point p ∈ N , there exists a neighbour-
hood V of p in N , a neighbourhood U of p in M and a submersion F : U →R

r

such that V = F−1(0) and {Fa,Fb}�V = 0 (Exercise 8.5.1).

Example 8.5.8 Let N ⊂ M be an embedded submanifold of M .

1. The restriction T∗M�N of T∗M to N is coisotropic. This has been shown before
(Proposition 8.3.9).

2. Let π : Q → N be a surjective submersion. Then, VQ := kerπ ′ is a vertical
subbundle of TQ, cf. Example 2.7.7. Its annihilator V0Q is the union of the
conormal bundles of the fibres of π . According to Example 8.3.8/3, these conor-
mal bundles are Lagrangian submanifolds. Thus, Proposition 7.2.4/4 implies that
V0Q is coisotropic.

By Proposition 7.2.4/2, a submanifold of codimension 1 of a symplectic manifold
(M,ω) is always coisotropic. Such submanifolds play a prominent role in the theory
of Hamiltonian systems and in Hamilton-Jacobi theory, see Chaps. 9 and 12. Often
they carry the additional structure of a so-called contact manifold. To explain this,
let us start by considering the following special case. Assume that (M,ω) is a 2n-
dimensional exact symplectic manifold, that is, there exists a global potential 1-form
β such that ω = dβ . Then, there exists a unique vector field Z on M such that

Z�ω = β. (8.5.6)

Remark 8.5.9 The vector field Z defined by (8.5.6) fulfils

LZω = ω. (8.5.7)

A vector field with this property is said to be of Liouville type, cf. Remark 8.3.3/3
for the cotangent bundle case.

Now, let (P, ι) be a hypersurface8 in M which is transversal to Z. Then, the
1-form

α := ι∗β

on P has the property that α ∧ (dα)n is a volume form on P , because

β ∧ (dβ)n−1 = (Z�ω) ∧ ωn−1 = 1

n
Z�

(
ωn

)
(8.5.8)

and because P is transversal to Z. It follows that α is nonzero on the characteristic
distribution DωP = (TP)ω = ker dα and that dα is non-degenerate on the hyper-
plane distribution9 kerα. In view of the integrability criterion of Proposition 4.7.6,

8That is, an embedded submanifold of codimension 1.
9A hyperplane distribution on P is a regular distribution E ⊂ TP of codimension one.
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the latter means that the hyperplane distribution kerα is maximally non-integrable.
Indeed, for any X,Y ∈ Γ (kerα), we have

dα(X,Y ) = −α
([X,Y ]).

One says that α is a contact form on P and calls the pair (P,α) an exact, or strict,
contact structure.

Given the great importance contact geometry has acquired in recent years, espe-
cially in connection with symplectic topology, we will discuss the basics here. There
is a huge literature where one can find detailed presentations, e.g. [24], [102], [103],
[181] and [206], see also [57].

The abstract notion of contact manifold is defined without taking recourse to a
symplectic manifold. Thus, let P be a manifold and let E be a hyperplane distri-
bution on P . Motivated by the above special case, we take the property of E to be
maximally non-integrable as a defining condition and we formulate this condition
in terms of locally defining 1-forms. A 1-form α on U ⊂ P is said to be locally
defining for E if

kerα = E�U .

It is said to be globally defining for E if in addition U = P . Locally defining 1-forms
exist in a neighbourhood of every point of P : consider the quotient vector bundle
L := TP/E, called the characteristic line bundle of E. The natural projection pr :
TP → L is a vertical vector bundle morphism. Let prT : L ∗ → T∗P be the dual
morphism. Every local section α̃ of L ∗ over U ⊂ P defines a local 1-form α on U

by α = prT ◦α̃. By construction, α�E = 0. Hence, α is locally defining for E iff α̃ is
nowhere vanishing.

Definition 8.5.10 (Contact manifold) Let P be a manifold.

1. A contact form on P is a 1-form α for which (dα)�kerα is non-degenerate.
2. A contact structure on P is a hyperplane distribution E with the property that any

locally defining 1-form is a local contact form on P . The pair (P,E) is called a
contact manifold.

3. (P,E) is said to be exact or strict if there exists a globally defining contact form.
4. A smooth mapping Φ : P1 → P2 of contact manifolds (P1,E1) and (P2,E2) is

called a contact mapping if Φ ′(E1) = E2. If Φ is in addition a diffeomorphism,
it is called a contactomorphism.

Remark 8.5.11

1. Let α be a contact form on P . Since it is a 1-form, the subspace kerαp ⊂ TpP

has codimension 1 if αp �= 0 and codimension 0 otherwise. Since dα is non-
degenerate on kerαp , Proposition 7.1.2 implies that kerαp has even dimension.
Hence, the codimension must be the same for all p ∈ P . It follows that
(a) α is nowhere vanishing,
(b) kerα is a hyperplane distribution on P and hence an exact contact structure,
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(c) P has odd dimension.
Moreover, non-degeneracy implies ker(dα)p ∩ kerαp = {0}. Since a 2-form on
an odd-dimensional manifold must have nontrivial kernel, it follows that ker(dα)

is a vector bundle complement of kerα in TP . Thus, α defines a splitting

TP = kerα ⊕ ker dα. (8.5.9)

2. Let (P,E) be a contact structure. Then, point 1 yields that E has even dimension
and P has odd dimension. Moreover, every locally defining contact form for E

on U ⊂ P defines a splitting of TP over U given by (8.5.9). This implies that
over U , the characteristic line bundle L of E can be identified with ker(dα).

3. Let E be a hyperplane distribution on P . If α is a locally defining 1-form for
E over U , then so is f α for every nowhere vanishing function f ∈ C∞(U).
Conversely, for any two locally defining 1-forms α1, α2 over U , there exists
f ∈ C∞(U), necessarily nowhere vanishing, such that α2 = f α1. It follows that
E is a contact structure iff for every p ∈ P there exists a locally defining contact
form at p. Thus, contact structures on P correspond bijectively to equivalence
classes of local contact forms on P under the equivalence relation α1 ∼ α2 iff
α2 = f α1 for some smooth function f on the common domain of α1 and α2.

4. By Remark 2.7.11/3, every hyperplane distribution E admits a vector bundle
complement in TP and by identifying the characteristic line bundle L with such
a complement one obtains a splitting

TP ∼= E ⊕ L . (8.5.10)

For example, if we choose an auxiliary Riemannian metric g on P , we can iden-
tify L with the orthogonal complement E⊥ of E in TP and thus realize the
splitting (8.5.10) in the form TP = E ⊕ E⊥. This way, every nowhere vanishing
local section α̃ of L ∗ corresponds via g to a nowhere vanishing local section Y

of E⊥ and the 1-form α = prT ◦ α̃ is given in terms of Y by α = g(Y, ·).

Proposition 8.5.12 A 1-form α on P is a contact form iff α ∧ (dα)n is a volume
form on P .

Proof First, assume that α is a contact form. Since (dα)�kerα is non-degenerate,
Proposition 7.1.7 yields that (dα)n�kerαp

�= 0 for all p ∈ P . The decomposition
(8.5.9) implies α�ker(dα)p �= 0 and hence αp ∧ (dα)np �= 0 for all p ∈ P . Thus,
α ∧ (dα)n is a volume form. Conversely, assume that α ∧ (dα)n is a volume form
and let p ∈ P . By Proposition 2.7.5, we find a basis {e1, . . . , e2n, f } in TpP such
that kerαp is spanned by e1, . . . , e2n. Then,

αp ∧ (dα)np(e1, . . . , e2n, f ) = αp(f )(dα)np(e1, . . . , e2n) �= 0

and hence (dα)np(e1, . . . , e2n) �= 0. Thus, (dα)�kerα is non-degenerate. �
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Remark 8.5.13 In analogy to the special case discussed in the beginning, Proposi-
tion 8.5.12 states that a hyperplane distribution is a contact structure iff it is maxi-
mally non-integrable.

Proposition 8.5.12 implies

Corollary 8.5.14 Let (P,E) be an exact contact manifold with globally defining
contact form α. Then, α ∧ (dα)n is a volume form on P . In particular, every exact
contact manifold is orientable.

More generally, one has the following result on the orientability of contact man-
ifolds.

Proposition 8.5.15 Let (P,E) be a (2n + 1)-dimensional contact manifold.

1. If n is odd, P is orientable.
2. If n is even, P is orientable iff (P,E) is exact.

Proof See Exercise 8.5.2 or [102]. �

Now, let us derive a criterion for exactness. Recall from Remark 2.7.11/4 that a
hyperplane distribution E is called coorientable if the characteristic line bundle L
is orientable. For dimensional reasons this means that it admits a global nowhere
vanishing section and hence that it is trivial. Since every such section induces a
globally defining 1-form for E, we have

Proposition 8.5.16 A contact manifold (P,E) is exact iff E is coorientable, that is,
iff the characteristic line bundle L = TP/E is trivial.

Remark 8.5.17 (Reeb vector field) Let (P,E) be an exact contact manifold and let
α be a defining 1-form. Then, there exists a unique vector field Rα on P such that

Rα�α = 1, Rα�dα = 0. (8.5.11)

It is called the Reeb vector field associated with α. According to (8.5.11), it spans
ker dα and is transversal to E. By (4.1.28) and (4.1.24), the flow Φ of Rα satisfies

d

dt
Φ∗

t α = Φ∗
t LRαα = Φ∗

t

(
Rα�dα + d(Rα�α)

) = 0,

that is, it leaves α and hence E invariant. Thus, Rα is an example of a contact vector
field (a vector field whose flow preserves the contact structure E).
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Example 8.5.18

1. Let P = R
2n+1 with the standard coordinates x1, . . . , xn, y1, . . . , yn and z. Then,

the 1-form

α := dz +
n∑

i=1

xidyi (8.5.12)

is a contact form, called the standard contact form on R
2n+1 (Exercise 8.5.3).

2. Consider R
2n+2 with the standard coordinates x1, . . . , xn+1 and y1, . . . , yn+1

and define

α := 1

2

n+1∑

i=1

(
xidyi − yidxi

)
. (8.5.13)

Let P = S2n+1 and let ι : S2n+1 → R
2n+2 be the natural inclusion mapping.

Then, ι∗α is a contact form, called the standard contact form on S2n+1 (Exer-
cise 8.5.4).

3. Let Q be a manifold of dimension n. The projective cotangent bundle of Q is
defined by

P∗Q := (
T∗Q \ s0

)
/ ∼, (8.5.14)

where s0 denotes the zero section in T∗Q and ξ ∼ ξ ′ iff ξ = aξ ′ for some a ∈R.
This is a locally trivial fibre bundle over Q with typical fibre RPn−1 and projec-
tion π induced from that of T∗Q. For [ξ ] ∈ P∗Q, we take the mapping

(
π ′[ξ ]

)T : T∗
π([ξ ])Q → T∗[ξ ]

(
P∗Q

)

and define

E[ξ ] := ker
{(

π ′[ξ ]
)T

(ξ)
}
, (8.5.15)

with ξ being an arbitrary representative of [ξ ] ∈ P∗Q. This is a hyperplane distri-
bution on P∗Q. We leave it to the reader to prove that the canonical 1-form θ on
T∗Q descends to a globally defining contact form for E (Exercise 8.5.5). Thus,
(P∗Q,E) is an exact contact manifold.

4. Similarly, the cotangent sphere bundle of Q is defined by

S∗Q := (
T∗Q \ s0

)
/ ∼, (8.5.16)

where ξ ∼ ξ ′ iff ξ = aξ ′ for some positive real number a. This is a locally trivial
fibre bundle over Q with typical fibre Sn−1 and projection induced from that
of T∗Q. As in the previous example, Formula (8.5.15), with π interpreted as the
projection of S∗Q, defines an exact contact structure on S∗Q with contact form
induced from the canonical 1-form θ on T∗Q.

5. The following example plays an important role in applications. Given a 2n-
dimensional exact symplectic manifold (M,ω) with potential 1-form β , define
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P = M ×R and10

α := dt − β, (8.5.17)

where t denotes the standard coordinate on R. Since

α ∧ (dα)n = (−1)ndt ∧ (dβ)n

and since the right hand side is a volume form on P , α is a contact form on P .
6. As a consequence of point 2 of Proposition 8.5.15, one can use manifolds which

are not orientable to construct contact manifolds which are not exact. For exam-
ple, let P = R

n+1 × RP n with the standard coordinates x1, . . . , xn+1 on R
n+1

and the homogeneous coordinates [y1 : . . . : yn+1] on RP n and define

E := ker

{
n+1∑

i=1

yidxi

}
.

One can check that E is a contact structure on P . From Example 4.2.5/3 we know
that RP n is not orientable for even n. Hence, in this case, E is not exact. For
an exhaustive discussion of this contact structure, we refer the reader to [102],
Example 2.14 and Proposition 2.15. Let us add that in the case where n is odd,
P is orientable but E is not coorientable and, therefore, (P,E) is not exact, too.

Now, let us return to the discussion of hypersurfaces of symplectic manifolds.
To begin with, we discuss the procedure of symplectization for an exact contact
manifold (P,E). Choose a globally defining 1-form α, and endow P ×R with the
exact 2-form

ωα := d
(
et α

) = et (dt ∧ α + dα), (8.5.18)

where t denotes the standard coordinate on R. By assumption, we have the decom-
position (8.5.9). Since dα is non-degenerate on kerα = E and α is non-degenerate
on ker(dα), and since dt is non-degenerate on R, ωα is non-degenerate and hence
symplectic. The symplectic manifold (P ×R,ωα) is referred to as a symplectization
of (P,E). Since P embeds into P ×R as the hypersurface P × {0}, we obtain

Proposition 8.5.19 Every exact contact manifold can be embedded as a hypersur-
face in an exact symplectic manifold.

Moreover, since every contact manifold is locally exact, by applying the proce-
dure of symplectization locally, we obtain the following contact counterpart of the
Darboux Theorem.

10We omit the natural projections to the factors of the direct product.



8.5 Coisotropic Submanifolds and Contact Structures 391

Proposition 8.5.20 Let (P,E) be a (2n + 1)-dimensional contact manifold. For
every p ∈ P , there exist local coordinates x1, . . . , xn, y1, . . . , yn and z at p such
that

α =
n∑

i=1

xidyi + dz

is a locally defining 1-form for E.

Example 8.5.21 For P = S2n−1 with the contact structure of Example 8.5.18/2, the
manifold S2n−1 ×R, endowed with the symplectic form (8.5.18), is symplectomor-
phic to R

2n \ {0} with the standard symplectic structure (Exercise 8.5.6).

Remark 8.5.22

1. Let (P,E) be an exact contact manifold and let ι : P → P × R be the natural
embedding of P into its symplectization, given by ι(p) = (p,0). Since ι∗ω = dα,
the splitting (8.5.9) is a decomposition of TP into the non-integrable contact
structure E = kerα and the integrable characteristic distribution DωP = ker dα

of the coisotropic submanifold P . Moreover, there exists a natural transversal
Liouville vector field, namely Z = ∂

∂t
. Indeed, Z�ω = et α.

2. In the case where (P,E) is not necessarily exact, the symplectization is con-
structed as follows. Let s0 denote the zero section of T∗P , let E0 denote the
annihilator of E in T∗P and let θ be the canonical 1-form on T∗P . Define

M := E0 \ s0, β := ι∗θ,

where ι : M → T∗P denotes the natural inclusion mapping. The action of the
multiplicative group R∗ := R \ {0} on M by scalar multiplication turns M into a
principal R∗-bundle over P with projection π induced from the canonical projec-
tion of T∗P by restriction. Using that every locally defining 1-form α for E over
U induces a local trivialization P ×R∗ → π−1(U) by (m, t) �→ tαm, as well as
Proposition 8.5.12, one can show that (dβ)n is a volume form. Hence, dβ is a
symplectic form on M (Exercise 8.5.7). Thus, in the general situation, symplecti-
zation yields a principal bundle over P whose bundle manifold M is symplectic,
and P is only locally embedded into M as a hypersurface. Since locally defining
1-forms for E define local trivializations of M , in the case where (P,E) is exact
with global contact form α, M is trivial and hence decomposes into the two con-
nected components M± containing the images of ±α. Both M± contain P as a
submanifold, embedded via ±α. Moreover, the mappings P ×R → M±, defined
by (m, t) �→ ±et/2αm, are symplectomorphisms making the diagram

P ×R M±

P

i ±α

commutative.



392 8 Symplectic Geometry

Finally, we consider a generalization of the class of examples we started with.

Definition 8.5.23 (Hypersurface of contact type) Let (M,ω) be a symplectic man-
ifold. A compact hypersurface (P, ι) of M is said to be of contact type iff P admits
a contact form α such that dα = ι∗ω.

Thus, every hypersurface of contact type is an exact contact manifold.

Lemma 8.5.24 Let (M,ω) be a symplectic manifold and let (P, ι) be a hypersur-
face of contact type with contact form α. There exists a 1-form λ on a neighbourhood
U of P in M such that

dλ = ω�U , ι∗λ = α.

Proof Since P is compact, it is embedded. Since it admits a global contact form, it
is orientable. Thus, P admits a transversal vector field, constructed for example by
means of the following data:

(a) a covering by oriented charts (U,κ) mapping P ∩ U to an open subset of
R

2n−1 × {0} ⊂R
2n,

(b) a subordinate partition of unity,
(c) the unit vector field on R

2n given by the standard basis element e2n.

Since P is compact, the flow of a transversal vector field defines a diffeo-
morphism φ : P × (−ε, ε) → U with φ(m,0) = m for all m ∈ P . Let pr1 : P ×
(−ε, ε) → P denote the natural projection and define a 1-form on U by

τ := (
pr1 ◦φ−1)∗

α.

Consider the 2-form ω�U −dτ . Since pr1 ◦φ−1 ◦ ι = idP , we have ι∗(ω�U −dτ) = 0.
Hence, the generalized Poincaré Lemma 4.3.14 implies the existence of a 1-form β

on U such that ω�U − dτ = dβ and ι∗β = 0. Then, λ := τ + β has the desired
properties. �

Proposition 8.5.25 A compact hypersurface (P, ι) of a symplectic manifold (M,ω)

is of contact type iff on some neighbourhood of P in M there exists a Liouville vector
field which is transversal to P .

Proof First, assume that there exists a transversal Liouville vector field Z on a
neighbourhood U of P in M . Define α := Z�ω. Using the Liouville property
(8.5.7), we find

dα = d(Z�ω) = LZω = ω.

Now, (8.5.8) and transversality imply that ι∗(α ∧ (dα)n) is a volume form on P .
Hence, ι∗α is a contact form on P . Conversely, assume that α ∈ Ω1(P ) is a contact
form with the property dα = ι∗ω. We define a vector field Z on a neighbourhood U
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of P by Z�ω = λ, where λ is the 1-form provided by Lemma 8.5.24. This vector
field has the desired properties: due to

LZω = d(Z�ω) = dλ = ω,

it is Liouville and due to α = ι∗λ, it is transversal. �

Corollary 8.5.26 Let (M,ω) be a symplectic manifold and let P ⊂ M be a hyper-
surface of contact type with contact form α. Let U ⊂ M be a neighbourhood of P

on which there exists a Liouville vector field Z transversal to P .

1. U contains a neighbourhood V of P in M which is foliated by hypersurfaces of
contact type modelled on P .

2. The flow of Z yields isomorphisms of the characteristic line bundles.

Proof Let ι : P → M denote the natural inclusion mapping.
1. Since P is compact and since Z is transversal to P , by restriction, the flow Φ

of Z induces a diffeomorphism from (−ε, ε) × P onto some open neighbourhood
V of P in U . For t ∈ (−ε, ε), we define

Pt := Φt(P ), αt := Φ∗−t α.

Since dαt = (ι ◦ Φ−t )
∗ω and since ι ◦ Φ−t : Pt → M is the natural inclusion map-

ping, Pt is a hypersurface of contact type with globally defining 1-form αt .
2. Let t ∈ (−ε, ε). According to Remark 8.5.11/2, the characteristic line bundle

of Pt can be identified with ker dαt . From LZω = ω we obtain Φ∗
t ω = etω. For

p ∈ P , X ∈ ker(dα)p and Y ∈ TpP , we find dα(X,Y ) = ι∗ω(X,Y ) = 0 and hence

0 = (
et ι∗ω

)
(X,Y ) = (

(Φt ◦ ι)∗ω
)
(X,Y ) = ω

(
(Φt ◦ ι)′X, (Φt ◦ ι)′Y

)
.

It follows that (Φt ◦ ι)′X ∈ ker dαt . Thus, by restriction, (Φt ◦ ι)′ induces an isomor-
phism from ker dα onto ker dαt . �

For a deeper discussion of hypersurfaces of contact type we refer to [139]. We
will meet them again in Sects. 9.3 and 9.4.

Exercises
8.5.1 Prove Remark 8.5.7/2 by induction on the number of functions in involution.
8.5.2 Use Proposition 8.5.12 and a partition of unity to prove Proposition 8.5.15.

Hint. For local contact forms α and functions f , (f α)∧ (d(f α))n = f n+1α∧
(dα)n.

8.5.3 Prove that (8.5.12) is a contact form on R
2n+1. Calculate it in the polar coor-

dinates ri , ϕi on the planes (xi, yi).
8.5.4 Prove that ι∗α, with α defined by (8.5.13), is a contact form on S2n+1.
8.5.5 Prove that (8.5.15) defines a contact structure on the projective cotangent bun-

dle P∗Q.
8.5.6 Prove that the symplectization of S2n+1 yields R2n \ {0}, cf. Example 8.5.21.

Hint. Use the logarithm of the radius function.
8.5.7 Provide proofs for the statements made in Remark 8.5.22/2.
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8.6 Generalizations of the Darboux Theorem

In this section we discuss natural generalizations of the classical Darboux Theorem,
which are important both in the theory of integrable systems and in the theory of
symmetry reduction of Hamiltonian systems. Moreover, they have proved useful
in other applications, too, like e.g. in canonical realizations of Lie algebras, see
[74]. Most of the results below belong to Weinstein, see [305]. As in the proof of
the classical Darboux Theorem, the deformation method of Moser plays a central
role.

Theorem 8.6.1 (Weinstein) Let M be a manifold, endowed with two symplectic
forms ω0 and ω1 and let N ⊂ M be an embedded submanifold, on which ω0 and ω1
coincide, that is,

ω0(X,Y ) = ω1(X,Y )

for all X,Y ∈ TmM and m ∈ N . Then, there exists a diffeomorphism Φ of open
neighbourhoods U and Φ(U) of N ⊂ M with the properties

Φ∗ω1 = ω0, Φ�N = id .

Moreover, Φ can be chosen so that Φ ′
m = idTmM for all m ∈ N .

Proof By the Tubular Neighbourhood Theorem for embedded submanifolds, cf. Re-
mark 6.4.7, there exists an open neighbourhood V of N ⊂ M which can be diffeo-
morphically identified with a neighbourhood of the zero section s0 of a vector bundle
(E,N,π). In what follows, we view V in this way. Let μs : E → E be the fibrewise
multiplication by s ∈ R and let V be chosen so that μs(V ) ⊂ V for all s ∈ [0,1].
Let � := {(s, t) ∈ [0,1] × [0,1) : t ≤ s}. There exists an open neighbourhood D of
� × V in R

2 × V such that the mapping

φ : D → V, φ(s, t,m) ≡ φs,t (m) := μ(1−s)(1−t)−1(m),

is well defined. We have φ0,0 = idV and φ1,t = s0 ◦ π , and φs,t is a diffeomorphism
onto its image for all s < 1. Thus, for s < 1, φ defines a time-dependent flow (Exer-
cise 8.6.1) on V . Let Y be the corresponding time-dependent vector field,

Ys(m) = d

dτ �0
φs+τ,s(m) = −μ(1−s)−1(m). (8.6.1)

Obviously, Ys vanishes on N . Using (4.1.28) and denoting φs ≡ φs,0, for m ∈ V we
compute:

(ω0 − ω1)(m) = (
φ∗

1 (ω1 − ω0) − (ω1 − ω0)
)
(m)

=
∫ 1

0

d

ds

(
φ∗

s (ω1 − ω0)
)
(m)ds
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=
∫ 1

0

(
φ∗

s

(
LYs (ω1 − ω0)

))
(m)ds

=
∫ 1

0
d
(
φ∗

s

(
Ys�(ω1 − ω0)

))
(m)ds. (8.6.2)

Thus, by (4.1.30),

ω0 − ω1 = dα, where α :=
∫ 1

0
φ∗

s

(
Ys�(ω1 − ω0)

)
ds. (8.6.3)

Although Ys is not defined for s = 1, the integral exists, because φ′
s amounts to

multiplication by (1− s) and hence the factor (1− s)−1 in (8.6.1) cancels. Note that
α vanishes on N . Now, as in the proof of the Darboux Theorem 8.1.5, we consider
the family of 2-forms

ωt := ω0 + t (ω1 − ω0), t ∈ [0,1]. (8.6.4)

By analogous arguments, one can show that ωt is non-degenerate on an open neigh-
bourhood W of [0,1] × N in [0,1] × V . Thus, one can define a time-dependent
vector field X on W by

Xt�ωt = α. (8.6.5)

There exists an open neighbourhood U0 of N in V such that [0,1] × {0} × U0 is
contained in the domain of the flow Φ of X.11 Writing Φt ≡ Φt,0, one finds

d

dt
Φ∗

t ωt = Φ∗
t

(
LXt ωt + d

dt
ωt

)
= Φ∗

t (dα + ω1 − ω0) = 0

on [0,1] × U0. Since Φ0 = id, this implies Φ∗
1 ω1 = ω0. Since Xt vanishes on N

for all t , we have Φ1�N = idN . Thus, Φ = Φ1 : U0 → U1 = Φ1(U0) is the desired
diffeomorphism.

To see that (Φt )
′
m = idTmM for all m ∈ N , we choose a local chart with co-

ordinates xi . Since ω0 − ω1 and Ys vanish on N , the coefficients of the 1-form
Ys�(ω1 − ω0) are sums of products of two functions vanishing on N . Then, the first
derivatives of these coefficients vanish on N , too, and this is also true for the coef-
ficients of α. Using this, we conclude that the partial derivatives of the coefficients
of Xt vanish on N as well. Differentiating the defining equation

d

dt
Φ(t,m) = Xt

(
Φ(t,m)

)

with respect to xi we obtain a differential equation for the matrix of (Φt )
′
m. Since

the partial derivatives of the coefficients of Xt vanish on N and since Φ0 = id, the
solution is (Φt )

′
m = idTmM for all t , hence in particular for t = 1. �

11U0 is the union of the subsets of V obtained by applying the Tube Lemma to every point of N .
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Let us consider the special case of an orbit of a symplectic Lie group action.12

Definition 8.6.2 (Symplectic Lie group action) Let (M,ω) be a symplectic mani-
fold. An action Ψ of a Lie group G on M is called symplectic, or canonical, if

Ψ ∗
a ω = ω (8.6.6)

for all a ∈ G. In this case, the tuple (M,ω,Ψ ) is called a symplectic G-manifold.

In what follows, we assume that Ψ is a left action. The following corollary is a
direct consequence of Theorem 8.6.1, with the submanifold N being an orbit of Ψ .

Corollary 8.6.3 (Equivariant Darboux Theorem) Let a manifold M be endowed
with two symplectic forms ω0 and ω1 and a proper action Ψ of a Lie group G which
is symplectic with respect to both ω0 and ω1. If ω0 and ω1 coincide on an orbit O

of Ψ , that is, if

ω0(X,Y ) = ω1(X,Y )

for all m ∈ O and X,Y ∈ TmM , there exist Ψ -invariant open neighbourhoods U0
and U1 of O and a Ψ -equivariant diffeomorphism Φ : U0 → U1 with the property

Φ∗ω1 = ω0, Φ�O = id .

The diffeomorphism Φ can be chosen so that Φ ′
m = idTmM for all m ∈ O .

Proof The proof is completely analogous to that of Theorem 8.6.1, with the general
Tubular Neighbourhood Theorem replaced by Theorem 6.4.3. Obviously, ωt is in-
variant under Ψ . Since the fibrewise multiplication μs commutes with Ψ , the flow
φ and thus the vector field Y are invariant, too. This implies G-invariance of α and
X, and thus of the symplectomorphism Φ . �

Another special case is that of a Lagrangian submanifold L. This is important in
the theory of integrable systems. By Lemma 8.1.8, the tangent bundle TL admits a
Lagrangian complement E in TM�L, so that

TM�L = TL ⊕ E. (8.6.7)

Pointwise application of Proposition 7.2.9 yields the vertical isomorphism of vector
bundles

χ : E → T∗L, χ(Z) = ω(Z, ·). (8.6.8)

For all m ∈ L, this isomorphism induces symplectomorphisms

Ψ L
m : TmM → TmL ⊕ T∗

mL, Ψ L
m (X) := XL ⊕ χ(XE), (8.6.9)

12This notion has been already announced in Remark 6.1.3.
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with XL and XE being the components of X with respect to the decomposition
(8.6.7). The reader may compare this with Proposition 8.3.12 by putting M = T∗Q
and taking for L the image of a closed 1-form on Q.

Theorem 8.6.4 (Weinstein) Let L be an embedded Lagrangian submanifold of a
symplectic manifold (M,ω). Then, there exists a symplectomorphism Φ of an open
neighbourhood of L in M onto an open neighbourhood of the zero section s0 of T∗L
such that Φ�L = s0. For every Lagrangian complement E of TL in TM�L, Φ can be
chosen so that for all m ∈ L,

Φ ′
m(Em) = TΦ(m)

(
T∗

mL
)
. (8.6.10)

Proof Let E be a Lagrangian complement of TL in TM�L and let χ : E → T∗L
be the vector bundle isomorphism defined by (8.6.8). The Tubular Neighbourhood
Theorem for embedded submanifolds implies the existence of a diffeomorphism ϕ

of an open neighbourhood U of L ⊂ M onto an open neighbourhood ϕ(U) of the
zero section e0 in E such that

ϕ�L = e0, ϕ′
�Em

= idTϕ(m)Em (8.6.11)

for all m ∈ L. Thus, ψ = χ ◦ ϕ is a diffeomorphism of U onto an open neighbour-
hood ψ(U) of the zero section s0 in T∗L with the property ψ�L = s0. Let θ denote
the canonical 1-form on T∗L. We show that ψ∗dθ and ω coincide on L and apply
Theorem 8.6.1. For that purpose, we show that ψ ′

m : TmM → Ts0(m)(T∗L) is sym-
plectic for all m ∈ L. A brief computation using (8.6.11) and χ ◦ e0 = s0 shows that
for X ∈ TmM ,

ψ ′
m(X) = χ ′

e0(m) ◦ ϕ′
m(X) = s′

0(XL) + χ̂(XE)s0(m), (8.6.12)

where χ̂(XE) is the constant vector field on T∗
mL defined by χ(XE) ∈ T∗

mL (Exer-
cise 8.6.2). Hence, ψ ′

m coincides with the composition

TmM → TmL ⊕ T∗
mL → Ts0(m)

(
T∗L

)
, (8.6.13)

where the first mapping is the symplectomorphism (8.6.9) and the second one is the
symplectomorphism provided by Proposition 8.3.12. Now, we apply Theorem 8.6.1.
Composing ψ with the local symplectomorphism provided by this theorem, we ob-
tain the desired symplectomorphism Φ . �

Finally, let us assume that the symplectic manifold (M,ω) is endowed with the
additional structure of an integrable Lagrangian foliation F , that is, a foliation
by Lagrangian submanifolds. Let D be the corresponding Lagrangian distribution,
given by the tangent spaces of the leaves of F . The standard example of a La-
grangian foliation is given by the fibres of the cotangent bundle of a manifold. We
say that a Lagrangian submanifold L of M and a Lagrangian foliation F of M
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are transversal if L is transversal to every leaf of F . In this case, for dimensional
reasons, one has

TmM = TmL ⊕ Dm

for every m ∈ L. In the presence of a transversal Lagrangian foliation, the symplec-
tomorphism Φ of Theorem 8.6.4 can be chosen in such a way that it respects the
fibre structure:

Corollary 8.6.5 Let (M,ω) be a symplectic manifold, let L be an embedded La-
grangian submanifold and let F be a Lagrangian foliation of M transversal to L.
Then, the symplectomorphism Φ of Theorem 8.6.4 can be chosen in such a way that
the intersection of any leaf of F with the domain of Φ is mapped to a fibre of T∗L.

Proof Let D be the distribution defined by F . In the notation of the proof of The-
orem 8.6.4, we choose E = D�L. Since χ is fibre-preserving, in a first step one
must show that ϕ can be chosen in such a way that ψ = χ ◦ ϕ maps leaves of F
to fibres of T∗L. This follows from the general Tubular Neighbourhood Theorem,
see Remark 6.4.7. In a second step, one must show that the mapping Φ of Theo-
rem 8.6.1 maps every leaf of F to itself. For that purpose, it is enough to show
that, in the notation of the proof of that theorem, the time-dependent vector field X

defined by (8.6.5) lies in D: by construction, the vector field Ys , defined by (8.6.1),
lies in D. Since D is Lagrange with respect to both ψ∗dθ and ω, the 1-form α de-
fined by (8.6.3) vanishes on all vectors of D. Thus, the vector field Xt lies in the
ωt -orthogonal complement of D. Since D is also Lagrange with respect to ωt , it
follows that Xt lies in D. �

The fibrewise transitive action of the cotangent bundle on itself, defined in
Sect. 8.3, carries over to the case under consideration. Let us recall that a folia-
tion F on a manifold M is called simple if there exists a surjective submersion
ρ : M → B onto another manifold B such that for every point m ∈ M the leaves of
F are the closed submanifolds ρ−1(b), b ∈ B , cf. Example 3.5.20/2. We may view
B as the space of leaves, B = M/F . Every ξ ∈ T∗

bB , b ∈ B , defines a vector field ξ̂

on the leaf ρ−1(b) by

ξ̂m�ωm = (
ρ′

m

)T
(ξ). (8.6.14)

In what follows, we assume that the flow φξ of ξ̂ is complete for every ξ ∈ T∗B .
For example, this is the case if the leaves of F are compact. Then, we can define
φξ = φ

ξ
1 , which yields a diffeomorphism of the leaf ρ−1(b). Thus, every fibre T∗

bB

acts on the leaf ρ−1(b) as a vector group. Now, let

s : B → s(B) = L ⊂ M

be a Lagrangian section of ρ, that is, a Lagrangian submanifold such that ρ◦s = idB .
Then,

Φ : T∗B → M, Φ(ξ) := φξ

(
s ◦ ρ(ξ)

)
, (8.6.15)
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defines a symplectomorphism of a neighbourhood of the zero section of T∗B onto a
neighbourhood of L = s(B) in M , (Exercise 8.6.3). This way we obtain an alterna-
tive proof of Theorem 8.6.4, with the Lagrangian complement E being replaced by
the integrable Lagrangian distribution D.

Let us add that the assignment ξ �→ ξ̂ extends to 1-forms on B by assigning to
α ∈ Ω1(B) the vertical vector field α̂ on M given by

α̂m := α̂ρ(m)

for all m ∈ M , cf. (8.3.11). Then,

α̂�ω = ρ∗α (8.6.16)

and the flow φα of α̂ is given leafwise by φα
t (m) = φ

αρ(m)

t (m). It defines a diffeo-
morphism of M by φα := φα

1 . This diffeomorphism is vertical with respect to ρ and
satisfies φα(m) = φαρ(m)

(m) for all m ∈ M . As in the case of the cotangent bundle,
one can show that

φ∗
αω = ω + ρ∗dα, Lα̂ω = ρ∗dα, [α̂, β̂] = 0 (8.6.17)

(Exercise 8.6.4).

Exercises
8.6.1 Complete the proof of Theorem 8.6.1 by verifying the properties of the 2-

parameter family of mappings {φs,t } and proving formula (8.6.1).
8.6.2 Prove Formula (8.6.12).
8.6.3 Show that the mapping Φ , defined by (8.6.15), is a symplectomorphism of a

neighbourhood of the zero section of T∗L onto a neighbourhood of L in M .
8.6.4 Prove the formulae in (8.6.17).
8.6.5 Let Φ be the local symplectomorphism of Corollary 8.6.5 and let β := Φ∗θ .

Show that

dβ = ω, D ⊂ kerβ, β�L = 0.

8.7 Symplectic Reduction

The general theory of symplectic reduction goes back to Benenti and Tulczyjew
[37, 42]. In this section we present the main aspects of this theory without going
into all details, for which we refer the reader to the above papers. An exhaustive
treatment can also be found in [181]. The particularly important case of symplectic
reduction for systems with symmetries will be dealt with in Chap. 10.

Definition 8.7.1 (Symplectic reduction) Let (M,ω) be a symplectic manifold, let
(N, ιN) be a submanifold and let (P,ωP ) be another symplectic manifold. A map-
ping π : N → P is called a symplectic reduction if it is a surjective submersion
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fulfilling

π∗ωP = ι∗Nω. (8.7.1)

In this case, the pair (P,ωP ) is called a reduced symplectic manifold for N . A sym-
plectic reduction is called strict if N is coisotropic.

Comparing this definition with that of linear symplectic reduction in Sect. 7.3,
we see that P is the geometric counterpart of the quotient vector space Ŵ given by
(7.3.1) and ωP corresponds to the symplectic form ωW defined by (7.3.2). In partic-
ular, the case of strict reduction corresponds to the case where W is coisotropic, cf.
(7.3.3). For what follows, we denote

ωN := ι∗Nω.

Let FωN be the family of characteristic subspaces and let DωN be the characteristic
distribution of ωN , cf. Definition 4.2.18. Recall from Proposition 4.2.20 that DωN

is integrable and that the foliation consisting of the maximal integral manifolds is
referred to as the characteristic foliation FωN of ωN . Moreover, recall from Exam-
ple 3.5.20/2 that if FωN is simple, the corresponding space of leaves is unique up
to diffeomorphisms. We say that a surjective submersion π : N → P has connected
fibres if π−1(p) is connected for every p ∈ P .

Proposition 8.7.2 Let (M,ω) be a symplectic manifold and (N, ιN ) a submani-
fold.

1. If π : N → P is a symplectic reduction onto a symplectic manifold (P,ωP ), then

rankωN = dimP, DωN = kerωN = kerπ ′. (8.7.2)

In particular, DωN is regular. If π has connected fibres, FωN is simple.
2. If the rank of ωN is constant and if FωN is simple, the space of leaves P admits

a unique symplectic form ωP such that the canonical projection π : N → P is a
symplectic reduction. If π̃ : N → P̃ is another symplectic reduction onto a sym-
plectic manifold (P̃ , ω̃), then there exists a surjective local symplectomorphism
χ : P → P̃ such that π̃ = χ ◦π . If π̃ has connected fibres, χ is a symplectomor-
phism.

Proof Due to dωN = 0, we have FωN = kerωN .
1. Since ωP is non-degenerate, (8.7.1) implies kerωN = kerπ ′. First, this yields

rankωN = dimN − dim kerωN = dim kerπ ′ + dimP − dim kerωN = dimP.

Second, this implies that kerωN = FωN has constant rank and hence, by the remarks
after Definition 4.2.18, that it coincides with DωN . In particular, DωN is regular and
coincides with kerπ ′. Since π is a submersion, the maximal integral manifolds of
the distribution kerπ ′ are the connected components of the fibres of π . Therefore, if
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the fibres of π are connected, they coincide with the maximal integral manifolds of
kerπ ′ = DωN and hence with the leaves of FωN . Thus, in this case, FωN is simple.

2. Using an atlas on N adapted to the foliation FωN , one can check that for any
two pairs of tangent vectors Xi,Yi ∈ Tmi

N , i = 1,2, satisfying π ′X1 = π ′X2 and
π ′Y1 = π ′Y2, one has

ωN(X1, Y1) = ωN(X2, Y2), (8.7.3)

see Exercise 8.7.1. Since in addition π is a submersion, Eq. (8.7.1), taken pointwise,
defines a unique 2-form (ωP )p on TpP for every p ∈ P . Since π admits local
sections, these 2-forms combine to a unique differential 2-form ωP on P . Since

π∗dωP = d
(
π∗ωP

) = dωN = 0

and, again, since π is a submersion, ωP is closed. Due to rankωP = rankωN =
dimP , it is non-degenerate and hence symplectic. Now, let π̃ : N → P̃ be another
symplectic reduction. Then, by point 1,

kerπ ′ = kerωN = ker π̃ ′.

Since P is the space of leaves of FωN , the fibres of π are the maximal integral
manifolds of the distribution kerπ ′ and hence the connected components of the
fibres of π̃ . In particular, the fibres of π are contained in those of π̃ . Hence, there
exists a unique mapping χ : P → P̃ such that π̃ = χ ◦ π . Since π admits local
sections, this mapping is smooth. Using

π∗ωP = ωN = π̃∗ω̃P = π∗(χ∗ω̃P

)

and the fact that π is a submersion, we conclude that χ∗ω̃P = ωP . Since P and P̃

have the same dimension, according to Proposition 8.1.3, χ is a local symplectomor-
phism. It is surjective, because π̃ is surjective. Obviously, if π̃ has connected fibres,
the same argument applied backwards yields that χ is a symplectomorphism. �

The next Proposition characterizes symplectic reductions in terms of their graphs.

Proposition 8.7.3 Let (M,ω) be a symplectic manifold, let (N, ιN) be a subman-
ifold and let π : N → P be a surjective submersion onto a symplectic manifold
(P,ωP ). The mapping π is a symplectic reduction iff its graph Γπ is an isotropic
submanifold of M × P endowed with the symplectic product structure ω−

M×P de-
fined by (8.1.2). The reduction is strict iff Γπ is Lagrange.

Proof We calculate

(ιN × π)∗
(
pr∗M ω − pr∗P ωP

) = ωN − π∗ωP .
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Since ιN ×π is a diffeomorphism from N onto Γπ , (8.7.1) holds iff Γπ is isotropic.
By Proposition 7.2.4/3, N is coisotropic iff rankωN = 2 dimN − dimM . By For-
mula (8.7.2), we have rankωN = dimP . Thus, N is coisotropic iff

dimN = 1

2
(dimM + dimP),

that is, iff Γπ is Lagrange. �

Finally, in applications in physics, it often happens that there is a submanifold of
the symplectic manifold (the phase space), which is invariant under the flow of the
Hamiltonian vector field of a given function (a physical observable). We show that
if the assumptions of symplectic reduction are fulfilled, one obtains a reduction of
the flow to a lower dimensional manifold (the reduced phase space).

Proposition 8.7.4 Let (M,ω) be a symplectic manifold, let N ⊂ M be a subman-
ifold and let π : N → P be a symplectic reduction with connected fibres onto a
symplectic manifold (P,ωP ). Let f ∈ C∞(M) and assume that N is invariant un-
der the flow of the Hamiltonian vector field Xf . Then, there exists a unique function
f̂ ∈ C∞(P ) such that

ι∗Nf = π∗f̂ .

The vector field on N induced by Xf is π -related to X
f̂

.

Proof Since the characteristic distribution of ωN is given by kerωN = TN ∩ (TN)ω

and since Proposition 7.2.1/1 implies (TN)� = ((TN)ω)0, we have

(TN)� ⊂ (kerωN)0.

Thus, if (Xf )�N takes values in TN , then (df )�N takes values in (kerωN)0 and
hence f is constant on each leaf of the characteristic foliation FωN . Since π is a
surjective submersion with connected fibres, there exists a unique smooth function
f̂ ∈ C∞(P ) such that π∗f̂ = ι∗Nf ≡ fN . Then, π∗df̂ = dfN . Using ωN = π∗ωP

and the fact that the vector field X̃f induced by Xf on N is ιN -related to Xf , we
obtain

X̃f �
(
π∗ωP

) = X̃f �ωN = −dfN = −π∗df̂ = π∗(X
f̂
�ωP ).

Evaluating both sides on an arbitrary tangent vector Y ∈ TN and using that ωP is
non-degenerate and that π is a submersion, we conclude

π ′ ◦ X̃f = X
f̂

◦ π,

that is, X̃f is π -related to X
f̂

. �
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Remark 8.7.5

1. For f̂ to exist, it suffices to require that f be constant on the leaves of the char-
acteristic foliation FωN . In this case, (df )�N takes values in (kerωN)0 and thus
Proposition 7.2.1/5 implies that X̃f takes values in

(kerωN)ω = (
TN ∩ (TN)ω

)
ω = TN + (TN)ω.

2. By Proposition 3.2.13, the flows Φf of X̃f and Φf̂ of X
f̂

fulfil

Φ
f̂
t ◦ π = π ◦ Φ

f
t

on the domain of Φ
f
t . Thus, by symplectic reduction, the problem of finding the

integral curves of the Hamiltonian vector field Xf through points of N has been
reduced to the corresponding problem on a space of lower dimension. For this
reason, such reductions are enormously important in physical applications, see
Chap. 10.

Exercises
8.7.1 Complete the proof of Proposition 8.7.2/2 by verifying (8.7.3).

Hint. Show that in a local chart (U,κ) on N adapted to the foliation FωN ,
with κi , i ≤ k yielding coordinates on the leaves and κi , i > k labelling the
leaves, one has ω�U = ∑

k<i<j<dimN ωij dκi ∧ dκj , where the functions ωij

are constant on the leaves.

8.8 Symplectomorphisms and Generating Functions

In this section we will show that symplectomorphisms may be viewed as Lagrangian
submanifolds and that they can be (locally) generated by functions. Using this fact,
we will gain some insight into the structure of the group of symplectomorphisms.

The following proposition is a special case of Proposition 8.7.3.

Proposition 8.8.1 Let (M1,ω1) and (M2,ω2) be symplectic manifolds of the same
dimension. A diffeomorphism Φ : M1 → M2 is a symplectomorphism iff its graph
is a Lagrangian submanifold of M1 × M2 endowed with the product symplectic
structure ω−

M1×M2
defined by (8.1.2).

Proof Let ιΦ : ΓΦ → M1 × M2 be the natural inclusion mapping and let pri be the
canonical projections onto the factors of M1 ×M2. Note that Φ ◦ pr1 ◦ ιΦ = pr2 ◦ ιΦ .
Then,

ι∗Φω−
M1×M2

= ι∗Φ
(
pr∗2 ω2 − pr∗1 ω1

)

= (pr2 ◦ ιΦ)∗ω2 − (pr1 ◦ ιΦ)∗ω1

= (pr1 ◦ ιΦ)∗
(
Φ∗ω2 − ω1

)
.
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Since pr1 ◦ ιΦ is a diffeomorphism, we conclude that ι∗Φω−
M1×M2

= 0 iff ω1 = Φ∗ω2.

In this case, ΓΦ is Lagrange, because dimΓΦ = dimM1 = 1
2 dim(M1 × M2). �

Now, let Φ : M1 → M2 be a symplectomorphism. By the Poincaré Lemma,
locally there exists a 1-form τ on M1 × M2 such that ω−

M1×M2
= dτ . Since

ι∗Φω−
M1×M2

= 0, ι∗Φτ is closed. Applying once again the Poincaré Lemma, we find
an open subset U ⊂ ΓΦ and a smooth function S : U → R fulfilling

(
ι∗Φτ

)
�U = −dS. (8.8.1)

The function S is called a generating function of the canonical transformation Φ .
Note that S depends on the choice of the potential τ . Let us discuss the choices
commonly used in the physics literature. For that purpose, let qi , pi and q̄i , p̄i be
local Darboux coordinates on M1 and M2, respectively. The induced coordinates
on M1 × M2 will be denoted by qi ≡ qi ◦ pr1, pi ≡ pi ◦ pr1, q̄i ≡ q̄i ◦ pr2 and
p̄i ≡ p̄i ◦ pr2. In these coordinates, we have

ω = dp̄i ∧ dq̄i − dpi ∧ dqi.

The following choices for τ occur frequently:

p̄idq̄i − pidqi, −q̄idp̄i − pidqi, p̄idq̄i + qidpi, −q̄idp̄i + qidpi.

The corresponding generating functions S are said to be of the i-th kind, i =
1, . . . ,4. Which choice is convenient depends on Φ . If, for instance, the functions
qi ◦ ιΦ and q̄i ◦ ιΦ define a local chart λ on ΓΦ , one may use τ = p̄idq̄i −pidqi , so
that the corresponding generating function S is of the first kind. It can be determined
as follows. Using the simplified notation

pi ≡ pi ◦ ιΦ ◦ λ−1, p̄i ≡ p̄i ◦ ιΦ ◦ λ−1, (8.8.2)

and writing S ≡ S ◦ λ−1, from (8.8.1) we read off the relations

pi = ∂S

∂qi
, p̄i = − ∂S

∂q̄i
, (8.8.3)

taught in the standard course in classical mechanics. Since the functions (8.8.2) are
determined by Φ , (8.8.3) is a system of first order partial differential equations for
a function in the 2n variables qi and q̄i . This system has a unique solution, up to an
additive constant.

By analogy, if the combinations of coordinates given by (q, p̄), (p, q̄) or (p, p̄)

yield local charts on ΓΦ , one may work with generating functions of the second,
third or fourth kind. The corresponding systems of differential equations read, re-
spectively,
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q̄i = ∂S

∂p̄i

, pi = ∂S

∂qi
, (8.8.4)

qi = − ∂S

∂pi

, p̄i = − ∂S

∂q̄i
, (8.8.5)

qi = − ∂S

∂pi

, q̄i = ∂S

∂p̄i

. (8.8.6)

An exhaustive discussion of all possible coordinate systems on ΓΦ , and thus of all
generating functions, can be found in the book of Arnold [18].

Conversely, given a smooth function S in the 2n variables qi and q̄i fulfilling

det

(
∂2S

∂qi∂q̄j

)
�= 0, (8.8.7)

the relations (8.8.3) define 2n functions pi and p̄i in these variables. By (8.8.7), the
matrix of partial derivatives ∂pi

∂q̄j is invertible. Hence, the Inverse Mapping Theorem
implies that the mapping q̄ �→ p(q, q̄) can be locally inverted for every fixed q, thus
yielding a mapping (q,p) �→ q̄(q,p). By plugging this into the functions p̄i we
finally arrive at a mapping

(q,p) �→ (
q̄(q,p), p̄(q,p)

)

which via the chosen coordinates qi , pi on M1 and q̄i , p̄i on M2 defines a local
diffeomorphism Φ : M1 → M2. This diffeomorphism is symplectic:

ι∗Φ
(
dp̄i ∧ dq̄i − dpi ∧ dqi

)

=
(

∂p̄i

∂qj
dqj + ∂p̄i

∂q̄j
dq̄j

)
∧ dq̄i −

(
∂pi

∂qj
dqj + ∂pi

∂q̄j
dq̄j

)
∧ dqi

=
(

∂2S

∂qj ∂q̄i
dqj + ∂2S

∂q̄j ∂q̄i
dq̄j

)
∧ dq̄i −

(
∂2S

∂qj ∂qi
dqj + ∂2S

∂q̄j ∂qi
dq̄j

)
∧ dqi

= 0.

Analogously, by interpreting S as a generating function of the second, third or fourth
kind, one obtains local symplectomorphisms defined, respectively, by the relations
(8.8.4), (8.8.5) or (8.8.6).

Remark 8.8.2 The definition of generating function given by (8.8.1) generalizes to
arbitrary Lagrangian submanifolds (L, i) of a symplectic manifold (M,ω). Since
i∗ω = 0, locally there exists a potential τ of ω fulfilling d(i∗τ) = 0. Thus, the
Poincaré Lemma yields an open subset U ⊂ L and a function S : U → R fulfill-
ing (8.8.1). For the special case of a Lagrangian submanifold of a cotangent bundle
M = T∗Q which is transversal to the fibres, the function S can be viewed as a func-
tion on Q. This case was dealt with in Proposition 8.3.10.
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Example 8.8.3 The concept of generating functions of Lagrangian submanifolds is
useful in thermodynamics: for one mol of an ideal gas, the phase space is the open
subset R4+ ⊂R

4 with global coordinates p, V , T , S and symplectic form

ω = dV ∧ dp + dT ∧ dS.

The equations of state

p · V = R · T , p · V γ = k · exp
S

cV

, cV = R

γ − 1

define a 2-dimensional Lagrangian submanifold. All the thermodynamical poten-
tials are generating functions of this Lagrangian submanifold, see [160].

In the remaining part of this section we present some elementary facts concern-
ing the structure of the group of symplectomorphisms Symp(M,ω) of a symplectic
manifold (M,ω). An exhaustive discussion can be found in [206, Ch. 10]. First, we
equip Symp(M,ω) with an appropriate topology, called the C1-topology. To define
it, recall that the compact-open topology on the space C∞(N,P ) of smooth map-
pings from a smooth manifold N to a smooth manifold P is generated by finite
intersections of subsets V 0(K,U), where K ⊂ N is compact, U ⊂ P is open and
V 0(K,U) consists of the mappings ϕ : N → P satisfying ϕ(K) ⊂ U . For conve-
nience, below we will refer to this topology as the C0-topology. Since P , being a
manifold, is metrizable, this topology coincides with the topology of uniform con-
vergence on compact sets.13 Now, the C1-topology on C∞(N,P ) is defined to be
the initial topology induced by the assignment

C∞(N,P ) → C∞(TN,TP), ϕ �→ ϕ′,

where C∞(TN,TP) is endowed with the C0-topology. That means, it is generated
by finite intersections of subsets V 1(K,U), where K ⊂ TN is compact, U ⊂ TP

is open and V 1(K,U) is the preimage of V 0(K,U) under the above mapping, that
is, it consists of all mappings ϕ : N → P satisfying ϕ′(K) ⊂ U .14 Since the pro-
jections TN → N and TP → P preserve compactness and openness, respectively,
the C1-topology is stronger than the C0-topology. In particular, every C0-open sub-
set is also C1-open and C1-convergence implies C0-convergence. We note that the
composition mapping

C∞(N,P ) × C∞(P,Q) → C∞(N,Q), (ϕ,ψ) �→ ψ ◦ ϕ,

13A sequence of mappings ϕi : N → P converges to a mapping ϕ : N → P iff for every compact
K ⊂ N and every ε > 0 there exists n0 such that supm∈K d(ϕn(m),ϕ(m)) < ε for all n > n0; here
d is some metric on P , compatible with the topology.
14Equivalently, a sequence {ϕi} converges to ϕ in the C1-topology iff ϕ′

i converges to ϕ′ in the
C0-topology on C∞(TN,TP ).
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is continuous in the respective C0-topologies. The same is true for the inversion
mapping ϕ �→ ϕ−1, defined on the subset of diffeomorphisms from N to P . Due to
(ψ ◦ ϕ)′ = ψ ′ ◦ ϕ′ and (ϕ−1)′ = (ϕ′)−1, these mappings are also continuous in the
C1-topology. Thus, Symp(M,ω) is a topological group in both the C0- and the C1-
topologies. If M is compact, it can be equipped with the structure of a Fréchet-Lie
group, but this requires the use of a more sophisticated topology, which is beyond
our scope. We will comment on this below. Rather, as an application of Propo-
sition 8.6.4 we will show that, in the C1-topology, Symp(M,ω) for compact M

is locally homeomorphic to the space Z1(M) of closed 1-forms on M , endowed
with the C1-topology induced from C∞(M,T∗M). This result belongs to Wein-
stein [303, §6]. By continuity of the group multiplication, it suffices to construct a
local homeomorphism in a neighbourhood of idM .

Proposition 8.8.4 (Weinstein) Let (M,ω) be a compact symplectic manifold. There
exists a homeomorphism from an arcwise connected open C1-neighbourhood of idM

in Symp(M,ω) onto an arcwise connected open C1-neighbourhood of the zero 1-
form in the space of closed one-forms Z1(M).

Proof Let � : M → M × M , �(m) := (m,m), be the diagonal mapping and let
pri : M × M → M denote the natural projections. For ϕ ∈ Symp(M,ω), let Γϕ

denote the graph of ϕ. Γϕ is the image of the graph mapping grϕ := (idM ×ϕ) ◦ �.
By Proposition 8.8.1, Γϕ is an embedded Lagrangian submanifold of M ×M for

all ϕ ∈ Symp(M,ω). If ϕ = idM , then Γϕ coincides with the submanifold (M,�).
Theorem 8.6.4 implies that there exists a symplectomorphism Ψ from an open
neighbourhood U of ΓidM

= �(M) in M × M onto an open neighbourhood V of
the zero section s0 in T∗M , satisfying

Ψ ◦ � = s0.

Then, Ψ (Γϕ) is a Lagrangian submanifold of T∗M for all ϕ ∈ Symp(M,ω) such
that Γϕ ⊂ U . By Proposition 8.3.10, Ψ (Γϕ) is the image of a closed 1-form on
M iff it intersects each fibre of T∗M transversally and exactly once. Thus, to con-
struct the desired mapping from symplectomorphisms to closed 1-forms, it suffices
to show that there exists an open neighbourhood U of idM in Symp(M,ω) in the
C1-topology such that for all ϕ ∈ U , the graph Γϕ is contained in U and the La-
grangian submanifold Ψ (Γϕ) of T∗M intersects each fibre of T∗M transversally and
exactly once. For that purpose, let Ũ ⊂ T(M × M) be obtained from the preimage
of U under the natural projection T(M × M) → M × M by removing the preimage
under Ψ ′ of the vertical distribution on T∗M . This is an open subset of T(M × M).
Since M is compact, TM contains a compact subset K̃ which generates TM un-
der scalar multiplication by real numbers and does not intersect the zero section
(e.g., the unit sphere bundle with respect to some Riemannian metric on M). Then,
V 1(K̃, Ũ ) is an open neighbourhood of � in C∞(M,M × M) in the C1-topology.
Define

U := {
ϕ ∈ Symp(M,ω) : grϕ ∈ V 1(K̃, Ũ )

}
.
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Since the assignment ϕ �→ grϕ is the restriction to {�} × {idM } × Symp(M,ω) of
the mapping

C∞(M,M × M) × C∞(M,M) × C∞(M,M) → C∞(M × M,M × M),

(ψ1,ψ2,ψ3) �→ (ψ2 × ψ3) ◦ ψ1,

it is C1-continuous. Hence, U is an open neighbourhood of idM in Symp(M,ω)

in the C1-topology. By construction, for all ϕ ∈ U , the graph Γϕ is contained in U

and Ψ (Γϕ) is transversal to the fibres of T∗M . Since M is compact, it is clear that
by possibly shrinking U we may achieve that Ψ (Γϕ) intersects the fibres at most
once. Then, the mapping π ◦ Ψ ◦ grϕ , with the canonical projection π : T∗M → M ,
is an injective immersion, and hence an embedding of M into M . Using the theorem
on invariance of domain, stated in Footnote 38 on page 159, one can show that the
image of this embedding must be M (Exercise 8.8.3). Therefore, Ψ (Γϕ) intersects
each fibre of T∗M at least once, and hence exactly once. Thus, U has the desired
properties. Now, for every ϕ ∈ U , Proposition 8.3.10 yields a closed 1-form α on
M such that Ψ (Γϕ) = α(M). Explicitly, α is given by

α = Ψ ◦ grϕ ◦λ−1 with λ := π ◦ Ψ ◦ grϕ .

The assignment ϕ �→ α is C1-continuous, because it decomposes into a sequence
of composition and inversion mappings. To prove that it can be made into a homeo-
morphism, we show that there exists an open neighbourhood V of the zero section
in Z1(M) in the C1-topology such that, for all α ∈ V , α(M) ⊂ V and Ψ −1(α(M))

intersects each of the submanifolds {m} × M and M × {m}, m ∈ M , transversally
and exactly once. V can be constructed in the same way as U , one just replaces
Symp(M,ω) ⊂ C∞(M,M) by Z1(M) ⊂ C∞(M,T∗M), ϕ by α, grϕ by Ψ −1 ◦ α

and the preimage of the vertical distribution of T∗M under Ψ ′ by the two distribu-
tions ker pr′i , i = 1,2. Then, for all α ∈ V , the mappings pri ◦Ψ −1 ◦ α : M → M

are bijective immersions and hence diffeomorphisms. Define

ϕ := pr2 ◦Ψ −1 ◦ α ◦ μ−1 with μ := pr1 ◦Ψ −1 ◦ α.

Since the assignment α �→ ϕ decomposes into a sequence of composition and inver-
sion mappings, it is C1-continuous. A straightforward calculation shows that this
assignment is inverse to the assignment ϕ �→ α constructed above. Finally, we inter-
sect U with the image of V and V with the image of U . Since Z1(M) is locally
arcwise connected, the neighbourhoods so obtained can be shrunk so that they be-
come arcwise connected. �

Proposition 8.8.4 yields

Corollary 8.8.5 The group of symplectomorphisms of a compact symplectic mani-
fold is locally arcwise connected.
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Remark 8.8.6 Since the group multiplication in Symp(M,ω) is C1-continuous,
Proposition 8.8.4 provides an atlas modelling Symp(M,ω) for compact M on
the infinite-dimensional vector space Z1(M) ∼= XLH(M,ω) endowed with the C1-
topology.15 However, since XLH(M,ω) is not complete in this topology, this does
not supply a differentiable structure on Symp(M,ω). To obtain completeness and
thus a differentiable structure one can either enlarge the spaces by passing to forms
and symplectomorphisms of the differentiability class C1. Then, Symp(M,ω) is a
smooth manifold modelled on the Banach space of closed 1-forms on M of class C1.
In this setup, the multiplication mapping in Symp(M,ω) turns out to be continuous
but not differentiable [263, Thm. 2.1]. Or one can construct appropriate topolo-
gies, thus turning XLH(M,ω) into a Fréchet space16 and Symp(M,ω) into a smooth
manifold modelled on XLH(M,ω) [262], see also [82, 213, 230]. In this structure,
the multiplication and inversion mappings are smooth and hence Symp(M,ω) is
an infinite-dimensional Fréchet Lie group.17 The corresponding Lie algebra can be
naturally identified with XLH(M,ω) with the ordinary commutator of vector fields
and the exponential mapping being given by

exp : XLH(M,ω) → Symp(M,ω), exp(X) := ΦX
1 . (8.8.8)

In this sense, independent of topologies or differentiable structures, one may speak
of XLH(M,ω) as the Lie algebra of Symp(M,ω). We note that, in contrast to the
finite-dimensional case, the exponential mapping (8.8.8) is not a local diffeomor-
phism between neighbourhoods of the origin in XLH(M,ω) and the unit element of
Symp(M,ω), see [99] and [230].

Let us denote the arcwise connected component of Symp(M,ω) containing idM

by Symp0(M,ω). This is a normal subgroup of Symp(M,ω). Note that if M is
compact, Corollary 8.8.5 implies that this is also the connected component of idM ,
because in a locally arcwise connected space, the arcwise connected components
coincide with the connected components. By definition, for every ϕ ∈ Symp0(M,ω)

there exists a C1-continuous curve Φ : [0,1] → Symp0(M,ω) such that Φ0 = idM

and Φ1 = ϕ. It is not hard to see that Φ can be chosen so that the induced homotopy
Φ : [0,1] × M → M is smooth. Since the latter runs through the diffeomorphisms
of M , it is commonly referred to as a smooth isotopy. According to Remark 3.4.5/2,
Φ is the flow of the time-dependent symplectic vector field X defined by

Xt(m) = d

ds �t

Φs ◦ Φ−t (m), m ∈ M, t ∈ [0,1]. (8.8.9)

15Since M is compact, the C1-topology on XLH(M,ω) allows for a norm, defined by taking the
maximum over the usual C1-norms of the local representatives of α in some chosen finite atlas,
see e.g. [233, 234].
16A complete metrizable locally convex vector space.
17A Lie group modelled on a Fréchet space.
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By Proposition 8.2.4/4 and Remark 8.2.5/2, X is locally Hamiltonian for every t .
This observation motivates the study of isotopies generated by time-dependent vec-
tor fields for which X is Hamiltonian for all t .

Definition 8.8.7 (Hamiltonian diffeomorphism) Let (M,ω) be a symplectic mani-
fold.

1. A smooth isotopy Φ : [0,1] × M → M in Diff(M) with associated time-
dependent vector field X is called Hamiltonian if there exists a smooth function
H : [0,1] × M → R such that Xt = XHt for all t . We say that Φ is generated
by H .

2. A diffeomorphism ϕ of M is called Hamiltonian if there exists a Hamiltonian
isotopy from idM to ϕ. The set of Hamiltonian diffeomorphisms is denoted by
Ham(M,ω).

Obviously, every Hamiltonian diffeomorphism is a symplectomorphism. In fact,
we have

Proposition 8.8.8 Ham(M,ω) is a normal subgroup of Symp0(M,ω).

Proof Let Φ and Ψ be Hamiltonian isotopies, generated by the time-dependent
Hamiltonians H and K , respectively. Using (8.2.4), we compute

d

dt
(Ψt ◦ Φt)(m) = (

XKt + (Ψt )∗XHt

)(
Ψt ◦ Φt(m)

) = X
Kt+Ht◦Ψ −1

t

(
Ψt ◦ Φt(m)

)
.

Hence, (t,m) �→ Ψt ◦Φt(m) is a Hamiltonian isotopy, generated by the Hamiltonian
(t,m) �→ Kt(m) + Ht ◦ Ψ −1

t (m). Similarly, one shows that (t,m) �→ Φ−1
t (m) and

(t,m) �→ ϕ ◦Φt ◦ϕ−1(m), for any symplectomorphism ϕ, are Hamiltonian isotopies
generated by the time-dependent Hamiltonians (t,m) �→ −Ht ◦Φt(m) and (t,m) �→
Ht ◦ ϕ−1(m), respectively (Exercise 8.8.4). �

As a consequence of Proposition 8.8.8, one has the following sequence of sub-
group inclusion mappings:

Ham(M,ω) ↪→ Symp0(M,ω) ↪→ Symp(M,ω) ↪→ Diff+(M) ↪→ Diff(M),

(8.8.10)
with Diff+(M) denoting the group of diffeomorphisms which preserve the orienta-
tion defined by the natural volume form of ω. This sequence is studied in symplectic
topology.

Next, we show that the local homeomorphism of Proposition 8.8.4 maps Hamil-
tonian isotopies to families of exact 1-forms. We start with a lemma on exact sym-
plectic manifolds (which by Remark 8.1.4/2 are necessarily noncompact).

Lemma 8.8.9 Let (M,dσ) be an exact symplectic manifold. An isotopy Φ

in Diff(M) with Φ0 = idM is Hamiltonian iff there exists a smooth function
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f : [0,1] × M → R such that for every t ∈ [0,1],
Φ∗

t σ − σ = dft . (8.8.11)

Proof Let X be the time-dependent vector field associated with Φ , cf. Re-
mark 3.4.5/2. Using (4.1.28), we compute

d

dt
Φ∗

t σ = Φ∗
t LXt σ = Φ∗

t

(
Xt�dσ + d(Xt�σ)

)
. (8.8.12)

If Φ is Hamiltonian with generating time-dependent Hamiltonian H , this implies

d

dt
Φ∗

t σ = Φ∗
t

(
d(XHt �σ) − dHt

)
.

Integration of these two families of 1-forms yields (8.8.11) with

ft =
∫ (

(Xt�σ − Ht) ◦ Φt

)
dt.

Conversely, if f is given such that (8.8.11) holds, for every t we define

Ht := Xt�σ − (
Φ−1

t

)∗
(

d

dt
ft

)
.

This yields a smooth function H : [0,1] × M → M . A straightforward calculation
using (4.1.30) and (8.8.12) shows that XHt = Xt for all t . Hence, Φ is Hamiltonian
with generating time-dependent Hamiltonian H . �

Proposition 8.8.10 Let (M,ω) be a compact symplectic manifold. The local home-
omorphism of Proposition 8.8.4 maps Hamiltonian isotopies of M to smooth fami-
lies of exact 1-forms on M and vice versa.

Proof We adopt the notation of the proof of Proposition 8.8.4. According to that
proof, for every smooth isotopy Φ in U there exists a smooth family {λt } of diffeo-
morphisms of M and a smooth family {αt } of closed 1-forms on M such that

Ψ ◦ grΦt
= αt ◦ λt

for all t .18 Denote the canonical 1-form on T∗M by θ . Since Ψ ∗θ is a potential for
ω on U ⊂ M × M and since idM ×Φ is a smooth isotopy of the exact symplectic
manifold (U,ω), Lemma 8.8.9 yields that idM × Φ , and hence Φ , is Hamiltonian
iff there exists a smooth function f : [0,1] × M × M → R such that for all t

(idM ×Φt)
∗ ◦ Ψ ∗(θ) − Ψ ∗θ = dft .

18With Φt playing the role of ϕ in the proof of Proposition 8.8.4.
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Applying �∗ to this equation and using �∗ ◦ Ψ ∗(θ) = s∗
0θ = 0, we obtain

gr∗Φt
◦Ψ ∗(θ) = �∗ ◦ (id×Φt)

∗ ◦ Ψ ∗(θ) = d(ft ◦ �).

By the defining property (8.3.2) of θ , the left hand side yields

gr∗Φt
◦Ψ ∗(θ) = λ∗

t

(
α∗

t θ
) = λ∗

t αt ,

so that αt = d(ft ◦ � ◦ λ−1
t ). Thus, Φ is Hamiltonian iff αt is exact for all t . �

As a consequence of Proposition 8.8.10, if the first de Rham cohomology group
H 1(M) of M is trivial, Ham(M,ω) coincides with Symp0(M,ω), that is, in this
case, the first inclusion mapping in the sequence (8.8.10) is surjective and, by Re-
mark 8.8.6, the Lie algebra of Ham(M,ω) may be identified with XH(M,ω). For
an arbitrary compact manifold, the situation is more complicated. The homeomor-
phism of Proposition 8.8.4 need not always map Hamiltonian diffeomorphisms to
exact 1-forms, no matter how C1-close to idM they are. Rather, one can show that a
symplectomorphism ϕ in the domain of this homeomorphism is Hamiltonian iff the
cohomology class of its image belongs to a certain countable subgroup of H 1(M),
called the flux group [206, Lemma 10.16]. This group is the image of the fundamen-
tal group of Symp0(M,ω) under the so-called flux homomorphism which assigns
to the homotopy class of a closed curve in Symp0(M,ω), represented by a symplec-
tic isotopy Φ , the cohomology class of the closed 1-form

∫
(Xt�ω)dt . Here, X is

the time-dependent vector field associated with Φ via (8.8.9), the integral is defined
pointwise and the resulting 1-form is indeed closed due to (4.1.30). For details, like
the proof that this mapping is well-defined and a group homomorphism, see [206,
Chap. 10] or [242, Chap. 14]. As a consequence of the facts that the homeomor-
phism of Proposition 8.8.4 maps Hamiltonian diffeomorphisms to the flux group
and that the latter is countable, one obtains

Proposition 8.8.11 If M is compact, every smooth isotopy in Ham(M,ω) is Hamil-
tonian.

Proof See [206, Prop. 10.17]. If the first de Rham cohomology group of M is trivial,
the assertion follows from Proposition 8.8.10 (Exercise 8.8.5). �

Remark 8.8.12 Let (M,ω) be a compact symplectic manifold.

1. On the basis of Proposition 8.8.11, one may give the following intuitive argu-
ment showing that the tangent space at idM of Ham(M,ω) is given by XH(M,ω)

[242, §1.4]: every curve in Ham(M,ω) through idM is a Hamiltonian isotopy
and hence its tangent vector at idM is a Hamiltonian vector field. Conversely,
the flow of any Hamiltonian vector field yields a Hamiltonian isotopy and thus a
curve in Ham(M,ω) through idM . Thus, according to Remark 8.8.6 and by anal-
ogy with the finite-dimensional situation of Proposition 5.6.5, we conclude that
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Ham(M,ω) is the Lie subgroup of Symp(M,ω) associated with the Lie subal-
gebra XH(M,ω) of XLH(M,ω). It was proved by Ono [231] that the flux group
is discrete.19 Thus, one may shrink the C1-neighbourhood of idM of Proposi-
tion 8.8.4 so that all Hamiltonian diffeomorphisms in that neighbourhood are
mapped to exact forms. Hence, for compact M , Ham(M,ω) is a C1-closed Lie
subgroup of Symp0(M,ω).

2. If M is connected, the Hamiltonian function corresponding to a Hamiltonian
vector field is unique up to a constant. One way to obtain uniqueness consists
in considering the space A (M) of smooth functions on M with zero mean20

with respect to the canonical volume form Ω of ω, see [242]. This is a Poisson
subalgebra of C∞(M) (Exercise 8.8.6). Thus, in this case the Lie algebra of
Ham(M,ω) can be identified with A (M). From the proof of Proposition 8.8.8
we read off that the adjoint action of Ham(M,ω) on A (M) is given by

Ham(M,ω) × A (M) → A (M), (Φ,f ) �→ f ◦ Φ−1. (8.8.13)

The following fundamental algebraic statements about Ham(M,ω) were proved
by Banyaga [30, 31].

Proposition 8.8.13 (Banyaga)

1. If the symplectic manifold (M,ω) is compact, Ham(M,ω) is a simple21 group.
2. If two symplectic manifolds (M1,ω1) and (M2,ω2) have isomorphic groups of

Hamiltonian symplectomorphisms, there exists a diffeomorphism Φ : M1 → M2
and a number c �= 0 such that Φ∗ω2 = cω1.

The second statement says that the algebraic structure of the group of Hamilto-
nian diffeomorphisms determines the symplectic structure up to a constant factor.

Remark 8.8.14 In case M is not compact, the above results on Symp(M,ω) and
Ham(M,ω) for compact M carry over to the group Sympc(M,ω) of compactly sup-
ported symplectomorphisms22 and the subgroup Hamc(M,ω) of elements which
can be joined to idM by a Hamiltonian isotopy whose generating time-dependent
Hamiltonian has compact support. Here, the topology is defined to be the induc-
tive limit, taken over the directed set of compact subsets K of M , of the topologies
on the subgroups of symplectomorphisms with support in K . Correspondingly, one
has to use compactly supported forms. Thus, in particular, Sympc(M,ω) is locally
homeomorphic to the space of compactly supported closed 1-forms and its Lie al-
gebra consists of compactly supported symplectic vector fields. The Lie algebra of

19This was the affirmative answer to the so-called flux conjecture, see also [179]. For noncompact
M , the flux group need not be discrete, see [205].
20That is,

∫
M

f Ω = 0.
21A group G which does not contain normal subgroups besides {1} and G.
22That is, symplectomorphisms which outside a compact set coincide with the identical mapping.
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Hamc(M,ω) coincides with the space of compactly supported Hamiltonian vector
fields. It can be identified with the space A c(M) of compactly supported functions
on M with zero mean. For details we refer to [206] and [242]. An exhaustive treat-
ment of the case M =R

2n can be found in [139].

We conclude this section with a remark on the geometric structure of Ham(M,ω).
This structure will show up again in the next chapter. Assume that M is noncompact
and consider the group Hamc(M,ω) of compactly supported Hamiltonian symplec-
tomorphisms. In 1990, Hofer [134] observed that there exists a norm on the Lie
algebra A c(M) of Hamc(M,ω). It can be defined by

‖H‖ := sup
m∈M

H(m) − inf
m∈M

H(m). (8.8.14)

This norm is invariant under the adjoint action (8.8.13). The corresponding length
function for a smooth Hamiltonian isotopy Φ in Hamc(M,ω) generated by the time-
dependent Hamiltonian H is given by

l(Φ) =
∫ 1

0
‖Ht‖dt

and the distance between two Hamiltonian diffeomorphisms ϕ and ψ is defined by

ρ(ϕ,ψ) = inf
(
l(Φ)

)
,

with the infimum taken over all Hamiltonian isotopies Φ fulfilling Φ0 = ϕ

and Φ1 = ψ . It is easy to show that ρ defines a bi-invariant pseudo-metric on
Hamc(M,ω), but it is hard to prove that ρ(ϕ,ψ) = 0 implies ϕ = ψ . See [134]
for the case M = R

2n and [178] for the general case. For a further discussion of
the Hofer metric we refer to the book of Polterovich [242]. The case M = R

2n is
dealt with in great detail in the book of Hofer and Zehnder, see [139]. The Hofer
norm plays a fundamental role in symplectic topology and in the study of global
existence questions in the theory of Hamiltonian systems. In particular, it gives rise
to a certain symplectic invariant, the so-called Hofer-Zehnder capacity, which turns
out to be one of the basic tools for studying the Weinstein conjecture, see Sect. 9.4.

Exercises
8.8.1 Let (M1,ω1) = (R × R+,dp ∧ dq) and (M2,ω2) = (R2 \ {0},dp̄ ∧ dq̄) and

let Φ : M1 → M2, Φ(q,p) = (q̄, p̄) be given by

q̄ =
√

p

πω
sin (2πq), p̄ =

√
pω

π
cos (2πq).

(a) Show that the restrictions of Φ to the subsets (x, x + 1) ×R+ ⊂ M1, x ∈
R, are symplectomorphisms onto their images. Determine these images.

(b) Find the generating function of the first kind for the restriction of Φ to
(0,1)×R+ and the generating function of the second kind for the restric-
tion to (− 1

2 , 1
2 ) ×R+.
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8.8.2 Prove that the equations of state of an ideal gas define a Lagrangian subman-
ifold of the symplectic manifold postulated in Example 8.8.3.

8.8.3 Use the theorem on invariance of domain, stated in Footnote 38 on page 159,
to prove that every embedding of a compact manifold into another compact
manifold of the same dimension and the same number of connected compo-
nents is surjective.

8.8.4 Complete the proof of Proposition 8.8.8.
8.8.5 Use Proposition 8.8.10 to prove Proposition 8.8.11 under the assumption that

the first de Rham cohomology group of M is trivial.
8.8.6 Let (M,ω) be a symplectic manifold. Show that the space A (M) of smooth

functions on M with zero mean with respect to the canonical volume form of
ω is a Poisson subalgebra of C∞(M).

8.9 Elementary Morse Theory

In this section, we will discuss some elements of Morse theory, which will be used
later on. Let f : M → R be a smooth function. Recall that m ∈ M is a critical point
of f iff

df (m) = 0.

Let Mf be the set of critical points of f . The image df (M) of the 1-form df and
the image s0(M) of the zero section s0 in T∗M are embedded submanifolds of T∗M
which intersect over every critical point.

Definition 8.9.1 (Morse function) A smooth function f : M → R is called a Morse
function if df (M) and s0(M) are transversal, that is, if

Tξ

(
T∗M

) = Tξ

(
df (M)

) + Tξ

(
s0(M)

)
(8.9.1)

for all ξ ∈ df (M) ∩ s0(M).

By Corollary 1.8.5, for a Morse function f the intersection df (M) ∩ s0(M) is
an embedded submanifold. Since df (M) and s0(M) are Lagrange, it has dimension
zero. Thus, for a Morse function f all critical points are isolated. In particular, if
M is compact, the number of critical points of a Morse function is finite. Moreover,
for every critical point m, the tangent spaces of df (M) and s0(M) at s0(m) are
complementary Lagrangian subspaces of Ts0(m)(T∗M).

Let us derive a criterion for transversality. According to Proposition 8.3.12, for
every m ∈ Mf , the zero section s0 induces a natural symplectomorphism

Φs0(m) : Ts0(m)T
∗M → TmM ⊕ T∗

mM. (8.9.2)

Let pr2 : TmM ⊕T∗
mM → T∗

mM be the projection onto the second component of the
direct sum. The tangent mapping

(df )′m : TmM → Ts0(m)T
∗M
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induces a linear mapping

Hessm(f ) : TmM → T∗
mM, Hessm(f ) := pr2 ◦Φs0(m) ◦ (df )′m. (8.9.3)

This mapping or, equivalently, the corresponding bilinear form

Hessm(f ) : TmM × TmM →R

is called the Hessian of f at the critical point m. Obviously, df (M) and s0(M) are
transversal at a critical point m ∈ Mf iff (df )′m has maximal rank, that is, iff the
Hessian of f is non-degenerate at that point. Such a critical point is called non-
degenerate.

Let X,Y ∈ TmM . Using Φs0(m)◦(s0)
′
m(Y ) = (Y,0) and that Φs0(m) is symplectic,

we obtain

Hessm(f )(X,Y ) = ωs0(m)

(
(df )′m(X), (s0)

′
m(Y )

)
. (8.9.4)

Since the images of df and s0 and the fibres of T∗M are Lagrange, we have

ωs0(m)

(
(df )′m(X), (s0)

′
m(Y )

) = ωs0(m)

(
(df )′m(Y ), (s0)

′
m(X)

)
,

that is, the Hessian is symmetric. In a local chart (U,κ) at m, we obtain

Hessm(f )(∂i, ∂j ) = (∂i∂j f )(m) ≡ ∂2(f ◦ κ−1)

∂xi∂xj

(
κ(m)

)
.

By the Theorem of Sylvester, for every symmetric bilinear form H on a vector
space V there exists a maximal subspace of V on which H is negative definite. The
dimension of this subspace is called the index of H .

Definition 8.9.2 (Morse index) Let f : M → R be a Morse function and let m ∈
Mf . The index indf (m) of f at m is defined as the index of Hessm(f ).

Theorem 8.9.3 (Morse Lemma) Let f : M → R be a smooth function and let m0 ∈
Mf be a non-degenerate critical point. Then, there exists a local chart mapping m0
to 0 such that the local representative of f is given by

f (x) = f (0) + 1

2
Hess0(f )(x,x). (8.9.5)

The following proof is due to Palais [235]. We follow the presentation in [32].

Proof As in the proof of the Darboux-Theorem and its generalizations, we use the
deformation method of Moser. Since the statement is local, without loss of general-
ity, we may assume M =R

n, m0 = 0 and f (m0) = 0. Denote

h(x) = 1

2
Hess0(f )(x,x), ft = tf + (1 − t)h.
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We seek a time-dependent vector field X whose flow Φt ≡ Φt,0 satisfies Φ∗
t ft = h.

Then, Φ−1
1 yields the desired local chart. Differentiating this equation with respect

to t , we obtain

d

dt
Φ∗

t ft = Φ∗
t

(
Xt(ft )

) + Φ∗
t

(
d

dt
ft

)
= Φ∗

t

(
Xt(ft ) + f − h

) = 0.

Hence, Xt must satisfy

Xt(ft ) = h − f. (8.9.6)

The left hand side of this equation can be rewritten as follows: expand Xt = Xi
t

∂
∂xi

and integrate the equality

d

ds

(
Xi

t (x)
∂ft

∂xi
(sx)

)
= Xi

t (x)
∂2ft

∂xi∂xj
(sx)xj

with respect to s from 0 to 1 to obtain

(
Xt(ft )

)
(x) = Bt

ij (x)Xi
t (x)xj , Bt

ij (x) =
∫ 1

0

∂2ft

∂xi∂xj
(sx)ds.

For the right hand side of (8.9.6), Taylor’s Theorem yields

(h − f )(x) = Fij (x)xixj

on some neighbourhood U of the origin, where Fij are smooth functions on U .
Thus, (8.9.6) holds on U if the functions Xi

t satisfy

Bt
ij (x)Xi

t (x) = Fij (x)xi

for all j . Since

Bt
ij (0) = ∂2ft

∂xi∂xj
(0) = Hess0(f )ij

is invertible for all t , and since [0,1] is compact, by possibly shrinking U we can
achieve that Bt

ij (x) can be inverted for all x ∈ U and t ∈ [0,1] and thus obtain the
desired vector field X satisfying (8.9.6). Finally, since Xt(0) = 0, and again since
[0,1] is compact, by possibly further shrinking U we can achieve that U is contained
in the domain of Φt for all t ∈ [0,1]. This completes the proof. �

By successively diagonalizing the symmetric bilinear form Hess0(f ), the local
representative of f can be brought to the following canonical form (Exercise 8.9.1):

Corollary 8.9.4 Let f : M → R be a smooth function, let m0 ∈ Mf be a non-
degenerate critical point and let i be the index of f at m0. Then, there exists a
local chart mapping m0 to 0 such that the local representative of f is given by

f (x) = f (0) − 1

2

(
x2

1 + · · · + x2
i

) + 1

2

(
x2
i+1 + · · · + x2

n

)
. (8.9.7)
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Remark 8.9.5 The set of Morse functions is open and dense in the space of smooth
functions [212, §6]. In particular, Morse functions exist on every manifold.

Next, we will see how the critical points of a smooth function f : M → R are
related to the topology of the subsets

Ma := f −1(−∞, a] = {
m ∈ M : f (m) ≤ a

}
(8.9.8)

and

M [a,b] := f −1[a, b] = {
m ∈ M : a ≤ f (m) ≤ b

}
. (8.9.9)

If a is a regular value of f , the Level Set Theorem yields that f −1(a) is an em-
bedded submanifold of M of codimension 1. Moreover, f −1(−∞, a) is an open
submanifold of M . Using local charts on M mapping f −1(a) to the subspace
{0} × R

n−1 and local charts on f −1(−∞, a) taking values in R
n−, one can con-

struct an atlas on Ma with values in R
n− and thus show that Ma is a manifold with

boundary, where the boundary is given by f −1(a). Analogously, M [a,b] is a mani-
fold with boundary, provided neither a nor b are critical values of f , and the bound-
ary is given by f −1(a) ∪ f −1(b). If M is compact, it is reasonable to imagine f

as a height function: while the parameter runs through the real numbers (starting at
−∞), Ma grows (starting from the empty set) to the whole manifold. Using meth-
ods of Morse theory, it is possible to describe this process of growing. The simplest
statement of this type is

Proposition 8.9.6 (Morse Isotopy Lemma) Let M be a smooth manifold and let
f : M → R be a smooth function. Let a < b and assume that M [a,b] is compact and
does not contain any critical point of f . Then, Ma is diffeomorphic to Mb .

Proof Choose a Riemannian metric g on M and consider the gradient vector field
∇f of f , defined by

∇f := g−1 ◦ (df ),

cf. Formula (4.5.14). Then,

g(∇f,X) = X(f ) (8.9.10)

for all X ∈ X(M). Since [a, b] does not contain any critical value, ∇f is nowhere
vanishing on M [a,b]. This remains so on some neighbourhood U of M [a,b] in M .
Since M [a,b] is compact, U can be chosen to have compact closure. On U , we can
define

X̂m := ∇f (m)

‖ ∇f (m) ‖2
, m ∈ U. (8.9.11)
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To extend X̂ to a vector field on M , we choose a smooth function χ : M → R

satisfying χ�M [a,b] = 1 and χ�(M\U) = 0 and define a vector field Y on M by

Ym :=
{

χ(m)X̂m m ∈ U,

0 m /∈ U.

Since U has compact closure and hence Y has compact support, the flow Φ of Y is
complete. Using (8.9.10), for m ∈ M [a,b] we compute

d(f ◦ Φt)(m)

dt
= Ym(f ) = X̂m(f ) = 1.

Thus, f (Φt(m)) = f (m) + t . We conclude that Φ(b−a) : M → M is a diffeomor-
phism mapping Ma onto Mb . �

Remark 8.9.7 By means of the flow Φ constructed in the proof of Proposition 8.9.6,
one can define a mapping

h : [0,1] × Mb → Mb, h(t,m) :=
{

m m ∈ Ma,

Φt(a−f (m))(m) m ∈ Mb \ Ma.

This mapping is continuous and satisfies

h(0, ·) = idMb, h
(
1,Mb

) ⊂ Ma, h(t, ·)�Ma = idMa .

One says that h is a strong deformation retraction from Mb to Ma and that Ma is a
strong deformation retract of Mb .

Next, we discuss the question how the topological structure of Mb differs from
that of Ma if a and b are regular values and M [a,b] contains a single critical point.
In general, this question can be answered only up to homotopy-equivalence, that is,
the best one can say is how the homotopy type of Mb differs from that of Ma :

Proposition 8.9.8 Let M be a smooth manifold and let f : M → R be a smooth
function. Let a < b be regular values of f and assume that M [a,b] is compact and
contains a single critical point m of f . Let i := indm(f ). Define subsets M̃a and M̃b

of M as follows: choose a local chart (U,κ) at m such that the local representative
of f has the canonical form given in Corollary 8.9.4, choose ε > 0 such that κ(U)

contains the ball of radius 2ε about the origin and let

M̃a := Mf (m)−ε2
, M̃b := M̃a ∪ κ−1(ei

2ε

)
,

where

ei
2ε := {

x ∈ R
n : ‖x‖ < 2ε, xi+1 = · · · = xn = 0

}
,

see Fig. 8.1. Then, Ma is homotopy-equivalent to M̃a and Mb is homotopy-
equivalent to M̃b (in the relative topology induced from M).
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Fig. 8.1 Construction of the
subset M̃b in Proposi-
tion 8.9.8 as the union of the
subset M̃a , labelled by A, and
the i-cell ei

2ε , labelled by C.
B denotes the ball of radius
2ε about the origin

Proof See [212], Theorem 3.2. �

The set ei
2ε is called a cell of dimension i and the process of passing from M̃a

to M̃b is commonly referred to as attaching a cell of dimension i. While M̃a is
a manifold with boundary, M̃b need not be so. It is however obvious that the cell
ei

2ε may be thickened and M̃b may be smoothened so as to render a manifold with
boundary.

In case M is compact and hence every smooth function is bounded, Propo-
sitions 8.9.6 and 8.9.8 can be used to construct a topological space which is
homotopy-equivalent to M as follows. Choose f so that for every singular value
there is exactly one critical point. Denote the singular values by ai with a1 < · · · <
ar . Starting at a = −∞ with the empty set, successively attach an appropriate cell
each time a passes a singular value. In more detail, since a1 is a minimum, we must
take a zero-dimensional cell ∗. For a1 ≤ a < a2, each Ma is homotopy equivalent
to this cell. When passing the singular value a2 we must attach a cell of dimension
equal to the index of the corresponding critical point by identifying the boundary of
the closure of this cell with ∗. Continuing this procedure, we obtain a topological
space which is called a cell complex, or more precisely a CW-complex, see [55]. In
the last step, since ar is a maximum, we have to attach a cell of the dimension of M .
Using this construction, one can show that every compact manifold is homotopy-
equivalent to a cell complex with one cell in dimension i for each critical point
of index i of some Morse function on M . This result carries over to noncompact
manifolds. For a thorough discussion, see [212], §3 and §6.

Example 8.9.9 We consider an upright 2-torus T2 with the height function f as
shown in Fig. 8.2, thereby leaving the necessary computations to the reader (Exer-
cise 8.9.3). There are four critical values a1, . . . , a4, corresponding to four critical
points m1, . . . ,m4. The critical point m1 is a minimum and hence has index 0, m2

and m3 are saddle points and hence have index 1 and m4 is a maximum and hence
has index 2. Thus, starting with a single point (0-cell), first we have to attach a 1-
cell, then once again a 1-cell, and finally a 2-cell, see the figure. The way how each
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Fig. 8.2 The subsets Ma , their homotopy types in terms of cell complexes and the operations of
attaching cells for T2, cf. Example 8.9.9

of these cells is attached to the cell complex obtained before follows from the way
this cell is attached to the corresponding subset Ma according to Proposition 8.9.8.

Remark 8.9.10

1. In some situations, the indices of the critical points of a Morse function contain
more information than just the homotopy type of M . For example, the Reeb
Theorem states that if M is a compact manifold and if it admits a Morse function
with exactly two critical points, then M is homeomorphic to the sphere SdimM ,
see e.g. [212], §4. It need not be diffeomorphic to SdimM , though.

2. By means of a so-called Morse-Smale pair23 (f,g) one can construct a homology
theory for M , called Morse homology, see for example [51] or [146]. The chains
of this homology theory are generated by the critical points of f , ordered by their
index, and the boundary operator assigns to a critical point m0 of index i the sum
over all critical points m of index i −1, weighted with the signed number of flow
lines between m0 and m. It can be shown [146] that Morse homology coincides
with singular homology.24 In particular, it does not depend on the chosen Morse-
Smale pair (f,g). These facts indicate that Morse theory yields a mighty tool
for investigating the topology of manifolds. For an axiomatic approach to Morse
homology in the sense of Eilenberg and Steenrod we refer to [268].

3. As a consequence of either the construction of a homotopy-equivalent cell com-
plex for M or of the equivalence of Morse homology and singular homology,
one obtains the Morse inequalities. Let bi = dimHi(M) be the Betti numbers

23That is, f is a Morse function and g is a Riemannian metric on M such that for every pair of
critical points m1, m2 the stable manifold of m1 with respect to the gradient vector field ∇f is
transversal to the unstable manifold of m2.
24See e.g. [55] for this notion.
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of M , see Sect. 4.3, and let mi be the number of critical points with index i. Let
n = dimM . Then:

mi ≥ bi,

mk − mk−1 + · · · + (−1)km0 ≥ bk − bk−1 + · · · + (−1)kb0,

n∑

i=0

(−1)imi =
n∑

i=0

(−1)ibi .

4. There are interesting applications of Morse theory in the theory of Lie groups
and symmetric spaces, see [97] and [212]. As an example, consider a classical
Lie group G ⊂ Mn(K), with K = R,C or H. Endow Mn(K) with the standard
scalar product

(A,B) = Re tr
(
A†B

)
.

Every A ∈ Mn(K) defines a function on G by

fA : G → R, fA(a) := Re tr(Aa). (8.9.12)

One can show that if A is diagonal with pairwise distinct entries, fA is a Morse
function. It is not hard to compute the critical points and their indices. It is also
interesting to compute the critical set for the case A = 1, see Exercise 8.9.4.

In applications, e.g. in the theory of systems with symmetries, one often faces the
situation that one has to work with a restricted class of functions which cannot be
assumed to have isolated critical points. The following definition yields a reasonable
generalization to this case:

Definition 8.9.11 (Morse-Bott function) Let M be a smooth manifold. A smooth
function f : M → R is called a Morse-Bott function if the following conditions are
fulfilled:

1. The critical set Mf is a disjoint union of connected embedded submanifolds,
called critical submanifolds.

2. For every critical submanifold N and every m ∈ N , the bilinear form induced by
Hessm(f ) on the normal space NmN = TmM/TmN is non-degenerate.25

As an example, we consider a torus lying on a plane. Its height function is obvi-
ously a Morse-Bott function with two critical submanifolds: a circle, on which the
height function is maximal, and a circle in the plane, on which it is minimal.

As before, the index of a critical point m ∈ N is defined as the index of Hessm(f ).
Since N is connected, the rank of Hessm(f ) is constant along N . Hence, the index

25This is equivalent to the condition ker(Hessm(f )) = TmN .
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depends only on the submanifold N . Since single points are embedded submani-
folds, every Morse function is a Morse-Bott function. The Morse Lemma general-
izes to Morse-Bott functions as follows: assume that dimM = n, dimN = d and
that the index of N is i. Then, for every m0 ∈ N , there exists a local chart of M at
m0 with coordinates x1, . . . , xd and y1, . . . , yn−d such that N is given locally by
y = 0 and the local representative of f has the form

f (x,y) = f (N) − 1

2

(
y2

1 + · · · + y2
i

) + 1

2

(
y2
i+1 + · · · + y2

n−d

)
. (8.9.13)

By a diagonalization procedure similar to that used for Corollary 8.9.4, this will
follow from

Theorem 8.9.12 (Morse-Bott Lemma) Let M be a manifold of dimension n, let f

be a Morse-Bott function on M and let N be a critical submanifold of f of dimen-
sion d . For every m0 ∈ N , there exists a local chart of M at m0 with coordinates
x1, . . . , xd and y1, . . . , yn−d , mapping points of N to R

d × {0} ⊂ R
n, and a non-

degenerate quadratic form Q on R
n−d such that the local representative of f is

given by

f (x,y) = f (N) +Q(y). (8.9.14)

Proof We follow [32]. Denote r = n − d . Since N is embedded, we find a local
chart (U,κ) of M at m0 such that κ(U ∩ N) ⊂ R

d × {0} ⊂ R
n. Thus, without loss

of generality, we may assume that M = R
n = R

d × R
r and N = R

d . We write
(x,y) for the points of M . By replacing f by f − f (0), we may also assume that
f (N) = 0. With respect to the decomposition R

n = R
d ⊕R

r of the tangent spaces,
the Hessian at (x,0) ∈ N takes the form

Hess(x,0)(f ) =
[

0 0

0 Q(x)

]
,

where Q(x) is an invertible symmetric matrix of dimension r , depending smoothly
on x. We seek a diffeomorphism Φ defined on some open neighbourhood of the
origin of Rn such that

(
Φ∗f

)
(x,y) = 1

2
Q(0)ij y

iyj

on that neighbourhood. In the first step, we define

h(x,y) = 1

2
Q(x)ij y

iyj , ft = tf + (1 − t)h.

We leave it to the reader to check that if we carry out the construction of the time-
dependent vector field X from the proof of Theorem 8.9.3 for every fixed x, we
obtain an open neighbourhood U of N in M and a smooth vector field X on U
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which is tangent to the affine subspaces {x}×R
r and whose flow Φt ≡ Φt,0 satisfies

(
Φ∗

1 f
)
(x,y) = h(x,y) = 1

2
Q(x)ij y

iyj

for all (x,y) ∈ U . In the second step, we construct a family of linear transforma-
tions of R

r transforming Q(x) to Q(0). Since Q(0) is symmetric, up to a linear
transformation of Rn we may assume that Q(0) is diagonal, with diagonal entries
q1, . . . , qr . Since Q(0) is invertible, all qi are nonzero. Thus, the diagonal entries of
Q(x) remain nonzero and keep their sign in an open neighbourhood V of the origin
in R

d . There, we can define

T1(x) :=

⎡

⎢⎢⎢⎢⎣

√ |q1|
|Q(x)11| −Q(x)12

Q(x)11
· · · −Q(x)12

Q(x)11

0
... 1r−1
0

⎤

⎥⎥⎥⎥⎦

and compute

T1(x)TQ(x)T1(x) =

⎡

⎢⎢⎢⎣

q1 0 · · · 0

0
... B2(x)

0

⎤

⎥⎥⎥⎦

with a s ymmetric matrix B2(x) of dimension r − 1, depending smoothly on x and
satisfying B2(0) = diag(q2, . . . , qr ). By possibly shrinking V , we may achieve that
the diagonal entries of B2(x) are nonzero. Thus, we may apply the same procedure
in one dimension less and with q1 replaced by q2. Iterating this, we obtain invert-
ible matrices T1(x), . . . , Tr (x) of dimension, respectively, r, . . . ,1, which depend
smoothly on x. Then,

T (x)TQ(x)T (x) = Q(0) with T (x) = T1(x)
(
11 ⊕ T2(x)

) · · · (1r−1 ⊕ Tr(x)
)

and hence

(
Φ̃∗h

)
(x,y) = Q(0)ij y

iyj with Φ̃(x,y) = (
x, T (x)y

)
.

Thus, Φ = Φ1 ◦ Φ̃ yields the desired local diffeomorphism (defined on some neigh-
bourhood of the origin in R

n, which can be determined from U and V ). �

From the proof we can read off the following version of the Morse-Bott Lemma,
to be used later on.

Corollary 8.9.13 Let N be a manifold and let f : N × R
r → R be a Morse-Bott

function with critical submanifold N × {0} and f (N × {0}) = 0. For every m ∈ N ,
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there exist open neighbourhoods U of m in N and V of the origin in R
r , a non-

degenerate quadratic form Q on R
r and a diffeomorphism Φ from U × V into

N ×R
r such that

f ◦ Φ(m,y) =Q(y), prN ◦Φ(m,y) = m

for all m ∈ U and y ∈ V .

To conclude, let us add that, analogously to Morse homology, one can develop a
homology theory based on Morse-Bott functions, see the Lecture Notes by Hutch-
ings [146]. We will meet a further generalization of the classical Morse Lemma in
the context of Morse families in Sect. 12.4.

Exercises
8.9.1 Prove Corollary 8.9.4 by diagonalization of Hess0(f ) and an appropriate scal-

ing of basis vectors.
8.9.2 Find the critical sets of the functions

f (x) = x2,

f (x) = x3,

f (x, y) = x2,

f (x, y) = x2y2,

f (x, y) = x3 − 3x2y2,

f (x, y) = cos(2πx) + cos(2πy),

f (z0 : . . . : z1) =
∑n

i=0 i|zi |2∑n
i=0 |zi |2 .

Which of them are Morse functions? Find the indices for their critical points.
Hint. The sixth function has to be understood as a function on the 2-dimen-
sional torus and the last function has to be viewed as a function on the com-
plex projective space CPn, written down in homogeneous coordinates, cf. Ex-
ample 1.1.15.

8.9.3 Show that the height function of an upright 2-torus T2 as shown in Fig. 8.2 is a
Morse function. Determine the critical points and their indices. Determine the
homotopy type of the subsets Ma for all values of a. Convince yourself that
at each critical point the homotopy type changes by attaching a cell whose
dimension is given by the index.

8.9.4 Study the function (8.9.12) for the case A = 1. Show that the set of critical
points of f1 coincides with the set of involutions a2 = 1. Find a geometric
interpretation of this set.
Hint. Recall the definition of the Graßmann manifolds GK(k, n) in Exam-
ple 5.7.6.



Chapter 9
Hamiltonian Systems

In this chapter we start discussing the theory of Hamiltonian systems. We begin
with an introduction to the subject, including the Legendre transformation and a
brief discussion of linear nonholonomic systems. Next, we present three classes
of examples, which will play a role in the subsequent chapters: the geodesic flow,
Hamiltonian systems on Lie group manifolds and Hamiltonian systems on coadjoint
orbits. We close the elementary part of this chapter by presenting the time-dependent
picture.

In Sect. 9.4 we investigate the structure of regular energy surfaces and discuss
the problem of the existence of closed integral curves for autonomous systems.
This leads us to the famous Weinstein conjecture and to some aspects of symplectic
topology. We will see that a special type of symplectic invariants, called symplectic
capacities, constitutes the most important technical tool for studying the Weinstein
conjecture. In Sect. 9.5 we start to investigate the behaviour of a Hamiltonian system
near a critical integral curve. We will see that, generically, there is a continuum of
periodic integral curves nearby, constituting so called orbit cylinders. These cylin-
ders can undergo bifurcations. We study one of these bifurcations, provided by the
Lyapunov Centre Theorem, in detail. Next, we derive the so-called Birkhoff normal
form both for symplectomorphisms in the neighbourhood of elliptic fixed points
and for the Hamiltonian of a system near an equilibrium. This normal form implies
a foliation of the phase space into invariant tori and, in the normal form approx-
imation, the theory becomes integrable. According to the celebrated KAM theory
many of the invariant tori persist the perturbation caused by taking into account
the full symplectomorphism or the full Hamiltonian, respectively. Moreover, we use
the Birkhoff Normal Form Theorem to prove the Birkhoff-Lewis Theorem, which
yields the existence of infinitely many periodic points near a closed integral curve of
a certain type on a given energy surface. Finally, we study some aspects of stability,
with the main emphasis on systems with two degrees of freedom.

In the final two sections we study time-dependent Hamiltonian systems. In
Sect. 9.8 we deal with the stability problem of time-periodic systems with emphasis
on parametric resonance and in the final section we comment on the famous Arnold

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-5345-7_9, © Springer Science+Business Media Dordrecht 2013
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conjecture about the existence of fixed points of Hamiltonian symplectomorphisms
and its relation to the existence problem for closed integral curves.

9.1 Introduction

A Hamiltonian system is a triple (M,ω,H), where (M,ω) is a symplectic man-
ifold, in the present context called the phase space, and H is a smooth function
on M , called the Hamiltonian or the Hamiltonian function. In this section we re-
strict ourselves to autonomous1 systems. Moreover, throughout the whole chapter
we confine our attention to holonomic systems, except for a few remarks on the non-
holonomic case in this section.2 In this context, the above data have the following
physical interpretation: every point m ∈ M describes a (pure) state of the system.
Smooth functions on M are observables. The result of a measurement of the ob-
servable f ∈ C∞(M) in the state m is given by the value f (m) of the function at m.
The dynamics of the system is governed by the Hamiltonian: the time evolution of
a state m is given by the integral curve through m of the Hamiltonian vector field
XH generated by H . Let us write down the equation for the integral curves of XH

in local Darboux coordinates qi and pi . By (8.2.2), we have

XH = (∂pi
H)∂qi − (∂qi H)∂pi

. (9.1.1)

Thus, the equations for the integral curves t �→ (q(t),p(t)) of XH are given by

q̇i (t) = ∂H

∂pi

(
q(t),p(t)

)
, ṗi(t) = −∂H

∂qi

(
q(t),p(t)

)
. (9.1.2)

These are the Hamilton equations. We see that the whole information about the dy-
namics of the system is encoded in the flow of the Hamiltonian vector field generated
by the Hamiltonian function, indeed.

In physics, a variety of phase space models occur. The most prominent one is
that of a cotangent bundle,3 that is, M = T∗Q, see Sect. 8.3. The base manifold Q

is called the configuration space of the system and dimQ is called the number of
degrees of freedom. Given the great importance of this model, let us show how it is
derived from the Lagrangian formulation, cf. Sect. 4.8, via the so-called Legendre
transformation. For that purpose, let us consider a mechanical system with config-
uration space Q, described by a Lagrangian L : TQ → R. Denote the canonical
bundle projection by πT : TQ → Q and extend L to a mapping

L̃ : TQ → Q ×R, L̃(X) := (πT(X),L(X)
)
.

1That is, the Hamiltonian does not depend explicitly on time. We will show in Sect. 9.3 that the
framework discussed here can be easily extended to the non-autonomous case.
2As mentioned in Sect. 4.8, in the theory of nonholonomic constraints many interesting branches
are studied. Here, we limit ourselves to showing that the Lagrangian formulation presented there
has a counterpart on the Hamiltonian level.
3Sometimes one is led to go beyond the cotangent bundle model though, notably in the study of
systems with symmetries (Chap. 10) where coadjoint orbits of Lie groups play an important role
as phase space models.
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We treat Q × R as a vector bundle over Q, denote its canonical projection by ρ :
Q ×R→ Q and note that

ρ ◦ L̃ = πT. (9.1.3)

Now, let us define the mapping

FL : TQ → Hom(TQ,Q ×R) ∼= T∗Q, (FL)(X) := (L̃πT(X))
′
X. (9.1.4)

Here L̃q := L̃�π−1
T (q)

is the restriction of the mapping L̃ to the fibre over q ∈ Q and

Hom(TQ,Q × R) is the vector bundle defined in Remark 2.4.7. The mapping FL

is called the fibre derivative4 of L. It is obviously fibre preserving and smooth. We
have

〈
(FL)(X),Y

〉= d

dt �0

L(X + tY )

for all X,Y in the same fibre of TQ. For a typical Lagrangian, given by the differ-
ence of the kinetic and the potential energy,

L(X) = 1

2
g(X,X) − V

(
πT(X)

)
, (9.1.5)

where g is a Riemannian metric on Q and V is a potential function on Q, the
Legendre transform reduces to

〈
(FL)(X),Y

〉= g(X,Y ). (9.1.6)

Thus, it coincides with the natural vector bundle isomorphism g : TQ → T∗Q in-
duced by the metric. If the fibre derivative FL : TQ → T∗Q is a diffeomorphism, it
is called the Legendre transformation induced by L and the Lagrangian function L

is called hyperregular. A Lagrangian of the type given by (9.1.5) is always hyper-
regular. Finally, L is called regular iff FL is a local diffeomorphism.

Remark 9.1.1 Let us analyze the fibre derivative in local coordinates. Thus, let qi

be local coordinates on Q and let qi , q̇i and qi , pi be the induced local coordinates
on TQ and T∗Q, respectively. The Lagrangian L is regular iff

det

(
∂2L

∂q̇i∂q̇j

)

= 0, (9.1.7)

(Exercise 9.1.1). The fibre derivative FL takes the local form

(FL)(q, q̇) = ∂L

∂q̇i
(q, q̇)dqi (9.1.8)

(Exercise 9.1.2), that is, it is given by the mapping

(q, q̇) �→
(

q,p = ∂L

∂q̇
(q, q̇)

)
.

4More generally, if we replace TQ and Q × R by arbitrary vector bundles E and F over Q,
respectively, then (9.1.4) yields the definition of the fibre derivative Ff : E → Hom(E,F ) for any
smooth mapping f : E → F fulfilling condition (9.1.3).
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If L is hyperregular, this is the local representative of the Legendre transformation
known from classical mechanics.

Now assume that L is hyperregular. In the Lagrangian formulation, the dynamics
of the system is governed by the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, (9.1.9)

compare with (4.8.11). This system of equations can be cast into a coordinate-free
form in different ways. For our purposes, it is convenient to proceed as follows. We
take the pullback ωL := (FL)∗ω of the canonical symplectic structure on T∗Q, and
thus endow TQ with a symplectic structure such that FL becomes a symplectomor-
phism. Next, we define the energy function

E: TQ →R, E(X) := 〈(FL)(X),X
〉− L(X), (9.1.10)

and consider the Hamiltonian vector field XE on TQ generated by E,

XE�ωL = −dE. (9.1.11)

We encourage the reader to check that in local coordinates qi , q̇i the equations for
the integral curves of XE are equivalent to the Euler-Lagrange equations (9.1.9)
(Exercise 9.1.3). Now, the Hamiltonian of the system is defined by

H : T∗Q →R, H := E ◦ (FL)−1. (9.1.12)

From (9.1.11) we read off
(
(FL)−1)∗(XE�ωL) = −dH.

Moreover, Proposition 8.2.9 implies

(FL)∗XE = XH . (9.1.13)

Thus, if L is hyperregular, the Lagrangian formulation and the Hamiltonian formu-
lation are equivalent.

Remark 9.1.2

1. If L is hyperregular, the tuple (TQ,ωL,E) is a Hamiltonian system which is
equivalent to (T∗Q,ω,H). Usually, by the Hamiltonian formulation one means
the latter setting. However, it may be convenient to use the former setting, see
e.g. Example 9.2.1.

2. For the model class defined by (9.1.5) we obtain

H(ξ) = 1

2
g−1(ξ, ξ) + V

(
π(ξ)

)= T (ξ) + V
(
π(ξ)

)
, (9.1.14)

with

g−1(ξ, η) := g
(
g−1(ξ),g−1(η)

)

being the metric induced on T∗Q via the vector bundle isomorphism

g = FL: TQ → T∗Q.
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3. In local coordinates, we obtain

H(q,p) = ∂L

∂q̇i
(q, q̇)q̇i − L(q, q̇), (9.1.15)

with q̇ obtained in terms of (q,p) from solving p = ∂L
∂q̇ for q̇. Thus, H is the

Legendre transform of L known from classical mechanics.

Next, let us make a few remarks on linear nonholonomic systems. Recall from
Sect. 4.8 that a linear nonholonomic constraint is given by a smooth non-integrable
distribution D ⊂ TQ on the configuration space Q of the system and that the Euler-
Lagrange equations for this case are given by

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= λaμ

a
i . (9.1.16)

Here, the λa are Lagrange multipliers and μa , a = 1, . . . , s, is a system of local
1-forms spanning the annihilator D0 of D, that is,

Dm := {X ∈ TmQ : 〈μa(m),X
〉= 0 for all a

}
. (9.1.17)

The solutions t �→ q(t) and the Lagrange multipliers λa are determined by the Euler-
Lagrange equations (9.1.16) and the constraint equations

μa
i

(
q(t)
)
q̇i (t) = 0, (9.1.18)

cf. (4.8.5). We wish to cast this system of equations into a coordinate-free Hamil-
tonian form. For that purpose, assume that L is hyperregular. Similarly to (9.1.11),
the Euler-Lagrange equations (9.1.16) are equivalent to the equations for the integral
curves of a vector field X̃E , which, here, is defined by

X̃E�ωL = −dE + λaπ
∗
Tμa.

The coordinate-free form of the constraint equation (9.1.18) is
〈
μa ◦ πT,π ′

T ◦ X̃E

〉= 0,

that is, π ′
T ◦ X̃E : TQ → TQ takes values in D. We apply the Legendre transforma-

tion to these equations. Denoting

X̃H = (FL)∗X̃E, (9.1.19)

and using πT = π ◦ (FL), for the first equation we obtain

X̃H�ω = −dH + λaπ
∗μa. (9.1.20)

In canonical bundle coordinates, the equations for the integral curves of X̃H read

q̇i = ∂H

∂pi

, ṗi = −∂H

∂qi
+ λaμ

a
i . (9.1.21)

These are the Hamilton equations for the case of linear nonholonomic constraints.
For the constraint equation we obtain

〈
μa ◦ π,π ′ ◦ X̃H

〉= 0, (9.1.22)
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that is, π ′ ◦ X̃H : T∗Q → TQ takes values in D. The image M = (FL)(D) ⊂ T∗Q
of D under the Legendre transformation is called the constraint submanifold. We
have

M = {ξ ∈ T∗Q : 〈μa
(
π(ξ)

)
, (FL)−1(ξ)

〉= 0 for all a
}
.

Next, we wish to implement the constraint equation (9.1.22) in an intrinsic man-
ner, this way removing the Lagrange multipliers. We follow Bates and Śniatycki
[35], see also [170]. Let us consider the distribution D̂ = (π ′)−1(D) on T∗Q. In
terms of the local frame {μa} in D0, it is given by

D̂ = {X ∈ TT∗Q : 〈π∗μa,X
〉= 0 for all a

}
. (9.1.23)

Since the constraint equation is equivalent to π ′ ◦ X̃H : T∗Q → TQ taking values
in D, X̃H must take values in D̂. This implies, in addition, that X̃H is tangent to M

(Exercise 9.1.4). Hence, X̃H takes values in

F := D̂ ∩ TM. (9.1.24)

It is easy to show that D̂ = D̂ω ⊕ F , see Exercise 9.1.5. Therefore, F is a regular
distribution on M , called the constraint distribution, and the fibrewise restriction
ωF of ω to F is non-degenerate. Since the restriction of X̃H to M , denoted by the
same symbol, takes values in F , the fibrewise restriction of X̃H�ω to F coincides
with X̃H�ωF . Since, in addition, π∗μa vanishes on F , restricting (9.1.20) to F we
obtain

X̃H�ωF = −(dH)F . (9.1.25)

Since ωF is non-degenerate, this equation determines X̃H uniquely. This way, we
have reduced the dynamics to the constraint submanifold M : it is given by the in-
tegral curves of the vector field X̃H on M which takes values in the constraint
distribution F . We encourage the reader to work out the description of the above
structures in the bundle coordinates qi , pi , q̇i and ṗi on TT∗Q induced from bundle
coordinates qi and pi on T∗Q (Exercise 9.1.7).

Remark 9.1.3 The distribution D is spanned by the Hamiltonian vector fields Za on
T∗Q generated by the functions

ξ �→ 〈
μa

(
π(ξ)

)
, (FL)−1(ξ)

〉
.

Evaluating the Hamilton equations (9.1.20) on Za , we obtain

0 = −〈Za,dH
〉+
∑

b

λb

〈
π∗μa,Zb

〉
. (9.1.26)

It is easy to show that for the class of models defined by (9.1.5), the matrix
〈π∗μa,Zb〉 is invertible (Exercise 9.1.6). Thus, this equation can be used to elimi-
nate the Lagrange multipliers λb . The resulting equation reduces to (9.1.25).

Now, we discuss symplectomorphisms. In the context of physics, a symplecto-
morphism of the phase space is referred to as a canonical transformation. Canonical
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transformations play an enormous role in the study of Hamiltonian systems. The
first simple but very important observation follows from Remark 8.2.5/1, which
states that the flow of the Hamiltonian vector field XH consists of locally defined
symplectomorphisms. This means that the dynamics of a Hamiltonian system can be
viewed as a time-dependent canonical transformation. This observation can be con-
sidered the starting point of Hamilton-Jacobi theory, to be presented in Chap. 12.
Moreover, Proposition 8.1.3 implies

Theorem 9.1.4 (Liouville) The phase space volume form Ωω of a Hamiltonian
system (M,ω,H) is invariant under the flow of the Hamiltonian vector field XH .

The following corollary is a direct consequence of Proposition 8.2.9. It states that
the Hamilton equations are invariant under canonical transformations.

Corollary 9.1.5 Let (M,ω,H) be a Hamiltonian system and let Φ:M → M be a
canonical transformation. Then,

Φ∗XH = XH◦Φ−1 . (9.1.27)

Remark 9.1.6

1. If the canonical transformation Φ is given in local Darboux coordinates by

(q,p) �→ (
q̄(q,p), p̄(q,p)

)
,

then (9.1.27) yields the Hamilton equations in the variables (q̄, p̄), with Hamil-
tonian H̄ (q̄, p̄) = (H ◦ Φ−1)(q̄, p̄). We stress that there exist transformations
which leave the Hamilton equations invariant but which are not canonical, e.g.

(q,p,H) �→ (q̄ = q, p̄ = ap, H̄ = aH)

with an arbitrary constant a 
= 0.
2. With a slight abuse of language, the view on Hamiltonian systems described

above may be called the Schrödinger picture of classical mechanics, because the
dynamics of the system is given in terms of the time evolution of the states. The
time evolution can be shifted to the observables as follows. For f ∈ C∞(M),
define the family t �→ f (t) := f ◦ Φt , where Φ is the flow of XH . Then,

(
f (t)
)
(m) = f

(
Φt(m)

)
,

that is, the result of a measurement of f ≡ f (0) in the state Φt(m) coincides with
the result of the measurement of f (t) in the state m. By (8.2.6), using the stan-
dard physics notation ḟ ≡ d

dt
f (t), we obtain the following equation of motion

for f (t):

ḟ = {H,f }. (9.1.28)

In particular, the Hamilton equations can be rewritten as

q̇i = {H,qi
}
, ṗi = {H,pi}. (9.1.29)

This may be viewed as the Heisenberg picture of classical mechanics.
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3. The notion of Hamiltonian system generalizes to Poisson manifolds. In this gen-
eralized sense, a Hamiltonian system is a triple (M, { , },H) where (M, { , }) is
a Poisson manifold and H ∈ C∞(M). The dynamics is given by ḟ = {H,f }. In
local coordinates, this yields the equations of motion

ẋi = {H,xi
}= −Πik ∂H

∂xk
.

Finally, let us turn to the important notion of constant of motion.5

Definition 9.1.7 Let (M,ω,H) be a Hamiltonian system. A function f ∈ C∞(M)

is called constant of motion if
d

dt
f
(
γ (t)
)= 0

for every integral curve t → γ (t) of the Hamiltonian vector field XH .

Equivalently, f is a constant of motion iff its pullback Φ∗
t f under the flow Φt of

XH is independent of t .

Remark 9.1.8 By (9.1.2), the function pi is a constant of motion iff H does not
depend on the corresponding coordinate qi . In this case, qi is said to be cyclic.

Proposition 9.1.9 The Hamiltonian H of a Hamiltonian system (M,ω,H) is a
constant of motion.

Proof For any integral curve t �→ γ (t) of XH , we have

d

dt
H
(
γ (t)
)= XH (H)

(
γ (t)
)= 〈dH,XH 〉(γ (t)

)= −ω(XH ,XH )
(
γ (t)
)= 0. �

This is, of course, the law of energy conservation for autonomous systems. The
following proposition characterizes constants of motion in terms of the Poisson
bracket.

Proposition 9.1.10 Let (M,ω,H) be a Hamiltonian system.

1. A function f ∈ C∞(M) is a constant of motion iff {f,H } = 0.
2. If f,g ∈ C∞(M) are constants of motion, then {f,g} is a constant of motion,

too.

Proof Point 1 follows from

d

dt
f
(
γ (t)
)= XH (f )

(
γ (t)
)= {H,f }(γ (t)

)

and point 2 is a consequence of point 1 and the Jacobi identity. �

5Also referred to as an integral of motion or a first integral.
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Fig. 9.1 The restriction of
XH to Σ is tangent to Σ

Now, assume that e ∈ R is a regular value of H , that is, dH(m) 
= 0 for all m ∈
H−1(e). By the Level Set Theorem, H−1(e) is an embedded submanifold of M of
dimension 2n − 1. The connected components of H−1(e) are referred to as regular
energy surfaces. Let Σ be such a regular energy surface and let ι:Σ → M be the
natural inclusion mapping. By Proposition 9.1.9, Σ is invariant under the flow of
XH . Thus, XH is tangent to Σ and, therefore, induces a vector field XΣ

H on Σ

which is ι-related to XH ,

ι′
(
XΣ

H (m)
)= XH

(
ι(m)
)
, m ∈ Σ. (9.1.30)

We draw the important conclusion that for every regular value of the Hamiltonian
we get a reduction of the dynamics to a submanifold of codimension 1, see Fig. 9.1.
Since dH vanishes nowhere on Σ , XΣ

H does not have equilibria.
Let us consider ωΣ := ι∗ω. This is a closed 2-form on Σ , which is necessarily

degenerate, because Σ has dimension (2n−1). To calculate the rank, we use (7.2.3)
and Proposition 7.2.4. This yields

rank(ωΣ)m = dim(TmΣ) − dim
(
TmΣ ∩ (TmΣ)ω

)= 2(n − 1)

for all m ∈ Σ . Hence, the rank of ωΣ is maximal and the characteristic distribu-
tion DωΣ = kerωΣ of ωΣ is regular of rank 1. Moreover, using (9.1.30), we ob-
tain

(
ι∗ω
)
m

(
XΣ

H (m),Y
)= ωι(m)

(
XH

(
ι(m)
)
, ι′Y
)= −〈dH

(
ι(m)
)
, ι′Y
〉= 0

for any Y ∈ TmΣ . Thus, XΣ
H �ωΣ = 0 and hence DωΣ is spanned by XΣ

H . In partic-
ular, the (images of the) integral curves of XΣ

H coincide with the characteristics of
Σ .6 Moreover, as a vector bundle, DωΣ is trivial.

The reduction to Σ , induced by a single constant of motion, can be generalized
to several constants of motion f1, . . . , fk . Consider the mapping

F = (f1, . . . , fk):M → R
k

and assume that h ∈ R
k is a regular value of F . Then, by the Level Set Theorem,

F−1(h) is a (2n − k)-dimensional embedded submanifold of M . This submanifold
is invariant under the flow of XH . Chapters 10 and 11 are devoted to the study of
the following specific reductions of this type.

6More precisely, they are equivalent as submanifolds of M , because they are integral manifolds of
the same integrable distribution, cf. Proposition 3.5.15 and Remark 1.6.13/5.
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(a) If the reduction is induced by a symmetry of the system, the constants of motion
fi arise as the components of a so-called momentum mapping. There exists
a general symmetry reduction procedure, called Marsden-Weinstein reduction.
This theory will be presented in detail in Chap. 10.

(b) If the constants of motion fi fulfil an additional global integrability condition,
namely, if all their pairwise Poisson brackets vanish, one says that they are in
involution. If there exist n constants of motion in involution, the system is said
to be integrable. All the exactly solvable models usually taught in a course on
classical mechanics are of this type. This class of systems will be studied in
Chap. 11.

We note that, locally, there are always (2n−1) functionally independent con-
stants of motion. Indeed, Proposition 3.2.17 provides local charts (U,κ) such
that (XH )�U = ∂κ

1 . The corresponding coordinate functions (κ2, . . . , κn) are
constants of motion on the open subset U . However, in general these local con-
stants of motion cannot be extended to the whole phase space in a functionally
independent way.

As a matter of fact, many examples belong both to classes (a) and (b).
We conclude this section with a simple example which illustrates that a reduction

may allow to draw conclusions about the qualitative behaviour of the dynamics of
the full system.

Example 9.1.11 Consider the Hamiltonian system with Hamiltonian

H = 1

2

(
p2

1 + p2
2 + ω2

1q
2
1 + ω2

2q
2
2

)

on the phase space M = T∗(R \ {0}) × T∗(R \ {0}). The functions

Hi := 1

2

(
p2

i + ω2
i q

2
i

)
, i = 1,2,

are constants of motion. Every h = (E1,E2) ∈ R
2 fulfilling E1,E2 
= 0 is a regular

value of (H1,H2). The corresponding level set Σ is a two-dimensional torus. In
angle coordinates φ1, φ2 defined by

qi =
√

2Ei

ωi

sinφi, pi =√2Ei cosφi,

XΣ
H is given by

XΣ
H = ω1∂φ1 + ω2∂φ2 (9.1.31)

(Exercise 9.1.8). If ω1/ω2 is rational, the integral curves are closed and hence iso-
morphic to S1. If ω1/ω2 is irrational, every integral curve is dense in Σ .

Exercises
9.1.1 Prove that a Lagrangian is regular iff it satisfies (9.1.7).
9.1.2 Prove Formula (9.1.8).
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9.1.3 Prove that in bundle coordinates qi and q̇i on TQ, the equations for the in-
tegral curves of the vector field XE defined by (9.1.11) are equivalent to the
Euler-Lagrange equations (9.1.9).

9.1.4 Show that if the vector field X̃H defined by (9.1.19) takes values in D̂, it is
tangent to the constraint manifold M = FL(D).
Hint. Show that, in bundle coordinates qi and q̇i on TQ, the integral curves
t �→ (q(t), q̇(t)) of X̃E satisfy d

dt
q(t) = q̇(t).

9.1.5 Prove that the distribution F defined by (9.1.23) satisfies D̂ω ⊕ F = D̂.
Hint. Show that the distribution D̂ is coisotropic and that D̂ω ∩ TM = 0.

9.1.6 Show that the matrix 〈π∗μb,Za〉 in Eq. (9.1.26) is non-degenerate.
9.1.7 Analyze the Hamiltonian description of linear nonholonomic constraints,

given in this section, in terms of the bundle coordinates qi , pi , q̇i and ṗi

on TT∗Q induced by coordinates qi on Q.
9.1.8 Prove Formula (9.1.31).
9.1.9 Let (M,ω,H) be a Hamiltonian system and let m0 be a regular point of H .

Show that there exists a local Darboux chart (U,κ) at m0 with coordinates
x = (q,p) such that

κ ◦ Φt ◦ κ−1(x) = x + (t,0, . . . ,0), p1 = H�U

for all (t,x) ∈ R × R
2n for which the left hand side of the first equation is

defined. From the first equation we read off

κ1
(
Φt(m)

)= κ1(m) + t, κi

(
Φt(m)

)= κi(m), 1 < i ≤ 2n,

that is, q1 is the local coordinate along the flow line. A chart of this type is
called a Hamiltonian flow box chart.

9.2 Examples

In this section we discuss three classes of examples, which are important both in
mathematics and in physics. Each of them will be taken up again later on.

Example 9.2.1 (Geodesic flow) Let (M,g) be a Riemannian manifold. Consider
the cotangent bundle T∗M , endowed with the natural symplectic structure ω = dθ .
Using the isomorphism g: TM → T∗M , we can transport this structure to the tangent
bundle:7

θL := g∗θ, ωL := dθL = g∗ω.

This way, TM becomes a symplectic manifold. As the Hamiltonian, we choose the
energy function

E: TM → R, E(X) := 1

2
g(X,X). (9.2.1)

7Cf. Remark 9.1.2/1 and recall that g is the Legendre transformation induced by the Lagrangian
L(X) = 1

2g(X,X).
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The Hamiltonian vector field of E is referred to as the geodesic vector field of
(M,g). Let us analyze the corresponding Hamilton equations in bundle coordinates
qi and vi on TM induced by local coordinates qi on M . Let qi and pi be the
corresponding bundle coordinates on T∗M . In these coordinates, g is given by

(q,v) �→ (
q,p = g(v)

)

and the tangent mapping is given by

g′
(q,v)

(
Xi∂qi + Y i∂vi

)= Xi∂qi + (gij (q)Y i + gij,k(q)viXk
)
∂pj

,

where gij,k = ∂gij

∂qk . Therefore, using θ = pk dqk , we obtain

(θL)(q,v)

(
Xi∂qi + Y i∂vi

)= θ
(
g′
(q,v)

(
Xi∂qi + Y i∂vi

))= gkl(q)vlXk.

Thus,

θL = gklv
l dqk, ωL = gkl dvl ∧ dqk + gkl,j v

l dqj ∧ dqk. (9.2.2)

In these coordinates, the Hamiltonian takes the form

E(q,v) = 1

2
gij (q)vivj . (9.2.3)

Thus,

dE = 1

2
gij,kv

ivj dqk + gikv
i dvk. (9.2.4)

Using (9.2.4) and (9.2.3), from XE�ωL = −dE one reads off the following local
formula for the Hamiltonian vector field (Exercise 9.2.1):

XE = vk∂qk − vivjΓk
ij ∂vk . (9.2.5)

Here,

Γm
ij := 1

2
gmk(gik,j + gjk,i − gij,k)

are the Christoffel symbols of the Levi-Civita connection8 defined by the metric g.
Thus, the Hamilton equations take the form

q̇k = vk, v̇k = −vivjΓk
ij .

The corresponding Euler-Lagrange equations are

q̈k + q̇i q̇jΓk
ij = 0. (9.2.6)

This is the geodesic equation on (M,g). Thus, the projections of the integral curves
of XE to M are geodesics of the Riemannian structure. A detailed discussion of
models of this type can be found in [1], Sect. 3.7. We will come back to the geodesic
flow in Example 10.6.1.

8In this example we use some facts from Riemannian geometry which go beyond the material of
Sect. 4.4. In part II of this book we will give a concise treatment of the theory of Riemannian
manifolds. For the time being, we refer to standard textbooks, see e.g. [166] or [76].
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Example 9.2.2 (Hamiltonian systems on Lie groups) We take up Example 8.3.4
and consider a Hamiltonian system (T∗G,ω,H), where G is a Lie group with Lie
algebra g, ω is the canonical symplectic form on T∗G and H ∈ C∞(T∗G). We
determine the Hamiltonian vector field XH in the (inverse) left trivialization G ×
g → T∗G given by (8.3.6). For that purpose, for (a,μ) ∈ G×g∗ we make the ansatz

XH(a,μ) = (L′
aA,ρ

)

with A ∈ g and ρ ∈ g∗ and analyze the defining equation

ω
(
XH (a,μ),Y

)= −dH(Y)

for arbitrary tangent vectors Y = (L′
aB,σ ) at (a,μ). By (8.3.8), the left hand side

reads

ω
(
XH (a,μ),Y

)= 〈ρ,B〉 − 〈σ,A〉 − 〈μ, [A,B]〉.
For the right hand side, we compute

dH(Y) = d

dt �0

H
(
a exp(tB),μ + tσ

)= (Ha)
′
μ(σ ) + (Hμ)′a ◦ L′

a(B)

with the induced functions Ha :g∗ → R and Hμ:G → R. Viewing the linear map-
pings (Ha)

′
μ : g∗ → R and (Hμ)′a ◦L′

a : g → R as elements of g and g∗, respectively,
we obtain

dH(Y) = 〈σ, (Ha)
′
μ

〉+ 〈(Hμ)′a ◦ L′
a,B
〉
.

We read off

A = (Ha)
′
μ, ρ = −(Hμ)′a ◦ L′

a − ad∗((Ha)
′
μ

)
μ. (9.2.7)

As a consequence, the Hamilton equations are

ȧ = L′
a

(
(Ha)

′
μ

)
, μ̇ = −(Hμ)′a ◦ L′

a − ad∗((Ha)
′
μ

)
μ. (9.2.8)

In the special case where H is invariant under the action of G by left translation,
H ′

μ = 0 and the Hamilton equations read

ȧ = L′
a

(
(Ha)

′
μ

)
, μ̇ = −ad∗((Ha)

′
μ

)
μ. (9.2.9)

Finally, using (8.3.8) and (9.2.7), for the Poisson bracket of f,g ∈ C∞(T∗G) we
obtain

{f,g}(a,μ) = ω
(
Xf (a,μ),Xg(a,μ)

)

= 〈−(fμ)′a ◦ L′
a − ad∗((fa)

′
μ

)
μ, (ga)

′
μ

〉

− 〈−(gμ)′a ◦ L′
a − ad∗((ga)

′
μ

)
μ, (fa)

′
μ

〉− 〈μ,
[
(fa)

′
μ, (ga)

′
μ

]〉
,

that is,

{f,g}(a,μ)

= 〈(gμ)′a ◦ L′
a, (fa)

′
μ

〉− 〈(fμ)′a ◦ L′
a, (ga)

′
μ

〉+ 〈μ,
[
(fa)

′
μ, (ga)

′
μ

]〉
. (9.2.10)

Models of this type are relevant, for example, in the theory of the top.
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Example 9.2.3 (Hamiltonian systems on coadjoint orbits) Let G be a Lie group and
let g be the Lie algebra of G. By Example 8.2.18/3, the dual vector space g∗ carries
a natural linear Poisson structure, which according to (8.2.18) is given by

{f,h}(μ) = 〈μ,
[
df (μ),dh(μ)

]〉

with μ ∈ g∗ and f,h ∈ C∞(g∗). Let H ∈ C∞(g∗). As discussed in Sect. 8.2, the
Hamiltonian vector field XH on the Poisson manifold g∗ is defined to be the vector
field corresponding to the derivation {H, ·} of C∞(g∗), that is, XH (f ) = {H,f } for
every f ∈ C∞(g∗). Since
(
XH (f )

)
(μ) = {H,f }(μ) = 〈μ,

[
dH(μ),df (μ)

]〉= −〈ad∗(dH(μ)
)
μ,df (μ)

〉
,

we read off

XH (μ) = −ad∗(dH(μ)
)
μ. (9.2.11)

Consequently, the Hamilton equations associated with the Hamiltonian system
(g∗, {, },H) are

μ̇ = −ad∗(dH(μ)
)
μ. (9.2.12)

In coordinates μi with respect to a basis in g∗, this reads

μ̇j = −cl
jkμl

∂H

∂μk

,

where cl
jk are the structure constants with respect to the dual basis in g. As a Hamil-

tonian vector field, XH is tangent9 to the symplectic leaves of g∗, cf. the remark
after Theorem 8.2.20. By Proposition 8.4.3, the leaves coincide with the coadjoint
orbits. Thus, the dynamics of the (Poisson) Hamiltonian system (g∗, {, },H) reduces
to the coadjoint orbits, hence inducing a (symplectic) Hamiltonian system on each
of them. As a consequence of this observation, every Ad∗-invariant function on g∗
is a constant of motion. Let us add that if g admits an Ad-invariant scalar product,
according to Remark 8.4.4, we can identify g∗ with g and the adjoint representation
with the coadjoint representation. Under this identification, the Hamilton equations
take the form

μ̇ = [μ,dH ]. (9.2.13)

One says that (μ,dH) constitutes a Lax pair. In Chap. 11 we will discuss Lax pairs
in some detail.

Exercises
9.2.1 Prove Formula (9.2.5).

9This also follows by direct inspection: from (6.2.3) and (9.2.11) we read off that XH (μ)

coincides—up to the sign—with the value at μ of the Killing vector field of the coadjoint action
generated by dH(μ).
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9.2.2 Analyze the Poisson structure of Example 9.2.3 for the case of the Lie group
SO(3). Compare with the symplectic structures on the coadjoint orbits found
in Example 8.4.5/3 and write down the Hamilton equations for the quadratic
Hamiltonian

H = 1

2

∑

i

aiμ
2
i , ai > 0.

Which physical model is described by this Hamiltonian?
9.2.3 Consider the Euclidean group E(3), defined in Exercise 8.4.2. Show that the

Poisson structure on the dual space g∗ ∼= R
6 of E(3) is given in standard

coordinates (μi, λi), i = 1,2,3, by the Poisson brackets

{μi,μj } = εij
kμk, {μi,λj } = εij

kλk, {λi, λj } = 0.

9.3 The Time-Dependent Picture

In this section we develop a calculus where the time variable is naturally integrated
into the phase space of the system. One of the motivations for doing so is to deal
with explicitly time-dependent Hamiltonians.

Thus, let (M,ω) be the phase space and let H = {Ht : t ∈R} be a smooth family
of Hamiltonian functions. To this smooth family there corresponds a smooth family
of Hamiltonian vector fields, that is, a time-dependent vector field XH , given by

(XH )(t,m) = XHt (m).

Such Hamiltonian systems are called time-dependent or non-autonomous. The spe-
cial case of an autonomous system is of course included. The geometric structure
relevant for the description of such systems is the extended phase space

M̃ = T∗
R× M, ω̃ := pr∗2 ω − pr∗1(dE ∧ dt), (9.3.1)

where t and E denote the standard coordinates on T∗
R∼=R×R and

pr1: M̃ → T∗
R, pr2: M̃ → M,

are the natural projections. In what follows, the latter will usually be omitted. In
local Darboux coordinates qi and pi on M , we have

ω̃ = dpi ∧ dqi − dE ∧ dt.

Points of M̃ ∼=R×R× M will be denoted by (t,E,m).

Remark 9.3.1 For M = T∗Q, the extended phase space (M̃, ω̃) is isomorphic to the
cotangent bundle of the extended configuration space Q̃ =R× Q.

Now, let us define the extended10 Hamiltonian function

H̃ : M̃ →R, H̃ (t,E,m) := H(t,m) − E,

10Sometimes also called the suspended Hamiltonian.
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and consider the extended Hamiltonian system (M̃, ω̃, H̃ ). This is an ordinary (au-
tonomous) Hamiltonian system. Thus, the Hamiltonian vector field X

H̃
of H̃ is

defined by

X
H̃
�ω̃ = −dH̃ , (9.3.2)

and we have LX
H̃
ω̃ = 0, that is, the flow of X

H̃
is a local symplectomorphism. The

relation between XH̃
and the time-dependent vector field XH is given by

X
H̃

= ∂

∂t
+ ∂H

∂t

∂

∂E
+ XH (9.3.3)

(Exercise 9.3.1). Here, XH is trivially extended to M̃ . Thus, the equations for the
integral curves s �→ (t (s),E(s), γ (s)) of X

H̃
are

d

ds
t (s) = 1,

d

ds
E(s) = ∂H

∂t

(
t (s), γ (s)

)
,

d

ds
γ (s) = XH

(
t (s), γ (s)

)
.

(9.3.4)

From the first of these equations we read off t (s) = t0 + s, that is, up to a con-
stant, the parameter s coincides with the time variable t . Moreover, an analogous
calculation as in the proof of Proposition 9.1.9 yields

d

ds
H̃
(
t (s),E(s), γ (s)

)= 0,

that is, H̃ is a constant of motion. Therefore,

H̃
(
t0 + s,E(s), γ (s)

)= H̃
(
t0,E(0), γ (0)

)

and thus

E(s) = E(0) + H
(
t0 + s, γ (s)

)− H
(
t0, γ (0)

)
.

Consequently, the flows Φ̃ of X
H̃

and Φ of XH are related by

Φ̃
(
s, (t,E,m)

)= (t + s,E + H
(
t + s,Φt+s,t (m)

)− H(t,m),Φt+s,t (m)
)
.

(9.3.5)

Remark 9.3.2 In local Darboux coordinates qi and pi on M , the system of
Eqs. (9.3.4) reads

dt

ds
(s) = 1

dE

ds
(s) = ∂H

∂t

(
t (s),q(s),p(s)

)
, (9.3.6)

q̇i (s) = ∂H

∂pi

(
t (s),q(s),p(s)

)
, ṗi(s) = −∂H

∂qi

(
t (s),q(s),p(s)

)
. (9.3.7)

These are the Hamilton equations on the extended phase space. We note that, in
contrast to H̃ , H is not a constant of motion.

Now, let us consider the level sets of H̃ . Since ∂H̃
∂E

= −1, every value of H̃ is

regular and hence every level set is an embedded submanifold of M̃ . Since any two
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Fig. 9.2 The induced vector
field XΣ̃

H̃
spans the

characteristic distribution
Dω

Σ̃ on Σ̃

level sets are mapped onto one another by a shift in the variable E, it suffices to
consider the level set

Σ̃ := H̃−1(0).

Let ι : Σ̃ → M̃ denote the natural inclusion mapping. Since Σ̃ is defined by the
equation E = H(t,m), it is mapped to the graph of H under the reordering

M̃ → (R× M) ×R, (t,E,m) �→ (
(t,m),E

)
.

Suppressing this reordering, we will interpret the natural mapping

grH : R× M → M̃, (t,m) �→ (
t,H(t,m),m

)
, (9.3.8)

as the graph embedding of H (therefore the notation). By Remarks 1.6.12/2 and
1.6.13/5, grH is a diffeomorphism onto Σ̃ . Thus, Σ̃ is connected iff so is M . Since

H̃ is a constant of motion, X
H̃

is tangent to Σ̃ and hence induces a vector field XΣ̃

H̃

on Σ̃ which is ι-related to X
H̃

. We have

XΣ̃

H̃
= (grH )∗

(
∂

∂t
+ XH

)
, (9.3.9)

where grH is viewed as a mapping to Σ̃ and both ∂
∂t

and XH are viewed as vector
fields on R × M (Exercise 9.3.2). Note that their sum coincides with the extended
vector field XH , cf. Sect. 3.4. As shown in Sect. 9.1, the induced 2-form

ωΣ̃ := ι∗ω̃

on Σ̃ has maximal rank and the characteristic distribution Dω
Σ̃ = kerωΣ̃ is spanned

by XΣ̃

H̃
, see Fig. 9.2.

Definition 9.3.3 (Time-dependent canonical transformation) A symplectomor-
phism Φ̃ of the extended phase space M̃ is called a time-dependent canonical trans-
formation of M̃ if Φ̃(Σ̃) ⊂ Σ̃ and Φ̃∗t = t .

Time-dependent canonical transformations of M̃ induce time-dependent canoni-
cal transformations of M :
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Proposition 9.3.4 Every time-dependent canonical transformation Φ̃ of M̃ induces
a smooth mapping Φ : R× M → M by

Φ̃
(
t,H(t,m),m

)= (t,H ◦ Φ(t,m),Φ(t,m)
)
.

For every fixed t , Φ(t, ·) is a canonical transformation of M .

The mapping Φ is called a time-dependent canonical transformation of M .

Proof Since Φ̃ leaves Σ̃ invariant and since grH is an embedding, Φ̃ induces a
diffeomorphism Φ̂ of R× M by

grH ◦ Φ̂ = Φ̃ ◦ grH . (9.3.10)

We set Φ := prM ◦Φ̂ . Then, Φt := Φ(t, ·) is a diffeomorphism of M for every t . To
see that Φt is symplectic, define ιt : M → R×M by ιt (m) := (t,m). Using (9.3.10)
and Φ̂ ◦ ιt = ιt ◦ Φt , we obtain

Φ̃ ◦ (grH ◦ ιt ) = (grH ◦ ιt ) ◦ Φt .

A straightforward computation shows that (grH ◦ιt )
∗ω̃ = ω. Thus, on the one hand,

(
(grH ◦ ιt ) ◦ Φt

)∗
ω̃ = Φ∗

t ω,

whereas on the other hand,
(
(grH ◦ ιt ) ◦ Φt

)∗
ω̃ = (grH ◦ ιt )

∗ ◦ Φ̃∗ω̃ = ω.

This yields the assertion. �

Next, we characterize time-dependent canonical transformations in terms of gen-
erating functions. Thus, let Φ̃ be a time-dependent canonical transformation of M̃

and let ΓΦ̃ ⊂ M̃ × M̃ be its graph. Let qi , pi and q̄i , p̄i be Darboux coordinates
on the first and the second copy of M , respectively. For f ∈ C∞(M̃), we write
f̄ = f ◦ Φ̃ . According to Sect. 8.8, the defining relation for a generating function
S̃ = S̃(q, q̄, t, t̄ ) of the first kind for Φ̃ reads

(
p̄i dq̄i − Ē dt̄

)− (pi dqi − E dt
)= −dS̃. (9.3.11)

Since t̄ = t and since on Σ̃ we have E = H and Ē = H̄ , the restriction S of S̃ to
ΓΦ̃ ∩ (Σ̃ × Σ̃) satisfies

(
p̄i dq̄i − H̄ dt

)− (pi dqi − H dt
)= −dS. (9.3.12)

By comparison of coefficients, we obtain the relations

p̄i = − ∂S

∂q̄i
, pi = ∂S

∂qi
, H̄ = H + ∂S

∂t
. (9.3.13)

Thus, in particular, for every fixed t , the function (q, q̄) �→ S(q, q̄, t) is a generating
function of the first kind for the canonical transformation Φ(t, ·) of M . The corre-
sponding equations for the generating functions of the second, third and fourth kind
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are obtained by replacing the defining relations (9.3.13) by, respectively, (8.8.4),
(8.8.5) and (8.8.6). The relation for the Hamiltonian holds for every choice of S.

Finally, let us study the geometry of Σ̃ under the assumption that M = T∗Q and
ω = dθ , where θ is the canonical 1-form on T∗Q.11 In this situation, according to
Remark 9.3.1, the extended phase space is given by M̃ = T∗(R× Q). Moreover,

θ̃ = pr∗2 θ − pr∗1(E dt) (9.3.14)

is the canonical 1-form on M̃ and we have ω̃ = dθ̃ .

Proposition 9.3.5 The 1-form ι∗θ̃ is relatively invariant with respect to the vec-

tor field XΣ̃

H̃
. It endows Σ̃ with a (strict) contact structure iff the function

ι∗(θ(XH ) − H) vanishes nowhere on Σ̃ .

Proof The first assertion is obvious, because d(ι∗θ̃ ) = ωΣ̃ and XΣ̃

H̃
spans Dω

Σ̃ . We

prove the second assertion. Since XΣ̃

H̃
and X

H̃
are ι-related, for every m ∈ Σ̃ we

have
(
ι∗θ̃
)
m

(
XΣ̃

H̃

)= θ̃ι(m)(XH̃
) = (θ(XH ) − H

)(
ι(m)
)
.

Since X
H̃

vanishes nowhere, we conclude that ι∗θ̃ is non-degenerate on Dω
Σ̃ iff

the function ι∗(θ(XH ) − H) vanishes nowhere. In this case, ker(ι∗θ̃ ) is a hyper-
plane distribution on Σ̃ . To prove that it is a contact structure on Σ̃ , we show that
(ι∗θ̃ ) ∧ (d(ι∗θ̃ ))n is a volume form on Σ̃ and apply Proposition 8.5.12. Since ι∗θ̃ is
non-degenerate on Dω

Σ̃ , the distribution ker(ι∗θ̃ ) is complementary to Dω
Σ̃ . Thus,

it suffices to show that (d(ι∗θ̃ ))n = ωn

Σ̃
is non-degenerate on ker(ι∗θ̃ ). Since ω̃n is

non-degenerate, the kernel of ωn

Σ̃
= ι∗ω̃n has dimension at most 1. Since it contains

kerωΣ̃ = Dω
Σ̃ , it coincides with the latter. Thus, (d(ι∗θ̃ ))n is non-degenerate on

ker(ι∗θ̃ ), indeed. �

Remark 9.3.6

1. Obviously, the forms ω̃, ω̃2, . . . , ω̃n are integral invariants of the extended Hamil-
tonian vector field XH̃

and their pull-backs ι∗ω̃, ι∗ω̃2, . . . , ι∗ω̃n to Σ̃ are integral

invariants of the induced vector field XΣ̃

H̃
.

2. The 1-form ι∗θ̃ is called the Poincaré-Cartan integral invariant. Since on Σ̃ we
have E = H(t,m), in Darboux coordinates it is given by

ι∗θ̃ = pi dqi − H dt.

3. Since the characteristic distribution Dω
Σ̃ of ωΣ̃ is spanned by XΣ̃

H̃
, it is trivial

as a vector bundle and hence orientable. Thus, under the additional assumption

11More generally, we could assume that the symplectic form ω is exact.
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Fig. 9.3 Closed curves γ1
and γ2 in Σ̃ which have the
same flow cylinder

that Σ̃ be compact, it is a hypersurface of contact type. The reader should com-
pare Proposition 9.3.5 with Example 8.5.18/5, which states that T∗Q × R is a
strict contact manifold without any further assumptions. The reader should also
convince himself that, for the class of models defined by (9.1.14), the mysterious
function θ(XH ) − H is nothing but the Legendre transform L ◦ (FL)−1 of the
Lagrangian L. If it does not vanish, (θ(XH ) − H)−1XΣ̃

H̃
is the Reeb vector field

of the contact form ι∗θ̃ , cf. Remark 8.5.17.
4. The reader who feels uncomfortable with the distinguished role which the global

time variable t plays in this section should consult Sect. 16 of Chap. V in the
book of Libermann and Marle [181] for a more intrinsic treatment.

The Poincaré-Cartan integral invariant has the following interesting property. To
formulate it, we observe that, under the flow of XΣ̃

H̃
, every closed (oriented) curve γ

in Σ̃ whose tangent vectors are nowhere parallel to XΣ̃

H̃
generates a two-dimensional

oriented submanifold diffeomorphic to S1 ×R, called the flow cylinder of γ . Here,
the orientation of R is induced by the time evolution. Proposition 4.2.16 implies

Corollary 9.3.7 If γ1 and γ2 are closed curves in Σ̃ whose flow cylinders coincide
as oriented submanifolds, see Fig. 9.3, then

∫
γ1

ι∗θ̃ = ∫
γ2

ι∗θ̃ .

For a further discussion of the Poincaré-Cartan integral invariant we refer to the
book of Arnold12 [18].

Exercises
9.3.1 Prove Formula (9.3.3).
9.3.2 Prove Formula (9.3.9).

12In this book, Arnold develops an almost philosophical attitude towards this integral invariant by
showing that it can be taken as a starting point for building Hamiltonian mechanics. Then, also
symplectic geometry is a derived structure. From a more modern point of view, the reader can
find a lot of interesting thoughts about the unifying power of symplectic and especially of contact
geometry in another paper by Arnold [22], which ends with the statement that “contact geometry
is all geometry”.
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Hint. Show that the mapping grH , given by (9.3.8), satisfies

gr′H ◦ ∂

∂t
=
(

∂

∂t
+ ∂H

∂t

∂

∂E

)
◦ grH .

9.4 Regular Energy Surfaces and Symplectic Capacities

In this section we study the geometry of regular energy surfaces. From this, we
derive some basic statements about the existence of periodic integral curves in au-
tonomous systems.

Thus, let (M,ω,H) be a Hamiltonian system of dimension 2n and let Φ denote
the flow of the Hamiltonian vector field XH . For a regular energy surface Σ of H , let
ι : Σ → M be the natural inclusion mapping and XΣ

H the vector field on Σ induced
by XH . As before, denote ωΣ := ι∗ω and let DωΣ := kerωΣ be the characteristic
distribution of ωΣ , cf. Sect. 9.1. Recall that DωΣ is spanned by XΣ

H and that integral
curves of sections of DωΣ are called characteristics of DωΣ .

On a regular energy surface, dH does not vanish. This implies

Proposition 9.4.1 Let (M,ω,H) be a Hamiltonian system and let Σ be a regular
energy surface of H . The symplectic form ω induces a natural volume form μ on Σ .
This form is invariant under the flow of the induced vector field XΣ

H .

Proof Let Ωω be the canonical volume form on M induced by ω, cf. (8.1.3). Since
dH vanishes nowhere on Σ , it vanishes nowhere on some open neighbourhood U ⊂
M of Σ as well. Hence, there exists a (2n−1)-form σ on U such that Ωω = dH ∧σ

on U . We put μ := ι∗σ . This form does not depend on the choice of σ : let σ ′ be a
second local (2n − 1)-form fulfilling Ωω = dH ∧ σ ′ on some open neighbourhood
U ′ of Σ . Then, (σ −σ ′)∧dH = 0 on U ∩U ′, so that there exists a 2(n−1)-form ρ

on U ∩ U ′ satisfying σ − σ ′ = dH ∧ ρ. But ι∗(σ − σ ′) = ι∗(dH ∧ ρ) = 0, because
ι∗H is constant. It remains to show that μ is XΣ

H -invariant. Since

0 = LXH
Ωω = dH ∧ LXH

σ,

there exists a 2(n − 1)-form τ on U such that LXH
σ = dH ∧ τ . Thus,

LXΣ
H
(μ) = ι∗LXH

σ = ι∗(dH ∧ τ) = 0. �

The existence of an invariant volume form on a regular energy surface has the
following important consequence.

Theorem 9.4.2 (Recurrence Theorem of Poincaré) Let (M,ω,H) be a Hamilto-
nian system and let Σ be a compact regular energy surface. With respect to the
measure on Σ defined by the induced volume form μ, almost every point m ∈ Σ is a
recurrent point, that is, there exists a sequence {tj } with tj → ∞ such that the flow
Φ of XH fulfils

lim
j→∞Φtj (m) = m.
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Proof We denote the measure on Σ defined by the induced volume form μ by
the same symbol. Since Σ is compact, the flow of XH is complete. Let Σ̃ denote
the subset of Σ of points which are not recurrent. We show that μ(Σ̃) = 0. Let
{Bα : α = 1,2,3, . . .} be a basis of the topology of Σ . For every α, let B̃α denote
the subset of Bα of points m for which there exists t0 such that Φt(m) /∈ Bα for all
t ≥ t0. We claim that

Σ̃ =
∞⋃

α=1

B̃α. (9.4.1)

The inclusion ⊃ is obvious. Conversely, assume that m /∈⋃∞
α=1 B̃α . The numbers

α such that m ∈ Bα form a sequence {αj : j = 1,2,3, . . .}. Since m ∈ Bαj
\ B̃αj

for every j , we can construct a sequence {tj } such that tj → ∞ and Φtj (m) ∈ Bαj
.

Since {Bαj
} is a neighbourhood basis for m, this implies that limj→∞ Φtj (m) =

m, that is, m is recurrent. Thus, (9.4.1) holds, indeed, and it suffices to show that
μ(B̃α) = 0 or, equivalently,

μ(Bα \ B̃α) = μ(Bα) (9.4.2)

for all α. For that purpose, let α be fixed and consider the sequence of subsets

Bk
α :=

⋃

j≥k

Φ−j (Bα), k = 0,1,2, . . . .

Since Φk(B
k
α) = B0

α and since Φ preserves the measure, we get μ(Bk
α) = μ(B0

α).
Then, by compactness of Σ , we have μ(B0

α) < ∞ and hence μ(B0
α \ Bk

α) = 0 for
all k. Since Bα ⊂ B0

α , this implies μ(Bα \ Bk
α) = 0 for all k and hence

μ

(⋃

k≥0

(
Bα \ Bk

α

))= 0.

In view of the disjoint decomposition Bα = (Bα

⋂
k≥0 Bk

α) ∪ (
⋃

k≥0(Bα \ Bk
α)), we

conclude that

μ(Bα) = μ

(
Bα

⋂

k≥0

Bk
α

)
.

Using Bα

⋂
k≥0 Bk

α = Bα \ B̃α , we obtain (9.4.2). This proves the theorem. �

From the proof of Theorem 9.4.2 it is clear that instead of requiring Σ to be
compact, it is enough to assume that XΣ

H be complete and that
∫
Σ

μ < ∞. It is
also clear that a similar statement holds for the Liouville measure on M and any
measurable subset of M which is invariant under the Hamiltonian flow.

Obviously, the Recurrence Theorem does not imply the existence of closed inte-
gral curves. From the point of view of physics, the problem whether a Hamiltonian
system possesses periodic integral curves is of great importance.13 This turns out to

13This problem has its origin in celestial mechanics. In particular, it is interesting to ask whether
our planetary systems admits periodic orbits, that is, whether there exist initial conditions to which
the planets would return after a finite time.
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be a deep and difficult question, which has been intensively studied. For a compre-
hensive presentation we refer to the books of Hofer and Zehnder [139] and McDuff
and Salamon [206]. Here, we give an introduction to the subject.

We start with the crucial observations that the existence of periodic integral
curves on a regular energy surface does not depend on the choice of the Hamil-
tonian.

Lemma 9.4.3

1. Let H and F be Hamiltonian functions on M and let Σ be a regular energy
surface of both H and F . Then, there exists a nowhere-vanishing function λ :
Σ → R such that XΣ

F = λXΣ
H . Up to reparameterizations, XΣ

H and XΣ
F have the

same integral curves.
2. Let H be a Hamiltonian function on M and let Σ be a regular energy surface

of H . Up to a reparameterization, every non-constant integral curve of a vector
field on M with values in DωΣ coincides with an integral curve of XH .

Proof 1. Under the assumptions made, dH�Σ and dF�Σ are nowhere-vanishing sec-
tions of the annihilator of TΣ in TM�Σ . Since the annihilator has dimension 1, there
exists a nowhere-vanishing smooth function λ on Σ such that dF = λdH and hence
XΣ

F = λXΣ
H . Let ΦH and ΦF denote the flows of XΣ

H and XΣ
F with domains DH

and DF , respectively. Making the ansatz ΦF
t (m) = ΦH

τ(t,m)(m) for some smooth

function τ : DF →R satisfying τ(0,m) = 0, we find

XΣ
F

(
ΦF

t (m)
)= d

dt
ΦF

t (m) = d

dt
ΦH

τ(t,m)(m) = d

ds �t

τ (s,m)XΣ
H

(
ΦF

t (m)
)

and hence
d

dt
τ (t,m) = λ

(
ΦF

t (m)
)
,

which yields

τ(t,m) =
∫ t

0
λ
(
ΦF

s (m)
)

ds.

Since λ is nowhere vanishing on Σ we may interchange F and H in this argu-
ment. This shows that the mapping (t,m) �→ (τ (t,m),m) is a bijection (in fact, a
diffeomorphism) from DF onto DH .

2. Let X be a section of DωΣ and let γ be a non-constant integral curve of X.
Then, X does not have equilibria in a neighbourhood of γ . By possibly modifying
X outside this neighbourhood, we may assume that it vanishes nowhere on Σ . Since
DωΣ is spanned by XΣ

H , there exists a nowhere-vanishing smooth function λ on Σ

such that X = λXΣ
H . Now, by replacing XΣ

F by X in the proof of point 1 we obtain
the assertion. �

Since the integral curves of XH coincide with the characteristics of DωΣ , cf.
Sect. 9.1, the question

Does a regular energy surface Σ admit a periodic solution of XH ?



450 9 Hamiltonian Systems

can be formulated purely geometrically:

Does a regular energy surface Σ admit a closed characteristic of DωΣ ?

An important class of energy surfaces for which this question can be successfully
addressed is that of energy surfaces which are hypersurfaces of contact type, cf.
Definition 8.5.23. The following proposition shows that in the typical Hamiltonian
systems met in physics, such energy surfaces appear frequently.

Proposition 9.4.4 Let (T∗Q,dθ,H) be a Hamiltonian system with H being of the
form

H(ξ) = T (ξ) + V
(
π(ξ)

)
, ξ ∈ T∗Q,

cf. (9.1.14), and let Σ be a regular energy surface which does not intersect the
zero section of T∗Q. Then, Σ is a strict contact manifold with contact form ι∗θ . If,
additionally, Σ is compact, then it is a hypersurface of contact type.

Proof By assumption, θ(XH ) = 2T vanishes nowhere on Σ . Hence, ι∗θ(XΣ
H ) is

nowhere-vanishing function on Σ and the proof that Σ is a strict contact manifold
with contact form ι∗θ is completely analogous to that of the if-direction of Proposi-
tion 9.3.5. It is, therefore, left to the reader (Exercise 9.4.1). The rest is obvious. �

Now, let Σ be a hypersurface of contact type. Concerning our question, the
first fundamental results were obtained in 1978 by Rabinowitz [249] and Weinstein
[306]. They showed that under some additional topological assumptions, a hyper-
surface of contact type in R

2n admits a closed characteristic. In 1979, Weinstein
invented the general definition of a hypersurface of contact type, cf. [307], and for-
mulated the

Weinstein conjecture Every hypersurface Σ of contact type fulfilling H 1(Σ) = 0
carries a closed characteristic.

The next milestone is due to Viterbo [299]. He proved that every hypersurface
of contact type in R

2n carries a closed characteristic. Here, the assumption that
H 1(Σ) = 0 is not necessary. A breakthrough was made by Ekeland, Hofer and
Zehnder who observed that a special type of symplectic invariants, called capacities
[84, 138], can be used to tackle the Weinstein conjecture. Let us give an introduction
to this approach. For a detailed presentation we refer again to the books of Hofer
and Zehnder [139] and McDuff and Salamon [206]. Let

B2n(r) = {(q,p) ∈ R
2n :‖ q ‖2 + ‖ p ‖2< r2},

Z2n(r) = {(q,p) ∈ R
2n : (q1)2 + (p1)

2 < r2}

denote, respectively, the open ball and the open cylinder of radius r in R
2n, with the

symplectic structure induced from the canonical symplectic structure ω0 on R
2n.
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Definition 9.4.5 A symplectic capacity is a mapping c from the class of all sym-
plectic manifolds, possibly with boundary, of a fixed dimension 2n to the positive
real numbers (including infinity) fulfilling the following axioms:

1. Monotonicity: if there exists a symplectic embedding ϕ : (M,ω) → (N,σ ), then

c(M,ω) ≤ c(N,σ ).

2. Conformality: c(M,aω) = |a|c(M,ω) for all a ∈R, a 
= 0.
3. Nontriviality: c(B2n(1),ω0) = π = c(Z2n(1),ω0).

Every capacity is a symplectic invariant. Indeed, if ϕ : (M,ω) → (N,σ ) is a
symplectomorphism, then ϕ−1 is a symplectomorphism, too. Application of Ax-
iom 1 to both of these mappings yields c(M,ω) = c(N,σ ). While the symplectic
volume is a capacity for n = 1 (Exercise 9.4.2), Axiom 3 implies that it cannot be a
capacity for n > 1, because it is infinite for the cylinder. Thus, provided capacities
exist, they yield new symplectic invariants, different from the volume. For two open
subsets U and V of (M,ω) fulfilling U ⊂ V , Axiom 1 implies c(U) ≤ c(V ). To
extend c to arbitrary subsets A ⊂ M , one puts

c(A) = inf
{
c(U) : A ⊂ U open

}
.

From the axioms we read off the capacities of balls and cylinders of radius r in
(R2n,ω0) (Exercise 9.4.3):

c
(
B2n(r)

)= πr2 = c
(
Z2n(r)

)
. (9.4.3)

This implies in particular that the closure of the open ball of radius r has capacity
πr2, too.

Remark 9.4.6 Assuming that a capacity exists, as an immediate consequence of
(9.4.3) one obtains the famous Nonsqueezing Theorem of Gromov, which states
that the ball B2n(1) cannot be embedded symplectically into the cylinder Z2n(r)

unless r ≥ 1.

Now, let us introduce the capacity of Hofer and Zehnder: consider a symplec-
tic manifold (M,ω,H), possibly with boundary. Let H (M,ω) denote the set of
Hamiltonian functions H satisfying the following.

(a) There exists a compact set K ⊂ Int(M) such that H is constant on M \ K and
0 ≤ H(m) ≤ H(M \ K) for all m ∈ M .

(b) There is a nonempty open subset U ⊂ M on which H vanishes.

Under these assumptions, H(M \ K) = max(H) and XH is complete. We call
a Hamiltonian function H ∈ H (M,ω) admissible iff it does not have a periodic
integral curve of period T ≤ 1. Let us denote the set of admissible Hamiltonians by
Had(M,ω). The Hofer-Zehnder capacity is defined by

cHZ(M,ω) := sup
{
max(H) : H ∈ Had(M,ω)

}
. (9.4.4)

Note that cHZ can be expressed in terms of the Hofer norm (8.8.14),

cHZ(M,ω) = sup
{‖ H ‖: H ∈ Had(M,ω)

}
.
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Theorem 9.4.7 (Hofer-Zehnder) The function cHZ is a symplectic capacity.

While it is easy to show that cHZ fulfils the axioms of monotonicity and confor-
mality (Exercise 9.4.4), it is hard to prove that it fulfils the axiom of nontriviality,
see [139]. The proof requires techniques from the calculus of variations. We also
refer to [139], Sect. 3.5, for examples where cHZ can be calculated explicitly.

Let us derive a criterion for the existence of closed integral curves in terms of the
Hofer-Zehnder capacity.

Lemma 9.4.8 Let (M,ω,H) be a Hamiltonian system and let Σ ⊂ H−1(e) be a
compact regular energy surface. There exist ε > 0, an open neighbourhood U of Σ

and a diffeomorphism ϕ : (e − ε, e + ε) × Σ → U mapping {E} × Σ to a regular
energy surface ΣE of H of energy E.

Proof Choose a Riemannian metric on M and denote the corresponding gradient
vector field of H by ∇H . There exists an open neighbourhood V of Σ where ∇H

is nowhere vanishing. There, we can define the normalized gradient vector field

X̂ = ∇H

‖ ∇H ‖2
.

As in the proof of Proposition 8.9.6, we can extend X̂ from some smaller open
neighbourhood W ⊂ V of Σ to a vector field on M with compact support whose
flow Φ satisfies

H
(
Φt(m)

)= e + t

for all m ∈ Σ and t such that Φt(m) ∈ W . It follows that there exists ε > 0 and an
open neighbourhood U ⊂ W of Σ such that Φ defines a diffeomorphism

ϕ : (e − ε, e + ε) × Σ → U, ϕ(E,m) = ΦE−e(m).

By construction, ϕ({E} × Σ) is a regular energy surface of H with energy E. �

As a consequence of the Lemma, U is foliated by the energy surfaces ΣE ,

U =
⋃

E∈(e−ε,e+ε)

ΣE.

Theorem 9.4.9 (Hofer-Zehnder) Let (M,ω,H) be a Hamiltonian system and let
Σ ⊂ H−1(e) be a compact regular energy surface. Assume that there exists an open
neighbourhood U of Σ with finite Hofer-Zehnder capacity. Then, there exists ε > 0
such that for a dense set of parameters E ∈ (e − ε, e + ε) the energy surface defined
by E contains a periodic integral curve of XH .

Note that the periodic solutions provided by this theorem in general do not lie on
Σ but only nearby.
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Proof We follow [139, §4.1, Thm. 1]. According to Lemma 9.4.8, by possibly
shrinking U we may assume that there exists ε > 0 and a diffeomorphism ϕ :
(e−ε, e+ε)×Σ → U satisfying ϕ({E}×Σ) = ΣE . Moreover, by Lemma 9.4.3/1,
we have the freedom to choose a convenient Hamiltonian function which has Σ as
an energy surface. Thus, let us choose a real number δ fulfilling 0 < δ < ε and a
smooth function f : (e − ε, e + ε) →R fulfilling

f (E) = cHZ(U,ω) + 1 for E ≤ e − δ or E ≥ e + δ

f (E) = 0 for e − δ

2
≤ E ≤ e + δ

2

f ′(E) < 0 for e − δ < E < e − δ

2

f ′(E) > 0 for e + δ

2
< E < e + δ

and let us consider the function F = f ◦ H :M → R. Since F ∈ H (M,ω) and
max(F ) > cHZ(U,ω), XF possesses a periodic integral curve γ (with period
T ≤ 1). This curve must be contained in the open subset

Ũ :=
⋃

E∈(e−δ,e− δ
2 )∪(e+ δ

2 ,e+δ)

ΣE

of U , because XF vanishes outside. On the other hand, since dF = (f ′ ◦H)dH and
since f ′ ◦ H is nowhere vanishing on Ũ , F and H have the same energy surfaces
in Ũ . Now, Lemma 9.4.3/1 yields that, up to a reparameterization, γ is an integral
curve of XH . Thus, for arbitrarily small 0 < δ < ε, we find a periodic integral curve
of XH with energy between e−δ and e+δ. In the above argument, e can be replaced
by any value e′ ∈ (e − ε, e + ε). Then, δ has to be chosen so that

0 < δ < min
{
e′ − e + ε, e + ε − e′}.

This yields the assertion. �

Now, let us turn back to hypersurfaces of contact type. Corollary 8.5.26 implies

Corollary 9.4.10 Let (M,ω) be a symplectic manifold and let Σ be a hypersurface
of contact type. If Σ admits an open neighbourhood U with finite Hofer-Zehnder
capacity, then the characteristic distribution DωΣ of Σ possesses a closed charac-
teristic.

Proof By Proposition 8.5.25 and by the monotonicity of cHZ , we may assume that
on U there exists a Liouville vector field Z transversal to Σ . Then, by Corol-
lary 8.5.26, there exists ε > 0 such that the flow Φ of Z induces a diffeomorphism

ϕ : (−ε, ε) × Σ → U, ϕ(t,m) = Φt(m).

Define H : U → R by H := pr1 ◦ϕ−1 and consider the Hamiltonian system
(U,ω,H). By construction, the hypersurfaces ϕ({E} × Σ) are the energy surfaces
of H . By Theorem 9.4.9, XH possesses a periodic integral curve γ on the hyper-
surface ΣE := ϕ({E} × Σ) for some E ∈ (−ε, ε). Since ΣE is an energy surface
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of H , the induced vector field X
ΣE

H takes values in the characteristic distribution
of ωΣE

and γ is a characteristic of the latter. By point 2 of Corollary 8.5.26, then
pr2 ◦ϕ−1 ◦ γ is a characteristic of DωΣ . �

Remark 9.4.11

1. There are examples of hypersurfaces in R
2n, n ≥ 3, which do not admit any

closed characteristic [104, 105]. Thus, the condition on Σ to be of contact type
cannot be removed.

2. Using the Hofer-Zehnder capacity, one can give an alternative proof of the result
of Viterbo [299] stating that every hypersurface of contact type in R

2n admits a
closed characteristic, see [206, Thm. 12.32] or Sect. 4.3 of [139].

3. For a discussion of the special case M = T∗Q, endowed with the canonical sym-
plectic structure, and H belonging to the class defined by (9.1.14) we refer to
[139]. In this case, some nice geometrical ideas can be applied. In particular, for
E > maxV the problem of finding closed characteristics reduces to the problem
of finding closed geodesics for a special metric on T∗Q, called the Jacobi metric,
which is constructed from the Hamiltonian.

More generally, one can consider the case of an abstract contact manifold, that
is, one can discard the Hamiltonian and the ambient symplectic manifold. Then the
Weinstein conjecture reads as follows. Does a Reeb vector field on a compact con-
tact manifold admit a periodic integral curve? There are partial results concerning
this question, see [135] and [136]. For a survey on the Weinstein conjecture and re-
lated aspects, in particular those of nearby and so-called almost existence theorems,
we refer to [106]. Some aspects concerning the behaviour of a Hamiltonian system
near a critical integral curve will be presented in the next section.

Exercises
9.4.1 Carry over the proof of Proposition 9.3.5 to Proposition 9.4.4.
9.4.2 Show that for any 2-dimensional manifold (M,ω), the total area | ∫

M
ω| is a

symplectic capacity.
9.4.3 Prove Eq. (9.4.3).
9.4.4 Prove that the Hofer-Zehnder capacity, defined by (9.4.4), fulfils the axioms

of monotonicity and conformality.

9.5 The Poincaré Mapping and Orbit Cylinders

The aim of this section is to study the dynamics of a Hamiltonian system near a pe-
riodic integral curve. An important tool for this is the Poincaré mapping introduced
in Sect. 3.7. As in that section, depending on the context, by an integral curve we
mean the curve itself or the corresponding submanifold, cf. Proposition 3.2.11. If γ

is periodic, all of its points are regular with respect to H . Therefore, when study-
ing the behaviour of the flow in the vicinity of γ , by modifying H outside of some
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neighbourhood of γ we may assume H to be a submersion if necessary. In particu-
lar, there exists an open neighbourhood of γ in H−1(H(γ )) which is an embedded
submanifold of M . We will refer to such a neighbourhood as a local energy surface
of γ .

Our first aim is to show that in the case of a Hamiltonian system the decom-
position of the phase space into energy surfaces induces a decomposition of every
Poincaré mapping into a family of symplectomorphisms.

Proposition 9.5.1 Let (M,ω,H) be a Hamiltonian system and let γ be a periodic
integral curve of XH . Let m0 ∈ γ and let (P,W ,Θ) be a Poincaré mapping of γ

at m0.

1. P can be shrunk so that it is foliated by embedded submanifolds

PE := P ∩ H−1(E)

with E in some open interval I containing E0 = H(m0).
2. For every E ∈ I , the submanifolds PE and WE := W ∩PE are symplectic sub-

manifolds of (M,ω) and the mapping ΘE : WE → PE , induced by restriction
of Θ , is a symplectomorphism onto its image.

The triple (PE0 ,WE0 ,ΘE0) is a Poincaré mapping for γ with respect to the flow
induced on a local energy surface of γ . Accordingly, it is called an isoenergetic
Poincaré mapping for γ .

Proof 1. Since XH is transversal to P , all points of P are regular with respect
to H . Hence, H�P is a submersion and the Constant Rank Theorem yields a local
chart (U,κ) on P at m0 with image B × I ⊂R

2n−1, where B is some open ball in
R

2n−2 and I is some open interval containing H(m0) such that κ(H−1(E) ∩ U) =
B × {E}. If we replace P by P ∩ U , we obtain the assertion.

2. Let E ∈ I and let j : PE → M denote the natural inclusion mapping. With-
out loss of generality, we may assume that H is a submersion on M . Then, PE

is a submanifold of some regular energy surface ΣE ⊂ H−1(E). Since the charac-
teristic distribution of ωΣE

is spanned by the induced vector field X
ΣE

H , the kernel
of (ωm)�TmΣE

is spanned by XH (m). Since XH (m) /∈ TmPE and since the codi-
mension of TmPE in TmΣE is 1, we conclude that (ωm)�TmPE

= (j∗ω)m is sym-
plectic. This shows that PE is a symplectic submanifold of M . Next, since Θ is
defined by the flow of XH and H is a constant of motion, Θ restricts to a mapping
ΘE : WE → PE . Since Θ is a diffeomorphism onto its image and since WE and
PE are embedded submanifolds of W and P , respectively, ΘE is a diffeomor-
phism onto its image, too. It remains to prove that ΘE is symplectic, that is,

Θ∗
E

(
j∗ω
)= j∗ω.

By Formula (3.7.2), for m ∈ WE , we have

j ◦ ΘE(m) = Φτ(m)

(
j (m)

)
,
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where τ denotes the first return time function of P . To calculate the tangent map-
ping of j ◦ ΘE at m, let X ∈ TmWE and let t → δ(t) be a curve representing X.
Then,

(j ◦ ΘE)′m(X) = d

dt �0

Φτ(δ(t))

(
j
(
δ(t)
))

= d

dt �0

Φτ(δ(t))

(
j (m)

)+ d

dt �0

Φτ(m)

(
j
(
δ(t)
))

= τ ′(X)XH

(
Φτ(m)

(
j (m)

))+ (Φτ(m))
′ ◦ j ′(X)

= (Φτ(m))
′{τ ′(X)XH

(
j (m)

)+ j ′(X)
}
,

where τ ′(X) ∈R. Using this and (Φt )
∗ω = ω, for X,Y ∈ TmWE we obtain

(
Θ∗

E

(
j∗ω
))

m
(X,Y ) = ωj(m)

(
τ ′(X)XH

(
j (m)

)+ j ′(X), τ ′(Y )XH

(
j (m)

)+ j ′(Y )
)

= τ ′(X)ωj(m)

(
XH

(
j (m)

)
, j ′(Y )

)

+ τ ′(Y )ωj(m)

(
j ′(X),XH

(
j (m)

))+ (j∗ω
)
m
(X,Y ).

Up to a factor, the first term yields dH(j ′(Y )) = Y(H ◦ j) = 0, because H ◦ j = E.
In the same way, the second term vanishes. Thus, ΘE is symplectic, indeed. �

Remark 9.5.2

1. The Uniqueness Theorem 3.7.5 implies a uniqueness theorem for the isoener-
getic Poincaré mapping (Exercise 9.5.1).

2. Periodic points of Θ correspond to periodic integral curves of XH . In particular,
ΘE0(m0) = m0, where H(m0) = E0. We show that the eigenvalues of the tangent
mapping

(ΘE0)
′
m0

: Tm0PE0 → Tm0PE0 (9.5.1)

coincide with the Floquet multipliers of γ , cf. Remark 8.2.11/1. Since (ΘE0)
′
m0

is given by the restriction of Θ ′
m0

to the invariant subspace Tm0PE0 ⊂ Tm0P
and since the codimension of this subspace is 1, the spectra of (ΘE0)

′
m0

and
Θ ′

m0
differ by a single eigenvalue λ. On the other hand, by Proposition 3.7.6,

the spectra of Θ ′
m0

and (ΦT )′m0
differ by the single eigenvalue 1. Hence, the

spectra of (ΘE0)
′
m0

and (ΦT )′m0
differ by the two eigenvalues λ and 1. Since

both mappings are symplectomorphisms, by Proposition 7.4.1/4, they have unit
determinant. Thus, λ = 1 and hence the eigenvalues of (ΘE0)

′
m0

coincide with
the Floquet multipliers, indeed.

Next, we will prove that periodic integral curves of Hamiltonian systems are not
isolated. Rather, they appear in 1-parameter families called orbit cylinders.

Definition 9.5.3 (Orbit cylinder) Let (M,ω,H) be a Hamiltonian system. An orbit
cylinder of (M,ω,H) is an embedding ζ : S1 × I → M , where I is some open
interval, such that ζ(S1 × {c}) is the image of a periodic integral curve of XH for
every c ∈ I . If H ◦ ζ(S1 × {c}) = c, then ζ is called regular.
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For a regular orbit cylinder, the parameter labelling the periodic integral curves
coincides with the energy. Therefore, a regular orbit cylinder intersects every en-
ergy surface transversally. This implies, in particular, that regular orbit cylinders are
symplectic submanifolds: since their tangent spaces are pointwise spanned by XH

and some vector Y satisfying dH(Y) 
= 0, the 2-form ζ ∗ω vanishes nowhere.

Theorem 9.5.4 (Existence of orbit cylinders) Let (M,ω,H) be a Hamiltonian sys-
tem and let γ be a periodic integral curve of XH . If 1 is not a Floquet multiplier
of γ , then there exists an open interval I containing E0 = H(γ ) and a regular orbit
cylinder ζ : S1 × I → M such that γE0 = γ .

Proof Choose m0 ∈ γ . According to Proposition 9.5.1, there exists a Poincaré map-
ping (P,W ,Θ) for γ at m0 such that P is foliated by embedded submanifolds
PE = P ∩ H−1(E). We choose a local chart (U,κ) on P at m0, adapted to
this foliation. Without loss of generality, we may assume that κ(m0) = (0,E0)

and κ(U) = R
2n−2 × I with some open interval I containing E0. Denote W̃E0 :=

pr1 ◦κ(WE0) ⊂ R
2n−2 and let

Θ̃ = κ ◦ Θ ◦ κ−1: W̃E0 × I → R
2n−2 × I

be the local representative of Θ . Consider the mapping

ϕ : W̃E0 × I → R
2n−2, ϕ(x,E) := pr1

(
Θ̃(x,E) − x

)
.

Since Θ(m0) = m0, this mapping vanishes at the point (0,E0). We claim that ϕ

fulfils the assumptions of the Implicit Function Theorem of classical calculus at
that point. To see this, let ϕE0 denote the induced mapping x �→ ϕE0(x) := ϕ(x,E0)

and let Y ∈ R
2n−2 be such that (ϕE0)

′
0(Y) = 0. Then, Θ̃ ′

(0,E0)
(Y,0) = (Y,0), that

is, (Y,0) is an eigenvector of Θ̃ ′
(0,E0)

with eigenvalue 1. Since the eigenvalues of

the restriction of Θ̃ ′
(0,E0)

to the invariant subspace R
2n−2 coincide with the Floquet

multipliers of γ and since, by assumption, 1 is not among them, we conclude Y = 0.
Therefore, (ϕE0)

′
0 is bijective. Now, the Implicit Function Theorem yields that I

can be shrunk so that there exists a differentiable mapping h : I → W̃E0 satisfying
ϕ(h(E),E) = 0 and hence Θ̃(h(E),E) = (h(E),E) for all E ∈ I . Let us denote
ψ(E) = κ−1(h(E),E). By construction, ψ yields a fixed point of Θ , that is, a point
on a periodic integral curve, for every energy value E ∈ I . Finally, using ψ and the
flow Φ of XH , we construct the desired orbit cylinder: let τ be the first return time
function of P . Consider the mapping

ζ0 :R× I → M, ζ0(t,E) := Φtτ(ψ(E))

(
ψ(E)

)
.

Since Φτ(ψ(E))(ψ(E)) = Θ(ψ(E)) = ψ(E), this mapping is 1-periodic,

ζ0(t + 1,E) = Φ(t+1)τ (ψ(E))

(
ψ(E)

)= Φtτ(ψ(E))

(
ψ(E)

)= ζ0(t,E).

Thus, it induces a smooth mapping ζ : S1 × I → M . Obviously, ζ is an injective
immersion. By construction, ζ(S1 × {E}) is the image of a periodic integral curve
of XH and ζ(S1 × {E0}) = γ . It remains to prove that ζ is an embedding, that is,
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that it is open onto its image. By shrinking I once again we may assume that ζ

extends to a continuous mapping ζ̄ on the closure S1 × I . Since S1 × I is compact,
we can apply the argument of Remark 1.6.13/2, which showed that every compact
submanifold is embedded, to prove that ζ̄ is open onto its image. Then, so is ζ . �

Remark 9.5.5 The orbit cylinder at γ provided by Theorem 9.5.4 is unique in the
following sense. If ζ̃ : S1 × Ĩ → M is another orbit cylinder containing γ , there
exists an open interval Î ⊂ I ∩ Ĩ containing E0 and a smooth family of diffeomor-
phisms ϕE : S1 → S1, E ∈ Î , such that ζ̃ (x,E) = ζ(ϕE(x),E) for all x ∈ S1 and
E ∈ Î .

Now, we combine orbit cylinders with the Poincaré mapping.

Proposition 9.5.6 Let ζ : S1 × I → M be a regular orbit cylinder, let E0 ∈ I and
let (P,W ,Θ) be a Poincaré mapping for γE0 . Assume that P is foliated by level
sets PE of H according to Proposition 9.5.1, with E in some open interval J con-
taining E0.

1. There exists a unique embedding ι : I ∩ J → M such that P ∩ γE = ι(E) for all
E ∈ I ∩ J .

2. For all E ∈ I ∩J , (P,W ,Θ) is a Poincaré mapping for γE and (PE,WE,ΘE)

is an isoenergetic Poincaré mapping for γE .

Proof The embedded submanifolds P and ζ(S1 ×I ) are transversal, because XH is
transversal to the former and tangent to the latter. Thus, by the Transversal Mapping
Theorem 1.8.2, the intersection is an embedded submanifold of M . Obviously, the
intersection can be parametrized by E ∈ I ∩ J . The proof of point 2 is left to the
reader (Exercise 9.5.2). �

Since Proposition 9.5.6 implies that the isoenergetic Poincaré mappings ΘE de-
pend smoothly on E, we conclude

Corollary 9.5.7 The Floquet multipliers of the periodic integral curves γE of a
regular orbit cylinder depend smoothly on E.

In general, a regular orbit cylinder cannot be extended to all E ∈ R. Rather, it will
meet periodic integral curves having 1 among their Floquet multipliers or it may
degenerate to an equilibrium. Under certain conditions, the orbit cylinder can be
continued nonetheless, though in a nonregular way, see e.g. [1, Thm. 8.2.4]. Usually,
however, bifurcation phenomena like the degeneration to an equilibrium already
mentioned or a splitting into several new orbit cylinders will occur. A discussion
of the types of bifurcations present in Hamiltonian systems with two degrees of
freedom can be found in [1, §8.6]. The following classical result of Lyapunov [188]
which dates back to 1907 describes bifurcation of an orbit cylinder from a linearly
stable equilibrium under certain non-resonance conditions. The periodic solutions
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can be viewed as nonlinear continuations of the linear normal modes of the system.
They have periods close to the periods of the linearized system.

Theorem 9.5.8 (Lyapunov Centre Theorem) Let (M,ω,H) be a Hamiltonian sys-
tem, let m0 be an equilibrium of XH of energy E0 = H(m0) and let {λ1, . . . , λn}
be a basis set14 of characteristic exponents for m0. Assume that λ1 = iα with α > 0
and that λj is not an integer multiple of λ1 for j = 2, . . . , n. Then, there exists δ > 0
and a regular orbit cylinder with energy interval (E0,E0 + δ) such that in the limit
E → E0, the integral curves γE approach m0 and the period of γE approaches 2π

α
.

Moreover, the set of Floquet multipliers of γE , counted with multiplicities, tends to

{e 2π
α

λ2, e
2π
α

λ2 , . . . , e
2π
α

λn, e
2π
α

λn}.

Proof Since the statement is of local character, we may assume (M,ω) to be given
by R

2n with the standard symplectic structure. Moreover, we can put m0 = 0 and
E0 = H(m0) = 0. We denote Q := 1

2H ′′(0) and view it as a quadratic form on
R

2n. Moreover, we denote A := Hessm0(XH ). One can show that the Hamiltonian
vector field XQ coincides with the linear vector field on R

2n represented by A (Ex-
ercise 9.5.4). The basic idea of the proof is to rescale15 the Hamiltonian as

Hε(x) = 1

ε2
H(εx), x ∈R

2n,

with ε ∈R. Then, H0 =Q = 1
2H ′′

ε (0). A brief computation reveals

εXHε(x) = XH (εx), x ∈R
2n.

Thus, if ε 
= 0 and if γ is a periodic integral curve of XHε , then εγ is a periodic
integral curve of XH with the same period. Hence, we may proceed as follows.
First, we determine a periodic integral curve γ0 of XH0 = XQ = A. Then, we use
the Implicit Function Theorem to generate from γ0 a family of closed curves γε for
small values of ε such that γε is an integral curve of XHε . Finally, we pass to the
curves εγε and express ε in terms of the energy E, which yields the desired integral
curves γE .

To find a periodic integral curve γ0 of A, we use the fact that A has a pair of
eigenvalues given by ±iα. Accordingly, there exists a symplectic basis {e1, . . . , e2n}
such that A has the form

A =
⎡

⎣
0 α 0

−α 0 0

0 0 AF

⎤

⎦

14See Remark 8.2.11/2.
15This is a standard tool from bifurcation theory also called the blowing up technique, see [1] for
historal references.
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with respect to the decomposition R
2n = F1 ⊕ F2 ⊕ F , where F1 = Re1, F2 =

Ren+1, and F is spanned by e2, . . . , en, en+2, . . . , e2n. Then,

Φ
Q
t = etA =

⎡

⎣
cos(αt) sin(αt) 0

− sin(αt) cos(αt) 0

0 0 etAF

⎤

⎦ ,

hence all points of F1 ⊕ F2 are periodic with period T0 := α
2π

. Thus, for γ0 we may
choose the integral curve of A through the point x0 = e1. To compute Q(x0), we
observe that A�F1⊕F2 is the Hamiltonian vector field of the quadratic form (q,p) �→
1
2α(q2 + p2) on the symplectic vector space F1 ⊕ F2. Since a quadratic form is
uniquely determined by its first partial derivatives, and hence by its Hamiltonian
vector field (in case it is defined on a symplectic vector space), we conclude that
Q�F1⊕F2(q,p) = α

2 (q2 + p2). Thus, Q(x0) = α
2 .

Next, to generate the curves γε from γ0, we use the same idea as in the proof of
Theorem 9.5.4, that is, we look for solutions of the equation

Φ
Hε
t (x) − x = 0 (9.5.2)

in the variables x close to x0 and t close to T0 for small ε. Now, for ε = 0, the
set of solutions (t,x) of this equation is given by the continuum t = T0 and x ∈
F1 ⊕ F2. In order to obtain (T0,x0) as an isolated solution for ε = 0, one must
impose appropriate constraints on the set of solutions of (9.5.2). First, we require
x ∈ F1 ⊕ F , because this subspace is transversal to γ0. Second, we require

Hε(x) = α

2
. (9.5.3)

To implement this condition, write x = qe1 + y ∈ F1 ⊕F as a pair (q,y) with q ∈R

and y ∈ F , and consider (9.5.3) as an equation in the indeterminate q . Since for
ε = 0 and y = 0 we have the unique solution q = 1 and since

(
∂Hε(q,y)

∂q

)

�(q=1,y=0,ε=0)

= α 
= 0 ,

the Implicit Function Theorem yields a smooth function (y, ε) �→ q(y, ε), defined
for y in a neighbourhood of 0 in F and for small ε, such that Hε(q(y, ε),y) = α

2 .
Finally, since Hε is invariant under ΦHε , it suffices to consider Eq. (9.5.2) on the
energy surface defined by (9.5.3). This can be achieved by applying the orthogonal
projection pr : R2n → F2 ⊕ F , because the latter is bijective in a neighbourhood of
the point (q(0, ε),0) in that energy surface. Thus, we arrive at the equation

ϕ(y, t; ε) := pr
(
Φ

Hε
t

(
q(y, ε),y

)− (q(y, ε),y
))= 0

in the variables y ∈ F and t ∈ R close to y = 0 and t = T0. For the matrix of the
partial derivatives of ϕ = (ϕF2 , ϕF ) with respect to y and t at the solution y = 0,
t = T0 and ε = 0 we find

∂(ϕF2 , ϕF )

∂(t,y) �y=0,t=T0,ε=0
=
[

α 0
0 eT0AF − 1F

]
. (9.5.4)
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Since, by assumption, none of the eigenvalues of AF is an integer multiple of α

and since T0 = 2π
α

, the linear mapping eT0AF does not have 1 as an eigenvalue.
Therefore, (9.5.4) is bijective. Now, the Implicit Function Theorem yields a map-
ping ε �→ (y(ε), T (ε)) for small ε such that ϕ(y(ε), T (ε), ε) = 0. Thus, we obtain
a mapping ε �→ x(ε) := (q(y(ε), ε),y(ε)) ∈ R

2n such that x(ε) is a periodic point
of XHε with period T (ε). Let γε be the corresponding periodic integral curve of
XHε . As explained above, then εγε is a periodic integral curve of XH with period
T (ε). Obviously, for ε → 0, these integral curves approach m0 and the period T (ε)

approaches T0 = 2π
α

. Moreover, (Φ
Hε

T (ε))
′
x(ε) approaches (Φ

Q
T0

)′0 = eT0A. Taking the
affine subspace εx(ε) + F as a Poincaré section for the integral curve εγε , it is
easy to see that for ε → 0, the Floquet multipliers of this integral curve tend to the
eigenvalues of eT0AF , that is, to

eT0λ2, eT0λ2 , . . . , eT0λn, eT0λn .

It remains to express ε for ε > 0 by the energy E with respect to H : since

E = H(εγε) = ε2Hε(γε) = 1

2
ε2α,

we obtain ε(E) =
√

2E
α

and thus γE := ε(E)γε(E) is a periodic integral curve of XH

of energy E with period T (ε(E)). Now, the construction of the orbit cylinder from
the curves γE is completely analogous to that in the proof of Theorem 9.5.4. �

Remark 9.5.9

1. From the above proof it is clear that the point m0 complements the orbit cylinder
to a two-dimensional embedded topological submanifold. One can show that if
H is of class Cr+2, the embedding is of class Cr and if H is analytic, the embed-
ding is analytic [273]. Moreover, this submanifold is symplectic, because orbit
cylinders are symplectic submanifolds and the tangent space at m0 coincides with
the eigenspace of Hessm0(XH ) corresponding to the pair of eigenvalues ±iα.

2. If the non-resonance condition in the Lyapunov Centre Theorem is violated, no
periodic solutions need exist, see Example 9.5.10 below. However, under certain
additional assumptions, remarkable generalizations have been found. If one ad-
ditionally assumes that the Hessian of H is positive or negative definite, that is,
H ′′(0) > 0 or H ′′(0) < 0, then at least n geometrically distinct periodic solutions
exist. This result belongs to Weinstein [304] and Moser [224]. Moreover, Fad-
dell and Rabinowitz showed the existence of periodic solutions under the weaker
assumption sign(H ′′(0)) 
= 0 [88].

3. One can replace the equilibrium m0 ∈ M by a non-degenerate Morse-Bott min-
imum along a closed symplectic submanifold N ⊂ M and one can ask whether
every level set of H near N carries at least one periodic integral curve. The so-
called generalized Weinstein-Moser conjecture states that this is true. For some
particular cases, this conjecture has been proven, but up to our knowledge, in the
general case the problem is still open. We refer to [106] for a thorough discus-
sion.
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Example 9.5.10 Following Moser [226], we consider the Hamiltonian

H(z, z̄) = 1

2

(|z2|2 − |z1|2
)+ (|z2|2 + |z1|2

)
Re(z1z2) (9.5.5)

on R
4, where zi = qi + ipi . One can show the following (Exercise 9.5.5). The point

z1 = z2 = 0 is an equilibrium. There are no periodic solutions. The eigenvalues
of the linearized system are ±i and the non-resonance condition is not satisfied.
Moreover, the Hessian of H has signature 0.

By the above theorems, for a given periodic integral curve γ , generically there
is a continuum of periodic integral curves nearby. However, each of these curves
lies on a different energy surface. It is interesting to ask whether there exist periodic
integral curves near γ lying on the same energy surface. Thus, our next task will be
the study of the behaviour of our system on a given energy surface near a critical
integral curve. This will be one of the topics of the subsequent section.

Exercises
9.5.1 Prove the statements of Remark 9.5.2.
9.5.2 Prove point 2 of Proposition 9.5.6.
9.5.3 Prove Remark 9.5.5.
9.5.4 Complete the proof of Theorem 9.5.8 by showing that the Hamiltonian vector

field XQ coincides with the linear vector field Hess0(XH ).
Hint. Show that in the standard Darboux coordinates qi,pi on R

2n, both linear
vector fields are represented by the matrix

[
∂2H

∂qi∂pj

∂2H
∂pi∂pj

− ∂2H
∂qi∂qj − ∂2H

∂pi∂qj

]
.

9.5.5 Prove the statements of Example 9.5.10.

9.6 Birkhoff Normal Form and Invariant Tori

The basic idea for our further analysis is to bring the Hamiltonian system to a nor-
mal form. This idea goes back to Poincaré, see [240]. It has been deeply analyzed
and further developed by Birkhoff, see [47]. First, we will prove the normal form
theorem for a symplectomorphism in a neighbourhood of a fixed point. Then, we
will state the analogous theorem for a Hamiltonian near an equilibrium. In both
cases, the unperturbed normal forms give rise to a foliation of the phase space into
invariant tori, whose physical meaning will be discussed in some detail. Next we
comment on KAM theory, which guarantees the persistence of many of these tori
under the perturbation which is caused by considering the full mapping or the full
Hamiltonian. Moreover, using the normal form, we will prove the Birkhoff-Lewis
Theorem, which states the existence of infinitely many periodic points in the neigh-
bourhood of a given periodic integral curve lying on the same energy surface.
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Definition 9.6.1 (r-Elementarity)

1. A fixed point m0 of a symplectomorphism is called r-elementary if some (and
hence any) basis set16 {λ1, . . . , λn} of characteristic multipliers of m0 has the
property that

λ
k1
1 · · ·λkn

n 
= 1

for all integers k1, . . . , kn with 0 <
∑n

i=1 |ki | ≤ r . Analogously, a periodic inte-
gral curve γ of a Hamiltonian vector field is called r-elementary if some basis
set of Floquet multipliers has this property.

2. An equilibrium of a Hamiltonian vector field is called r-elementary if some basis
set (μ1, . . . ,μn) of characteristic exponents of m0 satisfies

k1μ1 + · · · + knμn 
= 0

for all integers k1, . . . , kn with 0 <
∑n

i=1 |ki | ≤ r .

Theorem 9.6.2 (Birkhoff normal form) Let (M,ω) be a symplectic manifold of
dimension 2n and let Ψ be a local symplectomorphism17 of open subsets of M . Let
m0 be an elliptic and 4-elementary fixed point of Ψ . Then, in a neighbourhood of
m0 there exist Darboux coordinates such that Ψ is given by

q̄k = cos(αk)qk − sin(αk)pk + fk, p̄k = sin(αk)qk + cos(αk)pk + gk (9.6.1)

with

αk = ak +
∑n

l=1
βklIl, Il = 1

2

(
q2
l + p2

l

)
. (9.6.2)

Here, {eia1, . . . , eian} is a basis set for the characteristic exponents of m0, βkl is a
real (n × n)-matrix and fk, gk are C∞-functions of the variables qi and pi such
that all their partial derivatives vanish at the origin up to order 3.

Denoting x = (q,p)T, X = diag(a1, . . . , an, a1, . . . , an) and

B = diag(b1, . . . , bn, b1, . . . , bn), bk =
n∑

l=1

βklIl,

up to fourth order, Formula (9.6.1) can be rewritten as

x �→ e−J (X+B)x + · · · . (9.6.3)

The following proof is along the lines of Theorem 7 in [225]. The reader should
recall the notion of a generating function of a symplectomorphism, see Sect. 8.8.

Proof Since the statement of the theorem is local, we may assume M = R
2n, en-

dowed with the canonical symplectic form given by J . Moreover, we can assume

16Cf. Remark 8.2.11.
17It is enough to assume the Ψ is of class C3 [225].
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that the fixed point coincides with the origin of R2n. Since m0 is elliptic, the eigen-
values λk of A := Ψ ′(0) lie on the unit circle. By 4-elementarity, they are all distinct.
Hence, Proposition 7.4.5 yields a symplectic basis such that

A = e−JX. (9.6.4)

Let us decompose Ψ = A ◦ φ. Then, φ′(0) = id. In what follows, for a function F

we denote Fx := (F ′(x))T.

Lemma 9.6.3 There exists a homogeneous polynomial P of order ν + 1 ≥ 3 such
that the Taylor expansion to order ν of φ at the origin is given by

φ(x) = x + JPx(x) + · · · . (9.6.5)

Proof of Lemma 9.6.3 Let us denote φ(x) = (q̄, p̄)T . Since φ′(0) = id, φ has a
generating function of the second kind of the form (q, p̄) �→ qTp̄ + S(q, p̄), where
S has vanishing partial derivatives at the origin up to order 2. Then,

q̄i = qi + ∂

∂p̄i

S(q, p̄), p̄i = pi − ∂

∂qi

S(q, p̄). (9.6.6)

Expanding S(q, p̄) and φ into a Taylor series at the origin and comparing coeffi-
cients in (9.6.6), one finds that P is given by the first non-vanishing Taylor term
of S.

Lemma 9.6.4 Let F(q, p̄) be a homogeneous polynomial of order ν + 1 (the same
order as P) and let τ be the canonical transformation defined by the generating
function of the second kind (q, p̄) �→ qTp̄ + F(q, p̄). Then, the canonical transfor-
mation

Ψ̃ = τ−1 ◦ Ψ ◦ τ (9.6.7)

can be represented by Ψ̃ = A ◦ φ̃, where the Taylor expansion to order ν of φ̃ at the
origin is given by (9.6.5) with P replaced by

P̃(x) = P(x) − F(Ax) + F(x). (9.6.8)

Proof of Lemma 9.6.4 We rewrite (9.6.7) as τ ◦ Ψ̃ = Ψ ◦ τ and compare the terms
of order ν in the Taylor expansion of both sides. The right hand side yields

Ψ ◦ τ(x) = A ◦ φ ◦ τ(x)

= A ◦ φ
(
x + JFx(x)

)

= A
(
x + JFx(x) + JPx

(
x + JFx(x)

))

and the left hand side yields

τ ◦ Ψ̃ (x) = τ ◦ A ◦ φ̃(x)

= τ(Ax + AJP̃x(x))

= Ax + AJP̃x(x) + JFx
(
Ax + AJP̃x(x)

)
.
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Thus, in order ν we obtain the relation

AJ
(
Fx(x) + Px(x)

)= AJP̃x(x) + JFx(Ax).

Multiplying from the left by J−1A−1 and using that A is symplectic, AT JA = J ,
we obtain

(
P̃(x) − P(x) + F(Ax) − F(x)

)
x = 0.

Since all terms in the bracket are homogeneous of degree ν + 1, the assertion fol-
lows.

Proof of Theorem 9.6.2 (continued) Now, we will analyze (9.6.8) in order 3 and 4.
For that purpose, it is convenient to pass to complex variables zk = qk + ipk . In
these variables, the homogeneous polynomials F , P and P̃ take the form

F =
∑

Fρσ zρz̄σ , P =
∑

Pρσ zρ z̄σ , P̃ =
∑

P̃ρσ zρ z̄σ ,

where

zρ =
n∏

k=1

z
ρk

k ,
∑

k

(ρk + σk) = ν + 1.

Moreover, by formula (9.6.4), in these variables the mapping x �→ Ax is given by

(zk, z̄k) �→ (
λkzk, λ

−1
k z̄k

)
.

Thus, Eq. (9.6.8) takes the form
(
λρ−σ − 1

)
Fρσ = Pρσ − P̃ρσ , (9.6.9)

where λρ−σ =∏n
k=1 λ

ρk−σk

k . The factor λρ−σ − 1 vanishes iff

n∑

k=1

(ρk − σk)ak = 2πm (9.6.10)

for some integer m. The order we have to start with is ν = 2. Here,
∑

(ρk +σk) = 3.
This implies, in particular, that

∑
ρk 
=∑σk . On the other hand, since the fixed

point is 4-elementary, the only solution of (9.6.10) is ρ = σ . Thus, λρ−σ −1 does not
vanish and we can choose Fρσ such that P̃ρσ vanishes. By performing the canonical
transformation τ defined by F we obtain a new canonical transformation for which
ν = 3. Here, a similar analysis applies, but the solution ρ = σ is allowed now, so
that P̃ρρ = Pρρ and Fρρ remains undetermined. For ρ 
= σ , we choose Fρσ such
that P̃ρσ vanishes and we fix F by setting Fρρ = 0. Thus, P̃ is a homogeneous
polynomial of order 2 in zkz̄k = 2Ik :

P̃(q,p) = −
∑

k,l

βklIkIl, Ik = 1

2
zkz̄k = 1

2

(
q2
k + p2

k

)
. (9.6.11)

To summarize, by a transformation of the form (9.6.7) we have brought Ψ to the
form Ψ̃ = A ◦ φ̃, with φ̃ given by

x �→ x + JPx + · · · = x − JBx + · · · .
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Using (9.6.4) we conclude that Ψ̃ is given by

x �→ e−JX(x − JBx + · · ·) = e−J (X+B)x + · · · ,
because X,B and J commute. This is the normal form up to order 3 stated in the
theorem. �

Remark 9.6.5

1. Formula (9.6.1) is called the Birkhoff normal form of the symplectomorphism
Ψ in the neighbourhood of the fixed point m0. The coefficients ak and βkl are
uniquely determined by Ψ . Therefore, they are called the Birkhoff invariants
of Ψ .

2. It is obvious from the above proof that the procedure described can be iterated to
arbitrary order.

3. Theorem 9.6.2 applies in particular to the isoenergetic Poincaré mapping of an
r-elementary periodic integral curve of a Hamiltonian system (but of course not
to the period mapping). Along the corresponding orbit cylinder, the Birkhoff
invariants depend smoothly on the energy E. The argument is the same as for the
Floquet multipliers, cf. Corollary 9.5.7.

Definition 9.6.6 Let Ψ be a local symplectomorphism of a symplectic manifold
(M,ω). Let m0 ∈ M be an elliptic 4-elementary fixed point of Ψ given in normal
form (9.6.1). Then, m0 is called non-degenerate if detβ 
= 0.

Now, for a moment, let us ignore the higher order terms fk and gk in (9.6.1) and
let us consider the symplectomorphism

Ψ̂ (x) = e−J (X+B)x,

cf. (9.6.3). Moreover, let us assume that the fixed point m0 is non-degenerate. It is
clear that the functions (I1, I2, . . . , In) define a foliation of the open submanifold

R
2n \ {(q,p) ∈R

2n : Ik = 0 for some k
}∼= Tn × (R+)n

into n-dimensional tori. By formula (9.6.2), the assumption that m0 be non-
degenerate can be rewritten as

det

(
∂αk

∂Il

)

= 0,

that is, the tori can be also labelled by the set (α1, α2, . . . , αn) of angles of rotation.
By this labelling, these tori fall into two classes: a torus is called non-resonant, if
the angles αk are rationally independent, that is, if for k ∈ Z

n we have
n∑

i=1

kiαi /∈ 2πZ. (9.6.12)

Otherwise, the torus is called resonant. Both the resonant and the non-resonant tori
constitute dense subsets. Moreover, the set of non-resonant tori has full measure
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in phase space. Note that the set of resonant tori further decomposes into subsets
consisting of tori, for which there are n − 1, n − 2, . . . ,1 rationally independent
angles αk . All these subsets are also dense and for the case of one independent angle
every point on the corresponding torus is necessarily periodic. From this geometric
picture the following important conclusions can be drawn:

(a) Every neighbourhood of the fixed point contains a periodic orbit of Ψ̂ . Indeed,
since the set of resonant tori with one independent angle is dense, every neigh-
bourhood of the fixed point contains such a torus. On this torus, every point m

is periodic of some period N . Then, {Ψ̂ k(m), k = 1, . . . ,N − 1} is the corre-
sponding periodic orbit.

(b) Every neighbourhood of m0 contains uncountably many invariant tori with the
property that every orbit of Ψ̂ is dense in its torus. Indeed, the set of non-
resonant tori contained in a given neighbourhood is dense in this neighbour-
hood. For each torus of this type, every orbit of Ψ̂ is dense. Density statements
of this type can be shown using arguments from ergodic theory, see e.g. §51
of [18].

Next, let us consider a Hamiltonian system (M,ω,H) and let us assume that
m0 is an elliptic equilibrium of XH , fulfilling a similar non-resonance condition.
Then, by a completely analogous procedure as in the proof of Theorem 9.6.2, in a
neighbourhood of m0 one can bring the Hamiltonian to the following normal form.

Theorem 9.6.7 Let (M,ω,H) be a Hamiltonian system and let m0 ∈ M be a
4-elementary elliptic equilibrium of XH . There exist Darboux coordinates such that

H(q,p) =
∑

l

alIl + 1

2

∑

kl

βklIkIl + · · · , (9.6.13)

with Il given by (9.6.11) and βkl being a uniquely determined n × n matrix.

Proof See Theorem 1.8.11 in [139]. �

Let us discuss the dynamics near the equilibrium by ignoring the higher order
terms in the normal form. The resulting Hamiltonian will be denoted by

Ĥ =
∑

l

alIl + 1

2

∑

k.l

βklIkIl .

We complement the Ik to symplectic polar coordinates by choosing angle coordi-
nates ϑk on the tori:

pk =√2Ik sinϑk, qk =√2Ik cosϑk.

Then,
∑

k

dpk ∧ dqk =
∑

k

dIk ∧ dϑk (9.6.14)
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and the Hamilton equations take the form

ϑ̇k = ∂Ĥ

∂Ik

, İk = 0. (9.6.15)

Thus, the flow of X
Ĥ

leaves the tori Tn × {I } invariant and on each torus we have a
quasiperiodic motion

pk =√2Ik sin(ϑk + ωkt), qk =√2Ik cos(ϑk + ωkt), (9.6.16)

with characteristic frequencies

ωk = ∂Ĥ

∂Ik

= ak +
∑

l

βklIl . (9.6.17)

As above, let us assume that the system is non-degenerate, that is, detβ 
= 0. Then,
since

βkl = ∂ωk

∂Il

,

the invariant tori can be labelled by the frequencies and we have a completely anal-
ogous picture of resonant and non-resonant tori as described after the proof of The-
orem 9.6.2. If a torus ΣI is non-resonant, that is, if the frequencies ω on this torus
are rationally independent,

n∑

i=1

ωiki 
= 0 for all kj ∈ Z, (9.6.18)

each integral curve is dense in ΣI . This can be proved using elementary arguments
from ergodic theory, see §51 of [18]. Since the resonant tori are also dense, for any
neighbourhood of the equilibrium there exists a resonant torus on which we have a
periodic solution. Since, by (9.6.14), the variables Ik Poisson-commute, they consti-
tute a system of n commuting constants of motion, that is, the system defined by Ĥ

is integrable. This notion was already introduced in Sect. 9.1 and will be analyzed
in detail in Chap. 11. In this context, the coordinates (Ik,ϑk) are called action and
angle variables. To summarize, the Birkhoff normal form procedure yields a method
for transforming a Hamiltonian system near an equilibrium into an integrable sys-
tem up to a higher order perturbation.

Remark 9.6.8 (KAM Theory) One can pass to the full Hamiltonian by consider-
ing the higher order terms in (9.6.13) as a small perturbation of Ĥ . Applying the
celebrated KAM18 theory, one can show that many19 among the non-resonant tori
survive20 the perturbation procedure, that is, for these tori the quasiperiodic motion

18KAM refers to original work of Kolmogorov [168, 169], Arnold [11, 12] and Moser [217, 219,
220].
19Those which fulfil an additional, stronger non-resonance condition.
20They are only getting slightly deformed. More precisely, in each step of the perturbation proce-
dure the variables (IK,ϑk) are getting modified.
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persists. For a nice and transparent qualitative discussion we refer the reader to the
book of Arnold [18], paragraph 4 of Appendix 8. There, one can find 6 versions of
the theorem on invariant tori, including the two cases (behaviour near an equilibrium
of an autonomous Hamiltonian and behaviour near a fixed point of a symplectomor-
phism) discussed above. We also recommend the classical textbooks [273], §36,
and [26], Chap. 5. For a more recent overview containing a lot of further references
we refer to [63]. For an abstract discussion, which in particular goes beyond the
Hamiltonian setting, we refer to [270]. We also recommend the pedagogical pre-
sentation by Pöschel [246], which contains a complete proof of the KAM Theorem
in its classical form. In this version, small time-independent perturbations of an au-
tonomous integrable system are considered. We will discuss this case in some detail
in Chap. 11. In all these variants, normal forms of either a symplectomorphism or a
Hamiltonian function play a basic role. There is a beautiful paper by Douady [75],
where the relation between these two aspects is discussed.

Remark 9.6.9 If the characteristic multipliers are r-elementary, by iterating the pro-
cedure of Theorem 9.6.7, one obtains a normal form of order s in the variables Ik ,
with s denoting the integer part of r

2 . On the other hand, if the characteristic expo-
nents satisfy certain resonance conditions, the normal form becomes more compli-
cated. Roughly speaking, it is then impossible to express all of the contributions to
the Hamiltonian up to a given order in terms of variables Ik only. There is a huge
literature on this subject, see [18], Sects. 4, 5 and 6 of Appendix 7 and [26], Sect. 3
of Chap. 7, where the reader can also find a lot of further references. In the case of 2
degrees of freedom, the phase portraits in the neighbourhood of resonant equilibria
can be analyzed in detail, see Sect. 3.2 of Chap. 7 in [26]. An example can be found
in Exercise 9.6.1.

Another important consequence of the Birkhoff Normal Form Theorem is the
following.

Theorem 9.6.10 (Birkhoff-Lewis) Let (M,ω) be a symplectic manifold and let Ψ

be a local symplectomorphism of M . Let m0 be an elliptic,21 non-degenerate and
4-elementary fixed point of Ψ . Then, every neighbourhood of m0 contains infinitely
many periodic orbits of Ψ . The number of periodic orbits with period smaller than
a given constant is finite.

We give a proof of this theorem, except for an analytic estimate (Lemma 9.6.11)
which can be found in [225] or in the appendix of Sect. 3.3. in [165] (written by
Moser). The original work of Birkhoff and Lewis is contained in [48]. We note that
this theorem can be viewed as a generalization of the classical Poincaré-Birkhoff
Theorem (Theorem 9.9.3) which will be discussed in connection with the Arnold
conjecture in Sect. 9.9.

21This assumption can be weakened. It is enough to assume that at least one of the Floquet multi-
pliers lies on the unit circle and is different from 1 [225, Thm. 1].
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Proof By Theorem 9.6.2, we may assume that m0 is the origin of M =R
2n, the lat-

ter endowed with the canonical symplectic structure, and that Ψ is given by (9.6.1).
For given ε > 0, we define rescaled symplectic polar coordinates Ik , ϑk by

qk =√2εIk cosϑk, pk =√2εIk sinϑk.

In the sequel, we use the notation β for the matrix with entries βkl and

I = (I1, . . . , In), ϑ = (ϑ1, . . . , ϑn),

a = (a1, . . . , an), α = (α1, . . . , αn).

Choose 0 < r < 1
2n

, and let

Br :=
{

I ∈R
n :

n∑

k=1

(
2Ik − 1

2n

)2

< r2

}

be the open ball with radius r
2 centred at the point e(0) := ( 1

2n
, . . . , 1

2n
). Due to

1

2n
− r < 2Ik <

1

2n
+ r, 0 < |q|2 + |p|2 = 2ε

∑

k

Ik < ε

(
1

2
+ nr

)
< ε,

Tn × Br is an open subset of Tn × R
n+ contained in the open ε-ball in R

2n centred
at the origin. To begin with, one has to prove the following estimate for the iterates
Ψ j of Ψ . Let Ψ̂ denote the mapping (9.6.1) with Ik replaced by εIk and the higher
order terms fk and gk ignored.

Lemma 9.6.11 For every 0 < r ′ < r and every c1 > 0, there exists ε0 > 0 such that

Ψ j (T × Br ′) ⊂ T × Br

for all 1 ≤ j ≤ c1
ε

and all 0 < ε < ε0. Moreover,

Ψ j − Ψ̂ j = ε−1o1(I,ϑ, ε),

where o1 is some smooth function on Tn × Br ′ such that ε−1o1 and its first partial
derivatives with respect to Ik and ϑk tend uniformly to zero with ε tending to zero.

For the proof, see [225, Lemma 1].
Next, let 0 < r ′′ < r ′ < r < 1

2n
. We show that Ψ̂ has a periodic point in Tn ×Br ′′ .

That is, there exist Ĩ ∈ Br ′′ and some positive integer N such that

(2π)−1Nα(εĨ) ∈ Z
n, (9.6.19)

where we view α = α(I), cf. Formula (9.6.2). Then, every point of the torus Tn ×{Ĩ}
is a fixed point of Ψ̂ N and hence a periodic point of Ψ̂ . To prove this, consider the
open ball Br ′′ centred at e(0). Using ‖βx‖ ≥ ‖β−1‖−1‖x‖ for all x ∈ R

n, where
‖β−1‖ denotes the operator norm, it is easy to see that the image of this ball under
the mapping I �→ α(εI) contains a ball of radius ε ‖ β−1 ‖−1 r ′′, centred at a +
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εβe(0). Thus, the image of Br ′′ under the mapping I �→ (2π)−1Nα(εI) contains a
ball of radius

R = (2π)−1
∥∥β−1

∥∥−1
Nεr ′′,

and hence a cube of side length 2n− 1
2 R. Thus, given r ′′ and ε, we can choose N so

that

εNr ′′ > πn
1
2
∥∥β−1

∥∥.

Then, the side length satisfies 2n− 1
2 R > 1, so that the cube must contain a point of

the lattice Z
n. This proves the existence of periodic points of Ψ̂ in Tn × Br ′′ .

Finally, we prove that there exists a fixed point for some iterate of the full map-
ping Ψ . With the shorthand notation (ϑ (N), I(N)) = Ψ N(ϑ, I), we must show that
the system of equations

I(N) = I, ϑ (N) = ϑ + 2πh, h ∈ Z
n, (9.6.20)

has a solution. For that purpose, first we show that there exists a torus which by
an iterate Ψ N is mapped radially, that is, in such a way that the second equation in
(9.6.20) holds. By Lemma 9.6.11,

ϑ (N) − ϑ = Nα(εI) + ε−1o1(I,ϑ, ε).

On the other hand, as we have just shown, there exists Ĩ ∈ Br ′′ , a positive integer N

and h ∈ Z
n such that

Nα(εĨ) = 2πh.

Using the estimate of Lemma 9.6.11 once again, as well as a version of the Implicit
Function Theorem22 which provides estimates for the domain of the solution, one
obtains that there exists a solution I0 = Ĩ + ε−1o1(ε) ∈ Br ′ solving the equation

ϑ (N) − ϑ = Nα(εI) + ε−1o1(I,ϑ, ε) = 2πh.

Let us denote the torus corresponding to I0 by Tn
0 . It remains to show that the first

equation in (9.6.20) has a solution on Tn
0. By (9.6.14), we have

d

(∑

k

εIk dϑk

)
= ω.

Hence, for any two-dimensional submanifold Σ of M with boundary γ ⊂ Tn
0 ,

Stokes’ Theorem yields
∫

Ψ (γ )

∑

k

εIk dϑk =
∫

γ

Ψ ∗
(∑

k

εIk dϑk

)
=
∫

Σ

Ψ ∗ω =
∫

Σ

ω =
∫

γ

∑

k

εIk dϑk.

Since (9.6.20) implies dϑ (N) = dϑ , we conclude that
∫

γ

∑

k

(
I

(N)
k − Ik

)
dϑk = 0

22See Lemma 3 in Sect. 2 of [225].
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for any closed curve γ in Tn
0 . Thus, there exists a smooth potential S = S(ϑ, ε) on

Tn
0 such that

I
(N)
k − Ik = ∂S

∂ϑk

.

Since every smooth function on a compact manifold has a critical point, there exists
I = I(ϑ, ε) satisfying I(N) = I. This completes the proof of the Theorem. �

Remark 9.6.12 Let γ be an elliptic, r-elementary and non-degenerate periodic in-
tegral curve of energy E of a Hamiltonian system (M,ω,H). Application of the
Birkhoff-Lewis Theorem to an isoenergetic Poincaré mapping (PE,WE,ΘE) at
m0 ∈ γ yields that every neighbourhood of m0 in WE contains infinitely many pe-
riodic points of ΘE , where the number of periodic points with period smaller than
a given constant is finite. Consequently, every neighbourhood of γ in the energy
surface ΣE contains infinitely many points located on periodic integral curves of
XH . Note that this does not imply that the neighbourhood contains these periodic
integral curves.

Example 9.6.13 (Two degrees of freedom) The geometric picture following from
Theorems 9.6.7 and 9.6.10 becomes especially transparent for the case of two de-
grees of freedom, which has been analyzed in detail by Siegel and Moser [273,
§§32–35]. In this case, every Poincaré section PE is 2-dimensional, the invari-
ant tori are circles with radius 2I enclosing the fixed point (0,0) ∈ R

2 and the I -
dependent angle of rotation is given by α(I) = a+βI . Here, non-degeneracy means
β 
= 0. One can show that the concentric circles whose radii fulfil the condition

∣∣∣∣
α(I)

2π
k − l

∣∣∣∣≥
C

kμ
(9.6.21)

for all k, l ∈ Z with k ≥ 1 survive the perturbation caused by passing to the full
mapping Ψ . Here, C and μ are positive numbers, which do not depend on k and l.
Condition (9.6.21) is the strong non-resonance condition, also called Diophantine
condition, which we alluded to in Remark 9.6.8.

It is instructive to try to construct the invariant curves for the full mapping by us-
ing a formal power series expansion for f and g, see §32 in [273]. This way one gets
insight into the role played by the Diophantine condition (9.6.21). Performing this
procedure one gets a formal power series for the invariant curve, indeed. However,
it is impossible to verify the convergence of these series.23 Therefore, a stronger
tool must be used—the rapidly convergent iteration scheme of Kolmogorov. As a
consequence, for the tori fulfilling inequality (9.6.21) one gets convergence, indeed.

23This problem is due to the occurrence of “small divisors” in these power series. We met such
divisors in the proof of Theorem 9.6.2, cf. Eq. (9.6.9). There, in order to solve for the coefficients
Fρσ one has to divide by the number λρ−σ − 1, which is different from zero under the non-
resonance assumption. However, for the convergence of the above power series, non-vanishing of
such numbers is not sufficient. They have to be sufficiently large.
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These tori constitute a Cantor set with non-vanishing measure in R+. In particular,
there exist uncountably many such curves.

The circles for which α is resonant do not survive the perturbation.24 However,
from the Birkhoff-Lewis Theorem we know that we still have periodic integral
curves for the full system. These periodic integral curves cannot lie on the surviving
tori, they must be located between them. In the next section we will draw con-
clusions on stability from this fact. In general, among the periodic integral curves
provided by the Birkhoff-Lewis Theorem there are curves of hyperbolic and elliptic
type. Among the elliptic ones in general we can find again integral curves which are
non-degenerate and 4-elementary. Around them, the above picture is being repro-
duced on a smaller scale. The dynamics in the neighbourhood of hyperbolic integral
curves turns out to be more complicated. For an illustration of these phenomena we
refer to Figs. 8.3-2 and 8.3-3 in [1], which go back to Arnold [12].

Exercises
9.6.1 Analyze the flow of the Hamiltonian

H = 1

2
ε
(
q2 + p2)+ (q3 − 3qp2).

Hint. Consider the cases ε < 0, ε = 0 and ε > 0 separately.
Note. This is an example of a resonance of third order taken from Sect. 4
of [18].

9.7 Stability

For a Hamiltonian vector field, the problem of stability is a rather difficult task. To
understand this, first recall that to every characteristic exponent of an equilibrium
γ with negative real part there corresponds a characteristic exponent with positive
real part, cf. Proposition 8.2.10. Accordingly, to every characteristic multiplier of
a periodic integral curve γ inside the unit circle there corresponds a characteristic
multiplier outside. Hence, γ cannot be asymptotically stable,25 and if it is stable,
then all of its characteristic exponents have zero real part (in case γ is an equilib-
rium) or all of its characteristic multipliers have modulus 1 (in case γ is periodic). In
this case, the stable and unstable manifolds S−(γ ) and S+(γ ) coincide with γ itself
and the whole manifold is a centre manifold. As a consequence, the usual stability
theory for hyperbolic critical integral curves is pointless for Hamiltonian systems,
and little is known in the general case.

In this section, we will limit our attention to autonomous systems and discuss
three special situations. First, we will show that under a special assumption the

24This was already observed by Poincaré.
25Of course, this also follows from the Liouville Theorem 9.1.4.
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Hamiltonian H possesses the properties of a Lyapunov function. Then, we will an-
alyze the case of an equilibrium with purely imaginary characteristic exponents.
Finally, we will discuss periodic integral curves in two degrees of freedom.

Thus, let (M,ω,H) be a Hamiltonian system and let γ be a critical integral
curve. To find a criterion under which H is a Lyapunov function for γ , consider the
second derivative H ′′

m of H at a point m ∈ γ , viewed as a symmetric bilinear form
on TmM . Since H is constant along γ we have H ′′

m(X,Y ) = 0 whenever X or Y is
tangent to γ . Consequently, H ′′

m induces a mapping

Nmγ × Nmγ → R,
([X], [Y ]) �→ H ′′

m(X,Y ), (9.7.1)

called the normal second derivative. If γ is an equilibrium, then Nmγ = TmM and
the normal second derivative coincides with H ′′

m.

Proposition 9.7.1 Let (M,ω,H) be a Hamiltonian system and let γ be a critical
integral curve. If for all m ∈ γ the second normal derivative of H at m is positive
definite, γ is stable.

Let us add that this assumption also implies that H is a Morse-Bott function in
some neighbourhood of γ .

Proof Denote c := H(γ ). Choose a covering of γ by flow box charts (Ui, κi). Since
the chart κi maps γ ∩ Ui onto an open interval of the x1-axis, the normal second
derivative of H at a point m ∈ γ ∩ Ui is given in this chart by the second derivative
of the restriction of H ◦ κ−1

i to the hyperplane defined by x1 = κ1
i (m). Since, by

assumption, the normal second derivative is positive definite, the point κi(m) is a
local mininum of the restriction. Since this is true for all m ∈ γ ∩Ui we conclude that
there exists a neighbourhood Vi of γ ∩Ui in Ui where H(m) > c for all m ∈ Vi \ γ .
Then, V :=⋃i Vi is a neighbourhood of γ in M with H(m) > c for all m ∈ V \ γ .
Thus, the function H�V

− c is a Lyapunov function for γ and Theorem 3.8.16 yields
the assertion. �

Example 9.7.2 Let M = R
2n with the canonical symplectic structure and the stan-

dard Darboux coordinates qi and pi . Consider a Hamiltonian of the form

H(q,p) = 1

2
pTM−1p + V (q),

where M is some positive symmetric invertible matrix and V is an arbitrary smooth
function on R

n. Obviously, (q0,p0) is an equilibrium of XH iff p0 = 0 and q0 is a
critical point of V . The second derivative at (q0,p0 = 0) is

H ′′(q0,0) =
[

M 0
0 ∂2V

∂qi ∂qj (q0)

]
.

It is positive definite iff so is the second derivative of V at q0. Thus, Proposi-
tion 9.7.1 yields that if q0 is a local minimum of V0, the equilibrium (q0,0) is
stable under the flow of XH .
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Next, we analyze the case of an equilibrium whose characteristic exponents are
purely imaginary. The following theorem is a direct consequence of the Lyapunov
Centre Theorem 9.5.8 and the fact that the orbit cylinder provided by this theorem
combines with the equilibrium point to a two-dimensional invariant embedded sub-
manifold of M , cf. Remark 9.5.9/1.

Theorem 9.7.3 (Lyapunov Subcentre Theorem) Let m be an equilibrium of a
Hamiltonian system (M,ω,H), satisfying the following assumptions.

1. Zero is not a characteristic exponent.
2. If λ is a purely imaginary characteristic exponent, it has multiplicity 1.
3. If λ1 and λ2 are purely imaginary characteristic exponents, they are rationally

independent.

Then, for every purely imaginary characteristic exponent iα there exists a two-
dimensional XH -invariant embedded symplectic submanifold Cα of M containing
m with the following properties:

1. TmCα is the eigenspace of the characteristic exponents iα and −iα.
2. Cα \ {m} is the image of a regular orbit cylinder whose integral curves γE ap-

proach m and whose periods TE approach 2π
α

in the limit E → H(m). Thus, Cα

is a union of periodic integral curves and {m}, that is, it is diffeomorphic to a
2-dimensional disc.

The submanifold Cα is referred to as the subcentre manifold associated with the
pair of characteristic exponents ±iα.

Besides the fact that the Lyapunov Subcentre Theorem provides insight into the
behaviour of the flow near m whenever characteristic exponents satisfying the as-
sumptions exist, it yields the following information about stability: if m is elliptic
and if the characteristic exponents, counted with multiplicities, are pairwise ratio-
nally independent, then m is stable in each subcentre manifold Cα . Indeed, given
a (contractible) neighbourhood U of m in Cα we find an energy E such that γE is
contained in U . The subset of Cα enclosed by γE is invariant under the flow and
hence it stays in U for all times. To be stable in each subcentre is, of course, only a
necessary condition for m to be stable in M . Whether or under which conditions it
is sufficient is a hard (and open) question, which remains to be studied.

Example 9.7.4 (Subcentres in two degrees of freedom) Assume that dimM = 4 and
that m fulfils the assumptions of the Lyapunov Subcentre Theorem. Then, charac-
teristic exponents can be grouped into two pairs ±λ1 and ±λ2. In the trivial case
where none of them is purely imaginary, these pairs are complex conjugates of one
another. If one of the pairs is purely imaginary, λ1 = iα with α > 0 say, we are in
one of the following two cases.

1. λ2 = μ is real and positive: since −μ < 0 < μ, both the stable manifold and the
unstable manifold have dimension one and the subcentre manifold Cα is in fact a
centre manifold for m. Correspondingly, in the 2-dimensional subspace spanned
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by the eigenspaces of the real characteristic exponents ±μ, the linearized flow
has the form of a saddle (type 2(c) in Example 3.6.13). By the Lyapunov Centre
Theorem, in the limit E → H(m), the Floquet multipliers of the periodic inte-

gral curves γE of Cα approach e± 2π
α

μ, which are positive real numbers distinct
from 1. Since, for dimensional reasons, the Floquet multipliers can only arrive
at the real axis if they pass through 1 or −1, there exists ε > 0 such that for all
E with |E − H(m)| < ε, the Floquet multipliers are real and distinct from 1 and
the periodic integral curves γE are hyperbolic on their energy surfaces.

2. λ2 = iβ with β > 0 and rationally independent from α: here, we have two sub-
centre manifolds, Cα and Cβ , consisting of periodic integral curves γ α

E and γ
β
E ,

respectively. Since α and β are rationally independent, m is r-elementary for
any r , and Remark 9.6.9 yields that we can find Darboux coordinates q1, q2, p1,
p2 at m such that H is a polynomial in the action variables Ii = 1

2 (q2
i + p2

i )

whose lowest order term is given by

H(q,p) = 1

2
(±αI1 ± βI2) + · · · .

Since H can be expressed entirely in terms of I1 and I2, it follows that the sub-
centre manifolds Cα and Cβ are given by q2 = p2 = 0 and q1 = p1 = 0, respec-
tively. If the contributions of α and β have the same sign, m is a local minimum
or maximum of H and the energy surfaces ΣE near m are three-spheres con-
taining two periodic integral curves γ α

E and γ
β
E each, which collapse to m as E

approaches H(m). If the contributions of α and β have opposite sign, m is a
saddle point of H and ΣE are hyperboloids, each of which contain one periodic
integral curve. To be definite, let us assume that the contribution of α has positive
and that of β has negative sign. Then, ΣE contains γ α

E for E > H(m) and γ
β
E for

E < H(m). As one increases the energy starting from a value below H(m), the
periodic integral curves γ

β
E shrink, degenerate to m at E = H(m) and reappear

as the periodic integral curves γ α
E , though in another dimension. This could be

imagined as an “evolution” of orbit cylinders, where Cβ “dies” at E = H(m) and
is “reborn” as the orbit cylinder Cα . In either case, for E → H(M), the Floquet

multipliers of γ α
E approach e±i 2π

α
β and those of γ

β
E approach e±i 2π

β
α .

The authors of [1] call case 1 the phantom burst and case 2 the stable burst catas-
trophe. For a further discussion of bifurcations in the case of two degrees of freedom
we refer to Sect. 8.6 of [1] (where this example was taken from).

Finally, we discuss the stability of a periodic integral curve γ of a Hamiltonian
system (M,ω,H) with two degrees of freedom, that is, with dimM = 4. Assume
that γ is elliptic, 4-elementary and non-degenerate. From Example 9.6.13 we know
that every neighbourhood of γ in its (local) energy surface ΣE contains uncount-
ably many 2-tori which are invariant under XH and in which every integral curve
is dense. The latter property implies that the tori cannot intersect. Therefore, they
divide the 3-dimensional energy surface ΣE into disjoint subsets which are also in-
variant under XH . As a consequence, γ is stable within its energy surface ΣE . If
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one combines this observation with the existence of an orbit cylinder, one finds that
γ is stable:

Proposition 9.7.5 Every elliptic, 4-elementary and non-degenerate periodic inte-
gral curve of a 4-dimensional Hamiltonian system is stable.

Proof Denote the periodic integral curve under consideration by γE0 , where E0 =
H(γE0). Since H does not have critical points in some open neighbourhood of
γE0 in M , and since stability is a local property, for convenience we may assume
that H is a submersion and hence M is foliated by regular energy surfaces ΣE .
Since, by assumption, 1 is not a Floquet multiplier of γE0 , Theorem 9.5.4 yields
that γE0 is contained in a regular orbit cylinder ζ : S1 × I → M . Consider energy
values E ∈ I . Since the conditions on γE to be elliptic, to be 4-elementary and to
be non-degenerate are all open conditions on the Birkhoff invariants26 of γE and
since the latter depend smoothly on E, by possibly shrinking I we may assume
that γE is elliptic, 4-elementary and non-degenerate for all E ∈ I . Now, let U be a
neighbourhood of γE0 in M . By possibly further shrinking I , we may assume that
ζ(S1 × I ) ⊂ U . Then, for all E ∈ I , U ∩ ΣE is a neighbourhood of γE in the en-
ergy surface ΣE . Since γE is stable in ΣE , we find a neighbourhood VE of γE in
ΣE where the flow of XH is defined for all times and whose points never leave U

under this flow. Then, V =⋃E∈I VE is a neighbourhood of γ in M with the same
property. �

For an application of the above stability analysis to celestial mechanics we refer
to [273], §34. For example, the motion of an asteroid in the asteroid belt between
the planets Mars and Jupiter can be viewed as a restricted 3-body problem,27 with
the three bodies being the asteroid, Jupiter and the sun and with the mass of the
asteroid being completely neglected. If one assumes that the asteroid moves in the
same plane as the sun and Jupiter, this system has two degrees of freedom. The
ratios between the frequencies ωA of the asteroid and ωJ of Jupiter for which the
Floquet multipliers of the corresponding periodic integral curve do not fulfil the
non-resonance condition are 1

4 , 2
5 , 1

3 and 1
2 . For these ratios one finds well-defined

gaps in the distribution of asteroids, known as the Kirkwood gaps.28 Hence, these
orbits are not stable, indeed. After the long history of the solar system, the asteroids
have disappeared from them. For an extensive discussion of these and further gaps,
see [216].

Remark 9.7.6 (Arnold diffusion) For systems with more than two degrees of free-
dom, the invariant tori have codimension greater than 1 in their energy surface. Con-
sequently, these tori do not divide the energy surface into disjoint subsets, so that an

26Defined by an isoenergetic Poincaré mapping for γE , cf. Remark 9.6.5/1.
27See also Sect. 4.4 of the book of Thirring [286].
28Named after the astronomer who first observed them in 1866.
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integral curve can escape from a neighbourhood of γ without running through such
a torus. Thus, the above stability argument does no longer apply. This phenomenon
is known as Arnold diffusion.

9.8 Time-Dependent Systems. Parametric Resonance

For the remainder of this chapter we depart from autonomous systems and con-
sider time-dependent Hamiltonian systems (M,ω,H). Here, the Hamiltonian H is
a smooth function on R × M , cf. Sect. 9.3. We restrict attention to the case where
the time dependence is periodic, that is, where there exists a minimal positive real
number T , called the period, such that Ht+T = Ht as functions on M for all t . In
the present section, we study the problem of stability of equilibria and in the next
section we address the problem of the existence of periodic integral curves.

Let us start with some introductory remarks. The Hamiltonian vector field XH

generated by a T -periodic Hamiltonian function H is also T -periodic, because

(XH )t+T ≡ XHt+T
= XHt ≡ (XH )t

for all t . Let Φ denote the flow of XH . From Sect. 3.4 we know that Φ satisfies

Φt+T ,0 = Φt,0 ◦ ΦT,0, ΦkT ,0 = Φk
T,0 (9.8.1)

for all t ∈ R and k ∈ Z. The local symplectomorphism ΦT,0 is called the period
mapping of XH . Note that the period mapping is a Hamiltonian symplectomorphism
in the sense of Definition 8.8.7 and that every integral curve is invariant under ΦT,0.
In particular, equilibria of XH are fixed points of ΦT,0.

Proposition 9.8.1 A critical integral curve of a periodically time-dependent Hamil-
tonian system is stable iff it is stable under the period mapping.

Proof In the proof of the equivalence of points 1 and 2 of Proposition 3.8.5, allow
γ to be an equilibrium as well and replace the period mapping ΦT of the periodic
integral curve given there by the period mapping ΦT,0 of XH . �

Now, we turn to the study of the stability properties of an equilibrium of XH .
Since stability is a local concept, we may assume that M = R

2n with the standard
symplectic structure and that the equilibrium under consideration is given by the
origin. We restrict attention to the case where Ht is a quadratic form on R

2n for
all t . This is a model for a system of coupled harmonic oscillators with T -periodic
characteristic frequencies and coupling constants. Since H is quadratic in the vari-
able x ∈ R

2n, the Hamiltonian vector field XH is linear, and so are the flow Φ and
the period mapping ΦT,0. Thus, ΦT,0 ∈ Sp(n,R). For the elements of Sp(n,R),
Proposition 3.8.9/2 yields the following simple stability criterion.

Proposition 9.8.2 Let a ∈ Sp(n,R). If all eigenvalues of a have absolute value 1
and multiplicity 1, there exists a neighbourhood of a in Sp(n,R) such that the origin
is stable under all symplectomorphisms from this neighbourhood.
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Since the multiplicity of an eigenvalue ±1 must be even, the assumptions imply
that the eigenvalues of a are distinct from ±1. Note that the proposition provides
both a criterion for the stability of the origin under a symplectomorphism and a
criterion for the structural stability29 of a family of linear symplectomorphisms with
respect to the property to have the origin as a stable fixed point.

Proof It is enough to show that a possesses a neighbourhood in Sp(n,R) whose
elements have non-degenerate eigenvalues lying on the unit circle, because any au-
tomorphism b of R2n with this property satisfies spec(b) = specd

1(b), so that sta-
bility follows by Proposition 3.8.9/2. To construct the desired neighbourhood of a,
we choose pairwise disjoint neighbourhoods Uλ of the eigenvalues λ of a in C,
satisfying

Uλ−1 = U−1
λ = Uλ,

where Uλ means the complex conjugate subset. Since the eigenvalues depend con-
tinuously on the elements of Sp(n,R), there exists a neighbourhood V of a in
Sp(n,R) whose elements have exactly one eigenvalue in each neighbourhood Uλ.
For every element b of this neighbourhood, the eigenvalues necessarily have mul-
tiplicity 1. We show that they have absolute value 1. Indeed, if μ is an eigenvalue
of b, then so is μ−1. If λ is the eigenvalue of a such that μ ∈ Uλ, then

μ−1 ∈ Uλ
−1 = Uλ.

Since Uλ contains only one eigenvalue of b, we conclude μ−1 = μ and hence
|μ| = 1. �

Remark 9.8.3 In the case of degenerate eigenvalues on the unit circle, Proposi-
tion 9.8.2 does not provide information about stability. In this situation, the origin
may be stable as in the case a = 1 or unstable as in the case

a =
[

1 1
0 1

]
,

(Exercise 9.8.1). The proposition implies, however, that the transition between sta-
ble and unstable linear symplectomorphisms is only possible via degenerate eigen-
values. This transition can be imagined as follows. Two pairs of eigenvalues on the
unit circle run (in opposite directions) into one another, meet at a certain eigenvalue
pair and then escape along the two radial lines defined by this pair into opposite di-
rections.30 Thus, for a linear symplectomorphism with degenerate eigenvalues, even
a small perturbation can cause a transition between stability and instability. This
phenomenon is referred to as parametric resonance. Note, however, that the fact
that a has degenerate eigenvalues does not necessarily imply that in every neigh-
bourhood of a there exist stable and unstable linear symplectomorphisms. For a
criterion in that case, established by M.G. Krein, we refer to [18, §42].

29Cf. Remark 3.8.19.
30Compare with Fig. 7.1.
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In what follows we study the case of one degree of freedom, that is, M = R
2.

Under the assumption that Ht be a quadratic form on R
2 for all t , H is of the form

H±(q,p) = 1

2m
p2 ± mω(t)2

2
q2, (9.8.2)

with T -periodic frequency ω. The positive sign refers to an attractive and the nega-
tive sign to a repelling force. The Hamiltonian vector field is

XH± = ∓mω(t)2q∂p + p

m
∂q. (9.8.3)

Denote the flow of XH± by ΦH±
. The stability criterion of Proposition 9.8.2 takes

the following form.

Proposition 9.8.4 Let a ∈ Sp(1,R).

1. If | tr(a)| < 2, there exists a neighbourhood of a in Sp(1,R) such that the origin
is stable under all symplectomorphisms from that neighbourhood.

2. If | tr(a)| = 2, then a = ±1 and the origin is stable under a.
3. If | tr(a)| > 2, there exists a neighbourhood of a in Sp(1,R) such that the origin

is unstable under all symplectomorphisms from that neighbourhood.

As a consequence, the equation | tr(a)| = 2 defines the boundary of the subset of
Sp(1,R) of symplectomorphisms under which the origin is stable.

Proof Let λ1 and λ2 be the eigenvalues of a. By the Symplectic Eigenvalue The-
orem 7.4.3, λ2 must coincide with λ1 or λ−1

1 . Therefore, the following cases can
occur:

(a) λ1 = λ2: here, λ1 = λ2 = ±1 and hence | tr(a)| = 2.
(b) |λ1| = |λ2| = 1 but λ1 
= λ2: here, λ2 = λ1 
= ±1 and hence

∣∣tr(a)
∣∣= |λ1 + λ1| = 2

∣∣Re(λ1)
∣∣< 2.

(c) |λ1| 
= |λ2|: here, λ2 = λ−1
1 , where λ1 is real and distinct from ±1. Hence,

0 < |λ1|−1(|λ1| − 1
)2 = |λ1| + |λ1|−1 − 2 = ∣∣tr(a)

∣∣− 2.

It follows that the cases (a), (b) and (c) are equivalently characterized by the
conditions, respectively, | tr(a)| = 2, | tr(a)| < 2 and | tr(a)| > 2. Thus, for the cases
| tr(a)| = 2 and | tr(a)| > 2, the assertion is obvious and for the case | tr(a)| < 2, it
follows from Proposition 9.8.2. �

Combining Proposition 9.8.4 with Proposition 9.8.1, we obtain

Corollary 9.8.5 For a Hamiltonian system on R
2 whose Hamiltonian function is of

the form (9.8.2), the origin is stable iff | tr(ΦH±
T ,0 )| ≤ 2.

This way, the stability analysis for systems with Hamiltonian function (9.8.2)
reduces to the problem of calculating the quantity tr(ΦH±

T ,0 ).
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Remark 9.8.6 In the case where ω(t) performs small oscillations of period T about
a constant value ω0, Proposition 9.8.4 yields further information about the qualita-
tive behaviour of the system. Write ω(t) = ωε(t) with ω0(t) = ω0 and, correspond-
ingly, H± = H±

ε . Assume that the mapping ε �→ ωε is continuous with respect to
the supremum norm for functions on [0, T ], that is, εn → ε implies31

sup
{∣∣ωεn(t) − ωε(t)

∣∣ : t ∈ [0, T ]}→ 0.

Then, | tr(Φ
H±

ε

T ,0 )| depends continuously on ε, too. Let us compute | tr(Φ
H±

0
T ,0 )|. In

the case of an attractive force, the flow of the harmonic oscillator with constant
frequency ω0 is given by

Φ
H+

0
t,0 =

[
cos(ω0t)

1
mω0

sin(ω0t)

−mω0 sin(ω0t) cos(ω0t)

]
,

hence
∣∣tr
(
Φ

H+
0

T ,0

)∣∣= 2
∣∣cos(ω0T )

∣∣.

Thus, if T /∈ π
ω0
Z, Proposition 9.8.4 implies that the origin remains stable for suf-

ficiently small ε. If T ∈ π
ω0
Z, the origin is stable for ε = 0, but a transition to in-

stability is possible for arbitrarily small values of ε. For such values of the period,
parametric resonance can occur. In the case of a repulsive force,

Φ
H−

0
t,0 =

[
cosh(ω0t)

1
mω0

sinh(ω0t)

−mω0 sinh(ω0t) cosh(ω0t)

]
,

and hence
∣∣tr
(
Φ

H−
0

T ,0

)∣∣= 2
∣∣cosh(ω0T )

∣∣.

Since ω0 > 0 and T > 0, we have | tr(Φ
H−

0
T ,0 )| > 2, so that the origin remains unstable

for sufficiently small values of ε.

Now, we consider an example where Φ
H±

ε

T ,0 can be calculated explicitly. This al-
lows to go beyond the qualitative statements of Remark 9.8.6 and to analyze the
stability of the origin for arbitrary values of ε.

Example 9.8.7 (Swing) Let

ωε(t) = ω0 +
{

ε | t ∈ [kT , 2k+1
2 T [

−ε | t ∈ [ 2k−1
2 T , kT [ , k ∈ Z, 0 ≤ ε < ω0. (9.8.4)

With this time-dependence of the frequency, the Hamiltonian (9.8.2) yields a simple
model for a swing. To see this, consider a planar pendulum with time-dependent

31Note that we do not assume ωε(t) to be continuous in t .
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length l(t). Let g be the gravitational acceleration and let φ be the angle of deviation
from the lower equilibrium point. Then, the equation of motion reads

φ̈ + 2
l̇φ̇

l
+ g

l
sinφ = 0. (9.8.5)

The mixed term 2 l̇φ̇
l

will be ignored. The motion of the person sitting on the swing
is modelled by the following law for l(t):

l =

⎧
⎪⎨

⎪⎩

l0
ω2

0
(ω0+ε)2 | t ∈ [kT , 2k+1

2 T [
l0

ω2
0

(ω0−ε)2 | t ∈ [ 2k−1
2 T , kT [

, k ∈ Z, ω0 =
√

g

l0
.

Here, l0
ω2

0
(ω0+ε)2 < l0 is the pendulum length which effectively occurs if the person on

the swing leans forward and l0
ω2

0
(ω0−ε)2 > l0 is the effective length if the person leans

backward. For small deviations about the lower or the upper equilibrium point, sinφ

can be approximated by ±φ, respectively. Under this approximation, Eq. (9.8.5) is
equivalent to the Hamilton equations for the Hamiltonian (9.8.2) with p := mφ̇,
q := lφ and with frequency given by (9.8.4).

First, let us consider H+
ε , which corresponds to small deviations from the lower

equilibrium point. Integration of the Hamilton equations yields (Exercise 9.8.2)

∣∣tr
(
Φ

H+
ε

T ,0

)∣∣= 2

∣∣∣∣
ω2

0

ω2
0 − ε2

cos(ω0T ) − ε2

ω2
0 − ε2

cos(εT )

∣∣∣∣. (9.8.6)

We keep the period T fixed and study the stability of the origin, that is, of the lower
equilibrium point of the swing, depending on the values of the parameters ω0 and ε.
Regions in the ω0–ε-plane, for which the origin is stable or unstable, respectively,
will be called stable or unstable regions, respectively. The boundaries between such
regions are called stability boundaries. According to Proposition 9.8.4, these bound-

aries are defined by | tr(Φ
H+

ε

T ,0 )| = 2. In our example, this corresponds to the equation

ω2
0

(
1 ± cos(ω0T )

)= ε2(1 ± cos(εT )
)
, (9.8.7)

see Fig. 9.4. We see that, apart from the points ω0 = kπ
T

, the ω0-axis is enclosed by
stable regions, that is, there the origin remains stable for sufficiently small values
of ε. At the exceptional points ω0 = kπ

T
, the unstable regions touch the ω0-axis.

Thus, at these points the origin is unstable for arbitrarily small values of ε. For
the swing, this means that when swinging with a multiple of half the characteristic
frequency of the swing, an arbitrarily small perturbation suffices to set the swing in
motion. Indeed, for ω0T = (2k + 1)π , Eq. (9.8.6) yields

∣∣tr
(
Φ

H+
ε

T ,0

)∣∣= 2

∣∣∣∣
ω2

0 + ε2 cos(ε (2k+1)π
ω0

)

ω2
0 − ε2

∣∣∣∣> 2, 0 < ε <
ω0

2k + 1
,

and for ω0T = 2kπ we obtain

∣∣tr
(
Φ

H+
ε

T ,0

)∣∣= 2

∣∣∣∣
ω2

0 − ε2 cos(ε 2kπ
ω0

)

ω2
0 − ε2

∣∣∣∣> 2, 0 < ε <
ω0

k
.
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Fig. 9.4 Stable (grey) and
unstable (white) regions in the
ω0–ε-plane for the harmonic
oscillator with attractive force
and time-dependent
frequency give by (9.8.4)

However, Fig. 9.4 shows that the opening angles under which the unstable re-
gions touch the ω0-axis depend drastically on whether an integer multiple or a half
integer multiple of the characteristic frequency is approached. In the first case, one
must meet the characteristic frequency rather exactly or change the effective length
heavily in order to reach the unstable region.32 On the other hand, for a half inte-
ger multiple of the characteristic frequency it is enough to meet the characteristic
frequency approximately and to produce a small change of the effective length by
swinging. To calculate the opening angles, we write ω0 = kπ

T
+ x and expand the

left and the right hand side of Eq. (9.8.7) to the lowest non-vanishing order about
x = 0 and ε = 0, respectively. Using that the sign in (9.8.7) is positive for odd k,

we obtain k2π2

2 x2 + O(x3) for the left hand side and 2ε2 + O(ε4) for the right hand
side. Thus, ε ∼ ± kπ

2 x and the opening angle is

α = arccos

(
k2π2 − 4

k2π2 + 4

)
.

A similar calculation for even k yields ε ∼ ±
√

kπ
T

x and hence α = 0.

Next, let us consider the case H−
ε , which corresponds to small deviations from

the upper equilibrium position. Here, one finds (Exercise 9.8.2)

∣∣tr
(
Φ

H−
ε

T ,0

)∣∣= 2

∣∣∣∣
ω2

0

ω2
0 − ε2

cosh(ω0T ) − ε2

ω2
0 − ε2

cosh(εT )

∣∣∣∣. (9.8.8)

Since the expression under the absolute value signs is larger than 1 for all 0 <

ε < ω0, the upper equilibrium point remains unstable for any choice of the time
dependence of the pendulum length.

32The reader should try to set a swing in motion by leaning forward and backward over a whole
period each time.
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In a similar manner, the reader may discuss the following example (Exer-
cise 9.8.3).

Example 9.8.8 Let

ωε(t)
2 =
{

ω2
0 + ε2 | t ∈ [kT , 2k+1

2 T [
ω2

0 − ε2 | t ∈ [ 2k−1
2 T , kT [ , k ∈ Z. (9.8.9)

The corresponding Hamiltonians (9.8.2) model small deviations from the equilibria
of a planar pendulum whose suspension point moves vertically according to

a(t) =
⎧
⎨

⎩
ε2l(

(t−kT )2

2 − T 2

16 ) | t ∈ [kT , 2k+1
2 T [

−ε2l(
(t−kT )2

2 − T 2

16 ) | t ∈ [ 2k−1
2 T , kT [

, k ∈ Z.

Finally, we discuss an example which can be worked out explicitly by using the
theory of Mathieu functions. The latter is treated in great detail in [209].

Example 9.8.9 Let

ωε(t)
2 = ω2

0 − ε2 cos(Ωt), Ω = 2π

T
. (9.8.10)

The corresponding Hamiltonians (9.8.2) model small deviations from the equilibria
of a planar pendulum whose suspension point moves vertically according to

a(t) = ε2

Ω2
cos(Ωt).

The equation of motion is

ẍ ± (ω2
0 − ε2 cos(Ωt)

)
x = 0,

where the positive (negative) sign stands for the lower (upper) equilibrium. Setting
s := Ω

2 t and denoting the derivative with respect to s by x′, for both cases we obtain
the Mathieu equation

x′′ + (a − 2q cos(2s)
)
x = 0, (9.8.11)

with parameters

a = ±4
ω2

0

Ω2
, q = ±2

ε2

Ω2
.

In the theory of the Mathieu equation one shows that there exist families ar , r =
0,1,2, . . . , and br , r = 1,2, . . . , of real-valued functions such that Eq. (9.8.11) has
an even periodic solution for every q ∈ R and a = ar(q) and an odd periodic solution
for every q ∈ R and a = br(q). After an appropriate normalization, these solutions
are called Mathieu functions and are denoted by cer and ser , respectively.

Let us calculate Φ
H±

ε

T ,0 under the simplifying assumption that br(q) 
= a 
= ar(q).
In this case, the general solution of the Mathieu equation can be shown to have the
form

x(s) = AeiνsP (s) + Be−iνsP (−s), (9.8.12)



9.8 Time-Dependent Systems. Parametric Resonance 485

with P being a π -periodic function and ν = ν(a, q) being a complex-valued an-
alytic function.33 Under the assumptions made, either ν(q, a) ∈ R or Re(ν) ∈ Z

and Im(ν) 
= 0 [3, §20.3]. The first case occurs if q ≥ 0 and ar(q) < a < br+1(q)

or q ≤ 0 and ar(q) < a < br(q), whereas the second case occurs if q ≥ 0 and
br(q) < a < ar(q) or q ≤ 0 and b2r−1(q) < a < b2r (q) or a2r (q) < a < a2r+1(q).
In particular, ν(a, q) is not an integer. With p(t) = ml2ẋ(t), from (9.8.12) we read
off

x(t) = Aeiν̃tP

(
Ω

2
t

)
+ Be−iν̃tP

(
−Ω

2
t

)
,

p(t) = ml2
{
Aeiν̃t

(
iν̃P

(
Ω

2
t

)
+ Ω

2
P ′
(

Ω

2
t

))

− Be−iν̃t

(
iν̃P

(
−Ω

2
t

)
+ Ω

2
P ′
(

−Ω

2
t

))}
,

with ν̃ = ν Ω
2 . The constants A and B are determined by the initial conditions

x(0) = (A + B)P (0), p(0) = ml2(A − B)

(
iν̃P (0) + Ω

2
P ′(0)

)
.

Since P(0) 
= 0, we can choose P(0) = 1. Then,

Φ
H±

ε

t,0 =
⎡

⎣
eiν̃t P ( Ω

2 t)+e−iν̃t P (− Ω
2 t)

2
eiν̃t P ( Ω

2 t)−e−iν̃t P (− Ω
2 t)

2ml2F(0)

ml2(eiν̃t F (t)−e−iν̃t F (−t))
2

eiν̃t F (t)+e−iν̃t F (−t)
2F(0)

⎤

⎦ ,

with

F(t) = iν̃P

(
Ω

2
t

)
+ Ω

2
P ′
(

Ω

2
t

)
.

For t = T we obtain P(Ω
2 T ) = P(π) = P(0) = 1 and F(T ) = F(0). Thus,

Φ
H±

ε

T ,0 =
[

cos(πν) − 1
iml2F(0)

sin(πν)

iml2F(0) sin(πν) cos(πν)

]
,

and, therefore,
∣∣tr
(
Φ

H±
ε

T ,0

)∣∣= 2
∣∣cos(πν)

∣∣= 2
√

cos2
(
Re(ν)

)+ sinh2(Im(ν)
)
.

In the case where ν(a, q) ∈ R, we have | tr(Φ
H±

ε

T ,0 )| ≤ 2, whereas in the case where

Re(ν) ∈ Z and Im(ν) 
= 0, we find | tr(Φ
H±

ε

T ,0 )| > 2. Thus, the boundaries of stability
are given by the curves ar(q) and br(q). The corresponding curves in the ω0–ε-
plane are given by

ω0(ε) = Ω

2

√

±f

(
±2

ε2

Ω2

)
, f = ar , br ,

33Obviously, ν is determined up to addition of 2kπ , k ∈ Z.
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Fig. 9.5 Stable (grey) and unstable (white) regions in the ω0–ε-plane for the harmonic oscillator
with time-dependent frequency (9.8.10) and attractive (left) or repulsive force (right)

with the positive sign corresponding to small deviations from the lower equilibrium
point and the negative sign corresponding to small deviations from the upper equi-
librium point, see Fig. 9.5. The reader can analyze this figure in the same manner as
in Example 9.8.7.

Remark 9.8.10 Let us consider the influence of friction, thus leaving the realm of
Hamiltonian systems. We restrict attention to the case of the lower equilibrium point.
Assuming the friction force to be proportional to the velocity, the equation of motion
reads

ẍ + 2βẋ + ωε(t)
2x = 0, β > 0.

The corresponding vector field is linear,

Xε = p

m
∂x − (mωε(t)

2x + βp
)
∂p,

and so is its flow Φε . Therefore, the origin is the only equilibrium. Of course, this
vector field is not Hamiltonian and thus the stability criterion of Proposition 9.8.4
cannot be applied. Nonetheless, Proposition 9.8.1 carries over to the present case,
and Proposition 3.8.9/2 yields that the origin is asymptotically stable under Φε

T,0,
and hence under Φε , if the absolute values of all the eigenvalues of Φε

T,0 are smaller
than 1. Let us calculate the eigenvalues of Φε

T,0 for ε = 0, that is, for ωε(t) = ω0.
According to Example 3.6.13,

Φε=0
T ,0 = e−βT

[
cos(Ωt) + β

Ω
sin(Ωt) 1

mΩ
sin(Ωt)

−mω2
0

Ω
sin(Ωt) cos(Ωt) − β

Ω
sin(Ωt)

]
,

where Ω =
√

ω2
0 − β2. Thus, the eigenvalues are λ± = e−βT (cos(ΩT )± i sin(ΩT ))

and their absolute value is

|λ±| = e−βT .

Since Φε
T,0 and, therefore, also its eigenvalues are continuous in ε, we conclude that

for every ω0, there exists ε0 > 0 such that the origin is stable, and hence asymptoti-
cally stable, under Φε for all ε < ε0. This means that under the influence of friction
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the regions of instability cease to touch the ω0-axis, that is, for every period T we
need a finite ε for reaching instability.

Remark 9.8.11 If we give up the assumption on H to be a quadratic form, the flow
Φ and consequently also the period mapping ΦT,0 become non-linear. There exists
a certain iteration procedure which can be used for calculating the period mapping
approximately. Using this idea, a lot of non-linear Hamiltonian systems have been
studied in the literature, see e.g. [153, §§ 7.4.2, 7.5.1, 7.5.2].

Exercises
9.8.1 Show that the matrix

a =
[

1 1
0 1

]

defines a linear symplectomorphism on R
2 under which the origin is unstable.

9.8.2 Verify Eqs. (9.8.6) and (9.8.8).
9.8.3 Work out Example 9.8.8.
9.8.4 Consider a mathematical pendulum whose suspension point oscillates verti-

cally according to a(t) = 1
Ω2 ε2 cos(Ωt), cf. Example 9.8.9. Show that the

approximations of the equation of motion for small deviations from the equi-
libria are equivalent to the Hamilton equations of the Hamiltonian systems
(9.8.2) with time-dependent frequency (9.8.10).

9.9 On the Arnold Conjecture

In this section, we turn to the problem of the existence of critical integral curves
for a periodically time-dependent Hamiltonian system (M,ω,H). More precisely,
we will discuss a special type of critical integral curves which is related to the
fixed points of the period mapping ΦT,0. For every fixed point m of ΦT,0, we have
Φt+T ,0(m) = Φt(m) for all t , so that the maximal integral curve through m is either
an equilibrium or periodic of period T

k
for some positive integer k. A typical exam-

ple is the motion of a harmonic oscillator acted upon by a periodic external force.
Therefore, periodic integral curves whose period is an integer part of that of H are
referred to as forced oscillations.

Remark 9.9.1 For convenience, one may restrict attention to time-dependent Hamil-
tonian systems of period 1. Indeed, if H has period T , the function

H̃ :R× M → R, H̃ (t,m) := T · H(T t,m),

has period 1 and generates the flow

ΦH̃
t2,t1

= ΦH
T t2,T t1

.
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Thus, up to a simultaneous rescaling of the time parameter and the energy scale, one
may assume that H has period T = 1. In this situation, the period mapping Φ1,0 is
usually referred to as the time-1 mapping of the flow.

For what follows, it is important to notice that the period mapping of the flow of a
periodic Hamiltonian is a Hamiltonian symplectomorphism, cf. Definition 8.8.7. In
this sense, any statement about Hamiltonian symplectomorphisms applies in partic-
ular to the period mappings of periodic Hamiltonians.34 The following conjecture,
formulated by Arnold in the 1960s, predicts a universal lower bound on the number
of fixed points of a Hamiltonian symplectomorphism and hence on the number of
critical integral curves of a periodically time-dependent Hamiltonian system:

Arnold conjecture Let (M,ω) be a compact symplectic manifold and let Ψ : M →
M be a Hamiltonian symplectomorphism. Then, Ψ must have at least as many fixed
points as a function on M must have critical points. If the fixed points are all non-
degenerate, then their number is at least equal to the minimal number of critical
points of a Morse function on M .

Remark 9.9.2

1. The Arnold conjecture is certainly true in the time-independent case, that is,
for symplectomorphisms Ψ which are given by the flow Φ of an autonomous
Hamiltonian function H on M , taken at an arbitrary instant of time, say t = 1.
Indeed, every critical point of H is an equilibrium of the Hamiltonian vector field
XH and hence a fixed point of Φ1. Hence, Ψ has at least as many fixed points as
H has critical points. If in addition the fixed points of Ψ are non-degenerate, so
are the critical points of H . Therefore, H is a Morse function, and Ψ has at least
as many fixed points as a Morse function on M must have.

2. The Morse inequalities of Remark 8.9.10/3 imply the following weaker version
of the Arnold conjecture. If the fixed points of Ψ are all non-degenerate, their
number is greater than or equal to the sum of the Betti numbers of M .

The Arnold conjecture may be viewed as a higher-dimensional generalization of
the following theorem, which was formulated by Poincaré in 1912, shortly before
he died, and proved by Birkhoff [45]35 in 1913.

Theorem 9.9.3 (Poincaré-Birkhoff Theorem) Every area preserving homeomor-
phism of an annulus

A = {(q,p) ∈R
2 : a ≤ q2 + p2 ≤ b

}

which leaves the boundary circles invariant but twists them in opposite directions
possesses at least two fixed points.

34One can also show the converse, that is, every Hamiltonian symplectomorphisms can be repre-
sented as the period mapping of some periodic Hamiltonian, see Exercise 11.8 in [206].
35See also [46] for a generalization to ring shaped regions with arbitrary boundary curves.
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This theorem is also known as Poincaré’s Last Geometric Theorem. Poincaré
was led to formulate it when he studied the problem of periodic solutions of the
restricted three body problem in celestial mechanics. As mentioned in Sect. 9.6, the
Birkhoff-Lewis Theorem 9.6.10 generalizes this theorem in a different direction.
We note that both the requirement of being area preserving and the twist condition
are important, see Exercise 9.9.1. Following McDuff and Salamon [206], we give a
beautiful and simple proof of this theorem under the stronger condition of monotone
twist.

Proof Denote the homeomorphism under consideration by ϕ. In polar coordinates
φ and r on A, it is given by ϕ(φ, r) = (f (φ, r), h(φ, r)), where f and h are contin-
uous functions on A satisfying

f (φ + 2π, r) = f (φ, r) + 2π, h(φ + 2π, r) = h(φ, r).

Under the assumption of monotone twist, that is,

r < r ′ ⇒ f (φ, r) < f
(
φ, r ′) (9.9.1)

for every angle φ there exists a unique radius r = F(φ) ∈ (a, b) such that

f
(
φ,F (φ)

)= φ.

The mapping F is continuous and 2π -periodic. All points on the curve φ �→
(φ,F (φ)) in A are mapped radially under ϕ. Since ϕ preserves the area, this curve
must intersect its image under ϕ at least twice. Since all points of the intersection
are fixed points of ϕ, this proves the theorem. �

Remark 9.9.4 We draw the attention of the reader to the fact that the above intersec-
tion argument is a simple version of the argument used in the last step of the proof
of the Birkhoff-Lewis Theorem. In more detail, the counterpart of ϕ is the iterate
Ψ (N) and the counterpart of the annulus A is Tn × Br . Thus, to f and to h there
correspond ϑ

(N)
k and I

(N)
k , respectively.

Now, let us prove the Arnold conjecture in the simplest nontrivial case.

Proposition 9.9.5 The Arnold conjecture holds for Hamiltonian symplectomor-
phisms of a compact symplectic manifold which are sufficiently close to the identity
in the C1-topology.

Proof Let (M,ω) be a compact symplectic manifold. By Propositions 8.8.4
and 8.8.10, in the C1-topology, there exists a neighbourhood of idM in Symp(M,ω)

and a local homeomorphism from this neighbourhood onto a neighbourhood of
the zero section of T∗M in Z1(M), mapping Hamiltonian symplectomorphisms ϕ

to exact 1-forms df on M . Fixed points of ϕ thereby correspond to zeros of df .
Thus, fixed points of ϕ are in one-to-one correspondence with critical points of f .
Obviously, they are non-degenerate iff f is a Morse function. �
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The Arnold conjecture has attracted the attention of leading mathematicians over
the last decades. It was first proved by Eliashberg [85] for Riemann surfaces and
next by Conley and Zehnder [66] for tori of arbitrary dimension. Conley and Zehn-
der showed that the standard torus T2n has at least 22n distinct fixed points, pro-
vided they are all non-degenerate. In the degenerate case there are at least 2n + 1
fixed points. A breakthrough was made by Floer [93, 94], who developed a new
approach to infinite-dimensional Morse theory36 and applied it to prove the weak
Arnold conjecture for so-called monotone symplectic manifolds. Thereafter, Hofer
and Salamon [137] generalized this result to the so-called weakly monotone case.
Finally, using Floer theory, the weak version of the Arnold conjecture has been
proven for arbitrary symplectic manifolds independently by Fukaya and Ono [100]
and Liu and Tian [186]. To our knowledge, the strong version is still open.

Exercises

9.9.1 Take the annulus A = {(q,p) ∈ R
2 : a ≤ q2 + p2 ≤ b} with polar coordinates

φ and r and consider the mappings

ψ1(φ, r) =
(

φ + 1

2
, r

)
, ψ2(φ, r) =

(
φ + r − 1

2
, r2
)

.

Find out whether these mappings fulfil the requirements of the Poincaré-
Birkhoff Theorem. Do they possess critical points?

36Called Floer homology, see [260] or [269] for a review.





Chapter 10
Symmetries

Symmetries play a fundamental role in the study of the dynamics of physical sys-
tems, because they give rise to conserved quantities. These can be used to eliminate
a number of variables. In the Hamiltonian context, this procedure is called symplec-
tic reduction of systems with symmetries.1 It is the aim of this chapter to present
this procedure in a systematic way. In the Hamiltonian context, the conserved quan-
tities corresponding to the symmetry of the system are encoded in a mapping from
the phase space of the system to the dual space of the Lie algebra of the symmetry
group. It is called momentum mapping, because it generalizes well-known constants
of motion, like momentum or angular momentum etc. In Sect. 10.1 we discuss this
notion in detail, including a number of examples. Next, in Sect. 10.2, we present
some algebraic basics needed for the symmetry reduction procedure. Then, the clas-
sical result of Marsden, Weinstein and Meyer on symmetry reduction is discussed.
It states that the reduced phase space, obtained by factorizing a level set of the
momentum mapping with respect to the freely acting residual symmetry group, car-
ries a natural symplectic structure and that the dynamics of the systems reduces to
this space. In particular, also the relation to orbit reduction is studied. In Sect. 10.4
we present the Symplectic Tubular Neighbourhood Theorem.2 This is an important
technical tool for generalizing the above classical result to the so-called singular
case, where the assumption about the free action of the residual symmetry group
is removed. The theory of singular reduction is presented in detail in Sect. 10.5.
In Sects. 10.6 and 10.7 the reader will find a large number of applications. First,
we discuss the following examples from mechanics: the geodesic flow on the three-
sphere, the Kepler problem (including the Moser regularization), the Euler top and
the spherical pendulum. Section 10.7 contains a model of gauge theory, which can
be viewed as obtained from approximation of gauge theory on a finite lattice. Fi-
nally, we give an introduction to the study of qualitative dynamics of systems with
symmetries in terms of the energy-momentum mapping.

1In the sequel, we shall cite important contributions to the subject. However, for a quite exhaustive
list of references and also for a lot of historical remarks, we refer the reader to [196] and [232].
2Also called the Symplectic Slice Theorem.

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-5345-7_10, © Springer Science+Business Media Dordrecht 2013
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10.1 Momentum Mappings

Recall that an action Ψ of a Lie group G on a symplectic manifold (M,ω) is called
symplectic if

Ψ ∗
g ω = ω (10.1.1)

for all g ∈ G and that, in this case, the tuple (M,ω,Ψ ) is called a symplectic G-
manifold (Definition 8.6.2). Correspondingly, an action3 ψ of a Lie algebra g on
(M,ω) is called symplectic if the vector field ψ(A) is symplectic for all A ∈ g.
Note that the action Ψ of a Lie group G induces an action ψ of its Lie algebra g by
ψ(A) = A∗, with A∗ denoting the Killing vector field generated by A ∈ g. If Ψ is
symplectic, differentiation of (10.1.1) yields

LA∗ω = 0

for all A ∈ g, hence ψ is symplectic, too.

Definition 10.1.1 A Hamiltonian system (M,ω,H) is called symmetric

1. under a symplectic action Ψ of a Lie group G if Ψ ∗
g H = H for all g ∈ G,

2. under a symplectic action ψ of a Lie algebra g if ψ(A)H = 0 for all A ∈ g.

If a Hamiltonian system is symmetric with respect to a Lie group action, then it
is also symmetric with respect to the induced Lie algebra action. Thus, every Lie
group symmetry of a given Hamiltonian system induces a Lie algebra symmetry.
The converse need not be true, because not every Lie algebra action integrates into
a Lie group action.

As we have seen, Killing vector fields of a symplectic G-action are automatically
symplectic, but they need not be Hamiltonian. This special case is, however, of
particular importance. In this case, for every A ∈ g there exists a function JA ∈
C∞(M) such that XJA

= A∗.

Definition 10.1.2 (Momentum mapping) Let (M,ω) be a symplectic manifold and
let Ψ be an action of a Lie group G on M . A mapping J :M → g∗ is called a
momentum mapping4 for Ψ if

XJA
= A∗ (10.1.2)

for all A ∈ g, where the functions JA:M →R are given by

JA(m) := 〈J (m),A
〉
. (10.1.3)

The action Ψ is called Hamiltonian if it is symplectic and if there exists a momentum
mapping. In this case, the tuple (M,ω,Ψ ) is called a Hamiltonian G-manifold.5

3See Definition 6.2.6.
4The notion of momentum mapping has a long history, see [309] and [194].
5If a momentum mapping J is fixed, we may include it in the tuple, thus writing (M,ω,Ψ,J ).
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Since ω is non-degenerate, Formula (10.1.2) is equivalent to

A∗�ω = −dJA. (10.1.4)

Proposition 10.1.3 Let (M,ω) be a symplectic manifold and let Ψ be an action of
a Lie group G on M . A momentum mapping for Ψ exists iff all Killing vector fields
are Hamiltonian.

Proof If every Killing vector field is Hamiltonian, then, for a chosen basis {ei} in g,
there exist smooth functions fi ∈ C∞(M) such that (ei)∗ = Xfi

. Using the dual
basis {e∗i}, we define

J : M → g
∗, J (m) := fi(m)e∗i .

Then, for every A ∈ g, we obtain JA = 〈e∗i ,A〉fi and hence

XJA
= X〈e∗i ,A〉fi

= 〈e∗i ,A
〉
Xfi

= 〈e∗i ,A
〉
(ei)∗ = (〈e∗i ,A

〉
ei

)
∗ = A∗.

Thus, J is a momentum mapping for Ψ . The converse direction is obvious. �

Remark 10.1.4

1. We see that a momentum mapping exists if only condition (10.1.2) is fulfilled
for each A ∈ g separately, with an arbitrary smooth function JA. As shown in the
proof of Proposition 10.1.3, the functions JA can always be chosen so that the
mapping A �→ JA is linear.

2. Let (M,ω,Ψ ) be a Hamiltonian G-manifold and let J and J̃ be momentum
mappings. By (10.1.4), we have

d(JA − J̃A) = 0

for all A ∈ g, that is, JA − J̃A is constant on every connected component of
M . Thus, if M is connected, the momentum mapping is fixed up to an additive
constant μ0 ∈ g∗,

J = J̃ + μ0.

3. Definition 10.1.2 uses only the Lie algebra g and its dual vector space. Therefore,
it extends automatically to the case of the action of a Lie algebra. If there exists
a momentum mapping, the action is symplectic. In this case, the tuple (M,ω,ψ)

is called a Hamiltonian g-manifold. In this book we have in mind Lie algebras
of finite-dimensional Lie groups only. However, these notions can be extended
to infinite-dimensional Lie algebras as well.

Proposition 10.1.5 Let (M,ω) be a symplectic manifold and let Ψ be an action of
a Lie group G on M . If G is connected and if there exists a momentum mapping
for Ψ , then Ψ is symplectic (and hence Hamiltonian).

Proof If there exists a momentum mapping J , for every A ∈ g we have

LA∗ω = A∗�dω + d(A∗�ω) = −d(dJA) = 0
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and hence, by (4.1.28),

d

dt
Ψ ∗

exp(tA)ω = Ψ ∗
exp(tA)LA∗ω = 0.

It follows that Ψ ∗
exp(tA)ω = ω for all t . Since G is connected, by Proposition 5.1.7,

it is generated by a neighbourhood of the identity. Thus, Ψ ∗
g ω = ω for all g ∈ G. �

Remark 10.1.6 As a consequence of Propositions 10.1.3 and 10.1.5, for an action
of a connected Lie group on a symplectic manifold to be Hamiltonian it is sufficient
that all Killing vector fields be Hamiltonian. In particular, the condition that the
action be symplectic is automatically fulfilled then.

We note that for arbitrary symplectic G-manifolds a momentum mapping need
not exist, because the Killing vector fields of a symplectic group action need not be
Hamiltonian, see Remark 8.2.7. The following proposition provides conditions on
M and G under which a momentum mapping exists.

Proposition 10.1.7 Let (M,ω,Ψ ) be a symplectic G-manifold. A momentum map-
ping for Ψ exists iff the linear mapping

F :g/[g,g] → H 1(M,R), F
([A]) := [A∗�ω] (10.1.5)

vanishes identically.

Proof We give the proof for a left action. The mapping F is well defined, that is, if
A = [B,C] for some B,C ∈ g, then A∗�ω is exact: since Ψ is symplectic, we have

LB∗ω = 0 = LC∗ω,

that is, B∗ and C∗ are locally Hamiltonian. According to Proposition 8.2.6/2, then
[C∗,B∗] = Xω(C∗,B∗). Thus, using Proposition 6.2.2/2, we obtain

A∗�ω = [B,C]∗�ω = [C∗,B∗]�ω = −d
(
ω(C∗,B∗)

)
.

The linearity of F is obvious. Now, according to Proposition 10.1.3 and For-
mula (10.1.4), a momentum mapping J exists iff A∗�ω is exact for all A ∈ g, that
is, iff [A∗�ω] = F([A]) = 0. �

Corollary 10.1.8 Let (M,ω,Ψ ) be a symplectic G-manifold. In each of the follow-
ing two cases, a momentum mapping for Ψ exists.

1. The first de Rham-cohomology group H 1(M,R) is trivial.
2. There holds g = [g,g]. This means that the first cohomology group of the Lie

algebra g is trivial.

The most important property of momentum mappings is that they provide con-
stants of motion. Recall that a function f ∈ C∞(M) is called G-invariant if
f ◦ Ψg = f for all g ∈ G and that the subspace of G-invariant functions is denoted
by C∞(M)G.
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Theorem 10.1.9 (Noether) Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold and let
H ∈ C∞(M)G. For A ∈ g, the function JA is a constant of motion for the Hamilto-
nian system (M,ω,H), that is,

d

dt
JA

(
γ (t)

)= 0

for all integral curves γ of the Hamiltonian vector field XH .

Proof For all m ∈ M , we have

{JA,H }(m) = XJA
(H)(m) = A∗(H)(m) = d

dt �0

H ◦ Ψexp tA(m) = 0.

Hence, the assertion follows from Proposition 9.1.10/1. �

Corollary 10.1.10 If the action is free, for every basis {ei} in g, the functions Jei

constitute a linearly independent system of constants of motion.

Next, we study the transformation properties of momentum mappings with re-
spect to the action of G on M and the coadjoint action of G on g∗. For that purpose,
let (M,ω,Ψ,J ) be a left Hamiltonian G-manifold and let A ∈ g and g ∈ G. Using
Proposition 8.2.9 and point 1 of Proposition 6.2.2, we obtain

XJA◦Ψg = (Ψg−1)∗XJA
= (Ψg−1)∗A∗ = (Ad

(
g−1)A

)
∗ = XJAd(g−1)A

and hence

0 = (XJA◦Ψg − XJAd(g−1)A
)�ω = −d(JA ◦ Ψg − JAd(g−1)A).

Thus, for all A ∈ g the function JA ◦ Ψg − JAd(g−1)A is constant on every connected
component of M . Using

JAd(g−1)A(m) = 〈J (m),Ad
(
g−1)A

〉= 〈Ad∗(g) ◦ J (m),A
〉
,

we can rewrite this function in the form

m �→ 〈
J ◦ Ψg(m) − Ad∗(g) ◦ J (m),A

〉
.

Thus, if M is connected, the linear functional J ◦Ψg(m)−Ad∗(g)◦J (m) on g does
not depend on m and we obtain a mapping

σ :G → g
∗, σ (g) := J ◦ Ψg(m) − Ad∗(g) ◦ J (m), (10.1.6)

where m is an arbitrarily chosen point of M . Obviously, σ = 0 iff J is equivariant
with respect to the coadjoint action of G, that is, iff

J ◦ Ψg = Ad∗(g) ◦ J. (10.1.7)

In this case, Gm ⊂ GJ(m) and Proposition 6.2.4/2 implies

J ′ ◦ A∗ = AAd∗
∗ ◦ J, A ∈ g, (10.1.8)

where AAd∗
∗ is the Killing vector field generated by A under the coadjoint action.
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Remark 10.1.11 The mapping σ defined by (10.1.6) is a measure for the momentum
mapping to fail the equivariance property. It satisfies

σ(gh) = σ(g) + Ad∗(g)σ (h). (10.1.9)

A mapping σ : G → g∗ with this property is called a coadjoint 1-cocycle with values
in g∗. A cocycle τ is called a coboundary if there exists an element μ ∈ g∗ such that

τ(g) = μ − Ad∗(g)μ. (10.1.10)

The set of g∗-valued 1-cocycles carries a vector space structure and the cobound-
aries form a vector subspace. The quotient vector space H 1(G,g∗) is called the first
cohomology group of G with values in g∗.

Proposition 10.1.12 For a connected Hamiltonian G-manifold (M,ω,Ψ ), the
class [σ ] ∈ H 1(G,g∗), defined by (10.1.6), does not depend on the momentum map-
ping J . An equivariant momentum mapping exists iff [σ ] = 0.

Proof Let J , J̃ be momentum mappings for Ψ and let σ and σ̃ denote the corre-
sponding coadjoint 1-cocycles. By Remark 10.1.4/2, we have J = J̃ + μ0 for some
μ0 ∈ g∗. Thus,

σ(g) = (J̃ + μ0) ◦ Ψg(m) − Ad∗(g) ◦ (J̃ + μ0)(m) = σ̃ (g) + μ0 − Ad∗(g)μ0

and hence [σ ] = [σ̃ ]. Moreover, if an equivariant momentum mapping exists, then
obviously [σ ] = 0. Conversely, if [σ ] = 0, there exists an element μ ∈ g∗ such that
σ(g) = μ − Ad∗(g)μ. Then, J̃ = J − μ is an equivariant momentum mapping. �

Remark 10.1.13 If (M,ω,Ψ ) is a connected Hamiltonian G-manifold with [σ ] �= 0,
a given momentum mapping J can be made equivariant by the following modifica-
tion of the coadjoint action on g∗:

Φ:G × g
∗ → g

∗, Φ(g,μ) := Ad∗(g)μ + σ(g). (10.1.11)

Using (10.1.9), one can check that Φ is a left action. Moreover, by construction, we
have J ◦ Ψg = Φg ◦ J , that is, J is equivariant with respect to Φ .

Proposition 10.1.14 Let (M,ω,Ψ,J ) be a left Hamiltonian G-manifold. If J is
equivariant, for all A,B ∈ g one has

{JA,JB} = J[B,A], (10.1.12)

that is, J is an anti-homomorphism6 of the Lie algebras g and (C∞(M), { , }).

Proof By equivariance of J , we have
〈
J ◦ Ψexp tA(m),B

〉= 〈Ad∗(exp tA) ◦ J (m),B
〉
.

6If Ψ is a right action, J is a homomorphism.
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Differentiating this equation with respect to t at t = 0, we obtain

d

dt �0

〈
J ◦ Ψexp tA(m),B

〉= A∗(JB)(m) = XJA
(JB)(m) = {JA,JB}(m)

for the left hand side and
d

dt �0

〈
Ad∗(exp tA) ◦ J (m),B

〉= 〈J (m), [B,A]〉= J[B,A](m)

for the right-hand side. �

Corollary 10.1.15 Let (M,ω,Ψ,J ) be a left Hamiltonian G-manifold and let J be
equivariant. Let m ∈ M and J (m) = μ, let ι : G · m → M be the natural inclusion
mapping and denote the coadjoint orbit through μ by Oμ ⊂ g∗. Then,7

ι∗ω = J ∗ωO−
μ , (10.1.13)

where ωO−
μ denotes the negative Kirillov form on Oμ, see Theorem 8.4.1.

For a right action, one obtains the positive Kirillov form on Oμ.

Proof Since ω and ωO−
μ are G-invariant, it is enough to prove (10.1.13) at m. On the

one hand, using (10.1.12) and the fact that Tm(G · m) is spanned by Killing vector
fields, we get

ωm(A∗,B∗) = ωm(XJA
,XJB

) = {JA,JB}(m) = J[B,A](m) = −〈μ, [A,B]〉

for all A,B ∈ g. On the other hand, the equivariance property (10.1.7) yields

J ◦ Ψm(g) = J ◦ Ψg(m) = Ad∗(g) ◦ J (m) = Ad∗(g)μ,

that is,

J ′
m ◦ Ψ ′

m(A) = ad∗(A)μ,

where ad∗(A)μ is the value of the Killing vector field AAd∗
∗ at μ. Now, we have

(
J ∗ωO−

μ
)
m
(A∗,B∗) = (ωO−

μ
)
μ

(
J ′

mA∗, J ′
mB∗

)

= (ωO−
μ
)
μ

(
AAd∗

∗ ,BAd∗
∗
)

= −〈μ, [A,B]〉 (10.1.14)

for all A,B ∈ g. �

Definition 10.1.16 A Hamiltonian G-manifold (g-manifold) is said to be strongly
Hamiltonian if there exists a momentum mapping satisfying (10.1.12).

By Proposition 10.1.14, every Hamiltonian G-manifold which admits an equiv-
ariant momentum mapping is strongly Hamiltonian.

7Since Oμ is an initial submanifold of g∗, J restricts to a smooth mapping J : G ·m → Oμ, denoted
by the same symbol.
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For a connected Hamiltonian G-manifold (M,ω,Ψ,J ), we can derive a criterion
for J to satisfy (10.1.12) in terms of the mapping σ : G → g∗ defined by (10.1.6).
For that purpose, we determine the tangent mapping σ ′

e: TeG ∼= g → T0g
∗ ∼= g∗. By

the calculation in the proof of Proposition 10.1.14, we obtain

〈
σ ′

e(A),B
〉= d

dt �0

〈
σ(exp tA),B

〉= {JA,JB}(m) − J[B,A](m). (10.1.15)

This means that J satisfies (10.1.12) iff σ ′
e vanishes identically, that is, iff J is

infinitesimally equivariant.

Remark 10.1.17 Choose a point m ∈ M and define the following antisymmetric
bilinear form Σ on g:

Σ(A,B) := {JA,JB}(m). (10.1.16)

Using Σ(A,B) = ωm(A∗,B∗), Proposition 4.1.6 and point 2 of Proposition 8.2.6,
one can check that

Σ
([A,B],C)+ Σ

([B,C],A)+ Σ
([C,A],B)= 0 (10.1.17)

for arbitrary A,B,C ∈ g (Exercise 10.1.1). An antisymmetric bilinear form on g

with this property is called a coadjoint 2-cocycle on g. By the Jacobi identity, every
μ ∈ g∗ defines a 2-cocycle δμ by

δμ(A,B) := μ
([A,B]). (10.1.18)

A 2-cocycle of this form is called a 2-coboundary.8 The 2-cocycles form a vector
space and the 2-coboundaries form a vector subspace. The quotient vector space is
called the second cohomology group of the Lie algebra g and is denoted by H 2(g).
One can show that another choice of the point m in (10.1.16) yields an equivalent
cocycle (Exercise 10.1.1). From (10.1.15) we read off

〈
σ ′

e(A),B
〉= Σ(A,B) + δ

(
J (m)

)
(A,B), (10.1.19)

that is, [Σ] = [σ ′
e] as elements of H 2(g).

The above discussion yields (Exercise 10.1.1)

Proposition 10.1.18 For a connected Hamiltonian G-manifold (M,ω,Ψ ), the
class [Σ] ∈ H 2(g), defined by (10.1.16), does not depend on the momentum map-
ping J . The action Ψ is strongly Hamiltonian iff [Σ] = 0.

Remark 10.1.19

1. Let (M,ω,Ψ ) be a symplectic G-manifold. If g is semisimple, then

[g,g] = g and H 2(g) = 0,

8And δ is called the coboundary operator.
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see [314] and [315]. According to Corollary 10.1.8, the property [g,g] = g im-
plies that a momentum mapping exists. The property H 2(g) = 0 ensures that
(M,ω,Ψ ) is strongly Hamiltonian.

2. Let (M,ω,Ψ ) be a Hamiltonian G-manifold. If [σ ] vanishes, there exists an
equivariant momentum mapping. By Proposition 10.1.14, then (M,ω,Ψ ) is
strongly Hamiltonian, so that [Σ] must vanish, too. Conversely, if [Σ] = 0,
there exists a momentum mapping J satisfying (10.1.12). Then, (10.1.15) yields
σ ′

e = 0. Hence, by plugging h = exp(tA) into (10.1.9) and differentiating at
t = 0, we obtain

σ ′
g ◦ L′

g = Ad∗(g) ◦ σ ′
e = 0.

We conclude that σ is constant on each connected component of G. Thus, if
G is connected, then [σ ] = 0. To summarize, if G is connected, there exists an
equivariant momentum mapping iff Ψ is strongly Hamiltonian.

In what follows we discuss Hamiltonian G-manifolds admitting an invariant
symplectic potential.

Proposition 10.1.20 Let (M,ω,Ψ ) be a left symplectic G-manifold. If ω = dθ for
some Ψ -invariant 1-form θ , then

J :M → g
∗,

〈
J (m),A

〉 := θm(A∗), (10.1.20)

is an equivariant momentum mapping.

Proof Obviously, for every m ∈ M , J (m) is a linear functional on g. G-invariance
of θ implies

0 = LA∗θ = A∗�dθ + d(A∗� θ)

and hence A∗�ω = −dJA for all A ∈ g. Equivariance follows from

θm(A∗) = (Ψ ∗
g θ
)
m
(A∗) = θΨg(m)(Ψg∗A∗) = θΨg(m)

((
Ad
(
g−1)A

)
∗
)
,

where we have used Proposition 6.2.2/1. �

An important class of Hamiltonian G-manifolds which admit an invariant sym-
plectic potential is constituted by the cotangent bundles of G-manifolds. Let (Q,ψ)

be a left G-manifold and let π : T∗Q → Q denote the canonical projection. Accord-
ing to Example 6.1.2/5, for every g ∈ G, the diffeomorphism ψg : Q → Q induces
a point transformation Ψg : T∗Q → T∗Q by

〈
Ψg(ξ),X

〉= 〈ξ,ψ ′
g−1X

〉
, ξ ∈ T∗Q, X ∈ Tψg◦π(ξ)Q, (10.1.21)

see also (8.3.9) and (8.3.10). The assignment g �→ Ψg defines a mapping

Ψ : G × T∗Q → T∗Q,

which is a left G-action. By construction, the mappings Ψg are vector bundle auto-
morphisms covering the diffeomorphisms ψg ,

π ◦ Ψg = ψg ◦ π. (10.1.22)
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In particular, the canonical projection π is equivariant. An action Ψ on T∗Q with
the property (10.1.22) is called a lift of the action ψ to T∗Q.

By Proposition 8.3.6, the canonical 1-form θ on T∗Q, and hence the natural
symplectic form ω = dθ , is invariant under Ψ . Thus, (T∗Q,ω,Ψ ) is a symplectic
G-manifold and the assumptions of Proposition 10.1.20 are fulfilled. This yields

Corollary 10.1.21 In the case of the symplectic G-manifold (T∗Q,ω,Ψ ) associ-
ated with the G-manifold (Q,ψ), the equivariant momentum mapping defined by
(10.1.20) is given by

J : T∗Q → g
∗,

〈
J (ξ),A

〉= 〈ξ,A
ψ∗
(
π(ξ)

)〉
, (10.1.23)

where A
ψ∗ is the Killing vector field generated by A under the action ψ on Q.

Proof For A ∈ g, let AΨ∗ denote the Killing vector field generated by A under Ψ .
Since π is equivariant, Proposition 6.2.4/2 yields

〈
J (ξ),A

〉= θξ

(
AΨ∗
)= 〈ξ,π ′(AΨ∗ (ξ)

)〉= 〈ξ,A
ψ∗
(
π(ξ)

)〉
. �

Example 10.1.22 (Momentum) Let Q =R
3 and let G =R

3 act by translations:

ψa(x) := x + a.

Under the identification TQ ∼= R
3 × R

3, the tangent mapping of ψa is given by
ψ ′

a(x,y) = (x + a,y). Hence, the lift Ψ to T∗Q ∼=R
3 ×R

3 is given by

Ψa(x,p) = (x + a,p).

Using Example 5.3.15, we compute the Killing vector field generated by b ∈ g ∼=
R

3:

bψ∗ (x) = d

dt �0

(x + tb) = b.

Consequently, for the momentum mapping (10.1.23) we obtain
〈
J
(
(x,p)

)
,b
〉= p · b,

that is,

J
(
(x,p)

)= p.

Thus, J coincides with momentum. This explains the origin of the name momentum
mapping.

Example 10.1.23 (Angular momentum) Let Q = R
3 and let G = SO(3) act by ro-

tations:

ψgx = gx.

Since Ψ leaves invariant the Euclidean scalar product, the lift Ψ is given by

Ψg(x,p) = (gx, gp).
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By Example 6.2.5/1, the Killing vector field generated by A ∈ g = so(3) is

A
ψ∗ (x) = Ax.

Hence, for the momentum mapping (10.1.23) we obtain
〈
J (x,p),A

〉= p · Ax.

Using

p · Ax = (x × p) · A, (10.1.24)

where × denotes the vector product and A ∈ R
3 denotes the vector corresponding

to A via the isomorphism (5.2.6), we obtain

J (x,p) = x × p,

that is, J coincides with angular momentum.

Example 10.1.24 (Translations on a Lie group) Consider Q = G with G acting by
left translation:

ψ :G × G → G, ψ(g, a) := ga,

that is, ψg = Lg . The action induced on T∗G is given by

Ψ : G × T∗G → T∗G, Ψg(ξ) = (Lg−1)
′T(ξ),

and the associated equivariant momentum mapping (10.1.23) is given by

J : T∗G → g
∗,

〈
J (ξ),A

〉= 〈ξ,
(
AL∗
)
π(ξ)

〉
.

Here, AL∗ denotes the Killing vector field of A with respect to the action by left
translation. According to Example 6.2.5/2, AL∗ coincides with the right-invariant
vector field generated by A. Hence, AL∗ (a) = (Ra)

′
e(A) and we obtain

J (ξ) = (Rπ(ξ))
′T(ξ). (10.1.25)

In the trivialization χ :G × g∗ → T∗G induced by left translation, cf. (8.3.6), Ψ is
given by the action

L := χ−1 ◦ Ψ ◦ χ :G × (G × g
∗)→ (

G × g
∗), Lg(a, ν) = (ga, ν),

(10.1.26)

and the momentum mapping JL := J ◦ χ has the form

JL (a, ν) = Ad∗(a)ν. (10.1.27)

We encourage the reader to check that for G = R
3, this example boils down to

Example 10.1.22.
Analogously, one deals with the right action induced by right translation on G.

Here, the momentum mapping is given by

J (ξ) = (Lπ(ξ))
′T(ξ). (10.1.28)
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The corresponding left action is induced by right translation with the inverse group
element,

ψ :G × G → G, ψ(g, a) := ag−1 ≡ Rg−1(a).

It has the momentum mapping

J (ξ) = −(Lπ(ξ))
′T(ξ). (10.1.29)

In the trivialization χ , this action is given by

R:G × (G × g
∗)→ (

G × g
∗), Rg(a, ν) = (ag−1,Ad∗(g)ν

)
, (10.1.30)

and the momentum mapping (10.1.29) takes the form

JR(a, ν) = −ν. (10.1.31)

Example 10.1.25 (Inner automorphisms of a Lie group) Consider Q = G with G

acting by inner automorphisms:

ψ :G × G → G, ψ(g, a) := gag−1,

that is, ψg = Cg . The Killing vector field generated by A ∈ g is

AC∗ (g) = R′
g(A) − L′

g(A)

and the induced action on T∗G reads

Ψ : G × T∗G → T∗G, Ψg(ξ) = (Cg−1)
′T(ξ).

For the equivariant momentum mapping (10.1.23), we obtain
〈
J (ξ),A

〉= 〈(Rπ(ξ))
′T(ξ) − (Lπ(ξ))

′T(ξ),A
〉
, ξ ∈ T∗

gG,

that is,

J (ξ) = μ − Ad∗(π(ξ)
)
μ, (10.1.32)

with μ = (Rπ(ξ))
′T(ξ).

Example 10.1.26 (Coadjoint orbits) Let g be a Lie algebra and let O ⊂ g∗ be a
coadjoint orbit. According to Theorem 8.4.1, O endowed with the Kirillov form

ωO (A∗,B∗)(μ) := 〈μ, [A,B]〉, μ ∈ O,

is a symplectic G-manifold. Every A ∈ g defines a linear function

JA:g∗ →R, JA(μ) := −〈μ,A〉.
For B ∈ g, we find

(B∗)μ(JA) = − d

dt �0

〈
Ad∗(exp(tB)

)
μ,A

〉= −〈μ, [A,B]〉= −ωO
μ (A∗,B∗).

Hence, A∗�ωO = −dJA. This means that the mapping

J :O → g
∗, J (μ) := −μ, (10.1.33)

is a momentum mapping. It is obviously equivariant.
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Exercises
10.1.1 Show that the cocycles on g defined in (10.1.16) by the help of differ-

ent points differ by a coboundary. Prove Formula (10.1.17) and Proposi-
tion 10.1.18.

10.1.2 Let (V ,ω) be a symplectic vector space and let G ⊂ Sp(V ,ω) be a closed
subgroup. Show that

J :V → g
∗,

〈
J (v),A

〉 := −1

2
ω(Av,v), (10.1.34)

is an equivariant momentum mapping for the action of G on (V ,ω). (This
applies in particular to the isotropy representation at an arbitrary point of a
symplectic G-manifold.)

10.1.3 Let (M,ω,Ψ ) be a Hamiltonian G-manifold with equivariant momentum
mapping J . Let O ⊂ g∗ be a coadjoint orbit, endowed with the Kirillov
form ωO . Consider the direct product of G-manifolds M × O and let prM
and prO denote the natural projections to the factors. Show that

ω̃ = pr∗1 ω + pr∗2 ωO (10.1.35)

is a G-invariant symplectic form on M × O and that

K:M × O → g
∗, K(m,μ) := J (m) − μ, (10.1.36)

is an equivariant momentum mapping. (This momentum mapping is used for
the so-called shifting trick, which will be explained in Remark 10.3.9.)

10.1.4 Let G be a Lie group and let H ⊂ G be a closed subgroup. Consider the
action of H on G by left translation. Determine the induced action on T∗G
and the corresponding equivariant momentum mapping (10.1.23).

10.1.5 Prove Formula (10.1.24).
10.1.6 Let M = R

2 and consider the action of G = R
2 on M by translations,

Ψ : G × M → M, Ψ (a,x) := x + a.

Show that

J :M → g
∗ ∼= R

2, J (x) · A := A1x2 − A2x1,

is a momentum mapping. Calculate [σ ] and the modified G-action (10.1.11)
on g∗ for which J is equivariant.

10.1.7 Show that the phase space of the n-dimensional isotropic harmonic oscilla-
tor admits a symplectic action of the unitary group U(n) which leaves the
Hamiltonian

H(q,p) = 1

2
p2 + ω2

2
q2

invariant. Find a momentum mapping.
Hint. Identify T∗

R
n with C

n via (q,p) �→ aq + ibp with appropriately cho-
sen constants a, b ∈ R.



504 10 Symmetries

10.2 The Witt-Artin Decomposition

Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold. From the Noether Theorem 10.1.9
we know that J is constant along the integral curves of the Hamiltonian vector field
generated by a G-invariant function H . Thus, the level sets

Mμ := J−1(μ) ⊂ M, μ ∈ g
∗,

are invariant under the flow of XH . This means that the dynamics can be reduced
to such level sets, which leads to an elimination of some of the variables. It can
then be further reduced by factorizing with respect to the residual symmetry. In this
section, we provide the algebraic basics needed for this reduction procedure. For that
purpose, we investigate the algebraic structure of the tangent spaces of M induced
from the tangent mapping J ′ and from the orbit structure of the action Ψ . The key
for this analysis is the Witt-Artin decomposition induced by the kernel of J ′. In
what follows, we assume J to be equivariant.

Let m ∈ M and let μ = J (m). Let Gμ be the stabilizer of μ under the coad-
joint action, let Gm be the stabilizer of m under Ψ and let gμ and gm denote the
corresponding Lie algebras. Since J is equivariant, we have

Gm ⊂ Gμ, gm ⊂ gμ.

For the convenience of the reader, we recall the following.

(a) The orbits of G and Gμ through m are denoted by G · m and Gμ · m, respec-
tively.

(b) Gm acts on TmM via the isotropy representation, cf. Proposition 6.1.5/4.
(c) The ωm-orthogonal complement of a subspace V ⊂ TmM is given by

V ωm = {Xm ∈ TmM : ωm(Xm,Ym) = 0 for all Ym ∈ V
}
.

(d) The annihilator of a vector subspace h ⊂ g in g∗ is given by

h
0 = {μ ∈ g

∗: 〈μ,A〉 = 0 for all A ∈ h
}
.

The following lemma characterizes the kernel and the image of J ′
m.

Lemma 10.2.1 Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold with equivariant
momentum mapping and let m ∈ M and μ = J (m). Then, we have

kerJ ′
m = Tm(G · m)ωm, (10.2.1)

imJ ′
m = g

0
m, (10.2.2)

(
kerJ ′

m

)ωm ∩ kerJ ′
m = Tm(Gμ · m). (10.2.3)

Proof For Ym ∈ TmM and A ∈ g, we calculate

ω
(
A∗(m),Ym

)= ω
(
XJA

(m),Ym

)= −dJA(Ym) = −Ym(JA) = −〈J ′
m(Ym),A

〉
.

Since the Killing vector fields of Ψ span Tm(G · m), this proves (10.2.1). Next, for
the mapping (J ′

m)T:g → T∗
mM dual to J ′

m, we find
〈(

J ′
m

)T
(A),Ym

〉= 〈J ′
m(Ym),A

〉= dJA(Ym) = −〈A∗�ωm,Ym〉
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and thus (J ′
m)T(A) = −A∗�ωm. Due to Proposition 6.2.2/3, this implies

ker
(
J ′

m

)T = {A ∈ g:A∗�ωm = 0} = {A ∈ g:A∗(m) = 0
}= gm.

Since the image of a linear mapping coincides with the annihilator of the kernel
of the dual mapping, we obtain imJ ′

m = (ker(J ′
m)T)0 = g0

m, which proves (10.2.2).
Finally, according to (10.2.1), the elements of (kerJ ′

m)ωm can be written in the form
Ψ ′

m(A) with A ∈ g. By Proposition 6.2.4/2 and (6.2.3), the equivariance property
(10.1.8) implies

J ′
m ◦ Ψ ′

m(A) = ad∗(A)μ.

Thus, Ψ ′
m(A) ∈ kerJ ′

m iff ad∗(A)μ = 0. By Proposition 6.2.2/3, this holds iff A ∈
gμ. Since the Killing vector fields of gμ span the tangent spaces of the orbit Gμ ·m,
we obtain (10.2.3). �

Corollary 10.2.2 Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold.

1. The rank of J ′
m is equal to the dimension of the orbit through m.

2. The momentum mapping J is a submersion at m iff Gm is a discrete group. If Ψ

is proper, this is equivalent to Gm being a finite group.

Proof 1. Using (10.2.1) and point 2 of Proposition 7.2.1, we obtain

dim(TmM) = dim
(
kerJ ′

m

)+ dim
(
imJ ′

m

)

= dim
(
Tm(G · m)ωm

)+ rankJ ′
m

= dim(TmM) − dim
(
Tm(G · m)

)+ rankJ ′
m (10.2.4)

and hence dim(Tm(G · m)) = rankJ ′
m.

2. The momentum mapping J is a submersion at m iff its rank is maximal, that
is, iff rankJ ′

m = dimg∗. By point 1 and dim Tm(G · m) = dimg − dimgm, this is
true iff dimgm = 0, that is, iff Gm is discrete. If Ψ is proper, then Gm is compact
and, therefore, finite. �

Remark 10.2.3

1. Since Gm is closed, one has dimgm = 0 for all m ∈ M iff Ψ is locally free,
which means that for every m ∈ M there exists an open neighbourhood U of the
identity e ∈ G, such that

U ∩ Gm = {e}.
Thus, if Ψ is locally free, point 2 of Corollary 10.2.2 yields that the momentum
mapping is a submersion and hence every value of J is regular. This is of course
in particular true for a free G-action.

2. In complete analogy, the action of Gμ on Mμ, viewed as an action of a topolog-
ical group on a topological space, is locally free iff dimgm = 0 for all m ∈ Mμ,
that is, iff μ ∈ g∗ is regular.
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Now, we will discuss the Witt-Artin decomposition of the symplectic vector
space TmM , m ∈ M , with respect to the subspace W = kerJ ′

m. Choose subspaces
E and F such that

W = E ⊕ W ∩ Wωm, Wωm = F ⊕ W ∩ Wωm.

By Theorem 7.3.3, E and F are symplectic and we have the following direct sum
decomposition of TmM into symplectic vector subspaces:

TmM = E ⊕ F ⊕ (E ⊕ F)ω. (10.2.5)

Note that (E ⊕ F)ω contains W ∩ Wωm as a Lagrangian subspace. According to
Lemma 10.2.1,

W = Tm(G · m)ωm, Wωm = Tm(G · m), W ∩ Wωm = Tm(Gμ · m).

For what follows, we assume that G acts properly. Then, the stabilizer Gm is
compact and there exists a Gm-invariant scalar product 〈·, ·〉 in TmM , cf. Propo-
sition 5.5.6. Let us choose E and F as orthogonal complements of the subspace
W ∩ Wωm with respect to this scalar product.

Lemma 10.2.4 The symplectic subspaces E, F and (E ⊕ F)ω are Gm-invariant.

Proof By Remark 6.2.10/1, Wωm = Tm(G · m) is Gm-invariant. Since ωm is Gm-
invariant, the ωm-orthogonal complement W = Tm(G · m)ωm is invariant, too. This
proves the invariance of W ∩ Wωm . Now, the assertion follows from the Gm-
invariance of the scalar product and of ωm. �

Since Gm is compact, there exists an Ad(Gm)-invariant scalar product in g and
we obtain Ad(Gm)-invariant orthogonal vector space decompositions

gμ = gm ⊕m, g = gm ⊕m⊕ q. (10.2.6)

There correspond Ad∗(Gm)-invariant decompositions of the dual vector spaces,

g
∗
μ = g

∗
m ⊕m

∗, g
∗ = g

∗
m ⊕m

∗ ⊕ q
∗. (10.2.7)

Here, g∗
m, m∗ and q∗ are identified with the annihilators in g∗ of, respectively, m⊕q,

gm ⊕ q and gm ⊕m. Let us rewrite the Witt-Artin decomposition (10.2.5) using the
subspaces m and q. First, it is clear that the mapping Ψ ′

m : g → TmM induces vector
space isomorphisms

W ∩ Wωm = Tm(Gμ · m) ∼=m, Wωm = Tm(G · m) ∼=m⊕ q. (10.2.8)

Second, if we choose the Gm-invariant scalar product on TmM so that
〈
Ψ ′

m(A),Ψ ′
m(B)

〉= 〈A,B〉
for all A,B ∈ m⊕ q, then Ψ ′

m induces an isomorphism

F ∼= q.
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Third, by choosing a Lagrangian complement L of W ∩ Wωm in (E ⊕ F)ωm , from
Proposition 7.2.9 we obtain a symplectomorphism

(E ⊕ F)ω ∼= W ∩ Wωm ⊕ (W ∩ Wωm
)∗

and hence, by (10.2.8), a symplectomorphism

jm : (E ⊕ F)ω →m⊕m
∗. (10.2.9)

The latter induces a linear embedding λL : m∗ → TmM with image L. Then, the
inverse of jm is given by the mapping

(
Ψ ′

m

)
�m ⊕ λL : m⊕m

∗ → TmM. (10.2.10)

Finally, we introduce the standard notation Vm ≡ E. To summarize, from the Witt-
Artin decomposition (10.2.5) we obtain the ωm-orthogonal decomposition

TmM ∼= q⊕ (m⊕m
∗)⊕ Vm, (10.2.11)

given by the vector space isomorphism (Ψ ′
m)�q ⊕ (Ψ ′

m)�m ⊕ λL ⊕ ιm, where ιm :
Vm → TmM is the natural inclusion mapping. This decomposition is usually re-
ferred to as the Gm-invariant Witt-Artin decomposition of the tangent space.9

Proposition 10.2.5 The Witt-Artin decomposition (10.2.11) induces the following
decomposition of the symplectic form ω at m ∈ Mμ:

ωm = (J ∗ωO−
μ
)
m

+ j∗
mωm⊕m∗ + ωVm. (10.2.12)

Here, ωO−
μ is the (negative) Kirillov form on Oμ, ωm⊕m∗

denotes the canonical
symplectic form on m⊕m∗ given by (7.1.5) and ωVm is the restriction of ωm to the
symplectic subspace Vm.

Proof Since the decomposition (10.2.11) is ωm-orthogonal, for Ai ∈ q, Bi ∈ m,
σi ∈ m∗ and vi ∈ V , i = 1,2, we find

ωm

(
A1∗ + B1∗ + λL(σ1) + v1,A2∗ + B2∗ + λL(σ2) + v2

)

= ωm(A1∗,A2∗) + ωm

(
B1∗ + λL(σ1),B2∗ + λL(σ2)

)+ ωm(v1, v2).

By Corollary 10.1.15,

ωm(A1∗,A2∗) = (J ∗ωO−
μ
)
m
(A1∗,A2∗).

Since jm is a symplectomorphism and since its inverse is given by (10.2.10),

ωm

(
B1∗ + λL(σ1),B2∗ + λL(σ2)

)= 〈σ2,B1〉 − 〈σ1,B2〉
= ωm⊕m∗(

(B1, σ1), (B2, σ2)
)

= j∗
mωm⊕m∗(

B1∗ + λL(σ1),B2∗ + λL(σ2)
)
.

�

9Note that this decomposition need not be orthogonal with respect to the Gm-invariant scalar prod-
uct chosen above. If one wants to have an orthogonal Witt-Artin decomposition, one has to redefine
the original scalar product by choosing a scalar product on each component and taking the orthog-
onal direct sum.
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Remark 10.2.6

1. Let m0 ∈ M . The symplectic vector space Vm0 is called a linear symplectic slice
for Ψ at m0. Since ω is invariant, along the orbit G · m0, the symplectic slices
can be chosen as VΨg(m0) = Ψ ′

gVm0 .10 Then, the union over all m ∈ G · m0 of
the subspaces Vm forms a vertical vector subbundle of (TM)�G·m0 , called the
symplectic normal bundle over G · m0. It is isomorphic to the vector bundle
G ×Gm Vm0 associated with the principal Gm0 -bundle G → G/Gm0 .

2. The Witt-Artin decomposition will be used for the proof of the Symplectic Tubu-
lar Neighbourhood Theorem in Sect. 10.4. In particular, we will use that, accord-
ing to (10.2.11), the injective linear mapping

λ := λL ⊕ ιm : m∗ ⊕ Vm → TmM

sends m∗ ⊕ Vm onto a vector space complement of Tm(G · m) in TmM . This
implies

TmM ∼= Tm(G · m) ⊕m
∗ ⊕ Vm, (10.2.13)

which may be interpreted as the infinitesimal version of the Symplectic Tubular
Neighbourhood Theorem. According to Proposition 10.2.5, with respect to this
decomposition, the symplectic form ωm is given by

ωm

(
A1∗ + λ(σ1, v1),A2∗ + λ(σ2, v2)

)

= 〈σ2,A1〉 − 〈σ1,A2〉 − 〈μ, [A1,A2]
〉+ wV

m(v1, v2), (10.2.14)

where Ai ∈ g, σi ∈m∗ and vi ∈ Vm.
3. If μ is regular, Corollary 10.2.2 implies that gm = 0 and hence gμ = m. More-

over, by the Level Set Theorem 1.8.3, Mμ is an embedded submanifold of M and
kerJ ′

m = TmMμ. Hence, Lemma 10.2.1 yields

Tm(G · m)ωm = TmMμ, (10.2.15)

Tm(G · m) ∩ TmMμ = Tm(Gμ · m), (10.2.16)

and thus

Tm(G · m) = (TmMμ)ωm. (10.2.17)

These facts will be used in Sect. 10.3.
4. If μ = 0, then Gμ = G and hence q= 0. If, in addition, 0 is a regular value, then

gm = 0 and thus m= gμ = g. Then, (10.2.17) yields

(TmM0)
ωm = Tm(G · m) ⊂ TmM0,

that is, TmM0 is a coisotropic subspace and the symplectic slice Vm is isomor-
phic to the symplectic vector space obtained by linear symplectic reduction,
cf. (7.3.3).

10When working with scalar products, this would require the scalar product on TΨg(m0)M to be
defined by 〈Ψ ′

g−1 ·,Ψ ′
g−1 ·〉, which makes sense, because 〈·, ·〉 is Gm0 -invariant.
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10.3 Regular Symplectic Reduction

Now we are prepared to turn to symplectic reduction in the context of Hamiltonian
G-manifolds. In this section, we present the reduction theorem for the regular case.
This classical result is due to Marsden and Weinstein [195] and to Meyer [210].

Let (M,ω,Ψ,J ) be a left Hamiltonian G-manifold with proper action and equiv-
ariant momentum mapping and let μ be a regular value of J . Then, by the Level Set
Theorem 1.8.3, Mμ = J−1(μ) is an embedded submanifold of M . Since it is Gμ-
invariant, according to Proposition 6.3.4/1, Ψ restricts to a proper action

Ψ μ : Gμ × Mμ → Mμ.

According to Remark 10.2.3/1, this action is locally free. One can show that in this
case the orbit space Mμ/Gμ is a symplectic orbifold, see [69]. In the sequel, we
restrict ourselves to the special case where the Gμ-action is not only locally free,
but free.

Theorem 10.3.1 (Regular Reduction) Let (M,ω,Ψ,J ) be a Hamiltonian G-mani-
fold with proper action and equivariant momentum mapping. Let μ ∈ g∗ be a regular
value of J and assume that the induced Gμ-action is free.

1. The topological space Mμ/Gμ carries a unique manifold structure such that the
natural projection πμ : Mμ → Mμ/Gμ is a submersion.

2. There exists a unique symplectic form ωμ on Mμ/Gμ such that

π∗
μωμ = j∗

μω, (10.3.1)

where jμ : Mμ → M denotes the natural inclusion mapping.

In the context of Hamiltonian systems, the symplectic manifold (Mμ/Gμ,ωμ)

is referred to as the reduced phase space.

Proof Point 1 is due to Corollary 6.5.1. To prove point 2, we observe that since πμ

is a surjective submersion, every tangent vector of Mμ/Gμ can be written in the
form π ′

μX for some X ∈ TMμ. Thus, we may define ωμ by

ω
μ

πμ(m)

(
π ′

μX,π ′
μY
) := ωm(X,Y ), (10.3.2)

where m ∈ Mμ and X,Y ∈ TmMμ. To prove that ωμ is well-defined, we must show
that the right hand side does not depend on the choice of m, X and Y . For that
purpose, let m̃ ∈ Mμ and X̃, Ỹ ∈ Tm̃Mμ such that πμ(m̃) = πμ(m), π ′

μX̃ = π ′
μX

and π ′
μỸ = π ′

μY . Then, there exists g ∈ G such that

m = Ψ μ
g (m̃),

(
Ψ μ

g

)′
X̃ − X ∈ Tm(Gμ · m),

(
Ψ μ

g

)′
Ỹ − Y ∈ Tm(Gμ · m).

By G-invariance of ω, we have

ωm̃(X̃, Ỹ ) = ((Ψ μ

g−1

)∗
ω
)
m

((
Ψ μ

g

)′
X̃,
(
Ψ μ

g

)′
Ỹ
)

= ωm

((
Ψ μ

g

)′
X̃,
(
Ψ μ

g

)′
Ỹ
)

= ωm

(
X + ((Ψ μ

g

)′
X̃ − X

)
, Y + ((Ψ μ

g

)′
Ỹ − Y

))
.
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By (10.2.17), the right hand side equals ωm(X,Y ). Hence, the definition (10.3.2)
makes sense, indeed.

By construction, the pointwise defined 2-form ωμ fulfils (10.3.1). Since πμ is
a surjective submersion, this implies that ωμ is uniquely determined and smooth.
For the same reason, dω = 0 implies dωμ = 0. It remains to show that ωμ is non-
degenerate. Thus, let m ∈ Mμ and X ∈ TmMμ such that

ω
μ

πμ(m)

(
π ′

μX,π ′
μY
)= 0 for all Y ∈ TmMμ. (10.3.3)

We have to show that this implies π ′
μX = 0. By definition of ωμ, (10.3.3) implies

ωm(X,Y ) = 0 for all Y ∈ TmMμ, that is, X ∈ (TmMμ)ωm . Now, by (10.2.16) and
(10.2.17),

(TmMμ)ωm ∩ TmMμ = Tm(Gμ · m).

Thus, π ′
μX = 0 holds, indeed. �

Remark 10.3.2 The assumption that μ ∈ g∗ be regular can be weakened. According
to Proposition 1.7.6, if J is a subimmersion, Mμ is still a closed submanifold. In
this case, μ is sometimes called weakly regular. For a discussion of reduction under
this weaker assumption, we refer to [181].

Now we can discuss the reduction of a G-invariant Hamiltonian system
(M,ω,H) with equivariant momentum mapping:

Proposition 10.3.3 Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold with proper ac-
tion and equivariant momentum mapping and let H ∈ C∞(M)G. Let μ ∈ g∗ be a
regular value of J and assume that the induced Gμ-action is free.

1. Mμ is invariant under the flow of XH and XH restricts to a vector field X
μ
H on

Mμ which is jμ-related to XH ,

j ′
μ ◦ X

μ
H = XH ◦ jμ. (10.3.4)

2. H defines a unique smooth function Hμ on Mμ/Gμ by

Hμ ◦ πμ = H ◦ jμ. (10.3.5)

The corresponding Hamiltonian vector field XHμ is πμ-related to X
μ
H ,

XHμ ◦ πμ = π ′
μ ◦ X

μ
H , (10.3.6)

The Hamiltonian system (Mμ/Gμ,ωμ,Hμ) is referred to as the reduction of the
Hamiltonian system (M,ω,H) at μ.

Proof 1. Invariance of Mμ follows from the Noether Theorem 10.1.9. Then, XH is
tangent to Mμ and the rest of the assertion follows from Proposition 2.7.16.

2. Since H is G-invariant, a function Hμ on Mμ/Gμ satisfying (10.3.5) exists.
Since πμ is surjective, Hμ is uniquely determined and since πμ is a submersion,
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Hμ is smooth. It remains to prove (10.3.6). According to (6.7.5), since X
μ
H is Gμ-

invariant, it projects to a vector field X̂
μ
H on Mμ/Gμ, uniquely determined by

X̂
μ
H ◦ πμ = π ′

μ ◦ X
μ
H . (10.3.7)

It suffices to show that X̂
μ
H = XHμ . By (10.3.5), we have dHμ ◦ π ′

μ = dH ◦ j ′
μ.

Using this, as well as (10.3.4) and (10.3.7), for m ∈ Mμ and Y ∈ TmMμ we obtain

(dHμ)πμ(m)

(
π ′

μY
)= (dH)jμ(m)

(
j ′
μY
)

= −ωjμ(m)

(
(XH )jμ(m), j

′
μY
)

= −(j∗
μω
)
m

((
X

μ
H

)
m
,Y
)

= −(π∗
μωμ

)
m

((
X

μ
H

)
m
,Y
)

= −ω
μ

πμ(m)

((
X̂

μ
H

)
πμ(m)

,π ′
μY
)
.

It follows that dHμ = −X̂
μ
H�ωμ and hence X̂

μ
H = XHμ , indeed. �

Corollary 10.3.4 The Poisson structures defined by ω and ωμ are compatible, that
is, one has

{fμ,hμ} ◦ πμ = {f,h} ◦ jμ, (10.3.8)

for all functions f,h ∈ C∞(Mμ)G and fμ,hμ ∈ C∞(Mμ/Gμ) related by (10.3.5).

Proof Using (10.3.4) and (10.3.6), we calculate

{fμ,hμ}(πμ(m)
)= ω

μ

πμ(m)(Xfμ,Xhμ)

= (π∗
μωμ

)
m

(
X

μ
f ,X

μ
h

)

= (j∗
μω
)
m

(
X

μ
f ,X

μ
h

)

= ωjμ(m)(Xf ,Xh)

= {f,h}(jμ(m)
)
. �

Now, let us apply the Regular Reduction Theorem 10.3.1 to the action of G on
T∗G induced by left translation, cf. Example 10.1.24. Thus, we consider Q = G

with G acting by

ψ :G × Q → Q, ψ(g,a) := Lg(a) = ga,

and with the induced action Ψ on T∗Q given by

Ψ : G × T∗Q → T∗Q, Ψg(ξ) = (Lg−1)
′T(ξ).

Recall from Example 10.1.24 that the corresponding equivariant momentum map-
ping is given by

J (ξ) = (Rπ(ξ))
′T(ξ),

cf. (10.1.25). The action Ψ is obviously free. Since ψ is proper, Remark 6.3.9 im-
plies that Ψ is proper, too. Let μ ∈ g∗ ∼= T∗

eQ and denote by αμ ∈ Ω1(Q) the right
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invariant differential form on Q defined by αμ(e) = μ. Thus, αμ(a) = (Ra−1)′T(μ).
Since

〈
J
(
αμ(a)

)
,A
〉= 〈αμ(a), (Ra)

′
e(A)

〉= 〈μ,A〉,
we obtain J (αμ(a)) = μ. This implies

(T∗Q)μ = J−1(μ) = αμ(Q),

that is, the level set of μ is given by the image of the 1-form αμ. Thus, (T∗Q)μ is
an embedded submanifold, diffeomorphic to the group manifold G. Due to

Ψg

(
αμ(a)

)= (Lg−1)
′T ◦ (Ra−1)

′T(μ) = (Rg−1 ◦ Ra−1)
′T ◦ Ad∗(g−1)μ,

the Gμ-action on (T∗Q)μ is given by

Ψg

(
αμ(a)

)= αμ(ga). (10.3.9)

Since (Rπ(ξ))
′T is fibrewise bijective, J is a submersion. Hence, we can apply the

Regular Reduction Theorem 10.3.1, which yields a symplectic manifold structure
on the quotient (T∗Q)μ/Gμ. The following theorem yields an explicit description
of this quotient.

Theorem 10.3.5 Let G be a Lie group and let (T∗G,ω,Ψ,J ) be the Hamilto-
nian G-manifold of Example 10.1.24. For every μ ∈ g∗, the reduced phase space
((T∗G)μ/Gμ,ωμ) is isomorphic to the coadjoint orbit of μ endowed with the posi-
tive Kirillov structure.

For μ = 0, both symplectic spaces obviously degenerate to the one-point-space.

Proof Let θ be the canonical 1-form and ω = dθ the canonical symplectic form on
T∗G. Denote by ωO+

μ the positive Kirillov form on the coadjoint orbit Oμ of μ, see
Sect. 8.4. Consider the mapping

(
T∗G

)
μ

→ Oμ, αμ(a) �→ Ad∗(a−1)μ.

Since for any g ∈ Gμ, this mapping sends Ψgαμ(a) = αμ(ga) to

Ad∗((ga)−1)μ = Ad∗(a−1) ◦ Ad∗(g−1)μ = Ad∗(a−1)μ,

it induces a bijection

ϕ:
(
T∗G

)
μ
/Gμ → Oμ. (10.3.10)

We decompose ϕ as follows:
(
T∗G

)
μ
/Gμ → G/Gμ → Oμ.

Here, the first mapping is obviously a diffeomorphism, induced by the natural pro-
jection of T∗G. The second mapping is the diffeomorphism (6.1.8) provided by the
Orbit Theorem 6.2.8. Thus, ϕ is a diffeomorphism. We prove

ϕ∗ωO+
μ = ωμ.
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Due to (10.3.1), for that purpose it is enough to show that

π∗
μ ◦ ϕ∗ωO+

μ = ω�T(T∗G)μ. (10.3.11)

Now, the tangent vectors to (T∗G)μ at αμ(a) can be written as α′
μÃ(a), with Ã

denoting the right invariant vector field on G, generated by A ∈ g. Thus, for the left
hand side we get:

π∗
μ ◦ ϕ∗ωO+

μ
(
α′

μÃ(a),α′
μB̃(a)

)= ωO+
μ
(
(ϕ ◦ πμ ◦ αμ)′Ã(a), (ϕ ◦ πμ ◦ αμ)′B̃(a)

)
.

For any f ∈ C∞(Oμ),

(
(ϕ ◦ πμ ◦ αμ)′Ã(a)

)
(f ) = d

dt �0

f ◦ ϕ ◦ πμ ◦ αμ

(
exp(tA)a

)

= d

dt �0

f
(
Ad∗(a−1 exp(−tA)

)
μ
)

= d

dt �0

f
(
Ad∗(a−1 exp(−tA)a

) ◦ Ad∗(a−1)μ
)

= −(Ad
(
a−1)A

)Ad∗
∗ (f )

(
Ad∗(a−1)μ

)
,

where AAd∗
∗ denotes the Killing vector field of the coadjoint action generated by A.

It follows that

(ϕ ◦ πμ ◦ αμ)′Ã(a) = −(Ad
(
a−1)A

)Ad∗
∗
(
Ad∗(a−1)μ

)

and the left hand side of (10.3.11) takes the form

ωO+
μ
((

Ad
(
a−1)A

)Ad∗
∗ ,

(
Ad
(
a−1)B

)Ad∗
∗
)(

Ad∗(a−1)μ
)= −〈μ, [A,B]〉.

Here we have used (8.4.2). For the right hand side of (10.3.11) we have

ω
(
α′

μÃ(a),α′
μB̃(a)

)= (α∗
μω
)
a
(Ã, B̃)

= (dαμ)a(Ã, B̃)

= Ãa

(〈αμ, B̃〉)− B̃a

(〈αμ, Ã〉)− 〈αμ, [Ã, B̃]〉(a),

where we have used (8.3.3). By right-invariance, 〈αμ, B̃〉 = 〈μ,B〉. Hence, the first
two terms vanish and we obtain

−〈αμ, [Ã, B̃]〉(a) = 〈μ, [A,B]〉.
Thus, we have proved (10.3.11), which implies that the mapping (10.3.10) is a sym-
plectomorphism, indeed. �

To conclude this section, we discuss an alternative reduction prescription leading
to the same reduced phase spaces. It is usually referred to as orbit reduction. We will
see that the choice of a concrete value μ ∈ g∗ is not important and that it is in fact
the orbit Oμ through μ which is relevant. Consider the preimage

Mμ := J−1(Oμ) (10.3.12)
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of the orbit Oμ under J . Since J is equivariant, we have Mμ = G · Mμ. As in
the Regular Reduction Theorem, we assume that μ is a regular value and that Gμ

acts freely on J−1(μ), which is equivalent to the assumption that G acts freely on
Mμ. By the Orbit Theorem 6.2.8, Oμ is an initial submanifold of g∗. Since μ is
regular, J is a submersion at every point of Mμ and hence the Transversal Mapping
Theorem 1.8.2 implies that Mμ is an initial submanifold of M . Since Mμ is G-
invariant, the action Ψ restricts to an action of G on Mμ. By Proposition 6.3.4/1,
this action is proper. Hence, Corollary 6.5.1 endows Mμ/G with a unique smooth
structure such that the natural projection π̃μ : Mμ → Mμ/G is a submersion. Since
Mμ is initial, the natural inclusion mapping Mμ → Mμ is smooth. It is easy to see
that it descends to a bijection

ϕ : Mμ/Gμ → Mμ/G. (10.3.13)

Since πμ and π̃μ are submersions, ϕ is a diffeomorphism.

Remark 10.3.6

1. The G-manifold Mμ has the structure of a bundle with fibre Mμ associated with
the principal Gμ-bundle πμ : Mμ → Mμ/Gμ. Indeed, the mapping

F :G ×Gμ Mμ → Mμ, F
([

(g,m)
]) := Ψg(m), (10.3.14)

is a G-equivariant diffeomorphism (Exercise 10.3.1).
2. Alternatively, one can use the Tubular Neighbourhood Theorem for showing that

Mμ is a submanifold of M on which G acts smoothly, freely and properly (Ex-
ercise 10.3.2).

Proposition 10.3.7 Let (M,ω,Ψ,J ) be a left Hamiltonian G-manifold with proper
action and equivariant momentum mapping. Let μ ∈ g∗ be a regular value and let
Oμ be the coadjoint orbit of μ. Assume that the restriction of Ψ to the submanifold
Mμ is free. Let ιμ : Mμ → M denote the natural inclusion mapping.

1. There exists a unique symplectic form ω̃μ on Mμ/G such that

π̃∗
μω̃μ = ι∗μω + J ∗ωO+

μ . (10.3.15)

2. The symplectic manifolds (Mμ/Gμ,ωμ) and (Mμ/G, ω̃μ) are symplectomor-
phic.

Proof 1. The right hand side of (10.3.15) defines a 2-form pointwise on Mμ/G: for
A,B ∈ g and m ∈ Mμ, we calculate, denoting J (m) ≡ ν,11

(
ι∗μω

)
m
(A∗,B∗) + (J ∗ωO+

μ
)
m
(A∗,B∗)

= ωm(XJA
,XJB

) + ω
O+

μ
ν

(
J ′

m(A∗)m, J ′
m(B∗)m

)

11Alternatively, one may observe that, on Killing vector fields, (ι∗μω)m coincides with the pull-back
of ω to the orbit G · m and apply Corollary 10.1.5.
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= J[B,A](m) + 〈ν, [A,B]〉

= 〈ν, [B,A]〉+ 〈ν, [A,B]〉= 0.

Thus, ω̃μ is well-defined. Since π̃μ is a surjective submersion, ω̃μ is smooth and

dω = 0 = dωO+
μ implies dω̃μ = 0. Non-degeneracy will follow from point 2.

2. We show that the diffeomorphism ϕ given by (10.3.13) fulfils ϕ∗ω̃μ = ωμ.
This implies in particular that ω̃μ is non-degenerate and hence symplectic. Since πμ

is a submersion, it is enough to show that π∗
μ ◦ϕ∗ω̃μ = π∗

μωμ. With iμ : Mμ → Mμ

denoting the natural inclusion mapping, we have ϕ ◦ πμ = π̃μ ◦ iμ and hence

π∗
μ ◦ ϕ∗ω̃μ = (π̃μ ◦ iμ)∗ω̃μ = (ιμ ◦ iμ)∗ω + (J ◦ iμ)∗ωO+

μ .

Using ιμ ◦ iμ = jμ and (10.3.1), for the first term of this sum we get j∗
μω = π∗

μωμ.
The second term vanishes, because J ◦ iμ is constant. This proves ϕ∗ω̃μ = ωμ. �

Corollary 10.3.8 The Poisson structures of (Mμ/Gμ,ωμ) and (Mμ/G, ω̃μ) are
isomorphic.

Remark 10.3.9 Orbit reduction can be also performed using the shifting trick,
see [232], Theorem 6.5.2: for a given Hamiltonian G-manifold (M,ω,Ψ,J ) with
equivariant momentum mapping J and a coadjoint orbit O , one considers the G-
manifold M × O with symplectic form

ω̃ = π∗
1 ω + π∗

2 ωO

and with equivariant momentum mapping

K:M × O → g
∗, K(m,μ) := J (m) − μ,

cf. Exercise 10.1.3. Thus, instead of considering the preimage J−1(O), one can
consider K−1(0). This way, the symplectic reduction problem is reduced to the case
μ = 0.

Exercises
10.3.1 Show that the mapping (10.3.14) is a G-equivariant diffeomorphism.
10.3.2 Using the Tubular Neighbourhood Theorem, show that the subset Mμ of M ,

defined by (10.3.12), is a submanifold on which G acts smoothly, freely and
properly.

10.4 The Symplectic Tubular Neighbourhood Theorem

The results of this section will be used for the subsequent discussion of singular
symplectic reduction. Let (M,ω,Ψ ) be a Hamiltonian G-manifold with proper
action and equivariant momentum mapping J . Let O be an orbit of Ψ and let
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O = J (O) be the corresponding coadjoint orbit. Choose a point m ∈ O and de-
note μ = J (m). The starting point of our analysis is the Witt-Artin decomposi-
tion12 (10.2.13) of TmM defined by the choice of an appropriate linear embedding
λ : m∗ ⊕ V → TmM onto a vector space complement of TmO . This way, m∗ ⊕ V

may be viewed as a model for the normal space to the orbit at m. According to
the Tubular Neighbourhood Theorem 6.4.3 and Remark 6.5.8 there exists a tubular
neighbourhood U of O in M and a G-equivariant diffeomorphism

χ :U → E = G ×Gm

(
m

∗ ⊕ V
)

onto an open neighbourhood Ẽ of the zero section of E, viewed as a vector bun-
dle over G/Gm. Our aim is to construct a Hamiltonian G-manifold structure on Ẽ

and to deform χ in a G-equivariant way so that it becomes symplectic and thus
an isomorphism of symplectic G-manifolds from U onto Ẽ. In the course of this,
we will use the following two commuting left G-actions on G × g∗ introduced in
Example 10.1.24:

(a) the action induced by left translation on G,

L :G × (G × g
∗)→ (

G × g
∗), La(g, ν) = (ag, ν), (10.4.1)

with equivariant momentum mapping JL (g, ν) = Ad∗(g)ν,
(b) the action induced by right translation with the inverse group element,

R:G × (G × g
∗)→ (

G × g
∗), Ra(g, ν) = (ga−1,Ad∗(a)ν

)
(10.4.2)

with equivariant momentum mapping JR(g, ν) = −ν.

Since E is the quotient of a free Gm-action on G × (m∗ ⊕ V ), it is natural to
construct Ẽ by regular symplectic reduction of a free Hamiltonian Gm-manifold.
For that purpose, we add the factor g∗

m as a symplectic partner for the necessar-
ily isotropic Gm-orbits and consider the following auxiliary trivial vector bundle
over G:

E := G × (g∗
m ⊕m

∗ ⊕ V
)
. (10.4.3)

This bundle is endowed with the Gm-action
(
a, (g, η,ρ, v)

) �→ (
ga−1,Ad∗(a)η,Ad∗(a)ρ, (Ψa)

′
mv
)

(10.4.4)

and with the G-action induced by left translation on the first factor,
(
h, (g, η,ρ, v)

) �→ (hg,η,ρ, v). (10.4.5)

By means of a chosen Gm-invariant scalar product on g, we can identify g∗
m ⊕ m∗

with g∗
μ and the latter with a linear subspace of g∗. Accordingly, for (g, η,ρ, v) ∈ E,

we can decompose

T(g,η,ρ,v)E = q⊕ gμ ⊕ g
∗
μ ⊕ V, (10.4.6)

12In the sequel, for convenience, we write V ≡ Vm.
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cf. Sect. 10.2 for the notations. Here, q ∼= g/gμ can be viewed as the tangent space
to the coadjoint orbit Oμ at μ and gμ ⊕ g∗

μ models the tangent spaces of T∗Gμ.
This suggests to take the following closed 2-form as a candidate for a symplectic
structure on E:

ω× := p∗
μωO−

μ + ι∗μωT∗G + ωV . (10.4.7)

Here, ωO−
μ , ωT∗G and ωV denote, respectively, the (negative) Kirillov form on O =

Oμ, the natural symplectic form on T∗G and the symplectic form on V ⊂ TmM

induced from ωm. The mapping pμ is given by

pμ : G → Oμ, pμ(g) := Ad∗(g)μ

and ιμ : G × g∗
μ → T∗G is the embedding defined by the left trivialization of T∗G,

cf. (8.3.6). According to (10.4.3), we write tangent vectors of E at (g, η,ρ, v) in the
form

(
L′

gA, ξ, σ,u
)
, A ∈ g, ξ ∈ g

∗
m, σ ∈m

∗, u ∈ V.

A straightforward calculation using (8.3.8) and (8.4.2) yields

ω×
(g,η,ρ,v)

((
L′

gA1, ξ1, σ1, u1
)
,
(
L′

gA2, ξ2, σ2, u2
))

= 〈ξ1 + σ1,A2〉 − 〈ξ2 + σ2,A1〉 − 〈μ + η + ρ, [A1,A2]
〉+ ωm(u1, u2).

(10.4.8)

Recall from Exercise 10.1.2 that the linear Gm-action on V induced from the
isotropy representation is Hamiltonian with momentum mapping

JV :V → g
∗
m,

〈
JV (v),A

〉 := 1

2
ωm

(
v,Hessm(A∗)v

)
. (10.4.9)

Lemma 10.4.1 There exists an open neighbourhood E× of the zero section in E,
invariant under both G and Gm, such that ω× is symplectic on E×. Moreover,

1. (E×,ω×) endowed with the action (10.4.4) is a Hamiltonian Gm-manifold with
Gm-equivariant and G-invariant momentum mapping

K : E× → g
∗
m, K(g,η,ρ, v) := JV (v) − η,

2. (E×,ω×) endowed with the action (10.4.5) is a Hamiltonian G-manifold with
G-equivariant and Gm-invariant momentum mapping

J× : E× → g
∗
m, J×(g, η,ρ, v) := Ad∗(g)(μ + η + ρ).

Denote the restriction of the G-action (10.4.5) to E× by Ψ ×.

Proof First, we check that ω× is invariant under both the action (10.4.4) and the
action (10.4.5). This is a consequence of the following facts:



518 10 Symmetries

(a) pμ(hg) = Ad∗(h)pμ(g) for all h ∈ G and pμ(ga−1) = pμ(g) for all a ∈ Gμ,
(b) the left trivialization of T∗G intertwines the action of G on T∗G induced from

left translation (right translation by the inverse group element) on G with the
actions L and R, respectively,

(c) ωO−
μ is invariant under the action of G on Oμ, ωT∗G is invariant under point

transformations and ωV is invariant under the isotropy representation.

Second, from (10.4.8) we read off that under the identification (10.4.6), ω×
(1,0,0,0)

coincides with the direct sum of the Kirillov form on TμO ∼= q, the canonical sym-
plectic form on gμ ⊕g∗

μ and ωV . Hence, it is non-degenerate. By G-invariance, then
ω× is non-degenerate on the zero section of E and hence on some G-invariant open
neighbourhood E× of the zero section. Since Gm is compact, E× can be chosen to
be Gm-invariant as well.

1. To see that K is a momentum mapping for the Gm-action (10.4.4), we interpret
E as the direct product of the symplectic Gm-manifolds

(
G × g

∗
m ⊕m

∗,p∗
μωO−

μ + ι∗μωT∗G)

and (V ,ωV ). One can check that the first one is Hamiltonian, where the momentum
mapping is obtained from that of the action R on (G × g∗,ωT∗G) by restriction
to G × g∗

m ⊕ m∗ and by composition with the projection13 g∗ → g∗
m. That is, the

momentum mapping is given by (g, η,ρ) �→ −η (Exercise 10.4.2). Since K is the
sum of the latter and the momentum mapping JV for the Gm-action on V , it is a
momentum mapping for the direct product. Finally, Gm-equivariance follows from
that of JV and G-invariance is obvious.

2. To prove that J× is a momentum mapping for the G-action Ψ ×, we show that

ω×(A×∗ ,Z
)= −Z

(
J×

A

)
(10.4.10)

for all A ∈ g and all vector fields Z on E×. Here, A×∗ denotes the Killing vector field
generated by A under Ψ ×. For (g, η,ρ, v) ∈ E×, we find

(
A×∗
)
(g,η,ρ,v)

= (L′
g

(
Ad
(
g−1)A

)
,0,0,0

)
.

Hence, writing Z(g,η,ρ,v) = (L′
gB, ξ, σ,u) and using (10.4.8), we compute

ω×
(g,η,ρ,v)

(
A×∗ ,Z

)= −〈ξ + σ,Ad
(
g−1)A

〉− 〈μ + η + ρ,
[
Ad
(
g−1)A,B

]〉
.

On the other hand,

Z(g,η,ρ,v)

(
J×

A

)= d

dt �0

〈
Ad∗(g exp(tB)

)(
μ + η + ρ + t (ξ + σ)

)
,A
〉

= 〈μ + η + ρ,
[
Ad
(
g−1)A,B

]〉+ 〈ξ + σ,Ad
(
g−1)A

〉
.

This proves (10.4.10) and, hence, that J× is a momentum mapping for Ψ ×. Equiv-
ariance is obvious and Gm-invariance follows at once from Gm ⊂ Gμ. �

13Induced by the injection gm → g.
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Obviously, K is a submersion and the action of Gm on E× is free and proper.
Hence, we can apply regular reduction to construct the symplectic manifold
K−1(0)/Gm.

Lemma 10.4.2 The neighbourhood E× can be chosen so that there exist Gm-
invariant open neighbourhoods m̃∗ of the origin in m∗ and Ṽ of the origin in V

such that the mapping

Ẽ := G ×Gm

(
m̃

∗ × Ṽ
)→ K−1(0)/Gm,

[
(g,ρ, v)

] �→ [(
g,JV (v), ρ, v

)]
,

is a diffeomorphism.

Proof For given E×, there exist m̃∗ and Ṽ such that the mapping

G × m̃
∗ × Ṽ → E

×, (g,ρ, v) �→ (
g,JV (v), ρ, v

)
, (10.4.11)

is defined. By construction, this mapping is bijective onto an open subset of K−1(0).
Differentiability (in both directions) follows from the fact that K−1(0) is an embed-
ded submanifold. Since K−1(0) carries the relative topology induced from E×, the
latter can be shrunk so that the mapping (10.4.11) becomes a diffeomorphism onto
K−1(0). Since JV is Gm-equivariant, so is this diffeomorphism. Hence, it descends
to a bijection of the quotients. Since the natural projections involved are submer-
sions, this bijection is in fact a diffeomorphism. �

Via the diffeomorphism of Lemma 10.4.2, the symplectic form of K−1(0)/Gm

inherited from ω× induces a symplectic form ω̃ on Ẽ. This form is uniquely deter-
mined by the relation

π∗
0 ω̃ = ι∗0ω×,

where ι0 : K−1(0) → E× is the natural inclusion mapping and π0 : K−1(0) →
Ẽ is the submersion obtained by composing the natural projection K−1(0) →
K−1(0)/Gm with the inverse of the diffeomorphism of Lemma 10.4.2. To derive
an explicit formula for ω̃, we denote the natural projection G × m̃∗ × Ṽ → Ẽ by π

and write tangent vectors of Ẽ at [(g,ρ, v)] in the form π ′(L′
gA,σ,u), where A ∈ g,

σ ∈m∗ and u ∈ V . Then, from (10.4.8) we read off

ω̃[(g,ρ,v)]
(
π ′(L′

gA1, σ1, u1
)
,π ′(L′

gA2, σ2, u2
))

= 〈σ1 + (JV
)′
v
(u1),A2

〉− 〈σ2 + (JV
)′
v
(u2),A1

〉

− 〈μ + ρ + JV (v), [A1,A2]
〉+ ωm(u1, u2). (10.4.12)

Moreover, since K is G-invariant, so is K−1(0). Hence, Ψ × restricts to an action
Ψ 0 of G on K−1(0). Since Ψ 0 commutes with the Gm-action and since π0 is a
submersion, Ψ 0 descends to an action Ψ̃ of G on Ẽ, explicitly given by

Ψ̃h

([
(g,ρ, v)

])= [(hg,ρ, v)
]
.

By construction, for every g ∈ G, we have

Ψ̃g ◦ π0 = π0 ◦ Ψ 0
g , ι0 ◦ Ψ 0

g = Ψ ×
g ◦ ι0. (10.4.13)
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Finally, since J× is Gm-invariant, and again since π0 is a submersion, J× induces
a smooth mapping J̃ : Ẽ → g∗ by

J̃ ◦ π0 = J× ◦ ι0. (10.4.14)

Explicitly, one finds

J̃
([

(g,ρ, v)
])= Ad∗(g)

(
μ + ρ + JV (v)

)
. (10.4.15)

Lemma 10.4.3 (Ẽ, ω̃, Ψ̃ ) is a Hamiltonian G-manifold with equivariant momen-
tum mapping J̃ .

Proof In the proof, we use the relations (10.4.12), (10.4.13) and (10.4.14) without
further notice. First, we show that the action Ψ̃ is symplectic: for g ∈ G, we find

π∗
0

(
Ψ̃ ∗

g ω̃
)= Ψ 0∗

g

(
π∗

0 ω̃
)= Ψ 0∗

g

(
ι∗0ω
)= ι∗0

(
Ψ ×∗

g ω
)= ι∗0ω = π∗

0 ω̃.

Since π0 is a submersion, it follows that Ψ̃ ∗
g ω̃ = ω̃. Next, we show that J̃ is a mo-

mentum mapping for Ψ̃ : for A ∈ g, denote the Killing vector fields generated by A

under the actions Ψ ×, Ψ 0 and Ψ̃ by, respectively, A×∗ , A0∗ and Ã∗. According to
Proposition 6.2.4/2, we have

Ã∗ ◦ π0 = π ′
0 ◦ A0∗, A×∗ ◦ ι0 = ι′0 ◦ A0∗.

Using this, we calculate

π∗
0 (Ã∗� ω̃) = A0∗�π∗

0 ω̃ = A0∗� ι∗0ω× = ι∗0
(
A×∗ �ω×).

Since J× is a momentum mapping for Ψ ×, the right hand side equals −ι∗0dJ×
A and

hence −π∗
0 dJ̃A. Since π0 is a surjective submersion, we conclude Ã∗� ω̃ = −dJ̃A.

Finally, we show that J̃ is equivariant: for g ∈ G we find

J̃ ◦ Ψ̃g ◦ π0 = J̃ ◦ π0 ◦ Ψ 0
g = J× ◦ ι0 ◦ Ψ 0

g = J× ◦ Ψ ×
g ◦ ι0.

Since J× is equivariant, the right hand side equals

Ad∗(g) ◦ J× ◦ ι0 = Ad∗(g) ◦ J̃ ◦ π0.

Since π0 is surjective, this yields equivariance. �

Theorem 10.4.4 (Symplectic Tubular Neighbourhood Theorem) Let (M,ω,Ψ )

be a symplectic G-manifold with proper action and equivariant momentum map-
ping J .

1. For every m ∈ M , there exists a G-invariant open neighbourhood U of G · m

in M and a G-equivariant symplectomorphism χ : U → Ẽ such that χ(m) =
[(1,0,0)].

2. J̃ ◦ χ is a momentum mapping for Ψ . If G is connected, then J̃ ◦ χ = J�U .

As a result, (Ẽ, ω̃, Ψ̃ , J̃ ) yields a local normal form for the Hamiltonian G-
manifold (M,ω,Ψ,J ) near the orbit G · m. It will be referred to as a symplectic
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tubular neighbourhood of G · m. Accordingly, χ will be referred to as a tube sym-
plectomorphism. The representation (10.4.15) of the momentum mapping J so ob-
tained is called the Marle-Guillemin-Sternberg normal form of J , see [190–192]
and [117].

Proof 1. By the Witt-Artin decomposition (10.2.13), there exists a Gm-equivariant
injective linear mapping λ : m∗ ⊕ V → TmM onto a vector space complement of
Tm(G · m) such that ωm is given by (10.2.14). Given λ, Theorem 6.4.3 and Remark
6.5.8 yield a G-equivariant diffeomorphism

χ :U → Ẽ ⊂ G ×Gm

(
m

∗ ⊕ V
)

(10.4.16)

satisfying χ(m) = [(1,0,0)] and (6.5.3), which in the present situation reads
(
χ−1)′

[(e,0,0)]
(
π ′(A,σ,u)

)= (A∗)m + λ(σ,u), (10.4.17)

where π : G × (m̃∗ × Ṽ ) → Ẽ is the natural projection. Using (10.4.17), (10.2.14)
and (10.4.12), as well as (J V )′0 = 0, we calculate

((
χ−1)∗ω

)
[(1,0,0)]

(
π ′(A1, σ1, u1),π

′(A2, σ2, u2)
)

= ωm

(
(A1∗)m + λ(σ1, u1), (A2∗)m + λ(σ2, u2)

)

= 〈σ1,A2〉 − 〈σ2,A1〉 − 〈μ, [A1,B1]
〉+ ωV (u1, u2)

= ω̃[(1,0,0)]
(
π ′(A1, σ1, u1),π

′(A2, σ2, u2)
)
,

where μ = J (m). By invariance, then ω and χ∗ω̃ coincide on G · m and the Equiv-
ariant Darboux Theorem 8.6.3 yields that U can be shrunk and χ can be modified
so that it becomes symplectic. Finally, we adjust U , m̃∗ and Ṽ in such a way that χ

becomes surjective and hence a symplectomorphism.
2. For A ∈ g, let A∗ and Ã∗ denote the Killing vector fields generated by A under

the actions Ψ and Ψ̃ , respectively. Using Proposition 6.2.4/2, we calculate

A∗�ω = A∗�
(
χ∗ω̃

)= χ∗((χ∗A∗)�ω̃
)= χ∗(Ã∗�ω̃) = −χ∗dJ̃A = −d(J̃ ◦ χ)A.

Since J̃ ◦ χ(m) = J̃ ([(1,0,0)]) = μ = J (m) and since the difference of two mo-
mentum mappings is locally constant, we conclude that J̃ ◦ χ = J provided U is
connected, which can always be achieved if G is connected. �

Exercises
10.4.1 Write down the proof of Lemma 10.4.1 for the case μ = 0.
10.4.2 Complete the proof of Lemma 10.4.1/1 by showing that the symplectic

action of Gm on (G × g∗
m × m∗,p∗

μωO−
μ + i∗μωT∗G) is Hamiltonian with

momentum mapping induced from that of the symplectic action R on
(G × g∗,ωT∗G) in the way described there.
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10.5 Singular Symplectic Reduction

In this section, we generalize the Regular Reduction Theorem 10.3.1 to the case of
a non-free group action. Here, as we know, several orbit types labelled by conju-
gacy classes of stabilizers can occur and, consequently, the quotient Mμ/Gμ is a
union of strata. In what follows, we will describe the symplectic structure of these
strata using the method of point reduction. The main tool is the Symplectic Tubular
Neighbourhood Theorem 10.4.4. We will close this section with a brief comment on
how the strata fit together to form a stratified symplectic space. Pioneering work in
this field was done by Arms, Cushman and Gotay, see [10], and by Sjamaar and Ler-
man, see [275], where the case of the zero-level set was worked out. For a detailed
discussion of all aspects of the general case, which would go beyond the scope of
this book, we refer to the book of Ortega and Ratiu, see [232]. There, the reader can
also find an exhaustive list of references. We also refer to Huebschmann, see [142],
who has worked out singular reduction for the case of Kähler manifolds.

Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold with proper action and equiv-
ariant momentum mapping. Below, we use the notation introduced in Sect. 6.1. In
particular, let M̂ = M/G and let π : M → M̂ denote the natural projection. For a
given coadjoint orbit O ⊂ g∗, denote

M̂O := π
(
J−1(O)

)
.

For a given orbit type [H ], the connected components of the subset

M̂[H ] ∩ M̂O

of orbits of orbit type [H ] and momentum type O will be referred to as the orbit-
momentum type strata of M̂ or the reduced phase spaces. They will be denoted
by M̂τ , where the set of labels τ is denoted by T. For given τ ∈ T and μ being an
element of the underlying coadjoint orbit, we define

Mτ,μ := π−1(M̂τ ) ∩ Mμ,

where Mμ = J−1(μ) as before. Let ιτ,μ : Mτ,μ → M and πτ,μ : Mτ,μ → M̂τ denote
the natural inclusion mapping and the natural projection induced by π , respectively.
Note that, by equivariance of J , two points in Mτ,μ are conjugate under G iff they
are conjugate under Gμ. Consequently, πτ,μ means factorization with respect to Gμ.
We also note that Gμ need not be connected and, thus, Mτ,μ need not be connected
as well. It can be obtained via the Gμ-action from one of its connected components
though.

Lemma 10.5.1 Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold with proper ac-
tion and equivariant momentum mapping, let m ∈ M and denote μ = J (m). Let
(Ẽ, ω̃, Ψ̃ , J̃ ) be a symplectic tubular neighbourhood of the orbit G · m at m. There
exists a Gμ-invariant open neighbourhood Ê of the orbit Gμ · [(1,0,0)] such that

J̃−1(μ) ∩ Ê = {[(g,0, v)
] ∈ Ẽ : g ∈ Gμ, JV (v) = 0

}
. (10.5.1)
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Proof By (10.4.15), a point [(g,ρ, v)] ∈ Ẽ belongs to J̃−1(μ) iff

ρ + JV (v) = Ad∗(g−1)μ − μ. (10.5.2)

We choose a Gm-invariant scalar product in g∗ and use this to embed m∗, g∗
m and

g∗
μ into g∗ as the orthogonal complements of the annihilators m0, g0

m and g0
μ. Then,

g∗
μ = m∗ ⊕ g∗

m and hence the left hand side of (10.5.2) belongs to the subspace g∗
μ.

Thus, in order to prove that Ê exists, it suffices to show that there exists an open
neighbourhood W of Gμ in G, invariant under left translation by Gμ and under
right translation by Gm, such that for any g ∈ W , the condition Ad∗(g−1)μ−μ ∈ g∗

μ

implies g ∈ Gμ. Indeed, then

Ê := W ×Gm ×(m̃∗ × Ṽ
)

is Gμ-invariant and satisfies (10.5.1). To prove the existence of W , let pr0 : g∗ → g0
μ

denote orthogonal projection with respect to the Gm-invariant scalar product and
consider the mapping

f : Oμ → g
0
μ, f (η) := pr0(η − μ).

Using Formula (6.2.3) and ad∗(A)μ ∈ g0
μ, for A ∈ g we calculate

f ′
μ(A∗μ) = pr0(A∗μ) = pr0(ad∗(A)μ

)= ad∗(A)μ = A∗μ,

where A∗ denotes the Killing vector field of the coadjoint action. Hence, f ′
μ is in-

jective. For dimensional reasons, it is bijective then and the Inverse Mapping Theo-
rem 1.5.7 yields an open neighbourhood W̃ of μ in Oμ where f is injective, that is,
where f (η) = 0 implies η = μ for all η ∈ W̃ . Since pr0 is Gm-equivariant, W̃ can
be chosen to be Gm-invariant. Then,

W := {a ∈ G : Ad∗(a−1)μ ∈ W̃
}

(the preimage of W̃ under the coadjoint orbit mapping of μ) has the desired proper-
ties. �

Remark 10.5.2 If we extend the twisted product to the case of topological spaces,
we can rewrite (10.5.1) in the form

J̃−1(μ) ∩ Ê = Gμ ×Gm

({0} × (Ṽ ∩ (JV
)−1

(0)
))

.

Here, (J V )−1(0) is not necessarily a manifold. We note that restriction to Ê is im-
portant, because the intersection of the coadjoint orbit of μ with the affine subspace
μ + (m∗ ⊕ g∗

m) may contain points different from μ, so that (10.5.2) may have so-
lutions with g lying outside the neighbourhood W of Gμ constructed in the above
proof.

Lemma 10.5.3 Under the assumptions of Lemma 10.5.1 we have
(
J̃−1(μ) ∩ Ê

)
H

= NGμ(H) ×H

({0} × Ṽ H
)
, (10.5.3)

(
J̃−1(μ) ∩ Ê

)
[H ] = Gμ ×H

({0} × Ṽ H
)
, (10.5.4)

with H ≡ Gm and Ṽ H denoting the H -invariant elements of Ṽ .
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Proof First, we show that
((

JV
)−1

(0)
)H = V H . (10.5.5)

For that purpose, it suffices to show that JV (v) = 0 for all elements v ∈ V H . Indeed,
for any element A of the Lie algebra of H , we have

〈
JV (v),A

〉= 1

2
ω
(
v,Hessm(A∗)v

)= 1

2

d

dt �0

ω
(
v, (Ψexp(tA))

′
mv
)= 0,

for any v ∈ V H . To prove (10.5.3), let [(g,0, v)] ∈ J̃−1(μ) ∩ Ê. If G[(g,0,v)] = H ,
then [(ag,0, v)] = [(g,0, v)] for all a ∈ H . This means that there exists an element
b ∈ H such that

(ag,0, v) = (gb−1,0, (Ψb)
′
mv
)
.

We read off that b = g−1a−1g, that is, g−1Hg ⊂ H and hence g ∈ NGμ(H). More-
over, by compactness of H , then g−1Hg = H , so that b ranges through all of H

and hence v is H -invariant. Conversely, if g ∈ NGμ(H) and v ∈ Ṽ H , then (10.5.5)

implies JV (v) = 0 and hence [(g,0, v)] ∈ J̃−1 ∩ Ê. The inclusion H ⊂ G[(g,0,v)]
is obvious. If, conversely, a ∈ G[(g,0,v)], then ag = gb−1 for some b ∈ H . Since
g ∈ NGμ(H), then a ∈ H .

Equation (10.5.4) follows by a similar argument: if G[(g,0,v)] = aHa−1 for some
a ∈ G, then for every h ∈ H there exists b ∈ H such that

(
aha−1g,0, v

)= (gb−1,0, (Ψb)
′
m(v)

)
.

Then, b = g−1ah−1a−1g, so that g−1aHa−1g ⊂ H and compactness of H im-
plies that b ranges through all of H . Hence, v ∈ Ṽ H . Conversely, by (10.5.5),
every point [(g,0, v)] of the right hand side belongs to J̃−1(μ) ∩ Ê. Moreover,
gHg−1 ⊂ G[(g,0,v)]. If, on the other hand, a ∈ G[(g,0,v)], then ag = gb−1 for some
b ∈ H and hence a ∈ gHg−1. �

Let (Ẽ, ω̃, Ψ̃ , J̃ ) be a symplectic tubular neighbourhood of G ·m with tube sym-
plectomorphism χ : U → Ẽ. Denoting Û = χ−1(Ê), from (10.5.3) and (10.5.4),
we read off

MH ∩ Mμ ∩ Û = χ−1(NGμ(H) ×H

({0} × Ṽ H
))∼= NGμ(H)/H × Ṽ H ,

(10.5.6)

M[H ] ∩ Mμ ∩ Û = χ−1(Gμ ×H

({0} × Ṽ H
))∼= Gμ/H × Ṽ H . (10.5.7)

By Lemma 7.4.6, V H ⊂ V is a symplectic vector space with symplectic form given
by the restriction of ωV to V H . By Formula (10.5.7), V H is a model space for the
strata of the G-action on Ẽ of isotropy type H . This is the key observation for the
proof of the following theorem.

Theorem 10.5.4 (Singular Reduction Theorem) Let (M,ω,Ψ,J ) be a Hamiltonian
G-manifold with proper action and equivariant momentum mapping. Let τ ∈ T and
let O be the corresponding coadjoint orbit. For every μ ∈ O ,
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1. the subset Mτ,μ is an embedded submanifold of M ,
2. there exists a unique smooth manifold structure on M̂τ such that the natural

projection πτ,μ : Mτ,μ → M̂τ is a submersion,
3. there exists a unique symplectic form ωτ on M̂τ such that

π∗
τ,μωτ = ι∗τ,μω. (10.5.8)

The smooth structure and the symplectic structure so induced on M̂τ do not de-
pend on the choice of μ.

Proof 1. Let μ ∈ O be given. By the Symplectic Tubular Neighbourhood Theo-
rem 10.4.4, for every m ∈ Mτ,μ, there exists a symplectic tubular neighbourhood
(Ẽ, ω̃, Ψ̃ , J̃ ) of G · m and a tube symplectomorphism χ : U → Ẽ. Moreover, by
Lemma 10.5.1, there exists an open neighbourhood Ê of the orbit Gμ · [(1,0,0)]
in Ẽ satisfying (10.5.1). Then, Û := χ−1(Ê) is an open neighbourhood of Gμ · m
in M . We show that14

Mτ,μ ∩ Û = χ−1(Gμ ×H

({0} × Ṽ H
))

. (10.5.9)

Consider the set W := χ−1({[(1,0, v)] : v ∈ Ṽ H }). Since W is a connected subset
of M[H ] ∩Mμ which intersects Mτ,μ and since the latter consists of connected com-
ponents of M[H ] ∩ Mμ, we have W ⊂ Mτ,μ ∩ Û . Then, Gμ · W ⊂ Mτ,μ ∩ Û . By
(10.5.4), Gμ · W = M[H ] ∩ Mμ ∩ Û and hence Mτ,μ ∩ Û = M[H ] ∩ Mμ ∩ Û . Then,
(10.5.9) follows from Eq. (10.5.4). Since Gμ ×H ({0} × Ṽ H ) is an embedded sub-
manifold of Ê, it follows that Mτ,μ ∩ Û is an embedded submanifold of M . Finally,
since Mτ,μ is obtained via the Gμ-action from one of its connected components and
since along a connected component the dimensions of V and V H cannot change,
for all m ∈ Mτ,μ, the subspaces V H have the same dimension. Then, the assertion
follows from Remark 1.7.4.

2. For m ∈ Mτ,μ, by identifying Ṽ with the subset H ×H ({0} × Ṽ ) of Ẽ, we
obtain a continuous mapping

ϕm : Ṽ H −→ Gμ ×H

({0} × Ṽ H
) χ−1

−→ Mτ,μ

πτ,μ−→ M̂τ .

Since J is equivariant, G-orbits in M intersect Mτ,μ in Gμ-orbits. Hence, ϕm is
injective. Since for an open subset W of Ṽ H , the subset χ−1(Gμ ×H ({0} × W))

is open in Mτ,μ and since πτ,μ is open, ϕm is also open and hence a homeomor-
phism onto its image. By composing its inverse with a chosen linear isomorphism
V H → R

r , where r = dim(V H ), we obtain a local chart κm on M̂τ . Up to the dif-
feomorphism

Gμ ×H

({0} × Ṽ H
)∼= Gμ/H × Ṽ H , (10.5.10)

given by (10.5.7), the transition mapping between the charts κm1 and κm2 is a com-
position of linear transformations with the restriction of the natural projection to the

14As before, for simplicity we denote H ≡ Gm.
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second factor of Gμ/H × Ṽ H to a certain submanifold. Hence, the local charts κm,
m ∈ Mτ,μ, define a smooth structure on M̂τ . Since via χ and (10.5.10), the natural
projection πτ,μ : Mτ,μ → M̂τ corresponds locally to a natural projection in a direct
product, it is a submersion.

3. Since πτ,μ is a surjective submersion, any two local 2-forms on M̂τ satisfying
(10.5.8) must coincide on their common domain. Therefore, it suffices to prove that
ωτ exists locally. Thus, let m ∈ Mτ,μ and consider a symplectic tubular neighbour-
hood of G · m. In the notation introduced under point 1, we will construct ωτ on the
open neighbourhood πτ,μ(Mτ,μ ∩ Û ) of πτ,μ(m) in M̂τ . Via χ and the isomorphism
(10.5.10), this neighbourhood is identified with Ṽ H , the subset Mτ,μ ∩ Û is iden-
tified with Gμ/H × Ṽ H , the projection Mτ,μ ∩ Û → πτ,μ(Mτ,μ ∩ Û ) corresponds
to the natural projection pr2 : Gμ/H × Ṽ H → Ṽ H and the restriction of ι∗τ,μω to

Mτ,μ ∩ Û corresponds to j∗ω̃, where

j : Gμ/H × Ṽ H → Ẽ, j
([g], v) := [(g,0, v)

]
.

Let πH : Gμ → Gμ/H and π̃ : G×m̃∗ × Ṽ → Ẽ be the natural projections. Writing
tangent vectors of Gμ/H × Ṽ H at ([g], v) in the form (π ′

H ◦ L′
gA,u) with A ∈ gμ

and u ∈ V H and using (10.4.12), we calculate
(
j∗ω̃

)
([g],v)

((
π ′

H ◦ L′
gA1, u1

)
,
(
π ′

H ◦ L′
gA2, u2

))

= ω̃[(g,0,v)]
(
π̃ ′(L′

gA1,0, u1
)
, π̃ ′(L′

gA2,0, u2
))

= ωm(u1, u2)

= (pr∗2 ωm

)
([g],v)

((
π ′

H ◦ L′
gA1, u1

)
,
(
π ′

H ◦ L′
gA2, u2

))
.

This shows that ωτ exists on the open subset πτ,μ(Mτ,μ ∩ Û ) of M̂τ , where under
the above identification of this subset with Ṽ H it is given by the restriction of ωm to
the subspace V H of V . Since, by Lemma 7.4.6, this subspace is symplectic, ωτ is
symplectic.

It remains to show that the smooth structure on M̂τ and the form ωτ so con-
structed do not depend on the choice of μ. For every μ̃ ∈ O , there exists g ∈ G such
that μ = Ad∗(g)μ̃. By restriction, Ψg induces a diffeomorphism ϕ : Mτ,μ̃ → Mτ,μ

which projects to the identical mapping id
M̂τ

of M̂τ . Since πτ,μ and πτ,μ̃ are sub-

mersions with respect to the smooth structure on M̂τ induced from Mτ,μ and Mτ,μ̃,
respectively, it follows that id

M̂τ
is a diffeomorphism. Hence, these smooth struc-

tures coincide. Moreover, using πτ,μ ◦ ϕ = πτ,μ̃ and ιτ,μ ◦ ϕ = Ψg ◦ ιτ,μ̃, we obtain

π∗
τ,μ̃ωτ = ι∗τ,μ̃ω.

It follows that ωτ coincides with the 2-form induced from Mτ,μ̃. �

Remark 10.5.5

1. Let us note the following consequences of the proof of Theorem 10.5.4.
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(a) Via a symplectic tubular neighbourhood, every m ∈ Mτ,μ induces a local
symplectomorphism from an open neighbourhood of π(m) in (M̂τ ,ω

τ ) onto
(Ṽ H ,ωm).

(b) The natural projection πτ,μ : Mτ,μ → M̂τ is a locally trivial fibre bundle
with typical fibre Gμ/H , where m ∈ Mτ,μ is arbitrary but fixed.

2. The argument of the proof of Theorem 10.5.4 shows that MH ∩ Mμ is a union
of embedded submanifolds of M and that M̂[H ] ∩ M̂O is a union of symplectic
manifolds. In both cases, these manifolds may have different dimensions, cf.
Remark 6.6.2/1. Since, in practice, the orbit-momentum type strata are hard to
find directly, the method of choice is to analyse the subsets MH ∩Mμ for several
combinations of H and μ in order to determine M̂[H ] ∩ M̂O and to read off the
corresponding orbit-momentum type strata afterwards. In this context, let us note
that, for given H and μ, the subset π(MH ∩ Mμ) of M̂ is a union of connected
components of M̂[H ] ∩ M̂O but need not coincide with the latter. It coincides
under the condition that every subgroup of Gμ which is conjugate to H in G is
also conjugate to H in Gμ.

3. We encourage the reader to write down the above proofs for the special case
μ = 0. This leads to some structural simplification.

Now, we are able to discuss singular reduction of a G-invariant Hamiltonian
system (M,ω,h) with equivariant momentum mapping.

Proposition 10.5.6 Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold with proper ac-
tion and equivariant momentum mapping and let h ∈ C∞(M)G. Let τ ∈ T, let O be
the corresponding coadjoint orbit and let μ ∈ O .

1. Mτ,μ is invariant under the flow of Xh and Xh restricts to a vector field X
τ,μ
h on

Mτ,μ which is ιτ,μ-related to Xh,

ι′τ,μ ◦ X
τ,μ
h = Xh ◦ ιτ,μ.

2. The Hamiltonian h defines a smooth function hτ on M̂τ by

hτ ◦ πτ,μ = h ◦ ιτ,μ.

The corresponding Hamiltonian vector field Xhτ is πτ,μ-related to X
τ,μ
h ,

π ′
τ,μ ◦ X

τ,μ
h = Xhτ ◦ πτ,μ.

As a consequence, an invariant Hamiltonian system (M,ω,h) induces a uniquely
determined reduced Hamiltonian system (M̂τ ,ω

τ , ĥτ ) for each orbit-momentum
type stratum τ of M̂ .

Proof By (6.7.3), the flow of Xh leaves invariant the stabilizers. Together with the
Noether Theorem 10.1.9, this yields invariance of Mτ,μ. The rest of the proof is
completely analogous to that of the regular case, cf. Proposition 10.3.3, and is there-
fore left to the reader. �
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In the remainder of this section we will prove that the singular strata M̂τ can be
obtained via regular reduction.15 For that purpose, let H be a stabilizer, let ΣH be
a connected component of MH and let ιΣH

: ΣH → M denote the natural inclusion
mapping. Recall from Remark 6.6.2/6 that ΣH is an embedded submanifold of M

acted upon properly and freely by

ΓΣH
= NΣH /H,

where

NΣH := NGΣH (H), GΣH := {g ∈ G : Ψg(ΣH ) ⊂ ΣH

}
,

and that the quotient manifold ΣH /ΓΣH
may be naturally identified with a certain

orbit type stratum M̂σ . Let n denote the Lie algebra of NG(H). Since NG(H)0 ⊂
NΣH ⊂ NG(H), this is also the Lie algebra of NΣH . Recall that the dual mapping
of the natural projection from n onto the Lie algebra n/h of ΓΣH

yields a natural
identification of the dual vector space (n/h)∗ with the annihilator h0 of h in n.16

Lemma 10.5.7 Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold with proper action
and equivariant momentum mapping, let H be a stabilizer and let ΣH be a con-
nected component of MH . Let j : n→ g denote the natural inclusion mapping.

1. (ΣH , ι∗ΣH
ω) is a symplectic submanifold of (M,ω).

2. The action of ΓΣH
on ΣH is symplectic. For every μ ∈ J (ΣH ), the mapping

JH,μ : ΣH → n
∗, JH,μ(m) := jT ◦ (J ◦ ιΣH

(m) − μ
)
,

takes values in h0 ≡ (n/h)∗ and defines a momentum mapping17 for this action.

Proof 1. According to Remark 6.6.2/6, Proposition 6.6.1/1 yields TmΣH =
(TmM)H for all m ∈ ΣH . Hence, the assertion follows from Proposition 7.4.6.

2. That the action is symplectic is obvious. For the proof of the assertions about
JH,μ, we ignore the natural inclusion mapping h → n. To see that the mapping
JH,μ takes values in h0, let A ∈ h. Using the obvious identity

(
jT ◦ J

)
A

= Jj(A) (10.5.11)

and the fact that j (A)∗ vanishes on ΣH , we obtain

dJ
H,μ
A = d(Jj (A) ◦ ιΣH

) = −ι∗ΣH

(
j (A)∗ �ω

)= 0.

Hence, J
H,μ
A is constant on ΣH . Since μ ∈ J (ΣH ), there exists m0 ∈ ΣH such that

J ◦ ιΣH
(m0) = μ. Then, J

H,μ
A (m0) = 0 and hence
〈
JH,μ(m),A

〉= J
H,μ
A (m) = 0

15The authors of [232] call this statement Sjamaar’s principle, because it first appeared in the thesis
of Sjamaar [274] in the context of compact group actions and zero level reduction.
16Note that h0 coincides with the subspace of H -invariant elements of the annihilator of h in g.
17Which need not be equivariant, see Remark 10.5.8/2.
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for all m ∈ ΣH . Thus, JH,μ takes values in h0, indeed. To see that JH,μ is a mo-
mentum mapping, let A ∈ n. First, we observe that the Killing vector field on ΣH

generated by [A] ∈ n/h coincides with the Killing vector field A
ΣH∗ generated by A

under the action of NΣH on ΣH . Second, we observe that j is the Lie algebra ho-
momorphism induced by the natural inclusion mapping NΣH → G. Since the latter,
together with ιΣH

, establishes a morphism of Lie group actions, Proposition 6.2.4/1
implies

ι′ΣH
◦ AΣH∗ = j (A)∗ ◦ j.

Using this and (10.5.11), we obtain

[A]∗ �
(
ι∗ΣH

ω
)= AΣH∗ �

(
ι∗ΣH

ω
)= ι∗ΣH

(
j (A)∗ �ω

)= −d(Jj (A) ◦ ιΣH
) = −dJ

H,μ
A .

�

Remark 10.5.8

1. By definition of JH,μ, μ ∈ J (ΣH ), we have
(
JH,μ

)−1
(0) = ΣH ∩ Mμ. (10.5.12)

2. The momentum mapping JH,μ is not equivariant. Using the equivariance of J

and j , we calculate the 1-cocycle defined by (10.1.6). Omitting the natural in-
clusion mapping ιΣH

: ΣH → M , for g ∈ NΣH and m ∈ ΣH we obtain

σ
([g])= JH,μ

(
Ψg(m)

)− Ad∗([g])(JH,μ(m)
)

= jT(J
(
Ψg(m)

)− μ
)− Ad∗([g])(jT(J (m) − μ

))

= jT(Ad∗(g)μ − μ
)
.

By Lemma 10.5.7 and Remark 10.5.8/2, if one modifies the coadjoint action of
ΓΣH

on (n/h)∗ ≡ h0 in the sense of (10.1.11), the momentum mapping JH,μ will
be equivariant with respect to this modified action. Note that the stabilizer of the
origin of (n/h)∗ under this modified action coincides with

(ΓΣH
)μ = {[g] ∈ ΓΣH

: Ad∗(g)μ = μ
}≡ NΣH

μ /H, NΣH
μ := Gμ ∩ NΣH .

Then, the assumptions entering the Regular Reduction Theorem 10.3.1 are fulfilled.
In particular, (JH,μ)−1(0) is an embedded submanifold of ΣH and the reduced
phase space

(
JH,μ

)−1
(0)/(ΓΣH

)μ ≡ (ΣH ∩ Mμ)/NΣH
μ (10.5.13)

carries a unique symplectic structure. In the remainder of this section, we will relate
this symplectic manifold to the symplectic manifolds M̂τ constructed before.

Let ΣH,μ be a connected component of ΣH ∩ Mμ, let Σ̂H,μ denote the corre-
sponding connected component of the reduced phase space (ΣH ∩ Mμ)/NΣH

μ and
let πH,μ : ΣH,μ → Σ̂H,μ denote the natural projection. Since ΣH is a connected
component of MH , ΣH,μ is also a connected component of MH ∩ Mμ. There-
fore, ΣH,μ ⊂ Mτ,μ for some orbit-momentum type stratum τ ∈ T. Since, by con-
struction, two points of ΣH,μ are conjugate under G iff they are conjugate under
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NΣH
μ , the natural inclusion mapping ι : ΣH,μ → Mτ,μ induces an injective mapping

ϕ : Σ̂H,μ → M̂τ by the following commutative diagram:

ΣH,μ

πH,μ

ι
Mτ,μ

πτ,μ

Σ̂H,μ
ϕ

M̂τ .

(10.5.14)

Proposition 10.5.9 The mapping ϕ defined by (10.5.14) is a symplectomorphism.

For the proof we need

Lemma 10.5.10 Let m ∈ MH ∩ Mμ and let (Ẽ, ω̃, Ψ̃ , J̃ ) be a symplectic tubular
neighbourhood of the orbit G · m at m with tube symplectomorphism χ : U → Ẽ.
Let Ê be the open Gμ-invariant neighbourhood of Gμ · [(1,0,0)] provided by
Lemma 10.5.1 and denote Û := χ−1(Ê). Assume that Ṽ H is connected.

1. If m ∈ ΣH,μ, then ΣH,μ ∩ Û = χ−1(NΣH
μ ×H ({0} × Ṽ H )).

2. If ΣH,μ ∩ Û �= ∅, then (Gμ · ΣH,μ) ∩ Û = Mτ,μ ∩ Û .

Proof of Lemma 10.5.10 1. Consider the set W := χ−1({[(1,0, v)] : v ∈ Ṽ H }).
Since W is a connected subset of MH ∩ Mμ which intersects ΣH,μ and since the
latter is a connected component of MH ∩ Mμ, we have W ⊂ ΣH,μ ∩ Û . Since
ΣH,μ ∩ Û is invariant under NΣH

μ , then

NΣH
μ · W = χ−1(NΣH

μ ×H

({0} × Ṽ H
))⊂ ΣH,μ ∩ Û . (10.5.15)

By (10.5.6), and since two points of ΣH,μ are conjugate under G iff they are conju-
gate under NΣH

μ , we have in fact equality in (10.5.15).
2. By point 1, if ΣH,μ ∩ Û �= ∅, then it contains a point χ−1([(g,0, v)]) with

g ∈ NΣH
μ and v ∈ Ṽ H . Let W denote the subset defined under point 1. By the

same argument, applied to Ψg(W), we find that Ψg(W) ⊂ ΣH,μ ∩ Û . Then, since
NΣH

μ ⊂ Gμ,

Gμ · W ⊂ (Gμ · ΣH,μ) ∩ Û .

By (10.5.7), Gμ · W coincides with Mτ,μ ∩ Û . Since (Gμ · ΣH,μ) ∩ Û is contained
in Mτ,μ ∩ Û , the assertion follows. �

Proof of Proposition 10.5.9 For every m ∈ ΣH,μ, we find a symplectic tubular
neighbourhood (Ẽ, ω̃, Ψ̃ , J̃ ) of the orbit G · m at m with tube symplectomorphism
χ : U → Ẽ. Using point 1 of Lemma 10.5.10 and the argument of the proof of
point 3 of the Singular Reduction Theorem 10.5.4, one can show that χ induces
a local symplectomorphism from an open neighbourhood of πH,μ(m) onto Ṽ H .
Combining this with the corresponding result for M̂τ , stated in Remark 10.5.5/1,
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we find that ϕ is given locally by the identical mapping of Ṽ H . Hence, it is a sym-
plectomorphism from Σ̂H,μ onto an open subset of M̂τ . It remains to show that
ϕ is surjective. For that purpose, for every m ∈ Mτ,μ, we choose a tube diffeo-
morphism χm : Um → Ẽm and an open subset Êm according to Lemma 10.5.1 and
denote Ûm = χ−1

m (Êm). Let B denote the subset of Mτ,μ of points which are not
Gμ-conjugate to a point in MH ∩ Mμ. We can cover M̂τ by the (possibly empty)
open subsets πτ,μ(Ûm ∩Mτ,μ) with m ∈ (MH ∩Mτ,μ)∪B . Since the fibres of πτ,μ

are the Gμ-orbits in Mτ,μ, we have

πτ,μ(Ûm1 ∩ Mτ,μ) ∩ πτ,μ(Ûm2 ∩ Mτ,μ) =∅

whenever m1 ∈ MH ∩ Mτ,μ and m2 ∈ B . In particular, since ΣH,μ ⊂ MH ∩ Mτ,μ,
we have ϕ(Σ̂H,μ) ∩ πτ,μ(Ûm2 ∩ Mτ,μ) = ∅ for all m2 ∈ B . Combining this with
Lemma 10.5.10/2, we obtain that M̂τ \ ϕ(Σ̂H,μ) coincides with the union of the
open subsets πτ,μ(Ûm ∩ Mτ,μ) over all points m in ((MH ∩ Mτ,μ) \ ΣH,μ) ∪ B .
This shows that the image of ϕ is also closed in M̂τ . Since M̂τ is connected, it
follows that ϕ is surjective. �

Remark 10.5.11

1. Proposition 10.5.9 implies that for every connected component ΣH,μ of
MH ∩ Mμ there exists a unique orbit-momentum type stratum τ ∈ T, with un-
derlying coadjoint orbit O = Oμ, such that

Mτ,μ = Gμ · ΣH,μ. (10.5.16)

This observation clarifies the relation between our presentation of singular point
reduction and that in [232]. There, the reduction procedure is applied to the sub-
sets

(Gμ · ΣH ) ∩ Mμ ≡ Gμ · (ΣH ∩ Mμ),

where, as before, ΣH is a connected component of MH . In view of (10.5.16),
Proposition 10.5.9 implies that the reduced phase space obtained in [232] is sym-
plectomorphic to a union of certain orbit-momentum type strata M̂τ contained in
M̂[H ] ∩ M̂O . It is symplectomorphic to M̂[H ] ∩ M̂O under the condition that ev-
ery subgroup of Gμ which is conjugate to H in G is also conjugate to H in Gμ,
cf. Remark 10.5.5/2.

2. As in the regular case, see Proposition 10.3.7, one can perform singular orbit
reduction, see [33] for first steps in this direction and [232], Sect. 8.4, for an ex-
haustive discussion. Ortega and Ratiu show that, provided one endows J−1(Oμ)

with the appropriate topology,18 singular orbit reduction yields a stratified sym-
plectic space and that the latter is homeomorphic to the one obtained by point
reduction.

18Here, a subtlety occurs: whereas J−1(μ) can be simply viewed as a topological subspace of M ,
J−1(Oμ) has to be endowed with the initial topology induced by the mapping J . If μ is regular
and G acts freely on M , this is consistent with endowing J−1(Oμ) with the initial submanifold
structure provided by the Transversal Mapping Theorem 1.8.2.
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3. We comment on the structure of the reduced phase space as a whole. For details
we refer to [232] and [238], see also [275].

For a given coadjoint orbit O , the subset M̂O of M̂ can be identified with the
topological quotient Mμ/Gμ for every μ ∈ O . It decomposes as

M̂O =
⋃

τ

M̂τ ,

where the union is over all orbit-momentum type strata whose underlying coad-
joint orbit coincides with O . This decomposition has certain topological and ge-
ometric properties which are summarized in the notion of Whitney stratification.
In particular, M̂O has the local structure of a cone space. Accordingly, the sym-
plectic manifolds M̂τ are usually referred to as the symplectic strata of M̂O .

Due to the G-invariance of ω, the subset C∞(M)G is a Poisson subalgebra of
C∞(M). As a consequence of Noether’s Theorem, the subset

I = {f ∈ C∞(M)G : f�Mμ
= 0

}

is a Poisson ideal of C∞(M)G. Thus, we can form the quotient to obtain a Pois-
son algebra of continuous functions on M̂O = Mμ/Gμ:

C∞(M̂O ) := C∞(M)G/I.

This way, M̂O is equipped with the structure of a Poisson space.19 By construc-
tion, the inclusion mappings M̂τ → M̂O are Poisson space morphisms, that is,
the natural mappings

C∞(M̂O ) → C∞(M̂τ )

induced by pull-back are Poisson algebra homomorphisms. The whole struc-
ture is summarized in the statement that M̂O , together with the Poisson algebra
C∞(M̂O ) and the family of strata {M̂τ }, constitutes a stratified symplectic space.

10.6 Examples from Classical Mechanics

In this section, we perform symplectic reduction for the following examples: the
geodesic flow on S3, the Kepler problem, the Euler top and the spherical pendulum.
Apart from the geodesic flow, these examples will be taken up again in Sect. 10.8
and in Chap. 11. At this point, we would like to draw the attention of the reader to
the book of Cushman and Bates [69], where the main focus is on examples of the
above type, with the theoretical foundations being given in appendices.

Recall that the Euclidean scalar product of two vectors x,y ∈ R
n is denoted by

x · y and that the corresponding norm is denoted by ‖x‖. In this notation, the canon-
ical 1-form θ on TRn ∼= T∗

R
n takes the form

θ(x,y) = y · dx. (10.6.1)

19A Poisson space is a topological space together with a Poisson algebra of continuous functions.
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Example 10.6.1 (Geodesic flow on S3) Let M = TR4 ∼=R
4 ×R

4. The natural action
ψ of SO(4) on R

4 and the lift Ψ of this action to TR4 are given by

ψ : SO(4) ×R
4 → R

4, ψ(a,x)= ax.

Ψ : SO(4) × TR4 → TR4, Ψ
(
a, (x,y)

)= (ax, ay).

By Proposition 8.3.6, the canonical 1-form θ is invariant under Ψ . The Killing vec-
tor field generated by A ∈ so(4) under this action is given by

A∗(x,y) = d

dt �0

Ψexp(tA)(x,y) = (Ax,Ay). (10.6.2)

Hence, for the equivariant momentum mapping (10.1.23), we obtain

J : TR4 → so(4),
〈
J (x,y),A

〉= (Ax) · y, (10.6.3)

that is, JA(x,y) = (Ax) · y. Thus, the tuple (TR4,dθ,Ψ,J ) defines a Hamiltonian
SO(4)-manifold. Let us consider the invariant Hamiltonian

H(x,y) = 1

2
‖x‖2‖y‖2 − 1

2
(x · y)2. (10.6.4)

A brief computation (Exercise 10.6.1) yields the Hamilton equations

ẋ = ‖x‖2y − (x · y)x, (10.6.5)

ẏ = −‖y‖2x + (x · y)y, (10.6.6)

from which we read off that the projection to the configuration space R
4 of the

integral curve with initial condition x0, y0 lies on the sphere of radius ‖x0‖. Thus,
the dynamics can be restricted to the submanifold

TS3 = {(x,y) ∈ TR4 : ‖x‖2 = 1, x · y = 0
}
, (10.6.7)

of TR4, cf. Remark 2.1.4/2. One can check that via the natural inclusion mapping,
θ pulls back to the canonical 1-form θ̃ on TS3, which is inherited from T∗S3 via
the isomorphism defined by the Euclidean metric. Thus, by restriction, the Hamil-
tonian system (TR4,dθ,H) induces a Hamiltonian system (TS3,dθ̃ , H̃ ), where
H̃ = H�TS3 . From (10.6.4)–(10.6.6) we read off

H̃ (x,y) = 1

2
‖y‖2

and the Hamilton equations

ẋ = y, ẏ = −‖y‖2x. (10.6.8)

Since ‖y‖2 = 2H̃ is a constant of motion, this system of equations can be trivially
integrated:

[
x(t)

y(t)

]
=
[

cos(t
√

2h) 1√
2h

sin(t
√

2h)

−√
2h sin(t

√
2h) cos(t

√
2h)

][
x0
y0

]
,

where h = H̃ (x0,y0). Every integral curve with h > 0 is periodic and its projection
to the configuration space S3 is a great circle whose position is defined by the initial
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conditions x0,y0. The Hamiltonian vector field X
H̃

is called the geodesic vector
field on S3 and its flow is called the geodesic flow on S3. We leave it to the reader
to check that this is indeed the geodesic flow on S3 with respect to the Riemannian
structure induced from R

4 as discussed in Example 9.2.1.
Since the submanifold TS3 given by (10.6.7) is invariant under the action Ψ , the

latter restricts to an action

Ψ̃ : SO(4) × TS3 → TS3, Ψ
(
a, (x,y)

)= (ax, ay),

and the equivariant momentum mapping (10.6.3) restricts to an equivariant mo-
mentum mapping J̃ for this action. Thus, (TS3,dθ̃ , Ψ̃ , J̃ ) is a Hamiltonian SO(4)-
manifold. Let us study its structure. For that purpose, from Remark 5.4.11/2 we
recall that the Killing form of so(4) induces an equivariant vector space isomor-
phism so(4)∗ ∼= so(4). In turn, we can identify the vector space underlying so(4)

with
∧2

R
4 via the mapping

A �→ Aij ei ∧ ej

(summation convention), where ei denote the standard basis vectors of R4. Since
〈
J (x,y),A

〉= Aijx
j yi = 1

2

(
xjyi − xiyj

)
Aij ,

under these two identifications we find

J (x,y) = x ∧ y. (10.6.9)

It follows that J satisfies the Plücker equation

J ∧ J = 0. (10.6.10)

In coordinates, it reads

J12J34 + J13J42 + J14J23 = 0. (10.6.11)

In what follows, we use the natural scalar product

〈u ∧ v,x ∧ y〉 := (u · x)(v · y) − (u · y)(v · x)

in
∧2

R
4. Denoting the corresponding norm by ‖ · ‖, we obtain

∥∥J (x,y)
∥∥2 = ‖x‖2‖y‖2 − (x · y)2

and hence
∥∥J̃ (x,y)

∥∥2 = ‖y‖2 = 2H̃ (x,y). (10.6.12)

Let us determine the level set J̃−1(A) for A ∈ so(4). In the case A = 0, according
to (10.6.12), J̃−1(0) coincides with the zero section s0 of TS3. From the Hamilton
equations (10.6.8) we read off that in this case the integral curves are points, that is,
the dynamics is trivial. In the case A �= 0, we can restrict J̃ to the subbundle

T+S3 = TS3 \ s0
(
S3).

The restriction will be denoted by J+. By the Noether Theorem 10.1.9, the level set
(J+)−1(A) is a union of integral curves of the geodesic vector field X

H̃
. We show
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that it consists in fact of a single integral curve of X
H̃

. This implies, in particular,
that the image of J+ may be interpreted as the space of integral curves. According
to (10.6.10),

imJ+ = {A ∈ so(4) : A ∧ A = 0, A �= 0
}

(10.6.13)

(Exercise 10.6.2). This is a 5-dimensional submanifold of so(4). We show that J+
is a submersion. Let (x,y) ∈ T+S3. Since

dim T(x,y)

(
T+S3)= dim ker

(
J+)′

(x,y)
+ dim im

(
J+)′

(x,y)
,

it is enough to show dim ker(J+)′(x,y) = 1. Let X = (ẋ, ẏ) ∈ T(x,y)(T+S3) and let
t �→ (x(t),y(t)) be a curve through (x,y) representing X. Then,

(
J+)′

(x,y)
(X) = d

dt �0

x(t) ∧ y(t) = ẋ ∧ y + x ∧ ẏ.

The condition (J+)′(x,y)(X) = 0 is fulfilled for multiples of the geodesic vector field,

X = s
(
y,−‖y‖2x

)
, s ∈R,

and one can show that these are the only solutions (Exercise 10.6.3). Thus, J+ is
a submersion, indeed. Now, the Level Set Theorem 1.8.3 yields that for every A ∈
imJ+, the level set (J+)−1(A) is a one-dimensional submanifold of TS3 satisfying

T(x,y)

(
J+)−1

(A) = ker
(
J+)′

(x,y)
.

Since ker(J+)′(x,y) is spanned by X
H̃

(x,y), every connected component of

(J+)−1(A) coincides with an integral curve of X
H̃

. Below, we will see that the
level sets of J+ are in fact 1-spheres, cf. Remark 10.6.2. This yields the assertion.

To summarize, due to the high degree of symmetry in this example, the preim-
ages of the momentum mapping already yield the integral curves, so that a further
symplectic reduction is not necessary.

Remark 10.6.2 We show that imJ+ is foliated by the generic orbits of the coadjoint
representation. This way, we will be able to describe the geometry of the energy
surfaces. We use the isomorphism

so(4) ∼= su(2) ⊕ su(2)

of Example 5.2.15/5 to represent J+ by a pair (K, I) of su(2)-valued mappings on
TS3. According to (5.2.11), under the identification R

4 ∼= H of Example 5.1.11 and
su(2) ∼= sp(1) of Example 5.2.8, J+, K and I are related by

J+q = Kq − qI (10.6.14)

for all q ∈ H. Decomposing K =∑
i KiICi and I =∑

i IiICi in the basis of Exam-
ple 5.2.8, we read off

K1 = 1

2

(
J+

23 + J+
14

)
, K2 = 1

2

(
J+

31 + J+
24

)
, K3 = 1

2

(
J+

12 + J+
34

)
,

I1 = 1

2

(
J+

23 − J+
14

)
, I2 = 1

2

(
J+

31 − J+
24

)
, I3 = 1

2

(
J+

12 − J+
34

)
.
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Using

‖K‖2 = K2
1 + K2

2 + K2
3 , ‖I‖2 = I 2

1 + I 2
2 + I 2

3

one finds that in terms of K and I , the Plücker equation (10.6.10) takes the form

‖K‖2 = ‖I‖2 (10.6.15)

and that the identity (10.6.12) reads

∥∥K(x,y)
∥∥2 = 1

4
‖y‖2 = ∥∥I (x,y)

∥∥2 (10.6.16)

(Exercise 10.6.4). Thus, the image imJ+ can be characterized as follows:

imJ+ = {(A,B) ∈ su(2) × su(2) : ‖A‖ = ‖B‖ �= 0
}
.

According to (8.4.8), for every (A,B) ∈ imJ+ the coadjoint orbit O(A,B) is diffeo-
morphic to S2‖A‖ × S2‖A‖. From (10.6.16) we read off that the preimages of these

orbits under J+ have the topology of S3 × S2 and that they coincide with the energy
level sets in T+S3. For every fixed energy level

h = 1

2
‖y‖2 = 2‖A‖2 = 2‖B‖2 �= 0,

J+ yields a locally trivial fibre bundle

J+
h : H̃−1(h) ∼= S3 × S2√

2‖A‖ −→ S2‖A‖ × S2‖A‖. (10.6.17)

The connected components of the fibres of this bundle are the integral curves of
the geodesic vector field corresponding to the energy level h and the base manifold
S2‖A‖ × S2‖A‖ is the space of integral curves of energy h.

To show that the fibres are in fact 1-spheres, and thus coincide with the integral
curves of XH , we study this bundle using the original parameterization by pairs
(x,y) of orthogonal vectors. For fixed y and for given x ∧ y, the vector x runs
exactly once through the great circle obtained by the intersection of S3 with the
2-dimensional surface defined by the 2-vector x ∧ y. We conclude that, as a fibre
bundle, (10.6.17) is isomorphic to the Stiefel bundle SR(2,4) → G̃R(2,4), where

SR(2,4) = SO(4)/SO(2) ∼= S3 × S2

is the space of orthonormal 2-frames in R
4 (the Stiefel manifold) and

G̃R(2,4) = SO(4)/
(
SO(2) × SO(2)

)∼= S2 × S2

denotes the space of oriented 2-dimensional surfaces in R
4 (the 2-fold covering

space of the Graßmann manifold GR(2,4)), cf. Examples 5.7.5 and 5.7.6. For the
proof, see Exercise 10.6.5.

Example 10.6.3 (Kepler problem) To start with, we summarize some well-known
facts from classical mechanics. The phase space of the Kepler problem is

M = T∗(
R

3 \ {0})∼= (R3 \ {0})×R
3.
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In the standard bundle coordinates (q,p), the symplectic form is given by

ω = dpi ∧ dqi,

and the Hamiltonian is

H(q,p) = p2

2
− 1

q
, q = ‖q‖.

Here, the reduced mass and the coupling constant have been put equal to 1. With
this choice, we consider the case of an attractive force. The Hamiltonian vector field
generated by H is

XH = pi∂qi − qi

q3
∂pi

.

The Hamiltonian H is invariant under the lift to M of the natural action of SO(3)

on R
3. From Example 10.1.23 we know that under the identifications so(3)∗ ∼= so(3)

induced by the Killing form and so(3) ∼= R
3 given by (5.2.6), the associated equiv-

ariant momentum mapping J :M → so(3)∗ coincides with angular momentum,

J (q,p) = q × p = L.

Thus, we have a left Hamiltonian SO(3)-manifold with invariant Hamiltonian H .
Let us discuss symplectic reduction for this theory. Note that the coadjoint orbits of
SO(3) are labelled by l = ‖L0‖. We have to distinguish between two cases.

(a) The case l > 0. Here, L0 is a regular value of J and the level set

J−1(L0) = {(q,p) ∈ M: q × p = L0
}

is an embedded submanifold of M , acted upon properly and freely by the stabi-
lizer SO(3)L0

∼= SO(2). Thus, the Regular Reduction Theorem applies, yielding
the reduced phase space

M̂l = J−1(L0)/SO(3)L0 .

To describe M̂l explicitly, we note that the constant of motion L0 reduces the dy-
namics to the plane orthogonal to L0. Without loss of generality, we can assume
L0 = (0,0, l). Then, this plane coincides with the q1–q2-plane and J−1(L0) is
contained in the phase space

M̃ = T∗(
R

2 \ {0})∼= (R+ × SO(2)
)×R

2.

Since q �= 0, we can use polar coordinates (q,φ) in the q1–q2-plane. We denote

pq = p1 cosφ + p2 sinφ, pφ = −qp1 sinφ + qp2 cosφ

and observe that (q1, q2,p1,p2) �→ (q,ϕ,pq,pϕ) is a canonical transformation
of M̃ . In terms of the new coordinates, we have

J−1(L0) = {(q,φ,pq,pφ) ∈ M̃ : pφ = l
}∼= (R+ × SO(2)

)×R
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and

H�J−1(L0)
= 1

2

(
p2

q + l2

q2

)
− 1

q
.

Moreover, the action of SO(3)L0 is given by φ �→ φ + α and the functions q ,
pq , pϕ and H�J−1(L0)

are invariant under this action. Thus, the reduced phase

space M̂l is isomorphic to R+ ×R endowed with the symplectic form dpq ∧ dq

and the reduced Hamiltonian is given by

Hl = 1

2

(
p2

q + l2

q2

)
− 1

q
. (10.6.18)

As a result, we arrive at a one-dimensional problem with effective potential

Ul(r) = l2

2q2
− 1

q
.

From classical mechanics we know that the orbits in configuration space are
ellipses for h < 0, hyperbolas for h > 0 and parabolas for h = 0. Below, we will
use the hidden symmetry provided by the Lenz-Runge vector to prove these
facts by purely algebraic arguments.

(b) The case l = 0, that is, L0 = 0. This is not a regular value of J . The stabilizer is
SO(3)0 = SO(3). We find

J−1(0) = {(q,p) ∈ M : p = αq, α ∈ R
}∼= (R3 \ {0})×R,

that is, J−1(0) is a trivial line bundle over the configuration space R
3 \ {0}.

Let m0 = (q0, αq0) ∈ J−1(0) be a chosen point. Its stabilizer SO(3)m0
∼= SO(2)

consists of the rotations about the axis defined by q0. The connected component
Σ of MSO(3)m0

containing m0 is

Σ = {(λq0, λαq0) ∈ M : α,λ ∈R, λ > 0
}∼= R+ ×R. (10.6.19)

We observe that SO(3) · Σ = J−1(0). Hence, we obtain Σ ∩ J−1(0) = Σ , that
is, the intersection Σ ∩ J−1(0) consists of a single connected component. The
subset M̂[SO(3)m0 ] ∩ M̂O0 of the orbit space M̂ = M/SO(3) consists of a sin-

gle orbit-momentum type stratum M̂0. The corresponding submanifold Mτ,μ is
given by SO(3) · Σ = J−1(0). Thus,

M̂0 = J−1(0)/SO(3),

which may be identified with Σ . Under this identification, the reduction of the
canonical 1-form yields

pi dqi = αqi dqi = α

2
dq2 = pq dq, pq = αq,

and the reduced Hamiltonian reads

H0 = p2
q

2
− 1

q
. (10.6.20)

Obviously, the orbits are located on rays in R
3. For h < 0 they are bounded

from above by the value q = − 1
h

.
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Now, let us recall that there are three additional constants of motion in the Kepler
problem, given by the Lenz-Runge vector

R = p × L − q
q

, (10.6.21)

which fulfils

L · R = 0. (10.6.22)

This fact enhances the symmetry of the problem. We provide the discussion for the
case h < 0. Thus, in what follows, let Σ− ⊂ M be the open subset of points with
negative energy. We define

K := −1

2

(
L − 1√−2H

R
)

, I := −1

2

(
L + 1√−2H

R
)

. (10.6.23)

For the Poisson brackets, we find

{Ki,Kj } = εij
kKk, {Ii, Ij } = εij

kIk, {Ki, Ij } = 0. (10.6.24)

We read off that {Ki} and {Ii} constitute bases in the Lie algebra su(2). Therefore,
via the isomorphism so(4) ∼= su(2) × su(2) used before, together they constitute a
basis

ei := Ki, e3+i := Ii, i = 1,2,3,

of the Lie algebra so(4).20 It is easy to see that the linear mapping

ψ : so(4) → X(M), ψ(ei) := Xei
(10.6.25)

defines a right symplectic action of so(4) on M . Since, by construction, every vector
field ψ(A) with A ∈ so(4) is Hamiltonian, Proposition 10.1.3 implies that ψ is
Hamiltonian with momentum mapping

J : M → so(4)∗, J (m) := ei(m)e∗i ,

where e∗i denotes the dual basis in so(4)∗. Thus, (M,ω,ψ,J ) is a right Hamilto-
nian so(4)-manifold. If we identify so(4)∗ ∼= so(4) via ei �→ e∗i , we obtain

Jei
= ei, XJei

= Xei
= ei∗ (10.6.26)

and, consequently,

{Jei
, Jej

} = {ei, ej } = ck
ij ek = ck

ij Jek
= Jck

ij ek
= J{ei ,ej },

where ck
ij are the structure constants of so(4) with respect to the basis {ei}. Thus,

the system is strongly Hamiltonian. By (10.6.22) and (10.6.23),

‖K‖2 = ‖I‖2. (10.6.27)

20More precisely, we have faithful representations of these Lie algebras in the Poisson algebra of
smooth functions on phase space.
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An explicit calculation (Exercise 10.6.6) yields

‖K‖2 = 1

−2H
= ‖I‖2. (10.6.28)

Thus, as for the geodesic flow on S3, the image of J is given by the 5-dimensional
submanifold

imJ = {(A,B) ∈ su(2) × su(2) : ‖A‖ = ‖B‖ �= 0
}

of so(4), the coadjoint orbits fulfil O(A,B)
∼= S2‖A‖ × S2‖A‖ and their preimages under

J coincide with the energy level sets defined by (10.6.28), cf. Remark 10.6.2. As in
that example, one can show that J :Σ− → imJ is a submersion and that the level
sets coincide with the integral curves of the Hamiltonian vector field. This means
that the values of the constants of motion L and R uniquely determine the integral
curves. As before, one has to distinguish between the following two cases.

(a) The case l �= 0. Here, the integral curve in Σ− projects to an oriented ellipse in
the configuration space R3 \{0}. To see this, recall that the motion takes place in
the plane orthogonal to the angular momentum vector L. Due to (10.6.22), the
Lenz-Runge vector R defines an axis in this plane. Using (10.6.21) and denoting
ε := ‖R‖, one finds

ε2 = 2hl2 + 1, R · q = l2 − q. (10.6.29)

Let φ be the angle between R and q. Then, (10.6.29) implies

R · q = εq cosφ = l2 − q.

It follows that

q = l2

ε cosφ + 1
(10.6.30)

with ε being given by (10.6.29). This is the polar equation of an ellipse in the
plane orthogonal to L. For the semimajor and semiminor axes we obtain

a = l2

1 − ε2
= 1

−2h
, b = l2

√
1 − ε2

= l√−2h
, (10.6.31)

respectively. The direction of the semimajor axis is determined by R.
(b) The case l = 0. Here, the orbits in the configuration space R3 \ {0} are half-open

intervals
{(

se,±
√

2

(
h + 1

s

)
e
)

: s ∈
(

0,− 1

h

]}
,

where e is an arbitrary vector of unit length in R
3. Note that for the initial

conditions (− 1
h

e,0), the integral curve falls into the origin after the finite time

T = π

2
(−2h)−

3
2 .

This makes explicit that the Hamiltonian vector field of the Kepler problem is
not complete.
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Remark 10.6.4

1. For h > 0, one can solve the problem by deriving commutation relations analo-
gous to (10.6.24). This leads to the Lie algebra so(3,1). For h = 0, the expression

1√−2h
does not make sense. In this case, one has to use Li and Ri as generators,

which leads to the Lie algebra of the group of Euclidean motions SO(3) � R
3

(Exercise 10.6.7).
For the history of the Lenz-Runge vector and the resulting symmetries, see

[108, 109].
2. In 1970, Moser found a deep relation between the Kepler problem and the

geodesic flow on S3. The latter provides a certain regularization of the Kepler
problem [222].

In the above notation, we consider the following extension of the stereo-
graphic projection to the tangent bundle of S3:

Φ: T+S3
p → TR3

0, (x,y) �→ (u,v), (10.6.32)

defined by

uk := xk

1 − x4
, vk := (1 − x4)yk + y4xk, k = 1,2,3.

Here, S3
p := S3 \ (0,0,0,1) denotes the 3-sphere with the north pole removed

(the punctured sphere). One can check that Φ is a symplectomorphism and that
the pull-back F = (Φ−1)∗H̃ of the Hamiltonian by Φ−1 is given by

F(u,v) = 1

8
‖v‖2(‖u‖2 + 1

)2

(Exercise 10.6.8). The corresponding Hamilton equations read

du
ds

= ∇vF,
dv
ds

= −∇uF.

In what follows, we restrict ourselves to the level set defined by H̃ = 1
2 . Then,

every transformation F → G(F) of the Hamiltonian with the property G′( 1
2 ) = 1

yields a flow whose restriction to the level set coincides with the flow generated
by F . We choose

G(u,v) :=√2F(u,v) − 1 = 1

2
‖v‖(‖u‖2 + 1

)− 1.

For the Hamiltonian G, the Hamilton equations, restricted to the level set, have
the same form as the equations defined by F and the level set is now given by
G = 0. Let us define a new flow parameter, s �→ t (s), by

dt

ds
= ‖v‖.

This yields a scaling of the Hamiltonian vector field XG by ‖v‖−1 and induces
the following transformation of the Hamilton equations:

du
dt

= ‖v‖−1∇vG,
dv
dt

= −‖v‖−1∇uG.
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We set

K(u,v) := ‖v‖−1G(u,v) − 1

2
= 1

2
‖u‖2 − ‖v‖−1.

On the level set, we have K = − 1
2 and the Hamilton equations for K have the

canonical form. If we now perform the canonical transformation

(u,v) �→ (
q(u,v),p(u,v)

) := (−v,u),

we obtain the Hamiltonian of the Kepler problem:

K(q,p) = 1

2
p2 − 1

q
.

Finally, let us study the behaviour of the flows in the neighbourhood of the north
pole (0,0,0,1): For x4 → 1, we have ‖u‖ → ∞, ‖v‖ → 0 and hence

‖p‖ → ∞, q → 0.

In this limit, we obtain the singular integral curves of the Kepler problem. More
precisely, for K = − 1

2 and L = 0 we obtain the integral curves
{(

se,±
√

−1 + 2

s
e
)

: s ∈ (0,2]
}
.

Under the above diffeomorphism, running through the orbit of the Kepler prob-
lem from (e,0) to the singularity (0,∞) corresponds to running through a great
circle from the south pole to the north pole. Moving on the same great circle
back to the south pole corresponds to moving through the Kepler orbit back to
the starting point. Instead of falling into the singularity, the moving particle is
getting reflected. In this sense, dynamics has been regularized. Mathematically
speaking, the space of momenta has been compactified.

Let us summarize. Every energy level set corresponding to a negative value of
h is diffeomorphically mapped by the above discussed transformation onto the
unit sphere bundle over the 3-sphere with the north pole removed (the pointed
3-sphere). After an appropriate reparameterization of the time variable, this dif-
feomorphism maps the flow of the Kepler problem to the geodesic flow of the
pointed 3-sphere. This way, the singular Kepler orbits are mapped to regular or-
bits of the geodesic flow through the north pole.

The above ideas have attracted much attention. There is a whole bunch of
related regularization procedures, see e.g. [67, 175, 176, 185] and [300]. The ar-
ticle of Vivarelli [300] contains an overview with a large number of references.
We also refer to Cushman and Bates [69], where some regularization methods
are contained in the form of exercises to Chap. II, and to Guillemin and Stern-
berg [118], where in particular the relation to the conformal group is discussed
in detail.

Example 10.6.5 (The Euler top) We use the results of Examples 8.4.5/3, 9.2.1
and 9.2.2. We consider a top, that is, a rigid body, which is fixed at one distin-
guished point. For the description of the dynamics of rigid bodies one uses two
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reference frames: a fixed inertial frame in 3-dimensional Euclidean space, given by
an orthonormal frame {n1,n2,n3}, and a non-inertial, so called body frame, which is
fixed to the body, described by an orthonormal frame {e1, e2, e3}. The correspond-
ing coordinates are called space and body coordinates, respectively. If we put the
origins of both reference frames into the distinguished point, then the position of
the body is uniquely determined by a rotation matrix a, which transforms the frame
{n1,n2,n3} into (e1, e2, e3), that is,

(e1, e2, e3) = (an1, an2, an3),

or

ei = aj
inj .

Thus, the configuration space of a top is the group manifold of the rotation group
SO(3) and the phase space is T∗SO(3) ∼= SO(3) × so(3)∗, where we use the triv-
ialization by left translation, cf. (8.3.6). That is, the top belongs to the class dis-
cussed in Example 9.2.2. As in the previous example, we use the identifications
so(3)∗ ∼= so(3) ∼= R

3 and the corresponding identifications of the adjoint and the
coadjoint representations of SO(3), cf. (5.2.6) and Remark 5.4.11/2. For an element
x ∈R

3 we shall write x when viewed as an element of so(3) or of so(3)∗.
In what follows, we will rather use the body frame. For every curve t �→ a(t) in

the configuration space and every t , the tangent vector ȧ(t) defines an element

ω(t) = a−1ȧ(t)

of the Lie algebra. The corresponding vector ω in R
3 is the vector of angular veloc-

ity. The kinetic energy of a rigid body is

T = 1

2
ω · (Θω),

with Θ denoting the inertia tensor. Here, we restrict ourselves to the Euler top,
that is, we assume that there are no external forces acting on the body. Then, the
generalized momentum coincides with the vector of angular momentum,

L = ∂T

∂ω
=Θω,

and the Hamiltonian is obtained from T by a Legendre transformation:

H(a,L) = 1

2

(
Θ−1L

) · L. (10.6.33)

Under the above identifications, it is given by the function

H : SO(3) × so(3) →R, H(a,L) = 1

2
Θ−1(L,L), (10.6.34)

where Θ−1 is the constant, symmetric, positive-definite covariant tensor of rank 2
defined by

Θ−1(L,L) := (Θ−1L
) · L.
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The tensor Θ constitutes a Riemannian metric on the configuration space SO(3)

which is invariant under the lift Ψ of the action of SO(3) on itself by left translation,
cf. Example 10.1.24. Thus, H belongs to the class of Hamiltonians discussed in
Example 9.2.1, that is, the dynamics of the Euler top is described by the geodesic
flow of Θ on the group manifold SO(3). Since H is invariant under Ψ , the Hamilton
equations can be read off immediately from (9.2.9):21

a−1ȧ =Θ−1L, L̇ = −ad
(
Θ−1L

)
L. (10.6.35)

The first equation restates that L corresponds to angular momentum. It yields
Θ−1L = ω. Then, the second equation takes the form22 L̇ = [L,ω]. Applying the
isomorphism (5.2.6), we obtain

L̇ + ω × L = 0. (10.6.36)

These are the Euler equations for the force-free top. Equation (10.6.36) yields an-
gular momentum conservation in the body frame.

Let us discuss symplectic reduction for this model. From Example 10.1.24 we
know that the Hamiltonian system under consideration possesses a natural momen-
tum mapping. Under the above identifications, it is given by

J : SO(3) × so(3) → so(3), J (a,L) = Ad(a)L, (10.6.37)

cf. (10.1.27). Let SO(3)L denote the stabilizer of L under the adjoint representa-
tion. According to Example 5.4.7, the adjoint representation of SO(3) is isomorphic
to the fundamental representation of SO(3) on R

3. Thus, for every L �= 0, SO(3)L
is isomorphic to the subgroup SO(2) ⊂ SO(3) of rotations about the axis defined
by L. For L = 0, we have SO(3)L = SO(3). Theorem 10.3.5 yields that J−1(L)

is diffeomorphic to the group manifold SO(3) and that the symplectic manifold
(J−1(L)/SO(3)L,ωL) provided by the Regular Reduction Theorem 10.3.1 is iso-
morphic to the adjoint orbit OL through L, endowed with the negative Kirillov form.
Thus,

J−1(0)/SO(3)0 ∼= O0 = {0}
and

J−1(L)/SO(3)L ∼= OL = S2‖L‖, L �= 0. (10.6.38)

Moreover, from (10.6.37) we read off that the bundle

πL : J−1(L) → J−1(L)/SO(3)L

coincides with the bundle of oriented 2-frames in R
3.

Now, for a fixed nonzero element L0 of so(3), let us describe the reduced Hamil-
tonian system

(
J−1(L0)/SO(3)L0 ,ω

L0 ,HL0

)

21We use the simplified notation Θ−1L for the element of so(3) corresponding to the vector Θ−1L.
22A pair (L,ω), fulfilling this differential equation, is called a Lax pair and the equation is called
Lax equation, see Sect. 11.2.
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provided by Proposition 10.3.3. For that purpose, we identify J−1(L0)/SO(3)L0

with the adjoint orbit OL0 through L0, that is, with the sphere S2‖L0‖ of radius ‖L0‖
in so(3). Elements of J−1(L0) are pairs (a,L) such that L = Ad(a−1)L0. Conse-
quently, tangent vectors of J−1(L0) at (a,L) are given by pairs (L′

aA, ad(L)A) with
A ∈ so(3). Since the stabilizer SO(3)L0 acts by (h, (a,L)) �→ (ha,L), the natural
projection πL0 : J−1(L0) → S2‖L0‖ and its tangent mapping are given by

πL0(a,L) = L, (πL0)
′
(a,L)

(
L′

aA, ad(L)A
)= ad(L)A,

respectively. Thus, from (10.6.35) we read off the reduced Hamiltonian and its
Hamiltonian vector field:

HL0(L) = 1

2
Θ−1(L,L), (XHL0

)L = ad(L)
(
Θ−1L

)
, L ∈ S2‖L0‖. (10.6.39)

The corresponding Hamilton equations are

L̇ = [L,Θ−1L
]
, L ∈ S2‖L0‖, (10.6.40)

or, in vector notation,

L̇ = L × (Θ−1L
)
, ‖L‖ = ‖L0‖.

Up to left translation by the stabilizer SO(3)L0 , every solution t �→ L(t) of the
reduced system (10.6.40) defines a solution t �→ a(t) such that t �→ (a(t),L(t)) is a
curve in J−1(L0).

Remark 10.6.6 Using the above results, together with the fact that the Hamiltonian
is a constant of motion, one can discuss the qualitative behaviour of integral curves.
Assume that the body frame is chosen in such a way that the basis vectors ei coincide
with the principal axes of inertia. Then, Θ= diag(Θ1,Θ2,Θ3) and the constants of
motion L2 and H take the form

L2 = L2
1 + L2

2 + L2
3, H = L2

1

2Θ1
+ L2

2

2Θ2
+ L2

3

2Θ3
.

Consequently, the integral curves t �→ L(t) of the reduced system are given by the
lines of intersection of the sphere with radius ‖L‖ with the ellipsoid defined by H .
For an exhaustive discussion we refer to [69]. There, the reader will also find a
solution of the reduced Euler equations in terms of Jacobi’s elliptic functions.

Example 10.6.7 (The spherical pendulum) Let M = T∗
R

3 ∼= TR3 ∼= R
3 × R

3 en-
dowed with the standard symplectic structure. Consider the restriction of the natural
action of SO(3) on R

3 to the subgroup SO(2) given by rotations about the axis
of e3. In Example 10.1.23 we have seen that the Killing vector field generated by
A ∈ so(2) under the lift Ψ of this action to TR3 is given by

A∗(x,y) = (Ax,Ay)

and that the mapping

J : TR3 → so(2),
〈
J (x,y),A

〉= y · (Ax) ≡ (x × y) · A, (10.6.41)
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is an equivariant momentum mapping. As before, the Lie algebra element A is iden-
tified with the vector A = ‖A‖e3 in R

3 via the isomorphism (5.2.6). Thus, according
to (10.6.41), the momentum mapping is given by the projection of angular momen-
tum to the e3-axis. To summarize, the tuple (TR3,dθ,Ψ,J ) is a Hamiltonian SO(2)-
manifold. Now, consider the SO(2)-invariant Hamiltonian

H(x,y) = 1

2
‖y‖2 + x · e3 + 1

2

(‖y‖2 − x · e3
)(‖x‖2 − 1

)− 1

2
x · y.

The corresponding Hamilton equations read

ẋ = y + y
(‖x‖2 − 1

)− (x · y)x, (10.6.42)

ẏ = −e3 + 1

2
e3
(‖x‖2 − 1

)− (‖y‖2 − x · e3
)
x + (x · y)y. (10.6.43)

Since x · ẋ = 0, the projection of the integral curve with initial conditions x0, y0 to
the configuration space R3 is located on the sphere of radius ‖x0‖. Thus, the Hamil-
tonian system (TR3,ω,H) restricts to a Hamiltonian system on the submanifold

TS2 = {(x,y) ∈ TR3 : ‖x‖2 = 1, x · y = 0
}
, (10.6.44)

cf. Remark 2.1.4/2. As in Example 10.1.23, one can check that the canonical 1-form
θ of TR3 pulls back to the canonical 1-form θ̃ on TS2. The restriction of H to TS2

is given by

H̃ (x,y) = 1

2
‖y‖2 + x · e3 (10.6.45)

and the Hamilton equations (10.6.42) and (10.6.43) become

ẋ = y, ẏ = −e3 − (‖y‖2 − x · e3
)
x. (10.6.46)

We note that TS2 is the phase space and H̃ is the Hamiltonian of the spherical
pendulum.23 Since Ψ leaves the submanifold TS2 invariant, it induces a symplectic
action

Ψ̃ : SO(2) × TS2 → TS2, Ψ̃ (x,y) = (a · x, a · y),

and the restriction J̃ = J�TS2 yields an equivariant momentum mapping. We find

J̃ (x,y) = x1y2 − x2y1. (10.6.47)

Thus, we obtain a Hamiltonian SO(2)-manifold (TS2,dθ̃ , Ψ̃ , J̃ ) with Hamilto-
nian H̃ . The Noether Theorem 10.1.9 implies that J̃ is a constant of motion.

Let us discuss symplectic reduction for this system. First, observe that Ψ̃ is not
free, because it has the fixed points

m±
0 = (±e3,0).

Thus, we have to perform singular reduction. Since the adjoint action of the Abelian
group SO(2) is trivial, for all values j ∈ so(2) we have Oj = {j} and Gj = SO(2).

23With the gravitational acceleration set equal to 1.
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The points m±
0 have the stabilizer SO(2), whereas all other point of TS2 have the

trivial stabilizer {1}. Consequently, the submanifolds of the above isotropy types are
given by

M{1} = TS2 \ {m+
0 ∪ m−

0

}
, MSO(2) = {m+

0

}∪ {m−
0

}
.

For the intersections with Mj = J−1(j) we obtain

MSO(2) ∩ Mj =∅, M{1} ∩ Mj = {(x,y) ∈ TS2 : (x × y) · e3 = j
}

for j �= 0 and

MSO(2) ∩ M0 = {m+
0

}∪ {m−
0

}
, M{1} ∩ M0 = {(x,0) ∈ TS2 : x �= ±e3

}

for j = 0. Hence, in the first case, M̂Oj
consists of the single orbit-momentum type

stratum

M̂j = {(x,y) ∈ TS2 : (x × y) · e3 = j
}
/SO(2)

and in the second case it consists of the three orbit-momentum type strata

M̂0 = {(x,0) ∈ TS2 : x �= ±e3
}
/SO(2), M̂0+ = {m+

0

}
, M̂0− = {m−

0

}
,

forming the principal stratum and the two secondary strata, respectively.

Remark 10.6.8

1. Let us analyse the structure of the strata found above by means of classical invari-
ant theory, see [247] and [312]. The algebra R[x,y]SO(2) of invariant polynomials
in the variables x,y ∈ R

3 is generated by the invariants

τ1 = x3, τ2 = y3, τ3 = y2
1 + y2

2 ,

τ4 = x1y1 + x2y2, τ5 = x2
1 + x2

2 , τ6 = x1y2 − x2y1

which fulfil the relations

τ 2
4 + τ 2

6 = τ3τ5, τ3 ≥ 0, τ5 ≥ 0. (10.6.48)

They define the so-called Hilbert mapping

τ : TR3 → R
6, τ (x,y) := (τ1(x,y), . . . , τ6(x,y)

)
.

In invariant theory it is shown that the topological quotient TR3/SO(2) is home-
omorphic to the image of τ , that is, to the subset of R6 defined by the relations
(10.6.48).24 In the present case, this can be checked by direct inspection, see
[69]. Let us pass to new invariants σi defined by

σ3 := τ3 + τ 2
2 , σi := τi, i �= 3.

Restriction to TS2 yields the additional relations

σ5 + σ 2
1 = 1, σ4 + σ1σ2 = 0,

24A subset of Rn defined by equations and inequalities is said to be semialgebraic.
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which allow for elimination of σ4 and σ5. Therefore, TS2/SO(2) can be identi-
fied with the image of the mapping

σ : TS2 →R
4, σ (x,y) := (σ1(x,y), σ2(x,y), σ3(x,y), σ6(x,y)

)
,

which is the subset of R4 defined by the relations

σ3
(
1 − σ 2

1

)− σ 2
2 − σ 2

6 = 0, σ3 − σ 2
2 ≥ 0, |σ1| ≤ 1.

According to (10.6.47), we have σ6 = J̃ . Therefore, M̂Oj
= J̃−1(j)/SO(2) can

be identified with the subset of R3 defined by the relations

σ3
(
1 − σ 2

1

)− σ 2
2 − j2 = 0, σ3 − σ 2

2 ≥ 0, |σ1| ≤ 1. (10.6.49)

In case j �= 0, this subset coincides with the graph of the function

σ3(σ1, σ2) = j2 + σ 2
2

1 − σ 2
1

, |σ1| < 1.

Hence, in this case we obtain a 2-dimensional smooth manifold diffeomorphic
to R

2, representing the orbit-momentum type stratum M̂j . In case j = 0, the sub-
set (10.6.49) cannot be the graph of a function, because it contains the vertical
lines {(±1,0, σ3) ∈ R

3, σ3 ≥ 0}. The endpoints (±1,0,0) of these lines corre-
spond to the secondary strata M̂0± of M̂O0 and all the rest corresponds to the
principal stratum M̂0. Topologically, this subset is also isomorphic to R

2.
2. From the above construction we can read off the preimages of the mapping

πj : J̃−1(j) → M̂j . (10.6.50)

For the point (±1,0,0), the preimage consists of the single point m±
0 . For all the

other points, it is a 1-sphere.
3. Using the invariants, one can compute the Poisson brackets and, thus, determine

the symplectic structure on the strata of the reduced phase space, see [69] and
Exercise 10.6.9. One obtains

{σi, σk}j =
∑

l

εikl

∂Fj

∂σl

,

where

Fj (σ1, σ2, σ3) = σ3
(
1 − σ 2

1

)− σ 2
2 − j2.

The reduced Hamiltonian can be read off from (10.6.45),

Hj = 1

2
σ3 + σ1, (10.6.51)

and the Hamilton equations are given by

σ̇i = {Hj ,σi}j .
All these equation have to be viewed as equations on J̃−1(j)/SO(2) =
σ(J̃−1(j)). In particular, the relation Fj (σ1, σ2, σ3) = 0 has to be taken into
account.
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Exercises
10.6.1 Prove the formulae (10.6.5) and (10.6.6). Show that the projections of in-

tegral curves of this system to the configuration space R
4 are located on

3-spheres.
10.6.2 Verify Eq. (10.6.13).
10.6.3 In Example 10.6.1, show that the kernel of J̃ ′

(x,y) is spanned by the geodesic
vector field X

H̃
.

10.6.4 Prove the formulae (10.6.15) and (10.6.16).
10.6.5 Prove that the fibre bundles given by (10.6.17) are isomorphic to the Stiefel

bundle SR(2,4) → G̃R(2,4).
Hint. Find the preimages under the covering homomorphism (5.1.10) of the
SO(2)-subgroups of SO(4) occurring in SR(2,4) and G̃R(2,4).

10.6.6 Prove Formula (10.6.28).
10.6.7 Show that for positive values of the energy, the hidden symmetry of the

Kepler problem is given by the Lie algebra of SO(3,1) and that for vanish-
ing energy it is given by the Lie algebra of the group of Euclidean motions
SO(3)�R

3, cf. Remark 10.6.4. Find the corresponding orbits.
10.6.8 Prove that the mapping (10.6.32) defines a symplectomorphism. Compute

the pull-back of the Hamiltonian under this mapping.
10.6.9 Compute the Poisson brackets of Remark 10.6.8/2. Show that the symplectic

form on the reduced phase space is given by

ω = 2

σ 2
1 − 1

dσ1 ∧ dσ2.

10.7 A Model from Gauge Theory

In this section, we discuss a model arising from lattice approximation of SU(3)-
gauge theory in the Hamiltonian approach. For a detailed presentation we refer to
[92] and further references therein.25

Let Λ be a finite regular cubic lattice in R
3. Let us denote the sets of oriented

i-dimensional elements of Λ (sites, links, plaquettes and cubes) by Λi . The gauge
group is G = SU(3) and its Lie algebra is g = su(3). The g-valued gauge potential
will be approximated on links by its G-valued parallel transporter:

Λ1 → G, (x,y) �→ a(x,y).

Thus, the configuration space and the phase space of the system are given by

Q = GΛ1
, M = T∗GΛ1

,

25This is part of a research program which aims at developing a non-perturbative approach to
quantum gauge theory in the Hamiltonian framework, with special attention paid to the role of
non-generic gauge orbit strata [144, 161–164], see also [254–256].
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respectively. Using the natural identification T∗GΛ1 ∼= (T∗G)Λ
1
, the left trivial-

ization T∗G ∼= G × g∗ given by (8.3.6) and the isomorphism g∗ ∼= g induced by
the Ad-invariant scalar product 〈A,B〉 = − tr(AB) on g, we may identify M with
GΛ1 × gΛ1

. Under this identification, the momentum canonically conjugate to the
gauge potential (the colour-electric field) is given by a mapping

Λ1 → g, (x,y) �→ A(x,y).

Local gauge transformations are approximated by mappings

Λ0 → G, x �→ gx,

acting on the parallel transporters by

a′
(x,y) = gxa(x,y)g

−1
y . (10.7.1)

This defines an action of GΛ0
on Q. Under the above identification, the lift of this

action to M = T∗Q = GΛ1 × gΛ1
is given by (10.7.1) and by

A′
(x,y) = Ad(gx)A(x,y).

In lattice gauge theory, one considers the following gauge invariant Hamiltonian:

H = −δ3

2

∑

(x,y)∈Λ1

tr
(
A2

(x,y)

)+ 1

2α2δ

∑

p∈Λ2

(
6 − tr

(
ap + a†

p

))
, (10.7.2)

see [167] for the original source. Here, δ and α denote the lattice spacing and the
coupling constant, respectively, and ap is the parallel transporter around the plaquet-
te p = (x,y, z,u),

ap = a(x,y)a(y,z)a(z,u)a(u,x).

In what follows, we restrict ourselves to the simplest non-trivial case, where Λ con-
sists of a single plaquette. Using a lattice tree, one can carry out an intermediate
reduction which leaves one with a configuration space Q given by the group man-
ifold G and with a phase space M given by the cotangent bundle T∗G ∼= G × g.
Let us denote the elements of G × g by (a,A) and let us write tangent vectors of
G × g at (a,A) in the form (L′

aB,C) with B,C ∈ g. The group of local gauge
transformations boils down to G itself and its action on G × g is given by

Ψ
(
g, (a,A)

)= (gag−1,Ad(g)A
)
. (10.7.3)

According to (8.3.7), the canonical 1-form θ on G × g is given by

θ(a,A)

(
L′

aB,C
)= 〈A,B〉 (10.7.4)

and for the equivariant momentum mapping (10.1.23), Example 10.1.25 yields

J : G × g → g, J (a,A) = aAa−1 − A. (10.7.5)

Thus, (M,dθ,Ψ,J ) is a Hamiltonian G-manifold. Finally, the Hamiltonian (10.7.2)
reduces to

H = −δ3

2
tr
(
A2)+ 1

2α2δ

(
6 − tr

(
a + a†)). (10.7.6)
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In what follows, we shall discuss symplectic reduction for this system. From the
point of view of physics, this corresponds to removing the (unphysical) gauge
degrees of freedom. Therefore, the level set M0 = J−1(0) is relevant, because
J (a,A) = 0 is equivalent to the Gauß law.26 Thus, we consider the reduced phase
space

P̂ := M̂O0 ≡ M0/G. (10.7.7)

From (10.7.5) we read off

M0 = {(a,A) ∈ G × g : aA = Aa
}
.

In particular, M0 contains the subset T × t, where T ⊂ SU(3) denotes the subgroup
of diagonal matrices (maximal torus) and t denotes its Lie algebra. By restriction,
the natural projection M0 → P̂ induces a mapping

λ : T × t → P̂ . (10.7.8)

Let (a,A) ∈ M0. Since a and A commute, they possess a common eigenbasis. Since
a is unitary and A is anti-Hermitian, the eigenbasis can be chosen to be orthonormal.
Hence, (a,A) is conjugate to an element of T × t under Ψ , that is, every G-orbit in
M0 intersects the submanifold T × t. Hence, λ is surjective. Since two elements of
T × t are conjugate under G iff they differ by a simultaneous permutation of their
entries, λ descends to a bijection

(T × t)/S3 → P̂ ,

where S3 denotes the symmetric group on 3 symbols. Standard arguments ensure
that this is in fact a homeomorphism.27 Thus, we can use λ to describe P̂ .

Next, we determine the stabilizers and the orbit types of the elements of T × t

under the actions of S3 and of SU(3). The basic observation is that in both cases the
stabilizer of (a,A) depends on the number of entries which simultaneously coincide
for both a and A. This number can be 0, 2 or 3. Denote the corresponding subsets
of T × t by, respectively, (T × t)2, (T × t)1 and (T × t)0 and define

P̂i := λ
(
(T × t)i

)
, i = 2,1,0.

By restriction, λ induces mappings

λi : (T × t)i → P̂i , i = 2,1,0, (10.7.9)

which descend to homeomorphisms from (T × t)i/S3 onto P̂i , i = 2,1,0. To de-
termine the subsets (T × t)i explicitly, as in Example 6.6.6, let Z ∼= Z3 denote the
centre of G = SU(3), let T j , j = 1,2,3, denote the subset of T consisting of the
elements whose entries other than the j th one coincide and define tj analogously.
For j = 1,2,3 let

(T × t)j := (T j × t
j
) \ (Z × {0}).

26See [161].
27In particular, P̂ is an orbifold.
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We find

(T × t)0 = Z × {0},

(T × t)1 =
3⋃

j=1

(T × t)j ,

(T × t)2 = (T × t) \ ((T × t)1 ∪ (T × t)0
)
. (10.7.10)

Obviously, all the subsets (T × t)i are embedded submanifolds of T × t. Moreover,
all the connected components (T × t)j of (T × t)1 project to the same subset of
(T ×t)/S3. Under the action of S3, the elements of (T ×t)2 have the trivial stabilizer
{1} and hence the orbit type [{1}], the elements of (T × t)0 have the stabilizer S3 and
hence the orbit type [S3] and the elements of (T × t)j have the subgroup of order 2
generated by the transposition of the two coinciding entries as their stabilizer. Since
the latter subgroups are conjugate in S3, all the elements of (T × t)1 have the same
orbit type [S2]. To summarize, we have found that, under the action of S3,

(T × t)2 = (T × t)[{1}], (T × t)1 = (T × t)[S2], (T × t)0 = (T × t)[S3].

On the other hand, under the action of SU(3), the elements of (T ×t)2 have stabilizer
T and hence orbit type [T ], the elements of (T × t)0 have stabilizer SU(3) and
hence orbit type [SU(3)] and the elements of (T × t)j have stabilizer U(2)j , where
the subgroups U(2)j are given by (6.6.3). Since the latter subgroups are conjugate
in SU(3), all elements of (T × t)1 have the same orbit type [U(2)]. Thus,

P̂2 = P̂[T ], P̂1 = P̂[U(2)], P̂0 = P̂[U(3)].

Recall that P̂ = M̂O0 , so that with P̂i we have determined the orbit-momentum
type subsets M̂[H ] ∩ M̂O with coadjoint orbit O = O0. From (10.7.10) we read
off that P̂2 and P̂1 are connected and that P̂0 consists of three points labelled by
the elements of Z. Thus, altogether there are five orbit-momentum type strata. By
Theorem 10.5.4, each of these strata inherits the structure of a smooth symplectic
manifold from G × g. Taking into account that S3 is finite, from (10.7.10) we can
also read off the dimensions: P̂2 has dimension 4 and P̂1 has dimension 2.

One can use the mappings λi to describe the symplectic structure of the orbit-
momentum type strata as follows. Since t is the Lie subalgebra of su(3) associated
with the Lie subgroup T , the submanifold T × t is a symplectic submanifold of
G×g. Analogously, so are (T × t)j , j = 1,2,3. It follows that (T × t)2 and (T × t)1
are symplectic manifolds. For convenience, in the following we will view (T × t)0
as a (trivial) symplectic manifold, too.

Proposition 10.7.1 The mapping λ is Poisson. The mappings λk are local symplec-
tomorphisms.

Proof By definition, C∞(P̂ ) is a quotient of C∞(G × g)G, see Remark 10.5.11/3.
Hence, the first assertion is a direct consequence of the fact that T × t is a symplectic
submanifold of G × g. The second assertion is trivial for i = 0. For i = 1,2 it
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Fig. 10.1 The fibres π̂−1([a]) of the projection π̂ : P̂ → Q̂

follows by observing that any point of P̂i has a representative (a,A) in (T × t)i and
that a sufficiently small G(a,A)-invariant neighbourhood W of (a,A) in (T × t)i

generates a tube for the action of G = G0 on π−1(P̂i) ∩ M0, modelling the open
neighbourhood G ·W of the orbit G · (a,A) onto G×G(a,A)

W ∼= G/G(a,A) ×W . �

Remark 10.7.2

1. Since the submanifolds (T × t)i are symplectic and since S3 is finite, the quotient
(T × t)/S3 naturally carries the structure of a stratified symplectic space, cf.
Remark 10.5.11/3. In view of this, Proposition 10.7.1 states that λ descends to
an isomorphism of stratified symplectic spaces from (T × t)/S3 onto P̂ .

2. Dynamics on P̂ with respect to an SU(3)-invariant Hamiltonian like (10.7.2)
is thus given by the dynamics on T × t with respect to the corresponding S3-
invariant Hamiltonian and the symplectic form dθ , where θ is given by (10.7.4)
with a ∈ T and A,B,C ∈ t.

Now, let us analyse the projection

π̂ : P̂ → Q̂

induced by the cotangent bundle projection T∗Q → Q. We have the commutative
diagram

T × t
λ−−−−→ P̂

pr1

⏐⏐�
⏐⏐�π̂

T −−−−→ Q̂

where the lower horizontal arrow is defined by restriction of the natural projection
Q → Q̂. Consequently, the fibre over [a] ∈ Q̂ is given by

π̂−1([a])= t/(S3)a,

where the representative a is chosen in T and where (S3)a denotes the stabilizer of
a under the action of S3. There are 3 cases, illustrated in Fig. 10.1. As in Exam-
ple 6.6.6, let T 0 denote the subset of T of elements with pairwise distinct entries.
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(a) If a ∈ T 0, (S3)a is trivial, hence π̂−1([a]) = t. That is, the fibre is a full 2-plane
and belongs to P̂2.

(b) If a ∈ T j \Z, j = 1,2,3, then (S3)a = S2, acting by permutation of the coincid-
ing entries. Hence, π̂−1([a]) = t/S2, acting by reflection about the subspace tj .
Therefore, the fibre may be identified with one of the two closed half-planes of t
cut out by tj . Its interior belongs to P̂2, whereas the boundary tj belongs to P̂1.

(c) If a ∈ Z, then (S3)a = S3. The action of S3 on t is generated by the reflections
about the 3 subspaces tj , j = 1,2,3. Hence, π̂−1([a]) may be identified with
one of the six closed subsets of t (the Weyl chambers) cut out by tj , j = 1,2,3
(the walls of the Weyl chambers). The interior of the Weyl chamber chosen
belongs to P̂2, the walls minus the origin belong to P̂1 and the origin belongs
to P̂0.

Remark 10.7.3

1. Recall from Example 6.6.6 that the reduced configuration space Q̂ coincides
with the orbit space of the action of S3 on the subgroup T ⊂ SU(3) of diagonal
matrices by permuting the entries,

Q̂ = T/S3.

From the above discussion it is obvious that the projection π̂ : P̂ → Q̂ does not
preserve the stratification, because the fibres over points in the secondary28 orbit
type strata of Q̂, corresponding to the edges and the vertices of the 2-simplex
structure of Q̂, intersect more than one orbit-momentum type stratum of P̂ .

2. The description of the reduced data given here generalizes to an arbitrary com-
pact semisimple Lie group in an obvious way: T and t are replaced by a maximal
torus in G and the corresponding Cartan subalgebra of g. Q̂ is replaced by a Weyl
alcove in T and S3 is replaced by the Weyl group of G.

In the simpler case G = SU(2), on the other hand, we obtain P̂ ∼= (S1 ×R)/S2,
where the generator of S2 acts by complex conjugation in the first component and
by multiplication by −1 in the second one. This way, the reduced phase space is
getting identified with an orbifold usually referred to as the canoe, see Fig. 10.2.
It consists of three orbit-momentum type strata: the two points [(±1,0)] and
the rest, which is a 2-dimensional symplectic manifold diffeomorphic to the
2-punctured 2-plane. For a detailed discussion of its symplectic structure, see
[142]. From Example 10.6.7 it is clear that P̂ coincides with the reduced phase
space of the spherical pendulum with zero angular momentum.

3. As we know from Proposition 10.5.9, the orbit-momentum type strata of P̂ can
also be obtained via regular reduction of the connected components ΣH,μ of the
subsets MH ∩ Mμ by the quotient Lie groups (ΓΣH

)μ. For μ = 0 and for the
choice of the subgroups T and U(2)1 as representatives of the corresponding
orbit types, we find that

28Cf. Remark 6.6.2/5.
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Fig. 10.2 Reduced
configuration space Q̂ and
reduced phase space P̂ for
G = SU(2)

(a) the subsets MH ∩ Mμ are given by

MT ∩ M0 = (T × t)2, MU(2)1 ∩ M0 = (T × t)1,

MSU(3) ∩ M0 = Z × {0},
where the last one decomposes into the connected components {(a,0)},
a ∈ Z;

(b) the groups (ΓΣH
)0 ≡ ΓΣH

are given by

Γ(T ×t)2
∼= S3, Γ(T ×t)1 ∼= {1}, Γ{(a,0)} ∼= {1}, a ∈ Z.

4. For a detailed description of Q̂ and P̂ in terms of invariants, including the strat-
ification, we refer to [92]. Using standard results of the invariant theory of com-
plex matrices one can show that the algebra of invariant real polynomials on M0
is generated by

ck := Re
(
tr
(
a(−iA)k

))
, k = 0,1,2,

dk := Im
(
tr
(
a(−iA)k

))
, k = 0,1,2,

tk := tr
(
(−iA)k

)
, k = 2,3.

By setting A = 0 one obtains a set of generators for the invariant real polynomials
on Q = G:

c0 = Re tr(a), d0 = Im tr(a).

The associated Hilbert mappings

ρ
P̂

= (c0, d0, c1, d1, c2, d2, t2, t3) : M0 →R
8, ρ

Q̂
= (c0, d0) : Q → R

2

induce homeomorphisms from P̂ and Q̂ onto the respective images, which are
semialgebraic subsets of R8 and R

2, respectively. Consider the following poly-
nomials:

R1 = (3 + c2
0 + d2

0

)
t2 − 2

(
c2

1 + d2
1

)− 4(c0c2 + d0d2),

R2 =
(

3 − 1

3

(
c2

0 + d2
0

))
t3 − 2(c1c2 + d1d2),

R3 = c0c2 − d0d2 − 2c0t2 − c2
1 + d2

1 + 3c2,
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Fig. 10.3 The image of ρ
Q̂

in R
2

R4 = c0d2 + d0c2 + 2d0t2 − 2c1d1 − 3d2,

R5 = 1

2

(
(c0 − 1)d1 + d0c1

)
t2 +

(
2

3
c0d0 + d0

)
t3 − c1d2 − d1c2,

P1 = 27 − c4
0 − 2c2

0d
2
0 − d4

0 + 8c3
0 − 24c0d

2
0 − 18c2

0 − 18d2
0 ,

P2 = 1

2
t3
2 − 3t2

3 ,

P3 = t2
2 − c2

2 − d2
2 .

The image of ρ
Q̂

is given by the inequality P1 ≥ 0. It forms a region in R
2

bounded by a hypocycloid, see Fig. 10.3. As is shown in [92], the defining equa-
tions and inequalities for the image of ρ

P̂
are given by

Ri = 0, i = 1, . . . ,5, Pi ≥ 0, i = 1,2,3.

In a similar way, one can derive the defining relations for the images under ρ
P̂

of the orbit-momentum type strata.
5. It turns out that the reduced configuration space is a deformation retract of the

reduced phase space, see [95]. Therefore, to study the topology of the reduced
phase space amounts to studying the topology of the reduced configuration space.
For case studies in the context of lattice gauge theory, see [61, 62].

10.8 The Energy Momentum Mapping

Let (M,ω,Ψ,J ) be a Hamiltonian G-manifold with G-invariant Hamiltonian H .
As we know from the Noether Theorem 10.1.9, the functions JA are constants of
motion for all A ∈ g, that is, the level sets of H and of J are invariant under the flow
of the Hamiltonian vector field XH . Thus, the dynamics reduces to the level sets of
the combined mapping

E :M →R× g
∗, E (m) := (H(m),J (m)

)
. (10.8.1)
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Studying the partition of M into these level sets is at the heart of a general pro-
gramme formulated by Smale, see [277, 278], as well as [1] and [69]. In this context,
the notion of the bifurcation set of a mapping plays a key role.

Definition 10.8.1 (Bifurcation set) A smooth mapping ϕ:M → N is called locally
trivial at p0 ∈ N if there exists a neighbourhood U ⊂ N of p0, such that the follow-
ing conditions are fulfilled:

1. The level set ϕ−1(p) is an embedded submanifold of M for all p ∈ U .
2. There exists a smooth mapping Φ:ϕ−1(U) → ϕ−1(p0), such that

ϕ × Φ:ϕ−1(U) → U × ϕ−1(p0)

is a diffeomorphism.

The bifurcation set Bϕ of ϕ is the set of all points in N , for which ϕ is not locally
trivial.

Point 2 means that ϕ�ϕ−1(U):ϕ
−1(U) → U is a trivial fibre bundle over U with

typical fibre ϕ−1(p0). In particular, then (ϕ × Φ)�ϕ−1(p) yields a diffeomorphism
between the level sets ϕ−1(p0) and ϕ−1(p). As p runs through the bifurcation set,
the topology of the level set ϕ−1(p) may change. The programme of Smale can be
summarized as follows:

1. Determine the topological type of the level sets of E and its bifurcation set.
2. Determine the flow of XH on each level set.
3. Investigate how the fibres E −1(h,μ) fit together as (h,μ) runs through the values

of E .

The following two observations are helpful for working out this programme in
concrete cases. The first one is of general nature and concerns the bifurcation set.
Let Mϕ be the set of critical points of ϕ. Then, ϕ(Mϕ) is the set of its critical values.
The proof of the following proposition is left to the reader (Exercise 10.8.1).

Proposition 10.8.2 For a smooth mapping ϕ:M → N , one has ϕ(Mϕ) ⊂ Bϕ . If ϕ

is proper, then ϕ(Mϕ) = Bϕ .

The second observation is a consequence of the specific structure of the energy-
momentum mapping. By the Regular Reduction Theorem 10.3.3 for invariant
Hamiltonian systems, the reduced Hamiltonian is given by

Hμ ◦ πμ = H ◦ jμ,

see (10.3.5). Thus,

(H�J−1(μ))
−1(h) = π−1

μ ◦ H−1
μ (h)

and, therefore,

E −1(h,μ) = H−1(h) ∩ J−1(μ) = (H�J−1(μ))
−1(h) = π−1

μ

(
H−1

μ (h)
)
. (10.8.2)
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Fig. 10.4 The effective
potential (10.8.4)

This identity reduces the study of the topology of the fibres E −1(h,μ) to computing
the preimages of the level sets of the reduced Hamiltonian and taking the preimages
under πμ. An analogous statement holds for the singular case.

In what follows we discuss essential aspects of the programme of Smale for the
Kepler problem, the Euler top and the spherical pendulum.

Example 10.8.3 (Kepler problem) According to Example 10.6.3, we have

M = T
(
R

3 \ {0})∼= (R3 \ {0})×R
3

and under the identification of so(3) with R
3 via the isomorphism (5.2.6), the

energy-momentum mapping is given by

E = (H,J ) : T
(
R

3 \ {0})→R×R
3

with

H(q,p) = p2

2
− 1

q
, J (q,p) = q × p = L.

Let (h,L) ∈ R×R
3 and denote l = ‖L‖. By (10.8.2), we have

E −1(h,L) = π−1
L

(
H−1

l (h)
)
,

with the reduced Hamiltonian Hl and the natural projection

πL:J−1(L) → J−1(L)/SO(3)L. (10.8.3)

As in Example 10.6.3, we have to distinguish the following two cases.

(a) In case l > 0, the reduced Hamiltonian Hl is given by (10.6.18) and we have a
one-dimensional motion with effective potential

Ul(q) = l2

2q2
− 1

q
, (10.8.4)

see Fig. 10.4. The reduced Hamiltonian Hl possesses the single critical point
(q0,p0

q) = (l2,0) and hence the single critical value h0 = − 1
2l2

. Using

pq = ±
√

2
(
h − Ul(q)

)
,

from the shape of the effective potential we can read off the topology of the
level sets H−1

l (h), see Fig. 10.5: For h0 < h < 0 we get a sphere S1, which in
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Fig. 10.5 Level sets H−1
l (h) in the Kepler problem for l > 0 (left) and l = 0 (right)

the limit h → h0 descends to the 1-point space. For h ≥ 0 one obtains the real
line R. Since for l > 0, the preimages of the projection (10.8.3) are isomorphic
to S1, we obtain

E −1(h,L) =
⎧
⎨

⎩

S1 for h = h0,

T2 for h0 < h < 0,

R× S1 for h ≥ 0.

(10.8.5)

(b) In case l = 0, under the identification of the reduced phase space with the sub-
manifold Σ ⊂ M given by (10.6.19) with some chosen nonzero q0 ∈ R

3, the
integral curves and hence the level sets of the reduced Hamiltonian Hl are of
the form

{(
qe,±

√

2

(
h + 1

q

)
e
)

: 0 < q ≤ qmax

}

with e = q0
‖q0‖ , see Fig. 10.5. For h < 0, we have qmax = − 1

h
and hence

H−1
l (h) ∼= R. For h ≥ 0 we find qmax = ∞ and hence H−1

l (h) ∼= S0 ×R. Since
for l = 0 the preimages of the projection (10.8.3) are isomorphic to S2, we ob-
tain

E −1(h,0) =
{
R× S2 for h < 0
S0 ×R× S2 for h ≥ 0.

(10.8.6)

From (10.8.5) and (10.8.6) we read off that the bifurcation set is the preimage of
the set

{(
− 1

2l2
, l

)
: l > 0

}
∪ {(0, l) : l ≥ 0

}∪ {(h,0) : h ∈ R
}⊂ R

2, (10.8.7)

under the mapping

R× so(3) → R
2, (h,L) �→ (

h,‖L‖), (10.8.8)

see Fig. 10.6. We encourage the reader to study the Hamiltonian flow on the level
sets given by (10.8.5) and (10.8.6) and to compare these results with what he knows
from classical mechanics, see Exercise 10.8.2. In the next chapter, we will return to
the case h0 < h < 0, L �= 0, in the context of action and angle variables.
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Fig. 10.6 Image of the energy-momentum mapping E of the Kepler problem, projected to the
l–h-plane. The (projected) bifurcation set consists of the critical values of E , represented by the
hyperbola, and of the two coordinate axes. The regions are labelled by the topological type of the
level sets of E according to (10.8.5) and (10.8.6)

Example 10.8.4 (Euler top) According to Example 10.6.5, we have

M = T∗SO(3) ∼= SO(3) × so(3)

and the energy-momentum mapping is given by

E = (H,J ): SO(3) × so(3) →R× so(3)

with

H(a,L) = 1

2
Θ−1(L,L), J (a,L) = Ad(a)L.

Let (h,L0) ∈R× so(3) be a fixed value of E and denote l := ‖L0‖. Recall that the
reduced phase space may be identified with the adjoint orbit OL0 endowed with the
negative Kirillov structure and that the latter coincides with the origin for l = 0 and
with the sphere S2

l of radius l in so(3) otherwise. Moreover, in the latter case, the
reduced Hamiltonian reads

Hl(L) = 1

2
Θ−1(L,L), L ∈ S2

l .

To find its level sets, we first have to find the critical points. For that purpose, we
pass to vectors L ∈ S2

l ⊂ R
3 and choose the body frame in such a way that

Θ=
⎡

⎣
Θ1 0
0 Θ2 0
0 0 Θ3

⎤

⎦ .

For simplicity we assume that

0 < λ3 =Θ−1
3 < λ2 =Θ−1

2 < λ1 =Θ−1
1 (10.8.9)

and leave the discussion of the other cases to the reader (Exercise 10.8.3). The crit-
ical points of Hl can be determined from

(
H ′′

l + αf ′′)(L) = 0, f (L) = 1

2

(‖L‖2 − l2),
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with L ∈ R
3 and α denoting a Lagrange multiplier. We obtain the equations

(λ1L1, λ2L2, λ3L3) − α(L1,L2,L3) = 0, L2
1 + L2

2 + L2
3 = l2,

that is, L is located on the intersection of the eigenspaces of the matrix Θ−1 with
S2

l . This yields the critical points

L±
i = ±lei , i = 1,2,3. (10.8.10)

Remark 10.8.5 Since the critical points of Hl coincide with the critical points of the
corresponding Hamiltonian vector field XHl

, they can be read off from (10.6.39),
too. Thus, on the level of so(3), they are given by the solutions of the equation
[Θ−1L,L] = 0 and hence by the eigenvectors of Θ−1, indeed.

Next, we show that Hl is a Morse function. For that purpose, we observe that for
every i, the tangent space

TL±
i

S2
l = kerf ′(L±

i

)= {X ∈R
3: X · L±

i = 0
}

is spanned by the two standard basis vectors ej and ek with j, k �= i. We compute

HessL±
1
(Hl) =

[
λ2 − λ1 0

0 λ3 − λ1

]
,

HessL±
2
(Hl) =

[
λ1 − λ2 0

0 λ3 − λ2

]
,

HessL±
3
(Hl) =

[
λ1 − λ3 0

0 λ2 − λ3

]
.

Since λ1 − λ2 > 0, λ1 − λ3 > 0 and λ2 − λ3 > 0, the critical points L±
1 , L±

2 , L±
3 are

non-degenerate and have the Morse indices, respectively, 2, 1 and 0.

Remark 10.8.6 Using Proposition 9.7.1, from the Hessians we read off that the crit-
ical point L±

i of the Hamiltonian vector field XHl
on S2

l is stable for i = 1,3 and un-
stable for i = 2. It follows that these points are also stable or unstable with respect to
the projected flow on T∗SO(3)/SO(3) ∼= so(3) as a whole, see [181, Thm. III.12.4].
Thus, the corresponding stationary motions in T∗SO(3), given by rotation about
the corresponding principal axes of inertia, are relatively SO(3)-stable or SO(3)-
unstable, cf. Remark 6.8.5/4.

Proposition 10.8.7 The level sets of Hl have the following topological structure.

1. For l = 0, one has h = 0 and H−1
l (h) consists of a single point.

2. For l > 0 and h = 1
2 l2λi , i = 1,3, the level set H−1

l (h) consists of two points.

3. For l > 0 and h ∈ ( 1
2 l2λ3,

1
2 l2λ2) ∪ ( 1

2 l2λ2,
1
2 l2λ1), one has H−1

l (h) = S1 � S1.

4. For l > 0 and h = 1
2 l2λ2, the level set H−1

l (h) is the union of two distinct great
circles on S2.
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Proof 1. As noted above, in this case the reduced phase space consists of a single
point.

2. For h = 1
2 l2λ3, we have

λ1L
2
1 + λ2L

2
2 + λ3L

2
3 = l2λ3, L2

1 + L2
2 + L2

3 = l2.

If we multiply the second equation by λ3 and subtract it from the first one, we obtain

(λ1 − λ3)L
2
1 + (λ2 − λ3)L

2
2 = 0.

Under the assumption (10.8.9), this implies L1 = L2 = 0 and hence L = L±
3 .

3. The critical points L±
3 are non-degenerate minima with Morse index 0. Hence,

according to the Morse Lemma 8.9.3, for values of h between 1
2 l2λ3 and 1

2 l2λ3 + ε

with ε small enough, the level set H−1
l (h) is the union of two 1-spheres in the

neighbourhood of the points L+
3 and L−

3 . An analogous statement is true for values
of h between 1

2 l2λ1 − ε and 1
2 l2λ1. Then, the assertion follows from the Morse

Isotopy Lemma 8.9.6.
4. For h = 1

2 l2λ2, an analogous calculation as under point 2 yields the equation

(λ2 − λ3)L
2
3 − (λ1 − λ2)L

2
1 = 0.

This defines two planes P± intersecting in the subspace spanned by e2. Hence,

H−1
l (h) = (P+ ∪ P−) ∩ S2

l .

This set consists of two circles which intersect in the points L±
2 . �

In the following, we write L±
i for the elements of so(3) corresponding to the

critical points L±
i .

Proposition 10.8.8 For L0 �= 0, the function H�J−1(L0)
is an SO(3)L0 -invariant

Morse-Bott function with 6 non-degenerate critical SO(3)L0 -orbits

γ ±
i = π−1

L0

(
L±

i

)
, i = 1,2,3,

having Morse indices, respectively, 2, 1 and 0.

Proof Due to H ◦ jL0 = Hl ◦ πL0 , for any p ∈ J−1(L0), we have

(H�J−1(L0)
)′p = (Hl)

′
πL0 (p) ◦ (πL0)

′
p.

Since πL0 is a submersion, this implies that p is a critical point of H�J−1(L0)
iff

πL0(p) is a critical point of HL0 . The subset of critical points of H�J−1(L0)
is thus

the union of the subsets γ ±
i , i = 1,2,3. Obviously, every γ ±

i is an SO(3)L0 -orbit.
Since SO(3)L0

∼= SO(2), it is therefore diffeomorphic to a 1-sphere.
It remains to show that H�J−1(L0)

is a Morse function and to determine its Morse
index at γ ±

i . For that purpose, we choose an open neighbourhood U±
i of the critical

point L±
i in S2

l and a local trivialization

χ±
i : π−1

L0

(
U±

i

)→ U±
i × SO(3)L0 .
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Using χ±
i , the SO(3)L0 -orbit γ ±

i can be parameterized by

t �→ (
χ±

i

)−1(
L±

i , exp(tA)
)
,

where A ∈ so(3)L0
∼= so(2), A �= 0. For every fixed value t0, the submanifold

S ±
i = (χ±

i

)−1(
U±

i × exp(t0A)
)

(10.8.11)

intersects γ ±
i transversally in the point (χ±

i )−1(L±
i , exp(t0A)). This shows that Hl

is a Morse-Bott function. Since (πL0)�S ±
i

:S ±
i → U±

i is a diffeomorphism, the

Morse index of H�J−1(L0)
at γ ±

i (t0) coincides with the Morse index of Hl at L±
i . �

Proposition 10.8.9 The level sets of the energy-momentum mapping E for the Euler
top have the following topological structure.

1. For L0 = 0, one has h = 0 and E −1(h,L0) = SO(3).
2. For L0 �= 0 and h = 1

2 l2λ1 or h = 1
2 l2λ3, one has E −1(h,L0) = S1 � S1.

3. For L0 �= 0 and h ∈ ( 1
2 l2λ3,

1
2 l2λ2) ∪ ( 1

2 l2λ2,
1
2 l2λ1), E −1(h,L0) = T2 � T2.

4. For L0 �= 0 and h = 1
2 l2λ2, the level set E −1(h,L0) is a union of two tori inter-

secting along two circles.

Proof 1. This is obvious.
3. Proposition 10.8.7 implies H−1

l (h) = S1 � S1. Each of these two 1-spheres is
the boundary of a 2-disc D2

i , i = 1,2, which is contractible in S2
l . It follows that the

bundle πL0 :J−1(L0) → S2
l is trivial over D2

i . Thus, π−1
L0

(D2
i )

∼= D2
i × S1 and hence

E −1(h,L0) = π−1
L0

(
H−1

l (h)
)∼= (∂D2

1 × S1) � (∂D2
2 × S1).

2. This is a limiting case of point 3. According to Proposition 10.8.7, here
H−1

l (h) consists of two points. Over each of them we have a fibre S1.
4. According to Proposition 10.8.7, in this case, H−1

l (h) is the union of two
circles S1

i on S2
l , which intersect in the points L±

i . As under point 3, these circles
are the boundaries of two 2-discs and we obtain 2-tori, which intersect along the
critical curves γ ±

i of Proposition 10.8.8. �

According to Proposition 10.8.9, the bifurcation set of the energy-momentum
mapping E of the Euler top is the union of three paraboloids,

BE =
3⋃

i=1

{
(h,L) ∈R× so(3):

1

2
λi‖L‖2 = h

}
,

see Fig. 10.7. We encourage the reader to find out how the level sets of E fit together
to build J−1(L0) for a fixed L0, see Exercise 10.8.4.

Example 10.8.10 (Spherical pendulum) According to Example 10.6.7, we have

M = TS2 = {(x,y) ∈ TR3 : ‖x‖ = 1, x · y = 0
}

(10.8.12)
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Fig. 10.7 Image of the
energy-momentum mapping
E of the Euler top, projected
to the l–h-plane via the
mapping (10.8.8) (shaded
region). The (projected)
bifurcation set consists of the
three parabolas corresponding
to λ1 (narrow), λ2 (medium)
and λ3 (wide). The numbers
refer to the cases 1–4 of
Proposition 10.8.9

and the energy momentum mapping is given by

E = (H,J ) : TS2 → so(2) ∼= R

with29

H(x,y) = 1

2
‖y‖2 + x · e3, J (x,y) = x1y2 − x2y1. (10.8.13)

To find the critical points of E , we compute the Hamiltonian vector fields (Exer-
cise 10.8.5):

XH (x,y) = (y,−e3 − (‖y‖2 − x · e3
)
x
)
,

XJ (x,y) = ((−x2, x1,0), (−y2, y1,0)
)
. (10.8.14)

The critical points of XH are

m0± = (0,0,±1,0,0,0). (10.8.15)

At these points, we have

H
(
m0±
)= ±1, J

(
m0±
)= 0, XJ

(
m0±
)= 0.

The points where XJ and XH are parallel are determined by the equations

−x2 = λy1, −y2 = −λ
(‖y‖2 − x3

)
x1,

x1 = λy2, y1 = −λ
(‖y‖2 − x3

)
x2,

0= λy3, 0= −1 − (‖y‖2 − x3
)
x3,

with λ ∈ R. First, we conclude that λ2 = −x3, that is, every λ ∈ [−1,1] defines a
horizontal plane intersecting S2 in the critical point m0− for λ = ±1 and in a 1-sphere
otherwise. In spherical coordinates

x1 = cosφ sinϑ, x2 = sinφ sinϑ, x3 = cosϑ,

29Resetting H = H̃ and J = J̃ .
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this 1-sphere is parameterized by the angle φ. In these coordinates, the solution of
the above system of equations reads

y1 = ± sinϑ sinφ√− cosϑ
, y2 = ± sinϑ cosφ√− cosϑ

, y3 = 0. (10.8.16)

The corresponding values of the constants of motion are

H(ϑ) = 3

2
cosϑ − 1

2 cosϑ
, J (ϑ) = ±1 − cos2 ϑ√− cosϑ

. (10.8.17)

This is the parameter presentation of a curve s �→ γ (s), s = cosϑ , in the space
of values of the energy-momentum mapping E . The union of this curve with the
isolated point (H(m0+), J (m0+)) = (1,0) yields the set of critical values of E , see
Fig. 10.8. The isolated point is obtained for the parameter value cosϑ = 1. The
curve γ can be parameterized by the value j of J or by the value h of H . Let
hj and jh denote the corresponding value of the other constant of motion. While
the function j �→ hj cannot be expressed in terms of elementary functions, for the
function h �→ jh one finds

jh = ±2

9

(
3 − h2 + h

√
h2 + 3

)√
h +

√
h2 + 3 (10.8.18)

(Exercise 10.8.6). It remains to determine the set of regular values of E . For that
purpose, we note that H can be written in the form

H = y2
3

2 sin2 ϑ
+ J 2

2 sin2 ϑ
+ cosϑ.

For given j , the critical points of H�J 1(j) are determined by the equations

y3 = 0, j2 cosϑ + sin4 ϑ = 0.

Comparison with (10.8.16) and (10.8.17) shows that the latter equations define a
critical point with critical value hj . From H → ∞ for cosϑ → ±1 we conclude
that this critical point is a minimum. Thus, the regular points of E are located above
the curve γ and, therefore, the image of the energy-momentum mapping is given by

E
(
TS2)= {(h, j) ∈ R

2 : h ≥ hj , j ∈ R
}
.

Proposition 10.8.11 The level sets of the energy-momentum mapping E for the
spherical pendulum have the following topological structure.

1. For h > −1, |j | < |j (h)| and (h, j) �= (1,0), the level set E −1(h, j) is a 2-torus.
2. For h > −1 and j = ±j (h), the level set E −1(h, j) is a 1-sphere.
3. For (h, j) = (−1,0), the level set E −1(h, j) consists of a single point.
4. For (h, j) = (1,0), the level set E −1(h, j) is a 2-torus, in which a longitudinal

circle has been contracted to a point.

The results are summarized in Fig. 10.8.
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Fig. 10.8 Image of the
energy-momentum mapping
E of the spherical pendulum
(shaded region). The
bifurcation set BE consists
of the boundary and the point
(j, h) = (0,1). The numbers
refer to the cases 1–4 of
Proposition 10.8.11

Proof 1. By Remark 10.6.8/2, the fibres of the natural projection πj :J−1(j) →
M̂Oj

are 1-spheres and M̂Oj
may be identified with the subset of R3 defined by the

relations (10.6.49). Expressing the reduced Hamiltonian (10.6.51) in terms of the
invariant polynomials σ1, σ3,

Hj = 1

2
σ3 + σ1,

we find that these relations can be written in the form

2(Hj − σ1)
(
1 − σ 2

1

)− σ 2
2 − j2 = 0, Hj ≥ σ 2

2

2
+ σ1, |σ1| ≤ 1. (10.8.19)

This means that for every regular value h, the level set Hj is the 1-sphere which
forms the boundary of the 2-disc defined by the two inequalities in (10.8.19). Since
this implies that the bundle E −1(h, j) → H−1

j (h) is trivial, (10.8.2) yields the as-
sertion.

2. By (10.8.16) and (10.8.17), the level set can be parameterized by φ as follows:

φ �→
(

sinϑ cosφ, sinϑ sinφ, cosϑ,∓ sinϑ sinφ√− cosϑ
,± sinϑ cosφ√− cosϑ

,0

)
.

3. This is obtained from point 2 by taking the limit sinϑ → 0.
4. According to Remark 10.6.8/2, for regular points of M̂0, the preimages of the

projection

π0:J−1(0) → M̂0

are 1-spheres. For the two singular points p± = (±1,0,0) of M̂0, they consist of
the corresponding single points m±

0 = (0,0,±1,0,0,0). Since h = 1 = 1
2σ3 +σ1, it

follows that only p+ lies in the image of π0. This completes the proof. �

To conclude, we stress that the occurrence of tori in the above models is no
accident, because all of them are integrable systems. This will be the topic of the
next chapter.
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Exercises
10.8.1 Prove Proposition 10.8.2.
10.8.2 Study the properties of the Hamiltonian flow of the Kepler problem on the

level sets given by Eqs. (10.8.5) and (10.8.6).
10.8.3 Study the topological structure of the energy-momentum mapping of the

Euler top for the case λ3 < λ2 = λ1.
10.8.4 Discuss the structure of the foliation of the level set J−1(L0) for the Euler

top. Find out how the fibres fit together to constitute J−1(L0) for a fixed
value L0.
Hint. One possible strategy consists in using J−1(L0) ∼= SO(3), together
with the fact that the group manifold of SO(3) can be viewed as a ball of
radius π with identified antipodes.

10.8.5 Compute the Hamiltonian vector fields generated by the Hamiltonian H and
the momentum mapping J of Example 10.8.10.

10.8.6 Verify Formula (10.8.18).
10.8.7 Calculate the critical points of the Hamiltonian (10.8.13) and the correspond-

ing Morse indices.





Chapter 11
Integrability

In this chapter, we study the concept of integrability of Hamiltonian systems in a
systematic way. We start with the very notion of an integrable system and with a
number of examples: the two-body problem, the two-centre problem, the top, the
spherical pendulum and the Toda lattice. In Sect. 11.2, we analyze Lax pairs in the
context of Hamiltonian systems on coadjoint orbits. In particular, we show that the
Toda lattice can be understood in this framework. In Sects. 11.3 and 11.4 we analyze
the local geometric structure of integrable systems. We prove the Arnold Theorem,
discuss the relation with symplectic reduction and present the construction of local
action and angle variables in detail. Thereafter, we construct action and angle vari-
ables for a number of examples. We also show that action and angle variables are
very well adapted to the study of small perturbations of integrable systems. In this
context, we meet another application of KAM theory. In Sect. 11.7 we give an intro-
duction to global aspects in the spirit of Nekhoroshev and Duistermaat, with some
emphasis on monodromy. This phenomenon will be illustrated in detail for the case
of the spherical pendulum. Finally, we present a generalization to the concept of so-
called non-commutative integrability in the sense of Mishchenko and Fomenko. We
prove the Mishchenko-Fomenko Theorem and illustrate it for the case of the Euler
top.

11.1 Basic Notions and Examples

Definition 11.1.1 A Hamiltonian system (M,ω,H) of dimension 2n is called in-
tegrable1 if there exist n constants of motion H1 = H,H2, . . . ,Hn satisfying the
following conditions:

1. The functions Hi are in involution, that is, {Hi,Hj } = 0 for all i, j = 1, . . . , n.
2. The subset of regular points of the mapping H = (H1, . . . ,Hn) : M → R

n is
dense in M .

1Or completely integrable.

G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics,
Theoretical and Mathematical Physics,
DOI 10.1007/978-94-007-5345-7_11, © Springer Science+Business Media Dordrecht 2013
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For an integrable system we will write (M,ω,H1, . . . ,Hn) or (M,ω,H ). Recall
that the set of singular points of the mapping H is denoted by MH and that the
set of regular points is denoted by MH . Thus, we have the disjoint decomposition
M = MH ∪ MH , where MH is an open and dense submanifold of M .

Remark 11.1.2

1. The Hamiltonian vector fields XHi
span a distribution on M , which will be de-

noted by DH . Since [XHi
,XHj

] = X{Hi,Hj } = 0, this distribution is involutive.
By Proposition 3.2.13/2, its rank is constant along the integral curves of the
Hamiltonian vector fields XHi

. Hence, Theorem 3.5.10 implies that DH is inte-
grable and Proposition 3.5.21 yields that the integral manifolds form a foliation
of M . Since ω(XHi

,XHj
) = {Hi,Hj } = 0, the distribution DH is isotropic and

hence its integral manifolds are isotropic submanifolds of M .
2. The open submanifold MH of M consists of the points where the differentials

dHi and hence the Hamiltonian vector fields XHi
are linearly independent, that

is, where DH has the maximal rank n. Since the rank of DH is constant along
the integral curves of the XHi

, MH is invariant under their flows. In particular,
the dynamics reduces to MH . Moreover, the restriction

Hr : MH → R
n (11.1.1)

of H to MH is a submersion.2

3. The restriction DHr of DH to MH is a regular distribution of rank n. Since
it is isotropic, it is Lagrange. Moreover, due to XHj

(Hj ) = {Hj ,Hi} = 0, we

have DHr ⊂ kerHr
′ and by counting dimensions, we find that equality holds.

Hence, according to Example 3.5.4/4, the maximal integral manifolds of DHr are
given by the level set components of Hr . In particular, the latter are Lagrangian
submanifolds of MH . To summarize, the level set components of Hr form a
Lagrangian foliation of MH which is generated by the Lagrangian distribution
DHr and which is invariant under the flows of the Hamiltonian vector fields XHi

.
In particular, the dynamics reduces to these level set components.

Obviously, every autonomous system with one degree of freedom is integrable.
Moreover, by Proposition 9.1.10, in an autonomous system, every constant of mo-
tion is in involution with H . In particular, an autonomous system with two degrees
of freedom is integrable if only it admits a second constant of motion, functionally
independent from H . In higher dimensions, integrability is rare. We start with a
number of examples.

Example 11.1.3 (Two-Body Problem) The two-body problem has n = 6 degrees of
freedom given by the position vectors q1 and q2 of the two bodies, that is, the phase

2Beware that the set of regular values of H is contained in the set of values of Hr but need not
coincide with the latter.
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space is M = T∗(R3 ×R
3 \�R3), where �R3 denotes the diagonal. For definiteness,

we consider the Hamiltonian3

H(p1,p2,q1,q2) = p2
1

2m1
+ p2

2

2m2
− k

‖q1 − q2‖ . (11.1.2)

By Galilei invariance, we have 10 constants of motion: the total momentum P, the
total angular momentum L, the total energy E and the vector MR − tP, with M

denoting the total mass and R being the position vector of the centre of mass. By
separating out the motion of the centre of mass, for the relative motion we obtain
the phase space T∗(R3 \ {0}) and the constants of motion

Hrel = p2

2μ
− k

‖q‖ , Lrel = q × p.

Here,

μ = m1m2

m1 + m2
, q = q1 − q2, p = μq̇

are, respectively, the reduced mass, the relative position and the relative momentum.
One easily checks that

P, Hrel, L2
rel, (Lrel)3 (11.1.3)

are constants of motion in involution and that their differentials are independent on
a dense subset of M (Exercise 11.1.1). Thus, the 2-body problem is integrable.

Example 11.1.4 (Two-Centre Problem) It turns out that already the 3-body problem
is in general not integrable. Let us restrict our attention to the case where the mass
of one of the three bodies is assumed to be so small that it does not influence the
motion of the other two bodies. This approximation leads to the so-called two-centre
problem,4 where one studies the motion of a body in the field of two fixed force
centres. The Hamiltonian of this model is given by5

H = 1

2
p2 + k1

r1
+ k2

r2
, (11.1.4)

with p denoting the momentum and ri denoting the distances of the body from
the two centres. For simplicity, we have set the mass of the body equal to one.
Coulson and Joseph have shown that the two-centre problem can be treated in the

3The Kepler potential can be replaced by any central force potential.
4Some authors call this the Three-body problem of Euler, because Euler solved it first and pub-
lished it in his memoirs in 1760.
5It turns out that this is a good approximation provided the electromagnetic forces between the
particles dominate. It is not a good approximation if the gravitational forces dominate, see Sect. 4.3
in [286] for a discussion of this point. We also refer to §47 of [18] for an application to the motion
of the moon in the gravitational field of the earth.
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same way for any number n of degrees of freedom [68]. Following these authors, we
choose Cartesian coordinates qi such that the two centres are located at the points
a = (0, . . . , a) and −a. Then, the configuration space is Q = R

n \ {a,−a} and the
distances of the body from the centres are given by

r2
1 =

n−1∑

i=1

q2
i + (qn − a)2, r2

2 =
n−1∑

i=1

q2
i + (qn + a)2. (11.1.5)

Angular momentum is represented by the skew-symmetric n-dimensional matrix

Lij = qipj − qjpi. (11.1.6)

We define

L2 =
∑

i<j

L2
ij , L2⊥ =

∑

i<j<n

L2
ij . (11.1.7)

By direct inspection, one can check the following (Exercise 11.1.2).

(a) The angular momentum components Lij with i, j < n are constants of motion.
(b) The quantity

A = 1

2

(
L2 + a2p2

n

)+ aqn

(
k1

r1
− k2

r2

)
(11.1.8)

is a constant of motion which Poisson-commutes with all components Lij ,
i, j < n, and hence with L2⊥. The reader can find the relation of A to the Lenz-
Runge vector of the Kepler problem by sending one of the centres to infinity.

We conclude that the quantities H , A and L2⊥ are constants of motion in involu-
tion. For n ≥ 3, their differentials are linearly independent on a dense subset of T∗Q.
For n = 2, the so-called planar two-centre problem, this still holds for H and A but
one has L⊥ = 0. As a result, for n = 2 or 3, the two-centre problem is integrable.

Example 11.1.5 (Top) We take up Example 10.6.5. Recall from there that the phase
space of a top is

T∗SO(3) ∼= SO(3) × so(3)

and that in the special case of the Euler top, the equations of motion have the form
of a Lax equation for the Lax pair (L,ω). We continue to identify so(3) with R

3 via
the isomorphism (5.2.6), denoting the vector corresponding to a Lie algebra element
A by A. Here, we consider the more general case of a top in a constant6 external
force field f. The most important example of this type is, of course, the gravitational
field f = −mgn3 of the earth. Before turning to the discussion of integrability, let us
derive the Hamilton equations and the Poisson structure.

6With respect to the inertial frame.
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In the body frame, the external field is given by the vector

F = a−1f

and the potential has the form

V (a) = −F · S,

where S denotes the position vector of the centre of mass. On the level of the Lie
algebra, the relation between F and f reads F = Ad(a−1)f and the Hamiltonian
function takes the form

H(a,L) = 1

2
Θ−1(L,L) − 〈F,S〉, (11.1.9)

where 〈·,·〉 denotes the Ad-invariant scalar product defined by

〈F,S〉 = −1

2
tr(FS) ≡ F · S.

The Hamilton equations for this system are given by (9.2.8). To find their explicit
form, under the identification of so(3)∗ with so(3) induced by 〈·,·〉 we compute

〈(
L′

a

)T(
(HL)′a

)
,A
〉= (HL)′a

(
L′

aA
)= − d

dt �0

〈
Ad
(
exp(−tA)

)
F,S

〉= 〈ad(F )S,A
〉
.

Hence,
(
L′

a

)T(
(HL)′a

)= ad(F )S

and the Hamilton equations are given by

a−1ȧ =Θ−1L, L̇ = −ad
(
Θ−1L

)
L − ad(F )S. (11.1.10)

The first equation is called the Poisson equation and the second one is called the
Euler equation. In vector notation it is given by

L̇ = L × ω + S × F. (11.1.11)

Since S × F ≡ N is the torque acting on the system, the Euler equation is equivalent
to the angular momentum balance equation in the body frame,

L̇ + ω × L = N. (11.1.12)

To find constants of motion in involution, we determine the Poisson structure. For
that purpose, we view L and F as mappings SO(3) × so(3) → so(3), given by

L(a,A) = A, F(a,A) = Ad
(
a−1)f.
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Let Li and Fi denote the corresponding coefficient functions with respect to the
basis {ei ≡ IRi } of Example 5.2.8. Using the method of Example 9.2.2, we compute
the Hamiltonian vector fields

XLi
(a,A) = (L′

aei,−ad(ei)A
)
, XFi

(a,A) = (0, ad(F )ei

)
(11.1.13)

(Exercise 11.1.3) and read off the Poisson brackets from (9.2.10),

{Li,Lj } = εij
kLk, {Fi,Fj } = 0, {Li,Fj } = εij

kFk. (11.1.14)

Remark 11.1.6 Due to (11.1.14), the subspace of C∞(SO(3) × so(3)) spanned by
the functions Li and Fi forms a Lie subalgebra. This Lie subalgebra is isomorphic
to the Lie algebra of the Euclidean group E(3) = SO(3) � R

3, see Exercise 8.4.2.
One can check that the Casimir functions7 ‖F‖2 and 〈F,L〉 Poisson-commute with
all the generators Li and Fi and that they label the coadjoint orbits of E(3) (Exer-
cise 11.1.4).

Now, we turn to the discussion of integrability. Since the system is autonomous,
the Hamiltonian

I1 := H

is a constant of motion. Besides that, the projection

I2 := L · ε, (11.1.15)

of angular momentum to the direction ε := ‖F‖−1F of the external field F in the
body frame should be a constant of motion, because it corresponds to the symmetry
of this model under rotations about the axis defined by F. Indeed, since N · F = 0,
the angular momentum balance equation (11.1.12) yields

0 = N · ε = L̇ · ε + (ω × L) · ε = L̇ · ε + L · ε̇ = d

dt
(L · ε).

A third constant of motion which is in involution with I2 has been found in the
following special cases. For simplicity, we assume that the body frame is chosen in
such a way that the tensor of inertia Θ is diagonal,

Θ=
⎡

⎣
Θ1 0 0
0 Θ2 0
0 0 Θ3

⎤

⎦ .

This is only relevant in the cases (b) and (c).

7In Lie algebra theoretic terms, the quantities ‖F‖2 and 〈F,L〉 are the quadratic Casimir operators
of the Lie algebra of E(3) = SO(3)�R

3 in the representation defined by Li , Fi .
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(a) The Euler top: this is the situation discussed in Example 10.6.5. In this case,
either S = 0, that is, the fixed point coincides with the centre of mass, or F =
0. By scalar multiplication of Eq. (10.6.36) with L we obtain the additional
constant of motion

I3 = L2.

According to (11.1.14), I2 and I3 are in involution. Note that in the case F = 0,
for ε one can choose an arbitrary unit vector in R

3,
(b) The Lagrange top: here one assumes Θ1 = Θ2 and S = (0,0, S3). By the ax-

ial symmetry, the additional constant of motion in involution is given by the
projection of angular momentum to the symmetry axis of the inertia tensor:

I3 = L · e3.

(c) Kovalevskaya top: here one puts Θ1 = Θ2 = 2Θ3 and S = (S1, S2,0). Without
loss of generality, we may assume that the centre of mass vector is parallel to
e1. Then, the additional constant of motion in involution is given by

I3 = (L2
1 − L2

2 + 2SΘ1F1
)2 + 4(L1L2 + SΘ1F2)

2,

where S is the distance from the fixed point to the centre of mass.

We leave it to the reader to check that in each case, I3 is a constant of motion
and that the differentials of the functions in involution are linearly independent on a
dense subset (Exercise 11.1.5). Let us add that in a completely analogous way, one
can discuss the top in an ideal fluid. Here, a number of integrable situations exists
as well, see Sect. 2.2. in [237].

Remark 11.1.7 Since the model is symmetric under SO(2)-rotations about the axis
given by the external field F, the configuration space reduces to the two-sphere S2

and since I2 = L · ε is a constant of motion, the dynamics in phase space reduces to
the 4-dimensional level sets

Σl = {(ε,L) ∈ R
6 : ‖ε‖ = 1,L · ε = l

}
. (11.1.16)

Via the mapping

Φ : Σl → TS2, (ε,L) �→ (ε,L − lε),

each of the level sets Σl is diffeomorphic to TS2. This way, these level sets become
symplectic manifolds. As a consequence of the fact that the Casimir functions ‖F‖2

and 〈L,F 〉 label the coadjoint orbits of the Euclidean group E(3), cf. Remark 11.1.6,
Σl is symplectomorphic to such a coadjoint orbit. Moreover, one can show that Σl

corresponds to the reduced phase space at momentum level l obtained by symplectic
reduction of the Hamiltonian SO(2)-manifold which arises from that of the Euler
top, discussed in Example 10.6.5, by restricting the group action to the subgroup
SO(2) of rotations about the axis defined by F.
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Example 11.1.8 (Spherical pendulum) Recall from Example 10.6.7 that the spheri-
cal pendulum has the phase space

TS2 = {(x,y) ∈ TR3 : ‖x‖ = 1,x · y = 0
}

and that the Hamiltonian function is

H(x,y) = 1

2
‖y‖2 + x · e3.

A further constant of motion is given by the momentum mapping of the SO(2)-
symmetry of this system:

J (x,y) = x1y2 − x2y1.

The subset of TS2 where dH and dJ are linearly independent coincides with the
complement of the set of critical points of the energy momentum mapping. In Ex-
ample 10.8.10, we have seen that this set is dense. Thus, the spherical pendulum is
integrable.

Example 11.1.9 (Toda Lattice) The non-periodic Toda lattice is the Hamiltonian
system on T∗

R
n defined by

H = 1

2

n∑

k=1

p2
k +

n−1∑

k=1

e2(qk−qk+1), (11.1.17)

where qi , pi denote the standard bundle coordinates. It describes a linear molecule
consisting of n atoms with exponential nearest neighbour interaction. The Hamilton
equations are

q̇k = pk, k = 1, . . . , n,

ṗk = 2e2(qk−1−qk) − 2e2(qk−qk+1), k = 2, . . . , n − 1,

ṗ1 = −2e2(q1−q2), ṗn = 2e2(qn−1−qn).

(11.1.18)

Since
∑n

k=1 ṗk = 0, we can separate out the motion of the centre of mass by passing
to the rest frame. Then,

∑
i pi = 0 and the relative motion can be described in terms

of the new variables

ak = eqk−qk+1
, bk = pk
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fulfilling
∑n

k=1 bk = 0. Define

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b1 a1 0 · · · 0

a1 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−1 an−1

0 · · · 0 an−1 bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 0 · · · 0

−a1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 an−1

0 · · · 0 −an−1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

We show that the Hamilton equations (11.1.18) are equivalent to the Lax equation

L̇ = [L,M]. (11.1.19)

For that purpose, we calculate

[L,M] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−2a2
1 a1(b1 − b2) 0 · · · 0

a1(b1 − b2) 2a2
1 − 2a2

2
. . .

...

0
. . .

. . .
. . . 0

...
. . . 2a2

n−2 − 2a2
n−1 an−1(bn−1 − bn)

0 · · · 0 an−1(bn−1 − bn) +2a2
n−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

and read off that (11.1.19) corresponds to the following system of equations:

ȧk = ak(bk − bk+1), k = 1, . . . , n − 1,

ḃk = 2a2
k−1 − 2a2

k , k = 2, . . . , n − 2,

ḃ1 = −2a2
1, ḃn = 2a2

n−1.

(11.1.20)

By direct inspection, one can check that this system is equivalent to (11.1.18). Due
to

d

dt
tr
(
Lk
)= k tr

(
L̇Lk−1)= k tr

([L,M]Lk−1)= tr
([

M,Lk
])= 0,

the quantities

Ik = 1

k
tr
(
Lk
)

(11.1.21)
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are constants of motion for every k. Since the coefficients of the characteristic poly-
nomial of L can be expressed in terms of the traces tr(Lk), the eigenvalues of L

are constants of motion, too. In the next section, we will show that the Ik are in
involution. Moreover, one can check that the differentials dI2, . . . ,dIn are linearly
independent on a dense subset of T∗

R
n (Exercise 11.1.6). We conclude that the Toda

lattice is integrable. Finally, let us calculate I1 and I2:

I1 =
n∑

k=1

bk =
n∑

k=1

pk = 0 (total momentum),

I2 = 1

2

n∑

k=1

b2
k +

n−1∑

k=1

a2
k = H (energy).

Exercises
11.1.1 Show that the six constants of motion of the two-body problem given by

(11.1.3) are in involution and that the differentials of these functions are
linearly independent on a dense subset.

11.1.2 Prove the statements (a) and (b) in Example 11.1.4.
11.1.3 Prove Formulae (11.1.13) and (11.1.14).
11.1.4 Verify that the Casimir functions ‖F‖2 and 〈F,S〉 of Example 11.1.5 com-

mute with all generators of the Euclidean group E(3) and prove that they
label the coadjoint orbits of E(3).

11.1.5 Show that both for the Lagrange and for the Kovalevskaya top, the quantity
I3 is a constant of motion in involution with I2 and check the linear inde-
pendence of the differentials of H , I2 and I3.

11.1.6 Determine the subset of T∗
R

n where the differentials of the constants of
motion I2, . . . , In defined by (11.1.21) are linearly independent.

11.2 Lax Pairs and Coadjoint Orbits

As we have seen, sometimes the Hamilton equations can be written in the form of a
Lax equation

L̇ = [L,M] (11.2.1)

with L and M being matrices whose entries are functions of positions and momenta.
As noted above, the quantities Ik defined by (11.1.21) are constants of motion, and
so are the eigenvalues of L. One says that the motion is isospectral. Thus, if one can
find a sufficiently large number of invariants of this type which are in involution and
functionally independent, the system is integrable.

Remark 11.2.1 Assume that t �→ L(t) is a solution of the Lax equation (11.2.1) with
initial value L(0). Then, there exists a smooth matrix-valued function t �→ g(t) such
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that

L(t) = g(t)L(0)g(t)−1, M(t) = −ġ(t)g(t)−1, g(0) = 1. (11.2.2)

Indeed, the function g is found by solving the initial value problem for the second
equation.8 Then, by direct inspection, one checks that the matrix-valued function
g(t)L(0)g(t)−1 solves the Lax equation for the initial value L(0). Now, by unique-
ness, the first equation in (11.2.2) follows. Thus, one can always seek the solution
of the Lax equation by making the ansatz L(t) = g(t)L(0)g(t)−1. This procedure is
called the method of isospectral deformation. Finally, we note that (11.2.2) imme-
diately implies

Ik = 1

k
tr
(
L(0)k

)
.

This is an alternative argument showing that the Ik are constants of motion.

In this section, we discuss aspects of integrability for Hamiltonian systems on
coadjoint orbits in the dual space g∗ of a Lie algebra g. Recall from Sect. 8.4 that the
coadjoint orbits in g∗ are the symplectic leaves of the Lie-Poisson structure (8.2.18)
on g∗, and that their symplectic form is given by the (positive) Kirillov form (8.4.2).
In this context, there exists a variety of constructive methods [237]. Here, we discuss
one of these methods and apply it to the study of the Toda lattice. The setup is as
follows. Let G̃ be a Lie group with Lie algebra g̃, let g be a Lie subalgebra and let G

be the connected Lie subgroup of G̃ associated with g. Assume that there exists a
Lie subalgebra k of g̃ such that

g̃ = g⊕ k

(direct sum of vector spaces). Then, the dual spaces g∗ and k∗ can be naturally iden-
tified with k0 and g0, respectively, and thus give rise to the induced decomposition

g̃
∗ = g

∗ ⊕ k
∗.

Denote the natural projections corresponding to these decompositions by πg, πk

and πg∗ , πk∗ . Below, for the adjoint and coadjoint representations of G and g, we
will use the conventional notation Ad etc., whereas for the adjoint and coadjoint
representations of G̃ and g̃, we will occasionally use the notation Ãd etc. Finally,
recall from the discussion of Formula (8.2.18), that for a smooth function f on g̃,
the exterior differential df can be viewed as a smooth mapping df : g̃∗ → g̃.

The following result belongs to Kostant [171] and Symes [284].9

8Note that M(t) depends on L(t).
9The statement can be formulated entirely on the level of Lie algebras. To see this, reformulate

the requirement of Ãd
∗
-invariance in terms of ãd

∗
, drop G̃ and replace G by the Lie subgroup of

GL(g) generated by the automorphisms exp(ad(A)), A ∈ g, defined by the exponential series.
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Proposition 11.2.2 Under the assumptions made, the following holds.

1. If f and g are Ãd
∗
-invariant smooth functions on g̃∗, their restrictions to g∗ are

in involution with respect to the natural Poisson structure on g∗.
2. For a Hamiltonian function H on g∗ which is obtained by restriction of an Ãd

∗
-

invariant function H̃ on g̃∗, the Hamilton equations have the form

ν̇ = ãd
∗(

πk

(
dH̃ (ν)

))
ν. (11.2.3)

According to Example 9.2.3, every coadjoint orbit of G is invariant under the
flow defined by H and (11.2.3) is the Hamilton equation on this orbit.

Proof 1. Let f̃ , g̃ ∈ C∞(g̃∗) and let f := f̃�g∗ and g := g̃�g∗ be the restrictions. By
(8.2.18),

{f̃ , g̃}(ν) := 〈ν, [df̃ ,dg̃]〉,
where df̃ and dg̃ are viewed as mappings g̃∗ → g̃. Writing

d1f̃ = πg ◦ df̃ : g̃∗ → g, d2f̃ = πk ◦ df̃ : g̃ → k

and using that Ãd
∗
-invariance implies
〈
ν, [df̃ ,X]〉= 〈ν, [dg̃,X]〉= 0 for all X ∈ g̃, (11.2.4)

we find

{f,g}g∗(ν) = 〈ν,
[
df (ν),dg(ν)

]〉= 〈ν,
[
d1f̃ (ν),d1g̃(ν)

]〉= 〈ν,
[
d2f̃ (ν),d2g̃(ν)

]〉
.

Since k is a Lie subalgebra, [d2f (ν),d2g(ν)] ∈ k. Since ν ∈ g∗ = k0, the right hand
side vanishes.

2. A smooth curve t �→ ν(t) in g∗ is an integral curve of the Hamiltonian vector
field XH generated by H iff

〈
XH

(
ν(t)
)
,df

(
ν(t)
)〉= 〈ν̇(t),df

(
ν(t)
)〉

for all f ∈ C∞(g∗) and all t . While, originally, the pairing is that of tangent vectors
with covectors, by the usual identifications, we can interpret it as the pairing of
elements of g∗ with elements of g and rewrite the left hand side as follows, denoting
μ = ν(t):
〈
XH (μ),df (μ)

〉= {H,f }(μ) = 〈μ,
[
dH(μ),df (μ)

]〉= 〈μ,
[
d1H̃ (μ),df (μ)

]〉
.

In the last expression, df (μ) is viewed as an element of g̃ and the bracket is that of
g̃. Using (11.2.4), we can rewrite the last expression as

−〈μ,
[
d2H̃ (μ),df (μ)

]〉= 〈ãd
∗(

d2H̃ (μ)
)
μ,df (μ)

〉
.

This yields the assertion. �
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According to Remark 5.4.11/2, in case g̃ admits a non-degenerate symmetric
Ad-invariant bilinear form k, one has a natural isomorphism F : g̃ → g̃∗ of repre-
sentations. Then, F−1 maps g∗ and k∗ to their mutual k-orthogonal complements in
g̃ and the Hamilton equation (11.2.3) takes the form of the Lax equation (11.2.1)
with

L = ν, M = −πk

(
dH̃ (ν)

)
. (11.2.5)

Example 11.2.3 (Toda Lattice) Using Proposition 11.2.2, we analyze the Toda lat-
tice. On the way, we use a number of facts about the Lie algebra sl(n,R) of traceless
real (n × n)-matrices. We leave it to the reader to check them (Exercise 11.2.1).

Let G̃ = SL(n,R), the group of real (n × n)-matrices of unit determinant, let
g ⊂ sl(n,R) be the Lie subalgebra of traceless upper triangular (n × n)-matrices,
and let k = so(n) ⊂ sl(n,R) be the Lie subalgebra of real skew-symmetric (n × n)-
matrices. As a vector space,

g̃ = g⊕ k.

To write down the projections πg and πk, observe that every A ∈ g̃ can be decom-
posed uniquely as A = Al + Ad + Au, where Ad is diagonal and Al and Au are
lower and upper triangular with zero diagonal, respectively. We have

πg(A) = Ad + Au + AT
l , πk(A) = Al − AT

l . (11.2.6)

The trace form (A,B) �→ k(A,B) := tr(AB) on g̃ is non-degenerate, symmetric and
Ad-invariant. The corresponding isomorphism of representations F : g̃ → g̃∗ iden-
tifies g̃∗ with g̃, g∗ with the subspace Sn(R) of g̃ of real symmetric matrices and k∗
with the subspace of upper triangular matrices with zero diagonal. The correspond-
ing projections πg∗ and πk∗ are given by

πg∗(ν) = νd + νl + νT
l , πk∗(ν) = νu − νT

l . (11.2.7)

The Lie subgroup G of G̃ generated by g is the identity connected component of the
subgroup of upper triangular matrices with unit determinant. Since the diagonal en-
tries of the elements of this subgroup must be nonzero, G consists of those elements
whose diagonal entries are positive. Under the identifications made, the coadjoint
action of G on g∗ = Sn(R) is given by

Ad∗(g)ν = πg∗
(
gνg−1), g ∈ G, ν ∈ g

∗. (11.2.8)

As the Hamiltonian H on g∗ = Sn(R) we take

H = 1

2
tr
(
ν2).

By letting ν range through the whole of g̃, we can extend H to a function H̃ on
g̃. A brief computation shows dH̃ (ν) = ν, where ν is viewed as an element of g̃.
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Hence, (11.2.5) and (11.2.6) yield that the Hamilton equation is a Lax equation with
L = ν and

M = νT
l − νl. (11.2.9)

Now let us restrict this equation to the coadjoint orbit of

ν0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 1

0 · · · 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

∈ g
∗.

Using (11.2.7) and (11.2.8), we find that points on this orbit have the form

ν = πg∗
(
Ad∗(g)ν0

)=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b1 a1 0 · · · 0

a1 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−1 an−1

0 · · · 0 an−1 bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, g ∈ G, (11.2.10)

where

ak = gk+1k+1

gkk

, k = 1, . . . , n − 1,

and

b1 = g12

g11
, bk = gkk+1

gkk

− gk−1k

gk−1k−1
, bn = − gn−1n

gn−1n−1
,

with k = 2, . . . , n − 1. The real numbers ak and bk can take arbitrary values such
that ai > 0 and

∑n
k=1 bk = 0. In particular, the orbit has dimension 2(n − 1). Thus,

according to (11.2.9), the Lax pair (L,M) representing the Hamilton equation on
the coadjoint orbit of ν0 is given by

L =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

b1 a1 0 · · · 0

a1 b2
. . .

...

0
. . .

. . .
. . . 0

...
. . . bn−1 an−1

0 · · · 0 an−1 bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,
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M =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 a1 0 · · · 0

−a1 0
. . .

...

0
. . .

. . .
. . . 0

...
. . . 0 an−1

0 · · · 0 −an−1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

We conclude that the Lax pair constructed this way coincides with the Lax pair
obtained in Example 11.1.9. Hence, the substitutions

ak = e(qk−qk+1), bk = pk

yield the non-periodic Toda lattice model with the motion of the centre of mass
separated out. Now, Proposition 11.2.2/1 immediately implies that the invariants Ik

given by (11.1.21) are in involution. This proves that the non-periodic Toda lattice
is integrable.

Remark 11.2.4

1. We have shown that the phase space of the Toda lattice is symplectomorphic to
a certain coadjoint orbit of the group of upper triangular matrices with unit de-
terminant. This observation goes back to Kostant [171] and Adler [5]. The dual
space of the Lie algebra of this group can be realized in different ways. Above
we used the so-called symmetric Lax representation. Another representation is
provided by the subspace of lower triangular matrices with zero trace. This yields
the so-called non-symmetric Lax representation. For this and a number of gen-
eralizations of the above construction to the case of coadjoint orbits of parabolic
subgroups of simple Lie groups which yield generalized Toda systems, we refer
to [237].

2. The periodic Toda lattice is defined by the Hamiltonian

H = 1

2

n∑

k=1

p2
k +

n∑

k=1

e2(qk−qk+1) with qn+1 = q1.

This system is integrable, too. For both the periodic and the non-periodic Toda
lattice, the integration of the equations of motion can be carried out explicitly.
It turns out that the dynamics of the non-periodic model is asymptotically free.
Using a method proposed by Moser [223], the solution can be constructed re-
cursively, see [140] and [237] for details. The solution for the periodic model is
much more complicated, see [155] and [173].

While solving the equations of motion of an integrable system explicitly can
be quite involved, these systems have an interesting geometric structure. A care-
ful analysis of this structure shows that there exists a special sort of adapted local
Darboux coordinates, called action and angle variables. Once such coordinates have
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been found, the integration of the equations of motion becomes trivial. This will be
the topic of Sect. 11.4.

Exercises
11.2.1 Complete the discussion of the Toda model in Example 11.2.3 by showing

the following.
(a) As a vector space, sl(n,R) is the direct sum of the subspace of upper

triangular matrices with zero trace and the subspace so(n) of skew-
symmetric matrices.

(b) The trace form k(A,B) := tr(AB) is a non-degenerate Ad-invariant
symmetric bilinear form on sl(n,R).

(c) The k-orthogonal complement of so(n) in sl(n,R) is given by the sub-
space Sn(R) of symmetric matrices.

(d) Points on the coadjoint orbit of ν0 are given by (11.2.10).
11.2.2 In the notation of Example 11.2.3, show that in the coordinates ak , bk the

Poisson structure on the coadjoint orbit of ν0 is given by

{ai, bi} = −ai, {ai, bi+1} = ai,

whereas all other Poisson brackets vanish. Using these relations, confirm
that in these coordinates the Hamilton equations read

ȧi = {H,ai}, ḃi = {H,bi}.

11.3 The Arnold Theorem

In this section, we start to discuss the foliation of an integrable system (M,ω,H )

defined by the level set components of the mapping H . We confine our attention
to the restriction Hr of H to the subset MH of regular points of H , cf. (11.1.1).
Recall from Remark 11.1.2 that the level set components of Hr coincide with the
integral manifolds of the regular distribution DHr on MH spanned by the Hamil-
tonian vector fields XHi

.
Belonging to the same level set component of Hr is an equivalence relation in

MH . Let Ṽ H denote the set of equivalence classes10 (the space of leaves of DHr ),
endowed with the quotient topology, and let

H̃r : MH → Ṽ H (11.3.1)

be the natural projection, assigning to m ∈ MH the level set component of Hr

containing m. Since a submersion is open, the values of Hr form an open subset
V H of Rn and the mapping Hr : MH → V H decomposes into Hr = Ĥr ◦ H̃r ,
where

Ĥr : Ṽ H → V H (11.3.2)

10Sometimes referred to as the Reeb graph of the mapping Hr .
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assigns to a level set component of Hr the corresponding value. In this section
we prove the Arnold Theorem, which states that each level set component of
Hr on which the Hamiltonian vector fields XHi

are complete is diffeomorphic to
Tk × R

n−k for some 0 ≤ k ≤ n. Here, Tk denotes the k-dimensional torus. In the
next section, we will show that the restriction of the foliation (11.3.1) to the subset
Ṽ H

c ⊂ Ṽ H of compact level set components is a locally trivial fibre bundle with
typical fibre Tn. This will be a consequence of the existence of certain adapted coor-
dinates, called action and angle variables. In Sect. 11.7, we will discuss topological
aspects of this bundle.

Let us start with the following classical result.

Theorem 11.3.1 (Liouville) Let (M,ω,H1, . . . ,Hn) be an integrable system and
let m ∈ M be a regular point of H = (H1, . . . ,Hn). There exists an open neighbour-
hood U of m and smooth functions G1, . . . ,Gn on U complementing H1, . . . ,Hn to
Darboux coordinates. In these coordinates, the flow Φi of the Hamiltonian vector
field XHi

is given by

Φi
t (G,H) = (G1, . . . ,Gi + t, . . . ,Gn,H1, . . . ,Hn

)
. (11.3.3)

Proof Since the subset of regular points MH is open, we may search for U inside
MH . Since DHr is a regular distribution of rank n and since the XHi

commute,
Remark 3.5.11/2 yields a local chart adapted to DHr on some open neighbourhood
U of m, whose first n coordinate functions G1, . . . ,Gn satisfy XHi

= ∂Gi . Obvi-
ously, we can replace the last n coordinate functions of this chart by H1, . . . ,Hn.
By construction, the local representative of the flow Φi is given by (11.3.3) and the
Poisson brackets are

{Hi,Hj } = 0,
{
Hi,G

j
}= XHi

(
Gj
)= δ

j
i .

A brief computation shows that the latter implies

ω = dHi ∧ dGi + hij dHi ∧ dHj

with smooth functions hij , uniquely determined by the condition hij = −hji . By
(11.3.3), the 2-forms dHi ∧ dGi and dHi ∧ dHj are invariant under each of the
flows Φl . Since ω is invariant under these flows, too, each of the functions hij must
be invariant. Hence, the second term can be written as

hij dHi ∧ dHj = H ∗(kij dxi ∧ dxj
)

where xi are the standard coordinates on R
n and kij are smooth functions on the

open subset H (U) ⊂ R
n. Since d(hij dHi ∧ dHj) = d(ω − dHi ∧ dGi) = 0, we

have

H ∗d
(
kij dxi ∧ dxj

)= 0.
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Since H is a submersion, this implies that kij dxi ∧ dxj is closed. Hence, by the
Poincaré Lemma,11 there exists a 1-form αidxi on H (U) such that

kij dxi ∧ dxj = d
(
αidxi

)
.

We leave it to the reader to check that after replacing the coordinate functions Gi by
Gi − αi ◦ H we have ω = dHi ∧ dGi , whereas (11.3.3) remains unchanged. �

Remark 11.3.2

1. The functions Gi provide coordinates on the level set components of Hr . Since
Gi , Hi are Darboux coordinates, their Poisson brackets are

{Hi,Hj } = {Gi,Gj
}= 0,

{
Hi,G

j
}= δi

j .

Since the Hamiltonian is given by the coordinate function H1, the Hamilton
equations take the following simple form:

Ḣi = 0, i = 1, . . . , n, Ġ1 = 1, Ġi = 0, i = 2, . . . , n.

Hence, the integral curves are given by (11.3.3) with i = 1.
2. Since in the proof of Theorem 11.3.1 we can replace α by α + dλ, with λ being

an arbitrary smooth function on R
n, there is the following freedom in the choice

of the functions Gi :

Gi �→ Gi + ∂λ(H)

∂Hi

.

Now we discuss the structure of the level set components of Hr .

Theorem 11.3.3 (Arnold) Let (M,ω,H ) be an integrable system and let Σ be a
level set component of Hr . If Σ is compact, it is diffeomorphic to Tn. If Σ is not
compact but the restrictions of the Hamiltonian vector fields XHi

to Σ are complete,
it is diffeomorphic to Tk ×R

n−k for some 0 ≤ k < n.

Proof It suffices to prove that if the restrictions of the Hamiltonian vector fields XHi

to Σ are complete, the latter is diffeomorphic to Tk × R
n−k for some 0 ≤ k ≤ n.

By assumption, the flows Φi of the restrictions of the vector fields XHi
to Σ are

complete and commute with one another. Thus, they define an action of Rn on Σ

by

Ψ : Rn × Σ → Σ, Ψ (t,m) := (Φ1
t1

◦ · · · ◦ Φn
tn

)
(m), (11.3.4)

cf. Example 6.1.2/4. We show that this action is transitive. First, we observe that Ψ ′
m

is invertible for every m ∈ Σ , because the vector fields XHi
are linearly independent

11We can assume H (U) to be contractible.
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Fig. 11.1 Transitivity of the action Ψ in the proof of the Arnold Theorem

on Σ . Hence, the orbit mapping Ψm : Rn → Σ defined by m restricts to a diffeo-
morphism from some open neighbourhood Vm of the origin of R

n onto an open
neighbourhood Um of m in Σ . Now, let m0 and m be arbitrary points in Σ . Since Σ

is connected, we find a curve γ : [0,1] → Σ from m0 to m. Since [0,1] is compact,
we find points m1, . . . ,mr on γ such that the subsets Um1 , . . . ,Umr form a covering
of γ . By an appropriate reordering we may assume that Umi

∩ Umi+1 is nonempty
and hence contains a point pi for all i = 1, . . . , r − 1. Put p0 ≡ m0 and pr ≡ m.
For i = 1, . . . , r , there exist unique si , ti ∈ Vmi

such that Ψmi
(si ) = pi−1 and

Ψmi
(ti ) = pi , see Fig. 11.1. Then, Ψti−si (pi−1) = Ψti−si ◦ Ψsi (mi) = Ψti (mi) = pi

and hence

Ψt1−s1+···+tr−sr (m0) = m.

Thus, the action Ψ is transitive, indeed. Now, the Orbit Theorem 6.2.8 yields that
Σ is diffeomorphic to the homogeneous space given by the quotient of Rn by the
common12 stabilizer of the points of Σ . Since (Ψm)�Vm

is injective, the stabilizer
is a discrete subgroup of Rn and hence isomorphic to the integer lattice generated
by k linearly independent elements of Rn, where 0 ≤ k ≤ n. By complementing the
generators to a basis of Rn, we finally obtain Σ ∼= Tk ×R

n−k . �

Motivated by the proof of the Arnold Theorem, let us discuss the special case
where the Hamiltonian vector fields XHi

are complete on the whole of M . In this
case, there is a deep relation between integrability and symplectic reduction. Since
the vector fields XHi

and hence their flows Φi commute, the mapping

Ψ :Rn × M → M, Ψ (t,m) := (Φ1
t1

◦ · · · ◦ Φn
tn

)
(m) (11.3.5)

12Since R
n is Abelian, all stabilizers along an orbit coincide.
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is an action of the additive Lie group R
n on M . In the local coordinates Gi,Hi

provided by Theorem 11.3.1, this action reads

Ψ (t,m) = (G1(m) + t1, . . . ,G
n(m) + tn,H1(m), . . . ,Hn(m)

)
. (11.3.6)

Since each of the flows Φi leaves ω invariant, this action is symplectic. We show
that H can be viewed as a momentum mapping. For that purpose, recall from Ex-
ample 5.2.10 that the Lie algebra of G = R

n is given by the vector space g = R
n

endowed with the trivial Lie bracket. Thus, if we identify g∗ with R
n via the canon-

ical scalar product, we can view H as a mapping

J : M → g
∗, J (m) := H (m).

Next, we calculate the Killing vector field of x ∈ g. On the one hand, by Exam-
ple 5.3.15, we have exp(sx) = sx for all s ∈R and hence

x∗(m) = d

ds �0

Ψsx(m) =
n∑

i=1

xiXHi
(m) = X∑n

i=1 xiHi
(m).

On the other hand,

Jx(m) = 〈J (m),x
〉=
∑n

i=1
xiHi(m).

Thus, x∗ = XJx , and J = H is a momentum mapping for Ψ , indeed. It is trivially
equivariant, because Proposition 9.1.10 implies that J is constant on the orbits of
Ψ . Let us add that the fact that H is a momentum mapping for Ψ implies, in par-
ticular, that the distribution Dg spanned by the Killing vector fields of Ψ coincides
with the distribution DH generated by Hamiltonian vector fields XHi

. Hence, the
Orbit Theorem 6.2.8 implies that the orbits of Ψ in MH coincide with the level set
components of H in MH . This yields an alternative proof of the Arnold Theorem
in this special situation.

Now, consider the invariant open submanifold MH of the regular points of H .
Since J is a submersion on MH , every value is regular. Since the coadjoint action
is trivial, the stabilizers Gh of the values h ∈ g∗ ≡ R

n of J coincide with G = R
n.

While we cannot directly apply the theory of regular symplectic reduction as dis-
cussed in Sect. 10.3, because the action Ψ need not be proper, we can nevertheless
form the topological quotient J−1(h)/Gh. Since the Gh-orbits in J−1(h) coincide
with the connected components of J−1(h), this quotient is a discrete space consist-
ing of at most countably many isolated points. Hence, it is trivially a symplectic
manifold and can be interpreted as the reduced phase space at momentum h. Let us
summarize.

Proposition 11.3.4 Let (M,ω,H1, . . . ,Hn) be an integrable system. If the Hamil-
tonian vector fields XHi

are complete, the R
n-action (11.3.5) endows (M,ω) with

the structure of a Hamiltonian G-manifold with equivariant momentum mapping
given by H = (H1, . . . ,Hn). For the invariant open submanifold MH , the reduced
phase spaces are discrete and at most countable.
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Remark 11.3.5 Let Σ be a level set component of Hr and assume that the restriction
of the Hamiltonian vector fields XHi

to Σ is complete. Then, the action (11.3.4) of
R

n on Σ endows the latter with an affine connection,13 that is, with a globally
defined prescription for the parallel transport of tangent vectors from a point m0 to
another point m1 along a curve connecting them. This affine connection turns out
to be flat, meaning that the result of the parallel transport does not depend on the
connecting curve. By parallely transporting every tangent vector to the tangent space
Tm0Σ at some chosen point m0, one can represent vector fields on Σ by smooth
mappings Σ → Tm0Σ . Vector fields represented by constant mappings are called
constant vector fields. They form a vector space which is isomorphic to Tm0Σ . By
virtue of the basis {XH1(m0), . . . ,XHn(m0)} in Tm0Σ , we can identify this vector
space with R

n in a natural way. As noted in the proof of the Arnold Theorem, all the
stabilizers of the action of Rn on Σ coincide with a certain integer lattice generated
by k linearly independent elements of Rn. We refer to this lattice as the period lattice
of the mapping H at the value h ∈ R

n and denote it by PH (Σ). Under the above
identification, PH (Σ) corresponds to a subgroup of the additive group of constant
vector fields.

11.4 Action and Angle Variables

By the Arnold Theorem, compact level set components of Hr are tori. There arises
the question whether it is possible to pass to new constants of motion in involution
which are adapted to these tori in the sense that their flow is periodic. This leads to
the notion of action and angle variables.

Definition 11.4.1 (Action and angle variables) A system {I1, . . . , In} of smooth
functions on an open subset W of MH is called a system of action variables if

1. the Hamiltonian vector fields XIi
span the distribution DH over W ,

2. {Ii, Ij } = 0 for all i, j ,
3. the flows of the Hamiltonian vector fields XIi

are complete and 2π -periodic.

Any system of functions ϑ1, . . . , ϑn on W such that (ϑ, I ) yield Darboux coordi-
nates on a neighbourhood of every point of W is called a system of angle variables.

Note that, up to the choice of the Lagrangian submanifold ϑi = 0 transversal to
the foliation, the functions ϑi are given by the flow parameters of the vector fields
XIi

. Hence, they are necessarily multi-valued mod 2π .
The historical origin of action and angle variables can be traced back to Jacobi

and Liouville. The first modern formulation belongs to Arnold and Avez [23]. Be-
fore proving existence, let us collect the basic properties of action and angle vari-
ables, following immediately from the definition. Obviously, both the XIi

and the

13To be defined in Sect. 11.7.



590 11 Integrability

XHi
form a local frame in DH over W . These two frames are related by

XIi
= bi

jXHj
(11.4.1)

with a unique smooth mapping b : W → GL(n,R). By taking rows of b we obtain
mappings

bi : W →R
n, bi(m) := (bi

1(m), . . . , bn
i (m)

)
. (11.4.2)

Proposition 11.4.2 Let I be a system of action variables on W ⊂ MH .

1. One has {Ii,Hj } = 0 for all i, j and {Hi, bj
k} = 0 for all i, j, k. In particular,

the functions Ii and bi
j are constant on the level set components of Hr .

2. With ΦHi and ΦIi denoting the flows of XHi
and XIi

, respectively, for m ∈ W

we have

ΦIi
s (m) = Φ

H1
sbi

1(m)
◦ · · · ◦ Φ

Hn

sbi
n(m)(m), (11.4.3)

ΦHi
s (m) = Φ

I1
s(b−1)i

1(m)
◦ · · · ◦ Φ

In

s(b−1)i
n(m)

. (11.4.4)

This implies the following.
(a) The vector fields XHi

are complete on W .
(b) The R

n-actions Ψ I and Ψ defined by the flows ΦI1 , . . . ,ΦIn and
ΦH1, . . . ,ΦHn on W , respectively, are related by

Ψ I
t (m) = Ψ∑n

i=1 tibi (m)(m). (11.4.5)

In particular, they have the same orbits and these orbits coincide with com-
pact level set components of Hr .

(c) For every m ∈ W , the vectors 2πb1(m), . . . ,2πbn(m) form a set of genera-
tors for the stabilizer of m under Ψ .

3. If Ĩ1, . . . , Ĩn is another system of action variables on W̃ ⊂ MH , then, on W ∩W̃ ,

Ii = Ai
j Ĩj + Ci, bi = Ai

j b̃j

with smooth mappings A : W ∩ W̃ → GL(n,Z) and C : W ∩ W̃ → R
n fulfilling

dC = 0.

Proof 1. By (11.4.1), we have

{Ii,Hj } = XIi
(Hj ) = bi

kXHk
(Hj ) = bi

k{Hk,Hj } = 0.

In turn, this implies

0 = [XHi
,XIj

] = [XHi
, bj

kXHk

]= XHi

(
bj

k
)
XHk

= {Hi, bj
k
}
XHk

,

which proves {Hi, bj
k} = 0, because the XHi

are pointwise linearly independent
on MH . As a consequence, the functions Ii and bi

j are constant on the maximal
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integral manifolds of the distribution DHr . As noted in Remark 11.1.2/3, these are
the level set components of Hr .

2. To prove (11.4.3), denote the level set component of Hr containing m by Σ .
Since Σ is invariant under all the flows involved, it suffices to show that the curves
on the two sides of (11.4.3) are integral curves through m of the same vector field
on Σ . Indeed, by (11.4.1), for all m̃ ∈ Σ ,

XIi
(m̃) = b(m̃)i

kXHk
(m̃)

and by point 1, b(m̃) = b(m). The statements (a)–(c) now follow. In particular, the
Arnold Theorem 11.3.3 yields that the orbits of Ψ are level set components of Hr

and the periodicity of the flows ΦIi implies that they are compact.
3. Since {XIi

} and {X
Ĩi
} are frames in the same distribution on W ∩ W̃ , there

exists a smooth mapping A : W ∩ W̃ → GL(n,R) such that

XIi
(m) = A(m)i

jX
Ĩj

(m). (11.4.6)

Then, (11.4.1) implies bi(m) = A(m)i
j b̃j . By point 2(c), both {bi(m)} and {b̃i (m)}

are systems of generators of the stabilizer of m under the action Ψ . Hence, A(m) ∈
GL(n,Z). Then, dAi

j = 0 and (11.4.6) implies Ii = Ai
j Ĩj + Ci with dCi = 0. �

Now, we show that action and angle variables exist. Given the great importance
of these coordinates, especially in perturbation theory, various constructions can be
found in the literature. Our proof will follow the approach presented in Libermann
and Marle [181], which in our opinion is particularly transparent. It is based on The-
orem 8.6.4 and the fact that every Lagrangian submanifold admits local generating
functions. Thereafter, we will show that action and angle variables can also be rep-
resented in terms of line integrals. This yields a relation to the more conventional
approaches in [1], [23], [18]. Other approaches can be found in [189], [71], [80]
[34] and [116]. Below, we will comment on the relation to the latter.

Theorem 11.4.3 (Existence) Action and angle variables exist in a neighbourhood
of every compact level set component of Hr .

Proof Let Σh0 be a compact level set component of Hr with value h0 ∈ R
n. By

Remark 11.1.2/3, Σh0 is a Lagrangian submanifold of M . Thus, Theorem 8.6.4
implies that there exists an open neighbourhood W of Σh0 in MH and a symplec-
tomorphism Φ : W → V onto an open neighbourhood V of the zero section of the
cotangent bundle T∗Σh0 . Since Hr is a submersion, U := H (W) is an open neigh-
bourhood of h0 in R

n. Let π denote the canonical projection in T∗Σh0 . We can
shrink W so that the mapping

χ = (π ◦ Φ,H ) : W → Σh0 × U (11.4.7)

becomes a diffeomorphism: since π and H�W are submersions, by counting dimen-
sions, we find that χ ′

m is bijective for all m ∈ W . Therefore, for every m ∈ Σh0 we
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can find open neighbourhoods Wm of m in W and Um of h0 in U such that χ re-
stricts to a diffeomorphism from Wm onto (Wm ∩Σh0)×Um. Since Σh0 is compact,
the open covering of Σh0 by the subsets Wm contains a finite subcovering, labelled
by m1, . . . ,mr . If we replace W by H −1(

⋂r
i=1 Umi

) ∩ (
⋃r

i=1 Wmi
), the mapping

(11.4.7) becomes a diffeomorphism, indeed. As a consequence, the level sets of H
in W , given by

Σh := χ−1(Σh0 × {h})

with h ∈ U , are diffeomorphic to Σh0 and hence, in particular, connected.
Let {ei} denote the standard basis of Rn and let bi denote the generators of the

stabilizer PH (Σh0) under the action Ψ of Rn on Σh0 given by (11.3.4). For a chosen
point m0 ∈ Σh0 , we define

ρ : Rn → Σh0 , ρ(q) := Ψm0

(
1

2π

n∑

i=1

qibi

)
.

Since ρ(q + 2πei ) = ρ(q) for all i, the mapping ρ defines global angle coordi-
nates14 on the torus Σh0 , denoted by qi . Denoting the corresponding fibre coordi-
nates in T∗Σh0 by pi , via the symplectomorphism Φ we obtain Darboux coordinates
on W , which we also denote by qi , pi . The idea of the proof consists in constructing
a canonical transformation from qi,pi to the desired action and angle coordinates
ϑi , Ii in terms of a generating function S(q, I) of the second kind.

In the first step, we construct S as a function of the variables qi and hi . Since
Σh is Lagrange for every h ∈ U , the image Φ(Σh) is a Lagrangian submanifold of
T∗Σh0 and Proposition 8.3.10 implies that it coincides with the image of a closed
1-form βh on Σh0 . Since

βh(m) = Φ ◦ χ−1(m,h) (11.4.8)

for all m ∈ Σh0 and h ∈ U , this family of 1-forms is smooth. Accordingly, ρ∗βh is
a smooth family of closed 1-forms on R

n. By the Poincaré Lemma, there exists a
smooth function S : Rn × U →R such that

ρ∗βh = dSh, (11.4.9)

with Sh(q) = S(q,h). Then,

ρ∗βh(q) = ∂S

∂qi
(q,h)dqi, (11.4.10)

where ∂S
∂qi (q + 2πej ,h) = ∂S

∂qi (q,h) for all i, j . It follows that

S(q,h) = S̃(q,h) + I (h) · q (11.4.11)

14That is, composition with the natural projection R
n →R

n/2πZn ≡ Tn yields a diffeomorphism.
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with a smooth function S̃ : Rn × U → R
n satisfying S̃(q + 2πei ,h) = S̃(q,h) for

all i and a smooth mapping I : U → R
n. For the components of the latter, we read

off

Ii(h) = 1

2π

(
S(q + 2πei ,h) − S(q,h)

)
. (11.4.12)

Since βh0 coincides with the zero section in T∗Σh0 , we have ∂S
∂qi (q,h0) = 0 and

hence

Ii

(
h0)= 1

2π

∫ 2π

0

∂S

∂qi

(
q,h0)dqi = 0. (11.4.13)

Obviously, the functions Ii ◦H on W are in involution. We take them as candidates
for the desired action variables and S as the generating function for the desired
canonical transformation. First, we show that the variables Ii on U are in one-to-
one relation with the variables hi .

Lemma 11.4.4

1. For all m ∈ W , pi(m) = ∂S
∂qi (q(m),H (m)).

2. For all h ∈ U , det( ∂Ii

∂hj
(h)) �= 0.

Proof of the Lemma 1. Denote h := H (m). By the definition of βh, we have
Φ(m) = βh(π ◦ Φ(m)). By the definition of the coordinates qi on W ,

ρ ◦ q(m) = ρ ◦ q
(
π ◦ Φ(m)

)= π ◦ Φ(m).

Thus, we obtain

pi(m) ≡ pi ◦ Φ(m) = (βh)i
(
π ◦ Φ(m)

)= (βh)i
(
ρ ◦ q(m)

)= (ρ∗βh
)
i

(
q(m)

)
,

where (βh)i and (ρ∗βh)i denote the coefficient functions of the 1-forms βh and
ρ∗βh with respect to the global frames {dqi} in T∗Σh0 and {ρ∗(dqi) ≡ dqi} in
T∗

R
n, respectively. Hence, the assertion follows from (11.4.10).

2. According to point 1, in the coordinates qi , pi on W and qi , hi on Σh0 × U ,
the inverse of χ has the form

(q,h) �→
(

q,p = ∂S

∂q
(q,h)

)
.

Since χ is a diffeomorphism, for every (q,h),

det

(
∂2S

∂qi∂hj

(q,h)

)
�= 0. (11.4.14)

Assume that the assertion of point 2 does not hold. Then,

n∑

j=1

aj

∂Ii

∂hj

(h̃) = 0
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for some h̃ ∈ U and some nonzero a ∈ R
n, and (11.4.11) implies

n∑

j=1

aj

∂S

∂hj

(q, h̃) =
n∑

j=1

aj

∂S̃

∂hj

(q, h̃) +
n∑

k=1

qk
n∑

i=1

aj

∂Ik

∂hj

(h̃) =
n∑

j=1

aj

∂S̃

∂hj

(q, h̃).

Since the function q �→∑n
j=1 aj

∂S̃
∂hj

(q, h̃) is periodic, it has at least one maximum,

say at q̃. There, we have

n∑

j=1

aj

∂2S

∂qi∂hj

(q̃, h̃) = 0,

which contradicts (11.4.14). This proves the lemma.

Proof of Theorem 11.4.3 (continued) By Lemma 11.4.4/2, U and hence W can be
shrunk so that the mapping

I : U → I (U) ⊂ R
n, h �→ I (h),

becomes a diffeomorphism onto an open neighbourhood of the origin in R
n and the

functions Ii provide coordinates on U . In particular, the Hamiltonian vector fields
of the functions Ii ◦H span the distribution DH over W . That their flows are com-
plete and 2π -periodic will be obvious after the construction of angle coordinates.
To obtain the latter, we view S as a function of q and I and define functions

ϑj :Rn × I (U) →R, ϑj (q, I) := ∂S

∂Ij

(q, I). (11.4.15)

Equation (11.4.11) yields

ϑi(q + 2πej , I) − ϑi(q, I) = 2πδi
j (11.4.16)

for all i, j . Hence, for every I, the composition of ϑI : Rn → R
n with the natural

projection prTn :Rn → R
n/2πZn = Tn induces a smooth mapping

ϕ : Σh0 → R
n/2πZn = Tn, ϕ

(
ρ(q)

) := prTn

(
ϑI(q)

)
.

Since by Lemma 11.4.4/2 and Eq. (11.4.14), we have

det

(
∂2S

∂qi∂Ij

(q, I)
)

�= 0, (11.4.17)

this mapping is a local diffeomorphism. We show that it is a global diffeomorphism,
which implies that the functions ϑi

I induce global angle coordinates on Σh0 , denoted
by the same symbol. First, the image of ϕ coincides with Tn, because it is open and
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by compactness of Σh0 it is also closed. To prove that ϕ is injective it suffices to
show that it is homotopic to a diffeomorphism. Indeed, by (11.4.12) we have

ϑi
I (q) = qi + ∂S̃

∂Ii

(q, I),

so that

F : [0,1] × Σh0 → Tn, F
(
s, ρ(q)

) := prTn

(
q + s

∂S̃

∂I
(q, I)

)

is a smooth homotopy between ϕ and the mapping

Σh0 → Tn, ρ(q) �→ prTn(q),

which is a diffeomorphism, because the qi are global angle coordinates. Now, the
mappings

W → R
n, m �→ ϑ

(
π ◦ Φ(m), I ◦ H (m)

)
, W → I (U), m �→ I ◦ H (m),

define coordinates on W , for which we keep the notation ϑi , Ii , respectively. By
construction, the functions Ii are constant on the level set components Σh and the
functions ϑi are global angle coordinates on Σh. Finally, by Lemma 11.4.4/1 and
by the definition of the angle coordinates ϑi , on W the coordinates qi , pi and ϑi ,
Ii satisfy the relations

pi = ∂S(q, I )

∂qi
, ϑi = ∂S(q, I )

∂Ii

.

We conclude that the coordinate transformation (qi,pi) �→ (ϑi, Ii) is canonical and,
therefore, the coordinates ϑi , Ii are Darboux. Then, we have XIi

= ∂ϑi , so that
the flow of XIi

is complete and 2π -periodic and hence the Ii are action variables,
indeed. �

Now, we restrict the foliation (11.3.1) to the subset Ṽ H
c ⊂ Ṽ H consisting of the

compact level set components of Hr . Thus, let MH
c denote the subset of MH of

points whose level set component of Hr is compact. By Theorem 11.4.3, MH
c can

be covered by Darboux charts on M built from action and angle variables. By point
(b) of Proposition 11.4.2/2, the domains of action and angle variables are necessarily
contained in MH

c . It follows that MH
c is an open submanifold of M .15 Hence, Ṽ H

c

is an open subset of Ṽ H and the projection (11.3.1) restricts to a projection

H̃rc : MH
c → Ṽ H

c . (11.4.18)

15In fact, this is immediate after one has shown that the mapping χ defined by (11.4.7) can be
made into a diffeomorphism.



596 11 Integrability

Corollary 11.4.5 The foliation (11.4.18) is a locally trivial fibre bundle with typical
fibre Tn.

Proof By Theorem 11.4.3, MH
c can be covered by Darboux charts (ϑ(α), I (α))

on W(α) built from action and angle variables. Since W(α) is a union of level set
components of Hr which are labelled by I (α), the subset

Ũ (α) := H̃rc

(
W(α)

)

of Ṽ H
c is open and I (α) induces a local chart Ĩ (α) : Ũ (α) → R

n. Using Proposi-
tion 11.4.2/3, it is easy to check that these charts form an atlas on Ṽ H

c , thus en-
dowing Ṽ H

c with the structure of a smooth manifold. To prove local triviality, we
observe that the local charts (ϑ(α), I (α)) define diffeomorphisms

W(α) → Tn × I (α)
(
W(α)

)
. (11.4.19)

Composing these with the diffeomorphisms (Ĩ (α))−1 : I (α)(W(α)) → Ũ (α), we ob-
tain diffeomorphisms

χ(α) : W(α) = H̃ −1
rc

(
Ũ (α)

)→ Ũ (α) × Tn, χ(α)(m) := (H̃rc(m),ϑ(α)(m)
)
,

which are obviously local trivializations of the projection (11.4.18). �

Remark 11.4.6 Below we list different approaches to action and angle variables.
The first three are close in spirit. They are based on the original ideas of Arnold.

1. In the approach of Arnold and Avez [23], see also [1], one assumes that one
has a local torus fibration and defines action and angle variables via a canonical
transformation given by a certain generating function. The action variables and
the generating function are defined by line integrals over a symplectic potential.
Here, point 2 of Lemma 11.4.4 is usually imposed as an assumption.

2. In the approach of Nekhoroshev [228], the Tubular Neighbourhood Theorem for
embedded submanifolds is used to prove that a neighbourhood of any torus has
the structure of a local torus fibration. On such a neighbourhood, the action vari-
ables are defined via line integrals over a symplectic potential. Angle variables
are constructed using the Liouville Theorem.16

3. In the approach of Libermann and Marle [181], the Weinstein Theorem 8.6.4 and
the fact that every Lagrangian submanifold admits a local generating function is
used to find a generating function S of a canonical transformation providing
action and angle variables. Here, the action variables are obtained directly from
the periodicity properties of S.

16In view of the classical Carathéodory-Jacobi-Lie Theorem, this construction generalizes to non-
commutative integrable systems, cf. Theorem 11.8.3.
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4. The approach of Markus and Meyer [189], see also Duistermaat [80], Bates and
Śniatycki [34] and Guillemin and Sternberg [116], is different. Here, the action
variables are derived from a local frame in the period bundle,17 made up by the
stabilizers PH (Σ) (the period lattices) of the level set components of Hr under
the action of Rn defined by the flows of the Hamiltonian vector fields XHi

, cf.
Remark 11.3.5. Angle variables are constructed via the Liouville Theorem.

To build the bridge to the original approach of Arnold and Avez, described in
point 1 of Remark 11.4.6, we derive explicit formulae for the action and angle vari-
ables constructed in the proof of Theorem 11.4.3 in terms of line integrals. We use
the notation of that proof. Without loss of generality, as the potential S(q,h) of the
smooth family of closed 1-form ρ∗βh we may choose

S(q,h) =
∫

τq

ρ∗βh with τq : [0,1] →R
n, τq(t) := tq. (11.4.20)

This can be rewritten as an integral over Σh as follows. Let θ denote the canonical
1-form in T∗Σh0 . By (8.3.2),

S(q,h) =
∫

τq

ρ∗βh =
∫

ρ◦τq

βh =
∫

βh◦ρ◦τq

θ.

Here, βh ◦ ρ ◦ τq is a curve in T∗Σh0 which is contained in the image of Σh under
Φ . Hence, there is a unique curve γ h

q in Σh such that

βh ◦ ρ ◦ τq = Φ ◦ γ h
q .

Thus,

S(q,h) =
∫

γ h
q

Φ∗θ. (11.4.21)

To obtain from (11.4.21) an integral representation for the action variables Ii , denote
γ h
i ≡ γ h

2πei
. By (11.4.12) and (11.4.21),

Ii(h) = 1

2π

∫

γ h
i

Φ∗θ. (11.4.22)

Here, Φ∗θ is a potential for the symplectic form ω and the curve γ h
i encloses the

i-th factor18 of Σh and is contractible with respect to the remaining factors. Thus,
{γ h

i } is a system of fundamental cycles19 for Σh. Now, since the mapping h �→ I (h)

17To be introduced in Sect. 11.7.
18As defined by the diffeomorphism Σh0 ∼= Tn induced by the mapping ρ.
19A system of closed curves whose homotopy classes yield a minimal set of generators for the
fundamental group of Σh.
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satisfies the condition in Lemma 11.4.4/2, one can express h in (11.4.21) in terms
of I. Thus, we obtain the generating function S as

S(q, I) =
∫

γ I
q

Φ∗θ, (11.4.23)

with γ I
q = γ

h(I)
q , and the angle variables ϑi are given by (11.4.15). That the lat-

ter satisfy (11.4.16) can also be read off from the integral representation (11.4.23),
because integration over the curve γ h

q+2πei
yields

S(q + 2πei , I) =
∫

γ I
q+2πei

Φ∗θ =
∫

γ I
q

Φ∗θ +
∫

γ I
i

Φ∗θ = S(q, I) + 2πIi.

Now, we show that Formulae (11.4.22) and (11.4.23), with Φ∗θ replaced by an
arbitrary symplectic potential for ω, {γ h

i } replaced by an arbitrary system of funda-
mental cycles and γ h

q replaced by some homotopic curve allow for locally defining
action and angle variables.

Theorem 11.4.7 (Representation by line integrals) Let m0 ∈ M , let h0 = H (m0)

be a regular value of H and assume that the connected component Σh0 of m0 of
the level set H −1(h0) is compact. Let the following data be given:

1. a connected open neighbourhood W of Σh0 in MH such that

Σh := W ∩ Hr
−1(h)

is a compact level set component of Hr for all h ∈ U = H (W),
2. a potential τ for ω on W ,
3. smooth families {γ h

1 }, . . . , {γ h
n } of curves in W such that {γ h

1 , . . . , γ h
n } is a system

of fundamental cycles in Σh for all h ∈ U ,
4. Darboux coordinates qi , pi on some open neighbourhood V of m0 in W such

that τ = pidqi and such that, for all h ∈ U , the subset V ∩ Σh is simply con-
nected and can be coordinatized by the qi ,

5. a smooth mapping s : U → V such that H ◦ s = idU .

Define

Ii(h) := 1

2π

∫

γ h
i

τ, S(q,h) :=
∫

γ h
q

τ (11.4.24)

where γ h
q is some curve in V ∩ Σh from s(h) to the point with coordinate value q.

Then, V and W can be shrunk so that

1. The first equation in (11.4.24) can be resolved for h and hence S can be written
as a function of q and I,

2. the functions ϑi on V defined by

ϑi(m) = ∂S

∂Ii

(
q(m), I (m)

)
, (11.4.25)
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where I ≡ I ◦ H�W , complement the functions Ii to Darboux coordinates on V

which have a unique extension to action and angle variables on W .

For the proof, we need

Lemma 11.4.8 Let h ∈ U .

1. If γ1 and γ2 are curves in Σh which are homotopic with fixed endpoints or if they
are closed curves in Σh which are homotopic in Σh, then

∫
γ1

τ = ∫
γ2

τ .

2. If τ1 and τ2 are potentials for ω on W , then
∫
γ h
i

τ2 −∫
γ h
i

τ1 does not depend on h.

Proof of Lemma 11.4.8 1. Let F : [0,1]× [0,1] → Σh be a smooth homotopy from
γ1 to γ2, viewed for simplicity as a surface in Σh. By Stokes’ Theorem and the fact
that Σh is Lagrange,

∫

γ1

τ −
∫

γ2

τ =
∫

∂F

τ =
∫

F

ω = 0.

2. Since W is connected, so is U . Hence, for every h ∈ U we find a smooth curve
t �→ h(t) such that h(0) = h0 and h(1) = h. Then, the mapping Fi : [0,1]×[0,1] →
W defined by Fi(t, r) := γ

h(t)
i (r) represents a smooth surface in W and Stokes’

Theorem yields

∫

γ h
i

(τ2 − τ1) −
∫

γ h0
i

(τ2 − τ1) =
∫

Fi

d(τ2 − τ1) = 0. �

Proof of Theorem 11.4.7 The idea of the proof is to relate the functions Ii and
ϑi defined in the proposition with the action and angle variables constructed in the
proof of Theorem 11.4.3 in a neighbourhood of Σh0 and with the point m0 chosen to
define the mapping ρ used there. Here, the objects from that proof will be denoted by
their original symbols endowed with a hat. For simplicity, without loss of generality
we may assume Ŵ = W and Û = U .

In the first step, we relate I with Î . Let h ∈ U be given. Since both {γ h
i } and

{γ̂ h
i } are systems of fundamental cycles for Σh, there are unique integer-valued

(n×n)-matrices A and B such that γ h
i is homotopic to Ai

j γ̂ h
j and γ̂ h

i is homotopic

to Bi
jγ h

j . Here, by the sum of two curves we mean the composite curve. Up to
homotopy, the order of composition is not relevant. Obviously, A and B are inverse
to one another. Using Lemma 11.4.8 and (11.4.22), we obtain

Ii(h) = 1

2π

∫

γ h
i

Φ∗θ + Ci = 1

2π

∫

Ai
j γ̂ h

j

Φ∗θ + Ci = Ai
j Îj (h) + Ci,

where (C1, . . . ,Cn) is a vector in R
n which is independent of h. Since the families

{γ h
i } depend smoothly on h ∈ U , so do the coefficients Ai

j and Bi
j . Since U is
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connected, these coefficients are therefore constant in h. To summarize, the func-
tions Ii and Îi on W are related by an invertible affine transformation with constant
coefficients:

Ii = Ai
j Îj + Ci, Îi = Bi

j (Ij − Cj ). (11.4.26)

In particular, W and hence U and V can be shrunk so that the first equation in
(11.4.24) can be resolved for h, because this is true for the corresponding equation
for Î .

In the second step, we show that the functions ϑi are well defined and comple-
ment the functions Ii to Darboux coordinates on a possibly smaller V . Consider
the integral in the definition of S. According to point 1 of Lemma 11.4.8, the value
of this integral does not depend on the homotopy class with fixed endpoints of the
curve γ h

q . Since V ∩ Σh is simply connected, it therefore depends on q and h only,
and the dependence is smooth. Thus, S is a smooth function in the variables q and
h, and by expressing h in terms of I we find that the ϑi are well-defined smooth
functions of q and I. By plugging in for q and I the mappings q and I ≡ I ◦ H�W ,
ϑi and S become functions on V . Let ιh : V ∩ Σh → V be the natural inclusion
mapping. By construction,

ι∗hdS = ι∗hτ. (11.4.27)

Since the functions qi provide coordinates on V ∩ Σh for all h ∈ U , the functions
qi and Ii yield coordinates on V . In these coordinates, the left hand side reads

ι∗hdS = ι∗h
(
(∂qi S)dqi + (∂Ii

S)dIi

)= ((∂qi S) ◦ ιh
)
d
(
qi ◦ ιh

)
,

because Ii ◦ ιh is constant. On the other hand, in the coordinates qi and pi , the right
hand side reads

ι∗hτ = (pi ◦ ιh)d
(
qi ◦ ιh

)
.

Since the d(qi ◦ ιh) are pointwise linearly independent, and since (11.4.27) holds
for all h ∈ U , we conclude that

∂qi S = pi (11.4.28)

and hence

dS = pidqi + ϑidIi (11.4.29)

on all of V . By taking the exterior differential of (11.4.29), we obtain ω = dIi ∧dϑi .
First, this implies that the mapping (ϑ, I ) : V → R

2n is a local diffeomorphism.
Hence, we may shrink V so that ϑi and Ii define coordinates. Second, this implies
that these coordinates are Darboux.

In the third step, we show that ϑi and Ii extend to unique action and angle co-
ordinates on W , where W is shrunk appropriately according to V . Since the Ii are
already defined on W , it suffices to consider the ϑi . By (11.4.26), on V we have

dIi ∧ dϑi = ω = dÎi ∧ dϑ̂ i = d
(
Bi

j Ij

)∧ dϑ̂ i = dIj ∧ d
(
Bi

j ϑ̂ i
)
.
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Thus, by Remark 8.1.6/3, Bi
j ϑ̂ i = ϑj + αj ◦ I and hence

ϑi = Bj
iϑ̂j − αi ◦ I, (11.4.30)

where αi are the coefficient functions of a closed 1-form on I (V ) ⊂ R
n. The func-

tions on the right hand side are defined on W . Hence, this equation defines exten-
sions of ϑi to functions ϑ̃ i on W . These functions arise from the ϑ̂ i by an invertible
linear transformation with integer coefficients, followed by a shift which depends on
m only through I , that is, which is constant on each Σh. Since the ϑ̂ i provide global
angle coordinates on each Σh in W , so do the ϑ̃ i . Thus, ϑ̃ i and Ii are action and
angle coordinates on W . That the ϑ̃ i are uniquely determined by their restrictions
ϑi to V follows once more from Remark 8.1.6/3. �

Remark 11.4.9

1. According to (11.4.25) and (11.4.28), the function S defined by (11.4.24) is a
generating function of the second kind for the canonical coordinate transforma-
tion (q,p) �→ (ϑ, I ) on V . In particular,

det

(
∂2S

∂qi∂Ij

)
�= 0.

This generating function is related to the generating function used in the proof
of Theorem 11.4.3, here denoted by Ŝ, as follows. In view of (11.4.30), from
(11.4.29) and the corresponding equation

dŜ = pidqi + ϑ̂ idÎi

we read off that

d(Ŝ − S) = ϑ̂j dÎj − ϑj dIj = I ∗α.

Since the 1-form α on I (U) is closed, on every contractible subset of V , the
generating functions Ŝ and S differ by a function of the action variables Ii .

2. For later reference we note the following representation of (11.4.24) in terms of
local Darboux coordinates:

Ii(h) = 1

2π

∫

γ h
i

pidqi, S(q,h) =
∫

γ h
q

pidqi. (11.4.31)

To conclude this section, we discuss dynamics in terms of action and angle vari-
ables. Since the Hamiltonian H is constant on level set components of H , in action
and angle variables ϑi and Ii , it depends on the Ii only. Hence, with the notation

ωj := ∂H

∂Ij

,
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the Hamilton equations take the following simple form:

ϑ̇j (t) = ωj
(
I(t)
)
, İj (t) = − ∂H

∂ϑj
= 0. (11.4.32)

The corresponding integral curves are given by

ϑj (t) = ωj (I)t + ϑj (0), Ij (t) = Ij (0). (11.4.33)

The functions ωj (I) are called the characteristic frequencies associated with the
action variables Ij . To summarize, the action variables Ii are functionally inde-
pendent constants of motion in involution. For each value I, the dynamics of the
system reduces to a motion on the torus ΣI with constant angular velocities ωi(I).
At this point, the reader should recall the discussion of Sect. 9.6, where we found
this structure in the neighbourhood of a critical point of the Hamiltonian function of
an arbitrary Hamiltonian system. As noted there, there are two qualitatively distinct
cases: if the frequencies ωi(I) are rationally independent, that is, if for all nonzero
k ∈ Z

n one has
∑n

i=1
kiω

i(I) �= 0,

each integral curve is dense in ΣI. In this case, the torus ΣI is said to be non-
resonant and the motion on it is said to be quasiperiodic. If, in contrast, the fre-
quencies ωi(I) are rationally dependent, ΣI is said to be resonant. In this case, we
have

Proposition 11.4.10 If the frequencies ωi
0 = ωi(I0) are rationally dependent, there

exists a canonical transformation (ϑ, I ) �→ (ϑ̄, Ī ) to new action and angle variables
such that a certain number l < n of the new frequencies is rationally independent
on ΣI0 , whereas the remaining frequencies vanish.

Thus, the torus ΣI0 is decomposed into l-dimensional invariant subtori and the
motion on these subtori is quasiperiodic.

Proof The frequencies ωi
0 define a module

{
n∑

i=1

ωi
0ki : ki ∈ Z

}

over the integers. Let {b1, . . . , bl} be a basis in this module. Since, by assumption,
the real numbers ωi

0 are rationally dependent, l < n and one has n − l rationally
independent equations

Bi
jω

j

0 = 0, i = l + 1, . . . , n, j = 1, . . . , n,

with Bi
j being an integer-valued matrix whose rows (Bi

1, . . . ,B
i
n), i = l + 1,

. . . , n, are rationally independent. The basis elements bi possess a (not necessarily
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unique) decomposition

bi = Di
jω

j

0 , i = 1, . . . , l, j = 1, . . . , n.

We combine the matrices B and D to an (n × n)-matrix A = [DTBT] with integer
entries and define

ϑ̄ := ATϑ, Ī := A−1I. (11.4.34)

This transformation is canonical, because Ij dϑj = Īj dϑ̄j . Moreover, since A is an
integer matrix, ϑ̄ i and Īi are action and angle variables again. In the new variables,
the Hamilton equations take the form

˙̄ϑi = ∂H

∂Īi

(Ī) ≡ ω̄i(Ī), ˙̄Ii = − ∂H

∂ϑ̄i
= 0,

where the Hamiltonian is given by H(AĪ ). For the new frequencies ω̄i
0 correspond-

ing to Ī0 = A−1I0 we obtain

ω̄i
0 = ∂H

∂Īi

(Ī0) = ∂Ij

∂Īi

∂H

∂Ij

(I0) = Ai
jω

j

0 =
{

bi i ≤ l,

0 i > l.

This proves the proposition. �

Finally, let us recall the important notion of degeneracy. If the frequencies do
not depend on the action variables, the system is called isochronous.Otherwise, it is
called anisochronous. In the latter case, it is said to be non-degenerate if

det

(
∂2H

∂Ii∂Ij

)
= det

(
∂ωi

∂Ij

)
�= 0. (11.4.35)

Then, the mapping I �→ ω(I) is a local diffeomorphism and one can use the fre-
quencies as (non-canonical) coordinates labelling the tori. In this case, almost all
tori are quasiperiodic. Nonetheless, there is a dense set of resonant tori as well. If
(11.4.35) does not hold, the system is said to be degenerate. Often the occurrence of
degeneracies is related to the fact that the system possesses more than n functionally
independent constants of motion.20 This situation will be discussed in Sect. 11.8.

11.5 Examples

In this section we present the construction of action and angle variables for the
harmonic oscillator, the Kepler problem and the symmetric Euler top. For the first
two of these examples, we will use Theorem 11.4.7.

20Which, of course, cannot all be in involution.
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Example 11.5.1 (Harmonic Oscillator) We consider the Hamiltonian system
(R2,dp ∧ dq,H) with

H(q,p) = p2

2m
+ kq2

2
.

Being autonomous and having one degree of freedom, this system is integrable,
where H = H . Thus, the level sets of H coincide with the energy surfaces

ΣE =
{
(q,p) ∈R

2 : p2

2m
+ kq2

2
= E

}
,

which at the same time coincide with the orbits of the system, that is, with the images
of the maximal integral curves of the Hamiltonian vector field XH . For E > 0, ΣE

is an ellipse, whereas for E = 0, it consists of the origin, which is the only critical
point of XH . In either case, ΣE is connected and compact. Thus, we can apply
Theorem 11.4.7. Let W = R

2 \ {0} and τ = pdq . Since the fundamental cycle γ E

is given by ΣE itself, and since on ΣE we have

p(q,E) =
√

2m

(
E − k

2
q2

)
,

where q runs between −
√

2E
k

and
√

2E
k

, for the action variable we obtain

I (E) = 1

2π

∫

ΣE

τ = 1

π

∫ √ 2E
k

−
√

2E
k

p(q,E)dq = E

ω
(11.5.1)

with ω =
√

k
m

. To calculate the generating function and the angle variable, we
choose, for example, V = {(q,p) : p > 0} and obtain

S(q, I ) = I arcsin

(√
mω

2I
q

)
+ q

2

√
2mωI − m2ω2q2, (11.5.2)

ϑ = arcsin

(√
mω

2I
q

)
(11.5.3)

(Exercise 11.5.1). By extending ϑ in the obvious way to an angle coordinate on
W , we obtain the desired action and angle variables on W = R

2 \ {0}. Obviously,
these coordinates induce a symplectomorphism (W,dp∧dq) ∼= (S1 ×R+,dI ∧dϑ).
In the coordinates ϑ and I , the Hamiltonian is given by H = Iω and hence the
frequency corresponding to I is

ω(I) = ∂H

∂I
= ω.

Thus, for E > 0, we have a periodic motion on the torus ΣI with frequency ω:

ϑ(t) = ω · t + ϑ(0), I (t) = I (0).
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Example 11.5.2 (Kepler Problem) Let us consider the Hamiltonian system
(T∗(R3 \ {0}),dθ,H) with

H(q,p) = p2

2
− 1

‖q‖ .

From the discussion in Example 11.1.3 we know that the functions H , L2 and Lz

are constants of motion in involution which are functionally independent on a dense
subset of T∗(R3 \ {0}). It is clear that the level sets of H are compact only in the
case

− 1

2L2
< E < 0, L �= 0. (11.5.4)

In spherical coordinates r ≡ ‖q‖, ϑ , φ and the corresponding fibre coordinates (con-
jugate momenta) pr , pϑ , pφ , the constants of motion read

H = 1

2

(
p2

r + p2
ϑ

r2
+ p2

φ

r2 sin2 ϑ

)
− 1

r
, L2 = p2

ϑ + p2
φ

r2 sin2 ϑ
, Lz = pφ

(11.5.5)
(Exercise 11.5.2). Denote the values of H = (H,L2,Lz) by h = (E,Θ2,Φ). On
the level set Σh, the momenta satisfy the relations

p2
r = 2E + 2

r
− Θ2

r2
, p2

ϑ = Θ2 − Φ2

sin2 ϑ
, pφ = Φ. (11.5.6)

Since Φ2 ≤ Φ2

sin2 ϑ
≤ Θ2, the right hand side of the second equation in (11.5.6) has

two zeros, ϑh
min ≤ ϑh

max, and it is non-negative in the interval between ϑh
min and ϑh

max.
Thus, on this interval, we can define a function pϑ(ϑ,h) by the positive square root
of the right hand side. In the same way, since E < 0, the right hand side of the
first equation in (11.5.6) has two zeros, rh

min ≤ rh
max, and in the interval rh

min ≤ r ≤
rh

max, a function pr(r,h) can be defined by the positive square root. To construct
fundamental cycles on the tori Σh, define curves

γ h
r,±(t) := (t,0,0;±pr(t,h),0,Φ

)
, t ∈ [rh

min, r
h
max

]
,

γ h
ϑ,±(t) := (rh

min, t,0;0,±pϑ(t,h),Φ
)
, t ∈ [ϑh

min, ϑ
h
max

]
,

γ h
φ (t) := (rh

min, ϑ
h
min, t;0,0,Φ

)
, t ∈ [0,2π].

Denote γ h
ϑ := γ h

ϑ,− ◦ γ h
ϑ,+ and γr := γ h

r,− ◦ γ h
r,+. Then, {γ h

r }, {γ h
ϑ } and {γ h

φ } are

smooth families of curves and, for every h, {γ h
r , γ h

ϑ , γ h
φ } is a system of fundamental

cycles on Σh. Using these cycles and choosing the canonical 1-form θ as a potential
for the symplectic form, we calculate the action variables:

I1(h) = 1

2π

∫

γ h
r

θ = 1

π

∫ rh
max

rh
min

pr(t,h)dt = 1√−2E
− Θ,
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I2(h) = 1

2π

∫

γ h
ϑ

θ = 1

π

∫ ϑh
max

ϑh
min

pϑ(t,h)dt = Θ − Φ, (11.5.7)

I3(h) = 1

2π

∫

γ h
φ

θ = 1

2π

∫ 2π

0
Φdt = Φ.

For the inverse of the mapping (E,Θ,Φ) �→ (I1, I2, I3) we find

E = − 1

2(I1 + I2 + I3)2
, Θ = I2 + I3, Φ = I3. (11.5.8)

Finally, to compute S and the angle variables ϑ1, ϑ2, ϑ3, we choose the mapping
s : U → V as

s(h) = (rh
min, ϑ

h
min,0;0,0,Φ

)

and express h in terms of I and θ in terms of the variables r , ϑ , φ and I1, I2, I3. We
find

S = Sr(r, I1, I2, I3) + Sϑ(ϑ, I2, I3) + Sφ(φ, I3)

with

Sr =
∫ r

rI
min

√

2

(
1

t
− 1

2(I1 + I2 + I3)2

)
− (I2 + I3)2

t2
dt,

Sϑ =
∫ ϑ

ϑI
min

√

(I2 + I3)2 − I 2
3

sin2 t
dt,

Sφ = I3φ

and

ϑ1 = ∂Sr

∂I1
, ϑ2 = ∂Sr

∂I2
+ ∂Sϑ

∂I2
, ϑ3 = ∂Sr

∂I3
+ ∂Sϑ

∂I3
+ φ.

By (11.5.8), in the action and angle variables ϑi , Ii , the Hamiltonian reads

H(I) = − 1

2(I1 + I2 + I3)2

and the characteristic frequencies are

ω1(I) = ω2(I) = ω3(I) = 1

(I1 + I2 + I3)3
=: ω(I). (11.5.9)

Thus, the system is degenerate, and Lemma 11.4.10 yields that the dynamics reduces
to one-dimensional subtori, on which a periodic motion with period

T = 2π

ω
= 2π√

(−2E)3
(11.5.10)
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takes place. This is Kepler’s Third Law, because the semimajor axis is equal to − 1
2E

,
cf. Example 10.6.3. Let us apply the procedure of Lemma 11.4.10 to determine new
action and angle variables (ϕ, J ) adapted to this reduction. The module generated
over Z by the characteristic frequencies is Zω. We choose ω1 = ω as a basis and
ω2 − ω1 = 0 and ω3 − ω2 = 0 as the relations. This leads to the transformation
matrix

A =
⎛

⎝
1 0 0

−1 1 0
0 −1 1

⎞

⎠ .

Then, (11.4.34) yields

ϕ1 = ϑ1, ϕ2 = ϑ2 − ϑ1, ϕ3 = ϑ3 − ϑ2 (11.5.11)

and

J1 = I1 + I2 + I3 =
√

− 1

2E
, J2 = I2 + I3 = Θ, J3 = I3 = Φ. (11.5.12)

The new action and angle variables ϕi , Ji are referred to as the Delaunay elements.
In order to avoid degeneracy, in addition to (11.5.4) we have to assume

Lz < |L|. (11.5.13)

In terms of the Delaunay elements, the Hamiltonian and the frequencies are given
by

H(J) = − 1

2J 2
1

, ω̄1(J) = 1

J 3
1

, ω̄2(J) = ω̄3(J) = 0. (11.5.14)

To clarify the geometrical meaning of the Delaunay elements, from (11.5.12) we
read off that

J 2
1 = − 1

2E
, J 2

2 = L2, J3 = Lz. (11.5.15)

Moreover, we use (10.6.31) to express the semimajor axis a, the semiminor axis b

and the inclination angle α (the angle between the z-axis and the direction normal
to the plane of motion) in terms of the Ji . This yields

a = p

1 − ε2
= J 2

1 , b = a
√

1 − ε2 = J1J2, cosα = Lz

|L| = J3

J2
.

The geometrical meaning of the angle coordinates ϕ1 and ϕ2 is illustrated in
Fig. 11.2: ϕ1 is the angle between the x-axis of the inertial frame and the nodal line,
that is, the line of intersection of the plane of motion with the x–y-plane. Therefore,
it is called the longitude of the ascending node. The angle coordinate ϕ2 is the angle
between the perihelion and the nodal line. The angle coordinate ϕ3 coincides with
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Fig. 11.2 Geometrical
interpretation of the Delaunay
elements

the so-called mean anomaly. For a detailed discussion of the angle coordinates ϕi ,
see [1] or [67].

To summarize, let us stress once again that the Delaunay elements are well de-
fined under the conditions (11.5.4) and (11.5.13), that is, for elliptic orbits. Thus,
circular orbits and orbits lying on the ecliptic plane are excluded.

Remark 11.5.3 For given J, the invariant 3-torus ΣJ is defined by the equations

p2
r = 2

(
E + 1

r
− L2

2r2

)
= − 1

J 2
1

+ 2

r
− J 2

2

r2
,

p2
ϑ = L2 − L2

z

sin2 ϑ
= J 2

2 − J 2
3

sin2 ϑ
,

pφ = J3.

On the other hand, we know that the motion reduces to the level sets of the energy-
momentum mapping E = (H,Lx,Ly,Lz). According to (10.8.5), for negative en-
ergy E and L �= 0, the level sets are 2-tori. Obviously, these invariant 2-tori foli-
ate the 3-tori ΣJ provided by the Arnold Theorem. This is in accordance with the
Nekhoroshev Theorem, to be discussed in Sect. 11.8. Indeed, the invariant 2-tori
coincide with the level sets of the n + 1 = 4 functionally independent constants of
motion H,L2,Ly and Lz which are in involution with the n − 1 = 2 constants of
motion H and L2.

Example 11.5.4 (Symmetric Euler Top) Consider the Hamiltonian system
(T∗SO(3) ∼= SO(3) × so(3),dθ,H) with H given by (11.1.9). The action and angle
coordinates we are going to construct are the so-called Andoyer variables [7, 43].
Unlike the preceding examples, here we will proceed by first defining the coor-
dinates geometrically and then proving that they possess the defining properties of
action and angle variables. For clarity, we use the vector notation, that is, we identify
so(3) with R

3 via the isomorphism (5.2.6).



11.5 Examples 609

Let us assume that the tensor of inertia Θ has been diagonalized and let us denote
the principal moments of inertia by Θi , i = 1,2,3. As a local chart on the config-
uration space SO(3), we use the Euler angles21 φ, ϑ and ψ , where 0 < φ,ψ < 2π

and 0 < ϑ < π . Let us denote the corresponding fibre coordinates in T∗SO(3) (con-
jugate momenta) by pφ , pϑ and pψ . For later use, we introduce the notation

A = pφ − pψ cosϑ

sinϑ
, B = pψ − pφ cosϑ

sinϑ
.

To define the Andoyer variables, we start with expressing the angular momentum
L in terms of the Euler angles and their momenta. This can be done by rewriting
the canonical 1-form on T∗SO(3) in terms of the Li , or by means of the Legendre
transformation generated by the Lagrangian

T = 1

2
ω · (Θω) = 1

2

(
Θ1ω

2
1 +Θ2ω

2
2 +Θ3ω

2
3

)
,

where ω = ω(φ̇, ϑ̇, ψ̇) denotes the angular velocity of the top. We shall follow the
latter strategy. The Legendre transformation is given by

pφ = ∂T

∂φ̇
, pϑ = ∂T

∂ϑ̇
, pψ = ∂T

∂ψ̇
.

Using this and L =Θω = (Θ1ω1,Θ2ω2,Θ3ω3), we obtain

L1 = pϑ cosψ + A sinψ, L2 = pϑ sinψ − A cosψ, L3 = pψ (11.5.16)

(Exercise 11.5.4). Now, we can construct the Andoyer variables j , g, l and J , G, L.
For that purpose, recall that the elements of the inertial frame and of the body frame
are denoted by n1,n2,n3 and e1, e2, e3, respectively. Define

J := L · n3, G := ‖L‖, L := L · e3. (11.5.17)

To define the remaining Andoyer variables j , g, l, we have to assume that L is
neither parallel to e3 nor to n3, so that the vectors

n′ := n3 × L, n′′ := L × e3

do not vanish. Then, we can define j to be the angle between the n1-axis and the
nodal line defined by the vector n′, g to be the angle between the nodal lines defined
by n′ and n′′ and l to be the angle between the e1-axis and the nodal line defined by
n′′. While G, L and l are defined intrinsically, J , g and j depend on the choice of
the inertial frame. A brief calculation (Exercise 11.5.4) yields

J = pφ, G2 = p2
ϑ + p2

ψ + A2, L = pψ (11.5.18)

21Cf. Exercise 5.5.4.
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and

cos(j) = pϑ sinφ − B cosφ√
p2

ϑ + B2
, (11.5.19)

cos(g) = pφpψ − cosϑ(p2
ϑ + p2

ψ + A2)
√

(p2
ϑ + A2)(p2

ϑ + B2)

, (11.5.20)

cos(l) = pϑ sinψ − A cosψ√
p2

ϑ + A2
. (11.5.21)

We note that the coordinates G,L, l and G,J, j parameterize the angular momen-
tum L in the body frame and aL in the inertial frame, respectively:

L = (
√

G2 − L2 sin(l),
√

G2 − L2 cos(l),L
)
,

aL = (
√

G2 − J 2 sin(j),−
√

G2 − J 2 cos(j), J
)
.

By a lengthy but straightforward calculation (Exercise 11.5.4) one can prove that,
in the Andoyer variables, the canonical 1-form θ on T∗SO(3) reads

θ = Jdj + Gdg + Ldl. (11.5.22)

Thus, these variables provide local Darboux coordinates on T∗SO(3). Now, consider
the Hamiltonian (11.1.9). In Euler coordinates, it reads

H = (pϑ cosψ + pφ−pψ cosϑ

sinϑ
sinψ)2

2Θ1

+ (pϑ sinψ − pφ−pψ cosϑ

sinϑ
cosψ)2

2Θ2
+ p2

ψ

2Θ3
+ V (φ,ϑ,ψ).

Rewriting this formula in terms of the Andoyer variables, we obtain

H =
(

sin2 l

2Θ1
+ cos2 l

2Θ2

)(
G2 − L2)+ L2

2Θ3
+ V (j, g, l) (11.5.23)

(Exercise 11.5.4). As we know from the discussion in Example 11.1.5, in general
this system is not integrable. Therefore, let us assume that Θ1 = Θ2 and V = 0,
that is, let us consider a symmetric Euler top. Then, the Hamiltonian (11.5.23) boils
down to

H = 1

2Θ1

(
G2 + αL2), α = Θ1 −Θ3

Θ3
. (11.5.24)

Since it does not depend on the Andoyer angles j , g, l, the Andoyer variables J ,
G and L are constants of motion. By (11.5.22), they are functionally independent
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and in involution. Hence, the system is integrable. Moreover, since J , G and L are
canonically conjugate to angle coordinates, the flows of their Hamiltonian vector
fields are 2π -periodic. Thus, J , G and L are action variables and j , g and l can be
taken as the corresponding angle variables. The characteristic frequencies are

ωj = ∂H

∂J
= 0, ωg = ∂H

∂G
= G

Θ1
, ωl = ∂H

∂L
= αL

Θ1
. (11.5.25)

Since ωj = 0, the system is degenerate.22 As in the previous example, we have
more than three constants of motion, and their level sets decompose the 3-torus
into 2-tori. In the inertial frame, the constant of motion L is fixed in space and the
figure axis performs a circular motion (regular precession) around the axis of L with
frequency ωg . The frequency ωl characterizes the rotation of the top around its own
symmetry axis, given by e3. Altogether, we find a quasiperiodic motion on the 2-
torus, parameterized by the angles g and l. This can be further illustrated by the
following observation: since Li =Θiωi , at each moment of time, the vectors L, e3
and ω lie in a plane and we have

ω = 1

Θ1

(
αLe3 + G

L
|L|
)

. (11.5.26)

The motions of rotation and precession define two cones: the first one, called the
space cone, is defined by the rotation of ω around L. The second one, called the body
cone, is defined by the rotation of ω around the figure axis e3. The body cone rolls
without slipping on the space cone, with the instantaneous tangent line coinciding
with the axis defined by ω.

Remark 11.5.5

1. If L is parallel to e3, we have L × e3 = 0 and the Andoyer variables are not well
defined. In this case, we have L = L3e3 and hence G2 ≡ L2 = L2. Thus,

H = G2

2Θ3
. (11.5.27)

Obviously, in this case ω and e3 coincide, that is, the body cone and the space
cone degenerate to a ray defined by the axis of symmetry and the top rotates
around this axis with frequency ω = ∂H

∂G
= G/Θ3. We note that for L = 0 we get

an analogous degeneracy. In this case we have

H = G2

2Θ1
. (11.5.28)

Thus, ω and L coincide, that is, the space cone degenerates to a ray and the
body cone opens to build a half space. The symmetry axis rotates in the plane

22For the special case Θ1 =Θ3 there is an additional degeneracy.



612 11 Integrability

orthogonal to L with angular velocity ωg and there is no rotation of the body
with respect to its symmetry axis.23 Finally, there is the trivial case defined by
G = 0. Then, L = 0 and the top remains at rest.

2. The case G = L corresponds to the two critical points L = (0,0,±l) of the re-
duced Hamiltonian with corresponding critical value given by (11.5.27). The
case L = 0 corresponds to the critical circle defined by L(α) = (l cosα, l sinα,0)

with critical value given by (11.5.28). These critical subsets can be viewed as in-
tersection sets of the 2-sphere S2

l with the ellipsoid defined by the kinetic energy.
They belong to the bifurcation set of the energy momentum mapping, cf. Exam-
ple 10.6.5 and Exercise 10.8.3.

3. We note that there are further coordinate singularities, defined by the condition
n3 × L = 0. That the Andoyer variables are not defined globally suggests that
the bundle (11.4.18) defined by H = (I1, I2, I3), with the constants of motion
of Example 11.1.5, is nontrivial. This will be explained in Example 11.8.10.

Let us summarize the above discussion: If one finds action and angle variables
for an integrable system, then, locally, one has an explicit description of the Hamil-
tonian flow and of the invariant tori of this system in terms of a (quasi)periodic
motion on tori. Action and angle variables usually cannot be extended to global co-
ordinates on the subset of regular points of the phase space. Instead, there may exist
topological obstructions. This will be discussed in Sect. 11.7.

Exercises
11.5.1 Prove the equations (11.5.2) and (11.5.3).
11.5.2 Verify the formulae in (11.5.5).
11.5.3 Find action and angle variables for the planar two-centre problem, cf. Ex-

ample 11.1.4.
Hint. Use elliptic coordinates.

11.5.4 Prove the following formulae in Example 11.5.4: (11.5.16), (11.5.18)–
(11.5.22) and (11.5.23).

11.6 Small Perturbations

In this section, we show that the description of an integrable system in terms of ac-
tion and angle variables is well adapted to the study of small perturbations. Thus,
let (M,ω,H ) be a 2n-dimensional integrable system with Hamiltonian function
H0, possessing some compact connected component of a level set of H . By Theo-
rem 11.4.3, in a neighbourhood of this connected component there exist action and
angle variables ϑi , Ii and dynamics is given by

İi = 0, ϑ̇ i = ∂H0

∂Ii

(I) ≡ ωi(I).

23ωl tends to zero with L tending to zero.
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Assume that the system is non-degenerate,

det

(
∂ωi

∂Ij

)
= det

(
∂2H0

∂Ii∂Ij

)
�= 0. (11.6.1)

Consider a small perturbation of this system, given by

H(ϑ, I) = H0(I) + εH1(ϑ, I), (11.6.2)

where ε is a small parameter and H1 is a Hamiltonian function which is 2π -periodic
in the variables ϑi . The Hamilton equations for this system read

İi (t) = −ε
∂H1

∂ϑi

(
ϑ(t), I(t)

)
, ϑ̇ i(t) = ωi

(
I(t)
)+ ε

∂H1

∂Ii

(
ϑ(t), I(t)

)
. (11.6.3)

We aim at finding an iterative canonical transformation (ϑ, I) → (ϑ̄, Ī) which makes
the full system integrable, order by order in ε. Let us discuss the first step of this
procedure in detail: we seek the canonical transformation in terms of a generating
function S = S(ϑ, Ī) of the second kind, that is,

Ii = ∂S

∂ϑi
(ϑ, Ī), ϑ̄ i = ∂S

∂Īi

(ϑ, Ī). (11.6.4)

We make the ansatz S(ϑ, Ī) = ϑj Īj + εS1(ϑ, Ī) and require that the Hamiltonian
function in the new variables, given by H̄ (ϑ̄, Ī) = H(ϑ, I), be integrable to first
order in ε,

H̄ (ϑ̄, Ī) = H̄0(Ī) + εH̄1(Ī) + ε2H̄2(ϑ̄, Ī). (11.6.5)

By (11.6.4),

Ii = Īi + ε
∂S1

∂ϑi
(ϑ, Ī), ϑi = ϑ̄ i − ε

∂S1

∂Īi

(ϑ, Ī). (11.6.6)

Plugging this in into the Hamiltonian (11.6.2) and expanding by powers of ε, we
obtain24

H(ϑ, I) = H

(
ϑ, Ī + ε

∂S1

∂ϑ
(ϑ, Ī)

)

= H0

(
Ī + ε

∂S1

∂ϑ
(ϑ, Ī)

)
+ εH1

(
ϑ, Ī + ε

∂S1

∂ϑ
(ϑ, Ī)

)

= H0(Ī) + ε
∂H0

∂Īj

(Ī)
∂S1

∂ϑj
(ϑ, Ī) + ε2R0(ϑ, Ī) + εH1(ϑ, Ī) + ε2R1(ϑ, Ī)

24Since S is a function of the variables ϑ and Ī, we express H in these variables.
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= H0(Ī) + ε

(
ωj (Ī)

∂S1

∂ϑj
(ϑ, Ī) + H1(ϑ, Ī)

)
+ ε2(R0 + R1)(ϑ, Ī)

(11.6.7)

with

R0(ϑ, Ī) = 1

ε2

(
H0

(
Ī + ε

∂S1

∂ϑ
(ϑ, Ī)

)
− H0(Ī) − ε

∂H0

∂Īj

(Ī)
∂S1

∂ϑj
(ϑ, Ī)

)
,

R1(ϑ, Ī) = 1

ε

(
H1

(
ϑ, Ī + ε

∂S1

∂ϑ
(ϑ, Ī)

)
− H1(ϑ, Ī)

)
.

Now we choose Ī0 such that ω(Ī0) is non-resonant.25 For ‖Ī − Ī0‖ being of order
ε, we may replace ω(Ī) by ω0 := ω(Ī0) in (11.6.7), thus producing a correction of
order ε2. Then, requiring that (11.6.7) equals (11.6.5) and comparing coefficients,
we find

H̄0(Ī) = H0(Ī),

H̄1(Ī) = H1(ϑ, Ī) + ω
j

0
∂S1

∂ϑj
(ϑ, Ī), (11.6.8)

H̄2(ϑ, Ī) = (R0 + R1)(ϑ, Ī).

To analyze the second equation in (11.6.8), we use the Fourier expansion of S1 and
H1 with respect to the angle variables ϑi ,

S1(ϑ, Ī) =
∑

k∈Zn

S̃k(Ī)eik·ϑ , H1(ϑ, Ī) =
∑

k∈Zn

H̃k(Ī)eik·ϑ ,

with k · ϑ =∑n
i=1 kiϑ

i . Then, this equation reads

H̄1(Ī) =
∑

k∈Zn

(
i(ω0 · k)S̃k(Ī) + H̃k(Ī)

)
eik·ϑ .

This yields H̄1(I) = H̃0(Ī) for k = 0 and i(ω0 ·k)S̃k(Ī)+ H̃k(Ī) = 0 for k �= 0. Thus,
the solution reads

H̄1(Ī) = H̃0(Ī), S1(ϑ, Ī) = −
∑

k∈Zn\{0}

H̃k(Ī)
iω0 · k

eik·ϑ , (11.6.9)

and the transformed Hamiltonian function takes the form

H̄ (ϑ̄, Ī) = H0(Ī) + εH̃0(Ī) + ε2H̄2(ϑ̄, Ī). (11.6.10)

25Since the system is assumed to be non-degenerate, the tori can be labelled by their frequencies,
and hence such Ī0 are dense.
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If ω0 · k becomes very small, there is no hope that the Fourier series in (11.6.9) con-
verges. This is the famous problem of small denominators, which we met already in
Sect. 9.6 where we had shown that a symplectomorphism can be brought to normal
form in the neighbourhood of an elliptic 4-elementary fixed point. The same was
true for the Hamiltonian function in the neighbourhood of an elliptic 4-elementary
critical point. We had seen that in a neighbourhood U of such a critical point the nor-
mal form part of the Hamiltonian yields a foliation of U into invariant tori, defined
by a set Ij of constants of motion given by (9.6.11), and that, in this approximation,
the system becomes integrable. In this context, the choice of symplectic polar coor-
dinates on U yields action and angle variables. We had also noted there that in the
cases under consideration the KAM theory applies, see Remark 9.6.8. This theory
yields that non-resonant tori persist the perturbation caused by passing to the full
system, provided they fulfil a strong non-resonance condition of Diophantine type.
Here, we meet another situation where KAM theory is applicable. If ω0 is strongly
non-resonant, cf. (9.6.21), that is, if there exist constants τ > 0 and γ > 0 such that

|ω0 · k| ≥ γ ‖k‖−τ , (11.6.11)

for all k ∈ Z
n \ {0}, the Fourier series in (11.6.9) is convergent.26 In this case, the

generating function S exists and for tori fulfilling ‖Ī − Ī0‖ < ε, at first order, the
small perturbation yields a change of the frequency by a constant:

ω̄j (I) = ∂H̄

∂Īj

= ωj (Ī) + ε
∂H̃0

∂Īj

(Ī0).

Moreover, on the torus defined by Ī, at first order we have a quasiperiodic motion
with frequencies ω̄j :

˙̄Ij = − ∂H̄

∂ϑ̄j
= 0, ˙̄ϑj = ∂H̄

∂Īj

= ω̄j .

We also note that, since İ is of order ε2, the condition ‖Ī − Ī0‖ < ε remains valid
for large times, that is, times of order ε−1.

Now, the above described procedure must be iterated. In the second step, one
starts with the Hamiltonian

H̄ (ϑ̄, Ī) = H̄0(Ī) + ε2H̄2(ϑ̄, Ī).

This step removes the dependence on ϑ up to order ε4. After n steps, one arrives
at order ε2n

. This is the reason why the KAM procedure is said to be superconver-
gent. See [26] for further comments and historical remarks. Finally, one arrives at

26Under the assumption that H1 is analytic on a certain domain the proof is not difficult, see e.g.
[286, §3.5].
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the following result.27 If the unperturbed system is non-degenerate in the sense of
(11.6.1), for sufficiently small ε > 0, most non-resonant invariant tori persist and
are only slightly deformed, so that in the phase space of the perturbed system there
exist invariant tori densely filled with quasiperiodic integral curves. These invariant
tori form a majority in the sense that the Lebesgue measure of the complement of
their union is small for small perturbations.

Remark 11.6.1

1. The KAM method works for tori satisfying the strong non-resonance condition
(11.6.11), provided both H0 and H1 are of class Cl with l > 2τ + 2 > 2n. This
weakens the regularity assumptions made in the historical papers cited before
considerably [221, 244, 259].

2. Let us make precise what it means that a majority of invariant tori persists: let
�γ,τ be the set of frequencies fulfilling the infinitely many conditions contained
in (11.6.11), with γ and τ kept fixed. It can be shown that �γ,τ are Cantor
sets in R

n and that the union �τ =⋃γ>0 �γ,τ has full Lebesgue measure for
τ > n − 1, whereas �τ = ∅ for τ < n − 1. That is, almost every ω belongs to
�τ provided τ > n− 1. On the other hand, the parameter γ turns out to limit the
magnitude of the perturbation parameter through the condition that ε � γ 2. This
means that for a given perturbation one cannot vary γ arbitrarily but has to keep
it large enough. Therefore, one takes a subset Ωγ of �γ,τ of frequencies whose
distance from the boundary of the set Ω of all frequencies is at least γ . These are
Cantor sets whose complements in Ω have Lebesgue measure of order γ . For
more details we refer to the papers of Pöschel [245, 246]. In [245], it is shown
that the persisting tori form a family over the Cantor set Ωγ which is smooth in
the sense of Whitney. Thus, one may say that the perturbed system is integrable
over this Cantor set.

3. The above results remain true if the assumption (11.6.1) of non-degeneracy is
replaced by

det

⎡

⎣
∂2H0
∂Ii∂Ij

∂H0
∂Ij

∂H0
∂Ii

0

⎤

⎦ �= 0. (11.6.12)

A system fulfilling this condition is said to be isoenergetically non-degenerate.
In this case, the persisting invariant tori form a majority, in the sense explained
above, on each energy surface.

27See the list of references in Remark 9.6.8. Additionally, we draw the attention of the reader
to Sect. 3.6 of the textbook [286] by Thirring, where the proof is provided for a special class of
Hamiltonians. This way, the complicated KAM theory analysis becomes quite transparent.
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11.7 Global Aspects. Monodromy

In the present section, we use action and angle variables to study the global structure
of the submanifold MH

c of points which belong to a compact level set component
of Hr . In particular, we derive topological obstructions to the existence of global
action variables and to the existence of global action and angle variables on MH

c .
The presentation below is in the spirit of Duistermaat [80].

First, we discuss the existence of global action variables. Recall from Corol-
lary 11.4.5 that the natural projection

H̃rc : MH
c → Ṽ H

c (11.7.1)

has the structure of a locally trivial fibre bundle with typical fibre Tn. Since MH
c

is made up by compact level set components of Hr , the Hamiltonian vector fields
XHi

restrict to complete vector fields on MH
c . Hence, according to Example 6.1.2/4,

their flows define an action Ψ of Rn on MH
c . By the Arnold Theorem 11.3.3 and

Corollary 11.4.5, Ṽ H
c is the orbit manifold of this action and H̃rc is the correspond-

ing natural projection. Let Ii be action variables on W ⊂ MH
c and let Ψ I denote

the action of Rn on W defined by the flows of the Hamiltonian vector fields XIi
. By

(11.4.5), the actions Ψ and Ψ I on W are related by

Ψ I
t (m) = Ψ∑n

i=1 tibi (m)(m), (11.7.2)

where bi : W →R
n are smooth mappings uniquely defined by

XIi
= bi

jXHj
.

In particular, Ψ and Ψ I have the same orbits in W . Hence, we may view the bundle
structure of MH

c over Ũ = H̃rc(W) as being induced by the action Ψ I . Since all
points of W have stabilizer 2πZn under Ψ I , this action descends to a free action
Ψ̂ I of Tn = U(1)n on W , given by

Ψ̂ I

(eit1 ,...,eitn )
(m) = Ψ I

(t1,...,tn)(m).

Over Ũ , the action Ψ̂ I turns (11.7.1) into a principal bundle with structure group
Tn. Thus, the existence of global action variables is related to the existence of a
global reduction of the action Ψ to a free action of Tn. Via the relation (11.7.2), the
latter is equivalent to the existence of a smooth assignment to Σ ∈ Ṽ H

c of a set of
generators for the stabilizer of Ψ on Σ . Hence, we have to discuss the existence of
such an assignment. For that purpose, we first construct the period bundle mentioned
earlier. Consider the subset PH of Ṽ H

c ×R
n made up by the pairs (Σ, t) such that

t belongs to the stabilizer of Ψ on Σ . According to Proposition 11.4.2/2, a set of
action variables Ii on W defines a local frame in the vector bundle Ṽ H

c ×R
n by

Σ �→ {
b1(Σ), . . . , bn(Σ)

}
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and hence a local chart on H̃rc(W) × R
n ⊂ Ṽ H

c × R
n which maps PH onto

H̃rc(W) × 2πZn. This shows that PH is an embedded submanifold of Ṽ H
c ×R

n

and, in the smooth structure induced, a locally trivial Z-module bundle over Ṽ H
c .

Definition 11.7.1 (Period bundle) The bundle PH is called the period bundle of
the integrable system (M,ω,H ).

The bundle projection πPH : PH → Ṽ H
c is induced from the natural projection

to the first factor in Ṽ H ×R
n and local trivializations are given by the frames {bi}

induced by action variables. Thus, a smooth global assignment to Σ ∈ Ṽ H
c of a set

of generators for the stabilizer of Ψ on Σ corresponds to a global frame in PH , that
is, it exists iff PH is trivial. A criterion for the (non-)triviality of PH is given by
the so-called monodromy, which will be constructed now.

Since the fibres of PH are discrete, the projection πPH is a local diffeomor-
phism. Hence, for every curve γ : [0,1] → Ṽ H

c and every t in the fibre of PH over
γ (0), there exists a unique curve γ̃ with πPH ◦ γ̃ = γ and γ̃ (0) = t. This curve is
called the lift of γ to t. Via its lifts, γ induces a mapping PH (γ (0)) → PH (γ (1))

by assigning to t the endpoint of the lift of γ to t. This mapping is called the par-
allel transport along γ . The parallel transport along a composite curve γ2 · γ1 is the
composition of the parallel transport along γ1 with the parallel transport along γ2.
Moreover, curves in Ṽ H

c which are homotopic with fixed endpoints generate the
same parallel transport, because every smooth homotopy in Ṽ H

c can be lifted to
PH by means of a covering by local trivializations. Thus, by choosing Σ0 ∈ Ṽ H

c

and by assigning to a closed curve based at Σ0 its parallel transport, we obtain a
group homomorphism from the fundamental group π1(Ṽ

H
c ,Σ0) of Ṽ H

c based at
Σ0 to the group of transformations of the fibre of PH over Σ0.

To compute the parallel transport along the closed curve s �→ γ (s) based at Σ0,
we cover γ by open subsets Ul which admit action variables I

(l)
i , l = 0, . . . , r . For

t ∈ PH (Σ0), we decompose t = 2πkib
(0)
i (Σ0) with ki ∈ Z and {b(0)

i } denoting the
local frame in Ṽ H

c × R
n induced by I (0). As long as γ stays in U0, the lift of γ

based at t ∈ PH (Σ0) is given by γ̃ (s) = 2πkib
(0)
i (γ (s)). When entering U1, we

merely have to express each vector b
(0)
i (γ (s)) in terms of the frame {b(1)

i (γ (s))}.
Hence, according to Proposition 11.4.2/3, over U1 the lift is given by

γ̃ (s) = 2πkiAi
j b

(1)
j

(
γ (s)

)

with a constant invertible integer matrix A. As a result, on the level of the coef-
ficients ki with respect to the basis {2πb

(0)
i (Σ0)} in PH (Σ0), the parallel trans-

port along γ is given by the product of the integer (n × n)-matrices appearing in
the change of action variables along γ . In particular, it is an automorphism of the
Abelian group PH (Σ0).

Definition 11.7.2 (Monodromy) The group homomorphism

π1
(
Ṽ H

c ,Σ0
)→ Aut

(
PH (Σ0)

)
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which assigns to a closed curve its parallel transport is called the monodromy based
at Σ0 of the integrable system (M,ω,H ).

As noted above, after having fixed a system of generators of PH (Σ0), the mon-
odromy at Σ0 may be viewed as a homomorphism from π1(Ṽ

H
c ,Σ0) to GL(n,Z).

Accordingly, the image of a closed curve γ under this homomorphism is referred to
as the monodromy matrix of this curve. Another choice of generators results in this
homomorphism composed with an inner automorphism of GL(n,Z), as does an-
other choice of the base point Σ0 in the same connected component of Ṽ H

c . Thus,
up to conjugacy in GL(n,Z), the monodromy can depend on the connected compo-
nent of Ṽ H

c only. For simplicity, in the rest of this section we adopt the assumption
that Ṽ H

c or, equivalently, MH
c is connected. In the general case, the results apply

to each connected component of the bundle H̃rc : MH
c → Ṽ H

c .

Theorem 11.7.3 (Global action variables) For an integrable system (M,ω,H ),
the following statements are equivalent.

1. MH
c admits global action variables.

2. The monodromy is trivial.
3. The period bundle is trivial.
4. The action Ψ on MH

c induced by the flows of the Hamiltonian vector fields XHi

can be globally reduced to a free action of Tn, that is, there exists a free Tn-
action Ψ̂ on MH

c and a smooth mapping λ : Ṽ H
c ×R

n → Tn such that λ(Σ, ·)
is a group homomorphism for all Σ ∈ Ṽ H

c and Ψt(m) = Ψ̂
λ(H̃rc(m),t)(m) for all

m ∈ MH
c .

The action Ψ̂ turns (11.7.1) into a principal bundle with structure group Tn =
U(1)n.

Proof 1 ⇒ 4: This has been discussed above.
4 ⇒ 3: The mapping λ induces a unique mapping λ̂ : Ṽ H

c ×R
n →R

n by

λ(Σ, t) = (eiλ̂1(Σ,t), . . . , eiλ̂n(Σ,t)).

One can check that the mapping

λ̃ : Ṽ H
c ×R

n → Ṽ H
c ×R

n, λ̃(Σ, t) = (Σ, λ̂(Σ, t)
)

is bijective and has a pointwise injective tangent mapping. Hence, it is a diffeo-
morphism. Composing the assignment of the standard basis {2πei} of Rn to every
Σ ∈ Ṽ H

c with the inverse of this diffeomorphism, we obtain a global frame in PH .
3 ⇒ 2: This is obvious.
2 ⇒ 1: Since the parallel transport along an arbitrary closed curve in Ṽ H

c is
given by the product of the transformation matrices for the changes of the action
variables along that curve, vanishing of the monodromy implies that any such prod-
uct yields the unit matrix. Thus, for a given covering of MH

c by systems of local
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action variables, by choosing one such system and redefining all others by succes-
sively transforming them with the inverse transformation matrices and subtracting
the constant shifts, we obtain a system of global action variables, cf. point 3 of
Proposition 11.4.2. �

Next, we discuss the existence of global action and angle variables. This discus-
sion involves the Chern class of a principal bundle with structure group Tn = U(1)n,
for which we refer to the standard literature, see e.g. [166] or [279].28 First, we in-
vestigate under which conditions the locally trivial fibre bundle H̃rc : MH

c → Ṽ H
c

is globally trivial. Recall that MH
c is assumed to be connected.

Proposition 11.7.4 The bundle H̃rc : MH
c → Ṽ H

c is globally trivial iff both the
monodromy is trivial and the first Chern class of the principal Tn-bundle so induced
vanishes.

Proof If the monodromy is trivial and the Chern class of the induced principal Tn-
bundle vanishes, this bundle must be trivial, because principal Tn-bundles are clas-
sified up to vertical bundle isomorphisms by their first Chern class. Conversely, if
(11.7.1) is trivial, it suffices to show that the monodromy is trivial, because then, this
bundle is a principal Tn-bundle and since it is trivial, the first Chern class vanishes.
Thus, let χ : MH

c → Ṽ H
c × Tn be a trivialization of (11.7.1). Realize Tn as the

n-fold product of the complex unit circle and consider the local diffeomorphism

ψ : Ṽ H
c ×R

n → Ṽ H
c × Tn, ψ(Σ, t) := χ ◦ Ψt ◦ χ−1(Σ,(1, . . . ,1)

)
.

Define a mapping ϕ : Ṽ H
c ×R

n → Ṽ H
c ×R

n as follows. For (Σ, t) ∈ Ṽ H
c ×R

n,
the curve s �→ ψ(Σ, st) in Ṽ H

c × Tn has a unique lift to Ṽ H
c ×R

n with respect to
the covering

ρ : Ṽ H
c ×R

n → Ṽ H
c × Tn, ρ(Σ, t) := (Σ,

(
eit1, . . . , eitn

))
.

Assign to (Σ, t) the endpoint of the lifted curve. Then, ψ = ρ ◦ ϕ, hence ϕ is a
local diffeomorphism. Since it is bijective, it is a diffeomorphism. Hence, it is a
vector bundle automorphism of the trivial vector bundle Ṽ H

c × R
n. Since it maps

the period bundle PH onto the trivial subbundle Ṽ H
c × 2πZn, Theorem 11.7.3/3

yields that the monodromy is trivial, indeed. �

Theorem 11.7.5 (Global action and angle variables) Let (M,ω,H ) be an inte-
grable system. Then, MH

c admits global action and angle variables iff the mon-
odromy is trivial, the first Chern class of the principal Tn-bundle H̃rc : MH

c →
Ṽ H

c so induced vanishes and ω is exact.

28Characteristic classes will be discussed in detail in volume II of this book.
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Proof If MH
c admits global action and angle variables ϑi , Ii , the bundle H̃rc :

MH
c → Ṽ H

c is globally trivial and the triviality of the monodromy and the Chern
class follow from Proposition 11.7.4. Moreover, ω is exact with potential Iidϑi .
Conversely, if the monodromy and the Chern class are trivial, Theorem 11.7.3
yields the existence of global action variables Ii and Proposition 11.7.4 implies
that the bundle H̃rc : MH

c → Ṽ H
c admits a global section s : Ṽ H

c → MH
c .

Since ω is exact, so is the 2-form s∗ω on Ṽ H
c . Choose a potential and expand it

with respect to the global frame {dIi} (with the Ii viewed as functions on Ṽ H
c ).

Let ϑi be the expansion coefficients. Define a new section s̃ : Ṽ H
c → MH

c by
s̃(Σ) := Ψ I

ϑ(Σ)(s(Σ)). A brief calculation shows that s̃ is Lagrange. It follows that

the functions ϑi on MH
c defined by

ϑi
(
Ψ I

x
(
s̃(Σ)

))= xi

combine with the functions Ii to global action and angle variables on MH
c . �

Remark 11.7.6

1. According to the Hurewicz Theorem, see e.g. [55] or [199], if the first and sec-
ond homotopy groups of MH

c are trivial, so are the first and second de Rham
cohomology groups. This implies that the monodromy and the first Chern class
are trivial and that the 2-form ω is exact. Hence, Theorem 11.7.5 yields that triv-
iality of the first and second homotopy groups of MH

c is a sufficient condition
for the existence of global action and angle variables, a result which belongs to
Nekhoroshev [228].

2. Let {(Wα, (ϑα, Iα))} be an atlas of Darboux charts on MH
c built from action

and angle variables. The equations ϑα = 0 define Lagrangian sections sα over
Uα = H̃rc(Wα) in the bundle (11.7.1). For each pair (α,β) with Wα ∩ Wβ �= ∅,
there exists a closed 1-form λαβ on Uα ∩ Uβ such that

sα(Σ) = φλαβ(Σ)sβ(Σ),

where φ denotes the natural fibrewise action29 of T∗Ṽ H
c on the fibres of the

bundle (11.7.1), that is, on the level set components of H̃rc. Note that λαβ is
not unique, for the following reason. By virtue of the global frame {Ĥ ∗

r dxi} in
T∗Ṽ H

c , where xi denote the standard coordinates on R
n, one can identify the

period bundle PH with a Z-module subbundle of T∗Ṽ H
c . It turns out that this

subbundle is the stabilizer of φ. Thus, to make λαβ unique, one has to view it as a
section in the quotient bundle T∗Ṽ H

c /PH , which is a locally trivial Tn-bundle.
Note that this bundle is locally isomorphic to (11.7.1). In more detail, the action
variables Iα define an isomorphism

Wα
∼= T∗(Uα)/PH (Uα).

29Defined by (8.6.15).
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One can check that the system λ := {λαβ} defines a 1-cocycle on Ṽ H
c with values

in the bundle T∗Ṽ H
c /PH in the sense of Čech, that is, an element of the first

Čech cohomology,

[λ] ∈ H 1
Č

(
Ṽ H

c ,Z
(
T∗Ṽ H

c /PH
))

.

This cohomology element is called the Lagrange class of the bundle (11.7.1).
The Lagrange class is related to the Chern class mentioned above as follows.
There exists a natural coboundary operator

δ : H 1(Ṽ H
c ,Z

(
T∗Ṽ H

c /PH
))→ H 2(Ṽ H

c ,PH
)
,

which maps the Lagrange class to a cohomology class δ([λ]) ∈ H 2(Ṽ H
c ,PH ),

called the Chern class of the bundle (11.7.1). If the monodromy is trivial, then the
Chern class so defined coincides with the ordinary Chern class of the correspond-
ing principal Tn-bundle. One can show that the Lagrange class characterizes the
bundle (11.7.1) up to bundle isomorphisms which are symplectomorphisms, that
is, for a given Chern class, there exists a family of isomorphic bundles which are
distinguished as symplectic manifolds by their Lagrange class. For details, we
refer to Duistermaat [80], Dazord and Delzant [71], and Zung [317, 318].

Let us add that, on MH
c , the action φ of T∗Ṽ H

c can be used to replace the ac-
tion Ψ of Rn induced by the Hamiltonian vector fields XHi

. This shifts the focus
from the constants of motion in involution Hi , whose choice contains some arbi-
trariness, to the Lagrangian torus foliation they define, which is more geometric
in nature. The description of integrable systems in terms of Lagrangian torus
foliations generalizes to the situation where the foliation is only locally gener-
ated by constants of motion in involution. For an introduction to symplectic toric
manifolds, we refer to [28].

3. Recently, there have been successful attempts to include the singular points of
H , with the ultimate goal of understanding the global topological structure of
the full system, see Zung [317, 318].

Example 11.7.7 (Spherical pendulum) Consider the spherical pendulum, with the
phase space TS2, realized as the level set of the mapping

f = (f1, f2) : TR
3 →R

2, f1(x,y) = ‖x‖2 − 1, f2(x,y) = x · y,

and with the Hamiltonian

H(x,y) = 1

2
‖y‖2 + x3. (11.7.3)

According to Example 11.1.8, as constants of motion in involution we can choose
H1 = H and H2 = J , where

J (x,y) = x1y2 − x2y1 (11.7.4)
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is the momentum mapping of the SO(2)-symmetry given by rotations about the
x3-axis. Thus, H coincides with the energy-momentum mapping E studied in Ex-
ample 10.8.10. In what follows, we will keep the notation E and we will use results
from that example without further notice. The critical points of E are m± = (x±,0)

with x± = (0,0,±1). Correspondingly, the critical values are (h, j) = (±1,0). The
level set of (−1,0) consists of m− alone, whereas the level set of (1,0) consists of
m+ and an open cylinder over S1. All the other level sets are compact and connected.
Hence,

MH = TS2 \ {m+,m−}, Ṽ H = V H = E
(
TS2) \ {(−1,0)

}

and

MH
c = TS2 \ E −1({(±1,0)

})
, Ṽ H

c = E
(
TS2) \ {(±1,0)

}
,

cf. Fig. 10.8. In particular, Ṽ H
c coincides with the set of regular values of E . We

will show that for the spherical pendulum, both the bundle (11.7.1) and the mon-
odromy are non-trivial and that, therefore, neither global action and angle variables
nor global action variables exist.

The argument for the first assertion requires knowledge about the topology of the
level sets of H . Since H has the same critical points as E , it is a Morse function on
T∗S2. Hence, we can apply the results of Sect. 8.9. To determine the Morse indices,
we observe that

Tm±
(
TS2)= ker df (m±) = ker

(
0 0 ±2 0 0 0
0 0 0 0 0 ±1

)
,

so that Tm±(TS2) is spanned by the standard basis vectors e1, e2, e4 and e5 of R6,
and we calculate30 the Hessian of XH at m± in that basis:

Hessm±(XH ) =

⎛

⎜⎜⎝

∓1 0 0 0
0 ∓1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ .

Thus, the Morse index is 2 for m+ and 0 for m−, that is, m+ is a non-degenerate
saddle point and m− is a non-degenerate minimum.

Proposition 11.7.8 The energy surfaces of the spherical pendulum have the follow-
ing topological structure.

1. For h = −1 we have H−1(h) = {m−}.
2. For −1 < h < 1, the energy surface H−1(h) is diffeomorphic to the 3-sphere S3.
3. For h = 1, the energy surface H−1(h) is homeomorphic to the unit tangent 1-

sphere bundle T1S2 with the fibre over x+ contracted to a point.
4. For h > 1, the energy surface H−1(h) is diffeomorphic to T1S2 ∼= SO(3) ∼=RP3.

30This was posed as Exercise 10.8.7.
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Proof 1. This is obvious.
2. The Morse Lemma 8.9.4 provides local coordinates ξ1, . . . , ξ4 in a neighbour-

hood of the critical point m− such that

H(ξ1, ξ2, ξ3, ξ4) = −1 + 1

2

(
ξ2

1 + · · · + ξ2
4

)
.

Thus, for values h close to −1, the level set H−1(h) is diffeomorphic to the 3-sphere
S3. By the Morse-Isotopy Lemma 8.9.6, this remains true for all h < 1.

3. and 4. In case h > 1, for all (x,y) ∈ TS2, we have x3 < h. Consequently, y
belongs to the 1-sphere in TxS2 defined by

1

2
‖y‖2 = h − x3.

This proves point 4. If h → 1, the 1-spheres over the points x �= x+ persist, whereas
the 1-sphere over x+ degenerates to a single point. �

Corollary 11.7.9 For the spherical pendulum, the bundle H̃rc : MH
c → Ṽ H

c is
nontrivial. In particular, global action and angle variables cannot exist.

Proof We show31 that there exists a closed curve γ in Ṽ H
c such that the subbundle

E −1(γ ) → γ is non-trivial. Choose γ to wind once around the critical value (1,0)

and to touch the two boundary curves of Ṽ H
c in one point each, see Fig. 11.3(a).

At the points where it touches the boundary, cut it into two closed pieces γ0 and γ1.
Deform these pieces diffeomorphically, and with endpoints on the boundary, into
horizontal line segments α0 and α1 running through all points (h0, j) and (h1, j)

in Ṽ H
c , respectively, where h0 < 1 and h1 > 1 are fixed energy values. If the bun-

dle E −1(γ ) → γ was trivial, that is, if it was isomorphic to the product bundle
T2 × γ , the manifolds E −1(γ0) and E −1(γ1), and hence the manifolds E −1(α0)

and E −1(α1), would be homeomorphic. However, E −1(α0) = H−1(h0) ∼= S3 and
E −1(α1) = H−1(h1) ∼= SO(3) are not homeomorphic. �

Next, we calculate the monodromy. The fundamental group π1(Ṽ
H
c ) is gener-

ated by any closed curve γ which winds once around the critical value (1,0). We
have to find the parallel transport of a basis of the period lattice along γ . For that
purpose, we have to construct action variables. In spherical coordinates φ and ϑ on
the unit 2-sphere, given by

x1 = cosφ sinϑ, x2 = sinφ sinϑ, x3 = cosϑ,

and their canonical conjugate momenta pφ and pϑ , the momentum mapping
(11.7.4) and the Hamiltonian (11.7.3) take the form

J = pφ, H = p2
ϑ

2
+ p2

φ

2 sin2 ϑ
+ cosϑ.

31The argument belongs to Cushman.
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Fig. 11.3 The curves in Ṽ H
c used in the prof of Corollary 11.7.9 (a) and in the computation of

the monodromy (b)

Thus, the Hamilton equations read

ṗφ = 0, ṗϑ = p2
φ cosϑ

sin3 ϑ
+ sinϑ, φ̇ = pφ

sin2 ϑ
, ϑ̇ = pϑ. (11.7.5)

For a given regular value (h, j), we choose the fundamental cycles γ1 and γ2 as the
integral curve of XJ and XH , respectively, through a chosen point of E −1(h, j).
According to (10.8.14), γ1 is given by ϑ = const and it is parameterized by the
variable φ. Since H is a constant of motion, along γ2, we have

p2
ϑ = 2(h − cosϑ) − j2

sin2 ϑ
.

Now, the action variables are given by

I1 =
∫

γ1

pφdφ = 2πj,

I2 =
∫

γ2

pϑdϑ = 2
∫ ϑ+

ϑ−

√

2(h − cosϑ) − j2

sin2 ϑ
dϑ,

with ϑ± denoting the solutions of the equation 2(h − cosϑ) − j2 sin−2 ϑ = 0. Note
that the integral is of elliptic type and cannot be solved in terms of elementary
functions. For the corresponding transformation of frames

XIi
= bi

kXHk
,

where H1 = H and H2 = J , we find bi
k(h, j) = ∂Ii

∂Hk
(h, j), that is,

b1
1(h, j) = 0, b1

2(h, j) = 2π

and, by (11.7.5),

b2
1(h, j) = 2

∫ ϑ+

ϑ−

dϑ√
2(h − cosϑ) − j2

sin2 ϑ

= 2
∫ ϑ+

ϑ−

dϑ

ϑ̇
= 2
∫ ϑ+

ϑ−
dt



626 11 Integrability

b2
2(h, j) = −2j

∫ ϑ+

ϑ−

dϑ

sin2 ϑ

√
2(h − cosϑ) − j2

sin2 ϑ

= −2
∫ ϑ+

ϑ−

φ̇dϑ

ϑ̇

= −2
∫ ϑ+

ϑ−
dφ.

Thus, T := b2
1(h, j) is the time needed for running through one period of the re-

duced dynamics and �φ := b2
2(h, j) is the corresponding increase of φ. T is called

the time of return and �φ is called the rotation number. A careful analysis, see [69],
yields the following result:

(a) T is a uniquely defined real analytic function on VH .
(b) �φ is a locally unique real analytic function on VH fulfilling

lim
j→0

�φ =
{−π for − 1 < h < 1

−2π for h > 1.
(11.7.6)

This can be understood heuristically by looking at the effective potential of the
reduced dynamics.

Now, we choose γ to run along the edges of the square with corners

(h0,−j0), (h1,−j0), (h1, j0), (h0, j0),

where h0 < 1, h1 > 1 and j0 > 0, see Fig. 11.3(b). Obviously, the parallel transport
of b1(h0,−j0) along this curve is trivial and the component b2

1 does not change
as well. Let us calculate the change in the component b2

2(h0,−j0) = �φ: we can
choose j0 arbitrarily small. In the limit j0 → 0, using (11.7.6) and the obvious rela-
tion �φ(h, j) = −�φ(h,−j), for the first line segment we obtain

lim
j0→0

(
�φ(h1,−j0) − �φ(h0,−j0)

)= 2π − π = π.

For the second and the fourth line segments there is no contribution and for the third
segment we obtain again π . Thus, the parallel transport along γ yields the following
transformation of the frame at (h0,−j0):

b1 �→ b1, b2 �→ b2 + b1.

Thus, the monodromy matrix is given by

A =
(

1 0
1 1

)
.

In particular, the monodromy is non-trivial, so that the spherical pendulum does not
admit global action variables either.

Remark 11.7.10 Another example with nontrivial monodromy is provided by the
Lagrange top, see [69]. We stress that nontrivial monodromy leads to interesting
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quantum effects. These are studied for example in molecular physics, see [113] and
[83] and the references therein.

11.8 Non-commutative Integrability

As already noted at the end of Sect. 11.4, the occurrence of degeneracies is of-
ten related to the fact that a system possesses more than n functionally indepen-
dent32 constants of motion.33 This situation has been considered in an early paper
by Nekhoroshev [228]. Below we give a proof of this result. Moreover, we prove
the Mishchenko-Fomenko Theorem which applies when the constants of motion
close under the Poisson bracket. For both of these results, one needs the following
classical theorem, which generalizes the Liouville Theorem 11.3.1.

Theorem 11.8.1 (Carathéodory-Jacobi-Lie) Let (M,ω) be a symplectic manifold
of dimension 2n and let f1, . . . , fl , l ≤ n, be independent smooth functions in invo-
lution. Then, for every m ∈ M , there exist (2n − l) smooth functions fl+1, . . . , f2n

on an open neighbourhood of m such that f1, . . . , f2n are Darboux coordinates,

ω = df1 ∧ dfn+1 + · · · + dfn ∧ df2n.

Proof We show that on some neighbourhood of m in M , the family {f1, . . . , fl}
may be extended to a family {f1, . . . , fn} of independent functions in involution.
Then, the assertion follows from the Liouville Theorem 11.3.1.

Since ω(Xfi
,Xfj

) = {fi, fj } = 0 for all i, j = 1, . . . , l and since the differentials
df1, . . . ,dfl are linearly independent, they generate an isotropic subbundle E of
T∗M . Let α = df1 ∧ · · · ∧ dfl and consider the closed (2n − l)-form

β = α ∧ ω(n−l).

Obviously, all the characteristic subspaces kerβm have the same dimension. Hence,
kerβ coincides with the characteristic distribution34 Dβ of β which by Proposi-
tion 4.2.20 is integrable. Thus, the Frobenius Theorem implies that there exists
an adapted chart (U,κ) such that Dβ is spanned over U by the l vector fields
∂2n−l+1, . . . , ∂2n and the annihilator (Dβ)0 is spanned over U by the 1-forms
dκ1, . . . ,dκ2n−l . It is not hard to see that (Dβ)0 is Π -orthogonal to E, where Π

denotes the Poisson bivector defined by ω (Exercise 11.8.1). Thus, every function
κi , i = 1, . . . ,2n − l, Poisson-commutes with every function fj . Choosing one of
them and denoting it by fl+1, we end up with (l + 1) independent functions in invo-
lution. This procedure can be iterated until we obtain n functions in involution. �

32For convenience, throughout this section we will assume the constants of motion under consid-
eration to be functionally independent on the whole of M .
33One usually speaks of non-commutative (Liouville) integrability or of superintegrability.
34Cf. Definition 4.2.18.
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Remark 11.8.2 The Carathéodory-Jacobi-Lie Theorem can be further generalized
as follows. Let f1, . . . , fl and h1, . . . , hk be independent smooth functions fulfilling

{fi, fj } = 0, {hr,hs} = 0, {fi, hr } = δir .

Then, locally, there exist smooth functions fl+1, . . . , fn and hk+1, . . . , hn comple-
menting the above functions to Darboux coordinates. This result is usually referred
to as the Cartan-Lie Theorem, see [181, §III.13] for a proof.

Theorem 11.8.3 (Nekhoroshev) Let there be given (n + k) independent functions
H1, . . . ,Hn+k on a 2n-dimensional symplectic manifold (M,ω). Assume that all of
these functions are in involution with the first (n− k) functions. Let Σ be a compact
level set component of the mapping H = (H1, . . . ,Hn+k) : M → R

n+k . Then, Σ

is isotropic and diffeomorphic to an (n − k)-dimensional torus. Moreover, there
exist coordinates ϑ1, . . . , ϑn−k , q1, . . . , qk , I1, . . . , In−k and p1, . . . , pk on an open
neighbourhood U of Σ such that

(a) the symplectic form is given by ω =∑n−k
i=1 dIi ∧ dϑi +∑k

j=1 dpj ∧ dqj ,
(b) the flows of the Hamiltonian vector fields XIi

on U are complete and 2π -
periodic,

(c) the coordinates Ii can be written as functions of H1, . . . ,Hn−k and the coordi-
nates pj and qj can be written as functions of H1, . . . ,Hn+k .

Due to the periodicity of the flows of the Hamiltonian vector fields XIi
, the co-

ordinates Ii and ϑi are referred to as generalized action and angle variables. For
k = 0, we obtain the Arnold Theorem 11.3.3 and the existence theorem 11.4.3 for
action and angle variables as a special case. Thus, the proof of the Nekhoroshev
Theorem, to be given below, yields an alternative existence proof for action and
angle variables in the case of an ordinary integrable system, cf. Remark 11.4.6.

Proof Since

XHi
(Hj ) = {Hi,Hj } = 0, i = 1, . . . , n − k, j = 1, . . . , n + k,

the Hamiltonian vector fields XH1 , . . . ,XHn−k
are tangent to all level set components

of H . For dimensional reasons, they span the tangent spaces and thus, every level
set component is isotropic. Since Σ is compact, the restrictions of XH1, . . . ,XHn−k

to Σ are complete. Hence, their flows define an action of Rn−k on Σ . Since they
are linearly independent and since Σ has dimension 2n − (n + k) = n − k, the orbit
mapping of any point is a local diffeomorphism. By the same argument as in the
proof of the Arnold Theorem we conclude that the action is transitive. Since Σ is
compact, the common stabilizer of the action is an integer lattice in R

n−k , generated
by elements b1, . . . ,bn−k ∈R

n−k . This implies that Σ is diffeomorphic to Tn−k and
that the vector fields

Xi := bi
jXHj

(11.8.1)
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on Σ have 2π -periodic flows. Moreover, since the constants of motion
(H1, . . . ,Hn−k) commute, we have

ω(XHi
,XHj

) = {Hi,Hj } = 0, i, j = 1, . . . , n − k,

that is, Σ is isotropic. Using the Tubular Neighbourhood Theorem for the subman-
ifold Σ and the Implicit Function Theorem, one can show that there exists a dif-
feomeorphism Φ from a neighbourhood W of Σ onto B × Tn−k , where B ⊂ R

n+k

is some open ball, such that prB ◦Φ = H . We conclude that all level set compo-
nents in W are diffeomorphic to Σ ∼= Tn−k and by the same arguments we obtain
2π -periodic vector fields Xi on each level set component, defined by (11.8.1). We
choose the generators bi so that, for every i, the integral curves of Xi on different
level set components are homotopic in W .

Now, let γi be the image of the integral curve of Xi through m0 ∈ Σ and let γi(m)

be a closed curve through m ∈ W which is homotopic to γi and which is contained
in the torus Σ(m) through m. The curves γ1(m), . . . , γn−k(m) form a system of
fundamental cycles in this torus. Next, using the Poincaré Lemma, we want to show
that on W there exists a potential form τ of ω. For that purpose, it is enough to
note that ω vanishes on every 2-cycle of W . This is the case, indeed, because via
the diffeomorphism Φ every 2-cycle on W is homotopic to a 2-cycle on Σ . Then,
the isotropy of Σ implies the assertion. Thus, let us choose a potential τ and let us
define

Ii(m) := 1

2π

∫

γi (m)

τ. (11.8.2)

These functions are well-defined and smooth,35 because all tori foliating the neigh-
bourhood U are isotropic and thus, the Ii depend on the homotopy class of γi(m)

only.
Now, we will show that the functions Ii are in involution and that the Hamilto-

nian vector fields generated by them coincide with the 2π -periodic vector fields Xi

defined by (11.8.1). Then, an application of Theorem 11.8.1 will yield the assertion
of the theorem. For that purpose, let ΦHj be the flow of XHj

. By the assumptions
of the theorem, the foliation of W into tori is invariant with respect to ΦHj , that is,

Φ
Hj

t (Σ(m)) = Σ(Φ
Hj

t (m)). We calculate

{Hj , Ii}(m) = d

dt �0

Ii ◦ Φ
Hj

t (m) = 1

2π

d

dt �0

∫

γi (Φ
Hj
t (m))

τ = 1

2π

d

dt �0

∫

Φ
Hj
t ◦γi (m)

τ.

Let A(t) be the 2-dimensional surface obtained by acting with Φ
Hj

t on γi . Then,

d

dt �0

∫

Φ
Hj
t ◦γi (m)

τ = lim
t→0

1

t

(∫

Φ
Hj
t ◦γi (m)

τ −
∫

γi (m)

τ

)
= lim

t→0

1

t

∫

A(t)

ω = 0,

35To see this, note that one can choose the family {γi(m)} to be differentiable in m.



630 11 Integrability

because A(t) isotropic. Indeed, its tangent spaces are spanned by XHj
and a linear

combination of the vectors (XH1, . . . ,XHn−k
) commuting with XHj

. We conclude
that

{Hj , Ii} = 0, j = 1, . . . , n + k, i = 1, . . . , n − k. (11.8.3)

Since ω is non-degenerate, it follows that on W we can express the variables Ii

as smooth functions of (H1, . . . ,Hn−k). Therefore, XIi
= ∂Ii

∂Hj
XHj

and hence the
functions Ii are in involution.

Let us calculate the Jacobi matrix ∂Ii

∂Hj
. Let m ∈ Σ , let βi ⊂ Σ be the integral

curve through m of the 2π -periodic vector field Xi and let ϕi be the flow parameter
on βi . Consider the line segment

It = {(H1(m), . . . ,Hj−1(m),Hj (m)+s,Hj+1(m), . . . ,Hn+k(m)
) : 0 ≤ s ≤ t

}⊂ B

and take the 2-dimensional surface S(t) = Φ−1(It × Φ(βi)) ⊂ W . Then, we have

∂Ii

∂Hj

(m) = lim
t→0

1

2πt

∫

∂S(t)

τ = lim
t→0

1

2πt

∫

S(t)

ω = 1

2π

∫ 2π

0
ω(∂j ,Xi)dϕi,

where ∂j denotes the j -th partial derivative in the coordinate system defined by Φ .
Using (11.8.1), we conclude

∂Ii

∂Hj

(m) = bi
j (m), m ∈ Σ, (11.8.4)

and thus XIi
= Xi , i = 1, . . . , n − k. Thus, the vector fields XIi

are 2π -periodic.
Since the functions Ii are in involution, we can apply Theorem 11.8.1, which tells
us that for any m ∈ Σ , there exists a neighbourhood U in M and smooth functions
ϑ1, . . . , ϑn−k , q1, . . . , qk and p1, . . . , pk on U such that

ω�U = dIi ∧ dϑi + dpj ∧ dqj .

Let ΦIj be the flow of XIj
and let Ψ I

t := Φ
I1
t1

◦ · · · ◦ Φ
Ij

tn−k
be the corresponding

action of R
n−k . This action is transitive on every level set component. Since the

functions qj and pj are constant along the tori, via this mapping they trivially extend
to functions on W = Ψ I

Rn−k (U). To extend the functions ϑi , note that on U we have
XIi

= ∂ϑi and thus

ϑi
(
Ψ I

t (m)
)= ϑi(m) + t i (11.8.5)

for all m ∈ U and t ∈ R
n−k such that Ψ I

t (m) ∈ U . Thus, for a covering of W by
open subsets Uk := Ψ I

tk (U) with appropriately chosen tk ∈ R
n−k , k ∈ Z, one can

define the extension of ϑi to Uk by setting

ϑi
�Uk

(m) := ϑi
(
Ψ I−tk (m)

)+ t ik,
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because (11.8.5) ensures that the functions so defined coincide on any nontrivial
intersection of the Uk and thus combine to smooth functions (mod 2π ) on W . In
order to show that the functions qj , pj and ϑi complement the functions Ii to
Darboux coordinates on W , it suffices to prove that the mapping W → R

2n defined
by ϑ , I , q and p is injective. The latter follows from the transitivity of Ψ I and
(11.8.5). �

The Nekhoroshev Theorem immediately implies

Corollary 11.8.4 Let (M,ω,H) be a 2n-dimensional Hamiltonian system such that
there exist (n + k) constants of motion fulfilling the assumptions of Theorem 11.8.3.
In the Darboux coordinates ϑi , qj , Ii , pj provided by this theorem, the Hamiltonian
function H depends on I only and the Hamilton equations read

İj = 0, ϑ̇j = ∂H(I)
∂Ij

≡ ωj (I), ṗi = 0, q̇i = 0. (11.8.6)

Thus, the integral curves of the system are located on (n − k)-dimensional tori and
the motion is quasiperiodic with frequencies being functions of the constants of
motion I1, . . . , In−k .

Another important class of non-commutatively integrable systems is the fol-
lowing, studied by Fomenko and Mishchenko [214]. Let (M,ω,H) be a 2n-
dimensional Hamiltonian system, let p be an integer between n and 2n and let
H1, . . . ,Hp be functionally independent constants of motion. Let g be the linear
subspace of C∞(M) spanned by the functions Hi . Assume that

(a) the Hamiltonian vector fields XHi
are complete,

(b) g is closed under the Poisson bracket, that is, {Hi,Hj } = ck
ijHk with ck

ij ∈ R.

By assumption (b), g is a Lie algebra of dimension p. It acts symplectically from
the right on M by the homomorphism g → X(M), A �→ XA. By assumption (a),
this action of g integrates to a symplectic action Ψ̃ of the corresponding simply
connected Lie group36 G̃ on M , given by

Ψ̃exp
G̃

A(m) = ΦA
1 (m)

for all A ∈ g and m ∈ M , where ΦA denotes the flow of XA. One can show that the
adjoint action of G̃ on g is given by

Ad
(
a−1)A = A ◦ Ψ̃a (11.8.7)

for all A ∈ g and a ∈ G̃ (Exercise 11.8.2). Note that in the special case where p = n

and g is Abelian, G̃ ∼= R
n and we are in the situation of an ordinary integrable

system whose Hamiltonian vector fields XHi
are complete, cf. Sect. 11.3.

36Every finite-dimensional abstract Lie algebra is the Lie algebra of a simply connected Lie group

G̃, which is unique up to isomorphy [302, Thm. 3.28].



632 11 Integrability

Since, by definition, we have A∗ = XA for all A ∈ g, the mapping J : M → g∗
defined by

〈
J (m),A

〉= A(m), A ∈ g, (11.8.8)

is a momentum mapping for the action Ψ̃ . As a consequence of (11.8.7), it is equiv-
ariant (Exercise 11.8.2). If we identify g∗ with R

n by means of the basis dual to the
basis {Hi} in g, J coincides with the mapping H = (H1, . . . ,Hp). Since the Hi are
functionally independent, J is a submersion. This implies the following.

(a) The level set components of J are embedded submanifolds of dimension 2n−p.
They are the maximal integral manifolds of the regular distribution kerJ ′, cf.
Example 3.5.4/4.

(b) Corollary 10.2.2/2 implies that the stabilizer G̃m is discrete, that is, gm = 0.
Hence, the action of G̃ is locally free. Consequently, the kernel ker Ψ̃ =⋂

m∈M Gm is discrete and the quotient group G := G̃/ker Ψ̃ has Lie algebra
g and universal covering group G̃. The induced G-action on M is denoted by
Ψ . It is obviously effective and locally free.

(c) The image of J is open and thus it intersects the principal stratum of the coad-
joint action, that is, it contains an element μ such that the Lie algebra gμ of
the stabilizer Gμ has minimal dimension. This implies that gμ is Abelian, see
[77]. Hence, the identity connected component G0

μ of Gμ is Abelian, too. Us-
ing Proposition 6.2.2/3 and Formula (6.2.3), we determine gμ explicitly (Exer-
cise 11.8.3):

gμ = {A ∈ g : {A,B}(m) = 0 for all B ∈ g, m ∈ J−1(μ)
}
. (11.8.9)

Let μ ∈ g∗ be a value of J . Since, by equivariance, J−1(μ) is invariant under the
action of the stabilizer Gμ of μ under the coadjoint representation, and since the
induced action of Gμ on J−1(μ) is locally free,

dimgμ ≤ dimJ−1(μ) = dimM − dimg, (11.8.10)

where the equality is due to the fact that J is a submersion. In the special case
of an ordinary integrable system, g is Abelian, and hence dimgμ = dimg = n =
dimJ−1(μ). A reasonable generalization to the present situation is to assume that
dimgμ = dimJ−1(μ), which is equivalent to

dimM = dimg+ dimgμ. (11.8.11)

Let us assume that there exist μ ∈ g∗ which fulfil this equality and belong to the
principal stratum37 of g∗. Then, (11.8.10) implies that the image of J is completely
contained in this stratum, that is, for every value μ of J condition (11.8.11) holds
and gμ is Abelian. Under this assumption, we have the following generalization of
the Arnold Theorem.

37The subset of elements with minimal stabilizer under the coadjoint action.



11.8 Non-commutative Integrability 633

Theorem 11.8.5 (Mishchenko-Fomenko) Let H1, . . . ,Hp , n ≤ p < 2n, be indepen-
dent functions on a 2n-dimensional symplectic manifold (M,ω) whose Hamiltonian
vector fields XHi

are complete. Assume that this system closes under the Poisson
bracket, thus spanning a p-dimensional Lie subalgebra g of C∞(M). Let G be the
induced effective symmetry group and let Σ be a level set component of the asso-
ciated momentum mapping J with value J (Σ) = μ. Assume that gμ belongs to the
principal stratum of the coadjoint action of G and satisfies (11.8.11). Then, Σ is
an orbit of the identity connected component G0

μ of Gμ and hence diffeomorphic to

Tl ×R
2n−p−l for some 0 ≤ l ≤ 2n − p.

Proof Let m0 ∈ Σ . Since J−1(μ) is invariant under the action of Gμ, the level
set component Σ is invariant under the action of the identity connected component
G0

μ. According to (11.8.11), the Killing vector fields of the action of G0
μ on Σ span

the tangent bundle of Σ . Hence, for every m ∈ Σ , the orbit mapping G0
μ → Σ ,

a �→ Ψa(m), is a local diffeomorphism. Using this, by the same argument as in the
proof of the Arnold Theorem, one can show that G0

μ acts transitively on Σ . Then,
the Orbit Theorem 6.2.8 implies that Σ is diffeomorphic to the quotient of G0

μ with
respect to the stabilizer Gm of some38 point m of Σ . Since gμ is Abelian, so is
G0

μ. Hence, the quotient G0
μ/Gm is an Abelian Lie group. Since Gm is discrete,

G0
μ/Gm has dimension 2n − p and is, therefore, isomorphic to Tl × R

2n−p−l for
some l between 0 and 2n − p.39 �

Remark 11.8.6

1. In Sect. 11.3 we observed that in the case of commutative integrability, symplec-
tic reduction of the level sets of J yields discrete reduced phase spaces. Here, un-
der the assumption that Eq. (11.8.11) holds, we have a certain non-commutative
analogue of this situation: by Theorem 11.8.5, the topological quotient

J−1(μ)/Gμ ≡ (J−1(μ)/G0
μ

)
/
(
Gμ/G0

μ

)

is discrete and hence trivially a symplectic manifold, which may be interpreted
as the reduced phase space at μ.

2. Under the additional assumption that the G-action be free and proper, the theory
of regular symplectic reduction applies: the level set Mμ = J−1(μ) is an embed-
ded submanifold, Gμ acts freely and properly on Mμ and the discrete reduced
phase space Mμ/Gμ results from the Regular Reduction Theorem 10.3.1. The
level set Mμ = J−1(Oμ), with Oμ ⊂ g∗ denoting the coadjoint orbit through μ,
is a submanifold of M diffeomorphic to Mμ×Gμ G, see (10.3.14). Since Mμ/Gμ

is discrete, Mμ is diffeomorphic to a direct sum of group manifolds Gμ. Since

38In fact, since G0
μ is Abelian, all points have the same stabilizer.

39Every finite-dimensional connected Abelian Lie group is of this form, see Exercise 18 in Chap. 3
of [302].
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Gμ acts freely on Mμ, the Killing vector fields generated by the elements of
gμ span an integrable distribution on Mμ, which yields a foliation of Mμ into
leaves diffeomorphic to G0

μ.

Under the additional assumption that the G-action is free and proper, we have
the following non-commutative analogue of the existence theorem 11.4.3 for action
and angle variables.

Theorem 11.8.7 Let (M,ω) be a 2n-dimensional symplectic manifold satisfying
the assumptions of Theorem 11.8.5. Assume, in addition, that the G-action be free
and proper. Then, the following holds.

1. There exists an open neighbourhood U of the origin in g∗
μ and an anti-

equivariant symplectomorphism Φ from a G-invariant open neighbourhood W

of Σ in M onto G × U , endowed with the symplectic form

ω(g,ν)

((
L′

gA1, σ1
)
,
(
L′

gA2, σ2
))= 〈σ1,A2〉 − 〈σ2,A1〉 − 〈μ + ν, [A1,A2]

〉

and the action of G by left translation on the factor G. Φ maps G ·Σ to G×{0}
and satisfies

J ◦ Φ−1(a, ν) = Ad∗(a)(μ + ν). (11.8.12)

2. There exist smooth functions I1, . . . , I2n−p on W in involution whose flows are
complete and generate an action of R2n−p on W with the common stabilizer
2πZl × {0} ⊂ R

2n−p . The orbits of this action are the level set components of
J in W and the level sets of the mapping I = (I1, . . . , I2n−p) are the G-orbits
in W .

3. On some neighbourhood W0 of Σ in W , which can be chosen to be a union
of level set components of J , there exist smooth functions40 ϑ1, . . . , ϑ2n−p ,
q1, . . . , qp−n and p1, . . . , pp−n such that

ω =
∑2n−p

i=1
dIi ∧ dϑi +

p−n∑

j=1

dpj ∧ dqj . (11.8.13)

The functions Ii , qj and pj parameterize the level set components of J in W0
and the functions ϑi provide coordinates on the latter.

As in the situation of the Nekhoroshev Theorem, by a slight abuse of language,
the coordinates provided by this theorem are referred to as generalized action and
angle coordinates. Note that the ϑl+1, . . . , ϑ2n−p do not provide angle variables.

Proof 1. First, we use the anti-isomorphism of Lie group actions given by the iden-
tical mapping of M and the inversion mapping of G to turn the right action Ψ on

40With ϑ1, . . . , ϑl being multi-valued mod 2π .
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MH into a left action Ψ L. Both actions have the same orbits and the same invariant
subsets. For Ψ L, the Symplectic Tubular Neighbourhood Theorem 10.4.4 yields a
Ψ L-equivariant symplectomorphism Φ of an invariant open neighbourhood W of
the orbit of some m ∈ Σ onto the subset Φ(W) = G ×Gm (m̃∗ ⊕ Ṽ ) of the twisted
product E = G ×Gm (m∗ ⊕ V ), where m is a vector space complement of gm in
gμ, cf. (10.2.6), and V is some symplectic slice at m, and where m̃∗ and Ṽ are open
neighbourhoods of the origin in m∗ and V , respectively. Since Gm is trivial, we have
m = gμ. Then, (10.2.11) and condition (11.8.11) imply V = 0, so that we end up
with E = G × U , where U is some open neighbourhood of the origin in g∗

μ. Since
Σ is contained in the orbit of m, it is contained in W and we have G · Σ = G · m.
Hence, it is mapped onto the zero section of E. Finally, in this special situation,
the symplectic form on Φ(W) is given by (10.4.12) and the momentum mapping is
given by the normal form (10.4.15).

2. Choose a basis {E1, . . . ,E2n−p} in gμ and define Ii : W →R by

Ii(m) := 〈prg∗
μ
◦Φ(m),Ei

〉
,

where prg∗
μ

: G × g∗
μ → g∗

μ denotes the natural projection. Obviously, the level
sets of I = (I1, . . . , I2n−p) coincide with the G-orbits in W . To determine the
Hamiltonian vector field XIi

, we pass to G × U via Φ . Denote X̃Ii
:= Φ∗XIi

. For
(a, ν) ∈ G × g∗

μ and a tangent vector (Ba,σ ) with B ∈ g and σ ∈ g∗
μ we compute

(dIi)(a,ν)(Ba, σ ) = 〈σ,Ei〉.
With the ansatz (X̃Ii

)(a,ν) = (Aa,ρ), the defining equation for X̃Ii
reads

〈ρ,B〉 − 〈σ,A〉 − 〈μ + ν, [A,B]〉= −〈σ,Ei〉
for all B ∈ g and σ ∈ g∗

μ. Since gμ is the stabilizer of μ, we have ad∗(Ei)μ = 0.
Since gμ is Abelian, ad∗(Ei)ν = 0. Hence, A = Ei , ρ = 0 is a solution, and it is,
therefore, the unique solution. Thus, (X̃Ii

)(a,ν) = ((Ei)a,0) and the flow is complete
and given by

(
s, (a, ν)

) �→ (
a exp(sEi), ν

)
.

Since gμ is Abelian, the vector fields X̃Ii
commute pairwise. Hence, according

to (6.1.5), their flows define an action Ψ̃ I of R
2n−p on G × U . Due to Proposi-

tion 5.3.10, this action can be written in the form

Ψ̃ I
t (a, ν) =

(
a exp

( 2n−p∑

i=1

tiEi

)
, ν

)
, t = (t1, . . . , t2n−p). (11.8.14)

The corresponding orbit mapping of the point (1,0) induces a Lie group homo-
morphism from R

2n−p to G0
μ. Since G0

μ is isomorphic to Tl × R
2n−p−l , the basis

elements Ei can be chosen so that the kernel of this homomorphism is 2πZl × {0}.
Then, this is also the common stabilizer of all points of G × g∗

μ.
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Next, we return to W . The Hamiltonian vector fields XIi
commute and hence

their flows define an action Ψ I of R
2n−p given by Ψ I = Φ ◦ Ψ̃ I ◦ Φ−1. Then,

(11.8.14) reads

Ψ I
t ◦ Φ(a, ν) = Φ

(
a exp

(2n−p∑

i=1

tiEi

)
, ν

)
. (11.8.15)

We show that the orbits of Ψ I coincide with the level set components of J in W .
Let m = Φ(a, ν) ∈ W and let Σ(m) be the level set component of J containing m.
By (11.8.12),

J (m) = Ad∗(a)(μ + ν).

Since ν ∈ g∗
μ and gμ is Abelian, gJ (m) = Ad(a)gμ+ν ⊃ Ad(a)gμ. Since gμ has

minimal dimension, we can choose U so that gμ+ν has minimal dimension for all
ν ∈ U . First, this implies gμ+ν = gμ and hence gJ (m) = Ad(a)gμ. Second, in view
of the first assertion, this implies that Σ(m) is the orbit of m under the action of the
identity connected component G0

J (m)
of GJ(m). By the previous argument, G0

J (m)
=

aG0
μa−1. Finally, since for b ∈ G0

μ we have Ψaba−1(m) = Φ(ab−1, ν), (11.8.15)
implies that the orbit of aG0

μa−1 through m coincides with the Ψ I -orbit. Finally,
the functions Ii are in involution, because their Hamiltonian vector fields commute.

3. This follows by the same arguments as in the Nekhoroshev Theorem 11.8.3. �

Remark 11.8.8 If the functions H1, . . . ,Hp are constants of motion with respect to
a given Hamiltonian function on (M,ω), we have a corollary completely analogous
to Corollary 11.8.4. In particular, in the generalized action and angle variables pro-
vided by the theorem, the dynamics of the Hamiltonian system is given by (11.8.6).

Remark 11.8.9

1. The Mishchenko-Fomenko Theorem can be generalized in various directions. In
particular, one can weaken the assumption that the functions Hi form a finite-
dimensional Lie algebra by requiring that

{Hi,Hj } = Pij (H),

where Pij is a matrix of constant rank, see e.g. [89], [91], [261] and the references
therein. In [261] a nice discussion of non-commutative integrability of the Kepler
problem can be found. We also recommend the survey article [154].

2. One can prove that non-commutative integrability implies ordinary integrability,
see [214] for a restricted class of Lie algebras (including semisimple ones) and
[258] for the general case.

3. If we choose W small enough so that for every level set of J it contains at
most one connected component, the space of level set components in W may
be identified with J (W) ⊂ g∗ and the corresponding natural projection with
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J : W → J (W) ⊂ g∗. On the other hand, combining the G-equivariant sym-
plectomorphism Φ with the natural projection prg∗

μ
: G × g∗

μ → g∗
μ, we obtain a

smooth mapping

I := prg∗
μ
◦Φ : W → g

∗
μ.

By definition, I =∑2n−p

i=1 IiEi . Since the fibres of this mapping are foliated by
level set components of J , there exists a smooth mapping π : J (W) → g∗

μ such
that the diagram

W

I J

g∗
μ J (W) ⊂ g∗

π

(11.8.16)

commutes. One says that J�W and I define a bifibration of W . The fibres of
J�W are isotropic and the fibres of I are coisotropic. We show that π−1(ν)

coincides with the coadjoint orbit through μ+ ν. Indeed, using (11.8.12) and the
equivariance of J we obtain

π−1(ν) = J
(
I (ν)

)= J
(
G · Φ−1(1, ν)

)= Ad∗(G)
(
J
(
Φ−1(1, ν)

))= Oμ+ν.

In particular, the fibres of π coincide with symplectic leaves of the Lie-Poisson
structure of g∗, discussed in Example 8.2.18/3. Via J , the generalized action and
angle variables ϑi , qj , Ii , pj induce coordinates q̃j , Ĩi , p̃j on g∗ and, via I ,
coordinates Îi on g∗

μ, which in this context is often referred to as the action space.
Let us add that the above bifibration defines a dual pair in the sense of Weinstein
[310]. For more details we refer to [89] and Chap. 11 of [232].

To conclude the discussion of non-commutative integrability, let us consider a
2n-dimensional Hamiltonian system which is both non-commutatively integrable,
with momentum mapping J , and integrable in the ordinary sense, with the indepen-
dent constants of motion in involution H = (H1, . . . ,Hn). Let m ∈ M be a regular
point of both J and H and assume that the level set components of m with respect
to J and to H are compact. On the one hand, according to Theorem 11.4.3, m pos-
sesses an open neighbourhood U which is foliated by n-dimensional tori which are
invariant under the dynamics, thus giving rise to ordinary action and angle variables.
On the other hand, according to Theorem 11.8.7, the dynamics in U further reduces
to lower-dimensional tori. In general, the decomposition into n-tori is not compat-
ible with the topology of the non-commutatively integrable system. The following
example illustrates this point.

Example 11.8.10 (Symmetric Euler top) We take up Example 11.5.4. Recall that by
means of the left trivialization of T∗SO(3) and the natural isomorphism so(3) ∼=R

3

of Example 5.2.8, the phase space of the symmetric Euler top can be identified with
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M = SO(3) × R
3. In these variables, the action of SO(3) on M induced by left

translation is given by

Ψb(a,L) = (ba,L).

In order to reserve the symbols G and J for the Andoyer variables, in this example,
we denote the Lie group acting effectively by Ĝ and the corresponding momentum
mapping by Ĵ . Consider the Andoyer function L on M , given by

L(a,L) := L · e3,

and the components of the momentum mapping of the action of SO(3) on M by left
translation, given by

K(a,L) = aL.

We have

{Ki,Kj } = εij
kKk, {L,Ki} = 0, (11.8.17)

where the last equation is due to the fact that XKi
are Killing vector fields for the

SO(3)-action, whereas L is invariant. Thus, the functions L, K1, K2, K3 span a Lie
subalgebra g of C∞(M). It is isomorphic to R ⊕ so(3) via the assignment L �→
(1,0), Ki �→ IRi , cf. Example 5.2.8. The corresponding momentum mapping is

Ĵ = (L,K1,K2,K3)

and the associated simply connected Lie group is G̃ =R× SU(2). An easy compu-
tation (Exercise 11.8.4) shows that its action on M is given by

Ψ(α,u)(a,L) = (φ(u)a,RαL
)
, α ∈R, u ∈ SU(2), (11.8.18)

where φ : SU(2) → SO(3) is the covering homomorphism of Example 5.1.11 and
Rα denotes rotation about e3 by the angle α. The subset of regular points of Ĵ is
given by

MĴ = {(a,L) ∈ SO(3) ×R
3 : L × e3 �= 0

}= SO(3) × (R3 \Re3
)
.

The points of MĴ have the common stabilizer G̃(a,L) = 2πZ × {±1}, hence the
group acting effectively is

Ĝ = U(1) × SO(3)

and this action is free and proper. The values of Ĵr are given by

μ = (λ,k) ∈ R×R
3 \ {0}, |λ| < ‖k‖.

The stabilizer subgroup Ĝμ is the direct product of U(1) with the subgroup of SO(3)

of rotations about k, hence Ĝμ
∼= T2. Under the identification ĝ ∼= R ⊕ so(3), the

stabilizer subalgebra ĝμ is given by R ⊕ Rk ⊂ R ⊕ R
3. In terms of the original
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representation of ĝ in terms of functions, ĝμ is the subalgebra spanned by the two
functions L and kiKi . The dimension condition (11.8.11) is obviously satisfied for
all values μ of Ĵr . Hence, Theorem 11.8.7 yields that the level set components of
Ĵr are 2-tori. The level set components can also be obtained directly by acting with
Ĝμ on a point (a,L) with L · e3 = λ and aL = k, which amounts to left translations
of a by rotations about aL and to rotations of L about the e3-axis.

Now, consider the Andoyer variable G, given by

G(a,L) = ‖L‖.

We already know that XL and XG define an action of R
2 on MĴ with common

stabilizer 2πZ2. Due to {L,G} = 0 and {G,Ji} = 0, this action leaves the level
set components of Ĵr invariant and hence the latter are the orbits of this action.
Moreover, the level sets of the mapping I := (L,G) are the orbits of the action of
the symmetry group U(1) × SO(3) and the image is given by

I
(
MĴ
)= {(λ, γ ) ∈R

2 : |λ| < γ
}
.

Thus, as in the situation of Remark 11.8.9/3, we have a bifibration of the type
(11.8.16), which here reads

MĴ

I Ĵr

I (MĴ ) Ĵ (MĴ )
π

The induced projection π is given by

π(λ,k) = (λ,‖k‖)
and its fibres are {λ} × S2

‖k‖, where S2
‖k‖ is the sphere of radius ‖k‖ in R

3, repre-
senting the (co)adjoint orbit of k. Thus, the action variables L and G are adapted to

the foliation of MĴ induced by the symmetry associated with ĝ: the fibre of Ĵr over
(λ, γ ) is a bundle with fibre T2 over {λ} × S2

‖k‖. For every λ, this bundle is a direct

product of a trivial S1-bundle over the point λ with a nontrivial S1-bundle over S2

of the type SO(3) → S2, that is, the SO(3) × S1-fibres of I cannot be decomposed
globally into 3-dimensional tori. This can be further illustrated using the remaining

Andoyer variable J : by Remark 11.5.5, J is not globally defined on MĴ , but only
on the open subset

M∗ = {(a,L) ∈ SO(3) ×R
3 : L × e3 �= 0,n3 × L �= 0

}
. (11.8.19)

The Andoyer variables are adapted to the corresponding bundles as follows: (g, l)

are angle coordinates in the T2-fibres of Ĵ�M∗ , (G,L,J, j) are coordinates on
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Ĵ (M∗), (g, l, J, j) are coordinates on the fibres of I�M∗ and (G,L) are coordi-
nates on I (M∗). By the condition n3 × L �= 0, the points (j, J ) = (0,G) (north
pole) and (j, J ) = (π,−G) (south pole) are excluded, that is, (J, j) yield local co-
ordinates on the 2-sphere with radius G. Altogether, the action and angle variables
define a diffeomorphism

(G,L,J,g, l, j) : M∗ → N∗ × T3, N∗ = {(G,L,J ) ∈R
3 : |L| < G, |J | < G

}
.

To cover M by action and angle variables, one has to introduce a second Andoyer
chart. This is explained in detail in a paper by Fasso [89]. From the above discussion
we see that it is quite unnatural to decompose the phase space into 3-tori. The motion
of the top takes place on invariant 2-tori and the additional angle variable j has no
physical meaning. The definition of the pair (J, j) of variables is of local nature and
depends on the choice of the inertial frame.

Exercises
11.8.1 Complete the proof of Theorem 11.8.1 by showing that, with respect to the

Poisson bivector field Π , (Dβ)0 is orthogonal to E.
Hint. Use Proposition 5.4 in [181, §I.3].

11.8.2 Verify Formula (11.8.7) and use this to prove that the momentum mapping
J defined by (11.8.8) is equivariant.

11.8.3 Prove Formula (11.8.9).
11.8.4 In Example 11.8.10, verify that the effective action induced by L, K1, K2,

K3 is given by Formula (11.8.18).
11.8.5 Show that the Kepler problem yields a non-commutatively integrable model

both for positive and for negative values of the energy. Work out the details
for negative energy values.
Hint. Reconsider Example 10.6.3 carefully.



Chapter 12
Hamilton-Jacobi Theory

In this chapter, we present the classical Hamilton-Jacobi theory. This theory has
played an enormous role in the development of theoretical and mathematical
physics. On the one hand, it builds a bridge between classical mechanics and other
branches of physics, in particular, optics. On the other hand, it yields a link between
classical and quantum theory. In Sect. 12.1 we start with deriving the Hamilton-
Jacobi equation and give a proof of the classical Jacobi Theorem, which yields a
powerful tool for solving the dynamical equations of a Hamiltonian system. We in-
terpret the Hamilton-Jacobi equation geometrically as an equation for a Lagrangian
submanifold of phase space1 which is contained in the coisotropic submanifold
given by a level set of the Hamiltonian. Using this geometric picture, one can extract
a general method for solving initial value problems for arbitrary first order partial
differential equations of the Hamilton-Jacobi type. This method is based on the fact
that solutions are generated by the characteristics of the underlying Hamiltonian
system. That is why this procedure is called the method of characteristics. It will be
discussed in detail in Sect. 12.2. In Sect. 12.3 we generalize this method to the case
of systems of partial differential equations of the Hamilton-Jacobi type.

It turns out that one can go beyond the case where a solution is generated by a sin-
gle function on configuration space. This is interesting both from the mathematical
and from the physical point of view. To do so, instead of single generating functions,
one must consider families depending on additional parameters. Such families are
called Morse families. In Sects. 12.4 and 12.5 we develop the theory of Morse fam-
ilies in a systematic way. In Sect. 12.6 we present the theory of critical points2 of
Lagrangian submanifolds in cotangent bundles, including a topological characteri-
zation in terms of the Maslov class and a description of the topological data in terms
of generating Morse families.

In Sects. 12.7 and 12.8 we discuss applications in the spirit of geometric asymp-
totics. First, we study the short wave asymptotics in lowest order for the Helmholtz

1In this chapter, the phase space will always be the cotangent bundle of some configuration space.
2Points where the Lagrangian submanifold is not transversal to the fibres.
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642 12 Hamilton-Jacobi Theory

equation. This leads to the eikonal equation of geometric optics. We discuss classes
of solutions of this equation including the formation of caustics. In Sect. 12.8, we
study the transport equation. We present a detailed study of its geometry and, on
this basis, derive first order short wave asymptotic solutions for a class of first-
order partial differential equations. In this analysis a key role is played by a con-
sistency condition of topological type, which for good reasons is called the Bohr-
Sommerfeld quantization condition. We discuss applications to the Helmholtz and
to the Schrödinger equations.

12.1 The Hamilton-Jacobi Equation

The basic idea of Hamilton-Jacobi theory consists in finding a time-dependent sym-
plectomorphism transforming the system to equilibrium. Let (M,ω,H) be a Hamil-
tonian system and let (M̃, ω̃, H̃ ) be its extension to the time-dependent phase space,
that is,

M̃ = T∗
R× M, ω̃ = ω − dE ∧ dt, H̃ = H − E,

see Sect. 9.3. Let Σ̃ = H̃−1(0) and let Φ̃ be a time-dependent canonical transfor-
mation of M̃ . By Proposition 9.3.4, Φ̃ induces a time-dependent canonical trans-
formation of M , that is, a smooth mapping Φ : M × R → M such that Φ(·, t) is a
canonical transformation of M for all t . In Darboux coordinates qi and pi on M , Φ
is given by

(q,p, t) �→ Φ(q,p, t) = (
q̄(q,p, t), p̄(q,p, t), t

)
.

It transforms the system to equilibrium iff the new variables q̄i and p̄i are constants
of motion, that is,

˙̄qi = 0, ˙̄pi = 0.

In this case, the Hamilton equations imply

∂H̄

∂q̄i
= 0,

∂H̄

∂p̄i

= 0. (12.1.1)

To find a local generating function S of the first kind for Φ , we must solve

(
p̄idq̄

i − H̄dt
) − (

pidq
i − Hdt

) = −dS (12.1.2)

on the graph ΓΦ ⊂ (M × R) × M of Φ , cf. Sect. 8.8. Comparison of coefficients
yields the equations

p̄i = − ∂S

∂q̄i
, pi = ∂S

∂qi
, H̄ = H + ∂S

∂t
(12.1.3)
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on ΓΦ . By (12.1.1), H̄ depends on t only. It can, therefore, be absorbed into S.
Then,

H + ∂S

∂t
= 0 (12.1.4)

and by coordinatizing ΓΦ by qi and q̄i , from (12.1.3) we obtain

H

(
q,

∂S

∂q
(q, q̄, t), t

)
+ ∂S

∂t
(q, q̄, t) = 0, (12.1.5)

where H stands for the local representative of the Hamiltonian function in the
Darboux coordinates qi , pi . This is the time-dependent Hamilton-Jacobi equation.
Here, q̄ plays the role of a parameter labelling the solutions. It can, therefore, be
omitted. If H is not explicitly time-dependent, one can separate the time variable by
means of the ansatz S(q, q̄, t) = S(q, q̄) + T (t):

dT

dt
= −H

(
q,

∂S

∂q
(q, q̄)

)
.

Since the right hand side of this equation does not depend on t , both sides must be
equal to a constant, say c. Thus, we have T (t) = −c(t − t0) and

H

(
q,

∂S

∂q
(q, q̄)

)
= c. (12.1.6)

This is the time-independent Hamilton-Jacobi equation. Again, q̄ appears as a pa-
rameter labelling the solutions. Let us summarize. If the time-dependent canonical
transformation generated by S(q, q̄, t) transforms the system to equilibrium, then
S(q, q̄, t) fulfils the first order partial differential equation (12.1.5) for every q̄, that
is, the q̄i play the role of parameters for a family of solutions.3 In the sequel, such
a family will be called a complete integral for H , provided it fulfils a certain regu-
larity condition. We will show that complete integrals of (12.1.5) are in one-to-one
correspondence with solutions of the Hamilton equations (2n ordinary differential
equations of first order) for H . This is the famous Jacobi Theorem, yielding a pow-
erful solution scheme. On the other hand, forgetting about the above derivation, we
can view (12.1.5) as an equation defined by H for the function S = S(q, t). This
type of equations occurs in various branches of physics, notably in optics. We will
see that the initial value problem for this equation can be solved by means of the flow
of the Hamiltonian vector field XH . This is the method of characteristics, which will
be discussed in detail below.

3The same statement holds true for a generating function S(q, p̄, t) of the second kind with param-
eters p̄i .



644 12 Hamilton-Jacobi Theory

Remark 12.1.1

1. To understand the physical meaning of S, let us consider a mechanical system
with configuration space Q = R

n and Hamiltonian function H : T∗Q → R. Let
S = S(q, t) be a solution of the associated Hamilton-Jacobi equation. Via S,
every curve t �→ q(t) in Q generates a curve t �→ (q(t),p(t)) in T∗Q by

pi(t) = ∂S

∂qi

(
q(t)

)
.

Using (12.1.4), for the total derivative of S along q(t) we find

d

dt
S
(
q(t)

) = ∂S

∂qi

(
q(t)

)
q̇i (t) + ∂S

∂t

(
q(t)

)

= pi(t)q̇
i(t) − H

(
q(t),p(t)

)

= L
(
q(t), q̇(t)

)
, (12.1.7)

with L denoting the Lagrange function of the system, cf. (9.1.15). Integrating
both sides of (12.1.7) from t0 to t > t0, we obtain

S
(
q(t), t

) − S
(
q(t0), t0

) =
∫ t

t0

L
(
q(t), q̇(t)

)
dt.

Thus, up to an additive constant, S(q, t) coincides with the physical action func-
tion along t → q(t), which is the projection of the integral curve to Q.

2. Obviously, one way to transform a Hamiltonian system (M,ω,H) to equilibrium
is given by the flow Φ of the Hamiltonian vector field XH , cf. Remark 8.2.5/1.
In this case, the constants of motion q̄ and p̄ coincide with the initial values q(t0)
and p(t0) for some given time t = t0. Note that in a neighbourhood of the point

((
q(t0),p(t0), t0

)
, (q̄, p̄, t0)

) ∈ ΓΦ ⊂ M̃ × M̃

we have

det

(
∂pi

∂p̄j

)
�= 0,

so that the coordinates qi and p̄i define a local chart on ΓΦ . Thus, in this context
it is reasonable to use a generating function of the second kind.

Now, we give the geometrical interpretation of the Hamilton-Jacobi equation. Let
M = T∗Q and assume for simplicity that H does not explicitly depend on time; the
general case is completely analogous. Under this assumption, we can confine our
attention to the time-independent Hamilton-Jacobi equation (12.1.6). This equation
can be rewritten as

H ◦ dS = c (12.1.8)
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with c ∈R and with the parameter q̄ omitted. Assume that c is a regular value of H .
Then, H−1(c) is an embedded submanifold of T∗Q of codimension 1. By Propo-
sition 7.2.4/2, it is coisotropic. On the other hand, the image of the differential dS ,
which will be denoted by the same symbol, is a Lagrangian submanifold. Thus, we
arrive at the following geometric interpretation of the Hamilton-Jacobi equation: its
solutions are Lagrangian submanifolds contained in a given coisotropic submanifold
C of T∗Q on which the Hamiltonian vector field XH has no zeros.

Furthermore, the integral curves of XH can be interpreted geometrically as the
characteristics of C : to see this, recall from Sect. 8.5 that the characteristics of C
are the integral manifolds of the characteristic distribution DωC . Since the latter has
rank 1 and since XH has no zeros on C , Lemma 8.5.4/2 implies that DωC is spanned
by XH . It follows that the integral curves of XH coincide with the characteristics
of C , indeed.4

First, we show that the dynamics of an autonomous Hamiltonian system reduces
to the image of the differential dS of a function S on Q iff this function solves the
Hamilton-Jacobi equation.

Proposition 12.1.2 Let (T∗Q,ω,H) be an autonomous Hamiltonian system, with
Q being connected, and let S : Q → R be a smooth function. The following state-
ments are equivalent.

1. S is a solution of the time-independent Hamilton-Jacobi equation (12.1.8).
2. The image of the differential dS is invariant under the flow of XH .

Proof For x ∈ Q and Y ∈ TxQ, we have

ωdS(x)
(
XH, (dS)′Y

) = −〈
dH,(dS)′Y

〉 = −Y(H ◦ dS). (12.1.9)

Since Q is connected, S solves (12.1.8) iff the right hand side of (12.1.9) vanishes
for all Y ∈ TQ. On the other hand, since dS is Lagrange, we have

(dS)′TQ = T(dS) = (
T(dS)

)ω
.

Thus, XH takes values in T(dS), and hence dS is invariant under the flow of XH ,
iff the left hand side of the above equation vanishes for all Y ∈ TQ. �

Remark 12.1.3

1. That point 1 implies point 2 follows also from the more general statement of
Proposition 8.5.3.

2. An analogous statement holds for explicitly time-dependent Hamiltonian func-
tions, because every solution S = S(q, t) of the time-dependent Hamilton-Jacobi
equation defines a Lagrangian submanifold dS of T∗(R × Q). We leave the de-
tails to the reader (Exercise 12.1.1).

4For the case where C is an energy surface, this has already been discussed in Sect. 9.1.
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Fig. 12.1 Geometric
meaning of a solution S of
the time-independent
Hamilton-Jacobi equation

Figure 12.1 illustrates the geometric content of Proposition 12.1.2: every solu-
tion S of the Hamilton-Jacobi equation yields a reduction of the dynamics of the
Hamiltonian system to the Lagrangian submanifold dS. This submanifold is a union
of integral curves of the Hamiltonian vector field XH . This way, we have obtained
a fundamental relation between systems of first order ordinary differential equa-
tions (the Hamilton equations) and first order partial differential equations of the
Hamilton-Jacobi type. On the one hand, this relation can be used to study the dy-
namics of Hamiltonian systems. On the other hand it can be used to solve initial
value problems for partial differential equations of this type.

In the remainder of this section we discuss the first of these two aspects. The
discussion is based on the notion of a complete integral. In order to keep in touch
with the standard mechanics language, we give a definition in terms of local coordi-
nates here. In Sect. 12.3, we will give a coordinate-free definition in a more general
situation (Definition 12.3.3).

Definition 12.1.4 (Complete integral) Let (M,ω,H) be a 2n-dimensional Hamil-
tonian system and let qi , pi be Darboux coordinates. An n-parameter5 family
S(q, q̄, t) of solutions of the time-dependent Hamilton-Jacobi equation (12.1.5),
with H being expressed in terms of the Darboux coordinates qi , pi , is called a
complete integral for H if

det

(
∂2S

∂qi∂q̄j

)
�= 0. (12.1.10)

Remark 12.1.5 From this definition one derives the notion of a first integral for the
time-independent Hamilton-Jacobi equation. Since S does not depend on t here, the
conjugate variable E is a constant of motion which can be expressed in terms of the
remaining constants. Therefore, one has only n−1 independent constants of motion
aj and Condition (12.1.10) is replaced by the requirement that the matrix

5The notation q̄i for the parameters is a matter of convention, their physical meaning depends on
the concrete context.



12.1 The Hamilton-Jacobi Equation 647

∂2S

∂qi∂aj
, 1 ≤ i ≤ n,1 ≤ j ≤ n − 1, (12.1.11)

be of maximal rank.

The following theorem states that finding a complete integral is equivalent to
solving the Hamilton equations. Here, we give the formulation and the proof in
local coordinates. In Sect. 12.3 we will come back to this theorem in a more general
context. There, we will present a coordinate-free proof.

Theorem 12.1.6 (Jacobi) Let (M,ω,H) be a 2n-dimensional Hamiltonian system,
let qi , pi be Darboux coordinates and let S(q, q̄, t) be a complete integral of the
corresponding time-dependent Hamilton-Jacobi equation. Then, via the relations

pi = ∂S

∂qi
(q, q̄, t), p̄i = − ∂S

∂q̄i
(q, q̄, t), (12.1.12)

S defines a time-dependent canonical transformation (q,p) �→ (q̄, p̄), which as-
signs to every set of constants of motion (q̄, p̄) a solution of the Hamilton equations
given in the coordinates qi and pi by

t �→ (
q(q̄, p̄, t),p(q̄, p̄, t)

)
. (12.1.13)

Proof By (12.1.10), S defines via (12.1.12) a canonical transformation of the first
kind, indeed. We show that the curve t �→ (q(t),p(t)) in R

2n given by (12.1.13)
satisfies

q̇j (t) = ∂H

∂pj

(
q(t),p(t), t

)
, ṗi(t) = −∂H

∂qi

(
q(t),p(t), t

)
. (12.1.14)

By (12.1.12), the mappings q(t) and p(t) are defined by the relations

pi(t) = ∂S

∂qi

(
q(t), q̄, t

)
, p̄i = − ∂S

∂q̄i

(
q(t), q̄, t

)
(12.1.15)

where q̄ and p̄ are fixed. The second of these relations implies

0 = d

dt

(
∂S

∂q̄i

(
q(t), q̄, t

)) = ∂2S

∂qj ∂q̄i

(
q(t), q̄, t

)
q̇j (t) + ∂2S

∂t∂q̄i

(
q(t), q̄, t

)
.

By the Hamilton-Jacobi equation and by (12.1.15), the second term yields

− ∂

∂q̄i

(
H

(
q(t),

∂S

∂qi

(
q(t), q̄, t

)
, t

))
= − ∂H

∂pj

(
q(t),p(t), t

) ∂2S

∂qj ∂q̄i

(
q(t), q̄, t

)
.

In view of (12.1.10), this yields the first equation in (12.1.14). The first relation in
(12.1.15) implies

ṗi(t) = d

dt

(
∂S

∂qi

(
q(t), q̄, t

)) = ∂2S

∂qi∂qj

(
q(t), q̄, t

)
q̇j (t) + ∂2S

∂qi∂t

(
q(t), q̄, t

)
.
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For the second term, the Hamilton-Jacobi equation and (12.1.15) yield

− ∂

∂qi

(
H

(
q(t),

∂S

∂qi

(
q(t), q̄, t

)
, t

))

= −∂H

∂qi

(
q(t),p(t), t

) − ∂H

∂pj

(
q(t),p(t), t

) ∂2S

∂qj ∂qi

(
q(t), q̄, t

)
,

where on the right hand side, the partial derivatives of H are taken in the coordi-
nates qi , pi , t (as opposed to the coordinates qi , q̄i , t on the left hand side). Thus,
using the first equation of (12.1.14), which was already shown, we obtain the second
equation in (12.1.14). �

The only systematic way for finding a complete integral is provided by the
method of separation of variables. Above we have applied this method to separate
the time variable in the (time-dependent) Hamilton-Jacobi equation for a Hamil-
tonian function H which does not explicitly depend on time, thus arriving at the
time-independent Hamilton-Jacobi equation. It can also be applied to the other vari-
ables, as soon as the Hamiltonian function consists of a sum of terms which depend
on disjoint sets of coordinates. This is illustrated by the following example.

Example 12.1.7 (Central Force Field) Let us find a complete integral for the motion
of a particle in a central force field, given by a spherically symmetric potential V .
In spherical coordinates r , ϑ , φ, the Hamiltonian takes the form

H = 1

2m

(
p2
r + p2

ϑ

r2
+ p2

φ

r2 sin2 ϑ

)
+ V (r),

cf. Example 11.5.2. Thus, the Hamilton-Jacobi equation reads

1

2m

((
∂S

∂r

)2

+ 1

r2

(
∂S

∂ϑ

)2

+ 1

r2 sin2 ϑ

(
∂S

∂φ

)2)
+ V (r) = E.

We plug in the separation ansatz S(r,ϑ,φ) = Sr(r) + Sϑ(ϑ) + Sφ(φ):

1

2m

((
dSr

dr

)2

+ 1

r2

(
dSϑ

dϑ

)2

+ 1

r2 sin2 ϑ

(
dSφ

dφ

)2)
+ V (r) = E. (12.1.16)

Since dSφ

dφ is the only quantity depending on φ,

dSφ

dφ
= Φ

for some integration constant Φ ∈ R. Then, (12.1.16) can be rewritten as

r2
(

dSr

dr

)2

+ 2mr2(V (r) − E
) = −

(
dSϑ

dϑ

)2

− Φ2

sin2 ϑ
.
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Since the left hand side depends on r only and the right hand side on ϑ ,

(
dSϑ

dϑ

)2

+ Φ2

sin2 ϑ
= Θ2,

(
dSr

dr

)2

= 2m
(
E − V (r)

) − Θ2

r2

with a further integration constant Θ ∈ R. The constants E,Θ,Φ play the role of
the parameters q̄i in Theorem 12.1.6. Thus,

pr ≡ ∂S

∂r
= dSr

dr
=

√

2m
(
E − V (r)

) − Θ2

r2
,

pϑ ≡ ∂S

∂ϑ
= dSϑ

dϑ
=

√

Θ2 − Φ2

sin2 ϑ
,

pφ ≡ ∂S

∂φ
= dSφ

dφ
= Φ

and hence

Sr(r) =
∫ √

2m
(
E − V (r)

) − Θ2

r2
dr,

Sϑ(ϑ) =
∫ √

Θ2 − Φ2

sin2 ϑ
dϑ,

Sφ(φ) = Φφ.

Thus, we arrive at the complete integral

S(t, r,φ,ϑ;E,Φ,Θ) = −Et + Φ · φ + Sr(r,E,Θ) + Sϑ(ϑ,Φ,Θ),

and the following equations describing the dynamics:

t0 ≡ p̄E = − ∂S

∂E
= t − ∂Sr

∂E
= t −

∫
m√

2m(E − V (r)) − Θ2

r2

dr, (12.1.17)

p̄Θ = − ∂S

∂Θ
= −∂Sr

∂Θ
− ∂Sϑ

∂Θ
, (12.1.18)

p̄Φ = − ∂S

∂Φ
= −∂Sϑ

∂Φ
− φ. (12.1.19)

Exercises
12.1.1 Prove Proposition 12.1.2 for the time-dependent case.
12.1.2 Analyze Eqs. (12.1.17)–(12.1.19) for the case of the Kepler potential. Show

that they yield the Kepler orbits.
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12.1.3 Solve the Hamilton-Jacobi equation for the planar two-centre problem (Ex-
ample 11.1.4).
Hint. Use elliptic coordinates.

12.2 The Method of Characteristics

In this section, we show how to solve the initial value problem for the Hamilton-
Jacobi equation using the method of characteristics.

Let Q be a manifold of dimension n and let H : T∗Q → R be a smooth function
for which 0 is a regular value. We consider the level set C := H−1(0). Recall that
the characteristic distribution DωC of C is spanned by the Hamiltonian vector field
XH . Let D be an embedded submanifold of Q of dimension m and let S0 : D → R

be a smooth function. Solving the initial value problem for the Hamilton-Jacobi
equation defined by H in the analytic sense consists in finding a smooth function S

which is defined on some neighbourhood of D and fulfils

H ◦ dS = 0, S�D = S0. (12.2.1)

To solve this problem, we consider the associated Hamiltonian system (T∗Q,ω,H)

and perform the following steps.

1. We determine the Lagrangian submanifold of T∗Q given by the canonical lift
̂(D,S0) of the pair (D,S0), cf. Example 8.3.8/4. According to the Transversal

Mapping Theorem 1.8.2, if ̂(D,S0) is transversal to C , the intersection

S0 := ̂(D,S0) ∩ C

is an embedded isotropic submanifold of dimension n − 1 of T∗Q. If S0 is
transversal in C to the integral curves of XH , we say that S0 is in non-characte-
ristic position and call it an admissible initial condition, or a submanifold of
Cauchy data. For dimensional reasons, and since XH has no zeros on C , S0 is
transversal to the integral curves of XH iff

TξS0 ∩ D
ωC
ξ = {0} (12.2.2)

for all ξ ∈ S0.
2. By means of the flow of XH , from S0 we generate a Lagrangian immersion

Ψ : Λ → T∗Q satisfying H ◦Ψ = 0. Locally, this immersion induces Lagrangian
submanifolds S .

3. If S intersects the fibres of T∗Q transversally and at most once, Proposi-
tion 8.3.10 yields a local function S on Q satisfying dS = S and hence (12.2.1).

We refer to the Lagrangian immersion (Λ,Ψ ) as a generalized solution, to the
Lagrangian submanifold S as a geometric solution and to the function S as an
analytic solution of the initial value problem (12.2.1). Figure 12.2 illustrates the
geometry of the problem.
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Fig. 12.2 Continuation of
S0 by the help of the flow of
XH

Theorem 12.2.1 (Method of Characteristics) Let S0 be an admissible initial con-
dition for the initial value problem (12.2.1). Let Φ be the flow of XH and let D ⊂
R × T∗Q be the domain of Φ . Then, the restriction Ψ of Φ to Λ = (R × S0) ∩ D
is a Lagrangian immersion. (Λ,Ψ ) is a generalized solution of (12.2.1).

Proof Obviously, Λ is an open subset of R × S0 and Ψ : Λ → T∗Q is a smooth
mapping. Since Ψ (0, ξ) = ξ for all ξ ∈ S0, Ψ (Λ) contains S0. Tangent vectors at
(t, ξ) ∈ Λ are of the form (λ d

dt , Y ), where λ ∈ R, d
dt denotes the standard vector

field on R and Y ∈ TξS0. The tangent mapping of Ψ is given by

Ψ ′
(t,ξ)

(
λ

d

dt
, Y

)
= (Φt )

′
ξ (λXH + Y). (12.2.3)

Since XH has no zeros on C and since (Φt )
′
ξ is a bijection, (12.2.2) implies that

Ψ is an immersion. To prove that (Λ,Ψ ) is Lagrange, it suffices to show that it is
isotropic: for λ,μ ∈R and X,Y ∈ TξS0 we calculate

(
Ψ ∗ω

)
(t,ξ)

((
λ

d

dt
,X

)
,

(
μ

d

dt
, Y

))

= ωΦt (ξ)

(
(Φt )

′
ξ (λXH + X), (Φt )

′
ξ (μXH + Y)

)

= ωξ (λXH + X,μXH + Y)

= 0,

because Φt is symplectic, S0 is isotropic and XH is characteristic for C . �

Remark 12.2.2 Theorem 12.2.1 extends to the case of an arbitrary symplectic man-
ifold M and an arbitrary isotropic and non-characteristic submanifold S0 of M .

Corollary 12.2.3 Let (Λ,Ψ ) be a generalized solution of the initial value problem
(12.2.1).
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1. There exists an open connected neighbourhood of {0} × S0 in Λ on which Ψ

is injective and hence defines a Lagrangian submanifold S which constitutes a
local geometric solution.

2. The geometric solution is locally unique in the following sense. If S1 and S2 are
solutions for the initial condition S0, there exists a connected subset of S1 ∩S2
which contains S0 and which is open in both S1 and S2. This follows from the
fact that every solution is a union of open segments of integral curves of XH .

It may happen that the Lagrangian submanifold S obtained from S0 intersects
some of the fibres of T∗Q several times, whereas other fibres are not intersected at
all. It may also happen that S is tangent to a fibre. That is why the third step, the
reconstruction of an analytic solution, again can be performed only locally. Using
Proposition 8.3.10, we obtain

Proposition 12.2.4 Let S0 be an admissible initial condition for the initial value
problem (12.2.1), defined by the pair (D,S0). Assume that D is contractible and
that S0 is transversal to the fibres of T∗Q and intersects every fibre at most once.
Let S be a geometric solution. Then, there exists a neighbourhood U of D in Q and
a smooth function S : U → R such that dS(U) ⊂ S . The function S is an analytic
solution of the initial value problem (12.2.1).

Proof Since S0 is transversal to the fibres of T∗Q and intersects every fibre at
most once, there exists an open neighbourhood V of S0 in S for which this is still
true. Since V is open in S , it is a Lagrangian submanifold of T∗Q. Since S0 is
contractible, we can choose V to be contractible as well. Then, Proposition 8.3.10
yields the existence of U and S. Since S ⊂ C , we have H ◦ dS = 0, that is, S

is a solution of the Hamilton-Jacobi equation. To check the initial condition, we
observe that S0 = dS(D). On the other hand, by the definition of the canonical lift
in Example 8.3.8/4, for every ξ ∈ S0 and X ∈ Tπ(ξ)D we have

〈ξ,X〉 = 〈dS0,X〉.
It follows that 〈dS(x),X〉 = 〈dS0(x),X〉 for all x ∈ D and all X ∈ TxD and hence
d(S�D) = dS0. By adding an appropriate constant we obtain S�D = S0. �

Remark 12.2.5 Recall from the proof of Proposition 8.3.10 that an analytic solu-
tion S can be derived from S as follows: choose an open subset V ⊂ S which
is transversal to the fibres of T∗Q and intersects each fibre at most once. Then,
U = π(V ) is an open subset of Q and V defines a closed 1-form α on U by
α ◦ π = idV . Now, the generating function S is determined from dS = α.

As we have seen, analytic solutions exist only on open subsets of Q over which
the geometric solution is transversal to the fibres of T∗Q. In Sect. 12.4 we will
show that every Lagrangian submanifold can be locally generated by a more general
object, a so-called Morse family. In this sense, local analytic solutions always exist.
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12.3 Generalized Hamilton-Jacobi Equations

In this section, we discuss the following natural generalization of the initial value
problem for the Hamilton-Jacobi equation: instead of (12.2.1) we consider a system
of partial differential equations,

C ◦ dS = 0, (12.3.1)

defined by a smooth mapping C : T∗Q → R
k for which 0 is a regular value. If

the submanifold C = C−1(0) ⊂ T∗Q is coisotropic, (12.3.1) is called a generalized
Hamilton-Jacobi equation. By Remark 8.5.7/2, every coisotropic submanifold can
be locally represented as a level set. Thus, even more generally, every coisotropic
submanifold C ⊂ T∗Q yields a generalized Hamilton-Jacobi equation.

Let n = dimQ and k = codimC . An admissible initial condition for (12.3.1) is
an (n − k)-dimensional submanifold S0 of C which is isotropic in T∗Q and non-
characteristic in C , meaning that it is transversal to the characteristics of C . For
dimensional reasons, this is equivalent to the requirement

TξS0 ∩ (TξC )ω = {0} (12.3.2)

for all ξ ∈ S0. As in Sect. 12.2, we look for generalized solutions (Lagrangian
immersions), geometric solutions (Lagrangian submanifolds) and analytic solutions
(local functions on Q).

Theorem 12.3.1 Let 1 ≤ k ≤ n − 1 and let C : T∗Q → R
k be a smooth map-

ping. Assume that 0 is a regular value of C and that the level set C = C−1(0) is
coisotropic. For every admissible initial condition S0 ⊂ C , there exists a general-
ized solution of the generalized Hamilton-Jacobi equation (12.3.1).

Proof Let Ci : T∗Q → R denote the components of the mapping C and let Xi de-
note the Hamiltonian vector fields generated by these functions. Since 0 is a regular
value of C, the vector fields Xi are pointwise linearly independent on C . By Propo-
sition 8.5.6, they span the characteristic distribution DωC of C . Let Φi denote the
flows of the Xi . There exists an open neighbourhood Λ of {0} × S0 in R

k × S0
such that the mapping

Ψ : Λ → T∗Q, Ψ (t, ξ) := (
Φ1

t1
◦ · · · ◦ Φk

tk

)
(ξ) (12.3.3)

is defined: indeed, the right hand side is defined on an open neighbourhood of {0}×
T∗Q in R

k × T∗Q and Λ can be obtained by intersecting this neighbourhood with
R

k × S0. Since Ψ (0, ξ) = ξ for all ξ ∈ S0, the image Ψ (Λ) contains S0.
Next, we prove that Λ can be chosen so that Ψ is an immersion. For that purpose,

it suffices to show that the tangent mapping of Ψ at (0, ξ) is injective for all ξ ∈ S0.
Writing tangent vectors of Λ at (0, ξ) in the form (x,X) with x ∈ R

k and X ∈ TξS0,
we find

Ψ ′
(0,ξ)(x,X) = X +

k∑

i=1

xiXi(ξ). (12.3.4)
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Since the vector fields Xi are pointwise linearly independent on S0 and since
(12.3.2) holds, Ψ ′

(0,ξ) is injective for all ξ ∈ S0, indeed.
Finally, we show that (Λ,Ψ ) is Lagrange. Since Λ has dimension k + dimS0 =

n, it suffices to prove that Ψ is isotropic. For ξ ∈ S0, x,y ∈ R
k and X,Y ∈ TξS0,

we have

ωξ

(
X +

k∑

i=1

xiXi(ξ), Y +
k∑

i=1

yiXi(ξ)

)
= 0,

because the vector fields Xi are characteristic for C and S0 is isotropic. Hence,
(12.3.4) implies that imΨ ′

(0,ξ) is an isotropic subspace of Tξ (T∗Q) for all ξ ∈ S0.
Since Ψt is symplectic, to see that imΨ ′

(t,ξ) is isotropic for all (t, ξ) ∈ Λ, it is suffi-
cient to show that

imΨ ′
(t,ξ) = (Ψt)

′
ξ

(
imΨ ′

(0,ξ)

)
. (12.3.5)

This can be seen as follows. On the one hand, since the vector fields Xi are char-
acteristic, the mapping t �→ Ψ (t, ξ) takes values in the integral manifold Nξ of the
characteristic distribution DωC of C through ξ . Hence,

imΨ ′
(t,ξ) = D

ωC
Ψ (t,ξ) + (Ψt)

′
ξTξS0.

On the other hand, for the same reason, the mapping Ψt restricts to a local diffeo-
morphism of Nξ . Hence,

D
ωC
Ψ (t,ξ) = (Ψt)

′
ξD

ωC
ξ .

Since (12.3.4) implies imΨ ′
(0,ξ) = D

ωC
ξ + TξS0, this proves (12.3.5) and hence the

theorem. �

Remark 12.3.2

1. The geometric picture shown in Fig. 12.2 carries over to the present situation,
but with modified dimensions of the submanifolds involved: C has dimension
2n − k, S0 has dimension n − k, the characteristics of C have dimension k and
thus the solution has again dimension n.

2. As for k = 1, with a generalized solution one can associate geometric solutions,
that is, Lagrangian submanifolds. Moreover, one has an analogous uniqueness
statement: if S1 and S2 are two geometric solutions of (12.3.1) for the initial
condition S0, there exists a connected subset of S1 ∩ S2 which contains S0

and which is open in both S1 and S2. This follows from Proposition 8.5.3.
3. If the initial condition S0 is transversal to the fibres of T∗Q and intersects each

fibre at most once, there exists a local generating function, that is, an analytic
solution.
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In the remainder of this section, we consider the situation where C is a gen-
eral coisotropic submanifold (not necessarily given by a family of functions).6 In
Sect. 12.1 we have proved the Jacobi Theorem, which states that finding a complete
integral of the Hamilton-Jacobi equation is equivalent to solving the initial value
problem for the Hamilton equations. Our aim is to prove that this statement is also
true in the present context. Our presentation is along the lines of [181]. First, we
must generalize the notion of a complete integral.

For that purpose, the space of the constants of motion q̄i , which in the case of
the ordinary time-independent Hamilton-Jacobi equation has dimension n − 1, is
replaced by a manifold A of dimension n− k, called the parameter manifold. Thus,
we build the (2n−k)-dimensional manifold Q×A and endow the cotangent bundle
T∗(Q × A) ∼= T∗Q × T∗A with the modified symplectic form

pr∗T∗Q dθQ − pr∗T∗A dθA, (12.3.6)

where θQ and θA are the canonical 1-forms on the corresponding cotangent bundles
and prT∗Q and prT∗A are the canonical projections onto the factors T∗Q and T∗A,
respectively. For an open subset U ⊂ Q × A and x ∈ Q, a ∈ A, we define

Ua := {
x ∈ Q : (x, a) ∈ U

}
, Ux := {

a ∈ A : (x, a) ∈ U
}
.

For a smooth function S : U → R, we denote

Sa : Ua → R, Sx : Ux → R, Sa(x) = Sx(a) := S(x, a),

and define the partial differentials

dQS := prT∗Q ◦dS : U → T∗Q, dAS := prT∗A ◦dS : U → T∗A.

Then, for all (x, a) ∈ U we have

dQS(x, a) = dSa(x), dAS(x, a) = dSx(a).

Definition 12.3.3 (Complete integral) Let C ⊂ T∗Q be a coisotropic submanifold
of codimension k, 1 ≤ k ≤ n− 1. Let A be an (n− k)-dimensional manifold and let
U ⊂ Q×A be a connected open subset. A function S : U → R is called a complete
integral of the generalized Hamilton-Jacobi equation (12.2.1) if

1. every nonempty subset Ua is connected and satisfies dSa(Ua) ⊂ C ,
2. the mapping dQS is a diffeomorphism from U onto an open subset of C .

A is referred to as the parameter manifold of S and U is referred to as the domain
of S. In case dQS(U) = C , S is said to be a global complete integral.

6Theorem 12.3.1 extends to this more general situation. For the proof one has to apply the Tubular
Neighbourhood Theorem for embedded submanifolds to S0, see Remark 6.4.7.
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Remark 12.3.4

1. The functions Sa form a family of analytic solutions of the generalized Hamilton-
Jacobi equation. The connected Lagrangian submanifolds dSa(Ua) establish a
foliation of the open subset dQS(U) of C by geometric solutions.

2. For the local discussion of solutions, condition 2 may be weakened to the require-
ment that the rank of dQS be 2n− k. Let us analyze this requirement in Darboux
coordinates q1, . . . , qn, p1, . . . , p

n on T∗Q and q̄1, . . . , q̄n−k , p̄1, . . . , p̄n−k on
T∗A. In these coordinates, dQS is given by

(q, q̄) �→
(

q,p = ∂S

∂q
(q, q̄)

)
.

It has rank 2n − k iff the matrix

∂2S

∂qi∂q̄j
, 1 ≤ i ≤ n, 1 ≤ j ≤ n − k, (12.3.7)

has rank n−k. In particular, for k = 1, this requirement is equivalent to (12.1.11).
Let us add that dAS is given by

(q, q̄) �→
(

q̄, p̄ = ∂S

∂q̄
(q, q̄)

)

and that it has rank 2(n − k) iff the matrix (12.3.7) has rank n − k. Thus, condi-
tion 2 implies that dAS has rank 2(n − k) everywhere. It is, therefore, a submer-
sion. In particular, dAS(U) is an open subset of T∗A.

Theorem 12.3.5 (Generalized Jacobi Theorem) Let C be a coisotropic submani-
fold of T∗Q and let S be a complete integral of the generalized Hamilton-Jacobi
equation defined by C , with parameter manifold A and domain U . Consider the
mapping

ϕ : U → T∗Q × T∗A, ϕ(x, a) := (
dQS(x, a),−dAS(x, a)

)
.

Then, the following holds.

1. Λ = ϕ(U) is an embedded Lagrangian submanifold of T∗Q × T∗A endowed
with the symplectic form (12.3.6). One has

prT∗Q(Λ) = dQS(U), prT∗A(Λ) = −dAS(U).

2. There exists a unique mapping π : prT∗Q(Λ) → prT∗A(Λ) satisfying the relation
π ◦ dQS = −dAS. This mapping is a surjective submersion and Λ is its graph.

3. The distribution kerπ ′ coincides with the characteristic distribution of the coiso-
tropic submanifold prT∗Q(Λ) of T∗Q. In particular, for every α ∈ prT∗A(Λ), the
connected components of π−1(α) are characteristics of prT∗Q(Λ).
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Proof 1. Λ is the image of the submanifold dS(U) of T∗Q × T∗A under the
diffeomorphism (ξ, η) �→ (ξ,−η). Since dS(U) is Lagrange with respect to the
cotangent bundle symplectic form pr∗T∗Q dθQ + pr∗T∗A dθA, cf. Example 8.3.8/2, Λ
is Lagrange with respect to the modified symplectic form (12.3.6). The relations
prT∗Q(Λ) = dQS(U) and prT∗A(Λ) = −dAS(U) are obvious.

2. Since the mapping dQS is a diffeomorphism onto its image, one can define a
mapping

π : prT∗Q(Λ) → prT∗A(Λ), π = −dAS ◦ (
dQS

)−1
.

This mapping is surjective and its graph, when viewed as a subset of T∗Q × T∗A,
coincides with Λ. By Remark 12.3.4/2, dAS is a submersion. Hence, so is π .

3. Since Λ is the graph of π , under the natural identification of T(T∗Q × T∗A)

with T(T∗Q) × T(T∗A), tangent vectors of Λ correspond to pairs (X,π ′(X)) with
X ∈ T(prT∗Q(Λ)). Since Λ is Lagrange with respect to the symplectic form (12.3.6),
for all ξ ∈ prT∗Q(Λ) and X,Y ∈ Tξ (prT∗Q(Λ)), we have

0 = (
pr∗T∗Q dθQ − pr∗T∗A dθA

)((
X,π ′(X)

)
,
(
Y,π ′(Y )

))

= dθQ(X,Y ) − dθA
(
π ′(X),π ′(Y )

)
. (12.3.8)

Thus, if π ′(X) = 0, then dθQ(X,Y ) = 0 for all Y and thus X�dθQ = 0. Conversely,
if X�dθQ = 0, then dθA(π ′(X),π ′(Y )) = 0 for all Y . Since π ′

ξ is surjective onto
Tπ(ξ)(T∗A) and since dθA is non-degenerate, we conclude π ′(X) = 0. �

Remark 12.3.6

1. If S is a global complete integral, then prT∗Q(Λ) = C .
2. Point 3 of Theorem 12.3.5 implies that for every α ∈ T∗A, the complete inte-

gral S yields a solution of the generalized Hamilton-Jacobi equation defined by
the coisotropic submanifold C . Geometrically, it is given by a connected com-
ponent of π−1(α). In particular, for every a ∈ A, the Lagrangian submanifold
dSa(Ua) ⊂ dQS(U) ⊂ C is foliated by the (k-dimensional) connected compo-
nents of the level sets π−1(α) with prT∗A(α) = a. Thus, the elements of T∗A
play the role of invariants labelling the solutions (up to connected components),
and π is the mapping which assigns to every solution the corresponding invari-
ants.

In Darboux coordinates qi , pi on T∗Q and q̄j , p̄j on T∗A, the Lagrangian
submanifold Λ consists of the pairs ((q,p), (q̄, p̄)) satisfying

p = ∂S

∂q
(q, q̄), p̄ = −∂S

∂q̄
(q, q̄). (12.3.9)

The local representative of π is given by (q,p) �→ (q̄(q,p), p̄(q,p)), where the
mapping (q,p) �→ q̄(q,p) is obtained by solving the first equation in (12.3.9)
for q̄ and the mapping (q,p) �→ p̄(q,p) is obtained by inserting the resulting
expression for q̄ into the second equation. Thus, Theorem 12.3.5 generalizes
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the time-independent version of the ordinary Jacobi Theorem, obtained from
Theorem 12.1.6 by separating the time variable and by removing from the 2n
constants of motion q̄i , p̄i the energy E and the initial time t0. This way, the
parameter manifold A generalizes the space of the constants of motion q̄i .

3. Equation (12.3.8) implies π∗dθA = j∗dθQ, where j : prT∗Q(Λ) → T∗Q is the
natural inclusion mapping. Thus, π defines a symplectic reduction, cf. Sect. 8.7.

4. If the rank of the restriction of the natural projection T∗Q → Q to the isotropic
submanifold C is less than n, a complete integral cannot exist. In this case, one
can use the concept of Morse families, to be introduced in the next section. This
leads to a further generalization of the Jacobi Theorem [40, 181].

For physical problems leading to a generalized Hamilton-Jacobi equation, the
reader may consult the original papers by Tulczyjew and Benenti [40]. An interest-
ing example of this type is provided by the motion of a charged particle, formulated
in a gauge-invariant way in the 5-dimensional Kaluza-Klein space [290, 292]. Here,
one has two equations, namely a mass and a charge condition, that is, one deals with
the case of codimension 2.

12.4 Morse Families

In this section we show that the concept of a generating function for a fibre-
transversal Lagrangian submanifold of a cotangent bundle can be generalized in
such a way that it applies to any Lagrangian submanifold of this bundle. This leads
to the notion of a Morse family, which generalizes that of a Morse function, cf.
Sect. 8.9. Morse families were introduced by Hörmander [141], who called them
phase functions. We also refer to [305] for the first completely intrinsic presentation
and to [181], where in particular the relation to symplectic reduction is discussed.
To our knowledge, in physics, Morse families have been used for the first time by
Benenti and Tulczyjew [40].

Let B and Q be manifolds and let

π : B → Q

be a submersion. Let πB : T∗B → B and πQ : T∗Q → Q be the canonical projec-
tions and let θB and θQ be the canonical 1-forms in T∗B and T∗Q, respectively.
Consider the induced (pull-back) bundle

B ×Q T∗Q ≡ π∗(T∗Q
) = {

(b, ξ) ∈ B × T∗Q : π(b) = πQ(ξ)
}
.

Recall from Sect. 2.6 that B ×Q T∗Q is a vector bundle over B with projection

ρ : B ×Q T∗Q → B, ρ(b, ξ) := b,

and fibres ρ−1(b) = T∗
π(b)Q. By Proposition 2.6.1, B ×Q T∗Q is an embedded sub-

manifold of B × T∗Q and the natural projection B × T∗Q → T∗Q restricts to a
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vector bundle morphism

ϕ : B ×Q T∗Q → T∗Q, ϕ(b, ξ) := ξ, (12.4.1)

which covers π ,

πQ ◦ ϕ = π ◦ ρ. (12.4.2)

Since π is a submersion, kerπ ′ is a vertical subbundle of TB (that is, a regular
distribution on B) and the annihilator (kerπ ′)0 is a vertical subbundle of T∗B , cf.
Examples 2.7.7 and 2.7.8. We denote

VB := kerπ ′, V0B := (
kerπ ′)0

.

In the present context, V0B is often referred to as the conormal bundle associated
with VB . By Example 8.5.8/2, it is a coisotropic submanifold of T∗B .

Lemma 12.4.1 The mapping

ψ : B ×Q T∗Q → T∗B, ψ(b, ξ) := (
π ′
b

)T
(ξ) (12.4.3)

is an injective vertical vector bundle morphism with image V0B . It satisfies

ψ∗θB = ϕ∗θQ. (12.4.4)

By Proposition 2.7.4, it follows that ψ is an embedding. Thus, as vector bundles,

B ×Q T∗Q ∼= V0B. (12.4.5)

Proof By definition, ψ preserves the fibres and is fibrewise linear. Moreover,

πB ◦ ψ = ρ, (12.4.6)

so that ψ is vertical. Since the tangent mapping π ′
b : TbB → Tπ(b)Q is surjective

for every b ∈ B , the dual mapping (π ′
b)

T : T∗
π(b)Q → T∗

bB is injective and one has

im
(
π ′
b

)T = (
ker

(
π ′
b

))0 = V0
bB.

Thus, ψ is an injective vector bundle morphism with image V0B .
To prove (12.4.4), let (b, ξ) ∈ B ×Q T∗Q. We choose a section

σ : B → B ×Q T∗Q

such that σ(b) = ξ and consider the induced decomposition of the tangent space

T(b,ξ)

(
B ×Q T∗Q

) = kerρ′
(b,ξ) ⊕ σ ′(TbB).

First, we show that both θB and θQ vanish on the vertical component kerρ′
(b,ξ). For

that purpose, take Z ∈ kerρ′
(b,ξ). Then, (12.4.2) implies



660 12 Hamilton-Jacobi Theory

(
ϕ∗θQ

)
(b,ξ)

(Z) = (θQ)ϕ(b,ξ)
(
ϕ′(Z)

)

= 〈
ϕ(b, ξ), (πQ ◦ ϕ)′(Z)

〉

= 〈
ϕ(b, ξ),π ′ ◦ ρ′(Z)

〉

= 0

and (12.4.6) yields
(
ψ∗θB

)
(b,ξ)

(Z) = (θB)ψ(b,ξ)

(
ψ ′(Z)

)

= 〈
ψ(b, ξ), (πB ◦ ψ)′(Z)

〉

= 〈
ψ(b, ξ), ρ′(Z)

〉

= 0.

Next, we prove that ψ∗θB and ϕ∗θQ coincide on the transversal component
σ ′(TbB). Using πQ ◦ ϕ ◦ σ = π and πB ◦ ψ ◦ σ = idB , for every X ∈ TbB we
have

(
ϕ∗θQ

)
(b,ξ)

(
σ ′X

) = (θQ)ϕ(b,ξ)
(
ϕ′ ◦ σ ′(X)

) = 〈
ξ,π ′

Q ◦ ϕ′ ◦ σ ′(X)
〉 = 〈

ξ,π ′
bX

〉

and
(
ψ∗θB

)
(b,ξ)

(
σ ′X

) = (θB)ψ(b,ξ)

(
ψ ′ ◦ σ ′(X)

)

= 〈(
π ′
b

)T
ξ,π ′

B ◦ ψ ′ ◦ σ ′(X)
〉

= 〈(
π ′
b

)T
ξ,X

〉
. �

Definition 12.4.2 (Morse family) Let π : B → Q be a submersion. A smooth func-
tion S : B → R is called a Morse family along π if dS(B) is transversal to V0B in
T∗B , that is, if

Tη

(
T∗B

) = Tη

(
dS(B)

) + Tη

(
V0B

)
(12.4.7)

for all η ∈ dS(B)∩V0B . The triple (B,π,S) is referred to as a Morse family over Q.

Remark 12.4.3 The notion of a Morse family generalizes the notion of a Morse
function. Indeed, if S is a Morse family, then S�π−1(x) is a Morse function for ev-
ery x ∈ Q, because the intersection of the transversality condition (12.4.7) with
Tη(T∗π−1(x)) yields the transversality condition (8.9.1) for Morse functions. Thus,
S yields a family of Morse functions, parameterized by the points of Q.

In the sequel, let us assume that the intersection dS(B) ∩ V0B is nonempty. By
Theorem 1.8.2, dS(B) ∩ V0B is an embedded submanifold of T∗B and one has

Tη

(
dS(B) ∩ V0B

) = Tη

(
dS(B)

) ∩ Tη

(
V0B

)
.
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Since dS(B) ∩ V0B is contained in the embedded Lagrangian submanifold dS(B)

of T∗B , it is isotropic in T∗B . Since, in addition, the restriction of the canonical
projection πB : T∗B → B to dS(B) is a diffeomorphism with inverse dS, the pro-
jection

BS := πB

(
dS(B) ∩ V0B

)

is an embedded submanifold of B and the induced mapping

(dS)�BS
: BS → dS(B) ∩ V0B

is a diffeomorphism. Let us calculate the dimension of BS . With dimB = n+ k and
dimQ = n, (12.4.7) implies

dim
(
dS(B) ∩ V0B

) = dim
(
dS(B)

) + dim V0B − dim
(
T∗B

)

= (n + k) + (2n + k) − 2(n + k)

= dimQ.

Now, consider the vector bundle morphism ψ : B×QT∗Q → T∗B of Lemma 12.4.1.
Since it restricts to an isomorphism from B ×Q T∗Q onto V0B , there is a unique
vector bundle morphism λ : V0B → T∗Q such that

ϕ = λ ◦ ψ, (12.4.8)

where ψ is understood as a mapping to V0B . Obviously, λ covers π . Let

λS : dS(B) ∩ V0B → T∗Q

be the restriction of λ to the isotropic submanifold dS(B) ∩ V0B and define

ΛS := λS ◦ (dS)�BS
: BS → T∗Q.

In the sequel, we will need the following two natural inclusion mappings:

i : dS(B) ∩ V0B → V0B, j0 : V0B → T∗B.

Lemma 12.4.4 Let (B,π,S) be a Morse family over Q.

1. We have

λ∗θQ = j∗
0 θB. (12.4.9)

In particular, λ is a strict symplectic reduction.
2. The mappings λS and ΛS are Lagrangian immersions fulfilling

λ∗
SθQ = i∗ ◦ j∗

0 (θB), Λ∗
SθQ = d(S�BS

). (12.4.10)
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Proof 1. By (12.4.4), we have ψ∗ ◦ λ∗(θQ) = ψ∗ ◦ j∗
0 (θB). Since ψ is a diffeomor-

phism, this yields the assertion.
2. Using that dS(B) and V0B are transversal and that dS(B) ∩ V0B is isotropic,

as well as (8.5.1), (8.7.2) and Proposition 7.2.1/5, for η ∈ dS(B) ∩ V0B we obtain

ker(λS)
′
η = Tη

(
dS(B) ∩ V0B

) ∩ kerλ′
η

= Tη

(
dS(B)

) ∩ Tη

(
V0B

) ∩ (
Tη

(
V0B

))ωB

= Tη

(
dS(B)

) ∩ (
Tη

(
V0B

))ωB

= (
Tη

(
dS(B)

) + Tη

(
V0B

))ωB

= (
Tη

(
T∗B

))ωB

= {0}.

Thus, λS is an immersion. Since dS(B) ∩ V0B has the dimension of Q, to see that
λS is Lagrange, it suffices to show that it is isotropic. Indeed, using point 1 and
λS = λ ◦ i, we find

λ∗
S(θQ) = i∗ ◦ j∗

0 (θB) (12.4.11)

and hence λ∗
S(dθQ) = i∗ ◦ j∗

0 (dθB) = 0, because dS(B) ∩ V0B is isotropic. Finally,
applying ((dS)�BS

)∗ to (12.4.11) and using j0 ◦ i ◦(dS)�BS
= dS ◦k, where k : BS →

B denotes the natural inclusion mapping, we obtain

Λ∗
SθQ = k∗ ◦ (dS)∗(θB) = k∗dS = d(S�BS

).

In the last step we have used point 1 of Remark 8.3.3. �

Definition 12.4.5 (Fibre-critical submanifold) Let (B,π,S) be a Morse family over
Q. The embedded submanifold BS ⊂ B is called the fibre-critical submanifold of S.
The mapping ΛS : BS → T∗Q is called the Lagrangian immersion generated by S.

Remark 12.4.6 We give a local description of Morse families. Let xi , i = 1, . . . , n
and yα , α = 1, . . . , r be local coordinates on B adapted to π , that is, π is given by

π(x,y) = x.

Denote the corresponding fibre coordinates in T∗B by pi , p̃α and in T∗Q by pi .
Then, the conormal bundle V0B is defined by the condition

p̃α = 0, α = 1, . . . , r,

and the morphism λ has the form

λ(x,y,p,0) = (x,p).



12.4 Morse Families 663

The mapping dS is given by

dS(x,y) =
(

x,y,
∂S

∂x
(x,y),

∂S

∂y
(x,y)

)
.

Thus, the submanifold dS(B) ∩ V0B is defined by the (n + 2r) equations

∂S

∂xi
(x,y) = pi,

∂S

∂yα
(x,y) = 0, p̃α = 0, (12.4.12)

and the fibre-critical submanifold BS is given by the r equations

∂S

∂yα
(x,y) = 0. (12.4.13)

In this language, transversality of dS(B) and V0B means that the (n+ r)× r-matrix
(

∂2S

∂xi∂yα
,

∂2S

∂yβ∂yα

)

must have rank r at all points (x,y) fulfilling (12.4.13) (Exercise 12.4.2). The La-
grangian immersion ΛS is then given by

ΛS(x,y) =
(

x,
∂S

∂x
(x,y)

)
, (12.4.14)

with (x,y) fulfilling (12.4.13). Finally, in terms of the induced fibre coordinates ẋi ,
ẏα on TB and ẋi , ṗi on T(T∗Q), the tangent space T(x,y)BS ⊂ T(x,y)B is given by

∂2S

∂xi∂yα
(x,y)ẋi + ∂2S

∂yα∂yβ
(x,y)ẏβ = 0 (12.4.15)

and the tangent space TΛS(x,y)(ΛS(BS)) ⊂ TΛS(x,y)(T
∗Q) consists of the pairs

(ẋ, ṗ), where

ṗi = ∂2S

∂xi∂xj
(x,y)ẋj + ∂2S

∂xi∂yα
(x,y)ẏα,

and ẋi , ẏα fulfil (12.4.15).

Example 12.4.7 Let B = R
2 and Q = R and let x, y, px , py and x, px be global

Darboux coordinates on T∗B = R
4 and T∗Q = R

2, respectively. We consider the
surjective submersion

π : R2 → R, π(x, y) = x

and the smooth function

S : R2 → R, S(x, y) := 1

3
y3 + (

x2 − 1
)
y. (12.4.16)
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The conormal bundle V0B is defined by the condition py = 0 and the morphism λ

has the form

λ(x, y,px,0) = (x,px).

The mapping dS is given by

dS(x, y) =
(
x, y,

∂S

∂x
(x, y),

∂S

∂y
(x, y)

)
= (

x, y,2xy, x2 + y2 − 1
)
.

Consequently, the submanifold dS(B) ∩ V0B is given by

2xy = px, x2 + y2 = 1, py = 0

and the fibre-critical submanifold BS by

x2 + y2 = 1. (12.4.17)

Thus, BS is the unit sphere in R
2. To check the transversality condition, we calculate

(
∂2S

∂x∂y
(x, y),

∂2S

∂y2
(x, y)

)
= (2x,2y).

This matrix has rank 1 for all (x, y) which fulfil equation (12.4.17). Therefore, S is
a Morse family. The Lagrangian immersion ΛS = λS ◦ dS is given by

ΛS(x, y) =
(
x,

∂S

∂x
(x, y)

)
= (x,2xy),

with (x, y) fulfilling (12.4.17). Parameterizing BS by

(x, y) = (
cos(2πt), sin(2πt)

)

with t ∈R, we obtain the following parameterization of ΛS :

ΛS

(
cos(2πt), sin(2πt)

) = (
cos(2πt), sin(4πt)

)
.

We see that the image is a figure eight immersion with the self intersection point
ΛS(0,1) = ΛS(0,−1). Thus, (BS,ΛS) is locally, but not globally, a submanifold.7

This example can be generalized as follows. Let

π : Rn ×R→ R
n, π(x, y) = x,

let f : Rn → R be a smooth function for which 0 is a regular value, and let

S : Rn ×R→ R, S(x, y) := 1

3
y3 + f (x)y.

7According to Example 1.6.6, ΛS(BS) can nevertheless be equipped with a submanifold structure,
though in two inequivalent ways. Both of them are Lagrangian.
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We encourage the reader to analyze this class of examples along the lines of the
above discussion (Exercise 12.4.3).

Example 12.4.8 Let f : Q → R
r be a smooth mapping for which 0 is a regular

value, let P := f −1(0) and let F : P → R be smooth function. We show that the
canonical lift8 (P̂ ,F ) of the pair (P,F ) coincides with the image of the Lagrangian
immersion ΛS generated by the Morse family

S : Q ×R
r →R, S(x,y) := f (x) · y + F(x),

along the natural projection π : Q×R
r → Q. Let ξ ∈ T∗Q. To see that ξ ∈ ΛS(BS)

iff ξ ∈ (P̂ ,F ), we choose coordinates xi on Q at πQ(ξ). By Remark 12.4.6, the
fibre-critical submanifold BS of S is given by

∂S

∂yα
(x,y) = fα(x) = 0.

Hence, it coincides with P ×R
r . On BS , we have

(
∂2S

∂xi∂yα
(x,y),

∂2S

∂yα∂yβ
(x,y)

)
=

(
∂fα

∂xi
(x),0

)
.

Since this matrix has rank r , S is a Morse family along π and thus BS is an embed-
ded submanifold of Q×R

r . The Lagrangian immersion ΛS generated by S is given
in coordinates by

ΛS(x,y) =
(

x, yα ∂fα

∂x
(x) + ∂F

∂x
(x)

)
.

Hence, its image consists of the points ξ in T∗Q whose coordinates (x,p) satisfy

p = yα ∂fα

∂x
(x) + ∂F

∂x
(x), f (x) = 0

for some y ∈R
r . On the other hand, every X ∈ TπQ(ξ)P fulfils ∂fα

∂xi (x)X
i = 0, where

X = Xi∂xi . Thus, we obtain

〈ξ,X〉 = Xi

(
yα ∂fα

∂xi
(x) + ∂F

∂xi
(x)

)
= Xi ∂F

∂xi
(x) = 〈

dF
(
πQ(ξ)

)
,X

〉
,

so that ΛS(BS) = (P̂ ,F ), indeed.

We have seen above that every Morse family for which dS(Q) ∩ V0B is
nonempty yields a Lagrangian embedding and hence, locally, Lagrangian subman-
ifolds of T∗Q. The following theorem implies that, conversely, every Lagrangian

8See Example 8.3.8/4.
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submanifold of a cotangent bundle can be locally obtained as the image of a La-
grangian immersion generated by a Morse family. The theorem belongs to Hörman-
der [141] and Maslov [197], see also [115, 181, 305].

Let πL : T∗L → L be the canonical projection and denote

V
(
T∗Q

) := ker
(
π ′
Q

) ⊂ T
(
T∗Q

)
.

Theorem 12.4.9 Let (L, ι) be an embedded Lagrangian submanifold of (T∗Q,dθQ)

and let θL denote the canonical 1-form on T∗L. Assume that the following condi-
tions hold.

1. The 1-form ι∗θQ on L is exact.
2. There exists a Lagrangian subbundle F of (T(T∗Q))�L which is transversal to

both TL and (V(T∗Q))�L.

Then, there exists a Morse family (B,π,S) over Q such that (BS,ΛS) is an embed-
ded submanifold equivalent to (L, ι).

Proof Our proof is along the lines of Weinstein [305] and Libermann and Marle
[181].

Assume that conditions 1 and 2 are fulfilled. Then, F is a Lagrangian comple-
ment of TL in the symplectic vector bundle (T(T∗Q))�L and Theorem 8.6.4 yields
a symplectomorphism Φ of an open neighbourhood U of L in T∗Q onto an open
neighbourhood Φ(U) of the zero section s0 in T∗L which maps L to s0 and satisfies

Φ ′
ξ (Fξ ) = TΦ(ξ)

(
T∗
ξL

) = ker(πL)
′
Φ(ξ) (12.4.18)

for all ξ ∈ L. By condition 2, Vξ (T∗Q) is a complement of Fξ in Tξ (T∗Q) for every
ξ ∈ L. Hence, (12.4.18) implies that Φ ′

ξ (Vξ (T∗Q)) is a complement of ker(πL)
′
Φ(ξ)

for all ξ ∈ L. By shrinking U we can achieve that this remains true for all ξ ∈ U .
Then,

π ′
L ◦ Φ ′(Vξ

(
T∗Q

)) = (πL)
′
Φ(ξ)

(
TΦ(ξ)

(
T∗L

)) = TξL (12.4.19)

for all ξ ∈ U . Since Φ ◦ ι = s0 and πL ◦ Φ ◦ ι = idL, the 1-form α on U defined by

α := θQ − (ι ◦ πL ◦ Φ)∗θQ − Φ∗θL (12.4.20)

satisfies ι∗α = 0. Then, the generalized Poincaré Lemma 4.3.14 implies that U can
be shrunk so that α = dh for some smooth function h on U satisfying h ◦ ι = 0.
Moreover, by condition 1, there exists a smooth function f on L with ι∗θQ = df .
We choose B = U ⊂ T∗Q and π := (πQ)�U : U → Q and define S : U → R by

S = h + Φ∗ ◦ π∗
Lf.

Then, S ◦ ι = f and

dS = θQ − Φ∗θL. (12.4.21)
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We show that S defines a Morse family along π which satisfies ΛS(BS) = ι(L).
Let us start with proving the latter relation. One can check that the vector bundle
morphism λ : V0B → T∗Q is given by the restriction to V0B of the canonical pro-
jection T∗(T∗Q) → T∗Q. Hence, ΛS = λ ◦ (dS)�BS

is given by the natural inclu-
sion mapping of BS ⊂ B ⊂ T∗Q and thus we have to show that BS = L. Let ξ ∈ B .
By definition of BS , ξ ∈ BS iff 〈dS(ξ),Z〉 = 0 for all Z ∈ VξB . By (12.4.21), for
Z ∈ VξB , we have

〈
dS(ξ),Z

〉 = −〈(
Φ∗θL

)
ξ
,Z

〉 = −〈
Φ(ξ),π ′

L ◦ Φ ′(Z)
〉
. (12.4.22)

Hence, if ξ ∈ L, then Φ(ξ) belongs to the zero section. Then, 〈dS(ξ),Z〉 = 0 and
thus ξ ∈ BS . Conversely, if ξ ∈ BS , then 〈dS(ξ),Z〉 = 0 for all Z ∈ VξB and
(12.4.19) implies that Φ(ξ) belongs to the zero section of T∗L. This implies ξ ∈ L.

It remains to show that dS(B) is transversal to V0B , that is, that (12.4.7) holds for
all η = dS(ξ), ξ ∈ L. Since by condition 2, Fξ is transversal to TξL in Tξ (T∗Q) =
TξB , we have

TdS(ξ)
(
dS(B)

) = (dS)′ξ (TξB) = (dS)′ξ (TξL + Fξ ).

By injectivity of (dS)′ξ , the image (dS)′ξ (Fξ ) is a subspace of TdS(ξ)(dS(B)) of

dimension n. Since TdS(ξ)(V0B) has dimension 3n and TdS(ξ)(T∗B) has dimension
4n, it therefore suffices to show that

(dS)′ξ (Fξ ) ∩ TdS(ξ)
(
V0B

) = {0}. (12.4.23)

For that purpose, let X ∈ Fξ such that (dS)′ξX ∈ TdS(ξ)(V0B) and let γ be a curve
through ξ representing X. By (12.4.18), γ may be chosen so that Φ(γ (t)) is con-
tained in T∗

ξL. As a first step, we show that (dS)′ξX ∈ TdS(ξ)(V0B) implies that

d

dt �0

〈
dS ◦ γ (t),Z ◦ γ (t)

〉 = 0 (12.4.24)

for all vector fields Z on B taking values in VB . Indeed, we may view Z as a
function Z : T∗B → R and we may assume that it is a submersion. Then, V0B is
contained in the submanifold Z−1(0) of TB and hence

TdS(ξ)
(
V0B

) ⊂ TdS(ξ)
(
Z−1(0)

) = kerZ′
dS(ξ).

Thus, if (dS)′ξX ∈ TdS(ξ)(V0B), then

d

dt �0

〈
dS ◦ γ (t),Z ◦ γ (t)

〉 = d

dt �0

Z
(
dS ◦ γ (t)

) = Z′
dS(ξ) ◦ (dS)′ξ (X) = 0.

On the other hand, using (12.4.22) we calculate

d

dt �0

〈
dS ◦ γ (t),Z ◦ γ (t)

〉 = − d

dt �0

〈
Φ ◦ γ (t),π ′

L ◦ Φ ′ ◦ Z ◦ γ (t)
〉
.
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By our choice of γ , the expression on the right hand side can be interpreted as
arising from the pairing T∗

ξB × TξB → R. Hence, we may apply the product rule to
obtain

d

dt �0

〈
dS ◦ γ (t),Z ◦ γ (t)

〉 = −〈
Φ ′

ξX,π ′
L ◦ Φ ′(Z(ξ)

)〉
,

where Φ ′
ξX is viewed as an element of T∗

ξL via the identification of TΦ(ξ)(T∗
ξL)

with T∗
ξL. The second contribution from the product rule vanishes, because Φ(ξ)

belongs to the zero section. Since by (12.4.24), the right hand side vanishes for all
Z(ξ) ∈ VξB , (12.4.19) implies that Φ ′

ξX = 0. Since Φ ′
ξ is injective, we conclude

that X = 0. This proves (12.4.23) and hence completes the proof of the theorem. �

More generally, consider a Lagrangian immersion ι : L → T∗Q. Since every
point in L possesses an open neighbourhood for which points 1 and 2 of Theo-
rem 12.4.9 are fulfilled, this theorem implies

Corollary 12.4.10 Locally, every Lagrangian immersion is generated by a Morse
family.

Exercises

12.4.1 In Example 8.5.8/2 we have shown that (VQ)0 is a coisotropic submanifold
of T∗Q. Use Lemma 12.4.1 to give an alternative proof of this fact.
Hint. Use Proposition 7.2.4 and the inequality (8.1.6).

12.4.2 Prove the statements of Remark 12.4.6.
12.4.3 Complete Example 12.4.7 by showing that for the class of functions under

consideration, S is a Morse family.

12.5 Stable Equivalence

In this section we derive a partition of Morse families into classes which locally
generate the same Lagrangian immersion. This will lead us to the notion of stable
equivalence. The results below belong to Hörmander and Weinstein.

The local generation concept alluded to above is the following. Let ι : L → T∗Q
be a Lagrangian immersion and let ξ ∈ L. We say that a Morse family (B,π,S) over
Q generates (L, ι) at ξ if there exists an open subset U of BS and an open neighbour-
hood V of ξ in L such that ΛS(U) = ι(V ). The class of Morse families generating
(L, ι) at ξ will be denoted by L (L, ι, ξ). According to Corollary 12.4.10, every
Lagrangian immersion with target space T∗Q is generated at an arbitrary point by
some Morse family over Q.

By the local nature of the generation concept under consideration, we can restrict
our attention to the case where B is an open subset of Q ×R

r for some r , referred
to as the fibre dimension of (B,π,S), and where π is given by the restriction of
the projection to the factor Q. Points of Q and R

r will be denoted by x and y,
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respectively, and the dimension of Q will be denoted by n. For the first and second
derivatives of S : B → R we introduce the simplified block matrix notation

S′ = [
S′
x, S

′
y

]
, S′′ =

[
S′′
xx S′′

xy

S′′
yx S′′

yy

]
.

For all (x,y) ∈ BS , we have S′
y(x,y) = 0. For such points, the fibrewise bilinear

form S′′
yy on (VB)�BS

is referred to as the fibre Hessian9 of S. For (x,y) ∈ BS ,

T(x,y)BS = {
(X,Y) ∈ TxQ ⊕R

r : S′′
yx(x,y)X + S′′

yy(x,y)Y = 0
}

(12.5.1)

and for (X,Y) ∈ T(x,y)BS ,

(ΛS)
′
(x,y)(X,Y) = S′′

xx(x,y)X + S′′
xy(x,y)Y. (12.5.2)

Since ΛS covers π , the vector S′′
xy(x,y)Y is tangent to the fibre T∗

xQ at ξ and thus
belongs to the intersection Tξ (T∗

xQ) ∩ TξL. Finally, we introduce the notation

Π := πQ ◦ ι : L → Q. (12.5.3)

Lemma 12.5.1 Let ι : L → T∗Q be a Lagrangian immersion, let ξ ∈ L and let
(B,π,S) be a Morse family of fibre dimension r generating (L, ι) at ξ . For (x,y) ∈
BS such that ξ := ΛS(x,y), we have

r − rankS′′
yy(x,y) = n − rankΠ ′

ξ . (12.5.4)

Proof Let (X,Y) ∈ T(x,y)BS and Z := (ΛS)
′
(x,y)(X,Y). Then, Π ′

ξ (Z) = X. Since
r − rankS ′′

yy(x,y) = dim kerS′′
yy(x,y) and n − rankΠ ′

ξ = dim kerΠ ′
ξ , it is enough

to compare the dimensions of the kernels. For that purpose, we set X = 0 in (12.5.1)
and (12.5.2) and read off the system of equations

Z = S′′
xy(x,y)Y, S′′

yy(x,y)Y = 0.

If dim kerS′′
yy(x,y) = 0, then Y = 0 and Z = 0 is the only solution and we obtain

dim kerΠ ′
ξ = 0. If dim kerS′′

yy(x,y) �= 0, since S is a Morse family, S′′
xy(x,y) has

maximal rank and thus yields an isomorphism between kerS′′
yy(x,y) and kerΠ ′

ξ . �

Next, we use the Morse-Bott Lemma in the formulation of Corollary 8.9.13 to
prove the Splitting Lemma for Morse families. We say that a mapping ϕ between
open subsets of Q×R

r preserves the fibres if prQ ◦ϕ(x,y) = x for all points (x,y)
in the domain of ϕ.

Theorem 12.5.2 (Splitting Lemma) Let (B,π,S) be a Morse family over Q of fibre
dimension k+ l and let (x0,y0) ∈ BS . Write y0 = (ŷ0, ỹ0) with ŷ0 ∈R

l and ỹ0 ∈ R
k .

9For an intrinsic definition, see [36, §4.3].
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If the fibre Hessian S′′
yy(x0,y0) has rank k, there exist open neighbourhoods B̂ of

(x0, ŷ0) in Q × R
l and V of ỹ0 in R

k , a fibre-preserving diffeomorphism ϕ from
B̂ × V into B , a smooth function Ŝ : B̂ → R and a non-degenerate quadratic form
Q on R

k such that

S ◦ ϕ(x, ŷ, ỹ) = Ŝ(x, ŷ) + Q(ỹ). (12.5.5)

Ŝ is a Morse family along the submersion π̂ : B̂ ⊂ Q×R
l → Q whose fibre Hessian

Ŝ′′
ŷŷ

vanishes at (x0, ŷ0) and which generates the same Lagrangian submanifold at

ΛS(x0,y0) as S, that is, Λ
Ŝ
(B̂

Ŝ
) = ΛS(BS ∩ (B̂ × V )).

Proof Let (x0,y0) ∈ BS . Up to a linear transformation which can be absorbed in
ϕ, we may assume detS′′

ỹỹ
(x0,y0) �= 0. Therefore, among the defining equations

S′
y = 0 of BS we can use the last k equations S′

ỹ
= 0 for locally determining

ỹ = ψ(x, ŷ)

in terms of a smooth mapping ψ : B̂ → R
k . Then, the subset B̃S ⊂ B , defined by

the equation S′
ỹ

= 0, is locally given by the graph

(
x, ŷ,ψ(x, ŷ)

)
.

By the local diffeomorphism

φ(x,y) := (
x, ŷ, ỹ − ψ(x, ŷ)

)

this graph is mapped to B̂ ×{0}. Let i : B̂ → B̂ ×R
k be the corresponding inclusion

mapping and pr1 : B̂ ×R
k → B̂ the natural projection. Denote

Ŝ := S ◦ φ−1 ◦ i : B̂ →R

and define

S̃ : B̂ ×R
k →R, S̃ := S ◦ φ−1 − Ŝ ◦ pr1 .

This is a Morse-Bott function with critical submanifold B̂ × {0}. Now, the Morse-
Bott Lemma 8.9.13 yields a diffeomorphism Φ and a non-degenerate quadratic form
Q on R

k such that

S̃ ◦ Φ(x, ŷ, ỹ) = Q(ỹ), pr1 ◦Φ(x, ŷ, ỹ) = (x, ŷ).

Then, ϕ := φ−1 ◦ Φ yields the desired diffeomorphism. By construction, we have

Ŝ(x, ŷ) = S
(
x, ŷ,ψ(x, ŷ)

)
. (12.5.6)

By assumption, dim kerS′′
yy(x0,y0) = l. Since S is a Morse family, S′′

xy(x0,y0) has

maximal rank. Hence, also Ŝ′′
xŷ

(x0, ŷ0) has maximal rank l, that is, Ŝ is a Morse
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family. To show that Ŝ generates the same Lagrangian submanifold at (x0,y0) as S,
we can use the local description of Remark 12.4.6. This way, from (12.5.6) we read
off that B̂

Ŝ
= BS ∩ (B̂ × V ). Then, equality of the images follows. �

Remark 12.5.3

1. Let ι : L → T∗Q be a Lagrangian immersion and let ξ ∈ L. Lemma 12.5.1 states
that

r ≥ n − rankΠ ′
ξ = dim kerΠ ′

ξ , (12.5.7)

that is, the right hand side yields a lower bound for the fibre dimension of a
Morse family generating (L, ι) at ξ . Moreover, equality holds in (12.5.7) iff
S′′
yy(x,y) = 0 for some (x,y) ∈ BS such that ΛS(x,y) = ξ . A Morse family

generating (L, ι) at ξ which fulfils this condition will be said to be reduced. In
view of Corollary 12.4.10, Theorem 12.5.2 states that a reduced family always
exists, that is, that the lower bound provided by (12.5.7) is sharp.

2. Let (B,π,S) be a reduced Morse family over Q of fibre dimension r generating
(L, ι) at ξ ∈ L and let (x,y) ∈ BS such that ΛS(x,y) = ξ . Then, elements Z of
ι′(TξL) are characterized by

Z = S′′
xx(x,y)X + S′′

xy(x,y)Y, S′′
yx(x,y)X = 0, (12.5.8)

where (X,Y) ∈ T(x,y)B = TxQ⊕R
r . Since S is a Morse family, S′′

xy(x,y) must
have maximal rank at (x,y). Thus, by (12.5.8), we have the direct sum decom-
position

ι′(TξL) = imS′′
xy(x,y) ⊕ S′′

xx

(
kerS′′

yx(x,y)
)
, (12.5.9)

where imS′′
xy(x,y) = Tξ (T∗

xQ) ∩ ι′(TξL). Moreover, Eq. (12.5.2) implies that a

tangent vector (0,Y) ∈ T(x,y)π
−1(x) is tangent to the fibre-critical submanifold

BS iff it is contained in the kernel of S′′
yy(x,y). Since S′′

yy(x,y) = 0, all vectors
tangent to the fibres are contained in the kernel of this mapping and we obtain

T(x,y)π
−1(x) ⊂ T(x,y)BS. (12.5.10)

The Splitting Lemma can be interpreted as an operation on L (L, ι, ξ), build-
ing from a given element (B,π,S) the reduced element (B̂, π̂ , Ŝ). The following
operations produce Morse families belonging to L (L, ι, ξ), too.

(a) Addition: choose c ∈ R and take (B,π,S + c),
(b) Composition: choose a submersion π̃ : B̃ → Q and a fibre-preserving diffeo-

morphism ϕ : B̃ → B and take (B̃, π̃ , S ◦ ϕ),
(c) Suspension: choose a non-degenerate bilinear form Q on R

k and take (B̃, π̃ , S̃)

with B̃ = B ×R
k , π̃ = π ◦ prB and S̃ = pr∗B S + pr∗

Rk Q.

(d) Restriction: choose an open subset B̃ of B containing a point of Λ−1
S (ι(ξ)) and

take (B̃,π�B̃ , S�B̃ ).
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These operations generate an equivalence relation in L (L, ι, ξ), called stable equiv-
alence.10 Theorem 12.5.2 implies

Corollary 12.5.4 Every Morse family generating (L, ι) at ξ is stably equivalent to
a reduced Morse family with that property.

Now, we can state the main result of this section.

Theorem 12.5.5 Any two Morse families generating (L, ι) at ξ are stably equiva-
lent.

Proof The proof is along the lines of the proof of Proposition 5.4 of [115] and
Theorem 4.18 in [36]. By Corollary 12.5.4, it is enough to show that any two reduced
Morse families in L (L, ι, ξ) are stably equivalent. Since this is a local statement,
we may assume Q = R

n. Let S and S̃ be reduced Morse families defined on the
open subsets B and B̃ of Rn ×R

l , respectively. By shrinking B and B̃ if necessary,
we may assume that ΛS(BS) = Λ

S̃
(B̃

S̃
).

We will proceed in two steps. In the first step, we construct a fibre-preserving
diffeomorphism ψ : B̃ → B such that the functions S̃ and S ◦ ψ coincide on B̃

S̃
.

In the second step, we use the deformation method of Moser to construct a fibre-
preserving diffeomorphism Φ1 such that S ◦ ψ ◦ Φ1 = S̃ on the whole of B̃

S̃
.

To carry out the first step, define mappings ϕ : B → R
n × R

n and
ϕ̃ : B̃ → R

n ×R
n by

ϕ(x,y) = (
x, S′

x(x,y)
)
, ϕ̃(x,y) = (

x, S̃′
x(x,y)

)
,

respectively. Since both λS and λ
S̃

cover the restriction of the projection to the
factor Q, under the identification of T∗Q with R

n × R
n, the restrictions ϕ�BS

and
ϕ̃�B̃

S̃
correspond to ΛS and Λ

S̃
, respectively. Let (x0,y0) ∈ BS and (x0, ỹ0) ∈ B̃

S̃
be

such that ΛS(x0,y0) = Λ
S̃
(x0, ỹ0) = ξ . Since S is reduced, S′′

xy(x0,y0) has maximal
rank l. Hence, its image

W := imS′′
xy(x0,y0)

is an l-dimensional subspace of Tξ (T∗
x0
Q), the latter coinciding with R

n according
to the above identification. Denoting the corresponding orthogonal projection by
p :Rn → W , we define

F : B × W → W, F(x,y,w) := p ◦ S′
x(x,y) − w.

Since W is the tangent space of the submanifold embedding11 y �→ S′
x(x0,y) at

y = y0, it is orthogonal to S′
x(x0,y0) and we have p ◦ S′

x(x0,y0) = 0. Hence,

10We refer to Remark 12.6.16 for a comment on the notion of stability in this context.
11According to Remark 12.5.3/2, W = Tξ (T∗

xQ) ∩ ι′(TξL).
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F(x0,y0,0) = 0. Since, by construction, F ′
y(x0,y0,0) = p ◦S′′

xy(x0,y0) is bijective,
the Implicit Mapping Theorem yields a smooth mapping g from some neighbour-
hood of (x0,0) in R

n × W to R
l such that for all y in a neighbourhood of y0 in R

l

one has p ◦ S′
x(x,y) = w iff y = g(x,w). After further shrinking B and B̃ if nec-

essary, we can find an open neighbourhood U of both ϕ(B) and ϕ̃(B̃) in R
n × R

n

such that pr1(U) = pr1(B) = pr1(B̃) and such that the mapping

ρ : U → B, ρ(x, z) := (
x, g

(
x,p(z)

))
,

is defined. Then, g(x,p ◦ S′
x(x,y)) = y for all (x,y) ∈ B and hence ρ ◦ ϕ = idB .

Now, the desired fibre-preserving diffeomorphism is given by

ψ := ρ ◦ ϕ̃ : B̃ → B.

Indeed, due to ϕ̃(B̃
S̃
) = ϕ(BS), it satisfies ψ(B̃

S̃
) = BS , and for (x,y) ∈ B̃

S̃
we have

ΛS

(
ψ(x,y)

) = ϕ ◦ ρ
(
ϕ̃(x,y)

) = Λ
S̃
(x,y),

because points in ϕ(B) are mapped identically under ϕ ◦ ρ. Thus, ΛS ◦ ψ�B̃
S̃

= Λ
S̃

and (12.4.10) yields

d(S̃�B̃
S̃
) = Λ∗

S̃
(θQ) = (ψ�B̃

S̃
)∗ ◦ Λ∗

S(θQ) = d(S�BS
◦ ψ�B̃

S̃
),

so that on B̃
S̃

, the functions S ◦ ψ and S̃ differ by a constant12. By absorbing this
constant in S, we may assume that S ◦ ψ and S̃ coincide on B̃

S̃
.

Now, we turn to the second step. We denote S0 = S̃ and S1 = S ◦ψ . Then, BS0 =
BS1 = B̃

S̃
and S1 − S0 vanishes on B̃

S̃
up to second order. Thus, by a version of the

Taylor Theorem, see Exercise 12.5.1, there exist smooth functions hαβ on B̃ such
that

S1 − S0 =
∑

α,β

hαβ ∂S0

∂yα

∂S0

∂yβ
. (12.5.11)

We put St = S0 + t (S1 − S0) and seek for a time-dependent vector field Xt whose
flow Φt preserves the fibres, maps B̃

S̃
identically and fulfils Φ∗

t St = S0 for all t ∈
[0,1]. The latter equality holds iff

0 = d

dt
(St ◦ Φt) = Φ∗

t

dSt

dt
+ Φ∗

t

(
Xt(St )

) = Φ∗
t

(
Xt(St ) + S1 − S0

)
,

that is, iff

Xt(St ) + S1 − S0 = 0. (12.5.12)

12We may of course assume BS and hence B̃
S̃

to be connected.
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Plugging in (12.5.11), together with the ansatz

Xt =
∑

α,β

f αβ ∂S0

∂yα

∂

∂yβ
,

we obtain

0 =
∑

α,β

hαβ ∂S0

∂yα

∂S0

∂yβ
+

∑

α,β

f αβ ∂S0

∂yα

∂

∂yβ

(
S0 + t

∑

ρ,τ

hρτ ∂S0

∂yρ

∂S0

∂yτ

)
.

This equation is fulfilled if

0 = H + F(1 + G),

where H ≡ hαβ and F ≡ f αβ , and where G denotes a matrix-valued function which
vanishes on B̃

S̃
for all values of t . In a neighbourhood of B̃

S̃
we can solve this

equation with respect to F and thus determine Xt and Φt . By construction, Φt

preserves the fibres and fulfils S1 ◦Φ1 = S0. Moreover, since H = 0 on B̃
S̃

, we have
F = 0 and hence Xt = 0 there. Hence, Φt maps B̃

S̃
identically. �

Remark 12.5.6

1. A slightly more direct, but not shorter proof of Theorem 12.5.5 can be obtained
by using the following local description of Morse families, see [78, 141] and
Exercise 12.5.2. Let L ⊂ T∗Q be Lagrange. Then, for every ξ0 ∈ L there exists a
neighbourhood L0 ⊂ L, together with appropriately chosen local coordinates xi ,
yi on T∗Q, and a smooth function y �→ H(y) such that L0 is generated by the
Morse family

S(x,y) = x · y − H(y). (12.5.13)

Then, L0 consists of the pairs (x = H ′(y),y).
2. We reformulate the results of the above discussion in terms of Lagrangian sub-

manifold germs. For that purpose, let us refer to a Morse family (B,π,S) over Q
such that ΛS(BS) contains some given point ξ ∈ T∗Q as a Morse family at ξ . The
operations of addition, composition, suspension and restriction, discussed prior
to Theorem 12.5.5, naturally apply to Morse families at ξ and thus the notion of
stable equivalence naturally extends to these families.

A germ of immersions to a manifold M at a point m ∈ M is an equivalence
class of immersions to M such that m belongs to their images with respect to
the following equivalence relation: two immersions (P,ϕ) and (P̃ , ϕ̃) of M are
equivalent at m if there exist open subsets U ⊂ P and Ũ ⊂ P̃ such that m ∈
ϕ(U) = ϕ̃(Ũ ). Theorem 12.5.5 states that germs of Lagrangian immersions at
ξ ∈ T∗Q bijectively correspond to stable equivalence classes of Morse families
at ξ . In particular, Morse families at ξ are stably equivalent iff they generate the
same germ of Lagrangian immersions at ξ , that is, iff there exist open subsets
U ⊂ BS and Ũ ⊂ B̃

S̃
such that ξ ∈ ΛS(U) = Λ

S̃
(Ũ). Thus, the latter may be

taken as a geometric definition of stable equivalence.
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The concept of Morse family is of fundamental importance in geometric asymp-
totics, to be dealt with in Sects. 12.7 and 12.8. There is a variety of other physical
applications, in particular in thermodynamics and in the statics of mechanical sys-
tems, see [38, 40, 41, 293, 294], as well as [152].

Exercises
12.5.1 Prove the following version of the Taylor Theorem. Let f be a smooth func-

tion on a manifold M and let g : M → R
r be a smooth submersion. If f

and df vanish on g−1(0), there exist functions f ij on a neighbourhood of
g−1(0) in M such that

f =
∑

i,j

f ij gigj .

12.5.2 Prove the statements of Remark 12.5.6/1.
Hint. Use the atlas on L (Rn) constructed in Sect. 7.6.

12.6 Maslov Class and Caustics

Let Q be a manifold of dimension n and let ι : L → T∗Q be a Lagrangian immer-
sion. In this section, we study the intersection properties of the tangent spaces of
this immersion with the vertical distribution on T∗Q. In this context, we will find a
topological invariant which plays an important role in geometric asymptotics.

Definition 12.6.1 (Caustic) The set of critical points of Π := πQ ◦ ι : L → Q is
called the singular subset of L and is denoted by Σ(L). The set of critical values of
Π is called the caustic of L and is denoted by Γ (L). The points of Γ (L) are called
focal points.

Remark 12.6.2 Since L and Q have the same dimension, a point ξ ∈ L is critical iff
the tangent mapping Π ′

ξ is not injective.

Let Σk(L) denote the subset of L consisting of the points ξ where Π ′
ξ has rank

n − k. These subsets provide disjoint decompositions

L = Σ0(L) ∪ Σ(L), Σ(L) :=
n⋃

k=1

Σk(L). (12.6.1)

First, we show that the structure of the Maslov cycle of a Lagrangian subspace,
discussed in Sect. 7.6, generalizes to Lagrangian submanifolds in generic position,
provided the induced bundle ι∗T(T∗Q) is trivial. This result belongs to Arnold [13].
For the case where this bundle is nontrivial, we refer to [8] and [56]. Let R2n be
endowed with the canonical symplectic structure and let L0 := {0}×R

n. We denote
L̂k(n) := L̂k(L0) and L (n) := L (R2n), cf. Sect. 7.6. Let

χ : ι∗T
(
T∗Q

) → L ×R
2n
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be a trivialization mapping the vertical distribution to L0, that is,

χ
(
Tι(ξ)

(
T∗
Π(ξ)Q

)) = L0 (12.6.2)

for all ξ ∈ L. Via χ , the image of the tangent mapping

ι′ξ : TξL → Tι(ξ)T
∗Q

is identified with a Lagrangian subspace in R
2n. This way, we obtain a mapping

F : L → L (n), F (ξ) := χ
(
ι′ξ (TξL)

)
. (12.6.3)

We say that L is in generic position if the mapping F defined by (12.6.3) is
transversal13 to every submanifold L̂k(n). One can show that every Lagrangian
submanifold can be brought to generic position by an arbitrarily small transforma-
tion.14

Proposition 12.6.3 Let ι : L → T∗Q be a Lagrangian immersion in generic posi-
tion such that the induced bundle ι∗T(T∗Q) is trivial. Then, Σk(L) is either empty
or an embedded submanifold of L of codimension k(k+1)

2 . Moreover, Σ1(L) pos-

sesses a natural coorientation compatible with the natural coorientation of L̂1(n)

under the tangent mapping of F .

Proof Let ξ ∈ Σk(L). Then, rankΠ ′
ξ = n − k and hence dim kerΠ ′

ξ = k, that is,

dim
(
ι′ξ (TξL) ∩ Tι(ξ)

(
T∗
Π(ξ)Q

)) = k. (12.6.4)

By applying the diffeomorphism χ we obtain dim(F (ξ) ∩ L0) = k, that is, F(ξ) ∈
L̂k(n). Thus, F(Σk(L)) ⊂ L̂k(n). Conversely, if F(ξ) ∈ L̂k(n), then (12.6.4) holds
and hence ξ ∈ Σk(L). Thus, F(Σk(L)) = L̂k(n) ∩ F(L). It follows that

Σk(L) = F−1(L̂k(n)
)
. (12.6.5)

Now, Theorem 1.8.2 and Corollary 7.6.11 imply that Σk(L) is an embedded sub-
manifold of codimension k(k+1)

2 . Since F ′
ξ induces a bijection between the normal

spaces Nξ (Σ1(L)) and NF(ξ)(L̂1(n)), the natural coorientation of L̂1(n) provided
by Proposition 7.7.7 carries over to Σ1(L). �

Remark 12.6.4

1. Proposition 12.6.3 implies that Σ(L) has a structure analogous to that of the
Maslov cycle L̂ (L) in L (n), cf. Remark 7.6.12: it is a stratified subset of L,
with the stratum Σ1(L) having codimension 1 in L and the other strata having
codimension at least 3. This implies that Σ1(L) is open and dense in Σ(L).

13This means, in particular, that F(L) does not intersect L̂k(n) for n <
k(k+1)

2 .
14This is a consequence of the Sard Theorem 1.5.18, see Lemma 4.1.3 in [13].
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2. Let us describe L explicitly in terms of local coordinates xi,pi on T∗Q induced
from a local chart on Q. Let ẋi and ṗi denote the corresponding fibre coordinates
on T(T∗Q), let U ⊂ L be an open subset such that ι�U is an embedding and ι(U)

is contained in the domain of the coordinates xi and pi . Since the local trivial-
ization of T(T∗Q) induced by the bundle coordinates xi , pi , ẋi and ṗi fulfils
(12.6.2), it can be used to construct the mapping F : U → L (n). By Proposi-
tion 7.6.8, for every ξ ∈ U there exists a subset K ⊂ {1, . . . , n} such that F(ξ)

belongs to the domain of the local chart ϕK on L (n) defined by (7.6.12) and
(7.6.16). This local chart assigns to F(ξ) an n-dimensional symmetric matrix,
which we denote by AK

ij (ξ). According to (7.6.18) and (7.6.19), in terms of the

fibre coordinates ẋi and ṗi , the Lagrangian subspace ι′TξL of Tξ (T∗Q) is given
by the n equations

ẋl =
∑

j /∈K

AK
lj (ξ)ẋ

j −
∑

m∈K

AK
lm(ξ)ṗm, l ∈ K, (12.6.6)

ṗi =
∑

j /∈K

AK
ij (ξ)ẋ

j −
∑

m∈K

AK
im(ξ)ṗm, i /∈ K. (12.6.7)

Hence, it can be parameterized by the fibre coordinates corresponding to the co-
ordinate functions xi with i /∈ K and pl with l ∈ K . Therefore, these functions
provide a chart κK on L in a neighbourhood of ξ . According to (12.6.6) and
(12.6.7), the matrix entries AK

ij (ξ) can be expressed in terms of partial deriva-

tives of the local representatives of the remaining coordinate functions xk in this
chart:

AK
lm(ξ) = − ∂xl

∂pm

(
κK(ξ)

)
, AK

li (ξ) = ∂xl

∂xi

(
κK(ξ)

)
,

AK
il (ξ) = −∂pi

∂pl

(
κK(ξ)

)
, AK

ij (ξ) = ∂pi

∂xj

(
κK(ξ)

)
,

(12.6.8)

where l,m ∈ K and i, j /∈ K .
3. Consider the singular subset Σ(L). For given K ⊂ {1, . . . , n} consisting of k

elements and given ξ ∈ L such that F(ξ) belongs to the domain of the chart ϕK ,
Proposition 7.6.10 yields that ξ ∈ Σk(L) iff AK

lm(ξ) = 0 for all l,m ∈ K . In par-
ticular, for K = {1}, an open subset of Σ1(L) is mapped under ξ �→ AK

lm(ξ) to
the subspace of the vector space of n-dimensional symmetric matrices A given

by A11 = 0. Hence, for all ξ in this subset we have ∂x1

∂p1
(κK(ξ)) = 0. Accord-

ing to Remark 7.7.8, in the corresponding chart ϕK on L (n), the coorienta-
tion of L̂1(n) points from the side where A11 > 0 to the side where A11 < 0.
Thus, the first relation in (12.6.8) implies that the induced coorientation of

Σ1(L) points from the side where ∂x1

∂p1
(p1, x

2, . . . , xn) < 0 to the side where
∂x1

∂p1
(p1, x

2, . . . , xn) > 0.
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Next, we carry over the Maslov index for closed curves in L (n) and the inter-
section index for curves in L (n) with the Maslov cycle L̂ (n) to curves in L.

First, consider the Maslov index μ for closed curves in L (n), cf. Defini-
tion 7.7.1. Using the mapping F , we can define the Maslov index for closed curves
γ in L by

μL(γ ) := μ(F ◦ γ ).

Like μ, the Maslov index μL defines a homomorphism from π1(L) to Z, denoted by
the same symbol. On the other hand, via F , the universal Maslov class μ on L (n)

defined by (7.7.4) induces a 1-form

μL := F ∗μ

on L, called the Maslov class of (L, ι). By Proposition 7.7.4, for a closed curve γ

in L, we have
∫

γ

μL =
∫

γ

F ∗μ =
∫

F◦γ
μ = μ(F ◦ γ ) = μL(γ ). (12.6.9)

As explained in Remark 7.7.6/1, integration of 1-forms over closed curves de-
fines an isomorphism from the de-Rham cohomology group H 1(L) to the group
Hom(π1(L),R) and (12.6.9) implies that this isomorphism assigns to the Maslov
class μL the homomorphism defined by the Maslov index μL.

Second, consider the intersection index of curves in L (n) with respect to the
Maslov cycle L̂ (n), cf. Definition 7.7.10. We carry over the terminology of cross-
ings introduced in Sect. 7.7 to the present situation: a real number t such that
γ (t) ∈ Σ(L) is called a crossing of γ with Σ(L). A crossing t is said to be simple
if γ (t) ∈ Σ1(L). A simple crossing is said to be transversal if γ̇ (t) /∈ Tγ (t)Σ1(L).
Depending on whether γ̇ (t) is positively or negatively oriented with respect to the
natural coorientation of Σ1(L) provided by Proposition 12.6.3, a simple transversal
crossing is said to be positive or negative. Proposition 12.6.3, the transversality of F
and L̂ (n), and the definition of the coorientation on Σ1(L) imply the following.

(a) Crossings of γ with Σ(L) are crossings of F ◦ γ with L̂ (n) and vice versa.
(b) A crossing of γ with Σ(L) is, respectively, simple, transversal, positive or neg-

ative iff it is so as a crossing of F ◦ γ with L̂ (n).

Since the complement of Σ0(L) ∪ Σ1(L) in L is the closure of the embedded sub-
manifold Σ2(L) which by Proposition 12.6.3 has codimension 3, point 1 of Propo-
sition 7.7.9 carries over to the present situation, yielding that

(c) every curve in L with end points in Σ0(L) is homotopic with fixed end points
to a curve which has only simple transversal crossings with Σ(L).

Since a homotopy with fixed end points of γ in L induces a homotopy with fixed
end points of F ◦ γ in L (n), point 2 of Proposition 7.7.9 implies that



12.6 Maslov Class and Caustics 679

(d) if two curves in L which have the same end points in Σ0(L) and which have
only simple and transversal crossings with Σ(L) are homotopic with fixed end
points, their differences between the numbers of positive and negative crossings
coincide.

Points (c) and (d) allow for

Definition 12.6.5 (Maslov intersection index for Lagrangian immersions) The
Maslov intersection index of a curve γ in L with end points in Σ0(L) is defined
by

indL(γ ) := ν+ − ν−, (12.6.10)

where ν+ is the number of positive crossings and ν− is the number of negative
crossings with Σ(L) of a curve which is homotopic with fixed end points to γ and
whose crossings are all simple and transversal.

By point (d), the intersection index so defined is invariant under homotopies with
fixed end points. It is obviously additive with respect to the composition of curves.
By (a) and (b), we have

indL(γ ) = IndL0(F ◦ γ ) (12.6.11)

for all curves γ with end points in Σ0(L).

Proposition 12.6.6 Let L ⊂ T∗Q be a Lagrangian submanifold and let γ : [0,1] →
L be a closed curve with γ (0) = γ (1) ∈ Σ0(L). Then,

μL(γ ) = indL(γ ). (12.6.12)

This shows, in particular, that the definition of μL does not depend on the choice
of the trivialization of ι∗T(T∗Q) in the construction of the mapping F .

Proof Under the assumption that γ (0) = γ (1) ∈ Σ0(L), the Lagrangian subspace
L0 of R

2n is transversal to F ◦ γ (0) and F ◦ γ (1), so that we can apply Theo-
rem 7.7.11. In view of (12.6.11), this yields

μL(γ ) = μ(F ◦ γ ) = IndL0(F ◦ γ ) = indL(γ ). �

Remark 12.6.7 The intersection index indL(γ ) can be expressed in terms of the
Kashiwara index by a formula analogous to (7.8.9): for ξ ∈ L we define

L1ξ := Tξ

(
T∗
Π(ξ)Q

)
, L2ξ := ι′TξL.

We choose a sufficiently fine covering {Uj } of L such that over each Uj there exists

a smooth choice of an auxiliary subspace L
j

3ξ transversal to both L1ξ and L2ξ . Let
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γ : [a, b] → L be a curve in L and choose a = t0 < t1 < · · · < tk = b such that
γ ([tj−1, tj ]) ⊂ Uj for all j . Then, Proposition 7.8.8 implies

indL(γ )

= 1

2

k∑

j=1

(
s
(
L1ξ ,L2ξ ,L

j

3ξ

)
�ξ=γ (tj−1)

− s
(
L1ξ ,L2ξ ,L

j

3ξ

)
�ξ=γ (tj )

)
, (12.6.13)

with the Kashiwara index s taken in the symplectic vector space Tξ (T∗Q).

Example 12.6.8

1. Consider R2, endowed with the canonical symplectic structure and with canoni-
cal coordinates q and p. Let L be an embedded submanifold diffeomorphic to S1.
For dimensional reasons, L is Lagrange. Let us calculate the Maslov index of L

using (12.6.13). For that purpose, it suffices to consider a closed curve t �→ γ (t),
which runs through L exactly once in the direction of a chosen orientation. For
simplicity, assume that L coincides with the circle defined by q2 + p2 = 1 and
that it is oriented clockwise. The singular subset Σ(L) consists of the points
η+ = (1,0) and η− = (−1,0). We choose a covering by connected open subsets
U1, . . . ,U4 such that η+ ∈ U2 and η− ∈ U4 and a compatible partition of γ . If
we use the clockwise orientation of R2, the four terms in (12.6.13) are 0 for U1
and U3 and +1 for U2 and U4, respectively. Thus, we obtain the Maslov index
+2. This can also be understood in the following way. While running through
the singularities, the relative position of L3 to the pair (L1,L2) changes. Above
η+ the subspace L3 lies between L1 and L2, whereas beneath η+ it lies outside
of L1 and L2 in the sense of the chosen orientation.

2. In a similar way, one can discuss the Lagrangian immersion ι : L → R
2 given by

L = S1, realized as the unit circle in C, and

ι : L →R
2, ι

(
eiφ) = (

cos(φ), sin(2φ)
)
.

This is a figure eight immersion in horizontal position with respect to the canon-
ical projection. It has the two self-intersection points ±i. The singular subset
Σ(L) consists of the two points ±1. The reader can easily convince himself
that for a curve γ which runs through L exactly once, Formula (12.6.13) yields
μL(γ ) = 0 (Exercise 12.6.1).

Now, let us analyze the Maslov intersection index using the concept of Morse
families. For that purpose, let U ⊂ L be open and let (B,π,S) be a Morse family
generating the Lagrangian immersion ι�U : U → T∗Q. As in Sect. 12.5, we as-
sume that B is an open subset of Q × R

r and we write (x,y) for its elements. We
will also use the simplified notation for the second derivatives introduced there. By
Lemma 12.5.1, for (x,y) ∈ BS and ξ ∈ U such that ι(ξ) = (x,y), we have

dim kerS ′′
yy(x,y) = dim kerΠ ′

ξ .
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Thus, Remark 12.6.2 implies that ι(Σ(U)) coincides with the image under ΛS of
the set of solutions of the system of equations

S′
y = 0, det

(
S′′
yy

) = 0. (12.6.14)

Hence, the caustic Γ (U) = Π(Σ(U)) is given by

Γ (U) = {
x ∈ Q : det

(
S′′
yy(x,y)

) = 0 and S′
y(x,y) = 0 for some y ∈ R

r
}
.

(12.6.15)
On the other hand, outside Σ(L) we have

det
(
S′′
yy

) �= 0,

so that for points which are not critical, the first of the equations in (12.6.14) can be
solved for the variables yα . Thus, if U does not intersect Σ(L), S can be reduced to
a single generating function on Q.

Example 12.6.9 For the Morse family of Example 12.4.7, which generates the La-
grangian immersion of Example 12.6.8/2, the criterion (12.6.14) yields

∂S

∂y
(x, y) = x2 + y2 − 1 = 0,

∂2S

∂y2
(x, y) = 2y = 0.

Hence, the critical points are (x, y) = (±1,0) and the focal points are x = ±1. This
is consistent with what we have found in Example 12.6.8/2.

Next, we derive a formula for the intersection index in terms of generating Morse
families. Recall that the index of a quadratic form Q on a vector space V is defined to
be the number of negative eigenvalues, that is, the dimension of a maximal subspace
of V on which H is negative definite. One has

index(Q) = 1

2

(
rank(Q) − sign(Q)

)
, (12.6.16)

where sign(Q) denotes the signature, that is, the number of positive eigenvalues
minus the number of negative eigenvalues, counted with multiplicities.

Lemma 12.6.10 Let ι : L → T∗Q be a Lagrangian immersion. Let there be given

1. an open covering {Ui} of L such that all the intersections Ui ∩Uj are connected,
2. Morse families (Bi,πi, Si), with Bi being open subsets of Q×R

ri , such that the
immersions ιi : Ui → T∗Q and ΛSi

: BSi
→ T∗Q are equivalent.

Then, the mappings15

cij : Ui ∩ Uj → Z, cij := index
((
S′′
i

)
yiyi

) − index
((
S′′
j

)
yj yj

)
(12.6.17)

are constant for all i, j .

15By an abuse of notation, via the diffeomorphism BSi
→ Ui induced by ΛSi

, index((Si )
′′
yiyi

) is
viewed as a function on Ui .
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Proof Let (i, j) be a pair of indices such that Ui ∩ Uj is nonempty and let ξ0 ∈
Ui ∩ Uj . Denote b0,l = Λ−1

Sl
(ξ0), l = i, j . Since the Morse families (Bi,πi, Si) and

(Bj ,πj , Sj ) generate ι : L → T∗Q at ξ , for l = i, j , a restriction of (Bl,πl, Sl) to
some open neighbourhood of b0,l in Bl arises from some reduced Morse family
(B̂, π̂ , Ŝ) generating (L, ι) at ξ by the following operations, applied in the order
they are listed and with additions and restrictions omitted: a composition with a
fibre-preserving diffeomorphism ψl , a suspension with a non-degenerate quadratic
form Ql on R

kl and a further composition with a fibre-preserving diffeomorphism
ϕl . Thus, in a neighbourhood of b0,l ,

Sl = (Ŝ ◦ ψl + Ql) ◦ ϕl, (12.6.18)

where we have omitted the natural projections occurring in the suspension. To an-
alyze how the index of the second derivative with respect to the fibre coordinates
behaves under the above operations, let (B,π,S) be a Morse family over Q with
B ⊂ Q ×R

r open. For a non-degenerate quadratic form Q on R
k we have

index
(
(S + Q)′′yy

) = index
(
S′′
yy

) + index(Q). (12.6.19)

For an open subset B̃ ⊂ Q ×R
r and a fibre-preserving diffeomorphism ϕ : B̃ → B

we calculate

(S ◦ ϕ)′′yy(b̃) = (
ϕ′
y(b̃)

)T(
S′′
yy

(
ϕ(b̃)

))
ϕ′
y(b̃) + (

S′
y

(
ϕ(b̃)

))
ϕ′′
yy(b̃).

Since ϕ(B̃S◦ϕ) = BS and since S′
y = 0 on BS , and since a similarity transforma-

tion with a non-singular matrix does not change the index of a quadratic form, this
implies

index
(
(S ◦ ϕ)′′yy

) = index
(
S′′
yy ◦ ϕ

)
. (12.6.20)

Using (12.6.19) and (12.6.20), from (12.6.18) we obtain

index
(
(Sl)

′′
ylyl

(bl)
) = index

(
Ŝ′′
ŷŷ

(
ψl ◦ ϕl(bl)

)) + index(Ql ) (12.6.21)

for all bl in a neighbourhood of b0,l , where l = i, j . Since Λ
Ŝ
(ψl ◦ ϕl(bl)) =

ΛSl
(bl), if ΛSi

(bi) = ΛSj
(bj ), then ψi ◦ ϕi(bi) = ψj ◦ ϕj (bj ). Hence, (12.6.21)

implies

cij (ξ) = index(Qi ) − index(Qj )

for all ξ in some neighbourhood of ξ0. This shows that cij is constant in a neigh-
bourhood of every point of Ui ∩ Uj . Since the latter is connected, this implies that
cij is constant. �

Proposition 12.6.11 Let ι : L → T∗Q be a Lagrangian immersion. Let γ : [0,1] →
L be a curve with end points in Σ0(L) which has only simple and transversal cross-
ings with Σ(L). Choose numbers 0 = t0 < t1 < · · · < tk = 1 such that there exist
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1. open subsets U1, . . . ,Uk such that γ ([ti−1, ti]) ⊂ Ui and Ui ∩Uj are connected,
2. Morse families (Bi,πi, Si), with Bi being open subsets of Q×R

ri , such that the
immersions ιi : Ui → T∗Q and ΛSi

: BSi
→ T∗Q are equivalent.

Then, the intersection index of γ is given by

indL(γ ) =
k∑

i=1

{
index

(
(Si)

′′
yiyi

(
γ (ti)

)) − index
(
(Si)

′′
yiyi

(
γ (ti−1)

))}
. (12.6.22)

Proof Using Lemma 12.6.10, for the right hand side of (12.6.22) we find

k∑

i=1

{
index

(
(Si)

′′
yiyi

(
γ (ti)

)) − index
(
(Si)

′′
yiyi

(
γ (ti−1)

))}

= index
(
(Sk)

′′
ykyk

(
γ (1)

)) +
k−1∑

i=1

cii+1
(
γ (ti)

) − index
(
(S0)

′′
y0y0

(
γ (0)

))
.

Since the cij are constant on Ui ∩ Uj , the sum on the right hand side does not
depend on the choice of the numbers ti . In particular, we may choose them in such
a way that γ (ti) ∈ Σ0(L) for all i. If the line segment γ ([ti−1, ti]) does not intersect
Σ1(L), Lemma 12.5.1 implies that the rank of (Si)

′′
yiyi

is constant on γ ([ti−1, ti]).
Then, also the signature is constant. By (12.6.16), then

index
(
(Si)

′′
yiyi

(
γ (ti)

)) = index
(
(Si)

′′
yiyi

(
γ (ti−1)

))
,

so that this line segment does not contribute to the sum on the right hand side of
(12.6.22). For the remaining line segments we may assume that each of them con-
tains exactly one crossing. By the Splitting Lemma 12.5.2, we may also assume
that the corresponding Morse families (Bi,πi, Si) are reduced, which means that
they have fibre dimension 1, because the crossings are simple. Then, Lemma 12.5.1
yields that (Si)

′′
yiyi

(γ (t)) = 0 at the crossing and (Si)
′′
yiyi

(γ (t)) �= 0 outside. There-
fore, (Si)

′′
yiyi

(γ (t)) has rank 1 at ti and ti+1, whereas the signature changes by ±2 at
the crossing. By (12.6.16), the index then changes by ±1 there. As a consequence,
the right hand side of (12.6.22) counts the crossings of γ with Σ1(L), weighted
by +1 in case (Si)

′′
yiyi

(γ (t)) changes its sign from + to − and weighted by −1
otherwise. It remains to show that this weighting is consistent with the counting of
the crossings in the Maslov intersection index (12.6.10), that is, that (Si)

′′
yiyi

(γ (t))

changes its sign from + to − iff γ crosses Σ1(L) in the direction of the coorienta-
tion of Σ1(L). Since the argument is independent of the line segment, we may omit
the index i. Let tc be the crossing under consideration and denote ξc = γ (tc). For
the first part of the argument it is helpful to distinguish between points in U ⊂ L

and points in BS . Therefore, let (xc, yc) ∈ BS be such that ι(ξc) = ΛS(xc, yc). Since
S′′
yy(xc, yc) = 0, the bilinear form S′′

xy(xc, yc) must have maximal rank, that is, rank
1. Thus, we can find coordinates xi on a neighbourhood of Π(ξ) = xc in Q such that
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∂2S

∂x1∂y
�= 0 in a neighbourhood of (xc, yc) in B . By replacing x1 by −x1 if necessary,

we may assume that

∂2S

∂x1∂y
> 0. (12.6.23)

Then, the Implicit Function Theorem yields a function x1 = x1(y, x2, . . . , xn) ful-
filling

∂S

∂y

(
x1(y, x2, . . . , xn

)
, x2, . . . , xn, y

) = 0.

Hence, (x1(y, x2, . . . , xn), x2, . . . , xn, y) ∈ BS , so that y and x2, . . . , xn provide
coordinates on BS in a neighbourhood of (xc, yc). Since y �→ (x1(y, x2, . . . , xn),

x2, . . . , xn, y) is a curve in BS , Eq. (12.4.15) implies

∂2S

∂y∂x1

∂x1

∂y
+ ∂2S

∂y2
= 0. (12.6.24)

Hence, along the line segment, we have ∂x1

∂y
= 0 at the crossing and

sign

(
∂x1

∂y

)
= − sign

(
∂2S

∂y2

)
(12.6.25)

outside. Now, consider L. By (12.4.12), in the coordinates xi and pi on T∗Q, for
points in a neighbourhood of ξc in L we have p1 = ∂S

∂x1 . Using that y, x2, . . . , xn

provide coordinates on BS , we find

∂p1

∂y
= ∂2S

∂(x1)2

∂x1

∂y
+ ∂2S

∂x1∂y
.

Since at ξc we have ∂x1

∂y
= 0, the inequality (12.6.23) implies ∂p1

∂y
> 0 in some neigh-

bourhood of ξc in L, so that we may take p1, x
2, . . . , xn as coordinates on L there.

Then,

∂x1

∂y
= ∂x1

∂p1

∂p1

∂y
.

From this and from (12.6.25) we read off that, along the line segment, we have
∂x1

∂p1
= 0 at the crossing and

sign

(
∂x1

∂p1

)
= sign

(
∂x1

∂y

)
= − sign

(
∂2S

∂y2

)

outside. According to Remark 12.6.4/3, this means that if the line segment crosses

Σ1(L) in the direction of the coorientation, that is, if ∂x1

∂p1
changes its sign from −
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to +, then ∂2S

∂y2 changes its sign from + to − and, hence, its index changes by +1.
This completes the proof. �

Lemma 12.6.10 and Proposition 12.6.11 imply

Corollary 12.6.12 Let ι : L → T∗Q be a Lagrangian immersion and let γ be a
curve in L with end points in Σ0(L). Under the assumptions of Proposition 12.6.11,
we have

indL(γ ) =
k−1∑

i=1

cii+1 + index
(
(Sk)

′′
ykyk

(
γ (1)

)) − index
(
(S0)

′′
y0y0

(
γ (0)

))
.

If γ is closed, then

μL(γ ) =
k−1∑

i=1

cii+1.

In particular, a Lagrangian immersion generated by a single Morse family has triv-
ial Maslov class, that is, in this case the Maslov index of any closed curve vanishes.

Example 12.6.13

1. Let L be the circle q2 + p2 = 1 in R
2, cf. Example 12.6.8/1. Choosing p as a

coordinate on L in the vicinity of each of the critical points η± = (±1,0), we
find x(p) = ±√

1 − p2 and hence

∂x

∂p
= ∓ 2p√

1 − p2
.

Thus, at η+, the coorientation points from the upper half-plane to the lower half-
plane, whereas at η−, it points in the converse direction. Consequently, a curve
running once clockwise around L has Maslov index +2. This is consistent with
what we have found in the above-cited example. Note that Corollary 12.6.12 tells
us that the circle cannot be generated by a single Morse family. We encourage
the reader to construct a set of generating Morse families (Exercise 12.6.3).

2. Consider the Morse family of Example 12.4.7, which generates the figure eight
immersion in R

2 of Example 12.6.8/2. As in point 1, using p as a coordinate
on L at the critical points η± = (±1,0), we find that at η+ the coorientation
points from the upper half-plane to the lower half-plane and that at η− it points
in the converse direction. Let us determine the Maslov intersection index of the
following four curves. Denote ζ± = (0,±1) (the self-intersection points) and
ξ±± := (± 1√

2
,± 1√

2
). Define γ1 to run from ξ++ through η+ to ξ+−, γ2 from

ξ+− through ζ− to ξ−−, γ3 from ξ−− through η− to ξ−+ and γ4 from ξ−+
through ζ+ back to ξ++. Since γ1 traverses η+ in the direction of the coori-
entation, whereas γ3 traverses η− in the direction opposite to the coorientation,
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we find

indL(γ1) = 1, indL(γ2) = 0, indL(γ3) = −1, indL(γ4) = 0.

In particular, the closed curve obtained by composing γ1, . . . , γ4 has Maslov
index 0. This is consistent with Corollary 12.6.12.

Next, we show that there is a variety of bundle structures over L associated with a
given Lagrangian immersion ι : L → T∗Q. These bundles contain information about
how the pieces of this immersion generated by Morse families are glued together.
Let L (L, ι) denote the class of Morse families over Q locally generating ι : L →
T∗Q. Recall that the elements (B,π,S) of L (L, ι) are characterized by the property
that there exists an open subset US of L such that the immersions (BS,ΛS) and
(US, ι�US

) are equivalent. With any two elements S1, S2 of (L, ι) such that US1 ∩US2

is nonempty, one can associate a mapping

cS1,S2 : US1 ∩ US2 → Z, cS1,S2(ξ) := index
(
(S1)

′′
y1y1

(ξ)
) − index

(
(S2)

′′
y2y2

(ξ)
)
,

called the transition function of S1 and S2. Here, y1 and y2 are arbitrarily chosen16

fibre coordinates on B1 and B2, respectively. By Lemma 12.6.10, cS1,S2 is constant
on each connected component of US1 ∩US2 and hence smooth. Now, take the subset
of L×L (L, ι)×Z consisting of the elements (ξ, S, k) such that ξ ∈ US and define
ML to be the quotient of this subset by the equivalence relation

(ξ1, S1, k1) ∼ (ξ2, S2, k2) iff ξ1 = ξ2 and k1 − k2 = cS1,S2(ξ1).

From the direct product L × L (L, ι) × Z, the quotient ML inherits the natural
projection

πML : ML → L, πML
([
(ξ, S, k)

]) := ξ.

The elements S of L (L, ι) define mappings

χS : (πML
)−1

(US) → Us ×Z, χS

([
(ξ, S̃, k)

]) := (
ξ, k + c

S,S̃
(ξ)

)
,

which are easily seen to be bijective. The transition mappings are given by

χS2 ◦ χ−1
S1

(ξ, k) = (
ξ, k + cS2,S1(ξ)

)
.

Since they are smooth, the family {χS : S ∈ L (L, ι)} defines on ML the structure
of a smooth manifold, cf. Remark 1.1.10. Second countability thereby carries over
from L, because the latter implies that the covering {US : S ∈ L (L, ι)} contains a
countable subcovering. This way, ML becomes a locally trivial fibre bundle over L

16For any two choices, the quadratic forms S′′
yy(ξ) are similar and hence have the same index.
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with canonical projection πML and typical fibre Z. Finally, one can check that the
mapping

Ψ : ML ×Z → ML, Ψ
([
(ξ, S, k)

]
, l

) := [
(ξ, S, k + l)

]
,

is well-defined and that it endows ML with the structure of a principal Z-bundle
over L. This bundle is called the Maslov principal bundle. With the Maslov principal
bundle, there come the following three associated bundles:

(a) ML ×Z Z4 via the induced action of Z on Z4 = Z/4Z by translation,
(b) ML ×Z U(1) via the action of Z on U(1) defined by (k,α) �→ ei π2 kα,
(c) ML := ML ×Z C via the corresponding action of Z on C.

ML is called the Maslov line bundle. The embedding

Z4 → U(1), k mod 4 �→ ei π2 k,

induces a vertical principal subbundle embedding ML×ZZ4 → ML×ZU(1). Using
sheaf theory one can prove that there exists a family of functions

{
cS ∈ C∞(US) : S ∈ L (L, ι)

}

such that cS1 − cS2 = cS1,S2 on US1 ∩ US2 [133, Prop. 2.11.1]. Then,

ei π2 cS1 = ei π2 cS1,S2 ei π2 cS2 (12.6.26)

and thus the local sections ei π2 cS in ML ×Z U(1) combine to a global non-vanishing
section. As a consequence, ML ×Z U(1), and hence the Maslov line bundle ML, is
trivial. The triviality of the complex vector bundle ML does, however, not imply the
existence of a single real-valued generating function for L.

Remark 12.6.14 Let {Si : i ∈ I } be a countable subset of L (L, ι) such that the
subsets Ui ≡ USi

cover L. The covering {Ui}, together with the family of transition
mappings cij ≡ cSi ,Sj

of the corresponding system of local trivializations of the
Maslov principal bundle ML, defines a 1-cocycle on L with values in Z and thus
an element μ̂L of the first integer-valued Čech cohomology H 1

Č (L,Z) of L, cf.
Remark 2.2.12/2. According to this remark, μ̂L uniquely characterizes the principal
Z-bundle ML up to isomorphisms. Corollary 12.6.12 implies that by the natural
homomorphism

H 1
Č (L,Z) → H 1(L,R),

μ̂L is mapped to the Maslov class μL. Let us add that the transition mappings of
the corresponding system of local trivializations of the Maslov line bundle ML are
given by e−i π2 cij .

In the remainder of this section, we derive a local normal form for the caustic of
a Lagrangian immersion in the simplest case.
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Proposition 12.6.15 Let ι : L → T∗Q be a Lagrangian immersion and let ξ0 ∈
Σ1(L). Denote x0 = Π(ξ0). Assume that

ι′Tξ0

(
Σ1(L)

) ∩ Tι(ξ0)

(
T∗
x0
Q

) = {0}. (12.6.27)

Then, there exist smooth functions f and g on a neighbourhood U of x0 in Q with
g′ �= 0 such that Γ (L) ∩ U coincides with the caustic Γ (BS) of the Lagrangian
immersion ΛS generated by the Morse family

S : U ×R→R, S(x, y) = f (x) + g(x)y − 1

3
y3. (12.6.28)

Clearly, for the normal form (12.6.28), we have

BS = {
(x, y) ∈ U ×R : g(x) = y2}, Γ (BS) = {

x ∈ U : g(x) = 0
}
. (12.6.29)

Proof The proof is along the lines of the proof of Proposition 6.1 in Chap. VII
of [115]. Let (B,π,S) be some Morse family generating ι : L → T∗Q at ξ0. By
Lemma 12.5.1 and by the Splitting Lemma 12.5.2, we may assume that B is an
open subset of Q × R. Let y0 ∈ R such that (x0, y0) ∈ BS and ΛS(x0, y0) = ξ0. In
a first step, we show that there exist smooth functions f,g : Q → R and χ : R→R

such that for (x, y) ∈ BS we have

S(x, y) = f (x) + g(x)χ(x, y) − 1

3
χ(x, y)3,

(
χ(x, y)

)2 = g(x), (12.6.30)

where g′(x) �= 0 for all x and ∂χ
∂y

(y) �= 0 for all y. We will give the argument for
the case dimQ = 1. The general case can be reduced to this case, see below. By
a constant shift of the fibre coordinate y, we may achieve that y0 = 0. Choosing
an appropriate coordinate x on Q we may also assume that x0 = 0. Then, since
ΛS(0,0) = ξ0 belongs to Σ1(L), we have S′′

yy(0,0) = 0 and hence S′′
xy(0,0) �= 0.

Thus, by the Implicit Function Theorem, the equation ∂S
∂y

(x, y) = 0 can be solved
for x and hence BS is given by a smooth function y �→ x(y). Then, (12.4.15) implies

∂2S

∂y∂x

(
x(y), y

)
x′(y) + ∂2S

∂y2

(
x(y), y

) = 0 (12.6.31)

and hence x′(0) = 0. Differentiating (12.6.31) once again, we obtain

∂2S

∂y∂x
(0,0)x′′(0) + ∂3S

∂y3
(0,0) = 0. (12.6.32)

Due to the assumption (12.6.27), S can be chosen so that ∂3S

∂y3 (0,0) �= 0. The proof
of this statement is left to the reader, see Exercise 12.6.4. Then, (12.6.32) implies
that x ′′(0) �= 0. Therefore, the Taylor expansion of x(y) at y = 0 starts with the
second order term. By replacing the coordinate x on Q by the coordinate −x if
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necessary, we may assume that the corresponding coefficient is positive and hence
that x(y) ≥ 0 in some neighbourhood of y = 0. Then, by taking the positive square
root of x(y) for y > 0 and the negative square root of x(y) for y < 0, we obtain a
smooth function y �→ λ(y) satisfying x(y) = λ(y)2 and λ′(0) > 0. It follows that
the mapping (x, y) �→ (x,λ(y)) is a fibre-preserving diffeomorphism of B which
transforms S in such a way that BS is given by x = y2.

Now, consider the function y �→ 1
2 (S(y

2, y) + S(y2,−y)). Since it is even, a
lemma of Whitney’s17 yields that there exists a smooth function f on R such that

f
(
y2) = 1

2

(
S
(
y2, y

) + S
(
y2,−y

))
.

Next, consider the function

ψ(y) := 3

4

(
S
(
y2, y

) − S
(
y2,−y

))
.

A brief computation shows that ψ(0) = ψ ′(0) = ψ ′′(0) = 0 and ψ ′′′(0) �= 0. Hence,
the Taylor expansion of ψ at 0 starts with the third order term, so that by taking the
third root of ψ(y) we obtain a unique smooth function χ on a neighbourhood of
zero in R such that χ(y)3 = ψ(y). Since ψ is an odd function, so is χ . Hence, χ2

is an even function, so that by the above lemma of Whitney’s there exists a smooth
function g on R such that g(y2) = χ(y)2. Then,

g
(
y2)χ(y) = 3

4

(
S
(
y2, y

) − S
(
y2,−y

))
.

A brief calculation shows that the functions f , g and χ so constructed satisfy
(12.6.30), indeed. Moreover, since (χ ′(0))3 = 1

6ψ
′′′(0) �= 0 and g′(0) = (χ ′(0))2,

we have χ ′(y) �= 0 and hence g′(x) �= 0 in some neighbourhood of x = 0.
Finally, in the case dimQ > 1, since S′′

xy(0,0) �= 0, we can choose coordinates
xi in a neighbourhood of x0 in Q such that

S′′
yx1 �= 0.

Then, we can carry out the argument for dimQ = 1, thereby treating the variables
x2, . . . , xn as parameters. Due to the parameterized version of the lemma of Whit-
ney’s cited above, and since in each step of the above construction of the functions
f (x1), g(x1) and χ(y), the smooth dependence on the parameters x2, . . . , xn is pre-
served, these functions depend smoothly on the parameters and thus yield smooth
functions on Q and Q × R, respectively. This completes the first step of the proof
of Proposition 12.6.15.

17If h is an even smooth function on R, there exists a unique smooth function h̃ on R such that

h(y) = h̃(y2). If h depends smoothly on parameters, then so does h̃.
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In the second step, we define a function S̃ in a neighbourhood of (x0, y0) in B by
the right hand side of the first equation in (12.6.30). This function fulfils

∂S̃

∂y
(x, y) = (

g(x) − χ(x, y)2)∂χ
∂y

(x, y).

Since g(x) = χ(x, y)2 for all (x, y) ∈ BS and since in the coordinates xi on Q

used above, ∂g

∂x1 �= 0 and ∂χ

∂x1 = 0 everywhere, we conclude that ∂S̃
∂y

(x, y) = 0 iff

(x, y) ∈ BS . Thus, the singular subset of S̃ coincides with BS . Moreover, choosing

coordinates xi on Q in a neighbourhood of x0 such that ∂2S

∂y∂x1 �= 0 and parameter-

izing BS by the coordinates y, x2, . . . , xn, from (12.4.15) we conclude that both the

singular points of S in BS , defined by ∂2S

∂y2 (x, y) = 0, and the singular points of S̃ in

BS , defined by ∂2S̃

∂y2 (x, y) = 0, are characterized in these coordinates by the equation

∂x1

∂y

(
y, x2, . . . , n

) = 0.

Thus, S̃ has the same singular subset as S and hence it generates the caustic Γ (L) in
a neighbourhood of x0 in Q. Finally, we apply the fibre-preserving diffeomorphism
(x, y) �→ (x,χ(x, y)) transforming S̃ to the Morse family (12.6.28). This finishes
the proof. �

For an application of this proposition in physics, we refer to Example 12.8.11.

Remark 12.6.16 (Caustics and Catastrophe Theory) We put the above proposition
in the perspective of a typology of singularities of Lagrangian immersions. Recall
that, by Theorem 12.5.5, germs of Lagrangian immersions at a point ξ ∈ T∗Q are in
one-to-one correspondence with stable equivalence classes of Morse families at ξ .
This correspondence can be carried over to the following situation.

On the one hand, two Lagrangian immersions ι : L → T∗Q and ι̃ : L̃ → T∗Q̃ are
said to be equivalent if there exist diffeomorphisms λ : L → L̃ and ψ : Q → Q̃ and
a symplectomorphism ϕ : T∗Q → T∗Q̃ such that

ι̃ ◦ λ = ϕ ◦ ι, ψ ◦ πQ = π
Q̃

◦ ϕ.

This induces an equivalence relation for germs of Lagrangian immersions in an
obvious way. Caustics of equivalent Lagrangian immersions are mapped diffeomor-
phically onto one another. On the other hand, the concept of stable equivalence of
Morse families at some point ξ ∈ T∗Q discussed in Sect. 12.5 can be generalized to
stable equivalence of arbitrary Morse families by extending the operation of com-
position to include arbitrary fibre-preserving diffeomorphisms T∗Q → T∗Q̃, pro-
jecting to diffeomorphisms Q → Q̃ and allowing for arbitrary smooth functions on
Q in the operation of addition. For reduced Morse families, the equivalence relation
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Table 12.1 Normal forms
for Morse families over Q
with dimQ ≤ 4

Name Normal form

Fold y3 + xy

Cusp ±y4 + x1y
2 + x2y

Swallowtail y5 + x1y
3 + x2y

2 + x3y

Butterfly ±y6 + x1y
4 + x2y

3 + x3y
2 + x4y

Hyperbolic umbilic y3
1 + y3

2 + x1y1y2 + x2y1 + x3y2

Elliptic umbilic y1y
2
2 − y3

1 + x1y
2
1 + y2

2 + x2y1 + x3y2

Parabolic umbilic y1y
2
2 ± y4

1 + x1y
2
1 + x2y

2
2 + x3y1 + x4y2

reads

S̃ = S ◦ ϕ + χ,

with ϕ : T∗Q → T∗Q̃ being a fibre-preserving diffeomorphism and χ : Q → R be-
ing a smooth function. Then, equivalence classes of germs of Lagrangian immer-
sions are in bijective correspondence with stable equivalence classes (in the above
generalized sense) of Morse families, see [14–16] and [19, §1.3]. Thus, the classifi-
cation of Lagrangian immersions and their singularities (singular subsets) is reduced
to the classification of Morse families, for which methods of general singularity the-
ory can be applied, see [115]. In this context, the generating Morse family is referred
to as an unfolding of the singularity. First, one analyzes the Taylor series to obtain
normal forms similar to (12.6.28), but containing error terms which for x = 0 van-
ish to arbitrary order. Next, one shows that up to stable equivalence the error terms
can be omitted. Thus, in particular, the normal form of Proposition 12.6.15 is sta-
bly equivalent, in the generalized sense, to the original Morse family. This way,
one can classify, for example, the stable18 Morse families over Q with dimQ ≤ 4,
see Table 12.1. This yields the famous Thom catastrophes. We see that the catas-
trophe described by Proposition 12.6.15 is a fold. The list in Table 12.1 is a clas-
sical result of singularity theory. This theory, which is sometimes also referred to
as catastrophe theory, was developed by Whitney [313], Thom [287, 288], Mather
[200–204], Boardman [49] and Arnold [14–16], see also [20, 24, 25, 110, 115].
Generally speaking, in this theory one studies the singularity structure of a smooth
mapping ψ : M → Q between manifolds. In the first step, in complete analogy to
the singular subset Σ(L) of Π , one defines the singular set

Σi(ψ) := {
m ∈ M : dim kerψ ′

m = i
}
, i = 0, . . . ,dimM,

of ψ . If Σi(ψ) is a submanifold of M , one can define

Σi,j (ψ) := Σj(ψ�Σi(ψ)), 0 ≤ j ≤ i.

18A Morse family over Q is stable if it is an inner point of its stable equivalence class with respect
to a certain C∞-topology on the space of all Morse families over Q.



692 12 Hamilton-Jacobi Theory

Again, if this is a submanifold, one can go on with defining Σi,j,k(ψ) and so on.
These subsets are called the Thom-Boardman singularities.19 As a result, one ob-
tains a partition of M into a family of locally closed submanifolds with the prop-
erty that the restriction of ψ to each component has maximal rank. In some special
cases, the Thom-Boardman singularities yield a complete classification of generic
mappings. The Thom catastrophes listed above are of this type. The fold, the cusp,
the swallowtail and the butterfly correspond to, respectively, the Thom-Boardman
singularities Σ1,0, Σ1,1,0, Σ1,1,1,0 and Σ1,1,1,1, and the umbilic catastrophes are of
the type Σ2,0. In the case under consideration, there are no further Thom-Boardman
singularities, because all other singularities have a codimension greater than 4.

Exercises
12.6.1 Show that the figure eight immersion of Example 12.6.8/2 has vanishing

Maslov index.
12.6.2 Show that the function S(x, y1, y2) := − 1

3y
3
1 − 1

3y
3
2 +xy1 +(1−x)y2 defines

a Morse family. Determine the induced Lagrangian immersion, its singular
subset and its caustic.

12.6.3 Find a system of generating Morse families for the unit circle in R
2, cf.

Example 12.6.13/1.
12.6.4 Complete the proof of Proposition 12.6.15 by showing that under the

assumption (12.6.27), the generating family S can be chosen so that
∂3S

∂y3 (0,0) �= 0.

Hint. Study the kernel ker((Π ′)�TΣ1(L)) in an analogous way as in the proof
of Lemma 12.5.1.

12.7 Geometric Asymptotics. The Eikonal Equation

In this section we apply the method of characteristics and the concept of Morse
families to the equation of geometric optics, the so-called eikonal equation. We
restrict our attention to the case Q =R

n.
Geometric optics rests on the assumption that the wavelength λ of light is small

compared with the typical length scale L of the optical system under consideration.
Under this assumption, the wave character of light remains hidden and one may
imagine light as a flow of particles (light rays).

For simplicity, we consider the scalar wave equation20 on Q ×R:
(
n2(x)
c2

∂2

∂t2
− Δ

)
u(x, t) = 0, (12.7.1)

19While one can show that for almost all functions f these subsets are submanifolds indeed
[287, 288], the Thom-Boardman singularities can also be defined in the general case by using
jet techniques as developed by Boardman.
20Thus, in particular, we ignore polarization phenomena.
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where n(x) is the local refractive index. Making the ansatz u(t,x) = u(x)e−iωt , we
obtain the associated Helmholtz equation,

(
1

k2
Δ + n2(x)

)
u(x) = 0, (12.7.2)

where k = ω
c

. For length scales r fulfilling λ � r � L, one can study this equation
in the framework of short wave analysis. The starting point of this procedure is the
ansatz

u(x, k) = a(x, k)eikS(x). (12.7.3)

The function S is called the eikonal function. It has the following physical interpre-
tation.

(a) The equations S(x) = c describe surfaces of constant phase, called wave fronts.
(b) By expanding S(x) = S(x0) + (x − x0) · ∇S(x0) + · · · at a given point x0, we

see that, close to x0, (12.7.3) can be approximated by a plane wave with wave
vector

k(x0) = kn(x0), n(x0) := ∇S(x0).

The vector-valued functions k and n are referred to as the local wave vector and
the local refractive index vector, respectively. They are orthogonal to the wave
fronts and we have n(x)2 = n2(x) for all x.

Inserting the ansatz (12.7.3) into the Helmholtz equation, we obtain
(

1

k2
Δa + 2i

k
∇a · ∇S + ia

k
ΔS − a(∇S)2 + n2a

)
eikS = 0. (12.7.4)

While the amplitude a, as a function of x, varies on the length scale of the optical
system, the eikonal function S varies on the length scale of the wave length λ = 2π

k
.

Therefore, it makes sense to expand a(x, k) in powers of 1
k

,

a(x, k) = a0(x) + 1

k
a1(x) + 1

k2
a2(x) + · · · . (12.7.5)

Plugging in this expansion into (12.7.4) and comparing coefficients, we obtain the
eikonal equation

(∇S)2 = n2 (12.7.6)

in zeroth order of 1
k

and the transport equation

∇S · ∇ lna2
0 + ΔS = 0 (12.7.7)

in first order of 1
k

. The eikonal equation is the Hamilton-Jacobi equation for the
Hamiltonian function

H(x,p) = p2 − n2(x) (12.7.8)
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on T∗Q = R
n ×R

n, that is, for a particle with mass 1
2 moving in the potential n2(x).

It determines the eikonal function S. By plugging in the solution into the transport
equation, the latter becomes an equation in the indeterminate a0. Let us discuss the
physical meaning of this equation. By a standard calculation, one can derive the
following formulae for the energy density ρ and the energy current density21 P of
the scalar field u:

ρ(t,x) = 1

2

(
n2

c2

(
∂u

∂t
(t,x)

)2

+ (∇u(t,x)
)2

)
,

P(t,x) = −∂u

∂t
(t,x)∇u(t,x).

Taking the time average, denoted by 〈·〉, in leading order of 1
k

→ 0 we find

〈ρ〉 = 1

2
n2k2a2

0, 〈P〉 = 1

2
ck2a2

0∇S. (12.7.9)

Thus, the energy flows in the direction of the vector field ∇S, that is, in the direction
of the local wave vector k. Since by the eikonal equation, ∇S

n
is a unit vector, we

have
∥∥〈P〉∥∥ = c

n
〈ρ〉.

This means that the velocity of the energy flow is given by the local phase velocity
c
n

. Moreover, taking the divergence of 〈P〉 in (12.7.9), we find that the transport
equation (12.7.7) describes energy conservation. From this discussion, we conclude
that we may view light rays as flow lines of the vector field ∇S.22 This interpretation
constitutes the basis for the discussion below.

Remark 12.7.1 More generally, in the same spirit one can study the asymptotic
behaviour for k → ∞ of partial differential equations of the type

H

(
x,− i

k
∇

)
u(x) = 0, (12.7.10)

where

H : T∗Q ∼= R
n ×R

n → R

is a smooth function which is polynomial in the fibre variables (the momenta),

H(x,p) = h(x) +
∑

r

hi1,...,ir (x)pi1 . . . pir .

21Built in analogy to the energy density and of the Poynting vector in Maxwell electrodynamics.
22More precisely, one may view light rays as wave packets, whose width in the direction transversal
to the energy current vector is negligible. That such wave packets can be prepared follows from
the uncertainty relation for the Fourier transform in the short wave approximation.
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This function is referred to as the symbol of the differential operator given by
(12.7.10). In the special case of the Helmholtz equation, the symbol is given by
(12.7.8). Making the ansatz (12.7.3) and expanding the amplitude a according to
(12.7.5), from (12.7.10) we obtain

0 =H
(
x,∇S(x)

)
a0(x)

− i

k

(
a0(x)

2

∂2H

∂pi∂pj

(
x,∇S(x)

) ∂2S

∂xi∂xj
(x) + ∂H

∂pi

(
x,∇S(x)

)∂a0

∂xi
(x)

)

+ 1

k
H

(
x,∇S(x)

)
a1(x) + O

(
1

k2

)
.

Comparison of coefficients yields the characteristic equation

H
(
x,∇S(x)

) = 0 (12.7.11)

in zeroth order of 1
k

and the transport equation

(
∂H

∂pi

(
x,∇S(x)

) ∂

∂xi
+ 1

2

∂2H

∂pi∂pj

(
x,∇S(x)

) ∂2S

∂xi∂xj
(x)

)
a0(x) = 0 (12.7.12)

in first order of 1
k

. Equation (12.7.11) is the Hamilton-Jacobi equation for the Hamil-
tonian function H . In the special case of the Helmholtz equation, (12.7.11) repro-
duces the eikonal equation (12.7.6) and (12.7.12) reproduces the transport equa-
tion (12.7.7). Note that all of this carries over to an arbitrary Riemannian manifold
(Q,g). For example, in this case the eikonal equation reads

g(∇S,∇S) = n2

and the corresponding Hamiltonian function H : T∗Q →R is given by

H(ξ) = g−1(ξ, ξ) − n2(π(ξ)
)
. (12.7.13)

Now, let us study the eikonal equation (12.7.6). For the sake of clarity, we restrict
our attention to the vacuum case n = 1,

(∇S)2 = 1. (12.7.14)

As noted above, this is the Hamilton-Jacobi equation for the Hamiltonian function

H(x,p) = p2 − 1,

which up to a constant energy shift models a free particle of mass 1
2 . To solve this

equation, we apply the method of characteristics, cf. Sect. 12.2 and in particular
Theorem 12.2.1. Let

C = H−1(0) ⊂ T∗Q,
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Fig. 12.3 Light rays as
projections of characteristics
to Q

let D ⊂ Q be an oriented embedded submanifold of dimension r < n and let S0 be
a smooth function on D. Assume that the canonical lift ̂(D,S0) of (D,S0), defined
in Example 8.3.8/4, is transversal to C and that the intersection S0 = ̂(D,S0) ∩ C
is transversal in C to the integral curves of XH , so that S0 is an admissible initial
condition. The Hamiltonian vector field XH is given by

XH(x,p) = 2pi∂xi , (12.7.15)

and the Hamilton equations read

ṗ = 0, ẋ = 2p. (12.7.16)

The integral curves, and thus the characteristics of C , are given by

p(t) = p0, x(t) = x0 + 2p0t, (12.7.17)

where (x0,p0) ∈ S0. Thus, the method of characteristics yields the generalized so-
lution ι : S → T∗Q, where

S = S0 ×R, ι(x0,p0, t) = (x0 + tp0,p0). (12.7.18)

The characteristics project to straight lines on Q. According to the above discussion,
these straight lines can be interpreted as light rays. Thus, the generalized solution
(S , ι) has the following interpretation: D is a source emitting light rays with the
prescribed phase S0. The image Π(S ) is the region of Q which is illuminated,
whereas its complement Q \ Π(S ) is the region which stays in the shadow.

The more times a fibre of T∗Q intersects S , the more light rays run through its
base point and, therefore, the brighter this point appears, see Fig. 12.3.

Remark 12.7.2 The observation that the projections of the characteristics to Q are
straight lines generalizes to the case of an arbitrary Riemannian manifold (Q,g).
Since the eikonal equation is the Hamilton-Jacobi equation of the Hamiltonian func-
tion (12.7.13), according to Example 9.2.1, the projections of the characteristics to
Q are geodesics of the metric n−2g.



12.7 Geometric Asymptotics. The Eikonal Equation 697

First, let us discuss in detail the case where the initial phase is S0 = 0, that is,
where D is a surface of constant phase. In this case, the canonical lift of (D,S0)

coincides with the conormal bundle D̂ of the submanifold D, cf. Example 8.3.8/3.

Lemma 12.7.3 For every embedded submanifold D of Q of dimension r < n, the
canonical lift D̂ is transversal to C and S0 = D̂ ∩ C is an admissible initial con-
dition for C .

Proof In the following, let a = 1, . . . , r and α = r +1, . . . , n. Since D is embedded,
we can find coordinates xi on Q such that D is locally given by xα = 0. Accord-
ing to Example 8.3.8/3, in the bundle coordinates xi and pi induced on T∗Q, the
canonical lift D̂ is given by

xα = 0, pa = 0. (12.7.19)

Correspondingly, in the fibre coordinates ẋi and ṗi induced on T(T∗Q), for given
(x,p) ∈ D, the tangent space T(x,p)D̂ is given by

ẋα = 0, ṗa = 0. (12.7.20)

Now, let (x,p) ∈ D̂ ∩ C . In the coordinates xi , the defining relation for C reads
gij (x)pipj = 1, with gij representing the Euclidean metric. Equation (12.7.19) im-
plies gαβ(x)pαpβ = 1. Thus, we can find α0 such that gα0β(x)pβ �= 0. Then, the
tangent vector defined by ẋ = 0 and ṗi = δiα0 lies in T(x,p)D̂ and is transversal
to T(x,p)C . This shows that D̂ and C are transversal, so that S0 is an embedded
submanifold of T∗Q and hence of C . To prove that S0 is transversal in C to the in-
tegral curves of XH , for dimensional reasons it suffices to show that XH is nowhere
tangent to S0. Thus, assume that XH(x,p) ∈ T(x,p)D̂ for some (x,p) ∈ S0. Then,
(12.7.15) and the first equation in (12.7.20) imply that pα = 0 for all α, in contra-
diction to gαβ(x)pαpβ = 1. �

Example 12.7.4 Let Q =R
2 and let D be the half circle

D = {
x ∈ R

2 : x2
1 + x2

2 = R2, x1 < 0
}
.

Parameterizing D by y �→ (R cos(y),R sin(y)) with π
2 < y < 3π

2 and using the
parameter y as a global coordinate on D, we find

D̂ =
{(

R cos(y),R sin(y),p,p tan(y)
) : π

2
< y <

3π

2
,p ∈R

}

for the canonical lift and S0 = S +
0 ∪ S −

0 with

S ±
0 =

{(
R cos(y),R sin(y),± cos(y),± sin(y)

) : π
2

< y <
3π

2

}
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for the initial condition S0. Hence, by (12.7.18), S decomposes into the connected
components S ± = S ±

0 ×R and

ι±(y, t) = (
(R ± 2t) cos(y), (R ± 2t) sin(y),± cos(y),± sin(y)

)
.

We see that all the light rays run through the origin, whereas through the other
points, there run exactly two light rays in opposite directions, one from S +

0 and
one from S −

0 . The equation for the singular subset Σ(S ) is

det
∂(Π1,Π2)

∂(y, t)
= 2(R ± 2t) = 0,

where Π = (Π1,Π2) : S → Q, cf. (12.5.3). Therefore,

Σ(S ) =
{(

0,0,− cos(y),− sin(y)
) ∈ T∗Q : π

2
< y <

3π

2

}
,

Γ (S ) = {
(0,0) ∈ Q

}
.

Thus, the caustic degenerates to a single focal point.

Example 12.7.5 Let Q = R
2 and D = {x ∈ R

2 : (x2)
2 = x1}. Let us use y = x2 as a

coordinate on D. Then, the canonical lift D̂ is given by

D̂ = {(
y2, y,p,−2py

) : y,p ∈ R
}

and the initial condition S0 consists of the connected components

S ±
0 =

{(
y2, y,

±1√
1 + 4y2

,
∓2y√
1 + 4y2

)
: y ∈R

}
.

Consequently, S consists of the connected components S ± = S ±
0 × R and ι is

given by

ι±(y, t) =
(
y2 ± t√

1 + 4y2
, y ∓ 2ty√

1 + 4y2
,

±1√
1 + 4y2

,
∓2y√
1 + 4y2

)
. (12.7.21)

It is easy to see that ι is injective. Hence, (S , ι) is in fact a geometric solution.
The singular subset Σ(S ) and the caustic Γ (S ) will be discussed later in Exam-
ple 12.7.8, where we solve the same initial value problem by means of a Morse
family.

Next, we find a Morse family generating the generalized solution given by
(12.7.18). This provides an alternative method to solve (12.7.14). We still limit our
attention to the case of a constant initial phase S0 = 0. In what follows, points on
D will be denoted by x̂. We choose coordinates y1, . . . , yr on D and define local
vector fields on D by
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eα(x̂) = ∂ x̂
∂yα

. (12.7.22)

These vector fields form a local frame in TD, viewed as a subset of TQ = R
2n.

Proposition 12.7.6 Let D be an embedded submanifold of Q = R
n of dimension

r < n and let B := {(x, x̂) ∈ Q × D : x �= x̂}. The distance function

S : B →R, S(x, x̂) = ‖x − x̂‖, (12.7.23)

defines a Morse family along the submersion B → Q induced from the natural pro-
jection. This Morse family generates a generalized solution of the eikonal equation
(12.7.14) for the initial condition S0 = 0 on D, given by

BS = {
(x, x̂) ∈ B : (x − x̂) ⊥ Tx̂D

}
, ΛS(x, x̂) =

(
x,

x − x̂
‖x − x̂‖

)
. (12.7.24)

Proof To see that S defines a Morse family, we have to show that the matrix
(S′′

xy, S
′′
yy) has rank r on the fibre-critical submanifold BS . For (x, x̂) ∈ B , we calcu-

late

∂S

∂xi
= xi − x̂i

‖x − x̂‖ =: pi, (12.7.25)

∂S

∂yα
= −p · eα, (12.7.26)

∂2S

∂xi∂yα
= (p · eα)pi − eαi

‖x − x̂‖ , (12.7.27)

∂2S

∂yα∂yβ
= eα · eβ − (p · eα)(p · eβ)

‖x − x̂‖ − p · ∂eβ
∂yα

(12.7.28)

and read off that on BS we have p · eα = 0 and hence

∂2S

∂xi∂yα
(x, x̂) = − eαi(x̂)

‖x − x̂‖ .

Since the vectors eα(x̂) are linearly independent, this matrix has rank r . Hence, S is a
Morse family, indeed. Moreover, from (12.7.25) and (12.7.26) we read off (12.7.24).
Since ΛS takes values in C , (BS,ΛS) is a generalized solution of (12.7.14). �

Remark 12.7.7

1. We determine the singular subset and the caustic of (BS,ΛS). By (12.6.14) and
(12.7.28), the singular subset Σ(BS) consists of the points (x, x̂) ∈ BS fulfilling

det

(
eα(x̂) · eβ(x̂) − (x − x̂) · ∂eβ

∂yα
(x̂)

)
= 0. (12.7.29)
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Hence, the caustic Γ (BS) consists of the points x ∈ Q for which there exists
x̂ ∈ D such that (x, x̂) belongs to BS and fulfils (12.7.29).

Equation (12.7.29) can be formulated intrinsically in terms of the metric hαβ
on D and the exterior curvature kαβ of D, both induced by the Euclidean metric
on Q. For the necessary notions from Riemannian geometry, we refer to the
standard literature, e.g. [6]. Let Γ γ

αβ denote the Christoffel symbols of the Levi-
Civita connection on D associated with hαβ . Then, one has

eα · eβ = hαβ,
∂eβ
∂yα

= kαβ + Γ
γ
αβeγ

and hence (12.7.29) becomes

det
(
hαβ(x̂) − (x − x̂) · kαβ(x̂)

) = 0. (12.7.30)

2. In the special case of an oriented surface D ⊂ Q =R
3, we have

kαβ = kαβnD,

with nD denoting the unit vector field orthogonal to D. Here, (12.7.30) yields

det
(‖x − x̂‖kαβ(x̂) − hαβ(x̂)

) = 0. (12.7.31)

This is the characteristic equation for the principal radii of curvature of the initial
surface D. Therefore, in this case the caustic coincides with the set of centres of
curvature of D. Thus, no caustic occurs iff D is a plane.

3. Obviously, S(x, x̂) = −‖x − x̂‖ is a generating family, too. It has the same do-
main as the Morse family (12.7.23) and describes incoming rays. It is possible to
describe incoming and outgoing rays by the help of a single Morse family: let

B = {
(x, x̂,a) ∈ Q × D × Sn−1 : x �= x̂

}

and define

S : B → R, S(x, x̂,a) = (x − x̂) · a. (12.7.32)

We leave it to the reader to check that this is a Morse family, indeed (Exer-
cise 12.7.7). Let uα and ϑi be coordinates on D and Sn−1, respectively. We
calculate

∂S

∂uα
(x, x̂,a) = −eα(x̂) · a,

∂S

∂ϑi
(x, x̂,a) = (x − x̂) · ∂a

∂ϑi
.

Thus, BS is defined by the relations a ⊥ Tx̂D and (x − x̂) ⊥ TaSn−1. The latter
one requires a to be parallel or antiparallel to x − x̂. Hence,

BS = {
(x, x̂,a) ∈ B : (x − x̂) ⊥ Tx̂D and x − x̂ = ±‖x − x̂‖a

}
.
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Fig. 12.4 Values of the
discriminant Δ(x)

Since ∇S = a, the induced Lagrangian immersion is given by

ΛS(x, x̂,a) = (x,a) ≡
(

x,± x − x̂
‖x − x̂‖

)
,

where the sign is positive if x − x̂ and a are parallel and negative if they are an-
tiparallel. This reproduces the Lagrangian immersions of the generating families
S(x, x̂) = ±‖x − x̂‖, because the latter are obtained from (12.7.32) by restriction
to

a = ± x − x̂
‖x − x̂‖ .

Let us add that if D is given as the zero level set of a smooth function F : Q →R,
the Morse family (12.7.32) is equivalent to the function

S(x, x̂,a, λ) = (x − x̂) · a + λF(x̂) (12.7.33)

(Exercise 12.7.7).

To illustrate the solution method provided by Proposition 12.7.6, we take up
Example 12.7.5.

Example 12.7.8 Let Q = R
2 and D = {x ∈ R

2 : (x2)
2 = x1} and let us choose y =

x2 as a coordinate on D. Then,

x̂(y) = (
y2, y

)
, e(y) = (2y,1).

The Morse family of Proposition 12.7.6 is given by

S(x, y) = ∥∥x − x̂(y)
∥∥ =

√(
x1 − y2

)2 + (x2 − y)2, (12.7.34)
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where we have identified B = {(x, y) ∈ R
3 : x �= (y2, y)}. According to (12.7.24),

the defining equation for the fibre-critical submanifold BS reads

y3 − y

(
x1 − 1

2

)
− 1

2
x2 = 0 (12.7.35)

and the induced Lagrangian immersion is given by

ΛS(x, y) =
(
x1, x2,

x1 − y2
√
(x1 − y2)2 + (x2 − y)2

,
x2 − y√

(x1 − y2)2 + (x2 − y)2

)
.

Equation (12.7.35) is solved by

x1 = y2 + t√
1 + 4y2

, x2 = y − 2yt√
1 + 4y2

(12.7.36)

with (y, t) ∈R
2 such that t �= 0. This yields a global parameterization of BS :

BS =
{(

y2 + t√
1 + 4y2

, y − 2yt√
1 + 4y2

, y

)
: (y, t) ∈ R

2, t �= 0

}
. (12.7.37)

In terms of this parameterization, ΛS is given by

ΛS(y,t)

=
(
y2 + t√

1 + 4y2
, y − 2yt√

1 + 4y2
,

sign(t)√
1 + 4y2

,
−2y sign(t)√

1 + 4y2

)
. (12.7.38)

It is easy to see that ΛS is injective, so that (BS,ΛS) is a Lagrangian submanifold
and hence a geometric solution whose image is ΛS(BS). Next, we discuss the sin-
gular subset Σ(BS) and the caustic Γ (BS). According to (12.7.29), the defining
equation for Σ(BS) is

1 + 4y2 − 2t√
1 + 4y2

= 0.

In particular, on Σ(BS) we have t > 0. Solving for t and plugging this into
(12.7.37), we obtain

Σ(BS) =
{(

1

2
+ 3y2,−4y3, y

)
∈ BS : y ∈ R

}
,

Γ (BS) =
{(

1

2
+ 3y2,−4y3

)
∈ Q : y ∈R

}
.

We read off that Σ(BS) is a submanifold of BS of dimension one, whereas Γ (BS)

is a subset containing a singular point, see Fig. 12.5. Finally, we count the number
of intersection points of (BS,ΛS) with the fibre of T∗Q over a point x ∈ Q. This
can be determined from (12.7.35) by viewing the left hand side as a polynomial in
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Fig. 12.5 The Lagrangian submanifold (BS,ΛS) of Example 12.7.8 for t > 0. Note that S0 does
not belong to (BS,ΛS)

the variable y and counting the real zeros. Their number can be read off from the
values of the discriminant

Δ(x) = 4

(
x1 − 1

2

)3

− 27

4
x2

2 ,

depicted in Fig. 12.4. For Δ(x) > 0 this polynomial has three real solutions and
for Δ(x) < 0 it has one real solution and this solution has multiplicity one. For
Δ(x) = 0, the polynomial has two real solutions, one of them with multiplicity two,
or one real solution with multiplicity three. By expressing Γ (BS) in terms of x,
we see that the zero set of Δ(x) coincides with the caustic and that the point x
where the polynomial has one real solution with multiplicity three coincides with
the singular point. Correspondingly, the fibre over x intersects ΛS(BS) three times
transversally for Δ(x) > 0, once transversally for Δ(x) > 0, once non-transversally
over the singular point, and once transversally and once non-transversally over the
remaining points of the caustic, see Fig. 12.5. It is clear that both for Δ(x) < 0 and
for Δ(x) > 0 one can obtain analytic solutions from the geometric solution (BS,ΛS)

by solving (12.7.35) for y.

Remark 12.7.9

1. The fact that, here, the singular subset Σ(BS) is in fact a submanifold is no
accident. By Proposition 12.6.3, the complement Σ(BS) \ Σ1(BS) consists of
submanifolds of codimension greater than 2. Hence, for dimensional reasons,
Σ(BS) = Σ1(BS). From the point of view of catastrophe theory, the point
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( 1
2 ,0,0) ∈ Π−1(( 1

2 ,0)) is distinguished. The reader easily checks that this point
is the only one where the third partial derivative S′′′

yyy vanishes. This means that
apart from this point one can find a normal form of fold type for S, cf. Proposi-
tion 12.6.15. If one includes this point, the normal form is of the cusp type

S(x, y) = y4 + x1y
2 + x2y,

which in the Thom-Boardman classification scheme is labelled by Σ1,1,0, cf.
Remark 12.6.16.

2. The parameter t in the parameterization (12.7.37) of BS is closely related to the
flow parameter of the generalized solution ι : S → T∗Q obtained by the method
of characteristics in Example 12.7.5. Comparison of the immersions (12.7.21)
and (12.7.38) shows that for t > 0, we have ΛS(y, t) = ι+(y, t), whereas for t <
0, we have ΛS(y, t) = ι−(y,−t). Hence, in the dynamical interpretation of the
method of characteristics as a Hamiltonian flow with the parameter t representing
time, the solution given by (BS,ΛS) corresponds to integral curves emanating
from S +

0 and from S −
0 , in both cases evolving for time t > 0. In particular,

the parameter t in (12.7.38) can be interpreted as the time in case t > 0 and as
the negative of the time in case t < 0. This makes transparent what is meant by
saying that the Morse family (12.7.23) models outgoing light rays. We leave it
to the reader to carry out the analogous analysis for the Morse family S(x, x̂) =
−‖x− x̂‖. As a result, the Lagrangian immersions of both families together make
up the generalized solution (S , ι) obtained by the method of characteristics.

The simpler example 12.7.4 can be analyzed in the same spirit. We leave this
as an exercise to the reader (Exercise 12.7.8). Instead, we now turn to the case
where the initial phase S0 is arbitrary but the initial submanifold D has codimension
one in Q. As before, we will first discuss the method of characteristics. Under the
assumption of codimension one, we can make the ansatz that the initial condition
S0 is the image of D under a smooth mapping α : D → T∗Q. It is evident that this
mapping must satisfy the conditions

1. π ◦ α = idD ,
2. 〈α(x),X〉 = 〈dS0,X〉 for all x ∈ D, X ∈ TxD,
3. H ◦ α = 0,
4. α is transversal to the integral curves of XH .

Example 12.7.10 Let Q = R
2 and D = {x ∈ R

2 : x1 = 0} and let S0 : D → R be a
smooth function. We use y = x2 as a coordinate on D. To find the mapping α : D →
T∗Q, we make the ansatz

α(y) = (
0, y, g(y), S′

0(y)
)
,

which fulfils conditions 1 and 2 by construction. Condition 3 yields

S′
0(y)

2 + g(y)2 = 1
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for all y ∈ R. Therefore, S0 must satisfy |S′
0(y)| ≤ 1 for all y. Under this assumption,

g(y) = ±
√

1 − (S′
0(y))

2. Finally, to meet condition 4, we must require g(y) �= 0 and

hence |S′
0(y)| < 1 for all y. Thus, S0 consists of the connected components

S ±
0 =

{(
0, y,±

√
1 − (

S′
0(y)

)2
, S′

0(y)
)}

, (12.7.39)

S consists of the connected components S ± = S ±
0 ×R and ι is given by

ι±(y, t) =
(
±2t

√
1 − S′

0(y)
2, y + 2S′

0(y)t,±
√

1 − S′
0(y)

2, S′
0(y)

)
. (12.7.40)

The defining equation det ∂(Π1,Π2)
∂(y,t)

= 0 for the singular subset Σ(S ) is equivalent
to

1 + 2S′′
0 (y)t − S′2

0 (y) = 0. (12.7.41)

We discuss two special cases in detail.

1. Let S0(y) = ay with |a| < 1. Here,

ι±(y, t) = (±2
√

1 − a2t, y + 2at,±
√

1 − a2, a
)
.

The signs correspond to light travelling in the positive or negative x1-direction.
The images ι±(S ±) are 2-dimensional hyperplanes in T∗Q = R

4. Since S′′
0 = 0,

Eq. (12.7.41) for the singular subset implies S′2
0 (y) = 1, which contradicts the

transversality requirement |S′
0(y)| < 1. Hence, in this case there is no caustic.

2. Let S′′
0 (y) �= 0 for all y and restrict attention to S +. In this case, the caustic is

given by

Γ (S ) =
{(

− (1 − S′2
0 )

3
2

S′′
0

, y − S′
0(1 − S′2

0 )

S′′
0

)
∈ Q : y ∈R

}
. (12.7.42)

We show that one can choose S0 so that the caustic degenerates to a single focal
point on the x1-axis,

Γ (S ) = {
(f,0)

}

for some f ∈R. According to (12.7.42), this leads to the differential equation

y

f
= − S′

0√
1 − S′2

0

,

which up to an irrelevant additive constant has the solution

S0(y) = ±
√
f 2 + y2.
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For the positive sign, f must be negative. In this case, S0 models an ideal concave
lense. For the negative sign, f must be positive and S0 models an ideal convex
lense.

Next, we determine the eikonal function S. From (12.7.40) we read off that in
terms of the coordinates y, t , the differential dS is given by

dS(y, t) = p1(y, t)dx1(y, t) + p2(y, t)dx2(y, t)

=
√

1 − S′
0(y)

2d
(

2t
√

1 − S′
0(y)

2
)

+ S′
0(y)d

(
y + 2S′

0(y)t
)

= 2dt + S′
0(y)dy.

The initial condition S�D = S0 yields S(y,0) = S0(y) and hence

S(y, t) = 2t + S0(y). (12.7.43)

From this, we can obtain S as a function on Q by solving the equations

x1 = ±2
√

1 − (
S′

0(y)
)2
t, x2 = y + 2S′

0(y)t

for y and t and plugging in the solutions into (12.7.43). For the two specific initial
condition from above, this yields

S(x) = ax2 ±
√

1 − a2x1

for the linearly increasing initial phase S0(y) = ay and

S(x) =
√
(x1 + f )2 + x2

2 ,

for the model of an ideal concave lense S0(y) = √
f 2 + y2. In the first case, the

wave fronts are planes and in the second example they are spheres centred at the
focal point.

To conclude this section, we show that in the situation where D has codimension
one, the generalized solution can be generated by a Morse family in much the same
way as in the case of a constant initial phase S0 = 0. As before, we denote the
elements of D by x̂, choose coordinates yα on D and define the vectors eα(x̂) by
(12.7.22).

Proposition 12.7.11 Let D be an embedded submanifold of Q of codimension one
and let S0 be a smooth function on D. Assume that

∂S0

∂yα

∂S0

∂yβ
hαβ < 1, (12.7.44)
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where hαβ = eα · eβ is the induced metric on D.23 Let B = {(x, x̂) ∈ Q×D : x �= x̂}.
Then,

S : B → R, S(x, x̂) = ‖x − x̂‖ + S0(x̂), (12.7.45)

is a Morse family along the submersion π : B → Q induced from the natural pro-
jection. This Morse family generates a generalized solution of the eikonal equa-
tion (12.7.14) for the initial condition S0 on D, given by

BS =
{
(x, x̂) ∈ B : x − x̂

‖x − x̂‖ · eα(x̂) = ∂S0

∂yα
(x̂)

}
, ΛS(x, x̂) =

(
x,

x − x̂
‖x − x̂‖

)
.

Proof We proceed as in the proof of Proposition 12.7.6. The relevant partial deriva-
tives are

∂S

∂xi
= xi − x̂i

‖x − x̂‖ =: pi,
∂S

∂yα
= −p ·eα+ ∂S0

∂yα
,

∂2S

∂xi∂yα
= (p · eα)pi − eαi

‖x − x̂‖ .

This yields the asserted formula for BS . Moreover, it follows that the left hand side
of (12.7.44), taken at x̂, coincides with the absolute square of the projection of
p(x, x̂) to Tx̂D. Since p(x, x̂)2 = 1, this implies that on BS , we have p(x, x̂) /∈ Tx̂D.
It follows that the vector fields eα − (p · eα)p are pointwise linearly independent on
BS : assume

∑

α

λα

(
eα − (p · eα)p

) =
(∑

α

λαeα

)
− p ·

(∑

α

λαeα

)
p = 0.

Since
∑

α λαeα is tangent to D but p is not, this equation is only fulfilled if all λα

vanish. We conclude that the n × (n − 1)-matrix S′′
xy has rank n − 1 on BS and,

therefore, that S is a Morse family, indeed. That ΛS takes values in C is obvious. �

Remark 12.7.12 The discussion of alternative Morse families in Remark 12.7.7/3
carries over to the present case. In particular, the function

S(x, x̂) = −‖x − x̂‖ + S0(x̂)

is a generating Morse family, too, and to (12.7.32) and (12.7.33) there correspond
the extensions

S(x, x̂,a) = (x − x̂) · a + S0(x̂), S(x, x̂,a, λ) = (x − x̂) · a + λF(x̂) + S0(x̂),

respectively.

We refer to the book of Benenti [38] for a lot of additional material. There, the
reader can find a systematic treatment of optical systems including sources, mirrors

23This is the abstract counterpart of the condition |S′
0(y)| < 1 found in Example 12.7.10.
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and lenses in the language of Morse families. For instance, for a system consisting
of a source U and a mirror V , the generating family is

S(x,u,v) = ‖x − v‖ + ‖v − u‖,
with u ∈ U and v ∈ V . Benenti uses the language of symplectic relations, which
is well adapted to this sort of problems. To every component of the system there
corresponds a symplectic relation and the description of the system as a whole is
obtained by taking the composition of these relations. To every relation, there cor-
responds a generating Morse family and the Morse family of the full system is the
sum of them.

Exercises
12.7.1 Work out Examples 12.7.4 and 12.7.5.
12.7.2 Analyze the coorientation of the singular subset Σ(BS) in Example 12.7.8

by studying the sign of S′′
yy along a curve transversal to Σ(BS).

12.7.3 Show that, in the situation of Proposition 12.7.6, the function

S : Q × D →R, S(x, x̂) = (x − x̂)2,

is a Morse family. Determine the induced Lagrangian immersion, its singular
subset and the caustic. Is the induced Lagrangian immersion a generalized
(geometric) solution of the eikonal equation?

12.7.4 Show that the function

W : Q × Sn−1 → R, W(x,a) = a · x

is a Morse family generating a generalized solution of the eikonal equa-
tion (12.7.14). What initial condition does this function describe?

12.7.5 Let x0 ∈ Q. Show that the function

S : Q × Sn−1 →R, (x,a) �→ (x − x0) · a

is a Morse family generating a generalized solution of the eikonal equa-
tion (12.7.14) for the point source D = {x0}. What is the difference between
S and the Morse family (12.7.23) in this case?

12.7.6 For the case Q = R
3 and D having codimension 1, verify explicitly that

Eq. (12.7.29) for the singular subset Σ(BS) of the Morse family (12.7.23) is
equivalent to detΠ ′ = 0 by showing that for (x, x̂) ∈ BS ,

detΠ ′(x, x̂) = ‖x − x̂‖det
(
S′′
yy(x, x̂)

)
. (12.7.46)

Hint. Parameterize BS by x̂ ∈ D and t ∈ R \ {0} as follows:

x(x̂, t) = x̂ + t
e1(x̂) × e2(x̂)

‖e1(x̂) × e2(x̂)‖ .
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12.7.7 Show that (12.7.32) is a Morse family and that this Morse family is equiva-
lent to the one defined by (12.7.33).

12.7.8 Work out the construction of a generalized solution of the eikonal equa-
tion for Example 12.7.4 by the Morse family method of Proposition 12.7.6.
Show that the analytic solution (apart from the caustic) is given by S(x) =
|‖x‖ − R|.
Hint. Parameterize BS by y and the time parameter of the solution obtained
by the method of characteristics.

12.8 Geometric Asymptotics. Beyond Lowest Order

In this section we continue the discussion of the short wave asymptotics of partial
differential equations of the type

H

(
x,− i

k
∇

)
u(x) = 0 (12.8.1)

on Q =R
n, defined by a Hamiltonian function H on T∗Q which restricts to a poly-

nomial on each fibre. In the previous section we have discussed the characteristic
equation

H
(
x,∇S(x)

) = 0. (12.8.2)

Here, we study the corresponding transport equation
(
∂H

∂pi

(
x,∇S(x)

) ∂

∂xi
+ 1

2

∂2H

∂pi∂pj

(
x,∇S(x)

) ∂2S

∂xi∂xj
(x)

)
a0(x) = 0 (12.8.3)

and construct first order asymptotic solutions of (12.8.1) from solutions of (12.8.2)
and (12.8.3). The leading example will be the Helmholtz equation (12.7.2), with
its transport equation given by (12.7.7).24 Let S0 be an admissible initial condi-
tion for the characteristic equation, given by the canonical lift of a submanifold D

of Q of codimension 1 with an initial phase S0 on D. Let α : D → T∗Q be the
corresponding lifting mapping. As explained in Sect. 12.7, by the method of char-
acteristics, S0 generates a generalized solution ι : S → T∗Q of the characteristic
equation (12.8.2), where S coincides with the intersection of S0 ×R with the do-
main of the Hamiltonian vector field XH and where ι is induced by the flow Φ

of XH ,

ι : S ⊂ S0 ×R→ T∗Q, ι(ξ0, t) = Φt(ξ0). (12.8.4)

For a moment, let us assume that we are away from the caustic of (S , ι), and
let us restrict S in such a way that it coincides with the image of dS for an an-
alytic solution S. Then, Π = πQ ◦ ι is a diffeomorphism onto some open subset

24For a quite exhaustive discussion of this equation in theoretical optics, we refer to the book of
Römer [253].
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of Q and (12.8.3) can be rewritten as follows. Since XH is tangent to (S , ι), by
Proposition 2.7.16, it restricts to a vector field X̃H on S . Define

YH := Π∗X̃H (12.8.5)

and let φ denote the flow of YH . Obviously,

YH (x) = ∂H

∂pi

(
x,∇S(x)

)
∂xi . (12.8.6)

By (12.8.6), the first term in the transport equation (12.8.3) can be written in terms
of YH as

∂H

∂pi

(
x,∇S(x)

)∂a0

∂xi
(x) = (YHa0)(x) = ∇a0(x) · YH (x).

By computing (∇ · YH )(x) we find that the second term in (12.8.3) has the form

∂2H

∂pi∂pj

(
x,∇S(x)

) ∂2S

∂xi∂xj
(x) = (∇ · YH )(x) − ∂2H

∂xi∂pi

(
x,∇S(x)

)
. (12.8.7)

As a result, the transport equation (12.8.3) can be rewritten as

(∇a0)(x) · YH (x) + 1

2
a0(x)(∇ · YH )(x) = 1

2
a0(x)

∂2H

∂xi∂pi

(
x,∇S(x)

)
. (12.8.8)

Next, we are going to interpret this equation geometrically in terms of half den-
sities on S . This will allow us to solve the transport equation globally. In the same
spirit as for the characteristic equation, such a global solution will be referred to as a
generalized solution of the transport equation. For simplicity, we limit our attention
to the case where

∂2H

∂xi∂pi

= 0. (12.8.9)

This includes the Helmholtz equation and, more generally, the case where the op-
erator H in (12.8.1) is Hermitian. Under this assumption, the transport equation is
equivalent to

∇ · (a2
0YH

) = 0. (12.8.10)

Let vn = dx1 ∧ · · · ∧ dxn be the canonical volume form on Q = R
n. Then, Π∗vn

defines a natural volume form on the submanifold Σ0(S ), cf. Formula (12.6.1). By
(4.1.24), for every vector field X and every smooth function f on Q, one has

LXvn = (∇ · X)vn, df ∧ (X�vn) = X(f )vn. (12.8.11)

Using these two relations and the identity (4.1.27), we find
(∇ · (a2

0YH

))
vn = La2

0YH
vn = LYH

(
a2

0vn
)
,
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and by Proposition 3.3.3/5, we obtain

LYH

(
a2

0vn
) = (

Π−1)∗(L
X̃H

Π∗(a2
0vn

))
.

Thus, the transport equation (12.8.10) is equivalent to

L
X̃H

Π∗(a2
0vn

) = 0. (12.8.12)

This is an equation for a2
0 , formulated in terms of the n-form Π∗(a2

0vn) on S . To
obtain an equation for a0, we have to pass to half-densities on S . For an exhaustive
discussion of this concept we refer to the literature, e.g. [119].25

Lemma 12.8.1 We have

L
X̃H

Π∗(a0|vn| 1
2
) = Π∗

(
∇a0 · YH + 1

2
a0∇ · YH

)
Π∗|vn| 1

2 . (12.8.13)

Proof Using Proposition 3.3.3/5 and the first relation in (12.8.11), we find

L
X̃H

(
Π∗vn

) = Π∗(LYH
vn) = Π∗(∇ · YH )Π∗vn.

This formula carries over to the density |vn|. On the other hand, by the derivation
property of the Lie derivative,

LX̃H

(
Π∗|vn|

) = 2Π∗|vn| 1
2 L

X̃H

(
Π∗|vn| 1

2
)

and thus

L
X̃H

(
Π∗|vn| 1

2
) = 1

2
Π∗(∇ · YH )Π∗|vn| 1

2 .

Now, the assertion follows by applying once again the derivation property of the Lie
derivative. �

As a consequence of the lemma, the transport equation can be written in the form

LX̃H
Π∗(a0|vn| 1

2
) = 0. (12.8.14)

25In brief, for s ∈ R, an s-density on a real vector space W of dimension n is a mapping ν :
Wn → R satisfying ν(Aw1, . . . ,Awn) = |detA|sν(w1, . . . ,wn) for all endomorphisms A of W .
The s-densities on W form a vector space of dimension 1. By taking the s-densities on the tangent
spaces at every point of a manifold M one obtains the real line bundle |Λ|sM of pointwise s-
densities on M . Sections in this bundle are called s-densities on M . Every n-form v on M defines
an s-density |v|s by |v|s(X1, . . . ,Xn) = |v(X1, . . . ,Xn)|s . In particular, if M is orientable, |Λ|sM
is trivial for every s. The product of an s1-density ν1 and an s2-density ν2 on M is defined by
(ν1ν2)(X1, . . . ,Xn) := ν1(X1, . . . ,Xn)ν2(X1, . . . ,Xn). It yields an (s1 + s2)-density. The calculus
of differential forms, notably the pull-back and, based on that, the Lie derivative, extends in an
obvious way to s-densities.
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In this form, it generalizes to arbitrary half-densities â0 on S :

L
X̃H

â0 = 0. (12.8.15)

The solutions of this equation will be referred to as generalized solutions of the
transport equation (12.8.3). They can be obtained by means of the method of char-
acteristics as follows. Let a(0)

0 be a given initial condition for a0 on D. In terms of

the representation of (S , ι) by (12.8.4), the solution of (12.8.15) generated by a
(0)
0

is given by

â0(ξ0, t) = a
(0)
0

(
Π(ξ0)

)(
Φ∗−t ◦ Π∗(|vn| 1

2
))
(ξ0, t), (12.8.16)

where ξ0 ∈ S0 and Φ denotes the flow of X̃H . By restricting a generalized solution
â0 to an open subset of S which under Π is mapped diffeomorphically to an open
subset of Q, one can construct an analytic solution a0 of (12.8.3) on the latter via
the relation

â0 = Π∗(a0|vn| 1
2
)
. (12.8.17)

By 3.2.13/2, the flows Φ of X̃H and φ of YH are related by

Π ◦ Φt = φt ◦ Π. (12.8.18)

Using this, from (12.8.16) we obtain

â0
(
α(x0), t

) = a
(0)
0 (x0)

(∣∣det(φt )
′
x0

∣∣)− 1
2
(
Π∗|vn| 1

2
)(
α(x0), t

)
, (12.8.19)

where x0 ∈ D and α : D → S0 ⊂ T∗Q denotes the mapping which yields the canon-
ical lift of the pair (D,S0). The partial derivatives in (φt )

′
x0

are taken with respect
to the standard coordinates on Q =R

n (Exercise 12.8.2). Thus, denoting

J (t,x) := det(φt )
′
x,

we read off that the analytic solution induced by â0 is

a0(x) = a
(0)
0 (x0)√|J (t,x0)|

, (12.8.20)

where t ∈ R and x0 ∈ D are determined by x through the relation x = φt (x0). Note
that this solution is limited to a region around D where t and x0 are uniquely deter-
mined by this relation. From (12.8.20) we obtain a short wave asymptotic solution
of (12.8.1) up to first order:

u(x) = a
(0)
0 (x0)√|J (t,x0)|

eikS(x). (12.8.21)
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Remark 12.8.2

1. In the general case, the local solution of Eq. (12.8.8) is given by

a0(x) = 1√|J (t,x0)|
a
(0)
0 (x0) exp

{
1

2

∫ t

0
dt ′ ∂2H

∂xi∂pi

(
φt ′(x0),∇S

(
φt ′(x0)

))}
,

see Exercise 12.8.1.
2. We study the behaviour of the local solution (12.8.20) near the caustic. By

(12.8.18) and Π ◦ α = idD , we have

(φt )
′
x0

= Π ′
Φt (α(x0))

◦ (Φt )
′
α(x0)

◦ α′
x0
. (12.8.22)

The right hand side makes sense for all t such that (t, α(x0)) is in the domain
of Φ and we may use it to extend the mappings t �→ (φt )

′
x0

and t �→ J (t,x0)

accordingly. For the extension, it may happen that φt (x0) belongs to the caustic
Γ (S ). Since, then, Φt(α(x0)) belongs to the singular subset Σ(S ), the map-
pings Π ′

Φt (α(x0))
and hence (φt )

′
x0

are not bijective, so that J (t,x0) = 0. Thus, if
φt (x0) approaches the caustic with t running and x0 fixed, J (t,x0) necessarily
tends to zero and hence the solution (12.8.20) diverges.

3. In local coordinates ξ i on S , we have

Π∗|vn| 1
2 =

√∣∣detΠ ′∣∣∣∣dξ1 ∧ · · · ∧ dξn
∣∣ 1

2 . (12.8.23)

By (12.8.22), for every x0 ∈ D,

∣∣J (t,x0)
∣∣− 1

2
∣∣det

(
Π ′

Φt (α(x0))

)∣∣ 1
2 = ∣∣det

(
(Φt )

′
α(x0)

)∣∣− 1
2
∣∣det

(
Π ′

α(x0)

)∣∣ 1
2 .

Thus, by (12.8.23), the solution (12.8.17) takes the form

Π∗(a0|vn| 1
2
)
(ξ)

= a
(0)
0 (x0)

∣∣det
(
(Φt )

′
α(x0)

)∣∣− 1
2
∣∣det

(
Π ′

α(x0)

)∣∣ 1
2 |dξ1 ∧ · · · ∧ dξn| 1

2 , (12.8.24)

where ξ = Φt(α(x0)). Since det((Φt )
′
α(x0)

) and det(Π ′
α(x0)

) are regular, the right
hand side of this formula makes sense for all t . Therefore, for given initial data,
the generalized solution â0 can also be constructed explicitly as a continuation
of an analytic solution a0 through the caustic as follows. Choose a covering of
S by local coordinates ξ i and a subordinate partition of unity and use (12.8.24)

to successively propagate Π∗(a0|vn| 1
2 ) to all of S .

Now, given the data (S , ι) and â0, we will construct a global solution on Q of
the differential equation (12.8.1) up to first order in 1

k
. For that purpose, let {Ui}

be a covering of S by contractible subsets such that all intersections Ui ∩ Uj are
contractible and let {(Bi,πi, Si)} be a system of generating Morse families such
that the immersions ΛSi

: BSi
→ T∗Q and ι�Ui

: Ui → T∗Q are equivalent. We may
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assume that these families are reduced and that the Bi are open subsets of Q ×R
ri

with πi being induced from the natural projection. In what follows, for simplicity,
we identify BSi

with Ui . Now, let x0 ∈ Q be an arbitrary regular point. Then, for
every ξ0 ∈ Π−1(x0), we have a solution of (12.8.1) up to first order in 1

k
in some

neighbourhood W of x0,

u(x) = a0(x)eikS(x),

where a0 is determined by (12.8.17) and S is an analytic solution of the character-
istic equation, locally generating S . On W , the global solution we are looking for
should be given by a sum of contributions of this type. However, if we want to put to-
gether such terms we face the problem that these contributions are only determined
up to a constant phase.26 To fix the relative phases we proceed as follows.

(a) To fix the relative phases of contributions coming from a given element of the
covering, we will use the method of stationary phase.

(b) To combine the contributions of different elements Ui and Uj we must require
that these contributions coincide if they come from the intersection Ui ∩ Uj .
This leads to an additional topological condition on (S , ι) and k, known as the
Bohr-Sommerfeld quantization condition.

To accomplish step (a), let us choose an element U of the above covering and let
(B,π,S) be the corresponding Morse family. First, we show that, given the canon-
ical27 volume forms vr and vn on R

r and Q = R
n respectively, S induces a natural

volume form vBS
on the fibre-critical submanifold BS . Let ρ : B → R

r be the re-
striction of the canonical projection.

Lemma 12.8.3 There exists a unique volume form vBS
on BS such that

π∗vn ∧ ρ∗vr = vBS
∧ (

S′
y

)∗
vr (12.8.25)

on BS ⊂ B . This volume form satisfies

det
(
S′′
yy

)
vBS

= Π∗vn. (12.8.26)

Proof Denote F := S′
y : B → R

r . Let (x,y) ∈ BS . Choose a basis {X1, . . . ,Xn} in
T(x,y)BS and vectors Y1, . . . , Yr complementing this basis to a basis in T(x,y)B . On
the one hand, we have BS = F−1(0) and hence kerF ′

(x,y) = T(x,y)BS . On the other
hand, since S is a Morse family, F ′

(x,y) = (S′′
xy(x,y), S′′

yy(x,y)) must have rank r . It
follows that F ∗vr (Y1, . . . , Yr ) �= 0, so that we can define

vBS
(X1, . . . ,Xn) := (π∗vn ∧ ρ∗vr )(X1, . . . ,Xn,Y1, . . . , Yr )

F ∗vr (Y1, . . . , Yr )
.

26Because the analytic solutions are determined up to an additive constant.
27With respect to the Euclidean metric.
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This defines an n-form on BS , indeed, because a change in the choice of the Y ’s
would produce the same determinant factor in the numerator and the denominator.
Since the right hand side is nonzero, vBS

is a volume form. It satisfies (12.8.25),
because F ′

(x,y)Xj = 0 for all j = 1, . . . , n. Finally, the relation (12.8.26) follows
from F ∗vr = det(S′′

yy)ρ
∗vr . �

By means of vBS
, to â0 we can assign a function a : BS ≡ U →R, defined by

a|vBS
| 1

2 = â0. (12.8.27)

We extend a smoothly to a function on the whole of B with compact support in
the y-variables and, instead of the ansatz (12.7.3), we now consider the oscillatory
integral

(
k

2π

) r
2
∫

eikS(x,y)a(x,y)dry. (12.8.28)

We assume that a admits an asymptotic expansion of the form (12.7.5). Then, the
integral (12.8.28) is absolutely convergent and depends smoothly on x and k. For
the analysis of the large k behaviour of integrals of this type one uses the method
of stationary phase. For increasing k the function y �→ eikS(x,y) oscillates more and
more quickly. Thus, only contributions from neighbourhoods of stationary points
of S should count, whereas the other contributions should give zero in the average.
This intuition is correct, as the following classical result shows.

Theorem 12.8.4 (Stationary Phase Method) Let f and ϕ be smooth functions
on R

r . Assume that f has compact support and that ϕ has a finite number of sta-
tionary points y1, . . . ,yp in the support of f , all of which are non-degenerate. Then,

∫
dryf (y)eikϕ(y)

=
(

2π

k

) r
2

p∑

A=1

ei π4 signϕ′′(yA)

√|detϕ′′(yA)|
f (yA)e

ikϕ(yA) + O
(
k− r

2 −1). (12.8.29)

Proof Denote I (k) := ∫
dryf (y)eikϕ(y). The proof is in three steps.

1. First, we show that if ϕ does not have stationary points in the support of f ,
then

lim
k→∞kNI (k) = 0 (12.8.30)

for all N > 0. Indeed, in this case, the differential operator

D = 1

ik

1

‖∇ϕ‖2
∂jϕ

∂

∂yj
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is defined everywhere. Since Deikϕ = eikϕ , for any positive integer N we have

I (k) =
∫

dryf (y)DN+1eikϕ(y) =
∫

dry
(
D†(N+1)f

)
(y)eikϕ(y) = O

(
k−N−1),

where we have used that the Hermitian conjugate D† of D is given by

D†f = − 1

ik
∂j

(
∂jϕ

‖∇ϕ‖2
f

)
.

2. Next, we show that for every smooth function g : R→ R with compact support
and every λ ∈ C with Re(λ) ≥ 0, we have

∫ ∞

−∞
dtg(t)e− 1

2 λt
2 =

√
2π

λ
g(0)

(
1 + O

(
λ−1)), (12.8.31)

where the root is chosen so that Re(
√
λ) ≥ 0. Indeed, the Gauss integral formula

yields

∫ ∞

−∞
dtg(t)e− 1

2λt
2 =

√
2π

λ
g(0) +

∫ ∞

−∞
dt

(
g(t) − g(0)

)
e− 1

2 λt
2

for every real λ > 0. The terms on the right hand side can be separately continued
analytically to Re(λ) > 0 and by continuity to Re(λ) ≥ 0. Then, the square root in
the first term satisfies Re(λ) ≥ 0. Rewriting the second term as

∫ ∞

−∞
dt

(
g(t) − g(0)

)
e− 1

2 λt
2 = 1

λ

∫ ∞

−∞
dt

(
g(t) − g(0)

t

)′
e− 1

2 λt
2
,

we obtain the assertion.
3. By point 1, we can write the integral I (k) as a sum of integrals over sufficiently

small domains UA, each containing exactly one stationary point yA of ϕ. The con-
tributions omitted this way vanish faster than any power of 1

k
. Since yA is assumed

to be non-degenerate, ϕ′′(yA) is invertible. By the Morse Lemma 8.9.4, there exist
local coordinates vi on UA such that vi(yA) = 0 and

ϕ
(
y(v)

) = ϕ(yA) + 1

2
Q(v), Q(v) = −v2

1 − · · · − v2
i0

+ v2
i0+1 + · · · + v2

r ,

where i0 is the Morse index of ϕ at yA. Thus, the contribution from UA is given by

IUA
(k) = eikϕ(yA)

∫

UA

drv
∣∣J (v)

∣∣f
(
y(v)

)
e

ik
2 Q(v),

with J denoting the determinant of the Jacobi matrix of the coordinate transforma-
tion. Since v = 0 is the only stationary point of Q, by point 1, we may extend this
integral to R

r by choosing an arbitrary extension g of the integrand |J (v)|f (y(v))
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to R
r . Since f has compact support, g may be chosen to have compact support, too.

Thus, IUA
(k) reads

eikϕ(yA)

∫
dv1ei k2 v

2
1 · · ·

∫
dvi0e

i k2 v
2
i0

∫
dvi0+1e

−i k2 v
2
i0+1 · · ·

∫
dvre−i k2 v

2
r g(v).

According to (12.8.31), the integral over vr yields

√
2π

−ik
g(v1, . . . , vr−1,0)

(
1+O

(
k−1)).

Iterating this argument, we obtain a factor
√

2π
−ik =

√
2π
k

ei π4 for each integration

over vl with l > i0 and a factor
√

2π
ik =

√
2π
k

e−i π4 for each integration over vl with
l ≤ i0. Thus, we end up with

IUA
(k) =

(
2π

k

) r
2

p∑

A=1

ei π4 signϕ′′(yA)
∣∣J (0)

∣∣f (yA)e
ikϕ(yA) + O

(
k− r

2 −1).

It remains to determine |J (0)|. For that purpose, we calculate

1

2

∂2Q

∂vm∂vl
(v) = ∂2ϕ

∂vm∂vl

(
y(v)

)

= ∂2ϕ

∂yj ∂yk

(
y(v)

) ∂yj

∂vm
(v)

∂yk

∂vl
(v) + ∂ϕ

∂yj

(
y(v)

) ∂2yj

∂vmdvl
(v)

and take the absolute value of the determinant at v = 0. Since

1

2

∂2Q

∂vm∂vl
= ±δml,

this yields

∣∣J (0)
∣∣ = ∣∣detϕ′′(yA)

∣∣− 1
2

and thus completes the proof of the theorem. �

Now, we apply Theorem 12.8.4 to the integral (12.8.28). Every regular point of
Π(U) possesses an open neighbourhood W such that Π restricts to a diffeomor-
phism ΠA : WA → W on each connected component WA of Π−1(W) ∩ U . For
every x ∈ W , the stationary points of the mapping y �→ S(x,y) coincide with the
y-variables of the points Π−1

A (x). Denote

σ := sign
(
S′′
yy

)
.
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Corollary 12.8.5 For every regular point x ∈ Π(U) ⊂ Q, the integral (12.8.28)
admits the asymptotic expansion u(x) + O(k−1), where

u(x) =
∑

A

a0A(x)ei π4 σA(x)eikSA(x) (12.8.32)

with

a0A(x) = a(Π−1
A (x))

√
|detS′′

yy(Π
−1
A (x))|

,

SA(x) = S
(
Π−1

A (x)
)
,

σA(x) = σ
(
Π−1

A (x)
)
.

The functions a0A are analytic solutions of the transport equation and the function
u is an asymptotic solution of (12.8.1) to first order.

Proof We only have to check that every a0A is an analytic solution of the transport
equation. By (12.8.26) and (12.8.27), on WA,

â0 = (
a|vBS

| 1
2
) = a√

|detS′′
yy |

Π∗(|vn| 1
2
) = Π∗(a0A|vn| 1

2
)
.

Since â0 is a generalized solution of the transport equation, the assertion follows. �

Remark 12.8.6

1. Since σ jumps at Σ(BS) by a multiple of 2, the relative phases between the sum-
mands in (12.8.32) are multiples of π

2 . In particular, if ξA and ξA′ can be joined
by a curve in Σ which has a single crossing with Σ(BS) and if this crossing is
simple and transversal, then we know from the proof of Proposition 12.6.11 that
σ jumps by ±2 at this crossing. Hence, the phase shift between the contributions
of ξA and ξA′ is ±π

2 .
2. That a0A is a solution of the transport equation can also be confirmed by a direct

computation, see Exercise 12.8.3.

With Corollary 12.8.5 we have accomplished step (a) of our programme for fixing

the relative phases, outlined on page 714: the constant phase factors e
iπ
4 σA yield the

desired relative phases between contributions to the asymptotic solution of (12.8.1)
stemming from one and the same element of the chosen covering of (S , ι).

To accomplish step (b) we must analyze the condition that the contributions of
different elements Ui and Uj coincide if they come from the intersection Ui ∩ Uj .
For that purpose, we first note that the solution u given by (12.8.32) is obtained from
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the half density

a√
|detS′′

yy |
e

iπ
4 σ eikSΠ∗(|vn| 1

2
) = ei(kS+ π

4 σ)â0

on U ∩ Σ0(S ), where by an abuse of notation the restriction of the Morse family
S to U is denoted by the same symbol.28 Thus, from the covering {Uj } and the cor-
responding system {(Bj ,πj , Sj )} of generating Morse families, we obtain a system
{ûj } of local half densities on Σ0(S ) given by

ûj = ei(kSj+ π
4 σj )â0. (12.8.33)

The local half densities ûi and ûj coincide on Ui ∩Uj ∩Σ0(S ) and hence combine
to a half density û on Σ0(S ) iff their phases coincide modulo 2π at every regular
point of Ui ∩ Uj :

kSi + π

4
σi = kSj + π

4
σj mod 2π. (12.8.34)

This is the consistency condition announced in step (b) above. It is known as the
Bohr-Sommerfeld quantization condition. A topological interpretation of this con-
dition will be given below. The half-density û may be referred to as a generalized
first order solution of (12.8.1). By means of a partition of unity {χj } subordinate to
the covering {Uj }, it is explicitly given by û = ∑

j χj ûj , and projection to Q yields

u(x) =
∑

j

∑

ξ∈Π−1(x)∩Uj

χj (ξ)
aj (ξ)√

|det(Sj )′′yy(ξ)|
ei(kSj (ξ)+ π

4 σj (ξ)). (12.8.35)

This is the desired global first order solution u : Q \ Γ (S ) → R of (12.8.1) asso-
ciated with the generalized solutions (S , ι) and â0 of the characteristic equation
and the transport equation, respectively. By the Bohr-Sommerfeld quantization con-
dition, u does not depend on the choice of the partition of unity. It is, therefore,
uniquely determined by (S , ι) and â0, indeed.

The solution (12.8.35) can be rewritten as a so-called oscillatory half density on
Q \ Γ (S ) as follows. For every point of Q \ Γ (S ), there exists an open neigh-
bourhood W such that Π restricts to a diffeomorphism ΠA : WA → W on each
connected component WA of Π−1(W). Then, on W , we have

u|vn| 1
2 = KS û :=

∑

A

(
Π−1

A

)∗
û.

The mapping KS is known as Maslov’s canonical operator. Let us derive an ex-
plicit formula for KS in terms of the canonical 1-form θ on T∗Q and the Maslov
intersection index of curves in S . For a detailed presentation we refer to [198].

28For convenience, in the remainder, we stick to this simplified notation.
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Proposition 12.8.7 Let x ∈ Q \ Γ (S ). Let ξ0 ∈ S be a regular point, let γA be
curves29 from ξ0 to Π−1

A (x) and let S(ξ0) be an arbitrarily chosen phase. Then,

(
KS û

)
(x) =

∑

A

exp

{
i

(
k

∫

γA

θ − π

2
indS (γA) + kS(ξ0)

)}(
a0A|vn| 1

2
)
(x),

where indS (γA) is the intersection index of γA with Σ(S ) and a0A|vn| 1
2 =

(Π−1
A )∗â0.

Proof It suffices to verify the asserted formula for every A separately. Thus, let
γ : [0,1] → S be a curve from ξ0 to one of the ξA. Choose j such that ξA ∈ Uj .
Then,

((
Π−1

A

)∗
û
)
(x) = ((

Π−1
A

)∗
ûj

)
(x) = ei(kSj (ξA)+ π

4 σj (ξA))
(
a0A|vn| 1

2
)
(x). (12.8.36)

Choosing 0 = t0 < t1 < · · · < tl < tl+1 = 1 and j0, . . . , jl = j such that
γ ([ti , ti+1]) ⊂ Uji for all i = 0, . . . , l, we can rewrite Sj (ξA) and σj (ξA) as

Sj (ξA) =
l∑

i=1

∫

γ ([ti ,ti+1])
dSji +

l∑

i=1

(
Sji

(
γ (ti)

) − Sji−1

(
γ (ti)

)) + Sj0(ξ0),

σj (ξA) =
r∑

i=0

(
σji

(
γ (ti+1)

) − σji

(
γ (ti)

))

+
r∑

i=1

(
σji

(
γ (ti)

) − σji−1

(
γ (ti)

)) + σj0(ξ0).

On the one hand, by (12.4.10), under the identification of Uji with BSji
, we have

dSji = ι∗θ (12.8.37)

for all i. Hence, the first term in the equation for Sj (ξA) yields

l∑

i=1

∫

γ ([ti ,ti+1])
dSji =

l∑

i=1

∫

γ ([ti ,ti+1])
ι∗θ =

∫

γ

ι∗θ =
∫

ι◦γ
θ ≡

∫

γ

θ.

On the other hand, by Proposition 12.6.11 and (12.6.16), the first term in the equa-
tion for σj (ξA) yields

r∑

i=0

(
σji

(
γ (ti+1)

) − σji

(
γ (ti)

)) = −2indS (γ ).

29Which can always be chosen to intersect the singular subset Σ(S ) transversally.
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The asserted formula now follows by inserting all of this into (12.8.36) and taking
into account the Bohr-Sommerfeld quantization condition (12.8.34). �

Remark 12.8.8

1. We give a topological interpretation of the Bohr-Sommerfeld condition. For that
purpose, we observe that the functions sij := Si − Sj on Ui ∩ Uj are constant,
because (12.8.37) implies that on Ui ∩ Uj we have

dSi = ι∗θ = dSj . (12.8.38)

Moreover, from Lemma 12.6.10 we know that the integer-valued functions

cij = index
(
(Si)

′′
yy

) − index
(
(Sj )

′′
yy

)

on Ui ∩ Uj are constant, too, and hence smooth. As noted in Sect. 12.6, the
family {cij } defines an element μ̂S of the first integer-valued Čech cohomology
H 1

Č (S ,Z) of S . The image of this element under the canonical homomorphism

h : H 1
Č (S ,Z) → H 1(S ,R)

to the first de Rham cohomology H 1(S ,R) coincides with the Maslov class μS
of (S , ι). Analogously, the family {sij } defines a 1-cocycle and thus an element
of the first real-valued Čech cohomology of S . The image αS of this class
under h is usually called the Liouville class of (S , ι). By (12.8.38), it satisfies
αS = [ι∗θ ]. By Formula (12.6.16) we have

cij = 1

2

(
(ri − rj ) − (σi − σj )

)
, (12.8.39)

where ri and rj are the fibre dimensions of Bi and Bj , respectively. Thus, the
Bohr-Sommerfeld condition takes the form

k

2π
sij − 1

4
cij + 1

8
(ri − rj ) ∈ H 1(S ,Z).

Since the third term vanishes under h, the Bohr-Sommerfeld quantization condi-
tion (12.8.34) can be rewritten in terms of the Maslov and the Liouville classes
as

k

2π
αS − 1

4
μS ∈ h

(
H 1

Č (S ,Z)
)
. (12.8.40)

The cohomology class

ϕS ,k := k

2π
αS − 1

4
μS

is called the phase class associated with (S , ι) and k.
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2. Let us analyze which geometric object the local half-densities ûj combine to in
the general case. According to Theorem 2.2.11, the families of transition map-
pings {eiksij }, {e−i π2 cij } and {ei(ksij− π

2 cij )} define complex line bundles over S .
The first one will be denoted by ES ,k .30 The second one is the Maslov line bun-
dle MS constructed in Sect. 12.6, cf. Remark 12.6.14. The third one is the tensor
product

ΦS ,k := ES ,k ⊗ MS ,

called the phase bundle associated with (S , ι) and k. Note that the bundle ES ,k

is trivial (like MS ), because the family {eikSi } defines a global non-vanishing
section in this bundle, cf. Example 2.3.3/2. The family {ei π4 σi } defines a section in
the complex line bundle generated by the family of transition mappings {ei π4 σij }.
Due to (12.8.39),

e−i π2 cij = ei π4 rj ei π4 σij e−i π4 ri ,

so that this bundle is naturally isomorphic to the Maslov line bundle MS , cf.
Remark 2.2.12/1. Via this natural isomorphism, the family {ei π4 σi } defines a sec-
tion in MS . We conclude that, in the general case, the local half-densities ûj on

Σ0(S ) combine to a section in the restriction of the line bundle ΦS ,k ⊗|Λ| 1
2 S

to Σ0(S ).
By means of the phase bundle ΦS ,k , the Bohr-Sommerfeld quantization con-

dition can also be interpreted geometrically as follows. Recall from Sect. 12.6
that the Maslov line bundle is associated with a principal Z4-bundle over S .
Since the latter has discrete structure group, it carries a unique connection, given
by the unique lift of curves in S to curves in this bundle. This connection induces
a natural connection in the Maslov line bundle MS and hence in the phase bun-
dle ΦS ,k . Let Γpar(ΦS ,k) be the space of the sections of ΦS ,k which are parallel
with respect to this connection. One can show that parallel sections exist iff the
phase class is integer-valued, that is, iff the Bohr-Sommerfeld quantization con-
dition holds. Moreover, if parallel sections exist, they are unique up to a constant
factor and hence given by a constant multiple of the family {ei(kSj+ π

4 σj )}.
Let us add that it is common to pass to a k-independent universal object by

building the C-module

ΨS := Γ
(|Λ| 1

2 S
) ⊗C

(∏

k>0

Γpar(ΦS ,k)

)
,

called the symbol space of (S , ι). Obviously, if the Bohr-Sommerfeld quan-
tization condition holds, the half-density û is a symbol (an element of ΨS ).
Thus, the above construction assigns a symbol, û, to every generalized solu-
tion (S , ι) of the characteristic equation, every generalized solution â0 of the

30ES ,k may be identified with the pull-back under ι of the so-called prequantum line bundle over
(T∗Q,dθ), see Sect. 4.1 and Appendix D of [36] for a detailed description.
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transport equation and every k > 0 such that the Bohr-Sommerfeld quantization
condition (12.8.34) is satisfied.

Example 12.8.9 (Schrödinger equation) We consider the time-independent Schrö-
dinger equation of a particle with unit mass in one space dimension under the influ-
ence of an external potential V ,

(
−�

2

2

d2

dx2
+ (V − E)

)
ψ = 0. (12.8.41)

This equation is of the form (12.8.1), where the symbol H is given by the classical
Hamiltonian function of the system,

H(x,p) = p2

2
+ V − E,

and 1
k

is given by Planck’s constant �. Thus, the short wave asymptotics of the
solutions ψ corresponds to the semiclassical, or WKB,31 approximation � → 0.
Let CE be a regular compact connected component of the energy surface H−1(0).
Then, CE is a smooth closed curve in T∗

R ∼= R
2. For dimensional reasons, CE

is a Lagrangian submanifold. Assume that V is such that CE has two intersection
points x+ and x− with the x-axis. Then, E = V (x±) and the singular subset Σ(CE)

consists of x+ and x−. From Example 12.6.8/1 we know that the Maslov index μCE

of the fundamental cycle of CE is equal to 2. Consequently, by integrating the phase
class ϕS , 1

�

over CE , we find that the Bohr-Sommerfeld condition (12.8.40) reads

1

2π�

∫

CE

θ − 1

2
∈ Z.

Obviously,
∫
CE

θ = A(E), with A(E) being the area enclosed by the curve CE . As
a result, the Bohr-Sommerfeld quantization condition for the Schrödinger equation
in one dimension takes the form

A(E) = 2π�

(
n + 1

2

)
, n = 0,1, . . . . (12.8.42)

For example, for the harmonic oscillator with potential V (x) = ω2

2 x2, the curve CE

is an ellipse with semiaxes
√

2E in momentum direction and
√

2E
ω

in position di-
rection. Hence, A(E) = 2π E

ω
, so that the Bohr-Sommerfeld quantization condition

becomes

E = �

(
n + 1

2

)
.

31Named after Wentzel, Brillouin and Kramers.
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This is the exact formula for the quantum energy levels. The quantization condition
(12.8.42) generalizes in an obvious way to an arbitrary integrable system.

Next, we solve the Schrödinger equation (12.8.41) in the WKB approximation,
that is, we determine the short wave asymptotic solutions of this equation. The char-
acteristic equation (12.8.2) reads

1

2

(
dS

dx

)2

+ V = E (12.8.43)

and the transport equation in the form (12.8.8) is given by

√
2(E − V )

d

dx
a2

0 + a2
0

d

dx

√
2(E − V ) = 0. (12.8.44)

We restrict our attention to the interior of the classically allowed region, where E >

V . Here, the solutions of (12.8.43) and (12.8.44) are given by

S(x) = ±
∫ √

2
(
E − V (x)

)
dx, a0(x) = c

(
2
(
E − V (x)

))− 1
4 ,

respectively. To determine the corresponding asymptotic solution of the Schrödinger
equation (12.8.41), we apply Proposition 12.8.7. Let us choose ξ0 in the region of
CE where p > 0 and let us put S(ξ0) = 0. For every x in the interior of the classically
allowed region, Π−1(x) consists of two points, ξ+ with p > 0 and ξ− with p < 0.
Connecting ξ0 with ξ− by a clockwise oriented curve, we obtain

ψ(x) = c
4
√

2(E − V (x))

{
e

i
�

∫ √
2(E−V (x))dx + e− i

�

∫ √
2(E−V (x))dx+ iπ

2
} + O(�),

because such a curve has Maslov index −1. This formula yields the WKB approx-
imation for the solutions of the Schrödinger equation (12.8.41) in the classically
allowed region. Up to a constant phase factor, it can be rewritten as a real-valued
function:

ψ(x) ∼ 1
4
√

2(E − V (x))
cos

(
1

�

∫ √
2
(
E − V (x)

)
dx − π

4

)
.

We encourage the reader to compare the derivation given here with the usual deriva-
tion of this formula in the standard text books of quantum mechanics, see e.g. [101].

For an exhaustive discussion of the n-dimensional Schrödinger equation we refer
to [198] and for the study of general spectrum conditions in the semiclassical ap-
proximation we recommend [78]. The above discussed structures also yield a gen-
eral geometric framework for WKB quantization. Regarding this aspect, we make
the following remark. For details, the reader may consult [36].

Remark 12.8.10 As mentioned above, the line bundle ES ,k can be identified with
the pull-back to the Lagrangian immersion (S , ι) of the prequantum line bundle
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ET∗Q,k over T∗Q and the phase bundle can be identified with

ΦS ,k = ι∗ET∗Q,k ⊗ MS .

One says that a Lagrangian immersion (S , ι) of T∗Q is quantizable if it satisfies
the Bohr-Sommerfeld quantization condition with k = 1

�
. By Remark 12.8.8/1, this

is equivalent to the requirements that the phase class ϕS ,k be integer-valued, or that
the phase bundle admit a global parallel section û. The pair consisting of (S , ι)

and û is called a semiclassical state and Maslov’s canonical operator is called a
semiclassical quantization mapping.

The method of stationary phase is restricted to points apart from the caustic,
because Corollary 12.8.5 applies to such points only. Over focal points, every gen-
erating Morse family necessarily has degenerate critical points, so that this method
cannot be applied. To deal with this situation in a systematic way, one has to use
distribution-valued half-densities, see [115], [141] and [36]. However, if we have a
normal form for the generating families in the neighbourhood of the caustic at our
disposal, we can nevertheless get insight into the behaviour of asymptotic solutions
near the caustic. We discuss this for the simplest type, the fold. For an exhaustive
treatment we refer again to [115]. From Proposition 12.6.15 we read off that the
oscillatory integral (12.8.28) has the form

∫ ∞

−∞
eik(f (x)+g(x)y− 1

3 y
3)a(x, y)dy, (12.8.45)

where x ∈ Q = R
n. The Malgrange Preparation Theorem32 entails that a can be

written in the form

a(x, y) = b0(x) + b1(x)y + h(x, y)
∂S

∂y
(x, y)

= b0(x) + b1(x)y + h(x, y)
(
g(x) − y2),

where b0, b1 and h are smooth functions. Inserting this into (12.8.45) and perform-
ing partial integration, we obtain

eikf (x)
{
a0(x, k)

∫ ∞

−∞
eik(g(x)y− 1

3 y
3)dy + a1(x, k)

∫ ∞

−∞
eik(g(x)y− 1

3 y
3)ydy

}
,

(12.8.46)
with a0 and a1 denoting certain asymptotic series. Using the Airy functions

A(τ) =
∫ ∞

−∞
ei(τy− 1

3 y
3)dy, τ ∈R,

32See e.g. [110, §IV.2].
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we can rewrite this formula as

eikf (x)
{
a0(x, k)

k
1
3

A
(
k

2
3 g(x)

) + a1(x, k)

ik
2
3

A′(k
2
3 g(x)

)}
. (12.8.47)

Thus, we obtain the following asymptotic expansion of the oscillatory integral
(12.8.45):

eikf (x)
{
b0(x)

k
1
3

A
(
k

2
3 g(x)

) + b1(x)

ik
2
3

A′(k
2
3 g(x)

)} + O

(
1

k

)
. (12.8.48)

Example 12.8.11 (Helmholtz equation) Let us return to the Helmholtz equation
(12.7.2). We will use Formula (12.8.48) to study the qualitative behaviour of light
rays in the neighbourhood of the caustic.33 Inserting the normal form (12.6.28) for
S into the eikonal equation, one obtains

(∇f )2 + y2(∇g)2 + 2y∇f · ∇g = 1.

According to (12.6.29), on BS we have g(x) = y2. Hence, for every x, the variable
y can take the values ±√

g(x), and thus this equation breaks into the two equations

(∇f )2 + g(∇g)2 = 1, 2∇f · ∇g = 0. (12.8.49)

Inserting the asymptotic expansion (12.8.48) of the oscillatory integral (12.8.45)
into the Helmholtz equation and comparing coefficients, one obtains the following
form of the transport equation, see Exercise 12.8.4:

2∇f · ∇b0 + Δfb0 + 2g∇g · ∇b1 + gΔgb1 + (∇g)2b1 = 0, (12.8.50)

2∇g · ∇b0 + Δgb0 + 2∇f · ∇b1 + Δfb1 = 0. (12.8.51)

Thus, Formula (12.8.48) yields a solution u of the Helmholtz equation up to first
order in 1

k
provided the functions f,g, b0 and b1 solve Eqs. (12.8.49), (12.8.50) and

(12.8.51). Equations (12.8.49) form a system of nonlinear partial differential equa-
tions, which is elliptic for g < 0, hyperbolic for g > 0 and parabolic for g = 0. Ac-
cording to (12.6.29), these cases correspond, respectively, to points in the shadow,
points in the illuminated region and points on the caustic. Using asymptotic formu-
lae for the Airy functions for large positive arguments [115] one finds that for large
k and g > 0 one has

u ∼ k− 1
3 eikf

√
π(k

2
3 g)

1
4

{
b0 cos

(
2kg

3
2

3
− π

4

)
− b1g

1
2 sin

(
2kg

3
2

3
− π

4

)}
. (12.8.52)

This formula yields a model for the intensity of light in the illuminated region. For
large k and g < 0 one finds an exponentially decaying solution, which of course

33This goes back to Ludwig [187], see also [86, 157].
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corresponds to the shaded region. However, close to the caustic, where k
2
3 g is small

even for large k, a detailed analysis yields

u ∼ b0

k
1
3

A
(
k

2
3 g

) ∼ b0

k
1
3

A(0). (12.8.53)

Comparing (12.8.52) with (12.8.53), we see that the value of u on the caustic is
of a similar magnitude as the value of u in the illuminated region, multiplied by

k
1
6 . Let us conclude. While the ordinary short wave asymptotics given by (12.8.21)

yields a divergent intensity of light on the caustic, the finer analysis sketched above
provides an estimate for the intensity near the caustic. In particular, the intensity on
the caustic is large but finite.

Exercises
12.8.1 Prove that the local solution of Eq. (12.8.8) is given by the formula in Re-

mark 12.8.2/1.
Hint. Show that 1

J
∂J
∂t

(t,x) = (∇ · YH )(φt (x)).
12.8.2 Confirm Formula (12.8.19).
12.8.3 Prove by direct inspection that the function a0A given in Corollary (12.8.5)

is a solution of the transport equation.
Hint. A guide to the proof can be found in [187].

12.8.4 Use the identities

A′′(τ ) + τA(τ) = 0, A′′′(τ ) + τA′(τ ) + A(τ) = 0

for the Airy functions to verify Formulae (12.8.50) and (12.8.51).
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Index

A
Absolutely invariant differential form, 182
Action

of a Lie algebra, see Lie algebra action
of a Lie group, see Lie group action

Action and angle variables, 589
characteristic frequencies, 602
existence, 591
for the harmonic oscillator, 604
for the Kepler problem, 605
for the spherical pendulum, 625
for the symmetric Euler top, 608
generalized, 628
Hamilton equations, 602
obstructions to global existence, 619, 620
representation by line integrals, 598

Adapted chart, 118
Adjoint

quotient, 275
of SU(3), 301

representation, 244
Killing vector fields, 277
of a semisimple Lie group, 248
of Sp(1), SU(2), SO(3), SO(4), 246
orbit space, 299

Admissible initial condition, 650
Airy function, 725
Algebra of Ck-functions, 18
Algebraic multiplicity, 130
Aliotypic spectrum part, 312
Almost complex structure, 359
Alternating r-forms or r-vectors, 78
Analytic solution

of the eikonal equation, 703, 709
of the Hamilton-Jacobi equation, 650
of the transport equation, 712

Andoyer variables, 609

vs. noncommutative integrability, 638
Angular

momentum, 500
velocity, 543

Anisochronous integrable system, 603
Annihilator, 87
Anti-equivariant, 270
Anti-morphism

of G-manifolds, 270
of Lie group actions, 270

Arnold
conjecture, 488
diffusion, 478
theorem, 586

Associated fibre bundle, 294
Asymptotic

H -stability, 313
linear stability, 145

criteria, 147, 148
Lyapunov stability, 152
relative stability, 313
stability, 142

criteria for hyperbolic critical integral
curves, 149

Atlas, 2, 3
Autonomous Hamiltonian system, 428
Average of a tensor field, 284

B
Baker-Campbell-Hausdorff series, 240
Basin of attraction, 142
Basis set, 363
Betti numbers, 186
Bifibration, 637
Bifurcation

of orbit cylinders, 475
set of a mapping, 557
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Birkhoff Normal Form Theorem
for Hamiltonian flows, 467
for symplectomorphisms, 463

Birkhoff-Lewis Theorem, 469
Body

cone, 611
coordinates, 543
frame, 543

Bohr-Sommerfeld condition, 719
Boundary of a manifold with boundary, 179
Butterfly, 691

C
Ck -structure, 3
Ck -manifold, 3
Ck -mapping, 17
Ck -curve, 18
Ck -arcwise connected, 43
Canoe, 554
Canonical

1-form on a cotangent bundle, 371
basis of a symplectic vector space, 317
fibrewise action

on a cotangent bundle, 375
on a Lagrangian foliation, 398

Lie group action, 396
lift of a pair to the cotangent bundle, 374
symplectic form

on a cotangent bundle, 371
on R

2n, 317
transformation, 354

generating function, 404
time-dependent, 443

vertical vector field, 371
volume form

of a Riemannian manifold, 196
of a symplectic manifold, 355
of a symplectic vector space, 318

Capacity, see symplectic capacity
Carathéodory-Jacobi-Lie Theorem, 627
Cartan algebra, 174
Cartan-Killing tensor, 248
Cartan-Lie Theorem, 628
Casimir function, 369
Catastrophe theory, 690
Cauchy data (Hamilton-Jacobi equation), 650
Caustic, 675, 690
Čech cohomology, 64, 622, 687, 721
Central integral curve, 128
Centre manifold, 156

for a linear vector field, 160
for the modified harmonic oscillator, 161
for the planar pendulum, 160

Centre-stable and centre-unstable manifolds,
156

Chain rule, 29
Characteristic of a coisotropic submanifold,

383
Characteristic

distribution
of a coisotropic submanifold, 383
of a differential form, 184
of a Poisson manifold, 368

equation
for the principal radii, 700
of a differential operator, 695
of the Schrödinger equation, 724

exponents, 130
for symplectic vector fields, 363
of the projected flow, 313

foliation, 184
frequencies, 602
line bundle, 386
linear mapping

of a critical integral curve, 130
of a relatively critical integral curve,

309
multipliers, 130

for symplectic vector fields, 363
of the projected flow, 313

subspace of a differential form, 184
vector field

of a coisotropic submanifold, 383
of a differential form, 184

Chart, 2
Chern class, 620
Classical Lie groups

adjoint representation, 246
orbit space, 299

exponential mapping, 241
induced Lie algebra homomorphisms, 232
Lie algebras, 229

isomorphisms, 230, 232, 233
Lie group structure, 221
manifold structure, 14

Classical vector analysis, 200
Closed differential form, 185
Closed Subgroup Theorem, 259
Coadjoint

cocycle
on a Lie algebra, 498
on a Lie group, 496

orbits
and Lax pairs, 578
momentum mapping, 502
of SU(2), SU(3), SO(3), SO(4), 380,

381
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Coadjoint (cont.)
of upper triangular matrices, 382
symplectic structure, 377

representation, 245
Killing vector fields, 277
semisimple Lie group, 248

Coframe, 72
Coisotropic

immersion, 358
submanifold, 358

characteristic distribution, 383
criteria, 384

subspace, 319
vector subbundle, 359

Commutator of vector fields, 95
Compatible

complex structure, 328
local charts, 3

Complement
of a vector subbundle, 87
ω-orthogonal or symplectic orthogonal,

316
Complete

integral
for the generalized Hamilton-Jacobi

equation, 655
for the Hamilton-Jacobi equation, 646
for the Kepler problem, 648

integral curve, 98
vector field, 98

Complex analytic
manifold, 3
mapping, 18

Complex structure, 328
Configuration space, 428
Conjecture

Arnold, 488
Weinstein, 450
Weinstein-Moser, 461

Conjugate
diffeomorphisms, 127
flows, 127
points, 272
subgroups, 274
vector fields, 127

Conjugation
on a Lie group, 222
quaternionic, 7

Conormal
bundle, 91

as a Lagrangian submanifold, 374
space, 91

Constant of motion, 434
Constant Rank Theorem, 32
Constraining force, 215
Constraints, 213, 431
Contact

form, 386
manifold, 386
mapping, 386
structure, 386
type (hypersurface), 392
vector field, 388

Contactomorphism, 386
Continuity equation, 204
Contractible, 188
Coordinates, 2

cyclic, 434
Darboux, 357
homogeneous, 9
polar and spherical, 6
standard on R

n, 4
Coorientable

submanifold, 91
vector subbundle, 89

Coorientation
of a submanifold, 91
of a vector subbundle, 89
of the Maslov cycle, 341
of the singular subset of a Lagrangian

immersion, 676
Coset, 261
Cotangent

bundle, 78
canonical 1-form, 371
canonical lift of a pair, 374
Lagrangian submanifolds, 373
lift of a diffeomorphism, 372
natural fibrewise action, 375
natural symplectic structure, 371
of a Lie group, 372
point transformation, 372
projectivization, 389

space, 27
sphere bundle, 389
vector, 27

Coulomb gauge, 205
Covector, 27
Covector field, see differential form
Covering homomorphism, 225
Critical

integral curve, 126
point, 11, 34
submanifold of a Morse-Bott function, 422
value, 11, 34

Crossing, 342, 678
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Crossing form, 345
Curl, 200
Cusp, 691
Cyclic coordinate, 434

D
D’Alembert’s principle, 215
Darboux coordinates, 357
Darboux Theorem, 356

equivariant, 396
De Rham

cohomology, 186
theorem, 192, 340

Decomposition
of a vector bundle morphism, 83
slice (for invariant vector fields), 307
Witt-Artin

of a symplectic vector space, 323
of the tangent space, 507

Defining 1-form for a hyperplane distribution,
386

Deformation retraction, 419
Degree

of a differential form or a multivector field,
78

of a mapping, 188
of freedom, 428

Delaunay elements, 607
Density, 711
Derivation

at a point, 24
on an algebra, 25
property of vector fields, 94

Diffeomorphism, 19
conjugacy, 127
Hamiltonian, 410
lift to the cotangent bundle, 372
local, 19

Differentiable
manifold, 3
mapping, 17
structure, 3

induced by a family of mappings, 5
Differential form, 78, 165

characteristic distribution, subspace, vector
field, 184

closed, 185
exact, 185
exterior derivative, 168
Hodge dual, 198
inner multiplication with multivector fields,

166
integration, 178

left-invariant, 248
on a manifold with boundary, 179
pairing with multivector fields, 166
right-invariant, 254
with values in a vector space, 175

Differential ideal, 209
Differential of a function, 27, 79
Dimension

of a foliation, 123
of a manifold, 2
of a vector bundle, 58

Direct product
of G-manifolds, 271

properness, 286
of Lie group actions, 271
of Lie groups, 220
of manifolds, 10
of symplectic manifolds, 355
of vector bundles, 64

Direct sum
of manifolds, 10
of vector bundle morphisms, 73
of vector bundles, 72

Discrete group, 231
Distribution, 115

adapted chart, 118
characteristic

of a coisotropic submanifold, 383
of a differential form, 184
of a Poisson manifold, 368

homogeneous, 117
hyperplane, 385
integrability and integral manifold, 116
integrability criteria, see Stefan-Sussmann

Theorem
involutive, 117
left-invariant, 256
rank, 115
regular, 86, 115
singular, 115

Divergence, 200
Drift velocity, 308
Dual

local frame, 72
pair in the sense of Weinstein, 637
representation

of a Lie algebra, 245
of a Lie group, 245

vector bundle, 71
vector bundle morphism, 72
vector space, 27

Dynamical system, 126
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E
Effective Lie group action, 274
Eikonal

equation, 693
analytic solution, 703, 709
generalized solution, 696
method of characteristics, 712

function, 693
Electromagnetic

current density, 203
field strength tensor, 203
potential, 204

Elliptic
critical integral curve or fixed point, 130
endomorphism or automorphism, 130
umbilic, 691

Embedded
Lie subgroup, 256
submanifold, 38

Embedding, 38
Endomorphism bundle, 77
Energy surface, 435

of the spherical pendulum, 623
Energy-momentum mapping, 556
Equation(s)

characteristic, 695
eikonal, 693
Euler (for the top), 573
Euler-Lagrange, 430
generalized Hamilton-Jacobi, 653
Hamilton, 428
Hamilton-Jacobi, 643
Helmholtz, 693
Lagrange, 215, 216
Lax, 578
Mathieu, 484
Maurer-Cartan, 250, 254
Maxwell, 203
Plücker, 534
Poisson (for the top), 573
transport, 693
wave, 692

Equilibrium, 126
centre, centre-stable, centre-unstable

manifolds, 156
characteristic exponents, 130
elliptic, 130
Hessian endomorphism, 127
hyperbolic, 130

stability criteria, 149
index, 137
invariant manifolds, 155
non-degenerate, 130
r-elementary, 463

relative, 308
stable manifold, 156
unstable manifold, 156

Equivalent
atlases, 3
curves, 22
immersions, 35
Lie subgroups, 256
submanifolds, 35

Equivariant
mapping, 270
momentum mapping, 496
vector field, see invariant vector field

Equivariant Darboux Theorem, 396
Euclidean vector bundle, 87
Euler

characteristic, 186
equation for the top, 573
top, 542, 575

action and angle variables, 608
energy-momentum mapping, 560
momentum mapping, 544
noncommutative integrability, 637
symplectic reduction, 542

Euler-Lagrange equations, 430
Exact

contact manifold, 386
differential form, 185

construction of a potential, 191
symplectic manifold, 356

Exponential mapping, 236
of a classical group, 241
of a vector Lie group, 241

Extended
Hamiltonian system, 442
phase space, 441

Extension of an integral curve, 98
Exterior

algebra, 76
of differential forms, 165

curvature, 700
derivative, 168

intrinsic formula, 170
on a manifold with boundary, 179

power of a vector bundle, 75
product, 75

of differential forms, 165

F
Fibre

bundle, 294
derivative, 429
dimension of a Morse family, 668
Hessian of a Morse family, 669
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Fibre-critical submanifold, 662
Fibre-preserving mapping of Morse families,

669
Figure eight, 37

Lagrangian immersion, 664
Maslov index, 685
non-equivalent submanifold structures, 41
singular subset and Maslov class, 680

First return mapping, 137
First return time function, 137
Flag manifold, 264
Floquet multipliers, 363, 456
Floquet’s Theorem, 131
Flow, 99

conjugacy, 127
geodesic, 437

symplectic reduction, 533
Hamiltonian, 360
linearization, 126
of commuting vector fields, 106
on a topological space, 303
projection to the orbit space, 303

characteristic exponents and
multipliers, 313

time-dependent, 112
Flow box chart, 107, 437
Focal point, 675
Fold, 691
Foliation, 123

dimension or rank, 123
Lagrangian, 397

natural fibrewise action, 398
regular and singular, 123
simple, 124
symplectic, 368

Force-free top, 542
Free Lie group action, 274
Frobenius Theorem, 120

for Pfaffian systems, 209
Functional stability criteria, 150
Functions in involution, 569

G
G-manifold, 270

Hamiltonian, 492
Riemannian, 272
symplectic, 272, 396, 492

g-manifold, 278
symplectic, 492

G-vector bundle, 272
Gauge

field in lattice gauge theory, 549

transformation
in electromagnetism, 204
in lattice gauge theory, 550

Gauß
law., 551
theorem, 202

General linear group, 7, see also classical Lie
groups

Generalized
action and angle variables, 628
force, 216
Hamilton-Jacobi equation, 653

complete integral, 655
solution

of the eikonal equation, 696
of the Hamilton-Jacobi equation, 650
of the transport equation, 712

Generalized Jacobi Theorem, 656
Generalized Poincaré Lemma, 192
Generating

function
for a canonical transformation, 404
for a Lagrangian submanifold, 405

Morse family, 662
at a point, 668

Generic position, 676
Geodesic

flow, 437
momentum mapping, 533
symplectic reduction, 533

vector field, 437, 533
Geometric

asymptotics, 692
multiplicity, 130
optics, 692
solution, 650

Germ of immersions, 674
Global trivialization, 58
Gradient, 200

vector field, 418, 452
Graph criterion

for a symplectic reduction, 401
for a symplectomorphism, 403

Graßmann manifold, 264
as an orbit manifold, 292

Grobman-Hartman Theorem, 148
Gromov Nonsqueezing Theorem, 451
Group

action, see Lie group action
average, 251
classical, 7, 14, see also classical Lie

groups
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Group (cont.)
of symplectomorphisms

of a symplectic manifold, 406
of a symplectic vector space, 325

H
H -Lyapunov function, 313
H -stability, 313
Haar measure, 250
Half-density, 711

oscillatory, 719
Hamilton equations, 428

in terms of action and angle variables, 602
under linear nonholonomic constraints, 431

Hamilton-Jacobi equation, 643, 644
analytic, geometric and generalized

solutions, 650
complete integral, 646
generalized, 653

Hamiltonian
diffeomorphism, 410
flow, 360
flow box chart, 437
function, 428
G-manifold, 492
isotopy, 410
Lie group action, 492
mechanics, 428
system

on a Poisson manifold, 434
on a symplectic manifold, 428
regular reduction, 510
singular reduction, 527
symmetric, 492
time-dependent, 441

vector field
on a Poisson manifold, 365
on a symplectic manifold, 360

Harmonic oscillator
action and angle variables, 604
hidden symmetry, 503

Helmholtz equation, 693
Hermitian vector bundle, 87
Hessian

of a function, 416
of a relative equilibrium, 309
of an equilibrium, 127

Heteroclinic, 161
Hidden symmetry

of the harmonic oscillator, 503
of the Kepler problem, 539

Hilbert mapping
for a lattice gauge model, 555
for the spherical pendulum, 547

Hodge
dual, 198

of the exterior derivative, 200
star operator, 198

Hodge-Laplace operator, 200
Hofer norm and metric, 414
Hofer-Zehnder

capacity, 451
theorems, 452

Holonomic constraints, 214
Homoclinic, 161
Homogeneous

coordinates, 9
distribution, 117
manifold, 280
space, 261, 280

Homomorphism
bundle, 77
of representations, 243
theorem

for Lie groups, 266
for vector bundles, 89

Homotopy
groups, 188
of mappings, 188
operator, 190
type, 188
with fixed end points, 342

Homotopy-equivalence, 188
Horizontal part of a vector bundle morphism,

83
Hörmander index, 352
Hörmander-Kashiwara index, 347
Hyperbolic

critical integral curve or fixed point, 130
endomorphism or automorphism, 130
umbilic, 691

Hyperplane distribution, 385
Hyperregular Lagrangian function, 429
Hypersurface, 385

of contact type, 392
Hypocycloid, 556

I
Ideal gas, 212
Ideal lense (eikonal function), 706
Identity component, 223, 265
Immersion, 32

equivalence, 35
figure eight, 37

Implicit Mapping Theorem, 32
Index

Hörmander, 352
Kashiwara, 347
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Index (cont.)
Maslov

of a Lagrangian immersion, 678
of the Lagrange-Graßmann manifold,

338
Maslov intersection

for Lagrangian immersions, 679
for pairs, 351
of the Lagrange-Graßmann manifold,

343
Morse, 416
of an equilibrium, 137

Induced
Lie algebra homomorphism, 232
vector bundle, 82
vector field on a submanifold, 91

Inertia tensor, 543
Initial

submanifold, 39
topology, 5

Inner
automorphisms of a Lie group, 222

momentum mapping, 502
multiplication of differential forms with

multivector fields, 166
Integrable

differential form, 178
distribution, 116

criteria, see Stefan-Sussmann Theorem
Pfaffian system, 208

criteria, 210
system, 569

action and angle variables, 589
characteristic frequencies, 602
isochronous or anisochronous, 603
non-degenerate, 603
noncommutative integrability, 627
symplectic reduction, 588

Integral
criterion for exact differential forms, 192
curve

critical, 126
of a time-dependent vector field, 111
of a vector field, 97
periodic, 126
relatively critical, relatively periodic,

308
invariant, 183

Poincaré-Cartan, 445
manifold

of a distribution, 116
of a Pfaffian system, 208

Integrating factor, 211

Integration
on a manifold, 178
on a manifold with boundary, 179

Interior of a manifold with boundary, 179
Intersection of transversal submanifolds, 50
Intertwine

Lie algebra actions, 278
Lie group actions, 270
representations, 243

Invariance of domain, 159
Invariant

differential form, 182
function, 275
manifold, 155

of a linear vector field, 160
of the modified harmonic oscillator, 161
of the planar pendulum, 160

scalar product, 251
tensor field, 275
theory

for a lattice gauge model, 555
for the spherical pendulum, 547

torus, 466, 602
vector field, 303

Inverse Mapping Theorem, 31
Inversion mapping, 220
Involutive distribution, 117
Isochronous integrable system, 603
Isoenergetic Poincaré mapping, 455
Isoenergetically non-degenerate, 616
Isospectral, 578, 579
Isotopy, 409, 410
Isotropic

immersion or submanifold, 358
subspace, 319
vector subbundle, 359

Isotropy
group, 272
representation

for a proper action, 283
of the Lie algebra, 277
of the Lie group, 273

type
stratum, 295
subset, 274

Isotypic spectrum part, 312

J
Jacobi identity, 95
Jacobi Theorem, 647

K
KAM theory, 468, 615
Kashiwara index, 347
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Kepler problem, 536
action and angle variables, 605
energy-momentum mapping, 558
Hamilton-Jacobi equation and complete

integral, 648
integrability, 570
Lenz-Runge vector, 539
momentum mapping, 537
Moser’s regularization, 541
noncommutative integrability, 640
relation to the geodesic flow on S3, 541
symplectic reduction, 536

Kernel
of a Lie group action, 272
of a multilinear form, 183, 315
of a vertical vector bundle morphism, 86

Killing
form, 247
vector field, 276

adjoint and coadjoint representations,
277

left and right translation, 278
Kirillov form, 377
Kirillov Theorem, 377
Kirkwood gaps, 477
Kovalevskaya top, 575
Kronecker tensor field, 78
Künneth Formula, 192

L
Lagrange

class, 622
equations, 215, 216
top, 575

Lagrange-Graßmann manifold, 333
Lagrangian

complement of a Lagrangian vector
subbundle, 359

foliation, 397
natural fibrewise action, 398

function, 216
immersion, 358

generated by a Morse family, 662
quantizability, 725

mechanics, 216, 428
submanifold, 358

generating function, 405
of a cotangent bundle, 373
Weinstein Theorem, 397

subspace, 319
criteria, 320

vector subbundle, 359
Lattice gauge theory, 549

Lax equation, Lax pair, 578
Leaf of a foliation, 123
Left

coset, 261
Lie algebra action, 278
Lie group action, 270
multiplication, 222
translation, 222

Killing vector fields, 278
momentum mapping, 501
symplectic reduction, 512

trivialization, 223
in terms of left-invariant vector fields,

228
in terms of right-invariant vector fields,

235
Left-invariant

differential form, 248
distribution, 256
vector field, 227
volume form, 250

Legendre transformation, 429
Lemma

generalized Poincaré, 192
local straightening, 107
Morse, 416
Morse isotopy, 418
Morse-Bott, 423
Poincaré, 190
splitting of Morse families, 669

Lenz-Runge vector, 539
Level Set Theorem

for manifolds, 50
for Rn, 11

Lie algebra, 95
action, 278

symplectic, 492
homomorphism, 95
homomorphism induced by a Lie group

homomorphism, 232
of a Lie group, 228

for the classical Lie groups, 229–232
simple, semisimple, solvable, nilpotent,

234
Lie derivative, 109

formulae, 109, 110, 172, 173
Lie group, 220, see also classical Lie groups

cotangent bundle, 223
symplectic structure, 372

homomorphism, 220
identity component, 223
induced Lie algebra homomorphism, 232
parallelizability, 223, 228, 235
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Lie group (cont.)
simple, semisimple, solvable, nilpotent,

234
tangent bundle, 223

Lie group action, 270
canonical, 396
direct product, 271
effective, free, transitive, 274
Hamiltonian, 492
kernel, 272
lift to the cotangent bundle, 500
locally free, 505
orbit, orbit mapping, orbit space, 272
proper, 281
properly discontinuous, 292
restriction, 271
Riemannian, 272
stabilizer, 272
strongly Hamiltonian, 497
symplectic, 272, 396, 492

Lie subgroup, 256
conjugacy classes, 274
embedded, 256
equivalence, 256

Lie-Poisson structure, 367
noncommutative integrability, 637
symplectic foliation, 379

Lift
of a diffeomorphism, 372
of a Lie group action, 500

Light ray, 694
Linear

asymptotic stability, 145
criteria, 147, 148

Lie group action, 271
Poisson structure, 367
slice, 286
stability, 145

criteria, 147, 148
symplectic

reduction, 322
slice, 508

vector field, 102
critical integral curves, 132
in two dimensions, 132
invariant manifolds, 160

Linearization of a flow, 126
Linearly equivalent vector fields, 132
Liouville

class, 721
form, 355
vector field, 371, 385

Liouville Theorem
on integrable systems, 585
on the phase space volume form, 433

Local
centre, centre-stable, centre-unstable

manifolds, 156
chart, 2
coframe, 72
diffeomorphism, 19
frame, 67
invariant manifold, 155
refractive index, 693
representative

of a mapping, 17
of a section, 65
of a tangent vector, 23
of a vector bundle morphism, 61

section
of a submersion, 34
of a vector bundle, 65

stable manifold, 156
symplectic potential, 356
trivialization

of a principal bundle, 292
of a vector bundle, 58

unstable manifold, 156
wave vector, 693

Local Straightening Lemma, 107
Locally

compact, 2
connected, 2
defining 1-form for a hyperplane

distribution, 386
finite, 20
free, 505
Hamiltonian vector field, 361
trivial

fibre bundle, 294
mapping, 557

Lorentz transformation, 203
Lorentzian manifold, 206
Lorenz gauge, 204
Lyapunov

asymptotic stability, 152
function

for a critical integral curve, 150
for a relatively critical integral curve,

313
stability, 152

Lyapunov Centre Theorem, 459
Lyapunov Subcentre Theorem, 475
Lyapunov Theorem

for a critical integral curve, 151
for a relatively critical integral curve, 313
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M
Manifold

atlas, 3
centre, centre-stable, centre-unstable, 156
complex analytic, 3
contact, 386
differentiable, 3
dimension, 2
direct product and sum, 10
fibre-critical, 662
flag, 264
Graßmann, 264
homogeneous, 280
integral

of a distribution, 116
of a Pfaffian system, 208

Lagrange-Graßmann, 333
local chart, 2
Lorentzian, 206
orientation, orientable, oriented, 176
parallelizable, 69
Poisson, 365
pseudo-Riemannian, 194
real analytic, 3
Riemannian, 194
smooth, 3
stable, 156
Stiefel, 263
symplectic, 354
topological, 2
unstable, 156

Manifold with boundary, 179
Mapping

contact, 386
degree, 188
differentiable, 17
energy-momentum, 556
equivariant, 270
local representative, 17
locally trivial, 557
momentum, 492, see momentum mapping
period, 126, 478
Poincaré, 138

isoenergetic, 455
Poisson, 365
proper, 281
smooth, 18
symplectic

criteria, 362, 365
of symplectic manifolds, 354
of symplectic vector spaces, 317

transversal, 47
Marle-Guillemin-Sternberg normal form, 521

Maslov
class

of a Lagrangian immersion, 678
of the circle, 680
of the figure eight, 680
universal, 340

cycle, 333
index

of a Lagrangian immersion, 678
of the circle, 685
of the figure eight, 685
of the Lagrange-Graßmann manifold,

338
intersection index

for pairs, 351
of a Lagrangian immersion, 679
of the Lagrange-Graßmann manifold,

343
line bundle, 687
principal bundle, 687

Maslov’s canonical operator, 719
Mathieu equation, Mathieu function, 484
Maurer-Cartan

equation, 250, 254
form, 253

Maximal
atlas, 4
integral curve, 98

Maxwell’s equations, 203
Method

of characteristics, 651
for the eikonal equation, 696, 712

of isospectral deformation, 579
of stationary phase, 715

Metric, see Riemannian manifold
Minkowski space, 201
Mishchenko-Fomenko Theorem, 633
Möbius strip, 6

as a vector bundle, 59
as an orbit manifold, 292

Modified harmonic oscillator
critical integral curves, 135
invariant manifolds, 161
Poincaré mapping, 141

Modular function, 251
Momentum mapping, 492

for coadjoint orbits, 502
for the Euler top, 544
for the geodesic flow, 533
for the inner automorphisms of a Lie

group, 502
for the Kepler problem, 537
for the spherical pendulum, 564
for the translations on a Lie group, 501
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Monodromy, 618
of the spherical pendulum, 626

Morphism
of G-manifolds, 270
of g-manifolds, 278
of Lie group actions, 270
of vector bundles, 60
Poisson, 365

Morse
family, 660

at a point, 674
fibre dimension, 668
fibre Hessian, 669
fibre-critical submanifold, 662
generated Lagrangian immersion, 662
operations, 671
reduced, 671
Splitting Lemma, 669
stable equivalence, 690
stable equivalence at a point, 672

function, 415
homology, 421
index, 416
inequalities, 421
theory, 415

Morse Isotopy Lemma, 418
Morse Lemma, 416
Morse-Bott function, 422
Morse-Bott Lemma, 423
Morse-Smale pair, 421
Moser’s regularization of the Kepler problem,

541
Multivector field, 78

N
Natural

1-form on a cotangent bundle, 371
coorientation of the Maslov cycle, 341
decomposition of a vector bundle

morphism, 83
fibrewise action

on a cotangent bundle, 375
on a Lagrangian foliation, 398

symplectic form on a cotangent bundle, 371
volume form

of a Riemannian manifold, 196
of a symplectic manifold, 355
of a symplectic vector space, 318

Nekhoroshev Theorem, 628
Nilpotent Lie algebra or Lie group, 234
Noether Theorem, 495
Non-autonomous Hamiltonian system, 441
Non-characteristic position, 650

Non-degenerate
bilinear form, 315
critical integral curve or fixed point, 130
critical point of a function, 416
elliptic 4-elementary fixed point, 466
endomorphism or automorphism, 130
integrable system, 603

Non-resonant torus, 602
Noncommutatively integrable system, 627

Lie-Poisson structure, 637
symplectic reduction, 633

Nonholonomic constraints, 214
Hamiltonian formulation, 431

Normal
bundle, 91
form

Birkhoff, 463, 467
for a hyperbolic critical integral curve,

150
for Morse families, 691
for the linearized flow along a periodic

integral curve, 129
space, 91

O
ω-orthogonal

subspace, 316
vector subbundle, 359

One-parameter
family of differential forms, 174
group of local diffeomorphisms, 104
subgroup, 222

Operations on Morse families, 671
Orbit, 272

cylinder, 456
manifold, 291
mapping, 272
reduction

regular case, 513
space, 272

for a free proper action, 291
smooth function, 299
structure theorem, 296

type, 274
stratum, 295

Orbit Theorem, 279
Orbit-momentum type stratum, 522
Orientation and orientability

of a manifold, 176
of a manifold with boundary, 179
of a vector bundle, 58

Orthogonal group, 14, see also classical Lie
groups
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Oscillatory
half-density, 719
integral, 715

P
Pairing of differential forms with multivector

fields, 166
Parabolic umbilic, 691
Parallel transporter in lattice gauge theory, 549
Parallelizable, 69, 70
Parameter manifold, 655
Parametric resonance, 478
Partial derivatives, 61
Partition of unity, 20

on a manifold with boundary, 179
Path-ordered exponential, 131
Period, 126

automorphism
of a periodic integral curve, 129
of a relatively periodic integral curve,

309
bundle, 618
lattice, 589
mapping, 126, 478

Periodic integral curve, 126
centre, centre-stable, centre-unstable

manifolds, 156
characteristic multipliers, 130
elliptic, 130
hyperbolic, 130

stability criteria, 149
invariant manifolds, 155
non-degenerate, 130
period automorphism, 129
stability criteria, 143
stable and unstable manifolds, 156

Periodically time-dependent vector field, 114
Perturbation theory, 612
Pfaffian system, 207

integrability criteria, 210
integral manifold, 208

Phantom burst, 476
Phase bundle and phase class, 721, 722
Phase space, 428
Piecewise Ck -curve, 43
Planar pendulum, 134

invariant manifolds, 160
with moving suspension, 484
with varying length, 481

Plücker equation, 534
Poincaré Lemma, 190
Poincaré mapping, 138

isoenergetic, 455
Poincaré-Birkhoff Theorem, 488

Poincaré-Cartan integral invariant, 445
Poincaré-Cartan Theorem, 182
Point transformation, 372
Poisson

bivector, see Poisson tensor
bracket, 364
equation for the top, 573
manifold, 365
mapping, 365
morphism, 365
space, 532
structure, 365

linear, 367
tensor, 366
vector field, 368

Polar
coordinates, 6
decomposition, 227

Potential for an exact differential form, 191
Prequantum line bundle, 722
Principal bundle, 292
Problem of small divisors, 472
Product rule, 61
Projection

of a vector bundle morphism, 60
of an invariant flow to the orbit space, 303

Projective
cotangent bundle, 389
space, 8

as an orbit manifold, 292
Proper (mapping or action), 281
Properly discontinuous action, 292
Pseudo-Riemannian manifold, 194
Pull-back

of a differential form, 80
of a section, 72, 76
of a vector bundle, 82
of functions, 30

Q
Quantizable Lagrangian immersion, 725
Quasiperiodic, 468, 602, 611, 615, 631
Quaternionic

conjugation, 7
symplectic group, 15, see also classical Lie

groups
Quaternions, 7
Quotient

homomorphism, 266
Lie group, 265
of a Lie group action, see orbit space
vector bundle, 89
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R
r-elementary, 463
Rank

of a bilinear form, 315
of a distribution, 115
of a foliation, 123
of a Pfaffian system, 207
of a vector bundle, 58
of a vector bundle morphism, 60
symplectic, 319

Real analytic
manifold, 3
mapping, 18

Real and complex orthogonal groups, 14, see
also classical Lie groups

Reconstruction Theorem for vector bundles, 62
Recurrence Theorem of Poincaré, 447
Reduced

characteristic exponents and multipliers,
311, 312

configuration space, 214
mass, 571
Morse family, 671
phase space, 509, 522, 529, see also

symplectic reduction
symplectic manifold, 399

Reduction to the centre manifold, 163
Reeb

graph, 584
theorem, 421
vector field, 388

Regular
distribution, 86, 115
energy surface, 435
foliation, 123
Lagrangian function, 429
orbit cylinder, 456
orbit reduction, 513
Pfaffian system, 207
point, 11, 34
symplectic reduction, 509

of a symmetric Hamiltonian system,
510

value, 11, 34
Regular Reduction Theorem, 509
Related

sections under a morphism, 67
vector fields under a mapping, 67

Relative
equilibrium, 308
Lyapunov function, 313
period, 308
phase, 308
stability, 313

topology, 5
Relatively

critical integral curve, 308
invariant differential form, 182
periodic integral curve, 308

Representation, 243
Resonant torus, 602
Restricted 3-body problem, 477
Restriction

of a Lie group action, 271
of a mapping in domain or range, 38
of a vector bundle to a submanifold, 83, 84
of a vector field to a submanifold, 91

Riemannian
G-manifold, 272
Lie group action, 272
manifold, 194

natural volume form, 196
Right

coset, 261
Lie algebra action, 278
Lie group action, 270
multiplication, 222
translation, 222

Killing vector fields, 278
momentum mapping, 501
symplectic reduction, 512

trivialization, 223
in terms of left-invariant vector fields,

228
in terms of right-invariant vector fields,

235
Right-invariant

differential form, 254
vector field, 235

flow, 237
Rolling disk, 214

S
Sard’s Theorem, 34
Section

of a submersion, 34
of a vector bundle, 65

Semialgebraic set, 547
Semiclassical

approximation, 723
quantization mapping, 725
state, 725

Semisimple Lie algebra or Lie group, 234
adjoint and coadjoint representations, 248

Separatrix, 135
Shifting trick, 503
Short wave asymptotics, 692
Signature of a quadratic form, 345
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Simple
crossing, 342
foliation, 124
Lie algebra or Lie group, 234

Singular
distribution, 115
foliation, 123
Pfaffian system, 207
point, 11, 34
reduction

via regular reduction, 528
subset

of a Lagrangian immersion, 675
of the circle, 680
of the figure eight, 680

symplectic reduction, 522
of a symmetric Hamiltonian system,

527
value, 11, 34

Singular Reduction Theorem, 524
Singularity theory, 690
Sjamaar’s principle, 528
Slice

decomposition of invariant vector fields,
307

of a chart adapted to a distribution, 118
of a tubular neighbourhood, 286
representation, 280

for a proper action, 283
Slice Theorem, see Tubular Neighbourhood

Theorem
Smale programme, 557
Small perturbations, 612
Smooth

family of differential forms, 174
function on the orbit space, 299
manifold, 3
mapping, 18

SO(3,1), see also classical Lie groups
Lie algebra, 232
universal covering homomorphism, 226

SO(3), see also classical Lie groups
adjoint representation, 246
coadjoint orbits, 381
Lie algebra, 230
universal covering homomorphism, 224

SO(4), see also classical Lie groups
adjoint representation, 246
coadjoint orbits, 381
Lie algebra, 232
universal covering homomorphism, 225

Solvable Lie algebra or Lie group, 234
Sp(1)

isomorphism to SU(2), 224

Lie algebra, 230
Space

cone, 611
coordinates, 543

Special orthogonal and unitary groups, 14, 15,
see also classical Lie groups

Spectral stability criteria, 150
Spectrum of a linear symplectomorphism, 325
Spherical coordinates, 6
Spherical pendulum

action variables, 625
energy surfaces, 623
energy-momentum mapping, 563
integrability, 576
invariant theory and Hilbert mapping, 547
momentum mapping, 564
monodromy, 626
nonexistence of global action variables, 624
symplectic reduction, 545

Splitting Lemma for Morse families, 669
Splitting Theorem for Poisson manifolds, 369
Stability, 142

criteria
for hyperbolic critical integral curves,

149
for periodic integral curves, 143

linear, 145
criteria, 147, 148

Lyapunov, 152
of a planar pendulum with moving

suspension, 484
of a swing (planar pendulum with varying

length), 481
relative, 313
structural, 153

Stabilizer, 272
Stable

burst, 476
equivalence

of Morse families, 690
of Morse families at a point, 672

manifold, 156
of a linear vector field, 160
of the modified harmonic oscillator, 161
of the planar pendulum, 160

Morse family, 691
Standard

contact forms on R
2n+1 and on S2n+1, 389

coordinates on R
n, 4

smooth structure of Rn, 4
symplectic matrix, 317
symplectic structure of R2n, 317

Stationary phase method, 715
Stefan-Sussmann Theorem, 118
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Stereographic projection, 4
Stiefel manifold, 263
Stokes’ Theorem, 180

classical version, 202
Straightening Lemma, 107
Stratum

orbit type, 295
structure theorem, 296

orbit-momentum type, 522
Strict symplectic reduction, 399
Strong Lyapunov function, 151
Strongly Hamiltonian Lie group action, 497
Structural stability, 153
Structure

constants, 228
group of a principal bundle, 293

SU(2), see also classical Lie groups
adjoint representation, 246
coadjoint orbits, 380
isomorphism to Sp(1), 224
Lie algebra, 230

SU(3), see also classical Lie groups
adjoint quotient, 301
adjoint representation, 246
coadjoint orbits, 380

Subimmersion, 35
Submanifold, 35

coisotropic, 358
criteria, 384

embedded, 38
equivalence, 35
fibre-critical, 662
figure eight, 37
initial, 39
intersection, 50
isotropic, 358
Lagrangian, 358
of a manifold with boundary, 179
symplectic, 358
transversal, 48
weakly embedded, see initial

Submersion, 32
existence of local sections, 34

Subordinate covering, 20
Superintegrable, see noncommutatively

integrable
Suspended Hamiltonian system, 442
Suspension

of a Morse family, 671
of a vector space automorphism, 128

Swallowtail, 691
Swing, 481
Symbol

of a differential operator, 695

space, 722
Symmetric Hamiltonian system, 492

regular reduction, 510
singular reduction, 527

Symplectic
basis, 317
capacity, 451
foliation, 368

of the Lie-Poisson structure, 379
form

on a manifold, 354
on a vector space, 317

G-manifold, 272, 396, 492
g-manifold, 492
group, 15, 325, see also classical Lie

groups
spectral properties, 325

immersion, 358
leaves of a Poisson manifold, 368
Lie algebra action, 492
Lie group action, 272, 396, 492
manifold, 354
mapping

basic properties, 324, 355
criteria, 362, 365, 403
of symplectic manifolds, 354
of symplectic vector spaces, 317

matrix, 317
normal bundle, 359, 508
orthogonal

subspace, 316
vector subbundle, 359

potential, 356
rank, 319
reduction

for a lattice gauge model, 551
for a symmetric Hamiltonian system,

510, 527
for integrable systems, 588
for noncommutatively integrable

systems, 633
for symplectic manifolds, 399
for symplectic vector spaces, 322
for the Euler top, 542
for the geodesic flow, 533
for the Kepler problem, 536
for the spherical pendulum, 545
for the translations on a Lie group, 512
graph criterion, 401

structure, see symplectic form
submanifold, 358
subspace, 319
tubular neighbourhood, 521
vector bundle, 354
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Symplectic (cont.)
vector field, 360
vector space, 317
vector subbundle, 359
volume form, 355

Symplectic Eigenvalue Theorem, 325
Symplectic Foliation Theorem, 368
Symplectic Tubular Neighbourhood Theorem,

520
infinitesimal version, 508

Symplectization, 390
Symplectomorphism

generating function, 404
graph criterion, 403
group (of a symplectic manifold), 406
of symplectic manifolds, 354
of symplectic vector spaces, 317

T
Tangent

bundle, 55
mapping, 28, 56

properties, 61
space, 21, 22

of a level set in a manifold, 50
of a level set in R

n, 12
of a manifold with boundary, 179

vector, 22
of a curve, 30

Taylor
formula for manifolds, 104
series on a Lie group, 240

Tensor
bundle, 74, 78
field, 78

on a manifold with boundary, 179
product

of local sections in a vector bundle, 73
of vector bundle morphisms, 73
of vector bundles, 73

Theorem
Arnold, 586
Birkhoff normal form, 463, 467
Birkhoff-Lewis, 469
Carathéodory-Jacobi-Lie, 627
Cartan-Lie, 628
constant rank, 32
Darboux, 356
equivariant Darboux, 396
Frobenius, 120
Frobenius for Pfaffian systems, 209
Gauß, 202
generalized Jacobi, 656

Grobman-Hartman, 148
Gromov Nonsqueezing, 451
implicit mapping, 32
inverse mapping, 31
Jacobi, 647
Kirillov, 377
level sets in manifolds, 50
level sets in R

n, 11
Liouville on integrable systems, 585
Liouville on the phase space volume form,

433
Lyapunov

for a critical integral curve, 151
for a relatively critical integral curve,

313
Lyapunov centre, 459
Lyapunov subcentre, 475
Mishchenko-Fomenko, 633
Nekhoroshev, 628
Noether, 495
on closed subgroups, 259
on invariance of domain, 159
orbit, 279
Poincaré recurrence, 447
Poincaré-Birkhoff, 488
Poincaré-Cartan, 182
reconstruction of vector bundles, 62
Reeb, 421
regular reduction, 509
Sard, 34
singular reduction, 524
slice, see tubular neighbourhood
splitting for Poisson manifolds, 369
Stefan-Sussmann, 118
Stokes, 180
structure of strata, 296
symplectic

eigenvalue, 325
foliation, 368
tubular neighbourhood, 520

transversal mapping, 48
tubular neighbourhood

for an embedded submanifold, 290
for the orbits of a Lie group action, 287

Weinstein, 394, 397, 407
Thom catastrophes, 691
Thom-Boardman singularities, 692
Time-dependent

canonical transformation, 443
flow, 112
Hamiltonian system, 441
vector field, 111

Toda, 576
Toda lattice, 581
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Top
energy-momentum mapping, 560
Euler, 542, 575

action and angle variables, 608
momentum mapping, 544
noncommutative integrability, 637
symplectic reduction, 542

integrability, 572
Kovalevskaya, 575
Lagrange, 575
Poisson structure, 573
under an external force, 572

Topological manifold, 2
Transition

functions
of local trivializations, 58
of Morse families, 686

mappings
of local charts, 2
of local trivializations, 58

Transitive Lie group action, 274
Translations on a Lie group, 222

momentum mapping, 501
symplectic reduction, 512

Transport
equation, 693

generalized and analytic solutions, 712
of the Schrödinger equation, 724

operator, 67
Transversal

crossing, 342
mappings, 47
submanifolds, 48

Transversal Mapping Theorem, 48
Tubular neighbourhood, 286

symplectic, 521
twisted product representation, 294

Tubular Neighbourhood Theorem
for an embedded submanifold, 290
for the orbits of a Lie group action, 287

Twisted product, 293
Two-body problem, 570
Two-centre problem, 571
Typical fibre

of a locally trivial fibre bundle, 294
of a vector bundle, 58
of an associated fibre bundle, 294

U
Unimodular and unitary groups, 14, 15, see

also classical Lie groups
Universal

covering homomorphism, 224–226
Maslov class, 340

Unstable manifold, 156
of a linear vector field, 160
of the modified harmonic oscillator, 161
of the planar pendulum, 160

V
Value

regular, singular or critical, 34
weakly regular, 510

Vanishing ideal, 92
Vector bundle, 57

morphism, 60
symplectic, 354
with boundary, 179

Vector field, 65
canonical vertical, 371
characteristic

of a coisotropic submanifold, 383
of a differential form, 184

conjugacy, 127
contact, 388
derivation property, 94
equivariant, see invariant
geodesic, 437, 533
gradient, 418, 452
Hamiltonian

on a Poisson manifold, 365
on a symplectic manifold, 360

integral curve, 97
invariant, 303
Killing, 276
left-invariant, 227
Liouville, 371, 385
locally Hamiltonian, 361
on a level set in R

n, 66
on a manifold with boundary, 179
periodically time-dependent, 114
Poisson, 368
Reeb, 388
related under a mapping, 67
right-invariant, 235
symplectic, 360
tangent to a submanifold, 90
time-dependent, 111

Vector Lie group, 220
exponential mapping, 241
Lie algebra, 231

Vector subbundle, 84
coisotropic, 359
isotropic, 359
Lagrangian, 359
of a vector bundle with boundary, 179
symplectic, 359
symplectic orthogonal, 359
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Vertical
part of a vector bundle morphism, 83
vector bundle morphism, 60
vector subbundle, 84

Volume form, 176
left-invariant, 250
of a Riemannian manifold, 196
of a symplectic manifold, 355
of a symplectic vector space, 318

W
Wall-Kashiwara index, 347

Wave equation, wave front, wave vector, 692,
693

Weakly embedded, see initial
Weakly regular value, 510
Weinstein

conjecture, 450
dual pair, 637

Weinstein Theorems, 394, 397, 407
Weinstein-Moser conjecture, 461
Witt-Artin decomposition

of a symplectic vector space, 323
of the tangent space, 507

WKB approximation, 723
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