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This chapter discusses the importance of limits
to the study of both differential and integral

calculus. Differential calculus involves finding a
derivative—such as the slope of a tangent line or
the rate of change of a balloon’s volume with
respect to its radius—of the maximum or minimum
value of a function. Integral calculus involves
finding an integral—such as determining the
velocity function from its acceleration function,
calculating the area under a curve, finding the
volume of an irregular solid, or determining the
length of an arc along a curve. Starting with some
examples of how you can use limits in calculus,
I then introduce an intuitive notion of limits. From
the formal definition of a limit, you learn ways to
determine limits of functions from their graphs,
as well as how to use some basic limit properties.
The chapter concludes with a brief discussion of
continuity and two important theorems related to
continuity.

chapter 1
An Introduction

to Limits
Limits in Calculus . . . . . . . . . . . . . . . . . . 2

Definition of the Limit of 
a Function . . . . . . . . . . . . . . . . . . . . . . . 14

One-Sided Limits . . . . . . . . . . . . . . . . . . 17

Determine Limits from the Graph 
of a Function. . . . . . . . . . . . . . . . . . . . . 20

Calculate Limits Using Properties 
of Limits . . . . . . . . . . . . . . . . . . . . . . . . 23

Continuity at a Point or 
on an Interval . . . . . . . . . . . . . . . . . . . . 26

The Intermediate Value and
Extreme Value Theorems. . . . . . . . . . . 32
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Limits in 
Calculus

2

This section gives you some examples of how to use algebraic techniques to compute limits. These
include the terms of an infinite series, the sum of an infinite series, the limit of a function, the slope
of a line tangent to the graph of a function, and the area of a region bounded by the graphs of
several functions.

TERMS OF AN INFINITE SERIES

1 Let’s take a look at the series

where n is a

positive integer. As n gets larger and larger,

the term gets smaller and smaller.

2 If n were large enough (say n approached �), it appears that the terms

approach 0. In the language of limits, you can say that the limit of , as

n approaches �, is 0.

LIMIT OF A SUM OF AN INFINITE SERIES
1 Let’s go one step further and try to find the

sum of the terms of the series mentioned
earlier, as n gets very large.

2
1
n 1-

2
1
n 1-

, , , , , , ,1 2
1

4
1

8
1

16
1

32
1

2
1
n 1f -

, , , , , , , , , , ,

n n

1 2
1

4
1

8
1

16
1

32
1

1024
1

524 288
1

11 20for for

f f f

= =

lim
2

1 0
n

n 1 =
"3

-

1 2
1

4
1

8
1

16
1

32
1

2
1
n 1f f+ + + + + + + +-
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chapter1An Introduction to Limits

3

2 For increasing values
of n, the sum of that
number of terms is
shown at the right.

3 It appears that the sum of the terms of this series is approaching 2. In the language of limits, we say

the limit of the sum of the terms , as n approaches �, is 2.
2

1
n 1-

n sum

n sum

n sum

n sum

n sum

1 1

2 1 2
1 1 2

1

3 1 2
1

4
1 1 4

3

4 1 2
1

4
1

8
1 1 8

7

8 1 2
1

4
1

8
1

16
1

32
1

64
1

128
1 1128

127

for

for

for

for

for

"

"

"

"

"

= =

= = + =

= = + + =

= = + + + =

= = + + + + + + + =

TIP
Remember that the symbol Σ (sigma) represents
“the sum of.”

lim Σ
2
1 2

t n

t

n
1

1 =
"3 =

-c m
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Limits in Calculus 
(continued)

4

LIMIT OF A FUNCTION
1 The graph of f(x) = (x + 3)(x – 2)2 is shown at the right. It appears that as x gets closer and closer to 2

(from both the left and the right), f(x) gets closer and closer to 0.

f(x) = (x + 3)(x − 2)2

lim f(x) = 0 ??
x    2

2–3

12

f(x)

x
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chapter1An Introduction to Limits

5

2 Try some values for x close to 2, finding their y coordinates to verify that the limit really is 0.

x and f(x) Values for f(x) = (x + 3)(x – 2)2

x f(x) = (x + 3)(x – 2)2

0.5 7.875

1.0 4

1.5 1.125

1.8 0.192 x approaches 2 from the left

1.9 0.049

1.99 0.0005

1.999 0.000005

2 0

2.001 0.000005

2.01 0.0005

2.1 0.051

2.2 0.208 x approaches 2 from the right

2.5 1.375

3.0 6

3.5 14.625

3 From the chart, it appears that as x gets closer and closer to 2, the value of
f(x) gets closer and closer to 0.

lim f(x) = 0
x→2
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Limits in Calculus 
(continued)

6

SLOPE OF LINE TANGENT TO A CURVE
1 The graph of f(x) = (x – 2)2 + 1 is shown at the right

with a line tangent to the curve drawn at the point with 
x-coordinate 3.

2 Let’s approximate the slope of that red tangent line. Select some values of x that approach 3 from the
right side: 4, 3.5, 3.1, 3.01, and, of course, 3. Letting ∆x (read “delta x”) equal the difference between
the selected value of x and 3, you can complete the chart at the right.

f(x) = (x − 2)2 + 1

(3, f(3))
T

2

5

1

f(x)

x

Selected Points of the Graph of f(x) = (x – 2)2 + 1
∆x 3 + ∆x f(3 + ∆x) Resulting Point

1 4 5 (4,5) A

0.5 3.5 3.25 (3.5,3.25) B

0.1 3.1 2.21 (3.1,2.21) C

0.01 3.01 2.0201 (3.01,2.0201) D

0 3 2 (3,2) T
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7

3 Next, compute the slopes of the secant lines

., , ,AT BT CT DTand

tangent at Ttangent at TT

B

A

3.013 3.53.1

f(x)

x
4

C

D

C

f(x) = (x − 2)2 + 1
for x � 3

.
.

.
. .

.
.

.
. .

.
.

.
. .

AT

BT

CT

DT

4 3
5 2 3

3 5 3
3 25 2

0 5
1 25 2 5

3 1 3
2 21 2

0 1
0 21 2 1

3 01 3
2 0201 2

0 01
0 0201 2 01

slope of

slope of

slope of

slope of

=
-
- =

=
-
- = =

=
-
- = =

=
-
- = =
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Limits in Calculus 
(continued)

8

4 As the chosen points A, B, C, and D get closer
and closer to point T (∆x → 0), the slope of the
line tangent at x = 3, gets closer and closer to 2.

5 For any point P close to T, the slope of 

is given by 

6 As ∆x → 0, the point P moves extremely close to the
point T; in this case, the slope of the line tangent at point
T will be the expression in Step 5 above.

7 The expression in Step 6 in the right
column is also known as the derivative of
f (x) at x = 3, and is denoted by f '(3).
In Chapters 3–6, you will learn many
techniques for determining the derivative
of a function.

x
f x f

x
f x f

3 3
3 3

3 3

+ -

+ -

=
+ -

D
D

D
D

^̂ ^
^ ^

hh h
h h

PT

At x = 3, the slope of the line tangent
to the graph of (x) = (x–2)2 + 1 is 2.

2 3

f(x)

x
3 + �x

f(x) = (x − 2)2 + 1

f(3 + �x − f(3))

�x

(3 + �x, f(3 + �x))
P

(3, f(3))T

lim
x

f x f3 3
2

x 0

+ -
=

D
D

"D

^ ^h h

Therefore, the slope of the line tangent to
the graph of f(x) = (x – 2)2 + 1 at x = 3 is 2.

limf
x

f x f
3

3 3
x 0

=
+ -

D
D

"D
l^ ^ ^h h h
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chapter1An Introduction to Limits

9

RIEMANN SUM: AREA UNDER A CURVE
1 The last limit example involves approximating the area below the graph of f(x) = x2, above the x-axis,

right of the line x = 1, and left of the line x = 5.

Note: Try to find both a lower and an upper approximation to the actual area. A lower approximation
uses inscribed rectangles and an upper approximation uses circumscribed rectangles.

y

f(x) = x2

51
x

Area = ??
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y

f(x) = x2

52 41 3
x

Area = 1 • f(1) + 1 • f(2) + 1 • f(3) + 1 • f(4)
 = 1 •  1 + 1 •  4 + 1 •  9 + 1 •  16
 = 30

This area approximation is less than
the actual desired area.

Limits in Calculus 
(continued)

10

2 Using four inscribed rectangles, each 
having a base of 1 unit, their corresponding 
heights are found: f(1) = 1, f (2) = 4, 
f (3) = 9, and f (4) = 16. The area 
computation is shown at the right.
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y

f(x) = x2

52 41 3
x

Area = 1 • f(2) + 1 • f(3) + 1 • f(4) + 1 • f(5)
 = 1 •  4 + 1 •  9 + 1 •  16 + 1 •  25
 = 54

This area computation is greater
than the actual desired area.

chapter1An Introduction to Limits

11

3 Next, using four circumscribed rectangles, 
each having a base of 1 unit, their 
corresponding heights are found: f (2) = 4, 
f (3) = 9, f (4) = 16, and f (5) = 25. The area 
computation is shown at the right.
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Limits in Calculus 
(continued)

12

4 The actual area of the region described in

Step 1 is greater than 30 and less than 54. If

you wanted a closer approximation of the

actual area, you would use a very large

number of rectangles, each having a base of

, where n is the number of

rectangles used. The corresponding height for

each rectangle would then be f(xi), where i

represents the 1st, or 2nd, or 3rd, or 4th

rectangle of the n rectangles used.

x n
5 1= -D

y

f(x) = x2

51

xo

x

height = f(xi)

base = ∆x  =
n

5 − 1

xnxi
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chapter1An Introduction to Limits

13

5 The sum of the areas of these
rectangles is represented by the
expression at the right, an
example of what’s called a
Riemann Sum, the use of which
is to predominately find the sum
of areas of rectangles under a
curve. The area of one green
rectangle (see previous page)
would be f (xi) • ∆x.

6 The actual area would be found by letting n → �, so that
∆ → 0, and then finding the limit of the Riemann Sum.

7 If f(x) is defined on a closed interval [a,b] and

exists, the function f(x) is said to be

integrable on [a,b] and limit is denoted by .

8 The expression is called the definite
integral of f from a to b.

9 In Chapter 12, you will compute these sorts of areas,
after learning some techniques of integration.

a f x dx�b ^ h

a f x dx�b ^ h
lim f x xΣ
n i

n

i
1

D
"3 =

_c i m

f x x nΣ sum of the areas of all rectangles.
i

n

i
1

=D
=

$_ i

limArea f x xΣ
n i

n

i
0 1

= D
" =

_c i m

alim f x x f x dx�Σ
n i

n

i
b

1
=D

"3 =
_c ^i m h

In our example, .1Area x dx�5 2=

1Actual Area x dx� 41 3
15 2= =
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Definition of the 
Limit of a Function

14

This section introduces the precise definition of the limit of a function and discusses its use in
determining or verifying a limit.

THE ∆–Ε DEFINITION OF THE LIMIT OF A FUNCTION

Let f be a function defined for numbers in some open interval containing c, except possibly at the

number c itself. The limit of f (x) as x approaches c is L, written as , if for any ε > 0, there is

a corresponding number δ > 0 such that if , then .

1 Let’s break down the definition of the limit as stated above.

Since is the distance between x and c, and 

is the distance between f(x) and L, the definition could be

worded: , meaning that the distance from f(x) to

L can be made as small as we like by making the distance

from x to c sufficiently small (but not 0).

2 Note that 0 implies that x lies in the

interval (c – δ, c) or in (c, c + δ ). Also,

implies that L lies in the interval

(L – ε, L + ε).

<f x 9- f^ h

< <x c- d

lim f x L
x c

=
"

^ h

f x L-^ hx c-

<f x L- f^ h< <x c- d

lim f x L
x c

=
"

^ h

As x → c, then f(x) → L,

so that .lim f x L
x c

=
"

^ h

f(x)
y = f(x)

x

L + E

L

L – E

0 
�

 |f
(x

) 
– 

L
| �

 E

c – �

0 � |x – c| � �

c + �c
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chapter1An Introduction to Limits

15

Using the δ–ε Definition to Verify a Limit

Use the δ–ε definition to verify that .

1 You must show that for any ε > 0, there corresponds

a δ > 0 such that: whenever

. Since your choice of δ depends on

your choice of ε, you need to find a connection

between and .

2 Let δ be ε / 8.

FINDING A VALUE OF ∆, GIVEN A SPECIFIC VALUE OF Ε
Given that , find a value of δ such that whenever . 

1 First, find a connection between 
and .x 2-

x3 1 5- -^ h

<x 2- d< .x3 1 5 0 01- -^ hlim x3 1 5
x 2

- =
"

^ h

x 3-x 92 -

< <x 3- d

<f x 9- f^ h

lim x 9
x 3

2 =
"

If you move left and right of x = 3
just 1 unit, x would be in the

interval (4,5) so that < <x 3 8+

x x x9 3 32 - = + -

It follows that when 

the result is 

<

x x x9 3 3

8 8

2 - = + -

fb l

< <x0 3 8- =d f

x x x3 1 5 3 6 3 2- - = - = -^ h
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Definition of the Limit 
of a Function (continued)

16

2 You are given that . 

3 Select . .
3
01=d

< .x3 1 5 0 01- -^ h

This choice of δ works since implies that 

the given requirement.

<

< .

< .

x x3 1 5 3 2

3

3 3
01

0 01

- - = -

d

^
^
b

h
h
l

< <x0 2- d

< .

< .

< .

x

x

x

3 1 5 0 01

3 2 0 01

2 3
01

- -

-

-

^ h
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chapter1An Introduction to Limits
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One-Sided 
Limits

Here, I illustrate limits from the left and from the right—commonly known as one-sided limits.

Notation for One-Sided Limits, with Examples

1 For the function at the right, there is no

. Notice that as x → 0 from the left, f(x)

→ –� but as x → 0 from the right, f(x) → +�.

2 Each limit in Step 1 is called a one-sided limit.
“The limit of f(x) as x approaches c from the left is L”
is written as:

“The limit of f(x) as x approaches c from the right is
M” is written as:

lim f x M
x c

=
" +

^ h

lim f x L=
-

^ h
x c"

lim f x
x 0"

^ h

f x x
1=^ h

x
1

f(x) =

x

f(x)

C

L

M

x

f(x)

y = f(x)
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One-Sided 
Limits (continued)

18

ONE-SIDED LIMITS FOR A RATIONAL
FUNCTION

For , find and

.

From the graph, and

.

Note: When you write , it

does not mean that the limit exists.

The limit actually does not exist
because f(x) increases without bound as
x approaches c.

ONE-SIDED LIMITS FOR A CONDITIONAL
FUNCTION

For the function f(x) = x if x ≥ 0, but f(x) = –x – 1, 
if x < 0, find and .

1 From the graph at right, you can see that 
and .lim f x 0

x 0
=

"
+
^ h

lim 1
x 0

=-
"

-

lim f x
x 0"

+
^ hlim f x

x 0"
-
^ h

lim f x
x c

3=
"

^ h

lim f x
x 2

3=+
"

+
^ h

lim f x
x 2

3=+
"

-
^ h

lim f x
x 2"

+
^ h

lim f x
x 2"

-
^ hf x

x
x

2
2

2

=
-

^
^

h
h

2

1

x

f(x)

(x – 2)2
x2

f(x) =

y = 1

x = 2

−1

x

f(x)

−1
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chapter1An Introduction to Limits
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2 Notice that since the left-sided and right-sided limits are different, does not exist.

ONE-SIDED LIMITS FOR A POLYNOMIAL FUNCTION

For the function , find and .

1 From the graph at the right, you can

see that and

.

2 Since the left-sided and right-sided limits are the same, we can say that .lim f x 3 3
2

x 2
=

"-
^ h

lim f x 3 3
2

x 2
=

"- +
^ h

lim f x 3 3
2

x 2
=

"- -
^ h

lim f x
x 2"- +

^ hlim f x
x 2"- -

^ hf x x x x6 4 3
3 2

= - -^ h

lim f x
x 0"

^ h

3-2

3

f(x)
2
3

x

f(x)= 3x
3 2x

6
x
4– –
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Determine Limits from 
the Graph of a Function

20

Using just the graph of a function, you can determine one-sided limits, as shown in this section.

LIMITS FROM THE GRAPH OF A
FUNCTION: FIRST EXAMPLE
Using the graph of the function f(x) at the
right, determine each limit below.

lim f x
x 1"- -

^ h

lim f x
x 1"- +

^ h

lim f x
x 3" -̂

h

y = f(x)
 x = 5

f(x)

x
2 3 5 71– 2 – 1– 3– 4 4 6 8

As x approaches –3, f(x) approaches 4.

lim f x 4
x 3

=
" -̂

h

As x approaches –1 from the right,
f(x) approaches 1.

lim f x 1
x 1

=
"- +

^ h

As x approaches –1 from the left,
f(x) approaches 3.

lim f x 3
x 1

=
"- -

^ h
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lim f x
x "3

^ h

lim f x
x 5"

-
^ h

lim f x
x 3"

^ h

lim f x
x 1"-

^ h
As x approaches -1 from the left and then from
the right, two different limits are concountered.

lim f x is nonexistent
x 1"-

^ h

As x approaches 3 (from the left or the right),
f(x) approaches 3.

lim f x 3
x 3

=
"

^ h

As x approaches 5 from the left, f(x) decreases
without limit (approaches –�).

lim f x or nonexistent
x 5

3=-
"

-
^ ^h h

As x gets really large, f(x) appears to be
getting really small.

lim f x 0
x

=
"3

^ h
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Determine Limits from the 
Graph of a Function (continued)

22

LIMITS OF A TRIGONOMETRIC FUNCTION
To the right is the graph of f(x) = sinx. Determine
each limit below. 1

–1
–– π 3πππ 2π

f (x)

x

f (x) = sinx

2 2
π
2

lim (sinx) is nonexistent, sinx oscillates between –1 and 1.lim sin x
x "3

^ h

lim sinx 0
x π

=
"- +

^ hlim sin x
x π"- +

^ h

lim sin x 0
x π

=
"

-
^ hlim sin x

x π"
-
^ h

lim sin x 0
x 0

=
"
^ hlim sin x

x 0"
^ h
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Calculate Limits Using 
Properties of Limits

There are many properties that enable you to calculate such limits as sums, products, powers, and
even composites of functions.

Properties of Limits

Listed below are the more common limit properties and a
corresponding example in the right column. Let k and c
be constants, let n be a positive integer, and let f and g be
functions such that and .

Scalar Product:

Sum or Difference:

Product: lim

lim lim

f x g x

f x g x
x c

x c x c
=

"

" "

$
$

^ ^
^ ^

h h
h h

8 B

lim

lim lim

f x g x

f x g x

L M

x c

x c x c

!

!

!

=

=

"

" "

^ ^
^ ^

h h
h h

8 B

lim

lim

k f x

k f x

k L

x c

x c
=

=

"

"

$

$

$

^
^
h
h

8
:

B
D

lim M
x c

=
"

lim f x L
x c

=
"

^ h

Let f x x g x x1 1and2= + =^ ^h h

lim

lim

f x

f x

5

5

5 2 1

25

x

x

2

2

2

=

= +

=

"

"

$

$

^
^

^

h
h

h

8
:

B
D

lim

lim lim

f x g x

f x g x

1 1 1
1

2 1

3

x

x x

1

1 1

2

-

= -

- + -
-

= +

=

"

" "

-

- -

^ ^
^ ^

^ b

h h
h h

h l

8

9

B

C

. .
.

.

lim

lim lim

f x g x

f x g x

5 1 5
1

1 25 2

2 5

.

.

x

x x

5

5 5

2

=

= +

=

=

"

" "

$
$

$

$

^ ^
^ ^

^
^

h h
h h

h
h

8

9 ;

B

C E

03_185605-ch01.qxp  4/1/08  3:22 PM  Page 23



Calculate Limits Using 
Properties of Limits (continued)

24

Quotient:

Power:

Composite: lim

lim

lim

f g x

f g x

f M f x f Mif

x c

x c

x M

=

= =

"

"

"

^_
^b

^ ^ ^

hi
hl

h h h

lim

lim

f x

f x

x x

n

x c

n

=

"

"

^
^
h
h

8
:

B
D

lim

lim

lim

g x
f x

g x

f x

M
L M 0if

x c

x c

x c

!

=

=

"

"

"

^̂
^
^
hh

h
h

= G lim

lim

lim

g x
f x

g x

f x

3
1

3 1

30

x

x

x

3

3

3

2

=

= +

=

"

"

"

^̂
^
^

hh

h
h

= G

lim

lim

f x

f x

2 1

125

x

x

2

3

2

3

2
3

=

= +

=

"

"

^
^

^

h
h

h

8
:

B
D

lim

lim

f g x

f g x

f 4
1

4
1 1

116
1

x

x

4

4

2

=

=

= +

=

"

"

^_
^b

b
b

hi
hl

l
l
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Special Trigonometric Limits:

lim cos
x

x1 0
x 0

- =
"
b l

lim sin
x

x 1
x 0

=
"
b l

lim cos

lim
cos cos

lim cos cos

lim cos lim cos

x
x

x
x x

x x
x

x x
x

1

1 1

1 1

1 1

1 0

0

x

x

x

x x

0

2

0

0

0 0

-

=
+ -

= + -

= + -

=

=

"

"

"

" "

$

$

$

c
^ ^
^ b
^ b

m
h h
h l
h l

lim sin

lim sin

lim sin

x
x

x
x

x
x

3

3
3
3

3 3
3

3 1

3

x

x

x

0

0

3 0

=

=

=

=

"

"

"

$

$

$

b
b

b

l
l

l
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Continuity at a Point 
or on an Interval

26

This section discusses continuity of a function along with methods for determining continuity. It
also introduces some applications of continuity, including the Intermediate Value Theorem and the
Extreme Value Theorem.

Definition of a Function Continuous at a Point

1 The function f is continuous at the
number c if the following conditions are
satisfied:

i) f(c) exists

ii)

iii) lim f x f c
x c

=
"

^ ^h h
lim f x exists
x c"

^ h

f(x)

y = f(x)

x
C

L

i) f(c) = L

ii)

iii) lim f x L f x
x c

= =
"

^ ^h h
lim f x L
x c

=
"

^ h
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2 A practical test for continuity means you
can sketch the graph of the function
without lifting your pencil off the paper.
Another test for continuity by viewing
the function’s graph is that the graph has
no holes, no jumps, and no vertical
asymptotes.

An example of the first figure is

An example of the second figure is

An example of the third figure is

f x
x 1

1 13=
-

+^
^

h
h

>
f x

x x

x x

1 2 2

1 3 2

if

if

2

2
#

=
- +

- - -
^

^

^
h

h

h
*

f x x
x x x x

x
x x x x

2
5 9 5 2

2
2 3 3 1

4 3 2

3 2

=
-

- + - -

=
-

- - + +

^

^ ^

h

h h

f(x)

y = f(x)

“hole” on graph at x=c
f(x) not continuous at x=c

x
c

c

f(x)

y  = f(x)

graph “jumps” at x=c
f(x) not continuous at x=c

x

f(x)

y = f(x)

vertical asymptote at x=c
f(x) not continuous at x=c

x
c
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Continuity at a Point 
or on an Interval (continued)

28

REMOVABLE DISCONTINUITY
Given a function f which is not continuous at
some number: the discontinuity at c is called
removable if f can be made continuous at c by
defining or redefining f(c) so that the function f is
continuous at c.

The graph of is shown at the 

right. Explain why f(x) is not continuous at x = 3. 

This is done by checking each of the three
conditions needed for a function to be continuous
at x = 3.

i) f(3) exists

ii)

iii) lim f x f 3
x 3

=
"

^ ^h h

lim f x exists
x 3"

^ h

f x
x x

x

3

5 3

if

if

!
=

=
^ h *

f(x)

x
3

5

i) f(3) = 5

ii)

iii)

Condition iii of the definition fails.
Note the “hole” at x = 3. This is also
known as a removable discontinuity.

lim f x f3 5 3
x 3

!= =
"

^ ^h h
lim f x 3
x 3

=
"

^ h
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JUMP DISCONTINUITY

The graph of is shown at the 
right. 

Explain why f(x) is not continuous at x = 2.

INFINITE DISCONTINUITY
The function f is said to have an 
infinite discontinuity at c if

.

Note: x can approach c from the left or from
the right.

The graph of is shown at right. 

Explain why f(x) is not continuous at x = 1.

f x x
x

1=
-^ h

lim limf x f xor
x c x c

3 3= = -
" "

^ ^h h

<
f x

x x

x

2

1 2

if

if

$
=

-
^ h *

f(x)

x

2

-1
2

i) f(2) = 2
ii)

Condition ii) of the definition fails.
Note the “jump” at x = 2. This is also
known as a jump discontinuity.

lim f x is nonexistent
x 2"

^ h

f(x)

y = f(x)

x

1

1

i) f(1) is not defined
ii)

Conditions i) and ii) of the definition fail.
Note the “vertical asymptote” at x = 1. This
is also known as an infinite discontinuity.

lim f x
x 1"

^ h
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Properties of Continuity

If k is a real number and functions f(x) and g(x) are continuous at x = c, then the following functions are
also continuous at x = c.

Scalar Multiple: k • f(x) and k • g(x) Quotient:
Sum and Difference: f(x) ± g(x)
Product: f(x) • g(x) Composite: if f(x) is continuous at g(c)

ADDITIONAL CONTINUOUS FUNCTIONS
1 Polynomial functions are continuous everywhere:

p(x) = anx
n + an – 1x

n – 1 +   a2x
2 + a1x

1 + a0

2 The following functions are continuous at every point in
their domain.

Rational:

Radical:

Trigonometric: sinx, cosx, tanx, cscx, secx, tanx

Exponential: f(x) = nx

Logarithmic: f(x) = logx or f(x) = lnx:

f x xn=^ h

r x
g x
f x

g x 0where !=^ ^̂ ^h hh h

f g x^_ hi

,
g x
f x

g c 0provided that !
^

^
^

h

h
h

f(x) = 5x7 – 13x3 + 4x – 5 
is continuous everywhere.

is continuous everywhere
except at x = 1.

f x x
x x

1
5 172

=
-

+ +^ h

is continuous for x ≥ – 1.
f x x 1= +^ h

is continuous except at 
where k is an integer.

x kπ π2= +

tan cos
sinf x x x

x= =^ h

f(x) = 3x – 2 is continuous everywhere.

f(x) = log(1 – x) is continuous when x < 1.
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DEFINITION OF CONTINUITY ON AN
OPEN INTERVAL
A function is continuous on an open interval
(a,b) if and only if it is continuous at every
number c in (a,b) (i.e., no holes, jumps, or
vertical asymptotes in (a,b) ).

DEFINITION OF CONTINUITY ON A
CLOSED INTERVAL
A function f(x) is continuous on the closed
interval [a,b] if it is continuous on the open
interval 

.

lim

lim

ab f x f a

f x f b

and and
x a

x b

=

=
"

"

+

-

^ ^ ^

^ ^

h h h

h h

f(x)

y = f(x)

x
ba

f(x) is continuous on the open interval (a,b).

f(x)

y = f(x)

x
b

M

a

L

f(x) is continuous on the open interval (a,b)
i)

ii)

Therefore, f(x) is continuous on the closed
interval [a,b].

lim f x M f b Mand
x b

= =
"

-
^ ^h h

lim f x L f a Land
x a

= =
"

+
^ ^h h
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There are two theorems that you will find useful: The Intermediate Value Theorem and the
Extreme Value Theorem. 

The Intermediate Value Theorem is this: If a
function f is continuous on [a,b] and m is any
number between f(a) and f(b), then there is at least
one number, c, between a and b, for which f(c) = m.

f(x)

f(a)
f(c)=m

f(b)

part of y = f(x)

x
bca

Using the Intermediate Value Theorem to Prove the 
Existence of a Zero of a Function in a Given Interval

Show that the function f(x) = x3 – x2 – 2x has at least one zero in the interval [1,2] and then find that zero.

1 Find f(1) and f(2). f(x) = x3 – x2 – 2x
f(1) = 13 – 12 – 2(1) = –2
f(3) = 33 – 32 –2(3) = 12
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2 Apply the conclusion of the Intermediate Value
Theorem.

3 Set the original function equal to 0.

4 Factor the right-hand side.

5 Solve for x.

The only value of x the interval (1,3) is 2. Therefore, c = 2.

Since f(1) < 0 and f(3) > 0, there
must be at least one number c in

[–2, 12] for which f(c)=0.

0 = x3 – x2 – 2x

0 = x(x2 – x – 2)
0 = x(x – 2)(x + 1) 

x = 0, x = 2, x = –1
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Case I: f has both a minimum and a maximum
value on (a,b).

f(x)
max

x
ba

min

Case II: f has an extreme value at a and another
extreme value in (a,b).

f(x)
max

x
ba

min

Case III: f has an extreme value at b and another
extreme value in (a,b).

f(x)
max

x
ba

min

Case IV: f has the same maximum and minimum
value.

f(x)

x
ba

all points max. and min.

Extreme Value Theorem

If a function f is continuous on [a,b], then f has both a maximum value and a minimum value on [a,b].
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This chapter presents a variety of algebraic
methods for calculating limits. Where

indeterminate forms occur, techniques are
introduced, such as factor/reduce, dividing by the
largest power of the variable, rationalizing the
denominator/numerator, and finding the least
common denominator. The chapter ends with
locating horizontal asymptotes for the graph of
a function, a process that involves finding limits
at infinity.

chapter 2
Algebraic Methods to

Calculate Limits
Direct Substitution . . . . . . . . . . . . . . . . . 36

Indeterminate Forms and . . . . . . 38

Dealing with Indeterminate Forms . . . 39

Limits at Infinity: Horizontal 
Asymptotes . . . . . . . . . . . . . . . . . . . . . . 48

0
0

!3
3
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Direct 
Substitution
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Many times, you can find the limit by simply substituting c for x and then evaluating

the resulting expression. In this section, you will see examples of how to determine the limits of

polynomial, radical, and trigonometric functions, as well as how to determine the limit of a

quotient of rational expressions.

LIMIT OF A POLYNOMIAL FUNCTION
Determine 

1 Begin with the original limit statement.

2 Substitute 2 for x, then simplify.

LIMIT INVOLVING A RADICAL FUNCTION

Determine .

1 Begin with the original limit statement.

2 Substitute 5 for x, then simplify.

lim x
x
3

1
x 5

-
"

lim x x3
x 2

2 +
"

^ h

lim f x
x c"

^ h

lim x x3
x 2

2 +
"

^ h

= 22 + 3(2)
= 4 + 6 = 10

lim x
x
3

1
x 5

-
"

x3
5 1

15
4

5
2

=
-

= =
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LIMIT INVOLVING A TRIGONOMETRIC FUNCTION

Determine .

1 Begin with the original limit statement.

2 Substitute π for x; then simplify.

LIMIT OF A QUOTIENT OF RATIONAL EXPRESSIONS

Determine .

1 Begin with the original limit statement.

2 Substitute � for x; then simplify.

lim
x x

x x
7 4 6

5 3 7

x
2

2

- +

+ +

"3

lim cos
x

x
2x π"

lim cos
x

x
2x π"

cos
π
π

π

2

2
1

=

=-
$

lim
x x

x x
7 4 6

5 3 7

x
2

2

- +

+ +

"3

7 0 0
5 0 0

7
5

=
- +
+ +

=
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Sometimes when using direct substitution to calculate a limit, you may encounter expressions such

as . These are known as indeterminate forms. When you encounter indeterminate forms,

appropriate algebraic methods must be used to alter the form of the expression the limit of which

you are attempting to calculate.

INDETERMINATE FORM INVOLVING TRIGONOMETRIC
FUNCTION
Here, x is being replaced with the number that x is approaching—
it’s what substitution is all about. Meanwhile, the colors show that
an appropriate number is being substituted for the x.

Determine .

INDETERMINATE FORM INVOLVING RATIONAL FUNCTION

Determine .

INDETERMINATE FORM INVOLVING RECIPROCALS

Determine . lim

x x

x x
3

1
1

2

x
2 +

+ +
"3

lim
x

x x
7 2

3
x

2

2

-
+

"3

lim sin
x

x3
x 0"

0
0or!3

3

lim sin

sin

sin

x
x3

0
3 0

0
0

0
0

x 0

=

=

=

"

$^ h

lim
x

x x
7 2

3

7 2
3

x
2

2

2

2

3
3 3

3
3

-
+

=
-
+

=-

"3

$
$

lim

x x

x x
3

1
1

2

3

1
1

2

0
0 0

0
0

x
2

23 3

3 3

+

+ +

=

+

+
+

= +

=

"3
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Dealing with 
Indeterminate Forms

When you encounter an indeterminate form, you can use a variety of algebraic techniques to
determine the limits. Among these techniques are factoring and reducing, dividing by the largest
power of the variable, using the common denominator, and rationalizing the denominator (or the
numerator).

Factor and Reduce

Using this technique, you factor the numerator and denominator, cancel like factors, and then use direct
substitution to evaluate the resulting expression.

LIMIT OF A RATIONAL FUNCTION

Determine . 

1 Try direct substitution, 2 for x.

2 Since you ended up with an indeterminate form, return to the
original limit statement and then factor both the numerator and
the denominator, cancel the common factor, and then use direct
substitution.

lim
x x
x x

3 10
5 6

x
2

2

+ -
- +

"3

lim
x x
x x

3 10
5 6

2 3 2 10
2 5 2 6

4 6 10
4 10 6

0
0

x 2
2

2

2
2

+ -
- +

=
+ -
- +

=
+ -
- +

=

"

$
$

lim

lim

lim

x x
x x

x x
x x

x
x

3 10
5 6

5 2
3 2

5
3

2 5
2 3

7
1

x

x

2
2

2

2

+ -
- +

=
+ -

- -

=
+
-

=
+
-

=-

"

"

x 2"

^ ^
^ ^

h h
h h
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LIMIT OF A RATIO OF TRIGONOMETRIC FUNCTIONS

Determine .

1 Try direct substitution, 0 for x.

2 Again, you ended up with an indeterminate form. Return to
the original limit statement and substitute 2 sinx cosx for
sin2x. Then factor, reduce, and use direct substitution.

lim sin
sin sin

x
x x2

x 0

+
"

lim sin
sin sin

sin
sin sin

x
x x2

0
0 2 0

0
0 0

0
0

x 0

+

=
+

= +

=

"

^^ ^hh h

lim sin
sin sin

lim sin
sin sin

lim
sin

sin cos

lim cos

cos

x
x x

x
x

x x

x
x x

x

2

2

1 2

1 2

1 2 0

1 2 1

3

x

x

x

x

0

0

0

0

+

= +

=
+

= +

= +

= +

=

"

"

"

"

$

^
^

^

h
h

h

 cos

Divide by Largest Power of the Variable

When the limit involves a rational function, you can divide all terms by the highest power of the variable
in the rational function—or you can multiply by the reciprocal of the highest powered term instead.

LIMIT OF A RATIONAL FUNCTION

Determine lim
x x
x x

7 4 6
5 3 2

x
2

2

- +
+ -

"3
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1 Try direct substitution, � for x.

2 Return to the original limit statement and multiply the

numerator and denominator by , x2 being the highest

powered variable term.
x
1

2

lim
x x
x x

7 4 6
5 3 2

7 4 6

5 3 2

x
2

2

2

2

3 3

3 3

3
3

- +
+ -

=
- +

+ -

=

"3

^ ^
^ ^

h h
h h

lim

lim

lim

x x
x x

x

x

x
x

x
x

x

x
x

x
x

x

x x

x x

7 4 6
5 3 2

1

1

7 4 2

5 3 2

7 4 6

5 3 2

7 4 6

5 3 2

7 0 0
5 0 0

7
5

x

x

x

2

2

2

2

2

2

2 2

2

2

2 2

2

2

2

2

3 3

3 3

- +

+ -

=
- +

+ -

=
- +

+ -

=
- +

+ -

=
- +
+ -

=

"

"

"

3

3

3

$^̂ hh
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LIMIT INVOLVING A RADICAL FUNCTION

Determine 

1 Try direct substitution, � for x.

2 Since you got another indeterminate form, multiply the

numerator and the denominator by .
x
1

2

lim x
x x
5 3

2
x

2

-
-

"3

lim x
x x
5 3

2

5 3
2

x

2

2

3

3 3

3
3

-
-

=
-

-

=

"3

^
^

h
h

lim

lim

lim

lim

x
x x

x

x

x
x

x
x x

x
x

x

x
x

x
x

x

x

5 3
2

1

1

5 3

2

5 3

2

5 3
1 2

5 3
1 2

5 0
1 0

5
1

x

x

x

x

2

2

2

2

2

2

2

2

2

3

3

-
-

=
-

-

=
-

-

=
-

-

=
-

-

=
-
-

=

"

"

"

"

3

3

3

3

$

TIP
Use the largest power of the variable x in
whatever form it appears.

, .

, .

x x
x

x x
x

2 1

5 1

For use

For use

2

2

3

3

-

+
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Use the Common Denominator

When an expression involves rational terms, you use the least common denominator of all rational terms.

LIMIT INVOLVING RATIONAL EXPRESSIONS: EXAMPLE 1

Determine 

1 Try direct substitution, –3 for x.

2 Since you encountered an indeterminate form, return to the
original limit. The least common denominator for all fractions is
3x. Change both fractions in the numerator to this common
denominator.

Note: Multiplying all terms in the numerator and denominator
by 3x gives you the same result that appears in Step 3 (see
following page.)

lim x
x

3

1
3
1

x 3 +

+

" -

lim x
x

3

1
3
1

3 3
3

1
3
1

0
0

x 3 +

+

=
- +
-

+

=

"-

lim

lim

lim

lim

x
x

x
x x

x

x
x x

x

x
x
x

3

1
3
1

3

1
3
3

3
1

3
3
3

3

3
3

3

x

x

x

x

3

3

3

3

+

+

=
+

+

=
+

+

=
+

+

"

"

"

"

-

-

-

-

b bl l
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3 Invert and multiply, simplify the fraction, and then use direct
substitution, –3 for x.

LIMIT INVOLVING RATIONAL EXPRESSIONS: EXAMPLE 2

Determine 

1 Try direct substitution, � for x.

lim

x x

x x
3

1
1

2

x
2 +

+ +
"3

lim

lim

x
x

x

x

3
3

3
1

3
1

3 3
1

9
1

x

x

3

3

= +
+

=

=
-

=-

"

"

-

-

$

^ h

lim

x x

x x
3

1
1

2

3

1
1

2

0
0 0

0
0

x
2

23 3

3 3

+

+
+

=

+

+ +

= +

=

"3

TIP

, .1 0 1
1 1approaches as do and 23 3 3 3+ +
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2 Having encountered an indeterminate form, return
to the original limit statement, writing all fractions
in terms of the least common denominator of all
of the terms: x(x + 1).

Note: The goal is to eventually get rid of all of the
denominators in both the top and bottom of the
original fraction.

3 Invert and multiply, then simplify the resulting
expression.

lim

lim

lim

lim

lim

x x
x x

x x

x x

x x

x x
x

x x
x

x x

x x
x

x x
x

x x

x x
x

1
1

2

1
3

1
1

2

1
3

1
1
1

1
2

1
3

1
1

1
2

1
3

1
3 1

x

x

x

x

2 +

+ +

=

+

+ +

=

+

+
+ + +

=

+

+
+ +

+

=

+

+
+

"

"

"

"

3

x "3

3

3

3

$ $

^

^

^
^ ^

^
^

h

h

h
h h

h
h

Therefore, limit does not exist.

lim

lim

x x
x x x

x

1
3 1

3
1

3
3 1

3
3 1

x

x

3

3

=
+
+ +

= +

=
+

=

"

"

3

3

$^
^

^

h
h

h
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Rationalize the Numerator (or Denominator)

In this technique, use the conjugate of a radical expression to calculate the limit.

RATIONALIZE THE NUMERATOR

Calculate .

1 Try direct substitution, 9 for x; an indeterminate form results.

2 Multiply the numerator and denominator by , the

conjugate of , simplify the resulting expression, and then

use direct substitution.
x 3-

x 3+

lim x
x

9
3

x 9 -
-

"

lim x
x

9
3

9 9
9 3

0
0

x 9 -
-

=
-
-

=

"

lim

lim

lim

x
x

x
x

x x

x

x

9
3

3
3

9 3

9

3
1

9 3
1

3 3
1

6
1

x

x

x

9

9

9

-
-

+

+

=
- +

-

=
+

=
+

=
+

=

"

"

"

$

^ `h j
TIP

1st term number 1st term number

just equals 1st term number .
2

- +

+

` `

^

j j

h
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RATIONALIZE THE DENOMINATOR

Calculate 

1 Direct substitution, 2 for x, leads to an indeterminate form.

2 Multiply the numerator and denominator of the

original expression by , the conjugate

of . Then simplify the result.

3 Use direct substitution in the resulting expression.

x 3 5+ -

x 3 5+ +

lim
x

x
3 5

2
x 2 + -

-
"

lim
x

x
3 5

2

2 3 5
2 2

0
0

x 2 + -

-

=
+ -

-

=

"

lim

lim

lim

x
x

x
x

x

x x

x

x x

3 5
2

3 5
3 5

3 5

2 3 5

2

2 3 5

x

x

x

2

2

2

+ -

-

+ +

+ +

=
+ -

- + +

=
-

- + +

"

"

"

$

^
^ `

^
^ `

h
h j

h
h j

lim x 3 5

2 3 5

5 5

2 5

x 2
= + +

= + +

= +

=

"
` j
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This section discusses the behavior of the graph of a function as x approaches ± �, in other words,
limits at infinity.

Definition of a Horizontal Asymptote

The line y = L is a horizontal asymptote

of the graph of y = f(x) if either

. Infrequently,

are not the same

number; in which case there can be two

different horizontal asymptotes (see the fourth

example at the right.)

In the first figure, 

In the second figure, 

In the third figure, 

In the fourth figure, , .lim limM Lbut
x x

= =
" "3 3- +

.lim L
x

=
" 3-

.lim L
x

=
"!3

.lim L
x

=
" 3-

lim limf x f xand
x x" "3 3

^ ^h h

lim limf x L f x Lor
x x

= =
" "3 3

^ ^h h

f(x)

x

y = f(x)

y = L

f(x)

x

y = f(x)

y = L

f(x)

x

y = f(x)

y = L

f(x)

x
y = f(x)

y = L

y = M
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A FUNCTION WITH THE X-AXIS AS ITS HORIZONTAL ASYMPTOTE

Find the horizontal asymptote for the graph of .

1 Set up the limit statement as x approaches � and then evaluate the limit.

2 At the right is the graph of , with

its horizontal asymptote at y = 0. Note that the

graph also has a vertical asymptote at x = 1, the

point at which the function is undefined, i.e., its

denominator equals 0.

Note: Substituting –� for x would have given you
the same result of y = 0.

HORIZONTAL ASYMPTOTE OF A RATIONAL FUNCTION

Find the horizontal asymptote for the graph of .

1 Set up the limit statement as x approaches �.

f x
x x
x x

7 7 42
5 3 2

2

2

=
+ -
- +

^ h

f x x 1
3=
-^ h

f x x 1
3=
-^ h

lim x 1
3

1
3

0

x

3

-

=
-

=

"3

y = f(x)

y = 0

x = 1

f(x)

x

lim
x x
x x

7 7 42
5 3 2

x
2

2

+ -
- +

"3
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2 If you were to use direct substitution,
an indeterminate form would result.
Instead, divide all terms by x2, then
simplify.

3 Now substitute � for x and simplify
the result.

lim

lim

lim

x x
x x

x
x

x
x

x

x
x

x
x

x

x x

x x

7 7 42
5 3 2

7 7 42

5 3 2

7 7 42

5 3 2

x

x

x

2

2

2

2

2 2

2

2

2 2

2

2

+ -
- +

=
+ -

- +

=
+ -

- +

"

"

"

3

3

3

Note: Substituting –� for x would have given

you the same result of .y 7
5=

y

7 7 42

5 3 2

7 0 0
5 0 0

7
5

7
5; therefore is the horizontal asymptote.

2

2

3 3

3 3=
+ -

- +

=
+ -
- +

= =
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4 At the right is the graph of

with its horizontal

asymptote at , along with its two

vertical asymptotes at x = –3 and x = 2.

HORIZONTAL ASYMPTOTE OF A RATIONAL FUNCTION USING MULTIPLE LIMIT TECHNIQUES

Find the horizontal asymptote for the graph of .

1 Set up the limit statement as x approaches �.

2 If you used direct substitution, you would encounter an
indeterminate form. Next factor the numerator and
denominator and then reduce the resulting expression.

f x
x x
x x

2 8
2 6

2

2

=
+ -
- -

^ h

y 7
5=

f x
x x
x x

7 7 42
5 3 2

2

2

=
+ -
- +

^ h

y = f(x)

x = 2x = –3

f(x)

x

y = 5
7

lim
x x
x x

2 8
2 6

x
2

2

+ -
- -

"3

lim

lim

lim

x x
x x

x x
x x

x
x

2 8
2 6

4 2
2 3 2

4
2 3

x

x

x

2

2

+ -
- -

=
+ -

+ -

=
+
+

"

"

"

3

3

3

^ ^
^ ^

h h
h h
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3 If you were to directly substitute at this point, an indeterminate form
again would result. Instead, divide all terms by x, and then simplify.

4 Now use direct substitution, � for x.

Note: Substituting –� for x would have given us the same result of y = 2.

5 The graph of is shown

at the right with its horizontal asymptote at

y = 2.

Note the “hole” in the graph at x = 2. In Step
2 (see preceding page), the factor x – 2 was
cancelled, so x =/ 2.

f x
x x
x x

2 8
2 6

2

2

=
+ -
- -

^ h

lim

lim

x
x

x

x
x

x

x

x

4

2 3

1 4
2 3

x
=

+

+

=
+

+

"3

x "3

1 4
2 3

1 0
2 0

2

3

3=
+

+

=
+
+

=

y = f(x)

y = 2

x = –4

f(x)

x
2
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FUNCTION WHOSE GRAPH HAS 2 HORIZONTAL ASYMPTOTES

Find the horizontal asymptote(s) for the graph of .

1 Set up the limit statement as x approaches �.

2 Direct substitution would result in an indeterminate form. Divide
all terms by x and then simplify where possible.

3 Last, substitute � for and simplify.

f x
x

x
3 1

3 2
2

=
+ -

+
^ h

lim
x

x
3 1

3 2
x 2 + -

+
"3

lim

lim

x
x

x

x

x x

x

3 1

3 2

1 3 1
3 2

x

x

2

2

2

=
+ -

+

=
+ -

+

"

"

3

3

lim

x
x
x
x

x
3

1

3 2

x 2 +
-

+

"3

So, y = 3 is a horizontal
asymptote.

1 3 1
3 2

1 0 0
3 0

3

23 3

3=
+ -

+

=
+ -

+

=
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4 Let’s take another look at the original function.

a) x → +�

b) but as x → –�

5 At the right is the graph of with its

two horizontal asymptotes, y = 3, and y = –3.

f x
x

x
3 1

3 2
2

=
+ -

+
^ h

f x
x

x
3 1

3 2
2

=
+ -

+
^ h

so the

horizontal asymptote is y = 3.

f x positive number
positive number

=^ h

so the

horizontal asymptote is y = –3.

f x positive number
negative number

=^ h

f(x)

x

y = f(x)

y = 3

y = –3
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Amajor topic in the study of calculus is
differentiation, the process of finding a

derivative. After introducing some common uses
of a derivative, this chapter shows how the formal
definition is used to compute derivatives. The
chapter then covers some alternate notations for the
derivative, and discusses a variety of applications
using the derivative. Finally, this chapter concludes
with the relationship between differentiability and
continuity.
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Introduction to
the Derivative
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This section introduces some common uses for a derivative.

FIND SLOPE OF A TANGENT LINE
You can use a derivative to find the slope of a
line tangent to the graph of a function at a given
point P.

MAXIMUM AND MINIMUM ON GRAPH OF A
FUNCTION
You can also use a derivative to find points on the
graph of a function where the relative maximum
and relative minimum occur.

Intervals on the graph that are increasing or
decreasing can also be found.

f(x)

x

y = f(x)
T

f(x)

x

y = f(x)

Rel. Max.

inc.

inc.
dec.

Rel. Min.
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ANALYZE RATES OF CHANGE

You can use a derivative to analyze rates of change. Given the

formula for the volume of a sphere, you can use the derivative to

relate the rate of change of the volume, , to the rate of change of

its radius, .

ANALYZE MOTION ON A OBJECT
Given a function, s(t), that describes the position of an object,
you can use derivatives to find both the velocity function, v(t),
and the acceleration function, a(t).

OPTIMIZE WORD PROBLEMS
Let’s say that equal squares are cut from each
corner of a rectangular sheet of metal which is
10 inches by 6 inches. After removing the
squares at each corner, the “flaps” are folded up
to create a box with no top.

You can use a derivative to find the size of each
square to be removed so that the resulting box
has the maximum volume.

dt
dr dt

dV

V r

dt
dV r dt

dr

π

π
3
4

4

sphere
3

2

=

=

s(t) = t3 – 5t2 + 7t – 15
v(t) = 3t2 – 10t + 7
a(t) = 6t – 10

Volume Box = x (10 – 2x)(6 – 2x)

x
x
x

x
x

x

x

x

x

10

10 – 2x

10 – 2x

66 – 2x 

6 – 2x 
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Find the slope of the line tangent to the graph of 
f(x) = x2 – 3x at the point with x-coordinate 2.

1 Select a point P that is ∆x units to the right of
point T.

2 The coordinates of point T are .

The coordinates of point P are ( 2 + ∆x, f(2 + ∆x) )

3 Find the slope of the secant line .

4 As ∆x → 0, the slope of the secant line gets
closer and closer to the line tangent at x = 2.

TP

TP

, f2 2^_ hi 2 P

T

f(x)

f(2 +Dx) – f(2)

x

f(x) = x2 – 3x

Dx

slope of TP x x
y y

x
f x f

2 2
2 2

2 1

2 1= -
-

=
+ -

+ -

D
D^̂ ^hh h

The slope of the tangent line at

point T .lim
x

f x f
2 2

2 2
x 0

=
+ -

+ -

D
D

"D ^̂ ^hh h
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5 Find f(2 + ∆x) and f(2) using f(x) = x2 – 3x,
then simplify.

6 Factor out ∆x, cancel like factors, then substitute 0 for ∆x.

7The last expression, 1, above on the right, is the slope of
the line tangent to the graph of f(x) = x2 – 3x at the point
where x = 2.

The limit process used above to find the slope of the line
tangent at x = 2 is called the derivative of f(x) at x = 2,
denoted as f'(2) (read “f prime of 2”).

lim

lim

lim

x

x x

x
x x x

x
x x

2 2

2 3 2 2 3 2

4 4 6 3 4 6

x

x

x

0

2 2

0

2

0

2

=
+ -

+ - + - -

=
+ + - - - +

=
+

D

D D

D
D D D

D
D D

"

"

"

D

D

D

$

$

^ ^

^
^

h h

h
h

9 7C A

lim

lim

x
x x

x

1

1

1 0

1

x

x

0

0

=
+

= +

= +

=

D
D D

D

"

"

D

D

^
^

h
h

Therefore, the slope of line
tangent at x = 2 is 1.

limf
x

f x f
2

2 2
x 0

=
+ -

D
D

"D
l^ ^ ^h h h
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As you can see from the previous example, when you replace the ∆x with an h and the 2 with an
arbitrary number c, you end with a formal definition of the derivative of f(x) at x = c.

FIRST FORM OF THE DEFINITION
This is the first of the two most common definition forms.

The derivative of a function f at a number c, denoted by
f '(c), is given by the statement to the right.

As h → 0, point P gets closer and closer to point T.

Note: The process of finding a derivative is called
differentiation.

limf c h
f c h f c

h 0
=

+ -
"

l^ ^ ^h h h

f(x)

x
c

T
(c, f(c))

c + h

f (c + h) – f(c)

(c + h, f(c + h))

h

P y = f(x)

slope of line tangent at point T = lim h
f c h f c

f c
h 0

+ -
=

"
l

^ ^ ^h h h

slope of TP
c h c

f c h f c

h
f c h f c

=
+ -

+ -

=
+ -

^̂ ^
^ ^

hh h
h h
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Determine the Derivative of a Specific Function at a Specific Number

USING THE FIRST FORM OF THE DEFINITION
Using the definition above, find the derivative of f(x) = x2 – 5x + 3 at x = 2; that is, find f '(2).

1 Set up the limit statement from the definition.

2 Find f(2+h) and f(2) by using 
f(x) = x2 – 5x + 3.

3 Expand the numerator and simplify the
resulting expression.

Therefore, f '(2) = –1

Note: –1 is actually the slope of the line
tangent to the graph of f(x) = x2 – 5x + 3 at
the point with x-coordinate 2.

limf h
f h f

2
2 2

h 0
=

+ -
"

l^ ^ ^h h h

lim h

h h2 5 2 3 2 5 2 3

h 0

2 2

=
+ - + + - - +

"

$^ ^h h9 7C A

lim

lim

lim

lim

h
h h h

h
h h

h
h h

h

4 4 10 5 3 4 10 3

1

1

1

h

h

h

h

0

2

0

2

0

0

= + + - - + - + -

= - +

=
- +

= - +

=-

"

"

"

"

^
^

h
h
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SECOND FORM OF THE DEFINITION
The derivative of a function f at a number c, denoted by
f '(c) is given by:

As x → c, the point P gets closer and closer to point T.

limf c x c
f x f c

x c
= -

-
"

l^ ^ ^h h h

f(x)

x
c

T
(c, f(c))

x

f(x) – f(c)

(x, f(x))

x – c

P y = f(x)

Slope of line tangent at point T

lim x c
f x f c

f c
x c

= -
-

=
"

l
^ ^ ^h h h

slope of TP x c
f x f c

= -
-^ ^h h

Find the Derivative of a Specific Function at a Specific Number 

USING THE SECOND FORM OF THE DEFINITION
Using the definition above, find the derivative of f(x) = x2 – 5x + 3 at x = 2, that is, find f '(2).

1 Set up the limit statement from the second form of the
derivative definition. limf x

f x f
2 2

2
x 2

=
-
-

"
l^ ^ ^h h h
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2 Find f(x) and f(2) using f(x) = x2 – 5x + 3, and then
simplify.

3 Direct substitution leads to the indeterminate form 0/0. Instead,
factor the numerator, cancel the common factor, and then use
direct substitution.

Therefore, f '(2) = –1

Note: This is the same result as finding f '(2) using the first form of
the definition of the derivative.

DERIVATIVE OF A SPECIFIC POLYNOMIAL FUNCTION
For f(x) = 3x2 – 12x + 9, find f '(x), the derivative at any point.

1 Set up the limit process.

2 Find f(x + h) and f(x) using f(x) =
3x2 – 12x + 9, expand the
numerator, and then simplify.

lim

lim

lim

x
x x

x
x x

x
x x

2
5 3 2 5 2 3

2
5 3 4 10 3

2
5 6

x

x

x

2

2 2

2

2

2

2

=
-

- + - - +

=
-

- + - + -

=
-

- +

"

"

"

$7 7A A

lim

lim

x

x x

x

2

2 3

3

2 3

1

x

x

2

2

=
-

- -

= -

= -

=-

"

"

` ^
^

j h
h

limf c h
f x h f x

h 0
=

+ -
"

l^ ^ ^h h h

lim

lim

lim

h

x h x h x x

h
x xh h x h x x

h
xh h h

3 12 9 3 12 9

3 6 3 12 12 9 3 12 9

6 3 12

h

h

h

0

2 2

0

2 2 2

0

2

+ - + + - - +

= + + - - + - + -

= + -

"

"

"

^ ^h h9 7C A
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3 Factor out h in the numerator, cancel like factors, and then
finish up with direct substitution.

Therefore f'(x) = 6x – 12

DERIVATIVE OF A RADICAL FUNCTION

Find f'(x) for 

1 Begin with the limit statement from the derivative
definition.

2 Using , find f(x + h) and f(x).

3 Direct substitution leads to an
indeterminate form. In this case,
multiply the numerator and
denominator by ,
the conjugate of the numerator.

x h x3 3+ + + +

f x x 3= +^ h

f x x 3= +^ h

lim

lim

h
h x h

x h

x

x

6 3 12

6 3 12

6 3 0 12

6 12

h

h

0

0

=
+ -

= + -

= + -

= -

"

"

$

^
^

h
h

limf x h
f x h f x

h 0
=

+ -
"

l^ ^ ^h h h

lim h
x h x3 3

h 0
=

+ + - +
"

lim h
x h x

x h x
x h x3 3

3 3
3 3

h 0
=

+ + - +

+ + + +

+ + + +
"

$
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4 Expand the numerator and simplify it, but leave the
denominator as is.

5 Last, use direct substitution, 0 for h.

lim

lim

lim

lim

h x h x

x h x

h x h x
x h x

h x h x

h

x h x

3 3

3 3

3 3
3 3

3 3

3 3
1

h

h

h

h

0

0

0

0

=
+ + + +

+ + - +

=
+ + + +

+ + - -

=
+ + + +

=
+ + + +

"

"

"

"

`
^ ^

`
`

j
h h

j
j

Therefore, f x
x2 3
1=

+
l^ h

x x

x x

x

0 3 3
1

3 3
1

2 3
1

=
+ + + +

=
+ + +

=
+

TIP
Definition: 
If the derivative of a function (or the derivative
at a number) can be found, the function is said
to be differentiable.

TIP
The product, 

is just 1st term – 2nd term.

1st term 2nd term 1st term 2nd term- +` `j j ,
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DERIVATIVE OF A GEOMETRIC FORMULA
The volume of a sphere with radius r, is given by: 

Find V'(r).

1 Set up the limit process.

2 Find V(r + h) and V(r) using 

3 Factor out the , expand the numerator, and

then simplify.

4 Factor out h in the numerator, simplify and then use
direct substitution, 0 for h.

π3
4

V rπ3
4 3=

V rπ3
4 3=

limV r h
V r h V r

h 0
=

+ -
"

l^ ^ ^h h h

lim h
r h rπ π3

4
3
4

h 0

3 3

=
+ -

"

^ h

lim

lim

lim

h
r h r

h
r r h rh h r

h
r h rh h

π

π

π

3
4

3
4 3 3

3
4 3 3

h

h

h

0

3 3

0

3 2 2 3 3

0

2 2 3

=
+ -

= + + + -

= + +

"

"

"

^ h
$

$

$

Therefore, V'(r) = 4πr2

lim

lim

h
h r rh h

r rh h

r r

r

r

π

π

π

π

π

3
4 3 3

3
4 3 3

3
4 3 3 0 0

3
4 3

4

h

h

0

2 2

0

2 2

2 2

2

2

=
+ +

= + +

= + +

=

=

"

"

$

$

$

$

_

_
^a

i

i
h k
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Find the Equation of a 
Line Tangent to a Curve

Let’s say you want to find an equation of the line tangent to the graph of f(x) = x3 – 6x2 + 9x – 13 at
the point with x-coordinate 2.

To find the equation of a line, two things are needed: a slope and a point on the line.

1 To find the slope of the tangent line, use f '(x), found in the
“Derivative of a Cubic Polynomial” example earlier in this
chapter

2 Substitute 2 for x, in f '(x), the derivative.

3 Next find the y-coordinate of the point with x-coordinate 2.
Substitute 2 for x in the original function f(x).

The point is (2, –11)

4 Last, find the equation of the line having slope –3 and containing
point (2, –11).

Therefore, y = –3x – 5 is the equation of the line tangent to the
graph of f(x) = x3 – 6x2 + 9x – 13 at the point with x-coordinate 2.

f(x) = x3 – 6x2 + 9x – 13
f '(x) = 3x2 – 12x + 9

f '(2) = 3 • (2)2 – 12 • 2 + 9
f '(2) = 12 – 24 + 9
f '(2) = –3
–3 is the slope of the line

tangent at x = 2

f(x) = x3 – 6x2 + 9x – 13

f(2) = 8 – 24 + 18 – 13
f(2) = –11

y – y1 = m(x – x1)
y – (–11) = –3(x – 2)

y + 11 = –3x + 6
y = –3x – 5
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For many problems in calculus, you need to locate the horizontal tangent to a curve. An example
of such a problem is finding the maximum and minimum values or a function. The slope (that is,
derivative) at the point of tangency will be zero.

Find Points on a Curve at Which Tangent Line is Horizontal

Find the coordinates of each point on the graph of f(x) = x3 – 6x2 + 9x – 13 at which the tangent line is
horizontal.

1 The slope of the tangent line is given by f '(x).

2 The slope of the horizontal tangent is 0. Set f '(x) = 0
and solve for x.

3 Find the y-coordinates for the points with 
x-coordinates 1 and 3.

f(x) = x3 – 6x2 + 9x – 13
f '(x) = 3x2 – 12x + 9

0 = 3x2 – 12x + 9
0 = 3(x2 – 4x + 3)
0 = 3(x – 1)(x – 3)

so x = 1 or x = 3

These are the x-coordinates of
the points at which the tangent
line is horizontal.

f(x) = x3 – 6x2 + 9x – 13
f(1) = 13 – 6 • 12 + 9 • 1 – 13
f(1) = –9
f(3) = 33 – 6 • 32 + 9 • 3 – 13
f(3) = –13

The points on the graph of 
f(x) = x3 – 6x2 + 9x – 13 
at which the tangent lines are 
horizontal are (1, –9) and (3, –13)
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4 At the right is the graph of f(x) = x3 – 6x2 + 9x – 13
with horizontal red lines at (1, –9) and (3, –13).

Note: In Chapter 8 you will study the larger topic of
relative extrema — the maximum and minimum
values of a function. In this example, –9 is a relative
maximum for f(x), while –13 is a relative minimum.

f(x)

x
1 3

(3, –13)

(1, –9)

f(x) = x3 – 6x2 + 9x – 13
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There are many ways to indicate finding the derivative of the given function y = f(x). Listed below
in the left column are some directions you may encounter when doing a calculus problem. In the
right column is the notation you would use as you write out your solution (as well a “pronunciation
guide”).

• Find the derivative of f(x).

• Find the derivative of f(x).

• For y = f(x), find the derivative of y.

• For y = f(x) (that is, y is a function of x), find the
derivative of y.

Earlier in this section, for the function f(x) = 3x2 – 12x + 9, it was
determined that f '(x) = 6x – 12. You can write this fact in many
ways.

f '(x) read “f prime of x”

d/dx f (x) read “dee dee x of f(x)

y' read “y prime”

dy/dx read “dee y dee x”
or “the derivative of y
with respect to x”

For f(x) = 3x2 – 12x + 9
f '(x) = 6x – 12

or

For y = 3x2 – 12x + 9
y' = 6x – 12

or

dx
dy

x6 12= -

dx
d f x x6 12= -^ h
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Some notations for the derivatives mentioned below are given in the right column.

• Second Derivative

• Third Derivative

• nth Derivative

, , ,y f x
dx
d y

dx
d f x2

2

2

2

m m^ ^h h8 B

, , ,y f x
dx
d y

dx
d f x3

3

3

3

n n^ ^h h8 B

, , ,y f x
dx
d y

dx
d f x

n 4for

( ) ( )n n
n

n

$
m
m^ ^h h8 B
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The derivative notation (or in other problems ) can also be interpreted as a rate

of change. A few examples of derivative as a rate of change are air being pumped into a balloon,

and the velocity and acceleration of a moving object.

BALLOON PROBLEM
Air is being pumped into a spherical balloon at the rate of 8π cubic inches per minute. Find the rate of
change of the radius at the instant the radius is 2 inches.

1 The information you are given is that r = 2 and .

2 Start with the formula for the volume of a sphere with radius r.

3 You determined V'(r) in a previous example in this chapter, labeled as
“Derivative of a Geometric Formula.”

4 Use an alternate notation for V'(r).

dt
dV π8=

, , ,dz
dx

dt
dy

dr
dV

dy
dh

dx
dy

V r rπ3
4 3=^ h

V'(r) = 4πr2

rπ4 2=
dr
dV
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5 Multiply both sides of the equation by the term dr.

6 Divide both sides of the equation by the term dt (dt on the left and dt
on the right.

7 Using the given information, substitute 8π for and 2 for r, and

then solve the resulting equation for .

When the radius is 2 inches, the radius is changing at the rate of 

inches per minute.
2
1

dt
dr

dt
dV

dV = 4πr2dr

dt
dV r dt

drπ4 2=

dt
dr

dt
dr

dt
dr

dt
dr

π π

π π

π
π

8 4 2

8 16

16
8

2
1

2=

=

=

=

$ $

$
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This chapter concludes with some comments on the relationship between differentiability and
continuity.

When a Function Fails to Be Differentiable

The graph of a function can reveal points at which the function fails to be differentiable. This can occur
at points at which the graph has a sharp turn, a vertical tangent, a “jump,” or a “hole.”

A GRAPH WITH A SHARP TURN

To the right is the graph of , and a comment

about its differentiability at x = ±1.

A GRAPH WITH A VERTICAL TANGENT LINE

To the right is the graph of , and a comment about its
differentiability at x = 0.

f x x 3
1

=^ h

f x x1 2= -^ h

1–1
x

f(x)
f(x) = |1 – x2|

f(x) is not differentiable at
x = –1 and x = 1, since the

slopes left and right of
each of these numbers are

not equal.

x

f(x)

0

f(x) = x3
1

f(x) is not differentiable
at x = 0, because f has a
vertical tangent at x = 0.
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A GRAPH WITH A “JUMP” 

To the right is the graph of and a comment

about its differentiability at x = 2.

A GRAPH WITH A “HOLE”

To the right is the graph of and a comment

about its differentiability at x = 3.

Note: The function at the right is not defined for x = 3, because it
would result in a zero denominator.

f x x
x x

3
2 32

=
-

- -^ h

>
f x

x

x

2 2

1 2

if

if #-
^ h*

x

f(x)  2 if x � 2

2

1
2

1 if x � 2
f(x) = 

f(x) is not differentiable at
x = 2 because it is not

continuous at x = 2 (there
is a “jump” in the graph

at x = 2).

x

f(x)

f(x) =

3

x2 – 2x – 3
x – 3

f(x) is not
differentiable at x = 3

because there is a
“hole” in the graph. 
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Differentiability and 
Continuity (continued)

Relationship between Differentiability and Continuity

If the function f is differentiable at x = c (that is in other words, f '(c) exists there), then f is continuous at
x = c. 

Below are some graphs that we can analyze differentiability and continuity at a given point.

c
y = f(x)

c

y = f(x)

f(x)

x

c

y = f(x)

f(x)

x c

f(x)

x

y = f(x)

f(x) is differentiable at
x = c and f(x) is

continuous at x = c.

f(x) is not differentiable at
x = c, but f(x) is continuous

at x = c.

f(x) is not differentiable 
at x = c, but f(x) is 

continuous at x = c.

f(x) is not differentiable at
x = c, and f(x) is not
continuous at x = c.
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In Chapter 3 you used the limit definition to find
derivatives. In this chapter you will start to make

use of many rules of differentiation, which enable
you to find derivatives without using the time-
consuming limit definition for derivatives.

Chapter 3 also introduces L’Hôpital’s Rule —
another technique to help you find limits that are
one of the indeterminate forms.

chapter 4
Derivatives 

by Rule
Derivatives of Constant, Power,
and Constant Multiple . . . . . . . . . . . . 78

Derivatives of Sum, Difference,
Polynomial, and Product . . . . . . . . . . . 80

The General Power Rule . . . . . . . . . . . . 84

The Quotient Rule . . . . . . . . . . . . . . . . . 86

Rolle’s Theorem and the Mean
Value Theorem . . . . . . . . . . . . . . . . . . . 89

Limits: Indeterminate Forms and
L’Hôpital’s Rule . . . . . . . . . . . . . . . . . . 93
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This section introduces the Constant, Power, and Constant Multiple rules for finding derivatives
and then includes an application of finding the equation of a line tangent to a curve.

The Constant, Power, and Constant Multiple Rules

THE CONSTANT RULE

If c is a constant, then .

THE POWER RULE
If n is any rational number, then 

.dx
d x n xn n 1= -$_ i

dx
d c 0=^ h dx

d c

dx
d π

0

5 3 0

=

=

^
`

h
j

-

,

,

dx
d x x

y x

y dx
d x

dx
d x x

x

f x
x

f x dx
d

x dx
d x x

x

5

2
1

2
1

1

1 3 3

If then

If then

5 4

2
1

2
1

3

3
3 4

4

=

=

=

= = =

=

= = =- =-- -

l

l

_

`
a

^
^ c _

i

j
k

h
h m i
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THE CONSTANT MULTIPLE RULE

If c is a real number, and f(x) is a differentiable

function, then .

Just move the constant in front of the variable
function. Next, multiply the constant by
the function’s derivative.

dx
d c f x dx

d f x=$ ^ _h i8 ;B Ec $ ^ h

- -

-

,

dx
d x dx

d x x x

y x

dx
dy

dx
d x dx

d x

dx
d x x

x

dx
d

x dx
d

x dx
d

dx
d xx

x x

5 5 5 3 15

4

4 4

4 4 2
1 2

6 6 1 6 1

6 3
2

4 4 4

If then

or

3 3 2 2

2
1

2
1

23 23 3
2

3
2

3
5

3
5 53 23

= = =

=

= =

= = =

= =

= = -

=- = - -

-

x

x

$ $

$

$ $ $

$ $

$$ $

J

L
KK

J

L
KK

_ _

` `
a

f
a

N

P
OO

N

P
OO

i i

j j
k

p
k 6
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This section introduces the rules for finding the derivatives of sums and differences of functions,
the derivative of a polynomial function, and the derivative of the product of two functions.

The Sum/Difference Rule

If f and g are both differentiable functions, then:

Note: A function is differentiable if its derivative
can be found.

This can also be written as:

Or, using a popular shorthand notation, this could be written as:

FIND THE DERIVATIVE OF A POLYNOMIAL FUNCTION
Using repeated applications of the first 4
differentiation rules—Constant, Constant
Multiple, Sum/Difference, and Power—you
can now find the derivative of any
polynomial function.

dx
d f x g x dx

d f x dx
d g x! !=^ ^ ^ ^h h h h8 B

dx
d f x g x f x g x! != l l^ ^ ^ ^h h h h8 B

dx
d f g f g

dx
d x x

dx
d x dx

d x

x x

6

6

3 12

3 2

3 2

2

! !=

+

= +

= +

l l_
_
_ _

i
i

i i

If f(x) = anx
n + an – 1x

n – 1 +...+a2x
2 + a1x + a0,

then f '(x) = n • anx
n – 1 + (n – 1) •

an – 1x
n – 2 +...+ 2 • a2x + a1

If f(x) = 5x3 – 6x2 + 9x – 13,
Then

f '(x) = 5 • 3x2 – 6 • 2x + 9
= 15x2 – 12x + 9
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The Product Rule

If f and g are both differentiable
functions, then:

This can also be written as:

Using shorthand
notation, it can also be
written as:

If you had first found the product of the two functions,
you would have:

dx
d f x g x dx

d f x g x dx
d g x f x

der. of 1st
2nd

der. of 2nd
1st

= +$ $ $^ ^ ^ ^ ^ ^h h h h h h
R

T

S
S
SS

8 ;
V

X

W
W
WW

B E
6 7 844 44H D E

dx
d f x g x f x g x g x f x= +$ $ $l l^ ^ ^ ^ ^ ^h h h h h h8 B

,h x x x x

h x dx
d x x x dx

d x x x

x x x x

x x x x x

h x x x

3 5 4 7

3 5 4 7 4 7 3 5

6 5 4 7 4 3 5

24 42 20 35 12 20

36 2 35

If

then

2

2 2

2

2 2

2

der. of 1st
2nd

der. of 2nd
1st

= - +

= - + + + -

= - + + -

= + - - + -

= + -

$ $l

l

^ _ ^
^ _ ^ ^ _

^ ^ _
^

h i h
h i h h i

h h i
h

; ;E E
6 7 8444 444 6 7 8444 44 6 7 844 44H

dx
d f g f g g f= +$ $ $l l_ i

h(x) = (3x2 – 5x)(4x + 7) 
h(x) = 12x3 + x2 –35x,
then find the derivative

h'(x) = 36x2 + 2x – 35
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ANOTHER PRODUCT RULE EXAMPLE

Find the derivative of .

1 Start with the original function, rewriting as a power.

2 Find h'(x) using the Product Rule.

3 Next, expand the terms on the right and simplify.

4 To finish up, factor out of each term, and simplify to

complete the process.

x2
1 2

1

x

h x x x x3 62= -^ _h i
h x x x x

x x x

3 6

3 6

2

2
1

2

= -

= -

^ _

_

h i

i

-

h x x x x

h x x x x x x

3 6

2
1 3 6 6 6

2
1

2

2
1

2 2
1

der. of 1st 2nd der. of 2nd
1st

= -

= - + -$ $l

^ _
^ _ ^ a
h i
h i h k; E 6 7 844 44H H D

x x x x

x x

2
3 3 6 6

2
15 9

2
3

2
1

2
3

2
1

2
3

2
1

= - + -

= -

h x
x

x2 15 18= -l^ ^h h
x x2

1 15 182
1

= -^ h
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ANOTHER LOOK AT THE PREVIOUS PROBLEM

Find the derivative of , without the Product Rule.

1 Start with original function, rewriting as a power;
then distribute.

2 Now find h'(x) by finding the derivative of each term;
then simplify.

3 As in the previous problem, factor out of each

term, and simplify to complete the process.

x2
1 2

1

x

h x x x x3 62= -^ _h i

h x x x x

x x x

h x x x

3 6

3 6

3 6

2

2
1

2

2
5

2
3

= -

= -

= -

^ _

_

^

h i

i

h

h x x x

x x

3 2
5 6 2

3

2
15

2
18

2
3

2
1

2
3

2
3

= -

= -

$ $l^ h

h x
x

x2 15 18= -l^ ^h h

x x

x x

x
x

2
15

2
18

2
1 15 18

2 15 18

2
3

2
1

2
1

= -

= -

= -

^
^

h
h
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The General Power Rule gives you a means to find the derivative of the power of any function. It is
a special case of the Chain Rule, which will be introduced in Chapter 5.

General Power Rule

If f is a differentiable function and n is a rational
number, then:

This can also be written as:

Using shorthand notation, you can also write:

dx
d f x n f x dx

d f x
n n

n

1

inside function
function

n 1

=
-

-

$ $

der. of inside$

^ ^
^

^h h
h

h8 8B B
6 7 8444 444 H

dx
d f x n f x f x

n n

n

1

inside function

function

n 1

=
-

-

$ $

der. of inside$
l^ ^

^
^h h

h
h8 8B B

6 7 8444 444 H

dx
d x x

x

2 3 10 2 3 2

20 2 3

f
n

f
f

10 9

9

n n 1

- = -

= -

-

$ $
l

^ ^
^

h h
h

6 7 844 44 ? H ?
dx
d f n f fn n 1= -$ $ l7 A
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It is usually helpful to write a radical expression as a
power before attempting to compute its derivative.

After writing the radical expression in the
denominator as a power, move it up to the
numerator to avoid having to use the General
Power Rule.
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dx
d

x dx
d

x

dx
d x

dx
d x

x x

3
5

3

5

5 3

5 3

5 –
2
1 3 2

n

2
2 2

1

2 2
1

2 2
1

2 2
3

inside
der. of
inside

n 1

+
=

+

= +

= +

= +
-

-

-

-

$

$

$ $

J

L
KK _

_
_

_
^

^

N

P
OO i

i
i

i
h

h
R

T

S
S
S
S
SS

=
=

V

X

W
W
W
W
WW

G
G

6 7 844 44? C

,f x x

f x dx
d x

dx
d x

x

x

f x
x

4 5

4 5

4 5

3
1 4 5 4

3 4 5

4

3 4 5

4

If then

n

3

3

3
1

3
2

3
2

3
2

inside
der. of
inside

n 1

= +

= +

= +

= +

=
+

=
+

-

-

$

l

l

^
^

^

^
^

^
^

h
h

h

h
h

h
h

6 7 844 44? C
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Like the Product Rule, the Quotient Rule involves putting pieces in the right places in the right
formula and then simplifying the resulting expression. As in the Product Rule, your Algebra skills
will be put to the test.

Statement of the Quotient Rule

If f and g are differentiable
functions, and g(x) ≠ 0, then:

This can also be written as:

Or in shorthand notation, it can
be written as:

dx
d

g x
f x

g x

dx
d f x g x dx

d g x g x

bottom

2

der. of top
bottom

der. of bottom
top

2

=
-$ $

^̂e ^
^

^ ^ ^ ^
h
ho h

h

h h h h
9

; ;
C

E E
6 7 844 44 6 7 844 44D D

\

dx
d

g x
f x

g x

f x g x g x f x
2=

-$ $l l

^̂e ^
^ ^ ^ ^hho h
h h h h

8 B

,h x x
x

h x
x

dx
d x x dx

d x x

x

x x

x
x x

h x
x

5 4
3 2

5 4

3 2 5 4 5 4 3 2

5 4

3 5 4 5 3 2

5 4
15 12 15 10

5 4
22

If then

2

2

2

2

=
+
-

=
+

- + - + -

=
+

+ - -

=
+

+ - +

=
+

$ $

$ $

l

l

^

^ ^
^ ^ ^ ^

^
^ ^

^
^ ^

h

h h
h h h h

h
h h

h
h h

; ;E E

dx
d

g
f

g

f g g f
2=

-$ $l ld _n i
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DERIVATIVE OF QUOTIENT OF RADICAL FUNCTIONS

Find f '(x) for .

1 Rewrite each radical expression as a power.

2 Find f '(x) using the
Quotient Rule.

Note: You found each
derivative on the top by
using the General Power
Rule.

f x
x
x

3 1
2 5

3
=

+

-
^ h

f x
x

x

3 1

2 5
3
1

2
1

=
+

-^ ^
^h h

h

f x

x

dx
d x x dx

d x x

x

x x x x

x

x x x x

3 1

2 5 3 1 3 1 2 5

3 1

2
1 2 5 2 3 1 3

1 3 1 3 2 5

3 1

2 5 3 1 3 1 2 5

3
1

2

2
1

3
1

3
1

2
1

3
2

2
1

3
1

3
2

2
1

3
2

2
1

3
1

3
2

2
1

=

+

- + - + -

=
+

- + - + -

=
+

- + - + -

- -

- -

$ $ $ $

l^
^

^ ^ ^ ^

^
^ ^ ^ ^

^
^ ^ ^ ^

h
h

h h h h

h
h h h h

h
h h h h

<
< <

F
F F

dx
d

g
f

g

f g g f
2=

-$ $l ld _n i
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3 Next take out the common factor and then
simplify the resulting expression.

4 Last, rewrite the denominator in
radical form.

x

x x x x

x

x x x

x x

x

3 1

2 5 3 1 3 1 2 5

3 1

2 5 3 1 6

2 5 3 1

6

3
2

2
1

3
2

3
2

2
1

3
2

2
1

3
4

=
+

- + + - -

=
+

- + +

=
- +

+

- -

- -

^
^ ^ ^ ^

^
^ ^ ^

^ ^

h
h h h h

h
h h h

h h

8 B

f x
x x

x

f x
x x x

x

2 5 3 1

6

2 5 3 1 3 1
6

4
3

3

=
- +

+

=
- + +

+

l

l

^ ^
^ ^

h h
h h
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Rolle’s Theorem and the 
Mean Value Theorem

This section covers two important theorems that relate continuity and differentiability:
Rolle’s Theorem and the Mean Value Theorem.

Rolle’s Theorem

Let f be a function satisfying the following 3 conditions:

1 f is continuous on the closed interval [a,b]

2 f is differentiable on the open interval (a,b)

3 f(a) = f(b)

Then, there exists at least one number c in (a,b) for which f '(c) = 0.

a b

f(x)

x
c

a b

f(x)

x
c

a b

f(x)

x
c

1

c
2

a

f(x)

x
bc

c is any number in (a, b)  
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For the function f(x) = x2 – 8x + 19, find the value of c in the open interval (2, 6) that is mentioned in
Rolle’s Theorem.

1 To make use of Rolle’s Theorem,
you must first show that f(x)
satisfies all 3 conditions mentioned
in the theorem:

2 Since f(x) = x2 – 8x + 19 satisfies the 3 conditions listed in the
theorem, you can apply the conclusion:

There is at least one number c in (2, 6) for which f '(c) = 0.

Find f '(x).

3 Substitute c for x, set f '(c) = 0, and finish by
solving for c.

4 At the right is the graph of f(x) = x2 – 8x + 19, showing the
horizontal tangent at x = 4 (where f '(x) = 0 ) in the interval (2, 6). 

Condition #1: Since f(x) = x2 – 8x + 19 is a
polynomial, it is everywhere continuous —
so it is continuous on [2, 6].

Condition #2: Since f(x) = x2 – 8x + 19 is a
polynomial, it is everywhere differentiable —
so it is differentiable on (2, 6).

Condition #3: After finding the values for f(2)
and f(6), you can see that f(2) = 7 = f(6).

f(x) = x2 –8x + 19
f '(x) = 2x – 8

f '(c) = 2c – 8
0 = 2c – 8
4 = c

4 is in the open interval (2, 6) and
f '(4) = 0.

2 4 6

f(x) = x2 − 8x + 19

f(x)

x
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The Mean Value Theorem

Let f be a function which satisfies the following two conditions:

1 f is continuous on the closed interval [a,b]

2 f is differentiable on the open interval (a,b)

Then there exists at least one number c in (a,b) for which

.

Note that the term f '(c) is just the slope of the tangent to the graph of f(x) at the point with coordinates
(c, f(c)).

The other term on the right is the slope of the secant line containing the points (a, f(a) ) and

(b, f(b) ).

For some number c in (a,b), the tangent line and the secant line have equal slope.

For f(x) = x3 – x2 – 2x, find the value of c in the interval (–1,1), which is mentioned in the Mean Value
Theorem.

1 To make use of the Mean Value Theorem, you must first show that f(x) satisfies both of the conditions
mentioned in the theorem

Condition #1: Since f(x) = x3 – x2 – 2x is a polynomial, it is everywhere continuous, so it is
continuous on (–1,1).

Condition #2: Since f(x) = x3 – x2 – 2x is a polynomial, it is everywhere differentiable, so it is
differentiable on (–1,1). 

b a
f b f a

-
-^ ^h h

f c b a
f b f a

=
-
-

l^ ^ ^h h h

a

(a, f(a))
(c, f(c))

(b, f(b))

f(x)

x
bc
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2 Next, find f '(x) and then replace the x with the c to
get f '(c).

3 The interval in the problem is (–1,1) so that a = –1 and b = 1

Find the values of f(a) and f(b).

Using f(x) = x3 – x2 – 2x, you find that: 

4 Now put all the pieces together and solve for c.

The c = 1 is not in the open interval (–1,1).

f(x) = x3 – x2 – 2x
f '(x) = 3x2 – 2x – 2
f '(c) = 3c2 – 2c – 2

f(a) = f(–1)
= (–1)3 – (–1)2 – 2(–1)
= 0

and
f(b) = f(1)

= (1)3 – (1)2 – 2(1)
= –2

f c b a
f b f a

c x

c x

x x

c c

c c

3 2 2 1 1
2 0

3 2 2 1

3 2 1 0
3 1 1 0

3
1 1Therefore or

2

2

2

=
-
-

- - =
- -

- -

- - =-

- - =

+ - =

=- =

l^ ^ ^

^

^ ^

h h h

h

h h
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Limits: Indeterminate Forms
and L’Ho^pital’s Rule

In Chapter 2 you encountered the indeterminate forms when trying to calculate limits.

These forms were dealt with by using tedious algebraic methods. L’Hôpital’s Rule gives you a

quicker alternative.

0
0 and 3

3

L’Hôpital’s Rule

If is one of the indeterminate forms , then .

The indeterminate form may be one of the forms: 

or or3
3

3
3

3
3

3
3-

- -
-

3
3

lim lim
g x
f x

g x
f x

x c x c
=

" " l
l

^̂ ^̂hh hh0
0 and 3

3lim
g x
f x

x c" ^̂ hh

TIP
Do not confuse this rule with the Quotient Rule.
Here you are merely finding the derivative of the
top and then the derivative of the bottom function
and then finding the limit of their ratio.

L’HO^ PITAL’S RULE: EXAMPLE 1

Determine .

1 Direct substitution leads to the indeterminate form .

Apply L’Hôpital’s Rule

2 Now use direct substitution, 1 for x.

In Chapter 2, you would have divided all terms by x12.

0
0

lim
x
x

1
1

x 1
11

12

-
-

"

lim lim
x
x

x
x

1
1

11
12

x x1
11

12

1
10

11

-
- =

" "

11 1
12 1

11
12

10

11

=

=

$
$
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L’HO^ PITAL’S RULE: EXAMPLE 2

Determine 

1 The indeterminate form results from direct substitution.

First rewrite the term as a power in preparation for finding the

derivative of the top and the bottom.

2 Apply L’Hôpital’s Rule, taking the derivative of the top and the bottom.

3 Substitute x = –3.

In Chapter 2, you would have found a common denominator.

L’HO^ PITAL’S RULE: EXAMPLE 3

Determine .

1 After encountering the indeterminate form , rewrite as a power.x0
0

lim x
x

4
2

x 4 -
-

"

x
1

0
0

lim x
x

3

1
3
1

x 3 +

+

"-

lim

lim

x
x

x
x

3

1
3
1

3
3
1

x

x

3

3

1

+

+

=
+

+

"

"

-

-

-

lim

lim

x

x

1
1

1
x

x

3

2

3
2

= -

= -
"

"

-

-

-

$

9
1=-

lim

lim

x
x

x
x

4
2

4
2

x

x

4

4

2
1

-
-

=
-
-

"

"
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2 Apply L’Hôpital’s Rule – derivative of top and then derivative of bottom.

3 Substitute x = 4 and simplify.

In Chapter 2, you would have multiplied the numerator and denominator
by the conjugate of the numerator.

L’HO^ PITAL’S RULE: EXAMPLE 4

Calculate 

1 Direct substitution leads to the indeterminate form .

Use L’Hôpital’s Rule.

2 Put 2 in for x and then simplify.

In Chapter 2, you would have factored and reduced.

0
0

lim x
x x

2
2

x 2

2

-
- -

"

-

lim

lim

x

x

1
2
1

2
1

x

x

4

2
1

4

-

-

=

"

"

2 4
1

4
1

=

=

lim

lim

lim

x
x x

x

x

2
2

1
2 1

2 1

x

x

x

2

2

2

2

-
- -

= -

= -

"

"

"
^ h

= 2 • 2 – 1
= 3

FAQ 
How do I know when to use L’Hôpital’s Rule versus
the techniques shown in Chapter 2?
If direct substitution leads to one of the indeterminates and you
can find the derivative of both numerator and denominator, use
L’Hôpital’s Rule to find the limit.
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In this chapter, you will greatly expand your
ability to find derivatives—specifically

derivatives of trigonometric and inverse
trigonometric functions. L’Hôpital’s Rule returns,
and you are introduced to the Chain Rule (finding
the derivative of a composite function).

chapter 5
Derivatives of
Trigonometric

Functions
Derivatives of Sine, Cosine, 
and Tangent . . . . . . . . . . . . . . . . . . . . . 97

Derivatives of Secant, Cosecant, 
and Cotangent . . . . . . . . . . . . . . . . . . 100

L’Hôpital’s Rule and Trigonometric
Functions. . . . . . . . . . . . . . . . . . . . . . . 102

The Chain Rule . . . . . . . . . . . . . . . . . . 104

Trigonometric Derivatives 
and the Chain Rule . . . . . . . . . . . . . . 109

Derivatives of the Inverse 
Trigonometric Functions . . . . . . . . . . 110
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Derivatives of Sine, 
Cosine, and Tangent

This section covers how to find the derivatives of three of the trigonometric functions: sine, cosine, and
tangent. To the right is a “unit circle,” which gives the cosine and sine of radian measures in the interval
[0,2π].

(      ,     )√3
2

1
2

(0, –1)

(0, 1)

(–1, 0)

(1, 0)

(–      , –      )
270°

240°

225°

210°

180°

150°

π 2π

135°

120°

90°

y

x

60°

45°

30°

0°

330°

315°

300°

(     ,       )1
2

√3
2

(–      , –    )1
2

√3
2

(–      ,    )1
2

√3
2

(–     , –      )1
2

√3
2

(–     ,       )1
2

√3
2 π

2 π
3 π

4
π
5

11π
6

7π
4

7π
6

5π
6

5π
4

3π
4

5π
3

4π
3

2π
3

3π
2

(      , –    )1
2

√3
2

√2
2

√2
2

(    , –      )1
2

√3
2

(–      ,       )√2
2

√2
2 (      ,      )√2

2
√2
2

(      , –      )√2
2

√2
2

Sine and Cosine

Listed at right are the formulas for finding the
derivatives of the sine and cosine functions.
Following this text are some examples of how
these two derivatives can be used.

sin cos cos sindx
d x x dx

d x xand= = -^ ^h h
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DERIVATIVE OF A SUM
Find f '(x) for f(x) = 3sinx + 2cosx.

1 Start with the original function.

2 Find the derivative using the Constant Multiple
and Sum Rules (see Chapter 4):

DERIVATIVE OF A PRODUCT

Find .

1 Begin with the original expression.

2 Apply the Product Rule.

3 Find the derivatives of cosine and sine and then
simplify.

cos sindx
d x x^ h

f(x) = 3sinx + 2cosx

sin cos

cos sin

cos sin

f x dx
d x dx

d x

x x

f x x x

3 2

3 2

3 2

= +

= + -

= -

$ $l

l

^ ^ ^
^

^

h h h
h

h

cos sindx
d x x^ h

cos sin sin cosdx
d x x dx

d x x= +; ;E E

= –sinx • sinx + cosx • cosx
= –sin2x + cos2x
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DERIVATIVE OF PRODUCT OF ALGEBRAIC AND TRIGONOMETRIC FUNCTION
Find f '(x) for f(x) = x2sinx.

1 Start with the original function.

2 Apply the Product Rule (see Chapter 4).

3 Simplify.

DERIVATIVE OF A QUOTIENT

Find f '(x) for .

1 Beginning with the original function, apply
the Quotient Rule (see Chapter 4).

2 Simplify.

3 Group the –sin2x and –cos2x together and then
use the Pythagorean Identity: sin2x + cos2x = 1.

sin
cosf x x

x1= +
^ h

f(x) = x2sinx

f '(x) = (2x)sinx + (cosx) • x2

= 2xsinx +x2cosx

sin
cos

sin

sin sin cos cos

f x x
x

f x
x

x x x x

1

1
2

= +

=
- - +

l

^
^ ^

^ ^ ^
h
h h

h h h

sin
sin cos cos

x
x x x

2

2 2

= - - -

sin
sin cos cos

sin
sin cos cos

sin
cos

x
x x x

x

x x x

x
x1

2

2 2

2

2 2

2

= - - -

=
- + -

= - -

_ i
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This section covers the derivatives of the other four trigonometric functions: tangent, secant,
cosecant, and cotangent.

Formulas for Derivatives of Secant, Cosecant, and Cotangent

DERIVATIVE OF SECANT AT SPECIFIC VALUE

For .

1 Start with the original function and find its derivative.

2 Find .f π
3lb l

,secf x x f π
3find= l^ bh l

sec sec tan

csc csc cot

cot csc

dx
d x x x

dx
d x x x

dx
d x x2

=

= -

= -

tan secdx
d x x2=

f(x) = secx
f '(x) = secx tanx

sec tan

cos cos

sin

f

f

π π π

π π

π

π

3 3 3

3

1

3

3

2
1
1

2
1
2
3

3 2 3

=

=

=

=

$

$

l

l

b b b

b b
b

b

l l l

l l
l

l
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DERIVATIVE OF ANOTHER PRODUCT
Find f '(x) for f(x) = secx tanx.

1 Find the derivative using the Product Rule.

2 Simplify and factor.

Note: Although it is not required that you factor your
derivatives, you will find in later chapters that it can be
very helpful.

DERIVATIVE OF A RADICAL TRIGONOMETRIC FUNCTION
Find y' for .

1 Rewrite the original function as a power.

2 Find y' using the General Power Rule.

3 Simplify the result.

tany x2= +

sec tan

sec tan tan sec

f x x x

f x dx
d x x dx

d x x

=

= +

= +

l

^
^
h

sec tanf x x x 2sec secx x^ h
h ; ;E E

= secx tan2x + sec3x
= secx(tan2x + sec2x) 

tan

tan

y x

x

2

2 2
1

= +

= +^ h

tan secy x x2
1 2 2

1
2= +

-
l ^ h

tan

sec

tan
sec

x

x

x
x

2 2

2 2

2
1

2

2

=
+

=
+

^ h
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This section covers L’Hôpital’s Rule and its use in determining the limits of some of the
trigonometric functions.

EXAMPLE 1
Determine .

Using direct substitution leads to the indeterminate form 0⁄0.

1 Apply L’Hôpital’s Rule .

2 Use direct substitution, 0 for x.

lim
g
f
l
le o

lim sin
x

x
x 0"

lim sin

lim cos
x

x

x
1

x

x

0

0
=

"

"

cos
1

0

1

=

=

^ h
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EXAMPLE 2

Determine .

Using direct substitution results in an indeterminate form.

1 Apply L’Hôpital’s Rule.

2 Use direct substitution, for x.π
2

lim cos
sin

x
x1

x π
2

-

"

lim cos
sin

lim sin
cos

lim sin
cos

x
x

x
x

x
x

1
x

x

x

π

π

π

2

2

2

-

=
-
-

=

"

"

"

sin

cos

π

π

2

2

1
0

0

=

=

=

b
b

l
l
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Frequently in your calculus studies, you will need to find the derivative of a composite function
f (g(x)). This section discusses the Chain Rule—the tool to do this.

The Chain Rule: First Form

If f and g are both differentiable and H is the composite function defined by , then H is
differentiable and H' (x) is given by: 

Stated another way, you can write the Chain Rule as:

In shorthand notation, it can be written as:

If y = f(g), then y' = f '(g) • g'

CHAIN RULE (FIRST FORM): EXAMPLE 1

Find .

1 Begin with the original expression.

sindx
d x3^ h

[ ] [ )dx
d f g x f g x g x

der. of outer
function

evaluated at
inner funct.

der. of outer
function

evaluated at
inner funct. times

der. of inner
function

= $l l^_ ^_hi hiC D H H H A H

H x f g x g x= $l l l^ ^_ ^h hi h9 C

H x f g x=^ ^_h hi

sindx
d x3^ h
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2 Identify the outer and the inner functions.

3 Apply the Chain Rule and then simplify.

CHAIN RULE (FIRST FORM): EXAMPLE 2

Find .

1 Beginning with the original expression, identify the outer and
inner functions.

2 Apply the Chain Rule and simplify.

CHAIN RULE (FIRST FORM): EXAMPLE 3

Find .

1 Once again, identify the outer and inner functions.

sindx
d x

cosdx
d x3
_ i

sindx
d x3^ h8 B

cos

cos

x

x

3 3

3 3

x x3 3
der. of

sin at times
der. of

=

=

$^ hC C A C

cos

cos

dx
d x

dx
d x

3

3=

_
_

i
i

sin

sin

x x

x x

3

3

cos x x

3 2

3

2 3

der. of
at times

3 2

=-

= -

$

der. of

_ iE C A C

sin

sin

sin

dx
d x

dx
d x

dx
d x 2

1

=

= ^ h
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2 Apply the Chain Rule and then simplify.

Note: You could also have just used the General Power Rule.

CHAIN RULE (FIRST FORM): EXAMPLE 4

Calculate .

1 Rewrite the original expression, noting the outer and inner functions.

2 Apply the Chain Rule and simplify.

sin tandx
d x^ h

sin cos

sin
cos

x x

x
x

2
1

2

sin
sin

x
x

2
1

at

der. of

times
der. of

/1 2

=

=

-

$^
]

h
g6 7 844 44H A D

sin tan

sin tan

dx
d x

dx
d x=

^
^

h
h

= cos(tanx) • sec2x
= cos(tanx)sec2x

The Chain Rule: Second Form

If y = f(u) is a differentiable function of u and if u = g(x) is a differentiable function of x, then the

composite function is a differentiable of x, and .

Stated another way:

The derivative of y with respect to x equals the product of the derivative of y with respect to u and the
derivative of u with respect to x.

dx
dy

du
dy

dx
du= $y f g x= ^_ hi
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CHAIN RULE (SECOND FORM): EXAMPLE 1

Find for y = sin3x.

1 Start with the original function and write it as a composite of two functions.

2 Let y = the outer function and let u = the inner function.

3 Find and .

4 Apply the Chain Rule: Second Form.

5 Substitute 3x for u.

dx
du

du
dy

dx
dy

y = sin3x
y = sin(3x)

y = sin(u) u = 3x

cosdu
dy

u dx
du 3= =^ h

cos

cos

dx
dy

du
dy

dx
du

u

u

3

3

=

=

=

$
$^

^
h
h

= 3cos(3x)

Therefore, .cosdx
dy

x3 3=
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CHAIN RULE (SECOND FORM): EXAMPLE 2

For y = sin3x, find .

1 Rewrite the original function as a composite of two functions.

2 Let y = the outer function and let u = the inner function.

3 Find and .

4 Apply the Chain Rule: Second Form.

5 Substitute sin x for u.

dx
du

du
dy

dx
dy

y = sin3x
y = (sinx)3

y = u3 u = sinx

cosdu
dy

u dx
du x3 2= =

cos

cos

dx
dy

du
dy

dx
du

u x

u x

3

3

2

2

=

=

=

$
$
$

= 3(sinx)2cosx
= 3cosxsin2x

Therefore, .cos sindx
dy

x x3 2=
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Trigonometric Derivatives 
and the Chain Rule

After the use of the Chain Rule, the trigonometric derivatives, with u as a function of x, can now be
written as follows.

cot cscdx
d u u du2

& = -^ h

sec sec tandx
d u u u du& =^ h

csc csc cotdx
d u u u du& = -^ h

tan secdx
d u u du2

& =^ h

cos sindx
d u u du& = -^ h

sin cosdx
d u u du& =^ h sin cos cosdx

d x x x x5 5 5 5 5= =$^ ^h h

cos sin sindx
d x x x x x3 33 3 2 2 3= - = -$

tan sec sec
dx
d x x

x x
x

2
1

2
2

2

= =$

csc csc cot csc cotdx
d x x x x x3 3 3 3 3 3 3= - = -$

sec sec tan sec tandx
d x x x x x x x2 22 2 2 2 2= =$

cot csc cscdx
d x x x x7 7 4 74 4 3 4+ = - + +$_ _ _i i i
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Another set of derivatives you will need are those of the six inverse trigonometric functions.

INVERSE TRIGONOMETRIC FUNCTIONS

Read the last equation of “if sin y = u, then y = arcsinu,” as “arc sine of u” or “inverse sine of u”

(sometimes written as y = sin–1u). For example, since , you can write , or

.

INVERSE TRIGONOMETRIC DERIVATIVES
If u is a function of x, then the derivative forms are as follows.

arctandx
d u

u
du

1 2& =
+

^ h

arccosdx
d u

u
du

1 2
& =

-

-^ h

arcsindx
d u

u
du

1 2
=

-
^ h

cosπ
3 2

11= -
b l

arccosπ
3 2

1= b lcos π
3 2

1=b l

arcsindx
d x

x
x

1
22

4
=

-
_ i

2u x  , so du = 2x=

arccosdx
d x

x
3

1 9
3

2
=

-

-^ h
u 3x, so du = 3=

arctandx
d x

x

x x x
u x du

x

1

2
1

2 1
1

2
1with then,

2

=

+

=
+

= =`
`

^j
j

h
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cscdx
d arc u

u u
du

12
& =

-

-^ h

secdx
d arc u

u u
du

12
& =

-
^ h

cotdx
d arc u

u
du

1 2& =
+
-^ h ,cotdx

d arc x
x
x u x du x

1
3 3with3

6

2
3 2=

+
- = =_ i

,secdx
d arc x

x x x x
u x du3

3 3 1

3
9 1
1 3 3for

2 2
=

-
=

-
= =^ ^h h

cscdx
d arc x

x x
x

x x
x u x du x

1
2

1
2 2Let so that2

2 4 2 4
2=

-

- =
-

- = =_ i
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The first theme of this chapter is that of
differentiating logarithmic functions—natural

logarithmic as well as other base logarithmic
functions. L’Hôpital’s Rule is visited again, and
then the chapter concludes with the derivative of
exponential functions.

chapter 6
Derivatives of

Logarithmic and
Exponential Functions

Derivatives of Natural Logarithmic
Functions. . . . . . . . . . . . . . . . . . . . . . . 113

Derivatives of Other Base
Logarithmic Functions . . . . . . . . . . . 119

Logarithms, Limits, and 
L’Hôpital’s Rule . . . . . . . . . . . . . . . . . 123

Derivatives of Exponential 
Functions. . . . . . . . . . . . . . . . . . . . . . . 125
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Derivatives of Natural
Logarithmic Functions

The natural logarithmic function, written as lnx, has as its base the number e. The number e is
defined many ways, and its approximate value is 2.71828.

At right are two of the more common ways of
defining the number e.

In each case, you end up with an expression: 
(1+ really small number)really big power.

Instead of writing logex, you just write lnx.

lim lime n e x1 1 1or
/

n

n

x

x

0

1
= + = +

" "3
b ^l h

f(x)

x
l e

l
y = lnx

Properties of Natural Logarithms

Listed below are some properties of natural logarithms. These can be used to alter the form of a
logarithmic expression or equation.

1 If lnx = n, then en = x. This shows the relationship between
natural log equation and an exponential equation.

2 ln(xy) = ln x + ln y ⇒ the log of a product property.

If ln x = 3, then x = e3.
If x = e–2, then ln x = –2.

ln(2x) = ln2 + lnx
ln(x2) + ln(y3) = ln(x2y3)
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3 = 

the log of a quotient property.

4 ln xn = n • ln x ⇒ the log of a power property.

5
the change of base property.ln log

log
x e

x
b

b= ⇒

ln ln lny
x x y the log of a quotient property.= -b l ⇒

ln ln ln

ln ln lnx x

3
2 2 3

5 5

= -

- =

b
b

l
l

ln ln

ln ln ln

ln ln ln

x x

x x x

x x x

3

2
1

3
2

/

/

3

1 2

2 3 23

=

= =

= =

ln log
log

log
ln

e

log e

5
5

12
12

10

10

7

7

=

=

Derivative of the Natural Logarithm Function

Listed below are the formulas used to find the derivative of lnx, or lnu where u is some function of x.
Following these formulas are some examples showing their uses in a variety of applications.

1

2 If u is a differentiable function of x, then .

DERIVATIVE OF A NATURAL LOG OF A POWER
Find f '(x) for f(x) = ln(x2).

1 This can be done one of two ways. Let’s use derivative form
number 2 (listed above) first.

Identify the u function.

lndx
d u u

du=^ h
lndx

d x x
1=^ h

f(x) = ln(x2) where u = x2

and then du = 2x
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2 Apply derivative form number 2 (see p. 114, “Derivative
of the Natural Logarithm Function).

A second way to approach the same problem is to take advantage of your log properties—specifically
the log of a power property.

1 Rewrite the original function using the log of a power property.

2 Use the natural log derivative form number 2 from above.

DERIVATIVE OF A LOG OF A RADICAL

Find .

1 Using the log of a power property, rewrite the
original function.

2 Find the derivative using the form.u
du

lndx
d x 1+` j

f x
x
x

u
du

x

2

2

this is the2 %=

=

l^ h

f(x) = ln(x2)
= 2 • lnx

f x x

x

2 1

2

=

=

$l^ h

ln

ln

ln

dx
d x

dx
d x

dx
d x

1

1

 1

/1 2

+

= +

= +$

`
^

^

j
h

h8 B1
2

Letting u =  x + 1, you have du = 1

x

x

2
1

1
1

2 1
1

=
+

=
+

$

^ h
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DERIVATIVE OF A QUOTIENT CONTAINING A NATURAL LOG

Find f '(x) for .

1 Write the original function.

2 Use the Quotient Rule to find the derivative.

3 Simplify the result.

DERIVATIVE OF A POWER OF A NATURAL LOG
Find f '(x) for f(x) = (ln x)3.

1 Start with a given function.

2 Use the General Power Rule (or Chain Rule) to differentiate.

lnf x x
x=^ h

lnf x x
x=^ h

ln
f x

x
x x x1 1

2=
-$ $l^ ^h h

lnf x
x

x1
2= -l^ h

f(x) = (ln x)3

ln

ln

f x x x

f x x
x

3 1

3

2

2

=

=

$l

l

^ ^
^ ^
h h
h h
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DERIVATIVE OF A COMPLICATED NATURAL LOG EXPRESSION

Find f '(x) for .

Here’s where the real power of the natural log properties comes into use. You can write as
a sum and/or a difference and/or a multiple of natural log expressions.

1 Begin with the function.

2 Use the log of a quotient property.

3 Use the log of a product property.

4 Rewrite the last term as a power.

5 Use the log of a power property.

6 Finally, find the derivative of each ln expression.

Remember the for each ln derivative.u
du

ln
x

x x

2 1

1
3

2
2

-

+_ i

R

T

S
S
S

V

X

W
W
W

lnf x
x

x x

2 1

1
3

2
2

=
-

+
^

_
h

i

R

T

S
S
S

V

X

W
W
W

lnf x
x

x x

2 1

1
3

2
2

=
-

+^ _h iR
S
S
S

V
W
W
W

ln lnx x x1 2 12
2

3= + - -_ i: D

ln ln lnx x x1 2 12
2

3= + + - -_ i

= lnx + ln(x2 + 1)2 – ln(2x – 1)1/2

ln ln lnx x x2 1 2
1 2 12 3= + + - -_ _i i

f x x x
x

x
x

f x x x
x

x
x

1 2
1

2
2
1

2 1
6

1
1

4
2 1

3

2 3

2

2 3

2

= +
-

-
-

= +
-

-
-

l

l

^ c d
^
h m n
h
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DERIVATIVE OF A TRIGONOMETRIC FUNCTION EVALUATED AT A NATURAL LOG
Find f '(x) for f(x) = cos(ln x).

1 Start with the original function.

2 Find the derivative using .cos sindx
d u u du= - $^ h

,cos ln lnf x x u x du x
1let then= = =^ ^h h

sin ln

sin ln

f x x x

x
x

1= -

=
-

$l^ ^
^

h h
h
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Derivatives of Other Base 
Logarithmic Functions

This section covers derivatives of logarithmic functions with bases other
than e, the base of the natural logarithmic function. You write these
logarithms as logax and read them as “the logarithm of x in base a” or as
“the logarithm in base a of x.”

y

x
1 2

1

y = log
2
x

y

x
1 10

1

y = log
10

x

Properties of Logarithms

If x and y are positive numbers and a > 0, then the
following properties of logarithms can be used.
Notice the similarity of these properties to those of
the natural logarithmic properties.

Property #1: If logax = n, then an = x.

Property #2: loga(xy) = 
logax + logay

, ,

,

,

log

log

log

1 000 3 10 1 000

2
1

16
1

16
1 4

9
1 2 3 9

1

because

Since then

If then

/

10
3

4

1 2

3
2

= =

= =

= - =-

b b
b
l l
l

log10(99) = log10(9 • 11) = log109 + log1011 = log9 + log11

Note: Logarithms in base 10 are called “common logs.”
Instead of writing log10x, you just write logx.

log23 + log25 = log2(3 • 5) = log215

TIP
Logn1 = 0 for all positive bases n

Log71 = 0 since 7° = 1

Log31 = 0 since 3° = 1
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Property #3:

Property #4: logax
n = n • logax

Property #5: log log
log

x a
x

a
b

b=

log log logy
x x ya a a= -b l log log log

log log log

7
10 10 7

17 13 13
17

3 3 3

8 8 8

= -

- =

b
b

l
l

log log

log log log

log log log

log log log

log log log

x x

x x x

z
x y

x y z

x y z

x y z

5

1 1 2
1 1

3 2 2
1

/

/

2
5

2

3 3

1 2

3

5

3 2

5
3 2

5

5
3

5
2

5
1 2

5 5 5

=

+ = + = +

= -

= + -

= + -

$

J

L
KK

^ ^
_N

P
OO

h h
i

log log
log

log
log

log
log

log

11 3
11

3
11

13
15

15

3
10

10

2

2
13

= =

=

Derivatives of Logarithmic Functions

Listed below are the formulas for finding the derivative of just logax, or logau where u is some function
of x. Following these derivative formulas are some examples of how those formulas can be put to use.

1

2 If u is a differentiable function of x, then log lnx
d u a u

du1
a =_ i

log lndx
d x a x

1 1
a = $_ i
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DERIVATIVE OF A LOG OF A POLYNOMIAL
Find f '(x) for f(x) = log5(x

2 + 3).

1 Start with the original function.

2 Identify the u and du.

3 Find the derivative.

DERIVATIVE OF LOG OF A QUOTIENT

Find f '(x) for .

1 Rewrite the original function using the log of a quotient
property.

2 Use the log of a power property on the first term.

logf x x
x

2 13

3

=
-^ dh n

f(x) = log (x2 + 3) 

Let u = x2 + 3 and du = 2x

ln

ln

f x
x

x

x
x

5
1

3
2

3 5
2

2

2

=
+

=
+

l^ c
_

h m
i

log

log log

f x x
x

x x

2 1

2 1

3

3

3
3

3

=
-

= - -

^ d
^

h n
h

= 3log3x – log3(2x – 1) 
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3 Find the derivative of each term using .

DERIVATIVE OF A LOG OF A RADICAL FUNCTION
Find f '(x) for .

1 Rewrite the radical as a power.

2 Use the log of a power property.

3 Find the derivative.

logf x x 52
33= -^ h

lna u
du1 $

ln ln

ln ln

ln

f x x x

x x

x x

3 3
1 1

3
1

2 1
2

3
3

2 1 3
2

3
1 3

2 1
2

= -
-

= -
-

= -
-

$ $ $l^
^

b

h
h
l

log

log

f x x

x

5

5
/

2
33

2
3

1 3

= -

= -

^
_

h
i

log x3
1 52

3= -_ i

ln

ln

f x
x

x

x
x

3
1

2
1

5
3

5 2

3

2

3

2

=
-

=
-

$l^ d

_

h n

i
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Logarithms, Limits,
and L’Ho^pital’s Rule

L’Hôpital’s Rule returns here. You apply it to limits of natural log and a variety of other functions.
It is restated below for your use:

if the first limit is one of the indeterminate forms .

LIMITS AND LOGS: EXAMPLE 1

Determine .

1 Direct substitution leads the form , so apply L’Hôpital’s Rule.

2 Simplify and then use direct substitution.

0
0

lim
ln

x
x3

x
2

"3

^ h

0
0 or 3

3lim lim
g x
f x

g x
f x

x c x c
=

" " l
l

^̂ ^̂hh hh

/

lim
ln

lim

x
x

x
x

3

2
3 3

x

x

2

=

"

"

3

3

^
^

h
h

lim
x2
1

1

0

x
2

3

=

=

=

"3
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LIMITS AND LOGS: EXAMPLE 2

Determine .

1 A form results when replacing x with π. L’Hôpital’s Rule is

applicable.

2 Simplify and substitute π for x.

0
0

lim
ln

sin
x
x

π
x π"

b l

= π cos π
= π • –1
= –π

lim cosx x
x π

=
"

lim
ln

sin

lim cos

x
x

x
x

π

π π
1

x

x

π

π
=

"

"

b
b b

l
l  l÷
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Derivatives of Exponential
Functions

This section introduces you to additional techniques
of differentiating functions, such as f(x) = , f(x)
= ex2, and f(x) = 3sin x. These are called exponential
functions, with the base being a constant and an
exponent that contains a variable.

x2
2

1

2

1

1 –1

y = 2x y = 2–x

x

y y

e

1

1

y = ex

x

y

e

1

–1

y = e–x

x

x

y

Rules for Differentiating Exponential Functions

There are two rules for differentiating exponential functions—one involves bases other than e, and the
other involves e as the base.

Case I: The base is other than e.

If u is a differentiable function of x, then .

Using this formula, find .dx
d 3 x5_ i

lndx
d a a du au u= $ $_ i

lndx
d 3 3 5 3

;
ln

der of

x

a

x

a du a

5 5

u u

= $ $
B@ @ ? A
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Case II: The base is e.

If u is a differentiable function of x, then .

Using this formula, find .
dx
d ex3` j

dx
d e e duu u=_ i

dx
d e e x3x x 23 3

= $` j

Finding the Derivative of Some Exponential Functions

Provided below are some additional examples that illustrate the use of the derivatives of exponential
functions.

y = 2sin x

y' = 2sin x • cos x • ln 2

f(x) = 72x + 3

f '(x) = 72x + 3 • 2 • ln7
or

f '(x) = 72x + 3 • ln72

= 72x + 3 ln49

g(x) = x3e2x

f '(x) = [3x2] • e2x + [e2x • 2] • x3

= 3x2e2x + 2x3e2x

= x2e2x(3 + 2x) 

f(x) = 3x2 + 5x

f '(x) = ex2 + 5x • (2x + 5) • ln3

ln

ln

y

y x

x

3

3

3

3 2
1 1 3

2
3

/

( / )

( / )

ln

(ln  )

ln

ln

x

x

x

x

1 2

1 2

1 2

=

=

=

=

=

$ $

$

l b l< F
3 ln x

ln

ln

ln

y e

y
e

e e

e

e e

e

2

2 1 2 2

2 2 2

2 2 2

x

x

x

x x x x

x

x x x x

x

x x

2

2

=

=
-

= -

= -

$ $ $ $
l _

_ _

_
i

i i

i
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Using L’Hôpital’s Rule Revisited

We return to L’Hôpital’s Rule and apply it to limits which involve exponential functions. L’Hôpital’s
Rule is restated below for your use:

, if the first limit is one of the indeterminate forms .

MORE LIMITS AND L’HO^ PITAL’S RULE: EXAMPLE 1

Find .

1 Substituting 0 for x results in the indeterminate form . Apply
L’Hôpital’s Rule.

2 Simplify.

3 Use direct substitution and simplify again.

0
0

lim x
2 7

x

x x

0

-
"

0
0 or 3

3lim lim
g x
f x

g x
f x

x c x c
=

" " l
l

^̂ ^̂hh hh

lim

lim ln ln

x
2 7

1
2 2 7 7

x

x x

x

x x

0

0

-

= -

"

"

lim ln lim2 2 7 7
x

x x

0
= -

"

_ i

ln ln
ln ln

ln

2 2 7 7
2 7

7
2

0 0= -

= -

= b l
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MORE LIMITS AND L’HO^ PITAL’S RULE: EXAMPLE 2

Determine .

1 The original limit results in a indeterminate form, so apply

L’Hôpital’s Rule.

2 Simplifying leads to another form, so apply L’Hôpital’s Rule again.

3 Simplifying leads to another form, so apply L’Hôpital’s Rule one

more time.

3
3

3
3

3
3

lim
x
e

x

x

3

3

"3

lim

lim

x
e

x
e
3

3

x

x

x

x

3

3

2

3

=

"

"

3

3

$

lim

lim

lim

x
e

x
e

x
e
2

3

2
3

x

x

x

x

x

x

2

3

3

3

=

=

=

"

"

"

3

3

3

$

Therefore, no
limit exists.

lim

lim

e

e
2

3 3

2
9

x

x

x

x

3

3

3

=

=

=

"

"

3

3

$_ i
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This chapter introduces a technique called
logarithmic differentiation—finding the

derivative of a function having both a variable base
and a variable exponent. Chapter 7 also covers
implicit differentiation—finding the derivative of
an equation having 2 or more variables for which it
may be difficult or impossible to express one of the
variables in terms of the other variables.

chapter 7
Logarithmic and

Implicit Differentiation
Logarithmic Differentiation . . . . . . . . 130

Techniques of Implicit 
Differentiation . . . . . . . . . . . . . . . . . . 134

Applications of Implicit 
Differentiation . . . . . . . . . . . . . . . . . . 139
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Up to this point, you have been able to determine and in which the variable is in

either the base or the exponent, but not in both places. A function of the form y = [f(x)]g(x), such as

f(x) = xsin x or y = (cos x)3x, can be differentiated using logarithmic differentiation—taking the

natural log on both sides and then differentiating both sides.

EXAMPLE 1
Find y' for y = (3x)x2

.

1 Start with the original equation.

2 Take the natural log of both sides.

3 Use the log of a power property on the right.

4 Differentiate both sides—ln on the left, product rule on
the right.

5 Simplify.

dx
d 3 x_ idx

d x3
_ i

y = (3x)x2

lny = ln(3x)x2

lny = x2ln(3x)

lny
y

x x x x2 3 3
3 2= +$ $

l ^ h6 ;@ E

lny
y

x x x2 3= +$
l

^ h
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6 Multiply both sides by y.

7 Substitute (3x)x2
for y.

EXAMPLE 2

Find .

1 Let y = (sin x)cos x.

2 Take ln of both sides.

3 Use the log of a power property on the right.

4 Take the derivative of both sides—ln on the
left, Product Rule on the right.

sindx
d x

cos x
^ h

y' = y(2xln(3x) + x)

y' = (3x)x2
(2xln(3x) + x)
or

y' = (3x)x2
(ln(3x)2x + x)

y = (sin x)cos x

ln y = ln(sin x)cos x

ln y = cos x • ln(sin x)

sin ln sin sin
cos cosy

y
x x x

x x= - +$ $
l ^ h6 ;@ E
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5 Simplify.

6 Multiply both sides by y.

7 Substitute (sin x) cosx for y.

EXAMPLE 3
Find f '(x) for f(x) = (ln x)x.

1 Starting with the original function, take the natural log of
both sides.

2 Use the log of a product property and then
differentiate the result.

sin ln sin cot cosy
y

x x x x= - +$ $
l

^ h

y' = y[–sin x • ln(sin x) + cot x • cos x] 

y' = (sin x)cos x[–sin x • ln(sin x) + cot x • cos x]
y' = (sin x)cos x[cot x • cos x – sin x • ln(sin x)]
y' = y' = (sin x)cos x[cot x • cos x – ln(sin x)sin x

f(x) = (ln x)x

ln f(x) = ln(ln x)x

ln ln ln

ln ln ln

f x x x

f x
f x

x x
x x1
1

=

= +

$

$ $
l

^ ^

^̂ ^
h h

hh h
R

T

S
S
S

6
V

X

W
W
W

@
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3 Simplify and then multiply both sides by f(x).

4 Substitute (ln x)x for f(x).

ln ln ln

ln ln ln

f x
f x

x x

f x f x x x

1

1

= +

= +

l

l

^̂ ^
^ ^ ^
hh h
h h h; E

ln ln ln lnf x x x x
1x

= +l^ ^ ^h h h; E

FAQ 
How do you know when to use “logarithmic differentiation”?
Use logarithmic differentiation when you are finding the derivative of
a function such as [f (x)]9(x) and discover that both the base and
exponent contain variables.
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Up to this point, the functions you encountered were expressed in an explicit form—that is, writing

one variable in terms of another: y = x2 + 3x, s(t) = t2 – t2 + 15t – 7, or . Unfortunately,

many relationships are not written explicitly and are only implied by a given equation: x2 + y2 = 25,

xy = 7, or x + xy + 2y3 = 13. These equations are written in implicit form. It may not be possible to

change an implicit form into an explicit form. For those cases, you use implicit differentiation.

Y AS A FUNCTION OF X ( AS THE DERIVATIVE)

Find for x3 + xy – y2 = 12.

1 Start with the original equation.

2 Find the derivative of each term, treating y as
a function of x.

3 Isolate all terms of the left.

4 Factor out .
dx
dy

dx
dy

dx
dy

dx
dy

V r rπ3
4 3=^ h

x3 + xy – y2 = 12

dx
d x dx

d xy dx
d y dx

d

x y dx
dy

x y dx
dy

12

3 1 2 0

power
rule

product rule

3 2

2

+ - =

+ + - =$ $

_ _ _ ^i i i h
6 7 844 44B

x dx
dy

y dx
dy

x y2 3 2- = - -

x y dx
dy

x y2 3 2- = - -_ i
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5 Solve for .

Note: We took to the opposite of both the top and the bottom,
thus using fewer symbols in the final answer.

Y AS A FUNCTION OF X (Y’ AS THE DERIVATIVE)
Find y' for (ln x) • y3 = ey

• x2.

1 Start with the original equation.

2 Differentiate implicitly, treating y as
a function of x. Use the Product Rule
on the left and on the right.

3 Simplify.

4 Isolate all y' terms on the left.

5 Factor out y' on the left.

dx
dy

dx
dy

x y
x y

dx
dy

y x
x y

2
3

2
3

or

2

2

=
-

- -

=
-
+

(ln x) • y3 = ey • x2

lnx y y y x e y x x e1 3 23 2 2+ = +$ $ $ $ $ $l lb _ _ ^l i i h y

lnx
y

y x y e x y xe3 2y y
3

2 2+ = +$ $l l

lny x y e x y xe x
y

3 2y y2 2
3

- = -$ $l l

lny x e x y xe x
y

3 2y y2 2
3

- = -l_ i

09_185605-ch07.qxp  4/1/08  3:37 PM  Page 135



Techniques of Implicit 
Differentiation (continued)

136

6 Solve for y'.

X AND Y AS FUNCTIONS OF AN UNKNOWN VARIABLE (DX AND DY AS THE DERIVATIVES)

Find for exy + sin x = ln y.

1 Write the given equation.

2 Differentiate implicitly, treating x and y
as functions of an unknown variable.

3 Simplify.

4 Put all dx terms on the left and all dy
terms on the right.

dx
dy

ln

ln

y x e x y xe x
y

y
y x e x

xe x
y

3 2

3

y y

y

y

2 2
3

2 2

3

- = -

=
-

-

l

l

_ i

exy + sin x = ln y

cose dx y dy x x dx y
dyxy

e duu

+ + =$ $ $_ i6 7 8444 444@

cose ydx e xdy xdx y
dyxy xy+ + =

cos

cos

e ydx e xdy xdx y
dy

e ydx xdx y
dy

e xdy

xy xy

xy xy

+ + =

+ = -
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5 Factor out dx on the left and dy on the right.

6 Solve for .

X AND Y AS FUNCTIONS OF t ( AND AS THE DERIVATIVES)

Find for –3xy + 2x4 – 3y3 = 5y.

1 Begin with the original equation.

2 Differentiate, treating
both x and y as functions
of some variable t.

3 Isolate all the terms on the left and all

the terms on the right.dt
dx

dt
dy

dx
dy

dt
dy

dt
dx

dx
dy

cose y x dx y e x dy1xy xy+ = -_ bi l

cos

cos

e y x dx y e x dy

y e x

e y x
dx
dy

1

1

xy xy

xy

xy

+ = -

-

+
=

_ bi l

–3xy + 2x4 – 3y3 = 5y

dt
dx y dt

dy
x x dt

dx y dt
dy

dt
dy

3 3 8 9 53 2- + - + - =b d ^l n h

x dt
dy

y dt
dy

dt
dy

y dt
dx x dt

dx3 9 5 3 82 3- - - = -
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4 Factor out on the left and on the right.

5 Multiply both sides by dt.

6 Simplify.

7 Solve for .
dx
dy

dt
dx

dt
dy

x y dt
dy

y x dt
dx3 9 5 3 82 3- - - = -_ _i i

x y dt
dy

dt y x dt
dx dt3 9 5 3 82 3- - - = -$ $_ _i i

(–3x – 9y2 – 5)dy = (3y – 8x3)dx

x y dy y x dx

dx
dy

x y
y x

dx
dy

x y
x y

3 9 5 3 8

3 9 5
3 8

3 9 5
8 3

or

2 3

2

3

2

3

- - - = -

=
- - -

-

=
+ +

-

_ _i i
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Applications of Implicit
Differentiation

You can use the process of implicit differentiation in many word problems in calculus. Three
examples follow—from differentiating a geometric formula, to solving a rate of change problem, to
finding the equation of tangent line to a curve the equation of which is stated implicitly.

GEOMETRY FORMULA: V, R, AND H AS FUNCTIONS OF T ( AS THE DERIVATIVES)
Differentiate V = πr2h.

1 Start with the given formula.

2 Differentiate implicitly, treating V, r, and h as functions
of the variable t.

3 Simplify.

BALLOON RATE OF CHANGE PROBLEM USING IMPLICIT DIFFERENTIATION

A spherical balloon is being filled with air so that when its radius is 3 feet, the radius is increasing at the

rate of . Find the rate of change of the volume at that instant.

1 Start with the formula for the volume, V, of a sphere in terms of its radius r.

2 Differentiate implicitly, treating both V and r as functions of time t.

./ minft3
2

, ,dt
dV

dt
dr

dt
dhand

V = πr2h

dt
dV r dt

dr h dt
dh rπ π2 2= +$ $; ;E E

dt
dV rh dt

dr r dt
dhπ π2 2= +

V rπ3
4 3=

dt
dV r dt

drπ3
4 3 2=
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3 Simplify.

4 Substitute r = 3 and .

5 Simplify.

LADDER SLIDING DOWN THE SIDE OF A BUILDING
PROBLEM
A 20-foot ladder leans against the side of a building. The bottom
of the ladder is 12 feet away from the bottom of the building and
is being pulled away from the base of the building at a rate of 1.5
feet/second. Find the rate at which the distance from the top of
the ladder to the base of the building is changing.

1 Write a relationship between the vertical distance v and the
horizontal distance h.

2 Differentiate implicitly, treating both v and h as functions 
of time, t.

dt
dr

3
2=

dt
dV r dt

drπ4 2=

dt
dV π4 3 3

22
= $^ h

So, volume is increasing at a rate of 24πft3/min.

/ mindt
dV ftπ24 3=

h

v

20 ft.

v2 + h2 = 202

v dt
dv h dt

dh2 2 0+ =
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3 If it is known that , find a corresponding

value of v by using the original equation (from the

Pythagorean Theorem).

4 Substitute values from Step 3 into the derivative from
Step 2.

5 Simplify and then solve for .

The top of the ladder is sliding down (that’s what the negative sign represents) the side of the building at

a rate of . But the answer to the question posed in this problem is that the distance from the top

of the ladder to the base of the building is changing at a rate of ../ secft8
9-

./ secft8
9

dt
dv

.dt
dh and h1 5 12= = v2 + h2 = 202

v2 + 122 = 202

v2 + 144 = 400
v2 = 256
v = 16

.

v dt
dv h dt

dh

dt
dv

2 2 0

2 16 2 12 1 5 0

+ =

+ =^ ^ ^h h h

dt
dv

dt
dv

dt
dv

32 36 0

32
36

8
9

+ =

= -

= -
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This chapter shows you some of the many
applications of a derivative. From horizontal

tangents to equations of lines tangent to a curve,
you will move on to critical numbers of a function
and how to determine the intervals over which a
function is increasing or decreasing. The chapter
continues with finding extrema on a closed interval.
From finding minimums and maximums over the
complete domain of a function using the first
derivative, you will move on to determining
concavity, finding inflection points, and verifying
relative extrema using the second derivative.

chapter 8
Applications of
Differentiation

Tangent Line to Graph of a Function 
at a Point . . . . . . . . . . . . . . . . . . . . . . . 143
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Concavity and Point of Inflection . . . . 165

Extrema of a Function: Second
Derivative Test . . . . . . . . . . . . . . . . . . 172
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Tangent Line to Graph of
a Function at a Point

You saw many examples of this in Chapter 3. Following is one new example just as a gentle
reminder of the process used.

Tangent Line to the Graph of a Trigonometric Function

Find the equation of the line tangent to the graph of f(x) = x3ln x at the point with x coordinate e.

1 Find f(e).

2 Find the slope at x = e.

3 Write the equation of the tangent line.

f(x) = x3lnx
f(e) = e3lne
f(e) = e3 • 1
f(e) = e3 point is (e,e3) 

ln

ln

ln

ln

f x x x

f x x x x x

f x x x x

f e e e e

e e

f e e e

3 1

3

3

3 1

4 4slope is

3

2 3

2 2

2 2

2 2

2 2

=

= +

= +

= +

= +

=

$ $

$

l

l

l

l

^
^
^
^
^

h
h
h
h
h

7 ;A E

y – e3 = 4e2(x – e)
y – e3 = 4e2x – 4e3

y = 4e2x – 3e
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A tangent line is horizontal when its slope is zero. After finding the derivative of a function, you set
it equal to zero and then solve for the variable.

Horizontal Tangent to Graph of Polynomial Function

Find the coordinates of each point on the graph of f(x) = x3 – 12x2 + 45x – 55 at which the tangent line is
horizontal.

1 Find f '(x).

2 Set f '(x) = 0 and solve for x.

3 Using f(x), find the corresponding y coordinate for each x in
Step 2.

Tangent lines are horizontal at (3,–1) and (5,–5).

f(x) = x3 – 12x2 + 45x – 55
f '(x) = 3x2 – 24x + 45

f '(x) = 3x2 – 24x + 45
0 = 3x2 – 24x + 45
0 = 3(x2 – 8x + 15)
0 = 3(x – 3)(x – 5)
x = 3 or x = 5

f(3) = –1, f(5) = –5
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Horizontal Tangent to Graph of a Trigonometric Function

Find the x coordinate of each point on the graph of f(x) = cos 2x + 2cos x in the interval [x,2π] at which
the tangent line is horizontal.

1 Find f '(x).

2 Set f '(x) = 0.

3 Replace sin 2x with 2sin x cos x and then simplify.

4 Factor and then solve for x.

f(x) = cos2x + 2cosx
f '(x) = –sin(2x) • 2 + 2(–sin x)
f '(x) = –2sin2x – 2sinx

0 = –2sin2x – 2sinx

0 = –2(2sinxcosx) – 2sinx
0 = –4sinxcosx – 2sinx

, ,

sin cos

sin cos

sin cos

x x

x x

x x

x x x xπ π π

0 2 2 1

0 2 0 2 1

0 2
1

0 3
2

3
4

= - +

= - = +

= - =

= = = =

^ h

cos x2
1- =
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The critical numbers of a function play an important role in this chapter. You will use the critical
numbers to help locate maximums and minimums for a function and inflection points for its graph.

DEFINITION OF CRITICAL NUMBERS
The number c is a critical number for f(x) if and only if
f '(c) = 0 or if f '(c) is undefined.

In the first figure, the graph has a vertical asymptote at
x = 0.

In the second figure, a sharp corner occurs at x = c; the
slopes of the curve left and right of x = c are different —
positive to the left, but negative to the right.

In the third figure, horizontal tangents to the graph occur
at x = a and x = b.

CRITICAL NUMBERS OF A POLYNOMIAL FUNCTION
Find the critical numbers for f(x) = 2x + 3x2 – 6x + 4.

1 Find the derivative of the given function.

x

y

c

y = f(x)
critical number
at x = c
f  (c) undefined

x

y

y = f(x)

o

critical number
at x = 0 
f   (o) undefinedl

l

l
l

critical numbers
at x = a and x = b
f  (a) = 0
f  (b) = 0

b
a x

y

y = f(x)

f(x) = 2x3 + 3x2 – 6x + 4
f '(x) = 6x2 + 6x – 6
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2 Set f '(x) = 0. Other than taking out a common factor of 6, you can’t
factor further, so use the Quadratic Formula to solve for x.

CRITICAL NUMBERS OF A RADICAL FUNCTION
Find the critical numbers for .

1 Rewrite the original function as a power.

2 Find f '(x) using the General Power Rule (or Chain
Rule).

3 Set the numerator equal to 0; this is where f '(x) = 0.
Set the denominator equal to 0; this is where f '(x) is
undefined.

4 Solve for x.

f x x x2 82= -^ h

x x

x x

x

0 6 6 6

0 6 1

2
1 5

2

2

!

= + -

= + -

=
-

_ i

f x x x

f x x x

2 8

2 8
/

2

2
1 2

= -

= -

^
^ _
h
h i

f x x x x

f x
x x
x

2
1 2 8 4 8

2 8
2 4

/
2

1 2

2

= - -

=
-

-

-

l

l

^ _ ^
^
h i h
h

x x
x

x x x

0
2 8
2 4

0 2 4 0 2 8

2

2

=
-

-

= - = -

2 = x 0 = 2x2 – 8x
0 = 2x(x – 4)
x = 0, or x = 4
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This section shows you how to make use of the function’s derivative and critical numbers in order
to find the intervals over which the functional values are increasing or decreasing.

DEFINITION OF INCREASING/DECREASING
FUNCTION ON AN INTERVAL
1 The function f is increasing on an open interval

(a,b), if for any two numbers c and d in (a,b) 
with c < d, then f(c) < f(d).

2 The function f is decreasing on an open interval
(a,b), if for any two numbers c and d in (a,b), 
with c < d, then f(c) > f(d).

y

x
d c

f(d)

f(c)

y

x

y = f(x)

y = f(x)

c d

f(d)

f(c)

when c � d,  f(c) � f(d)
f is increasing

when c � d, f(c) � f(d)
f is decreasing
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PROPERTIES OF INCREASING/DECREASING FUNCTIONS
ON AN INTERVAL
Let f be a continuous function on the closed interval [a,b] and
differentiable on the open interval (a,b).

1 If f '(x) > 0 for all x in (a,b), then f is increasing on [a,b].

2 If f '(x) < 0 for all x in (a,b), then f is decreasing on [a,b].

3 If f '(x) = 0 for all x in (a,b), the f is constant on [a,b].

You now have a means to determine over which intervals a
function is increasing, decreasing, or constant.

INCREASING/DECREASING INTERVALS FOR A POLYNOMIAL FUNCTION
Find the intervals over which f(x) is increasing/decreasing for the function f(x) = 2x3 + 3x2 – 12x.

Note: In the following examples, it is assumed that you will be able to use the appropriate methods to
find the derivatives, which will merely be stated (but not derived step by step).

1 Find f '(x) in simplified and factored form.

2 Set f '(x) = 0 and solve for x.

ca b
x

y

d

f l(x) = 0

f l
(x

) �
 0 f l(x) �

 0

f constant 
on (b, c)

f increasing 
on (a, b)

f decreasing 
on (c, d)

f(x) = 2x3 + 3x2 – 12x
f '(x) = 6x2 + 6x – 12
f '(x) = 6(x2 + x – 2)
f '(x) = 6(x + 2)(x – 1) 

0 = 6(x + 2)(x – 1)
x = –2, x = 1
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3 Using the zeros of f '(x), create three open intervals
and select a “test number” within each interval.

4 Determine the sign of f '(x) (+, –, or
0) at each “test number.”

Note: See Step 7 at the end of this
problem. It shows how you can quickly
determine the sign at each “test number”
by using the factored form of f '(x).

5 From the chart, you can easily identify the
regions over which f(x) is either increasing 
( ) or decreasing ( ).

6 To the right is the graph of f(x) = 2x3 + 3x2 – 12x.

43

x < –2, –2 < x < 1, and x > 1
x = –3 x = 0 x = 2

f '(x) = 6(x + 2)(x – 1) 
x < –2 –2 < x < 1 x > 1

f '(–3) = +– f '(0) = ++ f '(2) = +++

f '(–3) > 0 f '(0) < 0 f '(2) > 0

inc. dec. inc.

343

f(x) is increasing for x < –2 and for x > 1
[or, in interval notation, (– ,–2)

and (1, )].
f(x) is decreasing for –2 < x < 1 [or, in

interval notation, (–2,1)].

–2 1
x

f i
nc

. f dec.

f(x) = 2x3 + 3x2 − 12x

f i
nc

.

f(x)
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7 Here’s the note about the sign
determination of f '(x) at each test number
that was mentioned earlier:

Use the derivative f '(x) = 6(x + 2)(x – 1)
and the test numbers x = –3, x = 0, and
x = 2.

INCREASING/DECREASING INTERVALS FOR A PRODUCT INVOLVING A NATURAL LOG FUNCTION
Find the intervals over which f(x) is increasing/decreasing for the function f(x) = x3lnx.

>

f x x x

f

f

f

f x

6 2 1

2 6 2 2 2 1

2

2 0

positive

or in shorthand notation, it looks like:

so is inc.3

= + -

= + - = +++=

= +++

l

l

l

l

^ ^ ^
^ ^ ^
^
^
^ ^

h h h
h h h
h
h
h h

<

f x x x

f

f

f

f x

6 2 1

0 6 0 2 0 1

0

0 0

negative

in shorthand notation, it looks like:

so is dec.

. . .pos pos neg

4

= + -

= + - =

= ++-= -

l

l

l

l

^ ^ ^
^ ^ ^
^
^
^ ^

h h h
h h h
h
h
h h

?HH

>

f x x x

f

f

f

f x

6 2 1

3 6 3 2 3 1

3

3 0

positive

in shorthand notation, it looks like:

so is inc.

. . .pos neg neg

3

= + -

- = - + - - =

- = +--= +

-

l

l

l

l

^ ^ ^
^ ^ ^
^
^
^ ^

h h h
h h h
h
h
h h

6 7 844 44 6 7 844 44?

FAQ 
How do I know which “test numbers” to
use in my computation?
Always use numbers that will make your
computation easy.

1) If you want x < e–1/3, use e–1.

2) If you want , use x = 4.

3) If you want < < , .x xπ π
4 4

3
2
11use =

< <x3 17
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1 Find the simplified form of f'(x).

2 Set f '(x) = 0 and solve for x.

3 Create the chart showing appropriate first derivative
computations.

4 From the chart, you can easily identify the regions over which f(x) is either increasing ( ) or
decreasing ( ).

5 See the graph at right.

Note: e
e e
1 1/

/
1 3

1 3
3

= =-

4

3

f(x) = x3lnx note that the domain
of f(x) is x > 0

f '(x) = x2(3lnx + 1) 

ln

ln

ln

x x

x x

x x

x e

0 3 1

0 3 1 0

0 3
1

/

2

2

1 3

= +

= + =

= = -

= -

^ h

f '(x) = x2(3lnx + 1) 
0 < x < e–1/3 x > e–1/3

f '(e–1) = +– f '(e) = ++

f '(e–1) < 0 f '(e) > 0

34

f(x)

f dec.

f i
nc

.

x

f(x) = x3lnx

1

3 e
1
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INCREASING/DECREASING INTERVALS FOR A PRODUCT OF TRIGONOMETRIC FUNCTIONS
Find the intervals over which f(x) is increasing/decreasing for the function f(x) = sin x cos x for 0 ≤ x ≤ 2π.

1 Find the simplified form of f '(x).

2 Set f '(x) = 0 and solve for x.

3 Create the first derivative chart.

f ' (x) = cos2x – sin2x

f '(π) > 0

34343

>f π
6

11 0lb l<f
π
2

3 0lb l<f π
2 0lb l>f π

6 0lb l
< <xπ π4

7 2< <xπ π
4

5
4

7< <xπ π
4

3
4

5< <xπ π
4 4

3<x π0 4#

f(x) = sinxcosx
f '(x) =cos2x –sin2x

, , ,

cos sin

sin cos
sin cos

x x

x x

x x

x x x xπ π π π

0

4 4
3

4
5

4
7

2 2

2 2

!

= -

=

=

= = = =

10_185605-ch08.qxp  4/1/08  3:39 PM  Page 153



Increasing and Decreasing 
Functions (continued)

154

4 From the chart, you can easily
identify the regions over which
f(x) is either increasing ( ) or
decreasing ( ).

5 See the graph at right.

4

3

x

4 2
3
  4

5
  4

3
  2

7
  4

2

f(x) = sinx cosx

π π π π π π π π

f(x)

f(x) is increasing for

.

f(x) is decreasing for and .< <xπ π
4

5
4

7< <xπ π
4 4

3

< , < < , < <x x xπ π π π π0 4 4
3

4
5

4
7 2and#
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Extrema of a Function 
on a Closed Interval

The highs (maximums) and lows (minimums) of a function are known as its extrema. In this
section, you learn how to locate these extrema on a closed interval, rather than on the entire
domain of the function.

DEFINITION OF EXTREMA ON AN INTERVAL
If f is a function defined on an interval containing c,
then:

1 f(c) is a minimum of f on that interval, if f(c) ≤ f(x)
for all x in that interval.

2 f(c) is a maximum of f on that interval, if f(c) ≥
f(x) for all x in that interval.

The extrema can occur at points within the interval or at an endpoint of an interval, called endpoint
extrema.

ba

c
x

f(x)

(c, f(c))

f(c) minimum
on [a,b]

b

a
x

f(x)

(b, f(b))

f(b) minimum
on [a,b]

b
a

c
x

f(x)
(c, f(c))

maximum
on [a,b]

(a, f(a))

maximum
on [a,b]

b
a x

f(x)

FAQ 
Another name for the minimum and maximum is extrema.
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FINDING EXTREMA ON A CLOSED INTERVAL
Follow these steps to locate the extrema of continuous function f on a closed interval [a,b].

1 Find the critical numbers of f in [a,b].

2 Evaluate f at each critical number in [a,b].

3 Evaluate f at each endpoint of [a,b].

4 The smallest of these values is the minimum, and the largest of these values is the maximum.

EXTREMA OF A FUNCTION ON A CLOSED INTERVAL: POLYNOMIAL FUNCTION
Find the extrema of f(x) = 5x4 – 4x3 on the interval [–1,2].

1 Find f '(x).

2 Set f '(x) = 0 and solve for x—these are the critical numbers.

f(x) = 5x4 – 4x3

f '(x) = 20x3 – 12x2

f '(x) = 4x2(5x – 3)

x x

x x

0 4 5 3

0 5
3

2= -

= =

^ h
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3 Evaluate f(x) at each endpoint of the interval and at each critical number. (Note that you are not
finding f '(x) at each critical number.)

f (x) = 5x4 – 4x3

left endpoint critical number critical number right endpoint

f(–1) = 9 f(0) = 0 f(2) = 48

minimum maximum

f 5
3

125
27= -b l

4 State the maximum and minimum
values of f(x) in the interval.

5 See the graph at right.

The maximum of f on [–1,2] is 48 ( at x = 2).

The minimum of f on [–1,2] is (at ).x 5
3=125

27-

2

3
5

3
5

–27
125

–1

0

f(x) = 5x4 – 4x3

f(x)

( (,

(2, 48)

(–1, 9)
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EXTREMA OF A FUNCTION ON A CLOSED INTERVAL: TRIGONOMETRIC FUNCTION
Find the extrema of f(x) = sin2x + cosx on the interval [0,2π].

1 Find f '(x).

2 Set f '(x) = 0 and solve for x—these
are the critical numbers.

3 Evaluate f(x) at each endpoint of the interval and at each critical number.

f (x) = sin2x + cosx
left endpt. and crit. # critical # crit. # crit. # right endpt. and crit. #

f(0) = 1 f(π) = –1 f(2π) = 1

maximum minimum maximum

f π
3

5
4
5=b lf π

3 4
5=b l

f(x) = sin2x + cosx
= (sinx)2 + cosx

f '(x) = 2(sinx)cosx – sinx
f '(x) = 2sinxcosx – sinx

, ,

sin cos sin

sin cos

sin cos

cos

x x x

x x

x x

x x x x

x x

π π

π π

0 2

0 2 1

0 2 1 0

0 2 2
1

3 3
5

= -

= -

= - =

= = = =

= =

^ h
sinx 0=
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4 State the maximum and minimum
values of f(x) in the interval.

5 See the graph at right.

The maximum of f on [0,2π] is .

The minimum of f on [0,2π] is –1 (at π).

π π
4
5

3 3
5at andb l

f(x)

x

f(x) = sin2x + cosx

π π π

 π

π π π
3 2 2 3

25

π
33

5

30

π (( (, ,

,(   –1)

π
4

(5
4
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You are now ready to find the relative extrema over the entire domain of the function—not just on
a closed interval, as in the last section.

DEFINITION OF RELATIVE EXTREMA

• f(c) is called a relative maximum of f if
there is an interval (a,b) containing c in
which f(c) is a maximum.

• f(c) is called a relative minimum of f if
there is an interval (a,b) containing c in
which f(c) is a minimum.

THE FIRST DERIVATIVE TEST
Let f be a function that is continuous on an open interval
(a,b) containing a critical number c of f. If f is also
differentiable on (a,b), except possibly at c, then:

• f(c) is a relative minimum of f if f '(x) < 0 for x < c, but
f '(x) > 0 for x > c.

• f(c) is a relative maximum of f if f '(x) > 0 for x < c, but
f '(x) < 0 for x > c.

f(x)

x

ca

b

(a, f(a)) rel. max.

(c, f(c))

rel. min.

(b, f(b))

rel. max.

f l(x) �
 0 f l(

x) 
�

 0

(a, f(a))

rel. min.

f l(x) �
 0f l(

x) 
� 0

(b, f(b))

rel. max.
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RELATIVE EXTREMA OF A POLYNOMIAL FUNCTION
Find the relative extrema of f(x) = 3x4 – 28x3 + 60x2.

1 Find f '(x).

2 Find the critical numbers of f by setting f '(x) = 0 and then solving
for x.

3 Set up a first derivative chart to determine increasing or decreasing intervals for a function.

f(x) = 3x4 – 28x3 + 60x2

f '(x) = 12x3 – 84x2 + 120x
f '(x) = 12x (x2 – 7x + 10)
f '(x) = 12x (x– 2)(x – 5)

0 = 12x(x – 2)(x – 5)
x = 0 x = 2 x = 5

f ' (x) = 12x(x – 2)(x – 5)
x < 0 0 < x < 2 2 < x < 5 x ≥ 5

f '(–1) < 0 f '(1) > 0 f '(3) < 0 f '(6) > 0

rel. min. rel. max. rel. min.

3434

4 Identify the x coordinates of the relative
minimum/maximum of the function. Then find
f(x) for each of these x values.

The relative minimum occurs at x = 0
and at x = 5 (f(0) = 0 and f(5) = –125).

So the relative minimum values are 
0 and –125.

The relative maximum occurs at x = 2
(f(2) = 64). So the relative maximum

value is 64.
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5 The graph of f(x) = 3x4 – 28x3 + 60x2 is
shown at right.

RELATIVE EXTREMA OF A RATIONAL FUNCTION
Find the relative extrema of .

1 Find the derivative of f(x).

f x
x
x

1
1

2

2

=
-
+

^ h

f(x) = 3x4 – 28x3 + 60x2f(x)

x

(5,–125)

(0,0)

rel. min.

rel. max.

rel. min.

(2,64)

f x
x
x x f

f x
x

x
1
1 1

1

4

not in the domain of2

2

2
2

!=
-
+ =

=
-

l

^
^ _

h
h i
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2 Find the critical numbers for f(x), setting both
denominator and numerator equal to 0.

3 Set up a first derivative chart to determine increasing and decreasing intervals.

x

x

x x

x x

x

0
1

4

4 0 1 0

0 1 0
1

2
2

2
2

2

!

=
-

= - =

= - =

=

_
_

i
i

x < –1 –1 < x < 0 0 < x < 1 x > 1

f '(–2) < 0 f '(2) > 0

rel. min.

3344

>f 2
1 0lb l<f 2

1 0-lb l
f 2 = +

+l^ hf 2
1 = +

+lb lf 2
1- = +

-lb lf 2- = +
-l^ h

f x
x

x

1

4
2

2=
-

l^ _h i

4 Identify the x coordinates of the points at which the
relative minimum/maximum occur.

The relative minimum occurs
at x = 0 (f(0) = 1).

The relative maximum is 1.
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5 To the right is the graph of
.

Note the vertical asymptotes at x = –1 and
x = 1. When x = ±1, the denominator of
f(x) is zero.

f x
x
x

1
1

2

2

=
-
+

^ h

1
x

f(x)

f(x) =

–1
–1

(0,1) rel. min.

y = –1

1 + x2

1 – x2

10_185605-ch08.qxp  4/1/08  3:39 PM  Page 164



chapter8Applications of Differentiation

165

Concavity and Point 
of Inflection

The second derivative (f"(x)) allows you to find the intervals over which the graph of a function is
concave up or concave down. The points at which the concavity changes (up to down, or down to
up) locate points of inflection.

Definition of Concavity

• If the graph of f lies above all its
tangents on an interval (a,b), then f is
said to be concave upward on (a,b).

• If the graph of f lies below all its
tangents on an interval (a,b), then f is
said to be concave downward on (a,b).

TEST FOR CONCAVITY

• If f"(x) > 0 for all x in (a,b), then the graph of f is concave upward on (a,b).

• If f"(x) = < 0 for all x in (a,b), then the graph of f is concave downward on (a,b).

Note: In the examples that follow, it is necessary to find both f '(x) and f"(x) for the given function. 
Since you have already seen many, many examples of finding derivatives, f '(x) and f"(x) will be merely
stated—their derivations will not be shown here. Remember, f"(x) is just the derivative of f '(x).

f(x)

f

f concave 
upward on (a,b)

concave
upward

concave
upward

concave
downward

concave
downward

f concave 
downward on (a,b)

xa b

f(x)

xa b

f

f(x)

x

10_185605-ch08.qxp  4/1/08  3:39 PM  Page 165



Concavity and Point 
of Inflection (continued)

166

CONCAVITY FOR GRAPH OF A POLYNOMIAL FUNCTION
For the function f(x) = x4 + 2x3 – 12x2 – 15x + 22, find the intervals over which its graph is concave
upward or downward.

1 Find f '(x) and f"(x).

2 Set f"(x) = 0 and then solve for x.

3 Create a second derivative chart
using the critical numbers of
f '(x)—that is, the zeros of f"(x)—
to set up the appropriate intervals.

4 Identify the intervals of concavity:

f(x) = x4 + 2x3 – 12x2 – 15x + 22
f '(x) = 4x3 + 6x2 – 24x – 15
f"(x) = 12x2 + 12x – 24

0 = 12x2 + 12x – 24
0 = 12(x2 + x – 2)
0 = 12(x + 2)(x – 1)
x = –2, x = 1

f "(x) = 12(x + 2)(x – 1) 
x < –2 –2 < x < 1 x > 1

f"(–3) = +– – f"(0) = ++– f"(2) = +++

f"(–3) > 0 f"(0) < 0 f"(2) > 0

conc. up conc. down conc. up

,+,

The graph of f is concave upward when
x < –2 and when x > 1.

The graph of f is concave downward
when –2 < x < 1.
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5 To the right is the graph of 
f(x) = x4 + 2x2 – 12x2 – 15x + 22.

Note: The graph will have two relative minimums
and one relative maximum. Locate these points by
using f '(x) and a first derivative chart.

–2

conc. up

conc. up

conc. down

f(x) = x4 + 2x3 – 12x2 – 15x + 22

1

f(x)
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Other features of concavity are listed below:

• The graph of f is concave upward on (a,b) if f ' is
increasing on (a,b).

• The graph of f is concave downward on (a,b) if f ' is
decreasing on (a,b).

f(x)

f

x

–

–
+

+

0

0

a b

f(x) decreasing on (a,b)
<concave down>

f(x) increasing on (a,b)
<concave up>

Note: –, 0, + indicate slope
of curve, i.e., f 1(x)

f(x)

x
a b

f

Definition of an Inflection Point

The point P is called a point of inflection for the
graph of f if the concavity changes at the point P. P

concave 
down

concave 
up

concave 
down P

concave 
up
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DETERMINING CONCAVITY AND FINDING AN INFLECTION POINT: POLYNOMIAL FUNCTION
Find the intervals over which the graph of f(x) = 4x3 – x4 is concave upward and downward, and find any
inflection points.

1 Find f '(x) and f"(x).

2 Set f"(x) = 0 and solve for x.

3 Create a second derivative chart.

4 Identify the intervals of
concavity and any points
of inflection.

f(x) = 4x3 – x4

f"(x) = 12x2 – 4x3

f"(x) = 24x – 12x2

f"(x) = 12x(2 – x) 

0 = 24x – 12x2

0 = 12x(2 – x)
x = 0 x = 2

f " (x) = 12x(2 –x)
x < 0 0 < x < 2 x > 2

f"(–1) = –+ f "(1) = ++ f"(3) = +–

f"(–1) < 0 f"(1) > 0 f"(3) < 0

conc. down conc. up conc. down

+,+

The graph of f is concave downward when 0 < x < 2.
The graph of f is concave upward when x < 0 and when x > 2.
Since the concavity changes at x = 0 and then again at x = 2,
these are the x coordinates of the points of inflection for the

graph of f. f(0) = 0 and f(2) = 16.
Therefore, (0,0) and (2,16) are the points of inflection.
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5 To the right is the graph of f(x) = 4x3 – x4.

DETERMINING CONCAVITY AND FINDING AN INFLECTION POINT: RADICAL FUNCTION
For the graph of , find the intervals of concavity and any inflection points.

1 Calculate f '(x) and f "(x).

2 Find the critical numbers of f '(x) and set both the
numerator and denominator of f "(x) = 0.

f x x x 2= +^ h

f(x)

x

(2,16)

(0,0)

f(x) = 4x3 – x4

>f x x x f x

f x
x

x

f x
x
x

2 2

2 2 2
3 4

4 2
3 8

domain of is

/3 2

= + -

=
+

+

=
+

+

l

m

^
^
^ ^

h
h
h h

x
x

x x

0
4 2

3 8

3 8 0 4 2 0

/

/

3 2

3 2

=
+

+

+ = + =

x 2= -x 8
3

= -

^
^

h
h
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3 Prepare the second derivative chart. Notice that since the domain
of f is x > –2, you will have only one column in your chart.

Note: Since is not in the domain of the function, the only 

numbers to check are x > –2.

4 Identify the intervals of concavity and any
points of inflection.

5 See the graph of at right.f x x x 2= +^ h

x 3
8= -

f x
x
x

4 2
3 8

/3 2=
+

+m^ ^h h
>

>

x

f

f

2

0

0 0

,

-

= +
+m

m

^
^
h
h

conc. up 

The graph of f is concave upward for x > –2;
in other words, everywhere in its domain.
As such, there are no points of inflection.

f(x)

x

f(x) = x x + 2

concave up
everywhere

–2
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Sometimes you can avoid making a first derivative chart when trying to locate the relative
minimum or maximum values of a function f. Using both the first and second derivatives allow you
to save some time and work.

The Second Derivative Test for Relative Extrema

Let f be a function for which f '(c) = 0 and the
second derivative of f exists at c. Then:

• If f"(c) > 0, then f(c) is a relative minimum.

• If f"(c) < 0, then f(c) is a relative maximum.

• If f"(c) = 0, then the second derivative test
fails; you must use the first derivative test
instead.

SECOND DERIVATIVE TEST AND RELATIVE EXTREMA OF A POLYNOMIAL FUNCTION
Find the relative extrema for f(x) = x3 – 3x2 – 9x + 7.

f(x)

f

c x

f concave
f �(c) � 0

f �(c) = 0

rel. min. f(c)up

f

f(x)

c x

f �(c) = 0

rel. max. f(c)

concave

f �(x) � 0
down

10_185605-ch08.qxp  4/1/08  3:39 PM  Page 172



chapter8Applications of Differentiation

173

1 Find f '(x).

2 Set f '(x) = 0 and then solve for x.

3 Find f"(x).

4 Find f"(x) for
each value of x
in Step 2.

5 Find f(–1) and f(3).

f (x) = x3 – 3x2 – 9x + 7
f"(x) = 3x2 – 6x – 9

0 = 3x2 – 6x – 9
0 = 3(x2 – 2x – 3)
0 = 3(x + 1)(x – 3)
x = –1 x = 3

f"(x) = 3x2 – 6x – 9
f"(x) = 6x – 6

f"(–1) = 6(–1) – 6 f"(3) = 6(3) – 6
f"(–1) = –12 f"(3) = 12
f"(–1) < 0 f"(3) > 0

Since f '(–1) = 0 and f"(–1) < 0, there is a relative maximum at x = –1.
Since f '(3) = 0 and f"(3) > 0, there is a relative minimum at x = 3.

f(x) = x3 – 3x2 – 9x + 7
f(–1) = 12 f(3) = –20

Therefore, 12 is the relative maximum and –20 is the relative minimum.
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6 The graph of f(x) = x3 – 3x2 – 9x + 7 is shown at
right.

SECOND DERIVATIVE TEST FOR EXTREMA: TRIGONOMETRIC FUNCTION
For f(x) = sin x + cos x, find the relative extrema on the interval [0,2π].

1 Find the first derivative.

2 Set f '(x) = 0 and solve for x.

3 Find the second derivative.

–1

(–1, 12)

(3,–20)

3

f(x)
f(x) = x3 – 3x2 – 9x + 7

x

f(x) = sinx + cosx
f '(x) = cosx – sinx

cos sin

sin cos

x x

x x

x xπ π

0

4 4
5and

= -

=

= =

f '(x) = cosx – sinx
f"(x) = –sinx –cosx
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4 Find .

5 Find .

6 At right is the graph of f(x) = sin x + cos x.

f fπ π
4 4

5andb bl l

f fπ π
4 4

5andm mb bl l

< >

sin cos sin cosf

f

f

f

f

f

f

f

π π π

π

π

π

π π π

π

π

π

4 4 4

4 2
2

2
2

4 2

4 0

4
5

4
5

4
5

4
5

2
2

2
2

4
5 2

4
5 0

= - -

= - -

= -

= - -

= - - - -

=

m

m

m

m

m

m

m

m

b
b
b
b

b
b f f
b
b

l
l
l
l

l
l p p
l
l

f fπ π
4 2 4

5 2= = -b bl l
With , there is a relative maximum 

at . Therefore, is the relative maximum.

With , there is a relative minimum 

at . Therefore, is the relative minimum.2-x π
4

5=

>f fπ π
4

5 0 4
5 0and=l mb bl l

2x π
4=

<f fπ π
4 0 4 0and=l mb bl l

x

4 2
5
  4

3
  2

2

, –  2

f(x) = sinx + cosx

π π π π π π

5
  4

π

,  2  4
π(

(

(

(

f(x)
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The derivative is used to solve many types of
word problems in calculus. The first type of

word problem covered in this chapter is optimization,
in which you are asked to determine such things as
the largest volume or the least cost. The second type
of problem contains related rates in which you will
find the rate at which the water level in a tank is
changing or the rate at which the length of a shadow
is changing. The last type of word problem requires
you to use the derivative to go from a position
function to its velocity and its acceleration functions.

chapter 9
Additional Applications

of Differentiation:
Word Problems

Optimization. . . . . . . . . . . . . . . . . . . . . 177

Related Rates . . . . . . . . . . . . . . . . . . . . 183

Position, Velocity, and Acceleration . . . 188
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Optimization

A common application of the use of the derivative in calculus is determining the minimum and
maximum values of a function which describes a word problem—for example, the largest area,
least time, greatest profit, or the most optimal dimensions.

Volume of a Box Problem

Let’s say you are cutting equal squares from each corner
of a rectangular piece of aluminum that is 16 inches by 21
inches. You will then fold up the “flaps” to create a box
with no top. Find the size of the square that must be cut
from each corner in order to produce a box having
maximum volume.

1 Let x be the length of a side of each square to be
removed. After the squares are removed from
each corner, the aluminum now looks like the
figure at right.

x x

x

16

21

x

x

x

x

x

16 – 2x

21 – 2x

x

x

x

x

x

xx

x

Additional Applications of Differentiation: 
Word Problems
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2 When the flaps are folded up, the box has the dimensions
shown.

3 Letting V(x) represent the volume of the box, you have:

4 Since the length, width, and height of the box
must be greater than 0, you have:

5 Expand V(x) and simplify.

6 Since you are trying to find a maximum volume,
calculate V'(x) and set it equal to 0.

7 Factor and then solve for x.

x

21 – 2x

16 – 2x

V(x) = (21 –2x)(16 – 2x)x

x > 0 21 – 2x > 0 16 – 2x > 0
21 > 2x 16 > 2x

x < 10.5 x < 8
So the domain of V(x) must be 0 < x < 8.

V(x) = 4x3 – 74x2 + 336x

V'(x) = 12x2 – 148x + 336
0 = 12x2 – 148x + 336

x x

x x

x or x V x

0 4 3 37 84

0 4 3 3 28

3 3
28 not in domain of

2= - +

= - -

= =

_
^ ^

^

i
h h

h
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8 Since you are locating a maximum in a closed interval
[0,8], find the value of V at the endpoints and at the
critical numbers in that interval.

x = 3

9 V(3) = 450 is the maximum box volume.

V(x) = (21 – 2x)(16 – 2x)x
V(0) = 0
V(3) = (21 – 6)(16 – 6)3 = 450
V(8) = (21 – 16)(16 – 16)8 = 0

From each corner, cut squares of 3 inches.

Cylindrical Can Construction Problem

A right circular cylinder has a volume of 2π cubic inches. Find the can dimensions
that require the least amount of aluminum to be used in the can’s construction.

1 You are looking for the least (that is, minimum) total surface area
of the can.

Let A = area function, r = base radius, and h = can height.

2 You need to have the area function A in terms of just one variable. Use the
given volume to find a relationship between h and r.

h

r

A = 2πr2 + 2πrh

V r h

r h

r
h

π
π π2
2

2

2

2

=

=

=
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3 Substitute into the area function A.

4 Find A'(r).

5 Set A'(r) = 0 and then solve for r.

h
r
2

2= A r rh

A r r
r

A r r r

π π

π π

π π

2 2

2 2 2

2 4

2

2
2

2

= +

= +

= +

c
^

m
h

A r r r
A r r r

A r r r

A r r
r

π π

π π
π π

π π

2 4

2 4

4 4

4 4

2

2 1

2

2

= +

= +

= -

= -

-

-l

l

^
^
^
^

h
h
h
h

The radius of the base is 1.

A r r
r

r
r

r

r

r

π π

π π

π π
π

4 4

0 4 4

0 4 4

0 4 1

1

2

2

3

3

= -

= -

= -

= -

=

l^

_

h

i

TIP
Instead of using the Quotient Rule to find the last
term’s derivative, bring the r up to the top and use the
Power Rule.

TIP
Multiply all terms by r2 to get rid of the denominator
in the last term of the equation.
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6 Verify that r = 1 yields a minimum value for A(r).
This time, let’s use the second derivative test.

7 Find value of h, using r = 1.

Note: The result says that the can’s height and base
radius should be the same number.

Since A"(1) > 0, graph of A(r) is
concave upward at r = 1, A(r) will
have a minimum value at r = 1.

A r r r

A r r

A r
r

A

π π
π π

π π

π π π

4 4

4 8

4 8

1 4
1
8 12

2

3

3

3

= -

= +

= +

= + =

-

-

l

m

m

m

^
^
^
^

h
h
h
h

So r = 1 and h = 2 results in a can
with the desired volume, yet the
minimum (least) cost to construct.

h
r

h

h

2

1
2

2

2

2

=

=

=

Bus Company Fare Problem

A bus company currently carries an average of 8,000 riders daily. In anticipation of a fare increase, the
bus company conducts a survey of its riders revealing that for each 5¢ increase in the fare, the company
will lose an average of 800 riders daily. What fare should the company charge in order to maximize its
fare revenue?

1 Let R(f) be the daily revenue function, for
which f = the number of 5¢ fare increases.
This is shown at right.

, , ,

R f f f

R f f f

20 5 8000 800

4 000 24 000 160 000

for each cent

fare increase
will lose

riders

5

800

2

= + -

= - + +

_ _ _
_

i i i
i
6 7 844 44 6 7 8444 444
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2 Find R'(f).

3 Set R'(f) = 0 and solve for f.

4 Verify that f = 3 gives the company its maximum revenue.

R'(f) = –8,000f + 24,000

0 = –8,000f + 24,000
8,000f = 24,000

f = 3

Increasing the fare 3 times
gives you 3(5¢) = 15¢. The
new fare, therefore, should
be 20 + 5(3) = 35¢.

R'(f) = –8,000f +24,000
R"(f) = –8,000

Since R"(f) < 0, the
graph of R(f) is concave
downward, f = 3 results
in a maximum.
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Related 
Rates

In Chapter 7, you found derivatives such as by using implicit differentiation. You will

use the same process in this section when two or more related variables are changing with respect

to the same third variable—here, time.

, ,dy
dy

dt
dx

dt
dV

Conical Water Tank Problem

A conical tank (with its vertex down) is 8 feet tall and 6 feet across its diameter. If water is flowing into

the tank at the rate of 2 ft.3/min., find the rate at which the water level is changing at the instant the water

depth is .

1 Let h = the depth of the water in the tank and let r = radius of the circular
surface to the water at that time.

2 Write a formula for the volume of the water in the tank for a given height
and radius.

3 Since you need to have the volume function in terms of
just one variable, find a relationship between h and r
by using the similar triangles in the figure at right.

ft3
2

h

8

3

r

V r hπ3
1 2=

The red right triangle is similar
to the blue right triangle.

h
r

8
3 =

11_185605-ch09.qxp  4/1/08  3:40 PM  Page 183



Related Rates 
(continued)

184

4 Cross-multiply and then solve for r in terms of h; you are

given , so you need to have the volume formula in terms of

just h.

5 Substitute into the volume formula.

6 Differentiate, treating V and h as functions of time, t.

7 The given data is . Substitute into the

derivative and then solve for .dt
dh

,dt
dV h2 3

2and= =

h r8
3 =

dt
dh

h r

h r

3 8

8
3

=

=

V r h

V h h h

V h h h

V h h

π

π

π

π

3
1

3
1

8
3

3
1

64
9

64
3

2

2

2

3

=

=

=

=

$ $

^ b
^
^

h l
h
h

dt
dV h dt

dhπ
64
3 3 2= $

The water depth is changing

at a rate of ./ .minftπ
32

dt
dV h dt

dh

dt
dh

dt
dh

dt
dh

π

π

π

π

64
3 3

2 64
9

3
2

2 16
32

2

2

=

=

=

=

$

b l
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Light Pole and Shadow Problem

A 5-foot-tall woman walks at a rate of 4 feet per second away from a 12-foot-tall pole with a light on top
of it.

PART A
Find the rate at which the tip of the woman’s shadow is moving away from the base of the light pole.

1 Let w = the distance from the woman to the light
pole and let L = the distance from the tip of the
shadow to the light pole.

2 Using similar right triangles, write a relationship between L and w.

3 Cross-multiply and then solve for L in terms of w.

w

12
5

L

L – w

L L w
12 5= -

L w L

L w L

L w

L w

12 5

12 12 5

7 12

7
12

- =

- =

=

=

^ h
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4 Differentiate and again treat all variables as some function
of time, t.

5 Substitute and then solve for .

Note: It may seem strange, but the rate at which her shadow is
moving away from the pole is independent of her distance
from the pole!

PART B
Find the rate at which the length of the woman’s shadow is changing.

1 Let w = the distance from the woman to the light
pole and let L = the length of the shadow (the
distance from the woman to the tip of the shadow).

dt
dL

dt
dw 4=

dt
dL

dt
dw

7
12=

The tip of her shadow is

moving away from the

pole at a rate of ./ .secft7
48

dt
dL

dt
dL

7
12 4

7
48

=

=

$

w

12

L

w + L

5
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2 Relate w and L using the red and blue similar right triangles.

3 Solve for L in terms of w.

4 Differentiate with respect to time, t.

5 Substitute and then solve for .dt
dL

dt
dw 4=

w L L
12 5
+ =

L w L

L w L

L w

L w

12 5

12 5 5

7 5

7
5

= +

= +

=

=

^ h

dt
dL

dt
dw

7
5=

The length of her

shadow is changing at

a rate of ./ .secft7
20

dt
dL

dt
dL

7
5 4

7
20

=

=

$
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In previous chapters, you found that if s(t) = the position function, then s'(t) = v(t) = the velocity
function and s"(t) = v'(t) = a(t) = the acceleration function.

Rocket Problem

A small toy rocket is shot into the air from the top of a tower. Its position, s, in feet, t seconds after
liftoff, is given by the equation s(t) = –16t2 + 32t + 240.

PART A
Find the velocity of the rocket 2 seconds after liftoff.

1 Starting with the position function s(t), find the velocity
function v(t).

2 Find v(2).

PART B
For how many seconds will the rocket be in the air?

Find the time at which the rocket lands on the ground—that is,
when s(t) = 0.

s(t) = –16t2 + 32t + 240
s'(t) = v(t) = –32t + 32

v(t) = –32t + 32
v(2) = –32(2) + 32
v(2) = –32

After 2 seconds, the rocket’s velocity is –32
feet/second. (The negative velocity indicates
that the rocket is moving downward.)

The rocket is in the air
for 5 seconds.

s t t t

t t

t t

t t

t t

16 32 240

0 16 32 240

0 16 2 15

0 16 5 3

5 3

2

2

2

=- + +

=- + +

=- + -

=- - +

= = -

^
_
^ ^

h

i
h h
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PART C
With what velocity will the rocket hit the ground?

1 Start with the velocity function v(t).

2 Find v(5).

Note: We used t = 5, since that’s the time
when the rocket hits the ground.

PART D
How many seconds after liftoff will the rocket reach its
maximum height?

You need to find when the rocket stops moving—that is,
when v(t) = 0.

PART E
Find the maximum height reached by the rocket.

1 Start with position function, s(t).

v(t) = –32t + 32

v(5) = –32 • 5 + 32
v(5) = –160 + 32
v(5) = –128

The rocket hits the ground with a velocity of
–128 feet/second. Again, the negative indicates
that the rocket is moving downward.

v(t) = –32t + 32
0 = –32t + 32

–32t = 32
t = 1

The rocket reaches its maximum
height after 1 second.

s(t) = –16t2 + 32t + 240
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2 Find s(1). s(1) = –16(1)2 + 3291) + 240
s(1) = –16 + 32 + 240
s(1) = 256

The maximum height reached
by the rocket is 256 feet.

Particle Moving Along a Straight Line Problem

This type of problem is also known as a “rectilinear motion” problem. A particle moves along the x-axis
so that its x-coordinate at time t (seconds) is given by the position function: x(t) = 3t4 – 28t3 + 60t2.

PART A
At what time is the particle at rest?

1 The particle is at rest when its velocity is 0. First, find
the velocity function.

2 Set v(t) = 0 and then solve for t.

x(t) = 3t4 – 28t + 60t2

x'(t) = v(t) = 12t3 – 84t2 + 120t

0 = 12t3 – 84t2 + 120t
0 = 12t(t2 – 7t + 10)
0 = 12t(t – 2)(t – 5)
t = 0, t = 2, and t = 5

The particle is at rest at 0, 2, and
5 seconds.
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PART B
During what time intervals is the particle
moving to the left? During what time intervals
is the particle moving to the right?

Create a first derivative chart, using the
numbers obtained in Part A.

PART C
Find the total distance traveled by the particle in the first 5 seconds.

1 Start with the position function, x(t).

2 Using the zeros of v(t), t = 0, t = 2, and t = 5, find the value of
x(t) for each of these times.

3 Find the distance traveled in each time
interval, and then find the sum of these
two distances.

x' (t ) = v(t) = 12t3 – 84t2 + 120t
0 < t < 2 2 < t < 5 t > 5

v(1) > 0 v(3) < 0 v(6) > 0

→ ← →
right left right

The particle is moving right when 0 < t < 2
and when t > 5.

The particle is moving left when 2 < t < 5.

x(t) = 3t4 – 28t3 + 60t2

x(0) = 0
x(2) = 64
x(5) = –125

From 0 to 2 seconds: 64 – 0 = 64 units
From 2 to 5 seconds: 64 – (–125) = 189 units
Total distance traveled in first 5 seconds is
64 + 189 = 253 units.

TIP
When the velocity is negative, the particle is
moving left.

When the velocity is positive, the particle is
moving right.
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PART D
What is the particle’s acceleration at t = 1?

1 Start with the velocity function v(t).

2 Find a(t), the acceleration function.

3 Find a(1).

PART E
At what time is the particle moving with constant velocity?

1 Begin with the acceleration function, a(t).

v(t) = 12t3 – 84t2 + 120t

v'(t) = a(t) = 36t2 – 168t + 120

a(1) = 36(1)2 – 168(1) + 120
a(1) = –12

The particle’s acceleration at t = 1 is –12 ft/sec2,
with the negative indicating that the particle is
slowing down or “decelerating.”

a(t) = 36t2 – 168t + 120
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2 The particle moves at constant velocity when it is not
accelerating, so set a(t) = 0.

3 Since the equation factors no further, use the
Quadratic Formula to find the values of t.

0 = 36t2 – 168t + 120
0 = 12(3t2 – 14t + 10) 

The particle is moving with constant
velocity at approximately 3.79 seconds
and 0.88 seconds.

t

t

t

t

2 3
14 14 4 3 10

6
14 196 120

6
14 2 19

3
7 19

2
!

!

!

!

=
- - - -

=
-

=

=

^
^ ^ ^ ^

h
h h h h

TIP
For the quadratic equation ax2 + bx + c = 0, the 
solution is 

x
2a

b  – 4ac
2

!
=

- b
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This chapter is the first of three chapters that deal
with the process of starting with the derivative

of a function and working backward to get the
original function, called the antiderivative. This
process is known as integration. This chapter
covers both the indefinite and definite integrals,
along with their properties, as well as the First and
Second Fundamental Theorems of Calculus and the
Mean Value Theorem.
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Antiderivatives: Differentiation
versus Integration

The process of finding a function from which a given derivative is derived is known as
antidifferentiation, or integration. This section introduces that relationship and covers the
indefinite integral and its properties.

Definition of an Antiderivative

A function, F, is called an antiderivative of function f on an interval if F'(x) = f(x) for all x in that
interval.

Let F(x) = x3 – 7x + 6; then F'(x) = f(x) = 3x2 – 7.

1 One antiderivative of f(x) = 3x2 – 7 is the function F(x) at right.

2 A second antiderivative of f(x) = 3x2 – 7 is the function 
F(x) at right.

3 In each case above, F'(x) = f(x). So it appears
that a given function f(x) has an infinite number
of antiderivatives, F(x), all differing from each
other by just a constant.

F(x) = x3 – 7x + 6

F(x) = x3 – 7x – 15

You, therefore, write the most general
antiderivative of f(x) = 3x2 – 7 as 
F(x) = x3 – 7x + c, where c is just
some constant.
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Finding Some Antiderivatives

1 Find the antiderivative of f(x) = cos x.

2 Find the antiderivative of .

3 Find the antiderivative of f(x) = ex.

f x x
1=^ h

F(x) = sin x + c because F'(x) = f(x) 

F(x) = ln x + c because F'(x) = f(x).

F(x) = ex + c because F'(x) = f(x).
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The Indefinite Integral 
and Its Properties

This section introduces the indefinite integral (an antiderivative) of a function along with its
properties. The section also includes some examples of finding indefinite integrals.

Definition of the Indefinite Integral

The indefinite integral of a function f(x), written as , is the set of all antiderivatives of the
function f(x).

In the expression :

is the integral symbol.
“f(x)” is called the integrand.
“dx” tells you that the variable of integration is x.

FINDING SOME INDEFINITE INTEGRALS

1 Because 

2 Since 

3 Because dx
d e e2x x2 2

&=_ i

sin cosdx
d x x &=^ h

dx
d x x x7 3 73 2

&- = -_ i

�
f x dx� ^ h

f x dx� ^ h

is read

“the integral of f of

x with respect to x.”

f x dx� ^ h

x dx x x c� 3 7 72 3- = - +_ i

cos sinxdx x c� = +

e dx e c� 2 x x2 2= +_ i
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4 Since 

FINDING A PARTICULAR ANTIDERIVATIVE
Find the particular antiderivative of f '(x) = 3x2 – 7 that satisfies the condition f(1) = 3.

You need to find a specific or “particular” value of c for the antiderivative of 3x2 – 7.

1

2 Since f(1) = 3, when x = 1, f(x) = 3.

3 Since you found a particular (or specific) value of c,
you have found a “particular” antiderivative of 
f '(x) = 3x2 – 7.

f x f x dx�= l^ ^h h

lndx
d x x

1
&=^ h lnx dx x c� 1 = +b l

TIP
The is there since you can’t take the
natural log of a negative number.

x

This was shown in the
preceding section.

f x x dx

f x x x c

� 3 7

7

2

3

= -

= - +

^ _
^
h i
h

3 = (1)3 – 7(1) + c
9 = c

f(x) = x3 – 7x + 9 is the particular
antiderivative of f '(x) = 3x2 – 7.

TIP
Continuity Implies Integrability
If a function f is continuous on the closed interval [a,b], then f is also integrable
on [a,b]. (The term integrable means that you are able to integrate it.)
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FINDING A FUNCTION FROM ITS SECOND DERIVATIVE
Find the function f(x) for which f"(x) = 32, f '(1) = 36, and f(1) = 16.

1 Find f '(x) from the given data f"(x) = 32.

2 You are given f '(1) = 36; use this to find the value of c1.

3 Find f(x).

Note: A second constant, c2, is used here. The constant c1 is 
from the first integration step. We cannot assume that these are
equal, so they need to be labeled separately.

4 You are told that f(1) = 16; use this fact to find the
value of c2.

f x f x dx

f x dx

f x x c

�
�32

32 1

=

=

= +

l m

l

l

^ ^
^
^
h h
h
h

f '(1) = 32(1) + c1

36 = 32 + c1

4 = c1

Therefore, f '(x) = 32x + 4.

f x f x dx

f x x dx

f x x x c

�
� 32 4

16 42
2

=

= +

= + +

l^ ^
^ ^
^

h h
h h
h

f '(1) = 16(1)2 + 4(1) + c2

16 = 16 + 4 + c2

–4 = c2

Thus, f(x) = 16x2 + 4x – 4.
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Properties of Indefinite Integrals

If f and g are continuous functions and defined on the same interval and K is some constant, then the
following properties apply:

1 Integral of dx:

2 Integral of a constant: 

3 Integral of constant times a function:

, where 4c = m is just

another constant. 

Another way to deal with the constant is as follows:

4 Integral of the sum/difference of functions:

f x g x dx f x dx g x dx� � �! !=^ ^_ ^ ^h hi h h

k f x dx f x dx� �5=$ $^ ^h h

k dx kx c� = +

dx x c� = + dx x c

dx x c

�
�

5 5

2
1

2
1

= +

= +

Just integrate everything and put a
+ c at the end.

x dx x dx

x x c

x x c

� �4 3 7 4 3 7

4 7

4 28

2 2

3

3

- = -

= - +

= - +

_ _
_

i i
i

x dx x dx

x x c

x x c

x x m

� �4 3 7 4 3 7

4 7

4 28 4

4 28

2 2

3

3

3

- = -

= - +

= - +

= - +

_ _
_

i i
i

Note that only one “+ c” was written; if
you used separate “+ constant” for each
function, their sum would just be another
constant anyway.

cos cos

sin ln

x x dx xdx x dx

x x c

� � �1 1+ = +

= + +

b l
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Common 
Integral Forms

To create an integral formula from a known derivative formula, just write the formula in

“reverse,” adding the correct integral notation and the “+ c.” For example, since ,

you can also write that . The following integral formulas were created by just

reading an existing differentiation formula in reverse.

POWER
Use the formula below to
integrate some power of a
variable. If you were to
differentiate the right side,
you would end up with the
left side.

POLYNOMIAL
Using a combination of the properties listed in previous
sections and the Power Rule listed above, you can find the
integral of a polynomial as follows:

a x a a x a x a dx

a n
x a n

x a x a x a x c

�

1 3 2

n
n

n

n

n

n

n

1
2

1
1

02

1

1

3

1

2

02

f

f

+ + + + +

=
+

+ + + + +

-

+

-

_ i

,x dx n
x c n� 1 1forn

n 1

!=
+

+ -
+

cos sinxdx x c� = +

sin cosdx
d x x=^ h

x dx x c x c

x dx
x dx x c x c x c

�

� �

4 4
1

2
1

2
1

2
1

2
1

or

/
/

/

3
4

4

1 2
1 2

1 2

= + +

= = + = + = +-

R

T

S
S
SS

V

X

W
W
WW

x x dx

x x x c

x x x c

� 3 6 5

3 3 6 2 5

3 5

2

3 2

3 2

- +

= - + +

= - + +

$ $

_ i
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NATURAL LOGARITHM

Integrating the expression is just a matter of using the

derivative on lnx in reverse. Since the

following formula must be true.

EXPONENTIAL
The following derivative rules come from their appropriate
derivative counterparts for exponential functions found in
Chapter 6.

TRIGONOMETRIC: COSINE AND SINE
The following integral formulas follow directly from their
derivative counterparts found in Chapter 5.

TRIGONOMETRIC: SOME OF THE OTHERS
Looking back at the trigonometric derivative formulas in
Chapter 6, you can see that the following integral formulas
result from the process of antidifferentiation.

sec tan

csc cot

sec tan sec

csc cot csc

xdx x c

xdx x c

x xdx x c

x xdx x c

�
�
�
�

2

2

= +

= - +

= +

= - +

cos sin

sin cos

xdx x c

xdx x c

�
�

= +

= - +

lne dx e c a dx a
a c� �andx x x

x

= + = +

lnx dx x c� 1 = +

lndx
d x x

1=

x
1

Note: Since you cannot find 
the natural log of a negative
number, the absolute value 
⏐n⏐x⏐ is used.

lnx dx x dx x c� �3 3 1 3= = +

ln

e dx e dx e c

dx c

� �
�

5 5 5

2 2
2

x x x

x
x

= = +

= +

cos sin

cos sin

cos sin

sin cos

sin cos

x x dx

xdx xdx

xdx xdx

x x c

x x c

�
� �
� �

2 3

2 3

2 3

2 3

2 3

+

= +

= +

= + - +

= - +

^

^

h

h

sec sec tan

sec sec tan

tan sec

tan sec

x x x dx

xdx x xdx

x x c

x x c

�
� �

2

2

+

= +

= + +

= + +

_ i
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First Fundamental 
Theorem of Calculus

If the function f is continuous on the closed interval [a,b] and F is an antiderivative of f (that is,

F'(x) = f(x) ) on the interval [a,b], then .

Another way to write the final result is . In other words, it says “after finding

the antiderivate, F(x), find the value at the top limit of integration, F(b), then find the value at the bottom

limit of integration, F(a), and then find their difference, F(b) – F(a).”

The a and b on the integral sign are called the limits of integration, and the dx indicates that

a and b are x values; thus the function f(x) being integrated must be a function of x.

The expression is called a definite integral.

Note: The definite integral represents a number (a definite value), while the indefinite

integral f(x)dx represents a family of functions (remember the “+ c”), and not a definite, or specific,

function.

EVALUATE A DEFINITE INTEGRAL:
EXPONENTIAL FUNCTION

Evaluate .

EVALUATE A DEFINITE
INTEGRAL: TRIGONOMETRIC
FUNCTION

Evaluate .cos xdx�
/π

0

6

e dx� x

0

1

f x dx�
a

b ^ h
f x dx�

a

b ^ h

f x dx�
a

b ^ h

F x F b F a
a

b

= = -^ ^ ^h h h8 B

f x dx F b F a�
a

b

= -^ ^ ^h h h

f x dx F x F b F a

e dx e e e e

�

� 1

follow the pattern above for problem below
a

b

a

b

x x

0

1

0

1
1 0

= = -

= = - = -

^ ^ ^ ^h h h h8

7

B

A

cos sin sin sinxdx x� π
6 0 2

1 0 2
1/ /π π

0

6

0

6
= = - = - =b ^l h6 @
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EVALUATE A DEFINITE INTEGRAL: POLYNOMIAL FUNCTION

Evaluate .

1 Find the integral with limits written on the bracket.

2 With F(x) = x2 – x3, find F(2) – F(–1).

x x dx� 2 3
1

2
2-

-
_ i

x x dx

x x

� 2 3
1

2
2

2 3

1

2

-

= -

-

-

_ i
7 A

2 2 1 1

4 8 1 1

6

F
F

2 3

2

2 3

1

= - - - - -

= - - +

= -

-

_
^

^ ^a
^

^ ^

i
h

h h k
h

h h
1 2 3444 444\
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The Definite Integral 
and Area

One of the applications of the definite integral is finding the
area of a region bounded by the graphs of two functions.

Let f be a continuous function on [a,b] for which f(x) ≥ 0 for all x

in [a,b]. Let R be the region bounded by the graphs of y = f(x) and

the x-axis and the vertical lines x = a and x = b. Then the area, AR,

of the region is given by .A f x dx�R a

b

= ^ h

y

x
a

x = a x = b

b

R

y = f(x)

Area of a Bounded Region: Linear Function

Find the area of the region bounded by the graph of y = 2x, y = 0
(the x-axis), and the lines x = 0 (the y-axis) and x = 3.

1 Sketch a diagram of the bounded region.

2 Set up the integral with a = 0, b = 3, and f(x) = 2x.

y

0

x = 0 x = 3

3

R

y = 2x

y = 0

A f x dx

xdx

�
� 2

R a

b

0

3

=

=

^ h
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3 Evaluate the integral.

4 You could have just found the area of the triangle with a base
of 3 and a height of 6.

AREA OF A BOUNDED REGION: TRIGONOMETRIC FUNCTION
Find the area of the region bounded by the graphs of y = cos x, y = 0,
and x = 0.

1 Sketch a diagram; note that cos x = 0 when .

2 Set up the appropriate integral representing the area of the
given region.

3 Evaluate the integral.

x π
2=

Therefore, AR = 9.

x x2
2 3 0 9

2

0

3

2

0

3
2 2= = = - =< 7F A

A bh2
1

2
1 3 6 9= = =$ $

y

0

x = 0

R

y = cosx

y = 0
2
π

cosA xdx�
/

R

π

0

2

=

sin sin sinx π
2 0 1 0 1

/π

0

2
= = - = - =b ^l h6 @
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Some Properties of the Definite Integral

1 If the function f is defined at x = a, then .

It simply states that the area from x = a to x = a is 0.

There is no work required; the area is just 0.

2 If the function f is integrable on [a,b], then

. This makes sense, since by

switching the order of the limits of integration, you just

switch the order of the subtraction when you evaluate

the integral.

3 For a < b < c, if the function f is integrable on [a,b], [b,c],

and [a,c], then .f x dx f x dx f x dx� � �
a

c

a

b

b

c

= +^ ^ ^h h h

f x dx f x dx� �
a

b

b

a

= -^ ^h h

f x dx� 0
a

a

=^ h ln sinx e x dx� 0x

5

5

+ + =_ i

f x dx f x dx� �
5

2

2

5

= -^ ^h h

y

x

y = f(x)

a b c

In terms of area,

f x dx f x dx f x dx� � �
a

c

area of green

region

a

b

area of red

region

b

c

area of blue

region

= +^ ^ ^h h h
1 2 344 44 1 2 344 44 1 2 344 44
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4 If the function f is

integrable on [a,b]

and k is a constant,

then .

5 If the functions f and g are integrable on [a,b], then

.f x g x dx f x dx g x dx� � �
a

b

a

b

a

b

! !=^ ^_ ^ ^h hi h h

k f x dx k f x dx� �
a

b

a

b

=$ $^ ^h h

x dx x dx x� �12 12 12 4 12 4
16

4
1 12 4

15 45
1

2
3

1

2
3

4

1

2

= = = - = =$ b bl l< F

ln ln

x e dx

x dx e dx

e e e

e e

e e

�

� �

1

1

1

1 0

1

e
x

e e
x

e

e

e

1

1 1

1

1

1

+

= +

= - + -

= - + -

= + -

b

^ ^

l

h h
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Second Fundamental
Theorem of Calculus

Let f be a function that is continuous on [a,b], and let x be any number in [a,b]; then

.

Remember, if you let , then the theorem is just saying that F’(x) = f(x). For example,

. Just replace f(t) with f(x).

EXAMPLE 1

Find .

EXAMPLE 2

Find 

.

EXAMPLE 3

Find .ln
dx
d

t
t t

dt�
x

2 3 3
+

sin sin

sin
dx
d t e t dt x e x

x e x

�
or just

x
t x

x

5

3 3

3

+ - = + -

+ -

_ i

x
d t t dt� 2

x

3

2-_ i

ln lndx
d t e dt x e�

x
t

f t

x

f x
2

+ = +_
^ ^i
h h1 2 344 44 \

F x f t dt�
a

x

=^ ^h h

dx
d f t dt f x�

a

x

=^ ^h h

dx
d t t dt x x x x� 2 2 2or just

x

f t
f x

3

2 2 2- = - -_
^ ^i
h h\ \

ln ln ln
dx
d

t
t t

dt
x

x x
x

x x� or
x

2 3 3 3 3
+

=
+ +
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SECOND FUNDAMENTAL THEOREM OF CALCULUS: TOP LIMIT IS A FUNCTION OF X
What happens when the top limit of integration is some function of x, other than x itself?

If u is a function of x, then .

1 Find .

2 Find .sindx
d t t dt�

ln x

π
2+_ i

lndx
d t e dt�

x
t

4

3

+_ i
dx
d f t dt f u du�

a

u

= $^ ^h h

ln ln

ln

dx
d t e dt x e x

x e x

� 3

3or just

.

x
t

f t

x

f x

der of

x

x

4

3 2

3 2

3
3

3 3

3

+ = +

+

$

$

_
^

_
_

i
h

i
i

9

8

C

B
1 2 344 44 1 2 3444 444 X

sin ln sin lndx
d t t dt x x x� 1

.

ln

ln ln

x

f t f x
der of

x

π
2 2
+ = + $_
^

^ ^
^

i
h

h h
h

9 C
1 2 344 44 1 2 34444 4444 X
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This chapter introduces many techniques of
integration, the process of finding the integral

of a function. A lot of these techniques depend upon
your being able to recognize a pattern in the way
the function is, or can be, written—such as in an
exponential function or some power of a function,
or a function whose integral will result in a
logarithmic function.

This chapter introduces integration techniques
such as integrals involving trigonometric functions,
or integrals that result in inverse trigonometric
functions. Sometimes multiple techniques are
required to integrate a given function. The use of
algebraic substitution covers some integrals that do
not seem to fit any other pattern of integration. The
chapter concludes with solving some differential
equations.

chapter 11
Techniques of

Integration
Power Rule: Simple and General . . . . 212

Integrals of Exponential Functions . . . 220

Integrals That Result in a Natural
Logarithmic Function . . . . . . . . . . . . 223

Integrals of Trigonometric 
Functions. . . . . . . . . . . . . . . . . . . . . . . 226

Integrals That Result in an Inverse
Trigonometric Function. . . . . . . . . . . 232

Combinations of Functions and
Techniques . . . . . . . . . . . . . . . . . . . . . 235

Algebraic Substitution . . . . . . . . . . . . . 237

Solving Variables Separable 
Differential Equations . . . . . . . . . . . . 240
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There are two versions of the Power Rule to consider when finding the integral of a function: the
Simple Power Rule, in which you integrate powers of the term x, and the General Power Rule, in
which you integrate powers of a function of x.

Simple Power Rule

EXAMPLE 1

1 Start with the given expression.

2 Integrate, applying the Simple Power Rule, by increasing the power of x to 3
and then dividing the new term by 3.

EXAMPLE 2

1 Rewrite the integrand as a negative power of x.

x
dx� 1

2

x dx� 2

,x dx n
x c n� 1 1wheren

n 1

!=
+

+ -
+

x dx�
x

2

n

?

x c

x c

3

3

n

x

1

3

3

n 1

= +

= +

+

+

@

T

x dx� 2= -
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2 Apply the Simple Power Rule by adding 1 to the exponent and dividing the
new term by the new exponent of –1.

3 Simplify the resulting expression.

EXAMPLE 3

1 Rewrite the radical term as an exponential term.

2 Apply the Simple Power Rule and simplify the result.

3 Rewrite the result as a radical term since the original integrand was a
radical term.

x dx� 23

x
1

n

x

1

1

n 1

=
-
+

-

+

A

T

x c1= - +

x dx

x dx

�
� /

23

2 3=

x c

x c

3
5

5
3

/

/

5 3

5 3

= +

= +

x c

x x c

5
3

5
3

53

23

= +

= +
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EXAMPLE 4

1 Rewrite the original rational expression as three
separate rational expressions.

2 Simplify each rational expression.

3 Break up the expression into three separate integrals.

Remember, you can just move the constants, 3 and 7,
outside of the integral sign.

4 Evaluate each integral by adding just one “+ c” at
the end.

x
x x dx� 3 4 7

2

4 2- +
d n

x
x x dx

x
x

x
x

x
dx

�

�

3 4 7

3 4 7

2

4 2

2

4

2

2

2

- +

= - +

d

d

n

n

x x dx� 3 4 72 2= - + -
_ i

x dx dx x dx� � �3 4 72 2= - + -

x x x c

x x x c

3 3 4 7 1

4 7

3 1

3

= - +
-

+

= - - +

-

d dn n

General Power Rule

If u is a function of another variable, say x, then . 

Remember that du is just the derivative of the function u. Another way to view this is

n c� 1orig. funct. der. of orig. funct.
orig. funct.n

n 1

=
+

+

+

$_ _
_

i i
i

,u du n
u c n� 1 1wheren

n 1

!=
+

+ -
+
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EXAMPLE 1

1 Identify the u, n, and du for this problem.

2 Apply the General Power Rule: 

EXAMPLE 2

1 Although this integral looks like it might be a Simple Power
Rule situation, let’s move the terms around to be sure.

2 Unfortunately, the x2dx term is not quite the derivative of the

inside function x3 – 7. Since the derivative of x3 – 7 = 3x2dx, you

can multiply by 3 inside the integral, and compensate for it by

multiplying the outside by .3
1

x x dx� 72 3
4

-_ i

n c1
orig. funct.

n 1

+
+

+

_ i

x xdx� 5 22
6

+_ i

x xdx� 5 2
u n du

2 6+_ i
H?D

7x
c

x c

7
5

7
1 5

n

u n

1

2

1

2

=
+

+

= + +

+

+

_

_

i

i

H@

T

x x dx

x x dx

�
�

7

7

2 3
4

3
4

2

-

= - $

_

_

i

i

x x dx3
1 7 3

u
du

3
4

2= - $_ i
\ [
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3 Now that the integral fits the General Power Rule pattern, you can
just increase the exponent 4 by 1 to a 5, and then divide this term
by 5.

EXAMPLE 3 (USING CHANGE OF VARIABLE OR U-SUBSTITUTION TECHNIQUE)

1 After writing the original integrand in a more useful form (it looks
like a General Power Rule pattern), you have the expression at right.

2 Let’s try a different approach by using
what is called the “change or variable” or 
“u-substitution” technique, letting u = the
inside function and then proceed as shown
at right.

3 Now substitute the u terms found in Step 3 for the corresponding parts in
Step 2.

x x dx� 72 3
4

-_ i

x
c

x
c

3
1

5
7

15
7

3
5

3
5

=
-

+

=
-

+

_

_

i

i

R

T

S
S
S

V

X

W
W
W

x x dx

x x dx

�
�

7

7

2 3
4

3
4

2

-

= - $

_

_

i

i

Notice that you now have all the terms of
the original integrand written in terms of
the new variable u.

,u x du x dx

du x dx

7 3

3
1

let then

or

3 2

2

= - =

=

u du� 3
14= $
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4 Move the out in front of the integral and apply the General Power Rule.

5 You need to return to a function in terms of x,
not u. So substitute for u = x3 – 7 in the result
from Step 4.

EXAMPLE 4 (WITH LIMITS OF INTEGRATION)

1 Rewrite the integrand by bringing the radical term from the
denominator up to the numerator as an exponential term
instead.

2 Move some of the terms so that it looks more like a General
Power Rule situation.

x
x dx�

1
5

0

2

3

2

+

3
1

u du

u c

u c

�3
1

3
1

5

15

4

5

5

=

= +

= +

$

x
c

x
c15

7
15

7
or just

3
5

3
5

=
-

+
-

+
_ _i i

x
x dx

x

x dx

x x dx

�

�

�

1
5

1

5

5 1

/

/

0

2

3

2

0

2

3
1 2

2

0

2
2 3

1 2

+

=
+

= +
-

_

_

i

i

x x dx� 1 5
/

0

2
3

1 2
2= +

-

$_ i
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3 Rewrite the term 5x2 as the derivative of the inside
function x3 + 1 (that is, you need a 3x2, not a 5x2).

4 You are finally ready to apply the General Power Rule.

5 Plug in the limits of integration to simplify the result.

EXAMPLE 5

1 First, note that the derivative of sin x is cos x. Use this fact to
set up the integrand in the General Power Rule format.

cos sinx x dx�
/π

0

2

x x dx

x x dx

x x dx

�
�

�

5 1

5 3
1 1 3

3
5 1 3

/

/

/

u
du

0

2
3

1 2
2

0

2
3

1 2
2

0

2
3

1 2
2

= +

= +

= +

-

-

-

$ $

$ $ $

$ $

_

_

_

i

i

i
1 2 344 44 [

x

x

3
5

2
1

1

3
10 1

/
3

1 2

0

2

3

0

2

=
+

= +

_ i

R

T

S
S
SS

8

V

X

W
W
WW

B

3
10 2 1 0 1

3
10 9 1

3
10 2 3

20

3 3= + - +

= -

= =

`

^

j

h

8 B

cos sin

sin cos

x x dx

x xdx

�

�

/

/ /

u
du

π

π

0

2

0

2 1 2
= ^ h

H H
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2 Determine the integral and transfer the limits of
integration.

3 Evaluate the last expression by plugging in the limits of
integration.

sin

sin

x

x

2
3

3
2

/
/

/

π

π

3 2

0

2

3

0

2

=

=

^

^

h

h

R

T

S
S
SS

:

V

X

W
W
WW

D

sin sinπ
3
2

2 0

3
2 1 0

3
2

3
3

3 3

= -

= -

=

b ^l h

R

T

S
SS

8

V

X

W
WW

B
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If u is a function of some other variable, say x, then and . Another

way to write the first integral above is . For example,

.

EXPONENTIAL INTEGRAL: EXAMPLE 1

1 Rewrite the integrand in a form that is closer to the
exponential integral pattern.

Notice how the and the 2 were used to get the correct

du term.

2 Use the exponential integral pattern to finish the problem.

EXPONENTIAL INTEGRAL: EXAMPLE 2

1 Rewrite the integrand to try to make the derivative of the exponent, lnx,

follow the term eln x. Remember that .lndx
d x x

1=^ h

x
e dx�

ln x

2
1

xe dx� x2

e dx e c e c� 3 or justx

du

x x3 3 3

u u

= + +$
B? ?

e e c� der. of funct.some funct. that funct.= +$^ h

lna du a
a c� u

u

= +e du e c� u u= +

xe dx

e xdx

e xdx

�
�

�2
1 2

x

x

x

e duu

2

2

2

=

= $T Y

e c2
1 x2

= +

x
e dx

e x dx

�

� 1

ln

ln

x

x

du
u

= $
D

B
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2 Apply the exponential integral formula.

EXPONENTIAL INTEGRAL: EXAMPLE 3 (WITH LIMITS OF INTEGRATION)

1 Rewrite the integrand so it follows the

pattern.

2 You don’t quite have the correct derivative of the exponent yet,
but by inserting a 1⁄2 inside and a corresponding 2 outside,
you’ll get what you need.

3 Complete the formula for the exponential integral and carry
over the limits of integration.

4 Plug in the limits and simplify the result.

e e c� der. of funct.some funct. that funct.= +$^ h

x
e dx�

x

1

9

= eln x + c

x
e dx

x
e dx

e x dx

�

�

�

/

/

x

x

x

1

9

1

9

1 2

1

9
1 2

/

/

1 2

1 2

=

= -$

e x dx�2 2
1 /x

du

1

9
1 2/

u

1 2

= -$ $
G

A

e2
1

1

9
= 7 Ax

e e

e e

2
1

2
1

9 1

3

= -

= -

8
7

B
A
g
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EXPONENTIAL INTEGRAL—BASE OTHER THAN e: EXAMPLE 1

1 You are trying to fit this into the formula. To do

so, you need to have the derivative of the exponent (5x + 7) follow

the exponential term.

2 Apply the formula for the non e base exponential
integral.

EXPONENTIAL INTEGRAL—BASE OTHER THAN e: EXAMPLE 2

1 Try to fit the original integrand into the exponential integral pattern.

2 Complete the integral using the exponential
integral formula.

x dx� 5x2

$

lna du a
a c� u

u

= +

dx�2 x5 7+

dx

dx

�

�

2

5
1 2 5

x

x

du

5 7

5 7

u

=

+

+$ $
BG

ln

ln ln ln

c

c c c

5
1

2
2

5 2
2

2
2

32
2or or

x

x x x

5 7

5 7

5

5 7 5 7

= +

= + + +

+

+ + +

< F

x dx

x xdx

xdx

�
�

�

5

5

2
1 5 2

x

x

duu

2

x2

2

=

=

$
$

$ $
D?

ln

ln ln ln

c

c c c

2
1

5
5

2 5
5

5
5

25
5or or

x

x

2
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2

2 x2 x2
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= + + +
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Integrals That Result in a
Natural Logarithmic Function

If u is a function of some other variable, say x, then . Another way to write this is

. For example, .

NATURAL LOG INTEGRAL: EXAMPLE 1

1 You want the top to be the derivative of the bottom. Since

, you just need to multiply the

numerator by 2 and then compensate with a outside the

integral symbol.

2 Complete the formula, which results in .ln u c+

2
1

dx
d x x x2 7 2 22+ - = +_ i

x x
x dx�

2 1
1

2+ -
+

ln
x

x dx
x
x dx x c� �

5
3

5
3 5

lnu

du

u

3

2

3

2
3

-
=

-
= - +

G

1 2 344 44[

c� funct.
der. of funct. ln funct.= +

lnu
du u c� = +

x x
x dx

x x
x

dx

x x
x dx

�

�

�

2 1
1

2
1

2 1
2 1

2
1

2 1
2 2

u

du

2

2

2

+ -
+

=
+ -

+

=
+ -

+

$

$

^

^

h

h
6 7 844 44

1 2 344 44

ln

ln

ln

ln

x x c

x x c

x x c

x x c

2
1 2 1

2
1 2 1

2 1

2 1

or just

or

or

/

u

2

2

2
1 2

2

= + - +

+ - +

+ - +

+ - +

a k

6 7 844 44
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NATURAL LOG INTEGRAL: EXAMPLE 2 (USING A U-SUBSTITUTION)

1 Since you are trying to make this fit the 

pattern, let u = e2x + 2x and then proceed as

shown at right.

2 Substitute the terms found in Step 1 into the appropriate spots in the
original integrand.

Note: All expressions containing the variable x have been replaced with
u variable terms.

3 Now that the integral is in the , complete the formula with the

portion.

4 You need to get back to a solution in terms of x, not u, so
substitute u = e2x + 2x.

ln u c+
u
du�

u
du�

e x
e dx�

2
1

x

x

2

2

+
+

,u e x du e dx

du e dx

du e dx

2 2 2

2 1

2
1 1

let then

or

x x

x

x

2 2

2

2

= + = +

= +

= +

_

_

_

i

i

i

e x
e dx

e x

e dx

u

du

u
du

�

�

�
�

2
1

2
1

2
1

2
1

x

x

x

x

2

2

2

2

+
+

=
+

+

=

= $

_

b

i

l

ln u c2
1= +8 B

ln

ln

e x c

e x c

2
1 2

2
1 2or just

x

x

2

2

= + +

+ +

13_185605-ch11.qxp  4/1/08  3:44 PM  Page 224



chapter11Techniques of Integration

225

NATURAL LOG INTEGRAL: EXAMPLE 3 (USING A U-SUBSTITUTION)

1 Since you are trying to fit this to a natural log form

let u be the denominator, so u = x4 + 4.

2 Since you are making a u-substitution, you may as well
change the original x limits to the new u limits of
integration.

3 Make a lot of substitutions, including
the limits of integration, so that the
original problem changes from x
terms and limits to u terms and limits.

4 Complete the integral, carry over the limits of
integration, plug them in, and simplify the result.

u
du�

x
x dx�

42

3

4

3

+

,u x du x dx

du x dx

4 4

4
1

let so that

or

4 3

3

= + =

=

u = x4 + 4
for x = 3 → u = 34 + 4 = 85
for x = 2 → u = 24 + 4 = 20

. .

. .

lim int

lim int

x
x dx

x
x dx the of are x values

u

du
the of are u values

u
du

�

�

�
�

4

4

4
1

4
1

2

3

4

3

2

3

4

3

20

85

20

85

%

%

+

=
+

=

= $

b l

or other forms, such as

ln ln ln4
1

4
17

14
17

4
17or or

/1 4

4b bl l

ln

ln ln

ln

u4
1

4
1 85 20

4
1

20
85

20

85

=

= -

= b l

8
6

B
@

TIP
By changing from x limits to u limits of integration, you
don’t have to change back to x terms at the end.
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If u is a function of some
variable, say x, then:

The integral formulas written
above are just the result of reading
backward the derivative formulas
for the six trigonometric functions.

If u is a function of some variable, 
say x, then:

The integral formulas above are a bit more
difficult to verify. One example is shown at right.

cos sin

sin cos

sec tan

sec tan sec

csc cot

csc cot csc

udu u c

udu u c

udu u c

u udu u c

udu u c

u udu u c

�
�
�

�
�
�2

2

= +

= - +

= +

= +

= - +

= - +

For example, since

Similarly, since

sec sec tan sec tan secdx
d u u udu u udu u c�"= = +^ h

sin cos cos sindx
d u udu udu u c"= = +^ h

tan ln cos ln sec

cot ln sin

sec ln sec tan

csc ln csc cot

udu u c or u c

udu u c

udu u u c

udu u u c

�
�
�
�

= - + +

= +

= + +

= - +

cot sin
cos ln sinudu u

u du u c� �
the funct.

der. of

the funct.

the funct.

= = +

F

[
[
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TRIGONOMETRIC INTEGRAL: EXAMPLE 1

1 To make this fit the pattern, you need the derivative

of 5x, namely 5, to follow the cos5x term. So insert a 5 and

compensate with a outside the integral symbol.

2 You can now complete the integral using the right-hand side of the

formula .

TRIGONOMETRIC INTEGRAL: EXAMPLE 2

1 Let’s try the u-substitution method on this integral. But first,

rewrite the integrand so it looks more like the pattern.

2 Let u = x3 and then find du.

sinudu�

sinx x dx� 2 3
_ i

cos sinudu u c� = +

5
1

cos udu�
cos xdx� 5

cos

cos

xdx

x dx

�

�

5

5
1 5 5

u du

= $ $f p
T V

sin x c5
1 5

u

= +
T

sin

sin

x x dx

x x dx

�
�

2 3

3 2= $

_

_

i

i

,u x du x dx

du x dx

3

3
1

let then

or

3 2

2

= =

=
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3 Substitute the expressions from Step 2 for the appropriate terms in
Step 1.

4 You can now complete the formula and

replace the u with x2 to finish the problem.

TRIGONOMETRIC INTEGRAL: EXAMPLE 3

1 This integral looks like the form;

you need a 3 to be the derivative of 3x.

2 Complete the right-hand side of the red formula
above.

sec tan secu udu u c� = +

sec tanx xdx� 3 3

sin cosudu u c� =- +

sin

sin

sin

x x dx

u du

udu

�
�

�
3
1

3
1

3 2=

=

=

$

$

$

_ i

cos

cos

u c

x c

3
1

3
1 3

= - +

= - +

^

_

h

i

sec tan

sec tan

x xdx

x x dx

�
�

3 3

3
1 3 3 3

u u du

= $T T V

sec secx c x c3
1 3 3

1 3or just
u

= + +
T
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TRIGONOMETRIC INTEGRAL: EXAMPLE 4

1 This looks like a natural log integral form,
because the top is almost the derivative of the
bottom. Let u = 1 + cosx and then find du. At
the same time, let’s change from the given x
limits of integration to the new u limits.

2 Replace all x terms and limits with
their appropriate u term counterparts.

3 Notice that the upper limit of integration is smaller than the lower
limit. Since you are probably used to having the upper limit bigger
than the lower limit, switch the limits and also take the opposite of the
integral.

4 Complete the natural log integral form with the right-hand side of the

formula . (The “+ c” was dropped because there are limits

of integration involved in this problem.)

5 Plug in the limits and simplify the result.

lnu
du u� =

cos
sin

x
x dx� 1

/π

0

2

+

:cos

cos

u x

x uπ π
1

2 1 2 1 0 1

with

for "

= +

= = + = + =b l

cosx u0 1 0 1 1 2for "= = + = + =

cos
sin

cos
sin

x
x dx

x
xdx x x

u
du u u

u
du

�

�

�
�

1

1 terms and lim. of int.

terms and lim. of int.

/

/

π

π

0

2

0

2

2

1

2

1

%

%

+

=
+

= -

= -

u
du

u
du

�

�

1

2

1

2

= - -

=

< F

ln u
1

2

= 8 B

ln ln

ln ln

ln

ln

2 1

2 1

2 0

2

= -

= -

= -

=
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TRIGONOMETRIC INTEGRAL: EXAMPLE 5

1 In searching for an appropriate integration technique to use here,
the one that first comes to mind is a natural log. But in this case,
the top is not the derivative of the bottom, so the natural log
won’t work. Let’s try rewriting the integrand to see if some other
technique presents itself.

2 Now it looks like a General Power Rule pattern, but the
derivative of the inside function, cos x, is actually –sin x,
so we need a negative sign to get the General Power Rule
just right.

3 Complete the General Power Rule formula: u du n
u c� 1

n
n 1

=
+

+
+

csc
cos

x
x dx�

4

csc
cos

cos csc

cos sin

cos sin

x
x dx

x x dx

x xdx

x xdx

�
�
�
�

1

4

4

4

4

=

=

=

$

$

$^ h

cos sinx x dx�
u n du

4= - -$^ ^h h
6 7 844 44H?

cos

cos

x
c

x c

5
n

u n

1

5

1

5

= - +

= - +

+

+

^ h
H@

T
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TRIGONOMETRIC INTEGRAL: EXAMPLE 6

1 Let’s use a bit of an unusual strategy on this integral. First,
rewrite the integrand, making the power of sec x more
obvious.

2 This almost looks like a General Power Rule pattern, except
that the derivative of sec x is sec x tan x. So “borrow” a sec x
term from the (sec x)4.

3 Now that your integral fits the pattern,

complete the right-hand side of the General Power Rule

formula.

u du n
u c� 1

n
n 1

=
+

+
+

sec tanx xdx� 4

sec tan

sec tan

x xdx

x xdx

�
�

4

4
= $^ h

sec sec tan

sec sec tan

x x xdx

x x xdx

�
�

u du

3

3

=

=

$

$

^

^

h

h 1 2 344 44\

4sec

sec

x
c

x c

4

4
1

n

u n

1

1

4

= +

= +

+

+

^ h
H@
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If u is a function of some variable, say x, and a is some constant, then 

At right are brief
examples of each
of these integral
formulas.

INVERSE TRIGONOMETRIC INTEGRAL: EXAMPLE 1

1 How do you determine which inverse trigonometric form to use? In
this case, the denominator has a radical that contains a constant
minus a function square, as in . So this is an arcsin form.
You need to write the integrand in that form.

a u2 2-

x
dx�

25 4 2-

arcsin

arctan

sec

a u
du

a
u c

a u
du

a a
u c

u u a
du

a arc a
u

c

�

�

�

1

1

2 2

2 2

2 2

-
= +

+
= +

-
= +

arcsin arcsin

arctan arctan

sec sec

x
dx

x

dx x c x c

x
xdx

x

xdx x c x c

x x
dx

x x

dx arc
x

c arc
x

c

� �

� �

� �

25 9
3

5 3

3
5

3
5

3

49 25
10

7 5

10
7
1

7
5

7
1

7
5

5 25 16
5

5 5 4

5
4
1

4
5

4
1

4
5

or

or

a u

du

a

u

a
u

du

a

u

u u a

du

a a

u

2 2 2

4
2 2

2

2 2

2 2 2

-
=

-
= + +

+
=

+
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-
=

-
= + = +

^

_

^

h

i

h

B ?

F A

B A

S Y
S

S [
S
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S S

x
dx

x
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�

�
25 4

5 2
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2

2 2

-

=
- ^ h

S Y

13_185605-ch11.qxp  4/1/08  3:44 PM  Page 232



chapter11Techniques of Integration

233

2 You’re close to the correct form, except that the numerator is not

the derivative of the u term, 2x. Since , you need to

insert a 2 on top of the integrand and compensate with a 1⁄2

outside.

3 Now the integral fits the left side of the formula

, so just complete the

right-hand side.

INVERSE TRIGONOMETRIC INTEGRAL: EXAMPLE 2

1 If this is an inverse trigonometric integral, it has to be arctan, because
there is no radical in the denominator. Rewrite the integrand to try to get
it into the arctan pattern.

2 Let’s use the u-substitution this time—it appears that
u = x3. Find du also.

x
x dx�

16 6

2

+

arcsin
a u

du
a
u c�

2 2-
= +

dx
d x2 2=^ h

x

dx�2
1

5 2

2

a u

du

2 2
=

- ^ h

B

S Y

arcsin arcsinx c x c2
1

5
2

2
1

5
2or

a

u

= + +

R

T

S
S
SS

V

X

W
W
WW

?

S

x
x dx

x

x dx

�

�
16

4

6

2

2 3
2

2

+

=
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,u x du x dx

du x dx

3

3
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2 2

2
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=
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3 Substitute the u terms from Step 2 for the appropriate x terms in
Step 1.

4 With a = 4, this now fits the arctan formula:

. Now complete the right-hand side of

the formula.

5 Last, make the substitution of u = x3 to
complete the problem by returning to x terms.

arctan
a u

du
a a

u c� 1
2 2+

= +

x

x dx

u

du

u
du

�

�

�

4

4
3

3
1

4

2 3
2

2

2 2

2 2

=
+

=
+

=
+

_ i

arctan

arctan

u c

u c

3
1

4
1

4

12
1

4

= +

= +

; E

arctan arctanx c x c12
1

4 12
1

4or
3 3

= + +
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Combinations of Functions
and Techniques

You will occasionally encounter an integral that by itself cannot be integrated. In some of these
cases you will have to first alter the form of the integrand in order to use multiple techniques to
complete the integration process.

“Combo” Technique: General Power Rule and an Arcsin

1 This does not fit any of the forms you have studied
so far. Split the original integral into two separate
integrals to see if that helps.

2 The blue integral is in a General Power Rule
form, and the red integral is in an arcsin form.
Modifying the integrands further will make
these forms more apparent.

3 The first integral needs a –2 inside

(with a outside); the second

integral’s form is fine.

4 Use the General Power Rule for the blue and an
arcsin for the red integral.

2
1-

x
x dx�
9

4
2-

+

x
x dx

x
x

x
dx

x
x dx

x
dx

�

�

� �

9
4

9 9
4

9 9
4

2

2 2

2 2

-

+

=
-

+
-

=
-

+
-

J

L
KK

N

P
OO

x xdx
x

dx� �9 4
3

/
2

1 2

2 2
= - +

-

-

$ $_

^

i

h

x xdx
x

dx� �2
1 9 2 4

3

/
2

1 2

2 2
= - - - +

-

-

$ $ $_ ^

^

i h

h
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2
1 9 4 3
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1 9 4 3
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1 2
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Regarding “Look-Alike” Integrals

The integral forms in each
colored pair listed at right
are frequently mistaken for
one another.

1 Take a closer look at the red pair as you rewrite
their integrands to reveal the particular technique
appropriate to that integral.

2 Take a closer look at the blue pair
as you rewrite their integrands to
reveal the particular technique
appropriate to that integral.

x
x dx

x
x dx

x
x dx

x
x dx� � � �

9 9 9 9
and and4

3

4 4

3

4+ + + -

x
x dx

x
x

x
x dx

x

x dx

x

x dx

�

�

�

�

�

9

4
1

9
4

9

9

2
1

9

2

arctan

4

3

4

3

4

2
2

2
2

natural log

+

=
+

+

=
+

=
+

$

$

_

_

i

i
1 2 344 44

\

x dx
x

x x dx

x x dx

x
x dx

x

x dx

x

x dx

�

�
�

�

�

�

9

9

4
1 9 4

9

9

2
1

9

2

/

/

arcsin

4

3

4
1 2

3

4
1 2

3

4

2
2

2
2general power rule

+

= +

= +

-

=
-

=
-

-

-

$ $
$

_

_

_

_

i

i

i

i

1 2 344444 44444

1 2 3444 444
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Algebraic 
Substitution

Sometimes you encounter an integral that doesn’t seem to fit any of the more common integration
forms. In this case, the u-substitution technique may be useful.

EXAMPLE 1

1 Let u be the most
complicated part of
the integrand; in this
case, let .
Now find dx and solve
for x in terms of u.

2 Now you can make a large series of substitutions, plugging data
from Step 2 into the original integral.

3 Expand and simplify the integrand in Step 2.

4 Use the Simple Power Rule on both terms of the integrand.

u x 1= -

x x dx� 1-

,u x u x

u x

u x

u du dx

1 1

1

1
2

let or in another form to be used later

then

so that
and

/1 2

2

2

= - = -

= -

+ =

=

^ h

x x dx

u u u du

�
�

1

1 22

-

= + $ $_ i

u u du

u u du

�
�

1 2

2

2 2

4 2

= +

= +

$

$

_

_

i

i

u u c

u u c

2 5 3

5
2

3
2

5 3

5 3

= + +

= + +

$ < F
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5 You need to replace the u terms with their

appropriate x terms, this time using the

substitution found in Step 1.

EXAMPLE 2

1 Let’s work Example 2, but this
time change the x limits to u
limits. Letting ,
proceed as before in finding dx
and x in terms of u.

u x 3= +

x
x dx�

32

1

+-

u x 1
/1 2

= -^ h

x x c

x x c

x x c

x x

x x

5
2 1 3

2 1

5
2 1 3

2 1

15
6 1 15

10 1

15
2 1 3 1 5

15
2 1 3 2

or in another form

/ /

/ /

/ /

/

/

1 2
5

1 2
3

5 2 3 2

5 2 3 2

3 2

3 2

= - + - +

= - + - +

= - + - +

= - - +

= - +

^a ^a

^ ^

^ ^

^ ^

^ ^

h k h k

h h

h h

h h

h h

8 B

:

:

u x for x u

u x for x u

u x

u du dx

3 1 1 3 2

3 2 2 3 1

3
2

letting

then

so that
and then

2

2

= + = = + =

= + = - = - + =

- =

=
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2 Make your long list of substitutions
into the original integral, changing
all x terms and limits to u terms and
limits.

3 Integrate and then plug in the u limits.

.

x
x dx x

u
u

u du u u

u du

�

�

�

3

3
2

2 3

this has lim. of int.

terms and lim. of int

2

1

1

2 2

1

2
2

%

%

+

=
-

= -

-

$
_

_

i

i

u u

u u

2 3 6

3
2 6

3
2 2 6 2 3

2 1 6 1

3
16 12 3

2 6

3
16 12 3

2 6

3
4

3

1

2

3

1

2

3 3 3

= -

= -

= - - -

= - - -

= - - +

= -

$

$ $ $ $

<
;
; ;
; ;

F
E

E E
E E

TIP
If we had not changed from the x limits to the u limits
of integration the computation at the end of the problem
would have been much different — yet the final answer
would be the same. Try it and see what happens.
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When you find the derivative of some function, the resulting equation is also known as a

differential equation. For example, , or , or (3 + x3)y' – 2xy = 0. Our goal in this

section is to determine from which original equation, or function, the differential equation was

derived.

GENERAL SOLUTION 1
Using this technique, you will separate the variables (hence the name for the technique) so that all the y
and dy terms are on one side of the equation and all the x and dx terms are on the other. Then, by
integrating both sides, you will arrive at an equation involving just x and y terms.

Solve the differential equation and write the solution in the form “. . . = some constant.”

1 Cross-multiply to get the dy and y terms on the left side and the dx and x
terms on the right.

2 Now that you have separated the variables, integrate both sides of the
equation.

Notice that is only one “+ c.” If you were to put “+ d” on the left and
“+ m” on the right, they would eventually combine to make some
third constant “+ c.”

3 Put all the y and x terms on the left (the answer form
that was requested).

dx
dy

y
x 2

=

y y
x 2

=ldx
dy

xy x7= +

dx
dy

y
x

y dy x dx

2

2

=

=

y dy x dx

y x c

� �

2 3

2

2 3

=

= +

y x c
y x c2 3 2 3or just

2 3 2 3

- = - =
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4 If you chose to, or if it was requested of you, you could
eliminate the fractions by multiplying all terms of the equation
by 6.

m = 6c is just another constant.

GENERAL SOLUTION 2
For the differential equation , write its solution in the form “y = . . . .”

1 This problem takes a little more creativity to get the variables
separated.

2 Multiply both sides by dx.

3 Divide both sides by y + 3, and the variables will finally be
separated.

4 You’re ready to find the integral of each side.

dx
dy

xy x3= +

y x c

y x c

y x c

y x m

2 3

6 2 6 3 6

3 2 6

3 2

2 3

2 3

2 3

2 3

- =

- =

- =

- =

$ $ $

dx
dy

xy x

dx
dy

x y

3

3

= +

= +_ i

dy = x(y + 3)dx

y
dy

x dx3+
=

ln

y
dy

x dx

y x c

� �3

3 2

2

+
=

+ = +
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5 Rewrite the last natural log equation as an exponential one instead,
and then simplify the right-hand side.

6 Get rid of the absolute value symbol on the left and then simplify
the constant on the right.

GENERAL SOLUTION 3
Solve the differential equation (3 + x2)y' – 2xy = 0 and write the solution in the form “y = . . . .”

1 Add 2xy to both sides and then replace the y' with 

2 Multiply both sides by dx.

3 Divide both sides by y.

dx
dy

y e

y e e

y e m

y m e

3

3

3

3

x c

x c

x

x

2

2

2

2

2

2

2

2

0

+ =

+ =

+ =

+ =

'

'

'

'

+

$

$

$

y + 3 = ±m • ex2 ÷ 2

y = kex2 ÷ 2 – 3

x y xy

x y xy

x dx
dy

xy

x dx
dy

xy

3 2 0

3 2

3 2

3 2

2

2

2

2

+ - =

+ =

+ =

+ =

l

l

_

_

_

_

i

i

i

i

(3 + x2)dy = 2xydx

x y
dy

xdx3 22+ =_ i

TIP
If ln y = x, then y = ex.
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4 Divide both sides of the equation by 3 + x2.

5 With the variables
separated, you can
integrate both sides.

6 There are two ways to deal with this double natural log
situation. We’ll use one method here and then demonstrate
the other method later in the problem.

Replace the c with lnec.

7 Use your log properties to rewrite the right-hand side of the
equation as a single natural log.

8 Since the natural log of left quantity equals the natural log of the
right quantity, you can get rid of the ln on both sides.

9 Take out the absolute value symbols on the left and insert a ± sign
on the right.

y
dy

x
x dx

3
2

2=
+

ln ln

ln ln

y
dy

x
x dx

y x c

y x c x

� �
3

2

3

3 3Note that ais always positive.

2

2

2 2

=
+

= + +

= + + +_ i

ln ln lny x e3 c2= + +_ i

ln lny x e3 c2= + $_ i9 C

y x e

y x m

y m x

3

3

3

c2

2

2

0

= +

= +

= +

$

$

_

_

_

i

i

i

y m x

y k x

3

3

2

2

0

!= +

= +

_

_

i

i

TIP
ec is just another constant, say m.

TIP
±m is just another constant, say k.
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0 Here’s the promised
alternate solution,
beginning with Step 5.

! If m = r, then em = er must also be true. So in our case, 
eleft side of equation = eright side of equation.

@ Using the natural log property eln x = x, simplify
both sides of the equation.

ln ln

ln ln

y
dy

x
x dx

y x c

y x c x

� �
3

2

3

3 3Note that ais always positive.

2

2

2 2

=
+

= + +

= + + +_ i

e e

e e e

e e m

e m e

| ( )

| ( )

| ( )

| ( )

ln ln

ln ln

ln ln

ln ln

y x c

y x c

y x

y x

3

3

3

3

2

2

2

2

0

=

=

=

=

+ +

+

+

+

$

$
$

|

|

|

|

y = m(3 + x2) or just y = m(3 + x2)

Particular Solution

The general solution of a differential equation will always have some constant in the solution. If you are
given additional information, often called an initial condition, you will be able to find a particular value
of the constant, and thus a particular solution to the differential equation.

Given the initial condition of y(1) = 3, find the particular solution of the differential equation yy' – 3x = 0.

1 Replace the y' with .
dx
dy

y dx
dy

x3 0- =
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2 Add 3x to both sides.

3 Multiply both sides by dx to separate your variables.

4 Integrate both sides.

5 Multiply both sides by 2 and simplify the new constant on the
right side.

6 Using the initial condition that y(1) = 3 (that is,
when x = 1, then y = 3), you can find a particular
value of the constant m and thus a particular
solution to the differential equation.

y dx
dy

x3=

ydy = 3xdx

y dy x dx

y dy x dx

y x c

� �
� �

3

3

2 3 2

2 2

=

=

= +

$

$

You just found the
general solution.

y x c

y x m

3 2

3

2 2

2 2

0

= +

= +

y2 = 3x2 + m
(3)2 = 3(1)2 + m
–6 = m

Therefore, the particular solution is
y2 = 3x2 – 6.
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The chapter opens with integration of functions
related to the motion of an object and then

moves on to finding the area of a region bounded 
by the graphs of two or more functions using an
appropriate integral.

Revolving a bounded region about a given
vertical or horizontal line produces a solid the
volume of which you will be able to compute using
an appropriate integral. Three methods for doing
this are introduced: disk, washer, and shell.

chapter 12
Applications of

Integration
Acceleration, Velocity, and 
Position . . . . . . . . . . . . . . . . . . . . . . . . 247

Area between Curves: 
Using Integration . . . . . . . . . . . . . . . . 250

Volume of Solid of Revolution: 
Disk Method . . . . . . . . . . . . . . . . . . . . 260

Volume of Solid of Revolution: 
Washer Method . . . . . . . . . . . . . . . . . 268

Volume of Solid of Revolution: 
Shell Method. . . . . . . . . . . . . . . . . . . . 275
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In Chapters 3–6 on derivatives, you found a 
way to move from the position to the velocity
and then on to the acceleration function by
differentiating. Now you will reverse the
process, going from acceleration back to the
position function by integrating.

MOTION PROBLEM: ACCELERATION TO VELOCITY
The acceleration function, a(t), for an object is given by a(t) = 36t – 168t + 120. If v(1) = 28, find the
velocity function, v(t).

1 Beginning with the acceleration function,
find its integral to get the velocity function.

2 Using the given data that v(1) = 28, substitute 1
for t and 28 for v(1) to solve for the constant c.

3 Replace the c with –20 in the velocity function.

Acceleration, Velocity, 
and Position

If acceleration function is a(t), then

velocity function is , and

position function is .s t v t dt�=^ _h i
v t a t dt�=^ ^h h

a t t t

v t a t dt t t dt

v t t t t c

v t t t t c

� �
36 168 120

36 168 120

3
36

2
168 120

12 84 120

2

2

3 2

3 2

= - +

= = - +

= - + +

= - + +

^
^ ^ _
^
^

h
h h i
h
h

v c

c

c

1 12 1 84 1 120 1

28 12 84 120

20

3 2

0

= - + +

= - + +

- =

^ ^ ^ ^h h h h

v t t t t c

v t t t t

12 84 120

12 84 120 20

3 2

3 2

0

= - + +

= - + -

^

^

h

h
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MOTION PROBLEM: VELOCITY TO POSITION
If s(1) = 38 and v(t) = 12t – 84t + 120t + 20, find the position function, s(t).

1 Integrate v(t) to get s(t).

2 Use the data s(1) = 38 to make appropriate
substitutions and then solve for k.

3 Replace the k with 3 in the velocity function.

s t v t dt t t t dt

s t t t t t k

s t t t t k

� � 12 84 120 20

4
12

3
84

2
120 20

3 28 60

3 2

4 3 2

4 3 2

= = - + +

= - + + +

= - + +

^ ^ _
^
^

h h i
h
h

Note: Since c is used for the constant in the
problem above, k is used here so that there is
no confusion about which constant goes with
which problem.

s k

k

k

1 3 1 28 1 60 1

38 3 28 60

3

4 3 2

0

= - + +

= - + +

=

^ ^ ^ ^h h h h

s t t t t k

s t t t t

3 28 60

3 28 60 3

4 3 2

4 3 2

0

= - + +

= - + +

^

^

h

h
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Motion Problem: Acceleration to Position

If the acceleration function of an object is given by a(t) = sin t + cos t and v(π) = 2, while s(π) = 1, find
the position function s(t).

1 Find the velocity function v(t) by integrating 
the acceleration function a(t), and then find the
position function s(t) by integrating the velocity
function v(t).

2 Use the data v(π) = 2 to find the value of c.

3 Find the position function s(t).

4 You are given additional data, s(π) = 1,
which will allow you to find the value
of k.

sin cos

cos sin

v t a t dt t t dt

v t t t c

� �= = +

=- + +

^ ^ ^
^
h h h
h

cos sin

cos sin

v c

c

c

v t t t

π α π

2 1 0

1

1therefore

0

=- + +

=- - + +

=

=- + +

^

^

^

h

h

h

cos sin

sin cos

s t v t dt t t dt

s t t t t k

� � 1= = - + +

=- +

^ ^ ^
^
h h h
h

sin cos

sin cot

s k

k

k

s t t t t

π π π π

π
π

π

1 0 1

thus

0

=- - + +

=- - - + +

- =

=- - + -

^

^ ^

^

h

h h

h
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There are two scenarios to consider when finding the area of the region bounded by the graphs of
two or more equations: Either the graphs of the equations do not intersect or the graphs of the
equations intersect at one or more points. You will use integration to compute the area of the
bounded region.

Scenario 1: The Graphs of the Equations Do Not Intersect

1 The region, the area of which you are
trying to compute, is bounded by the
graphs of two functions that do not
intersect and
the graphs of two vertical or horizontal
lines (x = a and x = b).

2 Notice the thin green “representative”
rectangle. Its base is a small change in
x, typically labeled as ∆x, or just dx. Its
height is the difference in y coordinates
for the two functions—in this case y1 – y2.

3 If you were to add the areas of an infinite number of very thin
such rectangles, you could find their sum by using just an
integral.

y f x y g xand1 2= =^ ^h h

a b

y

x

y1 = f(x)

h = y1−y2

y2 = g(x)dx

area of “rep.” rect. = height • base = (y1 – y2)dx

Area y y dx�
a

b

1 2= -_ i

14_185605-ch12.qxp  4/1/08  3:46 PM  Page 250



chapter12Applications of Integration

251

4 If you substitute y1 = f(x) and y2 = g(x), you end up with
an integral representing the area of the region bounded
by the graphs of the two given functions and the two
given vertical lines.

Area f x g x dx�
a

b

= -^ ^_ h hi
Notice that f(x) is the top function
and g(x) is the bottom function in
the diagram shown in Step 1. (See
p. 250.)

Scenario 2: The Graphs of the Two Functions Intersect One or More Times

1 The region, the area of which you 
are trying to compute, is bounded 
by the graphs of two functions

, which
intersect at points where x = a, x = b,
and x = c.

2 Each green shaded region has a thin green
rectangle with base dx, but they have different
heights. The one on the left has a height of y1 – y2,
and the one on the right has a height of y2 – y1;
notice that in either case, the height is just the top
function minus the bottom function.

y f x y g xand1 2= =^ ^h h

y

x
dx

a b c

dx

h = y1−y2
h = y2−y1

y1 = f(x)

y2 = g(x)

area of left rep. rect. = (y1 – y2)dx
area of right rep. rect. = (y2 – y1)dx

14_185605-ch12.qxp  4/1/08  3:46 PM  Page 251



Area between Curves: 
Using Integration (continued)

252

3 If you were to add the areas of
an infinite number of very thin
rectangles in each region, their
sum could be found by the sum
of two integrals.

4 Make the substitutions 
y1 = f(x) and y2 = g(x) to 
get the area in terms of the
given functions and the x
coordinates of the points of
intersection of their graphs.

EXAMPLE 1
Find the area of the region bounded by the
graphs of y = x, y = 0, x = 1, and x = 4.

1 Find the area of the green representative rectangle.

y y dx y y dx� �
total area area of left region area of right region

a

b

b

c

1 2 2 1

= +

= - + -_ _i i

total area f x g x dx g x f x dx� �
a

b

b

c

= - + -^ ^_ ^ ^_h hi h hi

y

x
1 4

dx

h = y1−y2

y1 = x2

y2 = 0

area rep. rect. = hb = (y1 – y2)dx
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2 If you find the sum of lots of these rectangles, you get an integral
that represents the area of the green shaded region.

3 Since the term at the end of the integral is dx, the integrand can
contain x variables and/or numbers. Substitute y1 = x2 and y2 = 0
and then simplify.

4 Evaluate the integral to get the area of the green shaded
region.

EXAMPLE 2

Find the area of the region bounded by the graphs of y = 3x – x2 and y = 0.

1 You have not been given the limits of integration, so you will have to find
them by setting the equations equal to one another and then solving for x.

A y y dx� x1

4

1= -_ i

A x dx

A x dx

�
�

0
f

1

2

1

4
2

= -

=

_ i

A x

A

3 3
64

3
1

3
63

21

3

1

4

= = - =

=

< F

3x – x2 = 0
x(3 – x) = 0
x = 0, x = 3
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2 Sketch a graph showing the bounded
region and a representative rectangle
indicating its base and its height.

3 Write the formula to find the area of the representative rectangle.

4 Set up the integral that represents the sum of lots of these
rectangles, and thus the area of the green shaded region.

5 Substitute the appropriate x or number equivalents for the
terms y1 and y2 and simplify (since there is a dx term at 
the end, you need all x or numerical terms in the integrand)
y1 = 3x – x2 and y2 = 0.

6 Evaluate the integral, finding the area of the desired
bounded region.

y

x
0 3

dx

h = y1−y2

y1 = 3x−x2

y2 = 0

area rep. rect. = hb
= (y1 – y2)dx

A y y dx�
0

3

1 2= -_ i

A x x dx

A x x dx

�

�

3 0

3

0

3
2

0

3
2

= - -

= -

_a
_

i k
i

A x x

A

2
3

3 2
27 9

2
9

2 3

0

3

= - = -

=

< F
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EXAMPLE 3
Find the area of the region bounded by the graphs of y = x3 – 9x and y = 0.

1 Find the x coordinates of any points of intersection of the
graphs of the two functions. This will also aid in sketching
the graph of the first function.

2 Sketch the graphs of the two
functions, indicating the bounded
regions whose area you are going to
compute. Also, show a representative
rectangle for each region, along with
its base and appropriate height.

3 Find the area of the representative rectangle for
each region and then find their sum.

4 Set the sum of the two integrals: one to
find the area of the green shaded region
from x = –3 to x = 0, and the other from
x = 0 to x to 3.

x3 – 9x = 0
x(x2 – 9x) = 0

x(x + 3)(x – 3) = 0
x = 0, x = –3, x = 3

Note: These will serve as
your limits of integration.

y

x
-3 0 3

dx

dx

h = y2−y1

h = y1−y2

x1 = x3−9x

y2 = 0

area of left rep. rect. = (y1 – y2)dx
area of right rep. rect. = (y2 – y1)dx

total area y y dx y y dx� �
3

0

1 2 0

3

2 1= - + -
-
_ _i i

Notice that for each integrand, it’s the top
function minus the bottom function within
each interval of integration.
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5 Substitute y1 = x3 – 9x and y2 = 0 and then simplify each integrand.

Now the integrands will
match variables with the dx
term at the end of each
integral. All expressions
will be in terms of the
variable x.

6 Evaluate each integral and
find their sum. This will be
the sum of the areas of the
two green shaded regions.

REPRESENTATIVE RECTANGLE IS HORIZONTAL
Occasionally you encounter a situation in which you have to draw the representative rectangle
horizontally rather than vertically.

1 The region, the area of which you are
trying to determine, is bounded by the
graphs of x1 = f(y) and x2 = g(y), which
intersect at the points with y
coordinates y = a and y = b.

Note: The height of the representative
rectangle is just the right function minus
the left function for the shaded region.

total area x x dx x x dx

x x dx x x dx

� �

� �

9 0 0 9

9 9

3

0
3

0

3
3

3

0
3

0

3
3

= - - + - -

= - + - +

-

-

_a _a
_ _

i k ik
i i

total area x x dx x x dx

x x x x

total area

� �9 9

4 2
9

4 2
9

0 4
81

2
81

4
81

2
81 0

2
81

3

0
3

0

3
3

4 2

3

0
4 2

0

3

= - + - +

= - + - +

= - - + - + -

=

-

-

_ _

b b

i i

l l
< <
< <

F F
F F

y

x
a

b

dy

h = x2−x1

x1 = f(y)

x2 = g(y)
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2 The green representative rectangle has a base
of dy and a height of x2 – x1. Its area is found
at right. (Notice that the representative
rectangle has a horizontal orientation rather
than the usual vertical orientation. If you try to
make the rectangle vertical, at the left end of
the bounded region, the height would be x1 – x1 = 0.)

3 If you add up an infinite number of these very thin
rectangles, their sum can be found by the integral at right.

4 Substitute x1 = f(y) and x2 = g(y) so that the variables
within the integrand match the dy term at the end of the
integral.

EXAMPLE 4
Find the area of the region bounded by the graphs of x = y2 and x = y + 2.

1 Find the x coordinates of any points of intersection; these will
also serve as your limits of integration.

area “rep.” rect. = (x2 – x1)dy

Area x x dy�
a

b

2 1= -_ i

Area g y f y dy�
a

b

= -_ _a i ik

y2 = y + 2
y2 – y – 2 = 0

(y + 1)(y – 2) = 0
y = –1, y = 2
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2 Sketch the graphs of the two functions,
indicating the bounded region the area
of which you are going to compute.
Also show a representative rectangle
for the region, along with its base and
appropriate height.

Note: Notice that the height of the
green horizontal rectangle is the right
function minus the left function.

3 Write the area of the green representative rectangle.

4 Set up the integral to find the area of the green shaded region.

y

x

-1

2

dy

x1 = y2

x2 = y + 2

h = x2−x1

area “rep.” rect. = (x2 – x1)dy

A x x dy�
1

2

2 1= -
-
_ i
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5 Since you have a dy term at the end of the integral, you
need to make the substitutions x1 = y2 and x2 = y + 2, so
that the integrands contain just y terms and numerical
values.

6 Evaluate the integral and simplify the resulting
computation to find the area of the green shaded
region.

A y y dy

A y y dy

�

�

2

2

1

2
2

1

2
2

= + -

= + -

-

-

_a
_

i k
i

A
y

y
y

A

A

2 2 3

2 4 3
8

2
1 2 3

1

2
9

2 3

1

2

= + -

= + - - - +

=

-

b bl l
= G
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The region bounded by the graphs of y = f(x), y = 0, x = a, and x = b is revolved about the x-axis.
Find a formula for computing the volume of the resulting solid.

1 At right is a figure showing the bounded
region with three thin red rectangles.

2 After the bounded region is revolved (or
rotated) about the x-axis, it creates a solid
as shown at right. Notice that each thin
red rectangle traces out a thin red disk
(or cylinder).

y

x
a b y = 0

y = f(x)

y

xa
b

y = 0

y = f(x)

h = dx

r = y = f(x)
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3 The “representative” disk toward the center of the solid has a
height of dx and a radius of r = y = f(x). Using the formula for the
volume of a cylinder with radius r and height h, you end up with a
formula for the volume of the representative disk.

4 If you were to find the sum of the volumes of an infinite number
of very thin disks, an integral could be used to do that
computation.

5 When doing a specific problem, it is not
necessary to try to sketch the three-
dimensional figure. A suggested sketch is
shown at right.

V r h

V y dx

x

V f x dx

π
π

π

or with all terms

.cyl

disk

disk

2

2

2

=

=

= ^_ hi

V y dx

V f x dx

�

�

π

π

or
a

b

a

b

2

2

=

=

$

$ ^_ hi

y

xa
b

y = 0

y = f(x)

h = dx

r = y = f(x)

TIP
The thickness of the representative disk is
really the height of this thin cylinder, in this
case h = dx. The radius of the disk is
always measured from the axis of
revolution to the graph being rotated.
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6 The appropriate work would be shown as demonstrated to the
right.

EXAMPLE 1
The region bounded by the graphs of y = x2, y = 0, x = 1, and x = 2 is revolved about the x-axis. Find the
volume of the resulting solid.

1 Sketch a side view of the revolved
region. Label the height (looks like the
thickness from the side) and the radius
of the representative disk.

V r h

y dx

V y dx,

V y dx,

x

V f x dx

�

�

π
π
π

π

π

then volume of solid is

or to get all terms,

disk

disk

a

b

a

b

2

2

2

2

2

=

=

=

=

=

$

^_ hi

y

x
a b

h = dx

r = y

y = x2

y = 0

TIP
Make sure that all variables match (x and dx or y and dy)
before attempting to integrate.
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2 Find the volume of a representative disk.

3 Now you are ready to set up the volume integral.

Notice that the y terms were substituted with appropriate x terms and
the constant π was moved out in front of the integral.

4 Evaluate the integral and plug in the limits of integration to
compute the volume of the solid that results.

EXAMPLE 2
The region bounded by the graphs of y = x2, y = 2, and x = 0 is rotated about the y-axis. Find the volume
of the solid that results.

1 Sketch a side view of the figure showing
the height and radius of the
representative disk.

Vdisk = πr2h
= πy2dx

V y dx

V x dx

V x dx

�
�
�

π

π

π

1

2
2

1

2
2

2

1

2
4

=

=

=

_ i

V x

V

π π

π
5 5

32
5
1

5
31

5

1

2

= = -

=

b l< F

y

2

0
x

h = dy

y = 2

y = x2

r = x
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2 Find the volume of the representative red disk.

3 Set up the appropriate volume integral, noting that the dy at the end
means that the integrand must eventually be in y terms also.

4 Integrate and substitute the limits to find the volume of the
solid.

EXAMPLE 3
The region bounded by the graphs of is revolved about the x-axis. Find the
volume of the resulting solid.

1 Sketch a side view of the solid. Label
the radius and height of the
representative disk. Note that there is
no right hand limit of integration, so in
this problem it will be +�.

, ,y x y x1 0 2and= = =

Vdisk = πr2h
= πx2dy

V x dy

V ydy

V ydy

�
�
�

π

π

π

0

2
2

0

2

0

2

=

=

=

V
y

V

π π

π

2 2
4

2
0

2

2

0

2

= = -

=

b l
R

T

S
SS

V

X

W
WW

y

x
y = 0

h = y

to + ∞

base = dx
2

y = 1
x
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2 Find the volume of the red disk.

3 Set up your volume integral and then substitute to get all x terms.

4 Integrate and then plug in the limits to get the volume
of the solid.

It’s interesting that the area of the region is finite,
even though its right hand limit of integration is
infinite!

Vdisk = πr2h
= πy2dx

V y dx

V x dx

V x dx

V x dx

�

�

�

�

π

π

π

π

1

1

2

2

2

2

2

2

2

2

=

=

=

=

3

3

3

3

+

+

+

+
-

b
b

l
l

V x

V

π π

π

1 1
2
1

2

2
3= - = - - -

=

3+ bd ln; E
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EXAMPLE 4
(axis of revolution not x or y axis)

The region bounded by the graphs of y = x2, y = 0, and x = 1 is rotated about the line x = 1. Find the
volume of the solid that results.

1 Sketch a side view of the solid, noting
the height and radius of the horizontal
representative red disk. Notice that the
left hand limit of integration is just x =
0.

2 Find the volume of the representative red disk.

3 Set up the integral used to find the volume of the solid.

y

r = 1–x

x

y = 0

y = x2

h = dy

x = 1

2

1

1

0

Vdixk = πr2h
= π(1 – x)2dy

V x dy

V x dy

V x x dy

�
�
�

π

π

π

1

1

1 2

0

1 2

0

1 2

0

1
2

= -

= -

= - +

^
^
_

h
h

i

TIP
Be sure to measure the radius from the
axis of revolution back to the original
curve.
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4 Since there is a dy at the end of the integral, all terms before
that must in terms of y also. With

.

5 Last, integrate and then plug in the limits.

,y x y xyou also have /2 1 2= =

V y y dy�π 1 2 /

0

1
1 2= - +_ i

V y y
y

V

π

π

π

3
4

2

1 3
4

2
1 0

6

/3 2
2

0

1

= - +

= - + -

=

b l
=
<

G
F
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The region bounded by the graphs of y1 = f(x), y2 = g(x), the x-axis(y = 0), x = a, and x = b is
revolved about the x-axis. Find the volume of the resulting solid.

1 Sketch the bounded region.

2 Try to envision the three-dimensional
solid with a “hole” through it, which
results from rotating the bounded
region about the x-axis. It sort of looks
like a candle holder on its side. Notice
the thin red “washer” with the hole in
it.

y

x

y = f(x)

y = g(x)

a b

y

a b
x
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3 Let’s look at just the thin red washer for a moment. It has an
inner radius of r and outer radius of R, with a height (or
thickness) of h.

Derive a formula for the volume of the thin red washer.

4 In the process of doing a problem with a “hole,”
it is not necessary to try to sketch the three-
dimensional version. Just sketch a side view
and label the big R, the little r, and the height h.

h

r R

Vwasher = Vdisk – Vhole

= πR2h – πr2h
Vwasher = π(R2 – r2)h

y
y1 = f(x)

h = dx

R = y1

r = y2

y2 = g(x)

a b

TIP
R is the radius of the disk and r is the
radius of the hole.

TIP
Both the large radius R and the small radius r must
be measured from the axis of revolution; R from the
axis to the outer curve and r from the axis to the
inner curve.
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5 Substitute the appropriate pieces into the volume
of the washer formula.

6 If you were to add the volumes of an infinite number
of thin red washers, you could compute that sum by
using an integral.

7 With the dx term at the end of the integral, you need
to make sure that the integrand has only numerical or
x terms.

EXAMPLE 1
The region bounded by the graphs of y = x and y = x3 in the first quadrant is rotated about the x-axis.
Find the volume of the solid that results.

1 Sketch a side view of the solid; draw in a
representative red washer and label its big and
small radius as well as its height.

V R r h

V y y dx

π

π

washer

washer

2 2

1

2

2

2

= -

= -

_
_ _b

i
i i l

V y y dx� π
a

b

1

2

2

2

= -_ _b i i l

V f x g x dx� π
a

b 2 2

= -^_ ^_c hi hi m

y

x

y1 = x3

0 1

y2 = x
h = dx

r = y1
R = y2
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2 Write the formula for the thin red washer’s volume.

3 Write the appropriate integral to compute the volume of the
solid.

4 Replace each y term with its corresponding x term
equivalent.

5 Integrate, evaluate, and simplify to get the volume of the
desired solid.

V R r h

V y y dx

π

π

washer

washer

2 2

2

2

1

2

= -

= -

_
_ _b

i
i i l

V y y dx

V y y dx

�

�

π

π

0

1

2

2

1

2

0

1

2

2

1

2

= -

= -

_ _b
_ _b

i i l
i i l

V x x dx

V x x dx

�

�

π

π

0

1
3

2

0

1
2 6

= -

= -

_ _b
_

i il
i

V x x

V

π

π

π

3 7

3
1

7
1 0

21
4

3 7

0

1

= -

= - -

=

b l
<
<

F
F
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EXAMPLE 2
The region bounded by the graphs of y = x2, the x-axis, and x = 2 is revolved about the y-axis. Find the
volume of the resulting solid.

1 Sketch a side view of the solid; draw
in a representative red washer, and
label its big and small radius as well as
its height.

2 Create a formula for the volume of this particular thin red
washer.

3 Set up the volume integral that enables you to compute the
volume of the resulting solid.

4 As usual, make sure that the variable within the integrand matches
the dy at the end of the integral.

y

x
-2 2

4

0

h = dy
r = x

R = 2

y = x2

Vwasher = π(R2 – r2)h
Vwasher = π(22 – x2)dy
Vwasher = π(4 – x2)dy

V x dy

V x dy

�
�

π

π

4

4

0

4
2

0

4
2

= -

= -

_
_

i
i

V y dy

V y dy

�
�

π

π

4

4

0

4

0

4

= -

= -

_
_

i
i

TIP
The large raduis R is fixed at 2. Only
the small radius r is changing.
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5 Integrate and evaluate the result using the limits of integration.

EXAMPLE 3
The region bounded by the graphs of y = x2, y = 0, and x = 1 is rotated about the line x = 3. Determine
the area of the resulting solid.

1 Sketch a side view of the figure; label
both large and small radii, as well as
the height of the thin red washer.

2 Write the formula for the thin red washer’s volume,
substituting for appropriate parts labeled on your figure.

V = π[4y – y2]0

= π[(16 – 8) – 0]
V = 8π

y

1 3 5 6
x

r = 2
h = dy

R = 3–x

x

y = x2

V R r h

V x dy

π

π 3 2

washer

washer

2 2

2 2

= -

= - -

_
^a

i
h k

TIP
Measure large radius R from the axis
of revolution (x = 3) to the outer curve
(y = x2). The small radius r is measured
from the axis of revolution (x = 3) to
the inner curve (x = 1).
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3 Write the integral for calculating the volume of the
resulting solid.

4 Using , substitute so that all
variables within the integrand match the dy term at the
end of the integral.

5 Now you’re ready to integrate and evaluate using the
limits to determine the volume of the solid.

y x y xso that /2 1 2= =

V x dy

V x dy

V x x dy

V x x dy

�

�

�
�

π

π

π

π

3 2

3 2

9 6 4

5 6

0

1 2 2

0

1 2 2

0

1
2

0

1
2

= - -

= - -

= - + -

= - +

^a
^a
_
_

h k
h k

i
i

V y y dy�π 5 6 /

0

1
1 2= - +_ i

V y y
y

V

π

π

π

5 4 2

5 4 2
1 0

2
3

/3 2
2

0

1

= - +

= - + -

=

b l
=
<

G
F
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The region bounded by the graphs of y = f(x), the x-axis, x = a, and x = b is revolved about the 
y-axis. Find an expression that represents the volume of the resulting solid.

1 To the right is a diagram of the
bounded region before being revolved
about the y-axis.

2 After being revolved about the y-axis,
the figure shown at right results.

Volume of Solid of Revolution:
Shell Method

y

x
a b

y = f(x)

y

xa b

y = f(x)
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3 In the new technique, named the “shell
method,” you find the volume of the
resulting solid by finding the sum of
an infinite number of very thin “shells”
(or pieces of pipe).

4 Let’s take a look at just one of those many “shells” (or pieces
of pipe). The shell has an outer radius, r2; an inner radius, r1;
and a height of just h. One other dimension, labeled R, is the
distance from the axis of revolution to the center of the thin red
shell.

5 Find a formula for the volume of that thin red shell.

y

x
a b

y = f(x)

r2

R

t

r1

h

Vshell = π(r2)
2h – π(r1)

2h

This is just the volume
of the piece of pipe
without the hole, minus
the volume of the hole.
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6 Play with the formula
a bit to rewrite it in
another form.

Note: Big R is really
just the average
radius. It is measured
from the axis of
revolution to the
center of the shell.

7 In the process of doing an actual
problem, the figure you sketch will
look more like the one at right. R is the
radius from the axis of revolution to the
center of the shell, and t is the
thickness, dx or dy.

. ’

V r h r h

V r r h

V r r r r h

V
r r

r r h

V
r r

h r r h

V R h t

ave radius height shell s thickness

V Rht

π π

π

π

π

π

π

π

2 2

2 2

2

2

Factored the middle term above.

Mult. and then div. by 2.

Moved the to the left one term.

shell

shell

shell

shell

shell

shell

shell

2

2

1

2

2

2

1

2

2 1 2 1

2 1
2 1

2 1
2 1

. . .

-

-
-

-

= -

= -

= + -

=
+

-

=
+

-

=

=

_ _
_ _b
_ _
d _
d _

i i
i i l

i i
n i
n i

y

x
a b

y = f(x)

t = dx

h = y

R = x
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8 Using the formula Vshell = 2πRht, substitute the appropriate pieces
labeled on your diagram to get a formula for the volume of the thin
red shell.

9 As in other volume techniques, if you were to add the volumes of an
infinite number of very thin red shells, the volume of the resulting
solid could be determined by using an integral.

EXAMPLE 1
The region bounded by the graphs of y = x3, y = 0, and x = 1 is revolved about the y-axis. Find the
volume of the resulting solid.

1 Sketch a side view of the solid, with
the two thin red rectangles actually
representing the side view of a shell.
Label the average radius R, the height
h, and the thickness t.

2 Plug the pieces labeled on your diagram into the formula for the
volume of a generic shell.

Vshell = 2πRht
Vshell = 2πxydx

V Rhtdx� π2
a

b

=

y

x

R = x
-1 1

t = dx

h = y

y = 0

y = x3

Vshell = 2πRht
Vshell = 2πxydx
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3 Set up the integral to find the volume of the solid,
substituting to get the integrand in terms of the same
variable as the dx at the end.

4 Integrate and evaluate the result.

This problem could also have been done using the washer
method.

V xydx

V xydx

V x x dx

V x dx

�
�
�
�

π

π

π

π

2

2

2

2

0

1

0

1

0

1
3

0

1
4

=

=

=

=

$

V x

V

π π

π

2 5 2 5
1 0

5
2

5

0

1

= = -

=

b l< F

TIP
When using either the disk or the washer method, the
“representative” disk or washer is drawn perpendicular to the
axis of revolution. In the shell method, the “representative”
shell is always drawn parallel to the axis of revolution. If you
have a choice between using the washer or the shell method,
it is usually easier to set up the shell method — you need to
find only one radius.
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Volume of Solid of Revolution: 
Shell Method (continued)
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EXAMPLE 2
The region bounded by the graphs of y = x2, y = 0, and x = 2 is revolved about the x-axis. Find the
volume of the resulting solid.

1 Sketch a side view of the solid,
showing a representative shell.

2 Plug the pieces labeled on your diagram into the formula for the
volume of a generic shell.

3 Set up the integral to find the volume
of the solid, substituting to get the
integrand in terms of the same
variable as the dy at the end.

y

x
20

4

y = x2

y = 0

h = 2–x

t = dy
R = y

x

Vshell = 2πRht
Vshell = 2πy(2 – x)dy

. .lim intV y x dy y

V y x dy

V y y dy

V y y dy

�
�
�
�

π

π

π

π

2 2

2 2

2 2

2 2

Notice the of

/

/

0

4

0

4

0

4
1 2

0

4
3 2

= -

= -

= -

= -

^
^
_

_

h
h
i
i
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chapter12Applications of Integration

4 Integrate and then find the value of the resulting expression.

This problem could also have been done using the disk method.

EXAMPLE 3
The region bounded by the graphs of y = x2 and y = –x2 + 2x is revolved about the line x = 3. Find the
volume of the resulting solid.

1 Find the x-coordinates of the points of intersection of the graphs of the
two equations.

2 Sketch a side view of the solid and
label the appropriate pieces, both the
radii and the height.

V y y

V

π

π

π

2 5
2

2 16 5
2 32 0

5
32

/2 5 2

0

4

= -

= - -

=

$b l
;
<

E
F

x2 = –x2 + 2x
0 = –2x2 + 2x
0 = –2x(x – 1)
x = 0 x = 1

h = y2–y1

y1 = x2

y

x
t = dx

y2 = -x2 + 2x

R = 3–x

0 1 3 5 6

281

TIP
The radius R must be measured from
the axis of revolution (x = 3) to the
middle of the shell.
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Volume of Solid of Revolution: 
Shell Method (continued)
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3 Find the volume of the thin red shell.

4 Set up the integral to determine the volume of the
solid and then evaluate using the limits of
integration.

5 Integrate and then evaluate using the limits of
integration.

Vshell = 2πRht
Vshell = 2π(3 – x)(y2 – yi)dx

V x y y dx

V x y y dx

V x x x x dx

V x x x dx

V x x x dx

�
�
�
�
�

π

π

π

π

π

2 3

2 3

2 3 2

2 3 2 2

2 2 8 6

0

1

2 1

0

1

2 1

0

1
2 2

0

1
2

0

1
3 2

= - -

= - -

= - - + -

= - - +

= - +

^ _
^ _
^ _
^ _
_

h i
h i
h i
h i

i

V x x x

V

π

π

π

2 2 3
8 3

2 2
1

3
8 3 0

3
5

4 3
2

0

1

= - +

= - + -

=

b l
<
<

F
F
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Appendix

GENERAL FORMS
1

2

3

4

(Sum/Difference Rule)

5

(Product Rule)

6

(Quotient Rule)

7

(Chain Rule)

8

(Simple Power Rule)

9

(General Power Rule)
dx
d u n u dun n 1= -$ $_ i

dx
d x n xn n 1= -$_ i

dx
d f g x f g x g x= $l l^_ ^_ ^hi hi h9 C

dx
d

g x
f x

g x

f x g x g x f x
2=

-$ $l l

^

^

^

^ ^ ^ ^

h

h

h

h h h h
=

8

G

B

dx
d f x g x f x g x g x f x= +$ $ $l l^ ^ ^ ^ ^ ^h h h h h h8 B

dx
d f x g x f x g x! != l l^ ^ ^ ^h h h h8 B

dx
d c f x c f x=$ $ l^ ^h h8 B
dx
d x 1=^ h

dx
d c 0=^ h

EXPONENTIAL FORMS  
0

!

LOGARITHMIC FORMS
@

#
log lndx

d u a u
du1

a = $_ i

,ln lndx
d u u

du
dx
d x x

1in particular= =^ ^bh h l

lndx
d a a a duu u= $ $

,dx
d e e du dx

d e ein particularu u x x= =b l

TRIGONOMETRIC FORMS
$

%

^

&

*

(
cot cscdx

d u u du2= -^ h

sec sec tandx
d u u u du=^ h

csc csc cotdx
d u u u du= -^ h

tan secdx
d u u du2=^ h

cos sindx
d u u du= -^ h

sin cosdx
d u u du=^ h

Common Differentiation Rules

In the following, c is a constant and a is a constant. In cases where u appears, u is some function of
another variable and the du is just the derivative of u.
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INVERSE TRIGONOMETRIC FORMS
)

q

w

e

r

t
cotdx

d arc u
u

du
1 2=
+
-^ h

secdx
d arc u

u u
du

12
=

-
^ h

cscdx
d arc u

u u
du

12
=

-

-^ h

arctandx
d u

u
du

1 2=
+

^ h

arccosdx
d u

u
du

1 2
=

-

-
^ h

arcsindx
d u

u
du

1 2
=

-
^ h

284

GENERAL FORMS 
1

2

3

4

5
u du n

u c n� 1 1n
n 1

!=
+

+ -
+ ^ h

x dx n
x c n� 1 1n

n 1

!=
+

+ -
+ ^ h

f x g x dx f x dx g x dx� � �! !=^ ^ ^ ^h h h h8 B

kdx kx c� = +

dx x c� = +

LOGARITHMIC FORMS 
6

In particular 

EXPONENTIAL FORMS 
7

In particular e dx e c� x x= +

e du e c� u u= +

lnx dx x c� 1 = +

lnu
du u c� = +

Common Integration Formulas

In the following, k is a constant, c is a constant. In cases where u appears, u is some function of another
variable and the du is just the derivative of u.
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TRIGONOMETRIC FORMS 
8

9

0

!

@

#

$

%

^

& csc cotu du u c� 2 = - +

sec tan secu udu u c� = +

csc cot cscu u du u c� = - +

sec tanu du u c� 2 = +

cot ln sin ln cscu du u u c� or= + - +c

sec ln sec tanu du u u c� = + +

csc ln csc cotu du u u c� = - +

tan ln cos ln secu du u c u c� or= - + +

cos sinu du u c� = +

sin cosu du u c� = - +

INVERSE TRIGONOMETRIC FORMS 
*

(

) du

u u a a

u

a2 2

1

+
= +∫ arcsec c

du

a u a

u

a2 2

1

+
= +∫ arctan c

du

a u

u

a2 2−
= +∫ arcsin c

Unit Circle and Some Common Trigonometric Identities

(      ,     )√3
2

1
2

(0, –1)

(0, 1)

(–1, 0)

(1, 0)

(–      , –      )
270°

240°

225°

210°

180°

150°

π 2π

135°

120°

90°

y

x

60°

45°

30°

00°

360°

330°

315°

300°

(     ,       )1
2

√3
2

(–      , –    )1
2

√3
2

(–      ,    )1
2

√3
2

(–     , –      )1
2

√3
2

(–     ,       )1
2

√3
2 π

2 π
3 π

4
π
5

11π
6

7π
4

7π
6

5π
6

5π
4

3π
4

5π
3

4π
3

2π
3

3π
2

(      , –    )1
2

√3
2

√2
2

√2
2

(    , –      )1
2

√3
2

(–      ,       )√2
2

√2
2 (      ,      )√2

2
√2
2

(      , –      )√2
2

√2
2
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PYTHAGOREAN IDENTITIES
cos2x + sin2x = 1 tan2x + 1 = sec2x 1 + cot2x = csc2x

SUM AND DIFFERENCE IDENTITIES 
cos(x ± y) = cos x cos y sin x sin y sin(x ± y) = sin x cos y ± cos x sin y

DOUBLE-ANGLE IDENTITIES 
sin2x = 2sin x cos x cos2x = cos2x – sin2x cos2x = 2cos2 x – 1 cos2x = 1 – 2sin2x

HALF-ANGLE IDENTITIES 

sin cosx x2 2
1 1! -b ^l hcos cosx x2 2

1 1!= +b ^l h

±

286
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A
acceleration function (a(t)), 57, 188, 247, 249
acceleration problems. See word problems
algebraic functions, 99
algebraic substitution, 237–239
antiderivatives, 195–196
antidifferentiation, 195
approximations, 9
arcsins, 110, 232, 235
area

bound regions, 205–208
curves, 9–13, 250–259

asymptotes. See horizontal asymptotes; vertical asymptotes
average radius, 277

B
balloon rate of change problem, 72–73, 139–140
bound regions, 205–208, 250–259. See also solids of revolution
bus company fare problem, 181–182

C
Chain Rule, 96, 104–109
change of base property, 114
change of variable technique, 216–217
circumscribed rectangles, 9, 11
closed intervals, 31, 155–159
“combo” technique, 235
common definition forms, 60–63
common denominators, 43–45
common logs, 119
complicated natural log expressions, 117
composite continuity property, 30
composite functions, 96, 104–109
composite limit property, 24
concavity, 165–168
conditional functions, 18–19
conical water tank problem, 183–184
Constant Multiple Rule, 79
Constant Rule, 78
continuity, 26–31, 76
cosecant, 100–101
cosine, 97–99, 202
cotangent, 100–101
critical numbers, 146–147
curves

area, 9–13, 250–259
tangents, 6–8, 67–69

cylindrical can construction problem, 179–181

D
∆–Ε definition of limits of functions, 14–16
decreasing functions. See increasing/decreasing functions
definite integrals, 13, 203, 205–208

287

denominators, 43–45, 47
derivatives. See also differentiation

alternate notations for, 70–71
analyzing motion on objects with, 57
analyzing rates of change with, 57, 72–73
defined, 1
definition forms, 60–63
differentiability, 74–76
of exponential functions, 125–128
finding equation of lines tangent to curves with, 67
finding horizontal tangents with, 68–69
finding points where relative maximums/minimums occur with, 56
finding slope of tangent lines with, 56, 58–59
formulas, 66, 97, 114, 119
of logarithmic functions, 113–122
Mean Value Theorem, 91–92
optimizing word problems with, 57
Rolle’s Theorem, 89–90
rules, 78–88, 93–95, 123–124
second, 71, 165, 200
of specific functions at specific numbers, 63–66
of trigonometric functions, 96–111

differential calculus, 1
differential equations, 240–245
differentiation. See also derivatives

concavity, 165–168
and continuity, 76
critical numbers, 146–147
defined, 55, 60, 65, 80
extrema, 155–164, 172–175
finding tangent lines to graphs of functions at points, 143
horizontal tangents, 144–145
implicit, 129, 134–141
increasing/decreasing functions, 148–154
inflection points, 168–171
versus integration, 195–196
logarithmic, 129–133
overview, 142–175
rules of, 283–284
when functions fail to have, 74–75
word problems, 176–193

direct substitution, 36–37
discontinuity, 28–29
disk method, 260–267
dividing by largest power of variables, 40–42
Double-Angle Identities, 286

E
Ε, 14–16
e, 113
equations

differential, 240–245
graphs of, 250–251
of lines tangent to curves, 67
written in implicit form, 134

Index
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explicit form, 134
exponential functions

continuous, 30
derivatives of, 125–128, 283
First Fundamental Theorem, 203–204
integral formulas, 201, 284
integrals of, 202, 220–222, 284

expressions
logarithmic, 113–114, 117
rational, 37, 43–45

extrema, 155–159, 160–164, 172–175. See also maximums/minimums
Extreme Value Theorem, 34

F
f, 14
factor and reduce technique, 39–40
first derivative test, 160
First Fundamental Theorem, 203–204
formulas. See derivatives; integrals
functions. See also specific functions by name

algebraic, 99
composite, 96, 104–109
conditional, 18–19
power, 201

G
General Power Rule

and arcsins, 235
with natural logarithmic functions, 116
overview, 84–85, 214–219
with radical trigonometric functions, 101

geometric formulas, 66, 139
graphs of functions

concavity for, 166–168
determining limits from, 20–22
finding maximums/minimums on, 56
finding tangent lines to at points, 143
with “holes”, 75
with “jumps”, 75
polynomial, 144
with sharp turns, 74
that have two horizontal asymptotes, 53–54
trigonometric, 145
with vertical tangent lines, 74
when intersect once or more, 251–259

H
h (height), 139
Half-Angle Identities, 286
height (h), 139
highs, 155. See also maximums/minimums
“holes”, 27–28, 75, 268–269
horizontal asymptotes

functions whose graphs have two, 53–54
functions with x-axis as, 49

overview, 48
of rational functions, 49–52

horizontal rectangles, 256–259
horizontal tangents, 68–69, 144–145

I
implicit differentiation, 129, 134–141
implicit form, 134
increasing/decreasing functions, 148–154
indefinite integrals, 197–200
indeterminate forms, 38–47, 93–95
infinite discontinuity, 29
infinite series, 2–3
infinity, limits at, 48–54
inflection points, 146–147, 168–171
initial conditions, 244
inner radius (r), 139, 269
inscribed rectangles, 9–10
integrable, defined, 198
integral calculus, 1
integrals. See also integration

antiderivatives, 195–196
definite, 205–208
of exponential functions, 220–222
First Fundamental Theorem, 203–204
formulas, 201–202, 226, 232, 284–285
indefinite, 197–200
“look-alike”, 236
overview, 1, 194
Second Fundamental Theorem, 209–210
that result in inverse trigonometric functions, 232–234
that result in natural logarithmic functions, 223–225
of trigonometric functions, 226–231

integrands, 197, 235
integration. See also antidifferentiation; integrals

algebraic substitution, 237–239
“combo” technique, 235
definition, 211
differential equations, 240–245
versus differentiation, 195–196
finding area between curves, 250–259
finding volume of solids of revolution, 260–282
General Power Rule, 214–219
limits of, 203, 217–218
overview, 211–245, 246
problems, 247–249
Simple Power Rule, 212–214

Intermediate Value Theorem, 32–33
intervals, 31–33, 148–150, 155–159
inverse trigonometric functions. See trigonometric functions

J
“jumps”, 27, 29, 75

288
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L
L, 14
ladder sliding down side of building problem, 140–141
large radius (R), 272–273
L’Hôpital’s Rule, 93–95, 102–103, 123–124, 127–128
light pole and shadow problem, 185–187
limits

calculating with algebraic methods, 35–54
calculating with properties of, 23–25
continuity of functions, 26–31
determining from graphs of functions, 20–22
Extreme Value Theorem, 34
of functions, 4–5, 14–16
indeterminate forms, 93–95
of integration, 203, 217–218
Intermediate Value Theorem, 32–33
L’Hôpital’s Rule, 93–95, 123–124
one-sided, 17–19
overview, 1
Riemann Sums, 9–13
slopes of lines tangent to curves, 6–8
of sums of infinite series, 2–3
terms of infinite series, 2

line tangent. See tangents
linear functions, 205–206
log of a power property, 114, 117, 122
log of a product property, 113, 117
log of a quotient property, 114, 117
logarithmic differentiation, 129–133
logarithmic expressions, 113–114, 117
logarithmic functions. See also natural logarithmic functions

continuous, 30
derivatives of, 119–122
differentiation, 283
integration, 284
L’Hôpital’s Rule and, 123–124

“look-alike” integrals, 236
lower approximations, 9
lows, 155. See also maximums/minimums

M
maximums/minimums

on closed intervals, 155
finding with critical numbers, 146
on graphs of functions, 56
relative, 56, 160–164, 172
word problems, 177

Mean Value Theorem, 91–92
motion on objects, analyzing, 57
multiples, scalar, 30

N
natural logarithmic functions

derivatives, 113–118, 119
integrals, 202, 223–225, 284
products involving, 151–152

negative sign, 141
negative velocity, 191
nth derivatives, 71
numerators, rationalizing, 46

O
one-sided limits, 17–19
open intervals, 31
optimization problems. See word problems
outer radius (R), 266

P
particle moving along straight line problem, 190–193
polynomial functions

continuous, 30
critical numbers of, 146–147
direct substitution to find limits of, 36
extrema of, 156–157, 161–162, 172–174
finding derivatives of, 63–64, 80
First Fundamental Theorem, 204
increasing/decreasing functions for, 149–151
inflection points, 169–170
integrals, 201
logarithmic functions of, 121
one-sided limits for, 19

position function, 188
position problems. See word problems
positive velocity, 191
power functions, 201
power limit property, 24
Power Rule, 78
powers, 24, 114–116, 201
problems. See word problems
product limit property, 23
Product Rule, 81–83, 101
properties of continuity, 30
properties of limits, 23–25
Pythagorean Identities, 99, 286

Q
quotient continuity property, 30
quotient limit property, 24
Quotient Rule, 86–87, 116
quotients

continuous, 30
derivatives of, 99, 116, 121–122
limited, 24
of radical functions, 87–88
of rational expressions, 37

R
r (inner/small radius), 139, 269
R (outer/large radius), 272–273

289
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radical functions
continuous, 30
critical numbers of, 147
derivatives of at specific numbers, 64–65
derivatives of trigonometric, 101
direct substitution to find limits involving, 36
finding derivatives of quotient of, 87–88
inflection points, 170–171
limits involving, 42
logarithmic functions of, 122
natural logarithmic functions of, 115

radius
average, 277
inner/small, 139, 272–273
measuring, 266
outer/large, 272–273
representative disk, 261

rates of change, 57, 72–73, 139–140
rational expressions, 37, 43–45
rational functions

continuous, 30
horizontal asymptotes of, 49–52
indeterminate forms involving, 38
limits of, 39–41
one-sided limits for, 18
relative extrema of functions, 162–164

rationalizing, 46–47
reciprocals, 38
rectangles, 9–11, 250, 256–259
rectilinear motion problem, 190–191
regions. See bound regions
related rates problems. See word problems
relative extrema. See extrema
relative maximums/minimums. See maximums/minimums
removable discontinuity, 28
representative disks, 261
representative rectangles, 250, 256–259
reversed differentiation formulas. See integrals
revolved bound regions. See bound regions
Riemann Sums, 9–13
rocket problem, 188–190
Rolle’s Theorem, 89–91
rotations. See bound regions

S
• (sum of), 3
scalar multiple continuity property, 30
scalar product limit property, 23
secant, 58, 100–101
second derivative test, 172–175
second derivatives. See derivatives
Second Fundamental Theorem, 209–210
sharp turns, 74
shell method, 275–282
Simple Power Rule, 212–214

sine, 97–99, 202
slope, 6–8, 56, 58–59
small radius (r), 139, 272–273
solids of revolution, finding volume of

disk method, 260–267
shell method, 275–282
washer method, 268–274

special trigonometric limit property, 24–25
Sum and Difference Identities, 286
sum of (• ), 3
sum or difference continuity property, 30
sum or difference limit property, 23
Sum/Difference Rule, 80
sums, 23, 30, 98

T
t. See time
tangents

derivatives of, 97–99
to graphs of trigonometric functions, 143
horizontal, 68–69, 144–145
slope of, 56, 58–59
vertical, 74

terms of infinite series, 2
thickness, representative disk, 261
third derivatives, 71
three-dimensional solids. See solids of revolution
time (t), 137–139, 183–187
trigonometric functions

continuous, 30
definite integrals, 206
derivatives of, 96–111, 283
evaluated at natural logarithmic functions, 118
extrema of, 158–159, 174–175
First Fundamental Theorem, 203
graphs of, 143
indeterminate forms involving, 38
integrals, 202, 226–231, 285
inverse, 110–111, 232–234, 284–285
limits of, 22, 37, 40
products of, 153–154
special, 25

trigonometric identities, 99, 286

U
unit circles, 97, 285
unknown variables, 136–137
upper approximations, 9
u-substitution technique, 216–217, 237

V
V (volume), 139
variables, 40–42, 136–137, 240–245
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velocity, 191. See also word problems
velocity functions, 57, 188
vertical asymptotes, 27, 29, 49, 51
vertical tangent lines, 74
volume (V), 139
volume of box problem, 177–179
volume of solids of revolution. See solids of revolution

291

W
washer method, 268–274
word problems

implicit differentiation, 139–141
optimization, 57, 177–182
position, velocity, and acceleration, 188–193, 247–249
rate of change, 72–73
related rates, 183–187

16_185605-bindex.qxp  4/1/08  3:47 PM  Page 291



0-7645-9642-X 0-7645-7927-4

Want instruction 
in other topics? 

Look for these and other Teach Yourself VISUALLY™ titles wherever books are sold.

Wiley, the Wiley logo, the Visual logo, Read Less-Learn More, and Teach Yourself Visually are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates.  All other trademarks are the property of their respective owners.

Check out these 
All designed for visual learners—just like you!

Read Less–Learn More®

0-7645-9640-3

17_185605-badvert01.qxp  4/1/08  3:47 PM  Page 292


	Teach Yourself Calculus
	Table of Contents
	Chapter 1 An Introductionto Limits
	Limits in Calculus
	Definition of the Limit of a Function
	One-Sided Limits
	Determine Limits from the Graph of a Function
	Calculate Limits Using Properties of Limits
	Continuity at a Pointor on an Interval
	The Intermediate Value and Extreme Value Theorems

	Chapter 2 Algebraic Methods to Calculate Limits
	Direct Substitution
	Indeterminate Forms
	Dealing with Indeterminate Forms
	Limits at Infinity: Horizontal Asymptotes

	Chapter 3 Introduction to the Derivative
	What Can Be Done With a Derivative?
	Derivative as the Slope of a Tangent Line
	Derivative by Definition
	Find the Equation of a Line Tangent to a Curve
	Horizontal Tangents
	Alternate Notations for a Derivative
	Derivative as a Rate of Change
	Differentiability and Continuity

	Chapter 4 Derivatives by Rule
	Derivatives of Constant, Power, and Constant Multiple
	Derivatives of Sum, Difference, Polynomial, and Product
	The General Power Rule
	The Quotient Rule
	Rolle’s Theorem and the Mean Value Theorem
	Limits: Indeterminate Forms and L’Ho^pital’s Rule

	Chapter 5 Derivatives of Trigonometric Functions
	Derivatives of Sine, Cosine, and Tangent
	Derivatives of Secant, Cosecant, and Cotangent
	L’Hôpital’s Rule and Trigonometric Functions
	The Chain Rule
	Trigonometric Derivatives and the Chain Rule
	Derivates of the Inverse Trigonometric Functions

	Chapter 6 Derivatives of Logarithmic and Exponential Functions
	Derivatives of Natural Logarithmic Functions
	Derivatives of Other Base Logarithmic Functions
	Logarithms, Limits, and L’Ho^pital’s Rule
	Derivatives of Exponential Functions

	Chapter 7 Logarithmic and Implicit Differentiation
	Logarithmic Differentiation
	Techniques of Implicit Differentiation
	Applications of Implicit Differentiation

	Chapter 8 Applications of Differentiation
	Tangent Line to Graph of a Function at a Point
	Horizontal Tangents
	Critical Numbers
	Increasing and Decreasing Functions
	Extrema of a Functionon a Closed Interval
	Relative Extrema of a Function: First Derivative Test
	Concavity and Point of Inflection
	Extrema of a Function: Second Derivative Test

	Chapter 9 Additional Applications of Differentiation: Word Problems
	Optimization
	Related Rates
	Position, Velocity, and Acceleration

	Chapter 10 Introduction to the Integral
	Antiderivatives: Differentiation versus Integration
	The Indefinite Integraland Its Properties
	Common Integral Forms
	First Fundamental Theorem of Calculus
	The Definite Integral and Area
	Second Fundamental Theorem of Calculus

	Chapter 11 Techniques of Integration
	Power Rule: Simple and General
	Integrals of Exponential Functions
	Integrals That Result in a Natural Logarithmic Function
	Integrals of Trigonometric Functions
	Integrals That Result in an Inverse Trigonometric Function
	Combinations of Functions and Techniques
	Algebraic Substitution
	Solving Variables Separable Differential Equations

	Chapter 12 Applications of Integration
	Acceleration, Velocity, and Position
	Area between Curves: Using Integration
	Volume of Solid of Revolution: Disk Method
	Volume of Solid of Revolution: Washer Method
	Volume of Solid of Revolution: Shell Method

	Appendix
	Index



